
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften
Department für Informatik

Correctness of Data Flows in Asynchronous Distributed Systems
–

Model Checking and Synthesis

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften der
Carl von Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels

Doktor der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation

von Manuel Gieseking

Gutachter: Prof. Dr. Ernst-Rüdiger Olderog
Prof. Bernd Finkbeiner, Ph.D.

Tag der Disputation: 21.07.2022

ii

Abstract

Due to the increasing integration of information technology into our daily life, the cor-
rectness of such systems plays a major role in their development and is crucial, not least
in safety-critical situations. Without computer-aided analysis, asynchronous distributed
systems in particular are hard to implement correctly due to their multitude of indepen-
dently acting components. Model checking and synthesis represent two fully automated,
push-button approaches for developing correct implementations from mathematical pre-
cise and unambiguous formal models and specifications. Whereas model checking ver-
ifies whether a given implementation satisfies a correctness specification, the synthesis
approach derives a correct-by-construction implementation from a given specification.
Petri nets allow us to formally model asynchronous distributed systems, whereas the
branching-time temporal logic CTL∗ allows us to pose correctness requirements on the
temporal behavior of the system. For synthesis, Petri games consider a causal memory
model for the individual components of the asynchronous distributed system.
In this thesis, we introduce new modeling and specification formalisms based on Petri

nets, respectively Petri games, and CTL∗ that enable correctness requirements on the
unbounded local data flow in asynchronous distributed systems. The new formalisms are
tailored to separate the control flow of the system from the local data flow of the individ-
ual components. We provide solving algorithms for the corresponding model checking
and synthesis problems with a reasonable complexity, despite the unbounded data flow
and the components’ incomplete knowledge about their environment in causality-based
models. In particular, this enables us to introduce for the first time decision procedures
for the synthesis of Petri games with specifications beyond safety requirements. The
accompanying tool implementations for both approaches deal with the state explosion
problem either via a reduction to a hardware model checking problem in order to use
state-of-the-art algorithms and toolboxes provided in this setting or by using symbolic
BDD-based algorithms.

iii

Zusammenfassung

Die Korrektheit von informationstechnischen Systemen spielt aufgrund deren wach-
senden Einbindung in unser alltägliches Leben eine zunehmend wichtige Rolle und ist
nicht zuletzt für sicherheitskritische Systeme entscheidend. Insbesondere asynchrone
verteilte Systeme sind, aufgrund ihrer Vielzahl von unabhängig voneinander agieren-
den Komponenten, ohne computergestützte Analyseverfahren schwer korrekt zu imple-
mentieren. Die Modellprüfung (Model Checking) und die Synthese stellen dabei zwei
etablierte und vollautomatische Ansätze zur Entwicklung von korrekten Implementierun-
gen aus mathematisch präzisen und eindeutigen formalen Modellen und Spezifikationen
dar. Bei der Modellprüfung wird eine gegebene Implementierung daraufhin überprüft,
ob sie die Korrektheitsspezifikation erfüllt, wohingegen der Syntheseansatz aus einer
gegebenen Spezifikation eine korrekte Implementierung erzeugt. Petri-Netze ermöglichen
die formale Modellierung asynchroner verteilter Systeme, während die Logik CTL∗ es
ermöglicht Korrektheitsanforderungen an die zeitlichen Abläufe des Systems zu stellen.
Für die Synthese verwenden die Petri-Spiele ein kausales Gedächtnismodell für die einzel-
nen Komponenten des asynchronen verteilten Systems.

In dieser Arbeit führen wir, basierend auf Petri-Netzen bzw. Petri-Spielen und CTL∗,
neue Modellierungs- und Spezifikationsformalismen ein, die es ermöglichen, Anforderun-
gen an den unbeschränkten lokalen Datenfluss in asynchronen verteilten Systemen zu
stellen. Die neuen Formalismen sind darauf zugeschnitten, den Kontrollfluss des Sys-
tems vom lokalen Datenfluss der einzelnen Komponenten zu trennen. Wir stellen Lö-
sungsalgorithmen für die entsprechenden Modellprüfungs- und Syntheseprobleme zur
Verfügung, die trotz des unbeschränkten Datenflusses und des unvollständigen Wissens
der Systemkomponenten über die Umgebung des Systems in kausalitätsbasierten Mod-
ellen, eine angemessene Komplexität aufweisen. Insbesondere ermöglicht dies erstmals
Entscheidungsprozeduren für die Synthese von Petri-Spielen mit Spezifikationen jenseits
von Sicherheitsanforderungen. Die im Rahmen dieser Arbeit für beide Ansätze imple-
mentierten Tools behandeln das Problem der Zustandsraumexplosion entweder durch
eine Reduktion auf ein Hardware-Model-Checking-Problem, oder durch die Verwendung
von symbolischen BDD-basierten Algorithmen.

v

Acknowledgements

I am deeply indebted to so many wonderful people I was privileged to meet during
my time as a Ph.D. student. You have all made this journey such a special experience
and have been a constant source of support. So thank you so much, even if you are not
explicitly listed here by name!

I am very grateful to my supervisor Ernst-Rüdiger Olderog for his continuous support,
intensive discussions, and pleasant conversations. You have always made me feel that
you have confidence in me – be it in research or in teaching. This trusting environment
let me grow even beyond the working environment. Your love of correctness down to
the smallest detail has been an example to me. Bernd Finkbeiner, thank you so much
for accompanying and guiding me all these years and especially for welcoming me so
warmly into your group (not only for the time of my research stay). You are always full
of exciting ideas and energy such that working with you is a steady source of joy and
motivation. To all you people in Saarbrücken, thank you for taking me in and making
the time in Saarbrücken such a delightful experience. Especially, thank you so much,
Jesko! Our weekly video conferences were such a tremendous help professionally and
personally. I really enjoyed our travels, conferences, and holidays together.

Another big thanks goes out to my extended group in Oldenburg: Andrea, Björn,
Christoph, Christopher, Evgeny, Harro, Hein, Hendrik, Ira, Maike, Mark, Martin, Nick,
Nico, Nicolai, Patrick, Paul, Stephanie, Sven, Swami, Thomas, Tim, and Uli. Thank you
all for the pleasant working environment, discussions, conversations, and the inspiration.
Tim, you have paved the way for me to join the group and your dedication to teaching
was a never equaled role model for me. Sven, thank you so much for taking me by the
hand for my first steps in research and teaching! You were always there for my questions
and problems and I could always count on your opinion. Christopher, Hein, Nick, and
Paul thank you for always having an open door and for all these fruitful discussions.

Furthermore, I like to thank Martin Fränzle, Astrid Rakow, Eike Best, Annegret
Habel, and Oliver Theel for serving on my thesis committee and/or providing valuable
feedback in the other official talks about my thesis. Thank you Ann, Lukas, Moritz,
Muhammad, Paul, and Valentin for the joyful cooperation. It was a pleasure to be part
of your studies.

Many people have participated in this rollercoaster of emotions (not necessarily volun-
tarily) as friends, roommates, and more: Aline, Caro, Christopher, Daniel, Doro, Ellen,
Holger, Lea, Leo, Lobi, Lucia, Nick, Sebastian, Sven B., Sven L., Thomas, and Vero;
thank you so much for bearing with me, enduring my emotions, and having my back.
Lastly, I would like to thank my family for their unconditional support and for always
providing a safe haven. Thank you, Mum and Dad, for simply everything. Love you!

And finally, thank you so much Lana! Even though you were not yet born at the time
of writing this theses, you stood at the gates and pushed me to finally submit. Every
day you present me with a whole new and wonderful world! Thanks!

vii

Contents

1 Introduction 1

1.1 Model Checking . 2
1.2 Synthesis of Distributed Systems . 5
1.3 Contributions . 8

1.3.1 Part I: Model Checking Local Data Flows 8
1.3.2 Part II: Synthesis of Distributed Systems with Local Conditions . 9

1.4 Structure of the Thesis . 10
1.5 Publications . 11

I Model Checking Local Data Flows 15

2 Motivation 17

2.1 Software-Defined Networking . 18
2.2 Physical Access Control . 21

3 Models and Objectives 25

3.1 Petri Nets . 25
3.1.1 Definition . 25
3.1.2 Petri Net Unfoldings . 27

3.2 Kripke Structures . 30
3.3 Propositional Temporal Logics . 31

3.3.1 Branching-Time Temporal Logic CTL∗ 31
3.3.2 Linear-Time Temporal Logic LTL 32

3.4 Automata on Infinite Words and Trees 33

4 Petri Nets with Transits 39

4.1 The Model . 39
4.2 Data Flow Chains and Data Flow Trees 41

5 Model Checking Petri Nets with Transits against Flow-CTL
∗

45

5.1 LTL on Petri Net Unfoldings . 46
5.2 Flow-CTL∗ . 49
5.3 Reduction to Model Checking Petri Nets against LTL 51

5.3.1 Automaton Construction for Flow Formulas 52
5.3.2 From Petri Nets with Transits to Petri Nets 65
5.3.3 From Flow-CTL∗ Formulas to LTL Formulas 68

ix

5.4 Proofs and Formal Constructions . 71
5.4.1 Correctness of the Automaton Construction 71
5.4.2 Formal Construction of the Petri net N> and the Correctness . . 75

6 Model Checking Petri Nets with Transits against Flow-LTL 83

6.1 Flow-LTL . 84
6.2 Reduction to Model Checking Petri Nets against LTL 87

6.2.1 A Sequential Approach . 89
6.2.2 A Parallel Approach . 95

6.3 Petri Net Model Checking with Circuits 101
6.3.1 Construction of the Circuit . 101
6.3.2 Transformation of the Formula and the Correctness 103

6.4 Proofs and Formal Constructions . 104
6.4.1 Formal Construction of the Petri Net N>

» 105
6.4.2 Formal Construction of the Formula ϕ>» 107
6.4.3 Correctness Proof of the Reduction Technique 110
6.4.4 Correctness Proof of the Reduction to the Hardware Model Check-

ing Problem . 119
6.4.5 Formal Construction of the Petri Net N>

‖ 121

7 AdamMC – A Model Checker for Petri Nets with Transits 123

7.1 Application Areas and Workflow . 124
7.2 Optimizations . 125
7.3 Benchmarks . 126

8 Related Work 133

II Synthesis of Distributed Systems with Local Conditions 137

9 Motivation 139

9.1 Manufacturing . 140
9.2 Parcel Delivery System . 142

10 Models and Objectives 145

10.1 Infinite Games . 145
10.2 Petri Games . 147

11 Petri Games With Transits 153

12 Synthesis of Distributed Systems with Local Data Flows 159

12.1 Information Flow Game . 160
12.1.1 States . 162
12.1.2 Edges and Game . 164
12.1.3 Properties . 169

x

12.2 Transit Automata . 173
12.2.1 Existential Transit Automata . 174
12.2.2 Universal Transit Automata . 177
12.2.3 Local Flow-LTL . 180

12.3 Decision Procedure . 184
12.4 Proofs . 187

13 AdamSYNT – A Synthesis Tool for Petri Games 203

13.1 Symbolic Encoding . 203
13.2 Benchmarks . 205

14 Related Work 209

15 Adam – Analyzer of Distributed Asynchronous Models 213

15.1 Framework . 213
15.2 Web Interface . 215

15.2.1 The Model Checking Approach 215
15.2.2 The Synthesis Approach . 216
15.2.3 Implementation Details . 217

15.3 Command-line Interface . 217

16 Conclusion 219

16.1 Summary . 219
16.2 Future Work . 220

Bibliography 223

Symbols 257

General . 257
Model Checking . 257
Synthesis . 258

xi

1Introduction

The society’s dependency on Information Technology (IT) has increased rapidly in
recent decades. Computer systems have evolved from specialized tools for the few to
an indispensable part of our daily lives; sometimes even beyond notice. We use the
technologies, for example, quite naturally in our mobile phones or rely on their existence
by using high-speed trains as public transport. The correctness of such systems is crucial
and an extremely challenging task. While a malfunctioning mobile phone is at best only
annoying, a fault in the train’s emergency braking system can cause real harm. Although
the monetary aspect is of no relevance when human tragedies come into play, defective
systems can nevertheless cause high expenses. There are numerous popular examples
with severe consequences for the manufactures that have made it into global news like
the Ariane-5 and the Mars Climate Orbiter to name only two of the most popular and
most expensive ones [BK08].

Due to the constant availability of networks and the ever decreasing space requirements
of powerful devices, modern systems are increasingly composed of a huge number of
networked computers. Even if the system itself appears to be a single coherent unit,
the components of such a distributed system act autonomously [TS07]. To avoid a
constant communication of every single component with a central control, systems are
more and more decentralized. This comes with the cost of an incomplete knowledge of
the system’s components about the system’s environment. In asynchronous distributed
systems, the single independent components do not progress at a common fixed rate
as in a synchronous setting, but each component progresses at its own individual rate
between the synchronizations with others. This makes it particularly cumbersome to
implement algorithms for asynchronous distributed systems correctly, because between
synchronizations each component does not know exactly the current state of any other
component. However, especially in manufacturing there is a rising demand for the
development of local controllers and their mutual communication [Mis12; MH08].

The growth of these systems in size and complexity makes it even more challenging
for humans to correctly implement sound controllers. Consequently, this has increased
the demand for computer aided verification techniques. There are several approaches
for improving the development process to obtain correct systems, from testing [Kin76;
JVCS07] specific aspects of the system by carrying out experiments, to proving the sys-
tem’s correctness with semi-automatic theorem provers [NPW02; BC04; Kah07]. While
simulating and testing [Mye04] can show the existence of some bugs in the system by
making experiments, it is rarely possible to use these techniques to show the absence
of any faulty behavior due to the sheer amount of possibilities [CGP01]. Furthermore,

1

1 Introduction

the theory of computability with Turing’s halting problem [Tur37] and Rice’s theo-
rem [Ric53] directly shows the limitations of automatically verifying arbitrary systems,
when it is already undecidable by any algorithm whether an arbitrary program termi-
nates. Thus, computer aided verification techniques are always in the area of tension
between expressiveness and efficiency [CHV18].
The model-based verification techniques work on mathematical precise and unambigu-

ous descriptions of the system’s behavior and correctness requirements [BK08]. Thus, in
a first step, such formal models have to be created from the often only informally avail-
able system design. This leads to the validation problem, i.e., the problem of judging
whether we have correctly constructed the formal model and correctness specifications
from the informal design. Consequently, the result of the algorithm for the correctness
analysis can just be as good as the provided input [BK08]. Creating such inputs is a
major challenge and far from trivial [Roz16]. Therefore, suitable modeling formalisms
tailored to the nature of the problems under consideration are of great importance.
This thesis contributes to developing asynchronous distributed systems correctly by

following two well-established, fully automated, push-button approaches: model check-
ing and synthesis. The basic idea of model checking [CE81; QS82] is, given a finite-state
system (the implementation) and a specification stating the system’s correctness require-
ments, to exhaustively explore the system’s state space and to return a counterexample
trace when the property is violated (see Sec. 1.1). For synthesis [Chu57; Chu62], this
implementation is automatically generated from the given specification. This allows the
developer to focus on the behavior of the system at an abstract level by writing speci-
fications, instead of getting lost in the details of how to actually implement the desired
features. This results in implementations that are correct-by-construction and avoids
the error-prone task of manually coding implementations (see Sec. 1.2).

1.1 Model Checking

Model checking is a framework for verifying finite-state concurrent systems that has
been independently developed in the early 1980s by Clarke and Emerson [CE81] and by
Queille and Sifakis [QS82]. It is based on a model describing how the system actually
behaves and a specification prescribing what the desired behavior of the system is. Thus,
the practical process first requires the user to define a formal model of the system
description which incorporates all possible behavior of the system in an unambiguous
way. Second, the requirements for the system under consideration must be formalized in
a mathematically precise specification. Given these input parameters, the model checker
can then fully automatically determine whether the model satisfies the specification, and,
in case of a violation of the requirements, provides a counterexample trace allowing to
diagnose the faulty behavior. This process is visualized in Fig. 1.1.
In principle, model checking is a fully automated push-button technique. This means

that different to, e.g., the deductive reasoning with theorem provers, no human inter-
action or expert knowledge is necessary in the process of verifying whether the given
system satisfies the given specification. In the classical form, model checking consists of

2

1.1 Model Checking

System
description Model M

System
requirements Specification ϕ

Model
checker

M |= ϕ

3

7
(CEX)

modeling

formalizing

Fig. 1.1: Schematic overview of the model checking procedure. First, a model is con-
structed from the actual system and the requirements for the system are formalized in
a specification. Triggering the model checker fully automatically determines whether the
model satisfies the specification. In the negative case a counterexample (CEX) trace of
the model is provided witnessing the violating behavior.

three basic components [CHV18; CW14]:

Modeling Formalism: Typically, the system under consideration is given in some de-
scription language and is not already in the mathematical format expected by the
model checking algorithms. Thus, the first task is to create the model M such
that it can be captured by the algorithms. In many cases this step can be done
automatically [CGP01]. Classically, the model M is a finite-state automaton or
a Kripke structure with finitely many states and transitions. Information like the
current state of the system’s variables distinguish the states of the model, whereas
the evolving of the system from one state to another is determined by its transi-
tions [CHV18; BK08].

Specification Language: Usually, some logic based on temporal logic is used as spec-
ification language for model checking [CW14]. Temporal logic enriches classical
propositional logic with operators referring to the system’s behavior over time. As
a result we can state properties like “eventually something good happens”, “some
bad situation never arises”, or “under specific circumstances some behavior occurs
infinitely often”. Probably the most prominent representatives of temporal logics
are the branching-time temporal logic (CTL∗) [EH86] and their syntactic fragments
linear-time temporal logic (LTL) [Pnu77] and computation tree logic (CTL) [CE81].
A main challenge in defining specifications is to cover all the requirements that the
system should satisfy [CGP01].

Verification Algorithm: Generally, an exhaustive examination of the entire state space
is performed by the algorithms to answer the question whether the finite-state
structure M is a model of the formula ϕ specifying the requirements [CW14].
This is denoted by M |= ϕ and constitutes the origin of the name model check-
ing [Cla08]. Due to the exponential size of the state space, the state-explosion
problem, a main challenge for the verification algorithms is to scale to real-life
problems [CHV18].

3

1 Introduction

For distributed systems, the model description is typically given implicitly as a product
of the individual components that may synchronize on certain points. Especially the dif-
ferent schedules of the asynchronous concurrent components, called interleavings , lead
in general to an exponential state space when multiplying out the explicit behavior of
the system. This state-explosion problem constitutes one of the main obstacles to model
checking in practice [CGJL+01; DLS06]. To tackle this problem, model checking algo-
rithms are often combined with methods like structural reductions, symbolic algorithms,
or abstraction techniques [CHV18].
Instead of explicitly enumerating all the states and transitions of the system, symbolic

algorithms implicitly represent the state space and the transition relation in a symbolic
way through sets. Specialized data structures have been developed for providing compact
representations with efficient operations for such set-based approaches. Ordered binary
decision diagrams (BDDs) are a well-established and effective data structure based on
Boolean functions which has already been used for the first symbolic model checkers
for finite-state systems [CG18]. For structural reductions , the structure of the model
description with its implicitly given behavior is exploited. For example, the investiga-
tion can be restricted to one of the symmetric behaviors for symmetry reductions [ES93;
CFJ93; ID93] or it can only be focused on specific interleavings for partial order reduc-
tions [Pel18]. Such structural reductions preserve all relevant aspects of the system’s
behavior. Hence, the original system satisfies the specification if and only if the reduced
one does. For abstractions we are loosening this requirement. Though the original sys-
tem still satisfies the specification if the abstraction does, the original system does not
necessarily not satisfy the specification if the abstraction is not verified. So, for abstrac-
tions, the model under consideration is represented by another one that is preferably
easier to analyze, but at the same time preserves enough information of the original
system to guarantee the above mentioned property. Counterexample-guided abstraction
refinement (CEGAR) [BS93; Kur14; CGJL+00] iteratively generates such abstractions
with increasing precision driven by the abstract counterexamples. Thus, whenever model
checking the abstraction yields a counterexample which is no counterexample for the ver-
ification of the original system (called spurious), this spurious counterexample is used
to create the refined abstraction for the next step [DKW08].
Generating counterexamples automatically is one of the key features of model check-

ers and an especially effective one for convincing system engineers to use formal meth-
ods [CV03]. The diagnostic feature of having an actual execution of the model leading
to a state of the system violating some property makes counterexamples so beneficial.
Since counterexamples often consist of only a small number of states, they are generally
more accessible than the huge state space of the system [CV03] and can make a useful
contribution to the validation problem by revealing errors in the design of the system
and its specifications. Bounded model checking (BMC) [BCCZ99; BCCF+99] makes use
of counterexamples by restricting the bug finding procedure to counterexamples with
length up to a given bound. BMC is a very efficient method for finding minimal coun-
terexamples, especially when for example the BDD generation of symbolic algorithms
already exceeds the available memory [CV03]. However, due to its bounded nature, BMC
can only verify the absence of bugs for systems where iteratively increasing the bound

4

1.2 Synthesis of Distributed Systems

results in reaching some completeness threshold [CKOS04]. This completeness threshold
means that when there is a counterexample, then there is already a counterexample of
length shorter than the given threshold.

Over the years, a multitude of model checking tools have emerged for a variety of
application domains and programming languages (e.g., EMC [CES86], SMV [McM93;
BCMD+92], SPIN [Hol97; Hol05], JAVA PathFinder [HP00; BHPV00] (uses SPIN),
NuSMV [CCGR00], CMC [MPCE+02], CBMC [CKL04], ZING [AQRX04]) and this
list is still constantly growing (e.g., GenMC [KV21], Pono [MILY+21], Hyper-
Prob [DÁBB21], Intrepid [Bru21]). The increasing tool support has enabled the
successful application of model checking to various examples of both theoretical and
practical nature [BCMD90; HS96; HJMS03; CFIP+13; CW14; HS99; PB15; BK08].

1.2 Synthesis of Distributed Systems

Reactive synthesis [Chu57; Chu62] addresses the correctness problem from a different an-
gle than verification. Whereas verification approaches check the correctness of the given
implementation with respect to a given specification, synthesis approaches automatically
derive the implementation from the given specification or state their non-existence. This
results in implementations that are correct-by-construction. Hence, with the synthesis
approach, the developer can focus on what the features of the system should be, rather
than how these features are realized by actually implementing them. This shifts the
error-prone task of manually writing code that implements the specification of the sys-
tem to the development of specifications, i.e., going from the imperative to the declarative
level [BCJ18].

The question of whether such an implementation exists for a given specification and
the corresponding decidability problem are called the realizability problem. Originally,
this question was posed by Alonzo Church [Chu57] for specifications formalized in the
monadic second-order logic of one successor (S1S) and for the synthesis of reactive
systems. In reactive systems [HP84], the system continuously interacts with its envi-
ronment. In an unpublished technical report [McN65], McNaughton, based on the work
of Gale and Stewart [GS53], proposed a game-theoretic treatment of Church’s prob-
lem [Tho09]. One first solution to this problem was introduced by Büchi and Landwe-
ber [BL69] by following this suggestion. Another solution was independently introduced
by Rabin [Rab69] following an automata-theoretic approach.

In game-based synthesis [BL69], the synthesis problem is formulated as an infinite
game over a finite graph between two players. One player, representing the system, tries
to satisfy the given specification, whereas the other player, representing the environ-
ment , attempts to provoke a violation. The states of the game are the vertices in the
graph, which is called the game arena. Each vertex is uniquely associated to either the
environment or the system. A play on the arena proceeds in rounds. In each round
the player associated to the current vertex chooses the successor vertex with respect to
the edges of the graph. The player can make this decision completely informed about
the game arena and all turns taken so far. In reactive systems, such plays are generally

5

1 Introduction

of infinite duration. Thus, the games under consideration are infinite in the sense of
the plays, but finite in the sense of the state space, i.e., of the game arena on which
they are played. A strategy for the system player to win the game against all behav-
ior of the environment constitutes an implementation that is guaranteed to satisfy the
specification [Fin16; BCJ18].
Church’s original question was posed for systems that can be considered as a single

coherent unit. In this scenario the synthesized implementation represents one central
controller of the system. A main challenge of this so-called monolithic synthesis is the
complexity of the algorithms. One way to tackle this problem is to reduce the complexity
of the input specification language while remaining sufficiently expressive to formalize
interesting problems [Fin16]. A widely used specification language is GR(1) [PPS06;
BJPP+12] (for generalized reactivity of rank 1). While early algorithms suffered from
a nonelementary complexity for S1S specifications [Sto74] and later algorithms from a
double-exponential complexity for specifications in linear temporal logic (LTL) [PR89a],
the GR(1) fragment of LTL can be solved in polynomial time in the size of the state
space (which is usually single-exponential) and allows for a symbolic BDD representa-
tion [BJPP+12]. Another way to reduce the complexity is to impose a restriction on the
size of the constructed implementations. In bounded synthesis [SF07; FS13] the immense
search space for a solution to the synthesis problem is traversed in a structured way in
order to identify small and thus easier-to-find solutions.
All this has fostered the emergence of a variety of tools for the monolithic synthesis

(e.g., Anzu [JGWB07], Unbeast [Ehl11], RATSY [BGHK+12], Acacia+ [BBFJ+12],
slugs [ER16], BoSy [FFT17], ltlsynt [MC18], Strix [MSL18]) with an annual
synthesis competition [JBCF+19]. Furthermore, the synthesis algorithms and tools have
been successfully applied to real-world design problems like the formal specifications
for an AMBA AHB Arbiter and the synthesis of its circuit [BGJP+07a; BGJP+07b;
GCH13].
Nowadays, most reactive systems are not made up of a single unit, but consist of

several independent and distributed components, each of which may have incomplete
information about the other components. In this setting, the synthesis of distributed
systems [PR90; MT01; KV01a] constructs a set of implementations, one for each system
component, rather than deriving a single implementation as is the case for the monolithic
setting. The implementations must collectively satisfy the given specification of the
distributed system. One of the main challenges here is to find out when and how much
information the individual processes need to exchange to satisfy their goal [Fin16].
Figure 1.2 provides an overview of the general synthesis process for distributed sys-

tems. Given a description of the distributed system and the desired requirements, the
input elements for the synthesizer are constructed to obtain mathematical precise ob-
jects processable by the tool. Typically, such constructed specifications consist of a
single temporal logic formula. However, from an engineering perspective, it may be
beneficial to model the general possibilities of the system’s architecture separately from
the requirements the system should satisfy. This difference is more of a technical na-
ture, since in general the requirements for the architecture can also be expressed within
the logical formula [BCJ18]. Given the specification, the synthesizer checks whether an

6

1.2 Synthesis of Distributed Systems

Distributed Sys.:

Architecture
description

Specification:

Distributed
Model

System
requirements Formula

Synthesizer

Implementation
(Local Controllers)

Unrealizable

modeling

formalizing

3

7

Fig. 1.2: Schematic overview of the synthesis of distributed systems. The description of a
distributed system is first formalized in the input language of the synthesizer. For exam-
ple, such a specification may consist of only a single temporal logic formula. Then, if such
an implementation exists, the synthesizer fully automatically derives local controllers for
each process of the distributed system that collectively satisfy the given specification.

implementation exists that satisfies the specification. If this is the case, it fully auto-
matically derives an implementation consisting of local controllers for each component
of the distributed system that satisfies the specification.

The generalization of Church’s problem for reactive monolithic systems to distributed
systems is called the distributed synthesis problem. This problem was introduced and
shown to be in general undecidable by Pnueli and Rosner [PR90] in a synchronous set-
ting. Despite the undecidability of the problem in general, there are also decidability
results for restricted architectures. For example, for pipeline architectures [PR90], two-
way pipeline and one-way ring architectures [KV01a], the decidability of the distributed
synthesis problem is known. Generally, Finkbeiner and Schewe showed the decidabil-
ity for all architectures without information forks [FS05]. In the asynchronous setting,
the consideration of a causal memory model, i.e., during a synchronization the dis-
tributed components exchange their complete causal past, enabled further decidability
results [GLZ04; GGMW13; MW14; Gim17].

The synthesis part of our work builds on Petri games [FO14; FO17], a causality-based
multi-player game model for the synthesis of asynchronous distributed systems with a
local safety objective. Petri games are based on Petri nets [Pet62] in the way that the
players of the game are the tokens in the net. In Petri games there are two teams: the
environment players and the system players. The common goal of the system players is to
collaborate in such a way that each player satisfies their local safety specification against
all possible behavior of the environment players. A winning strategy of the system
players consists of a correct local controller for each system player. Finding such solutions
is non-trivial because at any time in the game the players may have a different level of
informedness about the other players and the global state of the system. Furthermore,
depending on the players’ choices for synchronizations, this level may change dynamically
over the time. Despite being undecidable in general [FO14], there exist subclasses of
Petri games where the distributed synthesis problem is decidable [FO14], even when the

7

1 Introduction

specification is extended to a global safety condition [FG17; FGHO22]. For example, for
Petri games with one environment player, a bounded number of system players, and a
local safety objective, the problem is EXPTIME-complete [FO14].

1.3 Contributions

This thesis contributes to the development of asynchronous distributed systems and their
correctness analysis in terms of model checking and synthesis. The main contributions
are structured in two parts. On the one hand, we introduce a model and a specification
language for the local data flow of processes in asynchronous distributed systems and
provide model checking algorithms for verifying the correctness of such systems. On
the other hand, we extend the previous model and specification language to enable the
synthesis of asynchronous distributed systems with causal memory and introduce solving
algorithms to automatically generate correct implementations of local controllers for the
processes in the system. To show the practical applicability, both parts are accompanied
with tool support.

1.3.1 Part I: Model Checking Local Data Flows

We introduce a new framework for model checking asynchronous distributed systems
with local data flows. Our model is based on Petri nets [Pet62], a well-established model
for asynchronous distributed systems, and on the temporal logic CTL∗ [EH86] and its
fragment LTL [Pnu77], which are commonly used in model checking. The main objective
is to have a convenient modeling technique that separates the global configuration of
the system and the local data flow of the processes in the system, while providing viable
model checking algorithms at an affordable cost.
Petri nets with transits [FGHO19a] allow for this separation by augmenting the flow

relation of standard Petri nets with a so-called transit relation. The global configuration
of the system and its control are specified with a standard Petri net, whereas the local
data flow of the processes is specified with the transits. As an example, consider a
computer network with a number of switches forwarding data packets according to some
routing configuration. The routing process and possible updates to its configuration
represent the global control, while the forwarding process of the unbounded number of
packets, which may enter the network at any time, represents the data flow.
Flow-CTL∗ [FGHO20c] allows us to use LTL to reason about the global behavior of the

system, e.g., to define maximality and fairness assumptions, and allows us to use CTL∗
to specify the correctness of the local data flow of the corresponding runs. As a result,
a specification is composable of individual requirements for the data flow depending
on different control runs. In the networking scenario, for instance, the developer can
focus with separate specifications on different concurrent update routines for the routing
process. The model checking algorithms then ensure that rolling out these updates does
not cause any packet loss or forwarding loops in the network.

8

1.3 Contributions

We provide dedicated model checking algorithms for the different features of the tem-
poral logic Flow-CTL∗. For the linear-time fragment Flow-LTL [FGHO19a] the al-
gorithm has a single-exponential time complexity. Many requirements of real-world
problems can be expressed with linear-time specifications. For example, the desired re-
quirements of the networking scenario in this thesis are defined using Flow-LTL. The
desired requirements for the other application domain introduced in this thesis, access
control policies for physical spaces, are expressed in the branching-time fragment Flow-
CTL [FGHO20c]. Here, the data flow represents the possible paths of people in a build-
ing. The corresponding model checking algorithm provided has a double-exponential
time complexity. For the complete Flow-CTL∗ logic, the provided algorithm has a
triple-exponential time complexity.

The problem of checking whether a Petri net with transits satisfies a Flow-CTL∗ for-
mula is reduced to the problem of checking whether a standard Petri net satisfies an LTL
formula. For Flow-CTL∗ and Flow-CTL, this reduction employs a sequence of automata
constructions for each individual requirement on the data flow. For Flow-LTL, we pro-
vide two different algorithms which both avoid the expensive automata constructions.
The first construction constitutes a single-exponential time algorithm which composes
suitable subnets in a sequential order [FGHO19a]. The second construction composes
the subnets in a parallel manner resulting in a double-exponential time algorithm for
specifications with more than one individual requirement on the data flow [FGHO20a].
However, the second exponent is only dependent on the number of individual require-
ments on the data flow used in the formula. For the examples from the networking
scenario with specifications having few individual local data flow requirements, this ap-
proach still significantly outperforms the sequential one.

Lastly, we further reduce the model checking problem for safe Petri nets and LTL with
places and transitions as atomic propositions to a hardware model checking problem by
encoding the Petri net in a circuit [FGHO19a]. Thereby, we can use the state-of-the-art
algorithms and toolboxes provided in this setting to solve our initial model checking prob-
lem. By implementing the algorithms in the tool AdamMC [FGHO20a; GHY21] we
could verify and falsify example specifications for concurrent update routines in network
topologies. The tool focuses on the approaches regarding the Flow-LTL specifications,
but still provides algorithms for Flow-CTL specifications in an early development state.

1.3.2 Part II: Synthesis of Distributed Systems with Local Conditions

Based on the results of the previous part, this part moves from verification to syn-
thesis. We introduce a new framework for the synthesis of asynchronous distributed
systems with causal memory and local data flows. This model, called Petri games with
transits, combines the features of Petri games [FO14; FO17] and Petri nets with tran-
sits [FGHO19a]. In Petri games, the tokens carry the information about their causal
past as they flow through the net. This information may be used by the players to
decide for their next moves. In Petri games with transits, the data flow defines a second
layer of information flow. This layer is used to specify the correctness requirements of
the system.

9

1 Introduction

As winning objectives, the new specification language allows for existential, i.e., check-
ing whether there is a flow in the system satisfying the objective, and universal con-
ditions, i.e., checking whether all flows in the system satisfy the objective. We define
safety, reachability, Büchi, co-Büchi, and parity conditions. Furthermore, we restrict the
specification language Flow-LTL [FGHO19a] from the previous part to its local fragment
and extend it with the existential view. We thereby provide a specification language for
reasoning about temporal constraints on the local data flow of the processes.
We solve the synthesis problem with local specifications for 1-bounded Petri games

with transits that have one environment player, a bounded number of system players,
and no mixed communication, i.e., a system player must never offer a communication
with the environment and at the same time allow to proceed independently with other
system players. This enables us for the first time to solve Petri games with winning
conditions that go beyond safety requirements. Moreover, Petri games with transits
allow for an unbounded number of data flows. While an unbounded number of tokens
makes Petri games [FO17] (and therewith Petri games with transits) undecidable, due
to the data flow, Petri games with transits provide unbounded features with a decidable
synthesis problem.
The synthesis problem for Petri games with transits and local winning objectives is

reduced to the synthesis problem of a two-player game over a finite graph with complete
information. The reduction method detaches the treatment of the causal memory model
in the complete information game from the treatment of the local specifications. This
separation and the generality of the proofs facilitates extensibility to further winning
conditions. The complexity of the synthesis algorithm depends on the winning condition
of the Petri game with transits. For the existential and universal winning conditions,
the synthesis problem for Petri games with transits is EXPTIME-complete. For local
Flow-LTL, the complexity is single- or double-exponential in the size of the Petri game
with transits and double- or triple-exponential in the size of the formula, depending
on whether a mixture of existential and universal local flow specifications is used in
the formula.
The tool AdamSYNT [FGO15; FGHO17; GHY21] provides BDD-based algorithms

for solving the distributed synthesis problem for 1-bounded Petri games with one envi-
ronment player, a bounded number of system players, no mixed communication, and
a local safety objective. Furthermore, we developed algorithms for high-level Petri
games [GO21], a succinct representation of sets of Petri games, exploiting the sym-
metries in the system [GOW20; GW21a; GW20] and provide BDD-based algorithms for
subclasses of Petri games with transits in an early development state.

1.4 Structure of the Thesis

The two parts of the thesis are structured analogously. Each part starts with an infor-
mal motivation to intuitively introduce the setting of the respective part (Chap. 2 and
Chap. 9). Hereafter, Chap. 3 and Chap. 10 introduce established concepts on which we
base the approaches of the corresponding parts and provide pointers to the literature

10

1.5 Publications

where the concepts are presented and explained in more detail. The reader familiar
with these concepts can skip these chapters and use them as a reference in particular
for the notations used in this thesis. Chapter 4 and Chap. 11 introduce the new model
used in the corresponding parts, whereas the following chapters (Chap. 5, Chap. 6,
and Chap. 12) contain the decision procedures for solving the respective problems. To
improve readability, the latter chapters each contain a separate section with detailed
proofs and further formal definitions. The penultimate chapters (Chap. 7 and Chap. 13)
provide insights into the respective tool development, whereas Chap. 8 and Chap. 14
present the related work corresponding to the respective part. Chapter 15 gives a brief
overview of the common framework of the previously mentioned tools and introduces
the web interface of the unified tool.

1.5 Publications

The present thesis is based on the following peer-reviewed publications:

[FGO15] Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog. “Adam:
Causality-Based Synthesis of Distributed Systems”. In: Computer Aided
Verification - 27th International Conference, CAV 2015, San Francisco,
CA, USA, July 18-24, 2015, Proceedings, Part I. 2015, pp. 433–439. doi:
10.1007/978-3-319-21690-4_25.

[FGHO17] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and
Ernst-Rüdiger Olderog. “Symbolic vs. Bounded Synthesis for Petri
Games”. In: Proceedings Sixth Workshop on Synthesis, SYNT@CAV
2017, Heidelberg, Germany, 22nd July 2017. 2017, pp. 23–43. doi:
10.4204/EPTCS.260.5.

[FGHO19a] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and
Ernst-Rüdiger Olderog. “Model Checking Data Flows in Concurrent Net-
work Updates”. In: Automated Technology for Verification and Analysis
- 17th International Symposium, ATVA 2019, Taipei, Taiwan, October
28-31, 2019, Proceedings. 2019, pp. 515–533. doi: 10.1007/978-3-
030-31784-3_30.

[FGHO20a] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and
Ernst-Rüdiger Olderog. “AdamMC: A Model Checker for Petri Nets with
Transits against Flow-LTL”. In: Computer Aided Verification - 32nd In-
ternational Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part II. 2020, pp. 64–76. doi: 10.1007/978-3-
030-53291-8_5.

11

https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.4204/EPTCS.260.5
https://doi.org/10.1007/978-3-030-31784-3_30
https://doi.org/10.1007/978-3-030-31784-3_30
https://doi.org/10.1007/978-3-030-53291-8_5
https://doi.org/10.1007/978-3-030-53291-8_5

1 Introduction

[FGHO20c] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and
Ernst-Rüdiger Olderog. “Model Checking Branching Properties on Petri
Nets with Transits”. In: Automated Technology for Verification and Anal-
ysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam, Oc-
tober 19-23, 2020, Proceedings. 2020, pp. 394–410. doi: 10.1007/978-
3-030-59152-6_22.

[GHY21] Manuel Gieseking, Jesko Hecking-Harbusch, and Ann Yanich. “A Web
Interface for Petri Nets with Transits and Petri Games”. In: Tools and
Algorithms for the Construction and Analysis of Systems - 27th Inter-
national Conference, TACAS 2021, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2021, Luxem-
bourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part II.
2021, pp. 381–388. doi: 10.1007/978-3-030-72013-1_22.

[GO21] Manuel Gieseking and Ernst-Rüdiger Olderog. “High-Level Representa-
tion of Benchmark Families for Petri Games”. In:Model Checking, Synthe-
sis, and Learning - Essays Dedicated to Bengt Jonsson on The Occasion
of His 60th Birthday. 2021, pp. 115–137. doi: 10.1007/978-3-030-
91384-7_7.

Parts of the thesis are additionally based on the corresponding full versions of some of
the papers mentioned above [FGHO20d; FGHO20b; FGHO19b]. Furthermore, the tool,
which was developed accompanying this thesis, is additionally based on the following
peer-reviewed publications:

[GOW20] Manuel Gieseking, Ernst-Rüdiger Olderog, and Nick Würdemann. “Solv-
ing high-level Petri games”. In: Acta Informatica 57.3-5 (2020), pp. 591–
626. doi: 10.1007/s00236-020-00368-5.

[GW21a] Manuel Gieseking and Nick Würdemann. “Canonical Representations for
Direct Generation of Strategies in High-Level Petri Games”. In: Appli-
cation and Theory of Petri Nets and Concurrency - 42nd International
Conference, PETRI NETS 2021, Virtual Event, June 23-25, 2021, Pro-
ceedings. 2021, pp. 95–117. doi: 10.1007/978-3-030-76983-
3_6.

Again, there is a corresponding more detailed full version [GW21b] of the last paper.
Most of the publications arose in the context of a joint project of Bernd Finkbeiner

and Ernst-Rüdiger Olderog on “Petri games”, funded by the German Research Foun-
dation (DFG). In particular, this project led to Jesko Hecking-Harbusch’s disserta-
tion [Hec21] and to this thesis.
In the papers regarding the model checking approach, i.e., [FGHO19a; FGHO20a;

FGHO20c], the main contributions of the author of this thesis refer to the development
of the model, the reduction methods, and the implementation of the approaches. These
parts do not appear in [Hec21].

12

https://doi.org/10.1007/978-3-030-59152-6_22
https://doi.org/10.1007/978-3-030-59152-6_22
https://doi.org/10.1007/978-3-030-72013-1_22
https://doi.org/10.1007/978-3-030-91384-7_7
https://doi.org/10.1007/978-3-030-91384-7_7
https://doi.org/10.1007/s00236-020-00368-5
https://doi.org/10.1007/978-3-030-76983-3_6
https://doi.org/10.1007/978-3-030-76983-3_6

1.5 Publications

The paper [GHY21] introduces the web interface for the model checking and the
synthesis approach. Ann Yanich has been an undergraduate student employed on the
joint project and supervised by the author of this thesis. For the implementation part of
the paper, she developed the web front-end, the infrastructure, and the communication
with the web server1 as part of her contract, while the author of this thesis implemented
the necessary interfaces and features in the back-end for turning the command-line tools
into libraries usable for interactive tools.

The main contribution of the author of this thesis to the papers regarding the synthesis
approach, i.e., [FGO15; FGHO17], is the development and implementation of the BDD
algorithms and the benchmark suites for the decision procedure for the synthesis of 1-
bounded Petri games with one environment player, a bounded number of system players,
and a local safety objective.

For the paper [GO21], the main contribution of the author of this thesis is the develop-
ment of high-level representations for these benchmark suites. For the implementation
exploiting the features of these representations (presented in [GOW20; GW21a]), Lukas
Panneke, another undergraduate student employed on the joint project and supervised
by the author of this thesis, later implemented parsers and renderers for these so-called
high-level Petri games. The main contributions of the author of this thesis to the pa-
pers [GOW20; GW21a], whose theoretical and practical results are not part of this thesis,
but contributed to the accompanying tool, are the experimental results, benchmarks, and
the implementation in AdamSYNT.

1https://github.com/adamtool/webinterface

13

https://github.com/adamtool/webinterface

Part IModel Checking Local Data Flows

Contents
2 Motivation 17

3 Models and Objectives 25

4 Petri Nets with Transits 39

5 Model Checking Petri Nets with Transits against Flow-CTL
∗

45

6 Model Checking Petri Nets with Transits against Flow-LTL 83

7 AdamMC – A Model Checker for Petri Nets with Transits 123

8 Related Work 133

15

2Motivation

In this chapter we introduce a new framework for model checking the local data flow
in asynchronous distributed systems at an intuitive level. The model is called Petri
nets with transits [FGHO19a] and the corresponding specification language is called
Flow-CTL∗ [FGHO20c]. For Petri nets with transits, the formal definitions are given
in Chap. 4 and for Flow-CTL∗ in Sec. 5.2. We motivate the formalisms by consider-
ing two application domains: software-defined networking and access control policies in
physical spaces.
Petri nets with transits are based on Petri nets [Pet62; Rei13], a well-established model

for asynchronous distributed systems. In a Petri net, tokens represent the distributed
processes of the system. They flow independently through the net until synchronizing
with others. The synchronizations determine the possible behavior of the global system.
Here, we call this flow relation the control flow. For example, the update routines of
the routing configuration in a software-defined network can be modeled in a distributed
manner with the control flow relation. Petri nets with transits refine this flow relation to
additionally incorporate the local data flow. In the networking example, the forwarding
process of the unbounded number of packets, which may enter the network at any time,
can be represented by the local data flow.
Flow-CTL∗ is a temporal logic based on the branching-time temporal logic CTL∗ [EH86;

CHVB18]. Temporal logics can be used to make statements about the temporal con-
straints of the system. For example, it can be specified that a formula should eventually
hold at some point in time or should globally hold for all points in time. Flow-CTL∗ is
composed of CTL∗ and its linear-time fragment linear-time temporal logic (LTL) [Pnu77;
CHVB18]. CTL∗ is used to reason about the local data flow, whereas LTL is used to
reason about the global configuration of the system, i.e., the control flow. This allows
us to select specific runs of the system, e.g., those adhering to fair schedulings, and
to only check the correctness of the selected runs with respect to the data flow. For
instance, a network administrator can focus on different concurrent update routines for
the routing process with separate specifications. The model checking algorithm then
ensures that rolling out these updates does not cause any packet loss or forwarding loops
in the network. Interestingly, the separation of the different aspects of the system yield
different timelines for checking the control part of the formula and the local data flow
parts. For the control, every step of the global system has to be considered, whereas for
each local data flow, only those steps are relevant that involve the own flow and do not
belong to some concurrent behavior.

17

2 Motivation

In Sec. 2.1, we consider software-defined networking (SDN) [MABP+08; CFG14] as
application domain for linear-time specifications, i.e., the fragment Flow-LTL of Flow-
CTL∗ examined in Chap. 6. Here, we allow for global, overlapping, and concurrent
update routines for the routing process in networks. The correctness is stated on the
local flow of the data packets in the system to, e.g., prevent data loss or forwarding
loops. For the branching specifications examined in Chap. 5, access control for physical
spaces [FTFO12; FCS11] is considered as application domain in Sec. 2.2. Here, we allow
for concurrent update routines of the door policies. People roaming through a building
are considered as the local data flow of the system. The correctness is, for example,
stated in the sense that there must always be a way to the emergency exit, or forbidden
areas are only permitted for persons belonging to the access-authorized status group.
This chapter is based on the ideas presented in [FGHO19a; FGHO20c].

2.1 Software-De�ned Networking

The networking technology software-defined networking (SDN) [MABP+08; CFG14]
decouples the routing process, i.e., where the packets are sent to, called the control
plane, from the data plane, i.e., the actual packet forwarding process. On the control
plane, an update to the routing configuration can be initiated by a central controller and
is then implemented in a distributed manner in the network. Correctly implementing
concurrent updates is a serious challenge. Even though it is desirable to implement
the update as concurrent as possible, some switches have to be updated in a sequential
manner to, e.g., prevent the loss of packets or forwarding loops.
Consider for example the networking update problem depicted in Fig. 2.1 based

on [FMW16]. The topology with five switches A,C,P,S, and L is given in Fig. 2.1c
as circles and their physical connections are depicted by black edges. The initial config-
uration is given in Fig. 2.1a in a simplified syntax based on [MRFR+13; FHFM+11] and
is depicted with solid blue arrows in Fig. 2.1c, whereas the final configuration is given in
Fig. 2.1b and is depicted by dashed orange arrows. So all data is entering the network
in switch A (ingress={A}) and leaves the network in switch C (egress={C}).
Each forwarding, e.g., in the initial configuration all data is forwarded from switch A to
switch S (A.fwd(S)), is depicted by arrows in Fig. 2.1c. An update routine has the
purpose to restructure the network from the initial configuration to the final configura-
tion. When rolling out the update concurrently in any order, the network could have
an intermediate configuration where the packets loop between switches P and L. This
routing loop occurs when the update of switch P is implemented before the update of
switch L. This problem would eventually be resolved when switch L is finally updated
but due to the asynchronicity of the update there are no guarantees on when this will
happen. To avoid this undesired behavior, a correct update is given with

upd(A.fwd(P)) || (upd(L.fwd(C)) » upd(P.fwd(L))). (2.1)

This means that the update of switch A (depicted by upd(A.fwd(P))) is done con-
currently (depicted by ||) to the sequential update of first updating switch L and then

18

2.1 Software-Defined Networking

ingress={A}
A.fwd(S)
S.fwd(P)
P.fwd(C)
L.fwd(P)
egress={C}

(a) The initial con-
figuration of a net-
work topology.

ingress={A}
A.fwd(P)
S.fwd(P)
P.fwd(L)
L.fwd(C)
egress={C}

(b) The final config-
uration of a network
topology.

S
Student Service
Center (SSC)

A

A4

P

Presidential
Board

L
Library

C

Central
Administration

(c) A network topology with the ini-
tial (blue/solid) and final routing (or-
ange/dashed) depicted.

Fig. 2.1: A network topology with an initial and a final configuration for routing the data
packets through the network.

switch P (depicted by »). The notation is based on [MRFR+13].
With Petri nets with transits we can model such topologies, configurations, and up-

dates and with Flow-LTL we can express standard networking properties like loop free-
dom, drop freedom, connectivity, and packet coherence. In Chap. 6 we show generally
how to model check Petri nets with transits against Flow-LTL and by that we can also
verify the correctness of such concurrent overlapping updates in software-defined net-
working. Rather than only model checking the initial and the final configuration, this
routine also checks every configuration inbetween. This means that due to the higher
complexity of model checking each configuration, we can spare the implementation costs
for ensuring additional properties like consistency. The consistency property [RFRS+12]
restricts the system such that each packet is only allowed to be either transmitted via
the initial or the final configuration. This can be ensured, e.g., by tagging the packets
with their configuration identifier and keeping the entries for the old configurations in
the routing table after the update. With the overlapping updates we drop this restriction
and additionally permit that the packets can be transmitted via any mixture of these
configurations.

In Fig. 2.2 we show two patterns how to create a Petri net with transits for software-
defined networking. The circles are called places, the squares transitions, and the dots
tokens. A transition can fire (or is enabled), when all predecessor places connected via
the black arrows contain a token. When an enabled transition fires it takes all tokens of
the predecessor places and puts a token in each successor place connected via the black
arrows. This constitutes the control plane. The colored arrows describe the data plane.
Thus, when transition t fires in Fig. 2.2a the token is moved from switch A to switch A
due to the black double-headed arrow and also all data packets already in switch A
are kept in A due to the gray dotted double-headed arrow. Due to the red dotted and
dashed arrow new data is given into the network each time transition t fires. With this
pattern we can model the ingress nodes of any network. In Fig. 2.2b two forwarding
rules (A.fwd(P) and A.fwd(S)) are depicted. In the depicted configuration only

19

2 Motivation

t A

(a) The creation of infinitely
many data packets in switch A.
Whenever transition t fires,
new data is given into the net-
work.

A t1 St2P

up

(b) A global configuration of the network routing. Cur-
rently, the data can only be transmitted from switch A to
switch S via transition t1. When transition ’up’ fires, the
packets can only be transmitted to switch P via transi-
tion t2.

Fig. 2.2: Example patterns for modeling software-defined networking with Petri nets with
transits.

the forwarding to switch S is enabled. Thus, transition t1 can fire but transition t2
cannot fire due to a missing token in its preset. Each time transition t1 fires all data in
switch A is moved to switch S but also due to the gray dotted doubled-headed arrow
no data already in switch S is lost when firing transition t1. The update transition up
can move the token so that transition t1 gets disabled and transition t2 gets enabled.
The additional black arrows indicate that such an update transition normally depends
on more tokens to activate this update concurrently with others or in a sequential man-
ner. Using these patterns, we can create the example network and initial configuration
depicted in Fig. 2.1, together with the concurrent overlapping update given in Eq. 2.1.
The result is depicted in Fig. 2.3.
The five switches A,C,P,S, and L with their corresponding forwarding transitions are

depicted by the places in the center of Fig. 2.3. The activation places ai with i ∈ {A→
P,P→ C,A→ S,L→ P,L→ C,S→ P,P→ L} for the forwarding transitions contain
a token corresponding to the initial configuration. The update routine, arranged around
the center, can update the switches by activating and deactivating the corresponding
forwarding transitions. Starting in uinit the update creates two tokens residing in u||j
with j ∈ {1, 2}, one for each concurrent part of the update. The transition »x with
x ∈ {A,L,P} updates switch x.
With Flow-LTL we can specify standard networking properties like connectivity, i.e.,

all data packets (A) which are given into the network in the ingress switch A, should
eventually () reach the egress switch C: con = A(A → C). This formula is not
satisfied by the Petri net with transits depicted in Fig. 2.3 because without any fair-
ness assumptions there is for example the run of the system where transition ingr fires
infinitely often and the data packets never reach switch C. Thus, each forwarding tran-
sition t must be weak fair, i.e., when it is at some point infinitely long enabled, it has to
fire infinitely often: wf(t) = enabled(t)→ t. The symbol stands for globally
or always. Furthermore, we do not want to get stuck within an update. Hence, also the

20

2.2 Physical Access Control

P

C

L

A

S

ingr

aA→S

aS→P

aL→P

aP→CaA→P

aP→L

aL→C

||

uinit

u||1

»A

ufin1

u||2

»L

u»

»P

ufin2

Fig. 2.3: The Petri net with transits corresponding to the topology and initial configura-
tion depicted in Fig. 2.1 and the concurrent overlapping update given in Eq. 2.1 of the
example for software-defined networking. The five switches A,C,P,S, L and the rout-
ing is depicted in the center of the picture, whereas the concurrent update is arranged
around it.

corresponding update transitions have to be weak fair. In Fig. 2.3 the weak fair transi-
tions are represented by shading from white to blue. With Flow-LTL we can select such
fair runs and check the data flow of these runs. Hence, the formula

∧
t∈ wf(t)→ con,

where is the set of all transitions marked as weak fair, is indeed satisfied by the Petri
net with transits depicted in Fig. 2.3.
In the tool AdamMC (cp. Chap. 7) we implemented the routine to automatically

generate a Petri net with transits from a topology, initial configuration and concurrent
update and to enable model checking standard network properties like loop freedom,
drop freedom, connectivity, and packet coherence [FGHO20a].

2.2 Physical Access Control

In the examples for software-defined networking, it is sufficient to consider linear tempo-
ral specifications because we are only interested in whether the flow of the data packets

21

2 Motivation

hall

corridor

enter corr

enterhall

leaveh→c

yardleaveh→y

leaveh→[c,y]emergency

normal

alarm

ch→c oh→c

ch→y oh→y

Fig. 2.4: An example for access control policies for physical spaces modeled with Petri
nets with transits. A lecture hall with two exits (the corridor and the yard) is depicted.
An emergency introduces an update of the door policies, such that the former closed door
to the yard is additional available to the people in case of an emergency. The solid blue
single-headed arrows describe the possible paths of people moving through the building.

behaves correctly and therefore only track the paths of the packets. However, for ac-
cess control policies for physical spaces [FTFO12; FCS11] we consider people roaming
through a building as the data flow. By that, interesting specifications like whether there
is a way to the emergency exit for each person to every point in time, require branching
properties. This can be seen in the example of a lecture hall depicted in Fig. 2.4 as a
Petri net with transits.
The control part with the update policy of the doors is depicted at the left-hand

side and the data flow at the right-hand side of the figure. The lecture hall indicated
by place hall has two exits, one to the corridor (indicated by the place corridor) and
one to the yard (indicated by the place yard). Each door can either be open oi or
closed ci for i ∈ {h → c, h → y}. In the normal mode the access policy of the doors
is that only the exit to the corridor is available to the people. In case of an emergency
(transition emergency fires) an alarm is triggered and the people are informed about
the emergency by the gray dashed, dotted, and dash dotted double-headed arrows of
the emergency transition. With transition enter corr arbitrarily many people can enter
the building and can further enter the hall via transition enterhall . For simplicity reasons
this door is always open. Initially, only transition leaveh→c is enabled, because only the
door to the corridor is open. Hence, the only way to leave the hall is via this transition
into the corridor. When the update happens, i.e., transition emergency fires, a token
is additionally put into place oh→y. This means access to the yard is granted and
transitions leaveh→y and leaveh→[c,y] are also enabled. Especially the last transition is

22

2.2 Physical Access Control

ϕ

3

AEFϕ

(a) Permission:
There must be
a path to the ϕ-
space. The ϕ-space
can be accessed.

ϕ7

7
7 7

AAG¬ϕ

(b) Prohibition:
There is no path
allowed into the ϕ-
space. The ϕ-
spaces cannot be
accessed.

ϕ ψ
7
7

7

AAG(ϕ→ AG¬ψ)

(c) Blocking: There is
no path first entering a
ϕ-space and then enter-
ing a ψ-space. The ψ-
spaces cannot be accessed
after accessing the ϕ-
spaces.

ϕ ψ

7
7 7

AA(ϕR¬ψ)

(d) Waypointing:
There is no direct path
into the ψ-space. A
ϕ-space must be ac-
cessed before accessing a
ψ-space.

Fig. 2.5: Some example specifications in Flow-CTL∗ for access control policies for phys-
ical spaces due to [TDB16]. The 3-symbol indicates a granted access, whereas the 7-
symbol indicates a forbidden access.

interesting because due to the branching the people are allowed to either leave the hall
to the corridor or to the yard. Thus, with Flow-CTL∗ we can state that the yard is a
prohibited area as long as there is no emergency, and when there is an emergency, there
exists always a path to the yard:

A(A(AG¬yard U emergency) ∧AG(emergency → EFyard)).

This reads for all data flow trees (A) holds that for all path (A) globally (G) the
formula ¬yard is satisfied until (U) there is an emergency, and that on all path globally
holds that when there is an emergency , then there is a path (E) which finally (F) reaches
the yard . Note that for simplicity reasons we assume here an emergency has to happen.
Since we again evaluate these formulas on specific runs of the system, this formula does
not hold for the Petri net with transits depicted in Fig. 2.4 without the depicted weak
fairness assumptions on the transitions. This selection of the runs is also the reason why
we consider the branching not in the places of the Petri net with transits but in the
transitions. Generally, with Flow-CTL∗ we can express standard properties for access
control policies for physical spaces, e.g., introduced in [TDB16], as depicted in Fig. 2.5.

23

3Models and Objectives

This chapter serves to introduce established concepts on which we base our procedure
for model checking asynchronous distributed systems with local data flows. In model
checking we have, on the one hand, the system which should be verified to behave cor-
rectly and, on the other hand, a specification language to define what correctness exactly
means. For the system, we introduce Petri nets [Pet62; Rei13], a well-known model for
asynchronous distributed systems, which we extend in Chap. 4 to explicitly incorporate
the data flow of the system. The possible behavior of a Petri net is often represented by
a state graph which exhibits all interleavings of the system explicitly. Petri net unfold-
ings [Eng91; EH08] with an explicit representation of the concurrency and the causal
dependencies of the events in the system also cover all possible behavior of the system
but keep the concurrent structure to not explicitly enumerate the interleavings.

As specification language we introduce the commonly used branching-time temporal
logic CTL∗ [EH86; CHVB18], with its fragment linear-time temporal logic (LTL) [Pnu77;
CHVB18]. With temporal logics we are able to express properties about computation
sequences of the system, like whether a condition holds in the next state, it holds until
another condition is satisfied, it holds eventually in the future, or it holds globally. In
Sec. 5.2 and Sec. 6.1 these logics are extended to allow for the reasoning about the data
flow in the system.

Finally, we introduce different kinds of automata over infinite words and trees [GTW02;
PP04; KN01; CDGJ+08]. The reduction method of the model checking problem pre-
sented in Chap. 5 is based on a sequence of automata constructions for which these
models are used.

3.1 Petri Nets

In this section we recall the syntax and semantics of Petri nets [Pet62; BF88; Rei13].
Furthermore, we recap the definitions corresponding to the unfolding [NPW81; Eng91;
KKV03; EH08] to have a formal model for the causal dependencies (and independencies)
of the behavior of the distributed system while preserving its concurrent structure.

3.1.1 De�nition

A Petri net, introduced by Carl Adam Petri in his PhD thesis [Pet62], is a directed
bipartite possibly edge-labeled graph with places (depicted as circles) storing the current
state of the system and transitions (depicted as rectangles), also called events, executing
the state changes. Tokens (depicted as black dots) can be considered as the processes

25

3 Models and Objectives

of the system and are moved by the transitions from places to places. As an example
consider Fig. 2.3. Ignoring all colored arcs results in a standard Petri net.
A finite and non-empty set of symbols Σ is called alphabet and its elements letters .

The symbols Σω and Σ∗ denote the set of all infinite or finite concatenations of letters
of Σ, respectively. Such concatenations are called words . The length of a word w is
given by |w| and its letters can be addressed via indices starting with zero. The empty
word is denoted by ε.
A multiset is an extension to a standard set such that it can contain a finite number

of the same element rather than a single one. The order still does not matter. We use
multisets to handle several tokens residing in the same place. Formally, a multiset over
a set S is a function M : S → N mapping a natural number to every element of the
set counting its occurrence in M . We identify multisets only mapping to {0, 1} with
standard sets. Applying a function f : S1 → S2 to a multiset M1 : S1 → N results in the
multiset M2 : S2 → N with M2(s2) =

∑
s1∈S1:f(s1)=s2

M1(s1) for all s2 ∈ S2.

I Definition 1 (Petri Net). A (Place/Transition or P/T) Petri net is a four-tuple N =
(P,T,F, In) with

• a possibly infinite set of places P,

• a possibly infinite set of transitions T (disjoint to P, i.e., T ∩P = ∅),

• a flow function F : (P ×T) ∪ (T ×P) → N assigning to each arc connecting
places and transitions a non-negative integer arc weight (or arc multiplicity), and

• an initial marking In : P → N, defining the number of tokens initially residing on
the places.

The elements in P ∪T are called nodes . We call a Petri net plain iff the flow function
only maps to the values 0 and 1, i.e., F can be seen as a set rather than a multiset. J

For each place p ∈ P of a Petri net N we define the pre- and postset of p as all
transitions connected to the place with an arc weight at least 1, i.e., pre (p) = {t ∈
T | F(t, p) > 0} and post (p) = {t ∈ T | F(p, t) > 0}. Similarly, we define the
pre- and postset of a transition t ∈ T as multisets over P such that pre (t)(p) = F(p, t)
and post (t)(p) = F(t, p) holds for all p ∈ P. For the transitions we require finite
synchronization [BF88], i.e., the pre- and postsets of transitions are finite sets. In
general, we equip the functions pre and post with a superscript, e.g., preN, when we
want to stress the dependency on a Petri net N. A marking is a multiset M : P → N
representing a global state of the distributed system. A transition t ∈ T is enabled (or
fireable) in a marking M iff all places in the preset of t contain at least as many tokens
as the arc weight deducts, i.e, ∀p ∈ P : F(p, t) ≤ M(p). We call a marking M final iff
no transition t ∈ T is enabled inM . An enabled transition t ∈ T firing in a markingM
leads to a successor marking M ′ by removing the by F required tokens from the preset
of t and putting the by F specified token numbers in the postset, i.e., ∀p ∈ P : M ′(p) =
M(p) − F(p, t) + F(t, p). This is denoted by M [t〉M ′. For a sequence of enabled

26

3.1 Petri Nets

transitions t0, . . . , tn ∈ T with n ∈ N, we write ζ = M0[t0, . . . , tn〉Mn+1 iff markings
M0, . . . ,Mn+1 exist such that Mi[ti〉Mi+1 holds for all i ∈ {0, . . . , n} and call ζ a firing
sequence. For a shorter notation, we write M0[w〉Mn for a finite word w = t0 · · · tn ∈ T∗

iff Mn = M0 in case of the empty word w = ε and M0[t0, . . . , tn〉Mn otherwise. Firing
sequences can also be infinite, written for example as ζ = M0[t0〉M1[t1〉M2 · · ·. If M0

is the initial marking of the net, ζ is called an initial firing sequence. Collecting all
markings which are transitively reachable from the initial marking by the firing relation
yields the set of reachable markings. Connecting these markings with respect to the firing
relation yields the reachability graph. In a reachability graph the complete behavior of
the Petri net is exhibited by enumerating all interleavings explicitly.

I Definition 2 (Reachability Graph). The set of reachable markings of a Petri net N is
defined by R(N) = {M : P → N | ∃w ∈ T∗ : In[w〉M}. Using these markings as states
and connecting them with respect to the firing relation yields a labeled transition system
called the reachability graph RG(N) = (S ,E , s0) with the set of states S = R(N), the
set of edges E = {(M, t,M ′) ∈ S ×T × S | M [t〉M ′}, and the initial state s0 = In. J

We call a transition t ∈ T dead iff there is no reachable marking M ∈ R(N) such that t
is enabled inM . A Petri net N is called k-bounded , for k > 0, when every place in every
reachable marking contains at most k ∈ N tokens, i.e., ∀M ∈ R(N),∀p ∈ P : M(p) ≤ k.
Note that the set of reachable markings R(N) and the reachability graph RG(N) for k-
bounded Petri nets are finite. A 1-bounded Petri net is also called safe. In this thesis we
mainly focus on 1-bounded Petri nets. This allows for a more lightweight notation such
that markings are setsM ⊆ P rather than multisets, just as the pre- (pre (t) = {p ∈ P |
F(p, t) > 0}) and postset (post (t) = {p ∈ P | F(t, p) > 0}) of a transition t ∈ T, and
the flow function F can be interpreted as a relation F ⊆ (P ×T) ∪ (T ×P).
We extend the model of Petri nets with special arcs, called inhibitor arcs [FA73;

DR96a], which connect a place p and a transition t of the Petri net and only permit the
firing of t when p is empty.

I Definition 3 (Petri Net with Inhibitor Arcs). A Petri net with inhibitor arcs is a five-
tuple N = (P,T,F,FI , In) with P, T, F, and In as for standard P/T Petri nets. An
element of the additional set FI ⊆ P ×T is called inhibitor arc and connects a place
to a transition.
The notion of a transition t ∈ T is enabled in a marking M is extended with the

constraint M(p) = 0 for all (p, t) ∈ FI . Nothing changes for the firing rule. J

Graphically, inhibitor arcs are depicted as arrows equipped with a circle on their arrow
tail (e.g., cp. transition ts in Fig. 5.5 on page 67).

3.1.2 Petri Net Unfoldings

The unfolding of a Petri net N [Eng91; EH08] exhibits all possible behavior of the
Petri net by explicitly representing the causal dependencies (and independencies) while
preserving the concurrent structure of the system. In an unfolding every loop in N

27

3 Models and Objectives

is unrolled and every backward branching place is expanded by multiplying the place.
Hence, every transition in the unfolding stands for the unique occurrence (instance) of
a transition of N during an execution. This is formally defined in Definition 7. For
this, we need some introductory terms and notations. Since the solving algorithms of
this thesis concern only 1-bounded Petri nets, we restrict ourselves in this section also
to unfoldings of 1-bounded Petri nets to keep it simpler.
Let N = (P,T,F, In) be a Petri net and x, y ∈ P ∪T be two nodes. We call x a

causal predecessor of y, written x < y, iff xF+ y holds. We write x ≤ y iff x < y or
x = y. We call x, y causally related iff x ≤ y or y ≤ x holds. We define the future of a
node x as all nodes causally depending on x, i.e., futN(x) = {y ∈ P∪T | x ≤ y}. Two
nodes x, y ∈ P∪T are in conflict , written x] y, iff there is a different place p ∈ P\{x, y}
with two different transitions t1, t2 ∈ post (p) in its postset with t1 6= t2, such that t1 ≤ x
and t2 ≤ y holds. Two nodes x, y ∈ P∪T are concurrent iff they are neither in conflict
nor causally related. A set of places X ⊆ P is called concurrent iff all places are pairwise
concurrent. We introduce a special safe Petri net, an occurrence net, which represents
the occurrences of transitions with their conflicts and causal dependencies.

I Definition 4 (Occurrence Net and Causal Net). An occurrence net is a Petri netN =
(P,T,F, In) with the constraints

(i) ∀t ∈ T : pre (t), post (t) ⊆ P, i.e, the pre- and postsets of transitions are also sets
rather than multisets,

(ii) ∀p ∈ P : |pre (p)| ≤ 1, i.e., each place has only one ingoing arc,

(iii) ∀t ∈ T : ¬(t] t), i.e., no transition is in self-conflict,

(iv) ∀x ∈ P ∪ T : ¬(x < x), i.e., the flow relation is acyclic,

(v) ∀x ∈ P ∪ T : |{y ∈ P ∪T | y < x}| < ∞, i.e., the relation < is well-founded,
which means that it does not contain any infinitely decreasing sequence, and

(vi) In = {p ∈ P | pre (p) = ∅}, i.e., the initial marking are exactly the places which
do not have any predecessor.

An occurrence net is called a causal net , when further

(vii) ∀p ∈ P : |post (p)| ≤ 1, i.e., each place has also only one outgoing arc,

holds. J

If not differently stated, the elements of a superscripted Petri net NX are also implicitly
superscripted, i.e., NX = (PX ,TX ,FX , InX), and we abbreviate the pre- and postset
functions by preX and postX , respectively. For connecting the nodes of two Petri nets
with respect to their local connections, the notion of a homomorphism on Petri nets is
used.

28

3.1 Petri Nets

I Definition 5 (Homomorphism). A homomorphism from one Petri net N1 = (P1,T1,
F1, In1) to another Petri net N2 = (P2,T2,F2, In2) is a mapping h : P1∪T1 → P2∪T2,
which preserves the types of the nodes and the pre- and postconditions of the transitions,
i.e.,

(i) h(P1) ⊆ P2 and h(T1) ⊆ T2 and

(ii) ∀t ∈ T1 : h(preN1(t)) = preN2(h(t)) and h(postN1(t)) = postN2(h(t)),

where the application of the homomorphism to a set X ⊆ P1 ∪T1 is defined pointwise:
h(X) = {h(x) | x ∈ X}. A homomorphism h is called initial iff also

(iii) h(In1) = In2

holds. J

With Definition 4 and Definition 5 we can now introduce two additional types of Petri
nets. First, the branching process based on an occurrence net and second, the concurrent
run based on a causal net which formalizes a single concurrent execution of the net.

I Definition 6 (Branching Process and Run). A branching process β = (NB, λB) of a
Petri net N = (P,T,F, In) consists of an occurrence net NB and a homomorphism
λB : PB ∪TB → P ∪T such that

∀t1, t2 ∈ TB : (pre (t1) = pre (t2) ∧ λB(t1) = λB(t2))⇒ t1 = t2

holds. This means λB is injective on transitions with the same preset. If λB is initial,
the branching process β is called initial .

A branching process β′ = (NR, ρ) of N with a causal net NR is called (concurrent)
run ofN. If furthermore ρ is an initial homomorphism, β′ is called an initial (concurrent)
run. J

As an example of a run see Fig. 4.2 on page 43. We call a Petri netN1 = (P1,T1,F1, In1)
a subnet of a Petri net N2 = (P2,T2,F2, In2), written N1 v N2, iff P1 ⊆ P2, T1 ⊆ T2,
F1 ⊆ F2, and In1 = In2 holds. A branching process β1 = (N1, λ1) is called a subprocess
of a branching process β2 = (N2, λ2) iff N1 is a subnet of N2 and λ1 = λ2|P1∪T1

, where h|X
restricts the domain of the function h to the set X.
Now we have everything at hand to formally introduce the unfolding.

I Definition 7 (Unfolding). An unfolding of a Petri netN is an initial branching process
β = (NU , λU) of N which satisfies

λU(C) = preN(t)⇒ ∃tU ∈ TU : preNU

(tU) = C ∧ λU(tU) = t

for all transitions t ∈ T and sets of concurrent places C ⊆ PU . J

29

3 Models and Objectives

Thus, whenever a transition of the Petri net can occur in the unfolding there is indeed a
transition with the same label occurring in the unfolding. Note, an unfolding is unique
up to isomorphism [Eng91]. As an example of an unfolding and a concurrent run see
Fig. 9.2 on page 142.

I Definition 8 (Covering Firing Sequence). Consider a run β = (NR, ρ) of a Petri net
N = (P,T,F, In) and a finite or infinite firing sequence ζ = M0[t0〉M1[t1〉M2 · · · of the
run NR with M0 = InR. We say ζ covers β iff

(∀p ∈ PR : ∃i ∈ N : p ∈Mi) ∧ (∀t ∈ TR : ∃i ∈ N : t = ti),

holds. We define the set of all covering firing sequences of a run β by Z(β). J

This means that for a covering firing sequence ζ all places and transitions in the net of
the run NR do appear in ζ. Note that due to the interleaving of concurrent transitions
several firing sequences may cover a single run β.

3.2 Kripke Structures

We consider Kripke structures [Kri59] to represent the behavior of dynamic systems. A
Kripke structure is a finite directed graph with its vertices representing the states or
configurations of the system and its edges representing the state changes. The vertices
are labeled with sets of atomic propositions with the meaning that all atomic propositions
occuring in the set are satisfied in the corresponding configuration and all not occuring
atomic propositions are not satisfied.

I Definition 9 (Kripke Structure). A Kripke structure K = (A, S, S0, `,→) is a five-
tuple with

• a set of atoms A,

• a set of states S,

• a set of initial states S0 ⊆ S,

• a labeling function ` : S → 2A, and

• a transition relation →⊆ S × S. J

A (computation) path π = π0π1 · · · ∈ Sω of a Kripke structure is an infinite sequence of
states πi ∈ S with (πi, πi+1) ∈→ for i ∈ N. We identify the ith letter of a path π ∈ Sω
with either πi or π(i). The subpath πi of a path π is the path starting from π(i), i.e.,
πi(j) = π(i + j) for all j ∈ N. The path π is initial iff π0 ∈ S0. A path describes the
dynamic behavior, i.e., the configuration changes of the system. For simplicity reasons a
Kripke structure is assumed to have a total transition relation, i.e., all states have at least
one successor state. We define the language of a Kripke structure K = (A, S, S0, `,→)
as the prefix closure of all initial computation path, i.e., L(K) = {w ∈ S∗ | w0 ∈
S0 ∧ ∀i ∈ {0, . . . , |w| − 1} : (wi, wi+1) ∈→}.

30

3.3 Propositional Temporal Logics

Kripke structures are very commonly used for model checking systems with discrete
state changes. Other related models are automata, state machines, and labeled transition
systems. For example, the reachability graph of a 1-bounded Petri net (Definition 2)
can be seen as a Kripke structure (modulo the totality of the transition relation) where
the labels of the states are the places of the corresponding marking.

3.3 Propositional Temporal Logics

For model checking we need in addition to the model describing the behavior of the
system, e.g., a Kripke structure, a specification of the property of interest which should
be verified. With temporal logics we can reason about the temporal ordering of events
without explicitly introducing time. This makes temporal logics especially useful for
specifying concurrent systems [CGP01]. Propositional temporal logics extend classi-
cal propositional logics by introducing temporal operators to reason about timing con-
straints of the system. Whether these timing constraints are considered to be linear or
branching results in two major directions of temporal logics. We introduce the two main
representatives for these directions in the two following sections.

3.3.1 Branching-Time Temporal Logic CTL
∗

With CTL∗ [EH86] we can describe properties of computation trees. In Sec. 3.2 we
have introduced the computation path of a Kripke structure as one single execution
of the modeled system. Starting in a designated initial state s0 and considering all
computation paths starting in this state yields an infinite computation tree with finite
branching. Such a tree exhibits all possible executions starting in s0.

For a set of atomic propositions AP we define the set CTL∗ of branching-time temporal
logic (CTL∗) formulas by the following syntax of state formulas over AP

Φ ::= a | ¬Φ | Φ1 ∧ Φ2 | Eφ

where a ∈ AP , Φ, Φ1, and Φ2 are state formulas, and φ is a path formula of the following
syntax

φ ::= Φ | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

where Φ is a state formula and φ, φ1, and φ2 are path formulas. The path quantifier E
states the existence of a path starting in the current state of the system, the next
operator X states that a certain formula has to hold in the next step of the system,
and the until operator U demands that a formula ψ1 has to hold until the formula ψ2 is
finally satisfied. The operators X and U are called temporal operators .
We use the propositional operators ∨, →, ↔, the formulas true = p ∨ ¬p, false =

p ∧ ¬p for some p ∈ AP , the path quantifier Aφ = ¬E¬φ, and the temporal operators
Fφ = trueUφ, Gφ = ¬F¬φ, φ1Wφ2 = Gφ1 ∨ (φ1Uφ2), and φ1Rφ2 = ¬(¬φ1U¬φ2)
as abbreviations. We call F the finally (or eventually) operator, stating that the for-
mula will eventually hold on the current computation path, G the globally operator (or

31

3 Models and Objectives

always), stating that the formula holds in every state of the current path, W the weak
until operator, stating that φ1 holds until φ2, but φ2 is not required to hold eventu-
ally, and R the release operator, stating that φ2 holds until φ1 (including the first state
where φ1 holds) or until forever when φ1 is never satisfied.
The semantics of CTL∗ is interpreted over states and over computation paths of a

system. Here, we define the satisfaction relation |=CTL∗ for a system modeled with a
Kripke structure K = (A, S, S0, `,→):

K, s |=CTL∗ a iff a ∈ `(s)
K, s |=CTL∗ ¬Φ iff not K, s |=CTL∗ Φ

K, s |=CTL∗ Φ1 ∧ Φ2 iff K, s |=CTL∗ Φ1 and K, s |=CTL∗ Φ2

K, s |=CTL∗ Eφ iff there exists a path π starting from s, i.e., π(0) = s

such that K, π |=CTL∗ φ

K, π |=CTL∗ Φ iff K, π(0) |=CTL∗ Φ

K, π |=CTL∗ ¬φ iff not K, π |=CTL∗ φ

K, π |=CTL∗ φ1 ∧ φ2 iff K, π |=CTL∗ φ1 and K, π |=CTL∗ φ2

K, π |=CTL∗ Xφ iff K, π1 |=CTL∗ φ

K, π |=CTL∗ φ1Uφ2 iff there exists some j ≥ 0 with K, πj |=CTL∗ φ2 and
for all 0 ≤ i < j the following holds: K, πi |=CTL∗ φ1

with states s ∈ S, paths π, atomic propositions a ∈ A, state formulas Φ,Φ1, and Φ2, and
path formulas φ, φ1, and φ2. A Kripke structure K satisfies a CTL∗ formula Φ (denoted
by K |=CTL∗ Φ) iff Φ is satisfied in every initial state s0 ∈ S0.
Computation tree logic (CTL) [CE81] is a syntactic fragment of CTL∗. In CTL path

quantifiers and temporal operators can never occur individually. Each path quantifier
must be immediately followed by a temporal operator and each temporal operator must
be directly preceded by a path quantifier. As some examples see the properties presented
in Fig. 2.5 on page 23 without the operator A.

3.3.2 Linear-Time Temporal Logic LTL

Linear-time temporal logic (LTL) [Pnu77] is a syntactic fragment of CTL∗. In LTL there
are no path quantifiers apart from a single leading A selecting all paths of the system.
This universal selection of paths is directly handled in the semantics of LTL and can be
intuitively seen as implicitly preceded to every LTL formula. We use different symbols
for the operators in LTL than in CTL∗ to simplify the recognition of formulas of the
different logics.
The set LTL of linear-time temporal logic (LTL) formulas over a set of atomic propo-

sitions AP is given by the following syntax

ψ ::= a | ¬ψ | ψ1 ∧ ψ2 | ψ | ψ1 Uψ2,

with a ∈ AP and ψ, ψ1 and ψ2 LTL formulas. The semantics of the next () and the
until U operator are the same as for the corresponding CTL∗ operators. And also for

32

3.4 Automata on Infinite Words and Trees

the abbreviations we use the operators (eventually), (always), W (weak until),
and R (release) for the corresponding CTL∗ operators. For some properties specified in
LTL see Example 1 on page 47.

3.4 Automata on In�nite Words and Trees

In this section we recall several automata models from standard nondeterministic au-
tomata to alternating tree automata. More details and elaborate explanations can be
found for example in the following books, surveys, and articles [GTW02; PP04; KN01;
CDGJ+08; Tho90; Tho97; KVW00; VW08; Kup18].

For a possibly infinite set X of elements subject to a total order <̃, we define with
〈X〉 = {(i, x) ∈ N × X | i = |{x′ ∈ X | x′ <̃ x}|} the set sorted according to this
total order. Note that if X is infinite, 〈X〉 is a total function over N. We abbreviate
〈X〉i = 〈X〉(i) for i ∈ N (or i ∈ {0, . . . , |X| − 1} if X is finite). We assume the
disjoint sets of places P and transitions T of a Petri net to have a total order (e.g., a
lexicographical one).

I Definition 10 (Nondeterministic Automaton). A nondeterministic automaton over
infinite words is a five-tuple A = (Σ, Q, I, δ,Acc) with

• a finite alphabet Σ,

• a finite set of states Q,

• a set of initial states I ⊆ Q,

• a transition relation δ ⊆ Q× Σ×Q, and

• an acceptance condition Acc ⊆ Qω.

A run of A on an infinite word w = w0w1 · · · ∈ Σω is an infinite sequences of states
r = r0r1 · · · ∈ Qω such that

• r0 ∈ I and

• (ri,wi, ri+1) ∈ δ for all i ∈ N

holds. A run r is accepting iff r ∈ Acc holds.
A nondeterministic automaton over infinite words A accepts an infinite input word w

iff there exists an accepting run r of A on w. The set of infinite words accepted by A,
i.e., L(A) = {w ∈ Σω | A accepts w}, is called the language recognized by A. J

For nondeterministic automata it suffices that for a nondeterministic situation in a state
q ∈ Q, i.e., with at least two different edges (q, a, q′), (q, a, q′′) ∈ δ for states q′, q′′ ∈ Q
with q′ 6= q′′, some choice leads to the acceptance of the input word. If we require
that any choice has to lead to the acceptance of the input word we obtain a universal
automaton. For alternating automata these types of choices are combined by allowing
positive Boolean combinations over successor states such that the disjunction expresses
the nondeterministic choice and the conjunction the universal choice.

33

3 Models and Objectives

I Definition 11 (Positive Boolean Formulas). Given a set X, the set B+(X) are all pos-
itive Boolean formulas over the set X, i.e., true, false, and all combination of elements
in X using the conjunction ∧ and the disjunction ∨.
A subset Y ⊆ X satisfies a positive Boolean formula θ ∈ B+(X), denoted by Y |= θ,

iff assigning true to all elements in Y and false to all elements in X \ Y results in the
satisfaction of θ. J

Before introducing alternating word automata, we define the structure of trees because
a run of an alternating automaton is a tree rather than a word as for nondeterministic
automata.

I Definition 12 (Tree, Σ-labeled Tree, D-tree). A tree is a prefix-closed set T ⊆ N∗
such that

∀n ∈ N∗ ∀c ∈ N : n · c ∈ T =⇒ n ∈ T ∧ ∀0 ≤ c′ < c : n · c′ ∈ T

holds. The elements n ∈ T are called nodes and the empty word ε ∈ T is called the root
of T . For a node n ∈ T we call the nodes n · c ∈ T for c ∈ N the successors or children
of n and collect them in children(n). For a node n ∈ T the number of children is called
the degree of n and is denoted by d(n). A node without children is called a leaf . An
infinite tree is a tree without leafs. A path π ⊆ T of a tree contains the root, i.e., ε ∈ π,
and for all nodes n ∈ π it either is a leaf or has a unique child n · c ∈ π for c ∈ N.
For a given alphabet Σ a Σ-labeled tree is a pair (T, v) containing a tree T and a

labeling function v : T → Σ labeling each node of the tree with a letter from the
alphabet Σ.
Given a finite set D ⊂ N of degrees , a D-tree (T, v) is a Σ-labeled tree where all

nodes n ∈ T have a degree in D. J

An alternating word automaton still takes as input an infinite word, but can branch into
several successor states simultaneously during its execution. Intuitively, we can think of
new instances of the automata are created and simultaneously executed. Thus, a run
of an alternating word automaton on an infinite word is a tree labeled with the current
states of these copies. An example of an alternating word automaton is presented in
Fig. 5.4 on page 61.

I Definition 13 (Alternating Word Automaton). An alternating automaton over infi-
nite words , or short alternating word automaton (AWA), is a five-tuple A = (Σ, Q, I, δ,
Acc) with

• a finite alphabet Σ,

• a finite set of states Q,

• a set of initial states I ⊆ Q,

• a transition function δ : Q× Σ→ B+(Q), and

• an acceptance condition Acc ⊆ Qω.

34

3.4 Automata on Infinite Words and Trees

A run of A on an infinite word w = w0w1 · · · ∈ Σω is a Q-labeled tree r = (T, v) such
that

• v(ε) ∈ I and

• for all n ∈ T with v(n) = q, the set of the children’s labels

Y = {v(n′) ∈ Q | n′ ∈ children(n)}

satisfies the successor formula δ(q,w|n|) = θ, i.e., Y |= θ,

holds. A run r = (T, v) of A is accepting iff for every infinite path π ⊆ T of T the
infinite word of its labels is accepted, i.e., v(π0)v(π1) · · · ∈ Acc.

An alternating word automaton A accepts an infinite input word w iff there exists
an accepting run r = (T, v) of A on w. The set of infinite words accepted by A, i.e.,
L(A) = {w ∈ Σω | A accepts w}, is called the language recognized by A. J

Even though the run of an alternating word automaton is a tree, the input is still an
infinite word. This changes for tree automata. A nondeterministic automaton over
infinite trees takes as input a Σ-labeled tree that has no leaves.

I Definition 14 (Tree Automaton). For a given finite set of possible degrees D ⊂ N
a nondeterministic automaton over infinite trees , or short tree automaton (TA), is a
five-tuple A = (Σ, Q, q0, δ,Acc) with

• a finite alphabet Σ,

• a finite set of states Q,

• an initial state q0 ∈ Q,

• a transition relation δ ⊆ Q× Σ×D ×
⋃
k∈DQ

k

with k = m for all (q, σ, k, q1, . . . , qm) ∈ δ,
• an acceptance condition Acc ⊆ Qω.

A run of A on an infinite Σ-labeled D-tree (T, v) is a Q-labeled D-tree r = (Tr, vr) such
that

• vr(ε) = q0, and

• for all n ∈ Tr with vr(n) = q, there exists a successor (q0, . . . , qd(n)−1) ∈
δ(q, v(n), d(n)) such that for all 0 ≤ i < d(n) children in T we have n · i ∈ Tr and
vr(n · i) = qi,

holds. Intuitively, we label the input tree with states of the automaton according to
the transition relation. In particular, this means T = Tr. A run r = (Tr, vr) of A is
accepting iff for every path π ⊆ Tr of Tr the infinite word of its labels is accepted, i.e.,
vr(π0)vr(π1) · · · ∈ Acc. Note that all paths are infinite due to the infinite input tree.

A tree automaton A accepts an infinite Σ-labeled D-tree (T, v) iff there exists an
accepting run r = (Tr, vr) of A on (T, v). The set of infinite Σ-labeled D-trees accepted
byA, i.e., L(A) = {(T, v) Σ-labeled D-tree | A accepts (T, v)}, is called the language
recognized by A. J

35

3 Models and Objectives

Alternating tree automata again generalize the transition relation to allow for positive
Boolean combinations of successor states.

I Definition 15 (Alternating Tree Automaton). For a given finite set of possible degrees
D ⊂ N an alternating automaton over infinite trees , or short alternating tree automaton
(ATA), is a five-tuple A = (Σ, Q, q0, δ,Acc) with

• a finite alphabet Σ,

• a finite set of states Q,

• an initial state q0 ∈ Q,

• a transition relation δ : Q×Σ×D → B+(N×Q) with δ(q, σ, k) ∈ B+({0, . . . , k −
1} ×Q) for every k ∈ D, and

• an acceptance condition Acc ⊆ Qω.

A run of A on an infinite Σ-labeled D-tree (T, v) is a N∗×Q-labeled D-tree r = (Tr, vr)
such that

• vr(ε) = (ε, q0), and

• for all n ∈ Tr with vr(n) = (x, q) and δ(q, v(x), d(x)) = θ, there is a set Y =
{(c0, q0), . . . , (cm, qm)} ⊆ {0, . . . , d(x) − 1} × Q such that Y |= θ and for all 0 ≤
i ≤ m we have n · i ∈ Tr and vr(n · i) = (x · ci, qi),

holds. Thus, each node n ∈ Tr with vr(n) = (x, q) corresponds to the node x ∈ T and
represents a copy of the automaton reading x and visiting state q. Note that several
nodes of Tr can correspond to a node x ∈ T . A run r = (Tr, vr) of A is accepting
iff for every infinite path π ⊆ Tr of Tr the infinite word of its labels is accepted, i.e.,
vr(π0)vr(π1) · · · ∈ Acc.
A tree automaton A accepts an infinite Σ-labeled D-tree (T, v) iff there exists an

accepting run r = (Tr, vr) of A on (T, v). The set of infinite Σ-labeled D-trees accepted
byA, i.e., L(A) = {(T, v) Σ-labeled D-tree | A accepts (T, v)}, is called the language
recognized by A. J

Intuitively, we can see the runs of the given automata with increasing complexity as
follows: A run of a standard nondeterministic automaton on an infinite word is just the
word of the corresponding states of the automaton. A run of the alternating automaton
on an infinite word may branch into several states for each read letter of the input
word. Thus, we obtain a tree labeled with the corresponding states of the automaton.
The input for a nondeterministic tree automaton is already an infinite tree. Thus, the
run on this tree is the same tree but now labeled with the corresponding states of the
automaton. A run of an alternating tree automaton is a tree, but in this case again due
to creating copies of the automaton for the alternation. Thus, given an input letter, the
automaton may branch into several instances. Each node of the run is not only labeled
with the current state of the instance of the automaton, but also with the corresponding

36

3.4 Automata on Infinite Words and Trees

node of the input tree. Thus, we may be in several states for one node of the input tree.
Example 3 on page 58 contains an example for an alternating tree automaton.
So far we defined the acceptance conditions of the automata only abstractly as sets of

infinite sequences of states. We now state some examples of acceptance conditions for
infinite words that are finitely represented.

I Definition 16 (Acceptance Conditions). The function Inf : Qω → 2Q with Inf(w) =
{a ∈ Q | ∀n ∈ N : ∃m ≥ n : wm = a} collects all letters which occur infinitely often in
an infinite word w over the alphabet Q. For a finite set A ⊆ Q we define the

Büchi condition: BUCHI(A) = {w ∈ Qω | Inf(w)∩A 6= ∅} collecting all infinite words
that visit some state of A infinitely often, and the

Co-Büchi condition: COBUCHI(A) = {w ∈ Qω | Inf(w) ∩A = ∅} collecting all infinite
words that visit none of the states of A infinitely often.

For a finite set of pairs AR = {(I0, F0), . . . , (In, Fn)} ⊆ 2Q × 2Q we define the

Rabin condition: RABIN(AR) = {w ∈ Qω | ∃i ∈ {0, . . . , n} : Inf(w)∩Ii 6= ∅∧Inf(w)∩
Fi = ∅} collecting all infinite words that visit some state of Ii infinitely often and
none of the states of Fi infinitely often for some pair (Ii, Fi) ∈ AR.

We call n the index of the automaton with a Rabin condition. J

We often use abbreviations like NBA for a nondeterministic Büchi automaton, ABA
for an alternating Büchi word automaton (or ABWA, when we want to stress that it
is a word rather than a tree automaton), ATA for an alternating tree automaton when
we do not want to specify the acceptance condition, or any other combination of these
abbreviations.

37

4Petri Nets with Transits

In this chapter we introduce the new model for model checking asynchronous dis-
tributed systems with data flows. We call this model Petri nets with transits , as it
refines the flow relation of a Petri net with a so-called transit relation to distinguish
between the control flow of the system and how the data flows through the system.
In Chap. 2 we have introduced two application areas of Petri nets with transits.

First, a concurrent overlapping update in software-defined networking is modeled. The
concurrent update (with possibly sequential sub-updates) is modeled via tokens moving
through the Petri net, whereas the data flow is modeled by the transits. Second, door
policies for the access control in physical spaces are modeled. Updating the door policies
is again modeled via the tokens whereas the people roaming through the building are
modeled at the data flow level. In this chapter we formally define this model in Sec. 4.1
and introduce data flow chains and data flow trees in Sec. 4.2 which are used to check
the correctness of the data flow in Chap. 5 and Chap. 6. This chapter is based on the
publications [FGHO19a; FGHO20c].

4.1 The Model

A Petri net with transits [FGHO19a] extends a Petri net N = (P,T,F, In) by refining
the (control) flow relation F with a transit relation Υ for modeling the data flow. See
Fig. 2.3 on page 21 and Fig. 2.4 on page 22 for some examples.

I Definition 17 (Petri Net with Transits). A Petri net with transits is a five-tupleNT =
(P,T,F,Υ, In) with

• a possibly infinite set of places P,

• a possibly infinite set of transitions T (disjoint to P, i.e., T ∩P = ∅),

• a flow function F : (P×T)∪ (T×P)→ N assigning each arc connecting places
and transitions a non-negative integer arc weight (or arc multiplicity),

• a transit relation Υ : T → 2(P∪{�})×P which defines for each transition t ∈ T a
relation Υ(t) of type Υ(t) ⊆ (pre (t)∪{�})× post (t), where the symbol � denotes
the start of a new data flow, and

• an initial marking In : P → N, defining the number of tokens initially residing on
the places.

39

4 Petri Nets with Transits

A B

t

C D

(a) Refinement

A B

t

C

(b) Termination

A B

t

C

(c) Merging

A

t

C D

(d) Branching

A

t

C D

(e) New Creation

Fig. 4.1: Example patterns how the transit relation can be used in Petri nets with transits
to refine the control token flow.

Thus, the elements P, T, F, and In are as for standard Petri nets. Properties like
k-boundedness, plain, etc. can be directly transferred from Petri nets to Petri nets with
transits. The postset regarding Υ of a place p ∈ P and a transition t ∈ post (p) is defined
by postΥ(p, t) = {p′ ∈ P | (p, p′) ∈ Υ(t)}. J

We use a color coding for the visual representation of the transits Υ(t) of a transition t ∈
T. The black arrows represent, as already in standard Petri nets, the usual control flow.
The colored arrows are locally bound to a transition and represent the transits of the
data flow. For example in Fig. 4.1a the transit (A,D) ∈ Υ(t) is depicted as solid blue
arrows and the transit (B,C) ∈ Υ(t) as orange dashed arrows. The creation of new
data is depicted as a colored outgoing arrow without a correspondingly colored ingoing
arrow (cp. Fig. 4.1e for the transits Υ(t) = {(�,D)}). The termination of a data flow
can either be depicted by not having any colored outgoing arrow of the place, or by
having a colored arrow but without using the same color for an outgoing arrow of the
corresponding transition. For example in Fig. 4.1b the transits of t are Υ(t) = {(A,C)}.
The orange dashed arrow from place B to transition t depicted in Fig. 4.1b is only to
stress the termination of the data flow in B when firing t and could also be omitted. To
have a clearer overview, all ingoing arrows of a transition must be uniquely colored and
each ingoing control arc can only correspond to at most one colored arrow. However,
the outgoing control arcs of a transition can be related to several colored arrows (cp.
Fig. 4.1c with Υ(t) = {(A,C), (B,C)}) and also several outgoing arrows can have the
same color (cp. Fig. 4.1d with Υ(t) = {(A,C), (A,D)}).
In Chap. 2 our motivating examples always move the data flow along persistent con-

trol tokens. This means the control tokens flicker for a moment when a transition is
fired but are then placed back into their previously occupied places and only the data
flow is extended (cp. for example Fig. 2.3). The examples depicted in Fig. 4.1 show
another approach how to use Petri nets with transits. This kind of modeling is especially
interesting for the extension of Petri nets with transits and the synthesis approach pre-
sented in Part II. Here the data flow is led along moving control tokens. By that we can
consider processes together with their local data flow and different level of knowledge
about the data flow of the others:

Refinement: Depicted in Fig. 4.1a. The two processes p1 and p2, initially residing in
place A and place B, respectively, have their own local data. Assume that the

40

4.2 Data Flow Chains and Data Flow Trees

data of process p1 is already corrupted, the data of process p2 is still accurate, and
the data of any process reaching place D gets corrupted. Without the refinement
of the flow relation we could never know whether there is still a well-functioning
process after firing transition t.

Termination Depicted in Fig. 4.1b. Initially there are two processes p1 and p2 residing
in place A and place B, respectively. Without the refinement of the flow relation
we do not know whether process p1 (in case (A,C) 6∈ Υ(t)) or process p2 (in case
(B,C) 6∈ Υ(t)) with its local data flow terminates when firing transition t. Even
both could have terminated (in case (A,C), (B,C) 6∈ Υ(t)) and a complete new
process, possibly with a fresh data flow ((�,C) ∈ Υ(t)), could have been created.
Depending on this choice, the process in place C is either corrupted or not, in case
one of the processes p1 or p2 is already corrupted before firing transition t.

Merging: Depicted in Fig. 4.1c. In this scenario we can consider that the firing of tran-
sition t creates a new process based on the data flow of both of the two processes p1

and p2, initially residing in place A and place B, respectively. Thus, is already one
process corrupted, also the process residing in place C is corrupted.

Branching: Depicted in Fig. 4.1d. When transition t fires we can consider that a copy
of process p1 (initially residing in place A) is created containing the same infor-
mation as p1. After the firing of transition t the data flow of these processes are
independent. But when the process in p1 is already corrupted, only corrupted
processes exists after firing t.

New Creation: Depicted in Fig. 4.1e. A new process with also fresh data is created
when firing transition t. This pattern can be used for failure recovery. No matter
whether the process initially residing in place A is corrupted, after firing t the
process residing in place D is unaffected of this corruption.

Intuitively, (�, q) ∈ Υ(t) defines the start of a new data flow in place q ∈ P via
transition t ∈ T. Hence, whenever t fires new data is given into the system at place q.
With (p, q) ∈ Υ(t) we define that whenever transition t ∈ T fires all data in place p ∈ P

transits via t to place q. Transits allow us to specify where the data flow is moved
forward, split, and merged, where it ends, and where data is newly created. The data
flow can be of infinite length and at any point in time (possibly restricted by the control)
new data can enter the system at different locations. The data flow is a local property
of each distributed component but can possibly be shared via joint transitions to other
components. We make these concepts formal in the next section by defining data flow
chains and data flow trees.

4.2 Data Flow Chains and Data Flow Trees

Formally, the semantics of the transits is defined via the runs of the Petri net with
transits. A branching process of a Petri net with transits NT is the branching pro-
cess βB = (NB

T , λ
B) of the corresponding Petri net N where the transit relation Υ is

41

4 Petri Nets with Transits

lifted to NB
T . Hence, ΥB : TB → 2(PB∪{�})×PB with ΥB(t) ⊆ (preB(t)∪{�})×postB(t)

for all t ∈ TB is defined by (�, q) ∈ ΥB(t) ⇐⇒ (�, λB(q)) ∈ Υ(λB(t)) for all q ∈ PB,
and (p, q) ∈ ΥB(t) ⇐⇒ (λB(p), λB(q)) ∈ Υ(λB(t)) for all p, q ∈ PB. This means,
whenever there is a transit in NT , there is also a transit in ΥB for the corresponding
elements. By that we obtain notions of runs and unfoldings for Petri nets with transits
as for Petri nets described in Sec. 3.1.2.
We define flow chains and flow trees by following the transits of a given run to specify

the flow of the data in a system modeled as Petri net with transits.

I Definition 18 (Flow Chain). A (data) flow chain of a run β = (NR
T , ρ) of a Petri net

with transits NT is a maximal sequence ξ = t0, p0, t1, p1, t2 . . . (or ξ = t0, p0, t1, . . . , tn, pn
if it is finite) of connected places and transitions of NR

T , i.e., (ti, pi), (pi, ti+1) ∈ FR for
all i ∈ N (or i ∈ {1, . . . n} if ξ is finite), with

(I) (�, p0) ∈ ΥR(t0), i.e., the first transition starts the chain in the first place,

(con) (pi−1, pi) ∈ ΥR(ti), i.e., all elements are connected via transits, and

(max) if ξ is finite, there is no transition t ∈ TR and place q ∈ PR such that (pn, q) ∈
ΥR(t).

The set of all flow chains of a run β is denoted by Ξ(β).
A flow chain suffix ξ′ = t0, p0, t1, p1, t2 . . . of a run β requires constraints (con), (max),

and in addition to the constraint in (I) permits that the chain has already started, i.e.,
(I’) (�, p0) ∈ ΥR(t0) ∨ ∃p ∈ PR : (p, p0) ∈ ΥR(t0). Thus, each flow chain is also a flow
chain suffix. J

Figure 4.2 shows a finite run β = (NR
T , ρ) of the Petri net with transits NT depicted in

Fig. 2.4 on page 22. The names of the run’s nodes are abbreviations of the corresponding
nodes in the Petri net with transits. For example ρ(e) = emergency and ρ(eih) = enterhall

for i ∈ {0, 1}. Remember that data flow in this example models the movement of peo-
ple. This run begins by moving all people who are currently in the corridor into the hall
(transition e0

h). Since no data flow has been generated yet, there are currently no people
in the corridor. Therefore, no “data” is transmitted. After that, people enter the corri-
dor (transition e0

c with ρ(e0
c) = enter corr) and all people currently in the hall are moved

into the corridor (l0h→c with ρ(l0h→c) = leaveh→c). Again, since no people are currently
in the hall, nothing is transited from the hall, but people already in the corridor, stay
in the corridor. Then, all people in the corridor are moved into the hall (transition e1

h)
and new people enter the corridor (transition e1

c). Now, the door policy update hap-
pens and all people in the rooms are informed of the emergency (transition e). Finally,
the people can leave the hall either to the corridor or into the yard (transition l0h→[c,y]

with ρ(l0h→[c,y]) = leaveh→[c,y]). This runs has three different data flow chains. The
first chain starts when transition e0

c fires and follows the gray shaded path. In the last
transition, transition l0h→[c,y], the data flow splits into two branches, yielding the first
and the second data flow chain: ξ1 = e0

c , corr 2, l0h→c, corr 3, e1
h, hall3, e, hall4, l0h→[c,y], corr 7

42

4.2 Data Flow Chains and Data Flow Trees

corr0

e0h

hall0

corr1

hall1

e0c corr2 l0h→c

o0h→c

c0h→y

corr3

o1h→c

c1h→y

e1h

hall2

corr4

hall3

e1c corr5

e

normal0

alarm0

corr6

yard0

o0h→y

yard1

hall4

l0h→[c,y]

corr7

yard2

o1h→y

o2h→c

Fig. 4.2: A finite run of the Petri net with transits from Fig. 2.4 on page 22 with two
data flow trees is depicted. The first one is indicated by the gray shaded area. The second
one starts from the firing of transition e1

c and contains no branching.

and ξ2 = e0
c , corr 2, l0h→c, corr 3, e1

h, hall3, e, hall4, l0h→[c,y], yard2. Both flow chains repre-
sent the people entering the building in the corridor and then moving to the lecture
hall. When the alarm is triggered the people leave the hall to the corridor (flow
chain ξ1) or to the yard (flow chain ξ2). The third data flow chain is created when
transition e1

c fires. For this run, these people stay the whole time inside the corridor:
ξ3 = e1

c , corr 5, e, corr 6, l0h→[c,y], corr 7.
As seen for transition l0h→[c,y] with ρ(l0h→[c,y]) = leaveh→[c,y], a transition can split the

data flow resulting in a branching behavior. This means for one place p ∈ PR there
can be two different places q, q′ ∈ PR such that (p, q), (p, q′) ∈ ΥR(t) holds. We can
collect these data flows also in a tree structure. The data flow trees of a run represents
all branching behavior in the transitions of the run with respect to its transits.

I Definition 19 (Flow Tree). For a given run β = (NR
T , ρ) of a Petri net with transitsNT

there is for each t0 ∈ TR and place p0 ∈ PR with (�, p0) ∈ ΥR(t0), a TR ×PR-labeled
(data) flow tree τ = (T, v) over degrees D = {|postΥR(p, t)| | p ∈ PR ∧ t ∈ postR(p)}
with

1. v(ε) = (t0, p0) for the root ε, and

2. if n ∈ T with v(n) = (t, p) then for the unique transition t′ ∈ postR(p) (if existent)
we have for all 0 ≤ i < |postΥR(p, t′)| that n · i ∈ T with v(n · i) = (t′, q) for
q = 〈postΥR(p, t′)〉i

where 〈postΥR(p, t′)〉i is the i-th value of the ordered list 〈postΥR(p, t′)〉. J

In Fig. 4.2 one of the two data flow trees of the depicted run is indicated by the gray
shaded area. The other one is only a non-branching tree corresponding to the data
flow chain ξ3. Figure 4.3 gives a schematic overview over the firing of the transitions
in the Petri net with transits and the data flow trees of the corresponding run depicted
in Fig. 4.2. This shows that in case no data flow is created, the firing of transitions
does not have any effect on the data flow trees, even if they would transit the data

43

4 Petri Nets with Transits

Firing Sequence:

enterhall

enter corr

leaveh→c

enterhall

enter corr

emergency

leaveh→[c,y]

Flow Trees of the Corresponding Run:

ε : (e0
c , corr 2)

0 : (l0h→c, corr 3)

00 : (e1
h, hall3)

000 : (e, hall4)

0000 : (l0h→[c,y], corr 7) 0001 : (l0h→[c,y], yard2)

ε : (e1
c , corr 5)

0 : (e, corr 6)

00 : (l0h→[c,y], corr 7)

Fig. 4.3: A schematic overview of the correlation between the firing sequence of the
Petri net with transits depicted in Fig. 2.4 on page 22 and the data flow trees of the
corresponding run depicted in Fig. 4.2. The nodes of the trees are depicted on the left of
the colon, where the corresponding labels are depicted on the right of the colon.

flow in a different run (cp. the first occurring of transition enterhall). Furthermore,
concurrent transitions not transiting the data flow of the current place of a specific
chain (or tree) does not occur in the data flow chain (or tree). The second occurring
of the transition enter corr in the firing sequence does not effect the first tree. So data
flow chains (and trees) start at different points in time regarding the firing sequence and
more crucially, they proceed in their own timeline omitting concurrent transition not
involving the own data flow. In the next chapter we elaborate more on this topic about
different timelines for the global system and each local data flow.

44

5Model Checking Petri Nets with Transits

against Flow-CTL
∗

In this chapter we introduce a model checking routine for Petri nets with transits and
Flow-CTL∗. In classical model checking there are three components [CHVB18]. First,
there is the modeling part. We need to model our system which we want to analyze in
an adequate formalism. For distributed asynchronous systems with local data flows we
introduced Petri nets with transits in Chap. 4.

Second, there is the specification language to describe the system’s correctness prop-
erties. For that we introduce in this chapter the temporal logic Flow-CTL∗. In Sec. 2.2
we already introduced some example specifications formalized in Flow-CTL∗ (e.g., in
Fig. 2.5). Flow-CTL∗ is composed of two parts. First, there is the LTL part to reason
about the global configuration of the system. Here, we consider the runs of the Petri
net with transits and check the formula for all firing sequences covering this run. This
semantics is formally introduced in Sec. 5.1. Second, there is the CTL∗ part to reason
about the local data flow of the runs. Here, we consider the data flow chains or the data
flow chain suffixes to check each of the local data flow formulas on all data flow trees
of the run. In the example depicted in Fig. 4.3 we can already see that the local data
flow of the processes is independent of the firing of concurrent transitions. Thus, each
data flow chain can be considered having its own timeline. As a schematic overview of
possible timelines see Fig. 5.1. With τ we depict the global timeline corresponding to
the firing sequence of the run. For each data flow chain ξi of the possible infinitely many,
the steps where a transit extends the data flow are depicted as filled time steps. The
CTL∗ formula is evaluated only on the filled time steps of a data flow chain leading to
a separated timeline for each chain. Flow-CTL∗ is formally introduced in Sec. 5.2.
The third component for model checking are the algorithms constituting the decision

procedure used to verify the correctness of the system, i.e., checking whether the Petri net
with transits satisfies the Flow-CTL∗ formula, and if not, providing a counterexample.
In Sec. 5.3, we reduce the model checking problem of a 1-bounded Petri nets with transits
against Flow-CTL∗ via automata constructions to the model checking problem of Petri
nets against LTL. The reduction consists of three steps: First, each data flow subformula
of the given Flow-CTL∗ formula is represented by a finite Petri net via an alternating tree
automaton, an alternating word automaton, and a nondeterministic Büchi automaton,
to guess and then to verify a counterexample tree (Sec. 5.3.1). Second, the original
net for the control subformula of the Flow-CTL∗ formula and the nets for the data
flow subformulas are connected in sequence. A fully formal construction of the Petri
net can be found in Sec. 5.4 and, to gain an easier access to the construction, a more

45

5 Model Checking Petri Nets with Transits against Flow-CTL∗

time steps

τ
ξ1

...

ξi

...

Fig. 5.1: A possible sequence of the global timeline τ and the timelines of the possible
infinite number of flow chains ξi. A filled time step for a timeline of a flow chain
indicates that the fired transition has a transit which extends this flow chain.

textual version is presented in Sec. 5.3.2. Third, an LTL formula encodes the control
subformula, the acceptance conditions of the automata in terms of the corresponding
subnets for the data flow subformulas, and the correct skipping of the subnets in the
sequential order to comply with each timeline (cp. Fig. 5.1). This step is presented in
Sec. 5.3.3. Together, this results in a model checking problem of 1-bounded Petri nets
and LTL formulas. Due to the automata construction for the CTL∗ formulas, this results
in a triple-exponential time algorithm for model checking a 1-bounded Petri net with
transits NT against a Flow-CTL∗ formula ϕ, or a double-exponential time algorithm for
the fragment of Flow-CTL formulas, in the size of NT and ϕ. In Chap. 6 we present a
single-exponential time algorithm for the fragment of Flow-LTL formulas.
This chapter is based on [FGHO20c] and the corresponding full version [FGHO20d].

5.1 LTL on Petri Net Unfoldings

In Flow-CTL∗ we reason about the two different layers of a Petri net with transits,
i.e., the control layer and the data flow layer. We use LTL to reason about the global
configuration of the system (the control layer) and use CTL∗ to reason about the data
flows of the individual processes. The flow chains and trees of the data flow layer are
defined on the runs of the Petri net with transits. Hence, we define the semantics of
CTL∗ for Petri nets with transits on the runs rather than the reachability graph.
Usually, in Petri net model checking against temporal logics (see, e.g., the annual

model checking contest [KBGH+21]), the formulas are restricted to places. This means
that the actual firing of a transition cannot be stated. In this thesis we are also inter-
ested in stating fairness and maximality assumptions about the firing of transitions (cp.
Sec. 2.1) and do not want to hard-code these assumptions into the algorithms. Thus, we
consider AP = P ∪T as atomic propositions. By that we have to decide whether the
firing of a transition t belong to the state the transition t led to or to the state where t
fired. In this chapter we consider the ingoing semantics, i.e., a state of the system is the
current marking together with the transition used to enter the marking. Furthermore,
we stutter in the last marking of a finite firing sequence to obtain an infinite semantics.

46

5.1 LTL on Petri Net Unfoldings

A trace is a mapping σ : N→ X to some set X. The i-th suffix σi : N→ X is a trace
defined by σi(j) = σ(j + i) for all j ∈ N.

I Definition 20 (Ingoing Semantics – Firing Sequences). Given a run β = (NR, ρ) of a
Petri net or Petri net with transits N. To a (finite or infinite) covering firing sequence
ζ = M0[t0〉M1[t1〉M2 · · · of β, we associate a trace σR(ζ) : N→ 2AP with

σR(ζ)(i) =

{
ρ(M0) for i = 0
{ρ(ti−1)} ∪ ρ(Mi) otherwise

if ζ is infinite and

σR(ζ)(i) =

ρ(M0) for i = 0
{ρ(ti−1)} ∪ ρ(Mi) for 0 < i ≤ n
ρ(Mn) otherwise

if ζ = M0[t0〉 · · · [tn−1〉Mn is finite. J

Hence, a trace of a covering firing sequence is an infinite sequence of states collecting
the current marking and ingoing transition of N, which stutters on the last marking for
finite sequences.
We evaluate an LTL formula ψ ∈ LTL on a Petri net or Petri net with transits N over

the traces of the covering firing sequences of its runs.

I Definition 21 (LTL on Petri Net Runs). Given a Petri net or Petri net with tran-
sits N and an LTL formula ψ ∈ LTL. The semantics of LTL on runs is defined as
follows:

N |=LTL ψ iff for all runs β of N : β |=LTL ψ

β |=LTL ψ iff for all firing sequences ζ covering β : σR(ζ) |=LTL ψ

σR(ζ) |=LTL a iff a ∈ σR(ζ)(0)

σR(ζ) |=LTL ¬ψ iff not σR(ζ) |=LTL ψ

σR(ζ) |=LTL ψ1 ∧ ψ2 iff σR(ζ) |=LTL ψ1 and σR(ζ) |=LTL ψ2

σR(ζ) |=LTL ψ iff σR(ζ)1 |=LTL ψ

σR(ζ) |=LTL ψ1 Uψ2 iff there exists a j ≥ 0 with σR(ζ)j |=LTL ψ2 and
for all 0 ≤ i < j the following holds: σR(ζ)i |=LTL ψ1

for atomic propositions a ∈ AP and LTL formulas ψ, ψ1, and ψ2. We say a Petri net or
Petri net with transits N satisfies an LTL formula ψ iff N |=LTL ψ holds. J

As an example for specifying objectives in LTL on runs of a Petri net, we consider
fairness and maximality assumptions for runs.

I Example 1. Neither the definition of a run (Definition 6) nor the semantics of LTL
(Definition 21) impose any constraints on the length of the run. However, for a reacha-
bility objective, where we want to reach a specific place, we are typically interested in

47

5 Model Checking Petri Nets with Transits against Flow-CTL∗

some sort of maximal runs. A Petri net only satisfies a formula, when all runs satisfy
the formula, but for each Petri net there is the run which only consists of the initial
marking. Clearly, we do not want to already reject a formula because the initial mark-
ing does not contain the place we want to reach. To avoid such cases we introduce two
kinds of maximality assumptions.
On the one hand, we consider a run to be interleaving-maximal iff whenever there

is a possible extension of the run, we must extend the run somewhere. This fits to
the common semantics on the reachability graph for example used in the LTL model
checking contest [KBGH+21].
Interleaving-Maximality. A run β is interleaving-maximal iff, whenever some transition
is enabled, some transition will be taken:

β |= (
∨
t∈T

pre(t)→
∨
t∈T

t) for pre(t) =
∧

p∈pre (t)

p.

On the other hand, we consider a maximality assumption which focuses more on the
concurrent structure of the run. This means that we do not want some process in the
system to cut off the progressing of another concurrent process. Thus, for a run to be
concurrency-maximal we require that whenever some process can progress the process
has to progress.
Concurrency-Maximality. A run β is concurrency-maximal iff, when a transition t is from
some moment on always enabled, a transition t′ (including t itself) sharing a precondition
with t is taken infinitely often:

β |=
∧
t∈T

(pre(t)→
∨

p∈pre (t),t′∈post (p)

t′).

This notion is strongly related to the notion of progress for transitions in [Rei98]. We
can also mark some transition to be fair (in a weak or a strong sense), i.e., we do not
want the run to completely cut off this transition in certain situations. As an example
consider the Petri net with transits in Fig. 2.3 on page 21 modeling a software-defined
networking problem. We do not want to reject a formula already because there is the
run which only creates infinitely many data packets in switch A. Thus, we want the
transitions forwarding the data packet to the next switch to eventually fire.
Fairness. A run β is weakly fair w.r.t. a transition t iff, whenever t is always enabled
after some point, t is taken infinitely often:

β |= pre(t)→ t.

A run β is strongly fair w.r.t. a transition t iff, whenever t is enabled infinitely often, t
is taken infinitely often:

β |= pre(t)→ t. J

In Flow-CTL∗ we typically select with such formulas specific runs of the system and
check the data flow along these runs.

48

5.2 Flow-CTL∗

5.2 Flow-CTL
∗

We use Petri nets with transits to enable reasoning about two separate timelines. Prop-
erties defined on the run of the system concern the global timeline and allow us to reason
about the global behavior of the system like its general control or fairness and maximal-
ity assumptions. Additionally, we can express requirements about the individual data
flow like the access possibilities of people in buildings. These requirements concern the
local timeline of the specific data flow. In Flow-CTL∗, we can reason about these two
parts with LTL in the run and with CTL∗ in the flow part of the formula.

In this chapter we also use the ingoing semantics for the flow part of the system.

I Definition 22 (Ingoing Semantics – Flow Chain Suffixes). Given a run β = (NR
T , ρ)

of a Petri net with transits NT . To a (finite or infinite) flow chain suffix ξ =
t0, p0, t1, p1, t2, . . . of β we associate a trace σF (ξ) : N→ {{t, p}, {p} | p ∈ PR∧t ∈ TR}
with

σF (ξ)(i) = {ti, pi} for all i ∈ N

if ξ is infinite and

σF (ξ)(i) =

{
{ti, pi} for i ≤ n
{pn} otherwise

if ξ = t0, p0, t1, p1, . . . , tn, pn is finite.
Additionally, we define the trace σs({p})(i) = {p} for all i ∈ N for a place p ∈ PR.

This technicality is necessary to allow for the stuttering at the last place of a finite
flow chain suffix in Definition 23, although every flow chain suffix must start with a
transition. J

Hence, a trace of a flow chain suffix is an infinite sequence of states collecting the current
place and ingoing transition of the flow chain suffix, which stutters on the last place p
for finite flow chain suffixes.

We evaluate a CTL∗ formula Φ ∈ CTL∗ on a Petri net with transits NT over the traces
of the flow chains of its runs.

I Definition 23 (CTL∗ on Flow Chain Suffixes). Given a run β = (NR
T , ρ) of a Petri net

with transits NT , a CTL∗ formula φ, and a state s ∈ {{t, p}, {p} | p ∈ PR ∧ t ∈ TR}
of a trace σF (ξ) of a flow chain suffix ξ. The semantics of CTL∗ on flow chain suffixes

49

5 Model Checking Petri Nets with Transits against Flow-CTL∗

is defined as follows:

β, s |=CTL∗ a iff a ∈ ρ(s)

β, s |=CTL∗ ¬Φ iff not β, s |=CTL∗ Φ

β, s |=CTL∗ Φ1 ∧ Φ2 iff β, s |=CTL∗ Φ1 and β, s |=CTL∗ Φ2

β, s |=CTL∗ Eφ iff Case s ⊆ PR : β, σs(s) |=CTL∗ φ holds.
Otherwise: there exists some flow chain suffix
ξ = t0, p0, . . . of β with {t0, p0} = s such that
β, σF (ξ) |=CTL∗ φ holds.

β, σF (ξ) |=CTL∗ Φ iff β, σF (ξ)(0) |=CTL∗ Φ

β, σF (ξ) |=CTL∗ ¬φ iff not β, σF (ξ) |=CTL∗ φ

β, σF (ξ) |=CTL∗ φ1 ∧ φ2 iff β, σF (ξ) |=CTL∗ φ1 and β, σF (ξ) |=CTL∗ φ2

β, σF (ξ) |=CTL∗ Xφ iff β, σF (ξ)1 |=CTL∗ φ

β, σF (ξ) |=CTL∗ φ1Uφ2 iff there exists some j ≥ 0 with β, σF (ξ)j |=CTL∗ φ2 and
f. a. 0 ≤ i < j the following holds: β, σF (ξ)i |=CTL∗ φ1

for atomic propositions a ∈ AP , state formulas Φ,Φ1, and Φ2, and path formulas φ, φ1,
and φ2. J

Note that since the formulas are evaluated on the runs of NT , the branching is in the
transitions and not in the places of NT .

Based on Definition 21 used to define the global run part of the formula as LTL
formulas and Definition 23 used to define the local flow part of the formula as CTL∗
formulas, we define the new specification language Flow-CTL∗.

I Definition 24 (Flow-CTL∗). We define the syntax of Flow-CTL∗ with:

ϕ ::= ψ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ψ → ϕ | Aφ

where ϕ, ϕ1, ϕ2 are Flow-CTL∗ formulas, ψ is an LTL formula, and φ is a CTL∗ formula.
We call ϕA = Aφ flow formulas and all other subformulas which are not under the A
operator run formulas.

The semantics of a Petri net with transits NT = (P,T,F,Υ, In) satisfying a Flow-
CTL∗ formula ϕ is defined over the covering firing sequences of its runs:

NT |= ϕ iff for all runs β of NT : β |= ϕ

β |= ϕ iff for all firing sequences ζ covering β : β, σR(ζ) |= ϕ

β, σR(ζ) |= ψ iff σR(ζ) |=LTL ψ

β, σR(ζ) |= ϕ1 ∧ ϕ2 iff β, σR(ζ) |= ϕ1 and β, σR(ζ) |= ϕ2

β, σR(ζ) |= ϕ1 ∨ ϕ2 iff β, σR(ζ) |= ϕ1 or β, σR(ζ) |= ϕ2

β, σR(ζ) |= ψ → ϕ iff β, σR(ζ) |= ψ implies β, σR(ζ) |= ϕ

β, σR(ζ) |= Aφ iff for all flow chains ξ of β : β, σF (ξ) |=CTL∗ φ

50

5.3 Reduction to Model Checking Petri Nets against LTL

with LTL formulas ψ, CTL∗ formulas φ, and Flow-CTL∗ formulas ϕ, ϕ1 and ϕ2. We say
a Petri net with transits NT satisfies a Flow-CTL∗ formula ϕ iff NT |= ϕ holds. J

Due to the covering of the firing sequences and the maximality constraint of the flow
chain suffixes, every behavior of the run and its complete data flow is incorporated. The
operator A chooses flow chains rather than flow trees as our definition is based on the
common semantics of CTL∗ over paths. But we can give a direct correspondence because
a tree satisfies a formula iff all paths of the tree satisfy the formula.

The trace tree σT (τ) of a flow tree τ = (T, v) is a {{t, p}, {p} | p ∈ PR ∧ t ∈ TR}-
labeled infinite tree σT (τ) = (Tσ, vσ) such that i) for all n ∈ T also n ∈ Tσ and vσ(n) =
{t, p} for v(n) = (t, p) holds and ii) for all leaves n′ ∈ T we have nodes ni = n′ ·0i+1 ∈ Tσ
for all i ∈ N with labels vσ(ni) = {p} for v(n′) = (t, p). This means a trace tree has the
structure of the flow tree, but stutters on finite branches. Thus, for a flow tree (T, v)
the trace tree σT (T, v) satisfies a Flow-CTL∗ formula φ iff all paths of the tree satisfy φ.
The paths are exactly all traces σF (ξ) of flow chains ξ starting in the root of the tree.
Note that it suffices to find for each flow formula one of the possibly infinitely many

flow trees of a run to invalidate the subformula. Even though finding one tree suffices,
checking the data flow while the control changes the system complicates the direct
expression of the model checking problem within a finite model.

5.3 Reduction to Model Checking Petri Nets against LTL

We solve the model checking problem for a given Flow-CTL∗ formula ϕ and a safe Petri
net with transits NT in four steps:

1. For each flow subformula Aφi of ϕ, a subnet N>
i is created via a sequence of

automata constructions (substeps (i)-(iv) in Sec. 5.3.1) that allows us to guess a
counterexample, i.e., a flow tree not satisfying φi, and to check its correctness.

2. A Petri net N> is created by composing the subnets N>
i with a copy of NT such

that every firing of a transition subsequently triggers each subnet.

3. A formula ψ> is created such that the subnets N>
i are adequately skipped for the

run part of ϕ, and the flow parts are replaced by LTL formulas corresponding to
checking the acceptance of a run of the respective automaton.

4. N> |=LTL ψ
> is checked to answer NT |= ϕ.

The construction from a given safe Petri net with transits NT = (P,T,F,Υ, In) and
a Flow-CTL∗ formula ϕ with n ∈ N flow subformulas ϕAi = Aφi with atomic proposi-
tions AP i to a Petri net N> = (P>,T>,F>,F>

I , In>) with inhibitor arcs and an LTL
formula ψ> is defined in the following sections. Figure 5.2 gives a schematic overview
of the procedure. Step 1. consists of the substeps (i)-(v), and Step 2. is depicted in the
gray box at the bottom of the figure.

51

5 Model Checking Petri Nets with Transits against Flow-CTL∗

Petri net with transits NT Flow-CTL∗ formula ϕ input

KNT ,AP1 TD,¬φ1

A¬φ1

A¬φ1

KNT ,APn TD,¬φn

A¬φn

A¬φn

. . .

N>
1N>

O N>
n

N>
LTL formula

ψ>
output. . .|T|+ 1 O(E1) O(En−1)

O(En)

3.

(i)

(ii)

(iii)

(iv)

(v)

(iii)

(iv)

(v)

Fig. 5.2: Overview of the model checking procedure: For a given safe Petri net with tran-
sits NT and a Flow-CTL∗ formula ϕ, a standard Petri net N> and an LTL formula ψ>
are created: For each flow subformula Aφi, create (i) a labeled Kripke structure KNT ,AP i

and (ii) the alternating tree automaton TD,¬φi, construct (iii) the alternating word au-
tomaton A¬φi = KNT ,AP i × TD,¬φi, and from that (iv) the Büchi automaton A¬φi with
edges Ei, which then (v) is transformed into a Petri net N>

i . These subnets are com-
posed to a Petri net N> such that they get subsequently triggered for every transition
fired by the original net. The constructed formula ψ> skips for the run part of ϕ these
subsequent steps and checks the acceptance of the guessed flow tree for each automaton in
the corresponding subnet. The initial model checking problem is then solved by checking
N> |=LTL ψ

>.

5.3.1 Automaton Construction for Flow Formulas

In Step 1 of the reduction method, we create for each flow subformula Aφi of the Flow-
CTL∗ formula ϕ with atomic propositions AP i a nondeterministic Büchi automaton A¬φi
which loosely speaking accepts a sequence of transitions of a given run if any of the
corresponding flow trees satisfies ¬φi. This construction is done in four steps:

(i) Create the labeled Kripke structure KNT ,AP i which, triggered by transitions t ∈ T,
tracks a flow chain of NT . Each path in the labeled Kripke structure corresponds
to a flow chain of a run of NT .

(ii) Create the alternating tree automaton TD,¬φi for the negation of the CTL∗ for-
mula φi and the set of degrees D = {|postΥ(p, t)| | p ∈ P ∧ t ∈ postNT (p)} which
accepts all 2AP i-labeled D-trees satisfying ¬φi [KVW00].

(iii) Create the alternating word automaton A¬φi = KNT ,AP i × TD,¬φi similarly
to [KVW00].

(iv) Alternation elimination forA¬φi yields the nondeterministic Büchi automaton A¬φi

52

5.3 Reduction to Model Checking Petri Nets against LTL

with L(A¬φi) = L(A¬φi) [MH84; DK08].

Step (ii) and Step (iv) are well-established constructions. For Step (iii), we modify the
construction of [KVW00] by, roughly speaking, applying the idea not on all outgoing
edges of a Kripke structure’s state, but on the groups of equally labeled outgoing edges.
By this, we obtain an alternating word automaton with the alphabet A = T∪{s}∪{sp |
p ∈ P} of the labeled Kripke structure rather than an alternating word automaton over
a 1-letter alphabet. The letters using the symbol s are used for the stuttering of finite
firing sequences or finite chains. This allows us to check whether the, by the input
transitions dynamically created, system satisfies the CTL∗ subformula ¬φi.

Constructing a Labeled Kripke Structure

Step (i) of the subnet construction creates the labeled Kripke structure KNT ,AP i =
(AP , A, S, S0, `, R) of a Petri net with transits NT and a set of atomic propositions AP i

for each flow subformula. These n labeled Kripke structures only differ in the labeling of
the states, i.e., the labels are restricted to the atomic propositions AP i and in introducing
additional states dependent on whether the fired transition is contained in the atomic
propositions. The latter is only introduced due to optimization reasons. The Kripke
structure serves (in combination with the tree automaton) for checking the satisfaction
of a flow tree of a given run. Hence, the states track the current place of the considered
chain of the tree and additionally, when the transition extending the chain into the place
occurs in the formula, also this ingoing transition. The initial states S0 are either the
tuples of transitions tj and places pj which start a flow chain, i.e., all (tj, pj) ∈ T×P with
(�, pj) ∈ Υ(tj) when tj ∈ AP or only the place pj otherwise. The labeling function `
labels the states with its components as long as they occur in AP . The transition
relation R connects the states with respect to the transits and allows for switching
from every state corresponding to a place p ∈ P into a respective stuttering state ps
to permit the stuttering for finite firing sequences and finite flow chains. Note that the
construction of the Petri net (Step 2) nondeterministically selects the violating tree of the
flow subformula and for this tree, the Kripke structure is used to check the satisfaction.
We formally define the labeled Kripke structure of which the unwinding triggered by

an input sequence corresponding to a covering firing sequence of a run corresponds to
one flow tree of a run of NT .

I Definition 25 (Labeled Kripke Structure). For a given a Petri net with transits NT

and a set of atomic propositions AP i we construct the labeled Kripke structure KNT ,AP i =
(AP , A, S, S0, `, R) with

• the finite set of atomic propositions AP = AP i ⊆ P ∪T,

• the alphabet A = T ∪ {s} ∪ {sp | p ∈ P},

• the finite set of states S ⊆ ((T ∩ AP)×P) ∪P ∪ {ps | p ∈ P},

• the finite set of initial states S0 ⊆ S,

53

5 Model Checking Petri Nets with Transits against Flow-CTL∗

• the labeling function ` : S → 2AP ,

• the labeled transition relation R ⊆ S × A× S.

The initial states S0 = {(t, p) ∈ T ×P | t ∈ AP : (�, p) ∈ Υ(t)} ∪ {p ∈ P | ∃t ∈
T \ AP : (�, p) ∈ Υ(t)} correspond to all tuples of transitions t ∈ AP and places (or
only to the places) which start a data flow in NT .
The labeling function ` labels the states with its components which occur in AP : ∀(t, p) ∈
(T∩AP)×P : `((t, p)) = {t, p}∩AP , ∀p ∈ P : `(p) = {p}∩AP , and ∀p ∈ P : `(ps) =
{p}∩AP . The transition relation is composed out of three sets R = R′ ∪R′′ ∪R′′′. The
relation R′ connects the states with respect to the transits:

R′ ={(p, t, q) ∈ S ×T × S | (p, q) ∈ Υ(t) ∧ t 6∈ AP}
∪{(p, t, (t, q)) ∈ S ×T × S | (p, q) ∈ Υ(t) ∧ t ∈ AP}
∪{((t′, p), t, q) ∈ S ×T × S | (p, q) ∈ Υ(t) ∧ t 6∈ AP}
∪{((t′, p), t, (t, q)) ∈ S ×T × S | (p, q) ∈ Υ(t) ∧ t ∈ AP}.

The relation R′′ adds s-labeled loops and loops for each transition t ∈ T to states ps
with p ∈ P to stutter in these states for finite firing sequences and finite flow chains:
R′′ = {(ps, x, ps) ∈ S× ({s}∪T)×S | p ∈ P}. For switching into the stuttering mode,
the relation R′′′ adds sp-labeled edges between each state (t, p) or p and ps to guess the
beginning of the local stuttering: R′′′ = {(x, sp, ps) ∈ S × {sq | q ∈ P} × S | x =
(t, p) ∈ T ×P ∨ x = p ∈ P}. The states S are exactly the states reachable from the
initial states.
We define the function sK : S × A → 2S with sK(s, l) = {s′ ∈ S | (s, l, s′) ∈ R}

returning all l-labeled successors of a state s. J

I Example 2. As an example we build the labeled Kripke structure corresponding to the
example representing the lecture hall depicted as Petri net with transits NT in Fig. 2.4
on page 22 and to the atomic propositions AP = {e, y}. We use the first letter of each
node as abbreviation for the node. The set AP contains only the atomic propositions
corresponding to the emergency transition and the place yard , because only these will
be used in the formula to be checked. This is only an optimization to obtain a smaller
automaton. But if we want to be independent of a particular formula, we can simply
use the set of all nodes. Applying Definition 25 yields the labeled Kripke structure
KNT ,AP = ({e, y},T∪{s}∪{sp | p ∈ P}, {c, h, y, cs, hs, ys, (e, c), (e, h), (e, y)}, {c}, `, R)
with ` and R depicted in Fig. 5.3. Note the nondeterminism in state h and (e, h)
for the edges labeled with lh→[c,y] corresponding to the branching of the data flow in
transition lh→[c,y]. J

The size of the labeled Kripke structure is dependent on the number of transits used in
the specification for the local data flow:

I Lemma 1 (Size of the Kripke Structure). The Kripke structure KNT ,AP i constructed
in Definition 25 has O(|AP i ∩T| · |NT |+ |NT |) states. J

54

5.3 Reduction to Model Checking Petri Nets against LTL

c

∅

cs

∅

h

∅

hs

∅

y

{y}

ys

∅

(e, c)

{e}

(e, h)

{e}

(e, y)

{e, y}

lh→c, lh→[c,y], ec eh lh→y, lh→[c,y]

e e e

eh

e

sc
t ∈ T
s

lh→c, lh→[c,y]

lh→y, lh→[c,y]

e

sh
t ∈ T
s

e

sy
t ∈ T
slh→c,

lh→[c,y],
ec

eh

sc
lh→c,
lh→[c,y]

eh

lh→y,
lh→[c,y]

sh

lh→y,
lh→[c,y] sy

Fig. 5.3: The labeled Kripke structure KNT ,AP corresponding to the Petri net with tran-
sits NT depicted in Fig. 2.4 and to the atomic propositions AP = {e, y}. Each state of
a run corresponds to the current state of the tracked chain, i.e., either only to the place
or, in case the transition extending the chain into the place occurs in the formula, to the
place and this ingoing transition.

Proof. The number of states of KNT ,AP i follows directly from Definition 25.

We create two differently labeled trees for a given covering firing sequence of a run
β = (NR

T , ρ) of a Petri net with transits NT and a transition t ∈ TR and a place p ∈ PR

starting a flow chain. The first one is a S-labeled tree corresponding to the unwinding of
the respective labeled Kripke structure KNT ,AP i along the firing sequence. The second
tree has the same structure but is labeled with the labels of the states of the Kripke
structure. Thus, it is a 2AP -labeled tree. This tree corresponds to the flow tree of β
starting with transition t in place p.

I Definition 26 (Trees of Unwinding). Given a run β = (NR
T , ρ) of a Petri net with

transits NT , a covering firing sequence ζ = M0[t0〉M1[t1〉M2 · · · with a transition ti ∈ TR

and a place p ∈Mi+1 ⊆ PR such that (�, p) ∈ ΥR(ti), a set of atomic propositions AP ,
and the corresponding labeled Kripke structureKNT ,AP = (AP , A, S, S0, `, R). We define
a S-labeled D-tree (T ′K, v

′
K) by unwinding KNT ,AP along ζ:

(IA) The root ε is labeled with the initial state s0 = (ρ(ti), ρ(p)) if ρ(ti) ∈ AP and
s0 = ρ(p) of the labeled Kripke structure: v′K(ε) = s0.

(IS) Let tj−1 ∈ TR be the last transition of ζ so far handled by this inductive definition
(or j = 0 for the first step) and n0, . . . , nk ∈ T ′K the leafs of the current tree.

55

5 Model Checking Petri Nets with Transits against Flow-CTL∗

For each nl for l ∈ {0, . . . , k} with v′K(nl) = sl (either sl = (t, p′), sl = p′, or sl = p′s
for some t ∈ T and p′ ∈ P) we consider all successors s′ ∈ S (either s′ = (t′, q),
s′ = q, or s′ = qs for some t′ ∈ T and q ∈ P) with (sl, ρ(tj), s

′) ∈ R. If s′ 6= qs
and there is some successor, we know we can order all successors according to
postΥ(p′, ρ(tj)) due to the definition of R. Thus, for all 0 ≤ m < |postΥ(p′, ρ(tj))|
we add the node nl ·m to T ′K with v′K(nl ·m) = s′ with q = 〈postΥ(p′, ρ(tj))〉m. If
there is no transition tx ∈ {tj+1, tj+2, . . .} with (q, ·) ∈ Υ(ρ(tx)), i.e., a finite flow
chain ends in a place corresponding to q, we add a grand child nl · m · 0 to T ′K
with v′K(nl ·m · 0) = s′′ for (s′, sq, s

′′) ∈ R (i.e., s′′ = qs). If s′ = qs, we add the
node nl · 0 with v′K(nl · 0) = s′ for the unique successor s′ = qs.

(F) Finally, due to finite firing sequences T ′K can still contain leafs. Thus, if there are
any leafs v′K(nl) = sl in T ′K left, i.e., sl = p′s for some p′ ∈ P, we add the successor
node n = nl ·0 to T ′K and label it with v′K(nl ·0) = s′ for (sl, s, s

′) ∈ R, i.e., s′ = p′s.
This step is repeated infinitely often.

We define the 2AP -labeled D-tree (TK, vK) with TK = T ′K and vK(n) = `(v′K(n)) for all
nodes n ∈ TK. J

It is easy to see that there is a one-to-one mapping of such a constructed tree (TK, vK)
and a flow tree of a given run β = (NR

T , ρ) of a Petri net with transits NT . Espe-
cially, the trace trees and these unwindings coincide. Lemma 9 on page 71 makes this
correspondence formal and proves this result.

Constructing the Alternating Tree Automaton

Step (ii) of the construction creates an alternating tree automaton TD,¬φi for the negation
of the CTL∗ formula φi and the set of possible degrees D = {|postΥ(p, t)| | p ∈ P∧ t ∈
postNT (p)}. This well-established construction is elaborately presented in [KVW00]. In
this section we only recall the necessary parts to continue our running example.
First, hesitant alternating tree automata (HATA), a special kind of alternating tree

automata, are introduced. HATA extend Weak Alternating Automata (WAA) [MSS88]
by introducing more restrictions on the transition structure but allowing a more powerful
acceptance condition. A WAA has a Büchi condition and suffices for the fragment of
CTL formulas, whereas HATA use a combination of a Büchi and a co-Büchi condition.

I Definition 27 (Hesitant Alternating Tree Automata [KVW00]). A Hesitant Alternat-
ing Tree Automaton (HATA) is a five-tuple T = (Σ, D,Q, δ, q0, F) with an alphabet Σ,
a set of possible degrees D ⊂ N, a set of states Q, a transition relation δ : Q×Σ×D →
B+({0, . . . ,max(D)−1}×Q), an initial state q0, and an acceptance condition F = 〈B,C〉
with B,C ⊆ Q satisfying the following constraints:

(i) the states Q can be partitioned into disjoint sets Qi,

(ii) there exists a partial order ≤ on Qi,

56

5.3 Reduction to Model Checking Petri Nets against LTL

(iii) Each set Qi is classified as either transient , existential , or universal such that for
all q ∈ Qi, σ ∈ Σ, and k ∈ D the following constraints hold:

(T) If Qi is a transient set, then δ(q, σ, k) contains only elements of sets Qj 6= Qi

with Qj ≤ Qi,

(E) If Qi is an existential set, then in δ(q, σ, k) all elements of Qi are disjunctively
related and all other elements belong to a Qj 6= Qi with Qj ≤ Qi, and

(U) If Qi is a universal set, then in δ(q, σ, k) all elements of Qi are conjunctively
related and all other elements belong to a Qj 6= Qi with Qj ≤ Qi.

The acceptance condition is a combination of a Büchi and a co-Büchi condition, i.e., the
word w of the labels of an infinite path of a run tree is accepted iff Inf(w) is existential
and Inf(w) ∩B 6= ∅ or Inf(w) is universal and Inf(w) ∩ C = ∅. J

Note that each path of a run tree must eventually get trapped inside either an existential
or a universal set Qi. It cannot stay in transient sets because each successor must be
in a smaller set and also for the existential and universal set, the successors are either
in the smaller set or stay in the same one. The set of Qi are finite, hence we cannot
infinitely decrease such that Inf(w) must either be existential or universal.

I Theorem 1 (CTL∗ to HATA [KVW00]). Given a CTL∗ formula φ and a set of degrees
D ⊂ N, we can construct a hesitant alternating tree automaton TD,φ of size O(|D| · 2|φ|)
(of size O(|D| · |φ|) for a CTL formula φ) such that L(TD,φ) is exactly the set of D-trees
satisfying φ. J

In the proof of the theorem in [KVW00] a sophisticated construction of the hesitant
alternating tree automaton for a CTL∗ formula is given. Since we do not use any details
of the construction in this thesis, we do not recall the definitions. But to give an
intuition of the handling of branching properties and to continue our running example,
we provide here the easier construction of a CTL formula also presented in [KVW00].
The closure cl(φ) of a CTL formula φ collects all CTL state subformulas of φ including φ
itself. As optimization we can avoid collecting the subformulas for the abbreviations true
and false in the closure and treat them separately in the construction by mapping them
directly to true and false respectively.

I Definition 28 (CTL to HATA [KVW00]). Given a CTL formula φ with atomic propo-
sitions AP and a set of degrees D ⊂ N, we construct in linear running time a HATA
TD,φ = (2AP , D, cl(φ), δ, φ, F) where for all σ ∈ 2AP and k ∈ D the transition relation δ
is defined as follows:

• for p ∈ AP :

– δ(p, σ, k) = true if p ∈ σ,
– δ(p, σ, k) = false if p 6∈ σ,
– δ(¬p, σ, k) = true if p 6∈ σ,
– δ(¬p, σ, k) = false if p ∈ σ,

57

5 Model Checking Petri Nets with Transits against Flow-CTL∗

• δ(ϕ1 ∧ ϕ2, σ, k) = δ(ϕ1, σ, k) ∧ δ(ϕ2, σ, k),

• δ(ϕ1 ∨ ϕ2, σ, k) = δ(ϕ1, σ, k) ∨ δ(ϕ2, σ, k),

• δ(AXϕ, σ, k) =
∧k−1
c=0 (c, ϕ),

• δ(EXϕ, σ, k) =
∨k−1
c=0 (c, ϕ),

• δ(A(ϕ1 Uϕ2), σ, k) = δ(ϕ2, σ, k) ∨ (δ(ϕ1, σ, k) ∧
∧k−1
c=0 (c,A(ϕ1 Uϕ2))),

• δ(E(ϕ1 Uϕ2), σ, k) = δ(ϕ2, σ, k) ∨ (δ(ϕ1, σ, k) ∧
∨k−1
c=0 (c,E(ϕ1 Uϕ2))),

• δ(A(ϕ1 Rϕ2), σ, k) = δ(ϕ2, σ, k) ∧ (δ(ϕ1, σ, k) ∨
∧k−1
c=0 (c,A(ϕ1 Rϕ2))),

• δ(E(ϕ1 Rϕ2), σ, k) = δ(ϕ2, σ, k) ∧ (δ(ϕ1, σ, k) ∨
∨k−1
c=0 (c,E(ϕ1 Rϕ2))).

The acceptance set F = (B,C) is defined such that B consists of all formulas ϕ ∈ cl(φ)
of the form ϕ = E(ϕ1 Rϕ2) and C consists of all formulas of the form ϕ = A(ϕ1 Uϕ2).
The partition is given by singleton sets Qi = {ϕi} for each ϕi ∈ cl(φ) and the partial
order ≤ by {ϕ} ≤ {ϕ′} iff ϕ ∈ cl(ϕ′). J

This construction transforms the A operator of the formula into conjunctions in the
automaton relation and the E operator of the formula into disjunctions to enforce that
all path must be accepted or there exists an accepting path, respectively. For the U
and R operators the construction exploits the recursive equivalences part of the ex-
pansion laws [BK08]: A(ϕ1 Uϕ2) ≡ ϕ2 ∨ (ϕ1 ∧ AX A(ϕ1 Uϕ2)) and E(ϕ1 Uϕ2) ≡
ϕ2 ∨ (ϕ1 ∧ EX E(ϕ1 Uϕ2)).
Note that the CTL formula has to be in positive normal form, i.e., negations are only

applied to the atomic propositions, and only the operators provided in Definition 28 can
be used. With the help of standard equivalence transformations, any formula can be
converted into such a form. Furthermore, the constructed automaton can be seen as a
WAA with the simple Büchi condition F consisting of all formulas ϕ ∈ cl(φ) of the form
ϕ = A(ϕ1 Rϕ2) or ϕ = E(ϕ1 Rϕ2) [KVW00].

I Example 3. As an example we use the subformula presented in Sec. 2.2 stating that
on all paths to every point in time it holds that when there is an emergency then there
must be a path such that the people finally reach the yard :

φ = AG(emergency → EFyard).

First, using the abbreviations e = emergency and y = yard , we transform ¬φ into an
equivalent formula in positive normal form only using the operators used in Definition 28:
¬AG(e → EFy) ≡ EF(e∧¬EFy) ≡ E(trueU e∧¬E(trueU y)); moving the negation
to the proposition yields the final formula

¬φ ≡ E(trueU e ∧ E(falseR¬y))︸ ︷︷ ︸
=:F0

.

58

5.3 Reduction to Model Checking Petri Nets against LTL

Tab. 5.1: The transition relation δ of the HATA TD,¬φ of Example 3.
q δ(q, ∅, k) δ(q, {e}, k) δ(q, {y}, k) δ(q, {e, y}, k)
F2 false true false true

F5 false false true true

F4 true true false false

F3

∨k−1
c=0 (c, F3)

∨k−1
c=0 (c, F3) false false

F1 false
∨k−1
c=0 (c, F3) false false

F0

∨k−1
c=0 (c, F0)

∨k−1
c=0 (c, F3) ∨

∨k−1
c=0 (c, F0)

∨k−1
c=0 (c, F0)

∨k−1
c=0 (c, F0)

Thus, we have the atomic propositions AP = {e, y} and the closure

cl(¬φ) = {F0, e ∧ E(falseR¬y)︸ ︷︷ ︸
=:F1

, e︸︷︷︸
=:F2

,E(falseR¬y)︸ ︷︷ ︸
=:F3

, ¬y︸︷︷︸
=:F4

, y︸︷︷︸
=:F5

}.

Given the set of degrees D = {1, 2}, Definition 28 creates the alternating tree automaton
TD,¬φ = (2AP ,D, cl(¬φ), δ,¬φ, {E(falseR¬y)}) with the transition relation δ depicted
in Tab. 5.1. J

Constructing the Alternating Word Automaton

In Step (iii) of the automaton construction for a CTL∗ subformula φi of the Flow-CTL∗
formula, we combine the two previous structures into a product automaton. For an al-
ternating tree automaton TD,¬φi created of ¬φi and a labeled Kripke structure KNT ,AP i ,
we define an alternating word automaton A¬φi . The idea is that this automaton ac-
cepts, when the flow trees belonging to a sequence of transitions of a run of NT , with
adequately switching into the stuttering mode, satisfy ¬φi. The definition is very similar
to [KVW00], we only apply the edge definition on each equally labeled group of tran-
sitions separately and add skipping transitions for input letters which not involve the
current branch of the flow tree.

I Definition 29 (Product Automaton). Given an alternating tree automaton TD,φ =
(2AP ,D, Qφ, δφ, q0, Fφ) accepting exactly all D-trees satisfying φ corresponding to The-
orem 1 and a labeled Kripke structure KNT ,AP = (AP , A, S, S0, `, R) created by Defini-
tion 25 with degrees in D. For the product automaton Aφ = (A, S ×Qφ, δ, S0×{q0}, F)
of TD,φ and KNT ,AP the transition relation δ and the acceptance set F is defined as
follows:

• For every (s, q) ∈ S × Qφ, l ∈ A, sK(s, l) 6= ∅, and δφ(q, `(s), |sK(s, l)|) = θ, we
have an edge δ((s, q), l) = θ′, where the positive Boolean formula θ′ is obtained
from θ by replacing the atoms (c, q′) with (〈sK(s, l)〉c, q′), where 〈sK(s, l)〉c is the
c-th value of the ordered list of successors with respect to the transit’s post place.
If sK(s, l) = ∅, we have a self-loop δ((s, q), l) = (s, q).

59

5 Model Checking Petri Nets with Transits against Flow-CTL∗

• The acceptance condition of Fφ is transferred to F by preserving the type and
building the cross product of the acceptance set(s) with S.

This represents an alternating word automaton, which also allows for the partitioning of
the states and the partial order to be taken over from the alternating tree automaton.J

Note that due to the additional self-loops, where especially TD,φ is not advanced, each
state of Aφ has a successor for each label (or the formula results in false already due to
the alternating tree automaton). Thus, for concurrent transitions of the firing sequence
not involving the current chain under consideration, and for the local stutter transitions
there is a successor which not triggers the automaton checking the formula. Later we
ensure that runs using these loops infinitely often consecutively are omitted in the model
checking procedure.

I Example 4. Let AP = {e, y} be the set of atomic propositions, A = T ∪ {s} ∪
{sp | p ∈ P} be the set of labels, and S = {c, h, y, cs, hs, ys, (e, c), (e, h), (e, y)}
the set of states of the labeled Kripke structure KNT ,AP = (AP , A, S, {c}, `, R) of
Example 2. Furthermore, let TD,¬φ = (2AP ,D, {F0, . . . , F5}, δ, F0, {F3}) be the al-
ternating tree automaton of Example 3. The alternating word automaton A¬φ =
(A,S, δ′, {(c, F0)}, {c, h, y, (e, c), (e, h), cs, hs} × {F3}) with the set of states S = S ×
{F0, F3} \ {(ys, F3), ((e, y), F3)} constructed with Definition 29 is depicted in Fig. 5.4.
We omitted all stutter states (i.e., (cs, F0), (cs, F3), (hs, F0), (hs, F3), (ys, F0)), the loops
in these states for all t ∈ T and s, and the edges sp from each state containing a
place p ∈ P to the stutter state ps for more clearance.
Note that there is no stutter state (ys, F3), because due to R we could only reach this

state from states (y, ·), ((e, y), ·) ∈ S. But the transition relation depicted in Tab. 5.1
for the alternating tree automaton TD,φ has no F3 successor for the columns δφ(q, {y}, k)
and δφ(q, {e, y}, k). We either switch into F0 or have no successor at all. For example
for state (y, F3) Tab. 5.1 yields that δφ(F3, {y}, k) = false for all k ∈ D. Thus, there is
no successor in A¬φ for (y, F3) for the transition (y, sy, ys) ∈ R of the Kripke structure.
Furthermore, it is interesting to notice that the state (y, F3) is a Büchi state and

even though the transition relation of the alternating tree automaton has no successors
for this situation, there exists self-loops at this state. These belong to transitions which
cannot transit the data flow in y, i.e., there is no successor in the labeled Kripke structure
for these labels, but the loops are added due to the sK(s, l) = ∅ case of Definition 29.
Even though (y, F3) is a Büchi state theses loops are not making any harm for the
acceptance, because we later reject runs where we do not switch into a stutter state
when no transition further transiting the data flow is ever fired. J

The size of the alternating word automaton Aφ directly follows from the definition as a
product automaton (see the proof on page 72).

I Lemma 2 (Size of the Product Automaton). The constructed alternating word au-
tomaton Aφ in Definition 29 has O(2|φ| · |NT |3) states for a CTL∗ formula φ and
O(|φ| · |NT |3) states for a CTL formula φ. J

60

5.3 Reduction to Model Checking Petri Nets against LTL

c, F0 h, F0 y, F0

(e, c), F0 (e, h), F0

(e, y), F0c, F3

(e, c), F3

h, F3

(e, h), F3 y, F3

lh→c, lh→[c,y],
ec, lh→y eh, ec lh→y, lh→[c,y], ec, eh,

lh→c

e, ec, eh,
lh→c

eh

e

lh→c

lh→y

∨
lh→[c,y]

e

e
lh→y,
lh→[c,y]

∨

e

∨

ec,
lh→c,
lh→[c,y]

∨

eh

lh→c

∨

e

∨

eh

∨

lh→y

∨

lh→c

∨

lh→[c,y]

ec

lh→c,lh→[c,y],
ec, lh→y

e

eh

e,
lh→y

eh

ec,
lh→c,
lh→[c,y]

eh, ec

lh→c

lh→y

∨
lh→[c,y]

e

e, ec

eh

lh→y

lh→c

∨
lh→[c,y]

eh, ec,
lh→c

Fig. 5.4: The alternating Büchi word automaton A¬φ = KNT ,AP × TD,¬φ correspond-
ing to the product of the labeled Kripke structure constructed in Example 2 on page 54
and the alternating tree automaton TD,¬φ constructed in Example 3 on page 58. The
additional stutter states (cs, F0), (cs, F3), (hs, F0), (hs, F3), (ys, F0) and the corresponding
edges are omitted to increase the readability. In this example, the edges of the alternating
automaton consists only of disjunctions.

61

5 Model Checking Petri Nets with Transits against Flow-CTL∗

To prove that the product automaton behaves as expected, we restrict the set of words
w ∈ (T ∪ {s} ∪ {sp | p ∈ P})ω in which we are interested to those corresponding
to a given firing sequence of a run and adhering correct local and global stuttering.
Furthermore, we only consider those suffixes starting the flow tree under consideration.
Thus, for a given run β = (NR

T , ρ) of NT and a transition t ∈ TR and a place p ∈ PR

with (�, p) ∈ ΥR(t), we first define

Lt,p(β) ={w ∈ (T ∪ {s} ∪ {sq | q ∈ P})ω | ∃ζ = M0[t0〉M1[t1〉 · · · ∈ Z(β) :

∃i ∈ N : t = ti ∧ p ∈Mi+1 ∧
(ζ is infinite → w = ρ(ti)w

i
sρ(ti1)wi+1

s · · ·)∧
(ζ = M0[t0〉 · · · [tn〉Mn+1 is finite → w = ρ(ti)w

i
s · · · ρ(tn)wn

s s
ω)∧

∀ξ = t′0, p
′
0, . . . , t

′
m, p

′
m ∈ Ξ(β) : t = t′0 ∧ p = p′0 → ∃k ≥ i : t′m = tk ∧

∃k′ ≥ k : sρ(p′m) ∈ wk′

s ∧ ∀j ≥ i : wj
s ∈ {sq | q ∈ P}∗}.

The global stuttering is done for finite covering firing sequences of the run by adding sω

to the end of the words. Switching into the local stuttering with transition sρ(p′m) for
a finite flow chain ending in place p′m is put at some point after the last transition of
the chain has fired. The last conjunct of the predicate ensures that such local stuttering
transitions only occur finitely often consecutively.

I Lemma 3 (Correctness of the Product Automaton). Given a run β = (NR
T , ρ) of a

Petri net with transits NT , a transition t ∈ TR and a place p ∈ PR such that (�, p) ∈
ΥR(t), a CTL∗ formula φ with atomic propositions AP , the alternating tree automa-
ton TD,φ corresponding to Theorem 1, and the 2AP -labeled D-tree (TK, vK) created by
Definition 26 from the labeled Kripke structure KNT ,AP . For the alternating word au-
tomaton Aφ in Definition 29

L(Aφ) ∩Lt,p(β) 6= ∅ iff (TK, vK) is accepted by TD,φ

holds. J

Proof Sketch. We can prove this lemma along the proof for the product automaton of
a standard Kripke structure and an alternating tree automaton for CTL∗ specifications
presented in [KVW00]. In doing so, we have to particularly take care of the skipping of
concurrent transitions not transiting the current data flow of the branch and the local
stuttering of finite data flow chains. The main idea is to transform the accepting runs
for both directions. Thus, we transform a N∗ × Qφ-labeled tree (Tr, vr) for TD,φ into a
S ×Qφ-labeled tree (T ′r, v

′
r) for Aφ and vice versa. Without the stuttering and skipping

of concurrent transitions we could remain the tree structure and only change the labeling
of the run trees. Thus, we keep the branching of the alternation, but change the role of
the states S of the Kripke structure. For the run (T ′r, v

′
r) of the product automaton we

have the states S as first component of the states of Aφ, i.e., they are already part of the
label of the run (T ′r, v

′
r). However, for the tree automaton TD,φ these states are encoded

in the N∗ part of the labeling function of the run (Tr, vr). This is because (Tr, vr) is

62

5.3 Reduction to Model Checking Petri Nets against LTL

a run on the 2AP -labeled tree (TK, vK) constructed in Definition 26 from the labeled
Kripke structure. Furthermore, this tree corresponds to the S-labeled tree (T ′K, v

′
K).

Thus, we can encode the additional branching for running over a tree rather than a
word directly in the labeling. Thus, we label the created tree either according to the
accepted 2AP -labeled tree (TK, vK) ((T ′K, v′K) respectively) or according to the accepted
word w ∈L(Aφ) ∩Lt,p(β) 6= ∅.
To handle the stuttering and the skipping of concurrent transitions, we pump up the

tree (Tr, vr), such that concurrent transitions and the starts of a local stuttering add new
leaves to all branches of the tree. By that and by adding the starting edge for the local
stuttering when creating the accepting word w, we obtain that each letter adds a new
level to the tree. The sK(s, l) = ∅ case of δ with the self-loops ensures the run property
for such additional steps. Since the loops can only be taken finitely often consecutively
and the acceptance condition is transferred to the cross product, the run is accepted.
This construction is similar for the other direction but we project the tree (T ′r, v

′
r) onto

the steps involving the transiting of the current flow chain for each branch. The decisions
are taken with respect to the first component (the states of the Kripke structure) of the
labels of (T ′r, v

′
r). For more details see the proof on page 72.

Constructing the Nondeterministic Büchi Automaton

Given the alternating word automaton A¬φi . The well-established constructions (e.g., in
[MH84; DK08]) allow for the alternation elimination yielding a nondeterministic Büchi
automaton A¬φi accepting the same language. As we do not need the details of the
constructions for the Rabin condition, we only recall the result here and provide only
the construction for a Büchi condition due to Miyano and Hayashi to proceed with the
running example.

I Definition 30 (ABA to NBA [MH84]). Given an alternating Büchi word automaton
A = (Σ, Q, I, δ, BUCHI(F)), we construct the nondeterministic Büchi automaton A =
(Σ, Q′, I ′, δ′, BUCHI(F ′)) with

• Q′ = 2Q × 2Q,

• I ′ = {({q0}, ∅) | q0 ∈ I},

• δ′ = {((Qr, ∅), σ, (Q′r, Q′r \ F)) | Q′r |=
∧
q∈Qr δ(q, σ)} ∪

{((Qr, QB̄), σ, (Q′r, Q
′
B̄
\ F)) | Q′r |=

∧
q∈Qr δ(q, σ) ∧QB̄ 6= ∅ ∧Q′B̄ ⊆ Q′r

∧ Q′
B̄
|=
∧
q∈QB̄

δ(q, σ)}, and

• F ′ = {(Qr, ∅) | Qr ⊆ Q},

such that L(A) = L(A). J

We can see the first component of the states (denoted by Qr in the definition of δ′) as
the set of states the alternating automaton is currently in and the second component
(denoted by QB̄ in the definition of δ′) as the subset of these states which still have to

63

5 Model Checking Petri Nets with Transits against Flow-CTL∗

visit a Büchi state. Thus, we track the current states of the alternating automaton in
this component as long as they have not visited a Büchi state. When all path reached a
Büchi state, i.e., the set is empty, we mark this state as the new Büchi state and newly
start the tracking of the states which have not visited a Büchi state.

I Theorem 2 (Alternation Elimination [DK08]). Given an alternating word automa-
ton A, we can construct a nondeterministic Büchi automaton A with L(A) = L(A).
For a Büchi condition the NBA A is of size O(22n) and for a Rabin condition the NBA A
is of size 2O(nk log nk) with n the size and k the index of A.

Note that for specifications in CTL the alternating word automaton A¬φi constructed
in Definition 29 has a Büchi condition due to the Büchi condition of the constructed
WAA. For CTL∗ specifications the alternating word automaton A¬φi has a combina-
tion of a Büchi and a co-Büchi acceptance condition because the constructed HATA
for ¬φi has such a combination (B,C) as acceptance condition. This combination can
be transformed into a single Rabin condition with only one pair FR = (I, F) [KB17].
Let QE be all states corresponding to existential sets and QU all states corresponding
to universal sets. For the construction of the HATA for CTL∗ specifications we have
B ⊆ QE and C ⊆ QU . Thus, B ∩ C = ∅ and we can choose the Rabin pairs F = C
and I = B ∪ (QU \ C). Remember the Rabin condition for one pair is given with
RABIN((I, F)) = {w ∈ Qω | Inf(w) ∩ I 6= ∅ ∧ Inf(w) ∩ F = ∅}. Thus, w is accepted
iff Inf(w) ∩ (B ∪ (QU \ C)) 6= ∅ and Inf(w) ∩ C = ∅. When Inf(w) is universal, i.e.,
Inf(w) ⊆ QU , the former is always true because Inf(w) 6= ∅ by definition. Hence, in this
case the Rabin condition matches the co-Büchi condition of the HATA. When Inf(w)
is existential, i.e., Inf(w) ⊆ QE, the later is always true and the additional states of the
union of the former formula cannot occur in Inf(w) yielding that the Rabin condition
also matches the Büchi condition of the HATA in this case.
The size of the Büchi automaton is dominated by the tree automaton construction and

the removal of the alternation. Each construction adds one exponent for specifications
in CTL∗. Hence, the size of the nondeterministic Büchi automata is single-exponential
for specifications given in CTL and double-exponential in specifications given in CTL∗.

I Lemma 4 (Size of the Büchi Automaton). The size of a Büchi automaton Aφ ob-
tained through alternation elimination of the constructed alternating word automaton Aφ

in Definition 29 is double-exponential for specifications φ in CTL∗ and single-exponential
for specifications in CTL in the size of the formula φ and the Petri net with transits NT .J

Proof. This results directly follow from Theorem 2 and Lemma 2.

Putting it all together, we can show that the constructed Büchi automaton for a CTL∗
flow subformula φi can be used to check whether all corresponding flow chains satisfy φi.

I Lemma 5 (Correctness of the Büchi Automaton). Given a run β = (NR
T , ρ) of NT , a

transition t ∈ TR and a place p ∈ PR such that (�, p) ∈ ΥR(t), and a CTL∗ formula φ.

64

5.3 Reduction to Model Checking Petri Nets against LTL

For the Büchi automaton A¬φ obtained through alternation elimination of the constructed
alternating word automaton A¬φ in Definition 29,

L(A¬φ) ∩Lt,p(β) = ∅ iff ∀ξ = t, p, . . . flow chain of β : β, σF (ξ) |=CTL∗ φ

holds. J

Proof. Let β = (NR
T , ρ) be a run of NT , t ∈ TR a transition and p ∈ PR a place such

that (�, p) ∈ ΥR(t), and φ a CTL∗. Theorem 2 yields that L(A¬φ) = L(A¬φ) for the
alternating word automaton A¬φ of Definition 29. Lemma 3 yields L(A¬φ)∩Lt,p(β) = ∅
iff the 2AP -labeled D-tree (TK, vK) created by Definition 26 from the labeled Kripke
structure KNT ,AP is not accepted by TD,¬φ. Theorem 1 states that TD,¬φ accepts exactly
all D-trees satisfying ¬φ and likewise accepts TD,φ exactly all D-trees satisfying φ.
Thus, L(A¬φ) ∩Lt,p(β) = ∅ iff (TK, vK) is accepted by TD,φ. Lemma 9 shows that the
trace trees and the unwindings of the labeled Kripke structure (TK, vK) coincide. Thus,
L(A¬φ) ∩Lt,p(β) = ∅ iff the corresponding trace tree satisfies φ. This is the case iff all
paths satisfy φ, i.e., ∀ξ = t, p, . . . flow chain of β : β, σF (ξ) |=CTL∗ φ hold.

Note that the selection of correct words regarding the stuttering, in this lemma selected
by the intersection with Lt,p(β), is solved in the construction of Petri net N> in the
next section and in the construction of the corresponding formula ψ> in the next but
one section.

5.3.2 From Petri Nets with Transits to Petri Nets

In Step 2, we construct for the Petri net with transits NT and the Büchi automata A¬φi
for each flow subformula ϕAi = Aφi of the Flow-CTL∗ formula ϕ, a Petri net N> by
composing a copy of NT (without transits), denoted by N>

O , with subnets N>
i corre-

sponding to A¬φi such that each copy is sequentially triggered when a transition of N>
O

fires. In this section we give a complete, but more intuitive definition of the construction
for a lighter weight understanding. Definition 31 in Sec. 5.4 on page 75 is a fully formal
definition of this construction.
We divide the construction of N> into the construction of the original part of the net,

the construction of the subnets, the part that belong to the additional elements needed
for a correct stuttering of the system, and the part that belong to properly connecting
the single subnets:

Original Part: The subnet N>
O with places P>

O and transitions T>
O is a copy of the

Petri net with transits NT without any transits. Furthermore, there is an activation
place −→ao ∈ P>

O for composing the subnets in a sequential manner. Finally, we have
two places N ,S ∈ P>

O and a transition tN→S switching into the global stuttering
mode and the corresponding transition ts informing the subnets about the stuttering.

Subnets: The subnet N>
i , with places P>

i and transitions T>
i , when triggered by tran-

sitions t ∈ T, guesses nondeterministically the violating flow tree of the operator A

65

5 Model Checking Petri Nets with Transits against Flow-CTL∗

and simulates A¬φi . Thus, a token from the initially marked place [ι]i is moved via
one transition for each transition and place combination starting a flow chain to the
place corresponding to the respective initial state of A¬φi . For each state s of A¬φi , we
have a place [s]i, and, for each edge (s, l, s′), there is a transition labeled by l which
moves the token from [s]i to [s′]i. To also allow the checking of this specific flow tree
to be skipped (and maybe check another one created later) there is one transition
[tV]i for each transition t ∈ T with [ι]i in its pre- and postset. These transitions are
also used to skip transitions not starting a flow chain in case no tracking of a tree
started yet. We have one activation place [−→a]i and one global stuttering place [−→s]i
for each subnet and additionally there is one activation place [

−→
t]i for each transition

t ∈ T. These are used to connect the subnets in a sequential manner.

Stu�ering: There are two types of stuttering: global stuttering for finite runs and local
stuttering for finite flow chains. To guess the starting point of the global stuttering, the
token in the initially marked place N of the original part can be move into the place S
via transition tN→S. This can be done to any point in time. The standard transitions
t ∈ T can only fire in normal mode (place N is occupied) and the global stuttering
transition ts only in stuttering mode (place S is occupied). For the subnets, the global
stuttering transitions (labeled with s) are dependent on [−→s]i. The local stuttering
transitions of a subnet N>

i corresponding to edges of A¬φi with label sp with p ∈ P,
can fire whenever the subnet is activated. We omit runs where such transitions fire
infinitely often consecutively with the formula ψ> defined in Sec. 5.3.3.

Connecting: The original part N>
O and the subnets N>

i are connected in a sequential
manner. The net N>

O has an initially marked activation place −→ao in the preset of
each transition, the subnets have one activation place [

−→
t]i in the preset of every

transition t> corresponding to a transition t ∈ T. The transitions move the activation
token to the corresponding places of the next subnet (or back to N>

O). The skipping
transitions [tV]i for each transition t ∈ T can only fire when there is still a token
in [ι]i and they just move the activation tokens to the next subnet. For the global
stuttering, the transition ts in N>

O puts the activation token into the place [−→s]1 and
each s-labeled transition of the subnets moves this token to the next subnet (or back
to N>

O). For the local stuttering we take and directly put back the activation token
into place [−→a]i to allow for switching into the local stuttering mode whenever the
subnet is activated.

By that, we can check the acceptance of each A¬φi by checking if the subnet infinitely
often reaches any places corresponding to a Büchi state of A¬φi . This and only allowing
to correctly guess the time point of the stutterings is achieved with the formula described
in Sec. 5.3.3. A formal definition of this construction is given in Definition 31 on page 75

I Example 5. In Fig. 5.5 we give a schematic overview of this construction for the Petri
net with transits depicted in Fig. 2.4 and n flow subformulas. The original part N>

O of
the constructed Petri net N> is depicted on the left. The indicated subnet N′T is a copy
of the Petri net with transits NT without the transits. At the bottom of the figure the

66

5.3 Reduction to Model Checking Petri Nets against LTL

Global stuttering

Local stuttering Local stuttering

N
tN→S

S

−→ao

· · ·

...

ts [−→s]1
s s· · ·

[−→ec]1

[−→e]1

[−→a]1

...

...

...
...

sc sy· · ·

[ι]1
[ecc]1

[ecV]1

[eV]1

· · ·

...

[−→s]n
s s· · ·

[−→ec]n

[−→e]n

[−→a]n

...

...

...
...

sc sy· · ·

[ι]n
[ecc]n

[ecV]n

[eV]n

· · ·

...

...
...

N>

N′T

N>
O N>

1

A¬φ1

N>
n

A¬φn

Fig. 5.5: A schematic overview of the construction of the Petri net N> from the Petri
net with transits NT depicted in Fig. 2.4 and n flow subformulas. The presentation
concentrates on the sequential composition of the subnets at the left of each subnet, the
guessing of the considered data flow tree at the top, and the global stuttering at the
bottom. The original part of the net N>

O is depicted at the left with the input net without
transits N′T . The subnets N

>
i for each flow subformula contain the places and transitions

corresponding to the Büchi automaton A¬φi.

global stuttering is depicted. Each transition of N′T is dependent on the emptiness of
place S due to the indicated inhibitor arcs. Furthermore, it takes the activation token
in −→ao and moves it to both, the activation place of the first subnet [−→a]1 and the activation
place corresponding to the firing of this transition. At the top of each subnet N>

i the
guessing of the data flow tree happens. Whenever it is the turn of the subnet and
transition ec has fired, a token can be put into the corresponding initial state of the
Petri net simulating A¬φi . If this creation of a data flow tree should not be checked, or
any other transition has fired, the skipping transitions can be used to pass the token to
the next subnet. The global stuttering is depicted at the bottom of the figure and the
switches for the local stuttering of each subnet are shown above. The last subnet puts
the activation token back to the activation place −→ao of N>

O with the gray dashed arcs.
The different representation of these arcs is only for the sake of clarity. J

The size of the constructed Petri net is dominated by the respective single- or double-
exponential size of the nondeterministic Büchi automata.

I Lemma 6 (Size of the Constructed Net). The constructed Petri net with inhibitor
arcs N> for a Petri net with transits NT and n nondeterministic Büchi automata

67

5 Model Checking Petri Nets with Transits against Flow-CTL∗

A¬φi = (T ∪ {s} ∪ {sp | p ∈ P}, Qi, Ii, Ei, Fi) has O(|NT | · n+ |NT |+
∑n

i=1|Qi|) places
and O(|NT |2 · n+ |NT |+

∑n
i=1|Ei|) transitions. J

The main parts here (the sum over the sizes of the states Qi and the sum over the
sizes of the edges Ei) directly follow from the construction of the subnet simulating the
automata A¬φ. For more details see the proof on page 77.

5.3.3 From Flow-CTL
∗
Formulas to LTL Formulas

The formula transformation from a given Flow-CTL∗ formula ϕ and a Petri net with
transits NT into an LTL formula (Step 3) consists of three parts and is done via substi-
tutions. An overview of the used subformula substitutions is given in Tab. 5.2.
First, we substitute the flow formulas ϕAi = Aφi with the acceptance check of the

corresponding automaton A¬φi , i.e., we substitute ϕAi with ¬
∨
b∈Fi [b]i for the Büchi

states Fi of A¬φi .
Second, the sequential manner of the constructed net N> requires an adaptation

of the run part of ϕ. For a subformula ψ1 Uψ2 with transitions t ∈ T as atomic
propositions or a subformula ψ in the run part of ϕ, the sequential steps of the
subnets have to be skipped. Let T>

O be the transitions of the original part N>
O , tN→S

the transition switching N>
O from normal to stuttering mode, and T>

O− = T>
O \ {tN→S}.

Then, because of the ingoing semantics, we can select all states corresponding to the
run part with M =

∨
t∈T>

O−
t together with the initial state i = ¬

∨
t∈T> t. Hence, we

replace each subformula ψ1 Uψ2 containing transitions t ∈ T as atomic propositions
with ((M ∨ i) → ψ1)U((M ∨ i) ∧ ψ2) from the inner- to the outermost occurrence. For
the next operator, the second state is already the correct next state of the initial state
also in the sense of the global timeline of ψ>. For all other states belonging to the
run part (selected by the until construction above), we have to get the next state and
then skip all transitions of the subnet. Thus, we replace each subformula ψ with
(i→ ψ) ∧ (¬i→ (

∨
t∈T>\T>

O−
tU
∨
t′∈T>

O−
t′ ∧ ψ)) from the inner- to the outermost

occurrence.
Third, we need to make sure that we only consider runs that trigger the automaton

so that the correctness result of the automaton A¬φi can be used, i.e., we only consider
runs such that the language of the automaton is restricted to Lt,p(β). For the global
stuttering, the structure of the constructed net N> ensures that at the end of finite
firing sequences only stuttering transitions are allowed, because no activation place [

−→
t]i

can get occupied after switching into stuttering mode. With −→ao we can select runs
which infinitely often visit the original part of the net. For postΥ(p) = {t ∈ post (p) |
∃q ∈ P : (p, q) ∈ Υ(t)} we select with

stutts =
∧

i∈{1,...,n},p∈P

([sp]i → ¬
∨

t∈postΥ(p)

[t]i)

runs obeying: when once switched into the local stuttering mode for some chain, no
transition extending this chain is ever fired. The other direction, i.e., that we eventually

68

5.3 Reduction to Model Checking Petri Nets against LTL

Tab. 5.2: Subformula substitutions in the process of creating ψ> from ϕ. The rules in
the second and third row are applied from the inner- to the outermost occurrence. The
rule in row two is only applied when ψ1 or ψ2 contain transitions as atomic propositions.

ϕ ψ>

Aφi ¬
∨
b∈Fi [b]i

ψ1 Uψ2 ((M ∨ i)→ ψ1)U((M ∨ i) ∧ ψ2)
ψ (i→ ψ) ∧ (¬i→ (

∨
t∈T>\T>

O−
tU
∨
t′∈T>

O−
t′ ∧ ψ))

switch into the local stuttering mode, when no transition extending this chain will ever
fire, is done with

stuttc =
∧

i∈{1,...,n},p∈P,qp∈Qp

(([qp]i ∧ ¬
∨

t∈postΥ(p)

[t]i)→ [sp]i)

for Qp = {(Qr, ·) ∈ Qi | (p, ·) ∈ Qr ∨ ((t, p), ·) ∈ Qr}. So for each subnet we consider
the states belonging to some place p and when no transition extending the data flow
in p is ever fired again, then eventually the corresponding transition switching into the
stuttering mode sp has to fire.
Hence, we obtain the final formula

ψ> = ((−→ao) ∧ stutts ∧ stuttc)→ ψ′

by only selecting the runs where the original part is infinitely often activated and each
subnet chooses its stuttering modes correctly. The LTL formula ψ′ is obtained from ϕ by
applying the rules defined above. Since the size of the formula depends on the size of the
constructed Petri net N>, it is also dominated by the Büchi automaton construction.

I Lemma 7 (Size of the Constructed Formula). The size of the constructed formula ψ>
is double-exponential for specifications given in CTL∗ and single-exponential for specifi-
cations in CTL. J

Proof. The next and the until replacements introduces disjunctions over all transitions
of the net, i.e., especially over the edges of the Büchi automaton. Furthermore, the
stuttering subformula stuttc ranges over the states of the Büchi automaton, i.e., about
the corresponding places in P>. However, none of the formulas introduce a further
exponent. Hence, the size of the formula depends on the number of transitions T> and
the number of places P> and is therewith double-exponential for specifications in CTL∗
and single-exponential for specifications in CTL due to Lemma 6 and Lemma 4.

We can show that the construction of the net and the formula adequately fit together
such that the additional sequential steps of the subnets are skipped in the formula and
the triggering of the subnets simulating the Büchi automata as well as the stuttering is
handled properly. The correctness of the transformation is based on the correctness of
the Kripke structure and the automata constructions. The constructed formula and the
constructed net together ensure the correct triggering of the automata.

69

5 Model Checking Petri Nets with Transits against Flow-CTL∗

I Lemma 8 (Correctness of the Transformation). For a safe Petri net with transits NT

and a Flow-CTL∗ formula ϕ, there exists a safe Petri net N> with inhibitor arcs and
an LTL formula ψ> such that NT |= ϕ iff N> |=LTL ψ

>. J

Proof Sketch. The main part of this proof is done in Lemma 5 by showing that the
constructed Büchi automaton accepts a firing sequence of the run with correct stuttering
transitions iff all corresponding flow chains of the run satisfy the CTL∗ formula. By
checking all runs of the net N> and the nondeterministic guessing of the violating flow
tree in each subnet we check all possible flow trees. The run which never decides to
track any tree for a subnet introduces no problems because the initial place [ι]i cannot
be part of the Büchi states. The remaining part is to show that, on the one hand,
we only consider firing sequences triggering the automaton with a correct stuttering
and, on the other hand, that the run formula of the Flow-CTL∗ formula ϕ is properly
replaced for ψ> such that the additional steps for the sequentially triggering of the
subnets corresponding to the Büchi automata are omitted in the evaluation. The former
is done with the premise of ψ> and the latter is due to adequately replacing all elements
of ϕ concerning the timeline. This can be shown by translating the counterexamples of
the contraposition of the statement with a nested structural induction over ϕ. For more
details see the proof on page 78.

The complexity of the model checking problem of Petri nets with transits and Flow-CTL∗
is dominated by the automata constructions for the CTL∗ subformulas. The alternation
removal (Step (iv) of the construction) is due to the checking of branching properties on
structures chosen by linear properties. In contrast to standard CTL∗ model checking on
a static Kripke structure, we check on Kripke structures dynamically created for specific
runs.

I Theorem 3. A safe Petri net with transits NT can be checked against a Flow-CTL∗
formula ϕ in triple-exponential time in the size of NT and ϕ. For a Flow-CTL formula ϕ′,
the model checking algorithm runs in double-exponential time in the size of NT and ϕ′.J

Proof. For a Petri net with transits NT and a Flow-CTL∗ formula ϕ, Lemma 6 and
Lemma 7 yield the double-exponential size of the constructed Petri net with inhibitor
arcs N> and the constructed formula ψ> (the single-exponential size for the CTL frag-
ment). Lemma 8 yields the correctness. Checking a safe Petri net against LTL can be
seen as checking a Kripke structure of exponential size (due to the markings of the net).
Since this can be checked in linear time in the size of the state space and in exponential
time in the size of the formula [CHVB18], we obtain a triple-exponential algorithm for
CTL∗ formulas and a double-exponential algorithm for CTL formulas in the size of the
net and the formula.

Note that a single-exponential time algorithm for the fragment Flow-LTL is presented
in Chap. 6.

70

5.4 Proofs and Formal Constructions

5.4 Proofs and Formal Constructions

In this section we provide more details about the model checking procedure for Petri
net with transits against Flow-CTL∗ presented in the previous section. In particular,
we provide the full proof for the correctness of the automaton construction (Sec. 5.4.1)
and the formal construction of the standard Petri net N> of a given Petri net with
transits and the number of flow subformulas of a CTL∗ formula and its correctness proof
(Sec. 5.4.2). Those parts have been initially omitted for increasing the readability of the
previous section.

5.4.1 Correctness of the Automaton Construction

In this section we provide details for the construction of the Büchi automaton A¬φ for
a CTL∗ formula φ presented in Sec. 5.3.1. Especially, we provide the detailed proof for
the key part of the construction, i.e., the correctness of the construction of the product
automaton (Lemma 3).

First, we provide the formal correspondence between the flow trees and the unwindings
along some firing sequence of the labeled Kripke structure defined in Definition 26.

I Lemma 9 (Coincidence of Trace Tree and Unwindings). Let β = (NR
T , ρ) be a run of

a Petri net with transits NT . For each flow tree (T, v) of β there is a corresponding tree
(TK, vK) obtained by the unwinding of KNT ,AP along some firing sequence ζ with the
atomic propositions AP in Definition 26 and vice versa. For these trees

• σT (T) = TK and

• ∀n ∈ σT (T) : v(n) = (t, p)→ vK(n) = {t, p} ∩ AP

holds. J

Proof. Given run β = (NR, ρ) of a Petri net with transits NT . Each flow tree (T, v)
of β starts with some transition t ∈ TR in a place p ∈ PR with (�, p) ∈ ΥR(t).
Taking an arbitrary covering firing sequence ζ, Definition 26 creates the corresponding
tree (TK, vK). Since the firing sequence covers the run, it must contain transition t. For
the other direction we know that not more trees are created by Definition 26 because
the inductive definition does not do anything for transitions in the firing sequence which
does not transit the current data flow in a node. Since we only consider covering firing
sequences all sequences create the same tree.

The definition of flow trees (Definition 19) yields that there are only children of a
node corresponding to the transiting of the data flow from this node. These children are
ordered according to the postset places of the transit. The relation R ensures that also
for TK only those children are added in the induction step of Definition 26, and there
also the same ordering is ensured. When there is no transition in the firing sequence left
transiting the data flow in the current node, the induction step of Definition 26 switches
into the stuttering mode, where only loops are available. Thus, only one child is added.

71

5 Model Checking Petri Nets with Transits against Flow-CTL∗

This corresponds to the situation of a finite branch of the flow tree. These are extended
by the σT function also with an infinite sequence of single children. Thus, σT (T) = TK.
The labeling is equally easy to see because TK is labeled corresponding to the name

of the current state of the Kripke structure. These names are exactly the ones corre-
sponding to the data flow in the current state, but only restricted to the set of atomic
propositions AP .

That the size of the constructed alternating word automaton Aφ in Definition 29 is
single-exponential for specifications in CTL∗ and polynomial for specifications in CTL,
easily follows from the size of the corresponding alternating tree automaton and the size
of the labeled Kripke structure and the definition of the alternating word automaton as
product automaton. The corresponding lemma can be found on page 60.

Proof (Lemma 2: Size of the Product Automaton): Theorem 1 states the size of the
corresponding alternating tree automaton TD,φ with O(|D| · 2|φ|) for specifications in
CTL∗ and O(|D| · |φ|) for specifications in CTL. The set of degrees D for this con-
struction belong to the branching possibilities of the data flow D = {|postΥ(p, t)| |
p ∈ P ∧ t ∈ postNT (p)}. Thus, we can maximally branch in all places p ∈ P.
Hence, at most |D| ≤ |P|. Lemma 1 states that the Kripke structure KNT ,AP has
O(|AP ∩T| · |NT | + |NT |) states. Hence, the product yields that the number of states
is in O(|P| · 2|φ| · (|NT | · |AP ∩T|+ |NT |)) = O(2|φ| · |NT |3) for CTL∗ specification and
in O(|φ| · |NT |3) for CTL specifications for the product automaton. �

A key part of the correctness of the model checking procedure is the correctness of the
automaton checking the CTL∗ specifications for the data flow subformulas. Lemma 3
on page 62 provides this correctness such that for a given run β = (NR

T , ρ) of a Petri
net with transits NT , a transition t ∈ TR and a place p ∈ PR with (�, p) ∈ ΥR(t),
a CTL∗ formula φ with atomic propositions AP , the alternating tree automaton TD,φ
corresponding to Theorem 1, and the 2AP -labeled D-tree (TK, vK) created by Defini-
tion 26 from the labeled Kripke structure KNT ,AP , a restriction of the language of the
alternating word automaton Aφ defined in Definition 29 (L(Aφ) ∩Lt,p(β)) is empty if
and only iff (TK, vK) is accepted by the alternating tree automaton TD,φ.

Proof (Lemma 3: Correctness of the Product Automaton): We prove the lemma along
the proof for the product automaton of a standard Kripke structure and an alternating
tree automaton for CTL∗ specifications presented in [KVW00].

Case (TK, vK) is accepted by TD,φ. Hence, there is an accepting run (Tr, vr) of TD,φ
over (TK, vK). We now construct an infinite word w ∈ L(Aφ) ∩ Lt,p(β) ⊆ (T ∪
{s} ∪ {sp | p ∈ P})ω and an accepting run (T ′r, v

′
r) of Aφ on w. For this proof we have

four different kind of trees:

• (TK, vK) – a 2AP -labeled tree corresponding to a flow tree and constructed in
Definition 26 from the labeled Kripke structure,

• (T ′K, v
′
K) – a S-labeled tree containing the same tree as above, but labeled with

the states of the Kripke structure,

72

5.4 Proofs and Formal Constructions

• (Tr, vr) – a N∗×Qφ-labeled tree representing the accepting run of TD,φ on (TK, vK)
for the formula φ, and

• (T ′r, v
′
r) – a S ×Qφ-labeled tree representing the constructed run accepted by the

product automaton Aφ on the constructed word w.

Consider the firing sequence ζ = M0[t0〉M1[t1〉M2 · · · and the index i ∈ N such that
t = ti from the construction of (TK, vK) (Definition 26) with the corresponding S-
labeled tree (T ′K, v

′
K). We define w and the S × Qφ-labeled D-tree (T ′r, v

′
r) inductively

over the length of ζ and associate nodes of the tree T ′r of the accepting run of TD,φ to
tree nodes in T′r in each step. Intuitively, we pump up Tr by adding stutter steps for
concurrent transitions and the beginning of the local stuttering. This makes no harm,
because in such cases in the product automaton only the Kripke structure moves and
not the tree automaton.

Initially, w0 = ρ(ti) and the root ε ∈ T ′r is labeled with v′r(ε) = (v′K(ε), q0) and we
associate ε ∈ Tr to ε ∈ T ′r for this step.
For the induction step let tj−1 be the last considered transition of ζ, w′ the so far

created prefix of w, and n0, . . . , nk ∈ Tr the nodes associated in the previous step to
the leafs n′0, . . . , n′k ∈ T ′r of the current tree. First, we extend the current input word
with the next transition: w = w′ · ρ(tj). Then, we extend the current run (T ′r, v

′
r). For

each node nl with l ∈ {0, . . . , k} and label vr(nl) = (x, q) ∈ N∗ × Qφ we have the state
s = v′K(x) ∈ S of the Kripke structure for which the copy of TD,φ in state q reads the
tree obtained by unwinding K from s along ζ.
If a) sK(s, ρ(tj)) = ∅ then we add one child to T ′r with v′r(n′l · 0) = (s, q) and associate

the node nl to this new node. Note that the run property for this new node is satisfied,
due to the self-loop condition of the product automaton.

Case b) sK(s, ρ(tj)) 6= ∅. Definition 26 yields that d(x) = |sK(s, ρ(tj))| holds.
Let δφ(q, vK(x), d(x)) = θ. Since (Tr, vr) is a run there is by definition a set Y =
{(c0, q0), . . . , (cm, qm)} ⊆ {0, . . . , d(x)− 1} ×Qφ such that Y |= θ and for all 0 ≤ i ≤ m
we have nl · i ∈ Tr and vr(nl · i) = (x · ci, qi). We now add for all 0 ≤ i ≤ m nodes
n′l · i ∈ T ′r and label them with v′r(n′l · i) = (v′K(x · ci), qi). We associate the corresponding
nodes for the next step. Again we obey the definition of children for a run, because
the set of the children’s labels Y ′ = {v′r(n′l · i) | 0 ≤ i ≤ m} = {(v′K(x · ci), qi) |
0 ≤ i ≤ m} is due to Definition 26 Y ′ = {(〈sK(s, ρ(tj))〉ci , qi) | 0 ≤ i ≤ m}. For
δ(v′r(n

′
l), ρ(tj)) = δ((s, q), ρ(tj)) = θ′ we know that θ′ is obtained from θ by replac-

ing (ci, qi) with (〈sK(s, ρ(tj))〉ci , qi) due to the definition of δ. Hence, Y ′ |= θ′.
Now, we check whether any of the newly reached nodes n of Tr has a child c which

belongs to the start of a local stuttering, i.e., for vr(c) = (xc, qc) ∈ N∗×Qφ and vr(n) =
(xn, qn) ∈ N∗ × Qφ we check whether sc = v′K(xc) ∈ {p′s | p′ ∈ P} ⊆ S and v′K(xn) 6∈
{p′s | p′ ∈ P} ⊆ S. If this is the case for the nodes n0, . . . , nm, we extend the word
for each no for o ∈ {0, . . . ,m} with the switch into the stuttering mode: w = w′ · sp′
for the corresponding state so = v′K(xo) = p′s for vr(no) = (xo, qo) and we extend the
current run (T ′r, v

′
r) similar to the cases a) and b) but instead of ρ(tj) we use the label sp′ .

In this situation case b) is simplified because there is no nondeterminism for stuttering
transitions, hence, the degree of the nodes is one. This concludes the induction step.

73

5 Model Checking Petri Nets with Transits against Flow-CTL∗

Finally, we add the global stuttering in case that ζ is finite. Thus, we infinitely often
extend the word w with s and again apply the step analog to case b) with sK(s, s). We
do not have to consider steps corresponding to case a) because for finite firing sequences
we have to have switched into a stuttering place and each of these states of the labeled
Kripke structure has a stutter edge.
Since each of the steps obey the run properties, (T ′r, v

′
r) is a run of Aφ on w. Further-

more, w ∈ Lt,p(β) holds, because we stutter for finite firing sequences at the end, we
add the local stuttering transitions corresponding to Definition 26, i.e., directly at the
end of finite flow chains, and all other letters correspond to the firing sequence.
It remains to show that the run (T ′r, v

′
r) is accepted by Aφ. This directly follows from

the transferring of the acceptance condition from TD,φ to Aφ on the cross product of
the acceptance sets and TD,φ accepting (T ′r, v

′
r). Since δ moves the second component

for each edge as for δφ the only interesting case is the additional loop for sK(s, l) = ∅.
Since we only consider acceptance conditions over infinite words, this edge would only
be a problem for the acceptance, when it is taken infinitely often consecutively. This
cannot happen for (T ′r, v

′
r), because otherwise we would have an infinite sequence of

transitions not extending some chain, this means this chain is finite and thus we must
have switched into some qs state due to Definition 26. But in these states we have loops
for every t ∈ T.

Case L(Aφ) ∩Lt,p(β) 6= ∅. Thus, there is w ∈ Lt,p(β) which is accepted by Aφ.
Let (T ′r, v

′
r) be the accepted run of Aφ on w ∈Lt,p(β). We have to show that (TK, vK)

is accepted by TD,φ. Hence, we create a run (Tr, vr) on (TK, vK) which is accepted
by TD,φ. We do this inductively over w and skip the concurrent transitions and the local
stuttering steps not involving the current branch. The decisions are taken with respect
to the first component (the states of the Kripke structure) of the labels of (T ′r, v

′
r).

Initially, for w0 = ρ(t), we define vr(ε) = (ε, q0).
For the induction step let wi−1 be the last letter processed by this definition,

n′0, . . . , n
′
m ∈ T ′r be the corresponding nodes, and n0, . . . , nm ∈ Tr the nodes of Tr

associated to these nodes (exactly the leafs of Tr). Consider one of these nodes n′j for
j ∈ {0, . . . ,m} with v′r(n′j) = (s, q) and vr(nj) = (x, q).
Case wi ∈ T ∪ {sp′ | p′ ∈ P}:
If a) sK(s,wi) = ∅, thus, n′j · 0 is the only child with v′r(n′j · 0) = (s, q) due to the self-

loop in the definition of δ, we add nothing to the tree Tr and only associate nj to n′j · 0.
Thus, we skip the concurrent transitions and the start of the local stuttering, when the
branch is not impacted by the transition, the local stuttering, or is already in stuttering
mode and wi ∈ {sp′ | p′ ∈ P}.
Case b) sK(s,wi) 6= ∅. Let n′j · k ∈ T ′r be the k + 1 children of n′j with v′r(n′j · k) =

(s′k, q
′
k). We add successors nj · k ∈ Tr to Tr and label them with vr(nj · k) = (x · ik, q′k)

for ik ∈ N such that v′K(x · ik) = s′k. This means that we label the new child with the
successor state of the tree TD,φ (i.e., q′k), and the node of the input tree (TK, vK) labeled
with the successor state of the Kripke structureKNT ,AP (i.e., s′k). This obeys the property
of being a run because we have that δφ(q, vK(x), d(x)) = δφ(q, `(s), |sK(s,wi)|) = θ and

74

5.4 Proofs and Formal Constructions

due to δ we know that there is an edge δ((s, q),wi) = θ′ where θ′ is obtained from θ
by replacing the atoms (c, q′k) with (〈sK(s,wi)〉c, q′k). Since (T ′r, v

′
r) is a run, the set of

all (s′k, q
′
k) satisfies θ′. Due to the replacement and that in (T ′K, v

′
K) the children x · ik

are also ordered according to the transits, we have that the set of all (ik, q
′
k) satisfies θ.

Case wi = s:
Due to w ∈ Lt,p(β) this case can only happen at the end of finite firing sequences.

Furthermore, for finite firing sequences each chain must be finite. Thus, due to w ∈
Lt,p(β), there must be an index j < i such that for the transition sp′ corresponding
to the finite chain, wj = sp′ holds. hence all branches switched into the stuttering
mode. Due to the s-labeled loops in such states in the definition of the labeled Kripke
structure KNT ,AP we can apply case b) infinitely often.
The acceptance of the run (Tr, vr) again directly follows from defining the acceptance

condition of Aφ as cross product of all states of KNT ,AP with the acceptance set(s)
for TD,φ. The only interesting part is again whether we can stay infinitely long in the a)
case. Since all wx

s in the definition of Lt,p(β) are finite, we cannot stay in case a) forever
and leave leaves in Tr due to the stutter transitions. Furthermore, we also cannot leaves
leaves due to infinite sequences of transitions tx ∈ T with sK(s, tx) = ∅ because this can
only happen when a branch does not switch into some stutter state p′s (in these states
we have loops for all t ∈ T). But this cannot happen because such sequences must
have a finite chain, and thus the definition of Lt,p(β) enforces the switch into the stutter
mode. �

5.4.2 Formal Construction of the Petri netN>
and the Correctness

In Sec. 5.3.2 a more descriptive definition for the construction of the Petri net with in-
hibitor arcs N> from a Petri net with transits NT and the n Büchi automata A¬φi for the
reduction presented in Sec. 5.3 is given. Here we provide the completely formal definition
of this construction. We fix a Petri net with transits NT = (P,T,F,Υ, In), a Flow-
CTL∗ formula ϕ with n ∈ N flow subformulas ϕAi = Aφi with atomic propositions AP i,
and the Büchi automata A¬φi = (T ∪ {s} ∪ {sp | p ∈ P}, Qi, Ii, Ei, Fi).

I Definition 31 (Petri Net with Transits to Petri Net). Given NT and the correspond-
ing n Büchi automata A¬φi . We define the Petri net with inhibitor arcs N> =
(P>,T>,F>,F>

I , In>) with

P> = P>
o ∪

⋃
i∈{1,...,n}

P>
i , T> = T>

o ∪
⋃

i∈{1,...,n}

T>
i ,

F> = F>
O ∪F>

C ∪
⋃

i∈{1,...,n}

F>
i

and a partial labeling function λ : T> → T ∪ {s} ∪ {sp | p ∈ P} by:

(o) The original part of the net is a copy of NT without the transits and with an
additional activation place −→ao . Furthermore, we use the places N and S, the

75

5 Model Checking Petri Nets with Transits against Flow-CTL∗

switch tN→S, and the stuttering transition ts for checking finite runs, in which case
we have to trigger the automata A¬φi infinitely often to handle the stuttering:

P>
O =P ∪ {−→ao ,N ,S},

T>
O =T ∪ {tN→S, ts},

F>
O =F ∪ {(−→ao , t) | t ∈ T} ∪ {(N , tN→S), (tN→S,S), (−→ao , ts)},

F>
I ={(S, t) | t ∈ T} ∪ {(N , ts)}

(sub) For each Büchi automaton A¬φi , we create the places, transitions, and flows to
simulate the automaton.

The places are the states of the automaton with a special place [ι]i for initially
guessing the violating tree, one activation place [−→a]i for activating this subnet,
an activation place [

−→
t]i for each transition t ∈ T for allowing only the firing of

transitions labeled with t, and one place [−→s]i for the global stuttering transitions:

P>
i = {[s]i | s ∈ Qi} ∪ {[ι]i, [−→a]i, [

−→s]i} ∪ {[
−→
t]i | t ∈ T}.

The transitions consists of

T>
i = T�i ∪TVi ∪TEi

with one transition for each initial flow chain: T�i = {[tp]i | t ∈ T ∧ (�, p) ∈
Υ(t)}, one skipping transition [tV]i for each transition t ∈ T to skip checking
the corresponding flow tree or for skipping transition when the tracking has not
yet started: TVi = {[tV]i | t ∈ T}, and one transition for each edge of A¬φi :
TEi = {[e]i | e ∈ Ei}.
The labeling function λ labels every transition t> ∈ T> corresponding to a tran-
sition t ∈ T or the stuttering symbol, respectively: ∀[tp]i ∈ T�i : λ([tp]i) = t,
∀[tV]i ∈ TVi : λ([tV]i) = t, and ∀[e]i ∈ TEi : λ([e]i) = l with e = (s, l, s′) ∈ Ei.
The flows connect each transition t> ∈ T>

i not corresponding to the global stut-
tering to the activation place [−→a]i of this subnet, and all transitions corresponding
to a transition t ∈ T with the corresponding activation place [

−→
t]i:

F>
→i ={([−→a]i, t

>) | t> ∈ Ti ∧ λ(t>) 6= s}
∪ {([−→t]i, t

>) | t> ∈ Ti ∧ t ∧ λ(t>) = t}.

The transitions for guessing a flow chain are connected to the corresponding initial
state of A¬φi :

F>
�i = {([ι]i, [tp]i), ([tp]i, q0) | [tp]i ∈ T>

�i ∧ q0 = (Qr, ∅) ∈ Ii ∧
((p, ·) ∈ Qr ∨ ((tp, p), ·) ∈ Qr)}.

To not enforce the subnet to always track the first occurring of a flow tree and to
skip all transition before the tracking starts, we allow to just pass the activation

76

5.4 Proofs and Formal Constructions

tokens forward to the next net (done in (con)), when the initial token is still
available:

F>
Vi = {([ι]i, [tV]i), ([tV]i, [ι]i) | [tV]i ∈ TVi}.

The transitions corresponding to an edge of A¬φi move the tokens accordingly:

F>
Ei

= {([s]i, [e]i), ([e]i, [s′]i) | [e]i ∈ TEi ∧ e = (s, λ([e]i), s
′)}.

For the global stuttering global stuttering transitions are dependent on the stut-
tering place [−→s]i. For the local stuttering we put the activation token back into
the activation place of the subnet to allow for switching into the local stuttering
mode for any chain concurrently whenever the net is activated:

F>
si

={([−→s]i, t
>) | t> ∈ T>

Ei
∧ λ(t>) = s} ∪

{(t>, [−→a]i) | t> ∈ T>
Ei
∧ ∃p ∈ P : λ(t>) = sp}.

The flows of the subnet are the union of the previous sets:

F>
i =F>

→i ∪F>
�i ∪F>

Vi ∪F>
Ei
∪F>

si
.

(con) The nets are connected in a sequential manner:

F>
C ={(t, [−→t]1), (t, [−→a]1) | t ∈ T} ∪ {(ts, [−→s]1)}

∪
⋃

i∈{1,...,n−1}

{(t>, [−→t]i+1), (t>, [−→a]i+1) | t> ∈ T>
i ∧ λ(t>) = t ∈ T}

∪
⋃

i∈{1,...,n−1}

{(t>, [−→s]i+1) | t> ∈ T>
i ∧ λ(t>) = s}

∪ {(t>,−→ao) | t> ∈ T>
n ∧ λ(t>) ∈ T ∪ {s}}.

(in) The initial marking is the original initial marking with the activation place for the
original part, the place to guess to global stuttering, and one place for each subnet
to start guessing the flow tree:

In> = In ∪ {−→ao ,N} ∪ {[ι]i | i ∈ {1, . . . , n}}. J

In the case that n = 0 flow subformulas exists, we just take the input Petri net with
transits NT and omit the transits. In this case we can also leave the input Flow-CTL∗
formula ϕ as it is because it is already an LTL formula.

The size of the constructed net is dominated by the nondeterministic Büchi automata
A¬φi = (T ∪ {s} ∪ {sp | p ∈ P}, Qi, Ii, Ei, Fi) checking the CTL∗ subformulas. The
corresponding lemma is given on page 67.

Proof (Lemma 6: Size of the Constructed Net): The number of places is |P>
O | = |P|+3

and |P>
i | = |Qi|+ 3 + |T|. Hence, |P>| = |P|+ 3 + (3 + |T|) · n+

∑n
i=1|Qi|.

For the number of transitions, we have |T>
O | = |T|+ 2 and the size of T>

i is maximally

77

5 Model Checking Petri Nets with Transits against Flow-CTL∗

|T| · |P|+ |T|+ |Ei| because |T�i | is maximally |T| · |P|, |TVi | = |T|, and |TEi | = |Ei|.
Hence, |T>| is in O(|T|+ 2 + (|T|+ |T| · |P|) ·n+

∑n
i=1|Ei|). For a double-exponential

number of states Qi and edges Ei for specifications φi in CTL∗ and single-exponential
for specifications in CTL (Lemma 4) the size of the constructed net is in the respective
classes. �

We can finally show the correctness of the transformation (Lemma 8 on page 70), by
showing its contraposition via a nested structural induction.

Proof (Lemma 8: Correctness of the Transformation): Showing the contrapositionNT 6|=
ϕ iff N> 6|=LTL ψ

> of Lemma 8 consists of four major steps:

1. mutually translating the counterexamples,

2. using a structural induction over ϕ using the LTL parts of the run formula and
the flow subformulas as induction base,

3. showing the correctness of the LTL parts of the run formula via a structural in-
duction over ϕ, and

4. showing the correctness of the flow subformulas via a structural induction over ϕ.

This structure and also the single steps are very similar to those in the proofs for Flow-
LTL presented in Sec. 6.4.3. We decided to present the single steps more elaborately in
Sec. 6.4.3 for Flow-LTL rather than here for Flow-CTL∗, since for Flow-CTL∗ Step 4 is
mainly already shown due to Lemma 5 proving the correctness of the Büchi automaton.
However, for Flow-LTL, this step is analogously proven to Step 3, why it is beneficial to
have the more elaborate version close by.

For Step 1 we consider both directions. First, we take a run β = (NR
T , ρ) of NT and a

covering firing sequence ζ = M0[t0〉M1[t1〉 · · · such that β, σR(ζ) 6|= ϕ and create a se-
quence ζ> = M>

0 [t>0 〉M>
1 [t>1 〉 · · · such that β>, σR(ζ>) 6|= ψ> holds for the corresponding

run β> = (N>R, ρ>). (i) The marking M>
0 corresponds to the initial marking of N>,

i.e., ρ>(M>
0) = In>. (ii) As long as there is a transition tj of ζ, we map those to the

transition of ζ> at the j(n + 1)st position, i.e., t>j(n+1) = tj with ρ>(tj(n+1)) = ρ(tj).
For finite firing sequences we add at the end the switch into the stuttering mode with
a transition t> with ρ>(t>) = tN→S and use for every (n + 1)st further step a tran-
sition t> with ρ>(t>) = ts. (iii) For all transitions t> = t>j(n+1)+i for i ∈ {1, . . . , n}
in between such transitions, we add transitions according to the counterexample flow
chain. In case β, σR(ζ) |= Aφi, we use the to ρ(tj) corresponding skipping transition,
i.e., ρ(t>) = [ρ(tj)V]i. If β, σR(ζ) 6|= Aφi, there exists a flow chain ξi = tiι, p

i
0, t

i
0, p

i
1, t

i
1, . . .

such that β, σF (ξi) 6|=CTL∗ φi. Lemma 5 yields L(A¬φi) ∩Ltiι,p
i
0
(β) 6= ∅. Thus, as long

as the chain is not started, we again use the corresponding skipping transition. When
the chain is started, we take the word w ∈ L(A¬φi) ∩ Ltiι,p

i
0
(β) corresponding to ξi

and iteratively map each t> according to this w. This already contains the switch into

78

5.4 Proofs and Formal Constructions

the stuttering mode and stuttering for finite chains. (iv) Each marking M>
k of ζ> cor-

responds to the firing of the previous transition. With Θ : N → N we map each step
of σR(ζ) to the firing of the corresponding transition in the original part of the net
in σR(ζ>). Especially, Θ(0) = 0 and Θ(1) = 1, and if ζ is finite, then the stutter steps
are mapped to the firings of transitions t> with ρ>(t>) = ts. Intuitively, this function
jumps in n+ 1 steps modulo the switching into the global stuttering with tN→S, and the
switching into the local stuttering modes with some sp. This construction corresponds
to Definition 40.

For the other direction we create ζ = M0[t0〉M1[t1〉 · · · and ρ along Definition 41. We
first delete the switches into the local and global stuttering modes and the transitions t
with ρ>(t) = ts or ρ>(t) = s. (i) We take the 0st and then each n+ 1st step and project
onto the elements of NT , i.e., Mj = {p ∈ M>

j·(n+1) | ρ>(p) ∈ P} and tj = t>j·(n+1) for
all j ∈ N (as long as M>

j·(n+1) and t>j·(n+1) are existent in the reduced firing sequence
of ζ>). (ii) The net NR

T is iteratively created from ζ and ρ is also the projection of ρ>.
(iii) The flow chain ξi = tiι, p

i
0, t

i
0, p

i
1, t

i
1, . . . for a subnet i ∈ {1, . . . , n} is only created

when there is some transition t>j in ζ> which takes a token of [ι]i, i.e., ρ>(tj) ∈ T�i . In
this case, we iteratively collect the transitions and their, to the transit belonging, places
of the pre- and postset according to the transitions taken of the subnet corresponding
to edges (edges labeled with s or sp for any p ∈ P are already deleted). This is either
done infinitely often or as long as there is a switch into the local stuttering mode in ζ>
for this subnet. With Θ : N → N we again map each step of σR(ζ) to the firing of the
corresponding transition in the original part of the net in σR(ζ>).

For Step 2 we can use Lemma 19 for the soundness and Lemma 20 for the completeness as
blue prints and only have to adapt the used lemmas corresponding to Step 3 and Step 4,
because the outer structure of Flow-LTL and Flow-CTL∗ is the same. The structural
induction is completely straightforward because the formula construction in Sec. 5.3.3
does not concern the operators in the run part of the formula. For the soundness we only
have to show that the constructed firing sequence ζ> satisfies σR(ζ>) |=LTL (−→ao) ∧
stutts∧stuttc with stutts =

∧
i∈{1,...,n},p∈P([sp]i → ¬

∨
t∈postΥ(p)[t]i) for postΥ(p) =

{t ∈ post (p) | ∃q ∈ P : (p, q) ∈ Υ(t)} and stuttc =
∧
i∈{1,...,n},p∈P,qp∈Qp(([qp]i ∧

¬
∨
t∈postΥ(p)[t]i) → [sp]i) for Qp = {(Qr, ·) ∈ Qi | (p, ·) ∈ Qr ∨ ((t, p), ·) ∈ Qr}.

The first conjunct is satisfied, because (ii) of the construction of ζ> uses for every
(n + 1)st transition a transition of N>

O (modulo the switch into the stuttering mode),
i.e., a transition moving the activation token from −→ao and Definition 31 ensures that the
transition of the last subnet puts it back. The second conjunct, i.e., stutts is satisfied
because ζ> is constructed in (iii) along the w ∈L(A¬φi) ∩Lt,p(β) corresponding to ξi.
Thus, only when ξi is finite the switch into the stuttering mode is used. The third
conjunct, i.e., stuttc is satisfied because (iii) of the construction of ζ> chooses the
transitions of the subnet according to a word w ∈ Lt,p(β) (cp. page 62) and this
ensures that when there is a finite flow chain, eventually the switch into the stuttering
mode has to fire.

79

5 Model Checking Petri Nets with Transits against Flow-CTL∗

For Step 3 we show for the firing sequences ζ of NT and ζ> of N>, either given or
constructed from the respective other in Step 1, with the function Θ mapping the cor-
responding indices, that

∀i ∈ N : σR(ζ)i 6|=LTL ψ ⇐⇒ σR(ζ>)Θ(i) 6|=LTL ψ
>

holds via a structural induction over a given LTL formula ψ. The induction anchor is
easy, because due to Definition 20 and the construction in Step 1 the mapping with Θ
ensures the satisfaction. Since the construction of the formula in Sec. 5.3.3 leaves the
formula unchanged for the conjunction operator, this case directly follows from the in-
duction hypothesis. In the case where ψ is the negation of an LTL formula, again
the induction hypothesis directly provides the correctness due to the equivalence of the
statement and that the construction of the formula in Sec. 5.3.3 has no impact on this
case. The interesting cases are those where the construction modifies the formula, i.e.,
the next and the until operator.

Case ψ = ψ1. The construction in Sec. 5.3.3 yields ψ> = (i → ψ>1) ∧ (¬i →
(
∨
t∈T>\T>

O−
tU
∨
t′∈T>

O−
t′ ∧ ψ>1)) with T>

O− = T>
O \ {tN→S}.

For the soundness the premise yields σR(ζ)i+1 6|=LTL ψ1 and the induction hypothe-
sis (?) σR(ζ>)Θ(i+1) 6|=LTL ψ>1 . If i = 0, the subformula i is satisfied because no
transition let into the initial state. Thus, the second conjunct of ψ> is satisfied as
well as the premise for the first conjunct. Since Θ(0) = 0 and Θ(1) = Θ(i + 1) =
1, we have that σR(ζ>)Θ(i+1) 6|=LTL ψ>1 implies σR(ζ>)Θ(i)+1 6|=LTL ψ>1 and therewith
σR(ζ>)Θ(i) 6|=LTL ψ>1 . Hence, all together σR(ζ>)Θ(i) 6|=LTL ψ>. We show the
case i > 0 by contradiction. Assume σR(ζ>)Θ(i) |=LTL ψ>. Then, σR(ζ>)Θ(i) |=LTL

(
∨
t∈T>\T>

O−
tU
∨
t′∈T>

O−
t′ ∧ ψ>1) because i is not satisfied. In Θ(i) we are in a state

where a transition of the original part of the net has fired. Hence, in the next state
only transitions of the subnets (or the global switch into the stuttering mode) can fire
due to the construction of N> in Sec. 5.3.2. Those, transitions are skipped with the
until operator, as long as another transition of the original part of the net fires. This
is exactly at state Θ(i + 1). Thus, σR(ζ>)Θ(i+1) |=LTL ψ

>
1 holds which is a contradiction

to (?).
For the completeness the premise is σR(ζ>)Θ(i) 6|=LTL ψ

>. When the subformula i is
satisfied the premise yields σR(ζ>)Θ(i) 6|=LTL ψ>1 . The subformula i can only be
satisfied when i = 0 and since Θ(i) + 1 = 0 + 1 = 1 = Θ(1) = Θ(i + 1) we have
σR(ζ>)Θ(i+1) 6|=LTL ψ>1 . The induction hypothesis yields σR(ζ)(i+1) 6|=LTL ψ1 and so
σR(ζ)i 6|=LTL ψ1. In the case that the subformula i is not satisfied, the premise yields
σR(ζ>)Θ(i) 6|=LTL (

∨
t∈T>\T>

O−
tU
∨
t′∈T>

O−
t′∧ψ>1). We obtain σR(ζ>)Θ(i+1) 6|=LTL ψ

>
1 with

the same arguments as for the soundness case. Again, the induction hypothesis yields
the result.

Case ψ = ψ1 Uψ2. The construction in Sec. 5.3.3 yields ψ> = ((M ∨ i) → ψ>1)U((M ∨
i) ∧ ψ>2).
For the soundness the premise yields ∀k ≥ 0 : σR(ζ)i+k 6|=LTL ψ2 ∨ ∃0 ≤ l < k :
σR(ζ)i+l 6|=LTL ψ1. The induction hypothesis applied for all these ks and ls yields:

80

5.4 Proofs and Formal Constructions

(?) ∀k ≥ 0 : σR(ζ>)Θ(i+k) 6|=LTL ψ
>
2 ∨ ∃0 ≤ l < k : σR(ζ>)Θ(i+l) 6|=LTL ψ

>
1 . We show

the result by contradiction. Assume ∃k ≥ 0 : σR(ζ>)Θ(i)+k |=LTL ((M∨i)∧ψ>2)∧∀0 ≤ l <
k : σR(ζ>)Θ(i)+l |=LTL (M∨ i)→ ψ>1 . Since σR(ζ>)Θ(i)+k |=LTL M∨ i we know that either a
transition of the original part of the net has fired, or it is the initial state. Anyhow, this
step belongs to N>

O and therefore there is a k′ ≥ 0 such that Θ(i+ k′) = Θ(i) + k. Fur-
thermore, σR(ζ>)Θ(i)+k |=LTL ψ

>
2 holds and ∀0 ≤ l < k : σR(ζ>)Θ(i)+l |=LTL (M ∨ i)→ ψ>1 .

The latter ensures that all of these states which belong to N>
O satisfy ψ>1 which is a

contradiction to (?).
For the completeness the premise yields ∀k ≥ 0 : σR(ζ>)Θ(i)+k 6|=LTL ((M∨i)∧ψ>2)∨∃0 ≤
l < k : σR(ζ>)Θ(i)+l 6|=LTL (M∨ i)→ ψ>1 . For each step Θ(i) + k or Θ(i) + l which belongs
to the original part of the net, i.e., there is a k′ or l′ such that Θ(i + k′) = Θ(i) + k
or Θ(i + l′) = Θ(i) + l, we know M ∨ i is satisfied. Thus, ∀k ≥ 0 : σR(ζ>)Θ(i+k) 6|=LTL

ψ>2 ∨ ∃0 ≤ l < k : σR(ζ>)Θ(i+l) 6|=LTL ψ
>
1 . The induction hypothesis for all ks and ls

yields ∀k ≥ 0 : σR(ζ)i+k 6|=LTL ψ2 ∨ ∃0 ≤ l < k : σR(ζ)i+l 6|=LTL ψ1. Hence, σR(ζ)i 6|=LTL ψ.

In Step 4 we show that for a flow formula Aφi of ϕ and the corresponding part φ>i =
¬

∨
b∈Fi [b]i of ψ

> constructed in Sec. 5.3.3 the following holds:

(s) Given a run β, a covering firing sequence ζ, and the constructed firing sequence ζ>
with σR(ζ>) |=LTL (−→ao) ∧ stutts ∧ stuttc, then β, σR(ζ) 6|= Aφi =⇒
σR(ζ>) 6|=LTL ¬

∨
b∈Fi [b]i holds.

(c) Given a firing sequence ζ> of a run of the Petri netN> with σR(ζ>) |=LTL (−→ao)∧
stutts ∧ stuttc, the constructed firing sequence ζ and corresponding run β =
(NR

T , ρ), then σR(ζ>) 6|=LTL ¬
∨
b∈Fi [b]i =⇒ β, σR(ζ) 6|= Aφi holds.

Regarding (s): Due to β, σR(ζ) 6|= Aφi we know there is a flow chain ξi = t, p, . . . such
that β, σF (ξi) 6|=CTL∗ φi. Lemma 5 yields L(A¬φi)∩Lt,p(β) 6= ∅. The construction of ζ>
ensures in (iii) that ζ> skips the subnet as long as the chain is created and then starts
tracking the chain along the word w ∈ L(A¬φi) ∩ Lt,p(β). Since w ∈ L(A¬φi), we
know that σR(ζ>) must visit a place [b]i corresponding to a Büchi state of A¬φi infinitely
often. Due to the finally operator we do not have to do anything special for skipping
the subnets or the initial skipping of ζ> and directly know σR(ζ>) 6|=LTL ¬

∨
b∈Fi [b]i.

Regarding (c): Since σR(ζ>) |=LTL

∨
b∈Fi [b]i there must be a transition t ∈ T�i

taking the token from [ι]i due to Definition 31 and ι 6∈ Fi. Thus, there is a transition
t ∈ TR and a place p ∈ PR such that (�, p) ∈ ΥR(t) because of the construction of ζ.
Definition 31 ensures that ζ> corresponds to the run of the automaton after starting
a chain. This translates to ζ because Definition 31 ensures that the subnets mimic
the fired transitions of the original part and the construction of ζ takes exactly these
transitions. Thus, L(A¬φi) ∩Lt,p(β) 6= ∅ because σR(ζ>) visits a Büchi state infinitely
often. Lemma 5 yields that there is a flow chain ξi, such that β, σF (ξi) 6|=CTL∗ φi. Hence,
β, σR(ζ) 6|= Aφi. �

81

6Model Checking Petri Nets with Transits

against Flow-LTL

The previous chapter provides a triple-exponential time algorithm for model check-
ing distributed systems with local data flows modeled with Petri net with transits for
specifications in Flow-CTL∗ and a double-exponential time algorithm for specifications
in Flow-CTL. These algorithms are based on transforming the data flow part, i.e., the
CTL∗ parts (or the CTL parts, respectively) of the Flow-CTL∗ formula into a standard
Petri net via a sequence of automata constructions. These parts are connected in series
such that the model checking problem is reduce to a model checking problem for stan-
dard Petri nets and LTL. This chapter provides dedicated algorithms for the fragment of
Flow-LTL. Instead of using the sequence of automata constructions with the exponential
blow-ups for the data flow part, we directly construct a subnet for checking the LTL
formulas for the local data flow. By that, we obtain a single-exponential time algorithm
for model checking distributed system with local data flows modeled with Petri nets
with transits and specifications in Flow-LTL. In order to facilitate access for readers,
we keep this chapter as self-contained as possible, but without redundant formalisms.
Even though the understanding of the previous chapter, especially the intuition behind
the different timelines, is certainly not a hindrance for digesting this chapter, formally
only Definition 21 on page 47 and the fairness and maximality assumptions presented
in Example 1 on page 47 are needed to process this chapter.

As a running example for this chapter we consider the two small Petri nets with
transits depicted in Fig. 6.1. Both differ only in one transit. For a larger example see
the example in Sec. 2.1 for the application domain of software-defined networking.

I Example 6. We introduce two Petri nets with transits NA and NB as small running
examples in Fig. 6.1. Both nets handle infinitely many data flows, which are created by
firing transition s or sB, respectively. The difference is that the net NA keeps all data
flows both in places in and out when firing transition t. By contrast, NB transfers the
data flow to place outB, such that immediately after firing tB, no data flow resides in
place inB. We demand the transitions t and tB to be weakly fair, i.e., if the respective
transition is eventually enabled forever, it has to fire infinitely often (cp. Example 1 on
page 47). Therefore, each network has to eventually transit the data flow via transition t
or tB, respectively. As a result, in network NA, not every data flow reaches place out ,
even if we assume that infinitely many transitions are fired. There is always a flow
staying in place in. In NB, all data flows eventually reach place outB if we assume that
infinitely many transitions are fired, as tB is weakly fair and eventually transits the data
flow to outB. J

83

6 Model Checking Petri Nets with Transits against Flow-LTL

in

t

out

s
NA :

(a) The Petri net with transits NA transits all
in place ‘in’ created data flows via transition t
to the places ‘in’ and ‘out ’. All flows are kept
alive in places ‘in’ and ‘out ’.

inB

tB

outB

sB
NB :

(b) The net NB, similar to NA apart from
moving the data flows only from inB to outB
via tB (no left blue solid arrow tip). Thereby,
only outB has all data flows.

Fig. 6.1: Two small running examples for Petri nets with transits. Both can create
infinitely many data flows and can transfer them to their output node.

This chapter is structured as follows: We first formally introduce Flow-LTL in Sec. 6.1,
before providing two different decision procedures for model checking Petri nets with
transits against Flow-LTL in Sec. 6.2. Similarly to the construction in the previous
chapter, we create for each data flow part of the Flow-LTL formula a subnet and compose
them adequately to reduce the model checking problem of Petri nets with transits against
Flow-LTL to the model checking problem of standard Petri nets against LTL. The first
construction composes the subnets again in a sequential manner such that we obtain a
single-exponential time algorithm (cp. Sec. 6.2.1). The second construction, presented
in Sec. 6.2.2, composes the subnets in a parallel manner resulting in a double-exponential
time algorithm for specifications with more than one data flow subformula. However,
the second exponent is only dependent on the number of flow subformulas n and for
specifications which does not need to reason about the data flow of different selections
of runs, this algorithm still runs in single-exponential time and in general outperforms
the sequential approach for the examples of software-defined networking (cp. Chap. 7).
In Sec. 6.3 we further reduce the model checking problem for safe Petri nets against LTL
with places and transitions as atomic propositions to a hardware model checking problem
by encoding the Petri net in a circuit. Section 6.4 collects formal details and proofs for
the previous sections to improve the reading experience of the before mentioned sections.
This chapter is based on [FGHO19a] and [FGHO20a], and the corresponding full

versions [FGHO19b] and [FGHO20b].

6.1 Flow-LTL

For Petri nets with transits, we wish to express requirements on several separate time-
lines. Based on the global timeline of the system run, global conditions like fairness
and maximality can be expressed. Requirements on individual data flows, e.g., that the
data flow does not enter a loop, are expressed in terms of the timeline of that specific
data flow. Flow-LTL comprises of run formulas ϕ specifying the usual LTL behavior on
markings and data flow formulas ϕA specifying properties of flow chains inside runs.
For example for the fairness assumptions we want to reason about the actual firing

of transition. Hence, we define Flow-LTL with AP = P ∪T as atomic propositions.
Even though Flow-LTL is a syntactic fragment of Flow-CTL∗ we explicitly define the

84

6.1 Flow-LTL

semantics of Flow-LTL in this section to simplify the notation. Likewise, we define
here traces only on flow chains and not on the flow chain suffixes because without the
branching there is no need to find a suffix of the chain. Similarly, we can directly use the
places and transitions of the Petri net with transits NT for the traces of the flow chains
and do not have to use the nodes of the run, because while evaluating the flow formula
it suffices to shorten the traces to respective suffixes. Lastly, we consider in this chapter
the outgoing semantics for the firing sequences and flow chains. This means that we
bundle the current marking (or place) together with the transition leaving the marking
(or the place). All this serves for a clearer presentation and easier notation in the case
of Flow-LTL.

For a covering firing sequence of a run of a Petri net with transits we define a trace,
such that a state of the system is the current marking together with the transition
used to leave the marking. Furthermore, we stutter in the last marking for finite firing
sequences to obtain an infinite semantics.

I Definition 32 (Outgoing Semantics – Firing Sequences). Given a run β = (NR, ρ) of
a Petri net or Petri net with transits N. To a (finite or infinite) covering firing sequence
ζ = M0[t0〉M1[t1〉M2 · · · of β, we associate a trace σR(ζ) : N→ 2AP with

σR(ζ)(i) = ρ(Mi) ∪ {ρ(ti)} for all i ∈ N

if ζ is infinite and

σR(ζ)(i) =

{
ρ(Mi) ∪ {ρ(ti)} for 0 ≤ i < n
ρ(Mn) otherwise

if ζ = M0[t0〉 · · · [tn−1〉Mn is finite. J

Hence, a trace of a covering firing sequence is an infinite sequence of states collecting
the current marking and outgoing transition of N, which stutters on the last marking
for finite sequences.
Similarly, for a flow chain of a run of a Petri net with transits we consider the current

place p of the chain together with the transition used to transit the data flow from p to
the next place. We also stutter on the last place for finite chains.

I Definition 33 (Outgoing Semantics – Flow Chain). Given a run β = (NR
T , ρ) of a

Petri net with transits NT . To a (finite or infinite) flow chain ξ = t0, p0, t1, p1, t2, . . .
of β we associate a trace σF (ξ) : N→ 2AP with

σF (ξ)(i) = {ρ(pi), ρ(ti+1)} for all i ∈ N

if ξ is infinite and

σF (ξ)(i) =

{
{ρ(pi), ρ(ti+1)} for 0 ≤ i < n
{ρ(pn)} for otherwise

if ξ = t0, p0, t1, p1, . . . , tn, pn is finite. J

85

6 Model Checking Petri Nets with Transits against Flow-LTL

Hence, a trace of a flow chain is an infinite sequence of states collecting the current place
and outgoing transition of the flow chain, which stutter on the last place for finite flow
chains.
The definition of the semantics of LTL on the flow chains fits to the definition of

Flow-CTL∗ (Definition 23) on flow chain suffixes.

I Definition 34 (LTL on Flow Chains). Given a trace σF (ξ) of a flow chain ξ of a run
β = (NR

T , ρ). The semantics of LTL on flow chains is defined as follows:

σF (ξ) |=LTL a iff a ∈ σF (ξ)(0)

σF (ξ) |=LTL ¬ψ iff not σF (ξ) |=LTL ψ

σF (ξ) |=LTL ψ1 ∧ ψ2 iff σF (ξ) |=LTL ψ1 and σF (ξ) |=LTL ψ2

σF (ξ) |=LTL ψ iff σF (ξ)1 |=LTL ψ

σF (ξ) |=LTL ψ1 Uψ2 iff there exists a j ≥ 0 with σF (ξ)j |=LTL ψ2 and
for all 0 ≤ i < j the following holds: σF (ξ)i |=LTL ψ1

with atomic propositions a ∈ AP and LTL formulas ψ, ψ1, and ψ2. J

Note that since a trace of a flow chain maps to the set of places and transitions of the
Petri net with transits NT this definition also fits the definition of the semantics for LTL
on runs given in Definition 21 on page 47.
Using the definition of LTL on runs (Definition 21) and on flow chains (Definition 34),

we define the specification language Flow-LTL for Petri nets with transits.

I Definition 35 (Flow-LTL). We define the syntax of Flow-LTL with:

ϕ ::= ψ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ψ → ϕ | Aψ

where ϕ, ϕ1, ϕ2 are Flow-LTL formulas, ψ is an LTL formula. Hence, LTL formulas ψ ∈
LTL may appear both inside the run part and the flow part of ϕ. We call ϕA = Aψ flow
formulas and all other subformulas which are not under the A operator run formulas.
The semantics of a Petri net with transits NT = (P,T,F,Υ, In) satisfying a Flow-

LTL formula ϕ is defined over the covering firing sequences of its runs:

NT |= ϕ iff for all runs β of NT : β |= ϕ

β |= ϕ iff for all firing sequences ζ covering β : β, σR(ζ) |= ϕ

β, σR(ζ) |= ψ iff σR(ζ) |=LTL ψ

β, σR(ζ) |= ϕ1 ∧ ϕ2 iff β, σR(ζ) |= ϕ1 and β, σR(ζ) |= ϕ2

β, σR(ζ) |= ϕ1 ∨ ϕ2 iff β, σR(ζ) |= ϕ1 or β, σR(ζ) |= ϕ2

β, σR(ζ) |= ψ → ϕ iff β, σR(ζ) |= ψ implies β, σR(ζ) |= ϕ

β, σR(ζ) |= Aψ iff for all flow chains ξ of β : σF (ξ) |=LTL ψ

with LTL formulas ψ and Flow-LTL formulas ϕ, ϕ1 and ϕ2. We say a Petri net with
transits NT satisfies a Flow-LTL formula ϕ iff NT |= ϕ holds. J

86

6.2 Reduction to Model Checking Petri Nets against LTL

With this definition we can now formally state and check the in Example 6 intuitively
described property that all data packets reach the egress node.

I Example 7. For the nets NA or NB of Fig. 6.1, we specify that every data flow even-
tually reaches the respective egress node out as follows (omitting the subscript B for
all elements of NB): ϕ1 = (max ∧ fair) → A out with the interleaving-maximality
max = ((in ∨ (in ∧ out))→ (s ∨ t)) ≡ s ∨ t and fair = (in ∧ out) → t ≡

t as the weak fairness assumption of t. Note that we adapted the definition of the
interleaving-maximality to the outgoing semantics, i.e., we do not need the next oper-
ator in the definition. All other properties defined in Example 1 on page 47, e.g., the
weak fairness property, do not differ for the ingoing and outgoing semantics due to the
eventually and globally operators. This formula is not satisfied in NA, because the firing
sequence ζ = M0[s′〉M1[t0〉M2[t1〉 · · ·, with ρ(Mj) = {in, out}, and ρ(s′) = s, ρ(tj) = t
for j ∈ N, yields a run β of NA which also has the flow trace σF (ξ) = {in, t}, {in, t},
The run β is maximal, since all covering firing sequences (this is only ζ) are infinite.
The run is also fair for transition t, since t occurs infinitely often in σR(ζ). Since the
flow trace σF (ξ) never reaches the egress place out , the net NA does not satisfy ϕ1.
For NB, every firing sequence covering a run of NB has to infinitely often fire a

transition t′ with ρ(t′) = t because of the maximality and fairness assumptions. Hence,
either no flow chain exists, because no transition s′ with ρ(s′) = s has ever fired, or
every chain must eventually be transited to the place out . Thus, NB satisfies ϕ1. J

To check such properties automatically we present two algorithms in the next section.

6.2 Reduction to Model Checking Petri Nets against LTL

Central to our model checking routine for a Petri net with transits NT and a Flow-LTL
formula ϕ, as already for Petri net with transits against Flow-CTL∗ specifications (cp.
Chap. 5), is the reduction to a safe standard Petri net N> and an LTL formula ϕ>.
The infinite state space of the Petri net with transits due to possibly infinitely many
flow chains is reduced to a finite state model. The key idea is to guess and track a
violating flow chain for each flow subformula Aψi, for i ∈ {1, . . . , n}, and to only once
check the equivalent future of flow chains merging into a common place. As in the
previous chapter the construction composes subnets: one copy of the original net NT

without the transits and one subnet for each of the n flow subformula for guessing the
violating chain and checking its correctness. The constructed formula has to ensure that
concurrent transitions not concerning the local timeline are skipped for the n subnets
and that the composition of the subnets does not make any harm while checking the run
part of the formula on the original part of the net.
In this section we present two approaches for this reduction, mainly differing in the

composition technique of the subnets. Figure 6.2 and Fig. 6.3 give an overview of the
sequential approach and the parallel approach, respectively. Both algorithms create one
subnet N>

i for each flow subformula Aψi to track the corresponding flow chain and
have one subnet N>

O to check the run part of the formula. The places of N>
O are copies

87

6 Model Checking Petri Nets with Transits against Flow-LTL

N>
O N>

1 N>
n

. . .|T| |T|+ |TΥ| |T|+ |TΥ|

|T|+ |TΥ|

Fig. 6.2: Overview of the sequential approach: Each firing of a transition of the original
net is split into first firing a transition in the subnet for the run formula and subsequently
firing a transition in each subnet tracking a flow formula. The constructed LTL formula
skips the additional steps with until operators. Since we track only one chain, we have
one transition for each transit in NT , i.e., |TΥ| =

∑
t∈T|Υ(t)|.

of the places in NT such that the current state of the system can be memorized. The
subnets N>

i also consist of the original places of NT but only use one token (initially
residing on an additional place) to track the current state of the considered flow chain.
The approaches differ in how these nets are connected to obtain N>. For a clear distinc-
tion between the individual approaches, we often use the subscript » for the sequential
approach and ‖ for the parallel approach.

Sequential Approach: The places in each subnet N>
i are connected with one transi-

tion for each transit. An additional token iterates sequentially through the subnets
to activate or deactivate the subnet. This allows each subnet to track a flow chain
corresponding to the firing of a transition in N>

O . The formula ϕ>» takes care of
these additional steps by means of the until operator: In the run part of the formula,
all steps corresponding to moves in a subnet N>

i are skipped and, for each subfor-
mula Aψi, all steps are skipped until the next transition of the corresponding subnet
is fired which transits the tracked flow chain. This technique results in a polynomial
increase of the size of the Petri net and the formula: N>

» has O(|NT | ·n+ |NT |) places
and O(|NT |3 · n + |NT |) transitions and the size of ϕ>» is in O(|NT |3 · n · |ϕ| + |ϕ|).
This approach is presented in Sec. 6.2.1

Parallel Approach: The n subnets are connected such that the current chain of each
subnet is tracked simultaneously while firing an original transition t ∈ T. Thus,
there are (|Υ(t)|+ 1)n transitions for each transition t ∈ T. Each of these transitions
stands for exactly one combination of which subnet is tracking which (or no) transit.
Hence, firing one transition of the original net is directly tracked in one step for all
subnets. This significantly reduces the complexity of the run part of the constructed
formula, since no until operator is needed to skip sequential steps. A disjunction over
all transitions corresponding to an original transition suffices to ensure the correctness
of the construction. Transitions and next operators in the flow parts of the formula
still have to be replaced by means of the until operator to ensure that the next step
of the tracked flow chain is checked at the corresponding step of the global timeline
of ϕ>‖ . In general, the parallel approach results in an exponential blow-up of the net
and the formula: N>

‖ has O(|NT | · n+ |NT |) places and O(|NT |3n + |NT |) transitions
and the size of ϕ>‖ is in O(|NT |3n · |ϕ| + |ϕ|). For the practical examples, however,
the parallel approach allows for model checking Flow-LTL with few flow subformulas

88

6.2 Reduction to Model Checking Petri Nets against LTL

N>
O N>

1 N>
n

. . .
∑

t∈T(|Υ(t)|+ 1)n

Fig. 6.3: Overview of the parallel approach: The n subnets are connected such that for
every transition t ∈ T there are (|Υ(t)| + 1)n transitions, i.e., there is one transition
for every combination of which transit of t (or none) is tracked by which subnet. We
use until operators in the constructed LTL formula to only skip steps not involving the
tracking of the guessed chain in the flow formula.

with a significant speed-up in comparison to the sequential approach (cp. Chap. 7).
This approach is presented in Sec. 6.2.2.

To keep this section lighter, we outsource formal details and proofs for both subsections
into Sec. 6.4.

6.2.1 A Sequential Approach

We solve the model checking problem of a Flow-LTL formula ϕ on a Petri net with
transits NT in three steps:

1. The Petri net with transits NT is encoded as a standard Petri net N>
» without

transits obtained by composing suitably modified copies of NT such that each
flow subformula in ϕ can be checked for correctness using the corresponding copy.
The constructed net N>

» is of polynomial size in |NT | and the number of flow
subformulas n.

2. The Flow-LTL formula ϕ is transformed to an LTL formula ϕ>» which skips the
uninvolved composition copies when evaluating run and flow parts, respectively.
The constructed formula ϕ>» is of polynomial size in |NT | and |ϕ|.

3. N>
» |=LTL ϕ

>
» is checked to answer NT |= ϕ.

Given a safe Petri net with transits NT = (P,T,F,Υ, In) and a Flow-LTL formula ϕ
with flow subformulas ϕAi = Aψi, where i = 1, . . . , n for some n ∈ N, we construct
a safe Petri net N>

» = (P>,T>,F>,F>
I , In>) with inhibitor arcs and an LTL for-

mula ϕ>» . Details for the following constructions, as well as all proofs corresponding to
the reduction can be found in Sec. 6.4.

From Petri Nets with Transits to P/T Petri nets

In this section we give a more intuitive, but still complete, definition of the construction
of N>

» from a Petri net with transits NT and a Flow-LTL formula ϕ with n flow subfor-
mulas for a lightweight understanding. The formal construction is given in Definition 38
on page 105. Figure 6.4 visualizes the process by an example.

89

6 Model Checking Petri Nets with Transits against Flow-LTL

We divide the construction of N>
» into the construction of the original part of the net,

the construction of the subnets, and the part that belong to properly connecting these
elements:

Original Part: The original part of N>
» is denoted by N>

O with places P>
O and transi-

tions T>
O . This part is a copy of the original Petri net with transits NT without the

transit relation. Furthermore, it contains an initially marked activation place −→o in
the preset of each transition to only allow for the firing of transitions of this subnet
when it is the turn of the original part. This subnet is used to check the run part of
the formula ϕ.

Subnets: For each subformula Aψi of ϕ, a subnet (denoted by N>
i , with places P>

i and
transitions T>

i) is composed to N>
O . The subnet introduces the possibility to decide

for the tracking of up to one specific flow chain by introducing a copy [p]i of each
place p ∈ P and transitions simulating the transits. This means a place of the subnet
stands for the current state of the flow chain and we have one transition for each
possibility to move the token to a successor place of a flow chain. For example, when
a transition t ∈ T splits the data flow in a place p ∈ P into two successor places
(|postΥ(p, t)| = 2), T>

i contains two different transitions corresponding to the two
different extensions of the data flow chain. The additional place [ι]i serves for starting
the tracking. This place is initially marked and the subnet can nondeterministically
choose whether to start the tracking of a newly created flow chain or not. For that,
skipping transitions tVi for each t ∈ T are introduced. These can be fired if and only
if no place [p]i for a place p ∈ pre (t) is occupied, meaning that the corresponding chain
is not tracked in this run. These transitions are also used in cases where concurrent
transitions are fired not involving the currently tracked flow chain. Each transition
t> ∈ T>

i corresponds to a transition t ∈ T and is labeled with λ(t>) = t accordingly.
Each run of such a subnet simulates one possible flow chain of NT , i.e., every firing
sequence covering any run of NT yields a flow chain. This subnet serves for checking
the corresponding data flow part of the formula ϕ.

Connecting: An activation token iterates sequentially through these components via
places −→t for t ∈ T. In each step, the active component has to fire exactly one
transition and pass the active token to the next component. The sequence starts
by N>

O firing a transition t and proceeds through every subnet simulating the data
flows according to the transits of t. This implies that the subnets have to either move
their data flow via a t-labeled non-skipping transition t> ∈ T>

i with λ(t>) = t or use
the skipping transition tVi if their chain is not involved in the firing of t or a newly
created chain should not be considered in this run.

Note that different to the construction in Sec. 5.3 for model checking Flow-CTL∗ formu-
las, we do not need to take special care of the stuttering for finite flow chains or finite
firing sequences. This problem is solved in the semantics for model checking the stan-
dard Petri net N>

» against ϕ>» . A finite flow chain already stays at the corresponding
place in the subnet and we do not have to first switch to the corresponding state of the
automaton.

90

6.2 Reduction to Model Checking Petri Nets against LTL

in

t

out

−→o

s

[in]1

[out]1

t

t

t

t
tV1

−→
t 1

−→s 1

s

s
sV1

s

[ι]1

−→
t 2

−→s 2
[in]n

[out]n

t
t1t t2

t
t3

t
tVn

−→
t n

−→s n

s s1

s
sVn

s s2

[ι]n

in

t

out

s

NT N>
» N>

O N>
1 N>

n

Fig. 6.4: An overview of the constructed P/T Petri net N>
» (on the right) for an example

Petri net with transits NT (on the left, here NA of Fig. 6.1a) and n flow subformulas Aψi.
A run of N>

» repeats the following. First, the original part N>
O does a step by firing any

enabled transition t′ ∈ TO (here t or s). Then the activation token moves sequentially
through the subnets such that every subnet mimics the firing of t′ (either by extending
the data flow through t′ by one of the t′-labeled non-skipping transitions or by skipping t′
with sVi or tVi). The inhibitor arcs ensure only valid choices of skipping transitions.
Finally, the last subnet hands back the token to the original part (depicted as gray dashed
arrows to increase the readability).

I Lemma 10 (Size of the Constructed Net). The constructed Petri net N>
» has O(|NT |·

n+ |NT |) places and O(|NT |3 · n+ |NT |) transitions. J

Proof Sketch. The results directly follow from the construction of N>
» . Having a copy

of each original place for each flow subformula and an activation place for each original
transition yields the quadratic number of places in the size of the net and the number of
subformulas. The cubic number of the transitions in the size of the net and the number
of subformulas follows from the possible quadratic number of transits of each transition
and that for each flow subformula and for each transit a new transition is added for the
subnet. For more details see the proof on page 107.

The Petri net with transits NT depicted in Fig. 6.4 on the left is exactly the Petri net
with transits NA of the running example depicted in Fig. 6.1a. Thus, we continue our
running example.

I Example 8. The Petri net N>
A created from the Petri net with transits NA of Fig. 6.1a

and the Flow-LTL formula ϕ1 = (max ∧ fair) → A out of Example 7 is depicted in
Fig. 6.4 by combining N>

O with the rightmost subnet N>
n . Since ϕ1 only contains one

flow subformula, so n = 1 and N>
A consists of the original part and only one subnet for

tracking the local data flow. We can see that transition t is split into the transitions t1,

91

6 Model Checking Petri Nets with Transits against Flow-LTL

t2, and t3 due to its three transits. One transition for keeping the data flow in place out
and two transitions for splitting the data flow coming from place in into two successor
places. There is only one transition in the postset of [ι]n because in NA only s can create
new data flows and this only in place in.
The constructed Petri net for the Petri net with transits NB depicted in Fig. 6.1b only

differs in missing the looping transition t1 due to not splitting up the data flow with
transition tB. J

From Flow-LTL Formulas to LTL Formulas and the Correctness

In this section we define the construction of an LTL formula ϕ>» from a Flow-LTL
formula ϕ and the Petri net N>

» constructed of a Petri net with transits NT in the
previous section. The main part of this construction is to properly handle the points in
time an atomic proposition should hold for a firing sequence inNT and the corresponding
atomic proposition should hold for a firing sequence in N>

» . For these points in time
there are two shift. First, we have the shift for atomic propositions for flow subformulas
due to the difference between the global and the local timelines (cp. Fig. 5.1). This
means shifts originating from situations in NT where concurrent transitions are fired
that do not affect the considered flow chain. Second, due to the sequential composition
of the subnets the points in time are additionally shifted for the subnets but also for the
run part of the formula. This means we want to skip the situations which stem from the
sequential processing of the other subnets in N>

» .
These two different kinds of shifting are encoded in the LTL formula ϕ>» . On the one

hand, the data flow formulas Aψi in ϕ are now checked on the corresponding subnetsN>
i

and, on the other hand, the run formula part of ϕ is checked on the original part of the
net N>

O . In both cases, we need to ignore places and transitions from other parts
of the composition. This is achieved by replacing each next operator φ and atomic
proposition t ∈ T inside ϕ with an until operator. Transitions which are not representing
the considered timeline are called unrelated, others related. Via the until operator, all
unrelated transitions can fire until a related transition is fired. This is formalized in
Tab. 6.1 using the sets O = T> \T and Oi = (T> \T>

i) ∪ {tVi ∈ T>
i | t ∈ T},

for the unrelated transitions of the original part and of the subnets, respectively. The
related transitions of the original part are given by T and for the subnets by Mi(t) =
{t′ ∈ T>

i \ {tVi} | λ(t′) = t} and Mi = T>
i \ {tVi ∈ T>

i | t ∈ T}. Removing the
skipping transitions from the transitions of the subnet for the related transitions and
adding them to the unrelated transitions ensures the correct handling of the global and
the local timelines. Since the subnet N>

O is just a copy of the original net, we can keep
the original atomic propositions t ∈ T for the run part of the formula for the related
transitions. Since we add one transition to the subnet N>

i for each data flow a transition
t ∈ T transits, we have to use all of these transitions as atomic propositions for the flow
part of the formula for the related transitions. Note that the second disjunctive in the
replacement for the next operator is needed in case of finite firing sequences or flow
chains. When no related transition ever fires again, we stutter on the last marking
and the last place of the finite flow chain. Thus, we can directly check the formula in

92

6.2 Reduction to Model Checking Petri Nets against LTL

Tab. 6.1: Row 1 considers the substitutions in the run part of ϕ, row 2 the substitutions
in each subformula ϕFi. Column 1 considers simultaneously substitutions, column 2
substitutions from the inner- to the outermost occurrence.
t ∈ T φ

(
∨
t′∈O t

′)U t ((
∨
t∈O t)U((

∨
t′∈T t

′) ∧ φ)) ∨ ((¬(
∨
t′∈T t

′)) ∧ φ)
(
∨
to∈Oi to)U(

∨
tm∈Mi(t)

tm) ((
∨
t∈Oi t)U((

∨
t∈Mi

t) ∧ φ)) ∨ ((¬(
∨
t∈Mi

t)) ∧ φ)

this state.
This construction ensures that exactly n transitions in a trace of a firing sequence

of N>
» are skipped for the transitions of the run part, i.e., one transition for each subnet,

due to the construction of N>
» . For the flow subformula part, at least n states of the

trace are skipped. When the original net fires concurrent transitions which do not involve
the considered flow chain, with the skipping transition we take another round and even
more states are skipped.

Additionally, every atomic proposition p ∈ P in the scope of a flow operator is simul-
taneously substituted with its corresponding place [p]i of the subnet. Every flow subfor-
mula Aψi is substituted with [ι]i ∨ ([ι]iU(¬[ι]i ∧ ψ′i)) (abbreviated [ι]iW(¬[ι]i ∧ ψ′i)),
where [ι]i represents that no flow chain is tracked and ψ′i is the result of the substitutions
of atomic propositions and next operators described before. With [ι]iU(¬[ι]i∧ψ′i) we en-
sure to only check the flow subformula at the time the chain is created. Finally, restrict-
ing runs to not end in any of the subnets yields the final formula ϕ> = (−→o) → ϕA

with −→o being the activation place of the original part of the net and ϕA the result of the
substitution of all flow subformulas. This construction is given as formal substitutions
in Definition 39 on page 107.

This construction yields an LTL formula of polynomial size in the size of the input
net NT and formula ϕ.

I Lemma 11 (Size of the Constructed Formula). The size of the constructed LTL for-
mula ϕ>» is in O(|NT |3 · n · |ϕ|+ |ϕ|). J

Proof Sketch. The size of the constructed formula is a direct result of the construction
and Lemma 10. The substitutions with the largest impact are the ones substituting the
transitions and the next operators. Both have disjunctions over the transitions of the
constructed net N>

» . For more details see the proof on page 110.

As an example we transform the formula ϕ1 of Example 7.

I Example 9. The above construction for the Flow-LTL formula ϕ1 = (max ∧ fair)→
A out of Example 7 with the formulas max = ((in ∨ (in ∧ out))→ (s ∨ t)) and
fair = (in ∧ out)→ t, and the constructed Petri net N>

A of Example 8 yields
the formula

ϕ>1 = (−→o)→ ((max> ∧ fair>)→ ([ι]1 ∨ ([ι]1 U(¬[ι]1 ∧ [out]1))))

93

6 Model Checking Petri Nets with Transits against Flow-LTL

for max> = ((in∨(in∧out))→ (s∨t)) with s = (s1∨s2∨sV1∨t1∨t2∨t3∨tV1)U s and
t = (s1∨s2∨sV1∨t1∨t2∨t3∨tV1)U t, and fair> = (in∧out)→ ((s1∨s2∨sV1∨
t1∨t2∨t3∨tV1)U t). Note that we do not use the reduced, equivalent formulas presented
in Example 7 to show more substitutions that make the transformation clearer. J

A transformation of the counterexamples for NT satisfying ϕ and N>
» satisfying ϕ>» can

serve for showing the correctness of the construction. We break the correctness into two
parts. First, we show that the construction is sound , i.e., N>

» |=LTL ϕ
>
» implies NT |= ϕ.

This means, checking the transformed elements yields correct results. Second, we show
the completeness of the construction, i.e., NT |= ϕ implies N>

» |=LTL ϕ
>
» . This means

that all results that can be obtained by checking the input elements, can also be obtained
by checking the transformed elements.

I Lemma 12 (Correctness of the Transformation). For a Petri net with transits NT and
a Flow-LTL formula ϕ, the constructions of the safe P/T Petri net N>

» with inhibitor
arcs and the LTL formula ϕ>» yield NT |= ϕ iff N>

» |=LTL ϕ
>
» . J

Proof Sketch. For the soundness and completeness of the construction we can translate
the counterexamples from one to another.

Soundness. We pump up the counterexample forNT satisfying ϕ, i.e., a firing sequence ζ,
by the transitions of the subnets. This is done in the way that for every transition t
in ζ, i.e., transitions of the original part, the skipping transitions are added for a subnet,
when the violating chain of the flow subformula corresponding to this subnet is not affect
by the firing of t. When there is no such violating chain, i.e., the subformula is satisfied
by NT , we always use the skipping transitions. If the chain serving as counterexample
for the satisfaction of the flow subformula is affected by the firing of t, the corresponding
transition of the chain is added. This created firing sequence serves as counterexample,
since the satisfying flow subformulas are still satisfied by the [ι]i part of ϕ>» and all
added states of the trace are properly skipped by the untils of the constructed formula.

Completeness. The firing sequence ζ serving as counterexample for NT satisfying ϕ is
gained from the firing sequence ζ ′ serving as counterexample for N>

» satisfying ϕ>» by
projecting on the elements of NT . Since the net is created in the way that only runs are
allowed which start with a firing of a transition of the original part, and afterwards each
subnet has to mimic the firing of this transition one after another, and the inhibitor
arcs ensure that a violation in the subnet parts are violations of maximal data flow
chains, we can created the necessary flow chains serving as counterexample for the flow
subformulas by following the tracked flow chain of the subnet. For more details see the
proof on page 119.

We show this translation of the counterexamples by the firing sequence given in Exam-
ple 7 showing that our running example NA does not satisfy the formula ϕ1.

I Example 10. In Example 7 it is argued that the example Flow-LTL formula ϕ1 is
not satisfied in NA because the trace σR(ζ) = M0 ∪ {s},M0 ∪ {t},M0 ∪ {t}, . . ., with

94

6.2 Reduction to Model Checking Petri Nets against LTL

M0 = {in, out}, serves as a counterexample. We now argue that also ϕ>1 from Example 9,
which is constructed from ϕ1 and N>

A , is not satisfied in N>
A . We translate the firing

sequence ζ to a firing sequence ζ ′ covering a run of N>
A by using Definition 40. This

serves as counterexample for N>
A satisfying ϕ>1 . The trace σR(ζ ′) = In> ∪ {s},M1 ∪

{s1},M2 ∪ {t},M3 ∪ {t1},M4 ∪ {t},M3 ∪ {t1},M4 ∪ {t} · · · with

In> = {in, out ,−→o , [ι]1}
M1 = {in, out ,−→s 1, [ι]1}
M2 = {in, out ,−→o , [in]1}
M3 = {in, out ,

−→
t 1, [in]1}

M4 = {in, out ,−→o , [in]1}

is created by using the transitions from ζ whenever it is the turn of the original part
and when it is the turn of the subnet, we choose the transitions of the flow trace
σF (ξ) = {in, t}, {in, t}, . . . which served as counterexample in Example 7 for the flow
subformula. Since βR, σR(ζ) 6|= A out , we decided to take s1 rather than sV1. The
firing sequence ζ ′ is actually a counterexample for N>

A satisfying ϕ>1 because −→o
is satisfied by marking M4 which occurs infinitely often in σR(ζ ′). Furthermore, the
constraint max> is satisfied because even though in and out are satisfied in every state
of the trace σR(ζ ′) (satisfying the premise), there are at most only s1 or t1 transitions
before transition s or t is used to leave the state (satisfying the conclusion). The fairness
constraint fair> is also satisfied because transition t occurs infinitely often in σR(ζ ′).
But [ι]1 6∈M3 ∪M4 and [out]1 6∈M3 ∪M4. This yields N>

A 6|=LTL ϕ
>
1 . J

The sizes of the constructed Petri net and LTL formula yield the single-exponential time
bound for the model checking algorithm for Flow-LTL and Petri nets with transits.

I Theorem 4. A safe Petri net with transits NT can be checked against a Flow-LTL
formula ϕ in single-exponential time in the size of NT and ϕ. J

Proof. Lemma 10 and Lemma 11 yield the polynomial sizes of the constructed Petri
net N>

» and the LTL formula ϕ>» . Lemma 12 yields that we can check N>
» |=LTL ϕ

>
»

instead of NT |= ϕ and as for Theorem 3 the exponential blow-up due to the markings
of the Petri net yield the final result.

Note that the reachability problem for safe Petri nets is a special case of checking
safe Petri nets with transits against Flow-LTL. Since the former problem is PSPACE-
complete [CEP95], model checking a safe Petri net with transits against Flow-LTL has
a PSPACE-hard lower bound.

6.2.2 A Parallel Approach

The parallel approach for model checking a Petri net with transits NT against a Flow-
LTL ϕ is similar to the sequential approach. We are again proceeding in three steps:

95

6 Model Checking Petri Nets with Transits against Flow-LTL

1. The Petri net with transits NT is encoded as a standard Petri net N>
‖ without

transits obtained by composing suitably modified copies of NT such that each flow
subformula in ϕ can be checked for correctness using the corresponding copy. The
constructed net N>

‖ is of polynomial size in |NT |, but exponential in the number
of flow subformulas n.

2. The Flow-LTL formula ϕ is transformed to an LTL formula ϕ>‖ which handles the
local versus the global timeline of the run and the flow part of ϕ. The constructed
formula ϕ>‖ is of polynomial size in |NT | and |ϕ|, but of exponential size in the
number of flow subformulas n.

3. N>
‖ |=LTL ϕ

>
‖ is checked to answer NT |= ϕ.

The main difference of these two approaches is how we connect the subnets tracking the
data flow chains. In the sequential approach we use an activation token which, when
started in the original part, subsequently activates each subnet tracking a flow chain, and
informs the subnet about the fired transition. With this approach, these additional steps
had to be skipped within the constructed formula ϕ>» . With the parallel approach, we
spare this blow-up of the formula at the expense of an exponential number of transitions
with respect to the number of flow subformulas.

From Petri Nets with Transits to P/T Petri nets

Step 1 of the reduction procedure constructs a standard Petri net N>
‖ = (P>,T>,F>,

F>
I , In>) for a given Petri net with transits NT = (P,T,F,Υ, In) and a Flow-LTL

formula ϕ with n flow subformulas. In this section we give a textual definition of this
construction, the formal definition is given in Definition 44 on page 121. In Fig. 6.5 the
application of this definition to the running example is depicted.
We divide the construction of N>

‖ into the construction of the original part of the net,
the construction of the subnets, and the part that belong to properly connecting these
elements:

Original Part: For the parallel approach the original part of N>
‖ is just a copy of the

places of the input Petri net with transits NT . Transitions are only added globally
for connecting all subnets. This part is denoted by N>

O . This subnet is still used to
check the run part of the formula ϕ.

Subnets: As in the sequential case there is a subnet N>
i for each subformula Aψi of ϕ.

The places P>
i of the subnet are again the copies [p]i of each place p ∈ P with

the initially marked place [ι]i for guessing the violating flow chain. For the parallel
approach there is no need for the activation places. The transitions are no longer
assigned to a specific subnet, but are connecting all subnets together. Each subnet
still serves for checking the corresponding data flow part of the formula ϕ.

Connecting: For connecting the subnet N>
O and the n subnets N>

i , we introduce
(|Υ(t)| + 1)n transitions t> ∈ T> for each transition t ∈ T which are all labeled

96

6.2 Reduction to Model Checking Petri Nets against LTL

in

out

[in]1

[out]1t
t3

t
t4

t
t2

t
t1

s
s2

s
s3

s
s1

[ι]1

in

t

out

s

NT N>
‖ N>

O N>
1

Fig. 6.5: The constructed P/T Petri net N>
‖ (on the right) for an example Petri net with

transits NT (on the left, here NA of Fig. 6.1a) and one flow subformula Aψ1. The subnets
consists only of places, whereas the transitions connect all subnets simultaneously.

with the original transition, i.e., λ(t>) = t and are connected to the original part N>
O

according to t. The transition t> ∈ T> is connected to the subnets dependent on
whether this instance is used to track the data flow in this subnet or not. When the
instance should track the chain it is connected to the places of the subnet according
to the transit. Otherwise, it has inhibitor arcs to all places [p]i corresponding to place
p ∈ pre (t) to prevent this transition from firing when a chain extended by a transit
of the transition is currently tracked.

The size of the constructed Petri net is dominated by the number of transits in the Petri
net with transits NT and the number n of flow subformulas in the Flow-LTL formula ϕ.

I Lemma 13 (Size of the Constructed Net). The constructed Petri net N>
‖ has O(|NT |·

n+ |NT |) places and O(|NT |3n + |NT |) transitions. J

Proof. The sizes can be directly read from the definition. For the number of transitions,
we have |P| · |P|+ |P| possible transits for a transition t ∈ T in the worst-case. Thus,
|Υ(t)| can at most be quadratic in the size of NT . Adding for each transition t ∈ T the
(|Υ(t)|+ 1)n transitions yields the result.

As an example, we use this definition to create the standard Petri netN>
‖ for our running

example.

I Example 11. Given the Petri net with transits NA of Fig. 6.1a and the Flow-LTL
formula ϕ1 of Example 7 with one flow subformula. The constructed standard Petri
net N>

‖ is depicted in Fig. 6.5. In this case we can spare two transitions in comparision
to the sequential case (the ones moving the tokens in the original part of the net).

97

6 Model Checking Petri Nets with Transits against Flow-LTL

This changes when the Flow-LTL formula under consideration has more than one
flow subformula. Already for two flow subformulas, this example has nine s-labeled
transitions and 16 t-labeled transitions. Consider for example the s-labeled transi-
tions corresponding to transition s ∈ T for two flow subformulas. We define the set
X = {(◦, ◦), (◦,�), (◦,↔), (�, ◦), (�,�), (�,↔), (↔, ◦), (↔,�), (↔,↔)} correspond-
ing to the (|Υ(s)| + 1)2 = 9 created transitions. Here, with the symbol ◦ we indicate
that for this subnet the corresponding transition is not moving the data flow (has an
inhibitor arc), with � the new data flow is considered, and ↔ denotes the case where
the data flow is kept in place in. For each (x1, x2) ∈ X the original place in is in the
pre- and postset of the corresponding transition t>. For xi = � we have [ι]i in the preset
and [in]i in the postset of t> for i ∈ {1, 2}. Similarly for xi = ↔ we have [in]i in the
pre- and the postset of t>. For xi = ◦ there is an inhibitor arc to the place [in]i. Thus,
we have a transition for each combination of which subnet tracks which transit of the
transition s. The activation token and additional places can still be spared. J

From Flow-LTL Formulas to LTL Formulas and the Correctness

Step 2 of the reduction procedure creates an LTL formula ϕ>‖ to the Petri net N>
‖ =

(P>,T>,F>,F>
I , In>) of a Petri net with transits NT = (P,T,F,Υ, In) and a Flow-

LTL formula ϕ with n ∈ N flow subformulas ϕAi = Aψi. Again, the intricate part of the
construction is to deal with the shifting of time points when the corresponding atomic
propositions should hold. However, different to the sequential approach, for the parallel
approach we do not have to additionally handle the extra shifts due to the sequential
composition of the subnets. Thus, we only have to be adequately skip the global steps
not concerning the flow chain for the flow subformulas (cp. Fig. 5.1). This is analogously
done with until operators as for the sequential approach.
To have again a notion of related and unrelated transitions, we define the set of

transitions tracking a chain of a specific subnet i ∈ {1, . . . , n} by T>
i = {t ∈ T> |

∃p ∈ P : ([p]i, t) ∈ F> ∨ (t, [p]i) ∈ F>} (the related transitions of the subnet) and the
set of all other transitions by Oi = T> \T>

i (the unrelated transitions of the subnet).
For a transition t ∈ T, the set Mi(t) = T>

i ∩ {t> ∈ T> | λ(t>) = t} collects all
corresponding related transitions of the subnet.
First, the places of the flow subformulas have to be substituted by the corresponding

places tracking the chain, i.e., all occurrences of a place p ∈ P in a flow subformula ϕAi
are simultaneously replaced by [p]i. Second, the transitions of the flow subformulas have
to be substituted such that all steps of the global timeline which do not involve the
tracked flow chain are skipped until a transition involving the flow chain is fired, i.e., all
occurrences of a transition t ∈ T in a flow subformula ϕAi are simultaneously substituted
by (

∨
to∈Oi to)U(

∨
tm∈Mi(t)

tm). Similarly, the next operators of the flow subformulas
have to be substituted such that the steps of the global timeline are skipped until a step
involving the tracking subnet is taken. Here two cases have to be considered: either
the chain ends, i.e., no transition of the subnet is ever fired again, then the formula
has to directly hold in the stuttering part, or there is a transition of the subnet, then
the formula has to hold in the direct successor state. This means all occurrences of a

98

6.2 Reduction to Model Checking Petri Nets against LTL

Tab. 6.2: An overview of the necessary substitutions to create ϕ> from ϕ. The next oper-
ator is substituted from the innermost to the outermost occurrence, the other subformulas
are substituted simultaneously.

Run part of ϕ Flow subformula Aψi part of ϕ

p ∈ P p [p]i
t ∈ T

∨
t′∈{t′∈T> | λ(t′)=t} t

′ (
∨
to∈Oi to)U(

∨
tm∈Mi(t)

tm)

φ φ ((
∨
t∈Oi t)U((

∨
t∈T>

i
t) ∧ φ)) ∨ ((¬(

∨
t∈T>

i
t)) ∧ φ)

Aψi [ι]iW(¬[ι]i ∧ ψ′i) –

subformula φ in a flow subformula ϕAi are replaced from the inner- to the outermost
occurrence by ((

∨
t∈Oi t)U((

∨
t∈T>

i
t)∧ φ))∨((¬(

∨
t∈T>

i
t))∧φ). These substitutions

follow exactly the substitutions of the sequential approach.
For the run part of the formula, we can directly use the global timeline, i.e., the next

operator needs no substitution. Further, the places are already correctly named. Only
the transitions t ∈ T in the run part of ϕ have to be substituted simultaneously by∨
t′∈{t′∈T> | λ(t′)=t} t

′ to consider all transitions corresponding to t.
Finally, the flow subformulas are simultaneously substituted by [ι]iW(¬[ι]i ∧ ψ′i)

(where ψ′i is the result of the above mentioned substitutions within a flow subformula)
such that all steps of the global timeline are skipped until a flow chain is created and
tracked. Table 6.2 gives an overview of these substitutions.

This construction yields an LTL formula of polynomial size of the input net NT and
formula ϕ, but is of exponential size in the number n of flow subformulas.

I Lemma 14 (Size of the Constructed Formula). The size of the constructed LTL for-
mula ϕ>‖ is in O(|NT |3n · |ϕ|+ |ϕ|). J

Proof. The size of the constructed formula ϕ>‖ directly follows from the number of tran-
sitions added during the creation of N>

‖ (Lemma 13) and the substitutions introducing
the disjunctions over these transitions in the creation of ϕ>‖ .

Note that there is only a significant blow-up in the formula when transitions are used as
atomic propositions in either the flow or the run part of the formula, or when the next
operator is used in the flow part of the formula. Moreover, even the usage of transitions
as atomic propositions in the run part of the formula only leads to a disjunction over
the combinations of transits of this transition with respect to the subnets, whereas
the sequential approach uses a large subset of all transitions and an until operator.
Oftentimes, this results (without any further optimizations) in smaller formulas for the
parallel approach, because many examples need fairness assumptions, i.e., transitions
in the run part of the formula, but have only few local requirements (cp. Chap. 7).
Finally, even though model checking is exponential in the size of the formula [CHVB18],
in practical applications the size of the model rather than the size of the formula turned
out to be the driving factor for the running time anyhow [DLS06].
As an example we again transform the formula ϕ1 of Example 7.

99

6 Model Checking Petri Nets with Transits against Flow-LTL

I Example 12. Given the Flow-LTL formula ϕ1 = (max∧fair)→ A out of Example 7
with max = ((in ∨ (in ∧ out))→ (s ∨ t)) and fair = (in ∧ out)→ t, and the
constructed Petri net N>

‖ depicted in Fig. 6.5. The construction from this section yields
the LTL formula

ϕ>‖ = (max>‖ ∧ fair
>
‖)→ ([ι]1 W(¬[ι]1 ∧ [out]1))

with max>‖ = ((in ∨ (in ∧ out)) → ((s1 ∨ s2 ∨ s3) ∨ (t1 ∨ t2 ∨ t3 ∨ t4)) and fair>‖ =

(in ∧ out) → (t1 ∨ t2 ∨ t3 ∨ t4). We see that we can especially spare three
until operators and several transitions in the run part of the formula in comparison to
formula ϕ>1 transformed with the sequential approach presented in Example 9. J

The constructions of the standard Petri net N>
‖ and the LTL formula ϕ>‖ yield another

model checking procedure for Petri nets with transits and Flow-LTL. Analogously to the
sequential approach, we again show the correctness of the construction by showing its
soundness and completeness.

I Lemma 15 (Correctness of the Transformation). For a Petri net with transits NT and
a Flow-LTL formula ϕ, the constructions of the safe P/T Petri net N>

‖ with inhibitor
arcs and the LTL formula ϕ>‖ yield NT |= ϕ iff N>

‖ |=LTL ϕ
>
‖ . J

Proof. The proof of the correctness of the transformations for the parallel approach
is analog to the one of the sequential approach given in Sec. 6.4.3. The formula re-
placements in the flow part of the formula follow the same idea and have just adapted
the sets of related and unrelated transitions with respect to adaptions to the Petri net
transformation. Thus, we can again mutually transform the counterexample to show
the contraposition NT 6|= ϕ iff N>

‖ 6|=LTL ϕ
>
‖ .

Soundness. Here we do not have to pump up the covering firing sequence ζ of the run
β = (NR

T , ρ) serving as counterexample for NT |= ϕ as in the sequential approach, be-
cause each firing of a transition in N>

‖ already updates all subnets tracking the data
flows simultaneously. We only have to replace each transition t in ζ by a transition which
adequately extends all flow chains of the counterexample. Thus, for each flow subfor-
mula β, σR(ζ) 6|= Aψi we use the witness flow chain ξi with σF (ξi) 6|=LTL ψi to decide
which of the (|ΥR(t)| + 1)n transitions to choose. For those subformulas β, σ(ζ) |= Aψi
the chosen transition should not start tracking the chain. The run β determines the
start point of replacing transitions according to the flow chain ξi.

Completeness. For the other direction, we can replace the transitions of the counterex-
ample by the labels of the transitions and, analog to the sequential approach, iteratively
concatenate the transitions and places of the subnets to gain the flow chains serving as
counterexamples for the subformula part.
The complicated parts of the structural induction, i.e., adequately skipping the global

time steps for the flow subformulas, can be done analogously because the formulas of
the parallel approach and the sequential approach are similar in this case and fit to the
different structure of the net.

100

6.3 Petri Net Model Checking with Circuits

We show that for our running example N>
‖ 6|=LTL ϕ

>
‖ holds by translating the counterex-

ample firing sequence given in Example 7 showing that our running example Petri net
with transits NA does not satisfy the formula ϕ1.

I Example 13. Again we use the counterexample firing sequence with the trace σR(ζ) =
M0 ∪ {s},M0 ∪ {t},M0 ∪ {t}, . . ., with M0 = {in, out}, of Example 7 that shows that
the Flow-LTL formula ϕ1 is not satisfied by the Petri nets with transits NA. We now
argue that also the LTL formula ϕ>‖ from Example 12, which is constructed from ϕ1

and N>
‖ , is not satisfied in the Petri net N>

‖ depicted in Fig. 6.5. For creating the
firing sequence ζ ′ serving as counterexample we use again the flow chain with the trace
σF (ξ) = {in, t}, {in, t}, . . . of Example 7 serving as counterexample for the satisfaction of
the flow subformula. Consider the firing sequence with the trace σR(ζ ′) = In>∪{s1},M∪
{t1},M ∪{t1}, · · · with In> = {in, out , [ι]1} andM = {in, out , [in]1}. We decided to use
the s-labeled transition s1 for s to start the tracking of the violating chain and decided
to use the t-labeled transition t1 for each transition t in σR(ζ) because the trace of the
counterexample flow chain σF (ξ) stayed in place in.
The firing sequence ζ ′ is actually a counterexample for N>

‖ satisfying ϕ>‖ . The con-
straint max>‖ is satisfied because each state is left with transition s1 or t1 and fair>‖ is
satisfied because transition t1 occurs infinitely often in σR(ζ ′). However, [ι]1 6∈ M but
also [out]1 6∈M . Hence, N>

‖ 6|=LTL ϕ
>
‖ . J

6.3 Petri Net Model Checking with Circuits

In the previous sections we reduce the model checking problem for a safe Petri net with
transits and a Flow-LTL formula to the model checking problem of a safe standard Petri
net N and an LTL formula ψ with places and transitions as atomic propositions. In this
section we introduce a further reduction method and encode the safe Petri net N in a
circuit CN and slightly transform ψ to an LTL formula ψ′ such that the Petri net N

satisfies ψ if and only if the circuit CN satisfies ψ′. This allows us in our tool AdamMC
to use MCHyper [FRS15] to create a single circuit from the constructed circuit for the
system CN and the constructed LTL formula ψ′ and therewith enables the use of modern
hardware model checkers such as ABC [BM10b; Ber] to answer the question whether
N |=LTL ψ holds (cp. Chap. 7). Thus, we create the circuit in this section in the style
of [FRS15].

6.3.1 Construction of the Circuit

In the first step of the reduction we create the circuit CN simulating the given input
Petri net N. Therefore, we first define the structure of a circuit.

I Definition 36 (Circuit). A circuit C = (I,O,L,F) consists of Boolean variables I,
O, L for input, output, latches, and a Boolean formula F over I × L × O × L, which
is deterministic in I × L.

101

6 Model Checking Petri Nets with Transits against Flow-LTL

The formula F can be seen as a transition relation from a valuation of the input
variables and the current state of the latches to the valuation of the output variables
and the next state of the latches. We use decorations to express the correspondence of
the variables in the second and fourth component L of F . Thus, if x denotes the current
value of a latch in the second component L of F then x′ denotes the new value of that
latch after the next clock pulse in the fourth component L of F . This decoration is also
lifted to sets.
For a tuple (I, L,O, L′) ∈ 2I × 2L × 2O × 2L we say (I, L,O, L′) satisfies F (denoted

by (I, L,O, L′) |= F) iff F is satisfied under the valuation which maps each occurring
variable to true and all others to false. J

A circuit C can be interpreted as a Kripke structure KC such that the satisfaction of a
formula ψ (denoted by C |= ψ) can be defined by the satisfaction in the Kripke structure
KC |= ψ. A formal definition of the transformation is given in Definition 42 on page 119.
We now define the circuit CN simulating N such that

N |=LTL ψ iff CN |= ψ′

holds for an LTL formula ψ′ constructed from ψ in the next section. The circuit CN has
a latch for each place p ∈ P to store the current marking, a latch i for initializing this
marking with In in the first step, and a latch e for handling invalid inputs. The inputs I
consider the firing of a transition t ∈ T. The latch i is true in every but the first step.
The latch e is true whenever invalid values are applied on the inputs, i.e., the firing of
not enabled, or more than one transition. The marking latches are updated according
to the firing of the valid transition. If currently no valid input is applied, the marking is
kept from the previous step. There is an output for each place (the current marking), for
each transition (the transition leading to the next marking), and for the current value
of the invalid latch. These properties are formalized in the following definition.

I Definition 37 (P/T Petri Net to Circuit). For a P/T Petri net with inhibitor arcs
N = (P,T,F,FI , In), we define the circuit CN = (I,O,L,F) with the set of input
variables I = T, the set of output variables O = {po | p ∈ P} ∪ {to | t ∈ T} ∪ {eo},
the set of latches L = P ∪ {i, e} with an initialisation latch i and a latch for invalid
inputs e, and a Boolean formula F = outP ∧ outT ∧ oute ∧ latche ∧ latchi ∧ latchP
over I × L × O × L which is defined with the help of the following formulas:

val(t) = t ∧
∧

t1∈T\{t}

¬t1 ∧
∧

p∈pre (t)

{
¬p if (p, t) ∈ FI

p otherwise ,

noT =
∧
t∈T

¬val(t),

succ(p) = (noT→ p) ∧ (¬noT→
∧
t∈T

(to →

p if p 6∈ pre (t) ∧ p 6∈ post (t)
0 if p ∈ pre (t) ∧ p 6∈ post (t)
1 otherwise

)).

102

6.3 Petri Net Model Checking with Circuits

The formula val(t) for a t ∈ T states the validity of t, i.e., t is set as input but no other
transition is set and t is enabled by the current state of the latches. The formula noT

is true iff no transition is valid and the formula succ(p) for a place p ∈ P defines the
successor value for p. If there is no valid input we keep the same marking. Otherwise,
the marking is the successor marking of the current output transition to and the current
marking. Therewith, the conjuncts of F are defined as follows:

outP =
∧
p∈P

(po ↔ (¬i→ p′) ∧ (i→ p)),

outT =
∧
t∈T

(to ↔ val(t)),

oute = eo ↔ e,

latche = e′ ↔ i ∧ noT,
latchi = i′ ↔ true,

latchP =
∧
p∈P

(p′ ↔
{

i→ succ(p) if p ∈ In
i ∧ succ(p) otherwise).

In all states but the initial one, the outputs corresponding to places are the current
values of the latches. The outputs corresponding to the transitions are at most one valid
transition. The new value for the latches corresponding to places are initially the initial
marking of N. Otherwise, if no valid input is applied, the current values of the latches
are copied to the new values and if there is a valid transition, the successor marking of
firing this transition in the current values is used for the new values. J

6.3.2 Transformation of the Formula and the Correctness

The second step of the reduction is the translation of the input LTL formula ψ to an LTL
formula ψ′. The atomic propositions of ψ are AP = T∪P, but formulas satisfied by the
circuit CN can only range over the output variables of CN. Hence, the LTL formula ψ̃
is obtained from ψ by replacing every place and transition atom with the corresponding
output variable:

ψ̃ = ψ [p1o/p1, . . . , pno/pn, t1o/t1, . . . , tmo/tm]

for P = {p1, . . . , pn}, T = {t1, . . . , tm}, and the operator [φ′1/φ1, . . . , φ
′
k/φk] on formulas

for the simultaneous substitution of formula φj by formula φ′j for j ∈ {1, . . . , k}. Now
we define the LTL formula ψ′ by skipping the initialization step of the circuit and by
focusing on the valid traces:

ψ′ = ((eo → eo)→ ψ̃).

By tolerating invalid inputs only at the end of a trace, we allow for finite firing sequences
of a run without enforcing any maximality constraints on the firing sequences. These
could be stated in the formula ψ as defined in Example 1 with the additional next
operator for the interleaving-maximality for the outgoing semantics.

103

6 Model Checking Petri Nets with Transits against Flow-LTL

These constructions yield a circuit with a linear number of latches and a quadratic
number of gates (i.e., conjunctions and disjunctions in F) for the input Petri net N and
an LTL formula of linear size of the input formula ψ.

I Lemma 16 (Sizes of the Transformation). For a safe P/T Petri net with inhibitor
arcs N and an LTL formula ψ, the constructed circuit CN has |P| + 2 latches and
O(|N|2) gates, and the constructed formula ψ′ is of size O(|ψ|). J

Proof. The number of latches and gates directly follows from Definition 37. For the gates
we can see that none of the subformulas outP , outT , oute, latche, latchi, latchP has
more than two nesting conjunctions over P or T.

Putting this all together, we can state the final result and show the correctness of this
reduction resulting in a single-exponential time algorithm for solving safe Petri nets with
inhibitor arcs against LTL formulas via circuits.

I Theorem 5. For a safe P/T Petri net with inhibitor arcs N and an LTL formula ψ,
the constructed circuit CN and the constructed formula ψ′ yield N |=LTL ψ iff CN |= ψ′.
The model checking problem for the circuit and the LTL formula can be solved in single-
exponential time in the size of N and ψ. J

Proof Sketch. The correctness of the construction is proven using the Kripke struc-
ture KCN of Definition 42 corresponding to the circuit CN. We can show the contra-
position N 6|=LTL ψ iff KCN 6|= ψ′ by straightforwardly transforming the counterexample
firing sequence ζ covering a run of N to a path π in the Kripke structure KCN and vice
versa.
The single-exponential time bound stems from the polynomial size of the circuit and

the linear size of the formula (Lemma 16), and the exponential size of the Kripke struc-
ture (Definition 42). Which in turn can be checked in linear time in the size of the
Kripke structure and in exponential time in the size of the formula [CHVB18]. For more
details see the proof on page 120.

6.4 Proofs and Formal Constructions

In this section, we provide details to the previous two sections. Particularly, we give in
Sec. 6.4.1 a formal definition of the construction of the Petri net with inhibitor arcs N>

»
from a Petri net with transits NT and a Flow-LTL formula ϕ described in Sec. 6.2.1
and give in Sec. 6.4.2 the formal definition for the corresponding transformation of ϕ
to an LTL formula ϕ>» described in Sec. 6.2.1. Furthermore, the correctness proofs for
these transformations are given in Sec. 6.4.3. In Sec. 6.4.4 we show the correctness of
the circuit construction of Sec. 6.3 for reducing the model checking problem of a safe
Petri net with inhibitor arcs and an LTL formula to a hardware model checking problem.
Finally, the formal definition of the construction of the Petri net with inhibitor arcs N>

‖
from a Petri net with transits NT and a Flow-LTL formula ϕ described in Sec. 6.2.2 is
given in Sec. 6.4.5.

104

6.4 Proofs and Formal Constructions

6.4.1 Formal Construction of the Petri NetN>
»

In this section we give a formal definition for the construction described in Sec. 6.2.1 for
creating the Petri net with inhibitor arcs N>

» given a Petri net with transits NT and the
number n ∈ N of flow subformulas of a Flow-LTL formula ϕ.

We introduce a set of identifiers ID and an injective naming function νN : P∪T → ID

for every Petri netN = (P,T,F, In) (and all of its extensions) which uniquely identifies
every place and transition of a given net. If the net N is clear from the context,
we omit the subscript and only write ν. Furthermore, we often omit the predicate
p ∈ P ∧ ν(p) = identifier and t ∈ T ∧ ν(t) = identifier , respectively, in formulas
and only use identifier instead of p or t, respectively, within the formula to keep the
presentation short.
The construction of a Petri net with transits to a standard P/T Petri net with inhibitor

arcs is given by the following definition.

I Definition 38 (Petri Net with Transits to a P/T Petri Net). Given a safe Petri net
with transits NT = (P,T,F,Υ, In) and a Flow-LTL formula ϕ with n ∈ N subfor-
mulas Aψi, for i = 1, . . . , n. We define a P/T Petri net with inhibitor arcs N>

» =
(P>,T>,F>,F>

I , In>), with

P> = P>
o]

⊎
i∈{1,...,n}

P>
i , T> = T>

o]
⊎

i∈{1,...,n}

T>
i

and a partial function λ : T> ∪P> → T ∪P which maps the elements to its corre-
sponding original ones. The smallest sets P>

o ,P
>
i ,T

>
o , T>

i , F>, and F>
I fulfilling the

following constraints define the net N>
» .

By constraint (o) it is ensured that all places, transitions, and flows of the original
net NT are also existent in N>

» . The labeling and the identifiers are copied.

(o) P>
o ⊃ P ∧ T>

o = T ∧ F> ⊃ F ∧ ∀p> ∈ P : λ(p>) = p ∧ ∀t> ∈ T : λ(t>) =
t ∧ ∀p> ∈ P : ν(p>) = ν(p) ∧ ∀t> ∈ T : ν(t>) = ν(t)

With the following five constraints, the additional places, transitions, and flows of the
subnets are defined for each subformula Aψi. Let I = {1, . . . , n}. In (s1), a copy of
every original place for each subnet is required for tracking the flow chains.

(s1) ∀i ∈ I : ∀p ∈ P : ∃p> ∈ P>
i : λ(p>) = p ∧ ν(p>) = [ν(p)]i

To check whether any chain has been tracked, an initial place [ι]i for every subnet is
defined via constraint (s2).

(s2) ∀i ∈ I : ∃p> ∈ P>
i : ν(p>) = [ι]i

Constraint (s3) ensures the existence of transitions simulating the creation of a flow
chain during the run. Hence, for every starting flow chain there is a transition in each
subnet, which takes the initial token from [ι]i and moves it according to the corresponding
transit.

105

6 Model Checking Petri Nets with Transits against Flow-LTL

(s3) ∀i ∈ I : ∀t ∈ T : ∀(�, q) ∈ Υ(t) : ∃t> ∈ T>
i : ([ι]i, t

>) ∈ F> ∧ (t>, [ν(q)]i) ∈
F> ∧ λ(t>) = t ∧ ν(t>) = ν(t)ν(q)i

In constraint (s4), this is similarly done for each transit of each transition.

(s4) ∀i ∈ I : ∀t ∈ T : ∀(p, q) ∈ Υ(t) : ∃t> ∈ T>
i : ([ν(p)]i, t

>) ∈ F> ∧ (t>, [ν(q)]i) ∈
F> ∧ λ(t>) = t ∧ ν(t>) = ν(t)(ν(p),ν(q))i

Constraint (s5) treats the situation that the currently tracked flow chain is independent
of the last fired transition t ∈ T>

o . Thus, in each subnet a skipping transition is required
for every original transition t ∈ T which is only allowed to fire when the considered chain
of the subnet is not extended by the transits of t, i.e., no corresponding place in the
preset of t is occupied.

(s5) ∀i ∈ I : ∀t ∈ T : ∃t> ∈ T>
i : ∀p ∈ pre (t) : ([ν(p)]i, t

>) ∈ F>
I ∧ λ(t>) = t ∧ ν(t>) =

ν(t)Vi

The following four constraints are used to connect the components sequentially. Con-
straint (a) ensures the existence of one activation place −→o for the original part of the
net, and one activation place

−−→
ν(t)i for every original transition t ∈ T for each subnet.

(a) ∃p> ∈ P>
o : ν(p>) = −→o ∧ ∀i ∈ I : ∀t ∈ T : ∃p> ∈ P>

i : ν(p>) =
−−→
ν(t)i

Constraint (mO) lets every original transition t ∈ T>
o take the activation token from −→o

and moves it to the activation place
−−→
ν(t)0 for the transitions of the first subnet which

are labeled with t to activate this subnet.

(mO) ∀t ∈ To : (−→o , t) ∈ F> ∧ (t,
−−→
ν(t)0) ∈ F>

With the constraints (mSi) and (mSn), we move the activation token through the sub-
nets, or back to the original part of the net, respectively. Therefore, we let all equally
labeled transitions of the subnet take their corresponding activation token from the
place

−−→
ν(t)i for a label t ∈ T and move it to the next subnet, i.e., place

−−−−→
ν(t)i+1 or −→o ,

respectively.

(mSi) ∀i ∈ {1, . . . , n− 1} : ∀t ∈ T :

∀t> ∈ T>
i : λ(t>) = t =⇒ ((

−−→
ν(t)i, t

>) ∈ F> ∧ (t>,
−−−−→
ν(t)i+1) ∈ F>)

(mSn) ∀t ∈ T : ∀t> ∈ T>
n : λ(t>) = t =⇒ ((

−−−→
ν(t)n, t

>) ∈ F> ∧ (t>,−→o) ∈ F>)

The initial marking of N>
» is defined by constraint (in). We only activate the original

part of the net and allow all subnets to track a chain.

(in) In> = {−→o } ∪ {[ι]i | i ∈ I} ∪ In.

Newly introduced identifiers, e.g., ι and −→o , are unique and do not occur in NT . J

106

6.4 Proofs and Formal Constructions

Note that in case n = 0 flow subformulas exist, we just use the input Petri net with
transits NT and omit the transits.
This definition directly yields the number of places and transitions of the constructed

Petri net N>
» stated in Lemma 10 on page 91.

Proof (Lemma 10: Size of the Constructed Net): The injectivity of ν yields that each
required place or transition is a unique element of P> or T> respectively. That we
demand that the smallest sets P> and T> fulfill the constraints allows us to only
consider the explicitly stated elements.

Therewith, constraint (o) together with constraint (a) yield |P>
o | = |P|+1. Constraint

(s1) requires |P| places for each subnet, constraint (s2) requires one initial place for each
subnet, and constraint (a) requires one activation place for each original transition for
every subnet. Hence, |

⋃
i=1,...,nP

>
i | = n · |P|+n+n · |T| and so |P>| = n · (|P|+ |T|+

2) + |P|+ 1.
For the transitions of the original part of the net, constraint (o) directly yields |T>

o | =
|T|. Constraint (s3) requires a transition for every newly created flow chain of the net,
i.e., |{(t, p) ∈ T ×P | (�, p) ∈ Υ(t)}| many transitions, which are at most |T| · |P|
transitions for each subnet. Constraint (s4) does the same for every transit of the net,
i.e., |{(p, t, q) ∈ P × T × P | (p, q) ∈ Υ(t)}| many transitions, which are at most
|P| · |T| · |P| transitions for each subnet. Constraint (s5) requires one transition for
skipping and directly moving the active token to the next subnet for each transition
t ∈ T. Hence, |

⋃
i=1,...,nT

>
i | = n · |T| · |P|+ n · |P| · |T| · |P|+ n · |T| and thus, T>

contains n · (|P|2 · |T|+ |P| · |T|+ |T|) + |T| transitions. �

6.4.2 Formal Construction of the Formula ϕ>»

In this section we formally introduce the transformation of a Flow-LTL formula ϕ to
an LTL formula ϕ>» presented in Sec. 6.2.1. We use the operator [φ′1/φ1, . . . , φ

′
m/φm]

on formulas for the simultaneous substitution of φj by φ′j. To substitute formulas from
the inner- to the outermost, we utilize the function d, which calculates the depth of
a formula. The depth-function d is inductively defined: d(a) = 0 for every atomic
proposition a and d(◦φ1) = 1+d(φ1), d(φ1◦̃φ2) = 1+max{d(φ1), d(φ1)} for every unary
operator ◦, binary operator ◦̃, and formulas φ1 and φ2.

I Definition 39 (Flow-LTL to LTL). Let NT = (P,T,F,Υ, In) be a Petri net with
transits, ϕ a Flow-LTL formula with n ∈ N subformulas Aψi, for i = 1, . . . , n, and
N>
» = (P>,T>,F>,F>

I , In>) the with Definition 38 created P/T Petri net with in-
hibitor arcs. The corresponding LTL formula ϕ>» is created by the following steps:

Flow Part: For each flow formula Aψi, for i = 1, . . . , n, we create a new formula ψPTXdmax
i

which adequately copes with the different timelines of the corresponding flow chains.
Since in our approach each flow formula is checked on the corresponding subnet N>

i ,
the places and transitions of the other components are ignored.
The atomic propositions p ∈ P are substituted with the corresponding places of the

subnet:

107

6 Model Checking Petri Nets with Transits against Flow-LTL

(pF) ψP
i = ψi

 [ν(p1)]i/p1,
. . . ,

[ν(pm)]i/pm

 for P = {p1, . . . , pm}.

For the atomic propositions t ∈ T, we skip all transitions not concerning the extension
of the current flow chain via an until operator. That means the firing of unrelated
transitions Oi = (T> \T>

i) ∪ {ν(t)Vi ∈ T>
i | t ∈ T}, i.e., transitions of the other

components or own skipping transitions, is skipped until a related transition, i.e., one of
the set of transitions extending the flow chainMi(t) = {t> ∈ T>

i \{ν(t)Vi} | λ(t>) = t},
is fired.

(tF) ψPT
i = ψP

i

 (
∨
to∈Oi to)U(

∨
t∈Mi(t1) t)/t1,

. . . ,
(
∨
to∈Oi to)U(

∨
t∈Mi(tm′)

t)/tm′

 for T = {t1, . . . , tm′}.

The next operator is treated similarly. Let ψPT
i contain m1 subformulas ψ′j for j =

1, . . . ,m1. In this case, the related transitions are all transitions of the subnet T>
i

except for the skipping transitions: Mi = T>
i \ {ν(t)Vi ∈ T>

i | t ∈ T}. We define the
disjunction of all related transitions by M̃i =

∨
t∈Mi

t and apply the same ideas as in the
previous case. To adequately cope with situations where no related transition t ∈ Mi

would ever fire again (2(¬M̃i)), i.e., the stuttering at the end of a chain, we require the
immediate satisfaction. To replace the formulas from the inner- to the outermost, we
organize the formulas in groups { ψl1, . . . , ψlkl} according to their depth:

(nF) Let { ψl1, . . . , ψlkl} = { ψ′j | j ∈ {1, . . . ,m1} ∧ d(ψ′j) = l} and d ∈
{2, . . . , dmax} with dmax = max{d(ψ′j) | j ∈ {1, . . . ,m1}}. Then, the substi-
tutions of the next operators is given by

ψPTX1
i = ψPT

i

 ((
∨
t∈Oi t)U(M̃i ∧ ψ1

1)) ∨ (2(¬M̃i) ∧ ψ1
1)/ ψ1

1,
. . . ,

((
∨
t∈Oi t)U(M̃i ∧ ψ1

k1
)) ∨ (2(¬M̃i) ∧ ψ1

k1
)/ ψ1

k1

and

ψPTXd
i = ψ

PTXd−1

i

 ((
∨
t∈Oi t)U(M̃i ∧ ψd1)) ∨ (2(¬M̃i) ∧ ψd1)/ ψd1 ,

. . . ,

((
∨
t∈Oi t)U(M̃i ∧ ψdkd)) ∨ (2(¬M̃i) ∧ ψdkd)/ ψdkd

Run part: They same ideas are applied for the run part of the formula. Here the atomic
propositions p ∈ P do not need to be substituted since P ⊂ P>

o holds. For the atomic
propositions t ∈ T however, the skipping procedure has to be applied as well. The
unrelated transitions in this case are all transitions of the subnet O = T> \ T. To
only substitute occurrences in the run part of the formula, we introduce the substitution
operator /Ā which does not change anything within the scope of the flow operator A.

108

6.4 Proofs and Formal Constructions

(tR) ϕT = ϕ

 (
∨
t∈O t)U t1/Āt1,

. . . ,
(
∨
t∈O t)U tm/Ātm

.
For the next operator in the run part of the formula, the related transition are all
transitions of N>

O , i.e., T. We define the disjunction of these transitions by T =
∨
t∈T t.

To adequately cope with situations where no transition t ∈ T would ever fire again
(2(¬T)), i.e., the stuttering in the traces for finite firing sequences, we require the
immediate satisfaction. Let the run part of ϕT contain m2 subformulas ϕj for j =
1, . . . ,m2. We again organize the formulas according to their depth, to replace them
from the inner- to the outermost.

(nR) Let { ϕl1, . . . , ϕlkl} = { ϕj | j ∈ {1, . . . ,m2} ∧ d(ϕj) = l} and d′ ∈
{2, . . . , d′max} with d′max = max{d(ϕj) | j ∈ {1, . . . ,m2}}. Then, the substitutions
of the next operators is given by

ϕTX1 = ϕT

 ((
∨
t∈O t)U(T ∧ ϕ1

1)) ∨ (2(¬T) ∧ ϕ1
1)/Ā ϕ1

1,
. . . ,

((
∨
t∈O t)U(T ∧ ϕk1

1)) ∨ (2(¬T) ∧ ϕ1
k1

)/Ā ϕ1
k1

and

ϕTXd′ = ϕTXd′−1

 ((
∨
t∈O t)U(T ∧ ϕd

′
1)) ∨ (2(¬T) ∧ ϕd′1)/Ā ϕd

′
1 ,

. . . ,
((
∨
t∈O t)U(T ∧ ϕd

′

kd′
)) ∨ (2(¬T) ∧ ϕd′kd′)/Ā ϕd

′

kd′

Since flow chains can be created at any point in time during the run, we skip to their
creation point, i.e., we skip as long as a token resides in [ι]i. To also enable to not track
any chain, the weak until operator is used.

(AR) ϕA = ϕTXd′max

 [ι]1 W(¬[ι]1 ∧ ψ
PTXdmax
1)/Aψ1,

. . . ,

[ι]nW(¬[ι]n ∧ ψ
PTXdmax
n)/Aψn

Since we do not want any run or firing sequence to stop in any subnet N>

i , the final
formula restricts the considered traces to those which infinitely often visit the activation
place −→o of the original part of the net.

(nSub) ϕ>» = 23−→o → ϕA

The last step (nSub) concludes the construction of the LTL formula ϕ>» . J

Note that in the case that no flow subformula occurs in ϕ, we can just use ϕ itself.
The proof of the size of the constructed formula ϕ>» (Lemma 11 on page 93) directly

results from Lemma 10 about the size of the Petri net N>
» , because the substitution

of elements of ϕ completely depends on the size of N>
» . This net is quartic in the size

of NT and the number of flow subformulas in ϕ.

109

6 Model Checking Petri Nets with Transits against Flow-LTL

Proof (Lemma 11: Size of the Constructed Formula): For each occurrence of an atomic
proposition t ∈ T in the run part of ϕ, we have additionally 1+2·|T>\T|−1 subformulas
in ϕ>» by constraint (tR). SinceT> is quartic in the size ofNT and n, ϕ>» is already quintic
in the size of NT and ϕ. For each occurrence of an atomic proposition t ∈ T in a flow
subformula of ϕ we have additionally 1+2·(|T>\Ti|+|T|)−1+2·(|Mi(t)|)−1 subformulas
in ϕ>» (constraint (tF)). Since for Mi(t) there are at most |P|2 + |P| transits of a
transition,T> is still the biggest part and we are quintic in the size ofNT and ϕ. For each
occurrence of a next operator in the run part of ϕ we have additionally 2+1+2·|T>\T|−
1+3+|T|+1+3+1+|T| subformulas in ϕ>» (constraint (nR)). Hence, ϕ>» is still quintic
in the size of NT and ϕ. For each occurrence of a next operator in a flow subformula of ϕ
we have additionally 2+1+2 ·(|T> \Ti|+ |T|)−1+3+ |Ti|−|T|+1+3+1+ |Ti|−|T|
subformulas in ϕ>» (constraint (nF)). Hence, ϕ>» is still quintic in the size of NT and ϕ.�

6.4.3 Correctness Proof of the Reduction Technique

In this section, we prove Lemma 12 stating the correctness of the reduction. We fix a
Petri net with transitsNT = (P,T,F,Υ, In), the corresponding Petri net with inhibitor
arcs N>

» = (P>,T>,F>,F>
I , In>) and the partial labeling function λ : T> ∪P> →

T ∪ P which maps the elements to its corresponding original ones, both created by
Definition 38, a Flow-LTL formula ϕ with n ∈ N subformulas Aψi, for i = 1, . . . , n, and
the corresponding LTL formula ϕ>» which is created by Definition 39 throughout the
section. The general idea is to show the contraposition of the statement:

NT 6|= ϕ iff N>
» 6|=LTL ϕ

>
» .

Therefore, we transform the counterexamples mutually by Definition 40 and Defini-
tion 41. For Definition 40, we sequentially pump up the firing sequence serving as
counterexample for NT |= ϕ by one transition for each subnet in every step. If the sub-
net has to consider a flow chain, i.e., β, σR(ζ) 6|= Aψi and the original transition transits
the flow chain, the corresponding transition of the subnet is used. Otherwise, the cor-
responding skipping transition is added. The markings are filled with the additional
tokens of N>

» .

I Definition 40 (CEX: From PNwT to PN). Let β = (NR
T , ρ) be a run of NT , ζ =

M0[t0〉M1[t1〉 · · · be a covering firing sequence, and for every β, σR(ζ) 6|= Aψi let ξi =
tiι, p

i
0, t

i
0, p

i
1, t

i
1, . . . be the corresponding flow chain with σF (ξi) 6|=LTL ψi. We create a

pair β> = (N>
»
R, ρ>) and a sequence ζ> = M>

0 [t>0 〉M>
1 [t>1 〉 · · · iteratively. We lift the

function ρ> to sets X by ρ>(X) = {ρ>(x) | x ∈ X}.

(i) The marking M>
0 corresponds to the initial marking of N>

» , i.e., ρ>(M>
0) = In>.

(ii) Every (n + 1)st transition is the next transition of ζ. Thus, t>j·(n+1) = tj with
ρ>(tj·(n+1)) = ρ(tj) for every j ∈ N (as long as tj is existent in ζ).

(iii) Every other transition t = t>j·(n+1)+i, for the existing tj and i ∈ {1, . . . , n}, is a
fresh transition. The mapping of t is dependent on the previous original transition

110

6.4 Proofs and Formal Constructions

to = ρ(t>j·(n+1)) ∈ T>
o = T. In the case of β, σR(ζ) |= Aψi, no chain has to be

considered, thus t is mapped to the corresponding skipping transition (i.e., ρ>(t) =
ν(to)Vi). In the case of β, σR(ζ) 6|= Aψi the mapping is done iteratively according
to ξi. Before the transition starts, we again map t to the corresponding skipping
transition. The first occurrence of (�, ρ(pi0)) ∈ Υ(to) yields ρ>(t) = ν(to)ν(ρ(pi0))i .
We remember this position by Θi(ζ, 0) = j(n + 1) + i + 1. Then, whenever the
next transition to with (ρ(pik), ρ(pik+1)) ∈ Υ(to) occurs, ρ>(t) = ν(to)(ν(pik),ν(pik+1))i

is used. This position is remembered with Θi(ζ, k) = j(n+ 1) + i+ 1. In all other
cases, ρ>(t) = ν(to)Vi holds again.

(iv) Each marking M>
k of ζ> for k ∈ N \ {0} is corresponding to a marking M ′

k
> =

ρ(M>
k−1)\preN>

» (ρ(t>k−1))∪postN
>
» (ρ(t>k−1)) (as long as t>k−1 has been created), i.e.,

ρ>(M>
k) = M ′

k
>.

The net N>
»
R is created iteratively out of the places of the markings M>

j and the
transitions t>j of ζ> which are connected according to the pre- and postsets of ρ>(t>j).
We denote this construction with Θ(ζ) = ζ>. J

Note that the constructed pair β> = (N>
»
R, ρ>) is indeed a run of N>

» and the con-
structed sequence ζ> is a firing sequence covering β>.
The firing sequence serving as counterexample for NT |= ϕ is gained from a cover-

ing ζ> of a run of N>
» by projecting onto the elements of NT . The flow chains serving

as counterexample for β, σR(ζ) |= Aψi are created by iteratively concatenating the cor-
responding places and the transitions different to the skipping transition of each subnet.

I Definition 41 (CEX: From PN to PNwT). Let β> = (N>
»
R, ρ>) be a run of N>

» and
ζ> = M>

0 [t>0 〉M>
1 [t>1 〉 · · · be a covering firing sequence.

(i) We create a sequence ζ = M0[t0〉M1[t1〉 · · · by projecting onto the elements of NT ,
i.e., Mj = {p ∈ M>

j·(n+1) | ρ>(p) ∈ P} and tj = t>j·(n+1) for all j ∈ N (as long as
M>

j·(n+1) and t
>
j·(n+1) are existent in ζ>).

(ii) The net NR
T is analogously created as in Definition 40 and ρ is defined by ρ(p) =

ρ>(p) for all p ∈Mj and ρ(tj) = ρ>(t>j·(n+1)) for all j ∈ N (as long as the elements
exist).

(iii) The flow chain ξi = tiι, p
i
0, t

i
0, p

i
1, t

i
1, . . . for a subnet i ∈ {1, . . . , n} is only created

when there is any transition t>j in ζ> with ρ>(t>j) = t> for any t> ∈ T>
i with

ν(t>) 6= ν(λ(t>))Vi . In this case, we iteratively collect the corresponding tran-
sitions and their, to the transit belonging, corresponding places of the pre- and
postset. This means, if ν(t>) = ν(λ(t>))ν(q)i for any place q ∈ P, we start the
chain with tiι, pi0 such that tiι = t>j−i ∈ To (the corresponding transition of the orig-
inal part of the net) and pi0 ∈ postN

>
»
R

(t>j−1) ∩ {p ∈ P>R | λ(p) = q} (the single
successor place in which the chain is started). If ν(t>) = ν(λ(t>))(ν(p),ν(q))i for any
p, q ∈ P, then add tik, pik to the sequence exactly as in the previous case. For each

111

6 Model Checking Petri Nets with Transits against Flow-LTL

adding step k, we remember the position in ζ> by Θ>
i (ζ>, k) = j + 1. We denote

the construction by Θ>
ξi

(ζ>) = ξi.

For this construction we denote Θ>
R(ζ>) = (NR

T , ρ) and Θ>(ζ>) = ζ. J

Note that the constructed pair β = (NR
T , ρ) is indeed a run of NT , the constructed

sequences ξj are flow chains of β, and the constructed sequence ζ is a covering firing
sequence of β.
We prove Lemma 12 via a nested structural induction over the Flow-LTL formula ϕ.

Therefore, we use the LTL subformulas of the run part and the flow subformulas of ϕ
as induction base for the outer induction, and prove each part separately by structural
induction. We again consider both parts of the correctness, the soundness (s) and the
completeness (c), separately.

I Lemma 17 (LTL Part). Given an LTL formula ψ> created by Definition 39 without
condition (nSub) from the LTL part ψ (not within the scope of a flow operator A) of a
Flow-LTL formula ϕ.

(s) Given a run β and a covering firing sequence ζ, with σR(Θ(ζ)) |=LTL
−→o , then

σR(ζ) 6|=LTL ψ =⇒ σR(Θ(ζ)) 6|=LTL ψ
> holds.

(c) Given a firing sequence ζ> of a run of the net N>
» with σR(ζ>) |=LTL

−→o , then
σR(ζ>) 6|=LTL ψ

> =⇒ σR(Θ>(ζ>)) 6|=LTL ψ holds. J

Proof (via structural induction over ψ). For proving (s) and (c), we show the correct-
ness for all corresponding subtraces, i.e., we prove the soundness property

∀i ∈ N : σR(ζ)i 6|=LTL ψ =⇒ ∀j ∈ {0, . . . , b(i)} : σR(Θ(ζ))i(n+1)−j 6|=LTL ψ
>,

and the completeness property

∀i ∈ N : σR(ζ>)i 6|=LTL ψ
> =⇒ σR(Θ>(ζ>))di/(n+1)e 6|=LTL ψ

with b(i) = 0 for i = 0 and b(i) = n otherwise. Since at the end this holds for all i ∈ N,
the statements (s) and (c) of the lemma directly follow with i = 0. Let i ∈ N.

(IB) Case ψ = p ∈ P. Definition 39 yields ψ> = p.
Regarding soundness : Let ζ = M0[t0〉M1[t1〉 · · · and Θ(ζ) = M>

0 [t>0 〉M>
1 [t>1 〉 · · · with the

corresponding mapping functions ρ and ρ>, respectively. The premise of the statement
yields p 6∈ σR(ζ)(i). If i = 0, condition (in) of Definition 38 together with condition (i) of
Definition 40 ensures that ρ(M0) ⊂ ρ>(M>

0) and that there cannot be any other p′ ∈M>
0

with ρ>(p′) ∈ P. Hence, p 6∈ σR(Θ(ζ))(0). If i > 0, condition (iv) of Definition 40 yields
that all other markings M>

k are mapped to markings which are created by the firing of
transitions of N>

» . Definition 38 ensures that tokens residing on places p ∈ P>
o ∩ P

of the original part of the net are not moved by transitions of the subnet. Hence, due
to p 6∈ σR(ζ)(i), we know that p cannot get occupied while firing any transition of the

112

6.4 Proofs and Formal Constructions

subnet. With condition (ii) and (iii) of Definition 40 we know p 6∈ σR(Θ(ζ))(i(n+1)− j)
for all j ∈ {0, . . . , n}.
Regarding completeness : Given ζ> = M>

0 [t>0 〉M>
1 [t>1 〉 · · · and its transformation Θ>(ζ>) =

M0[t0〉M1[t1〉 · · · with the corresponding mapping functions ρ and ρ>, respectively. The
premise yields p 6∈ σR(ζ>)(i). If i = 0, condition (i) of Definition 41 yields that
M0 = {p> ∈ M>

0 | ρ>(p>) ∈ P} and since p ∈ P and condition (ii) of the definition
ensures that both mapping functions coincide, p 6∈ σR(Θ>(ζ>))(0). If i > 0, Defini-
tion 38 and the precondition σR(ζ>) |=LTL

−→o , ensures that the firing sequence ζ>
of N>

» repeatedly has an original transition to ∈ T>
o and then sequentially one transition

for each subnet, i.e., n transitions. Thus, with di/(n + 1)e we obtain the index of the
corresponding block. This means for i = 0 we have the block only containing the initial
marking and the outgoing transition, and for all other blocks we have first the marking
and outgoing transition of the first subnet N>

1 and last the next marking where N>
O is

again activated and the corresponding outgoing transition t ∈ T (or no transition at
all). Since Definition 38 ensures that no transition of any subnet moves a token of the
original net (apart from −→o) the places p ∈ P of the markings of each block stay the
same. Since Definition 41 creates the markings for Θ>(ζ>) exactly by choosing those
corresponding places and maps them accordingly, p 6∈ σR(Θ>(ζ>))(di/(n+ 1)e).
Case ψ = t ∈ T. Definition 39 yields ψ> =

∨
t′∈T>\T t

′U t.
Regarding soundness : The premise yields t 6∈ σR(ζ)(i). Since condition (ii) of Def-
inition 40 copies every (n + 1)st transition we know that t 6∈ σR(Θ(ζ))(i(n + 1)).
Furthermore, with Definition 32, σR(Θ(ζ))(i(n + 1)) ∩ (T> \ T) = ∅ holds. Hence,
σR(Θ(ζ))i(n+1) 6|=LTL ψ>. For i = 0 this already yields the conclusion. In the
case that i > 0, condition (iii) of Definition 40 ensures that for all j ∈ {0, . . . , n}
a transition is added which maps to a transition of the subnet T> \ T. Hence,
σR(Θ(ζ))(i(n+ 1)− j) ∩T = ∅ for all j ∈ {0, . . . , n}, and so σR(Θ(ζ))i(n+1)−j 6|=LTL ψ

>.
Regarding completeness : The premise yields σR(ζ>)i 6|=LTL

∨
t′∈T>\T t

′U t. By Defini-
tion 38 and precondition σR(ζ>) |=LTL

−→o , we know that every trace of N>
» must

contain at position i(n + 1) a transition to ∈ T>
o = T or no transition at all. Thus, if

i = 0, we know from the premise and Definition 32, t 6∈ σR(ζ>)(0) holds. Definition 41
keeps for all j(n + 1) positions the transitions and the mapping for Θ>(ζ>). Hence,
t 6∈ σR(Θ>(ζ>))(0). If i > 0, we again consider the block with index di/(n+1)e of σR(ζ>).
Due to Definition 38 we know that the block first contains n transitions t ∈ T> \T of
the subnets for the flow formulas and then one transition t ∈ T for the original part of
the net (or no transition at all). Thus, due to the premise t 6∈ σR(ζ>)(di/(n+1)e·(n+1))
holds. Again, Definition 41 yields the conclusion, i.e., t 6∈ σR(Θ>(ζ>))(di/(n+ 1)e).
(IS) Let ψ>1 and ψ>2 be LTL formulas created from the LTL parts ψ1 and ψ2 of Flow-LTL
formulas by Definition 39 without (nSub).
Case ψ = ¬ψ1. Since Definition 39 does not concern the negation, ψ> = ¬ψ>1 .
Regarding soundness : The premise yields σR(ζ)i |=LTL ψ1 and because Θ>(Θ(ζ)) = ζ,
this can also be stated as σR(Θ>(Θ(ζ)))i |=LTL ψ1. Consider the contraposition of the
completeness property: σR(Θ>(ζ>))di

′/(n+1)e |=LTL ψ =⇒ σR(ζ>)i
′ |=LTL ψ

>. For all

113

6 Model Checking Petri Nets with Transits against Flow-LTL

j ∈ {0, . . . , b(i)}, we have d(i(n + 1) − j)/(n + 1)e = d(i − j/(n + 1)e = i. Thus, the
induction hypothesis yields σR(Θ>(ζ>))i(n+1)−j |=LTL ψ

>
1 . This means, the conclusion

∀j ∈ {0, . . . , b(i)} : σR(Θ(ζ))i(n+1)−j 6|=LTL ¬ψ>1 = ψ> holds.
Regarding completeness : The premise yields σR(ζ>)i |=LTL ψ

>
1 . Consider the contrapo-

sition of the soundness property: ∃j′ ∈ {0, . . . , b(i)} : σR(Θ(ζ))i
′(n+1)−j′ |=LTL ψ

> =⇒
σR(ζ)i

′ |=LTL ψ. There is a j ∈ {0, . . . , b(i)} such that the sum with i is the next multiple
of n+1, i.e., i+j = i′(n+1) for some i′ ∈ N. Thus, with i = i′(n+1)−j, the induction hy-
pothesis yields σR(Θ>(ζ>))i

′ |=LTL ψ1 because Θ(Θ>(ζ>)) = ζ>. Since i′ = (i+j)/(n+1),
we have σR(Θ>(ζ>))(i+j)/(n+1) |=LTL ψ1 and so σR(Θ>(ζ>))di/(n+1)e 6|=LTL ψ.

Case ψ = ψ1∧ψ2. Since Definition 39 does not concern the conjunction, ψ> = ψ>1 ∧ψ>2 .
Regarding soundness : The premise and the induction hypothesis for soundness yield
that either ∀j ∈ {0, . . . , b(i)} : σR(Θ(ζ))i(n+1)−j 6|=LTL ψ>1 or ∀j ∈ {0, . . . , b(i)} :
σR(Θ(ζ))i(n+1)−j 6|=LTL ψ

>
2 holds. The universal quantifier can be moved to the outer

level. Hence, ∀j ∈ {0, . . . , b(i)} : σR(Θ(ζ))i(n+1)−j 6|=LTL ψ
>
1 ∧ ψ>2 .

Regarding completeness : The premise states that σR(ζ>)i 6|=LTL ψ
>
1 or σR(ζ>)i 6|=LTL ψ

>
1

holds. Due to the induction hypothesis we know that σR(Θ>(ζ>))di/(n+1)e 6|=LTL ψ1 or
σR(Θ>(ζ>))di/(n+1)e 6|=LTL ψ2 holds. Hence, σR(Θ>(ζ>))di/(n+1)e 6|=LTL ψ1 ∧ ψ2.

Case ψ = ψ1. Definition 39 yields ψ> = (
∨
t′∈T>\T t

′)U(
∨
t∈T t∧ ψ>1)∨((¬

∨
t∈T t)∧

ψ>1).
Regarding soundness : The premise yields σR(ζ)i 6|=LTL ψ1, i.e., σR(ζ)i+1 6|=LTL ψ1.
The induction hypothesis ensures that the statement (?) σR(Θ(ζ))(i+1)(n+1)−j 6|=LTL ψ

>
1

holds for all j ∈ {0, . . . , b(i + 1)}. We show the conclusion by contradiction. Assume:
σR(Θ(ζ))i(n+1)−j′ |=LTL ψ

> for some j′ ∈ {0, . . . , b(i)}. Thus, the first or the second
disjunct is satisfied. In the case that the first disjunct is satisfied, condition (iii) of
Definition 40 ensures that if j′ > 0, σR(Θ(ζ))i(n+1)−j′ ∩T = ∅ holds, because at most
transitions of the subnets for the flow part could appear. Since these steps are skipped
by the until operator we know σR(Θ(ζ))i(n+1) |=LTL

∨
t∈T t ∧ ψ>1 has to hold because

at position i(n+ 1) condition (ii) of Definition 40 ensures that at most t ∈ T can occur.
This is directly given if j′ = 0. Hence, σR(Θ(ζ))i(n+1)+1 |=LTL ψ

>
1 which is a contradiction

to (?) for j = n. If the second disjunct is satisfied, we know by (¬
∨
t∈T t) that never

an original transition will occur in the future. Because of Definition 40 and Definition 32
this is only possible if ζ is finite, and therewith also Θ(ζ). Thus, from i(n+ 1)− j′ on,
the trace of Θ(ζ) is stuttering and so all atomic propositions stay the same in the future,
i.e., σR(Θ(ζ))(i(n+1)−j′) = σR(Θ(ζ))(i(n+1)−j′)+x for all x ∈ N. This is a contradiction
to (?), since ψ>1 currently holds and therewith for the whole future.
Regarding completeness : The premise states σR(ζ>)i 6|=LTL (

∨
t′∈T>\T t

′)U(
∨
t∈T t ∧

ψ>1) ∨ ((¬
∨
t∈T t) ∧ ψ>1). Thus, (a) σR(ζ>)i 6|=LTL (

∨
t′∈T>\T t

′)U(
∨
t∈T t ∧ ψ>1)

and (b) σR(ζ>)i 6|=LTL (¬
∨
t∈T t) ∧ ψ>1 holds. We show σR(Θ>(ζ>))di/(n+1)e 6|=LTL ψ

holds by contradiction. Assume: σR(Θ>(ζ>))di/(n+1)e |=LTL ψ = ψ1 holds, i.e.,
σR(Θ>(ζ>))di/(n+1)e+1 |=LTL ψ1. The contraposition of the induction hypothesis yields (?)
σR(ζ>)i+n+1 |=LTL ψ

>
1 because di/(n+1)e+1 = d(i+n+1)/(n+1)e. Case σR(ζ>)i(0) ⊆ P:

Due to Definition 32 this case is only possible when ζ> is finite. Thus, we are in

114

6.4 Proofs and Formal Constructions

the stuttering mode and no step of σR(ζ>)i will ever contain a transition again. So
especially, σR(ζ>)i |=LTL (¬

∨
t∈T t). Condition (b) yields that σR(ζ>)i 6|=LTL ψ>1

and due to the stuttering σR(ζ>)i+n+1 6|=LTL ψ>1 . This is a contradiction to (?).
Case σR(ζ>)i(0) ∩T 6= ∅: Due to Definition 32 σR(ζ>)i(0) ∩ T> \ T = ∅ we know
from (a) that σR(ζ>)i 6|=LTL ψ>1 , i.e., σR(ζ>)i+1 6|=LTL ψ

>
1 . Definition 38 ensures that

after an original transition t ∈ T is fired, first n transitions t> ∈ T> \T of the subnets
concerning the flow subformulas are fired. Due to the precondition σR(ζ>) |=LTL

−→o ,
all of these transitions are actually taken into account. Definition 38 ensures that those
transitions do not change the tokens in places of the original part (apart from −→o). Hence,
σR(ζ>)i+1+n 6|=LTL ψ

>
1 . This is a contradiction to (?). Case σR(ζ>)i(0) ∩ (T> \T) 6= ∅:

If there is a transition t ∈ T at some point in σR(ζ>)i, say after j steps there is the
first, i.e., σR(ζ>)i+j ∩T 6= ∅, then Definition 38 yields σR(ζ>)i(k) ∩ (T> \T) 6= ∅ for
all k ∈ {0, . . . , j − 1}, i.e., σR(ζ>)i+k |=LTL

∨
t′∈T>\T t

′. Thus, we can proceed as in the
second case. If σR(ζ>)i never contains such a transition t ∈ T again, this means we can
fire at most n transitions t> ∈ (T> \T) due to Definition 38 and then have to stutter,
then we can proceed as in the first case. Due to Definition 32 these are all possible
cases.

Case ψ = ψ1 Uψ2. Since Definition 39 does not concern the until operator, ψ> =
ψ>1 Uψ>2 .
Regarding soundness : The premise yields ∀k ≥ 0 : σR(ζ)i+k 6|=LTL ψ2 ∨ ∃0 ≤ l <
k : σR(ζ)i+l 6|=LTL ψ1. The induction hypothesis applied for all these ks and ls
yields: ∀k ≥ 0 : ∀j ∈ {0, . . . , b(i + k)} : σR(Θ(ζ))(i+k)(n+1)−j 6|=LTL ψ>2 ∨ ∃0 ≤ l <
k : ∀j ∈ {0, . . . , b(i + l)} : σR(Θ(ζ))(i+l)(n+1)−j 6|=LTL ψ>1 . By rewriting the indices
(i+ k)(n+ 1)− j = i(n+ 1)− j+ k(n+ 1) and (i+ l)(n+ 1)− j = i(n+ 1)− j+ l(n+ 1)
we can see that k and l are used to jump in n + 1 steps. The js ensure that the
formulas are also not satisfied for all n + 1 steps in between. Since this holds for all
k > 0, we can shift the indices while moving the universal quantifier of the j to the
outside: ∀j ∈ {0, . . . , b(i)} : ∀k ≥ 0 : σR(Θ(ζ))i(n+1)+k−j 6|=LTL ψ>2 ∨ ∃0 ≤ l < k :
σR(Θ(ζ))i(n+1)+l−j 6|=LTL ψ>1 . This is the semantical definition of the until operator
for ψ>1 and ψ>2 . Hence, ∀j ∈ {0, . . . , b(i)} : σR(Θ(ζ))i(n+1)−j 6|=LTL ψ

>
1 Uψ>2 .

Regarding completeness : The premise yields that ∀k ≥ 0 : σR(ζ>)i+k 6|=LTL ψ
>
2 ∨ ∃0 ≤

l < k : σR(ζ>)i+l 6|=LTL ψ>1 . The induction hypothesis for all ks and ls gives
∀k ≥ 0 : σR(Θ>(ζ>))d(i+k)/(n+1)e 6|=LTL ψ

>
2 ∨∃0 ≤ l < k : σR(Θ>(ζ>))d(i+l)/(n+1)e 6|=LTL ψ

>
1 .

Since this holds for every k and thus, especially for every k(n + 1) we know ∀k′ ≥ 0 :
σR(Θ>(ζ>))d(i/(n+1)+k′e 6|=LTL ψ

>
2 ∨ ∃0 ≤ l < k′(n + 1) : σR(Θ>(ζ>))d(1/(n+1)+l/(n+1)e 6|=LTL

ψ>1 holds. With l′ = l/(n+ 1) we have ∀k′ ≥ 0 : σR(Θ>(ζ>))d(i/(n+1)e+k′ 6|=LTL ψ
>
2 ∨ ∃0 ≤

l′ < k′) : σR(Θ>(ζ>))di/(n+1)e+l′ 6|=LTL ψ>1 , which is the semantical definition of the
conclusion.

So far we proved the correctness of the LTL formulas in the run part of the formula
transformation. Now we consider a single flow part and proceed quite analogously for
the soundness (s) and completeness (c) of the construction.

115

6 Model Checking Petri Nets with Transits against Flow-LTL

I Lemma 18 (Flow Part). Given an LTL formula ψ> created by Definition 39 without
condition (nSub) from a flow formula Aψi of a Flow-LTL formula ϕ.

(s) Given a run β and a covering firing sequence ζ, with σR(Θ(ζ)) |=LTL
−→o , then

β, σR(ζ) 6|= Aψi =⇒ σR(Θ(ζ)) 6|=LTL ψ
> holds.

(c) Given a firing sequence ζ> of a run of the Petri net N>
» with σR(ζ>) |=LTL

−→o ,
then σR(ζ>) 6|=LTL ψ

> =⇒ Θ>
R(ζ>), σR(Θ>(ζ>)) 6|= Aψi holds. J

Proof (via structural induction over ψi). Definition 39 yields ψ> = [ι]iW(¬[ι]i ∧ ψ>i)
where ψ>i is created from ψi by the constraints (pF), (tF), and (nF). Since the operatorW
is an abbreviation, we know ψ> = ([ι]iU(¬[ι]i ∧ ψ>i)) ∨ [ι]i.
Regarding soundness. The premise yields that there is a flow chain ξi = tiι, p

i
0, t

i
0, p

i
1, t

i
1, . . .

such that σF (ξi) 6|=LTL ψi. Since there is a chain, condition (iii) of Definition 40 yields the
existence of a transition t in Θ(ζ) at position Θi(ζ, 0)−1 starting the chain, i.e., ρ>(t) =
ν(to)ν(ρ(pi0))i for an original transition to ∈ T>

o = T with (�, ρ(pi0)) ∈ Υ(to). Condition
(s3) of Definition 38 ensures that at position Θi(ζ, 0) the place [ι]i is unoccupied because
the transition starting the chain just fired. Hence, σR(Θ(ζ)) 6|=LTL [ι]i. Furthermore,
from condition (in) of Definition 38 follows that [ι]i is initially marked. Definition 40
states that t is the first occurrence of such kind and Definition 38 ensures that no other
kind of transition takes a token from [ι]i. Thus, [ι]i is satisfied until position Θi(ζ, 0).
Hence, we have to show that in such situations σR(Θ(ζ))Θi(ζ,0) 6|=LTL ψ

>
i holds. This is

done by a structural induction together with the (c) part.
Regarding completeness. The premise states that σR(ζ>) 6|=LTL ([ι]iU(¬[ι]i ∧ψ>i))∨ [ι]i
holds. Since σR(ζ>) 6|=LTL [ι]i, Definition 38 yields the existence of a transition t in ζ>
with ρ>(t) = ν(to)ν(q)i for an original transition to ∈ T> = T and a place q ∈ P

with (�, q) ∈ Υ(to). Thus, condition (iii) of Definition 41 yields the existence of a flow
chain Θ>

ξi
(ζ>) and that the first place of the chain corresponds to index Θ>

i (ζ>, 0). Since
we know that until this position [ι]i is satisfied, the premise yields σR(ζ>)Θ>i (ζ>,0) 6|=LTL

ψ>i . Hence, we have to show that in those situations σR(Θ>
ξi

(ζ>)) 6|=LTL ψi holds.
We show these two cases via a common structural induction over ψi. Let n0 ∈ N be

the last index such that Θi(ζ, n0) of Definition 40 is defined or n0 =∞ if all are defined.
We define with ∆0 = {Θi(ζ, 0)}, ∆k = {Θi(ζ, k − 1) + 1, . . . ,Θi(ζ, k)} for 0 < k ≤ n0,
and ∆k′ = {Θi(ζ, n0)} otherwise, the sets of indices of the firing sequence ζ between the
(k−1)st and the kth step of the corresponding data flow chain. Similarly, let n>0 ∈ N be
the last index such that Θ>

i (ζ>, n>0) is defined or n>0 = ∞ if all are defined. We define
a function ∆>

i with ∆>
i (Θ>

i (ζ>, 0)) = 0, for all steps k > 0 of the flow chain Θ>
ξi

(ζ>)

we have ∆>
i (x) = k for all x ∈ {Θ>

i (ζ>, k − 1) + 1, . . . ,Θ>
i (ζ>, k)}, and, if the flow

chain Θ>
ξi

(ζ>) is finite, ∆>
i (x′) = {n>0 } for all x′ > Θ>

i (ζ>, n>0). With this function we
map each index of the firing sequence ζ> to the corresponding step of the created flow
chain, i.e., all indices are mapped to the element of the trace of the flow chain until the
next transition of the subnet transiting the chain has fired.

116

6.4 Proofs and Formal Constructions

We show the open cases of property (s) and (c) by proving the soundness property,
i.e.,

∀k ∈ N : σF (ξi)k 6|=LTL ψi =⇒ ∀j ∈ ∆k : σR(Θ(ζ))j 6|=LTL ψ
>
i

and the completeness property, i.e.,

∀k ≥ Θ>
i (ζ>, 0) : σR(ζ>)k 6|=LTL ψ

>
i =⇒ σF (Θ>

ξi(ζ
>))∆>

i (k) 6|=LTL ψi.

As for the LTL part, the open cases for (s) and (c) follow for the smallest k, i.e., for k = 0
we have σF (ξi) 6|=LTL ψi =⇒ σR(Θ(ζ))Θi(ζ,0) 6|=LTL ψ

>
i and for k = Θ>

i (ζ>, 0) we have
σR(ζ>)Θ>i (ζ>,0) 6|=LTL ψ

>
i =⇒ σF (Θ>

ξi
(ζ>)) 6|=LTL ψi, because ∆>

i (Θ>
i (ζ>, 0)) = 0. Even

though these two properties look different to the ones of the LTL part in the proof of
Lemma 17, they follow the exact same structure. It is easy to generate the corresponding
sets ∆k and the function ∆>

i for the LTL part because the relevant bounds are just
multiples of n + 1. For a lighter weight access we decided to use the easier notation in
the proof of Lemma 17, but none the less the arguments of the structural induction can
be completely adopted for the flow part.

If we consider the overview of the replacements for the next operator and atomic
propositions t ∈ T in Tab. 6.2, we see that the replacements mainly only differ in the
related and unrelated transitions. That for the replacement of a transition in the flow
part any of the corresponding transitions extending the flow chain suffices for the second
argument of the until operator, is due to Definition 38 introducing one transition for
each transit, but does not complicate the arguments. For the LTL part the unrelated
transitions are T> \ T and the related T. Thus, due to Definition 38 we could use
the blocks of length n+ 1 to find the next related situation after skipping the unrelated
ones for the LTL part of the formula. This is exactly the same for the flow part. The
related transitions are those of the subnet transiting the data flow and the unrelated
are all others. Constraints (tF) and (nF) of Definition 39 skip those exactly as for the
LTL part. The difference in this case is that not after exactly n + 1 steps the entry
concern the current part of the formula but there could be more rounds not concerning
the considered flow chain. With the help of the function Θi of Definition 40 and Θ>

i

of Definition 41 we can identify the relevant blocks as for the LTL part. Since due to
Definition 38 also no token (apart from the activation token) of a subnet N>

i is moved
by any unrelated transition and the skipping transitions can only be used when no flow
can be extended, the structural induction for the flow part of the formula is analog to
the LTL part of the formula.

With these two lemmas showing the soundness and completeness of the counterexample
constructions for the LTL subformulas of the run part and the flow subformulas of an
Flow-LTL formula, we can now straightforwardly show that for every counterexample
for the satisfaction of a Flow-LTL formula ϕ the constructed counterexample indeed
does not satisfy the constructed formula ϕ>» .

I Lemma 19 (Soundness). Given a run β, a covering firing sequence ζ, and an LTL
formula ϕ>» created by Definition 39 from a Flow-LTL formula ϕ. Then:

β, σR(ζ) 6|= ϕ =⇒ σR(Θ(ζ)) 6|=LTL ϕ
>
»

117

6 Model Checking Petri Nets with Transits against Flow-LTL

holds. J

Proof (via structural induction over ϕ). Definition 39 yields that every transformed for-
mula ϕ>» is of the form −→o → ϕA. Since Definition 40 adds for every existing tran-
sition in ζ also the n transitions (one for each subnet) to Θ(ζ) (condition (iii)) and
by condition (mSn) of Definition 38 every transition of the last subnet puts a token
onto −→o , the statement σR(Θ(ζ)) |=LTL

−→o is satisfied. This also holds for finite firing
sequences, because Definition 40 ensures that the last added transition is one of the last
subnet. The stuttering then yields the satisfaction. Thus, we only have to show that
σR(Θ(ζ)) 6|=LTL ϕ

A. Let ϕ> be such a subformula ϕA.

(IB) Case ϕ = ψ, for a standard LTL formula ψ. Thus, Definition 35 and the premise
yield σR(ζ) 6|=LTL ψ and so, Lemma 17 directly yields σR(Θ(ζ)) 6|=LTL ϕ

>.
Case ϕ = Aψ. Lemma 18 proves exactly this case.

(IS) Case ϕ = ϕ1∧ϕ2. Since Definition 39 does not concern the conjunction operator of
the run part, there are subformulas ϕ>1 and ϕ>2 with ϕ> = ϕ>1 ∧ ϕ>2 , which are created
from the corresponding ϕ1 and ϕ2, respectively. Due to the premise β, σR(ζ) 6|= ϕ1 ∧ϕ2,
we know β, σR(ζ) 6|= ϕ1 or β, σR(ζ) 6|= ϕ2. The induction hypothesis yields that
σR(Θ(ζ)) 6|=LTL ϕ

>
1 or σR(Θ(ζ)) 6|=LTL ϕ

>
2 , thus σR(Θ(ζ)) 6|=LTL ϕ

>
1 ∧ ϕ>2 .

Case ϕ = ϕ1 ∨ϕ2. Since Definition 39 also does not concern the disjunction operator of
the run part, this case is analog to the previous case.
Case ϕ = ψ → ϕ2. Since Definition 39 also does not concern the implication operator
there are subformulas ϕ>1 and ϕ>2 with ϕ> = ϕ>1 → ϕ>2 , which are created from ψ and ϕ2,
respectively. The premise β, σR(ζ) 6|= ¬ψ ∨ ϕ2 yields β, σR(ζ) |= ψ, thus β, σR(ζ) 6|= ¬ψ,
and β, σR(ζ) |= ¬ϕ2, thus β, σR(ζ) 6|= ϕ2. Since ¬ψ is still a standard LTL formula,
Lemma 17 yields σR(Θ(ζ)) 6|=LTL ¬ϕ>1 (the Definition 39 does not concern the negation).
The induction hypothesis ensures σR(Θ(ζ)) 6|=LTL ϕ

>
2 , and so σR(Θ(ζ)) 6|=LTL ϕ

>
1 → ϕ>2 .

The completeness proof, meaning that also every counterexample for the satisfaction of
the constructed formula ϕ>» implies that the constructed elements of Definition 41 are
indeed a counterexample for the formula ϕ, can be done completely analogously by using
the completeness part of Lemma 17 and Lemma 18.

I Lemma 20 (Completeness). Given a firing sequence ζ> of a run of N>
» , and an LTL

formula ϕ>» created by Definition 39 from a Flow-LTL formula ϕ. Then:

σR(ζ>) 6|=LTL ϕ
>
» =⇒ Θ>

R(ζ>), σR(Θ>(ζ>)) 6|= ϕ

holds. J

Proof (via structural induction over ϕ). Again, every ϕ>» is of the form −→o → ϕA.
The premise of the statement therewith yields σR(ζ>) |=LTL

−→o and σR(ζ>) 6|=LTL ϕ
A.

Every other argument is analog to the arguments of the proof of Lemma 19.

Finally, putting all this together, we are able to prove Lemma 12 on page 94, stating the
correctness of the construction presented in Sec. 6.2.1, i.e., NT |= ϕ iff N>

» |=LTL ϕ
>
» .

118

6.4 Proofs and Formal Constructions

Proof (Lemma 12: Correctness of the Transformation):
Regarding soundness: We show the contraposition of the statement: NT 6|= ϕ =⇒
N>
» 6|=LTL ϕ

>
» . Hence, there is a run β of NT and a covering firing sequence ζ such that

β, σR(ζ) 6|= ϕ. Lemma 19 yields that the firing sequence Θ(ζ) fulfills σR(Θ(ζ)) 6|=LTL ϕ
>
» .

Thus, there exists a run β> (created from Θ(ζ) by iteratively adding the places of the
markings and the transitions of the firing sequence and connecting them according to
their corresponding places and transitions in N>

») which is covered by Θ(ζ), such that
β> 6|=LTL ϕ

>
» , and thus N>

» 6|=LTL ϕ
>
» .

Regarding completeness. We analogously show the contraposition of the statement:
N>
» 6|=LTL ϕ>» =⇒ NT 6|= ϕ. Hence, there is a run β> of N>

» and a covering fir-
ing sequence ζ> such that σR(ζ>) 6|=LTL ϕ

>
» . Lemma 20 yields that the firing sequence

Θ>(ζ>) fulfills Θ>
R(ζ>), σR(Θ>(ζ>)) 6|= ϕ. Hence, NT 6|= ϕ. �

6.4.4 Correctness Proof of the Reduction to the Hardware Model Check-

ing Problem

In this section we formally prove the correctness of the reduction method presented
in Sec. 6.3 for checking the constructed circuit CN against the constructed for-
mula ψ′ to answer the question whether a safe P/T Petri net with inhibitor arcs
N = (P,T,F,FI , In) satisfies an LTL formula ψ.

First, we define the Kripke structure KC corresponding to the constructed circuit CN.
For all subsets P ⊆ P and T ⊆ T, we define with Po = {po ∈ O | p ∈ P} and
To = {to ∈ O | t ∈ T} the respective sets of the output variables.

I Definition 42 (Circuit to Kripke Structure). The Kripke structure KCN of the con-
structed circuit CN = (I,O,L,F) is defined by KCN = (A, S, S0, `,→), with the set
of atoms A = O, the set of states S = 2I × 2L × 2O × 2L, the set of initial states
S0 = {(I, ∅, Ino, In ′ ∪ {i′}) | I ⊆ I}, the labeling function ` = {((I, L,O, L′), O) ∈
S × 2O}, and the transition relation →= {((I1, L1, O1, L

′
1), (I2, L2, O2, L

′
2)) ∈ S × S |

L′1 = L2 ∧ (I2, L2, O2, L
′
2) |= F }. J

Thus, the states of the Kripke structure correspond to the configurations of the circuit
and are labeled with its output. The edges of the Kripke structure correspond to the
configuration change of the circuit after a clock pulse. We start with the initialization
such that decorated latches contain the initial marking and the initialized flag i . Note
that the initial state is skipped by the formula anyhow, so we could have also used any
arbitrary set X ∈ O for Ino.

We show the correctness of the construction of the circuit CN and the corresponding
Kripke structure KCN by proving N 6|=LTL ψ iff KCN 6|= ψ′. For this purpose, we mutually
transform the respective counterexamples and show their correspondence on the atomic
propositions of ψ and ψ′, respectively. For that we first introduce a correspondence
between the elements of a path of a Kripke structure and a trace of a covering firing
sequence of a run of a Petri net.

119

6 Model Checking Petri Nets with Transits against Flow-LTL

I Definition 43 (Correspondence of Paths and Firing Sequences). Given a trace σR(ζ)
of a firing sequence ζ covering a run β = (NR, ρ) of a safe P/T Petri net with in-
hibitor arcs N and a path π = s0s1 · · · of the corresponding Kripke structure KCN =
(A, S, S0, `,→). We say an entry zi = σR(ζ)(i) ∈ 2P∪T of the trace and an element
sj = (Ij, Lj, Oj, L

′
j) ∈ S of the path coincide, denoted by zi ∼ sj, iff zi|T = {t ∈ T |

to ∈ Oj ∧ eo 6∈ Oj} and zi|P = {p ∈ P | po ∈ Oj}. Where zi|T and zi|P are the
projections onto the respective sets. J

Now we can show Theorem 5 on page 104 stating the correctness of the reduction, i.e.,
N |=LTL ψ iff CN |= ψ′ and the single-exponential time bound for the algorithm for model
checking safe Petri nets with inhibitor arcs against LTL formulas via circuits.

Proof (Theorem 5): The correctness is proven on the corresponding Kripke struc-
ture KCN via contraposition. We show N 6|=LTL ψ iff KCN 6|= ψ′ by transforming the
counterexamples.
Soundness: Let N 6|=LTL ψ. Thus, there is a run β = (NR, ρ) and a covering firing
sequence ζ = M0[t0〉M1[t1〉 · · · such that σ(ζ) 6|=LTL ψ. We create a path π = π0π1 · · ·
of KCN by π0 = (∅, ∅, ρ(M0)o, ρ(M0)′ ∪ {i′}) and if ζ is infinite

πi = ({ρ(ti−1)}, ρ(Mi−1) ∪ {i}, {ρ(ti−1)o} ∪ ρ(Mi−1)o, ρ(Mi)
′ ∪ {i′})

for all i ∈ N \ {0}. If ζ = M0[t0〉M1[t1〉 · · · [tn−1〉Mn is finite the first n states are created
as above and we define

πn+1 = (∅, ρ(Mn) ∪ {i}, ρ(Mn)o, ρ(Mn)′ ∪ {i′, e′})

and for all other j > n + 1 we define πj equally apart from the current values of the
latches also contain e and eo is also set for the outputs:

πj = (∅, ρ(Mn) ∪ {i, e}, ρ(Mn)o ∪ {eo}, ρ(Mn)′ ∪ {i′, e′}).

We show that the sequence π is indeed an initial path of KCN . Since ρ(M0) = In
(because ζ covers a run of N), directly π0 ∈ S0 holds. We show that for all i ∈ N :
(πi, πi+1) ∈→, i.e., L′i = Li+1 and (Ii+1, Li+1, Oi+1, L

′
i+1) |= F for πi = (Ii, Li, Oi, L

′
i)

and πi+1 = (Ii+1, Li+1, Oi+1, L
′
i+1). The first clause can directly be seen by the definition

of π. For the second clause, we show that all of the defined πi in the finite as well
as the infinite case satisfy F by checking each of the conjuncts: The conjunct outP is
satisfied, because the current values p are set as output (i is true) and this fits to the
definition of πi. The conjunct outT is satisfied, because transition ti−1 is enabled inMi−1

due to ζ and no other transition is set in πi. The conjunct latchP is satisfied, because
succ(p) yields the marking resulting from firing transition ti−1 in the current values of
the latches (here ρ(Mi−1)) because noT is not satisfied. Due to ζ, the resulting marking
is ρ(Mi), which fits πi. The other conjuncts are directly satisfied by the construction.
In the case of a finite firing sequence the defined πj also satisfy F : The conjunct outP
is satisfied, with the same arguments as in the previous case. The conjunct latchP is
satisfied, because noT is satisfied and therewith the current values of the latches are

120

6.4 Proofs and Formal Constructions

taken and outT is also satisfied, because no transition is applied to the input. Also
because of noT the conjunct latche is satisfied and with the additional constraints for
all but the first j > n the conjunct oute is satisfied for all i ∈ N. The subpath π1

satisfies (eo → eo), because no eo is ever set by the construction in the case of an
infinite ζ and in the other case eo is set for every j + 1 > n. Since by the construction
σ(ζ)(i) ∼ φi+1 directly holds, the path π does not satisfy ((eo → eo)→ ψ̃). Hence,
KCN 6|= ψ′.
Completeness: Let KCN 6|= ψ′. Thus, there is an initial path π = π0π1 · · · of KCN not
satisfying ((eo → eo) → ψ̃). Hence, the subpath π1 satisfies (eo → eo) and
not ψ̃. In the case that eo 6∈ Oi for all i ∈ N holds, we create a infinite firing sequence
ζ = M0[t0〉M1[t1〉 · · · with ρ(Mi) = {p ∈ P | po ∈ Oi+1} and ρ(ti) ∈ {t ∈ T | to ∈
Oi+1}. Otherwise, if there is an i ∈ N with eo 6∈ Oi, say i = n + 1 is the first of such
occurrences, we create a finite firing sequence ζ = M0[t0〉M1[t1〉 · · · [tn−1〉Mn for the first
n− 1 steps as before and for the nth step we define ρ(Mn) = {p ∈ P | po ∈ On+1} as
above.
This is indeed a firing sequence, because ρ(M0) = In holds by the definition of KCN ,

the construction of ζ, and since π is initial. All transitions are firable and yield the
respective successor marking because of F , since π is a path. This is because the
error flag is maximally set in the last step, and thus, there must be exactly one enabled
transition applied to the inputs. Therewith succ(p) yields the correct successor marking
and this is the output of the next step. Since π satisfies ((eo → eo), we know that
also in the finite case of ζ it holds σR(ζ)(i) ∼ φi+1, since in π the output markings
stay the same in situations where eo is set, because this is only possible if notT is true.
Since π1 does not satisfy ψ̃, σR(ζ) 6|=LTL ψ. Constructing the corresponding run yields
the conclusion.
The single-exponential time bound directly follows from Lemma 16 with the polyno-

mial size of the circuit and the linear size of the formula and Definition 42 creating the
Kripke structure of exponential size. These can be checked in linear time in the size of
the state space and in exponential time in the size of the formula [CHVB18]. �

6.4.5 Formal Construction of the Petri NetN>
‖

Let ID be a set of unique identifiers and νN : P ∪T → ID an injective naming function
which uniquely identifies every place and transition of a given Petri net N (or of a
Petri net with transits). We omit the subscript if the net is clear from the context. To
keep the presentation clear, we often directly use identifier for a node n ∈ P ∪T with
ν(n) = identifier .
The construction of a Petri net with transits to a standard P/T Petri net with inhibitor

arcs is given by the following definition.

I Definition 44 (Petri Net with Transits to a P/T Petri Net). For a Petri net with
transits NT = (P,T,F,Υ, In) and a Flow-LTL formula ϕ with n > 0 flow subformulas,
a Petri net N>

‖ = (P>,T>,F>,F>
I , In>) with inhibitor arcs and a labeling function

λ : T> → T are defined as follows:

121

6 Model Checking Petri Nets with Transits against Flow-LTL

(p) The places of the original net NT are copied n+ 1 times:

P> = P ∪
⋃
{1,...,n}

({[ι]i} ∪ {[p]i | p ∈ P})

(t) For every transition t ∈ T and every combination of which subnet is tracking which
transit (or no transit with marker ◦), there is one transition inN>

‖ . Each transition
is connected to the original part of the net according to t. For the subnet part,
it either a) moves the token from the initial place according to the transit, or b)
moves the token from the corresponding ingoing place of the transit according to
the transit, or, in the case that the subnet is not involved in any of the transits,
c) is connected by inhibitor arcs to all ingoing places of the transition t.

∀t ∈ T : ∀c = ((x1, p1), . . . , (xn, pn)) ∈ (Υ(t) ∪ {◦})n : ∃t> ∈ T> :

∀(p, t), (t, q) ∈ F : (p, t>), (t>, q) ∈ F> ∧ ν(t>) = ν(t)c ∧ λ(t>) = ν(t)∧
∀i ∈ {1, . . . , n} : xi = � =⇒ ([ι]i, t

>), (t>, [pi]i) ∈ F> ∧
xi, pi ∈ P =⇒ ([xi]i, t

>), (t>, [pi]i) ∈ F> ∧
(xi, pi) = ◦ =⇒ ∀(p, t) ∈ F : ([pi]i, t

>) ∈ F>
I

(I) The initial marking is given by In> = In ∪ {[ι]i | i ∈ {1, . . . , n}}.

The sets T>,F>, and F>
I are defined as the smallest sets fulfilling condition (t). The

identifiers with the square brackets and those with a combination c in their index are
fresh identifiers. J

Note that for n = 0 flow subformulas we can just use the Petri net with transits NT and
only omit the transits. The correctness of the transformation for the parallel approach
is already proven in Sec. 6.2.2.

122

7AdamMC – A Model Checker for Petri

Nets with Transits

In Chap. 6 the sequential and the parallel approach for model checking safe Petri
nets with transits against Flow-LTL are introduced. In this chapter we present the tool
AdamMC that implements these approaches. AdamMC focuses on the implementa-
tion of the single-exponential time algorithms, i.e., the approaches with specifications in
Flow-LTL, and the application domain of software-defined networking. However, it also
contains algorithms for specifications in Flow-CTL with the automata transformations
(cp. Chap. 5) in an early development state. AdamMC is open source1 (GPL-3.0 Li-
cense) and is integrated into the Adam framework (cp. Chap. 15). To keep it modular
and to allow for an easy reuse even of parts of the procedures, we split AdamMC into
several repositories that can be separately built and used as libraries in other projects.
For example, there is a repository for the basic data structure for Petri nets with tran-
sits and another one for the logics. The tool is based on the publication [FGHO19a]
introducing a prototype for the sequential approach and [FGHO20a] implementing the
parallel approach and turning AdamMC into full-fledged tool. For both publications we
created artifacts with the complete results, the benchmark data, and the corresponding
versions of the tool to easily replicate the results of the paper in a corresponding virtual
machine [GH19; GH20]. Both artifacts achieved the artifact evaluation badge of the ar-
tifact evaluation committee of ATVA and CAV, respectively, stating that the artifact is
consistent, easy to use, replicable, well-documented, and complete. More technical details
to the framework can be found in Chap. 15.

In Sec. 7.1, we present the general workflow of AdamMC and briefly introduce the
three application areas of AdamMC focusing on Flow-LTL specifications: I) model
checking standard properties of software-defined networks with concurrent updates,
II) generally model checking Petri nets with transits against Flow-LTL, and III) model
checking standard safe Petri nets against LTL with places and transitions as atomic
propositions. Section 7.2 gives a brief insight into some optimization techniques in
AdamMC that are made available to the user. In Sec. 7.3, we present our benchmarks
for the application domain of software-defined networks showing a significant perfor-
mance increase for the parallel approach in comparison to the sequential one.
This chapter is based on [FGHO20a] and the corresponding full version [FGHO20b].

1https://github.com/adamtool/adammc

123

https://github.com/adamtool/adammc

7 AdamMC – A Model Checker for Petri Nets with Transits

7.1 Application Areas and Work�ow

AdamMC consists of modules for three application areas: checking concurrent updates
of software-defined networks against common assumptions and specifications, checking
safe Petri nets with transits against Flow-LTL, and checking safe Petri nets against LTL.
The general architecture and workflow of the model checking procedure is given in
Fig. 12.1.

So�ware-Defined Networks: In Sec. 2.1, we motivate Petri nets with transits and
Flow-LTL with the application domain of concurrent updates of software-defined
networks. AdamMC provides dedicated algorithms for this domain. The tool auto-
matically encodes an initially configured network topology and a concurrent update
as a Petri net with transits [FGHO20a]. We provide parsers for the network topology,
the initial configuration, the concurrent update, and Flow-LTL (Input I). Addition-
ally, the automatic generation of Flow-LTL formulas for common network properties
like connectivity, loop freedom, drop freedom, and packet coherence [FGHO19a] is
implemented for correspondingly annotated input elements.

Petri Nets with Transits: The most general input of AdamMC for model checking dis-
tributed systems with local data flows is Input II. Here, the tool takes a safe Petri
net with transits and a Flow-LTL formula specifying requirements on the global con-
figuration of the system and the local flow of the data. For this, AdamMC extends
a parser for Petri nets provided by APT [Uni12] and provides a parser for Flow-LTL.
The reduction methods presented in Sec. 6.2.1 and Sec. 6.2.2 to create a safe Petri
net and an LTL formula are implemented and several parameters for tweaking the
reductions are provided (cp. Sec. 7.2).

Petri Nets As Input III, AdamMC supports the model checking of safe Petri nets
against LTL with both places and transitions as atomic propositions. In particular,
this makes it easy to check specifications under fairness and maximality assumptions
(cp. Example 1). The tool provides both the interleaving and the concurrent view
on the maximality of runs in the system by automatically generating and adding
the corresponding formulas. Additionally, AdamMC provides dedicated algorithms
to check the system only for interleaving-maximal runs. State-of-the-art tools like
LoLA [Wol18] and ITS-Tools [Thi15] are restricted to interleaving-maximal runs and
places as atomic propositions. For Petri net model checking, we allow for Petri nets in
APT [Uni12] and PNML [BCHK+03] format as input and provide a parser for LTL
formulas.

The construction of the circuit from a given safe Petri net and an LTL formula is pre-
sented in Sec. 6.3. AdamMC automatically generates this circuit in the Aiger for-
mat [BHW11]. MCHyper [FRS15] is then used to combine the constructed circuit
and the in Sec. 6.3.2 constructed LTL formula into another Aiger circuit. MCHy-
per is a verification tool for HyperLTL [CFKM+14] that subsumes LTL. The actual
model checking is carried out by the hardware model checker ABC [Ber; BM10b].

124

7.2 Optimizations

Common
Network
Properties

Topology
Init. Conf.
Update

Petri Net
with

Transits

Flow-LTL
Formula

∨ LTL
Formula

Safe
Petri Net

Circuit
(System)

Circuit

3

7
(CEX)

MCHyper ABC

Input I Input II Input III

Fig. 7.1: Overview of the workflow of AdamMC: The application areas of the tool
are given by three different input domains: software-defined networks / Flow-LTL (In-
put I), Petri nets with transits / Flow-LTL (Input II), and Petri nets / LTL (Input III).
AdamMC performs all unlabeled steps in this figure. MCHyper [FRS15] creates the fi-
nal circuit that ABC [Ber; BM10b] and its large toolbox of verification and falsification
algorithms checks to answer the initial model checking question.

ABC provides a toolbox of state-of-the-art verification and falsification techniques like
IC3 [Bra11]/PDR [EMB11], interpolation (INT) [McM03], and bounded model check-
ing [BCRZ99] (BMC, BMC2, BMC3).
As output for all three modules, AdamMC transforms a possible counterexam-

ple (CEX) from ABC into a counterexample to the Petri net (with transits). With
the web interface presented in Sec. 15.2 we can simulate these counterexamples. Coun-
terexamples for Petri nets with transits can additionally be visualized in a PDF doc-
ument showing the violating firing sequence and the corresponding violating data flow
chains. Furthermore, all inputs can be visualized with Graphviz and the dot lan-
guage [EGKN+04]. When no counterexample exists, AdamMC verified the input
successfully.

7.2 Optimizations

Various optimizations parameters can be applied to the model checking routine to tweak
the performance. Table 7.1 gives an overview of the major parameters.
For the reduction step from a Petri net with transits into a standard Petri net, we,

on the one hand, allow to switch between the sequential approach (cp. Sec. 6.2.1) and
the parallel approach (cp. Sec. 6.2.2) and, on the other hand, provide for each approach
one version using inhibitor arcs (inhibitor) and one version using tokens (act. tokens,
for activation) to de- and activate certain transitions. We found in our experiments
that the versions of the sequential and the parallel approach with inhibitor arcs to track
flow chains are generally faster than the versions without and that the parallel approach
outperforms the sequential one for few local flow requirements [FGHO20b].
Furthermore, we optimized the sequential approach by only using until operators in the

replacement of the atomic propositions corresponding to the transitions in the Flow-LTL
formula, when the transitions not directly occur in the scope of an eventually operator.

125

7 AdamMC – A Model Checker for Petri Nets with Transits

Tab. 7.1: Overview of the major optimization parameters of AdamMC: The three re-
duction steps depicted in the first column can each be executed by different algorithms.
The first step allows us to combine the optimizations of the first and second row.
1) Petri Net with Transits ; Petri Net sequential parallel

inhibitor act. tokens inhibitor act. tokens
2) Petri Net ; Circuit explicit logarithmic
3) Circuit ; Circuit gate optimizations

This significantly reduces the size of the formula. Additionally, we provide dedicated
algorithms when only places (or the fireability of transitions) are used in the formula.
For the reduction step from a Petri net into a circuit, we provide an explicit and a

logarithmic encoding of the transitions. The logarithmic encoding needs less latches,
but more gates due to the necessary de- and encoding. The experimental results show
that logarithmically encoded transitions often had a better performance than the same
step with explicitly encoded transitions for both approaches [FGHO20b].
However, several possibilities to reduce the number of gates of the created circuit (for

both the circuit given to and the one returned by MCHyper) worsened the performance of
some benchmark families and improved the performance of others. The same is true for
various approaches to optimizing the formula construction like encoding the maximality
assumptions in the circuit rather than the formula and different kind of formulas pre-
venting the run to get stuck in any subnet. Consequently, all parameters are selectable
by the user and a script is provided in the corresponding artifact [GH20] to automati-
cally compare different settings. Furthermore, we preset the parameters in AdamMC to
the best settings with respect to our experimental results. An overview of the selectable
optimization parameters and more details can be found in the documentation2. The
main improvement claims can be retraced by the case study in Sec. 7.3.

7.3 Benchmarks

We conduct a case study based on software-defined networks to show the scalability of
our algorithms presented in Chap. 6. Especially, we compare the performance of the
sequential (Sec. 6.2.1) versus the parallel approach (Sec. 6.2.2). As a summary of the
result, we see that the parallel approach outperforms the sequential one for the case
study of software-defined networks. Figure 7.2 shows the difference of the running times
for one flow subformula. For one flow subformula the theoretical complexity of the
parallel and the sequential approach is the same (cp. Sec. 6.2). Figure 7.3f still shows
the superiority of the parallel approach for up to five flow subformulas despite its inferior
theoretical complexity. This result can mainly be attributed to the structure of the Petri
nets with transits resulting from a software-defined network. The exponentiality of the
parallel approach with respect to the number of flow subformulas depends on the number

2https://github.com/adamtool/adammc/blob/master/doc/documentation.pdf

126

https://github.com/adamtool/adammc/blob/master/doc/documentation.pdf

7.3 Benchmarks

Fig. 7.2: Comparison of the sequential and the parallel approach with logarithmic encod-
ing for the falsification benchmarks checking the correctness of concurrent updates with
respect to the connectivity property in software-defined networks. The benchmarks are
sorted by the running times of the parallel approach. A complete bar indicates a time-
out of 30 minutes. Only the benchmarks where not both approaches had a timeout are
plotted. Each bar is the best result of the BMC2 or BMC3 algorithms.

of transits the transitions possess.
For the case study we use real-world network topologies from [KNFB+11]. For each

network, we choose at random an ingress switch, an egress switch, and a loop- and
drop-free initial configuration between the two. Another forwarding table between the
two switches is created for the final configuration and an update from the initial to
the final configuration is chosen at random. For the first benchmark family (T, for
true/verifiable), AdamMC verifies that the update maintained the connectivity between
the ingress and the egress switch. This means that all packages eventually reach the
egress node. For the second benchmark family (F, for false/falsifiable), a switch different
to the egress switch is chosen, such that it is ensured that not all packages reach this
switch. AdamMC then falsifies the connectivity property for this switch.

We compare the sequential approach with an explicit encoding of the transitions in the
circuit (expl. enc.) against the sequential approach with a logarithmic encoding of the
transitions (log. enc.), and against the parallel approach with the logarithmic encoding
(parallel appr.). Table 7.2 summarizes the results. The results in the upper part of the
table belong to the verification of the connectivity requirement, i.e., the specification
is satisfied (3). These results are all calculated with the IC3 algorithm of ABC. The
lower part concerns the falsification benchmarks, i.e., the specification is violated (7),
and reports the winner of the bounded model checking algorithms of ABC with dy-
namic unrolling (BMC2 and BMC3). The last two rows summarizes the results: The

127

7 AdamMC – A Model Checker for Petri Nets with Transits

logarithmic encoding with 79.15h accumulated running time and 138 timeouts generally
outperforms the explicit encoding with 82.99h and 146 timeouts. More significantly,
the parallel approach is the clear winner with 27.62h accumulated running time and 9
timeouts. To this end, we are able to verify concurrent overlapping updates in network
topologies with up to 38 switches (#Sw) and falsify specification in networks with up to
82 switches in the given time bound of 30 minutes. For rather small networks, the tool
needs only a few seconds to verify and falsify updates.
For a second analysis, we increase the number of flow subformulas used in the specifi-

cation and compare the sequential with the parallel approach both using the logarithmic
encoding. Figure 7.3 shows the results for Flow-LTL formulas with up to five flow sub-
formulas. In Fig. 7.3a to Fig. 7.3e the difference in the sizes of the transformed net,
the formula, and the circuit that is finally given to ABC are depicted using box plots.
For the number of places we can see in Fig. 7.3a that the sequential approach (depicted
in blue) needs significantly more places than the parallel approach (depicted in green).
Furthermore, the number of places increases more strongly with the number of flow
subformulas for the sequential approach. Since the number of latches of the generated
circuit is mainly driven by the number of places of the constructed Petri net, we can see
the corresponding results in Fig. 7.3d for the latches.
However, the number of transitions for the parallel approach notably increases due to

the exponential dependency on the number of flow subformulas from two flow subformu-
las on. Since the size of the subformula strongly depends on the number of transitions,
we can see the same trend in Fig. 7.3c. At this point, an optimization technique of the
sequential approach comes into play, which further supports this trend. The sequential
approach only replaces a transition in the formula with an until operator over a large
subset of all transitions, when the transition is not in the direct scope of an eventually
operator. The weak fairness and maximality assumptions guarantee exactly this. Hence,
we observe barely any increase of the size of the formula while increasing the number of
subformulas for the sequential approach.
Finally, in Fig. 7.3e we can observe that the number of transitions has a stronger

impact on the number of gates than the number of places. While in the beginning the
number of gates used in the parallel approach is still smaller than the number of gates
needed for the sequential one, the parallel approach overtakes the sequential one from
three flow subformulas on. This distance increases considerably when increasing the
number of flow subformulas.
Figure 7.3f shows the comparison of the running times of the approaches for an in-

creasing number of flow subformulas. We can see that for five flow subformulas the
parallel approach still outperforms the sequential one. The gray hatched areas depict
the times the approaches run into a timeout. The gray dashed horizontal line indicates
the maximum time available for the approaches. Note that the figure cannot tell us
whether the performance of the parallel approach converges to that of the sequential
one, since the sequential approach runs into timeouts for a large part of the benchmarks
already for one flow subformula.
These figures indicate that the main reason for the superiority of the parallel approach

for these benchmark suites is the larger number of places and therewith the larger num-

128

7.3 Benchmarks

(a) Comparing the number of places. (b) Comparing the number of transitions.

(c) Comparing the size of the formulas. (d) Comparing the number of latches.

(e) Comparing the number of gates. (f) Comparing the accumulated runtimes.

Fig. 7.3: Comparison of the sizes of the constructed elements for the sequential (blue)
versus the parallel (green) approach with respect to an increasing number of flow sub-
formulas. In Fig. 7.3a to Fig. 7.3e we use box plots representing the median value with
the horizontal gray lines, the area where the median 50% of the data is located as col-
ored boxes, the range of the minimal and maximal values by the vertical gray lines, and
the data points itself as small circles. Figure 7.3f compares the accumulated runtimes
the approaches needed to solve the complete falsification benchmark suite. The hatched
areas mark the timeouts and the gray dashed line the maximum time available for the
approaches.

129

7 AdamMC – A Model Checker for Petri Nets with Transits

ber of latches needed by the sequential approach. This supports the observation that in
practice the size of the model and not the size of the formula is the source of intractabil-
ity [DLS06]. Increasing the number of flow subformulas or the amount of transits per
transition degrades these benefits, as they have an exponential impact.
The above observation suggests another optimization possibility. For the implementa-

tion of the synthesis problem presented in Chap. 13, the BDDs are token-oriented rather
than place-oriented . This means we do not have one variable per place, but encode the
ids of the places of a marking logarithmically. Since problems modeled with Petri nets
often use considerably more places than tokens, fewer latches would be required, but
the complexity of the algorithms and the number of gates would increase. However,
by switching to a token-oriented encoding, the performance of the synthesis approach
increased significantly.

130

7.3 Benchmarks

Tab. 7.2: We compare the explicit and logarithmic encoding of the sequential approach
with the parallel approach for the connectivity requirement. The results are the aver-
age over five runs from an Intel i7-2700K CPU with 3.50 GHz, 32 GB RAM, and a
timeout (TO) of 30 minutes. The runtimes are given in seconds.

expl. enc. log. enc. parallel appr.
T/F Network #Sw Alg. Time |= Alg. Time |= Alg. Time |=
T Arpanet196912 4 IC3 12.08 3 IC3 9.89 3 IC3 2.18 3

T Napnet 6 IC3 146.49 3 IC3 96.06 3 IC3 4.75 3

T Epoch 6 IC3 240.57 3 IC3 214.70 3 IC3 6.78 3

T Telecomserbia 6 IC3 1182.43 3 IC3 912.76 3 IC3 12.12 3

T Layer42 6 IC3 133.20 3 IC3 131.68 3 IC3 6.26 3

· · · · · · · · · · · ·
T Heanet 7 IC3 806.81 3 IC3 84.62 3 IC3 30.30 3

T HiberniaIreland 7 - TO ? - TO ? IC3 26.58 3

T Arpanet19706 9 - TO ? IC3 362.21 3 IC3 11.33 3

T Nordu2005 9 - TO ? - TO ? IC3 12.67 3

· · · · · · · · · · · ·
T Fatman 17 - TO ? IC3 1543.34 3 IC3 162.17 3

T Nextgen 17 - TO ? - TO ? IC3 403.33 3

T Nordu2010 18 - TO ? - TO ? IC3 50.11 3

T Pacificwave 18 - TO ? - TO ? IC3 932.60 3

T Ans 18 - TO ? - TO ? IC3 1511.30 3

· · · · · · · · · · · ·
T Myren 37 - TO ? - TO ? IC3 1309.23 3

T KentmanJan2011 38 - TO ? - TO ? IC3 1261.32 3

F Arpanet196912 4 BMC3 2.18 7 BMC3 1.85 7 BMC3 1.20 7

F Napnet 6 BMC2 4.17 7 BMC2 5.22 7 BMC3 1.48 7

F Epoch 6 BMC3 15.41 7 BMC3 13.56 7 BMC3 2.39 7

· · · · · · · · · · · ·
F Rhnet 16 - TO ? - TO ? BMC3 49.94 7

F Fatman 17 BMC3 168.78 7 BMC3 169.82 7 BMC3 6.72 7

F Goodnet 17 - TO ? - TO ? BMC3 378.15 7

· · · · · · · · · · · ·
F Harnet 21 BMC3 1410.25 7 BMC3 735.73 7 BMC3 58.40 7

F Belnet2009 21 BMC2 1146.26 7 BMC2 611.81 7 BMC3 24.26 7

F Garr200404 22 BMC3 45.90 7 BMC3 49.38 7 BMC3 4.70 7

· · · · · · · · · · · ·
F KentmanJan2011 38 BMC3 167.92 7 BMC3 86.44 7 BMC2 9.35 7

F Cesnet200511 39 - TO ? - TO ? BMC3 249.15 7

· · · · · · · · · · · ·
F Forthnet 62 - TO ? - TO ? BMC3 752.80 7

F Latnet 69 - TO ? - TO ? BMC2 209.20 7

F Ulaknet 82 - TO ? - TO ? BMC2 1043.74 7

Sum of runtimes (in hours): 82.99 79.15 27.62
Nb of TOs (of 230 exper.): 146 138 9

131

8Related Work

Decomposing the overall problem into individual subproblems is a common strategy
for computer scientists. Looking at the control part of the system separately from the
data is a division that lends itself. For example, an essential part of software-defined
networks [KRVR+15] is the clear separation of the data plane and the control plane to
facilitate the development process.

A common formalism that provides separate features for the data and the control of the
system in a non-distributed setting are extended finite state machines (EFSMs) [CK93;
CK96]. An EFSM is a finite state machine extended with a set of variables. The
finite state machine models the control part and the set of variables can be used as
guards at the transitions of the finite state machine and can be updated by the control
flow to model the data part. In the formal methods community, the use of EFSMs is
widespread for blending control and data [WTD16; RSS21], e.g., for symbolic model
checking [TOHT06], automata learning [CHJS18], and data-flow analysis [BBS11].

In [HHFM+94], the specification language SL [OR93] for reactive systems with real-
time constraints is used to split the description of the desired behavior of the system
components into a trace part, a state part, and a timing part. The trace part specifies
the control flow of the system by means of regular expressions, whereas the state part
specifies the data in the system, i.e., the communication values which possibly make use
of local state variables. Such separation can allow for processing parts of the system
automatically where including the concrete data would lead to a state space too large
to process. For example, the separation of data and control for the synthesis of reactive
monolithic systems with the temporal stream logic (TSL) [FKPS19] made it possible
to synthesize an autonomous driving controller, a music player app [FKPS19], and an
arcade game for field programmable gate arrays (FPGAs) [GHKF19].
Abstracting from the concrete data values of the system is a common approach to

obtain finite-state systems for model checking with an infinite data domain [ESK14].
Oftentimes, the control part of the system is easy enough to be finite-state, whereas pro-
cessing the concrete data leads to infinitely many states. Contrariwise, in many cases
we are not interested in the concrete values of the data. For example, in the software-
defined network example presented in Sec. 2.1, we are not concerned with the concrete
content of the infinitely many packets flowing through the network, but only with their
forwarding and which switches are involved in the process. Wolper introduces in [Wol86]
the notion of data-independence. Intuitively, this means that changing the input of the
program does not change the behavior of the program, but at most the correspond-
ing output data. This significantly increased the applicability of model checking and
synthesis algorithms based on propositional temporal logic specifications [Wol86]. The

133

8 Related Work

idea of data-independence inspired a large body of further work (e.g., [RB99; NM10;
SYGA+14; ESK14; KW19].
We refer to the survey [Sch02] for the general complexity results and the under-

lying algorithmic ideas of the model checking problem for CTL∗ and its fragments.
We recall here the results for CTL∗, CTL, and LTL. The model checking problem for
CTL∗ is PSPACE-complete [CES83; CES86; EL87] and can be solved in 2O(|ϕ|)O(|K|)
time [EL87; KVW00], where |ϕ| is the length of the formula and |K| the size of
the Kripke structure. For the fragment CTL, the model checking problem is P-
complete [CES86; Sch02] and can be solved in O(|ϕ| · |K|) time [CES86; AC88].
Even though the time complexity is linear in both the size of the model and the length
of the specification, usually the size of the model is the dominant factor due to the state
explosion problem [CV03]. For the fragment of LTL, the model checking problem is
again PSPACE-complete [SC85] and can be solved in 2O(|ϕ|)O(|K|) time [LP85; VW86;
Var95a]. Note that this does not necessarily mean that CTL model checking is more
efficient than LTL model checking. On the one hand, the size of the state space is again
usually the limiting factor in practice [CHV18]. On the other hand, if the same proper-
ties are expressed in CTL as in LTL (if possible), the LTL formulas can be exponentially
shorter than the CTL equivalents [BK08].
A considerable number of tools exist for the analysis and model checking of Petri nets,

reflecting not least the many variants of Petri net models in which the tools can special-
ize (e.g., Tina [BRV04; BV06] for Timed Petri Nets, GreatSPN [CFGR95; BBDF+01;
BBCP+09] for Generalized Stochastic Petri Nets, CPN/Tools [Jen; CJK97; BMJA+01]
for Colored Petri Nets). An annual model checking contest [KBGH+21] provides tracks
for the model checking of Petri nets against LTL specifications and CTL specifica-
tions, where for example the tools TAPAAL [BJS09; DJJJ+12], ITS-Tools [Thi15],
LoLA [Sch00; Wol18], and GreatSPN [CFGR95; BBDF+01; BBCP+09] compete regu-
larly. RGMEDD* [ADG20] is a recent tool that allows for model checking CTL∗ speci-
fications on Petri nets.
The common approach for LTL and CTL model checking in Petri nets is to permit

only places as atomic propositions and not transitions (state-based logics [Esp96]). This
is also reflected by the model checking contest [KBGH+21], where the specifications
are also limited to the cardinality of the places or to the firability of transitions (i.e., a
conjunction of the cardinalities of places). To still impose fairness assumptions [Fra86],
usually dedicated algorithm are used for model checking (see [EL85; EL87] for CTL,
[LP85; KPR98; KPRS06] for LTL, and [LH00] for LTL on Petri nets). Additionally
allowing transitions as atomic propositions enables us to directly encode fairness as-
sumptions on the transitions of the Petri net and also maximality assumptions on the
runs within the logic. However, this requires to decide on an in- or outgoing seman-
tics, and this generality comes with the drawback of a larger state space induced by
those transitions actually used in the formula. Specifically for labeled Petri nets, action-
based versions of LTL and CTL are considered, which focus only on the transitions
(respectively their labels) of the Petri net to state the desired properties [Esp96]. In
these logics, the set of proposition only contains true and the next operator is equipped
with a set of transitions K with the semantics that XK is only satisfied in a state, if

134

a transition is taken from K to reach the next state. For the state-based as well as
the action-based versions of LTL and CTL the model checking problem for 1-bounded
Petri nets is PSPACE-complete [Esp96]. Lifting these results to their combination would
yield a PSPACE-completeness result for 1-bounded Petri nets with transits and Flow-
LTL. Another approach using variables for places and transitions, is the SAT encoding
in [Hel99a; Hel99b] for the reachability problem in 1-bounded Petri nets. A good survey
and introduction for decidability problems for 1-bounded and general Petri nets can
be found in [Esp96; EN94]. The first successful applications of unfolding techniques to
verification problems is due to McMillan [McM92; McM93; McM95].

The reductions in Chap. 5 and Chap. 6 show that we can express our model check-
ing problem with standard Petri nets and LTL. The size and lack of clarity of the
constructed Petri nets and LTL formulas already for the small examples presented in
this thesis show that we do not want to model the problem directly at this level. The
same applies when expressing the problem in other Petri net models like Colored Petri
nets [Jen97]. Naively, one could use one uniquely colored token for each newly created
data flow. This counteracts the idea of abstracting from the concrete data and leads to
an infinite number of colors due to the possible infinitely many data flows. As a result,
the model is as expressive as a Turing machine [Tur37], which makes most general ques-
tions undecidable [Pet80]. Another approach is to have one color for the control tokens
and another color for the data flow. This abstracts from the concrete data and only
needs two colors, but still results in possibly infinitely many colored tokens and does
not cover the merging of the data flow. Going one step further and also merging the
data flow appropriately results in introducing several transitions for each combination
of a transition’s transits. For each transit we have to check whether there is already a
data flow at the postset place and whether there is a data flow at all at the preset place.
This again takes clarity from the model and increases the chances for modeling errors.

There is a large body of work regarding the presented application domains for Petri
nets with transits. For software-defined networking, we refer to [KRVR+15] for an in-
troduction. Solutions for correctness of updates of software-defined networks include
consistent updates [RFRS+12; CFJM16], dynamic scheduling [JLGK+14], and incre-
mental updates [KRW13]. Both explicit and SMT-based model checking is used to verify
software-defined networks [CVPK+12; MTW14; MKAC+11; WMLT+13; BBGI+14;
PIKL+15]. Closest to the approach using Petri net with transits, are models of net-
works as Kripke structures to use model checking for synthesis of correct network up-
dates [ETVV17; MHC17]. In each step of the construction of a sequence of updates in
the synthesis routine, a model checker is called to verify the correctness. The model
checking subroutine of the synthesizer assumes that each packet sees at most one switch
that was updated after the packet entered the network. This restriction is implemented
with explicit waits, which can afterwards often be removed by heuristics. Our model
checking routine does not require this assumption.

For access control policies for physical spaces, access nets [FCS11] also present a
model based on Petri nets. For access nets, the tokens of the net represent the persons
in the building and are equipped with types representing their roles. This can be seen as
colored tokens in Coloured Petri Nets [Jen81]. Furthermore, the transitions may depend

135

8 Related Work

on some global clock, and special transitions, called mandatory, are enforced to be taken
in a state, when any of them is enabled. These extensions (individual tokens and time)
result in large state spaces, which they reduce by applying abstraction methods in the
line of [CGL94] and by focusing on reachability properties. In [BCRR+09] challenges
from the practice of managing access control policies are presented, which were identified
through a series of interviews with concerned administrators. Policies for access control
of physical spaces where the model is a Kripke structure can be synthesized if no policy
updates are required [TDB16].

136

Part IISynthesis of Distributed Systems with
Local Conditions

Contents
9 Motivation 139

10 Models and Objectives 145

11 Petri Games With Transits 153

12 Synthesis of Distributed Systems with Local Data Flows 159

13 AdamSYNT – A Synthesis Tool for Petri Games 203

14 Related Work 209

137

9Motivation

In this chapter we intuitively introduce the new model, called Petri games with tran-
sits, with local existential, universal, and Flow-LTL winning objectives for synthesizing
local controllers for asynchronous distributed systems with causal memory. Formal def-
initions of the model and the winning objectives are given in Chap. 11.

Petri games with transits extend Petri games by refining the flow relation in the same
way as Petri nets with transits extend standard Petri nets. A Petri game [FO14; FO17]
models the distributed synthesis problem as a multi-player game between two teams: the
environment players, representing external influences (the uncontrollable behavior), and
the system players, representing the processes (the controllable behavior). Each player
is modeled as a token (depicted as a black dot) of an underlying standard Petri net. The
places of the net determine the team affiliation of the players. Tokens on environment
places (depicted as white circles) belong to the team of environment players and tokens
on system places (depicted as gray circles) belong to the team of system players. Players
make moves by taking transitions (depicted as blue squares) of the underlying Petri net.
Figure 9.1 without the colored arrows represents a Petri game with one environment and
one system player.

The common goal of the system players is to collaborate in such a way that each player
satisfies their local specification against all possible behavior of the environment players.
Petri games represent games with a local universal safety objective on the token flow,
i.e., the system players must at all times avoid reaching designated bad places (depicted
as double circled places). Additionally, they must prevent the environment players from
reaching such places. Due to the distributed setting, players only have a limited view
of the global system. Each player remembers their own causal past, i.e., the places and
transitions used to reach the player’s current place. This information is exchanged with
all players participating at a joint transition. Each system player can select their next
transition solely based on the locally available information. However, transitions only
depending on environment players must actually be taken if possible.

So, in Petri games the tokens carry the information about their causal past as they
flow through the net. In Petri games with transits the refinement of this flow relation
defines the second layer of the information flow. At this level, we define the correctness
properties of the system. For Petri games with transits, we increase the expressiveness
of the specification language. Rather than forbidding the players to ever reach a bad
place by themselves, we base the new objectives on the data flow of the processes. For
that we reuse the concepts introduced in Chap. 4. This means, we refine the token flow
relation with transits (represented by the colored augmentations of the black arrows)
and consider the data flow chains of the processes induced by the transits. For example

139

9 Motivation

in Fig. 9.1, we see that when transition i fires, a new data flow is generated (depicted
by the red dot-dashed arrow) and is passed on by the transitions (depicted by the solid
blue and dashed orange arrows). The new objectives allow us to reason about all flow
chains of the processes (the universal conditions) and to reason about the existence of
one flow chain of the processes (the existential conditions). So, for the example, we
can require that all data flow chains should avoid reaching any of the bad places or
that just one safe flow chain suffices to win a play. The new specification allows for
two kinds of winning conditions: the place-based winning conditions, i.e., existential and
universal safety, reachability, Büchi, co-Büchi, and parity conditions based on the places
of the data flow in the net, and the local Flow-LTL winning condition that allows us
to define existential and universal temporal requirements on the data flow with respect
to the places and transitions of the net. In the following, we consider two examples for
introducing these conditions.

9.1 Manufacturing

For the place-based winning conditions, take the simplified example from the world of
manufacturing depicted in Fig. 9.1 as a Petri game with transits. A robot, represented
by the token initially residing in place I, has a milling and a drilling tool at its disposal
(represented by the place M or by the place D, respectively). When firing transition i,
a new flow chain is generated which, along with the robot, ends up in place R. Thus, it
exists a robot with a fresh flow chain knowing nothing about the system other than it
started in place I, used transition i, and is now in place R. With this information, the
robot cannot make an informed decision and must randomly start either milling (with
transition m to place M) or drilling (with transition d to place D). The system must
win against all behavior of the environment. This means that the system must also
win in case the environment decides to destroy exactly the tool the robot is currently
using (transition dm to place DM or transition dd to place DD). Then, either only
transition cm or only transition cd is available for the robot. Hence, the corresponding
tool is destroyed and the robot and the data flow end up in a bad place ⊥M or ⊥D,
respectively. Thus, the system cannot win a universal safety objective because there
exists already a violating chain. However, for the existential safety objective, the robot
can recover from the failure (by taking transition rm or transition rd) and start in this or
any later round working with the intact tool. Since the robot took transition cm or cd,
i.e., communicated with the environment, it learned which tool is malfunctioning and
thus, can make an informed decision in any later round.
This memory model with its intricate causal dependencies (and independencies) are

naturally represented by the unfolding [Eng91; EH08] of the underlying Petri net N. An
unfolding represents the behavior of a Petri net by unrolling each loop of the execution
and introducing copies of a place p ∈ P for each join of transitions in p. Hence, each
transition of the unfolding represents a unique instance of a transition t ∈ T during an
execution. The unfolding exhibits concurrency, causal dependency, and nondeterminism
(forward branching of places) of the unique occurrences of the transitions in N during

140

9.1 Manufacturing

Edm dd
DM DD

R

i

I

M D

m d
cm cd

⊥M ⊥Drm rd

Fig. 9.1: A simple Petri game with transits representing a manufacturing example with a
robot R having a drilling tool D and a milling tool M at its disposal. A hostile environ-
ment E can destroy either one of these tools. Drilling or milling with a malfunctioning
tool results in a bad situation ⊥X for X ∈ {M,D}. For the universal safety condition
no winning strategy exists. However, for the existential safety condition, the system can
recover from a bad situation and can afterwards use the knowledge about the tools’ states
to select the intact tool.

all possible executions. The notion of an unfolding is lifted to Petri games with transits
by keeping the distinction between environment and system, and by transferring the
decoration of the special places like bad places and the transits to the unfolding.
In Fig. 9.2 an excerpt of the unfolding of the Petri game with transits G depicted in

Fig. 9.1 is shown. We can see that in the unfolding there are three copies R,R′ and R′′
of the place R of the Petri game with transits G. In R we know nothing about the
environment. In R′ we have learned that the environment destroyed the milling tool,
and in R′′ the causal memory yields that the environment destroyed the drilling tool.
Both pieces of information are available since transition cm or cd is in the past of R′
or R′′, respectively. The system can decide differently in each of these system places.
A strategy is a local controller for each system player which only decides on its current

view and available information about the whole system. A strategy can be obtained
by removing system-controlled branches of the unfolding. That is, transitions and their
complete future are removed (obeying certain rules) which are considered as not being
taken by the system. Transitions only dependent on environment players are not allowed
to be removed. A strategy only allows nondeterminism for the environment players. The
system must deterministically react to all possible actions of the environment. Resolving
also the environment’s nondeterminism results in a single concurrent execution of the
system. In this setting, such concurrent runs of the Petri net are called plays.
In Fig. 9.2 a strategy σ is marked by the blue shaded area. This strategy contains only

two maximal plays. A play is maximal in the sense that whenever it is possible to extend
the play in the unfolding, it is indeed extended. Play π1 is depicted by the red shaded
area. For all safety conditions (universal and existential) this play is winning because the
only flow chain ξ1 = i, R,m,M contains no bad place. However, for play π2 (depicted
by the green shaded area) there is the flow chain ξ2 = i, R,m,M, cm,⊥M reaching a bad

141

9 Motivation

Edm dd
DM DD

R

i

I

M Dm d
cm cd

⊥M ⊥D

D ′M D ′D

rm rd

R′ R′′M ′ D ′m′ d′
c ′m

⊥′M
D ′′′M

...
...

M ′′ D ′′m′′ d′′
c ′′d

⊥′′D
D ′′′′D

...
...

Strategy σ

Play π2 Play π1

Fig. 9.2: An excerpt of an unfolding of the Petri game with transits depicted in Fig. 9.1
with plays π1 and π2, and a winning strategy σ for the system players for the existential
safety condition. Play π1 is winning because no bad place occurs. Play π2 is winning
because even though the chain following the blue solid chain arrows reaches a bad place,
there exists the chain starting with transition rm staying only on safe places.

place. Thus, play π2 is not winning the universal safety objective. However, since play π2

also contains the flow chain ξ3 = rm, R
′, d′, D′ the play π2 is winning the existential

safety condition. Hence, σ is a winning strategy for the system players with respect to
the existential safety condition since all maximal plays are winning. In Chap. 12 we
provide a solving algorithm for generating such winning strategies of the system players
automatically. The formal definitions of these concepts and such place-based winning
conditions are given in Chap. 11. We consider the local Flow-LTL winning condition in
a slightly more involved example of a parcel delivery system in the next section.

9.2 Parcel Delivery System

For the local Flow-LTL winning condition, take an example of a parcel delivery system
with autonomous drones delivering an unbounded number of parcels to distributed loca-
tions. There is no central control unit that is constantly connected to the drones. During
synchronizations, the drones communicate their causal past. However, the parcels may
or may not be passed on. The goal of the drones is to deliver all parcels to the correct
location, although some drones may malfunction unpredictably. Furthermore, no loca-
tion should be favored by any drone. Figure 9.3 shows a formalization of this scenario

142

9.2 Parcel Delivery System

D0

s0

R0

p0A

p0B
fly0

D1

s1

R1

p1A

p1B fly1

−→
AιA

−→
B

ιB
E

d0

d1

def0

def1

c0
mal0

f0

recover0
deliver0 d0A

d0B

c1
mal1

f1

recover1
deliver1

d1B

d1A

A

B

reset0

reset1

PDC

Loc.

Fig. 9.3: An example for the synthesis of asynchronous distributed systems modeled with
a Petri game with transits. It represents a parcel delivery scenario with two locations A
and B, two drones starting in D0 and D1, and a hostile environment (initially residing
in E) recurrently selecting a malfunctioning drone, which eventually has to be recovered
by the other. The unbounded number of parcels arriving in location

−→
A and

−→
B of the

parcel distribution center should be delivered by the drones to their respective location A
and B, and no location should be favored by any drone.

for two drones and two locations with a Petri game with transits. The possible behavior
of the first drone is depicted in the upper part of the figure following the red dot-dashed
and the orange dashed arrows. Analogously, the possible behavior of the second drone
is depicted in the lower part of the figure following the green dotted and the blue solid
arrows. The parcel delivery center (PDC) is depicted in the middle at the left, the loca-
tions (Loc.) in the middle at the right, and the environment behavior deciding on the
malfunctioning drone is depicted in the center of the figure. In the upper left respective
lower left of the figure, the two drones are started with a fresh data flow via transitions s0

and s1 (indicated by the red dot-dashed and the green dotted arrow, respectively) as
they move to the place D0 respective D1. As in the previous example, these transitions
transit the data flow along moving control tokens. However, this changes for modeling
the unbounded number of parcels. With transition ιA and ιB, new parcels may arrive
in the parcel distribution center at any time (indicated by the red dot-dashed arrows).
These transitions transit the data flow along persistent control tokens to allow for the

143

9 Motivation

unbounded number of parcels to arrive at any given time. Remember that the coloring
of the arrows only have a local significance to the transitions, i.e., the red dot-dashed
arrows described so far are completely unrelated. The selection of a malfunctioning
drone is modeled by a hostile environment process represented by the token initially
residing in place E and the two environment transitions d0 and d1 deciding which drone
is malfunctioning. So a drone i ∈ {0, 1} can pick up a package for location L ∈ {A,B}
via transition piL and deposit a receipt on place Ri. If the drone has no defect, it can
fly towards the target locations via transition fi and may deliver the package to some
location L′ ∈ {A,B} via transition diL′ . Previously, however, it could also first recover
the defective drone via transition recover j, for j = i+ 1 mod 2.
As a correctness requirement for this scenario we request that a) all parcels should be

delivered to the correct location and b) both drones behave fairly in the sense that they
do not favor any location. The formulas

cor = A (
∧

L∈{A,B}

(
−→
L → L)) and fair =

∧
i∈{0,1}

(E (Di ∧ piA ∧ piB))

formalize these properties in local Flow-LTL. Formula cor requires that all (A) data
flows starting in place

−→
L must eventually () reach place L ∈ {A,B} and the for-

mula fair requires that for each drone i ∈ {0, 1} there exists (E) a data flow that
infinitely often () visits place Di, infinitely often uses transition piA, and infinitely
often uses transition piB. In order to have anything to do at all, we additionally require
that an unbounded number of parcels destined to each location indeed enter the parcel
distribution center: in =

∧
L∈{A,B}(E ιL).

A winning strategy for drone i ∈ {0, 1} satisfying ϕ = cor ∧ fair ∧ in is to take
the parcels destined for location A via transition piA and either send a distress signal
via transition ci or fly towards the target locations via transition fi (depending on the
environment’s decision). Suppose the environment selected the other drone j, with
j = i + 1 mod 2, to be malfunctioning. By synchronizing with the token in place def j,
the intact drone i learns of the defect of drone j and decides to first recover j and its
parcel via transition recover j. Due to the causal memory, drone i can remember taking
transition piA and can decide for the correct location via transition diA. In the other
case, drone i gets recovered and, for having a smaller scenario, delivers the package
correctly by itself. However, due to transition recover i, drone j also knows the destined
location of the parcel of drone i and, in another scenario, could also deliver this parcel
on its own. After a delivery, the drones fly back to the parcel distribution center via
transitions resetD, for D ∈ {0, 1}. Note that the lightening of the arrows for transition
resetD has no semantics and additional black arrows identical to the colored arrows are
omitted for the sake of clarity. In the next round drone i takes the parcels destined for
location B and repeats these choices alternately.
In Chap. 11 we provide the syntax and semantics for local Flow-LTL and make these

concepts formal.

144

10Models and Objectives

This chapter serves to recapitulate established concepts on which the synthesis ap-
proach for distributed asynchronous systems is based. In particular, in Sec. 10.2 we give
an introduction to Petri games [FO14; FO17], the model that is extended in Chap. 11
to allow for enriched winning objectives, like universal and existential conditions. Fur-
thermore, the solving algorithm of the synthesis approach for Petri games with transits
and local objectives, presented in Chap. 12, consists predominantly of a reduction to a
synthesis problem in a two-player infinite game over a finite graph. The introductory
concepts for infinite games [BL69; GTW02; AG11; BCJ18] are presented in Sec. 10.1.

10.1 In�nite Games

In this section we consider two-player games played on a finite graph with an infinite
duration and complete information [McN93; GTW02; AG11; BCJ18]. A state of the
game is a vertex in the graph. The graph is called the game arena. Each vertex is
uniquely associated to either player 0 or player 1. The game proceeds in rounds. In
each round the player associated to the current vertex chooses the successor vertex with
respect to the edges of the graph. The player can take the decision for the next vertex
completely informed about the game arena and all turns taken so far. Taking turns for
an infinite number of rounds results in a play of the players on the game arena. Thus,
a play is an infinite path through the arena.

I Definition 45 (Two-Player Game, Arena, and Play). A game arena is a finite graph
A = (V, V0, V1, E) consisting of

• a finite set of states V partitioned into two disjoint sets of

• player 0’s states V0 and of

• player 1’s states V1, and

• the edge relation E ⊆ V × V .

For a simplified notion we assume that all states have at least one outgoing edge.
A two-player game G = (A, WIN) consists of a game arena A and a set WIN ⊆ V ω

of infinite sequences of states of the arena, called the winning condition, or winning
objective.
A play π on the arena A is an infinite sequence π = v0v1v2 · · · ∈ V ω of states vi ∈ V

that are related according to E, i.e., for all i ∈ N holds (vi, vi+1) ∈ E. A play π is

145

10 Models and Objectives

winning for player 0 w.r.t. to a winning condition WIN iff π ∈ WIN holds. Otherwise
player 1 wins π. J

In the game-based synthesis approach for reactive systems [BL69], player 0 represents
the system, i.e., the controllable behavior, and player 1 represents the environment, i.e.,
the uncontrollable behavior.
In Definition 16 we already recall some sets of infinite words used as acceptance

conditions for the automata in Part I. We now extend and recall these sets for the
winning conditions of the games and the acceptance conditions of the automata of this
part.

I Definition 46 (Winning Conditions). Given an alphabet Σ, usually consisting of the
states of the games or the automata. We define a function Occ : Σω → 2Σ with Occ(w) =
{a ∈ Σ | ∃m ∈ N : wm = a}, for collecting the letters occurring in w and the function
Inf : Σω → 2Σ with Inf(w) = {a ∈ Σ | ∀n ∈ N : ∃m ≥ n : wm = a} collecting
all letters which occur infinitely often in an infinite word w over the alphabet Σ. For a
finite set W ⊆ Σ we define the

Safety condition: SAFE(W) = {w ∈ Σω | Occ(w)∩W = ∅} collecting all infinite words
that do not visit any state of W ,

Reachability condition: REACH(W) = {w ∈ Σω | Occ(w) ∩ W 6= ∅} collecting all
infinite words that visit some state of W ,

Büchi condition: BUCHI(W) = {w ∈ Σω | Inf(w) ∩ W 6= ∅} collecting all infinite
words that visit some state of W infinitely often, and the

Co-Büchi condition: COBUCHI(W) = {w ∈ Σω | Inf(w) ∩ W = ∅} collecting all
infinite words that visit none of the states of W infinitely often.

For a parity function Ω : Σ→ N we define the

Parity condition: PARITY(Ω) = {w ∈ Σω | min{Ω(Inf(w))} mod 2 = 0} collecting all
infinite words that have an even number as minimum for the parity of the states
visited infinitely often.

We often call two-player games by their winning condition, e.g., we call the two-player
game G = (A, PARITY(Ω)) a parity game. For two conditions WIN1 ⊂ Σω and WIN2 ⊂ Σω,
we define the conjunctive condition by CONJ(WIN1, WIN2) = WIN1 ∩ WIN2. J

A strategy is a player’s function which determines their next move in a two-player game.
In the game-based synthesis approach player 0’s winning strategy can be seen as a
correct-by-construction implementation of the controllers for the system of the encoded
synthesis problem.

146

10.2 Petri Games

I Definition 47 (Two-Player Game Strategy). A strategy σ : V ∗Vi → V of player i, for
i ∈ {0, 1}, of a two-player game G = (A, WIN) with arena A = (V, V0, V1, E, I), maps
each sequence of states ending in a state of player i to some successor state according
to E:

σ(wv) = v′ =⇒ (v, v′) ∈ E for all w ∈ V ∗ and v ∈ Vi.
A strategy σ is called positional (or memoryless) iff the decision of the player only
depends on the last state of the input sequence, i.e., σ(wv) = σ(v) for all w ∈ V ∗ and
v ∈ V . A play π = v0v1v2 · · · ∈ V ω of G conforms to a strategy σ iff for all prefixes
wvivi+1 ∈ V ∗V0V of π holds σ(wvi) = vi+1 for i ∈ N.
A strategy σ of player i, for i ∈ {0, 1}, of G is a winning strategy of player i for a

state v0 iff each play π starting in v0 and conforming to σ is winning for player i. J

A winning region for player i, denoted Wi, is the set of all states v ∈ V from which
player i has a winning strategy, for i ∈ {0, 1}. We call a two-player game determined
iff from each state either player 0 or player 1 has a winning strategy, i.e., V = W0] W1.
This means there are no draws in determined games.

Classical algorithms for solving such two-player games are based on fixpoint compu-
tations allowing a symbolic calculation of the winning set and memoryless strategies
exist for both players (see for example [Jur11; BCJ18]). For safety and reachability
games, memoryless winning strategies can be computed in O(|E|) time. For Büchi and
co-Büchi games, this can be done in O(|E| · |V |) time. For improvements to the classical
algorithms, [BCJ18] points to [CJH03; CHP08; CH12; CH14].

According to [Küs01], the sufficiency of memoryless strategies for parity games was
first proved independently by Emerson and Jutla [EJ91], and by Mostowski [Mos91].

I Theorem 6 (Memoryless Determinacy of Parity Games [EJ91; Mos91]). For a parity
function Ω, a two-player game G = (A, PARITY(Ω)) with an arena A = (V, V0, V1, E) is
determined with positional strategies. J

It is shown by Emerson, Jutla, and Sistla that the problem of determining the winning
player of a two-player parity game is in NP∩co-NP [EJS93; EJS01]. This upper-bound is
improved to UP∩co-UP by Jurdzinski [Jur98]. A rich body of work exists for introducing
new algorithms for solving parity games and for improving their time complexities. For
example [Kla01; Jur11; BW18; BCJ18] present an overview of some different approaches
and results. However, the problem of solving two-player parity games in polynomial time
is still open [BCJ18], recent work [CJKL+17] presents a quasipolynomial time algorithm.

10.2 Petri Games

In this section we formally introduce the model Petri games [FO14; FO17] for the syn-
thesis of distributed systems. An intuitive description as part of the example for Petri
games with transits is already given in Chap. 9. We recall the example and represent
the corresponding Petri game in Fig. 10.1. Syntactically, Petri games extend standard
Petri nets (cp. Sec. 3.1) by identifying some places of the net as bad and by dividing the

147

10 Models and Objectives

Edm dd
DM DD

R

i

I

M D

m d
cm cd

⊥M ⊥Drm rd

Fig. 10.1: A Petri game G = (PS,PE,T,F, In,B) with one environment player ini-
tially residing in place E and one system player initially residing in place I, with the
system places PS = {I, R,M,D,⊥M ,⊥D}, the environment places PE = {E,DD, DM},
and the bad places B = {⊥M ,⊥D}. The Petri game G is the Petri game part of the
Petri game with transits depicted in Fig. 9.1.

places into environment places (depicted as white circles) and system places (depicted
as gray circles).

I Definition 48 (Petri Game [FO14]). A Petri game is a six-tuple G = (PS,PE,T,F,
In,B) that extends a finite Petri net N = (P,T,F, In) by partitioning the set of
places P = PS]PE into

• a set PS of system places and

• a set PE of environment places .

Additionally, G contains

• the set B ⊆ P of bad places

to define a local safety objective, i.e., all processes have to avoid these places to win the
game.

We call N the underlying Petri net, transitions t ∈ T with preN(t) ⊆ PS pure system
transitions or just system transitions , and all other transitions environment transitions .
Transitions with preN(t) ⊆ PE are called pure environment transitions . J

The players of a Petri game G are the tokens of the underlying Petri net N. A token
residing on a system place belong to the team of system players , whereas a token residing
on an environment place belong to the team of environment players . The players play a
Petri game by firing the transitions (depicted as blue squares) of the underlying Petri net.

In Petri games, the players remember their own causal history, i.e., the places and
transitions they formerly used to reach the current place. A player does not know
anything about another player as long as they reside in concurrent parts of the net.
While taking a joint transition the players exchange all of their knowledge. When firing
a joint transition we say that the participating players synchronize. This memory model

148

10.2 Petri Games

is naturally represented by the unfolding of the underlying net. The solid, together
with the opaque parts of Fig. 10.2 represent an excerpt of an unfolding of the Petri
game depicted in Fig. 10.1. The terms for unfolding, branching process, and run of a
Petri game are defined by the terms of the underlying Petri net. See Sec. 3.1.2 for their
formal definitions. We lift the distribution of the players to each of these Petri nets, e.g.,
PU
S = {p ∈ PU | λU(p) ∈ PS} for an unfolding β = (NU , λU).
The team of system players cooperate to achieve their common goal. This means,

they try to ensure that no player (whether system or environment player) ever reaches
a bad place. Based on their currently available information about the whole system,
each player can decide which of their transitions are allowed for the next move. Since
the environment players are uncontrollable, pure environment transitions cannot be re-
stricted. This is resembled by the strategy of the system players. A strategy is a local
controller for each system player that decides which transitions are allowed to be taken.
The solid elements of Fig. 10.2 represent a strategy of the system player of the Petri
game G presented in Fig. 10.1.

I Definition 49 (Petri Game Strategy). A strategy for the system players of a Petri
game with an underlying Petri net N is a subprocess σ = (Nσ, λσ) of an unfolding
β = (NU , λU) of N satisfying the properties:

Justified refusal: ∀ t ∈ TU : (t 6∈ Tσ ∧ preU(t) ⊆ Pσ) ⇒ (∃ p ∈ preU(t) ∩Pσ
S ∀ t′ ∈

postU(p) : λU(t′) = λU(t) ⇒ t′ 6∈ Tσ), i.e., if an instance t does not occur in the
strategy σ, then σ uniformly forbids all instances t′ of this transition from a place p
in the precondition of t. This means that in every state of the system the strategy
can only allow or disallow a transition of the original net and not a subset of the
instances which are indistinguishable due to the system player’s lack of knowledge.
This condition also ensures that a strategy does not restrict any pure environment
transition.

Determinism: ∀ p ∈ Pσ
S , C ∈ R(Nσ) : p ∈ C ⇒ ∃≤1 t ∈ postσ(p) : preσ(t) ⊆ C, i.e.,

there is no situation in the strategy, where a system player allows two separate,
enabled transitions.

For liveness properties the system itself is interested in proceeding. However, for a safety
objective we have to ensure that the system does not directly win games by refusing to
work. Hence, we consider strategies that are

Deadlock-avoiding: ∀C ∈ R(Nσ) : (∃ t ∈ TU : preU(t) ⊆ C) ⇒ ∃ t ∈ Tσ : preσ(t) ⊆
C, i.e., in every state of the strategy there is a continuation, whenever the system
can proceed in the game G. J

Note that we typically depict strategies together with the distribution of the places in
terms of their team affiliation (system vs. environment). This distribution is directly
induced by the Petri game.

A play π is an initial concurrent run π = (NR, ρ) of the Petri game G and up to
isomorphism a subprocess of the unfolding. Thus, where a strategy resolved the non-
determinism of the system players, a play further resolves the nondeterminism of the

149

10 Models and Objectives

Edm dd
DM DD

R

i

I

M Dm d
cm cd

⊥M ⊥DDM
′ DD

′

rm rd

R′ R′′

M ′ D ′m′ d′
c ′m

⊥M
′

DM
′′

...
...

M ′′ D ′′m′′ d′′
c ′d

⊥D
′

DD
′′

...
...

Fig. 10.2: The solid elements represent an excerpt of a strategy of the system players for
the Petri game G depicted in Fig. 10.1. Due to the solid bad places, this strategy is not
winning for the system players. Additionally including the opaque elements constitutes
an excerpt of an unfolding of G.

environment players. Two plays are depicted in Fig. 9.2. A play π conforms to a
strategy σ iff π is a subprocess of σ. A play π is winning for the system players, iff
PR ∩BR = ∅, with BR = {p ∈ PR | ρ(p) ∈ B}. Otherwise the environment players
win. A strategy σ is winning, iff all plays conforming to σ are winning.
In general, we are only interested in maximal plays of a strategy, this means we

consider plays that continue as long as the strategy allows to continue. Formally, a
play π conforming to a strategy σ is called maximal iff there is no play π′ conforming
to σ such that π v π′ and π 6= π′.

I Example 14. The solid elements depicted in Fig. 10.2 constitute a deadlock-avoiding
strategy σ = (Nσ, λσ) of the Petri game G shown in Fig. 10.1. Due to the deadlock-
avoiding constraint of the strategy, the system player cannot stop in any of the depicted
places to avoid reaching the bad place. The pure environment transitions dm and dd
with λσ(dm) = dm and λσ(dd) = dd must appear in every strategy due to the justified
refusal constraint. In place R ∈ Pσ

S with λσ(R) = R, a strategy has to decide whether
to take transition m or transition d, because the determinism constraint of σ forbids to
allow both. The strategy σ decides to take transition d, which means the bad place ⊥D
with λσ(⊥D) ∈ B cannot be avoided if the environment decides to take transition dd.
Similarly, taking transition m results in the bad place ⊥M ∈ Bσ. Thus, there is no
deadlock-avoiding winning strategy for the system players of G. J

In [FO14] Finkbeiner and Olderog show that the realizability problem for unbounded
Petri games is in general undecidable due to the undecidability of VASS (Vector Addition

150

10.2 Petri Games

Systems with States) games [ABd03]. However, for Petri games with one environment
player, a bounded number of system players, and a local safety objective, the problem
is EXPTIME-complete [FO14]. The same complexity result applies for deciding the
existence of a strategy for a bounded number of environment players and one system
player with bad markings as global safety objective (i.e., avoiding bad markings) [FG17].
Furthermore, it is decidable whether there is a strategy for Petri games with a bounded
number of system players and at most one environment player and a global safety ob-
jective [FGHO22].

151

11Petri Games With Transits

In this section we introduce the new model Petri games with transits for the synthesis
of distributed systems with local objectives. On the one hand, this model is based on
Petri nets with transits [FGHO19a], which refine the flow relation of a Petri net to define
the local objectives and, on the other hand, it is based on Petri games [FO14; FO17]
to obtain the game semantics for the synthesis. An example is depicted in Fig. 9.1 on
page 141. The graphical notation is the union of the graphical notations for Petri nets
with transits (see Chap. 4) and for Petri games (see Sec. 10.2).

We enrich a standard Petri game with the notion of transits such that the underlying
Petri net of the Petri game is a Petri net with transits and upgrade the safety winning
condition to more general conditions.

I Definition 50 (Petri Games with Transits). The arena of a Petri game with transits
is a six-tuple A = (PS,PE,T,F,Υ, In) with an underlying Petri net with transits
NA = (P,T,F,Υ, In) that divides the places P into the set of environment places
and system places, i.e., P = PE]PS, as for standard Petri games. We have the same
notions for players , plays , strategies , etc. as before (cp. Sec. 10.2). The set of all plays
of an arena A is denoted by Π(A).

A Petri game with transits G = (A, WIN) consists of an arena A combined with a set
of plays WIN ⊆ Π(A), called the winning condition or winning objective. A play is won
by the system players if it is an element of WIN. Otherwise it is won by the environment
players. A play of the Petri game with transits is the play of the arena. The same
applies for strategies . J

We consider two kinds of specification languages for the winning conditions of a Petri
game with transits. First, the place-based winning conditions, i.e., a set of dedicated
places W ⊆ PS ∪ PE or a coloring function Ω : PS ∪ PE → N that define the set
of winning plays WIN. Second, we generalize some of these conditions by defining a
temporal logic, called local Flow -LTL, based on the temporal logic Flow-LTL introduced
in Sec. 6.1. As in Chap. 5, we opt for the ingoing stuttering semantics when desiring an
infinite semantics for finite chains. This means finite chains are mapped to an infinite
trace that stutters on the last place.

I Definition 51 (Traces). A trace σ̃(ξ) of a (finite or infinite) flow chain ξ = t0, p0, t1, p1, . . .
of a run β = (NR

A , ρ) of an arena A is a mapping σ̃(ξ) : N→ {{t, p}, {p} | p ∈ P ∧ t ∈
T} with

σ̃(ξ)(i) = {ρ(ti), ρ(pi)} for all i ∈ N

153

11 Petri Games With Transits

if ξ is infinite and

σ̃(ξ)(i) =

{
{ρ(ti), ρ(pi)} for i ≤ n
{ρ(pn)} otherwise

if ξ = t0, p0, t1, p1, . . . , tn, pn is finite.
The ith suffix of a trace σ̃ is the trace σ̃i : N → {{t, p}, {p} | p ∈ P ∧ t ∈ T}

with σ̃i(j) = σ̃(i + j) for all j ∈ N. We define the function Occ(σ̃(ξ)) = {p ∈ P |
∃m ∈ N : p ∈ σ̃(ξ)(m)} to collect all places occurring in the trace σ̃(ξ) and the function
Inf(σ̃(ξ)) = {p ∈ P | ∀n ∈ N : ∃m ≥ n : p ∈ σ̃(ξ)(m)} to collect all places occurring
infinitely often in σ̃(ξ). J

For the place-based conditions, we generalize the winning condition of standard Petri
games from demanding that all players have to play safe, i.e., avoid reaching a bad
place, to requesting that the flow chains of the system satisfy a safety, a reachability,
a Büchi, a co-Büchi, or a parity condition. On each of these conditions, we allow for
a universal and an existential view, i.e., checking the property for all flows chains or
checking the existence of such a flow chain. We use the ingoing stuttering semantics to
obtain an infinite semantics for finite chains.

I Definition 52 (Winning Conditions). Given a Petri game with transits G = (A, WIN)
with an arena A = (PS,PE,T,F,Υ, In) and an underlying Petri net with transits
NA = (P,T,F,Υ, In). For a set S ⊆ P and a parity function Ω : P → N we define:

Safety:

• the existential safety condition ∃-SAFE(S) = {π ∈ Π(G) | ∃ξ ∈ Ξ(π) : Occ(σ̃(ξ))∩
S = ∅}, collecting all plays for which a flow chain exists that does not reach any
bad place,

• the universal safety condition ∀-SAFE(S) = {π ∈ Π(G) | ∀ξ ∈ Ξ(π) : Occ(σ̃(ξ)) ∩
S = ∅}, collecting all plays for which all flow chains do not reach any bad place,

Reachability:

• the existential reachability condition ∃-REACH(S) = {π ∈ Π(G) | ∃ξ ∈ Ξ(π) :
Occ(σ̃(ξ)) ∩ S 6= ∅}, collecting all plays for which a flow chain exists that reaches
some special place,

• the universal reachability condition ∀-REACH(S) = {π ∈ Π(G) | ∀ξ ∈ Ξ(π) :
Occ(σ̃(ξ))∩S 6= ∅}, collecting all plays for which all flow chains reach some special
place,

Büchi:

• the existential Büchi condition ∃-BUCHI(S) = {π ∈ Π(G) | ∃ξ ∈ Ξ(π) : Inf(σ̃(ξ))∩
S 6= ∅}, collecting all plays for which a flow chain exists that reaches some special
place infinitely often,

• the universal Büchi condition ∀-BUCHI(S) = {π ∈ Π(G) | ∀ξ ∈ Ξ(π) : Inf(σ̃(ξ))∩
S 6= ∅}, collecting all plays for which all flow chains reach some special place
infinitely often,

154

Co-Büchi:

• the existential co-Büchi condition ∃-COBUCHI(S) = {π ∈ Π(G) | ∃ξ ∈ Ξ(π) :
Inf(σ̃(ξ)) ∩ S = ∅}, collecting all plays for which a flow chain exists where every
infinitely occurring place is a safe place,

• the universal co-Büchi condition ∀-COBUCHI(S) = {π ∈ Π(G) | ∀ξ ∈ Ξ(π) :
Inf(σ̃(ξ)) ∩S = ∅}, collecting all plays for which all flow chains only contain the
safe places infinitely often,

Parity:

• the existential parity condition ∃-PARITY(Ω) = {π ∈ Π(G) | ∃ξ ∈ Ξ(π) :
min{Ω(Inf(σ̃(ξ))} mod 2 = 0}, collecting all plays for which a flow chain exists
where the minimum of the colors assigned by Ω to the places occurring infinitely
often is even,

• the universal parity condition ∀-PARITY(Ω) = {π ∈ Π(G) | ∀ξ ∈ Ξ(π) :
min{Ω(Inf(σ̃(ξ))} mod 2 = 0}, collecting all plays for which all flow chains where
the minimum of the colors assigned by Ω to the places occurring infinitely often is
even. J

The existential and universal winning conditions complement themselves. This means
that for example a play that has a safe flow chain with respect to a set S, cannot be
part of the plays where all flow chain reach a place in S. For that, we define the dual
(denoted by ·̃) of such a winning condition.

I Definition 53 (The Dual of a Place-Based Winning Condition). Let WIN be one of the
place-based winning conditions defined in Definition 52. We define the dual W̃IN of the
condition by

W̃IN =

Q̃-REACH(S) if WIN = Q-SAFE(S)

Q̃-SAFE(S) if WIN = Q-REACH(S)

Q̃-COBUCHI(S) if WIN = Q-BUCHI(S)

Q̃-BUCHI(S) if WIN = Q-COBUCHI(S)

Q̃-PARITY(Ω′) if WIN = Q-PARITY(Ω)

with Q ∈ {∀,∃} and for ∃̃ = ∀, ∀̃ = ∃, and Ω′(p) = Ω(p) + 1 for all p ∈ P. J

It is easy to see that for each winning condition WIN the dual is exactly the complement,
i.e., W̃IN = Π(G) \ WIN, and the dual function is self-inverse, i.e., ˜̃WIN = WIN.
For local Flow-LTL we, on the one hand, limit Flow-LTL (see [FGHO19a] or Sec. 6.1)

to its local fragment and, on the other hand, extend it with the existential view.

I Definition 54 (Local Flow-LTL). For an arena A = (PS,PE,T,F,Υ, In) of a Petri
game with transits, we define the syntax of a local Flow-LTL formula ϕ with atomic
propositions a ∈ PS ∪PE ∪T by

ϕ ::= Aψ | ¬ϕ | ϕ1 ∧ ϕ2 with ψ ::= a | ¬ψ | ψ1 ∧ ψ2 | ψ | ψ1 Uψ2.

155

11 Petri Games With Transits

The flow operator A in ϕ (or E as abbreviation for Eψ = ¬A¬ψ) is used to universally
(or existentially) select the flow chains and standard LTL is used with ψ to reason about
the selected flow chains.
The semantics of a play π = (NR

A , ρ) of A satisfying a local Flow-LTL formula ϕ is
defined as follows:

π |= Aψ iff for all flow chains ξ of π : σ̃(ξ) |= ψ

π |= ¬ϕ iff not π |= ϕ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

σ̃(ξ) |= a iff a ∈ σ̃(ξ)(0)

σ̃(ξ) |= ¬ψ iff not σ̃(ξ) |= ψ

σ̃(ξ) |= ψ1 ∧ ψ2 iff σ̃(ξ) |= ψ1 and σ̃(ξ) |= ψ2

σ̃(ξ) |= ψ iff σ̃(ξ)1 |= ψ

σ̃(ξ) |= ψ1 U ψ2 iff there exists a j ≥ 0 with σ̃(ξ)j |= ψ2 and
for all 0 ≤ i < j the following holds: σ̃(ξ)i |= ψ1

with local Flow-LTL formulas ϕ, ϕ1, and ϕ2, atomic propositions a ∈ PS ∪PE ∪T, and
LTL formulas ψ, ψ1, and ψ2. We say the local data flow of a play π of A satisfies a local
Flow-LTL formula ϕ iff π |= ϕ.
We define the local Flow-LTL condition Flow-LTL(ϕ) = {π ∈ Π(G) | π |= ϕ}

collecting all plays satisfying the local Flow-LTL formula. J

For a Petri game with transits G = (A, WIN), the system players win a play π = (NR
A , ρ)

of G iff π ∈ WIN. A strategy σ is winning for the system players w.r.t. the safety
conditions iff σ is deadlock-avoiding and all plays conforming to σ are won by the
system. A strategy σ is winning for the system players w.r.t. all other conditions iff
all maximal plays conforming to σ are won by the system. Otherwise, the environment
players win.
Note that the winning condition of a Petri game G = (PS,PE,T,F, In,B)

from [FO14], requesting that all players never reach a bad place b ∈ B, is a spe-
cial case of the universal safety condition ∀-SAFE(S) for a corresponding Petri game
with transits G′. For example, we can create G′ from G by adding a single fresh initial
place p′ and a single fresh transition t. The transition t moves the initial token to all
original initial places p ∈ In. and thereby starts a new chain in p. All other transitions
have a one-to-one mapping of the ingoing and outgoing arcs regarding the transits and,
if there are more outgoing than ingoing arcs, the remaining outgoing arcs are mapped
to an arbitrary ingoing arc.
For the decision procedure in the next chapter, we restrict the Petri games with

transits under consideration in two ways. On the one hand, we consider (as in [FO14;
FO17]) Petri games with transits with one environment player and a bounded number
of system players, i.e., to any point in time there is at most one environment player
available. On the other hand, we consider Petri games with transits which does not

156

have any mixed communication, i.e., in any state, each system player can provide either
a communication to the environment or to other system players, but not to both at the
same time.

In each state, each system actor can offer communication either with the environment
or with other system actors, but not with both at the same time.

I Definition 55 (Mixed Communication). For a Petri game with transits G with an
arena A = (PS,PE,T,F,Υ, In), a place p ∈ PS allows mixed communication iff

∃t1, t2 ∈ post (p) : PE ∩ pre (t1) 6= ∅ ∧ pre (t2) ⊆ PS.

A Petri game G has mixed communication iff any place p ∈ PS allows mixed communi-
cation. J

In practical application, we can often easily resolve the mixed communication by execut-
ing the pure system behavior and the communication of the system with the environment
one after the other. We denote the class of safe Petri games with transits without mixed
communication and with one environment player and a bounded number of system play-
ers by G1,b

s,◦|◦.
Note that the synthesis problem is undecidable for the complete (meaning non-local)

Flow-LTL logic, because reasoning about markings with LTL is allowed. In [MT02],
Madhusudan and Thiagarajan introduce a minimal set of constraints for the controller
synthesis in an asynchronous distributed setting with linear temporal specifications that
make the synthesis problem decidable. The restriction R1 of these constraints demands
a robustness of the specification in the sense that in case one linearization of an execution
satisfies the specification, also all other linearizations have to satisfy the specification.
This cannot hold for markings in a Petri net in general. See [TH96] for more details
on temporal logics that are robust in this sense. Furthermore, [FGHO22] shows that
for Petri games with one environment and two system players already a specification
consisting of a combination of good and bad markings is undecidable.

157

12Synthesis of Distributed Systems with

Local Data Flows

In this section we present a procedure for deciding whether a safe Petri game with
transits G = (A, WIN) with arena A = (PS,PE,T,F,Υ, In) and one environment
player, a bounded number of system players, and without any mixed communication
has a winning strategy for the system players and create one if it exists. This procedure
consists of four steps:

1. The information flow game G(A) = (A(A), BUCHI(V1)) with arena A(A) =
(V, V0, V1, E, I) is created to answer the question whether there exists a strategy
for the system players in G with the general requirements justified refusal, deter-
minism, and deadlock-avoidance. This game is a two-player Büchi game over a
finite graph. The intricate causal memory model of G is reduced to a model with
complete information by focusing on a scheduling where the moves of the single
environment player are delayed as long as possible. We show that player 0 has a
winning strategy in G(A) iff the system players have a strategy in G.

2. The deterministic transit automaton Λ(G) is created corresponding to the local
winning condition WIN of G. This automaton serves for checking whether a play π
is winning, i.e., π ∈ WIN. We introduce three kinds of transit automata. One for
the existential, one for the universal, and one for the local Flow-LTL specifications.
The acceptance conditions and sizes of the automata depend on WIN. The automata
track either the possibly infinite number of flow chains in the system in a finite
manner or guess and track only the desired one. We show that π ∈ WIN iff the
trace of each covering firing sequences of π is accepted by Λ(G).

3. The composition of the two-player Büchi game G(A) and the deterministic au-
tomaton Λ(G) yields the product game G(G). The winning condition of the re-
sulting two-player game G(G) depends on the acceptance condition of Λ(G). We
show that player 0 has a winning strategy in G(G) iff the system players have
a winning strategy in G. Solving G(G) for player 0 with standard game solving
algorithms results in a winning strategy σ|| as long as it exists.

4. Creating a Petri net while traversing the strategy tree of σ|| in breadth-first order
yields the winning strategy σ for the system players in G.

159

12 Synthesis of Distributed Systems with Local Data Flows

Petri Game
with Transits
G = (A, WIN)

2-Player Game:

Information
Flow Game
G(A)

Det. Transit
Automaton

Λ(G)

2-player
Büchi game

WIN Safety Reach. Büchi co-Büchi l. Flow-LTL
Exist. co-Büchi Reach. Parity co-Büchi Parity
Uni. Safety Büchi Büchi Parity Parity

Strategy σ|| of the
2-Player Game

G(G) = G(A) || Λ(G)

Strategy σ of the
Petri Game with Transits G

Local
Controllers

reduce

game
solving

extract
distribute

Fig. 12.1: An overview of the decision procedure for Petri games with transits and local
winning conditions. The Petri game with transits G = (A, WIN) is initially reduced to
the product of a two-player Büchi game G(A), representing the justified refusal, deter-
minism, and deadlock-avoidance properties of the strategy, and the deterministic transit
automaton Λ(G), representing the local winning property WIN of the data flow. The
different winning conditions of G result in different acceptance conditions of Λ(G). A
strategy σ|| for player 0 of the product game is obtained (if existent) by applying stan-
dard game solving techniques. This strategy is used to extract the winning strategy σ for
the system players of G. When the arena A is adequately annotated regarding which
places belong to which process, σ can be easily distributed into the local controllers of the
processes.

Figure 12.1 gives an overview of this process. Section 12.1 corresponds to the first step,
where we define the information flow game G(A) and show its relevant properties. In
Sec. 12.2 (corresponding to the second step), the existential, universal, and Flow-LTL
transit automata are defined and their expediency is shown. Section 12.3 corresponds
to the third step and introduces the product game G(G) and shows the complexity
for solving Petri games with transits with local winning conditions belonging to the
class G1,b

s,◦|◦. To make the reading experience more enjoyable, most proofs are swapped
to Sec. 12.4 and only proof sketches are incorporated in the other sections.

12.1 Information Flow Game

For a Petri game with transitsG = (A, WIN) with arena A = (PS,PE,T,F,Υ, In), one
environment player and a bounded number of system players, and without any mixed
communication, we create a two-player Büchi game G(A) = (A(A), BUCHI(V1)), called
the information flow game, with the game arena A(A) = (V, V0, V1, E, I). We show

160

12.1 Information Flow Game

that G has a strategy iff G(A) has, and that the strategies can be transformed into
one another. In Sec. 12.2 we define deterministic automata for the winning conditions
and show in Sec. 12.3 that the parallel composition of such an automaton with the
information flow game additionally maps the winning property of the strategies.
In the style of the two-player game presented in [FO17], the states of the information

flow game are markings of the Petri game with transits which are enriched with additional
information. Especially, each system player has a set of transitions (called commitment
set) from which the next transition is selected. After every move, these sets are chosen
by the system as early as possible to fix their next move. The key idea to mimick the
causal memory of the Petri game with transits with the complete information in the two-
player game is to delay the environment’s moves until all system players cannot progress
without the environment taking part in the next step (or will never interact with the
environment again, called type-2 behavior). In [FO17], such situations are called mcuts .
In an mcut, the environment’s last position is communicated to each system player
during their next move. By choosing the next commitment set directly after getting
new information of the environment and these commitment sets stay fixed until the
next communication with the environment (or a new one is directly chosen after moving
and before the next environment step), in an mcut each system player already took
their decision for their next move. So, despite directly revealing the environment move
to all players, no decision of the system for a next move is taken overly informed. Note
that here the restriction to one environment player is crucial to enable such a restricted
environment delaying scheduling. The locality of our properties and the restriction to
Petri games with transits without mixed communication ensure that no relevant behavior
is missed by only investigating a subset of all schedulings.

To account for the more intricate winning conditions based on the local data flow, we
employ two new techniques. First, we outsource the check of these conditions to separate
deterministic automata to prove the general properties of the strategies of the Petri game
with transits separately in the information flow game. This feature enables us to focus
on the winning property for the automata and to not prove the strategy properties for
each condition individually. In particular, this makes the framework very adaptable for
developing further winning conditions. Second, we incorporate the pure system behavior
(type-2 behavior) into the information flow game to provide winning conditions where
the satisfaction is based on a dependency on features inside and outside the type-2
behavior. For this purpose, we introduce two concepts: a generation identifier for each
system place in a marking of a state and a round robin identifier for each state. The
generation identifier indicates the level of informedness this player (if of type-2) will
ever have about the environment’s movements. These identifiers are used to ensure that
the causal memory model of the Petri game with transits is correctly mimicked in the
two-player game with complete information. Only the correct choice of the generations
allow the system players to win. The type-2 players are scheduled after every mcut with
a round robin procedure. For that we additionally save in each state (D,r, t) with the
round robin identifier r the position in this procedure and with t the transition (or the
special symbol > or τ) which led into this state. The so-called decision set D is such a
previously described enriched marking and is formally introduced in the next section.

161

12 Synthesis of Distributed Systems with Local Data Flows

12.1.1 States

The states in the information flow arena A(A) = (V, V0, V1, E, I) are three-tuples
(D,r, t) ∈ V where the first component D is called a decision set.

I Definition 56 (Decision Sets and Commitment Sets). For a given a Petri game with
transits with the arena A = (PS,PE,T,F,Υ, In) and the underlying Petri net N, the
set of all possible decision sets is defined as D = 2D with

D ={(p, 0, post (p)) ∈ PE × {0} × 2T} (12.1)
∪{(p, i, C) ∈ PS × {0, . . . , maxS} × (2T ∪ {>}) | C ⊆ post (p) ∨ C = >}

where maxS = max{|M ∩PS| ∈ N | M ∈ R(N)} is the maximal number of system
players simultaneously occurring in the game at any point in time.
For a a decision set D ∈ D an element (p, i, C) ∈ D is called a decision and C ∈

2T ∪ {>} is called a commitment set . J

For a decision set D ∈ D a decision (p, i, C) ∈ D denotes that a token resides on place
p ∈ P and the corresponding player commits to use one of the transitions occurring
in the commitment set for the next move if C ⊆ T or, if C = >, has to decide for a
commitment set before doing any further step. The generation of a type-2 typed place
is saved with i > 0, and i = 0 denotes that p is not a type-2 typed place. We call those
places type-1 typed. Transitions in a decision set that move only type-2 typed places
are called type-2 transitions (or of type type-2) and those moving only type-1 typed
places type-1 transitions (or of type type-1).
To retrieve the marking of a decision set , we define M : D → 2P, with D 7→ {p ∈

P | (p, ·, ·) ∈ D} to collect all places of a decision set. A transition t ∈ T is enabled
in a decision set D, written D{t〉, iff pre (t) ⊆ M(D). A transition t ∈ T is type-1
enabled in a decision set D, written D{t〉1, iff t is enabled in the to only type-1 typed
places restricted marking of D, i.e, pre (t) ⊆ {p ∈M(D) | ∃C ∈ 2T : (p, 0, C) ∈ D}. A
transition t ∈ T is type-2 enabled in a decision set D, written D{t〉2, iff t is enabled in
the to a specific generation restricted marking of D, i.e., ∃i ∈ N \ {0} : pre (t) ⊆ {p ∈
M(D) | ∃C ∈ 2T : (p, i, C) ∈ D}. This means for t being type-2 enabled we need
that all places in the preset belong to the same generation. Note that it suffices for a
transition t to be type-1 or type-2 enabled that each place of the preset of t occurs in
the decision set with the matching generation, as long as it has no > as commitment set.
A transition t ∈ T is chosen in a decision set D, written D(t〉, iff there is a place of t’s
preset in M(D) and none of them disallows t, i.e., pre (t)∩M(D) 6= ∅ ∧ ∀(p, i, C) ∈ D :
p ∈ pre (t) =⇒ t ∈ C. A transition t ∈ T is firable (generally, type-1, or type-2) in
a decision set D, written D[t〉 (D[t〉1 or D[t〉2, respectively), iff t is enabled (generally,
type-1, or type-2) and chosen. This means D contains all places of the preset of t (with
the same generation) and all of them have t in their commitment set. A decision set D
is nondeterministic iff ∃t1, t2 ∈ T : t1 6= t2 ∧ pre (t1) ∩ pre (t2) ∩PS 6= ∅ ∧D[t1〉 ∧D[t2〉.
Otherwise a decision set is deterministic. We retrieve a free generation of a decision
set D by freeG(D) = min{i ∈ N | (p, i, C) 6∈ D ∧ i 6= 0}.

162

12.1 Information Flow Game

The set of all decision sets which correspond to situations where the Petri game with
transits terminates is defined by TERM = {D ∈ D | ∀t ∈ T : ¬M(D)[t〉 ∧ ∀(·, ·, C) ∈
D : C 6= >}. We define sets of decision sets which correspond to bad situations in
the Petri game with transits, i.e., a deadlock occurred DL = {D ∈ D | ∃t ∈ T :
M(D)[t〉∧∀t ∈ T : ¬D[t〉} or nondeterminism has been encountered NDET = {D ∈ D |
D is nondeterministic}.

The states of the information flow arena are decision sets equipped with a round
identifier r ∈ {0, . . . , |T|} and with the responsible action t ∈ T ∪ {>, τ} that led
into the current state. The round identifier r saves the id of the next transition for
implementing a round robin scheduling for type-2 typed places. The identifier r = 0
schedules environment transitions, the other values identify transitions in a unique order.
The responsible action t is either the fired transition t ∈ T, > when a commitment set
was resolved, or τ for looping behavior in terminating or bad situations.

I Definition 57 (Information Flow Arena – States). Let O = {v ∈ D | ∀p ∈ P :
|{(p, ·, ·) ∈ v}| ≤ 1 ∧ |{(p, ·, ·) ∈ v | p ∈ PE}| = 1} × {0, . . . , |T|} × (T ∪ {τ,>}) be
the set of ordinary states, i.e., the states corresponding to markings of 1-bounded Petri
games with transits with one environment player. We define

• the set of all states : V = O ∪ {v�} with an error state v�, which is used for the
non-winning loops of the game,

• the set of player 1’s states :

V1 = {(D,r, t) ∈ V | D ∈ TERM ∨ (∀(p, i, C) ∈ D : C 6= > ∧
∀t ∈ T : (¬D[t〉1 ∨ ∅ 6= M(D) ∩PE ⊆ pre (t)))},

i.e., all terminating situations, or situations where the type-1 behavior of the
system can only proceed by involving the environment token, and

• the set of player 0’s states : V0 = V \ V1

of the information flow arena. J

Note that the V1 states correspond to situations in which the system’s decisions result
in the system being informed of the environment’s current position for each next type-1
typed transition involving a system player.
We define the function M : V → 2P for retrieving the corresponding marking of a state

of an information flow arena by v 7→
{

M(D) if v = (D, ·, ·) ∈ O

∅ otherwise .

I Example 15. Consider the Petri game with transits depicted in Fig. 9.1. A state v0

of the information flow arena A(A) corresponding to the initial marking (i.e., with
M(v0) = {E, I}) is for example v0 = ({(E, 0, {dm, dd}), (I, 0,>)}, 1,>). We have v0 ∈ V0

because it cannot be in TERM and also cannot satisfy the second disjunct due to the >.
However, the state v1 = ({(DM , 0, {cm}), (D, 0, C)}, 1, dm) with C ⊆ {cd} is a V1 state

163

12 Synthesis of Distributed Systems with Local Data Flows

because v1 ∈ TERM and v2 = ({(DM , 0, {cm}), (M, 0, C)}, 1, dm) with C ⊆ {cm} is a V1

state because for C = ∅ the system refuses to play any further (v2 ∈ DL), so especially
there is no type-1 typed transition fireable and, for C = {cm}, the only fireable transition
is cm which involves the environment. J

12.1.2 Edges and Game

For states that correspond to situations where the Petri game with transits has termi-
nated, we define a set of τ -loops LOOPS = {((D,r, t), τ, (D,r, τ)) ∈ V1 × {τ} × V1 |
D ∈ TERM} for accepting such situations. For states that correspond to undesired situ-
ations in the Petri game with transits, we define a set of bad states B = {(D,r, t) ∈
V | D ∈ DL ∪ NDET} and add a τ -step to the error state and non-accepting τ -loops
LOOPS� = {(v, τ, v�) | v ∈ B} ∪ {(v�, τ, v�)} to reject these situations.
The edge relation E of the information flow arena A(A) = (V, V0, V1, E, I) consists of

these loops and four different kinds of edges:

• Firstly, we define the set of edges SYS> that deals with system states V0 containing a
>-symbol. Here we have to decide on new commitment sets and have the option to
decide on the next generation of type-2 typed places in case we have not already
decided on a non-zero generation. Thus, the marking stays the same and all
combinations of possible transitions of the postset are allowed as a commitment
set for the places moved in the previous step. All places can decide whether they
are not type-2 typed at all or opt for the next free generation, if they have not
been assigned to one before. The round robin indicator is preserved and the lastly
used transition is set to > for the successor state:

SYS> = {((D,r, t),>, (D′,r,>)) ∈ V0 × {>} × V | ∃(p, i, C) ∈ D : C = > ∧
M(D) = M(D′) ∧ ∀(p, i, C) ∈ D : ∃(p, i′, C ′) ∈ D′ : (

C = > =⇒ C ′ ⊆ post (p) ∧
C 6= > =⇒ C ′ = C ∧
i = 0 =⇒ (i′ = 0 ∨ i′ = freeG(D)) ∧
i 6= 0 =⇒ i′ = i)}.

• Secondly, we define the set of edges SYS which handles the case of type-1 fireable
transitions t not synchronizing with the environment in a system state V0. The
markings of the decision sets reflect the firing of t. Since states that contain
a >-symbol have to resolve this symbol first, no decision set may contain a >-
symbol. For the successor’s commitment sets, we directly choose new transitions
for places of the postset of t, all others commitment sets are preserved as well as the
generations of the places. We only move type-1 typed places and have to preserve
their typing. Newly created tokens can only be type-1 typed, since otherwise the
places in the preset must have been not type-1 typed. These edges have nothing
to do with the round robin scheduling and thus, preserve the r indicator. The

164

12.1 Information Flow Game

successor’s last transition indicator t is set to the fired transition:

SYS = {((D,r, t), t, (D′,r, t)) ∈ V0 ×T × V | ∀(p, i, C) ∈ D : C 6= > ∧
pre (t) ⊆ PS ∧D[t〉1 ∧M(D)[t〉M(D′) ∧
∀(p′, i′, C ′) ∈ D′ : ((p′ ∈ post (t) =⇒ C ′ ⊆ post (p′) ∧ i′ = 0) ∧

(p′ 6∈ post (t) =⇒ (p′, i′, C ′) ∈ D))}

• Thirdly, we define the set of edges SYS2 that advances the type-2 typed places.
To achieve a fair scheduling of the tokens which can proceed without any future
interaction with the environment, we implement a round robin procedure. In
every V1 state we first check every transition t ∈ T with an index greater than
the current round robin identifier r once and allow the firing of the first transition
moving one generation not equal to zero. Since the SYS2 edges kind of remain
in V1 states (only with a >-resolving step in between), we can thereby fire one
round of type-2 typed transitions first and only afterwards, a transition moving
the environment token is allowed to fire (see the ENV edges). We define a function
nxt : {0, . . . , |T|}×D→ T∪{−} for choosing the next type-2 enabled transition
with

nxt(r, D) =

t if ∃i ∈ {r, . . . , |T|} : t = 〈T〉i−1 ∧D[t〉2

∧∀j ∈ {r, . . . , i} : ¬D[〈T〉j−1〉2
− otherwise

.

The symbol − indicates that there is no next type-2 enabled transition. We are
only allowed to advance when we found such a next transition and the priority is
not given to the environment (r 6= 0) or no environment transition is fireable at all.
Is this the case, the markings reflect the firing of the transition, the generations
are preserved, as well as commitment sets of places not involved in the firing of
the transition. The other commitment sets are chosen in the next step and thus,
are set to >. The last transition indicator of the successor is again set to the fired
transition. Note that the check whether t is type-2 fireable is done within the nxt
function:

SYS2 = {((D,r, t), t, (D′,r′, t)) ∈ V1 ×T × V | (r 6= 0 ∨ ¬∃t′ ∈ T : D[t′〉1) ∧
t = nxt(r, D) ∈ T ∧M(D)[t〉M(D′) ∧ ∀(p′, i′, C ′) ∈ D′ :

(p′ ∈ post (t) =⇒ (C ′ = > ∧ ∃p ∈ pre (t) : (p, i′, C) ∈ D) ∧
p′ 6∈ post (t) =⇒ (p′, i′, C ′) ∈ D) ∧

r′ =

{
r + 1 if nxt(r + 1, D′) ∈ T

0 otherwise }.

• Fourthly, we define the set of edges ENV starting in a player 1 state and treating
the progress of the environment token. In a V1 state, all system tokens which
are type-1 typed have moved as far as possible and need the environment token
to further progress. The markings of the decision sets reflect the firing of the

165

12 Synthesis of Distributed Systems with Local Data Flows

transition. For all not in the firing involved places everything is preserved. The
indicator for the last transition of the successor is set to the fired transition. This
case is selected iff one round of type-2 transitions have fired (i.e., r = 0), or there
is no type-2 fireable transition:

ENV = {(D,r, t), t, (D′,r′, t)) ∈ V1 ×T × V | (r = 0 ∨ ¬∃t′ ∈ T : D[t′〉2) ∧
D[t〉1 ∧M(D)[t〉M(D′) ∧
∀(p′, i′, C ′) ∈ D′ : p′ ∈ post (t) ∩PS =⇒ C ′ = > ∧ i′ = 0 ∧

p′ 6∈ post (t) =⇒ (p′, i′, C ′) ∈ D
∧ r′ = 1}.

Note that introducing the > and assigning those states to player 0 allows us to
guess the commitment sets and generations.

Note that the single sets of edges are disjunctive because SYS> and SYS start in V0 states,
whereas SYS2 and ENV start in V1 states. Furthermore, SYS> and SYS are disjunctive
due to the constraint of an existing >-symbol and the sets SYS2 and ENV are disjunctive
because t = nxt(r, D) ∈ T implies D[t〉2.
With these edges and the previously defined states, we can now define the information

flow game. Observe that different to Sec. 10.1, we define the game arena with an initial
state because we are only interested in plays starting in a state corresponding to the
initial marking of the Petri game with transits. Furthermore, we allow for labeled edges
to properly define the product automaton. All notions, such as plays or strategies, can
be directly adopted.

I Definition 58 (Information Flow Game). For a given Petri game with transits G =
(A, WIN) ∈ G1,b

s,◦|◦ with arena A = (PS,PE,T,F,Υ, In), the information flow arena
A(A) = (V, V0, V1, E, I) consists of a finite set of states V = V0∪V1, which are partitioned
into the states of player 0 and player 1 as defined in Definition 57. The edge relation
E ⊆ V ×(T∪{τ,>})×V is defined by E = {(v, t, v′) ∈ LOOPS∪ENV∪SYS∪SYS>∪SYS2 |
v 6∈ B} ∪ LOOPS� with the definitions stated above.
The initial state starts by letting the system players choose their commitment sets and

generations, by giving the priority to the SYS2 transitions, and by setting the indicator
for the last transition arbitrarily to >: I = (D, 1,>) with D = {(p, 0, C) ∈ P × {0} ×
(2T ∪ {>}) | p ∈ In ∧ (p ∈ PE =⇒ C = post (p)) ∧ (p ∈ PS =⇒ C = >)}.
The information flow game of G is defined as G(A) = (A(A), BUCHI(V1)) as the

information flow arena with a Büchi condition over the states of player 1. J

Each play of the information flow game G(A) induces a unique initial firing sequence
of A by focusing on the labels t ∈ T of the edge relation E ∈ V × (T ∪ {τ,>}) × V
(cp. Definition 60), because all edges either keep the marking or the successor marking
corresponds to the firing of a transition.
Note that each state in V has a successor because we add looping transitions with

LOOPS for terminating states and add a path to a non-winning loop with LOOPS� for

166

12.1 Information Flow Game

deadlocks. For all other states (D,r, t) there must be a fireable transition t ∈ T in
the corresponding situation in the Petri game with transits, i.e., M(D)[t〉. Each state
with a > has a SYS> successor. In all other cases, either D[t〉1 or D[t〉2 hold due to
not having a deadlock. For pre (t) ⊆ PS and D[t〉1, the edges SYS and otherwise either
SYS2 or ENV yield the successor. The nxt function does not make any harm in the latter
case. Initially and after the usage of each ENV edge, the priority is given to the type-2
edges (r = 1). If there is no transition with D[t′〉2, there is an ENV successor no matter
the state of r. Otherwise, there is a SYS2 successor because nxt(r, D) yields the first of
these transitions. For the successor, r is either increased when there is another type-2
transition with higher index in 〈T〉, or the priority is given to the ENV edges for the
successor state. If there is no fireable environment transition the SYS2 edges yield a
successor no matter the actual state of r.

The Büchi condition over the V1 states ensures that each system player has truthfully
chosen their generation. Incorrectly deciding for a generation not equal to zero results
in blocking the corresponding transition because a type-2 transition t can only fire,
when all tokens in the preset of t have the same generation. This has the same effect as
removing t from the system player’s commitment set. When there is no other fireable
transition, this results in a deadlock and for deadlocks there is only one edge into the
sink state v� ∈ V0. Untruly deciding to be type-1 typed results in plays infinitely
often visiting only V0 states due to the scheduling. We only reach a V1 state when
there is a type-1 transition that involves the environment (or in terminating situations).
Thus, a player that can infinitely long play without synchronizing indirectly or directly
with the environment and is marked as type-1 would infinitely long be prioritized by
the scheduling by using the SYS edges. Since we loop in terminating states and those
are V1 states, winning plays still cover terminating plays of the Petri game with transits.
Finally, for correct type-2 behavior, infinitely many V1 states are visited even when the
environment player terminated due to the round robin procedure.
We can unroll a strategy of an information flow game to obtain a strategy tree. We

inductively create the strategy tree, a finitely branching infinite tree Tσ = (T,ET , l, r)
with nodes T , labeled edges ET ⊆ T ×T ∪ {>, τ} × T , a labeling function l : T → V ,
and a root r ∈ T , from a strategy σinf : V ∗V0 → V as follows: The root is labeled with I,
i.e., l(r) = I. For each node vT ∈ T reached by the path labeled with Iwv ∈ V ∗ (or
for the special case vT = r, then v = I) with l(vT) = v, we add for each (v, t, v′) ∈ E a
child labeled with v′ if v ∈ V1 holds and add a unique child labeled with v′ = σinf(Iwv)
if v ∈ V0 holds. The labels of E are used as labels for the tree’s edges.

I Example 16. Figure 12.2 shows an extract of the information flow game G(A) for the
Petri game with transits depicted in Fig. 9.1 with two different winning strategies σ1

inf

and σ2
inf for player 0. The gray rectangles represent player 0’s states, whereas player 1’s

states are depicted white. Initially, a >-resolution step is made by using the SYS> edges.
Both branches, to the left as well as to right, can only lead to deadlocks, regardless of
the chosen generation, as the system chooses to block the only progressive transition i.
For reasons of clarity, we omit the step into the non-accepting sink v� for all bad states.
A good >-resolution results in v1 = ((E, 0, {dd, dm}), (I, 0, {i}), 1,>) ∈ V0. Note that

167

12 Synthesis of Distributed Systems with Local Data Flows

E,
(I, 0,>), 1,>

E,
(I, 1, ∅), 1,>

DM ,
(I, 1, ∅), 1, dm

DL

DD,
(I, 1, ∅), 1, dd

DL

E,
(I, 0, ∅), 1,>

DM ,
(I, 0, ∅), 1, dm

DL

DD,
(I, 0, ∅), 1, dd

DL

E,
(I, 0, {i}), 1,>

E,
(R, 0, ∅), 1, i

DM ,
(R, 0, ∅), 1, dm

DL

DD,
(R, 0, ∅), 1, dd

DL

E,
(I, 1, {i}), 1,>

1

E,
(R, 0, {m}), 1, i

3 E,
(R, 0, {d,m}), 1, i

NDET
E,

(M, 0, ∅), 1,m
DD,

(M, 0, ∅), 1, dd

TERM

DM ,
(M, 0, ∅), 1, dm

DL E,
(R, 0, {d}, 1, i

2

E,
(M, 0, {cm}), 1,m

DD,
(M, 0, {cm}), 1, dd

TERM
DM ,

(M, 0, {cm}), 1, dm

DM ,
(⊥M , 1, C),

1,>

4

DM ,
(⊥M , 0,>), 1, cm

DM ,
(⊥M , 0, ∅),

1,>

DL
DM ,

(⊥M , 0, {rm}), 1,>
DM ,

(R, 0, {d,m}), 1, rm

NDET

DM ,
(R, 0, ∅), 1, rm

DL
DM ,

(R, 0, {m}), 1, rm
DM ,

(M, 0, {cm}), 1,m

DM ,
(M, 0, ∅),

1,m

DL

DM ,
(R, 0, {d}), 1, rm

DM ,
(D, 0, ∅), 1, d

TERM
DM ,

(D, 0, {cd}), 1, d

TERM

>>

>
>

dm

dd

dm

dd

i

i

i

i

dm

dd

dm

dd

m

m

dddm

cm

> >

>

rm

rm

rm

m

dd

m

rmcm

Winning strategy σ1
inf Winning strategy σ2

inf

Fig. 12.2: An extract of the information flow game G(A) for the Petri game with transits
depicted in Fig. 9.1. The states of player 0 are depicted by gray rectangles and the states
of player 1 by white rectangles. The successors for the states labeled with 1 , 2 , 4 , as
well as the state v� and the non- and accepting loops are omitted for clarity. Similarly,
we omit the generations and commitment sets for the environment player. The successor
for state labeled by 1 lead into non-accepting behavior described in Example 16 and the
state labeled by 2 is symmetrical to the state labeled by 3 . The element labeled by 4

represents two states (one for C = ∅ and one for C = {rm}). The first state is a deadlock
and the successors of the other are described in Example 16. The orange shaded area
depicts two winning strategies for player 0. Both strategies start by following the black
thick arrows. The strategy σ2

inf ends by using the loop depicted by the dashed gray arrows.

168

12.1 Information Flow Game

we omit the generations and commitment sets in Fig. 12.2 for the environment player
because the generation is always zero and the commitment set is always the complete
postset. In v1 ∈ V0 only edges from SYS are possible. The successor states labeled with 2

and 3 are symmetrical in the sense that the system chooses either to use the drilling
or the milling tool, but the environment has not yet decided which tool is defective.
Thus, we omit all successors of the state labeled with 2 . In the good successor of the
state labeled with 3 , v2 = ((E, 0, {dd, dm}), (M, 0, {cm}), 1,m) ∈ V1, the system is as
advanced as it can be on its own. Even though r = 1, only edges from ENV are possible
because there are no type-2 typed transitions fireable. The orange shaded area together
with the solid thick black arrows and the dashed thick gray arrows depict infinitely
many winning strategies for player 0. Following the solid thick black arrows until state
v3 = ((DM , 0, {cm}), (⊥M , 0, {rm}), 1,>) ∈ V0, then finitely looping with the dashed
thick gray arrows, until leaving v3 with the solid thick black arrow yield infinitely many
winning strategies due to the not depicted τ -loops in all states in TERM. The strategy σ1

inf

directly leaves v3 without any looping, and σ2
inf never leaves v3 with solid thick black

arrows again. Both constitute positional winning strategies for player 0.
We also omit all successors for the state labeled by 1 in Fig. 12.2. Here the system

wrongly decides that the process in I will never synchronize with the environment again.
Apart from branches where the system chooses bad commitment sets and end in NDET

or DL, there still cannot be any winning successor. Regardless of the system’s decision
to mill or drill, one branch of a V1-state (the environment chose to destroy that very
tool) must eventually end in DL due to the token in DM or DD must be of generation
zero and the token in M or D must be of generation one, because the system can never
change the generation back. This is different for the states represented by the element
labeled by 4 . For C = ∅ we obtain a deadlock, but for C = {rm} we get the type-2
behavior corresponding to state v3. Here, the path corresponding to the gray dashed
arrows leads to a deadlock because the generations in DM and M also do not fit for
this path. However, the path corresponding to the thick black arrows leads to accepting
behavior and constitutes another winning strategy. J

12.1.3 Properties

In this section we provide core properties of the information flow game G(A) =
(A(A), BUCHI(V1)) with arena A(A) = (V, V0, V1, E, I) for a Petri game with transits
G = (A, WIN) ∈ G1,b

s,◦|◦ with arena A = (PS,PE,T,F,Υ, In). Especially, we show
the single exponential size of the arena and give a construction to create a strategy
σ = (Nσ, λσ) for the system players of G (not necessarily winning) from a winning
strategy σinf for player 0 of G(A) and vice versa and show their correspondence.
The size of the arena can be derived directly from the definition of its states (Defini-

tion 57) and the definition of the decision sets (Eq. 12.1). For the proof see page 187.

I Lemma 21 (Size of an Information Flow Arena). For a given arena A of a Petri
game with transits, the corresponding information flow arena A(A) is single-exponential
in the size of the underlying Petri net. J

169

12 Synthesis of Distributed Systems with Local Data Flows

We construct a strategy of the system players in a Petri game with transits from a
winning strategy of player 0 in the information flow game by defining a function σinf2pg.
This function inductively creates for a given winning strategy σinf : V ∗V0 → V a Petri net
Nσ = (Pσ,Tσ,Fσ, Inσ) and an initial labeling homomorphism λσ : Pσ∪Tσ → P∪T
by traversing the induced strategy tree Tσ of σinf in breadth-first order. In case an edge of
the tree is labeled with a transition t ∈ T, a fresh transition and places corresponding
to postA(t) are added to Nσ. The labeling function λσ maps the added nodes to its
originals. For creating the appropriate flow relation, we define a function c : T → 2Pσ

that assigns to each node of the tree Tσ a corresponding cut of Nσ. Finally, we use the
function gen : T → 2{0,...,maxS} to select a unique strategy for the type-2 case. Since σinf
can branch in V1 states, the type-2 typed processes must choose their successors equally
in all branches. Therefore, the function gen stores the generations for which a strategy
still has to be added. In V1 states, the construction selects exactly one successor that
is responsible for adding this strategy. We can show that the pair constructed by this
definition is a strategy (not necessarily winning) for the corresponding Petri game with
transits.

I Definition 59 (Constructing a Strategy for a Petri Game with Transits). Given a win-
ning strategy σinf : V ∗V0 → V for player 0 in G(A) and the corresponding strategy tree
Tσ = (T,ET , l, r). By traversing Tσ in breadth-first order, we step-wise create a Petri net
Nσ = (Pσ,Tσ,Fσ, Inσ), an initial labeling homomorphism λσ : Pσ ∪Tσ → P ∪T,
a cut mapping function c : T → 2Pσ , and a generation selecting function gen : T →
2{1,...,maxS}:

(IA): For the root r ∈ T we create a new place pσ ∈ Pσ in Nσ for each p ∈ M(l(r)) ⊆ P.
We map those new places with λσ to their originals and remember the created
cut Inσ with c. There is no generation, thus, we set gen(r) = ∅.

(IS): Consider an edge (vT , t, v
′
T) ∈ ET of the tree Tσ with l(vT) = (D,r, t) and l(v′T) =

(D′,r′, t′) for which we already considered the node vT .

Case t ∈ {>, τ}: Nothing is added to Nσ and the cut is copied, i.e., c(v′T) = c(vT).
Case t ∈ T: If D[t〉2 ⇒ i ∈ gen(vT) holds for the corresponding i ∈ {1, . . . , maxS}
with (p, i, ·) ∈ D for all p ∈ preA(t), a fresh transition t′ with λσ(t′) = t is
added and connected via Fσ to the previously created places P = c(vT) ∩ {p ∈
Pσ | λσ(p) ∈ preA(t)} as postset transition. Furthermore, we add a set of
fresh places P ′ with λσ(P ′) = postA(t) and |P ′| = |postA(t)| and connect them
via Fσ as the postset of t′. The new cut is defined via the firing equation of t′,
i.e., c(v′T) = (c(vT) \ P) ∪ P ′. Otherwise, we add nothing and copy the cut.

For the generation selecting function, we consider two cases:
Case l(vT) ∈ V1: For all selected generations, we choose exactly one successor, i.e.,
gen(v′T) = {i ∈ gen(vT) | ∀(vT , t′′, v′′T) ∈ ET : i 6∈ gen(v′′T)}.
Case l(vT) ∈ V0: The newly chosen generations are added to the selection, i.e.,
gen(v′T) = {i ∈ {1, . . . , maxS} | ∃p ∈ P : (p, 0,>) ∈ D ∧ (p, i, ·) ∈ D′) ∨ i ∈
gen(vT)}.

170

12.1 Information Flow Game

We define the function σinf2pg to map a given strategy σinf to the tuple (Nσ, λσ) created
by the construction above. J

We now show that such a Petri net Nσ and initial labeling homomorphism λσ is already
a deadlock-avoiding strategy σ = (Nσ, λσ) of the system players in G.

I Theorem 7 (Transferable Strategies: From Information Flow Game to Petri Game).
Given a Petri game with transits G ∈ G1,b

s,◦|◦ with arena A and a corresponding in-
formation flow game G(A). If player 0 has a winning strategy σinf in G(A) then
σ = σinf2pg(σinf) is a deadlock-avoiding strategy of the system players in G. J

Proof Sketch. That σ is a subprocess of an unfolding βU = (NU , λU) ofG directly follows
from Definition 59, where σ is created inductively by adding only fresh nodes according
to firing sequences inG and labeling them accordingly. The strategy does not restrict any
pure environment transition t ∈ TU with preU(t) ⊆ PU

E , because a winning play visits
infinitely many V1 states (especially left by ENV edges in case preU(t) ⊆ Pσ

E) and in a V1

state all successors have to be considered by Tσ. So a transition t ∈ TU with preU(t) ⊆
Pσ
E will eventually be added, i.e., t ∈ Tσ. The other condition of the justified refusal

property holds mainly because the two-player game does not consider any instances of
transitions and due to the restricted scheduling with choosing the commitment sets as
early as possible. The nondeterminism condition ensures that we do not reach another
cut containing the place p ∈ preU(t) ∩Pσ

S while allowing any instance of λU(t). Here
the restriction to Petri games with transits without mixed communication is crucial to
not miss any nondeterminism. By that the game forbids or allows all instances equally
in corresponding cuts. The strategy σ is deterministic because the nondeterminism
condition of the decision set ensures that there is no cut in the construction where two
transitions sharing a system place are enabled. Adding the transitions in different cuts
is impossible as a conflict would arise between the transitions. This cannot happen in
a branching process for transitions enabled in the same cut. For transitions moving
only type-2-typed places, the selection of exactly one successor in each branching state
ensures the determinism property. The strategy σ is deadlock-avoiding because there
cannot be any infinite >-loops due to E and τ -loops can only stem from situations
where also the unfolding terminates. For all other edges the construction also adds the
transitions. Only in case of type-2 transitions. There, the transitions are only added for
one branch. Since such transitions are independent of the branching of the environment,
we still do not deadlock. For more details see the proof on page 187.

For the other direction we define a function σpg2inf which maps a given deadlock-avoiding
strategy σ = (Nσ, λσ) of the system players in a Petri game with transits G ∈ G1,b

s,◦|◦
with arena A to a winning strategy σinf of player 0 in the two-player game G(A). For
that, we first define a function creating a sequence of transitions from a prefix of a play
or a complete play of G(A).

I Definition 60 (Transitions of a Play). We define the function fs : V ∗∪V ω → T∗∪Tω

inductively with fs(ε) = ε and fs(wv) =

{
fs(w) · t if v = (D,r, t) and t ∈ T

fs(w) otherwise . J

171

12 Synthesis of Distributed Systems with Local Data Flows

By that, we obtain an initial firing sequence of the Petri game with transits for all plays
of the information flow game. Note that for infinite plays, the corresponding sequence of
transitions may be finite due to the τ -loops. For the construction of the strategy σinf for
the information flow game from a deadlock-avoiding Petri game with transits strategy σ,
we use the notion of whether a system place p ∈ Pσ

S will ever receive new information
about the environment again, i.e., type(p) = 2 iff ∀pE ∈ Pσ

E : pE 6≤ p =⇒ ∀x ∈
futσ(p) : pE 6≤ x ∧ |futσ(p)| =∞.
The intuition of the definition of σinf : V ∗V0 → V is that we focus on mapping

words πinf that are plays of G(A) and where fs(πinf) corresponds to a covering firing
sequence of a play conforming to σ. In all other situations we choose an arbitrary
successor. Since all input words end in V0 states, we choose the successors according
to SYS> and SYS edges and choose the only ambiguous elements, i.e., the generations
and the commitment sets according to σ.

I Definition 61 (Constructing an Information Flow Strategy). For a given deadlock-
avoiding strategy σ = (Nσ, λσ) and the corresponding information flow game G(A) =
(A(A), BUCHI(V1)) with arena A(A) = (V, V0, V1, E, I), we define a function σinf :
V ∗V0 → V .
Given a word πinf = v0 · · · vnv ∈ V ∗V0. If πinf is not a prefix of a play in G(A), we
choose an arbitrary successor according to E. Otherwise:
If v ∈ B ∪ {v�}, there is only the error state v� as successor, i.e., σinf(πinf) = v�.
Otherwise, v = (D,r, t).
If there is no cut C ⊆ Pσ which is reached from the initial cut Inσ by step-wise firing the
transitions t ∈ Tσ corresponding to the sequence fs(πinf) of the prefix of the play πinf,
we can again choose an arbitrary successor. Otherwise:
If there exists a (p, i,>) ∈ D, we define σinf(πinf) = (D′,r,>) = v′ such that
(v,>, v′) ∈ SYS> and for all (p, i, C) ∈ D there is a (p, i′, C ′) ∈ D′ with

C ′ =

{
λσ(postσ(pσ)) if C = >
C otherwise and i′ =

freeG(D) type(pσ) = 2 ∧ i = 0
i i 6= 0
0 otherwise

for pσ ∈ C with λσ(pσ) = p.
Otherwise, we choose one of the system transitions tσ ∈ Tσ with preσ(tσ) ⊆ Pσ

S

and C[tσ〉C′ that must exists due to C corresponding to v ∈ V0 \B and thus, cannot be
terminating or deadlocking. We define σinf(πinf) = (D′,r, t) = v′ with t = λσ(tσ) such
that (v, t, v′) ∈ SYS and for all p′ ∈ postA(t) there is a (p′, 0, C ′) ∈ D′ with

C ′ = λσ(postσ(pσ))

for pσ ∈ C′ with λσ(pσ) = p′.
We define the function σpg2inf to map a given deadlock-avoiding strategy σ = (Nσ, λσ)

to the function σinf created by the construction above. J

We now show the function σinf is already a winning strategy of player 0 in the information
flow game.

172

12.2 Transit Automata

I Theorem 8 (Transferable Strategies: From Petri Game to Information Flow Game).
Given a Petri game with transits G ∈ G1,b

s,◦|◦ with arena A and a corresponding informa-
tion flow game G(A). If the system players have a deadlock-avoiding strategy σ in G

then σinf = σpg2inf(σ) is a winning strategy of player 0 in G(A). J

Proof Sketch. The function σinf is a strategy because it defines successors for V0 states
and in all cases the definition either fits to the successor definition of the edges SYS>,
SYS, or LOOPS�, or an arbitrary successor is chosen. The strategy σinf is winning because
for all plays conforming to σinf the sequence fs(πinf) corresponds to an initial firing
sequence in A and thus, each state corresponds to a cut C of Nσ. With that we
can show that the non-accepting sink v� ∈ V0 is avoided by every play, because σ is
deterministic and deadlock-avoiding. To avoid the case where we deadlock due to a non-
uniform assignment of generations to places in the preset of the necessary transition,
it is crucial that whenever a >-symbol is resolved, all places in the successor decision
set can choose a new generation in case they had been of generation zero before. This
is exploited by the constructed strategy σinf by uniformly choosing the generations
according to Nσ. Finally, we can show that it is not possible that πinf still does not
visit infinitely many V1 states, even though it avoids v� ∈ V0 and loops in V1 states for
terminating situations, because then we would haven chosen wrong generations, which
however happens correctly according to σ. For more details see the proof on page 193.

12.2 Transit Automata

With the information flow game we have a procedure to check the existence of a strategy
for the system players in a Petri game with transits and create one if it exists. In this
game the general properties of a strategy, i.e., being a subprocess of the unfolding, the
causality, the determinism, the justified refusal, and the deadlock-avoidance is covered.
In this section we introduce three kinds of transit automata which, triggered by firing
sequences of the Petri game with transitsG, check whether the winning condition ofG is
satisfied. In the end, the parallel composition of the information flow game and a deter-
ministic version of the transit automaton creates a two-player game over a finite graph
with complete information that serves to decide whether there is a winning strategy for
the system players in a Petri game with transits and create one if it exists.

The general idea is that the automaton tracks for every situation of the game the
current flow chains. We create an existential transit automaton which nondeterministi-
cally guesses the relevant chain to check the existential winning conditions. Similarly,
we use a universal transit automaton which universally branches into all current chains
to check the universal winning conditions. Finally, we use the ideas of the existential
transit automaton to build the transit automaton used to check local Flow-LTL formu-
las with only places as atomic propositions. The challenge is to properly handle the
infinitely many flow chains which may exist due to the possibility of creating new chains
at any point during the game. Depending on the winning condition, the determinization
of the automaton or the special treatment of runs without chains leads in some cases to

173

12 Synthesis of Distributed Systems with Local Data Flows

a more expressive acceptance condition of the automaton in comparison to the winning
condition of the game. Table 12.1 gives on overview of this relation.

Tab. 12.1: The first row lists the types of winning conditions of a Petri game with
transits. The second and the third row shows for all but the last column the corresponding
acceptance conditions of the deterministic existential or universal transit automata. The
last column shows the acceptance conditions of the local Flow-LTL transit automata for
local Flow-LTL formulas with existential or universal flow subformulas.

Safety Reachability Büchi co-Büchi Parity Local Flow-LTL
Existential co-Büchi Reachability Parity co-Büchi Parity Parity
Universal Safety Büchi Büchi Parity Parity Parity

12.2.1 Existential Transit Automata

In this section, we define the transit automata used to check whether a Petri game with
transits is winning with respect to the existential safety, reachability, Büchi, co-Büchi,
and parity conditions. The automata for the corresponding universal conditions are
presented in Sec. 12.2.2 and the local Flow-LTL condition is considered in Sec. 12.2.3.
In its initial state, the existential transit automata guess the desired chain for the

winning condition and afterwards track this chain when triggered by transitions of the
Petri game with transits that extend the chain. To not accept a run of the automaton
for the existential safety condition that never starts tracking a chain, we have to switch
to a co-Büchi condition to avoid runs visiting the initial state infinitely often and adapt
the transition relation to loop in bad states. For the existential co-Büchi condition we
can just add the initial state to the co-Büchi states of the automaton to avoid accepting
these runs. For parity we can exclude this run by mapping the initial state to an odd
color.

I Definition 62 (Existential Transit Automaton (ETA)). For a given Petri game with
transits G = (A, WIN) with arena A = (PS,PE,T,F,Υ, In) and an existential local
winning condition WIN = ∃-W (W) with W ∈ {SAFE, REACH, BUCHI, COBUCHI, PARITY}
and W ⊆ PS ∪ PE respective W : PS ∪ PE → N, we define the nondeterministic
existential transit automaton (ETA) ΛWIN

∃ (G) = (T ∪ {>, τ}, S, s0,→, ACC) with the
states S = P]{s0} and the initial state s0. We use the relation →′ = guess] transit]
total] stutter ⊆ S × (T ∪ {>, τ})× S with

guess ={(s0, t, s) ∈ S ×T × S | (�, s) ∈ Υ(t)}
transit ={(s, t, s′) ∈ S ×T × S | (s, s′) ∈ Υ(t)}

total ={(s, t, s) ∈ S ×T × S | ¬∃s′ ∈ S : (s, t, s′) ∈ transit}
stutter ={(s, l, s) ∈ S × {>, τ} × S}

174

12.2 Transit Automata

to define the following transition relation → ⊆ S × (T ∪ {>, τ}) × S. The acceptance
condition ACC ⊆ Sω and → are dependent on the given winning condition WIN of the
Petri game with transits:

→ =

{
(→′ \(W ×T × S)) ∪ (W ×T ×W) if WIN = ∃-SAFE(W)
→′ otherwise

and

ACC =

COBUCHI({s0} ∪W) if WIN = ∃-SAFE(W)
REACH(W) if WIN = ∃-REACH(W)
BUCHI(W) if WIN = ∃-BUCHI(W)
COBUCHI({s0} ∪W) if WIN = ∃-COBUCHI(W)
PARITY(Ω) if WIN = ∃-PARITY(W)

with Ω = W ∪ {(s0, 1)}. J

The existential transit automaton is a nondeterministic automaton with at most |P|+1
reachable states. Note that the edges in the set total additionally include loops in the
initial state for all transitions t ∈ T. These are used to allow for the choosing of a later
created flow chain by skipping the tracking of the previous creations of the corresponding
instances of the starting transition. Thus, we can loop in the initial state s0 as long as
we do not want to track a chain. When tracking a chain has started, we can only loop
with transitions not extending the chain (or with > and τ). All other transitions have
to extend the chain, and it can nondeterministically be decided which of the possible
extensions of the chain should be tracked.

Tab. 12.2: References for determinizing nondeterministic word automata dependent on
the different acceptance conditions. The best algorithm of each construction causes an
exponential blow-up.

nondet. Safety Reach. Büchi co-Büchi Parity
det. Safety Reach. Parity co-Büchi Parity

[RS59] [RS59] [Saf88; Pit06; Sch09] [MH84]1 [Saf88; Pit06; SV14]

1 “When applied to universal Büchi automata, the translation in [MH84], of alternating Büchi automata
into NBW, results in DBW. By dualizing it, one gets a translation of NCW to DCW.” [BK09]

The determinizations of the transit automata yield the automata used for the product
automata in Sec. 12.3 to provide a decision procedure for Petri games with transits.
Table 12.2 gives an overview of results from the literature for the determinization of
nondeterministic word automata with different acceptance conditions. These results
together with the correspondence of the acceptance and the winning conditions in Defi-
nition 62 yield the corresponding entries of the second row of Tab. 12.1.

175

12 Synthesis of Distributed Systems with Local Data Flows

s0 R

M

D

⊥M

⊥D

>, τ,T >, τ,T \ {m, d}

>, τ,T \ {cm}

>, τ,T \ {cd}

>, τ,T

>, τ,T

rd

rm

i

m

d

cm

cd

Fig. 12.3: The ETA corresponding to the Petri game with transits depicted in Fig. 9.1
on page 141 for the existential safety condition ∃-SAFE({⊥M ,⊥D}).

I Example 17. In Fig. 12.3 the ETA ΛWIN
∃ (G) = (T∪{>, τ}, {s0, R,M,D,⊥M ,⊥D}, s0,

→, COBUCHI({s0}∪{⊥M ,⊥D})) for the Petri game with transits G = (A, WIN), depicted
in Fig. 9.1 on page 141, with WIN = ∃-SAFE({⊥M ,⊥D}) is shown. Since there are no
transitions branching the data flow, the only nondeterminism is present in the initial
state s0. J

We show that the acceptance of the constructed automata correspond to whether a
play of the corresponding Petri game with transits is winning. The first statement of
Lemma 22 shows that the acceptance of the automaton is independent of the ordering
of concurrent transitions of a covering firing sequence of a play. The second statement
shows that a play is winning iff all of its covering firing sequences are accepted by
the automaton. For that, we first define the sequence of transitions belonging to a
firing sequence ζ = M0[t0〉M1[t1〉M2 · · · of a play π = (NR

A , ρ) that stutters with τ -
steps for finite firing sequences: σT(ζ) = ρ(t0)ρ(t1) · · · if ζ is infinite and σT(ζ) =
ρ(t0) · · · ρ(tn−1)τω if ζ = M0[t0〉 · · · [tn−1〉Mn is finite.

I Lemma 22 (Expediency of the ETA). Given a play π of a Petri game with tran-
sits G = (A, WIN) with an existential local winning condition WIN = ∃-W (W) with
W ∈ {SAFE, REACH, BUCHI, COBUCHI, PARITY}, then

(i) ∃ζ ∈ Z(π) : σT(ζ) ∈L(ΛWIN
∃ (G)) =⇒ ∀ζ ∈ Z(π) : σT(ζ) ∈L(ΛWIN

∃ (G)), and

(ii) π ∈ WIN ⇐⇒ ∀ζ ∈ Z(π) : σT(ζ) ∈L(ΛWIN
∃ (G))

hold. J

Proof Sketch. Property (i) easily follows from the construction of the automaton. Two
covering firing sequences of a run π only differ in the order of concurrent transitions.
All transitions have to occur in both covering firing sequences and the order of causally
dependent transitions must be preserved. Transitions extending a flow chain are causally
dependent and the ETA only allows state changes for transitions extending the chain.

176

12.2 Transit Automata

Hence, the runs of the automaton on words belonging to two covering firing sequences
of the same play only differ in finite looping and the concrete time points for the state
changes. Since the acceptance conditions are independent of these differences, all traces
of covering firing sequences are accepted when one trace is accepted.
For the completeness proof of Property (ii), i.e., direction “⇒”, we can focus on the
transitions extending the winning flow chain. These are again causally related and must
occur in every covering firing sequence in the same order. All other transitions of the
firing sequence may only enforce finite loops in the states corresponding to the places of
the chain. Since the adaption of the transition relation compensates the type change of
the acceptance condition for the ∃-SAFE(W) condition, it is easy to see that the winning
property on the places of the chain and the acceptance condition of the run of the
automaton coincide.
For the soundness proof, i.e., direction “⇐”, the acceptance condition for each ETA
enforces to leave the initial state s0 at some point, and thus, demands the existence of
a chain. State changes can only happen with transit in case the corresponding chain
can be extended, and, since total is disjoint to transit , no extending of the chain can be
missed. Since the states of the run and the places of the chain coincide, the constructed
chain satisfies the winning property, and therewith, the play is winning. For more details
see the proof on page 194.

I Example 18. Consider the two plays π1 and π2 depicted in Fig. 9.2 on page 142.
For play π1, there are the covering firing sequences ζ1 = {E, I}[dd〉{DD, I}[i〉{DD, R}
[m〉{DD,M}, ζ2 = {E, I}[i〉{E,R}[dd〉{DD, R}[m〉{DD,M}, and ζ3 = {E, I}[i〉{E,R}
[m〉{E,M}[dd〉{DD,M}. All traces σT(ζ1) = dd · i · m · τω, σT(ζ2) = i · dd · m · τω,
and σT(ζ3) = i · m · dd · τω are accepted by the ETA presented in Example 17 be-
cause we can loop in state s0 until letter i is read and change to state R. Then, we
possibly loop in state R again, until m is read, switch to state M , and loop there
forever. The trace σT(ζ3) corresponds to the respective play for the strategy σinf
depicted in Fig. 12.2 on page 168. Similarly, all traces of covering firing sequences
of play π2 are accepted. We only consider the trace of the covering firing sequence
ζ4 = {E, I}[i〉{E,R}[m〉{E,M}[dm〉{DM ,M}[cm〉{D′M ,⊥M}[rm〉{D′M , R′}[d′〉{D′M , D′}
corresponding to the respective play of σinf. For this trace σT(ζ4) = i·m·dm ·cm ·rm ·d·τω,
we have to loop in s0 additionally for the first creation of the chain (reading letter i).
Only after reading letter rm, we switch into state R and afterwards to state D, in which
we loop forever. J

12.2.2 Universal Transit Automata

Similarly to the ETA, the universal transit automaton (UTA) serves for checking whether
a Petri game with transits is winning with respect to the universal safety, reachability,
Büchi, co-Büchi, and parity condition. Instead of guessing and then tracking the desired
chain, the UTA tracks all chains when triggered by transitions by universally branching
for all new or branching data flow chains. To also accept branches that do not possess any
chain, we switch to a Büchi acceptance condition for the universal reachability condition,

177

12 Synthesis of Distributed Systems with Local Data Flows

mark the initial state as a Büchi state, and loop in the desired reachable states. For the
universal Büchi condition we can just add the initial state to the Büchi states to also
accept branches without any data flow chain. Mapping the initial state to an even color
solves this case for the parity condition.

I Definition 63 (Universal Transit Automaton (UTA)). For a given Petri game with
transits G = (A, WIN) with arena A = (PS,PE,T,F,Υ, In) and a universal local
winning condition WIN = ∀-W (W) with W ∈ {SAFE, REACH, BUCHI, COBUCHI, PARITY}
and W ⊆ PS ∪ PE respective W : PS ∪ PE → N, we define the universal transit
automaton (UTA) ΛWIN

∀ (G) = (T ∪ {>, τ}, S, s0,→, ACC) with the states S = P] {s0}
and the initial state s0. We use the relation →′ = guess] transit] total] stutter ⊆
S × (T ∪ {>, τ})→ B+(S) with

start ={(s0, t, B) ∈ S ×T × B+(S) | B = s0 ∧
∧

(�,s)∈Υ(t)

s}

transit ={(s, t, B) ∈ S ×T × B+(S) | ∃(s, s′) ∈ Υ(t) : B =
∧

(s,s′)∈Υ(t)

s′}

total ={(s, t, s) ∈ (S \ {s0})×T × B+(S) | ¬∃(s, t, ·) ∈ transit}
stutter ={(s, l, s) ∈ S × {>, τ} × B+(S)}

to define the following transition relation → ⊆ S × (T ∪ {>, τ}) → B+(S). The
acceptance condition ACC ⊆ Sω and→ are dependent on the given winning condition WIN

of the Petri game with transits:

→ =

{
(→′ \(W ×T × B+(S))) ∪ (W ×T ×W) if WIN = ∀-REACH(W)
→′ otherwise

and

ACC =

SAFE(W) if WIN = ∀-SAFE(W)
BUCHI({s0} ∪W) if WIN = ∀-REACH(W)
BUCHI({s0} ∪W) if WIN = ∀-BUCHI(W)
COBUCHI(W) if WIN = ∀-COBUCHI(W)
PARITY(Ω) if WIN = ∀-PARITY(W)

with Ω = W ∪ {(s0, 0)}. J

In the initial state, the automata loop for all transitions that do not start any chain
because the conjunction over an empty set resolves to true. Whenever a transition starts
a chain, a new branch for every starting chain is created tracking this chain. Additionally,
another branch is started that remains in the initial state to wait for further chains to
be started later in the game. Again we loop with > and τ and with all transitions not
forwarding the local data flow.
To obtain a deterministic automaton, we can first dualize, determinize, and then again

dualize the automaton. Dualizing an alternating automaton means interchanging the

178

12.2 Transit Automata

conjunctions and disjunctions of the transition relation and using the complement of
the acceptance condition. Hence, for a universal automaton the dualization yields a
nondeterministic automaton. So, for a UTA ΛWIN

∀ (G) = (T ∪ {>, τ}, S, s0,→, ACC) the
dual automaton is the nondeterministic automaton Λ̃WIN

∀ (G) = (T∪{>, τ}, S, s0, →̃, Sω \
ACC). Muller and Schupp show that the dual automaton accepts exactly the complement
language [MS87]. Thus, L(Λ̃WIN

∀ (G)) = L(ΛWIN
∀ (G)). Using determinizing techniques

(see Tab. 12.2) yields a deterministic automaton Λ with L(Λ̃WIN
∀ (G)) = L(Λ). Finally,

dualizing a deterministic automaton does not change anything for the transition relation.
Thus, dualizing Λ yields a deterministic automaton Λ̃ with the complement acceptance
condition andL(Λ̃) = L(Λ). Hence, L(Λ̃) = L(ΛWIN

∀ (G)). Table 12.3 gives an overview
of the transformations of the acceptance conditions. Note that the last row fits the last
row of Tab. 12.1.

Tab. 12.3: Correspondence of the acceptance conditions of the universal transit automa-
ton ΛWIN

∀ (G), its dual automaton Λ′ (nondeterministic), the deterministic version Λ of Λ′,
and its dual automaton Λ̃ (deterministic) with respect to the winning condition ∀-W (W)
of the Petri game with transits G.

∀-W (W) Safety Reachability Büchi co-Büchi Parity

ΛWIN
∀ (G) Safety Büchi Büchi co-Büchi Parity

Λ̃WIN
∀ (G) Reachability co-Büchi co-Büchi Büchi Parity

Λ Reachability co-Büchi co-Büchi Parity Parity
Λ̃ Safety Büchi Büchi Parity Parity

By applying the dualization techniques to the edges and the acceptance sets of the
existential and universal automata, we can easily show the following correspondence of
these automata. For more details see the proof on page 196.

I Lemma 23 (Dualization). Existential and universal transit automata are dual to one
another: ΛW̃IN

∃ (G) = Λ̃WIN
∀ (G) and ΛW̃IN

∀ (G) = Λ̃WIN
∃ (G). J

Similarly as for the existential transit automata, we can show that the acceptance of
the universal transit automata fit to the winning conditions of the corresponding Petri
game with transits. This result is mainly due to the corresponding lemma for the ETA
(Lemma 22) by exploiting the dualization relation (Lemma 23).

I Lemma 24 (Expediency of the UTA). Given a play π of a Petri game with tran-
sits G = (A, WIN) with an universal local winning condition WIN = ∀-W (W) with
W ∈ {SAFE, REACH, BUCHI, COBUCHI, PARITY}, then

(i) ∃ζ ∈ Z(π) : σT(ζ) ∈L(ΛWIN
∀ (G)) =⇒ ∀ζ ∈ Z(π) : σT(ζ) ∈L(ΛWIN

∀ (G)), and

(ii) π ∈ WIN ⇐⇒ ∀ζ ∈ Z(π) : σT(ζ) ∈L(ΛWIN
∀ (G)) holds. J

179

12 Synthesis of Distributed Systems with Local Data Flows

Proof. Since the ETA and the UTA are dual, this lemma directly follows from Lemma 22.
For Property (i) we show the contraposition. Let ζ ∈ Z(π) be the existing covering firing
sequence of π with σT(ζ) 6∈ L(ΛWIN

∀ (G)). Hence, σT(ζ) ∈ L(ΛWIN
∀ (G)) = ˜L(ΛWIN

∀ (G))

due to the definition of the dualization. Lemma 23 yields σT(ζ) ∈ L(ΛW̃IN
∃ (G)) and

Property (i) of Lemma 22 yields ∀ζ ∈ Z(π) : σT(ζ) ∈ L(ΛW̃IN
∃ (G)). Thus, ∀ζ ∈ Z(π) :

σT(ζ) 6∈ L(ΛW̃IN
∃ (G)) = L(Λ̃W̃IN

∃ (G)) = L(ΛWIN
∀ (G)). For Property (ii) we can use the

same arguments: Due to the duality of the winning conditions, we know π ∈ WIN ⇐⇒
π 6∈ W̃IN. From Lemma 22 we know that this holds iff ∃ζ ∈ Z(π) : σT(ζ) 6∈L(ΛW̃IN

∃ (G)).

Thus, σT(ζ) ∈ L(ΛW̃IN
∃ (G)) = L(Λ̃W̃IN

∃ (G)) = L(ΛWIN
∀ (G)). Hence, Property (i) yields

the result for the first direction and since for the other direction the premise holds for
all firing sequences, it also holds for the special one.

I Example 19. The UTA corresponding to the Petri game with transits depicted in
Fig. 9.1 on page 141 with the universal safety condition ∀-SAFE({⊥M ,⊥D}) is very
similar to the automaton presented in Fig. 12.3 on page 176. The only differences are
that the acceptance condition changes to SAFE({⊥M ,⊥D}) and that in the initial state s0

there are only loops for all t ∈ T \ {i, rd, rm} and for each letter i, rd, and rm there is a
universal edge branching from state s0 into the states s0 and R.
We consider the traces σT(ζ3) = i ·m · dd · τω and σT(ζ4) = i ·m · dm · cm · rm · d · τω

of the covering firing sequences presented in Example 18 on page 177 of the plays π1

and π2 depicted in Fig. 9.2 on page 142. Both are accepted by the ETA corresponding
to the existential safety condition ∃-SAFE({⊥M ,⊥D}). For the universal safety condition
∀-SAFE({⊥M ,⊥D}), trace σT(ζ3) is still accepted because for the corresponding run there
is one branch looping in s0 and the other goes from R to M and loops there. So no
branch ever reaches ⊥M or ⊥D. For the trace σT(ζ4), however, we have the branch that
switches from s0 to R, then to M , then loops once for the letter dm, and with cm finally
reaches ⊥M . Hence, this branch violates the acceptance condition SAFE({⊥M ,⊥D}) of
the UTA. J

12.2.3 Local Flow-LTL

In this section the construction of a deterministic parity automaton ΛF-LTL(G) from a
Petri game with transits G = (A, Flow-LTL(ϕ)) with arena A = (PS,PE,T,F,Υ, In)
and a local Flow-LTL formula ϕ having only places as atomic propositions is presented.
The construction proceeds in six steps:

1. We transform the local Flow-LTL formula ϕ over atomic propositions AP = PE ∪
PS into a form ϕ′, where all occurrences of subformulas Aψ′i are substituted by
their equivalences ¬E¬ψ′i and all negations either occur within the scope of the
E-operator or are directly in front of it.

2. For each Eψi in ϕ′ that is not in the scope of a negation, we construct an NBA Aψi
with size 2O(|ψi|) that accepts all words satisfying ψi [VW94].

180

12.2 Transit Automata

3. We use the ideas of the ETA and the automaton Aψi to build an extended product
automaton ΛELTL

ψi
(G) that accepts a run whenever the guessed chain satisfies ψi.

4. For all subformulas ¬Eψi in ϕ′, we build the complement automaton ΛELTL
ψi

(G) of
the NBA ΛELTL

ψi
(G) at the cost of an additional exponent [Mic88; Saf88].

5. We build the intersections or unions of all these NBAs ΛELTL
ψi

(G) or ΛELTL
ψi

(G) with
respect to the operators ∧ or ∨ used in ϕ′ to combine the corresponding flow
subformulas. This can be done with a linear respective quadratic blow-up for each
operation [Cho74].

6. We determinize the NBA resulting from the previous step to obtain a DPA ΛF-LTL(G)
at the cost of another exponent [Sch09].

The first step can easily be done using De Morgan’s laws. For the second step, great
efforts have been made by many researchers to improve this translation of an LTL
formula ψi to a nondeterministic Büchi automaton Aψi (e.g., [SB00; GO01; GL02; ST03;
EWS05; BKRS12]). The third step employs the following definition of an adapted
product of a general version of the ETA of Definition 62 and the NBA Aψi of Step 2.
Note that we can straight-forwardly define the product, when ψi does not contain any
next operator or the system does not have any finite chains. In these cases, we can just
loop in the first component for transitions not extending the chain and either move the
second component corresponding to the stuttering in the current place (in case there is
no -operator) or also loop in the second component (in case there are no finite chains).
The additional states and edges are only necessary to cover the general case.

I Definition 64 (Single Flow-LTL Transit Automata). Given a Petri game with tran-
sits G = (A, Flow-LTL(ϕ)) with an arena A = (PS,PE,T,F,Υ, In) and a Flow-
LTL formula ϕ over atomic propositions AP = PE ∪ PS. Furthermore, let Aψi =
(AP , Q, q0,→, BUCHI(B)) be the NBA constructed from an LTL formula ψi of a flow
subformula Eψi of ϕ in Step 2.
We define the sets S = P] {s0} for tracking the chain, Ss = {ps | p ∈ P} for the

firing of infinitely many transitions not extending the chain, and Sc = {pc | p ∈ P}
for the firing of finitely many transitions not extending the chain. Then, the single
Flow-LTL transit automaton (SFTA) ΛELTL

ψi
(G) = (T ∪ {>, τ},S, (s0, q0), δ, BUCHI(B))

is defined with the set of states S = ((S] Ss] Sc) × Q)] {s�}, the transition relation
δ = init] transit] guessFin] potInfy] fin] error] stutter with

init = {((s0, q0), l, (s0, q0)) ∈ S ×T × S}
∪ {((s0, q0), t, (s′, q′)) ∈ S ×T × S | (�, s′) ∈ Υ(t) ∧ (q0, s

′, q′) ∈→}
transit = {((s, q), t, (s′, q′)) ∈ (S ×Q)×T × S | (s, s′) ∈ Υ(t) ∧ (q, s′, q′) ∈→}

181

12 Synthesis of Distributed Systems with Local Data Flows

guessFin = {((s, q), t, (s′, q)) ∈ (S ×Q)×T × S | ¬∃(s, ·) ∈ Υ(t) ∧ s′ ∈ {sc, ss}}
potInfy = {((s, q), t, (s, q)) ∈ (Sc ×Q)×T × (Sc ×Q) | s = pc ∧ ¬∃(p, ·) ∈ Υ(t)}

∪ {((s, q), t, (s′, q′)) ∈ (Sc ×Q)×T × (S ×Q) | s = pc ∧ (p, s′) ∈ Υ(t)

∧ (q, s′, q′) ∈→}
fin = {((s, q), t, (s, q′)) ∈ (Ss ×Q)×T × (Ss ×Q) | s = ps ∧ ¬∃(p, ·) ∈ Υ(t)

∧ (q, p, q′) ∈→}
error = {((s, q), t, s�) ∈ (Ss ×Q)×T × S | s = ps ∧ ∃(p, ·) ∈ Υ(t)}

∪ {(s�, l, s�) | l ∈ T ∪ {>, τ}}
stutter = {((s, q), l, (s, q′)) ∈ S × {τ} × S | (q, s, q′) ∈→}

∪ {((s, q), l, (s, q)) ∈ S × {>} × S},

and the acceptance set B = (S \ ({s0} ∪ Sc))×B. J

Again, the SFTA can nondeterministically guess the desired chain in its initial state with
the init edges. It can only leave the initial state when a chain is started. For transitions
extending the chain, the transit edges track the chain and trigger the automaton Aψi
checking the LTL formula ψi accordingly. For transitions not extending the chain, the
automaton guesses nondeterministically with the guessFin edges whether no transition
is ever extending the chain again (states Ss×Q), or only finitely many concurrent tran-
sitions are fired, before another transition extending the chain fires (states Sc×Q). For
the second case the potInfy edges are used. In this case, the automaton loops with
transitions not extending the chain. Thus, it also does not trigger the automaton Aψi .
Furthermore, it returns into the tracking mode as soon as another transition extend-
ing the chain is fired. Here, also the automaton Aψi is triggered to process the next
state of the chain. In the other case the automaton stutters with the fin edges on the
last place of the chain and the automaton Aψi is triggered accordingly for transitions
not extending the chain. In case the automaton guessed wrongly and there is another
transition extending the chain, the edges error are used to change into a non-accepting
sink state. Stuttering with the stutter edges covers the infinite stuttering for finite runs,
where the the automaton Aψi is triggered and the finite stuttering with >-edges, where
the automaton is not triggered.
In Step 4 of the construction of the transit automaton checking a local Flow-LTL

formula, we build the complement automaton ΛELTL
ψi

(G) of the NBA ΛELTL
ψi

(G) for all
subformulas ¬Eψi in ϕ′. The optimal construction is exponential in the size of the input
automaton [Mic88; Saf88; Kla91; KV01b].
In Step 5 of the construction, unions and intersections of these automata are build

according to the disjunctions and conjunctions in the transformed local Flow-LTL for-
mula ϕ′. Thus, we define the automaton ΛF-LTL

ϕ′ (G) inductively:

ΛF-LTL
ϕ′ (G) =

ΛELTL
ψ (G) if ϕ′ = Eψ

ΛELTL
ψ (G) if ϕ′ = ¬Eψ

ΛF-LTL
ϕ1

(G) ∩ ΛF-LTL
ϕ2

(G) if ϕ′ = ϕ1 ∧ ϕ2

ΛF-LTL
ϕ1

(G) ∪ ΛF-LTL
ϕ2

(G) if ϕ′ = ϕ1 ∨ ϕ2

182

12.2 Transit Automata

where we consider the subformulas Eψi and ¬Eψi as atoms. Since NBA are closed
under union and intersection, ΛF-LTL

ϕ′ (G) is still a nondeterministic Büchi automaton.
Furthermore, the union of two NBA with n1 and n2 states result in an NBA having
n1 + n2 states and the intersection yields an NBA with 2n1n2 states [Cho74]. Thus, the
number of states of ΛF-LTL

ϕ′ (G) is polynomial in the number of states of the automata
ΛELTL
ψi

(G) and ΛELTL
ψi

(G). Hence, it is single-exponential in |ψi| and polynomial in |G|
for specifications only having Eψi atoms and double-exponential in |ψi| and single-
exponential in |G| for specifications that also contains ¬Eψi subformulas.
Finally, determinizing the nondeterministic Büchi automaton ΛF-LTL

ϕ′ (G) yields the
Flow-LTL transit automaton (FTA) ΛF-LTL(G). This step results in a deterministic
parity automaton at the cost of another exponent [Sch09]. Note that we can spare
also an exponent when the specification only consists of ¬Eψi formulas. In this case,
we can first apply De Morgan to put the negation at the beginning of the formula
while interchanging the conjunctions and disjunctions. We then build the corresponding
intersections and unions of the NBA ΛELTL

ψi
(G), determinize the resulting NBA to a DPA

(costing one exponent), and only afterwards complement the DPA. The complementation
of a DPA can be done without any blow-up. However, the intersection and union of
DPA is exponential [Bok18], so applying this approach to the general case would also
add another exponent.
As for the other two transit automata, we can show that the acceptance of the FTA is

independent of the specific covering firing sequence of a play triggering the automaton
and that the winning property of a play corresponds to the acceptance of the automaton.

I Lemma 25 (Expediency of the FTA). Given a play π of a Petri game with tran-
sits G = (A, Flow-LTL(ϕ)) with a local Flow-LTL ϕ with only places as atomic proposi-
tions, then

(i) ∃ζ ∈ Z(π) : σT(ζ) ∈L(ΛF-LTL(G)) =⇒ ∀ζ ∈ Z(π) : σT(ζ) ∈L(ΛF-LTL(G)), and

(ii) π ∈ Flow-LTL(ϕ) ⇐⇒ ∀ζ ∈ Z(π) : σT(ζ) ∈L(ΛF-LTL(G))

holds. J

Proof Sketch. Since the acceptance of a word of ΛF-LTL(G) boils down to the acceptance
of the single Flow-LTL transit automata ΛELTL

ψi
(G), it suffices to show that these au-

tomata satisfy the properties. Property (i) can be shown analogously to the proof of
Lemma 22 for the ETA. The automaton Aψi is only triggered for transitions extending
the chain or in case of a finite chain. No relevant state changes occur for transitions
not extending the chain and the ordering of these transitions are the only difference
of two covering firing sequences of a play. For Property (ii), we can also show both
directions similarly as in the proof of Lemma 22 for the ETA. We can create the desired
flow chain or the accepting run quite directly from the other. The triggering of the
automaton Aψi is done exactly corresponding to the trace of the flow chain. Since the
composition of ΛF-LTL(G) from the SFTA ΛELTL

ψi
(G) fits the composition of the formula

both directions directly follow from the properties of the SFTA. For more details see the
proof on page 196.

183

12 Synthesis of Distributed Systems with Local Data Flows

12.3 Decision Procedure

In this section we combine the two concepts presented in Sec. 12.1 and Sec. 12.2. Given
a Petri game with transitsG = (A, WIN) ∈ G1,b

s,◦|◦ with arena A = (PS,PE,T,F,Υ, In),
we create the information flow game G(A) = (A(A), BUCHI(V1)) with arena A(A) =
(V, V0, V1, E, I) and the deterministic transit automaton Λ(G) corresponding to the tran-
sits of A and the winning condition WIN. The parallel composition of those two elements
yields the product game G(G) = G(A) || Λ(G) serving to solve the initial question,
whether the system players of the Petri game with transits G have a deadlock-avoiding
winning strategy and calculating a strategy if it exists.

To have a uniform presentation, we consider all deterministic transit automata of
Sec. 12.2.1, Sec. 12.2.2, and Sec. 12.2.3 as special cases of deterministic parity automata,
regardless of their actual acceptance condition. The less expressive conditions can easily
be expressed as parity conditions. We denote these automata uniformly by Λ(G). For
the complexity results in Theorem 9, we come back to the actual conditions.

I Definition 65 (Product Game). Let G = (A, WIN) ∈ G1,b
s,◦|◦ be Petri game with tran-

sits with arena A = (PS,PE,T,F,Υ, In), G(A) = (A(A), BUCHI(V1)) be the cor-
responding information flow game with arena A(A) = (V, V0, V1, E, I), and Λ(G) =
(T ∪{>, τ}, S, s0,→, PARITY(Ω)) be the corresponding deterministic parity automaton.
We define the product game G(G) = (A, CONJ(PARITY(Ω1), PARITY(Ω2))) with arena
A = (V × S, V0 × S, V1 × S,→′, (I, s0)) with ((v, s), l, (v′, s′)) ∈ →′ iff (v, l, v′) ∈ E and
(s, l, s′) ∈ →, the parity functions Ω1 : V × S → N with

Ω1((v, s)) =

{
0 if v ∈ V1

1 otherwise ,

and Ω2((v, s)) = Ω(s). We abbreviate this construction by G(G) = G(A) || Λ(G). J

Note that we can end up with simpler winning conditions of the product game for simpler
winning conditions of the Petri game with transits. For example, for a universal Büchi
condition, we can use a generalized Büchi condition rather than a generalized parity
condition, which can be solved in polynomial time [BCGH+10; CH14; CDHL16] rather
than in NP∩ co-NP [CHP07; SSR08]. In fact, there is no need for the generalized parity
condition at all because a conjunction of a Büchi condition and a parity condition can
also be expressed with a single parity condition at the cost of an exponential blow-up
of the state space with respect to the number of colors (cp. the complexity proof on
page 200).

By projecting on the single components of a play and exploiting the results for the
information flow game and the transit automata, we can show that Petri games with
transits and local winning conditions are decidable.

I Lemma 26 (Reduction). For an arena A and a local winning condition WIN of a Petri
game with transits G = (A, WIN) ∈ G1,b

s,◦|◦, the product game G(G) = G(A) || Λ(G) has
a winning strategy for player 0 iff G has a deadlock-avoiding winning strategy for the
system players. J

184

12.3 Decision Procedure

Proof Sketch. For the completeness proof, i.e., direction “if”, we use Theorem 8 to obtain
a winning strategy σinf = σpg2inf(σ) of player 0 in the information flow game G(A) from
the deadlock-avoiding winning strategy σ of the system players in G. We can construct
a strategy σ|| for the product game by using σinf to define the successor v ∈ V of
the first component and by adding the successor of the second component according to
the deterministic decision of Λ(G) with respect to the label used in G(A) to reach the
successor v. We can show that σ|| is winning for player 0 by using that σinf is winning,
that Definition 61 ensures the correspondence of the edge labels of a play conforming
to σinf and a covering firing sequence of a maximal play π conforming to the winning
strategy σ, and using either Lemma 22, Lemma 24, or Lemma 25, to show the acceptance
of the trace of the firing sequence. Neither the finitely many >-labels distinguishing the
sequence of edge labels from the covering firing sequence do affect the acceptance of the
automaton, nor the possible τ -loops that can only occur infinitely often at the end of
the word prevent σ|| from being winning.
For the soundness proof, i.e., direction “only if”, we can create a winning strategy σinf
of G(A) from σ|| by focusing on the first component due to Λ(G) being deterministic.
Theorem 7 yields σ = σinf2pg(σinf) is a deadlock-avoiding strategy for the system players
of G. Due to Definition 59, all plays π conforming to σ have a covering firing sequence ζ
that corresponds to the selection taken by σinf. Thus, the word of the edge labels of
the corresponding play conforming to σ|| is accepted by the automaton. Since again the
>- and τ -labels does not make any harm, σT(ζ) is accepted. Hence, either Lemma 22,
Lemma 24, or Lemma 25 yield that π is winning and so, σ is winning. For more details
see the proof on page 199.

I Example 20. We proceed with the running example of Fig. 9.1 on page 141. Deter-
minizing the ETA of Example 17 results in a deterministic co-Büchi automaton with 97
states. However, we can still see that the winning strategy σ1

inf presented in Fig. 12.2
on page 168 of the information flow game corresponds to a winning strategy in the
product game, while the winning strategy σ2

inf does not. For σ1
inf, we have the words

w1 = > · i · m · dd · τω and w2 = > · i · m · dm · cm · > · rm · d · τω constructed from
the edge labels of the plays conforming to σ1

inf. For both sequences we can see, as in
Example 18 for the corresponding firing sequences ζ3 and ζ4, that the ETA accepts be-
cause the additional finitely many >-steps do not have any impact on the acceptance.
Observe that in this case the determinization of the automaton is crucial. Building the
product with the nondeterministic version enforces to choose whether to track the chain
started while firing transition i or not already at the moment i fires. This means that
the decision has to be taken before the environment destroys one of the tools. Hence, the
decision is taken for both plays uniquely. However, to have the word accepted, we need
to track the chain started with transition i for w1 and the chain started with transition
rm for w2. The deterministic version delays this decision from the point of the guessing
to the relevant point for the acceptance.
For σ2

inf, there is additionally to w1 the word w3 = >·i ·m ·dm ·(cm ·>·rm ·m)ω for the
second play conforming to σ2

inf. However, for this input word there is no accepting run of
the ETA because no matter which chain is tracked (either started with i or any instance

185

12 Synthesis of Distributed Systems with Local Data Flows

of rm), all will eventually reach ⊥M and the ETA loops in this state. Deciding to track
no chain, i.e., staying in s0 is also no possibility because s0 is part of the co-Büchi states.
Note that in this example the positional strategy σ1

inf already suffices for having a
winning strategy of the product game. In general, it might be necessary to use a loop
once, for example. Then, this strategy of the information flow game with memory may
result in a memoryless strategy in the product game because the necessary memory is
stored in the states of the automaton. J

This reduction provides the solving mechanism for Petri games with transits and local
objectives on their data flow. For the complexity, we simplify the generalized parity
winning condition CONJ(Ω1,Ω2) of the product game to a generalized Büchi, a parity,
or even a Büchi condition depending on the winning conditions of the Petri game with
transits, to provide faster solving algorithms and memoryless strategies. For local Flow-
LTL, the complexity depends on the type of specifications used for the local data flow
in the formula. Consider a local Flow-LTL formula ϕ in a form, where all negations
are within the scope of an E or an A operator. Then, we have a lower complexity in
case ϕ only contains E operators or only A operators. This means, it is easier to solve
games that have only existential requirements on the local data flow or only universal
requirements but no mixtures.
I Theorem 9. For a Petri game with transits G = (A, WIN) ∈ G1,b

s,◦|◦, answering the
question whether the system players have a deadlock-avoiding winning strategy is
EXPTIME-complete for all place-based winning conditions

WIN ∈ {∃-SAFE(S),∀-SAFE(S), ∃-REACH(S),∀-REACH(S),∃-BUCHI(S),∀-BUCHI(S),

∃-COBUCHI(S),∀-COBUCHI(S),∃-PARITY(Ω),∀-PARITY(Ω)}
with S ⊆ PS ∪PE and Ω : PS ∪PE → N.
For WIN = Flow-LTL(ϕ), for a local Flow-LTL formula ϕ with only places as atomic

propositions, answering the question is single-exponential in |A| and double-exponential
in |ϕ|, when ϕ only has existential local data flow specifications or only universal local
data flow specification. Otherwise it is double-exponential in |A| and triple-exponential
in |ϕ|.
In case a winning strategy for the system players exists, it can by constructed in single-

exponential time. J

Proof Sketch. Both, the ETA and the UTA are single-exponential in |A| due to the
determinization step. The information flow arena is also single-exponential in |A|. The
conjunction of the Büchi condition of the information flow game and the corresponding
acceptance condition of the transit automaton may result in a Büchi, a generalized
Büchi, or a parity condition. These games can be solve in polynomial time in the size of
the arena and possibly in single-exponential time in the number of colors. The numbers
of colors stemming from the reduction may also only be linear in |A|. For local Flow-
LTL the complexity directly follows from the size of the transit automaton. Due to
the property of such games having memoryless strategies, a finite representation of the
corresponding Petri game with transit strategy can be constructed as in Definition 59
in single-exponential time. For more details see the proof on page 200.

186

12.4 Proofs

12.4 Proofs

In this section we provide the proofs of the properties of the information flow game
(Sec. 12.1.3), of the transit automata (Sec. 12.2), and of the decision procedure for Petri
games with transits (Sec. 12.3).
For the properties of the information flow game, we start by showing the single-

exponential size of the arena.

Proof (Lemma 21: Size of an Information Flow Arena): Definition 57 and Eq. 12.1
yield that each state v ∈ V is a set of decisions from {(p, 0, post (p)) ∈ PE × {0} ×
2T} ∪ {(p, i, C) ∈ PS × {0, . . . , maxS} × (2T ∪ {>}) | C ⊆ post (p) ∨ C = >} equipped
with a round identifier in {0, . . . , |T|} and last transition in T ∪ {τ,>}. Since A is
1-bounded, there can only be k = maxS + 1 decisions in one set. We have at most
|P| · (maxS + 1) ·

(
2|T| + 1

)
≤ |P| · (maxS + 1) · 2 · 2|T| = n possible different decisions.

Since we consider sets of these decisions and A is 1-bounded, a reachable state must
be one of the combinations for drawing k decisions from the set of n possible decisions
without repetition and without considering the order. There are

(
n
k

)
≤ nk ways to do

so. Hence, there are at most
(
|P| · (maxS + 1) · 2 · 2|T|

)maxS+1 · (|T| + 1) · (|T| + 2) =

|P|maxS+1 · (maxS + 1)maxS+1 · 2maxS+1 · 2|T|·(maxS+1) · (|T|+ 1) · (|T|+ 2) possible reachable
states in A(A). �

We now show that the Petri net and the labeling function constructed in Definition 59
indeed represent a strategy of the given Petri game with transits.

Proof (Theorem 7: From Information Flow Game to Petri Game): Let G be a Petri
game with transits with arena A = (PS,PE,T,F,Υ, In) and σinf a winning strategy
of player 0 in the information flow game G(A) = (A(A), BUCHI(V1)) with its arena
A(G) = (V, V0, V1, E, I). We show that σ = σinf2pg(σinf) = (Nσ, λσ) is a deadlock-
avoiding strategy of the system players in G.
Subprocess: Firstly, we show that σ is a subprocess of an unfolding βU = (NU , λU)
of A. The subnet property can be easily seen by choosing the unfolding according to the
names of the newly created nodes in the construction. The flow relation also satisfies
the subnet property due to the construction only adding flows according to the original
flows. The correspondence of the labeling functions, i.e., λσ = λU|Pσ∪Tσ , follows from
having the same names and mapping the nodes to its origins in the construction.

To show that σ is an initial branching process, we first show that λσ is initial, i.e.,
λσ(Inσ) = In and λσ is a homomorphism. The induction anchor (IA) maps the, in this
step newly created, places pσ ∈ Pσ (stored as Inσ) for each p ∈ M(l(r)) = M(I) = In
to p. Hence, λσ(Inσ) = In holds. The construction satisfies the homomorphism property
for the type preserving of the nodes, because only places are mapped to places and
transitions to transitions, i.e., λσ(Pσ) ⊆ P and λσ(Tσ) ⊆ T holds. Also the pre-
and postset preserving feature is given because (IS) only connects the freshly added
transition t′ ∈ Tσ with λσ(t′) = t to places in its preset p ∈ Pσ with λσ(p) ∈ preA(t) =
preA(λσ(t′)). Hence, λσ(preσ(t′)) = preA(λσ(t′)) holds. The same holds for the postset

187

12 Synthesis of Distributed Systems with Local Data Flows

because (IS) only connects the newly created postset places P ′ = postσ(t′) such that
λσ(P ′) = postA(t) = postA(λσ(t)) and this is the only situation in the construction
where postset edges are added to transitions. Hence, λσ(postσ(t′)) = postA(λσ(t′))
holds. Furthermore, λσ is also injective on transitions with the same preset, i.e., ∀t1, t2 ∈
Tσ : (preσ(t1) = preσ(t2) ∧ λσ(t1) = λσ(t2)) ⇒ t1 = t2 holds. Assume there are two
different transitions t1 and t2 satisfying these properties. Then, these transitions can
only occur in different branches of the to σinf corresponding strategy tree Tσ because
in each step (IS) the new transition t′ is connected to the places in the corresponding
cut c(vT) and the successor cut is generated by creating fresh places in postσ(t′) and
by firing t′. Hence, preσ(t1) = preσ(t2) can only be satisfied for transitions in different
branches. But we cannot have two different transitions mapping to the same original
transition (λσ(t1) = λσ(t2)) in different branches while preserving the preset due to the
scheduling in the type-1 case, and due to adding the successor for one branch with gen

in the type-2 case. Thus, λσ satisfies the injective property.
To show that Nσ is an occurrence net we check that each place only has at most one

ingoing arc, i.e., ∀p ∈ Pσ : |preσ(p)| ≤ 1. In the construction, transitions are only added
to the preset of any place p ∈ Pσ in step (IS). Here, this is only done for the newly
created places. Thus, no two arcs could merge into the same place. There is also no
transition in self-conflict, i.e., ¬∃p ∈ Pσ : ∃t1, t2 ∈ postσ(p) : t1 6= t2 ∧ t1 ≤ t ∧ t2 ≤ t,
because we only add transitions occurring in the strategy tree Tσ and these transitions
belong to firing sequences in A. The construction only adds places and transitions
according to these firing sequences, and since each step only adds fresh nodes, there
is no possibility to have a place where a flow branches and these flows later merge
again. Moreover, there can be no self-loops, i.e., ∀x ∈ Pσ ∪Tσ : ¬(x < x) because the
construction only adds fresh nodes and adds only postset edges in (IS) to these newly
created nodes. Thus, we cannot get back with the flow relation to any previously added
node. This is similar for the infinitely decreasing sequence property. The construction
starts with fresh places in (IA), in each step, (IS) adds at most one transition to the
postset of the previously freshly created places, and again creates new fresh places in
the postset of this transition. Hence, starting in any node n ∈ Pσ ∪Tσ, there is no
infinite path following the flow relation Fσ backwards. Lastly, also the initial places are
the only ones which do not have any predecessor, i.e., Inσ = {p ∈ Pσ | preσ(p) = ∅}:
In (IS) each newly created place is connected via Fσ to the newly added transition t′.
Thus, all new places have this transition in their preset and therewith only the places
created in (IA) have no predecessor. Hence, in total σ is a subprocess of an unfolding βU
of A.
We now show that σ fulfills the three conditions justified refusal, determinism, and

deadlock-avoidance.
Justified Refusal: To show that the system players only refuse to play transitions of
the unfolding which are not violating the game play, i.e., they do not disallow pure
environment transitions and do not allow an instance of a transition for which they
already refused another instance in the same situation (place), we have to show that
∀t ∈ TU : t /∈ Tσ ∧ preU(t) ⊆ Pσ =⇒ ∃p ∈ preU(t) ∩Pσ

S : ∀t′ ∈ postU(p) : λU(t) =
λU(t′) =⇒ t′ /∈ Tσ holds. Let t ∈ TU . This means there must be a sequence of

188

12.4 Proofs

transitions with In[t0, t1, . . . , tn〉M such thatM [λU(t)〉. Due to the construction in Defi-
nition 59, we know that preU(t) ⊆ Pσ yields that all p ∈ preU(t) have been added via the
construction. We consider two cases: (i) there is no node vT ∈ T with preU(t) ⊆ c(vT)
and (ii) there is such a node.

Case (i): Since all places has been created, but there is no node still having all places in
the corresponding cut, there must be a transition t? ∈ Tσ which takes tokens of preU(t)
before all places p ∈ preU(t) are created in the construction. Thus, preσ(t?)∩preU(t) 6= ∅.
Let v?T ∈ T be the node where t? is added to the strategy and C? = c(v?T) the corre-
sponding cut. We denote the set of places in the preset of t created before the firing of t?
with Xpre = C?∩preU(t) and the ones which are later created with Xpost = preU(t)\C?.
We know that Xpost 6= ∅ because otherwise preU(t) ⊆ c(v?T). All places in Xpre∪preσ(t?)
are pairwise concurrent due to preσ(t?) ⊆ C?. Also all places in Xpost ∪preσ(t?) must be
pairwise concurrent, because otherwise either the places in Xpost are causally dependent
on the tokens used in the firing of t?, thus t could never be fireable and therewith t 6∈ TU ,
or the places are created in different branches and are depend on the branching, thus
again t 6∈ TU .
Assume ∃pE ∈ preσ(t?) ∩ Pσ

E. If t is of type-2, then t? is of type-2 with the same
generation because preU(t) ∩ preσ(t?) 6= ∅ and the firing relation D[t?〉 ensures no in-
tergenerational firing. Contradiction. Otherwise, l(v?T) ∈ V1 and t? is an environment
transition. Thus, all not type-2 typed system tokens must have maximally progressed
and are directly or indirectly dependent on t?. Hence, all places p ∈ Xpost depend on t?,
but preσ(t?) ∩ preU(t) 6= ∅, thus t cannot be fireable ergo t 6∈ TU . Contradiction.
So, preσ(t?) ⊆ Pσ

S . Thus, also preU(t) ⊆ Pσ
S must hold because otherwise there is a

system place p ∈ preσ(t?) ∩ preU(t) which allows mixed communication.
Assume ∀p ∈ preU(t) ∩ Pσ

S : ∃t′ ∈ postU(p) : λU(t′) = λU(t) ∧ t′ ∈ Tσ, which is
the negation of the conclusion of the justified refusal property. Since t only has sys-
tem places in its preset, each place in preU(t) and especially each place Xpost , has
such a transition t′ in its postset. Thus, consider a place p ∈ Xpost with transition
t′ ∈ postU(p) satisfying the conjunction. Assume t′ 6= t. Due to the injectivity property
of λU , we know preU(t) 6= preU(t′). Since |preU(t)| = |preσ(t′)|, there must be a place
p′ ∈ preU(t) \ preσ(t′) because t′ ∈ Tσ. The place p′ cannot be in Xpost because then p
and p′ would be concurrent and thus, p′ ∈ preσ(t′). Thus, p′ ∈ Xpre and especially
p′ ∈ C?. The place p′ cannot be in preσ(t?) because then p and p′ would be concurrent
and thus p′ ∈ preσ(t′). So p′ ∈ (C? ∩ preU(t)) \ preσ(t?) holds. This means p′ is already
existing in cut C? and is not stolen by t?. So either it is still in the cut where the
last place of Xpost is created and thus p and p′ are concurrent and again p′ ∈ preσ(t′).
Otherwise, there must be another transition t?2 taking p′ before all token of preU(t) are
created and we can start case (i) from the beginning with t?2. This can only be done
finitely often, due to the eventually creation of all place of preU(t). Contradiction. Thus,
t = t′ yields the final contradiction, because t 6∈ Tσ.

Case (ii): There is a node vT ∈ T with preU(t) ⊆ c(vT). Let l(vT) = (D,r, t) and thus,
preA(λU(t)) ⊆M(D).

189

12 Synthesis of Distributed Systems with Local Data Flows

Case preU(t) ⊆ Pσ
E: Since ∃p ∈ preU(t) ∩ Pσ

S is not satisfied, we have to show that
preU(t) ⊆ Pσ =⇒ t ∈ Tσ holds. There must be at least one successor reached by an
edge of SYS>, SYS, SYS2 or ENV for l(vT) because otherwise D would be a deadlock and
thus, σinf would not be winning.
Case l(vT) ∈ V1: Since l(vT) is a player 1 state, all successors have to be in σinf and must
be obtained via SYS2 or ENV. If r = 0 ∨ ¬∃t′ ∈ T : D[t′〉2, then there must be an edge
((D,r, t), λU(t), (D′,r′, λU(t))) ∈ ENV because D[λU(t)〉1 holds. Hence, Definition 59
yields t ∈ Tσ. Case r 6= 0 ∧ ∃t′ ∈ T : D[t′〉2. If r = 1, then nxt(r, D) will find this t′
(or first another t′′ ∈ T with D[t′′〉2) and there must be a SYS2 edge. For this edge
there is either another t′′ ∈ T with D[t′′〉2 and r′ is incremented or r′ = 0. This edge
does not move any token in preA(λU(t)) ⊆ PE because SYS2 edges only move system
tokens. Hence, for r′ = 0 we can move to the previous case and otherwise we are again
in this case with r > 1 (both after the >-resolution, see case below). If r 6= 1, then we
previously had to be in a state with r = 1 because I starts with r = 1, ENV only sets
r = 1, SYS2 only increments r (when it does not reset it), and there is no other situation
where r is set. Hence, there must be a transition t′′ ∈ T with t′′ = nxt(r, D). So, there
is again a SYS2 edge, and with the same arguments as above we are again either in the
previous or in this case. There cannot be an infinite sequence of only SYS2 and SYS>
edges always in the case r 6= 0 ∧ ∃t′ ∈ T : D[t′〉2 because the function nxt traverses
the finite and ordered list 〈T〉 in ascending order. So, eventually r is set to zero and
hence, t is eventually added to the strategy.
Case l(vT) ∈ V0: The one existing edge must be from SYS> or SYS. In both cases no to-
ken in preA(λU(t)) ⊆ PE is moved because SYS> edges do not move any tokens and SYS

edges move only system tokens. There cannot be infinitely many SYS> or SYS edges in
the future of vT without eventually reaching a node v′T ∈ T with l(v′T) ∈ V1 because
otherwise the Büchi condition would be violated and thus, σinf would not be winning.
Hence, we eventually end up in a node v′T ∈ T with l(v′T) ∈ V1 and preU(t) ⊆ c(v′T).
Case ∃p ∈ preU(t) ∩Pσ

S : Let t 6∈ Tσ, preU(t) ⊆ Pσ, and t′ ∈ postU(p) with λU(t) =

λU(t′) hold. We show that t′ 6∈ Tσ holds. Definition 59 yields that t 6∈ Tσ implies that
a) D[λU(t)〉2 but i 6∈ gen(vT) for the generation i corresponding to the firing of λU(t)
or b) for none of the nodes v′T ∈ T with preU(t) ⊆ c(v′T) there is a successor edge
(v′T , λ

U(t), v′′T) ∈ ET . We first show that case a) cannot happen, i.e., it is not possible
that there is a node in the tree with a decision allowing the firing of a type-2 transition,
but the transition does not occur in the strategy.
When λU(t) is type-2 fireable in D, there must have been previously a SYS> edge choos-
ing the generation i ∈ {1, . . . , maxS} and thus, the construction adds i to the generations
of the successor node. The generations are passed on in the construction to the suc-
cessors and only in nodes corresponding to V1 states exactly one successor is chosen.
All type-2 fireable transitions in states of a winning strategy are independent from the
branching in V1 states because they have proven to never depend on the environment
again (untruthfully deciding for the generation lead to loosing behavior in the two-player
game). Hence, there is another node v′T , with l(v′T) = (D′,r′, t′), where D′[t〉2 holds,
also i ∈ gen(v′T), and still preU(t) ⊆ c(v′T) is given. Hence, transition t is added to Tσ,

190

12.4 Proofs

which yields a contradiction. In case b) we consider two cases:
Case ¬D(λU(t)〉: There must be a p′ ∈ preU(t) ∩ Pσ

S with (λU(p′), ·, C) ∈ D with
λU(t) 6∈ C. W.l.o.g. p′ = p. As long as the token in p′ is not moved, no new commit-
ment set can be chosen. Hence, λU(p′) forbids all instances of λU(t) and thus, t′ 6∈ Tσ.
Case D(λU(t)〉: This means D[λU(t)〉 but is never fired. Thus, either there is an infinite
path in σinf that starts in l(vT) and is not taking any tokens of the preset of λU(t), or
there is a transition t? taking a token from preU(t), because otherwise a deadlock would
be encountered and σinf would not be winning. In the former case λU(t) is enabled
in every state v′T ∈ T of the infinite path and preU(t) ⊆ c(v′T) because no token of
the preset is taken. Hence, t′ 6∈ Tσ because p ∈ preU(t′) ∩ preU(t). In the latter case
t? 6= t′ because there cannot be two instances of the same transition λU(t) enabled in
the same cut of an unfolding of a 1-bounded Petri net. If t? takes the token of p, tran-
sition t′ 6∈ Tσ. Otherwise, t? takes a token residing in another place q 6= p ∈ preU(t).
If q ∈ PU

S then D would be nondeterministic and thus, σinf not winning. Contradiction.
If no system token is taken, thus q ∈ PU

E , then this node would correspond to a player 1
state. Thus, all postset edges would be considered in σinf and therewith t ∈ Tσ holds,
which also is a contradiction.

Determinism: To show that the strategy σ is deterministic, we show that there is no
cut in the strategy with a system place where two different transitions are enabled,
i.e., ∀p ∈ Pσ

S , C ∈ R(Nσ) : p ∈ C =⇒ ∃≤1t ∈ postσ(p) : preσ(t) ⊆ C. Assume,
there is such a place p ∈ Pσ

S and a cut C ∈ R(Nσ) with p ∈ C and two differ-
ent transitions t1, t2 ∈ postσ(p) with t1 6= t2, preσ(t1) ⊆ C, and preσ(t2) ⊆ C. Due
to the construction of σ in Definition 59, there must be two nodes vT1 , vT2 ∈ T with
preσ(t1) ⊆ c(vT1) and preσ(t2) ⊆ c(vT2) and, two edges e1 = (vT1 , λ

σ(t1), v′T1
) ∈ ET and

e2 = (vT2 , λ
σ(t2), v′T2

) ∈ ET , because t1, t2 ∈ Tσ must have been added to the strat-
egy. Let l(vT1) = (D1,r1, t1) and l(vT2) = (D2,r2, t2). Furthermore, we know that
if tx for x ∈ {1, 2} is type-2-firable, i.e., Dx[λ

σ(tx)〉2, then the corresponding generation
ix ∈ {1, . . . , maxS} is annotated to the node vTx , i.e., ix ∈ gen(vTx).
Case e1 < e2: Let e1 be a predecessor edge of e2. Since t1 has fired first and p ∈ preσ(t1),
the token on p is removed and can never be put back because σ is a branching process.
Hence, t2 cannot fire in any future of e1. Thus, t2 6∈ Tσ. Contradiction. The other
direction (e1 > e2) is analog.
Case e1 || e2: Let e1 be in a different branch than e2. The nodes vT1 and vT2 must
be different because otherwise D[t1〉 and D[t2〉 holds, and thus, D would be nonde-
terministic and therewith σinf not winning. Thus, vT1 6= vT2 . Let vTE ∈ T be the
last common predecessor of vT1 and vT2 with l(vTE) ∈ V1. Furthermore, let t′1 ∈ Tσ

be the environment transition leaving vTE and eventually leading to vT1 and t′2 ∈
Tσ be the one eventually leading to vT2 . They must be environment transitions be-
cause SYS2 and LOOPS cannot branch. Case t1 is of type-1, t2 of type-2: There is
a contradiction because p ∈ preσ(t1) ∩ preσ(t2) cannot be of type-1 and of type-2.
Case t1 and t2 are of type-2: Both transitions can only move tokens from the same
generation, lets say i ∈ {1, . . . , maxS}, because otherwise p ∈ preσ(t1) ∩ preσ(t2) must
belong to two different generations which is not possible. Thus, i ∈ gen(vT1)∩ gen(vT2).

191

12 Synthesis of Distributed Systems with Local Data Flows

But in their common predecessor vTE correspond to a player 1 state, i.e., l(vTE) ∈ V1, and
the construction in Definition 59 chooses exactly one successor branch for carrying the
generation i. Contradiction. Case t1 and t2 are of type-1: Since l(vTE) ∈ V1, transition
t′1 and t′2 move an environment token pE ∈ Pσ

E ∩ preσ(t′1) ∩ preσ(t′2). All type-1 transi-
tions in the branch starting with t′1 causally depend on the transition t′1, and all type-1
transitions in the branch starting with t′2 causally depend on t′2. Especially, transition t1
is dependent on t′1 and t2 is dependent on t′2. Since vT1 6= vT2 , we have t1 6= t′1 and
t2 6= t′2. Hence, t′1 < t1 and t′2 < t2 and therewith (t1] t2). But two conflicted transitions
can never be enabled in the same cut when they are not the source of the conflict (which
they are not due to the <). Contradiction.
Deadlock-Avoiding: For showing that σ is deadlock-avoiding we have to show that for
every reachable marking, if there is a transition enabled in the unfolding, there must
also be a transition enabled in the corresponding marking of Nσ: ∀C ∈R(Nσ) : (∃tU ∈
TU : preU(tU) ⊆ C) =⇒ (∃tσ ∈ Tσ : preσ(tσ) ⊆ C). Definition 59 constructs Nσ

inductively by traversing Tσ in breadth-first order and associates each node with the
corresponding cut. Thus, for each cut C ∈ R(Nσ) there is either a node vT ∈ T with
c(vT) = C or there must be a transition t? ∈ Tσ that takes a token from a place
p ∈ C before all places of C are created in the scheduling induced by σinf. In the
latter case preσ(t?) ⊆ C, because all places of C are still created by the construction
and C is a cut. This means their creation cannot be causally dependent on t?. In the
two-player game G(A) each state has a successor and so has the strategy tree Tσ. Let
(vT , t, v

′
T) ∈ ET be the existing edge in Tσ and e = ((D,r, t), t, (D′,r′, t′)) ∈ E the

corresponding edge in G(A).
Case t = τ : So, e ∈ LOOPS or e ∈ LOOPS�. If e ∈ LOOPS, thenD ∈ TERM, which means that
there is also no transition enabled in the unfolding. If e ∈ LOOPS�, then l(vT) ∈ B∪{v�}.
This means that this play ends up in an infinite loop of nodes v′′T , with l(v′′T) = v�. This
contradicts that σinf is winning.
Case t = >: So, e ∈ SYS> and c(vT) = c(v′T). There cannot be infinitely many consec-
utive successor states labeled with > because the successors for edges in SYS> cannot
contain any >. Thus, we consider v′T with cut C in another case.
Case t ∈ T: If D[t〉2 ⇒ i ∈ gen(vT) holds for the corresponding i ∈ {1, . . . , maxS} with
(p, i, ·) ∈ D for all p ∈ preA(t), then Definition 59 creates a transition tσ ∈ Tσ which
preset is contained in the current cut C. Hence, tσ is enabled in C. Otherwise, t is a tran-
sition only moving tokens of type-2 typed places of generation i 6= 0, but i 6∈ gen(vT).
Since once a generation i 6= 0 is chosen (only possible via an edge in SYS>), it can never
be changed again. Thus, there must be a node v′′T ∈ T in the past of vT that is a suc-
cessor of an edge in SYS> and i ∈ gen(v′′T). Since Definition 59 only does not copy the
generation to all successors in cases the node corresponds to a V1 state, there must be a
node v0

T ∈ T in between v′′T and vT with l(v0
T) ∈ V1 and where the next node on the way

to vT does not contain i but i ∈ gen(v0
T). This node must have another child vcT ∈ T

which is not in the past of vT but i ∈ gen(vcT) due to Definition 59 chooses exactly one
successor for the generation in V1 states. Since t with D[t〉2 is taken by an edge in ET
and σinf is winning, it proved to be correctly typed. This means that all tokens residing
in those places of C that correspond to preA(t) will indeed never synchronize directly or

192

12.4 Proofs

indirectly with the environment again (only with tokens from generation i). Hence, they
are independent of the firing of any environment transition in a V1 state. So, regardless
of how many branching points follow vcT , there is one branch where the nodes contain
the generation i and the tokens corresponding to generation i are independent of the
branching. Thus, either t itself must still be enabled in this branch or at least another
transition t′ moving tokens of generation i from the places in C must be enabled. Any
of these transitions must eventually be taken by an edge in ET , because σinf is winning
and thus, has no deadlock states, and the round robin procedure consecutively schedules
the transitions of the ordered set 〈T〉. Hence, eventually a transition tσ ∈ Tσ is added
to Nσ that moves the tokens of generation i of cut C. So, preσ(tσ) ⊆ C. �

We now show that also the other direction holds. This means we prove that the func-
tion σinf constructed in Definition 61 from a deadlock-avoiding strategy σ of the system
players in a Petri game with transits actually is a winning strategy of player 0 in the
corresponding information flow game.

Proof (Theorem 8: From Petri Game to Information Flow Game): The function σinf is
a strategy because it defines successors for V0 states and in all cases the definition either
fits to the successor definition of the edges SYS>, SYS, or LOOPS�, or an arbitrary successor
is chosen. For a play of G(A), in each case such an edge must always exist for V0 states.
We show that σinf is winning. Let πinf be a play of G(A) conforming to σinf. The

sequence fs(πinf) indeed corresponds to an initial firing sequence in A because all edges
either keep the marking or the successor marking corresponds to the firing of a transition.
Thus, each state of the play corresponds to a cut of an unfolding ofA. Even more, due to
Definition 61 choosing the successors according to the firing of a transition tσ ∈ Tσ, each
state corresponds to a cut C of Nσ. Since σ is deterministic and all plays conforming
to σinf choose every possible commitment set according to the postsets of the places in
the corresponding cut Ci, no state can have a decision set D ∈ NDET.
We show that for each vi ∈ V0 \B of πinf with successor vi+1 = σinf(vi) = (D′,r′, t′)

the decision set D′ 6∈ DL by contradiction. Assume D′ ∈ DL. Thus, it exists a transi-
tion t ∈ T such that M(D′)[t〉 but for all t′ ∈ T we have ¬D′[t′〉. Hence, D′ 6∈ TERM.
Since σ is deadlock-avoiding, there must be a transition tσ ∈ Tσ with Ci+1[tσ〉 for the
corresponding cut Ci+1. Hence, D′(λσ(tσ)〉, because in both cases of Definition 61 the
commitment sets of the successor vi+1 are chosen corresponding to all postset transitions
of the places in Ci+1. Thus, the only possibility for ¬D′[λσ(tσ)〉 is that there is some
place p ∈ preA(λσ(tσ)) having another generation than the others in D′. Since genera-
tions are only chosen by SYS> edges in a V0 state and can never be changed back when
once chosen to be unequal to zero, the different generations have to be chosen by the first
case in Definition 61 for some predecessor node of vi+1. However, whenever a >-symbol
is resolved, all places in the successor decision set can choose a new generation in case
they had been of generation zero before. For the constructed strategy σinf this choice
is uniformly done according to Nσ. Thus, the places in preA(λσ(tσ)) cannot belong to
different generations. Contradiction. Since I ∈ V0 \ B due to the >-symbol, and all
successors of V1 states that are reached while moving system tokens have a >-symbol,

193

12 Synthesis of Distributed Systems with Local Data Flows

thus are in V0 \ B, we know that no state with a decision set in DL can occur in πinf.
Thus, πinf avoids the non-accepting sink v� ∈ V0.
Assume πinf still does not visit infinitely many V1 states. In terminating situations

we loop infinitely long with LOOPS in V1 states and the edges ENV and SYS2 start from V1

states. Moreover, since the edges in SYS> resolve all >-symbols and the edges in SYS

do not introduce any >-symbol, there must be infinitely many consecutive SYS edges to
not infinitely often visit states of V1. This means from some state vi in πinf on, infinitely
many pure system transitions are fired and all places in the preset of the transitions must
belong to generation zero. Thus, for all these places there must be a state vj ∈ V0 \B
with j < i, where the corresponding >-symbol is resolved and generation zero is assigned
to the current place of the corresponding token. Due to Definition 61, this means that
type(pσ) 6= 2 for the place pσ of the corresponding cut Cj. However, since all SYS edges
choose the commitment sets according to Nσ and no state V1 is visited again, meaning
no environment token is moved, type(pσ) = 2. Contradiction. �

For the detailed proofs of the transit automata section (Sec. 12.2), we start by showing
that the existential transit automata behave as expected. The acceptance is independent
of the concrete choice of the covering firing sequence and the winning property of the
plays correspond to the acceptance of the automata.

Proof (Lemma 22: Expediency of the ETA): Let π be a play of a Petri game with tran-
sits G = (A, WIN) with an existential local winning condition WIN = ∃-W (W) with
W ∈ {SAFE, REACH, BUCHI, COBUCHI, PARITY}.
Property (i): Let ζ ∈ Z(π) be a covering firing sequence of π with σT(ζ) ∈L(ΛWIN

∃ (G))
for the transit automaton ΛWIN

∃ (G) corresponding to G and ζ ′ ∈ Z(π) another covering
firing sequence of π. Since π is a run, all nondeterminism is fixed, and ζ and ζ ′ only differ
in the ordering of concurrent transitions. Especially, either both are finite or both are in-
finite. Hence, σT(ζ) is padding ζ with τω iff σT(ζ ′) does this for ζ ′. Let σT(ζ) = t0t1 · · ·.
For WIN ∈ {∃-SAFE(S),∃-COBUCHI(S)}, the initial state s0 is added to the co-Büchi states
of the automaton. Furthermore, for WIN = ∃-PARITY(Ω), the initial state s0 of the au-
tomaton gets an odd priority and for WIN ∈ {∃-REACH(S),∃-BUCHI(S)}, the initial state
cannot be part of S. Hence, no run can be accepted that never leaves s0. Since σT(ζ) is
accepted, there must be an index i ∈ N and a state s ∈ S such that (�, s) ∈ Υ(ti). Let
tRi ∈ TR be the corresponding transition in the play π. Since π is a run and ζ and ζ ′ are
covering firing sequences, there must also be an index j ∈ N at which tRi ∈ TR occur
in ζ ′. Let tj ∈ T be the corresponding transition in σT(ζ ′). Thus, also for the input
word σT(ζ ′) the automaton ΛWIN

∃ (G) has a run leaving the initial state s0 and move to
state s. For all transitions tR ∈ TR that causally depend on tRi , i.e., tR > tRi , we know
that the corresponding transition t ∈ T has to occur in σT(ζ) with an index greater i
and with an index greater j in σT(ζ ′) because they are both traces of covering firing
sequences of the same run. Each transition extending the started chain must be causally
dependent on tRi , because s ∈ pre (t) must hold for any (s, s′) ∈ Υ(t). Either no transi-
tion ever extends the chain and the accepting run for σT(ζ) stays in s by using the total
and possibly the τ -edges from stutter or the state s is left using a transit edge due to a

194

12.4 Proofs

transition extending the chain. In the first case, the automaton can also never leave s
for the run σT(ζ ′), because a state can only be left by using a transition extending the
chain and thus, would be causally dependent on tRi and therewith would have to occur
in σT(ζ) after ti. In the second case, the automaton can eventually also leave s with the
same edge from transit for σT(ζ ′) reaching the same successor because of the causally
dependency. This argument can be repeated for all further transitions. Thus, the state
changes are exactly the same and the infinite looping is done in the same states for
both words σT(ζ) and σT(ζ ′). The corresponding runs only differ in the finite looping
in states for concurrent transitions. Since the acceptance conditions are not dependent
on finite looping or concrete time points for the state changes, σT(ζ ′) ∈ L(ΛWIN

∃ (G))
because σT(ζ) ∈L(ΛWIN

∃ (G)).

Property (ii):
Completeness (direction “⇒”): Since π ∈ WIN, there is a flow chain ξ ∈ Ξ(π) satisfying
the corresponding condition. Thus, there must be a transition t ∈ T and a place p ∈ P

with (�, p) ∈ Υ(t) such that the corresponding elements tR ∈ TR and pR ∈ PR of π start
the chain. Let ζ = tR0 t

R
1 · · · ∈ Z(π) be a covering firing sequence and denote the elements

of the trace with σT(ζ) = t0t1 · · ·. Since ζ is covering π, all transitions occurring in ξ
must appear. Due to the definition of a flow chain, all transitions of ξ must be causally
related. Hence, they must also appear in the same order in ζ, only possibly padded
with concurrent transitions. Thus, we can consider the run for the input word σT(ζ)
that loops in s0 until the transition starting the chain (i.e., the transition corresponding
to tR) is reached and then changes into the successor state p. For every other state, the
run loops with total for every ti that does not belong to ξ and for each transition tRj
of ξ, the run performs the corresponding state change implied by the successor place in
ξ. For finite chains the run of the automaton loops with stutter in a state corresponding
to the last place of the chain due to the τω suffix. For all but the ∃-SAFE(S) condition,
the type of the corresponding acceptance condition of the automaton is the same as the
type of the winning condition and also the set S or the parity function maximally differ
by additionally covering the initial state s0. Since the run of the automaton stays only
finitely long in s0, this difference has no impact on the acceptance. Apart from the ini-
tial state, the run of the automaton visits exactly the states corresponding to the places
of ξ and, in between, may only loop finitely long in all but the last state. These finite
loops does not have any impact on the acceptance and thus, since ξ satisfies the winning
property, σT(ζ) ∈ L(ΛWIN

∃ (G)) for these conditions. For the ∃-SAFE(S) condition, the
situation is quite similar. We only change to a co-Büchi acceptance condition for the
automaton. But since we adapted the transition relation of the automaton in the way
that we can only loop in all states p ∈ S, the satisfaction of the winning property for ξ
and the acceptance of the run again coincide and thus, also σT(ζ) ∈L(ΛWIN

∃ (G)) holds.
Soundness (direction “⇐”): Let ζ ∈ Z(π) be a covering firing sequence with σT(ζ) ∈
L(ΛWIN

∃ (G)). Since the initial state s0 is neither in the reachable, nor in the Büchi states
of the acceptance conditions of the automaton, it is especially added to the co-Büchi
states, and has an odd color for the parity condition, it has to be left eventually for σT(ζ)
to be accepted. Thus, ζ must eventually start a flow chain. For each state, the run of the

195

12 Synthesis of Distributed Systems with Local Data Flows

automaton accepting σT(ζ) either loops finitely and afterwards uses an edge of transit
to proceed to a successor state, or eventually loops infinitely long in its last state. Each
state change corresponds to a transition extending the flow chain. Since total is only
adding edges to states where no edge with a label for the same transition is available,
the run cannot skip any transition extending the current chain. Thus, collecting the
places corresponding to the states actually yields a flow chain of π. Since reaching a bad
place for the ∃-SAFE(S) condition enforces that the run can only loop in these places, the
co-Büchi acceptance condition also allows for the acceptance of chains that only reach
a bad state once. Hence, for all conditions the corresponding winning property for the
created chain is satisfied and so, π ∈ WIN. �

For the universal transit automata, we show that they are dual to the existential transit
automata, so that the expediency of the UTA amounts to the expediency of the ETA.

Proof (Lemma 23: Dualization): By dualizing the transition relation of ΛWIN
∀ (G), we ob-

tain s̃tart = {(s0, t, s0) ∈ S×T×S}∪{(s0, t, s) ∈ S×T×S | (�, s) ∈ Υ(t)} because the
conjunction over an empty set yields true and t̃ransit = {(s, t, s′) ∈ S×T×S | (s, s′) ∈
Υ(t)} because the sets are disjoint. Furthermore, t̃otal = total and s̃tutter = stutter
because the total and stutter sets are disjoint to all other sets and are determinis-
tic. These are exactly the sets for the transition relation of ΛW̃IN

∃ (G), however the
loop for each transition t ∈ T is not in the start set but in the total set. Since

˜∀-REACH(S) = ∃-SAFE(S), also the additional case for the edge relation → fits. For the
acceptance condition we can also simply calculate the result. For example, for the win-
ning condition ∀-BUCHI(S) the acceptance condition is BUCHI({s0}∪S). Thus, the dual is
COBUCHI({s0}∪S), which is exactly the acceptance condition for the ETA for the winning
condition ˜∀-BUCHI(S) = ∃-COBUCHI(S). The second equation easily follows from this be-

cause the dualization function is self-inverse: ΛW̃IN
∀ (G) =

˜̃
ΛW̃IN
∀ (G) =

˜
Λ

˜̃
WIN
∃ (G) = Λ̃WIN

∃ (G).�

For showing the expediency of the FTA, we use the ideas for showing the expediency of
the ETA and show that the automata checking the single local Flow-LTL subformulas
are triggered only for the places of the desired chain.

Proof (Lemma 25: Expediency of the FTA): Let π be a play of a Petri game with tran-
sits G = (A, Flow-LTL(ϕ)) with a local Flow-LTL formula ϕ with only places as atomic
propositions.
Property (i): Let ζ ∈ Z(π) be a covering firing sequence of π with σT(ζ) ∈L(ΛF-LTL(G))
and ζ ′ ∈ Z(π) another covering firing sequence of π. Since the acceptance of ΛF-LTL(G)
boils down to the acceptance of the single Flow-LTL transit automata ΛELTL

ψi
(G), we

show the corresponding property for these automata. Since each accepting run must
start a flow chain, there must be a flow chain ξ due to the acceptance of σT(ζ). Again,
the two covering firing sequences ζ and ζ ′ only differ in the ordering of transitions not
extending the chain and the ordering of the transitions extending the chain are pre-
served. The acceptance of ΛELTL

ψi
(G) depends on the acceptance of Aψi . Since Aψi is

196

12.4 Proofs

only triggered by places corresponding to the firing of transitions extending chain, the
acceptance of σT(ζ ′) can be shown with the analogous arguments as for the ETA. Thus,
the accepting run for σT(ζ ′) loops in (s0, q0) without triggering Aψi as long as the transi-
tion starting the chain is reached. With the second set of the edges in init , the first place
of the chain is tracked and Aψi is triggered accordingly. Only the edges in transit and
potInfy can be used for transitions extending the chain correctly, and those edges are also
triggering Aψi correspondingly. Since ζ and ζ ′ are both covering firing sequences, and
these transitions are causally related, we trigger Aψi in the same way. All transitions in
between does not trigger Aψi for both firing sequences. When for σT(ζ) the automaton
ΛELTL
ψi

(G) switches into the s-mode (using only states of Ss for the first component), the
chain must be finite because every transition extending the chain would lead to the non-
acceptance of σT(ζ). In this case we can also eventually switch for σT(ζ ′) in this mode
when the last place of the chain is reached. Here in both cases Aψi is triggered with the
last place of the chain. Hence, for σT(ζ ′) the automaton Aψi , that is responsible for the
acceptance, is triggered in the same way as for σT(ζ), and so, σT(ζ ′) ∈ L(ΛELTL

ψi
(G)),

when σT(ζ) ∈ L(ΛELTL
ψi

(G)). The intersection, union, or complementation of the au-
tomata is not dependent on the firing sequence. Thus, σT(ζ ′) ∈L(ΛF-LTL(G)).

Property (ii): We first show that π ∈ Flow-LTL(Eψi) ⇐⇒ ∀ζ ∈ Z(π) : σT(ζ) ∈
L(ΛELTL

ψi
(G)), before lifting this result to the complete local Flow-LTL logics.

Completeness (direction “⇒”): Let π ∈ Flow-LTL(Eψi) and ζ ∈ Z(π). There must be
a flow chain ξ of π with σ̃(ξ) |= ψi. Since ζ is covering π, the transition creating and
all transitions extending the chain must occur. Thus, as in the case of the ETA, there
is the run of ΛELTL

ψi
(G) that starts the chain and also triggers Aψi with the first place

of the chain. In case ξ is finite because ζ is finite, we can stutter with the τ -edges of
stutter in the last place of the chain and trigger Aψi accordingly. Note that we use
the s-mode for the constructed run of ΛELTL

ψi
(G) in case the last transition in ζ is not

the transition extending the chain to its finite place and not the c-mode because there
the stuttering would not lead to an accepting run. If ξ is finite due to infinitely many
transitions not extending the chain are firing, we choose with the edges in guessFin to
switch into the s-mode for the first of these transitions and do not trigger Aψi . We stay
in this mode and use the edges in fin to stutter on the last place of the chain while
triggering Aψi accordingly. For all transitions in ζ occurring before this case happens
and in case of an infinite chain ξ, we can either use the edges in transit to track the
next place of ξ and trigger Aψi accordingly, or first switch into the c-mode with the
edges in guessFin without triggering Aψi for a transition not extending the chain. In
the latter case, we stay in the c-mode with the first set of the edges in potInfy without
triggering Aψi for transitions in ζ not extending ξ until a transition extending ξ occur
that brings the automaton back into the normal mode, tracks the next place of ξ, and
triggers Aψi accordingly. Hence, for finite or infinite chains ξ, we track the places of the
chain and trigger Aψi according to the places of ξ. Thus, σT(ζ) ∈L(ΛELTL

ψi
(G)).

Soundness (direction “⇐”): Let ζ ∈ Z(π) with σT(ζ) ∈ L(ΛELTL
ψi

(G)). Since no run
can be accepted by ΛELTL

ψi
(G) that loops infinitely long in states with s0 in the first

component, there must be a start of a flow chain ξ and this start also triggers Aψi . The

197

12 Synthesis of Distributed Systems with Local Data Flows

successor state is in S × Q. When the accepting run uses edges in transit , we can ex-
tend ξ and also this edge triggers Aψi and results in a state in S ×Q. When a guessFin
edge is used, Aψi is not triggered and we switch either in the mode s or c. In mode c,
when the first set of edges in potInfy are used, we do not extend ξ and also Aψi is not
triggered. In this case we stay in mode c. Since the corresponding run of ΛELTL

ψi
(G) is

accepted, it cannot use these edges infinitely often in a row because the Sc states are
explicitly withdrawn from the first component of the accepting Büchi states. Thus, the
run eventually leaves the c-mode into an S ×Q state with an edge in potInfy . The used
edge triggers Aψi and corresponds to a transition extending the chain. Hence, in this
case we also extend ξ. In mode s, the run can infinitely long use the edges in fin. In
this case we do not extend ξ. This stuttering is done by considering σ̃(ξ) for the finite
chain and perfectly fits the triggering of Aψi with the last place of the chain by the
edges in fin. An edge from error cannot be taken because then the run could only loop
infinitely long in state s�, which is not accepting. Thus, the mode has been correctly
guessed and the chain is never extended again. When ζ is finite, the τ -edges in stutter
are used by the accepting run. These also trigger Aψi with the last place of the chain.
Since the triggering of Aψi is exactly done for the places of the flow chain ξ, and Aψi
accepts all words satisfying ψi, π ∈ Flow-LTL(Eψi) holds.
We now compose these results to show Property (ii) for ϕ. W.l.o.g., we consider ϕ in the
form after applying Step 1 of Sec. 12.2.3. For the completeness let π ∈ Flow-LTL(ϕ) and
ζ ∈ Z(π). For all subformulas Eψi of ϕ not preceded by negation, the completeness result
above yields σT(ζ) ∈L(ΛELTL

ψi
(G)), when π ∈ Flow-LTL(Eψi) is satisfied. For all subfor-

mulas ¬Eψj of ϕ, we use the contraposition of the soundness result above, when ¬Eψj
is satisfied by π. Hence, ∃ζ ′ ∈ Z(π) : σT(ζ ′) 6∈ L(ΛELTL

ψj
(G)). The contraposition of

Property (i) yields ∀ζ ′ ∈ Z(π) : σT(ζ ′) 6∈ L(ΛELTL
ψj

(G)). Thus, σT(ζ) 6∈ L(ΛELTL
ψj

(G)),
and hence, σT(ζ) ∈ L(ΛELTL

ψj
(G)). Since the composition of the automata ΛELTL

ψi
(G)

and ΛELTL
ψj

(G) exactly fit the formula composition, σT(ζ) ∈L(ΛF-LTL(G)).
For the soundness let ζ ∈ Z(π) be a covering firing sequence with σT(ζ) ∈

L(ΛF-LTL(G)). The construction of ΛF-LTL(G) builds the intersections and unions
of the ΛELTL

ψi
(G) and ΛELTL

ψj
(G) automata corresponding the conjunctions and disjunc-

tions of the subformulas Eψi and ¬Eψj. Consider only those automata that are
responsible for the acceptance of σT(ζ). Thus, σT(ζ) ∈ L(ΛELTL

ψi
(G)) for subfor-

mula Eψi and σT(ζ) ∈ L(ΛELTL
ψj

(G)) for subformula ¬Eψj. Property (i) for the
SFTA yields ∀ζ ′ ∈ Z(π) : σT(ζ ′) ∈ L(ΛELTL

ψi
(G)) and so the soundness result above

yields π ∈ Flow-LTL(Eψi). The contraposition of the completeness result above yields
π 6∈ Flow-LTL(Eψj) because σT(ζ) 6∈ L(ΛELTL

ψj
(G)). Thus, π ∈ Flow-LTL(¬Eψj). Since

the conjunctions and disjunctions fit the intersections and unions in the construction
of ΛF-LTL(G), we have π ∈ Flow-LTL(ϕ). �

Combining the results for the information flow game and the results for the transit
automata yields the correctness of the construction of the product game and therewith
the final decision procedure for Petri games with transits and local winning objectives
presented in Sec. 12.3.

198

12.4 Proofs

Proof (Lemma 26: Reduction): Given a Petri game with transits G = (A, WIN) with
an arena A and a local winning condition WIN. We construct the product game
G(G) = G(A) || Λ(G) of the information flow game G(A) = (A(A), BUCHI(V1))
with arena A(A) = (V, V0, V1, E, I) and the deterministic transit automaton Λ(G) =
(T ∪ {>, τ}, S, s0,→, PARITY(Ω)) according to Definition 65.
Case completeness (“if”): Let σ be a deadlock-avoiding winning strategy of G. The-
orem 8 yields that σinf = σpg2inf(σ) : V ∗V0 → V is a winning strategy for player 0
of the information flow game G(A). We define σ|| : (V × S)∗(V0 × S) → (V × S)
by using σinf to define the successor v ∈ V of the first component and by adding
the successor of the second component according to the deterministic decision of Λ(G)
with respect to the label used in G(A) to reach the successor v. Thus, given a word
wv ∈ (V × S)∗(V0 × S) with w = (v0, s0) · · · (vn, sn) and v = (v, s), we consider the
state v′ = σinf(v

0 · · · vnv) = (D,r, t). In case v0 · · · vnv is no play of G(A), we can
map wv to an arbitrary successor because we are only interested in plays of G(G)
and, in this case, wv cannot be a play of G(G). Since Λ(G) has a successor for every
t ∈ T ∪ {>, τ}, there is an edge (s, t, s′) and we can define σ||(wv) = (v′, s′). Note
that as long wv is a play of G(G), the word wv(v′, s′) is a play of G(G).

We now show that σ|| is winning for player 0 in G(G). Given a play w ∈ (V × S)ω

conforming to σ||. Due to the construction of σ||, we know that the projection on the
first component is a play πinf of G(A) that conforms to σinf and thus, is winning for
player 0 in G(A). This means there are infinitely many V1 states in the first component
of w. Hence, w satisfies the first conjunct of the winning condition CONJ(Ω1,Ω2), i.e.,
w ∈ PARITY(Ω1). Furthermore, due to Definition 61, we know that fs(πinf) belongs
to a covering firing sequence of a maximal play π that conforms to σ because πinf is
a play of G(A) that conforms to σinf. Since σ is winning, π ∈ WIN holds. Depending
on the winning condition, either Lemma 22, Lemma 24, or Lemma 25, yields that all
traces of covering firing sequences ζ ∈ Z(π) are accepted by the corresponding automa-
ton Λ(G), i.e., σT(ζ) ∈ L(Λ(G)). Note that σT(ζ) is padded with τω when fs(πinf)
is a finite word. In this case, w must also have a loop with infinitely many τ -edges
at the end. These edges at the end of the word cannot result from edges in LOOPS� of
G(A) because πinf is winning and v� 6∈ V1. Thus, the possible τ -edges can only stem
from the loops in terminating states and that fits the padding of σT(ζ). The sequence
of edge labels of w may only differ from σT(ζ) by finitely many >-labels. The accep-
tance of the automaton Λ(G) is independent of finite >-edges due to the deterministic
>-loop at every state (for the FTA, the automaton checking the LTL formula is not
triggered for >-edges). Since fs(πinf) corresponds to such a firing sequence and the se-
quence of edge labels of w may only differ in finitely many >-labels and the τ -looping,
the projection of the second component satisfies the second conjunct of the winning
condition CONJ(Ω1,Ω2) because this corresponds to the acceptance of triggering the de-
terministic automaton Λ(G). Hence, w ∈ PARITY(Ω2) and thus, w ∈ CONJ(Ω1,Ω2).
Case soundness (“only if”): Let σ|| : (V ×S)∗(V0×S)→ (V ×S) be a winning strategy
of player 0 in the product game G(G). We create a function σinf : V ∗V0 → V by using
the mapping σ|| for the first component, when composing the deterministic decision of

199

12 Synthesis of Distributed Systems with Local Data Flows

the automaton to a given play conforming to σinf. Let w ∈ V ∗V0 with w = v0v1 · · · vn.
Since we are only interested in words corresponding to prefixes of plays in G(A), we
can map all other words to an arbitrary successor. We know for all plays πinf = v′0v

′
1 · · ·

of G(A) that v′0 = I and that for all i ∈ N there is a label li ∈ T ∪ {>, τ} such
that (v′i, li, v

′
i+1) ∈ E. We create the word w = (I, s0)(v1, s1) · · · (vn, sn) by adding the

deterministic decisions of Λ(G) to the second component, i.e., (si, li, si+1) ∈→ for all
i ∈ {0, . . . , n − 1} and (vi, li, vi+1) ∈ E. Note that the successor si+1 is unique be-
cause Λ(G) is deterministic. Since Λ(G) has an edge for each l ∈ T ∪ {>, τ} and w is
a prefix of a play of Λ(G), the word w is a prefix of a play of G(G). Hence, we obtain
a meaningful successor σ||(w) = (v, s) and define σinf(w) = v. Since σ|| is winning for
player 0 in G(G) and especially the first component of a play conforming to σ|| visits
infinitely many V1 states, σinf is winning for player 0 in G(A) because we can extend
each play πinf ∈ V ω conforming to σinf as above by adding the second component with
respect to the deterministically triggering of Λ(G). This play then conforms to σ|| due to
the construction of σinf, hence, visits also infinitely many V1 states, and thus is winning.
Theorem 7 yields that σ = σinf2pg(σinf) is a deadlock-avoiding strategy for the system
players of G.
We now show that σ is winning for the system players of G. Definition 59 creates σ by

traversing the strategy tree of σinf in breadth-first order and adding the new transition
and successor places to the associated cut of σ. This means that each play π conforming
to σ has a covering firing sequence ζ that has the same ordering of the concurrent
transitions as fs(πinf) of a play πinf conforming to σinf. Extending πinf deterministically
with the second component as above, we again obtain a play that conforms to σ|| and
thus, is winning. This means the sequence of labels of πinf is accepted by Λ(G). The
sequence σT(ζ) only differs from this sequence by finitely many >-labels. Since for a >-
label the automaton Λ(G) only loops in the current state and the acceptance condition is
not sensitive for finite stuttering (for the FTA, the automaton checking the LTL formula
is not triggered for >-edges), σT(ζ) ∈L(Λ(G)). Thus, either Lemma 22, Lemma 24, or
Lemma 25 yield that π is winning and hence, σ is winning. �

Finally, we show the complexity of the reduction by looking at the sizes of the information
flow game and the transit automata, and by investigating the costs for solving the
conjunction of the Büchi winning condition of the information game and the different
acceptance conditions of the transit automata.

Proof (Theorem 9): The complexity of solving the Petri game with transits G =
(A, WIN) depends on the size of the product game G(G) and the complexity needed
for solving G(G). The size of the product game is the multiplication of the size of the
information flow game G(A) and the size of the transit automaton. The size of G(A)
is single-exponential in |A| due to Lemma 21.
Place-based conditions: The size of the ETA and the size of the UTA is single-exponential
in |A| due to the determinization step. Thus, the size of G(G) is single-exponential
in |A| for all place-based winning conditions.
We show that the conjunction of the Büchi condition of G(A) and the corresponding

acceptance condition of the transit automaton result in a condition that is easier to solve

200

12.4 Proofs

than the generalized parity condition. For WIN = ∃-SAFE(S) and WIN = ∃-COBUCHI(S),
we have the conjunction of a Büchi and a co-Büchi condition, i.e., a Rabin condition
with one pair. This can be expressed by a parity condition with three colors [CHVB18].
Thus, G(G) can be solved in single-exponential time. For WIN = ∀-SAFE(S), we have
the conjunction of a Büchi and a safety condition. By adapting the game arena such
that each state that is not safe only allows to succeed in a non-accepting sink, we can
solve G(G) with a single Büchi condition and thus, in single-exponential time. For
WIN = ∃-REACH(S), we have the conjunction of a Büchi and a reachability condition.
We again adapt the game arena, to obtain a single Büchi condition. This time we
equip each state with an additional Boolean flag for stating whether a state of the
desired reachable states has already been reached. Thus, we start with the flag set
to false and keep it until we reach a state from the desired set. Then, we switch to
true and can never change the flag back. Restricting the set of Büchi states to those
having a true reachable flag, allows to solve G(G) in single-exponential time. For WIN =
∀-REACH(S) and WIN = ∀-BUCHI(S), we have a generalized Büchi condition that can
be solved in polynomial time [BCGH+10; CH14; CDHL16]. Thus, solving G(G) is
single-exponential. For WIN ∈ {∃-BUCHI(S),∀-COBUCHI(S), ∃-PARITY(Ω),∀-PARITY(Ω)},
we have the conjunction of a Büchi and a parity condition. By enriching the states
with a Boolean flag for each color, we can express the conjunction as a single parity
condition. Initially, all flags are set to true and whenever a Büchi state is reached, all
flags are reset to true. Whenever a state with a color c is visited, the corresponding flag
of the successor state is set to false (if the successor is not a Büchi state). In all other
cases, the flags for the successor state are identical to the ones of the predecessor. Thus,
a flag set to true indicates that this color has not been visited after the last occurrence
of a Büchi state. By this we know that for a run where a color occurs infinitely often
with the flag set to true, that also infinitely many Büchi states must have been visited.
So we can define the single parity function

Ω′((v, s)) =

{
Ω(s) if t((v, s),Ω(s)) = true ∨ Ω(s) odd
max{Ω(s) | s ∈ S ∧ Ω(s) even}+ 1 otherwise

for a state (v, s), the function t : (V ×S)×N→ B returning the current value of the flag
corresponding to the given color, and the parity condition Ω of the transit automaton.
Thus, for odd colors we keep the coloring, but for even colors we keep the coloring only
in case the corresponding flag in the state is set to true. Otherwise, we set the color
to an odd number that is greater than all occurring even numbers. Thus, a play is still
loosing, when it was lost due to the parity condition because we only change the coloring
for even colors and the change worsens the winning possibilities. But now the play is
also loosing when it wins the parity condition, but does not visit infinitely many Büchi
states because it sets the flag infinitely often to false, but the flag is not set back to
true infinitely often. This means, we are infinitely often in the second branch of Ω′.
This applies also for all larger even colors, if these colors would then be winning. If
the play visits infinitely many Büchi states, we are infinitely often in the first branch
and still are winning. Parity games can be solved polynomially in the size of the arena
and exponentially in the number of colors. The number of colors stem either from the

201

12 Synthesis of Distributed Systems with Local Data Flows

input coloring of A or from the determinization step. In both cases the number is linear
in |A|. Since we enrich the states of A(A) only exponentially in the number of colors,
we obtain the single-exponential time upper-bound.
Since solving Petri games is EXPTIME-complete [FO17] and Petri games can be

easily expressed with Petri games with transits, solving Petri games with transits is
EXPTIME-hard. The single-exponential upper-bound for all place-based conditions
yield the EXPTIME-completeness result for the Petri games with transits with place-
based conditions.
Local Flow-LTL: The size of the FTA depends on the local Flow-LTL formula ϕ. W.l.o.g.,
we consider ϕ in the form described in Step 1 in Sec. 12.2.3. For each flow subfor-
mula Eψi the NBA Aψi is single-exponential in |ψi| [VW94]. If this subformula is not
under a negation, i.e., is an existential flow subformula, the NBA ΛELTL

ψi
(G) is single-

exponential in |ψi| and linear in |A|. Otherwise the subformula is a universal subformula
and the NBA ΛELTL

ψi
(G) is double-exponential in |ψi| and single-exponential in |A| due

to the step building the complement [Mic88; Saf88]. Since building the unions and in-
tersections of these NBAs can be done with an quadratic or linear blow-up [Cho74],
ΛF-LTL
ϕ (G) is single-exponential in |ϕ| and polynomial in |A| when only existential re-

quirements are used, and double-exponential in |ϕ| and single-exponential in |A| other-
wise. The determinization of the NBA ΛF-LTL

ϕ (G) yields another exponent [Pit07; Sch09].
Thus, ΛF-LTL(G) is double-exponential in |ϕ| and single-exponential in |A| when only
existential requirements are used, and triple-exponential in |ϕ| and double-exponential
in |A| otherwise. For the special case that ϕ only consists of universal requirements, we
can first apply De Morgan to put the negation at the beginning of the formula while
interchanging the conjunctions and disjunctions. We then build the corresponding inter-
sections and unions of the NBA ΛELTL

ψi
(G), again in quadratic or linear time. Afterwards

we determinize the resulting NBA to a DPA at the cost of one exponent, and finally
complement the DPA without any blow-up. Thus, in this case ΛF-LTL(G) is also only
double-exponential in |ϕ| and single-exponential in |A|. The size of the product game
G(G) matches the sizes stated above for all cases because G(A) is single-exponential
in |A|. Since the conjunction of a Büchi condition and a parity condition can be ex-
pressed as a single parity condition (see above), the complexity stated in the theorem
is obtained. The reason for not obtaining another exponent even though solving parity
games is in NP ∩ co-NP, is that most algorithms are only exponential in the number of
colors, but polynomial in the number of states [Tho02]. However, the number of colors
resulting from the determinization is only linear in size of the NBA [Sch09]. Thus, in
this case, the time complexities for solving the game are subsumed by the size of the
arena.
All these games admit a memoryless strategy [Zie98; SS09]. Hence, the winning

strategy can be represented as a finite graph and the size of the graph is bounded by
the size of G(G). Thus, Definition 59 already yields the possibility to obtain a finite
representation of the strategy of the Petri game with transits in single-exponential time
by using this finite graph rather than the infinite strategy tree. �

202

13AdamSYNT – A Synthesis Tool for

Petri Games

In this chapter we present the tool AdamSYNT for the synthesis of asynchronous dis-
tributed systems modeled with Petri games [FO17] (cp. Sec. 10.2). The implementation
focuses on the solving algorithms for safe Petri games without any mixed communication
and with one environment player, an arbitrary but bounded number of system players
and a local safety objective. However, the source code also contains algorithms in an
early development state for Petri games with transits for special subclasses like games
that do not create infinitely many flow chains.

Similarly to the reduction presented in Chap. 12, AdamSYNT synthesizes winning
strategies of Petri games in three steps: First, the problem is reduced to a synthe-
sis problem of a two-player game over a finite graph. Second, a strategy of the two-
player game is created (if existent). Finally, the two-player game strategy for player 0
is translated into a Petri game strategy for the system players. To tackle the immense
state space of the problem, the two-player game is encoded using Binary Decision Di-
agrams (BDDs) [Lee59; Bry18]. Section 13.1 gives a brief insight in the encoding. In
Sec. 13.2 we present the results for applying AdamSYNT to several scalable benchmark
families of essential building blocks for modeling manufacturing and workflow scenarios.

AdamSYNT is open source1 (GPL-3.0 License) and is integrated into the Adam
framework (cp. Chap. 15). For the paper [FGO15], we additionally submitted a virtual
machine for applying AdamSYNT on a subset of the scalable benchmark families. This
artifact achieved the artifact evaluation badge of the artifact evaluation committee of
CAV stating that the artifact is consistent, easy to use, replicable, well-documented, and
complete. More technical details to the framework can be found in Chap. 15. This
chapter is based on [FGO15; FGHO17].

13.1 Symbolic Encoding

Similar to the decision procedure presented in Chap. 12, in AdamSYNT, a Petri game
is reduced to a two-player game over a finite graph. The states of the graph are enriched
markings of the underlying Petri net. In this section, we only focus on the symbolic
representation of the two-player game. More details about the reduction can be found
in [FO14; FO17; FGO15; FGHO17]. The number of markings of a safe Petri net is
exponential in its number of places (e.g., [Esp96]). The enrichment of these markings

1https://github.com/adamtool/adamsynt

203

https://github.com/adamtool/adamsynt

AdamSYNT – A Synthesis Tool for Petri Games

does not change the theoretical complexity [FO14], but still has an impact for practical
examples [FGHO17].
Binary Decision Diagrams (BDDs) [Lee59; Mor82; Jr78; Bry18] have proven to be

a very effective data structure to represent large state spaces [BCMD+90; BCL91;
BCMD+92; McM93]. A BDD compactly represents a Boolean function and is most
commonly accompanied with an ordering constraint yielding Ordered Binary Decision
Diagrams (OBDDs) [Bry18]. OBDDs enable the efficient application of standard oper-
ations like conjunction and negation [Bry86; DS01]. For more details about BDDs see
for example [Bry92; Bry95; DS01; Bry18].
For the encoding of the two-player game, we represent the edge relation as a BDD.

For each edge, we encode the source and target state as a bitvector. The representation
of a state, i.e., the representation of an enriched marking of the Petri net, is organized
by the tokens (a token-based encoding), rather than the places (a place-based encoding).
This is motivated by the fact that the number of tokens in a Petri net is usually much
smaller than the number of places. Hence, it is cheaper to encode to each token the
id of the currently occupied place instead of simply providing variables for each place
to represent the (arbitrary) subsets of places corresponding to the markings. A state is
composed of several subvectors, one for each token. Figure 13.1 depicts such a subvector
for a system token i. The first part of the bitvector encodes the place pi the token is
currently residing on and its type (type-1 vs. type-2). The second part encodes the
decision of the strategy. The bit tij for j ∈ {1, . . . ,m} is set iff the player represented by
token i chooses to allow for the firing of the corresponding transition of the Petri net.
The >-bit is set to indicate that the player is allowed and has to choose a new set of
transitions (cp. Sec. 12.1). For the special case of the environment token, we only need
to encode the place, without the type, >-, and transition flags.
Due to the additional information necessary for the system players, the number of

variables in the BDD grows significantly with the number of players in the Petri game.
For optimizing the size of the BDD and the number of operators needed to encode the
game, we partition the system places PS into k ∈ N disjunct sets

⋃
i∈{1,...,k}P

i
S = PS,

such that for every reachable marking of the underlying Petri net N, each place of
the marking belongs uniquely to exactly one of the sets Pi

S, i.e., ∀M ∈ R(N), ∀i ∈
{1, . . . , k} : |M ∩Pi

S| ≤ 1. By that, we can restrict the number of variables used for
the transitions for each token i to those occurring in the postset of some place in Pi

S.
Hence, we define Ti =

⋃
p∈Pi

S
post (p) for all i ∈ {1, . . . , k}. In general, the number k is

the number of system processes in the game. As a result we have that

2 ·

(
log2(|PE|) +

k∑
i=1

(
log2(|Pi

S|) + 2 + |Ti|
))

calculates the total number of variables used for the BDD encoding of the two-
player game.
The sensitivity of BDDs to the ordering of the variables holds a great potential for

optimizations. The size of a BDD can vary from linear to exponential in the number of
input variables depending on their ordering [EFD05]. Finding an optimal ordering is NP-

204

13.2 Benchmarks

0 1 2 · · · l − 1 l l + 1 l + 2 l + 3 · · · l + 3 +m

pi
(binary-coded) type > ti1 · · · tim

Fig. 13.1: Bitvector representation of a cut. The subvector encodes the ith system token.

hard [BW96], and [Sie98] shows that unless P=NP, there is no polynomial-time algorithm
for finding an ordering within a constant factor of the optimum [Bry18]. Rather than
finding the optimal ordering, another approach is to use heuristics and rules of thumb
to find a reasonably sufficient ordering. For example, [MT98; RK08] list some of those
heuristics and optimizations. In [MP15; Kam15; ADBG+17] experimental results for
several variable orderings are given considering Petri net models. For our experimental
results we decided for an easy ordering where the variables of the source and the target
state of the encoded edge relation are interleaved. By doing so, we achieve that more
frequently compared variables (due to the predecessor and successor encoding of the
transitions) are closer together.

The algorithms in AdamSYNT are restricted to 1-bounded Petri games. Even though
several well-known straightforward techniques like place splitting and pipelining exists
for turning a k-bounded Petri net into a 1-bounded one, these techniques only preserve
the language of the Petri net and not its causality structure [BDW07]. However, this
structure is crucial in our setting of Petri games. In [BDW07; BW00] a technique is pre-
sented to transform a k-bounded Petri net into a safe one while preserving the causality
structure. However, this technique results in an excessive blow-up in the size of the net.
Hence, future work should aim to directly encode the problem for k-bounded Petri games
with techniques for non-Boolean domains [MR18] likemulti-terminal binary decision dia-
grams (MTBDDs) [FMY97] (also called algebraic decision diagrams (ADDs) [BFGH+93;
BFGH+97], [Bry18]) or antichains and not aim to transform k-bounded Petri games into
safe ones.

13.2 Benchmarks

We introduce five structurally different parameterized benchmark families to show the
scalability of AdamSYNT. The benchmarks represent essential building blocks for mod-
eling various manufacturing and workflow scenarios that can be analyzed automatically
by synthesizing winning strategies for the system players:

Alarm System (AS) [FO14; FGHO17]: There are n geographically distributed loca-
tions. Every location is secured by an alarm system. A burglar, modeled by the
environment, can intrude an arbitrary location. The alarm systems can inform
each other about burglaries. The goal is that no alarm system is triggered without
an intrusion and all alarm systems indicate the correct intrusion point in case of
a burglary.
Parameters: n alarm systems.

205

AdamSYNT – A Synthesis Tool for Petri Games

Concurrent Machines (CM) [FGO15]: There are n machines which should process m
orders. The orders can be processed concurrently, but no machine is allowed to
process more than one order. The hostile environment chooses one machine to be
defective. The goal is that finally all orders are processed.
Parameters: n machines / m orders.

Job Processing (JP) [FGO15]: A job requires processing by an ordered subset of n pro-
cessors. In ascending order, the processor of the subset have to work off the job.
The subset is chosen nondeterministically by the environment.
Parameters: n processors.

Document Workflow (DW) and (DWs) [FGO15]: There are n clerks endorsing or re-
jecting a document. The document is circularly passed on by the clerks. The
environment decides which clerk receives the document first. The goal is that all
clerks take an unanimous decision. For the simple variant (DWs), all clerks have
to endorse the document.
Parameters: n clerks.

Package Delivery (PD) [GOW20]: There are n drones that should deliver m packages.
Each drone can only transport one package at a time. The packages get uniquely
assigned to the drones. The hostile environment lets an arbitrary drone crash.
Drones get informed of the crash and can decide on recovering the package. The
system’s goal is to deliver all packages.
Parameters: n drones / m packages.

More details and especially a succinct high-level representation of the benchmark families
can be found in [GO21; GOW20].
Table 13.1 summarizes the results using AdamSYNT with BuDDy [Lin] as BDD li-

brary for synthesizing local controllers for the system of the benchmark families above.
For each benchmark of a benchmark family Ben, the table shows the number of to-
kens #Tok as well as the numbers places |P| and transitions |T| of the input Petri
game for the corresponding parameters Par. Furthermore, we give the resulting num-
ber of BDD variables #Var used for symbolically encoding the two-player game and
the elapsed CPU time in seconds as well as the used memory in GB for solving the
synthesis problem. The answer to the realizability question is shown in the ex. strat.
column by displaying a 3 if a strategy exists and an 7 if not. In case of the existence of
a strategy, the size of the synthesized strategy is given by the number of places |Pσ| and
the number of transitions |Tσ|. As a result we can see that we are able to synthesize
local controllers of asynchronous distributed systems for up to 59 processes. However,
this number still strongly depends on the structure of the distributed system.

AdamSYNT supports the usage of different packages for the BDD representa-
tions and calculations. There is a large body of BDD libraries (e.g., CUDD [Som],
BuDDy [Lin], BiDDy [Meo12], PJBDD [BFH21], CacBDD [LSX13], JDD [Vah], Syl-
van [DP15; DP17], BeeDeeDee [LMS14], MEDDLY [BM10a]) and research comparing
different libraries in various scenarios (e.g., in the context of probabilistic symbolic model

206

13.2 Benchmarks

(a) Comparing the runtimes. (b) Comparing the memory usage.

Fig. 13.2: Comparison of the runtimes and memory usage of AdamSYNT with the
JavaBDD library (green), the BuDDy library (blue), and the CUDD library (gray) for
the BDD calculations. We use box plots representing the median value with the horizontal
gray lines, the area where the median 50% of the data is located as colored boxes, the
range of the minimal and maximal values by the vertical gray lines, and the data points
itself as small circles.

checking [DHJL+15], formal concept analysis [RZS09], AI-planning problems [Jen02],
and analyzing feature models [PLP11]).

For the benchmarks presented above, Fig. 13.2 shows a comparison of the time and
memory usage of three different BDD libraries:

JavaBDD: [Wha]: A BDD library originally written by John Whaley in Java. It also
provides an interface for calling C/C++ libraries using the Java Native Inter-
face (JNI).

BuDDy [Lin]: A library for manipulating BDDs originally developed by Jørn Lind-
Nielsen as a Ph. D. project. The implementation is written in C.

CUDD [Som]: A BDD package written in C and originally developed by Fabio Somenzi.

The results show that for all benchmark families BuDDy generally outperforms the
other libraries with respect to the running times, whereas CUDD requires the least
memory. Especially for experiments with smaller state spaces the CUDD library needs
significantly less memory than the others. This however comes with the cost of often
being the slowest library.

207

AdamSYNT – A Synthesis Tool for Petri Games

Tab. 13.1: Benchmark data for AdamSYNT using the BDD library BuDDy. The results
are obtained on an Intel i7-2700K CPU with 3.50 GHz, 32 GB RAM, and a timeout (TO)
of 30 minutes. The runtimes are given in seconds, the memory in GB.

Ben Par #Tok |P| |T| #Var time memory |Pσ| |Tσ| ex. strat.
AS 2 4 94 17 28 1.14 .24 18 12 3

3 5 206 27 72 1.70 .30 32 21 3
4 6 402 39 152 4.11 .55 50 32 3
... · · · · · · · · · · · ·
7 9 1710 87 728 535.96 1.80 128 77 3
8 10 2466 107 1072 TO TO ? ? ?

CM 2/1 4 52 12 10 .64 .22 12 8 3
2/2 5 82 19 16 .58 .21 - - 7
2/3 6 112 26 22 .64 .22 - - 7
... · · · · · · · · · · · ·

2/7 10 232 54 46 135.07 1.47 - - 7
2/8 11 262 61 52 TO TO ? ? ?
... · · · · · · · · · · · ·

7/1 9 156 37 35 2.70 .33 72 28 3
7/2 10 240 59 56 9.32 .68 94 42 3
7/3 11 324 81 77 60.74 1.77 116 56 3
7/4 12 408 103 98 TO TO ? ? ?
... · · · · · · · · · · · ·

10/1 12 216 52 50 535.30 6.74 132 40 3
10/2 13 330 83 80 TO TO ? ? ?

JP 2 3 46 12 13 .71 .22 16 13 3
3 4 76 18 23 1.07 .24 34 28 3
... · · · · · · · · · · · ·
15 16 1614 168 299 561.46 5.02 1602 1040 3
16 17 1904 187 335 1591.22 10.88 1906 1224 3
17 18 2226 207 373 TO TO ? ? ?

DW 1 3 46 11 10 .68 .22 9 6 3
2 4 72 18 16 .77 .23 21 15 3
... · · · · · · · · · · · ·
31 33 782 221 190 317.82 3.05 2979 2016 3
32 34 808 228 196 TO TO ? ? ?

DWs 1 3 38 11 6 .57 .21 8 3 3
2 5 70 21 12 .68 .22 23 10 3
... · · · · · · · · · · · ·
29 59 940 291 174 1419.64 6.99 3452 1711 3
30 61 972 301 180 TO TO ? ? ?

PD 1/1 3 44 11 9 .47 .21 - - 7
1/2 4 76 17 16 .53 .21 - - 7
... · · · · · · · · · · · ·

1/7 9 236 47 51 207.68 4.67 - - 7
1/8 10 268 53 58 TO TO ? ? ?
2/1 4 78 16 18 .56 .21 - - 7
2/2 5 134 24 32 1.49 .24 26 18 3
2/3 6 190 32 46 10.33 .53 - - 7
2/4 7 246 40 60 1170.00 8.57 - - 7
2/5 8 302 48 74 TO TO ? ? ?
... · · · · · · · · · · · ·

7/1 9 292 41 93 1515.60 2.76 - - 7
7/2 10 520 59 172 TO TO ? ? ?

208

14Related Work

In the literature, there is a large variety of algorithms solving the synthesis problem
that differ in the choice of the architecture of the input system and the specification
logic. For example, for implementations that do not interact with the environment (the
closed synthesis problem) and only consists of a single process, the synthesis problem for
LTL specifications is solved in [MW81], for CTL specifications in [CE81], and for the
modal µ-calculus in [Koz83]. The open synthesis problem, i.e., the synthesis problem for
implementations that do interact with their environment, has been solved for architec-
tures with a single system process and linear-time specifications in an asynchronous set-
ting in [PR89b; Var95b], and for branching-time specifications in a synchronous setting
in [KV00b]. The paper [KV00a] presents a solution for the µ-calculus in a synchronous
setting [Sch08].

However, the distributed synthesis problem [PR90; MT01; KV01a], i.e., the synthesis
of systems where multiple processes interact with their environments, introduces another
level of complexity resulting from the possibly different level of informedness of the in-
dividual processes. In [PR90], Pnueli and Rosner introduce a model for the synthesis of
distributed systems in a synchronous setting, where the processes exchange their knowl-
edge via one slot communication channels and show that in this setting the distributed
synthesis problem is in general undecidable. Finkbeiner and Schewe identify information
forks in the communication architecture as a sufficient criterion for the undecidability of
such systems [FS05]. Unfortunately the complexity for the decidable architectures, in-
cluding e.g., pipelines [PR90], two-way pipeline and one-way ring architectures [KV01a],
is nonelementary [FS05]. In the asynchronous setting several solutions for the distributed
synthesis problem are based on Zielonka’s asynchronous automata [Zie87]. Such a model
consists of a product of finite-state processes that are synchronized on shared actions.
All non-shared actions can be taken individually by each process independent from the
other processes. A causal memory model is used for the knowledge of the processes
which is completely exchanged during the synchronizations.

In relation to the synthesis problem is the control problem that goes back to Ramadge
and Wonham’s supervisory control [RW89]. There, it is searched for a controller of a
given plant, such that the product of the controller and the plant satisfies a given spec-
ification. The plant can be seen as an incomplete implementation of the system and
the aim is to control the nondeterministic behavior of the implementation in such a
way that the thereby completed implementation satisfies the given specification. Going
from synthesizing implementations solely from a given specifications to the controller
synthesis is somewhat fluid [BCJ18]. Generally, implementations can also be expressed
in the specification language and likewise specifications can also be represented in the

209

14 Related Work

implementation language [BCJ18]. In decentralized supervisory control [RW92; YL02],
local controllers are searched for specifications given as global constraints. Considering
local specifications, i.e., each process has its own specification, allowed to extend the de-
cidability result for the distributed synthesis problem for pipeline architectures [PR90]
to pipeline architectures allowing inputs on both sides for the controller synthesis prob-
lem [MT01].
In [GLZ04; GGMW13; MW14; Gim17] the distributed control problem is considered,

where the plants and the controllers are Zielonka automata. Even though the decidability
of the control problem for Zielonka automata is in general still open, there exist several
decidable architectures. For instance, in [GLZ04] decidability for series-parallel systems
with causal memory and for specifications that are recognizable on finite behavior is
shown. Furthermore, in [GGMW13] a decision procedure for reachability objectives in
tree architectures is presented that is extended in [MW14] for ω-regular local specifica-
tions for acyclic communication architectures. The complexity of the decision procedures
is nonelementary for architectures of depth greater one. Another decidable architecture
can be achieved by enforcing the processes to frequently synchronize on common actions.
So-called connectedly communicating processes [MTY05] either communicate (directly
or indirectly) within a certain bound of parallel steps or never synchronize again. The
distributed control problem of such systems is also decidable [MTY05]. In [Gim17] the
decidability for decomposable games is shown. This incorporates the previous results by
showing that acyclic games are structurally decomposable, connectedly communicating
games are process decomposable, and series-parallel games are action decomposable.
Another framework for the distributed synthesis is the model on which the second

part of this thesis is built (cp. Sec. 10.2). Petri games have been introduced in [FO14]
and the corresponding journal version [FO17]. There, Finkbeiner and Olderog intro-
duce an EXPTIME-complete decision procedure for Petri games with one environment,
a bounded number of system players, and a local safety condition based on avoiding
dedicated bad places. Furthermore, the undecidability of unbounded Petri games is es-
tablished. The decision procedure is implemented in [FGO15] with an accompanying web
interface [GHY21]. In [Spr15] preliminary work for Petri games with bad markings is pre-
sented and [Hec21; FGHO22] present a decision procedure for one environment player, a
bounded number of system players, and a global safety condition based on avoiding bad
markings with 2-EXPTIME complexity. For one system player, a bounded number of en-
vironment players, and a global safety condition based on avoiding bad markings [Göl17;
FG17] introduce a EXPTIME-complete decision procedure. In [Han19] a decision pro-
cedure for two environment players, two system players, and a global safety condition
based on avoiding bad markings with a synchronization condition restricting the com-
munication possibilities of the players is introduced. For extending the memory model
of Petri games, there is some preliminary work introducing forgetful places [Buh19],
i.e., places in which the players loose their memory. Furthermore, preliminary work for
making arbitrary bounded Petri games concurrency-preserving , i.e., no players can be
created or terminate, without information leakage, is presented in [Sch19].
A bounded synthesis approach for Petri games is introduced in [Fin15] and an im-

plementation that encodes the problem in quantified Boolean formulas (QBF) using

210

QuAbS [Ten16; HT18] as a solver is provided in [FGHO17]. Bounded synthesis al-
gorithms for Petri games with a true concurrency semantics , i.e., subsuming several
interleavings of concurrent transitions by a single one whenever possible, is introduced
in [Met17; HM19]. High-level Petri games based on high-level Petri nets are introduced
in [GO21] and solving algorithms exploiting the symmetries in the system are devel-
oped in [GOW20; GW21a; Wür21]. Petri games can be translated into the control
games based on Zielonka’s asynchronous automata with an exponential blow-up [Beu19;
BFH19]. The same applies for the other direction [Beu19; BFH19].

Different to the reduction method for Petri games presented in [FO14; FO17], in the
reduction presented in this thesis, we do not outsource the type-2 case into a precalcula-
tion, but integrate it into the information flow game. This is necessary for handling the
new winning conditions based on the local data flow. To integrate the type-2 case in the
information flow game, we use the generations and the round robin procedure instead of
the three valued flag for each system player and the additional memory for the repeat-
ing marking used in [Hec21; FGHO22], because the winning condition defined on the
local data flow may need additional unrollings of loops and we cannot directly exploit
the idea of useless repetitions for Petri games with transits as in [Hec21; FGHO22] for
Petri games. To deal with the nondeterminism of the strategy, we use the restriction to
Petri games without mixed communication instead of the backward moves from [Hec21;
FGHO22], to avoid the additional complexity. Moreover, this global view would thwart
the idea of the locality of the new winning conditions.

There is a large body of work regarding Petri net synthesis [DR96b; BBD15], i.e., the
quest for a structural description of a concurrent system, given a behavioral one. Origi-
nally, the problem has been formulated as the search for a Petri net with a reachability
graph that is isomorphic to a given transition system. This problem has been introduced
and solved by Ehrenfeucht and Rozenberg using the theory of regions of transition sys-
tems [ER90a; ER90b]. A significant part of the application of this work either concerns
the synthesis without any environment [Dar07; BBD15] and/or the control problem of
a single-process [HKG97; RXG00]. In [Dar05; DR12; BBD15], however, another dis-
tributed version of the Ramadge and Wonham setting is considered using region theory.
There, the events are distributed over locations with one local controller per location
that observes the observable and controls the controllable events of its location [BBD15].

211

15Adam – Analyzer of Distributed

Asynchronous Models

In this chapter we present the combination of the two tools developed accompanying
this thesis. The tool is named Adam in honor of Carl Adam Petri, who laid the founda-
tions of Petri nets. Conveniently, however, the name is also an acronym for Analyzer of
Distributed Asynchronous Models. We have constructed a single framework to deal with
the common features for the model checking and the synthesis approaches developed in
AdamMC (cp. Chap. 7) and AdamSYNT (cp. Chap. 13). The framework is designed
modularly, so that individual parts can be build separately and used as libraries in other
projects. In Sec. 15.1, we give a brief overview on the structure of this framework.

Furthermore, we have implemented two user interfaces for Adam. The web interface
AdamWEB1 [GHY20; GHY21] allows for an intuitive, visual definition of Petri nets with
transits and Petri games. The corresponding model checking and synthesis problems are
solved directly on a server. In the interface, implementations, counterexamples, and all
intermediate steps can be analyzed and simulated. Stepwise simulations and interactive
state space generation supports the user in detecting modeling errors in the distributed
system to tackle the validation problem. The command-line interface offers considerably
more possibilities to tweak the algorithms of the different approaches because not all
parameters of the algorithms are yet provided in the web interface. In general, the
command-line tool is more suitable for benchmarking purposes and can be used more
easily for the comparison with other tools. All tools are available online and open source.

This chapter is based on [GHY21].

15.1 Framework

We have developed a framework covering the approaches for model checking and synthe-
sis presented in this thesis. The focus of the implementation is on the adaptability, ease
to use, and generality of the data structures and algorithms, rather than on their speed,
as the computationally intensive work is done by the external tool ABC [Ber; BM10b]
or the BDD libraries [Lin; Som]. In general, the reduction algorithms take up a fraction
of the total computation time and also the overhead for calling the C libraries is negli-
gible [Iri13]. However, for the model checking approach with Flow-CTL specifications,
the automata reduction may already require a lot of computing time. Currently, these

213

15 Adam – Analyzer of Distributed Asynchronous Models

Libs:

h�ps://github.com/adamtool/
libs

Examples

h�ps://github.com/adamtool/
examples

Framework:

h�ps://github.com/adamtool/
framework

classes: 142

Ui:

h�ps://github.com/adamtool/
ui

classes: 11

Synthesizer:

h�ps://github.com/adamtool/
synthesizer

classes: 145

Logics:

h�ps://github.com/adamtool/
logics

classes: 72

Synthesis –

Distributed Env.:

h�ps://github.com/adamtool/
synthesisDistrEnv

classes: 10

Model Checker:

h�ps://github.com/adamtool/
modelchecker

classes: 125

High Level:

h�ps://github.com/adamtool/
high-level

classes: 158

Server – Protocol:

h�ps://github.com/adamtool/
server-command-line-
protocol

classes: 11

AdamMC:

h�ps://github.com/adamtool/
adammc

classes: 20

AdamSYNT:

h�ps://github.com/adamtool/
adamsynt

classes: 45

Web Interface –

Backend:

h�ps://github.com/adamtool/
webinterface-backend

classes: 9

Bounded Synthesis:

h�ps://github.com/adamtool/
boundedSynthesis

classes: 61

Server –

Command-Line:

h�ps://github.com/adamtool/
server-command-line

classes: 14

Adam:

h�ps://github.com/adamtool/
adam

classes: 4

Web Interface:

h�ps://github.com/adamtool/
webinterface

Fig. 15.1: Overview of the repositories corresponding to the Adam framework. Blue
colors indicate repositories mainly corresponding to the model checking approach, whereas
oranges colors belong to the synthesis approach. The star pattern identifies repositories
corresponding to executables and the dashed lighter packages mark the repositories with
other leading developers.

algorithms are only used as proof of concept, are not optimized, and are still in an early
state of development.
We base our data structure for Petri nets with transits and Petri games on the data

structures for Petri nets provided by [Uni12]. Figure 15.1 gives an overview of the
repositories that make up the Adam project2. The framework has also been used in
projects not developed by the author of this thesis. Jesko Hecking-Harbusch and Niklas
Metzger developed bounded synthesis algorithms for Petri games with a global safety
objective [FGHO17; HM19] in the repository “Bounded Synthesis”, and Lukas Panneke
implemented the synthesis approach for Petri games with one system player, a bounded
number of environment players, and a global safety objective [FG17] in the repository
“Synthesis – Distributed Env.”. The front-end of the web interface and the web server
(repository “Web Interface”) is developed by Ann Yanich. The repository “Adam” and

1http://adam.informatik.uni-oldenburg.de
2https://github.com/adamtool/

214

https://github.com/adamtool/libs
https://github.com/adamtool/libs
https://github.com/adamtool/examples
https://github.com/adamtool/examples
https://github.com/adamtool/framework
https://github.com/adamtool/framework
https://github.com/adamtool/ui
https://github.com/adamtool/ui
https://github.com/adamtool/synthesizer
https://github.com/adamtool/synthesizer
https://github.com/adamtool/logics
https://github.com/adamtool/logics
https://github.com/adamtool/synthesisDistrEnv
https://github.com/adamtool/synthesisDistrEnv
https://github.com/adamtool/modelchecker
https://github.com/adamtool/modelchecker
https://github.com/adamtool/high-level
https://github.com/adamtool/high-level
https://github.com/adamtool/server-command-line-protocol
https://github.com/adamtool/server-command-line-protocol
https://github.com/adamtool/server-command-line-protocol
https://github.com/adamtool/adammc
https://github.com/adamtool/adammc
https://github.com/adamtool/adamsynt
https://github.com/adamtool/adamsynt
https://github.com/adamtool/webinterface-backend
https://github.com/adamtool/webinterface-backend
https://github.com/adamtool/boundedSynthesis
https://github.com/adamtool/boundedSynthesis
https://github.com/adamtool/server-command-line
https://github.com/adamtool/server-command-line
https://github.com/adamtool/adam
https://github.com/adamtool/adam
https://github.com/adamtool/webinterface
https://github.com/adamtool/webinterface
http://adam.informatik.uni-oldenburg.de
https://github.com/adamtool/

15.2 Web Interface

“Web Interface” have their dependencies integrated as git submodules and the other
repositories provide scripts to automatically checkout all necessary dependencies (also
on specific versions). All repositories offer scripts for properly building the libraries or
tools.

15.2 Web Interface

In this section we give some insights into the web interface for the tools AdamMC and
AdamSYNT with its possibilities to simulate or interactively explore implementations,
counterexamples, and parts of the created state space for both applications. The web
interface offers the input of Petri nets with transits and Petri games, where the user can
interactively creates places, transitions, and their connections with a few inputs.

A screenshot for the model checking approach is given in Fig. 15.2 and one for the
synthesis approach in Fig. 15.3 with the tool bars on the left to interactively create the
input models.

15.2.1 The Model Checking Approach

As back-end for the model checking approach, the algorithms of AdamMC are used to
model check Petri nets with transits against a given Flow-LTL formula as specification.
Internally, the problem is reduced to the model checking problem of Petri nets against
LTL. Both, the input Petri net with transits and the constructed Petri net can be
visualized, simulated, and manually arranged in the web interface. Automatic layout
techniques may be applied to avoid the overlapping of nodes. In addition, a so-called
physics control, which modifies the repulsion, link, and gravity strength of nodes, can
be used to minimize the overlapping of edges. Heuristics generate coordinates for the
constructed Petri net by using the coordinates of the input Petri net with transits to
obtain a similar layout of corresponding parts.

For a positive result, the web interface allows the user to follow the control flow of
the combined system and the data flow of the components of simulated runs of the net
by visualizing the data flow trees corresponding to the input firing sequence. For a neg-
ative result, the web interface allows the user to simulate the counterexample both in
the Petri net with transits and in the Petri net from the reduction. The witness of the
counterexample for each flow subformula and the run violating the requirement on the
global behavior can be displayed by the web interface. This functionality is helpful when
developing an encoding of a problem into Petri net with transits to ensure that a coun-
terexample is not an error in the encoding. The constructed Petri net can be exported
into a standard format for Petri net model checking (PNML) and the constructed LTL
formula can be displayed. A complete documentation with the features and example
workflows is available online3.

3https://github.com/adamtool/webinterface/tree/master/doc/mc#readme

215

https://github.com/adamtool/webinterface/tree/master/doc/mc#readme

15 Adam – Analyzer of Distributed Asynchronous Models

Fig. 15.2: Screenshot from the web interface for the model checking approach. The input
Petri net with transits and the specification is given on the left, whereas the result and
a textual representation of the counterexample is presented on the right. The transits
are depict as colored arcs or with letters equipped to the arcs. The purple color of a
transition indicates the weak fairness property of this transition.

15.2.2 The Synthesis Approach

As a back-end for the synthesis approach, the algorithms of AdamSYNT solve a given
Petri game with a local safety specification. Internally, the synthesis problem for Petri
games with a bounded number of system players, one environment player, and a local
safety objective is reduced to the synthesis problem for finite-state two-player games
with complete information.

For a positive result, a winning strategy in the two-player game is translated into
a winning strategy for the Petri game. Both can be visualized in the web interface.
Here, the web interface provides the same features for visualizing, manipulating, and
automatically laying out the elements as for model checking. It uses the order of nodes
of the Petri game to heuristically provide a positioning of the strategy and allows for
the simulation of runs of the strategy. The winning strategy of the two-player game
provides an additional view on the implementation to check if it is not bogus due to
a forgotten case in the Petri game or the specification. For a negative result, i.e., an
unrealizable synthesis problem, the web interface allows for interactively analyzing the
underlying two-player game via a stepwise creation of strategies. This guides the user
towards changes to make the problem realizable. A complete documentation with the

216

15.3 Command-line Interface

Fig. 15.3: Screenshot from the web interface for the synthesis approach. The input Petri
game is presented on the left, whereas the corresponding winning strategy is depicted on
the right.

features and example workflows is available online4.

15.2.3 Implementation Details

The server is implemented using the Sparkjava micro-framework [Spa] for incoming
HTTP and WebSocket connections. The client is a single-page application written in
Javascript using Vue.js [Vuea], D3 [D3], and the Vuetify component library [Vueb]. Both
components are implemented by Ann Yanich. Libraries are constructed out of the tools
AdamMC and AdamSYNT and one interface has been implemented handling both
libraries.

15.3 Command-line Interface

We provide three tools with a command-line interface for the analysis of distributed
asynchronous systems: AdamMC for the model checking algorithms (cp. Chap. 7),
AdamSYNT for the synthesis algorithms (cp. Chap. 13), and Adam combining the
features of both tools. Since the tools are based on the same repositories for the program
logic and data structures, they offer the same main functionalities as the web interface.

In addition, the command-line interfaces provide a broad variety of parameters for
tweaking the different approaches. These are listed in the help dialogue of the individual

4https://github.com/adamtool/webinterface/tree/master/doc/synt#readme

217

https://github.com/adamtool/webinterface/tree/master/doc/synt#readme

15 Adam – Analyzer of Distributed Asynchronous Models

commands. If available, the input and output objects can be visualized using Graphviz
and the dot language [EGKN+04]. Generators for constructing scalable Petri nets with
transits and Petri games are available as well as features to automatically generate the
function for the bash-completion of the current state of the tool.
More details can be found in the documentations available in the repositories.

218

16Conclusion

This final chapter of the thesis summarizes the results and addresses some interesting
directions for future work.

16.1 Summary

This thesis contributes to the correct development of asynchronous distributed systems
following two complementing approaches: model checking and synthesis. For both ap-
proaches, we introduced new modeling and specification formalisms that enable require-
ments on the unbounded data flow in asynchronous distributed systems. This thesis
provided solving algorithms for the corresponding model checking and synthesis prob-
lems with a reasonable complexity, despite the unbounded features of the data flow and
the incomplete knowledge of the system’s components about the system’s environment
in asynchronous distributed systems. The implementations of these algorithms deal with
the state explosion problem, resulting from the different schedules of the asynchronous
components in a distributed system, via a reduction to a hardware model checking prob-
lem or by using symbolic algorithms, respectively.

In the first part, a new framework for model checking asynchronous distributed sys-
tems has been introduced. The model (Petri nets with transits) and the specification
language (Flow-CTL∗) allow for a clear separation of the control part of the system and
the local data flow of its processes. Both formalisms are extensions of well-established
concepts which have proven to be particularly suitable in such contexts. The separation
allows us to individually focus on the respective aspects of the system. Controlling the
behavior of the distributed system is done by the Petri nets whereas the correctness
is stated on the unbounded local data flow of the processes. This allows us to select
specific runs of the system, e.g., those adhering to fair schedulings, and to only check
the correctness of the selected runs. As a result, a specification can be composed of
individual requirements for the data flow depending on different control runs. Different
algorithms with affordable costs have been introduced to automatically check whether
such a system satisfies a given specification. For the Flow-LTL fragment of Flow-CTL∗,
two optimized algorithms have been introduced: a sequential and a parallel one. De-
spite having a worse theoretical complexity in general, the experimental results show a
superiority of the parallel approach in the scenarios considered. Finally, the problem has
been reduced to a hardware model checking problem in order to use the state-of-the-art
algorithms and toolboxes provided in this setting. An implementation for subclasses of

219

16 Conclusion

the framework is available with AdamMC1 and shows the practical applicability of the
presented algorithms.
The second part of the thesis introduced a new framework for the synthesis of asyn-

chronous distributed systems with causal memory. The model (Petri games with transits
with existential, universal, and local Flow-LTL winning conditions) has been introduced,
in which the correctness of the system can be stated at the level of the unbounded lo-
cal data flow of the processes. This allows for the first time to address the synthesis
problem for asynchronous distributed systems with Petri games, where the specification
goes beyond safety requirements. A uniform reduction method for all winning conditions
has been presented for systems with one environment player and a bounded number of
system players that do not allow any mixed communications. The resulting two-player
game over a finite graph with complete information can be solved by established state-
of-the-art algorithms. As a result, local controllers for the processes can be synthesized
with affordable costs for the new existential and universal safety, reachability, Büchi,
co-Büchi, and parity, as well as for the local Flow-LTL specifications. The presented
solving algorithm reduces the intricate causal memory model of the players in the Petri
game with transits to a complete information model detached from the winning property
of the strategy. This enabled us to reduce the general existence of a strategy for the
system players in the Petri game with transits to the solving of a two-player Büchi game,
while the winning property of the strategy is reduced to the acceptance by suitably con-
structed automata. This separation accounts for the generality of the presented solving
algorithm and facilitates simpler extensibility to different winning conditions. To show
the practical applicability, another tool, AdamSYNT2, has been implemented such that
local controllers for subclasses of the framework can be fully automatically synthesized.
A web interface is online at http://adam.informatik.uni-oldenburg.de to provide
easy and interactive access to a selection of the features of both tools.

16.2 Future Work

There are several interesting aspects and starting points on how to build upon the results
of this thesis. In the following we list some of them.

Extending the Specification Language: For Flow-CTL∗ we consider all runs, all firing
sequences, and all data flow chains (or an existing run with an existing firing sequence,
and an existing data flow chain, respectively) to check whether a formula is satisfied.
We can extend this logic by also considering other combinations of the quantors for
the runs (R), the firing sequences (F), and the data flow chains (D). However, the
∃R∀FQD-fragments, with Q ∈ {∀,∃} (or the ∀R∃FQD-fragments, respectively), are
most likely undecidable. A reduction to the Post correspondence problem (PCP) should
be possible by introducing one independent process for each of the list of words similarly
to [FGHO22]. Each process can nondeterministically decide for a word of its list and

1https://github.com/adamtool/adammc
2https://github.com/adamtool/adamsynt

220

http://adam.informatik.uni-oldenburg.de
https://github.com/adamtool/adammc
https://github.com/adamtool/adamsynt

16.2 Future Work

outputs the index followed by the corresponding letters. Here we have to use helping
processes to select the letters because we do not have labels for the transitions of the
Petri net. A selected concurrent run (∃R) then contains the sequence of indices and
the concatenated words. Since we consider all firing sequences of the run (∀F), we
can select with the formula the firing sequence in which the indices of both processes
alternate and check their correspondence. Similarly, we can select the firing sequence
in which the letters alternate and check their correspondence. Thus, each of the firing
sequence can be seen as a synchronized progression of the processes similar to setting of
the undecidability proof by Pnueli and Rosner [PR90].

Reduction Techniques: To tackle the state-explosion problem, AdamSYNT already
contains algorithms exploiting the symmetries in the system [GOW20; GW21a], and
uses symbolic algorithms by representing the two-player game with BDDs [FGO15;
FGHO17]. A further interesting step is to investigate whether other reduction tech-
niques for the state space of Petri nets can also be applied for Petri net with transits or
Petri games. There is a large body of work regarding model checking and partial order
reductions (see e.g. [CGP01; Pel18]). For example [Tiu94] investigates how to use stub-
born sets [Val89; Val90; Val92; KV98] together with BDDs for the reachability analysis
in safe Petri nets. Another approach is to reduce the input Petri net before its analy-
sis, while still preserving specific properties of the system. Such structural reductions
are for example presented in [Mur89; Sta90; Thi20]. In [BDJJ+19] the combination of
structural reductions and stubborn sets for the reachability analysis in Petri nets is inves-
tigated and [JSUV22] provides algorithms for using stubborn sets to improve LTL model
checking on Petri nets. Some conscientious preliminary work for comparing structural
reductions, stubborn sets, and BDDs, as well as some combinations of these techniques,
is already done in [Pan21] together with an implementation for the reachability analysis
in bounded Petri nets.

Decomposing the Input Problem: Another approach that enables the synthesis of
large-scale asynchronous distributed systems is to decompose the input problem into
smaller problems, solve these simpler problems, and, in the end, reassemble an original
solution from the individual smaller solutions. This would enable us to solve large Petri
games with transits which cannot be solved as a whole but for which each independent
component can be solved. However, most Petri games with transits cannot simply be
decomposed and analyzed individually without information about the surrounding in
which the component is embedded. At this point, the rely-guarantee paradigm [Sta85;
AL89; AL93] can be helpful to identify constraints a component game relies on and
that can be guaranteed by the system. For making such guarantees formal, a knowledge
operator [FHMV95] may be used for expressing the level of informedness of the specific
players at the beginning of the component game.

Memory Model: In Petri games causal memory is used to represent the knowledge of
the players. In this model, all players involved in a joint transition exchange their
complete knowledge and the players can never forget any information. Thus, no player
(especially the environment) can hide any information while interacting with the other

221

16 Conclusion

players. Lifting these restrictions and introducing partial observation [CD10; CDH13]
is an interesting direction for further work but bears the risk of making an already
computationally hard problem even harder. One direction of extending the memory
model is to introduce labels on the transitions of the Petri game with transits and let
equally labeled transitions become indistinguishable to the players. Another direction is
to introduce forgetful places where the causal histories are merged in the strategy, i.e., the
causal past of the token reaching such a place is lost and thus cannot be communicated
in the next joint transition. However, adding the concept of forgetful places enables us
to enforce a synchronization between processes without information leakage. Thus, most
likely the general setting is undecidable due to Pnueli and Rosner [PR90] and makes it
especially interesting for the bounded synthesis approaches [Fin15; FGHO17; Hec21].
A good starting point for the syntactical and semantic definition of forgetful places is
given in [Buh19].

Another possibility for the environment to hide certain information is to introduce more
environment players. A good starting point for this topic is [Han19], where a decision
procedure for two environment and two system players with a bound on the communi-
cation depth until the new information is propagated to all players is introduced.

Implementations with Side Constraints: A solution to the synthesis problem is gener-
ally not unambiguous. An interesting question is how to guide the search for strategies
satisfying given side constraints. For example, bounded synthesis approaches [SF07;
FS13] are tailored to find small strategies. For Petri games it could be of special interest
to find strategies using the least communication between the players to keep the single
components as independent as possible and minimize the possible errors due to com-
munication problems. A related and not less interesting question is where do we have
to add communication in the system to provide a winning strategy in case the current
model does not have any winning strategy.

222

Bibliography

[AL89] Martín Abadi and Leslie Lamport. “Composing Specifications”. In: Stepwise
Refinement of Distributed Systems, Models, Formalisms, Correctness, REX
Workshop, Mook, The Netherlands, May 29 - June 2, 1989, Proceedings. 1989,
pp. 1–41. doi: 10.1007/3-540-52559-9_59.

[AL93] Martín Abadi and Leslie Lamport. “Composing Specifications”. In: ACM Trans.
Program. Lang. Syst. 15.1 (1993), pp. 73–132. doi: 10.1145/151646.
151649.

[ABd03] Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso. “Deciding Mono-
tonic Games”. In: Computer Science Logic, 17th International Workshop, CSL
2003, 12th Annual Conference of the EACSL, and 8th Kurt Gödel Colloquium,
KGC 2003, Vienna, Austria, August 25-30, 2003, Proceedings. 2003, pp. 1–14.
doi: 10.1007/978-3-540-45220-1_1.

[ADBG+17] Elvio Gilberto Amparore, Susanna Donatelli, Marco Beccuti, Giulio Garbi, and
Andrew S. Miner. “Decision Diagrams for Petri Nets: Which Variable Order-
ing?” In: Proceedings of the International Workshop on Petri Nets and Software
Engineering (PNSE’17), co-located with the 38th International Conference on
Application and Theory of Petri Nets and Concurrency Petri Nets 2017 and
the 17th International Conference on Application of Concurrency to System
Design ACSD 2017, Zaragoza, Spain, June 25-30, 2017. 2017, pp. 31–50.

[ADG20] Elvio Gilberto Amparore, Susanna Donatelli, and Francesco Gallà. “A CTL*
Model Checker for Petri Nets”. In: Application and Theory of Petri Nets and
Concurrency - 41st International Conference, PETRI NETS 2020, Paris,
France, June 24-25, 2020, Proceedings. 2020, pp. 403–413. doi: 10.1007/
978-3-030-51831-8_21.

[AQRX04] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, and Yichen Xie. “Zing:
Exploiting Program Structure for Model Checking Concurrent Software”. In:
CONCUR 2004 - Concurrency Theory, 15th International Conference, London,
UK, August 31 - September 3, 2004, Proceedings. 2004, pp. 1–15. doi: 10.
1007/978-3-540-28644-8_1.

[AG11] Krzysztof R. Apt and Erich Grädel, eds. Lectures in Game Theory for Com-
puter Scientists. Cambridge University Press, 2011.

[AC88] André Arnold and Paul Crubillé. “A Linear Algorithm to Solve Fixed-Point
Equations on Transition Systems”. In: Inf. Process. Lett. 29.2 (1988), pp. 57–
66. doi: 10.1016/0020-0190(88)90029-4.

[BBCP+09] Souheib Baarir, Marco Beccuti, Davide Cerotti, Massimiliano De Pierro, Su-
sanna Donatelli, and Giuliana Franceschinis. “The GreatSPN tool: recent en-
hancements”. In: SIGMETRICS Perform. Evaluation Rev. 36.4 (2009), pp. 4–
9. doi: 10.1145/1530873.1530876.

223

https://doi.org/10.1007/3-540-52559-9_59
https://doi.org/10.1145/151646.151649
https://doi.org/10.1145/151646.151649
https://doi.org/10.1007/978-3-540-45220-1_1
https://doi.org/10.1007/978-3-030-51831-8_21
https://doi.org/10.1007/978-3-030-51831-8_21
https://doi.org/10.1007/978-3-540-28644-8_1
https://doi.org/10.1007/978-3-540-28644-8_1
https://doi.org/10.1016/0020-0190(88)90029-4
https://doi.org/10.1145/1530873.1530876

Bibliography

[BM10a] Junaid Babar and Andrew S. Miner. “Meddly: Multi-terminal and Edge-Valued
Decision Diagram LibrarY”. In: QEST 2010, Seventh International Conference
on the Quantitative Evaluation of Systems, Williamsburg, Virginia, USA, 15-18
September 2010. 2010, pp. 195–196. doi: 10.1109/QEST.2010.34.

[BKRS12] Tomás Babiak, Mojmír Kretínský, Vojtech Rehák, and Jan Strejcek. “LTL
to Büchi Automata Translation: Fast and More Deterministic”. In: Tools and
Algorithms for the Construction and Analysis of Systems - 18th International
Conference, TACAS 2012, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 -
April 1, 2012. Proceedings. 2012, pp. 95–109. doi: 10.1007/978-3-642-
28756-5_8.

[BBD15] Éric Badouel, Luca Bernardinello, and Philippe Darondeau. Petri Net Synthe-
sis. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2015.
doi: 10.1007/978-3-662-47967-4.

[BFGH+93] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, En-
rico Macii, Abelardo Pardo, and Fabio Somenzi. “Algebraic decision diagrams
and their applications”. In: Proceedings of the 1993 IEEE/ACM International
Conference on Computer-Aided Design, 1993, Santa Clara, California, USA,
November 7-11, 1993. 1993, pp. 188–191. doi: 10.1109/ICCAD.1993.
580054.

[BFGH+97] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico
Macii, Abelardo Pardo, and Fabio Somenzi. “Algebraic Decision Diagrams and
Their Applications”. In: Formal Methods Syst. Des. 10.2/3 (1997), pp. 171–206.
doi: 10.1023/A:1008699807402.

[BBS11] Yu Bai, Jens Brandt, and Klaus Schneider. “Data-Flow Analysis of Extended
Finite State Machines”. In: 11th International Conference on Application of
Concurrency to System Design, ACSD 2011, Newcastle Upon Tyne, UK, 20-24
June, 2011. 2011, pp. 163–172. doi: 10.1109/ACSD.2011.22.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[BS93] Felice Balarin and Alberto L. Sangiovanni-Vincentelli. “An Iterative Approach
to Language Containment”. In: Computer Aided Verification, 5th International
Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993, Proceedings.
1993, pp. 29–40. doi: 10.1007/3-540-56922-7_4.

[BBGI+14] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr
Karbyshev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. “VeriCon:
towards verifying controller programs in software-defined networks”. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014. 2014, pp. 282–293.
doi: 10.1145/2594291.2594317.

224

https://doi.org/10.1109/QEST.2010.34
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1109/ICCAD.1993.580054
https://doi.org/10.1109/ICCAD.1993.580054
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1109/ACSD.2011.22
https://doi.org/10.1007/3-540-56922-7_4
https://doi.org/10.1145/2594291.2594317

Bibliography

[BCRR+09] Lujo Bauer, Lorrie Faith Cranor, Robert W. Reeder, Michael K. Reiter, and
Kami Vaniea. “Real life challenges in access-control management”. In: Proceed-
ings of the 27th International Conference on Human Factors in Computing
Systems, CHI 2009, Boston, MA, USA, April 4-9, 2009. 2009, pp. 899–908.
doi: 10.1145/1518701.1518838.

[BMJA+01] Michel Beaudouin-Lafon, Wendy E. Mackay, Mads Jensen, Peter Andersen,
Paul Janecek, Henry Michael Lassen, Kasper Lund, Kjeld Høyer Mortensen,
Stephanie Munck, Anne V. Ratzer, Katrine Ravn, Søren Christensen, and Kurt
Jensen. “CPN/Tools: A Tool for Editing and Simulating Coloured Petri Nets
ETAPS Tool Demonstration Related to TACAS”. In: Tools and Algorithms
for the Construction and Analysis of Systems, 7th International Conference,
TACAS 2001 Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings.
2001, pp. 574–577. doi: 10.1007/3-540-45319-9_39.

[Ber] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequen-
tial Synthesis and Verification. Version 1.01 81030.

[BBDF+01] S. Bernardi, C. Bertoncello, S. Donatelli, G. Franceschinis, G. Gaeta, M. Grib-
audo, and A. Horvàth. GreatSPN in the new Millenium. Tools of Aachen
2001, International Multiconference on Measurement, Modelling and Evalu-
ation of Computer-Communication Systems 760/2001. Universitat Dortmund
(Germany), 2001, pp. 17–23.

[BRV04] Bernard Berthomieu, Pierre-Olivier Ribet, and François Vernadat. “The tool
TINA–construction of abstract state spaces for Petri nets and time Petri nets”.
In: International journal of production research 42.14 (2004), pp. 2741–2756.

[BV06] Bernard Berthomieu and François Vernadat. “Time Petri Nets Analysis with
TINA”. In: Third International Conference on the Quantitative Evaluation of
Systems (QEST 2006), 11-14 September 2006, Riverside, California, USA.
2006, pp. 123–124. doi: 10.1109/QEST.2006.56.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions. Texts in The-
oretical Computer Science. An EATCS Series. Springer, 2004. doi: 10.1007/
978-3-662-07964-5.

[BDW07] Eike Best, Philippe Darondeau, and Harro Wimmel. “Making Petri Nets Safe
and Free of Internal Transitions”. In: Fundam. Informaticae 80.1-3 (2007),
pp. 75–90.

[BF88] Eike Best and César Fernández. Nonsequential Processes - A Petri Net View.
Vol. 13. EATCS Monographs on Theoretical Computer Science. Springer, 1988.
doi: 10.1007/978-3-642-73483-0.

[BW00] Eike Best and Harro Wimmel. “Reducing k-Safe Petri Nets to Pomset-
Equivalent 1-Safe Petri Nets”. In: Application and Theory of Petri Nets 2000,
21st International Conference, ICATPN 2000, Aarhus, Denmark, June 26-30,
2000, Proceeding. Ed. by Mogens Nielsen and Dan Simpson. Vol. 1825. Lecture
Notes in Computer Science. Springer, 2000, pp. 63–82. doi: 10.1007/3-
540-44988-4_6.

225

https://doi.org/10.1145/1518701.1518838
https://doi.org/10.1007/3-540-45319-9_39
https://doi.org/10.1109/QEST.2006.56
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-73483-0
https://doi.org/10.1007/3-540-44988-4_6
https://doi.org/10.1007/3-540-44988-4_6

Bibliography

[Beu19] Raven Beutner. “Translating Asynchronous Games for Distributed Synthesis”.
Bachelor’s Thesis. Saarland University, Saarbrücken, Germany, 2019.

[BFH19] Raven Beutner, Bernd Finkbeiner, and Jesko Hecking-Harbusch. “Translating
Asynchronous Games for Distributed Synthesis”. In: 30th International Con-
ference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amster-
dam, the Netherlands. 2019, 26:1–26:16. doi: 10.4230/LIPIcs.CONCUR.
2019.26.

[BFH21] Dirk Beyer, Karlheinz Friedberger, and Stephan Holzner. “PJBDD: A BDD
Library for Java and Multi-Threading”. In: Automated Technology for Verifi-
cation and Analysis - 19th International Symposium, ATVA 2021, Gold Coast,
QLD, Australia, October 18-22, 2021, Proceedings. 2021, pp. 144–149. doi:
10.1007/978-3-030-88885-5_10.

[BCCF+99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fujita, and
Yunshan Zhu. “Symbolic Model Checking Using SAT Procedures instead of
BDDs”. In: Proceedings of the 36th Conference on Design Automation, New
Orleans, LA, USA, June 21-25, 1999. 1999, pp. 317–320. doi: 10.1145/
309847.309942.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. “Sym-
bolic Model Checking without BDDs”. In: Tools and Algorithms for Construc-
tion and Analysis of Systems, 5th International Conference, TACAS ’99, Held
as Part of the European Joint Conferences on the Theory and Practice of Soft-
ware, ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999, Proceed-
ings. 1999, pp. 193–207. doi: 10.1007/3-540-49059-0_14.

[BCRZ99] Armin Biere, Edmund M. Clarke, Richard Raimi, and Yunshan Zhu. “Verifiy-
ing Safety Properties of a Power PC Microprocessor Using Symbolic Model
Checking without BDDs”. In: Computer Aided Verification, 11th International
Conference, CAV ’99, Trento, Italy, July 6-10, 1999, Proceedings. 1999, pp. 60–
71. doi: 10.1007/3-540-48683-6_8.

[BHW11] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 And Beyond.
Tech. rep. 11/2. Altenbergerstr. 69, 4040 Linz, Austria: Institute for Formal
Models and Verification, Johannes Kepler University, July 2011.

[BCHK+03] Jonathan Billington, Søren Christensen, Kees M. van Hee, Ekkart Kindler,
Olaf Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael
Weber. “The Petri Net Markup Language: Concepts, Technology, and Tools”.
In: Applications and Theory of Petri Nets 2003, 24th International Conference,
ICATPN 2003, Eindhoven, The Netherlands, June 23-27, 2003, Proceedings.
2003, pp. 483–505. doi: 10.1007/3-540-44919-1_31.

[BCGH+10] Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger,
and Barbara Jobstmann. “Robustness in the Presence of Liveness”. In: Com-
puter Aided Verification, 22nd International Conference, CAV 2010, Edin-
burgh, UK, July 15-19, 2010. Proceedings. 2010, pp. 410–424. doi: 10.1007/
978-3-642-14295-6_36.

226

https://doi.org/10.4230/LIPIcs.CONCUR.2019.26
https://doi.org/10.4230/LIPIcs.CONCUR.2019.26
https://doi.org/10.1007/978-3-030-88885-5_10
https://doi.org/10.1145/309847.309942
https://doi.org/10.1145/309847.309942
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-48683-6_8
https://doi.org/10.1007/3-540-44919-1_31
https://doi.org/10.1007/978-3-642-14295-6_36
https://doi.org/10.1007/978-3-642-14295-6_36

Bibliography

[BCJ18] Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. “Graph
Games and Reactive Synthesis”. In: Handbook of Model Checking. 2018,
pp. 921–962. doi: 10.1007/978-3-319-10575-8_27.

[BGJP+07a] Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piterman, Amir
Pnueli, and Martin Weiglhofer. “Automatic hardware synthesis from specifi-
cations: a case study”. In: 2007 Design, Automation and Test in Europe Con-
ference and Exposition, DATE 2007, Nice, France, April 16-20, 2007. 2007,
pp. 1188–1193.

[BGJP+07b] Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piterman, Amir
Pnueli, and Martin Weiglhofer. “Specify, Compile, Run: Hardware from PSL”.
In: Electron. Notes Theor. Comput. Sci. 190.4 (2007), pp. 3–16. doi: 10.
1016/j.entcs.2007.09.004.

[BGHK+12] Roderick Bloem, Hans-Jürgen Gamauf, Georg Hofferek, Bettina Könighofer,
and Robert Könighofer. “Synthesizing Robust Systems with RATSY”. In: Pro-
ceedings First Workshop on Synthesis, SYNT 2012, Berkeley, California, USA,
7th and 8th July 2012. 2012, pp. 47–53. doi: 10.4204/EPTCS.84.4.

[BJPP+12] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv
Sa’ar. “Synthesis of Reactive(1) designs”. In: J. Comput. Syst. Sci. 78.3 (2012),
pp. 911–938. doi: 10.1016/j.jcss.2011.08.007.

[BBFJ+12] Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and Jean-
François Raskin. “Acacia+, a Tool for LTL Synthesis”. In: Computer Aided
Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA,
July 7-13, 2012 Proceedings. 2012, pp. 652–657. doi: 10.1007/978-3-
642-31424-7_45.

[Bok18] Udi Boker. “Why These Automata Types?” In: LPAR-22. 22nd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Awassa, Ethiopia, 16-21 November 2018. 2018, pp. 143–163. doi: 10.29007/
c3bj.

[BK09] Udi Boker and Orna Kupferman. “Co-ing Büchi Made Tight and Useful”. In:
Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Sci-
ence, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA. 2009, pp. 245–
254. doi: 10.1109/LICS.2009.32.

[BW96] Beate Bollig and Ingo Wegener. “Improving the Variable Ordering of OBDDs
Is NP-Complete”. In: IEEE Trans. Computers 45.9 (1996), pp. 993–1002. doi:
10.1109/12.537122.

[BDJJ+19] Frederik M. Bønneland, Jakob Dyhr, Peter Gjøl Jensen, Mads Johannsen, and
Jirí Srba. “Stubborn versus structural reductions for Petri nets”. In: J. Log. Al-
gebraic Methods Program. 102 (2019), pp. 46–63. doi: 10.1016/j.jlamp.
2018.09.002.

[BW18] Julian C. Bradfield and Igor Walukiewicz. “The mu-calculus and Model Check-
ing”. In: Handbook of Model Checking. 2018, pp. 871–919. doi: 10.1007/
978-3-319-10575-8_26.

227

https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1016/j.entcs.2007.09.004
https://doi.org/10.1016/j.entcs.2007.09.004
https://doi.org/10.4204/EPTCS.84.4
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.29007/c3bj
https://doi.org/10.29007/c3bj
https://doi.org/10.1109/LICS.2009.32
https://doi.org/10.1109/12.537122
https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/978-3-319-10575-8_26

Bibliography

[Bra11] Aaron R. Bradley. “SAT-Based Model Checking without Unrolling”. In: Verifi-
cation, Model Checking, and Abstract Interpretation - 12th International Con-
ference, VMCAI 2011, Austin, TX, USA, January 23-25, 2011. Proceedings.
2011, pp. 70–87. doi: 10.1007/978-3-642-18275-4_7.

[BHPV00] Guillaume Brat, Klaus Havelund, Seungjoon Park, and Willem Visser. “Java
PathFinder - Second Generation of a Java Model Checker”. In: In Proceedings
of the Workshop on Advances in Verification. 2000.

[BM10b] Robert K. Brayton and Alan Mishchenko. “ABC: An Academic Industrial-
Strength Verification Tool”. In: Computer Aided Verification, 22nd Interna-
tional Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings.
2010, pp. 24–40. doi: 10.1007/978-3-642-14295-6_5.

[Bru21] Roberto Bruttomesso. “Intrepid: A Scriptable and Cloud-Ready SMT-Based
Model Checker”. In: Formal Methods for Industrial Critical Systems - 26th
International Conference, FMICS 2021, Paris, France, August 24-26, 2021,
Proceedings. 2021, pp. 202–211. doi: 10.1007/978-3-030-85248-
1_13.

[Bry86] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function Manipula-
tion”. In: IEEE Trans. Computers 35.8 (1986), pp. 677–691. doi: 10.1109/
TC.1986.1676819.

[Bry92] Randal E. Bryant. “Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams”. In: ACM Comput. Surv. 24.3 (1992), pp. 293–318. doi:
10.1145/136035.136043.

[Bry95] Randal E. Bryant. “Binary decision diagrams and beyond: enabling technolo-
gies for formal verification”. In: Proceedings of the 1995 IEEE/ACM Interna-
tional Conference on Computer-Aided Design, ICCAD 1995, San Jose, Califor-
nia, USA, November 5-9, 1995. 1995, pp. 236–243. doi: 10.1109/ICCAD.
1995.480018.

[Bry18] Randal E. Bryant. “Binary Decision Diagrams”. In: Handbook of Model Check-
ing. 2018, pp. 191–217. doi: 10.1007/978-3-319-10575-8_7.

[BL69] J. Richard Buchi and Lawrence H. Landweber. “Solving Sequential Conditions
by Finite-State Strategies”. In: Transactions of the American Mathematical
Society 138 (1969), pp. 295–311.

[Buh19] Moritz Buhr. “Forgetful Petri Games – Synthesizing Distributed Systems with
Partially Observable Causal Memory”. Bachelor’s Thesis. University of Olden-
burg, Oldenburg, Germany, 2019.

[BCL91] Jerry R. Burch, Edmund M. Clarke, and David E. Long. “Symbolic Model
Checking with Partitioned Transistion Relations”. In: VLSI 91, Proceedings of
the IFIP TC10/WG 10.5 International Conference on Very Large Scale Inte-
gration, Edinburgh, Scotland, 20-22 August, 1991. 1991, pp. 49–58.

[BCMD90] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, and David L. Dill.
“Sequential Circuit Verification Using Symbolic Model Checking”. In: Proceed-
ings of the 27th ACM/IEEE Design Automation Conference. Orlando, Florida,
USA, June 24-28, 1990. 1990, pp. 46–51. doi: 10.1145/123186.123223.

228

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-030-85248-1_13
https://doi.org/10.1007/978-3-030-85248-1_13
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1145/136035.136043
https://doi.org/10.1109/ICCAD.1995.480018
https://doi.org/10.1109/ICCAD.1995.480018
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1145/123186.123223

Bibliography

[BCMD+90] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. “Symbolic Model Checking: 1020 States and Beyond”. In: Pro-
ceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS
’90), Philadelphia, Pennsylvania, USA, June 4-7, 1990. 1990, pp. 428–439. doi:
10.1109/LICS.1990.113767.

[BCMD+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. “Symbolic Model Checking: 1020 States and Beyond”. In:
Inf. Comput. 98.2 (1992), pp. 142–170. doi: 10.1016/0890-5401(92)
90017-A.

[BJS09] Joakim Byg, Kenneth Yrke Jørgensen, and Jirí Srba. “TAPAAL: Editor, Sim-
ulator and Verifier of Timed-Arc Petri Nets”. In: Automated Technology for
Verification and Analysis, 7th International Symposium, ATVA 2009, Macao,
China, October 14-16, 2009. Proceedings. 2009, pp. 84–89. doi: 10.1007/
978-3-642-04761-9_7.

[CJKL+17] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank
Stephan. “Deciding parity games in quasipolynomial time”. In: Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017. 2017, pp. 252–263. doi: 10.
1145/3055399.3055409.

[CVPK+12] Marco Canini, Daniele Venzano, Peter Peresíni, Dejan Kostic, and Jennifer
Rexford. “A NICE Way to Test OpenFlow Applications”. In: Proceedings of the
9th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2012, San Jose, CA, USA, April 25-27, 2012. 2012, pp. 127–140.

[CFG14] Martín Casado, Nate Foster, and Arjun Guha. “Abstractions for software-
defined networks”. In: Commun. ACM 57.10 (2014), pp. 86–95. doi: 10.
1145/2661061.2661063.

[CHJS18] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. “Extending
Automata Learning to Extended Finite State Machines”. In: Machine Learning
for Dynamic Software Analysis: Potentials and Limits - International Dagstuhl
Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers.
2018, pp. 149–177. doi: 10.1007/978-3-319-96562-8_6.

[CFJM16] Pavol Cerný, Nate Foster, Nilesh Jagnik, and Jedidiah McClurg. “Optimal
Consistent Network Updates in Polynomial Time”. In: Distributed Computing
- 30th International Symposium, DISC 2016, Paris, France, September 27-29,
2016. Proceedings. 2016, pp. 114–128. doi: 10.1007/978-3-662-53426-
7_9.

[CG18] Sagar Chaki and Arie Gurfinkel. “BDD-Based Symbolic Model Checking”. In:
Handbook of Model Checking. 2018, pp. 219–245. doi: 10.1007/978-3-
319-10575-8_8.

[CD10] Krishnendu Chatterjee and Laurent Doyen. “The Complexity of Partial-
Observation Parity Games”. In: Logic for Programming, Artificial Intelligence,
and Reasoning - 17th International Conference, LPAR-17, Yogyakarta, Indone-
sia, October 10-15, 2010. Proceedings. 2010, pp. 1–14. doi: 10.1007/978-
3-642-16242-8_1.

229

https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-3-642-04761-9_7
https://doi.org/10.1007/978-3-642-04761-9_7
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/2661061.2661063
https://doi.org/10.1145/2661061.2661063
https://doi.org/10.1007/978-3-319-96562-8_6
https://doi.org/10.1007/978-3-662-53426-7_9
https://doi.org/10.1007/978-3-662-53426-7_9
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1007/978-3-642-16242-8_1
https://doi.org/10.1007/978-3-642-16242-8_1

Bibliography

[CDH13] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. “A survey
of partial-observation stochastic parity games”. In: Formal Methods Syst. Des.
43.2 (2013), pp. 268–284. doi: 10.1007/s10703-012-0164-2.

[CDHL16] Krishnendu Chatterjee, Wolfgang Dvorák, Monika Henzinger, and Veronika
Loitzenbauer. “Conditionally Optimal Algorithms for Generalized Büchi
Games”. In: 41st International Symposium on Mathematical Foundations of
Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland. 2016,
25:1–25:15. doi: 10.4230/LIPIcs.MFCS.2016.25.

[CH12] Krishnendu Chatterjee and Monika Henzinger. “An O(n2) time algorithm for
alternating Büchi games”. In: Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January
17-19, 2012. 2012, pp. 1386–1399. doi: 10.1137/1.9781611973099.
109.

[CH14] Krishnendu Chatterjee and Monika Henzinger. “Efficient and Dynamic Algo-
rithms for Alternating Büchi Games and Maximal End-Component Decompo-
sition”. In: J. ACM 61.3 (2014), 15:1–15:40. doi: 10.1145/2597631.

[CHP07] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. “General-
ized Parity Games”. In: Foundations of Software Science and Computational
Structures, 10th International Conference, FOSSACS 2007, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2007,
Braga, Portugal, March 24-April 1, 2007, Proceedings. 2007, pp. 153–167. doi:
10.1007/978-3-540-71389-0_12.

[CHP08] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. “Algorithms
for Büchi Games”. In: CoRR abs/0805.2620 (2008). arXiv: 0805.2620.

[CJH03] Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger. “Sim-
ple Stochastic Parity Games”. In: Computer Science Logic, 17th International
Workshop, CSL 2003, 12th Annual Conference of the EACSL, and 8th Kurt
Gödel Colloquium, KGC 2003, Vienna, Austria, August 25-30, 2003, Proceed-
ings. 2003, pp. 100–113. doi: 10.1007/978-3-540-45220-1_11.

[CEP95] Allan Cheng, Javier Esparza, and Jens Palsberg. “Complexity Results for 1-
Safe Nets”. In: Theor. Comput. Sci. 147.1&2 (1995), pp. 117–136. doi: 10.
1016/0304-3975(94)00231-7.

[CK93] Kwang-Ting Cheng and A. S. Krishnakumar. “Automatic Functional Test Gen-
eration Using the Extended Finite State Machine Model”. In: Proceedings of the
30th Design Automation Conference. Dallas, Texas, USA, June 14-18, 1993.
1993, pp. 86–91. doi: 10.1145/157485.164585.

[CK96] Kwang-Ting Cheng and A. S. Krishnakumar. “Automatic generation of func-
tional vectors using the extended finite state machine model”. In: ACM Trans.
Design Autom. Electr. Syst. 1.1 (1996), pp. 57–79. doi: 10.1145/225871.
225880.

230

https://doi.org/10.1007/s10703-012-0164-2
https://doi.org/10.4230/LIPIcs.MFCS.2016.25
https://doi.org/10.1137/1.9781611973099.109
https://doi.org/10.1137/1.9781611973099.109
https://doi.org/10.1145/2597631
https://doi.org/10.1007/978-3-540-71389-0_12
https://arxiv.org/abs/0805.2620
https://doi.org/10.1007/978-3-540-45220-1_11
https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1145/157485.164585
https://doi.org/10.1145/225871.225880
https://doi.org/10.1145/225871.225880

Bibliography

[CFGR95] Giovanni Chiola, Giuliana Franceschinis, Rossano Gaeta, and Marina Ribaudo.
“GreatSPN 1.7: Graphical Editor and Analyzer for Timed and Stochastic Petri
Nets”. In: Perform. Evaluation 24.1-2 (1995), pp. 47–68. doi: 10.1016/
0166-5316(95)00008-L.

[Cho74] Yaacov Choueka. “Theories of Automata on omega-Tapes: A Simplified Ap-
proach”. In: J. Comput. Syst. Sci. 8.2 (1974), pp. 117–141. doi: 10.1016/
S0022-0000(74)80051-6.

[CJK97] Søren Christensen, Jens Bæk Jørgensen, and Lars Michael Kristensen. “De-
sign/CPN - A Computer Tool for Coloured Petri Nets”. In: Tools and Algo-
rithms for Construction and Analysis of Systems, Third International Work-
shop, TACAS ’97, Enschede, The Netherlands, April 2-4, 1997, Proceedings.
1997, pp. 209–223. doi: 10.1007/BFb0035390.

[Chu57] A. Church. “Applications of recursive arithmetic to the problem of circuit syn-
thesis”. In: Summaries of the Summer Institute of Symbolic Logic. Vol. 1. Cor-
nell Univ., Ithaca, NY, 1957, pp. 3–50.

[Chu62] Alonzo Church. “Logic, Arithmetic, and Automata”. In: Proceedings of Inter-
national Congress of Mathematicians. Institut Mittag-Leffler, Djursholm, 1962,
pp. 23–35.

[CCGR00] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco
Roveri. “NUSMV: A New Symbolic Model Checker”. In: Int. J. Softw. Tools
Technol. Transf. 2.4 (2000), pp. 410–425. doi: 10.1007/s100090050046.

[CFIP+13] Koen Claessen, Jasmin Fisher, Samin Ishtiaq, Nir Piterman, and Qinsi Wang.
“Model-Checking Signal Transduction Networks through Decreasing Reach-
ability Sets”. In: Computer Aided Verification - 25th International Confer-
ence, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. 2013,
pp. 85–100. doi: 10.1007/978-3-642-39799-8_5.

[Cla08] Edmund M. Clarke. “The Birth of Model Checking”. In: 25 Years of Model
Checking - History, Achievements, Perspectives. 2008, pp. 1–26. doi: 10.
1007/978-3-540-69850-0_1.

[CE81] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Synchro-
nization Skeletons Using Branching-Time Temporal Logic”. In: Logics of Pro-
grams, Workshop, Yorktown Heights, New York, USA, May 1981. 1981, pp. 52–
71. doi: 10.1007/BFb0025774.

[CES83] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. “Automatic Verifi-
cation of Finite State Concurrent Systems Using Temporal Logic Specifications:
A Practical Approach”. In: Conference Record of the Tenth Annual ACM Sym-
posium on Principles of Programming Languages, Austin, Texas, USA, January
1983. 1983, pp. 117–126. doi: 10.1145/567067.567080.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. “Automatic Ver-
ification of Finite-State Concurrent Systems Using Temporal Logic Specifica-
tions”. In: ACM Trans. Program. Lang. Syst. 8.2 (1986), pp. 244–263. doi:
10.1145/5397.5399.

231

https://doi.org/10.1016/0166-5316(95)00008-L
https://doi.org/10.1016/0166-5316(95)00008-L
https://doi.org/10.1016/S0022-0000(74)80051-6
https://doi.org/10.1016/S0022-0000(74)80051-6
https://doi.org/10.1007/BFb0035390
https://doi.org/10.1007/s100090050046
https://doi.org/10.1007/978-3-642-39799-8_5
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/567067.567080
https://doi.org/10.1145/5397.5399

Bibliography

[CFJ93] Edmund M. Clarke, Thomas Filkorn, and Somesh Jha. “Exploiting Symme-
try In Temporal Logic Model Checking”. In: Computer Aided Verification, 5th
International Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993,
Proceedings. 1993, pp. 450–462. doi: 10.1007/3-540-56922-7_37.

[CGJL+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
“Counterexample-Guided Abstraction Refinement”. In: Computer Aided Ver-
ification, 12th International Conference, CAV 2000, Chicago, IL, USA, July
15-19, 2000, Proceedings. 2000, pp. 154–169. doi: 10.1007/10722167_15.

[CGJL+01] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
“Progress on the State Explosion Problem in Model Checking”. In: Informatics
- 10 Years Back. 10 Years Ahead. 2001, pp. 176–194. doi: 10.1007/3-540-
44577-3_12.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. “Model Checking
and Abstraction”. In: ACM Trans. Program. Lang. Syst. 16.5 (1994), pp. 1512–
1542. doi: 10.1145/186025.186051.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, 2001.

[CHV18] Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. “Introduction
to Model Checking”. In: Handbook of Model Checking. 2018, pp. 1–26. doi:
10.1007/978-3-319-10575-8_1.

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem,
eds. Handbook of Model Checking. Springer, 2018.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for Checking
ANSI-C Programs”. In: Tools and Algorithms for the Construction and Analysis
of Systems, 10th International Conference, TACAS 2004, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2004,
Barcelona, Spain, March 29 - April 2, 2004, Proceedings. 2004, pp. 168–176.
doi: 10.1007/978-3-540-24730-2_15.

[CKOS04] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.
“Completeness and Complexity of Bounded Model Checking”. In: Verification,
Model Checking, and Abstract Interpretation, 5th International Conference,
VMCAI 2004, Venice, Italy, January 11-13, 2004, Proceedings. 2004, pp. 85–
96. doi: 10.1007/978-3-540-24622-0_9.

[CV03] Edmund M. Clarke and Helmut Veith. “Counterexamples Revisited: Principles,
Algorithms, Applications”. In: Verification: Theory and Practice, Essays Dedi-
cated to Zohar Manna on the Occasion of His 64th Birthday. 2003, pp. 208–224.
doi: 10.1007/978-3-540-39910-0_9.

[CW14] Edmund M. Clarke and Qinsi Wang. “25 Years of Model Checking”. In: Perspec-
tives of System Informatics - 9th International Ershov Informatics Conference,
PSI 2014, St. Petersburg, Russia, June 24-27, 2014. Revised Selected Papers.
2014, pp. 26–40. doi: 10.1007/978-3-662-46823-4_2.

232

https://doi.org/10.1007/3-540-56922-7_37
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/3-540-44577-3_12
https://doi.org/10.1007/3-540-44577-3_12
https://doi.org/10.1145/186025.186051
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24622-0_9
https://doi.org/10.1007/978-3-540-39910-0_9
https://doi.org/10.1007/978-3-662-46823-4_2

Bibliography

[CFKM+14] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micin-
ski, Markus N. Rabe, and César Sánchez. “Temporal Logics for Hyperprop-
erties”. In: Principles of Security and Trust - Third International Conference,
POST 2014, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Pro-
ceedings. 2014, pp. 265–284. doi: 10.1007/978-3-642-54792-8_15.

[CDGJ+08] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis
Lugiez, Christof Löding, Sophie Tison, and Marc Tommasi. Tree Automata
Techniques and Applications. 2008, p. 262.

[DKW08] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. “A Survey of Auto-
mated Techniques for Formal Software Verification”. In: IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 27.7 (2008), pp. 1165–1178. doi: 10.1109/
TCAD.2008.923410.

[D3] D3. url: https://d3js.org/ (visited on 03/2022).

[Dar05] P. Darondeau. “Distributed implementations of Ramadge-Wonham supervi-
sory control with Petri nets”. In: Proceedings of the 44th IEEE Conference on
Decision and Control. 2005, pp. 2107–2112. doi: 10.1109/CDC.2005.
1582472.

[Dar07] Philippe Darondeau. “Synthesis and Control of Asynchronous and Distributed
Systems”. In: Seventh International Conference on Application of Concurrency
to System Design (ACSD 2007), 10-13 July 2007, Bratislava, Slovak Republic.
2007, pp. 13–22. doi: 10.1109/ACSD.2007.71.

[DR12] Philippe Darondeau and S. Laurie Ricker. “Distributed Control of Discrete-
Event Systems: A First Step”. In: Trans. Petri Nets Other Model. Concurr. 6
(2012), pp. 24–45. doi: 10.1007/978-3-642-35179-2_2.

[DJJJ+12] Alexandre David, Lasse Jacobsen, Morten Jacobsen, Kenneth Yrke Jørgensen,
Mikael H. Møller, and Jirí Srba. “TAPAAL 2.0: Integrated Development Envi-
ronment for Timed-Arc Petri Nets”. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems - 18th International Conference, TACAS 2012,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings.
2012, pp. 492–497. doi: 10.1007/978-3-642-28756-5_36.

[DK08] Christian Dax and Felix Klaedtke. “Alternation Elimination by Complementa-
tion (Extended Abstract)”. In: Logic for Programming, Artificial Intelligence,
and Reasoning, 15th International Conference, LPAR 2008, Doha, Qatar,
November 22-27, 2008. Proceedings. 2008, pp. 214–229. doi: 10.1007/978-
3-540-89439-1_16.

[DLS06] Stéphane Demri, François Laroussinie, and Philippe Schnoebelen. “A paramet-
ric analysis of the state-explosion problem in model checking”. In: J. Comput.
Syst. Sci. 72.4 (2006), pp. 547–575. doi: 10.1016/j.jcss.2005.11.
003.

233

https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410
https://d3js.org/
https://doi.org/10.1109/CDC.2005.1582472
https://doi.org/10.1109/CDC.2005.1582472
https://doi.org/10.1109/ACSD.2007.71
https://doi.org/10.1007/978-3-642-35179-2_2
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-540-89439-1_16
https://doi.org/10.1007/978-3-540-89439-1_16
https://doi.org/10.1016/j.jcss.2005.11.003
https://doi.org/10.1016/j.jcss.2005.11.003

Bibliography

[DR96a] Jörg Desel and Wolfgang Reisig. “Place/Transition Petri Nets”. In: Lectures on
Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are based on
the Advanced Course on Petri Nets, held in Dagstuhl, September 1996. 1996,
pp. 122–173. doi: 10.1007/3-540-65306-6_15.

[DR96b] Jörg Desel and Wolfgang Reisig. “The Synthesis Problem of Petri Nets”. In:
Acta Informatica 33.4 (1996), pp. 297–315. doi: 10.1007/s002360050046.

[DHJL+15] Tom van Dijk, Ernst Moritz Hahn, David N. Jansen, Yong Li, Thomas Neele,
Mariëlle Stoelinga, Andrea Turrini, and Lijun Zhang. “A Comparative Study
of BDD Packages for Probabilistic Symbolic Model Checking”. In: Dependable
Software Engineering: Theories, Tools, and Applications - First International
Symposium, SETTA 2015, Nanjing, China, November 4-6, 2015, Proceedings.
2015, pp. 35–51. doi: 10.1007/978-3-319-25942-0_3.

[DP15] Tom van Dijk and Jaco van de Pol. “Sylvan: Multi-Core Decision Diagrams”.
In: Tools and Algorithms for the Construction and Analysis of Systems - 21st
International Conference, TACAS 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings. 2015, pp. 677–691. doi: 10.1007/978-3-
662-46681-0_60.

[DP17] Tom van Dijk and Jaco van de Pol. “Sylvan: multi-core framework for decision
diagrams”. In: Int. J. Softw. Tools Technol. Transf. 19.6 (2017), pp. 675–696.
doi: 10.1007/s10009-016-0433-2.

[DÁBB21] Oyendrila Dobe, Erika Ábrahám, Ezio Bartocci, and Borzoo Bonakdarpour.
“HyperProb: A Model Checker for Probabilistic Hyperproperties”. In: Formal
Methods - 24th International Symposium, FM 2021, Virtual Event, November
20-26, 2021, Proceedings. 2021, pp. 657–666. doi: 10.1007/978-3-030-
90870-6_35.

[DS01] Rolf Drechsler and Detlef Sieling. “Binary decision diagrams in theory and
practice”. In: Int. J. Softw. Tools Technol. Transf. 3.2 (2001), pp. 112–136.
doi: 10.1007/s100090100056.

[EFD05] Rüdiger Ebendt, Görschwin Fey, and Rolf Drechsler. Advanced BDD optimiza-
tion. Springer, 2005. doi: 10.1007/b107399.

[EMB11] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. “Efficient implementa-
tion of property directed reachability”. In: International Conference on Formal
Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October
30 - November 02, 2011. 2011, pp. 125–134.

[Ehl11] Rüdiger Ehlers. “Unbeast: Symbolic Bounded Synthesis”. In: Tools and Al-
gorithms for the Construction and Analysis of Systems - 17th International
Conference, TACAS 2011, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings. 2011, pp. 272–275. doi: 10.1007/978-3-
642-19835-9_25.

234

https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/s002360050046
https://doi.org/10.1007/978-3-319-25942-0_3
https://doi.org/10.1007/978-3-662-46681-0_60
https://doi.org/10.1007/978-3-662-46681-0_60
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/978-3-030-90870-6_35
https://doi.org/10.1007/978-3-030-90870-6_35
https://doi.org/10.1007/s100090100056
https://doi.org/10.1007/b107399
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-642-19835-9_25

Bibliography

[ER16] Rüdiger Ehlers and Vasumathi Raman. “Slugs: Extensible GR(1) Synthesis”.
In: Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II. 2016, pp. 333–
339. doi: 10.1007/978-3-319-41540-6_18.

[ESK14] Rüdiger Ehlers, Sanjit A. Seshia, and Hadas Kress-Gazit. “Synthesis with Iden-
tifiers”. In: Verification, Model Checking, and Abstract Interpretation - 15th In-
ternational Conference, VMCAI 2014, San Diego, CA, USA, January 19-21,
2014, Proceedings. 2014, pp. 415–433. doi: 10.1007/978-3-642-54013-
4_23.

[ER90a] Andrzej Ehrenfeucht and Grzegorz Rozenberg. “Partial (Set) 2-Structures. Part
I: Basic Notions and the Representation Problem”. In: Acta Informatica 27.4
(1990), pp. 315–342. doi: 10.1007/BF00264611.

[ER90b] Andrzej Ehrenfeucht and Grzegorz Rozenberg. “Partial (Set) 2-Structures. Part
II: State Spaces of Concurrent Systems”. In: Acta Informatica 27.4 (1990),
pp. 343–368. doi: 10.1007/BF00264612.

[EGKN+04] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Gordon Woodhull. “Graphviz and Dynagraph - Static and Dynamic Graph
Drawing Tools”. In: Graph Drawing Software. 2004, pp. 127–148. doi: 10.
1007/978-3-642-18638-7_6.

[EH86] E. Allen Emerson and Joseph Y. Halpern. “"Sometimes" and "Not Never"
revisited: on branching versus linear time temporal logic”. In: J. ACM 33.1
(1986), pp. 151–178. doi: 10.1145/4904.4999.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. “Tree Automata, Mu-Calculus and
Determinacy (Extended Abstract)”. In: 32nd Annual Symposium on Founda-
tions of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. 1991,
pp. 368–377. doi: 10.1109/SFCS.1991.185392.

[EJS93] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. “On Model-
Checking for Fragments of µ-Calculus”. In: Computer Aided Verification, 5th
International Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993,
Proceedings. 1993, pp. 385–396. doi: 10.1007/3-540-56922-7_32.

[EJS01] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. “On model checking
for the µ-calculus and its fragments”. In: Theor. Comput. Sci. 258.1-2 (2001),
pp. 491–522. doi: 10.1016/S0304-3975(00)00034-7.

[EL85] E. Allen Emerson and Chin-Laung Lei. “Modalities for Model Checking:
Branching Time Strikes Back”. In: Conference Record of the Twelfth Annual
ACM Symposium on Principles of Programming Languages, New Orleans,
Louisiana, USA, January 1985. 1985, pp. 84–96. doi: 10.1145/318593.
318620.

[EL87] E. Allen Emerson and Chin-Laung Lei. “Modalities for Model Checking:
Branching Time Logic Strikes Back”. In: Sci. Comput. Program. 8.3 (1987),
pp. 275–306. doi: 10.1016/0167-6423(87)90036-0.

235

https://doi.org/10.1007/978-3-319-41540-6_18
https://doi.org/10.1007/978-3-642-54013-4_23
https://doi.org/10.1007/978-3-642-54013-4_23
https://doi.org/10.1007/BF00264611
https://doi.org/10.1007/BF00264612
https://doi.org/10.1007/978-3-642-18638-7_6
https://doi.org/10.1007/978-3-642-18638-7_6
https://doi.org/10.1145/4904.4999
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1007/3-540-56922-7_32
https://doi.org/10.1016/S0304-3975(00)00034-7
https://doi.org/10.1145/318593.318620
https://doi.org/10.1145/318593.318620
https://doi.org/10.1016/0167-6423(87)90036-0

Bibliography

[ES93] E. Allen Emerson and A. Prasad Sistla. “Symmetry and Model Checking”. In:
Computer Aided Verification, 5th International Conference, CAV ’93, Elounda,
Greece, June 28 - July 1, 1993, Proceedings. 1993, pp. 463–478. doi: 10.
1007/3-540-56922-7_38.

[Eng91] Joost Engelfriet. “Branching Processes of Petri Nets”. In: Acta Informatica 28.6
(1991), pp. 575–591. doi: 10.1007/BF01463946.

[Esp96] Javier Esparza. “Decidability and Complexity of Petri Net Problems - An In-
troduction”. In: Lectures on Petri Nets I: Basic Models, Advances in Petri Nets,
the volumes are based on the Advanced Course on Petri Nets, held in Dagstuhl,
September 1996. 1996, pp. 374–428. doi: 10.1007/3-540-65306-6_20.

[EH08] Javier Esparza and Keijo Heljanko. Unfoldings - A Partial-Order Approach to
Model Checking. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, 2008. doi: 10.1007/978-3-540-77426-6.

[EN94] Javier Esparza and Mogens Nielsen. “Decidability Issues for Petri Nets - a
survey”. In: J. Inf. Process. Cybern. 30.3 (1994), pp. 143–160.

[EWS05] Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. “Fair Simula-
tion Relations, Parity Games, and State Space Reduction for Bu"chi Au-
tomata”. In: SIAM J. Comput. 34.5 (2005), pp. 1159–1175. doi: 10.1137/
S0097539703420675.

[FHMV95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reason-
ing About Knowledge. MIT Press, 1995. doi: 10.7551/mitpress/5803.
001.0001.

[FFT17] Peter Faymonville, Bernd Finkbeiner, and Leander Tentrup. “BoSy: An Experi-
mentation Framework for Bounded Synthesis”. In: Computer Aided Verification
- 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part II. 2017, pp. 325–332. doi: 10.1007/978-3-319-
63390-9_17.

[Fin15] Bernd Finkbeiner. “Bounded Synthesis for Petri Games”. In: Correct System
Design - Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His
60th Birthday, Oldenburg, Germany, September 8-9, 2015. Proceedings. 2015,
pp. 223–237. doi: 10.1007/978-3-319-23506-6_15.

[Fin16] Bernd Finkbeiner. “Synthesis of Reactive Systems”. In: Dependable Software
Systems Engineering. 2016, pp. 72–98. doi: 10.3233/978-1-61499-
627-9-72.

[FGHO17] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-
Rüdiger Olderog. “Symbolic vs. Bounded Synthesis for Petri Games”. In:
Proceedings Sixth Workshop on Synthesis, SYNT@CAV 2017, Heidelberg, Ger-
many, 22nd July 2017. 2017, pp. 23–43. doi: 10.4204/EPTCS.260.5.

236

https://doi.org/10.1007/3-540-56922-7_38
https://doi.org/10.1007/3-540-56922-7_38
https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1137/S0097539703420675
https://doi.org/10.1137/S0097539703420675
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.3233/978-1-61499-627-9-72
https://doi.org/10.3233/978-1-61499-627-9-72
https://doi.org/10.4204/EPTCS.260.5

Bibliography

[FGHO19a] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-
Rüdiger Olderog. “Model Checking Data Flows in Concurrent Network Up-
dates”. In: Automated Technology for Verification and Analysis - 17th In-
ternational Symposium, ATVA 2019, Taipei, Taiwan, October 28-31, 2019,
Proceedings. 2019, pp. 515–533. doi: 10.1007/978-3-030-31784-
3_30.

[FGHO19b] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-
Rüdiger Olderog. “Model Checking Data Flows in Concurrent Network Up-
dates (Full Version)”. In: CoRR abs/1907.11061 (2019). arXiv: 1907.11061.

[FGHO20a] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-
Rüdiger Olderog. “AdamMC: A Model Checker for Petri Nets with Transits
against Flow-LTL”. In: Computer Aided Verification - 32nd International Con-
ference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings,
Part II. 2020, pp. 64–76. doi: 10.1007/978-3-030-53291-8_5.

[FGHO20b] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-
Rüdiger Olderog. “AdamMC: A Model Checker for Petri Nets with Transits
against Flow-LTL (Full Version)”. In: CoRR abs/2005.07130 (2020). arXiv:
2005.07130.

[FGHO20c] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-
Rüdiger Olderog. “Model Checking Branching Properties on Petri Nets with
Transits”. In: Automated Technology for Verification and Analysis - 18th In-
ternational Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020,
Proceedings. 2020, pp. 394–410. doi: 10.1007/978-3-030-59152-
6_22.

[FGHO20d] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-
Rüdiger Olderog. “Model Checking Branching Properties on Petri Nets with
Transits (Full Version)”. In: CoRR abs/2007.07235 (2020). arXiv: 2007 .
07235.

[FGHO22] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-
Rüdiger Olderog. “Global Winning Conditions in Synthesis of Distributed Sys-
tems with Causal Memory”. In: 30th EACSL Annual Conference on Computer
Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual
Conference). 2022, 20:1–20:19. doi: 10.4230/LIPIcs.CSL.2022.20.

[FGO15] Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog. “Adam:
Causality-Based Synthesis of Distributed Systems”. In: Computer Aided Veri-
fication - 27th International Conference, CAV 2015, San Francisco, CA, USA,
July 18-24, 2015, Proceedings, Part I. 2015, pp. 433–439. doi: 10.1007/
978-3-319-21690-4_25.

[FG17] Bernd Finkbeiner and Paul Gölz. “Synthesis in Distributed Environments”. In:
37th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2017, December 11-15, 2017, Kanpur,
India. 2017, 28:1–28:14. doi: 10.4230/LIPIcs.FSTTCS.2017.28.

237

https://doi.org/10.1007/978-3-030-31784-3_30
https://doi.org/10.1007/978-3-030-31784-3_30
https://arxiv.org/abs/1907.11061
https://doi.org/10.1007/978-3-030-53291-8_5
https://arxiv.org/abs/2005.07130
https://doi.org/10.1007/978-3-030-59152-6_22
https://doi.org/10.1007/978-3-030-59152-6_22
https://arxiv.org/abs/2007.07235
https://arxiv.org/abs/2007.07235
https://doi.org/10.4230/LIPIcs.CSL.2022.20
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.28

Bibliography

[FKPS19] Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito. “Tempo-
ral Stream Logic: Synthesis Beyond the Bools”. In: Computer Aided Verification
- 31st International Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part I. 2019, pp. 609–629. doi: 10.1007/978-3-
030-25540-4_35.

[FO14] Bernd Finkbeiner and Ernst-Rüdiger Olderog. “Petri Games: Synthesis of Dis-
tributed Systems with Causal Memory”. In: Proceedings Fifth International
Symposium on Games, Automata, Logics and Formal Verification, GandALF
2014, Verona, Italy, September 10-12, 2014. 2014, pp. 217–230. doi: 10.
4204/EPTCS.161.19.

[FO17] Bernd Finkbeiner and Ernst-Rüdiger Olderog. “Petri games: Synthesis of dis-
tributed systems with causal memory”. In: Inf. Comput. 253 (2017), pp. 181–
203. doi: 10.1016/j.ic.2016.07.006.

[FRS15] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. “Algorithms for Model
Checking HyperLTL and HyperCTL∗”. In: Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part I. 2015, pp. 30–48. doi: 10.1007/978-3-319-
21690-4_3.

[FS05] Bernd Finkbeiner and Sven Schewe. “Uniform Distributed Synthesis”. In: 20th
IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June
2005, Chicago, IL, USA, Proceedings. 2005, pp. 321–330. doi: 10.1109/
LICS.2005.53.

[FS13] Bernd Finkbeiner and Sven Schewe. “Bounded synthesis”. In: Int. J. Softw.
Tools Technol. Transf. 15.5-6 (2013), pp. 519–539. doi: 10.1007/s10009-
012-0228-z.

[FTFO12] William M. Fitzgerald, Fatih Turkmen, Simon N. Foley, and Barry O’Sullivan.
“Anomaly analysis for Physical Access Control security configuration”. In: 7th
International Conference on Risks and Security of Internet and Systems, CRi-
SIS 2012, Cork, Ireland, October 10-12, 2012. 2012, pp. 1–8. doi: 10.1109/
CRISIS.2012.6378953.

[FA73] Michael J. Flynn and Tilak Agerwala. “Comments on Capabilities, Limitations
and Correctness of Petri Nets”. In: Proceedings of the 1st Annual Symposium on
Computer Architecture, Gainesville, FL, USA, December 1973. 1973, pp. 81–
86. doi: 10.1145/800123.803973.

[FMW16] Klaus-Tycho Förster, Ratul Mahajan, and Roger Wattenhofer. “Consistent up-
dates in software defined networks: On dependencies, loop freedom, and black-
holes”. In: 2016 IFIP Networking Conference, Networking 2016 and Work-
shops, Vienna, Austria, May 17-19, 2016. 2016, pp. 1–9. doi: 10.1109/
IFIPNetworking.2016.7497232.

[FHFM+11] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jen-
nifer Rexford, Alec Story, and DavidWalker. “Frenetic: a network programming
language”. In: Proceeding of the 16th ACM SIGPLAN international confer-
ence on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21,
2011. 2011, pp. 279–291. doi: 10.1145/2034773.2034812.

238

https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.4204/EPTCS.161.19
https://doi.org/10.4204/EPTCS.161.19
https://doi.org/10.1016/j.ic.2016.07.006
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1109/CRISIS.2012.6378953
https://doi.org/10.1109/CRISIS.2012.6378953
https://doi.org/10.1145/800123.803973
https://doi.org/10.1109/IFIPNetworking.2016.7497232
https://doi.org/10.1109/IFIPNetworking.2016.7497232
https://doi.org/10.1145/2034773.2034812

Bibliography

[Fra86] Nissim Francez. Fairness. Texts and Monographs in Computer Science.
Springer, 1986. doi: 10.1007/978-1-4612-4886-6.

[FCS11] Robert Frohardt, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan. “Ac-
cess Nets: Modeling Access to Physical Spaces”. In: Verification, Model Check-
ing, and Abstract Interpretation - 12th International Conference, VMCAI 2011,
Austin, TX, USA, January 23-25, 2011. Proceedings. 2011, pp. 184–198. doi:
10.1007/978-3-642-18275-4_14.

[FMY97] Masahiro Fujita, Patrick C. McGeer, and Jerry Chih-Yuan Yang. “Multi-
Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix
Representation”. In: Formal Methods Syst. Des. 10.2/3 (1997), pp. 149–169.
doi: 10.1023/A:1008647823331.

[GS53] David Gale and Frank M. Stewart. “Infinite games with perfect information”.
In: Contributions to the Theory of Games, Annals of Mathematics Studies 2
(1953), pp. 245–266.

[GLZ04] Paul Gastin, Benjamin Lerman, and Marc Zeitoun. “Distributed Games with
Causal Memory Are Decidable for Series-Parallel Systems”. In: FSTTCS 2004:
Foundations of Software Technology and Theoretical Computer Science, 24th
International Conference, Chennai, India, December 16-18, 2004, Proceedings.
2004, pp. 275–286. doi: 10.1007/978-3-540-30538-5_23.

[GO01] Paul Gastin and Denis Oddoux. “Fast LTL to Büchi Automata Translation”. In:
Computer Aided Verification, 13th International Conference, CAV 2001, Paris,
France, July 18-22, 2001, Proceedings. 2001, pp. 53–65. doi: 10.1007/3-
540-44585-4_6.

[GHKF19] Gideon Geier, Philippe Heim, Felix Klein, and Bernd Finkbeiner. “Syntroids:
Synthesizing a Game for FPGAs using Temporal Logic Specifications”. In: 2019
Formal Methods in Computer Aided Design, FMCAD 2019, San Jose, CA,
USA, October 22-25, 2019. 2019, pp. 138–146. doi: 10.23919/FMCAD.
2019.8894261.

[GGMW13] Blaise Genest, Hugo Gimbert, Anca Muscholl, and Igor Walukiewicz. “Asyn-
chronous Games over Tree Architectures”. In: Automata, Languages, and Pro-
gramming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July
8-12, 2013, Proceedings, Part II. 2013, pp. 275–286. doi: 10.1007/978-3-
642-39212-2_26.

[GL02] Dimitra Giannakopoulou and Flavio Lerda. “From States to Transitions: Im-
proving Translation of LTL Formulae to Büchi Automata”. In: Formal Tech-
niques for Networked and Distributed Systems - FORTE 2002, 22nd IFIP WG
6.1 International Conference Houston, Texas, USA, November 11-14, 2002,
Proceedings. 2002, pp. 308–326. doi: 10.1007/3-540-36135-9_20.

[GH19] Manuel Gieseking and Jesko Hecking-Harbusch. AdamMC: A Model Checker
for Petri Nets With Transits and Flow-LTL (Artifact ATVA). 2019. doi: 10.
6084/m9.figshare.8313344.

239

https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1007/978-3-642-18275-4_14
https://doi.org/10.1023/A:1008647823331
https://doi.org/10.1007/978-3-540-30538-5_23
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.23919/FMCAD.2019.8894261
https://doi.org/10.23919/FMCAD.2019.8894261
https://doi.org/10.1007/978-3-642-39212-2_26
https://doi.org/10.1007/978-3-642-39212-2_26
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.6084/m9.figshare.8313344
https://doi.org/10.6084/m9.figshare.8313344

Bibliography

[GH20] Manuel Gieseking and Jesko Hecking-Harbusch. AdamMC: A Model Checker
for Petri Nets with Transits against Flow-LTL (Artifact CAV). 2020. doi: 10.
6084/m9.figshare.11676171.

[GHY20] Manuel Gieseking, Jesko Hecking-Harbusch, and Ann Yanich. AdamWEB: A
Web Interface for Petri Nets with Transits and Petri Games (Artifact TACAS).
2020. doi: 10.6084/m9.figshare.13089800.

[GHY21] Manuel Gieseking, Jesko Hecking-Harbusch, and Ann Yanich. “A Web Interface
for Petri Nets with Transits and Petri Games”. In: Tools and Algorithms for the
Construction and Analysis of Systems - 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1,
2021, Proceedings, Part II. 2021, pp. 381–388. doi: 10.1007/978-3-030-
72013-1_22.

[GO21] Manuel Gieseking and Ernst-Rüdiger Olderog. “High-Level Representation of
Benchmark Families for Petri Games”. In: Model Checking, Synthesis, and
Learning - Essays Dedicated to Bengt Jonsson on The Occasion of His 60th
Birthday. 2021, pp. 115–137. doi: 10.1007/978-3-030-91384-7_7.

[GOW20] Manuel Gieseking, Ernst-Rüdiger Olderog, and Nick Würdemann. “Solving
high-level Petri games”. In: Acta Informatica 57.3-5 (2020), pp. 591–626. doi:
10.1007/s00236-020-00368-5.

[GW20] Manuel Gieseking and Nick Würdemann. Canonical Representations for Direct
Generation of Strategies in High-level Petri Games (Artifact ICATPN). 2020.
doi: 10.6084/m9.figshare.13697845.

[GW21a] Manuel Gieseking and Nick Würdemann. “Canonical Representations for Di-
rect Generation of Strategies in High-Level Petri Games”. In: Application
and Theory of Petri Nets and Concurrency - 42nd International Conference,
PETRI NETS 2021, Virtual Event, June 23-25, 2021, Proceedings. 2021,
pp. 95–117. doi: 10.1007/978-3-030-76983-3_6.

[GW21b] Manuel Gieseking and Nick Würdemann. “Canonical Representations for Di-
rect Generation of Strategies in High-level Petri Games (Full Version)”. In:
CoRR abs/2103.10207 (2021). arXiv: 2103.10207.

[Gim17] Hugo Gimbert. “On the Control of Asynchronous Automata”. In: 37th IARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2017, December 11-15, 2017, Kanpur, India. 2017,
30:1–30:15. doi: 10.4230/LIPIcs.FSTTCS.2017.30.

[GCH13] Yashdeep Godhal, Krishnendu Chatterjee, and Thomas A. Henzinger. “Synthe-
sis of AMBA AHB from formal specification: a case study”. In: Int. J. Softw.
Tools Technol. Transf. 15.5-6 (2013), pp. 585–601. doi: 10.1007/s10009-
011-0207-9.

[Göl17] Paul Gölz. “Synthesis for Petri Games with One System Player”. Bachelor’s
Thesis. Saarland University, Saarbrücken, Germany, 2017.

240

https://doi.org/10.6084/m9.figshare.11676171
https://doi.org/10.6084/m9.figshare.11676171
https://doi.org/10.6084/m9.figshare.13089800
https://doi.org/10.1007/978-3-030-72013-1_22
https://doi.org/10.1007/978-3-030-72013-1_22
https://doi.org/10.1007/978-3-030-91384-7_7
https://doi.org/10.1007/s00236-020-00368-5
https://doi.org/10.6084/m9.figshare.13697845
https://doi.org/10.1007/978-3-030-76983-3_6
https://arxiv.org/abs/2103.10207
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.30
https://doi.org/10.1007/s10009-011-0207-9
https://doi.org/10.1007/s10009-011-0207-9

Bibliography

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, eds. Automata, Logics,
and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl sem-
inar, February 2001]. Vol. 2500. Lecture Notes in Computer Science. Springer,
2002. doi: 10.1007/3-540-36387-4.

[Han19] Paul Hannibal. “Entscheidbarkeit von Petri-Spielen mit 2 Umgebungs- und 2
System-Spielern”. German. Master’s Thesis. University of Oldenburg, Olden-
burg, Germany, 2019.

[HP84] David Harel and Amir Pnueli. “On the Development of Reactive Systems”. In:
Logics and Models of Concurrent Systems - Conference proceedings, Colle-sur-
Loup (near Nice), France, 8-19 October 1984. 1984, pp. 477–498. doi: 10.
1007/978-3-642-82453-1_17.

[ETVV17] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin T. Vechev.
“Network-Wide Configuration Synthesis”. In: Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part II. 2017, pp. 261–281. doi: 10.1007/978-3-319-
63390-9_14.

[HP00] Klaus Havelund and Thomas Pressburger. “Model Checking JAVA Programs
using JAVA PathFinder”. In: Int. J. Softw. Tools Technol. Transf. 2.4 (2000),
pp. 366–381. doi: 10.1007/s100090050043.

[HS96] Klaus Havelund and Natarajan Shankar. “Experiments in Theorem Proving
and Model Checking for Protocol Verification”. In: FME ’96: Industrial Benefit
and Advances in Formal Methods, Third International Symposium of Formal
Methods Europe, Co-Sponsored by IFIP WG 14.3, Oxford, UK, March 18-22,
1996, Proceedings. 1996, pp. 662–681. doi: 10.1007/3-540-60973-
3_113.

[HS99] Klaus Havelund and Jens U. Skakkebæk. “Applying Model Checking in Java
Verification”. In: Theoretical and Practical Aspects of SPIN Model Checking, 5th
and 6th International SPIN Workshops, Trento, Italy, July 5, 1999, Toulouse,
France, September 21 and 24 1999, Proceedings. 1999, pp. 216–231. doi: 10.
1007/3-540-48234-2_17.

[HHFM+94] Jifeng He, C. A. R. Hoare, Martin Fränzle, Markus Müller-Olm, Ernst-Rüdiger
Olderog, Michael Schenke, Michael R. Hansen, Anders P. Ravn, and Hans
Rischel. “Provably Correct Systems”. In: Formal Techniques in Real-Time and
Fault-Tolerant Systems, Third International Symposium Organized Jointly with
the Working Group Provably Correct Systems - ProCoS, Lübeck, Germany,
September 19-23, Proceedings. 1994, pp. 288–335. doi: 10.1007/3-540-
58468-4_171.

[Hec21] Jesko Hecking-Harbusch. “Synthesis of asynchronous distributed systems from
global specifications”. PhD thesis. Saarland University, Saarbrücken, Germany,
2021.

241

https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/978-3-319-63390-9_14
https://doi.org/10.1007/978-3-319-63390-9_14
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/3-540-60973-3_113
https://doi.org/10.1007/3-540-60973-3_113
https://doi.org/10.1007/3-540-48234-2_17
https://doi.org/10.1007/3-540-48234-2_17
https://doi.org/10.1007/3-540-58468-4_171
https://doi.org/10.1007/3-540-58468-4_171

Bibliography

[HM19] Jesko Hecking-Harbusch and Niklas O. Metzger. “Efficient Trace Encodings
of Bounded Synthesis for Asynchronous Distributed Systems”. In: Automated
Technology for Verification and Analysis - 17th International Symposium,
ATVA 2019, Taipei, Taiwan, October 28-31, 2019, Proceedings. 2019, pp. 369–
386. doi: 10.1007/978-3-030-31784-3_22.

[HT18] Jesko Hecking-Harbusch and Leander Tentrup. “Solving QBF by Abstraction”.
In: Proceedings Ninth International Symposium on Games, Automata, Log-
ics, and Formal Verification, GandALF 2018, Saarbrücken, Germany, 26-28th
September 2018. 2018, pp. 88–102. doi: 10.4204/EPTCS.277.7.

[Hel99a] Keijo Heljanko. “Using Logic Programs with Stable Model Semantics to Solve
Deadlock and Reachability Problems for 1-Safe Petri Nets”. In: Tools and Algo-
rithms for Construction and Analysis of Systems, 5th International Conference,
TACAS ’99, Held as Part of the European Joint Conferences on the Theory and
Practice of Software, ETAPS’99, Amsterdam, The Netherlands, March 22-28,
1999, Proceedings. 1999, pp. 240–254. doi: 10.1007/3-540-49059-
0_17.

[Hel99b] Keijo Heljanko. “Using Logic Programs with Stable Model Semantics to Solve
Deadlock and Reachability Problems for 1-Safe Petri Nets”. In: Fundam. In-
formaticae 37.3 (1999), pp. 247–268. doi: 10.3233/FI-1999-37304.

[HJMS03] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
“Software Verification with BLAST”. In: Model Checking Software, 10th Inter-
national SPIN Workshop. Portland, OR, USA, May 9-10, 2003, Proceedings.
2003, pp. 235–239. doi: 10.1007/3-540-44829-2_17.

[HKG97] Lawrence E. Holloway, Bruce H. Krogh, and Alessandro Giua. “A Survey of
Petri Net Methods for Controlled Discrete Event Systems”. In: Discret. Event
Dyn. Syst. 7.2 (1997), pp. 151–190. doi: 10.1023/A:1008271916548.

[Hol97] Gerard J. Holzmann. “The Model Checker SPIN”. In: IEEE Trans. Software
Eng. 23.5 (1997), pp. 279–295. doi: 10.1109/32.588521.

[Hol05] Gerard J. Holzmann. “Software model checking with SPIN”. In: Adv. Comput.
65 (2005), pp. 78–109. doi: 10.1016/S0065-2458(05)65002-4.

[ID93] C. Norris Ip and David L. Dill. “Better Verification Through Symmetry”. In:
Computer Hardware Description Languages and their Applications, Proceedings
of the 11th IFIP WG10.2 International Conference on Computer Hardware
Description Languages and their Applications - CHDL ’93, sponsored by IFIP
WG10.2 and in cooperation with IEEE COMPSOC, Ottawa, Ontario, Canada,
26-28 April, 1993. 1993, pp. 97–111.

[Iri13] Nazario Irizarry. Mixing C and Java for high performance computing. Tech.
rep. MITRE Corporation, 2013.

[JVCS07] Jonathan Jacky, Margus Veanes, Colin Campbell, and Wolfram Schulte.Model-
based software testing and analysis with C. Cambridge University Press, 2007.

242

https://doi.org/10.1007/978-3-030-31784-3_22
https://doi.org/10.4204/EPTCS.277.7
https://doi.org/10.1007/3-540-49059-0_17
https://doi.org/10.1007/3-540-49059-0_17
https://doi.org/10.3233/FI-1999-37304
https://doi.org/10.1007/3-540-44829-2_17
https://doi.org/10.1023/A:1008271916548
https://doi.org/10.1109/32.588521
https://doi.org/10.1016/S0065-2458(05)65002-4

Bibliography

[JBCF+19] Swen Jacobs, Roderick Bloem, Maximilien Colange, Peter Faymonville, Bernd
Finkbeiner, Ayrat Khalimov, Felix Klein, Michael Luttenberger, Philipp J.
Meyer, Thibaud Michaud, Mouhammad Sakr, Salomon Sickert, Leander Ten-
trup, and Adam Walker. “The 5th Reactive Synthesis Competition (SYNT-
COMP 2018): Benchmarks, Participants & Results”. In: CoRR abs/1904.07736
(2019). arXiv: 1904.07736.

[Jen81] Kurt Jensen. “Coloured Petri Nets and the Invariant-Method”. In: Theor. Com-
put. Sci. 14 (1981), pp. 317–336. doi: 10.1016/0304-3975(81)90049-
9.

[Jen97] Kurt Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use - Volume 3. Monographs in Theoretical Computer Science. An
EATCS Series. Springer, 1997. doi: 10.1007/978-3-642-60794-3.

[Jen] Kurt Jensen. Design/CPN. Computer Science Department, University of
Aarhus, Denmark.

[JSUV22] Peter Gjøl Jensen, Jirí Srba, Nikolaj Jensen Ulrik, and Simon Mejlby Viren-
feldt. “Automata-Driven Partial Order Reduction and Guided Search for LTL
Model Checking”. In: Verification, Model Checking, and Abstract Interpreta-
tion - 23rd International Conference, VMCAI 2022, Philadelphia, PA, USA,
January 16-18, 2022, Proceedings. 2022, pp. 151–173. doi: 10.1007/978-
3-030-94583-1_8.

[Jen02] Rune M. Jensen. A Comparison Study between the CUDD and BuDDy OBDD
Package Applied to AI-Planning Problems. Tech. rep. CMU-CS-02-173. School
of Computer Science, Carnegie Mellon University, 2002.

[JLGK+14] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Maha-
jan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. “Dynamic schedul-
ing of network updates”. In: ACM SIGCOMM 2014 Conference, SIGCOMM’14,
Chicago, IL, USA, August 17-22, 2014. 2014, pp. 539–550. doi: 10.1145/
2619239.2626307.

[JGWB07] Barbara Jobstmann, Stefan J. Galler, Martin Weiglhofer, and Roderick Bloem.
“Anzu: A Tool for Property Synthesis”. In: Computer Aided Verification, 19th
International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Pro-
ceedings. 2007, pp. 258–262. doi: 10.1007/978-3-540-73368-3_29.

[Jr78] Sheldon B. Akers Jr. “Binary Decision Diagrams”. In: IEEE Trans. Computers
27.6 (1978), pp. 509–516. doi: 10.1109/TC.1978.1675141.

[Jur98] Marcin Jurdzinski. “Deciding the Winner in Parity Games is in UP ∩ co-Up”.
In: Inf. Process. Lett. 68.3 (1998), pp. 119–124. doi: 10.1016/S0020-
0190(98)00150-1.

[Jur11] Marcin Jurdzinski. “Algorithms for solving parity games”. In: Lectures in Game
Theory for Computer Scientists. 2011, pp. 74–98.

[Kah07] Reinhard Kahle. “Freek Wiedijk (Ed.), The Seventeen Provers of the World”.
In: Stud Logica 87.2-3 (2007), pp. 369–374. doi: 10.1007/s11225-007-
9093-2.

243

https://arxiv.org/abs/1904.07736
https://doi.org/10.1016/0304-3975(81)90049-9
https://doi.org/10.1016/0304-3975(81)90049-9
https://doi.org/10.1007/978-3-642-60794-3
https://doi.org/10.1007/978-3-030-94583-1_8
https://doi.org/10.1007/978-3-030-94583-1_8
https://doi.org/10.1145/2619239.2626307
https://doi.org/10.1145/2619239.2626307
https://doi.org/10.1007/978-3-540-73368-3_29
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1007/s11225-007-9093-2
https://doi.org/10.1007/s11225-007-9093-2

Bibliography

[Kam15] E Kamp. Bandwidth, profile and wavefront reduction for static variable ordering
in symbolic model checking. Tech. rep. University of Twente, 2015.

[KRW13] Naga Praveen Katta, Jennifer Rexford, and David Walker. “Incremental con-
sistent updates”. In: Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, HotSDN 2013, The Chinese
University of Hong Kong, Hong Kong, China, Friday, August 16, 2013. 2013,
pp. 49–54. doi: 10.1145/2491185.2491191.

[KPR98] Yonit Kesten, Amir Pnueli, and Li-on Raviv. “Algorithmic Verification of Lin-
ear Temporal Logic Specifications”. In: Automata, Languages and Program-
ming, 25th International Colloquium, ICALP’98, Aalborg, Denmark, July 13-
17, 1998, Proceedings. 1998, pp. 1–16. doi: 10.1007/BFb0055036.

[KPRS06] Yonit Kesten, Amir Pnueli, Li-on Raviv, and Elad Shahar. “Model Checking
with Strong Fairness”. In: Formal Methods Syst. Des. 28.1 (2006), pp. 57–84.
doi: 10.1007/s10703-006-4342-y.

[KB17] Ayrat Khalimov and Roderick Bloem. “Bounded Synthesis for Streett, Rabin,
and CTL∗”. In: Computer Aided Verification - 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II. 2017,
pp. 333–352. doi: 10.1007/978-3-319-63390-9_18.

[KKV03] Victor Khomenko, Maciej Koutny, and Walter Vogler. “Canonical prefixes of
Petri net unfoldings”. In: Acta Informatica 40.2 (2003), pp. 95–118. doi: 10.
1007/s00236-003-0122-y.

[KN01] Bakhadyr Khoussainov and Anil Nerode. Automata theory and its applications.
Vol. 21. Birkhäuser Basel, 2001.

[Kin76] James C. King. “Symbolic Execution and Program Testing”. In: Commun.
ACM 19.7 (1976), pp. 385–394. doi: 10.1145/360248.360252.

[Kla91] Nils Klarlund. “Progress Measures for Complementation of omega-Automata
with Applications to Temporal Logic”. In: 32nd Annual Symposium on Foun-
dations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. 1991,
pp. 358–367. doi: 10.1109/SFCS.1991.185391.

[Kla01] Hartmut Klauck. “Algorithms for Parity Games”. In: Automata, Logics, and
Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar,
February 2001]. 2001, pp. 107–129. doi: 10.1007/3-540-36387-4_7.

[KNFB+11] Simon Knight, Hung X. Nguyen, Nick Falkner, Rhys Alistair Bowden, and
Matthew Roughan. “The Internet Topology Zoo”. In: IEEE J. Sel. Areas Com-
mun. 29.9 (2011), pp. 1765–1775. doi: 10.1109/JSAC.2011.111002.

[KV21] Michalis Kokologiannakis and Viktor Vafeiadis. “GenMC: A Model Checker for
Weak Memory Models”. In: Computer Aided Verification - 33rd International
Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I.
2021, pp. 427–440. doi: 10.1007/978-3-030-81685-8_20.

[KW19] Jürgen König and Heike Wehrheim. “Data Independence for Software Transac-
tional Memory”. In: NASA Formal Methods - 11th International Symposium,
NFM 2019, Houston, TX, USA, May 7-9, 2019, Proceedings. 2019, pp. 263–
279. doi: 10.1007/978-3-030-20652-9_18.

244

https://doi.org/10.1145/2491185.2491191
https://doi.org/10.1007/BFb0055036
https://doi.org/10.1007/s10703-006-4342-y
https://doi.org/10.1007/978-3-319-63390-9_18
https://doi.org/10.1007/s00236-003-0122-y
https://doi.org/10.1007/s00236-003-0122-y
https://doi.org/10.1145/360248.360252
https://doi.org/10.1109/SFCS.1991.185391
https://doi.org/10.1007/3-540-36387-4_7
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-030-20652-9_18

Bibliography

[KBGH+21] F. Kordon, P. Bouvier, H. Garavel, L. M. Hillah, F. Hulin-Hubard, N. Amat.,
E. Amparore, B. Berthomieu, S. Biswal, D. Donatelli, F. Galla, S. Dal Zilio, P.
G. Jensen, C. He, D. Le Botlan, S. Li, J. Srba, Y. Thierry-Mieg, A. Walner, and
K. Wolf. Complete Results for the 2020 Edition of the Model Checking Contest.
June 2021. url: http://mcc.lip6.fr/2021/results.php (visited
on 03/2022).

[Koz83] Dexter Kozen. “Results on the Propositional mu-Calculus”. In: Theor. Comput.
Sci. 27 (1983), pp. 333–354. doi: 10.1016/0304-3975(82)90125-6.

[KRVR+15] Diego Kreutz, Fernando M. V. Ramos, Paulo Jorge Esteves Veríssimo, Chris-
tian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. “Software-
Defined Networking: A Comprehensive Survey”. In: Proc. IEEE 103.1 (2015),
pp. 14–76. doi: 10.1109/JPROC.2014.2371999.

[Kri59] Saul Kripke. “A Completeness Theorem in Modal Logic”. In: J. Symb. Log.
24.1 (1959), pp. 1–14. doi: 10.2307/2964568.

[KV98] Lars Michael Kristensen and Antti Valmari. “Finding Stubborn Sets of
Coloured Petri Nets Without Unfolding”. In: Application and Theory of Petri
Nets 1998, 19th International Conference, ICATPN ’98, Lisbon, Portugal,
June 22-26, 1998, Proceedings. 1998, pp. 104–123. doi: 10.1007/3-540-
69108-1_7.

[Kup18] Orna Kupferman. “Automata Theory and Model Checking”. In: Handbook of
Model Checking. 2018, pp. 107–151. doi: 10.1007/978-3-319-10575-
8_4.

[KV00a] Orna Kupferman and Moshe Y. Vardi. “µ-Calculus Synthesis”. In:Mathematical
Foundations of Computer Science 2000, 25th International Symposium, MFCS
2000, Bratislava, Slovakia, August 28 - September 1, 2000, Proceedings. 2000,
pp. 497–507. doi: 10.1007/3-540-44612-5_45.

[KV00b] Orna Kupferman and Moshe Y. Vardi. “Synthesis with Incomplete Informatio”.
In: 2nd International Conference on Temporal Logic (ICTL’97), Advances in
Temporal Logic. 2000, pp. 109–127. doi: 10.1007/978-94-015-9586-
5_6.

[KV01a] Orna Kupferman and Moshe Y. Vardi. “Synthesizing Distributed Systems”.
In: 16th Annual IEEE Symposium on Logic in Computer Science, Boston,
Massachusetts, USA, June 16-19, 2001, Proceedings. 2001, pp. 389–398. doi:
10.1109/LICS.2001.932514.

[KV01b] Orna Kupferman and Moshe Y. Vardi. “Weak alternating automata are not
that weak”. In: ACM Trans. Comput. Log. 2.3 (2001), pp. 408–429. doi: 10.
1145/377978.377993.

[KVW00] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. “An automata-theoretic
approach to branching-time model checking”. In: J. ACM 47.2 (2000), pp. 312–
360. doi: 10.1145/333979.333987.

[Kur14] Robert P Kurshan. Computer-aided verification of coordinating processes: the
automata-theoretic approach. Vol. 302. Princeton university press, 2014.

245

http://mcc.lip6.fr/2021/results.php
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.2307/2964568
https://doi.org/10.1007/3-540-69108-1_7
https://doi.org/10.1007/3-540-69108-1_7
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/978-3-319-10575-8_4
https://doi.org/10.1007/3-540-44612-5_45
https://doi.org/10.1007/978-94-015-9586-5_6
https://doi.org/10.1007/978-94-015-9586-5_6
https://doi.org/10.1109/LICS.2001.932514
https://doi.org/10.1145/377978.377993
https://doi.org/10.1145/377978.377993
https://doi.org/10.1145/333979.333987

Bibliography

[Küs01] Ralf Küsters. “Memoryless Determinacy of Parity Games”. In: Automata, Log-
ics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl
seminar, February 2001]. 2001, pp. 95–106. doi: 10.1007/3-540-36387-
4_6.

[LH00] Timo Latvala and Keijo Heljanko. “Coping With Strong Fairness”. In: Fun-
dam. Informaticae 43.1-4 (2000), pp. 175–193. doi: 10.3233/FI-2000-
43123409.

[Lee59] Chang-Yeong Lee. “Representation of switching circuits by binary-decision pro-
grams”. In: The Bell System Technical Journal 38.4 (1959), pp. 985–999.

[LP85] Orna Lichtenstein and Amir Pnueli. “Checking That Finite State Concurrent
Programs Satisfy Their Linear Specification”. In: Conference Record of the
Twelfth Annual ACM Symposium on Principles of Programming Languages,
New Orleans, Louisiana, USA, January 1985. 1985, pp. 97–107. doi: 10.
1145/318593.318622.

[Lin] Jørn Lind-Nielsen. BuDDy: Binary Decision Diagram package. Department of
Information Technology, Technical University of Denmark. url: http://
sourceforge.net/projects/buddy/ (visited on 03/2022).

[LMS14] Alberto Lovato, Damiano Macedonio, and Fausto Spoto. “A Thread-Safe
Library for Binary Decision Diagrams”. In: Software Engineering and For-
mal Methods - 12th International Conference, SEFM 2014, Grenoble, France,
September 1-5, 2014. Proceedings. 2014, pp. 35–49. doi: 10.1007/978-3-
319-10431-7_4.

[LSX13] Guanfeng Lv, Kaile Su, and Yanyan Xu. “CacBDD: A BDD Package with
Dynamic Cache Management”. In: Computer Aided Verification - 25th Inter-
national Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings. 2013, pp. 229–234. doi: 10.1007/978-3-642-39799-
8_15.

[MT01] P. Madhusudan and P. S. Thiagarajan. “Distributed Controller Synthesis for
Local Specifications”. In: Automata, Languages and Programming, 28th Inter-
national Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings.
2001, pp. 396–407. doi: 10.1007/3-540-48224-5_33.

[MT02] P. Madhusudan and P. S. Thiagarajan. “A Decidable Class of Asynchronous
Distributed Controllers”. In: CONCUR 2002 - Concurrency Theory, 13th Inter-
national Conference, Brno, Czech Republic, August 20-23, 2002, Proceedings.
2002, pp. 145–160. doi: 10.1007/3-540-45694-5_11.

[MTY05] P. Madhusudan, P. S. Thiagarajan, and Shaofa Yang. “The MSO Theory of
Connectedly Communicating Processes”. In: FSTTCS 2005: Foundations of
Software Technology and Theoretical Computer Science, 25th International
Conference, Hyderabad, India, December 15-18, 2005, Proceedings. 2005,
pp. 201–212. doi: 10.1007/11590156_16.

246

https://doi.org/10.1007/3-540-36387-4_6
https://doi.org/10.1007/3-540-36387-4_6
https://doi.org/10.3233/FI-2000-43123409
https://doi.org/10.3233/FI-2000-43123409
https://doi.org/10.1145/318593.318622
https://doi.org/10.1145/318593.318622
http://sourceforge.net/projects/buddy/
http://sourceforge.net/projects/buddy/
https://doi.org/10.1007/978-3-319-10431-7_4
https://doi.org/10.1007/978-3-319-10431-7_4
https://doi.org/10.1007/978-3-642-39799-8_15
https://doi.org/10.1007/978-3-642-39799-8_15
https://doi.org/10.1007/3-540-48224-5_33
https://doi.org/10.1007/3-540-45694-5_11
https://doi.org/10.1007/11590156_16

Bibliography

[MKAC+11] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, Brighten
Godfrey, and Samuel Talmadge King. “Debugging the data plane with anteater”.
In: Proceedings of the ACM SIGCOMM 2011 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications,
Toronto, ON, Canada, August 15-19, 2011. 2011, pp. 290–301. doi: 10 .
1145/2018436.2018470.

[MR18] Rupak Majumdar and Jean-François Raskin. “Symbolic Model Checking in
Non-Boolean Domains”. In: Handbook of Model Checking. Ed. by Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. Springer,
2018, pp. 1111–1147. doi: 10.1007/978-3-319-10575-8_31.

[MTW14] Rupak Majumdar, Sai Deep Tetali, and Zilong Wang. “Kuai: A model checker
for software-defined networks”. In: Formal Methods in Computer-Aided Design,
FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014. 2014, pp. 163–170.
doi: 10.1109/FMCAD.2014.6987609.

[MILY+21] Makai Mann, Ahmed Irfan, Florian Lonsing, Yahan Yang, Hongce Zhang,
Kristopher Brown, Aarti Gupta, and Clark W. Barrett. “Pono: A Flexible
and Extensible SMT-Based Model Checker”. In: Computer Aided Verification
- 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021,
Proceedings, Part II. 2021, pp. 461–474. doi: 10.1007/978- 3- 030-
81688-9_22.

[MW81] Zohar Manna and Pierre Wolper. “Synthesis of Communicating Processes from
Temporal Logic Specifications”. In: Logics of Programs, Workshop, Yorktown
Heights, New York, USA, May 1981. 1981, pp. 253–281. doi: 10.1007/
BFb0025786.

[MHC17] Jedidiah McClurg, Hossein Hojjat, and Pavol Cerný. “Synchronization Synthe-
sis for Network Programs”. In: Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part II. 2017, pp. 301–321. doi: 10.1007/978-3-319-63390-9_16.

[MABP+08] Nick McKeown, Thomas E. Anderson, Hari Balakrishnan, Guru M. Parulkar,
Larry L. Peterson, Jennifer Rexford, Scott Shenker, and Jonathan S. Turner.
“OpenFlow: enabling innovation in campus networks”. In: Comput. Commun.
Rev. 38.2 (2008), pp. 69–74. doi: 10.1145/1355734.1355746.

[McM92] Kenneth L. McMillan. “Using Unfoldings to Avoid the State Explosion Problem
in the Verification of Asynchronous Circuits”. In: Computer Aided Verification,
Fourth International Workshop, CAV ’92, Montreal, Canada, June 29 - July
1, 1992, Proceedings. 1992, pp. 164–177. doi: 10.1007/3-540-56496-
9_14.

[McM93] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993. doi: 10.1007/
978-1-4615-3190-6.

[McM95] Kenneth L. McMillan. “A Technique of State Space Search Based on Unfold-
ing”. In: Formal Methods Syst. Des. 6.1 (1995), pp. 45–65. doi: 10.1007/
BF01384314.

247

https://doi.org/10.1145/2018436.2018470
https://doi.org/10.1145/2018436.2018470
https://doi.org/10.1007/978-3-319-10575-8_31
https://doi.org/10.1109/FMCAD.2014.6987609
https://doi.org/10.1007/978-3-030-81688-9_22
https://doi.org/10.1007/978-3-030-81688-9_22
https://doi.org/10.1007/BFb0025786
https://doi.org/10.1007/BFb0025786
https://doi.org/10.1007/978-3-319-63390-9_16
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1007/3-540-56496-9_14
https://doi.org/10.1007/3-540-56496-9_14
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/BF01384314
https://doi.org/10.1007/BF01384314

Bibliography

[McM03] Kenneth L. McMillan. “Craig Interpolation and Reachability Analysis”. In:
Static Analysis, 10th International Symposium, SAS 2003, San Diego, CA,
USA, June 11-13, 2003, Proceedings. 2003, p. 336. doi: 10.1007/3-540-
44898-5_18.

[McN65] Robert McNaughton. Finite-state infinite games. Project MAC Rep. MIT,
Cambridge, Mass, 1965.

[McN93] Robert McNaughton. “Infinite Games Played on Finite Graphs”. In: Ann. Pure
Appl. Logic 65.2 (1993), pp. 149–184. doi: 10.1016/0168-0072(93)
90036-D.

[MP15] Jeroen Meijer and Jaco van de Pol. “Bandwidth and Wavefront Reduc-
tion for Static Variable Ordering in Symbolic Model Checking”. In: CoRR
abs/1511.08678 (2015). arXiv: 1511.08678.

[MT98] Christoph Meinel and Thorsten Theobald. Algorithmen und Datenstrukturen
im VLSI-Design: OBDD - Grundlagen und Anwendungen. Springer, 1998.

[Meo12] Robert Meolic. “Biddy - a Multi-platform Academic BDD Package”. In: J.
Softw. 7.6 (2012), pp. 1358–1366. doi: 10.4304/jsw.7.6.1358-1366.

[Met17] Niklas Metzger. “Bounded Synthesis of Petri Games with True Concurrency Se-
mantics”. Bachelor’s Thesis. Saarland University, Saarbrücken, Germany, 2017.

[MSL18] Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. “Strix: Explicit
Reactive Synthesis Strikes Back!” In: Computer Aided Verification - 30th In-
ternational Conference, CAV 2018, Held as Part of the Federated Logic Con-
ference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I. 2018,
pp. 578–586. doi: 10.1007/978-3-319-96145-3_31.

[MC18] Thibaud Michaud and Maximilien Colange. “Reactive synthesis from LTL spec-
ification with Spot”. In: 7th Workshop on Synthesis, SYNT@CAV. 2018.

[Mic88] Max Michel. “Complementation is more difficult with automata on infinite
words”. In: CNET, Paris 15 (1988).

[Mis12] Dirk Missal. “Formal synthesis of safety controller code for distributed con-
trollers”. PhD thesis. Martin Luther University of Halle-Wittenberg, 2012.

[MH08] Dirk Missal and Hans-Michael Hanisch. “A Modular Synthesis Approach for
Distributed Safety Controllers, Part A: Modelling and Specification”. In: IFAC
Proceedings Volumes 41.2 (2008). 17th IFACWorld Congress, pp. 14473–14478.

[MH84] Satoru Miyano and Takeshi Hayashi. “Alternating Finite Automata on omega-
Words”. In: Theor. Comput. Sci. 32 (1984), pp. 321–330. doi: 10.1016/
0304-3975(84)90049-5.

[MRFR+13] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. “Composing Software Defined Networks”. In: Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
2013, Lombard, IL, USA, April 2-5, 2013. 2013, pp. 1–13.

[Mor82] Bernard M. E. Moret. “Decision Trees and Diagrams”. In: ACM Comput. Surv.
14.4 (1982), pp. 593–623. doi: 10.1145/356893.356898.

248

https://doi.org/10.1007/3-540-44898-5_18
https://doi.org/10.1007/3-540-44898-5_18
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1016/0168-0072(93)90036-D
https://arxiv.org/abs/1511.08678
https://doi.org/10.4304/jsw.7.6.1358-1366
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1016/0304-3975(84)90049-5
https://doi.org/10.1016/0304-3975(84)90049-5
https://doi.org/10.1145/356893.356898

Bibliography

[Mos91] Andrzej Wlodzimierz Mostowski. Games with Forbidden Positions. Tech. rep.
78. Instytut Matematyki, Uniwersytet Gda‘nski, Poland, 1991.

[MSS88] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. “Weak Alternating Au-
tomata Give a Simple Explanation of Why Most Temporal and Dynamic Logics
are Decidable in Exponential Time”. In: Proceedings of the Third Annual Sym-
posium on Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK,
July 5-8, 1988. 1988, pp. 422–427. doi: 10.1109/LICS.1988.5139.

[MS87] David E. Muller and Paul E. Schupp. “Alternating Automata on Infinite Trees”.
In: Theor. Comput. Sci. 54 (1987), pp. 267–276. doi: 10.1016/0304-
3975(87)90133-2.

[Mur89] T. Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings
of the IEEE 77.4 (1989), pp. 541–580. doi: 10.1109/5.24143.

[MW14] Anca Muscholl and Igor Walukiewicz. “Distributed Synthesis for Acyclic Archi-
tectures”. In: 34th International Conference on Foundation of Software Technol-
ogy and Theoretical Computer Science, FSTTCS 2014, December 15-17, 2014,
New Delhi, India. 2014, pp. 639–651. doi: 10.4230/LIPIcs.FSTTCS.
2014.639.

[MPCE+02] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler, and
David L. Dill. “CMC: A Pragmatic Approach to Model Checking Real Code”.
In: 5th Symposium on Operating System Design and Implementation (OSDI
2002), Boston, Massachusetts, USA, December 9-11, 2002. 2002.

[Mye04] Glenford J. Myers. The art of software testing (2. ed.) Wiley, 2004.

[NM10] Ukachukwu Ndukwu and Annabelle McIver. “An expectation transformer ap-
proach to predicate abstraction and data independence for probabilistic pro-
grams”. In: Proceedings Eighth Workshop on Quantitative Aspects of Program-
ming Languages, QAPL 2010, Paphos, Cyprus, 27-28th March 2010. 2010,
pp. 129–143. doi: 10.4204/EPTCS.28.9.

[NPW81] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. “Petri Nets, Event
Structures and Domains, Part I”. In: Theor. Comput. Sci. 13 (1981), pp. 85–
108. doi: 10.1016/0304-3975(81)90112-2.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic. Vol. 2283. Lecture Notes in Computer
Science. Springer, 2002. doi: 10.1007/3-540-45949-9.

[OR93] Ernst-Rüdiger Olderog and Stephan Rössig. “A Case Study in Transforma-
tional Design of Concurrent Systems”. In: TAPSOFT’93: Theory and Practice
of Software Development, International Joint Conference CAAP/FASE, Orsay,
France, April 13-17, 1993, Proceedings. 1993, pp. 90–104. doi: 10.1007/3-
540-56610-4_58.

[PIKL+15] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Ori Lahav, Mooly Sagiv,
and Sharon Shoham. “Decentralizing SDN Policies”. In: Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015. 2015, pp. 663–
676. doi: 10.1145/2676726.2676990.

249

https://doi.org/10.1109/LICS.1988.5139
https://doi.org/10.1016/0304-3975(87)90133-2
https://doi.org/10.1016/0304-3975(87)90133-2
https://doi.org/10.1109/5.24143
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.639
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.639
https://doi.org/10.4204/EPTCS.28.9
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-56610-4_58
https://doi.org/10.1007/3-540-56610-4_58
https://doi.org/10.1145/2676726.2676990

Bibliography

[Pan21] Lukas Panneke. “Optimization Techniques for Reachability Analysis of Bounded
Petri Nets”. Implementation: https://github.com/Selebrator/
bachelor. Bachelor’s Thesis. University of Oldenburg, Oldenburg, Germany,
2021.

[Pel18] Doron Peled. “Partial-Order Reduction”. In: Handbook of Model Checking. 2018,
pp. 173–190. doi: 10.1007/978-3-319-10575-8_6.

[PP04] Dominique Perrin and Jean-Eric Pin. Infinite words - automata, semigroups,
logic and games. Vol. 141. Pure and applied mathematics series. Elsevier Mor-
gan Kaufmann, 2004.

[Pet80] James L. Peterson. “A Note on Colored Petri Nets”. In: Inf. Process. Lett. 11.1
(1980), pp. 40–43. doi: 10.1016/0020-0190(80)90032-0.

[Pet62] Carl Adam Petri. “Kommunikation mit Automaten”. PhD thesis. Bonn: Institut
für instrumentelle Mathematik, 1962.

[Pit06] Nir Piterman. “From Nondeterministic Buchi and Streett Automata to Deter-
ministic Parity Automata”. In: 21th IEEE Symposium on Logic in Computer
Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings. 2006,
pp. 255–264. doi: 10.1109/LICS.2006.28.

[Pit07] Nir Piterman. “From Nondeterministic Büchi and Streett Automata to De-
terministic Parity Automata”. In: Log. Methods Comput. Sci. 3.3 (2007). doi:
10.2168/LMCS-3(3:5)2007.

[PPS06] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. “Synthesis of Reactive(1) De-
signs”. In: Verification, Model Checking, and Abstract Interpretation, 7th In-
ternational Conference, VMCAI 2006, Charleston, SC, USA, January 8-10,
2006, Proceedings. 2006, pp. 364–380. doi: 10.1007/11609773_24.

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 Oc-
tober - 1 November 1977. 1977, pp. 46–57. doi: 10.1109/SFCS.1977.32.

[PR89a] Amir Pnueli and Roni Rosner. “On the Synthesis of a Reactive Module”. In:
Conference Record of the Sixteenth Annual ACM Symposium on Principles
of Programming Languages, Austin, Texas, USA, January 11-13, 1989. 1989,
pp. 179–190. doi: 10.1145/75277.75293.

[PR89b] Amir Pnueli and Roni Rosner. “On the Synthesis of an Asynchronous Reactive
Module”. In: Automata, Languages and Programming, 16th International Col-
loquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings. 1989, pp. 652–
671. doi: 10.1007/BFb0035790.

[PR90] Amir Pnueli and Roni Rosner. “Distributed Reactive Systems Are Hard to
Synthesize”. In: 31st Annual Symposium on Foundations of Computer Science,
St. Louis, Missouri, USA, October 22-24, 1990, Volume II. 1990, pp. 746–757.
doi: 10.1109/FSCS.1990.89597.

250

https://github.com/Selebrator/bachelor
https://github.com/Selebrator/bachelor
https://doi.org/10.1007/978-3-319-10575-8_6
https://doi.org/10.1016/0020-0190(80)90032-0
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.2168/LMCS-3(3:5)2007
https://doi.org/10.1007/11609773_24
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1109/FSCS.1990.89597

Bibliography

[PLP11] Richard Pohl, Kim Lauenroth, and Klaus Pohl. “A performance comparison
of contemporary algorithmic approaches for automated analysis operations on
feature models”. In: 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011.
2011, pp. 313–322. doi: 10.1109/ASE.2011.6100068.

[PB15] Mihai-Lica Pura and Didier Buchs. “Symbolic Model Checking of Security Pro-
tocols for Ad hoc Networks on any Topologies”. In: Trans. Petri Nets Other
Model. Concurr. 10 (2015), pp. 109–130. doi: 10.1007/978-3-662-
48650-4_6.

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specification and verification of con-
current systems in CESAR”. In: International Symposium on Programming,
5th Colloquium, Torino, Italy, April 6-8, 1982, Proceedings. 1982, pp. 337–351.
doi: 10.1007/3-540-11494-7_22.

[Rab69] Michael O Rabin. “Decidability of second-order theories and automata on infi-
nite trees”. In: Transactions of the american Mathematical Society 141 (1969),
pp. 1–35.

[RS59] Michael O. Rabin and Dana S. Scott. “Finite Automata and Their Decision
Problems”. In: IBM J. Res. Dev. 3.2 (1959), pp. 114–125. doi: 10.1147/rd.
32.0114.

[RW89] Peter JG Ramadge and W Murray Wonham. “The control of discrete event
systems”. In: Proceedings of the IEEE 77.1 (1989), pp. 81–98.

[Rei98] Wolfgang Reisig. Elements of distributed algorithms: modeling and analysis with
Petri nets. Springer, 1998.

[Rei13] Wolfgang Reisig. Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013. doi: 10.1007/978- 3- 642-
33278-4.

[RFRS+12] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David
Walker. “Abstractions for network update”. In: ACM SIGCOMM 2012 Confer-
ence, SIGCOMM ’12, Helsinki, Finland - August 13 - 17, 2012. 2012, pp. 323–
334. doi: 10.1145/2342356.2342427.

[RXG00] Nidhal Rezg, Xiaolan Xie, and Asma Ghaffari. “Supervisory Control in Discrete
Event Systems Using the Theory of Regions”. In: Discrete Event Systems: Anal-
ysis and Control. Ed. by R. Boel and G. Stremersch. Boston, MA: Springer US,
2000, pp. 391–398. doi: 10.1007/978-1-4615-4493-7_41.

[Ric53] Henry Gordon Rice. “Classes of recursively enumerable sets and their decision
problems”. In: Transactions of the American Mathematical Society 74.2 (1953),
pp. 358–366.

[RK08] Michael Rice and Sanjay Kulhari. A survey of static variable ordering heuristics
for efficient BDD/MDD construction. Tech. rep. University of California, 2008.

251

https://doi.org/10.1109/ASE.2011.6100068
https://doi.org/10.1007/978-3-662-48650-4_6
https://doi.org/10.1007/978-3-662-48650-4_6
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1145/2342356.2342427
https://doi.org/10.1007/978-1-4615-4493-7_41

Bibliography

[RZS09] Andrei Rimsa, Luis Enrique Zárate, and Mark A. J. Song. “Evaluation of Dif-
ferent BDD Libraries to Extract Concepts in FCA - Perspectives and Limita-
tions”. In: Computational Science - ICCS 2009, 9th International Conference,
Baton Rouge, LA, USA, May 25-27, 2009, Proceedings, Part I. 2009, pp. 367–
376. doi: 10.1007/978-3-642-01970-8_36.

[RSS21] Mauricio Rocha, Adenilso Simão, and Thiago Sousa. “Model-based test case
generation from UML sequence diagrams using extended finite state machines”.
In: Softw. Qual. J. 29.3 (2021), pp. 597–627. doi: 10.1007/s11219-020-
09531-0.

[RB99] A. W. Roscoe and Philippa J. Broadfoot. “Proving Security Protocols with
Model Checkers by Data Independence Techniques”. In: J. Comput. Secur. 7.1
(1999), pp. 147–190.

[Roz16] Kristin Yvonne Rozier. “Specification: The Biggest Bottleneck in Formal Meth-
ods and Autonomy”. In: Verified Software. Theories, Tools, and Experiments
- 8th International Conference, VSTTE 2016, Toronto, ON, Canada, July 17-
18, 2016, Revised Selected Papers. 2016, pp. 8–26. doi: 10.1007/978-3-
319-48869-1_2.

[RW92] K. Rudie and W.M. Wonham. “Think globally, act locally: decentralized su-
pervisory control”. In: IEEE Transactions on Automatic Control 37.11 (1992),
pp. 1692–1708. doi: 10.1109/9.173140.

[Saf88] Shmuel Safra. “On the Complexity of omega-Automata”. In: 29th Annual Sym-
posium on Foundations of Computer Science, White Plains, New York, USA,
24-26 October 1988. 1988, pp. 319–327. doi: 10 . 1109 / SFCS . 1988 .
21948.

[Sch08] Sven Schewe. “Synthesis of distributed systems”. PhD thesis. Saarland Univer-
sity, Saarbrücken, Germany, 2008.

[Sch09] Sven Schewe. “Tighter Bounds for the Determinisation of Büchi Automata”.
In: Foundations of Software Science and Computational Structures, 12th In-
ternational Conference, FOSSACS 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings. 2009, pp. 167–181. doi: 10.1007/978-3-
642-00596-1_13.

[SF07] Sven Schewe and Bernd Finkbeiner. “Bounded Synthesis”. In: Automated
Technology for Verification and Analysis, 5th International Symposium, ATVA
2007, Tokyo, Japan, October 22-25, 2007, Proceedings. 2007, pp. 474–488. doi:
10.1007/978-3-540-75596-8_33.

[SV14] Sven Schewe and Thomas Varghese. “Determinising Parity Automata”. In:
Mathematical Foundations of Computer Science 2014 - 39th International Sym-
posium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings,
Part I. 2014, pp. 486–498. doi: 10.1007/978-3-662-44522-8_41.

252

https://doi.org/10.1007/978-3-642-01970-8_36
https://doi.org/10.1007/s11219-020-09531-0
https://doi.org/10.1007/s11219-020-09531-0
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1109/9.173140
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-540-75596-8_33
https://doi.org/10.1007/978-3-662-44522-8_41

Bibliography

[Sch00] Karsten Schmidt. “LoLA: A Low Level Analyser”. In: Application and Theory
of Petri Nets 2000, 21st International Conference, ICATPN 2000, Aarhus,
Denmark, June 26-30, 2000, Proceeding. 2000, pp. 465–474. doi: 10.1007/
3-540-44988-4_27.

[Sch19] Sanny Schmitt. “Generating Concurrency-preserving Petri Games”. Bachelor’s
Thesis. Saarland University, Saarbrücken, Germany, 2019.

[Sch02] Philippe Schnoebelen. “The Complexity of Temporal Logic Model Checking”.
In: Advances in Modal Logic 4, papers from the fourth conference on "Advances
in Modal logic," held in Toulouse, France, 30 September - 2 October 2002. 2002,
pp. 393–436.

[ST03] Roberto Sebastiani and Stefano Tonetta. “"More Deterministic" vs. "Smaller"
Büchi Automata for Efficient LTL Model Checking”. In: Correct Hardware De-
sign and Verification Methods, 12th IFIP WG 10.5 Advanced Research Working
Conference, CHARME 2003, L’Aquila, Italy, October 21-24, 2003, Proceedings.
2003, pp. 126–140. doi: 10.1007/978-3-540-39724-3_12.

[SYGA+14] Ohad Shacham, Eran Yahav, Guy Golan-Gueta, Alex Aiken, Nathan Grasso
Bronson, Mooly Sagiv, and Martin T. Vechev. “Verifying atomicity via data
independence”. In: International Symposium on Software Testing and Analysis,
ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014. 2014, pp. 26–36. doi:
10.1145/2610384.2610402.

[Sie98] Detlef Sieling. “On the Existence of Polynomial Time Approximation Schemes
for OBDD Minimization”. In: STACS 98, 15th Annual Symposium on The-
oretical Aspects of Computer Science, Paris, France, February 25-27, 1998,
Proceedings. 1998, pp. 205–215. doi: 10.1007/BFb0028562.

[SC85] A. Prasad Sistla and Edmund M. Clarke. “The Complexity of Propositional
Linear Temporal Logics”. In: J. ACM 32.3 (1985), pp. 733–749. doi: 10.
1145/3828.3837.

[SS09] Saqib Sohail and Fabio Somenzi. “Safety first: A two-stage algorithm for LTL
games”. In: Proceedings of 9th International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas,
USA. 2009, pp. 77–84. doi: 10.1109/FMCAD.2009.5351138.

[SSR08] Saqib Sohail, Fabio Somenzi, and Kavita Ravi. “A Hybrid Algorithm for LTL
Games”. In: Verification, Model Checking, and Abstract Interpretation, 9th In-
ternational Conference, VMCAI 2008, San Francisco, USA, January 7-9, 2008,
Proceedings. 2008, pp. 309–323. doi: 10.1007/978-3-540-78163-
9_26.

[Som] Fabio Somenzi. CUDD: Colorado University Decision Diagram Package. De-
partment of Electrical and Computer Engineering, University of Colorado,
Boulder. url: https://github.com/ivmai/cudd (visited on 03/2022).

[SB00] Fabio Somenzi and Roderick Bloem. “Efficient Büchi Automata from LTL For-
mulae”. In: Computer Aided Verification, 12th International Conference, CAV
2000, Chicago, IL, USA, July 15-19, 2000, Proceedings. 2000, pp. 248–263. doi:
10.1007/10722167_21.

253

https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/978-3-540-39724-3_12
https://doi.org/10.1145/2610384.2610402
https://doi.org/10.1007/BFb0028562
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837
https://doi.org/10.1109/FMCAD.2009.5351138
https://doi.org/10.1007/978-3-540-78163-9_26
https://doi.org/10.1007/978-3-540-78163-9_26
https://github.com/ivmai/cudd
https://doi.org/10.1007/10722167_21

Bibliography

[Spa] Sparkjava. url: http://sparkjava.com/ (visited on 03/2022).

[Spr15] Valentin Spreckels. “Petri-Spiele: Erweiterung der Sicherheitsgewinnbedingung
auf Markierungen”. German. Master’s Thesis. University of Oldenburg, Olden-
burg, Germany, 2015.

[Sta85] Eugene W. Stark. “A Proof Technique for Rely/Guarantee Properties”. In:
Foundations of Software Technology and Theoretical Computer Science, Fifth
Conference, New Delhi, India, December 16-18, 1985, Proceedings. 1985,
pp. 369–391. doi: 10.1007/3-540-16042-6_21.

[Sta90] Peter H. Starke. Analyse von Petri-Netz-Modellen. Leitfäden und Monogra-
phien der Informatik. Teubner, 1990.

[Sto74] Larry Joseph Stockmeyer. “The complexity of decision problems in automata
theory and logic.” PhD thesis. Massachusetts Institute of Technology, 1974.

[TOHT06] Takashi Takenaka, Kozo Okano, Teruo Higashino, and Kenichi Taniguchi.
“Symbolic model checking of extended finite state machines with linear con-
straints over integer variables”. In: Systems and Computers in Japan 37.6
(2006), pp. 64–72. doi: 10.1002/scj.20264.

[TS07] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems - principles
and paradigms, 2nd Edition. Pearson Education, 2007.

[Ten16] Leander Tentrup. “Non-prenex QBF Solving Using Abstraction”. In: Theory
and Applications of Satisfiability Testing - SAT 2016 - 19th International Con-
ference, Bordeaux, France, July 5-8, 2016, Proceedings. 2016, pp. 393–401. doi:
10.1007/978-3-319-40970-2_24.

[TH96] P. S. Thiagarajan and Jesper G. Henriksen. “Distributed Versions of Linear
Time Temporal Logic: A Trace Perspective”. In: Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the volumes are based on the Advanced Course
on Petri Nets, held in Dagstuhl, September 1996. 1996, pp. 643–681. doi: 10.
1007/3-540-65306-6_24.

[Thi15] Yann Thierry-Mieg. “Symbolic Model-Checking Using ITS-Tools”. In: Tools and
Algorithms for the Construction and Analysis of Systems - 21st International
Conference, TACAS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,
2015. Proceedings. 2015, pp. 231–237. doi: 10.1007/978-3-662-46681-
0_20.

[Thi20] Yann Thierry-Mieg. “Structural Reductions Revisited”. In: Application and
Theory of Petri Nets and Concurrency - 41st International Conference, PETRI
NETS 2020, Paris, France, June 24-25, 2020, Proceedings. 2020, pp. 303–323.
doi: 10.1007/978-3-030-51831-8_15.

[Tho90] Wolfgang Thomas. “Automata on Infinite Objects”. In: Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics. 1990, pp. 133–
191. doi: 10.1016/b978-0-444-88074-1.50009-3.

[Tho97] Wolfgang Thomas. “Languages, Automata, and Logic”. In: Handbook of Formal
Languages, Volume 3: Beyond Words. 1997, pp. 389–455. doi: 10.1007/
978-3-642-59126-6_7.

254

http://sparkjava.com/
https://doi.org/10.1007/3-540-16042-6_21
https://doi.org/10.1002/scj.20264
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/3-540-65306-6_24
https://doi.org/10.1007/3-540-65306-6_24
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-030-51831-8_15
https://doi.org/10.1016/b978-0-444-88074-1.50009-3
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.1007/978-3-642-59126-6_7

Bibliography

[Tho02] Wolfgang Thomas. “Infinite Games and Verification (Extended Abstract of
a Tutorial)”. In: Computer Aided Verification, 14th International Conference,
CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings. 2002, pp. 58–
64. doi: 10.1007/3-540-45657-0_5.

[Tho09] Wolfgang Thomas. “Facets of Synthesis: Revisiting Church’s Problem”. In:
Foundations of Software Science and Computational Structures, 12th Interna-
tional Conference, FOSSACS 2009, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2009, York, UK, March
22-29, 2009. Proceedings. 2009, pp. 1–14. doi: 10.1007/978-3-642-
00596-1_1.

[Tiu94] Mikko Tiusanen. “Symbolic, Symmetry, and Stubborn Set Searches”. In: Appli-
cation and Theory of Petri Nets 1994, 15th International Conference, Zaragoza,
Spain, June 20-24, 1994, Proceedings. 1994, pp. 511–530. doi: 10.1007/3-
540-58152-9_28.

[TDB16] Petar Tsankov, Mohammad Torabi Dashti, and David A. Basin. “Access Con-
trol Synthesis for Physical Spaces”. In: IEEE 29th Computer Security Founda-
tions Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. 2016,
pp. 443–457. doi: 10.1109/CSF.2016.38.

[Tur37] Alan Mathison Turing. “On computable numbers, with an application to the
Entscheidungsproblem”. In: Proceedings of the London mathematical society 2.1
(1937), pp. 230–265. doi: 10.1112/plms/s2-42.1.230.

[Uni12] University of Oldenburg. APT – Analyse von Petri-Netzen und Transitionssys-
temen. https://github.com/CvO-Theory/apt. 2012.

[Vah] Arash Vahidi. JDD: A pure Java BDD and Z-BDD library. url: https:
//bitbucket.org/vahidi/jdd (visited on 03/2022).

[Val89] Antti Valmari. “Stubborn sets for reduced state space generation”. In: Advances
in Petri Nets 1990 [10th International Conference on Applications and Theory
of Petri Nets, Bonn, Germany, June 1989, Proceedings]. 1989, pp. 491–515.
doi: 10.1007/3-540-53863-1_36.

[Val90] Antti Valmari. “A Stubborn Attack On State Explosion”. In: Computer Aided
Verification, 2nd International Workshop, CAV ’90, New Brunswick, NJ,
USA, June 18-21, 1990, Proceedings. 1990, pp. 156–165. doi: 10.1007/
BFb0023729.

[Val92] Antti Valmari. “A Stubborn Attack on State Explosion”. In: Formal Methods
Syst. Des. 1.4 (1992), pp. 297–322. doi: 10.1007/BF00709154.

[Var95a] Moshe Y. Vardi. “Alternating Automata and Program Verification”. In: Com-
puter Science Today: Recent Trends and Developments. 1995, pp. 471–485. doi:
10.1007/BFb0015261.

[Var95b] Moshe Y. Vardi. “An Automata-Theoretic Approach to Fair Realizability
and Synthesis”. In: Computer Aided Verification, 7th International Confer-
ence, Liège, Belgium, July, 3-5, 1995, Proceedings. 1995, pp. 267–278. doi:
10.1007/3-540-60045-0_56.

255

https://doi.org/10.1007/3-540-45657-0_5
https://doi.org/10.1007/978-3-642-00596-1_1
https://doi.org/10.1007/978-3-642-00596-1_1
https://doi.org/10.1007/3-540-58152-9_28
https://doi.org/10.1007/3-540-58152-9_28
https://doi.org/10.1109/CSF.2016.38
https://doi.org/10.1112/plms/s2-42.1.230
https://github.com/CvO-Theory/apt
https://bitbucket.org/vahidi/jdd
https://bitbucket.org/vahidi/jdd
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/BFb0023729
https://doi.org/10.1007/BFb0023729
https://doi.org/10.1007/BF00709154
https://doi.org/10.1007/BFb0015261
https://doi.org/10.1007/3-540-60045-0_56

Bibliography

[VW08] Moshe Y. Vardi and Thomas Wilke. “Automata: from logics to algorithms”. In:
Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas].
2008, pp. 629–736.

[VW86] Moshe Y. Vardi and Pierre Wolper. “An Automata-Theoretic Approach to
Automatic Program Verification”. In: Proceedings of the Symposium on Logic
in Computer Science (LICS ’86), Cambridge, Massachusetts, USA, June 16-18,
1986. 1986, pp. 332–344.

[VW94] Moshe Y. Vardi and Pierre Wolper. “Reasoning About Infinite Computations”.
In: Inf. Comput. 115.1 (1994), pp. 1–37. doi: 10.1006/inco.1994.1092.

[Vuea] Vue.js. url: https://vuejs.org/ (visited on 03/2022).

[Vueb] Vuetify. url: https://vuetifyjs.com/ (visited on 03/2022).

[WTD16] Neil Walkinshaw, Ramsay Taylor, and John Derrick. “Inferring extended finite
state machine models from software executions”. In: Empir. Softw. Eng. 21.3
(2016), pp. 811–853. doi: 10.1007/s10664-015-9367-7.

[WMLT+13] Anduo Wang, Salar Moarref, Boon Thau Loo, Ufuk Topcu, and Andre Scedrov.
“Automated synthesis of reactive controllers for software-defined networks”. In:
2013 21st IEEE International Conference on Network Protocols, ICNP 2013,
Göttingen, Germany, October 7-10, 2013. 2013, pp. 1–6. doi: 10.1109/
ICNP.2013.6733666.

[Wha] John Whaley. JavaBDD: Java binary decision diagram library. url: http:
//javabdd.sourceforge.net/ (visited on 03/2022).

[Wol18] Karsten Wolf. “Petri Net Model Checking with LoLA 2”. In: Application
and Theory of Petri Nets and Concurrency - 39th International Conference,
PETRI NETS 2018, Bratislava, Slovakia, June 24-29, 2018, Proceedings. 2018,
pp. 351–362. doi: 10.1007/978-3-319-91268-4_18.

[Wol86] Pierre Wolper. “Expressing Interesting Properties of Programs in Propositional
Temporal Logic”. In: Conference Record of the Thirteenth Annual ACM Sympo-
sium on Principles of Programming Languages, St. Petersburg Beach, Florida,
USA, January 1986. 1986, pp. 184–193. doi: 10.1145/512644.512661.

[Wür21] Nick Würdemann. “Exploiting symmetries of high-level Petri games in dis-
tributed synthesis”. In: it Inf. Technol. 63.5-6 (2021), pp. 321–331. doi: 10.
1515/itit-2021-0012.

[YL02] Tae-Sic Yoo and Stéphane Lafortune. “A General Architecture for Decentral-
ized Supervisory Control of Discrete-Event Systems”. In: Discret. Event Dyn.
Syst. 12.3 (2002), pp. 335–377. doi: 10.1023/A:1015625600613.

[Zie87] Wieslaw Zielonka. “Notes on Finite Asynchronous Automata”. In: RAIRO
Theor. Informatics Appl. 21.2 (1987), pp. 99–135. doi: 10.1051/ita/
1987210200991.

[Zie98] Wieslaw Zielonka. “Infinite Games on Finitely Coloured Graphs with Applica-
tions to Automata on Infinite Trees”. In: Theor. Comput. Sci. 200.1-2 (1998),
pp. 135–183. doi: 10.1016/S0304-3975(98)00009-7.

256

https://doi.org/10.1006/inco.1994.1092
https://vuejs.org/
https://vuetifyjs.com/
https://doi.org/10.1007/s10664-015-9367-7
https://doi.org/10.1109/ICNP.2013.6733666
https://doi.org/10.1109/ICNP.2013.6733666
http://javabdd.sourceforge.net/
http://javabdd.sourceforge.net/
https://doi.org/10.1007/978-3-319-91268-4_18
https://doi.org/10.1145/512644.512661
https://doi.org/10.1515/itit-2021-0012
https://doi.org/10.1515/itit-2021-0012
https://doi.org/10.1023/A:1015625600613
https://doi.org/10.1051/ita/1987210200991
https://doi.org/10.1051/ita/1987210200991
https://doi.org/10.1016/S0304-3975(98)00009-7

Symbols

General

Σ Alphabet 26
|·| Length or size 26
ε Empty word 26
N Petri net. 26
P Places . 26
T Transitions 26
F Flows . 26
In Initial marking. 26
preN(·) Preset . 26
postN(·) Postset 26
M Marking 26

M [t〉M ′ Firing of a transition. 26
ζ Firing sequence 27
R(N) Reachable markings. 27
RG(N) Reachability graph. 27
FI Inhibitor arcs 27
< or ≤ Causal predecessor 28
futN(·) Future . 28
x] y Conflict. 28
β Branching process 29
h|X Restriction 29
Z(β) All covering firing seq. 30

Model Checking

K Kripke structure 30
A Atomic propositions 30
S States . 30
S0 Initial states 30
` Labeling function 30
→ Transition relation 30
L(·) Language 30
AP Atomic propositions 31
CTL∗ CTL∗ formulas. 31
E Exists path 31
X CTL∗/CTL next 31
U CTL∗/CTL until 31
A All paths 31
F CTL∗/CTL finally 31
G CTL∗/CTL globally 31
R CTL∗/CTL release. 31
W CTL∗/CTL weak until 31

LTL next operator 32
U LTL until 32

LTL eventually 33
LTL always 33

W LTL weak until 33
R LTL release 33
〈·〉 ordered set 33
〈·〉i ith element of ordered set . 33
B+(·) Positive Boolean formulas . 34
T Tree . 34
(T, v) Labeled tree 34
Inf(·) Infinitely occurring 37
BUCHI(·) Büchi condition 37
COBUCHI(·)Co-Büchi condition 37
RABIN(·) Rabin condition 37
NT Petri Net with Transits . . . 39
P Places . 39
T Transitions 39

257

Synthesis

F Flows . 39
Υ Transits relation 39
� Start of a new data flow . . 39
In Initial marking. 39
postΥ(·) Postset regarding Υ 40
ξ Flow chain. 42
Ξ(·) All flow chains 42
τ Data flow tree 43
σR(ζ) Trace firing sequence . . 47, 85
|=LTL LTL on runs 47
σF (ξ) Trace flow chain. 49, 85
σs(·) Trace stuttering 49
|=CTL∗ CTL∗ flow chain suffixes . . 49
A For all flow chains 50, 86
σT (τ) Trace tree 51
KNT ,AP i Labeled Kripke structure . 53
ps Stutter states 53
s Stutter loops 54
sp Start stuttering in p 54
sK(s, l) l-labeled successors 54
(TK, vK) Trees of unwinding. 56
TD,φ HATA for formula 57
Aφ Product automaton 59
Lt,p(β) Words of run 62
N> Constructed net 65
N>
O Original subnet 65
N Normal mode 65
S Stuttering mode 65
tN→S Stuttering switch 65
ts Start stuttering 65
N>
i Constructed subnet 65

[·]i Subnet place 66
[ι]i Initial place of subnet 66
[−→·]i Subnet activation place . . . 66
[tV]i Skipping transition 66
ψ> Constructed formula 69
λ Mapping function for N> . 75
TΥ All transits 88
N>
» Constructed net seq. 89
−→· Subnet activation place . . . 90
tV Skipping transition 90
ϕ>» Constructed formula seq. . 92
O Unrelated transitions 92
Oi Unrelated trans. subnet. . . 92
Mi Related trans. subnet 92
N>
‖ Constructed net par. 96

ϕ>‖ Constructed formula par. . 98
I Input variables circuit . . . 101
O Output variables circuit . 101
L Latches circuit 101
F Relation circuit 101
C Circuit 101
KC Kripke structure f. circuit 102
CN Circuit for net 102
i Initializing latch 102
e Invalid input latch 102
ID Identifiers 105
νN or ν Naming function. 105
λ Mapping function for N>

‖ 105
Θ(·) CEX mapping fir. seq. . . 111
Θ>
ξi

(·) CEX mapping flow chain 112
Θ>(·) CEX mapping fir. seq . . . 112

Synthesis

WIN Winning condition 145
π Play . 145
Occ(·) Occurring states 146
Inf(·) Infinitely occurring states 146
SAFE Safety condition 146
REACH Reachability condition . . . 146

BUCHI Büchi condition. 146
COBUCHI Co-Büchi condition 146
Ω Parity function 146, 153
PARITY Parity condition 146
CONJ(·, ·) Conjunction of conditions 146
σ Strategy 147, 149
G Petri game 148

258

Synthesis

PS System places 148
PE Environment places 148
B Bad places. 148
A PGwT arena 153
NA Underlying Petri net 153
Π(A) All play of arena. 153
G Petri game with transits . 153
W Winning places 153
σ̃(ξ) Trace flow chain 153
∃-SAFE Existential safety 154
∀-SAFE Universal safety 154
∃-REACH Existential reachability . . 154
∀-REACH Universal reachability 154
∃-BUCHI Existential Büchi 154
∀-BUCHI Universal Büchi 154
∃-COBUCHI Existential co-Büchi 155
∀-COBUCHI Universal co-Büchi 155
∃-PARITY Existential parity 155
∀-PARITY Universal parity 155
·̃ Dual function 155, 179
E Exists flow chain 156
Flow-LTL Loc. Flow-LTL condition 156
G

1,b
s,◦|◦ PGwT class 157

r Round robin identifier . . . 161
t Last transition. 161
D Set of decision sets 162
maxS Max. nb. of sys. players . 162
D Decision set 162
C Commitment set 162
> Choose commitment set . 162
M(·) Marking of decision set . . 162
D{·〉x Enabled in decision set . . 162
D(·〉 Chosen in decision set . . . 162
D[·〉x Fireable in decision set . . 162
freeG(·) Free generation 162
TERM Terminating decision sets 163
DL Deadlocking decision sets 163

NDET Nondet. decision sets 163
O Ordinary states 163
V All states 163
V1 Player 1 states 163
V0 Player 0 states 163
M(·) Marking of state 163
LOOPS Looping edges 164
B Bad states 164
LOOPS� Bad looping edges 164
SYS> >-resolving edges 164
SYS System edges 165
nxt(·, ·) Next type-2 trans. 165
SYS2 System type-2 edges. 165
ENV Environment edges 166
A(A) Information flow arena. . . 166
G(A) Information flow game . . . 166
Tσ Strategy tree 167
ET Edges strategy tree 167
l Labeling strategy tree . . . 167
σinf Strategy inf. flow game . . 170
c(·) Cut mapping function . . . 170
gen(·) Generation select. func. . 170
σinf2pg Strategy transform. func. 171
fs(·) Transitions of play 171
type(·) Type of place 172
σpg2inf Strategy transform. func. 172
ΛWIN
∃ (G) ETA. 174

σT(ζ) Sequence of transitions . . 176
ΛWIN
∀ (G) UTA . 178

Ss Stuttering states SFTA . . 181
Sc Finite stutt. states SFTA 181
ΛELTL
ψi

(G) SFTA 181
S States SFTA. 181
ΛF-LTL
ϕ′ (G) SFTA with formula 182

ΛF-LTL(G) FTA. 183
Λ(G) Transit automaton. 184
G(G) Product game 184

259

Erklärung

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen
als die angegebenen Hilfsmittel benutzt habe. Außerdem versichere ich, dass ich die
Leitlinien guter wissenschaftlicher Praxis der Carl von Ossietzky Universität Oldenburg
befolgt habe.

Oldenburg, den 23.03.2022

	Titelseite
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Model Checking
	1.2 Synthesis of Distributed Systems
	1.3 Contributions
	1.3.1 Part I: Model Checking Local Data Flows
	1.3.2 Part II: Synthesis of Distributed Systems with Local Conditions

	1.4 Structure of the Thesis
	1.5 Publications

	I Model Checking Local Data Flows
	2 Motivation
	2.1 Software-Defined Networking
	2.2 Physical Access Control

	3 Models and Objectives
	3.1 Petri Nets
	3.1.1 Definition
	3.1.2 Petri Net Unfoldings

	3.2 Kripke Structures
	3.3 Propositional Temporal Logics
	3.3.1 Branching-Time Temporal Logic CTL*
	3.3.2 Linear-Time Temporal Logic LTL

	3.4 Automata on Infinite Words and Trees

	4 Petri Nets with Transits
	4.1 The Model
	4.2 Data Flow Chains and Data Flow Trees

	5 Model Checking Petri Nets with Transits against Flow-CTL*
	5.1 LTL on Petri Net Unfoldings
	5.2 Flow-CTL*
	5.3 Reduction to Model Checking Petri Nets against LTL
	5.3.1 Automaton Construction for Flow Formulas
	Constructing a Labeled Kripke Structure
	Constructing the Alternating Tree Automaton
	Constructing the Alternating Word Automaton
	Constructing the Nondeterministic Büchi Automaton

	5.3.2 From Petri Nets with Transits to Petri Nets
	5.3.3 From Flow-CTL* Formulas to LTL Formulas

	5.4 Proofs and Formal Constructions
	5.4.1 Correctness of the Automaton Construction
	5.4.2 Formal Construction of the Petri net N> and the Correctness

	6 Model Checking Petri Nets with Transits against Flow-LTL
	6.1 Flow-LTL
	6.2 Reduction to Model Checking Petri Nets against LTL
	6.2.1 A Sequential Approach
	From Petri Nets with Transits to P/T Petri nets
	From Flow-LTL Formulas to LTL Formulas and the Correctness

	6.2.2 A Parallel Approach
	From Petri Nets with Transits to P/T Petri nets
	From Flow-LTL Formulas to LTL Formulas and the Correctness

	6.3 Petri Net Model Checking with Circuits
	6.3.1 Construction of the Circuit
	6.3.2 Transformation of the Formula and the Correctness

	6.4 Proofs and Formal Constructions
	6.4.1 Formal Construction of the Petri Net N>>>
	6.4.2 Formal Construction of the Formula >>>
	6.4.3 Correctness Proof of the Reduction Technique
	6.4.4 Correctness Proof of the Reduction to the Hardware Model Checking Problem
	6.4.5 Formal Construction of the Petri Net N>

	7 AdamMC – A Model Checker for Petri Nets with Transits
	7.1 Application Areas and Workflow
	7.2 Optimizations
	7.3 Benchmarks

	8 Related Work

	II Synthesis of Distributed Systems with Local Conditions
	9 Motivation
	9.1 Manufacturing
	9.2 Parcel Delivery System

	10 Models and Objectives
	10.1 Infinite Games
	10.2 Petri Games

	11 Petri Games With Transits
	12 Synthesis of Distributed Systems with Local Data Flows
	12.1 Information Flow Game
	12.1.1 States
	12.1.2 Edges and Game
	12.1.3 Properties

	12.2 Transit Automata
	12.2.1 Existential Transit Automata
	12.2.2 Universal Transit Automata
	12.2.3 Local Flow-LTL

	12.3 Decision Procedure
	12.4 Proofs

	13 AdamSYNT – A Synthesis Tool for Petri Games
	13.1 Symbolic Encoding
	13.2 Benchmarks

	14 Related Work
	15 Adam – Analyzer of Distributed Asynchronous Models
	15.1 Framework
	15.2 Web Interface
	15.2.1 The Model Checking Approach
	15.2.2 The Synthesis Approach
	15.2.3 Implementation Details

	15.3 Command-line Interface

	16 Conclusion
	16.1 Summary
	16.2 Future Work

	Bibliography
	Symbols
	General
	Model Checking
	Synthesis

