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Abstract

Probabilistic generative modeling is a powerful machine learning paradigm suitable for a
variety of tasks, such as missing value estimation, denoising, clustering, outlier detection,
or compression. A key factor determining the efficiency and effectiveness of algorithms
based on generative models is the internally used approximate inference scheme. This
work focuses on inference and learning in generative models with binary latents and
studies a novel approach that combines variational optimization of truncated posteriors
with evolutionary algorithms. As a distinction to related Gaussian and factored (a.k.a.,
mean field) variational approximations, the use of truncated variational distributions
allows for flexible adaptation to complex posterior landscapes with multiple modes and
correlations. Through the application of evolutionary algorithms as integral part of the
variational optimization scheme, the approach becomes generically applicable without the
need for model-specific analytical derivations (‘black box’ inference). Distinctions to related
‘black box’ inference schemes include that the approach studied here does neither involve
sampling approximations nor gradient-based optimization of variational parameters, thereby
circumventing auxiliary mechanisms such as continuous relaxations of discrete distributions
and variance reduction techniques required by stochastic gradient estimators. Compared
to previous truncated variational approximation schemes, the approach studied has the
distinguishing feature of guaranteeing a monotonic increase of a log-likelihood lower bound.
The studies presented in this thesis consider applications of the novel evolutionary variational
optimization to a variety of data models with a wide range of characteristics, including:
binary and binary-continuous priors, binary and continuous noise models, shallow and deep
model architectures, linear and non-linear latent interaction models including learnable
and non-learnable non-linearities, and global and latent-specific variance encodings. When
studying deep generative models, the evolutionary variational optimization is combined with
automatic differentiation tools for model parameter optimization, thereby demonstrating
the suitability of the investigated approach for ‘black box’ learning and inference. The
numerical experiments presented focus on image patch modeling and provide extensive
performance evaluations using established denoising and inpainting benchmarks that allow
for comparison to a broad range of related methods. These investigations reveal that
evolutionary variational optimization of expressive data models such as spike-and-slab
sparse coding or variational autoencoders results in competitive performances in benchmark
settings with only a single noisy image available for training. Analyses of the learned data
representations show that the models use comparably sparse encodings in theses cases.
Experiments with SARS-CoV-2 microscopy imaging data illustrate potential contributions
that the developed methods may deliver in applications, for instance, possibly improving
visualization of image details to potentially ease image interpretation. In general, this work
highlights the importance of effective procedures for learning and inference in generative
models, and opens the door to a variety of possible future research directions.
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Zusammenfassung

Probabilistische generative Modellierung ist ein leistungsfähiges Paradigma des maschinellen
Lernens, das sich für eine Vielzahl von Aufgaben eignet, z. B. Schätzung fehlender Werte
in unvollständigen Daten, Entrauschung, Clustering, Ausreißererkennung oder Kompri-
mierung. Ein Schlüsselfaktor für die Effizienz und Effektivität von Algorithmen, die
auf generativen Modellen basieren ist das intern verwendete Inferenz Approximations-
schema. Diese Arbeit konzentriert sich auf Inferenz und Lernen in generativen Modellen
mit binären latenten Variablen und untersucht einen neuartigen Ansatz, der Variationsopti-
mierung von trunkierten Posterior-Verteilungen mit evolutionären Algorithmen kombiniert.
Im Unterschied zu verwandten Gauß’schen und faktorisierten (auch bekannt als Mean
Field) Variationsapproximationsverfahren erlaubt die Verwendung von trunkierten Varia-
tionsverteilungen eine flexible Anpassung an komplexe Posterior-Landschaften mit mehreren
Modi und Korrelationen. Durch die Anwendung von evolutionären Algorithmen als inte-
graler Bestandteil des Variationsoptimierungsschemas wird der Ansatz generisch anwendbar,
ohne dass modellspezifische analytische Herleitungen erforderlich sind (‘Black-Box’-Inferenz).
Zu den Unterschieden zu verwandten ‘Black-Box’-Inferenzschemata gehört, dass der hier
untersuchte Ansatz weder Sampling-Approximationen noch gradientenbasierte Optimierung
von Variationsparametern beinhaltet, wodurch Hilfsmechanismen wie kontinuierliche Rela-
xierungen diskreter Verteilungen und Varianzreduktionstechniken, die von stochastischen
Gradientenschätzern benötigt werden, umgangen werden. Im Vergleich zu früheren trun-
kierten Variationsapproximationsverfahren zeichnet sich der untersuchte Ansatz dadurch
aus, dass er einen monotonen Anstieg einer unteren Schranke der Log-Likelihood garantiert.
Die in dieser Arbeit vorgestellten Studien betrachten Anwendungen der neuartigen evo-
lutionären Variationsoptimierung auf eine Vielzahl von Datenmodellen mit einem breiten
Spektrum von Eigenschaften, darunter: binäre und binär-kontinuierliche Priormodelle,
binäre und kontinuierliche Rauschmodelle, flache und tiefe Modellarchitekturen, lineare und
nicht-lineare Interaktionsmodelle der latenten Variablen einschließlich lernbarer und nicht-
lernbarer Nichtlinearitäten sowie globale und latent-spezifische Varianzkodierungen. Bei der
Untersuchung tiefer generativer Modelle wird die evolutionäre Variationsoptimierung mit
automatischen Differenzierungswerkzeugen zur Modellparameteroptimierung kombiniert,
wodurch die Eignung des untersuchten Ansatzes für ‘Black-Box’-Lernen und -Inferenz
demonstriert wird. Die vorgestellten numerischen Experimente konzentrieren sich auf
die Modellierung von Bildfeldern und bieten umfangreiche Leistungsevaluationen unter
Verwendung etablierter Denoising- und Inpainting-Benchmarks, die einen Vergleich mit
einer breiten Palette verwandter Methoden ermöglichen. Diese Untersuchungen zeigen,
dass die evolutionäre Variationsoptimierung von ausdrucksstarken Datenmodellen wie
Spike-and-Slab Sparse Coding oder Variations-Autoencodern zu konkurrenzfähigen Leis-
tungen in Benchmark-Settings führt, bei denen nur ein einziges verrauschtes Bild zum
Training zur Verfügung steht. Analysen der gelernten Datenrepräsentationen zeigen, dass
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Zusammenfassung

die Modelle in diesen Fällen vergleichbar spärliche Kodierungen verwenden. Experimente
mit SARS-CoV-2-Mikroskopie-Bilddaten veranschaulichen potenzielle Beiträge, die die
entwickelten Methoden bei Anwendungen liefern könnten, z. B. eine mögliche Verbesserung
der Visualisierung von Bilddetails zur potentiellen Erleichterung der Bildinterpretation. Im
Allgemeinen unterstreicht diese Arbeit die Bedeutung effektiver Verfahren für Lernen und
Inferenz in generativen Modellen und öffnet die Tür zu einer Vielzahl möglicher zukünftiger
Forschungsrichtungen.
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Chapter 1

Introduction

Fueled by the increasing availability of data and computational resources in recent decades,
machine learning (ML) algorithms have been very successfully applied to a wide range
of information processing tasks, for which they have received considerable attention. In
contrast to rule-based algorithms, whose behavior is determined by hand-crafted protocols
of processing steps, ML methods build internal models of a given problem from data, and
they are consequently also referred to as data-driven algorithms. Prominent examples of the
many different types of problems to which ML approaches have successfully been applied
include, e.g., computer vision applications such as image generation (e.g., Goodfellow et al.,
2014; Kos et al., 2018; van den Oord et al., 2016), image denoising (e.g., Krull et al., 2019a;
Mairal et al., 2009; Zhang et al., 2017), image inpainting (e.g., Pathak et al., 2016; Roth
and Black, 2009; Zoran and Weiss, 2011), or image super-resolution (e.g., Chen and Pock,
2017; Lim et al., 2017; Shocher et al., 2018). Likewise, ML methods have been applied to
audio signal processing problems such as speech separation (e.g., Luo and Mesgarani, 2019;
Wang and Chen, 2018), or speech enhancement (e.g., Kumar and Florencio, 2016; Nustede
and Anemüller, 2021; Tammen and Doclo, 2021; Westhausen and Meyer, 2020; Xia et al.,
2020). ML approaches have furthermore become integral parts of recommender systems
used, e.g., on online platforms for fashion retail (e.g., Freno, 2017), lodging (e.g., Haldar
et al., 2019), music (e.g., van den Oord et al., 2013) or video streaming (e.g., Covington
et al., 2016). Medicine represents yet another application area in which ML methods have
gained increasing attention, e.g., for assisting with tasks such as disease detection (e.g.,
Sarki et al., 2020) or autonomous surgery (e.g., Kassahun et al., 2016).

Widespread are discriminative methodologies which learn direct task-specific mappings
from input to target data. In a standard problem such as classification, discriminative
models might, for instance, be optimized to map pixel values of given images to names
of depicted objects. Or discriminative models might be optimized to map, e.g., waveform
amplitudes of sound recordings to the waveform amplitudes of involved sound sources. A
strength of discriminative approaches is that, once trained, they can be very fast at test
time. Training, on the other hand, might be significantly more time consuming and typically
involves supervision: A supervised classification algorithm, for instance, would be fed with
paired examples of images and associated object names to be identified during training.
Supervised learning consequently relies on the availability of, typically large amounts
of, training data including data for supervision such as labels (e.g., object identities in
classification problems) or other forms of targets (e.g., clean data in data enhancement
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Chapter 1. Introduction

problems). Being tailored to a specific task, discriminative approaches are likely to need
retraining, in the worst case from scratch, if the task to be solved is slightly modified or if
the algorithm is to be applied to data that is considerably different from the data used for
training.

Complementing discriminative methodologies are generative approaches, which, in a
probabilistic setting, aim at capturing a data density model of the data generating process
such that data generated by the model becomes increasingly similar to the training data.
A probabilistic generative data representation has the advantage of being suitable for a
variety of tasks in addition to data generation, including, e.g., missing value estimation,
denoising, clustering, outlier detection, or compression. Generative representations can
usually be learned without supervision (while supervised learning is also possible), which is
a key feature in scenarios in which labeled data sets cannot be acquired. Their increased
flexibility is accompanied by an increased computational cost for training, making large scale
applications of algorithms based on generative models challenging in general. Moreover,
learning a density model might, for certain tasks, turn out to be disproportionately complex
and not necessarily guarantee performance improvements over task-optimized discriminative
methods (e.g., Jebara, 2004; Ulusoy and Bishop, 2005). As yet another aspect, discriminative
approaches may be at risk of being perceived as ‘black box’ systems when the internally
learned models turn out to be incomprehensible to humans. Variables capturing factors of
the data generating process with an explicit treatment of uncertainty, on the other hand,
may appear more illustrative and ease interpretability, in particular when they are aligned
with constraints resulting from domain knowledge (e.g., characteristics of data generating
factors such as non-negativity, discreteness, or circularity). Especially in the context of
high-stakes ML applications, interpretability is considered increasingly important (compare,
e.g., Murdoch et al., 2019; Rudin, 2019).

Generative approaches are commonly defined in terms of a latent variable model (LVM)
which distinguishes between observable data and underlying latent causes of the data
generating process. Simplistically stated, observables model measurable quantities (e.g., the
pixel values of an image), while latents describe compositional elements of the measured data
(e.g., the presence/absence or positions/sizes of depicted objects, or elementary features
such as edges or textures in the image). Concepts captured by latent variables are, however,
not necessarily that illustrative per se, and in fact disentanglement of latent codes into
interpretable features is subject of current research (e.g., Higgins et al., 2017; Tonolini
et al., 2020). LVM architectures exist in a wide variety of variants, many of which can be
described by a directed acyclic graph describing interactions between latents and observables.
Well-known examples include, e.g., sparse coding approaches (SC; Olshausen and Field,
1996) or, as a more recent example, deep generative models such as variational autoencoders
(VAEs; Kingma and Welling, 2014; Rezende et al., 2014). SC was originally discussed in
a neurobiological context as a model of encoding strategies in mammalian visual cortex.
The term sparse thereby refers to the concept that only a small fraction of all neurons
are assumed to be involved in the processing of individual sensory inputs. Standard SC
approaches model sparsely active latents by continuous variables which are defined to
follow heavy-tailed, e.g. Laplace, distributions. Standard VAE approaches, on the other
hand, likewise use continuously-valued latents, however assuming Gaussianity for their
activation. As a further similarity between SC and VAE approaches, standard forms of
both models assume Gaussian observation noise. While standard SC approaches employ
linear superposition rules for modeling latent interactions, a key characteristic of VAEs is
their use of deep neural networks (DNNs) to parameterize non-linear mappings from latent
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to observed space. For both SC and VAEs, extensions of the standard models have been
investigated which replaced continuous by discrete latents (e.g., Exarchakis and Lücke, 2017;
Haft et al., 2004; Henniges et al., 2010; Jang et al., 2017; Maddison et al., 2017; Shelton
et al., 2011). Formal introductions of both models will be given in Chs. 2 and 4.

Not less important than the design of an appropriate generative model architecture is
the choice of efficient and effective procedures for optimizing its parameters given data. A
natural choice in a probabilistic setting are maximum likelihood based approaches which
seek parameters that maximize the evidence of the data under the density model. Direct
likelihood maximization is often intractable and tackled with indirect approaches, for
example based on expectation maximization (EM; Dempster et al., 1977). EM optimizes
a lower bound of the likelihood in an iterative two-step procedure, with an integral part
of the algorithm being the evaluation of expectation values w.r.t. posteriors over the
latent variables. For most non-trivial models, this step turns out to be intractable and
to require approximations, leading to the field of approximate inference. Approximate
inference schemes are broadly distinguishable based on whether deterministic or stochastic
strategies are employed. Prominent examples of the former category include, e.g., maximum
a-posteriori (MAP) approaches, which approximate posteriors via point estimates (e.g.,
Bradley and Bagnell, 2008; Lee et al., 2007; Lewicki and Sejnowski, 2000; Mairal et al.,
2009; Olshausen and Field, 1997), and approaches based on variational approximations
(e.g., Jordan et al., 1999; Neal and Hinton, 1998; Opper and Winther, 2005; Wainwright and
Jordan, 2008). Stochastic strategies, on the other hand, are typically based on sampling
approximations of expectation values (e.g., Mohamed et al., 2012; Zhou et al., 2009, 2012),
and they have also been combined with variational strategies (e.g., Hoffman et al., 2013;
Kingma and Welling, 2014; Rezende et al., 2014).

While MAP approaches may appear appealing in terms of computational efficiency,
they are, by definition, severely limited in modeling the typically complex structure of the
posterior density. Sampling approaches, in contrast, allow, in principle, for approximating
posterior expectations with high accuracy, however at the cost of increasingly large sample
sizes, which tendentiously slow down convergence speed, particularly in high dimensional la-
tent spaces (compare, e.g., Bishop, 2006; Shelton et al., 2011; Zhou et al., 2012). Variational
procedures, on the other hand, introduce functionals which are optimized to approximate
the log-likelihood as closely as possible. As a distinction to sampling-based approaches, the
design of variational distributions for these functionals typically involves that assumptions
about the posterior structure are made, for example Gaussianity (e.g., Kingma and Welling,
2014; Opper and Winther, 2005; Rezende et al., 2014), factored forms (e.g., Jordan et al.,
1999; Titsias and Lázaro-Gredilla, 2011), or even both. Compared to MAP approaches,
variational approximations are able to provide significantly more accurate posterior approx-
imations. Variational approaches that include assumptions that are inconsistent with the
properties of the true posterior (e.g., neglect of posterior correlations as a consequence of
imposing a factored form for the variational distribution) may, however, still result in a
poor approximation.

Truncated posteriors (Lücke and Eggert, 2010; Lücke and Sahani, 2008) have been
proposed as a class of discrete variational distributions that neither contain the assumption
of a-posteriori independence of the latents nor assume a mono-modal form of the posterior
distribution. In turn, truncated posteriors are based on the assumption that significant
portions of the posterior mass are concentrated on small subsets of the latent space.
Truncation refers to the principle of neglecting (potentially large) parts of the latent
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space (ideally those with smallest posterior mass) through exact zeros in the posterior
approximation (a formal definition will be given later, see, e.g., Sec. 2.2.1). Previous work
has shown that truncated posteriors enable effective optimization of standard as well as
intricate generative models (e.g., Dai and Lücke, 2014; Henniges et al., 2014; Sheikh et al.,
2014; Shelton et al., 2015) while providing high functional performance (e.g., Sheikh et al.,
2014) and scalability to very high-dimensional latent spaces (Hirschberger et al., 2022; Sheikh
and Lücke, 2016). The key element of truncated variational techniques are efficient search
strategies for determining latent subspaces with concentrated posterior mass. Strategies
that have been explored so far can be broadly divided into deterministic approaches using
feed-forward selection functions (e.g., Exarchakis and Lücke, 2017; Henniges et al., 2010,
2014; Lücke and Eggert, 2010; Sheikh et al., 2014, 2019), combinations of deterministic
selection with sampling (Sheikh and Lücke, 2016; Shelton et al., 2011, 2015), and fully
variational optimization of truncated posteriors (Exarchakis et al., 2022; Hirschberger et al.,
2022; Lücke and Forster, 2019; Lücke et al., 2018). The former strategy is an early version
of amortized inference (Kingma and Welling, 2014; Mnih and Gregor, 2014; Rezende et al.,
2014), which enables efficiency. The latter strategy offers several functional advantages,
however: It allows to reformulate the optimization objective, i.e. the variational lower
bound of the log-likelihood, into a very simple and efficiently computable form, which allows
to define procedures that guarantee a monotonic increase of the objective. Monotonicity
thereby represents a distinguishing feature compared to the other aforementioned strategies
for which decreases of the optimization objective during training can not be excluded.

Motivated by the various successful previous applications of truncated posterior ap-
proximations, this thesis investigates a novel fully variational training scheme based on
truncated posteriors with two distinguishing features compared to previous related methods:
First, the novel approach studied here links variational optimization to a very different yet
powerful optimization technique, namely evolutionary algorithms (Bäck, 1996). Second, it
dispenses entirely with model-specific derivations; applicability, in turn, depends solely on
the model’s joint probability distribution being analytically tractable. As such, the novel
method, entitled Evolutionary Variational Optimization (EVO), paves the way for ‘black
box’ inference in generative models with binary latents.

In a series of studies presented in this thesis, EVO’s versatility will be tested by applying
the method to a variety of data models covering a wide range of characteristics, including:
(i) binary and binary-continuous priors, (ii) binary and continuous noise models, (iii) shallow
and deep model architectures, (iv) linear and non-linear latent interaction models including
learnable and non-learnable non-linearities, and (v) global and latent-specific variance
encodings. The numerical experiments presented will focus on image patch modeling
and investigate EVO’s functional efficacy based on standard benchmarks that allow for
comparisons to other approximate inference schemes including (i) factored variational
approaches, (ii) sampling-based procedures, (iii) stochastic variational inference schemes,
and (iv) previous truncated variational methods. In addition, the considered benchmarks
will allow for extensive comparison to recent and standard image processing algorithms
(which are not necessarily based on probabilistic generative models).
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1.1. Outline

1.1 Outline

Chapter 2 develops Evolutionary Variational Optimization (EVO), thereby setting the
foundation for all studies presented in this thesis. The chapter investigates the application
of EVO to three data models, all of which use a shallow architecture and analytical
solutions for model parameter update rules. The concretely investigated models are: Binary
Sparse Coding (BSC; Haft et al., 2004; Henniges et al., 2010), Noisy-OR Bayes Nets
(NOR; e.g., Jernite et al., 2013; Rotmensch et al., 2017; Šingliar and Hauskrecht, 2006),
and Spike-and-Slab Sparse Coding (SSSC; e.g., Goodfellow et al., 2012; Sheikh et al.,
2014; Titsias and Lázaro-Gredilla, 2011). After demonstrating EVO’s ability to accurately
recover ground-truth generating parameters using artificial data, the study presented
extensively evaluates performance on standard image denoising and inpainting benchmarks.
Systematic comparisons to other approximate inference schemes reveal that EVO offers
performance improvements over sampling-based methodologies (Zhou et al., 2012), and
variational approaches using factored posterior assumptions (Titsias and Lázaro-Gredilla,
2011), preselection procedures (Sheikh et al., 2014) and stochastic gradient estimators for
discrete variables (Jang et al., 2017). Evolutionary variational optimization of SSSC models
(termed ES3C), in particular, is shown to establish novel state-of-the-art performances in
benchmark settings with only a single noisy image available for training (referred to as
‘zero-shot’ setting) and, moreover, to be competitive in comparison to models that exploit
more a-priori information.

Chapter 3 presents a case-study that arose in the context of the COVID-19 pandemic
and exemplifies how the ES3C algorithm developed in Ch. 2 may be leveraged in the context
of a concrete application. The study focuses on the specific problem of improving the
visualization of details in electron micrographs of SARS-CoV-2 infection scenes and asks
how ‘zero-shot’ image enhancement algorithms can be exploited for this task. ‘Zero-shot’
approaches are generally appealing in this context given that microscopy imaging data is
available exclusively in the form of noisy images, implying that enhancement algorithms
necessarily require the ability of being directly applicable to noisy data. The study
considers a variety of enhancement algorithms including, besides ES3C, a novel approach
based on Gamma-Poisson mixtures (Monk et al., 2018), and, as competing methods, a
convolutional variational autoencoder (Prakash et al., 2021b), two non-generative denoising
neural networks (Krull et al., 2019a; Quan et al., 2020a), and a standard, non-data-driven
baseline (Dabov et al., 2007). All of these algorithms seem to provide improved visualizations
of structural details that are difficult to identify in the raw noisy electron micrographs. The
study, moreover, suggests that the visualization of fine details such as the SARS-CoV-2
spike protein may be further enhanced through non-standard higher-order statistics of
image reconstruction. The chapter concludes by discussing how data-driven algorithms can
facilitate the interpretation of microscopy imaging data and thereby potentially contribute to
improving the understanding of infectious diseases such as SARS-CoV-2 (which represented
a challenge of very significant societal relevance at the time of writing).

Chapter 4 focuses on deep generative modeling and investigates evolutionary variational
optimization of variational autoencoders (VAEs; Kingma and Welling, 2014; Rezende et al.,
2014) with binary latents. Specifically, the study presented in the chapter explores how
EVO can be applied to replace the DNN-based encoding model of standard VAEs. As
a consequence of dispensing with gradient-based optimization of variational parameters,
EVO allows to bypass a range of auxiliary mechanisms commonly applied by standard VAE
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training methods such as sampling approximation, reparameterization, variance reduction,
and softening of discrete latents. A further distinguishing feature is EVO’s non-amortized
inference scheme which optimizes variational parameters individually per data point; in
contrast, standard VAEs typically train encoding models that are shared across data points.
EVO-based training of binary latent VAEs (termed TVAE) is consequently associated with
a higher computational cost in comparison to standard, amortized VAE approaches. The
decoding model of TVAE is defined analogously to standard VAEs, i.e., latents map to
observables through a DNN non-linearity whose parameters are optimized via gradient
descent. Verification experiments with artificial data demonstrate that TVAE accurately
recovers ground-truth generating parameters including correlations between data-generating
causes. Applications to image patch data reveal that, in contrast to conventionally trained
VAEs, TVAE uses a particularly sparse data encoding, which proves highly effective for
‘zero-shot’ denoising and inpainting tasks.

Chapter 5 marries evolutionary variational optimization with maximal causes analysis
(MCA; Bornschein et al., 2013; Lücke and Sahani, 2008; Puertas et al., 2010). The study
presented in the chapter explores a novel MCA variant that replaces the global variance
parameter used by former MCA and standard SC approaches (as well as by the BSC,
SSSC and VAE models considered in Chs. 2 to 4) with a latent-specific variance encoding.
Accordingly, the parameterization of the investigated model comprises two dictionaries, one
for component means and another one for component variances. The dictionary elements
are combined according to a maximum non-linearity. The maximum non-linearity of the
double-dictionary model represents a distinction to the NOR model considered in Ch. 2,
which uses a noisy-OR non-linearity, and to the VAEs discussed in Ch. 4, which use a
non-linearity parameterized by a DNN. After deriving a learning rule for the variance
dictionary and numerically verifying it on artificial data, the study deploys EVO to learn a
double-dictionary encoding with 1,000 components from natural image patch data.

Chapter 6 provides a concluding discussion of the results presented in this thesis and
points to possible future research directions.

Chapters 2 to 5 correspond to paper manuscripts that resulted from collaborative
research work and have either been published or accepted for publication in peer-reviewed
venues in the form of journal articles or conference proceedings or are in revision for
publication at the time of writing. The full bibliographic reference and author contributions
will be provided in the beginning of each of these chapters. A complete list of publications,
including work that is not part of this thesis, is provided in the Publication List at the end
of this thesis.
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Evolutionary Variational
Optimization

This chapter has appeared as: Jakob Drefs, Enrico Guiraud, Jörg Lücke. Evolutionary
Variational Optimization of Generative Models. The Journal of Machine Learning Research,
23(21):1-51, 2022.

Abstract. We combine two popular optimization approaches to derive learning algo-
rithms for generative models: variational optimization and evolutionary algorithms. The
combination is realized for generative models with discrete latents by using truncated pos-
teriors as the family of variational distributions. The variational parameters of truncated
posteriors are sets of latent states. By interpreting these states as genomes of individuals
and by using the variational lower bound to define a fitness, we can apply evolutionary
algorithms to realize the variational loop. The used variational distributions are very
flexible and we show that evolutionary algorithms can effectively and efficiently optimize
the variational bound. Furthermore, the variational loop is generally applicable (‘black
box’) with no analytical derivations required. To show general applicability, we apply
the approach to three generative models (we use Noisy-OR Bayes Nets, Binary Sparse
Coding, and Spike-and-Slab Sparse Coding). To demonstrate effectiveness and efficiency
of the novel variational approach, we use the standard competitive benchmarks of image
denoising and inpainting. The benchmarks allow quantitative comparisons to a wide range
of methods including probabilistic approaches, deep deterministic and generative networks,
and non-local image processing methods. In the category of ‘zero-shot’ learning (when
only the corrupted image is used for training), we observed the evolutionary variational
algorithm to significantly improve the state-of-the-art in many benchmark settings. For
one well-known inpainting benchmark, we also observed state-of-the-art performance across
all categories of algorithms although we only train on the corrupted image. In general, our
investigations highlight the importance of research on optimization methods for generative
models to achieve performance improvements.

Keywords: Expectation Maximization, Variational Methods, Evolutionary Algorithms,
Sparse Coding, Denoising, Inpainting
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Author Contributions. Based on previous results of the Machine Learning lab at
Oldenburg, the idea of exploring evolutionary algorithms for fully variational optimization
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2.1 Introduction

Variational approximations (Jordan et al., 1999; Neal and Hinton, 1998; Saul and Jordan,
1995; Saul et al., 1996, and many more) are popular and successful approaches to efficiently
train probabilistic generative models. In the common case when inference based on a
generative data model is not tractable or not scalable to desired problem sizes, variational
approaches provide approximations for an efficient optimization of model parameters.
Here we focus on variational expectation maximization (variational EM) to derive learning
algorithms (Jordan et al., 1999; Neal and Hinton, 1998), while acknowledging that variational
approaches are also well suited and successful in the context of fully Bayesian (non-
parametric) approaches (e.g. Ghahramani and Jordan, 1995; Zhou et al., 2009). Variational
EM typically seeks to approximate intractable full posterior distributions by members of
a specific family of variational distributions. Prominent such families are the family of
Gaussian distributions (e.g., Kingma and Welling, 2014; Opper and Winther, 2005; Rezende
et al., 2014) and the family of factored distributions (e.g., Jordan et al., 1999), with the
latter often being referred to as mean field approaches. Variational approaches can, in
general, be regarded as one of two large classes of approximations with the other being
made up of sampling approximations. Variational training can be very efficient and has
been shown to realize training of very large-scale models (Blei et al., 2003; Kingma and
Welling, 2014; Rezende et al., 2014) with thousands or even millions (Sheikh and Lücke,
2016) of parameters. In terms of efficiency and scalability, they are often preferred to
sampling approaches (see, e.g., Angelino et al., 2016, Section 6, for a discussion), although
many successful algorithms often combine both variational and sampling techniques (e.g.,
Dayan et al., 1995; Kingma and Welling, 2014; Rezende et al., 2014; Shelton et al., 2011).

One drawback of variational approaches lies in their limits in modeling the posterior
structure, which can result in biases introduced into the learned parameters. Gaussian
variational distributions, by definition, only capture one posterior mode, for instance, and
fully factored approaches (i.e., mean field) do not capture explaining-away effects including
posterior correlations. Gaussian variational EM is consequently particularly popular for
generative models known to result in posteriors with essentially one mode (Opper and
Archambeau, 2009; Opper and Winther, 2005; Seeger, 2008). Mean field approaches are
more broadly applied but the deteriorating effects of assuming a-posteriori independence
have repeatedly been pointed out and discussed in different contexts (e.g., Ilin and Valpola,
2005; Mackay, 2001; Sheikh et al., 2014; Turner and Sahani, 2011; Vértes and Sahani,
2018). A further drawback of variational approaches, which they share with most sampling
approaches, is the challenge of analytically deriving an appropriate approximation for any
new generative model. While solutions specific to a generative model are often the best
choice w.r.t. efficiency, it has been argued (see, e.g. Ranganath et al., 2014; Steinruecken
et al., 2019) that the necessary expertise to derive such solutions is significantly taxing the
application of variational approaches in practice.

The drawbacks of variational approaches have motivated novel research directions. Early
on, mean field approaches were generalized, for instance, to contain mutual dependencies
(e.g., structured mean field; Bouchard-Côté and Jordan, 2009; MacKay, 2003; Murphy,
2012; Saul and Jordan, 1995) and, more recently, methods to construct arbitrarily complex
approximations to posteriors, e.g., using normalizing flows, were suggested (Kingma et al.,
2016; Rezende and Mohamed, 2015). Ideally, a variational approximation should be both
very efficiently scalable as well as generally applicable. Also, with variational inference
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becoming increasingly popular for training deep unsupervised models (e.g., Kingma et al.,
2016; Rezende et al., 2014), the significance of fast and flexible variational methods has
further increased. Not surprisingly, however, increasing both scalability and generality
represents a major challenge because, in general, a trade-off can be observed between the
flexibility of the used variational method on the one hand, and its scalability and task
performance on the other.

In order to contribute to novel methods that are both flexible and scalable, we consider
here generative models with discrete latents and explore the combination of variational and
evolutionary optimization. For our purposes, we use truncated posteriors as a family of
variational distributions. In terms of scalability, truncated posteriors suggest themselves
as their application has enabled training of very large generative models (Forster and
Lücke, 2018; Hirschberger et al., 2022; Sheikh and Lücke, 2016). Furthermore, the family
of truncated posteriors is directly defined by the joint distribution of a given generative
model, which allows for algorithms that are generically applicable to generative models
with discrete latents. While truncated posteriors have been used and evaluated in a series
of previous studies (e.g. Dai and Lücke, 2014; Lücke and Eggert, 2010; Shelton et al., 2017),
they have previously not been optimized variationally, i.e., rather than seeking the optimal
members of the variational family, truncations were estimated by one-step feed-forward
functions. Instead, we use here a fully variational optimization loop which improves the
variational bound by using evolutionary algorithms. For mixture models, fully variational
approaches based on truncated posteriors have recently been suggested (Forster et al., 2018;
Hirschberger et al., 2022), but they exploit the non-combinatorial nature of mixtures to
derive speed-ups for large scales (also compare Hughes and Sudderth, 2016). Here we, for
the first time, apply a fully variational approach based on truncated posteriors in order to
optimize more complex generative models (see Lücke et al., 2018 and Guiraud et al., 2018
for preliminary results).

2.2 Evolutionary Variational Optimization

A probabilistic generative model stochastically generates data points (here referred to as ~y )
using a set of hidden (or latent) variables (referred to as ~s). The generative process can be
formally defined by a joint probability p(~s, ~y | Θ), where Θ is the set of all model parameters.
We will introduce concrete models in Sec. 2.3. To start, let us consider general models with
binary latents. In such case p(~y | Θ) =

∑
~s p(~s, ~y | Θ), where the sum is taken over all

possible configurations of the latent variable ~s ∈ {0, 1}H with H denoting the length of the
latent vector. Given a set of N data points Y = {~y (n)}n=1,...,N , we seek parameters Θ that
maximize the data likelihood L(Θ) =

∏N
n=1 p(~y

(n) | Θ). Here we use an approach based
on Expectation Maximization (EM; e.g. Gupta and Chen, 2011, for a review). Instead of
maximizing the (log-)likelihood directly, we follow, e.g., Saul and Jordan (1995) and Neal
and Hinton (1998), and iteratively increase a variational lower bound (referred to as free
energy or ELBO), which is given by:

F(q,Θ) =

N∑
n=1

∑
~s

q(n)(~s ) log
(
p(~y (n), ~s | Θ)

)
+

N∑
n=1

H[q(n)]. (2.1)

q(n)(~s ) are variational distributions and H[q(n)] = −
∑

~s q
(n)(~s ) log

(
q(n)(~s )

)
denotes the

entropy of these distributions. We seek distributions q(n)(~s ) that approximate the intractable
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posterior distributions p(~s | ~y (n),Θ) as well as possible and that, at the same time, result in
tractable parameter updates. If we denote the parameters of the variational distributions
by Λ, then a variational EM algorithm consists of iteratively maximizing F(Λ,Θ) w.r.t.
Λ in the variational E-step and w.r.t. Θ in the M-step. In this respect, the M-step can
maintain the same functional form as for exact EM but expectation values now have to be
computed with respect to the variational distributions.

2.2.1 Evolutionary Optimization of Truncated Posteriors

Instead of using specific functional forms such as Gaussians or factored (mean field)
distributions for q(n)(~s ), we choose, for our purposes, truncated posterior distributions (see,
e.g., Hirschberger et al., 2022; Lücke and Eggert, 2010; Lücke and Forster, 2019; Sheikh
et al., 2014; Shelton et al., 2017):

q(n)(~s | K(n)
, Θ̂) :=

p
(
~s | ~y (n), Θ̂

)
∑

~s ′∈K(n)

p
(
~s ′ | ~y (n), Θ̂

)δ(~s ∈ K(n)
) =

p
(
~s, ~y (n) | Θ̂

)
∑

~s ′∈K(n)

p
(
~s ′, ~y (n) | Θ̂

)δ(~s ∈ K(n)
),

(2.2)
where δ(~s ∈ K(n)

) is equal to 1 if a state ~s is contained in the set K(n) and 0 otherwise. The
variational parameters are now given by Λ = (K, Θ̂) where K = {K(n)}n=1,...,N . With this
choice of variational distributions, expectations w.r.t. the full posterior can be approximated
by efficiently computable expectations w.r.t. truncated posteriors (2.2):

Eq(n)

[
g(~s )

]
=

∑
~s∈K(n)

g(~s ) p(~s, ~y (n) | Θ̂)∑
~s ′∈K(n)

p(~s ′, ~y (n) | Θ̂)
. (2.3)

Instead of estimating the relevant states of K(n) using feed-forward (preselection) functions
(e.g., Lücke and Eggert, 2010; Sheikh et al., 2014, 2019), we here apply a fully variational
approach, i.e., we define a variational loop to optimize the variational parameters. Based
on the specific functional form of truncated posteriors, optimal variational parameters
Λ = (K, Θ̂) are given by setting Θ̂ = Θ and by seeking K which optimize (see Lücke, 2019,
for details):

F(K(1...N),Θ) =
N∑
n=1

log
( ∑
~s∈K(n)

p
(
~y (n), ~s | Θ

))
. (2.4)

Equation (2.4) represents a reformulation of the variational lower bound (2.1) for Θ̂ = Θ.
Because of the specific functional form of truncated posteriors, this reformulation does not
contain an explicit entropy term, which allows for an efficient optimization using pairwise
comparisons. More concretely, the variational bound is provably increased in the variational
E-step if the sets K(n) are updated by replacing a state ~s in K(n) with a new state ~s new

such that:
p(~s new, ~y (n) | Θ) > p(~s, ~y (n) | Θ) , (2.5)

where we make sure that any new state ~s new is not already contained in K(n) . By successively
replacing states (or bunches of states), we can keep the size of each set K(n) constant. We
use the same constant size S for all sets (i.e., |K(n) | = S for all n), which makes S an
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important parameter for the approximation. The crucial remaining question is how new
states can be found such that the lower bound (2.4) is increased efficiently.

A distinguishing feature when using the family of truncated posteriors as variational
distributions is the type of variational parameters, which are given by sets of latent states (i.e.
by the sets K(n)). As these states, for binary latents, are given by bit vectors (~s ∈ {0, 1}H),
we can here interpret them as genomes of individuals. Evolutionary algorithms (EAs) then
emerge as a very natural choice: we can use EAs to mutate and select the bit vectors
~s ∈ {0, 1}H of the sets K(n) in order to maximize the lower bound (2.4). In the EA
terminology, the variational parameters K(n) then become populations of individuals, where
each individual is defined by its latent state ~s ∈ {0, 1}H (in the following, we will use
individual to also refer to its genome/latent state).

For each population K(n) , we will use EAs with standard genetic operators (parent
selection, mutation and crossover) in order to produce offspring, and we will then use the
offspring in order to improve each population. The central function for an EA is the fitness
function it seeks to optimize. For our purposes, we will define the fitness f (~s; ~y (n),Θ) of the
individuals ~s to be a monotonic function of the joint p(~s, ~y (n) | Θ) of the given generative
model, i.e., we define the fitness function to satisfy:

f (~s new; ~y (n),Θ) > f (~s; ~y (n),Θ) ⇔ p(~s new, ~y (n) | Θ) > p(~s, ~y (n) | Θ) . (2.6)

A fitness satisfying Eq. (2.6) will enable the selection of parents that are likely to produce
offspring with high joint probability p(~s new, ~y (n) | Θ). Before we detail how the offspring is
used to improve a population K(n) , we first describe how the EA generates offspring. For
each population K(n) , we set K(n)

0 = K(n) and then iteratively generate new generations
K(n)

g by successive application of Parent Selection, Crossover, and Mutation operators:

Parent Selection. To generate offspring, Np parent states are first selected from the
initial population K(n)

0 (see Fig. 2.1). Ideally, the parent selection procedure should be
balanced between exploitation of parents with high fitness (which might be expected to
be more likely to produce children with high fitness) and exploration of mutations of poor
performing parents (which might be expected to eventually produce children with high
fitness while increasing population diversity). Diversity is crucial, as the K(n) are sets of
unique individuals and therefore the improvement of the overall fitness of the population
depends on generating as many as possible different children with high fitness. In our
numerical experiments, we explore both random uniform selection of parents and fitness-
proportional selection of parents (i.e., parents are selected with a probability proportional
to their fitness). For the latter case, we define fitness here as follows:

f (~s; ~y (n),Θ) := ˜log p(~s, ~y (n) | Θ) + const. (2.7)

The term ˜log p(~s, ~y (n) | Θ) denotes a monotonously increasing function of the joint
p(~s, ~y (n) | Θ) which is more efficiently computable and which has better numerical stability
than the joint itself. ˜log p(~s, ~y (n) | Θ) is defined as the logarithm of the joint where sum-
mands that do not depend on ~s have been elided (see Sec. 2.S1 for examples). As the fitness
(2.7) satisfies (2.6), the parents are likely to have high joint probabilities if they are selected
proportionally to f (~s; ~y (n),Θ). The constant term in Eq. (2.7) is introduced to ensure that
the fitness function always takes positive values for fitness proportional selection. The
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2.2. Evolutionary Variational Optimization

Figure 2.1: Illustration of the variational optimization using genetic operators.

constant is defined to be const =
∣∣2 min

~s∈K(n)
g

˜log p(~s, ~y (n) | Θ)
∣∣. For a given population of

individuals K(n)

g , the value of const is thus constant throughout the generation of the next
population K(n)

g+1. According to Eq. (2.7), the fitness function can be evaluated efficiently
given that the joint p(~s, ~y (n) | Θ) can efficiently be computed (which we will assume here).

Crossover. For the crossover step, all the parent states are paired in each possible way.
Each pair is then assigned a number c from 1 to H − 1 with uniform probability (c defines
the single crossover point). Finally, each pair swaps the last H− c bits to generate offspring.
The procedure generates Nc = Np(Np − 1) children. The crossover step can be skipped,
making the EA more lightweight but decreasing variety in the offspring.

Mutation. Finally, each child undergoes one random bitflip to further increase offspring
diversity. In our experiments, we compare results of random uniform selection of the bits
to flip with a more refined sparsity-driven bitflip algorithm (the latter scheme assigns
to 0’s and 1’s different probabilities of being flipped in order to produce children with a
sparsity compatible with the one learned by a given model; details in Sec. 2.S2). If the
crossover step is skipped, the parent states are copied Nm times (Nm can be chosen between
1 ≤ Nm ≤ H) and offspring is produced by mutating each copy by one random bitflip,
resulting in Nc = NpNm children.

The application of the genetic operators is iteratively repeated. The offspring K(n)

g+1 pro-
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Algorithm 1: Evolutionary Variational Optimization (EVO).
define selection, crossover and mutation operators;
set hyperparameters S, Ng, etc.;
initialize model parameters Θ;
for each n: populate set K(n) with S distinct latent states (|K(n) | = S);
repeat

for n = 1, . . . , N do

set K(n)

0 = K(n) ;

for g = 1, . . . , Ng do

K(n)

g = mutation
(
crossover

(
selection

(
K(n)

g−1

)))
;

K(n)
= K(n) ∪ K(n)

g ;

remove those (|K(n) | − S) elements ~s in K(n) with lowest p(~s, ~y (n) |Θ);

use M-steps with Eq. (2.3) to update Θ;

until parameters Θ have sufficiently converged ;

duced by the population K(n)

g becomes the new population from which parents are selected
(Fig. 2.1). After Ng iterations, we obtain a large number of new individuals (i.e., all the
newly generated populations K(n)

g with g = 1, . . . , Ng). The new populations of individuals
can now be used to improve the original population K(n) such that a higher value for the
lower bound (2.4) is obtained. To find the best new population for a given n, we collect all
generated populations (all K(n)

g with g = 1, . . . , Ng) and unite them with K(n) . We then
reduce this larger set back to the population size S, and we do so by only keeping those S
individuals with the highest1 joints p(~s, ~y (n) | Θ). By only keeping the states/individuals
with highest joints, the update procedure for K(n) is guaranteed to monotonically increase
the variational lower bound (2.4) since the variational bound is increased if criterion (2.5)
is satisfied.

Algorithm 1 summarizes the complete variational algorithm; an illustration is provided
in Fig. 2.1. As the variational E-step is realized using an evolutionary algorithm, Alg. 1
will from now on be referred to as Evolutionary Variational Optimization (EVO). The EVO
algorithm can be trivially parallelized over data-points. For later numerical experiments,
we will use a parallelized implementation of EVO that can be executed on several hundreds
of computing cores (for further technical details see Sec. 2.S6.1 and also compare Salimans
et al., 2017)2. For the numerical experiments, we will indicate which parent selection
procedure (“fitparents” for fitness-proportional selection, “randparents” for random uniform
selection) and which bitflip algorithm (“sparseflips” or “randflips”) are used in the variational
loop. The term “cross” will be added to the name of the EA when crossover is employed.

1 Instead of selecting the S elements with largest joints, we in practice remove the (|K
(n)

| − S) elements of
K

(n)

with the lowest joint probabilities. Both procedures are equivalent.
2 The source code can be accessed via https://github.com/tvlearn.
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2.2.2 Related Work on Applications of Evolutionary Approaches to
Learning

Evolutionary algorithms (EAs) have repeatedly been applied to learning algorithms (e.g.
Goldberg, 1989). In the context of reinforcement learning, for instance, evolution strategies
have successfully been used as an optimization alternative to Q-learning and policy gradients
(Salimans et al., 2017). EAs have also previously been applied to unsupervised learning
based on generative models, also in conjunction with (or as substitute for) expectation
maximization (EM). Myers et al. (1999) used EAs to learn the structue of Bayes Nets, for
instance. Pernkopf and Bouchaffra (2005) have used EAs for clustering based on Gaussian
mixture models (GMMs), where GMM parameters are updated relatively conventionally
using EM; EAs are used to select the best GMM models for the clustering problem (using
a minimum description length criterion). Work by Tohka et al. (2007) uses EAs for a more
elaborate initialization of Finite Mixture Models, which is followed by EM. Work by Tian
et al. (2011) goes further and combines EAs with a variational Bayes approach for GMMs.
The algorithm they suggested is based on a fully Bayesian GMM approach with hyperpriors
in the place of standard GMM parameters. The algorithm first uses an EA to find good
hyperparameters; given the hyperparameters, the GMM is then trained using standard (but
variational) EM iterations. The use of EAs by Pernkopf and Bouchaffra (2005) and Tian
et al. (2011) is similar to their use for deep neural network (DNN) training. For DNNs,
EAs are applied to optimize network hyperparameters in an outer loop (Loshchilov and
Hutter, 2016; Oehmcke and Kramer, 2018; Real et al., 2017; Stanley and Miikkulainen,
2002; Suganuma et al., 2017, etc.) while DNN weight parameters are at the same time
trained using standard back-propagation algorithms. Yet other approaches have applied
EAs to directly optimize a clustering objective, using EAs to replace EM approaches for
optimization (compare Hruschka et al., 2009). Similarly, in a non-probabilistic setting,
EAs have been used to replace back-propagation for DNN training (see, e.g., Prellberg and
Kramer, 2018, and references therein). Also in a non-probabilistic setting, for sparse coding
with weights optimized based on a l1-penalized reconstruction objective (e.g. Olshausen and
Field, 1996), an EA tailored to this objective has been used to address maximum a-posteriori
optimization (Ahmadi and Salari, 2016). In contrast to all such previous applications, the
EVO approach (Alg. 1) applies EAs as an integral part of variational EM, i.e., EAs address
the key optimization problem of variational EM in the inner variational loop.

2.2.3 Data Estimator

As part of the numerical experiments, we will apply EVO to fit generative models to
corrupted data which we will aim to restore; for instance, we will apply EVO to denoise
images corrupted by additive noise or to restore images with missing data (see Sec. 2.4).
Here we illustrate how an estimator for such data reconstruction can be derived (details
are given in Sec. 2.S3). Generally speaking, our aim is to compute estimates ~y est based
on observations ~y obs. If data points are corrupted by noise but not by missing values, we
define the observations ~y obs to be equal to the data points ~y ∈ RD and compute estimates
yest
d for every d = 1, . . . , D with D denoting the dimensionality of the data. In the presence
of missing values, we define data points to comprise an observed part ~y obs and a missing
part ~ymiss = ~y \~y obs, and we aim to compute estimates ~y est for the missing part. A data
estimator can be derived based on the posterior predictive distribution p(~y est | ~y obs). Here
we will sketch how to derive an estimator for general models with binary latents and
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continuous observables (in Sec. 2.S3 we provide a detailed derivation and show how to
extend it to models with binary-continuous latents). The posterior predictive distribution
for a model with binary latents and continuous observables is given by:

p(~y est | ~y obs,Θ) =
∑
~s

p(~y est |~s,Θ) p(~s | ~y obs,Θ). (2.8)

We choose to take expectations w.r.t. the posterior predictive distribution, which leads to
the following estimator:

Ep(~y est | ~y obs,Θ)

[
yest
d

]
= Ep(~s | ~y obs,Θ)

[
Ep(yest

d |~s,Θ)

[
yest
d

]]
. (2.9)

The inner expectation in Eq. (2.9) can be identified with the mean of the distribution of the
observables given the latents. This distribution is part of the definition of the generative
model (compare Sec. 2.3.1). The outer expectation in Eq. (2.9) is taken w.r.t. the posterior
distribution of the latents. Such expectation can efficiently be approximated using truncated
expectations (2.3). Details and examples of data estimators for concrete models are given
in Sec. 2.S3.

2.3 Application to Generative Models, Verification and Scal-
ability

Considering Alg. 1, observe that probabilistic inference for the algorithm is fully defined
by the joint p(~s, ~y (n) |Θ) of a given generative model and by a set of hyperparameters
for the optimization procedure. No additional and model specific derivations are required
for the variational E-step, which suggests Alg. 1 for ‘black box’ inference for models with
binary latents. Using three different generative models, we here (A) verify this ‘black
box’ applicability, (B) numerically evaluate the algorithm’s ability to recover generating
parameters, and (C) show scalability of the approach by applying it to large-scale generative
models. To be able to study the properties of the novel variational optimization procedure,
we consider generative models for which parameter update equations (M-steps) have been
derived previously.

2.3.1 Used Generative Models

The generative models we use are Noisy-OR Bayes Nets (binary latents and binary observ-
ables), Binary Sparse Coding (binary latents and continuous observables), and Spike-and-
Slab Sparse Coding (binary-continuous latents and continuous observables).

Noisy-OR Bayes Nets. A Noisy-OR Bayes Net (NOR; e.g., Jernite et al., 2013; Rot-
mensch et al., 2017; Šingliar and Hauskrecht, 2006) is a non-linear bipartite data model
with all-to-all connectivity between the layer of hidden and observed variables (and no
intra-layer connections). Latents and observables both take binary values, i.e., ~s ∈ {0, 1}H
and ~y ∈ {0, 1}D with H and D denoting the dimensions of the latent and observed spaces.
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The model assumes a Bernoulli prior for the latents, and non-zero latents are then combined
via the noisy-OR rule:

p (~s | Θ) =
H∏
h=1

B(sh;πh), p (~y | ~s,Θ) =
D∏
d=1

Nd(~s )yd(1−Nd(~s ))1−yd , (2.10)

where B(sh;πh) = πshh (1 − πh)1−sh and where Nd(~s ) := 1 −
∏H
h=1(1 −Wdhsh). In the

context of the NOR model, Θ = {~π,W}, where ~π is the set of values πh ∈ [0, 1] representing
the prior activation probabilities for the hidden variables sh, and W is a D×H matrix of
values Wdh ∈ [0, 1] representing the probability that an active latent variable sh activates
the observable yd. M-step update rules for the NOR model can be derived by inserting
Eq. (2.10) into the lower bound (2.1) and by then taking derivatives of the resulting
expression w.r.t. all model parameters. The update rule for the W parameter does not allow
for a closed-form solution, and a fixed-point equation is employed instead. The resulting
M-step equations are shown in Sec. 2.S4.

Binary Sparse Coding. Binary Sparse Coding (BSC; Haft et al., 2004; Henniges et al.,
2010) is an elementary sparse coding model for continuous data with binary latent and
continuous observed variables. Similar to standard sparse coding (Lee et al., 2007; Olshausen
and Field, 1997), BSC assumes that, given the latents, the observables follow a Gaussian
distribution. BSC and standard sparse coding differ from each other in their latent variables.
In standard sparse coding, latents take continuous values and are typically modeled, e.g.,
with Laplace or Cauchy distributions. BSC uses binary latents ~s ∈ {0, 1}H which are
assumed to follow a Bernoulli distribution B(sh;π) with the same activation probability π
for each hidden unit sh. The combination of the latents is described by a linear superposition
rule. Given the latents, the observables ~y ∈ RD are independently and identically drawn
from a Gaussian distribution:

p (~s | Θ) =

H∏
h=1

B(sh;π), p (~y | ~s,Θ) =

D∏
d=1

N (yd;

H∑
h=1

Wdhsh, σ
2). (2.11)

The parameters of the BSC model are Θ = (π, σ,W ). W is a D ×H matrix whose entries
Wdh contain the weights associated with each hidden unit sh and obervable yd; σ determines
the standard deviation of the Gaussian. The M-step equations for BSC can be derived
analogously to the NOR model by inserting Eq. (2.11) into Eq. (2.1) and by then optimizing
the resulting expression w.r.t. each model parameter (compare, e.g., Henniges et al., 2010).
As opposed to NOR, each of the BSC update equations can be derived in closed-form. The
explicit expressions are listed in Sec. 2.S4.

Spike-and-Slab Sparse Coding. As a final example, we consider a more expressive
data model and use EVO to optimize the parameters of a spike-and-slab sparse coding
(SSSC) model. SSSC extends the generative model of BSC in the sense that it uses a
spike-and-slab instead of a Bernoulli prior distribution. The SSSC model has been used in a
number of previous studies and in a number of variants (Goodfellow et al., 2012; Lücke and
Sheikh, 2012; Sheikh et al., 2014; Titsias and Lázaro-Gredilla, 2011, and many more). It
can be formulated using two sets of latents, ~s ∈ {0, 1}H and ~z ∈ RH , which are combined
via pointwise multiplication s.t. (~s� ~z )h = shzh. Here we take the continuous latents to
be distributed according to a multivariate Gaussian with mean ~µ and a full covariance
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matrix Ψ. The binary latents follow a Bernoulli distribution with individual activation
probabilities πh, h = 1, . . . ,H:

p (~s | Θ) =
H∏
h=1

B(sh;πh), p (~z | Θ) = N (~z; ~µ,Ψ). (2.12)

As in standard sparse coding, SSSC assumes components to combine linearly. The linear
combination then determines the mean of a univariate Gaussian for the observables:

p (~y | ~s, ~z,Θ) = N (~y;
H∑
h=1

~Whshzh, σ
21) (2.13)

where W is a D×H matrix with columns ~Wh and where 1 is the unit matrix. The M-step
update rules of the SSSC model can be derived by taking derivatives of the free energy

F(q,Θ) =
N∑
n=1

Eq(n)

[
log(p(~y (n), ~s, ~z | Θ))

]
+

N∑
n=1

H[q(n)] (2.14)

w.r.t. each of the model parameters Θ = (~π, σ,W, ~µ,Ψ). The term Eq(n)

[
f(~s, ~z )

]
in

Eq. (2.14) denotes the expectation of f(~s, ~z ) w.r.t. a variational distribution q(n)(~s, ~z ):

Eq(n)

[
f(~s, ~z )

]
=
∑
~s

∫
q(n)(~s, ~z )f(~s, ~z ) d~z. (2.15)

The term H[q(n)] in Eq. (2.14) denotes the entropy −Eq(n)

[
log(q(n)(~s, ~z ))

]
of the variational

distributions. For a detailed derivation of the SSSC M-step equations see Sheikh et al.
(2014) and compare Goodfellow et al. (2012). For SSSC, all M-step updates (A) have
closed-form solutions and (B) contain as arguments expectation values (2.15). Importantly
for applying EVO, all these expectation values can be reformulated as expectations w.r.t.
the posterior over the binary latent space. For more details see Sec. 2.S4 and compare
Sheikh et al. (2014). Based on the reformulations, the expectations w.r.t. the posterior over
the binary latent space can be approximated using the truncated expectations (2.3). Since
the joint p(~y,~s | Θ) of the SSSC model is computationally tractable and given by

p(~y,~s | Θ) = B(~s;~π) N (~y; W̃~s ~µ,C~s), (2.16)

with C~s = σ21+ W̃~s Ψ W̃T
~s , (W̃~s)dh = Wdhsh s.t. W (~s� ~z ) = W̃~s ~z, the variational lower

bound (2.4) can be efficiently optimized using Alg. 1. The EVO algorithm consequently
provides a novel, evolutionary approach to efficiently optimize the parameters of the SSSC
data model.

2.3.2 Verification: Recovery of Generating Parameters

First, we verified EVO by training NOR, BSC and SSSC models on artificial data for
which the ground-truth generative parameters were known. We used the bars test as a
standard setup for such purposes (Földiák, 1990; Hoyer, 2003; Lücke and Sahani, 2008). We
started with a standard bars test using a weight matrix W gen whose Hgen = 2

√
D columns

represented generative fields in the form of horizontal and vertical bars. We considered a
dictionary of Hgen = 10 (Lücke and Eggert, 2010; Lücke and Sahani, 2008; Lücke et al.,
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Figure 2.2: Recovering ground-truth generative parameters of NOR, BSC and SSSC models
on artificial data using EVO (see text for details).

2018; Sheikh and Lücke, 2016) components. For NOR, we set the amplitudes of the bars
and of the background to a value of 0.8 and 0.1, respectively; for BSC and SSSC, the bar
amplitudes were uniformly randomly set to 5 and -5, and the background was set to 0. For
BSC and SSSC, we chose (σgen)2 = 1 as ground-truth variance parameter; for SSSC, we
furthermore defined ~µgen = ~0 and Ψgen = 1.

For each model, 30 data sets of N = 5,000 samples were generated. We used πgen
h =

2
Hgen ∀h = 1, . . . ,Hgen (see Fig. 2.2 for a few examples). We then applied EVO to train
NOR, BSC and SSSC models with H = Hgen = 10 components (EVO hyperparameters
are listed in Tab. 2.S2 in Sec. 2.S6.2). For NOR, priors πh were initialized to an arbitrary
sparse value (typically 1

H ) while the initial weights W init were sampled from the standard
uniform distribution. The K(n) sets were initialized by sampling bits from a Bernoulli
distribution that encouraged sparsity. In our experiments, the mean of the distribution
was set to 1

H . For BSC, the initial value of the prior was defined πinit = 1
H ; the value of

(σinit)2 was set to the variance of the data points averaged over the observed dimensions.
The columns of the W init matrix were initialized with the mean of the data points to which
some Gaussian noise with a standard deviation of 0.25σinit was added. The initial values
of the K(n) sets were drawn from a Bernoulli distribution with p(sh = 1) = 1

H . To initialize
the SSSC model, we uniformly randomly drew ~πinit and ~µinit from the interval [0.1, 0.5] and
[1, 5], respectively (compare Sheikh et al., 2014) and set Ψinit to the unit matrix. For SSSC,
we proceeded as we had done for the BSC model to initialize the dictionary W , the variance
parameter σ2 and the sets K(n) . The evolution of the model parameters during learning is
illustrated in Fig. 2.2 for an exemplary run of the “fitparents-randflip” EA (illustrations of
the parameters σ of the BSC model and Ψ, ~µ and σ of the SSSC model are depicted in
Fig. 2.S1 in Sec. 2.S6).

Fig. 2.2 illustrates that the ground-truth generative parameters can accurately be
recovered for each model using EVO. For all models, the bar-like structure of the ground-
truth generative fields (GFs) is correctly captured (in permuted order) in the learned GFs.
For the SSSC model, the GFs, latent means and latent covariances are recovered in scaled
versions compared to the respective ground-truth values. This effect can be considered as a
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consequence of the spike-and-slab prior which allows for multiple equivalent solutions for
the amplitudes of W and ~z given a data point. We further used the setup with artificial
data and known ground-truth generative parameters to explore EAs with different types
of combinations of genetic operators. Different combinations of genetic operators resulted
in different degrees of ability to recover the ground-truth parameters. For instance, for
NOR trained with EVO, the combination of random uniform parent selection, single-point
crossover and sparsity-driven bitflip (“randparents-cross-sparseflips”) resulted in the best
behavior for bars test data (also compare Guiraud et al., 2018). For BSC and SSSC
trained with EVO, the best operator combinations were “fitparents-cross-sparseflips” and
“fitparents-randflips”, respectively (compare Fig. 2.S2 in Sec. 2.S6). In general, the best
combination of operators will depend on the data model and the data set used.

2.3.3 Scalability to Large Generative Models

Having verified the ability of EVO to recover ground-truth generating parameters for
the three generative models of Sec. 2.3.1, we continued with investigating how well the
evolutionary approximation was able to optimize large-scale models. Scalability is a
property of crucial importance for any approximation method, and large-scale applicability
is essential to accomplish many important data processing tasks based on generative models.
To investigate scalability, we used natural image patches which are known to be richly
structured and which require large models to appropriately model their distribution. We
used image patches extracted from a standard image database (van Hateren and van der
Schaaf, 1998). We trained the NOR, BSC and SSSC data models using the “fitparents-
cross-sparseflips” variant of EVO as we observed this operator combination to perform well
across all models for this data.

For NOR, we considered raw image patches, i.e., images which were not mean-free or
whitened and reflected light intensities relatively directly. We used image patches that
were generated by extracting random 10× 10 subsections of a single 255× 255 image of
overlapping grass wires (part of image 2338 of the database). We clamped the brightest
1% pixels from the data set, and scaled each patch to have gray-scale values in the range
[0, 1]. From these patches, we then created N = 30,000 data points ~y (n) with binary
entries by repeatedly choosing a random gray-scale image and sampling binary pixels from
a Bernoulli distribution with parameter equal to the pixel values of the patches with [0, 1]
gray-scale. Because of mutually occluding grass wires in the original image, the generating
components of the binary data could be expected to follow a non-linear superimposition,
which motivated the application of a non-linear generative model such as NOR. For the
data with D = 10× 10 = 100 observables, we applied a NOR model with H = 100 latents
(EVO hyperparameters are listed in Tab. 2.S2 in Sec. 2.S6.2). During training, we clamped
the priors πh to a minimum value of 1/H to encourage the model to make use of all
generative fields. Fig. 2.3 (top) shows a random selection of 50 generative fields learned by
the NOR model (the full dictionary is displayed in Fig. 2.S3 in Sec. 2.S6). Model parameter
initialization followed the same procedure as for the bars tests. As can be observed, EVO
is efficient for large-scale NOR on real data. Many of the generative fields of Fig. 2.3 (top)
resemble curved edges, which is in line with expectations and with results, e.g., as obtained
by Lücke and Sahani (2008) with another non-linear generative model.

For the BSC generative model, we are not restricted to positive data. Therefore, we can
use a whitening procedure as is customary for sparse coding approaches (Olshausen and
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Figure 2.3: Dictionary elements learned by NOR (top), BSC (middle) and SSSC (bottom)
models on natural image patches. The models were trained on separate data sets that
had been obtained using different preprocessing schemes (see text). For NOR, a random
selection of 50 out of 100 fields is displayed; for BSC the fields corresponding to the 60 out
of 300 most active hidden units are shown; for SSSC a random selection of 60 out of 512
fields is displayed. The full dictionaries learned by the individual models are depicted in
Fig. 2.S3 in Sec. 2.S6.

Field, 1997). We employed N = 100,000 image patches of size D = 16× 16 = 256 which
were randomly picked from the van Hateren data set. The highest 2% of the pixel values
were clamped to compensate for light reflections, and patches without significant structure
were removed to prevent amplifications of very small intensity differences. The whitening
procedure we subsequently applied is based on ZCA whitening (Bell and Sejnowski, 1997)
retaining 95% of the variance (compare Exarchakis and Lücke, 2017). We then applied
EVO to fit a BSC model with H = 300 components to the data (EVO hyperparameters are
listed in Tab. 2.S2 in Sec. 2.S6.2). To initialize the model and the variational parameters, we
proceeded as we had done for the bars test (Sec. 2.3.2). Fig. 2.3 (middle) depicts some of the
generative fields learned by the BSC model. These fields correspond to the 60 hidden units
with highest prior activation probability (see Fig. 2.S3 in Sec. 2.S6 for the full dictionary).
The obtained generative fields primarily take the form of the well-known Gabor functions
with different locations, orientations, phase, and spatial frequencies.

We collected another N = 100,000 image patches of size D = 12× 12 = 144 from the
van Hateren data set to fit a SSSC model with H = 512 components (EVO hyperparameters
listed in Tab. 2.S2 in Sec. 2.S6.2). We applied the same preprocessing as for the BSC
model and initialized the model and the variational parameters similarly to the bars test.
Fig. 2.3 (bottom) shows a random selection of 60 out of the 512 generative fields learned by
the SSSC model (the full dictionary is displayed in Fig. 2.S3 in Sec. 2.S6). The experiment
shows that EVO can be applied to train complex generative models on large-scale realistic
data sets; the structures of the learned generative fields (a variety of Gabor-like and a few
globular fields) are in line with observations made in previous studies which applied SSSC
models to whitened image patches (see, e.g., Sheikh and Lücke, 2016).
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2.4 Performance Comparison on Denoising and Inpainting
Benchmarks

So far, we have verified that EVO can be applied to the training of elementary generative
models such as Noisy-OR Bayes Nets (NOR) and Binary Sparse Coding (BSC) but also to
the more expressive model of spike-and-slab sparse coding (SSSC) which features a more
flexible prior than BSC or standard sparse coding. To perform variational optimization
for these models, no additional analytical steps were required and standard settings of
optimization parameters were observed to work well. However, an important question is
how well EVO is able to optimize model parameters compared to other methods. And
more generally, how well do generative model algorithms perform in benchmarks if their
parameters are optimized by EVO? Here we will address these questions using two standard
and popular benchmarks: image denoising and image inpainting. These two benchmarks
offer themselves for performance evaluation as benchmark data is available for a large
range of different algorithms (including algorithms based on generative models among many
others). The data for standard denoising and inpainting benchmarks is continuous. We
will consequently focus on the BSC and SSSC generative models. In the following, we will
refer to EVO applied to BSC as Evolutionary Binary Sparse Coding (EBSC) and to EVO
applied to SSSC as Evolutionary Spike-and-Slab Sparse Coding (ES3C). As genetic operator
combination for the EA, we will use “fitparents-randflips” for all subsequent experiments.
The main reason to prefer this combination over combinations that also use crossover is
computational efficiency (which is a major limiting factor for the following experiments).

2.4.1 Algorithm Types and Comparison Categories

We will use standard benchmarks to compare EBSC and ES3C w.r.t. (A) algorithms based
on generative models equal or similar to the ones used in this work, (B) other probabilistic
methods including mixture models and Markov random fields approaches, (C) non-local
image specific methods and (D) deep neural networks. Tab. 2.1 gives an overview of the
methods we compare to, sorted by algorithm type. To the knowledge of the authors, the
listed papers represent the best performing approaches while we additionally included
standard baselines such as BM3D, EPLL or MLP (see Tab. 2.1 for references).

The algorithms listed in Tab. 2.1 have different requirements that have to be fulfilled
for them to be applicable. To facilitate comparison, we have grouped the benchmarked
algorithms based on the prior knowledge they require/use (see Tab. 2.2 and Sec. 2.S5 for a
related discussion). As can be observed, some algorithms (e.g., KSVD or BM3D) require the
noise level to be known a-priori, for instance. Others require (often large amounts of) clean
images for training, which typically applies for feed-forward deep neural networks (DNNs).
If an algorithm is able to learn without information other than the corrupted image itself, it
is commonly referred to as a ‘zero-shot’ learning algorithm (compare, e.g., Imamura et al.,
2019; Shocher et al., 2018). Algorithms of the ‘zero-shot’ category we compare to are, e.g.,
MTMKL, BPFA, DIP and GSVAE. The EVO-based algorithms EBSC and ES3C also fall
into the ‘zero-shot’ category. In Tab. 2.2, we have labeled the categories DE1-DE6 for
denoising and IN1-IN6 for inpainting. DE2 could also be referred to as ‘zero-shot + noise
level’ as the algorithms of that category also do not need additional images.
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Acronym Algorithm Name / Type Reference

Sparse Coding / Dictionary Learning
MTMKL Spike-and-Slab Multi-Task and Multiple Kernel Learning Titsias and Lázaro-Gredilla (2011)
BPFA Beta Process Factor Analysis Zhou et al. (2012)
GSC Gaussian Sparse Coding Sheikh et al. (2014)
KSVD Sparse and Redundant Representations Over Trained Dictionaries Elad and Aharon (2006)
cKSVD Sparse Representation for Color Image Restoration Mairal et al. (2008)
LSSC Learned Simultaneous Sparse Coding Mairal et al. (2009)

BKSVD Bayesian K-SVD Serra et al. (2017)

Other Probabilistic Methods (GMMs, MRFs)
EPLL Expected Patch Log Likelihood Zoran and Weiss (2011)
PLE Piecewise Linear Estimators Yu et al. (2012)
FoE Fields of Experts Roth and Black (2009)
MRF Markov Random Fields Schmidt et al. (2010)

NLRMRF Non-Local Range Markov Random Field Sun and Tappen (2011)

Non-Local Image Processing Methods
BM3D Block-Matching and 3D Filtering Dabov et al. (2007)
NL Patch-based Non-Local Image Interpolation Li (2008)

WNNM Weighted Nuclear Norm Minimization Gu et al. (2014)

Deep Neural Networks
MLP Multi Layer Perceptron Burger et al. (2012)

DnCNN-B Denoising Convolutional Neural Network Zhang et al. (2017)
TNRD Trainable Nonlinear Reaction Diffusion Chen and Pock (2017)
MemNet Deep Persistent Memory Network Tai et al. (2017)
IRCNN Image Restoration Convolutional Neural Network Chaudhury and Roy (2017)
GSVAE Gumbel-Softmax Variational Autoencoder Jang et al. (2017)
FFDNet Fast and Flexible Denoising Convolutional Neural Network Zhang et al. (2018)
DIP Deep Image Prior Ulyanov et al. (2018)

DPDNN Denoising Prior Driven Deep Neural Network Dong et al. (2019)
BDGAN Image Blind Denoising Using Generative Adversarial Networks Zhu et al. (2019)
BRDNet Batch-Renormalization Denoising Network Tian et al. (2020)

Table 2.1: Algorithms used for comparsion on denoising and/or inpainting benchmarks.
The algorithms have been grouped into four types of approaches. The table includes the
best performing algorithms and standard baselines.
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Table 2.2: Algorithms for denoising and inpainting use different degrees and types of prior
knowledge. In panel A, the algorithms listed in the column “Noise Level” assume access to
the ground-truth noise level of the test data. The approaches listed in the column “Test-
Train Match” in panel A are optimized either for one single or for several particular noise
levels. In panel B, the algorithms listed in the column "Noise Level" (NL, PLE, cKSVD)
use heuristics for noise level and/or sparsity estimation (∗NL internally makes use of BM3D
which requires a noise level (which is in turn set by a patch-by-patch heuristics); PLE
and cKSVD employ manually set noise level/sparsity estimates). The column “Test-Train
Match” in panel B lists algorithms that are optimized for a particular percentage of missing
pixels (e.g. for images with 80% randomly missing values) or for a particular missing value
pattern. The algorithms of category IN6 can be applied without providing a mask that
indicates the pixels that are to be filled (see Sec. 2.S5 for details).
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2.4.2 Image Denoising

To apply EBSC and ES3C for image denoising, we first preprocessed the noisy images that
we aimed to restore by cutting the images into smaller patches: given an image of size H×W
and using a patch size of D = Px×Py, we cut all possible N = (W−Px +1)× (H−Py +1)
patches by moving a sliding window over the noisy image. Patches were collected individually
for each image and corresponded to the data sets Y which EBSC or ES3C were trained
on. In other words, EBSC and ES3C leveraged nothing except of the information of the
noisy image itself (no training on other images, no training on clean images, noise unknown
a-priori). After model parameters had been inferred using EBSC and ES3C, we took
expectations w.r.t. the posterior predictive distribution of the model in order to estimate
the non-noisy image pixels. For each noisy patch, we estimated all its non-noisy pixel values,
and, as commonly done, we repeatedly estimated the same pixel value based on different
(mutually overlapping) patches that shared the same pixel. The different estimates for the
same pixel were then gathered to determine the non-noisy value using a weighted average
(for details see Sec. 2.2.3 and Sec. 2.S3; also see, e.g., Burger et al., 2012). Finally, we
were interested in how well EBSC and ES3C could denoise a given image in terms of the
standard peak-signal-to-noise ratio (PSNR) evaluation measure.

2.4.2.1 Relation Between PSNR Measure and Variational Lower Bound

We first investigated whether the value of the learning objective (the variational lower bound)
of EBSC and ES3C was instructive about the denoising performance of the algorithms
in terms of PSNR. While the PSNR measure requires access to the clean target image,
the learning objective can be evaluated without such ground-truth knowledge. If learning
objective and PSNR measure were reasonably well correlated, one could execute the
algorithms several times on a given image and determine the best run based on the highest
value of the learning objective without requiring access to the clean image. For the
experiment, we used the standard “House” image degraded by additive white Gaussian
(AWG) noise with a standard deviation of σ = 50 (the clean and noisy images are depicted
in Fig. 2.5). We applied ES3C for denoising using patches of size D = 8×8 and a dictionary
with H = 256 elements (EVO hyperparameters listed in Tab. 2.S2 in Sec. 2.S6.2). At several
iterations during execution of the algorithm, we measured the value of the learning objective
and the PSNR of the reconstructed image. The experiment was repeated five times, each
time using the same noisy image but a different initialization of the algorithm. Fig. 2.4
illustrates the result of this experiment. As can be observed, PSNR values increase with
increasing value of the objective F(K,Θ) /N during learning. The truncated distributions
which give rise to the lower bound are consequently well suited. Only at the end of learning,
PSNR values slightly decrease while the lower bound still increases (Fig. 2.4, inset). The
final PSNR decreases are likely due to the PSNR measure being not perfectly correlated
with the data likelihood. However, decreases of the likelihood while the lower bound still
increases cannot be excluded. While the final decreases of PSNR are small (see scale of
inset figure of Fig. 2.4), their consequence is that the run with the highest final value for
the variational bound is not necessarily the run with the highest PSNR. For Fig. 2.4, for
instance, Run 1 has the highest final variational bound but Run 4 the highest final PSNR.
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Figure 2.4: Variational bound and PSNR value pairs obtained from applying ES3C to the
noisy “House” image (AWG noise with σ = 50). 2,000 EVO iterations were performed and
PSNR values were measured at iterations 1, 2, 5, 10, 20, 50, 100, 200, 400, 600, 800, 1,000,
1,200, 1,400, 1,600, 1,800, 2,000. The experiment was repeated five times using the same
noise realization in each run. The PSNR values at the last iteration were 28.94, 28.95,
28.94, 28.96, 28.95 (avg. rounded 28.95± 0.01; all values in dB).

2.4.2.2 Comparison of Generative Models and Approximate Inference

Before comparing EBSC and ES3C with a broad range of different denoising algorithms
(further below), we first focused on approaches that are all based on essentially the same
data model. Differences in measured performance can then be attributed more directly to
differences in the method used for parameter optimization. Concretely, we first considered
algorithms that are all based on a spike-and-slab sparse coding (SSSC) model. Namely, we
compared the following algorithms:

- the ES3C algorithm which is trained using variational optimization of truncated
posteriors (EVO),

- the MTMKL algorithm (Titsias and Lázaro-Gredilla, 2011) which uses a factored vari-
ation approach (i.e., mean field) for parameter optimization (also compare Goodfellow
et al., 2012),

- the BPFA algorithm (Zhou et al., 2012) which uses sampling for parameter optimiza-
tion,

- the GSC algorithm (Sheikh et al., 2014) which uses truncated posteriors constructed
using preselection (i.e., no variational loop).

In addition, we included EBSC into the comparison. EBSC is based on the BSC generative
model, and the BSC generative model can be optimized using different optimization
approaches. Goodfellow et al. (2012), for instance, discuss the BSC model as a boundary
case of their mean field optimization of the SSSC generative model. Furthermore, BSC
can be optimized using encoding neural networks in conjunction with reparameterization
and the Gumbel-Softmax trick (Jang et al., 2017). Using the Gumbel-Softmax trick,
standard optimization techniques developed for VAEs can be maintained also if discrete
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latent variables are used3. Optimization using gradient ascent via amortized inference,
reparameterization and Gumbel-Softmax trick can consequently also be used to optimize
the BSC data model. We included such a Gumbel-Softmax optimized BSC model for
comparison, and refer to it as GSVAElin (for Gumbel-Softmax Variational Autoencoder).
More concretely, we used the VAE setup suggested by Jang et al. (2017) but used a linear
decoder to match the linear generative model of BSC (the superscript “lin” indicates the
linearity); to match the binary latents of BSC, we used latents with only two categories
and ensured that the category corresponding to “0” did not contribute to data generation.
Our implementation of GSVAElin is based on the source code provided by the original
publication (Jang, 2016), and we conducted further control experiments also using GSVAE
versions more closely aligned with the original VAE architectures (see Sec. 2.S6.3 for details).

For best comparability of the different optimization approaches, we first investigated the
denoising performance of the algorithms under controlled conditions: We considered a fixed
task (the “House” benchmark with σ = 50 AWG noise), and we compared algorithms for
three different configurations of D and H (see Fig. 2.5B). PSNR values for BPFA, MTMKL
and GSC are taken from the corresponding original publications. The publication for GSC
only reports values for D = 8 × 8 and H = 64 as well as for D = 8 × 8 and H = 256;
MTMKL only for the former and BPFA only for the latter setting. We additionally cite
the performance of MTMKL for D = 8 × 8 and H = 256 as reported by Sheikh et al.
(2014). For GSVAElin, EBSC and ES3C, PSNR values were obtained via patch averaging
as described above (compare Sec. 2.4.2); the values reported correspond to average PSNRs
of three runs of the respective algorithm (standard deviations were smaller or equal 0.13 dB
PSNR; results of the individual runs are listed in Tab. 2.S1 in Sec. 2.S6). For EBSC and
ES3C, the same EVO hyperparameters were used (hyperparameters, including those used
for GSVAElin, are listed in Tab. 2.S2 in Sec. 2.S6.2).

Considering Fig. 2.5B, BPFA and MTMKL (which both represented the state-of-the-art
at the time of their publication) perform well but, in comparison, ES3C shows significant
further improvements. As the major difference between the considered approaches is the
parameter optimization method rather than the generative model, the performance increases
of ES3C compared to the other algorithms can be attributed to the used evolutionary
variational optimization (EVO). An important factor of the performance increases for
ES3C is presumably its ability to leverage the available generative fields more effectively.
Titsias and Lázaro-Gredilla (2011) report for MTMKL, for instance, that larger dictionaries
(H > 64) do not result in performance increases; similarly Zhou et al. (2012) report that
BPFA models with 256 and 512 dictionary elements yield similar performance. GSC has
been shown to make better use of larger dictionaries than MTMKL (Sheikh et al., 2014).
Performance of GSC is, however, significantly lower than ES3C for all investigated dictionary
sizes, which provides strong evidence for the advantage of the fully variational optimization
applied by the EVO algorithm. The evolutionary variational optimization also results in
a notably strong performance of EBSC compared to previous approaches: it outperforms
MTMKL (as well as GSC for H = 64). The strong performance may be unexpected as the
underlying BSC model is less expressive than the SSSC data model. The performance gains
using EVO thus outweigh the potentially better data model in this case.

3 Essentially, a categorical distribution is annealed, i.e. becomes continuous. Reparameterization (which
is otherwise not applicable to discrete latents) can now be used to estimate gradients. Reversal of the
annealing process then recovers discrete latent values in the limit of low temperatures (e.g., Jang et al.,
2017, for details).
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In comparison, optimization of the BSC model using VAE-like optimization (GSVAElin)
resulted in much lower denoising performance: In all conditions (i.e. for all considered
settings of D and H), the PSNR values obtained with GSVAElin were significantly lower
compared to all other algorithms used for comparison (see Fig. 2.5B). A reason for the
lower PSNR values of GSVAElin compared to approaches such as MTMKL or EBSC is
a much denser encoding, which, for the considered setting, is less advantageous than the
sparse code learned by EBSC and other approaches (we elaborate further below). Finally,
while PSNR values for EBSC can be higher than for methods based on spike-and-slab
models, ES3C performs (given the same set of hyperparameters) much stronger than EBSC
in all settings. The spike-and-slab-based ES3C algorithm can also make much more use of
larger dictionaries and larger patches (see Fig. 2.5B).

2.4.2.3 General Comparison of Denoising Approaches

After having compared a selected set of algorithms under controlled conditions, we inves-
tigated denoising performance much more generally. We compared the best performing
algorithms on standard denoising benchmarks irrespective of the general approach they
follow, allowing for different task categories they require, and allowing for any type of hy-
perparameters they use. The methods we have used for comparison are listed in Tab. 2.2A,
where the algorithms are grouped according to the prior information they assume (compare
Sec. 2.4.1 and Sec. 2.S5).

A limitation of most of the investigated algorithms is the computational resources they
require. For EBSC and ES3C, model size (i.e., patch and dictionary sizes) are limited by
available computational resources and so is the number of variational states S (Sec. 2.2.1)
used to approximate posteriors. For ES3C, a good trade-off between performance vs.
computational demand was observed for instance for D = 12×12 and H = 512 with S = 60
(for the experiment of Fig. 2.5D below); for EBSC a good trade-off between performance
and computational demand was observed for D = 8 × 8 and H = 256 with S = 200.
We thus have used more variational states S for EBSC than for ES3C. Technical details
including EVO hyperparameters are provided in Sec. 2.S6.

Figures 2.5D and 2.6 list denoising performances obtained with algorithms from the
different categories of Tab. 2.2. The listed PSNR values are taken from the respective
original publications with the following exceptions: For WNNM, EPLL and MLP, values
are taken from Zhang et al. (2017) and for TNRD and MemNet values equal the ones in
Dong et al. (2019). PSNR values for GSVAElin were obtained based on the source code
provided by the original publication (Jang, 2016) but using the same linear decoder as for
Fig. 2.5B. We observed the patch size and the number of binary latents to be significant
hyperparameters for GSVAElin; therefore, compared to the setting in Fig. 2.5B, we used
larger patch sizes and a higher number of latents for GSVAElin in the experiments of
Figs. 2.5D and 2.6 (see Tab. 2.S2 and Sec. 2.S6.3 for the hyperparameters used).

PSNR values reported in the original papers are often single PSNR values which may
correspond to a single run of the investigated algorithm or to the best observed PSNR value.
For deterministic methods with essentially no PSNR variations for a fixed input, it might
seem natural to report a single PSNR value. For stochastic methods, reporting the best
observed value is instructive about how well a given method can in principle perform. In
practice, however, the run with highest PSNR value is less relevant than the average PSNR
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Figure 2.5: Denoising results for the “House” image (clean original depicted in A). B
Performance comparison for AWG noise with σ = 50 under controlled conditions (see
text for further details). D Performance comparison w.r.t. to state-of-the-art denoising
approaches and standard baselines using different optimized hyperparameters (see text for
further details). Grouping and labeling according to Tab. 2.2; in each group the highest
PSNR value is marked bold. Numbers marked with ∅correspond to averages over multiple
independent realizations of the experiment using different realizations of the noise (see
text for further details). For EPLL, model selection was performed based on the learning
objective of the algorithm (†markers; personal communication with D. Zoran). Panel C
illustrates the reconstructed images obtained with ES3C in the run with the highest PSNR
value.
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Figure 2.6: Denoising results for “Barbara”, “Lena” and “Peppers”. The table shows
a performance comparison w.r.t. to state-of-the-art denoising approaches and standard
baselines using different optimized hyperparameters (see text for further details). Grouping
and labeling according to Tab. 2.2; in each group the highest PSNR value is marked bold.
Numbers marked with ∅correspond to averages over multiple independent realizations of the
experiment using different realizations of the noise (see text for further details). For EPLL,
model selection was performed based on the learning objective of the algorithm (†markers;
personal communication with D. Zoran). On the left we illustrate the reconstructed images
obtained with ES3C in the run with the highest PSNR value.
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as selecting the run with best PSNR usually requires ground-truth (compare discussion in
Sec. 2.S5). For KSVD and LSSC as well as for GSVAElin, EBSC and ES3C, the PSNR
values listed in Figs. 2.5D and 2.6 correspond to averages. For the two former approaches,
averages were obtained from five runs of the algorithms with different noise realizations
(standard deviations were reported to be negligibly small; see Elad and Aharon, 2006, Mairal
et al., 2009). For GSVAElin, EBSC and ES3C, we performed three runs of the algorithms
with different noise realizations (observed standard deviations of the resulting PSNRs were
not larger than 0.06 dB for EBSC and ES3C and 0.23 dB for GSVAElin; compare Tab. 2.S1).

Considering Figs. 2.5D and 2.6, it can be observed that the performance tends to increase
the more a-priori information is used by an algorithm (as can be expected). Feed-forward
DNNs report overall the best PSNR values but also use the most a-priori information
(see category DE6, Tab. 2.2). In the ‘zero-shot’ category with no a-priori information
(DE1), ES3C shows the best performance (Fig. 2.5D). ES3C significantly increases the
state-of-the-art PSNR values across all investigated settings. EBSC is very competitive
to previous approaches in the “House” benchmark (but a bit less so for the images of
Fig. 2.6). While being based on the same data model as EBSC, GSVAElin was observed to
result in much lower PSNRs than EBSC. Again, we observed a much denser encoding for
GSVAElin compared to other approaches used for the experiments. For the here considered
benchmarks, such dense codes do not seem advantageous (while we remark that GSVAElin

and other GSVAE versions are observed to perform well on other data, see Sec. 2.S6.3 for
details).

Notably, the spike-and-slab based ES3C approach is still competitive when compared
to algorithms in categories DE2 and DE5 that use more a-priori information, but it is
outperformed by some of these methods, especially at lower noise levels (Figs. 2.5D and
2.6). Differences in performance between the categories get smaller for larger and more
complex images (Fig. 2.6). For the image “Barbara”, for instance, ES3C outperforms all
DNNs except DPDNN and BRDNet, which are slightly better, while the best result is
obtained for the image specific non-local method WNNM.

PSNR values achieved by the previous methods of BPFA or MTMKL have notably
proven to be difficult to further improve. Only systems using more a-priori information
(such as WNNM in category DE2 or DNNs in category DE6) have more recently reported
higher PSNR values (also see discussion of difficult to improve BM3D values by Gu et al.,
2014). In category DE1, the only more recent competitive approach is a Bayesian version of
K-SVD (BKSVD; Serra et al., 2017). By extending K-SVD using Bayesian methodology, the
noise level can be estimated from data. The BKSVD approach can thus be applied without
a-priori information on the noise level, which makes it applicable in the ‘zero-shot’ category
(see Serra et al., 2017, for a discussion). PSNR values for BKSVD reported by Serra et al.
(2017) are computed on downscaled images, and are therefore not directly comparable to
those of Figs. 2.5D and 2.6. However, comparisons of BKSVD with MTMKL, K-SVD and
BPFA reported by Serra et al. (2017) show that BKSVD performs competitively, especially
for lower noise levels. For higher noise levels, though, (e.g. σ = 25 for “Lena” and “Peppers”)
BPFA results in higher PSNR values (and in similar PSNRs for “Barbara”). As ES3C
outperforms BPFA for σ = 25 on “Barbara”, “Lena” and “Peppers” on the full resolution
images, BKSVD also does not seem to establish a new state-of-the-art in the DE1 category.
We can, therefore, conclude that ES3C establishes a novel state-of-the-art in the ‘zero-shot’
category since a relatively long time.
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2.4.3 Image Inpainting

The final benchmark we used is image inpainting, i.e. the reconstruction of missing values
in images. A standard setting for this task is the restoration of images that have been
artificially degraded by uniformly randomly deleting pixels. Here we considered the standard
test images “Barbara”, “Cameraman”, “Lena”, “House” and “Castle” as examples for gray-
scale and RGB images. For denoising, ES3C consistently performed better than EBSC, and
the same we observed for inpainting. The performance difference between ES3C and EBSC
on inpainting was, however, larger (sometimes several dB). We therefore focus on ES3C for
comparison as EBSC is not competitive to the best performing methods we compare to.

For inpainting with ES3C, we employed the same partitioning and averaging scheme
as described in Sec. 2.4.2. For the RGB image, ES3C was applied jointly to all color
channels, as this had been reported to be more beneficial than training individual models
on different color layers (Mairal et al., 2008). We trained the model and restored missing
values exclusively based on the incomplete data which we aimed to restore (following, e.g.,
Fadili and Starck, 2005; Little and Rubin, 1987); uncorrupted pixels were not modified.
Details about the missing value estimator applied by ES3C are provided in Sec. 2.2.3 and
in Sec. 2.S3. For inpainting, we used a SSSC model with fixed ~µ = ~1 and Ψ = 1 as these
parameters were observed to grow exponentially during learning which led to numerical
instabilities of the training process. For each test scenario, we performed three runs of
ES3C and used a different realization of missing values in each run (EVO hyperparameters
are listed in Tab. 2.S2 in Sec. 2.S6.2). Compared to the denoising experiments (Sec. 2.4.2.3),
we observed for inpainting slightly larger variations of the resulting PSNR values (standard
deviations were smaller or equal 0.18 dB; results of individual runs listed in Tab. 2.S1 in
Sec. 2.S6).

The inpainting results for “Barbara”, “Cameraman”, “Lena” (each 50% missing values)
and “House” and “Castle” (each 50% and 80% missing values) are depicted in Fig. 2.7A-E .
The reference PSNR values are taken from the original publications except for NL and FoE
for which we cite the numbers as reported by Yu et al. (2012). In general, inpainting is a less
wide-spread benchmark than denoising presumably because additional estimation routines
have to be developed and missing values pose, more generally, a considerable challenge to
many approaches. DNN-based approaches have to define, for instance, how a missing pixel
of the input image is treated (which can be challenging, e.g., if the positions of the missing
pixels are different from patch to patch as for this benchmark). The challenge is faced by
approaches such as GSVAE (and VAE approaches in general) because DNNs are used for
VAE encoders. Considering Fig. 2.7A-E, first observe that performance differences between
categories are larger than for denoising. Compared to the best performing approaches in
the literature, ES3C shows to be competitive in many settings. On the “Castle” benchmark,
ES3C performs better than all other approaches in the literature, with the exception of
PLE, which uses the noise level as a-priori information. For the “House” benchmark, ES3C
establishes a novel state-of-the-art in general: it performs better than all other algorithms
for 50% lost pixels and equal to PLE for 80% lost pixels (i.e., within PSNR standard
deviation of ES3C). This novel state-of-the-art is notably reached without requiring clean
training data or a-priori knowledge about noise level or sparsity (ES3C requires to know
which pixels are missing; compare Tab. 2.2 and Sec. 2.S5).

Finally, we also report inpainting performance on the well-known “New Orleans” inpaint-
ing benchmark (Fig. 2.7 F left-hand-side). The benchmark serves as an inpainting example
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Figure 2.7: Inpainting results for “Barbara”, “Cameraman”, “Lena”, “House”, “Castle” and
“New Orleans”. For the performance comparison, different approaches are grouped and
labeled according to Tab. 2.2. In each group the highest PSNR value is marked bold.
Numbers marked with ∅in A to E correspond to averages over multiple independent runs
of the experiment using different realizations of missing values (see text for details; the
performance of ES3C in the individual runs is reported in Tab. 2.S1 in Sec. 2.S6). On the
left, we illustrate the reconstructed images obtained with ES3C in the run with the highest
PSNR value.
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where pixels are lost non-randomly. For the benchmark, the original image is artificially
corrupted by adding overlaid text, which is then removed by applying inpainting. Compared
to inpainting with randomly missing values (e.g., the benchmarks in Fig. 2.7A-E), the
“New Orleans” image contains relatively large contiguous regions of missing values. For our
measurements, we used a publicly available data set4. The result of the experiment is illus-
trated in Fig. 2.7 F. Reference PSNR values are taken from respective original publications
with exceptions of FoE and MRF for which we use values reported by Sun and Tappen
(2011). Due to extensive runtimes, we report the result of a single run of ES3C for this
benchmark (see Sec. 2.S6 for further details; EVO hyperparameters listed in Tab. 2.S2). As
can be observed, ES3C also performs well on this task. We observed higher PSNR values
for ES3C than for MRF and IRCNN. Values for FoE and cKSVD are higher, but more
a-priori information is also used. Especially FoE is less sensitive to larger areas of lost pixels
than ES3C (compare the lower performance of FoE in Fig. 2.7A-D); presumably FoE can
make better use of larger contexts. The state-of-the-art on this benchmark is established
by NLRMRF.

2.5 Discussion

Efficient approximate inference is of crucial importance for training expressive generative
models. Consequently, there exists a range of different methods with different assumptions
and different features. As most generative models can only be trained using approximations,
and usually many locally optimal solutions exist, the question of how well a generative model
can potentially perform on a given task is difficult to answer. Sophisticated, mathematically
grounded approaches such as sampling or variational optimization have been developed in
order to derive sufficiently precise and efficient learning algorithms. As a contribution of
this work, we have proposed a general purpose variational optimization that directly and
intimately combines evolutionary algorithms (EAs) and EM. Considering Alg. 1, EAs are
an integral part of variational EM where they address the key optimization problem (the
variational loop) arising in the training of directed generative models. The EVO algorithm
is defined by a set of optimization hyperparameters for the EA. Given the hyperparameters,
EVO is applicable to a given generative model solely by using the model’s joint probability
p(~s, ~y |Θ). No analytical derivations are required to realize variational optimization.

Relation to Other Approximate Inference Approaches. To show large-scale applica-
bility of EVO, we considered high-dimensional image data and generative models with large
(combinatorial) state spaces. Aside from the elementary generative models of Noisy-OR
Bayes Nets (Jernite et al., 2013; Rotmensch et al., 2017; Šingliar and Hauskrecht, 2006)
and binary sparse coding (Haft et al., 2004; Henniges et al., 2010), we used spike-and-slab
sparse coding (SSSC) as a more expressive example. The SSSC data model has been of
4 We downloaded the clean and the corrupted image from https://lear.inrialpes.fr/people/mairal/
resources/KSVD_package.tar.gz and the text mask from https://www.visinf.tu-darmstadt.de/
media/visinf/software/foe_demo-1_0.zip; all images were provided as PNG files. We verified that
the corrupted image was consistent w.r.t. the mask and the original image contained in the data set:
We applied the mask to the original image and compared the unmasked parts to the unmasked parts
of the corrupted image. These were identical. After filling masked areas with red (i.e., replacing the
corresponding pixels with (255,0,0) in RGB space) we measured a PSNR value of the corrupted image of
13.48 dB. This value slightly deviates from numbers reported in other studies; Chaudhury and Roy, for
example, measured a PSNR of 15.05 dB.
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considerable interest due to its strong performance for a range of tasks (Goodfellow et al.,
2012; Sheikh et al., 2014; Titsias and Lázaro-Gredilla, 2011; Zhou et al., 2009, 2012). How-
ever, its properties require sophisticated probabilistic approximation methods for parameter
optimization. Essentially three types of approximations have previously been applied to
train the model: mean field (Goodfellow et al., 2012; Titsias and Lázaro-Gredilla, 2011),
truncated posterior approximations (Sheikh et al., 2014), and MCMC sampling (Mohamed
et al., 2012; Zhou et al., 2009, 2012). If we consider the BSC data model as a boundary
case of a variational autoencoder with categorical latents (Jang et al., 2017), we can also
include Gumbel-Softmax-based VAE optimization as a fourth optimization approach. EVO
shares features with most of these previous approaches: like work by Sheikh et al. (2014),
EVO uses truncated posterior distributions to approximate full posteriors, which contrasts
with factored posterior approximations (i.e., mean field) used by Goodfellow et al. (2012);
Titsias and Lázaro-Gredilla (2011). However, like work by Titsias and Lázaro-Gredilla
(2011) and Goodfellow et al. (2012), EVO is a fully variational EM algorithm which is
guaranteed to monotonically increase the variational lower bound. This contrasts with
Sheikh et al. (2014) or Shelton et al. (2017) who used feed-forward estimates to construct
approximate posteriors (without a guarantee to monotonically increase a variational bound).
Furthermore, like sampling-based approaches (Mohamed et al., 2012; Zhou et al., 2009,
2012), EVO computes estimates of posterior expectations based on a finite set of latent
states. However, unlike for sampling approximations, these states are not samples but are
themselves variational parameters that are evolved using EAs (with a fitness defined by a
variational bound).

VAE optimization using the Gumbel-Softmax trick is the most different to EVO and
to all previous approaches. The investigated GSVAE algorithms use sampling-based
approximations such as Zhou et al. (2009, 2012) or Mohamed et al. (2012), and they
optimize a variational lower bound such as ES3C and EBSC. GSVAE is also similar to GSC
as both methods use deterministic feed-forward mappings in their definition of variational
distributions (amortization). However, GSVAE is, in contrast to the previously discussed
methods, a further development of standard VAE optimization. More concretely, it uses
a DNN for encoding and a “softening” (i.e. annealing) of discrete latents (the Gumbel-
Softmax trick) in order to apply standard VAE optimization based on reparameterization
and gradient ascent. Standard VAE optimization was, on the other hand, originally defined
for latents with Gaussian prior, which typically gives rise to a dense code (and such codes
will be of relevance for the discussion of denoising experiments below).

Denoising and Inpainting Benchmarks and Comparison with Other Approaches.
For comparison with a range of other methods, we used standard denoising and inpainting
benchmarks and evaluated EVO for the SSSC model (termed ES3C) and EVO for the
BSC model (termed EBSC). Compared to competing methods in the ‘zero-shot’ category
(see category DE1 and IN1 in Tab. 2.2), we observed ES3C to achieve the highest PSNR
values on all of the benchmarks of Figs. 2.5 to 2.7 that we performed. Furthermore, ES3C
also shows improvements w.r.t. methods that use more a-priori information in many test
scenarios:

- The denoising results (Figs. 2.5 and 2.6) show that ES3C can outperform state-of-the-
art sparse coding and non-local approaches including, e.g., LSSC and BM3D, which
require ground-truth noise level information. ES3C also improves on the popular
GMM-based EPLL method, which additionally uses clean training data. Furthermore,
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ES3C shows improvements compared to a number of recent, intricate DNNs which
are tailored to image denoising and require (large amounts of) clean data for training.
For instance, on the “Barbara” image (Fig. 2.6), ES3C is only outperformed by the
very recent networks DPDNN (Dong et al., 2019) and BRDNet (Tian et al., 2020).
At the same time, we note that the image noise for the benchmarks is Gaussian.
Gaussian noise is commonly encountered in real data, but it also makes the SSSC
model well suited for this task in general.

- For image inpainting, we observed ES3C to provide state-of-the-art results also in
general (i.e. across all categories) in some settings: compared to the best performing
algorithms on the “House” benchmark for inpainting, ES3C achieves the highest PSNR
value (Fig. 2.7D, best value shared with PLE for 80% lost pixels). The inpainting
benchmark is, however, much less frequently applied than its denoising counterpart
for the same image because a treatment of missing data is required.

The observation that probabilistic approaches such as SSSC-based algorithms perform well
on the inpainting benchmarks of Fig. 2.7A-E may not come as too much of a surprise. In
the case of randomly missing values, the information provided by relatively small patches
contains valuable information which an SSSC model can leverage well. Larger areas of
missing values, as encountered in the “New Orleans” benchmark, require larger contexts,
whose information may be better leveraged by less local methods such as Markov Random
Fields (Fig. 2.7 F).

To answer the question of why EVO results in improvements, direct comparison with
other optimization methods for the same or similar models are most instructive (Fig. 2.5B).
In general, the type of variational optimization can have a strong influence on the type of
generative fields that are learned, e.g., for the SSSC model. Mean field methods (i.e., fully
factored variational distributions) have a tendency to bias generative fields to be orthogonal
(Ilin and Valpola, 2005; Mackay, 2001). Such effects are also discussed for other generative
models (e.g. Turner and Sahani, 2011; Vértes and Sahani, 2018). Biases introduced by a
variational approximation can thus lead to increasingly suboptimal representations (see,
e.g., Titsias and Lázaro-Gredilla, 2011, Sheikh et al., 2014, for discussions). Sampling
is in general more flexible but practical implementations may (e.g., due to insufficient
mixing) also bias parameter learning towards learning posteriors with single modes. The
denoising benchmark under controlled conditions shows that the sampling-based BPFA
approach (Zhou et al., 2012) performs, for instance, better than the mean field approach
MTMKL (Titsias and Lázaro-Gredilla, 2011) and the truncated EM approach GSC (Sheikh
et al., 2014); but BPFA performs worse than ES3C, which is based on EVO. Likewise,
also VAE-like training using Gumbel-Softmax is a specific optimization which impacts the
learned representation. In our experiments, VAE-like optimization showed the strongest
differences not only to EVO but also to all other approaches that were based on an SSSC
or a BSC-like generative model.

In contrast to, e.g., MTMKL, GSC, ES3C and EBSC, the GSVAE approach resulted
in a dense encoding of image patches. Concretely, instead of learning generative fields
that resemble image structures such as edges or texture components, GSVAE learned
fields with much less interpretable structures (and many of the learned fields represented
relatively high spatial frequencies, see Fig. 2.S4). For reconstruction, GSVAE used large
fractions of these fields (usually about half on average). In other words, GSVAE uses
dense codes, while MTMKL, GSC, ES3C or EBSC use sparse codes for encoding (few
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fields are combined for reconstruction). Notably, ES3C or EBSC are by construction not
constrained to learn a sparse code (parameters for the Bernoulli prior are learned). Neither
is GSVAE by construction constrained to a dense code (prior parameters of GSVAE that
correspond to a sparse code can be learned in principle). Still, in all applications to natural
image data, ES3C and EBSC learned sparse codes; and in all applications to natural image
data, GSVAE was observed to learn a dense code (for all GSVAE versions investigated,
compare Sec. 2.S6.3). Comparison on denoising benchmarks clearly shows that the dense
codes learned by GSVAElin are much less competitive than the sparse codes of the other
approaches (Figs. 2.5 and 2.6). At the same time, we remark that the used versions and
implementations of GSVAE are competitive on other benchmarks. Compared to other
methods in the literature (e.g. Park et al., 2019a), we observed dense codes of GSVAE to
result in good benchmarking performance on data sets with many images of whole objects,
for instance. On the other hand, for such data, algorithms giving rise to sparse codes such
as EBSC are not learning edge or texture like components and are observed to be less
competitive (see Sec. 2.S6.3 for such controls).

The differences between algorithms with dense and sparse codes may be an important
reason why deep generative models have not been reported to perform competitively in
denoising. For the benchmarks in Figs. 2.5 and 2.6, the recent BDGAN approach is, besides
GSVAE, the only deep generative model. Except for BDGAN, neither for generative
adversarial nets (GANs; Goodfellow et al., 2014) nor for GSVAE or other variational
autoencoders competitive denoising or inpainting results are reported on these standard
benchmarks (for GANs and VAEs, benchmarks other than those in Figs. 2.5 to 2.7 are
often considered; see Sec. 2.S6.3 for further discussion). For BDGAN, Zhu et al. (2019)
report performances on standard denoising benchmarks; the algorithm shows competitive
performance but, like feed-forward DNNs, requires large image corpora for training. At
least in principle, GANs and VAEs are also applicable to the ‘zero-shot’ category (DE1 and
IN1 in Figs. 2.5 to 2.7), however (and GSVAE represents one such example). The BDGAN
approach uses large and intricate DNNs whose parameters are presumably difficult to train
using just one image, which may explain why it was not applied in the ‘zero-shot’ category.
Recent work by, e.g. Shocher et al. (2018), explicitly discusses DNN sizes and the use of
small DNNs for ‘zero-shot’ super-resolution.

For VAEs, there is (except of the results reported here for GSVAE) neither data for the
‘zero-shot’ category nor for the other categories available for the standard benchmarks we
used (to the knowlege of the authors; but compare Prakash et al., 2021b). A reason may be
that (like for BDGAN) very intricate DNNs as well as sophisticated sampling and training
methods are required to be competitive. Experiments with standard (Gaussian) VAE setups
that we conducted did, e.g. for denoising, not result in PSNR values close to those reported
in Figs. 2.5 and 2.6. Another possible reason for the absence of competitive values for VAEs
may, however, be related to the variational approximation used. VAEs for continuous data
usually use Gaussians as variational distributions (Kingma and Welling, 2014; Rezende
et al., 2014) that are in addition fully factored (i.e., mean field). The parameters of the VAE
decoder may thus suffer from similar biasing effects as described for mean field approaches
as used, e.g., by MTMKL (Titsias and Lázaro-Gredilla, 2011) for the SSSC model. That
standard VAEs do show such biases has recently been pointed out, e.g., by Vértes and
Sahani (2018). Furthermore, the dense codes learned by VAEs due to their usual Gaussian
priors seem to lead to representations less suitable for denoising (but potentially well suited
for other tasks). Even though sparse codes could be learned in principle (e.g., GSVAE can
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in principle learn sparse codes), the usual optimization methods for VAEs seem to favor
dense codes.

Like other generative models, VAEs (which use DNNs as part of their encoders and
decoders) are, consequently, likely to strongly profit from a more flexible encoding of
variational distributions. In the context of deep learning, such flexible variational distribu-
tions have been suggested, e.g., in the form of normalizing flows (Rezende and Mohamed,
2015). In its standard version (Rezende and Mohamed, 2015), normalizing flows are making
training significantly more expensive, however. Approximate learning using normalizing
flows is centered around a sampling-based approximation of expectation values w.r.t. pos-
teriors (Rezende and Mohamed, 2015; and also compare related approaches, e.g., Bigdeli
et al., 2020; Huang et al., 2018). By following such a strategy, samples of increasingly
complex variational distributions can be generated by successively transforming samples of
an elementary distribution. The idea of successive transformations has also been used to
directly parameterize the data distribution in what is now termed flow-based models (e.g.
Dinh et al., 2017; Kingma and Dhariwal, 2018). An early example (Dinh et al., 2014) is a
form of non-linear ICA (Hyvärinen and Pajunen, 1999). By using EAs, the EVO approach
does, in contrast, follow a strategy that is notably very different from normalizing flows
and other approaches. A consequence of these different strategies are very different sets of
hyperparameters: EVO hyperparameters are centered around parameters for the EA such
as population size as well as mutation, crossover and selection operators; hyperparameters
of normalizing flows and related methods are centered around parameterized successive
mappings (e.g., type of mapping, number of transformations) and (if applicable) hyper-
parameters for sampling. Furthermore, and most importantly for practical applications,
the types of generative models addressed by EVO and normalizing flows are essentially
complementary: EVO focuses on generative models with discrete latents while normalizing
flows and others focus on models with continuous latents.

Conclusion. More generally, EVO can be regarded as an example of the significant
potential in improving the accuracy of posterior approximations. Many current research
efforts are focused on making parameterized models increasingly complex: usually an
intricate DNN is used either directly (e.g., feed-forward DNNs/CNNs for denoising) or as
part of a generative model. At least for tasks such as denoising or inpainting, our results
suggest that improving the flexibility of approximation methods may be as effective in
improving performance as increasing model complexity. While EVO shares the goal of
a flexible and efficient posterior approximation with many other powerful and successful
methods, it has a distinguishing feature: a direct link from variational optimization to a
whole other research field focused on optimization: evolutionary algorithms. For generative
models with discrete latents, new results in the field of EAs can consequently be leveraged
to improve the training of future (elementary and complex) generative models.
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Supplementary Material

2.S1 Log-Pseudo Joint Formulation

For efficient computation of log-joint probabilities log p (~y,~s | Θ) (which are required to
compute truncated expectations (2.3) and the variational lower bound (2.4)), we introduce
the following reformulation. When computing log p (~y,~s | Θ) for a concrete model, we
identify the terms that only depend on the model parameters Θ (and not on the data
points ~y and the variational states ~s ). These terms, denoted C(Θ) in the following, only
need to be evaluated once when computing log p (~y,~s | Θ) for different data points and for
different variational states. We refer to the remaining terms that depend on both ~s, ~y and
Θ as log-pseudo joint and denote this quantity by ˜log p(~s, ~y | Θ). The log-joint probability
log p (~y,~s | Θ) can then be reformulated as:

log p (~y,~s | Θ) = ˜log p(~s, ~y | Θ) + C(Θ). (2.S1)

The concrete expressions of C(Θ) and ˜log p(~s, ~y | Θ) for the models introduced in Sec. 2.3.1
are listed below.

NOR.

C(Θ) =

H∑
h=1

log(1− πh), (2.S2)

˜log p(~s, ~y | Θ) =
D∑
d=1

(
yd log

(
Nd(~s )

)
+ (1− yd) log

(
1−Nd(~s )

))
+

H∑
h=1

sh log
( πh

1− πh

)
,

(2.S3)

Nd(~s ) = 1−
H∏
h=1

(1−Wdhsh), (2.S4)

with the special exception of ~s = ~0 for which

˜log p(~s = ~0, ~y ) =

{
0 if ~y = ~0,

− inf otherwise.
(2.S5)

For practical computations, we set ˜log p to an arbitrarily low value rather than the floating
point infinite representation.
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BSC.

C(Θ) = H log(1− π)− D

2
log(2πσ2), (2.S6)

˜log p(~s, ~y | Θ) = log
( π

1− π

) H∑
h=1

sh −
1

2σ2
(~y −W~s )T(~y −W~s ). (2.S7)

SSSC.

C(Θ) =

H∑
h=1

log(1− πh)− D

2
log(2π), (2.S8)

˜log p(~s, ~y | Θ) =
H∑
h=1

sh log
( πh

1− πh

)
− 1

2
log |C~s| −

1

2
(~y − W̃~s ~µ)TC−1

~s (~y − W̃~s ~µ). (2.S9)

2.S2 Sparsity-Driven Bitflips

When performing sparsity-driven bitflips, we flip each bit of a particular child ~s with
probability p0 if it is 0, with probability p1 otherwise. We call pbf the average probability
of flipping any bit in ~s. We impose as constraints on p0 and p1 that p1 = αp0 for some
constant α and that the average number of “on” bits after mutation is set to s̃. This yields
the following expressions for p0 and p1:

p0 =
Hpbf

H + (α− 1)|~s |
, α =

(H − |~s |) · (Hpbf − s̃+ |~s |)
(s̃− |~s |+Hpbf)|~s |

. (2.S10)

Trivially, random uniform bitflips correspond to the case p0 = p1 = pbf . For our numerical
experiments (compare Sec. 2.3.2), we chose s̃ based on the sparsity learned by the model
(we set s̃ =

∑H
h=1 πh for NOR and SSSC and s̃ = Hπ for BSC). We furthermore used an

average bitflip probability of pbf = 1
H .

2.S3 Data Estimator

Models With Binary Latents and Continuous Observables. Consider the posterior
predictive distribution

p(~y est | ~y obs,Θ) =
∑
~s

p(~y est, ~s | ~y obs,Θ) =
∑
~s

p(~y est | ~s,Θ) p(~s | ~y obs,Θ). (2.S11)

The second step in Eq. (2.S11) exploits the fact that ~y est and ~y obs are conditionally
independent given the latents. In order to infer the value of yest

d we will take expectations
w.r.t. p(~y est | ~y obs):

Ep(~y est | ~y obs,Θ)

[
yest
d

]
=

∫
~y est

yest
d p(~y est | ~y obs,Θ) d~y est =

∫
yest
d

yest
d p(yest

d | ~y obs,Θ) dyest
d .

(2.S12)
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The second step in Eq. (2.S12) follows from marginalizing over ~y est\yest
d . Equations (2.S11)

and (2.S12) can be combined:

Ep(~y est | ~y obs,Θ)

[
yest
d

]
=

∫
yest
d

yest
d

∑
~s

p(yest
d | ~s,Θ) p(~s | ~y obs,Θ) dyest

d (2.S13)

=
∑
~s

∫
yest
d

yest
d p(yest

d | ~s,Θ) dyest
d p(~s | ~y obs,Θ) (2.S14)

=
∑
~s

Ep(yest
d |~s,Θ)

[
yest
d

]
p(~s | ~y obs,Θ) (2.S15)

= Ep(~s | ~y obs,Θ)

[
Ep(yest

d |~s,Θ)

[
yest
d

]]
. (2.S16)

The inner expectation in Eq. (2.S16) is for the example of the BSC model (2.11) given
by Ep(yd |~s,Θ)

[
yd
]

= ~Wd~s with ~Wd denoting the d-th row of the matrix W . With this,
Eq. (2.S16) takes for the BSC model the following form

Ep(~y est | ~y obs,Θ)

[
yest
d

]
= ~WdEp(~s | ~y obs,Θ)

[
~s
]
. (2.S17)

The estimator (2.S17) can be efficiently computed by (i) approximating the full posterior
distribution of the latents by using truncated posteriors (2.2) and by (ii) approximating
the expectation w.r.t. the full posterior by applying truncated expectations (2.3).

Models With Binary-Continuous Latents and Continuous Observables. The
upper derivation can be extended to be applicable to models with binary-continuous latents.
Following the same line of reasoning, we again start with the posterior predictive distribution
p(~y est | ~y obs):

p(~y est | ~y obs,Θ) =
∑
~s

∫
~z

p(~y est, ~s, ~z | ~y obs,Θ) d~z (2.S18)

=
∑
~s

∫
~z

p(~y est | ~s, ~z,Θ) p(~s | ~y obs,Θ) p(~z | ~s, ~y obs,Θ) d~z. (2.S19)

We then follow the steps from Eqs. (2.S13) to (2.S16), i.e. we take expectations w.r.t. the
posterior predictive distribution (2.S19):

Ep(~y est | ~y obs,Θ)

[
yest
d

]
=

∫
yest
d

yest
d

∑
~s

∫
~z

p(yest
d | ~s, ~z,Θ) p(~s, ~z | ~y obs,Θ) d~z dyest

d (2.S20)

=
∑
~s

∫
~z

∫
yest
d

yest
d p(yest

d | ~s, ~z,Θ) dyest
d p(~s, ~z | ~y obs,Θ) d~z (2.S21)

=
∑
~s

∫
~z

Ep(yest
d |~s,~z,Θ)

[
yest
d

]
p(~s, ~z | ~y obs,Θ) d~z (2.S22)

= Ep(~s,~z | ~y obs,Θ)

[
Ep(yest

d |~s,~z,Θ)

[
yest
d

]]
. (2.S23)

For the example of the SSSC model (2.12)–(2.13), the inner expectation in Eq. (2.S23)
is given by Ep(yd |~s,~z,Θ)

[
yd
]

= ~Wd (~s� ~z ) s.t. Eq. (2.S23) takes for the SSSC model the
following form:

Ep(~y est | ~y obs,Θ)

[
yest
d

]
= ~WdEp(~s,~z | ~y obs,Θ)

[
~s� ~z

]
. (2.S24)
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The estimator (2.S24) can be efficiently computed based on Eq. (2.S31) by approximating
the expectation w.r.t. the binary posterior by using truncated expectations (2.3).

2.S4 M-step Update Equations

NOR. For completeness, we report the NOR update rules here:

πh =
1

N

N∑
n=1

Eq(n)

[
sh
]
, Wdh = 1 +

∑N
n=1(y

(n)
d − 1)Eq(n)

[
Ddh(~s )

]∑N
n=1Eq(n)

[
Cdh(~s )

] (2.S25)

where

Ddh(~s ) :=
W̃dh(~s )sh

Nd(~s )(1−Nd(~s ))
, Cdh(~s ) := W̃dh(~s )Ddh(~s ), W̃dh(~s ) :=

∏
h′ 6=h

(1−Wdh′sh′).

(2.S26)
The update equations for the weightsWdh do not allow for a closed-form solution. We instead
employ a fixed-point equation whose fixed point is the exact solution of the maximization
step. We exploit the fact that in practice one single evaluation of Eq. (2.S26) is enough to
(noisily, not optimally) move towards convergence to efficiently improve on the parameters
Wdh.

BSC. As for NOR, we report the explicit forms of the M-step update rules for the BSC
model here for completeness (compare, e.g., Henniges et al., 2010):
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SSSC. We report the final expressions of the SSSC M-step update equations below. The
derivations can be found in Sheikh et al. (2014).
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As defined in Eq. (2.15), the expectations in Eq. (2.S28) are taken w.r.t. the full binary-
continuous latent space. Importantly for applying EVO, all these expectation values can be
reformulated as expectations w.r.t. the posterior over the binary latent space:
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where q(n)(~s; Θ) is (for the exact EM solution) the binary posterior given by

p (~s | ~y,Θ) =
B(~s;~π) N (~y; W̃~s ~µ,C~s)∑
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In the above equations Λ~s = (σ−2W̃T
~s W̃~s + Ψ−1

~s )−1 and ~κ(n)
~s = (~s� ~µ) + σ−2Λ~sW̃

T
~s (~y (n) −

W̃~s~µ).
∑

~s denotes a summation over all binary vectors ~s. Based on the reformulations, the
expectations in Eqs. (2.S29) to (2.S32) can be approximated using truncated expectations
(2.3).

2.S5 Evaluation Criteria for Image Restoration

A standard metric for the evaluation of image restoration (IR) methods is the peak-signal-
to-noise ratio (PSNR; compare Sec. 2.4). In the context of IR benchmarks (e.g., denoising,
inpainting, image super resolution), PSNR values are informative about the root-mean-
square error between the restored image calculated by a specific IR algorithm and the
respective clean target image. In addition to the PSNR measure, there are other criteria
that can be used to compare IR approaches. Some criteria will be discussed in the following.

Clean Data. Supervised learning-based IR methods such as the denoising and inpainting
methods of category DE6 and respectively IN6 in Tab. 2.2 require external data sets with
clean images for training. In contrast, sparse coding and dictionary learning approaches
such as the methods from category DE1 and IN1 (including the generative model algorithms
EBSC and ES3C) are trained exclusively on the corrupted data that they aim to restore.
The ability of learning solely from corrupted data is very valuable for scenarios in which
clean data is not available or difficult to generate. Besides, the internal statistics of a test
image were observed to be often more predictive than statistics learned from external data
sets (compare Shocher et al., 2018). For deep neural networks, which often do require
external clean training data, recent work seeks to provide methods to also allow them to be
trained on noisy data alone (e.g. Lehtinen et al., 2018; Krull et al., 2019a; Ulyanov et al.,
2018). Further related work proposes methods for ‘zero-shot’ super-resolution which can be
trained exclusively on the corrupted test data (Shocher et al., 2018).
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A-Priori Information and Robustness. For denoising, it is frequently assumed that
a-priori knowledge of the ground-truth noise level is available. For instace KSVD, BM3D,
WNNM, cKSVD or LSSC treat the noise level as input parameter of the algorithm. Other
approaches that are trained using pairs of noisy/clean examples are typically optimized
either for a single noise level (e.g., MLP, IRCNN, DnCNN-S, TNRD) or for several noise
levels (e.g., MemNet, DnCNN-B, FFDNet, DPDNN, BDGAN). The denoising performance
of noise-level-optimized approaches may deteriorate significantly if the algorithm is not
provided with the appropriate (ground-truth) noise level of the test image (compare, e.g.,
Burger et al., 2012; Chaudhury and Roy, 2017; Zhang et al., 2018).

Similarly, for inpainting, it can be observed that certain methods exploit significant
amounts of a-priori information, for example considering the text removal benchmark
(Fig. 2.7 F): For NLRMRF and IRCNN, the training data is generated by overlaying specific
text patterns on clean images. For IRCNN, several distinct font styles and font sizes are
used (Chaudhury and Roy, 2017); for NLRMRF, training examples are generated using the
identical text pattern of the test image (Sun and Tappen, 2011). In contrast, the generative
model algorithms EBSC and ES3C require neither task-specific external training data sets
(such as IRCNN or NLRMRF) nor do they require a-priori knowledge of the noise level (in
contrast to, e.g., BM3D, MLP, IRCNN, FFDNET, DnCNN; compare Tab. 2.2). EBSC and
ES3C learn the noise level parameter (which is part of the generative model) from the data
in an unsupervised way.

Context Information. Another criterion for the evaluation of IR methods is the amount
of context information that a particular algorithm exploits. The amount of context
information is primarily determined by the patch size of the image segmentation. Increasing
the effective patch size was reported to be beneficial for the performance of IR algorithms
(compare Burger et al., 2012; Zhang et al., 2017). Zhang et al. reported that the effective
patch size used by denoising methods can be found to vary greatly between different
approaches (e.g., 36 × 36 used by EPLL, 50 × 50 by DnCNN-B, 70 × 70 by FFDNet,
361 × 361 by WNNM; numbers taken from Zhang et al., 2017, 2018). The denoising
experiments with EBSC and ES3C were conducted using patches that did not exceed an
effective size of 23× 23 (compare Tab. 2.S2 in Sec. 2.S6.2), which is considerably smaller
than the numbers reported by Zhang et al..

Stochasticity in the Acquisition of Test Data. For the denoising benchmarks consid-
ered in Sec. 2.4.2, there is stochastic variation in the test data due to the fact that for a
given AWG noise level σ and for a given image, different realizations of the noise result in
different noisy images. PSNR values can consequently vary even if the applied algorithm is
fully deterministic. As all images investigated here are at least of size 256× 256, variations
due to different noise realizations are commonly taken as negligible for comparison (see,
e.g., Mairal et al., 2009). The denoising results of EBSC and ES3C reported in Figs. 2.5
and 2.6 were obtained by executing the algorithm three times on each image using different
noise realizations in each run. Observed PSNR standard deviations were smaller or equal
0.06 dB (compare Tab. 2.S1). For the inpainting experiments with randomly missing values
(Fig. 2.7A-E), we also performed three runs for each image using a different realization
of missing values in each run. In these experiments, we observed slightly higher PSNR
variations (standard deviations ranged from 0.02 to 0.18 dB). The different realizations of
the noise (or of the missing values) employed for each execution of the algorithm might be
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relevant to explain the PSNR variations that we observed. Additionally, stochasticity in
the EBSC and ES3C algorithms themselves cannot be excluded as a further factor.

Stochasticity in the Algorithm. The output of stochastic algorithms can differ from
run to run even if the input remains constant. For learning algorithms, different PSNR
values usually correspond to different optima of the learning objective which are obtained
due to different initializations and/or due to stochasticity during learning. For stochastic
algorithms, it is therefore the question which PSNR value shall be used for comparison.
Two of the algorithms that we used for comparison in Figs. 2.5 to 2.7 report averages over
different runs (KSVD and LSSC). All other algorithms do report a single PSNR value
per denoising/inpainting setting without values for standard deviations. A single PSNR
value is (for one realization of the corrupted image) naturally obtained for deterministic
algorithms (e.g., BM3D, WNNM, NL). For the stochastic algorithms, a single PSNR may
mean that either (A) just one run of the learning algorithm was performed, that (B) the
best PSNR of all runs was reported, or that (C) one run of the learning algorithm was
selected via another criterion. For DNN algorithms, for instance, the DNN with the lowest
training or validation error could be selected for denoising or inpainting. Or for sparse
coding algorithms, the model parameters with the highest (approximate) likelihood could
be selected for denoising or inpainting. As the contributions in Figs. 2.5 to 2.7 which state
just one PSNR value do not give details on how it was obtained from potentially several
runs, it may be assumed that the best performing runs were reported (or sometimes the
only run, e.g., in cases of a DNN requiring several days or weeks for training, compare
Burger et al., 2012; Chaudhury and Roy, 2017; Jain and Seung, 2009; Zhang et al., 2018).
Stating the best run is instructive as it shows how well an algorithm can perform under
best conditions. For comparability, it should be detailed how the single PSNR value was
selected, however (or if average and best values are essentially identical).

For practical applications, it is desirable to be able to select the best of several runs based
on a criterion that can be evaluated without ground-truth knowledge. Our experimental
data shows that for EBSC and ES3C the best denoising and inpainting performance in
terms of PSNR cannot reliably be determined based on the learning objective, namely
the variational bound (which is computable without ground-truth knowledge): The PSNR
values of the runs with the highest bound may be smaller than the highest PSNR values
observed in all runs. In a scenario with fixed noise realization, we observed the variational
bound to be instructive about the PSNR value though (Fig. 2.4).

2.S6 Details on Numerical Experiments

We provide more details on used soft- and hardware, more details on the conducted
experiments, and we provide control experiments for different algorithms.

2.S6.1 Soft- and Hardware

We implemented EBSC and ES3C in Python using MPI-based parallelization for execution
on multiple processors. Model parameter updates were efficiently computed by distributing
data points to multiple processors and performing calculations for batches of data points in
parallel (compare Sec. 2.S4). Small scale experiments such as the bars tests described in
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Figure 2.S1: BSC and SSSC model parameters learned from artificial data using EVO (see
the description of the experiment in Sec. 2.3.2 for more details).

Figure 2.S2: Final free energies obtained by different EA configurations over 30 runs of
EVO for NOR, BSC and SSSC models on 5×5 bars images (see the description of the
experiment in Sec. 2.3.2 for more details).

Sec. 2.3.2 were performed on standalone workstations with four-core CPUs; runtimes were
in the range of minutes. For most of the large-scale experiments described in Secs. 2.3.3
and 2.4, we used the HPC cluster CARL of the University of Oldenburg to execute our
algorithms. The cluster is equipped with several hundred compute nodes with in total
several thousands of CPU cores (Intel Xeon E5-2650 v4 12C, E5-2667 v4 8C and E7-8891
v4 10c). For each of the simulations, potentially different compute resources were employed
(different numbers of CPU cores, different CPU types, different numbers of compute nodes,
different numbers of employed cores per node), and hence runtimes were found to vary
greatly between the simulations. For example for the denoising experiments with EBSC
and ES3C on the “House” image (Fig. 2.5), the algorithms were executed using between
100 and 640 CPU cores, and runtimes ranged approximatly between six and one hundred
hours for one run. Images larger than “House” required still longer runtimes or more CPU
cores (we went up to a few thousand CPU cores on HPC clusters).
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Figure 2.S3: Dictionaries learned from natural image patches using NOR, BSC and SSSC
models (see Sec. 2.3.3). For NOR, we considered raw image patches and trained a model
with H = 100 components. For BSC and SSSC, image patches were preprocessed using a
whitening procedure. For BSC and SSSC, H = 300 and H = 512 generative fields were
learned, respectively. In B and C, the fields are ordered according to their activation,
starting with the fields corresponding to the most active hidden units.
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A Denoising (Comparison of generative models and approximate inference under controlled conditions; Section 2.4.2.2)

Run House σ = 50 (H = 64, D = 8× 8) House σ = 50 (H = 256, D = 8× 8) House σ = 50 (H = 512, D = 12× 12)

GSVAElin EBSC ES3C GSVAElin EBSC ES3C GSVAElin EBSC ES3C

1 19.14 28.30 28.87 18.93 28.29 28.89 18.98 28.35 29.88
2 19.16 28.04 28.74 18.92 28.27 28.86 18.98 28.29 29.85
3 19.14 27.99 28.72 18.89 28.22 28.79 18.91 28.16 29.74

∅ 19.15 28.11 28.78 18.92 28.26 28.85 18.95 28.27 29.83

B Denoising (General comparison of denoising approaches; Section 2.4.2.3)

Run House σ = 15 House σ = 25 House σ = 50 Barbara σ = 25 Lena σ = 25 Peppers σ = 25

GSVAElin EBSC ES3C GSVAElin EBSC ES3C GSVAElin EBSC ES3C GSVAElin EBSC ES3C GSVAElin EBSC ES3C GSVAElin EBSC ES3C

1 29.38 33.70 34.86 28.62 32.39 33.16 25.88 29.03 29.88 24.97 28.33 30.17 27.93 30.91 31.90 25.52 29.01 30.35
2 29.37 33.65 34.93 28.06 32.47 33.20 25.68 28.91 29.85 25.21 28.39 30.14 28.10 30.90 31.94 25.54 28.87 30.22
3 29.41 33.63 34.93 28.29 32.34 33.09 25.62 29.01 29.74 25.19 28.42 30.24 28.00 30.84 32.01 25.52 28.90 30.26

∅ 29.39 33.66 34.90 28.32 32.40 33.15 25.73 28.98 29.83 25.12 28.38 30.19 28.01 30.88 31.95 25.53 28.93 30.27

C Inpainting (Section 2.4.3)

Run Barbara Cameraman Lena House Castle

50% missing 50% missing 50% missing 50% missing 80% missing 50% missing 80% missing

1 35.39 30.91 37.57 39.55 32.99 38.14 29.65
2 35.51 30.46 37.47 39.70 33.21 38.39 29.68
3 35.42 30.70 37.58 39.54 32.99 38.14 29.64

∅ 35.44 30.69 37.54 39.59 33.06 38.23 29.66

Table 2.S1: PSNR values (in dB) measured for GSVAElin, EBSC and ES3C in the denoising
and inpainting experiments described in Secs. 2.4.2.2, 2.4.2.3 and 2.4.3.

For the experiments with GSVAE, the code provided by the original publication (Jang,
2016) can execute optimization on GPU cores as is customary for deep models. When
executing, for example, the CIFAR-10 experiment (Fig. 2.S4) on a single NVIDIA Tesla
V100 16GB GPU, we observed runtimes of GSVAElin on the order of a few seconds per
iteration (on average approximately 10s); for the CIFAR-10 experiment, we observed
GSVAElin to converge within approximately 150 iterations. In comparison, to train EBSC
on CIFAR-10, we executed our implementation in parallel on 768 CPU cores (Intel Xeon
Platinum 9242) and performed 750 iterations of the algorithm. At the final iteration, the
value of the lower bound was still slightly increasing, however not significantly anymore;
the runtime per iteration was on the order of a few seconds (on average approximately
9s). In summary, GSVAE execution is more efficient. Comparison is difficult, however,
because of the different setting. The more standard GSVAE approach uses conventional
deep learning tools that can be expected to be well-optimized, while the distribution of
EVO optimization across many CPUs (and cores) generates communication overhead, and
the efficiency of implementation components can presumably be further enhanced.

2.S6.2 Hyperparameters

Table 2.S2 lists the hyperparameters employed in the numerical experiments on verification
(Sec. 2.3.2), scalability (Sec. 2.3.3), denoising (Sec. 2.4.2) and inpainting (Sec. 2.4.3). EVO
hyperparameters (S, Np, Nm, Ng) were chosen s.t. they provided a reasonable trade-off
between the accuracy of the approximate inference scheme and the runtime of the algorithm.
For GSVAElin, we used the same neural network architecture for the encoding model
and the same hyperparameters as in the source code provided by the original publication
(Jang, 2016): The encoder network contained two hidden layers with 512 and 256 hidden
units, respectively. The activation function of all network units was the identity (i.e., no
non-linearity). The initial annealing temperature, the annealing rate and the minimal
annealing temperature of the Gumbel-Softmax distribution were set to 1.0, 3 · 10−5 and 0.5,
respectively. The initial learning rate of the Adam optimizer was 10−3. The patch sizes
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and number of latents used for GSVAElin in the denoising experiments are, together with
the corresponding values used for EBSC and ES3C, listed in Tab. 2.S2C–D.

A Verification and scalability (Sections 2.3.2 and 2.3.3)

Experiment N D H EA S Np Nm Ng Iterations

Bars Test NOR/BSC/SSSC 5,000 5× 5 10 randparents-randflips 20 5 4 2 300
Bars Test NOR/BSC/SSSC 5,000 5× 5 10 fitparents-cross-randflips 20 5 - 2 300
Bars Test NOR/BSC/SSSC 5,000 5× 5 10 fitparents-sparseflips 20 5 4 2 300
Bars Test NOR/BSC/SSSC 5,000 5× 5 10 fitparents-cross-sparseflips 20 5 - 2 300
Bars Test NOR/BSC/SSSC 5,000 5× 5 10 randparents-cross-sparseflips 20 5 - 2 300
Bars Test NOR/BSC/SSSC 5,000 5× 5 10 fitparents-randflips 20 5 4 2 300
van Hateren Images NOR 30,000 10× 10 100 fitparents-cross-sparseflips 120 8 - 2 200
van Hateren Images BSC 100,000 16× 16 300 fitparents-cross-sparseflips 200 10 - 4 4,000
van Hateren Images SSSC 100,000 12× 12 512 fitparents-cross-sparseflips 60 6 - 2 2,000

B Denoising (Relation between PSNR measure and variational lower bound; Section 2.4.2.1)

Image Size Noise Level σ D H EA S Np Nm Ng Iterations

House 256× 256 50 8× 8 256 fitparents-randflips 60 6 5 2 2,000

C Denoising (Comparison of generative models and approximate inference under controlled conditions; Section 2.4.2.2)

Image Size Noise Level σ D H
EBSC- and ES3C-specific GSVAElin-specific

EA S Np Nm Ng Iterations Iterations

House 256× 256 50 8× 8 64 fitparents-randflips 60 60 1 1 4,000 100
House 256× 256 50 8× 8 256 fitparents-randflips 60 60 1 1 4,000 100
House 256× 256 50 12× 12 512 fitparents-randflips 60 60 1 1 4,000 100

D Denoising (General comparison of denoising approaches; Section 2.4.2.3)

Image Size Noise Level σ EBSC-specific ES3C-specific EBSC- and ES3C-specific GSVAElin-specific

D H S Np Nm Ng D H S Np Nm Ng EA Iterations D H Iterations

House 256× 256 15 8× 8 256 200 10 9 4 12× 12 512 60 60 1 1 fitparents-randflips 4,000 16× 16 512 100
House 256× 256 25 8× 8 256 200 10 9 4 12× 12 512 60 60 1 1 fitparents-randflips 4,000 32× 32 512 100
House 256× 256 50 8× 8 256 200 10 9 4 12× 12 512 60 60 1 1 fitparents-randflips 4,000 32× 32 512 100
Barbara 512× 512 25 8× 8 256 200 10 9 4 11× 11 512 60 60 1 1 fitparents-randflips 3,000 16× 16 512 100
Lena 512× 512 25 8× 8 256 200 10 9 4 11× 11 512 60 60 1 1 fitparents-randflips 4,000 16× 16 512 100

Peppers 256× 256 25 8× 8 256 200 10 9 4 10× 10 800 40 30 1 1 fitparents-randflips 6,000 32× 32 512 100

E Inpainting (Section 2.4.3)

Image Size Missing Data Ratio D H EA S Np Nm Ng Iterations

Barbara 512× 512 50% 12× 12 512 fitparents-randflips 30 20 1 1 4,000
Cameraman 256× 256 50% 12× 12 512 fitparents-randflips 30 20 1 1 4,000

Lena 512× 512 50% 12× 12 512 fitparents-randflips 30 20 1 1 4,000
House 256× 256 50% 12× 12 512 fitparents-randflips 30 20 1 1 4,000
House 256× 256 80% 15× 15 512 fitparents-randflips 30 20 1 1 500
Castle 481× 321 50% 7× 7 900 fitparents-randflips 30 20 1 1 2,000
Castle 481× 321 80% 7× 7 900 fitparents-randflips 60 60 1 1 200

New Orleans 297× 438 Text Mask 14× 14 900 fitparents-randflips 60 60 1 1 3,000

Table 2.S2: Hyperparameters employed in the numerical experiments.

2.S6.3 Comparison to Other Generative Models – Details

For our experiments with the Gumbel-Softmax Variational Autoencoder (GSVAE), we
leveraged the source code provided by the original publication (Jang, 2016). For GSVAElin,
we chose a categorical distribution with just two categories (“0” or “1”) which matches
the Bernoulli prior of BSC. Also to match the BSC generative model, we used a shallow,
linear decoder (with weights W and without bias terms) connected only to the category
“1” units. The scalar variance σ2 of the Gaussian was treated as a trainable parameter
(optimized alongside the other parameters), and we used the same prior parameter π for all
h = 1, . . . ,H as for BSC. The decoding model of GSVAE thus becomes equivalent to the
generative model of BSC in Eq. (2.11). As controls, we used different versions of GSVAE
including versions with (i) deep decoders connected only to category “1” units (below and in
Tab. 2.S3, we refer to this GSVAE version “Binary-Deep”), (ii) shallow decoders connected
to both categories (referred to as “Categorical-Shallow”), and (iii) deep decoders connected
to both categories (referred to as “Categorical-Deep”; below and in Tab. 2.S3, we refer to
GSVAElin, i.e., the version used for the denoising benchmarks in Secs. 2.4.2.2 and 2.4.2.3,
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Run EBSC GSVAE

Binary-Shallow Binary-Deep Categorical-Shallow Categorical-Deep

B
ar
ba

ra

1 43.72 36.78 37.43 37.79 36.78
2 43.85 37.49 37.71 37.55 36.88
3 43.61 38.33 37.49 37.96 37.75

∅ 43.73 37.53 37.54 37.77 37.14

C
IF
A
R
-1
0 1 2,027.55 2,325.95 1,919.39 170.74 2,376.67

2 2,021.42 2,307.94 513.90 2,545.02 2,559.23
3 2,019.11 2,301.24 2,380.29 2,618.58 2,544.10

∅ 2,022.70 2,311.71 1,604.53 1,778.11 2,493.33

Table 2.S3: Free energies (ELBOs) per datapoint obtained with EBSC and GSVAE on
image patches of the noisy “Barbara” image (σ = 25) and on CIFAR-10 (see text for details).
For “Barbara”, the values listed denote free energies on the noisy image patches which make
up the training data set; for CIFAR-10, the values listed denote free energies on the test
data set. The highest free energy obtained for each benchmark is marked bold.

as the “Binary-Shallow” version). The deep decoders had two hidden layers with 256 and
512 units. For GSVAElin and all controls, we used the same encoding model as in the
original implementation (architecture and hyperparameters listed in Sec. 2.S6.2). Also, for
consistency with the original implementation, we used identity activation functions for all
GSVAE versions.

To confirm the functionality of the implementation used, we first applied GSVAElin and
the different control versions to two standard data sets: image patches of the “Barbara”
image with AWG noise and images of whole objects from the CIFAR-10 data set. For
“Barbara”, we used a noise level of σ = 25, D = 8× 8 patches and H = 256; for CIFAR-10,
the patch size was D = 32× 32× 3, and we used H = 1,024. The CIFAR-10 images had
amplitudes in the range [0, 1]; accordingly, we also scaled the clean “Barbara” image (that
we used to generate noisy image patches) and the noise level to the range [0, 1]. Tab. 2.S3
lists the values of the lower bound obtained in different runs of the algorithms for the two
data sets. As can be observed, there are significant differences between different runs of
the GSVAE algorithms, especially for CIFAR-10. On this data set, the best runs resulted
in values of the lower bound in the range of 2,300 (obtained with the “Binary-Shallow”
version of GSVAE) to 2,620 (obtained with the “Categorical-Shallow” version; see Tab. 2.S3,
bottom four rows). Already the GSVAE versions with shallow decoder performed relatively
well on this benchmark. For comparison, the highest log-likelihood values reported in Park
et al. (2019a) for their VLAE approaches on CIFAR-10 are 2,392 for a shallow version
and 2,687 for a deep version. The “Categorical-Shallow” GSVAE control improved on the
“Binary-Shallow” version (GSVAElin); at the same time, the former version has twice as
many weight parameters. Deep decoders also tended to improve performance on CIFAR-10
but not very significantly. The original GSVAE implementation used linear activation units.
When we substituted linear activation by ReLU units, performance even tended to decrease
(which is presumably the reason for the linear activations in the original publication (Jang
et al., 2017)).

While performance of GSVAE in terms of lower bounds is relatively high on CIFAR-10,
performance on image patches of the noisy “Barbara” image is relatively low. GSVAElin
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and also all controls resulted in significantly lower values of the bound than values obtained
by EBSC. On the other hand, EBSC values are significantly lower on average on CIFAR-10.
On image patches of the noisy “Barbara” image, EBSC (and also other approaches such as
MTMKL) are able to learn representations with generative fields (GFs) being much more
aligned with actual image structures (Fig. 2.S4B); and EBSC uses a sparse code to combine
only few of the fields for reconstruction (on “Barbara”, EBSC used approximately 1.5 out of
256 fields, on CIFAR-10 approximately 19 out of 1,024). GSVAElin uses the same generative
model as EBSC, so we can directly compare the GFs (i.e., the columns of W ). In contrast
to EBSC, the GFs of GSVAElin are less interpretable and contain higher spatial frequencies
(Fig. 2.S4E). On average, GSVAElin used about half of these fields for reconstruction (i.e.,
128 out of 256 fields on “Barbara”). GSVAElin also learned such fields and dense codes for
CIFAR-10 (Fig. 2.S4F; approximately 512 out of 1,024 fields were used on average). On
CIFAR-10, the dense codes of GSVAElin and of the controls seem comparably effective,
while it seems more difficult to encode whole object images using sparse codes.

For GSVAE we can, of course, not exclude that settings can be found for which sparse
codes and high PSNR values are achieved on “Barbara” and other denoising benchmarks.
However, no such setting and competitive denoising performance has been reported in the
literature for either GSVAE or other VAEs (to the knowledge of the authors; but compare
Prakash et al., 2021b). For other data, sparse codes may not necessarily result in better
performance (Tab. 2.S3). For standard denoising and especially for the ‘zero-shot’ setting
which we focused on, good image patch models are required, however, and sparse codes are
observed to be advantageous in this case.

Regarding the above discussion, note that other deep generative models have been applied
to denoising and inpainting. Creswell and Bharath report reconstruction performance on
AWG noise removal tasks; however in Creswell and Bharath (2018), (i) the considered
noise levels are significantly smaller than the ones in Figs. 2.5 and 2.6, and (ii) data sets
of whole objects such as Omniglot or CelebA are employed rather than the test images of
Figs. 2.5 and 2.6. Related contributions on GANs frequently consider the task of semantic
inpainting, i.e., the reconstruction of large areas in images in a semantically plausible way
(see, e.g., Cao et al., 2019, for an overview). In these contributions, typically data sets such
as CelebA, Street View House Numbers images or ImageNet are employed, and frequently
the reconstruction of a single or a few (e.g., squared or rectangular) holes is considered as a
benchmark (compare, e.g., Iizuka et al., 2017; Li et al., 2017; Pathak et al., 2016; Yang
et al., 2017; Yeh et al., 2017). Yeh et al. also consider the task of restoring randomly
missing values, however neither Yeh et al. (2017) nor the aforementioned publications report
performance on the test images of Fig. 2.7. The benchmarks of denoising and inpainting we
use (Figs. 2.5 to 2.7) are (A) very natural for EVO because of available benchmark results
for mean field and sampling approaches, and (B) the benchmarks allow for comparison
with state-of-the-art feed-forward DNNs (Figs. 2.5 and 2.6).
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Figure 2.S4: Denoising and generative fields of EBSC and GSVAE (compare text and
Tab. 2.S3). A, D Denoising results after EBSC and GSVAElin were used for denoising
(input image was “Barbara” with σ = 25; depicted are the results of the run with highest
lower bound). B, C Selection of GFs of EBSC for the run with highest lower bound on
“Barbara” and CIFAR-10 data, respectively. E, F Selection of GFs of GSVAElin for the run
with highest lower bound on “Barbara” and CIFAR-10 data, respectively.
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Chapter 3

Zero-Shot Microscopy Image
Enhancement

This chapter is in revision for publication as: Jakob Drefs∗, Sebastian Salwig∗, Jörg Lücke.
Enhancing Microscopy Images of SARS-CoV-2 Infection Scenes: Applications of Novel
Data-Driven Algorithms Operating at the High-Resolution Limit. ∗Joint first authorship.

Abstract. Microscopy images of infected tissues serve to diagnose a disease, and they
can contribute to our understanding of infection processes. As a consequence of the corona
pandemic, a large number of microscopy images of SARS-CoV-2 viruses and their interaction
with infected tissues have been made available. In order to visualize the viruses, high
resolution electron microscopy (EM) has been applied; and in order to visualize details of
the viruses and infected tissues, EM recording devices had to operate at the limit of the
currently available resolution. Recordings at such limits result in a high degree of noise which
negatively effects both image interpretation by experts and further automated processing.
However, the deteriorating effects of strong noise can be very much alleviated by novel
machine learning (ML) algorithms for image enhancement which can operate in the high
resolution limit of microscopy images. Because of the inherent noise at high resolution, a
requirement for ML algorithms is their trainability on noisy images or on just one noisy image.
Our main focus will be on two novel probabilistic such ML algorithms based on generative
approaches, but we also survey other novel methods including recent neural networks which
were adapted to operate on noisy images. The ML approaches are then applied to EM
images of SARS-CoV-2 infection scenes to investigate their image enhancement capabilities.
For further validation and evaluation, the approaches are, moreover, applied to fluorescence
microscopy images for which ground-truth related comparisons are available. We find that
the denoised images resulting from all applied approaches can reveal structural details that
are difficult to identify in the raw noisy images. Furthermore, by using the focused-on
probabilistic generative approaches, we show that details such as the SARS-CoV-2 spike
protein can be enhanced still further by using non-standard higher-order statistics. Finally,
we discuss the advantages and disadvantages of all here investigated approaches and point to
future developments. In general, we argue that data-driven image enhancement algorithms
represent tools which can decisively help in extracting knowledge from microscopy data,
and thus can contribute to better understanding SARS-CoV-2 and other infections in the
future.
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Colorized enhanced imageNoisy EM image

Figure 3.1: Example of enhancing an electron microscopy image of SARS-CoV-2 viruses
in Vero cell cultures. Left: Original transmission electron microscopy of ultrathin plastic
sections (Laue et al., 2021). Right: Detail enhancement of the original image by visualizing
the pixel variances during the application of a probabilistic denoising approach (see Methods).
The denoising algorithm uses a representation of image patches learned by a probabilistic
generative model trained solely on the single, noisy original image (‘zero-shot’ learning). The
final displayed image was obtained after contrast enhancement and colorization (structures
that we manually identified as belonging to a cell were colored in blue (lower right area),
the remainder was colorized in yellow).

3.1 Introduction

The SARS-CoV-2 virus which causes the COVID-19 disease is currently infecting a high
percentage of humans world-wide, which has dramatically impacted society and economy.
Electron microscopy (EM) imaging is an established method to visualize viruses and infection
processes. Such images can contribute to our understanding of how a given virus infects a
cell, how it binds to cells and different tissues, and how it spreads in the body (Ivanova
et al., 2016; Lamers et al., 2020). In this context, it is of high importance to appropriately
visualize fine details at the nanoscale. Otherwise, nanoscale structures other than SARS-
CoV-2 viruses can be confused with the viruses leading to undesirable misinterpretations of
infection scenes (Dittmayer et al., 2020). Transmission electron microscopy (TEM) allows
for the visualization of fine details on the scale of a few nanometers. SARS-CoV-2 viruses
with their characteristic spike proteins can in principle be identified at this scale. However,
because of the low electron intensity at such high resolution, EM images contain significant
amounts of noise (Fig. 3.1, left).

To address the problem of high noise, algorithms for noise removal are a very established
tool, and they can significantly improve further image processing as well as the interpretation
of images by humans. In the case of EM images at high resolution, denoising is particularly
challenging, since typically neither noise-free images nor noise level information are available.
Standard denoising algorithms such as BM3D (Dabov et al., 2007) or WNNM (Gu et al.,
2014), which both rely on a-priori noise level information, can consequently not be applied
directly. Similarly, the direct use of state-of-the-art neural networks (Dong et al., 2019; Tai
et al., 2017; Tian et al., 2020; Zhang et al., 2017) is not possible as clean (i.e., non-noisy)

55



Chapter 3. Zero-Shot Microscopy Image Enhancement

images are required for training. For data-driven approaches, waiving the requirement
of clean training images has been subject of current research: Evaluated on benchmarks
with standard test images, Noise2Noise (N2N; Lehtinen et al., 2018), for instance, was
shown to improve the performance of BM3D-based denoisers while trained on noisy data
(and without requiring the noise level a-priori). A prerequisite of N2N is, however, that a
training dataset with different noisy realizations of the same underlying clean image can be
constructed. Such an in practice usually unrealistic assumption motivated follow-up work
in the form of Noise2Void (N2V; Krull et al., 2019a) which dropped the requirement of
paired noisy images as in N2N training. On standard macroscopic test images, N2V showed
competitive denoising performance, yet peak-signal-to-noise ratios (PSNRs) reported by
Krull et al. (2019a) were not on par with BM3D and N2N. Examples such as N2N or N2V
highlight that direct applicability to noisy data has emerged as an increasingly important
feature of denoising algorithms, and ideas exploited by these methods have consequently
been taken up in various ways (Bepler et al., 2020; Prakash et al., 2021b; Quan et al., 2020a;
Wang et al., 2020).

For images of SARS-CoV-2 viruses, a further goal has been the reconstruction of the
virus or virus parts in 3D from EM data. On the most detailed level, work, e.g., by Wrapp
et al. (2020) and Ke et al. (2020) has used large amounts of TEM images of SARS-CoV-2
particles in order to reconstruct the protein’s 3D shape on a molecular level. It was thus
possible to visualize a 3D model of the protein in different conditions which can help to
better understand the protein binding process. On the next lower resolution level, work
by Nanographics has released a 3D image of the SARS-CoV-2 virus using cryo-electron
tomography (Nanographics, 2021; Yao et al., 2020). The approach is based on a large
number of TEM images of the same virus recorded as the sample is tilted along an axis and
merged to a 3D image using technology developed for computer tomography (Doerr, 2017).

In this work, we investigate methods that can be applied for microscopy image restoration
under ‘zero-shot’ (Chen et al., 2020; Shocher et al., 2018; Soh et al., 2020) conditions,
i.e., in a setting where only a single noisy image is available. This implies that for the
application to SARS-CoV-2 TEM recordings, the considered approaches (A) can not leverage
large numbers of different images of different spike proteins (as would be required for the
methods by Wrapp et al. (2020) and Ke et al. (2020)), (B) they can not use many images
of the same virus (as would be required for the approach of Nanographics (2021)), and
(C) they can not assume availability of multiple noisy versions of a hypothetically ‘clean’
underlying image (as assumed, e.g., for N2N). The ‘zero-shot’ algorithms we here concretely
investigate are: (i) BM3D as a standard (and not data-driven) baseline, (ii)N2V and
Self2Self (S2S; Quan et al., 2020a) as recent deep neural networks (DNNs) that, respectively,
use blind-spot and dropout strategies to learn a denoising mapping, (iii) DivNoising (DivN;
Prakash et al., 2021b) as a recent deep generative model approach, and (iv) Evolutionary
Spike-and-Slab Sparse Coding (ES3C; Drefs et al., 2022) and a novel variant of the recent
Gamma-Poisson Mixture Model (GPMM) of Monk et al. (2018) representing two novel
probabilistic generative approaches that we here for the first time apply to microscopy
image data.

Applying BM3D in a ‘zero-shot’ setting requires additional methodology for blind
noise level estimation. The alternative N2V approach uses a U-Net architecture, and with
large such nets the approach can benefit from the availability of increasingly much (noisy)
training data. Consequently, the here considered setting in which training data needs to
be derived from a single image represents a challenging scenario for the algorithm. DivN
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relies on a noise model of the imaging device, i.e., an expression for the distribution of
noisy pixels given clean image pixels. Prakash et al. (2021b) discuss different strategies
for estimating such a model including strategies that make use of non-noisy data as well
as an approach applicable without clean data. One of the former strategies relies on the
availability of a sequence of noisy images recorded using the same field of view (i.e., static
recording conditions; Krull et al., 2020a). These images, referred to as calibration data, are
used to estimate a non-noisy image by averaging the image sequence. As an alternative
for a scenario without calibration data, Prakash et al. discuss a strategy referred to as
bootstrapping which leverages an external denoising algorithm for estimating a non-noisy
image. In both the calibration and bootstrapping scenarios, the noise model is defined in
terms of a Gaussian mixture model which uses a parameterization depending on both clean
and noisy data (Prakash et al., 2020). Furthermore, Prakash et al. discuss a strategy referred
to as fully unsupervised which uses a Gaussian noise model with a variance parameterized
as linear function of the modeled clean pixel value (Prakash et al., 2021b). This approach
involves a user-defined parameter that determines the lower limit of the estimated variance.
The S2S approach, unlike N2V and DivN, is designed for a ‘zero-shot’ setting and has as
such comparable requirements to ES3C and GPMM, i.e., S2S, ES3C and GPMM can all
directly be applied to a single noisy image. A common property of the three approaches
DivN, ES3C and GPMM, on the other hand, is that they are all based on probabilistic
generative models. Generative models are very established tools with very competitive
performance for a variety of image enhancement tasks including denoising, deblurring or
inpainting (Papyan and Elad, 2016; Parameswaran et al., 2018; Titsias and Lázaro-Gredilla,
2011; Zoran and Weiss, 2011). Generative approaches have also successfully been used to
decrease EM scan time and electron beam exposure (Ede and Beanland, 2020) using training
settings for inpainting (a setting different from the here considered task). Furthermore,
generative models are, usually, well suited for task settings with few data, and, typically,
they can naturally be optimized on noisy data (Goodfellow et al., 2012; Sheikh et al., 2014;
Titsias and Lázaro-Gredilla, 2011; Zhou et al., 2012). Such properties consequently suggest
them as suitable tools for image enhancement applications as we investigate here.

The ‘zero-shot’ setting we consider represents, as described, a challenging scenario for
an enhancement algorithm; yet, data representations learned based on single observations
such as a single noisy image can also be advantageous. It has recently been argued, for
instance, that intrinsic image statistics contain higher quality information compared to
statistics learned from large image corpora (Shocher et al., 2018). BM3D and its many
extensions (Azzari and Foi, 2016; Ehret and Arias, 2021), for example, make relatively
direct use of single image statistics. Generative approaches, on the other hand, first
learn a probabilistic representation of image patches, which can subsequently be used
for estimating the underlying non-noisy image. Conventionally, non-noisy images are
reconstructed through the estimation of mean intensity values, i.e., based on the first
moments of the modeled pixel distribution. During first-order image reconstruction, the
learned representation can, however, also be used to estimate pixel reconstruction variances.
Here, we argue that, alongside standard denoising, such higher-order statistical information
can reveal more structural details in reconstructed images. Both, first-order and higher-order
image reconstructions of ‘zero-shot’ approaches may consequently help medical experts in
identifying important structural image details.
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3.2 Results

3.2.1 Denoising TEM Images of SARS-CoV-2 Infected Cell Cultures

We considered publicly available TEM images of SARS-CoV-2 viruses in Vero cell cultures
(Laue et al., 2021) and investigated ‘zero-shot’ denoising of nine selected, preprocessed test
images (data-related details in Sec. 3.S2.1). To apply BM3D, N2V, S2S, and DivN to these
images, we used the implementations that were made publicly available together with the
official publications, and used the default hyperparameters of those implementations (for
details and references see Sec. 3.S2.2). To estimate the noise level for BM3D, we applied
the method of Chen et al. (2015a) which assumes additive white Gaussian noise. For DivN,
we used the denoised images obtained with N2V for bootstrapping. For image denoising
with ES3C and GPMM, we computed first-order estimations of pixel means (compare
Methods and see Sec. 3.S2.2 for hyperparameters and initializations used). All investigated
algorithms were applied individually to each test image. The results of the experiment are
depicted in Fig. 3.2.

Qualitatively, BM3D, DivN, ES3C and GPMM result in similarly strong noise suppres-
sion while largely preserving image sharpness. S2S achieves still stronger noise suppres-
sion, however, the denoised images obtained with the algorithm appear severely blurred
(Fig. 3.2B). Due to the lack of ‘clean’ reference images, we could not quantify denoising
performance in terms of the standard PSNR measure. Instead, we adopted objective
metrics for noise suppression and image quality that could be evaluated based on a single
image (Fig. 3.2C). Concretely, we (i) assessed noise suppression based on estimated noise
levels (using the method of Chen et al. (2015a); σ̂ values in Fig. 3.2C), (ii) performed a
signal-to-noise quantification based on hand-labeled signal and background regions (using
the method of Bepler et al. (2020); SNR values in Fig. 3.2C), and (iii) carried out an image
quality ranking based on spatial and spectral image statistics (Koho et al., 2016a). For the
quality ranking, we considered four of the statistics discussed in the related publication
(Koho et al., 2016a, also see Methods): coefficient of variation (denoted CV in Fig. 3.2C;
supposed to be instructive about ensemble or statistical noise (Yan et al., 2016)), inverse of
power spectrum standard deviation (denoted invSTD; supposed to be instructive about
non-noisiness (Koho et al., 2016a)), spatial entropy (denoted Entropy; supposed to be
instructive about contrast (Koho et al., 2016a)), and bin mean (denoted MeanBin; supposed
to be instructive about blur (Koho et al., 2016a)). Averaged over all test images, best SNR
and invSTD scores are obtained by S2S. Effectiveness of S2S is also suggested by the σ̂
values; at the same time, this measure evaluates the performance of S2S to be comparable to
DivN, GPMM and ES3C. Comparing these quantitative results with a (non-expert) visual
assessment of the qualitative results depicted in Fig. 3.2B makes σ̂, SNR and invSTD, for
the test images considered, appear insightful with respect to the visual impression of noise
suppression, but less instructive with respect to image sharpness. More closely aligned with
the visual impression of image sharpness, in turn, appear the measures CV and MeanBin,
which both assign the lowest ranking to S2S and best rankings to ES3C (CV) and BM3D
(MeanBin).
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Figure 3.2: Results for ‘zero-shot’ denoising TEM images of SARS-CoV-2 infected cell
cultures. A: Three of the in total nine test images used. B: Qualitative comparison of
denoised image parts showing virus and cell structures obtained with the investigated
algorithms. BM3D is listed with subscript σ̂ to indicate that the algorithm was applied in
combination with an external method for noise level estimation. For DivN, we use the suffix
1
B to indicate that the approach was trained on a single noisy image using bootstrapping. C:
Quantification of denoising performance using no-reference evaluation metrics. For σ̂ and
SNR, we report the delta between the reconstructed and the noisy image, averaged over all
test images (up and down arrows indicate that performance improves as values increase and
decrease, respectively). The results of the quality ranking were obtained by first ranking
the investigated algorithms individually for each test image and then averaging the results
across all test images and translating them to ranks again (the individual results for each
test image are listed in Fig. 3.S1). Best performances in terms of average value of each
measure are marked bold. See Sec. 3.2.1 for details.
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Figure 3.3: Visualizing variances during estimation of non-noisy image pixels of TEM
images of SARS-CoV-2 infected cell cultures. A: Noisy TEM images. B: Qualitative
comparison of variance reconstructions obtained with ES3C and GPMM for image parts
showing spike proteins. Note that the bottom two rows are displayed with a reversed color
map for improved visibility. See Sec. 3.2.2 for details.

3.2.2 Variances of Non-Noisy Pixel Estimations

The ES3C and GPMM approaches process images on a patch-by-patch basis: a non-noisy
image pixel is computed based on a set of estimates obtained from image patches enclosing
the given pixel (see Methods and Fig. 3.5). For the ES3C and GPMM results in Fig. 3.2,
we computed non-noisy pixels by taking the average, i.e. the mean of sets of pixel estimates
(Fig. 3.5, top center). If we, instead, compute the variance of each pixel’s mean estimations
(i.e., a higher-order reconstruction statistics; Fig. 3.5, top right), we obtain images as shown
in Fig. 3.3. Displaying the variance of pixel estimations removes the direct information on
matter density from the TEM image. Information about boundaries between high and low
density matter is maintained because at boundaries image shapes vary more strongly than
in volumes with uniform matter distribution. Visualizing variances (instead of means) of
pixel estimations based on a sufficiently sophisticated generative model of image patches as
in Fig. 3.3 allows for a much sharper representation of edge-like structures. This may help,
for example, to measure the size of the SARS-CoV-2 virus and its spike proteins. Comparing
the second order reconstructions obtained with ES3C and GPMM in Fig. 3.3 shows that
the generative model itself changes the appearance of the higher-order reconstruction and
(to a lesser extend) also the appearance of the conventionally denoised image (Fig. 3.2).
Note that the introductory Fig. 3.1 visualizes variances of pixel estimations similarly to
Fig. 3.3, but it uses additional manual coloring (details in caption of Fig. 3.1). Further
visualizations of variances of non-noisy pixel estimations are provided in Sec. 3.S2.3.
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3.2.3 Zero-Shot Denoising Fluorescence Microscopy Images

Thorough benchmarking of denoising performance for the TEM images of SARS-CoV-2
infected cell cultures considered in Fig. 3.2 proved difficult due to the unavailability of
clean reference data, as discussed above. For the no-reference objective measures that we
considered in Fig. 3.2C, it holds that they come with their own sets of hyperparameters:
the blind noise level estimator, for instance, operates on a patch-by-patch basis (similar to,
e.g., ES3C and GPMM) and hence requires to choose a patch size (we used the defaults of
the publicly available implementation, details in Sec. 3.S2.2). Similarly, the signal-to-noise
quantification relies on manually labeled signal-background regions whose positions and
sizes obviously impact the resulting SNRs. Likewise, the image quality ranking method
allows to set a threshold to adjust the sensitivity of internally calculated measures, which, in
turn, we observed to impact the resulting ranking. While we observed similarities between
particular objective scores and our (non-expert) subjective visual assessment, the data
of Fig. 3.2 did not seem well suited to us in order to objectively compare the denoising
performance of the investigated algorithms. Consequently, we performed further evaluations
using more established data sets.

Concretely, we adopted the recent microscopy image denoising benchmark discussed by
Prakash et al. (2021b) and applied ES3C and GPMM to the publicly available fluorescence
microscopy images FU-PN2V Convallaria, FU-PN2V Mouse actin, and FU-PN2V Mouse
nuclei (see Sec. 3.S2.1 for references). Each of these datasets contains a sequence of different
noisy realizations of a static scene for which a clean reference can be estimated by averaging
all images in the sequence (Prakash et al., 2020). To consider a ‘zero-shot’ setting, we
adopted the procedure discussed by Prakash et al. (2021b) and used a single randomly
selected image from each data set to train and test ES3C and GPMM (see Sec. 3.S2.1
for data-related details and Sec. 3.S2.2 for initializations and hyperparameters used). We
then compared to BM3D, N2V, DivN and S2S by running the algorithms ourselves on
the selected test images (using publicly available source code as for Fig. 3.2, details in
Sec. 3.S2.2). Figure 3.4 visualizes the results of this experiment.

On the Convallaria image, N2V achieves the highest PSNR on average, closely followed
by ES3C, GPMM and DivN. A larger gap can be observed when comparing to BM3D and
S2S which result in comparably clearly lower PSNRs. For both images Mouse nuclei and
Mouse actin, the highest average PSNRs are achieved by ES3C, and, in contrast to the
Convallaria image, the PSNR gap between ES3C on the one hand, and N2V and DivN on
the other is more pronounced. Further experiments that we conducted reveal that PSNRs
of DivN can be significantly improved by providing the algorithm with external calibration
images for noise model estimation and a complete image sequence for training (Tab. 3.S2).
Compared to such ‘non-zero-shot’ variants of DivN, the PSNRs obtained by ES3C for the
Mouse nuclei and Mouse actin images nevertheless remain competitive and in individual
runs also higher (with ES3C still being applied in a ‘zero-shot’ setting).

3.3 Discussion

Motivated by the global thread posed by the COVID-19 pandemic, our goal here was to ask
how the most recent developments of data enhancement algorithms can be leveraged for
the specific task of improving the visualization of details in SARS-CoV-2 infection scenes.
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Figure 3.4: Results for ‘zero-shot’ denoising of fluorescence microscopy images (benchmark
adopted from Prakash et al. (2021b)). We used full-size versions of each test image (in
contrast to the methodology applied by Prakash et al., personal communication). A:
Qualitative comparison of denoised image parts (image sections and colormap choosen to
match Fig. 2 in Prakash et al. (2021b)). B: Denoising performance quantified in terms
of PSNR in dB. Reported are averages and standard deviations over three runs of each
algorithm (except for deterministic BM3D). Best performances in terms of average PSNR
are marked bold. See Sec. 3.2.3 for details.
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In this respect, our work follows many other contributions on subtasks of SARS-CoV-2
research which seek to rapidly leverage methods and results from different fields for research
on the SARS-CoV-2 virus. Recent enhancement algorithms and a standard baseline were
applied to electron microscopy (EM) images that were recorded at the limits of currently
possible resolutions. At such limits, EM images are deteriorated by strong noise, however,
which can hinder experts to appropriately identify potentially important structures. Modern
Machine Learning algorithms can decisively reduce noise and enhance structural details.
By doing so, algorithms can decisively facilitate further processing and can help experts in
understanding infection processes.

An immediate challenge posed by the images of SARS-CoV-2 infection scenes at
high resolution is the availability of exclusively noisy images. As a consequence, current
mainstream approaches for denoising such as supervised deep neural networks (DNNs)
cannot be used directly because they require large datasets with clean images (e.g., Dong
et al., 2019; Tai et al., 2017; Tian et al., 2020; Zhang et al., 2017). For high resolution
microscopy images, alternative approaches are consequently required. Recent approaches
that are applicable include: the recent DNN-based approaches N2V and S2S, the standard
BM3D denoiser, and the generative algorithms DivN, ES3C and GPMM. All these methods
can be applied when clean data is absent and even in cases when only a single noisy
image is available. The BM3D baseline can by definition be applied to single noisy images
without training (given that a-priori noise level information is available). Besides BM3D,
a well-known approach is also represented by EPLL (Zoran and Weiss, 2011). However,
training using the EPLL approach is usually done based on clean images, which makes the
BM3D approach the more suitable baseline for the here considered setting. In contrast
to BM3D, N2V and S2S first train DNNs that are then used to map noisy to denoised
images. In order to train DNNs when only noisy data is available, N2V and S2S have
to significantly amend standard supervised training, however. BM3D and the generative
algorithms DivN, ES3C and GPMM (as well as previous generative approaches) are by
definition unsupervised, and can as such be applied to noisy data directly. Furthermore,
BM3D and the shallow generative models used by ES3C and GPMM typically require much
fewer data to learn appropriate representations compared to approaches based on large
DNNs. For the applications considered here, noisy data in the form of patches extracted
from a single microscopy image proved sufficient. The effectiveness of generative approaches
in image restoration tasks has been demonstrated by numerous contributions; in particular,
they have been shown to establish state-of-the-art performances in ‘zero-shot’ settings of
standard image denoising and inpainting benchmarks (Drefs et al., 2022; Guiraud et al.,
2020; Sheikh et al., 2014; Titsias and Lázaro-Gredilla, 2011; Ulyanov et al., 2018; Zhou et al.,
2012). The evaluations performed here (Figs. 3.2 and 3.4) highlight that the effectiveness
of generative approaches in noise suppression carries over to high-resolution microscopy
recordings.

In addition to the estimation of denoised images, we have investigated higher-order
reconstruction statistics. Using the variances of pixel estimations based on generative
models, images can be computed which highlight details by improving the visualization of
edge-like structures (Fig. 3.3). As for the conventionally denoised images, we computed the
images displaying higher-order reconstruction statistics based on a single, noisy TEM image
of an infection scene (Fig. 3.5). This stands in contrast to the procedure that Nanographics
(2021) have recently applied to produce 3D reconstructions of a single SARS-CoV-2 virus.
On the one hand, such a tomogram reconstruction of the virus is more detailed and can
visualize the spike protein structure and the spike protein distribution on the virus surface
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very well. On the other hand, the method relies on many TEM images of the same single
virus, and many images are more difficult to obtain than single images. Furthermore,
whole infection scenes are more challenging to reconstruct than a single virus, and 3D
tomogram reconstructions of whole such scenes have (to our knowledge) not been reported
so far. Importantly, different approaches for 3D reconstruction come with different artifacts.
Tomogram approaches can misestimate surfaces especially for noisy data, while the here
shown reconstructions based on generative models can introduce artifacts, e.g., because
rare structures are underrepresented. Furthermore, due to being single-image based, actual
surfaces are not estimated by the generative approaches investigated here. An advantage is,
however, that surface structures do not occlude other structures – the here shown images
(Figs. 3.1 and 3.3, and Figs. 3.S2 and 3.S3) have a ‘glassy’ effect. A disadvantage is that, e.g.,
internal structures of the virus can get entangled with surface structures. To identify single
spikes across the whole surface of the virus, the 3D reconstruction method of Nanographics
(2021) is consequently preferable. In general, however, as artifacts are different for the
different approaches, the methods can be used to mutually confirm the true nano-scale
structures that are visualized. Furthermore, different methods can potentially be combined
in hybrid systems. For instance, ‘zero-shot’ denoising of single images by generative models
could be used to generate denoised images for improved 3D surface reconstruction with
methods used by Nanographics (2021); or ‘zero-shot’ denoising could be used in conjunction
with other EM imaging methods (Titze and Genoud, 2016).

Finally, different approaches are applicable to different types of available data. Methods
for protein reconstruction such as the approaches of Wrapp et al. (2020) or Ke et al. (2020)
combine TEM images of many protein molecules of many different viruses, which neither
the tomogram method of Nanographics (2021) nor the approach we investigated is capable
of. Also, unlike the surface reconstruction by Nanographics, none of the here considered
approaches can combine many TEM images of the same virus to generate a 3D tomogram.
However, neither the method of Wrapp et al. (2020), Ke et al. (2020) nor of Nanographics
(2021) can be used to denoise a single image, while all here investigated approaches can.
Images showing virus infections spatially have been made available previously, e.g., by using
scanning electron microscopes (NIAID, 2020). Such spatial images are at a lower resolution,
however, and do therefore not show the characteristic details of SARS-CoV-2 viruses, for
instance. In contrast, we were here interested in methods operating at resolutions that allow
for revealing structures as small as SARS-CoV-2 spike proteins. Future work could, for
instance, compare different EM recording techniques (transmission and scanning EM) of the
same SARS-CoV-2 infection scenes. Such comparisons would help in better understanding
the ‘glassy’ effect we observe, gaining more insight in the details that can be displayed via
higher-order reconstruction statistics, and how internal and external structures of the virus
get entangled with this approach.

In general and for standard denoising, we observed that essentially all here investigated
approaches can decisively enhance important structural details of SARS-CoV-2 infection
scenes (Figs. 3.1 to 3.4). Differences between algorithms were often subtle, but we also
observed strong dependencies of the algorithms’ performance on the specific type of data
that was processed. Furthermore, a strong dependence on the type of used evaluation
measure was observed, especially for measures that can be used without ground-truth.
However, as may be evident by considering the provided examples, the enhanced images with
their easy-to-identify details can all serve to distinguish structures at the nanoscale more
reliably than the original noisy images. Current research on enhancement algorithms and
different ways of visualization can, therefore, help in further understanding the COVID-19
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disease. Moreover, vivid and detailed images of SARS-CoV-2 infections may be perceived as
more realistic by the general population compared to the more indirect tomogram approach,
for instance. Enhanced images may, therefore, generally increase the awareness for the
thread posed by COVID-19 now and in the near future.

3.4 Methods

3.4.1 Generative Model Algorithms

One focus of the investigated microscopy image enhancement are two recent generative
model algorithms: Evolutionary Spike-and-Slab Sparse Coding (ES3C; Drefs et al., 2022)
and Gamma-Poisson Mixture Models (GPMM). The spike-and-slab sparse coding (SSSC)
data model has been studied intensively for image processing and other tasks (Goodfellow
et al., 2012; Sheikh et al., 2014; Titsias and Lázaro-Gredilla, 2011; Yoshida and West, 2010;
Zhou et al., 2012), and the ES3C approach, in particular, has recently been observed to
establish state-of-the-art performances on standard image denoising benchmarks in the
‘zero-shot’ category (Drefs et al., 2022). Here, we, for the first time, apply and benchmark
the approach on microscopy image data. The GPMM model, in contrast, represents a novel
approach based on recent work by Monk et al. (2018) which we here developed further for
the purpose of image enhancement.

ES3C uses a linear sparse coding model with binary-continuous latents ~s ∈ {0, 1}H ,
~z ∈ RH and continuous, Gaussian-distributed observables ~y ∈ RD:

p (~s | Θ) = B(~s;~π), p (~z | Θ) = N (~z; ~µ,Ψ),

p (~y | ~s, ~z,Θ) =
D∏
d=1

N
(
yd;

H∑
h=1

Wdhshzh, σ
2
)
,

(3.1)

with B(~s;~π) =
∏H
h=1 π

sh
h (1− πh)1−sh denoting the Bernoulli prior with p(sh = 1) = πh and

πh ∈ [0, 1], ~µ and Ψ denoting, respectively, the mean and covariance of the H-dimensional
multivariate Gaussian prior, Wdh ∈ R and W = { ~Wh}Hh=1 with ~Wh = {Wdh}Dd=1 denoting
the generative fields setting the mean of the D-dimensional, isotropic Gaussian over the
observables given the latents with variance parameter σ2. The parameters of the SSSC
model (3.1) are Θ = {~π, ~µ,Ψ,W, σ}. GPMMs, on the other hand, are based on Poisson
distributed observables ~y ∈ ND

0 and assume data points to originate from a single cause,
i.e., a particular mixture component. Unlike standard Poisson mixture models, GPMMs
use a continuous, Gamma-distributed latent variable z ∈ R+ to model mixture components’
intensities:

p (c | Θ) = πc, p (z | Θ) = Gam(z; α, β), p (~y | c, z,Θ) =
D∏
d=1

Poiss (yd; zWcd) ,

(3.2)

with c = 1, . . . , C denoting the index of the mixture components and ~π = {πc}Cc=1 with
πc ∈ [0, 1] and

∑C
c=1 πc = 1 denoting the corresponding prior activations, α, β,Wcd ∈ R+,

and W = { ~Wc}Cc=1 with ~Wc = {Wcd}Dd=1 denoting the generative fields of the model. The
model parameters of the GPMM are Θ = {~π, α, β,W}.
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Given a set of data points {~y (n)}n=1...N , we seek parameters Θ∗ = argmaxΘ L(Θ)
that optimize the data log-likelihood. A direct optimization of the likelihood is usually
challenging, and, instead, efficient algorithms use, for instance, variational Expectation
Maximization approaches (Neal and Hinton, 1998; Saul and Jordan, 1995) and optimize a
variational lower bound

F(q,Θ) ≤ L(Θ) =
N∑
n=1

log
(
p(~y (n) |Θ)

)
(3.3)

of the log-likelihood (the variational lower bound is also known as free energy or evidence
lower bound – ELBO). For the SSSC generative model (Eq. (3.1)), p(~y |Θ) =

∑
{~s}
∫
~z p(~y |

~s, ~z,Θ)p(~s | Θ)p(~z | Θ) d~z with
∑
{~s} running over all possible configurations of the binary

latent vector ~s, and for GPMMs (Eq. (3.2)), p(~y |Θ) =
∑C

c=1

∫
z p(~y | c, z)p(c | Θ)p(z | Θ)dz.

The ES3C approach exploits that (i) parameter update equations (M-steps) take analytically
tractable forms (Sheikh et al., 2014) and that (ii) efficient variational E-steps can be realized
by applying evolutionary algorithms to optimize variational parameters (see Sec. 3.S1 and
Drefs et al. (2022) for details). For GPMMs, the Gamma distributed latents and Poisson
observables may suggest analytical intractabilities at first sight, yet, closed-form expressions
for the posterior can be derived. For the derivation, we make use of theoretical results by
Monk et al. (2018), who studied a more general class of such models for intensity-sensitive
classification. For the GPMM model (Eq. (3.2)), the following M-step equations can be
derived (a detailed derivation is provided in Sec. 3.S1):

Wcd =
(β +

∑
d′ 6=dWcd′)

∑N
n=1 p(c|~y (n),Θ)y

(n)
d∑N

n=1 p(c|~y (n),Θ)(α+ ŷ(n) − y(n)
d )

,

πc =
1

N

N∑
n=1

p(c | ~y (n),Θ),

α = exp
( 1

N

N∑
n=1

Ep(c|~y (n),Θ)

[
log β − g(α) + ψ(ŷ(n) + α) + log(β + Ŵc)

])
,

β =
N · α∑N

n=1Ep(c|~y (n),Θ)

[
(ŷ(n) + α)(β + Ŵc)−1

] ,
with g(α) = − 1

2α
− 1

12α2
+

1

120α4
− 1

256α6
+

1

240α8
,

(3.4)

and where ψ denotes the digamma function. While there are closed-form solutions for the
parameters Wcd and πc, the parameters α and β are updated via fixed-point iteration of
the form x = f(x). The M-steps (Eq. (3.4)) depend on the posterior p(c | ~y,Θ), which can
be derived by marginalizing the joint posterior p(c, z | ~y,Θ) over the continuous latent z
(details in Sec. 3.S1). The posterior p(c | ~y,Θ) computed in the E-step is given by:

p(c | ~y,Θ) =
p(~y |c,Θ)p(c |Θ)∑C

c′=1 p(~y | c′,Θ)p(c′ |Θ)
,

with p(~y | c,Θ) =

(
D∏
d=1

W yd
cd

yd!

)
ŷ!

Ŵ ŷ
c

NB

(
ŷ;α,

Ŵc

β + Ŵc

)
,

(3.5)

with NB denoting the negative binomial distribution, Ŵc =
∑D

d=1Wcd, and ŷ =
∑D

d=1 yd.
As the continuous latents can be marginalized, the resulting EM algorithm maintains the
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computational complexity of a mixture model. We can consequently efficiently train the
GPMM model (Eq. (3.2)) without applying variational approximations.

3.4.2 Probabilistic Data Estimation

Given a set of optimized parameters Θ, we can use the data representations learned with
ES3C and GPMM for probabilistic data estimation: for instance, we can estimate the most
likely, non-noisy version ~y est of a given noisy data point ~y by estimating the first moment
of the modeled pixel distribution. The data estimator we apply here is derived based on
the posterior predictive distribution p(~y est|~y,Θ). The concrete expression we use here for
ES3C is given by (Drefs et al., 2022):

yest
d ←Ep(~y est|~y,Θ)

[
yest
d

]
= Ep(~s,~z |~y,Θ)

[
Ep(yest

d |~s,~z,Θ)

[
yest
d

]]
= ( ~Wd)

T
Ep(~s,~z |~y,Θ)

[
~s� ~z

]
, (3.6)

with ~Wd = {Wdh}Hh=1, � denoting point-wise multiplication, and E[·] denoting expectation.
Efficient computation of Eq. (3.6) exploits that the expectation w.r.t. the binary-continuous
posterior p(~s, ~z | ~y,Θ) can be reformulated as an expectation taken only w.r.t. the binary
latent space (Sheikh et al., 2014), which, in turn, can be approximated efficiently using
truncated posteriors (see Sec. 3.S1 and Drefs et al. (2022) for details). We follow the same
line of reasoning in order to derive a data estimator for GPMM; the final expression takes
the following form (details in Sec. 3.S1):

yest
d ←Ep(~y est|~y,Θ)

[
yest
d

]
= (α+ ŷ)Ep(c | ~y,Θ)

[
Wcd

β + Ŵc

]
. (3.7)

3.4.3 Estimation of Non-Noisy Image Pixels

To enhance a given microscopy image using ES3C and GPMM, we extract overlapping
patches (Burger et al., 2012; Elad and Aharon, 2006; Mairal et al., 2008; Zhou et al.,
2012) from the image and treat the obtained set of image patches as our training dataset
Y = {~y (n)}Nn=1 (patch sizes used are listed in Sec. 3.S2.2). After training, we apply Eqs. (3.6)
and (3.7) to each data point in Y (i.e., to each image patch). Due to mutually overlapping
patches, this results in multiple denoised estimates for a given image pixel, and, here, we
consider both means and variances of pixel estimations for image reconstruction (see Fig. 3.5
for an illustration).

3.4.4 Evaluation Metrics

A variety of objective measures for quantifying image enhancement performance exists, with
the requirement for reference information being one distinguishing criterion. In benchmarks
with artificially degraded images (e.g. Gaussian denoising), processed images can be
compared to the available respective ‘clean’ image. Image restoration performance can then
be quantified based on measures such as peak-signal-to-noise ratio (PSNR) or structural
similarity (Wang et al., 2004) which both rely on the ground-truth image as input. For the
SARS-CoV-2 TEM microscopy data considered in this study, clean reference images are,
however, not available, and we are consequently restricted to evaluation metrics that can be
calculated based on a single image (also referred to as no-reference metrics). For our purposes,
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Figure 3.5: ‘Zero-shot’ image enhancement method using probabilistic generative model
algorithms for denoising (see Sec. 3.4 for details): As input (top left), here we use pre-
processed versions of publicly available transmission electron microscopy (TEM) images
of SARS-CoV-2 infected cell cultures (Laue et al., 2021) (see Sec. 3.S2.1 for data-related
details). Using patches extracted from the noisy TEM image (bottom left), we first learn a
probabilistic representation of the image using an appropriately chosen data model (here
we apply linear spike-and-slab sparse coding models and Gamma-Poisson mixtures). We
can then apply the learned representation to probabilistically reconstruct each image patch
(bottom right). Finally, we generate reconstructed TEM images by computing means and
variances of pixel estimates obtained from mutually overlapping patches (top center and
right). The TEM image enhancement approach does not require (clean) training data and
can directly be applied to a single noisy image.

we consider blind noise level estimation (Chen et al., 2015a), signal-to-noise quantification
based on paired hand-labeled signal and background regions (Bepler et al., 2020), and
image quality ranking (Koho et al., 2016a). For the signal-to-noise quantification, we follow
Bepler et al. (2020) and label M pairs of signal and background regions ~x (m)

s and ~x (m)
b for

each test image, respectively, to calculate SNR = 10
M

∑M
m=1 log10(s(m))− log10(σ

(m)
b ), with

s(m) = (µ
(m)
s − µ(m)

b )2, µ(m)
s and µ(m)

b denoting the mean of ~x (m)
s and ~x (m)

b , respectively,
and σ

(m)
b denoting the variance of ~x (m)

b . For the quality ranking, we first evaluate the
denoised images obtained with the investigated algorithms for each test image individually
based on the normalized quality scores computed using publicly available source code (Koho
et al., 2016b). In total, six algorithms are considered such that the rankings correspond
to integer numbers between one and six. Finally, we average ranks across test images and
translate the resulting numbers into integers again. We perform separate rankings based
on the measures CV, invSTD, Entropy and MeanBin.
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Supplementary Material

3.S1 Derivations

3.S1.1 EM Update Rules Spike-and-Slab Sparse Coding

To efficiently optimize the parameters of the SSSC model (Eq. (3.1)), the here applied
ES3C approach exploits Evolutionary Variational Optimization (EVO; Drefs et al., 2022),
a fully variational Expectation Maximization approach which uses truncated posteriors
(Hirschberger et al., 2022; Lücke and Eggert, 2010; Lücke and Forster, 2019; Sheikh et al.,
2014; Shelton et al., 2017) of the form

q(n)(~s | K(n)
,Θ) :=

p
(
~s | ~y (n),Θ

)∑
~s ′∈K(n)

p
(
~s ′ | ~y (n),Θ

)δ(~s ∈ K(n))
,

with δ
(
~s ∈ K(n))

=

{
1 if ~s ∈ K(n)

,

0 otherwise,

(3.S1)

as variational distributions. Truncated posteriors as defined by Eq. (3.S1) are proportional
to the exact posterior p

(
~s | ~y (n),Θ

)
on a subset of the latent space defined by a set of

latent states, denoted K(n) , (i) that are supposed to accumulate most posterior mass, and
(ii) whose size S = |K(n) | is chosen much smaller than the full latent space of size 2H .
Crucial for the variational E-step is that the free energy objective can be expressed as

F(K(1...N),Θ) =
N∑
n=1

log
( ∑
~s∈K(n)

p
(
~y (n), ~s | Θ

))
. (3.S2)

The states in the sets K(n) are variational parameters of the EVO approach, and they are
optimized using evolutionary computation: To increase Eq. (3.S2) in the variational E-step,
the sets K(n) are varied by replacing states ~s ∈ K(n) with new states ~s new /∈ K(n) that fulfill
the criterion

p(~s new, ~y (n) | Θ) > p(~s, ~y (n) | Θ) , (3.S3)

and new states are evolved by elementary genetic operations, namely selection, mutation
and crossover (see Drefs et al. (2022) for details). Equations (3.S2) and (3.S3) can efficiently
be evaluated given that the joint p

(
~y (n), ~s | Θ

)
of the SSSC model (Eq. (3.1)) has a

computationally tractable form:

p
(
~y (n), ~s | Θ

)
= B(~s;~π) N (~y (n); W̃~s ~µ,C~s), (3.S4)
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with C~s = σ21 + W̃~s Ψ W̃T
~s and (W̃~s)dh = Wdhsh s.t. W (~s� ~z ) = W̃~s ~z. The M-step

update rules for the SSSC model have been derived before (Sheikh et al., 2014), and we
report the final expressions here for completeness:

W =

∑N
n=1 ~y

(n)
Eq(n)(~s,~z)

[
~s� ~z

]T∑N
n=1Eq(n)(~s,~z)

[
(~s� ~z ) (~s� ~z )T ] ,

~π =
1

N

N∑
n=1

Eq(n)(~s,~z)

[
~s
]
,

~µ =

∑N
n=1Eq(n)(~s,~z)

[
~s� ~z

]∑N
n=1Eq(n)(~s,~z)

[
~s
] ,

Ψ =
N∑
n=1

[
Eq(n)(~s,~z)

[
(~s� ~z ) (~s� ~z )T ]−Eq(n)(~s,~z)

[
~s~sT
]
� ~µ~µT

]
�

(
N∑
n=1

Eq(n)(~s,~z)

[
~s~sT
])−1

,

σ2 =
1

ND
Tr

(
N∑
n=1

[
~y (n)(~y (n))T −W

[
Eq(n)(~s,~z)

[
~s� ~z

]
·Eq(n)(~s,~z)

[
~s� ~z

]T]
WT

])
.

(3.S5)

The expressions of the form Eq(n)(~s,~z)[·] in Eq. (3.S5) denote expectation values w.r.t. the
full binary-continuous posterior of the SSSC model. These expectations can be reformulated
as functions of expectation values Eq(n)(~s )[·] that are taken w.r.t. the posterior over the
binary (rather than the full binary-continuous) latent space (Sheikh et al., 2014):

Eq(n)(~s,~z)

[
~s
]

= Eq(n)(~s )

[
~s
]
,

Eq(n)(~s,~z)

[
~s~sT
]

= Eq(n)(~s )

[
~s~sT
]
,

Eq(n)(~s,~z)

[
~s� ~z

]
= Eq(n)(~s )

[
~κ

(n)
~s

]
,

Eq(n)(~s,~z)

[
(~s� ~z ) (~s� ~z )T ] = Eq(n)(~s )

[
Λ~s + ~κ

(n)
~s (~κ

(n)
~s )T

]
,

(3.S6)

where Λ~s = (σ−2W̃T
~s W̃~s + Ψ−1

~s )−1, and ~κ(n)
~s = (~s� ~µ) +σ−2Λ~sW̃

T
~s (~y (n)− W̃~s~µ). Eq. (3.S6)

can efficiently be evaluated by approximating the expectations w.r.t. the exact binary
posterior q(n)(~s ) = p

(
~s | ~y (n),Θ

)
by expectations taken w.r.t. a truncated posterior

distribution as in Eq. (3.S1). The expectation values that are ultimately computed in the
M-step take the following form:

E
q(n)(~s |K(n)

,Θ)

[
g(~s )

]
=

∑
~s∈K(n)

g(~s ) p
(
~y (n), ~s | Θ

)
∑

~s ′∈K(n)

p
(
~y (n), ~s ′ | Θ

) , (3.S7)

with p
(
~y (n), ~s | Θ

)
given by Eq. (3.S4) (Drefs et al., 2022; Sheikh et al., 2014).

3.S1.2 EM Update Rules Gamma-Poisson Mixtures

To efficiently train the GPMM (Eq. (3.2)), we apply Expectation Maximization. The here
considered GPMM has been defined specifically for the purposes of this paper. Consequently,
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all the following derivations are specific to this work. The derivations make use of earlier
theoretical results by Monk et al. (2018) about a similar model developed for biologically
plausible classification with class-specific intensities. Before deriving E- and M-step update
rules, we reformulate the product of the conditional probability p(~y |z, c,Θ) and the prior
probability p(z|Θ) in the following way:

p(~y |z, c,Θ)p(z|Θ) =

(∏
d

W yd
cd

yd!

)
zŷ+α−1 βα

Γ(α)
exp

(
−z(β + Ŵc)

)
(3.S8)

Introducing the factors Γ (ŷ + α)−1 and
(
β + Ŵc

)ŷ+α
, we can recognize the underlined

term as a Gamma distribution:

p(~y |z, c,Θ)p(z|Θ) =

(∏
d

W yd
cd

yd!

)
Γ (ŷ + α)

Γ(α)

βα(
β + Ŵc

)ŷ+α

· zŷ+α−1 exp
(
−z(β + Ŵc)

)(β + Ŵc

)ŷ+α

Γ (ŷ + α)︸ ︷︷ ︸
=Gam(z;α+ŷ,β+Ŵc)

(3.S9)

=

(∏
d

W yd
cd

)
Γ (ŷ + α)

Γ(α)

βα(
β + Ŵc

)ŷ+α
·Gam(z;α+ ŷ, β + Ŵc)

(3.S10)

Multiplying with ŷ!ŷ!−1 and Ŵ ŷ
c Ŵ

−ŷ
c , we can recognize a negative binomial distribution,

which yields to our final result:

p(~y |z, c,Θ)p(z|Θ) =

(∏
d

W yd
cd

yd!

)
ŷ!

Ŵ ŷ
c

NB

(
ŷ;α,

Ŵc

β + Ŵc

)
·Gam(z;α+ ŷ, β + Ŵc)

(3.S11)

= p(~y |c,Θ)Gam(z;α+ ŷ, β + Ŵc) (3.S12)

Given a set of datapoints Y =
{
~y (n)

}
n=1,...,N

, we seek parameters Θ∗ that optimize the
data likelihood which for the GPMM (Eq. (3.2)) is given by:

L(Θ) =
N∑
n=1

log
(
p(~y (n)|Θ)

)
=

N∑
n=1

log

(
C∑
c=1

∫
p(~y (n)|z, c,Θ)p(z|Θ)p(c|Θ)dz

)
(3.S13)

(3.S12)
=

N∑
n=1

log

(
C∑
c=1

p(~y (n)|c,Θ)p(c|Θ) ·
∫

Gam(z;α+ ŷ(n), β + Ŵc)dz

)
(3.S14)

=
N∑
n=1

log

(
C∑
c=1

p(~y (n)|c,Θ)p(c|Θ)

)
(3.S15)

≥
N∑
n=1

C∑
c=1

q(n) (c,Θ)
[
log p(~y (n)|c,Θ) + log p(c|Θ)

]
+H(Θ) (3.S16)

= F(q,Θ) (3.S17)
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A direct optimization of L(Θ) in the form of Eq. (3.S15) is intractable. Following Saul and
Jordan (1995), Neal and Hinton (1998), we introduce variational distributions q(n) (c,Θ)
(in Eq. (3.S16)) and apply Jensen’s inequality (from Eqs. (3.S15) to (3.S16)) in order to
derive the free energy F(q,Θ); the free energy is a lower bound of the likelihood and it
allows for efficient optimization. H

(
q(n),Θ

)
in Eq. (3.S16) denotes the Shannon entropy

of the distributions q(n) (c,Θ). For our purposes, we use exact posteriors as variational
distributions, i.e. we set q(n) (c,Θ) = p(c|~y (n),Θ). With this choice, the inequality in
Eq. (3.S16) becomes an equality. The free energy than takes the following form:

F(q,Θt,Θt−1) =
N∑
n=1

C∑
c′=1

p(c|~y (n),Θt−1)
[
log p(~y (n)|c′,Θt) + log p(c′|Θt)

]
+H(Θt−1)

(3.S18)

In the E-step, the posterior probability p(c|~y (n),Θ) is computed which can be derived by
applying Bayes’ rule:

p(c|~y (n),Θ) =
p(~y |c,Θ)p(c|Θ)∑

c′
∫
p(~y |c′,Θ)p(c′|Θ)dz

(3.S19)

In the M-step new parameters are computed, which maximize the free energy using the
current estimate of the posterior probability distribution. Each new parameter, including
W, πc, α and β, will be computed using update rules that are derived via ∂

∂ΘF (q,Θ). For
the update rule of the parameter W , a closed-form solution can be obtained:

0
!

=
∂

∂Wcd
F(q,Θ)

=
N∑
n=1

C∑
c′=1

p(c′|~y (n),Θ)

(
D∑
d′=1

y
(n)
d′

∂

∂Wcd
logWc′d′ − (ŷ(n) + α)

∂

∂Wcd
log(β + Ŵc′)

)

=
N∑
n=1

C∑
c′=1

p(c′|~y (n),Θ)

(
D∑
d′=1

y
(n)
d′

1

Wc′d′
δdd′δcc′ −

ŷ(n) + α

β + Ŵc′
δcc′

)

=
1

Wcd

N∑
n=1

p(c|~y (n),Θ)y
(n)
d − 1

β + Ŵc

N∑
n=1

p(c|~y (n),Θ)(ŷ(n) + α)

(3.S20)

⇔
N∑
n=1

p(c|~y (n),Θ)(ŷ(n) + α) =
β +

∑
d′ Wcd′

Wcd

N∑
n=1

p(c|~y (n),Θ)y
(n)
d

=

(
β +

∑
d′ 6=dWcd′

Wcd
+ 1

) N∑
n=1

p(c|~y (n),Θ)y
(n)
d

(3.S21)

⇔
N∑
n=1

p(c|~y (n),Θ)(ŷ(n) + α− y(n)
d ) =

β +
∑

d′ 6=dWcd′

Wcd

N∑
n=1

p(c|~y (n),Θ)y
(n)
d (3.S22)

⇔Wcd =
(β +

∑
d′ 6=dWcd′)

∑N
n=1 p(c|~y (n),Θ)y

(n)
d∑N

n=1 p(c|~y (n),Θ)(α+ ŷ(n) − y(n)
d )

(3.S23)

72



3.S1. Derivations

The corresponding update rule for the parameter πc is obtained in a similar manner, with
the additional constraint that

∑
c πc = 1, enforced using a Lagrange multiplier λ:

0
!

=
∂

∂πc
F(q,Θ) =

N∑
n=1

C∑
c′=1

p(c|~y (n),Θ)
∂

∂πc
log πc′ + λ

(
C∑
c′=1

∂

∂πc
πc′ − 1

)
(3.S24)

=
N∑
n=1

C∑
c′=1

p(c|~y (n),Θ)
1

πc′
δcc′ + λ

C∑
c′=1

δcc′ =
N∑
n=1

p(c|~y (n),Θ)
1

πc
+ λ (3.S25)

⇒ λπc = −
N∑
n=1

p(c|~y (n),Θ) (3.S26)

By summing Eq. (3.S26) over c, we obtain λ = −N . This yields to the final solution of the
update rule of πc:

−Nπc = −
N∑
n=1

p(c|~y (n),Θ) (3.S27)

πc =
1

N

N∑
n=1

p(c|~y (n),Θ) (3.S28)

The update rules of the parameters α and β can not be derived in closed-form. Therefore,
we apply fixed-point iterations of the form x = f(x) in order to update these parameters.
The update rule for α looks as follows:

0
!

=
∂

∂α
F(q,Θ) (3.S29)

=
N∑
n=1

C∑
c=1

p(c|~y (n),Θ)

(
∂

∂α
α log β − ∂

∂α
log Γ(α)

+
∂

∂α
log Γ(ŷ(n) + α)− ∂

∂α
α log(β + Ŵc)

) (3.S30)

=

N∑
n=1

C∑
c=1

p(c|~y (n),Θ)
(

log β − ψ(α) + ψ(ŷ(n) + α)− log(β + Ŵc)
)

(3.S31)

where ψ denotes the digamma function. To solve this equation, we aproximate ψ (α)
with:

ψ (α) ≈ log (α)− 1

2α
− 1

12α2
+

1

120α4
− 1

256α6
+

1

240α8︸ ︷︷ ︸
g(α)

= log (α) + g(α) (3.S32)

By inserting this aproximation into Eq. (3.S31), the update rule of α yields to:

⇒ log (α) =
1

N

N∑
n=1

C∑
c=1

p(c|~y (n),Θ)
(

log β − g(α) + ψ(ŷ(n) + α)− log(β + Ŵc)
)

(3.S33)

⇒ α = exp

(
1

N

N∑
n=1

C∑
c=1

p(c|~y (n),Θ)
(

log β − g(α) + ψ(ŷ(n) + α)− log(β + Ŵc)
))

(3.S34)
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The corresponding update of β is obtained in a similar manner:

0
!

=
∂

∂β
F(q,Θ) =

N∑
n=1

C∑
c=1

p(c|~y (n),Θ)

(
α
∂

∂β
log β − (ŷ(n) + α)

∂

∂β
log
(
β + Ŵc

))
(3.S35)

= N
α

β
−

N∑
n=1

C∑
c=1

p(c|~y (n),Θ)(ŷ(n) + α)(β + Ŵc)
−1 (3.S36)

⇒ β =
N · α∑N

n=1

∑C
c=1 p(c|~y (n),Θ)(ŷ(n) + α)(β + Ŵc)−1

(3.S37)

3.S1.3 Data Estimator Gamma-Poisson Mixtures

As described in Sec. 3.4, we apply a probabilistic data estimator based on the posterior
predictive distribution to estimate the most likely, non-noisy version ~y est of a given noisy
data point ~y. This data estimator is model-specific, and, for the SSSC model, a concrete
expression has been derived by Drefs et al. (2022). However, for the GPMM, such concrete
expression still needs to be derived. For the GPMM, the posterior predictive distribution
can be written as follows:

p(~y est|~y ) =
∑
c

∫
p(~y est|c, z,Θ)p(c, z|~y,Θ) (3.S38)

The noisy pixel values are then replaced by the expectation values of this posterior predictive
distribution:

yest
d ←Ep(~y est|~y,Θ)

[
yest
d

]
= Ep(c,z|~y,Θ)

[
Ep(~y est|c,z,Θ)

[
yest
d

]]
(3.S39)

The inner expectation is the first moment of the noise model (Eq. (3.2), right). This
expectation is given by Ep(~y est|c,z,Θ)

[
yest
d

]
= zWcd. Furthermore, the posterior distribution

p(c, z|~y,Θ) can be reformulated as follows:

p(c, z|~y,Θ) =
p(~y|c, z,Θ)p(z|Θ)p(c|Θ)∑

c′
∫
p(~y|c′, z′,Θ)p(z|Θ)p(c′|Θ)dz

(3.S40)

(3.S12)
=

p(~y|c,Θ)p(c|Θ)Gam(z;α+ ŷ, β + Ŵc)∑
c′ p(~y|c′,Θ)p(c′|Θ)

∫
Gam(z;α+ ŷ, β + Ŵc)dz

(3.S41)

=
p(~y|c,Θ)p(c|Θ)∑
c′ p(~y|c′,Θ)p(c′|Θ)

Gam(z;α+ ŷ, β + Ŵc) (3.S42)

= p(c|~y,Θ)Gam(z;α+ ŷ, β + Ŵc) (3.S43)
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File Vertical crop Horizontal crop Rescale Resulting size

Name ID Start End Start End Height Width

Dataset_02_SARS-CoV-2_007.tif 1 0 1032 0 1376 0.5 516 688
Dataset_02_SARS-CoV-2_009.tif 2 0 1032 0 1376 0.5 516 688
Dataset_02_SARS-CoV-2_038.tif 3 0 1032 0 1376 0.5 516 688
Dataset_03_SARS-CoV-2_043.tif 4 0 1032 165 1375 0.5 516 605
Dataset_03_SARS-CoV-2_070.tif 5 0 1032 0 1110 0.5 516 555
Dataset_03_SARS-CoV-2_080.tif 6 0 900 0 1270 0.5 450 635
Dataset_07_SARS-CoV-2_036.tif 7 0 1032 384 1376 0.5 516 496
Dataset_07_SARS-CoV-2_077.tif 8 0 1032 360 1376 0.5 516 508
Dataset_07_SARS-CoV-2_102.tif 9 0 1032 358 1374 0.5 516 508

Table 3.S1: File names and preprocessing settings for the selected TEM images of SARS-
CoV-2 infected cell cultures (see Sec. 3.S2.1 for description).

Inserting these results into Eq. (3.S39), the data estimator yields to:

Ep(c,z|~y,Θ)

[
zWcd

]
=
∑
c

∫
zWcd p(c, z|~y,Θ)dz (3.S44)

=
∑
c

Wcd p(c|~y,Θ)

∫
zGam(z;α+ ŷ, β + Ŵc)dz (3.S45)

=
∑
c

Wcd p(c|~y,Θ)
α+ ŷ

β + Ŵc

(3.S46)

= (α+ ŷ)Ep(c|~y,Θ)

[
Wcd

β + Ŵc

]
(3.S47)

3.S2 Details on Numerical Experiments

3.S2.1 Datasets

Transmission Electron Microscopy Images of SARS-CoV-2 Infected Cell Cul-
tures. We consulted three publicly available datasets containing transmission electron
microscopy (TEM) images of ultrathin plastic sections (45 nm and 60–70 nm) through
extracellular SARS-CoV-2 particles in Vero cell cultures (Laue et al., 2020a,b,c) to select
nine test images. From the original 1032×1376 images, we cut off areas with little structure
(e.g., areas containing only noise) and, due to computational limitations of our implemen-
tation, particularly of ES3C (compare Drefs et al. (2022)), down-scaled the resolution by
omitting every second pixel in width and height (using GIMP’s ‘Scale Image’ method with
‘Interpolation=None’). This enabled to train ES3C and GPMM with a sufficiently large
number of generative fields and using patches sizes that captured sufficiently much virus
structure. Table 3.S1 lists the file names of the selected images and the pixel indices of the
selected image crops.

Fluorescence Microscopy Images. We downloaded the data sets FU-PN2V Convallaria,
FU-PN2V Mouse actin and FU-PN2V Mouse nuclei from publicly available repositories
(Krull et al., 2020b; Prakash et al., 2019a,b). The former two data sets each contained 100
images with 1024×1024 pixels, the latter 200 images with 512×512 pixels. In our ‘zero-shot’
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denoising experiments, we applied BM3D, N2V, DivN, S2S, ES3C, and GPMM to a single
randomly selected image from each data set (following a procedure used by Prakash et al.
(2021b); in our case, the 75th, 41st, and 177th image from FU-PN2V Convallaria, FU-PN2V
Mouse actin, and FU-PN2V Mouse nuclei, respectively, were selected). Following the
publicly available DivNoising source code (Prakash et al., 2021a), we measured denoising
performance in terms of PSNR, using the average image of each sequence as the target and
the difference between the minimum and maximum amplitude of the target image as the
peak value.

3.S2.2 Implementations and Hyperparameters

BM3D. We used the official BM3D Python software (Mäkinen et al., 2019) and executed
the algorithm using ‘stage_arg=BM3DStages.ALL_STAGES’. The algorithm requires as
input an estimate of the noise level of the data. To compute such estimate, we used the
method of Chen et al. (2015a) and the respective publicly available implementation (Chen
et al., 2015b) together with default hyperparameters.

N2V. We used the official Noise2Void implementation (Krull et al., 2019b) and executed
the algorithm with the configuration of the ‘BSD68_reproducibility’ example available in
the respective GitHub repository.

DivN. We used the official DivNoising implementation (Prakash et al., 2021a) and
executed the algorithm with the configuration of the ‘Convallaria’ and ’Mouse_nuclei’
example available in the respective GitHub repository. For Mouse actin and SARS-CoV-2
experiments, we adopted the settings of the Convallaria example and changed image-specific
settings accordingly. To create a noise model, we used the bootstrapping method based on
the respective denoised outcome of the N2V algorithm, as also suggested in the repository.

S2S. We used the official Self2Self implementation (Quan et al., 2020b) and executed the
algorithm with the configuration of the ‘demo_denoising’ script available in the respective
GitHub repository. We set the dropout rate to 0.3 (as also suggested in examples in the
‘demo_denoising’ script), and the parameters ’sigma’ and ’is_realnoisy’ to ’-1’ and ’True’,
respectively. We modified the preprocessing pipeline by dividing the pixel amplitudes with
the maximum pixel amplitude of a given input image rather than with the value 255 (compare
utils.py/ line 26). Accordingly, we modified the postprocessing pipeline by multiplying the
pixel amplitudes of the output image with the previously determined maximum value and
then saved the image with single precision (compare demo_denoising.py/ line 56).

ES3C. To train ES3C on TEM images of SARS-CoV-2 infected cell cultures, we used a
patch size and a dictionary size of D = 6×6 and H = 512, respectively. For the evolutionary
variational optimization (EVO; Drefs et al., 2022), we chose S = |K(n) | = 40 and used the
‘fitparents-randflip’ algorithm with Nparents = 30 and Nchildren = Ngenerations = 1. ES3C
was trained for 150 epochs for each TEM image. For the fluorescence microscopy images, we
used a slightly larger patch size of D = 12× 12, changed EVO hyperparameters to S = 30
and Np = 20 to keep the computational demand at a reasonable level, and performed 200
training epochs. The algorithm was initialized as follows (compare Drefs et al., 2022):
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Priors {πinit
h }Hh=1 were uniformly randomly drawn from the interval [0.1, 0.5]. Latent means

{µinit
h }Hh=1 were sampled from a zero-mean unit variance Gaussian. The latent covariance

matrix was set to the unit matrix, i.e. Ψinit = 1. The columns of the matrix W init were
initialized with the mean of the data points pertubed by a small amount of Gaussian noise.
The variance (σinit)2 was set to the variance of the data points averaged over the observed
dimensions. The initial states ~s in the sets {K(n)}Nn=1 were sampled from a Bernoulli
distribution with p(sh = 1) = 0.1. We used an implementation that allows for parallelized
execution on potentially large numbers of CPU cores5. Such parallelization alleviates the
in general relatively high computational demand of the ES3C approach (see Drefs et al.
(2022) for discussion).

GPMM. To train GPMM on TEM images of SARS-CoV-2 infected cell cultures, we
used a patch size and a codebook size of D = 6 × 6 (same value as used for ES3C) and
H = 1000, respectively (compare Sec. 3.4). GPMM was trained for 200 epochs for each
image. For the fluorescence microscopy images, we used D = 5× 5 patches (we found this
value to yield the best performance of the algorithm in terms of denoising PSNR) and
performed 500 training epochs for the Convallaria dataset and 400 for the Mouse actin and
Mouse nuclei datasets. We initialized GPMM as follows: Priors {πinit

c }Cc=1 were uniformly
randomly drawn from the interval ]0, 1[. The columns of the matrix W init were initialized
with the mean of the data points pertubed by a small amount of Poisson noise and scaled
between 0 and 1. The initial parameters of the Gamma distribution were set to αinit = 100
and βinit = 1. As for ES3C, we used a parallelized implementation of GPMM that allows
for distributed execution (cf. Footnote 5).

3.S2.3 Further Results

Image Quality Ranking. Figure 3.S1 lists the individual scores of the image quality
measures considered in Fig. 3.2C for each test image.

ES3C. Figure 3.S2 depicts further colorized visualizations of variances of non-noisy pixel
estimations including results obtained based on an unscaled SARS-CoV-2 TEM image.
Figure 3.S3 presents results for ‘zero-shot’ enhancements of a SARS-CoV-1 EM recording,
i.e., the virus that caused the outbreak of the SARS disease in 2002/2003.

DivNoising. For the experiments described in Sec. 3.2, we executed DivN using N2V-
based bootstrapping for noise model estimation and a single noisy image for training. In
further control experiments that we conducted with the fluorescence microscopy data, we
also investigated applications of DivN with calibration data for noise model estimation and
training on full image series. For calibration, we used the calibration images made publicly
available by Krull et al. (2020b); Prakash et al. (2019a,b). In total, we performed four
different types of experiments per image, which we here refer to as DivN1

C, DivN1
B, DivNall

C ,
and DivNall

B . The superscripts DivN1 and DivNall denote the variants of the algorithm that
use training on a single and on all images of a given dataset, respectively; the subscripts
DivNC and DivNB indicate noise model estimation using calibration data and bootstrapping,
5 The source code will be made publicly available at https://github.com/tvlearn once the manuscript
has been accepted for publication.
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Figure 3.S1: Individual image quality scores for each of the nine test images related to the
ranking of Fig. 3.2C (see Tab. 3.S1 for image names associated to file IDs). Numbers were
computed using publicly available source code (Koho et al., 2016b).
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Colorized enhanced imageNoisy EM image

Colorized enhanced imageNoisy EM image

Colorized enhanced imageNoisy EM image

Figure 3.S2: Further examples of colorized visualizations of variances of non-noisy pixel
estimations (compare Sec. 3.4). The top two colorized images use the same colorization
as in Fig. 3.1 (see respective figure caption for details). The third image, showing three
SARS-CoV-2 viruses, was manually colored in green and blue.
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Noisy EM Image Mean of Pixel Estimations Variance of Pixel Estimations

Figure 3.S3: ‘Zero-shot’ enhancements of electron microscopy images of SARS-CoV-1 viruses
using ES3C trained on 9 × 9 TEM image patches (compare Sec. 3.4 and Fig. 3.5). The
noisy input was obtained based on a publicly available dataset (Gelderblom et al.). We
converted the original image to grayscale, cropped a section showing four viruses and scaled
the resulting image to a size of 379× 305 pixels.

Convallaria Mouse nuclei Mouse actin

DivN1
C 38.81 ± 0.06 36.11 ± 0.36 35.06 ± 0.25

DivN1
B 38.46 ± 0.23 35.96 ± 0.20 35.12 ± 0.17

DivNall
C 39.65 ± 0.02 37.32 ± 0.12 35.82 ± 0.01

DivNall
B 39.05 ± 0.45 37.09 ± 0.06 35.80 ± 0.01

Table 3.S2: PSNR values (in dB) for denoising fluorescence microscopy images obtained
in control experiments with different variants of the DivNoising algorithm (see text for
details). Listed are averages and standard deviations over three executions of the algorithm
per setting.

respectively. Table 3.S2 lists the PSNRs obtained with the four algorithm configurations
for the three single test images considered in Fig. 3.4 and described in Sec. 3.S2.1.
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Chapter 4

Truncated Variational Autoencoders

This chapter has appeared as: Jakob Drefs∗, Enrico Guiraud∗, Filippos Panagiotou, Jörg
Lücke. Direct Evolutionary Optimization of Variational Autoencoders with Binary Latents.
In Massih-Reza Amini et al. (Eds.): Machine Learning and Knowledge Discovery in
Databases. ECML PKDD 2022. Lecture Notes in Computer Science, vol. 13715, pp. 357-
372, 2023. Springer, Cham. https://doi.org/10.1007/978-3-031-26409-2_22. ∗Joint
first authorship. Reproduced with permission from Springer Nature. The Springer Nature
content included in this chapter is not covered by the open access license under which
this thesis is published. The right to reuse the content requires the explicit permission of
Springer Nature.

Abstract. Many types of data are generated at least partly by discrete causes. Deep
generative models such as variational autoencoders (VAEs) with binary latents consequently
became of interest. Because of discrete latents, standard VAE training is not possible,
and the goal of previous approaches has therefore been to amend (i.e, typically anneal)
discrete priors to allow for a training analogously to conventional VAEs. Here, we divert
more strongly from conventional VAE optimization: We ask if the discrete nature of
the latents can be fully maintained by applying a direct, discrete optimization for the
encoding model. In doing so, we sidestep standard VAE mechanisms such as sampling
approximation, reparameterization and amortization. Direct optimization of VAEs is
enabled by a combination of evolutionary algorithms and truncated posteriors as variational
distributions. Such a combination has recently been suggested, and we here for the first time
investigate how it can be applied to a deep model. Concretely, we (A) tie the variational
method into gradient ascent for network weights, and (B) show how the decoder is used for
the optimization of variational parameters. Using image data, we observed the approach to
result in much sparser codes compared to conventionally trained binary VAEs. Considering
the for sparse codes prototypical application to image patches, we observed very competitive
performance in tasks such as ‘zero-shot’ denoising and inpainting. The dense codes emerging
from conventional VAE optimization, on the other hand, seem preferable on other data,
e.g., collections of images of whole single objects (CIFAR etc), but less preferable for image
patches. More generally, the realization of a very different type of optimization for binary
VAEs allows for investigating advantages and disadvantages of the training method itself.
And we here observed a strong influence of the method on the learned encoding with
significant impact on VAE performance for different tasks.
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4.1 Introduction and Related Work

Objects or edges in images are either present or absent, which suggests the use of discrete
latents for their representation. There are also typically only few objects per image (of all
possible objects) or only few edges in any given image patch (of all possible edges), which
suggests a sparse code (e.g., Goodfellow et al., 2013; Olshausen and Field, 1996; Sheikh
et al., 2014; Titsias and Lázaro-Gredilla, 2011). In order to model such and similar data, we
study a novel, direct optimization approach for variational autoencoders (VAEs), which can
learn discrete and potentially sparse encodings. VAEs (Kingma and Welling, 2014; Rezende
et al., 2014) in their many different variations, have successfully been applied to a large
number of tasks including semi-supervised learning (e.g., Maaløe et al., 2016), anomaly
detection (e.g., Kiran et al., 2018) or sentence and music interpolation (Bowman et al.,
2016; Roberts et al., 2018) to name just a few. The success of VAEs, in these tasks, rests on
a series of methods that enable the derivation of scalable training algorithms to optimize
VAE parameters. These methods were originally developed for Gaussian priors (Kingma
and Welling, 2014; Rezende et al., 2014). To account for VAEs with discrete latents, novel
methodology had to be introduced (we elaborate below and later in Sec. 4.S1).

The training objective of VAEs is derived from a likelihood objective, i.e., we seek model
parameters Θ of a VAE that maximize the data log-likelihood, L(Θ) =

∑
n log

(
pΘ(~x (n))

)
,

where we denote by ~x(1:N) a set of N observed data points, and where pΘ(~x) denotes the
modeled data distribution. Like conventional autoencoders (e.g., Bengio et al., 2007), VAEs
use a deep neural network (DNN) to generate (or decode) observables ~x ∈ RD, from a
latent code ~z. Unlike conventional autoencoders, however, the generation of data ~x is not
deterministic but it takes the form of a probabilistic generative model. For VAEs with
binary latents, we here consider a generative model with Bernoulli prior:

pΘ(~z ) =
∏
h

(
πzhh (1− πh)(1−zh)

)
, pΘ(~x | ~z ) = N

(
~x; ~µ(~z;W ), σ2I

)
, (4.1)

with ~z ∈ {0, 1}H being a binary code, ~π ∈ [0, 1]H being parameters of the prior on ~z, and the
non-linear function ~µ(~z;W ) being a DNN (that sets the mean of a Gaussian distribution).
pΘ(~x | ~z ) is commonly referred to as decoder. The set of model parameters is Θ = {~π,W, σ2},
where W incorporates DNN weights and biases. Here, we assume homoscedasticity of the
Gaussian distribution, but note that there is no obstacle to generalizing the model by
inserting a DNN non-linearity that outputs a covariance matrix. Similarly, the algorithm
could easily be generalized to different noise distributions should the task at hand call for
it. Here, however, we will focus on the elementary VAEs given by Eq. (4.1).

For conventional and discrete VAEs, essentially all optimization approaches seek to
approximately maximize the log-likelihood using the following series of methods (we
elaborate in Sec. 4.S1):

(A) Instead of the log-likelihood, a variational lower bound (a.k.a. ELBO) is optimized.

(B) VAE posteriors are approximated by an encoding model, i.e., by a specific distribution
(usually Gaussian) parameterized by one or more DNNs.

(C) The variational parameters of the encoder are optimized using gradient ascent on the
lower bound, where the gradient is evaluated based on sampling and the reparameter-
ization trick (which allows for sufficiently low-variance and yet efficiently computable
estimates).
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(D) Using samples from the encoder, the parameters of the decoder are optimized using
gradient ascent on the variational lower bound.

Optimization procedures for VAEs with discrete latents follow the same steps (Points A
to D). However, discrete or binary latents pose substantial further obstacles for learning,
mainly due to the fact that backpropagation through discrete variables is generally not
possible or biased (Bengio et al., 2013; Rolfe, 2017). Widely used stochastic gradient
estimators for discrete random variables typically either exploit the REINFORCE (Williams,
1992) estimator in combination with variance control techniques (Dimitriev and Zhou, 2021;
Dong et al., 2021; Kool et al., 2020; Liu et al., 2019) or reparameterization of continuous
relaxations of discrete distributions (Jang et al., 2017; Maddison et al., 2017); reparame-
terization is also combined with REINFORCE (Grathwohl et al., 2018) or generalized to
non-reparameterizable distributions (Cong et al., 2019). Also a recent approach by Berliner
et al. (2022) is related to REINFORCE but uses natural evolution strategies (not to be
confused with evolutionary optimization we apply here) to derive low-variance estimates
for gradients (also see Sec. 4.1.1 and Sec. 4.S1). While accomplishing, in different senses,
the goal of maintaining standard VAE training as developed for continuous latents (i.e.,
learning procedures and/or learning objectives that allow for gradient-based optimization
of the encoder and decoder DNNs), gradient estimation methods usually apply significant
amounts of methodology additional to the learning methods conventionally applied for
VAE optimization (see Fig. 4.S2). These additional methods, their accompanying design
decisions and used hyper-parameters increase the complexity of the system. Furthermore,
the additional methods usually impact the learned representations. For instance, softening
of discrete distributions, e.g., by using ‘Gumbel-softmax’ (Jang et al., 2017) or ‘tanh’
approximations (Fajtl et al., 2020) seems to favor dense codes. While dense codes (as also
used by conventional VAEs and generative adversarial networks (Goodfellow et al., 2014))
can result in competitive performance for a subset of the above discussed tasks, other
recent contributions point out advantages of sparse codes, e.g., in terms of disentanglement
(Tonolini et al., 2020) or robustness (Paiton et al., 2020; Sulam et al., 2020).

In order to avoid adding methods for discrete latents to those already in place for
standard VAEs, it may be reasonable to investigate more direct optimization procedures
that do not require, e.g., a softening of discrete distributions or other mechanisms. Such a
direct approach is challenging, however, because once DNNs are used to define the encoding
model (as commonly done), we require methodologies for discrete latents to estimate
gradients for the encoder (as done via sampling and reparameterization; see Points C and
D). A direct optimization procedure, as we investigate here, consequently has to change
VAE training substantially. For the data model of Eq. (4.1), we will maintain the variational
setting (Point A) and a decoding model with DNNs as non-linearity. However, we will not
use an encoding model parameterized by DNNs (Point B). Instead, the variational bound
will be increased w.r.t. an implicitly defined encoding model which allows for an efficient
discrete optimization. The procedure does not require gradients to be computed for the
encoder such that discrete latents are addressed without the use of reparameterization trick
and sampling approximations.

4.1.1 Related Work

In order to maintain the general VAE framework for encoder optimization in the case of
discrete latents, different groups have suggested different possible solutions (for discussion
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of numerical evaluations of related approaches, see Sec. 4.S1.3): Rolfe (2017), for instance,
extends VAEs with discrete latents by auxiliary continuous latents such that gradients can
still be computed. Work on the concrete distribution (Maddison et al., 2017) or Gumbel-
softmax distribution (Jang et al., 2017) proposes newly defined continuous distributions that
contain discrete distributions as limit cases. Lorberbom et al. (2019) merge the Gumbel-
Max reparameterization with the use of direct loss minimization for gradient estimation,
enabling efficient training on structured latent spaces (also compare Paulus et al., 2021;
Potapczynski et al., 2020, for further improved Gumbel-softmax versions). Furthermore,
work, e.g., by van den Oord et al. (2017) combines VAEs with a vector quantization (VQ)
stage in the latent layer. Latents become discrete through quantization but gradients for
learning are adapted from latent values before they are processed by the VQ stage. Similarly,
Tomczak and Welling (2018) use, what they call, (learnable) pseudo-inputs which determine
a mixture distribution as prior, and the ELBO then contains an additional regularization for
consistency between prior and average posterior. Tonolini et al. (2020) extend this work and
introduce an additional DNN classifier which selects pseudo-inputs and whose weights are
learned instead of the pseudo-inputs themselves. Tonolini et al. also argue for the benefits
not only of discrete latents but of a sparse encoding in the latent layer in general. Fajtl et al.
(2020) base their approach on a deterministic autoencoder and use a tanh-approximation of
binary latents and projections to spheres in order to treat binary values. Targeting not
only the optimization of discrete latent VAEs but also more general approaches such as
probabilistic programming or general stochastic automatic differentiation, Bingham et al.
(2019) and van Krieken et al. (2021) apply gradient estimators for discrete random variables
which optimize surrogate losses (Schulman et al., 2015) derived based on the score function
(Foerster et al., 2018) or other methods (van Krieken et al., 2021).

4.2 Direct Variational Optimization

Let us consider the variational lower bound of the likelihood. If we denote by q(n)
Φ (~z) the

variational distributions with parameters Φ = (Φ(1), . . . ,Φ(N)), then the lower bound is
given by:

F(Φ,Θ) =
∑
n

E
q
(n)
Φ

[
log
(
pΘ(~x (n) |~z ) pΘ(~z )

)]
−
∑
n

E
q
(n)
Φ

[
log
(
q

(n)
Φ (~z )

)]
, (4.2)

where we sum over all data points ~x(1:N), and where E
q
(n)
Φ

[
h(~z)

]
denotes the expectation

value of a function h(~z ) w.r.t. q(n)
Φ (~z ). The general challenge for the maximization of

F(Φ,Θ) is the optimization of the encoding model q(n)
Φ . VAEs with discrete latents, as an

additional challenge, have to address the question how gradients w.r.t. discrete latents can
be computed. Seeking to avoid the problem of gradients w.r.t. discrete variables, we do
not use a DNN for the encoding model. Consequently, we need to define an alternative
encoding model q(n)

Φ , which has to remain sufficiently efficient. Considering prior work
on generative models with discrete latents, variational distributions based on truncated
posteriors offer themselves as such an alternative. Truncated posteriors have previously
been considered to be functionally competitive (e.g., Hughes and Sudderth, 2016; Sheikh
et al., 2014; Shelton et al., 2017). Most relevant for our purposes are very efficient and fully
variational approaches that allow mixture models (Exarchakis et al., 2022; Hirschberger
et al., 2022) and shallow generative approaches (Drefs et al., 2022) to be very efficiently
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scaled to large model sizes. In all these previous applications, optimization of truncated
variational distributions used standard expectation maximization based on closed-form or
pseudo-closed form M-steps available for the shallow decoder models considered. In the
context of VAEs with discrete latents, the important question arising is if or how efficient
optimization with truncated variational distributions can be performed for deep generative
models.

4.2.1 Optimization of the Encoding Model

Encoder optimization is usually based on a reformulation of the variational bound of
Eq. (4.2) given by:

F(Φ,Θ) =
∑
n

E
q
(n)
Φ

[
log
(
pΘ(~x (n) |~z )

)]
−
∑
n

DKL

[
q

(n)
Φ (~z ); pΘ(~z )

]
. (4.3)

For discrete latent VAEs, the variational distributions in Eq. (4.3) are commonly replaced by
an amortized encoding model qΦ(~z) with a DNN-based parameterization. When expectations
w.r.t. qΦ(~z) are approximated (as usual) via sampling, the encoder optimization requires
gradient estimation methods for discrete random variables (cf. Sec. 4.1.1 and Sec. 4.S1). At
this point truncated posteriors represent alternative variational distributions which avoid
gradients w.r.t. discrete latents. Given a data point ~x (n), a truncated posterior is the
posterior itself truncated to a subset Φ

(n) of the latent space, i.e., for ~z ∈ Φ
(n) applies:

q
(n)
Φ (~z) :=

pΘ(~z | ~x (n))∑
~z ′∈Φ

(n)

pΘ(~z ′ | ~x (n))
=

pΘ(~x (n) |~z) pΘ(~z)∑
~z ′∈Φ

(n)

pΘ(~x (n) |~z ′) pΘ(~z ′)
(4.4)

while q(n)
Φ (~z) = 0 for ~z 6∈ Φ

(n) . The subsets Φ = {Φ(n)}Nn=1 are the variational parameters.
Centrally for this work, truncated posteriors allow for a specific alternative reformulation of
the bound. The reformulation recombines the entropy term of the original form (Eq. (4.2))
with the first expectation value into a single term, and is given by (see Drefs et al., 2022;
Exarchakis et al., 2022; Hirschberger et al., 2022, for details):

F(Φ,Θ) =
∑
n

log
( ∑
~z∈Φ

(n)

pΘ(~x (n) |~z) pΘ(~z)
)
. (4.5)

Thanks to the simplified form of the bound, the variational parameters Φ
(n) of the encoding

model can now be sought using direct discrete optimization procedures. More concretely,
because of the specific form of Eq. (4.5), pairwise comparisons of joint probabilities are
sufficient to maximize the lower bound: if we update the set Φ

(n) for a given ~x (n) by
replacing a state ~z old ∈ Φ

(n) with a state ~z new 6∈ Φ
(n) , then F(Φ,Θ) increases if and only

if:
log
(
pΘ(~x (n), ~z new)

)
> log

(
pΘ(~x (n), ~z old)

)
. (4.6)

To obtain intuition for the pairwise comparison, consider the form of log(pΘ(~x, ~z)) when
inserting the binary VAE defined by Eq. (4.1). Eliding terms that do not depend on ~z we
obtain: ˜log pΘ(~x, ~z) = −‖~x− ~µ(~z,W )‖2 − 2σ2

∑
h

π̃h zh, (4.7)
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where π̃h= log
(
(1 − πh)/πh

)
. The expression assumes an even more familiar form if we

restrict ourselves for a moment to sparse priors with πh=π< 1
2 , i.e., π̃h= π̃ > 0. The

criterion defined by Eq. (4.6) then becomes:

‖~x (n) − ~µ(~z new,W )‖2 + 2σ2π̃ |~z new| < ‖~x (n) − ~µ(~z old,W )‖2 + 2σ2π̃ |~z old| , (4.8)

where |~z | =
∑H

h=1 zh and 2σ2π̃ > 0. Such functions are routinely encountered in sparse
coding or compressive sensing (Eldar and Kutyniok, 2012): for each set Φ

(n) , we seek
those states ~z that are reconstructing ~x (n) well while being sparse (~z with few non-zero
bits). For VAEs, ~µ(~z,W ) is a DNN and as such much more flexible in matching the
distribution of observables ~x than can be expected from linear mappings. Furthermore,
criteria like Eq. (4.8) usually emerge for maximum a-posteriori (MAP) training in sparse
coding (Olshausen and Field, 1996). In contrast to MAP, however, here we seek a population
of states ~z in Φ

(n) for each data point. It is a consequence of the reformulated lower bound
defined by Eq. (4.5) that it remains optimal to evaluate joint probabilities (as for MAP)
although the constructed population of states Φ

(n) can capture (unlike MAP training) rich
posterior structures.

4.2.2 Evolutionary Search

But how can new states ~z new that optimize Φ
(n) be found efficiently in high-dimensional

latent spaces? While blind random search for states ~z can in principle be used, it is not
efficient; and adaptive search space approaches (Exarchakis et al., 2022; Hirschberger et al.,
2022) are only defined for mixture models. However, a recently suggested combination
of truncated variational optimization with evolutionary optimization (EVO; Drefs et al.,
2022) is more generally defined for models with discrete latents, and does only require the
efficient computation of joint probabilities pΘ(~x, ~z). It can consequently be adapted to the
VAEs considered here.

EVO optimization interprets the sets Φ
(n) of Eq. (4.4) as populations of binary genomes

~z, and we can here adapt it by using Eq. (4.7) in order to assign to each ~z ∈ Φ
(n) a fitness

for evolutionary optimization. For the concrete updates, we use for each EVO iteration
Φ

(n) as initial parent pool. We then apply the following genetic operators in sequence to
suggest candidate states ~z new to update the Φ

(n) based on Eq. (4.6) (see Fig. 4.S3 for
an illustration and Sec. 4.S1.2 and Drefs et al. (2022) for further details): Firstly, parent
selection stochastically picks states from the parent pool. Subsequently, each of these states
undergoes mutation which flips one or more entries of the bit vectors. Offspring diversity
can be further increased by crossover operations. Using the children generated this way
as the new parent pool, the procedure is repeated giving birth to multiple generations of
candidate states. Finally, we update Φ

(n) by substituting individuals with low fitness with
candidates with higher fitness according to Eq. (4.6). The whole procedure can be seen as
an evolutionary algorithm (EA) with perfect memory or very strong elitism (individuals
with higher fitness never drop out of the gene pool). Note that the improvement of the
variational lower bound depends on generating as many as possible different children with
high fitness over the course of training.

We point out that the EAs optimize each Φ
(n) independently, which allows for distributed

execution s.t. the technique can be efficiently applied to large datasets in conjunction
with stochastic or batch gradient descent on the model parameters Θ. The approach is, at
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the same time, memory intensive, i.e., all sets Φ
(n) need to be kept in memory (details in

Sec. 4.S1.1). Furthermore, we point out the we here optimize variational parameters Φ
(n)

of the encoding model which is fundamentally different from the approach of Hajewski and
Oliveira (2020) (who use EAs to optimize DNN architectures of otherwise conventionally
optimized VAEs with continuous latents).

4.2.3 Optimization of the Decoding Model

Using the previously described encoding model q(n)
Φ (~z), we can compute the gradient of

Eq. (4.2) w.r.t. the decoder weights W which results in (see Sec. 4.S1 for details):

~∇WF(Φ,Θ) = − 1

2σ2

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ~∇W ‖~x (n) − ~µ(~z,W )‖2. (4.9)

The right-hand-side has salient similarities to standard gradient ascent for VAE decoders.
Especially the familiar gradient of the mean squared error (MSE) shows that, e.g., standard
automatic differentiation tools can be applied. However, the decisive difference is represented
by the weighting factors q(n)

Φ (~z). Considering Eq. (4.4), we require all ~z ∈ Φ
(n) to be passed

through the decoder DNN in order to compute the q(n)
Φ (~z). As all states of Φ

(n) anyway have
to be passed through the decoder for the MSE term of Eq. (4.9), the overall computational
complexity is not higher than an estimation of the gradient with samples instead of states
in Φ

(n) (but we use many states per Φ
(n) , compare Tab. 4.S1).

To complete the decoder optimization, update equations for variance σ2 and prior
parameters ~π can be computed in closed-form (compare, e.g., Shelton et al., 2011) and are
given by:

σ2 =
1

DN

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ‖~x (n) − ~µ(~z,W )‖2,

~π =
1

N

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z) ~z .

(4.10)

The full training procedure for binary VAEs is summarized in Alg. 2. We refer to the binary
VAE trained with this procedure as Truncated Variational Autoencoder (TVAE) because of
the applied truncated posteriors6.

4.3 Numerical Experiments

TVAE can flexibly learn prior parameters ~π, and if low values for the πh are obtained
(which will be the case), the code is sparse. The prototypical application domain to study
sparse codes is image patch data (Goodfellow et al., 2013; Olshausen and Field, 1996). We
consequently use such data to investigate sparsity, scalability and efficiency on benchmarks.
For all numerical experiments, we employ fully connected DNNs ~µ(~z;W ) for the decoder
(compare Fig. 4.S4); the exact network architectures and activations used are listed in
Tab. 4.S1. The DNN parameters are optimized based on Eq. (4.9) using mini-batches and
the Adam optimizer (details in Sec. 4.S2.1).
6 Source code available at https://github.com/tvlearn.
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Algorithm 2: Training Truncated Variational Autoencoders (TVAE)
Initialize model parameters Θ = (~π,W, σ2)

Initialize each Φ
(n)

with S distinct latent states
repeat

for all batches in dataset do
for sample n in batch do

Φnew = Φ
(n)

for all generations do
Φnew = mutation (selection (Φnew))

Φ
(n)

= Φ
(n) ∪ Φnew

end for
Define new Φ

(n)

by selecting the S fittest elements in Φ
(n)

using Eq. (4.6)
end for
Use Adam to update W using Eq. (4.9)

end for
Use Eq. (4.10) to update ~π, σ2

until parameters Θ have sufficiently converged

4.3.1 Verification and Scalability

After first verifying that the procedure can recover generating parameters using ground-
truth data (see Sec. 4.S2.2), we trained TVAE on N = 100, 000 whitened image patches of
D = 16 × 16 pixels (van Hateren and van der Schaaf, 1998) using two different decoder
architectures, namely a shallow, linear decoder with H = 300 binary latents, and second, a
deep non-linear decoder with a 300-300-256 architecture (i.e., H = 300 binary latents and
two hidden layers with 300 and 256 units, respectively; details in Sec. 4.S2.3). For both
linear and non-linear TVAE, we observed a sparse encoding with on average

∑
h πh
H = 20.3

300

and
∑
h πh
H = 28.5

300 active latents across data points, respectively. We observed sparse codes
also when we varied the parameter initialization and further modified the decoder DNN
architecture. As long as decoder DNNs were of small to intermediate size, we observed
efficient scalability to large latent spaces (we went up to H = 1, 000). Compared to linear
decoders, the main additional computational cost is given by passing the latent states in
the Φ

(n) sets through the decoder DNN instead of just through a linear mapping. The sets
of states (i.e., the bitvectors in Φ

(n)) could be kept small, at size S = |Φ(n) | = 64, such
that N × (|Φ(n) |+ |Φ(n)

new|) states had to be evaluated per epoch. This compares to N ×M
states that would be used for standard VAE training (given M samples are drawn per data
point). In contrast to standard VAE training, the sets Φ

(n) have to be remembered across
iterations. For very large datasets, the additional O(N×|Φ(n) |×H) memory demand can
be distributed over compute nodes, however.

4.3.2 Denoising - Controlled Conditions

Due to its non-amortized encoding model, the computational load of TVAE increases more
strongly with data points compared to amortized training. Consequently, tasks such as
disentanglement of features using high-dimensional input data, large DNNs, and small
latent spaces are not a regime where the approach can be applied efficiently. With this in
mind, we focused on tasks with relatively few data for which an as effective as possible
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Noisy (σ=50)A B TVAE Denoising Result D Different Optimized Hyperparameters

C Controlled Conditions

Figure 4.1: Denoising results for House. C compares PSNRs (in dB) obtained with different
‘zero-shot’ models using a fixed patch size and number of latents (means and standard
deviations were computed over three runs with independent noise realizations, see text for
details). D lists PSNRs for different algorithms with different optimized hyper-parameters.
The top category only requires the noisy image (‘zero-shot’ setting). The middle uses
additional information such as noise level (KSVD, WNNM, BM3D) or additional noisy
images with matched noise level (N2V†). The bottom three algorithms use large clean
datasets. The highest PSNR per category is marked bold, and the overall highest PSNR is
bold and underlined. B depicts the denoised image obtained with TVAE for σ = 50 in the
best run (PSNR=30.03 dB).

optimization is required, and for which advantages of a direct optimization can be expected.
As one such task, we here considered ‘zero-shot’ image denoising. To apply TVAE in a
‘zero-shot’ setting (in which no additional information besides the noisy image is available,
e.g., Imamura et al., 2019; Shocher et al., 2018), we trained the model on overlapping
patches extracted from a given noisy image and subsequently applied the learned encoding
to estimate non-noisy image pixels (details in Sec. 4.S2.4). In general, denoising represents
a canonical benchmark for evaluating image patch models, and approaches exploiting
sparse encodings have shown to be particularly well suited (compare, e.g., Mairal et al.,
2008; Sheikh et al., 2014; Zhou et al., 2009). The ‘zero-shot’ setting has recently become
popular also because the application of conventional DNN-based approaches has shown to
be challenging (see discussion in Sec. 4.S2.4).

One denoising benchmark, which allows for an extensive comparison to other methods
is the House image. Standard benchmark settings for this image make use of additive
Gaussian white noise with standard deviations σ ∈ {15, 25, 50} (Fig. 4.1A). First, consider
the comparison in Fig. 4.1C where all models used the same patch size of D = 8× 8 pixels
and H = 64 latent variables (details in Sec. 4.S2.4). Fig. 4.1C lists the different approaches
in terms of the standard measure of peak signal-to-noise ratio (PSNR). Values for MTMKL
(Titsias and Lázaro-Gredilla, 2011) and GSC (Sheikh et al., 2014) were taken from the
respective original publications (which both established new state-of-the-art results when
first published); for EBSC (Drefs et al., 2022), we produced PSNRs ourselves by running
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publicly available source code (cf. Sec. 4.S2.4). As can be observed, TVAE significantly
improves performance for high noise levels; the approach is able to learn the best data
representation for denoising and establishes new state-of-the-art results in this controlled
setting (i.e., fixed D and H). The decoder DNN of TVAE provides the decisive performance
advantage: TVAE significantly improves performance compared to EBSC (which can be
considered as an approach with a shallow, linear decoding model), confirming that the
high lower bounds of TVAE on natural images (compare Fig. 4.S9) translate into improved
performance on a concrete benchmark. For σ = 25 and σ = 50, TVAE also significantly
improves on MTMKL, and GSC, which are both based on a spike-and-slab sparse coding
(SSSC) model (also compare Goodfellow et al., 2013). Despite the less flexible Bernoulli
prior, the decoder DNN of TVAE provides the highest PSNR values for high noise levels.

4.3.3 Denoising - Uncontrolled Conditions

To extend the comparison, we next evaluated denoising performance without controlling
for equal conditions, i.e., we also included approaches in our comparison that use large
image datasets and/or different patch sizes for training (including multi-scale and whole
image processing). Note that different approaches may employ very different sets of hyper-
parameters that can be optimized for denoising performance (e.g., patch and dictionary
sizes for sparse coding approaches, or network and training scheme hyper-parameters for
DNN approaches). By allowing for comparison in this less controlled setting, we can
compare to a number of recent approaches including large DNNs trained on clean data and
training schemes specifically targeted to noisy training data. See Fig. 4.1D for an extensive
PSNR overview with results for other algorithms cited from their corresponding original
publications if not stated otherwise. PSNRs for S5C originate from Sheikh and Lücke
(2016), GSVAE-B, EBSC and ES3C from Drefs et al. (2022), and WNNM and EPLL from
Zhang et al. (2017). For Noise2Void (N2V; Krull et al., 2019a), Self2Self (S2S; Quan et al.,
2020a), GSVAE-C (Jang et al., 2017), and VLAE (Park et al., 2019a), we produced results
ourselves by applying publicly available source code (details in Sec. 4.S2.4). Note that the
best performing approaches in Fig. 4.1D were trained on noiseless data: EPLL (Zoran and
Weiss, 2011), BDGAN (Zhu et al., 2019) and DPDNN (Dong et al., 2019) all make use
of clean training data (typically hundreds of thousands of data points or more). EPLL,
KSVD (Elad and Aharon, 2006), WNNM (Gu et al., 2014) and BM3D (Dabov et al., 2007)
leverage a-priori noise level information (these algorithms use the ground-truth noise level
of the test image as input parameter). As noisy data is very frequently occurring, lifting
the requirement of clean data has been of considerable recent interest with approaches such
as Noise2Noise (N2N; Lehtinen et al., 2018), N2V, and S2S having received considerable
attention.

Considering Fig. 4.1D, first note that TVAE consistently improves PSNRs of N2V,
also when comparing to a variant trained on external data with matched-noise level (N2V†

in Fig. 4.1D). At high noise level (σ = 50), PSNRs of TVAE represent state-of-the-art
performance in the ‘zero-shot’ category (Fig. 4.1D, top); compared to methods which
exploit additional a-priori information (Fig. 4.1D, middle and bottom), the denoising
performance of TVAE (at high noise level) is improved only by WNNM, BDGAN and
DPDNN. At lower noise levels, TVAE still performs competitively in the ‘zero-shot’ setting,
yet highest PSNRs are obtained by other methods (S2S and ES3C). Figure 4.1D reveals
that TVAE can improve on two competing VAE approaches, namely GSVAE (which uses
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Figure 4.2: Data encodings and denoising results for Barbara obtained with generative
model approaches and different decoding models. In B, approaches with binary (top) and
continuous (bottom) latents are separated. EBSC and ES3C are considered as using a
shallow, linear decoder. Listed are best performances of several runs of each algorithm7.
∗VLAE uses importance sampling-based log-likelihood estimation. C compares decoder
outputs for singleton (i.e., one-hot) input vectors. See Sec. 4.S2.4 for details.

Gumbel-softmax-based optimization for discrete latents) and VLAE (which uses continuous
latents and Gaussian posterior approximations). For more systematic comparison, we
applied the VAE approaches using identical decoder architectures and identical patch sizes
(details in Sec. 4.S2.4). As striking difference between the approaches, we observed GSVAE
to learn a significantly denser encoding compared to TVAE. Furthermore, we observed
that the sparse encodings of TVAE resulted in strong performance not only in terms of
denoising PSNR but also in terms of lower bounds (see Fig. 4.2).

4.3.4 Inpainting

Finally, we applied TVAE to ‘zero-shot’ inpainting tasks. For TVAE, the treatment of
missing data is directly available given the probabilistic formulation of the model. Concretely,
when evaluating log-joint probabilities of a data-point, missing values are treated as unknown
observables (details in Sec. 4.S2.5). In contrast, amortized approaches need to specify
how the deterministic encoder DNNs should treat missing values. Figure 4.3 evaluates
performance of TVAE on two standard inpainting benchmarks with randomly missing
pixels. Methods compared to include MTMKL, BPFA (Zhou et al., 2012), ES3C, the
method of Papyan et al. (2017), DIP (Ulyanov et al., 2018), PLE (Yu et al., 2012), and
IRCNN (Chaudhury and Roy, 2017). PLE uses the noise level as a-priori information, and
IRCNN is trained on external clean images. On House, TVAE improves the performance of
Papyan et al. and BPFA; highest PSNRs for this benchmark are obtained by DIP (which,
in contrast to TVAE, is not permutation invariant and uses large U-Nets) and ES3C (which
is based on a SSSC model and EVO-based training). On Castle, PSNRs of TVAE are
higher in comparison to SSSC-based BPFA (for 50% missing pixels) and IRCNN.

7 We restricted ourselves here to a comparison of models with at most 256 latents, due to computational
limitations at the time of conducting this evaluation. We acknowledge that for a higher number of latents
and a larger patch size (i.e., H = 512 and D = 11× 11, respectively), PSNRs of ES3C showed to increase
to 30.19 dB on average over multiple runs as illustrated in Fig. 2.6 (also compare Tab. 2.S2), which
improves the best performance of TVAE reported here. The numbers are, at the same time, not directly
comparable since, in contrast to the setting of ES3C for Fig. 2.6, we here used rescaled pixel amplitudes
(compare the details of the Comparison to Deep Generative Models in Sec. 4.S2.4).
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Figure 4.3: Inpainting results for House (50% missing pixels) and Castle (50% and 80%
missing; top group lists ‘zero-shot’ approaches). PSNR for Papyan et al. as reported in
Ulyanov et al. (2018). Depicted is TVAE’s restoration for 50% missing pixels (sparsity∑

h πh
H = 10.56

512 ).

4.4 Discussion

We investigated a novel approach built upon Evolutionary Variational Optimization (Drefs
et al., 2022) to train VAEs with binary latents. Compared to all previous optimizations
suggested for VAEs with discrete latents, the approach followed here differs the most
substantially from conventional VAE training. While all other VAEs maintain amortization
and reparameterization as key elements, the TVAE approach instead uses a direct and
non-amortized optimization. Recent work using elementary generative models such as
mixtures and shallow models (Drefs et al., 2022; Exarchakis et al., 2022) have made consid-
erations of direct VAE optimization possible for intermediately large scales. A conceptual
advantage of the here developed approach is its concise formulation (compare Fig. 4.S2)
with fewer algorithmic elements, fewer hyperparameters and fewer model parameters (e.g.,
no parameters of encoder DNNs). Functional advantages of the approach are its avoidance
of an amortization gap (e.g., Cremer et al., 2018; Kim et al., 2018), its ability to learn sparse
codes, and its generality (it does not use a specific posterior model, and can be applied to
other noise models, for instance). However, non-amortized approaches do in general have the
disadvantage of a lower computational efficiency: an optimization of variational parameters
for each data point is more costly (Tab. 4.S3). Conventional amortized approaches (for
discrete or continuous VAEs) are consequently preferable for large-scale data sets and for the
optimization of large, intricate DNNs. There are, however, alternatives such as transformers
(which can use >150M parameters) or diffusion nets, which both are considered to perform
more strongly than VAEs for large-scale settings and density modeling (Child et al., 2019;
Kingma et al., 2021, for recent comparisons).

At the same time, direct discrete optimization can be feasible and can be advantageous.
For image patch data, for instance, we showed that TVAEs with intermediately large
decoder DNNs perform more strongly than Gumbel-softmax VAEs (GSVAE), and TVAEs
are also outperforming a recent continuous VAE baseline (VLAE; Figs. 4.1 and 4.2). The
stronger performance of TVAE is presumably, at least in part, due to the approach not
being subject to an amortization gap, due to it avoiding factored variational distributions,
and, more generally, due to the emerging sparse codes being well suited for modeling image
patch data. In comparison, the additional methods to treat discrete latents in GSVAE
seem to result in dense codes with significantly lower performance than TVAE. Compared
to GSVAE, the VLAE approach, which uses standard non-sparse (i.e. Gaussian) latents, is
more competitive on the benchmarks we considered. The reason is presumably that VLAE’s
continuous latents are able to better capture component intensities in image patches. This
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advantage does not outweigh the advantages of sparse codes learned by TVAE, however. If
sparse codes and continuous latents are combined, the example of ES3C shows that strong
performances can be obtained (Figs. 4.1 to 4.3). For the here considered binary latents,
however, a linear decoder (compare EBSC) is much inferior to a deep decoder (Figs. 4.1, 4.2
and 4.S9), which suggests future work on VAEs with more complex, sparse priors if the goal
is to improve ‘zero-shot’ denoising and inpainting. Dense codes are notably not necessarily
disadvantageous for image data. On the contrary, for datasets with many images of single
objects like CIFAR, the dense codes of GSVAE and also of VLAE are, in terms of ELBO
values, similar or better compared to TVAE (Tab. 4.S4). The suitability of sparse versus
dense encoding consequently seems to highly depend on the data, and here we confirm the
suitability of sparse codes for image patches. In addition to learning sparse codes, direct
optimization can have further advantages compared to conventional training. One such
advantage is highlighted by the inpainting task: in contrast to other (continuous or discrete)
VAEs, it is not required to additionally specify how missing data shall be treated by an
encoder DNN (compare Sec. 4.S2.5).

We conclude that direct discrete optimization can, depending on the data and task, serve
as an alternative for training discrete VAEs. In a sense, the approach can be considered
more brute-force than conventional amortized training: direct optimization is slower but at
scales at which it can be applied, it is more effective. To our knowledge, the approach is
also the first training method for discrete VAEs not using gradient optimization of encoder
models, and can thus contribute to our understanding of how good representations can be
learned by different approaches.
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Supplementary Material

4.S1 Details of Encoder and Decoder Optimization

See Fig. 4.S1 for a graphical comparison between the decoding models of a vanilla VAE and
the here considered binary VAE defined by Eq. (4.1). Figure 4.S2 graphically illustrates
different steps to optimize standard VAEs, and additional steps suggested by different
contributions in order to optimize discrete VAEs. For the optimization of the binary VAE
(Eq. (4.1)), consider the original form of the lower bound given by Eq. (4.2). When taking
derivatives of F(Φ,Θ) w.r.t.Θ we can ignore the entropy term8. For the binary VAE model
of Eq. (4.1), the gradient of the lower bound w.r.t.W is then given by:

~∇WF(Φ,Θ) =
∑
n

~∇WEq(n)
Φ

[
log
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)]
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)]
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[
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)]
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~z∈Φ
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(4.S1)

where rearranging leads to the final expression:

~∇WF(Φ,Θ) = − 1

2σ2

∑
n

∑
~z∈Φ

(n)

q
(n)
Φ (~z)~∇W ‖~x (n) − ~µ(~z,W )‖2. (4.9 revisited)

The weighting factors q(n)
Φ (~z) are, by using Eqs. (4.1) and (4.4), given by:

q
(n)
Φ (~z) =

pΘ(~x (n) |~z) pΘ(~z)∑
~z ′∈Φ

(n) pΘ(~x (n) |~z ′) pΘ(~z ′)

=
exp

(
− 1
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)∑

~z ′∈Φ
(n)

exp
(
− 1

2σ2 ‖~x (n) − ~µ(~z ′,W )‖2 − ~̃π T~z ′
) (4.S2)

for all ~z ∈ Φ
(n) , with π̃h = log

(
1−πh
πh

)
. Note that the q(n)

Φ (~z) are evaluated at the current
values of the parameters Θ, they are therefore treated as constant, e.g., for the gradient
w.r.t. W .
8 For our choice of variational distributions, it is not trivial that the entropy term actually can be ignored
because the encoding model qΦ(~z; ~x) in Eq. (4.4) is defined in terms of the decoding model and its
parameters. For truncated distributions, however, it can be shown that the entropy term can still be
ignored (Lücke, 2019).
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Figure 4.S1: Decoding models. Left: Generic and general VAE decoding model. Center:
VAE with standard continuous latents. Right: VAE with binary latents of Eq. (4.1).

It may be interesting to compare the gradient estimate given by Eq. (4.9) to the gradient
estimate of conventional VAE training. For this, consider a standard encoder given by
an amortized variational distribution which we shall denote by q̃(n)

Φ (~z). The distribution
q̃

(n)
Φ (~z) could be a Gaussian whose mean and variance are set by passing data point ~x (n)

through encoder DNNs. For discrete VAEs, q̃(n)
Φ (~z) can be thought of as an analog discrete

distribution. If we now take gradients of Eq. (4.3) w.r.t. W and estimate using samples
from q̃

(n)
Φ (~z), we obtain the familiar form:

~∇WF(Φ,Θ) =
∑
n

~∇WEq̃(n)
Φ

[
log
(
pΘ(~x (n) |~z) pΘ(~z)

)]
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∑
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[
log
(
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≈ − 1

2σ2
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1

M

M∑
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~∇W ‖~x (n) − ~µ(~z (m),W )‖2 ,

where ~z (m) ∼ q̃(n)
Φ (~z). We can slightly rewrite this expression to obtain:

~∇WF(Φ,Θ) ≈ − 1

2σ2

∑
n

∑
~z∼q̃(n)

Φ

( 1

M

)
~∇W ‖~x (n) − ~µ(~z,W )‖2 , (4.S3)

If we now compare with the gradient using the truncated approximation q(n)
Φ (~z) given by

Eq. (4.9), one can discuss analogous roles played by the sets Φ
(n) (the variational parameters

of q(n)
Φ (~z)) and by a standard encoder q̃(n)

Φ : The states in a set Φ
(n) are used to estimate

the gradient similar to the samples from a standard encoder q̃(n)
Φ (~z). The size of Φ

(n) can
consequently be thought of as analog to the number of samples used in a conventional
estimation of the gradient. Standard VAE training estimates the gradient by weighting all
samples equally (with (1/M)), and the gradient direction is approximated using sufficiently
many samples drawn from the current q̃(n)

Φ (~z). In contrast, truncated gradient estimation
uses the states in Φ

(n) , and the gradient is computed using a weighted summation with
weights q(n)

Φ (~z). These weights are computed by passing the states ~z through the decoder
network. The gradient is then, notably, not a stochastic estimation but exact: gradient
ascent is guaranteed (for small steps) to always monotonically increase the variational lower
bound.
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Figure 4.S2: Typical collection of methods used to optimize the encoding model of VAEs.
Left: Methods of the standard procedure to optimize VAEs. Middle: Examples of
additional methods applied to maintain the standard VAE procedure also for VAEs with
discrete latent variables. Right: Alternative direct discrete optimization of VAE encoding
models.

4.S1.1 Computational Complexity

To add to the discussion of computational complexity of TVAE compared to standard
VAE training, consider again Eqs. (4.S3) and (4.9). If as many samples M are used, per
data point, as there are states in each Φ

(n) , then both sums have the same number of
summands. The evaluation of the gradients of the mean square error (MSE) is consequently
precisely the same for both approaches. The additional weighting factors q(n)

Φ (~z) have to
be computed for TVAE. However, the weighting factors just represent a small overhead
because the evaluation of the decoder DNN for the states in Φ

(n) is a computation that can
be reused from the updates of Φ

(n) (compare Alg. 2).

The main computational differences are in the updates of Φ
(n) compared to the update

of encoder DNNs for conventional VAEs. Once the parameters Θ = (W,σ2, ~π) are updated
using Eqs. (4.9) and (4.10), new states for Φ

(n) have to be sought based on criterion Eq. (4.6).
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In practice and for each n, we generate M ′ new states according to the applied evolutionary
procedure. To select the best states we have to pass all these M ′ new states through the
decoder DNN to evaluate Eq. (4.7). Furthermore, we have to pass all M states already in
Φ

(n) through the DNN to re-evaluate Eq. (4.7) because the parameters Θ have changed. In
summary, we require O(N × (M +M ′)) passes through the decoder DNN. Selecting the
M best states from the (M +M ′) states does not add complexity as this can be done in
O(M +M ′) for each n (Blum et al., 1973). The EA adds to the computational load but
parent selection and mutation only add a constant offset for each of the considered states.

For comparison with standard VAEs, if we use M samples of an encoder q̃(n)
Φ (~z), we

require O(M ×N) passes through the decoder DNN to update the parameters Θ according
to Eq. (4.S3). For the encoder update, one requires N × M̃ passes through encoder and
decoder DNN to estimate the gradient w.r.t. the encoder weights (if we draw M̃ samples for
each data point from a conventional encoder distribution q̃(n)

Φ (~z)). The additional overhead
to actually draw the samples is usually negligible.

Hence, the computational complexity of TVAE training is comparable if M ≈M ′ ≈ M̃ .
However, conventional VAE training is amortized, i.e., the update of encoder weights uses
information from all data points n. In contrast, TVAE training is not amortized, i.e.,
the Φ

(n) are updated per data point. The advantage of amortization is that in practice,
weights of a conventional encoder can converge faster or (alternatively) less samples M̃
are required. Considering the observed runtimes, more efficient conventional VAE training
can, presumably, in large parts be attributed to faster convergence using amortization.
Furthermore, the used number of samples M for conventional VAE training is usually
smaller than best working sizes of Φ

(n) (we used, e.g., |Φ(n) | ∈ [20, 200] for denoising, see
Tab. 4.S1); and the required storage of Φ

(n) results in overhead computations. On the other
hand, amortization also has disadvantages (e.g., Cremer et al., 2018; Kim et al., 2018). The
competitive performance for denoising may consequently be attributed, at least in part, to
TVAE not being subject to an amortization gap.

4.S1.2 Evolutionary Variational Optimization

Following Drefs et al. (2022), we base the fitness of a genome ~z for a given data point on the
reformulation of the joint pΘ(~x, ~z) defined by Eq. (4.7) which allows for robust computation,
and we use an offset (constant w.r.t. ~z) to ensure that fitness values are strictly non-negative.
In our large scale numerical experiments, we used fitness-proportional parent selection in
combination with uniformly random bitflips (refered to as a fitparents-randflip EA, see
Drefs et al. (2022) for details), as we found this operator combination to efficiently and
effectively suggest new states ~z new for the optimization of the sets Φ

(n) based on criterion
Eq. (4.6) (see Fig. 4.S8 for an evaluation of further EA designs that we investigated). EVO
hyperparameters include the number of parental states selected per generation (denoted
Np ≤ |Φ

(n) |), the number of children evolved per parent (Nc), and the number of generations
evolved (Ng). When crossover is employed, the total number of new states evolved per
data point per epoch is given by Np(Np − 1)Ng, otherwise it is NpNcNg. The concrete
hyperparameters used in the numerical experiments are listed in Tab. 4.S1. An illustration
of the optimization process of the sets Φ

(n) by EVO is provided in Fig. 4.S3.
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Figure 4.S3: The optimization process of the variational parameters Φ(n) using evolutionary
search. A. Some states are selected as parents. B. Each child undergoes mutation. C.
Children are merged with the original population and the least fit are discarded.

4.S1.3 Numerical Evaluation in Related Work

In terms of numerical evaluation, the approaches discussed in Sec. 4.1.1 demonstrate the
benefits of the respective new methodology on very different experiments. For instance,
van den Oord et al. (2017) focus on image, video and speech generation capabilities of their
approach, and report performances, e.g., for phoneme classification. Roy et al. (2018) show
improved image generation performance, e.g., on CIFAR and report accuracy scores for
machine translation similar to autoregressive baselines. Tomczak and Welling (2018) show
competitive likelihood results in the unsupervised permutation invariant setting for many
data sets; and Fajtl et al. (2020) evaluate their approach based on accuracy/sensitivity trade-
offs among other comparisons. Tonolini et al. (2020) focus on the competitive capabilities
of their VAEs to learn meaningful (disentangled) features; and Lorberbom et al. (2019)
focus on the benefits of structured priors. Numerical evaluations of their VAEs and different
numbers of categoric latents show better performance of their direct loss minimization than
Gumbel-softmax VAEs, and the same applies for comparisons in terms of semi-supervised
learning. Similarly to Tonolini et al. (2020), disentanglement results for the relatively
large CelebA dataset are also shown by Lorberbom et al. (2019). For this and many other
datasets, large DNNs are required while the latent layers are often kept relatively small.

4.S2 Details on Numerical Experiments

4.S2.1 Hyperparameters

For all numerical experiments, DNN training using Eq. (4.9) was performed with mini-
batches, the Adam optimizer (Kingma and Ba, 2015) and decaying or cyclical learning
rate scheduling (Smith, 2017). Xavier/Glorot initialization (Glorot and Bengio, 2010)
was used for the DNN weights, while biases were always zero-initialized. Parameters ~π
and σ2 were updated via Eq. (4.10). ~π was initialized to 1

H . σ2 was initialized to 0.01
with the exception of the Barbara, CIFAR-10 datasets and Audio datasets (Figs. 4.2
and 4.S12 and Tab. 4.S4) for which we initialized σ2 with the data variance. The Φ

(n) were
initialized by drawing ~z from a Bernoulli distribution with p(zh = 1) = 1

H . Hyperparameter
optimization was conducted manually, and for the more complex datasets, it also made
use of black box Bayesian optimization based on Gaussian Processes (Nogueira, 2019)
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Table 4.S1: Hyperparameters used in the numerical experiments. The architecture of the
decoder DNN is denoted H0-H1-. . . -D with H0 and D indicating the number of Bernoulli
latents and Gaussian observables respectively, and H1-. . . denoting the number of hidden
layer units. By default, we used ReLU activations in the hidden layers and a linear output
layer. For Barbara and CIFAR-10, we used LeakyReLU instead of ReLU; for CIFAR-10,
we additionally used a Sigmoid in the output layer. Min and max l.r. denote lower and
upper learning rate boundaries and are, together with Epochs/Cycle, hyperparameters of
the cyclical learning rate scheduler (Smith, 2017). |Φ(n)| denotes the number of distinct
latents per data point (referred to as S in Alg. 2). † and ‡ refer to the parameters used for
σ ∈ {15, 25} and σ = 50 in Fig. 4.1D, respectively.

Decoding Model Encoding Model

H0-H1-. . . -D Min l.r. Max l.r. Epochs/Cycle Batch Size |Φ(n)| EA

Bars (Fig. 4.S5) 8-8-16 0.0001 0.05 20 32 64 fit-randflip (Np = 3, Nc = 2, Ng = 1)
Bars (Figs. 4.S6 and 4.S7) 8-8-16 0.0001 0.1 50 32 2H0 exact E-step

Bars (Fig. 4.S8) 6-8-9 0.0001 0.05 20 32 32 random sampling (Nnew = 20, p(zh = 1) = 1
H0

)
Bars (Fig. 4.S8) 6-8-9 0.0001 0.05 20 32 32 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Bars (Fig. 4.S8) 6-8-9 0.0001 0.05 20 32 32 rand-randflip (Np = 5, Nc = 4, Ng = 1)
Bars (Fig. 4.S8) 6-8-9 0.0001 0.05 20 32 32 fit-cross-randflip (Np = 5, Ng = 1)
Bars (Fig. 4.S8) 6-8-9 0.0001 0.05 20 32 32 rand-cross-randflip (Np = 5, Ng = 1)
Bars (Fig. 4.S8) 8-8-16 0.0001 0.05 20 32 64 random sampling (Nnew = 20, p(zh = 1) = 1

H0
)

Bars (Fig. 4.S8) 8-8-16 0.0001 0.05 20 32 64 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Bars (Fig. 4.S8) 8-8-16 0.0001 0.05 20 32 64 rand-randflip (Np = 5, Nc = 4, Ng = 1)
Bars (Fig. 4.S8) 8-8-16 0.0001 0.05 20 32 64 fit-cross-randflip (Np = 5, Ng = 1)
Bars (Fig. 4.S8) 8-8-16 0.0001 0.05 20 32 64 rand-cross-randflip (Np = 5, Ng = 1)

van Hateren (Fig. 4.S9) 300-300-256 0.0001 0.001 10 32 100 fit-randflip (Np = 8, Nc = 7, Ng = 2)
House (Fig. 4.1C,D†) 64-64-64 0.0001 0.01 20 32 200 fit-randflip (Np = 10, Nc = 9, Ng = 4)
House (Fig. 4.1D‡) 512-512-144 0.0001 0.05 20 32 64 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Barbara (Fig. 4.2) 50-500-500-64 0.0001 0.001 160 512 100 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Barbara (Fig. 4.2) 256-256-512-64 0.0001 0.001 160 512 100 fit-randflip (Np = 5, Nc = 4, Ng = 1)
House 50 (Fig. 4.3) 512-512-144 0.0001 0.01 20 32 64 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Castle 50 (Fig. 4.3) 512-512-25 0.0001 0.00125 20 32 32 fit-randflip (Np = 5, Nc = 4, Ng = 1)
Castle 80 (Fig. 4.3) 512-512-144 0.0001 0.001 20 32 64 fit-randflip (Np = 5, Nc = 4, Ng = 1)

CIFAR-10 (Tab. 4.S4) 32-512-3072 0.0004 0.009 160 128 20 fit-randflip (Np = 15, Nc = 10, Ng = 1)
CIFAR-10 (Tab. 4.S4) 50-500-500-3072 0.0004 0.009 160 128 20 fit-randflip (Np = 15, Nc = 10, Ng = 1)
CIFAR-10 (Tab. 4.S4) 1024-256-512-3072 0.0004 0.009 160 128 20 fit-randflip (Np = 15, Nc = 10, Ng = 1)
CIFAR-10 (Tab. 4.S4) 1024-512-3072 0.0004 0.009 160 128 20 fit-randflip (Np = 15, Nc = 10, Ng = 1)
Audio (Fig. 4.S12) 200-512-400 0.0001 0.001 160 512 20 fit-randflip (Np = 15, Nc = 1, Ng = 1)

and BOHB (Falkner et al., 2018) using the HpBandSter framework (HpBandSterCode
developers, 2019). Table 4.S1 provides an overview of the hyperparameters used in each of
the reported experiments. A graphical representation of the decoder architecture of TVAE
used in the experiments is provided in Figure 4.S4.

4.S2.2 Verification Experiments

We first evaluated TVAE training on artificial datasets with known ground-truth parameters
and log-likelihood, in order to verify the correct functioning of the algorithm and to
investigate possible local optima effects. The dataset consisted of 500 4x4 images generated
by linear superposition of vertical and horizontal bars (compare, e.g., Földiák, 1990; Guiraud
et al., 2018; Hoyer, 2003), with a small amount of Gaussian noise. The DNN’s input and
middle layers had 8 units each. The Φ(n) variational sets consisted of 64 hidden states each.
Figure 4.S5 shows the evolution of the run that achieved the highest ELBO value out of
ten. All parameters were correctly recovered, and the ELBO value was consistent with
actual ground-truth log-likelihood. Such an elementary test, however, can also be solved
by linear models. In order to demonstrate that TVAEs can solve non-linear problems,

100



4.S2. Details on Numerical Experiments

Figure 4.S4: Graphical representation of the model architecture used in numerical experi-
ments.

Figure 4.S5: TVAE Training on Simple Bars
Data: Noiseless output of the TVAE’s DNN
for the eight possible one-hot input vectors
over several training epochs. Generating
parameters are in the last row.

Figure 4.S6: Correlated Bars Test. The plot
shows the ratio between inferred and ground-
truth log-likelihoods log pΘ(~x) of data points
with interesting bar combinations. The in-
ferred values are reported below the data
points themselves.

taking advantage of the neural network non-linearity embedded in the generative model, we
introduced correlations between pairs of bars: the bar combinations shown in the first two
data points from the left in Fig. 4.S6 were discouraged from appearing together. Again, we
selected the run with highest peak ELBO value out of ten. The model correctly learned that
certain combinations of bars are much more unlikely than others, and correctly estimated
their likelihood.

Figure 4.S7 offers more insight into the correlated bars test experiment. The left section
of the figure depicts the parameters used to generate the dataset: W0 is the 8x8 weight
matrix of the top-to-middle layer, which, in this case, caused activation of the first latent
variable to inhibit activation of the second, and activation of the last latent variable to
inhibit activation of the first. Concretely, this results in a dataset where these specific
bars combinations are discouraged from appearing. The weights W1, visualized as 8 4x4
matrices, generate the actual bars. σ2 was set to 0.01 and the dataset contained an average
of two superimposing bars per data point (πh = 2/8 for each h). The middle section of
the figure shows the ELBO values (averages over all batches for each epoch) as training
progresses. The cyclic learning rate schedule is responsible for the oscillatory behavior.
The right section shows some example data points together with samples from the trained
TVAE model that reached the highest ELBO value out of the ten runs.
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Figure 4.S7: Generative Parameters for the Correlated Bars Test (left); ELBO Values over
Epochs for 10 runs (center); Example Datapoints and Samples from the Generative Model
(right).

Using bars test data generated with a linear model (no correlations between pairs of
bars) as described above, Fig. 4.S8 depicts reliabilities of different evolutionary operator
designs (also compare Sec. 4.S1.2).

4.S2.3 Scalability Experiments

We extracted N = 100, 000 image patches of size D = 16 × 16 from a standard image
database (van Hateren and van der Schaaf, 1998) and applied pre-processing as in Guiraud
et al. (2018). The most elementary VAEs use a linear mapping for the decoder ~µ(~z,W ).
While being a natural baseline, such VAEs have also played a role in understanding important
properties of VAE learning (e.g., Dai et al., 2018; Lucas et al., 2019). For standard Gaussian
latents, a linear VAE can be shown to recover probabilistic PCA solutions. For Bernoulli
latents, we can recover binary sparse coding (Haft et al., 2004; Shelton et al., 2011) in
case of linear decoders. We therefore began our analysis with a shallow linear VAE using
H = 300 latents. After 100 epochs, the weights of the linear mapping were used to initialize
the bottom layer of a deeper, non-linear decoder network with three layers of 300, 300 and
16× 16 = 256 units, respectively (using ReLU activations, cf. Sec. 4.S2.1). The weights of
the deeper layers were simply initialized to the identity matrix. Besides DNN weights, prior
and variance parameters were continuously optimized. This setup guaranteed a common
starting point for linear and non-linear VAEs such that the difference provided by deeper
decoder DNNs can be highlighted. Figure 4.S9C shows the variational bounds during
learning of the linear VAE compared to the non-linear one for a typical run. The non-linear
VAE can be observed to quickly and significantly optimize the lower bound beyond a linear
VAE. In proceeding experiments (where we were not concerned with comparisons to linear
VAEs), we simply optimized the weights of the non-linear TVAE directly as we did not
observe an advantage in first optimizing a linear model.

Regarding scalability, we observed a similar efficiency of non-linear TVAE compared to
linear models (compare main text). To further investigate scalability, we trained a TVAE
model with up to H=1000 latent variables (while using 100 units in the DNN middle
layer). Training time remained in line with the theoretical linear scaling with H while the
variational bound further increased.
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Figure 4.S8: Reliability of different evolutionary operator combinations on bars test (cf.
Secs. 4.S1.2 and 4.S2.2). Reliability is quantified in terms of the normalized difference
between the lower bound at the last training epoch and the log-likelihood computed using
the ground-truth generating parameters. For the strategy labeled as ‘random’, we randomly
sampled states from a Bernoulli with p(zh = 1) = 1

H .

4.S2.4 Image Denoising

‘Zero-Shot’ Setting. If no clean data is available, variations of feed-forward DNNs have
been suggested whose training objectives have been altered to enable training on single (or
few) noisy images (e.g., Krull et al., 2019a; Lehtinen et al., 2018). However, deep generative
models are (we would argue) more natural candidates to train on noisy data as their learning
objective can be used directly. If few data is available for ‘zero-shot’ learning, large and
very deep DNNs cannot be used; Shocher et al. (2018), for instance, argued that smaller
DNNs are sufficient for the ‘zero-shot’ setting. ‘Zero-shot’ denoising is consequently natural
and well suited to evaluate direct optimization, and it has the very significant additional
benefit of allowing for a comparison to a large range of other approaches that have recently
been suggested. Most notably, the benchmark allows for comparison to other VAEs (Jang
et al., 2017; Park et al., 2019a), to sparse coding, to large feed-forward DNNs (Dong et al.,
2019; Zhu et al., 2019), and to DNNs dedicated to learning from noisy data (Krull et al.,
2019a; Lehtinen et al., 2018) (Figs. 4.1 and 4.2). The possibility of broad comparability
is also provided for the ‘zero-shot’ benchmarks of Fig. 4.3 (with inpainting highlighting
another advantage of the direct optimization, namely that, as no encoder DNNs are used,
missing data can naturally and directly be treated probabilistically).

Data Estimator. We followed Drefs et al. (2022), and, given a trained TVAE with
parameters Θ, estimated the value of a pixel in a single patch as:

xest
d = EpΘ(xd|~x)

[
xd
]
, (4.S4)

which, by using pΘ(xd | ~x) =
∑
{~z} pΘ(xd | ~z)pΘ(~z | ~x), can be reformulated as:

xest
d = EpΘ(~z|~x)

[
EpΘ(xd|~z)

[
xd
]]

= EpΘ(~z|~x)

[
µd(~z)

]
. (4.S5)
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A

B

C

Figure 4.S9: Training TVAE on natural image patches. A Decoder outputs for singleton
inputs after training, sorted according to priors as depicted in B. GFs are locally scaled.
Fields with high prior probabilities often have lower amplitudes than other GFs. Especially
amplitudes of the first fields (especially top rows) are relatively close to zero. C ELBO
gain compared to linear VAE with binary latents (i.e., EBSC; see text for details).

The expectation value on the right-hand-side of Eq. (4.S5) is approximated based on the
encoding parameters Φ

(n) using truncated posteriors (Eq. (4.4)), i.e.:

EpΘ(~z|~x (n))

[
g(~z)

]
≈ E

q
(n)
Φ

[
g(~z)

]
=

∑
~z∈Φ

(n)

g(~z)pΘ(~x (n), ~z)

∑
~z ′∈Φ

(n)

pΘ(~x (n), ~z ′)
(4.S6)

Finally, the pixel value of in the denoised image is generated by averaging the pixel estimates
obtained from different patches (see Drefs et al., 2022, for details).

Comparison to Probabilistic Sparse Coding. To evaluate the performance on stan-
dard denoising benchmarks, we started by comparing TVAE to related probabilistic sparse
coding approaches (Fig. 4.1C). MTMKL and GSC both use spike-and-slab sparse coding
(SSSC) data models while for training, the approaches use mean field and truncated pos-
terior approximations with pre-selection, respectively. Compared to MTMKL and GSC,
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EBSC uses a less complex data model and EVO-based training (Drefs et al., 2022). We
computed the PSNRs for EBSC in Fig. 4.1C by running publicly available source code
(EVO developers, 2022) using the ‘fitparents-randflip’ EA with hyperparameters S = 200,
Np = 10, Nc = 9 and Ng = 4. The performances listed in Fig. 4.1C reveal that, for high
noise level (σ = 50), EBSC achieves higher PSNR values than MTMKL and GSC although
the method uses a simpler data model, which demonstrates EVO’s effectiveness. However,
PSNR values for TVAE are significantly higher due to the higher flexibility in modeling the
data distribution provided by the used DNN.

Comparison to Noise2Noise-related Approaches. Figure 4.1D distinguishes algo-
rithms by the amount of employed training data and by the requirement for clean data.
Approaches such as N2N and N2V occupy a middle ground: While they can be trained on
noisy data, they typically require much larger amounts of data than, e.g., TVAE or MTMKL,
to achieve best performance. In the original N2V publication (Krull et al., 2019a), the
generation of training datasets leveraged, for instance, 400 (noisy) 180× 180 BSD (Martin
et al., 2001) images and data augmentation procedures. For our comparison in Fig. 4.1D,
we used the standard, publicly available code for N2V (Krull et al., 2019b) together with
the default training set (σ = 25) employed in the original N2V publication (specifically, we
followed the ‘denoising2D_BSD68’ example using its default hyperparameters from the
corresponding GitHub repository). We then applied the trained N2V network to denoise the
House image with σ = 25. The resulting PSNR value was 32.10 dB which is 0.76 dB lower
compared to BM3D (32.86 dB). The difference is consistent with an on average 0.88 dB
lower performance of N2V compared to BM3D on BSD68 images reported in Krull et al.
(2019a). The same network can also be used to denoise an image with lower or higher
noise level. The N2V network trained on σ = 25, for instance, results in PSNR values of
32.93 dB for the House image with σ = 15 and in 20.96 dB for House with σ = 50 (N2V† in
Tab. 4.S2).

Especially for high noise levels, performance can be much improved, however, if N2V is
trained using images with matched noise level (i.e., same as in the test image). To consider
such setting, we followed the original publication and trained N2V models while adapting
the noise level of σ = 15 in one case and σ = 50 in the other case (as above, we used
the ‘denoising2D_BSD68’ example as reference implementation). We then applied the
trained models to denoise the House image with σ = 15 in the one, and σ = 50 in the
other case (results listed as N2V‡ in Tab. 4.S2). The PSNR values we obtained are much
higher compared to the scenario with unmatched noise level (for σ = 50, for instance, we
observed a PSNR improvement of approximately 8 dB). The much lower performance of
N2V for unmatched noise level is, in this respect, consistent with observations for standard
DNN denoising for which training with matched noise level has been pointed out crucial to
achieve strong performance (e.g., Chaudhury and Roy, 2017; Zhang et al., 2018).

The N2V approach can avoid having to know the exact noise level, e.g., if it is trained
on just the single noisy image. In a last experiment, we hence investigated N2V in such
‘zero-shot’ setting and applied the algorithm to denoise the House image while using the
same noisy image for training that we seeked to denoise (our implementation was based
on the ‘denoising2D_BSD68’ example as above). The obtained PSNR values are listed as
N2V∗ in Tab. 4.S2 (they correspond to the best out of three runs for which Fig. 4.1D reports
the respective averages). From Tab. 4.S2 it can be observed that for all considered training
settings of N2V and all noise levels, PSNR values of TVAE are consistently higher than
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Table 4.S2: Denoising performance of N2V in PSNR (dB) for House. For comparison, we
additionally list the performance of TVAE (numbers copied from Fig. 4.1D). PSNR values
for N2V? are obtained by training only on the noisy image (i.e., in the same setting as used
for TVAE). More training data improves performance for N2V. PSNR values for N2V†

show performance if additional training data in the form of noisy images with AWG noise
σ = 25 is used. Further improvements (especially for high noise) are obtained if the N2V
network is trained on training data with a noise level that matches the noise of the test
set (see N2V‡). For instance, we used for N2V‡ training data with σ = 50 to denoise the
House image with σ = 50. PSNR values were computed using the model in its state at the
training epoch with smallest validation loss; for N2V?, we performed three independent
runs of the algorithm and here report the results of the best run (in terms of validation
loss). See text for further details.

σ=15 σ=25 σ=50

N2V? 32.22 29.69 24.89
N2V† 32.93 32.10 20.96
N2V‡ 33.91 32.10 28.94
TVAE 34.27 ± .02 32.65 ± .06 29.98 ± .05

those of N2V even if N2V is trained on external data with matched-noise level. Also note
that strong performance of TVAE is notably achieved using basic DNNs and comparably
small patch sizes (D = 8 × 8 for σ = 15 and σ = 25, and D = 12 × 12 for σ = 50, cf.
Tab. 4.S1); all feed-forward DNNs for denoising, for instance, use much larger patches (e.g.,
N2V uses 64 × 64). Additional parameter tuning may improve performance of N2V∗ to
a certain extent but PSNRs are in general much lower than N2V‡. While we followed
for N2V‡ the standard hyperparameter setting of the original paper/code publication of
N2V (Krull et al., 2019a,b), we cannot exclude further improvements with parameter fine
tuning for the House benchmark. However, we remark that the difference of N2V‡ and
BM3D for the House benchmark is on the very same range as the differences between N2V
and BM3D as reported for BSD images in the original N2V publication. The stronger
performing BM3D is, according to denoising performance, the preferable comparison and
as such included in Fig. 4.1D. In terms of efficiency, the N2V approach is in general (once
trained) faster than BM3D as well as TVAE, however (compare Krull et al., 2019a).

PSNR values of N2N are usually very closely aligned with performances achievable
by feed-forward DNNs. More concretely, N2N uses, for instance, a RED30 network (Mao
et al., 2016) which achieves 31.07 dB PSNR on the BSD300 data set if trained on clean
data. If directly trained on noisy data, RED30 achieves 31.06 dB (Lehtinen et al., 2018).
N2N is thus strongly performing in terms of PSNR. Compared to N2V, however, the caveat
of N2N is that its training uses rather articifial data. The pairs of images which N2N is
trained on consist of two different noisy realizations of the same underlying clean image.
Building such datasets may, under realistic conditions, be very difficult, which motivated
follow-up approaches such as N2V or S2S. For S2S, which is a dedicated ‘zero-shot’ denoising
approach, we observed generally very strong performances for the considered ‘zero-shot’
benchmarks (the PSNRs in Fig. 4.1D were produced by running publicly available source
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code (Quan et al., 2020b), specifically using the ‘demo_denoising’ example of the respective
GitHub repository).

Comparison to Deep Generative Models. While deep generative models are in
general well suited for denoising applications, performance on common image denoising
benchmarks is not as commonly investigated as for standard DNNs (which may also be
related to efficiency aspects). Exceptions include the recent BDGAN (Zhu et al., 2019)
and the very recent DivNoising (Prakash et al., 2021b) and NN+X (Zheng et al., 2021)
approaches. Regarding VAEs, we here compared TVAE to GSVAE (Jang et al., 2017)
and VLAE (Park et al., 2019a) using publicly available source code together with default
hyperparameters (Jang, 2016; Park et al., 2019b). We observed the implementations of
both GSVAE and VLAE to yield significantly better results when rescaling pixel amplitudes
to the interval [0, 1]. To maintain comparability, we applied the same procedure for TVAE,
EBSC and ES3C when we produced the results of Fig. 4.2 and Tab. 4.S4. To apply GSVAE
and VLAE for image denoising, we used the same patch-based processing as employed for
TVAE. The results for VLAE in Fig. 4.1D were produced using a patch size of 12× 12. For
GSVAE, we used Gaussian rather than Bernoulli observables (as implemented in the publicly
available source code). Following Drefs et al. (2022), we applied GSVAE using both binary
and categorical latents (referred to as GSVAE-B and GSVAE-C in the main text). The
PSNRs for GSVAE-B in Fig. 4.1D are cited from Drefs et al. (2022) (where the respective
model is referred to as GSVAElin, see Tab. 3B in that paper). For GSVAE-C in Fig. 4.1D,
we used a (20x10)-256-512-(12x12) decoder architecture (i.e., 20 latents, each with 10
categories, two hidden layers with 256 and 512 units, and 12× 12 = 144 output units). In
Fig. 4.2, all models used the same number of decoder output units (D = 8× 8 = 64); there,
we investigated GSVAE-B with shallow and deep decoders (GSVAE-B (256) and GSVAE-B
(256-256-512) both used 256 binary latents, and the deep decoder consisted of two hidden
layers with 256 and 512 units) as well as GSVAE-C with a deep decoder (32 latents, each
with 8 categories and two hidden layers with 256 and 512 units).

Computational Demand. An important limitation of TVAE is its computational
demand. For our experiments on the House image with noise level σ = 50 in Fig. 4.1D, we
used N = 60025 patches of D = 12× 12 pixels, which amounts to all possible overlapping
square patches of that size that can be extracted from the image. For training and denoising
we used a TVAE with H = 512 latent variables, sizes of |Φ(n) | = 64, and 512 units in the
DNN middle layer of the decoder (cf. Tab. 4.S1). TVAE training required 49 seconds per
training epoch when executing on a single NVIDIA Titan Xp GPU and 2.5GB of GPU
memory. We ran for 500 epochs which required between seven and eight hours on the single
GPU. We did not observe significant changes in variational bound values or in denoising
performance after 500 epochs in any of the experiments we conducted for Fig. 4.1. Runtime
complexity increased linear with the number of data points N , with the dimensionality
of the data D, with the number of the latents H, and with the size of the DNN used.
Runtimes also increased approximately proportional w.r.t. the size of Φ

(n) . Empirically,
we observed a sub-linear scaling with |Φ(n) |, presumably because of significant overhead
computations. For example, increasing from |Φ(n) | = 64 to |Φ(n) | = 128 (while keeping
all other parameters as above) computational time increases from 49 seconds per training
epoch to 75 seconds. For noise levels σ = 15 and σ = 25 in Fig. 4.1D, we used smaller patch
sizes (D = 8× 8) and fewer stochastic latents (H = 64) but larger Φ

(n) (i.e., |Φ(n) | = 200).
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Table 4.S3: Runtimes required by GSVAE, VLAE and TVAE for denoising the Barbara
image with σ = 25 (compare Fig. 4.2). † Total runtime of VLAE consists of 5.1 hrs for
parameter optimization and 1.8hrs for importance sampling. The PyTorch implementations
of the models were executed on a single NVIDIA Tesla V100 NV-Link 32GB HBM2 on a
server with Intel Xeon 4214 12-core 2.20 GHz CPUs.

GSVAE-B VLAE TVAE

50-500-500 256-256-512 50-500-500 50-500-500 256-256-512

epoch total epoch total epoch total epoch total epoch total

10s 0.01hrs 11s 0.03hrs 46s 6.9†hrs 213s 9.5hrs 234s 10.4hrs

Figure 4.S10: TVAE inpainting results for House.

In general, if the patch size D is increased, more structure has to be captured. This can
be done either by increasing the size of the stochastic latents H or by using larger DNNs.
Both, in turn, requires more training data in order to estimate the increased number of
parameters. In the current setup, the sizes of D which are currently feasible are comparably
small. The denoising performance based on small patches is, however, notably very high.

For comparison, N2V uses up to D = 64 × 64, and also other feed-forward DNN
approaches use significantly larger patch sizes than TVAE (and other ‘zero-shot’ approaches).
Still, N2V can be trained efficiently on large patches requiring approximately 19 hours
on a NVIDIA Tesla K80 GPU for training on approximately 3K noisy images of shape
180× 180 and seconds for the denoising of one 256× 256 image. The higher computational
demand of TVAE is also the reason why averaging across databases with many images (such
as BSD68) or applications to large single images quickly becomes infeasible. As a novel
approach, TVAE is, however, far from being fully optimized algorithmically compared to
large feed-forward approaches, and there is certainly further potential to improve training
efficiency. Tab. 4.S3 systematically compares runtimes of GSVAE, VLAE and TVAE for
denoising the Barbara image (cf. Fig. 4.2).
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Figure 4.S11: Inpainting of the Castle Image with TVAE. Left Original image. Center
Training image (top, 50% missing pixels, bottom, 80% missing pixels). Right Inpainting
result with TVAE (top, 50% missing pixels, bottom, 80% missing pixels).

4.S2.5 Image Inpainting

Similarly to the use of TVAE for denoising (see Sec. 4.S2.4), a single image with missing
pixels (Fig. 4.S10, center) is divided into square patches to form the training set; during
training, missing pixels can be treated as observables with unknown values when evaluating
log-joint probabilities of a data-point, which provides a grounded way to treat missing
data. To estimate likely values of missing pixels, we use the estimator of Eq. (4.S5) that
we applied for denoising before and now only consider the observed entries of a data point
when evaluating posterior probabilities:

xest
d = EpΘ(~z|~x obs)

[
µd(~z)

]
. (4.S7)

As for denoising, the expectation value in Eq. (4.S5) can be approximated using truncated
posteriors with encoding parameters Φ

(n) . Complete data points with ‘inpainted’ pixels can
then be used for DNN backpropagation to optimize the decoder. The inpainting procedure
consequently directly derives from the standard probabilistic treatment of missing values.
In contrast, amortized approaches need to specify how an encoder network should treat
missing values because encoder DNNs expect real values for all pixels as input.

When evaluating TVAE on standard inpainting benchmarks, we observed competitive
performance compared to other approaches (Fig. 4.3). TVAE is permutation invariant, i.e.,
the model does not leverage information about the 2D nature of images. In contrast, DIP
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Model LowerBound Sparsity

GSVAE-B (1024-256-512) 2380 512
1024

GSVAE-C ((1024×2)-256-512) 2559 n/a

EBSC (1024) 2028 19
1024

TVAE (32-512) 1649 13
32

TVAE (50-500-500) 1831 18
50

TVAE (1024-256-512) 2044 179
1024

TVAE (1024-512) 2893 135
1024

VLAE (32-512) 2392∗ n/a

VLAE (50-500-500) 2687∗ n/a

Table 4.S4: Log-likelihood estimates and sparsity for CIFAR-10. For comparison, we
considered GSVAE (numbers cited from Drefs et al. (2022)) and VLAE (∗we cite the
importance sampling-based log-likelihood estimates reported in Park et al. (2019a)). Sparsity
is measured in terms of the average number of active latents per data point (

∑
h πh
H , compare

main text). All models used the same number of decoder output units corresponding to
the image size of D = 32× 32× 3 pixels. We investigated different decoder architectures
(1024-256-512, for instance, denotes H = 1024 latents in the decoder input layer and two
hidden layers with 256 and 512 hidden units, respectively).

results rely on a large dedicated DNN with LeakyReLU as activation functions, a U-Net
/ hourglass architecture with skip connections, and convolutional units with reflection
padding (see supplement of Ulyanov et al. (2018)). The convolutional stages explicitly
assume the 2D image structure. We also remark that DIP uses in total 2 million parameters
compared to about 0.5 million parameters of the standard multi-layer perceptron used in
TVAE. Furthermore, and as a consequence of its more intricate architecture, DIP uses
many more tunable hyper-parameters. In the case of the House image, TVAE training
lasted 500 epochs taking around 60 seconds/epoch on a single NVIDIA Titan Xp GPU (see
Tab. 4.S1 for hyper-parameters used in the experiment).

4.S2.6 Single-Object Image Data

Considering further commonly used image data, we applied TVAE to CIFAR-10 images. In
contrast to the patches extracted from the Barbara image (Fig. 4.2), which captured a small
part of a whole image and as such only little elementary image structures, CIFAR-10 images
depict entire objects (cars, animals, etc.), and consequently they contain significantly more
complex structure. After applying TVAE to the CIFAR-10 training data set, we observed
a sparse encoding (similarly to the case of Barbara image patches). Considering lower
bounds on the CIFAR-10 test set, the encoding learned by TVAE showed to result in a
less competitive performance in comparison to GSVAE and VLAE when controlling for
comparable decoder network architectures (Tab. 4.S4)
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4.S2.7 Zero-Shot Audio Denoising

Learning-based ‘zero-shot’ data enhancement is subject of current research not only
in the context of image but also audio processing (e.g., Michelashvili and Wolf, 2020;
Narayanaswamy et al., 2021b; Zhang et al., 2020). Narayanaswamy et al. (2021b), for
instance, discuss applications of U-Net-based networks with dilated convolutions to the task
of unsupervised Gaussian audio denoising. To address the question of the extent to which
the strong ‘zero-shot’ denoising performance of TVAE on visual data (Figs. 4.1 and 4.2)
carries over to audio data, we applied TVAE to the benchmark considered in Sec. 4.1 and
Tab. 1 in Narayanaswamy et al. (2021b). Concretely, we followed the experimental design
described in Narayanaswamy et al. (2021b) and used the following datasets: LJ-Speech
(Ito and Johnson, 2021), SC09 Spoken Numbers (Donahue et al., 2019; Warden, 2018;
we used the version made available by Bhalley, 2018), and Bach Performances (Donahue
et al., 2019). From each of these three datasets, we randomly selected five examples after
resampling the audio files to 16 kHz. Regarding the number of examples per dataset, our
procedure slightly diverts from the one used by Narayanaswamy et al. (2021b) who collected
50 examples per dataset. The reason for limiting our evaluation to only five samples lies
in avoiding long runtimes of TVAE (compare Secs. 4.S1 and 4.S2.4). For the LJ-Speech
and Bach Performances datasets, we randomly selected excerpts of two seconds duration;
for SC09, each example had a duration of one second. To each of the in total 15 collected
snippets, we added Gaussian noise using σ = 0.1. We then normalized the noisy waveforms
to fill the range [-1, 1]. Narayanaswamy et al. (2021b) do not report to have used such
normalization; for TVAE, we observed data normalization to be beneficial as it helped
to avoid numerical instabilities related to very small variances learned due to very small
waveform amplitudes. Finally, we applied TVAE to the noisy waveform after extracting
overlapping chunks of D = 400 samples (similarly to the overlapping patches extracted
from noisy images, cf. Sec. 4.S2.4).

For the evaluation, we used two standard baselines, namely a Geometric Approach
(GA; Lu and Loizou, 2008) and the Minimum-Mean Square Error Short-Time Spectral
Amplitude estimator (MMSE-STSA; Ephraim and Malah, 1984) together with the noise
power spectral density estimator of Gerkmann and Hendriks (2012). Furthermore, we
compared to the approach of Narayanaswamy et al. (2021b) which we refer to as DCDAP
(as an abbreviation for ‘Deep Audio Prior with dilated convolutions’). We applied the
publicly available source code of DCDAP (Narayanaswamy et al., 2021a) together with the
default parameter settings; as ‘dilation type’, we chose the option ‘exponential’. For the
LJ-Speech and the SC09 datasets, we quantified performance in terms of Signal-to-Noise
Ratio (SNR) and Perceptual Evaluation of Speech Quality (PESQ); for the non-speech
dataset (Bach Performances), we measured only SNRs. For all three benchmark datasets
considered, TVAE can improve the performance of all compared methods in terms of both
SNR and PESQ improvement (Fig. 4.S12).
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Figure 4.S12: Results for ‘Zero-Shot’ Audio Denoising. Panel A depicts the dB-scaled
amplitude spectrogram of an example from the LJ-Speech dataset. Panel B was obtained
after adding Gaussian noise to the waveform of the clean speech (σ = 0.1). Panels C-F show
the denoising results of GA (Lu and Loizou, 2008), MMSE-STSA (Ephraim and Malah,
1984), DCDAP (Narayanaswamy et al., 2021b) and TVAE. Panel G reports SNR and PESQ
improvements averaged over five examples per dataset (the delta denotes the SNR and
PESQ improvement of the denoised w.r.t. the noisy waveform; see text for details).
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Double-Dictionary Maximal Causes
Analysis

Parts of this chapter have appeared as: Hamid Mousavi∗, Jakob Drefs∗, Jörg Lücke. A
Double-Dictionary Approach Learns Component Means and Variances for V1 Encoding. In
Giuseppe Nicosia et al. (Eds.): Machine Learning, Optimization, and Data Science. LOD
2020. Lecture Notes in Computer Science, vol. 12566, pp. 240–244, 2020. Springer, Cham.
https://doi.org/10.1007/978-3-030-64580-9_20. ∗Joint first authorship. Reproduced
with permission from Springer Nature. The Springer Nature content included in this chapter
is not covered by the open access license under which this thesis is published. The right to
reuse the content requires the explicit permission of Springer Nature.

Abstract. Sparse coding (SC) is a standard approach to relate neural response properties
of primary visual cortex (V1) to the statistical properties of images. SC models the
dependency between latent and observed variables using one weight matrix that contains
the latents’ generative fields (GFs). Here, we present a novel SC model that couples latent
and observed variables using two matrices: one matrix for component means and another
for component variances. When training on natural image patches, we observe Gabor-like
and globular GFs. Additionally, we obtain a second dictionary for each component’s
variances. The double-dictionary model is thus the first to capture first- and second-order
statistics of natural image patches using a multiple-causes latent variable model. If response
probabilities of V1 simple cells are not restricted to first order statistics, the investigated
model is likely to be more closely aligned with neural responses than standard SCs or
independent component analysis (ICA) models.

Keywords: Unsupervised Learning, Maximal Causes Analysis, Non-Linear Sparse Coding,
Double-Dictionary Learning, Variational EM
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5.1 Introduction

The two well-known standard models of Sparse Coding (SC; Olshausen and Field, 1997)
and Independent Component Analysis (ICA; e.g., Hyvärinen and Oja, 1997) have been
successfully used to link the response properties of simple cells in primary visual cortex
(V1) to the view of sensory systems as optimal information encoders. Since they have been
introduced, it has repeatedly been pointed out that generalizations of the original model
assumptions are required, for example extensions of ICA which include an encoding of
dependencies between latent activities, addition of intensity variables and latents, hierar-
chical features, and many more (e.g., Karklin and Lewicki, 2003, 2009; Wainwright and
Simoncelli, 2000). Also the encoding of variances of image components has been observed
to be important for image processing but has, so far, only been realized for mixture models
(e.g., Dai and Lücke, 2014; Zoran and Weiss, 2011). Previous work (Bornschein et al., 2013)
has studied the impact of occlusion-like non-linearities on predicted simple cell responses by
exploiting a maximum superposition (in contrast to the linear superposition in the standard
SC model). Here, we step forward and ask if such established non-linear models can be
generalized by coupling latents to observables using two matrices: one to model the means
of the observable distribution and another one to model the variances. Such generalization
imposes additional challenges on the model and its optimization, including novel derivations
of parameter update rules. We will show how an efficient learning algorithm can be realized
and how it can be scaled to learn dictionaries with hundreds of components capturing first-
and second-order statistics of natural image patch data.

5.2 Methods

5.2.1 A Non-Linear Sparse Coding Model with Mean and Variance
Dictionaries

We build upon maximal causes analysis (MCA) models (Bornschein et al., 2013; Lücke
and Sahani, 2008; Puertas et al., 2010) with binary latents and Gaussian noise. Binary
latents suggest themselves for probabilistic neural encoding (Shivkumar et al., 2018), and
the maximum non-linearity of MCA can be motivated by statistical properties of stimuli
processed by primary visual cortex (Bornschein et al., 2013; Puertas et al., 2010) and
auditory cortex (Sheikh et al., 2019). Concretely, we propose the following generative
model:

p(~s | Θ) =

H∏
h=1

Bernoulli(sh;πh), p(~y | ~s,Θ) =

D∏
d=1

N (yd; W̄d(~s,Θ), Σ̄d(~s,Θ)).

(5.1)

The binary latents sh ∈ {0, 1} are distributed according to Bernoulli(sh;πh) = πshh (1 −
πh)(1−sh) with prior parameters πh ∈ [0, 1]; given the latents, observables yd ∈ R are
distributed according to a Gaussian with mean and variance parameters given by:

W̄d(~s,Θ) = Wdh(d,~s,Θ)

Σ̄d(~s,Θ) = Σdh(d,~s,Θ)

}
h(d,~s,Θ) = argmax

h
| shWdh |, h = 1, . . . ,H. (5.2)
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Figure 5.1: Illustration of the proposed DD-MCA model. A: Latents sh are coupled
to observables yd using generative fields (GFs) Wdh and Σdh for component means and
component variances, respectively. GFs are combined non-linearly, resulting in W̄d(~s,Θ)
and Σ̄d(~s,Θ). B: H=3 exemplary circle-like GFs for means and variances. C: Non-linearity
from Eq. (5.2) resulting from the GFs from B and a given latent vector ~s. D: Component
means and variances combined non-linearly according to C. In B and D, we display standard
deviations rather than variances to improve visibility (Σdh = σ2

dh). In B and D, component
means are displayed using the same color scale, and the same applies for component
variances. E: Exemplary data point drawn from a Gaussian with mean and variance
parameter from D (see text for details).

We refer to W = { ~Wh}Hh=1 as a dictionary of generative fields (GFs) for component means
~Wh = {Wdh}Dd=1 with Wdh ∈ R, and, analogously, to Σ = {~Σh}Hh=1 as a dictionary of GFs
for component variances ~Σh = {Σdh}Dd=1 with Σdh ∈ R+. The parameters of the model are
Θ = (~π,W,Σ), where ~π = {πh}Hh=1. Component means and component variances combine
non-linearly: the mean W̄d(~s,Θ) and variance Σ̄d(~s,Θ) of the Gaussian in Eq. (5.1) are
determined by the component h yielding the maximal magnitude of shWdh (Eq. (5.2)). To
ensure that Σ̄d(~s,Θ) always has a positive value, we force one hidden unit to be constantly
active (specifically, we set s1 = const = 1, where the choice h = 1 is arbitrary). Since the
respective component means and variances determine the minimal amplitudes of W̄d(~s,Θ)
and Σ̄d(~s,Θ), we refer to ~W1 and ~Σ1 as background fields.

Non-linear latent interactions based on the maximum have been investigated before:
Lücke and Sahani (2008) trained MCA models with Poisson distributed observables, in
which the Poisson mean is determined similarly to the definition of Eq. (5.2); as a distinction,
Lücke and Sahani used a maximum, rather than a maximum magnitude non-linearity as
considered here. Similar to the approach proposed here, Bornschein et al. (2013); Puertas
et al. (2010) used Gaussian observables and applied the non-linearity h(d,~s,Θ) form Eq. (5.2)
to set the Gaussian mean parameter (Puertas et al. used, similar to Lücke and Sahani, a
maximum rather than a maximum magnitude non-linearity). The MCA model considered
here (Eqs. (5.1) and (5.2)) extends previous Gaussian MCA variants by capturing individual
variances Σdh for each latent dimension h and each observed dimension d (previous variants
used a global, scalar variance parameter Σdh = σ2 ∀ d = 1, . . . , D, ∀h = 1, . . . ,H). Fig. 5.1
illustrates the proposed generative model; we will refer to this MCA variant as Double-
Dictionary Maximum Causes Analysis (DD-MCA) in the remainder of this paper.

5.2.2 Parameter Optimization

To fit the DD-MCA model to a set of data points {~y (n)}n=1,...,N , we seek parameters Θ∗ that
maximize the data log-likelihood L(Θ) =

∑N
n=1 log(p(~y (n) | Θ)), with p(~y | Θ) =

∑
~s p(~y |
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~s,Θ) p(~s | Θ) given by Eq. (5.1), and
∑

~s denoting summation over all possible binary latent
states. For our purposes, we apply a variational expectation maximization approach (EM;
e.g., Neal and Hinton, 1998; Saul and Jordan, 1995) and optimize a log-likelihood lower
bound, also referred to as free energy:

F(q,Θ) =
N∑
n=1

Eq(n)

[
log
(
p(~y (n) | ~s,Θ) p(~s | Θ)

)]
+

N∑
n=1

H(q(n)) ≤ L(Θ), (5.3)

with Eq(n)

[
g(~s )

]
=
∑

~s q
(n)(~s )g(~s ) and H(q(n)) = Eq(n)

[
− log(q(n)(~s ))

]
denoting ex-

pectation and Shannon entropy, respectively. q(n)(~s ) are variational distributions that
approximate the exact posterior p(~s | ~y (n),Θ). The free energy objective in Eq. (5.3) is
optimized alternately with respect to q holding Θ fixed, referred to as the E-step, and with
respect to Θ holding q fixed, referred to as the M-step. Here, we use truncated posteriors
(e.g., Hirschberger et al., 2022; Lücke and Forster, 2019; Sheikh et al., 2014) as family of
variational distributions, and apply Evolutionary Variational Optimization (EVO) to realize
highly efficient E-steps (for details, see Drefs et al., 2022). For the M-step, parameter
update rules can be obtained by solving ∂

∂ΘF(q,Θ)
!

= 0 for Θ. For the parameters W and
~π, update equations have been derived before (Bornschein et al., 2013; Lücke and Sahani,
2008) and are given by:

W new
dh =

∑N
n=1Eq(n)

[
Adh(~s,Θ)

]
y

(n)
d∑N

n=1Eq(n)

[
Adh(~s,Θ)

] , πnew
h =

1

N

N∑
n=1

Eq(n)

[
sh
]
, (5.4)

where Adh(~s,Θ) = 1 if h = h(d,~s,Θ) and 0 otherwise. Here, we provide a derivation of the
M-step update equation for Σdh. To start, we require that:

0
!

=
∂

∂Σdh
F(q,Θ) (5.5)

=
∂

∂Σdh

N∑
n=1

∑
~s

q(n)(~s ) log
(
p(~y (n) | ~s,Θ)

)
(5.6)

=
N∑
n=1

∑
~s

q(n)(~s )

D∑
d′=1

(
∂

∂Σdh
log
(
p
(
y

(n)
d′ | W̄d′(~s,W ), Σ̄d′(~s,W,Σ)

)))
(5.7)

=
N∑
n=1

∑
~s

q(n)(~s )

(
∂

∂Σdh
Σ̄d(~s,W,Σ)

)
f
(
y

(n)
d , W̄d(~s,W ), Σ̄d(~s,W,Σ)

)
, (5.8)

where f(y, w, σ2) =
∂

∂σ2
log(p(y | w, σ2)).

Given that

∂

∂Σdh
Σ̄d(~s,W,Σ) =

∂

∂Σdh
Σdh′(d,~s,W ) = δhh′(d,~s,W ), (5.9)

we can rewrite Eq. (5.8) as

0
!

=

N∑
n=1

Eq(n)

[
δhh′(d,~s,W )

]
f(y

(n)
d ,Wdh,Σdh), (5.10)
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and since p(y | w, σ2) = N (y | w, σ2) such that f(y, w, σ2) = 1
2σ2 ( 1

σ2 (y−w)2−1), we obtain

N∑
n=1

Eq(n)

[
δhh′(d,~s,W )

]
=

N∑
n=1

Eq(n)

[
δhh′(d,~s,W )

] 1

Σdh
(y

(n)
d −Wdh)2, (5.11)

which can be rearranged yielding the following update equation:

Σnew
dh =

∑N
n=1Eq(n)

[
Adh(~s,Θ)

](
y

(n)
d −Wdh

)2∑N
n=1Eq(n)

[
Adh(~s,Θ)

] , (5.12)

where we use the notation Adh(~s,Θ) instead of δhh′(d,~s,W ) for consistency with Eq. (5.4).

5.3 Numerical Experiments

5.3.1 Bars Test

We verified the optimization of the DD-MCA model, in particular Eq. (5.12), using a
standard component extraction task, namely a bars test (Földiák, 1990; Hoyer, 2003; Lücke
and Sahani, 2008). To generate training data, we created mean and variance dictionaries
containing GFs in the form of horizontal and vertical bars. We then stacked these GFs
together with one additional field for background intensity. Our dictionary contained
H = 11 GFs, each reshaped as a D = 5 × 5 image. For the background fields, we used
constant amplitudes of ~W gen

1 = 1.0 and ~σgen
1 = 0.5. The remaining GFs contained the

same background value, but were additionally overlaid by different bar patterns: for ~W gen
h

with h = 2, . . . ,H, bar amplitudes were varied in equidistant steps between [10.0, 10.9],
while for the respective fields ~σgen

h , we manually selected bar amplitudes in the range [1, 5].
Using priors πgen

1 = 1.0 and πgen
h = 0.2 for h = 2, . . . ,H , we sampled N = 1000 data points

according to Eqs. (5.1) and (5.2). After initialization9, we used M-steps defined by Eqs. (5.4)
and (5.12) and EVO for variational E-steps (we applied the fitparents-cross-sparseflip variant
of the algorithm with hyperparameters S = 30 and Np = 20, see Drefs et al., 2022 for
details) to train a DD-MCA model for 50 epochs on the generated data set. After training,
we observed that generating parameters were accurately recovered (Fig. 5.2).

5.3.2 Encoding of Natural Image Patches

Having verified the proposed approach using bars tests, we turned to realistic data and
fitted a DD-MCA model to natural image patches. Our training dataset contained patches
of size D = 12× 12 pixels, randomly sampled from a publicly available data set of natural
images (van Hateren and van der Schaaf, 1998). We clamped the highest 2% of the pixel
amplitudes to attenuate the influence of very high light intensities and subsequently applied
Zero-Phase Component Analysis (Bell and Sejnowski, 1997) to whiten the data, using the
set of principal components corresponding to 95% of the data variance (compare Exarchakis
and Lücke, 2017). After whitening, we collected N = 100000 training data points, omitting

9 πinit
h were randomly uniformly drawn from the interval [0.1, 0.5] for h = 1, . . . , H; W init

dh = ȳd + ε and
σinit
dh = σY for d = 1, . . . , D and h = 1, . . . , H with ȳd = 1

N

∑N
n=1 y

(n)
d , σ2

Y = 1
DN

∑D
d=1

∑N
n=1(y

(n)
d − ȳd)2,

and ε ∼ N (0,
σY
4

).
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Figure 5.2: Results of the bars test for the DD-MCA model (see text for details). For
ease of comparison, we display ~Wh and ~σh in the same order as the respective GFs ~W gen

h

and ~σgen
h ; note that the learned order corresponded to a permutation of the respective

ground-truth one.

patches with lowest variance to avoid capturing image sections without significant structure
(e.g., flat areas). We then initialized10 a DD-MCA model with H = 1000 components and
applied the optimization described above (here using EVO with S = Np = 60 and the
fitparents-randflip variant of the algorithm to increase computational efficiency, compare
Drefs et al., 2022) to fit the model to the image patches data set. First, we performed 250
training epochs optimizing only W and ~π and keeping Σ at its initial value before updating
all parameters jointly for 50 epochs (we found this procedure to lead to a numerically
more stable behavior of the algorithm compared to updating all parameters jointly from
the beginning). Figure 5.3 depicts the result of the experiment. After training, DD-MCA
had learned a sparse encoding of image patches with on average approximately 6 out of
1000 active latents per data point. Inspecting the learned dictionaries, we observed a large
variety of GFs for the component means (including the familiar Gabor-like and globular
fields), as well as a large variety of GFs for the component variances.

If we identify image patches that maximally activate a given latent, we can systematically
modify these patches while measuring changes in the latent’s responses. We observed that
specific modifications, such as addition of certain types of noise, can lead to differences in
the response properties of the latent depending on how it encodes component variances. For
instance, noise added in proximity of a Gabor component or distant from it has a different
effect for latents with individual variances compared to latents with the same variance for
all pixels and all components (as used for standard SC). Such differences in responses could
be used to design stimuli that could enable the detection of a potential variance encoding
in V1 and other sensory areas.

10~πinit and Σinit were set similarly to the bars test. ~W init
h , h = 1, . . . , H, were set equal to H cluster centers

obtained by running var-GMM-S clustering (Forster and Lücke, 2018; Hirschberger et al., 2022) on our
data set using publicly available source code together with default hyperparameters from example code
(Hirschberger, 2019).
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Figure 5.3: DD-MCA encoding learned from natural image patches. The GFs are displayed
using a local and symmetric color scale and are sorted by prior activation, from left to right
and top to bottom, from most active to least active. See text for details.
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5.4 Conclusion

We presented DD-MCA, a non-linear SC model which is capable of learning component
variances alongside component means. The model represents a novel variant of maximum
causes analysis (Bornschein et al., 2013; Lücke and Sahani, 2008; Puertas et al., 2010) with
individual variance parameters per component and per observable, and, as such, provides
a generalization of the global isotropic variance in standard SC models (Olshausen and
Field, 1997). Our numerical results demonstrate that DD-MCA can reliably and efficiently
be trained using evolutionary variational optimization (Drefs et al., 2022) and a newly
derived learning rule for the variance dictionary. When training on natural image patch
data, the learned GFs for component means capture a variety of structures, many of
which corresponding to Gabor-like and globular fields, confirming observations reported
for previous MCA models (e.g., Bornschein et al., 2013). The similarly diverse GFs for
component variances that we observed for DD-MCA (Fig. 5.3) most clearly illustrate the
contrast to the assumption of a global uniform variance of standard SC approaches. That
non-elementary variance encodings of images or image components can be beneficial for
image processing has been demonstrated for a range of applications including, e.g., image
restoration (e.g., Dai and Lücke, 2014; Zoran and Weiss, 2011) or image classification (e.g.,
Deng et al., 2012; Liu et al., 2018). From a biological perspective, it may be argued that
a single variance parameter is statistically sub-optimal and that primary visual cortex
may, likewise, represent component variances as well as component means. Based on our
numerical results, we have pointed out how variance encoding could in principle be detected
in novel in vivo experiments.
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Discussion and Conclusion

Machine learning algorithms have become integral part of numerous technologies which
are influencing the everyday lives of millions of people, e.g., through their use by content
recommendation systems applied by social networks or streaming platforms (e.g., Zhang
et al., 2019), online text translation services (e.g., Otter et al., 2021), or autonomous vehicles
(e.g., Muhammad et al., 2021), to name just a few examples. A decisive contribution to
this development has been made by the increasing availability of data and computational
resources over the last decades. Deep Learning (DL) models, i.e., models incorporating
deep neural networks (DNNs) such as multi-layer perceptrons (Ivakhnenko and Lapa, 1965;
Rosenblatt, 1958), convolutional networks (e.g., LeCun et al., 1989), recurrent networks (e.g.,
Hochreiter and Schmidhuber, 1997), or other types of networks are currently exceptionally
widely used. DNNs offer a high degree of flexibility regarding their parameterization and
provide a generic approach for modeling mappings between sets of data (compare, e.g.,
Hornik et al., 1989). In recent years, a widely adopted strategy in DL approaches for
optimizing performance has been to develop DNNs with increasingly large architectures and
increasingly many parameters. For instance, recent language models use on the order of up
to hundreds of billions of parameters (Brown et al., 2020). DL methodologies powered by
increasingly large DNNs have shown impressive performances on computer vision, natural
language processing, and many other tasks. Such strong performances, at the same time,
rely on considerable amounts of data used for training (i.e., for the optimization of the
parameters of the model). For supervised approaches, data sets thereby need to contain
large numbers of training pairs consisting of input and target values. Training increasingly
large models on increasingly large data sets is accompanied by an increasing demand for
computing resources. The computational cost of training DL models has in fact rapidly
increased in recent years with considerable environmental implications due to the associated
energy consumption and carbon footprint, as discussed, e.g., by Schwartz et al. (2020).
Moreover, Floridi and Chiriatti argue that the strong performance of models that derive
much of their power from massive amounts of data may be strongly constrained to the
tasks for which they were optimized, with an additional issue being that models pick up
biases in the data (Floridi and Chiriatti, 2020).

Variational autoencoders (VAEs; Kingma and Welling, 2014; Rezende et al., 2014)
represent a class of ML models that use DNNs as part of a probabilistic generative model,
which gives them several attractive features: VAEs incorporate an explicitly formulated data
density model that allows assumptions about the data generation process to be incorporated
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into the model. The density model thereby uses a flexible parameterization described by
DNNs. Moreover, VAEs allow for unsupervised training. Like other probabilistic generative
models, VAEs face the challenge of intractable posterior distributions and must resort
to approximate inference methods. To this end, VAEs use encoding models that are
parameterized by DNNs and whose parameters are optimized using the backpropagation
algorithm (Rumelhart et al., 1986), with the latter point providing an additional link
between VAEs and discriminative DL models. To maintain backpropagation in a variational
setting (in which a variational lower bound of the log-likelihood serves as optimization
objective), VAE approaches, as discussed in Ch. 4, typically incorporate a series of auxiliary
methods that may be considered sub-optimal from a probabilistic modeling perspective:
(i)While amortized inference provides benefits in terms of computational efficiency, it suffers
from an inherent inaccuracy due to the amortization gap. (ii)Assuming a specific form,
e.g., a factored Gaussian form, for the variational distributions implies that properties
such as correlations and multi-modal structures of the true posterior distribution cannot
be captured. (iii) Continuous relaxations of discrete distributions applied in the case of
discrete latent variables do not allow for keeping the discrete nature of latents fully intact.

With Evolutionary Variational Optimization (EVO), this thesis has, as one of its major
contributions, developed a novel generic training method for probabilistic generative models
with binary latents that avoids the aforementioned sub-optimalities. The approximate infer-
ence scheme employed by EVO differs conceptually in several aspects from approximation
methods used by standard VAEs: By choosing truncated posteriors as variational distribu-
tions (Eq. (2.2)), EVO makes no assumption of a-posteriori independence of the latents, nor
of a mono-modal form of the posterior distribution. Instead, EVO’s approximation scheme
relies on the assumption that the posterior mass is concentrated on small subsets of the
latent space. As a further distinction, EVO does not involve a DNN-based parameterization
of variational distributions and does not apply gradient-based optimization of variational
parameters. Instead, the parameters of the truncated posteriors, i.e., the subsets K(n) , are
optimized using evolutionary algorithms, and they are optimized per data point, implying
that EVO does not suffer the amortization gap.

EVO can be considered as a ‘black box’ inference method for generative models with
binary latents in the sense that it is generically applicable to models with analytically
tractable joint probability without requiring model-specific derivations. The truncated
variational distributions and the optimization of their parameters through evolutionary
algorithms is fully defined in terms of the model’s joint (Alg. 1). Moreover, the inference
scheme of EVO is compatible with gradient-based optimization of model parameters using
automatic differentiation tools (Alg. 2), implying that EVO allows for realizing a fully
automated training algorithm. EVO can be distinguished from related ‘black box’ variational
inference approaches such as BBVI (Ranganath et al., 2014) in that (i) BBVI, in contrast
to EVO, uses a stochastic gradient-based optimization of the variational objective, which
(ii) assumes the variational distributions to take a specific, i.e., factored form, and (iii) BBVI
requires to derive gradients and sampling procedures for the concrete variational distribution
used. Further approaches related in this context but conceptually different to EVO due to
their use of explicit forms for the variational distribution include works such as Kingma
and Welling (2014); Kucukelbir et al. (2017); Rezende and Mohamed (2015); Rezende et al.
(2014).

EVO’s generic applicability and viability have been validated through the studies
presented in Chs. 2 to 5, in which the approach was successfully used for the optimization
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of data models of varying complexity, including linear sparse coding models with binary
prior and spike-and-slab prior (BSC and SSSC, respectively), Noisy-OR Bayes nets (NOR),
maximal causes analysis models (MCA), and VAEs with binary latents (TVAE). The
approach has here shown to be scalable to large problem sizes, as exemplified, e.g., by the
SSSC models considered in Ch. 2, which used up to 900 latents and on the order of 100K
data points of size 14× 14× 3 pixels for training (Fig. 2.7 F), or the VAEs in Ch. 4, which
used decoder architectures with up to 1024 binary latents, two hidden layers with up to
512 units, and 50K data points of size 32× 32× 3 pixels for training. At the same time,
for large scale problems, EVO (or more specifically, the here used implementations of the
algorithm) showed to be associated with considerable runtimes (e.g., on the order of several
hours for processing single images; cf. Sec. 2.S6.1). While this issue could be addressed
by distributing the training over many (i.e., up to thousands of) CPU cores, the runtimes
still remained considerably higher, e.g., compared to approaches using amortized inference
(Tab. 4.S3). Amortized inference schemes have, at the same time, by definition a lower
computational cost compared to EVO (compare Sec. 4.S2.4), and their implementations
of DNN-based encoding models can fully exploit the efficiency of deep learning tools such
as Tensorflow (Abadi et al., 2016) or PyTorch (Paszke et al., 2019). The efficiency of the
implementations of EVO, on the other hand, can presumably still significantly be improved.

After confirming the viability and scalability of EVO, the studies presented extensively
investigated the performance of, in particular, BSC, SSSC and VAE models accelerated by
EVO (termed EBSC, ES3C, and TVAE, respectively) in concrete applications, focusing
on denoising and inpainting tasks. The large body of performance evaluations and the
insights they provide may be considered further major contributions of this thesis. One
goal of these investigations was to provide systematic comparisons between EVO and other
approximate inference schemes. One observation that could be made in this respect was
that the performance of the approaches considered has here shown to depend on the type of
data. For instance, for image patch modeling and Gaussian denoising tasks, EVO showed to
provide performance improvements over the sampling-based method by Zhou et al. (2012),
the mean field approach by Titsias and Lázaro-Gredilla (2011), the inference scheme used
by Sheikh et al. (2014) which is based on truncated posteriors and preselection procedures,
and the Gumbel-softmax approach by Jang et al. (2017) (Figs. 2.5B and 4.2). In turn, for
other types of data, specifically for image data consisting of single objects (i.e., CIFAR-10;
Krizhevsky, 2009), performances of EVO were improved by, e.g., the Gumbel-softmax
approximation (Tabs. 2.S3 and 4.S4). One striking observation was that EVO and the
Gumbel-softmax approximation resulted in considerably different data encodings in terms
of sparsity of the encoding and structure of the learned generative fields (Figs. 2.S4 and 4.2
and Tab. 4.S4).

A further goal of the conducted performance evaluations was to provide insight into how
algorithms developed here such as ES3C and TVAE compare to DL approaches and other
methods that are not necessarily based on probabilistic models and are optimized specifically
for denoising tasks. Among these approaches, N2V (Krull et al., 2019a), DivN (Prakash
et al., 2021b), and S2S (Quan et al., 2020a) may be considered the most similar to ES3C
and TVAE in the sense that all these algorithms are applicable in a setting with only noisy
data available. In comparison to N2V, DivN, and S2S, the ES3C and TVAE approaches
have shown to be highly competitive (Figs. 3.4 and 4.1D). Maybe more remarkably, in some
conditions of the benchmarks in Figs. 2.5D, 2.6, and 4.1D, the performances of ES3C and
TVAE (which were obtained under ‘zero-shot’ conditions, i.e., using only a single noisy
image for training) turned out to be competitive even with results obtained by methods
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that use significantly more a-priori information, specifically supervised DL models such as
DnCNN (Zhang et al., 2017), TNRD (Chen and Pock, 2017) or BDGAN (Zhu et al., 2019),
all of which leverage large databases with clean images for training. This result provides
an important insight: Expressive probabilistic generative models optimized using flexible
approximate inference schemes can be comparably effective, for the considered denoising
application, compared to DL models that derive much of their power from intricate DNNs
and large training data sets. Besides, Figs. 3.2, 3.4 and 4.S12 may provide insight into
the generalizability of the performance of the methods developed here w.r.t. different data
types: These results exemplify that, for denoising, the strong performance of ES3C and
TVAE is not specific to natural image data, but can also be observed, e.g., for microscopy
imaging data or acoustic data.

Like for the vast majority of ML methods, the performance of the algorithms developed
showed to rely on a careful choice of hyperparameters. These include hyperparameters
related to the data model (e.g., dictionary size H), data preprocessing (e.g., patch sizes Px

and Py), and variational approximation (i.e., the number of variational states S = |K(n) |
and the hyperparameters of the evolutionary algorithms used by EVO, e.g., the number of
parental states Np, the number of children Nc, and the number of generations Ng; compare
Sec. 2.2.1). For the majority of the experiments presented in Chs. 2 to 5, hyperparameter
optimization (HPO) involved manual tuning, which may be argued to be inefficient and
sub-optimal. First steps towards automating this step were taken in Ch. 4, in which HPO
tools (Falkner et al., 2018; Nogueira, 2019) were used to tune, e.g., decoder architectures
and learning rate scheduler hyperparameters of TVAE (using the variational lower bound
as HPO objective). Exploiting recent advances in the field of automated machine learning
(AutoML), specifically state-of-the-art methods for HPO and neural architecture search (e.g.,
Lindauer et al., 2022; Sass et al., 2022; Zimmer et al., 2021), more systematically appears
valuable for any form of follow-up work of this thesis. A desirable goal in this context may
be to conduct HPO fully unsupervised. For ‘zero-shot’ image enhancement applications, for
example, future efforts may follow the methodology applied in Ch. 4 and use the variational
lower bound (which can be computed based on noisy data and which has here shown to be
informative about enhancement performance in terms of peak-signal-to-noise ratios, Fig. 2.4)
as HPO objective; at the same time, future efforts may aim at seeking alternative HPO
objectives that allow for compensating for differences in model and data dimensionality.
By combining the feature of ‘black box’ training (as discussed above) with AutoML tools,
workflows could be realized where models are implemented solely in terms of their joint
distribution and driven to peak performance fully autonomously.

For such and other types of follow-up work, developments on the software side may make
use of the implementations provided by the TVO library which was developed in the context
of the presented studies. Besides being useful for reproducibility of the results reported here,
the TVO library may represent a valuable resource for future practitioners and developers
applying and working with the algorithms developed here. To ease usage and extensibility,
the library is organized using a modular design with a clear separation of independent
components such as routines specific to data models and variational optimization. TVO
features multi-core CPU and GPU acceleration, enabling distributed execution of the
algorithms. It incorporates continuous integration workflows and software documentation
to promote high code quality. The TVO library has been open sourced (TVO developers,
2022 and also compare Guiraud, 2021), and it represents a further major contribution of
the studies presented in this thesis.
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6.1 Outlook

This work has opened the door to a variety of possible future research directions. One
such direction may be the investigation of evolutionary variational optimization of further
interesting and challenging data models, for example VAEs with spike-and-slab priors and
convolutional decoder networks. Continued research could also aim at improving EVO
through incorporation of more sophisticated evolutionary algorithms, starting, e.g., with
more disruptive crossover operations (e.g., Eshelman, 1991). Efforts in this direction would
concretely aim at increasing the ratio of states ~s new evolved per data point and epoch
which satisfy the criterion defined by Eq. (2.5). A further goal for follow-up work may
be the improvement of computational efficiency. Besides efforts on the implementation
side, which may potentially be inspired by work by Hirschberger et al. (2022), it might be
interesting to ask whether ideas of amortization could possibly be combined with EVO’s
inference scheme. With regards to image enhancement applications, future work could
pick up ideas by Zoran and Weiss (2011) and incorporate the concept of expected patch
log-likelihood into the image processing scheme employed here (Fig. 3.5). Future research
could also investigate fully automated workflows incorporating ‘black box’ training and
AutoML tools for hyperparameter optimization (as discussed above); interesting research
questions in this respect may be the general viability of such approaches and the benefits
they might provide in terms of task performance.
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