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Abstract

Abstract

Randomly fluctuating or stochastic behavior can be observed in nature in

the context of the interactions of nonlinear complex dynamical systems.

These can be described by mathematical models and their stochastic na-

ture can generally be separated into continuous and discontinuous con-

tributions. In this thesis, the continuous contribution is considered to

be a classical Brownian motion or Wiener process and the discontinu-

ous part as a compound Poisson process. With these assumptions, a

jump-diffusion stochastic differential equation is applied. The basic an-

alytic solutions of simple stochastic processes are derived and validated

with numerical simulations. These methods are then applied in the field

of snow physics and the energy conversion processes in wind turbines.

With these advanced stochastic analysis applied to micro-cone penetra-

tion tests in snow hardness data, one can characterize the different types

of snow by the contributions of continuous diffusion and discontinuous

jump noise. Similarly, the same concept of noise contributions can be

used on the data of wind energy systems to specify different operational

states of wind turbines associated with the control system. The results

provide additional insights to the understanding of the complex nature

of real world systems. In addition to these applications, more thorough

mathematical characterization is performed on the simulated diffusion

and jump-diffusion processes in order to introduce robust criteria to dis-

tinguish the continuous or discontinuous nature of the given data. These

criteria associated with the nature of different time scales present in the

stochastic processes are also studied. Finally, these methods are applied

on selected real world data. Our studies approach the complex dynamics

from a new perspective which allows us not only to have a better un-

derstanding of their complex nature but also to pave the way for future

research on new phenomena.
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Zusammenfassung

Zusammenfassung

Zufällig fluktuierendes oder stochastisches Verhalten kann in der Natur

oft im Zusammenhang mit Wechselwirkungen von nichtlinearen kom-

plexen dynamischen Systemen beobachtet werden. Diese können durch

mathematische Modelle beschrieben werden, wobei ihre stochastischen

Eigenschaften allgemein in stetige und unstetige Beiträge getrennt wer-

den. In dieser Arbeit wird der stetige Beitrag als klassische Brown-

sche Bewegung oder Wiener-Prozess und der unstetige Anteil als zusam-

mengesetzter Poisson-Prozess betrachtet. Mit diesen Annahmen wird

eine stochastische Sprung-Diffusions-Differentialgleichung angesetzt. Die

grundlegenden analytischen Lösungen einfacher stochastischer Prozesse

werden hergeleitet und mit numerischen Simulationen validiert. Diese

Methoden werden dann im Bereich der Schneephysik und der En-

ergieumwandlungsprozesse inWindenergieanlagen angewendet. Mit dieser

fortgeschrittenen stochastischen Analyse, die zunächst auf die Mikro-

Drucksondierung in Schneefestigkeitsdaten angewendet wird, werden

die verschiedenen Schneearten durch Beiträge von stetigem Diffusion-

srauschen und unstetigem Sprungrauschen charakterisiert. In ähnlicher

Weise wird das gleiche Konzept von Rauschbeiträgen auf die Daten von

Windenergiesystemen angewandt, um unterschiedliche Betriebszustände

von Windenergieanlagen zu identifizieren, welche der Regelung zuge-

ordnet sind. Die Ergebnisse liefern neue Erkenntnisse zum Verständ-

nis der komplexen Natur dieser Systeme. Zusätzlich zu diesen Anwen-

dungen wird eine grundlegende mathematische Charakterisierung von

simulierten Diffusions- und Sprung-Diffusions-Prozessen durchgeführt,

um robuste Kriterien einzuführen, welche eine Unterscheidung der steti-

gen oder unstetigen Natur der gegebenen Daten ermöglichen. Diese

Kriterien selbst werden ebenfalls im Zusammenhang mit den unter-

schiedlichen Zeitskalen untersucht, welche die stochastischen Prozessen

charakerisieren. Schließlich werden diese Methoden auf einige aus-

gewählte Daten aus der realen Welt angewendet. Die Studien dieser

Arbeit nähern sich der komplexen Dynamik aus einer neuen Perspektive,

die es ermöglicht, nicht nur deren komplexe Natur besser zu verstehen,

sondern auch den Weg für die zukünftige Erforschung neuer Phänomene

zu ebnen.

iii





Chapter 1

Introduction

Our world exists as the interactions of the nonlinear complex dynamical

systems which can be described by mathematical models. In the context

of the complex systems in nature, the randomly fluctuating or stochastic

behaviors can usually be observed. The study of random nature traces

back to 19th century when the botanist Robert Brown observed the pollen

grains of the plant suspended in water move in irregular zigzag motion

under microscope [13]. This phenomenon is later known as Brownian

motion, named after him.

In 1900, the mathematician Louis Bachelier modelled the Brownian mo-

tion while studying the dynamical behavior of the Paris stock market

[7, 8, 18, 41]. In 1905, Albert Einstein published his famous paper on

Brownian motion where he argued that the microscopically visible parti-

cle suspended in the fluid is moving randomly due to the sum of several

collisions with the molecules in the fluid [19]. In 1908, Paul Langevin for-

mulated it into simpler version [46] that the force acting on a suspended

particle consists of the viscous resistance or friction force and the random

forces caused by the collision with the surrounding micro-particles as in

Eq. (1.1),

m
dv

dt
= −λv + Γ, (1.1)

where v is the velocity of the particle, m its mass, λ the friction con-
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Introduction

stant and Γ the random force. In 1923, Norbert Wiener introduced the

mathematical description of the Brownian motions [41] which is also

known as Wiener process. In 1944, Kiyoshi Itô introduced the stochas-

tic calculus with the Wiener process [40]. Besides Itô’s integral, another

alternative form is introduced by Ruslan Stratonovich which is known

as Stratonovich’s integral [80]. However, throughout this thesis, we will

only apply the Itô’s convention.

Itô introduced the stochastic differential equation (SDE) of the stochas-

tic process x in the form which resembles the Langevin description of

Brownian motion. We call this type of SDE as the Langevin equation

which is

dx(t) = D(1)(x, t) dt+
√

D(2)(x, t) dWt. (1.2)

This equation has a deterministic or drift term. A SDE consists of at

least one term which is a stochastic process, typically Wiener process

Wt. This type of process with the Wiener process is generally known as

the diffusion process which has continuous sample path. The stochastic

term in this case is also called diffusion term. We will discuss about it

in detail in upcoming chapters.

With the advancement of stochastic calculus, the stochastic differential

equations (SDEs) are used to model many real world complex systems

[23], ranging from natural sciences to social sciences. The example ap-

plications of the advanced methods are in physical systems such as re-

newable wind energy conversion [2, 29, 56, 57], geoscience like seismology

[51], biomedical systems including cardiology [26] and epileptic brain dy-

namics [10, 68, 69], epidemiology [1], finance and economics [22, 25, 36].

The famous Black-Scholes option pricing formula is derived based on the

geometric Brownian motion which is the Langevin equation with linear

drift and diffusion [12].

Brownian motion or diffusion process alone may not be sufficient to de-

scribe the complex systems. It is the continuous process and in reality

there are processes with sudden changes which resemble the discontinu-

ous sample paths. These discontinuities can be modeled as jump process

2



Introduction

which can, for example, be the Poisson or Lévy jumps. Applications can

be found in many different fields, for example, in physics such as neutron

scattering from the liquid [16], in meteorology the jumpy behaviour of

solar clear sky index [6], in biomedical systems the iEEG brain dynamics

[5] and heart beat dynamics [35] and in epidemiology [20]. Besides the

natural science fields, it is commonly used in the economic and finance

[11, 42, 79]. The Nobel prize winning Black-Scholes model is extended

into Black-Scholes-Merton model in the presence of Poisson jumps [54].

In 2004, Michael Johannes showed that the jump events resemble the

major macroeconomic events of our history [42]. In the period of 1991

to 1993, the jump events can be determined from the changes in short

rates. In his study, he evaluated the jump probability and the jump

sizes which occur locally within this time period. Fig. 1.1 shows that

the major events marked with the markers A-I generated the significant

jump events both in probability and size. The detailed dates of jump

events and major events occurred on these dates are as follow:

(A) 09.01.1991, the outbreak of the Gulf War,

(B) 01.02.1991, a U.S. unemployment announcement and comments by

the Federal Reserve,

(C) 19.08.1991, the Kremlin coup and the collapse of the Soviet Union,

(D) 21.08.1991, the emergence of Boris Yeltsin as leader of the remnants

of the Soviet Union,

(E) 20.12.1991, the Federal Reserve lowers the discount rate,

(F) 09.04.1992, large Japanese equity market decline,

(G) 02.07.1992, the Federal Reserve lowers the discount rate;

(H) 04.09.1992, a U.S. unemployment announcement and

(I) 10.1992, the Bush-Clinton presidential debate.

3



Introduction

Figure 1.1: The time series of the changes of short rates, locally es-
timated jump probability and the jump sizes in the period of 1991-
1993. The markers A-I show the occurrence of the major events: (A)
09.01.1991, the outbreak of the Gulf War, (B) 01.02.1991, a U.S. un-
employment announcement and comments by the Federal Reserve, (C)
19.08.1991, the Kremlin coup and the collapse of the Soviet Union, (D)
21.08.1991, the emergence of Boris Yeltsin as leader of the remnants of
the Soviet Union, (E) 20.12.1991, the Federal Reserve lowers the dis-
count rate, (F) 09.04.1992, large Japanese equity market decline, (G)
02.07.1992, the Federal Reserve lowers the discount rate; (H) 04.09.1992,
a U.S. unemployment announcement and (I) 10.1992, the Bush-Clinton
presidential debate. This figure is reprinted from [42] with permission
from Wiley.

From this example in [42], we can therefore observe the importance of

the jumps or discontinuities in the stochastic processes. In this thesis, we

analyze the diffusion and jump noise present in other real world systems

such as the geoscience and the renewable energy systems, and character-

ize them accordingly which gives more additional insights to the better

understanding of the complex systems from a new perspective. In addi-
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tion to the applications, more rigorous characterizations of the diffusion

and jump-diffusion processes are performed based on simulations and an-

alytical calculations of the properties of the stochastic processes such as

simple Ornstein-Uhlenbeck process, also in the presence of jump noise.

This thesis is organized as follow. In upcoming Chapter 2, the funda-

mental principles of the stochastic analysis applied in this thesis are dis-

cussed in details. Starting from the probabilistic description of stochastic

processes and Markov properties to the stochastic calculus, the mathe-

matical properties of the basic stochastic processes which are used in the

corresponding SDEs. Theoretical calculations and numerical simulations

are also compared.

Applying these mathematical descriptions of stochastic processes, the

highly-resolved snow hardness measurement data with the spatial reso-

lution of a few micrometers from the micro-cone penetration tests are

analyzed in Chapter 3. The failure of ice bonds and pushing aside of

snow grains results in the stochastic signals at this high resolution. The

contribution of diffusion or jump noises is determined which can be used

to differentiate different snow types.

Next, the method is applied again to the energy conversion process in

wind energy system in Chapter 4. The analysis is performed to study how

different operational regions of a wind turbine can be characterized by the

stochastic signals. Diffusion or jump noise contributions are determined

across the whole operational range of the wind turbine which could be

explained by its control strategies.

After these two applications, more rigorous mathematical characteriza-

tion is performed on simulated diffusion and jump-diffusion processes in

Chapter 5. In addition to the study of [45], more robust criteria to dis-

tinguish whether the stochastic process is diffusive or non-diffusive from

the data are introduced. The nature of different time scales present in

the stochastic processes associated with these criteria are also described.

They are tested with the simulated stochastic processes as well as selected

real world data.

Finally, the conclusion of this thesis with the outlooks are given in Chap-

ter 6.
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Chapter 2

Fundamentals of Stochastic

Analysis

In this chapter, the fundamental principles of stochastic processes are

discussed. The basic properties and definitions are summarized based

on the following literature [24, 33, 66, 75, 81] with the additional exam-

ples, such as Ornstein-Uhlenbeck (OU) process in the presence of jump

noise. Throughout this thesis, the following notations are used for the

key parameters:

• M (j) : jth order conditional moments,

• K(j) : jth order Kramers-Moyal coefficients,

• D(1) : Drift coefficient

• D(2) : Diffusion coefficient.

The definitions or conventions of these parameters will be discussed

throughout this chapter.
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Stochastic Processes and Markov Property

2.1 Stochastic Processes and Markov Prop-

erty

A stochastic process can be viewed as a time or space dependent variable

which fluctuates randomly. In this section, we are going to discuss about

the time-dependent stochastic process x(t). Since it fluctuates randomly,

the exact time evolution cannot be repeatable. Therefore, we need a

probabilistic description of the stochastic process.

A complete statistical description of the stochastic process x(t) can be

uniquely defined by the joint probability density function (joint PDF) as

follow.

p(xN , tN ;xN−1, tN−1; . . . ;x1, t1), with N discrete time t1 < t2 < · · · < tN ,

(2.1)

In terms of the joint PDF, we can define the conditional probability

density function (conditional PDF) as

p(xN , tN |xN−1, tN−1; . . . ;x1, t1) =
p(xN , tN ;xN−1, tN−1; . . . ;x1, t1)

p(xN−1, tN−1; . . . ;x1, t1)
,

(2.2)

where p(xN , tN |xN−1, tN−1, . . . , x1, t1) is the probability of xN at time tN

conditioned on all previous states.

For a purely random process, the samples xi are independent such that

p(xN , tN |xN−1, tN−1; . . . ;x1, t1) = p(xN , tN) , (2.3)

as a consequence, the joint PDF becomes

p(xN , tN ;xN−1, tN−1; . . . ;x1, t1) =
N∏
i=1

p(xi, ti) , (2.4)

Besides the purely random process, another process in which the future

state can be described by the information of present state is known as

Markov process. In other word, the variable xi at time ti depends only

8
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on xi−1 at time ti−1 and it can be described as

p(xN , tN |xN−1, tN−1; . . . ;x1, t1) = p(xN , tN |xN−1, tN−1) . (2.5)

The joint PDF for Markov process can be written as,

p(xN , tN ;xN−1, tN−1; . . . ;x1, t1) = p(xN , tN |xN−1, tN−1) p(xN−1, tN−1; . . . ;x1, t1) .

(2.6)

Repeating the same concept for p(xN−1, tN−1; . . . ;x1, t1), we can rewrite

the joint PDF as,

p(xN , tN ;xN−1, tN−1; . . . ;x1, t1) = p(x1, t1)
N∏
i=2

p(xi, ti|xi−1, ti−1) . (2.7)

Markov process is often said to be “memoryless” since it does not depend

on the past but on the present state. This does not mean that there is

no long-time correlation.

For three-point probability distribution, we have the relation

p(x3, t3) =

∫
dx2 p(x3, t3|x2, t2) p(x2, t2) . (2.8)

Similarly, for the conditional PDF, we can write

p(x3, t3|x1, t1) =

∫
dx2 p(x3, t3|x2, t2;x1, t1) p(x2, t2|x1, t1) . (2.9)

For a Markov process, Eq. (2.9) becomes

p(x3, t3|x1, t1) =

∫
dx2 p(x3, t3|x2, t2) p(x2, t2|x1, t1) , (2.10)

which is known as the Chapman-Kolmogorov equation.

9



Kramers-Moyal Expansion

2.2 Kramers-Moyal Expansion

For a Markov process, the PDF p(x, t + τ) at time t + τ and p(x′, t) at

time t can be related by

p(x, t+ τ) =

∫
p(x, t+ τ |x′, t) p(x′, t) dx′ , (2.11)

where p(x, t + τ |x′, t) is the conditional PDF. The jth-order conditional

moments M (j)(x′, t) can be defined as follow,

M (j)(x′, t, τ) =
〈
(x(t+ τ)− x(t))j |x(t)=x′

〉
=

∫
(x− x′)j p(x, t+ τ |x′, t) dx (2.12)

From these definitions, we can derive the Kramers-Moyal (KM) expansion

which describe the probabilistic time evolution of the stochastic process

x(t). It reads [75]

∂

∂t
p(x, t) =

∞∑
j=1

1

j!

(
− ∂

∂x

)j [
K(j)(x, t) p(x, t)

]
(2.13)

where K(j)(x, t) is called Kramer-Moyal (KM) coefficient which is

K(j)(x, t) = lim
τ→0

M (j)(x, t)

τ
. (2.14)

KM expansion can be written in operator form,

∂

∂t
p(x, t) = LKM p(x, t) (2.15)

where LKM is the Kramers-Moyal (KM) operator.

LKM =
∞∑
j=1

1

j!

(
− ∂

∂x

)j

K(j)(x, t) (2.16)

10



Fokker-Planck and Langevin Equation

The detailed derivation can be seen in [75].

2.3 Fokker-Planck and Langevin Equation

Pawula theorem [62] states if K(j), as defined by Eq. (2.14), exists for all

j, and if K(j) = 0 for some even j, then K(j) = 0 for all j ≥ 3. In simple

terms, if we can prove that K(4) = 0, all the coefficients of order j ≥ 3

are also vanishing.

Then, the KM expansion becomes the Fokker-Planck (FP) equation

which is

∂

∂t
p(x, t) = − ∂

∂x

(
D(1)(x, t) p(x, t)

)
+

1

2

∂2

∂x2

(
D(2)(x, t) p(x, t)

)
, (2.17)

where D(1)(x, t) = K(1)(x, t) is the drift or deterministic term and

D(2)(x, t) = K(2)(x, t) the diffusion term. FP equation is the special

case of the KM expansion.

FP equation can be written in operator form,

∂

∂t
p(x, t) = LFP p(x, t) (2.18)

where LFP is the Fokker-Planck (FP) operator.

LFP = − ∂

∂x
D(1)(x, t) +

1

2

∂2

∂x2
D(2)(x, t) (2.19)

The FP equation is also valid for the conditional PDF p(x, t|x′, t′) of the

stochastic process x(t), whose PDF p(x, t) fulfils the FP equation, such

that

∂

∂t
p(x, t|x′, t′) = − ∂

∂x
D(1)(x, t) p(x, t|x′, t′) +

1

2

∂2

∂x2
D(2)(x, t) p(x, t|x′, t′),

(2.20)

with the initial condition p(x, t|x′, t) = δ(x− x′). For small time step τ ,

the short-time propagator p(x, t+ τ |x′, t) has the formal solution,

11



Wiener Process

p(x, t+ τ |x′, t) = exp (τLFP) δ(x− x′), (2.21)

For sufficiently small time step τ , D(1) and D(2) can be considered as

constant. Eq. (2.21) can further be derived which gives

p(x, t+ τ |x′, t) =
1√

2πτD(2)(x′, t)
exp

(
−(x− x′ − τD(1)(x′, t))2

2τD(2)(x′, t)

)
,

(2.22)

which yields the Gaussian distribution with mean
(
x′ + τD(1)(x′, t)

)
and

variance τD(2)(x′, t). The detailed derivation can be seen in [75, 81].

Equivalent to the probabilistic description of the stochastic process x(t)

with FP-equation, it can also be written by stochastic dynamical equa-

tion or stochastic differential equation (SDE). It is the continuous diffu-

sion process which is also called Langevin equation,

dx(t) = D(1)(x, t) dt+
√

D(2)(x, t) dWt, (2.23)

where Wt is the Wiener process. The Wiener increment is dWt = Γt · dt
where Γt is Gaussian white noise, i.e. ⟨Γt⟩ = 0 and ⟨ΓtΓt′⟩ = δ(t −
t′). More detailed definitions and properties of Wiener process will be

discussed next.

2.4 Wiener Process

The Wiener process Wt is a mathematical realization of the Brownian

motion. It is a Markov process and has the following basic properties:

• W0 = 0 at t = 0.

• Wt is a continuous process such that Wt− = Wt = Wt+ .

Wt± = lim
t→t±

Wt.

• Wt has stationary and independent increments. The Wiener incre-

ments,

12



Wiener Process

∆Wt = Wt+∆t −Wt, (2.24)

are mutually independent for all non-overlapping t.

• The increment ∆Wt has a Gaussian distribution with mean zero

and variance ∆t, ∆Wt ∼ N(0,∆t) which means the PDF is

p∆Wt(x) =
1√
2π∆t

exp

(
− x2

2∆t

)
, (2.25)

In general, the Wiener process is a Gaussian distributed random variable

with zero mean and variance t > 0, i.e. Wt ∼ N(0, t). From these

properties, the covariance of the Wiener process can be deduced that

Cov(Ws,Wt) = ⟨Ws Wt⟩ = min(s, t), (2.26)

and the covariance of the Wiener (differential) increment consequently

becomes

Cov(dWs, dWt) = ⟨dWs dWt⟩ = δ(s− t) ds dt, (2.27)

which means that Cov(dWs, dWt) = 0 for s ̸= t due to the indepen-

dent increments for all non-overlapping time. For s = t, the covariance

becomes Cov(dWs, dWt) = Var(dWt) = dt.

The further properties are that higher than second order of Wiener in-

crement and the product of time increment and Wiener increment are

negligible in dt precision, such that

(dWt)
n = 0, for n ≥ 3 (2.28)

(dt)i (dWt)
j = 0, for i, j ≥ 1 (2.29)

The final remark is that the Wiener process is no where differentiable

even though it is a continuous process.
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2.5 Stochastic Processes with Discontinu-

ities

The Wiener process and the Langevin equation are the continuous or

diffusive processes which satisfy the Lindeberg’s continuity condition [24,

81],

C(t) = lim
∆t→0

Prob[|∆x(t)| > δ|x(t)=x]

∆t
= 0, (2.30)

where ∆x(t) = x(t+∆t)− x(t).

KM coefficients from third-order and higher are vanishing in continuous

process. If the higher-order KM coefficients are not negligible, it will be

an indication of discontinuity in the stochastic dynamics. The detailed

proof of continuity condition can be seen in [81].

2.5.1 Jump-Diffusion Process

When the signal of a stochastic process typically presents sharp changes

at some instant (jump or discontinuous events), higher order KM coef-

ficients are non-negligible. An extension to the Langevin-type modeling

with the additional jump noise is needed which is known as a jump-

diffusion dynamics [5, 11, 42, 79, 81, 82] given by the following stochastic

differential equation:

dx(t) = D(1)(x, t) dt+
√
D(2)(x, t) dWt + ξ dJt, (2.31)

where, again, D(1)(x, t) and D(2)(x, t) are the drift and the diffusion coef-

ficients, respectively, and Wt is the Wiener process. The quantity ξ is the

size of the jump noise and we take it as a normally distributed random

variable with zero mean and variance σ2
ξ (x, t), i.e., ξ ∼ N(0, σ2

ξ ). The

variance σ2
ξ (x, t) is also called jump amplitude. The term Jt is the Pois-

son jump process, which is the zero-one jump process with a jump rate

(or intensity) λ(x, t). The term dZt = ξdJt is also known as compound

Poisson process. More detailed definitions and properties of Poisson and

14
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compound Poisson process will be discussed in next section.

For jump-diffusion processes, the drift and diffusion coefficients (D(1),

D(2)), the jump rate λ and amplitude σ2
ξ are related to the KM coefficients

K(j)(x, t) such that

D(1)(x, t) = K(1)(x, t), (2.32)

D(2)(x, t) + λ(x, t)⟨ξ2⟩ = K(2)(x, t), (2.33)

λ(x, t)⟨ξj⟩ = K(j)(x, t), for j > 2. (2.34)

The estimate of the drift coefficient is the same for the diffusion process

(Eq. 2.23) and the jump-diffusion process (Eq. 2.31). Jump amplitude

σ2
ξ and rate λ can be estimated by using Eq. (2.34) with j = 4 and j = 6,

and the Wick’s theorem for Gaussian random variables which states that

⟨ξ2n⟩ = (2n)!

2nn!
⟨ξ2⟩n:

σ2
ξ (x, t) =

K(6)(x, t)

5K(4)(x, t)
, (2.35)

λ(x, t) =
K(4)(x, t)

3σ4
ξ (x, t)

. (2.36)

To improve the estimation of KM coefficients K(j)(x, t) in particular of

high-order coefficients, the Nadaraya-Watson estimator, which is a kernel

estimator, can be used [61, 85]:

K(j)(x, t) = lim
∆t→0

∑
i k(

xi∆t−x
h

)(x(i+1)∆t − xi∆t)
j∑

i k(
xi∆t−x

h
)∆t

, (2.37)

where k(u) is the kernel function. With the kernel-based method the

conditional moments can be calculated more smoothly by controlling the

kernel bandwidth h [44]. These results allow us to estimate the model

parameters directly from the given data, such as snow hardness data in

Chapter 3 and wind power data in Chapter 4.

Next, the definitions and properties of Poisson process and compound

Poisson process will be discussed in detail.
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2.6 Poisson Process

Along with the continuous Wiener process, the Poisson process Jt is also

an important mathematical tool to describe the discontinuous jumps in

the stochastic processes. It is also a Markov process with the following

basic properties:

• J0 = 0 at t = 0.

• Jt is right continuous and has a unit jump at time Tk > 0 such that

JT+
k
= JT−

k
+ 1. Again, JT±

k
= lim

t→T±
k

Jt.

• Jt is right-continuous such that Jt+ = Jt ≥ Jt− , t > 0.

• Jt has stationary and independent increments. The Poisson incre-

ments,

∆Jt = Jt+∆t − Jt, (2.38)

are mutually independent for all non-overlapping t.

• Jt has a Poisson distribution with mean and variance λt, Jt ∼ P(λt)

such that

Prob(Jt = k) = pJt(λt, k) =
(λt)k

k!
eλt, (2.39)

for the integer k = 0, 1, 2, . . . , jump rate λ > 0 and t > 0.

• The increment ∆Jt has a Poisson distribution with mean and vari-

ance λ∆t, ∆Jt ∼ P(λ∆t).

Prob(∆Jt = k) = p∆Jt(λ∆t, k) =
(λ∆t)k

k!
eλ∆t, (2.40)

for the integer k = 0, 1, 2, . . . , jump rate λ > 0 and ∆t > 0.

• The time between each jump or inter-jump time ∆Tj = Tj+1 − Tj

where Tj is the j
th jump time for j = 0, 1, 2, . . . of a simple Poisson
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process Jt with fixed jump rate λ is exponentially distributed such

that

Prob(∆Tj ≤ ∆t|Tj) = 1− e−λ∆t ≈ λ∆t. (2.41)

From these properties, the covariance of the Poisson process can be de-

duced that

Cov(Js, Jt) = ⟨Ĵs Ĵt⟩ = λ min(s, t), (2.42)

where Ĵt = Jt − ⟨Jt⟩ is the compensated Poisson process.

The covariance of the Poisson (differential) increment consequently be-

comes

Cov(dJs, dJt) = ⟨dĴs dĴt⟩ = λ δ(s− t) ds dt, (2.43)

which means that Cov(dJs, dJt) = 0 for s ̸= t due to the independent in-

crements for all non-overlapping time. For s = t, the covariance becomes

Cov(dJs, dJt) = Var(dJt) = λdt.

The further properties are that higher order of Poisson increment in

dt precision is the Poisson increment such that

(dJt)
n = dJt, n ≥ 1 (2.44)

The product of time increment and Poisson increment as well as that of

Wiener increment and Poisson increment are negligible in dt precision,

i.e.

(dt)i (dJt)
j = 0, for i, j ≥ 1 (2.45)

(dWt)
i (dJt)

j = 0, for i, j ≥ 1 (2.46)

The final remark on the Poisson process is that for short time asymptotic

(∆t → 0+), the Poisson process obeys zero-one jump law, such that
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Prob(∆Jt = 0) = 1− λ∆t+O(λ∆t)2,

Prob(∆Jt = 1) = λ∆t+O(λ∆t)2,

Prob(∆Jt > 0) = O(λ∆t)2, (2.47)

which means that there is either zero- or one-jump event within a short-

time step ∆t.

2.6.1 Compound Poisson Process

A pure Poisson process has constant unit jump. In order to have a more

realistic model, the random jump sizes can be considered which is known

as compound Poisson process.

Let ξi for i = 1, 2, . . . be the independent and identically distributed

sequence of random variables and also independent of the Poisson process

Jt. The compound Poisson process Zt can then be defined as

Zt =
Jt∑
i=1

ξi, t ≥ 0. (2.48)

Compound Poisson process has the following basic properties:

• Z0 = 0 at t = 0.

• Zt has stationary and independent increments. The Poisson incre-

ments,

∆Zt = ξ∆Jt, (2.49)

are mutually independent for all non-overlapping t.

• The mean and variance of Zt are
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Ornstein-Uhlenbeck Process in the Presence of Jumps

⟨Zt⟩ = ⟨ξ⟩λt, (2.50)

Var(Zt) = ⟨ξ2⟩λt. (2.51)

Let us consider the Gaussian distributed jump size with zero mean and

the variance σ2
ξ , such that ξ ∼ N(0, σ2

ξ ) as an example. Then, the cor-

responding compound Poisson process has zero mean and the variance

λσ2
ξ t.

From these properties, the covariance of the compound Poisson process

with zero mean Gaussian jump size can be deduced that

Cov(Zs, Zt) = ⟨Zs Zt⟩ = λσ2
ξ min(s, t). (2.52)

The covariance of its (differential) increment consequently becomes

Cov(dZs, dZt) = ⟨dZs dZt⟩ = λσ2
ξ δ(s− t) ds dt, (2.53)

which means that Cov(dZs, dZt) = 0 for s ̸= t due to the independent in-

crements for all non-overlapping time. For s = t, the covariance becomes

Cov(dZs, dZt) = Var(dZt) = λσ2
ξdt.

2.7 Ornstein-Uhlenbeck Process in the Pres-

ence of Jumps

In the presence of compound Poisson jump noise Zt = ξJt with constant

jump amplitude σ2
ξ and jump rate λ, Ornstein-Uhlenbeck (OU) Process

x = x(t) can be written as

dx = −γx dt+
√
D dWt + ξ dJt . (2.54)

By introducing the substituting variable y = xeγt, using Eq (2.29) and

(2.45), and applying the Itô product rule, d(f ·g) = f ·dg+g ·df+df ·dg,
we can solve Eq. (2.54). The solution in dt precision is
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x = x0e
−γt +

√
D

∫ t

0

e−γ(t−t′)dWt′ +

∫ t

0

e−γ(t−t′)dZt′ , (2.55)

where x0 = x(0).

The mean of the OU process can be calculated as

⟨x⟩ = x0e
−γt. (2.56)

and ⟨x⟩ = 0 for sufficiently long simulation time t → ∞.

The covariance of OU process with jump can be calculated using Eq. (2.27),

(2.46) and (2.53) such that

Cxx(t, τ) = Cov(x(t)x(t+ τ)) =
D + λσ2

ξ

2γ

[
e−γτ − e−γ(τ+2t)

]
. (2.57)

We can calculate the variance of the OU process with jump from

Cxx(t, τ = 0) which is

Var(x) = ⟨x2 − ⟨x⟩2⟩ =
D + λσ2

ξ

2γ
e−2t . (2.58)

For sufficiently long simulation time t → ∞, the covariance becomes

Cxx(τ) =
D + λσ2

ξ

2γ
e−γτ , (2.59)

and the variance

Var(x) =
D + λσ2

ξ

2γ
. (2.60)

Next, the numerical simulations of these stochastic processes will be per-

formed. With the help of the discussed definitions and properties, the

choice of model parameters for the simulations becomes much simpler to

obtain the desired statistics of the processes.
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2.7.1 Numerical Simulations

The OU process in the presence of jumps can be simulated numerically

using Euler’s method.

x(t+ τ) = x(t)− γx(t) τ +
√
D∆Wt + ξ∆Jt . (2.61)

According to Eq. (2.25), the Wiener increment ∆Wt has the same distri-

bution as η
√
τ where η ∼ N(0, 1) is the standard normal random variable

so that

∆Wt = η
√
τ (2.62)

can be used for simulation of Wiener increment. With this, Wiener pro-

cess can be reconstructed and 50 trajectories are plotted with ensemble

mean (0) and standard deviation
(√

t
)
in Fig. 2.1.

0 2 4 6 8 10

−
10

−
5

0
5

10

t [s]

W
t

Figure 2.1: 50 trajectories of Wiener process are plotted in gray lines
with ensemble mean (0) in blue solid line and lower and upper bound of

standard deviation
(√

t
)
in red dotted lines.

Poisson increment obeying zero-one jump law described in Eq. (2.47)
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can numerically be simulated by a standard uniform number generator

and the method of acceptance-rejection [28, 33, 65]. The open interval

(0, 1) is partitioned into the central interval

[
1− λτ

2
,
1 + λτ

2

]
and the

complement. When the generated standard uniform random number u is

within the central interval there is a jump (∆Jt = 1). When it is outside

of the central interval (complement) there is no jump (∆Jt = 0). It can

be summarized such that

∆Jt =

1,
1− λτ

2
≤ u ≤ 1 + λτ

2
,

0, else.
(2.63)

The graphical visualization of the method is shown in Fig. 2.2 where

the PDF of uniform distribution is plotted and the central interval is

represented in gray shade.

u

p
(u

)

0 (1 − λτ) 2 (1 + λτ) 2 1

0
1

Figure 2.2: The PDF of uniform distribution is shown. The open

interval (0, 1) is partitioned into the central interval

[
1− λτ

2
,
1 + λτ

2

]
(gray shade) and the complement. If the generated standard uniform
random number u is landed in the gray area, there is a jump (∆Jt = 1).
If it is outside of the gray area, there is no jump (∆Jt = 0).

With this simulation of Poisson increment, Poisson process with λ =

100 s−1 (λ∆t = 0.1) can be reconstructed and 50 trajectories are plotted
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with ensemble mean (λt) and standard deviation
(√

λt
)
in Fig. 2.3.

0.0 0.4 0.8

0
40

80
12

0

t [s]

J
t

Figure 2.3: 50 trajectories of Poisson process with λ = 100 s−1 (λ∆t =
0.1) are plotted in gray lines with ensemble mean (λt) in blue solid line

and lower and upper bound of standard deviation
(√

λt
)
in red dotted

lines.

The simulation of compound Poisson process can be performed by in-

tegrating dZt = ξdJt. The parameters λ = 100 s−1 (λ∆t = 0.1) and

Gaussian distributed jump size with variance or jump amplitude σ2
ξ = 1

are used. 50 trajectories are again generated and plotted together with

ensemble mean (0) and standard deviation
(√

λσ2
ξ t
)
in Fig. 2.4.
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Figure 2.4: 50 trajectories of compound Poisson process with λ =
100 s−1 (λ∆t = 0.1) and Gaussian distributed jump size with variance
or jump amplitude σ2

ξ = 1 are plotted in gray lines with ensemble mean
(0) in blue solid line and lower and upper bound of standard deviation(√

λσ2
ξ t
)
in red dotted lines.

Using Euler’s scheme Eq. (2.61), a synthetic time series of the OU jump-

diffusion process is generated for ∆t = 10−3 s with γ = 100 s−1, D =

10 s−1 and for the additional jump terms with λ = 100 s−1 and σ2
ξ = 1.

In Fig. 2.5 the timeseries of the OU jump-diffusion processes is shown.

Its covariance function Cxx(τ) is also evaluated and plotted together with

the theoretical result from Eq. (2.59).
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Figure 2.5: Timeseries of OU jump-diffusion processes, (a), and its
covariance function Cxx(τ), (b). The evaluated Cxx(τ) is plotted in open
circles and its theoretical result from Eq. (2.59) are plotted with solid
line.

In Chapter 3 and 5, these numerical simulations are applied to charac-

terize the contribution of the diffusion and jump noise as well as the

nature of different time scales present in the (jump-)diffusion stochastic

dynamics.
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Chapter 3

Stochastic Analysis of

Micro-cone Penetration Tests

in Snow1

Abstract

Cone penetration tests have long been used to characterize snowpack

stratigraphy. With the development of sophisticated digital penetrom-

eters such as the SnowMicroPen, vertical profiles of snow hardness can

now be measured at a spatial resolution of a few micrometers. By using

small penetrometer tips at this high vertical resolution, further details

of the penetration process are resolved, leading to many more stochas-

tic signals. An accurate interpretation of these signals regarding snow

characteristics requires advanced data analysis. Here, the failure of ice

connections and the pushing aside of separated snow grains during cone

penetration lead to a combination of (a) diffusive noise, as in Brownian

motion, and (b) jumpy noise, as proposed by previous dedicated inversion

methods. The determination of the Kramers–Moyal coefficients enables

differentiating between diffusive and jumpy behaviors and determining

the functional resistance dependencies of these stochastic contributions.

We show how different snow types can be characterized by this com-

1published in “The Cryosphere” [47].
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bination of highly resolved measurements and data analysis methods.

In particular, we show that denser snow structures exhibited a more

collective diffusive behavior supposedly related to the pushing aside of

separated snow grains. On less dense structures with larger pore space,

the measured hardness profile appeared to be characterized by stronger

jump noise, which we interpret as related to breaking of a single cohesive

bond. The proposed methodology provides new insights into the char-

acterization of the snowpack stratigraphy with micro-cone penetration

tests.

3.1 Introduction

Snow is an essential component of our environment and can significantly

impact our lives: from the wishful dream of a white Christmas to the

misfortune of avalanche accidents. Having a closer look at snow, one

discovers many microstructural patterns and realizes that snow on the

ground undergoes constant evolution [17]. The snow microstructure fully

controls its physical and mechanical properties, which are essential for

diverse applications, such as avalanche forecasting [78]. A snowpack is

typically structured in numerous layers composed of different snow types,

where such stratigraphy will determine the snowpack stability. Cone pen-

etration tests have long been used to characterize the snowpack stratig-

raphy [9]. The SnowMicroPen (SMP) can perform cone penetration tests

of snow in the field [77]. It measures the force needed to drive a cylinder

with a millimetric conic tip into the snowpack. With its high resolution

(250 measurementsmm−1), the measured force or hardness is supposedly

linked to the snow microstructure [43]. A typical consequence of such a

high-precision measurement is that more and more details of the pene-

tration process can be resolved, leading to many more stochastic signals.

In this context, it is of particular interest to employ advanced data anal-

ysis to find out how different kinds of stochastic signals are related to

different snow types. There are also other penetrometers used for cone

penetration tests in the field of snow; for example [53] used a large-scale

penetrometer with a tip diameter of 36.7 mm in polar snow. For our
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analysis, we specifically used the measurement data of micro-cone pene-

tration tests from [77].

[43] developed the first model to estimate micromechanical properties of

snow from measured penetration profiles. They assumed that the mate-

rial compaction is negligible and that the penetration resistance is only

composed of friction between the penetrometer and snow grains and a

superposition of spatially uncorrelated and identical brittle failures of

individual snow microstructural elements (e.g., the bonds between the

snow grains). [52] extended the theory of [43] to account for simultane-

ous ruptures by Monte Carlo simulations. They precisely resolved the

snow micromechanical parameters, such as the deflection length, rupture

force and rupture intensity. [49] re-stated the pioneering idea of [43] and

described the fluctuating penetration hardness as a Poisson shot noise

process. In their model, the micromechanical parameters can be simply

derived from the cumulants and the co-variance of the penetration signal.

[64] further extended the homogeneous Poisson process of [49] so that the

scale of variation in the rupture intensity could be decoupled from the

scale of variations in the deflection length and the rupture force. These

models are now commonly used to characterize the snowpack stratigra-

phy from SMP measurements. Indeed, [67] related the micromechanical

parameters derived from SMP measurements to some of the most critical

snow characteristics, namely density, specific surface area and structural

correlation length. These relations are now routinely used to quantify

the snowpack stratigraphy [15]. Besides, [71] estimated the elastic mod-

ulus and fracture energy from the micromechanical parameters, which

can then be used to compute point snow stability for avalanche hazard

assessment [72].

Here, we consider the measured fluctuating hardness as a consequence

of summing up the interactions between the penetrometer tip and indi-

vidual snow particles. We describe this penetration process in analogy

to the well-known Brownian motion [19], where a microscopically visible

particle suspended in fluid is moving randomly. Due to the sum of sev-

eral collisions with the molecules in the fluid as illustrated in Fig. 3.1,

the large red particle undergoes a motion described by a stochastic pro-

cess. Such a stochastic process is driven by white noise and is known
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as a Langevin process (see [24], and Sect. 3.2). While very similar ele-

mentary collision events are assumed for classical Brownian motion, we

also need to consider brittle failures of individual snow microstructural

elements (bonds between snow grains, crushing of grain clusters), which

cause sharp declines in penetration hardness. These brittle failures were

modeled as a Poisson shot noise process by [49] and [64]. Jump noise

acts as discontinuous paths inside the diffusion process, and low-jump

events can be considered Poisson distributed noise (which corresponds

to the abovementioned shot noise). The idea of this work is to employ a

method that allows estimating the underlying stochastic differential equa-

tion from empirical data and differentiating between a Langevin (pure

diffusive) and a jump-diffusion process [5]. Via this advanced analysis,

we seek more detailed snow characterization from micro-cone penetration

test resistance data.2

Figure 3.1: (a) Penetration resistance caused by the interactions of
the snow particles (gray) with the penetrometer tip (red); (b) Brownian
motion where a microscopically visible particle (red) suspended in the
fluid is moving randomly due to the collisions with the molecules (gray)
in the fluid.

The article is organized as follows. In Sect. 2, we summarize the stochas-

tic analysis method and show how it is possible to distinguish between

diffusive and jump noise. In Sect. 3, the method is applied to centimetric

snow samples whose microstructure is also captured by tomography. In

2A direct comparison of our stochastic approach with the works based on shot
noise is out of the scope of this paper.

30



Stochastic Method

Sect. 4, as a proof of concept, the SMP profile of a natural snowpack is

analyzed with this technique.

3.2 Stochastic Method

A stochastic process x(t) can be described through stochastic differential

equations. This section explains the equations used to model cone pene-

tration tests in snow. Since the SMP is driven by a motor with constant

speed u =
dz

dt
(z is depth; t is time) and samples the measurement every

4 µm, the measured penetration force or snow hardness R is considered

the depth dynamics R(z(t)) and handled like a stochastic variable x(t).

3.2.1 Langevin Equation

A diffusive process x(t), which is a continuous stochastic process, follows

the Langevin equation, where for a small step size dt has the following

expression [23, 74, 81]:

dx(t) = D(1)(x, t) dt+
√
D(2)(x, t) dWt, (3.1)

where D(1)(x, t) and D(2)(x, t) are the drift and the diffusion coefficients,

respectively, and Wt is the Wiener process. The drift term D(1) de-

scribes how fluctuations relax to the local mean values of x, defined by

D(1)(x, t) = 0. The diffusion term D(2) represents the amplitude of the

noise. The coefficients D(1) and D(2) are also known as the first- and

second-order Kramers–Moyal (KM) coefficients, respectively. In general,

KM coefficients can be directly determined from the given data x(t) using

their definitions of the conditional incremental average [23, 81]; i.e.,

K(j)(x, t) = lim
∆t→0

〈
(x(t+∆t)− x(t))j |x(t)=x

〉
∆t

. (3.2)

Further details on methods of this estimation can be found in [23] and
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[73]3. The Langevin equation describes a continuous diffusion process

where K(j)(x, t) = 0 for j ≥ 3 and D(j)(x, t) = K(j)(x, t). According

to Pawula’s theorem, all KM coefficients K(j) are vanishing for j ≥ 3 if

K(4)(x, t) = 0 [62, 74]. In our case, however, the higher-order coefficients

are not always vanishing; hence we extend the discussion to the jump-

diffusion process (see Sect. 3.2.2).

For the SMP data considered, the drift term D(1) in Eq. (3.1) describes

how hardness fluctuations relax to the local mean values of hardness

R, defined by D(1)(R, z) = 0. The diffusion D(2) term represents the

amplitude of the hardness fluctuations. The coefficients D(1) and D(2)

are z-dependent for non-stationary (inhomogeneous) processes. Here,

we assume that for a chosen small depth interval (z), D(1)(R, z) and

D(2)(R, z) only depend on R (similarly to [49], for their shot noise model).

3.2.2 Jump-diffusion Dynamics

Typically, when the signal of a stochastic process presents sharp changes

at some instant (discontinuity events), higher-order Kramers–Moyal coef-

ficients (especially K(4)(x, t)) become non-negligible. In this case, an ex-

tension to Langevin-type modeling with additional jump noise is needed

[5, 11, 42, 79, 81, 82]. Such a jump-diffusion dynamic is given by the

following stochastic differential equation:

dx(t) = D(1)(x, t) dt+
√

D(2)(x, t) dWt + ξ dJt, (3.3)

where, again, D(1) and D(2) are the drift and the diffusion coefficients,

respectively, and Wt is the Wiener process. The quantity ξ is the size

of the jump noise and is assumed to be normally distributed; i.e., ξ ∼
N(0, σ2

ξ ), where σ2
ξ (x, t) is the so-called jump amplitude. The term Jt

3KM coefficients for the Langevin equation are defined as K(j)(x, t) = D(j)(x, t) =

1

j!
lim

∆t→0

〈
(x(t+∆t)− x(t))

n |x(t)=x

〉
∆t

in [23] and [73]. In order to make it consistent

with the jump-diffusion process, our definition differs by a factor of
1

j!
, in which dWt =

Γ(t)·dt where ⟨Γ(t)⟩ = 0 and ⟨Γ(t)Γ(t′)⟩ = δ(t−t′). The corresponding Fokker–Planck

equation will be
∂

∂t
p(x, t) = − ∂

∂x

[
D(1)(x, t) p(x, t)

]
+

1

2

∂2

∂x2

[
D(2)(x, t) p(x, t)

]
.
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is the Poisson jump process, which is the zero–one jump process with a

jump rate (or intensity) λ(x, t) [33, 81].

For jump-diffusion processes, the drift and diffusion coefficients (D(1),

D(2)), the jump rate λ and amplitude σ2
ξ are related to the KM coefficients

as [5]:

D(1)(x, t) = K(1)(x, t), (3.4)

D(2)(x, t) + λ(x, t)⟨ξ2⟩ = K(2)(x, t), (3.5)

λ(x, t)⟨ξj⟩ = K(j)(x, t), for j > 2. (3.6)

The estimate of the drift coefficient is the same for the diffusion process

(Eq. 3.1) and the jump-diffusion process (Eq. 3.3). Jump amplitude σ2
ξ

and rate λ can be estimated by using Eq. (3.6) with j = 4 and j = 6

and Wick’s theorem [39, 86] for Gaussian random variables, which states

that ⟨ξ2n⟩ = (2n)!

2nn!
⟨ξ2⟩n:

σ2
ξ (x, t) =

K(6)(x, t)

5K(4)(x, t)
, (3.7)

λ(x, t) =
K(4)(x, t)

3σ4
ξ (x, t)

. (3.8)

To improve the estimation of KM coefficients K(j)(x, t) and in particular

of high-order coefficients, the Nadaraya–Watson estimator, which is a

kernel estimator, can be used [61, 85]:

K(j)(x, t) = lim
∆t→0

∑
i k(

xi∆t−x
h

)(x(i+1)∆t − xi∆t)
j∑

i k(
xi∆t−x

h
)∆t

, (3.9)

where here we use a Gaussian kernel k(u) [81]. With the kernel-based

method the conditional moments can be calculated more smoothly by

controlling the kernel bandwidth h [44], where here we use the kernel

bandwidth h = 0.3.

For the SMP measurements considered, we also assume that for a chosen

small depth interval (z), D(1)(R, z), D(2)(R, z), σ2
ξ (R, z) and λ(R, z) only
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depend on R. The stochastic differential equation for the jump-diffusion

process thus reads, at small depth intervals, as

dR(z) = D(1)(R) dz +
√

D(2)(R) dWz + ξ dJz, (3.10)

with an interpretation of the drift and diffusion terms (D(1), D(2)) anal-

ogous to the purely diffusive process (Eq. 3.1) but now extended by a

jump noise term. This is the same as Eq. (3.3) in terms of depth z

instead of time t. The jump rate λ has the dimension of
1

[Z]
and can

be related to the shot noise intensity described by [49] and [64]. Typi-

cally, λ dz corresponds to the stochastic average of the number of jumps

for a penetration increment of depth dz [5, 81]. The jump amplitude

σ2
ξ represents the square of the typical size of a jump. Note that the

jump can be negative (failure of a microstructural element) or positive

(loading of a microstructural element). Here, we do not consider any

progressive loading of a microstructural element as described by [49] and

[64] with the microstructural deflection length δ. Here, the loading of a

microstructural element and its contribution to penetration hardness are

considered instantaneous.

3.2.3 Synthetic Examples

In this section, we illustrate how diffusive and jump noises affect the

stochastic fluctuations on a synthetic example. An Ornstein–Uhlenbeck

(OU) process x is described by a stochastic differential equation (SDE)

with linear relaxation dynamics and an additive uncorrelated noise. With

an additional jump term, it is defined as

dx = −γx dt+
√
D dWt + ξ dJt. (3.11)

where γ is the relaxation rate, D the constant diffusion coefficient and

Wt a scalar Wiener process. The noise ξ ∼ N(0, σ2
ξ ) is assumed to be

normally distributed with the constant variance or jump amplitude σ2
ξ .

Jt ∼ P (λt) is the Poisson jump process, which is a zero–one jump process

34



Synthetic Examples

with constant jump rate λ. Here, we have triply stochastic processes Wt,

Jt and ξ, which are assumed to be independent of each other.

Three synthetic time series of the OU jump-diffusion process were gener-

ated for ∆t = 10−3 s with γ = 100 s−1, D = 10 s−1 and for the additional

jump terms with λ = 100 s−1 and σ2
ξ = 1. The generated data were

normalized with their respective standard deviation. In Fig. 3.2 the nor-

malized time series of the OU jump-diffusion processes are shown. A pure

diffusion process (left), a drift-jump process (middle) and the combined

jump-diffusion process (right) are shown. The fourth-order KM coeffi-

cients K(4)(x) of each time series are also plotted in Fig. 3.2, bottom row.

K(4) of the diffusion process is negligibly small compared to drift-jump

and jump-diffusion processes.
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Figure 3.2: Normalized time series of Ornstein–Uhlenbeck processes
with only diffusion, only jump (drift-jump) and jump-diffusion terms (a,
b, c) and their fourth-order KM coefficients K(4) (d, e, f). K(4) of the
diffusion process is negligible compared to drift-jump and jump-diffusion
processes. For all three examples, we used the same noises in the stochas-
tic part of the stochastic differential equation.

For a jump-diffusion process, another parameter that we considered was

the ratio of diffusion and jump noise
D(2)

λσ2
ξ

, which becomes here for our
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OU jump-diffusion process
D

λσ2
ξ

. To validate our method, based on the

KM coefficients of Eq. (3.5) to Eq. (3.8), three pairs of parameters were

chosen: (i) D = 5 s−1, σ2
ξ = 1; (ii) D = 5 s−1, σ2

ξ = 0.5; and (iii) D =

20 s−1, σ2
ξ = 1. The other parameters are the same as in the previous

example. The normalized time series of these examples are plotted in

Fig. 3.3, top row. In Fig. 3.3, bottom row, the ratios of diffusion and

jump noise
D

λσ2
ξ

estimated from each time series were compared to the

expected values (blue lines). As we used normalization and the same

noises in simulation, all time series are very similar; however, one can

observe clearly the much noisier fine structure in case (iii) where the

diffusion coefficient is larger.
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Figure 3.3: Normalized time series of OU jump-diffusion processes with
∆t = 10−3 s, γ = 100 s−1 and λ = 100 s−1 for (i) D = 5 s−1, σ2

ξ = 1;

(ii) D = 5 s−1, σ2
ξ = 0.5; and (iii) D = 20 s−1, σ2

ξ = 1 (a, b, c) and

the corresponding ratio of diffusion and jump noise
D(2)

λσ2
ξ

=
D

λσ2
ξ

(d, e,

f). Dots are results from the KM coefficients, and the blue line denotes
the theoretical values given by the constants. For all three examples, we
used the same noises in the stochastic part of the SDE.
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3.3 Application to Snow Measurements

In this section, our main aim is to show how the jump-diffusion model can

be used to distinguish snow types from hardness profiles measured with

the SMP. Firstly, small snow samples whose microstructure was also fully

characterized by tomography before being measured by the SMP were

used to test the developed methodology. Secondly, as a proof of concept,

we analyzed one penetration profile of a snowpack measured in the field

and we provided the subsequent profile of microstructural parameters.

Last, the results were discussed.

Figure 3.4: Three-dimensional view of the microstructure of some rep-
resentative samples: precipitation particles (PP1), depth hoar (DH1),
rounded grains (RG1) and large rounded grains (RGlr1). The ice matrix
is shown in gray; the pore space is transparent. Sub-samples shown are
cubic with a side length of 3 mm. Details on the data acquisition can be
found in [63].

3.3.1 Laboratory Samples

Measurement Data

We tested several snow samples composed of four different natural snow

types, namely precipitation particles (PP), depth hoar (DH), rounded

grains (RG) and large rounded grains (RGlr) as classified in [21]. The

samples were prepared by sieving snow into small sample holders (diam-

eter and height of 20 mm) and letting them sinter for a couple of days

at −10 ◦C. Their microstructure was captured with X-ray tomography

at a nominal resolution of 15 µm (Fig. 3.4). The cone penetration test

was conducted with a modified version of the SMP, as shown in Fig. 3.5.
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More information on sample preparation and the SMP measurement can

be found in the study of [63]. The main sample properties are summa-

rized in Table 3.1, and the measured hardness profiles (one example for

each snow type) are plotted in Fig. 3.6. The first 4 mm is affected by the

progressive penetration of the conic tip and was not considered in the

stochastic analysis [64]. The remaining profiles were divided into smaller

segments of a depth of 10 mm.

Table 3.1: Overview of the detailed properties of the snow samples used.
Snow types are classified according to the international classification of
snow on the ground [21]. The density and specific surface area (SSA)
are derived from the tomographic images from [63]. Additionally, the
standard deviations σR of the detrended profiles are calculated.

Sample name Snow type Sieve size Density SSA σR

(mm) (kgm−3) (m2 kg−1) (kPa)

PP1 Precipitation particles 1.6 92 53.5 0.55

PP2 Precipitation particles 1.6 137 41 0.81

DH1 Depth hoar 1.6 345 16.9 4.78

DH2 Depth hoar 1.6 364 15.9 3.67

DH3 Depth hoar 1.6 364 16.5 3.89

RG1 Rounded grains 1.6 289 23.0 3.29

RG2 Rounded grains 1.6 304 23.7 3.81

RG3 Rounded grains 1.6 325 20.6 3.63

RGlr1 Large rounded grains 1 530 10.1 13.20

RGlr2 Large rounded grains 1 544 10.3 11.78

RGlr3 Large rounded grains 1.6 557 9.9 8.99

RGlr4 Large rounded grains 1 542 9.3 14.01

RGlr5 Large rounded grains 1 541 9.7 20.49

RGlr6 Large rounded grains 1 526 10.1 17.22
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Figure 3.5: Setup of micro-cone penetration test [63]. The cone pene-
tration tests (CPTs) were conducted by inserting a cylinder of diameter
5 mm, with a conical tip of an apex angle of 60◦, into the snow samples.
The samples were placed in the cylinder sample holder with a diame-
ter of 20 mm. The cone was inserted vertically at a constant speed of
20 mm s−1. The SMP force sensor (Kistler 9207) measures forces in the
range of [0, 40] N with a resolution of 0.01 N.
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Figure 3.6: Segments of snow hardness profiles of PP1, DH1, RG1 and
RGlr1. These four different types occur as natural snow types. Pre-
cipitation particles (PP) have the smallest trend and fluctuation force;
large rounded grains (RGlr) are the largest, while depth hoar (DH) and
rounded grains (RG) have similar trends and fluctuation forces between
those of PP and RGlr. The first 4 mm is affected by the progressive pene-
tration of the conic tip and was not considered in the stochastic analysis.

To work out the significance of advanced stochastic features for snow, we

focused on the fluctuations in the hardness profiles. Each profile was first

detrended. The trend R was computed as the convolution of the original

signal with a Gaussian kernel with a standard deviation of 0.6 mm.4

The fluctuation amplitude σR was computed as the standard deviation

of R − R. The detrended profiles are defined as R′ =
R−R

σR

. The

detrended profiles R′ are characterized by a zero mean and a standard

deviation of 1. The average value of R on the segment and the value of

the standard deviation σR are shown for each segment in Table 3.1. The

detrended profiles R′ are shown in Fig. 3.7, for all four snow types.

To estimate errors, we divided the detrended and normalized data into

different sub-samples. Given are two PP, three DH, three RG and six

RGlr measurement profiles. These profiles were separated into smaller

segments, which finally gives four PP, five DH, five RG and six RGlr

samples. We estimated the KM coefficients of each sample using Eq. (3.2)

and averaged them over the sub-samples of each snow type. Thus, drift,

4The results do not change significantly if the kernel widths are changed between
0.14 and 0.66 mm, where this range corresponds to the range of average grain sizes
of the snow types.
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diffusion functions and jump parameters and their errors were estimated.

The errors were reported as the standard error of the means.
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Figure 3.7: Detrended snow hardness profiles of four different snow
types, PP, DH, RG and RGlr. For the snow type RGlr, we only show
the samples RGlr4, RGlr5 and RGlr6, as described in Table 3.1. The
detrended profiles R′(z) of each snow type are shifted vertically for better
visualization.

Results

According to the description provided in Sect. 3.2, the drift D(1)(R′) and

diffusion D(2)(R′), as well as the fourth-order KM coefficients K(4)(R′),

for normalized data were determined for the four different snow types,

PP, DH, RG and RGlr as shown in Fig. 3.8. In addition, the autocor-

relation function (ACF) was determined from the signals. If the fluctu-

ations in R′(z) belong to the diffusion processes, one would expect that

K(4)(R′) = 0. However, we find that in general, K(4)(R′) ̸= 0 and the

higher-order KM coefficients are not negligible. This indicates the pres-

ence of discontinuities in the snow hardness profile, so the jump-diffusion

model is considered. Therefore, we estimated jump parameters, i.e., jump

amplitudes σ2
ξ (R

′) and jump rates λ(R′) from data of R′(z) in Fig. 3.9.
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Figure 3.8: State-dependent drift D(1)(R′), diffusion D(2)(R′), fourth-
order KM coefficients K(4)(R′) and their respective autocorrelation func-
tions (ACFs) of four different snow types, PP, DH, RG and RGlr (left
to right). The errors are shown as gray-shaded background. The red
lines in the ACF plots indicate the correlation length scales determined

from ACFs. Comparing the correlation length scales LC =
1

γ
where

D(1) = −γR′ with those of the autocorrelation functions (ACFs), we find
that both length scales have the same ordering of their values for all snow
types.

As shown in Fig. 3.8, the drift coefficients, D(1)(R′, z), are mostly lin-

ear functions with negative slopes, which describe how fast the sys-

tem tends back toward the stable fixed point. Due to our normaliza-

tion, the fixed point of dynamics is located at the origin, i.e., R′ =

0. Taking D(1) = −γR′, the correlation length scale is given by

LC =
1

γ
. For each snow type, LC was determined for −2 < R′ <

2: {PP, DH, RG, RGlr} = {0.01, 0.04, 0.02, 0.08}mm. Comparing LC
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with the correlation lengths of the autocorrelation functions, – LACF,

{PP, DH, RG, RGlr} = {0.006, 0.025, 0.016, 0.038}mm – we find that

both length scales have the same ordering of their values for all snow

types. The snow types PP and RG have the shorter correlation length

scale, in comparison to the snow types DH and RGlr.
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Figure 3.9: Jump amplitudes σ2
ξ (R

′), jump probabilities λ(R′) ∆z, and

diffusion and jump ratios
D(2)

λσ2
ξ

of four different snow types, PP, DH,

RG and RGlr (left to right). More data are present in the range of
−2 < R′ < 2; we focus our statistical analysis in this range with fewer
uncertainties. The errors are shown as gray-shaded background. The

ratios of diffusion and jump noise
D(2)

λσ2
ξ

for PP and RG are minimum

near zero and maximum for DH and RGlr, which means that the larger
the ice structure, the stronger the diffusion noise, and vice versa. The
horizontal blue lines show the mean values of the respective parameters
in the range of −2 < R′ < 2.

The jump amplitudes, σ2
ξ (R

′), and the jump probabilities, λ(R′) ∆z, are

shown in Fig. 3.9. The jump amplitude, σ2
ξ (R

′), indicates how large the

jump noise for different R′ values is. The jump probability describes how

probable jumps or discontinuities in forces can occur. To analyze whether
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Application to Field Snow Data

diffusion or jump noise is dominating, the dimensionless ratio of diffusion

and jump noise
D(2)

λσ2
ξ

(Fig. 3.9, bottom row) was calculated. For a rough

estimation, the mean values were determined in the range of −2 < R′ < 2

and are plotted as horizontal blue lines. The mean of λ can be used to

define the second characteristic length scale LJ =
1

λ
(apart from

1

γ
). For

the abovementioned range of R′ we obtained {PP, DH, RG, RGlr} =

{0.006, 0.01, 0.007, 0.02} mm. Results are summarized in Table 3.2, and

we discuss these in Sect. 3.4.

Table 3.2: Summary of the results for the correlation length scales

LC =
1

γ
, LJ =

1

λ
, jump amplitude σ2

ξ , and diffusion and jump ratio
D(2)

λσ2
ξ

for all snow types analyzed. The results were evaluated in the range of
−2 < R′ < 2.

Snow type LACF LC =
1

γ
LJ =

1

λ
σ2
ξ

D(2)

λσ2
ξ

(mm) (mm) (mm)

PP (0.006± 0.004) (0.0101± 0.0009) (0.0058± 0.0002) (1.21± 0.09) (0.120± 0.008)

DH (0.025± 0.004) (0.040± 0.009) (0.010± 0.001) (0.54± 0.05) (0.48± 0.09)

RG (0.016± 0.004) (0.020± 0.002) (0.0065± 0.0004) (0.68± 0.06) (0.19± 0.03)

RGlr (0.038± 0.004) (0.08± 0.02) (0.016± 0.001) (0.38± 0.07) (0.53± 0.04)

3.3.2 Application to Field Snow Data

Measurement Data

Next, measurements from a field campaign are presented [32]. The mea-

surements were also performed with an SMP, but the tip had a slightly

different shape corresponding to the standard version of the SMP [43].

The spatial sampling is again 4 µm. This difference in the measurement

methods was irrelevant, as we subsequently show with these preliminary

results that in principle, the stochastic methodology can also be applied

to real snow data and that qualitatively comparable results are obtained.
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Results

The snow hardness profile of a field measurement is shown in the top

left of Fig. 3.10. The measurement profile is strongly inhomogeneous;

therefore, we used the Nadaraya–Watson estimator to determine the lo-

cal characteristics of the profile. Using the moving-window technique, the

profile was separated into non-overlapping windows of 500 data points

(2 mm), and the detrending was performed on each window by the Gaus-

sian kernel with a kernel size of 0.6 mm, normalized with its standard

deviation as in our previous analysis of laboratory data. For each depth

value z and the corresponding value R′(z), the local values of the fourth-

order KM coefficient K(4)(z) and the jump amplitude σ2
ξ (z) can be de-

termined, as shown in Fig. 3.10. The local characteristic of each snow

type from the previous section is plotted in the right column of Fig. 3.10

for better comparison with the field measurement data. Interpretation

of these results will be discussed next.
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Figure 3.10: The snow hardness profile of a field measurement together
with its fourth-order KM coefficients K(4) and the jump amplitude σ2

ξ (z)
is shown in (a), (c) and (e). These parameters were determined us-
ing non-overlapping moving window with 500 data points (2 mm) by
means of the Nadaraya–Watson estimator. Snow hardness profiles of the
laboratory-prepared snow types and their local parameters are also plot-
ted to enable better comparison (b, d, f); they are shifted horizontally
for better visualization. The results of field measurements are shown
at the depth of 700 mm < z < 740 mm. With reference to the local
characteristic snow types from laboratory measurements, we can see in
the dynamics that mixtures of different snow types are present in this
section of measurement. For 732 mm < z < 740 mm, the high K(4) and
σ2
ξ indicate the presence of small and less dense structures of snow which

resemble the RG-like snow types.
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3.4 Discussion

Our work is based on the proposed analogy of Brownian motion and the

SMP penetration process, as illustrated in Fig. 3.1. The events of bond

breaking or of collision with molecules are summed up in a mean force

and noise. For continuous Brownian noise, we need an integration over

sufficient micro-scale events, as discussed by [19] in his original paper. In

our interpretation, it is found that sufficiently large particles lead to this

integration; see Fig. 3.1b. To our interpretation, this integration over

discrete single events of bond breaking in the immediate surroundings of

the SMP, in addition to the pushing aside of loose snow grains during

the penetration process, forms continuous Brownian noise. The jump

noise may represent the bond-breaking events occurring directly at the

tip of the SMP, and the amplitude of the jump noise should depend on

the strength of the ice bonds and void sizes. From this interpretation,

it is clear that snow type morphology, shown in Fig. 3.4, is essential for

effective stochastic analysis as outlined herein.

We start the discussion with the mean values of R and the standard

deviation σR (see Fig. 3.6 and Table 3.1). The less dense PP and the

dense RGlr snow can be well separated, whereas the differences are less

clear for DH and RG. In the following, we discuss the measured SMP

penetration profiles based on our stochastic results. Since we now focus

on a stochastic investigation of the fluctuations in the penetration pro-

files, the detrended and normalized data are R′ used. Furthermore, we

can note that the normalization of the snow profiles affects neither the

correlation length scales LC =
1

γ
from the drift coefficients nor the jump

characteristic length scales LJ =
1

λ
. Because this analysis depends on the

number of available data, our discussion of the estimated KM coefficients

is limited to the range −2 < R′ < 2.

The drift terms D(1), Fig. 3.8, are all monotonously decaying with in-

creasing R′ and can be approximated by a linear decay, D(1) = −γR′.

The slope indicates how fast the signals relax to a fixed point located at

R′ = 0. The magnitudes of the slopes are PP > RG > DH > RGlr; thus

the PP snow has the fastest relaxation or shortest correlation length scale
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LC. We find that the larger the ice structures, the slower (or longer) the

relaxation. If we compare this result with the snow structures shown in

Fig. 3.4, we conclude that LC or γ is clearly related to the size of the

snow structures.

The results for D(2) show that about the same diffusive noise amplitude

is found for all snow types. In contrast, we see clear differences for the

fourth-order KM coefficients K(4). Although K(4) ̸= 0 is always the case,

clear differences in the magnitude of this KM coefficient are found. K(4)

is the largest in PP, followed by RG, DH and RGlr.

The amplitudes of jump noise, σ2
ξ , are the highest for PP, followed by

RG, DH and RGlr. For the jump probabilities λ ∆z, we distinguish a

group composed of PP and RG, with higher values, and one composed

of DH and RGlr, with lower values. One can interpret this finding such

that for the precipitation particles (PP, recent snow) with very small ice

structures and high porosity, the breaking occurs easily and frequently,

which explains that the jump probability has the largest contribution

here. Similarly, RG is also less dense with smaller ice structures than DH

and RGlr. Thus, we can also interpret this finding such that the smaller

the ice structures and the less densely the snow is packed, the stronger the

jump noise. For the densely packed snow with larger ice structures, the

breaking of the ice structures is less frequent, which explains a lower jump

probability. The mean of the jump rate λ in the range of −2 < R′ < 2

can be used to define the second characteristic length scale LJ =
1

λ
.

Similarly to the correlation length scale LC =
1

γ
, PP has the smallest

length, followed by RG, DH and RGlr.

Besides the features of the different terms in the stochastic processes,

the contributions of the diffusive and the jump noise can be compared

by the dimensionless quotient of
D(2)

λσ2
ξ

, i.e., the relation between the two

noise contributions. Consistent with our earlier discussion, the smallest

values for
D(2)

λσ2
ξ

are obtained for PP; i.e., the jump noise dominates due

to the frequent fracture of small (soft) ice structures. For the other snow

types, we see that within the range of −2 < R′ < 2, the values of
D(2)

λσ2
ξ
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increase with larger ice structures, in accordance with Fig. 3.4. The

quotient
D(2)

λσ2
ξ

is smaller for PP and RG and larger for DH and RGlr. For

RGlr, the diffusive noise dominates in a broad range of R′ values. For the

densely packed snow with larger grain sizes, it also takes much force to

push the ice grains on the side but not necessarily to break the cohesive

bonds close to the tip. Therefore the penetration signal is dominated

by Brownian noise. This result is also consistent with the value of K(4),

which is relatively small for RGlr. It is interesting to see that
D(2)

λσ2
ξ

and

K(4) enable differentiation between RG and DH. In contrast, according

to the classical statistical features of the snow signals shown in Table 3.1,

the differences for DH and RG are less clear.

In Sect. 3.3.2, we analyze field measurement data which are highly in-

homogeneous. With reference to the laboratory measurements, we see

dynamics that suggest mixtures of different snow types within this depth

segment. For 732 mm < z < 740 mm, the high K(4) and σ2
ξ indicate

the presence of small and less dense structures of snow which resem-

ble the RG-like snow types. Based on these preliminary results of real

field data, the developed methodology appears promising for interpreting

cone penetration tests in the field, but further quantitative evaluation is

required.
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3.5 Conclusions

In conclusion, we observe that the advanced stochastic analysis of SMP

measurements of snow layers allows differentiation of snow types. The

diffusive and jump-noise contribution can be quantified and gives new in-

sights into the stochastic behaviors of the cone penetration test in snow.

For different snow types, we find an interesting mixture of diffusive- and

jump-like noise. We propose the interpretation that the dominant dif-

fusive process is due to the pushing aside of many snow grains, whereas

the breaking of ice structures leads to dominant jump noise. Our re-

sults show that the denser structures typical of DH and RGlr lead to a

more collective diffusive behavior, whereas for the highly porous snow

structures of PP and RG, the single breaking events lead to a relatively

strong jump noise. For this interpretation, all R values were detrended

and normalized; thus the absolute values of the snow hardness R are not

essential but more the resulting collective behavior of the snow types.

Finally, we would like to point out that our characterization of a complex

material, snow, by a penetration process should have the potential to be

generalized to, for example, biological tissue or ground layers. Last but

not least, we would like to point out that our work provides additional

insight into analyzing and modeling the complex nature of snow types,

complementing existing methods.
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Chapter 4

Discontinuous Jump Behavior

of the Energy Conversion in

Wind Energy Systems1

Abstract

The power conversion process of a wind turbine can be characterized by

a stochastic differential equation (SDE) of the power output conditioned

to certain fixed wind speeds. An analogous approach can also be applied

to the mechanical loads on a wind turbine, such as generator torque.

The constructed SDE consists of the deterministic and stochastic terms,

the latter corresponding to the highly fluctuating behavior of the wind

turbine. Here we show how advanced stochastic analysis of the noise

contribution can be used to show different operating modes of the con-

version process of a wind turbine. The parameters of the SDE, known as

Kramers-Moyal (KM) coefficients, are estimated directly from the mea-

surement data. Clear evidence is found that both, continuous diffusion

noise and discontinuous jump noise are present. The difference in the

noise contributions indicates different operational regions. In particular,

we observe that the jump character or discontinuity in power production

1submitted as P. P. Lin, M. Wächter, M. R. R. Tabar, J. Peinke:
Discontinuous Jump Behavior of the Energy Conversion in Wind Energy Systems,
to “PRX Energy”.
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has a significant contribution in the regions where the control system

switches strategies. We find that there is a high increase in jump ampli-

tude near the transition to the rated region, and the switching strategies

cannot result in a smooth transition. The proposed analysis provides

new insights to the control strategies of the wind turbine.

4.1 Introduction

Wind energy is one of the most promising contributions to the global en-

ergy transition from fossil fuels to clean and sustainable energy. Europe

could install around 105GW of new wind energy capacity in the period

of 2021–2025 as reported in [87]. However, the complex and intermittent

nature of wind makes wind energy production difficult to predict, which

is important for a stable energy supply [4, 14, 59, 76]. Furthermore this

nature of wind may cause premature mechanical fatigue failure [60, 83].

It is known that the commonly used industry standard by the Interna-

tional Electrotechnical Commission [38] is not describing properly the

variability of wind and wind power [31, 83]. In particular, if one investi-

gates time series of the power output of a wind turbine, one can find very

rapid power fluctuations, which can become larger than 50% of the rated

power [56]. Such short time power fluctuations in the range of MW will

represent special loads for the drive train and also for the power grid, as

these fluctuations seem to some add up in a wind farm instead of being

averaged out [31, 56].

In this contribution, we focus on a statistically advanced description of

the power fluctuations of a wind turbine. In recent years, it has been

shown that the power conversion process of a wind turbine can be mod-

eled by a stochastic Langevin differential equation of the power output

P conditioned to certain fixed wind speeds u [2, 30, 56]. An analo-

gous approach has also been used to model the mechanical loads on a

wind turbine such as generator torque T [48]. The advantage of this

approach is that the model equations (in form of the Langevin equation)

can be extracted directly from given data. This model can reproduce the

stochastic, turbulent and intermittent nature of wind power [56]. In the
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Langevin modeling of conversion dynamics of a wind turbine, the focus

was up-to now on the deterministic part of the power time series, while

the question remained open how to correctly capture the abrupt large

power fluctuations mentioned above.

The Langevin equation describes a diffusion process with continuous tra-

jectory. It consists of the deterministic term and the continuous stochas-

tic term which is modeled by a Wiener process or a Brownian motion.

Its two model parameters which are the drift and diffusion coefficients

can be estimated directly from the measurement data [23, 73, 81]. These

parameters are also known as Kramers-Moyal (KM) coefficients which

are considered up to second order in the Langevin equation. For the con-

tinuous process, the coefficients higher than third order are negligible.

Looking at the temporally high-resolved wind power data, one can see

portions of time series, which look like a diffusive process (see Fig. 4.1 (a),

but there are also periods where sudden big jumps of the delivered power

become obvious, see Fig. 4.1 (b).
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Figure 4.1: Wind power time series, spanning the period of ten minutes.
(a) shows the period where the power changes are not very large. (b)
shows the period where the power changes are very large, up to about
40% of the rated power. Increments ∆P := P (t + τ) − P (t) emphasize
the fluctuations and are shown for sampling period τ = 1 s in (c) and
(d).
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In this contribution, we aim to investigate how far these jumps make

it necessary to extend the stochastic description. If the higher order

KM coefficients (> 3) are not negligible, they would be an indicator

of non-continuity in the process [5, 81]. One possibility to model this

behavior is the extension of the Langevin diffusion process to a jump-

diffusion process. An additional discontinuous stochastic term for the

jump process is introduced for which we assume that it can be modeled

by a Poisson process. In this more general stochastic approach two more

parameters arise which are the jump rate and the jump amplitude. We

show how they can be estimated from the higher order KM coefficients.

This analysis aims to give a more realistic stochastic description of the

power output of a wind turbine. Relation to control strategies, or the

use for improved modeling of the wind energy resource in a power grid,

will be discussed in this paper.

Our aim is to show in detail the procedure to estimate the general stochas-

tic jump-diffusion process with Wiener and Poisson noise to achieve an

advanced stochastic characterization and modelling of the wind power

conversion dynamics of a wind turbine. Here, we analyze the SCADA

data from a wind turbine with resolution of 1 Hz. The article is or-

ganized as follows. At first, we describe the analysed data. Next, the

stochastic analysis method is summarized, and it is shown how it is pos-

sible to quantify and separate the contributions of diffusion and jump

fluctuations. Finally, the results of the data analysis for power output

conditioned to wind speed are presented. In addition, we investigate the

stochastic relation between generator torque and generator rotational

speed.
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4.2 Stochastic data analysis of wind energy

system

4.2.1 Data description

The measurement data are extracted from a wind turbine of a wind

farm. The wind farm is installed onshore over an area covering roughly

4 km2 and is surrounded by flat rural terrain with 12 identical variable-

speed, pitch-regulated wind turbines. The rated power of each turbine

is in the order of 2MW. The values were made anonymous to keep the

confidentiality of the data. Thus, all the data are normalized with their

corresponding maximum for our analysis.

The measured quantities are the net electrical power output, P , generated

by the wind turbine, the wind speed, u, measured on the nacelle by a

cup anemometer and the rotational speed or rpm, Ω, of the generator.

The torque, T , on the generator is calculated from the power and rpm

of the generator using the relation

T =
60 s

2π

P

Ω
. (4.1)

All measurements were performed at a sampling frequency fs = 1Hz.

The measurement campaign was conducted over a period of eight months,

from June 2009 till February 2010. The same data were used also in the

study of [57].

4.2.2 Power Conversion Process Described by Stochas-

tic Dynamics

Assuming the validity of a diffusive process, the power conversion process

of a wind turbine can be modelled as a stochastic Langevin equation of

the power output P conditioned to certain fixed wind speed u [2, 30, 56],

dP (t, u) = D(1)(P |u) dt+
√

D(2)(P |u) dWt , (4.2)
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where Wt is a Wiener process, a scalar Brownian motion. The gen-

eral non-linear functions D(1)(P |u) and D(2)(P |u) are the drift and the

diffusion functions, which in case of the Langevin equation (4.2) are iden-

tical to the first and second order Kramers-Moyal (KM) coefficients. In

general, the j-th order KM coefficients, K(j)(P |u), can be directly deter-

mined from given data P for each wind speed u, using their definitions

in terms of conditional incremental averaging, cf. [23, 81], as

K(j)(P |u) = lim
∆t→0

1

∆t

〈
(P (t+∆t)− P (t))j|P (t)=P, u(t)=u

〉
. (4.3)

The Langevin equation describes a continuous diffusion process where

K(j)(P |u) = 0 for j ≥ 3 and D(j)(P |u) = K(j)(P |u) for j = 1, 2. Further

details on methods of this estimation can be found in [23, 73].2 All the

higher order KM coefficients vanish when the fourth order KM coefficient

K(4)(P |u) is negligible according to the Pawula theorem [75]. When the

signal of a stochastic process has sharp changes, or discontinuities, at

some instants, typically higher order Kramers-Moyal coefficients and es-

pecially K(4)(P |u) are not negligible anymore. In this case, an extension

of the Langevin-type modeling with an additional jump noise is needed,

see [5, 11, 42, 79, 81, 82]. Such a jump-diffusion dynamics for a power

conversion process is given by

dP (t, u) = D(1)(P |u) dt+
√
D(2)(P |u) dWt + ξ dJt , (4.4)

where again Wt is a Wiener process, D(1)(P |u) and D(2)(P |u) are the

drift and the diffusion functions. In the following we assume that ξ dJt

is a Poisson jump process. The coefficient ξ is the jump size, which is

assumed to be normally distributed, ξ ∼ N(0, σ2
ξ ), with zero mean and

2KM coefficients of a Langevin process in x(t) are defined for j = 1, 2 as

K(j)(x, t) = D(j)(x, t) =
1

j!
lim

∆t→0

1

∆t

〈
(x(t+∆t)− x(t))

j |x(t)=x

〉
in [23, 73]. In order

to stay consistent with the jump-diffusion process, our definition differs by a factor

of
1

j!
, and dWt =

∫ t+dt

t

Γ(τ) · dτ where ⟨Γ(t)⟩ = 0 and ⟨Γ(t)Γ(t′)⟩ = δ(t − t′). The

corresponding Fokker-Planck equation will be
∂

∂t
p(x, t) = − ∂

∂x

[
D(1)(x, t) p(x, t)

]
+

1

2

∂2

∂x2

[
D(2)(x, t) p(x, t)

]
.
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variance σ2
ξ . ξ is also known as jump amplitude. Jt is a Poisson jump

process which is a zero-one jump process with jump rate λ(P |u) [33, 81].
The drift and diffusion coefficients and the jump rate are now related to

the KM coefficients K(j)(P |u) in the following way [5]:

D
(1)
j (P |u) = K(1)(P |u), (4.5)

D
(2)
j (P |u) + λ(P |u)⟨ξ2⟩ = K(2)(P |u), (4.6)

λ(P |u)⟨ξj⟩ = K(j)(P |u) for j > 2. (4.7)

Since ξ has zero mean, its second order moment is ⟨ξ2⟩ = σ2
ξ . From

Eq. (4.5), it can be seen that the estimation of the drift coefficient is the

same for the diffusion process, which obeys the Langevin equation, and

the jump-diffusion process. Here we go into more details of the noise part

and do not assume anymore a vanishing K(4) = 0.

Jump amplitude σ2
ξ and jump rate λ can be estimated by using Eq. (4.7)

with j = 4 and 6 and Wick’s theorem [39, 86] for Gaussian random

variables, i.e., ⟨ξ2n⟩ = (2n)!

2nn!
⟨ξ2⟩n,

σ2
ξ (P |u) = K(6)(P |u)

5K(4)(P |u)
, (4.8)

λ(P |u) = K(4)(P |u)
3σ4

ξ (P |u)
. (4.9)

4.2.3 Results

Results for Electrical Power Output

First, we analyze the relation between wind speed and power. For chosen

fixed wind speed values with bin sizes of 0.5ms−1, the KM coefficients

K(j)(P |u) are determined with the assumption of stationarity within the

corresponding wind speed bin. Firstly, the drift coefficients are deter-

mined. The zero-crossings of the drift coefficient, D(1)(P |u) = 0, corre-

spond to the stable fixed points or equilibria of each wind speed bin if

the slope of D(1) is negative [2, 29]. Zero-crossings with positive slope are
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unstable fixed points. Alternatively, this can be expressed by a drift po-

tential, which is defined as Φ = −
∫
P

D(1)(P |u) dP . The zero-crossings

with negative slope of the drift correspond correspond to minima of the

drift potential. An example of a drift coefficient and corresponding po-

tential for the wind speed of u = 0.41umax is shown in Fig. 4.2.
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Figure 4.2: Drift coefficient D1(P |u) (a) and corresponding potential
Φ (b) for the wind speed of u = 0.41umax. Zero-crossings of the drift
coefficient D1(P |u) = 0 or local minima of drift potential Φ are stable
fixed points which describe the equilibrium dynamics.

For each wind speed bin, there can be single or multiple fixed points.

With these stable fixed points, we can reconstruct the characteristic

power curve, which we call Langevin Power Curve (LPC) [55, 84], as

shown in Fig. 4.3 (a). These stable fixed points can already be used for

a definition of different operational states of the wind turbine. In our

case, we mark three distinct states (P1, P2 and P3) which separate the

operational regions by blue dotted lines. Multiple fixed points are found

to be at these states. Near operation point P2 in Fig. 4.3 (a), we observe

the shifting of fixed points in a discontinuous way. Such details cannot

be detected by the standard averaging procedure of power curve defined

by [38].

The fixed point analysis and characterization of power output of a wind

turbine by Langevin equation (4.2) or diffusion process have been studied

58



Results

by [2, 30, 57]. In their works, they extensively focused on the drift

coefficient. Higher order KM coefficients were not considered. In our

work here, we focus on the noisy part and evaluate the higher order KM

coefficients.
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Figure 4.3: Characteristic power curve, (a), determined from the zero
crossings of the drift coefficients at each wind speed bin and characteristic
torque curve, (b), at each rotational speed rpm bin, presented in red
open circles. They are also called Langevin Power Curve (LPC) and
Langevin Torque Curve (LTC), respectively. The blue background shows
the density scatter plot of the measurement data and darker regions
indicate more data points are available. The black dots are the outliers
of the density scatter plot. Three distinct states (P1, P2 and P3) for LPC
and (T1, T2 and T3) for LTC which separate the operational regions are
marked by blue dotted lines.

As explained in Sec. 4.2.2, first the fourth-order KM coefficientK(4)(P |u)
is estimated to see if jump noise matters. An example of K(4)(P |u) and
the jump amplitude σ2

ξ (P |u) for the wind speed of u = 0.41umax with

their medians (solid black lines) is shown in Fig. 4.7. The fixed point for

this wind speed bin is located at P = 0.7Pmax, see Fig. 4.2. Statistically,

we can obtain more accurate results near the fixed point due to the better

coverage of data, whereas for regions with less data (farther away from

the fixed point) the results become more noisy and outliers are seen. A

robust method to estimate is to use the medians instead of the means

[37]. Some examples are shown in Appendix 4.4.1.
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In the following, we investigate details of the median values. Thus, we

simplify the process to those with constant parameters σ2
ξ and λ for the

jump process. The P -dependence of these parameters can also be studied,

which we do not do here to keep the discussion simpler, see Fig. 4.7.

Fig. 4.4 (a) shows that there is an increase of K̃(4)(P |u) near the state

P3, the transition point to the rated power. This behavior of K̃(4) shows

that not only diffusive noise is present, thus we proceed to analyze also

the higher order KM-coefficients from which we can determine the jump

amplitude σ̃2
ξ and jump rate λ̃ for each wind speed as shown in Fig. 4.5 (a)

and (c). The jump amplitude σ2
ξ is highest between the states P2 and P3

which is just below the transition to the rated power region where the

switching of the control strategy play a major role. The jump rate λ̃ is

highest in the region of rated power.
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Figure 4.4: The median of the fourth-order KM coefficient, K̃(4)(u) over
the power bins for each wind speeds bin (a) and over the torque bins for

each rpm bin (b). There is an increase of K̃(4)(u) near the transition
to the rated region. Statistical uncertainties are shown as gray-shaded
background. Blue dotted lines are the distinct states observed from the
fixed point analysis, see Fig. 4.3.
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Figure 4.5: The median of jump amplitude, σ̃2
ξ , over the power bins

for each wind speed bin (a) and over the torque bins for each rpm bin
(b). There is a significant increase in jump amplitude near the transition

to the rated region. The median of jump rate, λ̃, over the power bins
for each wind speed bin (c) and over the torque bins for each rpm bin
(d). There is a significant increase in jump rate after the transition to
the rated region and a small increase near the cut-in region for power
analysis. The jump rate for torque analysis is similar in between all
three distinct states shown by blue dotted lines as in Fig. 4.3. Statistical
uncertainties are shown as gray-shaded background.

In order to quantify the overall jump contribution, we determine the

product λ̃σ2
ξ as shown in Fig. 4.6 (c). Again we see that the jump contri-

bution λ̃σ2
ξ is highest around the state P3. Moreover, we also determine

the median of the diffusion to jump ratio
D̃(2)

λσ2
ξ

over the power bins for

each wind speed bin obtained from the resolved
D(2)

λσ2
ξ

values as shown in

Fig. 4.6 (e) to find out whether diffusive or jump noise is dominating.

If the ratio is large, there is more diffusive noise and vice versa. The

jump noise is dominant in the rated power region after the state P3. The
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diffusive noise is dominant between the states P1 and P2, which also

coincides with the lowest jump contribution λσ2
ξ , Fig. 4.6 (c).
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Figure 4.6: The median of diffusion coefficient, D̃(2), (a), overall jump

contribution, λ̃σ2
ξ , (c), and the diffusion to jump ratio,

D̃(2)

λσ2
ξ

, (e), over

the power bins for each wind speed bin, and respective quantities over
the torque bins for each rpm bin in (b), (d), and (f). Sub-figures (a-d)
are plotted in semi-logarithmic scale for better visualization. Statistical
uncertainties are shown as gray-shaded background. Blue dotted lines
are the distinct states observed from fixed point analysis, see Fig. 4.3.
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The analysis in this subsection shows two important points. First, a

jump process is present and should be included in an advanced stochastic

description or, respectively, model. Second, below rated power, first a

diffusive stochastic behavior is dominating, while jumpy noise becomes

important for the considered wind turbine close to the transition to rated

power.

Results for Generator Torque

Apart from the dynamical dependence of power on the wind speed, an-

other central characteristic of the wind turbine is the generator torque T

vs. rotational speed or rpm Ω [48]. The generator torque was calculated

from power and rpm data according to Eq. (4.1), whereas the rpm was

measured independently. A similar stochastic approach like for the power

and wind speed is applied to the torque and rpm dynamics T (t,Ω), next.

Based on the drift coefficient, a characteristic curve like the Langevin

Power Curve is calculated as shown in Fig. 4.3 (b). We refer to it as

Langevin Torque Curve (LTC). We again mark three distinct states (T1,

T2 and T3) with blue dotted lines which can be deduced from the fixed

point analysis.

Next, we also determine the jump contribution λσ2
ξ and the diffusion to

jump ratio
D(2)

λσ2
ξ

for each rpm bin, see Fig. 4.6 (d) and (f). In Fig. 4.6 (d),

we see that the median of the jump contribution λ̃σ2
ξ becomes significant

in the region between T2 and T3, cf. Fig. 4.3 (b), at relatively high rpm

values. Outside this regime, jump noise does not dominantly contribute

to the dynamics. On the other hand, the median of the diffusion to jump

ratio
D̃(2)

λσ2
ξ

takes its largest values at low values of rotational speed rpm.

At the rotational speeds rpm below the state T1, diffusive behavior is

much more dominant.

The conclusions from the previous subsection 4.2.3 apply also to the

torque analysis in an analogous way. Similar to the power characteristic,

a jump process is also present for the torque characteristic, which could

be expected as we compute the torque from power and rotational speed.
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Diffusive stochastic behavior is dominating for low rpm, but in the region

from T1 on (Ω/Ωmax ≳ 0.7) diffusive and jumpy behavior seem to be more

balanced for the torque case.

4.3 Conclusion and Outlook

In our work, we investigate the contribution of the higher-order KM

coefficients to the stochastic conversion dynamics of a wind turbine. As

described in Sec. 4.2.2, these higher-order coefficients allow to quantify

the contributions of diffusive behavior and jump noise, and indicate that

discontinuities in the trajectory of the measurement data are due to the

stochastic jump noise. The main results are that we can quantify with

our proposed method how the amplitudes and the ratio of the two noise

contributions change in different operating ranges of a wind turbine. The

region below rated power seems to provide the highest values of the

amplitudes (D(2) and σ2
ξ ). Sometimes the maximal values are found for

the transition states defined by the fixed point characteristics. The ratio

between the contributions of the diffusive and jumpy noise shows that at

low wind speed and low power a diffusive noise is dominating whereas for

higher power more jump noise is present, with some detailed differences

for power and torque. All this indicates that it is the interplay between

the stochastic driving wind speed and the reacting control system that

determines the noise contribution. In particular, the jump contribution is

closely linked to the control system as one can see, to our interpretation,

in the rapid changes of σ2
ξ in Fig. 4.5 (b). Interestingly, this is more

prominent in the torque signal than in the power signal. It is well known

that the control system is not operating directly with the wind signal but

with toque T and the rotational speed Ω.

Near the states T1, T2 and T3, there are three distinct operational ro-

tational speeds Ω which the control system prefers to approach. It is

a common control strategy to avoid certain resonance frequencies of the

structure in order to mitigate excessive loads. We show this by evaluating

the drift potential Φ(Ω) of the rotational speed. The minima of this po-

tential correspond to the preferred rotational speeds, see Appendix 4.4.2.
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Moreover, looking at Fig. 4.3 (b), between the states T2 and T3, there is

a steep gradient which enforces a large change in generator torque T at

only a small regime in rotational speed Ω. In this range, we also observe

that there is a huge increase in both diffusive and jump noise by more

than two orders of magnitude, see Fig. 4.6 (b) and (d).

So far we used the stochastic methods to characterize the dynamics of the

wind energy conversion process. It goes without saying that the charac-

terization can be used to compare quantitatively different turbines. Po-

tential failures in the control system should be detectable by comparison

of the different stochastic terms. One may see how with time some noise

contribution changes as the system gets old, or one may show how dif-

ferent wind turbines or different contril strategies perform differently in

a dynamic sense. Together with detailed knowledge of a specific turbine

this should also be useful for monitoring, e.g., performance or structural

health.

At last we would like to point out that besides this characterization

the stochastic methods presented here also deliver the explicit form of

the stochastic differential equations. Thus, it is also possible to use our

results as very efficient dynamics models for power and torque. Long

time simulations can be done easily. Such models are of interest for the

simulation of the contribution of wind energy to the power grid and for

the simulation of loads.

4.4 Appendix

4.4.1 Median as a Robust Estimator

Statistically, we can obtain more accurate results near the fixed point due

to the better coverage of data, whereas for regions with less data (farther

away from the fixed point) the results become more noisy and outliers

are seen. A robust method to estimate the typical value of K(4)(P |u)
and σ2

ξ (P |u), as examples, is to use the medians K̃(4)(u) and σ̃2
ξ (u) as

shown by solid lines in Fig. 4.7.
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Drift Potential of Rotational Speed
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Figure 4.7: Fourth-order KM coefficient K(4)(P |u) (a) and the jump
amplitude σ2

ξ (P |u) (b) for the wind speed of u = 0.41umax. (For the
corresponding drift term see Fig. 4.2). The solid black lines are their

respective medians K̃(4)(u) and σ̃2
ξ (u). The fixed point for this wind

speed bin is P = 0.7Pmax. Statistically, more accurate results can be
obtained near the fixed point due to the better coverage of data. By
using the median, our results are more robust to outliers far away from
the fixed points.

4.4.2 Drift Potential of Rotational Speed

We analyzed all the data of rotational speed Ω in the range of 0.6 Ωmax

and Ωmax without any conditioning or binning on other variables. We

evaluated the drift coefficient D(1)(Ω) and then determined the drift po-

tential which is Φ(Ω) = −
∫
Ω

D(1)(Ω) dΩ which is plotted in Fig. 4.8.

Minima of the drift potential corresponds to the stable fixed points or

equilibria. Here we can observe three minima around the three states T1,

T2 and T3 which the control system prefers to approach. It is a common

control strategy to avoid certain resonance frequencies of the structure

in order to mitigate excessive loads as shown in Fig. 4.3.
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Figure 4.8: Drift potential Φ(Ω) determined in the range of 0.6 Ωmax

and Ωmax, (a). Minima of the drift potential corresponds to the stable
fixed points or equilibria. Here we can observe three minima around the
three states T1, T2 and T3 as shown in Fig. 4.3. The minimum around
the state T1 which is presented with the red circle is elaborated in (b).

In Fig. 4.8 (b), we can clearly observe a minimum around the state T1.

From our results in Fig. 4.4, 4.5 and 4.6, there is also a slight increase

in noises around this state. This indicates that the control system of the

wind turbine starts switching the strategies at this state around T1. As

a remark, we calculated the deterministic potential only which reflects

the mechanical and control mechanism of the wind turbine.
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Chapter 5

Characterization of

Continuous and

Discontinuous Stochastic

Processes

Recent empirical and theoretical studies have shown that jumps (dis-

continuous / non-Brownian events) exist in many complex systems and

may have important impact on the risk management of these systems.

These analyses have received considerable attention in the last few years

[33, 81]. In general, jumps are discontinuous alterations in time series in

which the jump activity will cause higher uncertainties in the stochastic

features of the underlying system.

If there exists jump discontinuities in the trajectory of the stochastic pro-

cess, a straightforward approximation is to add an additional noise term,

which is called jump noise, to the Langevin equation. The corresponding

dynamical equations are known as jump-diffusion processes [5, 33, 81].

In this picture, jump noise acts as the discontinuous paths inside the dif-

fusion process. In the following, the jump events is considered as Poisson

processes, which follows the zero-one jump law. This means that there

is either zero- or one-jump event within a short-time step τ which was

discussed in Chapter 2.
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Characterization of Continuous and Discontinuous Stochastic Processes

The measured data sampled in discrete time appears as a sequence of dis-

continuous hops (jumps), even if the underlying trajectory is continuous.

In [45], the so-called Q-criterion has been derived from the expansion

of the Kramers–Moyal conditional moments, which allows us to differ-

entiate whether a stochastic time series obtained from some dynamical

equations has been generated by a diffusive (continuous) or by a jumpy

(discontinuous) process.

This Q-criterion is an approximation, which is valid for the time-scales,

which are less than the correlation time scale TC for the diffusion pro-

cess and the average time scale between the jumps TJ for jump-diffusion

process. Based on a given dynamical equation, it is possible to formulate

a set of similar stochastic processes with different time scales TC and

TJ in order to validate the Q-criterion for the corresponding time series.

For real world data, however, we have in general no previous knowledge

about the time scales, specially of TJ.

Here, it is the challenge to derive stochastic measures to distinguish be-

tween continuous and discontinuous trajectories. In this chapter, the

behavior of Q-criterion at different time scales is discussed. More ro-

bust additional criteria, which are again based on the expansion of the

Kramers–Moyal conditional moments, are introduced. They also allow us

by downsampling of the given data to see whether the underlying process

has a diffusive or jumpy behavior for a given time series. The substantial

potential of these methods are shown by their application to synthetic

time series from different dynamical systems as well as to various real

world experimental data.
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Expansion of Conditional Moments at Finite Time Step

5.1 Expansion of Conditional Moments at

Finite Time Step

The conditional probability distribution of the process x = x(t) which

satisfies the Kramers-Moyal differential equation can be written as [45,

81],

∂p(x, t|x′, t′)

∂t
= LKM p(x, t|x′, t′) (5.1)

with initial condition p(x, t|x′, t) = δ(x − x′) and the Kramers-Moyal

(KM) operator LKM is given by,

LKM =
∞∑
n=1

1

n!

(
− ∂

∂x

)n

K(n)(x, t) . (5.2)

The formal solution of (5.1) reads

p(x, t+ τ |x′, t) = exp{τ LKM} δ(x− x′) . (5.3)

The nth-order conditional momentsM (n)(x, t, τ) with finite τ can be writ-

ten as,

M (n)(xi, t, τ) =

∫ ∞

−∞
(x− xi)

n exp{τ LKM} δ(x− xi)dx

= exp{τ L†
KM}(x− xi)

n|x=xi
(5.4)

where L†
KM is the adjoint operator of LKM and is given by,

L†
KM =

∞∑
n=1

1

n!
K(n)(x, t)

(
∂

∂x

)n

. (5.5)

where K(n)(x, t) = lim
τ→0

1

τ
M (n)(x, t, τ) are the nth-order Kramers-Moyal

coefficients and M (n)(x, t, τ) are given by Eq. (5.4). Next, the explicit

cases of the diffusion and jump-diffusion processes are discussed.
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Conditional Moments of Diffusion and Jump-Diffusion Processes

5.1.1 Conditional Moments of Diffusion and Jump-

Diffusion Processes

• Diffusion process, in general, can be described by Langevin equation

such that

dx = D(1)(x, t) dt+
√

D(2)(x, t) dWt, (5.6)

where D(1)(x, t) and D(2)(x, t) are the drift and the diffusion coeffi-

cients, respectively, and Wt is the Wiener process. The Wiener incre-

ment is dWt = ηt ·dt where ηt is the Gaussian white noise, i.e. ⟨ηt⟩ = 0

and ⟨ηt ηt′⟩ = δ(t− t′).

We can evaluate its conditional moments M
(n)
d (x, τ) using Eq. (5.4).

For diffusion process or Langevin equation, the adjoint KM operator

L†
KM becomes the adjoint Fokker-Planck (FP) operator L†

FP. For better

readability, let the drift be D(1)(x, t) = K(1)(x, t) = a and the diffusion

D(2)(x, t) = K(2)(x, t) = b2 and the adjoint FP-operator becomes

L†
FP = a

∂

∂x
+

1

2
b2

∂2

∂x2
. (5.7)

In this formulation, a and b can still be the function of x and t. The

second-, fourth- and sixth-order conditional moments up to first non-

vanishing term can be derived from Eqs. (5.4) and (5.7) as follow [45]:

M
(2)
d (x, τ) = b2τ +O(τ 2),

M
(4)
d (x, τ) = 3b4τ 2 +O(τ 3),

M
(6)
d (x, τ) = 15b6τ 3 +O(τ 4). (5.8)

In order to distinguish from the jump-diffusion process which will be

discussed next, the subscript “d” is used here for the diffusion process.
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Conditional Moments of Diffusion and Jump-Diffusion Processes

• Ornstein-Uhlenbeck (OU) process is considered here to be more con-

crete such that

dx = −γx dt+
√
D dWt . (5.9)

where γ and D are positive real constants. Expansion of M
(n)
d (x, t, τ)

of OU process for small τ up to O(τ 3) (up to O(τ 4) for sixth-order

conditional moment) reads

M
(2)
d (x, τ) = Dτ +

(
γ2x2 − γD

)
τ 2 +O(τ 3),

M
(4)
d (x, τ) = 3D2τ 2 +O(τ 3),

M
(6)
d (x, τ) = 15D3τ 3 +O(τ 4). (5.10)

• Jump-diffusion process, in general, can be written as

dx = D(1)(x, t) dt+
√
D(2)(x, t) dWt + ξ dJt, (5.11)

where, again, D(1)(x, t) and D(2)(x, t) are the drift and the diffusion

coefficients, respectively, and Wt is the Wiener process. The quantity

ξ is the size of the jump noise which is assumed to be a normally

distributed random variable with zero mean and variance σ2
ξ (x), i.e.,

ξ ∼ N(0, σ2
ξ ). The variance σ2

ξ (x) is also called jump amplitude. The

term Jt is the Poisson jump process, which is the zero-one jump process

with a jump rate (or intensity) λ(x). The KM-coefficients of such

jump-diffusion are

K(1)(x, t) = D(1)(x, t)

K(2)(x, t) =
[
D(2)(x, t) + ⟨ξ2⟩λ(x)

]
K(2n)(x, t) = ⟨ξ2n⟩λ(x), for 2n > 2 (5.12)
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Conditional Moments of Diffusion and Jump-Diffusion Processes

Therefore, the adjoint KM-operator L†
KM for jump-diffusion process

becomes

L†
KM = D(1)(x, t)︸ ︷︷ ︸

A

∂

∂x
+

[D(2)(x, t) + ⟨ξ2⟩λ(x)]
2!︸ ︷︷ ︸
B

∂2

∂x2

+
⟨ξ4⟩λ(x)

4!︸ ︷︷ ︸
C

∂4

∂x4
+

⟨ξ6⟩λ(x)
6!︸ ︷︷ ︸
D

∂6

∂x6

+
⟨ξ8⟩λ(x)

8!︸ ︷︷ ︸
E

∂8

∂x8
+ · · · . (5.13)

Again for better readability, we use the substitution of the coefficients

with A,B,C,D,E, · · · , which can still be the function of x and t in

this formulation. With it, we can derive the conditional moments of

the jump-diffusion equation Eq. (5.11) for second-, fourth and sixth-

orders of the time interval τ using Eq. (5.4) and (5.13) such that

M
(2)
j (x, τ) = 2Bτ +O(τ 2),

M
(4)
j (x, τ) = 4!Cτ +O(τ 2),

M
(6)
j (x, τ) = 6!Dτ +O(τ 2), (5.14)

where the subscript “j” denotes the jump-diffusion process [45]. Here,

they are derived up to first non-vanishing term.

• OU process with an additional jump term with constant jump rate

and jump amplitude is now considered. It is a linear jump-diffusion

process and one finds,

dx = −γx dt+
√
D dWt + ξ dJt . (5.15)

Adding the jump term in OU process creates the discontinuities in the

trajectory.
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Conditional Moments of Diffusion and Jump-Diffusion Processes

For finite time interval τ , the conditional momentsM
(n)
j (x, τ) of an OU

jump-diffusion process can be determined up to O(τ 4) using Eqs. (5.4)

and (5.13) as follows:

M
(2)
j (x, τ) = (D + λσ2

ξ )τ +
(
γ2x2 − γ(D + λσ2

ξ )
)
τ 2

+

(
1

3
γ2(D + λσ2

ξ )−
1

2
γ3x2

)
τ 3 +O(τ 4),

M
(4)
j (x, τ) = 3λσ4

ξτ + 3
(
(D + λσ2

ξ )
2 − 2γλσ4

ξ

)
τ 2

+ (6x2γ2(D + λσ2
ξ ) + 8γ2λσ4

ξ

− 6γ(D + λσ2
ξ )

2)τ 3 +O(τ 4),

M
(6)
j (x, τ) = 15λσ6

ξτ + 45
(
λσ4

ξ (D + λσ2
ξ )− γλσ6

ξ

)
τ 2

+ (45γ2λσ4
ξx

2 + 15(D + λσ2
ξ )

3

+ 540γ2λσ6
ξ − 810γλσ4

ξ (D + λσ2
ξ ))τ

3 +O(τ 4),

(5.16)

Next, the explicit expansions of the conditional moments of pure noises

are discussed.
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Conditional Moments of Pure Noises

5.1.2 Conditional Moments of Pure Noises

• For a Gaussian distributed white noise with zero mean and variance

σ2
η, x = η ∼ N(0, σ2

η), the nth order conditional moments can be

calculated by Eq. (2.12) such that

M (n)
g (x, τ) =

〈
(x(t+ τ)− x(t))n |x(t)=x

〉
,

=

∫ ∞

−∞
(x′ − x)

n · p(x′, t′|x, t) · dx′,

=

∫ ∞

−∞
(x′ − x)

n · p(x′, t′) · dx′. (5.17)

For x = 0 and p(x′, t′) = p(x′) =
1√
2πσ2

η

exp

(
− x′2

2σ2
η

)
, we can use

Wick’s theorem [39, 86] to solve integral in Eq. (5.17). The (2n+ 1)th

and the 2nth conditional moments of Gaussian white noise become

M (2n+1)
g (x = 0, τ) = 0,

M (2n)
g (x = 0, τ) =

(2n)!

2nn!
σ2n
η , (5.18)

where σ2
η is its variance.

• For a Poisson distributed jump noise x = ∆J ∼ P(λτ), the nth order

conditional moments can be calculated by using the discrete definition

of conditional moment such that

M (n)
p (x, τ) =

〈
(∆x(t))n |x(t)=x

〉
,

=
∞∑
k=1

kn · Prob[∆x(t) = k],

=
∞∑
k=1

kn (λτ)
k

k!
exp (λτ) . (5.19)

For Poisson jump noise, following zero-one jump law, the probability
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Methods of Distinguishing Diffusive and Jumpy Stochastic Behaviors

of having a jump event becomes Prob[∆x(t) = 1]. Applying Taylor

expansion of exp (λτ), Eq. (5.19) becomes

M (n)
p (x, τ) = λτ +O(τ 2) . (5.20)

With these expansions, the methods to distinguish diffusive and jumpy

stochastic behaviors can be determined which will be discussed next.

5.2 Methods of Distinguishing Diffusive and

Jumpy Stochastic Behaviors

To show how different stochastic behaviors can be distinguished the fol-

lowing four cases are defined such that

(i) x: OU process according to Eq. (5.9) which is diffusive,

(ii) x: OU process with jumps according to Eq. (5.15) which is jumpy,

(iii) x = η ∼ N(0, σ2
η): pure Gaussian white noise and

(iv) x = ∆J ∼ P(λτ): pure Poisson noise for given time step τ ,

as the examples. Note the last two cases are pure independent uncorre-

lated noise data.

5.2.1 Q-criterion to Distinguish Diffusive and Jumpy

Behaviors

As a first criterion, the Q-criterion is introduced in [45] to distinguish

whether given synthetic data simulated with different integration time

step τs are diffusive or jumpy. Here, this criterion is also applied to

distinguish between uncorrelated Gaussian white noise and Poisson noise.

For a small τ , we obtain the function Q(x, τ) for the four defined cases

such that
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Q-criterion to Distinguish Diffusive and Jumpy Behaviors

Q(x, τ) =
M (6)(x, τ)

5M (4)(x, τ)
≈



D(2)(x) τ, diffusive,

σ2
ξ (x), jumpy,

σ2
η, Gaussian white noise, x = 0,
1

5
, pure Poisson jumps,

(5.21)

considering up to the first non-vanishing order term [45] which is derived

from the fourth- and sixth-order conditional moments. Note that x = 0

is required only for Gaussian white noise, otherwise the relations hold for

all x.

For diffusive process, case (i), the function Q has a linear relationship

with τ while it is constant in first order approximation in τ for jump-

diffusion process, case (ii). Additionally, the function Q is also constant

for the Gaussian white noise, case (iii), and Poisson jump noise, case (iv),

which can be derived by direct computations of conditional moments.

To validate the Q-criterion for synthetic data, we numerically integrate

the diffusion process, case (i), with γ = 1 s−1, D = 1 s−1 and the jump-

diffusion process, case (ii), with the additional jump parameters λ =

100 s−1 and σ2
ξ = 1 for different integration time step τs. For the cases (iii)

and (iv) of pure noisy data, we use standard normal Gaussian white noise

(zero mean and variance σ2 = 1) and the pure Poisson jump noise with

λ = 100 s−1.

From the simulated data, we determine Q = Q(x = 0, τ = τs) for dif-

ferent τs as shown in Fig. 5.1. Theoretical predictions as described in

Eq. (5.21) are also plotted with the black solid lines. For jump-diffusion

process Eq. (5.21) is valid for τs <
1

λ
= TJ, which is the average time

scale between the jumps. If the integration time step τs > TJ, the jump-

diffusion process behaves like diffusion process with the apparent diffu-

sion coefficient D̃(2) which has the relation, D̃(2)τs = D(2)τs + σ2
ξ . It is

shown with the blue dashed curve in Fig. 5.1 (ii).
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Q-criterion to Distinguish Diffusive and Jumpy Behaviors

To prove this relation, the jump-diffusion equation can be written using

Euler’s method as

x(t+ τs)− x(t) = D(1)(x) τs +
√

D(2)(x) ∆Wt + ξ ∆Jt. (5.22)

For τs >
1

λ
, ∆Jt = 1 due to zero-one jump law discussed in Chapter 2,

the Eq. (5.22) becomes

x(t+ τs)− x(t) = D(1)(x) τs +
√

D(2)(x) τs η + ξ. (5.23)√
D(2)(x) τs η + ξ is the sum of two Gaussian random variables which

is equivalent to

√
D̃(2)(x) τs η̃ =

√
D(2)(x) τs + σ2

ξ η̃. η̃ ∼ N(0, 1) is the

standard normal Gaussian white noise.

Therefore, the jump-diffusion equation for λ >
1

τs
becomes

x(t+ τs)− x(t) = D(1)(x) τs +

√
D̃(2)(x) τs η̃, (5.24)

respectively,

dx = D(1)(x) dt+

√
D̃(2)(x) dW̃t , (5.25)

where D̃(2) is the apparent diffusion coefficient and W̃t is the Wiener

process. From Fig. 5.1, all those estimates are rather close to the preset

values and emphasize the accuracy of the predictions of Q-criterion for

four types of the synthetic data.
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Figure 5.1: The Q-criterion for OU process (i), OU jump-diffusion
process (ii), standard normal Gaussian white noise (iii) and pure Poisson
jump noise (iv) are evaluated and plotted in double logarithmic scale.
The OU processes are generated for different integration time steps τs
with γ = 1 s−1, D = 1 s−1 and also with the additional jump terms with
λ = 100 s−1 and σ2

ξ = 0.01. The vertical blue lines show the jump time

scale TJ =
1

λ
. For each τ = τs, Q = Q(x = 0, τ) is calculated. The

theoretical predictions according to Eq. (5.21) are presented with the
black solid lines. The blue dashed curve in case (ii) shows Q = Dτs+σ2

ξ .
Standard errors are smaller than the symbol size.

5.2.2 Θ- and Λ-criterion to Distinguish Diffusive

and Jumpy Behaviors

If the jump-diffusion process has a large jump rate λ, the time scale TJ

will be small so that constant Q behavior cannot be clearly observed.

Instead, it shows the linear relation for τ > TJ which makes it difficult
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Θ- and Λ-criterion to Distinguish Diffusive and Jumpy Behaviors

to distinguish from diffusive behavior since Q also has linear relation

for diffusion process. Therefore, new robust criteria complement to Q-

criterion are needed. Similar to the derivation of Q-criterion, we define

the functions Θ(x, τ) and Λ(x, τ) in Eqs. (5.26) and (5.27) such that

Θ(x, τ) = 3

(
M (2)(x, τ)

)2
M (4)(x, τ)

≈



1, diffusive

(D(2)(x) + λ(x)σ2
ξ (x))

2

λ(x)σ4
ξ (x)

τ, jumpy

1, white noise at x = 0

3λτ, pure Poisson jumps,

(5.26)

and

Λ(x, τ) =
25

(
M (4)(x, τ)

)3
3 (M (6)(x, τ))

2 ≈



1, diffusive

λ(x)τ, jumpy

1, white noise at x = 0
25

3
λτ, pure Poisson jumps ,

(5.27)

which can be derived from the second-, fourth- and sixth-order con-

ditional moments Eqs. (5.8), (5.14), (5.18) and (5.20) The relation

M (4)(x, τ) = 3
(
M (2)(x, τ)

)2
for diffusion process corresponding to Θ-

criterion has also been shown in [45]. The analytic results for Θ- and

Λ-criterion of the same four cases are given. The explicit τ -dependence

for the jumpy case can be obtained from Eq. (5.14) and considered up to

the first non-vanishing order term. Again only for the case of Gaussian

white noise, Θ and Λ has to be determined for x = 0. From Eq. (5.26)

and (5.27), we can see the similar functional behavior of Θ and Λ. Λ is

also associated with the jump probability λτ in jump-diffusion process

for τ <
1

λ
= TJ.

To validate these Θ- and Λ-criterion, the same simulations are performed

as in the validation of the Q-criterion. The results are shown in Fig. 5.2

and 5.3. Theoretical predictions described in Eq. (5.26) and (5.27) are

also plotted. From these plots, we can observe that approximations in
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Θ- and Λ-criterion to Distinguish Diffusive and Jumpy Behaviors

Eq. (5.26) and (5.27) for jump processes are valid for τs <
1

λ
= TJ. For

τs > TJ, the jump-diffusion process apparently becomes diffusion process

which gives Θ = 1 and Λ = 1. The zero-one Poisson jump noise for

τs > TJ apparently has the jump probability of one, Prob[∆x(t) = 1] =

λτ = 1 as discussed in Chapter 2, which gives Θ = 3 and Λ =
25

3
.
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Figure 5.2: The Θ-criterion for OU process (i), OU jump-diffusion
process (ii), standard normal Gaussian white noise (iii) and pure Poisson
jump noise (iv) are evaluated and plotted in double logarithmic scale.
The OU processes are generated for different integration time steps τs
with γ = 1 s−1, D = 1 s−1 and also with the additional jump terms
with λ = 100 s−1 and σ2

ξ = 0.01. The vertical blue lines show the jump

time scale TJ =
1

λ
. For each τ = τs, Θ = Θ(x = 0, τ) is calculated.

The theoretical predictions according to Eq. (5.26) are presented with
the black solid lines. The blue dashed lines Λ = 1 in case (ii) and Λ = 3

in case (iv) show the behavior after τs > TJ =
1

λ
. Standard errors are

smaller than the symbol size.
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Figure 5.3: The Λ-criterion for OU process (i), OU jump-diffusion
process (ii), standard normal Gaussian white noise (iii) and pure Poisson
jump noise (iv) are evaluated and plotted in double logarithmic scale.
The OU processes are generated for different integration time steps τs
with γ = 1 s−1, D = 1 s−1 and also with the additional jump terms with
λ = 100 s−1 and σ2

ξ = 0.01. The vertical blue lines show the jump time

scale TJ =
1

λ
. For each τ = τs, Λ = Λ(x = 0, τ) is calculated. The

theoretical predictions according to Eq. (5.27) are presented with the

black solid lines. The blue dashed lines Λ = 1 in case (ii) and Λ =
25

3

in case (iv) show the behavior after τs > TJ =
1

λ
. Standard errors are

smaller than the symbol size.
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5.2.3 Q-, Θ- and Λ-criterion for General Diffusion

and Jump-Diffusion Processes

Now, the Q-, Θ- and Λ- criterion are determined for both diffusion and

jump-diffusion processes with non-linear drift and multiplicative diffu-

sion term. We numerically integrate Eq. (5.6) with D(1)(x) = −x3 and

D(2)(x) = 1 + x2, and Eq. (5.11) for the case with additional jump term

with λ = 100 s−1 and σ2
ξ = 1 for different integration time step τs. The

result of the non-linear diffusion process is shown in Fig. 5.4 and jump-

diffusion process in Fig. 5.5.
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Figure 5.4: Q-, Θ- and Λ-criterion of diffusion process at x = 0 with
D(1)(x) = −x3 and D(2)(x) = 1 + x2, generated for different integration
time steps τs, are plotted in double logarithmic scale. Theoretical pre-
dictions according to Eqs. (5.21),(5.26) and (5.27) are presented with the
black solid lines. Standard errors are smaller than the symbol size.
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Figure 5.5: Q-, Θ- and Λ-criterion of jump-diffusion process at x =
0 with D(1)(x) = −x3, D(2)(x) = 1 + x2, λ = 100 s−1 and σ2

ξ = 1,
generated for different integration time steps τs, are plotted in double
logarithmic scale. The vertical blue lines show the jump time scale TJ =
1

λ
. Theoretical predictions according to Eqs. (5.21),(5.26) and (5.27)

are presented with the black solid lines. The blue dashed curve Q =

D(2)(0)τs+σ2
ξ and lines Θ = Λ = 1 show the behavior after τs > TJ =

1

λ
.

Standard errors are smaller than the symbol size.

Comparing these results with Fig. 5.1, 5.2 and 5.3, we can observe the

similar behavior in the case with linear drift and additive diffusion noise.

After deriving the mathematical criteria to distinguish the diffusive and

jumpy behaviors for the simulated stochastic processes, we will discuss

how these criteria can be applied dealing with real world data.
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5.3 Consequences of Downsampling of the

Data

In real world, empirical data are given for a fixed sampling time τs due to

experimental constraints. To handle this effect, we have to downsample

the numerical data in which a new time step τds is defined for downsam-

pling time step. For the estimation of the KM conditional moments, it is

essential to see in which relation τds is with the correlation time TC =
1

γ

and with the average time scale between the jumps TJ =
1

λ
.

Influence of downsampling on the diffusion coefficient is first examined.

In order to study the downsampled approximation of the diffusion term,

it is integrated over a finite downsampled time τds. In the Itô sense, the

integral is generally interpreted as [23, 33]

∫ t+τds

t

g(x(s), s) dWs = g(x(t), t)

∫ t+τds

t

dWs

= g(x(t), t)
Nτ∑
k=1

(Wk −Wk−1) (5.28)

Therefore, the integral of diffusion part in (jump-)diffusion process be-

comes

∫ t+τds

t

√
D(2)(x) dWs =

√
D(2)(x)

Nτ∑
k=1

∆Wk

=
√
D(2)(x) τs

Nτ∑
k=1

ηk . (5.29)

where ηk ∼ N(0, σ2
η = 1) is the standard normal distributed random

variable. To estimate the summation
Nτ∑
k=1

ηk, Nτ =
τds
τs

is the number of

time steps in the downsampled time step τds. Let us define the summation

as a new effective noise ηeff for diffusion term as,
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ηeff =
Nτ∑
k=1

ηk (5.30)

where variance of ηeff will be σ2
η,eff = Nτσ

2
η = Nτ =

τds
τs

, (as σ2
η = 1), and

ηeff tends to a Gaussian random variable. Then, the integral becomes

∫ t+τds

t

√
D(2)(x) dWs ≃

√
D(2)(x) τs ηeff =

√
D(2)(x) τds η (5.31)

where η ∼ N(0, 1) is the standard normal distributed. Therefore, we can

conclude that diffusion coefficient remains unchanged with downsampling

and summation of the noises approaches to a Gaussian white noise.

To test it, the OU process with γ = 1 s−1, D = 1 s−1 is simulated at the

fixed sampling time τs = 10−4 s. It is then downsampled with different

time step τds and the Q-, Θ- and Λ-criterion at x = 0 are determined as

shown in Fig. 5.6.
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Figure 5.6: Q-, Θ- and Λ-criterion of downsampled OU (diffusion)
process at x = 0 with γ = 1 s−1, D = 1 s−1 are plotted in double
logarithmic scale. The vertical red line shows the correlation time scale

TC =
1

γ
. Theoretical predictions according to Eqs. (5.21),(5.26) and

(5.27) are presented with the black solid lines for τds < TC. The blue
dashed line in (a) shows Q = σ2

x after τds > TC. Standard errors are
smaller than the symbol size.

We can observed the same diffusive behavior for τds < TC =
1

γ
as de-

scribed in Eq. (5.21), (5.26) and (5.27). For downsampled time steps

larger than correlation length, τds > TC, the results of the criteria shows

the behavior of uncorrelated Gaussian white noise in which Q = σ2
x where
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σ2
x = 0.5 of OU process x for this case. The variance σ2

x can also be cal-

culated with Eq. (2.60) without considering the jump parameters λ and

σ2
ξ . The other criteria Θ = Λ = 1 which is also valid for Gaussian white

noise.

Influence of downsampling on the jump amplitude is then examined. The

jump term ξ dJt will provide the following stochastic integral

∫ t+τds

t

ξ dJs . (5.32)

To deal with this integral, we use the integral relation [33, 81]

∫ t+τds

t

h(x(s), s) dJs
ms
=

Jt∑
k=1

h(x(T−
k ), T−

k ) , (5.33)

where
ms
= is Itô mean square equals. The T−

k denotes the limit from the

left to jump time Tk. Therefore, the jump integral becomes

∫ t+τds

t

ξ dJs =
Jt∑
k=1

ξk , (5.34)

where ξk ∼ N(0, σ2
ξ ) is the Gaussian distributed random variable with

zero mean and variance σ2
ξ . To estimate the summation

Jt∑
k=1

ξk, we note

that the average time step of jumps in original time series is
1

λ
, then

the average number of jumps becomes Jt ≃ λτds in the downsampled

time step τds. Let us define the summation as a new noise ξeff for jump

amplitude as,

ξeff =
Jt∑
k=1

ξk , (5.35)

where variance of ξeff will be σ2
ξ,eff ≃ λτdsσ

2
ξ and ξeff tends to a Gaussian

random variable. Then, we find,
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∫ t+τds

t

ξ dJs = ξeff ≃
√

λτds ξ , (5.36)

where ξ ∼ N(0, σ2
ξ ) is Gaussian distributed with variance of jump am-

plitude σ2
ξ ). Therefore, if we downsample with τds ≫

1

λ
, Jt ≫ 1, then

zero-one jump law is no longer fulfilled. However, it can be realized as a

jump event with the effective jump amplitude

σ2
ξ,eff = λσ2

ξτds . (5.37)

• Case TJ < TC:

The OU jump-diffusion process with γ = 1 s−1, D = 1 s−1, λ = 100 s−1

and σ2
ξ = 1 at the fixed sampling time τs = 10−4 s is generated. It is then

downsampled with different time step τds and the Q-, Θ- and Λ-criterion

are determined as shown in Fig. 5.7.
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Figure 5.7: Q-, Θ- and Λ-criterion of downsampled OU jump-diffusion
process at x = 0 with γ = 1 s−1, D = 1 s−1, λ = 100 s−1 and σ2

ξ = 1
are plotted in double logarithmic scale. The vertical blue lines show the

jump time scale TJ =
1

λ
and the vertical red lines the correlation time

scale TC =
1

γ
. In this case TJ < TC. Theoretical predictions according

to Eqs. (5.21),(5.26) and (5.27) are presented with the black solid lines.
The green solid lines show the approximation up to O(τ 4) of conditional
moments described in Eq. (5.16). The blue dashed lines show Q = (D+
λσ2

ξ )τds for TJ < τds < TC and Q = σ2
x for τs > TC, and Θ = Λ = 1.

Standard errors are smaller than the symbol size.

Here, we can see that the approximations in Eqs. (5.21), (5.26) and (5.27)

are still valid for τds ≪ TJ. (If we consider calculating these criteria up

89



Consequences of Downsampling of the Data

to O(τ 4) of conditional moments described in Eq. (5.16), we can have a

better approximation shown in solid green line in Fig. 5.7.) In the range

of TJ < τds < TC, the effective value of Q becomes the sum of effective

diffusion and jump terms described in Eqs. (5.31), (5.36) and (5.37) which

gives Q = (D+λσ2
ξ )τds. Θ and Λ also become one after a few time steps

in this range which apparently show the diffusive behavior. These are

shown with the blue dashed lines in Fig. 5.7.

After τds > TC, the downsampled process becomes uncorrelated with

Gaussian distribution, where Q becomes the variance of the process x,

Q = σ2
x = 1 and Θ = Λ = 1, as seen in Fig 5.7 right to the vertical

red lines. The probability density function (PDF) of the downsampled

process x at τds > TC also shows that it is Gaussian-distributed and the

autocorrelation function (ACF) shows that it is uncorrelated as well. (see

Fig. 5.8). The variance of the process x can also be calculated analytically

with Eq. (2.60) which is σ2
x = 1 in this case.
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Figure 5.8: The PDF and ACF of downsampled OU jump-diffusion
process at τ > TC in the case of TJ < TC. The red solid line shows the
PDF of Gaussian distribution with zero mean and the same variance σ2

x.
The PDF is plotted in semi-logarithmic scale.

• Case TJ = TC:

The OU jump-diffusion process with γ = 100 s−1, D = 100 s−1, λ =

100 s−1 and σ2
ξ = 1 at the fixed sampling time τs = 10−4 s is generated.

It is then downsampled with different time step τds and the Q-, Θ- and

Λ-criterion are determined as shown in Fig. 5.9.
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Figure 5.9: Q-, Θ- and Λ-criterion of downsampled OU jump-diffusion
process at x = 0 with γ = 100 s−1, D = 100 s−1, λ = 100 s−1 and
σ2
ξ = 1 are plotted in double logarithmic scale. Theoretical predictions

according to Eqs. (5.21),(5.26) and (5.27) are presented with the black

solid lines. The vertical blue lines show the jump time scale TJ =
1

λ

and the vertical red lines the correlation time scale TC =
1

γ
. In this

case TJ = TC. Standard errors of the mean are shown as gray-shaded
background.

Here, we can see that the approximations in Eqs. (5.21), (5.26) and (5.27)

are still valid for τds ≪ TJ = TC. For τds > TJ = TC, Q, Θ and Λ become

constant but do not have the values of Gaussian white noise. The PDF

of the downsampled process x at τds > TC shows that it is non-Gaussian,

however, the ACF shows that it is uncorrelated (see Fig. 5.10).
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Figure 5.10: The PDF and ACF of downsampled OU jump-diffusion
process at τ > TC in the case of TJ = TC. The red solid line shows the
PDF of Gaussian distribution with zero mean and the same variance σ2

x.
The PDF is plotted in semi-logarithmic scale.
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• Case TJ > TC:

The OU jump-diffusion process with γ = 1000 s−1, D = 1000 s−1, λ =

100 s−1 and σ2
ξ = 10 at the fixed sampling time τs = 10−4 s is generated.

It is then downsampled with different time step τds and the Q-, Θ- and

Λ-criterion are determined as shown in Fig. 5.11.
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Figure 5.11: Q-, Θ- and Λ-criterion of downsampled OU jump-diffusion
process at x = 0 with γ = 1000 s−1, D = 1000 s−1, λ = 100 s−1 and
σ2
ξ = 10 are plotted in double logarithmic scale. Theoretical predictions

according to Eqs. (5.21),(5.26) and (5.27) are presented with the black

solid lines. The vertical blue lines show the jump time scale TJ =
1

λ

and the vertical red lines the correlation time scale TC =
1

γ
. In this

case TJ > TC. Standard errors of the mean are shown as gray-shaded
background.

Here, we can see that the approximations in Eqs. (5.21), (5.26) and (5.27)

are still valid for τds ≪ TC. For τds > TJ, Q, Θ and Λ become constant

but again do not have the values of Gaussian white noise. The PDF of

the downsampled process x at τ > TJ shows that it is non-Gaussian,

however, the ACF shows that it is still uncorrelated (see Fig. 5.12).
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Figure 5.12: The PDF and ACF of downsampled OU jump-diffusion
process at τ > TJ in the case of TJ > TC. The red solid line shows the
PDF of Gaussian distribution with zero mean and the same variance σ2

x.
The PDF is plotted in semi-logarithmic scale.

Now, the Q-, Θ- and Λ- criterion are determined for both downsam-

pled diffusion and jump-diffusion processes with non-linear drift and

multiplicative diffusion terms. We numerically integrate Eq. (5.6) with

D(1)(x) = −x3 and D(2)(x) = 1 + x2, and Eq. (5.11) for the case with

additional jump term with λ = 100 s−1 and σ2
ξ = 1 with a fixed sampling

time τs = 10−4 s. The results are shown in Fig. 5.13 for diffusion process,

and in Fig. 5.14 for jump-diffusion process.
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Figure 5.13: Q-, Θ- and Λ-criterion of downsampled diffusion process
at x = 0 with D(1)(x) = −x3 and D(2)(x) = 1 + x2 are plotted in double
logarithmic scale. Theoretical predictions according to Eqs. (5.21),(5.26)
and (5.27) are presented with the black solid lines. The blue dashed line
in (a) shows Q = σ2

x. Standard errors are smaller than the symbol size.
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Figure 5.14: Q-, Θ- and Λ-criterion of downsampled OU jump-diffusion
process at x = 0 with D(1)(x) = −x3, D(2)(x) = 1 + x2, λ = 100 s−1 and
σ2
ξ = 1 are plotted in double logarithmic scale. The vertical blue lines

show the jump time scale TJ =
1

λ
. Theoretical predictions according to

Eqs. (5.21),(5.26) and (5.27) are presented with the black solid lines. The
blue dashed lines show Q = (D(2)(0) + λσ2

ξ )τds for τds > TJ and Q = σ2
x

(horizontal line), and Θ = Λ = 1. Standard errors are smaller than the
symbol size.

Comparing these results with Fig. 5.6 and 5.7, we can observe the similar

behavior in the case with linear drift and additive diffusion noise.

So far for the jump diffusion processes, different cases of between the time

scales TJ and TC are analyzed. It remains to study how the magnitude

of jump noise with respect to the diffusion noise affect the stochastic

process.
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5.4 Transition from Jumpy to Diffusive Be-

havior with Changing Jump Ampli-

tude

In principle, there are two limits of vanishing jumpy contribution to a

stochastic process, λ → 0 or σ2
ξ → 0. For realistic scenario to investigate

the transition from jumpy to diffusive behavior, we should have a finite λ

to make sure that there are significant jump events occurring. Therefore,

we consider the fixed λ and investigate the influence of jumps by varying

the second important parameter of the jumpy process, namely the jump

amplitude σ2
ξ .

Therefore, the Λ-criterion for OU jump-diffusion process is estimated

with different jump amplitudes σ2
ξ , keeping γ = 1 s−1, D = 1 s−1 and λ =

100 s−1. σ2
ξ is varied by several orders of magnitudes ending with small

values, corresponding to nearly pure diffusive processes. In particular,

σ2
ξ goes from 10 to 10−7. In order to examine broader aspect between

diffusion and jump contribution, the ratio of diffusion and jump noise
D

λσ2
ξ

is applied which has been introduced in Chapter 3 and 4.

Since the Λ-criterion is associated with the jump rate λ in such a way that

Λ = λτds for τds ≪ TJ in jump-diffusion process, only Λ-criterion is shown

and discussed for this study. Moreover, it is also uniquely constant one

for diffusion process for all range of state variable x and all time scale τ .

The estimated Λ = Λ(x, τ = τs) are plotted for
D

λσ2
ξ

= {1, 10, 100} in

Fig. 5.15. We can observed that the transition from jump-diffusion to

the diffusion process happens at
D

λσ2
ξ

≃ 10.

In order to illustrate more clearly, the mean of Λ(x, τs) in the range of

x ∈ [−2σx, 2σx] is calculated, where σx is the standard deviation of x.

Then, the mean of Λ versus
D

λσ2
ξ

is plotted in double-logarithmic scale

as shown in Fig. 5.16. For
D

λσ2
ξ

≤ 1, Λ = λτs which is clearly a jumpy

process. However, we observe a clear transition of jump-diffusion to
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diffusion process at
D

λσ2
ξ

≃ 10. From
D

λσ2
ξ

≃ 100 onward, Λ = 1 and the

process behaves like pure diffusion process.
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Figure 5.15: The function Λ = Λ(x, τs) for the ratio of diffusion and

jump noise
D

λσ2
ξ

= (1, 10, 100) are plotted in semi-logarithmic scale. The

OU-jump-diffusion processes are generated with the sampling period τs =
10−4 s, γ = 1 s−1, D = 1 s−1 and λ = 100 s−1 for different σ2

ξ . Solid black
lines show Λ = 1. The transition from jump-diffusion to the diffusion

process happens around
D

λσ2
ξ

≃ 10. From
D

λσ2
ξ

≃ 100 onward, the process

behaves like a pure diffusion process where Λ = 1.
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Figure 5.16: The mean of Λ(x, τs) in the range of x ∈ [−2σx, 2σx], where
σx is the standard deviation of x of each OU jump-diffusion process for

different ratio of diffusion and jump noise
D

λσ2
ξ

, varying from 10−3 to

105 by the order of magnitudes is plotted in double logarithmic scale.

Clear transition of jump-diffusion to diffusion process at
D

λσ2
ξ

= 10 can

be observed. From
D

λσ2
ξ

= 100 onward, the process behaves like a pure

diffusion process where Λ = 1. Standard errors are smaller than the
symbol size.
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Next, we apply these methods on the selected real world empirical data.

5.5 Application on Real World Data

The aforementioned criteria were applied on the real world data to inves-

tigate whether they are diffusive or jumpy. All the measured data x(t)

with the sampling time τs are subtracted with their means and divided

with their standard deviations, so that the normalized data have zero-

means and standard deviations of one. The Q-, Θ- and Λ-criterion are

evaluated at x = 0 by downsampling of the given data with downsam-

pling time step τds. We take five different data sets and separated into

three categories.

(i) In the first catagory, we analyze are the measurements of the spatial

positions of a dielectric bead (polystyrene, diameter-1µm, Bangs Lab-

oratories Inc. USA) trapped in and optical tweezers [58]. The results

of Q = Q(x = 0, τds), Θ = Θ(x = 0, τds) and Λ = Λ(x = 0, τds) versus

τds, for a single measured data with duration 3 s, and with sample rate

22 kHz are plotted in Fig. 5.17.
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Figure 5.17: Q-, Θ- and Λ-criterion of downsampled displacement data
of dielectric bead in the optical tweezers are plotted in double logarithmic

scale. The vertical red lines the correlation time scale TC =
1

γ
. The black

solid lines show Θ = Λ = 1, together with the linear behavior of Q for
τds < TC, this process fulfils the necessary conditions of diffusion process.
Standard errors of the mean are shown as gray-shaded background and
most of them are smaller than the symbol size..
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The results from optical tweezers show the behavior of diffusion pro-

cess. The correlation time TC =
1

γ
is first estimated from the drift

function which is approximately D(1)(x) = −γx. Below the correla-

tion time scale τds < TC, Q has the linear behavior and Θ = Λ = 1.

For τds > TC, Q = σ2
x = 1 and Θ = Λ = 1 also which show the behavior

of uncorrelated Gaussian white noise.

(ii) In the second catagory, we analyze DAX stock market index data [27]

and epileptic brain data [5].

For the DAX stock market index, the log return is used for the analysis.

The results of Q = Q(x = 0, τds), Θ = Θ(x = 0, τds) and Λ = Λ(x =

0, τds) versus τds are plotted in Fig. 5.18.
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Figure 5.18: Q-, Θ- and Λ-criterion of downsampled log-return DAX
data are plotted in double logarithmic scale. The vertical blue lines show

the jump time scale TJ =
1

λ
and the vertical red lines the correlation

time scale TC =
1

γ
. In this case, TC < TJ. Standard errors of the mean

are shown as gray-shaded background.

The results of Q = Q(x = 0, τds), Θ = Θ(x = 0, τds) and Λ = Λ(x =

0, τds) versus τds for epileptic brain data are plotted in Fig. 5.19.
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Figure 5.19: Q-, Θ- and Λ-criterion of downsampled epileptic brain
data are plotted in double logarithmic scale. The vertical blue lines show

the jump time scale TJ =
1

λ
and the vertical red lines the correlation

time scale TC =
1

γ
. In this case, TC < TJ. Standard errors of the mean

are shown as gray-shaded background and most of them are smaller than
the symbol size.

Since Θ and Λ are deviated from one, they do not fulfil the neces-

sary conditions for the diffusion process. Here we evaluated again the

correlation time TC =
1

γ
obtained from the drift function which is ap-

proximately D(1)(x) = −γx. We also estimated TJ =
1

λ
by Eq. (2.36).

Both DAX stock market index data and epileptic brain data show

the case of TJ > TC which resemble the case of Fig. 5.11. For small

τds, Q shows the constant behavior while Θ and Λ are not one and

also show the functional behavior on τ . Thus, one could consider the

jump-diffusion process instead to analyze and model these dynamics.

(iii) In the third category, we look into the data of free jet low temperature

helium turbulence [50] with Reynolds number Re = 757000 and solar

clear sky index [3]. The results of Q = Q(x = 0, τds), Θ = Θ(x = 0, τds)

and Λ = Λ(x = 0, τds) versus τds for the turbulence data are plotted in

Fig. 5.20.

99



Application on Real World Data

τds τs

Q

●

●

●
●

●
●●

●●
●

●
●●●●●●

●
●

● ●●●●●●●●
● ●●●

●●●
●

●

1 100 10000

0.
01

0.
1

1

●

●

●
●

●
●●

●●
●

●
●●●●●●

●
●

● ●●●●●●●●
● ●●●

●●●
●

●
(a)

τds τs

Θ

●

● ●●●●●●●●
●

●
●●

●●
●●

●
●

●●●
●
●
●
●● ● ●

●●
●●●●

●

1 100 10000

0.
5

1
2

●

● ●●●●●●●●
●

●
●●

●●
●●

●
●

●●●
●
●
●
●● ● ●

●●
●●●●

●

(b)

τds τs

Λ

●

●

●
●●●

●
●
●●

●
●

●
●●

●

●
●

● ●
●

●
●
●●

●
●●

●
●

●●

●●●
●

●

1 100 10000

0.
1

0.
2

0.
5

1
2

●

●

●
●●●

●
●
●●

●
●

●
●●

●

●
●

● ●
●

●
●
●●

●
●●

●
●

●●

●●●
●

●

(c)

Figure 5.20: Q-, Θ- and Λ-criterion of downsampled turbulence data
are plotted in double logarithmic scale. The vertical blue lines show the

jump time scale TJ =
1

λ
and the vertical red lines the correlation time

scale TC =
1

γ
. Standard errors are smaller than the symbol size.

The results of Q = Q(x = 0, τds), Θ = Θ(x = 0, τds) and Λ = Λ(x =

0, τds) versus τds for the solar clear sky index are plotted in Fig. 5.21.
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Figure 5.21: Q-, Θ- and Λ-criterion of downsampled solar clear sky
index data are plotted in double logarithmic scale. The vertical blue lines

show the jump time scale TJ =
1

λ
and the vertical red lines the correlation

time scale TC =
1

γ
. Standard errors are smaller than the symbol size.

As Θ and Λ are deviated from one, they do not fulfil the necessary

conditions for the diffusion process. Similarly to previous data anal-

ysis, we evaluated again the correlation time TC =
1

γ
where the drift

function is defined by D(1)(x) = −γx. We also estimated TJ =
1

λ
by

Eq. (2.36). In these two cases, TJ < TC. For small τds, all Q, Θ and Λ

show the functional behavior on τ . Thus, one could only conclude that

they are not diffusive from the current study. Turbulence is known to
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have much more complex nature and it is also not Markovian in time

but in scale [23, 70].

In this study, we analyzed mainly on pure diffusion process and jump-

diffusion process with Poisson jumps and Gaussian distributed jump

sizes. In order to have a broader approach on the real world data,

similar rigorous methods should be studied on various known stochas-

tic processes as the future research topics.
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Chapter 6

Conclusion and Outlooks

The observed fluctuating behavior in real world complex systems may be

dissociated into deterministic and stochastic components [23, 81]. The

stochastic term can further be separated into Brownian (Wiener process

with continuous trajectories) and/or jumps noises (e.g. Poisson jumps,

Lévy noise, etc., which produce discontinuous dynamics).

In this thesis, jump-diffusion stochastic dynamics which occur in many

real world complex systems are addressed. For discontinuous stochastic

jump term, Poisson jumps and Gaussian distributed jump sizes are con-

sidered. With these assumptions, the basic analytical results for simple

example such as Ornstein-Uhlenbeck process with additional compound

Poisson jump term can be derived. The applications in the field of snow

physics and the wind energy systems are then introduced. In these ap-

plications, the novel concept of the contribution of continuous Brownian

and discontinuous jump noise is studied. It can be described by means

of the ratio of diffusion and jump parameters,
D(2)

λσ2
ξ

, which could give

the better insight and understanding in studying the phenomena of con-

tinuous and discontinuous stochastic nature in the complex dynamical

systems. In our work of snow physics, it can be used to distinguish

different snow types. In wind energy systems, it can be an important

indicator of different operational regions of a wind turbine.

After investigating the jump-diffusion nature present in these two physi-

cal systems, more rigorous analysis and characterization of the methods
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are addressed. The study of [45] is extended and the criteria to distin-

guish continuous and discontinuous processes are introduced and their

behaviors at different time scales are discussed. In the most modeling of

dynamics of measurements in nature, it is assumed that standard Guas-

sian white noise-driven Langevin equation, (simply Langevin equation)

is sufficient to capture the observed variability. A priori, it is not evident

that such assumption is valid.

The analysis of simulating or integrating the stochastic processes at dif-

ferent sampling times are performed. However, for measurements with

finite data points, the only plausible way to check this assumption is to

use the downsampling the data. Therefore, downsampling of the simu-

lated or empirical data sampled at fixed sampling time with respect to

different time scales are determined. In linear jump-diffusion process,

there are two unique time scales namely, the correlation time TC =
1

γ
,

where the linear drift, D(1)(x) = −γx, describes how fast fluctuations

relax to the local mean values of x, and the average time scale between

jumps TJ =
1

λ
, where λ is the jump rate of Poisson process.

Here, a set of criteria are derived to rule-out that the data can be model

with a Langevin equation. which is the main assumptions in the model-

ing of many phenomena in biology, ecology, complex systems, rheology,

neuroscience, Darwin evolution, cosmology, etc. Ruling out the Langevin

dynamics opens the possibilities to use other modelings, such as jump-

diffusion stochastic dynamics, the generalized Langevin equations, etc.

New aspects of data that are not assimilated from white-noise driven

Langevin equations may indicate the presence of abrupt changes in the

time series, in which there will be non-trivial physical phenomena that

are not able to capture from Langevin equations. This study will pave the

way for future research on new phenomena and help us better understand

the measured variability of any data set.
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[67] M. Proksch, H. Löwe, and M. Schneebeli. Density, specific surface

area, and correlation length of snow measured by high-resolution

penetrometry. Journal of Geophysical Research: Earth Surface,

120(2):346–362, 2015.

111



References

[68] J. Prusseit and K. Lehnertz. Stochastic Qualifiers of Epileptic Brain

Dynamics. Phys. Rev. Lett., 98:138103, Mar 2007.

[69] J. Prusseit and K. Lehnertz. Measuring interdependences in dissi-

pative dynamical systems with estimated Fokker-Planck coefficients.

Phys. Rev. E, 77:041914, Apr 2008.

[70] C. Renner, J. Peinke, and R. Friedrich. Experimental Indications

for Markov Properties of Small-scale Turbulence. Journal of Fluid

Mechanics, 433:383–409, 2001.
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