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Abstract: Fractional-order differential equations are powerful tools for the representation of dynamic
systems that exhibit long-term memory effects. The verified simulation of such system models
with the help of interval tools allows for the computation of guaranteed enclosures of the domains
of reachable pseudo states over a certain finite time horizon. In the previous work of the author,
an iteration scheme—derived on the basis of the Picard iteration—was published that makes use
of Mittag-Leffler functions to determine guaranteed pseudo-state enclosures. In this paper, the
corresponding iteration is generalized toward the use of exponential functions during the evaluation
of the iteration scheme. Such exponential functions are well-known from a verified solution of
integer-order sets of differential equations. The aim of this work is to demonstrate that the use of
exponential functions instead of pure box-type interval enclosures for Mittag-Leffler functions does
not only improve the tightness of the computed pseudo-state enclosures but also reduces the required
computational effort. These statements are demonstrated with the help of a close-to-life simulation
model for the charging/discharging dynamics of Lithium-ion batteries.

Keywords: fractional-order differential equations; interval analysis; verification of pseudo-state
enclosures; Mittag-Leffler-type enclosures; exponential enclosures

1. Introduction

Fractional differential equations have the property of an infinite-horizon memory of
the previous evolution of the system dynamics [1–4]. As opposed to integer-order models,
where only initial conditions for the state variables at a certain point of time and the external
system inputs after that time instant are necessary for determining a unique solution for
the evaluation of the system states, fractional-order models need to be initialized with the
complete past behavior as the initialization function [5].

Due to this reason, the system state at a specific point in time is typically referred to
as a pseudo state for fractional system models as the complete history of its evolution is
required for a unique solution [5]. To solve this difficulty when initializing a simulation
at a specific point in time, additive (interval-valued) correction terms of the right-hand
sides of explicit fractional-order models have been employed in [6] to account for the past
pseudo-state evolution. Simulation methods, which make use of further extensions on the
basis of a (pseudo) state observer concept for tightening these additive corrections after the
reset of fractional integrators, were developed in [7]. These extensions exploit a formula
derived by Podlubny in [1] for shifting the reference point in time, associated with the
definition of a fractional differentiation operator.

On the one hand, the infinite-horizon memory property of fractional differential
equations allows to efficiently model dynamic systems with long-term memory effects. On
the other hand, however, interval-based simulations, allowing for enclosing the domains
of reachable (pseudo) states in a guaranteed way, are significantly complicated because
classical Taylor series-based simulation approaches, such as those employed in tools such
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as AWA [8], VNODE-LP [9–11], or VSPODE [12], for systems of integer-order ordinary
differential equations, can no longer be employed without modifications.

Therefore, the author has developed an iterative pseudo-state enclosure approach
in [6,13] which is based on the Picard iteration [14]. Under the assumption that the pseudo
state at the point of time t = 0 corresponds also to the complete previous, temporally
constant state evolution for t < 0, corresponding to Caputo’s definition of fractional
derivatives, the iterative solution makes use of Mittag-Leffler functions [15–19] to represent
pseudo-state enclosures in a guaranteed manner. This kind of function represents the true
pseudo-state trajectories of linear fractional differential equations with the aforementioned
Caputo-type initialization [20,21]. For nonlinear models, the iteration procedure developed
in [6,13] yields outer bounds for the actually reachable pseudo states.

It has to be noted that this iteration scheme is a natural generalization of a counterpart
making use of classical exponential functions in the integer-order case, cf. [6]. However,
the drawback is an increased complexity of the numerical evaluation because the typically
arising quotients of Mittag-Leffler functions with different arguments cannot be simplified
further in an analytic manner to reduce the overestimation that is well-known in the domain
of interval methods [22,23]. This issue is further discussed in the current paper and resolved
by outer exponential enclosures of Mittag-Leffler functions.

In this paper, Section 2 summarizes the Mittag-Leffler function representation of
guaranteed solution enclosures for fractional-order system models as presented in [6,13]. It
is extended in Section 3 toward exponential functions for the computation of guaranteed
pseudo-state enclosures. The representative simulation results, focusing on the tightness of
the resulting pseudo-state enclosures and the required computational effort, are presented
in Section 4 for a close-to-life quasi-linear fractional model of the charging/discharging
behavior of Lithium-ion batteries before conclusions and an outlook on future work are
given in Section 5.

2. Fundamentals of Verified Mittag-Leffler-Type Pseudo-State Enclosures for
Fractional Differential Equations
2.1. System Models under Consideration

Throughout this article, we analyze and derive set-valued simulation approaches for
commensurate fractional-order differential equations of the form

x(ν)(t) = f
(
x(t)

)
, f : Rn 7→ Rn , (1)

with the order 0 < ν ≤ 1, where the right-hand side f
(
x(t)

)
is assumed to be given by a

continuous function. Moreover, we assume that the system model (1) is initialized by the
pseudo state x(0) at the time instant t = 0, where x(t) = x(0) holds for all t < 0. This case
corresponds to the Caputo definition of fractional derivatives as described, for example, in [1,2].

To account for uncertainty in the pseudo-state initialization, we use the
interval representation

x(0) ∈ [x](0) :=
[
x(0) ; x(0)

]
, (2)

for which xi(0) ≤ xi(0) holds for each vector component i ∈ {1, . . . , n}. Note that the
property of temporally constant initializations for t < 0 is still assumed to hold.

2.2. Linear Scalar System Models

For the special case of scalar fractional differential equations

x(ν)(t) = λ · x(t) with x(0) = x0 (3)

which are linear in the pseudo state x(t) with the parameter λ ∈ R and which are initialized
according to the previous subsection in the Caputo-type sense, it is well-known according
to [20,21] that the exact solution is given in the form

x(t) = Eν,1
(
λtν
)
· x(0) . (4)
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In (4), Eν,β(ζ) is the two-parameter Mittag-Leffler function. It is defined by the
infinite series

Eν,β(ζ) =
∞

∑
i=0

ζ i

Γ
(
νi + β

) (5)

for the general argument ζ ∈ C. In (4), Γ
(
νi + β

)
denotes the gamma function of the

respective argument and ν is the derivative order as introduced in (1). To obtain the
solution in (4), the parameter β is set to the value β = 1.

Remark 1. The classical exponential function eζ is obtained as a special case of the Mittag-Leffler
function (5) when setting ν = 1 and β = 1.

Remark 2. For an interval extension of the Mittag-Leffler function on the basis of the accurate
floating-point MATLAB implementation by R. Garrappa [18,24], see [13].

2.3. Mittag-Leffler Functions as Pseudo-State Enclosures for Fractional-Order Differential Equations

For nonlinear scalar and vector-valued system models (1), the Mittag-Leffler functions
introduced in the previous subsection can be used to define guaranteed pseudo-state
enclosures according to Definition 1.

Definition 1 (Mittag-Leffler-type pseudo-state enclosure). A verified Mittag-Leffler-type
pseudo-state enclosure for the system model (1) with (2) is defined by the time-dependent en-
closure function

x∗(t) ∈ [xe](t) = Eν,1
(
[Λ] · tν

)
· [xe](0) , [xe](0) = [x0] (6)

with the diagonal parameter matrix [Λ] := diag
{
[λi]
}

, i ∈ {1, . . . , n}, if it is determined according
to Theorem 1. In (6), the generalization of the scalar Mittag-Leffler function Eν,1 to the matrix case
Eν,1 is given by the following diagonal matrix

Eν,1
(
[Λ] · tν

)
= diag

{[
Eν,1

(
[λ1] · tν

)
. . . Eν,1

(
[λn] · tν

)]}
. (7)

Theorem 1 ([6,13,25] Iteration for Mittag-Leffler-type enclosures). All reachable pseudo states
x∗(T) are enclosed in accordance with Theorem 1 by the Mittag-Leffler-type pseudo-state enclosure

x∗(T) ∈ [xe](T) = Eν,1
(
[Λ] · Tν

)
· [xe](0) (8)

at the point of time t = T > 0 if [Λ] is set to the outcome of the converging iteration

[λi]
〈κ+1〉 :=

fi

(
Eν,1

(
[Λ]〈κ〉 · [t]ν

)
· [xe](0)

)
Eν,1

(
[λi]
〈κ〉 · [t]ν

)
·
[
xe,i
]
(0)

, (9)

i ∈ {1, . . . , n}, with the prediction horizon [t] = [0 ; T]. To ensure convergence, the value x∗i = 0
must not belong to the solution for any vector component i ∈ {1, . . . , n}.

Remark 3. Typically, the iteration according to Theorem 1 is initialized with intervals centered
around the eigenvalues of the Jacobian of the right-hand side of (1), evaluated for the midpoint of the
interval vector (2).

As a preparation for the derivation of the exponential enclosure approach presented
for the first time in this paper, the following proof of Theorem 1, according to [6,13,25],
is summarized.
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Proof. Formulate a Picard iteration (iteration index κ) for computing pseudo-state enclo-
sures in the differential form

[x(ν)]〈κ〉
(
[0 ; T]

)
⊃ [x(ν)]〈κ+1〉([0 ; T]

)
= f
(
[x(ν)]〈κ〉

(
[0 ; T]

))
, (10)

where [x(ν)]〈κ〉
(
[0 ; T]

)
is an interval extension of the temporal derivative of order ν of

the inclusion function [x]〈κ〉(t) over the time interval t ∈ [t] = [0 ; T]. Substituting the
pseudo-state enclosure given in Definition 1 into (10) yields the expression

x(ν)(t) ∈
(
[Λ]〈κ+1〉

)
· Eν,1

(
[Λ]〈κ+1〉 · tν

)
· [xe](0)

= f
(

Eν,1

(
[Λ]〈κ〉 · tν

)
· [xe](0)

)
for all t ∈ [t] .

(11)

A converging iteration implies the set-valued relation

[xe]
〈κ+1〉([t]) ⊂ [xe]

〈κ〉([t]) , (12)

which corresponds to the relation

[λi]
〈κ+1〉 ⊂ [λi]

〈κ〉 (13)

for the unknown intervals of the solution parameters λi.
Overapproximating the interval evaluation of the Mittag-Leffler-type enclosure

[x]〈κ+1〉(t) = Eν,1

(
[Λ]〈κ+1〉 · tν

)
· [xe](0) (14)

in the iteration step κ + 1 on the first line of (11) by the enclosure [xe]
〈κ〉([t]) in the case of

convergence, i.e., using the relation(
[Λ]〈κ+1〉

)
· Eν,1

(
[Λ]〈κ+1〉 · tν

)
· [xe](0) ⊂

(
[Λ]〈κ+1〉

)
· Eν,1

(
[Λ]〈κ〉 · tν

)
· [xe](0) , (15)

leads to the new iteration formula

diag
{
[λ̃i]
〈κ+1〉

}
· [xe]

〈κ〉([t]) = f
(
[xe]
〈κ〉([t])

)
, (16)

where
diag

{
[λ̃i]
〈κ+1〉

}
⊇ diag

{
[λi]
〈κ+1〉

}
. (17)

Solving expression (16) for [λ̃i]
〈κ+1〉 with subsequent renaming of this parameter into

[λi]
〈κ+1〉 completes the proof of Theorem 1. For further details, the reader is referred to the

references [6,13,25].

Corollary 1. In the case that the fractional-order differential equations given in Equation (1) with
the initial conditions (2) can be rewritten into the quasi-linear form

x(ν)(t) = A
(
x(t)

)
· x(t) with 0 < ν ≤ 1 , (18)

with an equilibrium at x = 0 and the state-dependent matrix A
(
x(t)

)
, Theorem 1 simplifies to the

iteration scheme

[λi]
〈κ+1〉 := aii

(
[xe]
〈κ〉([t]))+ n

∑
j=1
j 6=i


aij

(
[xe]
〈κ〉([t])) · Eν,1

([
λj

]〈κ〉
· [t]ν

)
Eν,1

(
[λi]
〈κ〉 · [t]ν

) ·
[

xe,j

]
(0)[

xe,i
]
(0)


. (19)
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Remark 4. In (19), the quotient of two Mittag-Leffler functions can usually only be simplified
further for ν = 1. In all other cases, where ν 6= 1, overestimation due to the so-called dependency
effect [23] (which arises due to multiple dependencies on common interval parameters) can be
reduced by exploiting the monotonicity properties of the Mittag-Leffler function that were analyzed
in detail in [13].

3. Exponential Enclosures for Fractional-Order System Models

Exponential functions can be introduced in general at two different stages of the
solution procedure presented in the previous section. These are:

1. The replacement of the solution representation [xe](t) given so far by Mittag-Leffler
functions by exponential functions; or

2. The introduction of exponential enclosures for the interval evaluation of the Mittag-
Leffler function instead of the currently employed box-type representations.

These two alternative options are further discussed in the current section.

3.1. Exponential Pseudo-State Enclosures

To directly replace the Mittag-Leffler functions by exponential ones in the enclosure
technique according to Theorem 1 and Corollary 1, it is necessary to determine the Caputo
fractional derivative of order ν (initialized at t = 0) of a classical exponential function.

According to [26,27], the derivative of eλt is given by the closed-form representation

dνeλt

dtν
= λ ·

(
t1−ν · E1,2−ν(λt)

)
(20)

with t ≥ 0 and λ ∈ R. In (20), the right-hand side again depends on the two-parameter
Mittag-Leffler function (5). Note that this two-parameter Mittag-Leffler function, if substi-
tuted into the first line of Equation (11), leads to the same difficulty already observed in
Equation (19) of Corollary 1 that the arising quotients of functions cannot be simplified,
even in the case of (quasi-)linear system models in which aij

(
[xe]
〈κ〉([t])) 6= 0 holds for at

least one i 6= j.
Moreover, it has to be pointed out that an interval evaluation of this fractional deriva-

tive of the exponential function on the time interval t ∈ [0 ; T] always contains the value 0
at the left end point of this time interval, so that the division of the differential formulation
of the Picard iteration according to (11) by the term in parentheses in (20) is undefined.
Therefore, solution representations in the form eλt are not useful to generalize the iteration
scheme according to Theorem 1.

At least theoretically, one could try to resolve this second problem by changing the solu-
tion template from eλt to eλtν

with a non-integer power of the time variable t. Unfortunately,
however, its Caputo derivative of order ν does not have a closed-form, exponential-type
solution in the general case so the problem persists that the solution presented in (19) can
still not be simplified further. For this reason, we are switching to the idea of the following
subsection in which the interval box enclosures of Mittag-Leffler functions employed in (9)
as well as in (19) are replaced by tubes parameterized in terms of exponential functions.

3.2. Exponential Enclosures of the Mittag-Leffler Function

For the computation of exponential tube enclosures of time-dependent Mittag-Leffler
functions, the following monotonicity theorem is employed. It is a simplified version of
Theorem 4 published in [13], where also the fractional derivative order ν was considered as
a (temporally constant) interval parameter.

Theorem 2 (Box-type interval bounds for the Mittag-Leffler function). The range of function
values for the Mittag-Leffler function in (4) with the uncertain real-valued parameter λ ∈

[
λ ; λ

]
,
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λ < 0 and the non-negative time argument t ∈
[
t ; t

]
, t ≥ 0, with 0 < ν ≤ 1, is bounded by the

box-type interval enclosure

Eν,1
(
λtν
)
∈
[

E∗ν,1

](
[X]

)
=

[
E∗ν,1

(
inf
(
[X]

))
; E∗ν,1

(
sup

(
[X]

))]
(21)

with [X] := [λ] · [t][ν], where sup
(
[X]

)
≤ 0 holds and

[
E∗ν,1

]
is obtained by the outward rounded

interval extension of a floating-point evaluation of the two-parameter Mittag-Leffler function
according to Equation (31) of [13]. Due to λ < 0, Equation (21) simplifies to

Eν,1
(
λtν
)
∈
[

E∗ν,1

(
λ · tν

)
; E∗ν,1

(
λ · tν

)]
. (22)

Proof. For a detailed proof of this theorem, the reader is referred to the proof of Theorem 4
published in [13]. It is a direct consequence of the fact that the two-parameter Mittag-Leffler
function is strictly monotonically decreasing for a growing time argument t with λ < 0.
This property is also reflected by the so-called complete monotonicity of the Mittag-Leffler
function that is reported, for example, in [16,17].

Furthermore, monotonicity with respect to the parameter λ is verified by differentiat-
ing Eν,1(λtν) with respect to λ together with the change of variables τ := λ

1
ν · t < 0. This

leads to

∂Eν,1(λtν)

∂λ
=

∂Eν,1(τ
ν)

∂τ
· ∂τ

∂λ
=

∂Eν,1(τ
ν)

∂τ
· t · λ

(
1
ν−1

)
ν

. (23)

In (23), the first factor is non-positive due to the complete monotonicity of the Mittag-
Leffer function as shown in [16,17]; for any t ≥ 0 and λ ≤ 0, the second factor is also
non-positive, leading to ∂Eν,1(λtν)

∂λ ≥ 0, which completes the proof.

Theorem 3 (Exponential enclosures for the Mittag-Leffler function). The range of function
values for the Mittag-Leffler function in (4) with the uncertain real-valued parameter λ ∈

[
λ ; λ

]
,

λ < 0 and the non-negative time argument t ∈
[
t ; t

]
, t ≥ 0, t > t, with 0 < ν ≤ 1, is bounded

by the exponential enclosure

Eν,1
(
λtν
)
∈ e

[
η ; η

]
·[t ; t] , (24)

where

η =


inf

(
1
tν · ln

([
E∗ν,1

](
λ · tν

)))
for t > 0

λ

Γ(ν + 1)
for t = 0

(25)

and

η = sup

(
1
tν · ln

([
E∗ν,1

](
λ · tν

)))
(26)

with
[

E∗ν,1

]
being the outward rounded interval extension of a floating-point evaluation of the

two-parameter Mittag-Leffler function according to Equation (31) of [13].

Proof. Consider the Mittag-Leffler function

f (t̃) = Eν,1(−t̃) . (27)

Its derivative with respect to t̃ satisfies the following properties:

1.
d f
dt̃

(0) = − 1
Γ(ν + 1)

;
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2. lim
t̃→∞

d f
dt̃

(t̃) = 0;

3.
d f
dt̃

(t̃) < 0 for t̃ > 0; and

4.
d2 f
dt̃2 (t̃) > 0 for t̃ > 0.

Property 1 is a consequence of the series definition (5) of the Mittag-Leffler function,
while the properties 2–4 result from its complete monotonicity according to [16,17].

Case 1: For a fixed positive point t̃ = t̃∗ > 0, determine the intersection of an exponential
function eη t̃ and the Mittag-Leffler function f (t̃) according to

Eν,1(−t̃∗) = eη∗ ·t̃∗ > 0 ⇐⇒ η∗ =
1
t̃∗
· ln
(
Eν,1(−t̃∗)

)
< 0 , (28)

where Eν,1(0) = e0 = 1 obviously holds according to (5) and 0 < Eν,1(−t̃∗) < 1 due to the
property of complete monotonicity.

Case 2: In the case t̃→ 0, t̃ ∈ R+
0 , the limit value

η∗ = lim
t̃∗→0

(
1
t̃∗
· ln
(
Eν,1(−t̃∗)

))
= lim

t̃∗→0

(
1

Eν,1(−t̃∗)
·

d
(
Eν,1(−t̃∗)

)
dt̃∗

)
= − 1

Γ(ν + 1)

(29)

is obtained, where the second line results from the application of L’Hôpital’s rule.
Moreover, the property η < η, necessary for the interval definition in (24), is obvious

due to the fact that η∗ in (28) is defined as the quotient of a strictly monotonically decreasing
numerator and a strictly monotonically increasing denominator.

Thus, the substitution t̃ := −λtν together with the monotonicity of the Mittag-Leffler
function with respect to the parameter λ, as already also exploited in Theorem 2, cf. (23),
concludes the proof.

The Figure 1a,b give a comparison of the box-type interval enclosures of Mittag-Leffler
functions according to Theorem 2 with the exponential enclosures according to Theorem 3.
According to the Figure 1c,d, it becomes obvious that for identical subdivisions of the time
interval t ∈ [0 ; 1], the box-type enclosure is much more pessimistic at the beginning of the
time horizon than at its end. Therefore, to obtain an identical degree of overestimation for
both types of enclosures, a significantly larger number of subintervals would be required in
the box-type case at the beginning of the considered time span. Moreover, the lower bound
for the range of the Mittag-Leffler function is exactly represented at the beginning of each
temporal subslice by the exponential enclosure, while the lower bound at the endpoint
is represented exactly by the box-type enclosure, cf. Figure 1c. For the upper bound of
the range, this property is reversed between both representations for the enclosure of the
Mittag-Leffler function, cf. Figure 1d.
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(a) (b)

(c) (d)

Figure 1. Comparison between box-type and exponential enclosures of the Mittag-Leffler function
Eν,1(λtν) with ν = 0.5 for t ∈ [0 ; 1], t = k · 0.1, t = (k + 1) · 0.1, k ∈ {0, 1, . . . , 9}, and λ ∈ [−2 ; −1]:
(a) Box-type enclosure of the Mittag-Leffler function; (b) Exponential enclosure of the Mittag-Leffler
function; (c) Overestimation of the lower enclosure bound; (d) Overestimation of the upper enclo-
sure bound.

Furthermore, Figure 2 illustrates the property stated in the proof above that η∗ is
a strictly monotonically increasing function for increasing values of the time argument
t̃∗. To show that this property holds for all 0 < ν < 1, several values of this fractional
differentiation order are depicted. Moreover, the limit case for t̃→ 0 according to (29) is
also depicted in this graph by using a logarithmic time scale.

Figure 2. Evolution of the parameter η∗ as a function of t̃∗ for different values of the fractional
differentiation order ν.
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3.3. Iterative Pseudo-State Enclosures for Box-Type and Exponential Representations of
Mittag-Leffler Functions

Both box-type and exponential enclosures are used in this subsection to evaluate the
iteration Formula (19) of Corollary 1. In this subsection, an interval subdivision scheme
with respect to the time interval [t] is employed to reduce the effect of overestimation.

For that purpose, we assume that [t] = [0 ; T] is subdivided into Ξ not necessarily
equally wide subintervals

[t] =
Ξ⋃

ξ=1

[
tξ−1 ; tξ

]
=

Ξ⋃
ξ=1

[t]ξ , (30)

where t0 := 0, tΞ := T, and t0 < t1 < . . . < tΞ.
Then, a subinterval-based evaluation of the iteration Formula (19) of Corollary 1 is

given by

[λi]
〈κ+1〉 :=

Ξ⊔
ξ=1

aii

(
[xe]
〈κ〉
(
[t]ξ
))

+

n

∑
j=1
j 6=i


aij

(
[xe]
〈κ〉
(
[t]ξ
))
·

Eν,1

([
λj

]〈κ〉
· [t]νξ

)
Eν,1

(
[λi]
〈κ〉 · [t]νξ

) ·
[

xe,j

]
(0)[

xe,i
]
(0)



 ,

(31)

where the symbol
⊔

denotes the convex interval hull around all arguments of this operator.
Moreover, the expression

[xe]
〈κ〉
(
[t]ξ
)
= Eν,1

(
[Λ]〈κ〉 · [t]νξ

)
· [xe](0) , [xe](0) = [x0] (32)

in (31) represents the evaluation of the Mittag-Leffler-type pseudo-state enclosure for each
temporal subinterval [t]ξ .

To replace the evaluation of the iteration Formula (31) by a counterpart that exploits the
novel exponential enclosures of the Mittag-Leffler function for each temporal subinterval,
define the enclosure

Eν,1
(
λ · tν

)
∈ e

[
η
〈κ〉
i,ξ ; η

〈κ〉
i,ξ

]
·[tξ−1 ; tξ ]

ν

(33)

for λ ∈ [λ]
〈κ〉
i and t ∈ [t]ξ . The interval bounds η

〈κ〉
i,ξ and η

〈κ〉
i,ξ on the right-hand side

of (33) are obtained by replacing λ with λ
〈κ〉
i , λ with λ

〈κ〉
i , t with tξ−1, and t with tξ in the

Equations (25) and (26) that are defined in Theorem 3.
Then, the iteration Formula (19) of Corollary 1 is replaced with the expression



Fractal Fract. 2022, 6, 567 10 of 17

[λi]
〈κ+1〉 :=

Ξ⊔
ξ=1

aii

(
[xe]
〈κ〉
(
[t]ξ
))

+

n

∑
j=1
j 6=i

aij

(
[xe]
〈κ〉
(
[t]ξ
))
· e

([
η
〈κ〉
j,ξ ; η

〈κ〉
j,ξ

]
−
[

η
〈κ〉
i,ξ ; η

〈κ〉
i,ξ

])
·[t]νξ
·

[
xe,j

]
(0)[

xe,i
]
(0)


 ,

(34)

where

[xe]
〈κ〉
(
[t]ξ
)
= exp

diag

{[[
η
〈κ〉
1,ξ ; η

〈κ〉
1,ξ

]
. . .

[
η
〈κ〉
1,ξ ; η

〈κ〉
1,ξ

]]}
· [t]νξ

 (35)

is a direct substitute for (32) that was included before in (31).
As a preparation for the evaluation of Formulas (31) and (34) in the following section,

the true range as well as both the box-type and exponential enclosures of the quotient

Eν,1(λ1tν)

Eν,1(λ2tν)
(36)

are illustrated in Figure 3 for the mutually independent interval parameters λ1 ∈ [−2 ; −1]
and λ2 ∈ [−1.9 ; −1]. It becomes obvious that the box-type enclosure (as already discussed
in Figure 1) is much more pessimistic for small points in time than for larger ones. Therefore,
it can be expected that an intersection of both enclosure approaches leads to less pessimism
during the evaluation of the iteration Formula (34). Note that this comes with practically
no additional computational effort because the box-type range bounds form the basis for
the application of Theorem 3.

(a) (b)

Figure 3. Illustration of the two considered guaranteed enclosure methods for the quotient of two
Mittag-Leffler functions with uncertain parameters λ1 ∈ [λ1] and λ2 ∈ [λ2] for ν = 0.5: (a) Box-type
enclosures vs. exact range for the quotient (36); (b) Exponential enclosures vs. exact range for the
quotient (36).

In the following section, both subdivision-based Formulas (31) and (34) are compared
for the computation of guaranteed pseudo-state enclosures for a quasi-linear model of
the charging/discharging dynamics of a Lithium-ion battery. The comparison is based
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on a quantification of the tightness of the obtained solution enclosures and a count of the
numbers of iterations κ for identical numbers Ξ of temporal subintervals.

4. Simulation Results

The benchmark application considered in this section for the comparison of both
iteration Formulas (31) and (34) is the simplified model of a Lithium-ion battery origi-
nally investigated in [25]. For the sake of completeness, this model is summarized in the
following subsection before the respective simulation results are presented.

4.1. Simplified Fractional-Order Battery Model

Figure 4 illustrates a fractional-order equivalent circuit model of the charging/dis-
charging behavior of a Lithium-ion battery, where the state of charge σ(t), its fractional
derivative 0D

0.5
t σ(t) of order ν = 0.5, and the voltage drop v1(t) across the fractional-order

constant phase element Q (as a generalization of an ideal capacitor [28–30]) are employed
as pseudo-state variables.

vOC(σ(t))
+
−

i(t) R0

R v(t)

+

−

Q

v1(t)

Figure 4. Basic fractional-order equivalent circuit model of batteries according to [25].

These pseudo-state variables are summarized in the vector

x(t) =
[
σ(t) 0D

0.5
t σ(t) v1(t)

]T
∈ R3 . (37)

Using the modeling steps described in [28] and generalizing the charging/discharging
dynamics to

0D
1
t σ(t) = −

η0 · i(t) + η1 · σ(t) · sign
(
i(t)
)

3600CN
(38)

as described in [25] with the terminal current i(t) as the system input, the commensurate
fractional-order quasi-linear state equations

0D
0.5
t x(t) = A · x(t) + b · i(t) (39)

with the system and input matrices

A =


0 1 0

η1·sign(i(t))
3600CN

0 0
0 0 − 1

RQ

 and b =

 0
− η0

3600CN
1
Q

 (40)

are obtained.
The simulations discussed in the following two subsections consider the parameters

listed in Table 1 which are a subset of those used in [25]. To make the evaluation based on
the novel exponential enclosures for the Mittag-Leffler function according to Theorem 3
comparable with the previous work reported in [25], we employ the same linear state
feedback controller for the discharging phase (i(t) > 0) that was designed in terms of an
assignment of the asymptotically stable eigenvalues λ ∈ {−0.0001;−0.0002;−0.4832} to
the closed-loop dynamics. This leads to the closed-loop dynamic model

D0.5
t x(t) =

(
A− bkT

)
· x(t) =: AC · x(t) , (41)
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where the matrix entries AC,2,1, AC,2,2, AC,2,3 are inflated to interval parameters by symmet-
ric bounds of a 1% radius of the respective nominal quantity and AC,3,3 to 10%, respectively.

Table 1. Parameters of the Lithium-ion battery model.

R0 [Ω] Q [F/s0.5] R [Ω] η0 [−] η1 [−] CN [Ah]

+1.7·10−5 +20.591 +0.1005 +1.0000 +0.1000 +3.1000

To investigate the effect of the novel exponential enclosure approach for Mittag-Leffler
functions, the following simulations also make use of the intersection of the solution to
the system model (41) with an alternative representation resulting from a time-invariant
similarity transformation of the system matrix AC into an interval-valued diagonally
dominant representation. This transformation, as detailed in [25], employs the matrix of
eigenvectors for a matrix containing the elementwise-defined interval midpoints of AC.
As discussed in [25], this transformation reduces the overestimation due to the wrapping
effect of interval analysis [23,31] when evaluating both iteration Formulas (31) and (34).

For the rest of this paper, consider the two sets of initial pseudo-state vectors

x(0) ∈ [x]1(0) =

[ 0.9000 ; 1.1000]
[−0.0011 ; −0.0009]
[ 0.0900 ; 0.1100]

 (42)

and

x(0) ∈ [x]2(0) =

[ 0.99000 ; 1.01000]
[−0.00101 ; −0.00099]
[ 0.09900 ; 0.10100]

 (43)

in the sense of a Caputo-type initialization of the controlled battery model (41), i.e., with
x(0) corresponding to x(t) for all t < 0.

In all simulations summarized in the following two subsections, the final points in
time T for the evaluation of the iteration Formulas (31) and (34) are chosen as either of the
ten values

T ∈
{

0.5, 0.5 +
10− 0.5

9
, 0.5 + 2 · 10− 0.5

9
, . . . , 10

}
(44)

with tξ − tξ−1 = 0.005. Note that this latter choice for the interval subdivision is not
identical to the one used in [25], where for all the different values T the considered time
ranges were always subdivided into 100 equally spaced slices.

4.2. Simulation with the Help of Box-Type Enclosures

In Figure 5, the iteration Formula (31) has been used to compute guaranteed enclosures
for the pseudo states of the controlled Lithium-ion battery for the two differently wide
enclosures of initial values.

Due to the fact that the solution parameters λi are determined in such a way that
they are valid for the complete time interval [0 ; T], longer simulation horizons lead to
inflating interval bounds as long as the integrator reset approach derived in [25] and its
extended version published in [7] are not employed. The simulations show clearly that the
overestimation of the range enclosures for the pseudo states is larger for those variables that
change faster. In this scenario, the faster changing variable is the voltage v1(t) as compared to
the state of charge σ(t). However, it can also be seen that the blow-up of the solution bounds
can be reduced by tighter bounds for the pseudo-state initialization which gives rise to the
option to repeat the simulations after paving the possible initial pseudo-state domain.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Use of box-type enclosures for the evaluation of the iteration Formula (31) for the compu-
tation of guaranteed pseudo-state enclosures: (a) State of charge σ(t) for x(0) ∈ [x]1(0); (b) State of
charge σ(t) for x(0) ∈ [x]2(0); (c) Voltage v1(t) for x(0) ∈ [x]1(0); (d) Voltage v1(t) for x(0) ∈ [x]2(0);
(e) Interval diameter for the enclosure of σ(t); (f) Interval diameter for the enclosure of v1(t).

4.3. Simulation with the Help of Exponential Enclosures

Figure 6 shows that the pseudo-state enclosures are significantly tightened by using
the intersection of the novel exponential enclosures of Mittag-Leffler functions with the
box-type ones that were solely used in Figure 5. This advantage cannot only be observed for
the case of the wide initialization x(0) ∈ [x]1(0) but also for the tighter one x(0) ∈ [x]2(0).

The second advantage of this new enclosure approach is illustrated in Figure 7, where
the required maximum numbers of evaluations of both (31) and (34) are illustrated for
the ten different choices of the simulation horizon T. There, it can be seen clearly that the
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novel exponential enclosure approach allows to reduce the number of required iterations
significantly for longer simulation horizons T. To make this comparison fair, the iterations
have been stopped in all cases if the diameters of all [λi]

〈κ+1〉 and [λi]
〈κ〉 deviate from each

other by less than the value 10−4.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Use of exponential enclosures, intersected with the box-type ones, for the evaluation of the
iteration Formula (34) for the computation of guaranteed pseudo-state enclosures: (a) State of charge
σ(t) for x(0) ∈ [x]1(0); (b) State of charge σ(t) for x(0) ∈ [x]2(0); (c) Voltage v1(t) for x(0) ∈ [x]1(0);
(d) Voltage v1(t) for x(0) ∈ [x]2(0); (e) Interval diameter for the enclosure of σ(t); (f) Interval diameter
for the enclosure of v1(t).

As a summary, the new enclosure approach does not only allow to significantly reduce
the overestimation in the computation of guaranteed bounds for the pseudo states but—at
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least for the application scenario at hand—also reduces the computational effort by up to
80% due to significantly less required iterations.

(a) (b)

(c) (d)

Figure 7. Comparison of the required number of iterations for both box-type and exponential enclosures:
(a) Required iterations for the initialization x(0) ∈ [x]1(0) (box-type enclosure); (b) Required iterations
for the initialization x(0) ∈ [x]2(0) (box-type enclosure); (c) Required iterations for the initialization
x(0) ∈ [x]1(0) (exponential enclosure); (d) Required iterations for the initialization x(0) ∈ [x]2(0)
(exponential enclosure).

5. Conclusions and Outlook on Future Work

In this paper, a novel enclosure approach for the pseudo states of fractional-order
differential equations has been presented. It is based on enclosing Mittag-Leffler functions
by exponential enclosures instead of box-type enclosures employed so far in previous work.
By using a close-to-life model for the charging/discharging dynamics of a Lithium-ion
battery, it has been shown that this new enclosure technique leads not only to significantly
tighter enclosures, yet preserving the guaranteed enclosure property, but also leads to a
noticeable reduction in the computational effort by significantly less iterations required to
obtain an identical enclosure quality.

Future work will aim at extending the presented approach to system models with
non-commensurate orders. In addition, the approach will be included into the observer-
based technique presented in [7] for the quantification of truncation errors which allows for
resetting fractional integrators in a guaranteed way. In such a way, it is planned to make
the proposed simulation approach applicable to tasks such as the parameter identification
of fractional-order differential equations and to the identification of their initialization
functions for t < 0. Moreover, the application to more complex dynamic models from the
domains of electrochemical energy storage and energy conversion will be investigated.
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