
Recursive Towers over Finite Fields

Von der Fakultät für Mathematik und Naturwissenschaften

der Carl von Ossietzky Universität Oldenburg

zur Erlangung des Grades und Titels eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation

von

Dietrich Kuhn
geboren am 06.12.1988

in Pawlodar (Kasachstan)

Oldenburg 2023



Gutachter
Prof. Dr. Florian Heß

Weiterer Gutachter
Prof. Dr. Peter Beelen

Tag der Disputation
21.12.2022

2



Abstract

An infinite sequence F = (F0, F1, . . . ) of function fields Fn/Fq of transcendence degree
one with full constant field Fq is called a tower of function fields if all extensions Fn+1/Fn
are finite separable and the genus g(Fn) tends to infinity as n → ∞. A tower is called
asymptotically good if its limit λ(F) := lim

n→∞
N(Fn)
g(Fn) is a positive real number where N(Fn)

denotes the number of Fq-rational places in Fn.
Good towers can be used to construct Goppa codes with good parameters. Unfortu-

nately, many of the known good towers are constructed with methods which involve class
field theory or modular curves and these constructions do not provide explicit presenta-
tions of the function fields Fn. However, a special type of towers are recursive towers which
are recursively defined by bivariate polynomials f(X,Y ) over Fq and provide a sequence of
elements xn ∈ Fn such that Fn is of the explicit form Fq(x0, . . . , xn) where these elements
satisfy the equation f(xn, xn+1) = 0 for all n ∈ N0.

The main tool of this thesis is a directed graph which is associated with the recursive
tower F , namely the tower graph ΓF of F . Its vertex set V (ΓF ) is the set PF0 of all places
in F0, its edge set E(ΓF ) the set PF1 of all places in F1 and an edgeQ in ΓF goes fromQ∩F0
to σ−1(Q ∩ σ(F0)) where σ is the Fq-algebra morphism F0 = Fq(x0) → σ(F0) = Fq(x1)
with σ(x0) = x1.

In directed graphs, circles are defined as closed paths without further repetitions and
weakly connected components are connected components if the directions of the edges are
neglected. Moreover, an edge Q in ΓF is called ramified if one of the ramification indices
e(Q|Q ∩ F0) and e(Q|Q ∩ σ(F0)) is greater than one. Paths P have balanced ramification
indices if the products ∏n

i=1 e(Qi|Qi ∩ F0) and ∏n
i=1 e(Qi|σ−1(Qi) ∩ F0) are equal for the

edge sequence (Q1, . . . , Qn) of P. Then a weakly connected component only containing
circles which have balanced ramification indices is called balanced.

The ramification subgraph Γram
F is defined as the union of all weakly connected com-

ponents of ΓF which contain ramified edges. Finally, a subgraph Γ stops ramifying from
some level on if there is some m ∈ N0 such that e(Q|Q ∩ Fm) = 1 for all n ≥ m and all
Q ∈ PFn with Q ∩ F0 ∈ V (Γ), then .

In 2005, Beelen-Garcia-Stichtenoth conjectured that a good recursive tower F = (Fν)ν
has to have rational splitting in F0, i.e. there is a rational place in F0 which splits com-
pletely in all extensions Fn/F0 with n ∈ N0. This conjecture is false. But in 2022, Beelen
confirmed that the following weaker version of this conjecture is still open: For every good
recursive tower, there is some m ∈ N0 such that F has rational splitting in Fm, i.e. there
is a rational place in Fm which splits completely in all extensions Fn/Fm with n ≥ m.

The main result of this thesis is an almost complete answer to this conjecture. More
concretely, it is concluded that this conjecture holds true for a recursive tower if its tower
graph only has finite balanced weakly connected components which stop ramifying from
some level on. There is only one recursive tower known to the author which does not fulfill
this condition, namely the CNT-tower.

As two further results, it is shown that the tower graph has at most one finite balanced
weakly connected component and that the limit of a recursive tower cannot increase after
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a finite constant field extension. These results are improvements of results from Beelen
in 2004 and from Hallouin-Perret in 2012 and they also improve a result from Chara-
Navarro-Toledano in 2018.

As a fourth result the precise limits of all tame recursive towers are determined such
that the ramification subgraph is finite and only has balanced weakly connected com-
ponents which stop ramifying from some level on. Moreover, the precise limits of all
wild recursive towers are also determined which additionally are α-weakly ramified are
also determined, i.e. there is a map α : PF0 → R such that the set of the elements
a(Q ∩ F0)e(Q|Q ∩ F0) − d(Q|Q ∩ F0) with Q ∈

⋃
ν∈N0 PFν can only attain finitely many

values. Again, the only recursive tower known to the author to which these methods
cannot be applied is the CNT-tower.

As a consequence of being able to compute precise limits for most recursive towers in the
literature, implications for several important results are derived, e.g. from Bezerra-Garcia-
Stichtenoth in 2005 (the BezGS-towers do not supply a better lower bound for Ihara’s
constant for cubic q than already established), from Bassa-Beelen-Garcia-Stichtenoth in
2015 (the BBGS-towers do not supply a better lower bound for Ihara’s constant for non
prime q than already established), from Stichtenoth-Tutdere in 2015 (there are no good
quadratic recursive towers over F2) and from Bassa-Ritzenthaler in 2020 (the BR-towers
do not improve any known lower bounds for Ihara’s constant).

Finally, as a fifth result, a method with an implementation in the computer algebra
system Magma is derived which computes genus formulas for tame recursive towers with
so called separating power ramification subgraphs. The author is not aware of any tame
recursive tower not having a separating power ramification subgraph. For instance, the
implementation works on all recursive towers from Maharaj-Wulftange in 2002.
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Kurzfassung

Eine unendliche Folge von Funktionenkörpern F = (F0, F1, . . . ) mit Transzendenzgrad
eins über einem endlichen Konstantenkörper Fq wird als Funktionenköperturm bezeichnet,
wenn alle Erweiterungen Fn+1/Fn endlich und separabel sind und das Geschlecht g(Fn)
gegen unendlich strebt, wenn n → ∞. Ein Funktionenkörperturm wird als asymptotisch
gut bezeichnet, wenn sein Grenzwert λ(F) := limn→∞

N(Fn)
g(Fn) eine positive reelle Zahl ist,

wobei N(Fn) die Anzahl der Fq-rationalen Stellen in Fn bezeichnet.
Gute Türme können zur Konstruktion von Goppa-Codes mit guten Parametern ver-

wendet werden. Leider werden viele bekannte gute Türme mit Methoden konstruiert, die
Klassenkörpertheorie oder modulare Kurven involvieren, und diese Konstruktionen liefern
keine expliziten Darstellungen der Funktionenkörper Fn. Es gibt jedoch eine spezielle Art
von Türmen, nämlich rekursive Türme, die durch bivariate Polynome f(X,Y ) über Fq
rekursiv definiert werden und eine Folge von Elementen xn ∈ Fn liefern, sodass Fn die
explizite Form Fq(x0, . . . , xn) hat, wobei diese Elemente die Gleichung f(xn, xn+1) = 0 für
alle n ∈ N0 erfüllen.

Das Hauptwerkzeug dieser Arbeit ist ein gerichteter Graph, der mit dem rekursiven
Turm F assoziiert ist, nämlich der Turmgraph ΓF von F . Seine Eckenmenge V (ΓF )
besteht aus allen Stellen in F0, seine Kantenmenge E(ΓF ) besteht aus allen Stellen in
F1 und eine Kante Q in ΓF führt von Q ∩ F0 zu σ−1(Q ∩ σ(F0)), wobei σ der Fq-
Algebrenhomomorphismus F0 = Fq(x0)→ σ(F0) = Fq(x1) mit σ(x0) = x1 ist.

In gerichteten Graphen werden Kreise als geschlossene Pfade ohne weitere Wiederhol-
ungen definiert und schwach zusammenhängende Komponenten sind zusammenhängende
Komponenten, wenn die Richtungen der Kanten vernachlässigt werden. Darüber hinaus
wird eine Kante Q in ΓF als verzweigt bezeichnet, wenn einer der Verzweigungsindizes
e(Q|Q ∩ F0) und e(Q|Q ∩ σ(F0)) größer als eins ist. Pfade P haben balancierte Verzwei-
gungsindizes, wenn die Produkte ∏n

i=1 e(Qi|Qi ∩ F0) und ∏n
i=1 e(Qi|σ−1(Qi) ∩ F0) für

die Kantensequenz (Q1, . . . , Qn) von P gleich sind. Eine schwach zusammenhängende
Komponente, die nur Kreise enthält, deren Verzweigungsindizes balanciert sind, wird als
balanciert bezeichnet.

Der Verzweigungsuntergraph Γram
F ist definiert als die Vereinigung aller schwach zusam-

menhängenden Komponenten von ΓF , die verzweigte Kanten enthalten. Schließlich stoppt
die Verzweigung eines Untergraphs Γ ab einer Stufe, wenn es ein m ∈ N0 gibt, für das
e(Q|Q ∩ Fm) = 1 für alle n ≥ m und alle Q ∈ PFn mit Q ∩ F0 ∈ V (Γ) gilt.

Im Jahr 2005 haben Beelen-Garcia-Stichtenoth die Vermutung aufgestellt, dass ein
guter rekursiver Turm F = (Fν)ν in F0 rationale Zerlegung haben muss, d.h., es gibt
eine rationale Stelle in F0, die sich in allen Erweiterungen Fn/F0 mit n ∈ N0 vollständig
zerlegt. Diese Vermutung ist falsch. Aber im Jahr 2022 bestätigte Beelen, dass die folgende
schwächere Version dieser Vermutung immer noch offen ist: Für jeden guten rekursiven
Turm gibt es ein m ∈ N0, sodass F in Fm rationale Zerlegung hat, d.h., es gibt eine
rationale Stelle in Fm, die sich in allen Erweiterungen Fn/Fm mit n ≥ m vollständig
zerlegt.

Das Hauptergebnis dieser Arbeit ist eine nahezu vollständige Antwort auf diese Ver-
mutung. Konkret wird gezeigt, dass diese Vermutung für einen rekursiven Turm wahr ist,
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wenn sein Turmgraph nur endliche balancierte schwach zusammenhängende Komponen-
ten hat, die ab einer bestimmten Stufe die Verzweigung stoppen. Dem Autor ist nur ein
rekursiver Turm bekannt, der diese Bedingung nicht erfüllt, nämlich der CNT-Turm.

Zwei weitere Ergebnisse zeigen, dass der Turmgraph nicht mehr als eine endliche,
balancierte schwach zusammenhängende Komponente hat und dass der Grenzwert eines
rekursiven Turms nach einer endlichen Konstantenkörpererweiterung nicht steigen kann.
Diese Ergebnisse verbessern die Ergebnisse von Beelen aus dem Jahr 2004 und von Hallouin-
Perret aus dem Jahr 2012 sowie ein Ergebnis von Chara-Navarro-Toledano aus dem Jahr
2018.

Als ein viertes Ergebnis werden die genauen Grenzwerte aller zahmen rekursiven Türme
bestimmt, bei denen der Verzweigungsgraph endlich ist und nur balancierte schwach
zusammenhängende Komponenten enthält, die ab einer Stufe aufhören zu verzweigen.
Darüber hinaus werden auch die genauen Grenzwerte aller wilden rekursiven Türme bes-
timmt, die zusätzlich α-schwach verzweigt sind. Das bedeutet, es gibt eine Abbildung
α : PF0 → R, so dass die Menge der Elemente a(Q ∩ F0)e(Q|Q ∩ F0) − d(Q|Q ∩ F0) mit
Q ∈

⋃
ν∈N0 PFν nur endlich viele Werte annehmen kann. Der einzige bekannte rekursive

Turm, auf den diese Methoden nicht angewendet werden können, ist der CNT-Turm.
Als Konsequenz, genaue Grenzwerte für die meisten rekursiven Türme in der Liter-

atur berechnen zu können, ergeben sich Implikationen auf mehrere wichtige Ergebnisse.
Zum Beispiel auf die Ergebnisse von Bezerra-Garcia-Stichtenoth im Jahr 2005 (die BezGS-
Türme liefern keine bessere untere Schranke für Iharas Konstante für kubische q als bereits
etabliert), von Bassa-Beelen-Garcia-Stichtenoth im Jahr 2015 (die BBGS-Türme liefern
keine bessere untere Schranke für Iharas Konstante für nicht-prime q als bereits etabliert),
von Stichtenoth-Tutdere im Jahr 2015 (es gibt keine guten quadratischen rekursiven Türme
über F2) und von Bassa-Ritzenthaler im Jahr 2020 (die BR-Türme verbessern keine bekan-
nten unteren Schranken für Iharas Konstante).

Schließlich wird als ein fünftes Ergebnis eine Methode mit einer Implementierung im
Computeralgebrasystem Magma hergeleitet, die Geschlechterformeln für zahme rekursive
Türme mit sogenannten separierenden Potenz-Verzweigungsgraphen berechnet. Dem Au-
tor ist kein zahmer rekursiver Turm bekannt, der keinen separierenden Potenz-Verzweig-
ungsgraphen hat. Die Implementierung lässt sich zum Beispiel auf alle rekursiven Türmen
von Maharaj-Wulftange aus dem Jahr 2002 anwenden.
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1 Introduction

Curves with many points. Smooth geometrically integral projective curves C over
finite fields k = Fq with many Fq-rational points for a given genus g = g(C) are of interest
for several reasons. For example because they can be used to construct error-correcting
Goppa Codes with good parameters (see [Sti08, p. 243, Chapter 7]).

The Hasse-Weil-bound q + 1 + ⌊2√q⌋g(C) provides a first non-trvial upper bound for
the number N(C) of Fq-rational points on C. However, in [Iha82], Ihara established that
the Hasse-Weil-bound cannot be attained for large genera g(C) and also introduced the
number

A(q) := lim sup
g→∞

max{N(C) : C curve of genus g over Fq as above}
g

which was later called Ihara’s constant. Then, in [VD83], it was shown that Ihara’s con-
stant A(q) has the Drinfeld-Vladut-bound √q− 1 as an upper bound. On the other hand,
lower bounds b(q) for Ihara’s constant A(q) ensure the existence of sequences (Cν)ν∈N0

of smooth geometrically integral projective curves over Fq with many rational points and
small genera. More precisely, we have limν→∞N(Cν)/g(Cν) ≥ b(q) where g(Cν) → ∞
as ν → ∞. A tower of curves is a sequence (Cν)ν as above with additional separable
surjective morphisms Cn+1 → Cn for all n ∈ N0. The following lower bounds for A(q)
were established via constructing such towers of curves:

• q square: A(q) = √q − 1 ([TVZ82] modular curves, [GS95] recursive towers)

• q = p2m+1 with p prime and m ≥ 1: A(q) ≥ 2(pm+1−1)
p+1+ p−1

pm−1
([BBGS15] recursive towers)

• q ̸= 2, 3: A(q) ≥ 2
q−2 ([BR20] recursive towers)

• q, l arbitrary: A(ql) ≥ c l
2 log(q)2

l+log(q) ([Tem01] class field towers)

• A(2) ≥ 0.316999, A(3) ≥ 0.492876 ([DM13] class field towers)

Recursive towers. The constructions of the towers from above which use class field
theory or modular techniques have the disadvantage that they do not come with explicit
presentations for the curves Cn. On the other hand, the curves Cn in recursive towers
(Cν)ν are constructed via one geometrically irreducible bivariate polynomial f = f(X,Y )
in the following more explicit way: Let C̃0 = A1 and let C̃n be the possibly singular
affine geometrically integral curve in An+1 for all n ∈ N which is defined by the equations
f(xi−1, xi) = 0 for all i = 1, . . . , n. If the sequence (Cν)ν of the normalizations Cn of the
projective closures of C̃n with the canonical morphisms Cn+1 → Cn is a tower of curves,
then (Cν)ν is called a recursive tower of curves which is defined by the polynomial f .

Geometrically, we can think of C̃n as the intersection of the same but slightly rotated
hypersurfaces Hi(f) := {(x0, . . . , xn) ∈ An+1 : f(xi−1, xi) = 0} for all i = 1, . . . , n. In
Figure 1.1, we visualized the construction of the first three curves C̃0, C̃1 and C̃2 for the
defining polynomial f = Y 2 −X(X2 + 1) ∈ R[X,Y ] using [Inc].
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Figure 1.1: First three levels of a recursive tower of curves.

As we are only interested in the normalizations Cn of the projective closures of C̃n, we
can equivalently consider the towers F = (Fν)ν of function fields. Such towers are given via
proper finite separable extensions Fn+1/Fn of function fields where the genus g(Fν) tends
to infinity as ν → ∞. Then a tower F = (Fν)ν of function fields is called recursively
defined by the polynomial f = f(X,Y ) if there are k-transcendental elements xn such
that Fn = k(x0, . . . , xn) and f(xn, xn+1) = 0 hold for all n ∈ N0. We will call such a
tower F of function fields a recursive tower of function fields. In this thesis, we will
only work with towers of function fields and therefore switch to the function field language
from now on.

History of finding good recursive towers. The limit of a tower over a finite field
Fq is the defined as

λ(F) := lim
ν→∞

N(Fν)/g(Fν) = ν(F)/γ(F)

where
ν(F) := lim

ν→∞
N(Fν)/[Fν : F0] and γ(F) := lim

ν→∞
g(Fν)/[Fν : F0]

are called the splitting rate and the genus of F , respectively. Then a tower F is called
good if λ(F) > 0 and otherwise bad. If λ(F) even attains the Vladut-Drinfeld-bound√
q − 1, then F is called optimal.

The first appearance of good recursive towers F = (Fν)ν of function fields over finite
fields Fq was in [GS95] from 1995. There the authors provided optimal recursive towers
F for all square q.

After several interim results for at least cubic q, the recursive BBGS-towers F were
introduced in [BBGS15]. To this day, these BBGS-towers F supply the best known lower
bounds for Ihara’s constant A(pm) for all primes p and m ≥ 2. More concretely, the
BBGS-towers supply the estimate

2 ·
( 1
p⌊m/2⌋ − 1

+ 1
p⌈m/2⌉ − 1

)−1
≤ A(pm)

where ⌊m/2⌋ (resp. ⌈m/2⌉) denotes m/2 rounded down (resp. up).
On the other hand, for prime q = p, just finding any good recursive towers was more

difficult. It was only in [BR20] from 2020 that the first good recursive towers over prime
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fields Fp for all prime p ̸= 2, 3 were found. We will call these recursive towers the BR-
towers. Although these BR-towers did not improve any known lower bounds for Ihara’s
constant A(q), they at least established that good recursive towers over prime fields actu-
ally exist. This was in question because 25 years no examples could be found.

How to construct or find good recursive towers? There is no clear path on how
to construct or find good recursive towers. Nonetheless, there are several approaches.
The most classical approach is to somehow come up with a polynomial f having a special
structure which ensures that f defines a good recursive towers. For instance, the first
recursive towers in [GS95] and the BBGS-towers in [BBGS15] were constructed in this
way.

Another approach is to search for good tame recursive towers with the computer for
small q and small deg(f). For instance, this was done in [MW05], [Wul02] and [Lö07].

There are also two newer and more instructive approaches which are promising for
the future: On the one hand, in [BR20], the authors used Galois theory to construct the
BR-towers. On the other hand, in [HP16], the authors demonstrated how good recursive
towers can be derived from certain finite directed graphs.

Finally, for most of the good recursive towers in the literature, a modular interpretation
of the towers had been found. Hence, Elkies [Elk01, p. 9] and others conjectured that there
is a higher meaning to good recursive towers. This conjecture is often referred to as Elkies’
modularity Fantasia.

Objectives - Properties of good recursive towers and computing limits and
genus formulas. In this thesis, we will not try to construct or find good recursive
towers. Instead we will prove three important and closely related properties of good
recursive towers and we will provide methods to determine precise limits of recursive
towers and genus formulas of tame recursive towers.

Before we can accurately formulate all five major results, we will have to define and
elaborate on the main tool in the next paragraph.

The main tool - The tower graph of a recursive tower. In [Lö07, p. 20, Definition
2.21], the definition of a recursive tower F = (Fν)ν of function fields over a field k was
generalized via the so called multi-step towers. These multi-step towers are recursively
defined by more than one polynomial and therefore also allow non-rational function fields
at the bottom level F0. We will also work with a generalized, but different notion of re-
cursive towers, namely pair-recursive towers (see Definition 5(ii)). These pair-recursive
towers F = (Fν)ν = (∏ν

i=0 σ
i(F0))ν will be defined by a pair (σ, F0) where σ is an automor-

phism of k-algebras on an algebraic closure of ⋃∞
ν=1 Fν . If F = (Fν)ν = (k(x0, . . . , xν))ν

is recursively defined by a polynomial, then we will have σ(xn) = xn+1 for all n ∈ N0.
Although the definition of pair-recursive towers will be equivalent to the definition of
multi-step towers, it will be a better fit for our more abstract purposes.

In the following, we will use the term recursive towers for the more general pair-
recursive towers and the term polynomial-recursive tower for the classical recursive
towers which are defined by polynomials as above (see also [BGS04] for instance). But in
order to avoid technicalities in this introduction and because there are yet no relevant ex-
amples of pair-recursive towers which are not already polynomial-recursive, the subsequent
explanations will only be formulated for polynomial-recursive towers.

In [Bee04, p. 221, Definition 2.2] and [HP12, p. 15, Definition 10], certain directed
graphs were introduced which are associated with recursive towers. We will call these
graphs the Beelen-graph and the HP-graph, respectively. The main tool of this thesis
will be yet another directed graph associated with recursive towers F , namely the tower
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graph ΓF of F = (Fν)ν (see Definition 74). Essentially, the tower graph will be a
modification of the Beelen-graph, where the modification will be unavoidable because of
the more general definition of pair-recursive towers. In fact, up to a canonical isomorphism
of directed graphs, the Beelen-graph will be a subgraph of the tower graph.

Formally, the vertex set V (ΓF ) of the tower graph ΓF will be defined as the set PF0 of
all places in F0, the edge set E(ΓF ) of ΓF will be defined as the set PF1 of all places in F1
and an edge Q in ΓF will go from Q ∩ F0 to σ−1(Q) ∩ F0. Informally, we can think of all
these three directed graphs in the following way: The vertices in these graphs can be seen
as the points on C̃0 = A1 and the edges as the points (x0, x1) on C̃1 where an edge (x0, x1)
goes from x0 to x1. This means that we have an edge x0 → x1 if and only if f(x0, x1) = 0
(see Figure 1.1).

Furthermore, for the tower graph ΓF , the extensions F1/F0 and F1/σ(F0) of function
fields attribute ramification indices e(Q|Q∩F0) and e(Q|σ−1(Q)∩F0) to the edges Q ∈ PF1

in ΓF . In particular, the following property of paths P in ΓF will be key for many
of the results in this thesis. We will say that a path P in ΓF with the edge sequence
(Q1, . . . , Qn) has balanced ramification indices if the products ∏n

i=1 e(Qi|Qi ∩ F0)
and ∏n

i=1 e(Qi|σ−1(Qi) ∩ F0) are equal. Otherwise, we will say that P has unbalanced
ramification indices.

Finally, note that a circle will be a closed path without further repetitions. A d-
regular directed graph will be a directed graph which has d ingoing and d outgoing
edges at every vertex. A weakly connected subgraph of a directed graph will be a
connected subgraph if we forget about the directions of the edges. A weakly connected
component of a directed graph will be a connected component if we again forget about
the directions of the edges. A balanced weakly connected component will be a weakly
connected component which only has circles with balanced ramification indices.

Five Major Results. Now all necessary notions are available to accurately formulate the
five major results of this thesis in the following five paragraphs.

Main result - An almost complete answer to Conjecture 1(iii). A remarkable
property of every good recursive tower F = (Fν)ν in the literature is that F0 always
has rational places which split completely on every level Fn/F0. We will call the subset
Split(F/F0) ⊂ PF0 of all such rational places the splitting locus of F .

In [BGS04, p. 7, Conjecture 1], it was conjectured that every good recursive tower has
a non-empty splitting locus (see also Conjecture 1(i)). Although we will give a counterex-
ample to this conjecture in Example 129, the following weaker version of this conjecture
is still open:

There is always some m ∈ N0 such that Fm contains a rational place
which splits on every level Fn/Fm with n ≥ m (see Conjecture 1(iii)).

This weaker conjecture was formulated in [Sti10, p. 5, Problem 1] for the first time and it
was confirmed in [Bee22, p. 10] to be still open.

The main and chronologically second result will be our almost complete answer
to this Conjecture 1(iii) in Corollary 184. Up to finite constant fields extensions and up
to some very specific wild recursive towers for which the CNT-tower in Examples 8(v) is
the only example known to the author, it will come out that a recursive tower F satisfies
Split(F/F0) = ν(F) if and only if every finite weakly connected component of the tower
graph ΓF of F contains circles with unbalanced ramification indices.

Existence of at most one finite balanced weakly connected component. In
[Bee04, p. 238, Theorem 5.5] and in [HP12, p. 27, Theorem 23], it was shown that most
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of the Beelen-graphs and all of the HP-graphs have at most one finite d-regular weakly
connected component, respectively, where d = degX(f(X,Y )) = degY (f(X,Y )). As the
chronologically first major result, we will show in Theorem 155 that the tower graph
not only has at most one finite d-regular weakly connected component but even at most
one finite balanced weakly connected component.

On the one hand, by Corollary 156, this will especially imply that the Beelen-graph
also has at most one finite balanced weakly connected component. On the other hand, in
Theorem 154, we will also present a simplified proof of [HP12, p. 27, Theorem 23] which
will also work in more general settings.

This part is joint work with Florian Heß.

Limits of good recursive towers are stable under finite constant field extensions.
In [Bee04, p. 238, Corollary 5.6] and in [HP12, p. 27, Theorem 24], it was shown that the
limit of a good recursive tower cannot increase after a finite constant field extension if
some technical conditions are met.

As the third major result, in Theorem 188, we will show that these technical condi-
tions can even be dropped. This means that the limit of a good recursive tower can never
increase after a finite constant field extension.

Determining precise limits for most recursive towers in the literature. A priori,
determining the precise limit λ(F) = limν→∞N(Fν)/g(Fν) of a recursive tower F is a
delicate problem. Fortunately, most of the times, [Sti08, p. 249, Theorem 7.2.10] (see
Theorem 4) is applicable and provides at least a lower bound for the limit λ(F). But up
to utilizing some structure or some modular interpretation of the concrete recursive tower
at hand, there were no known methods for determining the precise limits of recursive
towers which are not specific to narrow classes of recursive towers.

As the fourth major result of this thesis, we will provide such methods in Corollary
195 and Corollary 200. These corollaries will be sharp versions of the above mentioned
[Sti08, p. 249, Theorem 7.2.10] (see Theorem 4). Hence, they will even yield the precise
limits λ(F) and not only lower bounds. These corollaries will work on all α-weakly ramified
(see Definition 199) recursive towers with a finite ramification subgraph which only have
unbalanced weakly connected components. Again, the CNT-tower in Examples 8(v) is the
only example in the literature known to the author which does not meet these requirements.

Being able to compute the precise limits of most recursive towers will have immediate
implications for several important results from the literature: For instance, in Corollary
203, it will come out that the lower bound for the limit λ(F) of the BBGS-towers F which
was established in [BBGS15, p. 3, Theorem 1.1] is already equal to the precise limit λ(F).
In particular, this will imply that the BBGS-towers do not provide an even larger lower
bound for Ihara’s constant A(pm) than already shown in [BBGS15, p. 3, Theorem 1.1].

Moreover, in Corollary 202, it will also come out that there are no good polynomial-
recursive towers over F2 of degree 2 = degX(f(X,Y )). This will conlcude the endeavour
of finding all such good recursive towers, which was started in [ST15]. There the authors
reduced the potential recursive towers to the four candidates in [ST15, p. 667, Theorem 1.4]
and [ST15, p. 680, Theorem 2.14]. We will call these four recursive towers the ST-towers.

Finally, in Corollary 205, we will also show that the lower bounds for the limits λ(F)
of the BR-towers F which were established in [BR20, p. 4, Theorem 2.3] are equal to the
precise limits λ(F). Hence, we can be sure that the BR-towers do not improve any known
lower bound for Ihara’s constant A(q).
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Computing genus formulas for tame recursive towers. In [HP16, p. 12, Proposi-
tion 12], by hand, the authors computed a formula for the genus sequence

g(Fn) = 2n + 1− (2 + nmod 2) · 2⌊ n
2 ⌋

= 2n + 1− (4 + 3
√

2)
4 ·

√
2n − (4− 3

√
2)

4 · (−
√

2)n

for all n ∈ N0 of the tame recursive tower F = (Fν)ν which is defined by the polynomial
f = Y 2(3X − 1)− (X2 +X) ∈ Fq[X,Y ].

As the fifth major result of this thesis, in Corollary 246, we will prove that the genus
sequence g(Fn) of certain tame recursive towers F = (Fν)ν is of the form

g(Fn) =
∑
λ∈Λ

fλ(n) · λn

for all n ≥ c(F) with some c(F) ∈ N0, some finite subset Λ ⊂ Q and some polynomials
fλ(n) ∈ Q[n] for all λ ∈ Λ. This Corollary 246 will work on all tame recursive towers only
having finite separating power ramification subgraphs (see Definition 229(iii) and
Definition 239). The author is not aware of a single tame recursive tower not meeting this
condition.

Moreover, in the proof of Corollary 246, we will even construct these lower bound
c(F) ∈ N0, finite subset Λ ⊂ Q and polynomials fλ(n) ∈ Q[n] for all λ ∈ Λ. Consequently,
we will be able to automatize this construction and, in Subsection 8.3.2, provide a first
naive implementation which can compute genus formulas for all tame recursive towers in
the literature of which the author is aware.

Further Results. There will be further results in this thesis which are not as significant
as the five above mentioned major results but still worth mentioning, namely Key Lemma
36(i), Key Lemma 36(iii), Proposition 39, Corollary 51 and Theorem 225. Nonetheless,
in order to avoid getting too technical in this introduction, we will leave a more detailed
summary of these further results to the respective chapters.

Structure of the thesis. In the first preliminary Chapter 2, we will introduce all basic
notions for recursive towers of function fields and make some preparations for the other
chapters. Moreover, we will introduce the more general pair-recursive towers F = (Fν)ν .
Finally, we will also formulate and start discussing the main subject of this thesis, which
is Conjecture 1(i)-(iv).

In Chapter 3, we will prove the first more involved result of this thesis, which is
Corollary 51. This Corollary will supply a first useful upper bound for the number N(Fn)
of rational places in Fn. Moreover, we will also make further preparations for the remaining
chapters by proving Key Lemma 36, Proposition 39 and defining Abhyankar ramification
indices in Definition 41.

In the second preliminary Chapter 4, we will introduce the main tool of this thesis,
which is the tower graph of a recursive tower. Moreover, we will also define the rational,
splitting and ramification subgraphs of the tower graph. In most cases, these subgraphs
will already carry all information which are necessary to determine the limit of a recursive
tower. Finally, after making further preparations for the remaining chapters, we will relate
the tower graph to the Beelen-graph and HP-graph via epimorphisms of directed graphs.

In Chapter 5, we will deduce the first major result of this thesis, which is Theorem 155.
Moreover, we will introduce two new concepts for directed graphs associated with recursive
towers, namely constant field extensions and truncations of subgraphs (see Definition 107
and Definition/Lemma 128, respectively). These two concepts will be crucial for the main
result in Corollary 184.
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In Chapter 6, we will exhibit three of the five major results. First, we will prove the
main result, which is the almost complete answer to Conjecture 1(iii) in Corollary 184.
Second, we will derive the third major result in Theorem 188, which provides that the
limits of good recursive towers are stable under finite constant field extensions. Third, we
will show the fourth major result in Corollary 195 and Corollary 200, which will enable us
to determine the precise limits of most recursive towers in the literature.

Finally, we will deduce the above mentioned implications of Corollary 195 and Corol-
lary 200 for several important results in the literature, for instance the BBGS-towers,
BR-towers and ST-towers.

In Chapter 7, we will derive the three interim results Theorem 168, Corollary 170 and
Corollary 171, which will already be formulated and used in the preceding Chapter 6.
These three interim results will form the core of the proof of the main result. Moreover,
we will derive degree bounds for the places in recursive towers in Theorem 225.

In Chapter 8, we will conclude the fifth and last major result, which are Corollary 246
and its first naive implementation in Subsection 8.3.2. This will enable us to automatically
compute genus formulas for tame recursive towers. Finally, in Examples 250, we will list
genus formulas for some representative tame recursive towers from the literature which
were computed using the above mentioned implementation.

Finally, in Chapter 9, we will list prospects for possible future directions.
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Mathematical notation. Here we will fix some mathematical notation which is not
specific to function fields. First, we will denote the non-negative integers by N0 and
the natural numbers by N = N0\{0}. We will denote proper inclusions by ⊂ or ⊊ and
inclusions which can also be equalities by ⊆. Analogously, we will use the symbols <, ≨
and ≤ for estimates.

Second, let R be a ring and P be the set of prime numbers. Then we will denote
the set of sequences with elements in R by RN0 , RN and RP with the index sets N0, N
and P, respectively. More generally, we will denote the set of maps M → R with RM .
Moreover, we will denote the sequence which only consists of ones by 1 = (1, 1, 1, . . . ) and
the sequence of primes by P = (2, 3, 5, ...) where the index sets should always be clear
from the context. We will denote the set of sequences in RM where almost all elements
are zero by (RM )′ for M ∈ {N0,N,P}.

Third, let R be a ring and (αp)p ∈ RP. If nothing different is indicated, the multipli-
cation in a product of the form ∏

p∈P ap runs in the ascending order. For instance, we will
also use the multi-index notation

αe =
∏
p∈P

αep
p (1)

for all e = (ep)p ∈ (NP
0 )′. Moreover, for all (αp)p, (βp)p ∈ RP, we will denote the compo-

nentwise product of the sequences by

(αp)p ∗ (βp)p := (αp · βp)p. (2)

.
Fourth, we will denote the set of matrices with size m times n by Rm×n and we define

the map

vP : Q\{0} → (ZP)′ via a 7→ (vp(a))p (3)

where vp(a) is the usual prime exponent of p in the prime factorization of a.
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2 Preliminaries I - Recursive Towers

Purpose of this chapter. The main purpose of this chapter is to introduce all basic
notions in regards to the main objects of this thesis, which are recursive towers of function
fields, and to make some preparations for the remaining chapters.

Here, we will work with a more general definition of recursive towers F = (Fν)ν than
the usual definition via bivariate polynomials f(X,Y ) (compare [BGS04] for instance and
Definition 5(i)). These more general recursive towers F = (Fν)ν will be defined by a pair
(σ, F0) where F0 is a function field, σ an automorphism on an algebraic closure of F0
and Fn = ∏n

i=0 σ
i(F0) for all n ∈ N0 (see Definition 5(ii)). As F0 does not need to be a

rational function field in this definition, these pair-recursive towers are more general than
the polynomial-recursive towers.

In this chapter, we will also formulate and start discussing the main subject of this
thesis, namely Conjecture 1 which originates in [BGS04, p. 7, Conjecture 1]. The main
result of this thesis will be the almost complete answer to Conjecture 1(iii) in Corollary 184.

Structure of this chapter. In Section 2.1, we will fix notation and repeat some fun-
damental statements in regards to function fields.

In Section 2.2, we will define towers, polynomial-recursive and pair-recursive towers of
function fields and introduce crucial concepts like pyramids of function fields, pyramids
of places and paths of places. This involves preparations for the remaining chapters.
Moreover, we will also formulate and start discussing the main subject, which is Conjecture
1, and provide an extensive list of examples for recursive towers in Figure 2.3.

In Section 2.3 and Section 2.4, we will define constant field extensions and truncations
of recursive towers and draw connections between them and the initial recursive towers.
Both concepts will be important for the main result.

In Section 2.5 and 2.6, we will define and briefly discuss locally Galois and dual recur-
sive towers as they will only play a side role in this thesis. These sections can be skipped
if the reader is only interested in the major results.

2.1 Function Fields
Purpose of this section. In this section, we will fix some function fields specific nota-
tion and fundamental statements. Most of the notation will be standard and can be found
in [Sti08].
Definition 1. (i) An algebraic function field F/k of one variable over k is an exten-

sion field F ⊃ k such that F is a finite algebraic extension of k(x) for some element
x ∈ F which is transcendental over k.
The field k is called the constant field of F/k and the algebraic closure k′ of k in
F is called the full constant field of F/k.
Since all algebraic function fields F/k considered in this thesis will be of this kind
and have full constant field k, we will simply refer to the F/k as the function field
F over the full constant field k.
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(ii) Let F ′ and F be function fields over the full constant fields k′ and k, respectively, such
that F ′ ⊇ F and k′ ⊇ k. Then the extension F ′/F of fields is called an (algebraic)
extension of function fields if F ′/F is algebraic.
Moreover, if the extension F ′/F of fields satisfies a property P (e.g. being finite or
separable), then we also say that the extension F ′/F of function fields satisfies P.

Assumption 1. The full constant fields of all function fields will be perfect.

The genus of F will be denoted by g(F ) and the set of places of F by PF . Moreover,
we define

P(r)
F := {P ∈ PF : deg(P ) = r} for all r ∈ N and N(F ) := #P(1)

F (4)

and the places of degree one are called rational.
Let E/F be a finite separable extension of function fields. We will write Q/P for all

Q ∈ PE and P ∈ PF if Q lies over P and call Q/P an extension of places in E/F .
Moreover, we will denote the ramification index of Q/P by e(Q|P ), the relative degree of
Q/P by f(Q|P ) and the different exponent of Q/P by d(Q|P ).

Let F/Fi be a finite separable extension of function fields for all i ∈ N. For all
P := (Pi)i ∈

∏
i∈I PFi and I ⊆ N, we define

PF (P) := {P ∈ PF : P lies over Pi for all i = 1, . . . , r}

and, for all A ⊆ ⋃I⊆N
∏
i∈I PFi , we define

PF (A) :=
⋃

P∈A
PF (P), P(1)

F (A) := PF (A) ∩ P(1)
F , N(F,A) := #P(1)

F (A). (5)

For all finite A = {P1, . . . ,Ps} ⊆
⋃
I⊆N

∏
i∈I PFi , we will also write PF (P1, . . . ,Ps) :=

PF (A) and N(F,P1, . . . ,Ps) := N(F,A) and neglect the brackets for all elements Pj =
(Pj) which only consist of one place Pj .

Let E/Fi and Fi/F be separable extensions of function fields and Q/Pi and Pi/P be
extensions of places in E/Fi and Fi/F , respectively, or all i = 1, 2. Then we call

(E,F1, F2, F ) (resp. (Q,P1, P2, P )) (6)

a diamond of function fields (resp. places). Moreover, a diamond of function fields (resp. of
places) is called non-flat if all involved function fields (resp. places) are pairwise distinct.
Otherwise the diamond is called flat.

Some fundamental statements for extensions of function fields. Here, we will list
some fundamental statements for function field extensions which we will apply frequently.

Let E/F/L (i.e. E/F and F/L) be finite extensions of function fields. Then we call
the identities

e(Q|R) = e(Q|P )e(P |R) resp. f(Q|R) = f(Q|P )f(P |R) (7)

which hold for all extensions Q/P/R of places in E/F/L (i.e. Q/P in E/F and P/R
in F/L) the multiplicative transitivity rules for the ramification indices and relative
degrees (see [Sti08, p. 71, Proposition 3.1.6]), respectively.

Let E/F be a finite separable (resp. finite Galois) extension of function fields. Then
the identity

[E : F ] =
∑

Q∈PE(P )
e(Q|P )f(Q|P ) (resp. [E : F ] = #PE(P ) · e(Q|P ) · f(Q|P )) (8)
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which holds for all P ∈ PF is called the fundamental equality (see [Sti08, p. 74,
Theorem 3.1.11]) and if E and F have the same full constant field, the identity

2g(E)− 2 = (2g(F )− 2)[E : F ] +
∑
Q∈PE

d(Q|Q ∩ F ) deg(Q) (9)

is called the Hurwitz Genus Formula (see [Sti08, p. 99, Theorem 3.4.13]).
Let E/Fi/F be finite separable extensions of function fields over the same full constant

field for all i = 1, 2 such that E = F1 · F2 is the compositum of F1 and F2. Let Pi/P be
an extension of places in Fi/F for all i = 1, 2 such that at least one of these extensions is
tame. Then the identities

e(Q|P ) = lcm
k=1,2

e(Pk|P ) and e(Q|Pi) = e(Pj |P )
gcd
k=1,2

e(Pk|P ) (10)

hold for all Q ∈ PE((P1, P2)) and {i, j} = {1, 2} by Abhyankar’s Lemma (see [Sti08,
p. 137, Lemma 3.9.1]).

Some invariance properties of the ramification indices, degree and relative
degrees. Let F and E be k-algebras and F1/F0 be an extension of function fields over
the same constant field k such that F1 ⊆ F . Then any monomorphism ϕ : F → E of
k-algebras restricts to an isomorphism Fi → ϕ(Fi) of k-algebras for all i = 1, 2. Moreover,
for all extension Q/P of places in F1/F0, we get the extension ϕ(Q)/ϕ(P ) of places in
ϕ(F1)/ϕ(F0) and the equalities

e(Q|P ) = e(ϕ(Q)|ϕ(P )) and f(Q|P ) = f(ϕ(Q)|ϕ(P )) and deg(Q) = deg(ϕ(Q)) (11)

hold. We call the first (resp. second; resp. third) equality the invariance of the ramifi-
cation indices (resp. relative degrees; resp. degrees of places) under the action
of the isomorphism ϕ.

Let E/F be an extension of function fields over the same full constant field k and k′

an algebraic extension field over k which is contained in an algebraic closure C of E. Let
F ′ := k′ · F (resp. E′ := k′ · E) be the compositum of k′ and F (resp. k′ and E) in C.
Then we have the equalities

e(Q′|Q) = 1 and e(P ′|P ) = 1 and e(Q|P ) = e(Q′|P ′) (12)

for all Q′ ∈ PE′ , Q := Q ∩ E, P ′ := Q ∩ F ′ and P := Q ∩ F by [Sti08, p. 114, Theorem
3.6.3(a)] and the multiplicative transitivity rule for ramification indices in (7) implying
the identities e(Q′|P ′) = e(Q′|P ′)e(P ′|P ) = e(Q′|P ) = e(Q′|Q)e(Q|P ) = e(Q|P ). We call
the last identity the invariance of the ramification indices under constant field
extensions.

2.2 Recursive Towers
Purpose of this section. In this section, we will define the basic concepts with which
we will work for the rest of this thesis.

Structure of Section 2.2. In Subsection 2.2.1, we will define towers of function fields
and its limit for finite constant fields. Then we will recite a sufficient criterion which
provides lower bounds for the limits of towers over finite fields.

In Subsection 2.2.2, we will define recursive towers of function fields. Here, we will
first give one of the usual definitions via bivariate polynomials and then the more general
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definition via pairs. In the rest of this thesis, we will work with the more general definition
of pair-recursive towers.

In Subsection 2.2.3, we will formulate the main subject of this thesis which is Conjec-
ture 1 and elaborate on all of its four different versions.

In Subsection 2.2.4, we will give an extensive list of examples of recursive towers from
the literature.

Finally, in the Subsections 2.2.5, 2.2.6 and 2.2.7, we will introduce crucial concepts like
pyramids of function fields, pyramids of places and paths of places and make preparations
for the following chapters.

2.2.1 Towers of Function Fields

Purpose of this subsection. In the following Definition 2, we will first define towers
of function fields and their limits. Then, in Theorem 4, we will recite a sufficient criterion
for the existence of some lower bound for the limit of a tower of function fields over a finite
field from [Sti08, p. 249, Theorem 7.2.10].

Towers of function fields. For the following definition of towers of function fields in
Definition/Lemma 2, remember Assumption 1, i.e. all function fields F will be defined
over perfect full constant fields k.

Definition/Lemma 2. Let F = (Fν)ν = (F0, F1, . . . ) be a sequence of function fields Fn
over the full constant field k. Then we define the following:

(i) The sequence F is called a tower of function fields over k if the extensions
Fn+1/Fn are finite, proper, separable for all n ∈ N0 and g(Fn)→∞ as n→∞.

(ii) We call d the degree of the tower F if d = [Fn+1 : Fn] holds for all large n ∈ N0
and we say that F has constant degree d if d = [Fn+1 : Fn] holds for all n ∈ N0.
Moreover, we define PF (resp. PF (A)) as the set of all places in F (resp. in F which
also lie above one of the places in A ⊆ PF), i.e.

PF :=
∐
n∈N0

PFn (resp. PF (A) :=
∐
n∈N0

PFn(A)).

(iii) Suppose that k is a finite field. Then the sequence ( N(Fn)
[Fn:F0])n is monotonically de-

creasing and, hence, converges in R≥0 as n→∞. We call the limit

ν(F/Fm) := lim
n→∞

N(Fn)
[Fn : Fm]

the splitting rate of F over Fm and, more specifically, we call ν(F) := ν(F/F0)
the splitting rate of F .
Moreover, the sequence (g(Fn)−1

[Fn:F0] )n = ( g(Fn)
[Fn:F0] −

1
[Fn:F0])n is monotonically increasing

and, hence, converges in R>0∪{∞} as n→∞. Consequently, the sequence ( g(Fn)
[Fn:F0])n

also converges in R>0 ∪ {∞} as n→∞. We call the limit

γ(F) := lim
n→∞

g(Fn)
[Fn : Fm]

the (asymptotic) genus of F over Fm and we call γ(F) := γ(F/F0) the (asymp-
totic) genus of F .
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Finally, the nonnegative real number

λ(F) := ν(F)
γ(F) = lim

n→∞
N(Fn)
g(Fn)

is called the limit of F .

(iv) Let us denote Ihara’s Constant as A(q), i.e.

A(q) := lim sup
g→∞

Nq(g)
g

with Nq(g) := max
g(F )=g

N(F )

where the maximum runs over all function fields F over Fq with genus g. For,
k = Fq, we have the estimates

0 ≤ λ(F) ≤ A(q) ≤ √q − 1

where √q−1 is called the Drinfeld-Vladut-Bound and F is called bad if λ(F) = 0,
good if λ(F) > 0 and optimal if λ(F) = A(q).

Proof. See [Sti08, p. 246, Lemma 7.2.3] for a proof of (iii) and [Sti08, p. 244, Theorem
7.1.3] for a proof of (iv).

Different types of towers of function fields. There are several types of towers of
function fields: Some towers are constructed by using class field theory and others by using
modular techniques. The reader is referred to [Bee22] for more on these constructions. In
this thesis, we will only be concerned with recursive towers.

Lower bounds for the limits of towers. Determining the values ν(F), γ(F) and
λ(F) or even finding non-trivial estimates can be quite challenging. Here the following
criterion in Theorem 4, which comes from [Sti08, p. 249, Theorem 7.2.10], provides a
simple way to find estimates for these values. It provides a lower (resp. upper) bound
for ν(F) (resp. γ(F)) in terms of the splitting locus Split(F/F0) (resp. ramification locus
Ram(F/F0)) of F over F0 (see Definition 3).

The fourth major result of this thesis, which consists of Corollary 196 and Corollary
200, will provide sharp versions of this criterion for recursive towers satisfying conditions
which we will state later. This means that we will get the precise limits and not only lower
bounds. The only recursive tower in the literature known to the author for which these
corollaries are not applicable is the CNT-tower in the following Examples 8(v).

Definition 3. Let F = (Fν)ν be a tower. Then we define the following:

(i) The set

Split(F/Fm) = {P ∈ P(1)
Fm

: P splits completely in Fn/Fm for all n ∈ N0}

is called the splitting locus of F over Fm for all m ∈ N0.

(ii) The set

Ram(F/Fm) = {P ∈ PFm : P is ramified in Fn/Fm for some n ∈ N}

is called the ramification locus of F over Fm for all m ∈ N0.

Theorem 4. Let F = (Fν)ν be a tower over a finite field. Then the following hold:
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(i) We have the estimate
ν(F) ≥ # Split(F/F0).

(ii) Suppose that Ram(F/F0) is finite and that there are α(P ) ∈ R≥0 such that

α(P ) · e(Q|P )− d(Q|P ) ≥ 0

for all P ∈ Ram(F/F0), all Q ∈ PFn(P ) and all n ∈ N0 Then we have the estimate

γ(F) ≤ g(F0)− 1 + 1
2 ·

∑
P∈Ram(F/F0)

α(P ) deg(P ).

(iii) If Split(F/F0) is non-empty, Ram(F/F0) is finite and there are positive real numbers
α(P ) as in (ii), then F is a good tower and we have the following lower bound

λ(F) ≥ # Split(F/F0)
g(F0)− 1 + 1

2 ·
∑
P∈Ram(F/F0) α(P ) deg(P )

.

2.2.2 Polynomial- and Pair-Recursive Towers.

The main objects of this thesis: Recursive towers of function fields. Next, we
will come to the definition of the main objects of this thesis, namely recursive towers of
function fields. In Definition 5(i), we will give one of the usual definitions of a recursive
tower, which is defined by a bivariate polynomial. For instance, [BGS04] uses this defini-
tion. In this thesis, we will mainly work with the definition in Definition 5(ii) of a recursive
tower which is defined by a pair. We prefer this definition because of the following two
reasons: First, we will prove in Lemma 7 that this definition is more general and, second,
there are also practical reasons which we will elaborate on in the items (ii) and (iii) of Re-
mark 6 and in the last paragraph ’Advantages of the introduction of pair-recursive towers’
of this subsection.

Definition 5. Let F = (Fν)ν be a tower of constant degree d over a field k.

(i) The tower F is called recursively defined by a polynomial f = f(X,Y ) ∈
k[X,Y ] if f is geometrically irreducible, separable in both variables, degY (f) = d
and there exist elements xn ∈ Fn for all n ∈ N0 such that

F0 = k(x0), Fn+1 = Fn(xn+1) = k(x0, . . . , xn, xn+1), f(xn, xn+1) = 0.

(ii) Let F be an algebraic closure of F = ⋃∞
n=0 Fn and let k be the algebraic closure of

k which is contained in F. We call the tower F recursively defined by the pair
(σ, F0) with σ ∈ Autk(F) if F1/σ

i(F0) is separable for all i = 0, 1 and

Fn+1 := Fn · σn+1(F0) =
n∏
i=0

σi(F0)

for all n ∈ N0 (see Figure 2.1). If we just say that a tower is recursively defined
or a recursive tower, then we mean that the tower is recursively defined by a pair
(σ, F0).
Notice that there could be multiple σ which make F to a recursive tower. Most of
the concepts, which we will define for a recursive tower F in this thesis, will also
depend on the concrete σ. However, we will mostly neglect this dependence in our
formulations as this should never lead to confusions. Correspondingly, we will also
call σ ’the’ tower map of F .
Moreover, we say that the recursive tower F has balanced degree d if [F1 : σ(F0)] =
d.
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Figure 2.1: Pair-recursive tower and the involved composita

Remark 6. (i) There are other definitions of recursive towers which are not of constant
degree (see [Sti08, p. 251, Definition 7.2.12]). But then there is an index m such
that (Fm+ν)ν is a pair-recursive tower as in Definition 5(ii).
Moreover, in other definitions, it is also not required that the defining polynomial
f(X,Y ) is separable in Y . However, this more general definition, does essentially
not provide more recursive towers: In this case, we can write f(X,Y ) = g(X,Y ps)
with a polynomial g(X,Y ) which is separable in both variables. As the inseparable
part of the extension k(x0, x1)/k(x1) does not effect N(F1) or g(F1), we can just
replace f(X,Y ) with g(X,Y ) and obtain isomorphic function fields on every level of
the recursive towers.

(ii) An equivalent way of defining a pair-recursive tower in Definition 5(ii) is to extend
the definition of a polynomial-recursive tower in Definition 5(i) and allow finitely
many polynomials. For instance, the multi-step towers in [Lö07, p. 17, Definition
2.19, p. 21 Definition 2.21] use such a definition.
However, we chose the ’pair’ definition over the ’multi-step’ definition for practical
reasons: We will mainly work abstractly with recursive tower and often with the
geometric tower F (see Definition 21), the pyramid Pyr(F) (see Definition 9) and
the tower graph ΓF (see Definition 74) of F which are easier to define and deal with
if we already have the automorphism σ ∈ Autk(F).

(iii) Notice that, in Definition 5(ii), it would also be sufficient to define σ to only be a
monomorphism σ′ : F → F of k-algebras. However, we extended σ to an automor-
phism of some algebraic closure F of F, again, for practical reasons:
At many points, it will be useful to apply σ−1 on places Q ∈ PFn. Then the defini-
tion with the tower map σ ∈ Autk(F) avoids extending σ′ to an automorphism or
laboriously circumventing the application of σ−1 on Q.
Moreover, if we want change the constant field k of F via an algebraic extension
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k′/k of fields, then F already contains an isomorphic copy of k′. Consequently, we
can restrict ourselves to algebraic extension fields k′ of k which are contained in F
and work with composita of subfields inside of F.

Polynomial-recursive towers are pair-recursive. As we already proclaimed, the
definition of a pair-recursive tower in Definition 5(ii) is more general than the definition of
a polynomial-recursive tower in Definition 5(i), i.e. a tower which is recursively defined by
a polynomial is also recursively defined by a pair. This will be the subject of the following
Lemma 7.

Lemma 7. Let F = (Fν)ν be a recursive tower which is defined by a polynomial f , let xn
be the generator of Fn in Definition 5(i) for all n ∈ N0, let F be an algebraic closure of
F := ⋃∞

n=0 Fn = k((xn)n) = k(x0, x1, . . . ) and let k be the algebraic closure of k which is
contained in F. Then the following hold:

(i) Then
σ′ : F→ F via h(x0, . . . , xn) 7→ h(x1, . . . , xn+1)

is a well defined k-algebra monomorphism (see Figure 2.2).

(ii) There is an extension σ ∈ Autk(F) of σ′.

(iii) For all extensions σ ∈ Autk(F) of σ′, the tower F is recursively defined by the pair
(σ, F0).

Figure 2.2: Construction of the tower map for polynomial-recursive towers
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Proof. For (i): First, we show that σ′
n := σ′

|Fn
is a well defined morphism of k-algebras

via induction over n ∈ N0.
Let n = 0. Then F0 = k(x0) is a rational function field over k. Since degy(f(x, y)) =

d ≥ 2 by Definition 2(i), we have a representation f(x, y) = ∑d
i=0 ai(x)yi with ai(x) ∈

k[x] for all i = 0, . . . , d and ad(x) ̸= 0. Now, choosing α ∈ k with ad(α) ̸= 0 yields
degy(f(α, y)) = d. But, this implies that

f(x, x1) ∈ k(x1)[x]\{0} (13)

by the following reasoning: Otherwise f(α, x1) = 0 yields that x1 is algebraic over k
because α is algebraic over k and degy(f(α, y)) ≥ 2. Then we even conclude x1 ∈ k\k by
[k(x0, x1) : k(x0)] = [F0(x1) : F0] = [F1 : F0] = d ≥ 2 and k ⊆ F0. But this contradicts
that k is the full constant field of F1.

Hence, by (13), we obtain

[F1 : k(x1)] = [k(x0, x1) : k(x1)] ≤ degx(f(x, x1)) <∞ (14)

by Definition 5(i) providing the identity f(x0, x1) = 0. Then we compute the equalities

[k(x1) : k] = [F1 : k]
[F1 : k(x1)] = [F1 : F0][F0 : k]

[F1 : k(x1)] =∞ (15)

where the first two equalities hold by the well known rule [K3 : K1] = [K3 : K2][K2 : K1] for
extensions K3/K2/K1 of fields and the last equality holds by the estimate [F1 : k(x1)] <∞
in (14) and the fact that F0 := k(x0) being a rational function field over k implies the
equality [F0 : k] = ∞. Now, the identity in (15) provides that x1 is transcendental over
k and, consequently, σ′

0 : F0 := k(x0) → F, h(x0) 7→ h(x1) is a well defined morphism of
k-algebras.

Next, let n ≥ 1. On the one hand, because we have the identities f(xn−1, xn) = 0 and
degy(f(x, y)) = d = [Fn : Fn−1] in Definition 2(i), the polynomial f(xn−1, t) ∈ Fn−1[t] is
the minimal polynomial of xn over Fn−1 (up to multiplication with an element in F ∗

n−1). On
the other hand, the induction hypothesis yields that σ′

n−1 : Fn−1 → F, h(x0, . . . , xn−1) 7→
h(x1, . . . , xn) is a well defined morphism of k-algebras and f(xn, xn+1) = 0 and we obtain
the identity σ̂′

n−1(f(xn−1, t)) = f(xn, t) for the canonical extension σ̂′
n−1 : Fn−1[t] →

F[t] of σ′
n−1. Combining these two conclusions and the fact that Fn/Fn−1 is a simple

algebraic field extension with primitive element xn supplies that the extension σ′
n : Fn →

F, h(x0, . . . , xn) 7→ h(x1, . . . , xn+1) of σ′
n−1 is a well defined morphism of k-algebras.

Finally, we notice that F (with the inclusion maps ιi : Fi ↪→ F for all i ∈ N0) is a direct
limit of the ordered system (Fν)ν (with the inclusion maps Fi ↪→ Fj for all i ≤ j). Then,
by the universal property of direct limits, there is a morphism τ : F→ F of k-algebras such
that σ′

n = τ ◦ ιn for all n ∈ N0. But this morphism τ of k-algebras has to be σ′. Moreover,
σ′ is a monomorphism because F is a field and because σ′ is a non-zero morphism of rings.

For (ii): As Fn has full constant field k, we have Fn ∩ k = k for all n ∈ N0 and, there-
fore, F∩ k = k by the definition of the full constant field of a function field in [Sti08, p. 1,
Definition 1.1.1]. As k is a perfect field, k/k is a Galois extension. Hence, combining
the identity F ∩ k = k and [Coh91, p. 188, Theorem 5.5] supplies that k/k and F/k are
linearly disjoint. But this implies that k · F is a tensor product of k and F of k-algebras
(with the inclusion morphisms) by [Coh91, p. 188, Proposition 5.4]. Consequently, by the
universal property of tensor products, there is a morphism σ̃ : k · F → F of k-algebras
which restricts to the identity on k and to σ′ on F. Hence, σ̃ is a morphism of k-algebras.
Now, it is well known that any morphism σ̃ : F→ F of k-algebras has an extension to some
k-algebra automorphism σ : F → F. Therefore, we deduce the existence of an extension
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σ ∈ Autk(F) of σ′.

For (iii): Let σ ∈ Autk(F) be an extension of σ′. Then σn(F0) = k(xn) and, therefore,∏n
i=0 σ

i(F0) = k(x0, . . . , xn) =: Fn. Hence, F is recursively defined by the pair (σ, F0) by
Definition 2(ii)).

Advantages of the introduction of pair-recursive towers. Although, except for
some multi-step towers in [Lö07] (e.g. [Lö07, p. 114, Example 6.1.3.1.1] and [Lö07, p. 117,
Example 6.1.3.1.2]), there are no examples of pair-recursive towers in the literature which
are not already polynomial-recursive towers, the introduction of the more general concept
of pair-recursive towers has still some advantages:

First, it is more general and thus includes more towers of function fields, which can
maybe be interesting in the more general pursue of finding good towers over finite fields.

Second, as we are interested in the more general versions of Conjecture 1, namely
Conjecture 1(iii) and Conjecture 1(iv), it will make sense to consider the level m truncation
F≥m = Trun≥m(F) := (Fm+ν)ν of the recursive tower F = (Fν)ν (see Definition 27) and
to also apply the introduced concepts to the truncated tower F≥m. But, for large level
m, F≥m is not a polynomial-recursive tower anymore. However, it is still a pair-recursive
tower with the pair (σ, Fm).

2.2.3 Conjecture 1

The main subject of this thesis: Conjecture 1. In the following, we will formulate
the main subject of this thesis, namely Conjecture 1 where Conjecture 1(i) originates from
[BGS04, p. 7, Conjecture 1]. In more descriptive words, in [BGS04, p. 7, Conjecture 1], it
is conjectured that any recursive tower F = (Fν)ν with a positive splitting rate must also
have a rational place P in F0 which splits completely on every level Fn/F0.

Conjecture 1. Let F = (Fν)ν be a recursive tower over a finite field of balanced degree.
Then we have the following four conjectures:

(i) If ν(F) > 0, then # Split(F/F0) > 0.

(ii) ν(F) = # Split(F/F0).

(iii) If ν(F) > 0, then there is some m ∈ N0 such that # Split(F/Fm) > 0.

(iv) There is some m ∈ N0 such that ν(F/Fm) = # Split(F/Fm).

Clearly, (ii) implies (i) (resp. (iv)) and, moreover, (i) (resp. (iv)) implies (iii).

More on Conjecture 1(i). Conjecture 1(i) is the original Conjecture 1 in [BGS04,
p. 7, Conjecture 1] (2005). Although there are no counterexamples published in the
literature, Conjecture 1(i) was never mentioned again: In [Sti10, p. 5, Problem 1] (2010)
only the weaker Conjecture 1(iii) was formulated and, in [Bee22, p. 10, p. 24] (2022), it
was confirmed that the weaker Conjecture 1(iii) is still open. Thus, we speculate that the
authors of [Sti10] and [Bee04] actually found counterexamples to Conjecture 1(i) but have
not published them. Nonetheless, we will still give a counterexample to Conjecture 1(i) in
Example 129.
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More on Conjecture 1(ii). In [BGS04, p. 7, Conjecture 1], the authors even formulated
a refinement of Conjecture 1(i), which is Conjecture 1(ii). In more descriptive words, it
conjectures that the only places P in F0 which contribute to the splitting rate ν(F),
i.e. for which limν→∞N(Fν , P )/dν > 0 holds, are the places P which split completely
on every level Fn/F0. Conjecture 1(ii) was also never mentioned again. There are many
recursive towers in [MW05] which we observed to be counterexamples to Conjecture 1(ii),
e.g. the recursive tower FMW,11 over F9 which is defined by the polynomial fMW,11 =
Y 2 + (X2 + 1)Y +X2 +X + 1 in [MW05, p. 212, f11].

More on Conjecture 1(iii). As already mentioned, in [Sti10, p. 5, Problem 1] (2010),
the weaker Conjecture 1(iii) was formulated for the first time and, in [Bee22, p. 10, p. 24]
(2022), it is confirmed that Conjecture 1(iii) is still open. Indeed, all the counterexamples
to Conjecture 1(i) and Conjecture 1(ii) still satisfy Conjecture 1(iii).

However, although the author is convinced that Conjecture 1(iii) is true for most re-
cursive towers, he is not convinced that it is true for all recursive towers. More specifically,
in the paragraph ’A sufficient criterion to disprove Conjecture 1(iii)’ of Subsection 6.3, we
will present a strategy to possibly produce a counterexample to Conjecture 1(iii).

More on Conjecture 1(iv). Finally, Conjecture 1(iv) is new and it is a refinement of
Conjecture 1(iii). It also provides the splitting rates and is therefore useful. Nonetheless, in
Example 181, we will show that the wild CNT-tower in Examples 8(v) is a counterexample
to this conjecture. It is the only counterexample to this conjecture known to the author.

Main result - An almost complete answer to Conjecture 1(iii). Up to finite
constant field extensions and up to some very specific wild recursive towers for which the
CNT-tower in Examples 8(v) is the only example known to the author, Corollary 183 will
characterize all recursive towers F = (Fν)ν which satisfy Conjecture 1(ii), i.e. ν(F) =
Split(F/F0). More specifically, in a less technical manner, Corollary 184 will reformulate
the criterion for satisfying Conjecture 1(ii) as a sufficient criterion.

This criterion will be very mild and the CNT-tower will be the only recursive tower
F = (Fν)ν known to the author which does not have some truncation (that is the recursive
tower F≥m = (Fm+ν)n for some m ∈ N0; see also Definition/Lemma 27) satisfying this
criterion. Hence, we will call Corollary 184 our almost complete answer to Conjecture
1(iii).

2.2.4 Examples of Recursive Towers

Purpose of this subsection. In this section, we will give an extensive list of polynomial-
recursive towers which appear in the literature. Most of the examples will reoccur at some
points in this thesis.

First, in Examples 8, we will introduce the examples, specify the involved parameters,
discuss in which contexts these examples appear in the literature and mention the impli-
cations which the results of this thesis have on these examples. Second, in Figure 2.3, we
will provide a compact list of all the recursive towers from Examples 8.

Two further mentionable references which are not represented in Examples 8 are
[Wul02] and [Lö07]. There we can find many further examples of recursive towers.

Examples 8. (i) For small quadratic q, in [MW05], the authors found about one hun-
dred good tame recursive towers FMW,i of degree two via a computational search. In
the subsequent list in Figure 2.3, some of the corresponding quadratic polynomials
fMW,i are included. Note that our indexing of these polynomials is the same as the
indexing in [MW05].
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In the following, we will call the polynomials fMW,i the MW-polynomials and the
good quadratic tame recursive towers FMW,i the MW-towers.
For most of the MW-towers the limit is known. This comes mainly from the fact
that the lower bounds which are computed for the limits in [MW05] already attain
the Drinfeld-Vladut-Bound in Definition 2(iv). However, for some of these MW-
towers only lower bounds for their limits were known and as a consequence of Corol-
lary 195, we will be able to determine the precise limits of these remaining MW-
towers in Subsection 6.4.5. The subsequent list in Figure 2.3 contains all these
remaining recursive MW-towers. They are defined by the polynomials fMW,i for
i = 8, 12, 14, 15, 16, 20, 21. Also note that, in [MW05, p. 213], the authors explicitly
asked whether the computed lower bounds for the limits are already the precise limits.

(ii) For quadratic q, in chapter seven of [Sti08], the author provides several examples of
good recursive towers. We want to include the following three:
First, in [Sti08, p. 262, Proposition 7.3.2] (resp. Second, in [Sti08, p. 261, Proposi-
tion 7.3.3] ), it is shown that, for l ≥ 3 and q := l2 (resp. l ≥ 2, e ≥ 2, q := le and
m := q−1

l−1 ), the polynomial

fGS,1 := Y l−1 + (X + 1)l−1 − 1 (resp. fGS,2 := Y m + (X + 1)m − 1 )

defines a good tame recursive tower FGS,1 (resp. FGS,2) over Fq and its limit has the
lower bound λ(FGS,1) ≥ 2

l−1 (resp. λ(FGS,1) ≥ 2
q−2 ).

Third, in [Sti08, p. 262, Definition 7.4.1] it is shown that, for q := l2, the polynomial

fGS,3 := (Y l − Y )(1−X l−1)−X l

defines a good wild recursive tower FGS,3 over Fq and its limit attains the Drinfeld-
Vladut-Bound λ(FGS,3) = l − 1.
In the following, we will call the polynomials fGS,i the GS-polynomials and the
recursive towers FGS,i the GS-towers.
As a consequence of Corollary 195, in Subsection 6.4.5 we will be able to prove that
the limits of the GS-towers FGS,i are actually equal to the lower bounds from above
for i = 1, 2.

(iii) For cubic q = l3, the best known lower bound for Ihara’s constant A(q) is given by
the estimate

2(l2 − 1)
l + 2 ≤ A(q).

For instance, these lower bound are realized via the limits of the recursive BezGS-
towers FBezGS,l in [BGS05, p. 161, Main Theorem] which are defined by the BezGS-
polynomials

fBezGS,l := Y l(X l +X − 1)− (1− Y )X.

In [BGS05, p. 161, Main Theorem], it was shown that the limit λ(FBezGS,l) of
FBezGS,l has the lower bound

2(l2 − 1)
l + 2 ≤ λ(FBezGS,l).

As a consequence of our Corollary 200, we will derive that the lower bound 2(l2 −
1)/(l + 2) is actually equal to the limit λ(FBezGS,l) of FBezGS,l in Corollary 204.
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For l = 2 and after a change of coordinates, the BezGS-tower FBezGS,2 can be
identified with the recursive GV-tower FGV which was introduced in [vdGvdV02,
p. 292] and is defined by the GV-polynomial

fGV := (Y 2 + Y )X +X2 +X + 1.

In [vdGvdV02, p. 292], the equality λ(FGV ) = 3/2 was already proven.

(iv) In [ST15, p. 680, Theorem 2.14], up to isomorphisms, the authors reduced the poten-
tial candidates for quadratic polynomials over F2 which can potentially define good
recursive towers to the four polynomials

fST,1 := Y 2X + Y +X2 + 1, fST,3 := X2Y 2 +XY 2 + Y +X,

fST,2 := X2 +XY 2 +X + Y, fST,4 := X2Y 2 +XY 2 + Y +X2 + 1 (16)

In the following, we will call the polynomials fST,i the ST-polynomials and the wild
recursive towers FST,i which are defined by the ST-polynomials fST,i the ST-towers.
As a consequence of the Main Theorem 177, we will be able to prove in Corollary 202
that all four ST-towers are asymptotically bad. Thus, there is no good quadratic
recursive tower over F2.

(v) In [BGS06, p. 69, Theorem6.4], the authors classified all potentially good polynomial-
recursive towers of so called Kummer-type and Artin-Schreier-type. For polyno-
mials of degree two with coefficients in F2, their classification reduced the potentially
good polynomal-recursive towers of Artin-Schreier-type to four candidates. Essen-
tially, these were the GS-tower FGS,3, two times the GV-tower FGV after coordinate
changes and the CNT-tower FCNT,s which is defined by the CNT-polynomial

fCNT := (Y 2 + Y )(X2 +X + 1) +X.

Twelve years later in [CNT18, p. 19, Corollary 4.13], the authors finally concluded
that FCNT,s is good over F2s for even s, bad for odd s and optimal for s = 2,
i.e. λ(FCNT,2) = 1 =

√
4− 1.

The CNT-tower FCNT,s is a very unique recursive tower because it is the only ex-
ample of a recursive tower known to the author satisfying the following property
where all occurring notions will be defined later: The ramification subgraph of every
truncation of the CNT-tower has a finite balanced weakly connected component with
ramified edges. This will be proven in Example 181.
On the one hand, this will have the consequence that we cannot apply the main
result in Corollary 184 to FCNT,s and, by that, conclude ν(F/Fm) = Split(F/Fm)
for some m ∈ N0. In fact, we will derive the estimate ν(F/Fm) > Split(F/Fm)
for all m ∈ N0 in Example 181. Therefore, the CNT-tower is a counterexample to
Conjecture 1(iv).
On the other hand, this will also mean that we cannot apply the fourth major result
in Corollary 195 and Corollary 200 to FCNT,s and, by that, obtain the precise limit
λ(FCNT,2) = 1. This equality and the estimates λ(FCNT,s) ≥ 1 for all even s were
the contribution of [CNT18, p. 19, Corollary 4.13, Corollary 4.14].
Nonetheless, as a consequence of the third major result in Theorem 188, we will be
able to show that the equality λ(FCNT,2) = 1 holds for all even s in Corollary 207.

(vi) In [BBGS15, p. 3], the authors introduced the BBGS-towers FBBGS,q,i,j over Fqm

for all prime powers q and all m := i+ j with i, j ∈ N and gcd(i, j) = 1. Note that,
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in [BBGS15], it was only proven that F does not get stationary and not that it has
constant degree. However, in [CCH21, p. 3, Main Theorem] and [CCH21, p. 10,
Lemma 2.4], it was shown that F has constant degree. Hence, the BBGS-towers F
are indeed recursive towers in sense of Definition 5(ii).
Then, in [BBGS15, p. 4, Theorem 1.2], they could prove the lower bound

λ(FBBGS,q,i,j) ≥ 2 ·
( 1
qj − 1 + 1

qi − 1

)−1
(17)

for the limit of FBBGS,q,i,j. By that, in [BBGS15, p. 3, Theorem 1.1], the authors
provided the lower bound

A(pm) ≥ 2 ·
( 1
p⌊m/2⌋ − 1

+ 1
p⌈m/2⌉ − 1

)−1
(18)

for all p ∈ P and all m ≥ 2 which is currently the largest known lower bound for
Ihara’s constant A(pm) for all m ≥ 2.
More concretely, the BBGS-towers are the wild recursive towers FBBGS,q,i,j which
are defined by the equation

Trj
(
Y

Xqi

)
+ Tri

(
Y qj

X

)
= 1 (19)

over Fqm for all prime powers q and all m := i + j with i, j ∈ N and gcd(i, j) = 1
where Tra(t) := ∑a−1

ν=0 t
qν for all a ∈ N0.

Let εq,i,j be the main denominator of the left side of the defining equation in (19).
Then we will call the polynomials

fBBGS,q,i,j = εq,i,j ·
(

Trj
(
Y

Xqi

)
+ Tri

(
Y qj

X

)
− 1

)
∈ Fq[X,Y ]

the BBGS-polynomials.
As a consequence of our Corollary 200, we will be able to prove in Corollary 203
that the limit of FBBGS,q,i,j is actually equal to the already established lower bound
in (357).

(vii) Let
fHP,q := Y 2(3X − 1)− (X2 +X) ∈ Fq[X,Y ]

for q = ps with p ∈ P\{2, 3} and s ∈ N. In [HP16, p. 12, Proposition 12], it is
shown that fHP,q defines a recursive tower FHP,q over Fq.
In the following, we will call the polynomials fHP,q the HP-polynomials and the
tame recursive towers FHP,q the HP-towers.

(viii) Let

fBR,5 := (X6 +X + 2)(Y 5 − Y )− (X5 −X)(Y 6 + Y 5 + 2Y + 3) ∈ F5[X,Y ]

and

fBR,q := (Xq+1 + b)(b+ n)(Y q − Y )− 2b(Y q+1 + n)(Xq −X) ∈ Fq[X,Y ]

for all q /∈ {2, 3, 5} and non-squares −b,−n ∈ F×
q such that n ̸= ±b. Then fBR,q

defines a recursive tower FBR,q over Fq in [BR20, p. 4].
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In the following, we will call the polynomials fBR,q the BR-polynomials and the
tame recursive towers FBR,q the BR-towers.
In [BR20, p. 3], it is shown that FBR,q is a good tame recursive tower and that its
limit has the lower bound λ(FBR,q) ≥ 2

q−2 . Up to this point, FBR,q is the only good
recursive towers over Fq for all primes q /∈ {2, 3}.
As a consequence of Corollary 195, we will be able to prove in Corollary 205 that
the limit of FBR,q is actually equal to λ(FBR,q) = 2

q−2 for all q /∈ {2, 3}.

A compact list of the examples. Any member of the following list in Figure 2.3
consists of the following data: A reference for the appearance of the recursive tower F
in the literature. Further requirements on q. A defining polynomial f ∈ Fq[X,Y ]. The
precise limit λ(F). Finally, if the lower bound b which was established in the reference
differs from the final precise limit, then (≥ b) is also included in this list.

2.2.5 Pyramids of Recursive Towers

Purpose of this subsection. In this subsection, we will introduce the crucial concept of
pyramids of function fields and prove some first simple properties of pyramids of function
fields.

Pyramids of function fields. As we already saw in Figure 2.1, the pair (σ, F0) of a
recursive tower F provides a pyramidal structure. Formalizing this pyramid will be the
subject of the following Definition 9.
Definition 9. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0) and
define

Fi,j :=
j∏
k=i

σk(F0)

for all i, j ∈ N0 with i ≤ j.

(i) We call
Pyr(F) := (Fi,j)i,j

the pyramid of function fields or pyramid of F (see Figure 2.4 where F has
also balanced degree d) and mean with the notation (Fi,j)i,j that the indices i, j run
over all i, j ∈ N0 with i ≤ j.

(ii) We call j − i the level of the function field Fi,j (resp. place Q ∈ PFi,j ). Notice that,
for a recursive tower F over k which is defined by a polynomial and the corresponding
sequence (xn)n in Definition 5(i) and for (Fi,j)i,j := Pyr(F), we have the identity
Fi,j = k(xi, xi+1, . . . , xj) for all i ≤ j.
Moreover, for k ≤ i ≤ j ≤ l, we call (l − k) − (i, j) the height of the extension
Fk,l/Fi,j (resp. Q/P in Fk,l/Fi,j).

(iii) We call the extension Fk,l/Fi,j of function fields an (elementary) extension in
Pyr(F) (if (l − k) − (j − i) = 1) and a diamond (E,F1, F2, F ) of function fields a
(elementary) diamond in Pyr(Q) if E/Fi and Fi/F are (elementary) extension
in Pyr(F) for all i = 1, 2.

(iv) We define the set
PPyr(F) :=

∐
i≤j

PFi,j

of all places which appear in one of the function fields of the pyramid of F .
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Reference q f ∈ Fq[X,Y ] λ(F) (≥ b)

[MW05, p. 212, f2] 9 fMW,2 = Y 2 +XY + 2X2 + 1 2/3
[MW05, p. 214, f3] 49 fMW,3 = Y 2 +X2Y + 5X2 + 5 6 (≥ 4)
[MW05, p. 212, f4] 9 fMW,4 = Y 2 +X2Y + 1 2
[MW05, p. 212, f6] 9 fMW,6 = Y 2 + (X2 + 1)Y + 2X2 2/3
[MW05, p. 213, f8] 25 fMW,8 = Y 2 + (X2 + 3)Y + 4X2 1
[MW05, p. 212, f11] 9 fMW,11 = Y 2 + (X2 + 1)Y +X2 +X + 1 2
[MW05, p. 213, f12] 25 fMW,12 = X2Y 2 + (X2 + 3X + 3)Y + 4 4 (≥ 3)
[MW05, p. 213, f14] 25 fMW,14 = X2Y 2 + (X2 + 4X + 2)Y + 4X2 + 2 4 (≥ 3)
[MW05, p. 213, f15] 25 fMW,15 = X2Y 2 + (X2 + 4X + 4)Y + 4X2 + 3X + 2 4 (≥ 3)
[MW05, p. 213, f16] 25 fMW,16 = (X2 + 1)Y 2 + (X + 1)Y + 2X2 + 4X + 1 1
[MW05, p. 213, f20] 25 fMW,20 = Y 2 + 2XY + 4X2 + 1 1
[MW05, p. 213, f21] 25 fMW,21 = Y 2 + 2XY + 4X2 + 2 1
[MW05, p. 213, f22] 25 fMW,22 = Y 2 + 4XY +X2 +X 4
[Sti08, p. 260] l2 fGS,1 = Y l−1 + (X + 1)l−1 − 1 2/(l − 1)

l ≥ 3
[Sti08, p. 261] le fGS,2 = Y m + (X + 1)m − 1, 2/(q − 2)

e ≥ 2, m := q−1
l−1

[Sti08, p. 261] l2 fGS,3 = (Y l − Y )(1−X l−1)−X l l − 1
[vdGvdV02, p. 292] 8 fGV = (Y 2 + Y )X +X2 +X + 1 2/3
[BGS05, p. 161] l3 fBezGS,l = Y l(X l +X − 1)− (1− Y )X 2(l2 − 1)/(l + 2)
[ST15, p. 680] 2 fST,1 = Y 2X + Y +X2 + 1 0
[ST15, p. 680] 2 fST,2 = X2 +XY 2 +X + Y 0
[ST15, p. 680] 2 fST,3 = X2Y 2 +XY 2 + Y +X 0
[ST15, p. 680] 2 fST,4 = X2Y 2 +XY 2 + Y +X2 + 1 0

[BBGS15, p. 4] qm fBBGS,q,i,j = εq,i,j · (Trj(Y/Xqi) + Tri(Y qj
/X)− 1) 2/

(
1

qj−1 + 1
qi−1

)
m := i+ j with i, j ∈ N and gcd(i, j) = 1

[HP16, p. 12] 5 fHP,5 = Y 2(3X − 1)− (X2 +X) 0
[CNT18, p. 19] 2s fCNT,s = (Y 2 + Y )(X2 +X + 1) +X 1

s even
[BR20, p. 4] 5 fBR,5 = (X6 +X + 2)(Y 5 − Y ) 2/(5− 2)

−(X5 −X)(Y 6 + Y 5 + 2Y + 3)
[BR20, p. 4] q fBR,q = (Xq+1 + b)(b+ n)(Y q − Y ) 2/(q − 2)

−2b(Y q+1 + n)(Xq −X)

Figure 2.3: Table with examples of recursive towers from references and their precise
limits.

Properties of the pyramid of function fields. All the function fields Fi,j in the
pyramid (Fi,j)i,j := Pyr(F) on the same level l = j − i are isomorphic via powers of the
tower map σ of F . In the following Lemma 10, we will list this and some other immediate
properties of pyramids of function fields.

Lemma 10. Let F be a recursive tower of degree d which is defined by a pair (σ, F0) and
let (Fi,j)i,j := Pyr(F) by the pyramid of F . Then the following hold:
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Figure 2.4: Pyramid of function fields

(i) We have Fn = F0,n and Fi,j ⊆ Fm,n for all m ≤ i ≤ j ≤ n.

(ii) The automorphism σk restricts to an isomorphism Fi,j → Fi+k,j+k for all i, j, k ∈ Z
with 0 ≤ i ≤ j and 0 ≤ i+ k.

(iii) We have the estimate d̂ := [F1 : σ(F0)] > 1 and the extensions Fi,l/Fi,j and Fk,j/Fi,j
are linearly disjoint extensions of degree dl−j and d̂i−k, respectively, and satisfy the
identities Fk,j · Fi,l = Fk,l and Fk,j ∩ Fi,l = Fi,j for all k ≤ i ≤ j ≤ l
Moreover, for all k ≤ i ≤ j ≤ l, the extension Fi,l/Fi,j and Fk,j/Fi,j are separable.

(iv) In particular, if F is a good tower over a finite field, then [F1 : σ(F0)] = d and,
therefore, F has the balanced degree d.

Proof. For (i): By Definition 5(ii) and Definition 9, we have Fn = ∏n
k=0 σ

k(F0) = F0,n
and Fi,j = ∏j

k=i σ
k(F0) ⊆ ∏n

k=m σ
k(F0) = Fm,n. Hence, (i) follows.

For (ii): We obtain the equalities Fi+k,j+k = ∏j+k
m=i+k σ

m(F0) = σk(∏j
m=i σ

m(F0)) =
σk(Fi,j) where the first and last equalities hold because of Definition 9 and the second
equality holds because σ is a morphism of algebras and because of the definition of the
compositum of fields. Hence, (ii) follows.

For the ’degree’-statements in (iii): We get the equalities σi(F0,j−i) = Fi,j , σi(F0,j−i−1) =
Fi,j−1 and σi(F1,j−i) = Fi+1,j for all 0 ≤ i < j by Lemma 10(ii). Thus, combining these
equalities and the fact that the degrees of extensions of fields are invariant under the action
of the isomorphism σi yields the equalities

[Fi,j : Fi,j−1] = [F0,j−i : F0,j−i−1] and [Fi,j : Fi+1,j ] = [F0,j−i : F1,j−i]. (20)

As recursive towers have constant degree by Definition 5 on page 28, we have the equality
[F0,j−i : F0,j−i−1] = d. Hence, this equality and the first equality in (20) provide the
equalities

[Fi,j : Fi,j−1] = [F0,j−i : F0,j−i−1] = d (21)
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for all 0 ≤ i < j.
Next, we show the equality [Fi,j : Fi+1,j ] = [F1 : σ(F0)] = d̂ for all 0 ≤ i < j by

induction over the level j− i ∈ N of Fi,j : For j− i = 1, the second equality in (20) supplies
this desired equality

[Fi,j : Fi+1,j ] = [Fi,i+1 : Fi+1,i+1] = [F0,1 : F1,1] = [F1 : σ(F0)] = d̂.

Now, for i− j ≥ 2 , we obtain the equalities

[F0,j−i : F1,j−i] = [F0,j−i : F1,j−i−1]
[F1,j−i : F1,j−i−1] = [F0,j−i : F0,j−i−1][F0,j−i−1 : F1,j−i−1]

[F1,j−i : F1,j−i−1]
= [F0,j−i−1 : F1,j−i−1] (22)

(see Figure 2.13) where the first and second equalities hold since Lemma 10(i) implies

Figure 2.5: Elementary diamond of function fields in a proof

the inclusions F0,j−i ⊇ F1,j−i ⊇ F1,j−i−1 and F0,j−i ⊇ F0,j−i−1 ⊇ F1,j−i−1 and the third
equality holds since the first desired statement provides the identity [F0,j−i : F0,j−i−1] =
[F1,j−i : F1,j−i−1] = d. Then we conclude the equalities

[Fi,j : Fi+1,j ] = [F0,j−i : F1,j−i] = [F0,j−i−1 : F1,j−i−1] = d̂ (23)

for all 0 ≤ i < j where the first equality holds by second identity in (20), the second equal-
ity holds by the equality in (22) and the third equality holds by the induction hypothesis.

Second to last, we notice the equalities

[Fk,l : Fi,j ] = [Fk,l : Fk,j ][Fk,j : Fi,j ] =
l−1∏
ν=j

[Fk,ν+1 : Fk,ν ]
i−1∏
ν=k

[Fν,j : Fν+1,j ] = dl−j d̂i−k (24)

for all k ≤ i ≤ j ≤ l where the first and second equality holds since, by the inclusion in
Lemma 10(i), the involved function fields are indeed exactly contained in each other as
the formulas indicate and the third equality holds by the equalities in (21) and (23). In
particular, the equality in (24) provides that, for all k ≤ i ≤ j ≤ l, the extensions Fi,l/Fi,j
and Fk,j/Fi,j indeed have the desired degrees dl−j and d̂i−k, respectively.

Finally, the latter also implies the desired estimate d̂ > 1 by the following reasoning:
Assume d̂ = 1. Then we compute

[Fn : σn(F0)] = [F0,n : Fn,n] = 1 (25)
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where the first equality holds since Lemma 10(i) implies the equality Fn = F0,n and since
the definition of Pyr(F) = (Fi,j)i,j in Definition 9(i) implies the equality σn(F0) = Fn,n,
and the third equality holds because we already shown that F0,n/Fn,n has degree d̂n and
because of the assumption d̂ = 1.

Consequently, we conclude the equalities

g(Fn) = g(σn(F0)) = g(F0) (26)

for all n ∈ N0 where the first equality holds since the equality in (25) implies the equality
Fn = σn(F0) and the second equality holds because the genus is invariant under the ac-
tion of isomorphisms. But that equality in (26) is impossible since g(Fn)→∞ as n→∞
by the definition of the tower F = (Fν)ν in Definition 2(i). Hence, we indeed deduce d̂ > 1.

For the compositum’-, ’intersection’- and ’linearly disjointness’-statements in (iii): We
already obtain the desired compositum-statement by the equalities

Fk,j · Fi,l =
j∏

ν=k
σν(F0) ·

l∏
ν=i

σν(F0) =
l∏

ν=k
σν(F0) = Fk,l (27)

for all k ≤ i ≤ j ≤ l where the first and last equalities hold by the definition of Pyr(F) =
(Fr,s)r,s in Definition 9(i) and the second equality holds because the estimate i ≤ j implies
that we have repeating factors which can be neglected in the definition of composite fields.
But then the combination of the equalities in (24) and (27) yield that the extensions
(Fk,j ·Fi,l)/Fi,l and Fk,j/Fi,j have the same degree d̂i−k and, thus, the extensions Fi,l/Fi,j
and Fk,j/Fi,j are indeed linearly disjoint for all k ≤ i ≤ j ≤ l.

Finally, it is well known that, for all linearly disjoint extensions L/K and M/K such
that the fields L and M which are contained in some common extension field, we have the
identity M ∩ L = K. Hence, combining the above conclusion that Fi,l/Fi,j and Fk,j/Fi,j
are linearly disjoint and this well known identity provides the final desired ’intersection’-
statement, namely the identity Fi,l ∩ Fk,j = Fi,j for all k ≤ i ≤ j ≤ l.

For the ’separability’-statements in (iii): By the definition of towers in Definition 2,
the extension F1/F0 (resp. F1/σ(F0)) is separable and, moreover, by the invariance of the
separability-property under the action of isomorphisms, the extension

σn−1(F1)/σn−1(F0) (resp. that F1/σ(F0)) is also separable. (28)

Then we compute

Fε,n =
n∏
l=ε

σl(F0) =
1∏
l=ε

σl(F0) ·
n∏
l=1

σl(F0) = σε(
1−ε∏
l=0

σl(F0)) ·
n∏
l=1

σl(F0)

= σε(F0,1−ε) · F1,n = σε(F1−ε) · F1,n (29)

and

F0,n−1+ε =
n−1+ε∏
l=0

σl(F0) =
n−1∏
l=0

σl(F0) ·
n−1+ε∏
l=n−1

σl(F0) =
n−1∏
l=0

σl(F0) · σn−1(
ε∏
l=0

σl(F0))

= F0,n−1 · σn−1(F0,ε) = F0,n−1 · σn−1(Fε) (30)

for all n ∈ N0 and all ε = 0, 1 where the first and second to last equalities hold by the
definition of Pyr(F) = (Fi,j)i,j in Definition 9(i), the second equalities holds as we only
split the product in two, the third equality holds because σ is an isomorphism of algebras
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and because of the definition of composite fields and the last equality holds by the identity
in Lemma 10(i).

Now, we remember the well known fact that the extension (K ·M)/(K ·L) is separable
for all separable extensions M/L of fields and all fields K and M which are contained in
some common extension field. Thus, combining (28), the equalities in (30) (resp. (29)) for
all ε = 0, 1 and this well known fact yields that the extensions

F0,n/F0,n−1 (resp. F0,n/F1,n) are separable (31)

for all n ∈ N0.
Next, for all 0 ≤ i < j, we choose n := j − i > 1. Then combining the conclusions in

(31), Lemma 10(ii), the invariance of separability under the action of the isomorphism σi

and Lemma 10(ii) also yields that the extensions

Fi,j/Fi,j−1 (resp. Fi,j/Fi+1,j) are separable. (32)

for all 0 ≤ i < j.
Finally, the inclusion in Lemma 10(i) supplies the inclusions

Fi,l ⊇ Fi,l−1 ⊇ · · · ⊇ Fi,j and Fk,j ⊇ Fk+1,j ⊇ . . . ⊇ Fi,j (33)

for all k ≤ i ≤ j ≤ l. Consequently, because of the conclusions in (32), because of the
inclusions in (33) and because the separability-property is also transitive, we deduce the
desired ’separability’-statements, namely that the extensions Fi,l/Fi,j and Fk,j/Fi,j are
separable for all k ≤ i ≤ j ≤ l.

For (iv): Let d̂ := [F1 : σ(F0)] = [F0,1 : F1,1]. Since g(F0,n) = g(Fn) → ∞ as n → ∞
by the definition of a tower of function fields in Definition 2(i), there is an index i ∈ N0
such that g(F0,i) ≥ 2. One the one hand, for all n ≥ i, we have the estimates N(F0,n) ≤
N(F0,i)dn−i and N(F0,n) ≤ N(Fn−i,n)d̂n−i by applying the fundamental equality in (8)
on the degrees dn−i = [F0,n : F0,i] and d̂n−i = [F0,n : Fn−i,n] where the equalities hold
by Lemma 10(iii). On the other hand, for all n ≥ i we have the estimates g(F0,n) − 1 ≥
(g(F0,i)−1)dn and g(F0,n)−1 ≥ (g(Fn−i,n)−1)d̂n by applying the Hurwitz Genus Formula
in (9) on the same extensions. Then, we estimate

λ(F) = lim
n→∞

N(F0,n)
g(F0,n) = lim

n→∞
N(F0,n)

g(F0,n)− 1 ≤
N(F0,i)

g(Fn−i,n)− 1 · lim
n→∞

(
d

d̂

)n
and, analogously,

λ(F) ≤ N(Fn−i,n)
g(F0,i)− 1 · lim

n→∞

(
d̂

d

)n
Thus, the equality λ(F) = 0 holds if d ̸= d̂. Consequently, the equality d = d̂ needs to
hold if F is a good tower. Hence, (iv) follows.

2.2.6 Pyramids of Places

Purpose of this subsection. In this subsection, we will introduce the crucial concept
of pyramids of places and prove some first simple properties of pyramids of places.

Pyramids of places. For any recursive tower F with the pyramid (Fi,j)i,j := Pyr(F)
and the place Q in Fm,n for m ≤ n, we also obtain a pyramidal structure Pyr(Q) for Q
by intersecting Q with the function fields Fi,j for all m ≤ i ≤ j ≤ n (see Figure 2.6). This
will be the subject of the following Definition 11.
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Definition 11. Let F be a recursive tower, let (Fi,j)i,j := Pyr(F) be the pyramid of F
and let Q ∈ PFm,n for some m ≤ n. Then we call the family

Pyr(Q) := (Q ∩ Fi,j)i,j := (Q ∩ Fi,j)m≤i≤j≤n ∈
∏

m≤i≤j≤n
PFi,j

the pyramid of places of Q (see Figure 2.6).
Most of the time and as long as this does not lead to confusions, we will use the short

notation (Q ∩ Fi,j)i,j for the pyramid of Q and mean by this that the indices i, j run over
all i, j ∈ N0 with m ≤ i ≤ j ≤ n.

Figure 2.6: Pyramid of places

Examples 12. Consider the recursive towers F ′
MW,2 = (F ′

ν)ν over F9 and FMW,2 = (Fν)ν
over F3 which are defined by the polynomial fMW,2 = Y 2 +XY +2X2 +1 (see Figure 2.3).
Let a ∈ F9 be a zero of the polynomial t2 + 1 ∈ F3[t]. In the figures 2.7 and 2.8, we have
the pyramids of two places Q ∈ PF4 and Q′ ∈ PF ′

4
such that Q′/Q in F ′

4/F4 where the blue
numbers are the ramification indices of the corresponding elementary extensions.

We will derive the existence of such a place Q′ in Examples 77(i). Then the pyramid
of Q := Q′ ∩ F4 is automatically of the form in Figure 2.7.

Figure 2.7: Example of a pyramid of places
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Figure 2.8: Another example of a pyramid of places

Extensions in pyramids of places. Analogously, to the (elementary) extensions and
diamonds of function fields in the pyramid Pyr(F) of function fields, we will also speak
of (elementary) extensions and diamonds of places in the pyramid Pyr(Q) of places. This
will be the subject of the following Lemma 13 and Definition 14.

Lemma 13. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0),
let (Fi,j)i,j := Pyr(F) be the pyramid of F , let Q ∈ PFm,n for some m ≤ n and let
(Pi,j)i,j := Pyr(Q) be the pyramid of Q. Then we have

Pk,l/Pi,j

for all m ≤ k ≤ i ≤ j ≤ l ≤ n and

Pyr(Pk,l) = (Pi,j)k≤i≤j≤l

for all m ≤ k ≤ l ≤ n.

Proof. The first desired statement immediately follows from the equalities

Pk,l ∩ Fi,j = (Q ∩ Fk,l) ∩ Fi,j = Q ∩ Fi,j = Pi,j

for all m ≤ k ≤ i ≤ j ≤ l ≤ n where the first and last equalities hold because of the
definition of Pyr(Q) = (Q∩Fr,s)r,s in Definition 11 and the second equality holds because
Lemma 10(i) implies the inclusion Fi,j ⊆ Fk,l.

The desired equality also already follows from the equalities

Pyr(Pk,l) = (Pk,l ∩ Fi,j)k≤i≤j≤l = ((Q ∩ Fk,l) ∩ Fi,j)k≤i≤j≤l

= (Q ∩ Fi,j)k≤i≤j≤l = (Pi,j)k≤i≤j≤l

where the first equality holds by the definition of Pyr in Definition 11, the second and last
equalities hold by the assertion (Pi,j)i,j = Pyr(Q) and the third equality holds by Lemma
10(i).

Definition 14. Let F be a recursive function field, (Fi,j)i,j := Pyr(F), Q ∈ PFm,n and
(Pi,j)i,j := Pyr(Q).

(i) We define the sets

Ext(Pyr(Q)) := {(Pk,l, Pi,j) : i, j, k, l ∈ N0 and m ≤ k ≤ i ≤ j ≤ l ≤ n},
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and

ElemExt(Pyr(Q)) := {(Pk,l, Pi,j) ∈ Ext(Pyr(Q)) : (l − k)− (j − i) = 1},

of all extensions and elementary extensions of places in Pyr(Q), respectively.
We will often directly write R/P for any extension (R,P ) of Pyr(Q).
Notice that the elementary extensions are the one-step-extensions in Pyr(Q) from
one level m = j − i to the next m+ 1 = k − l.

(ii) We call a diamond (R,P1, P2, P ) of places a (elementary) diamond in Pyr(Q) if
R/Pi and Pi/P are (elementary) extensions in Pyr(Q) for all i = 1, 2.

Extending the action of the tower map to pyramids of places. By Lemma 10(ii),
the tower map σ acts on the function fields in the pyramid Pyr(F) = (Fi,j)i,j of function
fields by basically shifting the function fields Fi,j one to the right in Pyr(F), which is
the function field Fi+1,j+1. Correspondingly, σ also acts on the places in the pyramid
Pyr(Q) = (Pi,j)i,j .

Because we will use this action all the time and because there is a lot of potential
to repeatedly get lost in the indices, we will formalize this action more abstractly in the
following Definition/Lemma 15.

Definition/Lemma 15. Let F = (Fν)ν be a recursive tower which is defined by the pair
(σ, F0), let (Fi,j)i,j := Pyr(F) be the pyramid of F , let Q ∈ PFm,n for some m ≤ n and let
(Pi,j)i,j := Pyr(Q) be the pyramid of Q.

(i) For all k ∈ Z with 0 ≤ m+ k, we define

σk(Pyr(Q)) := (σk(Pi−k,j−k))i,j = Pyr(σk(Q))

where i, j ∈ N0 run over all m+ k ≤ i ≤ j ≤ n+ k.

(ii) For all k, l ∈ Z with 0 ≤ m+ k and 0 ≤ m+ k + l, we have the identity

σl(σk(Pyr(Q))) = σk+l(Pyr(Q)).

Proof. For (i): For all m+ k ≤ i ≤ j ≤ n+ k, we compute

σk(Q) ∩ Fi,j = σk(Q) ∩ σk(Fi−k,j−k) = σk(Pi−k,j−k) (34)

where the first equality holds by Lemma 10(ii) and the second equality holds because σk
is a bijection and because of the definition of Pi−k,j−k = Q ∩ Fi−k,j−k in Definition 11.
Then the desired identity in (i), namely (σk(Pi−k,j−k))i,j = Pyr(σk(Q)), follows from the
definition of the pyramid Pyr(σk(Q)) = (σk(Q) ∩ Fi,j)i,j of σk(Q) in Definition 11 and
from the equality in (34).

For (ii): For all k, l ∈ Z with 0 ≤ m+ k and 0 ≤ m+ k+ l, we immediately derive the
desired identity in (ii) by the equalities

σl(σk(Pyr(Q))) = Pyr(σl(σk(Q))) = σk+l(Pyr(Q))

where the equalities hold by Definition/Lemma 15(i).

2.2.7 Paths of Places

Purpose of this subsection. In this subsection, we will introduce the crucial concept
of paths of places and prove some first simple properties of paths of places.
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Motivating paths of places. Let F = (Fν)ν be a recursive tower over a finite field
which is defined by the pair (σ, F0). The main objects of concern are the value N(Fn)
which is the number of rational places in Fn and the genus g(Fn) which, by the Hurwitz
Genus Formula in (9), only depends on the ramified places in Fn/F0. Thus, in order to
make statements about N(Fn) and g(Fn), we will have to extract information of these two
special kinds of places.

Now, let Q ∈ PFn and (Pi,j)i,j := Pyr(Q). Then the lower levels l = j − i of Pyr(Q)
already carry significant amounts of information in regards to the rationality of Q and the
ramification index of Q in Fn/F0. Additionally, we notice that gathering information for
the zeroth and first levels l = j− i in Pyr(Q) is quite approachable because the extensions
Pk,k+1/Pk,k (resp. Pk,k+1/Pk+1,k+1) of places in Fk,k+1/Fk,k (resp. Fk,k+1/Fk+1,k+1) can
be pulled back to extensions σ−k(Pk,k+1)/σ−k(Pk,k) (resp. σ−k(Pk,k+1)/σ−k(Pk+1,k+1)) of
places in F1/F0 (resp. F1/σ(F0)) via the isomorphisms σ−k for all k = 0, . . . , n− 1.

Thus, the paths of the places, which are the zeroth and first levels of their pyra-
mids, can be solely generated via extensions of places in F1/F0 and F1/σ(F0). This will
ultimately motivate to assign a directed graph to F , namely the tower graph ΓF in
Definition 74. This tower graph will capture the information of the extensions of places
in F1/F0 and F1/σ(F0). Then the paths in F can be generated via the bijective tower
graph map σΓF from the paths in ΓF to the paths in F (see Definition/Lemma 76).

Paths of places and some first properties. In the following Definition 16, we will
define paths of places in F .

Definition 16. Let F = (Fν)ν be a recursive tower and let (Fi,j)i,j := Pyr(F) be the
pyramid of F .

(i) Let m,n ∈ N0 with m ≤ n and Pi,j ∈ PFi,j for all m ≤ i ≤ j ≤ n with j − i ≤ 1. We
call the family

P := (Pi,j)j−i≤1 := (Pi,j)m≤i≤j≤n
j−i≤1

∈
∏

j−i≤1
m≤i≤j≤n

PFi,j

an (m,n)-path in F if Pi,i+1/Pi,i in Fi,i+1/Fi,i and Pi,i+1/Pi+1,i+1 in Fi,i+1/Fi+1,i+1
for all i = m, . . . , n− 1 (see Figure 2.6).
Most of the time and as long as it does not lead to confusions, we will use the short
notation (Pi,j)j−i≤1 for the path P and mean by this that the indices run over all
i, j ∈ N0 with m ≤ i ≤ j ≤ n and j − i ≤ 1.
Moreover, we define W (F ,m, n) to be the set of all (m,n)-paths in F , call any path
P ∈W (F , n) := W (F , 0, n) a path n in F and define W (F) := ∐

m≤nW (F ,m, n).

(ii) We call (Pi,j)j−i≤1 ∈ W (F , k, l) the (k, l)-subpath of the path P = (Pi,j)j−i≤1 ∈
W (F ,m, n) for all m ≤ k ≤ l ≤ n.

(iii) Let m,n, r ∈ N0 with m ≤ n ≤ r. Let P1 = (Pi,j)j−i≤1 ∈ W (F ,m, n) and P2 =
(Pi,j)j−i≤1 ∈ W (F , n, r). Then we call P1 and P2 composable since the last place
of P1 and the first place of P2 are the same place Pn,n and we call P1P2 := P1 ·P2 :=
(Pi,j)j−i≤1 ∈W (F ,m, r) the composition of P1 and P2.

(iv) We call a path P = (Pi,j)j−i≤1 ∈ W (F ,m, n) rational if Pi,j is rational for all
m ≤ i ≤ j ≤ n with j − i ≤ 1 and denote the corresponding subsets of rational paths
by Wrat(F ,m, n) ⊆W (F ,m, n), Wrat(F , n) ⊆W (F , n) and Wrat(F) ⊆W (F).
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(v) We say that a path P = (Pi,j)j−i≤1 ∈ W (F ,m, n) has balanced ramification in-
dices if the equality

∏n
i=m e(Pi−1,i|Pi−1,i−1) = ∏n

i=m e(Pi−1,i|Pi,i) holds. Otherwise,
we say that P has unbalanced ramification indices.

(vi) We call the path P tame if, for all m + 1 ≤ i ≤ j ≤ n − 1, at least one of the two
extensions Pi−1,i/Pi,i and Pj,j+1/Pj,j is tame. Otherwise, we call P wild.

(vii) We define the set

Ext(P) := {(Pi−1,i, Pi−1,i−1), (Pi−1,i, Pi,i) : i = m+ 1, . . . , n}

of all extensions of places in the path P = (Pi,j)j−i≤1 ∈W (F ,m, n).

The path map. In the following Definition/Lemma 17(i), we will define the path map
Path : PPyr(F) → W (F) which maps a place Q in F to the zeroth and first level of its
pyramid Pyr(Q). Moreover, we will prove that the map Path is surjective. Hence, any
path P of places in F is a path Path(Q) of a place in F or, in more suggestive words,
there lies a place Q over any path P in F .

For rational paths P in F which only have unramified extensions, Lemma 17(iv) will
even provide that there lies exactly one place Q over P and that this place Q is rational.

Definition/Lemma 17. Let F = (Fν)ν be a recursive tower, let (Fi,j)i,j := Pyr(F) be
the pyramid of F and let m,n ∈ N0 with m ≤ n. Then the following hold:

(i) The map
Pathm,n : PFm,n →W (F ,m, n) via Q 7→ (Q ∩ Fi,j)j−i≤1

is a well defined surjection and, by taking the disjoint unions of the domain and
codomain of Pathi,j for all 0 ≤ i ≤ j, we obtain an extension map

PathF := Path : PPyr(F) =
∐

0≤i≤j
PFi,j →W (F).

Moreover, by the definition of PFm,n(P) in (5) for all P ∈W (F ,m, n), we also have
the identity Path−1(P) = PFm,n(P) and we say that any place Q ∈ Path−1(P) lies
over the path P (see Figure 2.6).

(ii) On the one hand, if Pyr(Q) = (Pi,j)i,j, then we have Path(Q) = (Pi,j)j−i≤1 ∈
W (F ,m, n).
On the other hand, if Path(Q) = (Pi,j)j−i≤1, then Path(Pk,l) = (Pi,j)j−i≤1 ∈
W (F , k, l) for all m ≤ k ≤ l ≤ n.

(iii) If Q ∈ PPyr(F) is rational, then Path(Q) is also rational.

(iv) Let P = (Pi,j)j−i≤1 ∈ Wrat(F ,m, n). If all extensions in Ext(P) are unramified,
i.e. e(Pk,k+1|Pk,k) = e(Pk,k+1|Pk+1,k+1) = 1 holds for all k = m, . . . , n − 1, then
there is exactly one place Q ∈ PFm,n which lies over P and this place Q is rational.

(v) Let Q ∈ PFm,n. Then Path(Q) is tame if and only if, for all elementary diamonds
(R,P1, P2, P ) in Pyr(Q), at least one of the two elementary extensions P1/P and
P2/P is tame.

In the following proof, we will already use Key Lemma 36(iv), which will only be
proved later. However, there will be no circular reasoning.
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Figure 2.9: Path and Pyramid of Places

Proof. For (i): Let σ be the tower map of F . Let k ∈ {m, . . . , n− 1}. Then the equalities
Q∩ Fk,k = (Q∩ Fk,k+1)∩ Fk,k and Q∩ Fk+1,k+1 = (Q∩ Fk,k+1)∩ Fk+1,k+1 follow because
Lemma 10(i) implies the inclusions Fk,k ⊆ Fk,k+1 and Fk+1,k+1 ⊆ Fk,k+1. Thus, Q∩Fk,k+1
lies over Q ∩ Fk,k and Q ∩ Fk+1,k+1. Hence, Pathm,n is well defined.

We first show the surjectivity of Pathm,n for m = 0 via induction over n ∈ N0. Let
P = (Pi,j)j−i≤1 ∈W (F , n). For n ∈ {0, 1}, we find a preimage of P by the equalities

Path(P0,0) = (P0,0 ∩ F0,0) = (P0,0) = P

for n = 0 and

Path(P0,1) = (P0,1 ∩ F0,0, P0,1 ∩ F0,1, P0,1 ∩ F1,1) = (P0,0, P0,1, P1,1) = P

for n = 1 where the first and last equalities hold because of the definitions of Path and P
for n ∈ {0, 1} and the second equalities hold because the assumption P = (Pi,j)j−i≤1 ∈
W (F , n) in Definition 16(i) implies P0,i ∈ PF0,i for all i = 1, 2 and P0,1/P0,0 and P0,1/P1,1.

Now, let n ≥ 2. Then, by applying the induction hypothesis to P ′ := (Pi,j)j−i≤1 ∈
W (F , n − 1), there is a place Q′ ∈ PFn−1 such that Path(Q′) = P ′. Moreover, Lemma
10(iii) yields that the finite extensions Fn−1/Fn−1,n−1 and Fn−1,n/Fn−1,n−1 are linearly
disjoint. Consequently, the ’moreover’-part of Key Lemma 36(i) supplies that there is a
place Q ∈ PFn such that Q/Q′ and Q/Pn−1,n. But, combining this and the identities
(Q′ ∩ Fi,j)j−i≤1 = Path(Q′) = P ′ = (Pi,j)j−i≤1 ∈ W (F , n − 1) then yield the equalities
Path(Q) = (Q ∩ Fi,j)j−i≤1 = (Pi,j)j−i≤1 = P ′ ∈ W (F , n). Hence, Path0,n is surjective for
all n ∈ N0.

Next, let m be arbitrary and P = (Pi,j)i,j ∈W (F ,m, n). Define P ′ = (σ−m(Pi,j))i,j ∈
W (F , n−m). On the one hand, by the surjectivity of Path0,n−m, which we already proved
in the preceding part, there is a place Q′ ∈ PFn−m with (Q′∩Fi,j)j−i≤1 = Path(Q′) = P ′ =
(σ−m(Pi,j))j−i≤1 ∈W (F , 0, n−m). On the other hand, Lemma 15(i) provides the identity
Pyr(σm(Q′)) = (σm(Q′ ∩ Fi−m,j−m))i,j . Then combining these two identities and the fact
that elements of Pyr(σm(Q′)) with j−i ≤ 1 are exactly the elements of Path(σm(Q′)) yield
the equalities Path(σm(Q′)) = (σm(Q′∩Fi−m,j−m))j−i≤1 = (Pi,j)j−i≤1 = P ∈W (F ,m, n).
Hence, Pathm,n is surjective and (i) follows.

For (ii): The first desired identity immediately follows from the definitions of Pyr in
Definition 11 and of Path in Definition/Lemma 17(i).
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The second desired identity immediately follows from the first desired identity and the
identity in Lemma 13.

For (iii): This immediately follows since the places in Path(Q) are places which lie
under Q by its definition in Definition/Lemma 17(i).

For (iv): We show this by induction over n−m ∈ N0. For n−m ≤ 1, we have Q = Pm,n
and (iv) holds trivially.

Now, let n − m ≥ 2. Then the induction hypothesis implies that there is exactly
one place Q′ ∈ PFm,n−1 which lies over the path P ′ = (Pi,j)j−i≤1 ∈ W (F ,m, n − 1) and
this place Q′ is rational. Thus, we get the equality PFm,n(P ′) = PFm,n(Q′) and even the
equalities

PFm,n(P) = PFm,n((Q′, Pn−1,n, Pn,n)) = PFm,n((Q′, Pn−1,n)). (35)

where the first equality holds by the identity PFm,n(P ′) = PFm,n(Q′) and by the fact that
P ′ contains all places in P except for Pn−1,n and Pn,n and the second equality holds by
the definition of a path in Definition 16(i) which implies Pn−1,n/Pn,n.

Next, let (Pi,j)i,j := Pyr(Q′). Then we conclude the equality

e(Q′|Pn−1,n−1) =
n−1∏

i=m+1
e(Pi−1,n−1|Pi,n−1) =

n−1∏
i=m+1

e(Pi−1,i|Pi,i) = 1 (36)

where the equalities and estimate hold by the following reasonings: The first equality
holds because of the identity Q′ = Pm,n−1, because Lemma 13 implies that we have
the extensions Pm,n−1/Pm−1,n−1/ . . . /Pn−1,n−1 of places and because of the multiplicative
transitivity rule for the ramification indices in (7) to these extensions. The estimate holds
because Key Lemma 36(iv) implies the estimates e(Pi−1,n−1|Pi,n−1) ≤ e(Pi−1,i|Pi,i) for all
i = m + 1, . . . , n − 1. The second equality hold by the assertion that the extensions in
P = (Pi,j)j−i≤1 are unramified.

Finally, we obtain the desired equality 1 = #PFm,n(P) by the estimates

1 = e(Q′|Pn−1,n−1)f(Q′|Pn−1,n−1)e(Pn−1,n|Pn−1,n−1)f(Pn−1,n|Pn−1,n−1)
≥

∑
Q∈PFm,n (P)

e(Q|Pn−1,n−1)f(Q|Pn−1,n−1) ≥ #PFm,n(P) ≥ 1 (37)

where the equality and estimates hold by the following reasonings: The equality holds by
the assumption e(Pn−1,n|Pn−1,n−1) = 1, by the assumption that Pn−1,n is rational, by the
identity in (36) and because Q′ is rational too. The first estimate holds by Key Lemma
36(i) and the identity in (35). The second estimate holds as the ramification indices and
relative degrees are positive natural numbers. The last estimate holds because Lemma
17(i) provides that the map Path is surjective and hence the estimates #PFm,n(P) =
# Path−1(P) ≥ 1.

Moreover, from these estimates in (37), we even derive

1 ≥ e(Q|Pn−1,n−1)f(Q|Pn−1,n−1) ≥ f(Q|Pn−1,n−1) ≥ 1

for PFm,n(P) = {Q} and, thus, deg(Q) = f(Q|Pn−1,n−1) deg(Pn−1,n−1) = 1 where the
equality deg(Pn−1,n−1) = 1 holds by assumption. Hence, (iv) follows.

For (v): We show the desired equivalence in (v) by induction over n −m ∈ N0. For
n − m ∈ {0, 1}, both statements of the desired equivalence are always true because the
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conditions are empty in these cases. For n−m = 2, the desired equivalence is exactly the
definition of Path(Q) being tame in Definition 16(vi) and, thus, holds trivially.

Now, let n − m ≥ 3. For the ’if’-part, suppose that, for all elementary diamonds
(R,P1, P2, P ) in Pyr(Q) =: (Pi,j)i,j , at least one of the two elementary extensions P1/P
and P2/P is tame. Especially, this supplies that

at least one of the extensions Pm,n−1/Pm+1,n−1 and Pm+1,n/Pm+1,n−1 is tame. (38)

Moreover, as the elementary diamonds in Pyr(Pm,n−1) and Pyr(Pm+1,n) are elementary
diamonds in Pyr(Q), this condition also holds for all elementary diamonds in Pyr(Pm,n−1)
and Pyr(Pm+1,n). Then applying the induction hypothesis to Pm,n−1 and Pm+1,n yields
that the paths

Path(Pm,n−1) and Path(Pm+1,n) are tame (39)

which means that, for all m+ 2 ≤ i ≤ j ≤ n− 1 and m+ 1 ≤ i ≤ j ≤ n− 2, at least one of
the two extensions Pi−1,i/Pi,i and Pj,j+1/Pi,j is tame. Thus, by the definition of Path(Q)
being tame in Definition 16(vi), the ’if’-part of (v) follows if we show that at least one of
the two extensions Pm,m+1/Pm+1,m+1 and Pn−1,n/Pn−1,n−1 is tame.

Now, assume the contrary, i.e. both extensions Pm,m+1/Pm+1,m+1 and Pn−1,n/Pn−1,n−1
are wild. Then, by (39), all extensions Pi−1,i/Pi,i and Pj,j+1/Pi,j with m+2 ≤ i ≤ j ≤ n−2
are tame and, therefore, we can iteratively apply Abhyankar’s Lemma to all elementary
diamonds in Pyr(Pm,n−1) and Pyr(Pm+1,n). But, this then yields that both extensions
Pm,n−1/Pm+1,n−1 and Pm+1,n/Pm+1,n−1 are wild which contradicts (38). Hence, the ’if’-
part of (v) follows.

For the ’only if’-part of (v), suppose that Path(Q) is tame. This especially implies
that Path(Pm+1,n) and Path(Pm,n−1) are tame. Consequently, applying the induction
hypothesis to Pm+1,n and Pm,n−1 yields that, for all elementary diamonds (R,P1, P2, P ) ̸=
(Pm,n, Pm,n−1, Pm+1,n, Pm+1,n−1) in Pyr(Q), at least one of the two elementary extensions
P1/P and P2/P is tame.

For the remaining diamond (Pm,n, Pm,n−1, Pm+1,n, Pm+1,n−1), we consider the dia-
mondsD1 := (Pm,n, Pm,m+1, Pm+1,n, Pm+1,m+1) andD2 := (Pm,n, Pm,n−1, Pn−1,n, Pn−1,n−1).
Since Path(Q) is tame, we conclude by its definition in Definition 17(v) that at least one
of the elementary extensions Pm,m+1/Pm+1,m+1 and Pn−1,n/Pn−1,n−1 is tame. But, then
Abhyankar’s Lemma in (10) is applicable to at least one of the diamonds D1 and D2 and,
thus, yields that at least one of the extensions Pm,n−1/Pm+1,n−1 and Pm+1,n/Pm+1,n−1 is
tame as well. Hence, the ’only if’-part of (v) follows.

Examples 18. In Examples 12, we considered the recursive towers F ′
MW,2 = (F ′

ν)ν over
F9 and FMW,2 = (Fν)ν over F3 which are defined by the polynomial fMW,2 := Y 2 +XY +
2X2 +1 (see Figure 2.3) and two pyramids Pyr(Q′) and Pyr(Q) of places in the figures 2.7
and 2.8. The zeroth and first levels of the pyramids form the paths Path(Q′) and Path(Q)
of Q′ and Q, respectively.

Here, both paths Path(Q′) and Path(Q) are tame. Moreover, Path(Q) is not rational
as P3,3 = (x2

3 + 1) has degree two. But, because we have not specified the places Pi,i+1 in
Figure 2.8, we cannot tell whether Path(Q′) is rational or not yet. However, in Examples
106, it will come out that Path(Q′) is indeed rational.

Places lying over paths with further requirements. Sometimes, we will not only
need places R which lie over a path P but which also lie over further places Q1, . . . , Qr.
The following Lemma 19 ensures that such places R exist as long as Q1, . . . , Qr also lie
over compatible subpaths of P.
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Lemma 19. Let F = (Fν)ν be a recursive tower, let (Fi,j)i,j := Pyr(F), let mi, ni ∈ N0
for all i = 0, . . . , r+ 1 such that m0 = n0 = 0 and ni−1 ≤ mi ≤ ni for all i = 1, . . . , r+ 1,
let Qi ∈ PFmi,ni

for all i = 1, . . . , r and let Pi ∈W (F , ni,mi+1) be paths for all i = 0, . . . , r
such that the composition

P := P0 ·
r∏
i=1

Path(Qi) · Pi ∈W (F , 0,mr+1)

is well defined. Then the set PFmr+1
(P) ∩ PFmr+1

((Q1, . . . , Qr)) is non-empty (see Figure
2.10).

Figure 2.10: Pyramid of places in a proof

Proof. We will find a place Pr ∈ PFmr+1
(P) ∩ PFmr+1

((Q1, . . . , Qr)) by induction over
r ∈ N0. For n = 0, we only have P = P0 for some path P0 ∈ W (F , 0,m1). Then the
surjectivity of the map Path in Definition/Lemma 17(i) provides some place P0 ∈ PFm1

(P).
Now, let n ≥ 1 and define the path

P ′ := P0 ·
r−1∏
i=1

Path(Qi) · Pi ∈W (F , 0,mr)

(see Figure 2.10). Then the induction hypothesis provides some place

Pr−1 ∈ PFmr
(P ′) ∩ PFmr

((Q1 . . . , Qr−1)). (40)
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Especially, for (P ′
i,j)j−i≤1 := P ′, we conclude the equality

Pr−1 ∩ Fmr,mr = P ′
mr,mr

(41)

by the definition of P·(·) in (5).
Next, since P = P ′ ·Path(Qr) ·Pr is well defined, the paths Path(Qr) = (Qr∩Fi,j)j−i ∈

W (F ,mr, nr) and Pr =: (Pi,j)j−i≤1 ∈W (nr,mr+1) must be composable. By its definition
in Definition 16(iii), this implies the equality Qr ∩ Fnr,nr = Pnr,nr . Moreover, again
by the surjectivity of Path, we obtain some place Q′ ∈ PFnr,n(Pr). In particular, Q′

satisfies the equalties Q′ ∩ Fnr,nr = Pnr,nr = Qr ∩ Fnr,nr . Consequently, because of this
equality and because Fmr,nr/Fnr,nr and Fnr,mr+1/Fnr,nr are linearly disjoint extensions
with Fmr,nr · Fnr,mr+1 = Fmr,mr+1 by Lemma 10(iii), the ’moreover’-part of Key Lemma
36(i) even provides some place

Q′′ ∈ PFmr,mr+1
((Qr, Q′)) ⊆ PFmr,mr+1

(Qr) ∩ PFmr,mr+1
(Pr) (42)

Especially, Q′′ satisfies the equality

Q′′ ∩ Fmr,mr = Qr ∩ Fmr,mr . (43)

Second to last, we get the equalities

Pr−1 ∩ Fmr,mr = P ′
mr,mr

= Qr ∩ Fmr,mr = Q′′ ∩ Fmr,mr (44)

where the first equality holds by the equality in (41), the second equality holds since the
composition P = P ′ · Path(Qr) · Pr is well defined and, thus, P ′ and Path(Qr) must be
composable and the third equality holds by the equality in (43).

Finally, because F0,mr/Fmr,mr and Fmr,mr+1/Fmr,mr are also linearly disjoint with
F0,mr · Fmr,mr+1 = F0,mr+1 by Lemma 10(iii) and because of the equality in (44), the
’moreover’-part in Key Lemma 36(i) supplies some desired place Pr in

PF0,mr+1
((Pr−1, Q

′′)) ⊆
(
PFmr+1

(P ′) ∩ PFmr+1
((Q1, . . . , Qr−1))

)
∩
(
PFmr+1

(Pr) ∩ PFmr+1
(Qr)

)
= PFmr+1

(P) ∩ PFmr+1
((Q1, . . . , Qr))

where the inclusion holds because of the choices of Pr−1 in (40) and Q′′ in (42) and because
of the definition of P·(·) in (5) and the equality holds by the equality P = P ′′ ·Path(Qr) ·
Pr.

Extending the action of the tower map to paths of places. Analogously to the def-
inition of the action of the tower map σ on pyramids Pyr(Q) of places in Definition/Lemma
15, we will also define the following action of σ on the paths Path(Q) of places in Defini-
tion/Lemma 20.

Definition/Lemma 20. Let F = (Fν)ν be a recursive tower which is defined by the pair
(σ, F0) and let P = (Pi,j)j−i≤1 ∈W (F ,m, n) for some m ≤ n.

(i) For all k ∈ Z with 0 ≤ m+ k, we define

σk(P) := (σk(Pi−k,j−k))j−i≤1 ∈W (F ,m+ k, n+ k)

(ii) Then, for all Q ∈ PFm,n and all k ∈ Z with 0 ≤ m+ k, we have the identity

σk(Path(Q)) = Path(σk(Q)) ∈W (F ,m+ k, n+ k).
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(iii) For all k, l ∈ Z with 0 ≤ m+ k and 0 ≤ m+ k + l, we have the identity

σl(σk(P)) = σk+l(P) ∈W (F ,m+ k + l, n+ k + l).

Proof. For (ii): This immediately follows from Definition/Lemma 15(i) as Path(R) only
contains the places of Pyr(R) at the positions (i, j) with j−i ≤ 1 for all places R ∈ PPyr(F).

For (iii): For all k, l ∈ Z with 0 ≤ m+ k and 0 ≤ m+ k+ l, we immediately derive the
desired identity in (iii) by the equalities

σl(σk(P)) = (σl(σk(Pi−k−l,j−k−l)))j−i≤1 = σk+l(P)

where the equalities hold by Definition/Lemma 20(i).

2.3 Constant Field Extensions of Recursive Towers
Purpose of this section. In this subsection, we will rigorously formalize constant field
extensions of towers of function fields, and prove some first simple properties of constant
field extensions of recursive towers.

Relevance of constant field extensions of recursive towers for the almost com-
plete answer to Conjecture 1(iii) in Corollary 184. Let F = (Fν)ν be a recursive
tower of degree d over a field k which is defined by the pair (σ, F0) and let k be the al-
gebraic closure of k which is contained in the domain of the tower map σ (see Definition
5(ii)). For determining or even estimating the limit

λ(F) := ν(F)
γ(F) =

lim
n→∞

N(Fn)/dn

lim
n→∞

g(Fn)/dn ,

of a tower, we need to analyze the asymptotic behavior of the quotients N(Fn)/dn and
g(Fn)/dn as n→∞.

Now, let Fn := k ·Fn be the compositum of k and Fn for all n ∈ N0. On the one hand,
we have the equality g(Fn) = g(Fn) by [Sti08, p. 114, Theorem 3.6.3(b)] and, on the other
hand, because there lies exactly one place Q in Fn over any rational place Q in Fn by
[Sti08, p. 119, Lemma 3.6.5], we have the identity N(Fn) = #PFn

(P(1)
Fn

) = N(Fn,P(1)
Fn

)
for all n ∈ N0. Thus, instead of analyzing N(Fn)/dn and g(Fn)/dn, we can also analyze
N(Fn,P(1)

Fn
)/dn and g(Fn)/dn. We will do this at many crucial points (e.g Corollary 51,

Proposition 175). Therefore, we want to formalize some relations between the function
fields Fn and Fn which will enable us to conveniently transfer results from Fn to Fn.

More concretely, the almost complete answer to Conjecture 1(iii) in Corollary 184 will
basically prove that the number of places Q in Fn which lie over the ’decisive’ rational
places P in F0 is already negligible in face of dn as n → ∞. Therefore, we will not even
need to take into account that many of these places Q do not lie over rational places
Q = Q ∩ Fn in Fn.

Constant field extensions of towers. In the following Definition/Lemma 21, we will
define constant field extensions F = k′ · F of recursive towers F for algebraic extension
fields k′ of k.

Definition/Lemma 21. Let F = (Fν)ν be a tower of function fields, let F be the union
of the function fields Fn for all n ∈ N0, let F be some algebraic closure of F, let k′ be an
algebraic extension field of k which is contained in F and let k be the algebraic closure of
k in F. Then the following hold:
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(i) The sequence k′ ·F := (k′ ·Fν)ν of function fields is a tower of function fields over k′.
Moreover, we have the identities [k′Fn+1 : k′Fn] = [Fn+1 : Fn] and g(k′ ·Fn) = g(Fn)
for all n ∈ N0.
We call k′ ·F the k′-constant field extension of the tower F and k·F a geometric
tower of F .

(ii) Suppose that F is a recursive tower which is defined by the pair (σ, F0), let F be
the domain of σ and let (Fi,j)i,j := Pyr(F) be the pyramid of F . Then k′ · F is
a recursive tower which is defined by the pair (σ, k′ · F0) and we have the identity
Pyr(k′ · F) = (k′ · Fi,j)i,j.

In the following, if F is a recursive tower with tower map σ, then we will always implicitly
choose F as the domain of σ and, hence, will always speak of ’the’ geometric tower k · F
of F .

Proof. For (i): First, the definition that F = (Fν)ν is a tower of function fields over k
in Definition 2(i) provides that k is the full constant field of the function field Fn for
all n ∈ N0, the extensions Fn+1/Fn are finite, proper and separable for all n ∈ N0 and
g(Fn)→∞ as n→∞.

Now, as k is a perfect field and as k′/k is an algebraic extension, the field k′ is perfect
too. By [Sti08, p. 120, Corollary 3.6.7], we then obtain that k′ is the full constant field of
k′Fn and the identity [k′Fn+1 : k′Fn] = [Fn+1 : Fn] for all n ∈ N0.

Next, for all n ∈ N0, the separability of the extension k′Fn+1/k
′Fn follows from the

separability of the field extension Fn+1/Fn and from the fact that separability is invariant
under translation.

Finally, from [Sti08, p. 114, Theorem 3.6.3(b)], we derive the equality g(k′Fn) = g(Fn)
and, therefore, g(k′ · Fn) = g(Fn)→∞ as n→∞.

All together, k′·F satisfies all conditions of a tower of function fields over k′ in Definition
2(i). By the way, we also established the desired identities in (i), namely g(k′Fn) = g(Fn)
and [k′Fn+1 : k′Fn] = [Fn+1 : Fn] for all n ∈ N0.

For (ii): For all 0 ≤ i ≤ j, we compute

j∏
m=i

σm(k′ · F0) = k′ ·
j∏

m=i
σm(F0) = k′ · Fi,j (45)

where the first equality holds because σ is an an isomorphism of k-algebras in Definition
5(ii), because the algebraic closure k of k in F contains the algebraic extension field k′ of
k and because of the definition of composite fields.

For i = 0, the equalities in (45) yield that k′ · F = (k′ · Fν)ν = (k′ · F0,ν)ν is indeed
recursively defined by the pair (σ, k′ · F0) because of the definition of recursive towers in
Definition 5(ii).

Moreover, for all 0 ≤ i ≤ j, the equalities in (45) then yield the desired identity
Pyr(k′ · F) = (k′ · Fi,j)i,j by the definition of Pyr in Definition 9.

Example 22. In Examples 12 and Examples 18 the recursive tower F ′
MW,2 is the constant

field extension F9 · FMW,2.

Projection maps from constant field extensions. Let F ′ = (F ′
n)n be a constant

fields extension of the recursive tower F = (Fν)ν . In the following Lemma 76, we will
continue the formalization of relations between F and F ′. Here the first two simple items
(i) and (ii) will be useful later and formulate relations between the pyramids and paths
of places Q and Q′ where Q′/Q in F ′

n/Fn. The last two items (iii) and (iv) first extend
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the canonical restriction map of extensions of places to maps PPyr(F ′) → PPyr(F) and
W (F ′)→ W (F) and then clarifies how these maps interplay with the path maps PathF ′

and PathF .

Lemma 23. Let F be a recursive tower which is defined by the pair (σ, F0) and let
(Fi,j)i,j := Pyr(F) be the pyramid of F . Let F ′ be a constant field extension of F and
let (F ′

i,j)i,j := Pyr(F ′) be the pyramid of F ′. Let Q′ ∈ PF ′
m,n

for some m ≤ n and let
Q := Q′ ∩ Fm,n. Then the following hold:

(i) We have the identity Pyr(Q) = (Q′ ∩ Fi,j)i,j and Path(Q) = (Q′ ∩ Fi,j)j−i≤1.

(ii) Let (P ′
i,j)i,j := Pyr(Q′) and (Pi,j)i,j := Pyr(Q). For all k = m, . . . , n − 1, we then

have the identity σ−k(P ′
k,k+1) ∩ F1 = σ−k(Pk,k+1).

(iii) We have the surjection

πi,j : PF ′
i,j
→ PFi,j via Q′ 7→ Q′ ∩ Fi,j

for all i ≤ j and πi,j extends to a surjection

πPPyr(F′)/PPyr(F) : PPyr(F ′) =
∐
i≤j

PF ′
i,j
→ PPyr(F) =

∐
i≤j

PFi,j .

(iv) We have the surjection

πW (F ′)/W (F) : W (F ′)→W (F) via (P ′
i,j)j−i≤1 7→ (P ′

i,j ∩ Fi,j)j−i≤1

which even restricts to a surjection W (F ′,m, n)→W (F ,m, n) for all m ≤ n.
Moreover, if we denote the path maps in Lemma 17(i) as PathF ′ for F ′ and as PathF
for F , then we also have the identity

PathF ◦πPPyr(F′)/PPyr(F) = πW (F ′)/W (F) ◦ PathF ′ .

Proof. For (i): We immediately compute

Pyr(Q) = (Q ∩ Fi,j)i,j = ((Q′ ∩ Fm,n) ∩ Fi,j)i,j = (Q′ ∩ Fi,j)i,j

where the first equality holds because of the definition of Pyr(Q) in Definition 11, the
second equality holds because of the assumption Q = Q′ ∩ Fm,n and the third equality
holds because Lemma 10(i) implies the inclusion Fm,n ⊇ Fi,j . Hence, the first state-
ment Pyr(Q) = (Q′ ∩ Fi,j)i,j in (i) follows from this identity and the second statement
Path(Q) = (Q′ ∩ Fi,j)j−i≤1 in (i) follows because the definitions of Pyr(Q) in Definition
11 and of Path in Definition 17(i) provide that Pyr(Q) contains the elements of Path(Q).

For (ii): We obtain the equalities

σ−k(P ′
k,k+1) ∩ F1 = σ−k(P ′

k,k+1 ∩ Fk,k+1) = σ−k(Pk,k+1)

for all k = m, . . . , n − 1 where the first equality holds because Lemma 10(i) and Lemma
10(ii) imply the identities F1 = F0,1 = σ−k(Fk,k+1) and because σ−k is a bijection and the
second equality holds because the definition of Pyr in Definition 11 implies the identities
P ′
i,j = Q′ ∩ F ′

i,j and Pi,j = Q ∩ Fi,j for all m ≤ i ≤ j ≤ n and by then applying Lemma
76(i). Hence, (ii) follows.
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For (iii): The well definedness of πi,j follows because F ′
i,j/Fi,j is a constant field ex-

tension by Definition/Lemma 21 and the surjectivity of πi,j follows from [Sti08, p. 71,
Proposition 3.1.7]. Moreover, the second desired statement immediately follows from the
first one. Hence, (iv) follows.

For (iv): Let m,n ∈ N0 with m ≤ n. By Lemma 17(i), PathF ′ restricts to a surjection
PF ′

m,n
→ W (F ′,m, n) and, thus, for all P ′ = (P ′

i,j)j−i≤1 ∈ W (F ′,m, n), there is some
place Q′ ∈ PF ′

m,n
such that

(P ′
i,j)j−i≤1 = P ′ = PathF ′(Q′) = (Q′ ∩ Fi,j)j−i≤1. (46)

Consequently, we compute

πW (F ′)/W (F)(P ′) = ((Q′ ∩ F ′
i,j) ∩ Fi,j)j−i≤1 = ((Q′ ∩ Fm,n) ∩ Fi,j)j−i≤1

= PathF (Q′ ∩ Fm,n) = PathF (πPPyr(F′)/PPyr(F)(Q
′)) ∈W (F ,m, n) (47)

where the equalities hold by the following reasonings: The first equality holds by the
identity in (46) and the definition of πW (F ′)/W (F). The second equality holds because
Definition/Lemma 21 implies the inclusion F ′

i,j ⊇ Fi,j and because Lemma 10(i) implies
the inclusion Fm,n ⊇ Fi,j . The third equality holds by the definition of PathF (Q′ ∩ Fm,n)
in Definition 17(i). The last equality holds by the definition of πPPyr(F′)/PPyr(F) in Lemma
76(iii).

Consequently, the identity in (47) provides that πW (F ′)/W (F) is a well defined map
which restricts to a map W (F ′,m, n)→W (F ,m, n).

For the surjectivity of πW (F ′)/W (F), let P ∈ W (F ,m, n). Then combining the sur-
jectivity of Pathm,n in Definition/Lemma 17(i) yields that there is some Q ∈ Fm,n such
that PathF (Q) = P. Now, choosing Q′ ∈ PF ′

m,n
(Q) = π−1

m,n(Q) arbitrary and P ′ :=
PathF ′(Q′) ∈W (F ′,m, n) yields the same equalities in (47). This means that πW (F ′)/W (F)
restricts to a surjection W (F ′,m, n)→W (F ,m, n) and, hence, πW (F ′)/W (F) must also be
a surjection W (F ′) := ∐

m≤nW (F ′,m, n)→W (F) := ∐
m≤nW (F ,m, n).

Finally, if we start with P ′ := PathF ′(Q′) for any Q ∈ PPyr(F ′) in the equalities in (47),
this provides the last desired equality PathF ◦πPPyr(F′)/PPyr(F) = πW (F ′)/W (F) ◦ PathF ′ .
Hence, (iv) follows.

Example 24. As already mentioned in Example 22, the recursive tower F ′
MW,2 is the

constant field extension F9 · FMW,2. Moreover, the extension Q′/Q of places in Example
12 provides the identity Q = πPF′

MW,2
/PFMW,2

(Q′) and, thus, Lemma 76(iv) supplies the
diagram in figure 2.11.

Galois group of the constant field extensions with the algebraic closure. The
following Lemma 25 and Lemma 26 will be useful later on.

Lemma 25. Let F be a function fields over the full constant field k, let Ω be a field which
contains F and an algebraic closure k of k and let F := k · F . Then F/F is Galois and,
for all P ∈ PF and all P 1, P 2 ∈ PF (P ), there is some τ ∈ Gal(F/F ) and some t ∈ N such
that τ(P 1) = P 2 and τ t(P 1) = P 1.

Proof. As k is a perfect field, k/k is a Galois extension and, hence, its translation F/F
via F is also Galois which is the first desired statement.

Now, let P ∈ PF , let P i ∈ PF (P ) for all i = 1, 2, let k′ be the Galois closure of
the residue field of P over k inside of k and define F ′ := k′ · F . Then k′/k and F ′/F
are finite Galois extensions such that F ′ is contained in F and deg(P ′) = 1 holds for all
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Figure 2.11: Example for the projection map of paths for constant field extensions

P ′ ∈ PF ′(P ) by [Sti08, p. 114, Theorem 3.6.3(g)]. Thus, [Sti08, p. 119, Lemma 3.6.5] also
implies that PF (P ′) is a singleton for all P ′ ∈ PF ′(P ). Consequently, for all i = 1, 2 and
for P ′

i := P i ∩ F ′ ∈ PF ′(P ), we get the equality

PF (P ′
i ) = {P i}. (48)

Next, because F ′/F is a finite Galois extension, say of degree t ∈ N, [Sti08, p. 121,
Theorem 3.7.1] supplies an automorphism τ ′ ∈ Gal(F ′/F ) such that

τ ′(P ′
1) = P ′

2 and (τ ′)t(P ′
1) = idF ′(P ′

1) = P ′
1. (49)

Finally, let τ ∈ Gal(F/F ) be any extension of τ . By this choice and the equalities in (48)
and (49), we then obtain the equalities

τ(P 1) ∈ PF (τ ′(P ′
1)) = PF (P ′

2) = {P 2} (50)

and

τ t(P 1) ∈ PF ((τ ′)t(P ′
1)) = PF (P ′

1) = {P 1}. (51)

Hence, τ is the desired automorphism in Gal(F/F ).
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Lemma 26. Let E/F be a finite extension of function fields over the same full constant
field k and Ω be a field which contains E and an algebraic closure k of k. Moreover, let
k′ be an intermediate field of the extension k/k and define the constant field extensions
E′ := k′ · E and F ′ := k′ · F . Then we have

PE′((Q,P ′)) ̸= ∅

for all Q ∈ PE and all P ′ ∈ PF ′ with Q ∩ F = P ′ ∩ F .

Proof. Let Q ∈ PE and let P ′ ∈ PF ′ with P := Q ∩ F = P ′ ∩ F and define the constant
field extensions F := k · F and E := k · E. Then F = k · F = k · (k′ · F ) = k · F ′ is also a
constant field extension of F ′ (see Figure 2.12).

Figure 2.12: Diagram with extensions in a proof

First, choose Q ∈ PE(Q) and P ∈ PF (P ′) arbitrary and define P 0 := Q∩F . Then the
equalities

P ∩ F = (P ∩ F ′) ∩ F = P ′ ∩ F = P

and
P 0 ∩ F = (Q ∩ F ) ∩ F = (Q ∩ E) ∩ F = Q ∩ F = P

provide that P and P 0 are both places in PF (P ).
Second, Lemma 25 supplies some automorphism τ ∈ Gal(F/F ) satisfying the equality

τ(P 0) = P .
Third, we also obtain the equality [E : F ] = [E : F ] by [Sti08, p. 119, Proposition

3.6.6] and, hence, E/F and F/F are linearly disjoint. Then the proof of [Coh91, p. 188,
Proposition 5.4] implies that E · F = k · E = E is a tensor product of the F -algebras E
and F (with the inclusion morphisms). Consequently, by the universal property of tensor
products, we obtain some F -automorphism ρ on E which restricts to idE on E and to τ
on F . Therefore, we have ρ(Q) ∈ PE((Q,P )).

Finally, as E = k · E = k · (k′ · E) = k · E′ is also a constant field extension of E′, the
intersection Q′ := ρ(Q) ∩ E′ is a place in E′ and the equalities

Q′ ∩ E = (ρ(Q) ∩ E′) ∩ E = ρ(Q) ∩ E = Q

and
Q′ ∩ F ′ = (ρ(Q) ∩ E′) ∩ F ′ = (ρ(Q) ∩ E) ∩ F ′ = P ∩ F ′ = P ′

even provide that Q′ is a place in PE′((Q,P ′)). Hence, Lemma 26 follows.
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2.4 Truncations of Recursive Towers
Purpose of this section. As we are interested in the more general versions of Conjec-
ture 1, namely Conjecture 1(iii) and Conjecture 1(iv), in this section, we will define the
level m truncation F≥m = Trun≥m(F) := (Fm+ν)ν of the recursive tower F = (Fν)ν and
prove some first properties of truncations. Then one of the advantages of the definition
of pair-recursive towers will be that the truncated recursive tower F≥m of F will still be
a pair-recursive tower which is defined by the pair (σ, Fm). Hence, we will also be able to
apply all results to F≥m.

Furthermore, in the Reduction Lemma 30, we will also provide a sufficient criterion
for a polynomial-recursive tower F≥1 = (F1+ν)ν to be a level one truncation of some
polynomial-recursive tower F = (Fν)ν which starts with two rational function fields F0 and
F1. Many polynomial-recursive towers in the literature can be reduced to such recursive
towers (e.g. FGS,i for all i, FHP,q for all q and FBR,q for all q in Examples 8).

When we will later work with the tower graphs of recursive towers (see Definition 74),
this reduction step will simplify the tower graphs.

Truncations of towers. In the following Definition/Lemma 27, we will define trunca-
tions of towers and ensure that the truncations of a recursive tower is still a recursive
tower.

Definition/Lemma 27. Let F = (Fν)ν be a tower of function fields. Then

F≥m := Trun≥m(F) := (Fm+ν)ν

is also a tower over the same field and of the same degree (see Figure 2.13). We call F≥m
the level m truncation of F .

Moreover, if F is a recursive tower which is defined by the pair (σ, F0), then F≥m is
also a recursive tower which is defined by the pair (σ, Fm).

Proof. From the definition of towers of function fields in Definition 2(i), it immediately
follows that F≥m = (Fm+ν)ν is also a tower of function fields over the same field and of
the same degree as F .

Next, suppose that F is a recursive tower which is defined by the pair (σ, F0). Then
F has a constant degree and, thus, F≥m also has the same constant degree. Moreover, we
compute

n∏
i=0

σi(Fm) =
n∏
i=0

σi(
m∏
j=0

σj(F0)) =
n∏
i=0

m∏
j=0

σi+j(F0) =
n+m∏
i=0

σi(F0) = Fm+n (52)

for all n ∈ N0 where the first (resp. last) equality holds by the equality of Fm = ∏m
j=0 σ

j(F0)
(resp. Fn+m = ∏m+n

j=0 σj(F0)) in the definition of a recursive tower in Definition 5(ii), the
second equality holds by the definition of composite fields and by the fact that σ is an
isomorphism of algebras and the third equality holds because repeating factors can be
neglected in the definition of a composite field.

Finally, the fact that F≥m has constant degree and the equality (52) yields that F≥0
is recursively defined via the pair (σ, Fm) by Definition 5(ii).

Truncations and their pyramids of function fields.

Lemma 28. Let F = (Fν)ν be a recursive tower, let (Fi,j)i,j := Pyr(F) be the pyramid of
F and let F≥m := Trun≥m(F) = (Fm+ν)ν be the level m truncation of F . Then we have
the identity

Pyr(F≥m) = (Fi,m+j)i,j
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(see Figure 2.13).

Figure 2.13: Pyramid of a truncated recursive tower

Proof. Let σ be the tower map of F . Then we already obtain the desired equality from
that fact that, by the definition of Pyr(F≥m) in Definition 9(i), the function field on the
(k, l)-th position in Pyr(F≥m) is equal to

l∏
i=k

σi(Fm) =
l∏

i=k
σi(

m∏
j=0

σj(F0)) =
l∏

i=k

m∏
j=0

σi+j(F0) =
m+l∏
i=k

σi(F0) = Fk,m+l

where the equalities holds by the following reasonings: The first equality holds by the
equality of Fm = ∏m

j=0 σ
j(F0) in the definition of recursive towers in Definition 5(ii).

The second equality holds because σ is an isomorphism of algebras and because of the
definition of composite fields. The third equality holds since we can leave out repeating
factors in the definition of a composite field. The last equality holds by the definition of
Pyr(F) = (Fi,j)i,j in Definition 9(i).

Truncations and constant field extensions commute.

Lemma 29. Let F = (Fν)ν be a tower of function fields over the field k. Moreover, let
k′ be an algebraic extension field of k which is contained a common extension field of all
Fn and let m ∈ N0. Then we have the identity

Trun≥m(k′ · F) = k′ · Trun≥m(F).

Proof. By the definitions of truncations of towers in Definition/Lemma 27 and of constant
field extensions of towers in Definition/Lemma 21(i), we obtain the equalities Trun≥m(k′ ·
F) = (k′ · Fm+ν)ν = k′ · Trun≥m(F).
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2.4.1 Reduction Lemma

Many of the recursive towers F≥1 = (F1+ν)ν in the literature are defined by polynomials f
which separate variables, i.e. f = g1(X)h2(Y )− g2(X)h1(Y ) with univariate polynomials
gi, hi for all i = 1, 2. In other words, F≥1 is defined by the equation g1(X)/g2(X) =
h1(Y )/h2(Y ). For instance, see the defining polynomials fGS,i for all i, fHP,q for all q and
fBR,q for all q in Examples 8.

The following Reduction Lemma 30 provides that, under some conditions (e.g. if d =
degY (f) is prime), we can add a zeroth level F0 to such recursive towers F≥1.

Lemma 30 (Reduction Lemma). Let k be a perfect field, let gi, hi be non-zero univari-
ate polynomials over k for all i = 1, 2, let g := g1/g2 and h := h1/h2, suppose that
gcd(g1, g2) = gcd(h1, h2) = 1 and suppose that f := g1(X)h2(Y )− g2(X)h1(Y ) is a bivari-
ate polynomial of degree d ≥ 2 in both variables X and Y .

Moreover, let F≥1 = (F1+ν)ν be a recursive tower which is defined by the polynomial
f and let σ be the tower map of F≥1 in Lemma 7. Finally, define z0 := h(x1) and
F0 := k(z0). Then the following hold:

(i) If k(x1) = k(h(x1), g(x1)), then F := (Fν)ν is a recursive tower which is defined by
the pair (σ, F0). Moreover, we then even have the identity Trun≥1(F) = F≥1.

(ii) If k is finite and d is a prime number, then the ’if’-condition in (i) is satisfied.

(iii) If there is a place Q in F1 = k(x1) which is totally ramified in one of the exten-
sions k(x1)/k(g(x1)) and k(x1)/k(h(x1)) but is unramified in the other, then the
’if’-condition in (i) is satisfied.

Proof. For (i): Suppose that the equality

k(x1) = k(h(x1), g(x1)) (53)

holds. First, we notice that since f has degree d in both variables and since the polynomials
gi, hi are non-zero for all i = 1, 2, the maximal degree of the numerator and denominator
in g = g1/g2 (resp. h = h1/h2) is equal to d. But, it is well known that this implies that
the degree of k(x1)/k(g(x1)) (resp. k(x1)/k(h(x1))) is equal to d.

Second, since F≥1 = (Fν)ν≥1 is a tower of function fields, the definition of towers of
function fields in Definition 2(i) supplies that the full constant field of F1 is k. But, since
F0 = k(z0) = k(h(x1)) is a subfield of F1 = k(x1), the same must be true for F0.

Third, because of the definition of (pair-) recursive towers in Definition 5(ii) and be-
cause F≥1 = (Fν)ν≥1 is a recursive tower which is defined by the pair (σ, F1) by the choice
of σ in Lemma 7(iii), the only remaining property left to check for F being a (σ, F0)-
recursive tower is the equality F1 = F0 · σ(F0). And this desired equality follows from the
equalities

F0 · σ(F0) = k(z0) · σ(k(z0)) = k(h(x1)) · k(h(σ(x1))) = k(h(x1), g(x1)) = k(x1) = F1

where the equalities hold by the following reasonings: The first and second equalities hold
because of the definitions of z0 = h(x1) and F0 = k(z0) in the assumptions and because
σ is a morphism of k-algebras. The third equality holds since F≥1 is recursively defined
by the polynomial f = g1(X)h2(Y ) − g2(X)h1(Y ) and since this implies the equalities
g(x1) = h(x2) = h(σ(x1)). The fourth equality holds by the assertion in (53). The last
equality holds by the definition of F1 = k(x1) in the assumptions.

Finally, the ’moreover’-part in (i) is obvious.
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For (ii): Suppose that k is finite and d a prime number. Since k(h(x1), g(x1)) is an
intermediate field of the extension k(x1)/k(h(x1)) of prime degree d, we only have to check
that k(h(x1)) and k(g(x1)) are not equal for the desired identity k(x1) = k(h(x1), g(x1)).

Now, assume the contrary, i.e. k(g(x1)) = k(h(x2)). Then we conclude the equalities

k(z0) = k(h(x1)) = k(g(x1)) = k(h(σ(x1)) = σ(k(z0)) (54)

where the equalities hold by the following reasonings: The first equality holds by the
definition of z0 = h(x1) in the assumptions. The second equality is the assertion of the
contradiction. The third equality holds since F≥1 is recursively defined by the polynomial
f = g1(X)h2(Y ) − g2(X)h1(Y ) and since this implies the equalities g(x1) = h(x2) =
h(σ(x1)). The last equality holds since σ is a morphism of k-algebras. Hence, (54) implies
that σ restricts to an automorphism on F0.

Next, we notice that since k is finite, the automorphism group G of F0 is finite. Con-
sequently, the fixed field E of G in F is also a function field with full constant field k (see
Figure 2.14). Moreover, since σ restricts to an element in G, we deduce that σ must fix

Figure 2.14: Recursive tower with separated variables in a proof

all elements in E.
Finally, consider the Galois closure L of F1/E in the domain of σ. Then the restriction

of σ on L is an element of the finite Galois group of L/E and, thus, has finite order m ∈ N.
But this implies the equalities xm = σm(x1) = x1 which is impossible because the tower
(Fν)ν≥1 = (k(x1, . . . , xν))ν≥1 is a non-stationary sequence of function fields. Hence, the
desired inequality k(g(x1)) ̸= k(h(x2)) must indeed be the case.

For (iii): Suppose that Q is a place in F1 = k(x1) which is totally ramified in one of the
extensions k(x1)/k(g(x1)) and k(x1)/k(h(x1)) but is unramified in the other. Moreover,
let F := k(g(x1)) · k(h(x1)) = k(g(x1), h(x1)) and let Q′ := Q ∩ F .

Now, on the one hand, because w.l.o.g Q is totally ramified in F1/k(h(x1)) and because
of the multiplicative transitivity rule of ramification indices in (7), we conclude that the
ramification index of Q/Q′ is equal to the degree of F1/F .

But, on the other hand, because Q is unramified in F1/k(g(x1)) and because of the
multiplicative transitivity rule of ramification indices in (7), we also conclude that the
ramification index of Q/Q′ is equal to one.
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Consequently, we established the desired identity k(x1) = F1 = F = k(g(x1), h(x1)) in
the ’if’-condition of (i).

The tower map cannot fix subfields.

Remark 31. Note that the proof of Lemma 30(i) can be modified to show that σ has to
satisfy σ(K) ̸= K for all finite extensions Fn/K and all n ∈ N0 if F is a recursive tower.

2.5 Locally Galois Recursive Towers
Purpose of this section. In this subsection, we will define locally Galois recursive
towers F (see Definition 32). All elementary extensions in the pyramid Pyr(F) of a
locally Galois recursive tower are Galois (see Lemma 33). Later, in Section 7.3, locally
Galois recursive towers will play a side role. More concretely, the degree bounds which are
provided in Section 7.3 can be sharpened for locally Galois recursive towers. If the reader
is only interested in the major results, then this section can skipped.

Locally Galois recursive towers. In the following Definition 32, we will define lo-
cally Galois recursive towers. Many recursive towers in the literature are locally Galois
(e.g. [MW05], [ST15]), [BR20]). In fact, all recursive towers of balanced degree two are
locally Galois.

Definition 32. Let F = (Fν)ν be a tower. Then we call F Galois if the extensions
Fn/F0 are Galois for all n ∈ N and we call F Galois in every step if the extensions
Fn/Fn−1 are Galois for all n ∈ N. Moreover, if F is a recursive tower which is defined by
the pair (σ, F0) such that F1/F0 and F1/σ(F0) are Galois, then we call F locally Galois.

Lemma 33. Let F = (Fν)ν be a locally Galois recursive tower which is defined by the
pair (σ, F0) and let (Fi,j)i,j := Pyr(F) be the pyramid of F .

Then the extensions Fi,j/Fi,j−1 and Fi,j/Fi+1,j are Galois for all 0 ≤ i ≤ j with
j − i ≥ 1. In particular, F is also Galois in every step.

Moreover, the extensions Fi,j/Fi+1,j−1 are also Galois for all 0 ≤ i ≤ j with j − i ≥ 2.

Proof. Let ε := 0 (resp. ε := 1). First, let j − i = 1, i.e. j = i + 1. Then Lemma
10(i) provides that F1/σ

ε(F0) is equal to F0,1/σ
ε(F0,0) and Lemma 10(ii) even provides

that the latter is isomorphic to Fi,i+1/Fi+ε,i+ε. But, because of this isomorphism and
because F1/σ

ε(F0) is Galois by the assertion that F is locally Galois, we conclude that
the extension

Fi,i+1/Fi+ε,i+ε is indeed Galois. (55)

Next, let j−i ≥ 2. Then Lemma 10(iii) supplies the equalities Fi,j = Fi,j−1 ·Fj−1,j and
Fi,j−1 = Fi,j−1 · Fj−1,j−1 (resp. Fi,j = Fi,i+1 · Fi+1,j and Fi+1,j = Fi+1,i+1 · Fi+1,j). Conse-
quently, from these equalities, from (55) and from the well known fact that translations of
Galois extensions are again Galois, we already conclude that the extension Fi,j/Fi+ε,j−1+ε
is Galois. Hence, the ’main’-part follows.

The ’in particular’-part immediately follows from the ’main’-part, from the fact that
Lemma 10(i) implies the equality F0,n = Fn for all n ∈ N0 and from the definition of
Galois in every step towers in Definition 32.

Finally, we deduce the ’moreover’-part because the extensions Fi+1,j/Fi+1,j−1 and
Fi,j−1/Fi+1,j−1 are Galois by the ’main’-part, because Lemma 10(iii) implies the equality
Fi+1,j ·Fi,j−1 = Fi,j and because of the well known fact that composita of Galois extension
fields are again Galois extension fields.
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Lemma 34. Let F = (Fν)ν be a locally Galois recursive tower which is defined by the pair
(σ, F0). Then the constant field extension k′ · F = (F ′

ν)ν of F for any algebraic extension
k′/k is also locally Galois.

Proof. First, we notice that, by the definition of the constant field extension k′ · F of F
in Definition/Lemma 21, it is recursively defined by the pair (σ, k′ · F0) and we have the
equality F ′

n = k′ · Fn for all n ∈ N0.
Second, we notice that since F is locally Galois, the extensions F1/σ

ε(F0) are Galois
for all ε = 0, 1 by its definition in Definition 32.

Third, we also notice that σ is an automorphism of k′-algebras by its definition in
Definition 5(ii) and, thus, the equalities k′ · σε(F0) = σε(k′ · F0) = σε(F ′

0) for all ε = 0, 1.
Finally, combining these three conclusions and the well known fact that translations of

Galois extensions are again Galois yields that the extension F ′
1/σ

ε(F ′
0) (which are equal to

k ·F1/k
′ ·σε(F0)) is Galois for all ε = 0, 1. Hence, k′ ·F is indeed a locally Galois recursive

tower.

2.6 Dual Recursive Towers

Purpose of this section. In this subsection, we will define (pair-)dual recursive towers
(see Definition/Lemma 35(i)). The only purpose of this section is to provide the proper
background to connect Beelen’s Graphs and the tower graphs (see Definition 74) in Sub-
section 4.4.1. Except for this connection, dual recursive towers will play no role in this
thesis. Hence, if the reader is only interested in the major results, then this section can
be skipped.

Dual recursive towers. In the following Definition/Lemma 35, we will define polynomial-
and pair-dual recursive towers and connect them.

Definition/Lemma 35. (i) Let F = (Fν)ν be a recursive tower which is defined by a
pair (σ, F0). Then the pair (σ−1, F0) also defines a recursive tower F̂ (see Figure
2.15). We call F̂ the pair-dual recursive tower of F . Often, we will just call F̂
the dual recursive tower of F .

Also, notice the identity ˆ̂F = F .

(ii) Let F be a recursive tower over the field k which is defined by a polynomial f =
f(X,Y ), then we call a recursive tower which is defined by the polynomial g =
g(X,Y ) := f(Y,X) a polynomial-dual recursive tower of F .
Moreover, consider the pair (σ, F0) in Lemma 7(i) which is induced by the polynomial
f . Then F is recursively defined by this pair (σ, F0) and the pair-dual recursive tower
F̂ of F is also a polynomial-dual recursive tower of F .

Proof. For (i): Let k be the field over which F is defined, let (Fi,j)i,j := Pyr(F) be the
pyramid of F . Moreover, define F̂ = (F̂ν)ν as the sequence of function fields over k which
is defined by

F̂n :=
n∏
l=0

σ−l(F0). (56)

for all n ∈ N0 (see Figure 2.15). We will show that F̂ is a tower. Then the definition
of recursive towers supplies that F̂ is even a recursive tower which is defined by the pair
(σ−1, F0).
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Figure 2.15: Dual recursive tower

For that, we first notice the equalities

σ−j(Fi,j) = σ−j(
j∏
l=i

σl(F0)) =
0∏

l=i−j
σl(F0) =

j−i∏
l=0

σ−l(F0) = F̂j−i (57)

for all 0 ≤ i ≤ j where the first equality holds by the definition of the pyramid (Fi,j)i,j =
Pyr(F) in Definition 9(i), the second equality holds by the fact that σ is an isomorphism
of algebras and by the definition of composite fields, the third equality holds by changing
the indexing and the last equality holds by the definition of F̂j−i in (56).

On the one hand, this equality in (57) yields the equality F̂n = σ−n(F0,n) = σ−n(Fn)
for all n ∈ N0. Combining this equality and the fact that the full constant field k and the
genus are invariant under the k-automorphism σ provides that F̂n also has full constant
field k and the sequence (g(F̂ν))ν tends to ∞.

On the other hand, the equality in (57) also implies that the extension F̂n+1/F̂n is
isomorphic to F0,n+1/F1,n+1 via σ−(n+1). Thus, combining the that F1/σ(F0) is separable
and Lemma 10(iii) supplies that F̂n+1/F̂n is a separable extension of degree d̂ := [F1 :
σ(F0)] > 1.

Consequently, F̂ is a tower of constant degree d̂ by its definition in Definition 2(i).
Hence, (i) follows.

For (ii): Let (xν)ν be the sequence by which the tower F = (Fν)ν is recursively
defined via the polynomial f = f(X,Y ) in Definition 5(i). Then, by its definition in
Definition 5(i), we have the equalities F1 = k(x0, x1), σ(F0) = σ(k(x0)) = k(x1) and
f(x0, x1) = 0. Moreover, because f is geometrically irreducible, f(t, x1) ∈ σ(F0)[t] is the
minimal polynomial of x0 over σ(F0). But, because k(x1) is a rational function field and
because f is separable in both variables, we deduce that f(t, x1) is separable. This means
that x0 is separable over σ(F0) and, therefore, the first desired statement follows, namely
that F1 = σ(F0)(x0) is separable over σ(F0). Moreover, this also supplies that the pair-
dual recursive tower F̂ = (F̂ν)ν of F in Definition/Lemma 35(i) is well defined by the pair
(σ−1, F0) and that

F̂ has constant degree d̂ := [F1 : σ(F0)] = degX(f) = degY (g). (58)

Next, we define the sequence (x̂ν)ν := (σ−ν(x0))ν∈N0 . On the one hand, we obtain the

65



equalities

g(x̂n, x̂n+1) = f(x̂n+1, x̂n) = f(σ−(n+1)(x0), σ−n(x0)) = σ−(n+1)(f(x0, σ(x0))
= σ−(n+1)(f(x0, x1)) = 0 (59)

for all n ∈ N0 where the equalities hold by the following reasonings: The first equality
holds by the choice of g = g(X,Y ) = f(Y,X). The second equality holds by the choice of
the sequence (x̂ν)ν = (σ−ν(x0))ν . The third equality holds as σ is a k-automorphism of
algebras. The fourth equality holds since the definition of σ in Lemma 7(i) provides the
equality σ(x0) = x1. The last equality holds by the definition of the sequence (xν)ν in
Definition 5(i).

On the other hand, we also obtain the equalities

F̂n =
n∏
l=0

σ−l(F0) = σ−n(
n∏
l=0

σl(F0)) = σ−n(Fn) = σ−n(k(x0, x1, . . . , xn))

= k(σ−n(x0), σ−n(x1), . . . , σ−n(xn))) = k(σ−n(x0), σ−(n−1)(x0), . . . , σ0(x0)))
= k(x̂n, x̂n−1, . . . , x̂0) (60)

for all n ∈ N0 where the equalities hold by the following reasonings: The first (resp. third)
equality holds by the definition of F̂n (resp. Fn) in Definition 5(ii). The second equality
holds by the fact that σ is an isomorphism of algebras, by the definition of composite fields
and by reversing the indexing of the product. The fourth equality holds by the choice of
the sequence (xν)ν in Definition 5(i). The fifth equality holds since σ is a morphism of
k-algebras. The sixth equality holds since the definition of σ in Lemma 7(i) provides the
equality xi = σi(x0) for all i ∈ N0. The last equality holds by the choice of the sequence
(x̂ν)ν = (σ−ν(x0))ν .

Finally, combining the equalities in (59) and (60) and the conclusion in (58) yields that
the tower F̂ = (F̂ν)ν is recursively defined by the geometrically irreducible polynomial g.
Hence, (ii) follows.
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3 First Upper Bound for the Splitting
Rate

Summary of the results of this chapter. First, in this chapter, we will prove the
first more involved result of this thesis, which is Corollary 51. This corollary will have the
following consequence: Let F = (Fν)ν be a recursive tower, let F = (F ν)ν be its geometric
tower and define V := PF 0

(P(1)
F0

), which is a finite set if the constant field of F is finite.
Then Corollary 51 will supply an upper bound Ñ(Fn, V ) for N(Fn, V ) ≥ N(Fn) for all
n ∈ N0. Consequently, the limit limn→∞ Ñ(Fn, V )/dn (which will exist) yields an upper
bound for the splitting rate ν(F) = limn→∞N(Fn)/dn. This upper bound for ν(F) will
prove to be useful in the following chapters. Moreover, it will also be essential for the
proof of the main result of this thesis in Corollary 184.

Second, a further result of this chapter is Key Lemma 36. Here, the ’moreover’-part
in Key Lemma 36(i) generalizes the following statement of [Sti08, p. 141, Lemma 3.9.6]
for linearly disjoint extensions: Let (E,F1, F2, F ) be a diamond of function fields with
E = F1 · F2 and suppose that Fi/F is a finite separable extension for all i = 1, 2. If
P ∈ PF splits completely in F1/F , then all places P2 ∈ PF2(P ) also split completely in
E/F2.

In Key Lemma 36(i), the ’moreover’-part states that if F1/F and F2/F are also linearly
disjoint, then we have the equality∑

Q∈PE((P1,P2))
e(Q|P )f(Q|P ) = e(P1|P )f(P1|P )e(P2|P )f(P2|P )

for all Pi ∈ PFi(P ), i = 1, 2. In particular, if P splits completely in F1/F , then the [F1 : F ]
many choices of P1 ∈ PF1(P ) yield exactly [F1 : F ] = [E : F2] places Q ∈ PE((P1, P2)) for
all P2 ∈ PF2(P ). Hence, all places P2 ∈ PF2(P ) also split completely in E/F2, which was
the statement in [Sti08, p. 141, Lemma 3.9.6].

Moreover, if the constant field of E is a finite field (but F1/F and F2/F do not need to
be linearly disjoint anymore), then Key Lemma 36(iii) will also provide the degree bounds

deg(Q) ≤ lcm(deg(P1), deg(P2)) · e(P1|P ) · e(P2|P )
e(Q|P )

≤ lcm(deg(P1),deg(P2)) · gcd(e(P1|P ), e(P2|P ))

for all diamonds (Q,P1, P2, P ) of places in (E,F1, F2, F ). The first degree bound will be
the key ingredient for the degree bounds in Theorem 225. This Theorem 225 will then
provide upper bounds for the degree deg(Q) of any place Q ∈ PFn which can be expressed
solely in terms of the degree d of F , of the ramification indices of extensions in Pyr(Q)
and the degrees of the places in Path(Q).

Third, as an application to recursive towers, we will use the ’moreover’-part of Key
Lemma 36(i) to prove Proposition 39. This Proposition 39 is one of the two keys in the
proof of the main result of this chapter, which is Corollary 51, and it includes the statement
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that if F = (Fν)ν is a recursive tower over an algebraically closed field, then we have the
identity

∑
Q∈PFn (P)

e(Q|P0,0) =
n−1∏
i=0

e(Pi,i+1|Pi,i)

for all n ∈ N0 and all P = (Pi,j)j−i≤1 ∈W (F , n). This Proposition 39 will also be essential
for the proof of another major result, which is Theorem 155.

Fourth, in this chapter, we will define the Abhyankar ramification indices ẽ(Q|P ) of
extensions of places Q/P in recursive towers F (see Definition 41). These Abhyankar
ramification indices ẽ(Q|P ) will be equal to the usual ramification indices e(Q|P ) if F is
tame but, in wild recursive towers F , they will mimic the behavior of the usual ramification
indices for tame recursive towers. This means that if F = (Fν)ν is tame and Q ∈ PFn , then
we can iteratively apply Abhyankar’s Lemma in (10) to the elementary diamonds in the
pyramid Pyr(Q) to compute e(Q|Q ∩ F0). But, in wild recursive towers F , Abhyankar’s
Lemma is not always applicable. However, if we apply Abhyankar’s lemma regardless, we
obtain the Abhyankar ramification index ẽ(Q|Q ∩ F0).

Moreover, Theorem 47 will show that the Abhyankar ramification index ẽ(Q|Q ∩ F0)
divides the usual ramification index e(Q|Q∩ F0). This property will be the second key in
the proof of the main result of this chapter, which is Corollary 51.

Finally, also note that the results of this chapter will imply the main results of [Kuh17]
which are [Kuh17, p. 22, Theorem 2.3(f)] and the estimates in [Kuh17, p. 54, Theorem
3.20(c),(j)]. We will expand on this implication in Remark 54.

Strategy for finding the upper bound Ñ(Fn, V ) of N(Fn). In the following, we
will elaborate on finding the upper bound Ñ(Fn, V ) for N(Fn, V ) ≥ N(Fn) with V :=
PF 0

(P(1)
F0

) in Corollary 51. This will be the most important result of this chapter since it
will be essential for the main result of this thesis in Corollary 184.

Because the estimate N(Fn, V ) ≥ N(Fn) is clear, we only have to find the upper bound
Ñ(Fn, V ) of N(Fn, V ) and, thus, we only need to consider recursive towers F = (Fν)ν
over algebraically closed constant fields.

Now, let (Pi,j)j−i≤1 = P ∈ W (F , n), Q ∈ PFn(P), (Pi,j)i,j := Pyr(Q) and P := P0,0.
First, we will prove Key Lemma 36 and then, as a consequence, in Proposition 39, we will
derive the crucial equality

n−1∏
i=0

e(Pi,i+1|Pi,i) =
∑

Q′∈PFn (P)
e(Q′|P ). (61)

This equality (61) already carries some information aboutN(Fn,P) = #P(1)
Fn

(P) = PFn(P).
If P = Path(Q) is tame, then the sum on the right side of (61) simplifies because Lemma
17(v) ensures that Abhyankar’s Lemma in (10) is applicable to all elementary diamonds
of places in Pyr(Q′) for all Q′ ∈ PFn(P). Hence, in the tame case, e(Q|P ) is uniquely
determined by the ramification indices of the extensions in P and we get the equalities
e(Q|P ) = e(Q′|P ) for all Q′ ∈ PFn(P). Consequently, this again yields the equalities

N(Fn,P) =
∑

Q′∈PFn (P)
1 =

∑
Q′∈PFn (P)

e(Q′|P )
e(Q|P ) =

∏n−1
i=0 e(Pi,i+1|Pi,i)

e(Q|P ) =: Ñ(Fn,P)

where the equalities hold by the following reasonings: The first equality holds by the
definition of N(Fn,P) = #P(1)

Fn
(P) in (5) and by the fact that F is defined over an

algebraically closed field which then again implies the equality P
(1)
Fn

(P) = PFn(P). The

70



second equality holds by the equalities e(Q|P ) = e(Q′|P ) for all Q′ ∈ PFn(P). The second
to last equality holds by the equality in (61). This will already be sufficient for the tame
case and thus provide the equality Ñ(Fn,P) = N(Fn,P).

Only for a wild path P the situation is more difficult: Although the equality in (61)
also holds in the wild case, the ramification index e(Q|P ) is not uniquely determined by
the path P and, thus, the sum ∑

Q′∈PFn (P) e(Q′|P ) can be more complicated. However, we
will use the tame case as a model to at least find an upper bound Ñ(Fn,P) for N(Fn,P) in
the wild case. For that, we will introduce Abhyankar ramification indices ẽ(Q′|P ′) on
the elementary extensions Q′/P ′ of places in Pyr(Q) = (Pi,j)i,j . These will be defined as
the usual ramification indices e(Q′|P ′) for the extensions Q′/P ′ in Path(Q) = (Pi,j)j−i≤1
and, else, will be recursively defined as

ẽ(Q′|Pr) := ẽ(Ps|P ′)
gcd(ẽ(P1|P ′), ẽ(P2|P ′)) (62)

for all {r, s} = {1, 2} and elementary diamonds (Q′, P1, P2, P
′) in Pyr(Q) which are

(Q′, P1, P2, P
′) = (Pi−1,j+1, Pi−1,j , Pi,j+1, Pi,j) with 1 ≤ i ≤ j ≤ n − 1. Furthermore,

we will extend ẽ on all extensions in Pyr(Q) = (Pi,j)i,j , i.e. Pk,l/Pi,j with 0 ≤ k ≤ i ≤ j ≤
l ≤ n, by the well defined (see Lemma 44(ii)) unique extension satisfying the multiplicative
transitivity rule

ẽ(P1|P3) = ẽ(P1|P2)ẽ(P2|P3).
for all (P1, P2, P3) = (Pr,s, Pk,l, Pi,j) with 0 ≤ r ≤ k ≤ i ≤ j ≤ l ≤ s ≤ n. In Lemma
44(i), we will derive that ẽ satisfies the equality in (62) more generally, i.e. for all dia-
monds (Q′, P1, P2, P

′) of places in Pyr(Q). We will call this equality the ẽ-version of
Abhyankar’s Lemma or virtual Abhyankar’s Lemma and we can apply it to any
diamond of places in Pyr(Q). For tame paths, we will also define ẽ in the same way and,
by Abhyankar’s Lemma, obtain the identity ẽ = e. Then, in the ’in particular’-part of
Theorem 47, we will deduce that ẽ(Q|P ) divides e(Q|P ).

Finally, we will find the desired upper Ñ(Fn,P) for Ñ(Fn,P) by the estimate and
equalities

N(Fn,P) ≤
∑

Q′∈PFn (P)

e(Q′|P )
ẽ(Q|P ) =

∏n−1
i=0 ẽ(Pi,i+1|Pi,i)

ẽ(Q|P ) =: Ñ(Fn,P) (63)

where the estimate holds by the estimate ẽ(Q|P ) ≤ e(Q|P ) and the first equality holds
because of the equality in (61) and because the definition of ẽ provides the equality ẽ = e
on the extensions in P, i.e. ẽ(Pi,i+1|Pi,i) = e(Pi,i+1|Pi,i) for all i = 0, . . . , n− 1.

For our purposes, the error Ñ(Fn,P)−N(Fn,P) of the estimate Ñ(Fn,P) ≥ N(Fn,P)
will be negligible.

Structure of this chapter. In the Section 3.1, we will first prove Key Lemma 36, and
then apply it to pyramids of places in recursive towers to prove the crucial identity (61)
in Proposition 39.

In Section 3.2, we will first introduce the Abhyankar ramification indices in Definition
41 and then prove some of their properties in Lemma 44. Consequently, we will be able to
relate Abhyankar ramification indices and usual ramification indices via Theorem 47. As a
consequence, we will obtain the desired upper bound Ñ(Fn,P) for N(Fn,P) in Corollary
51.

3.1 Key Lemma I
Summary of the results of this section. In this Section 3.1, we will prove Key
Lemma 36 (Key Lemma I) and then, from this, derive the already proclaimed identity

71



(61) in Proposition 39. This identity is essential for the rest of this thesis since it will
provide the desired upper bound limn→∞ Ñ(Fn, V )/dn for the splitting rate ν(F) and
since it will be used in the first major result Theorem 155. Moreover, in Secion 7.3, we
will apply Key Lemma 36(iii) to find upper bounds for the degrees of places in F .

Key Lemma I For the following Key Lemma 36, recall Assumption 1: In this thesis,
all function fields F are defined over perfect full constant fields k.

Lemma 36 (Key Lemma I). Let F , Fi and E be function fields over the the same full
constant field k such that F ⊆ Fi ⊆ E for all i = 1, 2. Let F1/F and F2/F be finite
separable extensions of function fields such that E = F1 · F2 is the compositum of F1 and
F2 and let P be a place in F . Then the following hold:

(i) Then we have the estimate∑
Q∈PE((P1,P2))

e(Q|P )f(Q|P ) ≤ e(P1|P )f(P1|P )e(P2|P )f(P2|P )

for all places P1 ∈ PF1(P ) and P2 ∈ PF2(P ) (see the first two diagrams in Figure
3.1). Moreover, if F1/F and F2/F are linearly disjoint, then this estimate is even
an equality.

(ii) We have the estimate

#PE((P1, P2)) ≤ gcd(e(P1|P ), e(P2|P )) gcd(f(P1|P ), f(P2|P ))

for all places P1 ∈ PF1(P ) and P2 ∈ PF2(P ).
Moreover, if F1/F and F2/F are linearly disjoint, at least one of the extensions
P1/P and P2/P of places is tamely ramified and the identity f(Q|P ) = 1 holds for
all Q ∈ PE((P1, P2)), then we have the identity

#PE((P1, P2)) = gcd(e(P1|P ), e(P2|P )).

In particular, if F1/F and F2/F are linearly disjoint, at least one of the extensions
F1/F and F2/F is tame and k is algebraically closed, then this identity holds.

(iii) Let k be a finite field. Then we have the estimates

deg(Q) ≤ lcm(deg(P1), deg(P2)) · e(P1|P ) · e(P2|P )
e(Q|P )

≤ lcm(deg(P1), deg(P2)) · gcd(e(P1|P ), e(P2|P ))

for all P1 ∈ PF1(P ), P2 ∈ PF2(P ) and Q ∈ PE((P1, P2)) (see the first and third
diagrams in Figure 3.1).

(iv) Let k be a finite field. Then we have the estimate

e(Q|Pj) ≤ e(Pi|P )

for all P1 ∈ PF1(P ), P2 ∈ PF2(P ), Q ∈ PE((P1, P2)) and {i, j} = {1, 2}.

Remark 37. We can also Key Lemma 36(iv) without implicitly applying Key Lemma
36(i). See [Tut12, p. 14, Lemma 2.2.5] for instance.
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Figure 3.1: Diamonds of function fields and places for Key Lemma I

Examples 38. (i) All the claims in the following example were verified via Magma.
Let F := F3(z) be a rational function field and define the polynomials f := t3−zt−1
and g := t3−zt−t2−1 over F . Moreover, let x and y be roots of f and g, respectively,
which are contained in the same algebraic closure of F and define F1 := F (x) and
F2 := F (y). Then F1/F and F2/F are linearly disjoint extensions of function fields
of degree 3 such that E := F1 · F2 = F (x, y). Let P := (t).
Then there are exactly one place Pi in the set PFi(P ) for all i = 1, 2 and exactly
two places Q and Q′ in the set PE(P ) = PE((P1, P2)) where the equality holds by
the equality PFi(P ) = {Pi}. Moreover, we obtain the equalities e(Pi|P ) = 3 and
{e(Q|P ), e(Q′|P )} = {3, 6}. Hence, combining these equalities and the fact that all
involved places are rational yields the equalities∑

R∈PE((P1,P2))
e(R|P )f(R|P ) = 9 = e(P1|P )f(P1|P )e(P2|P )f(P2|P )

which are in accordance to the ’moreover’-part of Key Lemma 36(i).

(ii) For linearly disjoint tame Galois extensions F1/F and F2/F of prime degree p, the
’moreover’-part in Key Lemma 36(i) can also be derived from the fundamental equal-
ity in (8). However, already for linearly disjoint tame Galois extensions of degree p2,
this is not possible anymore. For instance, if the constant field is algebraically closed
(only for simplicity) and there is a place P and p = 2 places in PFi(P ) = {Pi,1, Pi,2}
with ramification indices equal to 2 for all i = 1, 2, then we have 8 places in PE(P )
with ramification indices all equal to 2 over P because of Abhyankar’s Lemma and
the fundamental equality. Now, the ’moreover’-part in Key Lemma 36(i) yields that
these 8 places distribute equally

[2, 2, 2, 2] = [#PE((P1,i, P2,j)) : (i, j) = (1, 1), (1, 2), (2, 1), (2, 2)]

over all 4 possible combinations (P1,i, P2,j). But, by only using the the fundamental
equality, a distribution of the form [3, 1, 1, 3] cannot be ruled out.

Notation in the proof of Key Lemma 36. In the proof of Key Lemma 36, we will
use the following notation regarding completions: For any function field K and place R
in K, we will fix a single completion of K to R and denote this fixed completion as K̂R.
Clearly, for all extension L/K of function fields over the same full constant field and any
extension S/R of places in L/K, there is a unique completion K ′ to R inside of L̂S by
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[Lor08, p.47, Definition] (just take the closure of K with the induced topology on LR).
But, as completions are unique up to isomorphisms by [Lor08, p.48, Theorem 2], there
is an isomorphism K̂R → K ′. Thus, we will write ιR,S : K̂R ↪→ L̂S for the composition
of this isomorphism and the inclusion map K ′ ↪→ L̂S . This embedding makes LS to a
KR-vector space and, in the special case K = F , R = P , x ∈ L̂S and y ∈ F̂P , we will use
the notation x · y := x · ιS,P (y).

Sketch of the proof of Key Lemma 36(i). Before we come to the actual proof of
Key Lemma 36(i), we want to sketch it briefly: The crucial point of this proof is to show
for all Pi ∈ PFi(P ) and i = 1, 2 that the map

ϕ′
P1,P2 : (̂F1)P1

⊗F̂P
(̂F2)P2

→
∏

Q∈PE((P1,P2))
ÊQ via x⊗F̂P

y 7→ (ιP1,Q(x) · ιP2,Q(y))Q

is a well defined epimorphism of F̂P -vector spaces and even an isomorphism if F1/F and
F2/F are linearly disjoint. Then the desired estimate in the ’main’-part and the desired
equality in the ’moreover’-part will be immediate consequences of this fact and of the fact
that e(S|P )f(S|P ) is the F̂P -dimension of the involved completions L̂S .

Concretely, we will derive these properties for ϕ′
P1,P2

from first deducing that the
canonical extension

ϕ′ :
∏

P1∈PF1 (P )
P2∈PF2 (P )

(̂F1)P1
⊗F̂P

(̂F2)P2
→

∏
Q∈PE(P )

ÊQ

of these maps ϕ′
P1,P2

is a well defined epimorphism and even an isomorphism if F1/F and
F2/F are linearly disjoint.

Finally, we will conclude these properties for ϕ′ by proving that the domain of ϕ′

is a tensor product F1 ⊗F F2 ⊗F F̂P , that its codomain is a tensor product E ⊗F F̂P
and that, with these representatives, the morphism ϕ′ is the canonical epimorphism ϕ :
F1 ⊗F F2 ⊗F F̂P → E ⊗F F̂P . Moreover, as ϕ is even an isomorphism if F1/F and F2/F
are linearly disjoint, this will be sufficient.

Proof of Key Lemma 36. For (i): First, [Lor08, p.60, Theorem 5] provides that the map

Fi ⊗F F̂P →
∏

Pi∈PFi
(P )

(̂Fi)Pi
via x⊗F y 7→ (x · y)Pi

is an isomorphism of F̂P -vector spaces for all i = 1, 2. Then these isomorphisms and some
basic rules for tensor products yield an isomorphism

F1 ⊗F F2 ⊗F F̂P ∼= (F1 ⊗F F̂P )⊗F̂P
(F2 ⊗F F̂P )

∼=
∏

P1∈PF1 (P )
(̂F1)P1

⊗F̂P

∏
P2∈PF2 (P )

(̂F2)P2

∼=
∏

P1∈PF1 (P )
P2∈PF2 (P )

(̂F1)P1
⊗F̂P

(̂F2)P2
(64)

of F̂P -vector spaces. Therefore, ∏P1,P2 (̂F1)P1
⊗F̂P

(̂F2)P2
is a tensor product of F1, F2 and

F̂P of F -vector spaces where the F -multilinear map ψ1 : F1×F2×F̂P →
∏
P1,P2 (̂F1)P1

⊗F̂P
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(̂F2)P2
is the composition of the canonical multilinear map F1×F2×F̂P → F1⊗F F2⊗F F̂P

and the isomorphisms in (64). If we go through the isomorphisms in (64), we obtain

ψ1 : F1 × F2 × F̂P →
∏

P1∈PF1 (P )
P2∈PF2 (P )

(̂F1)P1
⊗F̂P

(̂F2)P2
via (x, y, z) 7→ ((x⊗F̂P

y) · z)P1,P2 .

Second, by applying the universal property of the tensor product (F1⊗F F2)⊗F F̂P to
the canonical epimorphism F1 ⊗F F2 → E , x ⊗F y 7→ x · y of F -algebras, we obtain an
epimorphism

(F1 ⊗F F2)⊗F F̂P → E ⊗F F̂P (65)

of F̂P -vector spaces. Moreover, if F1/F and F2/F are linearly disjoint, then the canonical
epimorphism F1 ⊗F F2 → E = F1 · F2 even becomes an isomorphism. Because of that
and because of the functor ⊗F F̂P from the category of F -vector spaces to the category
of F̂P -vector spaces being an exact functor by the flatness of the F -vector space F̂P , the
epimorphism in (65) becomes an isomorphism too. Next, [Lor08, p.60, Theorem 5] also
provides that the map

E ⊗F F̂P →
∏

Q∈PE(P )
ÊQ via x⊗F y 7→ (x · y)Q (66)

is an isomorphism of F̂P -vector spaces. Then, by taking the composition of the morphisms
in (64), (65) and (66), we get an epimorphism

ϕ :
∏

P1∈PF1 (P )
P2∈PF2 (P )

(̂F1)P1
⊗F̂P

(̂F2)P2
→

∏
Q∈PE(P )

ÊQ (67)

of F̂P -vector spaces which is an isomorphism if F1/F and F2/F are linearly disjoint.
Furthermore, by the universal property of tensor products,

ϕ is the unique morphism of F -vector spaces such that ϕ ◦ ψ1 = ψ2 (68)

for the F -multilinear map

ψ2 := ϕ ◦ ψ1 : F1 × F2 × F̂P →
∏

Q∈PE(P )
ÊQ via (x, y, z) 7→ (x · y · z)Q. (69)

Third, we consider the morphism

ϕ′
P1,P2 : (̂F1)P1

⊗F̂P
(̂F2)P2

→
∏

Q∈PE((P1,P2))
ÊQ via x⊗F̂P

y 7→ (ιP1,Q(x) · ιP2,Q(y))Q

of F̂P -vector spaces for all Pi ∈ PFi(P ) and i = 1, 2. Let

ϕ′ :
∏

P1∈PF1 (P )
P2∈PF2 (P )

(̂F1)P1
⊗F̂P

(̂F2)P2
→

∏
Q∈PE(P )

ÊQ

be the canonical extension of the morphisms ϕ′
P1,P2

on the product ∏P1,P2 (̂F1)P1
⊗F̂P

(̂F2)P2
. Then we notice that

ϕ′ is a morphism of F̂P -vector spaces and ϕ′ ◦ ψ1 = ψ2 holds (70)
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by the equalities

(ϕ′ ◦ ψ1)(x, y, z) = ϕ′(((x⊗F̂P
y) · z)P1,P2) = ((ιP1,Q(x) · ιP2,Q(y)) · z)Q

= (x · y · z)Q =: ψ2(x, y, z)

for all x ∈ F1, y ∈ F2 and z ∈ F̂P where the first equality holds by the definition of ψ1,
the second equality holds by the F̂P -linearity of ϕ′, by the definitions of the F̂P -scalar
multiplications in the domain and codomain of ϕ′, by the definition of ϕ′ and by the
definition of ϕ′

P1,P2
, the third equality holds as the embedding ιPi,Q fixes the subfield Fi

for all i = 1, 2 and the last equality holds by the definition of ψ2 in (69). Combining (70)
and (68) yields the equality ϕ = ϕ′ and, thus, ϕ′ is an epimorphism of F̂P -vector space
and even an isomorphism if F1/F and F2/F are linearly disjoint. Consequently, the

epimorphism ϕ′
P1,P2 is also an isomorphism if F1/F and F2/F are linearly disjoint (71)

Pi ∈ PFi(P ) and i = 1, 2 as ϕ′ is an extension of ϕ′
P1,P2

.
Fourth and finally, we obtain the equalities and estimate∑

Q∈PE((P1,P2))
e(Q|P )f(Q|P ) =

∑
Q∈PE((P1,P2))

dimF̂P
(ÊQ) = dimF̂P

(
∏

Q∈PE((P1,P2))
ÊQ)

≤ dimF̂P
((̂F1)P1

⊗F̂P
(̂F2)P2

) = dimF̂P
((̂F1)P1

) · dimF̂P
((̂F2)P2

)
= e(P1|P )f(P1|P )e(P2|P )f(P2|P )

Pi ∈ PFi(P ) and i = 1, 2 where the first and last equalities hold by [Lor08, p.69, Theorem
1], the second equality holds by the additivity of dimF̂P

for direct sums, the estimate
holds as ϕ′

P1,P2
is an epimorphism of F̂P -vector spaces and the third equality holds by

the multiplicativity of dimF̂P
for tensor products of F̂P -vector spaces. Moreover, if F1/F

and F2/F are linearly disjoint, the only estimate is even an equality because ϕ′
P1,P2

is an
isomorphism in this case by (71). Hence, (i) follows.

For the ’main’-part of (ii): Let P1 ∈ PF1(P ) and P2 ∈ PF2(P ). Then, for all Q ∈
PE((P1, P2)) and a ∈ {e, f}, lcm(a(P1|P ), a(P2|P )) is a divisor of a(Q|P ) as we have the
equalities a(Q|P ) = a(Q|Pi)a(Pi|P ) for all i = 1, 2 by the multiplicative transitivity rule
of a in (7). Thus, we obtain the estimate

1 ≤ a(Q|P )
lcm(a(P1|P ), a(P2|P )) (72)

for all Q ∈ PE((P1, P2)) and a ∈ {e, f}. Consequently, we estimate

#PE(P1, P2) ≤
∑

Q∈PE((P1,P2))

e(Q|P )
lcm(e(P1|P ), e(P2|P )) ·

f(Q|P )
lcm(f(P1|P ), f(P2|P ))

≤ e(P1|P )e(P2|P )
lcm(e(P1|P ), e(P2|P )) ·

f(P1|P )f(P2|P )
lcm(f(P1|P ), f(P2|P ))

= gcd(e(P1|P ), e(P2|P )) · gcd(f(P1|P ), f(P2|P )) (73)

where the first estimate holds by the estimates in (72), the second estimate holds by Key
Lemma 36(i) and the equality holds by the well known identity ab = lcm(a, b) gcd(a, b) for
all a, b ∈ N. Hence, the ’main’-part of (ii) follows from the estimate in (73).

For the ’moreover’- and ’in particular’-part of (ii): Let P1 ∈ PF1(P ) and P2 ∈ PF2(P ).
One the one hand, if at least one of the extensions P1/P and P2/P of places is tamely
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ramified, we have the equality e(Q|P ) = lcm(e(P1|P ), e(P2|P )) for all Q ∈ PE((P1, P2))
by Abhankar’s Lemma in (10). On the other hand, if f(Q|P ) = 1 for all Q ∈ PE((P1, P2)),
then also f(Pi|P ) = 1 holds for all i = 1, 2 by the equalities 1 = f(Q|P ) = f(Q|Pi)f(Pi|P ).
In particular, we get the equalities f(Q|P ) = 1 = lcm(f(P1|P ), f(P2|P )) in this case too.
Both together yield that the first estimate in (73) is even an equality in this cases. More-
over, if F1/F and F2/F are linearly disjoint, the second estimate in (73) is also an equality
by the ’moreover’-part of Key Lemma 36(i). Hence, the moreover’-part and, by that, the
’in particular’-part of (ii) follow.

For (iii): Let k = Fq, r ∈ N and define F ′ := Fqr · F , F ′
i := Fqr · Fi for all i = 1, 2

and E′ := Fqr ·E. Then F ′
1/F

′ and F ′
2/F

′ are finite separable extensions of function fields
over the full constant fields Fqr such that E′ = Fqr · (F1 · F2) = F ′

1 · F ′
2. Moreover, let

Q′ ∈ PE′(Q) and define P ′ := Q ∩ F ′ and P ′
i := Q ∩ F ′

i for all i = 1, 2. Then P ′/P in
F ′/F and P ′

i/Pi in F ′
i/Fi for all i = 1, 2. Also, [Sti08, p.190, Lemma 5.1.9] provides the

equalities

deg(R) = deg(R′) gcd(deg(R), r) (74)

for all (R′, R) ∈ {(P ′, P ), (P ′
1, P1), (P ′

2, P2), (Q′, Q)}. Now, choose

Figure 3.2: Diamonds for constant field extensions in a proof

r := lcm(deg(P1),deg(P2)) = deg(P ) · lcm(f(P1|P ), f(P2|P )). (75)

Then r is a multiple of deg(P ), deg(Pi) = f(Pi|P ) deg(P ) for all i = 1, 2 and a divisor of
deg(Q) by the equality deg(Q) = f(Q|Pi) deg(Pi) for all i = 1, 2. Thus, combining these
facts and the identities in (74) yields the equalities

deg(P ′) = deg(P ′
i ) = 1 and deg(Q′) = deg(Q)/r. (76)

Moreover, we estimate

e(Q|P ) deg(Q′) = e(Q′|P ′)f(Q′|P ′) deg(P ′) ≤
∑

Q′′∈PE′ ((P ′
1,P

′
2))
e(Q′′|P )f(Q′′|P )

≤ e(P ′
1|P ′)e(P ′

2|P ′) = e(P1|P )e(P2|P ) (77)

where the equalities hold by the invariance of the ramification indices under constant
field extensions in (12), the first estimate holds as e(Q′|P ′)f(Q′|P ′) is one of the non
negative summands in the ∑Q′′ e(Q′′|P )f(Q′′|P ) and as deg(P ′) = 1 by (76) and the
last estimate holds because of Key Lemma 36(i) and because (76) implies the equality
f(P ′

i |P ′) = deg(P ′
i )/ deg(P ′) = 1 for all i = 1, 2.
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Finally, we obtain the desired estimate in (iii) by the equality and estimates

deg(Q) = r · deg(Q′) ≤ lcm(deg(P1), deg(P2)) · e(P1|P )e(P2|P )
e(Q|P )

≤ lcm(deg(P1),deg(P2)) · gcd(e(P1|P ), e(P2|P ))

where the equality holds by the second equality in (76), the first estimate holds by the
definition of r in (75) and by the estimate in (77) and the second estimate holds because
lcm(e(P1|P ), e(P2|P )) is a divisor of e(Q|P ) = e(Q|Pi)e(Pi|P ) for all i = 1, 2 and by the
well known identity ab = lcm(a, b) gcd(a, b) for all a, b ∈ N. Hence, the estimates in (iii)
hold.

For (iv): By the equality deg(Q) = f(Pi|P ) deg(Pi) for all i = 1, 2, the degree deg(Q)
must be a multiple of lcm(deg(P1), deg(P2)) and, especially, we obtain the estimate

lcm(deg(P1), deg(P2)) ≤ deg(Q) (78)

Consequently, we derive the desired estimate in (iv) from the estimate and equalities

1 ≤ e(P1|P ) · e(P2|P )
e(Q|P ) = e(P1|P ) · e(P2|P )

e(Q|Pj) · e(Pj |P ) = e(Pi|P )
e(Q|Pj)

for all {i, j} = {1, 2} where the estimate holds by combining the estimate in (78) and
the first estimate in Key Lemma 36(iii), the first equality holds because the multiplicative
transitivity rule for e in (7) implies the equality e(Q|P ) = e(Q|Pj) ·e(Pj |P ) and the second
equality holds by then canceling the factors e(Pj |P ) in the numerator and denominator.

3.1.1 Application to Recursive Towers

A generalization of Key Lemma 36 for recursive towers. The following already
proclaimed Proposition 39 can be seen as a generalization of the ’moreover’-part of Key
Lemma 36(i) to paths of recursive towers F of balanced degree over any algebraically
closed fields k. Instead of having a diamond of function fields over the full constant field k
and summing up the ramification indices e(Q|P ) over all diamonds of places (Q,P1, P2, P )
with fixed places P1, P2 and P , we sum up the ramification indices e(Q|P ) over all places
Q ∈ PFm,n(P) for a fixed path P = (Pi,j)j−i≤1 ∈ W (F ,m, n) with P := P0,0. In fact,
the following Proposition 39 will follow from recursively applying Key Lemma 36(i) to the
elementary diamonds of function fields in Pyr(F).

Proposition 39. Let F be a recursive tower over an algebraically closed field and (Fi,j)i,j :=
Pyr(F). Then we have the identity

∑
Q∈PFm,n (P)

e(Q|Pm,m) =
n−1∏
i=m

e(Pi,i+1|Pi,i)

for all m ≤ n and P = (Pi,j)j−i≤1 ∈W (F ,m, n) (see Figure 3.3 for m = 0).

Proof. We show this by induction over n −m ∈ N0. Let P = (Pi,j)j−i≤1 ∈ W (F ,m, n).
For m = n, we have the identities P = (Pm,m) and PFm,m(P) = {Pm,m} and, thus, the
desired equality ∑Q∈PFm,n (P) e(Q|Pm,m) = ∏n−1

i=m e(Pi,i+1|Pi,i) holds in this case as both
sides equal one.
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Figure 3.3: Places over a path and their ramification indices

Now, let m < n and P ′ := (Pi,j)j−i≤1 ∈ W (F ,m+ 1, n). Then we already obtain the
desired equality by the equalities∑
Q∈PFm,n (P)

e(Q|Pm,m) =
∑

Q′∈PFm+1,n
(P ′)

∑
Q∈PFm,n ((Pm,m+1,Q′))

e(Q|Pm,m)

=
∑

Q′∈PFm+1,n
(P ′)

e(Pm,m+1|Pm,m)
e(Pm,m+1|Pm+1,m+1)

∑
Q∈PFm,n ((Pm,m+1,Q′))

e(Q|Pm+1,m+1)

=
∑

Q′∈PFm+1,n
(P ′)

e(Pm,m+1|Pm,m)
e(Pm,m+1|Pm+1,m+1)e(Pm,m+1|Pm+1,m+1)e(Q′|Pm+1,m+1)

= e(Pm,m+1|Pm,m)
∑

Q′∈PFm+1,n
(P ′)

e(Q′|Pm+1,m+1)

=
n−1∏
i=m

e(Pi,i+1|Pi,i)

where the equalities hold by the following reasonings: The first equality holds since
the definition of P ′ implies that, on the one hand, any place Q ∈ PFm,n(P) clearly
lies over Pm,m+1 and Q′ := Q ∩ Fm+1,n ∈ PFm+1,n(P ′) and that, on the other hand,
any place in Q ∈ PFm,n(Pm,m+1, Q

′) for some Q′ ∈ PFm+1,n(P ′) also clearly lies over
P. The second equality holds since the multiplicative transitivity rule for ramification
indices in (7) implies the identities e(Q|Pm,m) = e(Q|Pm,m+1) · e(Pm,m+1|Pm,m) and
e(Q|Pm,m+1) · e(Pm,m+1|Pm+1,m+1) = e(Q|Pm+1,m+1). The third equality holds by ap-
plying Key Lemma 36(i) to the sum ∑

Q e(Q|Pm+1,m+1). The fourth equality holds by
elementary arithmetics. The last equality holds by applying the induction hypothesis to
P ′.

Examples 40. Consider the geometric tower F = (F ν)ν := F3 · FMW,2 of FMW,2 and the
place Q ∈ PF4 in Examples 12. For any place Q′ ∈ PF 4

(Q), we obtain the same pyramid
(P ′

i,j)i,j := Pyr(Q′) which is depicted in Figure 2.8. In particular, all these places Q′ lie
over the same path P ′. Consequently, Proposition 39 provides the equalities

N(F 4,P ′) =
∑

Q′∈P
F 4

(P ′)
e(Q′|P ′

0,0) =
3∏
i=0

e(P ′
i,i+1|P ′

i,i) = 2
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3.2 Upper Bound for the Splitting Rate
Summary of the results of this section. In this section, motivated by Abhyankar’s
Lemma, we will first define the Abhyankar ramification indices ẽ(R|P ) of extensions R/P
in pyramids Pyr(Q) of places in recursive towers F = (Fν)ν . Then, in Theorem 47, we
will prove that ẽ(Q|Q ∩ F0) divides e(Q|Q ∩ F0). Finally, we will be able to define the
desired upper bound Ñ(Fn,P) of N(Fn,P) for any path P of F in Definition 50 and to
prove the estimate N(Fn,P) ≤ Ñ(Fn,P) in Corollary 51. This estimate will be essential
for the rest of this thesis and it will be an equality for tame recursive towers F .

3.2.1 Abhyankar Ramification Indices

Purpose of this subsection. In this subsection, we will define the Abhyankar ramifi-
cation indices and prove some first properties of Abhyankar ramification indices.

Abhyankar ramification indices. In the following Definition 41, we will define the
Abhyankar ramification indices ẽ(R|P ) of extensions R/P in pyramids Pyr(Q) of places
in recursive towers F . This definition will be motivated by Abhyankar’s Lemma in (10)
and correspondingly yield the usual ramification indices e(R|P ) if Abhyankar’s Lemma is
applicable to all elementary diamonds in Pyr(Q). For instance, this will be the case if F
is tame or if the path Path(Q) is tame.

Definition 41. Let F = (Fν)ν be a recursive tower, n ∈ N0, Q ∈ PFn and (Pi,j)i,j :=
Pyr(Q). Then we define the map

ẽ : Ext(Pyr(Q))→ N

recursively in the following way where we use the notation ẽ(Pk,l|Pi,j) := ẽ(Pk,l, Pi,j) for
all (Pk,l, Pi,j) ∈ Ext(Pyr(Q)) and call ẽ(Pi,j |Pk,l) the Abhyankar ramification index
of the extension Pk,l/Pi,j:

(i) For the extensions in Path(Q) = (Pi,j)j−i≤1, we define ẽ to be the usual map e of
ramification indices, i.e.

ẽ(Pk,l|Pi,j) := e(Pk,l|Pi,j)
for all 0 ≤ k ≤ i ≤ j ≤ l ≤ n with k − l ≤ 1.

(ii) For the other elementary extensions in Pyr(Q) = (Pi,j)i,j

ẽ(R|Pr) := ẽ(Ps|P )
gcd(ẽ(P1|P ), ẽ(P2|P )) (79)

for all {r, s} = {1, 2} and (R,P1, P2, P ) := (Pi−1,j+1, Pi−1,j , Pi,j+1, Pi,j) with 1 ≤ i ≤
j ≤ n− 1 (see Figure 3.4).
Notice that this recursive definition provides a well defined ẽ-value for any elemen-
tary extension in Pyr(Q) outside of Path(Q) which is also natural number as the
denominator is a divisor of the numerator in (79).

(iii) Finally, for any extension Pi,j/Pk,l of places in Pyr(Q) there are paths P in the
directed graph Graph(Pyr(Q)) of elementary extensions from Pi,j to Pk,l. Then we
choose the unique such path P containing the place Pi,l and define the ẽ-value as the
product of the ẽ-values of the elementary extensions in P, i.e.

ẽ(Pk,l|Pi,j) := ẽ(Pk,l|Pi,l) · ẽ(Pi,l|Pi,j) :=
i−1∏
ν=k

ẽ(Pν,l|Pν+1,l) ·
l−1∏
ν=j

ẽ(Pi,ν+1|Pi,ν)

for all 0 ≤ k ≤ i ≤ j ≤ l ≤ n (see Figure 3.4).
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Figure 3.4: Definition of the virtual Abhyankar’s Lemma and the multiplicative transi-
tivity rule for ẽ

Examples 42. (i) On the extensions in the pyramids Pyr(Q) and Pyr(Q′) for the MW-
tower FMW,2 in Examples 12, we have the equality e = ẽ because the towers are tame
and because of Lemma 44(iii).

(ii) Consider the recursive ST-tower F = FST,3 = (Fν)ν over F2 in Examples 8(iv)
which is defined by the polynomial fST,3 = X2Y 2 +XY 2 +X + Y .
In Examples 77(ii), we will show that there is a place Q ∈ PF3 such that Pyr(Q) is of
the form which is depicted in Figure 3.5 where the blue numbers are the ramification
indices of the elementary extensions in Pyr(Q).
Here the Abhyankar ramification indices of the elementary extensions in Pyr(Q) are
equal to the usual ramification indices everywhere except for the extensions Q/P0,2
and Q/P1,3. There we have e(Q|P0,2) = e(Q|P1,3) = 2 (blue) and ẽ(Q|P0,2) =
ẽ(Q|P1,3) = 1 (green). This is only possible because the extensions P0,2/P1,2 and
P1,3/P1,2 are both wild and, thus, Abhyankar’s Lemma is not applicable to the dia-
mond (Q,P0,2, P1,3, P1,2).

Figure 3.5: Example of a pyramid of places with Abhyankar ramification indices

Remark 43. (i) For the following remark, we already use the definition of the directed
graph Graph(Pyr(Q)) in Definition 72(i). However, this definition only interprets
the pyramid Pyr(Q) (see Figure 2.6) as a directed graph Graph(Pyr(Q)) where the
places in the pyramid are the vertices and the elementary extensions R/P are the
edges R→ P .
Because of the directed graph structure of Graph(Pyr(Q)), we could have also defined
the map ẽ by first defining ẽ as a weight function on Graph(Pyr(Q)). As the edges
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of Graph(Pyr(Q)) are the elementary extensions in Pyr(Q), this is basically what
happens in the items (i) and (ii) of Definition 41. Then we could have defined the
final map ẽ as the extension of this weight function on all paths in Graph(Pyr(Q))
which includes Definition 41(iii). Finally, we would also have needed to check that
the ẽ-values of the paths only depend on the initial and terminal vertices. This will
be proven in following Lemma 44(ii).

(ii) In Definition 41, we defined the Abhyankar ramification indices depending on n and
Q. It immediately follows from this definition for all R := Pk,l and P := Pi,j
with 0 ≤ k ≤ i ≤ j ≤ l ≤ n that the value ẽ(R|P ) only depends on the subpath
Path(Q) = (Pr,s)s−r≤1 consisting of the places Pr,s with k ≤ r ≤ s ≤ l. But these
places equal Pr,s = R ∩ Fr,s and thus ẽ(R|P ) only depends on the extension R/P .
Consequently, we do not need to specify Q and n before we refer to ẽ(R|P ).

First properties of the Abhyankar ramification indices. In the following Lemma
44, we will show some first properties of Abhyankar ramification indices: First, the virtual
Abhyankar’s Lemma does not only hold for elementary diamonds but for all diamonds in
Pyr(Q). Second, the Abhyankar ramification indices satisfy the multiplicative transitivity
rule. Third, the Abhyankar ramification indices are equal to the usual ramification indices
if Path(Q) is tame.

Lemma 44. In the situation of Definition 41, we have the following:

(i) The map ẽ satisfies the ẽ-version of Abhyankar’s Lemma (or virtual Ab-
hyankar Lemma), i.e.

ẽ(R|P ) = lcm(ẽ(P1|P ), ẽ(P2|P )) and ẽ(R|Pr) = ẽ(Ps|P )
gcd(ẽ(P1|P ), ẽ(P2|P ))

for all {r, s} = {1, 2} and diamonds (R,P1, P2, P ) := (Pk,l, Pk,j , Pi,l, Pi,j) of places
in Pyr(Q) with 0 ≤ k ≤ i ≤ j ≤ l ≤ n (see Figure 3.6).

(ii) The map ẽ satisfies the multiplicative transitivity rule , i.e.

ẽ(R|P ) = ẽ(R|P1)ẽ(P1|P )

for any R := Pr,s, P1 := Pk,l, P := Pi,j where 0 ≤ r ≤ k ≤ i ≤ j ≤ l ≤ s ≤ n (see
Figure 3.6).

(iii) If Path(Q) is tame, then e = ẽ on the extensions in Pyr(Q).

Figure 3.6: General virtual Abhyankar’s Lemma and multiplicative transitivity rule for
ẽ
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Proof. For the second equality in (i): First, we consider flat diamonds (R,P1, P2, P ) :=
(Pk,l, Pk,j , Pi,l, Pi,j), i.e. k = i or l = j. For k = i (resp. l = j), the second equality in
(i) holds trivially as then (ẽ(P1|P ), ẽ(P2|P )) = (1, ẽ(R|P1)) (resp. (ẽ(P1|P ), ẽ(P2|P )) =
(ẽ(R|P2), 1)) holds by the equalities (R,P1) = (P2, P ) (resp. (R,P2) = (P1, P )) and by
the definition of e(P |P ) being an empty product in Definition 41(iii). Consequently, the
denominator on the right side of the desired equality equals one and the numerator ẽ(Ps|P )
equals the left side ẽ(R|Pr) for all {r, s} = {1, 2}. Hence, the second equality in (i) holds
for k = i (resp. l = j).

Next, we consider non-flat diamonds (R,P1, P2, P ) := (Pk,l, Pk,j , Pi,l, Pi,j), i.e. 0 ≤ k <
i ≤ j < l ≤ n. We show the second equality in (i) by induction overm := (l−k)−(j−i) ∈ N
with 2 ≤ m, which can be interpreted as the hight of the diamond (see Figure 3.7): For
2 = m = (j− i)− (l− k), we have the identities k = i+ 1 and l = j− 1 by the assumption
0 ≤ k < i ≤ j < l ≤ n and, thus, the extensions R/Pr and Pr/P in the diamond
(R,P1, P2, P ) are elementary for all r = 1, 2. Hence, the desired second equality in (i)
follows from Definition 41(ii) for 2 = m = (l − k)− (j − i).

Now, let 3 ≤ m := (l − k) − (j − i) = (l − j) + (i − k), then at least one of the
estimates l− j ≥ 2 and i− k ≥ 2 needs to hold. First, suppose that the estimate i− k ≥ 2
holds. Then we set R′ := Pk+1,l and P ′

1 = Pk+1,j (see Figure 3.7). Due to the equality
(l − (k + 1)) − (j − i) = m − 1, the induction hypothesis can be applied to the diamond
(R′, P ′

1, P2, P ) = (Pk+1,l, Pk+1,j , Pi,l, Pi,j) and, thus, we obtain the identites

ẽ(R′|P ′
1) = ẽ(P2|P )

gcd(ẽ(P ′
1|P ), ẽ(P2|P )) and ẽ(R′|P2) = ẽ(P ′

1|P )
gcd(ẽ(P ′

1|P ), ẽ(P2|P )) . (80)

Moreover, due to the estimate k+1 < i and the consequent estimate (l−k)−(j−(k+1)) <
(l − k) − (j − i) =: m, the induction hypothesis can also be applied to the diamond
(R,P1, R

′, P ′
1) = (Pk,l, Pk,i, Pk+1,l, Pk+1,j) and, thus, we obtain the identities

ẽ(R|P1) = ẽ(R′|P ′
1)

gcd(ẽ(P1|P ′
1), ẽ(R′|P ′

1)) and ẽ(R|R′) = ẽ(P1|P ′
1)

gcd(ẽ(P1|P ′
1), ẽ(R′|P ′

1)) . (81)

Let g := gcd(ẽ(P ′
1|P ), ẽ(P2|P )). Then we deduce the desired second equality in (i) for

r = 1 and s = 2 by the equalities

ẽ(R|P1) = ẽ(R′|P ′
1)

gcd(ẽ(P1|P ′
1), ẽ(R′|P ′

1)) =
ẽ(P2|P )

g

gcd(ẽ(P1|P ′
1), ẽ(P2|P )

g )
= ẽ(P2|P )

gcd(ẽ(P1|P ′
1) · g, ẽ(P2|P ))

= ẽ(P2|P )
gcd(ẽ(P1|P ′

1) · ẽ(P ′
1|P ), ẽ(P2|P )) = ẽ(P2|P )

gcd(ẽ(P1|P ), ẽ(P2|P ))

where the equalities hold by the following reasonings: The first equality holds by the first
identity in (81). The second equality holds by first identity in (80). The third equality
holds by the identity gcd(ac, bc) = gcd(a, b)c for any a, b, c ∈ N, The fourth equality holds
by Lemma 45. The last equality holds because Definition 41(iii) implies the equalities

ẽ(P1|P ′
1)ẽ(P ′

1|P ) = ẽ(Pk,j |Pk+1,j)ẽ(Pk+1,j |Pi,j) =
i−1∏
ν=k

ẽ(Pν,j |Pν+1,j) =: ẽ(Pk,j |Pi,j)

= ẽ(P1|P ). (82)

Furthermore, for proving the desired second equality in (i) for r = 2 and s = 1, we
first compute

ẽ(R|P2) = ẽ(R|R′)ẽ(R′|P2) = ẽ(P1|P ′
1) · ẽ(P ′

1|P )
gcd(ẽ(P1|P ′

1), ẽ(R′|P ′
1)) · g
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= ẽ(P1|P )
gcd(ẽ(P1|P ′

1), ẽ(R′|P ′
1)) · g (83)

where the first equality holds since Definition 41(iii) implies this equality analogously to
the equality in (82), the second equality holds by the second identites in (80) and (81) and
the last equality holds by the identity in (82). Moreover, we compute

gcd(ẽ(P1|P ′
1), ẽ(R′|P ′

1)) · g = gcd(ẽ(P1|P ′
1) · g, ẽ(R′|P ′

1) · g) = gcd(ẽ(P1|P ′
1) · g, ẽ(P2|P ))

= gcd(ẽ(P1|P ′
1) · ẽ(P ′

1|P ), ẽ(P2|P )) = gcd(ẽ(P1|P ), ẽ(P2|P )) (84)

where the first equality holds by the identity gcd(ac, bc) = gcd(a, b)c for any a, b, c ∈ N,
the second equality holds by the first identity in (80), the third equality holds by Lemma
45 and the last equality holds by the identity in (82).

Finally, combining (83) and (84) yields the desired second equality in (i) for r = 2 and
s = 1.

Second, suppose that the estimate j − l ≥ 2 holds. In this case, we define R′ := Pk,l−1
and P ′

2 := Pi,l−1. Then it is obvious that the reasonings in the first case can be mirrored
and, hence, the desired second equality in (i) follows in any case.

Figure 3.7: Diagram for the ẽ-version of Abhyankar’s Lemma in a proof

For (ii): In Definition 41(iii), we defined the Abhyankar ramification indices ẽ(R|P ),
ẽ(R|P1) and ẽ(P1|P ) as the products of the ẽ-values of the elementary extensions along
the paths P, P1 and P2, respectively, which are depicted in Figure 3.8. Thus, we basically
have to show that the product of the ẽ-values along the path P equals the product of the
ẽ-values along the path P1 and P2. For that, Figure 3.8 already suggests that this should
follow from showing that the product of the ẽ-values along the left path Pl equals the
product of the ẽ-values along the right path Pr.

First, the lastly mentioned equality for the paths Pl and Pr follows from the equalities

ẽ(Pk,s|Pk,l)ẽ(Pk,l|Pi,l) = ẽ(Pi,s|Pi,l)ẽ(Pk,l|Pi,l)
gcd(ẽ(Pi,s|Pi,l), ẽ(Pk,l|Pi,l))

= ẽ(Pk,s|Pi,s)ẽ(Pi,s|Pi,l). (85)

for the diamond (Pk,s, Pk,l, Pi,s, Pi,l) of places (see Figure 3.8) where the first (resp. second)
equality holds by the second equality in Lemma 44(i) implying the equality ẽ(Pk,s|Pk,l) =

ẽ(Pi,s|Pi,l)
gcd(ẽ(Pi,s|Pi,l),ẽ(Pk,l|Pi,l)) (resp. ẽ(Pk,s|Pi,s) = ẽ(Pk,l|Pi,l)

gcd(ẽ(Pi,s|Pi,l),ẽ(Pk,l|Pi,l))). Then we already con-
clude the desired equality in (ii), i.e. the firstly mentioned equality for the paths P, P1
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and P2, by the equalities

ẽ(R|P1)ẽ(P1|P ) = ẽ(Pr,s|Pk,l)ẽ(Pk,l|Pi,j) = ẽ(Pr,s|Pk,s)ẽ(Pk,s|Pk,l)ẽ(Pk,l|Pi,l)ẽ(Pi,l|Pi,j)
= ẽ(Pr,s|Pk,s)ẽ(Pk,s|Pi,s)ẽ(Pi,s|Pi,l)ẽ(Pi,l|Pi,j) = ẽ(Pr,s|Pi,s)ẽ(Pi,s|Pi,j)
= ẽ(Pr,s|Pi,j) = ẽ(R|P )

where the equalities hold by the following reasonings: The first and last equalities hold
by the definitions of R, P1 and P . The second and second to last equalities hold by the
definitions of ẽ(Pr,s|Pk,l) and ẽ(Pk,l|Pi,j) in Definition 41(iii). The third equality holds by
the identity in (85). The fourth equality holds since Definition 41(iii) implies the equalities
ẽ(Pr,s|Pk,s)ẽ(Pk,s|Pi,s) = ẽ(Pr,s|Pi,s) and ẽ(Pi,s|Pi,l)ẽ(Pi,l|Pi,j) = ẽ(Pi,s|Pi,j).

Figure 3.8: Diagram for the multiplicative transitivity rule for ẽ in a proof

For the first equality in (i): We immediately obtain the desired first equality in (i) by
the equalities

ẽ(R|P ) = ẽ(R|P1)ẽ(P1|P ) = ẽ(P2|P )ẽ(P1|P )
gcd(ẽ(P1|P ), ẽ(P2|P )) = lcm(ẽ(P1|P ), ẽ(P2|P ))

where the first equality holds by the multiplicative transitivity rule for ẽ in Lemma 44(ii),
the second equality holds by the second equality in Lemma 44(i) and the last equality
holds by the identity ab = gcd(a, b) lcm(a, b) for all a, b ∈ N.

For (iii): On the extensions in Path(Q), the desired identity ẽ = e holds independently
of Path(Q) being tame by the definition of ẽ in Definition 41(i).

Next, we notice that, by the tameness of Path(Q), Lemma 17(v) supplies that we can
apply Abhyankar’s Lemma to all extensions in Pyr(Q). But since we start with the same
values on the extensions in Path(Q) for e and ẽ and since Abhyankar’s Lemma in (9) and
its ẽ-version in Definition 41(ii) clearly provide the same values, we obtain the desired
identity ẽ = e on all elementary extensions in Pyr(Q).

Finally, on all extensions in Pyr(Q), the desired identity ẽ = e follows from the defi-
nition of the Abhyankar ramification indices in Definition 41(iii), from the validity of the
desired identity ẽ = e on all elementary extensions and from the multiplicative transitivity
rules for the ramification indices in (7).

Lemma 45. We have the identity gcd(a · gcd(b, c), c) = gcd(a · b, c) for all a, b, c ∈ N.
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Proof. On the one hand, because gcd(b, c) is a divisor of b, it follows that gcd(a·gcd(b, c), c)
is a divisor of gcd(a · b, c). On the other hand, let pk+l be a prime power which is a divisor
of a · b and c such that pk is a divisor of a and pl is a divisor of b. Then pl is common
divisor of b and c and, therefore, a divisor of gcd(b, c). Thus, pk+l is a common divisor
a · gcd(b, c) and c and, hence, a divisor of gcd(a · gcd(b, c), c). Both together yield the
statement.

Invariance of Abhyankar ramification indices under the action of the tower
map. Analogously to usual ramification indices in (11), in the following Lemma 46, we
will prove that the Abhyankar ramification indices are also invariant under the action of
the tower map σ. This property will be useful later in Section 7.2.

Lemma 46. Let F be a recursive tower which is defined by the pair (σ, F0), let (Fi,j)i,j :=
Pyr(F) be its pyramid, let P ∈ PFk,l

and let Q ∈ PFm,n for some m ≤ k ≤ l ≤ n. Then
we have the identity ẽ(σs(Q)|σs(P )) = ẽ(Q|P ) for all s ∈ Z with 0 ≤ m+ s.

We call this property the invariance of the Abhyankar ramification indices un-
der the action of σ.

Proof. Let (Pi,j)i,j := Pyr(Q) where i, j run over all i, j ∈ N0 with m ≤ i ≤ j ≤ n. Then
Lemma 15(i) supplies the identity Pyr(σs(Q)) = (σs(Pi′−s,j′−s))i′,j′ for all s ∈ Z with
0 ≤ m+ s where i′, j′ run over all i′, j′ ∈ N0 with m+ s ≤ i′ ≤ j′ ≤ n+ s. In particular,
this implies the equality Path(σs(Q)) = (σs(Pi′−s,j′−s))j′−i′≤1 ∈ W (F ,m + s, n + s) by
the definitions of Pyr in Definition 11 and of Path in Definition/Lemma 17(i).

Now, for all m+ s+ 1 ≤ i′ ≤ n+ s, all ε = 0, 1 and i := i′ − s, we compute

ẽ(σs(Pi−1,i)|σs(Pi−ε,i−ε)) = e(σs(Pi−1,i)|σs(Pi−ε,i−ε)) = e(Pi−1,i|Pi−ε,i−ε)
= ẽ(Pi−1,i|Pi−ε,i−ε) (86)

where the first (resp. last) equality holds by the definition of ẽ = e on the extensions in
the path Path(σs(Q)) (resp. Path(Q)) in Definition 41(i) and the second equality holds
by the invariance of the ramification indices under the action of isomorphisms in (11).

Thus, the equalities in (86) provide that the Abhyankar ramification indices in the
extensions in the paths Path(σs(Q)) and Path(Q) up to translation of the indices. But,
as the definition of ẽ in Definition 41 implies that ẽ only depends on its values on the
extensions in the path, we conclude the desired equality by the equalities

ẽ(σs(Q)|σs(P )) = ẽ(σs(Pm,n)|σs(Pk,l)) = ẽ(Pm,n|Pk,l) = ẽ(Q|P ).

3.2.2 Relation between Abhyankar and Usual Ramification Indices

Summary of the results of this subsection. In the following Theorem 47, we will
prove the estimate ẽ(Q|Q∩F0) ≤ e(Q|Q∩F0). Moreover, we will even show that ẽ(Q|Q∩F0)
divides e(Q|Q ∩ F0).

Intuition for Theorem 47. Although Theorem 47 is non-trivial, it is not surprising:
On the one hand, both maps e and ẽ are maps Ext(Pyr(Q)) → N which satisfy the
multiplicative transitivity rule and agree on Ext(Path(Q)). On the other hand, ẽ even
satisfies the ẽ-version of Abhyankar’s Lemma which, for any diamond (R,P1, P2, P ) of
places in Pyr(Q), provides the smallest value ẽ(R|P ) = lcm(ẽ(P1|P ), ẽ(P2|P )) for given
values ẽ(P1|P ) and ẽ(P2|P ) which is still compatible with the multiplicative transitivity
rule for ẽ. Consequently, ẽ(R|P ) = lcm(ẽ(P1|P ), ẽ(P2|P )) even happens to be a divisor
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of any other possible value for R/P being compatible with the multiplicative transitivity
rule.

This means that as ẽ and e agree on Ext(Path(Q)) applying the above reasoning on
the elementary diamonds consisting of places in the zeroth, first and second levels supplies
that ẽ(R|P ) divides e(R|P ) for all extensions R/P of places in Pyr(Q) such that R is on
the second and P on the zeroth level.

Now, for elementary diamonds on higher levels, i.e. consisting of places on the levels
l, l + 1 and l + 2 for some l = 1, . . . , n − 2, it gets more complicated, because we start
with different (although tightly related) values for e and ẽ. Although, for l ≥ 2, the value
ẽ(R|P ) can actually be larger than e(R|P ), Theorem 47 ensures that this is impossible if
we take P from the zeroth level.

Theorem 47. In the situation of Definition 41, we have

e(P0,m|P0,0)
ẽ(P0,m|P0,0) = e(P0,m|Pm,m)

ẽ(P0,m|Pm,m) ∈ N

for all 0 ≤ m ≤ n. In particular, we have the estimates

ẽ(Q|P0,0) ≤ e(Q|P0,0) and ẽ(Q|Pn,n) ≤ e(Q|Pn,n).

Proof. For the identity of the quotients: First, we show the desired identity

e(P0,m|P0,0)
ẽ(P0,m|P0,0) = e(P0,m|Pm,m)

ẽ(P0,m|Pm,m)

by induction over m ∈ N0. For m = 0, both involved extensions P0,m/P0,0 and P0,m/Pm,m
are trivial and, thus, their e- and ẽ-values and are even equal to one. For m = 1, both
involved extensions P0,m/P0,0 and P0,m/Pm,m are elementary and, thus, we obtain the
equalities

e(P0,m|P0,0)
ẽ(P0,m|P0,0) = 1 = e(P0,m|Pm,m)

ẽ(P0,m|Pm,m)
since Definition 41(i) implies the identity ẽ = e on all elementary extensions in Path(Q).

Now, let m ≥ 2. First, we notice the equalities

e(Pm−1,m|Pm,m)
ẽ(Pm−1,m|Pm,m) = 1 = e(Pm−1,m|Pm−1,m−1)

ẽ(Pm−1,m|Pm−1,m−1) (87)

since Definition 41(i) again implies the identity ẽ = e on all elementary extensions in
Path(Q). Then we already conclude the desired identity by the computation (see Figure
3.9)

e(P0,m|P0,0)
ẽ(P0,m|P0,0) = e(P0,m|P0,m−1)

ẽ(P0,m|P0,m−1)
e(P0,m−1|P0,0)
ẽ(P0,m−1|P0,0) = e(P0,m|P0,m−1)

ẽ(P0,m|P0,m−1)
e(P0,m−1|Pm−1,m−1)
ẽ(P0,m−1|Pm−1,m−1)

= e(P0,m|Pm−1,m−1)
ẽ(P0,m|Pm−1,m−1) = e(P0,m|Pm−1,m)

ẽ(P0,m|Pm−1m)
e(Pm−1,m|Pm−1,m−1)
ẽ(Pm−1,m|Pm−1,m−1)

= e(P0,m|Pm−1,m)
ẽ(P0,m|Pm−1m)

e(Pm−1,m|Pm,m)
ẽ(Pm−1,m|Pm,m) = e(P0,m|Pm,m)

ẽ(P0,m|Pm,m) (88)

where the first, third, fourth and last equalities hold by the multiplicative transitivity
rules for e in (7) and for ẽ in Lemma 44(ii), the second equality holds by the induction
hypothesis and the fifth equality holds by the equalities in (87).
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For the quotients being natural numbers: We will show e(P0,m|P0,0)
ẽ(P0,m|P0,0) ∈ N by induction

over m ∈ N0. For m = 0, 1, we already noticed in the first part of the proof that the
equality ẽ(P0,m|P0,0) = e(P0,m|P0,0) holds.

Now, let m ≥ 2. We first compute

ẽ(P0,m|Pm−1,m−1) = lcm(ẽ(P0,m−1|Pm−1,m−1), ẽ(Pm−1,m|Pm−1,m−1))
= lcm(ẽ(P0,m−1|Pm−1,m−1), e(Pm−1,m|Pm−1,m−1)) (89)

where the first equality holds by the ẽ-version of Abhyankar’s Lemma in Lemma 44(i)
and the second equality holds because again implies the identity ẽ = e on all elementary
extensions in Path(Q). Next, since ẽ(P0,m−1|Pm−1,m−1) divides e(P0,m−1|Pm−1,m−1) by
the induction hypothesis, we derive from (89) that

ẽ(P0,m|Pm−1,m−1) divides lcm(e(P0,m−1|Pm−1,m−1), e(Pm−1,m|Pm−1,m−1)). (90)

Then, because the multiplicative transitivity rule of e in (7) implies the identities

e(P0,m|P0,m−1) · e(P0,m−1|Pm−1,m−1) = e(P0,m|Pm−1,m−1)
= e(P0,m|Pm−1,m) · e(Pm−1,m|Pm−1,m−1),

we obtain that lcm(e(P0,m−1|Pm−1,m−1), e(Pm−1,m|Pm−1,m−1)) divides e(P0,m|Pm−1,m−1).
Combining this and (90) yields that ẽ(P0,m|Pm−1,m−1) divides e(P0,m|Pm−1,m−1) and, thus,
the quotient e(P0,m|Pm−1,m−1)

ẽ(P0,m|Pm−1,m−1) is a natural number. Finally, this again supplies the desired
statement by the equality

e(P0,m|P0,0)
ẽ(P0,m|P0,0) = e(P0,m|Pm−1,m−1)

ẽ(P0,m|Pm−1,m−1) ∈ N.

where the equality holds by the first three equalities in (88).

Figure 3.9: Pyramid of places with a sub pyramid

For the ’in particular’-part: The estimates in the ’in particular’-part immediately follow
from the quotients in the ’main’-part being natural numbers for m = n.

Examples 48. In Examples 42(ii), the quotients in Theorem 47 for m = n = 3 equal 2.
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Remark 49. In Theorem 47, we proved that, after reordering the quotients in the identity
there, we have the identity

e(Q|P0,0)
e(Q|Pn,n) = ẽ(Q|P0,0)

ẽ(Q|Pn,n) .

In the following, we will elaborate on the fact that the quotient e(Q|P0,0)
e(Q|Pn,n) turns out to be

an invariant of all maps ϕ : Ext(Pyr(Q))→ N which satisfy the multiplicative transitivity
rule and agree with e on Ext(Path(Q)) and that ẽ(Q|Pk,k) divides ϕ(Q|Pk,k) for all such
maps ϕ : Ext(Pyr(Q))→ N and k = 0, n.

Indeed, for the corresponding statements with ẽ and e in the proof of Theorem 47, we
only used the fact that e, ẽ : Ext(Pyr(Q))→ N satisfy those two properties. Consequently,
any such map ϕ : Ext(Pyr(Q))→ N satisfies the equality

e(Q|P0,0)
e(Q|Pn,n) = ϕ(Q|P0,0)

ϕ(Q|Pn,n) (91)

and the property that ẽ(Q|Pk,k) divides ϕ(Q|Pk,k) for k = 0, n.
In particular, (91) also holds for the unique such map Const : Ext(Pyr(Q)) → N

satisfying Const(Pi,j+1|Pi,j) = e(Pj,j+1|Pj,j) and Const(Pi,j |Pi−1,j) = e(Pi,i−1|Pi,i) for all
0 ≤ i ≤ j ≤ n. Consequently, we obtain the identities

∆(Path(Q)) :=
∏n
i=1 e(Pi−1,i|Pi−1,i−1)∏n
i=1 e(Pi−1,i|Pi,i)

= Const(P0,n|P0,0)
Const(P0,n|Pn,n) = e(Q|P0,0)

e(Q|Pn,n) . (92)

which even imply that the invariant ∆(Path(Q)) of those maps Ext(Pyr(Q)) → N only
depends on the ramification indices of the extensions in Path(Q).

Finally, we want give some intuition for why this invariant ∆(Path(Q)) even exists.
For all such maps ϕ and elementary diamonds (R,P1, P2, P ) in Pyr(Q), we have the
equalities ϕ(R|P1) · ϕ(P1|P ) = ϕ(R|P ) = ϕ(R|P2) · ϕ(P2|P ) and, thus,

ϕ(R|P1)
ϕ(R|P2) = ϕ(P2|P )

ϕ(P1|P ) . (93)

Therefore, if we first consider the quotient

ϕ(Q|P0,0)
ϕ(Q|Pn,n) =

∏n−1
j=0 ϕ(P0,j+1|P0,j)∏n
i=1 ϕ(Pi−1,n|Pi,n) = ϕ(P0,n|P0,n−1)

ϕ(P0,n|P1,n) ·
∏n−2
j=0 ϕ(P0,j+1|P0,j)∏n
i=2 ϕ(Pi−1,n|Pi,n) ,

then apply the equality in (93) to the diamond (R,P1, P2, P ) = (P0,n, P0,n−1, P1,n, P1,n−1)
at the top level and then iteratively continue applying this equality to all diamonds for
decreasing levels, we end up with the desired equality

ϕ(Q|P0,0)
ϕ(Q|Pn,n) =

∏n
i=1 e(Pi−1,i|Pi−1,i−1)∏n
i=1 e(Pi−1,i|Pi,i)

= ∆(Path(Q)) (94)

In other words, the local invariance, i.e. the invariance of the quotients in (93) for all
elementary diamonds in Pyr(Q), provides that the quotient ϕ(Q|P0,0)

ϕ(Q|Pn,n) only depends on the
starting values in Path(Q) via the equality in (94).

3.2.3 The Upper Bound

Summary of the results of this subsection. We are now able to define the desired
upper bound Ñ(Fn,P) of N(Fn,P) in the following Definition 50 and to prove the estimate
N(Fn,P) ≤ Ñ(Fn,P) in Corollary 51 as a consequence of Proposition 39 and Theorem 47.
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Definition 50. Let F = (Fν)ν be a recursive tower, n ∈ N0, P = (Pi,j)j−i≤1 ∈ W (F , n)
and Q ∈ PFn(P). Then we define

Ñ(Fn,P) :=
∏n−1
i=0 ẽ(Pi,i+1|Pi,i)
ẽ(Q|P0,0) and Ñ(Fn, V ) :=

∑
P∈V

∑
P ′∈W (F ,n,P )

Ñ(Fn,P ′)

for all finite V ⊆ PF0.

Corollary 51. In the situation of Definition 50, let F be defined over an algebraically
closed field. Then we have the estimate N(Fn,P) ≤ Ñ(Fn,P), which is even an equality
if P is tame.

In particular, we obtain the estimate N(Fn, V ) ≤ Ñ(Fn, V ) for all finite V ⊆ PF0

which is even an equality if all paths in W (F , n, V ) are tame.

Proof. On the one hand, the second desired estimate (resp. equality) follows from the first
estimate (resp. equality) by the identities N(Fn, V ) = ∑

P∈V
∑

P∈W (F ,n,P )N(Fn,P) in (5)
and Ñ(Fn, V ) = ∑

P∈W (F ,n,V ) Ñ(Fn,P) in Definition 50.
On the other hand, for P := P0,0, we obtain the first desired estimate by the equalities

and estimate

Ñ(Fn,P) · ẽ(Q|P ) =
n−1∏
i=0

e(Pi,i+1|Pi,i) =
∑

Q′∈PFn (P)
e(Q′|P ) ≥

∑
Q′∈PFn (P)

ẽ(Q′|P )

= N(Fn,P) · ẽ(Q|P ) (95)

where the equalities and estimate hold by the following reasoning: The first equality holds
by the definition of Ñ(Fn,P) in Definition 50 and by the definition of ẽ(Pi,i+1|Pi,i) =
e(Pi,i+1|Pi,i) for all i = 0, . . . , n − 1 in Definition 41(i). The second equality holds by
Proposition 39. The estimate holds by the ’in particular’-part of Theorem 47. The last
equality holds since the definition of ẽ in Definition 41 implies that ẽ(Q′|P0,0) is the same
for all Q′ ∈ PFn(P).

Moreover, since Lemma 44(iii) implies the equality ẽ(Q′|P ) = e(Q′|P ) for all Q′ ∈
PFn(P) if P is tame, the only estimate in (95) becomes an equality and, thus, the first
desired equality also follows.

Examples 52. The reasoning in Examples 42(ii) can also be applied to the geometric tower
F = (Fn)n of the recursive ST-tower FST,3. The corresponding path P in F consequently
satisfies the equality Ñ(F 3,P) = 2. On the other hand, Proposition 39 provides the equality
N(F 3,P) = 1. Thus, we obtain the estimate 1 = N(F 3,P) ≤ Ñ(F 3,P) = 2 which is in
accordance with Corollary 51.

Remark 53. In the situation of Corollary 51 and for any finite set V ⊂ PF0 containing
Ram(F/F0), we also obtain the lower bound

g̃(Fn) := dn ·
(
g(F0)− 1 + #V

2

)
− Ñ(Fn, V )

2 + 1

for the genus g(Fn) of Fn by the equalities and estimates

2 · ((g(Fn)− 1)− dn · (g(F0)− 1)) =
∑

Q∈PFn (V )
d(Q|Q ∩ F0) ≥

∑
Q∈PFn (V )

e(Q|Q ∩ F0)− 1

= dn ·#V −N(Fn, V ) ≥ dn ·#V − Ñ(Fn, V )

where the equalities and estimates hold by the following reasonings: The first equality holds
by the Hurwitz Genus Formula in (9) and by the fact that V contains Ram(F/F0). The
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first estimate holds since the different exponent is at least the ramification indices minus
one by [Sti08, p. 106, Corollary 3.5.5]. For the second equality, we first notice that since
V and, thus, PFn(V ) are finite sets and since F is defined over an algebraically closed
field, applying the fundamental equality in (8) to all places in V yields the identities∑

Q∈PFn (V )
e(Q|Q ∩ F0) = [Fn : F0] ·#V = dn ·#V. (96)

Moreover, Definition (5) and the fact that F is defined over an algebraically closed field
imply the identities ∑

Q∈PFn (V )
1 = #PFn(V ) = #P(1)

Fn
(V ) = N(Fn, V ). (97)

The second equality then follows from combining these two identities in (96) and (97).
The last estimate holds by Corollary 51.

It is not difficult to show that this lower bound g̃(Fn) is independent of the concrete
choice of V . However, we will not prove this, because we will not use this statement in
the rest of this thesis.

Remark 54. Let F = (Fν)ν be a recursive tower over the field k, P = (Pi,j)j−i≤1 ∈
W (F , n). As already announced in the introduction of this chapter, we want to elaborate
on the fact that the results of this chapter imply the main results in [Kuh17] which are
[Kuh17, p. 22, Theorem 2.3(f)] and the estimates in [Kuh17, p. 54, Theorem 3.20(c),(j)].

In short, [Kuh17, p. 22, Theorem 2.3(f)] follows from the ’moreover’-part of Key
Lemma 36(i). Also, if k is algebraically closed, the estimates in [Kuh17, p. 54, The-
orem 3.20(c),(j)] follow from the estimates Ñ(Fn,P) ≤ N(Fn,P) in Corollary 51 and
g̃(Fn) ≥ g(Fn) in Remark 53.

Moreover, the additional assumption of k being algebraically closed in Corollary 51 and
Remark 53 is not really necessary. It only simplifies the definitions, statements and proofs
due to the fact that all places become rational. By making some cumbersome adjustments,
we could even avoid this additional assumption. However, we already pointed out in the
introduction of this Chapter 3 that, for our purposes, it is sufficient to only conclude the
estimate N(Fn,P) ≤ Ñ(Fn,P) for algebraically closed full constants fields k.

91





4 Preliminaries II - Tower Graphs

Purpose of this chapter. In this second preliminary chapter, we will introduce the
main tool of this thesis, which is the tower graph of a recursive tower F = (Fν)ν . It will
capture the information about the extensions of places in F1/F0 and F1/σ(F0) for the
tower map σ of F . Moreover, we will also define the rational, splitting and ramification
subgraphs of the tower graph. These subgraphs will already carry all information which
are necessary to determine the limit of a recursive tower in most cases.

We will also relate the tower graph to the Beelen-graph in [BGS04, p. 10, Definition
4.2] and the HP-graph in [HP12, p. 15, Definition 10] via epimorphisms of directed graphs
in Proposition 95 and in Proposition 104, respectively.

Finally, in Subsection 4.4.2, we will also make some preparations for the proof of the
first major result of this thesis in the next chapter, namely Theorem 155.

Structure of this chapter. In Section 4.1, we will formulate our adjusted definitions
of directed graphs, weighted adjacency matrices and further related concepts with which
we will work for the rest of this thesis.

In Section 4.2, we will define the tower graph ΓF of a recursive tower F and its tower
graph map σΓF which connects the paths in ΓF and the paths in F bijectively. Moreover,
we will define the rational, splitting and ramification subgraphs of the tower graph which
carry the crucial information for the desired values N(Fn) and g(Fn).

In Section 4.3, we will relate the tower graph of a recursive tower F to the tower graphs
of its dual tower F̂ .

In Section 4.4, we will connect the tower graph to two other graphs which are also
attributed to recursive towers in the literature, namely the Beelen-graph in [BGS04, p. 10,
Definition 4.2] and the HP-graph in [HP12, p. 15, Definition 10].

4.1 Directed Graphs
Purpose of this section. In this Subsection 4.1, we will collect some basic definitions
and facts in regards to directed graphs and we will also add some new definitions for our
purposes. Most of the definitions can either be directly found or are closely related to the
definitions in [GR01] and [Sun13].

4.1.1 Weakly and Strongly Connected Directed Graphs

Purpose of this subsection. In this subsection, we will give several standard defini-
tions with regards to directed graphs, e.g. paths, weakly and strongly connected directed
graphs.

Weakly and strongly connected directed graphs. In the following Definition 55(i),
the definition of a directed graph is the same as in [BGS04, p. 10].
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Definition 55. Let V and E be sets, let α : E → V 2 be a map and let πi : V 2 → V be
the canonical projection from V 2 to its i-th component for all i = 1, 2. Then we define the
following:

(i) We call Γ := (V,E, a) a directed graph and write V (Γ) := V , E(Γ) := E, vinit :=
π1 ◦ α and vterm := π2 ◦ α.
Moreover, we call any element v ∈ V (Γ) a vertex, any element e ∈ E(Γ) an edge of
Γ, the map α the edge map, vinit the initial vertex map and vterm the terminal
vertex map on Γ.
Finally, for all edges e ∈ E(Γ), we call the vertex vinit(e) the initial vertex and the
vertex vterm(e) the terminal vertex of e.

(ii) A finite sequence P := (e1, . . . , en) ∈ E(Γ)n is called a (directed) path of length
n ∈ N in Γ if vterm(ei−1) = vinit(ei) for all i = 1, . . . , n and we also call any vertex
v ∈ V (Γ) a path of length 0.
If P = v is a path of length 0, we define Vertex0(P) := v and if P is a path of length
n ∈ N, we define

Vertex0(P) := vinit(e1), Vertexi(P) := vterm(ei), Edgei(P) := ei

for all i = 1, . . . , n and call Vertexi(P) the i-th vertex of P for all i = 0, . . . , n and
Edgei(P) the i-th edge of P for all i = 1, . . . , n.
Moreover, we define vinit(P) := Vertex0(P) (resp. vterm(P) := Vertexn(P)) and
Length(P) = n and call vinit(P) (resp. vterm(P)) the initial vertex (resp. terminal
vertex) of P.
We will also use the notation

P =
(

Vertex0(P) Edge1(P)−−−−−−→ Vertex1(P) Edge2(P)−−−−−−→ . . .
Edgen(P)−−−−−−→ Vertexn(P)

)
.

See Notation 56 for another non-standard notation P = [Pi,j ]j−i≤1 which we will
mostly use for a path P in Γ.

(iii) We define W (Γ, n) as the set of all paths of length n ∈ N0 in Γ and

W (Γ) :=
∐
n∈N0

W (Γ, n).

Thus, we have the identity W (Γ, 0) = V (Γ) and, furthermore, since we can identify
any path P = (e) of length one with its one and only edge e, we also have the identity
W (Γ, 1) = E(Γ).
For all n ∈ N0 and v1, v2 ∈ V (Γ), we also define

W (Γ, n, v1, v2) := {P ∈W (Γ, n) : (vinit(P), vterm(P)) = (v1, v2)}

and

E(Γ, v1, v2) := W (Γ, 1, v1, v2) and W (Γ, v1, v2) :=
∐
m∈N0

W (Γ,m, v1, v2).

(iv) A path P ∈ W (Γ) is called closed if vinit(P) = vterm(P) and a closed path P ∈
W (Γ, n) is called a circle if #{Vertexi(P) : i = 0, . . . , n} = n. Hence, a circle is a
closed path without further repeating vertices.
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(v) For all paths P1 ∈W (Γ,m) and P2 ∈W (Γ, n) with vterm(P1) = vinit(P2), we call P1
and P2 composable (in the order (P1,P2)) and call the path P1P2 = P1 · P2 ∈
W (Γ,m+ n) with

Vertexi(P1P2) =
{

Vertexi(P1) i = 0, . . . ,m
Vertexi−m(P2) i = m, . . . ,m+ n

the composition of P1 and P2.

(vi) A directed graph Γ is called weakly connected if there is some undirected path
between all v, v′ ∈ V (Γ), i.e. a finite sequence (v0, . . . , vn) of vertices in V (Γ) with
v0 = v and vn = v′ and a finite sequence (e1, . . . , en) of edges in E(Γ) for some
n ∈ N0 such that α(ei) ∈ {(vi, vi−1), (vi−1, vi)} for all i = 1, . . . , n.
A directed graph Γ is called strongly connected if there is some directed path from
v to v′ in Γ (i.e. W (Γ, v, v′) ̸= ∅) for all v, v′ ∈ V (Γ).

(vii) We define

E+(Γ, v) :=
∐

v′∈V (Γ)
E(Γ, v, v′) = {e ∈ E(Γ) : vinit(e) = v}

and
E−(Γ, v) :=

∐
v′∈V (Γ)

E(Γ, v′, v) = {e ∈ E(Γ) : vterm(e) = v}

for all v ∈ V (Γ). The number deg+(v) := #E+(Γ, v) is called the out-degree and
the number deg−(v) := #E−(Γ, v) is called the in-degree of v ∈ V (Γ).
Moreover, Γ is called d-regular if deg+(v) = deg−(v) = d holds for all v ∈ V (Γ).

Another notation for paths. In our applications, we will have canonical maps between
paths P in directed graphs and paths (Pi,j)j−i≤1 in recursive towers (see Definition 16(i)).
Therefore, in Notation 56, we define the non-standard notation P = [Pi,j ]j−i≤1 for a path
P in a directed graph. This notation is closer to the notation (Pi,j)j−i≤1 of paths in
recursive towers.

Notation 56. We will use the notation P = [Pi,j ]j−i≤1 for a path P ∈ W (Γ) where
Pi,i := Vertexi(P) for all i = 0, . . . ,Length(P) and Pi−1,i := Edgei(P) for all i =
1, . . . ,Length(P).

Lemma 57. Let Γ be a weakly connected directed graph. Then Γ is strongly connected if
and only if, for all edges Q in Γ, there is some path PQ from vterm(Q) to vinit(Q).

Proof. The ’only if’-part follows immediately. For the ’if’-part, suppose that, for all edges
Q in Γ, there is some path PQ from vterm(Q) to vinit(Q). Then, since Γ is weakly connected,
there is an undirected path P between any two vertices P0 and P1 in Γ. Now, we can
replace any of the edges Q in P which go in the wrong direction with the path PQ and,
consequently, obtain a directed path from P0 to P1.

4.1.2 Weight Functions and Adjacency Matrices

Purpose of this subsection. In this subsection, we will define weights on directed
graphs and weighted adjacency matrices. Then adjacency matrices for suitable weights
on the tower graphs of recursive towers will play the main role in all major results of this
thesis.

Moreover, we will also prove some statements in regards to quadratic matrices which
will be useful later.
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Definition 58. Let Γ be a directed graph and let R be a (not necessarily commutative)
ring.

(i) We call any map w : E(Γ) → R a weight function on Γ and define w(P) :=∏n
i=1w(Edgei(P)) for all path P ∈W (Γ, n) with n ∈ N0.

In particular, we have the identity w(P1 · P2) = w(P1) · w(P2) for all composable
paths P1 and P2.

(ii) If Γ is a finite directed graph (i.e. has finitely many vertices and edges) and v :=
(v1, . . . , vm) is some enumeration of the vertices of Γ, then we call the matrix

A =

 ∑
e∈E(Γ,vi,vj)

w(e)


i,j

∈ Rm×m

the w-adjacency matrix of Γ for the enumeration v.

Powers of adjacency matrices. A standard adjacency matrix A0 of a finite directed
graph Γ is the adjacency matrix of Γ with the constant weight function w0 : E(Γ) → Z,
e 7→ 1 for any enumeration v of the vertices in Γ. Now, it is well known that the (i, j)-th
entry of An0 is the number of paths of length n ∈ N0 from the i-th vertex to the j-th vertex
in Γ.

Moreover, in the next Lemma 59, we will prove a generalization of this statement to
an arbitrary weight function w : E(Γ) → R where R is a ring. Here, more generally, the
entries in An turn out to be the weighted sums ∑P∈W (Γ,n,vi,vj)w(P) of the paths of length
n from vi to vj . In our applications, this Lemma 59 will come in handy.

Lemma 59. Let R be a ring, Γ be a finite directed graph with a weight-function w :
E(Γ)→ R and A be the w-adjacency matrix of Γ for some enumeration v = (v1, . . . , vm)
of the vertices of Γ. For all n ∈ N0, we then have the identity

An =

 ∑
P∈W (Γ,n,vi,vj)

w(P)


i,j

.

Proof. We show this statement by induction over the exponent n ∈ N0. Let n = 0. On
the one hand, by the definition of paths of length 0 being the vertices of Γ in Definition
55(iii), we conclude that W (Γ, 0, vi, vj) consists of the path P = vi if i = j and is empty
otherwise. On the other hand, we have the identity w(vi) = 1 by Definition 58. Both
together yield the second equality

A0 = (δi,j)i,j =

 ∑
P∈W (Γ,0,vi,vj)

w(P)


i,j

where δi,j is the Kronecker delta symbol.
Next, let n ≥ 1 and define (ai,j)i,j := A and (a(k)

i,j )i,j := Ak for all k ∈ N0. Then we
obtain the desired equality by the equalities

a
(n)
i,j =

m∑
k=1

a
(n−1)
i,k · ak,j =

m∑
k=1

(
∑

P ′∈W (Γ,n−1,vi,vk)
w(P ′)) · ak,j

=
m∑
k=1

∑
P ′∈W (Γ,n−1,vi,vk)

∑
Q∈E(Γ,vk,vj)

w(P ′) · w(Q) =
∑

P∈W (Γ,n,vi,vj)
w(P)

96



for all i, j ∈ {1, . . . ,m} where the first equality holds by the definition of the matrix
multiplication, the second equality holds by applying the induction hypothesis to the
(i, k)-th entry a

(n−1)
i,k of An−1 for all i, k ∈ {1, . . . ,m}, the third equality holds by the

definition of the (k, j)-th entry ak,j of A for all k, j ∈ {1, . . . ,m} in Definition 58 and the
last equality holds by the identity E(Γ, vk, vj) = W (Γ, 1, vk, vj) in Definition 55(iii) and
by the map

m∐
k=1

W (Γ, n− 1, vi, vk)×W (Γ, 1, vk, vj)→W (Γ, n, vi, vj) via (P ′,P ′′)→ P ′ · P ′′

clearly being bijective and satisfying the identity w(P ′) · w(P ′′) = w(P ′ · P ′′) for all
(P ′,P ′′) ∈W (Γ, n− 1, vi, vk)×W (Γ, 1, vk, vj) and k = 1, . . . ,m in Definition 58.

Quadratic complex matrices. For the almost complete answer to Conjecture 1(iii),
we will analyze the asymptotic behavior of the sums of the entries in the n-powers An of
certain quadratic complex matrices A as n→∞. Thus, in Definition 60, we will formalize
the map N which takes the sum of these entries and, in Lemma 61, we will describe the
entries in An in terms of the n-th powers of the eigenvalues of A.

Definition 60. We define the morphism

N : Cm×m → C via (ai,j)i,j 7→
∑
i,j

ai,j

of C-vector spaces for all m ∈ N.

Lemma 61. Let K be a field, let A ∈ Km×m, let λ1, . . . , λr ∈ K be the pairwise distinct
eigenvalues of A, let mk be the size of the largest Jordan block of A for the eigenvalue λk
for all k = 1, . . . , r.

Then there are elements ci,j,k,l ∈ K for all i, j ∈ {1, . . . ,m}, all k = 1, . . . , r and all
l = 0, . . . ,mk − 1 such that we have the identity

An =

 r∑
k=1

mk−1∑
l=0

ci,j,k,l

(
n

l

)
λn−l
k


i,j

(98)

for all n ∈ N0 where
(n
l

)
:= 0 if n < l.

Moreover, for all n ≥ c(A) := maxk=1,...,rmk − 1, there are even polynomials fi,j,k ∈
K[n] with deg(fi,j,k) ≤ mk − 1 for all i, j ∈ {1, . . . ,m} and all k = 1, ..., r such that we
have the identity

An =
(

r∑
k=1

fi,j,k(n)λnk

)
i,j

.

In particular, for K = C and the spectral radius

ρ(A) := max
k=1,...,r

|λk|

of A, we have the identity
N(An) = O((ρ(A) + ε)n)

for all ε > 0 as n→∞.
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Proof. For the ’main’-part: Let

J =

Jm1,1(λ1) 0
. . .

0 Jmr,sr
(λr)

 (99)

be the canonical Jordan form of A with the Jordan blocks Jmk,ν
(λk) ∈ Kmk,ν×mk,ν for all

k = 1, ..., r and all ν = 1, . . . , sk. Moreover, let T ∈ GL(m,K) be a transformation matrix
such that A = TJT−1, i.e. we have the equalities

An = TJnT−1 = T

Jm1,1(λ1)n 0
. . .

0 Jmr,sr
(λr)n

T−1

for all n ∈ N0. Also, for all k = 1, ..., r and ν = 1, . . . , sk, let Imk,ν
be the identity matrix of

size mk,ν and let Nmk,ν
is the quadratic matrix of size mk,ν with ones on the superdiagonal

and zeroes else. Then N l
mk,ν

= 0 for all l ≥ mk,ν by [HJ90, p.122, Lemma 3.1.4].
Now, we notice that we can write Jmk,ν

(λk) = λkImk,ν
+Nmk,ν

for all k = 1, ..., r and
all ν = 1, . . . , sr. Then as the identity matrix Imk,ν

commutes with Nmk,ν
, we obtain

Jmk,ν
(λk)n = (λkImk,ν

+Nmk,ν
)n =

mk,ν−1∑
l=0

(
n

l

)
λn−l
k N l

mk,ν
(100)

by the Binomial Theorem for commuting matrices for all n ∈ N0 where
(n
l

)
= 0 if n < l.

Consequently, combining the equalities in (99) and (100) yields the desired presenta-
tion of An in the ’main’-part.

For the ’moreover’-part: Suppose n ≥ c(A) = max{mk : k = 1, . . . r} = max{mk,ν :
k = 1, . . . r and ν = 1, . . . , sk}. Then the binomial coefficients in (98) do not vanish and
thus are even polynomials in n.

Consequntly, on the hand, for λk ̸= 0, the sum ∑mk−1
l=0 ci,j,k,l

(n
l

)
λ−l
k ∈ K[n] can be

chosen as the desired polynomial fi,j,k(n) in the ’moreover’-part.
On the other hand, for λk = 0, in (100), we see that Jmk,ν

(λk)n = Nn
mk,ν

does not van-
ish if and only if mk,ν−1 = mk−1 = c(A) = n. Thus, we can choose fi,jk = ci,j,k,c(A) ∈ K
if mk − 1 = c(A) and fi,jk = 0 else.

For the ’in particular’-part: The ’in particular’-part immediately follows from the
’moreover’-part.

Strongly connected graphs and irreducible matrices. In the following Definition
62 and Lemma 63, we will translate the properties of being weakly and strongly con-
nected for finite directed graphs into the properties of being connected and irreducible,
respectively, for the corresponding weighted adjacency matrices.

Definition 62. Let R be a commutative ring which is not the zero ring. Then we define
the following.

(i) We call a matrix A ∈ Rm×m disconnected if there is a permutation matrix P ∈
{0, 1}m×m such that PAP t is a block diagonal matrix with two diagonal blocks. Oth-
erwise we call A connected.

(ii) We extend the definition of irreducible and reducible quadratic complex matrices in
[HJ90, p. 360, Definition 6.2.21] by just replacing C with R: We call a matrix
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A ∈ Rm×m reducible if there is a permutation matrix P ∈ {0, 1}m×m such that
PAP t is an upper block triangular matrix with two diagonal blocks. Otherwise we
call A irreducible.

Lemma 63. Let R be a commutative ring which is not the zero ring, let Γ be a finite
directed graph, let w : E(Γ)→ R be a weight function on Γ such that

∑
Q∈E(Γ,v,v′)w(Q) ̸= 0

for all v, v′ ∈ V (Γ) with E(Γ, v, v′) ̸= ∅ and let A = (∑Q∈E(Γ,vi,vj)w(Q))i,j ∈ Rm×m be
the w-adjacency matrix of Γ for some enumeration (v1, . . . , vm) of the vertices in Γ. Then
the following hold.

(i) Γ is weakly connected if and only if A is connected.

(ii) Γ is strongly connected if and only if A is irreducible.

Proof. For (i): If Pσ ∈ {0, 1}m×m is the permutation matrix to the permutation σ on
{1, . . . ,m}, then PσAP tσ is the w-adjacency matrix of Γ for the enumeration (vσ(1), . . . , vσ(m))
of the vertices in Γ.

First, by the definition of disconnected matrices in Definition 62, we obtain that A is
disconnected if and only if there are a permutation matrix Pσ ∈ {0, 1}m×m and matrices
B ∈ Rk×k and C ∈ Rm−k×m−k for some 1 ≤ k ≤ m− 1 such that

PσAP
t
σ =

(
B 0
0 C

)
. (101)

But, because PσAP tσ is the w-adjacency matrix of Γ for the enumeration (vσ(1), . . . , vσ(m))
and because of the assumption∑Q∈E(Γ,v,v′)w(Q) ̸= 0 for all v, v′ ∈ V (Γ) with E(Γ, v, v′) ̸=
∅, this identity in (101) is equivalent to the fact that there is no edge between the vertices in
the set S1 := {vσ(1), . . . , vσ(k)} ≠ ∅ and the vertices in the set S2 := {vσ(k+1), . . . , vσ(m)} ≠
∅.

On the one hand, the lack of edges between the non-empty sets S1 and S2 implies that
Γ cannot not be weakly connected. Hence, the ’only if’-part of the desired equivalence in
(i) follows.

On the other hand, if Γ is not weakly connected, it is clear that there are two non-
empty sets M1 and M2 of vertices in Γ such that there is no edge between the vertices in
M1 and the vertices in M2. Then we can choose k := #M1 and a suitable permutation
σ on {1, . . . ,m} such that S1 = M1 and S2 = M2. Then this yields that A must be
disconnected by the equivalences from above. Hence, the other implication of the desired
equivalence in (i) follows too.

For (ii): Let (ai,j)i,j := A and define B := (bi,j)i,j ∈ {0, 1}m×m ⊂ Cm×m via bi,j := 0 if
ai,j = 0 and bi,j := 1 else. Since the multiplication of a matrix with a permutation matrix
from left or right only reorders its entries, it is clear that the irreducibility of a matrix only
depends on the positions of its non-zero entries and not on the concrete non-zero entries.
Therefore, we conclude that

A is irreducible if and only if B is irreducible. (102)

Then, by the assumption that ∑Q∈E(Γ,v,v′)w(Q) ̸= 0 for all v, v′ ∈ V (Γ) with non-
empty E(Γ, v, v′), we notice that up to removing multiple edges and renaming the vertices
and edges in Γ, the directed graph Γ(B) in [HJ90, p. 357, Definition 6.2.11] is equal to Γ
and, thus, Γ(B) is strongly connected if and only if Γ is strongly connected. Consequently,
the equivalence of the items (a) and (d) in [HJ90, p. 362, Theorem 6.2.24] provides that

B is irreducible if and only if Γ is strongly connected. (103)

Finally, combining the two equivalences in (102) and (103) yields the desired equiva-
lence in (ii).
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Quadratic matrices with nonnegative real entries. The following Lemma 64(ii)
will be useful in Section 7.1.

Lemma 64. Let A ∈ Rm×m
≥0 be irreducible.

(i) For all non-zero B ∈ Rm×m
≥0 , the sum A + B is also irreducible and satisfies the

estimate ρ(A) < ρ(A+B).

(ii) If all row (resp. column) sums in A are at most d ∈ R>0, but at least one of the row
(resp. column) sums is less than d, then we have the estimate ρ(A) < d.

Proof. For (i): Let (ai,j)i,j := A and (bi,j)i,j := B. On the one hand, as A and B only have
non-negative real entries, we get the estimates 0 ≤ ai,j ≤ ai,j +bi,j for all i, j ∈ {1, . . . ,m}.
Then the irreducibility of A+B already follows from this, from the irreducibility of A and
from the definition of irreducible matrices in Definition 62(ii).

On the other hand, by [HJ90, p. 491, Theorem 8.1.18], we obtain the estimate ρ(A) ≤
ρ(A+ B). Now, assume that we have the equality ρ(A) = ρ(A+ B). Then, as suggested
in [HJ90, p. 515, Exercise 15], we notice that [HJ90, p. 509, Theorem 8.4.5] supplies some
real numbers φ, θ1, . . . , θm such that the equalities

(ak,l)k,l = A = (ei(φ+θk−θl) · (ak,l + bk,l))k,l (104)

hold. Consequently, if we take the entrywise absolute value of the equality in (104), we de-
rive the equalities ak,l = ak,l+bk,l or all k, l ∈ {1, . . . ,m} from the equality |ei(φ+θk−θl)| = 1
and from ak,l, bk,l ∈ R≥0. But these equalities yield B = 0 which is impossible because B
is non-zero by assumption. Hence, we conclude the desired estimate ρ(A) < ρ(A+B) in (i).

For (ii): Suppose that all row (resp. column) sums in A are at most d but at least
one of the row (resp. column) sums is less than d. Then there is some non-zero matrix
B ∈ Rm×m

≥0 such that all rows (resp. column) sums in A+B are equal to d. Consequently,
we obtain the desired estimate in (ii) by the estimate and equality

ρ(A) < ρ(A+B) = d

where the estimate holds by Lemma 64(i) and the equality holds by [HJ90, p.492, Theorem
8.1.22].

4.1.3 Morphisms

Purpose of this subsection. In the literature, there is no standard definition of a
morphism of directed graphs. Often, it is a map ϕ between the sets of vertices such that
if two vertices v1 and v2 in the domain are adjacent via an edge v1 → v2, then the images
ϕ(v1) and ϕ(v2) are also adjacant via an edge ϕ(v1)→ ϕ(v2).

However, our definition is closer to the definition of a morphism of undirected graphs
in [Sun13, p. 24] which additionally requires a map ϕE between the sets of edges and is
similar to the definition of a functor in category theory. In our applications, we will always
have natural maps ϕV between the sets of vertices and ϕE between the sets of edges and,
thus, we will define a morphism ϕ of directed paths as the pair (ϕV , ϕE) of both these
maps.

Definition 65. Let Γ and Γ′ be directed graphs. Then a pair ϕ = (ϕV , ϕE) of two maps
ϕV : V (Γ) → V (Γ′) and ϕE : E(Γ) → E(Γ′) is called a covariant (resp. contravari-
ant) morphism of directed graphs and we write ϕ : Γ → Γ′ if ϕV (v1) ϕE(e)−−−→ ϕV (v2)
(resp. ϕV (v1) ϕE(e)←−−− ϕV (v2)) holds for all v1

e−→ v2. If we just write that ϕ is morphism of
directed graphs, then we mean that ϕ is covariant.
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Moreover, ϕ extends to the map

ϕW : W (Γ′)→W (Γ) via [Pi,j ]j−i≤1 7→ [ϕ(Pi,j)]j−i≤1

and we will often just write ϕ(v) := ϕV (v) for all v ∈ V (Γ), ϕ(e) := ϕE(e) for all e ∈ E(Γ)
and ϕ(P) := ϕW (P) for all P ∈W (Γ).

Analogously to ϕW , we can also extend ϕ to a map from the set of undirected paths in
Γ′ to the set of undirected paths in Γ.

Finally, we call ϕ a monomorphism (resp. epimorphism; resp. isomorphism)
if ϕV and ϕE are both injective (resp. surjective; resp. bijective).

4.1.4 Subgraphs

Purpose of this subsection. In this subsection, we will give several definitions with
regards to subgraphs of directed graphs. Some of these definitions will be non-standard,
e.g. forward and backward complete subgraphs. Moreover, we will also prove some simple
properties.

Subgraphs of directed graphs. In Definition 66, we want to introduce some notions
with respect to subgraphs which we will use frequently. Most of the notions are standard.
Only the definition of forward (resp. backward) complete subgraphs in (iii) is non-standard.
It is motivated by the definition of forward (reps. backward) complete subsets of places
in [Bee04, p. 238, Theorem 5.5] and in [HP16, p. 4, Definition 5]. Moreover, although the
chosen definition of weakly connected components in (v) is non-standard, in Lemma 68(i),
we will prove that it is equivalent to one of the standard definitions.

Definition 66. Let Γ and Γ′ be directed graphs with edge maps α and α′, respectively.
Then we define the following:

(i) We call Γ′ a subgraph of Γ if the inclusions V (Γ′) ⊆ V (Γ) and E(Γ′) ⊆ E(Γ) and
the identity α(e′) = α′(e′) hold for all e′ ∈ E(Γ′). Moreover, we call Γ′ a proper
subgraph of Γ if Γ′ ̸= Γ.
Notice that if subsets V ⊆ V (Γ) and E ⊆ E(Γ) satisfy vinit(e), vterm(e) ∈ V for all
e ∈ E, then there is a unique subgraph Γ′ of Γ with V (Γ′) = V and E(Γ′) = E.

(ii) Let M be a set of subgraphs of some directed graph Γ0 with edge map α0 : E(Γ0)→
V (Γ0)2. Then, for all Φ ∈ {⋂,⋃}, the map α0 restricts to a map

αΦ : Φ
Γ∈M

E(Γ)→
(

Φ
Γ∈M

V (Γ)
)2

and, thus, the directed graph

Φ
Γ∈M

Γ :=
(

Φ
Γ∈M

V (Γ), Φ
Γ∈M

E(Γ), αΦ

)
is a subgraph Γ0. Moreover,

⋂
Γ∈M Γ is even a subgraph of any subgraph in M and

all subgraphs in M are subgraphs of
⋃

Γ∈M Γ. We call
⋂

Γ∈M Γ (resp.
⋃

Γ∈M Γ) the
intersection (resp. union) subgraph of the subgraphs in M .
Subgraphs Γ and Γ′ of Γ0 are called disjoint if their intersection subgraph is the
empty graph, i.e. has empty vertex and edge sets.
Finally, for the disjoint union, we will use the symbol

∐
and, for the intersection,

union and disjoint unions of finitely many subgraphs, we will also use the usual
symbols ∩,∪,⊔.
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(iii) A subgraph Γ′ of Γ is called forward (resp. backward) complete at the vertex
v ∈ V (Γ′) if

E+(Γ, v) = E+(Γ′, v) (resp. E−(Γ, v) = E−(Γ′, v)).

Moreover, a subgraph Γ′ of Γ is called forward (resp. backward) complete if Γ′

is forward (resp. backward) complete at all v ∈ V (Γ′).
Notice that any forward (resp. backward) complete subgraph Γ′ of Γ satisfies the
equality E(Γ, v′, v) = ∅ (resp. E(Γ, v, v′) = ∅) for all v′ ∈ V (Γ′) and v ∈ V (Γ)\V (Γ′).
Also, notice that intersection and union subgraphs of forward (resp. backward) com-
plete subgraphs are again forward (resp. backward) complete.

(iv) Let Γ′ be a forward and backward complete subgraph of Γ. Then α restricts to a map

α′′ : E(Γ)\E(Γ′)→ (V (Γ)\V (Γ′))2

by the second to last comment in Definition 66(iii) and therefore the triple

Γ\Γ′ := (V (Γ)\V (Γ′), E(Γ)\E(Γ′), α′′)

is directed graph too. We call Γ\Γ′ the complementary or difference subgraph
of Γ′ in Γ.
Notice that Γ\Γ′ is also a forward and backward complete subgraph of Γ by the second
to last comment in Definition 66(iii).

(v) Any non-empty weakly connected forward and backward complete subgraph Γ′ of Γ is
called a weakly connected component of Γ.

(vi) Any non-empty subgraph Γ′ of Γ is called a strongly connected component of Γ
if Γ′ is a maximal strongly connected subgraph of Γ, i.e. Γ′ is not a proper subgraph
of another strongly connected subgraph Γ′′ of Γ.

Remark 67. The definition of forward (resp. backward) complete subgraphs in Definition
66(iii) is unrelated to the often used notion of complete undirected graphs which means
that all distinct vertices in a graph are adjacent.

Moreover, we remark that, in [BGS04, p. 10], forward and backward complete subgraphs
are called components and that [HP12, p. 15, Definition 10(ii)] defines a weakly connected
component to be a maximal weakly connected subgraph which is equivalent to our definition
in Definition 66(v) by Lemma 68(i).

Forward and backward complete subgraphs and weakly connected components.
As already announced in Lemma 68(i), we will show that our non-standard definition of
weakly connected components is equivalent to one of the standard definitions.

Moreover, in Lemma 68(iii), we will also prove that any forward and backward complete
subgraph is a union of weakly connected components.

Lemma 68. Let Γ′ and Γ′′ be subgraphs of the directed graph Γ. Then the following hold:

(i) Suppose that Γ′ is non-empty and weakly connected. Then Γ′ is a weakly connected
component of Γ if and only if Γ′ is a maximal weakly connected subgraph of Γ.

(ii) If Γ′ and Γ′′ are weakly connected components of Γ, then Γ′ and Γ′′ are either equal
or disjoint.
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(iii) Γ′ is a forward and backward complete subgraph of Γ if and only if Γ′ is a disjoint
union of all the weakly connected components of Γ which are also subgraphs of Γ′.

Proof. For (i): We first notice that Γ′ is not a maximal weakly connected subgraph of
Γ if and only if there is an edge e ∈ E(Γ)\E(Γ′) with vinit(e) ∈ V (Γ′) or vterm(e) ∈
V (Γ′). This again is equivalent to the proper inclusion E+(Γ′, vinit(e)) ⊂ E+(Γ, vinit(e)) or
E−(Γ′, vterm(e)) ⊂ E−(Γ, vterm(e)), respectively. But the validity of at least one of these
inclusions for some e ∈ E(Γ) with vinit(e) ∈ V (Γ′) or vterm(e) ∈ V (Γ′), respectively, is
exactly the definition of Γ′ not being a forward and backward complete subgraph of Γ′ in
Definition 66(iii). Hence, the equivalence in (i) follows.

For (ii): Assume that Γ′ and Γ′′ are not disjoint, i.e. there is a vertex v0 ∈ V (Γ′)∩V (Γ′′)
by Definition 66(ii).

Now, the definition of forward complete subgraphs in Definition 66(iii) provides the
equalities E+(Γ′, v) = E+(Γ, v) = E+(Γ′′, v) for all v ∈ V (Γ′)∩V (Γ′′). By these equalities,
we obtain the equalities E(Γ′) = ∐

v∈V (Γ′) E+(Γ, v) and E(Γ′′) = ∐
v∈V (Γ′′) E+(Γ, v) and,

thus, it is enough to show the equality

V (Γ′) = V (Γ′′). (105)

For the inclusion from left to right, let v ∈ V (Γ′). By the definition of the weakly con-
nectedness of Γ′ in Definition 55(vi), there is an undirected path P between v0 and v in
Γ′. Since Γ′ is a subgraph of Γ, the undirected path P is especially contained in Γ. Thus,
starting at v0 ∈ V (Γ′′), we can iteratively apply the definition of the fact that Γ′′ is a
forward and backward complete subgraph of Γ to the vertices of P. Finally, this supplies
v ∈ V (Γ′′) and, hence, the inclusion from left to right in (105) follows.

For the other inclusion, we just notice that the roles of Γ′ and Γ′′ can be swapped.
Hence, we obtain the desired equality in (105). and (ii) follows.

For the ’if’-part in (iii): By the definition of a weakly connected component of Γ in
Definition 66(iii), it is forward and backward complete subgraph of Γ. As the union of
forward and backward complete subgraphs is again a forward and backward complete sub-
graph by the last comment in Definition 66(iii), the ’if’-part in (iii) follows.

For the ’only if’-part in (iii): On the one hand, for all v ∈ V (Γ′), the vertex set
{v} ⊆ V (Γ′) and edge set ∅ ⊆ E(Γ′) induce a weakly connected subgraph of Γ′ which
contains v as a vertex. On the other hand, the union of any number (possibly infinite)
of weakly connected subgraphs of Γ′ containing v as a vertex is again a weakly connected
subgraph of Γ′ containing v as a vertex. Therefore, combining these two facts and Zorn’s
Lemma supplies the existence of a unique maximal weakly connected subgraph Γv of Γ′

containing v as a vertex.
Consequently, Lemma 68(i) supplies that Γv is the unique weakly connected component

of Γ′ which contains v and, hence, M := {Γv : v ∈ V (Γ′)} is the set of all weakly connected
components of Γ′. As Lemma 68(ii) also provides that two distinct weakly connected
components of Γ′ are disjoint, we obtain that Γ′ = ∐

G∈M G is the disjoint union of its
weakly connected components.

Next, the definition of weakly connected components in Definition 66(v) imply that
all G ∈M are also forward and backward complete subgraphs of Γ′. But, the property of
being a forward (resp. backward) complete subgraph is clearly transitive by its definition
in Definition 66(iii), i.e. if G satisfies this property as a subgraph of Γ′ and Γ′ satisfies this
property as a subgraph of Γ, then G also satisfies this property as a subgraph of Γ. Thus,
all G ∈ M are also non-empty pairwise disjoint weakly connected forward and backward
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complete subgraphs of Γ. This again means that all G ∈ M are even pairwise disjoint
weakly connected components of Γ and they are also subgraphs of Γ′.

Finally, because any maximal weakly connected subgraph of Γ which is also a subgraph
of Γ′ must especially be a maximal weakly connected subgraph of Γ′, Lemma 68(i) implies
that M is even the set of all weakly connected components of Γ which are also subgraphs
of Γ′.

Hence, we established the desired statement, namely that Γ′ = ∐
G∈M G is a disjoint

union of all weakly connected components which are also subgraphs of Γ′.

4.1.5 Image and Preimage Graphs

Purpose of this subsection. In the following Definition/Lemma 69, we will define
image and preimage graphs for morphism of directed graphs. Then, in Lemma 70, we will
explore which properties of subgraphs of directed graphs are stable under morphisms of
directed graphs, i.e. which properties still hold for the image or preimage graphs of these
subgraphs.

Image and preimage graphs.

Definition/Lemma 69. Let ϕ : Γ′
0 → Γ0 be a morphism of directed graphs, let Γ′ be a

subgraph of Γ′
0 and let Γ be a subgraph of Γ0.

(i) The vertex and edge sets

V (ϕ(Γ′)) := ϕ(V (Γ′)) and E(ϕ(Γ′)) := ϕ(E(Γ′))

define a subgraph ϕ(Γ′) of Γ0 and we call ϕ(Γ′) the ϕ-image graph of Γ′.

(ii) The vertex and edge sets

V (ϕ−1(Γ)) := ϕ−1(V (Γ)) and E(ϕ−1(Γ)) := ϕ−1(E(Γ))

define a subgraph ϕ−1(Γ) of Γ′
0. We call ϕ−1(Γ′

0) the ϕ-preimage graph of Γ′
0.

Proof. Let us write v′
init (resp. v′

term) for the initial (resp. terminal) vertex map on Γ′
0 and

vinit (resp. vterm) for the initial (resp. terminal) vertex map on Γ0.

For (i): Let e ∈ E(Γ′). Then v′
init(e) and v′

term(e) are vertices in Γ′ because Γ′ is a
subgraph of Γ′

0. Combining this and the definition of morphisms of directed graphs in Def-
inition 65 yields that vinit(ϕ(e)) = ϕ(v′

init(e)) and vterm(ϕ(e)) = ϕ(v′
term(e)) are elements

in ϕ(V (Γ′)) = V (ϕ(Γ′)). Hence, ϕ(Γ′) is indeed a subgraph of Γ0 by the ’notice’-part in
Definition 66(i).

For (ii): Let e ∈ ϕ−1(E(Γ)), i.e. e ∈ E(Γ′
0) with ϕ(e) ∈ E(Γ). Then combining the

definition of morphisms of directed graphs in Definition 65 and the assumption that Γ
is a subgraph of Γ0 yields that ϕ(v′

init(e)) = vinit(ϕ(e)) and ϕ(v′
term(e)) = vterm(ϕ(e)) are

elements in V (Γ). This again implies that v′
init(e) and v′

term(e) are elements in ϕ−1(V (Γ)) =
V (ϕ−1(Γ)). Hence, ϕ−1(Γ) is indeed a subgraph of Γ′

0 by the ’notice’-part in Definition
66(i).

Properties stable under image and preimage graphs.

Lemma 70. Let ϕ : Γ′
0 → Γ0 be a morphism of directed graphs, let Γ′ be a subgraph of Γ′

0
and let Γ be a subgraph of Γ0. Then the following hold:
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(i) If G′ (resp. G) is also a subgraph of Γ′
0 (resp. Γ0), then we have the identity ϕ(Γ′ ∪

G′) = ϕ(Γ′) ∪ ϕ(G′) (resp. ϕ−1(Γ′ ∪G′) = ϕ−1(Γ′) ∪ ϕ−1(G′)).

(ii) Γ′ is a subgraph of ϕ−1(ϕ(Γ′)). Moreover, if ϕ is a monomorphism, then we even
have the identity Γ′ = ϕ−1(ϕ(Γ′)).

(iii) ϕ(ϕ−1(Γ)) is a subgraph of Γ. Moreover, if ϕ is an epimorphism, then we even have
the identity Γ′ = ϕ(ϕ−1(Γ′)).

(iv) If Γ is a forward (resp. backward) complete subgraph of Γ0, then ϕ−1(Γ) is also a
forward (resp. backward) complete subgraph of Γ′

0.
Moreover, if ϕ is an epimorphism, then this is even an equivalence.

(v) If Γ′ is weakly (resp. strongly) connected, then ϕ(Γ′) is also weakly (resp. strongly)
connected.

Proof. For (i), (ii) and (iii): All desired statements immediately follow from the definitions
of the image and preimage subgraphs in Definition 69.

For the ’main’-part in (iv): Suppose that Γ is a forward (resp. backward) complete
subgraph of Γ0 and let us write E0 := E+ (resp. E1 := E−), v′

0 (resp. v′
1) for the initial

(resp. terminal) vertex map on Γ′
0 and v0 (resp. v1) for the initial (resp. terminal) vertex

map on Γ0.
Now, let i := 0 (resp. i := 1) and e ∈ E(Γ′

0) with v′
i(e) ∈ V (ϕ−1(Γ)). Then we obtain

ϕ(e) ∈ Ei(Γ0, vi(ϕ(e))) = Ei(Γ0, ϕ(v′
i(e))) = Ei(Γ, ϕ(v′

i(e))) ⊆ E(Γ) (106)

where the containment-statement and inclusion hold by the definition of Ei in Definition
55(vii), the first equality holds since we have the equality vi(ϕ(e)) = ϕ(v′

i(e)) by the
definition of morphism of directed graphs in Definition 65 and the second equality holds
because of v′

i(e) ∈ V (ϕ−1(Γ)) = ϕ−1(V (Γ)), because Γ is a forward (resp. backward)
complete subgraph of Γ0 and because of its definition in Definition 66(iii).

Consequently, (106) yields that e is an edge in ϕ−1(E(Γ)) = E(ϕ−1(Γ)) and, hence,
this again yields that ϕ−1(Γ) is a forward (resp. backward) complete subgraph of Γ′

0.

For the ’moreover’-part in (iv): Suppose that ϕ is an epimorphism and that ϕ−1(Γ) is
a forward (resp. backward) complete subgraph of Γ0 and let us use the same notation as
in the proof of the main’-part in (iv).

Now, let i = 0 (resp. i := 1) and let e ∈ E(Γ0) with vi(e) ∈ V (Γ). As ϕ is an epi-
morphism, there is some e′ ∈ E(Γ′

0) such that ϕ(e′) = e. In particular, we then have
the equalities ϕ(v′

i(e′)) = vi(ϕ(e′)) = vi(e) by the definition of morphisms of directed
graphs in Definition 65. Therefore, we deduce v′

i(e′) ∈ ϕ−1(V (Γ)) = V (ϕ−1(Γ)). More-
over, because ϕ−1(Γ) be a forward (resp. backward) complete subgraph of Γ0, we conclude
e′ ∈ Ei(Γ′

0, v
′
i(e′)) = Ei(ϕ−1(Γ), v′

i(e′)) by its definition in Definition 66(iii). But this
again implies e = ϕ(e′) ∈ E(Γ) and, hence, Γ is also a forward (resp. backward) complete
subgraph of Γ0.

For (v): Let v0 and v1 be vertices in V (ϕ(Γ′)) = ϕ(V (Γ′)). Moreover, there are some
v′
i ∈ V (Γ′). with ϕ(v′

i) = vi for all i = 0, 1. Since Γ′ is weakly (resp. strongly) connected,
its definition in Definition 55(vi) supplies some undirected (resp. directed) path P ′ from
v′

0 to v′
1 in Γ′ by Definition 55(vi). Then ϕ(P ′) is an undirected (resp. directed) path from

ϕ(v′
0) = v0 to ϕ(v′

1) = v1 by the definition of the extension of ϕ on undirected (resp. di-
rected) paths in Definition 65. This again yields that ϕ(Γ′) is also weakly (resp. strongly)
connected. Hence, (v) follows.
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Example 71. In Lemma 70(iv), it is shown that the preimage graph of a forward (resp. back-
ward) complete subgraph is again a forward (resp. backward) complete subgraph. For the
image graph, this does not hold in general:

For instance, consider a directed graph Γ with three vertices v1, v2, v3 and two edges
e1,2, e3,2 from v1 to v2 and from v3 to v2, respectively. Moreover, let Γ′ be a directed graph
which only consists of one vertex v and the morphism ϕ : Γ′ → Γ of directed graphs which
just map v to v2. Although Γ′ is clearly a forward and backward complete subgraph of
itself, its image graph ϕ(Γ′) which only consists of the vertex v2 is neither a forward or
backward complete subgraph of Γ.

Furthermore, if we add a copy of Γ to Γ′ and extend ϕ via the identity on the copy of Γ
in Γ′, then ϕ even becomes an epimorphism. But the image graph of the weakly connected
component of Γ′ which only consists of v still only consists of the vertex v2 and, thus, is
neither a forward or a backward complete subgraph of Γ.

4.1.6 Pyramidal Graph

Purpose of this subsection. In this subsection, we will attribute a graph structure
to the pyramids of places and interpret the ramification indices and relative degrees as
weights on the edges.

Pyramidal graph. As it is obvious from Figure 2.6, we can attribute a directed graph
to the pyramid of a place in a recursive tower. Here, the places in the pyramid are the
vertices and the elementary extensions are the edges of the directed graph.

Definition 72. Let F be a recursive function field, let (Fi,j)i,j := Pyr(F) be the pyramid
of F , let Q ∈ PFm,n for some m ≤ n and let (Pi,j)i,j := Pyr(Q). Let V := {Pi,j : m ≤
i ≤ j ≤ n}, let E := ElemExt(Pyr(Q)) ⊆ V 2 and let α : E → V 2 be the inclusion map
(R,P ) 7→ (R,P ).

(i) Then we call the directed graph Graph(Pyr(Q)) the pyramidal graph of Pyr(Q).

(ii) The maps e for the ramification indices and f for the relative degrees restrict to
weight functions e|E , f|E : E := ElemExt(Pyr(Q)) → N on Graph(Pyr(Q)). Let
us write e′ and f ′, respectively, for the canonical extensions of these weight func-
tions on all paths in Graph(Pyr(Q)). Then, for all α ∈ {e, ẽ, f} and paths P in
Graph(Pyr(Q)), we obtain the identity α′(P) = a(vinit(P)|vterm(P)) because α′(P)
is defined as the product of the α|E-values of the edges in P by Definition 58 and
because α satisfies the multiplicative transitivity rule in (7) or Lemma 44(ii).
Therefore, we can interpret the restrictions of e, ẽ and f to maps Ext(Pyr(Q))→ N
as maps on the paths in Graph(Pyr(Q)).

Example 73. In figures 2.7 and 2.8, the two pyramidal graphs Graph(Pyr(Q)) and
Graph(Pyr(Q′)) of the places Q and Q′ in Example 12 are already depicted up to the
directions of the edges. In particular, as explained in Definition 72(ii) the blue numbers
which are the ramification indices of the elementary extensions in the pyramids can be
interpreted as weights on the pyramidal graphs.

4.2 Tower Graphs
The main tool of this thesis: The tower graph. In this subsection, we will define
the main tool of this thesis which is the tower graph ΓF of a recursive tower F = (Fν)ν .
It will capture information about all extensions of places in F1/F0 and F1/σ(F0). More
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specifically, we will also define the rational, splitting and ramification subgraphs of ΓF .
From these crucial subgraphs, we will derive information for the desired values N(Fn) and
g(Fn) for all n ∈ N.

Structure of this section. First, we will define the tower graph and the tower graph
map and then, in Figure 4.1, we will add figures of finite subgraphs of the corresponding
tower graphs to our list of examples in Figure 2.3.

In Subsection 4.2.1, we will attribute the properties of being rational, being tame and
having balanced ramification indices to paths in the tower graph. Here, the last property
will yield the decisive criterion for the almost complete answer to Conjecture 1(iii) in
Corollary 184.

In Subsection 4.2.2, we will define the sets of places in the tower which lie over sub-
graphs of the tower graph.

In Subsection 4.2.3, we will define the rational, splitting and ramification subgraphs
of a tower graph and prove some first properties of these subgraphs.

Tower graphs and Beelen-graphs. In the following Definition 74, we will define the
tower graphs ΓF of recursive tower F . The tower graph is basically a slight modification
of the Beelen-graph in [BGS04, p. 10, Definition 4.2]. For polynomial-recursive towers and
over algebraically closed constant fields, these two graphs are canonically isomorphic (see
Proposition 95).

However, there are two reasons for why we will work with towers graphs instead of
the Beelen-graphs: First, our definition of pair-recursive towers is not compatible with
the Beelen-graph. Second, the Beelen-graph only includes the rational places of F0 and
F1 as the vertices and edges, respectively. Thus, if we want to have the information of
all extensions of places in F1/F0 and F1/σ(F0), we need to switch to the geometric tower
F of F . But by doing so, this inflates the graph since every single extension of places of
higher degrees then yields many copies of the same extension but with rational places.

Definition 74. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0).
Then we define the map

α : PF1 → PF0 × PF0 via Q 7→ (Q ∩ F0, σ
−1(Q) ∩ F0).

and we call the directed graph ΓF := (PF0 ,PF1 , α) the tower graph of F .

Examples 75. For all recursive towers F = (Fν)ν , we call the subgraph Γc of ΓF which
only consists of the edges Q with deg(Q) ≤ c and all their initial and terminal vertices P
the degree c subgraph of ΓF .

In Figure 4.1, to our list of examples of recursive towers F = (Fν)ν , we added ref-
erences to figures displaying degree c subgraphs Γc of the corresponding tower graphs in
Figure 2.3. All the data for these figures of subgraphs were automatically computed with
Magma [BCP97] and are collected in Chapter B. Each of these figures also displays a table
with the following data:

First, the defining polynomial f of the function field F1. Second, the balanced degree d
of F . Third, the upper bound c ∈ {1, 2} for the degrees of the edges in the displayed degree
c subgraph Γc. Fourth, abbreviations Dr_Is and F0-generators of the vertices in Γc where
r denotes the degree of the corresponding place and s the index for some automatically
generated enumeration of the places of degree r. Finally, the variables z1 = x and z2 = y
just repeat the chosen generators of F1.

Moreover, the weights which are displayed on all edges P0
Q−→ P1 are the values

(e(Q|P0), f(Q|P0)), (e(Q|σ(P1)), f(Q|σ(P1))).
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Finally, we also attached comprehensive texts with information to the considered re-
cursive towers. Thus, in the following, if we want to give examples, we will often just
refer to the subgraph in the corresponding figure in Chapter B. Further information on the
considered recursive tower can then be extracted from the attached text.

Reference q f ∈ Fq[X,Y ] Figure λ(F) (≥ b)

[MW05, p. 212] 9 fMW,2 = Y 2 +XY + 2X2 + 1 B.1 2/3
[MW05, p. 212] 3 fMW,2 = Y 2 +XY + 2X2 + 1 B.2 0
[MW05, p. 214] 49 fMW,3 = Y 2 +X2Y + 5X2 + 5 B.3 6 (≥ 4)
[MW05, p. 212] 9 fMW,4 = Y 2 +X2Y + 1 B.4 2
[MW05, p. 212] 9 fMW,6 = Y 2 + (X2 + 1)Y + 2X2 B.5 2/3
[MW05, p. 213] 25 fMW,8 = Y 2 + (X2 + 3)Y + 4X2 B.6 1
[MW05, p. 212] 9 fMW,11 = Y 2 + (X2 + 1)Y +X2 +X + 1 B.7 2
[MW05, p. 212] 3 fMW,11 = Y 2 + (X2 + 1)Y +X2 +X + 1 B.8 0
[MW05, p. 213] 25 fMW,12 = X2Y 2 + (X2 + 3X + 3)Y + 4 B.9 4 (≥ 3)
[MW05, p. 213] 25 fMW,14 = X2Y 2 + (X2 + 4X + 2)Y + 4X2 + 2 B.10 4 (≥ 3)
[MW05, p. 213] 25 fMW,15 = X2Y 2 + (X2 + 4X + 4)Y + 4X2 + 3X + 2 B.11 4 (≥ 3)
[MW05, p. 213] 25 fMW,16 = (X2 + 1)Y 2 + (X + 1)Y + 2X2 + 4X + 1 B.12 1
[MW05, p. 213] 25 fMW,20 = Y 2 + 2XY + 4X2 + 1 B.13 1
[MW05, p. 213] 25 fMW,21 = Y 2 + 2XY + 4X2 + 2 B.14 1
[MW05, p. 213] 25 fMW,22 = Y 2 + 4XY +X2 +X B.15 4
[Sti08, p. 260] l2 fGS,1 = Y l−1 + (X + 1)l−1 − 1 B.16 2/(l − 1)

l ≥ 3
[Sti08, p. 261] le fGS,2 = Y m + (X + 1)m − 1, B.17 2/(q − 2)

e ≥ 2, m := q−1
l−1 B.18

[Sti08, p. 261] l2 fGS,3 = (Y l − Y )(1−X l−1)−X l B.19 l − 1
[vdGvdV02, p. 292] 8 fGV = (Y 2 + Y )X +X2 +X + 1 B.20 2/3
[BGS05, p. 161] l3 fBezGS,l = Y l(X l +X − 1)− (1− Y )X 2(l2 − 1)/(l + 2)
[ST15, p. 680] 2 fST,1 = Y 2X + Y +X2 + 1 B.21 0
[ST15, p. 680] 2 fST,2 = X2 +XY 2 +X + Y B.22 0
[ST15, p. 680] 2 fST,3 = X2Y 2 +XY 2 + Y +X B.23 0
[ST15, p. 680] 2 fST,4 = X2Y 2 +XY 2 + Y +X2 + 1 B.24 0

[BBGS15, p. 4] qm fBBGS,q,i,j = εq,i,j · (Trj(Y/Xqi) + Tri(Y qj
/X)− 1) B.25 2/

(
1

qj−1 + 1
qi−1

)
i, j ∈ N with gcd(i, j) = 1,m := i+ j

[HP16, p. 12] 5 fHP,5 = Y 2(3X − 1)− (X2 +X) B.26 0
[CNT18, p. 19] 4 fCNT = (Y 2 + Y )(X2 +X + 1) +X B.27 1

s even
[BR20, p. 4] 5 fBR,5 = (X6 +X + 2)(Y 5 − Y ) B.28 2/(5− 2)

−(X5 −X)(Y 6 + Y 5 + 2Y + 3)
[BR20, p. 4] q fBR,q = (Xq+1 + b)(b+ n)(Y q − Y ) 2/(q − 2)

−2b(Y q+1 + n)(Xq −X)

Figure 4.1: Extended table with examples for recursive towers, with references to the
literature, with references to figures displaying the degree one or two subgraphs of the
corresponding tower graphs and with the precise limits of the towers.
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Tower graph maps. In the following Definition/Lemma 76, we connect the paths in
ΓF and the paths of places in F via the bijective tower graph map σΓF .

Definition/Lemma 76. Let F be a recursive tower which is defined by the pair (σ, F0)
and let ΓF be the tower graph of F . Then the map

σΓF : W (ΓF )→W (F) via [Pi,j ]j−i≤1 7→ (σi(Pi,j))j−i≤1.

is a well defined bijection and, for all n ∈ N0, all [Pi,j ]j−i≤1 ∈ W (ΓF , n), all i = 1, . . . , n
and all ε = 0, 1, we have the identity

e(Pi−1,i|σε(Pi−1+ε,i−1+ε)) = e(σi−1(Pi−1,i)|σi−1+ε(Pi−1+ε,i−1+ε)).

Moreover, σΓF restricts to a bijection W (ΓF , n) → W (F , n) for all n ∈ N0. We call σΓF

the tower graph map of F .

Proof. By the definitions of W (ΓF , n) in Definition 55(iii) and W (F , n) in Definition 16(i)
and by the invariance of ramification indices under the action of isomorphisms in (11),
it immediately follows that σΓF restricts to a well defined map W (ΓF , n) → W (F , n)
for all n ∈ N0 which also satisfies the desired equalities e(Pi−1,i|σε(Pi−1+ε,i−1+ε)) =
e(σi−1(Pi−1,i)|σi−1+ε(Pi−1+ε,i−1+ε)) for all i = 1, . . . , n and all ε = 0, 1.

On the other hand, σΓF clearly has the inverse map

σ−1
ΓF

: W (F)→W (ΓF ) via (Pi,j)j−i≤1 7→ [σ−i(Pi,j)]j−i≤1

which also restricts to a map W (F , n)→W (ΓF , n). Hence, Lemma 76 follows.

Examples 77. (i) Consider the recursive MW-towers F = FMW,2 = (Fν)ν over F3
and F ′ = F ′

MW,2 = (F ′
ν)ν over F9 which are defined by the polynomial fMW,2 =

Y 2 + XY + 2X2 + 1. Their degree two and degree one subgraphs Γ and Γ′ are
depicted in the figures B.1 and B.2, respectively.
In Example 12, we claimed that there are places Q and Q′ having pyramids which
are of the forms as in the figures 2.7 and 2.8.
Indeed, in Γ there is a path P as in Figure 4.2 and in Γ′ there is a path P ′ as in
Figure 4.3. The bijectivities of the tower maps σΓF and σΓF′ in Definition/Lemma
76 and the surjectivities of PathF and PathP ′ in Definition/Lemma 17(i) then supply
the desired places Q ∈ PF3(σΓF (P)) and Q′ ∈ PF ′

3
(σΓF′ (P ′)).

(ii) Consider the recursive ST-tower F = FST,3 = (Fν)ν over F2 in Examples 8(iv)
which is defined by the polynomial fST,3 = X2Y 2 + XY 2 + X + Y . The degree one
subgraph Γ of F is depicted in Figure B.23.
In Examples 42(ii), we claimed that there is a place Q ∈ PF3 such that Pyr(Q) is of
the form which is depicted in Figure 3.5 where the blue numbers are the ramification
indices of the elementary extensions in Pyr(Q).
Indeed, in Γ there is a path P as in Figure 4.4. The bijectivity of the tower map
σΓF in Definition/Lemma 76 and the surjectivity of Path in Definition/Lemma 17(i)
then supply the desired place Q ∈ PF3(σΓF (P)).
However, the ramification indices in the top diamond (Q,P0,2, P1,3, P1,2) cannot be
obtained from Abhyankar’s Lemma and therefore we used Magma [BCP97].
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Figure 4.2: First example of the tower graph map and a pyramid of places with Abhyankar
ramification indices

Tower graph map on compositions of paths. The following rule in Lemma 78 will
often be helpful to avoid cumbersome index chasings for compositions of paths.

Lemma 78. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0), let
ΓF be the tower graph of F and let P1 and P2 be composable paths in ΓF of the lengths l1
and l2, respectively. Then we have the identity

σΓF (P1 · P2) = σΓF (P1) · σl1(σΓF (P2)) ∈W (F , l1 + l2).

Proof. Let [Pi,j ]j−i≤1 := P1 · P2 ∈W (ΓF , l1 + l2). Then we have the equalities

P1 = [Pi,j ]j−i≤1 = [Pi,j ]0≤i≤j≤l1
j−i≤1

∈W (ΓF , l1) (107)

and

P2 = [Pl1+i,l1+j ]j−i≤1 = [Pl1+i,l1+j ]0≤i≤j≤l2
j−i≤1

∈W (ΓF , l2). (108)

Let us also use the double subscript notation for paths in F . Then we already obtain the
desired identity by the computation

σΓF (P1 · P2) = (σi(Pi,j))0≤i≤j≤l1+l2
j−i≤1

= (σi(Pi,j))0≤i≤j≤l1
j−i≤1

· (σl1(σi−l1(Pi,j)))l1≤i≤j≤l1+l2
j−i≤1

= (σi(Pi,j))0≤i≤j≤l1
j−i≤1

· σl1((σi(Pl1+i,l1+j))0≤i≤j≤l2
j−i≤1

)

= σΓF ([Pi,j ]0≤i≤j≤l1
j−i≤1

) · σl1(σΓF ([Pl1+i,l1+j ]0≤i≤j≤l2
j−i≤1

))

= σΓF (P1) · σl1(σΓF (P2))

where the equalities hold by the following reasonings: The first and second to last equalities
hold by the definition of σΓF in Definition/Lemma 76. The second equality holds as we
just split the path in two composable paths at the position (l1, l1). The third equality
holds by Definition/Lemma 20(i). The last equality holds by the equalities in (107) and
(108)
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Figure 4.3: Second example of the tower graph map and a pyramid of places with
Abhyankar ramification indices

4.2.1 Properties of Paths

Analogously to the properties of paths in recursive towers F in Definition 16, i.e. being
rational, being tame and having balanced ramification indices in Definition 16, we will
attribute the same properties to the paths in tower graphs ΓF . Here, our definitions will
ensure that these properties are invariant under the action of the tower graph map σΓF .

Rational paths. In the following Definition 79, we will define rational paths in ΓF and,
in Lemma 80, we will show that the rational paths in ΓF already generate all rational
paths in F via the bijective tower graph map σΓF .

Definition 79. Let F be a recursive tower and let ΓF be its tower graph. Then we call a
path P in ΓF rational if all vertices and edges of P are rational.

Moreover, for all n ∈ N0 and all subgraphs Γ in ΓF , we denote the set of all rational
paths in Γ by Wrat(Γ) and the set of all paths in Γ of length n by Wrat(Γ, n).

Lemma 80. Let F = (Fν)ν be a recursive tower and let ΓF be its tower graph. Then σΓF

restricts to a bijection Wrat(Γ) → Wrat(F). In particular, for all n ∈ N0 and all rational
places Q ∈ PFn, the path σ−1

ΓF
(Path(Q)) in ΓF is rational.

Proof. On the one hand, from the definitions of σΓF in Definition/Lemma 76, of Wrat(Γ) in
Definition 79 and of Wrat(F) in Definition 16(iv), we immediately derive the ’main’-part,
namely that σΓF indeed restricts to a bijection Wrat(Γ)→Wrat(F).

On the other hand, combining this ’main’-part and Definition/Lemma 17(iii) also
immediately yields the ’in particular’-part.

Tame and wild paths. In the following Definition/Lemma 81, we will define tame and
wild paths in tower graphs. Here, we should think of tame paths P in the tower graph as
the paths which ensure that Abhyankar’s Lemma can be applied to all diamonds in the
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Figure 4.4: Third example of the tower graph map and a pyramid of places with Ab-
hyankar ramification indices

pyramid Pyr(Q) with Q lying over P. This property was also already captured in Lemma
17(v) for the tame paths in the recursive tower.

In our applications, the different exponents d(Q|P ) will be completely irrelevant.
Therefore, in wild recursive towers, our only additional problem will be that Abhyankar’s
Lemma will not always be applicable. But even in wild recursive towers F , most of the
paths are tame and, thus, we can also apply Abhyankar’s Lemma to most paths in F .

Definition/Lemma 81. Let F be a recursive tower and let ΓF be its tower graph. Then
we call a path P = [Pi,j ]j−i≤1 ∈ W (ΓF , n) tame if one of the following two equivalent
properties is satisfied:

(i) The path σΓF (P) ∈W (F , n) is tame in the sense of Definition 16(vi).

(ii) For all 1 ≤ i ≤ j ≤ n−1, at least one of the extensions Pi−1,i/σ(Pi,i) and Pj,j+1/Pj,j
is tame.

Otherwise, we call P wild.

Proof. Let σ be the tower map of F . By the definition of σΓF in Definition/Lemma 76, we
have the equality σΓF (P) = (σi(Pi,j))j−i≤1. Thus, by the invariance of the ramification
indices under the action of isomorphisms in (11), we obtain that, for all i = 1, . . . , n − 1
and all ε = 0, 1, the extension Pi−1,i/σ

ε(Pi−1+ε,i−1+ε) is tame if and only if the extension
σi(Pi−1,i)/σi+ε(Pi−1+ε,i−1+ε) is tame. Combining these equivalences with the definition
of the tameness of σΓF (P) in Definition 16(vi) supplies the desired equivalence.

Paths with balanced ramification indices. The following property of having bal-
anced ramification indices will be crucial for the almost complete answer to Conjecture
1(iii) in Corollary 184 and all its implications:

Up to finite constant field extension and up to some wild recursive towers for which the
CNT-tower in Examples 8(v) is the only example in the literature known to the author,
it will come out that a recursive tower satisfies the stronger Conjecture 1(ii) if and only
if its ramification subgraph only has finite weakly connected components which contain
circles with unbalanced ramification indices.

Moreover, as a further major result of this thesis, we will also show in Theorem 155 that
the tower graph has at most one finite weakly connected component which only contains

112



circles with balanced ramification indices. In particular, Theorem 155 will improve the
results in [Bee04, p. 238, Theorem 5.5] and [HP12, p. 27, Theorem 23]. There, it was shown
that most of the Beelen-graphs (see Definition 94(i)) and all HP-graphs (see Definition
101(i)) have at most one finite d-regular weakly connected component.

Definition/Lemma 82. Let F = (Fν)ν be a recursive tower which is defined by the pair
(σ, F0) and let ΓF be its tower graph. We say that a path P = [Pi,j ]j−i≤1 ∈ W (ΓF , n)
has balanced (resp. unbalanced) ramification indices if one of the following two
equivalent properties is satisfied:

(i) The path σΓF (P) ∈ W (F , n) has balanced ramification indices in the sense of Defi-
nition 16(v).

(ii) The equality
∏n
i=1 e(Pi−1,i|Pi−1,i−1) = ∏n

i=1 e(Pi−1,i|σ(Pi,i)) holds.

Otherwise, we say that P has unbalanced ramification indices.
For brevity, we will sometimes call a subgraph which only contains circles with balanced

ramification indices balanced.

Proof. The invariance of the ramification indices under the action of isomorphisms in (11)
provides the equality∏n

i=1 e(Pi−1,i|Pi−1,i−1)∏n
i=1 e(Pi−1,i|σ(Pi,i))

=
∏n
i=1 e(σi−1(Pi−1,i)|σi−1(Pi−1,i−1))∏n

i=1 e(σi−1(Pi−1,i)|σi(Pi,i))
(109)

Now, we notice that σΓF (P) = (σi(Pi,j))j−i≤1 ∈ W (F , n)) has balanced ramification
indices if and only if the right side of the equality in (109) is equal to one. Hence, we
obtain the desired equivalence.

Lemma 83. Let F = (Fν)ν be a recursive tower and let Γ be a subgraph of the tower
graph ΓF of F . If all circles in Γ have balanced ramification indices, then also all closed
paths in Γ have balanced ramification indices.

Proof. Let σ be the tower map of F and let C = [Pi,j ]j−i≤1 be a closed path of length n
in Γ. We will show that C has balanced ramification indices by induction over its length
n ∈ N0. For n = 0, the statement holds trivially as C is only a vertex in this case.

Next, let n ≥ 1. Either C is a circle and we are done by the assumption that all circles
have balanced ramification indices. Or there are a repeating vertices Pi,i = Pj,j with
0 ≤ i < j < n. Now, choose k and l such that l is minimal with this property. Then, by
the minimality of this choice, the subpath C′ := [Pi+k,j+k]j−i≤1 ∈W (Γ, l− k) of C cannot
have repeating vertices except for the initial and terminal vertices (see Figure 4.5). Thus,

Figure 4.5: A closed path in a proof

C′ is a circle of length l − k ≥ 1 and we have the equality C = PC′P ′ for the composable
subpaths P = [Pi,j ]j−i≤1 ∈W (Γ, k) and P ′ = [Pi+l,j+l]j−i≤1 ∈W (Γ, n− l) of C.
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On the one hand, we notice that PP ′ is also a closed path in Γ. But PP ′ has length
n − (l − k) ≤ n − 1. Hence, applying the induction hypothesis to PP ′ supplies that PP ′

has balanced ramification indices. Thus, we obtain the equalities

k∏
i=1

e(Pi−1,i|Pi−1,i−1)
n∏
i=l

e(Pi−1,i|Pi−1,i−1)

=
k∏
i=1

e(Pi−1,i|Pi−1,i−1)
n−l∏
i=1

e(Pi−1+l,i+l|Pi−1+l,i−1+l)

=
k∏
i=1

e(Pi−1,i|σ(Pi,i))
n−l∏
i=1

e(Pi−1+l,i+l|σ(Pi+l,i+l))

=
k∏
i=1

e(Pi−1,i|σ(Pi,i))
n∏
i=l

e(Pi−1,i|σ(Pi,i)). (110)

where the first and last equalities hold as we only changed the indexings and the second
equality holds by the definition of paths with balanced ramification indices in Defini-
tion/Lemma 82(ii) On the other hand, since C′ is a circle, it also has balanced ramification
indices and, thus, we analogously obtain the equalities

l∏
i=k

e(Pi−1,i|Pi−1,i−1) =
l−k∏
i=1

e(Pi−1+k,i+k|Pi−1+k,i−1+k) =
l−k∏
i=1

e(Pi−1+k,i+k|σ(Pi+k,i+k))

=
l∏

i=k
e(Pi−1,i|σ(Pi,i)). (111)

Finally, we conclude the equalities

n∏
i=1

e(Pi−1,i|Pi−1,i−1) =
k∏
i=1

e(Pi−1,i|Pi−1,i−1)
l∏

i=k
e(Pi−1,i|Pi−1,i−1)

n∏
i=l

e(Pi−1,i|Pi−1,i−1)

=
k∏
i=1

e(Pi−1,i|σ(Pi,i))
l∏

i=k
e(Pi−1,i|σ(Pi,i))

n∏
i=l

e(Pi−1,i|σ(Pi,i))

=
n∏
i=1

e(Pi−1,i|σ(Pi,i)) (112)

where the first and second equalities hold as we only split the products in three parts at
the positions k and l and the second equality holds by (110) and (111).

Hence, the desired statement, namely that C has balanced ramification indices, follows
from the equality in (111) and the definition of paths with balanced ramification indices.

Examples 84. (i) Consider the paths P and P ′ in Example 77(i) which are depicted
in the figures 4.2 and 4.3, respectively. There, P is not rational but P ′ is rational.

(ii) In all tame recursive towers, every path is tame. But the path P in Example 77(ii),
which is depicted in Figure 4.4, is wild.

(iii) In general, all paths which only have unramified edges (in F1/F0 and F1/σ(F0)) have
balanced ramification indices.
In Figure B.8, the first weakly connected component has circles with unbalanced
ramification indices but the second weakly connected component only has circles with
balanced ramification indices.
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4.2.2 Places over Paths

For our almost complete answer to Conjecture 1(iii) in Corollary 184, we will have to
estimate the number of places which lie over paths in fixed subgraphs of the tower graph.
In the following Definition 85, we will define the set of these places.

Definition 85. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0)
and let Γ be a subgraph of the tower graph ΓF of F . For all n ∈ N0, we define the set

PFn [Γ] := PFn(σΓF (W (Γ, n))) = {Q ∈ PFn : σ−1
ΓF

(Path(Q)) ∈W (Γ, n)}
= {Q ∈ PFn : σ−i(Q) ∩ F1 ∈ E(Γ) for all i = 0, . . . , n− 1}

of places which lie over a path of length n in Γ, the set

P(1)
Fn

[Γ] := PFn [Γ] ∩ P(1)
Fn

= {Q ∈ PFn [Γ] : Q is rational}

of rational places which lie over a path of length n in Γ and the set

P◦
Fn

[Γ] := {Q ∈ PFn [Γ] : σ−1
ΓF

(Path(Q)) is a circle}.

of places which lie over a circle of length n in Γ. Moreover, we also define the number

N [Fn,Γ] := #P(1)
Fn

[Γ],

and the disjoint unions

PF [Γ] :=
∐
n∈N0

PFn [Γ] and P◦
F [Γ] :=

∐
n∈N0

P◦
Fn

[Γ].

Paths starting at a vertex in a subgraph and paths being completely contained
in a subgraph. For every forward complete subgraph Γ, a path which starts in Γ is
completely contained in Γ. Correspondingly and up to technicalities, this will yields the
’moreover’-part in the following Lemma 86.

Lemma 86. Let F = (Fν)ν be a recursive tower and let Γ be a subgraph of the tower
graph ΓF of F . Then we have the inclusions

PFn [Γ] ⊆ PFn(V (Γ)) and PFn+1 [Γ] ⊆ PFn+1(E(Γ)).

for all n ∈ N0. Moreover, if Γ is a forward complete subgraph of ΓF , then the inclusions
are even identities.

Proof. Let ε := 0 (resp. ε := 1) and define M0 := V (Γ) (resp. M1 := E(Γ)). We immedi-
ately obtain the desired inclusion in the ’main’-part by the equality and inclusion

PFn+ε [Γ] = PFn+ε(σΓF (W (Γ, n+ ε))) ⊆ PFn+ε(Mε)

for all n ∈ N0 where the equality holds by the definition of PFn+ε [Γ] = PFn+ε(σΓF (W (Γ, n+
ε))) in Definition 85 and the inclusion holds as the initial vertex (resp. edge) of any path
in σΓF (W (Γ, n + ε)) is a vertex (resp. edge) in Γ by the definitions of W (Γ, n + ε) in
Definition 55(iii) and of σΓF in Definition/Lemma 76.

Now, for the ’moreover’-part, suppose that Γ is a forward complete subgraph of ΓF .
Then we obtain the equalities

σΓF (W (Γ, n+ ε)) = σΓF ({[Pi,j ]j−i≤1 ∈W (ΓF , n+ ε) : P0,ε ∈Mε})
= {(Pi,j)j−i≤1 ∈W (F , n+ ε) : P0,ε ∈Mε} (113)

115



for all n ∈ N0 where the equalities hold by the following reasonings: The inclusion from
left to right of the first equality holds by the inclusion

W (Γ, n+ ε) ⊆ {[Pi,j ]j−i≤1 ∈W (ΓF , n+ ε) : P0,ε ∈Mε}. (114)

The other inclusion of the first equality holds because the definition of the forward com-
pleteness of Γ in Definition 66(iii) implies that any path in ΓF which starts at a vertex
(resp. edge) in Γ must be completely contained in Γ and, thus, the inclusion in (114) is
even an equality. The second equality in (113) holds by the definition of the bijection σΓF

in Definition/Lemma 76.
Finally, we deduce the first (resp. second) desired identity in the ’moreover’-part by

the equalities

PFn+ε [Γ] = PFn+ε(σΓF (W (Γ, n+ ε))) = PFn+ε({(Pi,j)j−i≤1 ∈W (F , n+ ε) : P0,ε ∈Mε})
= PFn+ε(Mε)

for all n ∈ N0 where the first equality holds by the definition of

PFn+ε [Γ] = PFn+ε(σΓF (W (Γ, n+ ε)))

in Definition 85, the second equality holds by the equality in (113), the inclusion from left
to right of the third equality holds trivially and the other inclusion of the third equality
holds because any place Q ∈ PFn(Mε) has a path (P ′

i,j)j−i≤1 := Path(Q) ∈ W (F , n + ε)
with P ′

0,ε ∈Mε.

4.2.3 The Rational, Splitting and Ramification Subgraphs

Purpose of this subsection. In this subsection, we will define the rational, splitting
and ramification subgraphs of ΓF . From these crucial subgraphs, we will derive informa-
tion for the desired values N(Fn) and g(Fn) for all n ∈ N.

Fundamental equality for the vertices in the tower graph. In the following
Lemma 87, we will translate the fundamental equality for the places in F0 into terms
of the vertices in the tower graph. Here, the ’in particular’-part in Lemma 87 will imply
that the row and column sums of the standard adjacency matrix for any finite subgraph
of the tower graph have the upper bound d.

Lemma 87 (Fundamental Equality for the Vertices in Tower Graphs). Let F = (Fν)ν be
a recursive tower of balanced degree d which is defined by the pair (σ, F0) and let ΓF be
the tower graph of F . Then we have the identities

d =
∑

Q∈E+(ΓF ,P )
e(Q|P )f(Q|P ) =

∑
Q∈E−(ΓF ,P )

e(Q|σ(P ))f(Q|σ(P ))

for all P ∈ V (ΓF ). We call these identities the fundamental equality for the vertices
in tower graphs.

In particular, the in- and out-degrees of all vertices in ΓF are positive and have the
upper bound d.

Proof. The desired identities in the ’main’-part immediately follow from the equalities

d = [F1 : F0] =
∑

Q∈PF1 (P )
e(Q|P )f(Q|P ) =

∑
Q∈E+(ΓF ,P )

e(Q|P )f(Q|P )
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and

d = [F1 : σ(F0)] =
∑

Q∈PF1 (σ(P ))
e(Q|σ(P ))f(Q|σ(P )) =

∑
Q∈E−(ΓF ,P )

e(Q|σ(P ))f(Q|σ(P ))

for all P ∈ V (ΓF ) = PF0 where the equalities hold by the following reasonings: The
first equalities hold because F has balanced degree d which then implies the equalities
d = [F1 : F0] = [F1 : σ(F0)] by Definition 5(ii). The second equalities hold by applying the
fundamental equality in (8) to P ∈ PF0 in F1/F0 and to σ(P ) ∈ Pσ(F0) in F1/σ(F0). The
third equalities hold because the definitions of E+(ΓF , P ) and E−(ΓF , P ) in Definition
55(vii) imply the identities

E+(ΓF , P ) = PF1(P )

and

E−(ΓF , P ) = {Q ∈ PF1 : σ−1(Q) ∩ F0 = P} = {Q ∈ PF1 : Q ∩ σ(F0) = σ(P )}
= PF1(σ(P )).

Finally, the ’in particular’-part immediately follows from the identities in the ’main’-
part.

Rational, splitting, ramification subgraph. Let F = (Fν)ν be a recursive tower of
balanced degree over a finite field. Not all places in Fn are relevant for the splitting rate
ν(F) and the asymptotic genus γ(F). Only the rational places contribute to N(Fn) =
#P(1)

Fn
and only the ramified places contribute to g(Fn) due to the Hurwitz Genus Formula

in (9). Thus, only the paths in ΓF which are images of the rational and ramified places
under the surjection σ−1

ΓF
◦ Path : PF →W (ΓF ) are relevant for our purposes.

Correspondingly, in the following Definition 88, the finite rational subgraph Γrat
F of

ΓF contains all paths contributing to N(Fn) and the ramification subgraph Γram
F is the

smallest forward and backward complete subgraph containing all paths contributing to
g(Fn). Moreover, in Lemma 92(i), we will show that the vertices of the splitting subgraph
Γsplit

F of ΓF are contained in Split(F/F0).

Definition 88. Let F = (Fν)ν be a recursive tower and let ΓF be the tower graph of F .

(i) We define Γrat
F as the subgraph Γrat

F of ΓF with V (Γrat
F ) := P(1)

F0
⊆ V (Γ) and E(Γrat

F ) :=
P(1)
F1
⊆ E(Γ) and call Γrat

F the rational subgraph of ΓF .
Notice that vinit(Q) = Q ∩ F0 and vterm(Q) = σ−1(Q) ∩ F0 are rational places for
all Q ∈ E(Γrat

F ) = P(1)
F1

and, thus, Γrat
F is indeed a well defined subgraph of Γ by

Definition 66(i).

(ii) Suppose that F has balanced degree d. Then we define the subgraph Γsplit
F as the union

of all d-regular subgraphs of Γrat
F and call Γsplit

F the (rational) splitting subgraph
of ΓF .
Notice that Γsplit

F is also d-regular because the ’in particular’-part in Lemma 87 im-
plies that d is an upper bound for the in- and out-degree of all vertices in ΓF . There-
fore, Γsplit

F is the largest d-regular subgraph of Γrat
F .

Moreover, also notice that the ’in particular’-part in Lemma 87 also implies that all
d-regular subgraphs of ΓF are even forward and backward complete. Therefore, Γsplit

F
is also the largest d-regular forward and backward complete subgraph of Γrat

F and still
a forward and backward complete subgraph of ΓF .
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(iii) We call an edge Q in ΓF ramified if it is ramified in F1/F0 or in F1/σ(F0). Oth-
erwise, we call Q unramified.
Moreover, we define Γram

F as the intersection subgraph of all forward and backward
complete subgraphs of ΓF containing all the ramified edges of ΓF and call Γram

F the
ramification subgraph of ΓF .
Notice that Γram

F is also a forward and backward complete subgraph of ΓF by the last
comment in Definition 66(iii). Therefore, it is the smallest (i.e. unique minimal
with respect to the subgraph relation) forward and backward complete subgraph of ΓF
containing all the ramified edges.

Notice that any of the subgraphs Γram
F , Γrat

F and Γsplit
F of ΓF can be the empty graph,

i.e. V (Γ) = E(Γ) = ∅.

Example 89. In Figure B.5, the rational subgraph for the recursive MW-tower F =
FMW,6 over F9 which is defined by the MW-polynomial fMW,6 = Y 2 + (X2 + 1)Y + 2X2 is
displayed. Here, the first weakly connected component is the ramification subgraph and the
second subgraph is the splitting subgraph. This comes out from the following reasoning:

The displayed subgraph Γ1 is the degree one subgraph. Therefore, it only contains the
rational edges in ΓF . Moreover, as there are exactly ten rational places in F0, Γ1 also
contains all rational vertices and, thus, is equal to the rational subgraph Γrat

F .
Moreover, by the fundamental equality for the vertices in tower graphs in Lemma 87,

both displayed weakly connected components of Γ1 = Γrat
F are already weakly connected

components of ΓF .
On the one hand, the second weakly connected component is even some 2-regular weakly

connected component of ΓF and, thus, is contained in the splitting subgraph Γsplit
F . But

since the first weakly connected component is not 2-regular and since there are no other
rational vertices in ΓF , the second weakly connected component must already be equal to
Γsplit

F .
On the other hand, the first weakly connected component Γ contains eight ramified

edges and, consequently, must be contained in the ramification subgraph Γram
F . Moreover,

because the defining polynomial fMW,6 of F has degree two in both variables and because
of Riemann’s inequality in [Sti08, p. 148, Corollary 3.11.4], we deduce that the genus of
F1 = F9(x, y) is at most one. In particular, if we consider Hurwitz genus formula in (9)
and the fact that F is tame, then we conclude that F1 has genus one and all of the maximal
eight ramified edges of ΓF are contained in Γ. Hence, Γ must also already be equal to Γram

F .

Remark 90. In Theorem 155, it will come out that Γsplit
F is already a weakly connected

component of ΓF .

d-regular subgraphs. The following Lemma 91 will be useful to prove Proposition 92.
First, in Lemma 91(i), we will show that any finite subgraph Γ of (ΓF\Γram

F ) ∩ Γrat
F is

d-regular if and only if it is forward (resp. backward) complete.
Then, in Lemma 91(ii), we will consider the surjective composition τF := σ−1

ΓF
◦Path :

PF → W (ΓF ) and prove that any path P in (ΓF\Γram
F ) ∩ Γrat

F has exactly one place
Q ∈ PPyr(F) which lies above it, i.e. τF (Q) = P, and that this place Q is rational.

Lemma 91. Let F = (Fν)ν be a recursive tower of balanced degree d which is defined by
the pair (σ, F0), let ΓF be the tower graph of F and let Γram

F be the ramification subgraph
and Γrat

F the rational subgraph of ΓF . Then the following hold:

(i) For all finite subgraphs Γ of (ΓF\Γram
F )∩Γrat

F , the following statements are equivalent:

(a) Γ is a forward complete subgraph of ΓF .
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(b) Γ is a backward complete subgraph of ΓF .
(c) Γ is d-regular.
(d) Γ is a union of disjoint weakly connected components of ΓF .

In (d), the weakly connected components are even strongly connected.

(ii) Let Γ be a subgraph of (ΓF\Γram
F ) ∩ Γrat

F . Then the surjection

τF := σ−1
ΓF
◦ Path : PF →W (ΓF ) via Q 7→ [σ−i(Q) ∩ Fj−i]j−i≤1

restricts to a bijection τ−1
F (W (Γ))→W (Γ) and all places in τ−1

F (W (Γ)) are rational.

Proof. For (i): First, we notice the equalities and estimates

#E(Γ) =
∑

P∈V (Γ)
#E+(Γ, P ) =

∑
P∈V (Γ)

#E−(Γ, P ) ≤ d ·#V (Γ) (115)

where the equalities and estimates hold by the following reasonings: The first two equalities
hold as the definitions of E+(Γ, P ) and E−(Γ, P ) in Definition 55(vii) imply the identities
E(Γ) = ∐

P∈V (Γ)E+(Γ, P ) = ∐
P∈V (Γ)E−(Γ, P ). The estimate hold as the ’in particular’-

part of Lemma 87 implies the estimate

#E+(Γ, P ) ≤ #E+(ΓF , P ) ≤ d and #E−(Γ, P ) ≤ #E−(ΓF , P ) ≤ d. (116)

In particular, combining the equalities and estimates in (115) and the estimates in (116)
imply the equivalence of the statements

#E+(Γ, P ) = d for all P ∈ V (Γ) and #E−(Γ, P ) = d for all P ∈ V (Γ). (117)

Second, we notice that since E(Γram
F ) contains all places Q ∈ PF1 which are ramified in

F1/F0 or in F1/σ(F0) by Definition 88(iii), the set E(ΓF\Γram
F ) = E(ΓF )\E(Γram

F ) contains
none of these ramified places. Therefore, we have the equalities e(Q|Q ∩ F0) = 1 and
e(Q|Q ∩ σ(F0)) = e(σ−1(Q)|σ−1(Q) ∩ F0) = 1 for all Q ∈ E(ΓF\Γram

F ). On the one hand,
combining these equalities, Lemma 87 and the equalities f(Q|P ) = deg(Q) = f(Q|σ(P ))
for all vertices P ∈ V (Γ) ⊆ V (Γrat

F ) and all edges Q ∈ E+(ΓF , P ) ∪ E−(ΓF , P ) provides
the equalities ∑

Q∈E+(ΓF ,P )
deg(Q) = d =

∑
Q∈E−(ΓF ,P )

deg(Q) (118)

for all P ∈ V (Γ) ⊆ V ((ΓF\Γram
F ) ∩ Γrat

F ).
Now, on the one hand, if Γ is a forward (resp. backward) complete subgraph of ΓF ,

its definition in Definition 66(iii) provides E+(Γ, P ) = E+(ΓF , P ) (resp. E−(Γ, P ) =
E−(ΓF , P )). Thus, as any place in E(Γ) ⊆ E(Γrat

F ) is rational, the first (resp. second)
equality in (118) yields the equality d = #E+(Γ, P ) (resp. d = #E−(Γ, P )). On the other
hand, if the equality d = #E+(Γ, P ) (resp. d = #E−(Γ, P )) holds, we obtain the equalities
and estimates

d = #E+(Γ, P ) ≤ #E+(ΓF , P ) ≤
∑

Q∈E+(ΓF ,P )
deg(Q) = d

(resp. d = #E−(Γ, P ) ≤ #E−(ΓF , P ) ≤
∑

Q∈E−(ΓF ,P )
deg(Q) = d)

where the last equality hold by the first (resp. second) equality in (118). Therefore,
all estimates are equalities which especially supplies that Γ is forward (resp. backward)
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complete subgraph of ΓF in this case. Consequently, combining these equivalences, the
equivalences in (117) and the definition of d-regularity in Definition 55(vii), we already
obtain the desired equivalences of (a), (b) and (c).

Finally, by Lemma 68(iii), we obtain that the combination of (a) and (b) is equivalent
to (d) without the ’strongly connected’-part. In particular, we obtain that (d) without
the ’strongly connected’-part is also equivalent to (c).

Let Γ0 be any of these weakly connected components of ΓF . Then (c) implies that Γ0
is d-regular. Hence, combining this conclusion, the ’in particular’-part in Lemma 87 and
[Sti08, p. 119, Proposition 3.6.6] yields that Γ0 is also strongly connected.

All together, we established (i).

For (ii): First, for all Q ∈ PF , the desired equality τF (Q) = [σ−i(Q) ∩ Fj−i]j−i≤1
follows from the equalities

τF (Q) = σ−1
ΓF

(Path(Q)) = [σ−i(Q ∩ Fi,j)]j−i≤1 = [σ−i(Q) ∩ Fj−i]j−i≤1 (119)

where the first equality holds by the definition of τF = σ−1
ΓF
◦ Path, the second equality

holds by the definitions of the maps Path in Definition 17(i) and σΓF in Definition 76 and
the last equality holds because Lemma 10(i) and Lemma 10(ii) imply the equalities

σ−i(Q ∩ Fi,j) = σ−i(Q) ∩ σ−i(Fi,j) = σ−i(Q) ∩ Fj−i.

Next, for showing that τF resticts to a bijection τ−1
F (W (Γ)) → W (Γ), we first no-

tice that it is enough to show that the map Path restricts to a bijection τ−1
F (W (Γ)) =

Path−1(σΓF (W (Γ)))→ σΓF (W (Γ)) because σ−1
ΓF

is a bijection by Definition/Lemma 76.
Let P = (Pi,j)j−i≤1 ∈ σΓF (W (Γ, n)) ⊆ W (F , n) for some n ∈ N0. We will show that

P has exactly one preimage under the map τF and that this preimage is rational.
Now, since σ−1

ΓF
(P) = [σ−i(Pi,j)]j−i≤1 is a path in Γ and, hence, in (ΓF\Γram

F )∩Γrat
F , all

places σ−i(Pi,j) are rational by the definition of Γrat
F in Definition 88(i) and the equalities

e(σ−k(Pk,k+1)|σ−k(Pk,k)) = e(σ−k(Pk,k+1)|σ−k(Pk+1,k+1)) = 1 hold for all k = 0, . . . , n −
1 by the definitions of Γram

F in Definition 88(iii) and of ΓF\Γram
F in Definition 66(iv).

Combining these conclusions and the invariance of the degrees of places and ramification
indices under the action of isomorphisms in (11) and then applying Lemma 17(iv) to
P = (Pi,j)j−i≤1 supplies that there is exactly one preimage of P under the map Path and
that this place is rational. Consequently, the map Path indeed restricts to a bijection
Path−1(σΓF (W (Γ))) → σΓF (W (Γ)) and all places in τ−1

F (W (Γ)) = Path−1(σΓF (W (Γ)))
are rational. Hence, (ii) follows.

Connecting the splitting and ramification loci with the splitting and ramifi-
cation subgraphs. The following Proposition 92 will connect the splitting and ramifi-
cation loci with the splitting and ramification subgraphs. In particular, this will provide
an effective way for applying the sufficient criterion for positive limits of towers in Theo-
rem 4 to tame recursive towers with finite ramification subgraphs and non-empty splitting
subgraphs.

For many of the examples of recursive towers in Chapter B (e.g. figure B.1), we can
combine Proposition 92, Theorem 4 and the information about the splitting and ramifi-
cation subgraphs in the attached texts to obtain the lower bounds for the limits in Figure
4.1.

Proposition 92. Let F = (Fν)ν be a recursive tower of balanced degree d over a finite
field, let ΓF be the tower graph of F , let Γram

F be the ramification subgraph, Γrat
F the rational

subgraph and Γsplit
F the splitting subgraph of ΓF . Then the following hold:
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(i) We have the inclusions

V (Γsplit
F ) ⊆ Split(F/F0) ⊆ V (Γsplit

F ) ∪ V (Γram
F ).

(ii) We have the inclusion
Ram(F/F0) ⊆ V (Γram

F ).

Proof. Let σ be the tower map of F and let (Fi,j)i,j be the pyramid of F .

For the first inclusion in (i): Let P ∈ V (Γsplit
F ). Then we obtain the equalities and

estimates

dn = [Fn : F0] ≥ #PFn(P ) ≥ #{(Pi,j)j−i≤1 ∈W (F , n) : P0,0 = P}
= #{[Pi,j ]j−i≤1 ∈W (ΓF , n) : P0,0 = P} ≥ dn (120)

for all n ∈ N0 where the equalities and estimates hold by the following reasonings: The
first equality holds because F has constant degree d in Definition 5(ii). The first estimate
holds by applying the fundamental equality in (8) to the place P ∈ V (Γsplit

F ) ⊆ PF0

in Fn/F0. The second estimate holds because Lemma 17(i) implies the surjectivity of
the map Path0,n : PF0,n = PFn → W (F , n) and because the definition of Path0,n(Q) =
(Q ∩ Fi,j)j−i≤1 for all Q ∈ PFn implies the equality PFn(P ) = Path−1

0,n({(Pi,j)j−i≤1 ∈
W (F , n) : P0,0 = P}). The second equality holds since Definiton/Lemma 76 implies that
σΓF is a bijection satisfying σΓF ({[Pi,j ]j−i≤1 ∈ W (ΓF , n) : P0,0 = P}) = {(Pi,j)j−i≤1 ∈
W (F , n) : P0,0 = P}. The last estimate holds because Γsplit

F is d-regular by its definition
in Definition 88(ii) and because this then implies that there are dn paths in Γsplit

F of length
n which start at P .

Consequently, all estimates in (123) must be equalities and, in particular, the equality
#PFn(P ) = dn follows. But this means that the rational place P ∈ V (Γsplit

F ) ⊆ V (Γrat
F ) =

P(1)
F1

splits completely in Fn/F0 and, thus, is contained in the splitting locus Split(F/F0)
by its definition in Definition 3(i).

Hence, the first inclusion in (i) follows.

For the second inclusion in (i): Let P ∈ Split(F/F0)\V (Γram
F ) and define ΓP as the

subgraph of ΓF which consists of all vertices and edges which can be reached via a path
in ΓF starting at P , i.e. we have the vertex set

V (ΓP ) :=
⋃
n∈N0

{Pi,i : [Pi,j ]j−i≤1 ∈W (ΓF , n) with P0,0 = P and i = 0, . . . , n} (121)

and the edge set

E(ΓP ) :=
⋃
n∈N0

{Pi−1,i : [Pi,j ]j−i≤1 ∈W (ΓF , n) with P0,0 = P and i = 1, . . . , n}. (122)

This subgraph ΓP of course contains the vertex P due to trivial path P = [Pi,j ]j−i≤1 ∈
W (ΓF , 0) = V (ΓF ).

We will show that ΓP is a d-regular forward and backward complete subgraph of Γrat
F

and, by the definition of Γsplit
F as the largest such subgraph of Γrat

F in Definition 88(ii),
then obtain P ∈ V (Γsplit

F ).
For that, we first notice that ΓP is clearly weakly connected since the definition of ΓP

in (121) and (122) always supplies an undirected path between two vertices in ΓP through
P .
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Second, we notice that the assumption P /∈ V (Γram
F ) implies that

ΓP is a subgraph of ΓF\Γram
F (123)

because ΓP is clearly weakly connected, because Γram
F (resp. ΓF/Γram

F ) is a forward and
backward complete subgraph of ΓF by Definition 88(iii) (resp. by the last comment in Def-
inition 66(iv)) and because of the definition of forward and backward complete subgraphs
in Definition 66(iii).

Third, we also notice the equalities

τF (PFn(P )) = {[Pi,j ]j−i≤1 ∈W (ΓF , n) : P0,0 = P}
= {[Pi,j ]j−i≤1 ∈W (ΓP , n) : P0,0 = P} (124)

for all n ∈ N0 where the first equality holds by the surjectivity of τF in Lemma 91(ii) and
the second equality holds since the definition of ΓP implies that ΓP contains all paths in
ΓF which start at P .

Moreover, because the assumption P ∈ Split(F/F0) implies that PFn(P ) exactly con-
sists of dn rational places for all n ∈ N0 and because of the invariance of the degree of places
under isomorphisms in (11), we conclude that the path τF (Q) = [σ −i(Q)∩Fj−i]j−i≤1 only
consists of rational places for all Q ∈ PFn(P ) and all n ∈ N0. Hence, combining this con-
clusion, the identity in (124), the definition of ΓP in (121) and (122) and the definitions
V (Γrat

F ) = P(1)
F0

and E(Γrat
F ) = P(1)

F1
in Definition 88(i) provides that

ΓP is a subgraph of Γrat
F . (125)

Consequently, (123) and (125) together yield that

ΓP is a subgraph of (ΓF\Γram
F ) ∩ Γrat

F . (126)

Next, combining (126), the identity in (124) and Lemma 91(ii) provides that τF even
restricts to a bijection PFn(P ) → {[Pi,j ]j−i≤1 ∈ W (Γ, n) : P0,0 = P} for all n ∈ N0.
Therefore, because of this bijectivity and because P ∈ Split(F/F0) implies that PFn(P )
consists of dn rational places, we get the equalities

#{[Pi,j ]j−i≤1 ∈W (ΓP , n) : P0,0 = P} = #PFn(P ) = dn (127)

for all n ∈ N0. Then applying the ’in particular’-part of Lemma 87 supplies the estimates
E+(ΓP , P ′) ≤ E+(ΓF , P

′) ≤ d for all P ′ ∈ V (ΓP ). But, for all P ′ ∈ V (ΓP ), we get the
equality

E+(ΓP , P ′) = d (128)

because the definition of ΓP in (121) and (122) ensures that there is a path in ΓP from
P to P ′ and because a proper estimate E+(ΓP , P ′) < d would contradict the identity in
(127).

Thus, the identity in (128) supplies that ΓP is a forward complete subgraph of the
intersection graph (ΓF\Γram

F ) ∩ Γrat
F by Definition 66(iii). Moreover, because F is defined

over a finite field, we obtain that the sets P(1)
F0

= V (Γrat
F ) ⊇ V (ΓP ) and P(1)

F1
= E(Γrat

F ) ⊇
E(ΓP ) are finite sets and, therefore, that ΓP is a finite directed graph. Then applying
Lemma 91(i) yields that ΓP is a d-regular forward and backward complete subgraph of
Γrat

F .
Hence, the second inclusion in (i) follows.
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For (ii): Let P ∈ Ram(F/F0) and Q ∈ PFn(P ) such that Q/P is ramified and let
(Pi,j)i,j := Pyr(Q) = (Q ∩ Fi,j)i,j be the pyramid of Q.

Then, by Lemma 10(i), we have the equalities Q = Q ∩ Fn = Q ∩ F0,n = P0,n
and P = Q ∩ F0 = Q ∩ F0,0 = P0,0 and, by Lemma 13, we also have the extensions
P0,n/P0,n−1/ . . . , /P0,0. Thus, combining these equalities and estimates, the transitive
multiplicativity rule for the ramification indices and the choice of Q/P as a ramified ex-
tension yields

2 ≤ e(Q|P ) =
n−1∏
j=0

e(P0,j+1|P0,j).

Therefore, due to this estimate, there is some index 0 ≤ l ≤ n − 1 such that 2 ≤
e(P0,l+1|P0,l).

Next, we can apply Key Lemma 36(iv) to the diamond (P0,l+1, P0,l, Pl,l+1, Pl,l) of places
in Pyr(Q) and obtain the estimates 2 ≤ e(P0,l+1|P0,l) ≤ e(Pl,l+1|Pl,l). More so, because
of the invariance of ramification indices under isomorphisms in (11) and because Lemma
10(ii) and Lemma 10(i) supply the equalities σ−l(Fl,l+ε) = F0,ε = Fε for all ε ∈ {0, 1}, we
even obtain that σ−l(Pl,l+1)/σ−l(Pl,l) is ramified in F1/F0 and, thus,

σ−l(Pl,l) ∈ V (Γram
F ). (129)

Finally, we notice that σ−l(Pl,l) is the l-th vertex of the path

σ−1
ΓF

(Path(Q)) = [σ−i(Pi,j)]j−i≤1 ∈W (ΓF )

where the equality holds by the definitions of Path in Definition 17(i), of (Pi,j)i,j =
Pyr(Q) = (Q ∩ Fi,j)i,j and of σΓF in Definition 76. Consequently, as Γram

F is a back-
ward complete subgraph of ΓF , the first vertex σ−0(P0,0) = Q ∩ F0,0 = P must also be
contained in V (Γram

F ) and, hence, (ii) follows.

4.3 Tower Graphs of Dual Recursive Towers
Purpose of this section. In this section, we will relate the tower graphs of recursive
towers to the towers graphs of their dual recursive towers.

As we already pointed out in Section 2.6, dual recursive towers only play a side role
in this thesis. Thus, if the reader is only interested in the main results of this thesis, then
this section can be skipped.

Tower graphs of dual recursive towers In the following Lemma 93, we will prove that
ΓF and ΓF̂ are isomorphic via a contravariant isomorphism which respects the ramification
indices.

Lemma 93. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0) and
let F̂ = (F̂ν)ν be the dual tower of F . Moreover, let ΓF (resp. ΓF̂) be the tower graph of
F (resp. F̂). Finally, let σ0 be the restriction of σ to an isomorphism

σ0 : F̂1 = F0 · σ−1(F0)→ F1 = F0 · σ(F0).

Then the pair
ϕ := (idPF0

, σ−1
0 ) : ΓF → ΓF̂

is a contravariant isomorphism of directed graphs which satisfies the identity

e(Q|σi(Pi)) = e(ϕ(Q)|σi−1(ϕ(Pi)))
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for all edges P0
Q−→ P1 ∈ E(ΓF ) and all i = 0, 1.

In particular, ϕ restricts to a contravariant isomorphism from the ramification subgraph
of ΓF to the ramification subgraph of ΓF̂ .

Proof. Let (P0
Q−→ P1) ∈ E(ΓF ) = PF1 . Then, by the definition of ΓF in Definition 74 and

by the choice of σ0, we obtain the equalities

P0 = Q ∩ F0 = σ(σ−1
0 (Q)) ∩ F0 and P1 = σ−1(Q) ∩ F0 = σ−1

0 (Q) ∩ F0.

But these equalities imply (P0
σ−1

0 (Q)
←−−−− P1) = (ϕ(P0) ϕ(Q)←−−− ϕ(P1)) = ϕ(P0

Q−→ P1) ∈ E(ΓF̂ )
by the definition of ΓF̂ . Therefore, ϕ is a well defined contravariant morphism of directed
graphs. Moreover, as idPF0

and σ−1
0 are bijections, we conclude the first desired statement,

namely that ϕ is a contravariant isomorphism.
Next, we obtain the desired equality by the equalities

e(Q|σi(Pi)) = e(σ−1(Q)|σi−1(Pi)) = e(ϕ(Q)|σi−1(ϕ(Pi))) (130)

for all i = 0, 1 where the first equality holds by the invariance of ramification indices under
the action of isomorphisms in (11) and the second equality holds by the definition of ϕ.

On the one hand, the equalities in (130) also provide that

ϕ(P0
Q−→ P1) = (P0

σ−1
0 (Q)
←−−−− P1)

is a ramified edge in ΓF̂ if and only if P0
Q−→ P1 is a ramified edge in ΓF by its definition

in Definition 88(iii). On the other hand, by Lemma 70(iv), isomorphisms of directed
graphs map forward and backward complete subgraphs again on forward and backward
complete subgraphs. Hence, combining the above equivalence, this fact and the definition
of ramification subgraphs in Definition 88(iii) yields the last desired statement, namely
that ϕ restricts to a contravariant isomorphism from the ramification subgraph of ΓF to
the ramification subgraph of ΓF̂ .

4.4 Connection to other Graphs Associated to Recursive
Towers

Purpose of this section. In this section, we will draw connections from the tower graph
to two other directed graphs which are also associated with recursive towers, namely the
Beelen-graph in [BGS04, p. 10, Definition 4.2] and the HP-graph in [HP12, p. 15, Definition
10]. More concretely, the connections will be realized via epimorphisms of directed graphs
in Proposition 95 for the Beelen-graph and in Proposition 104 for the HP-graph.

Moreover, in Subsection 4.4.2, we will also make some preparations for the proof of
the first major result of this thesis in the next chapter, namely Theorem 155.

.

4.4.1 Beelen-Graph of Polynomial-Recursive Towers

Purpose of this subsection. In this subsection, we will connect the tower graph to
the Beelen-graph in [BGS04, p. 10, Definition 4.2] (see Definition 94(i)). Essentially, the
tower graph is a slight modification of the Beelen-graph.

We will also introduce the values ρ(F) of polynomial-recursive towers F . This value
will measure the contribution of the vertices in the ramification subgraph to the splitting
rate (see the last identity in Proposition 95). Moreover, in [BGS04, p. 15, Theorem
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4.10], which is Theorem 96, it was shown for polynomial-recursive towers that the only
places P ∈ PF0\ Split(F/F0) which can contribute to the splitting rate, i.e. which satisfy
limν→∞N(Fν , P )/dν > 0, are the vertices in the ramification subgraph.

First, we will extend this insight to pair-recursive towers in Proposition 180. Then, in
Corollary 184 and Corollary 185, we will characterize the recursive towers F which satisfy
ρ(F) = 0 up to finite constant field extensions and up to some very specific wild recursive
towers for which the CNT-tower in Examples 8(v) is the only example in the literature
known to the author. Here, ρ(F) = 0 will hold if and only if every finite weakly connected
component of the ramification subgraph contains circles with unbalanced ramification
indices.

For convenience, in Definition 94 and Theorem 96, we will summarize some of the
definitions and theorems from [BGS04] which are relevant here. Note that the definitions
and theorems in this summary are not taken verbatim but with adaptions to the notions
which we already introduced. However, all adaptions are immediate and should not lead
to confusions.

Beelen-graph. In the following Definition 94(i), we will formulate the definition of
Beelen-graphs in [BGS04, p. 10, Definition 4.2] but only with notions which were already
introduced in this thesis.

For the definition of W (F) in Definition 94(ii) and for the last two equalities in (135) of
the proof of Proposition 95, we will require two more parts from the next Chapter 5: First,
the definition of the CFE-projection morphism πΓF/ΓF : ΓF → ΓF in Definition/Lemma
105(i) and, second, Lemma 124. But Definition/Lemma 105(i) needs no further context
and, thus, we should already be able to grasp it without any problems. Moreover, we
should also have no problems applying Lemma 124 to the last two equalities in (135) as a
black box.

Definition 94. Let f ∈ Fq[X,Y ] be an absolutely irreducible polynomial, let F/Fq be an
algebraic extension, let F ′

1 := F(x0, x1) be the function field which is defined by f(x0, x1) =
0 over the full constant field F, let F ′

0 be the rational function field F(x0), let F1 :=
Fq(x0, x1) ⊆ F ′

1 and let F0 := Fq(x0) ⊆ F ′
0.

(i) In [BGS04, p. 10, Definition 4.2], the directed graph Γ(f,F) := (V,E, α) is defined
via

V := F ∪ {∞}, E := P(1)
F ′

1
, α(Q) := (x0(Q), x1(Q))

where, for all i = 0, 1, the element xi(Q) either denotes the unique element in F
which is contained in the residue class xi +Q or ∞.

Moreover, V can be identified with the set P(1)
F ′

0
of rational places in F ′

0 via the bijec-
tion

ϕF : P(1)
F ′

0
→ V, P ′ 7→ x0(P ′).

We will often call Γ(f,F) the Beelen-graph for f and F.

(ii) Suppose that the polynomial f defines a recursive tower F = (Fν)ν over Fq of bal-
anced degree d, let (σ, F0) be the pair in Lemma 7(iii), i.e. F is a recursive tower
which is defined by the pair (σ, F0), let F := Fq · F = (F ν)ν be the geometric tower
of F and let G be the dual recursive tower of F . Then [BGS04, p. 14] defines

V (F) := ϕFq
(Ram(F/F 0)), V (G) := ϕFq

(Ram(G/F 0))
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W (F) as the vertex set of the smallest forward and backward complete subgraph of
Γ(f,Fq) which contains V (F) and V (G) and

W (F) := πΓF/ΓF (ϕ−1
Fq

(W (F))) ⊆ PF0 .

Finally, [BGS04, p. 15, Definition 4.9] defines

ρ(F) := lim
n→∞

N(Fn,W (F))
dn

.

Connection between the Beelen-graph and the tower graph. The following
Proposition 95 proves that the Beelen-graph Γ(f,F) is basically the rational subgraph
Γrat

F ′ of the constant field extension F ′ = F · F . In particular, the third identity in Propo-
sition 95 translates the value ρ(F), which will be crucial for the almost complete answer
to Conjecture 1(iii) in Corollary 184, into terms of the ramification subgraph. Moreover,
in Definition 179, we will extend the definition of ρ(F) to pair-recursive towers via this
identity.

Proposition 95. Let F = (Fν)ν be a recursive tower over a finite field Fq of degree d
which is defined by a polynomial f , let (σ, F0) be the pair in Lemma 7(iii), i.e. F is a
recursive tower which is defined by this pair (σ, F0), let (F′

ν)ν = F ′ := F · F be a constant
field extension of F , let Γram

F be the ramification subgraph of the tower graph ΓF of F
and let Γrat

F ′ be the rational subgraph of the tower graph ΓF ′ of F ′. Then we have the
monomorphism

ψF := (ι0 ◦ ϕ−1
F , ι1) : Γ(f,F)→ ΓF ′

where ιi : P(1)
F ′

i
→ PF ′

i
denotes the inclusion map for all i = 0, 1. Moreover, we have the

identities

ψF(Γ(f,F)) = Γrat
F ′ , W (F) = V (Γram

F ), ρ(F) = lim
n→∞

N(Fn, V (Γram
F ))

dn
.

Proof. For the ’main’-part: Let x0(Q) Q−→ x1(Q) be an edge in Γ(f,F), define Pi :=
ϕ−1

F (xi(Q)) and let i ∈ {0, 1}.
If xi(Q) ∈ F, then Pi is the unique place which contains x0 − xi(Q) in F(x0) = F ′

0 and
Q contains the element xi − xi(Q). Consequently, in this case, the place σ−i(Q) contains
the element

σ−i(xi − xi(Q)) = σ−i(xi)− xi(Q) = x0 − xi(Q)

where the first equality holds as σ is a morphism of F-algebras and the second equality
holds by the choice of σ in Lemma 7(iii). Hence, in this case, the place σ−i(Q) lies over
the place Pi in F1/F0.

Otherwise, if xi(Q) = ∞, then Pi is the place at infinity and Q does not contain any
element of the form xi − α with α ∈ F. Consequently, in this case, the place σ−i(Q) does
not contain any element of the element σ−i(xi − α) = x0 − α with α ∈ F. Hence, because
σ−i(Q) is also rational, it must lie over the place Pi at infinity in F1/F0.

Then combining both cases and the definition of ΓF in Definition 74 yields that
(P0

Q−→ P1) = ψF(x0(Q) Q−→ x1(Q)) is indeed an edge in ΓF and, therefore, by the definition
of morphisms of directed graphs in Definition 65, we therefore conclude that ψF is a well
defined morphism. Moreover, as ϕ−1

F and ι are injections, this even supplies the desired
statement in the ’main’-part, namely that ψF is a monomorphism.

For first identity ψF(Γ(f,F)) = Γrat
F ′ in the ’moreover’-part: This desired identity im-

mediately follows because we have the equalities V (Γrat
F ′ ) = P(1)

F ′
0

and E(Γrat
F ′ ) = P(1)

F ′
1

by the
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definition of the rational subgraph in Definition 88(i), because these sets are the images
of maps ι0 ◦ ϕ−1

F and ι1, respectively, and because of the definition of the image graph in
Definition/Lemma 69(i).

For the second identity W (F) = V (Γram
F ) in the ’moreover’-part: Let G be the dual

tower of F . Then, by the definitions of dual towers in Definition/Lemma 35(i) and of
constant field extensions of towers in Definition/Lemma 21, we get that

the geometric tower G of G is also the dual tower of F . (131)

First, we notice that the monomorphism ψFq
is even an isomorphism because all places

in F 0 and F 1 are rational. Thus, by Lemma 70(iv), the smallest forward and backward
complete subgraph G which contains V (F) ∪ V (G) is isomorphically mapped via ψFq

to
the

smallest forward and backward complete subgraph ψFq
(G)

which contains ψFq
(V (F) ∪ V (G)) = Ram(F/F 0) ∪ Ram(G/F 0) (132)

where the equality holds by the definitions of V (F) = ϕFq
(Ram(F/F 0)) and V (G) =

ϕFq
(Ram(G/F 0)) in Definition 94(ii).
Now, on the one hand, for all edges Q ∈ E(ΓF ) such that Q/Q ∩ F 0 (resp. Q/Q ∩

σ(F 0)) is ramified in F 1/F 0 (resp. F 1/σ(F 0)), we conclude that vinit(Q) = Q ∩ F 0
(resp. vterm(Q)) = σ−1(Q) ∩ F 0 is a place in Ram(F/F 0) (resp. Ram(G/F 0)). Con-
sequently, by the conclusion in (132) and the definition of ramified edges in Definition
88(iii), all ramified edges of ΓF are contained in the forward and backward complete sub-
graph ψFq

(G) of ΓF . In particular, because of this conclusion and because of the definition
of the ramification subgraph Γram

F of ΓF in Definition 88(iii) as the smallest forward and
backward complete subgraph containing these ramified edges, we deduce that Γram

F is a
subgraph of ψFq

(G).
On the other hand, Lemma 92(ii) supplies that Ram(F/F 0) is contained in Γram

F and
that Ram(G/F 0) is contained in the ramification subgraph Γram

G of the tower graph ΓG of G.
But, due to (131), the morphism ϕ in Lemma 93 restricts to a contravariant isomorphism
Γram

F → Γram
G which is the identity on the vertices. Thus, Ram(G/F 0) = ϕ−1(Ram(G/F 0))

is also contained in Γram
F . Moreover, because Γram

F is a forward and backward complete
subgraph which contains Ram(F/F 0)∪Ram(G/F 0) and because of (132), we deduce that
ψFq

(G) is a subgraph of Γram
F . Combining these two inclusions yields the equality

ψFq
(G) = Γram

F . (133)

Moreover, we then obtain the equalities

W (F) = V (G) = ψ−1
Fq

(V (ψFq
(G)) = ϕFq

(V (Γram
F )) (134)

where the first equality holds by the choice of G and the definition of W (F) in Definition
94(ii), the second equality holds as ψFq

is an isomorphism and the third equality holds by
the definition of ψFq

and by the equality in (133).
Finally, we derive the desired identity W (F) = V (Γram

F ) from the equalities

W (F) = πΓF/ΓF (ϕ−1
Fq

(W (F))) = πΓF/ΓF (ϕ−1
Fq

(ϕFq
(V (Γram

F )))

= πΓF/ΓF (V (Fq · Γram
F )) = V (Γram

F ) (135)
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where the equalities hold by the following reasonings: The first equality holds by the def-
inition of W (F) = πΓF/ΓF (ϕ−1

Fq
(W (F))) in Definition 94(ii). The second equality holds

by the equality in (133). The last two equalities hold because Lemma 124 provides that
πΓF/ΓF restricts to an epimorphism Γram

F = Fq · Γram
F → Γram

F .

For the last identity in the ’moreover’-part: This desired identity immediately follows
from the definition of ρ(F) = limn→∞

N(Fn,W (F))
dn in Definition 94(ii) and from the equality

W (F) = V (Γram
F ).

A sufficient criterion for Conjecture 1(ii). The following Theorem 96 gives a suffi-
cient criterion for Conjecture 1(ii) and it was proven in [BGS04, p. 15, Theorem 4.10]. It
states that a polynomial-recursive tower F = (Fν)ν over a finite field of balanced degree
d satisfies Conjecture 1(ii), i.e. ν(F) = Split(F/F0), if ρ(F) vanishes.

This sufficient criterion in Theorem 96 exactly identifies the decisive set V (Γram
F ) ⊆ PF0

of places P which do not need to split on every level Fn/F0 but can still contribute to the
splitting rate ν(F), i.e. satisfy limν→∞N(Fν , P )/dν > 0.

In Corollary 184 and Corollary 185, we will even conclude that, up to finite constant
field extensions and up to some very specific wild recursive towers for which there are no
examples in the literature, the cases in which ρ(F) = 0 holds can be characterized by the
appearance of circles with unbalanced ramification ramification indices in all finite weakly
connected components of Γram

F .

Theorem 96. Let F = (Fν)ν be a recursive tower over a finite field of balanced degree
which is defined by a polynomial. If ρ(F) = 0, then ν(F) = # Split(F/F0).

4.4.2 HP-Graph of correspondences

Purpose of this subsection. In this subsection, we will connect the tower graph with
the HP-graph in [HP12, p. 15, Definition 10] (see Definition 101(i)). There, the HP-graph
is called the geometric graph. We will also mostly use the term geometric graph. Only
if we talk about the geometric graph together with the Beelen-graph, we will prefer the
term HP-graph. More concretely, the connection will be realized via some epimorphism
of directed graphs in Proposition 104.

Different than in this thesis, [HP12, p. 3, Hypothesis] and [HP16] start with special
correspondences of curves over a finite field k and, from there, construct recursive towers
of smooth geometrically integral curves over k. Then the geometric graphs is associated
with these correspondence of curves. Here, we will consider more general correspondences
of curves than the ones in [HP12, p. 3, Hypothesis]. For instance, we will also include the
normalizations of the correspondences from [HP12, p. 3, Hypothesis]. For these normal-
izations, the epimorphism from the tower graph to the geometric graph will even be an
isomorphism in Proposition 104.

Moreover, in this subsection, we will also make preparations for Subsection 5.3 of
the next chapter. There we will prove the first major result of this thesis in Theorem
155, which states that the tower graph has at most one finite balanced weakly connected
component.

Correspondences and their geometric graphs. We will need some algebraic geome-
try on curves in this subsection and, for that, the reader is referred to [Liu02]. Let us only
briefly recall the definitions of varieties and curves from [Liu02, p. 55, Definition 2.3.47]
and [Liu02, p. 75, Definition 2.5.29].
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Definition 97. Let k be a field. An affine variety over k is an affine scheme associated
with a finitely generated k-algebra.

A variety over k is a k-scheme which is covered by a finite number of affine open
subschemes which are affine varieties over k.

A curve over k is a variety over k whose irreducible components all have dimension
one.

Moreover, we will denote the function field of an integral curve C over k by K(C) and
the pullback of a finite morphism φ : D → C of integral curves over k by φ∗ : K(X) →
K(D).

Correspondences. In the following, we will consider cases of prime self-correspondences
of curves. But as our goal is to construct correspondences from recursive towers in Propo-
sition 102(i), we will already include properties of these correspondences in the definition
(e.g. X and Y are geometrically integral in Definition 98). Nonetheless, this will already
cover the correspondences in [HP12, p. 3, Hypothesis].

Definition 98. Let X and Y be projective geometrically integral curves over the perfect
field k, suppose that X is smooth and let πi : Y → X be finite morphisms of curves for
all i = 1, 2. Moreover, let π′

1 and π′
2 be the canonical projection morphisms X ×k X → X

for the fiber product of X ×k X and let π′ : Y → X ×k X be the canonical morphism of
varieties over k such that πi = π′

i ◦ π′ for all i = 1, 2.
Then we call (Y, π1, π2) a correspondence on X of type (d1, d2) if πi are separable

finite morphisms of degree di for all i = 1, 2 and π′ : Y → X ×kX restricts to a birational
morphism π : Y → π′(Y ) of curves over k.

In [HP12, p. 3, Hypothesis], it is required that Y is a subset of the surface X×kX and
that πi : Y → X are the restrictions of the canonical projection morphisms π′

i : X×kX →
X for all i = 1, 2. For instance, π′(Y ) ⊂ X ×k X in Definition 98 is a correspondence in
the sense of [HP12, p. 3, Hypothesis].

Singular-recursive towers. In [HP12, p. 4], there is a recursive tower of curves asso-
ciated with a correspondence, namely the singular-recursive tower.

Notice that the definition of the singular-recursive tower (Cν)ν in Definition 99 differs
slightly from the original definition in [HP12, p. 4]. We will discuss the differences after
Definition 99.

Definition 99. Let X be a smooth projective geometrically integral curve over the per-
fect field k and let (Y, π1, π2) be a correspondence on X of type (d, d) with the canonical
projection morphisms πi : Y → X for i = 1, 2. Then we define

C0 := X and Cn := Y ×X Y ×X · · · ×X Y

where the fiber products runs over n ∈ N factors and where we take π2 : Y → X for the
left factors Y×X and π1 : Y → X for the right factors ×XY

Moreover, the sequence (Cν)ν is called the singular-recursive tower of the cor-
respondence (Y, π1, π2) if Cn is an integral curve over k for all n ∈ N0, the canonical
projection morphism ρn : Cn+1 → Cn are finite separable of degree d for all n ∈ N0 and
g(Cn)→∞ as n→∞.

Finally, for a singular-recursive tower (Cν)ν , we also get the commutative diagram in
Figure 4.6 with the canonical projection morphisms πi,j,e : Ci → Cj on the factor in the
middle of Ci = Ce×X Cj×X Ci−j−e for all 0 ≤ e ≤ i−j. Note that we have ρn = πn+1,n,0,
ρ0 = π1,0,0 = π1 and π1,0,1 = π2.
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Figure 4.6: Pyramid of the singular-recursive tower

The differences. The definition in Definition 99 differs from the definition in [HP12,
p. 4] in the following ways:

First, in accordance with our indexing of towers of function fields, the sequence of
curves in Definition 99 already starts at the index zero and not at one as in [HP12, p. 4].

Second, we defined the curves Cn as fiber products which is isomorphic to the definition
in [HP12, p. 4].

Third and finally, we suppose that the canonical morphisms have degree d and that
g(Cn)→∞ as n→∞. Hence, the definition in Definition 99 is more restrictive. However,
in the case that the genus does not tend to infinity, the tower becomes repetitive. Moreover,
from some level m on, the morphisms in the singular-recursive tower (Cm+ν)ν from [HP12,
p. 4] must have some constant degree d too. Consequently, up to isomorphisms, the
singular recursive towers (Cm+ν)ν in [HP12, p. 4] are also singular-recursive towers in
the sense of Definition 99. Hence, the definition in Definition 99 covers all the essential
singular-recursive towers in [HP12, p. 4].

Etaleness. In the following, we will associate the commutative diagram in Figure 4.7with
the correspondence (Y, π1, π2): Let k be an algebraic closure of the perfect field k. For any

Figure 4.7: Commutative diagrams for rational and closed points on curves
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curves C and D over k and finite morphism φ : D → C, let us denote the k-base changes
of C and φ by C := C ×k k and φ := φ ×k k : D → C, respectively, and let πC be the
canonical projection morphism πC : C → C.

By the universal property of the fiber product, we then obtain that ×kk is a functor
from the category of projective geometrically integral curves over k to the category of
projective integral curves over k. Therefore, the first of the two diagrams in Figure 4.7 is
commutative.

Although, C and D are no varieties over k, they are schemes over k. The k-rational
points C(k) of a k-scheme C can be identified with the morphisms Spec(k) → C of k-
schemes. Thus, for any morphism φ : D → C of k-schemes, the Hom(Spec(k), ·)-functor
provides a morphism φk : D(k)→ C(k) of sets making the right two squares of the second
diagram in Figure 4.7 commutative too. Moreover, πC,k is a bijection by [Liu02, p.92,
Proposition 2.18(a)].

Next, let Cc be the closed points of the curve C. Any finite morphism φ : D → C of
projective integral curves over k maps closed points to closed points by Lemma 251 and,
hence, restricts to a map φc : Cc → Dc. Also, by [Liu02, p. 92, Proposition 2.18], there is
a canonical bijection θC : Cc → C(k) for any geometrically integral curve C over k such
that the rest of the second diagram in 4.7 is commutative too.

Finally, let us denote the composition of πC,k and θC by

γC := πC,k ◦ θC . (136)

Definition 100. Let X be a smooth projective geometrically integral curve over the perfect
field k and let (Y, π1, π2) be a correspondence on X of type (d, d). Moreover, let k be an
algebraic closure of k.

Then the morphism πi is called etale at the k-rational point y ∈ Y (k) if πi is etale at
the closed point γ−1

Y (y) in the sense of [Liu02, p. 139, Definition 3.17].

Geometric graph. With any correspondence (Y, π1, π2) on X, [HP12, p. 15, Definition
10] associates its geometric graph G∞.
Definition 101. Let X be a smooth projective geometrically irreducible curve over the
perfect field k and let (Y, π1, π2) be a correspondence on X of type (d, d). Moreover, let k
be an algebraic closure of k.

(i) The geometric graph or HP-graph G∞ of (Y, π1, π2) is defined as the directed
graph

G∞ :=
(
X(k), Y (k), π1,k × π2,k

)
i.e. the vertex set X(k) is the set of k-rational points on X, the edge set Y (k) is the
set of k-rational points on Y and the edge map is

π1,k × π2,k : Y (k)→ X(k)2 via Q 7→
(
π1,k(Q), π2,k(Q)

)
where πi,k : Y (k) → X(k) denotes the canonical map which is induced by the mor-
phism πi for all i = 1, 2.

(ii) We call an edge y ∈ E(G∞) = Y (k) etale if π1 and π2 are etale at y. Otherwise, we
call y ∈ E(G∞) a non-etale edge.
The singular part Gsing is defined as the intersection subgraph of all the forward
and backward complete subgraphs of G∞ which contains all the non-etale edges y.
Notice that, by the last comment in Definition 66(iii), Gsing is again a forward and
backward complete subgraph of G∞ which contains all the non-etale edges y. Hence,
Gsing the smallest (i.e. unique minimal with respect to the subgraph relation) forward
and backward complete subgraph of G∞ which contains all the non-etale edges y.
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Correspondences constructed from recursive towers of function fields. Next,
we will construct correspondences of curves from recursive towers of function fields. For
that, remember that all constant fields are perfect in this thesis by Assumption 1.

Proposition 102. Let F = (Fν)ν be a recursive tower over the (perfect) field k of balanced
degree d which is defined by the pair (σ, F0) and let k be the algebraic closure of k which
is contained in the domain of σ in Definition 5(ii). Moreover, let ι : F0 → F1 be the
inclusion morphism of k-algebras. Then the following hold:

(i) There is some smooth projective geometrically integral curve X over k and some cor-
respondence (Y, π1, π2) on X of type (d, d) and isomorphisms ϕX : K(X)→ F0 and
ϕY : K(Y )→ F1 of k-algebras making the first diagram in Figure 4.8 commutative.

(ii) In (i), the correspondence (Y, π1, π2) can be chosen as a closed subvariety of X×kX.

(iii) In (i), the correspondence (Y, π1, π2) can be chosen as a smooth curve over k.

(iv) For any choice of (Y, π1, π2) in (i), the sequence (Cν)ν in Definition 99 satisfies the
requirements of the singular-recursive tower of (Y, π1, π2) and there are isomorphisms
ψn : Fn → K(Cn) of k-algebras for all n ∈ N making the second diagram in Figure
4.8 commutative where ιn denotes the inclusion morphism Fn → Fn+1 .
Moreover, let D1 and D2 be the finite subcategories of k-algebras consisting of the
k-algebras and morphisms which are depicted in the commutative diagrams in Figure
4.9 and Figure 4.10, respectively. Then the isomorphisms ψj−i◦σ−i : Fi,j → K(Cj−i)
with 0 ≤ i ≤ j induce an isomorphism Ψ : D1 → D2 of categories.
Also note that the diagram in Figure 4.10 is the image of the diagram in Figure 4.6
under the functor which maps an integral curve C to its function field K(C).

Figure 4.8: Commutative diagrams connecting recursive towers of function fields and
singular-recursive towers

Proof. For (i), (ii) and (iii): We will find a curve Y ⊂ X ×k X as in (ii) and a smooth
curve Ỹ as in (iii) simultaneously. This will then especially imply (i).

First, let C1 be the category of normal projective integral curves over k with finite
morphisms and C2 be the category of function fields over k with monomorphisms of k-
algebras. Then C1 and C2 are equivalent by [Liu02, p.278, Remark 3.14]. More precisely,
the covariant functor

Ψ : C1 → C2 via Ψ(C) := K(C) and Ψ(φ) := φ∗ (137)
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Figure 4.9: Pyramid of function fields

Figure 4.10: Pyramid of function fields of singular-recursive towers

induces this categorial equivalence.
Now, we may also replace ’normal’ with ’smooth’ in C1 because any integral projective

curve over the perfect field k is normal if and only if it is smooth by [Liu02, p.128, Example
2.9] and [Liu02, p.142, Corollary 3.33]. Consequently, this categorial equivalence provides

smooth projective integral curves X and Ỹ over k,
finite morphisms π̃1 : Ỹ → X and π̃2 : Ỹ → X,
isomorphisms ϕX : K(X)→ F0 and ϕỸ : K(Ỹ )→ F1 of k-algebras (138)

such that the two squares in the first diagram in Figure 4.11 are commutative.
Second, let π′

1 and π′
2 be the canonical projection morphisms X×kX → X of the fiber

product X ×k X over k (see the second diagram in Figure 4.11). The universal property
of the fiber product then supplies some unique morphism π0 : Ỹ → X ×kX satisfying the
equalities π̃1 = π′

1 ◦ π0 and π̃2 = π′
2 ◦ π0. As projective varieties are complete, the image

Y = π0(Ỹ ) of the irreducible projective curve Ỹ over k is an irreducible closed subset of
the projective variety X×kX over k. Therefore, Y can be equipped with a structure sheaf
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Figure 4.11: Commutative diagrams connecting the base extensions in recursive towers
and correspondences

such

Y becomes an irreducible closed subvariety of X ×k X over k (139)

and π0 factorizes through a morphism π : Ỹ → Y and the morphism which is induced
by the inclusion Y ⊆ X ×k X. Moreover, as Ỹ is reduced, we may choose the structure
sheaf of Y such that Y becomes reduced by [Liu02, p.60, Proposition 4.2(c),(d)]. Thus,
if we choose πi : Y → X to be the restriction of the canonical projection morphisms
π′
i : X ×k X → X for all i = 1, 2, then the rest of the diagrams in Figure 4.11 becomes

commutative too.
Third, we derive the equalities and inclusion

K(Ỹ ) = ϕ−1
Ỹ

(F1) = ϕ−1
Ỹ

(F0 · σ(F0)) = ϕ−1
Ỹ

(F0) · ϕ−1
Ỹ

(σ(F0))
= (π̃∗

1 ◦ ϕ−1
X )(F0) · (π̃∗

2 ◦ ϕ−1
X )(F0) = ((π∗ ◦ π∗

1) ◦ ϕ−1
X )(F0) · ((π∗ ◦ π∗

2) ◦ ϕ−1
X )(F0)

= π∗((π∗
1 ◦ ϕ−1

X )(F0) · (π∗
2 ◦ ϕ−1

X )(F0)) ⊆ π∗(K(Y )) (140)

where the equalities and inclusion hold by the following reasonings: The first and third
equalities hold because ϕỸ : F1 → K(Ỹ ) is an isomorphism of rings by its choice in (138),
The second equality holds because the definition that F is recursively defined by the pair
(σ, F0) in Definition 5(ii) implies the equality F1 = F0 · σ(F0). The fourth equality holds
because of the equalities ϕ−1

Ỹ
(F0) = (ϕ−1

Ỹ
◦ ι)(F0) and ϕ−1

Ỹ
(σ(F0)) = (ϕ−1

Ỹ
◦ (σ ◦ ι))(F0) and

because of the commutativity of the two squares in the first diagram in Figure 4.11. The
fifth equality holds because we chose π to satisfy the equalities π̃i = πi ◦ π for all i = 1, 2.
The last equality holds because π∗ is a morphism of rings. The inclusion holds because
(π∗

1 ◦ ϕ−1
X )(F0) and (π∗

2 ◦ ϕ−1
X )(F0) are subfields of K(Y ).

Therefore, this inclusion in (140) implies that the monomorphism π∗ : K(Y )→ K(Ỹ )
is also surjective and, hence, an isomorphism. In particular, because of this and because
Ỹ is a curve over k, we conclude that the integral variety Y over k is also a curve over
k. Moreover, by the definition of birational morphisms in [Sta22, Tag 01RO], this also
implies that

π : Ỹ → Y is a birational morphism of integral curves over k. (141)

Fourth, define

ϕY : K(Y )→ F1 as the isomorphism ϕY := π∗ ◦ ϕỸ of k-algebras. (142)
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By the definition of a tower in Definition 2(i), the function field Fi has full constant field
k for all i = 0, 1 and, thus, satisfies the equality Fi ∩ k = k. Because of these equalities,
because k is a perfect field by assumption and because k/k is therefore a Galois extension,
[Coh91, p. 188, Theorem 5.5] provides that k/k and Fi/k are linearly disjoint for all
i = 0, 1. Thus, any tensor product k ⊗k Fi of k-algebras (with the inclusion morphism) is
a field for all i = 0, 1. Furthermore, because ϕX : K(X) → F0 (resp. ϕỸ : K(Ỹ ) → F1;
resp. ϕY : K(Y ) → F1) is an isomorphism by its choice in (137) (resp. in (137); resp. in
(142)), because of the universal property of tensor products and because the field extension
k/k is flat, we also obtain that k ⊗k K(X) ∼= k ⊗k F0 (resp. k ⊗k K(Ỹ ) ∼= k ⊗k F1;
resp k ⊗k K(Y ) ∼= k ⊗k F1) are fields and, therefore, that

K(X)/k (resp. K(Ỹ )/k; resp. K(Y )/k) and k/k are also linearly disjoint. (143)

In particular, because of this and because X, Ỹ and Y are integral curves over k, [Liu02,
p.91, Corollary 2.14(c)] then supplies that

X, Ỹ and Y are geometrically integral curves over k. (144)

Next, we notice that πi : Y → X is non-constant because it factorizes the finite and,
hence, non-constant morphism π̃i for i = 1, 2. Thus [Liu02, p.277, Lemma 3.10(i),(ii)]
implies that

πi is a finite morphism. (145)

Moreover, we have the equalities

ϕ−1
Ỹ

(σi−1(F0)) = (ϕ−1
Ỹ
◦ (σi−1 ◦ ι))(F0) = (π̃∗

i ◦ ϕ−1
X )(F0) = π̃∗

i (K(X)) (146)

and

ϕ−1
Y (σi−1(F0)) = (ϕ−1

Y ◦ (σi−1 ◦ ι))(F0) = (π∗
i ◦ ϕ−1

X )(F0) = π∗
i (K(X)) (147)

for all i = 1, 2 where the first equalities hold by the definition of the inclusion morphism
ι : F0 → F1, the second equalities hold by the commutativity of the first diagram in 4.11
and the third equalities hold since ϕX : K(X) → F0 is an isomorphism by its choice in
(138).

Consequently, the equality in (146) (resp. in (147)) implies that the function field
extensions F1/σ

i−1(F0) and K(Ỹ )/π̃∗
i (K(X)) (resp. K(Y )/π∗

i (K(X))) are isomorphic for
all i = 1, 2. In particular, because of this, because the definition of recursive towers in
Definition 5(ii) provides that F1/σ

i−1(F0) is a separable extension of degree d and because
of (138) (resp. (145)), we deduce that

π̃i (resp. πi) is a separable finite morphism of degree d (148)

for all i = 1, 2.
In summary, by (138), by (139), by (141), by (144), by (148), by the definition of

correspondences in Definition 98 and by the commutativity of the left diagram in Figure
4.11, we found the desired X, ϕX and Ỹ , ϕỸ in (iii) (resp. Y , ϕY in (ii)).

For (iv): Let (Y, π1, π2) and X be as in (i) and let (Fi,j)i,j := Pyr(F) be the pyramid of
F . First, by Lemma 10(i) and Lemma 10(ii), we obtain the equalities σi(Fε) = σi(F0,ε) =
Fi,i+ε for all ε = 0, 1 and i ∈ N0. Thus, the two lowest rows in the diagrams in Figure 4.9
and Figure 4.12 are isomorphic (as subcategories of k-algebras) via the restrictions of the
isomorphisms σi to isomorphisms Fε → σi(Fε) = Fi,i+ε for all ε = 0, 1 and all i ∈ N0.
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Now, by Lemma 10(iii), the extensions Fi−1,j/Fi,j and Fi,j+1/Fi,j are linearly disjoint
for all 1 ≤ i ≤ j and, thereby, the composite field Fi−1,j · Fi,j+1 = Fi−1,j+1 is a tensor
product Fi−1,j⊗Fi,j Fi,j+1 of k-algebras (with the inclusion morphisms). Consequently, we
iteratively obtain that the complete diagrams in Figure 4.9 and Figure 4.12 are isomorphic.
In particular, this means that all the tensor products in the diagram in Figure 4.12 are
fields.

Figure 4.12: Pyramid of tensor products of function fields

Second, the isomorphisms ϕX and ϕY in (i) and the commutativity of the first diagram
in Figure 4.8 ensure that the diagrams in Figure 4.12 and Figure 4.13 are isomorphic too.
In particular, this again means that

all the tensor products in the diagram in Figure 4.13 are fields. (149)

Third, we consider the morphism πn,0,n : Cn → C0 = X. For all n ∈ N, (149) then
implies that we can iteratively apply the equivalence in Lemma 255(ii) to πn,0,n : Cn → X
and π1 = π1,0,0 : Y → X. By that and the other two items in Lemma 255, we conclude
that Cn+1 is also an integral curve over k, that ρn = πn+1,n,0 : Cn+1 → Cn is finite for
all n ∈ N0 and that the diagrams in Figure 4.13 and Figure 4.10 are isomorphic as well.
Hence, combining the three isomorphisms of the diagrams from above yields the desired
isomorphism Ψ : D1 → D2 in the ’moreover’-part.

Second to last, the definition of the assertion that F = (Fν)ν is a recursive tower
of function fields of constant degree d over k in Definition 5(ii) especially provides that
F = (Fν) is a tower of function fields of constant degree d. Then Definition 2(i) implies
that, for all n ∈ N0, the function field Fn has full constant field k, that the extension
Fn+1 /Fn is separable of degree d and that g(Fn)→∞ as n→∞.

Finally, if we apply the isomorphism Ψ, we derive the same statements for the function
fields K(Cn) and the corresponding extensions in the diagram in Figure 4.10. Hence, this
supplies that the canonical morphisms ρn : Cn+1 → Cn are finite separable morphisms of
degree d.

All together, by the definition of singular-recursive towers in Definition 99, we estab-
lished that (Cν)ν is indeed a singular-recursive tower and that there are isomorphisms
ψn : Fn → K(Cn) of k-algebras making the second diagram in 4.8 commutative for all
n ∈ N0. Hence, the ’main’-part in (iv) also follows.
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Figure 4.13: Pyramid of tensor products of function fields of curves

Epimorphism from the tower graph to the geometric graph. Next, via the epi-
morphism ψ in Proposition 104, we will relate the tower graph of a recursive tower to
the geometric graphs of the correspondences which we constructed in Proposition 102.
Moreover, if the correspondence is chosen to be smooth as in Proposition 102(iii), ψ will
even be an isomorphism. For that, we will first prove the following Lemma 103.

Note that, for all monomorphism τ : F → E of k-algebras, we will denote the preimage
map PE → PF , Q 7→ τ−1(Q) by τ−1.

Lemma 103. Let F = (Fν)ν be a recursive tower over k of balanced degree d and let
F = k · F = (F ν)ν be the geometric tower of F . Let ι : F 0 → F 1 be the inclusion
morphism of k-algebras.

Moreover, as in in Proposition 102(i), let X be a smooth projective geometrically in-
tegral curve X over k, let (Y, π1, π2) be a correspondence on X of type (d, d) and let ϕX :
K(X) → F0 and ϕY : K(Y ) → F1 be isomorphisms of k-algebras. Let γX : Xc → X(k)
and γY : Y c → Y (k) be the bijections in (136) and let πci and πi,k be the maps in the
second commutative diagram in Figure 4.7 for all i = 1, 2.

Finally, let Ai be the set of places in F 1 which are ramified in F 1/σ
i−1(F 0) and let

Bi be the set of k-rational points on Y at which πi is not etale for all i = 1, 2. Then the
following hold:

(i) There are bijections αX , αY , βX and a surjection βY making the diagram in Figure
4.14 commutative.

(ii) For all i = 1, 2, the composition ϕ := γY ◦ βY ◦ αY restricts to a

map Ai → Bi and even a bijection PF 1
\ϕ−1(Bi)→ Y (k)\Bi.

(iii) If Y is smooth, then ϕ is even a bijection which also restricts to bijections Ai → Bi
and PF 1

\Ai → Y (k)\Bi for all i = 1, 2.

Proof. For (i): First, we notice that the tensor product ⊗kk is a functor on the category of
k-algebras which preserves isomorphisms since the extension k/k is flat. Thus, the middle
two squares of the diagram in are commutative by the commutativity of the left two
squares of the diagram in .
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Figure 4.14: Commutative diagram connecting places and rational points

Figure 4.15: Commutative diagram connecting the base extensions in the geometric tower
and the base field extension of the correspondences

Second, since we already established in (278) that K(X)/k (resp. K(Y )/k) and k/k are
linearly disjoint, [Liu02, p.91, Corollary 2.14] provides K(X) ∼= K(X)⊗k k (resp. K(Y ) ∼=
K(Y )⊗kk) and, hence, the right two squares of the diagram in Figure 4.15 are commutative
as well.

Third, as F0 ⊗k k ∼= K(X) (resp. F1 ⊗k k ∼= K(Y )) is a field, it must be isomorphic
to the compositum F 0 = k · F0 (resp. F 0 = k · F0) and, hence, the left two squares of the
diagram in Figure 4.15 is commutative too.

Fourth, in the diagram in Figure 4.7, let us denote the composition of the isomorphisms
in the first (and last) row by φX : K(X)→ F 0 and of the second row as φY : K(Y )→ F 1.
Then their inverse isomorphisms φ−1

X and φ−1
Y induce the desired bijections

αX : PF 0
→ PK(X), P 7→ φ−1

X (P ) and αY : PF 1
→ PK(Y ), Q 7→ φ−1

Y (Q) (150)

at the rows in the left two squares of the diagram in Figure 4.14. In particular, we get
that these two squares are commutative.

Moreover, for all i = 1, 2 and all Q ∈ PF 1
, we compute

αY (Q) ∩ π∗
i (K(X)) = π∗

i

(
(π∗
i )−1

(
αY (Q)

))
= π∗

i

(
αX

(
(σi−1 ◦ ι)−1(Q)

))
= αy

(
(σi−1 ◦ ι)

(
(σi−1 ◦ ι)−1(Q)

))
= αy

(
Q ∩ σi−1(F 0)

)
(151)

where the equalities hold by the following reasonings: The first equality holds because π∗
i

is a map K(X) → K(Y ) with image π∗
i (K(X)) and because of a quick straight forward
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computation. The second equality holds by the commutativity of the left two squares in
the diagram in Figure 4.14. The third equality holds by the choices of αX and αY in (150)
and by the commutativity of the outer square in the diagram in Figure 4.15. The last
equality holds because σi−1 ◦ ι is a map F 0 → F 1 with image σi−1(F 0) and because of a
quick straight forward computation.

Consequently, because of this equality in (151), because φ−1
Y is an isomorphism of

k-algebras and because of the choice of αY in (150),

Q/Q ∩ σi−1(F0) is unramified in F 1/σ
i−1(F0) if and only if

αY (Q)/αY (Q) ∩ π∗
i (K(X)) is unramified in K(Y )/π∗

i (K(X)) (152)

for all i = 1, 2.
Fifth, it is well known that, for any integral projective curve C over k, the discrete

valuation ring OP of any place P in K(C) contains the local ring OC,p of some unique
closed point p in C and, moreover,

if C is smooth at p, then we even have the equality OP = OC,p. (153)

Because it is also well known that any of these local rings is contained in some of the
discrete valuation rings of places, this provides surjective maps βX : PK(X) → X

c and
βY : PK(Y ) → Y

c such that the middle two squares of the diagram in Figure 4.14 are
commutative and, moreover,

the βX - and βY -fibers of smooth points are singletons. (154)

Since smooth morphisms are stable under base change by [Liu02, p. 143, Proposition 3.39],
X is also a smooth curve over k and, therefore by (154), βX is even bijective. All in all,
we established (i).

For (ii): Let j ∈ {1, 2}, let Q ∈ Aj , i.e. Q be a place in F 1 which is ramified in
F1/σ

j−1(F0), let Q0 := αY (Q) ∈ PK(Y ), let y := βY (Q0) = βY (αY (Q)) and let x := πj(y).
On the one hand, (152) implies that Q0 is ramified in K(Y )/π∗

j (K(X)). On the
other hand, by the choice of the map βY , the place Q0 contains the maximal ideal of the
local ring of the closed point βY (Q0) = y. Then applying Lemma 252 to the morphism
πj : Y → X and the place Q0 provides that πj is not etale at y. But, by the definition of
etaleness of πj at k-rational points in Definition 100, the latter implies that πj is not etale
at γY (y) = (γY ◦ βY ◦ αY )(Q) = ϕ(Q). Hence, we established the first desired statement
in (ii), namely that ϕ restricts to a map Aj → Bj .

Finally, combining the ’only if’-part in Lemma 252 and (154) even provides that βY
restricts to a bijection β−1

Y (α−1
Y (Y (k)\Bj))→ α−1

Y (Y (k)\Bj). But since αY and γY are bi-
jections anyways, we deduce the last desired statement in the ’in particular’-part, namely
that ϕ restricts to a bijection PF 1

\ϕ−1(Bi)→ Y (k)\Bi.

For (iii): Suppose that Y is smooth. Then the same last part of the proof of (i)
from (154) on also works for Y instead of X. Consequently, this provides that βY is also
bijective. Hence, since αY and γY are also bijections by Lemma 103(i), we obtain the first
desired statement in (iii), namely that ϕ = γY ◦ βY ◦ αY is even a bijection.

In particular, by Lemma 103(ii), we deduce that ϕ restricts to an injection Aj → Bj .
Now, let j ∈ {1, 2} and let y ∈ Bj . Then, by the definitions of Bj in the assumptions
and of etaleness in Definition 100, the morphism πj is not etale at y = γ−1

Y (y). Moreover,
since Y is regular at y, the ’if’-part in Lemma 252 implies that β−1

Y (y) =: Q0 is ramified in
K(Y )/π∗

j (K(X)). In particular, this means that the place ϕ−1(y) = α−1
Y (Q0) is ramified
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in F 1/σ
j−1(F0) and thus an element in Aj . This implies that ϕ restricts to a surjection

Aj → Bj .
Therefore, we also obtain the last two desired statements in (iii), namely that ϕ restricts

to bijections Aj → Bj and PF 1
\Aj → Y (k)\Bj .

Proposition 104. Let F = (Fν)ν be a recursive tower over the finite field k of balanced
degree d, let F = k · F = (F ν)ν be the geometric tower of F .

Moreover, let X be a smooth projective geometrically integral curve X over k, let
(Y, π1, π2) be a correspondence on X of type (d, d) and let αX , βX , γX , αY , βY , γY be the
maps in Proposition 103.

Finally, let Γram
F be the ramification subgraph of the tower graph ΓF of F and let Gsing

be the singular part of the geometric graph G∞ of (Y, π1, π2). Then the following hold:

(i) The pair
ψ := (γX ◦ βX ◦ αX , γY ◦ βY ◦ αY ) : ΓF → G∞

is an epimorphism of directed graphs which is even a bijection on the vertex sets.

(ii) Moreover, ψ restricts to a morphism Γram
F → Gsing and even to an isomorphism

ΓF\ψ
−1(Gsing)→ G∞\Gsing.

(iii) If Y is smooth, then ψ is even an isomorphism which also restricts to isomorphisms
Γram

F → Gsing and ΓF\Γram
F → G∞\Gsing.

Proof. For the (i): It immediately follows from the commutativity of the diagram in Fig-
ure 4.14 and from the definitions of ΓF in Definition 74, of G∞ in Definition 101(i) and
of morphisms of directed graphs in Definition 65 that ψ is a well defined morphism of
directed graphs. Moreover, since the maps αX , βX , γX are all bijections and the maps
αY , βY , γY are all at least surjections, we already obtain the desired statement in the
’main’-part, namely that ψ is an epimorphism of directed graphs which is even a bijection
on the vertex sets.

For the (ii): First, let A be the set of all ramified edges in ΓF , let B be the set of all
non-etale edges in G∞, and consider the sets Ai and Bi for all i = 1, 2 in Proposition 103.

From the definitions of the ramified edges in ΓF in Definition 88(iii) and of non-etale
edges in G∞ in Definition 101(ii), we derive the equalities

A = A1 ∪A2 and B = B1 ∪B2.

Consequently, by these equalities and by Proposition 103(ii), we conclude that ψ restricts
to a

map A→ B and even a bijection E(ΓF )\ψ−1(B)→ Y (k)\B. (155)

Next, we remember that, in Definition 101(ii), the singular part Gsing is defined as the
smallest forward and backward complete subgraph of G∞ containing B. Because of this
definition, because ψ restricts to a map A→ B by (155) and because of Lemma 70(iv), we
deduce that ψ−1(Gsing) is even a forward and backward complete subgraph of ΓF which
contains A. In particular, by the definition of Γram

F in Definition 88(iii) as the smallest
forward and backward complete subgraph of ΓF which contains A, we deduce that Γram

F
is a forward and backward complete subgraph of ψ−1(Gsing). Hence, the first desired
statement in the ’moreover’-part follows, namely that ψ indeed restricts to a morphism
Γram

F → Gsing.
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Finally, for the second desired statement in the ’moreover’-part, combining the equal-
ities

PF 1
\ψ−1(E(Gsing)) = E(ΓF )\ψ−1(E(Gsing)) = E(ΓF )\E(ψ−1(Gsing))

= E(ΓF\ψ
−1(Gsing))

and

Y (k)\E(Gsing) = E(G∞)\E(Gsing) = E(G∞\Gsing),

the inclusion B ⊆ E(Gsing) and the second conclusion in (155) yields that ψ restricts to a
bijection E(ΓF\ψ

−1(Gsing)) → E(G∞\Gsing). But since ψ is a already a bijections on the
vertex sets, we obtain the second desired statement in the ’moreover’-part, namely that ψ
restricts to an isomorphism ΓF\ψ

−1(Gsing)→ G∞\Gsing.

For the (iii): Suppose that Y is smooth. Then we first notice that the map ϕ in Lemma
103(ii) is exactly the restriction of the morphism ψ on the edge sets, i.e. E(ΓF )→ E(G∞).
Consequently, the first part of Lemma 103(iii) supplies that ψ is a bijection on the edge
sets. As Proposition 104(i) already supplies that ψ is a morphism which restricts to a
bijection on the vertex sets, we conclude the first desired statement in (iii), namely that
ψ is an isomorphism.

Moreover, the second part of Lemma 103(iii) even provides that, in (155), the map
ψ restricts to a bijection A → B. Hence, because of this, because ψ : ΓF → G∞ is an
isomorphism, because Γram

F is the smallest forward and backward complete subgraph which
contains A and because Gsing is the smallest forward complete subgraph which contains
B, we derive that the last two desired statements in (iii), namely that ψ even restricts to
isomorphisms Γram

F → Gsing and ΓF\Γram
F → G∞\Gsing.
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5 Structure of Tower Graphs

Summary of the results of this chapter. In [Bee04, p. 238, Theorem 5.5] and in
[HP12, p. 27, Theorem 23], it was shown that most of the Beelen-graphs and all of the
HP-graphs have at most one finite d-regular weakly connected component, respectively,
where d is the balanced degree of the given recursive tower. As the first major result of
this thesis, in Theorem 155 of this chapter, we will show that the tower graph not only
has at most one finite d-regular weakly connected component but even at most one finite
balanced weakly connected component.

On the one hand, by Corollary 156, this will especially imply that the Beelen-graph
also has at most one finite balanced weakly connected component. On the other hand, in
Theorem 154, we will present a simplified proof of [HP12, p. 27, Theorem 23] which will
also work on the more general definition of correspondences in Definition 98. This part is
joint work with Florian Heß.

Moreover, this first major result will be one of the two main ingredients to prove the
third major result in Theorem 188. There it will come out that the limit of a good recursive
tower is stable under finite constant field extensions.

Purpose of this chapter. This chapter has two goals. On the one hand, as already
mentioned above, we will prove the first major result of this thesis in Theorem 155. On
the other hand, we will also make preparations for the subsequent chapters by further
studying the structure of tower graphs. More concretely, we will introduce two new con-
cepts for subgraphs of the tower graph, namely constant field extensions and truncations
of subgraphs.

Structure of this chapter. In the Sections 5.1 and 5.2, we will relate the tower graph of
a recursive tower F to the tower graphs of its constant field extensions k′·F and truncations
Trun≥m(F), respectively. Here, we will also have relations which are non-trivial and need
more elaborated proofs, e.g. Lemma 120 and Lemma 138.

In Section 5.3, we will then prove the first major result of this thesis, which is Theo-
rem 155.

5.1 Tower Graphs of Constant Field Extensions
Purpose of this section. In this section, we will connect the tower graph of a recursive
tower F with the tower graph of its constant field extension F ′ = k′ · F and introduce the
new concept of constant field extensions of subgraphs of tower graphs.

Structure of this section. First, we will connect the tower graph ΓF of a recursive
tower F to the tower graph ΓF ′ of its constant field extension F ′ = k′ · F via the CFE-
projection morphism πΓF′/ΓF : ΓF ′ → ΓF .

In Subsection 5.1.1, we will define constant field extensions of subgraphs and prove
some first properties.
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In Subsection 5.1.2, we will relate the places which lie over a subgraph Γ to the places
which lie over the constant field extension of Γ.

In Subsection 5.1.3, we will discuss how automorphisms of k-algebras on k′ induce
automorphisms of directed graphs on ΓF ′ where k denotes the constant field of F .

In Subsection 5.1.4, we will first provide the Path Lifting Lemma 119 and then list
properties which are in some sense invariant under constant field extensions of subgraphs.

In Subsection 5.1.5, we will relate the rational, splitting and ramification subgraphs of
F to the rational, splitting and ramification subgraphs of F ′.

The CFE-projection morphism. In the following Definition/Lemma 105, we will
connect the tower graph ΓF ′ of a constant field extension F ′ = k′ · F of a recursive tower
F and the tower graph ΓF via the CFE-projection morphism πΓF′/ΓF : ΓF ′ → ΓF .

Definition/Lemma 105. Let F = (Fν)ν be a recursive tower which is defined by the pair
(σ, F0), let F ′ be a constant field extension of F , let ΓF (resp. ΓF ′) be the tower graph of
F (resp. F ′) and define

πV : V (ΓF ′)→ V (ΓF ) via P ′ → P ′ ∩ F0 and πE : E(ΓF ′)→ E(ΓF ) via Q′ → Q′ ∩ F1

and
πΓF′/ΓF := (πV , πE) : ΓF ′ → ΓF .

(i) Then πΓF′/ΓF is a well defined epimorphism of directed graphs satisfying the identity

e(Q′|σi(P ′
i )) = e(πΓF′/ΓF (Q′)|σi(πΓF′/ΓF (P ′

i )))

for all edges P ′
0
Q′
−→ P ′

1 in ΓF ′ and all i = 0, 1.
We call πΓF′/ΓF the CFE-projection morphism of F for k′.

(ii) The extension πΓF′/ΓF : W (ΓF ′)→W (ΓF ) of πΓF′/ΓF in Definition 65 satisfies the
identity

σΓF ◦ πΓF′/ΓF = πW (F ′)/W (F) ◦ σΓF′ .

(iii) Let F ′′ be a constant field extension of F ′ and let ΓF ′′ be its tower graph, Then
πΓF′′/ΓF factorizes through ΓF ′, i.e. we have the identity

πΓF′′/ΓF = πΓF′/ΓF ◦ πΓF′′/ΓF′ .

Proof. For (i): Let us write v0 (resp. v′
0) for the initial vertex map on ΓF (resp. ΓF ′) and

v1 (resp. v′
1) for the terminal vertex map on ΓF (resp. ΓF ′).

First, we compute

πV (v′
i(Q′)) = πV (σ−i(Q′) ∩ F ′

0) = (σ−i(Q′) ∩ F ′
0) ∩ F0 = (σ−i(Q′) ∩ σ−i(F1)) ∩ F0

= σ−i(Q′ ∩ F1) ∩ F0 = σ−i(πE(Q′)) ∩ F0 = vi(πE(Q′)) (156)

for all Q′ ∈ E(ΓF ′) and all i = 0, 1 where the equalities hold by the following reasonings:
The first (resp. last) equality holds by the definition of the tower graph ΓF (resp. ΓF ′)
in Definition 74. The second (resp. second to last) equality holds by the definition of πV
(resp. πE). The third equality holds since Definition 5(ii) and Definition 21 imply the
inclusions F0 ⊆ σ−i(F0) · σ1−i(F0)) = σ−i(F0 · σ(F0)) = σ−i(F1) and F0 ⊆ F ′

0. The fourth
equality holds since σ is a bijection.

Consequently, the equalities in (156) provide that πΓF′/ΓF is a well defined morphism
of directed graphs by the definition of those morphisms in Definition 65.
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Second, by the definitions of the tower graphs ΓF ′ and ΓF in Definition 74, we have the
identities V (ΓF ) = PF0 , V (ΓF ′) = PF ′

0
, E(ΓF ) = PF1 and E(ΓF ′) = PF ′

1
. Combining these

identities, the fact that F ′
1/F1 and F ′

0/F0 are extensions of functions fields by Definition
21, the definitions of πV and πE and [Sti08, p. 71, Proposition 3.1.7(b)] yields that the
maps πV and πE are surjective. Therefore, we conclude the first desired statement in (i),
namely that πΓF′/ΓF is a well defined epimorphism.

Finally, for all edges P ′
0

Q′
−→ P ′

1 in ΓF ′ and all i = 0, 1, we also obtain the desired
identity e(Q′|σi(P ′

i )) = e(πΓF′/ΓF (Q′)|σi(πΓF′/ΓF (P ′
i ))) by the equalities

e(Q′|σi(P ′
i )) = e(Q′ ∩ F1|σi(P ′

i ∩ F0)) = e(πΓF′/ΓF (Q′)|σi(πΓF′/ΓF (P ′
i ))) (157)

where the first equality holds because of the equalities F ′
1 = k′ · F1, σ(F ′

0) = σ(k′ · F0) =
k′ ·σ(F0), and σi(P ′

i )∩σi(F0) = σi(P ′
i ∩F0) and because of the invariance of the ramifica-

tion indices under constant field extensions in (12) and the second equality holds by the
definition of πΓF′/ΓF .

All together, (i) follows.

For (ii): The desired identity in (ii) already follows from the equalities

σΓF (πΓF′/ΓF ([P ′
i,j ]j−i≤1)) = σΓF ([P ′

i,j ∩ Fj−i]j−i≤1) = (σi(P ′
i,j ∩ Fj−i))j−i≤1

= (σi(P ′
i,j) ∩ Fi,j)j−i≤1 = πW (F ′)/W (F)((σi(P ′

i,j))j−i≤1)
= πW (F ′)/W (F)(σΓF′ ([P ′

i,j ]j−i≤1))

for all [P ′
i,j ]j−i≤1 ∈ W (ΓF ′) where the equalities hold by the following reasonings: The

first equality holds by the definition of the extension πΓF′/ΓF : W (ΓF ′) → W (ΓF ) in
Definition 65 and by the definitions of πV and πE . The second and last equalities hold
by the definitions of σΓF and σΓF′ in Definition/Lemma 76. The third equality holds
because σi is bijective and because Lemma 10(i) and Lemma 10(ii) imply the identities
σi(Fj−i) = σi(F0,j−i) = Fi,j . The fourth equality holds by the definition of the map
πW (F ′)/W (F) in Lemma 76(iii).

For (iii): This immediately follows from the obvious fact that F ′′ is also a constant
field extension of F and from the definitions of the involved morphisms.

Example 106. Let us again consider the recursive MW-towers F = FMW,2 = (Fν)ν over
F3 and F ′ = F ′

MW,2 = (F ′
ν)ν over F9 from Example 77 which are defined by the polynomial

fMW,2 = Y 2 +XY + 2X2 + 1. There the paths P and P ′ which are depicted in the figures
B.1 and B.2 clearly satisfy the identity πΓF′/ΓF (P ′) = P. Thus, we obtain the equalities

(σΓF ◦ πΓF′/ΓF )(P ′) = σΓF (P) = Path(Q) = πW (F ′)/W (F)(Path(Q′))
= (πW (F ′)/W (F) ◦ σΓF′ )(P ′)

which are in accordance to the identity in Definition/Lemma 105.

Diagram with all the defined maps. Let n ∈ N0. Then we collected all the maps
Path, Pyr, σΓF , τF , πΓF′/ΓF , πW (F ′)/W (F) in the commutative diagram in Figure 5.1. We
also added the evident projection map Proj : Pyr(PFn)→W (F , n) satisfying Proj ◦Pyr =
Path on PFn to this diagram.
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Figure 5.1: Commutative diagram with the path map, the tower graph map and the CFE-
projection morphism

5.1.1 Constant Field Extensions of Subgraphs

Purpose of this subsection. In this subsection, we will define constant field extensions
of subgraphs of tower graphs and prove some first properties.

Later in the Subsection 5.1.5, we will use constant field extensions of subgraphs to
connect the rational, splitting and ramification subgraphs of F with the rational, splitting
and ramification subgraphs of its constant field extensions F ′ = k′ · F . This will play
an important role in the proof of the almost complete answer to Conjecture 1(iii) in
Corollary 184.

Constant field extensions of subgraphs.

Definition 107. Let F = (Fν)ν be a recursive tower over the field k which is defined
by the pair (σ, F0), let F ′ := k′ · F = (F ′

ν)ν be a constant field extension of F for some
algebraic extension k′/k, let ΓF (resp. ΓF ′) be the tower graph of F (resp. F ′) and let Γ
be a subgraph of ΓF . Then we define

k′ · Γ := π−1
ΓF′/ΓF

(Γ)

and call k′ · Γ the k′-constant field extension of Γ. Notice that k′ · Γ is a subgraph of
ΓF ′ which has the vertex set

V (k′ · Γ) = π−1
ΓF′/ΓF

(V (Γ)) = PF ′
0
(V (Γ))

and edge set

E(k′ · Γ) = π−1
ΓF′/ΓF

(E(Γ)) = PF ′
1
(E(Γ)).

Examples 108. (i) The first (resp. second) weakly connected component in Figure B.1
is the F9-constant field extension of the second (resp. first) weakly connected compo-
nent in Figure B.2.

(ii) The first (resp. second; resp third) weakly connected component in Figure B.7 is the
F9-constant field extension of the first (resp. second; resp third) weakly connected
component in Figure B.8.
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Constant field extensions of subgraphs and the CFE-projection morphism.

Lemma 109. Let F = (Fν)ν be a recursive tower over the field k and let F ′ := k′ ·
F = (F ′

ν)ν be a constant field extension of F for some algebraic extension k′/k of fields.
Moreover, let Γ be a subgraph of the tower graph ΓF of F .

Then the morphism πΓF′/ΓF restricts to an epimorphism k′ · Γ → Γ and we have the
identity π−1

ΓF′/ΓF
(W (Γ)) = W (k′ · Γ).

Proof. Both desired statements immediately follow from the definition of k′ · Γ as the
preimage graph π−1

ΓF′/ΓF
(Γ) and from the fact that πΓF′/ΓF is an epimorphism by Defini-

tion/Lemma 105(i).

Transitivity rule for constant field extensions of subgraphs.

Lemma 110. Let F be a recursive tower over the field k which is defined by the pair
(σ, F0), let k′ and k′′ be algebraic extension fields of k which are contained in the domain
of σ. Moreover, let Γ be a subgraph of the tower graph ΓF of F .

If k′′ is an extension field of k, then we have the identity

k′′ · (k′ · Γ) = k′′ · Γ.

Moreover, if k′′ is not an extension field of k′ and Γ′ is a subgraph of the tower graph
of k′ · F , then we also define k′′ · Γ′ := (k′′ · k′) · Γ′.

Proof. Let F ′ := k′ ·F and F ′′ := k′′ ·F . Then we immediately obtain the desired identity
since Definition 107 and Definition/Lemma 105(iii) supply the equalities

k′′ · (k′ · Γ) = π−1
ΓF′′/ΓF′

(π−1
ΓF′/ΓF

(Γ)) = (πΓF′/ΓF ◦ πΓF′′/ΓF′ )−1(Γ) = π−1
ΓF′′/ΓF

(Γ)

= k′′ · Γ.

Intersections and unions of constant field extensions of subgraphs.

Lemma 111. Let F = (Fν)ν be a recursive tower over the field k which is defined by the
pair (σ, F0). Moreover, let k′ be an algebraic extension field of k which is contained in the
domain of σ. Finally, let M be a set of subgraphs of ΓF .

For all Φ ∈ {⋂,⋃}, we then have the identity

k′ · Φ
Γ∈M

Γ = Φ
Γ∈M

k′ · Γ.

Moreover, if the subgraphs Γ in M are pairwise disjoint, then their constant field
extensions k′ · Γ are also pairwise disjoint and we have the identity

k′ ·
∐

Γ∈M
Γ =

∐
Γ∈M

k′ · Γ.

Proof. Every desired statement in immediately follows from the definition of constant
field extensions of subgraphs as the πΓF′/ΓF -preimage graphs in Definition 107, from the
definition of preimage graphs in Definition 69(ii) and from the corresponding statements
for sets and maps, i.e. the preimage of the intersection/union/disjoint union of sets is the
intersection/union/disjoint union of the preimages of these sets.
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Constant field extensions of subgraphs and ramification.

Lemma 112. Let F be a recursive tower over the field k which is defined by the pair
(σ, F0) and let k′ be an algebraic extension fields of k which is contained in the domain of
σ. Moreover, let Γ be a subgraph of the tower graph ΓF of F .

Then Γ contains ramified edges if and only if k′ · Γ contains ramified edges.

Proof. This immediately follows from the fact that πΓF′/ΓF restricts to an epimorphism
k′ ·Γ→ Γ in Lemma 109, from the invariance of the ramification indices under the action of
πΓF′/ΓF in Definition/Lemma 105(i) and from the definition of ramified edges in Definition
88(iii).

5.1.2 Places over Constant Field Extensions of Subgraphs

Purpose of this subsection. In this subsection, we will relate the places Q which lie
over a subgraph Γ to the places Q′ which lie over its constant field extension k′ · Γ. Here,
the first Lemma 113 will provide that the places Q′ are exactly the places which lie over
the places Q. Then the second Lemma 114 will deepen this relationship via the projection
maps π1 and π2 which satisfy the degree property in (160).

In particular, we will need the estimates and equalities of the N -values in Lemma 114
for the proof of the almost complete answer to Conjecture 1(iii) in Corollary 184.

Places over constant field extensions of subgraphs.

Lemma 113. Let F = (Fν)ν be a recursive tower over the field k, let F ′ := k′ ·F = (F ′
ν)ν

be a constant field extension of F for some algebraic extension k′/k, let ΓF (resp. ΓF ′) be
the tower graph of F (resp. F ′), let Γ be a subgraph of the tower graph ΓF of F and let
Γ′ := k′ · Γ. Then we have the identities

PF ′
n
[Γ′] = PF ′

n
(PFn [Γ]) and P(1)

F ′
n
[Γ′] = P(1)

F ′
n
(PFn [Γ])

for all n ∈ N0.

Proof. Let n ∈ N0, let Q′ ∈ PF ′
n
, let P := σ−1

ΓF
(PathF (Q′ ∩ Fn)) ∈ W (ΓF , n) and let

P ′ := σ−1
ΓF′ (PathF ′(Q′)) ∈W (ΓF ′ , n).

First, we notice the equalities

P = σ−1
ΓF

(PathF (πPyr(F ′)/Pyr(F)(Q′))) = σ−1
ΓF

(πW (F ′)/W (F)(PathF ′(Q′)))
= πΓF′/ΓF (σ−1

ΓF′ (PathF ′(Q′))) = πΓF′/ΓF (P ′) (158)

where the equalities hold by the following reasonings: The first equality holds by the
choice of P := σ−1

ΓF
(PathF (Q′ ∩ Fn)) and the definition of the map πPyr(F ′)/Pyr(F) via

πPyr(F ′)/Pyr(F)(Q′) = Q′ ∩Fn in Lemma 76(iii). The second equality holds by the identity
in Lemma 76(iv). The third equality holds by the identity in Definition/Lemma 105(ii).
The last equality holds by the choice of P ′ := σ−1

ΓF′ (PathF ′(Q′)).
Second, combining the equality in (158) and the identity in Lemma 109 yields that

P ∈W (Γ, n) if and only if P ′ ∈W (Γ′, n). (159)

Now, by the definition of PF ′
n
[Γ′] in Definition 85, by the choice of P ′ = σ−1

ΓF′ (PathF ′(Q′))
and by the equivalence in (159), we obtain that

Q′ ∈ PF ′
n
[Γ′] if and only if P ∈W (Γ, n).
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But, by the choice of P := σ−1
ΓF

(PathF (Q′ ∩ Fn)) and by the definition PFn [Γ], we also
conclude that

P ∈W (Γ, n) is equivalent to Q′ ∩ Fn ∈ PFn [Γ] and, thus, to Q′ ∈ PF ′
n
(PFn [Γ]).

Therefore, combining these equivalences provides the first desired identity PF ′
n
[Γ′] =

PF ′
n
(PFn [Γ]).
Finally, the second desired identity follows from the computation

P(1)
F ′

n
[Γ′] = PF ′

n
[Γ′] ∩ P(1)

F ′
n

= PF ′
n
(PFn [Γ]) ∩ P(1)

F ′
n

= P(1)
F ′

n
(PFn [Γ])

where the equalities hold by the following reasonings: The first equality holds by the
definition of P(1)

F ′
n
[Γ′] = PF ′

n
[Γ′] ∩ P(1)

F ′
n

in Definition 85. The second equality holds by the
first desired identity PF ′

n
[Γ′] = PF ′

n
(PFn [Γ]). The last equality holds by the definition of

P(1)
F ′

n
(PFn [Γ]) = PF ′

n
(PFn [Γ]) ∩ P(1)

F ′
n

in (5).

Lemma 114. Let F = (Fν)ν be a recursive tower over the field k which is defined by the
pair (σ, F0), let F ′ = k′ · F = (F ′

ν)ν be the constant field extension of F for some algebraic
extension k′/k, let F = k · (F ν)ν be the geometric tower of F , let ΓF (resp. ΓF ′; resp. ΓF)
be the tower graph of F (resp. F ′; resp. F), let Γ be a subgraph of ΓF and define Γ′ := k′ ·Γ
and Γ := k · Γ. Moreover, let n ∈ N0. Then the following hold:

(i) The maps

π1 : PF ′
n
[Γ′]→ PFn [Γ] via Q′ 7→ Q′ ∩ Fn

and

π2 : PF ′
n
(V (Γ′))→ PFn(V (Γ)) via Q′ 7→ Q′ ∩ Fn

are well defined surjections such that

deg(Q) =
∑

Q′∈π−1
i (Q)

deg(Q′) (160)

for all i = 1, 2 and all Q in the codomain of πi.

(ii) We have the estimates

N [Fn,Γ] ≥ N [Fn,Γ] and N(Fn, V (Γ)) ≥ N(Fn, V (Γ))

for all n ∈ N0.

(iii) If all places in PFn [Γ] (resp. PFn(V (Γ))) are rational, then π1 (resp. π2) is even
a bijection and we have the identity N [F ′

n,Γ′] = N [Fn,Γ] (resp. N(F ′
n, V (Γ′)) =

N(Fn, V (Γ))) for all n ∈ N0.

(iv) If all places in PFn [Γ] are rational and Γ is also a forward complete subgraph of ΓF ,
then we have the identities

N(F ′
n, V (Γ′)) = N [F ′

n,Γ′] = N [Fn,Γ] = N(Fn, V (Γ))

for all n ∈ N0.

149



Proof. For (i): First of all, we notice that, for all i = 1, 2, the surjectivity of the map πi
follows if we can show that it is well defined and satisfies the desired identity in (160):
Indeed, the degree is a positive natural number and, thus, for any Q in the codomain of
πi, the preimage π−1

i (Q) cannot be empty then.
Now, we first deal with π1: Consider the map πPyr(F ′)/Pyr(F) in Lemma 76(iii). Then

we compute

σ−1
ΓF

(PathF (πPyr(F ′)/Pyr(F)(Q′))) = σ−1
ΓF

(πW (F ′)/W (F)(PathF ′(Q′)))
= πΓF′/ΓF (σ−1

ΓF′ (PathF ′(Q′))) (161)

for all Q ∈ PFn where the first equality holds by the identity

PathF ◦πPyr(F ′)/Pyr(F) = πW (F ′)/W (F) ◦ PathF ′

in Lemma 76(iv) and the second equality holds by the identity

πW (F ′)/W (F) ◦ σΓF′ = σΓF ◦ πΓF′/ΓF

in Lemma 105(ii).
On the one hand, for all Q′ ∈ PF ′

n
[Γ′], we have σ−1

ΓF′ (PathF ′(Q′)) ∈ W (Γ′) by the
definition of PF ′

n
[Γ′] in Definition 85. Combining this fact and the definition of Γ′ = k′ ·Γ =

π−1
ΓF′/ΓF

(Γ) in Definition 107 yields πΓF′/ΓF (σ−1
ΓF′ (PathF ′(Q′))) ∈W (Γ). Moreover, by the

equality in (161) and the equalities π1(Q′) = Q∩Fm = Q∩F0,m = πPyr(F ′)/Pyr(F)(Q), we
therefore conclude σ−1

ΓF
(PathF (π1(Q′))) ∈ W (Γ). But this again implies π1(Q′) ∈ PFn [Γ]

and, thus, the map π1 is indeed well defined.
On the other hand, for all Q ∈ PFn [Γ], there is some Q′ ∈ PF ′

n
with

Q = πPyr(F ′)/Pyr(F)(Q′) = Q′ ∩ Fn

by the surjectivity of πPyr(F ′)/Pyr(F) in Lemma 76(iii). Moreover, for all such Q′, we even
have σ−1

ΓF
(PathF (πPyr(F ′)/Pyr(F)(Q′))) ∈ W (Γ) by the choice of Q ∈ PFn [Γ]. Then, by

the equality in (161), we obtain πΓF′/ΓF (σ−1
ΓF′ (PathF ′(Q′))) ∈W (Γ). Furthermore, by this

and the definition of Γ′ = π−1
ΓF′/ΓF

(Γ), we conclude σ−1
ΓF′ (PathF ′(Q′)) ∈ W (Γ′) and, thus,

Q′ ∈ PF ′
n
[Γ′].

Therefore, for all Q ∈ PFn [Γ], we have the equality π−1
1 (Q) = PFn(Q). Combining this

equality and [Sti08, p. 114, Theorem 3.6.3(c)] finally provides the desired identity in (160).
Next, we deal with π2: First, we notice the equality

PF ′
n
(V (Γ′)) = PF ′

n
(PFn(V (Γ))) (162)

because of the definition of Γ′ = k′ ·Γ in Definition 107. But this equality in (162) implies
π2(Q′) = Q′ ∩Fn ∈ PFn(V (Γ)) for all Q′ ∈ PF ′

n
(V (Γ′)) and the equality π−1

2 (Q) = PFn(Q)
for all Q ∈ PFn(V (Γ)). Consequently, similar to the above reasoning, we conclude that π2
is well defined and satisfies the desired identity in (160). Hence, (i) follows.

For (ii): On the one hand, we already obtain the first desired estimate in (ii) by the
equalities and estimates

N [Fn,Γ] = #P(1)
Fn

[Γ] = #PFn
[Γ] ≥ #PFn [Γ] ≥ #P(1)

Fn
[Γ] = N [Fn,Γ]

where the equalities and estimates hold by the following reasonings: The first and last
equalities hold by the definition of N [·, ·] = #P(1)

· [·] in Definition 85. The second equality
holds because Fn has an algebraically closed full constant field k and, thus, all its places
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are rational. The first estimate holds because π1 : PFn
[Γ]→ PFn [Γ] in Lemma 114(i) is a

surjection. The second estimate holds because of the definition of P(1)
Fn

[Γ] = PFn [Γ] ∩ P(1)
Fn

in Definition 85.
On the other hand, we also obtain the second desired estimate in (ii) by the equalities

and estimates

N(Fn, V (Γ)) = #P(1)
Fn

(V (Γ)) = #PFn
(V (Γ)) ≥ #PFn(V (Γ))

≥ #P(1)
Fn

(V (Γ)) = N(Fn, V (Γ))

where the equalities and estimates hold by analogous reasonings.

For (iii): Suppose that all places in PFn [Γ] (resp. PFn(V (Γ))) are rational. Then the
identity in (160) supplies that all fibers of π1 (resp. π2) must be singletons and, thus, π1
(resp. π2) are indeed bijections.

Moreover, this identity in (160) even supplies that all places in PF ′
n
[Γ′] (resp. PF ′

n
(V (Γ′)))

are rational. Consequently, π1 (resp. π2) is actually a bijection from P(1)
F ′

n
[Γ′] to P(1)

Fn
[Γ]

(resp. from P(1)
F ′

n
(V (Γ′)) to P(1)

Fn
(V (Γ))). Hence, we obtain the desired equality in (iii) by

the definition of N [·] in Definition 85 (resp. of N(·) in (5)).

For (iv): Suppose that all places in PFn [Γ] are rational and that Γ is a forward complete
subgraph of ΓF . Then we already obtain the last the desired identity by the equalities

N [Fn,Γ] = #P(1)
Fn

[Γ] = #PFn [Γ] = #PFn(V (Γ)) = #P(1)
Fn

(V (Γ)) = N(Fn, (V (Γ)) (163)

where the equalities hold by the following reasonings: The first (resp. last) equality holds
by the definition of N [Fn,Γ] in Definition 85 (resp. of N(Fn, (V (Γ)) in (5)). The second
equality holds by the assumption that all places in PFn [Γ] are rational. The third equal-
ity holds by the assumption that Γ is a forward complete subgraph of ΓF and by the
’moreover’-part in Lemma 86. The fourth equality holds because the second and third
equalities already imply that all places in PFn(V (Γ)) are rational.

Finally, the first two desired identities immediately follow from the combination of the
identity in (163) and Lemma 114(iii). Hence, (iv) follows.

5.1.3 Induced Automorphisms on Constant Field Extensions of Sub-
graphs

Purpose of this subsection. In this subsection, we will prove Lemma 117 which will
be important in the proof of Lemma 120(ii).

More concretely, let F = (Fν)ν be a recursive tower over the constant field k and let
F ′ = k′ · F = (F ′

ν)ν be a constant field extension of F . Then Lemma 117 supplies that
every automorphism of k-algebras on k′ induces an automorphism on the tower graph ΓF ′

of F ′ which respects the fibers of the CFE-projection morphism πΓF′/ΓF and also restricts
to an automorphism on the constant field extension k′ · Γ of every subgraph Γ of ΓF .

Induced Automorphisms on tower graphs. More generally, not only the automor-
phisms of k-algebras in k′ will induce automorphisms on the tower graphs. In the following
Definition/Lemma 115, we will only need an automorphism τ of rings on F1 which restricts
to automorphisms on k and F0 and satisfies the identity σ ◦ τ = τ ◦ σ on F0.

Here, the first conditions will ensure that τ induces bijections on the sets of places in
F1 and F0, i.e. on the edge and vertex sets of ΓF . The last condition, which is the identity
σ ◦ τ = τ ◦ σ on F0, will ensure that τ respects the embedding of F0 in F1 via σ. If τ also
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satisfies this condition, then the pair of induced bijections on the edge and vertex sets of
ΓF will even be an automorphism of directed graph on ΓF .

Definition/Lemma 115. Let F = (Fν)ν be a recursive tower over the field k which is
defined by the pair (σ, F0), let ΓF be its tower graph and let τ be an automorphism of rings
on F1 which restricts to automorphisms on k and F0 and satisfies the identity σ ◦τ = τ ◦σ
on F0.

Then τ induces an automorphism τ ′ of directed graphs on ΓF via τ ′(P ) := τ(P ) for
all P ∈ V (ΓF ) and τ ′(Q) := τ(Q) for all Q ∈ E(ΓF ).

Proof. First of all, we notice that τ maps valuation rings of F1 and F0 again to valuation
rings of F1 and F0, respectively, by the definition of valuation rings in function fields in
[HJ90, p. 509, Theorem 8.4.5] and by the assumption that τ is an automorphism of rings
on F1 which restricts to automorphisms on k and F0. Consequently, combining this, the
definition of places as the maximal ideals of these valuation rings in [HJ90, p. 509, Theorem
8.4.5] and the definitions of V (ΓF ) = PF0 and E(ΓF ) = PF1 in Definition 74, yields that
τ ′ : V (ΓF )→ V (ΓF ) and τ ′ : E(ΓF )→ E(ΓF ) are indeed well defined bijections.

Now, let P0
Q−→ P1 be an edge in ΓF . Then we compute

τ(Pε) = σ−ε(τ(σε(Pε))) = σ−ε(τ(Q ∩ σε(F0))) = σ−ε(τ(Q) ∩ τ(σε(F0)))
= σ−ε(τ(Q) ∩ σε(F0)) = σ−ε(τ(Q)) ∩ F0 (164)

for all ε = 0, 1 where the equalities hold by the following reasonings: The first equality
holds because σ is bijective and because τ satisfies the identity σ ◦ τ = τ ◦ σ on F0. The
second equality holds by the definition of the edge P0

Q−→ P1 in ΓF in Definition 74. The
third equality holds because τ is bijective. The fourth equality holds because we derive
the equalities τ(σε(F0)) = σε(τ(F0)) = σε(F0) from the assumption that τ satisfies the
identity σ ◦ τ = τ ◦ σ on F0 and from the assumption that τ restricts to an automorphism
on F0.

Finally, the equalities in (164) yield that τ(P0) τ(Q)−−−→ τ(P1) is an edge in ΓF . Hence,
τ ′ is indeed an automorphism of directed graphs on ΓF by Definition 65.

Construction of an automorphism on the tower graph from an automorphism
on the extension field. In the following Lemma 116, we will first extend the automor-
phism τ on k′ to an automorphism τ̂ on k′ · F1 = F ′

1 which satsfies the requirements of
Definition/Lemma 115. Then this will yield the desired automorphism τ̂ ′ on ΓF ′ which is
induced by τ in Lemma 117.

Lemma 116. Let F = (Fν)ν be a recursive tower over the field k which is defined by
the pair (σ, F0), let (F ′

ν)ν := k′ · F be a constant field extension of F for some algebraic
extension k′/k and let τ be an automorphism of k-algebras on k′.

Then there is some unique extension τ̂ of τ to an automorphism of F1-algebras on F ′
1.

Moreover, τ̂ restricts to an automorphism of F0-algebras on F ′
0 and satisfies the identity

τ̂ ◦ σ = σ ◦ τ̂ on F ′
0.

Proof. First, let k be the algebraic closure of k which is contained in the domain of σ
in Definition 5(ii). Then k contains k′ by the definition of constant field extensions of
recursive towers in Definition 21 and, moreover, the extension k/k is Galois since it is
always assumed that k is a perfect field.

Second, as F1 has full constant field k, we have the equality F1 ∩ k = k and, thus,
[Coh91, p. 188, Theorem 5.5] supplies that the extensions F1/k and k/k are linearly dis-
joint. But then the extensions F1/k and k′/k must also be linearly disjoint. Consequently,
the proof of [Coh91, p. 188, Proposition 5.4] yields that the compositum F ′

1 = k′ · F1 is
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a tensor product of the k-algebras F1 and k′ (with the inclusion maps). Thus, by the
universal property, we obtain some unique automorphism τ̂ which restricts to idF1 on F1
and τ on k′. Hence, the ’main’-part follows.

Moreover, as τ̂ also restricts to the identity map on F0 ⊆ F1, we get the equalities
τ̂(F ′

0) = τ̂(k′ · F0) = k′ · F0 = F ′
0 and, consequently, τ̂ restricts to an automorphism of

F0-algebras on F ′
0.

Finally, let x = ∑r
i=1 aibi ∈ F ′

0 = k′ · F0 with ai ∈ k′ and bi ∈ F0 for all i = 1, . . . , r.
Then we deduce the desired identity τ̂ ◦ σ = σ ◦ τ̂ on F ′

0 by the computation

σ(τ̂(x)) =
r∑
i=1

σ(τ(ai))σ(idF1(bi)) =
r∑
i=1

τ(σ(ai)) idF1(σ(bi)) = τ̂(σ(x))

where the first and last equalities hold because τ̂ and σ are morphisms of rings and
because τ̂ restricts to τ on k′ and to idF1 on F1 and the second equality holds because
σ is a morphism of k-algebras by its definition in Definition 5(ii) and, thus, we have the
equality σ(τ(ai)) = τ(σ(ai)). Hence, the ’moreover’-part also follows.

Lemma 117. Let F = (Fν)ν be a recursive tower over the field k which is defined by
the pair (σ, F0), let (F ′

ν)ν := k′ · F be a constant field extension of F for some algebraic
extension k′/k, let ΓF (resp. ΓF ′) be the tower graph of F (resp. F ′), let Γ be a subgraph
of ΓF and let Γ′ := k′ · Γ.

Moreover, let τ be an automorphism of k-algebras on k′, let τ̂ be the extensions of τ
to an automorphism of F1-algebras on F ′

1 in Lemma 116 and let τ̂ ′ be the automorphism
of directed graphs on ΓF ′ which is induced by τ̂ as in Definition/Lemma 115.

Then τ̂ ′ satisfies the identity

πΓF′/ΓF ◦ τ̂
′ = πΓF′/ΓF

and restricts to an automorphism on Γ′.

Proof. First, for all P ′
0 ∈ V (ΓF ′), all P ′

1 ∈ E(ΓF ′) and all ε = 0, 1, we compute

πΓF′/ΓF (τ̂ ′(P ′
ε)) = τ̂(P ′

ε) ∩ Fε = τ̂(P ′
ε) ∩ τ̂(Fε) = τ̂(P ′

ε ∩ Fε)
= P ′

ε ∩ Fε = πΓF′/ΓF (P ′
ε) (165)

where the first and last equalities hold by the definitions of πΓF′/ΓF in Definition/Lemma
105 and of τ̂ ′ in Definition/Lemma 115, the second and fourth equalities hold because τ̂
fixes Fε by Lemma 116 and the third equality holds because τ̂ is bijective. Hence, the
equalities in (165) supply the desired identity

πΓF′/ΓF ◦ τ̂
′ = πΓF′/ΓF . (166)

Moreover, we also compute

πΓF′/ΓF (τ̂ ′(V (Γ′))) = πΓF′/ΓF (π−1
ΓF′/ΓF

(V (Γ))) = V (Γ) (167)

and

πΓF′/ΓF (τ̂ ′(E(Γ′))) = πΓF′/ΓF (π−1
ΓF′/ΓF

(E(Γ))) = E(Γ) (168)

where the first equalities hold by the identity in (166) and by the equalities V (Γ′) =
π−1

ΓF′/ΓF
(V (Γ)) and E(Γ′) = π−1

ΓF′/ΓF
(E(Γ)) in the definition of Γ′ = k · Γ = π−1

ΓF′/ΓF
(Γ) in

Definition/Lemma 107 and the second equalities hold because πΓF′/ΓF is an epimorphism
by Definition/Lemma 105(i). In particular, the equalities in (167) and (168) provide the

153



inclusions τ̂ ′(V (Γ′)) ⊆ π−1
ΓF′/ΓF

(V (Γ)) = V (Γ′) and τ̂ ′(E(Γ′)) ⊆ π−1
ΓF′/ΓF

(E(Γ)) = E(Γ′).
In particular, these inclusions imply that τ̂ ′ must restricts to a morphism Γ′ → Γ′

Finally, we notice that since the same reasoning can be applied to (τ̂−1)′, this morphism
also restricts to a morphism Γ′ → Γ′. But (τ̂−1)′ is clearly the inverse of τ̂ ′ and, hence, τ̂ ′

must even restrict to an automorphism on Γ′ which is the last desired statement.

Example 118. As the F9-constant field extension of the first weakly connected component
Γ in Figure B.2 is the second weakly connected component Γ′ in Figure B.1, Lemma 117
provides that the Frobenius automorphism τ : F9 → F9, α→ α3 induces an automorphism
τ̂ ′ on Γ′ which respects the fibers of πΓF′/ΓF .

Indeed, τ̂ ′ fixes all vertices (resp. edges) except for the two at the bottom and swaps
these two bottom vertices (resp. edges).

5.1.4 Path Lifting and Properties Invariant Under Constant Field Ex-
tension

Purpose of this subsection. There are many similarities between constant field ex-
tensions of subgraphs and covers of topological spaces where the paths in the tower graphs
correspond to the paths in the topological spaces. One of these similarities is the following
Path Lifting Lemma 119 for constant field extensions of subgraphs.

Moreover, in Lemma 120, we will prove that many properties of subgraphs are in some
sense invariant under constant field extensions. These properties will be crucial in the
proof of the almost complete answer to Conjecture 1(iii) in Corollary 184.

Path Lifting Lemma.

Lemma 119 (Path Lifting Lemma). Let F = (Fν)ν be a recursive tower over the field
k which is defined by the pair (σ, F0) and let (F ′

ν)ν = F ′ := k′ · F be the constant field
extension of F for some algebraic extension k′/k.

Moreover, let ΓF (resp. ΓF ′) be the tower of F (resp. F ′), let Γ be a subgraph of ΓF
and let Γ′ := k′ · Γ. Finally, let P be any undirected (resp. directed) path in Γ of length n,
let P be the initial vertex of P and let P ′ ∈ π−1

ΓF′/ΓF
(P ).

Then there is some undirected (resp. directed) path P ′ in Γ′ of length n which starts at
the vertex P ′ and satisfies the identity πΓF′/ΓF (P ′) = P. We call P ′ a πΓF′/ΓF -lift of P.

Proof. Let us write v0 (resp. v1) for the initial (resp. terminal) vertex map on ΓF and v′
0

(resp. v′
1) for the initial (resp. terminal) vertex map on ΓF ′ .

We will find the desired πΓF′/ΓF -lift P ′ of P by induction over the length n ∈ N0 of
P: For n = 0, the path P is just the vertex P . Thus, the vertex P ′ is already the desired
πΓF′/ΓF -lift P ′ of P.

Now, suppose n ≥ 1, let Q be the n-th and last edge of P, let Pi := vi(Q) for all i = 0, 1
and let P0 be the (0, n−1)-subpath of P. Then there is some index ε ∈ {0, 1} such that P0
and Q are connected via the vertices Pε. Moreover, we may apply the induction hypothesis
to P0 as it has length n− 1 and, hence, obtain a πΓF′/ΓF -lift P ′

0 of P0. Consequently, the
terminal vertex P ′

ε of P ′
0 must be a πΓF′/ΓF -preimage of Pε and it satisfies the equalities

σε(P ′
ε) ∩ σε(F0) = σε(P ′

ε ∩ F0) = σε(Pε) = σε(vε(Q)) = σε(σ−ε(Q) ∩ F0)
= Q ∩ σε(F0) (169)

where the equalities hold by the following reasonings: The first and last equalities hold
because σ is bijective. The second equality holds because P ′

ε ∈ π−1
ΓF′/ΓF

(Pε) = PF ′
0
(Pε).

The third equality holds by the choice of Pε. The fourth equality holds by the definition
of ΓF in Definition 74.
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Consequently, because of the equality in (169) and because of the equalities k′·σε(F0) =
σε(k′ · F0) = σε(F ′

0), we can apply Lemma 26 to the extension F1/σ
ε(F0) (see Figure 5.2)

and obtain some place

Q′ ∈ PF ′
1
((Q, σε(P ′

ε))) ⊆ E(ΓF ′). (170)

In particular, we obtain the following equalities: First, we obtain the equalities

Figure 5.2: Extensions of function fields and places in a proof

πΓF′/ΓF (Q′) = Q′ ∩ F1 = Q (171)

where the first equality holds by the definition of πΓF′/ΓF in Definition/Lemma 105(i) and
the second equality holds by the choice of Q′ in (170). Second, we obtain the equalities

v′
ε(Q′) = σ−ε(Q′) ∩ F ′

0 = σ−ε(Q′ ∩ σε(F ′
0)) = σ−ε(σε(P ′

ε)) = P ′
ε (172)

where the first equality holds by the definition of ΓF ′ , the second equality holds since σ
is a bijection, the third equality holds by the choice of Q′ in (170) and the last equality is
clear. Third, we obain the equalities

πΓF′/ΓF (v′
1−ε(Q′)) = v′

1−ε(Q′) ∩ F0 =
(
σ−(1−ε)(Q′) ∩ F ′

0

)
∩ F0

=
(
σ−(1−ε)(Q′) ∩ σ−(1−ε)(F1)

)
∩ F0 = σ−(1−ε)(Q′ ∩ F1) ∩ F0

= σ−(1−ε)(Q) ∩ F0 = v1−ε(Q) = P1−ε (173)

where the equalities hold by the following reasonings: The first equality holds by the
definition of πΓF′/ΓF . The second equality holds by the definition of ΓF ′ . The third
equality holds by the inclusions F ′

0 ⊇ F0 and σ−(1−ε)(F1) = σ−(1−ε)(F0·σ(F0)) = σε−1(F0)·
σε(F0) ⊇ F0 where the last inclusion follows from the choice of ε ∈ {0, 1}. The fourth
equality holds because σ is bijective. The fifth equality holds by the second equality in
(171). The second to last equality holds by the definition of ΓF . The last equality holds
by the choice of P1−ε.

Consequently, for P ′
1−ε := v′

1−ε(Q′), combining the equalities in (171), (172) and (173)
yields the edge

Q′ ∈ π−1
ΓF′/ΓF

(Q) ⊆ π−1
ΓF′/ΓF

(E(Γ)) = E(Γ′)

satisfying P ′
i = v′

i(Q′) ∈ π−1
ΓF′/ΓF

(Pi) for all i = 1, 2. for all i = 1, 2,.
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Finally, by this conclusion and by the choice of P ′
ε as the terminal vertex of the πΓF′/ΓF -

lift P ′
0 of P0, we can compose P ′

0 and Q′ at the vertex P ′
ε and obtain the desired πΓF′/ΓF -

lift P ′, i.e P ′ is a path in Γ′ of length n which starts at P ′ and satisfies the identity
πΓF′/ΓF (P ′) = P.

In particular, if P is directed, then ε is equal to zero and, hence, in this case, P ′ is also
a directed path.

Subgraphs properties invariant under constant field extensions. In Lemma 120,
we will prove that many properties of subgraphs are invariant under constant field exten-
sions. These properties will be crucial in the proof of the almost complete answer to
Conjecture 1(iii).

Lemma 120. Let F = (Fν)ν be a recursive tower over the field k which is defined by the
pair (σ, F0) and let (F ′

ν)ν = F ′ := k′ · F be the constant field extension of F for some
algebraic extension k′/k.

Moreover, let ΓF (resp. ΓF ′) be the tower of F (resp. F ′), let Γ be a subgraph of ΓF
and let Γ′ := k′ · Γ. Then the following hold:

(i) Γ is finite if and only if Γ′ is finite.

(ii) Suppose that Γ is weakly connected. Then Γ′ is a disjoint union of its finitely many
weakly connected components Γ′

1, . . . ,Γ′
r and the morphism πΓF′/ΓF restricts to an

epimorphism Γ′
i → Γ for all i = 1, . . . , r.

Moreover, the following are equivalent:

(a) Γ is strongly connected.
(b) Γ′

i is strongly connected for some i = 1, . . . , r.
(c) Γ′

i is strongly connected for all i = 1, . . . , r.

(iii) Γ is a forward (resp. backward) complete subgraph of ΓF if and only if Γ′ is a forward
(resp. backward) complete subgraph of ΓF ′.
Moreover, if Γ is weakly connected and Γ′

1, . . . ,Γ′
r are the weakly connected compo-

nents of Γ′ in Lemma 120(ii), then the following are equivalent:

(a) Γ is a weakly connected component of ΓF .
(b) Γ′

i is a weakly connected component of ΓF ′ for some i = 1, . . . , r
(c) Γ′

i is a weakly connected component of ΓF ′ for all i = 1, . . . , r

(iv) A path P ′ ∈ W (ΓF ′) is tame if and only if πΓF′/ΓF (P ′) ∈ W (ΓF ) is tame. In
particular, all paths in Γ′ are tame if and only if all paths in Γ are tame.

(v) A path P ′ ∈ W (ΓF ′) has balanced ramification indices if and only if πΓF′/ΓF (P ′) ∈
W (ΓF ) has balanced ramification indices. In particular, all circles in Γ′ have balanced
ramification indices if and only if all circles in Γ have balanced ramification indices.
Moreover, if Γ is weakly connected and Γ′

1, . . . ,Γ′
r are the weakly connected compo-

nents of Γ′ in Lemma 120(ii), then the following are equivalent:

(a) All circles in Γ have balanced ramification indices.
(b) All circles in Γ′

i have balanced ramification indices for some i = 1, . . . , r
(c) All circles in Γ′

i have balanced ramification indices for all i = 1, . . . , r
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Proof. For (i): We estimate

#V (Γ) ≤ #PF ′
0
(V (Γ)) ≤

∑
P∈V (Γ)

deg(P )

and
#E(Γ) ≤ #PF ′

1
(E(Γ)) ≤

∑
Q∈E(Γ)

deg(Q)

where the first estimates hold by the definition P·(·) in (5) and the second estimates hold
because F ′

i = k′ · Fi is a constant field extension of Fi for all i = 0, 1 and because of
[Sti08, p. 114, Theorem 3.6.3].

Then combining these estimates and the fact that the definition of Γ′ = k′ · Γ implies
the equalities V (Γ′) = PF ′

0
(V (Γ)) and E(Γ′) = PF ′

1
(E(Γ)) already yields the desired equiv-

alence.

For the ’main’-part in (ii): First of all, we notice that the desired statements hold
trivially if Γ is empty since Γ′ = k′ · Γ = π−1

ΓF′/ΓF
(Γ) is also empty in this case and, conse-

quently, has no weakly connected components. Therefore, in the following, suppose that
Γ is non-empty. Then Γ′ = π−1

ΓF′/ΓF
(Γ) is also non-empty since πΓF′/ΓF is an epimorphism

by Definition/Lemma 105(i).
Second, applying Lemma 68(iii) to Γ′ (as a subgraph of itself) yields that Γ′ is a

disjoint union of all its weakly connected components Γ′
0 and since Lemma 109 implies

that πΓF′/ΓF restricts to a morphism Γ′ → Γ, it especially restricts to a morphism Γ′
0 → Γ

for all these components Γ′
0.

Now, we will show that πΓF′/ΓF even restricts to an epimorphism of Γ′
0 → Γ: Let

P ∈ V (Γ). As Γ′
0 is non-empty by the definition of weakly connected components in

Definition 66(v), there is some vertex P ′
0,0 ∈ V (Γ′

0) ⊆ V (Γ′) = π−1
ΓF′/ΓF

(V (Γ)). Then
P0,0 := πΓF′/ΓF (P ′

0,0) is a vertex in Γ and since Γ is weakly connected, there is some
undirected path P from P0,0 to P . Consequently, Lemma 119 provides some πΓF′/ΓF -lift
P ′ of P which starts at P ′

0,0, i.e. P ′ is some undirected path in Γ′ which starts P ′
0,0 and

satisfies πΓF′/ΓF (P ′) = P (see Figure 5.3).

Figure 5.3: Decomposition of constant field extensions of subgraphs into their weakly
connected components

But, because Γ′
0 is a weakly connected component of Γ′ and because the initial vertex

P ′
0,0 of P ′ is contained in Γ′

0, the whole path P ′ must be contained in Γ′
0. In particular,
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combining this conclusion and the identity πΓF′/ΓF (P ′) = P yields that the terminal vertex

P ′ of P ′ is contained in V (Γ′
0) ∩ π−1

ΓF′/ΓF
(P ). (174)

Therefore, this conclusion in (174) implies that πΓF′/ΓF indeed restricts to a surjection
V (Γ′

0)→ V (Γ).
Next, let Q ∈ E(Γ), Moreover, define P := vinit(Q) = Q ∩ F0 ∈ V (Γ) and choose

P ′ ∈ PF ′
0
(P ) ∩ V (Γ′

0) as in (174). Then Lemma 26 provides some place

Q′ ∈ PF ′
1
((Q,P ′)) ⊆ PF ′

1
(E(Γ)) ∩ π−1

ΓF′/ΓF
(Q) ∩ PF ′

1
(P ′)

= E+(Γ′, P ′) ∩ π−1
ΓF′/ΓF

(Q) ⊆ E(Γ′
0) ∩ π−1

ΓF′/ΓF
(Q) (175)

where inclusions and equality holds by the following reasonings: The first inclusion holds
because of the definition of PF ′

1
(·) in (5), because Q ∈ E(Γ) and because of the definition

of πΓF′/ΓF in Definition/Lemma 105. The equality holds because of the definition of
Γ′ = k′ · Γ in Definition/Lemma 107 and because the definition of ΓF ′ in Definition 74
provides that any edge in Q′ ∈ E(Γ′) ∩ PF ′

1
(P ) has the initial vertex Q′ ∩ F ′

0 = P . The
second inclusion holds because Γ′

0 is a weakly connected component and, thus, a forward
complete subgraph of Γ′ and because of the definition of forward complete subgraphs
in Definition 66(iii). Therefore, (175) implies that πΓF′/ΓF also restricts to a surjection
E(Γ′

0)→ E(Γ).
Hence, combining both surjections yields that πΓF′/ΓF restricts to an epimorphism

Γ′
0 → Γ for all weakly connected components Γ′

0 of Γ′.
Finally, since the preimage π−1

ΓF′/ΓF
(P ) = PF ′

0
(P ) contains at most deg(P ) many places

for any P ∈ V (Γ), since any two distinct weakly connected components Γ′
0 of Γ′ are disjoint

and since πΓF′/ΓF restricts to an epimorphism Γ′
0 → Γ, we also conclude that there can

only be finitely many weakly connected components Γ′
0 of Γ′.

All together, the ’main’-part of (ii) follows.

For the ’moreover’-part in (ii): We will show the implications from (c) to (b), from (b)
to (a) and from (a) to (c): Here, the first implication from (c) to (b) holds trivially and
the second implication from (b) to (a) holds because πΓF′/ΓF restricts to an epimorphism
Γ′
i → Γ and because of Lemma 70(v).

Next, we will prove the last implication from (a) to (c) for k′ = k where k is the
algebraic closure of k which is contained in the domain of σ by its definition in Definition
5(ii). For this case, let us replace r with s and all apostrophes with overbars, e.g. Γi := Γ′

i

for all i = 1, . . . , s.
Then, from this, we derive the implication from (a) to (c) for more general k′ in the

following way: Suppose that Γ is strongly connected. First, by the assumption that the
implication from (a) to (c) holds for k, we obtain that the

weakly connected components Γ1, . . . ,Γs of Γ are all strongly connected. (176)

Next, we notice the equalities

π−1
ΓF/ΓF′

(Γ′) = k · Γ′ = k · Γ = Γ

where the first equality holds by the definition of constant field extensions of subgraphs
in Definition 107, the second equality holds by Lemma 110 and the third equality holds
by the definition of Γ′ in the assumption.

For all j = 1, . . . , r, we then conclude that k · Γ′
j = π−1

ΓF/ΓF′
(Γ′
j) is a forward and

backward complete subgraph of π−1
ΓF/ΓF′

(Γ′) = Γ because Γ′
j is a weakly connected compo-

nent and, thus, a forward and backward complete subgraph of Γ′, and because of Lemma
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70(iv). But, by Lemma 68(iii), this means that k · Γ′
j must be a disjoint union of some of

the weakly connected components Γ1, . . . ,Γs of Γ, say Γ1, . . . ,Γm.
Hence, this must be the disjoint union of k · Γ′

j in the ’main’-part of (ii) and since
all Γi are strongly connected by (176), we may apply the implication from (b) to (a) for
(F ,ΓF ,Γ, k′,Γ′, (Γ′

1, . . . ,Γ′
r)) chosen as (F ′,ΓF ′ ,Γ′

j , k, k · Γ′
j , (Γ1, . . . ,Γm)). This provides

the desired statement, namely that Γ′
j is also strongly connected for all j = 1, . . . , r.

Now, for proving the implication from (a) to (c) in the case k′ = k, let l ∈ {1, . . . , s}
and notice that, by Lemma 57, it is enough to show that

any Q ∈ E(Γl) has some path PQ in Γl which goes from vterm(Q) to vinit(Q). (177)

Therefore, let Q ∈ E(Γl) and define P 1 := vinit(Q) and P := πΓF/ΓF (P 1) ∈ V (Γ).
Then, as Γ is strongly connected, there is some directed path P in Γ from πΓF′/ΓF (vterm(Q))
to P (see Figure 5.4). Moreover, Lemma 119 provides some πΓF/ΓF -lift of this path P,
i.e. a directed path

P1 in Γ which goes from vterm(Q) to some place P 2 ∈ π−1
ΓF′/ΓF

(P ) = PF 0
(P ). (178)

Consequently, the composition of Q (considered as a path of length one) and P1 is a

path P from P 1 to P 2. (179)

Figure 5.4: Lifting paths in a proof

Now, Lemma 25 supplies some automorphism τ of k-algebras and some t ∈ N such
that

τ(P 1) = P 2 and τ t(P 1) = P 1. (180)
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Figure 5.5: Diagrams of extensions of function fields and places and the action of auto-
morphisms in a proof

Let τ0 be the restriction of τ to an automorphism of k-algebras on k (see Figure 5.5).
On the one hand, because of the definition F 0 = k · F0, we conclude that τ is the unique
extension of τ0 to an automorphism of F0-algebras on F 0. On the other hand, Lemma 116
also supplies a unique extension τ̂ of τ to an automorphism of F1-algebras on F 1. But, as
the restriction of τ̂ to an automorphism of F0-algebras on F 0 is still an extension of τ0,
it must be equal to τ . Consequently, by this conclusion and the equalities in (180), we
obtain

τ̂(P 1) = τ(P 1) = P 2 and τ̂ t(P 1) = τ t(P 1) = P 1. (181)

Second to last, by Lemma 117, τ̂ induces an automorphism τ̂ ′ of directed graphs on
Γ via τ̂ ′(P ) := τ̂(P ) and τ̂ ′(Q0) := τ̂(Q0) for all P ∈ V (Γ) and all Q0 ∈ E(Γ). Then,
from this definition of τ̂ ′, from the first equality in (181) and from (179), we derive that
(τ̂ ′)i(P) is a path in Γ from (τ̂ ′)i(P 1) to (τ̂ ′)i(P 2) = (τ̂ ′)i+1(P 1) and, hence, that (τ̂ ′)i(P)
and (τ̂ ′)i+1(P) are composable paths for all i ∈ N0.

Consequently, P2 := ∏t−1
i=1(τ̂ ′)i(P) is a path in Γ from τ̂ ′(P 1) = P 2 to (τ̂ ′)t−1(P 2) =

(τ̂ ′)t(P 1) = P 1 where the equalities hold by (181). Thus, combining this conclusion and the
definition of P1 in (178) provides that P1P2 is a path in Γ from vterm(Q) to P 1 = vinit(Q).

Finally, since Γl is a weakly connected component of Γ and since the initial vertex
vterm(Q) of P 1 = vinit(Q) is contained in Γ′

l, this path must be completely contained in Γl
and, hence, be one of the desired paths PQ in (177).

For the ’main’-part in (iii): The desired equivalences immediately follow because of the
definition of Γ′ = k′ ·Γ = π−1

ΓF′/ΓF
(Γ) in Definition 107, because Lemma 105(i) supplies that

πΓF′/ΓF : ΓF ′ → ΓF is an epimorphism and because we can thus apply the ’moreover’-part
in Lemma 70(iv).

For the ’moreover’-part in (iii): First, the implication from (c) to (b) holds trivially.
Second, for the implication from (a) to (c), suppose that Γ is a weakly connected com-
ponent of ΓF . Then, by the definition of weakly connected components in Definition
66(v), Γ is especially a forward and backward complete subgraph of ΓF . Consequently,
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the ’main’-part in (iii) supplies that Γ′ is also a forward and backward complete subgraph
of ΓF ′ . But, since Γ′ is the disjoint union of its weakly connected components Γ′

1, . . . ,Γ′
r

and since it immediately follows from Definition 66(iii) that the property of being a for-
ward (resp. backward) complete subgraph is transitive, we also conclude that Γ′

1, . . . ,Γ′
r

are weakly connected components of ΓF ′ .
Third and finally, for the implication from (b) to (a), let l ∈ {1, . . . , r} be the index

such that Γ′
l is a weakly connected component of ΓF ′ . Consequently, by the definition of

weakly connected components in Definition 66(v),

Γ′
l is a forward and backward complete subgraph of ΓF ′ . (182)

Now, let Q be an edge in ΓF such that its initial (resp. terminal) vertex P is contained
in Γ and set i := 0 (resp. i := 1). Then we have the equalities

Q ∩ σi(F0) = σi(σ−i(Q) ∩ F0) = σi(P ) (183)

and since πΓF′/ΓF restricts to an epimorphism Γ′
l → Γ by Lemma 120(ii), there is some

P ′ ∈ V (Γ′
l) ∩ π−1

ΓF′/ΓF
(P ) = V (Γ′

l) ∩ PF ′
0
(P ). (184)

Consequently, by (183) and (184), Lemma 26 provides some place

Q′ ∈ PF ′
1
((Q, σi(P ′))) ⊆ E(ΓF ′) ∩ π−1

ΓF′/ΓF
(Q). (185)

In particular, the initial (resp. terminal) vertex of Q′ equals

σ−i(Q′) ∩ F ′
0 = σ−i(Q′ ∩ σi(F ′

0)) = σ−i(σi(P ′)) = P ′. (186)

But combining (184), (185), (186) and (182) yields that Q′ is even an edge in E(Γ′
l).

Thus, because of this conclusion, because πΓF′/ΓF restricts to a morphism Γ′
l → Γ and

because of (185), we conclude that Q = πΓF′/ΓF (Q′) is an edge in E(Γ). Therefore, we
established that Γ is a forward and backward complete subgraph of ΓF .

Finally, since Γ′
l is a weakly connected component of Γ′, it is non-empty and, thus, its

πΓF′/ΓF -image Γ is also non-empty. Hence, by the definition of weakly connected com-
ponents as non-empty weakly connected forward and backward complete subgraphs in
Definition 66(v), we conclude the desired statement, namely that Γ is a weakly connected
component of ΓF .

For (iv) and (v): Let [P ′
i,j ]j−i≤1 := P ′ ∈W (ΓF ′ , n) for some n ∈ N0 and [Pi,j ]j−i≤1 :=

πΓF′/ΓF (P) = [πΓF′/ΓF (P ′
i,j)]j−i≤1 ∈ W (ΓF , n). Then Definition/Lemma 105(i) provides

the equality

e(P ′
i−1,i|σε(P ′

i−1+ε.i−1+ε)) = e(Pi−1,i|σε(Pi−1+ε.i−1+ε)) (187)

for all i = 1, . . . , n and all ε = 0, 1. Thus, by these equalities in (187) and the def-
inition of tameness (resp. balanced ramification indices) of paths in Definition/Lemma
81(ii) (resp. Definition/Lemma 82(ii)), the desired equivalence in the ’main’-part of (iv)
(resp. (v)) immediately follows.

Moreover, the desired equivalence in the ’in particular’-part of (iv) also immediately
follows from the first equivalence in (iv) and since πΓF′/ΓF restricts to an epimorphism
Γ′ → Γ by Lemma 109.

The only remaining parts are the equivalences in the ’in particular’- and ’moreover’-
part in (v):
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For the ’in particular if’-part in (v): Suppose that

all circles in Γ have balanced ramification indices (188)

and that P ′ from above is a circle in Γ′. As P ′ is a circle, we have the equality

P ′
0,0 = P ′

n,n. (189)

Now, by Lemma 109, we obtain that πΓF′/ΓF (P ′) = [πΓF′/ΓF (P ′
i,j)]j−i≤1 = [Pi,j ]j−i≤1

is an element in W (Γ, n) and, moreover, the equality in (189) even yields the equality
P0,0 = Pn,n. This means that πΓF′/ΓF (P ′) is a closed path and, therefore, combining the
assertion in (188) and Lemma 83 provides that πΓF′/ΓF (P ′) has balanced ramification
indices. Hence, by the equivalence in the ’main’-part in (v), P ′ also must have balanced
ramification indices.

For the ’in particular only if’-part in (v): Suppose that

all circles in Γ′ have balanced ramification indices (190)

and that P is a circle in Γ which starts and ends at the vertex P . Then by [Sti08, p. 114,
Theorem 3.6.3(c)], the set PF ′

0
(P ) = π−1

ΓF′/ΓF
(P ) ⊆ π−1

ΓF′/ΓF
(V (Γ)) = V (Γ′) contains

finitely many places, say

{P ′
1, . . . , P

′
δ} := π−1

ΓF′/ΓF
(P ) (191)

with δ = #π−1
ΓF′/ΓF

(P ). Moreover, for all i = 1, . . . , δ, the Path Lifting Lemma 119 supplies
some πΓF′/ΓF -lift P ′

i of P in Γ′ which starts at P ′
i . In particular, since P is a circle, its lift

P ′
i must also stop at some vertex P ′

s(l) ∈ π
−1
ΓF′/ΓF

(P ).
This defines a map

s : {1, . . . , δ} → {1, . . . , δ} such that P ′
i goes from P ′

i to P ′
s(i) (192)

and, therefore, the paths P ′
i and P ′

s(i) are composable for all i = 1, . . . , δ. Furthermore,
since the set {sµ(1) : µ ∈ N0} ⊆ {1, . . . , δ} is finite, there must be repetitions and, thus,
we obtain natural numbers µ < ν such that sµ(1) = sν(1). Consequently, the composition

P ′ :=
ν−1∏
i=µ
P ′
si(1) (193)

is a closed path in Γ′.
Next, we notice that, by the assertion in (190) and by Lemma 83, the closed path

P ′ must have balanced ramification indices. Then combining this conclusion, the fact
that P ′

s(i) is a πΓF′/ΓF -lift of P and the equivalence in the ’main’-part in (v) yields
that πΓF′/ΓF (P ′) = ∏ν−1

i=µ πΓF′/ΓF (Ps(i)) = ∏ν−1
i=µ P has balanced ramification indices.

But, by the definition of having balanced ramification indices in Definition 82(ii) and
for [Pi,j ]j−i≤1 := P ∈W (Γ, n), this means that we have the equality(

n∏
i=1

e(Pi−1,i|Pi−1,i−1)
)ν−µ

=
(

n∏
i=1

e(Pi−1,i|σ(Pi,i))
)ν−µ

Finally, if we take the (ν − µ)-th root of both sides of this equality, we conclude the
desired statement, namely that P has balanced ramification indices.
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For the equivalences in the ’moreover’-part in (v): First, the implication from (c) to
(b) holds trivially. Second, for the implication from (a) to (c), suppose that all circles in Γ
have balanced ramification indices. Then the ’in particular’-part in (v) also supplies that
all circles in Γ′ have balanced ramification indices. But, since Γ′ is the disjoint union of
Γ′

1, . . . ,Γ′
r, we conclude that all circles in Γ′

1, . . . ,Γ′
r have balanced ramification indices.

Third and finally, for the implication from (b) to (a), suppose that

all circles in Γ′
l have balanced ramification indices (194)

for some l ∈ {1, . . . , r}. Let P = [Pi,j ]j−i≤1 be a circle of length n in Γ. As πΓF′/ΓF restricts
to an epimorphism Γ′

l → Γ, one of the vertices in the set π−1
ΓF′/ΓF

(P ) = {P ′
1, . . . , P

′
δ} in

(191) must be contained in V (Γ′
l), say P ′

1.
Then combining this conclusion, the choice of Γ′

l as a weakly connected component of
Γ′ and the conclusion in (192) supplies that the paths P ′

si(1) are completely contained in
Γ′
l for all i ∈ N0. In particular, this also provides that the closed path P ′ in (193) is also

completely contained in Γ′
l. Consequently, because of (194), the path P ′ also has balanced

ramification indices in this case.
Hence, the remaining reasoning in the proof of the ’in particular only if’-part in (v)

can be again applied to conclude the desired statement, namely that P has balanced
ramification indices.

Weakly connected components and the CFE-projection morphism.

Lemma 121. Let F = (Fν)ν be a recursive tower over the field k which is defined by the
pair (σ, F0) and let (F ′

ν)ν = F ′ := k′ · F be the constant field extension of F for some
algebraic extension k′/k. Moreover, let ΓF (resp. ΓF ′) be the tower graph of F (resp. F ′)
and let Γ′ be a subgraph of Γ′

F .
If Γ′ is a weakly connected component of ΓF ′, then πΓF′/ΓF (Γ′) is a weakly connected

component of ΓF .

Proof. Suppose that Γ′ is a weakly connected component of ΓF ′ . By Lemma 70(ii) and by
the definition of constant field extensions of subgraphs in Definition 107, Γ′ is a subgraph
of π−1

ΓF′/ΓF
(πΓF′/ΓF (Γ′)) = k′ · πΓF′/ΓF (Γ′).

In particular, since Γ′ is a weakly connected component of ΓF ′ , it must especially be
one of the weakly connected components of k′ · πΓF′/ΓF (Γ′). But, then the implication
from (b) to (a) in the ’moreover’-part in Lemma 120(iii) implies that πΓF′/ΓF (Γ′) is indeed
a weakly connected component of ΓF .

5.1.5 Constant Field Ext. of Rational, Splitting and Ramification Sub-
graphs

Purpose of this subsection. Let F ′ = k′ · F be a constant field extensions of a
recursive tower F . In this subsection, we will connect the constant field extensions k′ · Γ
of the rational, splitting and ramification subgraphs Γ of ΓF with the rational, splitting
and ramification subgraphs Γ′ of ΓF ′ .

This connection will be crucial for the proof of the almost complete answer to Conjec-
ture 1(iii) in Corollary 184.

Constant field extension of the rational subgraph.

Lemma 122. Let F = (Fν)ν be a recursive tower over a field k, let F ′ = (F ′
ν)ν := k′ ·F be

the constant field extension of F for some algebraic extension k′/k and let Γrat
F (resp. Γrat

F ′ )
be the rational subgraph of the tower graph ΓF of F (resp. ΓF ′ of F ′).
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Then k′ ·Γrat
F is a subgraph of Γrat

F ′ and πΓF′/ΓF restricts to an isomorphism k′ ·Γrat
F →

Γrat
F .

Proof. First, we notice that πΓF′/ΓF restricts to an epimorphism k′ ·Γrat
F → Γrat

F by Lemma
109. Second, we notice that, for all P ∈ V (Γrat

F ) = P(1)
F0

and all Q ∈ V (Γrat
F ) = P(1)

F1
, the

preimages π−1
ΓF′/ΓF

(P ) = PF ′
0
(P ) and π−1

ΓF′/ΓF
(Q) = PF ′

1
(Q) are singletons and only consist

of rational places by [Sti08, p. 114, Theorem 3.6.3(c)]. But this already implies both desired
statements, namely that k′ ·Γrat

F = π−1
ΓF′/ΓF

(Γ) is a subgraph of Γrat
F ′ and that πΓF′/ΓF even

restricts to an isomorphism k′ · Γrat
F → Γrat

F .

Constant field extension of the splitting subgraph.

Lemma 123. Let F = (Fν)ν be a recursive tower over a field k of balanced degree, let
F ′ = (F ′

ν)ν := k′ · F be the constant field extension of F for some algebraic extension field
k′ of k and let Γsplit

F (resp. Γsplit
F ′ ) be the splitting subgraph of the tower graph ΓF of F

(resp. ΓF ′ of F ′).
Then k′·Γsplit

F is a subgraph of Γsplit
F ′ and πΓF′/ΓF restricts to an isomorphism k′·Γsplit

F →
Γsplit

F .

Proof. First, by the definition of Γsplit
F in Definition 88(ii), we notice that Γsplit

F is a sub-
graph of the rational subgraph Γrat

F of ΓF . In particular, this yields that

k′ · Γsplit
F is a subgraph of k′ · Γrat

F . (195)

Second, we notice that Lemma 122 provides that k′ · Γrat
F is a subgraph of Γrat

F ′ and
that πΓF′/ΓF restricts to an isomorphism k′ · Γrat

F → Γrat
F . Then these two statements, the

conclusion in (195) and Lemma 109 supply that

k′ · Γsplit
F is a subgraph of Γrat

F ′ (196)

and that πΓF′/ΓF restricts to an isomorphism ϕ : k′ · Γsplit
F → Γsplit

F where the latter
conclusion is the second desired statement.

Moreover, because ϕ is an isomorphism, because Γsplit
F is d-regular by its definition

and because of (196), we also deduce that k′ · Γsplit
F = ϕ−1(Γsplit

F ) is a d-regular subgraph
of Γrat

F ′ . Hence, by the definition of Γsplit
F ′ as the largest d-regular subgraph of ΓF ′ in

Definition 88(ii), we conclude that k′ ·Γsplit
F is a subgraph of Γsplit

F ′ which is the first desired
statement.

Constant field extension of the ramification subgraph.

Lemma 124. Let F = (Fν)ν be a recursive tower over a field k, let F ′ = (F ′
ν)ν := k′ ·F be

the constant field extension of F for some algebraic extension k′/k and let Γram
F (resp. Γram

F ′ )
be the ramification subgraph of the tower graph ΓF of F (resp. ΓF ′ of F ′).

Then we have the identity Γram
F ′ = k′ · Γram

F and πΓF′/ΓF restricts to an epimorphism
Γram

F ′ → Γram
F .

Proof. For the desired identity Γram
F ′ = k′ · Γram

F , we first notice that the definition of
k′ · Γram

F = π−1
ΓF′/ΓF

(Γ) in Definition 107 provides the equality

π−1
ΓF′/ΓF

(E(Γram
F )) = E(k′ · Γram

F ). (197)
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Second, Definition/Lemma 105(i) supplies that the ramification indices of the edges in
Γ′

F are invariant under the action of the epimorphism πΓF′/ΓF : ΓF ′ → ΓF . In particular,
this implies that

πΓF′/ΓF restricts to a surjection from the set of the ramified (resp. unramified) edges
in E(ΓF ′) to the set of the ramified (resp. unramified) edges in E(ΓF ). (198)

Combining the ’ramified’-part of the conclusions in (198), the fact that Γram
F contains all

ramified edges in ΓF and the first equality in (197) yields that k′ ·Γram
F contains all ramified

edges in ΓF ′ .
Then the combination of this conclusion, of the fact that Γram

F is a forward and back-
ward complete subgraph of ΓF by its definition in Definition 88(iii) and of Lemma 70(iv)
implies that π−1

ΓF′/ΓF
(Γram

F ) = k′ · Γram
F is a forward and backward complete subgraph of

ΓF ′ which contains all ramified edges in ΓF ′ . But, by the definition of Γram
F ′ as the smallest

subgraph of ΓF with these properties, we even conclude that Γram
F ′ is a forward and back-

ward complete subgraph of k′ · Γram
F . Therefore, by Definition 66(iv), the complementary

subgraph

Γ′ := (k′ · Γram
F )\Γram

F ′ is a well defined forward and backward complete subgraph
of ΓF ′ which contains none of the ramified edges in Γram

F ′ . (199)

In the following, we will show that Γ′ is empty and, for that, we first notice that the
image graph

πΓF′/ΓF (Γ′) is also a forward and backward complete subgraph of Γram
F (200)

by the following reasoning: First of all, by the choice of

Γ′ = (k′ · Γram
F )\Γram

F ′ = π−1
ΓF′/ΓF

(Γram
F )\Γram

F ′

in (199), it immediately follows that πΓF′/ΓF (Γ′) is a subgraph of Γram
F .

Second, let i := 0 (resp. i = 1), let v′
i be the initial (resp. terminal) vertex map on

ΓF ′ , let vi be the initial (resp. terminal) vertex map on ΓF , and let Q ∈ E(Γram
F ) with

Pi := vi(Q) ∈ V (πΓF′/ΓF (Γ′)) = πΓF′/ΓF (V (Γ′)). Then there is some P ′
i ∈ V (Γ′) ⊆ PF ′

0
such that

P ′
i ∩ F0 = πΓF′/ΓF (P ′

i ) = Pi (201)

and we also have the equalities

Q ∩ σi(F0) = σi(σ−i(Q) ∩ F0) = σi(vi(Q)) = σi(Pi). (202)

Consequently, by these equalities in (201) and (202), Lemma 26 implies that there is some
Q′ ∈ PF ′

1
((Q, σi(P ′

i ))) ⊆ PF ′
1

= E(ΓF ′). In particular, we derive that Q′ is an edge in ΓF ′

with the initial (resp. terminal) vertex

v′
i(Q′) = σ−i(Q′) ∩ F ′

0 = σ−i(Q′ ∩ σi(F ′
0)) = σ−i(σi(P ′

i )) = P ′
i ∈ V (Γ′).

But, because of this conclusion and because Γ′ is forward (resp. backward) complete in
(199), we obtain that Q′ is even an edge in Γ′ and, thus, that Q = πΓF′/ΓF (Q′) is an edge
in πΓF′/ΓF (Γ′). Hence, we indeed conclude that πΓF′/ΓF (Γ′) is a forward (resp. backward)
complete subgraph of Γram

F which is the desired statement in (200).
Next, the conclusion in (200) supplies that Γram

F \πΓF′/ΓF (Γ′) is a well defined forward
and backward complete subgraph of Γram

F . Then combining the ’unramified’-part in (198)
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and the fact that Γ′ contains no ramified edges by (199) provides that Γram
F \πΓF′/ΓF (Γ′) still

contains all the ramified edges in ΓF . But, as Γram
F is the smallest forward and backward

complete subgraph of ΓF which satisfies these properties, we deduce that πΓF′/ΓF (Γ′) and,
consequently, Γ′ = (k′ · Γram

F )\ΓF ′ must be empty. Hence, we obtain the desired equality
k′ · Γram

F = ΓF ′ .
Finally, the second desired statement, namely that πΓF′/ΓF restricts to an epimorphism

Γram
F ′ → Γram

F immediately follows from the identity Γram
F ′ = k′ · Γram

F and Lemma 109.

Example 125. Let us again consider the recursive MW-towers F = FMW,2 over F3 and
F ′ = F9 ·F = F ′

MW,2 = (F ′
ν)ν over F9 in Example 77(i) which are defined by the polynomial

fMW,2 = Y 2 + XY + 2X2 + 1. The second weakly connected component in Figure B.1 is
the ramification subgraph Γram

F ′ and the first weakly connected component in Figure B.2 is
the ramification subgraph Γram

F . Moreover, in accordance to Lemma 124, we also see that
Γram

F ′ is the F9-constant field extension of Γram
F .

5.2 Tower Graphs of Truncations of Recursive Towers
Purpose of this section. In this section, we will connect the tower graph of a recursive
tower F with the tower graph of its truncation F≥m = Trun≥m(F) and introduce our
second new concept, namely truncations of subgraphs. This will also be crucial for the
proof of the almost complete answer to Conjecture 1(iii) in Corollary 184.

Structure of this section. We will structure this section very similar to Section 5.1:
First, we will connect the tower graph of a recursive tower F to the tower graph of its
truncation F≥m = Trun≥m(F) via the Trun-projection morphism πΓF≥m

/ΓF : ΓF≥m
→ ΓF .

In Subsection 5.2.1, we will define truncations of subgraphs and prove some first prop-
erties.

In Subsection 5.2.2, we will again list properties of subgraphs which are in some sense
invariant under truncations. Here, we will also implicitly lift paths for truncations of
subgraphs.

In Subsection 5.2.3, we will relate the rational, splitting and ramification subgraphs of
F to the rational, splitting and ramification subgraphs of F≥m.

The Trun-projection morphism. In the following Definition/Lemma 126, we will
connect the tower graph ΓF≥m

of the level m truncation F≥m of a recursive tower F and
the tower graph ΓF via the Trun-projection morphism πΓF≥m

/ΓF : ΓF≥m
→ ΓF .

Definition/Lemma 126. Let F = (Fν)ν be a recursive tower, let F≥m = Trun≥m(F) =
(Fm+ν)ν be the level m truncation of F , let ΓF (resp. ΓF≥m

) be the tower graph of F
(resp. F≥m), let Γ be a subgraph of ΓF and define

πV : V (ΓF≥m
) = PFm → V (ΓF ) = PF0 via P 7→ P ∩ F0

and

πE : E(ΓF≥m
) = PFm+1 → E(ΓF ) = PF1 via Q 7→ Q ∩ F1.

Then

πΓF≥m
/ΓF := (πV , πE) : ΓF≥m

→ ΓF

is a well defined epimorphism of directed graphs. We call πΓF≥m
/ΓF the Trun-projection

morphism of F for m.
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Proof. Let σ be the tower map of F and let us write v′
0 (resp. v′

1) for the initial (resp. ter-
minal) vertex map on ΓF≥m

and v0 (resp. v1) for the initial (resp. terminal) vertex map on
ΓF in Definition 55(i). Let Q ∈ E(ΓF≥m

) = PFm+1 [Γ]. Then, for all i = 0, 1, we compute

vi(πE(Q)) = vi(Q ∩ F1) = σ−i(Q ∩ F1) ∩ F0 = σ−i(Q) ∩ σ−i(F1) ∩ F0

= (σ−i(Q) ∩ Fm) ∩ F0 = v′
i(Q) ∩ F0 = πV (v′

i(Q)) (203)

where the first (resp. last) equality holds by the definition of πE (resp. πV ), the second
(resp. fourth) equality holds by the definition of the initial and terminal vertex maps on
ΓF (resp. ΓF≥m

) in Definition 74, the third equality holds because σ is a bijection and the
fourth equality holds because of the inclusions Fm ⊇ F0 and σ−i(F1) = σ−i(F0 · σ(F0)) =
σ−i(F0) · σ1−i(F0) ⊇ F0.

Consequently, the equality in (203) yields that πΓF≥m
/ΓF is indeed a well defined

morphism of directed graphs by its definition in Definition 65. Moreover, [Sti08, p. 71,
Proposition 3.1.7(b)] supplies that πV and πE are indeed surjections.

Places lying over image graphs of the Trun-projection morphism. In the fol-
lowing Lemma 127, the assumption that all vertices in Γ′ have positive out-degree will be
essential. Moreover, without going into details, we just remark that the desired inclusion
PFn [Γ′] ⊆ PFn [πΓF≥m

/ΓF (Γ′)] can indeed be proper without this assumption.

Lemma 127. Let F = (Fν)ν be a recursive tower and let F≥m = Trun≥m(F) = (Fm+ν)ν
be the level m truncation of F . Moreover, let ΓF (resp. ΓF≥m

) be the tower graph of F
(resp. F≥m) and let Γ′ be a subgraph of ΓF≥m

such that all vertices in Γ′ have positive
out-degree. Then we have the inclusion

PFn [Γ′] ⊆ PFn [πΓF≥m
/ΓF (Γ′)]

for all n ≥ m.

Proof. Let (Fi,j)i,j := Pyr(F) be the pyramid of F . Let Q′ ∈ PFn [Γ′] for some n ≥ m.
Then we have P ′ := σ−1

ΓF≥m
(PathF≥m

(Q′)) ∈ W (Γ′, n−m) by the definition of PFn [Γ′] in
Definition 85.

Moreover, since all vertices in Γ′ have positive out-degree, there is a path P ′′ ∈
W (Γ′,m) which starts at the terminal vertex of P ′ (see Figure 5.6). Consequently, we
can define

[P ′
i,j ]j−i≤1 := P ′ · P ′′ ∈W (Γ′, n) (204)

and, by Lemma 78, obtain the equalities

σΓF≥m
(P ′ · P ′′) = σΓF≥m

(P ′) · σn−m(σΓF≥m
(P ′′))

= PathF≥m
(Q′) · σn−m(σΓF≥m

(P ′′)) ∈W (F≥m, n).

Thus, Lemma 19 supplies some place

Q′′ ∈ PFn+m(σΓF≥m
(P ′ · P ′′)) ∩ PFn+m(Q′) ⊆ PFn+m [Γ′] (205)

Finally, we obtain Q′ ∈ PFn [πΓF≥m
/ΓF (Γ′)] and, hence, the desired inclusion PFn [Γ′] ⊆

PFn [πΓF≥m
/ΓF (Γ′)] by the computation

σ−1
ΓF

(PathF (Q′)) = [σ−i(Q′ ∩ Fi,j)]j−i≤1 = [σ−i((Q′′ ∩ F0,n) ∩ Fi,j)]j−i≤1
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Figure 5.6: Inclusions of places over paths in a proof

= [σ−i((Q′′ ∩ Fi,m+j) ∩ Fi,j)]j−i≤1 = [σ−i((σi(P ′
i,m+j) ∩ Fi,j)]j−i≤1

= [P ′
i,m+j ∩ Fj−i]j−i≤1 = [πΓF≥m

/ΓF (P ′
i,m+j)]j−i≤1 ∈W (πΓF≥m

/ΓF (Γ′), n)

where the equalities and containment-statement holds by the following reasonings: The
first equality hold by the definition of PathF in Definition/Lemma 17(i) and of σΓF in
Definition/Lemma 76. The second equality holds by the choice of Q′′ in (205). The third
equality holds since Lemma 10(i) provides the inclusions F0,n ⊇ Fi,j and Fi,m+j ⊇ Fi,j . The
fourth equality holds because the choice of Q′′ in (205) and the choice of P ′

i,j in (204) imply
the equalities (σi(P ′

i,j))j−i≤1 = σΓF≥m
(P ′ · P ′′) = PathF≥m

(Q′′) = (Q′′ ∩ Fi,m+j)j−i≤1 ∈
W (F≥m, n). The fifth equality holds since σ is a bijection and since Lemma 10(ii) and
Lemma 10(i) imply the equalities σ−i(Fi,j) = F0,j−i = Fj−i. The last equality holds by
the definition of πΓF≥m

/ΓF . The containment-statement holds since the P ′
i,j are contained

in Γ′ by their choices in (204).

5.2.1 Truncations of Subgraphs

Purpose of this subsection. In this subsection, we will define truncations of subgraphs
of tower graphs and prove some first properties.

Later in the Subsection 5.2.3, we will use truncations of subgraphs to connect the ratio-
nal, splitting and ramification subgraphs of F with the rational, splitting and ramification
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subgraphs of truncation F≥m = Trun≥m(F). This will play some role in the proof of the
almost complete answer to Conjecture 1(iii) in Corollary 184.

Moreover, in Example 129, we will also give the already announced counterexample to
Conjecture 1(i), which was proposed in [BGS04, p. 7, Conjecture 1].

Truncations of subgraphs.

Definition/Lemma 128. Let F = (Fν)ν be a recursive tower and let F≥m be the level
m truncation Trun≥m(F) = (Fm+ν)ν of F . Moreover, let ΓF (resp. ΓF≥m

) be the tower
graph of F (resp. F≥m) and let Γ be a subgraph of ΓF . Then vertex and edge sets

V (Trun≥m(Γ)) := PFm [Γ] and E(Trun≥m(Γ)) := PFm+1 [Γ]

define a subgraph Trun≥m(Γ) of ΓF≥m
(see Figure 5.7). We call Trun≥m(Γ) the level m

truncation of Γ.

Figure 5.7: Truncations of subgraphs

Proof. Let σ be the tower map of F and let us write v0 (resp. v1) for the initial (resp. ter-
minal) vertex map on ΓF≥m

.
Now, let Q ∈ E(Trun≥m(Γ)) = PFm+1 [Γ] and define (Pi,j)i,j := Pyr(Q). For all

ε = 0, 1, we then compute

σ−1
ΓF

(Path(vε(Q))) = σ−1
ΓF

(Path(σ−ε(Q) ∩ Fm)) = σ−1
ΓF

(Path(σ−ε(Pε,m+ε)))
= σ−1

ΓF
((σ−ε(Pi+ε,j+ε))j−i≤1) = [σ−ε−i(Pi+ε,j+ε)]j−i≤1 ∈W (Γ,m) (206)

where the equalities and containment-statement hold by the following reasonings: The
first equality holds by the definition of the initial and terminal vertex map on ΓF≥m

in
Definition 74. For the second equality, let (Fi,j)i,j := Pyr(F) be the pyramid of F . Then
we obtain the second equality by the identities

σ−ε(Q) ∩ Fm = σ−ε(Q ∩ σε(F0,m)) = σ−ε(Q ∩ Fε,m+ε) = σ−ε(Pε,m+ε)
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where the first identity holds because σ is a bijection and because of the identity in Lemma
10(i), the second identity holds because Lemma 10(ii) supplies the equality σε(F0,m) =
Fε,m+ε and the last identity holds by the definitions of (Pi,j)i,j = Pyr(Q) = (Q∩Fi,j)i,j in
Definition 11. The third equality holds because Lemma 76(i) first provides Path(Pε,m+ε) =
(Pi,j)i,j where i, j ∈ N0 run over all ε ≤ i ≤ j ≤ m + ε and Lemma 20(ii) then provides
the equality Path(σ−ε(Pε,m+ε)) = (σε(Pi+ε,j+ε))j−i≤1. The last equality holds by the
definition of σΓF in Definition/Lemma 76. The containment-statement holds because
Q ∈ E(Trun≥m(Γ)) = PFm+1 [Γ] implies [σ−i(Pi,j)]j−i≤1 = σ−1(Path(Q)) ∈ W (Γ,m + 1)
by the definition of σΓF and by the definition of PFm+1 [Γ] in Definition 85.

Finally, combining the definition of PFm [Γ] and (206) yields

vε(Q) ∈ PFm [Γ] = V (Trun≥m(Γ))

for all ε = 0, 1. Hence, Trun≥m(Γ) is indeed a well defined subgraph of ΓF≥m
by Definition

66(i).

Example 129 (Counterexample for Conjecture 1(i)). Consider the tame recursive tower
F≥1 = FGS,2 = (F1+ν)ν in [Sti08, p. 261, Proposition 7.3.3] for l = 3 and e = 2 over
Fq with q = le = 9 which is defined by the polynomial fGS,2 = Y m + (X + 1)m − 1 with
m = q−1

l−1 = 4. See also Examples 8(ii) and Figure 4.1.
In Figure B.17, the first weakly connected component is the splitting subgraph and the

second is the ramification subgraph. In particular, the ramified loop at the bottom vertex
in the ramification subgraph supplies that we can apply the Reduction Lemma 30(iii) to
F≥1 and add a zeroth level F0 to F≥1. Let F = (Fν)ν be the corresponding recursive tower
which satisfies Trun≥1(F) = F≥1 and let σ be its tower map. Notice that F is also a
polynomial-recursive tower as F0 is a rational function field.

In Figure B.18, the degree one subgraph of ΓF is depicted which is also already the
ramification subgraph Γram

F of ΓF .

(i) On the one hand, because no other rational vertices in ΓF except for the ones in its
degree one subgraph Γram

F have rational out-going edges and because the paths in Γram
F

and Abhyankar’s Lemma provide that all vertices in Γram
F are ramified in Fn/F0 for

some n ∈ N, we conclude that the splitting locus Split(F/F0) is empty.
On the other hand, [Sti08, p. 261, Proposition 7.3.3] provides the estimate 2/7 =
2/(q− 2) = λ(F≥1) = λ(F) and, therefore, the splitting rate ν(F) must also be posi-
tive. Hence, F is a counterexample for the original Conjecture 1 which is Conjecture
1(i).

(ii) More concretely, by using the not yet proven Lemma 141, Lemma 142 and Lemma
144, it can easily be deduced that the first (resp. second) weakly connected component
in Figure B.17 is the level one truncation of the first (resp. second) weakly connected
component in Figure B.18.

Truncations and the Trun-projection morphism. In general, Trun≥m(Γ) is only a
subgraph of the preimage graph πΓF≥m

/ΓF
−1(Γ). But if Γ is a forward complete subgraph

of ΓF , then the following Lemma 130(ii) supplies that these graphs are even equal.

Lemma 130. Let F = (Fν)ν be a recursive tower, let F≥m = Trun≥m(F) = (Fm+ν)ν be
the level m truncation of F , let ΓF (resp. ΓF≥m

) be the tower graph of F (resp. F≥m) and
let Γ be a subgraph of ΓF . Then the following hold:

(i) The morphism πΓF≥m
/ΓF restricts to a morphism Trun≥m(Γ)→ Γ.
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Moreover, if all vertices in Γ have positive out-degrees, this restriction is even an
epimorphism and we have the identity

πΓF≥m
/ΓF (Trun≥m(Γ)) = Γ.

(ii) If Γ is a forward complete subgraph of ΓF , then we have the identity

πΓF≥m
/ΓF

−1(Γ) = Trun≥m(Γ).

Proof. For the ’main’-part in (i): Let Q′ be a place in V (Trun≥m(Γ)) = PFm [Γ] (resp. a
place in E(Trun≥m(Γ)) = PFm+1 [Γ]). Then, for the pyramid (Fi,j)i,j := Pyr(F) of F , we
derive

[σ−i(Q′ ∩ Fi,j) ]j−i≤1 = σ−1
ΓF

(Path(Q′)) ∈W (Γ) (207)

where the equality holds by the definitions of Path in Definition/Lemma 17(i) and of σΓF

in Definition/Lemma 76 and the containment-statement holds by the definition of P·[Γ]
in Definition 85. In particular, for ε := 0 (resp. ε := 1), we deduce

πΓF≥m
/ΓF (Q′) = Q′ ∩ Fε = Q′ ∩ F0,ε ∈ V (Γ) (resp. ∈ E(Γ))

where the first equality holds by the definition of πΓF≥m
/ΓF , the second equality holds

by the identity in Lemma 10(i) and the containment-statement holds by (207). Hence,
πΓF≥m

/ΓF indeed restricts to a morphism Trun≥m(Γ)→ Γ.

For the ’moreover’-part’ in (i): For the first desired statement, let Q ∈ E(Γ). Then,
by the assumption that all vertices have positive out-degrees, there is some path P ∈
W (Γ,m+ 1) which starts at the edge Q, i.e.

Edge1(P) = Q (208)

Now, Lemma 17(i) supplies some place Q′ ∈ PFm+1(σΓF (P)) ⊆ PFm+1 [Γ]. In particular,
we obtain

πΓF≥m
/ΓF (Q′) = Q′ ∩ F1 = Edge1(P) = Q (209)

where the first equality holds by the definition of πΓF≥m
/ΓF , the second equality holds

because the choice of Q′ provides the identity Path(Q′) = σΓF (P) and because of the
definition of σΓF in Definition/Lemma 76 and the third equality holds by the equality in
(208).

Next, the assumption that all vertices in Γ have positive out-degrees also provides that
any P ∈ V (Γ) is the initial vertex for some edge Q ∈ E(Γ). Consequently, combining
(209) and the definition of morphism of directed graphs in Definition 65 yields that the
initial vertex P ′ of Q′ is mapped to P via πΓF≥m

/ΓF .
Hence, by this conclusion, by (209) and by the ’moreover’-part, we indeed deduce

that πΓF≥m
/ΓF restricts to an epimorphism Trun≥m(Γ) → Γ which is the first desired

statement.
Finally, the desired identity πΓF≥m

/ΓF (Trun≥m(Γ)) = Γ immediately follows from the
first desired statement in the ’moreover’-part and the definition of the image graph in
Definition/Lemma 69(i)

For (ii): Finally, the ’moreover’-part immediately follows from the equalities

V (πΓF≥m
/ΓF

−1(Γ)) = πΓF≥m
/ΓF

−1(V (Γ)) = PFm(V (Γ)) = PFm [Γ] = V (Trun≥m(Γ))
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and

E(πΓF≥m
/ΓF

−1(Γ)) = πΓF≥m
/ΓF

−1(E(Γ)) = PFm+1(E(Γ)) = PFm+1 [Γ] = E(Trun≥m(Γ))

where the equalities hold by the following reasonings: The first equalities hold by the
definition of the preimage graph πΓF≥m

/ΓF
−1(Γ) in Definition/Lemma 69(ii). The second

equalities hold by the definition of πΓF≥m
/ΓF . The third equalities hold by the assumption

that Γ is a forward complete subgraph of ΓF≥m
and by the ’moreover’-part in Lemma

86. The last equality holds by the definition of the level m truncation Trun≥m(Γ) in
Definition/Lemma 128.

Intersections and disjoint unions of truncations. The ’moreover’-part of the fol-
lowing Lemma 210 is only true for disjoint subgraphs. The problem with a non-disjoint
union Γ1 ∪ Γ2 of subgraphs is that the set of path W (Γ1 ∪ Γ2) might be larger than just
the union W (Γ1) ∪ W (Γ2). Thus, we only obtain that Trun≥m(Γ1) ∪ Trun≥m(Γ2) is a
subgraph of Trun≥m(Γ1 ∪ Γ2).

Lemma 131. Let F = (Fν)ν be a recursive tower, let F≥m = Trun≥m(F) = (Fm+ν)ν be
the level m truncation of F , let ΓF (resp. ΓF≥m

) be the tower graph of F (resp. F≥m) and
let M be a set of subgraphs of ΓF . Then we have the identity

Trun≥m(
⋂

Γ∈M
Γ) =

⋂
Γ∈M

Trun≥m(Γ).

Moreover, if all subgraphs Γ in M are pairwise disjoint, then their truncations Trun≥m(Γ)
are also pairwise disjoint and we have also have the identity

Trun≥m(
∐

Γ∈M
Γ) =

∐
Γ∈M

Trun≥m(Γ).

Proof. We can interpret the vertices as the paths of length zero and the edges as paths of
length one, i.e. V (·) = W (·, 0) and E(·, 1). Let us also set Φ := ⋂ in any case (resp. Φ := ∐
if all subgraphs Γ in M are pairwise disjoint).

For all i = 0, 1, we then obtain the equalities

W

(
Φ

Γ∈M
Trun≥m(Γ), i

)
= Φ

Γ∈M
V (Trun≥m(Γ)) = Φ

Γ∈M
PFm [Γ]

= Φ
Γ∈M

PFm(σΓF (W (Γ,m))) = PFm

(
σΓF

(
Φ

Γ∈M
W (Γ,m)

))
= PFm

(
σΓF

(
W

(
Φ

Γ∈M
Γ,m

)))
= PFm

[
Φ

Γ∈M
Γ
]

= W

(
Trun≥m

(
Φ

Γ∈M
Γ
)
, i

)
(210)

where the equalities holds by the following reasonings: The first equality holds by the
definition of the intersection (resp. union) of subgraphs in Definition 66(ii). The second and
last equalities hold by the definition of truncations of subgraphs of ΓF in Definition/Lemma
128. The third and second to last equalities hold by the definition of PFm [·] in Definition
85. The fourth equality holds by the definition PFm(·) in (5) and by the bijectivity of
σΓF in Definition/Lemma 76. The fifth equality holds because the set of paths on the
intersection (disjoint union) graph is clearly the intersection (disjoint union) of the sets of
paths on the involved graphs.

These equalities in (210) supply the desired identities in the ’main’- and ’moreover’-
part.
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Transitivity rule for truncations. Different than for the image graph πΓF≥m
/ΓF (Γ′)

of a subgraph Γ′ of ΓF ′ in Lemma 127, the following Lemma 132 will ensure that the places
which lie over a subgraph Γ of ΓF are the same the places which lie over its truncation
Trun≥m(Γ).

As an immediate consequence, we will obtain the transitivity rule for truncations of
subgraphs in Lemma 133.
Lemma 132. Let F = (Fν)ν be a recursive tower. Moreover, let Γ be a subgraph of the
tower graph ΓF of F . For all m,n ∈ N0 with n ≥ m, we then have the identity

PFn [Γ] = PFn [Trun≥m(Γ)].
Proof. Let σ be the tower map of F and let F≥m = Trun≥m(F) = (Fm+ν)ν be the level
m truncation of F . Moreover, let Q ∈ PFn and let (Pi,j)i,j := Pyr(Q).

First, suppose that Q ∈ PFn [Γ]. By the definition of PFn [Γ] in Definition 85, we then
have

(σ−i(Pi,j))j−i≤1 = σ−1
ΓF

(PathF (Q)) ∈W (Γ, n) (211)
Next, for all 0 ≤ r ≤ s ≤ n−m with s− r ≤ 1, we compute

σ−1
ΓF

(
PathF

(
σ−r(Pr,m+s)

))
= σ−1

ΓF

(
σ−r (PathF (Pr,m+s))

)
= σ−1

ΓF

(
σ−r

(
(Pi,j)r≤i≤j≤m+s

j−i≤1

))

= σ−1
ΓF

((
σ−r(Pr+i,r+j)

)
0≤i≤j≤m+s−r

j−i≤1

)
= (σ−(r+i)(Pr+i,r+j))i,j ∈W (Γ,m) (212)

where the equalities and containment-statement hold by the following reasonings: The first
equality holds by Definition/Lemma 20(ii). The second equality holds by ’on the other
hand’-part in Lemma 17(ii). The third equality holds by Definition/Lemma 20(i). The
last equality holds by the definition of σΓF in Definition/Lemma 76. The containment-
statement holds by (211).

Finally, we obtain Q ∈ PFn [Trun≥m(Γ)] by
σ−1

ΓF≥m
(PathF≥m

(Q)) = (σ−i(Pi,m+j))j−i≤1 ∈W (Trun≥m(Γ), n−m) (213)

where the equality holds by the definitions of Pyr(Q) = (Pi,j)i,j in Definition 11, of
PathF≥m

and of σΓF≥m
and the containment-statement holds because (212) implies that

σ−i(Pi,m+j) is contained in Trun≥m(Γ).
Second, suppose that Q ∈ PFn [Trun≥m(Γ)]. Then proof basically goes in the opposite

direction: By assertion, we start with
σ−1

ΓF≥m
(PathF≥m

(Q)) ∈W (Trun≥m(Γ), n−m)

and, thus, conclude (σ−i(Pi,m+j))j−i≤1 ∈W (Trun≥m(Γ), n−m) by the equality in (213).
This again implies that the path on the left side of the equalities in (212) is contained
in W (Γ,m). Hence, the right side (σ−(r+i)(Pr+i,r+j))i,j is also contained for all r =
0, . . . , n−m. Finally, combining this and the equality in (211) yields Q ∈ PFn [Γ].

Hence, we established the desired identity.

Lemma 133. Let F = (Fν)ν be a recursive tower. Moreover, let Γ be a subgraph of the
tower graph ΓF of F . For all m,n ∈ N0, we then have the identity

Trun≥n(Trun≥m(Γ)) = Trun≥m+n(Γ).
Proof. By the definition of truncations of subgraphs in Definition 128, we have to show
the identities PFm+n+i [Γ] = PFm+n+i [Trun≥m(Γ)] for all i = 0, 1. But, these equalities hold
by Lemma 132.
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Truncations and subgraphs of the rational subgraph without ramified edges.

Lemma 134. Let F = (Fν)ν be a recursive tower and let F≥m = Trun≥m(F) = (Fm+ν)ν
be the level m truncation of F . Moreover, let Γrat

F (resp. Γrat
F≥m

) be the rational subgraph
of the tower graph ΓF (resp. ΓF≥m

) of F (resp. F≥m). Finally let Γ be a subgraph of ΓF
such that all vertices in Γ have positive out-degree and such that Γ contains no ramified
edges.

Then Γ is a subgraph of Γrat
F if and only if Trun≥m(Γ) is a subgraph Γrat

F≥m
.

Proof. By the definition of the rational subgraph as the subgraph with all the rational
vertices and edges in Definition 88(i), it is enough to show that

the vertices and edges in Γ are all rational if and only if
the vertices and edges in Trun≥m(Γ) are all rational. (214)

For the ’if’-part in (214): Suppose that the vertices and edges in Trun≥m(Γ) are all
rational. Then, by the definition of πΓF≥m

/ΓF in Definition/Lemma 126, the image graph
πΓF≥m

/ΓF (Trun≥m(Γ)) also only contains rational vertices and edges. But, due to the
assertion that all vertices in Γ have positive out-degree and due to the identity in the
’moreover’-part in Lemma 130(i), the image graph πΓF≥m

/ΓF (Trun≥m(Γ)) is equal to Γ.
Hence, the ’if’-part in (214) follows.

For the ’only if’-part in (214): Suppose that the vertices and edges in Γ are all rational,
let Q ∈ V (Trun≥m(Γ)) (resp. Q ∈ E(Trun≥m(Γ))) and set ε := 0 (resp. ε := 1). By the
definition of truncations of subgraphs in Definition/Lemma 128, we have Q ∈ PFm+ε [Γ],
i.e. P = σ−1

ΓF
(Path(Q)) ∈W (Γ,m+ ε) due to the definition of PFm+ε [Γ] in Definition 85.

Now, let (Pi,j)j−i≤1 := Path(Q) = σΓF (P) ∈ W (F , 0,m + ε). On the one hand,
because Γ contains no ramified edges, because of the definition of unramified edges in
Definition 88(iii) and by the definition of σΓF in Definition/Lemma 76, all the extensions
Pi−1,i/Pi−1,i−1 and Pi−1,i/Pi,i are unramified. On the other hand, because of the assertion
that all vertices and edges in Γ are rational, Lemma 80 supplies that σΓF (P) is rational.

Combining these two conclusions yields that we can apply Lemma 17(iv) to σΓF (P).
Consequently, we obtain that Q is the unique place which lies over σΓF (P) = Path(Q)
and that Q must especially be rational. Hence, we also established the ’only if’-part in
(214).

Truncations and ramification. On the one hand, in the following Lemma 135, we will
show that if a subgraph Γ contains no ramified edges, then the same holds for its truncation
Trun≥m(Γ). On the other hand, Lemma 136 will provide that this is no equivalence in
general. More concretely, it will come out that if Trun≥m(Γ) contains no ramified edges,
then we can only conclude that all circles in Γ have balanced ramification indices.

Lemma 135. Let F = (Fν)ν be a recursive tower and let F≥m = Trun≥m(F) = (Fm+ν)ν
be the level m truncation of F . Moreover, let ΓF (resp. ΓF≥m

) be the tower graph of F
(resp. F≥m) and let Γ be a subgraph of ΓF . Finally, let Q be an edge in the level m
truncation Trun≥m(Γ) of Γ and let P = σ−1

ΓF
(Path(Q)) ∈W (Γ,m+ 1).

If the edge Q ∈ E(Trun≥m(Γ)) is ramified, then the initial or terminal edge P ∈ E(Γ)
of P is also ramified.

In particular, if Trun≥m(Γ) contains ramified edges, then Γ also contains ramified
edges.

Proof. Let (Fi,j)i,j = Pyr(F) be the pyramid of F and (Pi,j)i,j = Pyr(Q) be the pyramid
of Q. By the definitions of Path in Definition and of σΓF in Definition, we get the equality
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[σ−i(Pi,j)]i,j = P ∈W (Γ,m+ 1). Thus,

P0,1 is the initial and σ−m(Pm,m+1) the terminal edge of P. (215)

Moreover, by Lemma 10(i), by Lemma 10(ii) and by the definition of (Pi,j)i,j = Pyr(Q)
in Definition 11, we also have the equalities Q = P0,m+1, Q ∩ Fm = Q ∩ F0,m = P0,m and
Q ∩ σ(Fm) = Q ∩ F1,m = P1,m. Therefore, the definition of ramified edges in Definition
88(iii) provides that P0,m+1/P0,m is ramified in F0,m+1/F0,m or P0,m+1/P1,m+1 is ramified
in F0,m+1/F1,m+1.

In the first case, applying Key Lemma 36(iv) to the diamond (P0,m+1, P0,m, Pm,m+1,
Pm,m) and the ramified extension P0,m+1/P0,m yields that Pm,m+1/Pm,m is also rami-
fied in Fm,m+1/Fm,m. Moreover, combining this, the invariance of ramification indices
under the action of isomorphisms in (11), Lemma 10(i) and Lemma 10(ii) implies that
σ−m(Pm,m+1)/σ−m(Pm,m) is ramified in F1/F0. Hence, by this and by (215), the terminal
edge σ−m(Pm,m+1) of P is indeed ramified in the first case.

In the second case, applying Key Lemma 36(iv) to the diamond (P0,m+1, P0,1, P1,m+1,
P1,1) and the ramified extension P0,m+1/P1,m+1 yields that P0,1/P1,1 is also ramified in
F0,1/F1,1. Moreover, combining this, Lemma 10(i) and Lemma 10(ii) implies that P0,1/P1,1
is ramified in F1/σ(F0). Hence, by this and by (215), the initial edge P0,1 of P is indeed
ramified in the second case.

Lemma 136. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0).
Moreover, let Γ be a subgraph of the tower graph ΓF of F .

If Trun≥n(Γ) contains no ramified edges for some n ∈ N, then all circles in Γ have
balanced ramification indices.

Proof. We show this by contraposition. Thus, suppose that there is a circle C = [P ′
i,j ]j−i≤1

in Γ which has unbalanced ramification indices.
Then we have

∆(σΓF (C)) =
∏l
i=1 e(P ′

i−1,i|P ′
i−1,i−1)∏l

i=1 e(P ′
i−1,i|σ(P ′

i,i))
̸= 1 (216)

where the first equality holds by the equality in (92) and the inequality holds by the
definition of unbalanced ramification indices in Definition/Lemma 82(ii). In particular,
because circles of length zero are just vertices and therefore have balanced ramification
indices, C must have positive length l.

Now, for all r ∈ N0, the surjectivity of the map PathF in Definition/Lemma 17(i)
supplies some place

Qr ∈ PFlr
(σΓF (

r∏
i=1
C)) ⊆ PFlr

[Γ] = PFlr
[Trun≥m(Γ)] (217)

where the inclusion holds because C is a circle in Γ and the equality holds by Lemma 132.
Moreover, let (Pi,j)i,j := Pyr(Qr). Then we have

[σ−i(Pi,m+j)]j−i≤1 = σ−1
ΓF≥m

(PathF≥m
(P0,lr)) ∈W (Trun≥m(Γ), lr −m) (218)

for all r ∈ N0 with lr ≥ m where the equality holds by the equality Qr = P0,lr, by the
definitions of PathF≥m

in Definition/Lemma 17(i) and of σΓF≥m
in Definition/Lemma 76

and the containment-statement holds by the definition of P·[·] in Definition 85.
Next, we consider the quotient

e(P0,lr|P0,0)
e(P0,lr|Plr,lr)

= ∆(Path(Qr)) = ∆(σΓF (
r∏
i=1
C)) = ∆(σΓF (C))r (219)
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for all r ∈ N0 where the first equality holds by the first equality in (92), the second equality
holds by the choice of Qr ∈ PFlr

(σΓF (∏r
i=1 C)), the third equality follows immediately from

the equality in the complete row in (92) and the last equality holds by (216).
But, since 0 < ∆(σΓF (C)) ̸= 1 by (216), the sequence of quotients in (219) either

tends to zero or to infinity as r → ∞. This then implies that there must be an index s
with sl ≥ m + 1 such that P0,s/P0,m or P0,s/Pls−m,ls is ramified. In particular, by the
multiplicative transitivity rule for ramification indices in (7), P0,t+1/P0,t or Pt,ls/Pt+1,ls is
ramified for some t = m, . . . , ls− 1.

In the first case, we apply Key Lemma 36(iv) to the extension P0,t+1/P0,t in the
diamond (P0,t+1, P0,t, Pt−m,t+1, Pt−m,t) and obtain that Pt−m,t+1/Pt−m,t is ramified. Thus,
by (218), σ−(t−m)(Pt−m,t+1) is a ramified edge in Trun≥m(Γ).

In the second case, we apply Key Lemma 36(iv) to the extension Pt,ls/Pt+1,ls in the
diamond (Pt,ls, Pt,t+1+m, Pt+1,ls, Pt+1,t+1+m) and obtain by (218) that σ−t(Pt,t+1+m) is a
ramified edge in Trun≥m(Γ).

Hence, we established that Trun≥m(Γ) contains a ramified edge in any case.

Truncations and constant field extensions commute. In Lemma 29, we already
showed that truncations and constant field extensions of towers F commute. Lemma 137
will establish the same for subgraphs of ΓF .

Lemma 137. Let F = be a recursive tower over the field k which is defined by the pair
(σ, F0). Moreover, let Γ be a subgraph of the tower graph ΓF of F . Finally, let k′ be an
algebraic extension field of k which is contained in the domain of σ and let m ∈ N0. Then
we have the identity

Trun≥m(k′ · Γ) = k′ · Trun≥m(Γ).

Proof. In order to handle the desired identities for the sets of vertices and edges simultane-
ously, we notice that the vertex sets can be identified with the sets of paths of length zero,
i.e. V (·) = W (·, 0), and the edge sets are the sets of paths of length one, i.e. E(·) = W (·, 1).

Then we already obtain the desired identity Trun≥m(k′ · Γ) = k′ · Trun≥m(Γ) by the
equalities

W (Trun≥m(k′ · Γ), ε) = Pk′·Fm+ε [k′ · Γ] = Pk′·Fm+ε(PFm+ε [Γ]) = W (k′ · Trun≥m(Γ), ε)

for all ε = 0, 1 where the first and last equalities hold by the definitions of truncation of
subgraphs in Definition/Lemma 128 and constant field extensions of subgraphs in Defini-
tion 107 and the second equality holds by Lemma 113.

5.2.2 Properties Invariant Under Truncations

Purpose of this subsection. In Lemma 138, we will prove that many properties of
subgraphs are invariant under truncations. These invariances will be crucial in the proof
of the almost complete answer to Conjecture 1(iii) in Corollary 184.

Properties invariant under truncations.

Lemma 138. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0)
and let F≥m = Trun≥m(F) = (Fm+ν)ν be the level m truncation of F for some m ∈ N0.
Moreover, let ΓF (resp. ΓF≥m

) be the tower graph of F (resp. F≥m) and let Γ be a subgraph
of ΓF . Then the following hold:

(i) If Γ is finite, then Trun≥m(Γ) is finite.
Moreover, if all vertices in Γ have positive out-degree (resp. positive in-degree), the
this is even an equivalence.
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(ii) Suppose that F has balanced degree d and that Γ is d-regular. Then Trun≥m(Γ) is
also d-regular.

(iii) If Γ is a forward (resp. backward) complete subgraph of ΓF , then Trun≥m(Γ) is also
a forward (resp. backward) complete subgraph of ΓF≥m

.
Moreover, if all vertices in Γ have positive in-degree (resp. out-degree), then this is
even an equivalence.

(iv) Suppose that all vertices in Γ have positive in- and out-degree. Then Γ is weakly
(resp. strongly) connected if and only if Trun≥m(Γ) is weakly (resp. strongly) con-
nected.

(v) Γ is a weakly connected component of ΓF if and only if all vertices in Γ have positive
in- and out-degree and Trun≥m(Γ) is a weakly connected component of ΓF≥m

.

Remark 139. We remark that the items (iii) and (v) (resp. (iv)) in Lemma 138 are wrong
without the assumption that all vertices have positive in- and (resp. or) out-degree.

Proof of Lemma 138. For (i): First, we notice that if Γ is finite, then σΓF (W (Γ,m)) and
σΓF (W (Γ,m + 1)) are also finite. Moreover, if all vertices in Γ have positive out-degree
(resp. positive in-degree), then this is even an equivalence.

Second, due to Definition 85, we have the equalities PFm [Γ] = PFm(σΓF (W (Γ,m))) and
PFm+1 [Γ] = PFm+1(σΓF (W (Γ,m + 1))) and, thus, σΓF (W (Γ,m)) and σΓF (W (Γ,m + 1))
are finite if and only if PFm [Γ] = V (Trun≥m(Γ)) and PFm+1 [Γ] = E(Trun≥m(Γ)) are finite.

Both conclusion together yield the desired implications in (i).

For (ii): Let P ′ ∈ V (Trun≥m(Γ)) = PFm [Γ] where the equality holds by the definition
of Trun≥m(Γ) in Definition/Lemma 128. By the definition of PFm [Γ] in Definition 85, the
path P := σ−1

ΓF
(PathF (P ′)) is contained in Γ.

First, we notice that since Γ is d-regular, there are d distinct outgoing (resp. ingoing)
edges Q1, . . . , Qd in Γ at the terminal (resp. initial) vertex of P by Definition 55(vii) (see
Figure 5.8). Let Pi ∈W (Γ,m+ 1) be the corresponding pairwise distinct compositions of

Figure 5.8: d-regularity in a proof

177



P and Qi (resp. Qi and P) for all i = 1, . . . , d. Then we obtain the equalities

σΓF (Pi) = σΓF (P ·Qi) = σΓF (P) · σm(σΓF (Qi)) = σΓF (P) · σm(Qi)
(resp. σΓF (Pi) = σΓF (Qi · P) = σΓF (Qi) · σ(σΓF (P))) = Qi · σ(σΓF (P)) ) (220)

for all i = 1, . . . , d where the first equality holds by the choice of Pi, the second equality
holds by Lemma 78 and the third equality holds because Qi ∈ E(Γ) = W (Γ, 1) and because
of the definition of σΓF in Definition/Lemma 76.

Second, let ε := 0 (resp. ε := 1). By the equalities in (220), Lemma 19 supplies that
there are places

Q′
i ∈ Pm+1(σε(P ′)) ∩ Pm+1(σΓF (Pi)) ⊆ PFm+1 [Γ] = E(Trun≥m(Γ)) (221)

for all i = 1, . . . , d where the inclusion holds since Pi is a path in Γ by its choice and the
equality holds by the definition of Trun≥m(Γ).

Moreover, since the paths Pi are pairwise distinct, the places

Q′
i are also pairwise distinct (222)

for all i = 1, . . . , d.
Next, let v′

ε be the initial (resp. terminal) vertex map on ΓF≥m
. Then we compute

v′
ε(Q′

i) = σ−ε(Q′
i) ∩ Fm = σ−ε(Q′

i ∩ σε(Fm)) = σ−ε(σε(P ′)) = P ′ (223)

for all i = 1, . . . , d where the first equality holds by the definition ΓF≥m
in Definition 74,

the second equality holds because σ is a bijection, the third equality holds by the choice
of Q′

i ∈ Pm+1(σε(P ′)) in (221) and the last equality holds trivially.
Finally, on the one hand, combining (221), (222) and (223) yields that the out-degree

(resp. in-degree) of P ′ is at least d. On the other hand, the ’in-particular’-part in Lemma
87 also provides that d is an upper bound for the out-degree (resp. in-degree) of P ′.

This means that Γ is d-regular and, hence, (ii) follows.

For (iii): Let us write v′
0 (resp. v′

1) for the initial (resp. terminal) vertex map on
ΓF≥m

and v0 (resp. v1) for the initial (resp. terminal) vertex map on ΓF and let ε := 0
(resp. ε := 1).

On the one hand, suppose that Γ is a forward (resp. backward) complete subgraph
of ΓF . Let Q′ ∈ E(ΓF≥m

) = PFm+1 with v′
ε(Q′) ∈ V (Trun≥m(Γ)) = PFm [Γ] and define

(Pi,j)i,j := Pyr(Q′). For all ε = 0, 1, we then obtain

[σ−ε−i(Pi+ε,j+ε)]j−i≤1 = σ−1
ΓF

(Path(v′
ε(Q′))) ∈W (Γ,m) (224)

where the equality holds by the same reasoning as the equality in (206) and the containment-
statement holds because of the assumption v′

ε(Q′) ∈ PFm [Γ] and because of the definition
of PFm [Γ] in Definition 85. Consequently, we conclude

σ−1
ΓF

(Path(Q′)) = [σ−i(Pi,j)]i,j ∈W (Γ,m+ 1) (225)

where the equality holds by the definitions of σΓF and of Path and the containment-
statement holds by combining (224) and the assumption that Γ is forward (resp. backward)
complete subgraph of ΓF . Finally, (225) supplies Q′ ∈ PFm+1 [Γ] = E(Trun≥m(Γ)) and,
hence, Trun≥m(Γ) is indeed a forward (resp. backward) complete subgraph of ΓF≥m

.
On the other hand, suppose that all vertices in Γ have positive in-degree (resp. out-

degree) and that Trun≥m(Γ) is a forward (resp. backward) complete subgraph of ΓF≥m
.

Let Q ∈ E(ΓF ) with vε(Q) ∈ V (Γ). Because of the assumption that all vertices in Γ have
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positive in-degree (resp. out-degree), there is some path P ∈ W (ΓF ,m + 1) which stops
(resp. starts) at Q and is else completely contained in Γ, i.e.

Edgem+1(P) = Q and Edgei(P) ∈ E(Γ) for all i = 1, . . . ,m
(resp. Edge1(P) = Q and Edgei(P) ∈ E(Γ) for all i = 2, . . . ,m+ 1). (226)

Then Lemma 17(i) provides a place Q′ ∈ PFm+1(σΓF (P)) ⊆ E(ΓF≥m
).

Let (Pi,j)i,j := Pyr(Q′). Then we have Path(Q′) = (Pi,j)j−i≤1. Moreover, because
of the equality P = σ−1

ΓF
(Path(Q′)) = [σ−i(Pi,j)]j−i≤1 ∈ W (ΓF ,m + 1), we also have the

equalities Edgei(P) = σ−(i−1)(Pi−1,i) for all i = 1, . . . ,m+ 1. Therefore, combining these
equalities, the choice of P in (226) and the equality in (224) implies v′

ε(Q′) ∈ PFm [Γ] =
V (Trun≥m(Γ)).

But since Trun≥m(Γ) is a forward (resp. backward) complete subgraph of ΓF≥m
, we

derive Q′ ∈ E(Trun≥m(Γ)) = PFm+1 [Γ] from its definition in Definition 66(iii). In par-
ticular, the definition of PFm+1 [Γ] in Definition 85 supplies that Q = Edgem+1(P) =
Edgem+1(σ−1

ΓF
(Path(Q′))) (resp. Q = Edge1(P) = Edge1(σ−1

ΓF
(Path(Q′))) ) is contained in

E(Γ). Thus, Γ is indeed a forward (resp. backward) complete subgraph of ΓF and, hence,
(iii) follows.

For (iv): The ’if’-parts immediately follow from the identity πΓF≥m
/ΓF (Trun≥m(Γ)) =

Γ in Lemma 130(i) and from then applying Lemma 70(v).
Now, for the ’only if’-parts, suppose that Γ is weakly (resp. strongly) connected. Let

P ′
0 and P ′

1 be vertices in V (Trun≥m(Γ)). We will find an undirected (resp. directed) path
Q from P ′

0 to P ′
1 in Trun≥m(Γ). This will then provide that Trun≥m(Γ) is also weakly

(resp. strongly) connected.
For that, first consider the paths

Pi := σ−1
ΓF

(PathF (P ′
i )) ∈W (ΓF ,m) (227)

for all i = 0, 1. These are both paths in Γ because we have P ′
i ∈ V (Trun≥m(Γ)) = PFm [Γ]

for all i = 0, 1. Moreover, because Γ is weakly (resp. strongly) connected, there is also
some undirected (resp. directed) path P in Γ from vterm(P0) to vinit(P1).

In particular, if we take the longest possible directed subpaths in the undirected path
P0 · P · P1, we obtain an odd natural number r and a sequence (P1,1, . . . ,Pr,r) of directed
paths in Γ of non-zero lengths (except for the trivial case m = 0 and P ′

0 = P ′
1) such that

P1,1 = P0 · P ′
1 and Pr,r = P ′

rP1 for some paths P ′
1 and P ′

r, (228)
vterm(Pi,i) = vterm(Pi+1,i+1) for all odd i ∈ {1, . . . , r − 1}, (229)
vinit(Pi,i) = vinit(Pi+1,i+1) for all even i ∈ {1, . . . , r − 1} (230)

(see Figure 5.9). Notice that we have r = 1 if and only if P is a directed path. In this
case, we also have the equality P1,1 = P0PP1.

Second, we define P0,1 := vinit(P1,1) and Pr,r+1 := vterm(Pr,r). Moreover, because all
vertices in Γ have positive out- and in-degree and because of the equalities in (229) and
(230), we may choose paths Pi,i+1 in Γ of length m such that vterm(Pi,i) = vinit(Pi,i+1) =
vterm(Pi+1,i+1) for all odd i ∈ {1, . . . , r− 1} and vinit(Pi,i) = vterm(Pi,i+1) = vinit(Pi+1,i+1)
for all even i ∈ {1, . . . , r − 1}. Consequently, the compositions Pi−1,iPi,iPi,i+1 for all odd
i ∈ {1, . . . , r} and Pi,i+1Pi,iPi−1,i for all even i ∈ {1, . . . , r} are well defined paths in Γ.

Moreover, for all i ∈ {1, . . . , r}, let li be the length of Pi−1,iPi,iPi,i+1 if i is odd and of
Pi,i+1Pi,iPi−1,i if i is even. Then we get the estimate

li ≥ 2m (231)
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Figure 5.9: Lifting undirected paths from a subgraph to its truncation in a proof

for all i = 1, . . . , r − 1 by the following reasoning: If r = 1, then we have P1,1 = P0PP1
and, in this case, the estimate in (231) follows from the facts that P0 and P1 are paths of
length m. Otherwise, if r ≥ 2, the estimate in (231) follows since the lengths of P1,1 and
Pr,r are at least m by (228) and since the length of Pi,i+1 is at least m for all i = 1, . . . , r−1
by its choice.

Third, for i = 1 = r, we obtain the equalities

σΓF (P0,1P1,1P1,2) = σΓF (P0PP1) = σΓF (P0) · σm(σΓF (P)) · σl1−m(σΓF (P1))
= PathF (P ′

0) · σm(σΓF (P)) · σl1−m(PathF (P ′
1))

= PathF (P ′
0) · σm(σΓF (P)) · PathF (σl1−m(P ′

1)) (232)

where the first equality holds by the choices of the involved paths, the second equality
holds by Lemma 78, the third equality holds by the choice of Pε = σ−1

ΓF
(PathF (P ′

ε)) for all
ε = 0, 1 in (227) and the last equality holds by Definition/Lemma 20(ii).

Fourth, by the surjectivity of the map Path in Definition/Lemma 17(i), we get that
the set PFm(σΓF (Pi−1,i)) is non-empty for all i = 2, . . . , r. Thus, for all i = 2, . . . , r, there
are places

Qi ∈ PFm(σ(Pi−1,i)) ⊆ PFm [Γ] = V (Trun≥m(Γ)). (233)

By this choice of Qi and by reasonings which are similar to the reasonings of the equalities
in (232), we make the following four computations: For i = 1 < r, we compute

σΓF (P0,1P1,1P1,2) = σΓF (P0,1P0P ′
1P1,2) = σΓF (P0) · σm(σΓF (P ′

1)) · σl1−m(σΓF (P1,2))
= PathF (P ′

0) · σm(σΓF (P ′
1)) · σl1−m(PathF (Q2))

= PathF (P ′
0) · σm(σΓF (P ′

1)) · PathF (σl1−m(Q2)). (234)

For 1 < i = r, we compute

σΓF (Pr−1,rPr,rPr,r+1) = σΓF (Pr−1,rP ′
rP1Pr,r+1)

= σΓF (Pr−1,r) · σm(σΓF (P ′
r)) · σlr−m(σ(P ′

1))
= σΓF (PathF (Qr)) · σm(σΓF (P ′

r)) · σlr−m(PathF (P ′
1))

= σΓF (PathF (Qr)) · σm(σΓF (P ′
r)) · PathF (σlr−m(P ′

1)). (235)

For all odd i ∈ {2, . . . , r − 1}, we compute

σΓF (Pi−1,iPi,iPi,i+1) = σΓF (Pi−1,i) · σm(σΓF (Pi,i)) · σli−m(σΓF (Pi,i+1))
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= PathF (Qi) · σm(σΓF (Pi,i)) · σli−m(PathF (Qi+1))
= PathF (Qi) · σm(σΓF (Pi,i)) · PathF (σli−m(Qi+1). (236)

For all even i ∈ {2, . . . , r − 1}, we compute

σΓF (Pi,i+1Pi,iPi−1,i) = σΓF (Pi,i+1) · σm(σΓF (Pi,i)) · σli−m(σΓF (Pi−1,i))
= PathF (Qi+1) · σm(σΓF (Pi,i)) · σli−m(PathF (Qi))
= PathF (Qi+1) · σm(σΓF (Pi,i)) · PathF (σli−m(Qi)). (237)

Fifth, we will choose the Qi in (233) more specifically for all i = 2, . . . , r. For that, let
Q1 := P ′

0 and then we claim that the following iteration in (241), (242) and (243) is well
defined for all i = 1, . . . , r and that it produces a sequence (Q1, . . . ,Qr) of directed paths
in Trun≥m(Γ) such that

vinit(Q1) = P ′
0 and vterm(Qr) = P ′

1, (238)
vterm(Qi) = vterm(Qi+1) for all odd i ∈ {1, . . . , r − 1}, (239)
vinit(Qi) = vinit(Qi+1) for all even i ∈ {1, . . . , r − 1}. (240)

Hence, this sequence (Q1, . . . ,Qr) finally provides the desired undirected path Q from P ′
0

to P ′
1 in Trun≥m(Γ). Moreover, if P is a directed path, we have r = 1 and, therefore,

Q = Q1 is then even a directed path.
As already announced, we consider the following iteration where i runs over all 1, . . . , r

in ascending order:

Ri ∈


PFli

(Qi) ∩ PFli
(σΓF (Pi−1,iPi,iPi,i+1)) if i ̸= r is odd

PFli
(σΓF (Pi,i+1Pi,iPi−1,i)) ∩ PFli

(σli−m(Qi)) if i is even
PFlr

((Qr, σlr−m(P ′
1))) ∩ PFlr

(σΓF (Pr−1,rPr,rPr,r+1)) if i = r

(241)

Qi := σ−1
ΓF≥m

(PathF≥m
(Ri)) (242)

Qi+1 :=
{
vterm(Qi) if i is odd
vinit(Qi) if i is even

(243)

In the following, we will show that the sets in (241) are non-empty in all of the three cases,
that Qi is a well defined path of length li −m in Trun≥m(Γ), that Qi+1 ∈ PFm(σ(Pi,i+1))
if i < r and that the equalities in (238), (239) and (240) hold.

For showing that the sets (241) are non-empty, notice that we have Q1 = P ′
0 and that,

for all i = 2, . . . , r, we may assume Qi ∈ PFm(σ(Pi−1,i)) from the i− 1-th step. There will
be no circular reasoning since proving Qi ∈ PFm(σ(Pi−1,i)) will only need the definitions
in the i− 1-th step.

The set in the first case in (241) is non-empty because of the equalities in (234) and
(236) and because of Lemma 19.

The set in the second case in (241) is non-empty because of the equality in (237) and
because of Lemma 19.

The set in the third case in (241) is non-empty because of the equalities in (232) and
(235) and because of Lemma 19.

The path Qi ∈W (ΓF≥m
, li −m) in (242) is well defined because the estimate in (231)

implies that PathF≥m
can indeed be applied to Ri ∈ PFli

. Furthermore, let (Fk,l)k,l :=
Pyr(F) be the pyramid of F . Then we compute

Qi = σ−1
ΓF≥m

(PathF≥m
(Ri)) = σ−1

ΓF≥m
((Ri ∩ Fk,m+l)l−k≤1)

= [σ−k(Ri ∩ Fk,m+l)]l−k≤1 ∈W (ΓF≥m
, li −m) (244)
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where the first equality and the containment-statement hold by the choice of Qi in (241),
the second equality holds because Lemma 28 provides the equality Pyr(F≥m) = (Fk,m+l)k,l
and because of the definition of PathF≥m

in Definition/Lemma 17(i) and the third equality
holds by the definition of σΓF≥m

in Definition/Lemma 76.
Next, for all 0 ≤ k ≤ l ≤ li−m with l−k ≤ 1, by Lemma 76(i), we obtain PathF (Ri∩

Fk,m+l) = (Ri ∩ Fs,t)t−s≤1 ∈W (F , k,m+ l). Therefore, by the choice of Ri in (243), this
implies that

PathF (Ri ∩ Fk,m+l) is the (k,m+ l)-subpath of
{
σΓF (Pi−1,iPi,iPi,i+1) if i is odd
σΓF (Pi,i+1Pi,iPi−1,i) if i is even

.

(245)

In particular, since Pi−1,iPi,iPi,i+1 and Pi,i+1Pi,iPi−1,i (in their respective cases) are con-
tained in Γ by their choices, we derive that

σ−1
ΓF

(σ−k(PathF (Ri ∩ Fk,m+l))) = σ−1
ΓF

(PathF (σ−k(Ri ∩ Fk,m+l)))

is also contained in Γ where the equality holds by Definition/Lemma 20(ii). Conse-
quently, by the definition of Pm+l−k[Γ] in Definition 85, we even conclude that the place
σ−k(Ri ∩ Fk,m+l) is contained in Pm+l−k[Γ]. But, by the definition of Trun≥m(Γ) in Defi-
nition/Lemma 128, this again provides that σ−k(Ri ∩ Fk,m+l) is contained in Trun≥m(Γ).
Hence, by this and (244), we obtain the desired containment-statementQi ∈W (Trun≥m(Γ),
li −m).

For showing Qi+1 ∈ PFm(σ(Pi,i+1)) for all i = 1, . . . , r − 1, we distinguish two cases:
If i is odd, we compute

PathF (Qi+1) = PathF (σ−(li−m)(Ri ∩ Fli−m,li)) = σ−(li−m)(PathF (Ri ∩ Fli−m,li))
= σ−(li−m)(σli−m(σΓF (Pi,i+1))) = σΓF (Pi,i+1) (246)

where the equalities hold by the following reasonings: The first equality holds because Qi+1
is the terminal vertex of the path Qi in (242) and because of the equality in (244). The
second equality holds by Definition/Lemma 20(ii). The third equality holds by combining
(245) with the first two equalities in (234) if 1 = i < r and with the first equality in (236)
if 2 ≤ i. The fourth equality holds by Definition/Lemma 20(iii).

If i is even, we compute

PathF (Qi+1) = PathF (Ri ∩ F0,m) = σΓF (Pi,i+1) (247)

where the equalities hold by the following reasonings: The first equality holds because
Qi+1 is the initial vertex of the path Qi in (242) and because of the equality in (244). The
second equality holds by combining (245) and the first equality in (237).

The first equality in (238) holds by the equalities

vinit(Q1) = R1 ∩ F0,m = Q1 = P ′
0

where the first equality holds by the equality in (244) and the second and third equalities
holds by the choice of Ri in the first case in (241) and by the definition of the place
Q1 = P ′

0 in Fm = F0,m.
The second equality in (238) holds by the equalities

vterm(Qr) = σ−(lr−m)(Rr ∩ Flr−m,lr ) = P ′
1

where the first equality holds by the equality in (244) and the second equality holds
because of the choice of Ri in the third case in (241) and because σlr−m(P ′

1) is a place in
σlr−m(Fm) = Flr−m,lr .
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Second to last, the equality in (239) follows from the equalities

vterm(Qi+1) = σ−(li+1−m)(Ri+1 ∩ Fli+1−m,li+1) = σ−(li+1−m)(σli+1−m(Qi+1))
= Qi+1 = vterm(Qi)

where the first equality holds by the equality in (244), the second equality holds because
of the choice of Ri+1 in the second case in (241) and because σli+1−m(Qi+1) is a place in
σli+1−m(Fm) = Fli+1−m,li+1 , the third equality is clear and the last equality holds by the
definition of Qi+1 in (243).

Finally, the equality in (240) follows from the equalities

vinit(Qi+1) = Ri+1 ∩ F0,m = Qi+1 = vinit(Qi)

where the first equality holds by the equality in (244), the second equality holds because
of the choice of Ri+1 in the first and third cases in (241) and because Qi+1 is a place in
Fm = F0,m and the last equality holds by the definition of Qi+1 in (243).

All together, (iv) follows.

For (v): First, we notice that if Γ is a weakly connected component of ΓF , then it is
a forward and backward complete subgraph of ΓF by the definition of weakly connected
components in Definition 66(v). In particular, by Lemma 87, this implies that all vertices
in Γ have positive in- and out-degree. Thus, for both desired implications, we may assume
that all vertices in Γ have positive in- and out-degree. Then Lemma 130(i) supplies that

Γ is non-empty if and only if Trun≥m(Γ) is non-empty. (248)

Hence, the desired equivalence in the ’moreover’-part of (v) immediately follows from this
conclusion in (248) and from the equivalences in Lemma 138(iii) and Lemma 138(iv).

Weakly connected components and the Trun-projection morphism.

Lemma 140. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0)
and let F≥m = Trun≥m(F) = (Fm+ν)ν be the level m truncation of F . Moreover, let ΓF
(resp. ΓF≥m

) be the tower graph of F (resp. F≥m) and let Γ′ be a subgraph of ΓF≥m
.

If Γ′ is a weakly connected component of ΓF≥m
, then πΓF≥m

/ΓF (Γ′) is a weakly con-
nected component of ΓF such that Trun≥m(Γ) = Γ′.

Proof. Suppose that Γ′ is a weakly connected component of ΓF≥m
. First, we notice that,

by Lemma 70(ii),

Γ′ is a subgraph of πΓF≥m
/ΓF

−1(πΓF≥m
/ΓF (Γ′)). (249)

Second, we notice that, by Lemma 70(v), the image graph πΓF≥m
/ΓF (Γ′) is also weakly

connected. Thus, there is some weakly connected component Γ of ΓF which contains
πΓF≥m

/ΓF (Γ′). In particular, this also implies that πΓF≥m
/ΓF

−1(πΓF≥m
/ΓF (Γ′)) is a sub-

graph of πΓF≥m
/ΓF

−1(Γ). Consequently, by this and by (249), we obtain that

Γ′ is a subgraph of πΓF≥m
/ΓF

−1(Γ). (250)

Third, since Γ is a weakly connected component of ΓF , Lemma 130(ii) provides the
equality Trun≥m(Γ) = πΓF≥m

/ΓF
−1(Γ) and, moreover, Lemma 138(v) then even provides

that Trun≥m(Γ) = πΓF≥m
/ΓF

−1(Γ) is a weakly connected component of ΓF≥m
.
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Finally, combining this, (250), the assertion that Γ′ is also a weakly connected compo-
nent of ΓF≥m

and the fact that weakly connected components are either equal or disjoint
by Lemma 68(ii) yields the equalities Γ′ = πΓF≥m

/ΓF
−1(Γ) = Trun≥m(Γ). In particular,

because Definition/Lemma 126 supplies that πΓF≥m
/ΓF is an epimorphism and because of

the ’moreover’-part in Lemma 70(iii), we conclude that

πΓF≥m
/ΓF (Γ′) = πΓF≥m

/ΓF (πΓF≥m
/ΓF

−1(Γ)) = Γ

is indeed a weakly connected component of ΓF such that Γ′ = Trun≥m(Γ).

5.2.3 Truncations of Rational, Splitting and Ramification Subgraphs.

Purpose of this subsection. Let F≥m = Trun≥m(F) be a truncation of a recursive
tower F . In this subsection, we will connect the truncations Trun≥m(Γ) of the rational,
splitting and ramification subgraphs Γ of ΓF with the rational, splitting and ramification
subgraphs Γ′ of ΓF≥m

.

Truncation of the rational subgraph.

Lemma 141. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0), let
F≥m = Trun≥m(F) = (Fm+ν)ν be the level m truncation of F and let Γrat

F (resp. Γrat
F≥m

)
be the rational subgraph of the tower graph ΓF of F (resp. ΓF≥m

of F≥m).
Then Γrat

F≥m
is a subgraph of Trun≥m(Γrat

F ) and πΓF≥m
/ΓF restricts to a morphism

Γrat
F≥m

→ Γrat
F .

Proof. For all P ′ ∈ V (Γrat
F≥m

)∪E(Γrat
F≥m

) = P(1)
Fm
∪P(1)

Fm+1
, Lemma 80 supplies that the path

σ−1
ΓF

(PathF (P ′)) is rational and, thus, contained in Γrat
F by the definition of the rational

subgraph in Definition 88(i). Consequently, by the definitions of P·[Γrat
F ] in Definition 85

and of Trun≥m(Γrat
F ) in Definition/Lemma 128, we obtain the inclusions and equalities

V (Γrat
F≥m

) ⊆ PFm [Γrat
F ] = V (Trun≥m(Γrat

F ))

and

E(Γrat
F≥m

) = PFm+1 [Γrat
F ] = E(Trun≥m(Γrat

F ))

Therefore, we conclude the first desired statement, namely that Γrat
F≥m

is a subgraph of
Trun≥m(Γrat

F ).
The second desired statement, namely that πΓF≥m

/ΓF restricts to a morphism Γrat
F≥m

→
Γrat

F , immediately follows from the first desired statement and from Definition/Lemma 130(i).

Truncation of the splitting subgraph.

Lemma 142. Let F = (Fν)ν be a recursive tower of balanced degree d which is defined
by the pair (σ, F0), let F≥m = Trun≥m(F) = (Fm+ν)ν be the level m truncation of F and
let Γsplit

F (resp. Γsplit
F≥m

) be the splitting subgraph of the tower graph ΓF of F (resp. ΓF≥m
of

F≥m). Let Γrat
F be the rational subgraph and Γram

F be the ramification subgraph of ΓF .
Then Trun≥m(Γsplit

F ) is a d-regular forward and backward complete subgraph of Γsplit
F≥m

.
Moreover, if Γsplit

F≥m
is finite, then Γsplit

F≥m
is even the disjoint union of Trun≥m(Γsplit

F ) and
some subgraph of Trun≥m(Γram

F ∩ Γrat
F ) and πΓF≥m

/ΓF restricts to a morphism Γsplit
F≥m

→

Γsplit
F ∪ (Γram

F ∩ Γrat
F ).
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Remark 143. Notice that Theorem 155 will sharpen the ’moreover’-part of Lemma 142. It
will imply that Γsplit

F≥m
is even either empty or a weakly connected component of ΓF≥m

. But
the latter again provides that Γsplit

F≥m
is either equal to Trun≥m(Γsplit

F ) or to some subgraph
of Trun≥m(Γram

F ∩ Γrat
F ).

Proof of Lemma 142. For the ’main’-part: First, we notice that, by the definition of Γsplit
F

in Definition 88(ii), it is a d-regular forward and backward complete subgraph of ΓF .
Therefore, Lemma 138(ii) supplies that

Trun≥m(Γsplit
F ) is also a d-regular subgraph of ΓF≥m

. (251)

Second, we obtain the equalities and inclusions

V (Trun≥m(Γsplit
F )) = PFm [Γsplit

F ] ⊆ PFm(V (Γsplit
F )) (252)

and

E(Trun≥m(Γsplit
F )) = PFm+1 [Γsplit

F ] ⊆ PFm+1(E(Γsplit
F )) ⊆ PFm+1(V (Γsplit

F )) (253)

where the equalities hold by the definition of Trun≥m(Γsplit
F ) in Definition/Lemma 128,

the first inclusions hold by Lemma 86 and the last inclusion holds since the initial vertex
Q ∩ F0 of any edge Q ∈ E(Γsplit

F ) is again contained in Γsplit
F .

Now, combining the inclusions in (252) and (253) and the fact that Lemma 92(i) implies
that all places in V (Γsplit

F ) ⊆ PF0 are rational and split completely in Fm/F0 and Fm+1/F0
yields that Trun≥m(Γsplit

F ) is a subgraph of the rational subgraph Γrat
F≥m

of ΓF≥m
.

Finally, by this conclusion, by the conclusion in (251) and by the definition of the
Γsplit

F≥m
as the largest d-regular subgraph of Γrat

F≥m
, we conclude the desired statement in the

’main’-part.

For the first desired statement in the ’moreover’-part: Since Trun≥m(Γsplit
F ) is a d-

regular forward and backward complete subgraph of the finite d-regular forward and back-
ward subgraph Γsplit

F≥m
of Γrat

F≥m
, the complementary graph

Γ′ := Γsplit
F≥m
\Trun≥m(Γsplit

F ) (254)

is also a well defined finite d-regular forward and backward complete subgraph of Γrat
F≥m

.
In particular, by Lemma 68(iii), this means that

Γ′ is a disjoint union of its d-regular weakly connected components Γ′
1, . . . ,Γ′

r. (255)

Now, let k ∈ {1, . . . , r} and consider the image graph πΓF≥m
/ΓF (Γ′

k). Because of
Lemma 70(v), the image graph πΓF≥m

/ΓF (Γ′
k) is weakly connected. Furthermore, since Γ′

k

is a subgraph of Γrat
F≥m

, Lemma 141 even provides that πΓF≥m
/ΓF (Γ′

k) is a weakly connected
subgraph of Γrat

F .
Next, since Γsplit

F is also a forward complete subgraph of ΓF , Lemma 130(ii) im-
plies the equality Trun≥m(Γsplit

F ) = πΓF≥m
/ΓF

−1(Γsplit
F ). But, because Γ′

k is disjoint from
Trun≥m(Γsplit

F ) = πΓF≥m
/ΓF

−1(Γsplit
F ) by its choice in (255) and (254), we also conclude

that πΓF≥m
/ΓF (Γ′

k) is disjoint from Γsplit
F . In particular, this means that

πΓF≥m
/ΓF (Γ′

k) is a weakly connected subgraph of Γrat
F which cannot be d-regular. (256)
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Finally, we will show that

πΓF≥m
/ΓF (Γ′

k) and Γram
F are not disjoint. (257)

Then, because πΓF≥m
/ΓF (Γ′

k) is weakly connected and because Γram
F is a forward and

backward complete subgraph of ΓF by its definition in Definition 88(iii), we deduce that
πΓF≥m

/ΓF (Γ′
k) is a subgraph of Γram

F .
Consequently, we conclude that the preimage graph πΓF≥m

/ΓF
−1(πΓF≥m

/ΓF (Γ′
k)) is a

subgraph of πΓF≥m
/ΓF

−1(Γram
F ) = Trun≥m(Γram

F ) where the equality holds because Γram
F

is a forward complete subgraph of ΓF and because of Lemma 130(ii). But, since Γ′
k is

also a subgraph of πΓF≥m
/ΓF

−1(πΓF≥m
/ΓF (Γ′

k)) by Lemma 70(ii), we obtain that Γ′
k is a

subgraph of Trun≥m(Γram
F ).

Moreover, combining this conclusion, the fact that Γ′
k is a subgraph of Γrat

F≥m
by its

choice and the fact that Γrat
F≥m

is a subgraph of Trun≥m(Γrat
F ) by Lemma 141 provides that

Γ′
k is even a subgraph of Trun≥m(Γram

F )∩Trun≥m(Γrat
F ) = Trun≥m(Γram

F ∩Γrat
F ) where the

equality holds by Lemma 210.
Finally, because k ∈ {1, . . . , r} was arbitrary and because of (255), we finally de-

rive that Γ′ is also a subgraph of Trun≥m(Γram
F ∩ Γrat

F ). Hence, by the choice of Γ′ =
Γsplit

F≥m
\Trun≥m(Γsplit

F ), we deduce the first desired statement in the ’moreover’-part, namely
that Γsplit

F≥m
is a disjoint union of Trun≥m(Γsplit

F ) and some subgraph of Trun≥m(Γram
F ∩Γrat

F ).

For proving the claim in (257): Assume the contrary, i.e. πΓF≥m
/ΓF (Γ′

k) and Γram
F

are disjoint. By this assumption and by (256), we even obtain that πΓF≥m
/ΓF (Γ′

k) is a
subgraph of (ΓF\Γram

F ) ∩ Γrat
F . Consequently, we deduce the equalities

N(Fn, σΓF (P)) = #
(
PFn(σΓF (P)) ∩ P(1)

Fn

)
= #

(
Path−1

F (σΓF (P)) ∩ P(1)
Fn

)
= #

(
(σ−1

ΓF
◦ PathF )−1(P) ∩ P(1)

Fn

)
= 1 (258)

for all n ∈ N0 and all paths P ∈ W (πΓF≥m
/ΓF (Γ′

k), n) where the first equality holds
by the definition of N(Fn, σΓF (P)) in (5), the second equality holds by the definition of
PathF in Definition/Lemma 17(i), the third equality holds because σΓF is a bijection by
Definition/Lemma 76 and the last equality holds by Lemma 91(ii).

Next, let A ∈ Ns×s
0 be the standard adjacency matrix of πΓF≥m

/ΓF (Γ′
k) for some

enumeration v = (P1, . . . , Ps) of its vertices, i.e.

A =
(
#E(πΓF≥m

/ΓF (Γ′
k), Pi, Pj)

)
i,j

=

 ∑
Q∈E(πΓF≥m

/ΓF (Γ′
k

),Pi,Pj)
w0(Q)


i,j

for the weight function w0 : E(Γ) → Z, Q 7→ 1. Then we notice that the j-th column
sum in A is the in-degree of Pj and the i-th row sum in A is the out-degree of Pi for all
i, j ∈ {1, . . . , s}. In particular, we can choose an enumeration v such that A is a upper
block triangular matrix with irreducible matrices A1, . . . , As on the diagonal blocks.

But combining that πΓF≥m
/ΓF (Γ′

k) is not d-regular by (256) and that d is an upper
bound for the in- and out-degrees of the vertices in ΓF by the ’in particular’-part in Lemma
87, we obtain that, for all i = 1, . . . , s, all column and row sums in Ai have the upper
bound d and that there is some column or row sum which is less than d.

Consequently, because Ai is irreducible by the combination of (256) and Lemma 63(ii),
we can apply Lemma 64(ii) and get the estimates

ρ(A) = max
i=1,...,s

ρ(Ai) < d (259)
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for the spectral radii ρ(A) of A and ρ(Ai) of Ai.
Moreover, by Lemma 59, we notice the equalities

(a(n)
i,j )i,j := An =

 ∑
P∈W (πΓF≥m

/ΓF (Γ′
k

),n,Pi,Pj)
w0(P)


i,j

=
(
#W (πΓF≥m

/ΓF (Γ′
k), n, Pi, Pj)

)
i,j

(260)

Now, let J be a canonical Jordan form of A for some transformation matrix T ∈
GL(C, s) satisfying A = TJT−1. Then, for the vector v :=

(
1 . . . 1

)
∈ N1×s, we

conclude the equalities

#W (πΓF≥m
/ΓF (Γ′

k), n) =
∑

i,j∈{1,...,s}
a

(n)
i,j = vAnvt = (vT )Jn(T−1vt)

= O((ρ(A) + ε)n) (261)

for all ε > 0 as n→∞ where the first equality holds by summing up the entries in (260),
the second equality holds by the definition of v =

(
1 . . . 1

)
, the third equality holds by

the choices of J and T satisfying the equality A = TJT−1 and the last equality holds by
Lemma 61.

Finally, we compute

#V (Γ′
k)dn−m = N(Fn, V (Γ′

k)) = N [Fn,Γ′
k] ≤ N [Fn, πΓF≥m

/ΓF (Γ′
k)]

=
∑

P∈W (πΓF≥m
/ΓF (Γ′

k
),n)

N(Fn, σΓF (P))

= #W (πΓF≥m
/ΓF (Γ′

k), n) = O((ρ(A) + ε)n) (262)

for all n ≥ m and all ε > 0 as n → ∞ where the equalities and estimate holds by the
following reasonings: The first equality holds since Γ′

k is a subgraph of Γsplit
F≥m

and, there-
fore, Lemma 92(i) supplies the inclusion V (Γ′

k) ⊆ Split(F≥m/Fm). The second equality
holds because Γ′

k is a forward complete subgraph of ΓF≥m
by (255) and because of the

’in particular’-part of Lemma 86. The estimate holds because the definition of N [·] in
Definition 85 and Lemma 127 provide the equalities and estimate

N [Fn,Γ′
k] = #

(
PFn [Γ′] ∩ P(1)

Fn

)
≤ #

(
PFn [πΓF≥m

/ΓF (Γ′)] ∩ P(1)
Fn

)
= N [Fn, πΓF≥m

/ΓF (Γ′
k)].

The third equality holds because the definition of N [·] implies the equalities

N [Fn, πΓF≥m
/ΓF (Γ′

k)] = #
(
PFn(σΓF (W (πΓF≥m

/ΓF (Γ′
k), n)) ∩ P(1)

Fn

)

= #

 ∐
P∈W (πΓF≥m

/ΓF (Γ′
k

),n)
PFn(σΓF (P)) ∩ P(1)

Fn


=

∑
P∈W (πΓF≥m

/ΓF (Γ′
k

),n)
N(Fn, σΓF (P))

The fourth equality holds by the equality in (258). The last equality holds by (261).
But, the estimate in (262) contradicts the estimate in (259) for small ε > 0. Hence, the

desired statement in (257) and, by that, the first desired statement in the ’moreover’-part
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follow.

For the second desired statement in the ’moreover’-part: We first notice that πΓF≥m
/ΓF

restricts to morphisms

Trun≥m(Γsplit
F )→ Γsplit

F and Trun≥m(Γram
F ∩ Γrat

F )→ Γram
F ∩ Γrat

F

by Lemma 130(i) and, consequently, to a morphism

Trun≥m(Γsplit
F ) ∪ Trun≥m(Γram

F ∩ Γrat
F )→ Γsplit

F ∪ (Γram
F ∩ Γrat

F ).

Hence, combining this conclusion and the first desired statement in the ’moreover’-part
then yields the second desired statement, namely that πΓF≥m

/ΓF restricts to a morphism
Γsplit

F≥m
→ Γsplit

F ∪ (Γram
F ∩ Γrat

F ).

Truncation of the ramification subgraph.

Lemma 144. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0), let
F≥m = Trun≥m(F) = (Fm+ν)ν be the level m truncation of F and let Γram

F (resp. Γram
F≥m

)
be the ramification subgraph of the tower graph ΓF of F (resp. ΓF≥m

of F≥m).
Then Trun≥m(Γram

F ) is a forward and backward complete subgraph of ΓF≥m
, Γram

F≥m
is a

subgraph of Trun≥m(Γram
F ) and πΓF≥m

/ΓF restrict so a morphism Γram
F≥m

→ Γram
F .

Proof. The first desired statement, namely that Trun≥m(Γram
F ) is a forward and backward

complete subgraph of ΓF≥m
, immediately follows from the fact that Γram

F is a forward and
backward complete subgraph of ΓF by its definition in Definition 88(iii) and from Lemma
138(iii).

Next, we claim that

Trun≥m(Γram
F ) contains all the ramified edges in ΓF≥m

. (263)

As Trun≥m(Γram
F ) is a forward and backward complete subgraph of ΓF≥m

and as Γram
F≥m

is
the intersection of all forward and backward complete subgraph of ΓF≥m

containing these
ramified edges by its definition, the claim in (263) then provides that Γram

F≥m
must be a

subgraph of Trun≥m(Γram
F ). Hence, the second desired statement follows if the claim is

true.
Now, for proving the claim in (263), let Q ∈ E(ΓF≥m

) = PFm+1 be a ramified edge
in ΓF≥m

. This means by its definition in Definition 88(iii) that Q/Q ∩ Fm is ramified in
Fm+1/Fm or Q/Q ∩ σ(Fm) is ramified in Fm+1/σ(Fm).

We will go through both cases: On the one hand, if Q/Q∩Fm is ramified in Fm+1/Fm,
then

Q/Q ∩ F0 is also ramified in Fm+1/F0 (264)

by the multiplicative transitivity rule for ramification indices in (7). Therefore, we obtain

vinit(σ−1
ΓF

(Path(Q))) = (Q ∩ F1) ∩ F0 = Q ∩ F0 ∈ Ram(F/F0) ⊆ V (Γram
F ) (265)

where the equalities, the containment-statement and the inclusion hold by the following
reasonings: The first equality holds by the definitions of Path in Definition/Lemma 17(i), of
σΓF in Definition/Lemma 76 and of the initial vertex map vinit for ΓF in Definition 55(iii).
The second equality holds as F1/F0 is an extension of function fields. The containment-
statement holds by the conclusion in (264) and by the definition of the ramification locus
Ram(F/F0) in Definition 3(ii). The inclusion holds by Proposition 92(ii).
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Then combining that Γram
F is a forward complete subgraph of ΓF and (265) supplies

that the path σ−1
ΓF

(Path(Q)) ∈ W (ΓF ,m + 1) is completely contained in Γram
F and, thus,

that Q is contained in PFm+1(σΓF (W (ΓF ,m+ 1))) = PFm+1 [Γram
F ] = Trun≥m(Γram

F ).
On the other hand, if Q/Q ∩ σ(Fm) is ramified in Fm+1/σ(Fm), then applying Key

Lemma 36(iv) to the diamond (Q,Q ∩ F1, Q ∩ σ(Fm), Q ∩ σ(F0)) of places yields that
Q ∩ F1/Q ∩ σ(F0) is also ramified in F1/σ(F0). But this again supplies that Q ∩ F1 =
Edge(σ−1

ΓF
(Path(Q))) is a ramified edge in ΓF and, thus, contained in Γram

F . Consequently,
combining this conclusion and the fact that Γram

F is a forward complete subgraph of ΓF
supplies that the path σ−1

ΓF
(Path(Q) ∈W (ΓF ,m+ 1) is completely contained in Γram

F and,
thus, that Q is contained in PFm+1(σΓF (W (ΓF ,m+ 1))) = PFm+1 [Γram

F ] = Trun≥m(Γram
F ).

Hence, in any case, the claim in (263) follows.
Finally, the last desired statement, namely that πΓF≥m

/ΓF restrict so a morphism
Γram

F≥m
→ Γram

F , immediately follows from the second desired statement and from Lemma
130(i).

Example 145. Let us again consider the recursive GS-towers F≥1 and F from Example
129. In Example 129(ii), we mentioned that Trun≥1(Γram

F ) is the disjoint union of Γsplit
F≥1

and Γram
F≥1

.

5.3 At Most One Finite Balanced Weakly Connected Com-
ponent.

Summary of the results of this section. In [Bee04, p. 238, Theorem 5.5] and in
[HP12, p. 27, Theorem 23], it was shown that most of the Beelen-graphs and all of the
HP-graphs have at most one finite d-regular weakly connected component, respectively,
where d is the balanced degree of the given recursive tower. As the first major result of
this thesis, in Theorem 155 of this section, we will show that the tower graph not only
has at most one finite d-regular weakly connected component but even at most one finite
balanced weakly connected component.

On the one hand, by Corollary 156, this will especially imply that the Beelen-graph
also has at most one finite balanced weakly connected component. On the other hand, in
Theorem 154, we will present a simplified proof of [HP12, p. 27, Theorem 23] which will
also work on the more general definition of correspondences in Definition 98.

This part is joint work with Florian Heß. More concretely, the first Subsection 5.3.1
is the contribution of Florian Heß and the last two Subsections 5.3.2 and 5.3.3 are the
contributions of the author.

Recapitulation of the proof of [HP12, p. 27, Theorem 23]. Let X be a smooth
projective geometrically integral curve over an algebraic extension field k of a finite field
and let (Y, π1, π2) be a correspondence on X of type (d, d) such that the sequence (Cν)ν
in Definition 99 satisfies the requirements for the singular-recursive tower of (Y, π1, π2).
Then the proof of [HP12, p. 27, Theorem 23] can be divided into the following three steps:

First, in [HP12, p. 25, Proposition 20], it was shown that the number #Dn of points
in the set Dn := {Q ∈ Cn : πn,0,0(Q) = πn,0,n(Q)} has the upper bound

#Dn ≤ 2dn −
k∑
i=1

λni (266)

for all n ∈ N0 and some λi ∈ C with |λi| ≤ d for all i = 1, . . . , k.
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Second, via calculations using Jacobian matrices in [HP12, p. 15, Corollary 9], it was
concluded that the estimate in (266) can be replaces by the proper estimate

#Dmn < 2dmn −
k∑
i=1

λmni . (267)

for some n ∈ N and all m ∈ N.
Third and finally, from considering the eigenvalues of a standard adjacency matrix of

a finite d-regular weakly connected component Γ of the HP-graph, it was derived that the
number of points in {Q ∈ Dmn : πmn,0,0(Q) ∈ V (Γ)} ⊆ Dmn is equal to dmn +∑s

j=1 λ̃
mn
j

with some λ̃j ∈ C with |λj | ≤ d for all j = 1, . . . , s. Then applying [HP12, p. 26, Lemma
21] yielded some m ∈ N such that all λmni and λ̃mnj have positive real parts. Therefore, it
came out that the estimate in (267) can only hold if the HP-graph has at most one finite
d-regular weakly connected component Γ.

Structure of this section In the first Subsection 5.3.1, we will first show in Theorem
153 that the estimate in (267) even holds for more general constructions of towers of
curves. In particular, this will include the tower (C̃ν)ν of normalizations C̃n of the curves
Cn in the singular-recursive tower (Cν)ν .

Here, we will replace the lengthy calculations using Jacobian matrices from [HP12,
p. 15, Corollary 9] with a much shorter reasoning using uniformizing elements and, by
that, obtain a simplified proof.

Finally, for the tower (C̃ν)ν of normalizations, in Theorem 153, we will even improve
the estimate in (267) to the estimate

∑
Q∈Dmn

min
i=0,mn

eπmn,0,i(Q) < 2dmn −
k∑
i=1

λmni . (268)

In Subsection 5.3.2, we will next use Theorem 153 to show in Theorem 154 that the
HP-graphs of the more general correspondences in Definition 98 also have at most one
finite d-regular weakly connected component.

In Subsection 5.3.2, we will then also replace the standard adjacency matrices in the
third step of the proof of [HP12, p. 27, Theorem 23] with wP,1-adjacency matrices (see
Definition 157). Consequently, considering the eigenvalues of these matrices instead and
combining them with Proposition 39 and the estimate in (268) will provide the first major
result of this thesis, which is Theorem 155. There it will come out that the tower graph
not only has at most one finite d-regular weakly connected component but even at most
one finite balanced weakly connected component.

5.3.1 Counting Points in Pyramids of Curves

This subsection is joint work with Florian Heß.

Notation. We will rewrite our notation for recursive towers of function fields using
curves. This facilitates the use of the diagonal and techniques from [HP12].

Notation 146. We are given d > 1, projective and integral curves Xi over the algebraically
closed field K for all i ≥ 0 with X0 regular, and finite surjective morphisms

πi,j,e : Xi → Xj

of degree di−j for each e with 0 ≤ e ≤ i− j satisfiying

πi,i,0 = id, πj,k,f ◦ πi,j,e = πi,k,e+f .
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We assume that, for all i, e, d with i ≥ e + d, the diamonds with πi,i−e,0, πi,i−d,d,
πi−e,i−e−d,d and πi−d,i−e−d,0 represent Xi as a cover of degree one of the fibre product of
Xi−e and Xi−d over Xi−e−d.

Degree of the Diagonal. Let n ≥ 1. By the universal property of products there is a
uniquely determined morphism ψn : Xn → X0 ×X0 factoring πn,0,0 and πn,0,n by the two
projections X0 ×X0 → X0. Let ∆ denote the diagonal of X0 ×X0. We define

∆n = ψ∗
n(∆).

Proposition 147. We have that ∆n is an effective Cartier divisor of Xn with

Supp(∆n) = {Q ∈ Xn |πn,0,0(Q) = πn,0,n(Q)}

and there are λ1, . . . , λk ∈ C with |λi| ≤ d such that

deg(∆n) = 2dn −
k∑
i=1

λni

for all n ≥ 1.

Proof. By assumption, X0 is regular over K and K is perfect, so X0 is also smooth over
K. Smoothness is preserved under base extension and composition, so X0×X0 is smooth
over K, hence regular and in particular integral and normal.

NowXn is projective overK and integral by assumption. The reduced scheme-theoretic
image X ′

n = ψn(Xn) therefore defines a closed integral subscheme of X0 × X0, which
projects onto X0. Since Xn and X0 have dimension one, X ′

n has also dimension one and
then codimension one in X0 × X0 because X0 × X0 has dimension two. As X0 × X0 is
projective over K, X ′

n is also projective over K. Finally, X ′
n is an effective Cartier divisor

of X0 ×X0 because X0 ×X0 is integral and normal.
Similarly, ∆ is isomorphic to X0 under the projections, is hence projective over K and

regular, and then constitutes an effective Cartier divisor of X0×X0. Now X ′
n and ∆ do not

have irreducible components in common. For otherwise, since they are both irreducible,
we would have X ′

n = ∆. But this would imply πn,0,0 = πn,0,n which is not possible, since
by assumption π2n,n,0 has degree dn > 1 and is the base extension of πn,0,0 by πn,0,n.

Write in : X ′
n → X0 ×X0 for the closed embedding of X ′

n into X0 ×X0. We restrict
ψn to the surjective morphism ψ′

n : Xn → X ′
n. Then ψn = in ◦ ψ′

n and

∆n = ψ∗
n(∆) = ψ′∗

n (i∗n(∆)). (269)

We compute deg(∆n) via the intersection number X ′
n ·∆. As in [HP12, p. 25, Propo-

sition 20] we see that there are k ∈ N0, λi ∈ C with |λi| ≤ d such that for all n

X ′
n ·∆ = 2dn −

k∑
i=1

λni . (270)

By [Liu02, p. 377, Lemma 9.1.4] the restriction ∆|X′
n

= i∗n(∆) of ∆ to X ′
n defines an

effective Cartier on X ′
n such that

deg(i∗n(∆)) = X ′
n ·∆. (271)

Using [Liu02, p. 263, Proposition 7.1.38] we see that ψ′∗
n (i∗n(∆)) is an effective Cartier

divisor on Xn satisfying
deg(ψ′∗

n (i∗n(∆))) = deg(i∗n(∆)) (272)
The assertion on the support of ∆n is clear from the respective property of ∆, and the
combination of (269), (270), (271) and (272) yields the assertion on the degree.
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Multiplicities in the Diagonal. We will now investigate the multiplicities of points in
the diagonal ∆n. The local ring of a scheme X at x is denoted by OX,x and its maximal
ideal by mX,x. If D is an effective Cartier divisor on X, we write DX,x for the principal
ideal of OX,x defined by D.

Lemma 148. Let Q ∈ Supp(∆n). Then (∆n)Xn,Q is is generated by the element π∗
n,0,n(z0)−

π∗
n,0,0(z0), where z0 is a local uniformizer of Q0 = πn,0,0(Q) = πn,0,n(Q).

Proof. The local ring of X0×X0 at (Q0, Q0) satisfies OX0×X0,(Q0,Q0) ∼= OX0,Q0⊗KOX0,Q0 .
The ideal J of OX0,Q0⊗KOX0,Q0 corresponding to ∆ under this isomorphism is generated
by elements of the form x ⊗ 1 − 1 ⊗ x with x ∈ OX0,Q0 , and the maximal ideal n of
OX0,Q0 ⊗K OX0,Q0 contains mX0,Q0 ⊗ 1 + 1 ⊗ mX0,Q0 . Since K is algebraically closed we
can write x = a+ bz0 with a ∈ K and b ∈ OX0,Q0 . Then

x⊗ 1− 1⊗ x = bz0 ⊗ 1− 1⊗ bz0 = (b⊗ 1)(z0 ⊗ 1)− (1⊗ b)(1⊗ z0)
= (1⊗ b)(z0 ⊗ 1− 1⊗ z0)− (z0 ⊗ 1)(1⊗ b− b⊗ 1)
∈ (OX0,Q0 ⊗K OX0,Q0)(z0 ⊗ 1− 1⊗ z0) + nJ

This means that J/nJ is generated by the residue class of z0⊗1−1⊗z0. Since OX0,Q0⊗K
OX0,Q0 is noetherian, J is finitely generated and by the Lemma of Nakayama it is generated
by z0 ⊗ 1− 1⊗ z0.

Finally, tracing the definition of ∆n, we see that the element π∗
n,0,n(z0) − π∗

n,0,0(z0)
generates (∆n)Xn,Q.

We recall some definitions and basic facts, see [Liu02, p. 260, p. 265, p. 275]. Let
Q ∈ Supp(Xn) and D be an effective Cartier divisor on Xn. The multiplicity of D at Q is

multQ(D) = lengthOXn,Q
(OD,Q) = lengthOXn,Q

(OXn,Q/DXn,Q)
= dimK(OXn,Q/DXn,Q).

The ramification index of πn,m,i at Q is

eπn,m,i(Q) = lengthOXn,Q
(OXn,Q/π

∗
n,m,i(mXm,πn,m,i(Q))OXn,Q)

= dimK(OXn,Q/π
∗
n,m,i(mXm,πn,m,i(Q))OXn,Q).

Then
deg(D) =

∑
Q∈Xn

multQ(D),

and if Q is regular then

DXn,Q = m
multQ(D)
Xn,Q

and π∗
n,m,i(mXm,πn,m,i(Q))OXn,Q = m

eπn,m,i (Q)
Xn,Q

,

whereby multQ(D) and eπn,m,i(Q) are also uniquely determined.

Proposition 149. Every regular Q ∈ Supp(∆n) satisfies the estimate multQ(∆n) ≥
min(eπn,0,0(Q), eπn,0,n(Q)), with equality if eπn,0,0(Q) ̸= eπn,0,n(Q).

Proof. By Lemma 148 and using its notation, the ideal (∆n)Xn,Q is generated by the
element π∗

n,0,n(z0)− π∗
n,0,0(z0). Since z0 is a local uniformizer of OX0,Q0 and Q is regular,

we get
π∗
n,0,0(z0)OXn,Q = π∗

n,0,0(mX0,Q0)OXn,Q = m
eπn,0,0
Xn,Q

,

π∗
n,0,n(z0)OXn,Q = π∗

n,0,n(mX0,Q0)OXn,Q = m
eπn,0,n

Xn,Q

and
(π∗
n,0,n(z0)− π∗

n,0,0(z0))OXn,Q ⊆ m
min(eπn,0,0 ,eπn,0,n )
Xn,Q

,

with equality if the ramification indices are different.
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Lemma 150. Let P ∈ Supp(∆1). Then there are Qn ∈ Xn such that Q1 = P and
πn,m,i(Qn) = Qm for all n,m, i with 0 ≤ m ≤ n and 0 ≤ i ≤ n − m. We have Qn ∈
Supp(∆n) for all n ≥ 1.
Proof. We define Q1 = P , Q0 = π1,0,0(P ) = π1,0,1(P ). By the correspondence of points
and places, Definition/Lemma 17(i) implies that there are Qn which satisfy Qn−1 =
πn,n−1,0(Qn) = πn,n−1,1(Qn) if n ≥ 1. Since πn,m,i is a composition of suitable πj,j−1,e this
yields the first assertion.

The last assertion holds by observing that πn,0,0(Qn) = πn,0,n(Qn) by the first assertion,
and this implies Qn ∈ Supp(∆n) by Proposition 147.

We fix some additional notation: Given P and Qn as in Lemma 150 write Rn for
the local ring of Xn at Qn and mn for the maximal ideal of Rn. Let z0 denote a local
uniformiser of R0.

The lower bound for the multiplicities in Proposition 149 can be increased, as we will
see now.
Lemma 151. Assume that P and Qn can be chosen regular for all n ≥ 1. If eπ1,0,0(P ) =
eπ1,0,1(P ), then there is u ∈ K× such that

π∗
n,0,i(z0) ≡ uiπ∗

n,0,0(z0) mod m
eπn,0,0 (Qn)+1
n

for all n, i ≥ 1. In particular, eπn,0,i(Qn) = eπn,0,0(Qn).
Proof. By the assumptions, we obtain π∗

1,0,1(z0)π∗
1,0,0(z0)−1 ∈ R×

1 and thus some u ∈ K×

such that π∗
1,0,1(z0)π∗

1,0,0(z0)−1 ≡ u mod m1. Now π∗
n,1,j(π∗

1,0,0(z0)) = π∗
n,1,j−1(π∗

1,0,1(z0)),
so

π∗
n,0,i(z0)π∗

n,0,0(z0)−1 = π∗
n,1,i−1(π∗

1,0,1(z0))π∗
n,1,0(π∗

1,0,0(z0))−1

= π∗
n,1,i−1(π∗

1,0,1(z0))π∗
n,1,0(π∗

1,0,0(z0))−1

·

i−1∏
j=1

π∗
n,1,j(π∗

1,0,0(z0))−1π∗
n,1,j−1(π∗

1,0,1(z0))


=

i−1∏
j=0

π∗
n,1,j(π∗

1,0,1(z0)π∗
1,0,0(z0)−1)

This shows π∗
n,0,i(z0)π∗

n,0,0(z0)−1 ∈ R×
n and π∗

n,0,i(z0)π∗
n,0,0(z0)−1 ≡ ui mod mn. We also

have Rnπ∗
n,0,0(z0) = m

eπn,0,0 (Qn)
n , so multiplication of this congruence by π∗

n,0,0(z0) yields
the first assertion.

The second assertion follows from the first assertion because Rnuiπ∗
n,0,0(z0) = m

eπn,0,0
n .

Proposition 152. Assume that K is the algebraic closure of a finite field and that P and
Qn can be chosen regular for all n ≥ 1. If eπ1,0,0(P ) = eπ1,0,1(P ), then there is n ≥ 1 such
that eπnm,0,0(Qnm) = eπnm,0,nm(Qnm) and multQnm(∆mn) ≥ eπnm,0,0(Qnm) + 1 for every
m ≥ 1.
Proof. We abbreviate zi = π∗

i,0,0(z0) and en,m,i = eπn,m,i(Qn). By Lemma 148 the ideal
(∆i)Xi,Qi is generated by the element π∗

i,0,i(z0)− zi for all i ≥ 1.
By Lemma 151 and the regularity assumption there is u ∈ K× such that

π∗
i,0,i(z0) ≡ uizi mod m

ei,0,0+1
i

for all i ≥ 1. Since u lies in a finite field there is n ≥ 1 with un = 1. Then

π∗
nm,0,nm(z0)− znm ≡ unmznm − znm ≡ znm − znm ≡ 0 mod m

enm,0,0+1
nm

for all m ≥ 1. Thus enm,0,0 = enm,0,nm and Qnm has multiplicity at least enm,0,0 + 1 in
∆nm.
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Bound. With the results on the degree of the diagonal and its multiplicites we obtain
the following bound for the number of points counted with weights, which lie over closed
paths of the tower graph.

Theorem 153. Assume that K is the algebraic closure of a finite field and that there are
r ≥ 1, P ∈ Supp(∆r) regular and Qn ∈ Xn regular with Qr = P and πn,m,i(Qn) = Qm for
all n,m, i with 0 ≤ m ≤ n, r|n, r|m and 1 ≤ i ≤ n−m, r|i.

If πr,0,0 and πr,0,r have the same ramification index at P , then there are λ1, . . . , λk ∈ C
with |λi| ≤ d and n ≥ 1 with r |n such that

∑
Q ∈ Supp(∆nm),

Q regular

min(eπnm,0,0(Q), eπnm,0,nm(Q)) < 2dnm −
k∑
i=1

λnmi

for all m ≥ 1.

Proof. We apply the results of the previous section to only those Xl, where l is a multiple
of r and l is replaced by l/r. To simplify the notation we may thus assume r = 1 in the
statement of the theorem.

By Proposition 147 and Proposition 149, we get

∑
Q ∈ Supp(∆nm),

Q regular

min(eπnm,0,0(Q), eπnm,0,nm(Q)) ≤ deg(∆nm) = 2dnm −
k∑
i=1

λnmi

for all m,n ≥ 1. By the assumption, there is n ≥ 1 with r|n such that for every m ≥ 1
there is at least one Q = Qnm in the sum as in Proposition 152. Thus the ≤ in the estimate
may be changed into < for such n,m.

As an application, a balanced closed path of length r leads to P ∈ Supp(∆r). In the
case of [HP12], the path is in the split component and thus P and all Qn are regular by
[HP12, p. 12, Proposition 6]. In the truly balanced case we assume that the Xi are regular,
so that P and the Qn are also regular.

5.3.2 At Most One Finite d-Regular Weakly Connected Component

Summary of the results of this subsection. In Theorem 154 of this subsection,
we will finish the simplified proof of [HP12, p. 27, Theorem 23]. The latter proved that
the HP-graph contains at most one finite d-regular weakly connected component. This
simplified proof will also work on the more general correspondences in Definition 98.

HP-graphs have at most one finite d-regular weakly connected component.
The main simplification step of the proof in [HP12, p. 27, Theorem 23] was already ac-
complished in the proof of Theorem 153. The following proof of Theorem 154 will basically
be the proof of [HP12, p. 27, Theorem 23]. Only, instead of applying [HP12, p. 15, Corol-
lary 9] and [HP12, p. 25, Proposition 20], we will apply Theorem 153.

Theorem 154. Let X be a smooth projective geometrically integral curve over an algebraic
extension field k of a finite field and let (Y, π1, π2) be a correspondence on X of type (d, d)
such that the sequence (Cν)ν in Definition 99 satisfies the requirements for the singular-
recursive tower of (Y, π1, π2).

Then the geometric graph G∞ of (Y, π1, π2) has at most one finite d-regular weakly
connected component.
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Proof. Let Γ1, . . . ,Γr be the finite d-regular weakly connected components of G∞. We will
show r ≤ 1.

First, we notice that, by the definition of the singular-recursive tower (Cν)ν with the
morphisms πi,j,e : Ci → Cj in Definition 99 and by [HP12, p. 12, Proposition 6], it satisfies
the requirements of Theorem 153. Thus, we obtain

#{P ∈ Cmn : πmn,0,0(P ) = πmn,0,mn(P )} = # Supp(∆nm) < 2dnm −
k∑
j=1

λmnj (273)

for all m ≥ 1, some n ≥ 1 and some λ1, . . . , λk ∈ C with |λi| ≤ d for all i = 1, . . . , k.
From this point on, the proof is basically the same as proof in [HP12]: Second, by the

definitions of the singular-recursive tower (Cν)ν via the fiber products in Definition 99 and
the geometric graph G∞ of (Y, π1, π2) in Definition 101(i), we also get that the

number of closed paths in
r∐
i=1

Γi is a lower bound for # Supp(∆nm). (274)

Third, let Ai be a standard-adjacency matrix of Γi and let λi,1, . . . , λi,si be the eigen-
values of Ai counted with multiplicities and sorted by their absolute values in descending
order for all i = 1, . . . , r. Because Γi is d-regular, the row sums in Ai are constantly
d. Thus, Ai has the eigenvalue λi,1 = d with the eigenvector which only consists ones
and, by [HJ90, p. 492, Theorem 8.1.22], all other eigenvalues λi,j satisfy |λi,j | ≤ d with
j = 2, . . . , si. Because Lemma 59 implies that the trace of Anmi counts the closed paths in
Γi, because of (274) and because of the estimate in (273), we obtain the estimates

rdnm +
r∑
i=1

si∑
j=2

λmni,j ≤ # Supp(∆nm) < 2dnm −
k∑
j=1

λmnj (275)

Finally, [HP12, p. 26, Lemma 21] supplies some m ≥ 1 such that all λmni and λmni,j in
(275) have nonnegative real parts. But this yields the desired estimate r ≤ 1.

5.3.3 At Most One Finite Balanced Weakly Connected Component

Summary of the results of this subsection. In this subsection, we will prove the
first major result of this thesis, which is Theorem 155. There it will come out that the
tower graph not only has at most one finite d-regular weakly connected component but
even at most one finite balanced weakly connected component.

Significance of having at most one finite balanced weakly connected compo-
nent. First, in [Bee04, p. 238, Corollary 5.6] and in [HP12, p. 27, Theorem 24], the
fact that most of the Beelen-graphs and all HP-graphs have at most one finite d-regular
weakly connected component is used to prove that the limit of a good recursive tower
cannot increase after a finite constant field extension if some further technical conditions
are satisifed.

By combining Theorem 155 and the main result of this thesis, we will even be able to
show in Theorem 188 that these technical conditions can always be dropped. Consequently,
it comes out that the limit of a good recursive tower cannot increase after a finite constant
field extension. This will be the third major result of this thesis. Moreover, there we will
actually need the full statement of Theorem 155, i.e. that the tower graph has at most
one finite balanced weakly connected component and not only at most one finite d-regular
weakly connected component.

Second, knowing that the tower graph has at most one finite balanced weakly con-
nected component will also come in handy for determining the limits of recursive towers
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F for which we cannot simply print their tower graphs ΓF (as they are too large or F is
parametrized over Fq by infinitely many q). More concretely, for most recursive towers F
in the literature, we are in the comfortable situation that we already know that F has a
non-empty splitting subgraph Γsplit

F and that there is also another finite forward and back-
ward complete subgraph Γ of ΓF which contains the ramification subgraph Γram

F . Now, if
we add that ΓF has at most one finite balanced weakly connected component, we obtain
that Γ can have no finite weakly connected component without ramified edges since this
would be another finite balanced weakly connected component. Thus, Γ must already be
equal to Γram

F and all its finite weakly connected components must also contain circles with
unbalanced ramification indices.

For a tame recursive tower F , this will already be enough to determine the precise
limit λ(F) of F by applying Corollary 195. That will be the first part of the fourth major
result of this thesis. For a wild recursive tower F , this will only be enough to determine
the splitting rate ν(F) of F . However, if F is also α-weakly ramified (see Definition 199),
then the second part of the fourth major result in Corollary 200 will also enable us to
determine the asymptotic genus γ(F) and limit λ(F) of F .

Third, just as an insight on recursive towers, it is remarkable that the definition of
a recursive tower already implies that the solutions of the defining polynomial f(X,Y )
behave in a way such that the tower graph can have at most one finite balanced weakly
connected component.

At most one finite balanced weakly connected component. In the proof of The-
orem 154, we only used Theorem 153 via the weaker estimate

# Supp(∆mn) < 2dmn −
k∑
i=1

λmni . (276)

More concretely, by considering the eigenvalues of a standard adjacency matrix of a finite
d-regular weakly connected component Γ of the HP-graph, we showed that the number of
points in {Q ∈ Supp(∆mn) : πmn,0,0(Q) ∈ V (Γ)} is equal to dmn +∑s

j=1 λ̃
mn
j with some

λ̃j ∈ C with |λ̃j | ≤ d for all j = 1, . . . , s. Then we chose m ∈ N such that all λmni and λ̃mnj
have positive real parts. Consequently, it came out that the estimate in (276) can only
hold if the HP-graph has at most one finite d-regular weakly connected component Γ.

Now, for the first major result of this thesis in Theorem 155, we will have to utilize the
stronger estimate in Theorem 153 for the tower (C̃ν)ν of normalizations C̃n of the curves
Cn in the singular-recursive tower (Cν)ν . This is the estimate

∑
Q∈Supp(∆mn)

min
i=0,mn

eπmn,0,i(Q) < 2dmn −
k∑
i=1

λmni . (277)

For that, we will also have to bring the ramification indices into the picture. This
will be accomplished via Proposition 39. More concretely, by considering the eigenvalues
of a wP,1-adjacency matrix (see Definition 157) of a finite balanced weakly connected
component Γ of the tower graph and applying Proposition 39 suitably, we will show

∑
Q∈Supp(∆mn)∩ψ(PFmn [Γ])

min
i=0,mn

eπmn,0,i(Q) = dmn +
s∑
j=1

λ̃mnj

with some λ̃j ∈ C with |λ̃j | ≤ d for all j = 1, . . . , s where ψ(PFmn [Γ]) is the image of
PFmn [Γ] after translating the recursive tower F of function fields into the recursive tower
(C̃ν)ν of smooth curves.
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Therefore, analogously to the reasoning before, the estimate in (277) can only hold if
the tower graph has at most one finite balanced weakly connected component Γ.

Also note that we will already use definitions and lemmata from Subsection 6.1 in the
proof of Theorem 155. However, these definitions and lemmata can be used as black boxes
and there will be no circular reasonings.

Theorem 155. Let F = (Fν)ν be a recursive tower of balanced degree d over an algebraic
extension field of a finite field. Then the tower graph ΓF of F has at most one finite weakly
connected component which only contains circles with balanced ramification indices.

Proof. For the geometric tower k · F of F , we notice that, by Lemma 120(i) and by the
’moreover’-parts of Lemma 120(iii) and Lemma 120(v), the k-constant field extension k ·Γ
of a finite balanced weakly connected component Γ of ΓF is the disjoint union of finite
balanced weakly connected components of ΓF . Because of that and because constant field
extensions of disjoint subgraphs are again disjoint by Lemma 111, it is enough to show
that ΓF has at most one finite weakly connected component which only contains circles
with balanced ramification indices. Hence, w.l.o.g. we may assume that the constant field
k of F is algebraically closed.

Now, let Γ1, . . . ,Γr be the finite weakly connected components of ΓF which only contain
circles with balanced ramification indices. We will show r ≤ 1.

First, let A1, . . . , Ar be wP,1-adjacency matrices of Γ1, . . . ,Γr, respectively. From com-
bining the ’moreover’-part in Lemma 164 for xP = P, Lemma 165(ii) and Lemma 165(iii),
we derive that all row sums of Ai are equal to d for all i = 1, . . . , r. Consequently, the vector
with only ones is an eigenvector to the eigenvalue d and, for the eigenvalues λi,1, . . . , λi,si

of Ai counted with multiplicities and sorted by their absolute values in descending order
for all i = 1, . . . , r, [HJ90, p. 492, Theorem 8.1.22] thus supplies

λi,1 = d and |λi,j | ≤ d for all j = 2, . . . , si. (278)

Second, let W ◦(Γ, n) denote the set of closed paths in the directed graph Γ. Then we
obtain the equalities and estimate

r · dn +
r∑
i=1

si∑
j=2

λni,j =
r∑
i=1

Tr(Ani ) =
r∑
i=1

∑
C∈W ◦(Γi,n)

wP,1(C)

=
r∑
i=1

∑
C=[Pµ,ν ]ν−µ≤1∈W ◦(Γi,n)

r∏
j=1

e(Pj−1,j |Pj−1,j−1)

=
r∑
i=1

∑
C∈W ◦(Γi,n)

∑
Q∈PFn (σΓF (C))

e(Q|Q ∩ F0)

=
r∑
i=1

∑
Q∈PFn (σΓF (W ◦(Γi,n)))

min(e(Q|Q ∩ F0), e(Q|σn(Q) ∩ F0))

≤
∑

Q∈PFn (σΓF (W ◦(ΓF ,n)))
min
i=0,n

e(Q|Q ∩ σi(F0))

=
∑

Q∈PFn

Q∩F0=σ−n(Q∩σn(F0))

min
i=0,n

e(Q|Q ∩ σi(F0)) (279)

where the equalities and estimates hold by the following reasonings. The first equality
holds because of the choice of λi,1, . . . , λi,si as the eigenvalues of Ai, because of (278) and
because it is well known that the trace of the n-th power of a matrix A is the sum of the
n-th powers of the eigenvalues of A.
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The second equality holds because the trace Tr(Ani ) is the sum of the entries on the
diagonal of Ani and because Lemma 59 implies that the l-th value on the diagonal is the
sum of wP,1-values of all closed paths at the l-th vertex in Γi.

The third equality holds by the definition of

wP,1(C) =
r∏
i=1

wP,1(Pi−1,i) =
r∏
i=1

e(Pi−1,i|Pi−1,i−1)

in Definition 157. The fourth equality holds by Proposition 39.
The fifth equality holds because Lemma 83 implies that not only all circles but even

all closed paths in Γi have balanced ramification indices and because the implication from
(i) to (iv) in Lemma 166 also provides the equalities

e(Q|Q ∩ F0) = e(Q|σn(Q) ∩ F0)) = min(e(Q|Q ∩ F0), e(Q|σn(Q) ∩ F0))

for all Q ∈ PFn(C) and all closed paths C in Γi.
The estimate follows as the right side runs over all closed paths in ΓF and not only

the closed paths in Γ1, . . . ,Γr.
The last equality holds because PFn(σΓF (W ◦(ΓF , n))) is the set of allQ ∈ PFn such that

[σ−i(Q∩σi(Fj−i))]j−i≤1 = [σ−i(Q∩Fi,j)]j−i≤1 = σ−1
ΓF

(Path(Q)) ∈W ◦(ΓF , n) and because
the definition of W ◦(ΓF , n) as the set of closed paths provides Q∩F0 = σ−n(Q∩σn(F0)).

Third, as in Proposition 102(iv), let D1 and D2 be the finite subcategories of k-algebras
consisting of the k-algebras and morphisms which are depicted in the commutative di-
agrams in Figure 4.9 and Figure 4.10, respectively. Then, by Proposition 102(i) and
Proposition 102(iv), there are geometrically integral curves X and Y over k such that
X is smooth, (Y, π1, π2) is a correspondence on X of type (d, d), the sequence (Cν)ν in
Definition 99 satisfies the requirements for the singular-recursive tower of (Y, π1, π2) and
there are isomorphisms ψj−i ◦ σ−i : Fi,j → K(Cj−i) for all 0 ≤ i ≤ j which induce an
isomorphism Ψ : D1 → D2 of categories. Then we obtain the equality∑

Q∈PFn

Q∩F0=σ−n(Q∩σn(F0))

min
i=0,n

e(Q|Q ∩ σi(F0)) =
∑

Q∈PK(Cn)
(π∗

n,0,0)−1(Q)=(π∗
n,0,n)−1(Q)

min
i=0,n

e(Q|Q ∩ π∗
n,0,i(K(C0))) (280)

by the following reasoning: The fact that Ψ is a functor implies that ψ0◦σ−i : Fi,i → K(C0)
maps Q ∩ σi(F0) to (π∗

n,0,i)−1(ψn(Q)) for all i = 0, n and we get the equality

ψ0(σ−i(Q ∩ σi(F0))) = (ψ0 ◦ σ−i)(Q ∩ σi(F0)) = (π∗
n,0,i)−1(ψn(Q)).

Hence, the desired equality in (280) follows because ψn maps the places Q ∈ PFn with
Q ∩ F0 = σ−n(Q ∩ σn(F0)) bijectively to the places Q ∈ PK(Cn) with (π∗

n,0,0)−1(Q) =
(π∗
n,0,n)−1(Q).

Fourth, we consider any circle in Γ, say of length r. As the circle has balanced rami-
fication indices by assumption, Lemma 166 then supplies some P ∈ Supp(∆r) such that
πr,0,0 and πr,0,r have the same ramification indices. Thus, if we take the normalizations
C̃n of Cn for all n ∈ N0, then (C̃ν)ν satisfies the requirements of Theorem 153, which are
formulated in Notation 146, with the canonical extension morphisms π̃i,j,e : C̃i → C̃j of
the morphisms πi,j,e : Ci → Cj . Moreover, the normalization morphisms C̃n → Cn also
induce an isomorphisms Ψ̃ : D2 → D3 of categories where D3 is the same finite subcategory
of k-algebras as D2 but with C̃n and π̃i,j,e instead of Cn and πi,j,e. Hence, we derive the
equalities ∑

Q∈PFn

Q∩F0=σ−n(Q∩σn(F0))

min
i=0,n

e(Q|Q ∩ σi(F0)) =
∑

Q∈PK(C̃n)
(π̃∗

n,0,0)−1(Q)=(π̃∗
n,0,n)−1(Q)

min
i=0,n

e(Q|Q ∩ π̃∗
n,0,i(K(C̃0)))
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=
∑

Q∈Supp(∆n)
min
i=0,n

eπn,0,i(Q) (281)

where the equalities hold by the following reasonings: The first equality holds by the
equality in (280) and by the isomorphism Ψ̃ : D2 → D3 from above. The second equality
holds by the one to one correspondence of the rational places in K(C̃n) and the k-rational
points in C̃n and by the identity for the divisor ∆n in Proposition 147.

Fifth, combining the estimate in (279), the equality in (281) and applying Theorem 153
to (C̃ν)ν yields the estimates

r · dmn +
r∑
i=1

si∑
j=2

λmni,j ≤
∑

Q∈Supp(∆n)
min
i=0,n

eπn,0,i(Q) < 2dmn −
k∑
i=1

λmni (282)

for some λ1, . . . , λk ∈ C such that |λi| ≤ d for all i = 1, . . . , k, some n ∈ N and all m ∈ N.
Finally, [HP12, p. 26, Lemma 21] supplies some m ≥ 1 such that all λmni and λmni,j in

(281) have nonnegative real parts. But this yields the desired estimate r ≤ 1.

Corollary 156. Let F be a recursive tower of balanced degree d over an algebraic extension
field k of a finite field. Then the following hold:

(i) The tower graph ΓF of F has at most one finite d-regular weakly connected compo-
nent.

(ii) Suppose that F is a polynomial-recursive tower which is defined by the polynomial
f . Then the Beelen-graph Γ(f, k) has at most one finite weakly connected component
which only contains circles with balanced ramification indices.
In particular, Γ(f, k) has at most one finite d-regular weakly connected component.

Proof. For (i): By the fundamental equality for the tower graph in Lemma 87, a finite
d-regular weakly connected component Γ of ΓF cannot have ramified edges. In particular,
this means that Γ only contains circles which balanced ramification indices. Hence, as
Theorem 155 provides that there is at most one finite balanced weakly connected com-
ponent, the desired statement in (i) also follows, namely that ΓF has at most one finite
d-regular weakly connected component.

For (ii): Since Proposition 95 provides that the Beelen-graph Γ(f, k) is isomorphic to
the rational subgraph Γrat

F of the tower graph ΓF of F with an isomorphism which does
not change the ramification indices, the desired statements in (ii) immediately follow from
the corresponding statements for ΓF in Theorem 155 and Corollary 156(i).
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6 An Almost Complete Answer to Con-
jecture 1(iii)

Summary of the results of this chapter. This is the main chapter of this thesis.
Here we will prove three of the five major results. In particular, this will include the main
result, namely the almost complete answer to Conjecture 1(iii), which is Corollary 184
and has the following outcome:

Let F = (Fν)ν be a recursive tower of balanced degree d over a finite field. If every
finite weakly connected component of the ramification subgraph Γram

F contains circles with
unbalanced ramification indices, then ν(F) = #V (Γsplit

F ) = # Split(F/F0) holds, i.e. F
satisfies Conjecture 1(ii).

This criterion is very mild and the author is only aware of the wild CNT-tower in Ex-
amples 8(v) having no truncation F≥m := Trun≥m(F) = (Fm+ν)ν to which Corollary 184
is applicable. By the equalities ν(F/Fm) = ν(F≥m) and Split(F/Fm) = Split(F≥m/Fm),
we will obtain that all these recursive towers satisfy Conjecture 1(iv) and, thus, also the
weaker Conjecture 1(iii). Hence, we will call Corollary 184 our almost complete answer to
Conjecture 1(iii).

Second, we will also establish the third major result of this thesis, which is Theorem
188. In [Bee04, p. 238, Corollary 5.6] and in [HP12, p. 27, Theorem 24], it was shown that
the limit of a good recursive tower cannot increase after a finite constant field extension
whenever some technical conditions are satisfied. In Theorem 188, we will show that these
technical conditions can even be dropped. This means that the limit of a good recursive
towers can never increase after a finite constant field extension.

Third, we will also prove the fourth major results of this thesis, which are Corollary 195
and Corollary 200. These corollaries will be sharp versions of the criterion in Theorem 4
and will enable us to determine the precise limits of all α-weakly ramified recursive towers
(see Definition 199) with finite ramification indices which only have unbalanced weakly
connected components. Again, the only recursive tower known to the author which does
not satisfy those conditions is the CNT-tower.

Finally, we will also demonstrate the significance of our results by improving several
known and important results from the literature (see Section 6.4). For instance, it will
follow that the lower bounds for the limits of the BBGS-towers, which are established
in [BBGS15, p. 3] (see also Examples 8(vi)), are already the precise limits. Because the
BBGS-towers provide the best known lower bounds for Ihara’s constant A(q) for non-prime
q, we will deduce that this lower bound cannot be improved further by the BBGS-towers.

Also, we will finish the search for good quadratic polynomial-recursive towers over F2,
which was started in [ST15]. More concretely, we will show that the limits of the four
ST-towers Examples 8(iv) are vanishing. In [ST15, p. 667, Theorem 1.4] and [ST15, p. 680,
Theorem 2.14], it was shown that these four are the remaining candidates for potentially
good quadratic polynomial-recursive towers over F2.
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Main idea and structure for the proof of our almost complete answer to Con-
jecture 1(iii). The almost complete answer to Conjecture 1(iii), which is Corollary 184,
is one of the two essential cases in Corollary 183 and, thus, it will be an immediate conse-
quence of Corollary 183. Up to finite constant field extensions and up to some very specific
wild recursive towers for which the CNT-tower in Examples 8(v) is the only example in the
literature known to the author, Corollary 183 characterizes all recursive towers F = (Fν)ν
which satisfy ν(F) = Split(F/F0), i.e. which satisfy Conjecture 1(ii). Here, Corollary 184
and Corollary 185 cover the two essential cases in Corollary 183 in a less technical and
thus more accessible manner. More concretely, Corollary 184 covers the recursive towers
that satisfy Conjecture 1(ii) and Corollary 185 covers the tame recursive towers which do
not satisfy Conjecture 1(ii). In the following, let us present the main ideas and structures
of their proofs:

Let F = (Fν)ν be a recursive tower with balanced degree d over a finite field k which
is defined by the pair (σ, F0) and let F = (F ν)ν = k · F be the geometric tower of
F . First, Proposition 180 will generalize Theorem 96 (which was proven in [BGS04,
p. 15, Theorem 4.10]) from polynomial-recursive to pair-recursive towers. More con-
cretely, Proposition 180 will provide that the splitting rate ν(F) satisfies the estimates
#V (Γsplit

F ) ≤ # Split(F/F0) ≤ ν(F) = #V (Γsplit
F ) + ρ(F) where

ρ(F) = lim
n→∞

N(Fn, V (Γram
F ))

dn
.

Second, from Proposition 176, we will derive the estimate

lim
n→∞

N(Fn, V (Γram
F ))

dn
≤
∑

Γ
lim
n→∞

N(Fn, V (Γ))
dn

(283)

where the sum runs over all finite weakly connected components Γ of Γram
F . Up to this

point, nothing fundamentally new will have happened since we will have hardly done
anything more than generalizing the proof of Theorem 96, which was already proven in
[BGS04, p. 15, Theorem 4.10]. However, this will change from the next third step on.

Third, we will find useful upper bounds for all quotients N(Fn, V (Γ))/dn in the sum
in (283). Essentially, finding these useful upper bounds is the largest problem which is
solved in this thesis. Indeed, almost everything that we showed so far and that we will
show in this chapter up to the Main Theorem 177 and in Section 7.1 of the next chapter
will go into the proof of its solution. The basic idea of the solution in Main Theorem 177
is the following:

We will introduce more structure to the tower graphs via suitable weight functions
wxP,x̂P : E(ΓF )→ R>0 on ΓF which satisfy the estimates

Ñ(Fn, σΓF (P)) ≤ wxP,x̂P(P) (284)

for all P ∈ W (ΓF , n). Then, for all ε > 0 and as n → ∞, we will have the asymptotic
behavior

N(Fn, V (Γ))
dn

≤ Ñ(Fn, V (Γ))
dn

=
∑

P∈W (Γ,n)

Ñ(Fn, σΓF (P))
dn

= O((ρ(A)
d

+ ε)n)

by Lemma 59 where ρ(A) denotes the spectral radius of any wxP,x̂P-adjacency matrix A
of Γ.

More specifically, we will choose wxP,x̂P in a way such that, on the one hand, the
estimate ρ(A) ≤ d is satisfied and, on the other hand, the equality

ρ(A) = d holds if and only if all circles in Γ have balanced ramification indices. (285)
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This will provide that ρ(F) = 0 and # Split(F/F0) = ν(F) if every Γ has a circle with
unbalanced ramification indices. Up to constant field extensions of subgraphs, this is the
statement of Corollary 184.

For Corollary 185, we will show that ρ(k′ ·F) > 0 and ν(k′ ·F) > # Split(k′ ·F/k′ ·F0)
hold for some finite extension k′/k if there is some Γ which only contains circles with bal-
anced ramification indices. First, we will derive that the summand limn→∞N(Fn, V (Γ))
in (283) is positive in this case. Finally, the difficulty will become to conclude that all the
corresponding places in PFn

(V (Γ)) already lie over rational places in F ′
n = k′ ·Fn for some

finite extension k′/k.

Structure of this chapter. In Section 6.1, we will introduce the desired weight func-
tions wxP,x̂P on the tower graphs which will enable the proof of the almost complete answer
to Conjecture 1(iii).

In Section 6.2, we will exhibit Main Theorem 7 from which all results of this chapter
will follow. For that, we will need three interim results which we will already formulate
and use in this chapter but only prove in the next Chapter 7.

In Section 6.3, we will derive three of the five major results of this thesis.
In Section 6.4, as an application of the results of the previous sections, we will determine

the precise limits of several recursive towers from the literature. By doing so, we will
improve some important results from the literature.

6.1 Introducing Weights on Tower Graphs
Purpose of this section. In this section, we will introduce the desired weight functions
wxP,x̂P on the tower graphs which will enable the proof of the almost complete answer to
Conjecture 1(iii).

Moreover, these weights wxP,x̂P(P) will be parametrized as Laurent polynomials in
variables xp for all p ∈ P. This parametrization will be crucial and, thus, we will formalize
it in this section.

Structure of this section. In Subsection 6.1.1, we will introduce the desired weight
functions wxP,x̂P on the tower graphs.

In Subsection 6.1.2, we will formalize the parametrization of the weight functions
wxP,x̂P as Laurent polynomials in variables xp for all p ∈ P.

6.1.1 Weights With Complex Numbers

Purpose of this subsection. In this subsection, we will define the crucial weight func-
tions wxP,x̂P on the tower graphs ΓF in Definition 157 and then prove that these weight
functions wxP,x̂P satisfy the crucial estimate in (284).

The weight functions wxP,x̂P. In the following Definition 157, we will define the weight
function wxP,x̂P : E(ΓF )→ C for all xP = (xp)p, x̂P = (x̂p)p ∈ CP which will be crucial in
the proof of our almost complete answer to Conjecture 1(iii).

Here, for any edge Q in ΓF , we should think of its weight wxP,x̂P(Q) as first replacing
the primes p in the prime decomposition of e(Q|Q ∩ F0) with xp and of e(Q|Q ∩ σ(F0))
with x̂p and then taking their product.

Definition 157. Let F = (Fν)ν be a recursive tower of balanced degree which is defined by
the pair (σ, F0), let ΓF be its tower graph and let xP = (xp)p and x̂P = (x̂p)p be sequences
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in CP. Then we define the weight function

wxP,x̂P : E(ΓF )→ C via Q 7→ x
vP(e(Q|Q∩F0))
P · x̂vP(e(Q|Q∩σ(F0)))

P

on ΓF .

Examples 158. In the following and for all xP = (xp)p, x̂P = (x̂p)p ∈ CP, we list the
wxP,x̂P-adjacency matrices A of some subgraphs Γ in Chapter B and their eigenvalues:

(i) For the second weakly connected component Γ in Figure B.1 and the enumeration of
the vertices in Γ from top to bottom, we have

A =


0 x̂2 0 0 0
x̂2 0 0 0 0
0 0 1 0 0
0 0 0 x2 0
0 0 0 0 x2


and the eigenvalues x̂2, 1, x2.

(ii) For the second weakly connected component Γ in Figure B.4 and the enumeration of
the vertices in Γ from top to bottom, we have

A =


0 1 1 0
0 1 1 0
0 0 1 1
1 0 0 1


and the eigenvalues 2, 0, λ, λ with λ = (1 + i

√
3)/2.

(iii) For the first weakly connected component Γ in Figure B.7 and the enumeration of
the vertices in Γ from top to bottom, we have

A =
(
x̂2 1
0 x2

)

and the eigenvalues x̂2, x2.

(iv) For the second weakly connected component Γ in Figure B.7 and the enumeration of
the vertices in Γ from top to bottom, we have

A =
(

1 x̂2
x2 0

)

and the eigenvalues λ± with λ± = (1±
√

1 + 4x̂2x2)/2. For instance, for x̂2x2 = 2,
we have λ+ = 2 and λ− = −1.

(v) For the first weakly connected component Γ in Figure B.18, we have

A =
(
x̂4x4

)
and the eigenvalue x̂4x4.
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The crucial estimate for the proof of our almost complete answer to Conjec-
ture 1(iii). In the paragraph on page 202, we pointed out that the choice of the weight
functions wxP,x̂P should satisfy the estimate in (284). This estimate will be established
in the following Lemma 159(ii) for all xP = (xp)p, x̂P = (x̂p)p ∈ CP with x̂pxp = p and
xp, x̂p ∈ [1, p] for all p ∈ P.

Lemma 159. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0), let
ΓF be its tower graph and let xP = (xp)p and x̂P = (x̂p)p be sequences in CP with x̂pxp = p
for all p ∈ P. Then the following hold:

(i) We have the identity

wxP,x̂P(P) = Ñ(Fn, σΓF (P))xvP(ẽ(Q|P0,0))
P x̂

vP(ẽ(Q|Pn,n))
P

for all paths P ∈W (ΓF , n), Q ∈ PFn(σΓF (P)) and (Pi,j)i,j := Pyr(Q).

(ii) Let Γ be a finite subgraph of ΓF , let A be the wxP,x̂P-adjacency matrix for some
enumeration of the vertices of Γ and suppose that x̂p and xp are real numbers in the
interval [1, p] for all p ∈ P. Then we have the estimate∑

P∈W (Γ,n)
Ñ(Fn, σΓF (P)) ≤ N(An).

Examples 160. Let xP = (xp)p, x̂P = (x̂p)p ∈ CP with x̂pxp = p and x̂p, xp ∈ [1, p] for
all p ∈ P.

(i) The paths P and P ′ in Examples 77(i) which are depicted in the figures 4.2 and 4.3
satisfy Ñ(F4, σΓF (P)) = Ñ(F ′

4, σΓF′ (P)) = 2 = wxP,x̂P(P) = wxP,x̂P(P ′).

(ii) The path P in Examples 77(ii) which is depicted in Figure 4.4 satisfies the equalities
Ñ(F3, σΓF (P)) = 2 = wxP,x̂P(P).

Proof of Lemma 159. For (i): We show the desired identity in (i) by induction over n ∈ N0.
For n = 0, we have the equalities Ñ(Fn, σΓF (P)) = 1 = wxP,x̂P(P) where the first equality
holds by the definition of Ñ(Fn, σΓF (P)) in Definition 50 and the second equality holds by
the definition of weight functions on paths of length zero in Definition 58. As the equalities
Q = P0,0 = Pn,n hold for n = 0, the desired identity follows.

Now, let n ≥ 1 and (Fi,j)i,j := Pyr(F). By (Pi,j)i,j = Pyr(Q) and by the definition of
σΓF in Definition/Lemma 76, we have the equality P = [σ−i(Pi,j)]j−i≤1. Furthermore, let
P ′ := [σ−i(Pi,j)]j−i≤1 ∈ W (Γ, n − 1) be the truncation of P to a path of length n − 1 in
Γ. Then the induction hypothesis yields the equality

wxP,x̂P(P ′) = Ñ(Fn, σΓF (P ′))xvP(ẽ(P0,n−1|P0,0))
P x̂

vP(ẽ(P0,n−1|Pn−1,n−1))
P . (286)

Moreover, for all ε ∈ {0, 1}, we notice the equalities

σ−(n−1)(Pn−1,n) ∩ σε(F0) = σ−(n−1)(Pn−1,n ∩ σn−1+ε(F0,0))
= σ−(n−1)(Pn−1+ε,n−1+ε) (287)

where the equalities hold by the following reasonings: The first equality holds because σ
is an isomorphism and because of the identity F0 = F0,0 in Lemma 10(i). The second
equality holds because Lemma 10(ii) provides the equality σn−1+ε(F0,0) = Fn−1+ε,n−1+ε
and because of the equalities

Pn−1,n ∩ Fn−1+ε,n−1+ε = (Q ∩ Fn−1,n) ∩ Fn−1+ε,n−1+ε = Q ∩ Fn−1+ε,n−1+ε

205



= Pn−1+ε,n−1+ε

where the first and last equalities hold by the definition of Pyr(Q) = (Pi,j)i,j in Definition
11 and the second equality holds since Lemma 10(i) provides the inclusion Fn−1+ε,n−1+ε ⊆
Fn−1,n).

Then combining the equality in (287) and the invariance of ramification indices under
the action of isomorphisms in (11) yields the identity

e(σ−(n−1)(Pn−1,n)|σ−(n−1)(Pn−1,n) ∩ σε(F0)) = e(Pn−1,n|Pn−1+ε,n−1+ε) (288)

for all ε ∈ {0, 1}. Thus, by the definition of wxP,x̂P in Definition 157, by the equality in
(288) and by the identity e = ẽ on the extensions in σΓF (P) in Definition 41(i), we deduce
the equality

wxP,x̂P(σ−(n−1)(Pn−1,n)) = x
vP(ẽ(Pn−1,n|Pn−1,n−1))
P x̂

vP(ẽ(Pn−1,n|Pn,n))
P . (289)

Finally, we obtain the desired equality by the equalities

wxP,x̂P(P)
Ñ(Fn, σΓF (P))

= wxP,x̂P(P ′)
Ñ(Fn, σΓF (P ′))

· wxP,x̂P(σ−(n−1)(Pn−1,n)) · ẽ(P0,n|P0,n−1)
ẽ(Pn−1,n|Pn−1,n−1)

= x
vP(ẽ(P0,n−1|P0,0))
P · x̂vP(ẽ(P0,n−1|Pn−1,n−1))

P · xvP(ẽ(Pn−1,n|Pn−1,n−1))
P

· x̂vP(ẽ(Pn−1,n|Pn,n))
P · ẽ(P0,n|P0,n−1)

ẽ(Pn−1,n|Pn−1,n−1)

= x
vP(ẽ(P0,n−1|P0,0)ẽ(Pn−1,n|Pn−1,n−1)

ẽ(P0,n|P0,n−1)
ẽ(Pn−1,n|Pn−1,n−1) )

P

· x̂
vP(ẽ(P0,n−1|Pn−1,n−1)ẽ(Pn−1,n|Pn,n)

ẽ(P0,n|P0,n−1)
ẽ(Pn−1,n|Pn−1,n−1) )

P

= x
vP(ẽ(P0,n|P0,0))
P · x̂vP(ẽ(P0,n|Pn,n))

P

where the equalities hold by the following reasonings: The first equality holds since the
definition of weight functions on paths in Definition 58 implies the equality wxP,x̂P(P) =
wxP,x̂P(P ′) ·wxP,x̂P(σ−(n−1)(Pn−1,n)) and since the definition of Ñ(Fn, σΓF (P)) in Defini-
tion 50 implies the equalities

Ñ(Fn, σΓF (P)) =
∏n−1
i=0 ẽ(Pi,i+1|Pi,i)
ẽ(P0,n|P0,0) =

∏n−2
i=0 ẽ(Pi,i+1|Pi,i)
ẽ(P0,n−1|P0,0) · ẽ(Pn−1,n|Pn−1,n−1)

ẽ(P0,n|P0,n−1)

= Ñ(Fn, σΓF (P ′)) · ẽ(Pn−1,n|Pn−1,n−1)
ẽ(P0,n|P0,n−1) .

The second equality holds by the identities in (286) and (289). The third equality holds be-
cause the assumption x̂pxp = p for all p ∈ P implies the equality a = PvP(a) = x

vP(a)
P x̂

vP(a)
P

for all a ∈ Q and because of elementary arithmetics. The last equality holds because
Lemma 13 and the multiplicative transitivity rule for ẽ in Lemma 44(ii) yield the equali-
ties

ẽ(P0,n−1|P0,0)ẽ(Pn−1,n|Pn−1,n−1) ẽ(P0,n|P0,n−1)
ẽ(Pn−1,n|Pn−1,n−1) = ẽ(P0,n|P0,0)

and

ẽ(P0,n−1|Pn−1,n−1)ẽ(Pn−1,n|Pn,n) ẽ(P0,n|P0,n−1)
ẽ(Pn−1,n|Pn−1,n−1)

= ẽ(P0,n−1|Pn−1,n)ẽ(Pn−1,n|Pn−1,n−1)ẽ(Pn−1,n|Pn,n) ẽ(P0,n|P0,n−1)
ẽ(Pn−1,n|Pn−1,n−1)
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= ẽ(P0,n|Pn,n).

For (ii): Let (a(n)
i,j )i,j := An. Then we immediately obtain the desired estimate in (ii)

by the equalities and estimate∑
P∈W (Γ,n)

Ñ(Fn, σΓF (P)) ≤
∑

P∈W (Γ,n)
wxP,x̂P(P) =

∑
i,j∈{1,...,m}

a
(n)
i,j = N(An)

where the estimate holds by the identity in the Lemma 159(i) and by the assumption
xp, x̂p ∈ [1, p], the first equality holds by summing up the entries of the matrix in the
identity in Lemma 59 and the last equality holds by the definition of N in Definition
60.

6.1.2 Weights With Laurent Polynomials over Complex Numbers

Purpose of this subsection. In Lemma 159, we saw that Ñ(Fn, σΓF (P)) can be esti-
mated by the weight wxP,x̂P(P) for all xP = (xp)p, x̂P = (x̂p)p ∈ CP with x̂pxp = p and
xp, x̂p ∈ [1, p]. Moreover, these weights wxP,x̂P(P) are basically parametrized as Laurent
polynomials in the variables xp for all p ∈ P. This parametrization will be crucial and,
thus, we will formalize it in this subsection.

Structure of this subsection. First, in Definition 161(i), we will introduce the ring
C[yP, y

−1
P ] of Laurent polynomials in the variables yp for all p ∈ P and the evaluation

morphism EvalxP : C[yP, y
−1
P ]→ C which evaluates yp at xp.

Second, in Definition 162, we will introduce the weight function w′
1,P : E(ΓF ) →

C[yP, y
−1
P ].

Third, in Lemma 164 and for all paths P in ΓF , we will formalize the parametrization
of the weights wxP,x̂P(P) as Laurent polynomials in the variables xp for all p ∈ P, i.e. we
will connect the weight functions wxP,x̂P and w′

1,P via the identity wxP,x̂P = EvalxP ◦w′
1,P.

Fourth, in Lemma 165, we will prove some first simple properties of w′
1,P-adjacency

matrices.
Fifth, in Lemma 164, we will characterize the paths P in ΓF with balanced ramification

indices in terms of their weights w′
1,P(P).

Definition 161. (i) Let R be the polynomial ring over C in the variables yp for all
p ∈ P and let K be its field of fractions. Then we will write

yP := (yp)p ∈ RP, C[yP] := R, C(yP) := K.

Moreover, we will also write

y−1
P := (y−1

p )p, C[yP, y
−1
P ] := C[{yp, y−1

p : p ∈ P}]

and R[yP, y
−1
P ] (resp. R≥0[yP, y

−1
P ]) for the set of elements in C[yP, y

−1
P ] with coeffi-

cients in R (resp. R≥0).
Similarly to usual polynomials (resp. Laurent polynomials; resp. rational functions),
we will also often write h = h(yP) for all h in C[yP] (resp. C[yP, y

−1
P ]; resp C(yP)).

(ii) Let xP = (xp)p ∈ (C\{0})P. Then the evaluation morphism

C[yP, y
−1
P ]→ C via

∑
β

cβy
β
P 7→

∑
β

cβx
β
P
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of C-algebras is well defined and we will denote it and its extension to the morphism

C[yP, y
−1
P ]m×m → Cm×m via (ai,j)i,j 7→ (EvalxP(ai,j))i,j

of C-algebras by EvalxP.
Moreover, we will also often write h(xP) := EvalxP(h) for all h ∈ C[yP, y

−1
P ] and

A(xP) := EvalxP(A) for all A ∈ C[yP, y
−1
P ]m×m.

Weights in Laurent polynomials. In the following Definition 162, we will define the
already announced weight function w′

1,P. Moreover, in Chapter 8, this weight function
w′

1,P will also be crucial for finding genus formulas.

Definition 162. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0),
let ΓF be its tower graph and let xP = (xp)p and x̂P = (x̂p)p be sequences in CP. Then we
define the weight function

w′
xP,x̂P : E(ΓF )→ C[yP, y

−1
P ] via Q 7→ (xP ∗ yP)vP(e(Q|Q∩F0)) · (x̂P ∗ y−1

P )vP(e(Q|Q∩σ(F0)))

on ΓF where ∗ denotes the componentwise multiplication of sequences in (2).

Examples 163. In the following, we consider the w′
1,P-adjacency matrices A of the sub-

graphs Γ in Examples 158 for the same enumerations.

(i) For the second weakly connected component Γ in Figure B.1 and the enumeration of
the vertices in Γ from top to bottom, we have

A =


0 2y−1

2 0 0 0
2y−1

2 0 0 0 0
0 0 1 0 0
0 0 0 y2 0
0 0 0 0 y2

 .

(ii) For the second weakly connected component Γ in Figure B.4 and the enumeration of
the vertices in Γ from top to bottom, we have

A =


0 1 1 0
0 1 1 0
0 0 1 1
1 0 0 1

 .

(iii) For the first weakly connected component Γ in Figure B.7 and the enumeration of
the vertices in Γ from top to bottom, we have

A =
(

2y−1
2 1
0 y2

)
.

(iv) For the second weakly connected component Γ in Figure B.7 and the enumeration of
the vertices in Γ from top to bottom, we have

A =
(

1 2y−1
2

y2 0

)
.

(v) For the first weakly connected component Γ in Figure B.18, we have

A =
(
4y−1

2 · y2
)

=
(
4
)
.
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Formalizing the parametrization. In the following Lemma 164, we will formalize
the parametrization of the weights wxP,x̂P(P) as Laurent polynomials over the complex
numbers via the weight function w′

1,P and the evaluation morphism EvalxP .

Lemma 164. Let F = (Fν)ν be a recursive tower, let ΓF be its tower graph and let
xP = (xp)p and x̂P = (x̂p)p be sequences in CP with x̂pxp = p for all p ∈ P. Then we have
the identity

wxP,x̂P = EvalxP ◦ w
′
1,P.

Moreover, let Γ be a finite subgraph of ΓF , let v = (P1, . . . , Pm) be any enumeration of the
vertices in Γ and let A (resp. B) be the w′

1,P (resp. wxP,x̂P)-adjacency matrix of Γ for this
enumeration v. Then we also have the identity

B = A(xP).

Proof. Let (σ, F0) be the pair by which the recursive tower F is defined. First, we notice
that the assumption x̂pxp = p for all p ∈ P implies the equality

x̂P = (px−1
p )p = (EvalxP(py−1

p ))p. (290)

Then we already obtain the desired identity in the ’main’-part by the equalities

(EvalxP ◦ w
′
1,P)(Q) = EvalxP((1 ∗ yP)vP(e(Q|Q∩F0)) · (P ∗ y−1

P )vP(e(Q|Q∩σ(F0))))

= x
vP(e(Q|Q∩F0))
P · x̂vP(e(Q|Q∩σ(F0)))

P = wxP,x̂P(Q)

for all Q ∈ E(ΓF ) where the first equality holds by the definition of w′
1,P in Definition

162, the second equality holds by the definition of the evaluation morphism EvalxP of
C-algebras in Definition 161(ii) and by (290) and the third equality holds by the definition
of wxP,x̂P in Definition 157.

Finally, the identity in the ’moreover’-part follows from the equalities

B =

 ∑
Q∈E(Γ,Pi,Pj)

wxP,x̂P(Q)


i,j

=

 ∑
Q∈E(Γ,Pi,Pj)

(EvalxP ◦ w
′
1,P)(Q)


i,j

= EvalxP(A) = A(xP)

where the equalities hold by the following reasonings: The first equality holds by the defi-
nition of B as the wxP,x̂P-adjacency matrix of Γ for the enumeration v and by the definition
of w-adjacency matrices in Definition 58. The second equality holds by the identity in the
’main’-part. The third equality holds by the definition of EvalxP on matrices in Definition
and by the definition of A as the w′

1,P-adjacency matrix of Γ for the enumeration v. The
last equality holds by the definition of A(xP) = EvalxP(A) in Definition 161(ii).

First simple properties of w′
1,P-adjacency matrices. The following properties in

Lemma 165 will be used at various places. Here, the properties in (ii) and (iii) are conse-
quences of the fundamental equality for the vertices in the tower graph in Lemma 87. In
Examples 163, we immediately see that all our examples satisfy the first two properties in
Lemma 165.

Lemma 165. Let F = (Fν)ν be a recursive tower of balanced degree d over the field k
which is defined by the pair (σ, F0), let Γ be a finite subgraph of the tower graph ΓF of F
and let A be the w′

1,P-adjacency matrix of Γ for some enumeration v = (P1, . . . , Pm) of
the vertices in Γ. Then the following hold:
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(i) The entries of A are contained in R≥0[yP, y
−1
P ].

(ii) All column (resp. row) sums in A(1) (resp. A(P)) are at most d.

(iii) Suppose that k is algebraically closed. Then Γ is a forward and backward complete
subgraph of ΓF if and only if all column sums in A(1) and all row sums A(P) are
equal to d.

Proof. For (i): By the definition of w′
1,P in Definition 162 and by the definition of the

w′
1,P-adjacency matrix A in Definition 58, we already obtain the desired statement that

the entries of A are in R≥0[yP, y
−1
P ].

For (ii): First, we notice that Lemma 164 provides that

A(1) (resp. A(P)) is the w1,P (resp. wP,1)-adjacency matrix of Γ
for the enumeration v. (291)

Second, we also notice the equalities

w1,P(Q) = 1vP(e(Q|Q∩F0))PvP(e(Q|Q∩σ(F0))) = e(Q|Q ∩ σ(F0)) = e(Q|σ(Pj)) (292)

and

wP,1(Q) = PvP(e(Q|Q∩F0))1vP(e(Q|Q∩σ(F0))) = e(Q|Q ∩ F0) = e(Q|Pi) (293)

for all Q ∈ E(Γ, Pi, Pj) where the first equalities hold by the definition w1,P and wP,1 in
Definition 157, the second equalities hold by the definition of the multi-index notation in
(1) and the third equalities hold since the definition of Q ∈ E(Γ, Pi, Pj) ⊆ E(ΓF , Pi, Pj)
in Definition 74 implies the equalities Pj = σ−1(Q) ∩ F0 and Pi = Q ∩ F0.

Consequently, we obtain the equalities

A(1) =

 ∑
Q∈E(Γ,Pi,Pj)

w1,P(Q)


i,j

=

 ∑
Q∈E(Γ,Pi,Pj)

e(Q|σ(Pj))


i,j

(294)

and

A(P) =

 ∑
Q∈E(Γ,Pi,Pj)

wP,1(Q)


i,j

=

 ∑
Q∈E(Γ,Pi,Pj)

e(Q|Pi)


i,j

(295)

where the first equalities hold by (291) and by the definition of w-adjacency matrices in
Definition 58 and the second equalities hold by the equalities in (292) and (293). Hence,
by the identities in (294) and (295), considering the j-th column sum in A(1) yields

m∑
i=1

∑
Q∈E(Γ,Pi,Pj)

e(Q|σ(Pj)) =
∑

Q∈E−(Γ,Pj)
e(Q|σ(Pj))

≤
∑

Q∈E−(ΓF ,Pj)
e(Q|σ(Pj)) ≤ d (296)

and considering the i-th row sum in A(P) yields
m∑
j=1

∑
Q∈E(Γ,Pi,Pj)

e(Q|Pi) =
∑

Q∈E+(Γ,Pi)
e(Q|Pi)
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≤
∑

Q∈E+(ΓF ,Pi)
e(Q|Pi) ≤ d (297)

where the equalities hold because v = (P1, . . . , Pm) is an enumeration of the vertices in Γ
and because of the definitions of E−(Γ, Pj) and E+(Γ, Pi) in Definition 55(vii), the first
estimates hold since Γ is a subgraph of ΓF and the second estimates hold by the identities
in Lemma 87. Hence, (ii) follows from the estimates in (296) and (297).

For (iii): First, we notice that the assumption that k is algebraically closed provides
that all places in F1 and F0 are rational. Thus, the second estimates in (296) and (297)
are even equalities in this case.

Consequently, the only remaining estimates in (296) and (297) yield that all col-
umn sums in A(1) and all row sums A(P) are equal to d if and only if the equalities
E−(Γ, Pj) = E−(ΓF , Pj) and E+(Γ, Pi) = E+(ΓF , Pi) hold for all i, j ∈ {1, . . . ,m}. But,
since these equalities are precisely the definitions of Γ being a forward and backward
complete subgraph of ΓF in Definition 66(iii), the desired equivalence in (iii) follows.

Paths of balanced Ramification Indices in terms of weights. The following
Lemma 166 characterizes paths of balanced ramification indices in several ways, e.g. in
terms of its w′

xP,x̂P
-value and in terms of Abhyankar Ramification indices.

Lemma 166. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0), let
ΓF be its tower graph, let P ∈ W (ΓF , n) for some n ∈ N0 and let (Pi,j)j−i≤1 := σΓF (P).
Then the following are equivalent:

(i) P has balanced ramification indices.

(ii) w1,P(P) = wP,1(P).

(iii) ẽ(Q|P0,0) = ẽ(Q|Pn,n) for all Q ∈ PFn(σΓF (P)).

(iv) e(Q|P0,0) = e(Q|Pn,n) for all Q ∈ PFn(σΓF (P)).

(v) degyp
(w′

xP,x̂P
(P)) = 0 for all xP, x̂P ∈ (C\{0})P and all p ∈ P.

(vi) w′
xP,x̂P

(P) ∈ C\{0} for all xP, x̂P ∈ (C\{0})P.

Proof. For the equivalence of (i) and (ii): The equivalence of (i) and (ii) immediately
follows from the assertion that P has balanced ramification indices, from its definition in
Definition/Lemma 82(i) and from the equalities

w1,P(P) =
n∏
i=1

w1,P(σ−(i−1)(Pi−1,i))

=
n∏
i=1

1vP(e(σ−(i−1)(Pi−1,i)|σ−(i−1)(Pi−1,i)∩F0)) ·PvP(e(σ−(i−1)(Pi−1,i)|σ−(i−1)(Pi−1,i)∩σ(F0)))

=
n∏
i=1

e(σ−(i−1)(Pi−1,i)|σ−(i−1)(Pi−1,i) ∩ σ(F0)) =
n∏
i=1

e(Pi−1,i|Pi,i) (298)

and

wP,1(P) =
n∏
i=1

wP,1(σ−(i−1)(Pi−1,i))

=
n∏
i=1

PvP(e(σ−(i−1)(Pi−1,i)|σ−(i−1)(Pi−1,i)∩F0)) · 1vP(e(σ−(i−1)(Pi−1,i)|σ−(i−1)(Pi−1,i)∩σ(F0)))
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=
n∏
i=1

e(σ−(i−1)(Pi−1,i)|σ−(i−1)(Pi−1,i) ∩ F0)) =
n∏
i=1

e(Pi−1,i|Pi−1,i−1) (299)

where the equalities hold by the following reasonings: The first equalities hold because
the definition of σΓF in Definition/Lemma 76 and the definition of (Pi,j)j−i≤1 = σΓF (P)
imply the equalities P = σ−1

ΓF
(σΓF (P)) = [σ−i(Pi,j)]j−i≤1 ∈ W (ΓF , n) and because of the

definition of weight functions on paths in Definition 58(i). The second equalities hold
by the definitions of wP,1 and w1,P in Definition 157. The third equalities hold by the
definition of the multi-index notation in (1). For the last equalities, we first compute the
identities

σ−(i−1)(Pi−1,i) ∩ σε(F0) = σ−(i−1)(Pi−1,i ∩ Fi−1+ε,i−1+ε)
= σ−(i−1)(Pi−1+ε,i−1+ε,i−1+ε,i−1+ε)

for all ε = 0, 1 where the first equality holds since Lemma 10(i) and Lemma 10(iii) provide
the equalities

σε(F0) = σ−(i−1)(σi−1+ε(F0,0)) = σ−(i−1)(Fi−1+ε,i−1+ε)

and the second equality holds since the definition of (Pi,j)j−i≤1 ∈ W (F , n) in Definition
16(i) provides the equality Pi−1,i ∩ Fi−1+ε,i−1+ε = Pi−1+ε,i−1+ε. Then the last equalities
in (298) and (299) follow from the combination of these identities and the invariance of
the ramification indices under the action of isomorphisms in (11).

For the equivalence of (ii), (iii) and (iv): Let Q ∈ PFn(σΓF (P)). Then we immediately
derive the desired equivalences from the equalities

wP,1(P)
w1,P(P) =

∏n
i=1 e(Pi−1,i|Pi−1,i−1)∏n
i=1 e(Pi−1,i|Pi,i)

= ∆(σΓF (P)) = e(Q|P0,0)
e(Q|Pn,n) = ẽ(Q|P0,0)

ẽ(Q|Pn,n)

where the first equality holds by the equalities in (298) and (299), the second and third
equalities hold by the equalities in (92) and the last equality holds by Theorem 47.

For the equivalence of (v) and (vi): This equivalence holds trivially.

For the implication from (vi) to (ii): Lemma 164 implies the equalities

Eval1 ◦ w′
1,P = w1,P and EvalP ◦ w′

1,P = wP,1. (300)

Consequently, we obtain the desired equality in (ii) by the equalities

w1,P(P) = Eval1(w′
1,P(P)) = w′

1,P(P) = EvalP(w′
1,P(P)) = wP,1(P)

where the first and last equalities hold by the equalities in (300) and the second and third
equalities hold because of the assumption w′

1,P(P) ∈ C in (vi) and because EvalxP is a
morphism of C-algebras by its definition in Definition 161(ii).

For the implication from (i) to (v): First, we compute

w′
xP,x̂P(P) =

n∏
i=1

w′
xP,x̂P(σ−(i−1)(Pi−1,i))

=
n∏
i=1

(xP ∗ yP)vP(e(Pi−1,i|Pi−1,i−1)) · (x̂P ∗ y−1
P )vP(e(Pi−1,i|Pi,i))
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=
∏
p∈P

(xpyp)vp(
∏n

i=1 e(Pi−1,i|Pi−1,i−1)) · (x̂py−1
p )vp(

∏n

i=1 e(Pi−1,i|Pi,i)) (301)

where the equalities hold by the following reasonings: The first (resp. second) equality
holds by just replacing w1,P with w′

xP,x̂P
in the reasoning for the first equality (resp. second

and fourth equalities) in (298) and the third equality holds by the definitions of ∗ in (2),
of the multi-index notation in (1) and of vP in (3) and by elementary arithmetics.

Then combining the identity in (301), the assumption in (i), i.e. the equality
n∏
i=1

e(Pi−1,i|Pi−1,i−1) =
n∏
i=1

e(Pi−1,i|Pi,i),

and the assertion xp, x̂p ̸= 0 already yields the desired statement in (v), namely that the
yp-degree of w′

xP,x̂P
(P) must vanish for all p ∈ P.

6.2 Estimates for the Number of Places over Subgraphs
Summary of the results of this section. The largest problem solved in this thesis
is the characterization of the finite weakly connected components Γ of the ramification
subgraph Γram

F of a recursive tower F = (Fν)ν for which limν→∞N(Fν , V (Γ))/dν vanishes.
Up to finite constant field extensions and up to some very specific wild recursive towers
for which the CNT-tower in Examples 8(v) is the only example in the literature known to
the author, the Main Theorem 177 yields that this limit vanishes if and only if Γ contains
a circle with unbalanced ramification indices.

Main Theorem 177 is by far the deepest result of this thesis. More concretely, up to
the Sections 2.5, 2.6, 4.3, 4.4, 5.3, and up to some further minor exceptions, everything
that we have done so far and everything that we will do in the next Chapter 7 will go into
the proof of the Main Theorem 177.

Moreover, for the proof of Main Theorem 177 in Subsection 6.2.2, we will also need
the following three interim results in Subsection 6.2.1.

Structure of this section. In Subsection 6.2.1, we will formulate the three interim
results which will form the core of the proof of Main Theorem 177.

In Subsection 6.2.2, we will prove the Main Theorem 177 of this thesis.

6.2.1 Three Interim Results

Purpose of this subsection. In this subsection, we will formulate the three interim
results which will form the core of the proof of Main Theorem 177. For simplicity, we will
shift their proofs to the next Chapter 7 will be dedicated entirely to their proofs.

The first interim result. The first interim result is formulated in Theorem 168(iii)
and the cases (b) and (c) will provide the desired equivalence in (285).

Before we can formulate Theorem 168, we will need the following Definition 167.
Definition 167. Let us denote the restriction of the principal branch of the complex
logarithm in [Fre09, p. 29, Theorem I.2.11] to a function C\]−∞, 0] → C by Log. Then
Log is a holomorphic function by [Fre09, p. 55, Theorem I.5.8.] (notice that the notions
of holomorphic functions and analytic functions are used synonymously in [Fre09, p. 53]).
Moreover, we define

log2(P) := (log2(p))p ∈ RP
>0, zα := Exp(αLog(z)), zβ := (zβp)p ∈ (C\{0})P

for all z ∈ C\]−∞, 0], all α ∈ R and all β = (βp) ∈ RP. Also notice that zα is the usual
α-th power of z ∈ C\]−∞, 0] for all α ∈ Z.
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Theorem 168 (First interim result). Let Γ be a finite weakly connected directed graph,
let w : E(Γ) → C[yP, y

−1
P ] a weight function on Γ such that its image is contained in

R≥0[yP, y
−1
P ]\{0}, let A ∈ R≥0[yP, y

−1
P ]m×m be the w-adjacency matrix of Γ for some enu-

meration of the m vertices in Γ and let χA ∈ C[yP, y
−1
P ][t] be the characteristic polynomial

of A. Moreover, suppose that all column sums of A(1) and all row sums of A(P) are at
most d ∈ R>0. Then the following hold:

(i) A is connected.

(ii) If Γ is not strongly connected, then A is reducible and the estimate ρ(A(xlog2(P))) < d
holds for all x ∈]1, 2[.

(iii) There are the following three possible cases:

(a) If there is a column sum in A(1) or a row sum in A(P) which is less than d,
then we have the estimate ρ(A(xlog2(P))) < d for all x ∈]1, 2[.

(b) If all column sums of A(1) and all row sums of A(P) are constantly d and
there is a circle C in Γ such that w(C) /∈ R≥0, then we have the estimate
ρ(A(xlog2(P))) < d for all x ∈]1, 2[.

(c) If all column sums of A(1) and all row sums of A(P) are constantly d and we
have w(C) ∈ R>0 for all circles C in Γ, then we have the identity ρ(A(xlog2(P))) =
d for all x ∈ [1, 2].

In the last case (c), Γ is also strongly connected and A is irreducible.

We will prove Theorem 168 in Section 7.1 of the next chapter (see Subsection 7.1.6).

Examples 169. Let us consider the subgraphs in Examples 163 with regards to the three
cases in Theorem 168(iii). As all these subgraphs are already weakly connected components
of their respective tower graphs, Lemma 165(iii) already supplies that only the two cases
(b) and (c) occur.

Moreover, by Lemma 164, we obtain the eigenvalues of A(xlog2(P)) if we choose (xp)p =
xP = xlog2(P) = (xlog2(p))p and (x̂p)p = x̂P = (px−log2(p))p in Examples 158. From that,
we then deduce that the subgraphs in (i) (see the second weakly connected component in
Figure B.1) and (iii) (see the first weakly connected component in figure B.7) satisfy (b)
and that the subgraphs in (ii) (see the second weakly connected component in Figure B.4),
(iv) (see the second weakly connected component in Figure B.18) and (v) (see the first
weakly connected component in figure B.18) satisfy (c).

The second and third interim result. The second and third interim results are the
following Corollary 170 and Corollary 171. In the case that F is tame and its ramification
subgraph has some finite weakly connected component which only contains circles with
balanced ramification indices, the second interim result in Corollary 170 will ensure that
one of the limits in the sum in (283) does not vanish. Moreover, the third interim result
in Corollary 171 will ensure that the corresponding places in PFn

(V (Γ)) lie over places in
Fn will have bounded degrees as n→∞.

This will then yield Corollary 185 which is the second essential case of Corollary 183.

Corollary 170 (Second interim result). Let F be a recursive tower and Γ be a finite
strongly connected subgraph of the tower graph ΓF of F . If all circles in Γ have balanced
ramification indices, then the set

{ẽ(Q|Q ∩ F0) : Q ∈ PF [Γ]}

of Abhyankar ramification indices is finite.
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In particular, if all circles in Γ have balanced ramification indices and all paths in Γ
are tame, then the set

{e(Q|Q ∩ F0) : Q ∈ PF [Γ]}

of ramification indices is finite.

We will prove Corollary 170 in Section 7.2 of the next chapter (see Subsection 7.2.3).

Corollary 171 (Third interim result). Let F be a recursive tower over a finite field and
let Γ be a finite strongly connected subgraph of the tower graph ΓF of F such that all
circles in Γ have balanced ramification indices and all paths in Γ are tame. Then the set
{deg(Q) : Q ∈ PF [Γ]} is finite.

We will prove Corollary 171 in Section 7.3 of the next chapter (see Subsection 7.3.3).

Examples 172. With regards to the second and third interim results in Corollary 170 and
Corollary 171, let us consider the three subgraphs in Examples 163 which only have circles
with balanced ramification indices, namely the subgraphs in (ii) (see the second weakly
connected component in Figure B.4), (iv) (see the second weakly connected component in
Figure B.18) and (v) (see the first weakly connected component in figure B.18).

Here, all recursive towers F are tame and, thus, by Lemma 44(iii), the usual and
Abhyankar ramification indices are equal. Moreover, all subgraphs stop ramifying from the
second level on, i.e. Q/Q ∩ F1 is unramified for all Q ∈ PF (V (Γ)) = PF [Γ] and, thus, the
sets {e(Q|Q ∩ F0) : Q ∈ PF [Γ]} of ramification indices in Corollary 170 only consist of 1
and d where d is the degree of F .

In particular, we also obtain that the sets {deg(Q) : Q ∈ PF [Γ]} of degrees in Corollary
171 also only consist of 1 and d.

6.2.2 Main Theorem

In this section, we will prove the Main Theorem 177 of this thesis. We will derive all other
results of this chapter from this theorem. Up to finite constant field extensions and up to
some very specific wild recursive towers for which the CNT-tower in Examples 8(v) is the
only example in the literature known to the author, the Main Theorem 177 characterizes
the finite weakly connected components Γ of ΓF which contribute to the splitting rate
ν(F), i.e. for which limν→∞N(Fν , V (Γ))/dν does not vanish. Here, this limit vanishes if
and only if Γ contains a circle with unbalanced ramification indices.

The predecessor of Main Theorem 177 is Proposition 175. It will handle the case of
algebraically closed constant fields. Then Proposition 176 and Main Theorem 177 will
transfer the insights from Proposition 175 to more general constant fields.

Balanced weakly connected components are strongly connected. The require-
ment that a weakly connected component Γ of ΓF only contains circles with balanced
ramification indices is quite restrictive. In particular, the following Lemma 173 yields that
Γ must already be strongly connected.

Lemma 173. Let F = (Fν)ν be a recursive tower of balanced degree d, let Γ be a finite
weakly connected component of the tower graph ΓF of F and let A be the w′

1,P-adjacency
matrix of Γ for some enumeration v of the vertices in Γ.

If Γ only has circles with balanced ramification indices, then Γ is strongly connected
and A is irreducible.

Proof. For an algebraically closed constant field k of F : First, by the fact that the defi-
nition of w′

1,P in Definition 162 implies that all w′
1,P-values of the edges are contained in

R≥0[yP, y
−1
P ]\{0}, we conclude that Theorem 168 can be applied to Γ and w′

1,P.
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Second, by the assumption that Γ only has circles with balanced ramification indices
and by the implication from (i) to (vi) in Lemma 166, we obtain w′

1,P(C) ∈ R>0 for all
circles in Γ.

Third, since Γ is a weakly connected component of ΓF , Lemma 165(iii) supplies that
all column sums of A(1) and all row sums of A(P) are equal to d.

Hence, combining these three conclusions yields that we are in the case (c) of Theorem
168(iii). Consequently, the desired statements follows, namely that Γ is strongly connected
and A is irreducible.

For an arbitrary constant field k of F : Let F = k · F be the geometric tower of F .
Then Lemma 120(i) and the ’moreover’-part in Lemma 120(iii) provide that k ·Γ is a union
of finite weakly connected components Γ1, . . . ,Γr of ΓF . Furthermore, by the ’moreover’-
part in Lemma 120(v), we also obtain that every Γi only contains circles with balanced
ramification indices. Consequently, the first part of this proof for algebraically closed
constant fields supplies that all Γi are strongly connected. Finally, the desired statement,
namely that Γ is strongly connected, follows from the ’moreover’-part in Lemma 120(ii),

Examples 174. With regards to Lemma 173 (which can also be shown for non alge-
braically closed constant fields), let us consider the three subgraphs in Examples 163 which
only have circles with balanced ramification indices, namely the subgraphs in (ii) (see
the second weakly connected component in Figure B.4), (iv) (see the second weakly con-
nected component in Figure B.18) and (v) (see the first weakly connected component in
figure B.18) satisfy (c). These finite weakly connected components of their respective tower
graphs are all strongly connected.

The predecessor of our Main Theorem. The following Proposition 175 is the con-
necting piece between the first interim result in Theorem 168 and Main Theorem 177.
For an algebraically closed constant field of F = (Fν)ν and for every finite weakly con-
nected component Γ of ΓF which contains circles with unbalanced ramification indices,
the ’moreover’-part of Proposition 175 provides that limν→∞N(Fν , V (Γ))/dν vanishes.

Proposition 175. Let F = (Fν)ν be recursive tower of balanced degree d over an alge-
braically closed field. Moreover, let Γ be a finite weakly connected subgraph of the tower
graph ΓF of F and let A be the w′

1,P-adjacency matrix of Γ for some enumeration v of
the vertices in Γ. If we are in any of the two cases

(i) Γ is not a forward and backward complete subgraph of ΓF

(ii) Γ has a circle with unbalanced ramification indices

then we have

ρ(A(xlog2(P))) < d and N [Fn,Γ] = O((ρ(A(xlog2(P))) + ε)n)

as n→∞ for all x ∈]1, 2[ and all ε > 0.
Moreover, if Γ is also a weakly connected component of ΓF which has a circle of

unbalanced ramification indices, then we have the identity

lim
n→∞

N(Fn, V (Γ))
dn

= 0.

Proof. Let x ∈]1, 2[, xP := xlog2(P), x̂P := P · x−log2(P) and Bx be the wxP,x̂P-adjacency
matrix of Γ for the enumeration v.
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First, we will show the desired estimate ρ(A(xlog2(P))) < d: For that, we notice that,
by Lemma 165(ii), the column (resp. row) sums of A(1) (resp. A(P)) are at most d. Conse-
quently, combining this and the fact that all w′

1,P-values are contained in R≥0[yP, y
−1
P ]\{0}

by its definition in Definition 162 yields that we can apply Theorem 168.
In the first case (i), i.e. if Γ is not a forward and backward complete subgraph of ΓF ,

Lemma 165(iii) even provides that there is a column sum of A(1) or a row sum of A(P)
which is less than d. Hence, the desired estimate follows from Theorem 168(iii)(a).

In the second case (ii), i.e. if Γ has a circle C with unbalanced ramification indices, the
equivalence of the items (i) and (v) in Lemma 166 provides that the yq-degree of w′

1,P(C)
does not vanish for some q ∈ P. Moreover, we may also assume that we are not in the first
case and, thus, Lemma 165(iii) supplies that all column sums of A(1) and all row sums of
A(P) are equal to d. Hence, the desired estimate follows from Theorem 168(iii)(b).

Next, we will show the desired identity N [Fn,Γ] = O((ρ(A(xlog2(P))) + ε)n) for all
ε > 0 as n→∞: For that, we first notice that the ’moreover’-part in Lemma 164 implies
the equalities

Bx = A(xP) = A(xlog2(P)). (302)

Consequently, we already obtain the desired identity for all ε > 0 by the equalities and
estimates

N [Fn,Γ] =
∑

P∈W (Γ,n)
N(Fn, σΓF (P)) ≤

∑
P∈W (Γ,n)

Ñ(Fn, σΓF (P))

≤ N(Bn
x ) = N(A(xlog2(P))n) = O((ρ(A(xlog2(P))) + ε)n) (303)

as n → ∞ where the equalities and estimates hold by the following reasonings: The first
equality holds by the definitions of N [Fn,Γ] = #P(1)

Fn
(σΓF (W (Γ, n))) in Definition 85 and

of N(Fn, σΓF (P)) = #P(1)
Fn

(σΓF (P)) in (5).
The first estimate holds by Corollary 51. For the second estimate, we first notice that

xlog2(p) is monotonically increasing for x ∈ [1, 2] and satisfies the equalities 1log2(p) = 1 and
plog2(p) = p for all p ∈ P. Thus, for all p ∈ P, we get the estimates 1 ≤ xlog2(p) ≤ p and
p−1 ≤ x−log2(p) ≤ 1 Consequently, the real numbers xlog2(p) and px−log2(p) are contained in
the interval [1, p]. Then the second estimate follows from this conclusion, from the choice
of Bx as the wxP,x̂P-adjacency matrix of Γ for the enumeration v and from Lemma 159(ii).

The second equality holds by the equality in (302). The last equality holds by Definition
60 and by Lemma 61.

The desired identity in the ’moreover’-part immediately follows from the equality and
estimates

0 ≤ lim
n→∞

N(Fn, V (Γ))
dn

= lim
n→∞

N [Fn,Γ]
dn

≤ 0 (304)

where the equality and estimates hold by the following reasonings: The first estimate is
clear as the numerator and denominator are natural numbers. The second equality follows
from the combination of the fact that weakly connected components are especially forward
complete subgraphs by their definition in Definition 66(v) and of the ’moreover’-part in
Lemma 86. The last estimate holds by the ’main’-part.

Finite subgraphs which are no weakly connected components. In Proposition 175,
the constant field k of the recursive tower F = (Fν)ν is algebraically closed. Now, we will
switch to more general constant fields k which do not need to be algebraically closed.

Here the following Proposition 176 handles the finite weakly connected subgraphs Γ
of ΓF which are not already weakly connected components. More concretely, Proposition
176 provides that limν→∞N [Fν ,Γ]/dν vanishes.
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Proposition 176. Let F = (Fν)ν be a recursive tower of balanced degree d and let
(F ν)ν := F q · F be the geometric tower of F . Moreover, let Γ be a finite weakly con-
nected subgraph of the tower graph ΓF of F and let Γ := Fq · Γ.

If Γ is not a weakly connected component of ΓF , then we have the identities

lim
n→∞

N [Fn,Γ]
dn

= lim
n→∞

N [Fn,Γ]
dn

= 0.

Proof. Suppose that Γ is not a weakly connected component of ΓF . On the one hand, as
Γ is weakly connected, it must be the case that Γ is not a forward and backward complete
subgraph of ΓF by the definition of weakly connected components in Definition 66(v).
Let Γ1, . . . ,Γr be the weakly connected components of Γ in Lemma 120(ii). Then the
’moreover’-part in Lemma 120(iii) implies that, for all i = 1, . . . , r,

Γi is weakly connected but not a for- and backward complete subgraph of ΓF . (305)

On the other hand, we deduce the equalities and estimate

N [Fn,Γ] = #P(1)
Fn

[Γ] ≤ #PFn
(P(1)

Fn
[Γ]) = #P(1)

Fn
(P(1)

Fn
[Γ]) ≤ #P(1)

Fn
[Γ] = N [Fn,Γ] (306)

for all n ∈ N0 where the equalities and estimates hold by the following reasonings: The first
(resp. last) equality holds by the definition of N [Fn,Γ] (resp. N [Fn,Γ]) in Definition 85.
The first estimate holds because any place in P(1)

Fn
[Γ] has at least one place in Fn which lies

above it. The second equality holds because Fn has an algebraically closed full constant
field and, thus, only rational places. The second estimate holds by the obvious inclusion
P(1)
Fn

(P(1)
Fn

[Γ]) ⊆ P(1)
Fn

(PFn [Γ]) and by the second identity P(1)
Fn

(PFn [Γ]) = P(1)
Fn

[Γ] in Lemma
113.

Then we estimate

0 ≤ lim
n→∞

N [Fn,Γ]
dn

≤ lim
n→∞

N [Fn,Γ]
dn

=
r∑
i=1

lim
n→∞

N [Fn,Γi]
dn

= 0 (307)

where the equalities and estimates hold by the following reasonings: The first estimate
holds because N [Fn,Γ] = #PFn [Γ] ∈ N0 is a cardinality of a set by its definition in
Definition 85. The second estimate holds by the estimate in (306). The first equality
holds because Γ is a disjoint union of Γ1, . . . ,Γr and because of the definition of N [Fn, ·] =
#PFn [·] = #PFn(σΓF

(W (·, n))) in Definition 85. The second equality holds by combining
the conclusion in (305) and Lemma 120(i) and applying the estimate and identity in the
’main’-part of Lemma 175(i) to all Γi.

Hence, the estimates in (307) must all be equalities which again yields the desired
identities.

Main Theorem. Finally, we come to the Main Theorem 177 of this thesis. Up to some
very specific wild recursive towers for which the CNT-tower in Examples 8(v) is the only
example in the literature known to the author, Main Theorem 177 characterizes the finite
weakly connected components Γ of ΓF which contribute to the splitting rate ν(F), i.e. for
which the limit limν→∞N(Fν , V (Γ))/dν does not vanish.

Main Theorem 177 is by far the deepest result of this thesis. More concretely, up to
the Sections 2.5, 2.6, 4.3, 4.4, 5.3, and up to some further minor exceptions, everything
that we have done so far and everything that we will do in the next Chapter 7 will go into
the proof of Main Theorem 177.

Theorem 177 (Main Theorem). Let F = (Fν)ν be a recursive tower over the finite field
Fq of balanced degree d, let (F ν)ν := Fq ·F be the geometric tower of F and let (F ′

ν)ν := F·F
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be the constant field extension of F for some intermediate field F of the extension Fq/Fq.
Moreover, let Γ be a finite weakly connected component of the tower graph ΓF of F , let
Γ := Fq · Γ and let Γ′ := F · Γ. Finally, define the composite field

k :=
∏

Q∈PF (V (Γ))
Fqdeg(Q) .

which is equal to the finite field Fql for the natural number

l := lcm
Q∈PF (V (Γ))

deg(Q).

if the set {deg(Q) : Q ∈ PF (V (Γ))} is finite. Then the following hold:

(i) If Γ has a circle with unbalanced ramification indices, then we have the identities

lim
n→∞

N(F ′
n, V (Γ′))
dn

= lim
n→∞

N(Fn, V (Γ))
dn

= 0.

(ii) If F is not an extension field of k, then we have the identity

lim
n→∞

N(F ′
n, V (Γ′))
dn

= 0.

(iii) If Γ only has circles with balanced ramification indices and only has tame paths, then
the set {deg(Q) : Q ∈ PF (V (Γ))} is finite and, hence, l is a natural number such
that

0 < lim
n→∞

N(F ′
n, V (Γ′))
dn

= lim
n→∞

N(Fn, V (Γ))
dn

if F/Fql

and

0 = lim
n→∞

N(F ′
n, V (Γ′))
dn

< lim
n→∞

N(Fn, V (Γ))
dn

else.

More precisely, if F/Fql, then we even have the identity

N(F ′
n, V (Γ′)) = N(Fn, V (Γ))

for all n ∈ N0.

Proof. For (i): Suppose that Γ has a circle with unbalanced ramification indices. By
Lemma 120(i) and the ’moreover’-part in Lemma 120(iii), we obtain that Γ is a disjoint
union of finitely many finite weakly connected components Γ1, . . . ,Γr of ΓF . Then the
’moreover’-part of Lemma 120(v) supply that

every component Γi has circles with unbalanced ramification indices. (308)

Consequently, we obtain the estimates and equalities

0 ≤ lim
n→∞

N(F ′
n, V (Γ′))
dn

≤ lim
n→∞

N(Fn, V (Γ))
dn

=
r∑
i=1

lim
n→∞

N(Fn, V (Γi))
dn

= 0 (309)

where the estimates and equalities hold by the following reasonings: The first estimate
holds because N(F ′

n, V (Γ′)) = #PF ′
n
(V (Γ′)) is the cardinality of a set by its definition in

(5). The second estimate holds because Γ = Fq ·Γ′ is also the Fq-constant field extension of
Γ′ by Lemma 110 and because of Lemma 114(ii). The first equality holds as Γ is a disjoint
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union of the Γ1, . . . ,Γr and as the definition of N(Fn, ·) in (5) provides the equality
N(Fn, V (∐r

i=1 Γi)) = ∑r
i=1N(Fn, V (Γi)). The second equality follows from (308) and

the ’moreover’-part of Proposition 175.
Hence, all estimates in (309) are actually equalities. In particular, this yields the de-

sired identities in (i).

For (ii): Suppose that F is not an extension field of k. First, we notice that the items
(i), (ii) and (iii) in Lemma 120 supply that Γ′ is a disjoint union of finitely many finite
weakly connected components Γ′

1, . . . ,Γ′
s of ΓF ′ . In particular, because of that and because

of the definition of N(F ′
n, ·) in (5), we conclude the equality

N(F ′
n, V (Γ′)) =

s∑
i=1

N(F ′
n, V (Γ′

i)) (310)

In the following, let j ∈ {1, . . . , s}. Then we will show the identity

lim
n→∞

N(F ′
n, V (Γ′

j))
dn

= 0. (311)

Then combining this identity and the equality in (310) provides the desired identity in
(ii).

For proving this identity in (311), we first notice that, by the definition of k in the
assumptions, by the definition of PF (V (Γ)) = ∐

n∈N0 PFn(V (Γ)) in Definition 2(ii) and
by the assertion that F is not an extension field of k, there must be some m ∈ N0 and
some place Q0 ∈ PFm(V (Γ)) such that the residue field Fqdeg(Q0) of Q0 is not contained
in F. Consequently, as the residue field of any place Q′ ∈ PF ′

m
(Q0) = PF·Fm(Q0) is the

compositum Fqdeg(Q0) ·F by [Sti08, p. 114, Theorem 3.6.3(g)], it is a proper extension field
of F. Hence, we deduce that

no place in PF ′
m

(Q0) is rational. (312)

Moreover, because of the way we chose Γ′
j in the beginning, Lemma 120(ii) supplies that

πΓF′/ΓF restricts to an epimorphism Γ′
j → Γ. Thus, for P := Q0 ∩ F0, there is some place

P ′ ∈ π−1
ΓF′/ΓF

(P )∩V (Γ′
j) = PF ′

0
(P )∩V (Γ′

j) and, therefore, Lemma 26 even provides some
place Q′ ∈ PF ′

m
((Q0, P

′)) ⊆ PF ′
m

(Q0)∩PF ′
m

(V (Γ′
j)). From (312), we moreover derive that

this place

Q′ is not rational. (313)

Next, consider the level m truncation

F ′
≥m := Trun≥m(F ′) = (F ′

m+ν)ν

of F ′. As Γ′
j is a weakly connected component of ΓF ′ ,

Γ′
j is especially a forward complete subgraph of ΓF ′ . (314)

From this and from Definition/Lemma 130(ii), we therefore derive the equalities

G′ := Trun≥m(Γ′
j) = πΓF′

≥m
/ΓF′

−1(Γ′
j) (315)

for the level m truncation G′ of Γ′
j . Then

G′ is a finite weakly connected component of ΓF ′
≥m

(316)
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because Γ′
j is a finite weakly connected component of ΓF ′ and because of the items (i) and

(v) in Lemma 138. Moreover, we compute

PF ′
m

(V (Γ′
j)) = πΓF′

≥m
/ΓF′

−1(V (Γ′
j)) = V (G′) (317)

where the first equality holds because of the definitions of PF ′
m

(V (Γ′
j)) in (5) and of

πΓF′
≥m

/ΓF′ in Definition/Lemma 126 and the second equality holds because of the equality
in (315) and because of the definition of preimage subgraphs in Definition/Lemma 69(ii).
Therefore, combining this equality in (317), the conclusion in (313) and the definition of
the rational subgraph Γrat

F ′
≥m

of ΓF ′
≥m

in Definition 88(i) yields that the place

Q′ ∈ PF ′
m

(V (Γ′
j)) is contained in V (G′) but not in V (Γrat

F ′
≥m

). (318)

Then, because G′ is finite by (316), we obtain that

G′ ∩ Γrat
F ′

≥m
is the disjoint union of its finite

weakly connected components H ′
1, . . . ,H

′
t. (319)

Furthermore, (318) even supplies that G′ ∩ Γrat
F ′

≥m
and all H ′

ν are proper subgraphs of the
weakly connected graph G′. Hence, Lemma 68(i) provides that none of the H ′

ν is a weakly
connected component of ΓF ′

≥m
. Thus,

all subgraphs H ′
ν are finite weakly connected

but not weakly connected components of ΓF ′
≥m

. (320)

Finally, we obtain the estimate and equalities

0 ≤ lim
n→∞

N(F ′
n, V (Γ′

j))
dn

= lim
n→∞
n≥m

N(F ′
n,PF ′

m
(V (Γ′

j)))
dn

= lim
n→∞
n≥m

N(F ′
n, V (G′))
dn

= lim
n→∞
n≥m

N [F ′
n, G

′]
dn

= lim
n→∞
n≥m

N [F ′
n, G

′ ∩ Γrat
F ′

≥m
]

dn

= 1
dm

t∑
ν=1

lim
n→∞
n≥m

N [F ′
n, H

′
ν ]

dm−n = 0 (321)

where the estimate and equalities hold by the following reasonings:
The estimate holds since N(F ′

n, V (Γ′
j)) = #PF ′

n
(V (Γ′

j)) is the cardinality of a set by
its definition in (5).

The first equality holds because excluding finitely many elements of the sequence does
not change its limit, because F ′

n/F
′
m/F

′
0 are extensions of function fields for all n ≥ m and

because of the definition of PF ′
m

(V (Γ′
j)) in (5).

The second equality holds by the equality in (317). The third equality holds because
the conclusion in (316) and Definition 66(v) first imply that G′ is a forward complete
subgraph of ΓF ′

≥m
, because then applying the ’moreover’-part in Lemma 86 yields the

equality PF ′
n
(V (G′)) = PF ′

n
[G′] and, finally, because of the definitions of N(F ′

n, V (G′)) =
#(PF ′

n
(V (G′)) ∩ P(1)

F ′
n
) in (5) and of N [F ′

n, G
′] = #(PF ′

n
[G′] ∩ P(1)

F ′
n
) in Definition 85.

The fourth equality holds because of the Definition of N [F ′
n, ·] = P(1)

F ′
n
[·], because any

rational place Q must have a rational path σ−1
ΓF

(PathF≥m
(Q)) in G′ by Lemma 80 and

because Γrat
F ′

≥m
precisely consists of all rational vertices and edges in ΓF ′

≥m
and, thus,

contains all rational paths in ΓF ′
≥m

.
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The fifth equality holds by the definition of N [F ′
n, ·], by the choice of the Hν in (319)

and by elementary arithmetics. The last equality holds by the conclusion in (320) and by
Lemma 176.

Hence, the one and only estimate in (321) is also an equality and, more specifically, it
is even the desired identity in (311).

For the estimate 0 < lim
n→∞

N(Fn,V (Γ))
dn in (iii): Suppose that Γ only has circles with

balanced ramification indices and only has tame paths. First, we notice that

all paths in Γ are tame and all circles in Γ have balanced ramification indices (322)

due to the ’in particular’-parts in Lemma 120(iv) and Lemma 120(v). Second, the
’moreover’-part of Lemma 120(iii) provides that

Γ is a disjoint union of weakly connected components Γ1, . . . ,Γr of ΓF . (323)

Of course, these components Γi are also the weakly connected components of Γ. Thus, we
conclude the equalities

PF [Γi] =
∐
n∈N0

PFn
[Γi] =

∐
n∈N0

PFn
(V (Γi)) (324)

for all i = 1, . . . , r where equalities hold by the following reasonings: The first equality
holds by the definition of PF [Γi] in Definition 85. For the second equality, we notice that
because Γi is a weakly connected component of ΓF , it is especially a forward complete
subgraph of ΓF by the definition of weakly connected components in Definition 66(v).
Therefore, the identity PFn

[Γi] = PFn
(V (Γi)) follows from the ’moreover’-part in Lemma

86 for all n ∈ N0. Consequently, the second equality in (324) follows.
Next, we notice that Lemma 120(i) supplies that Γi is even finite. Consequently, com-

bining this fact, the fact that (322) must also hold for all the weakly connected components
Γi of Γ, the equality in (324) and Corollary 170 provides that

{e(Q|Q ∩ F 0) : Q ∈ PFn
(V (Γi)) for some n ∈ N0} is bounded by some Bi ∈ N (325)

for all i = 1, . . . , r.
Second to last, define B := maxi=1,...,r Bi. Then we derive the equalities and estimate

#V (Γ) · dn =
∑

P∈V (Γ)

dn =
∑

Q∈P
F n

(V (Γ))

e(Q|Q ∩ F 0) ≤
∑

Q∈P
F n

(V (Γ))

B

= N(Fn, V (Γ)) ·B (326)

where the equalities and estimate hold by the following reasonings: The first equality holds
as all summands are constantly dn. The second equality holds by applying the fundamental
equality in (8) to all P ∈ V (Γ) ⊂ PF 0

in the extension Fn/F 0 of degree dn and by the fact
that all places in Fn are rational since the geometric tower F = (F r)r has the algebraically
closed full constant field Fq. The estimate holds because of (325), because of the definition
of B = maxi=1,...,r Bi and because the fact that Γ is the disjoint union of Γ1, . . . ,Γr implies
the equality PFn

(V (Γ)) = ∐r
i=1 PFn

(V (Γi)). The last equality holds because all summands
are equal to B, because of the definition of N(Fn, V (Γ)) = P(1)

Fn
(V (Γ)) in (5) and because

all places in Fn are rational.
Finally, we obtain the desired estimate by the estimates

0 < #V (Γ)
B

≤ lim
n→∞

N(Fn, V (Γ))
dn

(327)
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where the first estimate holds because Γ is a weakly connected component and, thus, non-
empty by its definition in Definition 66(v) and because, by that and by the definition of
Γ = Fq ·Γ = π−1

ΓF/ΓF
(Γ) in Definition 107, Γ must also be non-empty. The second estimate

in (327) holds by the estimate in (326).

For the distinction of cases in (iii): First of all, we derive the equalities PFn [Γ] =
PFn(V (Γ)) for all n ∈ N0 from the assertion that Γ is a weakly connected component of
ΓF and from the ’moreover’-part of Lemma 86. Moreover, since Γ only has circles with
balanced ramification indices, Lemma 173 supplies that Γ is even strongly connected.
Thus, combining this, Corollary 171 and the definitions of PF [Γ] in Definition 85 and of
PF (V (Γ)) in Definition 2(ii) already yields that the set

{deg(Q) : Q ∈ PF [Γ]} = {deg(Q) : Q ∈ PF (V (Γ))}

is finite and, hence, that l is natural number. Moreover, [Sti08, p. 190, Lemma 5.1.9(d)]
even supplies that all places in PF

ql ·Fn(PFn(V (Γ))) are rational.
Now, we go through both cases: On the one hand, suppose that F is an extension

field of Fql . Then F ′
n = F · (Fql · Fn) is the F-constant field extension of Fql · Fn. Thus,

[Sti08, p. 114, Theorem 3.6.3(c)] provides that all places in

PF ′
n
(PF

ql ·Fn(PFn(V (Γ)))) = PF ′
n
(PFn(V (Γ))) = PF ′

n
(PF ′

0
(V (Γ))) = PF ′

n
(V (Γ′)) (328)

are also rational where the first equality holds because F ′
n/(Fql · Fn)/Fn are extensions of

function fields, the second equality holds because F ′
n/Fn/F0 and F ′

n/F
′
0/F0 are extensions

of function fields and the third equality holds because of the identity PF ′
0
(V (Γ)) = V (Γ′)

in Definition 107.
Consequently, by this conclusion in (328), we may apply Lemma 114(iii) and, thereby,

obtain the desired identityN(Fn, V (Γ)) = N(F ′
n, V (Γ′)) in the ’more precisely’-part. Then

combining this identity and the estimate in (327) finally yields the desired identity and
estimate in the first case, namely

0 < lim
n→∞

N(F ′
n, V (Γ′))
dn

= lim
n→∞

N(Fn, V (Γ))
dn

if F/Fql .

On the other hand, suppose that F is no extension field of Fql . Then the desired identity
follows from Lemma 177(ii) and the desired estimate was already proven in (327).

Examples 178. With regards to the Main Theorem 177, let us consider the five subgraphs
in Examples 163.

First, the subgraphs Γ in (i) (see the second weakly connected component Γ in Figure
B.1) and in (iii) (see the first weakly connected component Γ in Figure B.7) both contain
circles with unbalanced ramification indices. Therefore, the Main Theorem 177(i) provides
that the limits limν→∞N(F ·F0, V (F · Γ))/dν vanish for all constant field extensions F · F
of F .

Second, the subgraphs Γ in (ii) (see the second weakly connected component in Fig-
ure B.4), (iv) (see the second weakly connected component in Figure B.18) and (v) (see
the first weakly connected component in figure B.18) only contain circles with unbal-
anced ramification indices. Therefore, the Main Theorem 177(iii) provides that the limits
limν→∞N(Fql · F0, V (Fql · Γ))/dν do not vanish for some finite constant field extensions
Fql · F of F . More concretely, we have l = 1 in (ii) and l = 2 in (iv) and (v).
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6.3 Consequences of the Main Theorem
Summary of the results of this section. In this section, we will prove three of the
five major results of this thesis.

In Subsection 6.3.1, we will prove the almost complete answer to Conjecture 1(iii),
which is Corollary 184. This is the main result of this thesis. Moreover, in Example 181,
we will show that the CNT-tower in Examples 8(v) is a counterexample to Conjecture 1(iv).

In Theorem 188 of Subsection 6.3.3, we will deduce that limit of a good recursive tower
can never increase after a finite constant field extension.

Finally, in Subsection 6.3.3, we will formulate sharp versions of the criterion in Theo-
rem 4, which are Corollary 195 and Corollary 200. This will enable us to determine the
precise limits of all recursive towers with a finite ramification subgraph which only has
unbalanced weakly connected components. The only recursive tower known to the author
for which these corollaries are not applicable is the wild CNT-tower in Examples 8(v).

6.3.1 The Almost Complete answer to Conjecture 1(iii)

Summary of the results of this subsection. In Corollary 184 of this subsection, we
will finally give our almost complete answer to Conjecture 1(iii), which is the main result
of this thesis. This Corollary 184 is one of the two essential cases in Corollary 183 and
thus it will be an immediate consequence of Corollary 183.

Up to finite constant field extensions and up to some very specific wild recursive towers
for which the CNT-tower in Examples 8(v) is the only example known to the author,
Corollary 183 will give the following characterization of recursive towers over finite fields of
balanced degree: The recursive tower F satisfies Conjecture 1(ii), i.e. ν(F) = Split(F/F0),
if and only if every finite weakly connected component Γ of the ramification subgraph Γram

F
contains circles with unbalanced ramification indices.

Corollary 184 will cover the ’if’-part of Corollary 183. As far as the author is aware,
up to the CNT-tower, all recursive towers F in the literature satisfy the criterion in the
’if’-part for some truncation Trun≥m(F) and thus satisfy Conjecture 1(iv), i.e. ν(F/Fm) =
Split(F/Fm) for some m ∈ N0. Therefore, we will call Corollary 184 our almost complete
answer to the weaker Conjecture 1(iii).

Moreover, in Example 181, we will also show that the CNT-tower in Examples 8(v) is
a counterexample to Conjecture 1(iv).

Structure of this subsection First, we will give a more general definition of ρ(F) for
pair-recursive towers in Definition 179 and then prove in Proposition 180 that the splitting
rate ν(F) satisfies #V (Γsplit

F ) ≤ ν(F) = #V (Γsplit
F ) + ρ(F).

Second, in Example 181, we will show that the CNT-tower is a counterexample to
Conjecture 1(iv).

Third, in Theorem 182, we will determine the value ρ(k′ ·F) for all finite constant field
extensions k′ · F of F .

Fourth, as a corollary of Theorem 182, we will prove Corollary 183, which characterizes
recursive towers with respect to Conjecture 1(ii).

Fifth, as the first essential case of Corollary 183, we will provide the almost complete
answer to Conjecture 1(iii), which is Corollary 184. Moreover, we will also provide the
second essential case of Corollary 183, which is Corollary 185.

Sixth, we will consider this almost complete answer to Conjecture 1(iii) for some of
the examples of recursive towers in Examples 8 and then give a justification for the term
’almost complete’ answer to Conjecture 1(iii).

Seventh, we will discuss some observations which suggest that, although true for most
recursive towers, Conjecture 1(iii) could be wrong for some very specific recursive tow-
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ers. Moreover, we will elaborate on a strategy to possibly produce counterexamples to
Conjecture 1(iii).

An upper bound for the splitting rate. In the following Definition 179, we will give
a more general definition of ρ(F) for pair-recursive towers. In [BGS04, p. 15, Definition
4.9], which is Definition 94(ii), the value ρ(F) was already defined for polynomial-recursive
towers. Moreover, from the third identity in the ’moreover’-part of Proposition 95, it will
follow that the new definition of ρ(F) for pair-recursive towers indeed agrees with the old
for polynomial-recursive towers.

Then, in Proposition 180, we will prove that the splitting rate ν(F) satisfies the esti-
mates and equality #V (Γsplit

F ) ≤ # Split(F/F0) ≤ ν(F) = #V (Γsplit
F ) + ρ(F). This will

ensure that the only places P ∈ PF0\ Split(F/F0) which can contribute to the splitting
rate, i.e. the places P for which limν→∞N(Fν , P )/dν > 0 holds, are the vertices of the
ramification subgraph Γram

F .

Definition 179. Let F = (Fν)ν be a recursive tower of degree d. In accordance to the
third identity in the ’moreover’-part in Proposition 95, we more generally define

ρ(F) := lim
n→∞

N(Fn, V (Γram
F ))

dn
.

Proposition 180. Let F = (Fν)ν be a recursive tower over a finite field of balanced degree
d, let Γsplit

F be the splitting subgraph and Γram
F the ramification subgraph of the tower graph

ΓF of F . Then we have the estimates and identity

#V (Γsplit
F ) ≤ # Split(F/F0) ≤ ν(F) = #V (Γsplit

F ) + ρ(F) ≤ #V (Γsplit
F ) + #V (Γram

F ).

Moreover, we have # Split(F/F0) = ν(F) if and only if #V (Γsplit
F ) = ν(F).

Proof. For the ’main’-part: The first desired estimate #V (Γsplit
F ) ≤ # Split(F/F0) holds

by the inclusion V (Γsplit
F ) ⊆ Split(F/F0) in Lemma 92(i).

The second desired estimate # Split(F/F0) ≤ ν(F) holds by the equalities and esti-
mates

# Split(F/F0) = # Split(F/F0) · dn
dn

= N(Fn,Split(F/F0))
dn

≤ N(Fn)
dn

→ ν(F)

as n → ∞ where the first equality and the estimate are clear, the second equality
holds by the definitions of Split(F/F0) in Definition 3(i) and of N(Fn,Split(F/F0)) =
#P(1)

Fn
(Split(F/F0)) in (5) and, finally, we have ν(F) = limn→∞

N(Fn)
dn by its definition in

Definition 2(iii).
For the desired identity ν(F) = #V (Γsplit

F ) + ρ(F), we consider the rational subgraph
Γrat

F of ΓF , which is finite since F is defined over a finite field. First, we notice that,
by the definition of Γsplit

F as the largest d-regular subgraph of Γrat
F in Definition 88(ii)

and by the equalities in Lemma 87, Γsplit
F cannot contain any of the ramified edges in

ΓF . Moreover, because of this conclusion, because Γsplit
F is also a forward and backward

complete subgraph of ΓF and because of the definition of Γram
F as the smallest forward

and backward complete subgraph which contains all the ramified edges of ΓF , we deduce
that Γsplit

F and Γram
F must be disjoint.

Consequently, the finite subgraph Γrat
F is the disjoint union of Γsplit

F , Γrat
F ∩ Γram

F and
its remaining finitely many finite weakly connected components Γ1, . . . ,Γr. In particular,
these components cannot be d-regular as they are disjoint from Γsplit

F . Hence, because of
this and because they are finite subgraphs of (ΓF\Γram

F )∩Γrat
F , Lemma 91(i) supplies that

none of the Γ1, . . . ,Γr is a forward complete subgraph of ΓF and, especially, that

none of the Γ1, . . . ,Γr is a weakly connected component of ΓF . (329)
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Then we finally derive the desired identity ν(F) = #V (Γsplit
F )+ρ(F) from the equalities

ν(F) = lim
n→∞

N(Fn)
dn

= lim
n→∞

N [Fn,Γrat
F ]

dn

= lim
n→∞

N [Fn,Γsplit
F ]

dn
+ lim
n→∞

N [Fn,Γrat
F ∩ Γram

F ]
dn

+
r∑
i=1

lim
n→∞

N [Fn,Γi]
dn

= lim
n→∞

N(Fn, V (Γsplit
F ))

dn
+ lim
n→∞

N(Fn, V (Γram
F ))

dn
= #V (Γsplit

F ) + ρ(F)

where the equalities hold by the following reasonings: The first equality holds by the
definition of the splitting rate in Definition 2(iii). The second equality holds because of
the definitions of N(Fn) = #P(1)

Fn
in (4) and of N [Fn,Γrat

F ] = #P(1)
Fn

(σΓF (W (Γrat
F , n)))

in Definition 85, because any rational place must lie over a rational path by Lemma 80
and because Γrat

F already contains all these rational paths by its definition in Definition
88(i). The third equality holds because Γrat

F is the disjoint union of Γsplit
F , Γrat

F ∩ Γram
F and

Γ1, . . . ,Γr.
For the fourth equality, we first conclude the identity N [Fn,Γsplit

F ] = N(Fn, V (Γsplit
F ))

by the fact that Γsplit
F is a forward complete subgraph of ΓF and by the ’moreover’-part in

Lemma 86. Second, we conclude the identities

N [Fn,Γrat
F ∩ Γram

F ] = N [Fn,Γram
F ] = N(Fn, V (Γram

F ))

where the first identity holds because any rational place in PFn [Γram
F ] lies over a rational

path in ΓF and the second equality holds because Γram
F is a forward complete subgraph of

ΓF and because of the ’moreover’-part in Lemma 86. Third, combining (329) and Lemma
176 supplies the identity

lim
n→∞

N [Fn,Γi]
dn

= 0.

Combining these three identities yields the desired fourth equality .
The last equality holds because the inclusion V (Γsplit

F ) ⊆ Split(F/F0) in Lemma 92
implies the equality N(Fn, V (Γsplit

F )) = #V (Γsplit
F ) · dn and because of the definition of

ρ(F) in Definition 179.
Finally, the last desired estimate #V (Γsplit

F ) + ρ(F) ≤ #V (Γsplit
F ′ ) + #V (Γram

F ′ ) follows
from the equalities and estimate

ρ(F) = lim
n→∞

N(Fn, V (Γram
F ))

dn
≤ lim

n→∞
#V (Γram

F ) · dn
dn

= #V (Γram
F )

where the first equality holds by the definition of ρ(F), the estimate holds because of the
definition of N(Fn, V (Γram

F )) = #P(1)
Fn

(V (Γram
F )) any place in F0 has at most dn places in

Fn which lie above it and the last equality is clear.

For the ’moreover’-part: On the one hand, the ’if’-part immediately follows from the
estimates #V (Γsplit

F ) ≤ # Split(F/F0) ≤ ν(F) in the ’main’-part.
On the other hand, for the ’only if’-part, suppose # Split(F/F0) = ν(F). Because

limn→∞N(Fn, P )/dn = 1 holds for all P ∈ Split(F/F0), we have the equalities

ν(F) =
∑

P∈P(1)
F0

lim
n→∞

N(Fn, P )
dn

= # Split(F/F0) +
∑

P∈P(1)
Fn

\ Split(F/F0)

lim
n→∞

N(F0, P )
dn

.

Hence, combining this equality and the assertion # Split(F/F0) = ν(F) yields that

all places P ∈ PF0 which satisfy lim
n→∞

N(Fn, P )
dn

> 0
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are already contained in Split(F/F0). (330)

Now, let P ∈ Split(F/F0) and let Γ′ be the subgraph of ΓF which consists of all
vertices and edges of the paths which start at P . Since P ∈ Split(F/F0) splits completely
on every level Fn/F0, the vertices and edges of every path which start at P are rational.
Consequently, as the constant field of F is finite and as there are only finitely many rational
vertices and edges in ΓF , the subgraph

Γ′ is finite and only contains rational vertices and edges. (331)

Next, we notice that any place Q ∈ PFm(P ) with some m ∈ N0 must also be rational
and split completely in every extension Fn/Fm with n ≥ m. Thus, we obtain the estimate
limn→∞N(Fn, Q)/dn > 0 for all Q ∈ PFm(P ). Moreover, let P ′ ∈ V (Γ′). By the choice
of Γ′, there is a path P from P to P ′, say of length m. Then Lemma 17(i) supplies
some place Q ∈ PFm(P) ⊆ PFm((P, P ′)). But this again implies limn→∞N(Fn, P ′)/dn ≥
limn→∞N(Fn, Q)/dn > 0. Hence, by (330), we conclude that P ′ is contained in Split(F/F0)
and, thus, that

any vertex in Γ′ has d outgoing edges. (332)

Combining this conclusion in (332) and the finiteness of Γ′ in (331) yields the equality
#E(Γ′) = d · #V (Γ′). Then the ’in particular’-part of Lemma 87 and the fact that Γ′

only contains rational vertices and edges in (331) provide that, for all P ′ ∈ Γ′, there must
also be d rational ingoing edges in Γ′. But this means that Γ′ is a d-regular subgraph
of Γrat

F and, thus, by the definition Γsplit
F in Definition 88(ii), even a subgraph of Γsplit

F .
Hence, we established the desired statement, namely that P is contained in V (Γsplit

F ) and
# Split(F/F0) = #V (Γsplit

F ).

The CNT-tower - A counterexample to Conjecture 1(iv). In the following Ex-
ample 181, we will show that the CNT-tower in Examples 8(v) does not satisfy Conjec-
ture 1(iii).

Example 181 (Counterexample to Conjecture 1(iv)). We will prove that the CNT-tower
FCNT =: F is a counterexample to Conjecture 1(iv), i.e. that ν(F≥m) > # Split(F≥m/Fm)
holds for all truncations F≥m := Trun≥m(F) = (Fm+ν)ν of F = (Fν)ν = (F4(x0, . . . , xν))ν
with m ∈ N0. For that, let σ be the tower map of F in Definition 5(ii).

First, we consider the degree one subgraph of F in Figure B.27, which is also the
ramification subgraph Γram

F of F . Here we already added a zeroth level to the CNT-tower
by the Reduction Lemma 30(ii). Next we list all possible paths P of length three in Γram

F
with their ramification indices. Let Pβ be the place in F0 which is generated by x0−β for all
β ∈ F4 and let P∞ be the place at infinity in F0. Then we see that the only paths P of length
3 in Γram

F which can have a place Q ∈ PF3(σΓF (P)) such that Q/Q∩F2 is ramified are the
two circles P1 and P2 with the vertex sequence (P0, P∞, P1, P0). By checking the genera
of F2 and F3 via Magma [BCP97], we obtain g(F2) = 1 and g(F3) = 5. Consequently, the
Hurwitz-Genus-Formula in (9) supplies that there must be ramified places in F3/F2. But
this means that

there is some i = 1, 2 (say i = 1) and some place Q3 ∈ PF3(σΓF (Pi))
such that Q3/Q3 ∩ F2 is ramified. (333)

Second, let us consider the following path P ′
m+1 in Γram

F of length m+ 1 for all m ∈ N0
with the vertex set

(P0, P0, . . . , P0, P∞, P1, P0)
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where the subpath consisting of the last three edges is P1. For m ≤ 1, we immediately
conclude by applying Abhyankar’s Lemma to the elementary extensions in the pyramid of
any place Q ∈ PFm+1(σΓF (P ′

m+1)) that Q/Q ∩ Fm is ramified in Fm+1/Fm. For m ≥ 2,
we first notice that σm−2(Q3) lies over σm−2(σΓF (P1)) and that we can therefore apply
Lemma 19. By that, we obtain a place Q ∈ PFm+1((σΓF (P ′

m+1), σm−2(Q3))). On the one
hand, we notice that Q∩Fm−2/Q∩σm−2(F0) is unramified because the loop at P0 in Γram

F
is unramified. On the other hand, by (333), we deduce that Q ∩ σm−2(F3) = σm−2(Q3)
is ramified in σm−2(F3)/σm−2(F2). Consequently, again iteratively applying Abhyankar’s
Lemma to the extensions in the pyramid of Q yields that Q/Q∩Fm is ramified in Fm+1/Fm.
Next, we notice that all places which lie over Γram

F must be rational since otherwise Main
Theorem 177(ii) supplies the first equality in

0 = lim
ν→∞

N(Fν , V (Γram
F ))

2ν = ν(F) > 0

where the second equality holds because Γram
F is also the degree one subgraph of ΓF and

the estimate follows from [CNT18, p. 19, Corollary 4.13]. Consequently, Q is a rational
ramified edge of Trun≥m(Γram

F ) and, hence, we established that

Trun≥m(Γram
F ) contains rational ramified edges for all m ∈ N0. (334)

Third, by the fact that Γram
F is a finite weakly connected component of ΓF , by Lemma

138(i) and by Lemma 138(v), we obtain that

Trun≥m(Γram
F ) is also a finite weakly connected component of ΓF≥m

. (335)

Moreover, since Γram
F is the degree one subgraph of ΓF , we deduce that all rational places

in Fm lie over Γram
F and that Γsplit

F≥m
is therefore a forward and backward complete subgraph

of Trun≥m(Γram
F ). Thus, combining this, (334) and (335) yields that Γsplit

F≥m
must be empty.

But, because of ν(F≥m) = dm · ν(F) > 0 = #V (Γsplit
F≥m

), applying the contraposition of the
equivalence in the ’moreover’-part of Proposition 180 to F≥m supplies the desired estimate
#ν(F≥m) > Split(F≥m/Fm) for all m ∈ N0.

Determining the ρ-value of a recursive tower. Proposition 180 provided the esti-
mates #V (Γsplit

F ) ≤ # Split(F/F0) ≤ ν(F) = #V (Γsplit
F )+ρ(F). In the following Theorem

182, we will determine the value ρ(F ′) for all finite constant field extensions F ′ of F .
Also note for the assumptions in Theorem 182 that since every weakly connected

component of the ramification subgraph Γram
F contains some ramified edges and since

there are only finitely many ramified edges in the tower graph, the ramification subgraph
Γram

F can only have finitely many weakly connected components.
Even more so, Theorem 155 supplies that there is at most one finite weakly connected

component Γi of Γram
F with balanced ramification indices. Hence, in the assumptions of

Theorem 182, we could even assume r ≤ 1. This means that Γ is either empty or a finite
weakly connected weakly connected component of Γram

F .

Theorem 182. Let F = (Fν)ν be a recursive tower over a finite field Fq of balanced degree
d, let F = Fq · F = (F ν)ν be the geometric tower of F , let F ′ := F · F = (F ′

ν)ν be the
constant field extension of F for some be an intermediate field F of the extension Fq/Fq.

Moreover, let Γram
F (resp. Γram

F ′ ) be the ramification subgraph of the tower graph ΓF of F
(resp. ΓF ′ of F ′), let Γ be the disjoint union of all the finitely many finite weakly connected
components Γ1, . . . ,Γr of Γram

F which only have circles with balanced ramification indices.
Finally, define the composite field

ki :=
∏

Q∈PF (V (Γi))
Fqdeg(Q) .
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for all i = 1, . . . , r which is equal to the finite field Fqli for the natural number

li := lcm
Q∈PF (V (Γi))

deg(Q).

if the set {deg(Q) : Q ∈ PF (V (Γi))} is finite. Then the following hold:

(i) The constant field extension F · Γ is also the disjoint union of all the finitely many
finite weakly connected components of Γram

F ′ which only contain circles with balanced
ramification indices.

(ii) We have the estimate

ρ(F ′) ≥ lim
n→∞

N(F ′
n, V (F · Γ))
dn

=
r∑
i=1

lim
n→∞

N(F ′
n, V (F · Γi))
dn

.

Moreover, if F or Γram
F is finite, then the estimate is even an identity.

(iii) If F is not an extension field of ki, then we have the identity

lim
n→∞

N(F ′
n, V (F · Γi))
dn

= 0

(iv) Suppose that Γi only has tame paths. Then the set {deg(Q) : Q ∈ PF (V (Γi))} is
finite and, hence, li is a natural number such that

0 < lim
n→∞

N(F ′
n, V (F · Γi))
dn

= lim
n→∞

N(Fn, V (Fq · Γi))
dn

if F/Fqli

and

0 = lim
n→∞

N(F ′
n, V (F · Γi))
dn

< lim
n→∞

N(Fn, V (Fq · Γi))
dn

else.

In particular, we have the estimate ρ(F ′) > 0 if F/Fqli .

Proof. For (i): First, we will show that all finite weakly connected components Γ′ of Γram
F ′

which only contain circles with balanced ramification indices are already subgraphs of F·Γ:
Let Γ′ be such a finite weakly component of Γram

F ′ . Then we consider its image graph

πΓF′/ΓF (Γ′) which is a finite weakly connected connected component of Γram
F (336)

because of of Lemma 121 and because πΓF′/ΓF restricts to a morphism Γram
F ′ → Γram

F by
Lemma 124. Moreover, its preimage graph π−1

ΓF′/ΓF
(πΓF′/ΓF (Γ′)) is again a subgraph of

π−1
ΓF′/ΓF

(Γram
F ) = F ·Γram

F = Γram
F ′ where the second equality holds again by Lemma 124. In

particular, because Γ′ is a subgraph of π−1
ΓF′/ΓF

(πΓF′/ΓF (Γ′)) by Lemma 70(ii) and because
it is even a weakly connected component of Γram

F ′ ,

Γ′ must be one of the weakly connected components
of π−1

ΓF′/ΓF
(πΓF′/ΓF (Γ′)) in Lemma 120(ii). (337)

Consequently, the combination of (336), of (337), of the assertions that Γ′ is finite
and only contains circles with balanced ramification indices and of the ’moreover’-part in
Lemma 120(v) yields that πΓF′/ΓF (Γ′) is also a finite weakly connected component of Γram

F
which only has circles with balanced ramification indices. Hence, πΓF′/ΓF (Γ′) must be one
of the Γi.
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Finally, because Γ′ is a subgraph of π−1
ΓF′/ΓF

(πΓF′/ΓF (Γ′)) = π−1
ΓF′/ΓF

(Γi) and because
Γi is a subgraph of Γ, we conclude the desired statement, namely that Γ′ is also a subgraph
of π−1

ΓF′/ΓF
(Γ) = F · Γ.

Next, we will show that F ·Γ is a disjoint union of finitely many finite weakly connected
components of Γram

F ′ which only contain circles with balanced ramification indices: Let
j ∈ {1, . . . , r}. Because of the definition of the assertion that Γj is a finite weakly connected
component of Γram

F in Definition 66(v), because Γram
F is a forward and backward complete

subgraph of ΓF and because the property of being a forward (resp. backward) complete
subgraph is clearly transitive, we notice that Γj is also a finite weakly connected component
of ΓF . Therefore, the combination of this conclusion, of the assertion that Γj only contains
circles with balanced ramification indices and of the items (i), (iii) and (v) in Lemma 120
provides that F ·Γj is a disjoint union of finitely many finite weakly connected components
of ΓF ′ which only contain circles with balanced ramification indices.

Moreover, these components are also weakly connected components of Γram
F ′ because

F · Γj is a subgraph of F · Γram
F = Γram

F ′ where the equality holds by Lemma 124.
Finally, because of this last conclusion and because Lemma 111 supplies the equalities

F · Γ = π−1
ΓF′/ΓF

(Γ) = F ·
r∐
i=1

Γi =
r∐
i=1

F · Γi,

we conclude that F · Γ is indeed a disjoint union of finitely many finite weakly connected
components of Γram

F ′ which only contain circles with balanced ramification indices.

For the ’main’-part in (ii): We immediately obtain the ’main’-part in (ii) by the equal-
ities and estimates

ρ(F ′) = lim
n→∞

N(F ′
n, V (Γram

F ′ ))
dn

≥ lim
n→∞

N(F ′
n, V (F · Γ))
dn

=
r∑
i=1

lim
n→∞

N(F ′
n, V (F · Γi))
dn

(338)

where the first equality holds by the definition of ρ(F ′) in Definition 179, the estimate
holds because of the assertion that Γ is a subgraph Γram

F and because F · Γ is a subgraph
of F ·Γram

F = Γram
F ′ by Lemma 182(i) and the last equality holds because F ·Γ is the disjoint

union of the F · Γi and because of the definition of N(F ′
n, ·) in (5).

For the ’moreover’-part in (ii): Suppose that F or Γram
F is finite. First of all, we notice

that because F · Γ is a union of weakly connected components of Γram
F ′ by Lemma 182(i)

and because unions of forward and backward complete subgraphs are again forward and
backward complete by the last remark in Definition 66(iii), we get that

F · Γ is a forward and backward complete subgraph of Γram
F ′ . (339)

Now, let Γrat
F ′ be the rational subgraph of ΓF ′ which is finite if F is finite. Thus,

in any case, the intersection subgraph Γram
F ′ ∩ Γrat

F ′ is finite. Moreover, let Γ′
1, . . . ,Γ′

t be
the finitely many finite weakly connected components of Γram

F ′ ∩ Γrat
F ′ . Since F · Γ is a

forward and backward complete subgraph of Γram
F ′ by (339), it immediately follows from

the definitions of forward and backward complete subgraphs in Definition 66(iii) and of
intersection subgraphs in Definition 66(ii) that F ·Γ∩Γrat

F ′ is also a forward and backward
complete subgraph of Γram

F ′ ∩ Γrat
F ′ .

Therefore, the complementary subgraph (Γram
F ′ ∩ Γrat

F ′ )\(F · Γ ∩ Γrat
F ′ ) is a well defined

forward and backward complete subgraph of Γram
F ′ ∩Γrat

F ′ by Definition 66(iv). In particular,
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Lemma 68(iii) implies that (Γram
F ′ ∩ Γrat

F ′ )\(F · Γ ∩ Γrat
F ′ ) is a disjoint union of the weakly

connected components of Γram
F ′ ∩ Γrat

F ′ which are subgraphs of (Γram
F ′ ∩ Γrat

F ′ )\(F · Γ ∩ Γrat
F ′ )

and, hence, disjoint from F · Γ ∩ Γrat
F ′ .

Let Γ′
s+1, . . . ,Γ′

t with s ≤ t be these components. Then, for all j = s+ 1, . . . , t, there
are two possible cases: If Γ′

j is a already a finite weakly connected component of Γram
F ′ ,

then it cannot only have circles with balanced ramification indices because it otherwise
would be a subgraph of F · Γ by Lemma 182(i). Else, if Γ′

j is not a weakly connected
component of Γram

F ′ , then it is also not a weakly connected component of ΓF ′ . Thus, in
any case and for all i = s+ 1, . . . , t, we derive the equality

lim
n→∞

N [F ′
n,Γ′

i]
dn

= 0 (340)

from the ’moreover’-part in Lemma 86 and Lemma 177(i) in the first case and from Lemma
176 in the second case.

Second to last, we obtain the equalities and estimates

lim
n→∞

N(F ′
n, V (Γram

F ′ ))
dn

= lim
n→∞

N [F ′
n,Γram

F ′ ]
dn

= lim
n→∞

N [F ′
n,Γrat

F ′ ∩ Γram
F ′ ]

dn
=

t∑
j=1

lim
n→∞

N [F ′
n,Γ′

i]
dn

=
s∑
j=1

lim
n→∞

N [F ′
n,Γ′

i]
dn

= lim
n→∞

N [F ′
n,
∐s
j=1 Γ′

i]
dn

≤ lim
n→∞

N [F ′
n,F · Γ])
dn

= lim
n→∞

N(F ′
n, V (F · Γ))
dn

≤ lim
n→∞

N(F ′
n, V (Γram

F ′ ))
dn

(341)

where the equalities and estimates hold by the following reasonings: The first equality
holds because Γram

F ′ is a forward complete subgraph of ΓF ′ by its definition in Definition
88(iii) and because of the ’moreover’-part in Lemma 86.

The second equality holds because of the definition of N [F ′
n, ·] = #P(1)

F ′
n
(σΓF′ (W (·, n)))

in Definition 85, because Lemma 80 implies that any rational place in F ′
n must lie above

a rational path in ΓF and because Γrat
F ′ contains all these rational paths in ΓF by its

definition in Definition 88(i).
The third (resp. fifth) equality again holds because of the definition of N [F ′

n, ·] =
#P(1)

F ′
n
(σΓF′ (W (·, n))) and because Γrat

F ′ ∩ Γram
F ′ is the disjoint union of the Γ′

i by their
choice.

The fourth equality holds by the equality in (340). The first estimate holds because
the Γ′

1, . . .Γ′
s are chosen to be disjoint subgraphs of F · Γ.

For the sixth equality, we first notice that because of the conclusion in (339), because
Γram

F ′ is a forward complete subgraph of ΓF ′ by its definition in Definition 88(iii) and
because being a forward complete subgraph is transitive, F · Γ is even a forward complete
subgraph of ΓF ′ . Hence, we derive the sixth equality from this conclusion and from the
’moreover’-part in Lemma 86. The last estimate holds because F ·Γ is a subgraph of Γram

F ′

by (339).
Consequently, both estimates in (341) must actually be equalities. But the last es-

timate in (341) is exactly the only estimate in (338) and, hence, we obain the desired
identity in the ’moreover’-part in (ii).

For (iii) and (iv): Because Γram
F is a forward and backward complete subgraph of

ΓF by its definition in Definition 88(iii) and because the property of being a forward
(resp. backward) complete subgraph is clearly transitive, we conclude that Γi is also a
finite weakly connected component of ΓF which only has circles with balanced ramification
indices. Thus, Theorem 177(ii) provides the desired identity in (iii) and Lemma 177(iii)
provides the ’main’-part in (iv).
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Moreover, the ’in particular’-part immediately follows from the ’main’-part and from
Lemma 182(ii).

Characterization of recursive towers with respect to Conjecture 1(ii). Up to
finite constant field extensions and up to some very specific wild recursive towers for
which the CNT-tower in Examples 8(v) is the only example known to the author, the
following Corollary 183 characterizes the recursive towers over finite fields of balanced
degree with respect to Conjecture 1(ii): A recursive tower F satisfies Conjecture 1(ii),
i.e. ν(F) = Split(F/F0), if and only if every finite weakly connected component Γ of the
ramification subgraph Γram

F contains circles with unbalanced ramification indices.
Moreover, Corollary 183 also provides more precise information about the finite con-

stant field extensions.
Also note that Theorem 155 supplies that the ramification subgraph of a recursive

tower over a finite field has at most one finite balanced weakly connected component.
Hence, in the assumptions of Corollary 183, we could even assume s ≤ r ≤ 1.

Corollary 183. Let F = (Fν)ν be a recursive tower over a finite field Fq of balanced
degree d and let F ′ := Fql ·F be the constant field extension of F for some finite extension
Fql/Fq.

Let Γram
F be the ramification subgraph of the tower graph ΓF of F , let r ∈ N0 be the

number of all the finitely many finite weakly connected components Γ1, . . . ,Γr of Γram
F which

only have circles with balanced ramification indices. Moreover, after maybe reordering
Γ1, . . . ,Γr, suppose that Γ1, . . . ,Γs are exactly the Γi which only have tame paths.

Finally, define the composite field

ki :=
∏

Q∈PF (V (Γi))
Fqdeg(Q) .

for all i = 1, . . . , r which is equal to the finite field Fqli for the natural number

li := lcm
Q∈PF (V (Γi))

deg(Q).

if the set {deg(Q) : Q ∈ PF (V (Γi))} is finite.
Then Theorem 182(iv) implies that, for all i = 1, . . . , s, the sets {deg(Q) : Q ∈

PF (V (Γi))} are finite and, hence, li are a natural numbers. Furthermore, the following
hold:

(i) If r = 0, i.e. if there is no finite weakly connected component of Γram
F which only has

circles with balanced ramification indices, then we have the identities

ρ(F ′) = 0 and #V (Γsplit
F ′ ) = # Split(F ′/F ′

0) = ν(F ′)

(ii) If, for all i = 1, . . . , r, the finite field Fql is not an extension field of ki, then we have
the identities

ρ(F ′) = 0 and #V (Γsplit
F ′ ) = # Split(F ′/F ′

0) = ν(F ′)

(iii) If, for some i = 1, . . . , s, the finite field Fql is an extension field of ki = Fqli , i.e. li
divides l, then we have the estimates

ρ(F ′) > 0 and #V (Γsplit
F ′ ) ≤ # Split(F/F0) < ν(F ′) ≤ #V (Γsplit

F ′ ) + #V (Γram
F ′ )

232



Proof of Corollary 183. For (i) and (ii): The first desired identiy ρ(F ′) = 0 in (i) (resp. (ii))
immediately follows from the ’moreover’-part in Theorem 182(ii) (resp. and from Theorem
182(iv)).

The second and third desired identities follow because the already proven first desired
identity ρ(F ′) = 0 supplies that the first two estimates in Proposition 180 must actually
be our desired identities.

For (iii): Suppose that, for some i = 1, . . . , s, the finite field Fql is an extension field
of ki. Then the first desired estimate ρ(F ′) > 0 in (iii) immediately follows from the ’in
particular’-part in Theorem 182(iv).

The second desired estimate #V (Γsplit
F ′ ) < ν(F ′) in (iii) follows from the first desired

estimate ρ(F ′) > 0 and from the identity ν(F ′) = #V (Γsplit
F ′ ) + ρ(F ′) in Proposition

180. Furthermore, the ’moreover’-part in Proposition 180 also supplies the estimates
#V (Γsplit

F ′ ) ≤ # Split(F/F0) < ν(F ′).
Finally, the last desired ν(F ′) ≤ #V (Γsplit

F ′ ) + #V (Γram
F ′ ) in (iii) also holds by Proposi-

tion 180.

The almost complete answer to Conjecture 1(iii). Finally, in the following Corol-
lary 184, we will present our almost complete answer to Conjecture 1(iii). Here, Corollary
184 will be the first essential case of Corollary 183 and will provide the following statement
for recursive towers F over finite fields of balanced degree: If every finite weakly connected
component of the the ramification subgraph of F contains circles with unbalanced rami-
fication indices, then F satisfies Conjecture 1(ii), i.e. ν(F) = Split(F/F0).

The author is only aware of the wild CNT-tower in Examples 8(v) which does not
satisfy the ’if’-condition for some truncation Trun≥m(F). In fact, in Example 181 , we
even showed that the CNT-tower is a counterexample to Conjecture 1(iv), i.e. does not
satisfy Conjecture 1(ii) for all its truncations.

All other recursive towers F known to the author satisfy the ’if’-condition for some
truncation Trun≥m(F) and thus also Conjecture 1(iv), which is ν(F/Fm) = Split(F/Fm)
for some m ∈ N0. As Conjecture 1(iv) implies the weaker Conjecture 1(iii), we will call
Corollary 184 our almost complete answer to Conjecture 1(iii).

Then, in Corollary 185, we will also present the second essential case of Corollary 183
for tame recursive towers F : If the ramification subgraph of F has some weakly connected
component which only contains circles with balanced ramification indices, then F does
not satisfy Conjecture 1(ii), i.e. ν(F) > Split(F/F0).

Corollary 184 (Almost Complete Answer to Conjecture 1(iii)). Let F = (Fν)ν be a
recursive tower over a finite field Fq of balanced degree d and let F ′ := Fql · F be the
constant field extension of F for some finite extension Fql/Fq.

Moreover, let Γram
F be the ramification subgraph of the tower graph ΓF of F and suppose

that all finite weakly connected components of Γram
F have circles with unbalanced ramifica-

tion indices. Then we have the identities

ρ(F ′) = 0 and ν(F ′) = # Split(F ′/F ′
0) = #V (Γsplit

F ′ ).

In particular, this holds for l = 1, i.e. F ′ = F .

Proof. This is just a reformulation of Corollary 183(i).

Corollary 185. Let F = (Fν)ν be a tame recursive tower over a finite field Fq of balanced
degree d and let F ′ := Fql ·F be the constant field extension of F for some finite extension
Fql/Fq.
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Moreover, let Γram
F be the ramification subgraph of the tower graph ΓF of F , suppose

that Γram
F has some finite weakly connected component which only has circles with balanced

ramification indices. Then there is some natural number l1 such that we have the estimates

ρ(F ′) > 0 and #V (Γsplit
F ′ ) ≤ # Split(F/F0) < ν(F ′) ≤ #V (Γsplit

F ′ ) + #V (Γram
F ′ )

if l1 divides l.
Proof. By the assertion that F is tame, we especially have that all paths in ΓF are tame.
Moreover, by this and by the assertion that Γram

F has some finite weakly connected com-
ponent which only has circles with balanced ramification indices, we obtain r = s ≥ 1 in
Corollary 183.

Finally, we can choose l1 as the natural number l1 in this corollary and derive the
desired statement from Corollary 183(iii).

Examples 186. Up to the CNT-tower in Examples 8(v), the author is not aware of any
recursive towers in the literature, to which Corollary 184 and Corollary 185 cannot be
applied for some truncation. In particular, this holds for all examples in this thesis (see
Examples 8, Figure 4.1 and Chapter B).

For instance, Corollary 184 supplies ρ(FMW,2) = 0 (see Figure B.1) and, thus, the
MW -tower FMW,2 satisfies Conjecture 1(iv).

On the other hand, Corollary 185 supplies ρ(F9l · FMW,11) > 0 for some l ∈ N (see
Figure B.7). More concretely, we can choose l = 1.

Furthermore, it can easily be shown that every finite weakly connected component of the
ramification subgraphs of Trun≥1(FMW,11) contains circles with unbalanced ramification
indices. Thus, Corollary 184 provides that Trun≥1(FMW,11) satisfies Conjecture 1(ii) and,
because of that, FMW,11 satisfies Conjecture 1(iv).

Justification of the term ’almost complete’ answer to Conjecture 1(iii) and the
last two missing pieces for a complete answer. In the following, we will give a
justification for the term ’almost complete’ answer to Conjecture 1(iii):

First, the only recursive tower known to the author for which Corollary 184 is not ap-
plicable is the wild CNT-tower in Examples 8(v). Thus, in that sense, our almost complete
answer works on most recursive towers in the literature and provides that Conjecture 1(iv)
is true for all these examples.

Second, although Conjecture 1(ii) is already disproven (see Example 129), most of the
recursive towers in the literature satisfy this conjecture. Moreover, as we pointed out
earlier, up to finite constant field extensions and up to some very specific wild recursive
towers, we can interpret Corollary 183 as an almost complete characterization of the recur-
sive towers which satisfy Conjecture 1(ii). Only some wild recursive towers are not covered
by this characterization, namely the ones which have finite weakly connected components
Γ of the ramification subgraphs such that all circles in Γ have balanced ramification indices.

However, these missing wild recursive towers are rare special cases. This is also partly
supported by the observation that the CNT-tower in Examples 8(v) is apparently the
only example of such a wild recursive tower in the literature. Here we only write ’partly
supported’ because there seems to be a bias in the search algorithms and constructions
which disfavor the missing wild recursive towers. The only exceptions of which the author
is aware are [BGS06] and [ST15]. In [BGS06], the authors classified all recursive towers of
so called Kummer-type and Artin-Schreier-type and, in [ST15], the authors classified all
potentially good recursive towers of degree two over F2 without any further restrictions.

Consequently, these rare wild recursive towers are the first missing piece of our only
almost complete answer to Conjecture 1(iii). The second missing piece is a final answer
to the question whether Conjecture 1(iii) is true for all recursive towers or only to most
of them as we established via the main result in Corollary 184.
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Is Conjecture 1(iii) true? In Corollary 184, we gave an almost complete answer to
Conjecture 1(iii). This Conjecture 1(iii) was proposed in [Sti10, p. 5, Problem 1] (2010)
for the first time and, in [Bee22, p. 10, p. 24] (2022), it was confirmed that it is still an
open conjecture. All other conjectures in Conjecture 1(i)-(iv) are disproven.

Now, although the almost complete answer in Corollary 184 yields that Conjecture 1(iii)
is true for most recursive towers, we will cast some doubts on the validity of Conjec-
ture 1(iii) in the following.

First of all, as we mentioned in the paragraph above, there seems to be a bias in the
computational searches and constructions of good recursive towers in the literature and
this bias automatically rejects all possible counterexamples to Conjecture 1(iii). Indeed,
by the first estimate in Lemma 180, the easiest way to ensure a positive splitting rate
ν(F) ≥ # Split(F/F0) is to have a non-empty splitting locus Split(F/F0). Therefore,
all computational searches (e.g. in [MW05], [Wul02], [Lö07]) are looking for non-empty
splitting loci and all constructions (e.g. [BR20], [BBGS15] [Sti08]) are containing non-
empty splitting loci.

However, there are two exceptions of this possible bias known to the author, namely
[BGS06] and [ST15]. On the one hand, in [BGS06], the authors classified all recursive
towers of Kummer-type and Artin-Schreier-type and from there the CNT-tower FCNT,s
also arose. We showed in Example 181 that all truncations of this CNT-tower have a
ramification subgraph with a finite balanced weakly connected component and that it
therefore is a counterexample to Conjecture 1(iv).

On the other hand, in [ST15], the authors classified all potentially good recursive
towers of degree two over F2. More concretely, in [ST15, p. 680, Theorem 2.14], they are
finally left with only four remaining potentially good recursive towers, namely the four
ST-towers in Examples 8(iv). Despite the fact that we will show that the splitting rates
of these towers vanish in Corollary 202, the ramification subgraph of FST,4 depicted in
Figure B.24 is still remarkably different from all other examples in the literature. It is
the only example of a ramification subgraph with a finite weakly connected component Γ
which is also strongly connected but has circles with unbalanced ramification indices.

Consequently, these two examples FCNT,s and FST,4 could indicate that there are
many more different types of ramification subgraphs which do not occur in the literature
because of some possible bias in the search algorithms and constructions.

A sufficient criterion to disprove Conjecture 1(iii). In the following Lemma 187,
we will formulate a sufficient criterion for a tame recursive tower to be a counterexample
to Conjecture 1(iii).

Note that Theorem 155 implies that the tower graph of a recursive tower over a finite
field has at most one finite balanced weakly connected component. Hence, in Lemma
187, the existence of a finite weakly connected component of ΓF which satisfies the second
property (ii) already implies that all other finite weakly connected components must satisfy
the first property (i).

Lemma 187. Let F = (Fν)ν be a tame recursive tower of balanced degree d over a finite
field k. Suppose that every finite weakly connected component Γ of ΓF satisfies one of the
following two properties:

(i) Γ has circles with unbalanced ramification indices.

(ii) All circles in Γ have balanced ramification indices and, for all vertices P in Γ and
for all m ∈ N0, there is some prime q and a path P = [Pi,j ]j−i≤1 of length n ≥
m + 1 in Γ which starts at P = P0,0 such that vq(e(Pn−1,n|Pn−1,n−1)) ≥ 1 and
vq(e(Pi−1,i|σ(Pi,i))) = 0 for all i = 1, . . . , n.
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If there is at least one finite weakly connected component Γ of ΓF which satisfies the second
property (ii), then there is some finite constant field extension F ′ = k′ · F = (F ′

ν)ν which
disproves Conjecture 1(iii), i.e. which satisfies ν(F ′/F ′

m) > 0 and Split(F ′/F ′
m) = ∅ for

all m ∈ N0.

Proof. Suppose that Γ is a weakly connected component of ΓF which satisfies the second
property in (ii). Then Theorem 177(iii) provides some finite extension k′/k such that
ν(F ′) > 0. On the one hand, by Lemma 120(iii) and Lemma 121, we notice that the
finite weakly connected components of ΓF ′ are the weakly connected components of the
k′-constant field extensions of the finite weakly connected components of ΓF . On the other
hand, if Γ is a finite weakly connected component as in (i) (resp. in (ii)), then, by Lemma
120(v) (resp. the Path Lifting Lemma 119), any finite weakly connected component of
k′ · Γ also satisfies (i) (resp. (ii)). Thus, w.l.o.g. we may assume k = k′ and F = F ′.

Next, we have to show that the splitting locus Split(F/Fm) is empty for all m ∈ N0.
For that, let m ∈ N0 and let F≥m := Trun≥m(F) = (Fm+ν)ν . Moreover, let Γ1, . . . ,Γs be
the finite weakly connected components of ΓF which are also subgraphs of Γrat

F , suppose
that Γ1, . . . ,Γr satisfy (i), suppose thatΓr+1, . . . ,Γs satisfy (ii) and let Γ := Γrat

F \
∐s
i=1 Γi.

Then we have

Split(F/Fm) = Split(F≥m/Fm) ⊆ V (Γrat
F≥m

) ⊆ PFm(V (Γrat
F ))

⊆ PFm(V (Γ)) ⊔
s∐
i=1

PFm(V (Γi)). (342)

First, we conclude

#(Split(F/Fm) ∩ PFm(V (Γ))) =
∑

P∈Split(F/Fm)∩PFm (V (Γ))
lim
ν→∞

dν−m

dν−m

≤
∑

P∈P(1)
Fm

(V (Γ))

lim
ν→∞

N(Fν , P )
dν−m = lim

ν→∞
N(Fν , V (Γ))

dν−m

= lim
ν→∞

N [Fn,Γ]
dν−m = 0 (343)

where the equalities and estimates hold by the following reasonings: The first equal-
ity is clear. The first estimate holds since there lie dν rational places in PFν over P ∈
Split(F/Fm) and because we added further nonnegative summands. The second equality
holds by the definition of N(Fν , ·) in (5). The second to last equality holds because, by
the definition of Γ, it already contains all rational path which start in Γ and, thus, for all
Q ∈ P(1)

Fν
(V (Γ)), we have Q ∈ P(1)

Fν
[Γ]. For the last equality, we first notice that, by the

choice of Γ and Γi for all i = 1, . . . , s, all the weakly connected components G of Γ are
finite but none of them is a weakly connected component of ΓF . Thus, the first equality
follows from applying Proposition 176 to all these weakly connected components G of Γ.

Second, for all i = 1, . . . , r, we obtain

#(Split(F/Fm) ∩ PFm(V (Γi))) = #(Split(F/Fm) ∩ V (Trun≥m(Γi)))

≤ lim
ν→∞

N(Fν , V (Trun≥m(Γi)))
dν−m = 0 (344)

where the equalities and estimate hold by the following reasonings: The first equality
holds because combining that Γi is a weakly connected component of ΓF and Lemma
130(ii) yields the equality PFm(V (Γi)) = V (Trun≥m(Γi)). The estimate holds by the
same reasonings as the first two equalities and first estimate in (343). The last equality
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holds because, by the choice of Γi for all i = 1, . . . , r, it contains circles with unbalanced
ramification indices and, thus, we can apply Lemma 177(i).

Third, let i ∈ {r + 1, . . . , s}, let P ′ ∈ PFm(V (Γi)) = V (Trun≥m(Γ)), let P := P ′ ∩ F0
and, for P ∈ V (Γ), choose q, n ≥ m + 1 and P as in (ii). Then Lemma 19 supplies
some place Q ∈ PFn(σΓF (P)) ∩ PFn(P ′). But, by the choice of q and P, we see that
iteratively applying Abhyankar’s Lemma in (10) to the extensions of places in Pyr(Q)
yields vq(e(Q|Q ∩ Fn−1)) ≥ 1. In particular, this means that Q/P ′ is ramified in Fn/Fm
and, thus, P ′ /∈ Split(F/Fm).

All together, by this and by the equalities in (342), (343) and (344), we established
that the splitting locus Split(F/Fm) is indeed empty.

A finite weakly connected component which satisfies the sufficient criterion.
With Lemma 187, we now have a sufficient criterion to disprove Conjecture 1(iii). Thus,
our next task is to construct or find a tame recursive tower which satisfies the two require-
ments in Lemma 187, i.e. every finite weakly connected component of the tower graph has
to satisfy (i) or (ii) and at least one of these components has to satisfy (ii).

Let us analyze these two requirements in more depth and, for that, let Γ1, . . . ,Γr be
the finite weakly connected components of the tame recursive tower F . In the generic case
Γi has circles with unbalanced ramification indices, i.e. Γ satisfies (i). Basically, the first
requirement ensures that the splitting locus is empty and the second requirement ensures
that the splitting rate is still positive. So, our final question becomes: Is there a tame
recursive tower F of balanced degree d which has a finite weakly connected component Γ
satisfying (ii)?

For that, let us consider the following {1, . . . d}2-weighted directed graph Γ0 in Figure
6.1 where, if not labeled otherwise, the weights are equal to (1, 1). Here, e1, e2 ∈ {2, . . . d}

Figure 6.1: A directed graph for a counterexample to Conjecture 1(iii)

are coprime, Pi is a path from Pi,1 to P̂i,0 without repetitions for all i = {1, 2}, Pi,j is
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a path from P̂i,1 to Pj,0 without repetitions for all {i, j} = {1, 2} and Ci,j is a circle of
positive length which starts at one of the vertices in Pi,j for all {i, j} = {1, 2}.

If we interpret the weights as the ramification indices in F1/F0 and F1/σ(F0), respec-
tively, this directed graph satisfies the condition in (ii).

Furthermore, any finite weakly connected component Γ of a recursive tower F of
balanced degree d also has to satisfy the identities in Lemma 87. But there is no problem
with just filling up Γ0 with additional unramified edges to the second {1, . . . d}2-weighted
directed graph Γ in Figure 6.1 until the identities in Lemma 87 are satisfied: Here, Γi
contains the path from Pi,1, Γ1,2 contains the paths Pi,j and the circles Ci,j for all {i, j} =
{1, 2} and Γ is a weakly connected component of ΓF .

Notice, that there is even a lot of flexibility in this ’filling up’-process, e.g. Γ can be
arbitrarily large and Γ1, Γ2 and Γ1,2 are far from being unique.

Consequently, if we can find a tame recursive tower of degree d such that Γ is a finite
weakly connected component of ΓF and all other finite weakly connected components of
ΓF also satisfy (i) or (ii) in Lemma 187, then F is a counterexample to Conjecture 1(iii).

Finally, we have to construct/find a tame recursive tower which has a subgraph Γ as
in Figure 6.1. But we stop here. However, in [HP16], the authors proposed constructing
recursive towers from prescribed subgraphs Γ of the tower graph and, without going into
details, such an approach looks promising: Start with a parametrized defining polynomial
f , reduce the parameters via coordinate transformations, deduce polynomial equations for
the parametrized coefficients of f from the edges in Γ, solve the polynomial equations via
Gröbner-basis methods.

6.3.2 Positive Limits Are Stable under Finite Constant Field Extensions

Summary of the results of this subsection. In [Bee04, p. 238, Corollary 5.6] and in
[HP12, p. 27, Theorem 24], it was shown that the limit of a good recursive tower cannot
increase after a finite constant field extension if some technical conditions are satisfied.

As the third major result of this thesis, we will show in Theorem 188 that these
technical conditions can even be dropped. Consequently, the limit of a good recursive
tower can never increase after a finite constant field extension.

From this result, we will derive in Corollary 207 that the CNT-towers FCNT,s in
Examples 8(v) with even s have the precise limit λ(FCNT,s) = 1. This is an immediate
consequence of Theorem 188 and [CNT18, p. 19, Corollary 4.13, Corollary 4.14]. There
λ(FCNT,2) = 1 and λ(FCNT,s) ≥ 1 were shown for all even s.

Limits of good recursive towers are stable under finite constant field extensions.
As the asymptotic genus γ(F) is stable under constant field extensions anyways, the only
critical value for the limit λ(F) = ν(F)/γ(F) is the splitting rate ν(F). The following
Theorem 188 will basically be a combination of the first two major results. First, the main
result will provide that the splitting rate can only increase if there is a finite balanced
weakly connected component which only has rational places lying above it. Then the first
major result will supply that there is at most one such finite balanced weakly connected
component. Hence, it will come out that the limit can only increase once after a finite
constant field extension, namely from zero to non-zero. But as good recursive towers
already have positive splitting rates, this will ensure that their limits cannot increase after
finite constant field extensions at all.

Theorem 188. Let F be a good recursive tower over a finite field k of balanced degree
and let F ′ = k′ · F be a finite constant field extensions of F . Then we have

ν(F ′) = ν(F), γ(F ′) = γ(F), λ(F ′) = λ(F).
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Proof. Let (Fν)ν := F and let (F ′
ν)ν := F ′. First, the second desired identity γ(F ′) = γ(F)

immediately follows from the equalities

γ(F) = lim
ν→∞

g(Fν)
[Fν : F0] = lim

ν→∞
g(F ′

ν)
[F ′
ν : F ′

0] = γ(F ′)

where the first and last equalities hold by the definition of γ(·) in Definition 2(iii) and the
second equality holds by Lemma 21(i).

Second, the third desired identity λ(F ′) = λ(F) immediately follows from the first two
desired identities and the definition of λ(·) = ν(·)/γ(·) in Definition 2(iii).

Third, we will show the first desired identity ν(F ′) = ν(F). For that, let Γ1, . . . ,Γr
be the finite weakly connected components of the ramification subgraph Γram

F which only
contain circles with balanced ramification indices and let Γ0 be the splitting subgraph
Γsplit

F of ΓF . Then we have the estimate and equalities

0 < ν(F) = #V (Γsplit
F ) + ρ(F) = #V (Γsplit

F ) +
r∑
i=1

lim
ν→∞

N(Fν , V (Γi))
dν

=
r∑
i=0

lim
ν→∞

N(Fν , V (Γi))
dν

(345)

where the estimate holds because of the assumption that F is a good tower, the first
equality holds by Proposition 180, the second equality holds because k is a finite field and
because we can therefore apply the ’moreover’-part of Theorem 182(ii) for F = k and the
last equality holds by the choice of the Γ0 = Γsplit

F .
Consequently, by (345), there must be at least one Γ in {Γ0, . . . ,Γr} such that

0 < lim
ν→∞

N(Fν , V (Γ))
dν

.

Moreover, Theorem 155 provides that there is at most one finite weakly connected com-
ponent of ΓF which only contains circles with balanced ramification indices. But this
means

{Γ} = {Γ0, . . . ,Γr}. (346)

Next, from the estimate in (346) and from applying the contraposition of Theorem
182(iii) for F = k, we conclude that all places in PFn(V (Γ)) must be rational for all
n ∈ N0. In particular, since Γ is a weakly connected component and since the ’moreover’-
part of Lemma 86 therefore implies the equality PFn(V (Γ)) = PFn [Γ], all places in PFn [Γ]
are rational. Thus, Lemma 114(iv) provides the equality

N(Fn, V (Γ)) = N(F ′
n, V (k′ · Γ)) (347)

for all n ∈ N0.
Finally, Theorem 182(i) supplies that k′ · Γ is the disjoint union of all finite weakly

connected components of Γsplit
F which only contain circles with balanced ramification in-

dices. But applying Theorem 155 to F ′ yields that k′ · Γ must already be the only finite
weakly connected component of ΓF ′ which only contains circles with balanced ramification
indices. Hence, we obtain the desired equality ν(F) = ν(F ′) by the equalities

ν(F) = lim
ν→∞

N(Fν , V (Γ))
dν

= lim
ν→∞

N(F ′
ν , V (k′ · Γ))
dν

= ν(F ′)

where the first equality holds by combining (345) and (346), the second equality holds by
the equality in (347) and the last equality holds by applying the same reasoning from the
first equality to F ′ and its only finite balanced weakly connected component k′ · Γ.

239



6.3.3 Determining Precise Limits

Summary of the results of this subsection. In this subsection, we will prove the
fourth major result of this thesis, which is Corollary 196 and Corollary 200. These will
basically be sharp versions of the criterion in Theorem 4 for recursive towers, i.e. they
will even yield precise limits for recursive towers and not only lower bounds. Here, Corol-
lary 196 handles tame recursive towers and Corollary 200 handles wild recursive towers.

Moreover, these corollaries will work on all α-weakly ramified (see Definition 199)
recursive towers F for which the finite ramification subgraph Γram

F only has unbalanced
weakly connected components. The author is only aware of one recursive tower to which
the corollaries are not applicable for some truncation, namely the CNT-tower in Exam-
ples 8(v). In particular, all limits in Figure 4.1 except for fCNT can be obtained from
applying the corollaries. In the next Section 6.4.1, we will demonstrate how Corollary 196
and Corollary 200 can be applied to determine precise limits for some important recursive
towers in the literature.

In this subsection, we will also make preparation for Chapter 8. There we will compute
genus formulas for tame recursive towers.

The significance of determining precise limits. First, Corollary 195 and Corol-
lary 200 settle that recursive towers which have no finite balanced weakly connected
component are asymptotically bad. For instance, because of that, it will come out in
Corollary 202 that the four ST-towers are bad and that, consequently, there are no good
polynomial-recursive towers of degree two over F2. More generally, for classifying good
recursive towers with certain parameters, being able to decide whether a tower is good or
bad is crucial.

Second, if we know the precise limit of a tower F over Fq and not only a lower bound,
we can be sure whether the tower is optimal or improves a lower bound for Ihara’s constant
A(q). For instance, in Corollary 203, Corollary 204 and Corollary 205, it will come out
that the lower bounds which were established in [BBGS15, p. 4, Theorem 1.2] for the limits
of the BBGS-towers, in [BGS05, p. 161, Main Theorem] for the limits of the BezGS-towers
and in [BR20, p. 2] for the limits of the BR-towers are already their precise limits.

For the BBGS-towers and BezGS, this will confirm that the lower bounds for Ihara’s
constant A(q) which were established in [BBGS15, p. 3, Theorem 1.1] and [BGS05, p. 174,
Corollary 3.4] cannot be improved further via these towers. This is of particular interest,
since the BezGS-towers provide the best known lower bounds for Ihara’s constant A(q)
for all cubic q and the BBGS-towers for all non prime q.

For the BR-towers, this will confirm that the BR-towers are not improving any lower
bounds for Ihara’s constant A(q).

Main idea for the sharp versions. The limit λ(F) = ν(F)/γ(F) consists of the split-
ting rate ν(F) and the asymptotic genus γ(F). On the one hand, with our almost complete
answer to Conjecture 1(iii) in Corollary 184, we already characterized the recursive towers
for which ν(F) = # Split(F/F0) holds. On the other hand, for determining the precise
value of γ(F), the main idea will be to show that the estimate in Theorem 4(ii) is even
an equality for the same recursive towers for which we already concluded the equality
ν(F) = # Split(F/F0).

Structure of this subsection. First, in Definition 189, we will formalize the error
which is introduced in the proof of the estimates for g(Fn) and γ(F) in Theorem 4(ii) and
prove some useful properties. Then, in Proposition 192, we will write down the precise
formulas for g(Fn) and γ(F).
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Second, in Corollary 195, we will prove the sharp version of Theorem 4 for tame
recursive towers.

Third, in Corollary 200, we will prove the sharp version of Theorem 4 for wild recursive
towers.

Formalizing the error. In Proposition 192, it will come out that the terms Dα(Fn, A)/2
and δα(F , A)/2 from the following Definition 189 are the errors of the estimates for g(Fn)
and γ(F) in the proof of Theorem 4(ii), respectively.

Definition 189. Let F = (Fν)ν be a tower. Then we define the map

1F0 : PF0 → R via P 7→ 1.

More generally, let α : PF0 → R be a map and let A be a finite subset of PF0. Then we
define

Dα(Fn, A) :=
∑

Q∈PFn (A)
(α(Q ∩ F0) · e(Q|Q ∩ F0)− d(Q|Q ∩ F0)) · deg(Q)

for all n ∈ N0 and if the sequence (Dα(Fν ,A)
[Fν :F0] )ν converges in R, we also define

δα(F , A) := lim
n→∞

Dα(Fn, A)
[Fn : F0] .

Lemma 190. Let F = (Fν)ν be a tower, let A1 and A2 be finite disjoint subsets of PF0

and let α : PF0 → R be a map. Then we have the identity

Dα(Fn, A1 ⊔A2) = Dα(Fn, A1) +Dα(Fn, A2)

for all n ∈ N0 and if the sequences (Dα(Fν ,Ai)
[Fν :F0] )ν converge in R for all i = 1, 2, then we also

have the identity

δα(F , A1 ⊔A2) = δα(F , A1) + δα(F , A2).

Proof. The first desired identity immediately follows because of the definition Dα(Fn, ·) in
Definition 189 and because the definition PF0(·) in (5) implies the equality PF0(A1⊔A2) =
PF0(A1) ⊔ PF0(A2).

The second desired identity follows from the definition δα(F , ·) in Definition 189 and
from the first already proven desired identity.

The errors are invariant under constant field extensions. In the following Defini-
tion/Lemma 191, we will show that the errors Dα(Fn, A)/2 and δα(F , A)/2 are invariant
under constant field extensions.

Definition/Lemma 191. Let F = (Fν)ν be a recursive tower over the field k of degree
d and let F ′ = k′ · F = (Fν)ν be the constant field extension of F for some algebraic
extension k′/k. Moreover, let α : PF0 → R be a map such that the sequence (Dα(Fν ,A)

[Fν :F0] )ν
converges in R. Then we define the extension map

k′ · α = α′ : PF ′
0
→ R via P ′ 7→ α(P ′ ∩ F0).

and have the identities

k′ · 1F0 = 1F ′
0
, Dα(Fn, A) = Dα′(F ′

n,PF ′
0
(A)), δα(F , A) = δα′(F ′,PF ′

0
(A))

for all finite subsets A of PF0 and all n ∈ N0.
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Proof. The first desired identity k′ · 1F0 = 1F ′
0

immediately follows from the definition of
k′ · 1F0 .

The second desired identity Dα(Fn, A) = Dα′(F ′
n,PF ′

0
(A)) follows for all n ∈ N0 from

the equalities

Dα(Fn, A) =
∑

Q∈PFn (A)
(α(Q ∩ F0) · e(Q|Q ∩ F0)− d(Q|Q ∩ F0)) · deg(Q)

=
∑

Q∈PFn (A)
(α(Q ∩ F0) · e(Q|Q ∩ F0)− d(Q|Q ∩ F0)) ·

∑
Q′∈PF ′

n
(Q)

deg(Q′)

=
∑

Q′∈PF ′
n

(PFn (A))
(α′(Q′ ∩ F ′

0) · e(Q′|Q′ ∩ F ′
0)− d(Q′|Q′ ∩ F ′

0)) · deg(Q′)

=
∑

Q′∈PF ′
n

(PF ′
0

(A))
(α′(Q′ ∩ F ′

0) · e(Q′|Q′ ∩ F ′
0)− d(Q′|Q′ ∩ F ′

0)) · deg(Q′)

= Dα′(F ′
n,PF ′

0
(A))

where the equalities holds by the following reasonings: The first and last equalities hold by
the definitions of Dα(Fn, A) and Dα′(F ′

n, PF ′
0
(A)) in Definition 189. The second equality

holds because [Sti08, p. 114, Theorem 3.6.3(c)] provides the equality∑Q′∈PF ′
n

(Q) deg(Q′) =
deg(Q). The third equality holds by the definition of α′ = k′ · α, by the independence
of the ramification indices and different exponents under constant field extensions. The
fourth equality holds because F ′

n/Fn/F0 and F ′
n/F

′
0/F0 are extensions of function fields.

Finally, the last desired identity δα(F , A) = δα′(F ′,PF ′
0
(A)) immediately follows from

the definitions of δα(F , A) and δα′(F ′,PF ′
0
(A)) in Definition 189 and from the second

already proven desired identity.

Precise formulas for the genera. The following Proposition 192 provides precise
formulas for g(Fn) and γ(F), i.e. it includes the errors Dα(Fn, A)/2 and δα(F , A)/2 from
the estimates in the proof of Theorem 4(ii).

Proposition 192. Let F = (Fν)ν be a tower. Moreover, let A be a finite subset of PF0

which contains Ram(F/F0) and let α : PF0 → R be a map. Then we have the identity

g(Fn) = 1
2

(
2 + [Fn : F0]

(
(2g(F0)− 2) +

∑
P∈A

α(P ) · deg(P )
)
−Dα(Fn, A)

)

Moreover, if the sequence (Dα(Fν ,A)
[Fν :F0] )ν converges in R, then we have the identity

γ(F) = g(F0)− 1 +
∑
P∈A α(P ) · deg(P )

2 − δα(F , A)
2 .

In particular, this is the case if the estimates

α(Q ∩ F0) · e(Q|Q ∩ F0) ≥ d(Q|Q ∩ F0)

hold for all Q ∈ PF (A).

Proof. We will modify the proof of [Sti08, p. 249, Theorem 7.2.10(b)]: Let gn := g(Fn)
and dn := [Fn : F0] for all n ∈ N0. Then we compute the equalities

2gn − 2 = dn(2g0 − 2) +
∑
P∈A

Q∈PFn (P )

d(Q|P ) · deg(P )
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= dn(2g0 − 2) +
∑
P∈A

Q∈PFn (P )

(α(P ) · e(Q|P )− (α(P ) · e(Q|P )− d(Q|P ))) · deg(Q)

= dn(2g0 − 2) +

∑
P∈A

α(P ) · deg(P )
∑

Q∈PFn (P )
e(Q|P ) · f(Q|P )

−Dα(Fn, A)

= dn

(
(2g0 − 2) +

∑
P∈A

α(P ) · deg(P )
)
−Dα(Fn, A) (348)

for all n ∈ N0 where the equalities hold by the following reasonings: The first equality
holds because of the Hurwitz Genus Formula in (9) for Fn/F0, because of the assertion
Ram(F/F0) ⊆ A in Lemma 92(ii) and because [Sti08, p. 106, Corollary 3.5.5(a)] implies
the equality d(Q|P ) = 0 for all P ∈ PF0\Ram(F/F0) and Q ∈ PFn(P ).

The second equality is clear. The third equality holds by the identity f(Q|P ) deg(P ) =
deg(Q), by the definition of Dα(Fn/F0) in Definition 189 and by elementary arithmetics.

The last equality follows from the fundamental equality ∑Q∈PFn (P ) e(Q|P )f(Q|P ) =
[Fn : F0] = dn in (8).

Now, the ’main’-part follows if we add 2 and divide by 2 in the equality in (348). For
the ’moreover’-part, we also divide by dn and apply limn→∞ and then the assertion that
(Dα(Fν ,A)

[Fν :F0] )ν converges in R yields the desired identity in the ’moreover’-part.
For the ’in particular’-part, we notice that the sequence (g(Fν)

dν
)ν converges in R>0

because Ram(F/F0) is the subset of the finite set A and because of Theorem 4(ii). Hence,
by this conclusion and the identity in (348), we also obtain the desired statement in the
in particular’-part, namely that (Dα(Fν ,A)

[Fν :F0] )ν converges in R.

Sharp Criterion for Precise Limits of Tame Recursive Towers.

Corollary 195 of this subsubsection will be our sharp version of Theorem 4 for tame
recursive towers.

The errors for tame recursive towers. For tame recursive towers, we will choose α =
1F0 and then the following Lemma 193(i) will supply that the errors D1F0

(Fn, V (Γram
F ))/2

and δ1F0
(F , V (Γram

F ))/2 can be expressed in terms of N(Fn, V (Γram
F )).

Moreover, Lemma 193(ii) will even supply that the error δ1F0
(F , V (Γram

F )) in the es-
timate for γ(F) (see Proposition 192) vanishes if Γram

F is finite and only has unbalanced
weakly connected components Γ.

Lemma 193. Let F = (Fν)ν be a tame recursive tower over the field k of degree d and
let F = k · F = (F ν)ν be the geometric tower of F . Then the following hold:

(i) For all finite subgraphs Γ of ΓF , we have the identities

D1F0
(Fn, V (Γ)) = D1

F 0
(Fn, V (k · Γ)) = N(Fn, V (k · Γ))

for all n ∈ N0. In particular, the sequence (
D1F0

(Fν ,A)
dν )ν converges in R and we have

the identities

δ1F0
(F , V (Γ)) = δ1

F 0
(F , V (k · Γ)) = lim

n→∞
N(Fn, V (k · Γ))

dn
.

(ii) If F has balanced degree d and Γ is a finite weakly connected component of ΓF which
has a circle with unbalanced ramification indices, then we have the identities

δ1F0
(F , V (Γ)) = δ1

F 0
(F , V (k · Γ)) = 0.
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Proof. For (i): The third and fourth desired identities immediately follow from the first
two desired identities and from the definitions of δ1F0

(F , V (Γ)) and δ1
F 0

(F , V (k · Γ)) in
Definition 189.

The first desired identity D1F0
(Fn, V (Γ)) = D1

F 0
(Fn, V (k · Γ)) follows for all n ∈ N0

from the equality V (k · Γ) = PF 0
(V (Γ)) in Definition 107 and from the first and second

identities in Definition/Lemma 191.
Finally, the second desired identity D1

F 0
(Fn, V (k · Γ)) = N(Fn, V (k · Γ)) follows for

all n ∈ N0 from the equalities

D1
F 0

(Fn, V (k · Γ)) =
∑

Q∈P
F n

(V (k·Γ))

(e(Q|Q ∩ F 0)− d(Q|Q ∩ F 0)) · deg(Q)

=
∑

Q∈P(1)
F n

(V (k·Γ))

e(Q|Q ∩ F 0)− (e(Q|Q ∩ F 0)− 1) = N(Fn, V (k · Γ))

where the equalities holds by the following reasonings: The first equality holds by the defi-
nitions of D1

F 0
(Fn, V (k ·Γ)) and 1F 0

in Definition 189. The second equality holds because
combining the assertion that F is tame and [Sti08, p. 106, Corollary 3.5.5] supplies the
equality d(Q|Q ∩ F 0) = e(Q|Q ∩ F 0)− 1 and because F 0 has the algebraically closed full
constant field k and, hence only rational places. The third equality holds because all sum-
mand are equal to one and because of the definition of N(Fn, V (k · Γ)) = #P(1)

F 0
(V (k · Γ))

in (5)

For (ii): The first desired identity δ1F0
(F , V (Γ)) = δ1

F 0
(F , V (k · Γ)) holds by the first

identity in the ’in particular’-part in Lemma 193(i).
Moreover, the second desired identity δ1

F 0
(F , V (k ·Γ)) = 0 follows from the equalities

δ1
F 0

(F , V (k · Γ)) = lim
n→∞

N(Fn, V (k · Γ))
dn

= 0 (349)

where the first equality holds by the second identity in the ’in particular’-part in Lemma
193(i) and the second equality holds by Lemma 177(i).

Precise formulas for the genera in tame recursive towers. The following Theo-
rem 194 provides precise formulas for g(Fn) and γ(F) for tame recursive towers.

Moreover, the identity for g(Fn) will also be our starting point in Chapter 8. There
we will find ways to compute explicit formulas for g(Fn) by calculating the only unknown
value N(Fn, V (Γram

F )) on the right side of this identity.
Theorem 194. Let F = (Fν)ν be a tame recursive tower over a field k of degree d and
let F = k ·F = (F ν)ν be the geometric tower of F . Suppose that the ramification subgraph
Γram

F of the tower graph ΓF of F is finite and let Γ be the disjoint union of all the weakly
connected components Γ1, . . . ,Γr of Γram

F which only have circles with balanced ramification
indices. Then we have the identity

g(Fn) = 1
2
(
2 + dn

(
(2g(F0)− 2) + #V (Γram

F )
)
−N(Fn, V (Γram

F ))
)
.

Moreover, if k is a finite field and F has balanced degree, then we also have the identities

δ1F0
(F , V (Γram

F )) = ρ(F) = lim
n→∞

N(Fn, V (Fq · Γ))
dn

=
r∑
i=1

lim
n→∞

N(Fn, V (Fq · Γi))
dn

and

γ(F) = g(F0)− 1 +
∑
P∈V (Γram

F ) deg(P )
2 − ρ(F)

2 .
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Proof. We already obtain the desired identity in the ’main’-part by the following equalities

g(Fn) = 1
2

2 + dn

(2g(F0)− 2) +
∑

P∈V (Γram
F )

1F0(P ) · deg(P )

−D1F0
(Fn, A)


= 1

2

2 + dn

(2g(F0)− 2) +
∑

P∈V (Γram
F )

deg(P )

−N(Fn, V (Γram
F ))


= 1

2
(
2 + dn

(
(2g(F0)− 2) + #V (Γram

F )
)
−N(Fn, V (Γram

F ))
)

(350)

where the equalities hold by the following reasonings: The first equality holds by apply-
ing the ’main’-part in Proposition 192 to F , A = V (Γram

F ) and α = 1F0 . The second
equality holds because Lemma 193(i) and the equality Γram

F = k · Γram
F in Lemma 124

provide the equalities D1F0
(Fn, A) = N(Fn, V (k · Γram

F )) = N(Fn, V (Γram
F )) and because

we have 1F0(P ) = 1 for all P ∈ PF0 by the definition of 1F0 in Definition 189. The third
equality holds because the equality Γram

F = k ·Γram
F and Definition 107 supply the equality

V (Γram
F ) = PFn

(V (Γram
F )) and because the map π2 in Lemma 114(i) then supplies the

equality ∑P∈V (Γram
F ) deg(P ) = #V (Γram

F ).
For the ’moreover’-part, suppose that k is finite and that F has balanced degree d.

The second desired identity δ1F0
(F , V (Γram

F )) = ρ(F) then follows from the identities in
the ’in particular’-part in Lemma 193(i), from the equality k · Γram

F = Γram
F in Lemma 124

and from the definition ρ(F) in Definition 179.
The third and fourth desired identities follow from the fact that k ·Γram

F = Γram
F is also

finite by Lemma 120(i) and from the ’moreover’-part in Theorem 182(ii)
Finally, the last desired identity for γ(F) follows from the already proven first de-

sired identity δ1F0
(F , V (Γram

F )) = ρ(F) and from the identity in the ’moreover’-part of
Proposition 192.

Sharp criterion for precise limits of tame recursive towers. The following Corol-
lary 195 and Corollary 196 of Theorem 194 will evaluate the formula for γ(F) in Theo-
rem 194 for the only two possible cases:

On the one hand, in Corollary 195, the error ρ(F) vanishes if Γram
F is finite and each

of its weakly connected components contains circles with unbalanced ramification indices.
Hence, in this case, the estimate in Theorem 4 is already an equality.

Furthermore, as this is the generic case and as this corollary can be applied to all
tame recursive towers in the literature known to the author (or at least to some of their
truncations), we will call Corollary 195 the sharp criterion for precise limits of tame
recursive towers.

On the other hand, in Corollary 196, we will also cover the complementary case, i.e. if
the ramification subgraph Γram

F is still finite but has some weakly connected component
which only contains circles with balanced ramification indices.

Corollary 195 (Sharp Criterion for Precise Limits of Tame Recursive Towers). Let F =
(Fν)ν be a tame recursive tower over the finite field Fq of balanced degree d and let F ′ :=
Fql · F be the constant field extension of F for some finite extension Fql/Fq.

Moreover, let Γsplit
F ′ be the splitting subgraph of the tower graph ΓF ′ of F ′ and suppose

that the ramification subgraph Γram
F of the tower graph ΓF of F is finite and that all its

weakly connected components have circles with unbalanced ramification indices.
Then we have the identities

ν(F ′) = # Split(F ′/F ′
0) = #V (Γsplit

F ′ ), γ(F ′) = g(F0)− 1 +
∑
P∈V (Γram

F ) deg(P )
2
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and

λ(F ′) = 2 ·#V (Γsplit
F ′ )

2 · g(F0)− 2 +∑
P∈V (Γram

F ) deg(P ) .

In particular, this holds for l = 1, i.e. F ′ = F .

Proof. The first two desired identities ν(F ′) = # Split(F ′/F ′
0) = #V (Γsplit

F ′ ) immediately
follow from Corollary 184.

The third desired identity follows from first applying the ’moreover’-part in Theorem
182(ii) and the Main Theorem 177(i) to obtain the equality ρ(F) = 0 for the geometric
tower F of F , from then applying Theorem 194 to obtain the desired identity for F and
from the equality γ(F) = γ(F ′).

The last desired identity follows from the first two already proven identities and from
the equality λ(F ′) = ν(F ′)

γ(F ′) in Definition 2(iii).

Corollary 196. Let F = (Fν)ν be a tame recursive tower over the finite field Fq of
balanced degree, let F = Fq · F = (F ν)ν be the geometric tower of F and let F ′ := Fql · F
be the constant field extension of F for some finite intermediate field Fql of Fq/Fq.

Moreover, suppose that the ramification subgraph Γram
F of the tower graph ΓF of F is

finite and that it has some weakly connected component which only containes circles with
balanced ramification indices.

Then we have the identity and estimate(
g(F0)− 1 +

∑
P∈V (Γram

F ) deg(P )
2

)
− γ(F ′) = ρ(F) > 0

Proof. The desired identity immediately follows from applying Theorem 194 to first obtain
the desired identity for F and from then applying the equality γ(F) = γ(F ′).

The desired estimate ρ(F) > 0 immediately follows from the ’in particular’-part in
Theorem 182(iv).

Sharp Criterion for Precise Limits of Wild Recursive Towers.

Corollary 200 of this subsubsection will be our sharp version of Theorem 4 for wild recursive
towers.

The errors for wild recursive towers. For wild recursive towers, the situation be-
comes more difficult because the different exponents of the extensions Q/P can now
be larger than e(Q|P ) − 1 and, thus, we cannot any longer simply choose α = 1F0 for
δα(F , V (Γram

F )) and expect that the error δα(F , V (Γram
F ))/2 vanishes.

However, by its definition in Definition 189 and by Definition/Lemma 191, the error
δα(F , V (Γram

F ))/2 is still a weighted sum which runs over the places in PFn
(V (Γram

F )). For
wild recursive towers, the basic idea will become to estimate the weights by a common
value bn for every n ∈ N0 and then to obtain the upper bound

δα(F , V (Γram
F ))

2 ≤ lim
n→∞

bn ·N(Fn, V (Γram
F ))

2 · dn . (351)

Consequently, if we can choose α and bn such that the product bn · N(Fn, V (Γram
F )) is

growing slower than dn, then the error again vanishes. For our final sharp criterion in
Corollary 200, this will exactly be the case. There we will make use of the following two
observations:
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On the one hand, if the ramification subgraph Γram
F of a recursive tower F is finite and

only has weakly connected components which contain circles with unbalanced ramification
indices, then Proposition 175 supplies some ρ < d such that the equalityN(Fn, V (Γram

F )) =
O(ρn) holds as n→∞. Most wild recursive tower F in the literature satisfy this property
for the ramification subgraph and the author is only aware of one exception, which is the
CNT-tower in Examples 8(v).

On the other hand, in Definition 199, we will define α-weakly ramified recursive towers.
It will come out that bn can even be chosen as a constant in n if F is α-weakly ramified. All
tame towers, the wild GS-tower FGS,3, the wild BezGS-towers and the wild BBGS-towers
will be α-weakly ramified. In fact, the author is not aware of any recursive towers which
are not α-weakly ramified.

Finally, combining these two observations yields that the error δα(F , V (Γram
F ))/2 in

(351) indeed vanishes.

Two predecessors for the sharp criterion for precise limits of wild recursive
towers. If we apply the following Theorem 197 to A = V (Γram

F ), then this captures
that, in (351), the error δα(F , V (Γram

F ))/2 vanishes if bn · N(Fn, V (Γram
F )) grows slower

than dn as n→∞.
Moreover, Corollary 198 will apply Proposition 175 to provide the desired ρ ∈ [1, d[ in

the requirements of Theorem 197 for wild recursive towers.

Theorem 197. Let F = (Fν)ν be a tower over the field k and let F = k · F = (F ν)ν be
the geometric tower of F Moreover, A be a finite subset of PF0 and let α : PF0 → R be a
map.

If there are real numbers ρ ∈ [1, d[ and β ∈ [1, dρ [ such that, for all ε > 0,

N(Fn,PF 0
(A)) = O((ρ+ ε)n)

and

max
Q∈PFn (A)

|α(Q ∩ F0) · e(Q|Q ∩ F0)− d(Q|Q ∩ F0)| = O((β + ε)n)

as n→∞, then we have the identities

Dα(Fn, A) = O((ρ · β + (ρ+ β)ε+ ε2)n) and δα(F , A) = 0

as n→∞.

Proof. test Suppose that there are such real numbers ρ and β and corresponding ε > 0.
Then the first desired identity already follows from the estimates and equalities

|Dα(Fn, A)| ≤
∑

Q∈PFn (A)
|α(Q ∩ F0) · e(Q|Q ∩ F0)− d(Q|Q ∩ F0)| · deg(Q)

≤
∑

Q∈PFn (A)
deg(Q) · max

Q∈PFn (A)
|α(Q ∩ F0) · e(Q|Q ∩ F0)− d(Q|Q ∩ F0)|

= N(Fn,PF 0
(A)) · max

Q∈PFn (A)
|α(Q ∩ F0) · e(Q|Q ∩ F0)− d(Q|Q ∩ F0)|

= O((ρ+ ε)n) · O((β + ε)n) = O((ρ · β + (ρ+ β)ε+ ε2)n) (352)

as n → ∞ where the estimates and equalities hold by the following reasonings: The
first estimate holds by the definition of Dα(Fn, A) = ∑

Q∈PFn (A)(α(Q∩F0) · e(Q|Q∩F0)−
d(Q|Q∩F0)) ·deg(Q) in Definition 189 and by the triangle inequality. The second estimate
is clear. The first equality holds by the identities∑
Q∈PFn (A)

deg(Q) =
∑

Q∈PFn (A)

∑
Q∈P

F n

1 = #PFn
(PFn(A)) = #PFn

(PF 0
(A)) = N(Fn,PF 0

(A))
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where the first identity holds by [Sti08, p. 119, Lemma 3.6.5], the second identity holds
by the definition of PFn

(PFn(A)) in (5), the third identity holds because Fn/Fn/F0 and
Fn/F 0/F0 are extensions of function fields and the last identity holds because the fact
that Fq is algebraically closed implies that all places in PFn

are rational and because of
the definition of N(Fn,PF 0

(A)) = P(1)
Fn

(PF 0
(A)) in (5).

The second equality in (352) holds by the choices of ρ and β in the assumptions. The
last equality in (352) is a well known rule for the O-notation.

The second desired identity δα(F , A) = 0 follows from the definition of δα(F , A) =
limn→∞Dα(Fn, A)/dn in Definition 189 and from the equality in (352).

Corollary 198. Let F = (Fν)ν be a possibly wild recursive tower over the finite field
Fq of balanced degree d, let F = Fq · F = (F ν)ν be the geometric tower of F and let
F ′ = Fql · F = (F ′

ν)ν be the constant field extension of F for some finite intermediate field
Fql of the extension Fq/Fq.

Moreover, let Γsplit
F ′ be the splitting subgraph of the tower graph ΓF ′ of F ′ and suppose

that the ramification subgraph Γram
F of the tower graph ΓF of F is finite and that all its

weakly connected components Γ1, . . . ,Γr have circles with unbalanced ramification indices.
Finally, let α : PF0 → R be a map.

On the one hand, we then have real numbers ρi ∈ [1, d[ for all i = 1, . . . , r such that

N(Fn, V (Fq · Γi)) = O((ρi + ε)n)

as n→∞ for all ε > 0
On the other hand, if there are also real numbers βi ∈ [1, dρi

[ for all i = 1, . . . , r such
that

max
Q∈PFn (V (Γi))

|α(Q ∩ F0) · e(Q|Q ∩ F0)− d(Q|Q ∩ F0)| = O((βi + ε)n)

as n→∞ for all ε > 0, then we have the identities

ν(F ′) = # Split(F ′/F ′
0) = #V (Γsplit

F ′ ), γ(F ′) = g(F0)− 1 +
∑
P∈V (Γram

F ) α(P ) deg(P )
2

and

λ(F ′) = 2 ·#V (Γsplit
F ′ )

2 · g(F0)− 2 +∑
P∈V (Γram

F ) α(P ) deg(P ) .

In particular, this then also holds for l = 1, i.e. F ′ = F .

Proof. For the ’on the one hand’-part: Let j ∈ {1, . . . , r}. First, we notice that, by Lemma
120(i) and by the ’moreover’-parts in Lemma 120(iii) and and Lemma 120(v), the constant
field extension Fq · Γj is a disjoint union of finitely many finite weakly connected compo-
nents Γj,1, . . . ,Γj,sj of the tower graph ΓF of F which all have circles with unbalanced
ramification indices.

Then we obtain the desired real number ρj ∈ [1, d[ in the ’on the one hand’-part by
the equalities

N(Fn, V (Fq · Γj)) =
sj∑
i=1

N(Fn, V (Γj,i)) =
sj∑
i=1

N [Fn,Γj,i] = O((ρj + ε)n)
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as n → ∞ for all ε > 0 where the equalities holds by the following reasonings: The first
equality holds by the definition N(Fn, ·) in (5) and because Fq ·Γj is a disjoint union of the
Γj,1, . . . ,Γj,sj . The second equality holds because all Γj,i are weakly connected components
and, thus especially, forward complete subgraphs of ΓF and because of the ’moreover’-part
in Lemma 86. For the last equality, we first notice that all the Γj,i are finite weakly con-
nected subgraphs of ΓF which have circles with unbalanced ramification indices and, thus,
Lemma 175(ii) provides real numbers ρj,i ∈ [1, d[ such that N [Fn,Γj,i] = O((ρj,i + ε)n).
The last equality then follows for ρj := maxi=1,...sj ρj,i.

For the ’on the other hand’-part: Suppose that there are also real number βi ∈ [1, dρi
[

as in the assumptions for all i = 1, . . . , r.
Now, the first two desired identities ν(F ′) = # Split(F ′/F ′

0) = #V (Γsplit
F ′ ) in the ’on

the other hand’-part immediately follow from Corollary 184.
The third desired identity in the ’on the other hand’-part follows from equalities

γ(F ′) = γ(F) = g(F0)− 1 +
∑
P∈V (Γram

F ) α(P ) · deg(P )
2 − δα(F , V (Γram

F ))
2

= g(F0)− 1 +
∑
P∈V (Γram

F ) α(P ) · deg(P )
2 −

r∑
i=1

δα(F , V (Γi))
2

= g(F0)− 1 +
∑
P∈V (Γram

F ) α(P ) · deg(P )
2

where the equalities hold by the following reasonings: The first equality holds as the genus
of a function field is invariant under constant field extensions by [Sti08, p. 114, Theorem
3.6.3(b)]. The second equality holds by Proposition 192. The third equality holds because
Γram

F is the disjoint union of its weakly connected components Γ1, . . . ,Γr and because of
Lemma 190. The last equality holds because of the choices of the ρi and βi in the assertions
and because, therefore, Theorem 197 supplies δα(F , V (Γi)) = 0.

The last desired identity in the ’on the other hand’-part immediately follows from
the first two already proven identities and from the equality λ(F ′) = ν(F ′)

γ(F ′) in Definition
2(iii).

Sharp criterion for precise limits of wild tower. Motivated by the definition of
weakly ramified recursive towers in [Sti08, p. 267, Definition 7.4.12], we will define α-
weakly ramified recursive towers for maps α : PF0 → R in the following Definition 199.
The author is not aware of any recursive towers F which are not α-weakly ramified for
some map α : PF0 → R. For instance, we will show in the proof of Corollary 203 that the
important BBGS-towers in Examples 8(vi) are α-weakly ramified.

For any wild recursive tower F which is α-weakly ramified and which has a finite
ramification subgraph with only unbalanced weakly connected components, the following
Corollary 198 will provide the precise limit λ(F) of F . The only wild recursive tower known
to the author to which Corollary 198 cannot be applied is the CNT-tower in Examples 8(v).

In particular, because this corollary is easier to apply than Corollary 198, we will call
Corollary 200 the sharp criterion for precise limits of wild recursive towers.
Definition 199. Let F = (Fν)ν be a recursive tower over the finite field and let α : PF0 →
R be a map. Then F is called α-bounded if the estimate

α(Q ∩ F0) · e(Q|Q ∩ F0) ≥ d(Q|Q ∩ F0)

holds for all Q ∈ PF . Moreover, F is called α-weakly ramified if the set

{α(Q ∩ F0) · e(Q|Q ∩ F0)− d(Q|Q ∩ F0) : Q ∈ PF}

is finite.
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Corollary 200 (Sharp Criterion for Precise Limits of Wild Recursive Towers). Let F =
(Fν)ν be a possibly wild recursive tower over the finite field Fq of balanced degree d and let
F ′ = Fql · F = (F ′

ν)ν be the constant field extension of F for some finite extension field
Fql/Fq.

Moreover, suppose that the ramification subgraph Γram
F of the tower graph ΓF of F is fi-

nite and that all its weakly connected components have circles with unbalanced ramification
indices. Finally, let α : PF0 → R be a map such that F is α-weakly ramified.

Then we have the identities

ν(F ′) = # Split(F ′/F ′
0) = #V (Γsplit

F ′ ), γ(F ′) = g(F0)− 1 +
∑
P∈V (Γram

F ) α(P ) deg(P )
2

and

λ(F ′) = 2 ·#V (Γsplit
F ′ )

2 · g(F0)− 2 +∑
P∈V (Γram

F ) α(P ) deg(P ) .

In particular, this also holds for l = 1, i.e. F ′ = F .

Proof. The assumption that F is α-weakly ramified immediately implies that the maxi-
mum in Corollary 198 is even bounded as n→∞. Hence, we can apply Corollary 198 to
F for any ρi ∈ [1, d[.

Remark 201. In Corollary 200, we assumed that F has constant degree. However, if
we drop this assumption and add the assumption that the splitting subgraph Γsplit

F is non-
empty, then the formula for the limit λ(F) of F in Corollary 200 still holds.

Sketch of the Proof. Since this remark will not be used in this thesis, we will only sketch
the proof.

First, we notice that there must be a level m ∈ N0 from which on the degree of F is
constant. Thus, the level m truncation F≥m := Trun≥m(F) is a recursive tower in the
sense of Definition 5(ii). Moreover, we notice that all places in A := PFm(V (Γsplit

F )) are
rational and split completely in F≥m. Now, let us consider these rational places in A as
vertices in ΓF≥m

. because of the assumption that Γsplit
F is non-empty, it is even is a weakly

connected component of ΓF . Consequently, the edges in ΓF≥m
cannot connect vertices in

A with vertices outside of A. Thus, Trun≥m(Γsplit
F ) is a non-empty finite balanced weakly

connected component of Γsplit
F≥m

. But as splitting subgraphs are always balanced weakly
connected components, applying Theorem 155 yields the equality

Trun≥m(Γsplit
F ) = Γsplit

F≥m
(353)

of non-empty graphs. Furthermore, the assumption on the finiteness of Γram
F and Theo-

rem 155 even imply that

all weakly connected components of Γram
F≥m

must be finite and unbalanced. (354)

In particular, the map α : PF0 → R from Corollary 200 can be used to define a map
αm : PFm → R such that Corollary 200 can be applied to F≥m. By doing so, we obtain
the equalities

λ(F) = λ(F≥m) =
#V (Γsplit

F≥m
)

γ(F≥m) = [Fm : F0] ·#V (Γsplit
F )

[Fm : F0] · γ(F) = #V (Γsplit
F )

γ(F) (355)

where the equalities hold by the following reasonings: The first equality holds by the defini-
tion of limits in Definition/Lemma 2(iii) and the definition of truncations in Definition 27.
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The second equality holds by Corollary 200. The third equality holds by the equality in
(353) and by the definition of γ(F≥m) = limm≤n→∞ g(Fn)/[Fn : Fm] = [Fm : F0] · λ(F) in
Definition/Lemma 2(iii). The last equality holds by canceling the factors.

Second, notice that we have not applied the formula for γ(F≥m) from Corollary 200 in
(354). Instead, we will directly compute γ(F) in this case. For that, we first notice that
the proof of the genus formula in Proposition 192 does not need the assumption that F
has constant degree. Hence, we also have the equality

γ(F) = g(F0)− 1 +
∑
P∈V (Γram

F ) α(P ) · deg(P )
2 − δα(F , V (Γram

F ))
2 .

Finally, we have to show that δα(F , V (Γram
F )) vanishes, since combining this and the

equality in (355) yields the same limit as Corollary 200 which was the desired statement.
However, we will only sketch the remaining steps: When we go through the proof of
Corollary 200 and the proofs of the theorems used in this proof, we see that δα(F , V (Γram

F ))
vanishes if the number of places which lie over Γram

F in the geometric tower F = (F ν)ν are
negligible in relation to the degree [Fn : F0] as n→∞, i.e.

lim
n→∞

N(Fn, V (Γram
F ))

[Fn : F0] = 0.

Now, assume that the latter is not the case. Then the number of places in F which lie over
Γram

F≥m
is also not negligible in relation of the degree as n→∞. But we already concluded

that Γram
F≥m

has no finite balanced weakly connected in (354) and, consequently, obtain a
contradiction with Corollary 184.

6.4 Further Improvements of Known Results
Summary of the results of this section. In this section, we will use Theorem 188 and
the sharp criteria for precise limits of recursive towers in Corollary 195 and Corollary 200
to determine the precise limits for several important recursive towers in the literature. In
most cases, this will also have further implications.

6.4.1 ST-Towers - Quadratic Polynomial-Recursive Towers over F2

As we already discussed in Examples 8(iv), in [ST15, p. 667, Theorem 1.4], the authors
searched for all good polynomial-recursive towers F of degree two over F2. Up to isomor-
phisms, the authors showed in [ST15, p. 667, Theorem 1.4] and [ST15, p. 680, Theorem
2.14] that there are only the four ST-polynomials

fST,1 := Y 2X + Y +X2 + 1, fST,3 := X2Y 2 +XY 2 + Y +X,

fST,2 := X2 +XY 2 +X + Y, fST,4 := X2Y 2 +XY 2 + Y +X2 + 1 (356)

which can potentially define a good recursive tower of degree two over F2.

The improvement for [ST15]. In the following Corollary 202 and for all i = 1, . . . , 4,
we will apply Corollary 184 to the ST-towers FST,i which are defined by the ST-polynomials
fST,i and show that the splitting rate of FST,i is zero. In particular, this implies that there
are no good polynomial-recursive towers of degree two over F2.

Corollary 202. For all i = 1, . . . , 4, we have the identities λ(FST,i) = 0. In particular,
this means that there are no good polynomial-recursive towers of degree two over F2.
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Proof. In the figures B.21, B.22, B.23, B.24, the rational subgraphs of the ST-towers
FST,i are depicted. Here, we see that the splitting subgraph of FST,i is empty and that
its rational and ramification subgraphs are equal for all i = 1, . . . , 4.

In these figures, we can also see that each of the ramification subgraphs only consist
of exactly one finite weakly connected component and it contains circles with unbalanced
ramification indices. Consequently, we can apply Corollary 184 to Fi for all i = 1, . . . , 4.
As the splitting subgraphs are also empty, we then obtain that sll splitting rates ν(FST,i)
vanish. In particular, this also implies that the limit λ(FST,i) = ν(FST,i)/γ(FST,i) vanishes
for all i = 1, . . . , 4. Hence, we established the ’main’-part.

Finally, the ’in particular’-part follows from the vanishing of the limits of all FST,i and
from [ST15, p. 667, Theorem 1.4] and [ST15, p. 680, Theorem 2.14] (see (356)).

6.4.2 BBGS-Towers: Ihara’s Constant A(q) for Non Prime q

As we already discussed in Examples 8(vi), in [BBGS15, p. 3], the authors introduced the
BBGS-towers FBBGS,q,i,j over Fqm for all prime powers q and all m := i+ j with i, j ∈ N
and gcd(i, j) = 1. Then, in [BBGS15, p. 4, Theorem 1.2], they proved the lower bound

λ(FBBGS,q,i,j) ≥ 2 ·
( 1
qj − 1 + 1

qi − 1

)−1
(357)

for the limit of FBBGS,q,i,j . By that, in [BBGS15, p. 3, Theorem 1.1], the authors provided
the lower bound

A(pm) ≥ 2 ·
( 1
p⌊m/2⌋ − 1

+ 1
p⌈m/2⌉ − 1

)−1
(358)

for all p ∈ P and all m ≥ 2 which is currently the largest known lower bound for A(pm)
with m ≥ 2.

In Figure B.25, we depicted the rational subgraph Γrat
F of F = FBBGS,q,i,j for q = 3

and i = j = 1. Here, the first weakly connected component is the ramification subgraph
Γram

F and the second weakly connected component is the splitting subgraph Γsplit
F .

The Improvement for [BBGS15]. In the following Corollary 203, we will be able to
apply Corollary 200 to the BBGS-towers FBBGS,q,i,j and show that the lower bound in
(357) is already the precise limit λ(FBBGS,q,i,j). By that, we will ensure that the BBGS-
towers do not actually provide a larger lower bound for A(pm) than the one in (358).

Corollary 203. The BBGS-tower F = FBBGS,q,i,j in (19) has the limit

λ(F) = 2 ·
( 1
qj − 1 + 1

qi − 1

)−1

for all at least quadratic prime powers q and all i, j ∈ N with gcd(i, j) = 1.
In particular, for all p ∈ P and all m ≥ 2, the BBGS-towers do not provide a larger

lower bound for A(pm) than already established in [BBGS15, p. 3, Theorem 1.1], namely

A(pm) ≥ 2 ·
( 1
p⌊m/2⌋ − 1

+ 1
p⌈m/2⌉ − 1

)−1
.

Proof. Let F = (Fν)ν = (Fqm(x0, . . . , xν))ν where the sequence of elements xn comes from
the definition of a polynomial recursive tower in Definition 5(i). Then we first notice that
[BBGS15, p. 7, Proposition 2.5] and [BBGS15, p. 8, Proposition 2.8] imply that

the vertex set of Γsplit
F consists of the qm − 1 places (x0 = β) with β ∈ F∗

qm , (359)
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that Γram
F is a weakly connected component of ΓF with the only two vertices P0 := (x0 = 0)

and P∞ := (x0 = ∞). Moreover, there it was is also deduced that any edge with initial
vertex P0 is a loop which is ramified in F1/F0 but not in F1/σ(F0). In particular, this
means that

Γram
F is a finite weakly connected component of ΓF

containing circles with unbalanced ramification indices. (360)

Second, let

b∞ := qm − 1
qj − 1 + 1 and b0 := qm − 1

qi − 1 + 1 (361)

Then it was shown in [BBGS15, p. 14] that Pi is bi-bounded in F for all i = 0,∞, i.e. we
have the estimates

d(P ′|Pi) ≤ bi · (e(P ′|Pi)− 1) (362)

for all n ∈ N0, all P ′ ∈ PFn(Pi) and all i = 0,∞. By that, the authors in [BBGS15]
ensured that the asymptotic genus γ(F) is finite.

Even better for us, the authors actually computed the errors bi ·(e(P ′|Pi)−1)−d(P ′|Pi)
of these estimates: On the one hand, in [BBGS15, p. 14], it was concluded (even if it is
not explicitly formulated) that the estimate in (362) is actually an equality for i = ∞,
i.e. we have the equality

d(P ′|P∞) = b∞ · e(P ′|P∞)− b∞ (363)

for all n ∈ N0 and all P ′ ∈ PFn(P∞).
On the other hand, in [BBGS15, p. 21] and [BBGS15, p. 22], the authors computed

d(P ′|P0) = b0 · e(P ′|P0)− qm − 1
q − 1 (364)

for all n ∈ N0 and all P ′ ∈ PFn(P0).
Combining the conclusions in (359), (360), (361), (363) and (364) supplies that F is

α-weakly ramified for

α : PF0 → R via α(P ) := 0, α(P0) = b0, α(P∞) = b∞

Thus, we can apply the ’in particular’-part in Corollary 200 to F and obtain the desired
identity

λ(F) = 2 ·#V (Γsplit
F ′ )

2g(F0)− 2 + ∑
P∈V (Γram

F )
α(P ) deg(P ) = 2 · (qm − 1)

b0 + b∞ − 2 = 2 ·
( 1
qj − 1 + 1

qi − 1

)−1
.

Note that, we could only apply Corollary 200 directly because, in [CCH21, p. 3, Main
Theorem] and [CCH21, p. 10, Lemma 2.4] , it was proven that the BBGS towers have
constant degree. Alternatively, we could also have applied Remark 201 which sketched the
proof of how Corollary 200 can be extended to recursive towers with non-constant degree
and non-empty splitting locus.

Finally, the ’in particular’-part immediately follows from applying the ’main’-part to
q = pm, i = ⌊m/2⌋ and j = ⌈m/2⌉.
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6.4.3 BezGS-Towers: Ihara’s Constant A(q) for Cubic q

The Improvement for [BGS05]. In complete analogy to Corollary 203, we will also
show that the lower bounds for the BezGS-towers which were established in [BGS05, p. 161,
Main Theorem] are already the precise limits. Together with the BBGS-towers, the BezGS-
towers provide the best known lower bound for Ihara’s constant A(l3) with prime powers l.

Corollary 204. The BezGS-tower F = FBezGS,l has the limit

λ(F) = 2(l2 − 1)
l + 2

for all q = l3 with a prime power l.
In particular, for all prime powers l, the BezGS-towers do not provide a larger lower

bound for A(l3) than already established in [BGS05, p. 161, Main Theorem], which is

A(l3) ≥ 2(l2 − 1)
l + 2 .

Proof. This proof is completely analogous to the proof of Corollary 203. Thus, we only
list the conclusions and provide the references from which the conclusions can be derived.

First, from [BS07, p. 157, Theorem 3], it can be concluded that the splitting subgraph
Γsplit

F is non-empty and that its vertex set V (Γsplit
F ) contains exactly l(l+1) many vertices.

Second, from [BS07, p. 160-, Lemma 6] [BS07, p. 162, Figure 7], we can deduce that
the ramification subgraph is finite and its vertex set V (Γram

F ) is equal to the set V (F/F0)
in the notation from there. Moreover, it satisfies #V (ΓF ) = l + 3 and P0, P∞ ∈ V (Γram

F )
where Pi denote the places at i for all i = 0,∞. In particular, it also comes out that
Γram

F is already a finite weakly connected component of ΓF which contains circles with
unbalanced ramification indices. Also see Figure B.20 for the splitting subgraph and
ramification subgraph of the GV-tower, which is the BezGS-tower for l = 2.

Third, from [BS07, p. 160-168, Figure 5, 6, 7, Proof of Corollary 15], we can also derive
that F is α-weakly ramified for the map

α : PF0 → R, P 7→


2 P = P∞
l
l−1 P ∈ V (Γram

F )\{P∞}
0 P ∈ P ∈ PF0\V (Γram

F )
.

Finally, by these first three conclusions, we can apply Corollary 200 and obtain the
desired identity

λ(F) = 2 ·#V (Γsplit
F )

2 · g(F0)− 2 +∑
P∈V (Γram

F ) α(P ) · deg(P ) = 2l(l + 1)
l
l−1(l + 2)

= 2(l2 − 1)
l + 2 .

6.4.4 BR-Towers - Good Recursive Towers over Prime Fields

In this subsection, we will show that Corollary 195 can be applied to the BR-towers
which are the recursive tower T in [BR20, p. 4, Theorem 2.3]. This will then provide that
the estimate

λ(T ) ≥ 2
q − 2 (365)

in [BR20, p. 4, Theorem 2.3] is even an identity for all q = ps ≥ 5 with p ∈ P and s ∈ N.
Here, for q ∈ P with q /∈ {2, 3}, these BR-towers T are the first recursive towers over
prime fields.
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Translating T into a recursive tower F of function fields. The tower T is not a
recursive tower of function fields but a recursive tower of integral curves over k := Fq for
all q = ps ≥ 5 with p ∈ P and s ∈ N. Thus, we will first translate this recursive tower T of
curves into a recursive tower of function fields F . For that, let us consider the construction
of T in [BR20]:

In the third to last and second to last paragraphs of the introduction in [BR20, p. 2],
the authors use two suitable finite morphisms g, h : C1 := P1 → C0 := P1 to construct
T = (Cν)ν≥1 over k = Fq for all q = ps ≥ 5 with p ∈ P and s ∈ N. Notice that the indices
in [BR20] and here differ by one, e.g. C−1 in [BR20] is denoted by C0 here, and that (f, g)
in [BR20] are denoted by (h, g) here.

First, by taking the function fields of the involved curves, this construction translates
into a construction of recursive towers of function fields F≥1 = (F1+ν)ν = (k(x1, . . . , xν))ν
which is defined by the equation g(Y ) = h(X). Let σ be the tower map of F≥1 in Lemma 7.

Second, for simplicity and convenience, let us add a zeroth level F0 to F≥1 in the
following way: We notice that, by the construction of g and h in the second to last
paragraph of the introduction in [BR20, p. 2], there is a place in F1 = k(x1) which totally
ramifies in one of the extensions k(x1)/k(g(x1)) and k(x1)/k(h(x1)) but is unramified in
the other. Then applying the Reduction Lemma 30(iii) supplies that we can add the zeroth
level F0 := k(h(x1)) to F≥1. Let F := (Fν)ν be the corresponding recursive tower and
also notice that we have the equalities σ(h(x1)) = h(x2) = g(x1).

For q = 5, the splitting subgraph Γsplit
F and ramification subgraph Γram

F of F are
depicted in Figure B.28.

The improvement for [BR20]. Now, we will be able to apply Corollary 195 to F
and, by that, prove that the estimate in [BR20, p. 4, Theorem 2.3] and (365) is even an
identity.

Corollary 205. The estimate in [BR20, p. 4, Theorem 2.3] is even an identity, i.e. we
have the identities λ(T ) = λ(F) = 2

q−2 .

Proof. In order to apply Corollary 195 to F , we first need to identify the splitting subgraph
Γsplit

F and ramification subgraph Γram
F of F . By the construction in the third to last and

second to last paragraphs of the introduction in [BR20, p. 2], they are of the following
form:

On the one hand, the splitting subgraph Γsplit
F consists of a single vertex which is the

place at infinity of F0 = k(h(x1)) and of the q + 1 edges which are all the rational places
of the rational function field F1 = k(x1).

On the other hand, by the construction of g and h in the third to last and second to
last paragraphs of the introduction in [BR20, p. 2], the minimal subgraph Γ which contains
all of the degree two edges is a forward and backward complete subgraph. Note that since
Γsplit

F contains all degree one edges, we obtain that the edges of Γ are exactly the places of
degree two in F1. In particular, the degree two subgraph of ΓF must be the disjoint union
of Γsplit

F and Γ.
Moreover, the fact that F1 has genus zero supplies that all ramified places have at

most degree two. But since the edges of degree one in ΓF are exactly the edges of Γsplit
F ,

all ramified edges have degree two. But the construction of g and h also implies that all
ramified edges are even totally ramified. Combining these conclusions yields that there are
exactly two ramified edges in ΓF : Both of degree two, one totally ramified in F1/F0 and
one totally ramified in F1/σ(F0) and, thus, both contained in Γ. Hence, the ramification
subgraph Γram

F is a forward and backward complete subgraph of Γ and the difference graph
Γ\Γram

F is a union of finite weakly connected components of ΓF which contain no ramified
edges and, thus, are balanced. But as Γsplit

F is already a finite balanced weakly connected
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component of ΓF , Theorem 155 provides that the difference graph must be empty and,
by that, Γ = Γram

F . Even more, we conclude that all weakly connected component of Γram
F

must be unbalanced.
One a side note, we note that, by the identity in Lemma 87 and by summing up

the out-degrees of the vertices, any finite weakly connected component of ΓF contains
an edge which is ramified in the F1/F0 if and only if it also contains an edge which is
ramified in F1/σ(F0). This implies that both ramified edges are contained in the same
weakly connected component of Γ. Consequently, this component must already be the
ramification subgraph Γram

F of F . However, this fact will not be relevant in the following.
Finally, we obtain the desired identities by the equalities

λ(T ) = λ(F) = 2 ·#V (Γsplit
F ′ )

2 · g(F0)− 2 + ∑
P∈V (Γram

F )
deg(P ) = 2

#h(P1(Fq2)\P1(Fq))− 2 = 2
q − 2

where the equalities hold by the following reasonings: The first equality holds by the
construction of F . The second equality holds because Γram

F does not contain finite balanced
weakly connected components and because we can therefore apply the ’in particular’-part
in Corollary 195. The third equality holds by the equality Γ = Γram

F from above, by the
choice of Γ with E(Γ) = P(2)

F1
and by the construction of h in the third to last and second

to last paragraphs of the introduction in [BR20, p. 2]. The fourth equality holds because
P1(Fq2)\P1(Fq) has (q2 +1)− (q+1) = q2−q many elements, because h is totally ramified
at two of these elements and splits completely at all other q2−q−2 = (q−2)(q+1) elements
and because this implies the equalities #h(P1(Fq2)\P1(Fq)) = 2 + (q2 − q − 2)(q + 1)−1 =
2 + (q − 2) = q.

6.4.5 A Recipe to Determine Limits of Tame Recursive Towers

The sharp criterion for precise limits of tame recursive towers in Corollary 195 provides
the following recipe to determine limits of tame recursive towers F which, to the best
knowledge of the author, works on all tame recursive towers in the literature (e.g [MW05],
[Sti08], [BR20]):

First, we have to determine whether there is some level l ∈ N0 such that we can apply
Corollary 195 to F≥l := Trun≥l(F), i.e. whether there is an l such that Γram

F≥l
is finite and

each of its weakly connected components has circles with unbalanced ramification indices.
For apparently all tame recursive towers in the literature, this is indeed the case. Second,
we have to identify the splitting subgraph Γsplit

F≥l
and the ramification subgraph Γram

F≥l
of

F≥l. Third and finally, Corollary 195 yields the desired limit of F≥l and, by that, also the
limit of F . Let us demonstrate this recipe on the following Example 206.

Example 206. Let us consider the tame recursive MW-tower FMW,12 = F = (Fν)ν over
F25 in [MW05, p. 213, f12] which is defined by the polynomial fMW,12 = X2Y 2 + (X2 +
3X + 3)Y + 4. Let σ be a tower map of F from Lemma 7(iii). In Figure B.9, the degree
one subgraph of F is depicted. Let Γ1, . . . ,Γ4 be the depicted weakly connected components
of Γrat

F indexed from left to right.
By the identities in Lemma 87, Γ1 and Γ4 are even finite weakly connected components

of ΓF and, moreover, because Γ4 is (d =)2-regular, it is the splitting subgraph Γsplit
F of ΓF .

Now, since fMW,12 has degree two in both variables, Riemann’s Inequality in [Sti08,
p. 148, Corollary 3.11.4] provides the estimate g(F1) ≤ 1. Then combining this estimate
and the Hurwitz Genus Formula in (9) yields that there are at most four places in F1 which
are ramified in F1/F0 (resp. F1/σ(F0)). Consequently, there are at most eight ramified
edges in the tower graph of F . More precisely, as we can see in figure B.9, there are
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exactly eight ramified edges contained in the depicted degree one subgraph. In particular,
this also implies

g(F1) = 1. (366)

Thus, we conclude that the ramification subgraph Γram
F of ΓF is the disjoint union of Γ1

and the smallest forward and backward complete subgraph Γ of ΓF which contains Γ2 and
Γ3. In particular, we notice that all circles in Γ must have balanced ramification indices
and, thus, we cannot directly apply Corollary 195 to F .

However, if we consider the paths of length two in Γ2 and Γ3 and apply Abhyankar’s
Lemma in (10), we notice that no place Q ∈ PF2(V (Γ)) is ramified in F2/F1 and F2/σ(F1).
Consequently, on the one hand, Lemma 144 supplies that the ramification subgraph Γram

F≥1

of F≥1 = Trun≥1(F) is equal to the finite weakly connected component

Γram
F≥1

= Trun≥1(Γ1) (367)

of the tower graph ΓF≥1 of F≥1. On the other hand, since F25 is finite, the splitting
subgraph Γsplit

F≥1
of F≥1 is also finite. In particular, combining Lemma 142 and Theorem

155 yields the equality

Γsplit
F≥1

= Trun≥1(Γ4). (368)

Thus, we can apply Corollary 195 to F≥1 and obtain the limit

λ(F) = lim
ν→∞

N(Fν)
g(Fν)

= lim
1≤ν→∞

N(Fν)
g(Fν)

= λ(F≥1) =
2 ·#V (ΓF≥1)

2 · g(F1)− 2 + ∑
P∈V (Γram

F≥1
)
deg(P )

= 2 ·#E(Γ4)∑
P∈E(Γ1)

deg(P ) = 4 =
√

25− 1 (369)

where the equalities hold by the following reasonings: The first three equalities hold because
of the definition of limits of towers in Definition 2(iii) and because finitely many elements
in a sequence do not matter for its limit. The fourth equality holds by applying Corollary
195 to F≥1. The fifth equality holds because of the equality g(F1) = 1 in (366) and because
of the equalities in (367) and (368) and because the vertices in ΓF≥1 are the edges in ΓF .

Thus, this tower F is not only asymptotically good, as it was already shown in [MW05,
p. 213, f12] with the lower bound 3 ≤ λ(F), but it is even optimal.

Note that since the tower F≥1 is already optimal, it would already have been sufficient
to apply Theorem 4(iii) instead of Corollary 195.

A list of limits for some recursive tame towers. As already pointed out, the recipe
from above works on all tame recursive towers in the literature which are known to the
author. Only sometimes, there are slight modifications necessary in the arguments inside
of the three steps of the recipe. For instance, if we have a tower F over Fq which is
parametrized by infinitely many q, it is of course not possible to just print all tower
graphs. But then we can go on as in the proof of Theorem 205 where we determined the
precise limit of the tame BR-tower for all q /∈ {2, 3}. Correspondingly, one can show by
this strategy that the lower bound 2/(#Λ − 2) for the limit of a tame recursive tower F
which satisfies the conditions of [Sti08, p. 256, Theorem 7.3.1] is already equal to its limit.
In particular, this implies that the lower bounds 2/(l− 1) and 2/(q− 1) for the respective
limits of the tame recursive towers FGS,1 in [Sti08, p. 262, Proposition 7.3.2] and FGS,2 in
[Sti08, p. 261, Proposition 7.3.3] (see Examples 8(ii)) are already equal to their limits.
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Finally, in Figure 4.1, we already included the precise limits λ(F) for all recursive
towers in Examples 8. For all these examples of tame recursive towers, the precise limits
can be determined by the above recipe.

In particular, for fMW,i with i = 8, 12, 14, 15, 16, 20, 21, the authors of [MW05, p. 213]
explicitly raised the question whether their computed lower bounds b were already the
precise limits.

6.4.6 CNT-tower.

In [CNT18, p. 19, Corollary 4.13, Corollary 4.14], it was established that the CNT-tower
FCNT,2 in Examples 8(v) has limit λ(FCNT,2) = 1 and that the other CNT-towers FCNT,s
satisfy λ(FCNT,s) = 0 for odd s and λ(FCNT,s) ≥ 1 for even s.

But since we established in the third major result, which is Theorem 188, that limits of
good towers are stable under finite constant field extensions, we conclude that the equality
λ(FCNT,s) = 1 must hold for all even s.

Corollary 207. We have λ(FCNT,s) = 1 for all even s and λ(FCNT,s) = 0 for all odd s.

Proof. This follows immediately from [CNT18, p. 19, Corollary 4.13, Corollary 4.14] and
Theorem 188.

258





260



7 Proofs of the Three Interim Results

Summary of the results of this chapter. In this chapter, we will prove the three
interim results from Subsection 6.2.1, which are Theorem 168, Corollary 170 and Corollary
171. These three interim results form the core of the proof of the Main Theorem 177.

Furthermore, in this chapter, we will prove Theorem 218 as a part of the proof of
the first interim result. Here, Theorem 218 is a further result of this thesis on itself and
provides a new interpretation of the characteristic polynomials of adjacency matrices in
terms of the circles in the directed graph.

Finally, we will also prove Theorem 225 as a part of the proof of the third interim
result. This Theorem 225 will provide even more than just what is needed to prove the
third interim result and, therefore, should also be seen as a further result of this thesis.

More concretely, for any recursive tower F over a finite field and any place Q ∈ PF ,
Theorem 225 will provide upper bounds CQ for the degree deg(Q) of Q which can be
expressed entirely in terms of the degree d of F , of the ramification indices of the extensions
in Pyr(Q) and the degrees of the places in Path(Q).

Structure of this chapter. In Section 7.1, we will prove the first interim result, which
is Theorem 168. In Section 7.2, we will prove the second interim result, which is Corollary
170. In Section 7.3, we will prove the third interim result, which is Corollary 171.

7.1 First Interim Result - Key Lemma II and Applications
Summary of the results of this section. In this section, we will prove the first interim
result in Theorem 168.

Main idea of the proof. The main idea of the proof of the first interim result in
Theorem 168 is captured in Key Lemma 211: We will deduce that the function of spectral
radii ρ(A(xlog2(P))) in x on the interval [1, 2] can even be extended to a holomorphic
function in a neighborhood of [1, 2]. Then the maximum modulus principle will provide
the two cases ρ(A(xlog2(P))) = d and ρ(A(xlog2(P))) < d on ]1, 2[.

Finally, we will also have to characterize these two cases in terms of the weights w(C)
of the circles C in Γ.

Structure of this section. In Subsection 7.1.1, we will define all notions which will
appear in Key Lemma 211 and make some preparations for the proof of Key Lemma 211.

In Subsection 7.1.2, we will formulate and prove Key Lemma 211 which is one of the
keys to the proof of our Main Theorem 177.

In Subsection 7.1.3, we will use Key Lemma 211 to characterize the two possible cases
for the function of spectral radii ρ(A(xlog2(P))) : [1, 2] → R≥0 of an irreducible matrix A
with entries in R≥0[yP, y

−1
P ] (see Lemma 214).

In Subsection 7.1.4, we will extend the insights of Subsection 7.1.3 to all connected
matrices A with entries in R≥0[yP, y

−1
P ] (see Lemma 216).
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In Subsection 7.1.5, for all weight functions w : E(Γ) → C[yP, y
−1
P ] such that the

image of w is contained in R≥0[yP, y
−1
P ]\{0} and all w-adjacency matrices A of Γ, we will

translate the characterization of the two possible cases for the function of spectral radii
ρ(A(xlog2(P))) : [1, 2] → R≥0 from Subsection 7.1.4 into terms of circles in the directed
graph Γ (see Corollary 219).

In Subsection 7.1.6, we will then finally prove our first interim result, which is Theo-
rem 168.

7.1.1 Some Prerequisites

Purpose of this subsection. In this Subsection, we will define all notions which will
appear in Key Lemma 211 and make some preparations for its proof.

A group algebra over the complex numbers. For the proof of the first interim
result in Theorem 168, we will interpret the entries in A(xlog2(P)) as functions [1, 2] → C
in x and even as holomorphic functions in open neighborhoods of [1, 2].

Here, analogously to polynomial functions and formal polynomials, we will replace the
input variable x of these functions h(x) : [1, 2]→ C with a formal symbol y and distinguish
between the functions h(x) and the formal elements h(y) in y. As for polynomials, this
formality will be helpful to provide clarity.

Consequently, in the following Definition 208, we will introduce the group algebra B
over C which contains these elements h(y) and, in Definition/Lemma 209, we will relate
the functions h(x) and the elements h(y) via the evaluation morphism σx : B → C

Definition 208. Let B be the group C-algebra of the additive group of R. Similar to the
notation for polynomials, we will also write yα for the elements α ∈ R and, thus, have the
equalities

B = {
∑
α∈I

cαy
α : cα ∈ C for all α ∈ I and all finite subsets I ⊂ R}

and ∑
α∈I

cαy
α ·
∑
β∈J

dβy
β =

∑
α∈I,β∈J

cαdβy
α+β

for all
∑
α∈I cαy

α,
∑
β∈J dβy

β ∈ B. Moreover, we define the subset

B≥0 := {
∑
α∈I

cαy
α : cα ∈ R≥0 for all α ∈ I and all finite subsets I ⊂ R}

of B which is an additive and multiplicative submonoid. For all β = (βp)p ∈ RP, we also
define

yβ := (yβp)p ∈ BP

and the subalgebra
C[yβ] := C[{yβp : p ∈ P}] ⊂ B

and denote the fraction field of C[yβ] by C(yβ).
Finally, for all polynomials h = h(yP) = ∑

α∈I cαy
α
P ∈ C[yP], we will also denote the

element
∑
α∈I cαy

β by h(yβ). Consequently, all elements in C(yβ) are of the form h(yβ)
g(yβ)

for some h, g ∈ C[yP] with g(yβ) ̸= 0.
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Definition/Lemma 209. Let U be the open subset C\]−∞, 0] × C of C2. We will call
a function f : U → C holomorphic if it is holomorphic in the sense of [Kau11, p. 2,
Definition 1.1], i.e. f is continuous and partially holomorphic, where f is called partially
holomorphic if the functions C\]−∞, 0]→ C, z 7→ f(z, s0) and C→ C, s 7→ f(z0, s) are
holomorphic for all (z0, s0) ∈ U .

We will denote the C-algebra of all these holomorphic functions U → C by O(U). Then
the map

πO(U) : B[t]→ O(U) via πO(U)(
∑
α,i

cα,iy
αti)(z, s) :=

∑
α,i

cα,iz
αsi

is a well defined morphism of C-algebras where we defined zα = Exp(αLog(z)) in Defini-
tion 167. Moreover, the map

σz : B → C via
∑
α∈I

cαy
α 7→

∑
α∈I

cαz
α

and its extension

σz : Bm×m → Cm×m via (ai,j)i,j 7→ (σz(ai,j))i,j

are also a well defined morphism of C-algebras for all z ∈ C\]−∞, 0]. Similar to the
evaluation maps on polynomials, we will also use the notation

f(z, s) := πO(U)(f)(z, s), g(z) := σz(g), A(z) := σz(A)

for all f ∈ B[t], g ∈ B, A ∈ Bm×m and (z, s) ∈ U .

Proof. On the one hand, since the principal branch Log : C\]−∞, 0]→ C of the complex
logarithm and the complex exponential function Exp : C → C are holomorphic, the
composition

Exp(αLog(·)) : C\]−∞, 0]→ C via z 7→ zα = πO(U)(yα)(z, s0)

is also holomorphic for all α ∈ R and s0 ∈ C. On the other hand, since

C→ C via s 7→ zα0 = πO(U)(yα)(z0, s)

is constant and, thus, also holomorphic for all α ∈ R and z0 ∈ C\]−∞, 0], we conclude that
πO(U)(yα) : U → C is a continuous partially holomorphic function and, hence, holomorphic
in the sense of [Kau11, p. 2, Definition 1.1]. Analogously, we obtain that πO(U)(t) : U → C
is also homomorphic.

Combining these two conclusions, the identity

πO(U)(
∑
α,i

cα,iy
αti) =

∑
α,i

cα,i · πO(U)(yα) · πO(U)(t)i

for all ∑α,i cα,iy
αti ∈ B[t] and the fact that O(U) is a C-algebra by [Kau11, p. 2, Definition

1.1] yields that πO(U) is a well defined morphism of C-algebras.
Finally, it is obvious that σz is a well defined morphism of C-algebras.

Lemma 210. We have the estimate |h(z)| ≤ h(|z|) for all h ∈ B≥0 and z ∈ C\]−∞, 0].

Proof. Choose φ ∈ R such that

z = |z|Exp(iφ) (370)
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is a presentation of z ∈ C\]−∞, 0] in polar form. Then we compute

|zα| = |Exp(αLog(z))| = |Exp(αLog(|z|Exp(iφ)))| = |Exp(αLog(|z|) + iφ)|
= |Exp(αLog(|z|))| = |z|α (371)

where the equalities hold by the following reasonings: The first and last equalities hold
by the definition of wα = Exp(αLog(w)) for all w ∈ C\]−∞, 0] in Definition 167. The
second equality holds by the equality in (370). The third equality holds by the equalities
Log(|z|Exp(iφ)) = Log(|z|) + Log(Exp(iφ)) = Log(|z|) + iφ. The fourth equality holds
because of the equality Exp(αLog(|z|)+iφ) = Exp(αLog(|z|))Exp(iφ) and because φ ∈ R
implies the equality |Exp(iφ)| = 1.

Next, for all h ∈ B≥0, we have the presentation h = ∑
α∈I cαy

α for some finite subset
I of R and cα ∈ R≥0 for all α ∈ I by the definition of B≥0 in Definition 208. Thus, for all
z ∈ C\]−∞, 0], we obtain the desired estimate by the equalities and estimate

|h(z)| ≤
∑
α∈I

cα|zα| =
∑
α∈I

cα|z|α = h(|z|)

where the estimate holds by the triangle inequality and by cα ∈ R≥0 for all α ∈ I, the first
equality holds by the estimate in (371) and the second equality holds by the definitions of
h = ∑

α∈I cαy
α and h(|z|) = σ|z|(h) in Lemma 209.

7.1.2 Key Lemma II

Summary of the results of this subsection. In the following Key Lemma 211, we
will estimate the spectral radius ρ(A(x)) of any irreducible quadratic matrix A with entries
in B≥0 and for all x ∈ R>0. As the name already suggests, this lemma is one of the keys to
the proof of Main Theorem 177. It enables us to show the estimate for the spectral radius
in Proposition 175 which is the most important ingredient for the proof of Main Theorem
177.

Main ideas of the proof of Key Lemma II. For (i) and (ii) in Key Lemma 211, we
will first use Perron-Frobenius theory and the implicit function theorem to show that the
spectral radius ρ(A(x)) is already an algebraically simple eigenvalue λ(x) of A(x) for all
x ∈ R>0 and that this function λ : R>0 → C can be extended to a holomorphic function
in a neighborhood of R>0. Then, for (iii) and (iv), we will apply the maximum modulus
principle and more Perron Frobenius theory to conclude that, for any closed interval
I = [a, b] ⊂ R>0, the function of spectral radii ρ(A(x)) is either constant or attains its
maximum at one of the boundary points but not at the interior points.

Lemma 211 (Key Lemma II). Let A = (ai,j)i,j ∈ Bm×m
≥0 be an irreducible matrix and

ρ(A(z)) be the spectral radius of A(z) ∈ Cm×m for all z ∈ C\]−∞, 0]. Then we have the
following:

(i) The spectral radius λ(x) := ρ(A(x)) ∈ R≥0 is an algebraically simple eigenvalue of
A(x) ∈ Rm×m

≥0 for all x ∈ R>0 and defines a map λ : R>0 → C.

(ii) The map λ : R>0 → C can be extended to a holomorphic function on a domain
G ⊆ C\]−∞, 0] which contains R>0. Let us also denote this extension by λ. Then
λ(z) is an eigenvalue of A(z) for all z ∈ G.

(iii) For all closed intervals I = [a, b] ⊂ R>0 with a ≤ b, we have the identity

max
x∈I

ρ(A(x)) = max(ρ(A(a)), ρ(A(b))) =: d
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(iv) and either ρ(A(x)) = d or ρ(A(x)) < d for all x ∈]a, b[.

Proof. For (i): By the assumption, the (i, j)-th entry ai,j of A is an element in B≥0. Thus,
for all x ∈ R>0 and all i, j ∈ {1, . . . ,m}, we conclude that, ai,j(x) ∈ R>0 if ai,j ̸= 0. Com-
bining this and the fact that the irreducibility of a matrix only depends on the position
of its non-zero entries by its definition in Definition 62, we deduce that A(x) ∈ Rm×m

≥0 is
an irreducible matrix for all x ∈ R>0. Therefore, [HJ90, p.508] supplies that the spectral
radius λ(x) = ρ(A(x)) is an algebraically simple eigenvalue of A(x) for all x ∈ R>0. Hence,
(i) follows.

For (ii): Let χA be the characteristic polynomial of A. Then πO(U)(χA) : U → C,
(z, s) 7→ χA(z, s) is a holomorphic function by the definition of πO(U) : B[t] → O(U) in
Lemma 209 on page 263. Then the algebraic simplicity of the eigenvalue λ(x) in Lemma
211(i) implies

( d
ds
πO(U)(χA))(x, λ(x)) = ( d

dt
χA(x, t))(λ(x)) ̸= 0 (372)

for all x ∈ R>0. By the inequality in (372) and the implicit mapping theorem in [Kau11,
p. 28, Theorem 8.6], there is an open ball Bx in C\]−∞, 0] around any x ∈ R>0 such that
λ : R>0 → C has a holomorphic extension λx on Bx and we have the equalities

0 = πO(U)(χA)(z, λx(z)) = χA(z, t)(λx(z))

for all z ∈ Bx. Thus, λx(z) is an eigenvalue of A(z) for all z ∈ Bx.
Now, since the intersection of two such balls is empty or contains a non-empty open

interval of R>0 on which the extensions are identical with λ, they are compatible by the
identity theorem for holomorphic functions in [Fre09, p.125, corollary III.3.2] (notice that
the notions of holomorphic functions and analytic functions are used synonymously in
[Fre09, p. 53]).

Next, let G be the union of these open balls Bx. Then G is open and connected and,
thus, a domain. Consequently, we obtain that λ can be extended to a holomorphic func-
tion on this domain G ⊆ C\]−∞, 0] which contains R>0 (see Figure 7.1 on page 265) and
λ(z) is an eigenvalue of A(z) for all z ∈ G. Hence, (ii) follows.

Figure 7.1: The domain and annulus in a proof

For (iii) and (iv): First, for the (i, j)-th entry ai,j ∈ B≥0 of A, we derive the estimate
|ai,j(z)| ≤ ai,j(|z|) from Lemma 210. Therefore, if we define |B| := (|bi,j |)i,j for all
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B = (bi,j)i,j ∈ Cm×m, we get the entrywise estimate

|A(z)| ≤ A(|z|) (373)

for all z ∈ C\]−∞, 0]. Now, we estimate

|λ(z)| ≤ ρ(A(z)) ≤ ρ(A(|z|)) = λ(|z|) (374)

for all z ∈ G where the estimates and equality holds by the following reasonings: The first
estimate holds by the definition of the spectral radius ρ(A(z)) of A(z) and by the fact that
Lemma 211(ii) provides that λ(z) is an eigenvalue of A(z). The second estimate holds by
the estimate in (373) and by applying [HJ90, p.491, Theorem 8.11.18]. The equality holds
by the definition of λ in Lemma 211(ii).

Next, we may take a connected open subset V of G (see Figure 7.1) such that the
inclusions R>0 ⊆ V ⊆ G∪{0} hold for the closure V of V and such that the intersection of
V and the annulus Xa,b := {z ∈ C : a ≤ |z| ≤ b} is still connected. Let D be the interior of
V ∩Xa,b. Then D is a bounded domain which contains the open interval ]a, b[ but neither
a or b. Moreover, the closure D of D is contained in V ∩Xa,b ⊆ G due to a > 0. Thus, λ
restricts to a continuous function on D which is also holomorphic on D.

On the one hand, by the maximum principle in [Fis03, p. 91, Satz 6.4], either λ is
constant on D and the desired identity in (iii) and the first case in (iv) hold or there is an
element z′ ∈ ∂D such that |λ(z′)| = maxz∈D |λ(z)| and

|λ(z′)| > |λ(z)| (375)

for all z ∈ D. On the other hand, the estimate in (374) also yields the estimate

|λ(z′)| ≤ |λ(|z′|)|. (376)

Combining (375) and (376) provides |z′| /∈ D. But this and z′ ∈ D ⊆ Xa,b imply |z′| ∈
[a, b]\D = {a, b} and, thus, the equality

max
z∈D
|λ(z)| = max(λ(a), λ(b)). (377)

Second to last, we estimate

d ≤ max
x∈I

ρ(A(x)) = max
x∈I

λ(x) ≤ max
z∈D
|λ(z)| = max(λ(a), λ(b)) = d (378)

where the first estimate holds since I = [a, b] contains the elements a and b, the first
and last equalities hold by the definition of λ in Lemma 211(i), the second estimate
holds by the inclusion I ⊆ D and the second equality holds by the identity in (377).
Consequently, all the estimates in (378) must be equalities and, hence, the desired equality
maxx∈I ρ(A(x)) = d in (iii) follows.

Finally, the estimate in (375) especially implies ρ(A(x)) = λ(x) < maxz∈D |λ(z)| = d
for all x ∈]a, b[⊂ D and, hence, (iv) also follows.

7.1.3 Application to Irreducible Matrices in Several Variables

Summary of the results of this subsection. The matrix in Key Lemma 211 has
entries in B≥0, i.e. only in one variable y. But, in the first interim result in Theorem 168,
the matrix A = A(yP) has entries in R≥0[yP, y

−1
P ], i.e. in several independent variables yp.

In this subsection, we will make the transition from R≥0[yP, y
−1
P ] to R≥0[ylog2(P)] via the

evaluation isomorphism L : C(yP)→ C(ylog2(P)) in Definition/Lemma 212 which replaces
yp with ylog2(p) for all p ∈ P. By Lemma 213, this isomorphism L will then enable us to
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transfer conclusions for the characteristic polynomial χL(A) of L(A) = A(ylog2(P)) to the
characteristic polynomial χA of A = A(yP).

Consequently, in Lemma 214, we will characterize the two possible cases for the func-
tion of spectral radii ρ(A(xlog2(P))) : [1, 2] → R≥0 of an irreducible matrix A with entries
in R≥0[yP, y

−1
P ].

Definition/Lemma 212. The map

L : C(yP)→ C(ylog2(P)) via h(yP)
g(yP) 7→

h(ylog2(P))
g(ylog2(P))

and its extension

L : C(yP)m×m → C(ylog2(P))m×m via (ai,j)i,j 7→ (L(ai,j))i,j .

are well defined isomorphisms of C-algebras.

Proof. It is clear that the second desired statement, namely that L : C(yP)m×m →
C(ylog2(P))m×m is a well defined isomorphism of C-algebras, immediately follows from the
first desired statement, i.e. from L : C(yP)→ C(ylog2(P)) being a well defined isomorphism
of C-algebras.

Now, for the first desired statement, it is obvious that L|C[yP] is a well defined morphism
of C-algebras as C[yP] is the polynomial ring in the variables yp for all p ∈ P.

We first show the identity kerL|C[yP] = {0} which then provides that L|C[yP] is a
monomorphism of C-algebras: For that, let yβP be a monomial in C[yP], i.e. β = (βp)p ∈
(NP

0 )′. Then we obtain the equality

L(yβP) = y
∑

p
log2(p)βp = ylog2(Pβ) (379)

where the first equality holds by the definition of L and by the multi-index notation in
(1) and the second equality holds by the definition of log2(p) = log2(p) for all p ∈ P in
Definition 167 and by well known rules for logarithms.

Next, let h ∈ kerL|C[yP]. Then we have the equality h = ∑
β∈I cβy

β
P for some finite

subset I of (NP
0 )′ and cβ ∈ C for all β ∈ I. Thus, we also compute

0 = L(h) =
∑
β∈I

cβy
log2(Pβ) ∈ B (380)

where the first equality holds by the choice of h ∈ kerL|C[yP], the second equality holds by
the presentation of h = ∑

β∈I cβy
β
P, by the definition of L and by the equality in (379).

Now, since log2 is injective and since any natural number uniquely factorizes into
prime numbers, we obtain that these elements ylog2(Pβ) in (380) are pairwise distinct for
all β ∈ I and, thus, are C-linearly independent elements in B by Definition 208. Hence,
the equalities cβ = 0 follow for all β ∈ I. Therefore, the desired equalities h = 0 and
kerL|C[yP] = {0} follow and, consequently, L|C[yP] is indeed a monomorphism.

Furthermore, we conclude that L must also be a well defined monomorphism of C-
algebras since it is the canonical extension of the monomorphism L|C[yP] via the universal
property for the field C(yP) of fractions of C[yP].

Finally, the surjectivity of L immediately follows from the definition of the field
C(ylog2(P)) of fractions of the C-subalgebra C[ylog2(P)] = C[{yαp : p ∈ P}) of B in Def-
inition 208 which is clearly the image of L.

Lemma 213. Let χA ∈ C(yP)[t] and χL(A) ∈ C(ylog2(P))[t] be the characteristic poly-
nomials of the matrices A ∈ C(yP)m×m and L(A) ∈ C(ylog2(P))m×m, respectively. Then
χA ∈ C[t] if and only if χL(A) ∈ C[t].
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Proof. Let A = (ai,j)i,j and χA = ∑r
i=0 cit

i with ci ∈ C(yP) for all i = 0, . . . , r. Combining
the definition of L(A) = (L(ai,j))i,j in Definition/Lemma 212, the Leibniz formula for
determinants and the fact that L is a morphism of rings by again Definition/Lemma 212
yields that the i-th coefficient of χL(A) = det(tI − L(A)) is the L-image L(ci) of the i-th
coefficient ci of χA = det(tI − A). But since L is even an isomorphism of C-algebras, we
conclude that L(ci) ∈ C if and only if ci ∈ C. Hence, the desired equivalence follows.

Lemma 214. Let A ∈ R≥0[yP, y
−1
P ]m×m be an irreducible matrix, let d be the maximum

max(ρ(A(1)), ρ(A(P))) ∈ R>0 and let χA ∈ C[yP, y
−1
P ][t] be the characteristic polynomial

of A. Then there are the following two possible cases:

(i) χA /∈ C[t] and ρ(A(xlog2(P))) < d for all x ∈]1, 2[.

(ii) χA ∈ C[t] and ρ(A(xlog2(P))) = d for all x ∈ [1, 2].

Proof. First, we notice that the matrix

L(A(yP)) ∈ Bm×m
≥0 is irreducible (381)

because of the definition of L : C(yP)m×m → C(ylog2(P))m×m in Definition/Lemma 212
via the isomorphism L : C(yP) → C(ylog2(P)) and because the irreducibility of a matrix
only depends on the positions of the non-zero-entries by its definition on Definition 62.

Second, we also notice that we have the identity Evalxlog2(P) = σx◦L for all x ∈ [1, 2] by
the definitions of these maps in Definition 161(ii), Definition/Lemma 209 and Definition
212. Therefore, we have the equalities

A(xlog2(P)) = Evalxlog2(P)(A) = σx(L(A)) = L(A)(x). (382)

Now, because ρ(A(1log2(P))) = ρ(A(1)) ≤ d and ρ(A(2log2(P))) = ρ(A(P)) ≤ d, combining
(382), (381), Key Lemma 211(iii) and Key Lemma 211(iv) yields that the function of the
spectral radius ρ(A(xlog2(P))) in the argument x ∈ [1, 2] reaches its maximum at one of
the boundary points and that we either have the estimate

ρ(A(xlog2(P))) < d (383)

or the equality

ρ(A(xlog2(P))) = d (384)

for all x ∈]1, 2[.
We will distinguish two cases: First, suppose the estimate in (383) holds. Since

maxx=1,2 ρ(A(xlog2(P))) = d holds by assumption and since ρ(A(·)) is continuous on [1, 2]
by Key Lemma 211(ii), it cannot be constant on [1, 2]. Hence, we must have χA /∈ C[t]
and arrive at the first desired case (i).

Second, suppose that the equality in (384) holds. We will show that χA ∈ C[t] holds
and, hence, arrive at the second desired case (ii): For all x ∈ R>0, let λx,1, . . . , λx,m be
the eigenvalues of A(xlog2(P)) (counted with multiplicities). Then, on the one hand, we
conclude

|λx,k| ≤ ρ(A(xlog2(P))) = d (385)

for all k = 1, . . . ,m and all x ∈ R>0 where the estimate holds by the definition of the
spectral radius and the equality holds because of the equality in (384), because Lemma
211(ii) implies that the partially constant function ρ(A(·)) : R>0 → C can be extended to
a holomorphic function on a domain which contains R>0 and because the identity theorem
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in [Fre09, p. 125, Corollary 3.3.2.1] then implies that ρ(A(·)) must be constantly d on all
of R>0. This again yields

|χA(xlog2(P))(s)| =
m∏
k=1
|s− λx,k| ≤

m∏
k=1
|s|+ |λx,k| ≤ (s+ d)m (386)

for all x ∈ R>0 and all s ∈ R>0 where the equality holds since λx,1, . . . , λx,m are the
eigenvalues of A(xlog2(P)) (counted with multiplicities) and, thus, χA(xlog2(P)) is of the
form ∏m

k=1 t − λx,k, the first estimate holds by the triangular inequality and the second
estimate holds by the estimate in (385).

One the other hand, because the matrix A has entries in R≥0[yP, y
−1
P ] and because

of the Leibniz formula for determinants, we have a presentation χA = ∑
β∈X hβ(t)yβP for

some finite subset X of (ZP)′ and polynomials hβ(t) ∈ R[t]\{0} for all β ∈ X. Then we
obtain the equalities

χL(A) =
∑
β

hβ(t)(ylog2(P))β =
∑
β

hβ(t)ylog2(Pβ) (387)

where the equalities hold by the following reasonings: The first two equalities hold by
combining the definitions of the morphisms L : C(yP)m×m → C(ylog2(P))m×m, of L :
C(yP) → C(ylog2(P)) in Definition/Lemma 212, the fact that the latter is a morphism of
C-algebras with L(yp) = ylog2(p) and the above presentation of χA. The second equality
holds by the definitions of ylog2(P) = (ylog2(p))p in Definition 208, of log2(p) = log2(p)
for all p ∈ P in Definition 167 and of the multi-index notation for powers in (1) and by
applying well known rules for logarithms.

Since log2 is injective and since any natural number has a unique decomposition into
prime numbers, log2(Pβ) is an injective map in the argument β ∈ (ZP)′ and we moreover
have log2(Pβ) = 0 if only if β = 0. Therefore, combing this fact and the identity in (387)
provides that

χL(A) ∈ C[t] if and only if X = {0}. (388)

Now, assume that there is a non-zero index β ∈ X. Then there is also a non-zero index
γ ∈ X such that Pγ = max{Pβ : β ∈ X} > 1 or Pγ = min{Pβ : β ∈ X} < 1. Moreover,
since hγ(t) ̸= 0, there is an element s ∈ R>0 such that hγ(s) ̸= 0. Then, by the injectivity
of log2(Pβ) as a function in β and by the identity in (387), we obtain a small ϵ > 0 such
that

|χA(xlog2(P))(s)| = |χL(A)(x)(s)| = |hγ(s)xlog2(Pγ) +O(xlog2(Pγ)−ϵ)| → ∞

as x ∈ R>0 tends to ∞ in the first case Pγ > 1 and

|χA(xlog2(P))(s)| = |χL(A)(x)(s)| = |hγ(s)xlog2(Pγ) +O(xlog2(Pγ)+ϵ)| → ∞

as x ∈ R>0 tends to 0 in the second case Pγ < 1. But, both cases contradict that (386)
implies that χA(xlog2(P))(s) is bounded as a function in x ∈ R>0. Therefore, we must have
X = {0}. Combining this equality and the equivalence in (388) provides χL(A) ∈ C[t].
Finally, we derive the desired statement χA ∈ C[t] from Lemma 213.

7.1.4 Application to Reducible Matrices in Several Variables

Summary of the results of this subsection. In this subsection, we will extend the
insights from Lemma 214 of the last Subsection 7.1.3 to connected matrices.

For that, we will first prove the following Lemma 215 which will enable us to apply
Lemma 214 to the irreducible submatrices A1, . . . , Ar of PAP t. Then we will extend
Lemma 214 to Lemma 216.
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Lemma 215. Let A ∈ R≥0[yP, y
−1
P ]m×m be connected.

(i) Then there is some permutation matrix P ∈ {0, 1}m×m such that PAP t is an upper
block triangular matrix with quadratic irreducible matrices A1, . . . , Ar on the block
diagonal.
Moreover, let B1, . . . , Br−1, C2, . . . Cr be the matrices with entries in R≥0[yP, y

−1
P ]

such that

PAP t =



A1 ∗ . . . ∗ . . . . . . ∗

0 . . . . . . ...
...

... . . . . . . ∗
...

0 . . . 0 Ak ∗ . . . ∗
... 0 . . . . . . ...
...

... . . . . . . ∗
0 . . . . . . 0 . . . 0 Ar


=



Z1
...
Zk
...
Zr


=
(
S1 . . . Sk . . . Sr

)

with
Z1 :=

(
A1 B1

)
and Zk :=

(
0 Ak Bk

)
and Zr :=

(
0 Ar

)
and

S1 :=
(
A1
0

)
and Sk :=

CkAk
0

 and Sr :=
(
Cr
Ar

)

for all k = 2, . . . , r − 1. If r ≥ 2, then we also have the inequalities

B1 ̸= 0 and (Bk ̸= 0 or Ck ̸= 0) and Cr ̸= 0 (389)

for all k = 2, . . . , r − 1.

(ii) Suppose that all column sums in A(1) ∈ Rm×m
≥0 and all row sums in A(P) ∈ Rm×m

≥0
are at most d ∈ R>0 Then the following hold for the matrix PAP t in Lemma 215(i):

(a) All column (resp. row) sums in Ak(1) (resp. Ak(P)) are at most d for all
k = 1, . . . , r

(b) If r ≥ 2, then there is a column sum in Ak(1) or a row sum in Ak(P) which is
less than d for all k = 1, . . . , r.

(c) If r ≥ 2, then the estimates

max(ρ(Ak(1)), ρ(Ak(P))) ≤ d and min(ρ(Ak(1)), ρ(Ak(P))) < d

hold for all k = 1, . . . , r.

Proof. For (i): If A is irreducible, we can choose P as the identity matrix and set r := 1.
Otherwise, by first applying the definition of reducible matrices in Definition 62(ii) to

A and then iteratively to all reducible block matrices which iteratively appear in the corre-
sponding upper block triangular matrices on the block diagonals, we obtain a permutation
matrix P ∈ {0, 1}m×m, a natural number r ≥ 2, quadratic irreducible matrices A1, . . . , Ar
and matrices B1, . . . , Br−1, C2, . . . Cr with entries in R≥0[yP, y

−1
P ] such that PAP t is of the

desired upper block triangular form in the ’main’-part.
Finally, the desired inequalities in (389) follow by the following reasoning: If the con-

trary were true, then there would be a permutation matrix T ∈ {0, 1}m×m such that
T (PAP t)T t = (TP )A(TP )t is a block diagonal matrix with at least two blocks. But
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this is impossible because a product TP of permutation matrices is again a permutation
matrix and because of the definition of A being connected in Definition 62.

For (ii): First of all, for all xP ∈ {1,P}, we notice the equalities

(PAP t)(xP) = P (xP)A(xP)P (xP)t = PA(xP)P t

where the first equality holds since EvalxP is a morphism of C-algebras in Definition 161(ii)
and the second equality holds by P ∈ {0, 1}m×m. Consequently, for all xP ∈ {1,P}, as
multiplying P from left to A(xP) only permutes the rows of A(xP) and as then multiplying
P t from the right to PA(xP) only permutes the columns of PA(xP), we conclude that d
is still an upper bound for all column sums in PA(1)P t and for all row sums in PA(P)P t.
Therefore, w.l.o.g we may assume that A is already of the upper block triangular form in
Lemma 215(i).

Now, due to A ∈ R≥0[yP, y
−1
P ]m×m, we get that A(1) = Eval1(A) and A(P) =

EvalP(A) only have non-negative real entries. For (ai,j)i,j := A, then combining this
fact, the assumption that all the column sums in A(1) and the assumption that all the
row sums in A(P) are at most d implies the first desired item (a).

Next, suppose r ≥ 2. Then we notice that A ∈ R≥0[yP, y
−1
P ]m×m even provides that

the entry ai,j vanishes if and only if ai,j(1) (resp. ai,j(P)) vanishes. Therefore, combining
these equivalences, the assumption that all the column sums in A(1) are at most d, the
assumption that all the row sums in A(P) are at most d and the inequalities in (389)
yields that there must be a column sum in Ak(1) or row sum in Ak(P) which is less than
d for all k = 1, . . . , r. Hence, (b) follows.

Second to last, we derive the estimate

max(ρ(Ak(1)), ρ(Ak(P))) ≤ d

for all k = 1, . . . , r from the estimates in (a) and from then applying [HJ90, p.492, Theorem
8.1.22].

Finally, we also derive the last desired estimate

min(ρ(Ak(1)), ρ(Ak(P))) < d

for all k = 1, . . . , r from the irreducibility of Ak, from the first two items (a) and (b) and
from Lemma 64(ii). Hence, (c) follows.

Lemma 216. Let A ∈ R≥0[yP, y
−1
P ]m×m be a connected matrix such that the row sums of

A(P) and the column sums of A(1) are equal to some d ∈ R>0 and let χA ∈ C[yP, y
−1
P ][t]

be the characteristic polynomial of A. Then there are the following two possible cases:

(i) χA /∈ C[t] and ρ(A(xlog2(P))) < d for all x ∈]1, 2[.

(ii) χA ∈ C[t] and ρ(A(xlog2(P))) = d for all x ∈ [1, 2].

In case (ii), the matrix A is necessarily irreducible.

Proof. By [HJ90, p.492, Theorem 8.1.22], we obtain

ρ(A(1)) = ρ(A(P)) = d. (390)

Thus, if A is irreducible, then the desired statement immediately follows from the items
(i) and (ii) in Lemma 214.

Now, let A be reducible. We have to show that the case (i) holds. For that, we consider
the matrix PAP t in Lemma 215(i) which is in upper block triangular form with quadratic
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irreducible matrices A1, . . . , Ar on the block diagonal. Since A is reducible, we have r ≥ 2
and, thus, Lemma 215(ii)(c) provides the estimates

max(ρ(Ak(1)), ρ(Ak(P))) ≤ d and min(ρ(Ak(1)), ρ(Ak(P))) < d (391)

for all k = 1, . . . , r. Then we conclude the desired estimate by the equality and estimate

ρ(A(xlog2(P))) = max
k=1,...,r

ρ(Ak(xlog2(P))) < d

for all x ∈]1, 2[ where the equality and estimate hold by the following reasonings: The
equality holds because A(xlog2(P)) and

P (xlog2(P))A(xlog2(P))P (xlog2(P))t = PA(xlog2(P))P t = PA(xlog2(P))P−1

have the same eigenvalues. For the estimate, we distinguish two cases:
If max(ρ(Ak(1)), ρ(Ak(P))) < d, then both cases in Lemma 214 provide the estimate

ρ(Ak(xlog2(P))) < d. Else, if max(ρ(Ak(1)), ρ(Ak(P))) = d, then combining the equalities
1log2(P) = 1 and 2log2(P) = P, the second estimate in (391) and Lemma 214(i) also provides
the estimate ρ(Ak(xlog2(P))) < d.

Moreover, since ρ(A(1log2(P))) = ρ(A(1)) = d holds by the equalities in (390), the
function of the spectral radius ρ(A(xlog2(P))) cannot be constant on [1, 2] and, hence, the
other desired statement χA /∈ C[t] follows.

7.1.5 Finite Weighted Directed Graphs and its Characteristic Polyno-
mial

Summary of the results of this subsection. The last missing piece for the proof of
Theorem 168 in the next Subsection 7.1.6 is Corollary 219 of this subsection. For all weight
functions w : E(Γ)→ C[yP, y

−1
P ] such that the image of w is contained in R≥0[yP, y

−1
P ]\{0}

and all w-adjacency matrices A of Γ, Corollary 219 translates the two possible cases for
the characteristic polynomial χA in Lemma 216 into terms of the weights w(C) of the
circles C in Γ.

In order to prove this Corollary 219, we will first need the following Definition 217
and Theorem 218. Here, Theorem 218 is a further result of this thesis and provides a
new interpretation of the characteristic polynomials of adjacency matrices in terms of the
circles in the directed graph.

Definition 217. Let m ∈ N, X ⊆ X0 := {1, . . . ,m} and R be a commutative ring.

(i) We write S(X) for the symmetric group on X, i.e. the set of all bijections σ : X →
X.

(ii) Let σ ∈ S(X). Then we define O(σ, i) as the orbit {σk(i) : k ∈ N0} of i ∈ X under
the action of σ, i.e. the action of ⟨σ⟩ where ⟨σ⟩ is the subgroup of S(X) which is
generated by σ, the set

F (σ) := {i ∈ X : σ(i) = i}

of elements which are fixed under the action of σ, the set

G(σ) := X\F (σ)

of elements which are not fixed under action of σ and the set

R(σ) := {minO(σ, i) : i ∈ X}

of representatives of the quotient set ⟨σ⟩\X containing only the minimal elements of
all orbits.
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(iii) For all σ ∈ S(X), we define the canonical extension

σ̂ ∈ S(X0) of σ via i 7→
{
σ(i) if i ∈ X
i else

,

the sign-value sign(σ) := sign(σ̂) of σ and we call σ a k-cycle of X if σ̂ is a k-cycle
in S(X0) for all k ∈ N0.

(iv) Let A = (ai,j)i,j ∈ Rm×m. Then we define aσ,i := ∏#O(σ,i)
l=1 aσl−1(i),σl(i) for all i ∈ X

and aσ := ∏
i∈R(σ) aσ,i.

(v) Let Γ be a finite directed graph, v = (P1, . . . , Pm) be some enumeration of its ver-
tices, let w : E(Γ) → R be a weight function on Γ, let σ ∈ S(X), i ∈ X and
k := #O(σ, i). Then we define C(σ, i) to be set of all cycles C in Γ for which
(Pi, Pσ(i), . . . , Pσk−1(i), Pσk(i)) = (Pi, Pσ(i), . . . , Pσk−1(i), Pi) is the sequence of vertices
of C.

Finite Weighted Directed Graphs and its Characteristic Polynomial The fol-
lowing Theorem 218 is a new interpretation of the characteristic polynomials of adjacency
matrices in terms of the circles in the directed graph.

Theorem 218. Let X0 := {1, . . . ,m}, let R be a commutative ring, let Γ be a finite
directed graph with weight function w : E(Γ) → R, let A = (ai,j)i,j ∈ Rm×m be the
w-adjacency matrix of Γ for some enumeration v = (P1, . . . , Pm) of its vertices and let
χA = ∑m

k=0 ckt
k ∈ R[t] with ck ∈ R for all k = 0, . . . ,m be the characteristic polynomial

of A. Then the following hold:

(i) For all subsets X ⊆ X0 and σ ∈ S(X), we have the identity

aσ =
∏

i∈R(σ)

∑
C∈C(σ,i)

w(C).

(ii) We have the identity
ck = (−1)m+k∑

X,σ

sign(σ)aσ

where the sum runs over all X ⊆ X0 with #X = m− k and all σ ∈ S(X).

Proof. For (i): Let X ⊆ X0, σ ∈ S(X) and, moreover, let us shortly write E(Γ, i, j) :=
E(Γ, Pi, Pj). Then we first compute

aσ,i =
#O(σ,i)∏
l=1

aσl−1(i),σl(i) =
#O(σ,i)∏
l=1

∑
Ql∈E(Γ,σl−1(i),σl(i))

w(Ql) =
∑

C∈C(σ,i)
w(C) (392)

for all i ∈ R(σ) where the equalities hold by the following reasonings: The first equality
holds by the definition of aσ,i in Definition 217(iv). The second equality holds by the
definition of the w-adjacency matrixA = (ai,j)i,j := (∑Q∈E(Γ,i,j)w(Q))i,j of Γ in Definition
58. For the third equality, we expand the product on the left side of this third equality:
On the one hand, for k := #O(σ, i), the summands in the expanded product are of the
form ∏k

l=1w(Ql) with Ql ∈ E(Γ, σl−1(i), σl(i)). But, this implies that C : Pi
Q1−−→ Pσ(i)

Q2−−→
. . .

Qk−−→ Pσk(i) = Pi is a cycle of length k. Consequently, we obtain that C is an element
in C(σ, i) by its definition in Definition 217(v). Moreover, we also obtain the equality∏k
l=1w(Ql) = w(C) by the definition of w(C) in Definition 58. On the other hand, because
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the edges Ql run over all edges Pσl−1(i) −→ Pσl(i) and because of the definition of C(σ, i) in
Definition 217(v), all circles in C(σ, i) are uniquely covered in this way.

Finally, combining the definition of aσ = ∏
i∈R(σ) aσ,i in Definition 217(iv) and the

equality in (392) yields the desired identity in (i).

For (ii): Let Im be the identity matrix in Rm×m. First, we obtain the equalities

χA = det(tIm −A) = (−1)m det(A− tIm)
= (−1)m

∑
σ∈S(X0)

sign(σ)
∏

i∈G(σ)
ai,σ(i)

∏
i∈F (σ)

(ai,σ(i) − t). (393)

where the equalities hold by the following reasonings: The first equality holds by the def-
inition of characteristic polynomials. The second equality holds by the multi-linearity of
the determinant. The third equality holds by applying the Leibniz formula for determi-
nants and the definitions of F (σ) and G(σ) in Definition 217(ii). Now, on the one hand,
we have the equalities

∏
i∈G(σ)

ai,σ(i) =
∏

i∈G(σ)∩R(σ)

#O(σ,i)∏
l=1

aσl−1(i),σl(i) =
∏

i∈G(σ)∩R(σ)
aσ,i (394)

for all σ ∈ S(X0) where the first equality holds by the decomposition of G(σ) into a
disjoint union of the σ-orbits O(σ, i) for all i ∈ G(σ)∩R(σ) and the second equality holds
by the definition of aσ,i = ∏#O(σ,i)

l=1 aσl−1(i),σl(i) in Definition 217(iv). On the other hand,
we have ∏

i∈F (σ)
(ai,σ(i) − t) =

m∑
k=0

∑
J⊆F (σ)

#J+k=#F (σ)

(−t)k
∏
i∈J

ai,σ(i)

=
m∑
k=0

∑
J⊆F (σ)

#(J⊔G(σ))=m−k

(−t)k
∏
i∈J

ai,σ(i)

=
m∑
k=0

(−t)k
∑

J⊆F (σ)
#(J⊔G(σ))=m−k

∏
i∈J

aσ,i (395)

for all σ ∈ S(X0) where the first equality holds as any summand of the expanded product∏
i∈F (σ)(ai,σ(i)−t) is of the form (−t)k∏i∈J ai,σ(i) for some subset J ⊆ F (σ) with #J+k =

#F (σ), the second equality holds by the equalities #(J ⊔G(σ)) + k = #J + k+ #G(σ) =
#F (σ) + #G(σ) = #X0 = m and the third equality holds by elementary arithmetics and
by the fact that the equalities aσ,i = ∏#O(σ,i)

l=1 aσl−1(i),σl(i) = ∏1
l=1 aσl−1(i),σl(i) = ai,σ(i) hold

for all i ∈ J ⊆ F (σ). Then we conclude the equalities

χA = (−1)m
∑

σ∈S(X0)
sign(σ)

 ∏
i∈G(σ)∩R(σ)

aσ,i




m∑
k=0

(−t)k
∑

J⊆F (σ)
#(J⊔G(σ))=m−k

∏
i∈J

aσ,i


=

m∑
k=0

tk(−1)m+k ∑
σ∈S(X0)

∑
J⊆F (σ)

#(J⊔G(σ))=m−k

sign(σ)

 ∏
i∈G(σ)∩R(σ)

aσ,i

(∏
i∈J

aσ,i

)

=
m∑
k=0

tk(−1)m+k ∑
σ∈S(X0)
J⊆F (σ)

#(J⊔G(σ))=m−k

sign(σ)
∏

i∈(G(σ)⊔J)∩R(σ)
aσ,i (396)
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where the equalities hold by the following reasonings: The first equality holds by applying
the two identities in (394) and (395) to the corresponding factors in the identity in (393).
The second equality holds by elementary arithmetics. The third equality holds because
the inclusions J ⊆ F (σ) ⊆ R(σ) hold by the definitions of F (σ) and R(σ) in Definition
217(ii) and because combining these inclusions and one of de Morgan’ rules then yields
the equality (G(σ) ⊔ J) ∩R(σ) = (G(σ) ∩R(σ)) ⊔ J .

Now, combining the identity in (396) and the identity χA = ∑m
k=0 ckt

k provides the
equality

ck = (−1)m+k ∑
σ∈S(X0)
J⊆F (σ)

#(J⊔G(σ))=m−k

sign(σ)
∏

i∈(G(σ)⊔J)∩R(σ)
aσ,i (397)

for all k = 0, . . . ,m.
In (397), the sum runs over all elements in the set

Tm−k = {(σ, J) ∈ S(X0)× {J : J ⊆ X0} : J ⊆ F (σ) and #(G(σ) ⊔ J) = m− k}.

We will show that the following maps ϕ and ψ are well defined and inverse to each other:

ϕ : Tm−k →
∐

X⊆X0
#X=m−k

S(X) via (σ, J) 7→ σ′

where σ′ is the canonical restriction of σ to an element in S(G(σ) ⊔ J) and

ψ :
∐

X⊆X0
#X=m−k

S(X)→ Tm−k via σ 7→ (σ̂, F (σ))

where σ̂ ∈ S(X0) is the canonical extension of σ in Definition 217(iii).
First, let (σ, J) ∈ Tm−k. Then we have X := G(σ)⊔ J ⊆ X0 with #X = m− k by the

definition of Tm−k. Moreover, as σ is a bijection and fixes all elements in X0\X ⊆ F (σ),
we deduce the equality σ(X) = X and, hence, σ canonically restricts to an element in
σ′ ∈ S(X). Thus, ϕ is well defined. Furthermore, we also obtain the equalities

(̂σ′) = σ and F (σ′) = J. (398)

by the following reasonings: The first equality holds since the canonical extension and
restriction are clearly inverse to each other. The second equality holds since σ′ fixes any
element in F (σ) ∩X = J and does not fix any element in G(σ) = X\J .

Next, let X ⊆ X0 with #X = m−k and σ ∈ S(X). Then σ̂ ∈ S(X0) and J := F (σ) ⊆
F (σ̂) ⊆ X0. Moreover, we clearly have the equality G(σ) = G(σ̂) and, consequently, we
conclude the equalities #(G(σ̂) ⊔ J) = #(G(σ) ⊔ F (σ)) = #X = m− k. Hence, ψ is well
defined. Furthermore, we also obtain the identity

(σ̂)′ = σ (399)

since the canonical restriction and extension are obviously inverse to each other. Thus,
(398) yields ψ ◦ ϕ = id and (399) yields ϕ ◦ ψ = id. Especially, this means that ϕ is
bijective.

On the one hand, for all (σ, J) ∈ Tm−k, we get the equalities

sign(σ′) = sign((̂σ′)) = sign(σ) (400)
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where the first equality holds by the definition of sign in Definition 217(iii) and the second
equality holds by the identity (̂σ′) = σ in (398). On the other hand, for all (σ, J) ∈ Tm−k
and for X := G(σ) ⊔ J , we also derive the equalities

R(σ′) = (R(σ′) ∪X0\X) ∩X = ({minO(σ, i) : i ∈ X} ∪X0\X) ∩X
= ({minO(σ, i) : i ∈ X} ∪ {minO(σ, i) : i ∈ X0\X}) ∩X
= {minO(σ, i) : i ∈ X0} ∩X = R(σ) ∩X (401)

where the equalities hold by the following reasonings: The first equality holds by applying
one of de Morgan’s rules, by the equality X0\X ∩X = ∅ and by the inclusion R(σ′) ⊆ X.
The second equality hold by the definition of R in Definition 217(ii) and by the fact that
σ(i) = σ′(i) holds for all i ∈ X and, thus, implies the equality O(σ′.i) = O(σ, i) for
all i ∈ X. The third equality holds as the inclusion X0\X ⊆ F (σ) implies the equality
O(σ, i) = {i} for all i ∈ X0\X. The fourth equality holds by the equality X0\X∪X = X0.
The last equality holds by the definition of R in Definition 217(ii).

Altogether, we conclude the desired identity in (ii) by the equalities

ck = (−1)m+k ∑
X⊆X0

#X=m−k
σ∈S(X)

sign(σ)
∏

i∈R(σ)
aσ,i = (−1)m+k ∑

X⊆X0
#X=m−k
σ∈S(X)

sign(σ)aσ

where the first equality holds by combining the identity in (397), the bijectivity of ϕ
and the identities in (400) and (401) and the second equality holds by the definition of
aσ = ∏

i∈R(σ) aσ,i in Definition 217(iv).

Corollary 219. Let Γ be a finite directed graph, let w : E(Γ) → C[yP, y
−1
P ] be a weight

function on Γ such that the image of w is contained in R≥0[yP, y
−1
P ]\{0}. Moreover, let A ∈

R≥0[yP, y
−1
P ]m×m be the w-adjacency matrix of Γ for some enumeration v = (P1, . . . , Pm)

of the vertices in Γ and let χA ∈ C[yP, y
−1
P ][t] be the characteristic polynomial of A.

Then χA ∈ C[t] if and only if w(C) ∈ R>0 for all circles C.

Proof. By the combination of the items (i) and (ii) in Theorem 218, the coefficients ck ∈
R[yP, y

−1
P ] of χA = ∑m

k=0 ckt
k are of the form

ck =
∑
X,σ

(−1)m+k sign(σ)
∏

i∈R(σ)

∑
C∈C(σ,i)

w(C) (402)

for all k = 0, . . . ,m where the first sum runs over all X ⊆ X0 with #X = m − k and all
σ ∈ S(X).

First, assume that the w(C) ∈ R>0 for all circles C in Γ. Then this is especially true
for all circles C ∈ C(σ, i) on the right side of the identity in (402). Consequently, the
coefficient ck of χA is an element in R and, hence, we arrive at the desired statement
χA = ∑m

k=0 ckt
k ∈ C[t].

Second, assume the contrary, i.e that there is a circle in Γ such that its w-value has
non-zero yq-degree for some q ∈ P. Then there is also a shortest circle with this property,
say of length l. Let C0 : Pi1 → Pi2 → · · · → Pil+1 = Pi1 be such a shortest circle. Since
C0 is a circle, there are no repeating vertices in C0 except for Pil+1 = Pi1 . Therefore, the
l-cycle (i1 i2 . . . il) ∈ S(X0) is well defined and we may define σ0 ∈ S(X) as the canonical
restriction of this l-cycle on the subset X := {i1, . . . , il} ⊆ X0 which has l elements. Then
we immediately conclude

C0 ∈ C(σ0, i1) (403)
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by the definitions of C0 and σ0 from above and of C(σ0, i1) in Definition 217(v). We also
conclude the equality O(σ0, i1) = X by the definitions of X and σ0. Moreover, as C0 is a
circle, we may choose C0 such that the first index i1 is also the minimal element in X and,
thus, even obtain the identity

R(σ0) = {i1} (404)

by the definition of R in Definition 217(ii). Hence, combining (402), (403), (404) and the
assumption that the codomain of w does not contain zero yields that

(−1)l sign(σ0)w(C0) is a non-zero summand of cm−l in (402)
and has non-vanishing yq-degree. (405)

Next, we notice that any subset X ⊆ X0 with #X = l and any σ ∈ S(X) with
#R(σ) ≥ 2 supplies that the quotient set ⟨σ⟩\X contains #R(σ) ≥ 2 orbits O(σ, i) and,
thus, that all these orbits contain less than l elements. Therefore, for all such σ and
i ∈ R(σ), we conclude that the set C(σ, i) only contains circles C with a length which is
less than l. But, by the choice of l, this means that

the yq-degree of w(C) vanishes (406)

for all X ⊆ X0 with #X = l, all σ ∈ S(X) with R(σ) ≥ 2, all i ∈ R(σ) and all C ∈ C(σ, i).
Let us finally check that all coefficients of the summands of cm−l (as polynomials in

yq) with #R(σ) = 1 have the same sign: For all X ⊆ X0 with #X = l, all σ ∈ S(X) with
#R(σ) = 1, we have the equality #O(σ, i) = l and, thus, σ is a restriction of an l-cycle in
S(X0). This then implies the identity

sign(σ) = (−1)l−1 (407)

by the definition of sign(σ) in Definition 217(iii). Moreover, as w(C) is an element in
R≥0[yP, y

−1
P ]\{0},

the non-zero coefficients of w(C) are positive real numbers (408)

for all X ⊆ X0 with #X = l, all σ ∈ S(X) with R(σ) = 1, all i ∈ R(σ) and all C ∈ C(σ, i).
Finally, combining (405), (406), (407) and (408) provides that there is no way that the

non-zero summand (−1)l sign(σ0)w(C0) = −w(C0) of cm−l in (402) can be canceled out.
Hence, cm−l must be non-zero and have non-vanishing yq-degree. This again implies the
desired statement χA = ∑m

k=0 ckt
k /∈ C[t].

7.1.6 Proof of the First Interim Result

Finally, we are prepared to prove the first interim result in Theorem 168.

Proof of Theorem 168. First of all, we notice that since the sum of two elements in the
image R≥0[yP, y

−1
P ]\{0} of w never vanishes, we have the inequality∑

Q∈E(Γ,v,v′)
w(Q) ̸= 0 (409)

for all v, v′ ∈ V (Γ) with E(Γ, v, v′) ̸= ∅.

For (i): Because of (409), we may apply Lemma 63(i) to A and, by that, already obtain
(i).
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For (ii): On the one hand, because of (409), we may apply Lemma 63(ii) to A and, by
that, already obtain the first desired statement in (ii), namely that A is reducible.

On the other hand, consider the upper block triangular matrix PAP t in Lemma 215(i)
with quadratic irreducible matrices A1, . . . , Ar on the block diagonal. Then we compute

ρ(A(xlog2(P))) = ρ((PAP t)(xlog2(P))) = max
k=1,...,r

ρ(Ak(xlog2(P))). (410)

for all x ∈]1, 2[ where the first equality holds since it is well known that the matrices
A(xlog2(P)) and

(PAP t)(xlog2(P)) = P (xlog2(P))A(xlog2(P))P (xlog2(P))t = PA(xlog2(P))P t

= PA(xlog2(P))P−1

have the same eigenvalues and the second equality holds by the upper block triangular
form of (PAP t)(xlog2(P)) with the matrices Ak(xlog2(P)) on its block diagonal.

Moreover, since A is reducible, we have r ≥ 2 and, thus, we can apply Lemma 215(ii)(c).
From doing so, we derive the estimates

max(ρ(Ak(1)), ρ(Ak(P))) ≤ d and min(ρ(Ak(1)), ρ(Ak(P))) < d (411)

for all k = 1, . . . , r. Now, we distinguish two cases: If max(ρ(Ak(1)), ρ(Ak(P))) < d,
then both cases in Lemma 214 provide the estimate ρ(Ak(xlog2(P))) < d for all x ∈]1, 2[.
Else, if max(ρ(Ak(1)), ρ(Ak(P))) = d, then combining the equalities 1log2(P) = 1 and
2log2(P) = P, the second estimate in (411) and Lemma 214(i) also provides the estimate
ρ(Ak(xlog2(P))) < d for all x ∈]1, 2[. We have established that ρ(Ak(xlog2(P))) < d for all
x ∈]1, 2[ and all k = 1, . . . , r.

Hence, by these estimates and by the equality in (410), we finally deduce the desired
estimate ρ(A(xlog2(P))) < d for all x ∈]1, 2[.

For (iii)(a): On the one hand, if Γ is not strongly connected, the desired estimate in
(iii)(a) immediately follows from Lemma 168(ii).

On the other hand, suppose that Γ is strongly connected and that one of the column
sums of A(1) or one of the row sums of A(P) is less than d. Combining the assumption
that Γ is strongly connected, (409) and Lemma 63(ii) provides that A is irreducible.

Let (ai,j)i,j := A. Because the image of w is contained in R≥0[yP, y
−1
P ]\{0}, we conclude

that ai,j(1) (resp. ai,j(P)) vanishes if and only if ai,j vanishes. But, since the irreducibility
of a matrix only depends on the position of its non-zero entries, we conclude that A(1)
and A(P) are irreducible real matrices with non-negative entries. Consequently, we derive
the estimate max(ρ(A(1)), ρ(A(P))) ≤ d from the assertion that all the row sums of A(1)
and the column sums of A(P) are at most d and from [HJ90, p. 492, Theorem 8.1.22].

Furthermore, we even derive the estimate min(ρ(A(1)), ρ(A(P)) < d from the assertion
that the sums are not only at most d, but there is even a sum which is less than d, and
from Lemma 64(ii). Now, if max(ρ(A(1)), ρ(A(P)) < d, both cases in Lemma 214 yield the
desired estimate ρ(A(xlog2(P))) < d for all x ∈]1, 2[. Else, if max(ρ(A(1)), ρ(A(P)) = d,
then, because of the estimate min(ρ(A(1)), ρ(A(P)) < d, we can apply Lemma 214(i) and
also obtain the desired estimate ρ(A(xlog2(P))) < d for all x ∈]1, 2[. Hence, in any case,
(iii)(a) follows.

For (iii)(b): Suppose that all row sums of A(1) and the column sums of A(P) are
constantly d and that there is a circle C in Γ such that w(C) /∈ R≥0. Then Corollary 219
yields χA /∈ C[t]. Consequently, combining this, the assumption that all sums are equal
to d and Lemma 168(i) provides that we can apply Lemma 216(i) to A. By doing so, we
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obtain the desired estimate ρ(A(xlog2(P))) < d for all x ∈]1, 2[. Hence, (iii)(b) follows.

For (iii)(c): Suppose that all row sums of A(1) and the column sums of A(P) are
constantly d and that all circles C in Γ satisfy w(C) ∈ R>0. Then Corollary 219 yields
χA ∈ C[t]. Consequently, combining this, the assumption that all sums are equal to d and
Lemma 168(i) provides that we can apply Lemma 216(ii). By doing so, we obtain the
desired identity ρ(A(xlog2(P))) = d for all x ∈ [1, 2] in (iii)(c) and that A is irreducible.
Finally, by (409), Lemma 63(ii) supplies that Γ is strongly connected and, hence, we also
established the two remaining desired statements in (iii).

7.2 Second Interim Result - Balanced Ramification Indices

Summary of the results of this section. In this section, we will prove the second
interim result in Corollary 170 which will be a corollary of Theorem 221.

Main idea of the proof. Without giving a formal definition, we notice that any closed
path P in a directed graph Γ has a cactus-like form via some circles in Γ as on the left
side in Figure 7.2. Now we will insert closed paths from Γ into P until the resulting closed

Figure 7.2: Cactus- and bouquet-like forms of closed paths

path P ′ has a bouquet-like form as on the right side in Figure 7.2.
Then, for any insertion step, say from P1 to P2, we will show in Lemma 220(iii) that

the Abhyankar ramification indices ẽ(R1|R1 ∩ F0) for all R1 ∈ PF [P1] are divisors of the
Abhyankar ramification indices ẽ(R2|R2 ∩ F0) for all R2 ∈ PF [P2]. Consequently, we will
obtain that ẽ(Q|Q ∩ F0) is a divisor ẽ(Q′|Q′ ∩ F0) for all Q ∈ PF [P] and all Q′ ∈ PF [P ′].

Finally, from Lemma 220(ii) and Lemma 220(iv), we will derive that the Abhyankar
ramification index ẽ(Q′|Q′∩F0) of every place Q′ ∈ PF [P ′] which lies over this closed path
P ′ in bouquet-like form is bounded from above by a single number only depending on Γ.

An unusual strategy. Also note that although a usual strategy to conclude that one
ramification index e(Q|P ) divides another ramification index e(Q′|P ) is to show that Q′/Q
is an extension of places, this will not be our strategy here. Indeed, because we will insert
paths, such a relation Q′/Q cannot be expected at all.

However, we are not interested in the usual ramification indices e(Q|P ) anyways but
in the Abhyankar ramification indices ẽ(Q|P ). Here, in order to compute the Abhyankar
ramification index ẽ(Q|P ), we have to iteratively apply the ẽ-version of Abhyankar’s
Lemma 44(i) to the elementary extensions in the pyramid Pyr(Q). Thus, ẽ(Q|P ) only
depends on the positions and values of the ramification indices in the path Path(Q) and
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we therefore have to show that this ’Abhyankar’s Lemma’-iteration provides a multiple
after we insert a closed path.

Structure of this section. In Subsection 7.2.1, we will prove the auxiliary Lemma
220 which, for instance, proves that the aforementioned insertion steps indeed provide
multiples.

In Subsection 7.2.2, we will prove Theorem 221 which supplies the concrete upper
bound for Corollary 170.

In Subsection 7.2.3, we will then finally prove our second interim result, which is
Corollary 170. This will be an immediate consequence of Theorem 221.

7.2.1 Properties of Paths and Circles with Balanced Ramification In-
dices

Purpose of this subsection. In this subsection, we will make further preparations
for the proof of Theorem 221 by proving the auxiliary Lemma 220. For instance, in
Lemma 220(iii), we will show that the aforementioned insertion steps from the paragraph
indeed provide multiples.

Lemma 220. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0) and
let ΓF be its tower graph. Moreover, for all i = 1, . . . , r, let Ci be closed paths in ΓF of
length ni and balanced ramification indices which all start at the same initial vertex and
let Qi ∈ PFni

(σΓF (Ci)). Then the following hold:

(i) Let P and P ′ be paths and C be a closed path in ΓF such that the terminal vertex of
P is the initial vertex of P ′ and C (see the middle part of Figure 7.3).
On the one hand, if P and P ′ have balanced ramification indices, then their compo-
sition PP ′ also has balanced ramification indices.
On the other hand, if PP ′ and C have balanced ramification indices, then PCP ′ also
has balanced ramification indices.

(ii) Let Q ∈ PFn(σΓF (C)) for n := ∑r
i=1 ni and C := ∏r

i=1 Ci (see the left part of Figure
7.3). Then the closed path C also has balanced ramification indices and we have the
identity

ẽ(Q|Q ∩ F0) = lcm
i=1,...,r

ẽ(Qi|Qi ∩ F0).

(iii) Let P and P ′ be paths and C be a closed path in ΓF such that C has balanced ram-
ification indices and the terminal vertex of P is the initial vertex of C and P ′ (see
the middle part of Figure 7.3), let P1 := PP ′ be of length l1, let P2 := PCP ′ be of
length l2 and let Ri ∈ PFli

(σΓF (Pi)) for all i = 1, 2. Then ẽ(R1|R1 ∩ F0) divides
ẽ(R2|R2 ∩ F0).

(iv) Let Pi be paths in ΓF such that the terminal vertex of Pi is the initial vertex of
Pi+1 for all i = 1, . . . , 2r − 1, let P := ∏2r

i=1 Pi be a path of length l and let R ∈
PFl

(σΓF (P)). If Ci = PiP2r+1−i for all i = 1, . . . , r (see the right part of Figure 7.3),
then P has balanced ramification indices and ẽ(R|R∩F0) divides

∏r
i=1 ẽ(Qi|Qi∩F0).

Proof. For (i): Both statements immediately follow from the equivalence of the items (i)
and (vi) in Lemma 166 and from the fact that the multiplicativity of weight functions on
paths in Definition 58 imply the equalities

w′
xP,x̂P(PP ′) = w′

xP,x̂P(P) · w′
xP,x̂P(P ′)
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Figure 7.3: Figures in an auxiliary Lemma

and

w′
xP,x̂P(PCP) = w′

xP,x̂P(P) · w′
xP,x̂P(C) · w′

xP,x̂P(P ′) = w′
xP,x̂P(PP ′) · w′

xP,x̂P(C)

for all xP, x̂P ∈ (C\{0})P.

For (ii): First, we notice that the ’on the one hand’-part in Lemma 220(i) immediately
implies the first desired statement in (ii), namely that C = ∏r

i=1 Ci also has balanced
ramification indices.

Second, let (Pi,j)i,j := Pyr(Q) (see Figure 7.4). Then we have the equalities

(Pi,j)j−i≤1 = Path(Q) = σΓF (C) = σΓF (C1) · σn1(σΓF (
r∏
i=2
Ci)) (412)

where the first equality hold by the definition of Path in Definition/Lemma and by the
choice of (Pi,j)i,j = Pyr(Q), the second equality holds by the choice of Q ∈ PFn(σΓF (C))
and the third equality holds by the equality C = σΓF (∏r

i=1 Ci) and by Lemma 78. In partic-
ular, the equality in (412) provides σΓF (∏r

i=2 Ci) = (σ−n1(Pi+n1,j+n1))j−i≤1 ∈W (F , 0, n−
n1) and, thus,

σ−n1(Pn1,n) ∈ PFn−n1
(σΓF (

r∏
i=2
Ci)). (413)

We will show the desired identity in (ii) by induction over r ∈ N. For r = 1, there is
nothing to show. For r ≥ 2, we already obtain the desired equality by the equalities

ẽ(Q|Q ∩ F0) = ẽ(P0,n|P0,n1)ẽ(P0,n1 |P0,0) = ẽ(Pn1,n|Pn1,n1)ẽ(P0,n1 |P0,0)
gcd(ẽ(Pn1,n|Pn1,n1), ẽ(P0,n1 |Pn1,n1))

= ẽ(Pn1,n|Pn1,n1)ẽ(Q1|Q1 ∩ F0)
gcd(ẽ(Pn1,n|Pn1,n1), ẽ(Q1|Q1 ∩ F0)) = lcm(ẽ(Q1|Q1 ∩ F0), ẽ(Pn1,n|Pn1,n1))

= lcm(ẽ(Q1|Q1 ∩ F0), ẽ(σ−n1(Pn1,n)|σ−n1(Pn1,n) ∩ F0)) = lcm
i=1,...,r

ẽ(Qi|Qi ∩ F0)

where the equalities hold by the following reasonings: The first equality holds by the
definition of (Pi,j)i,j = Pyr(Q) in Definition 11 and by the multiplicative transitivity rule
for the Abhyankar ramification indices in Lemma 44(ii).

The second equality holds by applying the ẽ-version of Abhyankar’s Lemma in Lemma
44(i) to ẽ(P0,n|P0,n1).

For the third equality, we first notice that the definition of σΓF in Definition/Lemma
76 implies the equality σΓF (C1) = (Pi,j)j−i≤1 ∈W (F , n1) and, thus, P0,n1 and Q1 are both
places in PFn1

(σΓF (C1)). Then combining that C1 has balanced ramification indices and
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Figure 7.4: Composition of closed paths in a proof

the equivalence of the items (i) and (iii) in Lemma 166 yields the equality ẽ(P0,n1 |Pn1,n1) =
ẽ(P0,n1 |P0,0). Thus, the third equality follows from this equality, from the fact that the
Abhyankar ramification indices only depend on the path σΓF (C1) by their definition in
Definition 41 and from the fact that the equalities Path(Q1) = σΓF (C1) = (Pi,j)j−i≤1 ∈
W (F , n1) provide the equality P0,0 = Q1 ∩ F0 by Definition 11.

The fourth equality is a well known rule for the gcd and lcm of a natural num-
bers. The fifth equality holds since Lemma 46 supplies the equality ẽ(Pn1,n|Pn1,n1) =
ẽ(σ−n1(Pn1,n)|σ−n1(Pn1,n1)) and since σ−n1(Pn1,n1) is a place in F0 which lies under
σ−n1(Pn1,n).

The last equality holds by σ−n1(Pn1,n) ∈ PFn−n1
(σΓF (∏r

i=2 Ci)) in (413) and by then
applying the induction hypothesis to ∏r

i=2 Ci.

For (iii): Let (P ′
i,j)i,j := Pyr(R1), let (Pi,j)i,j := Pyr(R2), let k be the length of P, let

k′ := l1 − k be the length of P ′ and let n be the length of C (see Figure 7.5).

Figure 7.5: Inserting closed paths in a proof

We notice that the choices (P ′
i,j) = Pyr(R1), (Pi,j)i,j = Pyr(R2), the assumptions

P1 = PP ′, P2 = PCP ′ and Ri ∈ PFli
(σΓF (Pi)) for all i = 1, 2 and the definition of σΓF in
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Definition/Lemma 76 provide the equalities

σΓF (P) = (P ′
i,j)j−i≤1 = (Pi,j)j−i≤1 ∈W (F , k), (414)

σΓF (C) = (σ−k(Pk+i,k+j))j−i≤1 ∈W (F , n), (415)
σΓF (P ′) = (σ−k(P ′

k+i,k+j))j−i≤1 = (σ−(k+n)(Pk+n+i,k+n+j))j−i≤1 ∈W (F , k′). (416)

First, the equalities in (414) yields that P ′
0,k and P0,k are both places in PFk

(σΓF (P)).
Moreover, we obtain the equalities

ẽ(P ′
0,k|P ′

0,0) = ẽ(P0,k|P0,0) and ẽ(P ′
0,k|P ′

k,k) = ẽ(P0,k|Pk,k) (417)

because the Abhyankar ramification indices only depend on the path by their definition
in Definition 41.

Second, the equality in (415) yields

σ−k(Pk,k+n) ∈ PFn(σΓF (C)). (418)

Furthermore, we obtain the equalities

ẽ(Pk,k+n|Pk+n,k+n) = ẽ(σ−k(Pk,k+n)|σ−k(Pk+n,k+n)) = ẽ(σ−k(Pk,k+n)|σ−k(Pk,k))
= ẽ(Pk,k+n|Pk,k) (419)

where the first and last equality hold by the invariance of the Abhyankar ramification
indices under the action of σ in Lemma 46 and the second equality holds by combining
the assumption that C has balanced ramification indices, the equivalence of the items (i)
and (iii) in Lemma 166 and (418).

Third, the equalities in (416) yield that σ−k(P ′
k,l1

) and σ−(k+n)(Pk+n,l2) are both places
in PFk′ (σΓF (P ′)). Moreover, we obtain the equalities

ẽ(P ′
k,l1 |P

′
k,k) = ẽ(σ−k(P ′

k,l1)|σ−k(P ′
k,k)) = ẽ(σ−(k+n)(Pk+n,l2)|σ−(k+n)(Pk+n,k+n))

= ẽ(Pk+n,l2 |Pk+n,k+n) (420)

where the first and last equalities hold by the invariance of the Abhyankar ramification
indices under the action of σ in Lemma 46 and the second equality holds because the
Abhyankar ramification indices only depend on the path in their definition in Definition
41.

Next, we make the following three computations: First, we compute

ẽ(R1|R1 ∩ F0) = ẽ(P ′
0,l1 |P

′
0,k)ẽ(P ′

0,k|P ′
0,0) =

ẽ(P ′
0,k|P ′

0,0)ẽ(P ′
k,l1
|P ′
k,k)

gcd(ẽ(P ′
0,k|P ′

k,k), ẽ(P ′
k,l1
|P ′
k,k))

=
ẽ(P ′

0,k|P ′
0,0) lcm(ẽ(P ′

0,k|P ′
k,k), ẽ(P ′

k,l1
|P ′
k,k))

ẽ(P ′
0,k|P ′

k,k)

= ẽ(P0,k|P0,0) lcm(ẽ(P0,k|Pk,k), ẽ(Pk+n,l2 |Pk+n,k+n))
ẽ(P0,k|Pk,k)

(421)

where the equalities hold by the following reasonings: The first equality holds because
the definition of Pyr(R1) = (P ′

i,j)i,j in Definition 11 implies the equalities R1 = P ′
0,l1

and R1 ∩ F0 = R1 ∩ F0,0 = P ′
0,0 and because of the multiplicative transitivity rule for

ẽ in Lemma 44(ii). The second equality holds by applying the ẽ-version of Abhyankar’s
Lemma in Lemma 44(i) to ẽ(P ′

0,l1 |P
′
0,k). The third equality holds by the well known

formula a · b = gcd(a, b) · lcm(a, b) for all a, b ∈ N. The last equality holds by the equalities
in (417) and (420).
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Second, we compute

ẽ(Pk,l2 |Pk,k) = ẽ(Pk,l2 |Pk,k+n)ẽ(Pk,k+n|Pk,k)

= ẽ(Pk+n,l2 |Pk+n,k+n)ẽ(Pk,k+n|Pk,k)
gcd(ẽ(Pk,k+n|Pk+n,k+n), ẽ(Pk+n,l2 |Pk+n,k+n))

= ẽ(Pk,k+n|Pk,k)ẽ(Pk+n,l2 |Pk+n,k+n)
gcd(ẽ(Pk,k+n|Pk,k), ẽ(Pk+n,l2 |Pk+n,k+n))

= lcm(ẽ(Pk,k+n|Pk,k), ẽ(Pk+n,l2 |Pk+n,k+n)) (422)

where the first and second equalities follow analogously to the first two equalities in (421),
the third equality holds by swapping the two factors in the numerator and by applying
the equality in (419) to the first argument in the gcd and the last equality holds by the
well known formula ab = lcm(a, b) gcd(a, b) for all a, b ∈ N.

Third, we compute

ẽ(R2|R2 ∩ F0) = ẽ(P0,k|P0,0) lcm(ẽ(P0,k|Pk,k), ẽ(Pk,l2 |Pk,k))
ẽ(P0,k|Pk,k)

= ẽ(P0,k|P0,0) lcm(ẽ(P0,k|Pk,k), ẽ(Pk,k+n|Pk,k), ẽ(Pk+n,l2 |Pk+n,k+n))
ẽ(P0,k|Pk,k)

(423)

where the first equality follows analogously to the first three equalities in (421) (with P ′

replaced by C · P ′) and the second equality holds by the equality in (422) and by the well
known rule lcm(a, lcm(b, c)) = lcm(a, b, c) for all a, b, c ∈ N.

Finally, combining the equalities in (421) and (423) supplies the desired statement in
(iii), namely that ẽ(R1|R1 ∩ F0) divides ẽ(R2|R2 ∩ F0).

For (iv): We will show the statement in (iv) by induction over r ∈ N. For r = 1, we
have P = C1 and the places Q1 and R are both contained in PFn1

(σΓF (C1)). Hence, as
Abhyankar ramification indices only depend on the path σΓF (C1) in Definition (417), we
even obtain the equality ẽ(R|R ∩ F0) = ẽ(Q1|Q1 ∩ F0) in this case.

Next, let r ≥ 2 and define C := ∏2r−1
i=2 Pi. First, we notice that C has balanced

ramification indices by iteratively applying the ’on the other hand’-part in Lemma 220(i)
and, hence, we are in the situation of the proof of Lemma 220(iii) for P = P1CP2r where we
choose (P,P ′, C,P1,P2, R1, R2) in this lemma as (P1,P2r, C, C1,P, Q1, R) with the notation
from here.

Consequently, for

γ := lcm(ẽ(P0,k|Pk,k), ẽ(Pk+n,l2 |Pk+n,k+n)),

we obtain the equalities

ẽ(R|R ∩ F0) = ẽ(P0,k|P0,0) lcm(ẽ(P0,k|Pk,k), ẽ(Pk,k+n|Pk,k), ẽ(Pk+n,l2 |Pk+n,k+n))
ẽ(P0,k|Pk,k)

= ẽ(P0,k|P0,0) · γ
ẽ(P0,k|Pk,k)

· ẽ(Pk,k+n|Pk,k)
gcd(γ, ẽ(Pk,k+n|Pk,k))

= ẽ(Q1|Q1 ∩ F0) · ẽ(Pk,k+n|Pk,k)
gcd(γ, ẽ(Pk,k+n|Pk,k))

(424)

where the equalities hold by the following reasonings: The first equality holds by the
equality R = R2 and the equality in (423). The second equality holds by first applying
the well known rule lcm(a, b, c) = lcm(lcm(a, c), b) and then applying the well known rule
lcm(d, b) = db

gcd(d,b) for d := lcm(a, c) and by the definition of γ. The third equality holds
by the equality in (421) and the equality R1 = Q1.
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Second to last, we deduce the equalities

ẽ(Pk,k+n|Pk,k) = ẽ(σ−k(Pk,k+n)|σ−k(Pk,k)) = ẽ(σ−k(Pk,k+n)|σ−k(Pk,k+n) ∩ F0) (425)

where the first equality holds by the last equality in (419), the second equality holds since
combining (418), (415), the definition of PFn(σΓF (C)) in (5) and the definition of Path in
Definition/Lemma 17(i) yields the equalities

(σ−k(Pk+i,k+j))j−i≤1 = σΓF (C) = Path(σ−k(Pk,k+n)) = (σ−k(Pk,k+n ∩ Fi,j))j−i≤1

and since this equality at the (0, 0)-th position provides the equalities

σ−k(Pk,k) = σ−k(Pk,k+n) ∩ F0,0 = σ−k(Pk,k+n) ∩ F0.

Moreover, we can apply the induction hypothesis to C = ∏2r−1
i=2 Pi and σ−k(Pk,k+n) ∈

PFn(σΓF (C)). Because of the equality in (425), we then even derive that ẽ(Pk,k+n|Pk,k)
divides ∏r

i=2 ẽ(Qi|Qi ∩ F0).
Finally, combining this conclusion and the equality in (424) provides the desired state-

ment in (iv), namely that ẽ(R|R ∩ F0) divides ∏r
i=1 ẽ(Qi|Qi ∩ F0).

7.2.2 Subgraphs Only Containing Circles with Bal. Ramification Indices

Summary of the results of this subsection. In this subsection, we will prove the
following Theorem 221 which establishes the desired upper bound BΓ

#V (Γ) for the Ab-
hyankar indices ẽ(Q|Q ∩ F0) for all Q ∈ PF [Γ].

Note that since the set of circles in a finite subgraph Γ is finite, the set of places P◦
F [Γ]

which lie over these circles is also finite.

Theorem 221. Let F be a recursive tower, let Γ be a non-empty finite strongly connected
subgraph of the tower graph ΓF of F such that all circles in Γ have balanced degree, let
Q ∈ PF [Γ] and define

BΓ := lcm
Q′∈P◦

F [Γ]
ẽ(Q′|Q′ ∩ F0).

Then ẽ(Q|Q ∩ F0) divides BΓ
#V (Γ).

Remark 222. By using the dual recursive tower F̂ , we can also show that ẽ(Q|Q∩σn(F0))
divides BΓ

#V (Γ).

Sketch of the proof of Theorem 221. First, let P := σ−1
ΓF

(Path(Q)). Then we will
deduce that it is enough to show Theorem 221 for closed paths. More, concretely, we will
show this by induction over the length n of P where the statement is trivial for n = 0.

Second, for n ≥ 1, we will decompose the black closed path P as in Figure 7.6: There,
P is the composition P ′CP ′′′ of the red path P ′ which has no repetitions, the blue circle
C which is the first circle of positive length in P and the remaining yellow path P ′′′.

Third, the assertion that Γ is strongly connected will supply the green path P ′′ in
Figure 7.6 which is the shortest path in Γ from the terminal vertex of P ′ and C, namely P ,
to the initial vertex of P and P ′, namely P0. Consequently, we will conclude that P ′CP ′′

must be of the form ∏2r
i=1 Pi (purple in Figure 7.6) where r ≤ #V (Γ) and PiP2r+−i is a

circle for all i = 1, . . . r.
Fourth, by this choice and by Lemma 220(iv), we will then obtain that e(Q′|Q′ ∩ F0)

divides BΓ
#V (Γ) for all places Q′ which lie over the purple path P ′CP ′′ = ∏2r

i=1 Pi. Fur-
thermore, since P ′P ′′′ is a shorter closed path than P = P ′CP ′′′, the induction hypothesis
will provide the same ’dividing’-statement for all places Q′ which lie over P ′P ′′′. Hence,
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Lemma 220(ii) will even imply this ’dividing’-statement for all places Q′ which lie over
their composition (P ′CP ′′)(P ′P ′′′).

Last, as P ′′P ′ is also a closed path and, therefore, has balanced ramification indices
by Lemma 83, applying Lemma 220(iii) to P = P ′CP ′′′ will finally provide the desired
statement, namely that e(Q|Q ∩ F0) divides BΓ

#V (Γ).

Proof of Theorem 221. Let P := σ−1
ΓF

(Path(Q)) be the path of Q and let n ∈ N0 be its
length. Then, by the definition of PF [Γ] in Definition 85, the path P is contained in Γ.

First, we notice that since Γ is strongly connected, there is a path P̃ from the terminal
vertex to the initial vertex of P and, thus, PP̃ is a closed path, say of length l. Moreover,
as ẽ(Q|Q ∩ F0) divides ẽ(Q′|Q′ ∩ F0) for all Q′ ∈ PFl

(σΓF (PP̃)) with Q′|Q, it is enough
to show the desired statement that ẽ(Q|Q ∩ F0) divides BΓ

#V (Γ) under the additional
assumption that P is a closed path.

We will show this by induction over the length n ∈ N0 of P. For n = 0, the closed
path P is only a vertex and we have ẽ(Q|Q ∩ F0) = ẽ(Q|Q) = 1 and, thus, the desired
statement follows trivially in this case.

Now, suppose n ≥ 1. We will first make some preparations: As P is a closed path,
there are repeating vertices in P. Let P be the first vertex which appears in P a second
time. Then there are paths (see Figure 7.6)

P ′ and P ′′′ and a circle C of positive length with initial vertex P such that
P = P ′CP ′′′ and only P appears more than once in P ′C. (426)

Let P0 be the initial vertex of P. As Γ is strongly connected, there is a path P ′′ in Γ from
P to P0 without repeating vertices.

Figure 7.6: Auxiliary paths in a proof

Although P ′ and P ′′ have no repeating vertices, they have common vertices since P ′

goes from P0 to P and P ′′ goes from P to P0. Next, we will show by induction over the
length m of P ′ that the composition P ′CP ′′ is of the form

P ′CP ′′ =
2r∏
i=1
Pi (427)

such that

Ci := PiP2r+1−i is a circle of positive length and Cr = C (428)

286



for all i = 1, . . . , r: First, we choose arbitrary subpaths Pr and Pr+1 of C such that
C = PrPr+1. This is a valid choice because C has positive length by its choice in (426).

Now, for m = 0, we have P0 = P and, consequently, P ′ and P ′′ both just consist of
this vertex P0 = P by their choices. Hence, we can choose r = 1 and are done with this
case.

Next, suppose m ≥ 1 and, therefore, P ̸= P0. Moreover, let P1 be the first vertex in
P ′ after P0 which also appears in P ′′, define P1 as the subpath of P ′ which goes from P0
to P1 and define P2r as the subpath of P ′′ which goes from P1 to P0. By the choice of P1
as the first index P ′ after P0 which also appears in P ′′, the paths P1 and P2r can have no
other common vertices than P0 and P1. Consequently, by this conclusion, by the assertion
that P ′ and P ′′ have no repeating vertices and by the choice of P1 ̸= P0, we conclude that
C1 = P1P 2r is indeed a circle of positive length.

Finally, let P ′ = P1P ′
1 and P ′′ = P ′′

2rP2r. Then applying the induction hypothesis to
the shorter closed path P ′

1CP ′′
2r yields the desired remaining paths P2, . . . ,P2r−1 in (427)

and (428).
Furthermore, because of the equality P ′ = ∏r−1

i=1 Pi and because P ′ has no repeating
vertices, we also derive the estimate

r ≤ #V (Γ) (429)

and are done with our preparations.
By the following reasoning, these preparations first provide that

ẽ(Q′|Q′ ∩ F0) divides BΓ
#V (Γ) (430)

for all Q′ ∈ PFl
(σΓF (P ′CP ′′)) where l be the length of P ′CP ′′: First, the conclusions in

(428) and (427) and the assumption that all circles have balanced ramification indices
ensure that we can apply Lemma 220(iv). By that, we conclude that ẽ(Q′|Q′∩F0) divides
the product ∏r

i=1 ẽ(Qi|Qi ∩ F0) for all Qi ∈ PFli
(σΓF (Ci)) where li be the length of Ci

for all i = 1, . . . , r. But, because Ci is a circle by (428), because of the definition of BΓ
and because of the estimate in (429), we even derive that this product ∏r

i=1 ẽ(Qi|Qi ∩F0)
divides BΓ

#V (Γ). Both conclusions together then yield (430).
Second, we notice that since C has non-zero length by its choice in (426), the length of

the closed path P ′P ′′′ is at most n− 1. Thus, applying the induction hypothesis to P ′P ′′′

yields that

ẽ(Q′|Q′ ∩ F0) divides BΓ
#V (Γ) (431)

for all Q′ ∈ PFl
(σΓF (P ′P ′′′)) where l be the length of P ′P ′′′. Consequently, combining

the fact that Lemma 83 implies that the closed paths P ′CP ′′ and P ′P ′′′ have balanced
ramification indices, Lemma 220(ii) and the conclusions in (430) and (431) supplies that

ẽ(Q′|Q′ ∩ F0) divides BΓ
#V (Γ) (432)

for all Q′ ∈ PFl
(σΓF ((P ′CP ′′)(P ′P ′′′))) where l be the length of (P ′CP ′′)(P ′P ′′′).

Third, we notice that P ′′P ′ is also a closed path with balanced ramification indices by
Lemma 83. Therefore, Lemma 220(iii) provides that

ẽ(Q|Q ∩ F0) divides ẽ(Q′|Q′ ∩ F0) (433)

for all Q′ ∈ PFl
(σΓF (P ′C(P ′′P ′)P ′′′)) where l be the length of P ′C(P ′′P ′)P ′′′.

Finally, combining (433) and (432) yields the desired statement that ẽ(Q|Q∩F0) divides
BΓ

#V (Γ).
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7.2.3 Proof of the Second Interim Result

Finally, we are prepared to prove the second interim result in Corollary 170.

Proof of Corollary 170. If all circles in Γ have balanced ramification indices, then Theorem
221 already implies the desired statement, namely that the set {ẽ(Q|Q∩F0) : Q ∈ PF [Γ]}
is finite, since all it elements are divisors of the natural number BΓ

#V (Γ).
Moreover, if all paths in Γ are tame, the combination of Definition 81(i) and Lemma

44(iii) implies the equality e(Q|Q ∩ F0) = ẽ(Q|Q ∩ F0) for all Q ∈ PF [Γ]. But, this again
provides the equality {ẽ(Q|Q∩F0) : Q ∈ PF [Γ]} = {e(Q|Q∩F0) : Q ∈ PF [Γ]} and, hence,
the ’in particular’-part also follows.

7.3 Third Interim Result - Degree Bounds for Places
Summary of the results of this section. In this section, we will prove the third
interim result in Corollary 171. This Corollary 171 will be a corollary of Theorem 228.
Theorem 228 will again be a consequence of Theorem 225. This Theorem 225 should
be seen as another result of this thesis, because it will provide upper bounds CQ for the
degree deg(Q) of any place Q ∈ PF where F only needs to be a recursive tower over a
finite field. These upper bounds CQ will be expressed entirely in terms of the degree d of
F , of the ramification indices of the extensions in Pyr(Q) and the degrees of the places in
Path(Q).

For any tame recursive tower F over a finite field and finite strongly connected sub-
graph Γ of ΓF which has at least one circle of positive degree but only contains circles with
balanced ramification indices, the upper bound CΓ for δΓ := {deg(Q) : Q ∈ PF [Γ]} in The-
orem 228 will be lΓ · (d!)BΓ

#V (Γ) where lΓ := lcmQ∈E(Γ) deg(Q) is defined in Definition 226
and BΓ := lcmQ∈P◦

F [Γ] ẽ(Q|Q ∩ F0) is defined in Theorem 221. Thus, CΓ will only depend
on Γ. Although this upper bound CΓ will be sufficient for the purpose of proving the third
interim result in Corollary 171, it will usually have a large error CΓ−maxQ∈PF [Γ] deg(Q).
However, for any concretely given place Q ∈ PF , the upper bounds CQ for deg(Q) in
Theorem 225 should rather be used.

Quality of the final upper bound. For the final upper bound CΓ of the set δΓ =
{deg(Q) : Q ∈ PF [Γ]} in Theorem 228, we will just focus on finding an upper bound CΓ
which only depends on Γ. Moreover, we will also care more about CΓ having a simple
presentation than about minimizing the error CΓ − maxQ∈PF [Γ] deg(Q). This will be
sufficient for the purpose of proving the third interim result in Corollary 171.

However, this does not mean that all upper bounds CQ for deg(Q) which will appear
in this section will have awfully large errors CQ − deg(Q). More concretely, we will split
the problem of finding the upper bound CΓ in Theorem 228 into two parts:

In the first Subsection 7.3.1, which will finally yield Theorem 225, we will find upper
bounds CQ for deg(Q) for all Q ∈ PF which can be expressed entirely in terms of the
degree d of F , of the ramification indices of the extensions in Pyr(Q) and the degrees of
the places in Path(Q). Here, we will have several upper bounds CQ for deg(Q) and the
rule of thumb will be that the worser upper bounds CQ will have simpler presentations.

In the second Subsection 7.3.2, we will then prefer to only use the worst of the upper
bounds CQ from Theorem 225 to construct the final upper bound CΓ for δΓ. Although we
could also use all the better upper bounds CQ from Theorem 225 to construct better upper
bounds C ′

Γ for δΓ, the resulting presentations of these better upper bounds C ′
Γ would be

unproportionally more complicated and technical.
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Structure of this section. In Subsection 7.3.1, we will prove Theorem 225 which
provides the upper bounds CQ for the degree deg(Q) of any place Q ∈ PF where F is a
recursive tower over a finite field.

In Subsection 7.3.2, we will prove Theorem 228 which provides the upper bound CΓ
for the degree deg(Q) of any place Q ∈ PF [Γ] where F is a tame recursive tower over a
finite field and Γ is a finite strongly connected subgraph of ΓF which has at least one circle
of positive degree but only contains circles with balanced ramification indices.

In Subsection 7.3.3, we will then finally prove our third interim result, which is Corol-
lary 171.

7.3.1 Bounds Only Depending on Ramification Indices in the Pyramid

Summary of the results of this subsection. In this subsection, we will prove another
result of this thesis, namely Theorem 225. There we will find several upper bounds CQ
for the degree deg(Q) of any place Q ∈ PF where F = (Fν)ν is a recursive tower over a
finite field. More concretely, the upper bounds CQ will be expressed solely in terms of the
degree d of F , of the ramification indices of the extensions in Pyr(Q) and the degrees of
the places in Path(Q)

Difficulty of coming up with the final upper bounds. In the end, after we have
properly defined the final upper bounds CQ for deg(Q) in Definition 223 and Theorem 225,
it will be, although sometimes technical, mostly straight forward to prove that all CQ are
upper bounds for deg(Q) via induction over the level n of the place Q ∈ PFn . However,
as it is often the case with proofs using induction, the main challenge is to come up with
the right formula, estimate or statement in the first place. This is also the case here. The
main difficulty was to first come up with the final degree bounds CQ in Theorem 225.

Although we will not present it here, there is a way of deducing the degree bounds CQ
in a more intuitive way. We will skip this deduction since it is quite long and since it does
not improve the results of Theorem 225. However, skipping this deduction will also have
the following further drawback. Alone from the induction, it will be impossible to assess
the quality of the degree bounds CQ in Theorem 225. Consequently, as these assessments
are also not vital for the proof of the third interim result, which is our primary goal of
this section, we will skip them too.

Main idea of the proof. Although we will not present the above mentioned deduction
of the final upper bounds CQ of deg(Q) in Theorem 225, we will at least provide its main
idea:

All upper bounds CQ in Theorem 225 will be of the form CQ = lQ ·
∏
p∈P,p≤d p

βQ,p for
some suitable βQ,p and lQ := lcmk=1,...,n deg(Pk−1,k) (see the last definition in Definition
223) where (Pi,j)j−j := Path(Q). For the first factor lQ, we will reduce the situation to
rational paths Path(Q) by extending the constant field Fq of F to F

q
lQ . This will already

provide the first factor lQ in CQ = lQ ·
∏
p≤d p

βQ,p .
For the second factor ∏p≤d p

βQ,p in CQ = lQ ·
∏
p≤d p

βQ,p , the key ingredient will be
the estimate

deg(Q′) ≤ lcm(deg(P1),deg(P2)) · e(P1|P ) · e(P2|P )
e(Q′|P ) (434)

in Key Lemma 36(iii) where (Q′, P1, P2, P ) forms a diamond of places in a diamond
(E,F1, F2, F ) of function fields with E = F1 · F2.

The main idea here will be to somehow apply this estimate iteratively for all elementary
diamonds in Pyr(Q) from the bottom level, i.e. Path(Q), to the top level, i.e. Q. Doing

289



this is non-trivial because estimating the factor lcm(deg(P1), deg(P2)) on the higher levels
needs more than just estimates for deg(Pi), i = 1, 2. We will need an upper bound for
deg(Pi) which will even be a multiple of deg(Pi).

But, for recursive towers F which are not locally Galois, we cannot rule out any
prime factor p ≤ d to appear in deg(Q). This will explain that the second factor of
CQ = lQ ·

∏
p≤d p

βQ,p is a product of prime powers pβQ,p which run over all primes p ≤ d.
Moreover, this will also explain why we can provide further upper bounds CQ for

locally Galois recursive towers F in Theorem 225. For locally Galois recursive towers F ,
in this product ∏p≤d p

βQ,p , we will only have to take prime divisors p ≤ d into account
which divide d.

Finally, the main challenge becomes to find the exponents βQ,p. Notice that since we
extended the constant field to F

q
lQ in the beginning, these exponents βQ,p will be upper

bounds for vp(deg(Q)). Deducing these upper bounds βQ,p for vp(deg(Q)) would have
been part of the above mentioned deduction. There the pyramidal configuration of the
elementary diamonds in Pyr(Q) would have played the key role.

However, in the following Definition 223, we will just present the final definitions of
the upper bounds βQ,p for vp(deg(Q)) as eQ,p and b(Q,A) for all A ∈ M and leave out
any deductions.

The upper bounds for the exponents. In the following Definition 223, we will define
the upper bounds βQ,p for vp(deg(Q)) as eQ,p and b(Q,A) for all A ∈M. All these values
will be defined via maxima which run over the diamonds in (Q,P0,k, Pk,n, Pk,k) in the
pyramid Pyr(Q) = (Pi,j)i,j of Q (see Figure 7.7) and this is also how we should think
about them.

First, # Count(Q, k) is the ramification index e(Pk,n|Pk,k). Second, # Primes(Q, k) is
the sum of prime exponents in the prime decomposition of e(Pk,n|Pk,k). Third, #Ram(Q, k)
is the number of elementary extensions Pk,j+1/Pk,j for j = k, . . . , n − 1 inside of the ex-
tension Pk,n/Pk,k which are ramified. Fourth, # Kill(Q, k) is the number of elementary
extensions Pk,j+1/Pk,j for j = k, . . . , n − 1 inside of the extension Pk,n/Pk,k for which
ramification indices get killed up to the extensions P0,j+1/P0,j . Fifth, up to flooring, eQ,p
is the maximum of the logp-values of the quotients in (434) which runs of all the diamonds
(Q,P0,k, Pk,n, Pk,k).

Here, the already mentioned rule of thumb for the quality and simplicity of the upper
bounds can be observed. From one to five, on the one hand, the values get smaller but,
on the other hand, their descriptions get more complicated.

Definition 223. Let F = (Fν)ν be a recursive tower of degree d over a finite field, let
(Fi,j)i,j := Pyr(F) be its pyramid, let Q ∈ PFn for some n ∈ N with n ≥ 2 and let
(Pi,j)i,j := Pyr(Q). Then we define (also see Figure 7.7)

• Kill(Q, k) := {j ∈ {k, . . . , n− 1} : e(Pk,j+1|Pk,j) > e(P0,j+1|P0,j)},

• Ram(Q, k) := {j ∈ {k, . . . , n− 1} : e(Pk,j+1|Pk,j) ≥ 2},

• Primes(Q, k) := {(p, i) ∈ P× N : i ≤ vp(e(Pk,n|Pk,k))},

• Count(Q, k) := {1, . . . , e(Pk,n|Pk,k)},

• Kill̂ (Q, k) := {i ∈ {1, . . . , k} : e(Pi−1,k|Pi,k) > e(Pi−1,n|Pi,n)},

• Ram̂(Q, k) := {i ∈ {1, . . . , k} : e(Pi−1,k|Pi,k) ≥ 2},

• Primes (̂Q, k) := {(p, i) ∈ P× N : i ≤ vp(e(P0,k|Pk,k))}

• Count (̂Q, k) := {1, . . . , e(P0,k|Pk,k)},
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for all k = 1, . . . , n− 1 and

b(Q,A) := max
k=1,...,n−1

#A(Q, k)

for all A ∈ M := {Ram,Kill,Primes,Count,Ram̂,Kill̂ ,Primes ,̂Count }̂. Moreover, we
also define

eQ,p :=
⌊

logp

(
max

k=1,...,n−1

e(P0,k|Pk,k) · e(Pk,n|Pk,k)
e(Q|Pk,k)

)⌋
for all p ∈ P and

cQ :=
∏

p∈P, p≤d
peQ,p , ρ(d) :=

∏
p∈P

p⌊logp d⌋, lQ := lcm
k=1,...,n

deg(Pk−1,k).

Figure 7.7: Pyramid of places with ramification indices

An auxiliary Lemma. The following Lemma 224(iv) is an auxiliary lemma for the
subsequent proof of Theorem 225.

On the one hand, the estimates in Lemma 224(iv) will imply that, in Theorem 225,
it is enough to only prove that deg(Q) divides lQ · cQ in any case and lQ · db(Q,A) for
A ∈ {Kill,Kill̂ } if F is locally Galois. On the other hand, Lemma 224(v) will make it
possible to prove Theorem 225 by induction over n ∈ N with n ≥ 2.

Lemma 224. Let F = (Fν)ν be a recursive tower of degree d over a finite field, let
(Fi,j)i,j := Pyr(F) be its pyramid, let Q ∈ PFn for some n ∈ N with n ≥ 2 and let
(Pi,j)i,j := Pyr(Q) be the pyramid of Q. Then the following hold:

(i) We have the inclusions Kill(Q, k) ⊆ Ram(Q, k) and Kill̂ (Q, k) ⊆ Ram̂(Q, k) for all
k = 1, . . . , n− 1.

(ii) We have the identities

# Primes(Q, k) =
∑
p∈P

vp(e(Pk,n|Pk,k)) and # Count(Q, k) = e(Pk,n|Pk,k)
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and

# Primes (̂Q, k) =
∑
p∈P

vp(e(P0,k|Pk,k)) and # Count (̂Q, k) = e(P0,k|Pk,k)

for all k = 1, . . . , n− 1.

(iii) For all A ∈ {Kill,Kill̂ } and all k = 1, . . . , n− 1, we have the estimates

e(P0,k|Pk,k) · e(Pk,n|Pk,k)
e(Q|Pk,k)

≤ d#A(Q,k)

and
# Kill(Q, k) ≤ #Ram(Q, k) ≤ # Primes(Q, k) ≤ # Count(Q, k)

and
# Kill̂ (Q, k) ≤ #Ram̂(Q, k) ≤ # Primes (̂Q, k) ≤ # Count (̂Q, k).

(iv) For all A ∈ {Kill,Kill̂ }, we have the estimate

eQ,p ≤ ⌊logp d⌋ · b(Q,A).

Moreover, we have the estimates

b(Q,Kill) ≤ b(Q,Ram) ≤ b(Q,Primes) ≤ b(Q,Count)

and
b(Q,Kill̂ ) ≤ b(Q,Ram̂) ≤ b(Q,Primes )̂ ≤ b(Q,Count )̂.

(v) Let ε ∈ {0, 1} and suppose that Path(Q) = (Pi,j)j−i≤1 ∈ W (F , 0, n) is rational.
Then the path Path(σ−ε(Pε,n−1+ε)) = (σ−ε(Pi+ε,j+ε))j−i≤1 ∈ W (F , 0, n − 1) of the
place σ−ε(Pε,n−1+ε) ∈ PFn−1 is also rational.

(a) Suppose n ≥ 3 and let A0 := Kill and A1 := Kill̂ . Then Aδ(·, k) and b(·, Aδ)
can be applied to σ−ε(Pε,n−1+ε) for all δ = 0, 1 and k = 1, . . . , n − 2 and we
have the inclusions

ε+Aδ(σ−ε(Pε,n−1+ε), k) ⊆ Aδ(Q, k + ε)

and the estimate
b(σ−ε(Pε,n−1+ε), Aδ) ≤ b(Q,Aδ).

(b) Suppose n ≥ 3. Then we have the identity

eσ−ε(Pε,n−1+ε),p =
⌊

logp

(
max

k=1+ε,...,n−2+ε

e(Pε,k|Pk,k) · e(Pk,n−1+ε|Pk,k)
e(Pε,n−1+ε|Pk,k)

)⌋

for all p ∈ P.

Proof. For (i): The desired inclusions immediately follow from the definitions of Kill, Kill̂ ,
Ram and Ram̂ in Definition 223 and from the fact that ramification indices are positive
natural numbers and, thus, are at least one.

For (ii): The desired identities follow immediately from the definitions of Primes,
Primes ,̂ Count and Countˆ in Definition 223.
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For (iii): We conclude the first desired estimate by the computation

e(P0,k|Pk,k) · e(Pk,n|Pk,k)
e(Q|Pk,k)

=


∏k
i=1

e(Pi−1,k|Pi,k)
e(Pi−1,n|Pi,n) if A = Kill̂∏n−1

j=k
e(Pk,j+1|Pk,j)
e(P0,j+1|P0,j) if A = Kill

≤ d#A(Q,k)

for all k = 1, . . . , n− 1 where the equality and estimate hold by the following reasonings:
The equality holds because the multiplicative transitivity rule for ramification indices

in (7) first implies the identities

e(Q|Pk,k) = e(Q|Pk,n) · e(Pk,n|Pk,k) = e(P0,n|Pk,n) · e(Pk,n|Pk,k)

and
e(Q|Pk,k) = e(Q|P0,k) · e(P0,k|Pk,k) = e(P0,n|P0,k) · e(P0,k|Pk,k)

and then implies the identities

e(P0,k|Pk,k)
e(P0,n|Pk,n) =

k∏
i=1

e(Pi−1,k|Pi,k)
e(Pi−1,n|Pi,n)

and
e(Pk,n|Pk,k)
e(P0,n|P0,k)

=
n−1∏
j=k

e(Pk,j+1|Pk,j)
e(P0,j+1|P0,j)

.

The first case in the estimate holds, on the one hand, because the combination of the
definition of Kill̂ (Q, k) in Definition 223 and of Key Lemma 36(iv) provides the equality
e(Pi−1,k|Pi,k)
e(Pi−1,n|Pi,n) = 1 for all i ∈ {1, . . . , k}\Kill̂ (Q, k) and, on the other hand, because the
fundamental equality in (8) provides the estimate e(Pi−1,k|Pi,k)

e(Pi−1,n|Pi,n) ≤ d for all i ∈ Kill̂ (Q, k).
The second case in the estimate holds analogously if we just use the definition of

Kill(Q, k) in Definition 223.
Next, the estimates # Kill(Q, k) ≤ #Ram(Q, k) and # Kill̂ (Q, k) ≤ #Ram̂(Q, k) im-

mediately follow from the inclusions Kill(Q, k) ⊆ Ram(Q, k) and Kill̂ (Q, k) ⊆ Ram̂(Q, k)
in Lemma 224(i) for all k = 1, . . . , n− 1.

For the estimates #Ram(Q, k) ≤ # Primes(Q, k) and #Ram̂(Q, k) ≤ # Primes (̂Q, k),
we first notice the factorizations

e(Pk,n|Pk,k) =
n−1∏
j=k

e(Pk,j+1|Pk,j) =
∏

j∈Ram(Q,k)
e(Pk,j+1|Pk,j) (435)

and

e(Pk,n|Pk,k) =
∏
p∈P

pvp(e(Pk,n|Pk,k)) =
∏

(p,i)∈Primes(Q,k)
p (436)

for all k = 1, . . . , n− 1 by the definition of Ram and Primes in Definition 223. Now, com-
bining that the factorization in (436) of e(Pk,n|Pk,k) only consists of primes and that the
factorization in (435) only consists of natural numbers ≥ 2 yields that the factorization in
(436) must run over more factors than the factorization in (435). Hence, the desired esti-
mate #Ram(Q, k) ≤ # Primes(Q, k) follows for all k = 1, . . . , n− 1. Moreover, the other
desired estimate #Ram̂(Q, k) ≤ # Primes (̂Q, k) follows from using the sets Ram̂(Q, k)
and Primes (̂Q, k) and from factorizing e(P0,k|Pk,k) in the two analogous ways.

Finally, the last desired estimates # Primes(Q, k) ≤ # Count(Q, k) and # Primes (̂Q, k)
≤ # Count (̂Q, k) follows from the identities in Lemma 224(ii) and the estimates

x ≥ log2(x) = log2(
∏
p∈P

pvp(x)) ≥ log2(2
∑

p∈P
vp(x)) =

∑
p∈P

vp(x)
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for all x ∈ N where all estimates and equalities are obvious, except for the first estimate.
For the first estimate, we first notice that it holds for x = 1, 2. Then, because of the well
known equality log2 = log2(e) loge, we compute

log′
2(2) = log2(e) log′

e(2) = log2(e)/2 < log2(4)/2 = 1.

Thus, this estimate ensures that the derivative of log2 is less than the derivative of idR>0

at 2. Finally, combining this fact and the well known fact that log2 = log2(e) loge is a
concave function R>0 → R yields the desired estimate x ≥ log2(x) for all x ∈ N.

For (iv): We already obtain the first desired estimate by the estimates

eQ,p = ⌊logp( max
k=1,...,n−1

e(P0,k|Pk,k) · e(Pk,n|Pk,k)
e(Q|Pk,k)

)⌋ ≤ ⌊logp( max
k=1,...,n−1

d#A(Q,k))⌋

= ⌊logp(db(Q,A))⌋ = ⌊logp d⌋ · b(Q,A)

where the equalities and estimate hold by the following reasonings: The first equality is
just the definition of eQ,p in Definition 223. The estimate holds because the first estimate
in Lemma 224(iii) and because of all the involved maps ⌊·⌋, logp and maxk=1,...,n−1(·)
are monotonically increasing. The second second equality holds because the power map
N0 → N, x 7→ dx is monotonically increasing and because of the definition of b(Q,A) in
Definition 223. The last equality holds because of the well known rule logp(x)·y = logp(xy)
for all x, y ∈ N and because the definition of b(Q,A) in Definition 223 implies b(Q,A) ∈ N0
and, thus, the equality ⌊logp d⌋ · b(Q,A) = ⌊logp(d) · b(Q,A)⌋.

The other desired estimates immediately follow from the definition of b(Q,A) in Defi-
nition 223 and the estimates in Lemma 224(iii).

For (v): First, we notice that Lemma 10(i) and Lemma 10(ii) provide the identi-
ties σ−ε(Fε,n−1+ε) = F0,n−1 = Fn−1. This implies that σ−ε(Pε,n−1+ε) is indeed a place
σ−ε(Fε,n−1+ε) = Fn−1.

Second, we compute

Pyr(σ−ε(Pε,n−1+ε)) = σ−ε(Pyr(Pε,n−1+ε)) = σ−ε((Pi,j)ε≤i≤j≤n−1+ε)
= (σ−ε(Pi+ε,j+ε))0≤i≤j≤n−1 (437)

where the first and last equalities hold by Definition/Lemma 15(i) and the second equality
holds by the Lemma 13.

Finally, because of the assertion that the path Path(Q) = (Pi,j)j−i≤1 ∈ W (F , 0, n)
is rational, because of the definition of rational paths in Definition 16(iv), because of
the equality in (437) and because of the ’on the one hand’-part in Lemma 17(ii) we
conclude the desired statement in (v), namely that the path Path(σ−ε(Pε,n−1+ε)) =
(σ−ε(Pi+ε,j+ε))j−i≤1 ∈W (F , 0, n− 1) is also rational.

For (v)(a): The first already proven statement σ−ε(Pε,n−1+ε) ∈ PFn−1 provides that
Aδ(·, k) and b(·, Aδ) can be applied to σ−ε(Pε,n−1+ε) for all δ = 0, 1 and all k = 1, . . . , n−2.
These are the first two desired statements in (v)(a).

On the one hand, we derive the desired inclusion Aδ(σ−ε(Pε,n−1+ε), k) ⊆ ε+Aδ(Q, k+ε)
in (v)(a) for δ = 1− ε and all k = 1, . . . , n− 2 from the equalities and inclusions

A1(P0,n−1, k) = {i ∈ {1, . . . , k} : e(Pi−1,k|Pi,k) > e(Pi−1,n−1|Pi,n−1)}
⊆ {i ∈ {1, . . . , k} : e(Pi−1,k|Pi,k) > e(Pi−1,n|Pi,n)}
= A1(Q, k)
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and

1 +A0(σ−1(P1,n), k) = 1 + {j ∈ {k, . . . , n− 2} : e(Pk+1,j+2|Pk+1,j+1) > e(P1,j+2|P1,j+1)}
= {j ∈ {k + 1, . . . , n− 1} : e(Pk+1,j+1|Pk+1,j) > e(P1,j+1|P1,j)}
⊆ {j ∈ {k + 1, . . . , n− 1} : e(Pk+1,j+1|Pk+1,j) > e(P0,j+1|P0,j)}
= A0(Q, k + 1)

where the equalities and inclusions hold by the following reasonings: The first equalities
hold by the equality in (437), the definition of A1−ε(σ−ε(P1,n), k) in Definition 223 for all
k = 1, . . . , n− 2 and the invariance of the ramification indices under the action of isomor-
phisms in (11). The inclusions hold because Key Lemma 36(iv) provides the estimates
e(Pi−1,n−1|Pi,n−1) ≥ e(Pi−1,n|Pi,n) and e(P1,j+1|P1,j) ≥ e(P0,j+1|P0,j). The last equalities
are the definitions of A1−ε(Q, k + ε) in Definition 223 for all k + ε = 1 + ε, . . . , n− 2 + ε.
The remaining second equality in the second chain holds because the set on the left side
consists of the indices j + 1 in {k + 1, . . . , n− 1} which satisfy e(Pk+1,(j+1)+1|Pk+1,j+1) >
e(P1,(j+1)+1|P1,j+1) and because then substituting j + 1 with j yields the set on the right
side.

On the other hand, we also derive the other desired inclusion ε+Aδ(σ−ε(Pε,n−1+ε), k) ⊆
Aδ(Q, k+ ε) in (v)(a) for δ = ε and all k = 1, . . . , n− 2 from the equalities and inclusions

A0(P0,n−1, k) = {j ∈ {k, . . . , n− 2} : e(Pk,j+1|Pk,j) > e(P0,j+1|P0,j)}
⊆ {j ∈ {k, . . . , n− 1} : e(Pk,j+1|Pk,j) > e(P0,j+1|P0,j)}
= A0(Q, k)

and

1 +A1(σ−1(P1,n), k) = 1 + {i ∈ {1, . . . , k} : e(Pi,k+1|Pi+1,k+1) > e(Pi,n|Pi+1,n)}
= {i ∈ {2, . . . , k + 1} : e(Pi−1,k+1|Pi,k+1) > e(Pi−1,n|Pi,n)}
⊆ {i ∈ {1, . . . , k + 1} : e(Pi−1,k+1|Pi,k+1) > e(Pi−1,n|Pi,n)}
= A1(Q, k + 1)

where the equalities and inclusions hold by the following analogous reasonings: The first
equalities hold by the equality in (437), the definition of Aε(σ−ε(Pε,n−1+ε), k) in Definition
223 for all k = 1, . . . , n−2 and the invariance of the ramification indices under the action of
isomorphisms in (11). The inclusions are obvious The last equalities hold by the definition
of Aδ(Q, k + ε) in Definition 223 for all k + ε = 1 + ε, . . . , n − 2 + ε. The last equalities
are the definitions of A1−ε(Q, k + ε) in Definition 223 for all k + ε = 1 + ε, . . . , n− 2 + ε.
The remaining second equality in the second chain holds because the set on the left side
consists of the indices i + 1 in {2, . . . , k + 1} which satisfy e(P(i+1)−1,k+1|Pi+1,k+1) >
e(P(i+1)−1,n|Pi+1,n) and because then substituting i+ 1 with i yields the set on the right
side.

Hence, we established the desired inclusion

Aδ(σ−ε(Pε,n−1+ε), k) ⊆ ε+Aδ(Q, k + ε) (438)

in (v)(a) for all δ = 0, 1.
Finally, the desired estimate b(σ−ε(Pε,n−1+ε), Aδ) ≤ b(Q,Aδ) in (v)(a) follows from

the estimates and equalities

b(σ−ε(Pε,n−1+ε), Aδ) = max
k=1,...,n−2

#Aδ(σ−ε(Pε,n−1+ε), k) ≤ max
k=1,...,n−2

#Aδ(Q, k + ε)

≤ max
k=1,...,n−1

#Aδ(Q, k) = b(Q,Aδ)
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for all δ = 0, 1 where the equalities hold by the definition of b(·, Aδ) in Definition 223, the
first estimate by the inclusion in (438) and the second estimate holds because the assertion
ε ∈ {0, 1} implies that the maximum on the right side runs over one more element than
the maximum on the left side.

For (v)(b): We already obtain the desired equality in (v)(b) by the equalities

eσ−ε(Pε,n−1+ε),p =
⌊

logp

(
max

k=1,...,n−2

e(Pε,k+ε|Pk+ε,k+ε) · e(Pk+ε,n−1+ε|Pk+ε,k+ε)
e(Pε,n−1+ε|Pk+ε,k+ε)

)⌋

=
⌊

logp

(
max

k=1+ε,...,n−2+ε

e(Pε,k|Pk,k) · e(Pk,n−1+ε|Pk,k)
e(Pε,n−1+ε|Pk,k)

)⌋

for all p ∈ P where the first equality holds by the equality in (437), by the definition of
eσ−ε(Pε,n−1+ε),p in Definition 223 and by the invariance of the ramification indices under
the action of isomorphisms in (11) and the second equality holds since we only changed
the indexing via the bijection {1, . . . , n− 2} → {1 + ε, . . . , n− 2 + ε}, k 7→ k + ε

Theorem 225 with the degree bounds CQ. The following Theorem provides the
desired upper bounds CQ for the degree deg(Q) of any place Q ∈ PF which can be
expressed solely in terms of the degree d of F , of the ramification indices of extensions in
Pyr(Q) and the degrees of the places in Path(Q).

Theorem 225. Let F = (Fν)ν be a recursive tower of degree d over a finite field, let
(Fi,j)i,j := Pyr(F) be its pyramid, let Q ∈ PFn for some n ∈ N with n ≥ 2 and let
(Pi,j)i,j := Pyr(Q) be the pyramid of Q.

Then deg(Q) divides lQ · β for all β ∈ {cQ, ρ(d)b(Q,A), (d!)b(Q,A)} and any A ∈ M. If
F is locally Galois, then deg(Q) also divides lQ · db(Q,A) for all A ∈M.

Sketch of the proof. Before, we come to the actual proof of Theorem 225, we want to
sketch it and provide some understanding of what is basically going on.

We will divide the proof into two parts: First, we will prove all desired statements
under the auxiliary assertion that Path(Q) is rational. Then, in the second part, we will
derive the general statements from reducing them to the more special statements in the
first part.

For the first part, we will conlcude that it is enough to show the estimates

vp(deg(Q)) ≤ eQ,p (439)

for all p ∈ P in any case and

vp(deg(Q)) ≤ vp(d) · b(Q,A) (440)

for all p ∈ P and all A ∈ {Kill,Kill̂ } if F is locally Galois. Then we will prove the
estimates in (439) and (440) by induction over n ∈ N with n ≥ 2.

Although, in the end, we will have to distinguish the six cases which are given by the
six tuples in the set

{ ’n = 2’, ’n ≥ 3’ } × { ’F arbitrary’, ’F loc. Galois, v = 0’, ’F loc. Galois, v ≥ 1’ }

where v := mini=0,1 vp(f(P0,n|Pi,n−1+i)), the structure will always be the following: We
will estimate each of the two summands of the sum vp(deg(Q)) = vp(f(P0,n|Pγ,n−1+γ)) +
vp(deg(Pγ,n−1+γ)) for some suitable γ ∈ {0, 1} and then conclude that the resulted estimate
has the desired upper bound in (439) resp. (440).
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Let us illustrate this for the case n ≥ 3, F locally Galois, v ≥ 1 and A = Kill: On the
one hand, we have the estimate vp(f(P0,n|P0,n−1)) ≤ vp(d) because of the fundamental
equality in (8) for Galois extensions and, on the other hand, we also derive the estimate
vp(deg(P0,n−1)) ≤ vp(d)·b(P0,n−1,Kill) from applying the induction hypothesis to P0,n−1 ∈
PFn−1 . Next, we will also derive the estimate b(P0,n−1,Kill) + 1 ≤ b(Q,Kill) from the
assumption v ≥ 1 and finally bring everything together

vp(deg(Q)) = vp(f(P0,n|P0,n−1)) + vp(deg(P0,n−1)) ≤ vp(d) + vp(d) · b(P0,n−1,Kill)
≤ vp(d) · b(Q,Kill).

For the second part, we will drop the auxiliary assertion that Path(Q) is rational.
Here, we will consider the constant field extension F ′ := F

q
lQ · F = (F ′

ν)ν of F and check
that Path(Q′) is rational for all Q′ ∈ PF ′

n
(Q). Consequently, we will conclude that the

corresponding statements of the first part can be applied to Q′. Finally, combining the so
obtained multiples for deg(Q′) and the fact that F ′ = F

q
lQ · F emerges from a constant

field extension via F
q

lQ will eventually provide all the desired statements in Theorem 225.

Proof of Theorem 225. We first show all statements in Theorem 225 under the

auxiliary assertion that Path(Q) = (Pi,j)j−i≤1 ∈W (F , 0, n) is rational. (441)

In particular, by this assertion, the places Pk−1,k are rational for all k = 1, . . . , n and,
hence, we then have the equality lQ = 1. Moreover, we also notice that since ρ(d) :=∏
p∈P p

⌊logp d⌋ is a product of the maximal prime powers ≤ d, it is a divisor of d!. Com-
bining these two conclusions, the estimates in Lemma 224(iv) and the identities deg(Q) =∏
p∈P p

vp(deg(Q)), cQ = ∏
p∈P, p≤d p

eQ,p , ρ(d)b(Q,A) = ∏
p∈P, p≤d p

⌊logp d⌋·b(Q,A) and db(Q,A) =∏
p∈P p

vp(d)·b(Q,A) for all A ∈M yields that it is enough to show the estimates

vp(deg(Q)) ≤ eQ,p (442)

for all p ∈ P in any case and

vp(deg(Q)) ≤ vp(d) · b(Q,A) (443)

for all p ∈ P and all A ∈ {Kill,Kill̂ } if F is locally Galois.
In the following, let (σ, F0) be the pair by which F is recursively defined in Definition

5(ii). We will show the desired estimates in (442) and (443) by induction over n ∈ N with
n ≥ 2: First, we notice that the well known rule deg(P0,n)) = f(P0,n|Pi,n−1+i) deg(Pi,n−1+i)
implies the equality equality vq(deg(P0,n)) = vq(f(P0,n|Pi,n−1+i) + vq(deg(Pi,n−1+i)) for
all i = 0, 1 and all q ∈ P. But, this again implies the equality

vq(deg(P0,n)) = min
i=0,1

vq(f(P0,n|Pi,n−1+i) + max
i=0,1

vq(deg(Pi,n−1+i)) (444)

for all q ∈ P. Consequently, we compute

lcm
i=0,1

deg(Pi,n−1+i) · gcd
i=0,1

f(P0,n|Pi,n−1+i) = deg(P0,n)

≤ lcm
i=0,1

deg(Pi,n−1+i) ·
e(P0,n−1|P1,n−1) · e(P1,n|P1,n−1)

e(P0,n|P1,n−1) (445)

(see Figure 7.8) where the first equality follows from the equality in (444) and from the
well known equalities lcm(a, b) = ∏

q∈P q
vq(max(a,b)) and gcd(a, b) = ∏

q∈P q
vq(min(a,b)) for

all a, b ∈ N and the estimate follows from applying the first estimate in Key Lemma 36(iii)
to the diamond (P0,n, P0,n−1, P1,n, P1,n−1) of places.
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Figure 7.8: Pyramid of places with ramification indices in a proof

Now, let ε ∈ {0, 1} be an index such that

vp(f(P0,n|Pε,n−1+ε)) = min
i=0,1

vp(f(P0,n|Pi,n−1+i)). (446)

Then we derive the equality and estimates

vp(f(P0,n|Pε,n−1+ε)) = vp

(
gcd
i=0,1

f(P0,n|Pi,n−1+i)
)
≤
⌊

logp

(
gcd
i=0,1

f(P0,n|Pi,n−1+i)
)⌋

≤
⌊

logp

(
e(P0,n−1|P1,n−1) · e(P1,n|P1,n−1)

e(P0,n|P1,n−1)

)⌋
=: αQ,p (447)

where the equality holds by the choice of ε in (456) and by the well known equality
gcd(a, b) = ∏

q∈P q
vq(min(a,b)) for all a, b ∈ N, the first estimate holds because vp(a) is a

natural number which is at most logp(a) for all a ∈ N and the second estimate holds
because of the estimate in (445) and because ⌊·⌋ and logp are monotonically increasing
functions.

Consequently, for n ≥ 3, we get the equalities and estimates

αQ,p + eσ−ε(Pε,n−1+ε),p =
⌊

logp

(
e(P0,n−1|P1,n−1) · e(P1,n|P1,n−1)

e(P0,n|P1,n−1)

)⌋

+
⌊

logp

(
max

k=1+ε,...,n−2+ε

e(Pε,k|Pk,k) · e(Pk,n−1+ε|Pk,k)
e(Pε,n−1+ε|Pk,k)

)⌋

≤
⌊

logp

(
max

k=1+ε,...,n−2+ε

(
e(P0,n−1|P1,n−1) · e(P1,n|P1,n−1)

e(P0,n|P1,n−1)

·e(Pε,k|Pk,k) · e(Pk,n−1+ε|Pk,k)
e(Pε,n−1+ε|Pk,k)

))⌋

=
⌊

logp

(
max

k=1+ε,...,n−2+ε

e(P1−ε,n−ε|P1,n−1) · e(Pε,k|Pk,k) · e(Pk,n−1+ε|Pk,k)
e(Q|Pk,k)

)⌋

≤
⌊

logp

(
max

k=1+ε,...,n−2+ε

e(P0,k|Pk,k) · e(Pk,n|Pk,k)
e(Q|Pk,k)

)⌋
≤ eQ,p (448)

where the equalities and estimates hold by the following reasonings:
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The first equality holds by the choice of αQ,p in (447) and by the ’moreover’-part in
Lemma 224(v)(b) which is applicable because n ≥ 3 and because of the auxiliary assertion
in (441).

The first estimate holds by the well known rules ⌊x⌋+ ⌊y⌋ ≤ ⌊x+ y⌋ for all x, y ∈ R≥0
and logp(x) + logp(y) = logp(xy) for all x, y ∈ R>0.

The second equality holds because Lemma 13 and the multiplicative transitivity rule
for ramification indices in (7) supply the equalities e(P0,n|P1,n−1) = e(P0,n|Pε,n−1+ε) ·
e(Pε,n−1+ε|P1,n−1) and e(P0,n|Pε,n−1+ε) · e(Pε,n−1+ε|Pk,k) = e(P0,n|Pk,k) = e(Q|Pk,k) and
because we can represent the numerator in the first quotient as the product e(P0,n−1|P1,n−1)·
e(P1,n|P1,n−1) = e(Pε,n−1+ε|P1,n−1) · e(P1−ε,n−ε|P1,n−1).

The second estimate holds for ε = 0 because Key Lemma 36(iv) provides the esti-
mate e(P1−ε,n−ε|P1,n−1) ≤ e(Pk,n|Pk,n−1+ε), because ⌊·⌋, logp and max are monotonically
increasing and because of the equality e(Pk,n|Pk,n−1+ε) · e(Pk,n−1+ε|Pk,k) = e(Pk,n|Pk,k).

The second estimate holds for ε = 1 because Key Lemma 36(iv) provides the estimate
e(P1−ε,n−ε|P1,n−1) ≤ e(P0,k|Pε,k), because ⌊·⌋, logp and max are monotonically increasing
and because of the equality e(P0,k|Pε,k) · e(Pε,k|Pk,k) = e(P0,k|Pk,k).

The last estimate holds because the maximum in the definition of eQ,p in Definition
223 runs over k = 1, . . . , n − 1 and, thus over one more element as the maximum on the
left side.

Next, if

vp(f(P0,n|Pε,n−1+ε)) ≥ 1 (449)

then we derive the estimates

e(P0,n|P0,n−1) < e(P1,n|P1,n−1) ≤ e(Pk,n|Pk,n−1) (450)

and

e(P0,n|P1,n) < e(P0,n−1|P1,n−1) ≤ e(P0,k|P1,k) (451)

for all k = 1, . . . , n − 2 where the first estimates hold as, otherwise for all δ = 0, 1, we
derive the impossible estimate

0 =
⌊
logp (1)

⌋
≥
⌊

logp

(
e(Pδ,n−1+δ|P1,n−1)
e(P0,n|P1−δ,n−δ)

)⌋

=
⌊

logp

(
e(Pδ,n−1+δ|P1,n−1) · e(P1−δ,n−δ|P1,n−1)
e(P0,n|P1−δ,n−δ) · e(P1−δ,n−δ|P1,n−1)

)⌋

=
⌊

logp

(
e(P0,n−1|P1,n−1) · e(P1,n|P1,n−1)

e(P0,n|P1,n−1)

)⌋
= αQ,p ≥ vp(f(P0,n|Pε,n−1+ε)) ≥ 1

where the equalities and estimates hold by the following reasonings: The first and second
equalities are clear. The first estimate holds because of the assumption e(P0,n|P1−δ,n−δ) ≥
e(Pδ,n−1+δ|P1,n−1) of this contradiction and because logp and ⌊·⌋ are monotonically in-
creasing functions. The third equality holds because the multiplicative transitivity rule
for ramification indices in (7) supplies the equality e(P0,n|P1−δ,n−δ) · e(P1−δ,n−δ|P1,n−1) =
e(P0,n|P1,n−1) and because the product is the numerator of the quotient on the left side can
be represented as e(Pδ,n−1+δ|P1,n−1)·e(P1−δ,n−δ|P1,n−1) = e(P0,n−1|P1,n−1)·e(P1,n|P1,n−1).
The fourth equality and second estimate holds by the equalities and estimates in (447).
The last estimate holds by the assertion in (457).
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Consequently, if vp(f(P0,n|Pε,n−1+ε)) ≥ 1, then the estimates in (450) and (451) and
the definitions of Kill and Kill̂ in Definition 223 yield

n− 1 ∈ Kill(Q, k) and 1 ∈ Kill̂ (Q, k) (452)

for all k = 1, . . . , n− 2. On the other hand, these definitions also imply Kill(P0,n−1, k) ⊆
{k, . . . , n− 2} and Kill̂ (σ−1(P1,n), k) ⊆ {1, . . . , k} and, thus,

n− 1 /∈ Kill(P0,n−1, k) and 1 /∈ 1 + Kill̂ (σ−1(P1,n), k) (453)

for all k = 1, . . . , n − 2. Let A0 := Kill, A1 := Kill̂ . Combining (452), (453) and the
inclusion δ+Aδ(σ−δ(Pδ,n−1+δ), k) ⊆ Aδ(Q, k+ δ) in Lemma 224(v)(a) yields the estimate

#Aδ(σ−δ(Pδ,n−1+δ), k) + 1 ≤ #Aδ(Q, k + δ) (454)

for all δ = 0, 1 and k = 1, . . . , n− 2. Hence, if vp(f(P0,n|Pε,n−1+ε)) ≥ 1, we obtain

b(σ−δ(Pδ,n−1+δ), Aδ) + 1 = max
k=1,...,n−2

#Aδ(σ−δ(Pδ,n−1+δ), k) + 1

≤ max
k=1,...,n−2

#Aδ(Q, k + δ)

≤ max
k=1,...,n−1

#Aδ(Q, k) = b(Q,Aδ) (455)

where the equalities hold by the definitions of b(σ−δ(Pδ,n−1+δ), Aδ) and b(Q,Aδ) in Defi-
nition 223, the first estimate holds by the estimate in (454) and the second estimate holds
as the maximum on the right side runs over one more element than the maximum on the
left side.

Second to last, we obtain the equality and estimate

vp(deg(Pγ,n−1+γ)) = vp(deg(σ−γ(Pγ,n−1+γ)))

≤


0 if n = 2
eσ−γ(Pγ,n−1+γ),p if n ≥ 3
vp(d) · b(σ−γ(Pγ,n−1+γ), Aδ) if n ≥ 3 and F is locally Galois

(456)

for all γ = 0, 1 and all δ = 0, 1 where the equality and estimate hold by the following
reasonings: The equality holds by the invariance of the degree of places under the action
of isomorphisms in (11). The first case of the estimate holds because the auxiliary assertion
in (441) implies that Pγ,n−1+γ = Pγ,1+γ is rational for n = 2. The second and third cases
of the estimate hold because Path(σ−γ(Pγ,n−1+γ)) is also rational by Lemma 224(v) and
because we can therefore apply the induction hypothesis to σ−γ(Pγ,n−1+γ) ∈ PFn−1 .

Finally, we bring everything together to derive the desired estimates in (442) and (443):
First, the desired estimate in (442) follows from the equality and estimates

vp(deg(Q)) = vp(f(P0,n|Pε,n−1+ε)) + vp(deg(Pε,n−1+ε))

≤
{
αQ,p if n = 2
αQ,p + eσ−ε(Pε,n−1+ε),p if n ≥ 3

≤ eQ,p (457)

where the equality and estimates hold by the following reasonings: The first equality
holds because of the well known equality deg(Q) = f(P0,n|Pγ,n−1+γ) · deg(Pγ,n−1+γ) for
all γ = 0, 1 and because vp : N → N0 is a morphism of monoids. The first estimate holds
by combining the estimates in (447) and the first two cases in (456). The first case of the
second estimate holds because the definitions of αQ,p in (447) and of eQ,p in Definition 223
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even imply the equality αQ,p = eQ,p for n = 2. The second case of the second estimate
holds by the estimate in (448) for all n ≥ 3.

Second, if F is locally Galois and vp(f(P0,n|Pε,n−1+ε)) = 0 holds, then the desired
estimate in (443) follows from the equality and estimates

vp(deg(Q)) = vp(f(P0,n|Pε,n−1+ε)) + vp(deg(Pε,n−1+ε))

≤
{

0 if n = 2
vp(d) · b(σ−ε(Pε,n−1+ε), Aδ) if n ≥ 3

≤ vp(d) · b(Q,Aδ)

for all δ = 0, 1 where the equality and estimates hold by the following reasonings: The
equality holds by the same reasoning as the first equality in (457). The first estimate holds
by combining the assertion vp(f(P0,n|Pε,n−1+ε)) = 0 and the first and third cases of the
estimate in (456). The first case of the second estimate holds because the definition of
b(Q,Aδ) in Definition 223 implies that it is nonnegative. The second case of the second
estimate holds by the estimate b(σ−ε(Pε,n−1+ε), Aδ) ≤ b(Q,Aδ) in Lemma 224(v)(a).

Third, if F is locally Galois and vp(f(P0,n|Pε,n−1+ε)) ≥ 1 holds, then the desired
estimate in (443) follows from the equality and estimates

vp(deg(Q)) = vp(f(P0,n|Pδ,n−1+δ)) + vp(deg(Pδ,n−1+δ))

≤
{
vp(d) if n = 2
vp(d) + vp(d) · b(σ−δ(Pδ,n−1+δ), Aδ) if n ≥ 3

≤ vp(d) · b(Q,Aδ)

for all δ = 0, 1 where the equality and estimates hold by the following reasonings: The
equality holds by the same reasoning as the first equality in (457). For the first esti-
mate, we first notice that the assertion that F is locally Galois and Lemma 33 imply
that F0,n/Fδ,n−1+δ is Galois. Thus, the fundamental equality for Galois extensions in (8)
supplies that f(P0,n|Pδ,n−1+δ) divides d and the estimate vp(f(P0,n|Pδ,n−1+δ)) ≤ d. Then
the first estimate follows from combining this estimate and the first and third cases of the
estimate in (456). The last estimate holds because the estimate in (455) and the fact that
b(σ−δ(Pδ,n−1+δ), Aδ) is nonnegative imply the estimates 1 ≤ b(σ−δ(Pδ,n−1+δ), Aδ) + 1 ≤
b(Q,Aδ).

All together, we established that Theorem 225 follows for all n ∈ N with n ≥ 2 under
the auxiliary assertion that Path(Q) is rational.

Finally, we drop this auxiliary assertion: Let Fq be the finite field over which F is
defined. Then we consider the constant field extension F ′ := F

q
lQ · F = (F ′

ν)ν and its
pyramid (F ′

i,j)i,j := Pyr(F ′). In particular, Definition/Lemma 21 provides the equality

F ′
i,j = F

q
lQ · Fi,j (458)

for all i, j ∈ N0 with i ≤ j and Lemma 34 provides that

F ′ is locally Galois if F is locally Galois. (459)

Now, let Q′ ∈ PF ′
n
(Q). Then [Sti08, p.190, Lemma 5.1.9(d)] supplies that

deg(Q) = gcd(lQ,deg(Q)) · deg(Q′) is a divisor of lQ · deg(Q′). (460)

Furthermore, for the path (P ′
i,j)j−i≤1 := PathF ′(Q′) ∈ W (F ′, 0, n) of Q′, we obtain the

equalities

(P ′
i,j ∩ Fi,j)j−i≤1 = πW (F ′)/W (F)((P ′

i,j)j−i≤1) = πW (F ′)/W (F)(PathF ′(Q′))
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= PathF (πPPyr(F′)/PPyr(F)(Q
′)) = PathF (Q) = (Pi,j)j−i≤1 (461)

where the first equality holds by the definition of πW (F ′)/W (F) in Lemma 76(iv), the
second equality holds by the choice of (P ′

i,j)j−i≤1 = PathF ′(Q′), the third equality holds
by the identity in Lemma 76(iv), the fourth equality holds because of the definition of
πPPyr(F′)/PPyr(F)(Q

′) = Q′ ∩ F0,n = Q′ ∩ Fn = Q in Lemma 76(iii) and the last equality
holds by the choice of (Pi,j)j−i≤1 = PathF (Q).

Consequently, by the equality in (461), we conclude that P ′
i,j/Pi,j is an extension of

places in F ′
i,j/Fi,j for all 0 ≤ i ≤ j ≤ n. Furthermore, we also notice that since any of the

places Pi,i with i = 0, . . . , n is contained in some of the places Pi−1,i with i = 1, . . . , n,
the degree of of the places in (Pi,j)j−i≤1 = PathF (Q) divides lQ = lcmk=1,...,n deg(Pk−1,k).
Therefore, combining this conclusion, the equality in (459) and [Sti08, p.190, Lemma
5.1.9(d)] yields that the path (P ′

i,j)j−i≤1 = PathF ′(Q′) of Q′ is rational.
Hence, by this last conclusion, by (459) and for all of the desired statements for Q, the

first part of this proof provides the corresponding statements for Q′. But, combining this,
(460) and the fact that the invariance of ramification indices under constant field extensions
in (12) implies the equality e(P ′

i,j |P ′
k,l) = e(Pi,j |Pk,l) for all 0 ≤ i ≤ k ≤ l ≤ j ≤ n finally

also supplies all the desired statements for Q.

7.3.2 Degree Bounds Which Only Depend on Subgraphs

Summary of the results of this subsection. In this subsection, we will bring the
tower graph ΓF into the picture and prove Theorem 228. For every tame recursive towers
F and every finite strongly connected subgraphs Γ of ΓF which has a circle with positive
length but only contains circles with balanced ramification indices, this theorem provides
an upper bound CΓ for the set δΓ = {deg(Q) : Q ∈ PF}. This upper bound CΓ will be
lΓ · BΓ

#V (Γ) and, thus, only depend on Γ. The third interim result in Corollary 171 will
be an immediate consequence of this Theorem 228.

We will first prove Proposition 227. Then Theorem 228 will follow from combining
this proposition and Theorem 225.

Degree bounds for places lying over subgraphs. Let F = (Fν)ν be a recursive
tower over a finite field and Γ be a finite subgraph of the tower graph ΓF of F . Then,
for Q ∈ PFn [Γ] with n ≥ 2, Theorem 225 supplies the multiples lQ · ρ(d)b(Q,Count) and
lQ · (d!)b(Q,Count) of deg(Q) in any case and lQ · db(Q,Count) if F is locally Galois. Then the
following Proposition 227(i) will provide the larger multiples lΓ · ρ(d)BΓ,n and lΓ · (d!)BΓ,n

of deg(Q) in any case and lΓ ·dBΓ,n if F is locally Galois. The point here will be that these
larger multiples only depend on Γ and n but not on Q anymore.

Furthermore, in Proposition 227(ii), we will prove that if F is tame, Γ is strongly
connected and only contains circles with balanced ramification indices, then we can even
get rid of the dependency on n, i.e. we will obtain the estimate BΓ,n ≤ BΓ

#V (Γ) where
BΓ

#V (Γ) only depends on Γ. This is the last missing piece to prove the desired Theorem
228.

Definition 226. Let F = (Fν)ν be a recursive tower of degree d over a finite field which
is defined by the pair (σ, F0), let Γ be a finite subgraph of the tower graph ΓF of F with at
least one circle of positive length. Then we define

BΓ,n := max
Q∈
∐n

i=0 PFi
[Γ]
e(Q|Q ∩ F0) and lΓ := lcm

Q∈E(Γ)
deg(Q)

for all n ∈ N0.
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Note that BΓ,n is a natural number because the assertion that Γ is finite with at least
one circle of positive length implies that it contains at least one but finitely many paths of
every given length i ∈ N0.

Proposition 227. Let F = (Fν)ν be a recursive tower of degree d over a finite field and
let Γ be a finite subgraph of the tower graph ΓF of F with at least one circle of positive
length. Then the following hold:

(i) Let Q ∈ Pn[Γ] for some n ≥ 2. Then lQ divides lΓ and we have the estimate

b(Q,Count) ≤ BΓ,n.

(ii) If Γ is strongly connected, all circles in Γ have balanced ramification indices and all
paths in Γ are tame, then BΓ,n divides BΓ

#V (Γ) for all n ∈ N0.

Proof. For (i): Let σ be the tower map of F and let (Pi,j)i,j := Pyr(Q) be the pyramid of
Q. Then we derive[

σ−i(Pi,j)
]
j−i≤1

= σ−1
ΓF

((Pi,j)j−i≤1) = σ−1
ΓF

(PathF (Q)) ∈W (Γ, n) (462)

where the first equality follows from the definition of σΓF in Definition/Lemma 76, the sec-
ond equality follows from the ’on the one hand’-part in Lemma 17(ii) and the containment-
statement follows from the definition of Pn[Γ] in Definition 85 and the assertion Q ∈ Pn[Γ].

Now, the definition of lQ in Definition 223 and the invariance of the degree of places
under the action of isomorphisms in (11) provide the equality

lQ = lcm
k=1,...,n

deg(Pk−1,k) = lcm
k=1,...,n

deg(σ−k(Pk−1,k))

But since the equality in (462) provides σ−k(Pk−1,k) ∈ E(Γ), we obtain that the lcm in lQ
runs over a subset of the lcm in the definition of lΓ = lcmP∈E(Γ) deg(P ) in Definition . In
particular, this yields the first desired statement in (i), namely that lQ divides lΓ.

For the desired estimate b(Q,Count) ≤ bΓ,n in (i), we first conclude the equalities

σ−1
ΓF

(
Path

(
σ−k(Pk,n)

))
= σ−1

ΓF

(
σ−k(Path (Pk,n))

)
= σ−1

ΓF

(
σ−k

(
(Pi,j)k≤i≤j≤n

j−i≤1

))

= σ−1
ΓF

(
σ−k(Pi+k,j+n)0≤i≤j≤n−k

j−i≤1

)
=
[
σ−(i+k)(Pi+k,j+n)

]
j−i≤1

∈W (Γ, n− k) (463)

for all k = 1, . . . , n − 1 where the equalities and containment-statement hold by the
following reasonings: The first equality holds by Definition/Lemma 20(ii). The second
equality holds by Definition/Lemma 17(ii). The third equality holds by Definition/Lemma
20(i). The last equality holds by the definition of σΓF . The containment-statement holds
because this path is a subpath of σ−1

ΓF
(Path(Q)) ∈W (Γ) by (462).

Finally, we obtain the desired estimate in (i) by the equalities and estimate

b(Q,Count) = max
k=1,...,n−1

e(Pk,n|Pk,k) = max
k=1,...,n−1

e(σ−k(Pk,n)|σ−k(Pk,k))

= max
k=1,...,n−1

e(σ−k(Pk,n)|σ−k(Pk,n) ∩ F0)

≤ max
Q′∈
∐n

i=0 PFi
[Γ]
e(Q′|Q′ ∩ F0) = BΓ,n

where the equalities and estimate hold by the following reasonings: The first and last
equalities hold by the definitions of b(Q,Count) in Definition 223 and of BΓ,n in Definition
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226. The second equality holds by the invariance of the ramification indices under the
action of isomorphisms in (11). The third equality holds since, for (Fi,j)i,j := Pyr(F),
σ−k(Pk,k) is a place in σ−k(Fk,k) = F0,0 = F0 which lies under σ−k(Pk,n). The estimate
holds because (463) supplies σ−k(Pk,n) ∈ PFn−k

[Γ].

For (ii): By the definitions of BΓ,n in Definition 226 and of BΓ in Lemma 221, we have
the equalities

BΓ,n = max
Q∈
∐n

i=0 PFi
[Γ]
e(Q|Q ∩ F0) and BΓ = lcm

Q∈P◦
F [Γ]

ẽ(Q|Q ∩ F0). (464)

Then we notice that because of the assertion that all paths in Γ are tame, Lemma 44(iii)
supplies the equality e = ẽ for all the extensions of places in the definitions of BΓ,n
and BΓ in (464). Consequently, applying Lemma 221 yields that all ramification indices
in the maximum in BΓ,n divide BΓ

#V (Γ). Hence, BΓ,n indeed divides BΓ
#V (Γ) and (ii)

follows.

Theorem 228 with the degree bound CΓ which only depends on the subgraph
Γ. In the following Theorem 228, we finally provide the desired upper bounds CΓ of
δΓ = {deg(Q) : Q ∈ PF} which only depends on the subgraph Γ.

Theorem 228. Let F = (Fν)ν be a recursive tower of degree d over a finite field, let Γ
be a finite strongly connected subgraph of the tower graph ΓF of F with at least one edge
such that all circles in Γ have balanced ramification indices and all paths in Γ are tame
and let Q ∈ PF [Γ].

Then deg(Q) divides lΓ · ρ(d)BΓ
#V (Γ) and lΓ · (d!)BΓ

#V (Γ). If F is locally Galois, then
deg(Q) also divides lΓ · dBΓ

#V (Γ).

Proof. Let n ∈ N0 such that Q ∈ PFn [Γ]. Then we first notice that, because of the
assertion that Γ is strongly connected with at least one edge, it must also have circles of
positive lengths. Next, we distinguish four cases:

For n ≥ 2, all statements are direct combinations of statements in Theorem 225 and
Proposition 227.

For n = 1, we have Q ∈ PF1 [Γ] = PF1(σΓF (W (Γ, 1))) = PF1(E(Γ)) = E(Γ) and, thus,
deg(Q) is already a divisor of lΓ = lcmQ′∈E(Γ) deg(Q′).

For n = 0, we have Q ∈ PF0 [Γ] = PF0(σΓF (W (Γ, 0))) = PF0(V (Γ)) = V (Γ). Because
Γ is strongly connected and because of the assertion that Γ contains at least one edge,
there must also be an edge Q′ in Γ with vinit(Q′) = Q. Consequently, deg(Q) is a divisor
of deg(Q′) = f(Q′|Q) · deg(Q) and, thus, of lΓ.

7.3.3 Proof of the Third Interim Result

Finally, we are prepared to prove the third interim result in Corollary 171.

Proof of Corollary 171. If Γ is empty or only consists of a single vertex, then PF [Γ] is
also empty or consists of a single place, respectively. Hence, the finiteness of the set
{deg(Q) : Q ∈ PF [Γ]} follows trivially in these cases.

If Γ contains more than one vertex, then it must also contain at least one edge because
it is strongly connected. Thus, in all the remaining cases, Γ contains at least one circle
of positive length. But then the finiteness of the set {deg(Q) : Q ∈ PF [Γ]} immediately
follows from Theorem 228.
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8 Computing Genus Formulas

Summary of the results of this chapter. In this chapter, we will prove Corollary
246, which is a further result of this thesis and enables us to compute genus formulas for all
recursive towers which have finite separating power ramification subgraphs (see Definition
229(iii) and Definition 239). Moreover, in (A4), we will even provide an approach on how
to apply Corollary 246 to effectively compute genus formulas. This approach (A4) will
also have a first naive implementatios in Subsection 8.3.2. The author is not aware of
any tame recursive tower in the literature on which this implementation does not work.
Consequently, in Examples 250, we will list genus formulas for some representative tame
recursive towers from the literature.

Significance of being able to compute genus formulas. In some situations, it is
useful to have explicit formulas for the genera in towers of functions fields:

First, good towers F = (Fν)ν of function fields over finite fields can be used to con-
struct error correcting Goppa Codes with good parameters (see the proof of [Sti08, p. 300,
Proposition 8.4.6]). In this construction, more precise approximations of the values N(Fn)
and g(Fn) also yield more precise approximations for the parameters of the corresponding
Goppa Codes constructed from Fn. Thus, being able to compute an explicit formula for
g(Fn) is advantageous. Also note that, although we will not present details, the methods
of this chapter can also be used to compute the upper bound N [Fn, k · Γrat

F ] for N(Fn)
where F = k · F = (F ν)ν is the geometric tower of F .

Second, in the generic case, computing the genus g(Fn) via a computer algebra system
like Magma [BCP97] is already unfeasible for n ≥ 6. Thus, to compute the genera g(Fn)
for higher levels Fn, there is hardly any other chance than to already compute a formula
for g(Fn) for all n.

Third, it is crucial to have an actual genus formula in some situations. For instance, in
[HP16, p. 12, Proposition 12], the authors computed the genus formula for the tame recur-
sive HP-tower FHP,q, which we also already introduced in Examples 8(vii). In Examples
250(i), the implementation of Subsection 8.3.2 will also compute this formula.

The challenges of computing precise values for N(Fn) and g(Fn). In Chapter
6, we estimated N(Fn) and g(Fn) asymptotically in such a way that we could determine
the precise limits ν(F) = limν→∞

N(Fν)
dν and γ(F) = limν→∞

g(Fν)
dν in most cases, e.g. for

tame F where every weakly connected component of the finite ramification subgraph Γram
F

has circles with unbalanced ramification indices. This was only possible because we could
show that the quotient with the error of our estimate for N(Fn) (resp. g(Fn)) and dn

vanishes as n→∞.
In this chapter, we will try to actually compute these errors. For that, we will briefly

recapitulate the estimates from the last chapters for the case that F is tame and every
weakly connected component of the finite ramification subgraph Γram

F has circles with
unbalanced ramification indices: First, we considered the equalities

N(Fn) = N(Fn, V (Γsplit
F )) +N(Fn, V (Γram

F )) +N(Fn, V (ΓF\(Γsplit
F ⊔ Γram

F )))
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= #V (Γsplit
F ) · dn +N(Fn, V (Γram

F )) + #W (Γrat
F \(Γ

split
F ⊔ Γram

F ), n)

and

g(Fn) = 1
2
(
2 + dn

(
(2g(F0)− 2) + #V (Γram

F )
)
−N(Fn, V (Γram

F ))
)

(465)

and, second, we proved

0 = lim
ν→∞

#W (Γrat
F \(Γ

split
F ⊔ Γram

F ), ν)
dν

= lim
ν→∞

N(Fν , V (Γram
F ))

dν
= lim

ν→∞

N(F ν , V (Γram
F ))

dν
.

Thus, the errors which we want to compute are #W (Γrat
F \(Γ

split
F ⊔Γram

F ), n), N(Fn, V (Γram
F ))

and N(Fn, V (Γram
F )).

But, although it is simple to compute #W (Γrat
F \(Γ

split
F ⊔ Γram

F ), n), it is basically im-
possible to compute N(Fn, V (Γram

F )) without more concrete information on the defining
equations of the recursive tower F : Indeed, this comes down to the question of predicting
the degree of the place Q in a diamond (Q,P1, P2, P ) of places for non-coprime e(P1|P )
and e(P2|P ), i.e. where killing of ramification indices appears. Here, Key Lemma 36(iii)
at least supplies the degree bounds

lcm(deg(P1), deg(P2)) ≤ deg(Q) ≤ lcm(deg(P1),deg(P2)) · gcd(e(P1|P ), e(P2|P )).

Unfortunately, the degree of Q can attain any value inside of this range depending on the
concrete defining equations of the involved function fields. Consequently, we cannot hope
to find a general approach to compute N(Fn).

Nevertheless, as we already mentioned in the last paragraph, the methods of this
chapter can also be used to compute the upper bound N [Fn, k · Γrat

F ] for N(Fn) where
F = k · F = (F ν)ν denotes the geometric tower of F .

Genus Formulas. On the other hand, this last problem disappears if we switch to the
geometric tower F = (F ν)ν , i.e. if we want to compute the error

N(Fn, V (Γram
F )) =

∑
P∈W (Γram

F
,n)
N(Fn, σΓF

(P)) (466)

of our estimate for g(Fn) in (465). Here, Corollary 51 provides an approach to compute

N(Fn, σΓF
(P)) = Ñ(Fn, σΓF

(P)) =
∏n
i=1 ẽ(Pi−1,i|Pi−1,i−1)

ẽ(Q|P0,0) =
∏n
i=1 e(Pi−1,i|Pi−1,i−1)

e(Q|P0,0)

for all P = [Pi,j ]j−i≤1 ∈W (ΓF , n) and all Q ∈ PFn(σΓF
(P)). Hence, we obtain the number

of places N(Fn, σΓF
(P)) which lie over the path P from iteratively applying Abhyankar’s

Lemma to the extensions in the pyramid Pyr(Q) of Q.
However, although iteratively applying Abhyankar’s Lemma is effective for computing

e(Q|Q∩F0) = e(Q|P0,0) for any explicitly given path P = [Pi,j ]j−i≤1, we still have to face
two non-trivial challenges (TwoCh): First, we basically need to compute N(Fn, σΓF

(P))
for all P ∈W (Γram

F , n) at the same time (e.g. via a suitable parametrization of the paths P)
and, second, we need to find a useful presentation of the sum of these valuesN(Fn, σΓF

(P))
in (466).

In this chapter, we will overcome these two challenges for tame recursive towers F with
finite power separating ramification subgraphs Γram

F (see Definition 229(iii) and Definition
239). More concretely, we will develop an approach for computing genus formulas for
these tame recursive towers F = (Fν)ν . In Corollary 246, which is the main result of this
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chapter, we will provide some finite subset Λ ⊂ Q and some polynomials fλ(n) ∈ Q[n] for
all λ ∈ Λ such that

g(Fn) = 1
2

2 + dn
(
g(F0)− 2 + #V (Γram

F )
)
−
∑
λ∈Λ

fλ(n) · λn
 (467)

holds for all n ≥ c(F) with some lower bound c(F) ∈ N0.
All the results of this chapter will be applicable to all tame recursive towers in the

literature known to the author (e.g. [MW05], [Sti08], [BR20]). Thus, in the end, we
will have an effective approach (A4) to compute genus formulas and even a first naive
implementation in Subsection 8.3.2 which automatizes this approach and also works on
all the tame recursive towers in the literature known to the author.

Note that, for some tame recursive towers in the literature (e.g. [MW05, p. 212, f11] )
the results are only applicable to some level l truncation of the tower with l ≤ 2.

Structure of this chapter. In the first Section 8.1, we will introduce separating sub-
graphs and elaborate on how we can overcome our two challenges in (TwoCh) for separating
subgraphs.

The second Section 8.2 will form the core of this chapter. Here we will first demonstrate
how the insights of the first Section 8.1 can be effectively applied to compute genus formulas
for some example. Second, we will introduce the notion of e-power subgraphs Γ (see
Definition 239). Third, we will prove the main result of this chapter, namely Corollary
246: For all tame recursive towers F satisfying that every weakly connected component Γi
of the finite ramification subgraph Γram

F is a separating power subgraph, Corollary 246 will
provide the explicit finite sets Λ, upper bounds for the degrees of the polynomials fλ(n)
and the lower bound c(F) in the genus formula in (467). Finally, we will also develop our
final approach (A4) on how to effectively apply Corollary 246 to compute genus formulas.

In the third Section 8.3, we will present a first naive implementation of the approach
(A4) to compute genus formulas automatically (see Subsection 8.3.2). This implementa-
tion will work on all tame recursive towers in the literature known to the author. Corre-
spondingly, at the end in Examples 250, we will also list genus formulas for some repre-
sentative tame recursive towers from the literature.

8.1 An Approach to Compute Genus Formulas
Purpose of this section. In this section, we will introduce separating subgraphs and
elaborate on how we can overcome our two challenges in (TwoCh) for separating subgraphs.

Structure of this section. In the first Subsection 8.1.1, for all primes q, we will first
define q-separating subgraphs Γ in Definition 229 and prove some characterizations of q-
separating subgraphs in Lemma 231. Here, the characterization in Lemma 231(iv) will
carry the key feature of q-separating subgraphs, namely that, for all Q ∈ PFn [Γ], at least
one of the numbers vq(e(Q|Q ∩ F0)) and vq(e(Q|Q ∩ σn(F0))) vanishes.

In the second Subsection 8.1.2, we will then define the map N′ in Definition 233. Then
this map N′ together with the weight function w′

1,P on Γ in Definition 162 and the above
key feature of q-separating subgraphs will supply Key Lemma III of this chapter, which
is Key Lemma 234. Finally, this Key Lemma 234 will enable us to overcome our two
challenges in (TwoCh).
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8.1.1 Separating Subgraphs

Purpose of this subsection. In this subsection, we will introduce separating subgraphs
and characterize them in Lemma 231. Here, the characterization in Lemma 231(iv) will
be the key feature of separating subgraphs for overcoming our two challenges in (TwoCh)
for tame recursive towers with finite separating ramification subgraphs.

Motivating the definition of separating subgraphs. For the definition of so called q-
separating subgraphs, we first consider the ramification subgraphs Γram

F which are depicted
in the figures B.28, B.2, B.4, B.19, B.16. There we observe for all these examples that the
ramified edges of Γram

F distribute in the following way: The ramifiaction subgraph Γram
F

consists of two disjoint subgraphs Γ1 and Γ2 which are only connected via edges from
Γ1 to Γ2 such that all the initial vertices of the edges Q which are ramified in F1/σ(F0)
are contained in Γ1 and all the terminal vertices of the edges Q which are ramified in
F1/F0 are contained in Γ2. Since the connecting edges from Γ1 and Γ2 are also unramified
in at least one of the extensions F1/F0 and F1/σ(F0), we notice that these ramification
subgraphs satisfy the property that there is no path in Γram

F which starts at an edge Q1
being ramified in F1/F0 and ends at an edge Q2 being ramified in F1/σ(F0).

q-separating subgraphs. If we now specialize this last property from above for the
q-powers in the ramification indices, we already arrive at the definition of q-separating
subgraphs in Definition 229. In the following, we will shortly say that an extension Q/P
of places in an extension F/E of function fields is q-ramified if vq(e(Q|P )) > 0. Otherwise,
we will say that Q/P is q-unramified.

Definition 229. Let F be a recursive tower which is defined by the pair (σ, F0). Moreover,
let Γ be a subgraph of the tower graph ΓF of F . Finally, let q ∈ P.

(i) We call a pair (Q1, Q2) of edges in ΓF q-critical if vq(e(Q1|Q1 ∩ F0)) ≥ 1 and
vq(e(Q2|Q2 ∩ σ(F0))) ≥ 1.

(ii) We call Γ q-separating if there is no path from Q1 to Q2 for any q-critical pair
(Q1, Q2) of edges in Γ.

(iii) We call Γ (q1, . . . , qr)-separating (resp. separating) if Γ is p-separating for all
p ∈ {q1, . . . , qr} ⊂ P (resp. p ∈ P).

Distribution of ramification indices in paths of separating subgraphs. The
following Lemma is an immediate consequence of the definition of q-separating subgraphs
and basically states that the sequence of edges (P0,1, . . . , Pn−1,n) of any path P in a q-
separating subgraph Γ can be split into a first part (P0,1, . . . , Pr−1,r) of edges which are q-
unramified in F1/F0 and a second part (Pr−1,r, . . . , Pn−1,n) of edges which are q-unramified
in F1/σ(F0).

Lemma 230. Let F be a recursive tower which is defined by the pair (σ, F0). Moreover,
let q ∈ P and let Γ be a subgraph of the tower graph ΓF of F . Finally, let Q ∈ PFn [Γ] for
some n ∈ N and let (Pi,j)j−i≤1 := Path(Q) ∈W (F , 0, n).

If Γ is q-separating, then there is some r ∈ {1, . . . , n} such that vq(ẽ(Pi−1,i|Pi−1,i−1)) =
0 for all i = 1, . . . , r and vq(ẽ(Pi−1,i|Pi,i)) = 0 for all i = r, . . . , n.

Proof. We show this by contraposition: Suppose that there is no such index r ∈ {1, . . . , n}.
First, by this assertion, we conclude that there are some indices i1 and i2 in {1, . . . , n}
with i1 < i2 such that

q divides ẽ(Pi1−1,i1 |Pi1−1,i1−1) and ẽ(Pi2−1,i2 |Pi2,i2). (468)
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Second, for all ε = 0, 1 and all i = 1, . . . , n, we compute

ẽ(Pi−1,i|Pi−1+ε,i−1+ε) = ẽ(σ−(i−1)(Pi−1,i)|σ−(i−1)(Pi−1+ε,i−1+ε))
= ẽ(σ−(i−1)(Pi−1,i)|σ−(i−1)(Pi−1,i ∩ Fi−1+ε,i−1+ε))
= ẽ(σ−(i−1)(Pi−1,i)|σ−(i−1)(Pi−1,i) ∩ σε(F0)) (469)

where the equalities hold by the following reasonings: The first equality holds by the
invariance of the action of σ on the Abhyankar ramification indices in Lemma 46. The
second equality holds because the definition of (Pi,j)j−i≤1 = Path(Q) in Definition 17(i)
and the inclusion Fi−1+ε,i−1+ε ⊆ Fi−1,i in Lemma 10(i) imply the equalities

Pi−1+ε,i−1+ε = Q ∩ Fi−1+ε,i−1+ε = (Q ∩ Fi−1,i) ∩ Fi−1+ε,i−1+ε = Pi−1,i ∩ Fi−1+ε,i−1+ε.

The last equality holds because the fact that σ is a bijection implies the equality

σ−(i−1)(Pi−1,i ∩ Fi−1+ε,i−1+ε) = σ−(i−1)(Pi−1,i) ∩ σ−(i−1)(Fi−1+ε,i−1+ε)

and because Lemma 10(ii) and Lemma 10(i) imply the equalities

σ−(i−1)(Fi−1+ε,i−1+ε) = σε(F0,0) = σε(F0).

Third, we notice

[σ−i(Pi,j)]j−i≤1 = σ−1
ΓF

(Path(Q)) ∈W (Γ, n) (470)

where the equality holds by the definition of σΓF in Definition/Lemma 76 and by the
choice of (Pi,j)j−i≤1 = Path(Q) in the assumptions and the containment-statement holds
because of the definition of Q ∈ PFn [Γ] in Definition 85.

Finally, from (468), (469) and (470) and from the definition of q-critical pairs of edges
in Definition 229(i), we derive that

(Q1, Q2) :=
(
σ−(i1−1)(Pi1−1,i1), σ−(i2−1)(Pi2−1,i2)

)
is a q-critical pair of edges in ΓF .

But (470) even supplies that [σ−(i1−1+i)(Pi1−1+i,i1−1+j)]j−i≤1 ∈ W (Γ, i2 − i1 + 1) is a
path in Γ from Q1 to Q2. Hence, by the definition of q-separating subgraphs in Definition
229(ii), we deduce the desired statement, namely that Γ is not q-separating.

Characterizations of q-separating subgraphs. In the following Lemma 231, we will
prove three useful characterizations of q-separating subgraphs. Here the characterization
in (iii) captures our motivating observation for the definition of q-separating subgraphs
Γ from the beginning of this Section 8.1.1, namely that Γ consists of suitable disjoint
subgraphs Γ1 and Γ2 with connecting edges only going from Γ1 to Γ2.

The characterization in (iv) carries the key feature of q-separating subgraphs for over-
coming our two challenges in (TwoCh) for tame recursive towers, namely that any place
Q ∈ PFn [Γ] is q-unramified in at least one of the extensions Fn/F0 or Fn/σn(F0).

Lemma 231. Let F be a recursive tower which is defined by the pair (σ, F0). Moreover,
let Γ be a subgraph of the tower graph ΓF of F . Finally, let q ∈ P. Then the following
statements are equivalent:

(i) Γ is q-separating.

(ii) For all n ∈ N and all paths [Pi,j ]j−i≤1 ∈ W (Γ, n), there is some index r such that
vq(e(Pi−1,i|Pi−1,i−1)) = 0 for all i = 1, . . . , r and vq(e(Pi−1,i|σ(Pi,i))) = 0 for all
i = r, . . . , n.
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(iii) Then Γ consists of disjoint subgraphs Γ1 and Γ2 which are possibly connected via
some edges from Γ1 to Γ2 and moreover satisfy the following properties:
All these connecting edges Q satisfy vq(e(Q|Q ∩ σi(F0))) = 0 for some i = 0, 1, the
initial vertex of any edge Q with vq(e(Q|Q ∩ σ(F0))) ≥ 1 is contained in Γ1 and the
terminal vertex of any edge Q with vq(e(Q|Q ∩ F0)) ≥ 1 is contained in Γ2.

(iv) For all n ∈ N and all Q ∈ PFn [Γ], we have vq(ẽ(Q|Q ∩ F0)) = 0 or vq(ẽ(Q|Q ∩
σn(F0))) = 0.

Proof. For the implication from (i) to (ii): Suppose that Γ is q-separating and let n ∈ N
and P := [Pi,j ]j−i≤1 ∈ W (Γ, n). Then Lemma 17(i) provides some Q ∈ PFn(σΓF (P)). By
the definitions of σΓF in Definition/Lemma 76 and of Path in Definition/Lemma 17(i),
this yields (σi(Pi,j))j−i≤1 = σΓF (P) = Path(Q).

Consequently, by Lemma 230, we deduce that there is some r ∈ {1, . . . , n} such that
vq(ẽ(σi−1(Pi−1,i)|σi−1(Pi−1,i−1))) = 0 for all i = 1, . . . , r and vq(ẽ(σi−1(Pi−1,i)|σi(Pi,i))) =
0 for all i = r, . . . , n.

But, because we have e = ẽ on the extensions in paths in F by Definition 41(i) and
because of the invariance of ramification indices under the action of isomorphisms in (11),
the desired statement in (ii) follows.

For the implication from (ii) to (iii): Suppose that, for all paths [Pi,j ]j−i≤1 ∈W (Γ, n)
with n ∈ N, there is some index r such that vq(e(Pi−1,i|Pi−1,i−1)) = 0 for all i = 1, . . . , r
and vq(e(Pi−1,i|σ(Pi,i))) = 0 for all i = r, . . . , n.

Define Γ′
2 as the union of all strongly connected components of Γ which contain the

terminal vertices of edges Q with vq(e(Q|Q∩F0)) ≥ 1. Moreover, choose Γ2 as the smallest
forward complete subgraph of Γ which contains Γ′

2 and let Γ1 be the subgraph of Γ with
vertex set V (Γ1) := V (Γ)\V (Γ2) and edge set E(Γ1) := ∐

P1,P2∈V (Γ1)E(Γ, P1, P2).
Then we notice that Γ1 and Γ2 are indeed disjoint by the definition of Γ1. Furthermore,

since Γ2 is forward complete, there cannot be a an edge from Γ1 and Γ2.
Next, since any connecting edge Q from Γ1 and Γ2 is especially a path of length

one from Q ∩ F0 to σ−1(Q) ∩ F0 by the definition of tower graphs in Definition 74, the
assertion from the beginning and the invariance of ramification indices under the action
of isomorphisms in (11) imply the equalities

0 = vq(e(σ−i(Q)|σi(σ−i(Q) ∩ F0))) = vq(e(Q|Q ∩ σi(F0)))

for some i = 0, 1.
Finally, let Q be an edge in Γ with initial vertex P in Γ2. By the definition of Γ2 there

is a path from some vertex P1 to P which is the terminal vertex of some edge Q1 with
vq(e(Q1|Q1 ∩ σ(F0))) ≥ 1. But the assertion from the beginning then implies the esti-
mate vq(e(Q|Q∩F0)) = 0. Hence, we concluded that the initial vertex P in Γ of any edge
Q in Γ with vq(e(Q|Q∩F0)) ≥ 1 must be contained in Γ1. All together, we established (iii).

For the implication from (iii) to (i): Suppose that Γ is of the form in (iii) and let
(Q1, Q2) be a q-critical pair of edges in Γ.

Because of the definition of q-critical pairs in Definition 229(i) and because of the
properties of Γ1 and Γ2, the terminal vertex of Q1 must be contained in Γ2 and the initial
vertex of Q2 in Γ1.

Since the connecting edges Q from Γ1 to Γ2 satisfy vq(e(Q|Q ∩ σi(F0))) = 0 for some
i = 0, 1, we also obtain that the edges Q1 and Q2 cannot be the same connecting edge
Q. Finally, since there are no connecting edges from Γ2 to Γ1, we conclude the desired
statement in (i), namely that Γ is q-separating by 229(ii).
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For the implication from (i) to (iv): Suppose that Γ is q-separating, let (Fi,j)i,j :=
Pyr(F) be the pyramid of F , let n ∈ N, let Q ∈ PFn [Γ], and let (Pi,j)i,j := Pyr(Q) by the
pyramid of Q.

Then we have the equality Path(Q) = (Pi,j)j−i≤1 by Lemma 17(ii). Consequently,
Lemma 230 supplies some r ∈ {1, . . . , n} such that

vq(ẽ(Pi−1,i|Pi−1,i−1)) = 0 = vq(ẽ(Pj−1,i|Pj,j)) (471)

for all i = 1, . . . , r and all j = r, . . . , n.
Next, we obtain the estimates and equalities

0 ≤ vq(ẽ(P0,r|P0,0)) =
r∑
i=1

vq(ẽ(P0,i|P0,i−1)) ≤
r∑
i=1

vq(ẽ(Pi−1,i|Pi−1,i−1)) = 0 (472)

where the estimates and equalities hold by the following reasonings: The first estimate
holds since the Abhyankar ramification indices are positive natural numbers by Defini-
tion 41. The first equality holds because of the multiplicative transitivity rule for the
Abhyankar ramification indices in Lemma 44(ii) and because vq : N → N0 is a morphism
of monoids. The second estimate holds because applying the ẽ-version of Abhyankar’s
Lemma 44(i) to the diamond (P0,i, P0,i−1, Pi−1,i, Pi−1,i−1) yields the equality

ẽ(P0,i|P0,i−1) = ẽ(Pi−1,i|Pi−1,i−1)
gcd(ẽ(P0,i−1|Pi−1,i−1), ẽ(Pi−1,i|Pi−1,i−1)) .

The second equality hold by the first equality in (471).
Analogously, we also obtain the estimates and equalities

0 ≤ vq(ẽ(Pr,n|Pn,n)) =
n∑

i=r+1
vq(ẽ(Pi−1,n|Pi,n)) ≤

n∑
i=r+1

vq(ẽ(Pi−1,i|Pi,i)) = 0. (473)

Second to last, let us define

m := min(vq(ẽ(P0,r|Pr,r)), vq(ẽ(Pr,n|Pr,r))). (474)

Then we get the equalities

vq(ẽ(Q|Q ∩ F0)) = vq(ẽ(P0,n|P0,0)) = vq(ẽ(P0,n|P0,r)) + vq(ẽ(P0,r|P0,0))
= vq(ẽ(P0,n|P0,r)) = vq(ẽ(Pr,n|Pr,r))−m (475)

where the equalities hold by the following reasonings: The first equality holds because the
assertion Q ∈ PFn , the definition of (Pi,j)i,j = Pyr(Q) in Definition 11 and Lemma 10(i)
provide the equalities

Q = Q ∩ Fn = Q ∩ F0,n = P0,n and Q ∩ F0 = Q ∩ F0,0 = P0,0.

The second equality holds because of the multiplicative transitivity rule for Abhyankar
ramification indices in (7) and because vq is a morphism of monoids. The third equality
holds since the estimates in (472) must even be equalities. The last equality holds because
applying the ẽ-version of Abhyankar’s Lemma 44(i) to the diamond (P0,n, P0,r, Pr,n, Pr,r)
yields the equality

ẽ(P0,n|P0,r) = ẽ(Pr,n|Pr,r)
gcd(ẽ(P0,r|Pr,r), ẽ(Pr,n|Pr,r))

,

because of the well known equality vq(gcd(a, b)) = min(vq(a), vq(b)) for all a, b ∈ N and
because of the definition of m in (474).
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Analogously to the equalities in (475), we get the equalities

vq(ẽ(Q|Q ∩ σn(F0))) = vq(ẽ(P0,n|Pn,n)) = vq(ẽ(P0,n|Pr,n)) + vq(ẽ(Pr,n|Pn,n))
= vq(ẽ(P0,n|Pr,n)) = vq(ẽ(P0,r|Pr,r))−m (476)

Finally, because of the definition of m in (474) and because of the equalities in (475)
and (476), we conclude the desired statement, namely that at least one of the values
vq(ẽ(Q|Q ∩ F0)) and vq(ẽ(Q|Q ∩ σn(F0))) vanishes.

For the implication from (iv) to (i): We will show this implication by contraposition:
Suppose that Γ is not q-separating. By the definition of q-separating subgraphs in Defi-
nition 229(ii), there is a q-critical pair (Q1, Q2) of edges in Γ and a path P in Γ, say of
length n ∈ N, from Q1 to Q2.

Now, we can choose some Q ∈ PFn(σΓF (P)) by Definition/Lemma 17(i). Let (Pi,j) :=
Path(Q) be the path of Q. By the definition of σΓF in Definition/Lemma 76, we then
have the equality P = [σ−i(Pi,j)]j−i≤1 and, thus,

Q1 = P0,1 and Q2 = σ−(n−1)(Pn−1,n). (477)

Moreover, we also compute

Q1 ∩ F0 = P0,1 ∩ F0 = P0,1 ∩ F0,0 = (Q ∩ F0,1) ∩ F0,0

= Q ∩ F0,0 = P0,0 (478)

and

Q2 ∩ σ(F0) = σ−(n−1)(Pn−1,n) ∩ σ(F0) = σ−(n−1)(Pn−1,n ∩ Fn,n)
= σ−(n−1)((Q ∩ Fn−1,n) ∩ Fn,n) = σ−(n−1)((Q ∩ Fn−1,n) ∩ Fn,n)
= σ−(n−1)(Q ∩ Fn,n) = σ−(n−1)(Pn,n) (479)

where the equalities hold by the following reasonings: The first equalities hold by the
equalities in (477). The second equalities hold because σ is bijective and because Lemma
10(i) and Lemma 10(ii) imply the equalities F0 = F0,0 and σ−n(F0,0) = Fn,n. The third
and last equalities hold by the definition of Path(Q) = (Pi,j)j−i≤1 in Definition/Lemma
17(i). The fourth equalities hold because Lemma 10(i) implies the equalities F0,1 ⊇ F0,0
and Fn−1,n ⊇ Fn,n.

Consequently, we obtain the equalities and estimates

vq(ẽ(Q|Q ∩ F0)) = vq(ẽ(Q|P0,1)) + vq(ẽ(P0,1|P0,0)) ≥ vq(ẽ(P0,1|P0,0))
= vq(ẽ(Q1|Q1 ∩ F0)) ≥ 1 (480)

where the equalities and estimates hold by the following reasonings: The first equality
holds because the choice of Pyr(Q) = (Pi,j)i,j supplies the equalities Q ∩ F0,ε = P0,ε for
all ε = 0, 1, because of the multiplicative transitivity rule for Abhyankar ramification
indices in Lemma 44(ii) and because vq is a morphism of monoids. The first estimate
holds because Abhyankar ramification indices are positive natural numbers by Definition
41. The second equality hold by the equalities in (477) and (478). The second estimate
holds by the definition that (Q1, Q2) is a q-critical pair of edges in Definition 229(i).

Analogously, we also obtain the equalities and estimates

vq(ẽ(Q|Q ∩ σn(F0))) = vq(ẽ(Q|Pn−1,n)) + vq(ẽ(Pn−1,n|Pn,n)) ≥ vq(ẽ(Pn−1,n|Pn,n))
= vq(ẽ(Q2|Q2 ∩ σ(F0))) ≥ 1 (481)

where we also need the invariance of the Abhyankar ramification indices under the action
of σ for the second equality.

Finally, the estimates in (480) and (481) provide that Q ∈ PFn(σΓF (P)) ⊆ PFn [Γ] is
the desired place in the contraposition.
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8.1.2 Key Lemma III

Summary of the results of this subsection. In this subsection, we will overcome
our two challenges in (TwoCh) for computing genus formulas for tame recursive towers
having finite separating ramification subgraphs.

For that and via Lemma 232, we will first connect the map Ñ in Definition 50 and
the weight function w′

1,P in Definition 162. Then combining this connection and the key
feature of separating subgraphs in Lemma 231(iv) will yield the Key Lemma III of this
chapter, which is Key Lemma 234. More concretely, this Key Lemma 234 will enable us
to reduce the computation of the desired value

N(Fn, V (Γ)) = Ñ(Fn, V (Γ))

for finite separating weakly connected components of ΓF to the following to steps: First
compute the n-th power An of any w′

1,P-adjacency matrix A ∈ C[yP, y
−1
P ]m×m of the

separating finite subgraph Γ. Then apply the map N′ to the sum of the entries in An.
More concretely, the map N′ will evaluate the yq-principal part of any Laurent polynomial
h ∈ C[yP, y

−1
P ] at q and its yq-non-principal part at 1 (see Definition 233).

The connection of the map Ñ and the weight function w′
1,P. In the following

Lemma 232, we will extend Lemma 159 and obtain a connection of the map Ñ in Definition
50 and the weight function w′

1,P in Definition 162.
More suggestively, we should think of the identity in Lemma 232 as follows: Com-

puting the desired value N(Fn, σΓF
(P)) = Ñ(Fn, σΓF

(P)) by iteratively applying Ab-
hyankar’s Lemma to the extensions in Pyr(Q) translates into computing the product
w′

1,P(P) = ∏n
i=1w

′
1,P(Pi−1,i), but with a small error. This small error is then captured

via the additional factor yvP(ẽ(Q|P0,0))
P · (P ∗ y−1

P )vP(ẽ(Q|Pn,n)).

Lemma 232. Let F = (Fν)ν be a recursive tower which is defined by the pair (σ, F0).
Moreover, let ΓF be the tower graph of F . Finally, let n ∈ N0, let P ∈ W (ΓF , n), let
Q ∈ PFn(σΓF (P)) and let (Pi,j)i,j := Pyr(Q). Then we have the identity

w′
1,P(P) = Ñ(Fn, σΓF (P)) · yvP(ẽ(Q|P0,0))

P · (P ∗ y−1
P )vP(ẽ(Q|Pn,n)).

Proof. For all xP and x̂P in CP with x̂pxp = p, we compute

EvalxP(w′
1,P(P)) = wxP,x̂P(P) = Ñ(Fn, σΓF (P)) · xvP(ẽ(Q|P0,0))

P · x̂vP(ẽ(Q|Pn,n))
P

= EvalxP

(
Ñ(Fn, σΓF (P)) · yvP(ẽ(Q|P0,0))

P · (P ∗ y−1
P )vP(ẽ(Q|Pn,n))

)
(482)

where the first equality holds by Lemma 164, the second equality holds by Lemma 159(i)
and the last equality holds by the definition of the evaluation morphism EvalxP in Defini-
tion 161(ii).

But, since w′
1,P(P) and Ñ(Fn, σΓF (P)) · yvP(ẽ(Q|P0,0))

P · (P ∗ y−1
P )vP(ẽ(Q|Pn,n)) are two

Laurent polynomials in C[yP, y
−1
P ] which have the same values at all points xP ∈ (C\{0})P

by the equalities in (482), they must already be equal.

Removing the error for separating subgraphs by applying N′. Now the key
feature of separating subgraphs from Lemma 231(iv) comes into play and provides that
the error in Lemma 232 only consists of one of the two factors yvP(ẽ(Q|P0,0))

P and (P ∗
y−1

P )vP(ẽ(Q|Pn,n)). Thus, we can remove this error by evaluating the yq-principal part of
w′

1,P(P) at q and its yq-non-principal part at 1.
In the following Definition 233, we will define the corresponding map N′ on the set

C[yP, y
−1
P ] of Laurent polynomials and then obtain the Key Lemma 234 of this chapter.
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Definition 233. Consider the C-algebra C[yP, y
−1
P ] in Definition 161(i) and let q ∈ P.

Then we define

N′(yαq ) := Eval1(yαq ) = 1, N′(y−α
q ) := EvalP(y−α

q ) = qα, N′(yβP) :=
∏
p∈P

N′(yβp
p )

for all α ∈ N0 and all β = (βp)p ∈ (ZP)′ and the morphism

N′ : C[yP, y
−1
P ]→ C via

∑
β

cβ · yβP 7→
∑
β

cβ ·N′(yβP)

of C-vector spaces.

Lemma 234 (Key Lemma III). Let F be a recursive tower which is defined by the pair
(σ, F0). Moreover, let Γ be a subgraph of the tower graph ΓF of F .

(i) Let q ∈ P and let P be a path in Γ of some length n ∈ N0. If Γ is q-separating, then
we have the identity

vq(N′(w′
1,P(P))) = vq(Ñ(Fn, σΓF (P))).

In particular, if Γ is separating, then we even have the identity

N′(w′
1,P(P)) = Ñ(Fn, σΓF (P)).

(ii) Suppose that Γ is finite and let A ∈ C[yP, y
−1
P ]m×m be the w′

1,P-adjacency matrix of
Γ for some enumeration of the m vertices in Γ, let v = (1 . . . 1) ∈ C[yP, y

−1
P ]1×m and

let n ∈ N0. If Γ is separating, then we have the identity∑
P∈W (Γ,n)

Ñ(Fn, σΓF (P)) = N′(v ·An · vt).

Proof. For the ’main’-part in (i): Suppose that Γ is q-separating, let (Fi,j) := Pyr(F) be
the pyramid of F , choose Q ∈ PFn(σΓF (P)) by Lemma 17(i) and let (Pi,j)i,j := Pyr(Q)
be the pyramid of Q.

First, for all ε = 0, 1, we have the equalities

Q ∩ σεn(F0) = Q ∩ Fεn,εn = Pεn,ε,n (483)

where the first equality holds because Lemma 10(i) provides the equality F0 = F0,0 and
Lemma 10(ii) then provides the equality σεn(F0,0) = Fεn,εn and the second equality holds
by the definition of (Pi,j)i,j = Pyr(Q) in Definition 11.

Then we already obtain the desired identity in the ’main’-part in (i) by the equalities

vq(N′(w′
1,P(P))) = vq

(
N′
(
Ñ(Fn, σΓF (P)) · yvP(ẽ(Q|P0,0))

P · (P ∗ y−1
P )vP(ẽ(Q|Pn,n))

))
= vq(Ñ(Fn, σΓF (P))) +

∑
p∈P

vq
(
N′
(
y
vp(ẽ(Q|P0,0))
p · (py−1

p )vp(ẽ(Q|Pn,n))
))

= vq(Ñ(Fn, σΓF (P))) + vq
(
N′
(
y
vq(ẽ(Q|P0,0))
q · (qy−1

q )vq(ẽ(Q|Pn,n))
))

= vq(Ñ(Fn, σΓF (P)))

where the equalities hold by the following reasonings: The first equality holds by Lemma
232. The second equality holds because Ñ(Fn, σΓF (P)) ∈ C, because of the definition
of the morphism N′ of C-vector spaces in Definition 233 and because vq : Z → N0 is a
morphism of monoids. The third equality holds because the definition of N′ implies that
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the summands vanish for all p ∈ P which are distinct from q. The last equality holds
because combining the assertion that Γ is q-separating, the implication from (i) to (iv) in
Lemma 231 and the equalities in (483) first yields that one of the factors in the product
y
vq(ẽ(Q|P0,0))
q · (qy−1

q )vq(ẽ(Q|Pn,n)) is already equal to one and because the definition of N′ in
Definition 233 then yields that both N′-values of these factors are equal to one.

For the ’in particular’-part in (i): Suppose that Γ is separating. By the definition of
separating subgraphs in Definition 229(iii), this means that Γ is p-separating for all p ∈ P.
Therefore, the equality in the ’main’-part of (i) holds for all q = p ∈ P. Hence, from this,
the desired identity N′(w′

1,P(P)) = Ñ(Fn, σΓF (P)) ’in particular’-part already follows.

For (ii): Suppose that Γ is separating and let (a(n)
i,j )i,j := An. Then we already obtain

the desired identity in (ii) by the equalities

∑
P∈W (Γ,n)

Ñ(Fn, σΓF (P)) =
∑

P∈W (Γ,n)
N′(w′

1,P(P)) = N′

 ∑
P∈W (Γ,n)

w′
1,P(P)


= N′

∑
i,j

a
(n)
i,j

 = N′(v ·An · vt)

where the equalities hold by the following reasonings: The first equality holds by the ’in
particular’-part in Lemma 234(i). The second equality holds because N′ is a morphism of
vector spaces by the definition of N′ in Definition 233. The third equality holds if we sum
up the entries of the matrix in the identity in Lemma 59. The last equality holds because
the sum ∑

i,j a
(n)
i,j of the entries a(n)

i,j of An is equal to the product v ·An · vt.

8.2 Computing Genus Formulas in the Tame and Separating
Case

Purpose of this section. In the last Section 8.1, Key Lemma 234 enabled us to over-
come our two challenges in (TwoCh) for computing the desired value of N(Fn, V (Γ)) for
finite separating subgraphs Γ. There we exchanged these two challenges for the following
two fairly accessible steps (TwoSt): First compute the n-th power An of a w′

1,P-adjacency
matrix A ∈ C[yP, y

−1
P ]m×m of Γ. Then apply the map N′ to the sum of the entries in

An. Consequently, in the following, we will focus on finding ways to execute these two
steps effectively. This will peak in our main result of this section and chapter, which is
Corollary 246.

Structure of this section. In the first Subsection 8.2.1, we will consider a motivating
example and derive the main idea on how to execute the two steps in (TwoSt).

In the second Subsection 8.2.2, we will concentrate on power subgraphs and make
preparations for the next Subsection 8.2.3.

In the third Subsection 8.2.3, we will finally prove the desired Corollary 246. This will
involve the only elaborate proof of this chapter, which is the proof of Theorem 243.

In the fourth and last Subsection 8.2.4, we will formulate the final approach (A4) for
effectively computing genus formulas via applying Corollary 246. Our objective here will
be to formulate this final approach (A4) in such a way that we will be able to automatize
(A4) and to provide a first naive implementation of (A4) in Subsection 8.3.2.
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8.2.1 A Motivating Example

Purpose of this subsection. In this subsection, we will consider a motivating example
and derive the main idea on how to execute the two steps in (TwoSt).

Computing genus formulas. For any tame recursive tower F = (Fν)ν of degree d over
some field k with finite ramification subgraph, Theorem 194 and Corollary 51 provide the
identities

g(Fn) = 1
2
(
2 + dn

(
g(F0)− 2 + #V (Γram

F )
)
−N(Fn, V (Γram

F ))
)

= 1
2
(
2 + dn

(
g(F0)− 2 + #V (Γram

F )
)
− Ñ(Fn, V (Γram

F ))
)

(484)

for all n ∈ N0. If Γram
F is separating, this identity in (484), Key Lemma 234(ii) and Lemma

237 can be combined to provide an approach for computing a formula for g(Fn) for all large
n. For instance, under the additional assumption that the ramification indices in F1/F0
and F1/σ(F0) are powers of the same natural number, Theorem 246 will even enable us
to predict the terms λn appearing in the final formula for g(Fn) in (467).

A motivating example. In the following Example 235, in order to demonstrate the
basic ideas of the approach and of the proof of Theorem 246, we will compute the genus
formula for some explicitly given tame recursive tower F . Moreover, as a sanity check, we
will choose the HP-tower FHP,q = F = (Fν)ν from [HP16, p. 12, Proposition 12] (see also
8(vii)) since there is a genus formula already known for F .

Example 235. Let q be a power of some p ∈ P\{2, 3} and let F≥1 = (Fν)ν≥1 =
(Fq(x1, . . . , xν))ν≥1 be the recursive HP-tower over Fq from Example 8(vii) which is de-
fined by the polynomial f := fHP,q = Y 2(3X−1)−(X2 +X). In [HP16, p. 12, Proposition
12], it is shown that the genus sequence of F is equal to

(g(Fn))n≥1 = (2n + 1− (2 + nmod 2) · 2⌊ n
2 ⌋)n≥1 = (0, 1, 3, 9, 21, 49, 105, . . . ). (485)

Moreover, let σ be the tower map of F≥1 in Lemma 7, i.e. σ(xn) = xn+1 for all n ∈ N.
First, we make the following simplification step which is not essential and only serves

to keep this example as simple as possible: Let us add a zeroth level to F to simplify the
ramification subgraph. For that, define z0 := x2

1 and F0 := Fq(z0). Then it follows from
Reduction Lemma 30(ii) that F = (Fν)ν is a recursive tower of balanced degree 2 which is
defined by the tuple (σ, F0) and satisfies Trun≥1(F) = F≥1.

Second, consider the ramification subgraph of Γram
F of F which, as can be seen in Figure

B.26 for q = 5, is a disjoint union of two finite weakly connected components Γ and Γ′ of
ΓF . Moreover, we obtain the equalities

Ñ(Fn, V (Γram
F )) = Ñ(Fn, V (Γram

F )) = Ñ(Fn, V (Γ)) + Ñ(Fn, V (Γ′))
= 2 · Ñ(Fn, V (Γ)) (486)

for all n ∈ N0 where the equalities hold by the following reasonings: For the first equal-
ity, we first notice that all vertices and edges in Γram

F are rational and, thus, combin-
ing Lemma 124 and Lemma 122 yield that πΓF/ΓF even restricts to an isomorphism
Γram

F → Γram
F . Moreover, by Lemma 105(i), the ramification indices of the edges are

stable under this isomorphism. Consequently, the first equality follows from the fact that
Ñ(Fn, V (Γram

F )) (resp. Ñ(Fn, V (Γram
F )) only depends on the ramification indices in the

paths of ΓF (resp. ΓF) which start at vertices in V (Γram
F ) ⊂ PF 0

(resp. V (Γram
F ) ⊂ PF0)

by Definition 50.
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The second equality holds by the definition of Ñ(Fn, ·) in Definition 50 and since Γram
F

is the disjoint union of the finite weakly connected components Γ and Γ′ of ΓF . For the last
equality, we notice that Γ and Γ′ are clearly isomorphic and that the ramification indices
of the edges are stable under this isomorphism. Consequently, the last equality follows with
the same reasoning as the first equality.

Third, we notice that Γ is q-separating (even separating) where Γ∞ and Γ0 in Lemma
231(iii) both exactly consist of a single vertex, say P∞ and P0, respectively, and a single
edge and there is exactly one connecting edge from Γ∞ to Γ0. For x := y2 and y := 2x−1,
the w′

1,P-adjacency matrix of Γ for the enumeration (P∞, P0) is then of the form

A =
(
y 1
0 x

)
∈ C[x, x−1]2×2

Then A can be diagonalized with the eigenvalues x and y. Let D ∈ C(x)2×2 be a correspond-
ing diagonal matrix with some transformation matrix T ∈ GL(2,C(x)), i.e. A = T−1DT

and let v =
(
1 1

)
∈ C1×2. A quick computation yields the equalities

an := v ·An · vt = v · (T−1DnT ) · vt = (x2 + x− 2)xn
x2 − 2 + (x2 − x− 2)yn

x2 − 2 (487)

= an,0 + an,∞ ∈ C[x, x−1] (488)

where an,0 denotes the first and an,∞ denotes the second summand in the sum in (487).
Thus, the definition of Ñ(Fn, V (Γ)) in Definition 50, Lemma 234(ii) and the ’in particular’-
part in Lemma 237 provide the equalities

Ñ(Fn, V (Γ)) =
∑

P∈W (Γ,n)
Ñ(Fn, σΓF (P)) = N′(v ·An · vt)

= Eval2(Princ(an)) + Eval1(NonPrinc(an)) (489)

for all n ∈ N0.
Fourth, let S0 := C[x] and S∞ := C[x−1](x−1) ∩ C[x−1](x−1−e−1) where C[x−1](x−1−a)

denotes the localization of C[x−1] at the maximal ideal (x−1−a)C[x−1] for all a ∈ C. Then
we can extend the morphism Eval2 : C[x−1]→ C to the morphism

Eval2 : S∞ → C via h 7→ h(2).

of C-algebras. Moreover, since S0 ∩ S∞ = C, we can even extend any C-basis of C to
a C-basis of S0 and of S∞. The union of these bases is a basis of S0 + S∞ which can
again be extended to a C-basis of C(x). Let U be the C-span of the basis vectors which
where added in the last step. By that, any element z ∈ C(x) has a presentation of the
form z = z0 + z∞ + u with z0 ∈ S0, z∞ ∈ S∞, u ∈ U and, for any other presentation
z = z′

0 + z′
∞ + u′, we have u′ = u, z′

0 = z0 + a, z′
∞ = z∞ − a for some a ∈ C. Hence,

we can also extend the restriction N′
|C[x,x−1] of the morphism N′ in Definition 233 to the

morphism

N′ : C(x)→ C via z = z0 + z∞ + u 7→ Eval2(z0) + Eval1(z∞) (490)

of C-vector spaces.
Fifth, on the one hand, since an,∞ ∈ S∞ in (488), we obtain the equality

N′(an,∞) = Eval2
(

(x2 − x− 2)yn
x2 − 2

)
= 0. (491)
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On the other hand, for the first summand an,0 in (488), let γ := x2+x−2 be the first factor
in the numerator of an,0, let ε√

2 := (2
√

2)−1 · (x+
√

2), ε−
√

2 := −(2
√

2)−1 · (x−
√

2) ∈ S0.
Then we have ε±

√
2(±
√

2) = 1 and ε±
√

2(∓
√

2) = 0 and compute

an,0 = (x2 + x− 2)xn
x2 − 2 =

(x2 + x− 2)xn −
(
ε√

2 · Eval√2(γ · xn) + ε−
√

2 · Eval−√
2(γ · xn)

)
x2 − 2

+
ε√

2 · Eval√2(γ · xn) + ε−
√

2 · Eval−√
2(γ · xn)

x2 − 2 (492)

= an,0,0 + an,0,1 (493)

where an,0,0 denotes the first and an,0,1 denotes the second summand in the sum in (492).
Sixth, since the numerator of an,0,0 has zeroes at

√
2 and −

√
2 by its construction, it is

divisible by (x−
√

2)(x+
√

2) = x2−2 and, hence, an,0,0 is an element in S0. Consequently,
we obtain

N′(an,0,0) = Eval1(an,0,0) = 1 +
√

2
2 ·

√
2n − 1−

√
2

2 · (−
√

2)n. (494)

Moreover, an,0,1 is clearly an element in S∞ and, thus,

N′(an,0,1) = Eval2(an,0,1) = 2 +
√

2
4 ·

√
2n − 2−

√
2

4 · (−
√

2)n. (495)

Second to last, combining (489), (488), (492) and (495) yields

Ñ(Fn, V (Γ)) = N′(an) = N′(an,0,0 + an,0,1 + an,∞)
= N′(an,0,0) + N′(an,0,1) + N′(an,∞)

= (4 + 3
√

2)
4 ·

√
2n + (4− 3

√
2)

4 · (−
√

2)n

= (2 + nmod 2) · 2⌊ n
2 ⌋ (496)

Finally, combining (484), (486) and (496) yields the same formula of g(Fn) as in (485)
but with another expression for (2 + nmod 2) · 2⌊ n

2 ⌋:

g(Fn) = 1
2
(
2 + 2n

(
−2 + #V (Γram

F )
)
− Ñ(Fn, V (Γram

F ))
)

= 2n + 1− Ñ(Fn, V (Γ))

= 2n + 1− (4 + 3
√

2)
4 ·

√
2n − (4− 3

√
2)

4 · (−
√

2)n

= 2n + 1− (2 + nmod 2) · 2⌊ n
2 ⌋.

8.2.2 Some Last Preparations

Purpose of this subsection. In this subsection, we will make some last preparations
for the proofs of Theorem 243 and Corollary 246.

Decomposing the map N′ into its q-parts. The crucial map N′ for our approach
(TwoSt) can be decomposed into maps N′

q for all primes q where each map N′
q will only

handle the q-part of the map N′.

Definition 236. Let e ∈ N. Then we define

Re := C[{yp, y−1
p : p ∈ P with vp(e) = 0}] ⊂ C[yP, y

−1
P ] and xe := y

vP(e)
P
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and Ke as the field of fractions of Re inside of some fixed field of fractions K1 of R1 =
C[yP, y

−1
P ]. Notice that Re[xe, x−1

e ] (resp. Ke[xe, x−1
e ]) is a ring of Laurent polynomials in

the variable xe over Re (resp. Ke).
Next, let h = ∑s

i=r hi · xie ∈ Ke[xe, x−1
e ] where hi ∈ Ke for all i = r, . . . , s. Then we

define the e-principal part of h as

Prince(h) :=
−1∑
i=r

hi · xie

and the e-non-principal part of h as

NonPrince(h) := h− Prince(h) =
s∑
i=0

hi · xie.

Finally, for all a ∈ Ke\{0}, we denote the evaluation morphism on Ke[xe, x−1
e ] which

evaluates xe at a by

Evala : Ke[xe, x−1
e ]→ Ke via h 7→ h(a)

and define the morphism

N′
e : Ke[xe, x−1

e ]→ Ke via h 7→ Evale(Prince(h)) + Eval1(NonPrince(h))

of Ke-vector spaces.

Notice that Princq and NonPrincq is well defined for all h ∈ C[yP, y
−1
P ], that we have

Re = Re′ and Ke = Ke′ if the prime decompositions of e and e′ have the same support and
that Prince : Ke[xe, x−1

e ]→ Ke[x−1
e ] and NonPrince : Ke[xe, x−1

e ]→ Ke[xe] are morphisms
of Ke-vector spaces.

Lemma 237. Let q1, . . . , qs ∈ P be pairwise distinct, let R := C[{yp, y−1
p : p ∈ {q1, . . . , qs}]

and let h ∈ R. Then we have the identity

N′(h) = (N′
q1 ◦ · · · ◦N′

qs
)(h)

Moreover, let e ∈ N such that the support of the prime decomposition of e is equal to
{q1, . . . , qr} with r ≤ s. If h ∈ R ∩Re[xe, x−1

e ], then we have the identity

N′(h) = (N′
qr+1 ◦ · · · ◦N′

qs
)(N′

e(h)).

In particular, if h ∈ C[xe, x−1
e ], then we even have the identities

N′(h) = N′
e(h) = Evale(Prince(h)) + Eval1(NonPrince(h)).

Proof. All identities immediately follow from the definitions of the maps N′ in Definition
233 and of N′

qi
and N′

e in Definition 236.

Separating enumerations. An immediate consequence of the form of separating sub-
graphs in Lemma 231(iii) will be the existence of so called separating enumerations of the
vertices in the subgraph. These separating enumerations will be defined in the following
Definition 238.
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Definition 238. Let F be a recursive tower which is defined by the pair (σ, F0). Let Γ be
a finite subgraph of the tower graph ΓF of F . Let q ∈ P and let q1, . . . , qr ∈ P be pairwise
distinct

We call an enumeration v = (P1, . . . , Pm) of the vertices in Γ q-separating if there is
an index m∞ such that the initial vertices of all edges Q in Γ with vq(e(Q|Q ∩ σ(F0))) ≥
1 are contained in {P1, . . . , Pm∞} and the terminal vertices of all edges Q in Γ with
vq(e(Q|Q ∩ F0)) ≥ 1 are contained in {Pm∞+1, . . . , Pm}. Here, we call m∞ the q-
separating index of v.

We even call v (q1, . . . , qr)-separating (resp. separating) if it is p-separating for all
p ∈ {q1, . . . , qr} (resp. p ∈ P) and the p-separating index m∞ can be chosen as the same
index for all p.

Power subgraphs. As we already pointed out, all tame recursive towers F in the
literature known to the author have finite separating ramification subgraph. Moreover, all
these tame recursive towers F = (Fν)ν also satisfy a second property which is advantageous
for computing genus formulas: All ramification indices in F1/F0 and F1/σ(F0) are powers
of the same natural number e.

The desired Theorem 243 will only require the slightly weaker property that the all
weakly connected components of the ramifiaction subgraph are power subgraphs.bgraph
Γi of the tower graph are powers of the same natural number ei.

Definition 239. Let F be a recursive tower which is defined by the pair (σ, F0). Let Γ
be a subgraph of the tower graph ΓF of F . Let q1, . . . , qr ∈ P be pairwise distinct and let
e = ∏r

i=1 q
er
i ∈ N for some e1, . . . , er ∈ N.

We say that the (q1, . . . , qr)-parts of the ramification indices in Γ are powers
of e ∈ N if, for all Q ∈ E(Γ) and all i = 0, 1, the ramification indices e(Q|Q ∩ σi(F0))
are of the form ewQ,i · aQ,i with wQ,i ∈ N0 and aQ,i ∈ N such that vqν (aQ,i) = 0 for all
ν = 1, . . . , r.

We even say that Γ is an e-power subgraph if the ramification indices e(Q|Q∩σi(F0))
are powers of e for all Q ∈ E(Γ) and all i = 0, 1.

Notice that the q-parts of the ramification indices in a subgraph Γ are always powers
of q for all q ∈ P.

The w′
1,P-adjacency matrices for finite separating power subgraphs. Next, we

will bring both definitions from above together and obtain that the corresponding w′
1,P-

adjacency matrix of such a subgraph for a separating enumeration is of the form in the
’in particular’-part of the following Lemma 240.

Lemma 240. Let F be a recursive tower which is defined by the pair (σ, F0). Let Γ be a
finite subgraph of the tower graph ΓF of F with m vertices. Let q1, . . . , qs ∈ P be pairwise
distinct with s ∈ N0 minimal such that the supports of the prime decompositions of all
ramification indices in Γ (i.e. e(Q|Q ∩ σi(F0)) for all Q ∈ E(Γ) and all i = 0, 1) are
contained in {q1, . . . , qs}.

If the (q1, . . . , qr)-parts of the ramification indices in Γ are powers of e and Γ is q1-
separating, then there is some (q1, . . . , qr)-separating enumeration v = (P1, . . . , Pm) with
separating index m∞ and the w′

1,P-adjacency matrix A of Γ for this enumeration v is of
the form

A =
(
A∞ B
0 A0

)
∈ Re[xe, x−1

e ]m×m ⊂ Ke[xe, x−1
e ]m×m (497)

with A∞ ∈ Ke[x−1
e ]m∞×m∞ and A0 ∈ Ke[xe]m0×m0 where m0 := m−m∞.
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In particular, if Γ is a separating e-power subgraph, then there is even some separating
enumeration v of the vertices in Γ and the corresponding w′

1,P-adjacency matrix A is of
the form in (497) with A ∈ Q[xe, x−1

e ]m×m where Q denotes the algebraic closure of Q in
C.

Proof. For the ’main’-part: Suppose that the (q1, . . . , qr)-parts of the ramification indices
in Γ are powers of e and Γ is q-separating with q := q1. Then the implication from (i) to
(iii) in Lemma 231 supplies disjoint subgraphs Γ∞ and Γ0 such that Γ consists of Γ∞ and
Γ0 with possibly connecting edges from Γ∞ to Γ0.

Now, choose m∞ as the number of vertices in Γ∞ and let (P1, . . . , Pm∞) and (Pm∞+1,
. . . , Pm) be enumerations of the vertices in Γ∞ and Γ0, respectively. By Lemma 231(iii),
the enumeration v := (P1, . . . , Pm∞ , Pm∞+1, . . . , Pm) of the vertices in Γ is a q-separating
with separating index m∞.

We claim that v is even one of the desired (q1, . . . , qr)-separating enumerations in the
’main’-part: For that, let us use the notation e(Q|Q ∩ σi(F0))) = ewQ,iaQ,i in Definition
239. First, we compute

vqν (e(Q|Q ∩ σi(F0))) = vqν (ewQ,iaQ,i) = vqν (ewQ,i) = eν · wQ,i (498)

for all ν = 1, . . . , r and all i = 0, 1 where the first equality holds by the definitions of ewQ,i

and aQ,i in Definition 239, the second equality holds since vq : N → N0 is a morphism of
monoids and since vqv (aQ,i) = 0 by its choice in Definition 239 and the last equality holds
by the definition of e = ∏r

µ=1 q
er
µ in the assumptions.

Then for all ν = 1, . . . , r, all edges Q in Γ with vqν (e(Q|Q∩σi(F0))) ≥ 1, the equality in
(498) and the assertion eν ∈ N imply the estimate wQ,i ≥ 1. Hence, for all ν = 1, . . . , r and
all i = 0, 1, we obtain that vqν (e(Q|Q ∩ σi(F0))) ≥ 1 if and only if vq(e(Q|Q ∩ σi(F0))) ≥
1. Consequently, this ensures that v is also an (q1, . . . , qr)-separating enumeration with
(q1, . . . , qr)-separating index m∞ by Definition 238.

Second, let (ai,j)i,j := A. Then we obtain that the entries ai,j are indeed elements in
Re[xe, x−1

e ] ⊂ Ke[xe, x−1
e ] for all i, j ∈ {1, . . . ,m} by the equalities

ai,j =
∑

Q∈E(Γ,Pi,Pj)
w′

1,P(Q) =
∑

Q∈E(Γ,Pi,Pj)
y
vP(e(Q|Q∩F0))
P · (P ∗ y−1

P )vP(e(Q|Q∩σ(F0)))

=
∑

Q∈E(Γ,Pi,Pj)

∏
p∈{q1...,qs}

yvp(e(Q|Q∩F0))
p ·

∏
p∈{q1...,qs}

(py−1
p )vp(e(Q|Q∩σ(F0)))

=
∑

Q∈E(Γ,Pi,Pj)

∏
p∈{qr+1...,qs}

yvp(e(Q|Q∩F0))
p ·

∏
p∈{qr+1...,qr}

(py−1
p )vp(e(Q|Q∩σ(F0)))

· xwQ,0
e · (ex−1

e )wQ,1 (499)

where the equalities hold by the following reasonings: The first equality holds by the
definition of weighted adjacency matrices in Definition 58(ii). The second equality holds
by the definition of the weight function w′

1,P in Definition 162. The third equality holds
by the assertion that the supports of the prime decompositions of all ramification indices
in Γ are contained in {q1, . . . , qs} and since the minimality of s implies that the primes
q1, . . . , qs are pairwise distinct. The fourth equality holds by the equalities in (498) and
by the definition of xe = y

vP(e)
P = ∏r

ν=1 y
vqν (e)
p = ∏r

ν=1 y
eν
p in Definition 236.

Second to last, combining the assertion that the terminal (resp. initial) vertex Pj
(resp. Pi) of any edge Q with vq(e(Q|Q ∩ F0)) ≥ 1 (resp. vq(e(Q|Q ∩ σ(F0))) ≥ 1) is
contained in Γ0, i.e. j > m∞, (resp. Γ∞, i.e. i ≤ m∞,) and the equality in (498) yields

vq(e(Q|Q ∩ F0)) = 0 = wQ′,0 (resp. vq(e(Q|Q ∩ σ(F0))) = 0 = wQ′,1) (500)

for all i, j ∈ {1, . . . ,m∞} (resp. i, j ∈ {m∞ + 1, . . . ,m}) and all Q′ ∈ E(Γ, Pi, Pj).
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Finally, the equalities in (499) and (500) together supply the last desired statements,
namely that the entries of A∞, i.e. ai,j with i, j ∈ {1, . . . ,m∞}, are contained in Ke[x−1

e ]
and that the entries of A0, i.e. ai,j with i, j ∈ {m∞ + 1, . . . ,m}, are contained in Ke[xe].

For the ’in particular-part: Suppose that Γ is a separating e-power subgraph.
By Definition 238 and by Definition 229(iii), the assertion especially implies that the

(q1, . . . , qs)-parts of the ramification indices in Γ are powers of e and Γ is q1-separating.
Hence, the ’main’-part provides some (q1, . . . , qs)-separating enumeration v of the vertices
in Γ.

But, because of the assertion that the supports of the prime decompositions of all
ramification indices in Γ are contained in {q1, . . . , qs} and because of the definition of
separating enumerations in Definition 238, this enumeration v is the desired separating
enumeration of the vertices in Γ.

Moreover, the presentation of the w′
1,P-adjacency matrix of Γ for v in (497) is indeed

of the desired form with A ∈ Re[xe, x−1
e ]m×m. But, since the support of all ramification

indices in Γ are contained in the {q1, . . . , qs}, we have r = s in the equality in (499).
Hence, the last desired statement follows, namely that A ∈ Q[xe, x−1

e ]m×m.

8.2.3 A Genus Formula

Summary of the results of this subsection. In this subsection, we will come to the
core of this chapter, namely the proofs of Theorem 243 and its Corollary 246, which is the
main result of this chapter. This Corollary 246 will provide the desired genus formulas for
all tame recursive towers with a finite separating power ramification subgraph.

Extending the map N′
e. In the ’in particular part of Lemma 237, we concluded that

N′ and N′
e are equal on C[xe, x−1

e ], i.e. N′ evaluates the principal part of h ∈ C[xe, x−1
e ] at

e and its non-principal part at 1.
In the following Definition 241, we will extend the definition of N′

e to any Laurent
polynomial ring K[x, x−1] and prove Theorem 243 for this more general definition of N′

e.

Definition 241. Let K be a field and K[x, x−1] be a ring of Laurent polynomials in
the variable x. Moreover, let e ∈ K\{0}, let Eval1 : K[x, x−1] → K be the evaluation
morphism h(x) 7→ h(1) and let Evale : K[x, x−1]→ K be the evaluation morphism h(x) 7→
h(e) of K-algebras. Then we extend the definition of N′

e in Definition 236 to K and e,
i.e.

N′
e : K[x, x−1]→ K via h 7→ Eval1(NonPrinc(h)) + Evale(Princ(h))

where Princ(h) ∈ x−1K[x−1] denotes the principal part of h and NonPrinc(h) = h −
Princ(h) ∈ K[x] denotes the non-principal part of h.

We also extend this morphism N′
e to the morphism

N′′
e : K[x, x−1]m×m → K via (ai,j) 7→ N′

e(
∑
i,j

ai,j) =
∑
i,j

N′
e(ai,j)

of K-vector spaces for all m ∈ N.

A crucial but technical definition. The following Definition 242 defines the set Λ(A),
numbers b(A, λ) for all λ ∈ Λ(A) and the number c(A) in Theorem 243. This set λ(A) and
the number c(A) will be crucial for the choices of Λ ⊂ Q and c(F) in the desired identity

g(Fn) = 1
2

2 + dn
(
g(F0)− 2 + #V (Γram

F )
)
−
∑
λ∈Λ

fλ(n) · λn
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for all n ≥ c(F) in Corollary 246. Moreover, the numbers b(A, λ) will provide degree
bounds for the involved polynomials fλ(n) ∈ Q[n]. Unfortunately, the definitions in Defi-
nition 242 are quite technical and yet quite unmotivated from the ’First, we define’-part
on.

Therefore and for now, it will be sufficient for us to go through this Definition 242
cursorily and only to the point that we are convinced that the sum in the desired identity
in Theorem 243 is well defined. In the proof of Theorem 243, all definitions of Definition
242 will occur naturally one by one.

Definition 242. Let e ∈ N, let K be an algebraically closed field of characteristic zero,
let K[x, x−1] be the ring of Laurent polynomials over K in the variable x and let

A =
(
A∞ B
0 A0

)
∈ K[x, x−1]m×m

with A0 ∈ K[x]m0×m0 and A∞ ∈ K[x−1]m∞×m∞. Now, let us fix the following notation:

• Let x1, . . . , xr0 be the eigenvalues of A0 and xr0+1, . . . , xr of A∞.

• Let χA0(t) = ∏r0
ν=1(t− xν)ρν ∈ K[x][t] and χA∞(t) = ∏r

ν=r0+1(t− xν)ρν ∈ K[x−1][t]
be the characteristic polynomials of A0 and A∞, respectively. Then χA(t) = χA0(t) ·
χA∞(t) ∈ K[x, x−1][t] is the characteristic polynomial of A.

• Let si be the maximal size of any Jordan blocks of A for the eigenvalue xi for all
i = 1, . . . , r, and let s := ∑r

i=1 si ≤ m.

• Let χ0(t) = ∏r0
ν=1(t − xν)sν ∈ K[x, x1, . . . , xr0 ][t], let χ∞(t) = ∏r

ν=r0+1(t − xν)sν ∈
K[x−1, xr0+1, . . . , xr][t] and let χ(t) := χ0(t)·χ∞(t) = ∏r

ν=1(t−xν)sν ∈ K[x, x−1, x1,
. . . , xr][t].

• Let (a(n)
i,j )i,j := An.

• Let E := K(x), y := ex−1 and F := E(x, x1, . . . , xn). Then F/E is a finite extension
of function fields with the algebraically closed full constant fields K.

• Let R0 be the integral closure of K[x] in F and let R∞ be the integral closure of
K[x−1] in F .

First, we define

ω′
0, ω

′
∞ ∈ N0 as the minimal with the properties

xω
′
0χ∞ ∈ R0[t] and x−ω′

∞χ0 ∈ R∞[t], (501)

and

ω′′
0 := max{degx−1(a(ν)

i,j ) : ν = 0, . . . , s− 1, i, j ∈ {1, . . . ,m}} (502)

and

ω′′
∞ := max{degx(a(ν)

i,j ) : ν = 0, . . . , s− 1, i, j ∈ {1, . . . ,m}} (503)

and

ωi := si · ω′
0 + ω′′

0 and ωj := sj · ω′
∞ + ω′′

∞ (504)

for all i = 1, . . . , r0 and j = r0 + 1, . . . , r.
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Next, we define

χi(t) := χ(t)
(t− xi)si

= χ0(t) · χ∞(t)
(t− xi)si

=
r∏

ν=1,ν ̸=i
(t− xν)sν

=
{∏r0

ν=1,ν ̸=i(t− xν)sν · χ∞(t) if i ≤ r0

χ0(t) ·∏r
ν=r0+1,ν ̸=i(t− xν)sν if i > r0

(505)

for all i = 1, . . . , r
Moreover, we define

M0,i := Supp(div0((x− 1)xωiχi(xi)si)), M0,j := M0,∞ := Supp(div0(y(y − 1)))
Λ0,i := {xi(P ) : P ∈M0,i}, Λ0,j := {xj(Q) : Q ∈M0,j},
b0,i(P ) := vP ((x− 1)xωiχi(xi)si)− 1, b0,j(Q) := vQ((y − 1)yωjχj(xj)sj )− 1,
b0,i(λ) := max

P ′∈M0,i,xi(P ′)=λ
b0,i(P ′), b0,j(µ) := max

Q′∈M0,j ,xj(Q′)=µ
b0,j(Q′) (506)

for all i = 1, . . . , r0, all j = r0 + 1, . . . , r, all P ∈ M0,i, all Q ∈ M0,j, all λ ∈ Λ0,i and all
µ ∈ Λ0,j and

M∞,i := M∞,0 := Supp(div0(x(x− 1))), M∞,j := Supp(div0((y − 1)yωjχj(xj)sj )),
Λ∞,i := {xi(P ) : P ∈M∞,i}, Λ∞,j := {xj(Q) : Q ∈M∞,j},
b∞,i(P ) := vP ((x− 1)xωiχi(xi)si)− 1, b∞,j(Q) := vQ((y − 1)yωjχj(xj)sj )− 1,
b∞,i(λ) := max

P ′∈M∞,i,xi(P ′)=λ
b∞,i(P ′), b∞,j(µ) := max

Q′∈M∞,j ,xj(Q′)=µ
b∞,j(Q′) (507)

for all i = 1, . . . , r0, all j = r0 + 1, . . . , r, all P ∈ M∞,i, all Q ∈ M∞,j, all λ ∈ Λ∞,i and
all µ ∈ Λ∞,j.

Finally, we define

Λ0 :=
r⋃
i=1

Λ0,i, Λ∞ :=
r⋃
i=1

Λ∞,i, Λ(A) := Λ0 ∩ Λ∞,

b0(λ0) := max{si − 1 + b0,i(λ0) : i = 1, . . . , r with λ0 ∈ Λ0,i},
b∞(λ∞) := max{si − 1 + b∞,i(λ∞) : i = 1, . . . , r with λ∞ ∈ Λ∞,i},
b(A, λ) := min{b0(λ), b∞(λ)} (508)

for all λ0 ∈ Λ0, all λ∞ ∈ Λ∞ and all λ ∈ Λ(A) and we also define

c(A) := max{si − 1 + bj,i(λ) : i = 1, . . . , r and j = 0,∞ and λ ∈ Λj,i ∩ Λ(A)}. (509)

The main result of this chapter. As we already mentioned, the main result of this
chapter is Corollary 246. It is a corollary of the following Theorem 243. Essentially, this
theorem provides a formula for the two steps in (TwoSt).

Theorem 243. Let everything be as in Definition 242. Then we have the equality

N′′
e(An) =

∑
λ∈Λ(A)

fλ(n) · λn

for all n ≥ c(A) and some polynomials fλ(n) ∈ K[n] with deg(f(n)) ≤ b(A, λ) for all λ in
the finite subset Λ(A) ⊂ K.

In the following Corollary 244, we can apply Theorem 243 to the w′
1,P-adjacency

matrices in the ’in particular’-part in Lemma 240.
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Corollary 244. Let e ∈ N and let F be a recursive tower which is defined by the pair
(σ, F0). Moreover, let Γ be a finite separating e-power subgraph of the tower graph ΓF
of F . The ’in particular’-part in Lemma 240 supplies a separating enumeration v of the
vertices in Γ such that the w′

1,P-adjacency matrix A ∈ Q[xe, x−1
e ] of Γ for v is of the form

in Definition 242.
Then we have the identity∑

P∈W (Γ,n)
Ñ(Fn, σΓF (P)) =

∑
λ∈Λ(A)

fλ(n) · λn (510)

for all n ≥ c(A) and some polynomials fλ(n) ∈ Q[n] with deg(f(n)) ≤ b(A, λ) for all
λ ∈ Λ(A) ⊂ Q.
Proof. Let v ∈ C1×m be the vector with only ones and consider the maps N′

e and N′′
e in

Definition 241 for K := Q and x := xe = y
vP(e)
P where the last equality holds by the

definition of xe in Definition 236. Then we obtain the equalities∑
P∈W (Γ,n)

Ñ(Fn, σΓF (P)) = N′(vAnvt) = N′
e(vAnvt) = N′′

e(An) (511)

where the equalities hold by the following reasonings: The first equality holds by Lemma
234(ii). The second equality holds because vAnvt is a Laurent polynomial in Q[xe, x−1

e ]
and because the ’in particular-part of Lemma 237 implies that N′ and N′

e are equal on
Q[xe, x−1

e ]. The third equality holds by definition of N′′
e in Definition 241.

Finally, applying Proposition 243 to A yields that N′′
e(An) is of the desired form in

(511). Hence, combining this and the equality in (510) yields the desired statement.

The main result of this chapter: Corollary 246. In Corollary 246, we will apply
Corollary 244 to the weakly connected components of the ramification subgraph of the ge-
ometric tower F of F and finally obtain the desired genus formula in (467). Consequently,
this genus formula will hold for all n ≥ c(F) where, in the following Definition 245, c(F)
will be defined as the maximum of all lower bounds c(A) which will appear from applying
Corollary 244.
Definition 245. Let F be a recursive tower, let F be the geometric tower of F , and
let Γ1, . . . ,Γr be the finite weakly connected components of Γram

F . Moreover, let Ai be a
w′

1,P-adjacency matrix of Γi for all i = 1, . . . , r. and let c(Ai) + 1 be the size of the largest
Jordan-block of Ai for all i = 1, . . . , r. Then we define

c(F) := max
i=1,...r

c(Ai).

Corollary 246 Computing Genus Formulas. Let ei ∈ N for all i = 1 . . . , r, let F be a tame
recursive tower over a field k which is defined by the pair (σ, F0) and let F = k ·F = (F ν)ν
be the geometric tower of F . Moreover, suppose that Γram

F is finite with only separating
weakly connected components Γ1, . . . ,Γr such that the ramification indices in Γi are powers
of ei for all i = 1 . . . , r.

Then we have the identities

N(Fn, V (Γram
F )) =

∑
λ∈Λ

fλ(n) · λn

and

g(Fn) = 1
2

2 + dn
(
g(F0)− 2 + #V (Γram

F )
)
−
∑
λ∈Λ

fλ(n) · λn


for all n ≥ c(F), some finite subset Λ ⊂ Q and some polynomials fλ(n) ∈ Q[n] for all
λ ∈ Λ.
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Proof. Let Ai be the w′
1,P-adjacency matrix of Γi from Corollary 244 for all i = 1, . . . , r.

First, we obtain the equalities

Ñ(Fn, V (Γram
F )) =

r∑
i=1

Ñ(Fn, V (Γi)) =
∑
λ∈Λ

fλ(n) · λn (512)

for all n ≥ maxi=1,...,r c(Ai), some finite subset Λ ⊂ Q and some polynomials fλ(n) ∈ Q[n]
for all λ ∈ Λ where the equalities hold by the following reasonings: The first equality
holds because of the definition of Ñ(Fn, ·) in Definition 50 and because Γ1, . . . ,Γr are the
weakly connected components of Γram

F and, thus, any path in Γ is contained in exactly
one of these components. The second equality holds by applying Corollary 244 to these
separating weakly components components Γ1, . . . ,Γr .

Second, we notice that Γram
F = k · Γram

F is also finite by Lemma 124 and by Lemma
120(i). Then the ’moreover’-part in Lemma 120(iii) supplies that k · Γi is a disjoint union
of weakly connected components Γi,1, . . . ,Γi,si of ΓF for all i = 1, . . . , r. Moreover, by
Lemma 105(i), by Lemma 109 and by Definition 239, we obtain that, for all i = 1, . . . , r,
the weakly connected components Γi,1, . . . ,Γi,si of ΓF are even separating ei ∈ N-power
subgraphs for all j = 1, . . . , si. But Γ1,1, . . . ,Γ1,s1 , . . . ,Γr,1, . . . ,Γr,sr are exactly the weakly
connected components of Γram

F = k · Γram
F .

Let Ai,j be the w′
1,P-adjacency matrix of Γi,j from Corollary 244 for all i = 1, . . . , r

and all j = 1, . . . , si. Then we deduce the first desired equality by the equalities

N(Fn, V (Γram
F )) = Ñ(Fn, V (Γram

F )) =
∑
λ∈Λ

fλ(n) · λn (513)

for all n ≥ maxi,j c(Ai,j) = c(F) where the first equality holds because F is tame and
because we can therefore apply the last identity in Corollary 51 and the second equality
holds because the above reasoning ensures that we can apply (512) to F and because of
the definition of c(F) in Definition 245.

Finally, the second desired identity for g(Fn) in the ’moreover’-part immediately follows
from the first identity in Lemma 194 and from the equality in (513).

The proof of Theorem 243. Finally, we will prove Theorem 243. This is the only
elaborate proof in this chapter. However, the proof is basically a generalization of the
ideas in Example 235.

Proof of Theorem 243. First, let v ∈ F 1×m be the vector with only ones. Then Lemma
61 provides the presentation

an := v ·An · vt = v · TJnT · vt =
r∑
i=1

si−1∑
j=0

ci,j

(
n

j

)
xn−j
i (514)

of the sum of the entries in An for some suitable ci,j ∈ F and all n ∈ N0 where the binomial
coefficient

(n
j

)
is zero if n < j.

Second, we want to solve for the coefficients ci,j in (514) and, for that, consider the
confluent Vandermonde matrix

V :=
(
V (x1, s1) . . . V (xr, sr)

)
∈ K[x1, . . . , xr]s×s
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where

V (xi, si) :=



1 0 0 . . . 0
xi 1 0 . . . 0
x2
i xi 1 . . . 0
...

...
... . . .

...
xsi−1
i

(si−1
1
)
xsi−2
i

(si−1
2
)
xsi−3
i . . . 1

...
...

... . . .
...

xs−1
i

(s−1
1
)
xs−2
i

(s−1
2
)
x s−3
i . . .

( s−1
si−1

)
x
s−1−(si−1)
i


∈ K[xi]s×si

for all i = 1, . . . , r. Let

a :=
(
a0 . . . as−1

)
, c :=

(
c1,0 . . . c1,s1−1 . . . cr,0 . . . cr,sr−1

)
∈ K[x1, . . . , xr]1×s.

Then we have the equality

at = V · ct (515)

Now, [MZ21, p. 4, Theorem 2.4] provides that V is invertible and a presentation for the
ci,j . Before we write down this presentation, let us first introduce an adaption of the
notation in [MZ21, p. 2]: For all i = 1, . . . , r and j = 0, . . . , si, we define

χi,j(t) := (t− xi)j
r∏

ν=1,ν ̸=i
(t− xν)sν . (516)

Notice that we have χi(t) = χi,0(t) by the definition of χi(t) in (505). Moreover, we define

Li,j(t) := χi(t) · (t− xi)j
si−1−j∑
µ=0

1
µ!
(
χi(t)−1

)(µ)
(xi) · (t− xi)µ

=
si−1−j∑
µ=0

1
µ!
(
χi(t)−1

)(µ)
(xi) · χi,j+µ(t) (517)

where
(
χi(t)−1)(µ) denotes the µ-th derivative of χi(t)−1 in the variable t. Next, we

consider the Faa di Bruno’s Formula for the µ-th derivative of the composition f ◦ g of
two functions f and g in [Fla01, p. 1], i.e.

(f ◦ g)(t)(µ) =
∑

(m1,...,mµ)∈Xµ

µ!∏µ
ν=1mν ! · ν!mν

· f (w(m1,...,mµ))(g(t)) ·
µ∏
ν=1

(
g(t)(ν)

)mν (518)

where w(m1, . . . ,mµ) := ∑µ
ν=1mν and Xµ := {(m1, . . . ,mµ) : ∑µ

ν=1 ν ·mν = µ}. Now, we
want to apply Faa di Bruno’s Formula to f = t−1 and g = χi(t) and, for that, notice the
equality

(t−1)(w(m1,...,mµ)) = (−1)w(m1,...,mµ) · w(m1, . . . ,mµ)! · t−1−w(m1,...,mµ).

Hence, for all i = 1, . . . , r and all µ = 0, . . . , si − 1 and for

c(m1, . . . ,mν) := µ! · (−1)w(m1,...,mµ) · w(m1, . . . ,mµ)!∏µ
ν=1mν ! · ν!mν

,

we derive the equality(
χi(t)−1

)(µ)
=

∑
(m1,...,mµ)∈Xµ

c(m1, . . . ,mν) · χi(t)−1−w(m1,...,mµ) ·
µ∏
ν=1

(
χi(t)(ν)

)mν
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=

∑
(m1,...,mµ)∈Xµ

c(m1, . . . ,mν) · χi(t)µ−w(m1,...,mµ) ·
µ∏
ν=1

(
χi(t)(ν)

)mν

χi(t)µ+1 (519)

= L(χi(t), µ)
χi(t)µ+1 (520)

where L(χi(t), µ) denotes the numerator in (519). Since µ = max{w(m1, . . . ,mµ) :
(m1, . . . ,mµ) ∈ X(µ)}, the numerator L(χi(t), µ) is a polynomial in t.

Consequently, [MZ21, p. 6, Corollary 2.5] provides that, for all i = 1, . . . , r and j =
1, . . . , si − 1, the elements ci,j in the solution c of the equation at = V ct in (515) are of
the form

ci,j =
s−1∑
ν=0

aν
ν!L

(ν)
i,j (0) =

s−1∑
ν=0

si−1−j∑
µ=0

aν
ν! ·

(
d

dt

)ν( 1
µ!
(
χi(t)−1

)(µ)
(xi) · χi,j+µ(t)

)
(0)

=
s−1∑
ν=0

si−1−j∑
µ=0

aν
ν!

1
µ!
(
χi(t)−1

)(µ)
(xi) · χi,j+µ(t)(ν)(0)

=
s−1∑
ν=0

si−1−j∑
µ=0

aν
ν!

1
µ!
L(χi(t), µ)(xi)
χi(xi)µ+1 · χi,j+µ(t)(ν)(0)

=
∑s−1
ν=0

∑si−1−j
µ=0

1
ν!·µ! · L(χi(t), µ)(xi) · χi(xi)si−(µ+1) · χi,j+µ(t)(ν)(0) · aν

χi(xi)si
(521)

=
γ′
i,j

χi(xi)si
(522)

where γ′
i,j denotes the numerator in (521) and the equalities hold by the following reason-

ings: The first equality holds by [MZ21, p. 6, Corollary 2.5] and by our adaption of the
notation from there in 517. The second equality holds by the equality in (517). The third
equality holds since only χi,j+µ(t) depends on t in the derivative. The fourth equality
holds by the equality in (520). The fifth equality holds by extending the numerator and
denominators with χi(xi)si−(µ+1) and by elementary arithmetics. The last equality holds
by the choice of γ′

i,j .
Combining the equalities in (514) and (522) yields the equality

an =
r∑
i=1

si−1∑
j=0

γ′
i,j

(n
j

)
xn−j
i

χi(xi)si
. (523)

Third, on the one hand, let us also write S0 = R0 for the integral closure of K[x] in F .
On the other hand, let S∞ ⊃ R∞ be the integral closure of K[x−1](x−1)∩K[x−1](x−1−e−1) =
K[y](y) ∩K[y](y−1) in F where K[z](z−a) denotes the localization of K[z] at the maximal
ideal (z − a)K[z] for all z ∈ {x−1, y} and all a ∈ K.

Since x1, . . . , xr0 are zeroes of the characteristic polynomial χA0(t) ∈ K[x][t] of A0 ∈
K[x]m0×m0 and since xr0+1, . . . , xr are zeroes of the characteristic polynomial χA∞(t) ∈
K[x−1][t] of A∞ ∈ K[x−1]m∞×m∞ , we obtain

x1, . . . , xr0 ∈ S0 and xr0+1, . . . , xr ∈ S∞. (524)

By [Sti08, p. 79, Theorem 3.2.6(b)] and [Sti08, p. 77, Definition 3.2.2], we then have the
equalities

S0 = {z ∈ F : vQ(z) ≥ 0 for all Q ∈ PF \ Supp(div∞(x))} (525)
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and

S∞ = {z ∈ F : vQ(z) ≥ 0 for all Q ∈ Supp(div0(y)) ∪ Supp(div0(y − 1))} (526)

Moreover, we also have the equality

S0 ∩ S∞ = {z ∈ F : vQ(z) ≥ 0 for all Q ∈ PF } = K (527)

where the first equality holds by the equalities div∞(y) = div∞(ex−1) = div0(x) and by
the equalities in (525) and (526) and the second equality holds because of [Sti08, p. 8,
Corollary 1.1.20] and because K ss an algebraically closed field and, thus, must already
be the full constant field of F .

By the equality in (527), we can extend any K-basis of K to some basis of the K-vector
space S0 and also of S∞. Then the union of these two bases is a basis of S0 +S∞. Finally,
we can even extend this last basis of S0 + S∞ to a K-basis of all of F . This means that
any element in z ∈ F has a presentation z = z0 + z∞ + u with z0 ∈ S0, z∞ ∈ S∞ and
u ∈ U where any other such presentation of z = z′

0 + z′
∞ + u satisfies u = u′, z′

0 = z0 + a
and z′

∞ = z∞−a for some constant a ∈ K. In particular, for z ∈ K[x, x−1], we can choose
z0 = NonPrinc(z), z∞ = Princ(z) and u = 0.

Next, let

σ1 : S0 → K be any extension morphism of K-algebras of the evaluation
morphism Eval1 : R0 → K, h(x) 7→ h(1) (528)

and let

σe : S∞ → K be any extension morphism of K-algebras of the evaluation
morphism Evale : R∞ → K, h(x) 7→ h(e). (529)

Because distinct presentations z = z0 + z∞ + u = z′
0 + z∞ + u satisfy z′

0 = z0 + a and
z′

∞ = z∞ − a for some constant a ∈ K, we can even extend the morphism

N′
e : K[x, x−1]→ K via z → Eval1(NonPrinc(z)) + Evale(NonPrinc(z))

in Definition 241 to the morphism

N′
e : F → K via z = z0 + z∞ + u 7→ σ1(z0) + σe(z∞) (530)

of K-vector spaces.
Fourth, we will show that the exponents ωi in (504) are chosen such that

γi,j := xωiγ′
i,j and hi := xωiχi(xi)si are elements in S0 (531)

for all i = 1, . . . , r0 and j = 0, . . . , si − 1 and

γi,j := x−ωiγ′
i,j and hi := x−ωiχi(xi)si are elements in S∞ (532)

for all i = r0 + 1, . . . , r and all j = 0, . . . , si − 1.
For that, we first notice the equality

xω
′
0χi(t)(µ) =

xω′
0 · χ∞(t) ·

r0∏
ν=1,ν ̸=i

(t− xν)sν

(µ)

∈ S0[t] (533)

for all i = 1, . . . , r0 and all µ = 0 . . . , si − 1 where the equality holds because xω
′
0 is

constant in t and because of the equality χi(t) = ∏r
ν=r0+1,ν ̸=i(t − xν)sν · χ∞(t) in (505)
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and the containment-statement holds because of the definition of ω′
0 in (501) as the minimal

exponent such that xω′
0 ·χ∞(t) ∈ R0[t] = S0[t], because we have xν ∈ S0 for all ν = 1, . . . , r0

by (524) and because the derivative of a polynomial in S0[t] still has coefficients in the
K-algebra S0.

In particular, for all i = 1, . . . , r0, if we evaluate the si-th power of this equality in
(533) for µ = 0 at xi, we already obtain the second desired containments-statement in
(531) because of the definition of ωi := si · ω′

0 + ω′′
0 in (504) and because we have xi ∈ S0

by (524).
Next, we conclude(
xω

′
0
)µ
· χi(t)µ−w(m1,...,mµ) ·

µ∏
ν=1

(
χi(t)(ν)

)mν

=
(
xω

′
0
)µ−w(m1,...,mµ)

· χi(t)µ−w(m1,...,mµ) ·
(
xω

′
0
)∑µ

ν=1 mν

·
µ∏
ν=1

(
χi(t)(ν)

)mν

=
(
xω

′
0 · χi(t)

)µ−w(m1,...,mµ)
·
µ∏
ν=1

(
xω

′
0 · χi(t)(ν)

)mν

∈ S0[t] (534)

for all i = 1, . . . , r0 and all µ = 0 . . . , si − 1 where the first equality by the definition
of w(m1, . . . ,mµ) = ∑µ

ν=1mν and by elementary arithmetics, the second equality holds
by elementary arithmetics and the containment-statement holds by (533). In particular,
combining (533) and the definition of L(χi(t), µ)(xi) in (520) yields(

xω
′
0
)µ
· L(χi(t), µ)(xi) ∈ S0 (535)

for all i = 1, . . . , r0 and all µ = 0 . . . , si − 1. Thus, we derive(
xω

′
0
)si · L(χi(t), µ)(xi) · χi(xi)si−(µ+1) · χi,j+µ(t)(ν)(0)

=
(
xω

′
0
)µ
· L(χi(t), µ)(xi) ·

(
xω

′
0 · χi(xi)

)si−(µ+1)
·
(
xω

′
0 · χi,j+µ(t)

)(ν)
(0) ∈ S0 (536)

for all i = 1, . . . , r0, all µ = 0 . . . , si−1 and all ν = 0, . . . , s−1 where the equality holds by
the presentation of si as the sum si = µ+ (si− (µ+ 1)) + 1 and by elementary arithmetics
and the containment-statement holds by (535) and by (533).

Finally, because of (536), because of the definition of γ′
i,j in (522), because the definition

of ω′′
0 in (502) supplies xω′′

0 aν = ∑
i,j x

ω′′
0 a

(ν)
i,j ∈ S0 and because of the definition of ωi :=

si · ω′
0 + ω′′

0 in (504), we get the desired containment-statements in (531).
Now, the desired containment-statements in (532) follow analogously (just use the

presentation χi(t) = χ0(t) ·∏r
ν=r0+1,ν ̸=i(t− xν)sν in (505)).

On the one hand, let us define

an,0 :=
r0∑
i=1

si−1∑
j=0

γ′
i,j

(n
j

)
xn−j
i

χi(xi)si
=

r0∑
i=1

xωi

xωi
·

si−1∑
j=0

γ′
i,j

(n
j

)
xn−j
i

χi(xi)si

=
r0∑
i=1

si−1∑
j=0

γi,j
(n
j

)
xn−j
i

hi
(537)

where, by (531), the numerators ∑si−1
j=0 γi,j

(n
j

)
xn−j
i and the denominators hi are elements

in S0 for all i = 1, . . . , r0. On the other hand, we also define

an,∞ :=
r∑

i=r0+1

si−1∑
j=0

γ′
i,j

(n
j

)
xn−j
i

χi(xi)si
=

r∑
i=r0+1

x−ωi

x−ωi
·

si−1∑
j=0

γ′
i,j

(n
j

)
xn−j
i

χi(xi)si
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=
r∑

i=r0+1

si−1∑
j=0

γi,j
(n
j

)
xn−j
i

hi
(538)

where, by (532), the numerators ∑si−1
j=0 γi,j

(n
j

)
xn−j
i and the denominators hi are elements

in S∞ for all i = r0 + 1, . . . , r. By (523), we then get the equality

an = an,0 + an,∞. (539)

Fifth, for all polynomials h ∈ F [t], all λ ∈ K and all e ∈ N0, we denote the e-th Taylor
polynomial of h at λ as

Tλ,e(h) :=
e∑

k=0

h(k)(λ)
k! (t− λ)k. (540)

It is well known that

Tλ,e(h) = h (541)

if deg(h) ≤ e. More specifically, we define

TQ,e(xn−j
i ) := Txi(Q),e(tn−j)(xi) (542)

for all e ∈ N0, all i = 1, . . . , r, all j = 0 . . . , si−1 and allQ ∈ PL withQ /∈ Supp(div∞(x)) ⊇
Supp(div∞(xi)) if i ≤ r0 and Q /∈ Supp(div0(x)) ⊇ Supp(div∞(xi)) if i > r0 where the
inclusions hold since xi is a zero of χA0(t) ∈ K[x][t] if i ≤ r0 and of χA∞(t) ∈ K[x−1][t].
Then we have

vQ
(
xi(Q)n−j − TQ,e(xn−j

i )
)

= vQ
(
TQ,n−j(xn−j

i )− TQ,e(xn−j
i )

)
= vQ

 n−j∑
k=e+1

t(k)(xi(Q))
k! (xi − xi(Q))k

 ≥ e+ 1 (543)

for all e ∈ N0, all i = 1, . . . , r, all j = 0 . . . , si−1 and allQ ∈ PL withQ /∈ Supp(div∞(x)) ⊇
Supp(div∞(xi)) if i ≤ r0 and Q /∈ Supp(div0(x)) ⊇ Supp(div∞(xi)) if i > r0 where the
first equality holds by the definition of TQ,e(xn−j

i ) in (542) and by the equality in (541), the
second equality holds by the equality in (540) and the estimate holds since the argument
is a K-linear combination of (xi − xi(Q))e+1, . . . , (xi − xi(Q))n−j .

Sixth, let h0 := ∏r0
i=1 hi. By the Strong Approximation Theorem in [Sti08, p. 33,

Theorem 1.6.5], we can choose elements εQ ∈ F for all Q ∈ Supp(div0(h0(x − 1))) such
that

vQ(εQ − 1) = vQ(h0(x− 1)) ≥ vQ(hi(x− 1)) ≥ 0, vR(εQ) ≥ 0,
vP (εQ) = vP (h0(x− 1)) ≥ vP (hi(x− 1)) ≥ 0 (544)

for all i = 1, . . . , r0, all P ∈ Supp(div0(h0(x − 1)))\{Q} and all R ∈ PF \Supp(div∞(x))
where the estimates vQ(h0(x−1)) ≥ vQ(hi(x−1)) ≥ 0 and vP (h0(x−1)) ≥ vP (hi(x−1)) ≥
0 hold by the definition h0 := ∏r0

i=1 hi, by (531) and by (525). Thus, by (525), we even
obtain εQ ∈ S0. Next, we consider the equalities

an,0 =
r0∑
i=1

si−1∑
j=0

γi,j
(n
j

)
xn−j
i

hi
−

r0∑
i=1

si−1∑
j=0

γi,j
(n
j

)
·
∑

Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )

hi
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+
r0∑
i=1

si−1∑
j=0

γi,j
(n
j

)
·
∑

Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )

hi

=
r0∑
i=1

si−1∑
j=0

γi,j
(n
j

)
·
(
xn−j
i −

∑
Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )

)
hi

+
r0∑
i=1

si−1∑
j=0

γi,j
(n
j

)
·
∑

Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )

hi
(545)

= an,0,0 + an,0,1 (546)

where an,0,0 denotes the first summand and an,0,1 the second summand in (545) and the
equalities hold by the following reasonings: The first equality holds because the first
summand is already an,0 by (537) and because the second and the third summands are
canceling each other out. The second equality holds by elementary arithmetics. The last
equality holds by the choices of an,0,0 and an,0,1.

Seventh, for all i = 1, . . . , r0 and all the places P ∈M0,i = Supp(div0((x− 1)xωiχi)) =
Supp(div0((x− 1)hi)) in (506), we estimate

vP

si−1∑
j=0

γi,j

(
n

j

)
·

xn−j
i −

∑
Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )


≥ min

j=0,...,si−1
vP

γi,j
(
n

j

)
·

xn−j
i −

∑
Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )


≥ min

j=0,...,si−1
vP

xn−j
i −

∑
Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )


≥ min

j=0,...,si−1
Q∈M0,i\{P}

{
vP
(
xn−j
i − εP · TP,b0,i(P )(xn−j

i )
)
, vP

(
εQ · TQ,b0,i(Q)(xn−j

i )
)}

≥ min
j=0,...,si−1

{
vP
(
xn−j
i − TP,b0,i(P )(xn−j

i ) + (1− εP ) · TP,b0,i(P )(xn−j
i )

)
,

vP (hi(x− 1))}

≥ min
j=0,...,si−1

{vP
(
xn−j
i − TP,b0,i(P )(xn−j

i )
)
, vP

(
(1− εP ) · TP,b0,i(P )(xn−j

i )
)
,

vP (hi(x− 1))}
≥ vP (hi(x− 1)) (547)

where the estimates hold by the following reasonings: The first, third and fifth estimates
hold by the well known rule vP (a + b) ≥ min{vP (a), vP (b)}. The second estimate holds
because of the well known rule vP (a ·b) = vP (a)+vP (b) and because γi,j

(n
j

)
is contained in

S0 by (531) and therefore has no pole at P ∈ PF \ Supp(div∞(x)) ⊇M0,i = Supp(div0((x−
1)hi)) where the inclusions hold since hi(x− 1) ∈ S0. The fourth estimate holds because
of elementary arithmetics, because of the equality

vP
(
εQ · TQ,b0,i(Q)(xn−j

i )
)

= vP (εQ) + vP
(
TQ,b0,i(Q)(xn−j

i )
)
,

because of choice of εQ in (544) and because TQ,b0,i(Q)(xn−j
i ) ∈ S0 by its definition in

(542). The last estimate holds by the choice of εP in (544), by the definition of b0,i(P ) =
vP ((x− 1)xωiχi)− 1 in (506) for all P ∈M0,i and by the estimate in (543).
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Consequently, we obtain

vP


si−1∑
j=0

γi,j
(n
j

)
·
(
xn−j
i −

∑
Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )

)
hi


= vP

si−1∑
j=0

γi,j

(
n

j

)
·

xn−j
i −

∑
Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )

− vP (hi)

≥ vP (x− 1) (548)

for all i = 1, . . . , r0 and all P ∈ PF \Supp(div∞(x)) where the equality is a well known
rule and the estimate holds by the following reasonings: On the one hand, the estimate
holds for P ∈ PF \(Supp(div0(hi(x − 1))) ⊔ Supp(div∞(x))) because the vP -argument of
the first summand is an element in S0 and because vP (hi) = 0 = vP (x−1) for these P . On
the other hand, the estimate holds for P ∈ Supp(div0(hi(x− 1))) because of the estimate
in (547).

Hence, by (525), we concluded that all summands of an,0,0 in (546) are contained in
S0 and are even S0-multiples of (x− 1). Therefore, the same holds for the whole sum, i.e.

an,0,0 =
r0∑
i=1

si−1∑
j=0

γi,j
(n
j

)
·
(
xn−j
i −

∑
Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )

)
hi

∈ (x− 1)S0 (549)

In particular, we obtain the equalities

N′
e(an,0,0) = σ1(an,0,0) = 0 (550)

where the first equality holds because of the definition of the extension of N′
e on F in (530)

and because an,0,0 is an element in S0 by (549) and the second equality holds because an,0,0
is even an element in (x−1)S0 and because the σ1 is an extension morphism of K-algebras
of the evaluation morphism Eval1 by (528).

Eighth, let us consider the second summand in (546), i.e.

an,0,1 =
r0∑
i=1

si−1∑
j=0

γi,j
(n
j

)
·
∑

Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )

hi

=
r0∑
i=1

si−1∑
j=0

∑
Q∈M0,i

(
n

j

)
·
γi,j · εQ · TQ,b0,i(Q)(xn−j

i )
hi

=
r0∑
i=1

si−1∑
j=0

∑
Q∈M0,i

b0,i(Q)∑
k=0

(
n

j

)
·
(
n− j
k

)
· xi(Q)n−j−k · γi,j · εQ · (xi − xi(Q))k

hi
(551)

where the first equality holds by the choice of an,0,1 in (546), the second equality holds
by elementary arithmetics and resorting the sums and the third equality holds by the
definition of TQ,b0,i(Q)(xn−j

i ) in (542) and (540) and because of the equalities

(tn−j)(k)

k! = (n− j)! · tn−j−k

(n− j − k)! · k! =
(
n− j
k

)
· tn−j−k.
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Consequently, since N′
e is a morphism K-vector spaces, the equality in (551) yields

N′
e(an,0,1) =

r0∑
i=1

si−1∑
j=0

∑
Q∈M0,i

b0,i(Q)∑
k=0

(
n

j

)(
n− j
k

)
xi(Q)n−j−k ·N′

e

(
γi,j · εQ · (xi − xi(Q))k

hi

)
.

(552)

Ninth, we will deal with the second summand an,∞ of the sum an = an,0 + an,∞ in
(539). Here, we basically do the steps six to eight but for S∞ instead of S0 and, therefore,
let us just list the outcome: For all i = r0 + 1, . . . , r and all Q ∈ M0,i = M0,∞ =
Supp(div0(y(y − 1))) in (506), choose elements εQ ∈ S∞

vQ(εQ − 1) = vQ(h0(y − 1)) ≥ vQ(hi(y − 1)) ≥ 0,
vP (εQ) = vP (h0(y − 1)) ≥ vP (hi(y − 1)) ≥ 0

for all P ∈M0,∞\{Q}. Next, let

an,∞,0 :=
r∑

i=r0+1

si−1∑
j=0

γi,j
(n
j

)
·
(
xn−j
i −

∑
Q∈M0,i

εQ · TQ,b0,i(Q)(xn−j
i )

)
hi

and

an,∞,1 :=
r∑

i=r0+1

si−1∑
j=0

γi,j
(n
j

)
·
∑

Q∈M0,i

εQ · TQ,b0,i
(xn−j
i )

hi
.

Then we get the equality

an,∞ = an,∞,0 + an,∞,1 (553)

On the one hand, we analogously obtain an,∞,0 ∈ (y − 1)S∞ = ( ex − 1)S∞ and, hence,

N′
e(an,∞,0) = σe(an,∞,0) = 0. (554)

On the other hand, we also analogously obtain

N′
e(an,∞,1) =

r∑
i=r0+1

si−1∑
j=0

∑
Q∈M0,i

b0,i(Q)∑
k=0

(
n

j

)(
n− j
k

)
xi(Q)n−j−kN′

e

(
γi,j · εQ · (xi − xi(Q))k

hi

)
.

(555)

Tenth, we collect everything which we have established so far. For that, let

κi,j,Q,k := N′
e

(
γi,j · εQ · (xi − xi(Q))k

hi

)
∈ K (556)

for all i = 1, . . . , r, all j = 0, . . . , si − 1, all Q ∈M0,i and all k = 0, . . . , b0,i(Q).
Then combining the definition of N′′

e(An) in Definition 241, (514), (539), (546), (550),
(552), (553), (554) and (555) yields

N′′
e(An) = N′

e(an) = N′
e(an,0,1) + N′

e(an,∞,1)

=
r∑
i=1

si−1∑
j=0

∑
Q∈M0,i

b0,i(Q)∑
k=0

(
n

j

)
·
(
n− j
k

)
· xi(Q)n−j−k · κi,j,Q,k. (557)
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Furthermore, let us resort the sum in (557) for the appearing λ = xi(Q) and since we
are not interested in the constants in K, let us also just write const for the appearing
constants. Then we deduce the equalities

N′′
e(An) =

r∑
i=1

si−1∑
j=0

∑
λ∈Λ0,i

b0,i(λ)∑
k=0

(
n

j

)
·
(
n− j
k

)
· λn · consti,j,λ,k

=
∑
λ∈Λ0

b0(λ)∑
k=0

constλ,k · nk · λn (558)

for all n ≥ n0 := max{si − 1 + b0,i(λ) : i = 1, . . . , r and λ ∈ Λ0,i} where the equalities
hold by the following reasonings: The first equality holds because of the equality in (557),
because Λ0,i precisely consists of the elements xi(Q) with Q ∈ M0,i and because b0,i(λ)
is defined as the maximum of all b0,i(Q) with xi(Q) = λ in (506). The second equality
holds because Λ0 is defined as the union of the Λ0,i, because the product

(n
j

)
·
(n−j
k

)
is a

polynomial in n for n ≥ n0 with degree j + k ≤ si − 1 + b0,i(λ) for all i = 1, . . . , r, all
j = 0, . . . , si − 1, all λ ∈ Λ0,i and all k = 0, . . . , b0,i(λ) and because b0(λ) is defined as the
maximum of these upper bounds si − 1 + b0,i(λ) in (508).

But, (558) is now of the form

N′′
e(An) =

∑
λ∈Λ0

fλ(n) · λn (559)

for all n ≥ n0 and some polynomials fλ(n) ∈ K[n] with

deg(fλ(n)) ≤ b0(λ) (560)

for all λ ∈ Λ0.
Eleventh, in the steps three to ten, we can interchange the roles of x and y and obtain

another presentation of N′′
e(An) which is similar to the one in (560). Let us just briefly go

through the steps:
In the third step, we set S∞ to the integral closure of K[y] = K[x−1] and S0 to

the integral closure of K[x](x) ∩ K[x](x−1) in F . Then we have x1, . . . , xr0 ∈ S0 and
xr0+1, . . . , xr ∈ S∞ and the equalities

S∞ = {z ∈ F : vQ(z) ≥ 0 for all Q ∈ PF \ Supp(div∞(y))}

and

S0 = {z ∈ F : vQ(z) ≥ 0 for all Q ∈ Supp(div0(x)) ∪ Supp(div0(x− 1))}.

Moreover, the equality in (527) still holds and since we have K[x] ⊆ S0 and K[x−1] ⊆ S∞,
we can again extend N′

e : K[x, x−1]→ K to another morphism

N′
e : F → K via z = z0 + z∞ + u 7→ σ1(z0) + σe(z∞)

of K-vector spaces where σ1 : S0 → K is an extension morphism of K-algebras of Eval1
and σe : S∞ → K of Evale.

The fourth and fifth step do not need any modifications. For the sixth step, we define
h∞ := ∏r

i=r0+1 hi and choose elements εQ ∈ F for all Q ∈ Supp(div0(h∞(y − 1))) such
that

vQ(εQ − 1) = vQ(h∞(y − 1)) ≥ vQ(hi(y − 1)) ≥ 0, vR(εQ) ≥ 0,
vP (εQ) = vP (h∞(x− 1)) ≥ vP (hi(x− 1)) ≥ 0
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for all i = r0+1, . . . , r, all P ∈ Supp(div0(h∞(y−1)))\{Q} and allR ∈ PF \ Supp(div∞(y)).
Then we obtain the equality an,∞ = an,∞,0 + an,∞,1 for

an,∞,0 :=
r∑

i=r0+1

si−1∑
j=0

γi,j
(n
j

)
·
(
xn−j
i −

∑
Q∈M∞,i

εQ · TQ,b∞,i(Q)(xn−j
i )

)
hi

and

an,∞,1 :=
r∑

i=r0+1

si−1∑
j=0

γi,j
(n
j

)
·

∑
Q∈M∞,i

εQ · TQ,b∞,i(Q)(xn−j
i )

hi
.

In the seventh step, we analogously estimate

vP

si−1∑
j=0

γi,j

(
n

j

)
·

xn−j
i −

∑
Q∈M∞,i

εQ · TQ,b∞,i(Q)(xn−j
i )

 ≥ vP (hi(y − 1))

for all i = r0 + 1, . . . , r and all P ∈ M∞,i = Supp(div0((y − 1)yωiχi)) = Supp(div0((y −
1)hi)) in (507) and then we estimate

vP


si−1∑
j=0

γi,j
(n
j

)
·
(
xn−j
i −

∑
Q∈M∞,i

εQ · TQ,b∞,i(Q)(xn−j
i )

)
hi

 ≥ vP (y − 1)

for all i = r0 +1, . . . , r and all P ∈ PF \Supp(div∞(y)). Consequently, this yields an,∞,0 ∈
(y − 1)S∞ and N′

e(an,∞,0) = σe(an,∞,0) = 0.
The eight step work completely analogous and, here, we get the equality

N′
e(an,∞,1) =

r∑
i=r0+1

si−1∑
j=0

∑
Q∈M∞,i

b∞,i(Q)∑
k=0

(
n

j

)(
n− j
k

)
xi(Q)n−j−kN′

e

(
γi,jεQ(xi − xi(Q))k

hi

)
.

In the ninth step, for all i = 1, . . . , r0 and all Q ∈M∞,i = M∞,0 = Supp(div0(x(x−1)))
in (507), we choose elements εQ ∈ S0

vQ(εQ − 1) = vQ(h0(x− 1)) ≥ vQ(hi(x− 1)) ≥ 0,
vP (εQ) = vP (h0(x− 1)) ≥ vP (hi(x− 1)) ≥ 0

for all P ∈M∞,0\{Q}. Next, we define

an,0,0 :=
r0∑
i=1

si−1∑
j=0

γi,j
(n
j

)
·
(
xn−j
i −

∑
Q∈M∞,i

εQ · TQ,b∞,i(Q)(xn−j
i )

)
hi

and

an,0,1 :=
r0∑
i=1

si−1∑
j=0

γi,j
(n
j

)
·

∑
Q∈M∞,i

εQ · TQ,b∞,i
(xn−j
i )

hi
.
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Then we get the equality an,0 = an,0,0+an,0,1, conclude an,0,0 ∈ (x−1)S0 and N′
e(an,∞,0) =

σe(an,∞,0) = 0 and

N′
e(an,0,1) =

r0∑
i=1

si−1∑
j=0

∑
Q∈M∞,i

b0,i(Q)∑
k=0

(
n

j

)(
n− j
k

)
xi(Q)n−j−kN′

e

(
γi,j · εQ · (xi − xi(Q))k

hi

)
.

Second to last, with the sets and numbers in (507) and (508), the tenth step provides
a presentation

N′′
e(An) =

∑
λ∈Λ∞

fλ(n) · λn (561)

for all n ≥ n∞ := max{si− 1 + b∞,i(λ) : i = 1, . . . , r and λ ∈ Λ∞,i} and some polynomials
fλ(n) ∈ K[n] with

deg(fλ(n)) ≤ b∞(λ) (562)

for all λ ∈ Λ∞.
Finally, combining the presentations in (559) and (561) and the degree bounds in (560)

and (562) supplies the desired presentation in Theorem 243 because of the definitions
of Λ(A) := Λ0 ∩ Λ∞ and b(A, λ) := min{b0(λ), b∞(λ)}(508) and because the family of
elements nkλn for all n ≥ max(n0, n∞) are K-linearly independent.

Moreover, since the summands in the final formula vanish for all λ /∈ λ(A), we can
even replace Λj,i with Λj,i ∩ Λ(A) in the definitions of n0 after (558) and n∞ after (561).
Doing so yields that the desired final formula even holds for all n ≥ max(n0, n∞) = c(A),
which is the last missing piece of Theorem 243.

8.2.4 An Effective Approach to Compute Genus Formulas

Purpose of this subsection. In this subsection, we will first elaborate in Remark 247
that there is reason to suspect that the set Λ(A) in Theorem 243 can actually be chosen
smaller.

Second, we will discuss possible approaches for effectively applying Corollary 246 to
compute genus formulas. By that, we will come up with our preferred final approach
(A4). This approach will then be automated in a first naive implementation of (A4) in
Subsection 8.3.2.

Third and finally, we will also discuss a first way to generalize Corollary 246.

Remark 247. The proof of Theorem 243 is basically an adhoc approach to apply the ideas
in Example 235 for restricting the candidates for λn in the desired formula

N′
e(vAnvt) =

∑
λ

fλ(n)λn (563)

to a finite set Λ(A) and for providing degree bounds b(A, λ) for all λ ∈ Λ(A). But, except
for the fact that Λ(A) is defined as the the intersection Λi ∩ Λ∞, the proof completely
neglects possible cancellations of the terms with λn.

Therefore, it is not surprising that, for all considered examples, the appearing λ in the
final formula were even contained in a smaller subset, namely

Λ′ :=
r0⋃
i=1

xi(Q) : Q ∈ Supp(div0(
r∏

ν=r0+1
(xi − xν)))


∪

r⋃
i=r0+1

{
xi(Q) : Q ∈ Supp(div0(

r0∏
ν=1

(xi − xν)))
}
⊆ Λ(A). (564)
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Moreover, the following further observations also indicate that this could hold more gen-
erally:

First, it can be explicitly calculated that the terms with xi(Q)n and xk(Q)n are can-
celing each other out for all distinct i, k ∈ {1, . . . , r0} if xi(Q) = xk(Q) /∈ {xν(Q) :
ν ∈ {1, . . . , r0}\{i, k}} (resp. i, k ∈ {r0 + 1, . . . , r} if xi(Q) = xk(Q) /∈ {xν(Q) : ν ∈
{r0 + 1, . . . , r}\{i, k}}). Otherwise, e.g. if xi(Q) = xk(Q) = xl(Q) for pairwise distinct
i, k, l ∈ {1, . . . , r0}, it becomes inevitable to extract more information from the numerators
γi,j, γk,j and γl,j in the identity in (522) to maybe then also obtain the desired cancellations
of these terms.

Second, as we already pointed out, Λ(A) is defined as the intersection of the two sets
Λ0 and Λ∞ in (508). This identity already excludes all the xi(Q) which do not appear in
both sets Λ0 and Λ∞. In particular, notice that this does not effect Λ′ as Λ′ is a subset of
of both sets by their definitions.

Third, in some simpler cases, it can also be calculated that the terms with xi(Q)n do
no appear in the formula for all Q ∈ Supp(div(x)) and all i = 1, . . . , r.

Finally, we could not find another reason besides the mentioned examples for why the
terms with xi(Q)n for Q ∈ Supp(div0(x−1)) and i = 1, . . . , r0 (resp. Q ∈ Supp(div0(x−e))
and i = r0 + 1, . . . , r) should not appear in the formula in (563).

Possible ways to compute a genus formula. Let us discuss some possible ways to
compute the formula

N′′
e(An) =

∑
λ∈Λ(A)

fλ(n) · λn (565)

for all n ≥ c(A) in Theorem 243.

(A1) First, a naive approach is to just use the constructive proof of Theorem 243, i.e. to
just compute the finite subset Λ(A) ⊂ Q, the degree bounds b(A, λ) for all λ ∈ Λ(A)
and the values of N′′

e(An) from c(A) up to n0 = c(A) +∑
λ∈Λ(A)(b(A, λ) + 1). This

will then provide a linear equation system (LES) with a confluent Vandermonde
matrix. Hence the coefficients of the polynomials fλ(n) are provided by the unique
solution of this LES.
However, as we discussed in Remark 247, the set Λ(A) seems to be unnecessarily
large. This can especially become problematic if also the degree bounds b(A, λ)
are large. Although most of the bounds b(A, xi(Q)) appear to be reasonably small,
there are exceptions: For all i = 1, . . . , r0 and all Q ∈ Supp(div0(x)) (resp. all
i = r0 + 1, . . . , r and all Q ∈ Supp(div∞(x))), the bounds b(A, xi(Q)) are at least ω′′

0
in (502) (resp. ω′′

∞ in (503)) which is increasing with s.

(A2) Second, to avoid these unnecessarily large degree bounds, we can just concretely
compute the bothersome numerators γ′

i,j in (521) for the concrete matrix A and
specify the problematic degree bounds by that.

(A3) Third, we can use the construction which is provided in the proof of Theorem 243.
Here the only problematic step becomes to compute the concrete values of

κi,j,Q,k = N′
e

(
γi,j · εQ · (xi − xi(Q))k

hi

)

in (556). In the proof, we could neglect these constants but now we have to find a
presentation of the argument in the form z0 + z∞ + u ∈ F = S0 + S∞ + U in (530).
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(A4) Fourth, finally and preferably, we can consider the sub LES in the first naive approach
with the subset Λ′ ⊆ Λ(A) in (564) and check whether the solution of this sub
LES is also a solution of the original LES from c(A) up to n0. If Λ(A) and the
problematic degree bounds are indeed inflated as we suspected in Remark 247, then
the solution of the sub LES will also be the solution for the LES. Otherwise we have
a counterexample for our suspicions and can dynamically add elements from Λ(A) to
Λ′, increase the degree bounds, again solve the new larger sub LES and again check
the solution for the original LES from c(A) up to n0 = c(A) + ∑

λ∈Λ(A)(b(A, λ) +
1). Eventually, this will supply the desired solution of the LES and thereby the
coefficients of the polynomials fλ(n) in (565).

Generality of Corollary 246. We want to point out that, although the assumptions in
Corollary 246 are quite restrictive in theory, all tame recursive towers F in the literature
known to the author have some truncation to which Corollary 246 can be applied. This
includes all tame recursive towers in [MW05], [Sti08] and [BR20]. In fact, all these tame
recursive towers have a finite ramification separating power subgraph.

In fact, it even comes out that, for all the finite weakly connected components Γ of Γram
F

and its corresponding w′
1,P-adjacency matrix A, we have F = Q(x, x1, . . . , xr) = E = Q(x)

in Definition 242.

The next more general case. As we pointed out above, there is no urge to improve
the generality of Theorem 243 yet. It already overpowers all existing examples. In partic-
ular, there could even be a reason why (good) recursive towers must all be of this simple
form which we described in the last paragraph. This would make any generalizing attempt
redundant. However, the author is not convinced that such a reason must exist and rather
suspects that the ways by which the recursive towers in the current literature were found
or constructed are biased.

Out of this suspicion, let us at least briefly discuss how a genus formula can be com-
puted for the following next more general case of Corollary 246: Let F = (Fν)ν be a
tame recursive tower over a field k and let F = (F ν)ν = k · F be the geometric tower
of F . Suppose that all weakly connected components Γ1, . . . ,Γr of the finite ramification
subgraph Γram

F are separating. Hence we only dropped the assumption that Γi has to be a
power subgraph and will still be able to compute a genus formula. The only drawback will
be that we basically have to apply the proof of Theorem 243 iteratively and it therefore
becomes cumbersome (but apparently not impossible) to provide a set Λ(A) and degree
bounds b(A, λ) as in Theorem 243.

Now, let Γ be any of the weakly connected components of Γram
F and let q1, . . . , qs ∈ P be

pairwise distinct with s ∈ N0 minimal such that the supports of the prime decompositions
of all ramification indices in Γ are contained in {q1, . . . , qs}.

Since Γ is separating and after maybe changing the enumeration of the primes q1, . . . , qs,
we can partition {q1, . . . , qs} into subsets

M1 := {q1, . . . qr1}, M2 := {qr1+1, . . . , qr2}, . . . , Mt := {qrt−1+1, . . . , qrt}

such that the Mj-parts of the ramification indices in Γ are powers of some fixed natural
number ej where the support of the prime decomposition of ej is equal to Mj . Notice
that this is at least always possible by choosing t = s, Mj = {qj} and ej = qj for all
j = 1, . . . , s.

By Lemma 240, any of these sets Mj comes with an Mj-separating enumeration of the
vertices in Γ. Moreover, it is not difficult to see that we can even find one enumeration v
of the vertices in Γ which is Mj-separating for all j = 1, . . . , t but with possibly differing
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separating indices mj,∞. Consequently, Lemma 240 implies that, for all j = 1, . . . , t, the
w′

1,P-adjacency matrix A for v is of the form

A =
(
Aj,∞ Bj

0 Aj,0

)
∈ Rej [xej , x

−1
ej

]m×m ⊂ Kej [xej , x
−1
ej

]m×m

with Aj,∞ ∈ Kej [x−1
ej

]mj,∞×mj,∞ and Aj,0 ∈ Kej [xej ]mj,0×mj,0 where mj,0 := m−mj,∞.
Then the eigenvalues x1, . . . , xρ of A can be enumerated in a way such that, for all

j = 1, . . . , t, there are indices ρj,0 satisfying that x1, . . . , xρj,0 are the eigenvalues of Aj,0
and xρj,0+1, . . . , xρ are the eigenvalues of Aj,∞.

Finally, we can first compute the presentation of vAnvt in the form

an := v ·An · vt =
r∑
i=1

si−1∑
j=0

ci,j

(
n

j

)
xn−j
i

for all n ≥ c(A) as in (514) and then iteratively compute the N′
ej

-value of (N′
ej−1 ◦ · · · ◦

N′
e1)(an) in the same way as in the proof of Theorem 243. Of course, again as in (A4),

some steps in the proof can be replaced by solving linear equation systems for suitable
confluent Vandermonde matrices.

8.3 A First Naive Implementation to Compute Genus For-
mulas

Summary of the results of this section In this section, we will provide a first naive
implementation of the approach in (A4) (see Subsection 8.3.2). This implementation
will work on all tame recursive towers in the literature which are known to the author,
including all tame recursive towers in [MW05], [Sti08], [BR20]. Consequently, in Examples
250, we will also list genus formulas for some representative tame recursive towers from
the literature.

8.3.1 Three Final Challenges for an Implementation.

Purpose of this subsection. We will have to face three final challenges before we can
provide the first naive implementation of our approach in (A4) in Subsection 8.3.2. In
combination with Corollary 246, this will enable us to compute genus formulas for all
tame recursive towers F in the literature which are known to the author, including all
tame recursive towers in [MW05], [Sti08], [BR20].

The first challenge will be that, for some tame recursive towers F = (Fν)ν in the
literature, Corollary 246 is only applicable for some level l truncation Trun≥l(F) = (Fl+ν)ν
of F .

The second challenge will be that the proof of Corollary 246 applies Theorem 243
to the infinite constant field extension k · F of F where k is an algebraic closure of the
constant field k of F .

The third challenge will be to compute the upper bound n0 := c(A)+∑λ∈Λ(A)(b(A, λ)+
1) in (A4) which is the level up to which we need to check our computed formula.

A solution for the first two challenges. The following Lemma 248 will solve the
first two challenges by translating the genus formula in Corollary 248 into a formula which
is expressed in terms of the N′′

e -values of the w′
1,P-adjacency matrices Ai,j of the weakly

connected components Γ′
i,j of the ramification subgraph Γram

F ′
≥l

of F ′
≥l = Trun≥l(k′ · F).

Here k′/k is a finite extension which can easily be determined for all tame recursive towers
in the literature which the author considered.
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Lemma 248. Let F = (Fν)ν be a recursive tower over a field k which is defined by the
pair (σ, F0). Let Γ1, . . . ,Γs be the weakly connected components of the finite ramification
subgraph Γram

F . On the one hand, for all i = 1, . . . , ρ, suppose that Γi is a separating
ei-power subgraph for some ei ∈ N. On the other hand, suppose Γρ+1, . . . ,Γs only have
circles with balanced ramification indices and that there is some l ∈ N0 such that the level
l truncation Trun≥l(Γi) has no ramified edges for all i = ρ+ 1, . . . , s

Moreover, let F ′ := k′·F = (F ′
ν)ν be the constant field extension of F for some algebraic

extension field k′ of k which contains all residue fields of the edges Q ∈
⋃ρ
i=1E(Γi) ⊆ PF1,

and let Γ′
i,1, . . . ,Γ′

i,ri
be the weakly connected components of k′ · Γi for all i = 1, . . . , ρ.

Then the following hold:

(i) The Γ′
i,j are exactly the weakly connected components of Γram

F ′ which have circles
with unbalanced ramification indices and the level l truncations of all other weakly
connected components of Γram

F ′ contain no ramified edges.
Moreover, for all i = 1, . . . , ρ and all j = 1, . . . , ri, Γ′

i,j is even a finite separating
ei-power subgraph of Γrat

F ′ .
In particular, for all i = 1, . . . , ρ and all j = 1, . . . , ri, Γ′

i,j, we can choose some ei-
separating enumeration vi,j of the mi,j vertices in Γ′

i,j such that the w′
1,P-adjacency

matrix Ai,j of Γ′
i,j for vi,j is of the form

Ai,j =
(
Ai,j,∞ Bi,j

0 Ai,j,0

)
∈ Q[xei , x

−1
ei

]mi,j×mi,j

with Ai,j,0 ∈ Q[xei ]mi,i,0×mi,j,0 and Ai,j,∞ ∈ Q[x−1
ei

]mi,j,∞×mi,j,∞ with mi,j,0 +mi,j,∞ =
mi,j.

(ii) For all n ≥ l, we have the identity

g(Fn) = 1
2

2 +

g(Fl)− 2 +
ρ∑
i=1

ri∑
j=1

N′′
ei

(Ali,j)

 dn−l −
ρ∑
i=1

ri∑
j=1

N′′
ei

(Ani,j)

 .
Proof. For the ’main’-part in (i): First, we notice that since Γi is a weakly connected
component of Γram

F by assertion, Lemma 124 and Lemma 120(iii) supply that any weakly
connected component Γ′

i,j of k′ · Γi is also a weakly connected component of Γram
F ′ .

On the one hand, the assertion that Γi is a separating weakly connected component
of Γram

F implies that Γi must also have circles with unbalanced ramification indices for
all i = 1, . . . , ρ. By this and by Lemma 120(v), we conclude that the weakly connected
components Γ′

i,j of k′ ·Γi indeed also have circles with unbalanced ramification indices for
all j = 1, . . . , ri.

On the other hand, any other weakly connected component Γ′ of Γram
F ′ = k′ ·Γram

F must
be a weakly connected component of k′ · Γi for some i = ρ + 1, . . . , s. But here Lemma
120(v) and the assertion that Γi only has circles with unbalanced ramification indices also
supplies that Γ′ also only has circles with balanced ramification indices.

Finally, for all i = ρ+1, . . . , s, the assertion that Trun≥l(Γi) contains no ramified edges
implies that the same holds for k′ · Trun≥l(Γi) = Trun≥l(k′ · Γi) and, thus, also for the
level l truncations of the weakly connected components of k′ · Γi.

Hence, we established the ’main’-part in (i).

For the ’moreover’- and ’in particular’-parts in (i): First, we notice that Lemma 120(i)
provides that k′ · Γi and, thus, Γ′

i,j is finite.
Second, we notice that the assertion that k′ contains all residue fields of the edges in

Γi implies that k′ ·Γi only contains rational vertices and edges. Consequently, any weakly
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connected component Γ′
i,j of k′ · Γi is also a subgraph of Γrat

F ′ by the definition of the
rational subgraph in Definition 88(i).

Third, Lemma 109 and Lemma 105(i) supply that

πΓF′/ΓF restricts to an epimorphism k′ · Γi → Γi such that
the ramification indices are invariant under the action of πΓF′/ΓF . (566)

Hence, the assertion that all ramification indices of Γi are powers of ei implies that the
same holds for all weakly connected components of Γi,j of k′ · Γi.

Fourth, from (566) and from the definition of separating subgraphs in Definition 229,
it also immediately follows that any path P which goes from Q′

1 to Q′
2 for some critical

pair (Q′
1, Q

′
2) of edges in k′ · Γi also provides a path πΓF′/ΓF (P) from πΓF′/ΓF (Q′

1) to
πΓF′/ΓF (Q′

2) for some critical pair (πΓF′/ΓF (Q′
1), πΓF′/ΓF (Q′

2)) of edges in Γi. Therefore,
k′ · Γi and all its weakly connected components Γi,j must also be separating. Hence, we
established the ’moreover’-part in (i).

Finally, the ’in particular’-part follows from combining the ’moreover’-part and the ’in
particular-part in Lemma 240.

For (ii): Let F = k · F = (F ν)ν be the geometric tower of F , let F≥l = Trun≥l(F) =
(F l+ν)ν be its level l truncation and let Γi,j := k·Γ′

i,j for all i = 1, . . . , ρ and all j = 1, . . . , ri.
First, by the ’moreover’-part in Lemma 248(i), we have that Γ′

i,j is a subgraph of Γrat
F ′ .

Then Lemma 109 and Lemma 122 together imply that

πΓF/ΓF′ restricts to an isomorphism Γi,j → Γ′
i,j . (567)

Consequently, because of this and because Ñ -value only depends on the ramification in-
dices in the paths by Definition 50, we even obtain the equality

Ñ(Fn, V (Γi,j)) = Ñ(F ′
n, V (Γ′

i,j)) (568)

for all n ∈ N0.
Second, because the ’main’-part of Lemma 248(i) provides that Γ′

i,j contains cir-
cles with unbalanced ramification indices and because of Lemma 136, we deduce that
Trun≥l(Γ′

i,j) still contains ramified edges.
Moreover, the ’main’-part of Lemma 248(i) also provides that the level l truncations

of the other weakly connected components of Γram
F ′ have no ramified edges.

Hence, combining these two conclusions, Lemma 138(v) and Lemma 144 yields that

Trun≥l(Γi,j) are the weakly connected components of Γram
F≥l

(569)

for all i = 1, . . . , ρ and all j = 1, . . . , ri.
Third and finally, the desired identity in (ii) now follows from the equalities

g(Fn) = 1
2
(
2 +

(
g(Fl)− 2 + #V (Γram

F≥l
)
)
dn−l −N(Fn, V (Γram

F≥l
))
)

= 1
2
(
2 +

(
g(Fl)− 2 + #V (Γram

F≥l
)
)
dn−l − Ñ(Fn, V (Γram

F≥l
))
)

= 1
2

2 +

g(Fl)− 2 +
ρ∑
i=1

ri∑
j=1

#V (Trun≥l(Γi,j))

 dn−l

−
ρ∑
i=1

ri∑
j=1

Ñ(Fn, V (Trun≥l(Γi,j)))
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= 1
2

2 +

g(Fl)− 2 +
ρ∑
i=1

ri∑
j=1

Ñ(F l, V (Trun≥l(Γi,j)))

 dn−l

−
ρ∑
i=1

ri∑
j=1

Ñ(Fn, V (Trun≥l(Γi,j)))


= 1

2

2 +

g(Fl)− 2 +
ρ∑
i=1

ri∑
j=1

Ñ(F l, V (Γi,j))

 dn−l −
ρ∑
i=1

ri∑
j=1

Ñ(Fn, V (Γi,j))


= 1

2

2 +

g(Fl)− 2 +
ρ∑
i=1

ri∑
j=1

Ñ(F ′
l , V (Γ′

i,j))

 dn−l −
ρ∑
i=1

ri∑
j=1

Ñ(F ′
n, V (Γ′

i,j))


= 1

2

2 +

g(Fl)− 2 +
ρ∑
i=1

ri∑
j=1

N′′
ei

(Ali,j)

 dn−l −
ρ∑
i=1

ri∑
j=1

N′′
ei

(Ani,j)


for all n ≥ l where the equalities hold by the following reasonings:

The first equality holds because the ramification subgraph Γram
F≥l

of F≥l := Trun≥l(F)
is a subgraph of Trun≥l(Γram

F ) by Lemma 144, because combining the assertion that Γram
F

is finite and Lemma 138(i) supplies that Trun≥l(Γram
F ) is also finite and because we can

therefore apply Theorem 194 to F≥l = Trun≥l(F) = (Fl+ν)ν .
The second equality holds because the tameness of F also implies that F≥l is tame

and because we can therefore apply the identity in the ’in particular’-part in Corollary 51.
The third equality holds by (569) and by the definition of Ñ in Definition 50.

The fourth equality holds because the assertion V (Trun≥l(Γi,j)) ⊂ PF l
and the defini-

tion of Ñ imply the equality Ñ(F l, V (Trun≥l(Γi,j))) = #V (Trun≥l(Γi,j)).
The fifth equality follows again from the definition of Ñ and from the identities

V (Trun≥l(Γi,j)) = V (π−1
ΓF≥l

/ΓF
(Γi,j)) = PF l

(V (Γi,j))

where the first identity holds because Γi,j is a weakly connected component of Γram
F by

(569), because Γram
F is also a weakly connected component of ΓF , because this property

of being a weakly connected component is transitive and because of Lemma 130(ii) and
the second identity holds by the definitions of πΓF≥l

/ΓF
in Definition/Lemma 126 and of

preimage graphs in Definition 69(ii).
The second to last equality holds because the isomorphism in (567) respects ram-

ification indices by Lemma 105(i) and because the Ñ(·, V0)-value only depends on the
ramification indices in the paths which start in V0.

The last equality holds by applying Lemma 234(ii), the ’in particular’-part in Lemma
237, by the definitions of the matrices Ai,j as the w′

1,P-adjacency matrices of the Γ′
i,j in

the ’in particular’-part in Lemma 248(i) and by the definition of N′′
ei

in Definition 241.

A solution for the third challenge. All tame recursive towers F in the literature
known to the author are of a very simple form, which includes all tame recursive towers
in [MW05], [Sti08], [BR20]. They all satisfy the assumptions in Lemma 249. As a con-
sequence of this simple form, Lemma 249 provides a quite convenient upper bound for
n0 = c(A) +∑

λ∈Λ(A)(b(A, λ) + 1).

Lemma 249. Let everything be as in Definition 242 and suppose F = K(x, x1, . . . , xr) =
E = K(x). Then we immediately obtain x1, . . . , xr0 ∈ R0 = K[x] and xr0+1, . . . , xr ∈
R∞ = K[x−1]. Moreover, suppose degx(xi) ≤ 1 for all i = 1, . . . , r0 and degx−1(xi) ≤ 1
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for all i = r0 + 1, . . . , r and let b := max{degx(ai,j), degx−1(ai,j) : i, j ∈ {1, . . . ,m}}. Then
we have the estimates∑

λ∈Λ(A)
(b(A, λ) + 1) ≤ m+ (b+ 2)m2 and c(A) ≤ (b+ 3)m.

Proof. On the one hand, since we have degx−1(xi) ≤ 1 for all i = r0 +1, . . . , r by assertion,
the x−1-degrees of the coefficients of χ∞(t) = ∏r

ν=r0+1(t−xν)sν are at most ∑r
ν=r0+1 sν ≤

m∞. Consequently, we derive ω′
0 ≤ m∞ from the definition of ω′

0 as the minimal natural
number such that xω′

0χ∞(t) ∈ R0[t] = K[x][t] in (501). Moreover, combining this, the fact
that χ∞(t) is a polynomial in R∞[t] = K[x−1][t] by its definition in Definition 242 and
the assertion that degx(xi) ≤ 1 for all i = 1, . . . , r0 yields the estimate

degx(xω′
0χ∞(xi)) ≤ 2m∞ (570)

for all i = 1, . . . , r0. On the other hand, we also estimate

degx(
r0∏

ν=1,ν ̸=i
(xi − xν)sν ) ≤

r0∑
ν=1

sν ≤ m0 (571)

where the first estimate holds by xµ ∈ R0 = K[x] and the assumption degx(xµ) ≤ 1 for
all µ = 1, . . . , r0 and the second estimate holds since x1, . . . , xr0 are eigenvalues of A0 and
since sν is the size of the largest Jordan block of A for the eigenvalue xν and, thus, also
of A0.

Putting both estimates together supplies

degx(xω′
0χi(xi)) = degx(

r0∏
ν=1,ν ̸=i

(xi − xν)sν ) + degx(xω′
0χ∞(xi))

≤ m0 + 2m∞ ≤ 2m (572)

for all i = 1, . . . , r0 where the equality and estimates hold by the following reasonings:
The equality holds because of the definition of χi(t) = ∏r0

ν=1,ν ̸=i(xi− xν)sνχ∞(t) in (505),
because ∏r0

ν=1,ν ̸=i(xi − xν)sν and xω
′
0χ∞(xi) are elements in K[x] and because we can

therefore apply the well known rule deg(f · g) = deg(f) + deg(g) for all f, g ∈ K[x]. The
first estimate holds by the estimates in (570) and (571). The last estimate holds by the
equality m0 +m∞ = m in Definition 242.

Analogously, we estimate

degx(x−ω′
∞χi(xi)) = degx(

r∏
ν=r0+1,ν ̸=i

(xi − xν)sν ) + degx(x−ω′
∞χ0(xi))

≤ m∞ + 2m0 ≤ 2m (573)

Next, we already obtain the desired estimate ∑λ∈Λ(A)(b(A, λ) + 1) ≤ m + (b + 2)m2

by the equalities and estimates∑
λ∈Λ(A)

(b(A, λ) + 1) ≤
∑
λ∈Λ0

(b0(λ) + 1) =
∑
λ∈Λ0

max{si + b0,i(λ) : i = 1, . . . , r with λ ∈ Λ0,i}

≤
r∑
i=1

si +
∑

λ∈Λ0,i

b0,i(λ) ≤ m+
r∑
i=1

∑
P∈M0,i

b0,i(P )

= m+
r0∑
i=1

∑
P∈M0,i

(vP ((x− 1)xωiχi(xi)si)− 1)
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+
r∑

i=1+r0

∑
P∈M0,i

(vP ((y − 1)yωiχi(xi)si)− 1)

≤ m+
r0∑
i=1

∑
P∈M0,i

vP (xωiχi(xi)si) +
r∑

i=1+r0

∑
P∈M0,i

vP (x−ωiχi(xi)si)

= m+
r0∑
i=1

∑
P∈M0,i

vP (xω′′
0 ) + vP (xsiω

′
0χi(xi)si)

+
r∑

i=1+r0

∑
P∈M0,i

vP (x−ω′′
∞) + vP (x−siω

′
∞χi(xi)si)

≤ m+
r0∑
i=1

degx(xω′′
0 ) + degx(xsiω

′
0χi(xi)si)

+
r∑

i=1+r0

degx−1(xω′′
∞) + degx−1(x−siω

′
∞χi(xi)si)

≤ m+ bm2 +
r0∑
i=1

degx(xsiω
′
0χi(xi)si) +

r∑
i=1+r0

degx−1(x−siω
′
∞χi(xi)si)

= m+ bm2 +
r0∑
i=1

si degx(xω′
0χi(xi)) +

r∑
i=1+r0

si degx−1(x−ω′
∞χi(xi))

≤ m+ bm2 +
r0∑
i=1

si · 2m+
r∑

i=1+r0

si · 2m

≤ m+ (b+ 2)m2

where the equalities and estimates hold by the following reasonings:
The first estimate holds by the definition of b(A, λ) in (508) as the minimum of b0(λ)

and b∞(λ).
The first equality holds because, in (508), b0(λ) is defined as the maximum of all

si − 1 + b0,i(λ) with i = 1, . . . , r and λ ∈ Λ0,i and because the ones are canceling each
other out.

The second estimate holds because, in (508), Λ0 is defined as the union of all Λ0,i for
all i = 1, . . . , r and because, therefore, the double sum on the right side of the estimate
contains all summands of the left side of the estimate.

The third estimate holds because we have ∑i=1 si = s ≤ m in Definition 242 and
because, in (506), b0,i(λ) is defined as the maximum of all b0,i(P ) with P ∈ M0,i and
xi(P ) = λ.

The second equality holds because of the definition of b0,i(P ) in (506). The fourth
estimate holds by the equalities vP ((x− 1)xωiχi(xi)si) = vP (x− 1) + vP (xωiχi(xi)si) and
vP ((y − 1)yωiχi(xi)si) = vP (y − 1) + vP (yωiχi(xi)si), by the estimates vP (x− 1) ≤ 1 and
vP (y − 1) ≤ 1 and by the equality y = ex−1.

The third equality holds because of the definitions of ωi = siω
′
0 +ω′′

0 for all i = 1, . . . , r0
and of ωi = siω

′
∞ + ω′′

∞ for all i = r0 + 1, . . . , r in (504) and because of the well known
rule vP (f · g) = vP (f) + vP (g) for all f, g ∈ F\{0} = K(x)\{0} (the elements are either
obviously non-zero or because of the definition of χi(t) = ∏

ν=1,ν ̸=i(t− xν)sν in (505)).
The fifth estimate holds because the corresponding elements are contained in K[x] and

K[x−1], respectively, by the definitions of ω′
0 and ω′

∞ in (501) and of χi(t) in (505).
For the sixth estimate, we first notice the equality and estimates

degx(xω′′
0 ) = ω′′

0 ≤ bs ≤ bm (574)
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where the equality is clear, the first estimate holds because the definition of b in the
assumptions implies that the x-degree of any entry of An is bounded by bn and because
of the definition of ω′′

0 in (502) and the last estimate holds because of the estimate s ≤ m.
Consequently, we derive the estimates

r0∑
i=1

degx(xω′′
0 ) ≤

r0∑
i=1

bm ≤ bmr0.

Analogously, we also derive the estimates
r∑

i=r0+1
degx−1(xω′′

∞) ≤
r∑

i=r0+1
bm ≤ bm(r − r0).

Combining these two estimates and

bmr0 + bm(r − r0) = bmr ≤ bm2

then yield the sixth estimate.
The fourth equality holds by the well known rule deg(fs) = s deg(f) for all f ∈ K[t]\.

The second to last estimate holds by the estimates in (572) and (573). The last estimate
holds because ∑r

i=1 si = s ≤ m.
Finally, going through the definition of c(A) in (509) and only applying a subset of

the estimates from above also yields the second desired estimate c(A) ≤ m+ (b+ 2)m =
(b+ 3)m.

8.3.2 The Implementation

Summary of the results of this subsection. Finally, we will come to the already
announced first naive implementation of the approach in (A4) which works on all tame
recursive towers F in the literature which are known to the author, including all tame
recursive towers in [MW05], [Sti08], [BR20]. Consequently, in Examples 250, we will also
list genus formulas for some representative tame recursive towers from the literature.

The implementation. More concretely, we will demonstrate the implementation on the
tame recursive tower F = (Fν)ν in [MW05, p. 212, f11] which is defined by the polynomial
f = f11 = Y 2 + (X2 + 1)Y +X2 +X + 1 over F3.

The degree two subgraph of the tower graph ΓF of F is depicted in Figure B.8. Here,
the first two weakly connected components Γ and Γ′ form the ramification subgraph Γram

F
of ΓF .

First, we need to check from which level l on the approach in (A4) is applicable: On the
one hand, Γ is separating, only contains rational vertices and edges and all ramification
indices in Γ are powers of two. On the other hand, Γ′ has only circles with balanced
ramification indices and if we consider the paths of length two in Γ′ and apply Abhyankar’s
Lemma, we also see that Trun≥1(Γ′) contains no ramified edges. Consequently, we can
apply Lemma 248 to F for l = 1 and k′ = k = F3 and thereby obtain the equality

g(Fn) = 1
2 ·
(
2 +

(
#V (Γram

F≥l
)− 2 + 2g(Fl)

)
dn−l −N(Fn, V (Γram

F≥l
))
)

= 1
2 ·
(
2 +

(
r ·N′′

e(Al)− 2 + 2g
)
dn−l − r ·N′′

e(An)
)

(575)

for all n ≥ max(1, c(A)) where d := 2, e := 2, g := g(Fl) = 1, r := 1 and

A :=
(

2x−1 1
0 x

)
∈ Q[x, x−1]m×m. (576)
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for m := 2. Furthermore, we notice that x1 = x is the only eigenvalue of A0 and x2 = 2x−1

is the only eigenvalue of A∞ and, thus, Lemma 249 is applicable for b := 1.
We have all the necessary input data and can start the computation of the genus

formula in Magma [BCP97] via the following first naive implementation of the approach
in (A4): First, we begin with the constant field Q:

> QQ := Rationals( );
> K0 := QQ;
> K0t< t > := PolynomialRing( K0 );
> K0x< x > := RationalFunctionField( K0 );
> K0xu< u > := PolynomialRing( K0x );

More generally, K0 must be chosen such that the eigenvalues of A are contained in K0(x),
i.e. such that the characteristic polynomial χA of A decomposes into linear factors over
K0. There are some examples where higher roots of unity must be adjoint to Q. Of course,
this can also be automated if necessary.

Second, we initialize the input data and the matrix A and compute its eigenvalues.

> // Input Data [* d, e, m, r, b, g, l, Aseq *]
> FormulaData := [* 2, 2, 2, 1, 1, 1, 1, [ 2/x, 1, 0, x ] *];
> d := FormulaData[ 1 ];
> e := FormulaData[ 2 ];
> m := FormulaData[ 3 ];
> r := FormulaData[ 4 ];
> b := FormulaData[ 5 ];
> g := FormulaData[ 6 ];
> l := FormulaData[ 7 ];
> Aseq := FormulaData[ 8 ];
>
> // Initialize the matrix A and compute its eigenvalues
> A := Matrix( K0x, m, m, Aseq );
> A;
[2/x 1]
[ 0 x]
> f := CharacteristicPolynomial( A );
> f;
u^2 + (-x^2 - 2)/x*u + 2
> ff := Factorization( f );
> ff;
[
<u - 2/x, 1>,
<u - x, 1>
]
> ff_zeroes := < - Evaluate( f[ 1 ], 0 ) : f in ff >; // Eigenvalues of A
> ff_zeroes;
<2/x, x>

Third, we extend the constant field K0 further to some K which also contains all the
zeroes of the differences of the eigenvalues xi.

> // Extend the constant field to some suitable field K
> df := Numerator( &*[ xi - xj : xi in ff_zeroes, xj in ff_zeroes | \
xi ne xj ] );
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> df;
-t^4 + 4*t^2 - 4
> K< w > := SplittingField( df );
> MinimalPolynomial( w );
t^2 - 2
> Kt< t > := PolynomialRing( K );
> Kx< x > := RationalFunctionField( K );

Fourth, we compute the set Λ of evaluations xi(Q) such that Q is a zero of xi − xj for
some j ̸= i. Out of convenience, instead of Λ′ in (A4), we compute this superset Λ ⊇ Λ′ .
However, in this example, we already have Λ = Λ′.

> // Compute the set Lambda of evalutions x_i( Q )
> // where Q is a zero of x_i - x_j for some j ne i
> fi_seq := [ [* ff_zeroes[ i ], [ ff_zeroes[ i ] - ff_zeroes[ j ] : j in /
[ 1 .. #ff ] | i ne j ] *] : i in [ 1 .. #ff ] ];
> fi_seq;
[ [*
2/x,
[
(-x^2 + 2)/x
]
*], [*
x,
[
(x^2 - 2)/x
]
*] ]
> Lambda := { };
> for xifi in fi_seq do
for> xi := xifi[ 1 ];
for> fi := xifi[ 2 ];
for> zz := &cat[ Roots( Kt ! Numerator( fij ) ) : fij in fi ];
for> Lambda join:= {Evaluate( xi, z[ 1 ] ) : z in zz };
for> end for;
> Lambda;
{
-w,
w
}

Fifth, we do not bother to compute the upper bounds b(A, λ) of the degrees of the polyno-
mials fλ(n) in (565). In all examples for which the author computed a genus formula, the
polynomials fλ(n) were constant. Moreover, we do also not bother to compute c(A). We
even try to compute a genus formula for all n ≥ 1. Of course, in case that the verification
step at the end fails, these two steps must be refined.

Next, with these additional hypotheses, we solve the corresponding linear equation
system in (A4) and obtain candidates for the desired formulas for N′′

e(An) and, by the
equality in (575), also for g(Fn).

> // Compute the coefficients in the polynomial under the
> // additional assumption that the polynomials have degree zero
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> s := #Lambda;
> an_seq := [ My_Get_NValue( &+Eltseq( A^n ), e ) : n in [ 0 .. s - 1 ] ];
> a := Matrix( K, s, 1, an_seq );
> a;
[2]
[3]
> Lambdass := [ [ x, 1 ] : x in Lambda ];
> V := My_Get_ConfluntVandermondeMatrix( Lambdass, s );
> V;
[ 1 1]
[-w w]
> c := V^-1 * a;
> c;
[1/4*(-3*w + 4)]
[ 1/4*(3*w + 4)]
>
> // Put everything together for the desired N- and g-formulas
> Lambda := [ d ] cat [ Lambdass[ i ][ 1 ] : i in [ 1 .. #Lambdass ] ];
> R := PolynomialRing( K, #Lambda );
> AssignNames( ~R, [ "(" cat Sprint( Lambda[ i ] ) cat ")^n\n" : i i\
n [ 1 .. #Lambda ] ] );
> NFormula := &+[ c[ i - 1, 1 ] * R.i : i in [ 2 .. #Lambda ] ];
> NFormula;
1/4*(-3*w + 4)*(-w)^n
+ 1/4*(3*w + 4)*(w)^n

> lambdal := [ Lambda[ i ]^l : i in [ 1 .. #Lambda ] ];
> lambdal;
[
2,
-w,
w
]
> gFormula := ( 2 + ( r*Evaluate( NFormula, lambdal ) - 2 + 2*g ) * \
R.1 / d^l - r * NFormula ) / 2;
> gFormula;
3/4*(2)^n
+ 1/8*(3*w - 4)*(-w)^n
+ 1/8*(-3*w - 4)*(w)^n
+ 1

Finally, by (A4) and Lemma 249, we only have to check our computed candidate for the
formula for N′′

e(An) up to the level (b+4)m+(b+2)m2 ≥ n0 = c(A)+∑λ∈Λ(A)(b(A, λ)+1) =∑
λ∈Λ(A)(b(A, λ) + 1).

> // Check the N-formula up to n_end := ( b + 4 ) * m + ( b + 2 ) * m^2;
> n_end := ( b + 4 ) * m + ( b + 2 ) * m^2;
> n_end;
22
> Nval_seq := < Evaluate( NFormula, [ Lambda[ i ]^n : i in [ 1 .. #La \
mbda ] ] ) : n in [ 0 .. n_end ] >;
> a := < My_Get_NValue( &+Eltseq( A^n ), e ) : n in [ 0 .. n_end ] >;
> Nval_seq eq a;
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true

Hence, we established the genus formula

g(Fn) = 3
4 · 2

n + 3
√

2− 4
8 · (−

√
2)n + −3

√
2− 4
8 ·

√
2n + 1

for all n ≥ 1 and the first elements of the sequence are equal to the following numbers.

> // Compute first n_end many genera in the genus sequence
> n_end := 20;
> gn_seq := < Evaluate( gFormula, [ Lambda[ i ]^n : i in [ 1 .. #La\
mbda ] ] ) : n in [ l .. n_end ] >;
> gn_seq;
<1, 2, 4, 9, 19, 41, 85, 177, 361, 737, 1489, 3009, 6049, 12161, 24385,
48897, 97921, 196097, 392449, 785409>

Finally, separately computing the genera of the function fields in Magma confirms the first
three elements in the above genus formula. However, it already takes over ten minutes to
compute the next element g(F4) of the genus sequence.

> // Check the first few genera in the computed genus formula
> ZZ := Integers( );
> ZZxy< x, y > := PolynomialRing( ZZ, 2 );
> fq := < 3, x^2*y + x^2 + x + y^2 + y + 1 >;
> q := fq[ 1 ];
> k := GF( q );
> kxy< x, y > := PolynomialRing( k, 2 );
> f := kxy ! fq[ 2 ];
> F0< x0 > := RationalFunctionField( k );
> F0t< t > := PolynomialRing( F0 );
> FF := [* F0 *];
> n_end := 3;
> Fn_prev< xn_prev > := F0;
> for n in [ 1 .. n_end ] do
for> Fn_prevt< t > := PolynomialRing( Fn_prev );
for> Fn< xn_prev > := FunctionField( Evaluate( f, [ xn_prev, t ] )\
);

for> FF cat:= [* Fn *];
for> Fn_prev := Fn;
for> end for;
> < Genus( Fn ) : Fn in FF >;
<0, 1, 2, 4>

A list of genus formulas. In the following Examples 250, we will finish this section
with a list of genus formulas for some tame recursive towers. All genus formulas were
computed with the above implementation and only the input data had to be adjusted.

Here, the tower in (i) is the tame recursive tower in Example 235 and the tower in (ii)
is the tame recursive tower from the above illustration of the implementation.

Finally, we want to remark that we could have also included many more examples,
e.g from [MW05]. But the final genus formulas of these examples are only minor alterna-
tions of the formulas in Examples 250 and thus they do not provide more insights.
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Examples 250. Any member of the following list consists of the following data: First,
we provide a polynomial f ∈ Fq[X,Y ] which already exist in the literature and is known
to define a tame recursive tower F = (Fν)ν .

Second, except for the tower in (i) on which we already elaborated extensively in Ex-
ample 235, we also provide a reference to a figure with the minimal subgraph Γi,c of the
tower graph of Fqi · F which contains all edges Q with deg(Q) ≤ c. All these subgraphs
Γi,j contain the corresponding ramification subgraphs.

Third, we provide the genus formula g(Fn) for all n ≥ l which was computed with the
above implementation.

(i) For q ∈ P\{2, 3}, f = Y 2(3Y − 1)− (X2 +X) in [HP16, p. 12, Proposition 12] (see
also Example 235) and for all n ≥ 1, we obtain

g(Fn−1) = 2n − 4 + 3
√

2
4 ·

√
2n − 4− 3

√
2

4 · (−
√

2)n + 1.

(ii) For q = 3, f = Y 2 + (X2 + 1)Y +X2 +X + 1 in [MW05, p. 212, f11] with Γ1,2 in
Figure B.8 and for all n ≥ 1 , we obtain

g(Fn) = 3
4 · 2

n + 3
√

2− 4
8 · (−

√
2)n + −3

√
2− 4
8 ·

√
2n + 1.

(iii) For q = 5, f = (X6 +X+ 2)(Y 5−Y )− (X5−X)(Y 6 +Y 5 + 2Y + 3) in [BR20, p. 4]
with Γ1,2 in Figure B.28 and for all n ≥ 0, we obtain

g(Fn) = 9 · 6n + 15 · 2n + (−25
2 + 5

√
6) · (−

√
6)n + (−25

2 − 5
√

6) ·
√

6n + 1.

(iv) For q = 3, f = Y 2 + X2Y + 1 in [MW05, p. 212, f4] with Γ1,2 in Figure B.4 and
for all n ≥ 0 , we obtain

g(Fn) = 2 · 2n + (
√

2− 3
2) · (−

√
2)n + (−

√
2− 3

2) ·
√

2n + 1.

(v) For q = 3, f = 2X2 +XY + Y 2 + 1 in [MW05, p. 212, f2] with Γ2,1 in Figure B.1
and for all n ≥ 0, we obtain

g(Fn) = 3
2 · 2

n + (
√

2− 3
2) · (−

√
2)n + (−

√
2− 3

2) ·
√

2n + 1 + 1
2 · 0

n

where 00 = 1 and 0n = 0 for all n ≥ 1.

(vi) For q = 7, f = Y 6 + (X + 1)6 − 1 in [Sti08, p. 262, Proposition 7.3.2] with Γ1,2 in
Figure B.16 and for all n ≥ 0 , we obtain

g(Fn) = 5
2 · 6

n + 2
√

6− 7
4 · (−

√
6)n + −2

√
6− 7
4 ·

√
6n + 1.
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9 Prospects

In this final chapter, we will give suggestions for possible future directions which are closely
related to this thesis.

Finding a counterexample to Conjecture 1(iii). In Conjecture 1(iii), it was sus-
pected that any recursive tower F = (Fν)ν over a finite field with positive splitting rate
ν(F) must have a rational place P ∈ PFm on some level m ∈ N0 which splits on all further
levels n ≥ m, i.e. in Fn/Fm. This conjecture was first introduced in [BGS04, p. 7, Con-
jecture 1] via its stronger version in Conjecture 1(i) and then it was confirmed to be still
open in [Sti10, p. 5, Problem 1] and [Bee22, p. 10, 24]. It is the weakest of the Conjectures
1(i)-(iv) and also the only one which is not disproven yet.

In Corollary 184, we showed that Conjecture 1(iii) is true for all recursive towers F such
that the ramification subgraph of some truncation of F only has finite unbalanced weakly
connected components. Note that, in correspondence to the formulation of the main
result in the summary in Section ??, the latter property is equivalent to the property that
the tower graph of F only has finite balanced weakly connected components which stop
ramifying from some level on. This condition is very mild and there is only one recursive
tower known to the author which does not fulfill this condition, namely the CNT-tower in
Examples 8(v).

Nonetheless, at the end of Subsection 6.3, we laid out a strategy to find a counterex-
ample to Conjecture 1(iii) (see Lemma 187 and Figure 6.1). The single missing step in the
strategy is to find a recursive tower to the directed graph which is depicted in Figure 6.1.

A suggestion for future work is therefore to find a recursive tower F such that its
tower graph ΓF has a subgraph as in Figure 6.1. Then F would be a counterexample to
Conjecture 1(iii). We will discuss in the next paragraph how to find recursive towers with
prescribed subgraphs.

Finding recursive towers using directed graphs. With any recursive tower, we can
associate the tower graph (or the Beelen-graph or the HP-graph). For all tame recursive
towers F with finite ramification subgraph Γram

F , Corollary 195 and Corollary 196 provide
up to finite constant field extensions that F is good if and only if ΓF has a finite balanced
weakly connected component Γ. For wild towers with finite ramification subgraphs, the
’only if’-part of this equivalence is still true. Moreover, the necessary finite constant field
extension can be estimated. For instance, if Γ only contains rational vertices and edges
and is d-regular, i.e. Γ is equal to the splitting subgraph Γsplit

F , then there is no constant
field extension necessary and the precise limit λ(F) of F can even be read from V (Γ),
V (Γram

F ) and α via the formulas in Corollary 195 and Corollary 200.
Because of that, it is natural to try to reverse the direction by finding recursive towers

to prescribed subgraphs of the tower graph. This was also proposed in [HP16] for HP-
graphs. First, we can specify a directed graph Γ with weights w(Q) ∈ {(e, ê) : 1 ≤ e, ê ≤ d}
on its edges Q which at least does not violate the most obvious necessary conditions for
being a subgraph of a tower graph. Then we can try to find a recursive tower F such that
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Γ is a subgraph of its tower graph ΓF and the weights w(Q) of the edges Q are equal to
the ramification indices (e(Q|Q ∩ F0), e(Q|Q ∩ σ(F0)) with the tower map σ of F .

There are several reasons for why this is a promising approach to find new good
recursive towers or to characterize all good recursive towers having certain subgraphs or
to solve further problems related to recursive towers:

First, to this point, the BR-towers FBR,q over Fq are the only good recursive towers
over Fq with prime q ̸= 2, 3 and it took 25 years to find them. Yet, their splitting subgraph
and ramification subgraph are fairly simple and small. For q = 5, these subgraphs are
depicted in Figure B.28 and only consist of four vertices. A systematic search for all good
recursive towers F = (Fν)ν with rational F1 for all small potential subgraphs would have
been sufficient to at least find FBR,5.

Second, as pointed out in the paragraph before, finding a tame recursive tower to the
potential subgraph in Figure 6.1 would provide a counterexample to Conjecture 1(iii).

Third, we can classify all recursive towers with a prescribed subgraph. Let us demon-
strate such an attempt for a subgraph Γ of the BR-towers and try to classify all recursive
towers F = (Fν)ν with rational F1.

Note that the rationality of F1 is not as restrictive as it might seem at first. Many
recursive towers in the literature, including the BR-towers, can be reduced to this situation
by the Reduction Lemma 30. Because F1 = Fq(z) is rational, we have Fq(g(z)) and
Fq(h(z)) for two rational function g(z), h(z) ∈ Fq(z) of degree d. Moreover, we can try
to first find all recursive towers over the algebraic closure Fq and then check which of the
discovered candidates already define recursive towers over Fq.

Let us fix the subgraph Γ as the disjoint union of one d-regular subgraph with one
edge (as the splitting subgraph in Figure B.28), two loops which are totally ramified in
F1/F0 and not ramified in F1/σ(F0) and two further edges which are totally ramified in
F1/σ(F0) and not ramified in F1/F0 (as it is the case in the F5-constant field extension of
ramification subgraph in Figure B.28). Then we just mention without proof that, up to
coordinate transformations, the following can be concluded for q = pn with p prime and
gcd(p, d) = 1: The tower graph ΓF has the subgraph Γ if and only if

g(z) = zd and h(z) = − 1
ad

( z−a
z−a−ps )d − a2d

( z−a
z−a−ps )d − 1

for some s ∈ N0 such that d = 1 + ps and some a in Fp2s if s ̸= 0 and in Fp if s = 0 which
is not a root of f = t(td − 1)(td + 1).

Moreover, for s ̸= 0, i.e. d ̸= 2, it can be shown that this already defines a good
recursive tower over Fp2s . Finally, considering all possible coordinate transformations
provides that the BR-towers FBR,p are the only good recursive towers over Fp with this
subgraph Γ and with gcd(d, p) = 1, d > 2 and F1 rational.

Fourth, it would be interesting to see if there are tame recursive towers with more
complicated tower graphs. As far as the author knows, all tame recursive towers in the
literature have simple separating ramification subgraphs.

A suggestion for future work is therefore to find and/or classify recursive towers F
with certain subgraphs Γ of ΓF . For this purpose, it would also be useful to have an im-
plementation in some computer algebra system like Magma [BCP97]. For a given directed
graph with weights, this implementation could automatically solve for the coefficients in
the defining polynomial of the polynomial-recursive tower, for d and for the possible prime
powers q.

Furthermore, instead of only finite d-regular weakly connected components, we should
also take the more general finite balanced weakly connected subgraphs into consideration.
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Handling the remaining wild recursive towers in the Main Theorem 177. Let F
be a recursive tower over the finite field k of balanced degree d and let Γ be a finite weakly
connected component of Γ. In the Main Theorem 177, up to finite constant field extensions
and up to some very specific wild recursive towers, the limit limν→∞N(Fν , V (Γ))/dν
vanishes if and only if Γ contains circles with unbalanced ramification indices. More
concretely, the only recursive towers to which Main Theorem 177 is not applicable are
wild recursive towers F with a finite balanced weakly connected component in the tower
graph which contain wild paths. The single example of such a wild recursive tower known
to the author is the CNT-tower FCNT,s in Examples 8(v). Consequently, although the
ramification subgraph of the CNT-tower FCNT,s is a finite balanced weakly connected
component, we cannot simply conclude from Main Theorem 177(iii) that the splitting rate
of FCNT,s is positive for some s.

Let us investigate where the proof goes wrong if there is some wild path. For finite
balanced weakly connected components Γ which only contains tame paths, the proof can
be divided into three steps:

First, because of Abhyankar’s Lemma, roughly speaking, there is so much killing of
ramification indices going on in the pyramids of places over Γ that Corollary 170 provides
that the ramification indices e(Q|Q∩F0) are bounded by a single number for all places Q
in F which lie over Γ.

Second, because of this, Corollary 171 even implies that not only the ramification
indices are bounded by a single number but also the degrees of the places Q over Γ.

Third, as the degrees of the places over Γ are bounded by a single number, they are all
rational after a suitable finite constant field extension. But then the number of rational
places in F over Γ is the same as the number of rational places in the geometric tower k ·F
of F . Thus, we can even extend the constant field k of F to the algebraically closed field
k and count the places over the k-constant field extension of Γ. Therefore, without loss
of generality, let us assume that k is algebraically closed. Consequently, the fundamental
equality in (8) supplies the equality∑

Q∈PFn (V (Γ))
e(Q|Q ∩ F0) = #V (Γ) · dn.

Finally, since the ramification indices are bounded by a single number due to the first
step, the number N(Fν , V (Γ)) of summands has to satisfy the desired estimate

lim
ν→∞

N(Fν , V (Γ))/dν > 0.

Hence, the only issue for finite balanced weakly connected components Γ which con-
tain wild paths is that, in the first step, Abhyankar’s Lemma is not applicable to every
extension in the pyramids of places over Γ. Therefore, a priori, we do not know whether
the ramification indices e(Q|Q ∩ F0) are bounded by a single number for all places Q
in F which lie over Γ. But the second and third step also work in the wild case if the
ramification indices are bounded by a single number.

A suggestion for future work is therefore to find criteria which help deciding whether
the ramification indices over a finite balanced weakly connected component Γ with wild
paths are bounded by a single number and, thus, whether the limν→∞N(Fν , V (Γ))/dν is
positive.
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A Algebraic Geometry

In this chapter, we will prove the algebraic geometric statements which are used in Sub-
section 4.4.2.

Lemma 251. Let φ : D → C be a finite morphism of projective integral algebraic curves
over a field k.

Then φ maps the generic point of D to the generic point of C and closed points of D
to closed points of C.

Proof. One the one hand, by [Liu02, p.277, Lemma 3.10(iii)], we obtain that the generic
point of D maps to the generic point of C. On the other hand, finite morphisms are proper
and, therefore, closed. Thus, φ maps closed points to closed points.

Let us denote the function field of an integral curve C over some field k by K(C) and
the pullback of a morphism φ : D → C of integral curves over k by φ∗ : K(C) ↪→ K(D)
be the pullback of φ.

Lemma 252. Let φ : D → C be a finite morphism of projective integral curves over the
perfect field k, suppose that C is regular. Moreover, let φ∗ : K(C)→ K(D) be the pullback
of φ. Finally, let Q be a place in K(D) and let q be the unique closed point in D such
that Q dominates the maximal ideal mq of its local ring OD,q.

Then φ is etale at q if and only if D is regular at q and Q is unramified in the extension
K(D)/φ∗(K(C)).

Proof. First, we notice because of Lemma 251 that the image p := φ(q) is a closed point
on X. Let mp be the maximal ideal of the local ring OC,p of p.

On the one hand, because C is an integral curve over k and because p is a closed
point, we have the inclusions k ⊊ OC,p ⊊ K(C) and the local ring OC,p has K(C) as its
fraction field. On the other hand, we also obtain that the local ring OC,p is also Noetherian
and has Krull-dimension one. Moreover, because C is regular at p, the local ring OC,p
is also regular. But, regular Noetherian local rings with Krull-dimension one are discrete
valuation rings. Hence, combining these two conclusions provides that mp is a place in
K(C) and that φ∗(mp) is a place in φ∗(K(C)).

Moreover, by the choice of p = φ(q), the place φ∗(mp) is also contained in the maxi-
mal ideal mq of the local ring OD,q of q. In particular, this means that Q/φ∗(mp) is an
extension of places in K(D)/φ∗(K(C)).

For the ’if’-part: Suppose that φ is etale at q. On the one hand, Lemma 251 supplies
that q is a closed point in D. Moreover, as projective varieties are locally Noetherian,
[Liu02, p.140, Corollary 3.24] implies the first desired statement, namely that D is regular
at q.

Now, because q is a regular closed point on D and because of the same reasoning as
at the beginning, we conclude that mq is a place in K(D) and, therefore, must already be
equal to the place Q.
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On the other hand, let OQ be the valuation ring of Q. Then the etaleness of φ at q
also implies the second equality Q = mq = φ∗(mp)OD,q = φ∗(mp)OQ by [Liu02, p.139,
Definition 3.17]. Therefore, the extension Q/φ∗(mp) of places in K(D)/φ∗(K(C)) is un-
ramified and, hence, the ’if’-part follows.

For the ’only if’-part: Suppose that D is regular at q and that the extension Q/φ∗(mp)
is unramified in the extension K(D)/φ∗(K(C)). Then, because q is a regular closed point
on D, the same reasoning from the beginning can also be applied to q instead of p. By
that, we conclude that mq is a also place in K(D) and, therefore, must already be equal
to the place Q.

Now, on the one hand, the assertion that Q/φ∗(mp) is unramified supplies that φ is
unramified at q. On the other hand, [Liu02, p.137, Corollary 3.10] provides that φ is
flat at q since finite morphisms are non-constant by [Liu02, p.277, Lemma 3.10]. Then,
by definition of etaleness in [Liu02, p.139, Definition 3.17], these two properties already
include that φ is etale at q. Hence, the ’only if’-part also follows.

Lemma 253. Let ψ : W → Y and ϕ : Y → X be finite morphisms of schemes and let
w, y and x be points of W , Y and X, respectively, such that ϕ(y) = x, and ψ(w) = y.
Moreover, let

ρW : W ′ := W ×X OX,x, ρY : Y ′ := Y ×X OX,x → Y, ρX : X ′ := X ×X OX,x → X

be the canonical projection morphisms. Finally, let ηx ∈ X ′ with ρX(ηx) = x, let ηy ∈
Y ′ with ρY (ηy) = y and (ϕ ×X id)(ηy) = ηx and let ηw ∈ W ′ with ρW (ηw) = w and
(ψ ×X id)(ηw) = ηy.

Then the induced morphisms ρ∗
W : OW.w → OW ′,ηw , ρ∗

Y : OY,y → OY ′,ηy and ρ∗
X :

OX,x → OX′,ηx are isomorphisms of rings which make the second diagram in Figure A.1
commutative.

Figure A.1: First commutative diagram for local rings

Proof. The commutativity of the second diagram in Figure A.1 immediately follows from
the fact that it is induced by the morphisms of schemes in the first commutative diagram
in this figure. Thus, it is enough to show that ρ∗

Y is an isomorphism.
Now, for any scheme Z, any open subscheme U of Z and any point z ∈ U , the

inclusion morphisms U → X induces an isomorphism of the local rings of z in Z and in U .
Therefore, we can assume Y and X to be affine schemes Y = Spec(B) and X = Spec(A).
In particular, this means that x and y are prime ideals of A and B, respectively.
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Moreover, we have Y ′ = Spec(B) ×Spec(A) Spec(Ax) ∼= Spec(B ⊗A Ax) ∼= Spec(Bx).
Hence, Y ′ is also an affine scheme and these isomorphisms map ηY to the extension yBx of y
in the localization Bx of B at the prime ideal x. Moreover, ρ∗

Y corresponds to the canonical
morphism By → (Bx)yBx . But, it is well known that this is even an isomorphism.

Let ϕ : Y → X be a morphism of schemes and let x ∈ X. Then we denote the fiber
Y ×X κ(x) of ϕ by Yx where κ(x) denotes the reside field of x.

Lemma 254. Let X be a regular integral curve over a field k with generic point x, let
ψ : W → Y and ϕ : Y → X be finite morphisms of varieties over k and let f := ϕ ◦ ψ be
flat.

Then W is a curve over k, f−1(x) consists of all the generic points of W and Wx is
affine.

Moreover, there are isomorphisms∏
w∈f−1(x)

OW,w → OWx(Wx),
∏

y∈ϕ−1(x)
OY,y → OYx(Yx), OX,x → OXx(Xx)

such that the diagram in Figure A.2 is commutative where the vertical morphisms are
canonical.

Figure A.2: Second commutative diagram for local rings

Proof. For the ’main’-part: First, since compositions of finite morphisms are finite by
[GW10, p. 574], the composition f = ϕ ◦ ψ is finite, Therefore, [GW10, p. 326, Remark
12.15(2)] provides that all fibers of f only contain finitely many points. Combining this
and [Liu02, p. 82, Proposition 2.1.16] especially means that

the fiber scheme Wx′ only contains finitely many points for all x′ ∈ X
and therefore has dimension zero. (577)

Second, we notice that X is a Dedekind scheme because it is a regular curve over k
and because of the equivalence at the end of [Liu02, p. 128, Example 2.9]. Consequently,
combining this, the assumption that f is flat, (577) and the ’moreover’-part in [Liu02,
p. 137, Theorem 4.3.12] supplies that the local rings OW,w and OX,x′ have the same
dimension for all w ∈ f−1(x′) and all x′ ∈ X. In particular, this implies

dim(W ) ≤ dim(X) = 1. (578)
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Also, as the generic points of W can be characterized as the points w in W such that
OW,w is zero-dimensional, we derive the second desired statement, namely that f−1(x)
precisely consists of all the generic points in W .

Next, let W1, . . . ,Wr be the irreducible components of W , let wi be the generic point of
Wi in W and let fi be the restriction of f to a finite morphism Wi → X for all i = 1, . . . , r.

Since fi(wi) = f(wi) = x, [GW10, p. 126, Proposition 5.22(3)] then implies the esti-
mate dim(Wi) ≥ dim(X). In particular, by this and by (578), we also obtain

1 ≥ dim(W ) ≥ dim(Wi) ≥ dim(X) = 1.

Hence, these estimates must be equalities and we established that all irreducible compo-
nents Wi of W have dimension one. By the definition of curves over k in Definition 97,
we therefore conclude the first desired statement, namely that W is a curve over k.

For the ’moreover’-part: First, we notice that the canonical morphisms ψx : Wx → Yx
and ϕx : Yx → Xx induce morphisms of rings which make the diagram in Figure A.3
commutative for all ξ ∈ Wx, ψx(ξ) = η and ϕx(η) = ηx. Next, we take the canonical

Figure A.3: Third commutative diagram for local rings

product

OX,x → OYx,η →
∏

ξ∈ψ−1
x (η)

OWx,ξ (579)

for all η ∈ (ϕ × id)−1(ηx) = (ϕ × id)−1(Xx) = Yx where the first equality holds since
Xx only consists of the point ηx. If we then again take the canonical product of these
morphisms in (579) over all η ∈ Yx, we morphisms

OXx,ηx →
∏
η∈Yx

OYx,η →
∏
ξ∈Wx

OWx,ξ

which make the two right squares in the diagram in Figure A.4 commutative.
Second, we notice that the reasonings in the proof of the ’main’-part also apply to

ϕ : Y → X (just choose ψ = id) and idX : X → X (just choose ψ = id = ϕ). Thus,
combining (577) and [GW10, p. 125, Proposition 5.20(ii)] yields that the horizontal maps
in the left two squares in the diagram in Figure A.4 are even isomorphisms.

Finally, the canonical products of the isomorphisms in Lemma 253 provide the iso-
morphisms in the left half of the commutative diagram in Figure A.4 since the local rings
of generic points are already their residue fields. Hence, the composition of the isomor-
phisms on the rows in this diagram are the desired isomorphisms which make the diagram
in Figure A.2 commutative.
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Figure A.4: Fourth commutative diagram for local rings

We denote the function fields of integral curves C by K(C) and the pullback of finite
morphisms ψ : D → C of integral curves by ψ∗ : K(D)→ K(C) which makes K(C) to an
K(D)-algebra.

Lemma 255. Let X be an regular integral curve over a field k and let ϕX : Y → X and
ϕZ : Z → X be finite morphisms of integral curves over k. Moreover, let Y ×X Z be the
fiber product of k-schemes with the canonical projection morphisms ρY : Y ×X Z → Y and
ρZ : Y ×X Z → Z Then the following hold:

(i) Y ×X Z is a curve over k and ρY and ρZ are finite.

(ii) Y ×X Z is integral if and only if the tensor product K(Y )⊗K(X) K(Z) of k-algebras
is a field.

(iii) If Y ×X Z is an integral curve over k, then the function field K(Y ×X Z) is a tensor
product K(Y )⊗K(X) K(Z) of k-algebras with the structural morphisms ρ∗

Y and ρ∗
Z .

Proof. For (i): Let us shortly write W := Y ×XZ. Then we first notice that [GW10, p. 574]
already supplies the two last desired statements in (i), namely that ρY and ρZ are finite.
We even obtain that the composition

f := ϕY ◦ ρY = ϕZ ◦ ρZ : W → X

is a finite morphism. Moreover, combining the equivalence at the end of [Liu02, p. 128,
Example 2.9], [Liu02, p. 137, Corollary 3.10] and [Liu02, p. 136, Proposition 4.3.3(d)]
yields that f is also flat.

Next, we also notice that [Liu02, p. 88, Example 2.2.3] and [Liu02, p. 88, Proposition
2.2.4(b),(c)] provide that W is a variety over k. Hence, Lemma 254 also supplies that W
is a curve over k.

For (ii): Before, we come to the proof of the equivalence, we need to make some
observations: First, because Y , Z and X are integral, [Liu02, p. 65, Proposition 2.4.18]
supplies that any of these curves has exactly one generic point, say y, z and x, respectively,
and that the corresponding local rings OY,y, OZ,z and OX,x are the function fields K(Y ),
K(Z) and K(X), respectively. In particular, this means that the local rings OY,y, OZ,z
and OX,x are already the residue fields of x, y and z, respectively.

Second, we apply the ’moreover’-part of Lemma 254 separately to the morphisms
ρY : W → Y and ϕY : Y → X and to the morphisms ρZ : W → Z and ϕZ : Z → X and
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obtain the corresponding commutative diagram for Y and Z. Moreover, since Y and Z
are integral and thus only have the generic point y and z, respectively, the products in
the middle of the commutative diagrams are just OY,y and OZ,z. In particular, we notice
that these two commutative diagrams and the universal property of tensor products of the
OX,x-algebras provide morphisms such that the first diagram in Figure A.5 is commutative.

We claim that the morphism

ρ : K(Y )⊗K(X) K(Z) = OY,y ⊗OX,x
OZ,z →

∏
w∈f−1(x)

OW,w (580)

in this diagram is even an isomorphism. To prove this claim, we will show that the

Figure A.5: Fifth commutative diagram for local rings

morphism
ρ′ : OYx(Yx)⊗OX,x

OZx(Zx)→ OWx(Wx)

in this diagram is an isomorphism. Since the horizontal morphisms in the corresponding
square of this diagram are also isomorphisms and since the square is commutative, we
then indeed obtain that ρ is an isomorphism.

Now, in order to show that ρ′ is an isomorphism, we notice that since Wx, Yx and Zx
are affine schemes, the right half of the first diagram in Figure A.5 is induced by the second
commutative diagram in this figure. Therefore, we conclude that ρ′ is an isomorphism if
g : Wx → Yx ×Spec(OX,x) Zx is an isomorphism.

By the universal property of fiber products, the morphism g is the unique morphism
which makes the second diagram in Figure A.5 commutative. But the canonical isomor-
phism

Wx = (Y ×X Z)×X Spec(OX,x) ∼= (Y ×X Spec(OX,x))×Spec(OX,x) (Z ×X Spec(OX,x))
= Yx ×Spec(OX,x) Zx

in [Bos13, p. 302, Proposition 13(ii)] also makes the second diagram in Figure A.5 com-
mutative. Therefore, g must be this canonical isomorphism and we are ready with our
observation.

Next, we come to the proof of the desired equivalence in (ii): On the one hand, we
conclude that

W = Y ×X Z is integral if and only if W has exactly one generic point
and the local ring of this generic point is a field. (581)
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where the implications hold by the following reasonings: The ’only if’-part immediately
follows from [Liu02, p. 65, Proposition 2.4.18(a)]. For the ’if’-part, we first notice [Liu02,
p. 137, Corollary 3.9] implies that ρY and ρZ are flat since Y and Z are integral and X is
regular. Consequently, by applying [Liu02, p. 136, Proposition 4.3.3], we also obtain that
f : W → X is flat and can apply [Liu02, p. 137, Proposition 4.3.8]. Then the ’if’-part
follows because the generic fiber of Wx is affine by Lemma 254, because this implies that
Wx is integral if OWx(Wx) is an integral domain and because of the isomorphism in the
top row in the first diagram in Figure A.5.

On the other hand, the isomorphism ρ in (580) supplies that the tensor product

K(Y )⊗K(X) K(Z) is a field if and only if W has exactly one generic point
and that the local ring of this generic point is a field. (582)

Finally, combining the equivalences in (581) and (582) then yields the desired equiva-
lence in (ii).

For (iii): Suppose thatW is integral. Then (580) even supplies that ρ is an isomorphism
K(Y ) ⊗K(X) K(Z) → OW,w where w is the unique generic point w of W . But this local
ring is exactly the function field K(Y ×X Z) of W = Y ×X Z. Moreover, the morphisms
K(Y )→ K(Y ×X Z) and K(Z)→ K(Y ×X Z) are also the pullbacks ρ∗

Y and ρ∗
Z . Hence,

(iii) also follows.
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B Figures of Tower Graphs

This chapter contains figures displaying the degree one or degree two subgraphs of the
tower graphs for all recursive towers which we use as examples (see Examples 8 and Figure
4.1). Note that the displayed data in the figures are explained thoroughly in Examples 75.

B.1 From [MW05]

Figure B.1: Degree one subgraph of the tame recursive tower FMW,2 = (Fν)ν in
[MW05, p. 212, f2] over F9 which is defined by the polynomial
fMW,2 = Y 2 +XY + 2X2 + 1. See Examples 8(i). This tower satisfies λ(FMW,2) = 2/3
and g(F1) = 0. Here the first weakly connected component is the splitting subgraph and
the second is the ramification subgraph.
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Figure B.2: Degree two subgraph of the tower graph of the tame recursive tower
F ′
MW,2 = (Fν)ν in [MW05, p. 212, f2] but over F3 instead of F9. See Examples 8(i). This

tower is defined by the polynomial fMW,2 = Y 2 +XY + 2X2 + 1 and satisfies
λ(FMW,2) = 0 and g(F1) = 0. Here the first weakly connected component is the splitting
subgraph and the second is the ramification subgraph.
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Figure B.3: Degree one subgraph of the tame recursive tower FMW,3 = (Fν)ν in
[MW05, p. 214, f3] over F49 which is defined by the polynomial
fMW,3 = Y 2 +X2Y + 5X2 + 5. See Examples 8(i). This tower satisfies λ(FMW,3) = 6
and g(F1) = 1. Here the first weakly connected component is a weakly connected
component of the ramification subgraph and the fifth is the splitting subgraph.
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Figure B.4: Degree one subgraph of the tame recursive tower FMW,4 = (Fν)ν in
[MW05, p. 212, f4] over F9 which is defined by the polynomial fMW,4 = Y 2 +X2Y + 1.
See Examples 8(i). This tower satisfies λ(FMW,4) = 2 and g(F1) = 1. Here the first
weakly connected component is the ramification subgraph and the second is the splitting
subgraph.
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Figure B.5: Degree one subgraph of the tame recursive tower FMW,6 = (Fν)ν in
[MW05, p. 212, f6] over F9 which is defined by the polynomial
fMW,6 = Y 2 + (X2 + 1)Y + 2X2. See Examples 8(i). This tower satisfies λ(FMW,6) = 2/3
and g(F1) = 1. Here the first weakly connected component is the ramification subgraph
and the second is the splitting subgraph.
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Figure B.6: Degree one subgraph of the tame recursive tower FMW,8 = (Fν)ν in
[MW05, p. 213, f8] over F25 which is defined by the polynomial
fMW,8 = Y 2 + (X2 + 3)Y + 4X2. See Examples 8(i). This tower satisfies λ(FMW,8) = 1
and g(F1) = 1. Here the first weakly connected component is the ramification subgraph
and the third is the splitting subgraph.
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Figure B.7: Degree one subgraph of the tame recursive tower FMW,11 = (Fν)ν in [MW05,
p. 212, f11] over F9 which is defined by the polynomial fMW,11 = Y 2 + (X2 + 1)Y +X2 +
X+1. See Examples 8(i). This tower satisfies λ(FMW,11) = 2 and g(F1) = 1. Here the first
two weakly connected components are weakly connected components of the ramification
subgraph.

Figure B.8: Degree two subgraph of the tower graph of the tame recursive tower F ′
MW,11 =

(Fν)ν in [MW05, p. 212, f11] but over F3 instead of F9. This tower is defined by the
polynomial fMW,11 = Y 2 + (X2 + 1)Y + X2 + X + 1 and satisfies λ(F ′

MW,11) = 0 and
g(F1) = 1. See Examples 8(i). Here the first two weakly connected components are weakly
connected components of the ramification subgraph.
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Figure B.9: Degree one subgraph of the tame recursive tower FMW,12 = (Fν)ν in
[MW05, p. 213, f12] over F25 which is defined by the polynomial
fMW,12 = X2Y 2 + (X2 + 3X + 3)Y + 4. See Examples 8(i). This tower satisfies
λ(FMW,12) = 4 and g(F1) = 1. Here the first weakly connected components is a weakly
connected component of the ramification subgraph and the fourth is the splitting
subgraph.
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Figure B.10: Degree one subgraph of the tame recursive tower FMW,14 = (Fν)ν in
[MW05, p. 213, f14] over F25 which is defined by the polynomial
fMW,14 = X2Y 2 + (X2 + 4X + 2)Y + 4X2 + 2. See Examples 8(i). This tower satisfies
λ(FMW,14) = 4 and g(F1) = 1. Here the second weakly connected component is the
splitting subgraph and the last two are weakly connected components of the ramification
subgraph.
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Figure B.11: Degree one subgraph of the tame recursive tower FMW,15 = (Fν)ν in
[MW05, p. 213, f15] over F25 which is defined by the polynomial
fMW,15 = X2Y 2 + (X2 + 4X + 4)Y + 4X2 + 3X + 2. See Examples 8(i). This tower
satisfies λ(FMW,15) = 4 and g(F1) = 1. Here the second weakly connected component is
a weakly connected components of the ramification subgraph and the fourth is the
splitting subgraph.
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Figure B.12: Degree one subgraph of the tame recursive tower FMW,16 = (Fν)ν in
[MW05, p. 213, f16] over F25 which is defined by the polynomial
fMW,16 = (X2 + 1)Y 2 + (X + 1)Y + 2X2 + 4X + 1. See Examples 8(i). This tower
satisfies λ(FMW,16) = 1 and g(F1) = 1. Here the second weakly connected component is
the ramification subgraph and the third is the splitting subgraph.
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Figure B.13: Degree one subgraph of the tame recursive tower FMW,20 = (Fν)ν in
[MW05, p. 213, f20] over F25 which is defined by the polynomial
fMW,20 = Y 2 + 2XY + 4X2 + 1. See Examples 8(i). This tower satisfies λ(FMW,20) = 1
and g(F1) = 0. Here the first weakly connected component is the splitting subgraph and
the third is the ramification subgraph.
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Figure B.14: Degree one subgraph of the tame recursive tower FMW,21 = (Fν)ν in
[MW05, p. 213, f21] over F25 which is defined by the polynomial
fMW,21 = Y 2 + 2XY + 4X2 + 2. See Examples 8(i). This tower satisfies λ(FMW,21) = 1
and g(F1) = 0. Here the first weakly connected component is the splitting subgraph and
the third is the ramification subgraph.
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Figure B.15: Degree one subgraph of the tame recursive tower FMW,22 = (Fν)ν in
[MW05, p. 213, f22] over F25 which is defined by the polynomial
fMW,22 = Y 2 + 4XY +X2 +X. See Examples 8(i). This tower satisfies λ(FMW,22) = 4
and g(F1) = 0. Here the first weakly connected component is the splitting subgraph and
the second is a weakly connected component of the ramification subgraph.
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B.2 From [Sti08]

Figure B.16: The degree two subgraph of the tame recursive tower FGS,1 = (Fν)ν in
[Sti08, p. 260, Proposition 7.3.2] for l = 7 over Fl2 which is defined by the polynomial
fGS,1 = Y l−1 + (X + 1)l−1 − 1 from the first level on. See Examples 8(ii). We added a
zeroth level F0 to FGS,1 via the Reduction Lemma 30(iii). This tower satisfies
λ(FGS,1) = 2/(l − 1) and g(F1) = 0. Here the first weakly connected component is the
ramification subgraph and the second is the splitting subgraph.
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Figure B.17: Degree one subgraph of the tame recursive tower FGS,2 = (Fν)ν in
[Sti08, p. 261, Proposition 7.3.3] for l = 3 and e = 2 over Fq with q = le which is defined
by the polynomial fGS,2 = Y m + (X + 1)m − 1 with m = q−1

l−1 . See Examples 8(ii). This
tower satisfies λ(FGS,2) = 2/(q − 1). Here the first weakly connected component is the
ramification subgraph and the second is the splitting subgraph.
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Figure B.18: Degree one subgraph of the tame recursive tower F ′
GS,2 = (Fν)ν in

[Sti08, p. 261, Proposition 7.3.3] for l = 3 and e = 2 over Fq with q = le which is defined
by the polynomial fGS,2 = Y m + (X + 1)m − 1 with m = q−1

l−1 from the first level on. See
Examples 8(ii). We added a zeroth level F0 to F ′

GS,2 via the Reduction Lemma 30(iii).
This tower satisfies λ(F ′

GS,2) = 2/(q − 1) and g(F1) = 0. Here the two weakly connected
components form the ramification subgraph.

Figure B.19: Degree one subgraph of the wild recursive GS-tower FGS,3 = (Fν)ν in
[Sti08, p. 262, Definition 7.4.1] for l = 3 over Fl2 which is defined by the polynomial
fGS,3 = (Y l − Y )(1−X l−1)−X l from the first level on. See Examples 8(ii). We added a
zeroth level F0 to FGS,3 via the Reduction Lemma 30(iii). This tower satisfies
λ(FGS,3) = l − 1 and g(F1) = 0. Here the first weakly connected component is the
ramification subgraph and the second is the splitting subgraph.
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B.3 From [vdGvdV02]

Figure B.20: Degree one subgraph of the wild recursive GV-tower FGV = (Fν)ν in
[vdGvdV02, p. 292] over F8 which is defined by the polynomial
fGV = (Y 2 + Y )X +X2 +X + 1. See Examples 8(iii). We added a zeroth level F0 to
FGV via the Reduction Lemma 30(iii).
This tower satisfies λ(FGV ) = 3/2 and g(F1) = 0. Here the first weakly connected
component is the ramification subgraph and the second is the splitting subgraph.
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B.4 From [ST15]

Figure B.21: Degree one subgraph of the wild recursive tower FST,1 = (Fν)ν in
[ST15, p. 680, Theorem 2.14(1)] F2 which is defined by the polynomial
fST,1 = Y 2X + Y +X2 + 1. See Examples 8(iv). This tower satisfies λ(FST,1) = 0 and
g(F1) = 1 . Here the weakly connected component is the ramification subgraph.

Figure B.22: Degree one subgraph of the wild recursive tower FST,3 = (Fν)ν in
[ST15, p. 680, Theorem 2.14(2)] F2 which is defined by the polynomial
fST,2 = X2 +XY 2 +X + Y . See Examples 8(iv). This tower satisfies λ(FST,2) = 0 and
g(F1) = 1 . Here the weakly connected component is the ramification subgraph.
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Figure B.23: Degree one subgraph of the wild recursive tower FST,3 = (Fν)ν in
[ST15, p. 680, Theorem 2.14(3)] F2 which is defined by the polynomial
fST,3 = X2Y 2 +XY 2 + Y +X. See Examples 8(iv). This tower satisfies λ(FST,3) = 0
and g(F1) = 1 . Here the weakly connected component is the ramification subgraph.

Figure B.24: Degree one subgraph of the wild recursive tower FST,4F = (Fν)ν in
[ST15, p. 680, Theorem 2.14(4)] F2 which is defined by the polynomial
fST,4 = X2Y 2 +XY 2 + Y +X2 + 1. See Examples 8(iv). This tower satisfies
λ(FST,4) = 0 and g(F1) = 1 . Here the weakly connected component is the ramification
subgraph.
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B.5 From [BBGS15]

Figure B.25: Degree one subgraph of the wild recursive BBGS-tower FBBGS,q,i,j = (Fν)ν
in [BBGS15, p. 4, Equation (9)] for q = 3, i = j = 1 over Fqm with m = i+ j which is
defined by the polynomial fBBGS,3,1,1 = εq,i,j · (Trj(Y/Xqi) + Tri(Y qj

/X)− 1). See
Examples 8(vi). This tower satisfies λ(FBBGS,3,1,1) = 2 · ((qj − 1)−1 + (qi − 1)−1)−1 .
Here the first weakly connected component is the ramification subgraph and the second
is the ramification subgraph.
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B.6 From [HP16]

Figure B.26: Degree one subgraph of the tame recursive tower FHP,5 = (Fν)ν in
[HP16, p. 12, Proposition 12] F5 which is defined by the polynomial
fHP,5 = Y 2(3X − 1)− (X2 +X) from level one on. See Examples 8(vii). We added a
zeroth level F0 via the Reduction Lemma 30(iii). This tower satisfies λ(FHP,5) = 0 and
g(F1) = 0 . Here the weakly connected components are the two weakly connected
components of the ramification subgraph.
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B.7 From [CNT18]

Figure B.27: Degree one subgraph of the wild recursive CNT-tower FCNT,2 = (Fν)ν in
[CNT18, p. 19, Corollary 4.13] over F4 which is defined by the polynomial
fCNT = (Y 2 + Y )(X2 +X + 1) +X. See Examples 8(v). We added a zeroth level F0 to
FCNT,2 via the Reduction Lemma 30(iii).
This tower satisfies λ(FCNT,2) = 1 and g(F1) = 0. Here the degree one subgraph is equal
to the ramification subgraph.
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B.8 From [BR20]

Figure B.28: Degree two subgraph of the tame recursive BR-tower FBR,5 = (Fν)ν in
[BR20, p. 4] for q = 5 over Fq. From level one on, this tower is defined by the polynomial
fBR,5 = (X6 +X + 2)(Y 5 − Y )− (X5 −X)(Y 6 + Y 5 + 2Y + 3) and satisfies
λ(FBR,5) = 2/(q − 1). See Examples 8(viii). We added a zeroth level F0 to FBR,5 via the
Reduction Lemma 30(iii). Here the first weakly connected component is the splitting
subgraph and the second weakly connected component is the ramification subgraph.
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List of Symbols

What follows is an overview of symbols used in this thesis which are non-canonical, often
with references to the corresponding definitions. Also note that although the symbols in
the following list are mostly used in the described way, there are some instances where
this is not the case.

(σ, F0) Pair which defines recursive tower (see Definition 5(ii))

(E,F1, F2, F ) Diamond of function fields (see (6))

(Q,P1, P2, P ) Diamond of places (see (6))

(RN)′, (RN0)′, (RP)′ Set of all sequences with elements in the the ring R which are almost
all zero

(x = α), (x =∞) The place in the rational function field k(x) which is generated by the
element x− α and the place at infinity, respectively

<,≨,≤ The first two symbols denote the proper estimate and the third symbol also
allows equality

[a, b], ]a, b[ Open and closed interval in R ∪ {∞} from a to b, respectively

α Edge map on a directed graph (see Definition 55(i)) or a map as in Theorem
4(ii) and in Definition 189

αe = ∏
p∈P α

ep
p Multi-index notation (see (1))

log2(P) = (log2(p))p∈P See Definition 167

O(U), πO(U) See Definition 209

C[yβ], C(yβ) See Definition 208

C A closed path or circle in a directed graph (see Definition 55(iv))

F = (Fν)ν A tower of function fields (see Definition 2(i)) or, more specifically, a recursive
tower of function fields (see Definition 5)

F ′ = (F ′
ν)ν = k′ · F k′-constant field extension of the tower F (see Definition 21(i))

FBBGS,q,i,j , fBBGS,q,i,j BBGS-towers and -polynomials, respectively (see 8(vi))

FBezGS , fBezGS,l BezGS-towers and -polynomials, respectively (see 8(iii))

FBR,q, fBR,q BR-towers and -polynomials, respectively (see 8(viii))

FCNT , fCNT CNT-tower and -polynomial, respectively (see 8(v))

FGS,i, fGS,i GS-towers and -polynomials, respectively (see 8(ii))
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FGV , fGV GV-tower and -polynomial, respectively (see 8(iii))

FHP,q, fHP,q HP-towers and -polynomials, respectively (see 8(vii))

FMW,i, fMW,i MW-towers and -polynomials, respectively (see 8(i))

FST,i, fST,i ST-towers and -polynomials, respectively (see 8(iv))

G∞, Gsing Geometric and singular graph (see Definition 101)

M See Definition 223

P · P ′ Composition of the paths P and P in a recursive tower (see Definition 16(iii))
or a directed graph (see Definition 55(v))

P, [Pi,j ]j−i≤1, (Pi,j)j−i≤1 A path in a directed graph (see Definition 55(ii) and Notation
56) or a path in the pyramid of a recursive tower (see Definition 17(i))∐, ⊔ Disjoint unions

Count, Countˆ See Definition 223

cQ See Definition 223

Dα, δα See Definition189

deg−(P ), deg+(P ) In- and out-degree of the vertex P in a directed graph, respectively
(see Definition 55(vii))

∆(P) See Remark 49

eQ,p See Definition 223

Evala Evaluation morphism on Laurent polynomials (see Definition 236)

EvalxP Evaluation morphism on Laurent polynomials in C[yP, y
−1
P ] (see Definition

161(ii))

Ext(Pyr(Q)), ElemExt(Pyr(Q)) Sets of extensions and elementary extensions in pyramid
Pyr(Q) of places, respectivly (see Definition 14(ii))

Fql , F Finite field with ql elements and an algebraic extension field of a finite field,
respectively

F, F Union F of all function fields in the recursive tower F and its algebraic closure
F (see Definition 5(ii))

c(F) See Definition 245

c(A) See Definition 242

B, B≥0 See Definition 208

y, yα, yβ = (yβp)p See Definition 208

Γ Directed graph (see Definition 55(i))

Γ\Γ′ Difference subgraph (see Definition 66(iv))

Γc Degree c subgraph of a tower graph (see Lemma 61)
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γX See (136)

Graph(Pyr(Q)) Pyramidal graph of the pyramid Pyr(Q) of places for some place Q in a
recursive tower (see Definition 72(i))

F̂ Dual of the recursive tower F (see Definition/Lemma 35)

σ̂ See Definition 217(iii)

Kill, Kill̂ See Definition 223

λ(F), ν(F), γ(F) Limit, splitting rate and genus of the tower F of function fields, respec-
tively (see Definition 2(iii))

C[yP, y
−1
P ], yp Ring of Laurent polynomials in the variables yp for all p ∈ P (see Definition

161(i))

R≥0[yP, y
−1
P ], R[yP, y

−1
P ] See Definition 161(i)

Length(P) Length of the path P in a directed graph (see Definition 55(ii))

⌊α⌋, ⌈α⌉ The real number α rounded down and rounded up, respectively

L(h), L(A) See Definition 212

N, N0 Set of positive and nonnegative integers, respectively

N′ See Definition 233

N′
e, N′

q See Definition 236

N′′
e See Definition 241

Ñ See Definition 50

1F0 Map 1F0 : PF0 → R via P 7→ 1 (see Definition 189)

1 Sequence (1, 1, . . . ) consisting of only ones which is indexed by N, N0 or P

F = (F ν)ν = k · F Geometric tower of the tower F (see Definition 21(i))

k An algebraic closure of k; in most instances, the algebraic closure of k inside
of the domain of σ (see Definition 5(ii))

X, φ Fiber product X×k k for a curve over k and an algebraic closure of k and the
canonical morphism φ = φ×k k for the morphism φ of curves over k

P Set of primes in N

P◦
Fn

[Γ] Set of places in Fn which lie over a circle in Γ (see Definition 85)

PF , P(r)
F Set of places in the function field F and its subset of places P with deg(P ) = r

(see (4))

PF Union of all sets of places in Fn for all n ∈ N0 (see Definition 2(ii))

PF (A) Union of all sets PFn(A) for all n ∈ N0 (see Definition 2(ii))

PF [Γ] Union of all sets PFn [Γ] for all n ∈ N0 (see Definition 85)

P◦
F [Γ] Union of all sets P◦

Fn
[Γ] for all n ∈ N0 (see Definition 85)
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PPyr(F) Set of all places which are contained in one of the function fields Fi,j of the
pyramid (Fi,j)i,j = Pyr(F) (see Definition 9(iv))

PF (P), P(r)
F (P) Set of places in F which lie over all places in P and its subset of places

P with deg(P ) = r(see Definition (5)))

PF (A), P(r)
F (A) Set of places in F which lie some of some P ∈ A and its subset of places

P with deg(P ) = r (see Definition (5))

PFn((Q1, . . . , Qr)) Set of places in Fn which lie over all places Q1, . . . , Qr(see Definition
(5))

PFn [Γ], P(1)
Fn

[Γ] Set of places in Fn which lie over a path in Γ and its subset of rational
places (see Definition 85)

Path(Q) = (Pi,j)j−i≤1 Path of the place Q in the pyramid of a recursive tower (see Defi-
nition/Lemma 17)

ϕ(Γ), ϕ−1(Γ) Image and preimage graph, respectively, of the subgraph Γ for the morphism
ϕ of directed graphs (see Definition 69)

πPPyr(F′)/PPyr(F) , πW (F ′)/W (F) Projection maps for constant field extensions F ′/F of re-
cursive towers (see Lemma 76)

ρ(d) See Definition 223

P Sequence (p)p = (2, 3, 5, . . . ) of all primes p

Primes, Primesˆ See Definition 223

Princ(h), NonPrinc(h) Principal and non-principal part of the Laurent polynomial h, re-
spectively (see Definition 236)

Pyr(F) = (Fi,j)i,j Pyramid of the recursive tower F (see Definition 9(i))

Pyr(Q) = (Pi,j)i,j Pyramid of the place Q in the pyramid of a recursive tower (see Defi-
nition 11)

Ram, Ram̂ See Definition 223

Ram(F/Fm), Split(F/Fm) Ramification and splitting loci of F over Fm, respectively (see
Definition 3(ii))

ρ(F) See Definition 179 for pair-recursive towers F and Definition 94(ii) for polynomial-
recursive towers F

ρ(A) Spectral radius of the quadratic complex matrix A (see Examples 75)

σz See Definition 209

sign(σ) Either the usual signum-map if σ is a permutation on the set {1, . . . ,m} or
its extension in Definition 217(iii)

Sp(A), Sp(ϕ) Spectrum of eigenvalues of the matrix A and the linear map ϕ

⊂,⊊,⊆ The first two symbols denote the proper inclusion of sets and the third symbol
also allows the sets to be equal

σΓF Tower graph map of a recursive tower F (see Definition/Lemma 76)

406



πΓF′/ΓF CFE-projection morphism ΓF ′ → ΓF (see Definition/Lemma 105(i))

ΓF Tower graph of the recursive tower F (see Definition 74)

Γrat
F , Γsplit

F , Γram
F Rational, splitting and ramification subgraph, respectively (see Defini-
tion 88)

πΓF≥m
/ΓF Trun-projection morphism (see Definition/Lemma 126)

g̃(Fn) See Remark 53

σ Tower map of a recursive tower (see Definition 5(ii))

σk(Pyr(Q)), σk(Path(Q)), σk(P) Action of σk on the pyramid Pyr(Q), the path Path(Q)
and the path P, respectively (see Definition/Lemma 15(i), Definition/Lemma
20(i), respectively)

Tr Trace map on quadratic matrices or endomorphisms of finite vector spaces

Tra More specific trace map in the definition of the BBGS-towers (see Examples
8(vi))

Trun≥m(F) Level m truncation of tower F (see Definition/Lemma 27)

Trun≥m(Γ) Level m truncation of the subgraph Γ of the tower graph of a recursive tower
(see Definition/Lemma 128)

τF See Lemma 91(ii)

φc Induced map on the closed points of the finite morphism φ of curves

Vertexi(P), Edgei(P) i-th vertex and edge of the path P in a directed path (see Definition
55(ii))

vinit(Q), vinit(P), vterm(Q), vterm(P) Initial and terminal vertex of the edge Q or path P
in a directed graph, respectively (see Definition 55(i) and Definition 55(ii))

vP(a) Sequence (vp(a))p ∈ (ZP)′ ⊂ ZP for all a ∈ Q\{0} (see (3))

w′
xP,x̂P

The weight function on the tower graph of a recursive tower in Definition 162

wxP,x̂P The weight function on the tower graph of a recursive tower in Definition 157

yP = (yp)p See Definition 161(i)

a ∗ b Componentwise product of the sequences a and b (see (2))

A(xP) = EvalxP(A) See Definition 161(ii)

A(q) Ihara’s constant (see Definition 2(iv))

aσ,i, aσ See Definition 217(iv)

C(σ, i) See Definition 217(v)

d Degree of a tower of function fields (see Definition 2(ii))

E(Γ) Set of edges of the directed graph Γ (see Definition 55)

E−(Γ, P ), E+(Γ, P ) Set of in- and outgoing edges at the vertex P in the directed graph
Γ, respectively (see Definition 55(vii))
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F/E Extension of function fields (see Definition 1(ii))

F (σ) See Definition 217(ii)

Fn Function fields of the sequence of a tower of function fields (see Definition
2(i))

G(σ) See Definition 217(ii)

g(F ), g(C) Genus of the function field F and the curve C, respectively

k Either an index or a perfect field; in most instances, even the constant field
of a function field (see Definition 1(i))

K · L Composite field of K and L in some common extension field

k′ An algebraic extension field of k

k′ · α See Definition/Lemma191

k′ · Γ Constant field extension of the subgraph Γ of a tower graph of a recursive
tower F via an algebraic extension field k′ of the constant field of F (see
Definition 107)

K(X) Function field of the integral curve X

lΓ See Definition 226

lQ See Definition 223

m∞ Separating index (see Definition 238)

N(A) Sum of the entries of the complex quadratic matrix A (see Definition 60)

N(F ) Number of rational places in the function field F (see (4))

N(F,P) Cardinality of P(1)
F (P) (see (5))

N(F,A) Cardinality of P(1)
F (A) (see (5))

N [Fn,Γ] Cardinality of P(1)
F [Γ] (see Definition 85)

O(σ, i) See Definition 217(ii)

P Either a place in a function field or an edge in a directed graph

Q Either a place in a function field or an edge in a directed graph

Q/P Extension Q/P of places in some extension of function fields

R(σ) See Definition 217(ii)

RN, RN0 , RP Set of all sequences with elements in the the ring R for the index set N, N0
and P, respectively

RM Set of maps from M to R

Re, Ke, xe See Definition 236

S(X) Symmetric group on the set X (see Definition 217(i))
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V (Γ) Set of vertices of the directed graph Γ (see Definition 55)

vp(a) Exponent of p in the prime decomposition of a ∈ Z\{0} and vp(b) − vp(c) if
a = b

c ∈ Q\{0} with b, c ∈ Z

W (F ,m, n), W (F , n), W (F) Sets of paths in the pyramid of F (see Definition 16(i))

W (Γ) Set of paths in the directed graph Γ (see Definition 55(iii))

W (Γ, n) Set of paths in the directed graph Γ of length n (see Definition 55(iii))

W (Γ, n, P ) Set of paths in the directed graph Γ of length n which start at P (see Definition
55(iii))

W (Γ, n, P0, P1) Set of paths in the directed graph Γ of length n which start at P0 and end
at P1 (see Definition 55(iii))

w(Q), w(P) Weight of an edge and path in a directed graph (see Definition 58(i))

Wrat(F ,m, n), Wrat(F , n), Wrat(F) Sets of rational paths in the pyramid of F (see Defi-
nition 16(iv))

Wrat(Γ) Set of rational paths in the directed graph Γ (see Definition 79)

Xc, X(k) Closed and k-rational points of the curve X, respectively

zα, zβ See Definition 167

409



410



Index

α-bounded, 249
α-weakly ramified, 249

Abhyankar ramification index, 80
multiplicative transitivity rule, 82

Abhyankar’s Lemma, 25
ẽ-version, virtual, 82

adjacency matrix, 96
standard, 96

balanced
subgraph, 113

balanced ramification indices, 47
BBGS-polynomials, 35
BBGS-towers, 35
BezGS-polynomials, 34
BezGS-towers, 34
BGS-polynomials, 35
BGS-towers, 35
BR-polynomials, 36
BR-towers, 36

CFE-projection morphism, 144
CNT-polynomial, 35
CNT-tower, 35
complex logarithm

principal branch, 213
Conjecture 1, 32

almost complete answer, 233
constant field, 23

full, 23
constant field extension

subgraphs, 146
towers, 54

correspondence of curves, 129
critical pair of edges, 310
curve, 128

degree
balanced of recursive tower, 28
constant of tower, 26
place, 24
tower, 26

diamond, 24
elementary in a pyramid of places, 45
flat, non-flat, 24
in a pyramid of places, 45
of function fields, 24
of places, 24

directed graph, 94
d-regular, 95
vertex, edge, 94
edge map, initial vertex, terminal ver-

tex, 94
empty graph, 101, 117
morphism, 100
strongly connected, 95
subgraph, 101
weakly connected, 95
weight, weight function, 96

Drinfeld-Vladut-Bound, 27

edge, 94
etale, non-etale, 131
ramified, unramified, 118
weight, 96

evaluation morphism, 207
extension

elementary in a pyramid of places, 44
in a pyramid of places, 44
of function fields, 24

function
holomorphic, 263
partially holomorphic, 263

function field, 23
extension, 24

fundamental equality, 25
for the vertices in tower graphs, 116

genus
asymptotic of a tower, 26
of a function field, 24

geometric graph, 131
GS-polynomials, 34
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GS-towers, 34
GV-polynomial, 34
GV-tower, 34

height of an extension of places, 37
HP-graph, 131
HP-polynomials, 36
HP-towers, 36
Hurwitz Genus Formula, 25

Ihara’s constant, 27
image graph, preimage graph, 104
interim result

first, 214
second, 214
third, 215

Key Lemma I, 72
Key Lemma II, 264
Key Lemma III, 316

Laurent polynomials
in several variables, 207

level
of a function field in the pyramid, 37
of a place in the pyramid, 37

limit of a tower, 26

Main Theorem, 218
matrix

disconnected, connected, 98
irreducible, reducible, 98

morphism of curves
etale, 131

morphism of directed graphs
covariant, contravariant, 100
image graph, preimage graph, 104
mono-, epi-, isomorphism, 100

multiplicative transitivity rule
Abhyankar ramification index, 82
ramification index, 24
relative degree, 24

MW-polynomials, 33
MW-towers, 33

non-principal part, 321

pair of a recursive tower, 28
path, 94

(un-)balanced ramification indices, 113
closed path, circle, 94
composable, composition, 95
directed, undirected, 95
initial vertex, terminal vertex, 94

length, 94
rational, 111
tame, wild, 112

Path Lifting Lemma, 154
path of places, 46

(un-)balanced ramification indices, 47
composition, 46
extension, 47
rational, 46
subpath, 46
tame, wild, 47

place, 24
extension, 24
lies over a path, 47
rational, 24

preimage graph, 104
principal part, 321
pyramid

diamond, elementary diamond, 37, 45
extension, elementary extension, 37, 44
of function fields, 37
of places, 43

pyramidal graph, 106

ramification locus, 27
recursive tower, 28

dual, pair-dual, polynomial-dual, 64
locally Galois, 63
pair-recursive, 28
polynomial-recursive, 28
tower map, 28

Reduction Lemma, 61

separating enumerations, 322
separating index, 322
sharp criterion for precise limits

for tame recursive towers, 245
for wild recursive towers, 250

singular graph, 131
singular-recursive tower, 129
splitting locus, 27
splitting rate, 26
ST-polynomials, 35
ST-towers, 35
subgraph, 101

e-power, 322
balanced, 113
complementary, difference, 102
constant field extension, 146
degree c subgraph, 107
disjoint, 101
forward and backward complete, 102
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image graph, preimage graph, 104
intersection, union, 101
proper, 101
ramification, 118
rational, 117
separating, 310, 311
splitting, 117
strongly connected component, 102
truncation, 169
weakly connected component, 102

symmetric group, 272

tower, 26
bad, good, optimal, 27
constant degree, 26
constant field extension, 54
degree, 26
Galois, 63
Galois in every step, 63
polynomial-recursive, 28
recursive, pair-recursive, 28

tower graph, 107
induced automorphism, 152
tower graph map, 109

tower map, 28
truncation

Trun-projection morphism, 166
subgraph, 169
tower, 59

variety, 128
affine, 128

vertex, 94
in-, out-degree, 95

weight function, 96
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