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Abstract

The goal of this thesis is to quantify the impact of higher order increment statistics on
fatigue loads of wind turbines. Those non-Gaussian statistics are measured in atmosperic
turbulence and are closely related to intermittent flow behavior. However, they are not con-
sidered in the current industry standard, where increments are always Gaussian distributed.

As the main tool for the generation of wind fields with the corresponding statistics,
an improved stochastic turbulent wind model based on Continous Time Random Walks
(CTRWs) is used as an input for Computational Fluid Dynamics simulations. This inflow
model is able to generate wind fields with Gaussian one point statistics and Gaussian as well
as non-Gaussian increment statistics with a typical scale dependent increment kurtosis, as
seen in atmospheric turbulence.

Before the actual wind energy related simulations are performed, several modifications
to the CTRW model are presented to allow a definition of the wind fields with few model
parameters. These also have a physical meaning and therefore the comparability with real
wind fields is simplified. Moreover, different correction methods are presented which ensure
a good comparability of simulations among each other with respect to their increment statis-
tics. In this context it is shown how the spectra of two simulations can be adopted to each
other with almost arbitrary high precision, while the first four moments of the one-point
statistics approach the moments of a Gaussian statistics. Consequently, the differences of
those properties for the comparison of load simulations becomes negligible.

To get an idea of the propagation of the generated wind fields in the CFD domain,
the flow along an open channel is investigated first, where two different inflow methods are
compared with respect to the evolution of the turbulence and the conservation of its input
characterics. Subsequently, the effect of non-Gaussian increment statistics on fatigue loads
concerning lift and drag forces on an airfoil are analysed. As an important application, rotor
simulations under turbulent inflow conditions are performed, where the main focus lies on
torque and thrust, but also tangential and axial forces. Beforehand a comparison of three
qualitatively distinct rotor models takes place to keep the quality at a high level with as few
computational effort as possible. It is shown that an increased kurtosis of the increment
distribution in the wind leads to higher fatigue loads for the airfoil as well as the whole rotor.
Furthermore, a relation between correlations within the inflow plane and fatigue loads could
be found.
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Zusammenfassung

Das Ziel der vorgelegten Arbeit besteht darin, den Einfluss von Inkrement-Statistiken
höherer Ordnung auf Ermüdungslasten an Windenergieanlagen zu quantifizieren. Diese
nicht-Gaußförmigen Statistiken werden in atmospherischer Turbulenz nachgewiesen und
stehen in engem Zusammenhang mit intermittentem Strömungsverhalten. Allerdings wer-
den diese nicht im derzeitigen Industriestandard berücksichtigt, in welchem Inkremente im-
mer als Gauss-förmig verteilt angenommen werden.

Als Hauptinstrument zur Generierung von Windfeldern mit entsprechender Statis-
tik wird ein verbessertes stochastisches turbulentes Windmodell auf Grundlage von kon-
tinuierlichen Zeitprozessen, sog. Continuous Time Random Walks (CTRWs), als Eingabe
für computerbasierten Strömungssimulationen (Computational Fluid Dynamics, CFD)
genutzt. Mit diesem Einström-Modell können Windfelder mit Gauß-förmiger Ein-Punkt-
Statistik und sowohl Gauß- als auch nicht Gauß-förmiger Inkrementstatistik mit typis-
chem Skalierungsverhalten der Inkrementkurtosis erzeugt werden, wie man sie in atmo-
sphärischer Turbulenz vorfindet.

Bevor die eigentlichen windenergiebezogenen Simulationen durchgeführt werden,
werden einige Änderungen am CTRW-Modell vorgestellt, die es erlauben, die Windfelder
anhand weniger Modellparameter zu definieren. Diese haben zudem eine physikalische Be-
wandtnis und erleichtern dadurch eine Vergleichbarkeit mit realen Windfeldern. Des Weit-
eren werden verschiedene Korrekturmethoden vorgestellt, die eine gute Vergleichbarkeit
von Simulationen untereinander hinsichtlich ihrer Inkrementstatistik gewährleisten. Dazu
wird gezeigt, wie die Spektren zweier Simulationen fast beliebig genau aneinander angepasst
werden können und gleichzeitig die ersten vier Momente der Ein-Punkt-Statistik denen
einer Gauß-Statistik angenähert werden. Folglich werden die Unterschiede dieser Eigen-
schaften bei vergleichenden Lastensimulationen vernachlässigbar.

Um ein Bild für die Ausbreitung der generierten Windfelder in der CFD-Umgebung
zu bekommen, wird zunächst die Strömung in einem offenen Kanal untersucht, wobei an
dieser Stelle zwei verschiedene Einströmmethoden hinsichtlich der Turbulenzentwicklung
und der Erhaltung der Eingangscharakteristiken verglichen werden. Daraufhin wird der Ef-
fekt der nicht Gauß-förmigen Inkrementstatistik auf Ermüdungslasten bezüglich Auftriebs-
und Widerstandskräfte an einem Rotorblattsegment analysiert. Als wichtigen Anwendungs-
fall finden zudem Rotorsimulationen mit turbulenter Einströmung statt, bei denen haupt-
sächlich das Drehmoment und der Schub, aber auch tangentiale und axiale Kräfte im Fokus
stehen. Hier findet im Vorfeld ein Vergleich dreier qualitativ unterschiedlicher Rotormodel-
lierungen statt, um die Qualität der Ergebnisse hoch und zugleich den rechentechnischen
Aufwand möglichst klein zu halten. Es kann gezeigt werden, dass eine erhöhte Kurtosis der
Inkrementverteilung des Windfeldes sowohl beim Rotorblattsegment als auch am gesamten
Rotor zu größeren Ermüdungslasten führen. Zudem kann eine Beziehung zwischen den Ko-
rrelationen innerhalb der Einströmebene und den Ermüdungslasten festgestellt werden.
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Nomenclature

Abbreviations
AOA Angle of attack
BEM Blade Element Momentum (Theory)
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy-number
Coh Coherence
CTRW Continuous Time Random Walk
DFT Discrete Fourer transform
DNS Direct Numerical Simulation
EFL Equivalent fatigue load
LES Large Eddy Simulation
MSD Mean square displacement
PDF Probability density function
PSD Power spectral density
RANS Reynolds-averaged Navier-Stokes
SD Standard deviation
TI Turbulence intensity
var(x) Variance of x

Greek Symbols
α Lévy exponent
β Skewness parameter in Lévy distribution, Stretching factor for inertial

subrange of modified CTRW spectrum
δ Delta distribution, Tail parameter
δi j Kronecker delta
η First invariant of anisotropy tensor
γ Damping constant of velocity process of CTRW model for all grid points
γd Auxiliary damping constant
Γi Gaussian distributed random variable of velocity process of CTRW model

at point i
Γr Gaussian distributed random variable of reference velocity process of

CTRW model
γr Damping constant of reference velocity process of CTRW model
κ Wave number, Danish standard scaling for variance in CTRW model
λ Laplace space variable
λt Longitudinal Taylor length scale
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µ Intermittency coefficient, Tempering exponent, Mean value
ν Kinematic viscosity
ω Circular frequency
ωc Characteristic circular frequency for the inertial subrange in the CTRW

model
τ Integral time scale
Φ Function to characterize Lévy distribution in Laplace space
φ Distribution of jump length of CTRWs
Ψ Gravitational potential
ρ Autocorrelation function, Density
ρuv Correlation function between u and v
σ Standard deviation
τ Time gap of increments, Waiting time of CTRWs
τα,C Random number with fully skewed alpha-stable Lévy distribution
Θ Heaviside function
ε Rate of dissipation
ξ Second invariant of anisotropy tensor
ξi Wind profile factor at point i of CTRW model
ζn Structure function scaling exponent

Roman Symbols
∆ur Velocity increment u(x+r)-u(x)
x̂ Fourier transform of x
A Drift matrix
B Diffusion matrix
b Anisotropy tensor
R Covariance matrix
S Spectrum matrix
H Coupling matrix in CTRW process
a Constant for definition of CTRW model power spectral density and auto-

correlation function for a -5/3 spectrum
b Logarithmic derivative function
C Cutoff of Lévy distribution
c Constant for definition of CTRW model parameters for a -5/3 spectrum,

Constant used for exponential tempered Lévy distributions
C0 Lower limit of cross correlation of CTRW process
cd Drag force coefficient
cl Lift force coefficient
Di Diffusion constant of velocity process of CTRW model at point i
Dr Diffusion constant of reference process of CTRW model
E Power spectral density
Eα Mittag-Leffler function
E11 One-dimensional power spectral density
f Frequency
fα,β Alpha-stable Lévy distribution
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r,ri j Spatial distance between two points (i and j)
R Covariance function
S Skewness
s CTRW model intrinsic time
Sn n-th structure function
si j Fluctuating rate of strain
T Reference number of ranges for fatigue load calculation
t Time
u′ Velocity fluctuation
U Mean velocity
u Velocity
u0 Mean value of reference process of CTRW model
ur Reference velocity of CTRW model
W Wiener process
w Distribution of waiting times of CTRWs
x, y, z Spatial coordinates
y+ Dimensionless wall distance
z0 Roughness length
zr Reference height
C Correlation matrix
Re Reynolds number, Real part of a complex number
sgn(x) Sign of x

Other Symbols
〈.〉,〈.〉t Ensemble average, time average
F Fourier transform
L Laplace transform
∇ Nabla operator
∂x Partial derivative with respect to x
? Convolution operator
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Chapter 1

Introduction

1.1 Motivation and State of Research

Nowadays, wind is an important energy source which will be even more relevant in future
times in consideration of climate change and the commitment to reduce greenhouse gas
emissions to a very low level. Studies of the wind and its interactions with modern wind
turbines are an absolute requirement to increase the power output, reduce the loads and
finally also the cost of energy. Those are not least the most important points to make wind
energy more competitive to other energy sources like fossil ones.

The IEC norm [1] provides some tools and industrial standards on the characterization
of turbulent wind and the most important load cases. Despite of a very well-founded
spectral description of atmospheric turbulence by the Mann [2, 3] and the Kaimal [4] model,
other higher order statistical properties, related to intermittency and wind gusts, are not
accounted for. The difficult implementation of the intermittency concept into existing wind
models, as well as the belief that those properties are of minor importance for the design of
wind turbines, led to a poor database in this field.

Most recent work on this topic in the scope of wind energy originates from the work of
Böttcher et al. [5, 6, 7] who was able to reproduce the scaling behavior of velocity increments
of atmospheric turbulence in the wind tunnel and describe the intermittency partially by
the Castaing model [8]. In a later publication Milan et al. [9] could show that the scaling
behavior of wind velocity increments and power increments of wind turbines is very similar,
which led to the conclusion that this scaling is directly transferred from the wind to the
power output. Furthermore Hähne et al. [10] could show that intermittency propagates
in the power grid and affects the frequency increment distribution distant to the feed-in
region.

In the context of loads on wind turbines, several investigations have been made by
usage of the Continuous Time Random Walk (CTRW) model [11] which allows the numeric
generation of intermittent wind fields by stochastic processes. This model has already
been used in combination with Blade Element Momentum (BEM) tools in some works
dealing with load calculations on wind turbines [12, 13]. But final conclusions about
the effect of intermittency was not found because of the difficulty to make intermittent
and non-intermittent wind fields comparable, i.e. the intermittency aspect could not be
isolated. However in the work of Schwarz et al. [14, 15] a good comparison by usage of
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the CTRW model and the certified and in industry widely used load simulation tool FAST
(v8.15) [16, 17] could be made. In this work a comparison of the load dynamics of a large
MW turbine for input wind fields with almost identical one- and two-point statistics but
different increment probability densities has been conducted. Moreover, it was shown that
for extremely coherent wind fields a fatigue load increase of 5 to 10 % can be achieved
for several load sensors if the wind velocity increments are heavy-tailed distributed. The
improvement of the CTRW model and its usage for wind turbine simulations is an essential
part of this thesis and will be presented in more detail in the later sections.

Quite contrary are the results presented by Berg et al. [18] who combined Computa-
tional Fluid Dynamics (CFD) fields with BEM turbine simulations. The authors performed
an LES simulation of an atmospheric boundary layer which naturally shows intermittency.
Those fields are then extracted in the middle of the domain and introduced to a BEM
simulation of a wind turbine. Non-intermittent fields, which were used for comparison,
have been constructed by a phase randomization after a proper orthogonal decomposition.
This work gave a hint that intermittency might increase the loads on the tower, but those
effects could be insignificant if a safety factor is taken into account.

One of the main goals of this thesis is to give an additional contribution to this strongly
and contradictory discussed topic and to introduce new methods for the sake of compara-
bility of simulations with intermittent and non-intermittent wind inflow.

1.2 Scope and Structure

This thesis contains several improvements to the intermittency generation procedure with
the CTRW model, where the model parameters are simplified and made physically more
tangible. A first characterization of the resulting flow fields with respect to its turbulent
properties and the intermittency in terms of the increment kurtosis is made, and several
correction algorithms are presented to ensure a good comparability of Gaussian and non-
Gaussian CTRW fields. Several airfoil and rotor simulations by means of CFD are performed
for both types of fields, where the flow fields as well as forces and equivalent fatigue loads
are discussed in more detail.

The following chapters are structured as follows:

• Chapter 2: An introduction to the theoretical description of turbulence with all rele-
vant turbulence properties, which are used in this work, is given. Furthermore state
of the art inflow models are presented and the concept of CTRW, the main simulation
tool, namely CFD, and Equivalent fatigue loads are introduced.

• Chapter 3: The original CTRW model is explained in detail with the new improve-
ments. Turbulent characteristics of the new model are derived and several parameter
studies are presented. Lastly, different correction algorithms are explained which are
essential for making Gaussian and non-Gaussian CTRW fields comparable.
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• Chapter 4: CFD simulations of CTRW fields in an open channel are shown. For
this purpose two different injection methods, namely the direct injection at the inlet
boundary and the actuator method, are presented and discussed. For the first method
the evolution of isotropy and the effect on the turbulence for different inlet sizes are
studied.

• Chapter 5: Airfoil simulations for partially and fully in-plane correlated CTRW fields
are performed and intermittent and Gaussian cases are compared with respect to
forces and loads.

• Chapter 6: The effect of turbulence on wind turbine rotor loads is compared for three
different simulation methods (BEM, CFD with actuator lines, CFD with fully resolved
blades) with similar inflows. For the actuator line based case sectional as well as inte-
gral forces and fatigue loads are analysed for Gaussian and intermittent inflows.

• Chapter 7: Conclusions are made and an outlook to potential future research is given.
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Chapter 2

Theoretical Foundations

In this chapter the theoretical foundations for the following studies are presented in order
to achieve some background knowledge and to understand the used methods of this thesis.
First some general turbulence properties are introduced and the term "intermittency" is ex-
plained in the context of turbulence. After that a short section about the main method for
the performed rotor and airfoil simulations, namely CFD, can be found. Furthermore some
information on the state of the art turbulence models is given before the unmodified CTRW
model is addressed.

2.1 Basic Description of Turbulent Flows

A fluid dynamical systems consists of many molecules which are in motion and interacting
with each other all the time. The degree of freedom for such a complex system therefore is
generally very high and not predictable on small scales. However it is strongly believed that
on a macroscopic scale the Navier Stokes equations completely characterize such a system
which are derived from mass, momentum, and energy conservation principles. Because
air in the atmosphere can be approximated as an isothermal and incompressible fluid, the
Navier Stokes equations simplify to the momentum equation

(∂t +~u ·∇)~u =− 1

ρ
∇p +ν∇2~u (2.1)

and the solenoidal condition

∇·~u =0 (2.2)

where ~u is the velocity vector, ρ the density, ν the kinematic viscosity, and p = P +ρΨ the
modified pressure with the pressure P and the gravitational potentialΨ. The used operators
are the time derivative ∂t = ∂

∂t and the nabla operator ∇.
Despite of its seemingly simplicity, no smooth and globally defined solutions of this

equation system have been found yet. The complexity and the importance of this problem
is the reason why it became one of the Millenium Prize Problems [19].
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In addition to that, under certain circumstances, the observed fluid can become turbu-
lent. One of the characteristics of turbulence is its chaotic behavior, i.e. tiny perturbations in
the initial or boundary conditions of the studied system lead to large pertubations in a rela-
tively small time. This extreme sensitivity also means that if the same experiment is repeated
several times, the flow patterns can deviate a lot, because the initial conditions are never the
same.

A good way to encounter turbulence is to treat the velocity field ~u(t ,~x) as random with
a specific probability density function (PDF) and make statistical predictions for the flow. In
one dimension, with the given PDF p(x, t ) the most important statistical properties are the
ensemble averaged mean

〈u(x, t )〉 =
∫

u(x, t )p(x, t )dx, (2.3)

and the variance

var(u(x, t )) = 〈
u′(x, t )2〉 (2.4)

where the fluctuations are defined as

u′(x, t ) = u(x, t )−〈u(x, t )〉 . (2.5)

The often used standard deviation is defined as its square root

σ(u(x, t )) =
√

var(u(x, t )). (2.6)

Higher order one-point moments are also of interest, which are in particular the skewness

S(u(x, t )) = 〈
u′(x, t )3〉/σ(u(x, t ))3 (2.7)

and kurtosis

K (u(x, t )) = 〈
u′(x, t )4〉/σ(u(x, t ))4 (2.8)

which are for Gaussian distributed variables always S = 0 and K = 3.
Due to the fact that ensemble averages can only be done in rare cases with many real-

izations, they have to be substituted by temporal averages

〈u(x, t )〉t =
1

N

N∑
i=1

u(x, ti ) (2.9)

over N discrete time points. If this substitution can be made the system is called ergodic. For
wind energy models, turbulence is often assumed to be stationary and homogenous which
also means that the system is ergodic. Even, as shown in this thesis, ergodicity does not
always hold, the time evolution of flow fields is still of main interest because ensemble aver-
ages are not very convenient due to limited computational power. Furthermore it is assumed
that the same conclusions can be made, independent on the averaging procedure.
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Of higher interest is also the two-point description of flows where two spatially or tem-
porally separated points are used for the turbulence characterization. One important prop-
erty which can be derived is the covariance function

R(u(s), v(t )) = 〈u′(s)v ′(t )〉 (2.10)

for t > s, which describes the tendency in the linear relationship of the fluctuations u′ and v ′

at the times s and t . It is common to normalize the covariance to

ρuv (s, t ) = 〈u′(s)v ′(t )〉
σ(u)σ(v)

(2.11)

which is the correlation function.
Even though turbulence is a three-dimensional phenomenon, very important infor-

mation can be gained by assuming stationarity and focusing on longitudinal aspects of the
flow field. As an example a statement about the size of large flow structures can be made by
integrating the longitudinal autocorrelation function

ρ(τ) = 〈u′(s)u′(s +τ)〉
σ(u)2

(2.12)

to

τ̄=
∞∫

0

ρ(τ)dτ (2.13)

which is called the integral time scale. Another very informative function can be gained by
Fourier transforming the autocorrelation function to the power spectral density (PSD)

E(ω) =
∫
ρ(τ)e−iωτdτ (2.14)

which may have a very specific shape for most turbulent flows as shown in Figure 2.1 for sev-
eral measurements for its spatial longitudinal one-dimensional counterpart in wavenumber
space [20]

E11(κ1) =
∫
ρ(r1)e−iκ1r1 dr1. (2.15)

Such spectra contain up to three different regions, which can be found in any turbulent flow:

• A large anisotropic scale range, which is mainly affected by the boundary of the flow,

• a universal region, the inertial subrange, where the PSD drops with E11 ∝ κ−5/3
1 or in

frequency space E ∝ω−5/3, as long as the Reynolds number Re =U L/ν is sufficiently
high, with the characteristic velocity and length scales of the system U and L, and

• a dissipation range on very small scales, which is dominated by viscous, dissipative
effects.
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The large flow structures become isotropic in the inertial subrange due to a chaotic scale
reduction process, where directional information is lost, before dissipation takes part on
smallest scales. The existence of the inertial subrange was stated by Kolmogorov in his fun-
damental work in 1941 [21] by a dimensional analysis under assumption of isotropy for the
small scale motions (first similarity hypothesis) and its uniquely determination by the dissi-
pation ε (second similarity hypothesis). Due to the universality and importance of this -5/3
law, one of the main goals of a turbulence model should be to assemble a spectrum with
such an inertial subrange which will be done for the CTRW model in .

�� -5/3
1

Figure 2.1: Measurements of longitudinal one-dimensional velocity spectra, taken
from Pope [20] and modified.

2.2 Structure Functions and Intermittency

More insight into the inertial subrange can be gained by introducing longitudinal velocity
increments

∆ur (x) = u(x + r )−u(x) (2.16)
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where especially the statistical moments, the longitudinal structure functions

Sn(r ) = 〈
(∆ur )n〉

, (2.17)

are of major interest. Kolmogorov conjected by means of the second similarity hypothesis
that those structure functions have to have the self-similar form

Sn(r ) =Cn (εr )ζn , (2.18)

where Cn are constants, the scaling exponent is ζn = n/3, and

ε= 2ν
〈

si j si j
〉

(2.19)

is the dissipation rate under consideration of the Einstein notation with the fluctuating rate
of strain

si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (2.20)

For n = 3 the constant C3 = −4/3 can be calculated by use of an re-expressed Kármán-
Howarth equation [22, 20], known as the Kolmogorov equation [21], which describes the
evolution for the second and third order structure functions in isotropic turbulence. The
resulting un-normalized increment skewness

S3(r ) =−4

5
εr, (2.21)

is also known as the Kolmogorov 4/5 law and shows that the skewness is generally negative.
However the predictions for higher order structure functions like the increment kurtosis

K (r ) = S4(r )

S2(r )2
= C4

C 2
2

, (2.22)

proved to be inaccurate, as measured in experiments by Anselmet et al. [23]. Therefore also
the assumption of self-similarity must be wrong, which was corrected by Kolmogorov in his
refined similarity hypothesis [24] where the dissipation rate is not assumed to be constant,
but random, log-normally distributed and scale dependent. The conclusion of his study is
that self-similarity breaks and the scaling exponent changes to

ζn = n

3
− µ

18
n(n −3) (2.23)

with the intermittency coefficient µwhich is measured for homogenous isotropic turbulence
as µ= 0.25±0.05 [25]. The Kolmogorov 4/5 law is still valid for the refined hypothesis, how-
ever higher order functions change significantly. Moreover due to the change of the sec-
ond structure function S2 also the power spectral density exponent in the inertial subrange
changes to E ∝ω−5/3−1/36 for µ= 0.25. However, the very small adjustment can be neglected
and within this thesis the -5/3 law is used for simplicity reasons.
The scale dependent distributions of increments normalized by the standard deviation for a
free jet are shown in Figure 2.2 where the increased increment kurtosis for small distances
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r is obvious. Not only in laboratory experiments but also in atmospheric flows intermit-
tency is present as shown in the work of Morales et al. [26]. In this work a dataset taken
from the FINO offshore platform has been analysed for its temporal increment statistics.
The achieved increment distributions for different time scales are shown in Figure 2.3. It has
to be emphasized that an increased increment kurtosis is strongly related to extreme events,
e.g. a wind speed increase of up to 15 standard deviations can be noticed in Figure 2.3 which
is much higher than for the Gaussian case.

Figure 2.2: Measurements of longitudinal normalized increment distributions for a free
jet, taken from Renner [27]. The distributions for different scales are shifted for better
visualization.
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Figure 2.3: Measurements of normalized temporal increment distributions for at-
mospheric wind measured at the offshore platform FINO with time gaps τ =
2, 4, 10, and 60 s, taken from Morales et al. [26]. The distributions for different scales
are shifted for better visualization.

2.3 Basics of Computational Fluid Dynamics

In general turbulent flows are not homogenous and isotropic and very complex behavior
might occur due to non-trivial boundary and initial conditions. For many flows analytic
solutions of the Navier-Stokes Equations (2.1) and (2.2) are not derivable with the known
mathematical methods, especially because the non-local and nonlinear pressure-gradient
term and the convective term are very difficult to handle. Therefore numerical approaches
have to be used with help of high-performing computers or computer clusters. As a first
step the spatial domain has to be discretized in small cells, where the velocity and pressure
are calculated by usage of discretized Navier-Stokes equations. In principle three different
simulation methods are available: Direct Numerical Simulation (DNS), Reynolds-averaged
Navier-Stokes (RANS) and Large-Eddy Simulation (LES). In the computational very costly
DNS the turbulence is fully resolved down to the smallest dissipative scale, the so called Kol-
mogorov scale. RANS is used to solve for the average velocity field by means of averaged

Navier-Stokes equations and algebraic equations for the Reynolds stress
〈

u′
i u′

j

〉
. The dis-

cretization does not have to be very fine and therefore RANS is also doable with low com-
putational power. However this method is not appropriate if turbulence should be studied
because of the missing information of velocity fluctuations. As a middle way, LES can be
used, where turbulence is resolved down to the inertial subrange by filtering. Smaller scales
are not resolved and have to be modeled. If the reader is interested, further information on
these methods can be found in [20]. In this thesis only LES has been used for all simulations
and more information on the sub-scale models are given in the appropriate context.
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2.4 State of the Art Turbulence Models

The nonlinearity of the Navier-Stokes equation system results in turbulent structures which
are at the same time random and coherent. Simulating those motions accurately with resolv-
ing CFD methods like DNS or LES leads to several challenges which are to be solved. Impor-
tant for the physical evolution of the turbulence are numerical correctness but also inflow
boundary conditions which represent the spatial and temporal properties in a proper way.
Otherwise the turbulent fields can decay instantaneously [28] and prescribed turbulence in-
tensities are not advected through the domain. The evolution of turbulent vortices in the
flow are strongly dependent on their initial state. Therefore it is obvious that much effort has
to be put into the development of an inlet boundary condition which is able to generate real-
istic turbulent structures which also persist over large distances downstream. Creating such
a boundary condition is in general not an easy task because several statistical properties of
turbulence like temporal and spatial correlations, length scales, spectra or even higher or-
der characteristics have to be considered. In the following a very short overview of different
methods is given which are used for turbulence generation in the field of wind energy. The
wind fields can be used as an inflow for Computational Fluid Dynamics with the purpose to
simulate airfoils, rotor blades or even turbines. For all presented models the mathematical
background is roughly given and it is discussed which advantages and drawbacks they have.
For a more complete overview the reader is encouraged to read the chapter on Turbulent
Inflow Models in [29].

In general two different groups of methods of generating turbulent velocity data ex-
ist. In the first group, the recycling methods, the equations of fluid motion are solved in an
auxiliary CFD simulation where the inflow data is extracted from the interior of the domain.
Some basic work has been done in the work of Lund et al. [30] and Spalart et al. [31]. Even
though recycling methods are not very popular for simulating wind turbines they are used
very often for the generation and study of atmospheric boundary layers [32, 33] and for the
study of the wake of wind turbines [34].

The methods of the second group generate artificial inflow data by using mathemat-
ical models and are therefore an approximation to the recycling methods and not a solu-
tion to the Navier-Stokes equations. These methods normally have some shortcomings in
the physicality and correctness compared to the first group but the field generation is less
costly, and the characteristics of the created velocity fields are known much better. Linked to
these points is the high flexibility of those models which is needed for setups where several
simulations with different inflow conditions have to be performed, without the costs of un-
dergoing additional auxiliary simulations. Another main advantage is the potential focus on
specific characteristica of turbulence rather than on the whole picture. In conjunction with
BEM, synthetic models have the big advantage that the user does not have to worry about
complex CFD simulations and the turbulence can directly be introduced to the simulation
object without changing its characteristics too much.

One approved approach is the digital filtering method, developed by Klein et al. [35].
This method can be used to generate artificial velocity data with prescribed first and second
order one point statistics as well as the autocorrelation function for each inflow cell of a
uniform grid. Introducing cross correlations can distort the shape of the autocorrelation
function, but this is assumed to be a small change. The method of digital filtering found its
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way into a wide range of applications also in the area of wind energy where e.g. Breuer et
al. [36] studied the flow past airfoils and the transition to turbulence in the airfoil boundary
layer. For this approach they introduced the turbulence by source terms in cells close to the
airfoil to overcome the issue of too fast decaying turbulence. Another work of Szasz et al. [37]
studied with this inflow model the influence on the wake of a turbine.

A more flexible method than the digital filtering is introduced by Kornev [38] which is
based on randomly distributed turbulent spots with specific velocity distributions. Those are
superposed to achieve prescribed turbulent characteristics in three dimensions. In this way
accurate spatial and temporal autocorrelation functions as well as cross correlations can be
defined which even can have analytical forms if homogeneity is assumed. Other advantages
compared to the digital filtering is that a non-uniform grid can be used and the involved
length scales can be dependent on location and time which allows to simulate boundary
layers for CFD or BEM. Kornev reports that for high separation of turbulent spots it is also
possible to introduce intermittency to the system. But further publications with more insight
are missing. The method of random spots as well as digital filtering have in common that
both can not ensure divergence free velocity fields and a correction algorithm, e.g. PISO
[39, 40], has to be used. As a CFD example Sale et al. [41] simulated a two bladed wind
turbine by means of the actuator line method and an inflow turbulence based on the method
of random spots for comparison of the wake structure with particle image velocimetry. Other
applications of Kornev’s method for environmental flows are shown in the work of Bazdidi-
Tehrani et al. [42] and Kubilay et al. [43].

Even though the aforementioned generation algorithms are usuable for wind energy
applications, other methods based on the spectral description of atmospheric turbulence are
preferably used. Veers [44, 45] presented an algorithm, the so called Sandia method, where
single point spectral densities, e.g. Kaimal [4] or the von Kármán [46] spectra, combined with
an isotropic coherence function are converted to real-valued cross spectral densities. With
the help of a Cholesky decomposition and random vectors, correlated wind fields are then
gained as an input for all inlet cells. The Sandia method is mainly used for the structural
analysis of horizontal axis turbines in BEM, but it is in general also valid for CFD simula-
tions. However the involved Cholesky decomposition is very time-consuming for inflows
with many grid points and is therefore not recommended for highly resolved flows.

The most sophisticated and widely used model is the Mann Model [2, 3] which is
a spectral turbulence model developed for the horizontally homogeneous neutral atmo-
spheric boundary layer. This model based on the Rapid Distortion Theory and consider-
ation of eddy lifetimes is able to reproduce velocity component spectra as well as coher-
ences and cross spectra of all velocity components at two separated points by adjusting three
parameters in total. An anisotropic model with the von Kármán model as a limit case is
achieved where the anisotropy can be controlled with a single parameter. As simplifications
the Navier-Stokes equations are linearized, the viscosity is neglected, the velocity profile is
assumed to be linear, and the gravitation as well as the rotation of earth are neglected. Thus
the spectral tensor is only able to model eddies close to the ground where the shear does not
change too much. Nevertheless the performance concerning second-order two point statis-
tics is very good. This model has very broad applications in wind energy by means of CFD
and BEM. From wake studies of an actuator line [47], actuator disk [48, 49], and full rotor
[50], and wind turbine performance [51] to fatigue analysis [13, 52], where the fatigue loads
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were compared with the Kaimal, von Kármán and CTRW model. The Mann model already
has been implemented in the blade element momentum code HAWC2 [53] and is together
with the Kaimal model part of the IEC 61400-1 [1] where they are proposed for fatigue simu-
lations.
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2.5 CTRW Processes in Wind Energy

2.5.1 A Brief Introduction to CTRW Processes

Even though several wind models have been developed in the past, intermittency and higher
order statistics related to wind velocity increments, i.e. the structure functions, have not
been considered in the IEC standard. In particular, in those models the increments are Gaus-
sian distributed which means that e.g. for the normalized fourth order structure functions
K (τ) = S4(τ)/S2(τ)2 = 3 holds, which is not correct as explained in section 2.2. Taking into
account the whole scaling behavior in a correct way is a rather complex task and very dif-
ficult to project onto a wind model. Despite of this fact, a big step forward has been done
with a wind model based on Continous Time Random Walks (CTRWs) where the increment
kurtosis K (τ) can be modeled dependent on the scale, shown in Figure 2.4. Within the rest
of this thesis, intermittency and the scaling of K are often used synonymously for simplicity.

Figure 2.4: Distributions of wind velocity increments of advected particles for different
time increments between 0.15 ms (top) to 40 ms (bottom). Measurements are taken
from Mordant et al. [54] and the fits were modeled with several CTRW processes with
different parameter sets by Friedrich et al. [55]. The distributions for different scales
are shifted for better visualization.

CTRWs, first introduced in the work of Montroll and Weiss [56] originally had the goal
to describe physical phenomena, like target searching and trapping, and are a generalisation
of the well known random walk model, known from Brownian Motion. In contrast to ordi-
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nary random walks, where point particles jump at fixed time gaps by a specific jump length,
CTRWs allow the particles to rest for some random time before the next jump takes place.
The jump lengths as well as the time are sampled from a given distribution ψ(x, t ) which
can be factorized into ψ(x, t ) = w(t )φ(x) if the jump length and time step are assumed to be
independent. This approach can be used to consider trapping-untrapping events for par-
ticle trajectories in turbulence which lead to a mean square displacement for Lagrangian
particles MSD(t ) = 〈

(X (t )−x0)2
〉 ∝ tα with 0 < α< 1. However this anomalous diffusion is

strongly connected to non-stationary dynamics, i.e. autocorrelation functions and spectra
become time dependent. In addition to that the average waiting time 〈τ〉 = ∫ ∞

0 τw(τ)dτ di-
verges which usually makes the generation of pure CTRW time series difficult, because the
waiting time can be longer than the observation time. Furthermore the frequency of time
steps scales as ∝ tα−1 which means that the dynamics slow down over time. This effect is
known as ageing and is studied in more detail in [57]. Related to ageing and non stationarity
is the weak ergodicity breaking, which implies the ensemble averages over independent real-
isations and time averages of trajectories are not equal anymore, because the waiting times
become infinitely long in the limit t →∞.

Other equivalent models which are usually used in place of CTRWs are fractional Brow-
nian motions [58] or Langevin equations with power-law kernel [59], but they are not in the
scope of this thesis.

2.5.2 The Wind Model by Kleinhans

For the generation of three dimensional, intermittent, and time dependent wind fields on a
two dimensional grid perpendicular to the main stream direction, a model based on CTRWs
has been developed by Kleinhans [60]. This wind field generator makes it possible to change
the kurtosis of the increment PDF at the smallest scale arbitrarily in the super Gaussian re-
gion. The increment PDF’s show a typical multifractal scaling with a more Gaussian like
behavior at larger scales. However the exact scaling behavior of the kurtosis from small to
larger scales is prescribed by the model equations and can not be influenced directly by the
user. Additionally to the ability of tuning the strength of intermittency, temporal and spatial
correlation strengths can be set by choosing apropriate model parameters. In general those
correlation functions are monotonously decreasing with temporal and spatial distance.

The simulation of each velocity component at each grid point is splitted up into three
parts:

• A reference velocity is calculated which can be interpreted as a varying average over
time

• The velocity at each grid point is calculated introducing also spatial correlations

• A time transformation is done for introducing intermittency into the field

In the following subsections the different parts of this model are explained in more detail.

The reference velocity

All wind fields generated by this model are based on an underlying stochastic process which
corresponds to a slowly varying average of the wind velocity, the so called reference velocity
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ur . This reference velocity is grid independent and a stochastic differential equation in the
model intrinsic time s of the form

dur (s)

ds
=−γr (ur (s)−u0)+

√
DrΓr (s). (2.24)

This is a one dimensional Ornstein-Uhlenbeck process with γr being a damping constant
which drives the system back to the long time mean velocity u0, which would be exponen-
tially approached with e−γs if there would be no stochastic term in this equation. But be-
cause the second term on the right hand side is a stochastic term the overall process for the
reference velocity is also stochastic. The diffusion constant is Dr and Γr is delta correlated
Gaussian noise with zero mean and variance equal to two.

The velocity at each grid point

Based on the reference velocity ur it is now possible to simulate velocity components ui
(k) at

all grid points i = 1,2, . . . , N and directions k = x, y, z by another Ornstein-Uhlenbeck process

dui
(k)(s)

ds
=−γ

(
ui

(k)(s)−ξ(k)
i ur (s)

)
+

√
D (k)

i

N∑
j

Hi jΓ j
(k)(s) (2.25)

which is very similar to the equation of the reference velocity, but with a different damping
constant, mean value, and diffusion term. The mean value of this process is equal to the
reference velocity, but multiplied by a factor ξi

(k) corresponding to the wind profile. This
factor depends only on the height of the grid point and the profile specific constants like the
roughness length. ξi

(k) has to be chosen relative to the reference height, which is the height,
where the mean velocity u0 of the reference process ur is set. If a logarithmic profile is used
and the flow is assumed to propagate in x-direction, then the profile is

ξ(x)
i = log(zi /z0)

log(zr /z0)
(2.26a)

ξ
(y,z)
i = 0. (2.26b)

with reference height zr and roughness length z0. In this case no velocity profile is assumed
for directions y and z.

Γ j is again Gaussian noise similar to Γr for the reference velocity. Additionally it is
independent and therefore uncorrelated for all directions and grid points. The sum over all
grid points in the last term of Equation (2.25) leads to spatial correlations of the diffusion
terms of all grid points. This correlation of the noise terms and the coupling of all velocities
at the different grid points with the reference velocity are responsible for cross correlations
of velocities at different grid points.

Kleinhans proposed a coupling matrix H with entries
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Hi j =


i ≥ j : exp

(
− ri j

lc

)/√
i∑

k=1
exp

(
−2 ri k

lc

)
i < j : 0

(2.27)

with a constant lc defining the coupling strength and ri j the distance between points i and
j . The prefactor Di in Equation (2.25) has to be

D (k)
i = γσ2

(
κ(k)

)2 −
(
ξ(k)

i

)2
Dr

γ2

γr
(
γ+γr

) (2.28)

to achieve height independent variances σ2
(
κ(k)

)2
in the wind field. According to the Dan-

ish standards[1] the variance of the three velocity components are different, in particular
κ(x) = 1,κ(y) = 0.8 and κ(z) = 0.5. With the coupling mentioned above, Kleinhans intended to
introduce exponentially decaying spatial correlation, but as will be shown in section 3.1.2 a
correction of this model is needed.

The time transformation

Equations (2.24) and (2.25) define a system of two coupled Ornstein-Uhlenbeck processes
with statistical properties which can be easily derived. But the most important and at the
same time complicated part of the CTRW model is the time transformation

dt (s)

ds
= τα,C (s). (2.29)

which can change those statistical properties drastically. But this subordination is essential
for intermittency.

Shown here is a stochastic process of the physical time t , which is the time of the model
output, dependent on the model intrinsic time s, which is also used in Equations (2.24) and
(2.25). The type of the random variable on the right hand side is important for the time
evolution of the overall process and the type of intermittency one would achieve out of the
model. In this case τα,C is chosen to be a realization of the process with a fully skewed alpha-
stable Lévy distribution [61, 62], which is defined as an alpha-stable Lévy distribution

fα,β =
1

π
Re

{∫ ∞

0
dκexp

[
−iκx −|κ|αexp

(
−i atan

(
βtan

(πα
2

)))]}
(2.30)

with β = 1, and a cutoff C , which was defined by Kleinhans and is introduced below. Orig-
inally this distribution was taken because it is the most general stable distribution only de-
fined for positive values which goes hand in hand with the monotony of time. The Lévy
exponent α and the cutoff C both prescribe the shape of the Lévy distribution which will be
shown in the following.

The effect of α, generally chosen as 0 < α < 1, on the time distribution is depicted in
Figure 2.5, and its effect on the increment distribution in Figure 2.6a. One can summerize:
The smaller α is, the higher the intermittency. α= 1 means τα,C is delta distributed around
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the value 1, which corresponds to a constant step size for t and with it to a normal discrete
random walk for the whole CTRW process, resulting in Gaussian increment statistics. α= 0
leads to a delta distribution around 0. Of course picking such a distribution is not allowed,
because the time step ∆t is also 0, meaning there are two times sn and sn+1 projected onto
the same time t .

Figure 2.5: Lévy distribution for different values of the exponent α.

One of the big issues with the fully skewed Lévy distribution are the divergent first and
second moment, meaning infinite mean and variance. On the one hand the divergence is
part of the stable distribution, which makes also the model mathematically describable, but
on the other hand a divergent mean and standard deviation also means that a time step ∆t
of the process can theoretically be infinitely large. Therefore it is possible that the velocity
does not change at all for the whole simulated time series. To forbid such behaviour a cutoff
value C was introduced for the Lévy distribution. It only allows random variables τα,C < C ,
meaning that the mean and variance of the distribution are limited. The cutoff also has an
effect on the kurtosis of the increment distribution as shown in Figure 2.6b. The bigger the
cutoff, the more heavy-tailed the increment distribution and the more pronounced the inner
peak, because longer waiting times are allowed.

(a) (b)

Figure 2.6: Change of increments for τ= 0.01 s with (a) the Lévy exponentα and (b) the
cutoff C .
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As a second measure, a time interpolation in the s-t-diagram is introduced as shown
in Figure 2.7 where the original as well as the interpolated process are shown. This makes
sure that different time steps in the t domain show different velocities. In addition, waiting
times are fully avoided.

Figure 2.7: Sketch of the process t(s) in its original form (dashed) and interpolated
(solid).

However this cutoff makes a proper mathematical description of the evolution of all
related quantities very difficult. Actually at the time of this thesis there are no analytical
formulations known for power spectral densities (PSD), and time averaged correlation func-
tions or even higher order time averaged quantities of CTRW’s. The evolution of ensemble
averaged quantities of CTRW’s can be calculated as long as the process is kept simple and a
cutoff of the Lévy distribution is not included. Later on in section 3.1.4 it will be shown that
another type of modification to the Lévy distribution, the tempering, can be applied, whose
effect can at least be partially described in terms of ensemble averaged quantities. All in all
it has to be emphasized that the intermittency gained by this model is only present in the
temporal dimension. Spatial intermittency at the generation grid at one instance of time is
not supported.

2.6 Fatigue Load Estimation

One of the most important quantities relevant for wind turbine designs are the fatigue loads
on different parts of the turbine estimated by damage equivalent loads. They are also known
as Equivalent Fatigue Loads (EFL), which will play a role in the load analysis for the simula-
tion methods investigated in this thesis. In contrast to ultimate loads, which are the maxi-
mum loads a component can withstand, fatigue loads are relatively small. They lead to struc-
tural failures due to the accumulation of loads over time and the corresponding progression
of micro-fractures in the material. This is why fatigue loads are time series dependent while
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for ultimate loads only single events are important. This time series dependency also qual-
ifies fatigue loads to be a relevant quantity in the scope of intermittent inflow, because the
related higher order statistics are considered.

EFL can be defined as

EFL =
(∑

ni r m
i

T

) 1
m

, (2.31)

where ri are the specific load ranges, ni the corresponding amount of load ranges, T the
reference number of ranges (here the dimensionless time in seconds) and m the Wöhler ex-
ponent. The Wöhler exponent, also known as SN slope coefficient, is an important material
constant for fatigue load estimations and characterizes the material fatigue performance un-
der cyclic stresses. Usually it takes the values m = 4 for a tower sensor, m = 8 for drive train
loads and m = 12 for the blade root bending moment out of plane and the tower base bend-
ing moment fore-aft. Because the main focus of this thesis lies on the drive train loads, in
particular thrust and torque, m = 8 is chosen for all EFL calculations. In essence, the EFL can
be understood as a minimum-maximum load difference of a hypothetical load cycle with a
period of 1 s which would cause the same damage over the time T as the originally measured
load time series. More information on the estimation of the EFL and the underlying rainflow
count algorithm can be found in the work of Madsen [63] and Rychlik [64].
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Chapter 3

Improvements on the Kleinhans Model
and Study of its Properties

This chapter deals with improvements on the Kleinhans model and the resulting mathemat-
ical properties are derived. These improvements are a spectral simplification by parameter
reduction, a better spatial and temporal autocorrelation, a better understood time transfor-
mation, and several post corrections on the field which allow divergence freeness, more ac-
curate power specra, and improved Gaussianity of the one point statistics of velocity. In the
last section some parameter studies are shown to get an insight into the non-trivial behavior
of the CTRW model.

3.1 Further Developments on the Model

In this section several modifications to the model are introduced which simplify model equa-
tions or improve the comparability with real wind fields, in particular the wind velocity com-
ponents and the spatial structures are adjusted. Additionally the parameter space is reduced
and the simulation is stabilized in the sense that an unphysical choice of parameters be-
comes impossible. Those simplifications allow to derive properties like the integral length
and time scales in a simple manner. For comparison reasons post-corrections for the PSD
and the one point PDF are shown. Additionally an algorithm to create divergence free fields
and its effect on spectra and increment distributions is discussed.

3.1.1 Generalisation of the Velocity Component Equations

The model by Kleinhans treats the main stream velocity component and components per-
pendicular to it in a different way. While for the main component the reference velocity plays
a major role, it is neglected for the other components. This leads in general to very different
dynamics, including autocorrelations, spectra and time scales. However there is no reason
shown for the specific treatment of perpendicular velocity components within the CTRW
model. To generalise and simplify the whole process, a modification to the equation system
is made in the way that all three velocity components follow the same equation system as for
the main stream component, but the mean values u(k)

0 for each component are allowed to
differ, i.e. the main stream direction does not have to coincide with the direction of one of
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the velocity components. This also has the advantage that surrogates to measurement data
can be created with a diagonal inflow direction, which itself can be used for CFD or BEM
simulations. The reference velocity, mean velocity and noise term are split up into three
components

~ur (s) =


u(x)

r (s)

u(y)
r (s)

u(z)
r (s)

 , ~u0 =


u(x)

0

u(y)
0

u(z)
0

 , and ~Γr (s) =


Γ(x)

r (s)

Γ
(y)
r (s)

Γ(z)
r (s)

 (3.1)

changing the Equations (2.24) and (2.25) to

d~ur (s)

ds
=−γr (~ur (s)−~u0)+

√
Dr~Γr (s). (3.2)

and

dui
(k)(s)

ds
=−γ

(
ui

(k)(s)−ξi u(k)
r (s)

)
+

√
D (k)

i

N∑
j

Hi jΓ j
(k)(s) (3.3)

where in the last equation as well as in the definition of D (k)
i (see Equation (2.28)) the velocity

profile term is equal for all components, i.e. ξi = ξ(k)
i ∀i ,k. For uniform inflow, the choice

ξi = 1 ∀i has to be made, which can be chosen if shear effects should be neglected.
If a simulation with different dynamics for all velocity components has to be per-

formed, e.g. if the length scales should differ, the model can be generalized even more
by choosing different diffusion and damping constants D (k)

r and γ(k)
r in the reference ve-

locity equation or a different coupling matrix H (k)
i j . In principle it is also possible to intro-

duce Reynold’s stresses and two point cross correlations to the velocity by defining Hi j as a
3N ×3N matrix, increasing the dimension of all vectors to 3N , and removing the superscript
k. However, the limiting factor here is the memory consumption involved in the Cholesky
decomposition, which is explained in more detail in the next section.

In addition to the previously mentioned changes to the model, the constants κ(k) of
Equation (2.28) are all set to 1, i.e. the field becomes isotropic, for simplicity reasons and
because they are not relevant at all for the studies done in this thesis. The main purpose of
those parameters, namely scaling the standard deviation for each velocity component, can
also be served by directly introducing different values for σ for each velocity component.

3.1.2 Improvements on Spatial Correlations

One important role in Kleinhans’ model plays the spatial correlation of the noise terms in-
troduced by the coupling matrix H in Equation (2.27). In general, if all components of a noise
vector~Γ= (Γ1,Γ2, ...,ΓN )T are uncorrelated with zero mean and unit variance, i.e.

〈
~Γ~ΓT

〉=1,
they can be correlated by multiplication with the matrix H. This can be seen by evaluating

〈(H~Γ
)(

H~Γ
)T 〉 = 〈H~Γ~ΓT HT 〉 = H〈~Γ~ΓT 〉HT = HHT = C. (3.4)

C is the desired correlation matrix and has infinitely many solutions for the decomposition
in H and HT . However, a unique way can be found in the Cholesky decomposition where H
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is a lower triangular matrix. Kleinhans intended to involve an exponential decaying spatial
correlation function in his model of the form

Ci j = exp

(
−ri j

lc

)
(3.5)

which should be independent of the ordering of points in the grid. Nevertheless, if the cor-
relation matrix is calculated by means of Equation (2.27) and (3.4), it can be seen that

Ci j =

min(i , j )∑
k=1

exp
(
− ri k

lc

)
exp

(
− r j k

lc

)
√√√√ i , j∑

l=1
m=1

exp
(
− ri l

lc

)
exp

(
− r j m

lc

) (3.6)

holds. This correlation matrix is in general not independent of the ordering of grid points, as
can easily be verified if one swaps the labels i and j of two points, which does not result in
the same correlation coefficient due to the changed summands in the numerator. Two dif-
ferent ways of ordering points with the same coordinates are shown in Figure 3.1a and 3.1b,

where the normalized velocity
u(x)−min

(
u(x)

)
max(u(x)−min(u(x))) is color plotted for different coordinates y

and z. In the first picture an ordering of labels in horizontal direction and in the second pic-
ture in vertical direction is preferred.

In the remaining part of this thesis, a corrected version of the coupling matrix H is
used, namely the Cholesky decomposed lower triangular matrix of the correlaton matrix
(3.5), which has to be found numerically. As illustrated in Figure 3.1c, those wind fields are
statistically isotropic and the ordering of points does not affect the outcome of the simula-
tion.

However, the number of arithmetic operations for the Cholesky decomposition cubi-
cally depends on the number of grid points, which can be very memory and time consuming
for highly resolved inflow fields. Therefore the maximum resolution of inflow turbulence is
limited, which is especially important for CFD simulations which usually require highly re-
solved fields.

(a) (b) (c)

Figure 3.1: Preferred (a) horizontally and (b) vertically ordering of grid points according
to Kleinhans’ model. (c) Corrected model by using the Cholesky decomposition.
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3.1.3 Constraints on the Power Spectral Density and Autocorrelation
Function

One of the main questions which could be raised is: What is a proper and simple way to
define the constants γr ,γ and Dr in Equations (3.2) and (3.3) to achieve wind fields which
fulfill certain characteristics the user is interested in, i.e. which contain an inertial range in
the power spectrum, a certain temporal and spatial correlation length or isotropic structures
in the main stream direction. The choice of those parameters is also not arbitrary, because
the interplay of them has a high impact on the stability of the field generation process. If the
focus lies on Equation (2.28), it is clear that e.g. for very high values of Dr or small standard
deviations σ the constant Di becomes negative, leading to complex numbers in Equation
(3.3). This is of course unphysical and a solution for this problem has to be found to over-
come this problem.

Winter [65] constrained the choice of parameters γ,γr and Dr to

γ= 0.05 m−1 ·σ> 0.11 s−1 (3.7a)

γr = 0.0005 m−1 ·u0 > 0.11 s−1 (3.7b)

Dr = 0.00005 s−1. (3.7c)

Particularly it is proposed to make γ and γr linearly dependent on the standard deviation
and the mean velocity and additionally add lower limits. Nevertheless, it is still possible to
obtain a negative diffusion constant Di , because the constants mentioned here are inde-
pendent of each other. Additionally, the PSD and the autocorrelation function of all velocity
components u(k)

i are influenced by those choices in a non-trivial way and it becomes very
difficult to compare simulation results with different parameter sets.

Those are the reasons for the development of a more robust parameter set, where a
spectrum with an inertial subrange is achieved, i.e. where the Kolmogorov -5/3 law is ful-
filled. As a side effect, the problem of choosing the parameters γ,γr and Dr is shifted to the
selection of only one parameter with a more physical meaning. By this constraint it is as-
sured that Di is always positive, and in this context failures in the wind field generation be-
come impossible. Next, the major steps to achieve the aforementioned results are explained.

Kleinhans [60] has shown that the PSD of the velocity components at each grid point is
given by

1

2
E(ω) =

(
〈u2

i 〉+〈ui 〉u0ξi
γr

γ−γr
−〈ur ui 〉ξi

γ

γ−γr

)
γ

γ2 +ω2

+
(
〈ur ui 〉ξi

γ

γ−γr
−〈ui 〉u0ξi

γ

γ−γr

)
γr

γ2
r +ω2

(3.8)

where the moments of the process

〈ui 〉 = ξi u0 (3.9a)

〈u2
i 〉 =

Di

γ
+ξ2

i

(
u2

0 +
Dr

γr

γ

γ+γr

)
(3.9b)

〈ur ui 〉 = ξi u2
0 +ξi

Dr

γr

γ

γ+γr
(3.9c)
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can be substituted. As a consequence the PSD simplifies to

1

2
E(ω) = Di

γ2 +ω2
+ξ2

i γ
2Dr

(
1

(γ2 +ω2)(γ2
r +ω2)

)
. (3.10)

This is the general equation for the PSD where the diffusion constant Di is gained from Equa-
tion (2.28).

As already mentioned, the important constraint on the PSD is made by considering
that an inertial subrange exists in atmospheric turbulence, where the derivative in the double
logarithmic plot, the so called logarithmic derivative function

b(ω) = ω d
dωE(ω)

E(ω)
(3.11)

has a value of −5/3 (Kolmogorov -5/3 law). With the definition of a new damping factor

γ2
d = γ2

r +γ2ξ2
i

Dr

Di
(3.12)

and inserting the PSD (3.10) into Equation (3.11), the logarithmic derivative becomes after
some manipulations

b(ω) = 2

[
γ2

γ2 +ω2
+ γ2

r

γ2
r +ω2

− γ2
d

γ2
d +ω2

−1

]
. (3.13)

In the following, the goal is to find the conditions under which this logarithmic derivative
function gains a saddle point at a characteristic circular frequency ωc , where the center of
the inertial subrange should be located. A straightforward way is to look at the first and
second derivative which have to vanish for a saddle point, i.e.

b′(ωc ) =−4ωc

[
γ2

(γ2 +ω2
c )2

+ γ2
r

(γ2
r +ω2

c )2
− γ2

d

(γ2
d +ω2

c )2

]
= 0 (3.14)

b′′(ωc ) =−4

[
γ2

(γ2 +ω2
c )2

+ γ2
r

(γ2
r +ω2

c )2
− γ2

d

(γ2
d +ω2

c )2

]
+

+16ω2
c

[
γ2

(γ2 +ω2
c )3

+ γ2
r

(γ2
r +ω2

c )3
− γ2

d

(γ2
d +ω2

c )3

]
= 0. (3.15)

The combination of both derivatives leads after some simple manipulations to an equation
for the location of the saddle point

ω2
c =

cγ2 −γ2
r

1− c
(3.16)

with the definition of the constant

c = 3

√√√√−γ
2
r

γ2

(
γ2

d −γ2
r

γ2
d −γ2

)
. (3.17)
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Under the condition that b(ωc ) =−5/3, it can be shown that

c = 29−2 ·p154

15
≈ 0.2787102. (3.18)

If ωc is now added back to the first (3.14) and second derivative (3.15) of b(ω), the relations

γ= γ∗ ·ωc (3.19a)

γr = γ∗r ·ωc (3.19b)

Dr = D∗
r ·ωc ·σ2 (3.19c)

Di = D∗ ·ωc ·σ2 ·ξ2
i . (3.19d)

with the numerical constants

γ∗ =
√

c2 −4c +3

2c2 +2c
≈ 1.6595 (3.20a)

γ∗r = γ∗
√

3c2 − c

c −3
≈ 0.2150 (3.20b)

D∗
r = γ∗r

c3(1− r 2)

c3 + r 3
≈ 0.1921 (3.20c)

D∗ = γ∗ c3r + r 3

c3 + r 3
≈ 0.3468. (3.20d)

can be obtained.

By inserting those properties into the PSD Equation (3.10) and neglecting the indices
i , the simple form

E(ω) = 2σ2

π

(
a

γ

γ2 +ω2
+ (1−a)

γr

γ2
r +ω2

)
(3.21)

can be achieved, where a new constant

a = r 3

c3 + r 3
≈ 0.0913 (3.22)

with the ratio r = γ∗r /γ∗ is introduced.

The spectrum (3.21) has now a very simple form if it is compared with the general form
derived by Kleinhans in Equation (3.8). It is shown in Figure 3.2, and the compensated spec-
trum E(ω)ω5/3 together with the logarithmic derivative in Figure 3.3, where the inertial sub-
range is clearly visible in both plots.
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Figure 3.2: PSD from Equation (3.21) for ωc = 5 Hz. The vertical line marks ωc and the
dashed line a slope of -5/3.

(a) (b)

Figure 3.3: (a)PSD from Equation (3.21) and (b) logarithmic derivative for ωc = 5 Hz.
The vertical line marks ωc

In essence, in the previous steps a plateau for the logarithmic derivative is obtained,
which is consistent with the inertial subrange assumptions of Kolmogorov. In addition to
that, all the previously unknown and not intuitive model parameters from the model Equa-
tions (3.2), (3.3) and (2.28) are now calculated by setting the characteristic circular frequency
of the inertial subrange ωc , the standard deviation σ and the wind profile ξi . In section 3.2.4
it will be shown that ωc is directly related to the integral length and time scale for isotropic
turbulence and therefore is a property with physical relevance.

With the known spectrum, the autocovariance function of velocity can be obtained by
Fourier transforming (3.21) into

R(τ) =
∫ ∞

0
E(ω)cos(ωτ)dω

=σ2 (
a ·e−γτ+ (1−a) ·e−γr τ

)
. (3.23)

So the autocovariance function of the velocity at each grid point is a weighted sum of expo-
nential functions where the decaying time depends with Equations (3.19a) and (3.19b) on
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ωc . If the plateau exists at a high frequency, the covariance function decays very fast and the
signal decorrelates in a short time. Vise versa, the signal contains a long memory when ωc

is chosen to be small. In this case the integral time scale and the structure size within the
signal are large.

For convenience it is also useful to define the autocorrelation function

ρ(τ) = a ·e−γτ+ (1−a) ·e−γr τ (3.24)

which is the normalized autocovariance function.
One drawback of the process discussed here is that the logarithmic derivative has the

−5/3-plateau only at one point. Accordingly, the inertial subrange is infinitesimal, which is
not seen in atmospheric turbulence, where it extends over several orders of magnitude [1].
It is believed that there is no stochastic process available which can create a spectrum with
this property. In theory, if the here discussed PSD of the velocity should have a broad inertial
subrange, it has to be extended by the transformations

E(ω) → Eβ(ω) (3.25a)

ωc →ω
β
c (3.25b)

ω→ωβ (3.25c)

to have a PSD of the form

E(ω) =
(
σ2

π

(
a

γ

γ2 +ω2β
+ (1−a)

γr

γ2
r +ω2β

)) 1
β

(3.26)

with the redefined constants

γ= γ∗ ·ωβc (3.26a)

γr = γ∗r ·ωβc . (3.26b)

The stretching factor β can be an arbitrary positive number and represents the size of the
plateau. With decreasing β the shape of the spectrum changes and the size of the plateau
increases as shown in 3.4, where the same parameters are used as in Figure 3.3, but for β =
0.4. Furthermore the drop of energy is much slower throughout the whole frequency range
and starts on very small frequencies.

(a) (b)

Figure 3.4: (a)Spectrum and (b) logarithmic derivative forωc = 5 Hz of Equation (3.26).
The vertical line marks ωc .
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3.1.4 An Alternative Time Transformation

In this section an alternative to the time transformation used by Kleinhans is shown. For
CTRWs, the characteristic function of the time process t (s) in Laplace space generally is〈

e−λt (s)
〉
= e−sΦ(λ) (3.27)

where for the original Lévy process without modifications the involved function isΦ(λ) =λα
[61]. However here the aforementioned problems join, which are the diverging mean and
variance of the process and the connected unlimited waiting times which are not allowed
if physical time series shall be simulated. Kleinhans introduced a cutoff to the Lévy distri-
bution itself, which can be understood as a maximum waiting time. Then he renormalized
numerically the distribution such that the average derivative of t (s) is 1. This is needed to
assure a better comparibility of simulations with different α or C .

However to the authors knowledge this way of making the Lévy process finite has not
been investigated mathematically yet and the renormalization even increases the complex-
ity of the problem.

Another approach is followed e.g. by Cairoli et al. [66, 67] who used the formalism of
exponential tempering by setting Φ(λ) = (

µ+λ)α−µα with the tempering exponent µ. This
tempering speeds up the decay of the heavy tail of the Lévy distribution compared to the
original process, which finally makes the mean and variance converge.

In the following the constraints on the tempering are shown to make fields with dif-
ferent intermittency parameters more comparable like in the work of Kleinhans, but math-
ematically much more capturable. Furthermore a comparison with the sharp cutoff of the
Lévy distribution is made which both can have very similar behavior. It is known that the
totally skewed α-stable Lévy motion for 0 < α < 2,α 6= 1 has a probability density function
(PDF) p(t , s) that solves the fractional diffusion equation

∂s p(t , s) = c∂αt p(t , s) (3.28)

where c > 0 for 1 <α< 2, and c < 0 for 0 <α< 1 and all the moments of order n >α diverge.
The tempering ansatz modifies the density to the form e−µt p(t , s) after which a renormal-
ization takes place to e−scµαe−µt p(t , s). Baeumer et al. [68] have shown that the new mean
value for the time is

〈t (s)〉 =−csαµα−1 (3.29)

where in the current study only α < 1 is used and therefore c = −1 has to be chosen. This
knowledge allows it to equalize the mean value of the intrinsic time s and physical time t for
consistency reasons. This is achieved by setting αµα−1 = 1 or after rearranging

µ=
(

1

α

) 1
α−1

(3.30)

which shows the direct connection of the Lévy exponent α and the tempering exponent µ.
It was explained in section 2.5.2 how the model of Kleinhans introduced a cutoff and

normalized numerically the resulting distribution. There is no mathematical formula given
for the resulting distribution, not even in Fourier or Laplace space.
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3.2 Turbulent Characteristics

In this part important turbulent properties to characterize the output of the CTRW model
will be pointed out. A similar study has not been done yet which makes it mandatory to go
into details at this point. The focus lies on correlations, spectral properties, kinetic energy
and dissipation, important length and time scales, but also the kurtosis of increments.

3.2.1 Cross Statistics for a velocity time series

In section 3.1.3 the PSD (Equation (3.21)) and the corresponding autocorrelation function
(Equation (3.24)) of the process used in this work are shown under the defined constraints.
However the cross spectra, cross correlations and coherence were not analysed at all. Be-
cause they are essential for a physical description of CTRW turbulence they are part of this
section.

The CTRW fields are described by the Equations (3.2) and (3.3). The properties at one
specific grid point can be analyzed by neglecting the coupling term H, which leads to an
equation system of the form

d~u(s) =−A~u(s)ds +~f (s)ds +Bd~W (s) (3.31)

with the definitions

~u(s) =
(

ur (s)

u(s)

)
(3.31a)

~f (s) =
(
γr u0

0

)
(3.31b)

A =
(
γr 0

−γ γ

)
(3.31c)

B =p
2

(p
Dr 0

0
p

D

)
(3.31d)

d ~W (s) =~Γ(s)d s (3.31e)

where A and B are the drift and diffusion matrices and d~W (t ) the increments of the Wiener
process with the delta correlated noise~Γ. This equation system has the general solution

~u(s) = e−sA~u(0)+
∫ s

0
e−(s−s′)A~f (s′)ds′+

∫ s

0
e−(s−s′)ABd~W (s′) (3.32)

which can be used to calculate the covariance matrix of the stationary state [69]

R = 〈
~us(s),~uT

s (s)
〉=

= Det(A)BBT + [A−Tr(A)1]BBT[A−Tr(A)1]T

2Tr(A)Det(A)

=σ2

(
(1−a)(1− r 2) (1−a)(1− r )

(1−a)(1− r ) 1

)
(3.33)
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where r = γr /γ ≈ 0.13. The variance R11 of the reference process is a bit smaller than for
the resulting wind time series R22 = σ2. The off-diagonal components are the co-variances
between the wind time series and the reference process.

With the known covariance matrix in the stationary state it is also possible to gain the
time covariance matrix for s2 > s1 in the stationary state

ρ(τ) = 〈
~us(s1),~uT

s (s2)
〉

= e−(s2−s1)AR = e−τAR

=σ2

(
(1−a)(1− r 2)e−γr τ (1−a)(1− r )e−γr τ

(1−a)
(−2r e−γτ+ (1+ r )e−γr τ

)
ae−γτ+ (1−a)e−γr τ

)
(3.34)

where the relation

e−τA =
(

e−γr τ 0
1

r−1 (e−γτ−e−γr τ) e−γτ

)
(3.35)

has been used in the last step. The last element of the covariance matrix is the already derived
correlation function in Equation (3.24) which contains the expected variance σ2 at τ= 0.

For t < s a similar term can be calculated as ρ(τ) = ReτAT
which is the same as ρT(−τ).

By Fourier transforming the matrix from Equation (3.34) the spectrum matrix in the
stationary state can be achieved

S(ω) = 1

π

∫ ∞

−∞
e−iωτρ(τ)dτ

= 1

π
(A+ iω1)−1BBT (AT − iω1)−1

= 2σ2

π

(1−a)(1− r 2) γr

γ2
r +ω2

(1−a)(γ2−γ2
r )r

(γ2
r +ω2)(γ−iω)

(1−a)(γ2−γ2
r )r

(γ2
r +ω2)(γ+iω)

a γ

(γ2+ω2)
+ (1−a) γr

(γ2
r +ω2)

 (3.36)

with the spectrum S11 of the reference velocity and the spectrum S22 of resulting velocity,
which is already known from Equation (3.21). The off-diagonal components S12 = S∗

21 are
the complex cross spectra between u and ur . This matrix can now be used to calculate the
coherence between u and ur as

Cohu,ur (ω) = |S1,2|2√
S1,1S2,2

= 1

1+ 1
γ2−γ2

r

(
1+ a

r (1−a)

)
(γ2

r +ω2)
(3.37)

which gives a good measure of the correlation of the two time series. The coherence is
quadratically decaying for ω→∞ which is also the case for the spectrum.

3.2.2 Cross Statistics for the in-plane correlated field

The more general system of Equations (3.2) and (3.3) where the coupling of grid points by
the matrix H is included can be written in a more compact form as

d~u(s) =−A~u(s)dt +~f (s)ds +BHd~W (s) (3.38)
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with the components

d ~W (s) =~Γ(s)d s (3.38a)

~u(s) =



ur (s)

u1(s)

u2(s)

u3(s)
...

 (3.38b)

~f (s) =



γr u0

0

0

0
...

 (3.38c)

A =


γr 0 0 0 · · ·
−γ γ 0 0 · · ·
−γ 0 γ 0 · · ·

...
. . .

 (3.38d)

B =p
2


p

Dr 0 0 0 · · ·
0

p
D1 0 0 · · ·

0 0
p

D2 0 · · ·
0 0 0

. . .

 (3.38e)

C = HHT (3.38f)

where C is the spatial correlation matrix. The solution of this stochastic equation is

~u(s) = e−sA~u(0)+
∫ s

0
e−(s−s′)A~f (s′)ds′+

∫ s

0
e−(s−s′)ABHd~W (s′). (3.39)

which can be solved with similar steps as for Equation (3.31). A time covariance matrix can
also be derived for this more complex system, which is

ρ(τ) =

σ2


(1−a)(1− r 2)e−γr τ (1−a)(1− r )e−γr τ · · ·

(1−a)
(−2r e−γτ+ (1+ r )e−γr τ

) (
Ci j − (1−a)

(
Ci j (1− r )+ r

))
e−γτ+ (1−a)e−γr τ

...


(3.40)

where ρi 1 = ρ21 and ρ1 j = ρ12 for all i , j > 1 which means that all time series on the different
grid points are correlated with the reference velocity in the same way. All other components
with i , j > 1 are only differing by Ci j which are the entries of the spatial correlation matrix C.
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Here it can easily be seen that at the diagonal elements, where Ci j = 1, the expected autoco-
variance function for a time series from Equation (3.34) is achieved and the variance is again
σ2.

However also an issue of this model can be shown here which concerns the cross co-
variance of the velocity time series at different grid points, i.e. the off-diagonal elements of
the matrix (3.40) for indices i , j > 1. The normalized cross covariance, i.e. the cross correla-
tion, is calculated for τ= 0 and i , j > 1 as

Ri j

σ2
=Ci j (1−C0)+C0 (3.41)

where C0 = (1−a)(1− r ) ≈ 0.791 is the minimal cross correlation which can be obtained un-
der the assumption of Ci j ≥ 0. In general this minimum results from the coupling of all grid
points via the reference velocity.

If the reference velocity would be neglected, i.e. γr = r = 0 and a = 1, the cross corre-
lation would be equal to Ci j . This is also what would be expected, because if a correlation
matrix is given, the correlation should also be equal to the entries of the matrix.

To support these theoretical results, two spatially correlated grid points with Ci j = 0
are simulated under consideration of the reference velocity and the cross correlation be-
tween both is shown in Figure 3.5 together with the theoretical result from Equation (3.40).
It is clearly visible that even if Ci j is chosen to be zero, the cross correlation approaches the
very high value of C0 for small time delays. In general it is different to the spatial average at
one time instant, where the spatial correlation is exactly Ci j and no differences to the expec-
tations are found even if a reference velocity is used.

Figure 3.5: Cross correlation of two points i and j with a zero correlation coefficient
Ci j = 0 gained from simulation (solid) and Equation (3.40) (dashed).

The coherence matrix for two grid points is

Cohui ,u j (ω) =1− (1−Ci j )
(r −ar +1)

(
γ2

r +ω2
)

a
(
γ2

r +ω2
)− (a −1)r

(
γ2 +ω2

) (3.42)
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where a quadratic decay for the limit ω→∞ is present as also has been seen before for the
time series in Equation (3.37). The same issue as for the covariance matrix in Equation (3.41)
is apparent. In this case the coherence is not zero for Ci j = 0 but has a lower limit which de-
pends on ω and the parameter ωc which is involved in γ and γr . But if the reference velocity
is neglected, the coherence is constant with Cohui ,u j (ω) = Ci j for all frequencies. So in this
case the coherence and the correlation are actually the same.

In conclusion the user of this model has to decide which properties are more impor-
tant for the final use case. The model without reference velocity has proper cross correlations
where the correlation coefficient may vary between 0 and 1. This is very important for use
cases where small structures are of interest and where the correct exponentially decaying
spatial correlation is important. However the inertial subrange described by Kolmogorov is
not achieved at all and the spatial coherence is constant over all frequencies, where an expo-
nential decay would be expected, like e.g. in the IEC for the Kaimal model [1]. If wind fields
should be simulated where in general the correlation is very large over large distances and if
the inertial subrange in the time evolution plays a major role, the reference velocity should
be taken into account. However, the hard lower limit of C0 ≈ 0.791 has to be considered for
the cross correlation.

3.2.3 Turbulent Kinetic Energy and Dissipation

With the known spectral density of ui (s), see Equation (3.21), integral properties like the
turbulent kinetic energy or the dissipation can be estimated, which are of fundamental im-
portance for turbulence. For the non-solenoidal CTRW fields no energy spectrum function,
which demands solenoidal fields, can be calculated and it should be enough to calculate
properties like the turbulent kinetic energy or dissipation with one dimensional energy spec-
tra. With the relation ω= κ〈u〉 the turbulent kinetic energy at each grid point is

k = 3〈u〉
2π

∫ ∞

0
E

(
ω= κ′ 〈u〉)dκ′ = 3σ2

2
(3.43)

which is also expected for isotropic turbulence. The energy content on high frequencies is
also interesting, because those are the frequencies which are usually affected by filters and
aliasing. Thus a big insight into the resulting fields can be gained by knowing the amount of
turbulent kinetic energy on this frequency range. For κ′ > κ and with the rule

∫
x2

c2 +x2
d x = x − c tan−1 x

c
(3.44)

this is easily calculated as

k(κ,∞) = 3〈u〉
2π

∫ ∞

κ
E

(
ω= κ′ 〈u〉)dκ′

= 3σ2

2

(
1−a tan−1

(
κ〈u〉
γ

)
− (1−a) tan−1

(
κ〈u〉
γr

))
(3.45)
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and vise versa the energy on small wave numbers κ′ < κ has to be

k(0,κ) = 3〈u〉
2π

∫ κ

0
E

(
ω= κ′ 〈u〉)dκ′

= k(0,∞) −k(κ,∞)

= 3σ2

π

(
a tan−1

(
κ〈u〉
γ

)
+ (1−a) tan−1

(
κ〈u〉
γr

))
(3.46)

where the graph for σ = 〈u〉 = 0 is shown in Figure 3.6a with its limit lim
κ→∞k(0,κ) = 3/2σ2. In

the same way the dissipation rate can be calculated as

ε= 3ν
〈u〉
π

∫ ∞

0
E(ω= 〈u〉κ′)κ′2dκ′ (3.47)

where analogue to the calculation of the turbulent kinetic energy in Equation (3.46) the dis-
sipation content in the range 0 < κ′ < κ can be obtained as

ε(0,κ) = 3ν
〈u〉
π

∫ κ

0
E(ω= 〈u〉κ′)κ′2dκ′

= 6
σ2ν

〈u〉π
[

aγ

[
κ− γ

〈u〉 tan−1 κ〈u〉
γ

]
+ (1−a)γr

[
κ− γr

〈u〉 tan−1 κ〈u〉
γr

]]
(3.48)

which is shown for convenience in Figure 3.6b.

(a) (b)

Figure 3.6: Wave number dependence of (a) k(0,κ) with the limit 3/2σ2 (dashed line)
and (b) ε(0,κ).

Important here is the limit lim
κ→∞ε(0,κ) which is finite for real turbulence and which is

needed for a proper characterization of the fields. However it can be shown in Equation
(3.48) that this limit tends to infinity. At this point it has to be added that there is no classical
stochastic process possible which has a finite dissipation because real turbulence shows on
small scales a smooth behaviour which is in general missing for stochastic processes. Real
velocity fields are infinitely differentiable from which follows that those fields have to drop
faster than any power of κ [20]. On the other hand stochastic processes generally show only
a power law decay.

3.2.4 Time and Length Scales

In addition to the turbulent kinetic energy and dissipation one is usually interested in the
length scales of the flow field. The three most important here are the longitudinal integral
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length scale L, which is strongly connected to the integral time scale τ̃, the longitudinal Tay-
lor microscale λt and the Kolmogorov scale η.

With the relation between spectra and covariance functions

E(ω) = 2

π

∞∫
0

R(τ)cos(ωτ)dτ (3.49)

and the variance of the longitudinal velocity component 〈u2
1〉 =σ2, the integral time scale

τ̃=

∞∫
0

R(t )dt〈
u2

1

〉 (3.50)

can be obtained from the one dimensional spectra at ω= 0 by

τ̃= πE(0)

2
〈

u2
1

〉
=

(
a

γ
+ 1−a

γr

)
= 1

ωc

(
a

γ∗
+ 1−a

γ∗r

)
= L

〈U1〉
(3.51)

where in the last step the relation between integral time and length scale L is introduced
under consideration of Taylor’s frozen turbulence hypothesis ∂u1/∂t = 〈U1〉∂u1/∂x with the
mean velocity in main stream direction 〈U1〉 [70]. Here the important observation can be
made that the integral scales are dependent on the characteristic circular frequency at the
−5/3 slope ωc . For isotropic structures the integral length scale should be equal to the cor-
relation length lc resulting from the correlation matrix (3.5) as is shown by L = ∫ ∞

0 C (r ))dr =∫ ∞
0 exp− r

lc dr = lc . This should be considered for the field creation if isotropic structures lie
in the foreground.

If all the constants in Equation (3.51) are inserted a relation between ωc and the corre-
lation length lc can be gained. For the full process including the reference velocity it is

ωc =
〈U1〉

lc

(
a

γ∗
+ 1−a

γ∗r

)
≈ 4.2820

〈U1〉
lc

(3.52)

and if the reference velocity is missing (meaning a = 1), the relation becomes

ωc =
〈U1〉

lc

1

γ∗
≈ 0.6026

〈U1〉
lc

. (3.53)

The second often used length scale, the longitudinal Taylor lengthscale, can be calculated
with help of the second derivative of the autocorrelation function ρ(τ) and r = τ〈u〉 as [20]

λt =
[
−1

2
ρ′′

(
τ= r

〈U1〉
)∣∣∣∣

r=0

]−1/2

=
[
−1

2

(
a

[
exp

{
−γ

∗ωc r

〈U1〉
}]′′∣∣∣∣

r=0
+ (1−a)

[
exp

{
−γ

∗
r ωc r

〈U1〉
}]′′∣∣∣∣

r=0

)]−1/2

=
[
− ωc

2

2〈U1〉2

(
aγ∗2 + (1−a)γ∗r

2
)]−1/2

. (3.54)
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This term is always complex valued, which might also be expected because the first deriva-
tive at the origin is also not continuous. The conclusion drawn is that the Taylor lengthscale
is not defined for stochastic processes of this kind.

If the discrete ansatz for the estimation of the Taylor lengthscale from Aronson and
Löfdahl [71] is used, i.e.

λt (s)2 = 2
〈

u2
1

〉〈(
∂u1
∂s

)2
〉 (3.55)

the Taylor length scale goes to zero if the velocity derivative is approximated by velocity in-
crements as follows from

λ2
t =

2
〈

u2
1

〉〈(
∂u1
∂s

)2
〉 = lim

τ→0

2
〈

u2
1

〉〈(
u1(s+τ)−u1(s)

τ

)2
〉 = lim

τ→0

2
〈

u2
1

〉
τ2〈

(u1(s +τ)−u1(s))2
〉

= lim
τ→0

2
〈

u2
1

〉
τ2

2
〈

u2
1

〉(
1−e−γ|τ|

) = lim
τ→0

τ2

1−e−γ|τ|
= 0 (3.56)

where for simplicity an exponentially decaying auto correlation function 〈u1(s +τ)u1(s)〉 =
e−γ|τ| like in Equation (3.24) has been used. So in this case the Taylor length scale is zero
which again supports the argument that stochastic process like the CTRW process cannot
have a Taylor length. In addition to that it is also not possible to define a Kolmogorov length

scale η = (
ν3/ε

)1/4
due to the fact that the dissipation tends to infinity for high frequen-

cies, i.e. small scales. However it should be kept in mind that in the context of CFD a dis-
cretized time and space domain is required which cut the energy spectrum at high frequen-
cies. Therefore a finite dissipation, as seen in real turbulence, is gained which also alters the
process.

3.2.5 Ensemble Correlation of the CTRW Process with Lévy Distributed
Time

In the following the ensemble averaged autocorrelation function for the specific CTRW pro-
cess in this work with a random time evolution is derived based on the work of Baule et al.
[72].

As described in more detail in section 3.2.2 the stationary correlation matrix of the
CTRW process with a fixed time step is〈
~us(s1),~uT

s (s2)
〉=

σ2


(1−a)(1− r 2)e−γr τ (1−a)(1− r )e−γr τ · · ·

(1−a)
(−2r e−γτ+ (1+ r )e−γr τ

) (
Ci j − (1−a)

(
Ci j (1− r )+ r

))
e−γτ+ (1−a)e−γr τ

...

 .

(3.57)
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which can be transformed into the physical time domain, i.e. with time variables t1 and t2,
by performing a transformation to the Laplace space

〈
~u(λ1),~uT (λ2)

〉= ∫ ∞

0

∫ ∞

0
ds1ds2

〈
~us(s1),~uT

s (s2)
〉

h(s1,λ1; s2,λ2) (3.58)

by use of the function

h = 1

λ1λ2

[
δ(s2 − s1)

(
λα1 +λα2 − (λ1 +λ2)α

)
e−s1(λ1+λ2)α+

+Θ(s2 − s1)
(
λα2

[
(λ1 +λ2)α−λα2

])
e−(λ1+λ2)αs1−λα2 (s2−s1)+

+Θ(s1 − s2)
(
λα1

[
(λ1 +λ2)α−λα1

])
e−(λ1+λ2)αs2−λα1 (s1−s2)

]
. (3.59)

where λ1 and λ2 are Laplace variables, δ the Dirac delta distribution, Θ the Heaviside func-
tion, α the Lévy exponent and s1 and s2 time points in the subordinated Equations (3.2) and
(3.3).

Calculating the integral results in the correlation functions in Laplace space for the
different matrix components〈
~u(λ1),~uT (λ2)

〉
11

σ2
= (1−a)(1− r 2)R(λ1,λ2;γr ) (3.60a)〈

~u(λ1),~uT (λ2)
〉

12

σ2
= (1−a)(1− r )R(λ1,λ2;γr ) (3.60b)〈

~u(λ1),~uT (λ2)
〉

21

σ2
= (1−a)

(−2r R(λ1,λ2;γ)+ (1+ r )R(λ1,λ2;γr )
)

(3.60c)〈
~u(λ1),~uT (λ2)

〉
22

σ2
= [(

Ci j − (1−a)
(
Ci j (1− r )+ r

))
R(λ1,λ2;γ)+ (1−a)R(λ1,λ2;γr )

]
(3.60d)

where the new function

R(λ1,λ2;γ) =
(

λα−1
1

λ2(γ+λα1 )
+ λα−1

2

λ1(γ+λα2 )
− 1

λ1λ2

)
+ γ

(λ1 +λ2)α

(
λα−1

1

λ2(γ+λα1 )
+ λα−1

2

λ1(γ+λα2 )

)
(3.61)

is introduced. Under the assumption that the initial value is set to the thermal equilibrium
of the mean square displacement and t2 > t1, the inverse Laplace transform of R(λ1,λ2;γ)
can be calculated as

L −1 {
R(λ1,λ2;γ)

}= R(t1, t2;γ)

= γ
(
∂

∂t2
+ ∂

∂t1

)−α [
Eα(−γtα2 )+Eα(−γtα1 )

]+ [
Eα(−γtα2 )+Eα(−γtα1 )−1

]
(3.62)

with the Mittag-Leffler function Eα and the two dimensional fractional differentiation oper-
ator (∂/∂t1 +∂/∂t2)α. More information on this operator can be found in the work of Baule
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et al. [72]. In the last step the two dimensional fractional differentiation operator can be
resolved and R can be written as

R(t1, t2;γ) = γtα1
Γ(α+1)

∞∑
n=0

(−γtα2 )n

Γ(αn +1)
2F1

(
α,−αn,α+1;

t1

t2

)
+Eα(−γtα2 ) (3.63)

with the Gamma function Γ and the Hypergeometric function 2F1. With this function and
the correlations from Equations (3.60d) the final form of the correlations〈

~u(t1),~uT (t2)
〉

11

σ2
= (1−a)(1− r 2)R(t1, t2;γr ) (3.64a)〈

~u(t1),~uT (t2)
〉

12

σ2
= (1−a)(1− r )R(t1, t2;γr ) (3.64b)〈

~u(t1),~uT (t2)
〉

21

σ2
= (1−a)

(−2r R(t1, t2;γ)+ (1+ r )R(t1, t2;γr )
)

(3.64c)〈
~u(t1),~uT (t2)

〉
22

σ2
= [(

Ci j − (1−a)
(
Ci j (1− r )+ r

))
R(t1, t2;γ)+ (1−a)R(t1, t2;γr )

]
(3.64d)

can be achieved. It has to be emphasized that this correlation function is not stationary and
it highly depends on t1 and t2 and not the time difference t2 − t1. In addition to that it is
only valid for ensemble averages and can not be compared with time averages because no
stationary state is present where time averages are justified. However if α is not too small
ensemble and time averages may be close to each other at small times t1.

The correlation function with an underlying tempered Lévy distribution can also be
calculated where the work of Cairoli et al. [66, 67] can be used as a reference.

3.2.6 Ensemble Kurtosis of Increment Statistics

In addition to the ensemble correlations it is also possible to calculate other two time en-
semble averages in the physical time t with a stationary subordinated process if the corre-
sponding two time ensemble average in the model intrinsic time s is known. In the following
the focus is laid on the ensemble averaged increment kurtosis in physical time, which is
gained by the same formalism as for the correlation function, namely the characterization in
Laplace space by Equation (3.58) and inverse transform to physical time variables. However
a closed form in the physical time could not be derived but a numerical solution, which is
compared to simulation results and time averages, will be shown.

With the increments∆uτ(t ) = u(t+τ)−u(t ) the increment kurtosis is generally defined
as

K (∆uτ(t1),∆uτ(t2)) =
〈

(∆uτ(t2)−∆uτ(t1))4
〉〈

(∆uτ(t2)−∆uτ(t1))2
〉2 = 〈 f (∆uτ(t1),∆uτ(t2))〉〈

g (∆uτ(t1),∆uτ(t2))
〉2 (3.65)

where the ensemble averaging for the functions

f (∆uτ(t1),∆uτ(t2)) = (∆uτ(t2)−∆uτ(t1))4 (3.66a)

g (∆uτ(t1),∆uτ(t2)) = (∆uτ(t2)−∆uτ(t1))2 (3.66b)
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has to be done.
To achieve the kurtosis in Laplace space the two time ensemble averages are used as

the starting point. For the function f it has to hold

〈 f̃ (∆ũτ(λ1),∆ũτ(λ2))〉 =
∫ ∞

0

∫ ∞

0
d s1d s2〈 f (∆uτ(s1),∆uτ(s2))〉h̃(s1,λ1; s2,λ2) (3.67)

with the two time density in Laplace space

h̃(s1,λ1; s2,λ2) = 1

λ1λ2

[
δ(s2 − s1) (Φ(λ1)+Φ(λ2)−Φ (λ1 +λ2))e−s1Φ(λ1+λ2)+

+Θ(s2 − s1) (Φ(λ2) [Φ (λ1 +λ2)−Φ(λ2)])e−Φ(λ1+λ2)s1−Φ(λ2)(s2−s1)+
+Θ(s1 − s2) (Φ(λ1) [Φ (λ1 +λ2)−Φ(λ1)])e−Φ(λ1+λ2)s2−Φ(λ1)(s1−s2)

]
(3.68)

where Φ(λ) = λα for a Lévy distributed time without modifications and Φ(λ) = (λ+µ)α−µα
if a tempered Lévy distribution is assumed. For simplicity reasons in the next step the fact
is used that in the model intrinsic time s the kurtosis has to be 3 according to a Gaussian
distribution of increments, i.e.

〈 f (∆uτ(s1),∆uτ(s2))〉 = 3〈g (∆uτ(s1),∆uτ(s2))〉2 (3.69)

which can be substituted in Equation (3.67). Further rearranging and using the definition of
the increments shows that

〈 f̃ (∆ũτ(λ1),∆ũτ(λ2))〉 = 12
∫ ∞

0

∫ ∞

0
d s1d s2 (σ4 −2σ2R(s1, s2)+R(s1, s2)2)h̃(s1,λ1; s2,λ2)

(3.70)

has to be solved where the autocovariance function is given as R(s1, s2) =
σ2

(
a ·e−γ|s2−s1|+ (1−a) ·e−γr |s2−s1|) with the standard deviation σ. Solving the integral

with respect to the first term of h yields

〈 f̃1(∆ũτ(λ1),∆ũτ(λ2))〉 = 12
[
σ4 −2σ2R(0)+R2(0)

][
− 1

λ1λ2
+ Φ(λ1)+Φ(λ2)

λ1λ2Φ(λ1 +λ2)

]
= 12

[−σ4 +σ4 (a + (1−a))2][
− 1

λ1λ2
+ Φ(λ1)+Φ(λ2)

λ1λ2Φ(λ1 +λ2)

]
= 0 (3.71a)

such that this term can be neglected. The second term which includes the Heaviside func-
tion resolves in

〈 f̃2(∆ũτ(λ1),∆ũτ(λ2))〉 == 12
Φ(λ2) [Φ(λ1 +λ2)−Φ(λ2)]

λ1λ2Φ(λ1 +λ2)

[
σ4

Φ(λ2)
−2σ2R̃1(Φ(λ2))+ R̃2(Φ(λ2))

]
(3.71b)

with the Laplace transforms of the autocovariance and the squared autocovariance

R̃1(Φ) =L {R} (Φ) =σ2
(

a
1

Φ+γ + (1−a)
1

Φ+γr

)
(3.72a)

R̃2(Φ) =L
{
R2} (Φ) =σ4

(
a2 1

Φ+2γ
+ (1−a)2 1

Φ+2γr
+2a(1−a)

1

Φ+γ+γr

)
. (3.72b)



3.2 Turbulent Characteristics 53

The third term 〈 f̃3(∆ũτ(λ1),∆ũτ(λ2))〉 with swapped s1 and s2 is also zero because s2 > s1 and
t2 > t1 and consequently Θ(s2 − s1) = 0.

For g similar steps can be performed, where the results for the three terms are

〈g̃1(∆ũτ(λ1),∆ũτ(λ2))〉 = 0 (3.73a)

〈g̃2(∆ũτ(λ1),∆ũτ(λ2))〉 = 2
Φ(λ2) [Φ(λ1 +λ2)−Φ(λ2)]

λ1λ2Φ(λ1 +λ2)

[
σ2

Φ(λ2)
− R̃(Φ(λ2))

]
(3.73b)

〈g̃3(∆ũτ(λ1),∆ũτ(λ2))〉 = 0. (3.73c)

After inserting the function Φ for the unmodified Lévy distribution and the tempered distri-
bution, the functions 〈 f̃ 〉 and 〈g̃ 〉 can be numerically inverse Laplace transformed and the
kurtosis K (∆uτ(t1),∆uτ(t2)) is achieved from Equation (3.65). The results are depicted in Fig-
ure 3.7 together with ensemble averaged simulation results for t1 = 1 s and t2 = t1+τ. For this
purpose the kurtosis of 10000 simulations with a time step of ∆t = 0.01 s has been ensemble
averaged. The results fit very well to the theoretical values which support the developed the-
ory in this section. Nevertheless if the more relevant time averaged simulation results over
106 time steps are compared to the theory, big differences occur for both time distributions,
as can be seen in Figure 3.8. In general the increment kurtosis of the time averaged simu-
lations is always larger than the increment kurtosis of the ensemble averaged simulations.
This highlights the non-stationary character of the increment kurtosis of the CTRW fields
and the impossibility of the theoretical description of its time average by ensemble averages.

(a) (b)

Figure 3.7: Increment kurtosis gained by Equation (3.65) with the numerically inversed
functions 〈 f̃ 〉 and 〈g̃ 〉 (symbols), and simulated ensemble averages (lines) for (a) an
unmodified Lévy distribution and (b) a tempered Lévy distribution.

(a) (b)

Figure 3.8: Increment kurtosis gained by Equation (3.65) with the numerically inversed
functions 〈 f̃ 〉 and 〈g̃ 〉 (symbols), and simulated time averages (lines) over 106 time
steps for (a) an unmodified Lévy distribution and (b) a tempered Lévy distribution.
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3.3 Increment Kurtosis Dependence on Model Parameters

As described in section 2.5.2, the CTRW model consists of several parameters which affect
the increment kurtosis, which has to be scale dependent according to Kolmogorov’s refined
similarity hypothesis [24]. This scale dependence as well as their relation to the spectra
should be studied in more detail in the following. In particular the intermittency parameter
α, the intrinsic time step ∆s and the integral time scale τ̃ are chosen for this study. Depen-
dent on the underlying type of time transformation the effect of these parameters is different.
In particular a Lévy distribution with a sharp cutoff C = 10000 and a tempered Lévy distri-
bution with the tempering parameter µ = α−1/(α−1), where a fixed mean time evolution is
ensured for all α, are taken. In addition the effect of time interpolation in the s-t diagram
is studied, which can be seen as a workaround to prohibit unphysical constant wind speeds
over long time periods, which otherwise are naturally included in CTRW generated fields. To
achieve a more robust result, ten independent realizations with a fixed time step ∆t = 0.01 s
and a total time of t = 600 s are generated and averaged for each parameter set.

3.3.1 The Intermittency Parameter

The most important parameter which influences the increment kurtosis is the Lévy expo-
nent α which generally has to be smaller than one to obtain a behavior different from Gaus-
sian. However it is not clear how the increment kurtosis changes with decreasing α, espe-
cially because the Lévy distribution is not kept in its theoretical form. Tempering and cut-
ting lead to different observations. For both simulations the intrinsic time step is chosen
as ∆s = 0.01s, the characteristic frequency as ωc = 1 Hz and the intermittency parameter as
α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

As seen in Figure 3.9a, a sharp cutoff results in an increased increment kurtosis while
reducingα from 1 to 0.5, but only on small scales. At large scales the choice of higherα seems
to be relevant for a higher increment kurtosis. Reducing the intermittency parameter to val-
ues α< 0.5 gives rise to an opposing trend where a kurtosis reduction becomes apparent on
all scales. The reason for this behavior lies also in the cutoff itself but the main contribution
comes from the connected renormalization of the Lévy distribution to ensure a mean step
size 〈∆t〉 =∆s. The interpolation is not important at all for the parameters shown here, as
can be seen in comparison with Figure 3.9b.

(a) (b)

Figure 3.9: Kurtosis for ∆s = 0.01 s and ωc = 1 Hz for a sharp cutoff (a) without and (b)
with time interpolation.

If the tempered Lévy distribution is considered, smaller values forα always correspond
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to an increased increment kurtosis as seen in Figure 3.10a. Therefore this distribution is
much more reliable than a sharp cutoff if it is desired to change the degree of intermittency
in a specific direction. In terms of the achievable kurtosis range, this distribution should also
be favored. For the parameters chosen here the increment kurtosis reaches a ten times bigger
value than for the distribution with a cutoff. Again the time interpolation is not relevant at
all.

(a) (b)

Figure 3.10: Kurtosis for ∆s = 0.01 s and ωc = 1 Hz for a tempered distribution (a) with-
out and (b) with time interpolation.

Even though the increment kurtosis can theoretically be increased to arbitrary high
values on small scales by changing α, a fast (power-law-like) drop appears with increasing τ
for both distributions and the Gaussian value of 3 is reached for relatively small time gaps.
This is the reason why a high kurtosis on scales larger than 10 s is very difficult to achieve
without very unphysical extreme values in the small range of τ. An additional drawback of
small α is that the wind fields show very slow dynamics on big time scales, as seen in Figure
3.11 for the tempered distribution without time interpolation, where also the time evolution
with the intrinsic time step is shown. The long waiting times in the time evolution are a big
problem if one is interested in converged statistics of the time series in a relatively short time
interval, e.g. 10 minutes. So high intermittency and converged statistics exclude each other
for the CTRW model, but post-corrections can be used to achieve time series with improved
characteristics. Those post-corrections are discussed in more detail in section 3.4.
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Figure 3.11: Examplary time series of the wind speed and the time evolution s(t ) for
∆s = 0.01 s, ωc = 1 Hz and α= 0.1 with an underlying tempered Lévy distribution.

3.3.2 The Intrinsic Time Step

The Lévy exponent α is a very obvious parameter to change the increment statistics. But
other parameters are not so obvious on first glance. One of those parameters is the intrinsic
time step ∆s which is used to simulate the wind field before the time transformation takes
place. Usually a very small value for this time step has to be chosen to prevent numerical
errors and to achieve a wind field with well defined characteristics. Nevertheless in the past
authors took values of 1 s, 72 s [65] or even up to 100 s [11]. The reason behind this was that
for such large time steps the autocorrelation function fitted best to wind data [65] or that
presumably the degree of intermittency reached a specific target value which could not be
achieved otherwise. However as shown in section 3.1.3 the autocorrelation function as well
as the spectral density can be controlled best by ωc . The intermittency on the other side can
be manipulated best by choice of a tempered Lévy distribution with the corresponding α.

Because confusion on how to choose∆s may come up, the dependency will be studied
in the following for α = 0.5, ωc = 1 Hz and ∆s ∈ {0.001, 0.013, 0.173, 2.279, 30} s. Again the
different time distributions, namely with a sharp cutoff and a tempering are investigated. In
addition the effect of time interpolation is also considered.

As can be seen for both time distributions in Figures 3.12a and 3.13a, large intrinsic
time steps always cause a large increment kurtosis if no time interpolation is performed. For
the case with a sharp cutoff the sensitivity of the increment kurtosis on the intrinsic time step
is very high even for the smallest time steps used for this study. This is a sign for an unproper
stochastic process in the sense that it does not provide a stable distribution. The tempered
distribution is much more robust and the kurtosis converges for small time steps to a level,
which is much higher than for the first distribution.

Interestingly the time interpolation procedure, which is used between time steps,
changes the results for both time distributions into different directions. On the one side
for a sharp cutoff no big change can be observed in Figure 3.12b except for the two largest
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time steps, which originate from convergence issues. On the other side the tempered dis-
tribution shows up a pretty high reduction of increment kurtosis for all time step sizes but
the effect of the interpolation on the smallest time step is almost not present. In addition to
that a convergence to the graph of the smallest time step appears with decreasing step size,
as before the interpolation procedure. Most importantly the graphs with varying ∆s follow
now a trend which is vice versa to the one before the interpolation. Large time steps result in
a small increment kurtosis and at the same time small time steps let the kurtosis converge.
This is the expected behavior of a correct stochastic model. Small time steps, which are
important for numerical stability, should not lead to the inconsistent outcome that intermit-
tency is destroyed. Rather, the overall accuracy of the generated time series has to increase
and intermittency, as a core element of the model, has to be present.
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(a) (b)

Figure 3.12: Kurtosis for α = 0.5 and ωc = 1 Hz for a sharp cutoff (a) without and (b)
with time interpolation.

(a) (b)

Figure 3.13: Kurtosis for α= 0.5 and ωc = 1 Hz for a tempered distribution (a) without
and (b) with time interpolation.

Why large∆s are responsible for a large increment kurtosis becomes obvious if the time
series and the time evolution are investigated in more detail. Figures 3.14 and 3.15 show for
the sharp cutoff what happens with the wind speed if the intrinsic time step is increased.
While Figure 3.14a shows small intervals with waiting times, the duration of those waiting
times increases a lot for the large time step in Figure 3.15a. As can be seen, the long wait-
ing times, where t (s) does not change, are directly transferred to the wind speed time series.
Depicted in Figures 3.14b and 3.15b are the time series with where a time interpolation has
been done. The waiting times are prevented, but the dynamics are slowed down in the re-
gions, where the slope in the t (s) diagram is very flat. So a time series mixed of slow and fast
patterns is generated.

(a) (b)

Figure 3.14: Time series of the wind speed and evolution of s(t ) for α = 0.5, ωc = 1 Hz
and ∆s = 0.173 s for a sharp cutoff (a) without and (b) with time interpolation.
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(a) (b)

Figure 3.15: Time series of the wind speed and evolution of s(t ) for α = 0.5, ωc = 1 Hz
and ∆s = 2.28 s for a sharp cutoff (a) without and (b) with time interpolation.

Changing the time step results in similar patterns for the case where a tempered distri-
bution is chosen, shown in Figures 3.16, and 3.17. The time series look much more smooth
compared to the case where a sharp cutoff is taken, even if no time interpolation is used.
Furthermore with the time interpolation the distinction between highly and slowly fluctu-
ating parts in the time series becomes much more difficult. Interestingly one could argue
that time steps with a resulting high increment kurtosis goes hand in hand with long waiting
times. But if a direct comparison of ∆s = 0.173 s of the sharp cutoff case with the tempered
case is done without taking the interpolation into account, the first one consists of longer
waiting time events but it shows similar intermittency. In other words, the intermittency
mainly results from the shape of the time distribution and not the weighting of long waiting
time events.

(a) (b)

Figure 3.16: Time series of the wind speed and evolution of s(t ) for α = 0.5, ωc = 1 Hz
and ∆s = 0.173 s for a tempered distribution (a) without and (b) with time interpola-
tion.

(a) (b)

Figure 3.17: Time series of the wind speed and evolution of s(t ) for α = 0.5, ωc = 1 Hz
and∆s = 2.28 s for a tempered distribution (a) without and (b) with time interpolation.
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3.3.3 The Integral Time Scale

The last parameter which is focused on is the integral time scale τ̃ which can be controlled
by the characteristic frequencyωc by means of Equation (3.51). In addition to the increment
kurtosis also the power spectra are taken into account, where a comparison with the theoret-
ical results forα= 1 is performed, which corresponds to the Gaussian case. Here an intrinsic
time step ∆s = 0.01 s and the Lévy exponent α= 0.5 is chosen. The time scale takes the val-
ues τ̃ ∈ {0.043, 0.43, 4.3, 43, 430} s.

Figures 3.18 and 3.19 show for the both time distributions considered here that the in-
tegral time scale also plays a role for the increment kurtosis. In general larger time scales
increase the increment kurtosis independent on which time distribution has been taken.
For both cases a factor of 2 is reached between the increment kurtosis of the largest and
the smallest time scale. The interpolation only has a very small damping effect and can be
neglected.

(a) (b)

Figure 3.18: Kurtosis for α = 0.5 and ∆s = 0.01 s for a sharp cutoff (a) without and (b)
with time interpolation.

(a) (b)

Figure 3.19: Kurtosis for α= 0.5 and ∆s = 0.01 s for a tempered distribution (a) without
and (b) with time interpolation.

Figures 3.20 and 3.21 show how the power spectra behave for the different time scales
and how they fit to the theoretical Gaussian result for α= 1 taken from Equation (3.21). The
spectrum with an underlying Lévy distribution with a sharp cutoff shows very good agree-
ment on all time scales except the smallest one. The tempered distributed time distribution
leads to similar results but the second smallest time scale also does not fit perfectly. The
reason here is that the increment kurtosis is even higher than for the other case. All in all
a positive correlation between the increment kurtosis and the deviation of the spectra from
the Gaussian case is found for each time scale.
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Figure 3.20: Power spectra for α = 0.5 and ∆s = 0.01 s for a Lévy distribution with
a sharp cutoff. The dashed lines correspond to the theoretical result from Equation
(3.21).

Figure 3.21: Power spectra for α= 0.5 and ∆s = 0.01 s for a tempered Lévy distribution.
The dashed lines correspond to the theoretical result from Equation (3.21).



62 3. Improvements on the Kleinhans Model and Study of its Properties

3.4 Post-Corrections of Generated Wind Fields

Because one of the main studies done in this thesis is the comparison of the effects of inter-
mittent and non-intermittent wind fields on wind turbines, it is essential to make those two
diffent types of fields statistically comparable. The term "comparable" means here that the
one point distributions are Gaussian with the same mean and variance, kurtosis of three and
zero skewness. Additionally the two time and two point correlations and the corresponding
spectra should be as equal as possible.

While adjusting the mean and standard deviation is trivial, corrections of the other
properties are generally accompanied by some difficulties which are to be solved. One issue
is that wind fields can be very different due to instabilities of the Gaussian shape of the one
point distribution for intermittent fields. This results from the long waiting times shown in
Figure 3.11 which makes the distribution converge slower. Additionally numerical artifacts
like spectral leakage and aliasing can occur which distort the shape of the PSD and the total
energy content. The main parts done are a correction of the PSD for all velocity time series
at each grid point and an even more important correction of the one point PDF. Finally if one
is interested in solenoidal wind fields, a correction method for the divergence of the whole
wind field is shown.

3.4.1 Estimation Errors for the Power Spectral Density and Autocorrela-
tion Function

Even if the input parameters and their influence on the properties of the wind field are theo-
retically well known it may happen that the outcome of the model is still very different from
what is expected. This is due to numerical issues resulting from too coarse simulation grids,
temporal resolution or too few grid points. The difficulties in the simulation of proper wind
fields and the expected errors are presented in this part. Different numerical artifacts are
illustrated, which change the theoretical PSD from section 3.1.3 and the corresponding cor-
relation functions. In more detail a priori estimations of spectral densities will be shown
which consider the effects of aliasing and spectral leakage. The errors shown here are also
very interesting for simulations which naturally have a very coarse mesh, like Blade Element
Momentum (BEM) simulations, where in addition the grid typically has only very few points
(up to 30 points in each direction, say). For those meshes spectral leakage but also aliasing
have big effects on the simulation results which should be known beforehand.

In general aliasing is a numerical effect which occurs if discretizations with low sam-
pling frequencies in time or space are performed. In particular the highest frequency where
the system contains energy has to be lower than half the sampling frequency (Nyquist fre-
quency), otherwise a mirror image of the missing high frequency part of the spectrum is
added to the low frequency part and pronounced low frequency effects are seen in the spec-
trum and time series, which were originally not existent. This can also lead to patterns which
would not be seen for higher sampling frequencies and can therefore lead to wrong inter-
pretations. The aliasing effect is shown in Figure 3.22 for an arbitrary spectrum. The highest
frequency fmax of the spectrum is in this case bigger than half the sampling frequency fs .
Because the spectrum is periodic with fs and symmetric it is unavoidable that the original
spectrum and its alias overlap and sum up at the high frequency region fs − fmax < f < fs .
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The resulting spectrum is exactly the same with the difference that clearly an increased tail
from fs − fmax onwards is visible.

Figure 3.22: Spectrum with energy content up to the maximal frequency fmax (solid)
and its aliases (dashed) with the sampling frequency fs . Overlapping occurs for fs −
fmax < f < fs where the increased energy content is marked in red.

The second most important effect is the effect of spectral leakage which does not ap-
pear due to the sampling frequency but to the windowing which is used to sample the time
series. Spectral leakage also has an effect on the energy spectra in the sense that energy
from frequencies, which are not captured by the discretization, is distributed to neighbour-
ing frequencies to keep the total energy content constant. Windowing can be understood as
a convolution of the time series x(t ) with a window function w(t ) which is in Fourier space
a product of the energy spectrum of the time series with the Fourier transformed window
function, i.e.

x(t )?w(t ) = x̂( f ) · ŵ( f ) (3.74)

where ? is the convolution operator. In Figure 3.23 an example of spectral leakage is shown
for two cosine shaped time series with different frequencies which are sampled with the
same sampling rate and window length. In the top picture the window length coincides with
a multiple of the period of the cosine function, i.e. the time series can be repeated period-
ically without jumps, from which follows that the discrete Fourier transform fully captures
the correct frequency of the time series. In the second case (bottom) the window length does
not coincide with a multiple of the cosine function and a periodic continuation of the time
series leads to a jump at the border of the sampling window. The simple representation by
only one peak in the discrete Fourier spectrum is not possible anymore but the original peak
is distributed to neighbouring frequencies.
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Figure 3.23: Time series and DFT spectrum for two cosine functions with different fre-
quencies but same window lengths and sampling frequencies, the first correctly fits the
chosen window size while spectral leakage occurs for the second. Picture from Puente
et al. [73].

For CTRW fields aliasing and spectral leakage effects are important and a small study
on simulation results and their predictability is performed where the autocovariance func-
tion and PSD are investigated. For this sake a time series of length N = 106 is generated and
a rectangular window with 200 points is used as a windowing function, i.e. the statistics for
a time series with 200 data points are gained.

Figure 3.24 shows the effect on the PSD and the autocovariance function of simulations
and theoretical predictions for N →∞ as well as for N = 200. Several theoretical models are
analysed for N = 200: The first one does not take into account any numerical effects (Model),
the second one considers aliasing (Model+A), and the third case aliasing and spectral leakage
(Model+A+L). For the simulations as well as the theoretical model the aliasing error at high
frequencies in the spectrum in Figure 3.24a is obvious. The effect of spectral leakage is also
visible, which lifts the PSD function to higher energies, because the energy from the missing
low frequencies is blurred out to high frequencies. The resulting autocovariance functions
in Figure 3.24b are also quite different for all approaches. In particular, the difference to the
theoretical autocorrelation function for N →∞ is very big and the standard deviation at τ= 0
is below 40% if numerical errors are considered.

Finally it can be said that an excellent prediction of the PSD and the covariance func-
tion can be made if aliasing and spectral leakage are taken into account. It is possible to
quantify the resulting numerical errors without even simulating the time series. Thus de-
viating correlation lengths, structure sizes and energy content are not surprising anymore.
Especially for BEM simulations, where a very coarse grid with few points is taken, differences
between expected and simulated spatial correlations can be explained.
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(a) (b)

Figure 3.24: (a) PSD and (b) autocovariance function for N →∞ and N = 200 simulated
points. The theoretical spectra for N = 200 are shown without aliasing (Model), with
aliasing (Model+A), and with aliasing and spectral leakage (Model+A+L).

3.4.2 Correction of the Power Spectral Density

Because the PSD plays a major role for the wind characterization and in load dynamics it has
to be made sure that the effect resulting from the spectrum can be neglected if a comparison
of intermittent and non-intermittent fields takes place. In the following the procedure to
correct frequency spectra of intermittent and non-intermittent wind fields to a prescribed
spectrum is shown with the goal to isolate the intermittency, i.e. the increment kurtosis,
as much as possible. It has to be decided what should be the reference spectrum, where
the fields are to be projected on. It could be the intermittent, the non-intermittent or the
analytic spectrum (3.21) for the non-intermittent case. For this work the latter one has been
taken because it has well defined characteristics like the variance and integral scales which
also makes parameter studies much more reliable.

The spectral correction is based on the definition of the PSD

E(ω) = |x̂(ω)|2 = |F {x(t )}|2 (3.75)

where x̂ = F {x} is the Fourier transformed counterpart of the series x. Equation (3.75) can
be used for a relation between the originally simulated field xs and the field with the analytic
spectrum xa

|xa(t )| =F−1

{√
Ea(ω)

Es(ω)
|F {xs(t )}|

}
(3.76)

where the phase of the Fourier transform is not present and therefore could be arbitrary.
However, to keep the new field as similar as possible to the original one the phase of the
original field is adopted such that the final relation is

xa(t ) =F−1

{√
Ea(ω)

Es(ω)
F {xs(t )}

}
. (3.77)

The effect of this spectral correction on the time series and PSD’s for Gaussian and intermit-
tent cases with a tempered Lévy distribution and ωc = 1 Hz, ∆s = 0.01 s, and 60000 sample
points are shown in Figures 3.25 and 3.26. It becomes obvious that the spectral correction
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has a big influence not only on the spectrum of the intermittent case but also on the in-
termittent time series itself. The original waiting times vanish due to the break-up of the
amplitude-phase relation. However the increment kurtosis does not become zero as illus-
trated in Figure 3.27, where for different Lévy exponents α the effect on the increment kur-
tosis is shown. The spectral correction in the way done here seemingly has a damping effect
on all scales which should be taken into account if the correction is necessary.

(a) (b)

Figure 3.25: (a) Timeseries and (b) PSD for a Gaussian time series before and after the
spectral correction.

(a) (b)

Figure 3.26: (a) Timeseries and (b) PSD for an intermittent time series before and after
the spectral correction.
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Figure 3.27: Kurtosis of a time series with an uncorrected (solid) and corrected (dashed)
spectrum for ωc = 1 Hz, ∆s = 0.01 s, a tempered time distribution and different values
of α.

3.4.3 Correction of the One Point Statistics

According to the IEC norm [1] the velocity fluctuations are assumed to be Gaussian. To
achieve Gaussian one point statistics independent of binning is a much harder task than
correcting the power spectra. If the intermittency is not too strong the following approach
developed by Goerg [74, 75] can be used to Gaussianize data with the condition that the orig-
inal data is heavy-tailed and the distribution is smooth. However, it has to be emphasized
that this correction becomes harder and harder with higher intermittency degree, because
the smoothness decreases by introducing longer waiting times due to convergence issues.
An R-package for this approach with different useful functionalities is also provided on CRAN
[76].

As a special case of his work Goerg could show that an inverse transform exists for a
random variable

Y =
{

U exp

(
δ

2
U 2

)}
σX +µX , δ ∈R, (3.78)

where δ is the tail parameter and U = (X −µX )/σX is a Gaussian distributed random variable
with standard deviationσX and mean µX . In this case Y is a heavy-tailed Tukey’s h (Lambert
W ×Gaussian) distributed variable [77] which reduces to the Gaussian for δ→ 0. The general
inverse transform has the form

Wτ(Y ) =Wδ

(
Y −µX

σX

)
σX +µX =UσX +µX = X (3.79)

with

Wδ(z) = sgn(z)

(
W (δz2)

δ

) 1
2

(3.80)
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where τ is the parameter set (µX ,σX ,δ) and W (z) is the Lambert W function which is the
inverse of z = x exp(x) and satisfies z = W (z)exp(W (z)). Because of bijectivity for any data
Y ∈ R it is always possible to obtain the corresponding X for a given parameter set τ. Goerg
presented a similar approach if a skewed heavy-tailed random variable is considered for Y
which comes in handy if not only the kurtosis but also the skewness has to be corrected.

The effect of this transformation on the one-time density function is shown in Figure
3.28.

(a) (b)

Figure 3.28: (a) Original and (b) Gaussianized density function of a CTRW time series.

Because Gaussianization changes the spectral properties of the process a spectral cor-
rection from section 3.4.2 has to follow which again introduces small deviations in the shape
of the one point distribution. Therefore an algorithm has been implemented where both
correction types are used in an alternating way up to the point where the desired skewness,
kurtosis and spectrum are reached. In the studies, where the Lambert W approach has been
used, the final kurtosis was in the range 3±0.0001 and the skewness in the range 0±0.0001.
However for very unsmooth distributions this algorithm is able to set the kurtosis and skew-
ness to the desired value but the shape of the distribution might differ a lot from Gaussian.

3.4.4 Correction of Divergence

One of the most important conditions a wind field has to satisfy is the continuity equation

dρ

dt
=−ρ∇·~u. (3.81)

Under the assumption that the flow is incompressible, which is the case for atmospheric
flows, the density ρ is constant and the continuity equation simplifies to

0 =∇·~u. (3.82)

As a natural property wind fields arising from stochastic differential equations do not exhibit
incompressibility, in contrast to spectral models like the Mann model [3]. For models like the
CTRW model divergence in the flow field might lead to high non-physicality and numeric in-
stabilities induced by strong pressure fluctuations. This serious issue makes it useful to think
about a divergence correction with the drawback kept in mind that some properties from the
original field change.

To capture mathematically the change of divergence of vector fields the concept of
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Fourier space can be used. The advantage of this approach is the simplification of differen-
tials to products which allows to directly convert the expression of the divergence to

F
{∇·~u}

(~κ) = iκi ûi (~κ). (3.83)

where the Einstein notation has been used. For a divergence free field this has to be zero. If
the Fourier transformed velocity field ~̂u is decomposed in components parallel and normal
to ~κ, i.e. ~̂u = ~̂u⊥+ ~̂u∥, it becomes clear that only the parallel component û∥

i = κiκ j |~κ|−2û j

plays a role for the divergence in Equation (3.83). If it is not zero a correction of the velocity
field

û⊥
i = ûi −

κiκ j

|~κ|2 û j (3.84)

or in vector notation

~̂u⊥ = ~̂u −~κ · ~̂u|~κ|2~κ. (3.85)

has to be performed to obtain only the solenoidal normal component.
However, Equation (3.85) is only the theoretical result for continuous fields. For dis-

cretized fields as used in CFD an analogous formula for the discrete Fourier transform (DFT)
has to be found. It is important what kind of discretization is used because the definition of
"divergence" also depends on it. In the following for the discrete divergence operator ∇d the
central difference approach

∇d~u(~x) = ui (xi +∆i )−ui (xi −∆i )

2xi
(3.86)

is assumed with the spacing ∆i in the direction of the i -component. For this case the DFT is
[78]

DFT{∇d u} (κ) = ~w(~κ) ·DF T {u}(~κ) (3.87)

where ~w is the vector

~w(~κ) = i

2


1
∆1

sin κ1
N1

1
∆2

sin κ2
N2

1
∆3

sin κ3
N3

 . (3.88)

Analogous to the continuous version (3.83) the discrete Equation (3.87) has to be zero to
satisfy divergence freeness for ~u. This can be achieved by the transformation

DFT
{
~u

}⊥ (~κ) = DFT
{
~u

}− ~w(~κ) ·DFT
{
~u

}
(~κ)

|~w(~κ)|2 ~w∗(~κ) (3.89)

which is done in the same way as in Equation (3.85), but with the replacements F → DFT
and~κ→ {~w(~κ), ~w∗(~κ)}. Note that this equation is a corrected version of [78] where the com-
plex conjugation of ~w is missing. Even if this is the procedure relevant for the correction
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of numerically generated wind fields, further analysis is preferred to be done in the more
general continuous space to be more consistent and independent of the used discretization
scheme.

For simplicity in the following it is assumed that the velocity components of the uncor-
rected fields follow the same generating procedure, i.e. the same model parameters will be
used. Furthermore they are independent of each other which also implies independence of

the Fourier transforms ûi , i.e. they are also uncorrelated R̂i j =
〈

ûi û∗
j

〉
= û′2δi j . The covari-

ance of the corrected field in Fourier space is (without Einstein summation)

R̂⊥
i j (~κ) =

〈
û⊥∗

i û⊥
j

〉
=

〈(
û∗

i − κiκk

κ2
û∗

k

)(
û j −

κ jκl

κ2
ûl

)〉
=û′2

(
δi j −

κiκ j

κ2

)
(3.90)

which follows from Equation (3.84) by multiplication with its complex conjugate.
Now it is possible to make a statement about the kinetic energy of the each Fourier

mode which has to be

Ê⊥(~κ) =1

2

3∑
i=1

R̂⊥
i i (~κ) = 1

2

3∑
i=1

û′(~κ)2

(
1− κ2

i

κ2

)
= û′(~κ)2

=2

3
Ê(~κ), (3.91)

i.e. the loss due to this correction corresponds to one third of the original kinetic energy
Ê(~κ) = 3/2û′(~κ)2. A consequence is that also one third of the original turbulent kinetic energy
k⊥ =∑

~κ Ê⊥(~κ) = 2/3k is lost.
This observation is very general and more steps for the mathematical analysis of the

corrected fields derived from the CTRW model can not be done due to the difficulty of finding
the Fourier coefficients R̂i j (~κ) = F~κ

{
Ri j (~x)

}
. If the Fourier coefficients could be found it

would be easy to find R̂⊥
i j from Equation (3.90), and the corrected correlation by building up

the Fourier series R⊥
i j =

∑
~κ R̂⊥

i j (~κ)exp(i~κ ·~r ). With knowledge of the velocity spectrum tensor

Φ⊥
i j (~κ) = ∑

~κ′ δ
(
~κ−~κ′) R̂⊥

i j

(
~κ′

)
, the one dimensional spectra E⊥

i i (κ1) = 2
∞Î

−∞
Φ⊥

i i (~κ)dκ2κ3 could

also be determined. However at this point it has to be sufficient to gain more information
numerically.

For this study a 30000 m × 64 m × 64 m non-intermittent CTRW field with a resolu-
tion of one grid point per meter, standard deviation of 0.2 m/s, and the model parameters
ωc = 0.4282 Hz and r = 10 m is created. Those model parameters are used to make sure that
the longitudinal and transversal integral length scales are equal. The convertion to three di-
mensional space has been done by means of Taylor’s frozen turbulence hypothesis.

To get an idea of the correction effect on a three dimensional flow Figure 3.29 illustrates
the structure change of fields for the v-component, i.e. perpendicular to the mainstream di-
rection x, before and after the correction in a 64 m×64 m×64 m section of the whole domain.
A change of structures can be seen but the size is seemingly unchanged. For the mainstream
component u, shown in Figure 3.30, the structures change more drastically. In particular the
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variance goes down by a large amount which has already been predicted by the aforemen-
tioned Equation (3.91) which is related to the loss of energy.

(a) (b)

Figure 3.29: v-component of wind velocity vector (a) before and (b) after the divergence
correction.

(a) (b)

Figure 3.30: u-component of wind velocity vector (a) before and (b) after the diver-
gence correction.

To check the domain size dependence of the theoretical result k/k⊥ = 3/2 the ratio
k/k⊥ has been plotted for different box sizes in mainstream direction in Figure 3.31a. It is
obvious that this relation holds in the mean for all box sizes. More interesting is to quan-
tify the different contributions of velocity components to the turbulent kinetic energy with
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changing box sizes. If the domain in main stream direction contains more cells than perpen-
dicular to it, additional wavenumbers for κ1 have to be considered in

∑
~κ R̂⊥

11 (~κ) which also
decreases the variance for this component. This effect becomes visible in Figure 3.31b where
the ratio of variances before and after the correctionσ⊥2

i /σ2
i for each component i ∈ {u, v, w}

is illustrated.

(a)

(b)

Figure 3.31: Ratio of (a) turbulent kinetic energy, and (b) variances of each velocity
component changing with box size in mainstream direction.

As expected from the different treatment of mainstream and perpendicular velocity
components by the correction algorithm, also the one dimensional energy spectra of the cor-
rected fields differ a lot from each other. The comparison of original and corrected spectra
for v- and u components in Figure 3.32 highlights the special role of the mainstream velocity
component. A loss of energy on all but the smallest scales is visible, whereas the perpendicu-
lar v-component is almost not affected at all. Figure 3.33 shows the one-dimensional spectra
for an intermittent field with the same parameters and α= 0.8, where the correction effect is
very similar. This different reaction of velocity components to the correction presented here
can be seen as the main drawback of this method. In addition to that the change of energy
spectra for the main stream component does not allow to create velocity fields where the en-
ergy spectrum is given by the model equations or by the spectral adjustments in the method
(3.75).

(a) (b)

Figure 3.32: Original and divergence corrected one dimensional spectra for the (a) v-
component, and (b) u-component of non-intermittent wind fields.
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(a) (b)

Figure 3.33: Original and divergence corrected one dimensional spectra for the (a) v-
component, and (b) u-component of intermittent wind fields.

It is natural that a change of velocity fields not only has an effect on the spectrum and
the variance but also entails a variation of intermittency. To gain insight into the effect on
intermittency, the increment pdf of u and the corresponding kurtosis are plotted in Figure
3.34. The correction algorithm leads to a loss of intermittency in terms of increment kurtosis
over all scales. This might be obvious as intermittency is understood as a complex collabora-
tion of phase and amplitude in Fourier space which is partially destroyed by the divergence
correction.

(a) (b)

Figure 3.34: (a) Increment PDF and (b) kurtosis evolution with increasing τ before and
after the divergence correction.

In conclusion, despite of the physicality won by the divergence correction algorithm,
some drawbacks have to be highlighted. The algorithm presented here needs a lot of com-
putational effort in terms of memory and simulation time if fields for a time intervall of ten
minutes with a rather good resolution should be generated. Another important drawback is
the already mentioned change of spectra for the mainstream component and the included,
potentially very big, loss of energy. The last negative aspect is the loss of intermittency which
might be unavoidable for correction algorithms in general and therefore can be condoned.
Because of the first two issues this pre-simulation correction was not used for BEM or CFD
simulations for this thesis but it is still mentioned for the case that solenoidal CTRW fields
become necessary and other correction algorithms are not accessible or useful. For CFD
simulations another divergence correction algorithm can be used based on pressure correc-
tions which is introduced by Kondo et al. [79], but the resulting field also shows a strong drop
in energy for the main stream component similar to the correction method presented here.
As the tool of choice for all CFD simulations done in this thesis the PISO algorithm [39, 40] is
applied which makes use of severeral pressure and velocity corrections. The outcome of the
PISO algorithm is not predictable but the impact on the CTRW fields is small as will be seen.
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Chapter 4

Characterisation of CTRW Fields in an
Open Channel

After the CTRW fields have been characterized, fields for different use cases can be gener-
ated by choosing an appropriate parameter set. The next step is to combine the generated
CTRW fields with CFD, where the main focus in this chapter lies on the evolution of the
fields in a simple domain without any objects. Two different turbulence injection methods
are compared with respect to stability of the introduced CTRW fields and their evolution in
general. In the first approach the generated two dimensional time dependent velocity field
slices from the CTRW model are directly introduced at the inlet of the domain while in the
second one the fluctuating part is superimposed to a constant flow in the inner part of the
domain by an actuator.

4.1 Simulation setup

Because intermittency is one of the most important characteristics of the CTRW fields, a
clean study has to be performed where a superposition with other effects is kept as low as
possible. Therefore shear within the CTRW field is not taken into account as well as shear in-
troducing walls in the simulation domain, which would add turbulent kinetic energy as well
as intermittency into the domain. This is clearly not wanted for a first simple study if one
is interested in the free evolution of specific CTRW fields. For this reason a cuboid shaped
open channel with dimensions 12π m×2π m×2π m and 384×64×64 cells has been chosen
as the simulation domain, as seen in Figure 4.1. With this setup each cell has a dimension of
approximately ∆x = ∆y = ∆z = 0.1 m in each direction. An infinite height and width of the
domain is simulated by using periodic boundary conditions at the corresponding bound-
aries. At the inlet the velocity field is given and the pressure underlies a zero-gradient condi-
tion, while as an outlet condition a constant pressure and zero-gradient velocity condition is
taken. No CFD specific additional turbulence models are used because no significant effect
could be observed for the performed simulations and no wall modeling is needed.

Two different kinds of CTRW fields are generated, one with Gaussian and one with
heavy-tailed increment statistics. For both fields the general parameters are set to ū = 1 m/s,
σ= 0.2 m/s, r = 0.5 m,∆t = 0.01 s, t = 3000 s andωc = 1.16 Hz while for the intermittent case
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additionally α= 0.3 has been chosen. In Figure 4.2 the increment skewness, and increment
kurtosis are shown for different time scales of the inflow. According to Taylor’s frozen tur-
bulence hypothesis, the flow passes one cell in ∆x/ū = 10∆t = 0.1 s, which translates to the
smallest spatial scale where intermittency potentially can be observed.

To avoid a contradiction between non-periodic CTRW fields and periodic boundary
conditions, the covariance matrix used for the CTRW field generation is also made periodic.

Figure 4.1: Simulation domain of the open channel with inlet and outlet. All other
boundaries are periodic.

(a) (b)

Figure 4.2: (a) Increment skewness and (b) increment kurtosis of the CTRW fields used
for the channel simulation.

4.2 Turbulence injection methods

After the CTRW fields are created there exist several ways to inject those fields into the CFD
domain. Two approaches are investigated in more detail, namely the inlet and the actuator
method which both have their advantages and disadvantages.
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4.2.1 Direct injection at inlet boundary

The most simple way which comes into mind is to impose the field directly at the inlet
boundary of the domain via setting the velocity field at each boundary face. For this pur-
pose the "timeVaryingMappedFixedValue" boundary condition is used which is provided
by OpenFOAM. The pressure is automatically adjusted due to the zero-gradient boundary
condition. Depending on the target resolution and the inlet boundary size, an appropriate
number of cells is needed, which have to be simulated with the CTRW generator. Due to the
quadratic growth of entries in the correlation matrix with the number of boundary faces and
the cubic dependence of the number of arithmetic operations for the Cholesky decomposi-
tion, special care has to be put on a reasonable number of cells needed for the inflow field
without unnecessary high computational effort. Figure 4.3 shows the velocity field gained
by using the injection method presented here. A decay of turbulence starting at the inlet
becomes obvious and the fluctuations become very small close to the outlet of the domain.
In comparison with the region close to the inlet small structures are not that dominant any-
more but the mean wind speed is still conserved.

Figure 4.3: Velocity field in the open channel gained by injecting the CTRW field at the
inlet of the domain.

Several properties are investigated across the channel for Gaussian as well as intermit-
tent CTRW fields. First the mean and the standard deviation (SD) are looked at in Figures
4.4a and 4.4b. The mean behaves constant throughout the whole channel which is also ex-
pected because of the incompressibility of the flow and the absence of walls and other ob-
jects within the domain which would lead to shear effects. In contrast to that the standard
deviation shows a different behavior. It is introduced at the inlet of the domain and decays
due to the conversion of turbulent kinetic to thermal energy by dissipation according to the
power law A(x − x0)−n with n = 0.55 and n = 0.69, for the Gaussian and intermittent simula-
tion case respectively. Those exponents fit well to the experimental values between 0.57 and
0.73 for decaying grid turbulence reported in the literature [20, 80].

As a measure of temporal similarity of the field in the domain and the original field gen-
erated by the CTRW model, the cross correlation of both fields is analysed. In particular the
maximum value of the cross correlation is of main interest here, which characterizes the sim-
ilarity with the original field at the time, where the field actually reaches the measurement
point. In Figure 4.4c the evolution of the maximal cross correlation is depicted together with
a power law fit similar to the standard deviation fit. The intermittent and Gaussian fields
show up a similar cross correlation decay along the channel which occurs due to the decay
of turbulence and general structure changes in the flow. The decaying exponents are much
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higher than for the standard deviation with n = 1.81 and n = 1.43 for Gaussian and intermit-
tent fields.

The spectra for the Gaussian fields at different distances up to 30 m from the inlet are
presented in Figure 4.4d together with the model spectrum of the original CTRW field be-
fore injection and the Kolmogorov -5/3 law. First a general decay across the channel on all
scales can be observed. For small distances from the inlet the turbulent kinetic energy in
large flow structures is maintained while a decay becomes visible for higher frequencies, i.e.
smaller structures. That means that the loss of variance from Figure 4.4b for small distances
mainly happens due to dissipation on small scales. On those scales local isotropy is reached
which is indicated by the -5/3-law, i.e. the inertial subrange. For larger distances also the
large scales start to decay and the inertial subrange extends. This means that the flow be-
comes even more isotropic, which is expected in natural decay processes. The spectra for
the intermittent wind field show a similar behavior and are therefore not presented here.

(a) (b)

(c) (d)

Figure 4.4: Evolution of (a) mean, (b) standard deviation, (c) maximal cross correlation
with the original CTRW field, and (d) spectra for the flow field downstream of the inlet.

Even though small differences in the evolution of the previously mentioned properties
are apperent, it is justified to assume that intermittency as an outcome of the CTRW model
has no significant impact, as long as the original Gaussian and intermittent field are compa-
rable in terms of one time statistics and two time correlations which are directly transferred
into the domain. The deviations occuring here are due to differences in the realizations of
the field, but those are expected to vanish if a significant amount of simulation cases are
ensemble averaged. However due to the high computational effort of each simulation such
an averaging is not an option in this work. To the authors best knowledge no similar studies
have been performed in such a setup and theoretical laws of decay are not known, especially
because the decay depends mainly on the imposed turbulence, which is not divergence free
by default, and therefore does not necessarily underly the rules for decaying divergence free
and isotropic turbulence.
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Focus on the increment statistics is put in Figures 4.5a and 4.5b, which show how the
increment skewness and increment kurtosis evolve at the centerline of the channel for both
field types. As desired, the inlet increment skewness and kurtosis of the Gaussian fields are
unchanged throughout the whole domain and no intermittency builds up. The intermittent
inflow fields are a bit more unstable in terms of skewness and kurtosis but more or less those
characterstics are transferred throughout the domain. In contrast to the increment skewness
the increment kurtosis shows up a significant initial jump, which might occur due to the not
fully evolved flow field and some instabilities close to the boundary. Despite of this anomaly
no drastic change can be observed for the distances studied here.

(a) (b)

Figure 4.5: Evolution of the maximum of (a) increment skewness, and (b) increment
kurtosis in the range of τ between 0.01 s and 10 s for the flow field downstream of the
actuator.

Even though the increment properties are well transported through the domain, inject-
ing velocity fields at the inlet of the domain has a big drawback, namely the high resolution
which has to be kept from the inlet until the object of interest within the domain. This can
result in a fairly high computational effort in some simulation cases. However if the grid
around the simulation object is resolved on a very high degree, the additional cells due to
this injection method might be negligible.

4.2.2 Injection via actuator

An alternative to the inlet method is an approach based on forces acting on the flow on a
slice perpendicular to the main stream direction. This slice is generally positioned behind
the inlet and induces a change in velocity u′ for each cell separately by means of pressure
jumps ∆p. The concept of the actuator method is well described in the work of Gilling et
al. [81] and illustrated in Figure 4.6. To achieve the desired velocity change the Bernoulli
equation is used to calculate the necessary pressure jump. The equations for the pressure
jump and the corresponding three dimensional forces

∆p = 1

2
ρ
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U∞+u′)2 −U 2

∞
)

= ρ
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2
u′

)
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hold, where the density ρ, the mean velocity U∞, the velocity components perpendicular to
the mean flow U∞,⊥ and u′

⊥, and the area of the actuator crossed by the corresponding cell
Ac have been used.

Because turbulence does not have to be resolved from the inlet until close to the sim-
ulation object of interest, a fine mesh in between can be avoided by this method. However it
should be taken care of the distance between simulation object and actuator, which should
not be too small in order to avoid disturbances. The actuator method finds use in simula-
tions where otherwise large meshes are needed and where turbulent structures are mainly
important close to the object like airfoils and other objects with a dense mesh in front of the
simulation object.

Figure 4.6: Working principle of an actuator (Picture from Gilling et al.[81]).

Figure 4.7 shows the velocity field in the channel domain, where a constant velocity,
usually the target mean velocity, is injected at the inlet and the fluctuations from the CTRW
generator are superimposed 4 m downstream of the inlet by an actuator. It can be observed
that the structures are a bit larger compared to injecting the CTRW fields at the inlet, shown
in Figure 4.3, even though the original CTRW fields are the same.
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Figure 4.7: Velocity field in the open channel gained by superimposing the CTRW field
onto the mean field by an actuator (black line) in the middle of the domain.

Again, the wind field is studied in Figure 4.8 with respect to its basic properties, namely
mean, standard deviation, maximal cross correlations with the original CTRW field and
power spectra.

The mean value again starts almost at the same value for intermittent and Gaussian
fields at the actuator position as it also was the case for the inlet injection method. Again
it does not change much throughout the domain and the differences can be explained by
variations in the realizations used here.

The standard deviation and the maximal cross correlation in Figures 4.8b and 4.8c
show a monotonous decay which can be explained in a similar way as for the properties
observed by injecting the fields at the inlet boundary. But in contrast to that a ramp up be-
fore the decay can be noticed where the actual turbulence is created by the local forces at the
actuator position. Because the forces introduced here lead to a smooth transition between
stationary and fluctuating flow fields no sudden jump can occur. As for the turbulence injec-
tion at the inlet boundary the standard deviation can be fitted by a power law curve, but with
slightly higher decay exponents n = 0.77 and 0.73 for the Gaussian and intermittent cases.
The maximal cross correlation can be fitted by decay exponents n = 1.81 and n = 1.83. In
comparison with the first injection method, the actuator leads to a significant slightly lesser
standard deviation as well as cross correlation close to the actuator. However far behind the
actuator those differences almost compensate and only a small difference can be noticed.
It should also be noticed that an increased standard deviation and cross correlation can be
observed upstream of the actuator. While the standard deviation is relatively small, the cross
correlation is pretty high with a value of 0.25 at the inlet position which shows that the actu-
ator has a high influence on the flow in front of it.

The spectra show a different behavior than for the injection at the inlet boundary.
Closely behind the actuator, in the ramp up region, the whole spectrum lies below the orig-
inal one. At around 4.4 m behind the inlet, i.e. 0.4 m behind the actuator, the spectrum
reaches its maximum, i.e. the energy is also maximal. Further downstream it decays again,
but the large scales are not affected by this decay. However compared to the inlet injection
method, this decay is very fast and the small scale fluctuations are almost not present any-
more at large distances. This also explains the bigger structures observed in Figure 4.7 and
the slightly lesser standard deviation than for the inlet injection method. In addition to it,
low energy sinc-like mesh effects become visible at high frequencies, because the energy
in the turbulence is to small to hide them. An important observation can be made if the
comparison with the Kolmogorov -5/3-law is made. In essence, the inertial subrange is not
present at all, but a region with a much steeper slope, especially for large distances from the
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actuator. In other words homogenous isotropic turbulence is not achieved throughout the
whole channel, which also disqualifies this method, at least for this setup, if one is interested
in the evolution of such well known flow fields.

(a) (b)

(c) (d)

Figure 4.8: Evolution of (a) mean, (b) standard deviation, (c) maximal cross correlation
with the original CTRW field, and (d) spectra for the flow field downstream of the inlet.
The vertical dashed lines mark the position of the actuator.

The increment skewness and kurtosis behave quite different to the previous injection
method. The increment skewness is far away from being constant and reaches pretty large
negative values of -0.7 behind the actuator. This skewness change can be observed not only
for the intermittent case but also for the Gaussian case, which both should have a zero skew-
ness according to the CTRW model. This increase of skewness is a good indicator for a
change of the type of turbulence, i.e. the CTRW fluctuations might change to a new type of
turbulence with different properties. A negative skewness is also predicted for homogenous
locally isotropic fields according to Kolmogorov’s theory, but because no inertial subrange is
achieved in the spectra, this conclusion has to be dropped.

The increment kurtosis for Gaussian and intermittent fields both increase behind the
actuator and satisfy to a relatively small level around 3.9 and 4.3. The strong intermittency
of the original field is visible only in a very small spatial range behind the actuator where a
peak occurs at 4.4 m. A very steep decay follows. It can be concluded that it becomes impos-
sible to keep the high increment kurtosis of the original CTRW field in the domain without
an alteration of the actuator method presented here. Interestingly the introduced increment
kurtosis can also be observed upstream of the actuator which may come hand in hand with
the increased cross correlation in Figure 4.8c. This indicates that the fluctuations upstream
of the actuator are very similar to the original CTRW fields.
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(a) (b)

Figure 4.9: Evolution of the maximum of (a) increment skewness, and (b) increment
kurtosis in the range of τ between 0.01 s and 10 s for the flow field downstream of the
actuator. The vertical dashed lines mark the position of the actuator.

4.3 The Evolution Towards Isotropy

Another interesting property can be studied by investigating the evolution of the wind field
along the channel without energy production, i.e. without shear. Particularly in this section
the isotropy is in the focus. The isotropic state, i.e. 〈u2

x〉 = 〈u2
y〉 = 〈u2

z〉, is the result of all
natural decaying processes as Kolmogorov already predicted. The most straight forward way
to describe the isotropy evolution is found by investigating the space dependence of the
normalized anisotropy tensor bi j = 〈ui u j 〉/〈uk uk〉−δi j /3, where the Einstein notation has
been used. But a much more enlightening, coordinate independent, representation can be
found by using the two invariants of bi j , namely η and ξ which are defined as

η2 = b2
i i =

1

3

(
λ2

1 +λ1λ2 +λ2
2

)
(4.4)

ξ3 = b3
i i =−1

2
λ1λ2 (λ1 +λ2) (4.5)

and which build up the so called Lumley triangle, as shown in Figure 4.10. In this context λi

are the eigenvalues of b.

Figure 4.10: Lumley triangle.

This triangle illustrates the different states a system can have, i.e. where the eigen-
values of the Reynolds stresses are non-negative and real. The corners of the triangle are
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defined by ξ = −1
6 and η = 1

6 for two-component axisymmetric turbulence (one zero eigen-
value of the Reynolds stress tensor), ξ = 1

3 and η = 1
3 for one-component turbulence (two

zero eigenvalues of the Reynolds stress tensor) and the isotropic state at the origin η= ξ= 0.
At some point every decaying process without shear will converge to the isotropic state. The
straight borders of the triangle, where η = ξ or η = −ξ holds, correspond to axisymmetric
flows with one large or one small eigenvalue.

In general there are infinite possibilities to reach isotropy and there are also many dif-
ferent models. Those models are based on the evolution equation for the anisotropy tensor
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where the functions f1(ξ,η,Re) and f2(ξ,η,Re) are model specific. For the Rotta model with
a linear evolution to the origin of the ξ− η diagram the functions are constant, namely
f1 = −2CR with CR > 1 and f2 = 0. However this linear behavior is unphysical and a much
better description is given by the model of Sarkar and Speziale [82] who used f1 =−3.4 and
f2 = 4.2. Even if existing models seemingly give mathematically correct results for the evo-
lution of isotropy, real world experiments and DNS simulations can differ a lot from those
models because important characteristics, e.g. spectra, which are not described by the
Reynolds stresses are omitted in Equation 4.6. Additionally experiments which give insight
of the inner part of the Lumley triangle are not known which makes it difficult to find param-
eters which describe well the decaying process.

In the scope of this work a Gaussian CTRW flow in a high resolution channel with a size
of 12πm×2πm×2πm and a resolution of 800×128×128 cells has been studied along the
centerline, where no shear has been taken into account. Figure 4.11 shows the zoomed in
right part of the Lumley triangle and three different trajectories: the simulation, the model
of Sarkar and Speziale, and a fit to the simulation data by means of Equation 4.6. To ensure
comparability, the initial conditions of the models are adjusted to the initial conditions of the
simulation. The red arrow points into the direction of the evolution of the graph as the flow
moves across the channel. At first glance, the differences of the simulation and the model of
Sarkar and Speziale are quite big, but the curves are bended into the same direction and the
axisymmetric state η= ξ is preferred by both flows. The big differences can be explained by
the aforementioned spectral (and higher order) freedom which leads to non-unique trajec-
tories in this plot. However the simulated flow can still be described by the model Equation
4.6, where the model parameters have been chosen as f1 = −4 and f2 = 30. Low Reynolds
number DNS simulations by Kim et al [83] show a similar behaviour as in the simulation
performed here, but small deviations occur due to a fully developed channel flow in the first
case and the difference in the data extraction method, where the data is achieved not along
the centerline of the channel but from different points across the channel with varying y+. It
should be emphasized that the most axisymmetric state in the fully developed channel flow
is obtained at the centerline of the channel, which is seemingly close to the results at the end
of the channel of the CTRW simulation.
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Figure 4.11: Evolution of the simulated channel flow in the Lumley triangle, the model
by Sarkar and Speziale ( f1 = −3.4, f2 = 4.2) and a best fit to the simulation data
( f1 =−4, f2 = 30). The red arrow points into the direction of the evolution of the graph
as the flow moves across the channel.

4.4 Effect of Non-Turbulent Boundary

CFD simulations with turbulent inflow are in general very expensive. The first reason for the
high expense is the demand on a high resolution of the CFD domain between the position of
turbulence generation and the actual simulation object. This is due to the needed ability to
sustain the small scales of turbulence up to the important objects. Second, the inflow gen-
eration procedure can be very time and resource consuming, especially if the inflow patch
is very big, in terms of the number of cells, and the needed time interval very long. Field
generations by spectral models are based on computational expensive inverse Fourier trans-
forms which can be made much more effective by a reduction of the space dimensions or
the number of time instants needed. For the CTRW field the number of time instants is not
a big problem because there is just a linear relation between time steps and the number of
computational operations. The main computational effort is put into the correlation struc-
ture which is realized by the Cholesky decomposition. This decomposition demands for a
number of operations proportional to n3, where n is the number of grid points on the inflow
patch. If a quadratic inflow patch is assumed and the size or the resolution is doubled in each
direction this ends in a multiplication with a factor of 43 = 64. This is the reason why the size
of the inflow patch could be reduced for a much faster computation. Although seemingly a
smaller inlet patch gives a big advantage in terms of computational resources needed, the
field characteristics will evolve differently to a fully turbulent inlet patch. The smaller the
inlet patch, the bigger the differences.

In the following different properties of the flow are analysed along the centerline of the
channel for three inflow patches with different sizes where Gaussian and intermittent turbu-
lence is injected. Those inflow patches are circularly shaped and located in the center of the
inlet, which is exemplary shown in Figure 4.12.
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Figure 4.12: Shape of the domain with the turbulent inlet patch in red.

The large inflow patch (I1) has a radius of 3 m, so it almost extends to the boundaries
of the channel, and the other patches are smaller with a radius of 2 m (I2), 1 m (I3) and 0.5 m
(I4). Figure 4.13 illustrates these flows at a slice through the center of the domain from the
side. It is characterized by a mean velocity of u = 1m/s, a standard deviation of σ= 0.2m/s
a well described PSD with ωc = 1s−1, a correlation length of r = 0.5m and a Gaussian or in-
termittent increment distribution, where for the intermittent case α = 0.6 and C = 35s. For
both inflow field types the increment distribution and the increment kurtosis (before injec-
tion into the domain) are plotted in Figure 4.14 where both fields are clearly distinguishable.

Figure 4.13: Snapshots of simulations with turbulent inlet areas with radius 0.5, 1, 2,
and 3 m (from top to bottom).
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(a) (b)

Figure 4.14: (a) Distribution of normalized velocity increments for different time de-
lays, and (b) increment kurtosis dependent on the time delay τ before injection into
the domain.

The part of the inflow boundary which is not turbulent contributes a uniform inflow
with a constant velocity of 1m/s such that no mean shear can lead to an energy production.
As a consequence a decay of turbulence is expected. The properties looked at are in partic-
ular the mean velocity, standard deviation, PSD, the kurtosis and skewness of the increment
distribution, as well as the maximal cross correlation with the inflow.

First the one time characteristics are studied in Figure 4.15, i.e. mean and standard
deviation. Due to no significant differences for the Gaussian and intermittent cases, only the
Gaussian case is shown here.

At first glance, it can be seen that the mean velocity in Figure 4.15a is not constant
through the whole domain, but it changes more and more with decreasing turbulent inlet
size. The most interesting case is the case with the smallest inlet size, because the change
in the mean velocity is strongest in this case. In the first 3 meters the velocity is constantly
dropping before it increases again. This behavior can be explained by taking into account
the mixing with the surrounding constant flow.

In contrast to the mean, the standard deviation of all cases is monotonously dropping
with increasing distance from the inlet, which is depicted in Figure 4.15b. This is clear be-
cause no turbulent energy is injected by shear or other effects and the flow loses turbulent
kinetic energy due to dissipation. In addition to that differences between the different inlet
sizes can be observed. The smallest inlet also leads to the fastest energy dissipation because
the surrounding not turbulent flow is mixed with the turbulent flow and the resulting flow
at the centerline has to be less turbulent than without this mixing. Vice versa the surround-
ing flow undergoes a transition from non-turbulent to turbulent behavior. However because
only measurements at the centerline are done, this effect is not studied in more detail.
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(a) (b)

Figure 4.15: Evolution of (a) mean, and (b) standard deviation for all four turbulent
inlet sizes.

Another perspective can be gained by performing the Fourier transform on the original
time series. The achieved compensated PSD’s E(ω)ω5/3 for all four inlet types are shown in
Figure 4.16 at different positions of the centerline. Because there is no significant difference
for Gaussian and intermittent inflow, only the spectra for the Gaussian case are shown.

In the region close to the inlet the energy content for all patch sizes is equivalent, be-
cause the injected fields are the same and mixing with the steady flow does not play a role
yet. But further downstream, a 5/3 region appears and the total energy content decreases
with smaller inlet patches as already seen for the Reynolds stresses. This energy loss hap-
pens on all scales but it is biggest on the smallest scales, i.e. high frequencies. An additional
effect is seen if the inertial subrange, i.e. the flat part of the spectra, is looked at at the dif-
ferent positions. This subrange becomes larger and larger for all inlet sizes while the flow
propagates downstream. Furthermore the energy content in the this subrange is also stable
as soon it is reached.

(a) (b)

(c) (d)

Figure 4.16: PSD of velocity for all four turbulent inlet sizes at (a) first cell, (b)5 m, (c)
20 m, and (d) 40 m downstream of the inlet.

Next, the evolution of the third and fourth moments of increment distributions is dis-
cussed. The increment kurtosis at several positions behind the inlet on different time scales



4.4 Effect of Non-Turbulent Boundary 89

τ are illustrated in Figures 4.17 and 4.18 for Gaussian and non-Gaussian inflows. The origi-
nal field with a Gaussian increment distribution has a zero skewness and a kurtosis of three
which is also seen close to the inlet. For increasing distances a bump appears which reaches
its maximum magnitude between 50ms and 100ms for the distances analysed here. Espe-
cially the smallest inlet dominates here and shows up highest increment kurtosis throughout
the whole time scale range even though close to the inlet all inlet show the same Gaussian
behavior. Even at the end of the channel no relaxation to the Gaussian state can be seen for
any of the inlets but the case with the largest inlet is very close to it. So here is clearly visible
that the flow builds up intermittent structures and it’s own turbulence just by propagating
through the channel. The structures become most dominant for the cases where a strong
mixing with the surrounding flow is present, i.e. for the small turbulent inlets.

For the non-Gaussian inflow simulations the small turbulent inlet simulation shows a
slower decay and even an increase in the increment kurtosis of larger time scales close to
the inlet. However with increasing distance from the inlet the larger inlet cases contain the
highest increment kurtosis and it reaches the outlet without big differences to the inflow.

(a) (b)

(c) (d)

Figure 4.17: Increment kurtosis of velocity for all four turbulent inlet sizes with Gaus-
sian inflow at (a) first cell, (b)5 m, (c) 20 m, and (d) 40 m downstream of the inlet.
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(a) (b)

(c) (d)

Figure 4.18: Increment kurtosis of velocity for all four turbulent inlet sizes with non-
Gaussian inflow at (a) first cell, (b)5 m, (c) 20 m, and (d) 40 m downstream of the inlet.

If now the maxima for the increment kurtosis are tracked over the distance from the
inlet in Figure 4.19, the increment kurtosis within the domain is obviously much higher for
the intermittent case than for the Gaussian one, especially for larger inlet sizes. Here it has
to be paid attention to the different ordinate axis ranges of the plots. The Gaussian inflow
in Figure 4.19a builds up increment kurtosis depending on the inlet size. Due to the mixing
with the environmental flow the smallest inlet size builds up highest increment kurtosis and
all turbulences decay again with increasing distances from the inlet. Close to the outlet of
the domain the original increment kurtosis is regained for all cases except for the smallest
turbulent inlet size, which probably needs a longer channel to relax completely.

For the intermittent inflow in Figure 4.19b the initial high increment kurtosis is even
more increased in the first meter of the domain, followed by a fast drop before it slowly in-
creases again up to the range of the original value. The only exception occurs for the smallest
inlet size where the kurtosis satisfies after a small maximum is reached between 5 and 10 m
downstream of the inlet. So for that case additional turbulence builds up before it decays
again. Interestingly, the shapes for the increment kurtosis with Gaussian and intermittent
inflow are very similar for the smallest inlet which emphasizes that another type of turbu-
lence dominates here, which originates from the fluctuating jet.
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(a) (b)

Figure 4.19: Maximal increment kurtosis for (a) Gaussian and (b) intermittent inflow.

The maximal magnitude of the increment skewness in Figure 4.20 is very similar for
Gaussian and intermittent inflows. No significant differences occur, which is also clear be-
cause the CTRW model only changes the increment kurtosis and not the skewness. Inde-
pendent of the inflow type, the skewness reaches the largest magnitude for the smallest inlet
patch. Again the mixing effect with the surrounding flow becomes visible here, which is
strongest for smallest turbulent inlets. If a larger turbulent inlet is taken the flow at the cen-
terline can almost keep the zero skewness from the CTRW fields due to the missing mixture
with the environmental flow. However sooner or later all cases show a convergence to zero
at larger distances from the inlet.

(a) (b)

Figure 4.20: Maximal increment skewness for (a) Gaussian and (b) intermittent inflow.

Looking back at the results achieved so far the following can be concluded. If inter-
mittency is understood as an intermediate state between laminar flow and unordered flow
patterns, which appears due to mixing, all results gained here are also comprehensible and
the occurrence of intermittency in the flow even for non-intermittent inflow is logical. The
region with most mixing also contains highest intermittency, and for the channel flow stud-
ied here mixing at the centerline occurs very early for the small turbulent inlet.

To achieve an overview of how well the inlet turbulence is conserved while propagat-
ing through the domain, the maximal cross correlation with the inlet turbulence is studied in
Figure 4.21. First a clear drop with the distance from the inlet is obvious, which occurs due to
the change of turbulent structures while they are moving. The mixing with the surrounding
non-turbulent flow also plays a role here. Surprisingly, the smallest turbulent inflow patch
shows largest cross correlation throughout the domain although the variance drops fastest.
That means that the overall structures in the turbulence change very slowly while the fluctu-
ation amplitude decreases fast.
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Figure 4.21: Maximal cross correlation of velocity field with the inflow at different dis-
tances from the inlet.



Chapter 5

Simulation of Airfoils

After a very first insight is gained into the flow dynamics of CTRW fields in an open channel,
a more wind energy related approach is followed by a simulation of a rotor blade airfoil in
order to catch important aspects of the interaction of the airfoil and Gaussian as well as
intermittent flow fields. CFD has been used as a tool for these studies because it allows to
simulate the whole turbulent wind field from the region where the flow field is injected up
to the airfoil, but also the wake of the airfoil is resolved. A simulation of the DU 91-W2-250
airfoil is performed, because of its well studied characteristics across several publications
from basic studies [84, 85, 86], up to studies, where vortex generators or leading edge slats
have been attached [87, 88], or dynamic stall is considered [89].

The main focus of this work lies on the evaluation of the load dynamics under turbulent
Gaussian and intermittent inflow conditions, where the comparability of both types of fields
has to be assured, i.e. mean value, standard deviation and spectral statistics should be as
similar as possible. In general this is not an easy task, because several obstacles have to
be overcome. One of these is that the boundary layer of the airfoil has to be fully resolved
up to the viscous sublayer, where viscous stresses are dominating. In other words, the first
cell at the airfoil has to have a height of the dimensionless wall distance y+ = 1, in order to
obtain decent simulation results without the need of wall models [20]. Due to this very fine
mesh close to the airfoil the inflow field should also be highly resolved if the effect of small
turbulence structures should be taken into account. Furthermore the overall number of cells
in the domain is usually strongly connected to the resolution close to the airfoil, because
cell sizes of neighbouring cells should not differ by more than a factor of 1.4, i.e. the total
number of cells becomes very big. In addition to it, the time step ∆t has to be very small
with a small cell size in order to achieve stable and accurate results. The time step is limited
by the Courant-Friedrichs-Lewy-number

CFL =∆t
3∑

i=1

ui

∆xi
(5.1)

with the cell size∆xi and the velocity component ui in the direction i ∈ {x, y, z}. This charac-
teristic number, which is often used for stability analysis, should be less than CFLmax = 1 for
explicit solvers. Typically for turbulent simulation cases other definitions based on the tur-
bulent kinetic energy, like CFL =p

k∆t/∆x < CFLmax = 1/20 for DNS in a cubic domain, are
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used in practice [20]. This condition predefines the upper limit of the turbulence intensity
for any kind of CFD simulations and should thereby not be neglected.

Due to the high resolution of the performed airfoil simulations, the involved small time
step of down to 10−4 s and the related high computational effort, the total simulated time is
restricted to 60 s. This leads to the problem of convergence of wind fields, i.e. a minimal
simulation time is needed to achieve the target statistics, which are set by the model param-
eters. This issue raises in difficulty if the goal is the convergence of intermittent wind fields,
due to the fact that introducing waiting times distorts the statistics by a considerable degree
on smaller time scales. This distortion can only be resolved by much longer time series or by
reducing the intermittency. Because longer time series are no option on account of limited
computational power, the degree of intermittency has to be reduced by adjusting the model
parametersα or C . Therefore very big differences for the increment statistics between Gaus-
sian and intermittent wind fields are not expected. Furthermore an additional intermittency
loss results from the decay of wind fields in front of the airfoil.

With the previously mentioned aspects in mind two different parameter sets have been
used for the airfoil simulations. Both sets have in common the mean velocity u = 15 ms−1,
standard deviation σ= 1.5 ms−1, correlation length r = 0.5 m, time step ∆t = 0.01 s, simula-
tion time t = 60 s, and the frequency for the -5/3-law ωc = 18.0618Hz. Additionally, no shear
is assumed and the energy spectrum has been corrected for both to the model spectrum to
be identical for intermittent and Gaussian fields. While one field is Gaussian the other is in-
termittent with the intermittency parameters α= 0.6.

The time series, one point statistics, and the common spectrum of both fields are
shown in Figures 5.1, 5.2a, and 5.2b. While the one or two time statistics are not distinguish-
able just by pure examination of the time series in Figure 5.1, the differences become more
pronounced in the pdf, shown in Figure 5.2a. Compared to the intermittent case the Gaus-
sian wind field exhibits a smoother distribution of wind velocities with low variety even for
the tails. The origin of these differences lies in the aforementioned short simulation time and
the convergence problems of the wind field statistics for intermittent fields. For the corrected
identical spectrum of both fields in Figure 5.2b holds the -5/3 slope at fc = 2πωc ≈ 2.86Hz.

(a) (b)

Figure 5.1: Time series of (a) Gaussian and (b) intermittent inflow used for airfoil sim-
ulations.
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(a) (b)

Figure 5.2: (a) PDF and (b) common spectrum of Gaussian and intermittent inflow.

Further differences of both fields become visible if the increment statistics are investi-
gated by plotting the increment pdf and the increment kurtosis over a range of time incre-
ments τ. Figure 5.3a illustrates the heavy tailed increment distribution for small timescales
τ up to the range of almost a second. The fast drop of intermittency with increasing scales
becomes clear in Figure 5.3b where increments of Gaussian and intermittent fields are only
slightly different for τ > 1 s. Here one can also guess that changing the intermittency pa-
rameter α increases in particular the increment kurtosis on small scales but the effect on
larger scales is very small. It becomes practically impossible to achieve wind fields with high
increment kurtosis on a broad range of scales with the background of obtaining converged
statistics. The intermittency study done in section 3.3.1 also supports this statement. How-
ever the increment kurtosis has realistic values for atmospheric turbulence [90] where values
up to 12 are measured.

(a) (b)

Figure 5.3: (a) Increment PDF’s and (b) increment kurtosis of Gaussian and intermit-
tent inflow for different time increments τ.

After generating the wind fields, CFD can be used to investigate the effect of intermit-
tency on forces acting on the DU profile. Herefore a quadratic mesh with 3.086 million cells
and 80 m×80 m is used where the airfoil with chord length 1 m is located in its center. Figure
5.4a shows the whole mesh used for the simulation. where on the left border a steady inflow
is introduced to the domain. For the outflow on the right side a zero gradient condition is
used for the velocity. All other sides underly a no-slip condition, i.e. no shear is taken into
account and the walls are impermeable. In the center, where the airfoil is located, the mesh
is highly resolved, while it is very coarse far away from the center in the corners of the do-
main, which are not important for forces on the airfoil.

Figure 5.4b illustrates the zoomed in center of the domain where different meshes are
visible. The inner circular mesh contains the airfoil and can be rotated to simulate different
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AOA’s. The outer mesh around the circular part is fixed and is connected to the circular mesh
via an Arbitrary Mesh Interface (AMI). 1.5 chord lengths in front of the airfoil an actuator,
shown in red, is used to superimpose fluctuations from the CTRW model onto the steady
inflow. The alternative, where fluctuations are directly fed into the domain by a turbulent
inflow patch, has been rejected due to the need of very fine grid cells up to the airfoil to keep
the turbulence with its characteristics alive. Furthermore, additional computational time
would have been taken into account where the turbulence has to overcome the distance be-
tween the inlet and the airfoil. Simulations with such an increase in computational effort are
not feasible and therefore the actuator method is preferred.

The fine grid close the the airfoil, shown in Figure 5.4c is resolved down to y+ ≈ 0.4
such that no wall function is needed to simulate the flow close to the airfoil boundary.

(a) (b)

(c)

Figure 5.4: Mesh used for CFD simulations of the 91-W2-250 Airfoil (a) in the farfield,
(b) at the center with actuator in red, and (c) close to the arfoil.

For all simulations the Improved Delayed Detached Eddy Simulation (IDDES) method
provided by OpenFOAM and based on the DDES method from Spalart et al. [91] is used
together with the PIMPLE algorithm to be able to resolve the small turbulent structures in an
accurate way. Furthermore AOA’s from 0° to 18° have been simulated in steps of 2° such that
for Gaussian and intermittent wind fields 40 simulations have been performed in total with
the wind fields described before. Additionally the same simulations have been repeated with
fully correlated wind fields where r →∞ because those fields show much more stability in
terms of conservation of input properties as seen in the next sections.



97

5.0.1 Simulation with Partially Correlated Inflow

For comparison reasons the airfoil has been simulated under constant inflow conditions
without injection of turbulence. For different AOA’s it can be seen in Figure 5.5 that a speed
up of velocity appears on the pressure side of the airfoil while the suction side can be related
to a speed down, at least close to the leading edge. With increasing AOA the separation point
moves more and more into the direction of the leading edge and the wake effects become
more clear.

(a) (b)

(c) (d)

Figure 5.5: Snapshot of wind field in x direction for airfoil simulations with constant
inflow for AOA’s of (a) 0°, (b) 8°, (c) 12°, and (d) 18°.

Next the airfoil has been simulated with Gaussian and intermittent wind fields defined
by the aforementioned parameters where the correlation length is r = 0.5 m. Figures 5.6
and 5.7 are taken at the same time instance and give an insight of the wind structures and
the flow behavior around the airfoil for different AOA’s. What becomes obvious here is that
the flow field in front of the airfoil is not influenced much by its orientation but the wake is
still strongly visible. Regions of speeding up and slowing down can also be perceived close
to the leading edge. A small area upstream of the actuator shows strong feedback effects
with the input field and differs a lot from the actual fields which are generated. The reason
here is the big difference between the constant field in front of the actuator and the injected
strong turbulence which makes an abrupt change of flow unavoidable. The PIMPLE algo-
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rithm makes this transition spatially as compact as possible under consideration of fulfilling
the Navier Stokes equations. Therefore in front of the actuator neither the large structures
from the downstram region nor an instant change of velocities is expected. Structural differ-
ences between Gaussian and intermittent wind fields are also not visible due to similar one
point statistics and equal spectra.

(a) (b)

(c) (d)

Figure 5.6: Snapshot of wind field in x direction for airfoil simulations with partially
correlated Gaussian inflow and r = 0.5 m for AOA’s of (a) 0°, (b) 8°, (c) 12°, and (d) 18°.
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(a) (b)

(c) (d)

Figure 5.7: Snapshot of wind field in x direction for airfoil simulations with intermittent
inflow and r = 0.5 m for AOA’s of (a) 0°, (b) 8°, (c) 12°, and (d) 18°.

With all three different types of inflows done the evolution of wind properties can be
studied and compared as it is done in Figure 5.8. Four different properties are compared
at different positions in front of the leading edge up to the point where the turbulence is
injected, namely the mean wind speed, the standard deviation, the wind speed increment
kurtosis and the maximum of cross correlations with the original CTRW field.

The mean wind speed shown in Figure 5.8a is almost identical 2.5 m in front of the air-
foil but evolves in separate ways for the turbulent fields and the case where no turbulence
has been injected. However close to the airfoil the values differ by less than 2 %. The different
evolutions are not explainable in detail but a reason might be that the turbulence is domi-
nating the flow up to the point where the geometry of the airfoil decelerates the flow field by
a considerable amount, i.e. around 0.3 m in front of the leading edge. It seems that the mean
value is more stable in a turbulent flow than in a flow without turbulence. Interestingly the
effect of the injected forces at the actuator can also be perceived in the mean velocity before
the actuator is actually reached.

The standard deviation in Figure 5.8b is zero everywhere for the non turbulent case
because the flow is not changing at all after a steady state is reached. For the turbulent cases
it starts with a much smaller value than defined by the model parameter σ = 1.5 m/s. As
already seen in the channel simulation in section 4.2.2 the flow becomes turbulent with an
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increase of the standard deviation in front of the actuator. At the injection plane the standard
deviation is higher than for the original field and increases even more to almost 3 m/s while
approaching the airfoil. Finally a decaying process occurs and the standard deviation drops
to approximately 2 m/s at the leading edge. This is still higher than defined in the model.

The evolution of wind increment kurtosis is shown in Figure 5.8c. Here the maximum
and minimum kurtosis over the whole range of τ are plotted and the area in between is
shaded. While the Gaussian inflow has an almost constant kurtosis around three everywhere,
the intermittent flow shows big differences between the injection area and the leading edge.
The discrepancies have their origin in the steep drop of intermittency at 1.5 m before the
airfoil which is related to the. It can also be noted that the kurtosis and with it intermittency
drops over the whole range of distances.

Finally the maximum cross correlation between the turbulent fields in the domain and
the original CTRW fields resulting from the model is plotted in Figure 5.8d. As expected from
section 4.2.2 the correlation is very small throughout the measured region and the Gaussian
and intermittent fields behave similar due to their similar characteristics at the inflow. Close
to the actuator the maximal cross correlation is only 30% then it builds up to approximately
45% and eventually it drops to less than 20% close to the leading edge of the airfoil. Interest-
ingly the maximal cross correlation shows a maximum at 1.5 m in front of the airfoil, while
the increment kurtosis of the intermittent case is continuously falling. But the steep drop at
smaller distances seems to be connected to the drop of the maximal cross correlation.

(a) (b)

(c) (d)

Figure 5.8: Evolution of (a) mean, (b) standard deviation, (c) range of increment kurto-
sis for τ between 0.01 s and 10 s, and (d) maximal cross correlation with the inflow field
for the flow field at the centerline in front of the airfoil.

After the wind flow has been characterized, the forces on the airfoil, i.e. drag and lift,
are brought into focus. Because of the linear relation of forces and corresponding non-
dimensional lift and drag coefficients cl and cd , it is sufficient to look at the coefficients
where the advantage is the gained comparability. For an AOA of 4° excerpts of time series



101

of both coefficients for Gaussian as well as intermittent wind fields are shown in Figure 5.9.

(a) (b)

(c) (d)

Figure 5.9: Time series of lift and drag force coefficients at 4° AOA for (a,b) Gaussian,
and (c,d) intermittent inflow fields.

Their mean values and standard deviations are plotted in Figure 5.10 and 5.11. It can
be said that both, the mean and standard deviation, do not show big differences between
Gaussian and intermittent inflow cases for almost all AOA’s except for 18°. There the devia-
tion is quite big due to general difficulties of simulations for high AOA and the complex flow
in the wake of the airfoil. The non-turbulent case shows up an almost zero standard devi-
ation up to 16° and a slight increase for 18°. Contrary to the standard deviation, the mean
value follows the same trend as for the turbulent cases for small angles, but from 4° onwards
the average force coefficients of the turbulent cases predominate.

(a) (b)

Figure 5.10: (a) Mean lift, and (b) mean drag coefficients for different AOA’s for con-
stant, Gaussian and intermittent inflow.
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(a) (b)

Figure 5.11: (a) Standard deviation of lift, and (b) drag coefficients for different AOA’s
for constant, Gaussian and intermittent inflow.

Now the kurtosis of lift and drag force increments for Gaussian and intermittent fields
is looked at in Figures 5.12 and 5.13. For all angles the kurtosis for intermittent inflow is
slightly larger than for Gaussian inflow. A reason for this can be the small difference already
seen in Figure 5.8c at the closest point of the leading edge. Interestingly the same inflow leads
to deviating results for the angles shown here, even if the deviations are not that big. The
drag also shows an increased kurtosis compared to the lift. Additionally, the kurtosis of force
increments for the intermittent cases is also higher than the kurtosis of wind increments
close to the leading edge. This is an indication that the forces are not only influenced by the
wind field very close to the airfoil but also by points further away. Moreover only the wind
field at the line directly in front of the leading edge has been analysed and not the ones above
or below it, where additional shear could increase the increment kurtosis. The shape of the
airfoil might also amplify the kurtosis by a considerable amount.

(a) (b)

(c) (d)

Figure 5.12: Increment kurtosis of the lift forces for Gaussian and intermittent inflows
with AOA’s of (a) 0°, (b) 8°, (c) 12°, and (d) 18°.
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(a) (b)

(c) (d)

Figure 5.13: Increment kurtosis of the drag forces for Gaussian and intermittent inflows
with AOA’s of (a) 0°, (b) 8°, (c) 12°, and (d) 18°.

Finally to be able to make a statement about fatigue loads on the rotor blade the EFL
have been calculated for all three cases shown here in Figure 5.14. Again the turbulent cases
show much higher activity than the simulations with constant inflow, as expected. Further-
more the loads on the airfoil with intermittent inflow is significantly higher for all AOA’s for
the lift as well as the drag. A minimal EFL difference between Gaussian and intermittent
conditions for the lift and the drag is measured at an AOA of 10° where both differ by only
2%. At an AOA of 16° the lift and the drag show the biggest deviation with 7% and 15%. There
are two different ways to interprete the relatively big difference in the EFL. One reason could
originate from the difference in the standard deviation, because a higher standard devia-
tion leads to bigger load ranges which are counted for the EFL. The second reason for the
deviating loads could be the differences in the increment kurtosis between Gaussian and in-
termittent wind fields. However at this point no clear separation of both effects can be done,
especially because the size of intermittent structures is unknown, and more simplifications
have to be implied in the studies.

(a) (b)

Figure 5.14: EFL of the (a) the lift, and (b) the drag coefficient.
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5.0.2 Simulation with Fully Correlated Inflow

Due to the fact that the lift and drag are strongly affected by the inflow and that even small
differences in the inflow might be relevant for the results achieved before, more comparable
inflow fields shall be used as a basis for the former studies. For this reason wind fields are
generated with the same parameter set as in the last section but with the correlation length
r →∞, i.e. all points in the inflow plane exhibit the same time series. In the following this is
referred as a fully correlated wind field. Furthermore the one point statistics of the used time
series have been corrected by the Lambert W algorithm presented in section 3.4.3 to be for
both fields as Gaussian as possible while the energy spectrum is kept nearly identical.

Figures 5.15 and 5.16 give an insight of the structure of the generated fields at the same
instance of time for AOA of 0°, 8°, 12° and 18°. Similar to the fields from the previous section
the flow fields shown here are not influenced that much by the airfoil except in the wake.

(a) (b)

(c) (d)

Figure 5.15: Pictures of airfoil simulations with fully correlated Gaussian inflow with
AOA’s of (a) 0°, (b) 8°, (c) 12°, and (d) 18°.
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(a) (b)

(c) (d)

Figure 5.16: Pictures of airfoil simulations with fully correlated intermittent inflow with
AOA’s of (a) 0°, (b) 8°, (c) 12°, and (d) 18°.

Again different properties of the flow field are looked at in Figure 5.17, namely the
mean, standard deviation, velocity increment kurtosis, and maximal cross correlation with
the original field, respectively. The simulation where no turbulence has been injected is
again used as a reference. The statistically almost identical inflow for the Gaussian and inter-
mittent time series make the quantities evolve in exactly the same manner. The only differ-
ence is the increment kurtosis shown in Figure 5.17c which is for the Gaussian case around
three and for the intermittent case clearly above three everywhere. The full correlation in
the inflow plane is responsible for the comparatively high increment kurtosis even a further
distance away from the actuator.

Looking at the standard deviation in Figure 5.17b reveals a totally different trend for
its evolution than for the previous simulations with limited correlation length. It does not
build up to 3 m/s but only to 0.5 m/s. The big correlations in plane hinder the build up of
self evolving turbulence which amplified the turbulence for smaller in-plane correlations.

One of the advantages of the fully correlated fields used here is visible in Figure 5.17d.
As already seen for the standard deviation, full correlations imply a stability of the fluctuation
characteristics over a large range which is expressed by the large maximal cross correlation
with the original field of around 80% everywhere. This is also the reason why fully correlated
fields can be seen as a first step if specific characteristics of the original time series should be
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studied while a correct physical representation does not lie in the focus.

(a) (b)

(c) (d)

Figure 5.17: Evolution of (a) mean, (b) standard deviation, (c) range of increment kur-
tosis for τ between 0.01 s and 10 s, and (d) maximal cross correlation with the inflow
field for the flow field at the centerline in front of the airfoil.

The lift and drag time series in Figure 5.18 do not show any differences between Gaus-
sian and non-Gaussian fields on first sight. The characteristics are nearly identical because
of the similar inflow.

(a) (b)

(c) (d)

Figure 5.18: Time series of lift and drag force coefficients at 4° AOA’s for (a,b) Gaussian,
and (c,d) intermittent fully correlated inflow fields.

The mean values of lift and drag for the fully correlated cases in Figure 5.19 are again
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higher than for the constant inflow case but not as high as for the previous simulations where
the in-plane correlation length was limited. At first glance, this is a result which is not ex-
pected because a spatial averaging effect should reduce the impact of turbulence on the
mean value if the structures become smaller. However looking at the standard deviation
of both, drag and lift, in Figure 5.20 reveals that the standard deviation is in general smaller
for the fully correlated cases due to the less fluctuating inflow. This also explains the reduced
mean value.

(a) (b)

Figure 5.19: (a) Mean lift, and (b) mean drag coefficients for different AOA’s for con-
stant, Gaussian and intermittent fully correlated inflow.

(a) (b)

Figure 5.20: (a) Standard deviation of lift, and (b) standard deviation of drag coeffi-
cients for different AOA’s for constant, Gaussian and intermittent inflow.

After the mean and standard deviation have been studied, the increment kurtosis of lift
and drag for the fully correlated field is focused on in Figure 5.21 and 5.22 for the same AOA’s
as before. One of the first impressions gained is that under intermittent inflow all angles ex-
hibit a higher increment kurtosis for the forces for full correlations than for limited correla-
tions. Especially for small τ they are much higher under intermittent inflow conditions than
for the Gaussian case. For both the lift and drag it can be noted that intermittency is much
more dominant than for inflow fields with spatially limited correlations over all scales. Sur-
prisingly, for the fully correlated fields it seems that the forces do not show Gaussian behavior
for all AOA’s under Gaussian inflow conditions. A reason might be the abrupt changes of flow
field planes along the airfoil which seem to make the airfoil react in a different way than for
flow fields with limited in-plane correlations. Nonlinear stall effects certainly will also have
an impact on these results. Interesting is also the increasing increment kurtosis for the drag
for small τ which shows up for the Gaussian but also for the intermittent fields, which are
not related to each other except by the CTRW model parameters. This was not visible with
that strength for the flow fields with limited correlations and augments the assumption that
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the full in-plane correlations used here also affect the general trend of the increment kurto-
sis with changing τ. As already explained for the simulations with wind fields with limited
correlations, the kurtosis of force increments is higher than for the wind increments. Sur-
prisingly for angles of 8° and 12° the drag increment kurtosis is even above the maximum
of the input flow field increment kurtosis from Figure 5.17c. Again the reason can only be
the complex interaction of flow field and airfoil geometry and the missing information of the
flow above and below the airfoil.

(a) (b)

(c) (d)

Figure 5.21: Increment kurtosis of the lift forces for Gaussian and intermittent inflows
with AOA’s of (a) 0°, (b) 8°, (c) 12°, and (d) 18°.

(a) (b)

(c) (d)

Figure 5.22: Increment kurtosis of the drag forces for Gaussian and intermittent inflows
with AOA’s of (a) 0°, (b) 8°, (c) 12°, and (d) 18°.
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In the last step the fatigue loads are analysed for full correlations in Figure 5.23. Similar
to 5.14 the intermittent inflow leads to higher fatique even for small AOA’s where the standard
deviation does not deviate between intermittent and non-intermittent cases. For lift and
drag the smallest deviation between Gaussian and intermittent inflow appears at an angle of
2° where the curves differ by 5% and 8% respectively. The largest difference is 11% for the lift
at an AOA of 10° while it is even 24% for the drag at an angle of 14°. But for larger AOA’s the
increase in standard deviation has to be taken into account for the drag which also has a big
effect on the EFL. Contrary to that, the standard deviation does not have any effect on the
EFL difference of the lift.

(a) (b)

Figure 5.23: EFL of the (a) the lift, and (b) the drag coefficient.

5.0.3 Discussion

Even if differences of other properties, like the standard deviation, are not negligible for the
outcome of this study, it can be concluded that there is a good indication that inflow fields
with an increased increment kurtosis can be responsible for increased fatigue loads, at least
for fully in-plane correlated wind fields. To give a more sophisticated result more simula-
tions with different realizations of inflow fields could be performed. Moreover an averaging
over all simulations would allow to quantify the kurtosis effect on EFL and an appropriate
error estimation would be possible. Additionally different levels of intermittency could be
studied and, if possible, larger and more relevant scales τ should lie in the focus. Herefore it
is recommended to modify the CTRW model or use another model to account for such scales
while at the same time the one point statistics and spectral properties stay untouched.
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Chapter 6

Turbulence and Intermittency Study on
Wind Turbines

6.1 What is the Effect of Turbulence on Wind Turbines? A
Comparison of Three Standard Methods

In this section the next step into the direction of a more realistic simulation of wind turbines
under turbulent inflow is taken. For this purpose instead of an airfoil the full rotor will be
simulated with two different CFD models and the results will be compared with a BEM sim-
ulation with similar inflow gained from a CFD simulation.

The research conducted in this field is limited with recent studies done by Madsen et
al. [92] and in the AVATAR project [93]. In both cases BEM is compared to higher fidelity
codes. In the work by Madsen et al. a 2.5MW turbine was simulated with BEM and Blade Re-
solved (BR) CFD with a turbulent inflow based on the model by Mann [94]. The wind fields
for BEM were extracted at the rotor position in the empty CFD domain. Additionally, mea-
surement data of this turbine and BEM results for the same data were compared. In both
cases spectra of sectional forces were investigated. In the AVATAR project similar quantities
were in the focus of the study, but one Mann box was generated and used for the CFD as
well as the BEM simulation. In CFD the natural decaying process of the wind fields leads to
a decreased turbulence intensity and different turbulent structures at the turbine compared
to BEM. Therefore the simulation results of BEM and CFD are not comparable. Also global
quantities like thrust and torque as well as their corresponding fatigue loads were not inves-
tigated. Although those works are giving a valuable insight to BEM modeling uncertainties
when combined with turbulent inflow, there is still a lack of comparable studies and a best
practice guide for the comparison of CFD and BEM simulations is still missing.

6.1.1 Approach

The following results shown here were published in the work of Ehrich et al. [95], where a
comparison of three different wind turbine simulation methods is aimed for. Two of them
are high fidelity CFD methods while the third one is BEM based. The CFD methods are
distinguished by the model used for the rotor blades. In particular the first one uses the
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Actuator Line (AL) model [96] and the second one, which will be named Blade Resolved
(BR) simulation in the following, contains the full blade geometry. Compared to previous
studies, new in this work is the combination of the investigation of frequency resolved in-
tegral forces, the analysis of fatigue loads and a bridge between BR and BEM calculations,
namely the AL method. The goal of this study is to shed light into the difficulties and expec-
tations of the different methods proposed and information for future comparisons of CFD
and BEM based simulations shall be provided. Additionally the information gained in this
study should find its way into the next section, where intermittent and Gaussian CTRW fields
are used as an inflow for AL based simulations.

The Wind Turbine Model

The numerical studies are performed on the NREL-5MW reference wind turbine with a rotor
diameter of 126 m [97]. This three bladed horizontal axis wind turbine with a blade length
of 61.5 m was designed by the National Renewable Energy Laboratory. It is close to the cur-
rent average rotor size of newly installed wind turbines which accounts to 100–120 m. More
details on the reference turbine can be found in Table 6.1.

Table 6.1: Overview of NREL-5MW turbine specification.

Parameter Value

Number of rotor blades 3

Rotor diameter 126 m

Rated aerodynamic power 5.3 MW

Rated wind speed 11.4 m/s

Rated rotational speed 12.1 rpm

Blade cone angle 2.5°

Shaft tilt angle 5.0°

Blade length 61.5 m

Blade mass 17,740 kg

To make the comparison between different codes in a similar manner, the pitch and
rotor speed are fixed and the effect of structural deformations, tilt and cone as well as the
tower and nacelle are neglected.

The Wind Fields

It is assumed that the specific inflow turbulence model does not change the general trend of
the outcome of the study presented here as long as some main properties of the wind fields
are fulfilled like spatial and temporal correlations, Gaussianity and stationarity. However, the
model used here should also be as simple as possible with a very low memory consumption
which is for spectral methods usually very high if the time and space domains are large.
Therefore velocity fluctuations are represented by a Gaussian process realized at the inflow
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patch of the CFD domain. In particular, as a simplified version of Equation (3.3), coupled
stochastic Ornstein-Uhlenbeck processes of the form

dui
(k)(t )

dt
=−γ

(
ui

(k)(t )− ū(k)
)
+
p

D
N∑
j

Hi jΓ j
(k)(t ) (6.1)

with an exponentially decaying spatial and temporal correlation function with correlation
length lc = 20 m for all wind components are used without taking shear and intermit-
tency into account. For the damping factor and the diffusion coefficient γ = 0.56 s−1 and
D = 0.62 m2s−3 have been chosen such that ωc ≈ 0.34 Hz holds which ensures the length
scale lc in streamwise direction.

Fields with a mean wind speed of ū(x) = 11.4 ms−1 corresponding to the rated operating
condition of the wind turbine and TI = 20% are fed into the CFD domain by using an inflow
boundary condition. As opposed to the previous airfoil simulations this boundary condition
has been taken because injecting the turbulence by an actuator patch led to a much too high
decay of intermittency before the turbine has been reached. This is the reason why using an
actuator patch did not allow a proper comparison of the impact of Gaussian and intermittent
inflow conditions. The relatively high TI had to be chosen, because of the natural decaying
process leading to much smaller turbulence intensities, namely 11%, in the vicinity of the
turbine in the absence of shear.

Numerical Methods

In the following the BR, AL and BEM method are described in more detail:

• BR: The blade resolved simulations are performed with the CFD software OpenFOAM
V4.1 [98], which is an open-source package with a collection of modifiable libraries
written in C++. The simulation domain is discretized using the bladeblockMesher [99]
and windTurbine mesher tools [100] with a combination of structured and unstruc-
tured grids consisting of a total of 36M cells. To exclude influences of the mesh on the
solution, a mesh study has been done in our previous work [101]. The grid of the com-
plete simulation domain and the rotating part are shown in Figure 6.1 and a sectional
view on the mesh near the blade in Figure 6.2. The cell length at the inlet, which is three
rotor diameters upstream of the rotor, is 1m. This mesh is uniformly extruded up to the
near blade mesh where a refinement takes place and the smallest cell length of approx-
imately 0.2 m is reached. In order to limit the cell aspect ratio in radial direction, adap-
tive wall functions are being applied. The solution for the flow field is achieved by solv-
ing the incompressible Delayed Detached Eddy Simulations equations. It is assumed
that the flow is fully turbulent, i.e., the laminar-turbulent transition in the boundary
layer is not considered, because the inflow itself is turbulent and therefore the lami-
nar boundary layer is not expected to have a strong influence on the blade. The clo-
sure problem is treated by use of the turbulence model proposed by Spalart et al. [102]
with the proposed standard parameters. In order to solve the pressure-velocity cou-
pling, the PIMPLE algorithm, is used, which is a combination of the loop structures of
SIMPLE [103] and PISO [39, 40]. Integration in time is performed using the implicit
second order backward scheme together with the second order linear upwind scheme
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for discretizing the convection terms. For these simulations 360 cores are used for ap-
proximately 20 days resulting in 600 s simulation time with a time step of 0.01 s. This
corresponds to 121 revolutions of the rotor.

• AL: The rotor is simplified by an AL model [96], where all rotor blades are reduced to
rotating lines with a radial distribution of body forces at 60 positions along the lines.
A Gaussian filtering kernel with the dimensionless smoothing parameter ε equal to 4
is used to obtain well fitting sectional forces and power output to the BR case. Based
on the angle of attack at the given positions on the line, body forces are gained from
lookup tables containing polars of two dimensional airfoils. A Prandtl tip [104] and root
loss correction, as well as a 3D correction proposed by Du and Selig [105] are applied
to the airfoil data. Except for a coarser resolution in the vicinity of the rotor with an
average cell length of 1m the domain is exactly the same as for the BR case leading
to a domain size of 22M cells. The flow field is simulated by Large Eddy Simulations
(LES) with a Smagorinsky subgrid-scale model [106]. These simulations have been
conducted on 360 cores for 25 h real time reaching 600 s simulation time with a time
step of 0.01 s.

• BEM: This method uses wind fields recorded in the CFD domain on an equidistant
31×31 grid with a grid cell size of 4.5 m in both directions. In this case the fields are
obtained at the position of the rotor from the same mesh as for the AL method but
in an empty CFD domain. This seems to be a reasonable choice, because under this
condition the TI at the rotor will be comparable for the CFD and BEM simulations.
The BEM based tool FAST v8 [16, 17] in combination with AeroDyn v15 [107] with the
Beddoes Leishman type unsteady aerodynamics model [107, 108] and an equilibrium
wake model is used in this work. The BEM model relies on the very same airfoil data
and correction models as the AL, but with only 17 blade sections. Because of the sim-
plicity of the BEM approach the simulation with the same time stepping and total time
as for the higher fidelity approaches only took two minutes on one core.
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(a) (b)

Figure 6.1: Grids of (a) rotating part and (b) full domain of Blade Resolved (BR) simu-
lation.

Figure 6.2: View onto the grid at the pressure side of the rotor blade.

6.1.2 Results

In this section the results of this study are presented. The focus lies on the wake structure,
average and standard deviation of sectional and integral forces, as well as fatigue loads and
PSD’s.

Wake Dynamics

Snapshots of the velocity magnitude for the BR and AL cases are shown in Figure 6.3. Despite
the differences in the methods both simulations show similar fields in terms of the velocity
magnitude upstream of the turbine. This leads to the conclusion that the induction zone
of the turbine is also similar for both simulations. For a more detailed view of the similar-
ities and differences of the two compared CFD methods the wake structure is analyzed by
the time series of the main stream component at 0.5, 1 and 2 diameters at the centerline
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downstream of the nacelle in Figure 6.4. It can be seen that the wind velocity time series is in
good agreement in most time intervals. As a quantitative measure of similarity of the wake
structure, the coefficients for the correlation between both simulations are calculated by

ρ(x) = 〈(uAL(x, t )− ūAL(x)) (uBR (x, t )− ūBR (x))〉t

σAL(x)σBR (x)
(6.2)

where we used the time averaging operation 〈.〉t , the standard deviations σAL and σBR and
the local mean values ūAL and ūBR of the time series of AL and BR simulations. The corre-
lation is 0.54, 0.41 and 0.51 for 0.5, 1 and 2 diameters downstream, respectively. This shows
that the wind field dynamics are rather similar and not uncorrelated at different distance
from the rotor for both simulation methods. However, the BR simulation is resolving the tip
and root vortex in a more physical way which results in smaller structures in the near wake.

(a) (b)

Figure 6.3: Snapshots of the velocity magnitude for (a) BR and (b) Actuator Line (AL)
simulations.

Figure 6.4: Wind velocity time series of BR (black, solid) and AL (grey, dashed) simu-
lation for 0.5, 1 and 2 diameters (from top to bottom) at the centerline downstream of
the rotor nacelle.
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Sectional Forces

All three simulation methods (BR, AL and BEM) are compared based on averaged
sectional quantities, namely axial and tangential forces, the corresponding standard devi-
ations and the EFL. The sectional axial and tangential forces on the blade do not reveal big
differences for the average between all cases in the mid-span as shown in Figure 6.5. How-
ever at the root (up to 30% of span) and the very tip (from 80% of span onwards) some dif-
ferences can be observed. BEM and AL rely on similar root and tip correction models and
the very same airfoil data which explains their good agreement. In comparison to the more
realistic BR case, where 3D effects are modeled physically, the forces at the root and tip sec-
tion are far off supporting the well known issues with 3D effects for BEM and AL. The more
developed vortices in the BR simulation induce much higher loads in the root and tip region
than for the other methods.

The standard deviations for the tangential and axial force distributions, shown in more
detail in Figure 6.6, are very different for all three methods. With the BR case as the reference
the standard deviation of sectional forces tend to be lower at the root of the blade for the BEM
and AL methods whereas they are larger in the mid-span. Close to the tip at approximately
95% of the blade the AL method gives much smaller values while BEM is in the range of
the BR simulation. The corresponding errors are estimated by following three steps. In the
first step the time series for the specific forces at each radial position are separated into five
distinct sub time series. In the second step the standard deviation for each sub time series
is calculated. Finally the standard deviation of the set of the standard deviations from the
second step is computed which provides the error for the whole time series.

(a) (b)

Figure 6.5: Radial distributions of (a) axial and (b) tangential forces per unit span. The
shaded areas illustrate one standard deviation of the fluctuations.

(a) (b)

Figure 6.6: Radial distribution of standard deviation of (a) axial and (b) tangential
forces per unit span. The shaded areas correspond to errors.
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A more detailed insight in the standard deviation is gained by looking at the PSDs of
axial and tangential forces at 22%, 50%, 75% and 95% radial position, shown in Figures 6.7
and 6.8.

All blade sections have in common that the spectra of the highly resolved BR case drop
fastest between 2 and 10 Hz to a constant noise level. This is due to the expected bigger
structures generated by the blade geometry but also due to the DDES model which is treated
as RANS in the boundary layer acting as a filter.

For the AL method the energy drop happens at much higher frequencies because of
the missing geometry and the LES model, which generally filters at smaller scales. The noisy
behavior at high frequencies is part of every simulation of this kind and is due to numerical
instabilities resulting from the convolution of the forces given at the airfoil sections with a
Gaussian kernel [109].

The BEM spectra show filtering effects at higher frequencies corresponding to a mul-
tiplication with a sinc-like-function but with different frequencies for different radial posi-
tions. The origin of this effect could not be found and has to be investigated further. Due to
the missing geometry and the lack of unsteady wake effects BEM is also expected to make
worse predictions than the higher fidelity methods in the high frequency range. Therefore
this high frequency part has to be taken with care like for the other two methods with their
aforementioned problems of smoothing for the AL and the RANS treatment for the BR case
and none of them can be considered trustworthy in this range.

In the low frequency range, for axial as well as tangential forces it can be observed that
in comparison to the other two methods BEM has a much higher energy content for the in-
board section. This is responsible for the high standard deviation at this section.

At radial position of 50% and 75% of the blades all the spectra are very similar in the
low frequency range but it is still obvious that BEM has a higher energy content up to the 1P
frequency, especially for the axial forces. Furthermore all three methods are able to capture
the 1P frequency which is based on the passing of the blades through long time correlated
structures.

At the outboard section at 95% the energy content of the BEM results in low frequen-
cies is in the same range as for the BR case, but the AL method shows significant smaller
values and the 1P frequency is not captured anymore, especially for the axial forces, which is
due to a smeared out tip vortex.
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(a) (b)

(c) (d)

Figure 6.7: PSD of axial forces at (a) 22.5%, (b) 50%, (c) 75% and (d) 95% radial position.

(a) (b)

(c) (d)

Figure 6.8: PSD of tangential forces at (a) 22.5%, (b) 50%, (c) 75% and (d) 95% radial
position.

To illustrate the different flow structure sizes in the different simulation methods, the
two point correlation of the sectional forces along the blade are measured. The argument
for this approach is that the correlation of sectional forces is similar to the correlation of the
wind velocity close to the blade surface, which is strongly connected to the integral scales
of wind. In Figure 6.9 the correlation at each radial position with the forces at a reference
position, here 22.5% radial location, is shown. This specific position is in principle arbitrary,
but if the focus lies on the measurement of big structures, this point should not be too close
to the tip or root where smaller flow structures dominate. However, even if the tendency
for the correlation functions of the three different models is the same, the larger correlation
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values for the BR case along the whole blade indicate that the structure sizes are also bigger
than for the AL and BEM cases.

(a) (b)

Figure 6.9: Correlation of (a) axial and (b) tangential forces at different radial positions with
22.5% position.

To give a more detailed description of the effect of forces on the rotor blades, fatigue
loads at each section have been investigated. As observed in Figure 6.10, the EFL distribution
over the whole blade is similar to the distribution of standard deviation in Figure 6.6. The
BEM method gives higher EFL for every section for axial forces and almost everywhere higher
values for tangential forces. All other points mentioned for sectional standard deviations also
hold for sectional EFL. The errors are calculated with the same method as for Figure 6.6.

(a) (b)

Figure 6.10: Radial distribution of (a) axial and (b) tangential equivalent fatigue loads
per unit span. The shaded areas correspond to the errors.

The sectional EFL are linearly dependent on the sectional standard deviation for all
simulation methods as seen in Figure 6.11. This raises the point that the dynamics quantified
by two different properties of the load time series, namely standard deviation and EFL, are
similar for all three methods. With the Wöhler Exponent m = 8 and the wind fields used here,
this linear relation follows approximately EFL = 4σ for axial and tangential forces.
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(a) (b)

Figure 6.11: EFL dependence on standard deviation for (a) axial and (b) tangential
forces for all three methods. The diagonal line is governed by EF L = 4σ.

Integral Forces

In the following, integral forces resulting from sectional forces from Section 6.1.2 are dis-
cussed. Time series of the aerodynamic thrust and torque are shown in Figure 6.12. As can
be observed, the thrust as well as the torque evolution is very similar for BR and AL. With the
definition of the correlation coefficient

ρ = 〈(F1(t )− F̄1
)(

F2(t )− F̄2
)〉t

σ1σ2
(6.3)

where F1 and F2 are the considered forces and σ1 and σ2 the corresponding standard devi-
ations, the correlation is calculated as 0.90 and 0.93 for thrust and torque respectively, even
if the distribution of sectional forces and the wake dynamics are more different (see Figures
6.4–6.6). A comparison between BR and BEM reveals a much smaller correlation with values
of 0.08 and 0.09 for thrust and torque. This supports the argument that the wind dynamics
are handled in a very different way for BEM and CFD simulations for the current setup.

(a) (b)

Figure 6.12: Time series for (a) thrust and (b) torque for Blade Resolved (BR), Actuator
Line (AL) and Blade Element Momentum (BEM) methods (from top to bottom).

In Table 6.2 the means, standard deviations and EFL of torque and thrust for all three
methods are illustrated with their corresponding errors. Those errors are obtained by sep-
arating the corresponding time series into five distinct equally sized ensembles and calcu-
lating the ensemble standard deviation. For comparison reasons the ratios of the calculated
quantities for AL and BR as well as BEM and BR are shown, because the BR case is assumed
to be the highest fidelity approach. For aerodynamic thrust and torque AL and BEM show
lower values than the BR case with a minimum ratio of 91.7%. which can also be estimated
from the sectional forces in Figure 6.5.
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Table 6.2: Thrust and torque comparison by mean, standard deviation σ and EFL between
BR, AL and BEM.

BR AL BEM AL/BR [%] BEM/BR [%]

mean 761 ± 7.3 698 ± 4.0 729 ± 9.6 91.7 95.8
Thrust

[kN]
σ 37.9 ± 4.3 33.9 ± 2.6 49.7 ± 6.5 89.4 131.1

EFL 147.6 ± 9.7 136.7 ± 4.2 190.1 ± 8.0 92.6 128.8

mean 4.43 ± 0.10 4.32 ± 0.08 4.35 ± 0.13 97.5 98.2
Torque
[MNm]

σ 0.495 ± 0.044 0.452 ± 0.038 0.599 ± 0.061 91.3 121.0

EFL 1.90 ± 0.15 1.90 ± 0.13 2.29 ± 0.12 99.6 116.0

Analog to the relation between mean sectional forces and mean integral forces, the
standard deviations of tangential and axial forces in Figure 6.6 correspond to a standard de-
viation in the thrust and torque. The standard deviation for the AL case is for both quantities
approximately 10% smaller than for the BR simulation, because of the missing variance in
the root and tip region. Especially for the torque the tip region plays a significant role. In
contrast to that, for the BEM simulation an approximately 20 to 30% increase in the standard
deviation is obtained which is also very clear from the much higher sectional standard devi-
ation except at the root. A reason for the high standard deviation could be the equilibrium
wake model used here, where the wake dynamics are not captured in a proper way. The
relation between EFL and the standard deviation of integral forces is shown in Figure 6.13
where we additionally added the diagonal line governed by EFL = 4σ like for sectional forces
in Figure 6.11. Sectional as well as integral forces seem to follow the same linear trend.

(a) (b)

Figure 6.13: EFL dependence on standard deviation for (a) thrust and (b) torque for all
three methods. The diagonal line is governed by EFL = 4σ.

Further analysis of the EFL by the underlying range histograms in Figure 6.14 shows
that for the thrust and torque force all three methods have in general a similar trend. But
especially in the moderate ranges for the thrust and for large ranges in both quantities BEM
has more counts than AL and BR. Due to their large weight the most important part for the
EFL are the high ranges. Those high ranges must not be neglected, even if they have very few
counts, because very important quantities like the difference of global maxima and minima
contribute to them. Also the similarity of the inflow conditions justifies the comparison of
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the loads. The contribution of all ranges to the EFL in Equation (2.31), namely n·r m , is shown
in Figure 6.15, where the big contribution of the highest ranges to fatigue loads is very clear.

(a) (b)

Figure 6.14: Range histograms for (a) thrust and (b) torque.

(a) (b)

Figure 6.15: Contribution of ranges to EFL for (a) thrust and (b) torque.

For an analysis of the dynamics of torque and thrust, PSDs are investigated and shown
in Figure 6.16. All three methods show a very good agreement in the shape of spectra for low
frequencies in region I up to 1.5 Hz including the 3P frequency and the first harmonic. For
higher frequencies up to approximateley 4 Hz, here region II, BEM and AL are very similar
but the BR method drops very quickly and saturates in a white noise like behaviour for higher
frequencies in region III. The reason for this is the big structures generating blade geometry
and the RANS model working in the boundary layer of the blade while the AL does not have a
geometry and it uses LES everywhere and therefore does not smooth out the wind field in the
vicinity of the blade as has been discussed already for the sectional forces. It again has to be
emphasized that the BR case has the highest resolution in the blade region and therefore has
the most reliable results. The difference between BEM and AL in the high frequency range
in region III could be according to the missing damping, filtering and dynamic wake effects
in the BEM case. The AL method uses a Gaussian filter to smooth out the forces along the
blade and the wake is much more complex than in the static wake model of BEM. It has to
be amplified, that especially for the torque, a transition from BEM to AL can not be made
just by filtering the signals, because filtering corresponds to a drop in the PSD, which is not
observed in the mid range.
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(a) (b)

Figure 6.16: PSD of (a) thrust and (b) torque.

For a more detailed analysis, the cumulative frequency dependent variance normal-
ized by the total variance, i.e.,

σ̂2( f ) =
∫ f

0 PSD( f ′)d f ′

σ2
(6.4)

has been investigated in Figure 6.17. This is equivalent to the energy content of the spectrum
at frequencies smaller than f , normalized by the total energy contained in the spectrum. The
energy content for the different regions can be determined as σ̂2

region = σ̂2( fmax)− σ̂2( fmin)
with fmax the upper frequency limit and fmin the lower frequency limit of the region. For
all three method the conclusion can be drawn that by far the most energy is contained in
region I, in particular for the thrust: BR 95.4%, AL 93.3% and BEM 94.9%. Region II also
contains a small amount of energy with 2.3% for BR, 5.8% for AL and 3.2% for BEM. The
torque is distributed similarly with 97.7% for BR, 91.7% for AL and 91.1% for BEM in region
I and 2.2%, 7.1% and 3.5% in region II. The variance contained in region III is neglegible
for both quantities. Based on the high percentage of variance contained in region I it can
be concluded that the big difference in the total variance between BEM and the other two
methods mainly stems from this frequency range. Therefore the extraction of wind fields at
the position of the rotor plane has to be seen as a first step for this comparison and it has to
be investigated if it is more appropriate to extract the fields downstream of the rotor position
or to artificially damp the wind input in BEM on large scales.

(a) (b)

Figure 6.17: Normalized cumulative frequency dependent variance of (a) thrust and
(b) torque.

6.1.3 Discussion

From this work it can be concluded that the AL, BR and the BEM method with extracted wind
fields at the rotor plane from an empty domain are very similar with respect to averaged tan-
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gential and axial forces, except close to the root and the tip. However, a comparison of BEM
with the CFD methods with respect to the standard deviations of sectional and integral forces
shows clear differences. For the integral quantities thrust and torque, BEM tends to overes-
timate the standard deviation compared to the other two methods. It is found out that the
standard deviation differences between all methods mainly come from the different ampli-
tudes in the first part of the spectrum and not from the filtering effects on larger frequencies.
This leads to the conclusion that, if similar results for the standard deviation for BEM and
CFD should be achieved, either the wind fields have to be extracted downwind of the ro-
tor position from the empty domain simulation or a correction of wind fields for the BEM
case has to be considered. A good starting point could be to substitute the equilibrium wake
model by a dynamic wake model which could damp the oscillations and with it the stan-
dard deviation. Additionally, extracting the wind fields in an empty domain downwind from
the position where the turbine is normally located will be part of the future work. Another
contribution to the differences, which also should not be neglected, comes from the fact that
the turbulent wind field decays across the CFD domain due to the missing energy injection.
In an empty domain, the turbulence intensity is higher upstream and lower downstream of
the position, where the turbine would be located. This decay is not considered within the
BEM simulation and could be a reason for the differences.

An indication for a linear dependence between standard deviation and EFL could be
found for sectional as well as integral forces which seem to follow the same trend. This shows
that the dynamics characterized by the EFL and by the standard deviation are similar for all
three methods. However, this dependence is assumed to be existent only if the wind fields
are comparable with respect to temporal and spatial correlations to assure similar turbulent
structures which play a big role for EFL estimations. An advantage of this linear relationship
could be that the computational expensive rainflow count algorithm may not be needed if
one is interested in a rough estimation of equivalent fatigue loads, because a simple calcu-
lation of the standard deviation could give this information as well. It is believed that this
relationship will change for more complex atmospheric wind, which is usually not charac-
terized by a unique standard deviation but a distribution of standard deviations (see e.g. the
Castaing model [8]).

Even if no experiments for comparison were performed, the BR simulation with its high
resolution close to the blades and the full geometry consideration can be expected to be the
most physical and therefore it should be seen as a benchmark case. However, a further part
of the future work should be a fair comparison with experiments where the focus should be
set on the statistical equivalence of the wind fields at least across the full rotor size in the
CFD domain, in the BEM simulation and in the experiments.

6.2 Simulation of a wind turbine with Gaussian and intermit-
tent wind fields

In the last section a first step has been done to study the effect of turbulent wind fields on
forces and loads of wind turbines. By following a step by step approach the next logical part
is to deal with the effect of intermittent turbulence on wind turbines. For this reason similar
simulations in the same CFD domain as in the last section have been performed, i.e. the tur-
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bulence is injected at the domain boundary by an inflow condition and not by an actuator in
the middle of the domain like for the airfoil simulations. Also the rotor is simulated by three
rotating actuator lines which are rotating with a constant circular velocity with the same
characteristics as explained before. The actuator line approach has been chosen because it
does not need a highly resolved grid next to the rotor which allows to inject turbulence at
the inlet of the domain. Furthermore the relatively small number of cells is accompanied
by a small computation time which outweighs the quality increase for fully resolved blade
simulations. This approach is justified by the fact that for the following very coarse studies
such high resolutions are not expected to change the general outcome.

As has been done for the airfoil simulations, two different kinds of fields have been
generated, namely a non-intermittent and an intermittent one. By using the energy correc-
tion introduced in section 3.4.2 the Gaussian and intermittent fields gain the same energy
spectrum as defined originally by the CTRW model parameters. Additionally to partially cor-
related wind fields, where the in-plane correlation length is limited, also fully correlated wind
fields with unlimited in-plane correlation have been created. In contrast to the former one,
full correlations also allow a Gaussianization of the one point statistics by using the algorithm
explained in section 3.4.3. With this algorithm the kurtosis and the skewness are brought to
the Gaussian level up to a maximum deviation of 10−5. This allows to make the fields even
more comparable and to filter out low order statistical effects which otherwise are expected
to dominate the outcome of the load analysis.

A mean wind speed of 11.4 m/s has been set for all fields, but the standard deviation
had to be chosen differently for partial and full correlations due to the increased decay of
turbulence in the partially correlated case. The goal is always to reach a turbulence intensity
of approximately 10% close to the rotor position to be able to neglect variance differences in
the wind for the upcoming load analysis. For the field generation the parameters lc = 20 m,
ωc ≈ 0.34, t = 660 s, u = 11.4 m/s, σ= 2.28 m/s, and ∆t = 0.01 s have been chosen with α= 1
for Gaussian and α= 0.6 for intermittent wind fields.

In the next sections first partially correlated fields are studied before full in-plane cor-
relations are considered. For both inflow types a simulation in an empty domain has been
performed before the rotor in form of the rotating actuator lines is added into the center
of the domain. With the simulation of an empty domain the objective to characterize the
evolution of the different types of turbulence throughout the domain shall be pursued. An
approximation of the expected wind fields in the vicinity of the rotor can therefore be made
and comparable fields can be created.

6.2.1 Empty Domain Simulation with Partially Correlated Fields

Partially correlated Gaussian and intermittent inflow fields are injected into the empty do-
main at the inlet patch 300 m in front of the planned rotor position. A first impression on the
flow field can be gained in the snapshots shown in Figure 6.18. If the flow is tracked at the
center line from the inlet to the outlet, the velocity field becomes more uniform which is an
indicator for decaying variance.



6.2 Simulation of a wind turbine with Gaussian and intermittent wind fields 127

(a) (b)

Figure 6.18: Snapshot of the flow field in an empty domain under partially correlated
(a) Gaussian and (b) intermittent inflow conditions.

The evolution of mean wind speed and standard deviation at hub height from the be-
ginning up to 300 m downstream of the planned rotor are depicted in Figure 6.19. For the
distance calculation the rotor location is used as a reference. At the rotor position ifself no
measurements have been taken but data has been collected up to 50 m upstream and down-
stream of the rotor.

Both the intermittent and the Gaussian wind fields show very unsteady mean wind
speeds across the whole domain in Figure 6.19a. Up to 150 m upstream of the virtual ro-
tor position both means are approximately equal while they differ by almost only 1% at a
downstream distance of 50 m and 2% at a distance of 200 m.

The standard deviation for both fields in Figure 6.19b shows a transient in the first
part of the domain and can be considered as equal in the inner region between −150 m and
150 m. Further downstream the curves start to separate again. Overall the standard devi-
ation is decreasing in downstream direction due to the absence of shear and the missing
injection of energy. So the standard deviation at the turbine position is smaller than the in-
let turbulence by almost a factor of two. The dotted line marks the target value of 1.14 m/s
which stands for a turbulence intensity of 10% if a mean value of 11.4 m/s is assumed. It can
be noticed that the turbulence intensity is reached exactly at the rotor position which was
managed by doing several simulations beforehand and changing the standard deviation of
the inflow each time until the target value is hit. If computational resources and time are
limited, it has to be kept in mind that different realizations of the inflow naturally evolve in a
different way and the aforementioned pre-simulations have to be performed for the sake of
comparability. A reduction of the domain resolution or the simulation time can be carried
out to fit the requirements in an appropriate way.

Despite of the differences of mean and standard deviation for both types of wind fields,
the most important region, i.e. close to the position where the rotor should be added, is
comparable and rotor simulations are expected to be almost unaffected by those small dif-
ferences.
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(a) (b)

Figure 6.19: Evolution of (a) mean and (b) standard deviation of the Gaussian and in-
termittent windfields at the centerline of the domain. the dotted horizontal lines mark
the mean wind speed of 11.4 m/s and the standard deviation of 1.14 m/s.

The histograms of the wind speed close to the inlet and 50 m in front of the rotor posi-
tion shown in Figures 6.20a and b make clear that both fields differ quite a bit at the tails of
the distribution even after the generated CTRW fields are made comparable with the spec-
trum correction algorithm mentioned before and the adjusted mean and standard devia-
tion. This deviation can be attributed to the short time series accompanied by the lack of
high and low wind speed events which makes those tails not reliable in the statistical sense.
Also a small skewness seems to build up in the decaying process. Still the inner part around
the mean wind speed equals quite well a Gaussian distribution for both cases. The already
mentioned loss of energy of the flow throughout the domain is also visible in terms of the
reduced width of the wind speed distribution close to the planned rotor position.

(a) (b)

Figure 6.20: Distribution of wind speed in main stream direction for Gaussian and in-
termittent wind fields (a) close to the inlet and (b) 50 m in front of the planned turbine
in an empty domain.

In addition to the one point distributions also normalized increment distributions are
plotted in Figure 6.21 for the same positions where two different effects become visible. First,
the kurtosis of the heavy-tailed distribution of the intermittent case decreases with going
downstream due to the decaying process. Second, the originally Gaussian distributed wind
field shows a contrary development by building up intermittency close to the turbine posi-
tion which can easily be noticed in the heavy-tails and the increased skewness. Here a tran-
sition to another, maybe more natural, type of turbulence happens but with a much smaller
variance because no additional energy is injected.
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(a) (b)

Figure 6.21: Increment distribution in main stream direction for Gaussian and inter-
mittent wind fields (a) close to the inlet and (b) 50 m in front of the planned turbine in
an empty domain.

The overall evolution of increment kurtosis is illustrated in Figure 6.22 where the max-
imal and minimal values are plotted for time gaps between τ= 0.01 s and τ= 10 s, while the
area in between is shaded. Clearly the strong decay of the maximum for the intermittent
wind field is visible in the first part of the domain until it reaches an equilibrium close to the
position where the rotor shall be located in further simulations. The equilibrium value has
a realistic value, which was measured to be around 12 at offshore met masts [90]. For mea-
surement points downstream of the planned rotor the increment kurtosis increases again.
A reason for this might be the strong coarsening gradient of the mesh behind the turbine
position which will have an impact on the flow field and can alter especially higher order
statistics, which are more sensitive to the relatively small errors introduced by the grid. The
inlet of Figure 6.22 shows the zoomed in evolution of the maximal and minimal increment
kurtosis under Gaussian inflow conditions. Here the increase of increment kurtosis can be
observed, which was already present in Figure 6.21b.

Figure 6.22: Evolution of the range of increment kurtosis of the Gaussian and intermit-
tent windfields for τ between 0.01 s and 10 s at the centerline of the domain. The inlet
shows the zoomed in Gaussian case.
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6.2.2 Rotor Simulation with Partially Correlated Fields

With the known evolution of the CTRW fields in an empty domain the rotor in form of three
rotating actuator lines is added at the previously planned position and similar properties of
the flow are investigated before forces and loads on the rotor are studied.

Flow Fields

The corresponding flow fields are depicted in Figure 6.23 at the same instance of time as in
Figure 6.18. In front of the rotor the flow field is almost identical to the one in the empty
domain but the wake of the rotor leads to very different structures behind the rotor. A wake
meandering effect is also visible for both cases. Remarkably is also the jet originating from
the center of the rotor due to the missing nacelle in the actuator line model.

(a) (b)

Figure 6.23: Snapshot of the flow field in the domain with a rotor under partially corre-
lated (a) Gaussian and (b) intermittent inflow conditions.

Compared to the simulation without a rotor, the mean wind speed at hub height in
Figure 6.24a is not constant anymore but drops due to induction up to the distance of 50
m upstream of the rotor, which is the measurement point closest to the rotor. At the rotor
position the flow experiences a speed up due to the jet generated in the middle of the rotor,
where no hub is simulated. Downstream of the next measurement point at 50 m behind the
rotor the wake of the rotor evolves where the mean wind speed drops by a large amount up to
the end of the domain. Almost one third of the mean wind speed from the inflow is lost due
to the energy extraction by the rotor and mixing effects. If the differences of Gaussian and
intermittent wind fields are focused on no difference between those flows can be perceived
close to the rotor. Further away at distances larger than 150 m the Gaussian flow shows
up higher mean values than the intermittent one but this may be accounted to the random
nature of turbulence and the unconverged statistics.

The standard deviations of both fields in Figure 6.24b drop until the rotor position is
reached but then they converge to a more or less constant level which is higher than the
value at the rotor position in the empty domain. The reason for this behavior is that the
rotor converts the energy contained in the mean flow partially into turbulent kinetic energy
in the wake which compensates the decay. While the mean values of the intermittent and
Gaussian flows can be seen as equal close to the rotor, the standard deviation deviate by a
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small amount. In front of the rotor the intermittent field is slightly more fluctuating than
the Gaussian one while it is vise versa directly behind the rotor. Further away, where also the
mean flows start to deviate from each other, the intermittent flow shows up a higher standard
deviation.

It is reasonable to assume that the differences in the mean and standard deviation are
not related to the type of inflow chosen here but more to the realizations taken from the
CTRW generator. Other realizations of Gaussian and intermittent inflows are also possible
where the behavior is vice versa to the one shown here.

(a)

(b)

Figure 6.24: Evolution of (a) mean and (b) standard deviation of the Gaussian and in-
termittent windfields at the centerline of the domain.

If now the wind speed histograms in Figure 6.25 are compared to the histograms in an
empty domain (see Figure 6.20) no differences can be observed for the flow fields close to the
inlet, because the turbine does not have an impact at this distance. But close to the turbine
the shift in the mean as well as the broader distribution can be noticed, which is related
to the increased standard deviation. The distributions are still approximately Gaussian in
the center but for large wind speeds deviations from the Gaussian distribution are present,
similar to the empty domain case, which might be linked to unconverged statistics or an
increased skewness of the distribution. Nevertheless a clear answer is not available at this
point and further investigations have to be made in future works if one is interested.

(a) (b)

Figure 6.25: Distribution of wind speed in main stream direction for Gaussian and in-
termittent wind fields (a) close to the inlet and (b) 50 m in front of the planned turbine
in an empty domain.

Figure 6.26 shows the compensated power spectra of Gaussian and intermittent wind
fields in front of the rotor, which fit quite well to each other. It can be concluded that Gaus-
sian and intermittent wind fields are generally indistinguishable in their spectral properties
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and the following load analysis can be performed without taking spectral differences into
account. Furthermore the intermittency information can not be achieved out of the power
spectrum alone, which is also desired for the sake of comparability.

Figure 6.26: Spectra of both wind fields 50 m in front of the rotor.

By looking at the normalized increment distributions in Figure 6.27 it can be high-
lighted that close to the inlet they are only different to the empty domain simulations if very
precise comparisons are performed. In front of the rotor the originally Gaussian wind field
developed an increased kurtosis, as already seen in Figure 6.21, but here the skewness is close
to zero. This shows that adding the rotor object to the domain can influence the increment
characteristics enormously.

(a) (b)

Figure 6.27: Increment distribution in main stream direction for Gaussian and inter-
mittent wind fields (a) close to the inlet and (b) 50 m in front of the planned turbine in
an empty domain.

The evolution of the increment kurtosis range throughout the domain is depicted in
Figure 6.28. It can be summarized that this plot is very similar to its counterpart in the empty
domain in Figure 6.22 except that for the intermittent inflow case the kurtosis in the wake of
the rotor is much higher than in the empty domain. The Gaussian inflow case also shows up
regions with an increased increment kurtosis in the wake, especially close to the rotor, but
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also in front of the rotor. However, the maximum seems to be dominated by chance and the
different peaks are not trustworthy. Despite of this fact, here as well as for the empty domain
a trend to higher wind speed increment kurtosis with going downstream can be noticed for
Gaussian inflow fields.

Figure 6.28: Evolution of the range of increment kurtosis of the Gaussian and intermit-
tent windfields for τ between 0.01 s and 10 s at the centerline of the domain. The inlet
shows the zoomed in Gaussian case.

Forces

After the wind field in the empty and the rotor containing domain has been studied, it will
be focused on the forces and fatigue loads on the rotor. Again thrust and torque as well as
axial and tangential forces are looked at.

In Figure 6.29a an excerpt of the time series of thrust and torque are compared under
Gaussian inflow conditions, while in Figure 6.29b the thrust and corresponding wind speed
in front of the turbine are plotted together. Because of the fact that the wind field is measured
50 m in front of the rotor, the time series for the wind has been shifted by the corresponding
time (4.39 s) under assumption of Taylor’s frozen turbulence hypothesis. For comparison
reasons all time series have been normalized to zero mean and unity standard deviation.

The thrust and torque react nearly identically to the wind speed changes as can be seen
in Figure 6.29a and are therefore very highly correlated with each other. One might think that
also the wind speed shows similar patterns but as illustrated in Figure 6.29b the wind shows
up much slower dynamics than the forces. However, on larger scales the forces follow pretty
well the wind dynamics. The time series under intermittent conditions are not plotted here
because the behavior is similar to the Gaussian cases.
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(a) (b)

Figure 6.29: Time series of normalized (a) thrust and torque, and (b) thrust and wind
speed (shifted by 4.39 s).

In Figure 6.30 the spectra of normalized torque, thrust and the Gaussian wind speed in
front of the rotor are depicted. As already guessed from the time series, the spectra of thrust
and torque are almost identical because of the high correlations. Both also show peaks at the
3P frequency of ≈ 0.6 Hz and its multiples for the rotational speed of 12.1 rpm. Those peaks
also appear even though no tower is present due to the fact that the same wind structures
are crossed by each blade in several rotations. Spatial as well as temporal autocorrelations of
the wind are important here to achieve those frequencies. As supported by the time series in
Figure 6.29b the wind speed itself shows a different spectrum which shows up more low fre-
quent and less high frequent structures than the forces, except at the lowest frequency. This
makes clear that the wind dynamics can not be transferred directly to the rotor dynamics, in
fact the involved transformation is rather complex.

Figure 6.30: Spectra of torque, thrust and Gaussian wind.

In the next step the increment distributions of the integral forces are visualized in Fig-
ure 6.31 where the heavy-tails under intermittent but also Gaussian inflow conditions are
visible. However the intermittent cases show much larger heavy-tails and a small peak in the
middle. It is mentioned that these statistics are converted from the wind field to the forces
but a Gaussianization effect takes place due to the spatial expansion of the blades which fil-
ters out extreme events. Furthermore the drastic change of power spectra in Figure 6.30 is an
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indicator for a break up of the phase amplitude relation which was present in the wind and
which is also very important for the change of its intermittent behavior.

(a) (b)

Figure 6.31: Increment distribution for Gaussian and intermittent wind fields of (a)
thrust and (b) torque.

Figure 6.32 gives an overview over the increment kurtosis change with time delay τ.
Gaussian as well as intermittent cases show an increment kurtosis larger than three for all
time gaps according to the aforementioned reason. Although the Gaussianization effect
changed the increment kurtosis of the intermittent case and the increment kurtosis of the
Gaussian case increased, the intermittent simulation still shows higher increment kurtosis
values for every studied time gap. Nevertheless, rather large fluctuations occur due to con-
vergence issues, related to the short simulation time interval.

(a) (b)

Figure 6.32: Increment kurtosis dependent on time delay for Gaussian and intermittent
wind fields of (a) thrust and (b) torque.

Mean axial as well as tangential forces are compared between Gaussian and intermit-
tent inflow conditions in Figure 6.33 where only slightly bigger contributions of intermittent
wind to the forces can be perceived. Gaussian as well as intermittent fields also show sim-
ilar standard deviations (shaded area) for both cases. Even though, small differences in the
mean and standard deviation are present, it can be expected that intermittency has no direct
impact on these quantities.
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(a) (b)

Figure 6.33: Force distribution across the blade in (a) axial and (b) tangential direction.
The shaded areas mark the corresponding standard deviation.

Fatigue Loads

If now the equivalent fatigue loads are studied in the same way as in section 2.6, some differ-
ences become apparent as seen in Figure 6.34. The intermittent flow leads to a slight increase
in EFL over a broad range of radial positions for tangential as well as axial forces.

(a) (b)

Figure 6.34: Equivalent fatigue loads of (a) axial and (b) tangential forces. The shaded
areas mark the corresponding standard deviation.

Because the increase of loads for the intermittent case is of importance here, the dif-
ferences of Gaussian and intermittent cases are plotted in form of the ratio of both in Figure
6.35. Axial as well as tangential loads show a difference of up to approximately 4% along the
blade. Close to the blade root and the blade tip small differences between Gaussian and in-
termittent cases can be observed, but they are not relevant because the absolute loads are
rather small.

(a) (b)

Figure 6.35: Ratio of Equivalent fatigue loads of (a) axial and (b) tangential forces.



6.2 Simulation of a wind turbine with Gaussian and intermittent wind fields 137

To analyse the loads in more detail range histograms of thrust and torque have been
created in Figure 6.36. Both histograms show no substantial difference between Gaussian
and intermittent load cases in the small and mid-range region which might be surprising be-
cause the intermittent increment histograms reveal a slightly more pronounced peak around
zero. However the difference between both simulation cases might be too small to result in
visible differences in the range counts. It should also be kept in mind that range and in-
crement histograms originate from fundamentally different data sets where especially the
availability or unavailability of time information plays the biggest role.

More anticipated are the large range events which are slightly dominated by the inter-
mittent inflow case for thrust as well as torque. Because the fatigue loads are directly affected
by the heavy-tails due to the aforementioned involved Wöhler exponent m from Equation
2.31, it is expected that the EFL for the intermittent case are also slightly bigger.

The contribution of the ranges to the EFL, i.e. n · r 8, is shown in Figures 6.37. Here
the heavy weight of large range events becomes clear and it becomes more obvious, why the
intermittent simulation case leads to higher loads. The intermittent and Gaussian loads are
almost equally distributed but for high range events, the intermittent case has more counts,
and with it higher EFL.

(a) (b)

Figure 6.36: Range histograms with Gaussian and intermittent inflow for (a) thrust and
(b) torque.

(a) (b)

Figure 6.37: Contribution of ranges to EFL with Gaussian and intermittent inflow for
(a) thrust and (b) torque.

Summary of Results

The results of the study under partially correlated inflow are summarized in Table 6.3 where
the mean, standard deviation σ, maximal increment kurtosis Kmax and fatigue loads of the
integral forces under Gaussian and intermittent inflow conditions are recorded. The given
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errors are obtained by separating the corresponding time series into five distinct equally
sized ensembles and calculating the ensemble standard deviation. For comparison reasons
the ratios of the calculated quantities under Gaussian and intermittent inflow conditions are
calculated in the last column.

Quite obvious are the almost equal mean and standard deviation for thrust as well as
torque where the ratio for both inflow cases ranges from 100.6 % to 101.4 %. In contrast
to that the increment kurtosis is quite different with an up to 37 % higher value for the in-
termittent case. However, even under Gaussian inflow conditions the increment kurtosis is
larger than 3 which could also be seen in the increment PDF in Figures 6.27 and 6.31. For the
fields studied here, parallels between increased EFL and heavy-tailed increment statistics,
generated by the CTRW generator, might be drawn, because the EFL tends to be higher. Very
strong fluctuation in the statistics, indicated by the errors, can be observed, but for the out-
come of this section it can be argued that the actual time series is responsible for the EFL and
not the five much smaller ensembles which are used for the error calculation. Nevertheless
the increase of EFL by around 1 % is not very well-founded and might also be related to the
increased standard deviation. An even bigger increment kurtosis for the intermittent case
should be considered, which is not doable with the method used here because of the de-
caying process and convergence problems if the increment kurtosis becomes very big. The
convergence problems are also visible in the errors of σ, Kmax and the EFL for the intermit-
tent case, which are much higher than for Gaussian inflow conditions due to the short time
series which are used as a basis for the error calculation.

Table 6.3: Thrust and torque comparison by mean, standard deviationσ, maximal increment
kurtosis Kmax and EFL between Gaussian and intermittent partially correlated inflow fields.

Gauss Intermittent Intermittent/Gauss [%]

mean 700 ± 11 704 ± 10 100.6
Thrust

[kN]
σ 37.4 ± 4.4 37.8 ± 9.3 101.1

Kmax 3.76 ± 0.21 5.15 ± 0.37 137.0

EFL 142 ± 17 145 ± 21 102.1

mean 4352 ± 155 4415 ± 124 101.4
Torque
[MNm]

σ 496.3± 58.1 501.4 ± 101.4 101.0

Kmax 3.78 ± 0.18 4.69 ± 0.52 124.1

EFL 1900 ± 222 1924 ± 296 101.3

6.2.3 Empty Domain Simulation with Fully Correlated Fields

To achieve an even better comparison of intermittent and non-intermittent inflows the same
time series is injected at every grid point of the inflow patch such that the in-plane grid
points are fully correlated with a correlation length of r → ∞. This approach was already
presented in section 5.0.2 for the airfoil simulations. Of course this simplification comes
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with the cost of physicality because the correlation length is limited in reality. However the
Gaussianization algorithm, which was explained in section 3.4.3, can be used here to achieve
a much smoother Gaussian distribution for the one point histograms while the spectra are
kept identical.

As done for the partially correlated cases, the wind field evolution in the empty domain
is studied first where any effects coming from the rotor are not accounted for.

A snapshot for the two simulations with fully in-plane correlated velocity fields are
shown in Figure 6.38. The full correlations are clearly visible in the middle, but in the up-
per and lower part deviations occur because of the mesh coarsening and the different mesh
structure in general. The variance in streamwise direction is not changing on first glance and
the structures are kept throughout the domain which gives rise to the expectation of a small
energy loss. The decay mainly appears in the outer regions far away from the centerline.
Some instabilities which look like vortices show up at some points in the Gaussian simula-
tion which find their origin in numerical artifacts. Nevertheless because of the small number
of occurences they are not considered in the following studies.

(a) (b)

Figure 6.38: Snapshot of the flow field in an empty domain under fully correlated (a)
Gaussian and (b) intermittent inflow conditions.

The mean velocity evolution is depicted in Figure 6.39a which is almost constant
throughout the domain. Only a negligible increase of around 0.01 m/s occurs until the last
measurement point close to the outlet. The standard deviation in Figure 6.39b is also very
stable everywhere. In contrast to partial correlations no decay can be observed along the
centerline. Instead, for the Gaussian flow field a very tiny increase can be noticed with its
maximum 200 m behind the planned rotor position. The origin of this increase might be
numerical issues which are also responsible for the small vertices in Figure 6.38a. But be-
cause this increase is less than 1% of the actual value it can also be neglected for the rotor
simulations. So mean and standard deviation can be treated as almost identical for both
fields.
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(a) (b)

Figure 6.39: Evolution of (a) mean and (b) standard deviation of the fully in-plane cor-
related Gaussian and intermittent windfields at the centerline of the domain.

Close to the inlet and 50 m in front of the position where the rotor is planned the data
is collected for the wind speed histograms in Figure 6.40. No clear bigger differences in the
wind speed distributions can be observed between both locations which shows that a trans-
port of the wind speed characteristics through the whole domain can be assumed by using
such strongly correlated wind fields as it is done here. Both inflow cases do not completely
fulfill the one point statistics of a Gaussian distribution, but the differences in the inner part
are small thanks to the Gaussianization algorithm used here.

(a) (b)

Figure 6.40: Distribution of wind speed in main stream direction for fully in-plane cor-
related Gaussian and intermittent wind fields (a) close to the inlet and (b) 50 m in front
of the planned rotor in an empty domain.

The velocity increment histograms close to the inlet and the planned rotor are shown
in Figure 6.41 where the difference between Gaussian and non-Gaussian fields is very pro-
nounced even close to the rotor position. The heavy-tailed distribution does not change sig-
nificantly which is a big contrast to the simulations where the fields are partially correlated
in Figure 6.21b.
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(a) (b)

Figure 6.41: Increment distribution in main stream direction for fully in-plane corre-
lated Gaussian and intermittent wind fields (a) close to the inlet and (b) 50 m in front
of the planned turbine in an empty domain.

The almost unchanged increment statistics can be investigated in more detail by
means of the maximal and minimal kurtosis, shown in Figure 6.42. From this plot no change
at all can be seen throughout the whole domain which shows the power of full in-plane cor-
relations if specific time series characteristics should be studied and no decay of turbulence
is desired. Even though the increment kurtosis takes unrealistic high values, the fields can
be used to investigate if the loads on the rotor are increased.

Figure 6.42: Evolution of minimal and maximal increment kurtosis of the fully in-plane
correlated Gaussian and intermittent windfields at the centerline of the domain.

6.2.4 Rotor Simulation with Fully Correlated Fields

Finally the next step will be done by insertion of the rotor in the center of the domain at
the planned position and redo the simulations with the same fully in-plane correlated wind
fields as before.
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Flow Fields

The velocity field at the same time point as in Figure 6.38 is shown in Figure 6.43. As for
the partially correlated flow fields, the fields in front of the rotor are almost unchanged. The
wake is meandering for the simulation shown here but not as strong as for the partially cor-
related wind fields. The intermittent case even shows less meandering effects but a good
argumentation for this behavior can not be given.

(a) (b)

Figure 6.43: Snapshot of the flow field in the domain with a rotor under fully correlated
(a) Gaussian and (b) intermittent inflow conditions. The inlet shows the zoomed in
Gaussian case.

The mean wind speed and standard deviation are investigated in Figure 6.44. As al-
ready seen for the partially correlated fields in Figure 6.24a the mean value starts to drop
because of the blockage effect of the rotor, then it experiences a speed up due to the jet in
the middle of the rotor and finally it drops again. Interestingly the decay of the mean value
differs from the analogue simulation with partially correlated fields. Those differences can
be ascribed to uncertainties due to short wind time series. The standard deviation evolves
in a totally different manner than for the cases mentioned earlier. In front of the rotor the
constant value from the previous simulation without a rotor is kept, but surprisingly, now it
does not drop while propagating downstream, but instead an increase can be noticed due to
the turbulence generation by the moving rotor blades. Further downstream, at around 150
m behind the rotor, the standard deviation reaches a plateau and would be expected to drop
to zero if the domain would be larger, because the strongly correlated structures are broken
up and a decay in an analogue way to the partially correlated inflow case should appear.
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(a) (b)

Figure 6.44: Evolution of (a) Mean and (b) standard deviation of the Gaussian and in-
termittent windfields at the centerline of the domain.

If the histograms for the wind speed at the centerline are compared near the inlet and
in front of the rotor in Figure 6.45, no big difference can be observed. This let us conclude
that the wind fields are approximately the same and the turbine is hit by the same wind field
as injected.

(a) (b)

Figure 6.45: Distribution of wind speed in main stream direction for Gaussian and in-
termittent wind fields (a) close to the inlet and (b) 50 m in front of the rotor.

Figure 6.46 shows the compensated power spectra of both wind field types, which em-
phasizes the high similarity in front of the rotor. Except of small fluctuations in the small fre-
quency range, both fields are almost indistinguishable and a load analysis can be performed
without taking care of spectral differences.
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Figure 6.46: Spectra of both wind fields 50 m in front of the rotor.

The increments in Figure 6.47 are also almost the same and no big deviations are ap-
parent. So in contrast to partial correlations the Gaussian inflow field preserves its Gaus-
sianity in the increment statistics and the intermittent inflow field is still intermittent close
to the rotor position. This allows a direct comparison of both types of fields with respect to
induced forces and loads on the rotor.

(a) (b)

Figure 6.47: Increment distribution in main stream direction for Gaussian and inter-
mittent wind fields (a) close to the inlet and (b) 50 m in front of the planned turbine in
an empty domain.

The increment kurtosis can be measured at several points along the centerline and the
outcome for the maximum and minimum is shown in Figure 6.48. For the intermittent case
the increment kurtosis is very high everywhere and only a small drop is visible in the range
where the jet occurs. In the wake of the turbine small fluctuations overlay the otherwise
constant value. All in all no big change in the kurtosis happens for the intermittent case. The
airfoil simulation in Figure 5.17c shows a very different behavior for fully correlated fields
because the flow field is qualitatively very different to the current case. The rotating actuator
lines in the present case act as forces on the flow field which do not immediately change the
general direction of the flow like the airfoil boundary does, especially because the nacelle is
not simulated. In addition the simulation setup is different in the sense that the airfoil is not
rotating but static, and the spatial dimensions as well as the inflow fields are not comparable.
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Figure 6.48: Evolution of the range of increment kurtosis of the fully in-plane correlated
Gaussian and intermittent windfields for τ between 0.01 s and 10 s at the centerline of
the domain. The inlet shows the zoomed in Gaussian case.

Forces

The normalized thrust and torque time series for the Gaussian case in Figure 6.49a are as
similar as for the partially correlated wind fields in Figure 6.29a but from Figure 6.49b it be-
comes clear that due to the full in-plane correlations of the wind the turbine directly reacts to
the incoming wind time series. The averaging effect across the blade does not play any role
in this case and the wind speed is directly transferred into forces. Again, the same effects
could also be seen for the intermittent time series which makes it unnecessary to show them
here additionally. It is also obvious that some frequency components, which were existing
for partial correlations, are not present anymore.

(a) (b)

Figure 6.49: Time series of (a) thrust and torque, and (b) thrust and wind speed (shifted
by 4.39 s).

The compensated power spectra in Figure 6.50 fits to the observations made for the
time series from Figure 6.49 in the sense that all spectra are similar. The wind speed spec-
trum is slightly larger in the mid frequency range and smaller for high frequencies, but all in
all the force spectra fit very well to the wind speed spectrum. In contrast to the force spectra
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with partially correlated inflow fields in Figure 6.30 the 3P frequency is not visible for full
in-plane correlation because all rotor blades are exposed to the same wind velocities at the
same point in time. No spatial structures are available which can interact with the rotational
frequencies.

Figure 6.50: Spectra torque, thrust and Gaussian wind.

In the next step the increment distributions are visualized in Figure 6.51 where the
expected heavy-tails under intermittent inflow conditions are obvious for thrust and torque.
The same forces are almost Gaussian for the Gaussian inflow. Despite of this observation, it
should be mentioned that the inflow is purely Gaussian but the forces shown here show up
very small heavy-tails which were not existent in the wind. However the strong heavy-tails of
the intermittent case are transferred from the wind to the forces without big losses because
no filtering effect across the blade comes into play due to full in-plane correlations.

(a) (b)

Figure 6.51: Increment distribution for Gaussian and intermittent wind fields of (a)
thrust and (b) torque.

An overview over the increment kurtosis change with time delay τ is presented in Fig-
ure 6.52. While the Gaussian case has an increment kurtosis of almost three everywhere, the
intermittent case starts above 200 and drops almost linearly, which is related to a power law.
The short simulation time does not have a negative effect on the smoothness of the graph,
in contrast to the results under partially correlated inflow conditions.



6.2 Simulation of a wind turbine with Gaussian and intermittent wind fields 147

(a) (b)

Figure 6.52: Increment kurtosis dependent on time delay for Gaussian and intermittent
wind fields of (a) thrust and (b) torque.

The high comparability in the wind time series of intermittent and Gaussian inflows
directly maps to the axial and tangential forces as seen in Figure 6.53. Both simulation cases
lead to mean force distributions and standard deviations without any visible deviations.

(a) (b)

Figure 6.53: Force distribution across the blade in (a) axial and (b) tangential direction.

Fatigue Loads

Although the mean forces are not distinguishable, some differences occur for the fatigue
loads in Figure 6.54. If compared to the results for partially correlated fields from Figure 6.34,
a quite big gap in the loads between 20% and 95% span appears, where the loads resulting
from intermittent wind fields are much higher than the loads with Gaussian origin.

(a) (b)

Figure 6.54: Equivalent fatigue loads of (a) axial and (b) tangential forces.

Relative values are investigated in Figure 6.55 where the ratio of the fatigue loads un-
der intermittent and Gaussian inflow conditions is calculated for axial as well as tangential
forces. In these pictures can be seen that the axial forces under intermittent inflow condi-
tions are almost 10% higher than under Gaussian inflow conditions across the whole blade,
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except for r /R > 90% where this ratio drops. Eventually, close to the tip the Gaussian case
shows higher fatigue loads than the intermittent one. For the tangential forces it is different.
The simulation with Gaussian inflow causes higher loads in the root region of the blade while
everywhere else the intermittent case dominates. Because the wind fields are fully correlated
in the whole rotor plane if no rotor is present, it could be concluded that the outer blade re-
gions react differently to intermittency than the inner parts of the blade. But this could also
be originating from other, maybe numerical, effects and is not studied in more detail.

(a) (b)

Figure 6.55: Ratio of Equivalent fatigue loads of (a) axial and (b) tangential forces.

In Figure 6.56 are the range histograms for thrust and torque under Gaussian and in-
termittent inflow conditions depicted. A clear difference between Gaussian and intermit-
tent simulations can be found for both force types. Intermittent inflow leads to an increased
amount of small and high ranges, while the Gaussian simulation case is close to the inter-
mittent one for the medium ranges. It even dominates this part when the torque lies in the
focus. In contrast to the simulation results with partially in-plane correlated fields from Fig-
ure 6.36 the increment statistics can more or less directly be related to the range histograms,
i.e. increased probabilities of small and large increments can also be seen in more counts of
the respective ranges. The weight in the EFL of large ranges is much heavier than of small
ranges and therefore it is also expected that the intermittent case shows up increased fatigue
loads.

Figure 6.57 gives an insight into the contribution to the EFL of the specific ranges. Here
it becomes even more obvious that the intermittent inflow has a big impact on the EFL, be-
cause the high ranges are occupied by data points from the intermittent case.

(a) (b)

Figure 6.56: Range histograms with Gaussian and intermittent inflow for (a) thrust and
(b) torque.
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(a) (b)

Figure 6.57: Contribution of ranges to EFL with Gaussian and intermittent inflow for
(a) thrust and (b) torque.

Summary of Results

A summary of the results of the above simulations with fully in-plane correlated fields can
be found in Table 6.4. The mean as well as the standard deviation show deviations below
1 % which is a prove of the good comparablity quality of both fields. Because of the almost
not existing decay in the simulation domain due to full correlations, rather strong devia-
tions occur for the maximal increment kurtosis Kmax which is slightly larger than three for
Gaussian fields but around 60 for the intermittent case. Therefore it is justifiable to attribute
the increase in EFL of 4.8 to 6.6 % to the increased increment kurtosis in the CTRW fields.
The errors, which are gained by separation of the time series into five distinct equally sized
sub-samples and calculation of the ensemble standard deviation, are again much higher for
the intermittent case. This shows how sensitive the recorded values are with respect to the
length of the time series with a length of one fifth of the original one. The full time series
still has a concrete mean, standard deviation, increment kurtosis and EFL and a clear and
unambiguous relation between the increment kurtosis and the EFL can be found.

Table 6.4: Thrust and torque comparison by mean, standard deviationσ, maximal increment
kurtosis Kmax and EFL between Gaussian and intermittent fully in-plane correlated inflow
fields.

Gauss Intermittent Intermittent/Gauss [%]

mean 697 ± 9 696 ± 9 99.9
Thrust

[kN]
σ 71.3 ± 4.9 70.9 ± 16.8 99.4

Kmax 3.36± 0.16 61.59 ± 5.21 1833

EFL 258 ± 24 275 ± 41 106.6

mean 4290 ± 125 4281 ± 146 99.8
Torque
[MNm]

σ 961.0± 76.6 960.0 ± 223.2 99.9

Kmax 3.04 ± 0.16 56.3 ± 5.3 1852

EFL 3472 ± 289 3638 ± 538 104.8
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Convergence of EFL

In the following an observation from the simulations with fully correlated wind fields is
picked up to be able to classify the quality of the previous results. The normalized time se-
ries of wind, torque and thrust in Figure 6.49 are nearly identical from which follows that the
problem of finding EFL, gained from the thrust and torque time series, can be reduced to
apply the rainflow count algorithm on the wind time series itself. Even if the EFL calculation
of a wind time series does not result in loads in a physical sense, the qualitative results have
to be equivalent to the thrust and torque related fatigue loads. Furthermore, the term EFL is
also used in this context for the result of equation 2.31 with the wind time series as an input.

In order to study the convergence of the increment kurtosis and the EFL of the previ-
ous simulations with fully correlated wind fields, ten different realizations of Gaussian and
intermittent time series with the parameters from above have been simulated over a range
of 10000 s. For each simulation 20 subsets with different length, starting from 20 s up to
10000 s, have been created and the resulting increment kurtosis and EFL have been ensem-
ble averaged. It can clearly be seen in Figure 6.58a that the increment kurtosis for all time
series length is approximately 60 for the intermittent and 3 for the Gaussian time series as for
the simulations above. However, the EFL in Figure 6.58b strongly depend on the time series
length. They generally increase with increasing time series length for the Gaussian as well as
intermittent inflow until a saturated level is reached. A minimal time series length of about
2000 s is needed for the EFL to be considered as converged. But even if the converged state
is not reached for the 660 s intervals from the rotor simulations (vertical line), it is obvious
that the intermittent simulation case shows higher fatigue loads than under Gaussian inflow
conditions. Because an EFL difference of approximately 4-7 % can be observed between
Gaussian and intermittent inflows in the converged region, the qualitative results from the
rotor simulations in this chapter can be considered as correct with the specific simplified
assumptions of the wind fields and the rotor.

(a) (b)

Figure 6.58: (a) Increment kurtosis and (b) EFL for wind time series of different length.
The vertical dashed line marks the time series length of 660 s for the rotor simulations.

6.2.5 Discussion

Partially as well as fully in-plane correlated wind fields indicate that an increased increment
kurtosis leads to increased fatigue loads. This result is much more significant for full corre-
lations because of two major effects. The first one is the very high increment kurtosis which
has a direct impact on the rotor loads. Second, deviations of the flow field in the plane in
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front of the rotor are very small, i.e. the incoming inflow at each blade section is very sim-
ilar and intermittency is not expected to be filtered across the blade or dominated by other
effects.

Interestingly for the special case of full correlations it is possible to analyse the wind
time series itself with the rainflow count algorithm, and not the forces, because the wind
and force time series are almost identical, as seen in Figure 6.49b. For such simple studies
the rotor effect can be neglected and general trends could be forecasted by a pure analysis of
the wind fields. Nevertheless the fact should not be omitted that those fields are not physical
at all and the representation of the rotor with rotating actuator lines is a strong simplification
of reality. For studies, which are more industry specific, fully resolved blade simulations
or other industry-like calculation tools [110] should lie in the focus for future studies with
inflows which fulfill the IEC standards as well as consider the increment statistics of the flow
field.
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Chapter 7

Conclusions and Outlook

In this thesis the original CTRW model of Kleinhans [11], which incorporates higher order
increment statistics in the generation of wind fields, has been improved in several ways and
its turbulent main characteristics have been reported in the Gaussian limit. Those improve-
ments are

• a corrected correlation matrix, which introduces exponentially decaying correlations
to the wind field

• a new set of intuitive and physical parameters, which allows to write the energy spec-
trum and other derived turbulent properties in a compact way and which provides a
subrange, where Kolmogorov’s -5/3 law is nearly satisfied

• an alternative time distribution, the tempered Lévy distribution, where a much more
consistent picture for the increment kurtosis with changing model parameters is
achieved

• several correction algorithms to allow a good comparability of Gaussian and intermit-
tent CTRW wind fields with respect to their increment statistics

With the improved CTRW model, the effect of an increased increment kurtosis could
be studied in several CFD simulations:

For an open channel study, two different turbulence injection methods have been in
the focus. It could be shown that a direct injection at the inlet of the channel leads to a con-
servation of the increment kurtosis along the whole channel, while the usage of an actuator
leads to much smaller values, which made a comparison of Gaussian and intermittent wind
fields difficult.

Next, the effect of an increased increment kurtosis on an airfoil and on a wind turbine
rotor has been investigated. The main outcome of those simulations is that the increment
kurtosis of the wind could be transferred to the airfoil and rotor forces. The fatigue loads
for the airfoil as well as the rotor show a tendency to be higher, if the increment kurtosis
is increased. Of special interest for industry applications might be the fact that compared
to Gaussian inflow fields, the effect on the rotor loads is in the range of several percent,
dependent on the inflow conditions. In this context, fully in-plane correlated wind fields
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lead to higher fatigue than inflows with smaller correlation lengths.

Nevertheless some difficulties have to be taken into account if CFD should be used
as the tool of choice for rotor simulations. First, the decay of turbulence is a very impor-
tant point which should be considered. The original inflow field usually changes dramati-
cally while it propagates through the domain. Not only the mean and the variance change
their values but also the increment kurtosis which makes comparisons of two different wind
fields difficult. Very intermittent inflow fields tend to have more Gaussian increment statis-
tics while Gaussian inflow fields become more intermittent due to the development of a dif-
ferent type of turbulence within the domain. This behavior could be damped by usage of
full in-plane correlations at the cost of physicality, but this step is only recommended if the
focus lies on the increment statistics and not other maybe more important flow properties.

Second, the limitation of computational power also limits the spatial and temporal
resolution as well as the overall dimensions of the inflow fields. But those are the require-
ments which are usually demanded for converged statistics of intermittent CTRW fields. A
decision has to be made on how to satisfy the quality requirements on the statistics under
affordable computational power.

As a future task, some restructurings on the CTRW model should be made in order to
allow more realistic wind fields in terms of coherence, correlation and the scaling behavior of
increment moments. Especially the third order moment, i.e. the skewness, is not modeled
in a correct way and should be non-zero for realistic turbulence. For the correct spectral
properties it should be studied if already existing spectral models like the Mann [2, 3] or the
Kaimal model [4] could be extended by the intermittency concept via adding meaningful
phase-amplitude relations to the generated wind fields in Fourier space. This would have
the advantage that not only temporal but also spatial intermittency could be added, which
is not considered at all in the CTRW model. A much more realistic load analysis would be
possible and safety factors for the manufacturing of rotor blades could be reduced with the
advantage that material usage as well as production costs could be lowered. However to the
authors best knowledge no sophisticated approach for such an implementation has been
developed at present.

As another possible improvement, cross correlations between the different velocity
components could be implemented in an efficient way. The most simple but still inefficient
approach would be to extend the correlation matrix by the cross correlations. But for a three
component velocity field the total number of matrix entries would grow by a factor of nine.
A drastic increase of the computational time for the involved Cholesky decomposition and
an extremely inefficient field generation process would be the outcome.

In addition to the mentioned possible improvements, more studies on the characteri-
zation of intermittent CTRW fields have to be conducted. Up to now only ensemble averaged
moments can be derived numerically, but the time averaged counterparts as well as spectra
and other Fourier properties are not known at all and to the authors knowledge there is also
no mathematical method available for this purpose.

Apart from this thesis, efforts were invested to study the effect of intermittent CTRW
flow fields on fully resolved wind turbine rotors with flexible blades by usage of a fluid struc-
ture element code developed by Dose [111]. However statistical and numerical convergence
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problems for such complex simulations made it impossible to achieve meaningful results.
One of the future tasks could be to redo those simulations with an improved simulation setup
and to analyse the loads on the rotor blades in a similar manner as done in this thesis. Inter-
mittent inflow for yawed turbines could also be of interest in future studies as well as flows
with shear, which is already part of the CTRW model, but not used in this thesis for the sake
of simplicity.
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