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A hemispheric two-channel code accounts for
binaural unmasking in humans
Jörg Encke 1,2✉ & Mathias Dietz 1,2

Sound in noise is better detected or understood if target and masking sources originate from

different locations. Mammalian physiology suggests that the neurocomputational process

that underlies this binaural unmasking is based on two hemispheric channels that encode

interaural differences in their relative neuronal activity. Here, we introduce a mathematical

formulation of the two-channel model – the complex-valued correlation coefficient. We show

that this formulation quantifies the amount of temporal fluctuations in interaural differences,

which we suggest underlie binaural unmasking. We applied this model to an extensive library

of psychoacoustic experiments, accounting for 98% of the variance across eight studies.

Combining physiological plausibility with its success in explaining behavioral data, the pro-

posed mechanism is a significant step towards a unified understanding of binaural unmasking

and the encoding of interaural differences in general.
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The auditory system has the challenging task of restoring the
spatial properties of an acoustic scene based solely on the
signals arriving at the two ears. A critical source of infor-

mation in this process is the difference in arrival time between the
signals at the two ears. The delay line or Jeffress model1, one of
the longest-standing models of sensory-neuronal computation,
suggests that an array of coincidence-detecting neurons compares
neuronal signals from the two cochleae. According to this model,
each neuron in the array is associated with a best delay τ com-
pensating for a specific interaural time difference (ITD); the
neuron that compensates best for the ITD would then show the
strongest response. This concept corresponds to cross-correlation
and postulates a place code for ITD. The delay-line concept was
supported by the success of quantitative cross-correlation-based
models that were able to predict a variety of human psychoa-
coustic data2–5. Equally compelling, the predicted arrangement of
axonal delay lines has been found in the nucleus laminaris of the
barn owl6, a spatial hearing specialist. In mammals, however, no
such structure has been found. Instead of a nearly frequency-
independent distribution of best-delays centered around τ= 0 as
ideal for the Jeffress model7, studies found the best delay of
neurons in each hemisphere of the brain to be centered around 1/
8th of the cycle duration8–10 (see the visualization in Fig. 1c).
Mammals thus seem to lack the topographical map of ITDs, as
postulated by Jeffress. These findings resulted in the formulation
of an alternative coding hypothesis: The two-channel model.
Instead of the large number of systematically tuned coincidence
detectors used by the Jeffress model, this model relies on the
activity within only two broad hemispheric channels8. Instead of

the Jeffress place code, the ITD is encoded by the relative firing-
rate change within both channels. The two-channel code thus
represents a rate code. The two-channel approach has been
incorporated into several quantitative models dealing with var-
ious aspects of binaural hearing11–14, but between them, these
models still lack the predictive power of cross-correlation-based
approaches. As a consequence, and despite the apparent lack of
systematic delay lines in mammals, Jeffress-type models are still
widely used to account for experimental data in humans, espe-
cially when dealing with phenomenons beyond sound
localization15,16.

In addition to sound localization, listening with two ears also
provides a benefit in complex environments in which a target
sound is masked by sounds from another location17. This
binaural unmasking has been studied extensively using tone-in-
noise detection experiments, resulting in a large body of highly
reproducible data3,18–20.

These studies consistently found that tone-in-noise detection
improves considerably when an interaural difference is intro-
duced into either the tone or the masker. If the masker is identical
in both ears, anti-phasic 500-Hz tones can be detected at a sound
level 15 dB lower than for in-phase tones18. This benefit is purely
binaural: monaural detection thresholds are unaffected by chan-
ges in the tone phase, even though the waveform of the noise
signal changes depending on the phase of the added tone (see
Fig. 1a).

Tone-in-noise detection thresholds depend on several stimulus
features, including noise correlation, noise ITD, interaural phase
relation of noise and target, and noise bandwidth. Models based on

Fig. 1 Visualization of the modeling approach. a Schematic visualization of the signals in a tone-in-noise experiment. In this example, anti-phasic tones
(top panel) are added to the same noise token (middle panel), resulting in a partly decorrelated stimulus (bottom panel). b The amount of decorrelation
depends on the level of the added tone. This panel shows the correlation as a function of the signal-to-noise ratio (SNR) calculated for an anti-phasic tone-
in-noise as visualized in a. c Histograms of the best-IPDs of 217 neurons that were digitized from10. For visualization, the histogram of the right hemisphere
was added as an identical but mirrored version of the left hemisphere. d Assumed IPD-rate functions for two neurons with ±π/4 best-IPD. e Components of
the complex-valued correlation coefficient for different ITDs. Results were calculated for Gaussian noise after applying a 500Hz-centered gammatone filter
with 79 Hz equivalent rectangular bandwidth. The real and imaginary parts of γ show the same π/2 phase shift as the IPD-rate functions in d. The dashed
vertical line indicates an ITD of 2.3 ms with the two vertical lines indicating the associated values of the real and imaginary part. f Visualization of the
different components of the complex correlation coefficient γ in the complex plane for the same noise and the 2.3 ms ITD indicated in e. g Instantaneous
IPD Δφ(t) for the same noise as used in e and f. The right subplot shows the corresponding probability density function26. The expected value of this
distribution equals the argument of the stimulus coherence E½ΔφðtÞ� ¼ argðγÞ ¼ 0:3π.
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the cross-correlation function account for these dependencies by
detecting changes in the maximum of the cross-correlation func-
tion ρ(τ) which are caused by the tone2,3. These models benefit
from the large array of differently tuned coincidence detectors
which enables them to use the most informative delay element,
ρ(τbest), for the respective task. Models that lack the array of delay-
tuned detectors, such as the two-channel model, fall short in terms
of both accuracy and comprehensiveness11,12,21.

Adding a tone with an interaural phase difference (IPD) to a
correlated masker not only reduces the correlation but also
introduces fluctuations in the stimulus IPD22,23. While the
reduction in correlation and the fluctuation strength are closely
connected, this relation does not always hold. This is illustrated
by comparing two cases: (A) two noise tokens from independent
sources; (B) two noise tokens from the same source where one
token is phase-shifted by π/2. In both cases, the correlation
between the tokens is zero. In the case of the two independent
tokens, however, the IPD fluctuates randomly, whereas, by defi-
nition, (B) has a constant IPD. The amount of IPD fluctuation
thus offers additional information about the underlying binaural
statistics and has been proposed as an alternative metric for
binaural detection10,22,24. Yet, this approach has received rela-
tively little attention in quantitative modeling.

This study aims to remedy the current limitations of the two-
channel model in accounting for binaural unmasking experi-
ments. By introducing a new mathematical representation of the
two-channel model, we reveal a direct connection to the amount
of IPD fluctuation proposed to underlie binaural detection. The
proposed representation of the two-channel model also creates
the theoretical foundation for a new understanding of IPD
encoding in the mammalian brainstem. We evaluate this new
approach to the two-channel model by comparing predictions of
a signal-detection model against an extensive library of binaural
detection experiments.

Results
A mathematical representation of the two-channel model. The
two-channel model assumes that ITDs are encoded in the activity
within two broad hemispheric channels. These channels are
represented by the mean activity of neurons in the left and right
brain hemispheres8. ITD-sensitive neurons in the midbrain have
been found respond strongest to ITDs around 1/8th of the cycle
duration8–10 which is equivalent to an IPD of π/4. If we assume
that each channel is represented by the mean activity of all units
within the hemisphere, we can represent them as one correlator
each. These correlators show best-IPDs of ±π/4. As a con-
sequence, their relative phase difference is π/2 so that the two
channels are orthogonal10 (see Fig. 1d).

An equivalent but mathematically more convenient method of
representing the two ±π/4 channels is to use one correlation with
zero best-IPD and a second correlation with π/2 interaural phase
offset. This phase offset can be obtained by Hilbert transforma-
tion H of either the left ear signal l(t) or the right ear signal r(t).
Both real-valued correlations can then be expressed by a single
complex-valued correlation coefficient γ:

γ ¼ <lðtÞrðtÞ>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<jlðtÞj2><jrðtÞj2>

p þ i
<H½lðtÞ�rðtÞ>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<jlðtÞj2><jrðtÞj2>

p ; ð1Þ

where i indicates the imaginary unit. Figure 1e shows noise-delay
functions for the two correlators (blue and red line). The benefit
of using this complex-valued representation is that it is equivalent
to directly calculating a single correlation coefficient for the
complex-valued or analytic representations of the two signals

laðtÞ ¼ lðtÞ þ iH½lðtÞ� and raðtÞ ¼ rðtÞ þ iH½rðtÞ�:

γ ¼ <l�aðtÞraðtÞ>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<jlaðtÞj2><jraðtÞj2>

p ; ð2Þ

where the asterisk indicates the complex conjugate, and the
angular brackets the ensemble average. This expression is also
called the complex-valued correlation coefficient. It is well known
in other fields of physics that deal with waves such as optics25,26,
allowing to inherit its established properties and advantages.

Figure 1f represents γ as an arrow in the complex plane where
the x- and y axis equal its real and imaginary parts. The example
was calculated for an ITD of Δt= 2.3 ms which is also indicated
by the dashed line in Fig. 1d. Instead of using the real and
imaginary part, γ can also be described by the angle (argument
argðγÞ) and the length (modulus ∣γ∣) of the arrow. These two
values have some interesting properties. The argument argðγÞ
equals the expected value of the distribution of instantaneous
IPDs, or in other words, the time-averaged IPD (see Fig. 1g). The
modulus ∣γ∣ is a measure for the consistency of left and right
instantaneous phases and thus for the IPD-fluctuation strength.
We will refer to ∣γ∣ as the interaural coherence10.

Note that there are several differing definitions of coherence.
Our use of coherence as ∣γ∣ is a typical time-domain definition25. In
general signal processing, the coherence function is instead defined
in the frequency domain and calculated as the normalized absolute
value of the cross-spectral power density (CSPD)27. The two
definitions are closely related, as the time-domain coherence can
also be defined by using a Fourier transform of the CSPD (see
“Methods” for details). In binaural research, a third definition
exists, where interaural coherence is sometimes used to refer to the
maximum of the real-valued cross-correlation function28. It is
similar but not equivalent to the more general definitions.

The derivation of γ as a mathematical representation of the two-
channel model highlights two essential properties of the model:
Firstly, the two-channel model can act as a perfect encoder for
IPDs, and secondly, the two-channel model also encodes informa-
tion about the amount of fluctuation in IPD. If these fluctuations
can indeed be used for explaining binaural unmasking, as proposed
in refs. 10,22,24, then this should also be possible by using γ. The
following section will thus develop a signal-detection model to
predict binaural detection based on the quantity γ.

A model of binaural detection. Tone-in-noise detection is usually
performed as an alternative forced-choice task with one or more
reference intervals containing only the reference noise and a target
interval in which the tone is added to the noise. These studies aim
to determine the signal-to-noise ratio (SNR) at which the subject
can identify the target stimulus with a predefined sensitivity.

A computational model was used to test the hypothesis that
binaural tone-in-noise detection can be explained based on the
complex correlation coefficient γ. In the model, threshold SNRs
are calculated directly from the absolute difference between the
complex correlation coefficients of the masker and target stimuli.
Correlation coefficients were calculated based on the spectral
properties of the two input stimuli, assuming only a peripheral
bandpass filter. In addition to this binaural detection path, a
monaural pathway provides an SNR-based detection cue in
stimuli with few or no binaural cues. A mathematical description
of the model is given in “Methods”.

Four stimulus parameters were necessary to define the stimuli
used in this study: The IPD of the noise as a function of angular
frequency Δφ(ω), the noise correlation ρN, the IPD of the target
tone Δϕ, and the noise bandwidth Δω. For example, for an out-
of-phase tone in 900 Hz wide, correlated noise with 2.3 ms
ITD (as used in Fig. 1e–g), the parameters would be set to
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Δφ(ω)= ω × 2.3 ms, ρN= 1, Δψ= π, and Δω= 2π × 900 Hz.
Table 1 summarizes the stimulus parameters of all experiments
that are discussed below. Three parameters define the model
itself: parameters σbin and σmon, which directly determine the
binaural and the monaural detection sensitivity, and a third
parameter ρ̂, which limits the maximal sensitivity to changes in
coherence. Model parameters were optimized separately for each
experiment because detection thresholds for identical stimuli
were not always identical across studies. This finding is
unsurprising since most experiments were conducted with few
subjects. Table 1 summarizes the resulting model parameters.

Simulated datasets. The first dataset by Pollack & Trittipoe29 is
not from a tone-in-noise experiment but directly quantified the
sensitivity to changes in coherence. For the model, this sensitivity
was directly calculated using Eq. (8). Experimental data and
model results are shown in Fig. 2a.

In the next two experiments, the reference also consisted of
noise with predefined interaural correlations. However, the target
correlation was not manipulated directly but was changed by
adding a tone to the partly correlated noise. Robinson & Jeffress30

collected results for both in-phase and anti-phasic tones (see
Fig. 2b). The experiment with anti-phasic tones was repeated by
Bernstein & Trahiotis16, who also collected data at different noise
bandwidths (see Fig. 2c). The change in coherence that arises
from adding a tone at a given SNR depends on the initial noise
correlation ρN and on the difference between the tone IPD and
the noise IPD31. The coherence change is greatest when the two
IPDs are out of phase, while there is no influence when the IPDs
are the same. In Fig. 2b, this is reflected in the large difference
between the threshold SNRs of the in-phase and anti-phasic
conditions when ρN=−1 and ρN= 1. The improvement in
threshold SNR with increasing bandwidth, as seen in Fig. 2c, can
be explained solely by the filter property of the auditory
periphery. Only noise energy that falls within the peripheral
filter interacts with the tone, thus determining the coherence.
This peripheral filtering improves the SNR and, thus also the
nominal threshold SNR. For large stimulus bandwidths far
exceeding the peripheral bandwidth, this improvement equals
3 dB/octave.

Instead of directly changing the masking noise correlation, the
next set of studies by Langford & Jeffress19, and van der Heijden
& Trahiotis3 applied an ITD to the noise before adding the target
tone (Fig. 2d, e). The added ITD results in both a reduction in
coherence ∣γ∣ and a shift in the noise IPD (see Fig. 1e, f for an
example). The change in noise IPD results in periodic oscillations
of the threshold SNR, as the effectiveness of the added phasic or

anti-phasic tone changes with noise IPD. The periodic oscillation
is superimposed by an overall increase in threshold SNR with
ITD. Rabiner et al.20 conducted a slightly different but related
experiment: instead of applying the ITD to the whole noise, it was
applied only to the envelope of the masking noise, which keeps
the noise IPD fixed at zero (Fig. 2f). This removes the oscillations
in the threshold SNR while resulting in the same increase in
threshold SNR as when using the regular ITD.

Yet another stimulus variation was introduced by Bernstein &
Trahiotis15 who added anti-phasic tones to noises of different
interaural correlations and applied the ITD to the whole signal.
This modification keeps the phase relation between noise IPD
and tone IPD fixed at π so that the ITD only influences the
stimulus coherence (Fig. 2g). As in the study in ref. 20, this results
in an increase in the threshold SNR without oscillations. The
increase is less pronounced at low noise correlations because the
effect of the ITD on coherence diminishes with decreasing noise
correlation.

Figure 2h shows experimental results from van de Par &
Kohlrausch32 as well as simulated threshold SNRs for a large
range of bandwidths from 5 Hz to 1 kHz in two configurations
with binaural cues and one configuration with monaural cues
only. The model accounts for the bandwidth dependence of
detection thresholds because of its bandpass filter. The filter does
not considerably affect the noise energy at very low bandwidths,
so the threshold SNR remains constant. The predicted threshold
SNR improves by 3 dB per octave at large bandwidths.

With parameters that were optimized individually for each
experiment, the model could account for 91 to 98% of the
respective variance (see Table 1). For all datasets together,
keeping the individual parameters, the model accounted for 98%
of the total variance. Figure 2i visualizes this high correlation
between modeled and experimental thresholds by plotting one
against the other. A single set of parameters, optimized to reduce
the variance across all datasets, still accounted for 93% of the total
variance, despite the deviations in the experimental threshold for
identical stimulus parameters mentioned above.

Discussion
The complex-valued correlation coefficient model proposed here
accounted for nearly all aspects of the psychophysical datasets
examined in this study, with limitations discussed below. The
modeled binaural sensitivity is directly proportional to the differ-
ence in the z-transformed complex correlation coefficient γ between
target and reference. The bandpass filter is the only pre-processing
stage necessary to account for these datasets. The following dis-
cussion will thus focus on these two components of the model.

Table 1 Aggregation of stimulus and model parameters.

Study Stimulus parameter Model parameter

Δφ(ω) ρN Δψ Δω/2π ρ̂ σbin σmon R2

Pollack & Trittipoe29 0 ρ+Δρ / 1 kHz 0.92 0.42 / 0.97
Robinson & Jeffress30 0 −1 to 1 0, π 0.9 kHz 0.92 0.31 0.76 0.98
Bernstein & Trahiotis16 0 −1 to 1 π 25 Hz to 0.9 kHz 0.97 0.54 0.76 0.97
Langford & Jeffress19 ωΔt 1 0, π 0.9 kHz 0.95 0.33 0.70 0.96
van der Heijden & Trahiotis, 19993 ωΔt 1 0, π 0.9 kHz 0.90 0.19 0.61 0.95
Rabiner et al.20 (ω−ω0)Δt 1 π 1.1 kHz 0.85 0.24 0.71 0.95
Bernstein & Trahiotis15 ωΔt 0.498 to 1 ω0Δt+ π 0.1 kHz, 0.9 kHz 0.89 0.52 0.93 0.96
van de Par & Kohlrausch32 0, π 1 0, π 5 Hz to 1 kHz 0.97 0.38 0.76 0.91
Individual parameters optimized for each experiment: 0.98
One parameter set optimized for all experiments: 0.96 0.40 0.74 0.93

Parameters used to simulate experiments from eight different studies. The last column states the resulting coefficient of determination R2, which can be interpreted as the proportion of the variance in
the dataset that is explained by the model. The last row lists a single set of parameters that were optimized to minimize R2 for all experiments.
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In the first three experiments (Fig. 2a–c), no phase or time
shifts were added to the signal. Consequently, the imaginary part
of γ was always 0 so that γ equaled the real-valued correlation
coefficient ρ. This means that the model would show identical
results if it were based solely on ρ. The comprehensiveness and
accuracy of ρ-based models for this kind of stimuli have been
demonstrated previously2.

The experiments shown in Fig. 2d–i, included ITDs or IPDs, so
that γ was generally not real-valued. In these cases, models based
on real-valued correlation alone need to include larger parts of the
cross-correlation function ρ(τ)2,3. Alternatively, as shown in this
study, this kind of data can be explained entirely by the complex
correlation coefficient. To better understand the underlying
mechanism, Fig. 3a visualizes the z-transformed coefficients for
threshold SNRs for the data of ref. 3. The illustrated complex space
can be interpreted as a binaural feature space, where the distance
between the reference and target is directly proportional to the

binaural sensitivity d0bin. It is apparent that this distance is deter-
mined by both the coherence, reflected in the length of the vector,
and the mean IPD reflected in its angle. The relative contributions
of length and angle depend on the specific stimulus condition. For
conditions where the difference between the mean IPD of the noise
and the tone equals 0 or π, the added tone cannot influence the
mean IPD of the resulting signal. In these cases, binaural detection
was based solely on a change in coherence. If the difference is π, the
coherence change caused by the target is large, so the binaural cue
is generally large as well. When the difference is 0, detection relied
mostly on monaural cues, as visible in Fig. 3a: the vectors of
reference and target are nearly equal at Δt= 1ms. In this situation,
the availability of binaural cues increases with decreasing noise
coherence, as the added tone can then increase the coherence of the
target relative to the reference (see Δt= 3ms in Fig. 3b). The
decrease in coherence with ITD is visible in the decreasing length of
the reference vectors.

Fig. 2 Experimental data and model results for all experiments. In all cases, symbols indicate the experimental data as digitized from the respective study.
Simulated thresholds are shown as lines in matching colors. a Incoherence detection thresholds. The reference noise correlation serves as abscissa and the
required change in correlation as ordinate. The different colors indicate different sensitivity indices, i.e., different threshold definitions. b–h Threshold SNRs
for seven different studies with the threshold defined as in the respective study. Colors differentiate between conditions. b Dependence on noise
correlation. Colors differentiate between the use of in-phase (NρS0) or anti-phasic (NρSπ) tones. c The same experiment as in b for anti-phasic tones only.
Colors mark different stimulus bandwidths. d Dependence on noise ITD. Colors indicate the use of an in-phase (gray) or anti-phasic (blue) target tone.
e The same experiment as in d with higher ITD resolution (gray data). Additional conditions depict thresholds when the ITD was applied to the tone instead
of the noise (blue). f Similar to d but instead of a regular ITD, the ITD is only applied to the envelope of the noise. g Similar to d but the ITD is applied to the
whole stimulus (noise and tone). Colors indicate different noise correlations while the N0S0) condition is shown in black. Data for a 100 Hz masker
bandwidth is shown on the top and 900 Hz on the bottom. Results for the ρ= 0.992 condition are partly concealed by those of the ρ= 1 condition.
h Dependence on stimulus bandwidth. Colors mark the interaural configuration, including one without binaural cues (gray). Model results for the N0Sπ
condition are concealed by those for the NπS0) condition. i Summarizing scatter plot of all 329 simulated threshold SNRs plotted against their experimental
counterpart. The dashed diagonal indicates points of equality. Symbols correspond to the respective symbols from b–h.
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Of the data simulated in the present study, only that of van der
Heijden & Trahiotis3 and Langford & Jeffress19 include stimuli
with mean IPD differences between noise and tone other than 0
or π. Only these intermediate differences cause a change in both
coherence and angle of the target stimulus (Fig. 3). In these
intermediate cases, it is particularly advantageous to use the
complex plane of the z-transformed correlation coefficient z[γ] as
a two-dimensional acoustic stimulus feature space. A key finding
of the present study is that the acoustic feature space can be used
directly as a perceptual feature space so that the distance between
two stimuli in this space is proportional to the binaural sensitivity
index d0bin. The complex plane of z[γ] can thus be interpreted as a
perceptually uniform space like, for example, the CIELAB color
space that is commonly used to represent color difference
sensitivity33.

If z[γ] is interpreted as a perceptually uniform space, it should
be possible to use the same space to explain related phenomena,
such as ITD discrimination. For tones, ITDs are equivalent to
IPDs. Since IPDs are reflected in the argument of γ, IPD dis-
crimination sensitivity can be directly derived from Eq. (8):

Δσ thr ¼ 2 arcsin
d0binσbin

2arctanh ρ̂
� �

 !
: ð3Þ

Using the set of parameters summarized in Table 1. with d0bin ¼
1 resulted in IPD thresholds equivalent to ITDs in the range of
41 μs to 117 μs (median 60 μs); this is within the range of
experimentally obtained thresholds at 500 Hz. For discrimination
around zero ITD, experimental thresholds are on average a little
lower34, but for discrimination around π thresholds are above the
model median35.

As elaborated above, the proposed measure γ is equivalent to
calculating two normalized correlation coefficients. Naturally, this
assumption implies the existence of some form of neuronal
normalization process, an assumption that is shared with the
majority of the cross-correlation-based models. Mathematically,
this normalization could take place using monaural information
such as the activity of the auditory nerve13. It has, however, been
noted that this process would have to be extremely precise36.
Alternatively, normalization could also be based on the activity in
“anti-coincidence” detecting neurons such as those found in the
lateral superior olive37. The firing rate in these neurons behaves
inversely to those that act as coincident detectors and increases

with decreasing correlation. Comparison between anti-
coincidence and coincidence-detecting neurons could thus be
used for normalization. A third method would be to directly use
the time course of IPD fluctuation. Instead of encoding the real
and imaginary part of γ, this approach would encode the time-
averaged IPD and the coherence. The ability of the auditory
system to encode for the former is well established38. To encode
information equivalent to coherence, the auditory system could
directly rely on the amount the IPD fluctuates around its mean.
This IPD-fluctuation code would have the benefit of only
requiring information about a single quantity—the IPD.

The neuronal substrate necessary to extract γ based on the two
channels would depend on the underlying mechanism. Repre-
senting γ directly based on the values of coherence and mean IPD
would require a long-term integration mechanism with two
subsequent processing stages implementing neuronal equivalents
to calculating modulus and argument. If γ would instead be
represented indirectly via IPD fluctuations, neurons would have
to be fast enough to follow these fluctuations. Neurons that do
just this have indeed been described: IPD-sensitive neurons can
encode the fast fluctuations by means of fast changes in their
response rate39–41. This second mechanism would also be in-line
with a recent neuroimaging study which reported an elevated
cortical load when subjects were presented with low-coherence
stimuli42. The increased load could result from the brain having
to deal with localizing a sound source based on increasingly
fluctuating IPDs.

In cases where the noise bandwidth is considerably larger than
the peripheral filter bandwidth, the coherence function ∣γ(τ)∣ is
fully determined by the power spectrum of the peripheral filter
(see Eqs. (4) and (5)). By substituting τ with the ITD, the same
function can describe the ITD dependence of ∣γ∣. In the absence
of a delay line, the decline of the binaural benefit with masker
ITD is therefore a direct cause of the bandwidth after filtering.
Langford & Jeffress were the first to describe this relation, and
coarsely estimated that a 100-Hz filter bandwidth explains the
ITD dependence of their data (see Fig. 2d)19. With more quan-
titative analysis, and assuming a triangular filter, Rabiner et al.20

found that their data (see Fig. 2f) was best accounted for by a filter
with 85 Hz equivalent rectangular bandwidth (ERB). This value is
close to the 79 Hz ERB of the 4th-order gammatone filter that was
used in the present study (see “Methods”). The ERB was fixed at
79 Hz to reduce the number of free model parameters. This

Fig. 3 Vector visualization of the z-transformed correlation coefficients. The figure shows results for selected stimuli of the NΔtSπ) condition of van der
Heijden & Trahiotis3 (also see Fig. 2). Results for reference stimuli are shown in green while target stimuli are shown in purple. The length of each vector
represents the z-transformed coherence of the respective stimulus, while the angle represents the mean IPD. Target stimuli, shown in purple, contain both
tone and noise at the experimental threshold SNR. Noise-ITDs in the range of 0–2ms are shown in panel a and 2–4ms in panel b. Changes in Δt are
directly reflected by the average noise IPD, which determines the polar angle of the reference, so polar-labels state both the angle and the respective noise
ITD. The distance between the tips of the reference and target vectors is directly proportional to the strength of the binaural cue.
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bandwidth is a typical estimation for the bandwidth of the
monaural periphery43 and has also been employed in other
binaural detection models2,44. The same filter bandwidth is also
responsible for the change in threshold SNR with stimulus
bandwidth, as seen in Fig. 2c, where the point at which the
simulated threshold SNR starts to decrease is determined pri-
marily by the bandwidth.

While the proposed model was able to account for nearly all
characteristics of the datasets shown in Fig. 2, some limitations do
remain.

The experiment shown in Fig. 2h revealed differences between
the threshold SNRs for in-phase tones in anti-phasic noise (NπS0)
and anti-phasic tones in in-phase noise (N0Sπ): thresholds in the
(NπS0) condition were about 4 dB higher than for N0Sπ. The same
trend can be seen in the data shown in Fig. 2b and is consistent
across other studies18,30. This 4 dB difference between the NπS0
and the N0Sπ condition can not be accounted for by the presented
model. In the model, the two conditions differ only in their mean
IPD (that is, in the argument of the correlation coefficient argðγÞ),
which is zero for the N0Sπ condition and π for NπS0. By using γ to
predict thresholds directly, the model assumes that the sensitivity
to IPDs does not depend on the mean IPD, so predictions for the
two conditions are the same. The mean IPD-dependent difference
in the experimental thresholds also reflects the previously men-
tioned difference in sensitivity to changes in IPD, which is lower
around π than around 035. Differences in neuronal coding pre-
cision can explain both changes in sensitivity. The responses of
IPD-sensitive neurons in the auditory brainstem and midbrain
usually show their strongest change around IPDs of zero; this has
been suggested to facilitate the accurate encoding of IPDs in this
region8,45. The shape of the IPD-rate functions of these neurons
has also been shown to increase IPD sensitivity near zero IPD46.
The influence of non-sinusoidal IPD-rate functions on the pro-
posed coding mechanism is visualized in Fig. 4. Figure 4a shows
asymmetric IPD-rate functions that exhibit a steeper slope
towards Δφ= 0 than towards Δφ= ±π. Visualizing these func-
tions in the complex plane (Fig. 4b) results in IPDs that are
unevenly distributed with IPDs being more spread out around 0
than around ±π. Consequently, the angle of the complex pointer
within this circle will change faster for IPDs around 0 than
around π. This is also visualized in Fig. 4c, which shows the
sensitivity to changes in IPD calculating as the normalized deri-
vative of the pointers angle with respect to IPD. Including these
asymmetric IPD-rate functions would result in different sensi-
tivities to changes in IPD as a function of reference-IPD and in γ
to be less sensitive to IPD fluctuations around γ= π than around
0. Differences between N0Sπ and NπS0 are larger at low fre-
quencies and get smaller with increasing frequency18. If these
differences result from non-sinusoidal IPD-rate functions, then
one would also expect the IPD-rate functions to become more

sinusoidal with increasing frequency. This assumption is indeed
supported by physiological data47,48 which shows increasingly
harmonic ITD-rate functions with increasing frequency.

Other limitations in explaining experimental data arose from the
decision to minimize the model’s complexity. In theN0S0 condition
shown in Fig. 2h, the model deviates considerably from the data.
This deviation results from the sample-to-sample variability of the
noise energy, which changes with stimulus bandwidth32. This effect
cannot be accounted for by the current model implementation,
which is based on infinitely long signals. However, a numeric
implementation based on finite signal waveforms should account
for this phenomenon. Another dataset that has historically been
difficult to account for, employs binaural unmasking in repro-
ducible noise token49,50. These experiments tested tone-in-noise
detection using the same reproducible token across subjects. Like
other models based on the average stimulus, we expect the pre-
sented model only to explain the average performance but not the
variability between individual tokens.

The current model also neglects peripheral processing apart
from bandpass filtering. Without this pre-processing, the model
cannot account for effects that are associated with the
periphery51–53. The lack of realistic peripheral processing also
limits the ability of the model to account for differences in
binaural detection with frequency. IPD and thus ITD sensitivity
rely on the auditory nerves’ activity to lock onto the stimulus
phase (so-called phase-locking). Phase locking declines with
increasing frequency54 which is one of the reasons why sensitivity
to ITDs and binaural detection thresholds worsen with increasing
frequency18,34. The loss of phase-locking could be implemented
by a low-pass filter included in a model of peripheral transduc-
tion. This filter would remove phase information at higher fre-
quencies while keeping the waveform envelope. Extending the
current model with a more detailed periphery should thus help to
account for the effects associated with the periphery and the
reduction in phase sensitivity at higher frequencies. The current
implementation also uses only one single frequency channel.
Other experiments, however, such as those employing spectrally
complex maskers or maskers constructed from two noise sources
with different ITDs, might require a multi-channel implementa-
tion of the model. The success of this kind of model extension has
recently been demonstrated55.

Our goal was to test whether the two-channel model that was
proposed to underlie ITD sensitivity in mammals could also be
used to account for binaural unmasking. By introducing a new
mathematical representation of the two-channel model, the
complex correlation coefficient, we revealed a direct connection
to the amount of IPD fluctuation previously proposed to underlie
binaural detection. Using a computational model, we demon-
strated that the complex correlation coefficient, and thus the two-
channel model, is indeed able to accurately account for many

0

Fig. 4 Visualization of the impact of non-sinusoidal IPD-rate functions. a IPD-rate functions that exhibit a steeper slope towards zero IPD. b Plotting the
firing rates of the left hemisphere against the rates in the right hemisphere results in a plot similar to the complex plane plot shown in Fig. 1g. Markers
indicate the location of IPDs evenly spaced by 0.1/π. c The uneven spacing of IPDs on the circle shown in b results in the sensitivity to changes in IPD to
depend on IPD. Shown is the sensitivity normalized to its value at zero IPD.
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central aspects of tone-in-noise detection. Compared to the pre-
viously best-performing model class, the Jeffress model, our
approach is better in line with mammalian physiologic data and
represents a considerable simplification as well as a reduction of
degrees of freedom.

Methods
The following will introduce the underlying mathematics that were used for the
model implementation. A Python implementation of the model, as well as the scripts
for deriving and plotting predictions for all experiments, are openly available56.

Deriving the complex correlation coefficient for tone-in-noise detection
experiments. Throughout this study, the complex correlation coefficient was
calculated from the cross-spectral power density (CSPD) S(ω) of the signals. Fol-
lowing the Wiener–Khinchine theorem, the cross-correlation function of two
signals is equivalent to the inverse Fourier transform of their CSPD57. Conse-
quently, the normalized complex correlation coefficient can be calculated as:

γ ¼
R1
�1 SðωÞdωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1

�1 jSllðωÞjdω
R1
�1 jSrrðωÞjdω

q : ð4Þ

Where Sll(ω) and Srr(ω) are the power spectral densities of l(t) and r(t). This CSPD-
based approach has the benefit of directly resulting in the expected value of γ as
opposed to a waveform-based implementation where the coherence would have to
be estimated as the mean of several instances of the signal waveform.

Given the analytical representations of the left and right signals l(t) and r(t), the
effective CSPD S(ω) was composed of two parts: the CSPD Slr of l(t), r(t) and a transfer
function H(ω) used to account for the bandpass properties of the auditory periphery:

SðωÞ ¼ Slr jHðωÞj2: ð5Þ
The CSPD Slr is directly determined by the stimulus used in the respective

experiment and can be formalized as:

SlrðωÞ ¼
ρN
Δω e

iΔφðωÞ; ω0 � Δω
2 ≤ω≤ω0 þ Δω

2
ρN
Δω e

iΔφðω0Þ þ SNReiΔψ ; ω ¼ ω0

0; otherwise

8><
>: ð6Þ

where Δω is the bandwidth of a rectangular noise band centered around ω0 which,
in all cases was set to ω0/2π= 500 Hz. Δφ(ω) is the IPD spectrum of the noise while
Δψ is the IPD of the tone. Both were set according to the conditions used in the
respective experiment, as summarized in Table 1. For tone-in-noise detection
experiments, γ is independent of the absolute level and only depends on the SNR.
Consequently, the noise energy was set to one, so that the energy of the tone equals
the SNR. Some experiments also made use of noises with different interaural
correlations ρN. The CSPD only contains interaurally coherent energy so that, in
these cases, the CSPD of the noise is scaled by ρN. Assuming the power spectrum of
a gammatone filters to account for the bandpass characteristics of the auditory
periphery, ∣H(ω)∣2 was approximated by:

jHðωÞj2 ¼ 1þ ðω� ω0Þ2
4π2b

� ��n

; b ¼ ERBðn� 1Þ!2
πð2n� 2Þ! 2ð2�2nÞ ð7Þ

where n is the order of the filter and ERB its equivalent rectangular bandwidth58. In
this study, the filter was centered at 500 Hz with the filter order set to n= 4 and the
ERB to 79 Hz.

Modeling the detection performance. A signal-detection model with two bran-
ches, one binaural and one monaural, was used to derive tone-in-noise detection
thresholds. The first branch calculates the binaural sensitivity index d0bin based on
the difference of the complex correlation coefficients γr of a reference signal and of
a target signal γt:

d0bin ¼ z½ρ̂ γr� � z½ρ̂ γt�
�� ��

σbin
: ð8Þ

Here, z[•] symbolizes the Fisher’s z-transform applied to the modulus of the input
while leaving the argument unchanged. This transform normalizes the sampling
distribution of the coherence59. Direct use of this transformation would result in
infinite sensitivity to changes from a coherence of one so that the model parameter ρ̂
was introduced. Functionally, this is equivalent to adding uncorrelated noise to the
two input signals to account for processing errors on the auditory pathway60. The
sensitivity of the binaural path is adjusted by the model parameter σbin.

The monaural branch offers sensitivity to increases in stimulus energy between
reference and target. As the power of the noise is held constant, this increase is directly
proportional to the SNR so that the monaural sensitivity index d0mon is calculated as:

d0mon ¼ SNReff

σmon
; ð9Þ

where SNReff is the effective SNR after peripheral bandpass filtering and σmon is used to
adjust the sensitivity of the monaural pathway.

Assuming a linear independent combination of the monaural and the binaural
information, the monaural and binaural sensitivity indices are then combined to
the overall sensitivity index:

d0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d02bin þ d02mon

q
: ð10Þ

All signals that were used in this study are defined by the noise-IPD-spectrum
Δφ(ω), the tone IPD Δψ, the noise correlation ρN and the noise bandwidth Δω.
With these parameters defined, d0mon and d0bin and thus d0 only depend on the SNR.
Finding the SNR that results in the d0 value corresponding to the experimentally
defined threshold was solved by using the SLSQP minimization algorithm as
implemented in the Python package scipy61.

Statistics and reproducibility. The model performance in accounting for experi-
mental data was evaluated using the coefficient of determination R2 calculated as:

R2 ¼ 1�∑i ðyi � f iÞ2
∑i ðyi � �yÞ2 ; ð11Þ

where yi is the ith experimental data point and fi the associated model result. �y is the
mean overall experimental data points.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All modeling results are available as CSV files from zenodo with the identifier https://doi.
org/10.5281/zenodo.708492262.

Code availability
The Python source code for the model, including scripts for deriving all results, are
available on zenodo with the identifier https://doi.org/10.5281/zenodo.564342956.
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