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Kurzfassung

Das Hauptergebnis der vorliegenden Arbeit sind Algorithmen, die einen vollständigen Satz
an notwendigen Werkzeugen zu Verfügung stellen, um effizient in der Grad null Picard
Gruppe Pic0(X) einer reduzierten Überlagerung1X von P1

k zu rechnen. Die vorgestellten
Algorithmen haben eine asymptotische Laufzeit von O∼(nωcX) Operationen im Grund-
körper k wobei n der Grad eines endlichen Morphismus π : X → P1

k und cX eine Invariante
von X bezeichnet, für die gilt:

cX ≈

{
g+dimkH

0(X,OX)+n
n , X irreduzibel

maxmi=1
{
ci,X

}
, X reduzibel

wobei

ci,X ≈
gi + dimkH

0(Xi,OXi) + ni + εi
ni

Hierbei bezeichnen X1, . . . , Xm die irreduziblen Komponenten von X, g und gi jeweils die
Geschlechter von X bzw. Xi, n und ni jeweils den Grad von π bzw. π|Xi und εi ist eine
positive ganze Zahl, die einzig davon abhängt, wie sich die irreduziblen Komponenten in
X schneiden2. Dieses Resultat verallgemeinert das Ergebnis aus [Jun16] auf singuläre,
reduzible und nicht-ebene projektive Kurven über k. Alle bisherigen Algorithmen funk-
tionieren lediglich für irreduzible und nicht-singuläre Kurven über einen Körper k. Wir
geben eine kurze Einordnung unseres Resultats im Vergleich zu bisherigen Arbeiten:3

(i) Die Laufzeit von O∼(gω) in [KM07] für integrales4 und nicht-singuläres X hängt
nicht von einem möglichen Grad n, sondern lediglich vom Geschlecht g ab. Da-
her können die dort vorgestellten Algorithmen auch nicht von dem Fall, dass n
beschränkt ist aber g wächst, profitieren. In diesem Fall erreichen unsere Algo-
rithmen eine überlegene Laufzeit von O∼(cX) ⊆ O∼(g + dimkH

0(X,OX)). Statt
linearer Algebra über dem Grundkörper k in Dimension g wie sie in [KM07] benutzt
wird, benutzen wir lineare Algebra über dem Polynomring k[x] in Dimension n und
Grad cX (welches in etwa dem größten der Werte gi/ni entspricht).

(ii) Für den Fall von integralen und nicht-singulären Kurven erreichen wir im Wesent-
lichen die gleiche Laufzeit wie in [Jun16], als wir (ebenfalls durch lineare Algebra
über k[x] in Dimension n, aber im Grad g/n) eine asymptotische Laufzeit von
O∼(nω(g/n)) erreichten. Die in dieser Arbeit vorgestellten Algorithmen funktion-
ieren hingegen auch für singuläre Kurven.

(iii) Nach bestem Wissen des Autors sind die in dieser Arbeit vorgestellten Algorith-
men die ersten Algorithmen, welche die Arithmetik in Pic0(X) für die Klassen der
singulären und reduziblen Kurven umsetzt. Darüber hinaus sind die vorgestellten
Algorithmen für die Klasse der integralen und nicht-singulären projektiven Kurven
mindestens so schnell wie die bereits existierenden Algorithmen. Somit erweitern wir
nicht nur die Klasse der projektiven Kurven, für die es effiziente Algorithmen zur
Umsetzung der Arithmetik in Pic0(X) gibt, sondern wir können dieser Umsetzung
für all diese Kurven eine einheitliche Laufzeit zuordnen.

1Dies sind reduzierte projektive Kurven über einen Körper k zusammen mit einem endlichen Morphis-
mus auf P1

k. Für die konkrete Definition siehe Definition 2.1.3.
2Die Zahl εi ist durch (

∑m
i=1 gi)− g nach oben beschränkt. Hierfür siehe Lemma 2.4.3 zusammen mit

Proposition 2.4.9.
3Für eine umfassendere Abhandlung über die bisherigen Arbeiten zur Arithmetik in Pic0(X) siehe

Abschnitt 1.1.
4Im Sinne von irreduzibel und reduziert.
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Ferner beweisen wir in dieser Arbeit, dass die Grad null Picard Gruppe Pic0(X) zu einer
Idealklassengruppe isomorph ist, welche dem Koordinatenring einer überall dichten und
affinen offenen Menge von X zugeordnet werden kann. Darüber hinaus zeigen wir, dass
die Elemente in Pic0(X) durch quadratische Polynommatrizen der Dimension n mit einem
Grad, der nach oben linear durch cX beschränkt ist, repräsentiert werden können. Falls
X reduzibel ist, können wir die Elemente durch Matrizen in n-Blockform5 repräsentieren,
sodass der Grad des i-ten Zeilenblocks nach oben linear durch ci,X beschränkt ist. Nach
bestem Wissen des Autors ist dies neu für den Fall dass X singulär und reduzibel ist und
keinen k-rationalen Punkt besitzt.

Wir möchten betonen, dass wir insgesamt zwei Mengen von Algorithmen bereit stellen,
die beide jeweils einen vollständigen Satz an Werkzeugen bereitstellen, um die Arithmetik
in Pic0(X) umzusetzen: Der erste lässt im Wesentlichen die irreduziblen Komponenten
von X außer Betracht (und stellt damit einen eher generischen Ansatz dar) und der zweite
versucht explizit die Existenz der Komponenten auszunutzen. Wir bezeichnen diese beiden
als den komponentenunabhängigen bzw. den komponentenabhängigen Fall. Der kompo-
nentenunabhängige Satz an Algorithmen arbeitet mit Vertretern, die aus einer eher glob-
alen und gröberen Perspektive größenoptimiert sind, und stellt damit einen tendenziell
einfacheren Ansatz dar. Die Algorithmen des komponentenabhängigen Satzes arbeiten
mit Vertretern aus Pic0(X), deren Einschränkungen auf die irreduziblen Komponenten
größenoptimiert sind. Hierfür ist es erforderlich, dass die lineare Algebra Algorithmen,
die mit den entsprechend repräsentierenden Matrizen hantieren, etwas komplizierter wer-
den. Dies liegt an dem Umstand, dass diese auf die Blockstruktur der Matrizen, welche
die Einschränkungen auf die irreduziblen Komponenten von X widerspiegeln, eingehen
müssen. Durch das voneinander unabhängige Arbeiten auf den verschiedenen Komponen-
ten ergibt sich, dass diese Algorithmen einer möglicherweise parallelisierten Implemen-
tierung zugänglich sind.

In beiden Fällen stellt die Darstellung mithilfe der quadratischen Polynommatrizen die
Möglichkeit bereit, eine Darstellung der Einschränkungen eines Elementes in Pic0(X) auf
die irreduziblen Komponenten von X effizient zu berechnen und damit ebenfalls Bilder
unter dem Gruppenhomomorphismus Pic0(X)→

⊕m
i=1 Pic

0(Xi).

Die vorliegende Arbeit liefert weiterhin Ergebnisse, die zwar nicht im gleichen Maß
wie die Hauptergebnisse erwähnenswert sind, aber dennoch eigenen Wert haben. Zum
Teil basieren die Hauptergebnisse dieser Arbeit auf diesen Ergebnissen. Im Folgenden
geben wir einen kurzen Überblick über die erwähnten Ergebnisse und wie sie im Hauptun-
terfangen dieser Arbeit, der effizienten Umsetzung der Arithmetik in Pic0(X), eingebettet
sind.

Wir integrieren die Ergebnisse aus [Hes02, Theorem 7], welche die ersten expliziten
Methoden zur Berechnung von Basen von Riemann-Roch Räumen vorgestellt und etabliert
wurden, wie folgt: Wir erweitern den Geltungsbereich der dort gegebenen Ideen auf allge-
meinere Garben und allgemeinere Kurven. Wir definieren verallgemeinerte Vektorbündel,
welche im Wesentlichen solche Garben sind, für die es einen Struktursatz gibt, der ihre
globalen Schnitte durch eine k-Basis angibt; im Wesentlichen sind verallgemeinerte Vek-
torbündel also solche Garben, für die [Hes02, Theorem 7] im Allgemeinen gilt. Darüber
hinaus gilt all dies auch auf möglicherweise reduziblen und singulären Kurven. Dies er-
möglicht es uns im Grunde, die Elemente in Pic0(X) durch quadratische Polynommatrizen
der Dimension n darzustellen.

Die durch die angegebene k-Basis beschriebene Dimension der globalen Schnitte eines
verallgemeinerten Vektorbündels F hängt von den π-Invarianten von F ab, welche wiederum
durch die Zerlegung von π∗F auf P1

k in invertierbare Garben bestimmt sind. Diese hän-
5Falls n =

∑m
i=1 ni und M ∈ k[x]n×n in n-Blockform ist, so gibt es Matrizen Mi ∈ k[x]ni×n sodass die

Matrix M durch untereinander Schreiben der Matrizen M1, . . . ,Mm entsteht.
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gen ebenfalls mit der Dimension von H1(X,F) als k-Vektorraum zusammen. Falls X
integral und nicht-singulär ist, so erhält man üblicherweise Schranken für diese Invari-
anten durch Anwenden der Riemann-Roch Gleichung zusammen mit dem Verschwinden
von H1(X,OX(D)) für Divisoren D auf X dessen Grad 2g−2 überschreitet. Wir verallge-
meinern dies auf allgemeinere Kurven und auf verallgemeinerte Vektorbündel vom Rang 1
(welche wirOX -Ideale nennen). Im Falle von integralemX können wir auf recht elementare
Weise Schranken angeben. Die Suche nach Schranken ist im reduziblen Fall hingegen sehr
viel komplizierter. Nichtsdestotrotz können wir recht explizite Verfahren angeben, um
Basen von F zu finden, welche in Bezug auf jede einzelne irreduzible Komponente klein
sind. Die Existenz dieser Basen impliziert dann letztenendes die Schranken für die π-
Invarianten. Ferner ist es von Bedeutung, dass die Schranken für die π-Invarianten obere
Schranken für den minimalen Grad der die Elemente aus Pic0(X) darstellenden Matrizen
liefern. Daher sind wir schlussendlich dazu in der Lage, die Elemente in Pic0(X) durch
quadratische Polynommatrizen der Dimension n darzustellen, deren Grad nach oben linear
durch cX beschränkt ist.

Diese Schranken wiederum ermöglichen, dass wir eine Schranke n0 ∈ Z angeben kön-
nen, die von cX und den Graden der Einschränkungen von F|Xi auf die irreduziblen Kom-
ponenten von X abhängt, sodass die erste Kohomologiegruppe H1(X,F(r(x)∞)) für alle
ganzen Zahlen r ≥ n0 verschwindet. Da der Poldivisor (x)∞ von x ample6 ist, ist die
Existenz einer solchen Schranke keine Überraschung.7 Wir können jedoch im Falle von
OX -Idealen F eine explizite Schranke angeben. Dies impliziert, dass das häufig auf die
Riemann-Roch Gleichung angewandte Verschwinden der ersten Kohomologiegruppe (im
Falle von integralem und nicht-singulärem X), welches das Vorhersagen der Dimension des
Riemann-Roch Raums eines Divisors hinreichend großen Grades ermöglicht, auf OX -Ideale
der Form F(r(x)∞) und seine globalen Schnitte verallgemeinert wird. Dieses Verschwin-
dungsresultat kann wiederum zusammen mit einer allgemeinen Variante des Approxima-
tionssatzes dazu verwendet werden, um die Existenz von größenoptimierten Vertretern
von Pic0(X) zu begründen.

6Es findet der englische Ausdruck Verwendung, da es keine etablierte und einheitliche deutsche Inter-
pretation des Wortes ample im mathematischen Kontext gibt.

7Siehe hierzu zum Beispiel [Liu02, 5.3.6].
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Abstract

The main result of this thesis are algorithms that constitute a toolkit to efficiently compute
in the degree zero Picard group Pic0(X) of a reduced cover8X of P1

k in an asymptotic
running time of O∼(nωcX) operations in the ground field k where n denotes the degree of
a finite morphism π : X → P1

k and cX is an invariant of X such that

cX ≈

{
g+dimkH

0(X,OX)+n
n , X irreducible

maxmi=1
{
ci,X

}
, X reducible

where

ci,X ≈
gi + dimkH

0(Xi,OXi) + ni + εi
ni

.

Here X1, . . . , Xm denote the irreducible components of X, g and gi the respective genera,
n and ni the degrees of π respectively π|Xi and εi is an integer solely depending on how
the components Xi intersect9. This generalises the result in [Jun16] to singular, reducible
and non-plane projective curves over k. All previous algorithms only work for integral and
non-singular curves over a field k. We give a short classification of our result in contrast
to previous work:10

(i) The running time O∼(gω) of [KM07] for integral and non-singularX does not depend
on n but solely on the genus g. Therefore, if n is bounded and g grows, then we
obtain a superior running time of O∼(cX) ⊆ O∼(g + dimkH

0(X,OX)). Instead of
employing linear algebra in dimension g over k, as [KM07] does, we use linear algebra
over the polynomial ring k[x] in dimension n and degree cX (which is roughly equal
to the worst possible gi/ni).

(ii) In the case of integral and non-singular curves, our running time is essentially the
same as the one in [Jun16] where the author obtained a running time of O∼(nω(g/n))
(using linear algebra in dimension n over k[x] in degree g/n). However, the algo-
rithms we propose here work for singular curves as well.

(iii) Generally, to the author’s best knowledge our algorithms are the first ones that im-
plement the arithmetic in Pic0(X) for the classes of singular and reducible curves.
Moreover, our algorithms are essentially at least as fast as the fastest known algo-
rithms for integral and smooth projective curves. That is, we do not only enlarge
the class of curves X for which it is possible to compute efficiently in Pic0(X), but
we also provide a uniform running time for this task in general.

Furthermore, in this thesis we prove that the degree zero Picard group Pic0(X) is isomor-
phic to an ideal class group associated to the coordinate ring of an affine and schematically
dense open subset of X. Moreover, we show that the elements in Pic0(X) can be repre-
sented by polynomial square matrices of dimension n with degree linearly bounded by cX .
If X is reducible, we can represent the elements by matrices in n-block-form11 whose i-th
row block has degree linearly bounded by ci,X . To the author’s best knowledge this is new
in the case that X is singular, reducible and does not admit any k-rational points.

We want to emphasise that we provide two different sets of algorithms both consti-
tuting a complete toolkit to compute in Pic0(X): The first one essentially does not take

8Those are reduced projective curves over a field k together with a suitable finite morphism onto P1
k,

see Definition 2.1.3.
9The integer εi is bounded by (

∑m
i=1 gi)− g, see Lemma 2.4.3 together with Proposition 2.4.9.

10For a more thorough treatment of the previous work on the arithmetic in Pic0(X), see Section 1.1.
11If n =

∑m
i=1 ni and M ∈ k[x]n×n is in n-block-form, then there are matrices Mi ∈ k[x]ni×n such that

M is the matrix formed by writing the matrices M1, . . . ,Mm one below the other.
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the irreducible components of X into account (and thus represents a more generic ap-
proach) and the second one explicitly does and tries to utilise them. We call these two
the component independent respectively the component dependent case. The component
independent toolkit works with representatives that are size-optimal from a more global
and coarser perspective and provide a somehow less involved and more generic approach.
However, the component dependent toolkit is comprised by algorithms that work with
representatives of Pic0(X) whose restrictions to each of the irreducible components of X
are size-optimal. This requires the linear algebra algorithms that deal with the respec-
tive representing matrices to be a bit more involved since they need to take care of the
block structure that reflects the restrictions to the irreducible components of X. But since
they often work independently on the components, they are to some extent accessible for
parallelisation. In both cases, the representation via polynomial square matrices enables
us to efficiently compute representations of the restrictions of elements in Pic0(X) to the
irreducible components of X and thus to compute images under the group homomorphism
Pic0(X)→

⊕m
i=1 Pic

0(Xi).

There are further minor results upon which the main results rely (at least to some
extent) and which, moreover, may have some significance on their own. In the following
we give a brief overview of those and how these are embedded in the main endeavor of
this thesis – efficiently implementing the arithmetic in Pic0(X).

We incorporate the results of [Hes02, Theorem 7], which first gave explicit means to
compute bases of Riemann-Roch spaces, in the following manner: We enlarge the ambit of
the ideas given there to more general sheaves on more general curves. We define generalised
vector bundles which are essentially those sheaves for which there is a structure theorem
describing their global sections by means of a basis, i.e. essentially as those sheaves for
which [Hes02, Theorem 7] holds in general. Moreover, all of this holds on possibly singular
and reducible curves. This basically enables us to represent the elements of Pic0(X) by
polynomial square matrices of dimension n.

The dimension of the global sections of a generalised vector bundle F described by the
stated k-basis depends on the π-invariants of F which themselves are determined by the
decomposition of π∗F into invertible sheaves on P1

k. These also relate to the k-dimension of
H1(X,F). In the case of an integral and non-singular curveX the Riemann-Roch equation
together with the vanishing of H1(X,OX(D)) for divisors D whose degree exceeds 2g− 2
provides bounds for these invariants. We generalise this to more general curves and to
generalised vector bundles of rank 1 (OX -ideals). We rather easily provide bounds of
these invariants if X is integral. The quest for effective bounds if X is reducible and
decomposes into several irreducible components is much more involved. However, we give
quite explicit instructions on how to find bases of F that are small with respect to each
irreducible component. The existence of these bases then finally provides bounds for the
π-invariants of OX -ideals. It is moreover important that we are able to prove that these
bounds provide upper bounds of the minimal degree of polynomial matrices representing
the elements in Pic0(X). This finally establishes that we can represent the elements in
Pic0(X) by polynomial square matrices of dimension n with degree linearly bounded by
cX .

These bounds in turn provide that we are able to give a bound n0 ∈ Z, depending
on cX and the degrees of the restrictions F|Xi of F to the irreducible components of X,
such that for all integers r ≥ n0 the first cohomology group H1(X,F(r(x)∞)) vanishes.
Since the pole divisor (x)∞ of x is ample, it is no surprise that such an integer n0 exists.12

However, we give an explicit bound in the case of OX -ideals F . This establishes that the
vanishing that is often employed in the Riemann-Roch equation (in the integral and smooth
case) to predict the dimension of the Riemann-Roch space for divisors of sufficiently large

12See [Liu02, 5.3.6].
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degree can be extended to OX -ideals of the form F(r(x)∞) and their global sections. This
vanishing result in turn can be used to prove size-optimal representatives of Pic0(X) by
applying a general version of the Approximation Theorem 5.7.1.
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Chapter 1

Introduction

The Jacobian J(X) of an integral1 and non-singular projective curve X over a field k is an
algebraic group of dimension g (where g denotes the genus of X) that parameterises the
degree zero divisors on X up to linear equivalence, see [Mil86] for a thorough treatment
of Jacobians. If X has a k-rational point, then J(X) is actually isomorphic to the degree
zero Picard group Pic0(X) consisting of degree zero divisors up to linear equivalence2.

There has been quite an attention to the problem of computing efficiently in J(X)
of non-singular projective curves X over a field k – and still there is. In the cases of
X being an elliptic or a hyperelliptic curve, this interest is tremendously boosted by the
scientific community that works in the field of (applied) cryptography. This is due to the
fact that (besides the problem of efficient integer factorisation which finds a use in the
RSA cryptosystem) the discrete logarithm problem (DLP) is one of the main problems
public key cryptosystem are based on. Instances of cryptosystems that rely on the DLP
are the Diffie-Hellmann key exchange protocol [DH06] and the ElGamal cryptosystem
[Elg85]. Both Neal Koblitz [Kob87] and Victor Miller [Mil85] proposed independently
from one another to use the DLP in the group of points (which is essentially the same as
the Jacobian) of an elliptic curve over a finite field for establishing cryptosystems. Since
that time the research dealing with arithmetic aspects of elliptic curves has been intensified
and also spread over to curves of higher genus, for instance, hyperelliptic curves of genus
2 or 3. The usage of Jacobians of such curves for cryptosystems was suggested again by
Koblitz in [Kob89] and it has been studied in several occasions since then, for instance,
in [Can87], [KGM+02] [MCT01] [Lan02], [PWGP03] and [Sut19]. Moreover, we refer the
reader to the handbook [CFA+05] which is concerned with elliptic and hyperelliptic curve
cryptography and covers lots of basic material as well as applied aspects.

In general, the Jacobian has been central in the study of projective curves as Mumford
[AM04, p 260] has already put it straight:

“The Jacobian has always been a corner-stone in the analysis of algebraic curves
and compact Riemann surfaces. [...] Weil’s construction [of the Jacobian] was
the basis of his epoch-making proof of the Riemann Hypothesis for curves over
finite fields, which really put characteristic p algebraic geometry on its feet.”

In this thesis we focus on the algorithmic aspects of the arithmetic in the Jacobian (to
be more precise, of the degree zero Picard group, see below) of far more general projective
curves X over a field k. Implementing J(X) algorithmically using an embedding into some
projective space Pnk is for almost all values of g impractical since either the dimension n
grows exponentially in g or the equations cutting out J(X) in Pnk become very complicated.

1Note that the definition of a curve is not consistent in the literature in the sense that there is no
consensus with respect to whether the curve (the scheme of dimension one in question) is assumed to be
irreducible. However, in this thesis we will never assume a curve to be irreducible unless stated explicitly.

2See [Mil86, Theorem 1.1].
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Therefore, most of the algorithms that work with J(X) use the divisors representing
the respective element in J(X), keep track of linear equivalence and reduce resulting
representatives (using a principal divisor) to obtain ’simple’ ones after every arithmetic
operation. This perfectly fits the endeavor of this thesis in which we actually care about
the algorithmic implementation of the arithmetic in the degree zero Picard group of curves
of large genus. Moreover, the Jacobian as defined in [Mil86] is only defined for non-singular
projective curves over a field k, and we want to consider not only singular curves but also
reducible ones3. All of this encourages us to consider the degree zero Picard group Pic0(X)
instead of the Jacobian.

We will present algorithms that cover the three essential ingredients that are neces-
sary to be able to actually compute in Pic0(X) (and more generally, these constitute the
ingredients necessary to compute in an arbitrary abelian group):

Key ingredients of the arithmetic in an abelian group:

(i) Compute the composition of two group elements.

(ii) Compute the inverse of a given group element.

(iii) Test whether a given group element is the neutral element.

Some authors also provide an algorithm that provides a representation of the neutral
element and thus we may also add this to the above key ingredients.

(iv) Provide a representation of the neutral element.

We will provide randomised algorithms to implement Items (i) and (ii) which are of Las
Vegas type4 and deterministic algorithms that implement Items (iii) and (iv).

In what follows next, we want to give a brief overview of the research that has been
done with respect to efficient algorithms to compute in Pic0(X) for general curves X (i.e.,
not assuming that X belongs to a rather restrictive class of curves, for instance the class
of elliptic or the class of hyperelliptic curves) possibly having large genus. For a thorough
treatment of the existing work, see Section 1.1. The existing research can be roughly
divided into two different type of approaches, the arithmetic and the geometric approach.5
The geometric approach assumes the curve X to be embedded into some projective space
PNk and to be given by homogeneous equations where N ∈ O(g) is possible. Starting
from this setting [Vol94] and [HI94] both worked with as small values of N as possible,
the most prominent one being N = 2.6 Both used computations with polynomials of
degree in the order of g and resulted in a total running time of O(g7) operations on the
ground field k where g denotes the genus of X. The most prominent representative of the
geometric approach is Kamal Khuri-Makdisi who presented in [KM07] the following way
of representing the curve X and divisors on it. A fixed line bundle L that comes equipped
with X of sufficiently large degree degk L ≥ 2g + 2 provides the possibility to represent
the curve X as the global sections of L and L⊗2 together with a multiplication map µ :
L(X)⊗L(X)→ L⊗2(X) between them. Moreover, divisors on X can then be interpreted
as k-subvector spaces of L(X) and the arithmetic operations in Pic0(X) can be carried
out using linear algebra over k in dimension g. Using fast linear algebra over k this results
in an asymptotic running time of O∼(gω) operations in k and superseded the results in

3See Footnote 1.
4Our algorithms are randomised algorithms that either signal their failure or return a correct result.

Moreover, the probability of failure can be influenced by input parameters and is upper bounded.
5We adopted the terminology arithmetic vs. geometric from [KM07] and the following distinction is

inspired by the remarks made in [KM07].
6Both worked with a description of X as a possibly singular plane curve, see [KM04, p. 2].
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[Vol94] and [HI94] by lengths. The arithmetic approach, whose most recent representative
is Florian Heß, assumes X to come equipped with a finite morphism π : X → P1

k of degree
n and interprets the function field F of X as a degree n field extension of k(x). If X
is non-singular, then Pic0(X) is isomorphic to an ideal class group associated to F and
the arithmetic in Pic0(X) boils down to ideal arithmetic in the integral closure of k[x] in
F , see [Hes99] and [Hes02]. This results in a total running time which is polynomial in
n and Cf where f = yn + a1y

n−1 + . . . + an−1y + an ∈ k[x, y] defines the function field
of X and Cf := max{ddeg(ai)/ie | 1 ≤ i ≤ n}. Therefore, this approach is sensitive to
the degree n of X over P1

k. In his master’s thesis [Jun16] the author also followed the
arithmetic approach. The author worked out ideas (that have been provided by Florian
Heß7) in detail and came up with algorithms that implemented the arithmetic in Pic0(X)
for integral and non-singular projective curves X over finite fields. These theoretical
algorithms were formulated in the function field setting mentioned above and resulted in
a running time complexity of O∼(nω−1g) where g denotes the genus and n the degree of
F over k(x) as well as ω the matrix multiplication constant. Therefore, [Jun16] set a new
best running time O∼(g) in the case that n is bounded and g grows and it achieves the
same asymptotic running time O∼(gω) if n ≈ g as [KM07] did. Moreover, it interpolates
between the two extremes and provides a compelling running time if n is neither constant
(in terms of g) nor approximately equal to g. Under the quite reasonable assumption that
n ∈ O(g) it is at least as fast as all known algorithms and even faster if n 6≈ g or n not
bounded.

In a nutshell, the main goal of this thesis is to provide algorithms for the arithmetic in
Pic0(X) in the case that X is possibly singular and reducible and to achieve an analogous
running time as in [Jun16]. This would provide a uniform running time for the arithmetic
in Pic0(X) for a wide range of projective curves X over fields. The previous work men-
tioned above (and pretty much every attempt made so far) concerned with the arithmetic
in Pic0(X) only considers very nice projective curvesX over k and does not economise with
assumptions imposed on X. That is, the authors assume X to be irreducible, non-singular
and sometimes even to be plane.

Let us now describe the main difficulties we encounter trying to generalise the ideas
from [Jun16] to curves that decompose into several irreducible components and that may
have singularities. For this purpose, we assume for the moment that X is a non-singular
and irreducible projective curve over the field k. One of the key ingredients for the results
in [Jun16] (and implicitly for pretty much all of the previous work) was the theorem of
Riemann-Roch together with a vanishing result. That is, for every divisor D on X there
is the Riemann-Roch equation

dimkH
0(X,D) = dimkH

0(X,K −D) + degkD + 1− g (0:1)

with K a canonical divisor on X. Moreover, whenever degkD ≥ 2g − 1 holds, we have
dimkH

0(X,K−D) = 0. This provided means to argue that there are ’small’ divisor class
representatives of a specific form and implied that we are able to find principal divisors of
the very same form. All of this laid the foundation to transport the task of computing with
divisors into the realm of linear algebra in dimension n over the polynomial ring k[x] with
entries of degree in the order of g/n. There are several occasions in which the fact that X
is non-singular and irreducible comes into play here. Since X is non-singular, the dualising
respectively canonical sheaf ωX is invertible and corresponds to the canonical divisor class,
that is, we do have canonical divisors K. Moreover, the existence of K together with X
being irreducible implies that degkD > degkK = 2g− 2 results in K−D having negative
degree and also that this implies that H0(X,K − D) vanishes. For singular curves the

7Florian Heß was the supervisor of the author’s master’s thesis.
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dualising sheaf ωX need not be invertible8 and then the term H0(X,K−D) in Eq. (0:1) is
replaced with H1(X,OX(D)) = H0(X,ωX ⊗OX OX(−D)). However, for reducible curves
the sheaf ωX ⊗OX OX(−D) might have global sections no matter what the degree of D is.
Since we want to use similar ideas in this thesis as in [Jun16], we need to overcome these
issues.

Let us now briefly describe how we addressed these issues. In contrast to the previous
work, we will work with reduced covers of P1

k. Those are reduced projective curves X
over a field k that admit a finite morphism9 π : X → P1

k of degree n that is separable10

and which satisfies that the intersection points of the irreducible components of X do not
meet the fibre π−1(P∞) of a fixed point P∞ of P1

k, the point at infinity.Then the direct
image π∗F of every invertible sheaf F (being coherent and torsion-free indeed suffices
to be locally free on P1

k) is a vector bundle of rank n on P1
k and thus decomposes into

a direct sum of twisted sheaves OP1(|F|1), . . . ,OP1(|F|n). These integers |F|1, . . . , |F|n
are invariants of the isomorphism class of F . Since finite morphisms are affine, we have
χk(X,F) = χk(P1

k, π∗F)11 and thus we can interpret the dimension of both H0(X,F) and
H1(X,F) in terms of the invariants |F|1, . . . , |F|n. In particular, proving bounds for them
provide H1(X,F) = 012. Whenever X is integral, we can quite easily provide bounds for
these invariants in terms of g and n, no matter if X is singular13. An important part
of this thesis is to prove bounds for the invariants in the case that X is reducible14. To
do so, we need to investigate the connection between divisors on X and divisors on the
irreducible components of X (in fact, we will do so for more general sheaves) extensively.
The above then provides the vanishing of H1(X,F(r(x)∞)) where F is an invertible sheaf
and r sufficiently large but bounded in terms of the degree of the restrictions of F to the
irreducible components of X15. Despite the fact that we only need this result for invertible
sheaves representing divisor classes, it does hold for far more general sheaves. We call these
sheaves OX -ideals which are basically sheaves that are invertible at the generic points of
X. It turned out to be the case that our definition of OX -ideals is congruent with the
definition of generalised divisors given by Hartshorne in [Har07]. Furthermore, OX -ideals
are instances of sheaves for which we can provide a structure theorem of their global
sections16, analogous to the one given in [Hes02] but for more general curves and sheaves.
Moreover, the sections F(V ) of an OX -ideal F over an affine open subset V = π−1(U),
where U ⊆ P1

k is an affine open, are free modules of rank n over OP1(U). By fixing an
affine open cover {U0, U∞} of P1

k and setting V0 = π−1(U0), V∞ = π−1(U∞), this provides
that F(V0) and F(V∞) are free k[x]- respective k[x−1]-modules of rank n. Moreover, the
OX -module F is represented by the pair (F(V0),F(V∞))17. This provides that OX -ideals
F with a prescribed behaviour along the fibre π−1(P∞) can be completely represented by
(n×n)-matrices over k[x]. Another very important feature of the invariants |F|1, . . . , |F|n
is that they determine the degree of the entries of the above matrices depending on the
degree of F .

8Indeed, it is invertible if and only if X is Gorenstein.
9Every projective curve over k admit a finite morphism to P1

k, see Theorem D.1.6. However, not every
such morphism needs to satisfy the further properties we require.

10We call a morphism X → Y onto an irreducible curve Y separable if its restrictions to the irreducible
components of X induce separable field extensions of the respective function fields.

11See Lemma B.5.12.
12See Proposition E.2.16.
13See Theorem 4.3.23.
14See Lemma 4.5.1.
15Since the pole divisor of x (x)∞ is an ample divisor, the existence of such an integer r ∈ Z is no

surprise, see [Liu02, 5.3.6]. However, we are able to provide explicit bounds for r.
16We call these sheaves generalised vector bundles, see Definition 4.1.1.
17To be precise, to encode the OX -module structure we also need to compute multiplication tables, see

Proposition 4.2.9.
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All of the above then enables us to reduce the arithmetic in Pic0(X) to linear algebra
in dimension n over k[x] with matrices having degree linearly bounded by an invariant cX
of X. The invariant cX is roughly equal to g/n if X is irreducible and roughly equal to
maxmi=1{gi/ni} + ε if X is reducible. Here g resp. gi denote the genera of X resp. Xi; n
resp. ni denote the degrees of X resp. Xi over P1

k and ε depends on how the components
Xi intersect. This results in an asymptotic running time of O∼(nωcX) operations in
k. Therefore, if X is irreducible but singular, we obtain a direct generalisation of the
result in [Jun16] to singular curves. Moreover, if X decomposes into multiple irreducible
components, then we obtain a running time that is roughly equal to the running time
of the irreducible case applied to the irreducible component on which our algorithm is
slowest. This pretty much looks like the best one could expect in general.

1.1 Existing Work

As already mentioned in the introductory text, there has been some effort in implementing
the arithmetic in the degree zero Picard group Pic0(X) for elliptic and hyperelliptic curves
and, moreover, for more general curves as well. In this section we want to give a more
thorough overview of the previous work and therefore supply insights of what is the state
of the art with respect to efficient algorithms that implement the arithmetic in Pic0(X)
of general projective curves X over a field k.

In the following we want to divide the previous work roughly into two categories
depending on the approach the authors used. By doing so, we use a terminology that we
adopted from [KM07] where the author describes the two approaches as arithmetic and
geometric. Roughly speaking, the arithmetic approach works with a degree n morphism
π : X → P1

k and then tries to express Pic0(X) either explicitly by rather simple objects (for
instance using the Mumford representation as [Can87] does for hyperelliptic curves) or as
an ideal class group attached to the function field of X. Then the arithmetic in Pic0(X)
boils down to ideal arithmetic. In contrast to this, the geometric approach, which is the
one [KM07] used, uses an embedding of X into some projective space Pn with n ∈ O(g).
Then two Riemann-Roch spaces are needed to represent X and those are provided by the
restrictions of linear and quadratic functions from the ambient projective space Pn to X.
Then the arithmetic in Pic0(X) boils down to linear algebra over k in dimension g inside
these Riemann-Roch spaces.

Arithmetic Approaches

In [Can87] the author presents means to compute in the degree zero divisor class group
(the Jacobian) of a hyperelliptic curve over a field k of characteristic not equal to 2. By
a hyperelliptic curve the author refers to an integral, plane and non-singular projective
curve X over k with an affine model given by v2 = f(u) where f(u) ∈ k[u] is a separable
polynomial of degree 2g + 1 where g > 0. That is, the genus of X is the integer g and
n = 2 denotes the degree of X over the projective line P1

k (the gonality of X). Due to the
relation v2 = f(u), every point P = (x, y) ∈ X(k̄) not equal to the point ∞ at infinity
satisfies that P ′ = (x,−y) is also a point on X. This provides that for every such point
P the relation P + P ′ − 2 · ∞ = 0 holds in the Jacobian of X. Therefore, every element
in the Jacobian can be represented by a divisor of the form (

∑r
i=1 Pi) − r · ∞ for some

integer r and some further properties. These divisors are called reduced and every such
divisor can be represented by two polynomials in k[u] of degree at most g satisfying some
greatest common divisor (gcd) conditions. This representation is called the Mumford
representation. Finally, computing the sum of two divisors boils down to the computation
of polynomial products and polynomial gcds of polynomials in k[u] with degree bounded
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by g. The author also provides an algorithm to reduce the resulting divisor class whose
running time is also bounded by the number of required operations for computing the gcd
of polynomials. Therefore, the overall running time is O(g(log g)2) ⊆ O∼(g). Moreover,
the algorithms are deterministic.

[Hes99] provides a method to compute the divisor class group of (an algebraic function
field of) an integral and non-singular projective curve X over a field k. Moreover, the
author develops an efficient method to compute Riemann-Roch spaces and provides an
algorithm to reduce divisors. The latter provides an opportunity for finding representatives
of a given specific form of classes in the degree zero divisor class group of X. This form
is somewhat small in the sense that storing it on a computer requires bounded space.
Furthermore, combining all of the above with a simple criterion for equality provides
means to actually implement the group law in the degree zero divisor class group together
with a test for equality deterministically. The running time of this application of the results
in [Hes99] is polynomial in n and Cf where f = yn + a1y

n−1 + . . .+ an−1y + an ∈ k[x, y]
defines the function field of X and Cf := max{ddeg(ai)/ie | 1 ≤ i ≤ n}.

[Jun16], based on the ideas of Florian Heß, provides probabilistic algorithms to imple-
ment the group law in the degree zero Picard group Pic0(X) where X denotes an integral
and non-singular projective curve of genus g over a field k which has degree n over P1

k.
After a precomputation that needs to be done once forX, the author reduces the group op-
erations in Pic0(X) to linear algebra over k[x] in dimension n and degree linearly bounded
by g/n which thus results in a total running time complexity of O(nω(g/n)) = O(nω−1g))
where ω denotes the matrix multiplication constant. The reduction to linear algebra
over the polynomial ring k[x] with x ∈ k(X) is due to an isomorphism provided by
the author between Pic0(X) and an ideal class group associated to the integral closure
R = Cl(k[x], k(X)) of k[x] in the function field k(X) of X. To do so, it is shown that every
class in Pic0(X) admits a divisor representative which behaves as a common multiple of
the pole divisor (x)∞ of x at the points lying over the point at infinity P∞ ∈ P1

k. More-
over, [Hes02, Theorem 7] together with the theorem of Riemann-Roch and the vanishing
of H1(X,OX(D)) for divisors D with degree exceeding 2g − 2 provides representatives of
bounded size. These representatives are given by integral invertible ideals of R which are
thus free of rank n over k[x] and can therefore be represented by a polynomial square
matrix of dimension n. The bounded size of the divisor representatives implies that the
respective ideals have bounded degree and, moreover, that every such ideal admits a basis
whose basis matrix has bounded degree as well. The principal ideals representing the zero
element in the ideal class group correspond to principal divisors generated by functions
that behave as powers of x at the points over P∞. A key point for the presented algorithms
is that they heavily rely on being able to compute for every given ideal such a function
that is contained in that ideal.

Geometric Approaches

[KM07] provides probabilistic algorithms to implement the group law in the degree zero
Picard group Pic0(X) where X denotes a non-singular projective geometrically irreducible
algebraic curve of genus g over a field k. After a precomputation that needs to be done
once for X, the author reduces the group operations in Pic0(X) to linear algebra over k in
dimension O(g)×O(g1+ε) which thus results in a total running time complexity of O∼(gω)
where ω denotes the matrix multiplication constant.

The results of [KM07] rely on the former work [KM04] of the author where he intro-
duced most of the theoretical foundation. The running time obtained in [KM04] is O(g4).
The speedup from the results in [KM04] to those in [KM07] comes from replacing the rep-
resentation of divisors by a k-basis with a representation by a smaller ideal generating set
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which is obtained in a randomised way. This also implies that the algorithms in [KM07]
are randomised algorithms.

In [KM07] the author assumes the curve X to be embedded into some projective space
Pnk with n ∈ O(g) and that this embedding comes equipped with a line bundle L of degree
degL ≥ 2g+2 but still with degL ∈ O(g). Then he fixes the k-vector spaces H0(X,L) and
H0(X,L⊗2) together with a multiplication mapH0(X,L)⊗H0(X,L)→ H0(X,L⊗2) which
provides a representation of X itself. After having established the above representation,
every effective divisor D on X can be represented by the k-subvector space H0(X,L(−D))
of H0(X,L) which itself can be represented by a matrix over k via a k-basis. Alternatively,
a k-basis as above can be replaced by an ’ideal generating set’ (as the author calls it
referring to the ideal a divisor defines on an affine open subset of X) which is a subset
of H0(X,L) whose divisor of common zeros is D. This set may be way smaller than a
basis of H0(X,L(−D)) scaling down the size of the involved matrices from O(g)×O(g2)
to O(g) × O(g1+ε). To come up with such an ideal generating set, the author employs
fundamental probabilistic statements about whether randomly chosen elements in a finite
dimensional vector space lie in the finite union of proper subvector spaces. We mimic
this method in this thesis to come up with ideal generating sets of ideals (indeed, exactly
those ideals from above the author of [KM07] referred to). However, after representing
divisors as above, the author is able to implement the group operations in Pic0(X) only
using the vector spaces H0(X,L(−D)) represented by a basis (or ideal generating set) and
then using linear algebra over k in dimension O(g)×O(g2) (respectively O(g)×O(g1+ε)).
Hence, after the necessary precomputations, this results as mentioned above in the running
time complexity of O∼(gω).

In [IL12] the author generalises the main results of [KM04] to relative Jacobians of non-
singular, projective Spec(R)-schemes of relative dimension one where R is a noetherian
amenable18ring. The author generalises the two main theorems [KM04, 2.2 and 2.3] upon
which the representation and the arithmetic operations of effective Cartier divisors depend
to relative effective Cartier divisors on relative Spec(R)-schemes of relative dimension one.
This yields the algorithmic realisations of the above statements and provides the arithmetic
of divisors on relative curves and therefore the arithmetic on Jacobians of relative curves.
All of this is done analogous to the proceeding in [KM04]. However, it seems to be the
case that the speedup achieved in [KM07] over the result in [KM04] by working with ideal
generating sets (obtained randomly) instead of bases over the ground field does not extend
to amenable rings off-handedly. The overall running time for the arithmetic in the Jacobian
is O(g4) (as in [KM04]) plus the running times gS(g), K(g, g) and CK(g, g, g)19needed for
computing sums, kernels and common kernels, respectively, see [IL12, pp 42-44].

We summarise the above reflections of the relevant work that each provides algorithms
that implement the arithmetic in Pic0(X) in Table 1.1. We explain the different columns
that may need an explanation: The column Curves contains a brief description of the
class of curves for which the respective algorithms work. The column Type lists whether
the respective algorithm are deterministic (det.) or probabilistic (prob.) algorithms. The
column Approach indicates which kind of approach the respective algorithms follow where
geom. stands for the geometric and arithm. stands for the arithmetic approach.

18Roughly speaking, these are rings that admit effective linear algebra functions. The author defines
a ring R to be amenable if the R-module operations dual, composite, kernel, common kernel and sum of
projective R-modules can be computed effectively, see [IL12, pp 32-33]. Examples of amenable rings are
fields with exact arithmetic, any domain with exact arithmetic and an effectively computable Euclidean
function, a large class of principal ideal rings (not necessarily domains) containing finite semi-local rings
and thus quotients of DVRs, Dedekind domains and certain quotients of Zp[[u]], see [IL12, pp 33-34].

19for the notation S(g), K(g, g) and CK(g, g, g), see [IL12, p 33].
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Source Curves Type Complexity Approach
[Can87] hyperelliptic curves, i.e. non-

singular, integral, plane, projective
curve X over k, char k 6= 2

det. O(g log(g)2),
n = 2

arithm.

[Hes99],
[Hes02]

non-singular, integral, pro-
jective curve X over k

det. polynomial
in n, Cf

arithm.

[Jun16] non-singular, integral, pro-
jective curve X over k

prob. O∼(nω−1g) arithm.

[KM07] non-singular, geometrically
irreducible, projective alge-
braic curve over k

prob. O∼(gω) geom.

[IL12] non-singular, projective Spec(R)-
schemes of relative dimension
one where R is noetherian

prob. O(g4)+gS(g)+
K(g, g) +
CK(g, g, g)

geom.

Table 1.1: Overview of the running times of previous algorithms for the arithmetic in
Pic0(X)

Besides the work that provided algorithms to efficiently compute in Pic0(X) there has
also been some efforts made with respect to computations that only relate to Pic(X). A
work we need to mention in this context is [Bru13] which uses the geometric representation
of [KM07] to present means to compute “desirable operations”20 with respect to divisors
over a finite field k. For instance, the decomposition of effective divisors into prime divisors,
coming up with a uniformly random effective divisor of prescribed degree (if such exists)
and computing images under the Frobenius map. Moreover, there are several operations
when dealing with finite morphisms between non-singular curves that can be computed,
for instance the pull-backs and push-forwards of divisors.

Another aspect that can be relevant for arithmetic in the Picard group is the efficient
computation of Riemann-Roch spaces. Among others these can be used on integral curves
to efficiently test whether a given divisor is principal. This in turn provides a possible zero
test in Pic0(X) and therefore a possible test for equality whenever there are algorithms at
hand that can carry out the group law and compute inverses in Pic0(X). The fundamental
work was established in [Hes99]. However, over the last while some new algorithms have
been proposed as those in [LGS20] and [ACL20] both for nodal plane projective curves.
The algorithm in [LGS20] is a variant of the Brill-Noether algorithm and [ACL20] modifies
this variant so as to improve known complexity bounds.

In [Bau14] the author worked out in detail the lattice theory that can be applied to
lattices in function fields F/k of integral and non-singular projective curves X over a
field k. The theory in particular applies to the invertible ideals which are free of rank
n = [F : k(x)] representing divisors on X. Especially the statements [Bau14, 4.0.1, 4.0.2]
are similar to the methods described in [Hes02] and essentially interpret the Riemann-
Roch space of a divisor D on X as a lattice space induced by the norm || ||D which itself is
induced by D. In Chapter 4 we will actually work with such lattices and their successive
minima implicitly, but we will focus on how the latter can be upper bounded and how this
affects the degree of matrices representing related bases. In contrast to [Bau14] we will
not only work with the direct image π∗OX(D) of the divisor D along the finite morphism
corresponding to the finite function field extension F/k(x) (which only admits the analysis
on the level of k-vector spaces and free k[x]- respectively O∞-modules) but will also respect
that these vector spaces and free modules come from an OX -module.21 In particular, we

20See [Bru13, p. 1711].
21Moreover, we will consider the whole situation on much more general curves and even for more general
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will apply the insights gathered there to the problem of computing efficiently in Pic0(X).
Finally, we would like to mention the work of Kohel [Koh12] that drew a connection

between torus-based cryptography and the arithmetic in the (generalised) Jacobian of
singular hyperelliptic curves. In the context of this thesis it is worth mentioning that
Kohel also implemented algorithms22 in the computer algebra systems Magma [BCP97]
and Sage [S+20] that carry out the group law in the Jacobian of both possibly singular
cubic and singular hyperelliptic curves by using the Mumford representation (with little
to no modification) as in [Can87].

1.2 Complexity Model

We will analyse the running time of the algorithms we propose by bounding the number of
required field operations from a field k on an algebraic random access machine23 (algebraic
RAM). Here we assume the test for equality = and the operations +, −, × and “divide
by a nonzero” involving two field elements to have unit cost. We decided to measure
the running time complexity in operations in the ground field k instead of bit operations
due to potential “coefficient explosion”. Since adding elements of the Jacobian tends to
increase their arithmetic height, this is a real and unavoidable issue if, for instance, k is
any number field. Obviously, this is no issue if k is a finite field. Therefore, we treat k
rather as a black box ground field whose arithmetic operations have unit cost.

Additionally to this complexity measure, we could also bound the number of integer
operations required and bound the size of memory space used during the computations.
However, we decided not to do so. The main reason for this is the lack of analysis on
the side of the advanced linear algebra algorithms we employ coming up with our own
algorithms. None of these come equipped with a complexity analysis that goes beyond
bounding the number of ground field operations on an algebraic RAM. However, even
the fastest algorithms dealing with the most fundamental task we will face in this thesis,
namely the multiplication of two univariate polynomials, does not provide a space com-
plexity analysis or any treatment of how many integer operations are required. However,
it would still be possible to include the above aspect of complexity analysis by

1. assuming bounds both for the space complexity and the number of required inte-
ger operations of the most fundamental algorithms, for instance for fast polynomial
multiplication, fast matrix multiplication, division with remainder etc., and

2. assuming bounds as above for the more advanced linear algebra algorithms over k[x],
for instance, algorithms that compute the determinant, Popov form, reduction, basis
of the kernel and the basis of the column space of a matrix M and those that solve
a rational system M · x = b.

For the sake of brevity and since the number of operations in the ground field seems to
be the more relevant parameter of complexity analysis, we decided not do so. However,
we emphasise that the algorithms we propose in this thesis do not behave badly with
respect to the above aspects of complexity analysis. Without profound analysis we claim
that the space complexity is optimal, that is, the algorithms do not require more memory
space than necessary by not exceeding the input/output size (asymptotically speaking).
Moreover, in the algorithms we propose there is no single integer operation that cannot
be associated with a call of an algorithm whose complexity analysis is solely measured in

sheaves than invertible ones corresponding to divisors on X.
22See http://iml.univ-mrs.fr/~kohel/alg/index.html.
23For further information and definitions regarding algebraic random access machines, we refer the reader

to [Die09] and [Kal85].
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terms of operations in the ground field. This means that the number of integer operations
does indeed only count the calls of algorithms we will employ. Therefore, if there were
bounds for the number of integer operations required in the algorithms we utilise, then
the number of calling these already provides a bound for the number of integer operations
we will use overall.

Note that since we do not explicitly bother with the space complexity and do not count
the number of copy and move instructions on the algebraic RAM, algorithms as extracting
a submatrix from a given matrix or concatenating matrices have constant cost in our cost
model. Yet again, we could easily include this aspect of complexity analysis, but we
decided not do so with the same reasons as above. Moreover, if we did include this aspect,
the number of such operations required in our algorithms would be in O(mnd) ⊆ O(n2d)
where m ≤ n and M ∈ k[x]m×n of degree d denotes the involved matrix.

Throughout this thesis, the integers g and n will denote the arithmetic genus of a
scheme X (see Definition 2.4.8) and n the degree of a finite morphism π : X → P1

k (see
Definition 2.2.2), respectively. Additionally, cX denotes an invariant of X which depends
on its irreducible components and how these intersect, see Definition 2.4.10. We will work
with polynomial matrices of dimension n that have entries of degree in O(cX). These will
be the parameters with respect to which we will count the number of operations in k needed
for each algorithm. We will use the soft-O notation O∼(f(g, n, cX)), f ∈ Z[x1, x2, x3],
which indicates that we neglect logarithmic terms in g,n and cX .

We use ω to denote the exponent of matrix multiplication: two n × n matrices over
k can be multiplied with O(nω) operations in k. We assume the cost of multiplying two
polynomial matrices with dimension n and degree d is O∼(nwd) field operations, where
the multiplication exponent ω is assumed to satisfy 2 < ω ≤ 3.

Let M : Z≥0 → R>0 be a function such that polynomials in k[x] of degree bounded by
d can be multiplied using at mostM(d) field operations from k. Similarly, B : Z≥0 → R>0
bounds the cost of the extended greatest common divisor operation. That is, the extended
greatest common divisor problem with two polynomials in k[x] of degree bounded by d can
be solved in time O(B(d)). By Proposition A.2.3, we have M(d), B(d) ∈ O∼(d). We refer
the reader to the book [GG03] for more details and reference about the cost of polynomial
multiplication and matrix multiplication.

1.3 Main Results & Contributions

The main contribution of this thesis is a toolkit consisting of algorithms that we provide
to compute in Pic0(X). For reduced covers X of P1

k these algorithms carry out the group
law in Pic0(X), compute the inverse of a given element and they test whether a given
element is the neutral element. Our algorithms work with polynomial square matrices of
dimension n over the polynomial ring k[x] with degree bounded linearly by an invariant
cX of X. This results in an asymptotic running time of O∼(nωcX) operations in k where
k denotes the ground field of X, n the degree of a suitable finite morphism π : X → P1

k,
ω the matrix multiplication constant and cX is determined by

cX ≈

{
g+dimkH

0(X,OX)+n
n , X irreducible

maxmi=1
{
ci,X

}
, X reducible

where

ci,X ≈
gi + dimkH

0(Xi,OXi) + ni + εi
ni

.

For the rigorous definition of cX and ci,X , see Definition 2.4.10. The main result of this
thesis is the following.

24
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Theorem 6.6.1. Let X be a reduced cover of P1
k. The elements in Pic0(X)

can be represented by matrices in k[x]n×n with degree in O(cX). The combi-
nation of the Algorithms 19 and 20 provides randomised algorithms to compute
both the group law in Pic0(X) and the inverse of a given element. Moreover,
Algorithms 21 and 22 provide a deterministic algorithm to test whether a given
element in Pic0(X) is the neutral element. All the above algorithms use at most
O∼(nωcX) operations in k and the randomised algorithms have positive constant
success probability.

To the best of the author’s knowledge, our algorithms are the first ones that implement
the arithmetic in Pic0(X) for the rather general class of reducible and singular curves over
k. Beyond that we do not only expand the range of curves for which such arithmetic is
possible, but we also accomplish this in a running time that is at least as fast as the fastest
known previous algorithms for nicer curves (integral, non-singular, sometimes even plane).

Source Curves Type Complexity Approach
[Can87] hyperelliptic curves, i.e. non-

singular, integral, plane, projective
curve X over k, char k 6= 2

det. O(g(log g)2),
n = 2

arithm.

[Hes99],
[Hes02]

non-singular, integral, pro-
jective curve X over k

det. polynomial
in n, Cf

arithm.

[Jun16] non-singular, integral, pro-
jective curve X over k

prob. O∼(nω−1g) arithm.

This the-
sis

reduced projective curve X
over k with suitablea mor-
phism π : X → P1

k

prob. O∼(nωcX) arithm.

[KM07] non-singular, geometrically
irreducible, projective alge-
braic curve over k

prob. O∼(gω) geom.

[IL12] non-singular, projective Spec(R)-
schemes of relative dimension
one where R is noetherian

prob. O(g4)+gS(g)+
K(g, g) +
CK(g, g, g)

geom.

Table 1.2: Current overview of the running times for the arithmetic in Pic0(X)

To be precise, we generalise the results in [Jun16] (which has not yet been published)
which only deals with integral and non-singular projective curves to integral projective
curves in general and obtain essentially the same running time complexity of O∼(nω(g/n))
operations in k. Moreover, the algorithms given in [KM07], that can only handle in-
tegral and non-singular curves over k, have a running time of O∼(gω) operations in
k. In the case24 that n is approximately equal to g, together with the reasonable as-
sumption dimkH

0(X,OX) ∈ O(g) our algorithms achieve essentially the same running
time. Moreover, if n grows slower than g, we obtain an even better running time. For
instance, if n is bounded and g grows, then we obtain a running time complexity of
O∼(g + dimkH

0(X,OX)) which is essentially the same as [Can87] achieves for hyperel-
liptic curves.25 Another example is the case when n ≤ gδ for 0 < δ < 1, for values of

aSee Definition 2.1.3.
24Which might be true for “generic” non-singular curves over the complex numbers: On page 261 in

[GH78], we find that the generic Riemann surface of genus g can be expressed as a branched cover of P1
k

with n = dg + 1/2e+ 1 sheets but not with less than that. That is, a generic Riemann surface of genus g
has minimal degree n ∈ Θ(g) over P1

k. Furthermore, [Abr96] tells us that the gonality of a modular curve
X0(N) over C grows linearly with the genus.

25Since for hyperelliptic curves we have dimkH
0(X,OX) = 1.
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δ lower than ≈ 0.72 this even yields a sub-quadratic running time in g. Summarising
the above, for integral curves over k we generalise the results of [Jun16] and [KM07] to
possibly singular curves and even obtain better running times for suitable values of n.

One could say that we completed the big picture of the arithmetic in the Jacobian
for quite general curves by assigning a uniform running time to the general problem of
computing Pic0(X). In contrast to Table 1.1 in Table 1.2 we include the result of this
thesis and expressed “cover X of P1

k” in more comparable terms.
To reduce the original problem of computing in Pic0(X) to linear algebra over k[x],

we prove that the degree zero Picard group is isomorphic to an ideal class group Iπ/Pπ
whose ideal representatives are ideals of the affine coordinate ring of an affine open subset
induced by the morphism π. Moreover, we prove that each ideal class admits an integral
representative that has degree linearly bounded by ncX . In all of its generality, this
size-optimal representation of Pic0(X) is new.

1.3.1 Possible Applications

In this section we want to investigate where our results may be applied. Though one
might say that the roots of computing in the Jacobian J(X) respectively in Pic0(X) of
projective curves X may be seated in the possible application in cryptography, the author
does not know of an explicit cryptographic application of fast arithmetic in the Jacobian
of general curves of large genus. Exploiting the hardness of the DLP in the Jacobian of
elliptic and hyperelliptic curves for cryptographic applications seems to be well suited.
Nonetheless, being able to compute fast in the Jacobian of possibly reducible and singular
curves with large genus might be worthwhile in case these might at some point enter the
stage of cryptography. For instance, this would be the case if it was possible to reduce the
DLP on a low genus curve to one with large genus whereby decreasing other parameters
relevant for the running time of solving the DLP.

Besides being efficient for large genus curves, another important aspect of our results
is that we are able to handle reducible and singular curves. Therefore, whenever it is
necessary to compute in Pic0(X) of a singular curve X since the related computation in
Pic0(X̃) for a non-singular model X̃ ofX does not provide the same information, one might
use our algorithms. Furthermore, whenever we have a bunch of projective curves (singular
or not), we may use the techniques introduced in [Sch05] to glue these schemes together
in order to obtain a new scheme. The resulting curves make up examples of curves for
which our algorithms may be applied since these become reducible curves that are highly
probable singular. Reducible and singular curves also appear as the singular fibres of
elliptic fibrations or fibrations of curves in general. For instance, in [NU73] a classification
of the fibres in pencils of curves of genus 2 are given together with the configuration of
their irreducible components.

Another possible area of research in which reducible and singular curves over finite
fields appear is the research that deals with curves X of genus g ≥ 2 over the rational
numbers Q (or a number field K/Q). Then there are primes p of Q of bad reduction,
that is, the induced curve over Fp (the reduction of X modulo p) is singular. Though it
is often possible to avoid dealing with reductions at bad primes there are cases in which
this is worthwhile. For instance, Stoll and N. Bruin [BS10] use the Mordell-Weil sieve to
prove statements about the rational points of a given non-singular curve X over Q using
the “simple”26 idea that the rational points embed into the Mordell-Weil group and that
this can be detected algorithmically. For instance, the authors are able to prove that X
has no rational points at all, that there are no rational points satisfying a given set of

26[BS10, p. 1].
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congruence conditions or that there are no rational points mapping into a given coset27 of
the Mordell-Weil group. The Mordell-Weil sieve uses information about the Mordell-Weil
group of X, together with local information obtained by reduction modulo p for many
primes p. While Poonen in his heuristics [Poo06] originally only considered primes with
good reduction, the authors of [BS10] also want to use the information that bad primes
admit (and also of the kernel of the reduction at such) “in order to keep the running time
of the actual sieve computation within reasonable limits” [BS10, p. 4]. To do so, the
authors provide a variant of the Cantor algorithm [Can87] to implement the group law in
the Jacobian of reductions at bad primes in the case of genus two curves in order to extract
the above mentioned information. However, to the author’s best knowledge there is no
generalisation of this for curves of higher genus. Therefore, this is one explicit example in
which the asymptotically fast algorithms for reducible and singular curves of large genus
we propose in this thesis may be applied.

1.3.2 Implementation

At this point we like to note that, besides some fundamental code in Magma we came up
together with Florian Heß, we did not implement our algorithms in any computer algebra
system. As the reader will see, the implementation of our algorithms in any computer
algebra system should be no trouble using the pseudo code we provide in this thesis.
However, the main reason why we did not implement our algorithms is that these depend
on algorithms that carry out fundamental linear algebra tasks over the polynomial ring
k[x]. Some of these algorithms do have proven asymptotic running time complexity, but
do not come along with an explicit implementation. Since the asymptotic running time
of our algorithms relies on that of those algorithms, it is necessary to have an implemen-
tation of them at hand to come up with a useful implementation of our algorithms. In
[HNES19], implementations of some algorithms are provided that carry out fundamental
linear algebra tasks. For instance, there are implementations provided for polynomial mul-
tiplication, truncated inversion, approximants, interpolants, kernels, linear system solving,
determinant and basis reduction. However, most prominently, the algorithm MatrixK-
ernel given in [ZLS12] which is employed in our group law algorithm has no practical
implementation yet, at least to the author’s best knowledge.

27Which provides means to determine the set of all rational points on X if there is at most one rational
point in each of the considered cosets, see [BS10, p. 2]
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1.4 Commonly used Notation

All rings that will appear in this thesis will be commutative with 1. In Tables 1.3 and 1.4
we list notations we will use without further introduction in this thesis. Table 1.3 considers
rather general notations whereas Table 1.4 deals with schemes and sheaves.

Notation Description

Z, Z≥m, Z>m Ring of integers, ring of integers a such that a ≥ m respectively the
ring of integers a such that a > m

k A field; occasionally used as an index
k̄ Algebraic closure of the field k
Fq Finite field with q elements
R× The group of units of the ring R
S−1R, S−1M Localisations of the ring R and the R-module M with respect to the

multiplicative subset S ⊆ R
MP , RP Localisation of the R-module M respectively the ring R with respect

to S := R \ P , that is MP = S−1R and RP = S−1R

Frac(R) The total ring of fractions of R; this equals the localisation of R with
respect to the multiplicative set of non-zero-divisors of R

k[x] Univariate polynomial ring over the field k
`c(f) Leading coefficient of f ∈ k[x]
deg f Degree of the polynomial f ∈ k[x]
degM Degree of the matrix M ∈ k[x]m×n, defined as the maximum of the

degrees of the entries of M
M1 _M2 Concatenation of the matrices Mi ∈ k[x]m×ni , that is the matrix in

k[x]m×(n1+n2) resulting by writing M2 right next to M1; If no miscon-
ception is possible, we denote this by [M1 |M2]

k((x−1)) Field of formal Laurent series in x−1

M ↪→ N Injective map from M to N
M � N Surjective map from M to N
M ↔ N Bijective map from M to N
M ⊗R N Tensor product of the R-modules M and N
φB : V → kn Coordinate isomorphism of the n-dimensional k-vector space V with

respect to the basis B of V
φB : M → Rn Coordinate isomorphism of the R-module M which is free of rank n

with respect to the basis B of M
M∨, F∨ Dual HomR(M,R) of the R-module M respectively the dual

HomOX (F ,OX) of the OX -module F
ω Matrix multiplication constant defined by the following: Computing

the product of two (n × n)-matrices over the field k requires O(nω)
operations in k.

Table 1.3: General notation
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Notation Description

Spec(R) Set of prime ideals of the ring R or the affine scheme associated to R
DU (f) Basic open subset of the affine scheme U with respect to f ∈ OU (U)
X0 Set of generic points of the irreducible components of the scheme X
X0 Set of closed points of the scheme X
F ⊗OX G Tensor product of the OX -modules F and G
M∼ Quasi-coherent sheaf on Spec(R) induced by the R-module M
PNR Projective space of dimension N over the affine base Spec(R)
P∞ Point at infinity on P1

k with respect to a fixed standard affine open
cover of P1

k

O∞ = OP1
k,P∞

Local ring at the point P∞ at infinity on P1
k

H i(X,F) The i-th Čech cohomology group of the sheaf F on the topological
space X

χk(X,F) Euler characteristic of the sheaf F on the scheme X over the affine
base Spec(k), see also Definition B.5.13

AssOX (F) Set of associated points of the OX -module F , if it is understood what
X is, then we write Ass(F)

AssR(M) Set of associated prime ideals of the R-module M
Si A sheaf F on a scheme X is Si or satisfies Si if for every point

P ∈ X the stalk FP has depth (as an OX,P -module) of at least
min{i, dim Supp(FP )}, see [Sta18, Tag 0341]; moreover, X is Si if OX
is Si

Table 1.4: Scheme and sheaf related notation

The more involved notations are listed in the List of Symbols on page 313 sorted
alphabetically with a page reference for their first appearance in this thesis. Moreover, in
the Glossary on page 320 the reader finds an overview of terms and definitions that will
occur throughout the thesis.

1.5 Outline of the Thesis

In this section we give a brief outline of the general structure of this thesis. We intend to
give the reader a general map for an overview of the big picture.

This thesis is generally divided into two parts: the main part consisting of the chapters
1 to 6 and the appendix consisting of chapters A to G. The main part is dedicated to
provide the means to compute efficiently in the degree zero Picard group Pic0(X) including
the algorithms constituting the arithmetic toolkit to do so. Frankly speaking, the main
part is what one wants to see primarily when it comes to getting to the bottom of this
thesis: the main result. The appendix somehow collects everything that does not fit into
the main part in terms of being necessary to understand the origin of the main result.
However, in the appendix we provide among other things some theory developed on our
own necessary for the generality for some of the main statements along the road to the
main result.

Now we will give a more detailed overview about both parts starting with the main
part: In Chapter 2, “Covers of P1

k”, we will give an as brief as possible introduction into
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the notion of covers of P1
k which are the type of projective curves we are going to work

with and for which all of the results in this thesis will hold. Essentially, covers of P1
k are

projective curves that are possibly reducible and singular and that come equipped with a
suitable finite morphism onto the projective line. We introduce a great deal of necessary
notations we will use throughout the thesis.

In Chapter 3, “Divisors, Invertible Sheaves and OX-Ideals” we will recall the basic
notions of Cartier divisors and introduce OX -ideals which can be regarded as the gen-
eralisation of the invertible sheaves corresponding to divisors. A significant number of
results and statements we make in this thesis do not only hold for divisors, but also for
OX -ideals. We provide the necessary theory behind moving divisors and sheaves back and
forth between the several schemes that we associate to the given curve we are working on.

Chapter 4, “Global Sections and π-invariants”, is one of the three most important
chapters in this thesis and therefore we go into more detail here: We introduce generalised
vector bundles (of which the rank one bundles are OX -ideals) F which essentially are those
sheaves whose sections over V0 and V∞ (an affine open cover of X induced by a standard
affine open cover on P1

k) are free k[x]- respectively k[x−1]-modules. This is the main reason
why their global sections can essentially be characterised by a reduced basis of F(V0). We
prove that OX -ideals respectively generalised vector bundles F can be represented by their
sections over V0 and V∞ or even by their sections over V0 and S (for the moment the reader
may think of S as X \ V0) . Moreover, the arithmetic operations necessary in the monoid
of OX -ideals can be carried out using the latter pair F(V0),F(S) of ideals. We state
a structure theorem for the global sections of OX -ideals respectively generalised vector
bundles by providing a k-basis constituted by a specific reduced basis of F(V0) combined
with successive powers of x up to integer bounds depending on F . These integers are called
π-invariants and they provide first and foremost bounds for the possible degree of basis
matrices of bases of F(V0). This will be crucial since OX -ideals of a specific form can solely
be represented by such a basis matrix. We illustrate the relation between OX -ideals and
their restrictions to the irreducible components of a reduced reducible cover X of P1

k. This
enables us to represent OX -ideals in terms of fixed reduced bases of OXi on the irreducible
components Xi. We will prove that there are bases of F(V0) that have bounded degree
in terms of the above fixed bases. This proves the bounds for the π-invariants in the case
of reducible covers of P1

k which is one of the main results of this chapter. We provide
algorithms that enable us to compute bases of F(V0) in terms of basis matrices that have
bounded degree on each irreducible component of X and thus can be regarded as being
optimal with respect to the components of X. Finally, we give an equivalent criterion for
when a divisor is principal which can be used for the test of equality in the Picard group.

In Chapter 5, “Picard Group and its Structure”, we define the Picard group and its
degree zero subgroup. Moreover, we examine its general structure by investigating how
divisors on a curve X relate both to divisors on a schematically dense open subset U of
X and to divisors on the irreducible components of X if X is reducible. Applying this
we will see that the divisors on a cover X of P1

k and divisors on V0 together with the
divisors on S are essentially the same. Furthermore, we can use all of this to prove that
the degree zero Picard group Pic0(X) is isomorphic to the degree zero divisor class group
with specific representatives for each class. Moreover, this extends to an isomorphism
between Pic0(X) and an ideal class group Iπ/Pπ associated to OX(V0). We will introduce
the two approaches to compute in Pic0(X) induced by two types of representatives of
elements in Iπ/Pπ. The elements in Pπ are called modification functions and we will
analyse them, give proofs of their existence with bounded degree and we will also provide
algorithms to compute them. The end of Chapter 5 is then dedicated to show that there are
representatives of Iπ/Pπ with bounded degrees (which implies that they can be represented
on an algebraic RAM with bounded size) and provide first statements of how to compute
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with them.
Chapter 6, “Main Result – Computing Asymptotically Fast in Pic0(X)”, can be re-

garded as the most important and also the most algorithmic chapter. In this chapter we
will provide the main result of this thesis. To do so, we will show that we can represent
elements in Iπ/Pπ (and thus in Pic0(X)) with polynomial square matrices with degree
linearly bounded by cX and show how to compute in Iπ/Pπ (and thus in Pic0(X)) only
using these matrices. For this purpose, we will show how to compute the quotient of two
ideals if the quotient is an integral ideal by employing a fast algorithm that computes ma-
trix kernels. To use this kernel algorithm efficiently, we introduce the necessary theory to
come up randomly with ideal generating sets. To extend this to arbitrary ideal quotients,
we need the representing matrices of elements in Pπ. Since the naive computation of such
matrices has cubic running time complexity with respect to the degree n, we will show
how to compute these matrices in a faster way. We will explain what precomputations
need to be done once for X to establish a computational setup for our algorithms. Then
we can finally propose Algorithms 19 to 22 which constitute the toolkit to compute in
Pic0(X) by providing means to carry out the group law, compute the inverse of elements
and to test whether a given element is the neutral one. We give thorough analyses of the
respective running time complexities of the proposed algorithms and can finally conclude
with the main result: Theorem 6.6.1.

Let us now outline the appendix of this thesis. In Chapter A, “Used Algorithms”, we
collect the algorithms we will utilise for our own algorithms starting from some very naive
to more involved ones which consider fast linear algebra over the polynomial ring k[x].

In Chapter B, “Foundational Theory”, we collect some fundamental statements about
sheaves, algebraic geometry in general and some commutative algebra we will need through-
out this thesis. All of the above is not intended to be self-contained, it is rather a collection
of needed statements that the author did not find anywhere else in the literature.

Chapter C, “Properties of R-Ideals and OX-Ideals”, provides the fundamental theory
of OX -ideals by establishing theory about R-ideals for a specific class of one-dimensional
rings R. These R-ideals are the local respectively affine variant of OX -ideals. We will
present how these can be localised and restricted to irreducible components of Spec(R).
Furthermore, we introduce the notion of degree of R-ideals which induces the global de-
gree of OX -ideals which is congruent with the degree of divisors in the invertible case.
Furthermore, we will show fundamental properties of these degree notions.

In Chapter D, “Properties of Covers of P1
k”, we will prove basic properties of covers

of P1
k and give statements that are related to such. In particular, we give a prove of the

existence of a finite morphism onto Pnk for n-dimensional projective schemes over the field
k. We will continuously and repeatedly make use of the presented statements throughout
this thesis.

Chapter E, “Dualising Sheaf and the Dual of OX-Ideals”, provides the duality theory
which will be important along the road to the main result of this thesis. We introduce
the general notion of r-dualising sheaves similar to the introduction in the Grothendieck
duality section in [Liu02, 6.4.3]. We will use some more involved theory to prove some
properties of the 1-dualising sheaf ωX of a cover X of P1

k, for instance, that it is isomorphic
to some OX -ideal whenever X is additionally reduced. Moreover, we will give a broader
perspective on the theory of the π-invariants and relate them to the k-dimension of the
first cohomology group H1(X,F) of OX -ideals F . This together with the bound for the
π-invariants that we prove in Chapter 4 provides an explicit bound n0 ∈ Z≥1 such that
H1(X,F(r(x)∞)) vanishes for all r ≥ n0 and all OX -ideals F .

Chapter F, “More on π-Invariants”, concludes this thesis by revealing a connection
between the π-invariants of OX and divisors on P1

k. Moreover, it ends with explicit (and
more restrictive) bounds for the π-invariants of OX if X is embedded in some projective
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space PNk and the finite morphism π : X → P1
k of degree n is given by the projection

onto two coordinates of PNk . This result also provides means to compute the arithmetic
genus of X in this case solely using the integers N , n and the degree of the homogeneous
polynomials cutting out X in PNk .

1.5.1 A Reading Guide

There are different options of how to read this thesis depending on how experienced the
reader is with respect to arithmetic in Jacobians, algebraic geometry in general and with
curves especially. Moreover, it may depend on what the reader wants to take away from
reading this thesis.

(i) If the main interest of the reader is to extract the main statements of this thesis,
then Section 6.6 is the place to go to.

(ii) If the reader is a more adept algebraic geometer whose main interest is to follow
the road of achieving our main result, then reading the main part, together with
following any link to the appendix which is necessary for the general understanding
should be sufficient.

(iii) If the reader wants to comprehend the content of this thesis in all of its depth and
generality, we clearly recommend to read the main part, together with following the
links to the appendix. Once the reader ends up in the appendix by doing so, we
advise the reader to try to get a general overview of the respective chapter/section
of the appendix. Especially, the Chapters C and E should be read completely before
proceeding with the main part.

(iv) The reader which is mostly interested in the explicit algorithms that implement the
arithmetic in Pic0(X) may proceed as follows: The reader should take the isomor-
phism Pic0(X) ∼= Iπ/Pπ and that the representatives in Iπ can be represented by
polynomial square matrices of dimension n (representing a basis) for granted (com-
ing from a black box). By accepting these facts the reader obtains some bedrock
from which it is possible to realise that the task of computing efficiently in Iπ/Pπ is
the one that needs to be carried out. Then it is obvious that we should care about
computing the matrix representation of the elements in Pπ and that we need to come
up with linear algebra algorithms to compute the product (or quotient) of ideals in
Iπ in a manner that keeps the representatives in the same form (integral ideals only
altered by elements in Pπ) as they are given as input for the algorithms. Finally, the
zero test simply is accounted for by the theory established in Sections 4.7 and 5.9
and thus needs to be taken for granted. Chapter A contains a short introduction to
the algorithms we will employ and should definitely be consulted by any reader who
is interested in the explicit algorithms.
Moreover, we want to emphasise that the more generic approach (which we call the
component independent case) we present can be considered to be less sophisticated
and thus easier to comprehend and also to implement.

(v) If the reader is new in the context of algebraic geometry and is therefore not familiar
with schemes, sheaves, divisors and so forth, then we recommend to follow the
Chapter 3, Sections B.1 and B.2 together with one of the many textbooks and lecture
notes on this topic, for instance, [Har77], [Liu02], [GW10] for standard textbooks and
the lecture notes [Gat14] and [Gat20]28 of Andreas Gathmann. More comprehensive

28Here the former is an older version and the latter a newer one. They are in a sense complementary
since [Gat14] treats divisors on curves (as Weil divisors though) and [Gat20] more generally treats schemes,
OX -modules and cohomology.
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lecture notes are those of Ravi Vakil [Vak18]. After the reader feels comfortable with
those objects, we recommend to follow the reading approach in item (iii).

In general, it is possible to treat the appendix as a kind of black box and to mainly follow
the main part and take the statements in the appendix which the main part refers to
for granted. The possible danger following this approach is that the reader may fail to
understand the content of this thesis in all of its generality. However, we recommend to
read the Chapters C and E in any case.
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Chapter 2

Covers of P1
k

In this chapter we will introduce the notion of “covers over P1
k”, define all necessary

notation and state some fundamental properties of covers of P1
k. Covers of P1

k will be
the class of schemes for which we state most of our results in this thesis. By definition,
every cover X of P1

k will come along with a finite morphism onto P1
k (as every projective

scheme over k of dimension one does) that satisfies two further properties. Throughout
this thesis this will enable us to talk about fixed subschemes and other schemes related to
the finite morphism. For instance, we can talk about the ’fibre of the point at infinity’ or
fix an affine open cover of the cover X of P1

k induced by a standard affine open cover on
P1
k. Once introduced the notations we give in this chapter will be a constant help dealing

with the more involved topics later on.
The chapter is organised as follows: In Section 2.1 we define basic types of schemes we

will work with throughout this thesis such as curves of finite residual-type over k, curves
over k and covers of P1

k.
In Section 2.2 introduce a bunch of notations with respect to the finite morphism that

comes along with a cover X of P1
k. These will, for instance, involve a fixed open cover

of X consisting of the affine opens V0 and V∞ and also an affine scheme S whose closed
points correspond bijectively to the fibre of the point at infinity.

In Section 2.3 we show that a given cover X of P1
k together with its finite morphism can

be represented by a commutative algebra setting condensed in a commutative diagram.
We will use this representation throughout the rest of this thesis.

In Section 2.4 we introduce some basic notations and results with respect to the irre-
ducible components of covers of P1

k. This will be used for iterative arguments that provide
a statement on all of a cover X of P1

k by applying some statement to the irreducible com-
ponents of X iteratively.

2.1 Introduction to Covers of P1
k

In this section we will introduce the notion of “cover of P1
k” which will be separated

schemes X over a field k of pure dimension one that are non-empty, noetherian, projective
and Cohen-Macaulay together with a finite morphism onto P1

k. The fixed affine open
cover of P1

k will induce an affine open cover of X and the gluing data on P1
k will provide

gluing data on X. Moreover, the affine coordinate rings of X will be free modules of finite
rank over the coordinate rings of P1

k. We will heavily use this fact for our algorithmic
exploration of the Picard group and also for representing global sections of divisors (and
even more general sheaves) in terms of bases. We will introduce our basic notations for
this kind of setting and refer to and prove some foundational properties.

Let k be a field. In [GW10, Section 15.4] the notion of an absolute curve is introduced.
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We will now define a curve over k as an absolute curve as in [GW10, Section 15.4] which
is additionally separated and of finite type over k.

Definition 2.1.1. Let X be a scheme over the field k (with separated structure morphism
X → Spec(k)) which is non-empty and noetherian. Let X1, . . . , Xm denote its irreducible
components and let X satisfy the following three equivalent properties (see [GW10, Prop.
15.1] and [GW10, Prop. 15.14]):

1. For every closed point x ∈ X, dimOX,x = 1.

2. The closed irreducible subsets of X are the X1, . . . , Xm and the closed points of X.

3. X is of pure dimension one (or purely one-dimensional), i.e. dimXi = 1 for all
i = 1, . . . ,m.

If X additionally satisfies that the residue class fields of its closed points have finite
dimension over k, then we call X a curve of finite residual-type over k. If X is of
finite type over k, then we call it an absolute curve over k or shorter a curve over
k. 4

Remark 2.1.2. Any curve over k is a curve of finite residual-type over k, see Lemma B.4.4.
Moreover, if X is a curve of finite residual-type over k, then for any open subset U ⊆ X we
have that OX(U) is a finite residual-type k-algebra, see Definition B.4.3 on page 239. 4
We want to introduce the notion of a cover of P1

k. As the name suggests a cover X of
P1
k should be a projective curve over k together with a finite morphism π : X → P1

k. In
section Section D.1 of the appendix we will show that for projective schemes over k which
are of pure dimension n there exists a finite and surjective morphism to Pnk . In particular,
for curves over k there is a finite surjective morphism π : X → P1

k, see Theorem D.1.6 and
Proposition D.1.7. For the purposes we pursue in this thesis, we want this morphism to
have further properties:

1. We want that π∗OX is finite locally free over OP1 . By Proposition D.2.4, this is
equivalent to X being Cohen-Macaulay.

2. Let us fix an affine open cover U0 ∪ U∞ of P1
k with {P∞} = P1

k \ U0. For simplicity
of the analysis we want that the preimage of the point at infinity P∞ ∈ P1

k contains
no intersection points of the irreducible components of X.

3. The induced morphism π|Xi : Xi → P1
k on the i-th irreducible component should

induce a field extension Fi/k(x) which is separable. Here Fi denotes the function
field of Xi (endowed with the reduced subscheme structure) and k(x) the function
field of P1

k. By [Liu02, 3.2.15], this is equivalent to Xi being geometrically reduced.

Hence we will adopt these three criteria into the definition of a cover of P1
k.

Definition 2.1.3. A cover of P1
k is a projective curve X over k together with a finite

morphism π : X → P1
k and an affine open cover U0 ∪ U∞ of P1

k (for which we set {P∞} =
U∞ \ (U0 ∩ U∞)) such that

(i) X is Cohen-Macaulay,

(ii) π−1(P∞) does not contain any intersection point of irreducible components of X,
and

(iii) π|Xi : Xi → P1
k induces a finite separable field extension Fi/k(x) whereXi is endowed

with the reduced subscheme structure and Fi denotes the function field of Xi.
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Sometimes we want to consider projective curves X over k which do not satisfy all of the
properties (i), (ii) and (iii) at the same time. Then we will explicitly exclude the respective
properties of a cover of P1

k we want to drop. 4

Notation 2.1.4. Let P be a property of schemes. Let (X,π) be a cover of P1
k. Whenever

we say ’let X satisfy respectively be P’ or ’let X be a P cover of P1
k’, then we mean that

X as a scheme satisfies P. For instance, ’let X be a reduced cover of P1
k’ or ’let X be

irreducible’. 4

Let X be a cover of P1
k. By Corollary D.1.8, the morphism π will also be flat since X is

Cohen-Macaulay. Note that by Corollary B.5.19, every schemeX of dimension dim(X) ≤ 1
over a field k is projective if and only if it is proper.

2.2 Finite Morphism to P1
k and Notations

In the following we briefly describe what data comes equipped with the morphism and
which we will assume to be part of the input data for our considerations. Unfortunately,
this will involve a certain amount of notations we need to introduce to effectively work
with covers of P1

k. The reader is referred to the List of Symbols on page 313 where there
is also a collection of symbols that are solely related to covers of P1

k.

Definition 2.2.1. Let (X,π) be a cover of P1
k. With regards to the fixed standard open

affine cover U0 ∪ U∞ of P1
k we set U0 = Spec(k[x]), U∞ = Spec(k[x−1]) and U0,∞ =

U0 ∩ U∞ = Spec(k[x, x−1]) with x transcendental over k. By [GW10, 13.77], every finite
morphism is affine and thus V0 := π−1(U0), V∞ := π−1(U∞) form an affine open cover of
X. Let R0 and R∞ be the affine coordinate rings of V0 respectively V∞. Furthermore,
set V0,∞ = V0 ∩ V∞ = π−1(U0,∞) which is also affine with coordinate ring R0,∞. By
i0 : V0 → X and i∞ : V∞ → X we denote the corresponding open immersions. 4

Definition 2.2.2. Let X be a cover of P1
k. We call the rank of π∗OX over OP1 the degree

of π. We will denote it by n. 4

Remark 2.2.3. Moreover, the restrictions

π|V0 : V0 → U0, π|V∞ : V∞ → U∞ and π|V0,∞ : V0,∞ → U0,∞

will also be finite (and thus affine) morphisms (of affine schemes), see [Sta18, Tag 01WH].
4

By Lemma B.5.20, the morphisms π|V0 , π|V∞ and π|V0,∞ correspond to finite ring extensions

k[x] ↪→ R0, k[x−1] ↪→ R∞ respectively k[x, x−1] ↪→ R0,∞. (2:1)

Lemma 2.2.4. The ring extensions in Eq. (2:1) make R0, R∞ and R0,∞ into free k[x]-,
k[x−1]- and k[x, x−1]-modules of rank n, respectively.

Proof. Note that since X is Cohen-Macaulay, by Proposition D.2.4 the sheaf π∗OX is free
of rank n and thus these extensions are also free of rank n over the respective ground
rings.

The open subscheme U0,∞ is both the basic open subset DU0(x) in U0 and the basic open
subset DU∞(x−1) in U∞ glued together representing the gluing data of P1

k. Now since the
preimages of basic open subsets of affine morphisms are again basic open (the preimage of
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a basic open subset of a regular function is given by the basic open subset of the pullback
of that function), we have

V0,∞ = V0 ∩ V∞ = π−1
|V0

(DU0(x)) = DV0(x)

= π−1
|V∞(DU∞(x−1)) = DV∞(x−1).

This provides the isomorphisms

(R0)x ∼= R0,∞ ∼= (R∞)x−1 . (2:2)

Roughly speaking, the gluing of the standard affine opens in P1
k provides an affine open

cover of X and also how the affine opens are glued together.

Frac(R0) Frac(R0,∞) Frac(R∞)

V0 V∞ X R0 R∞

V0,∞ R0,∞

U0 U∞ P1
k k[x] k[x−1]

U0,∞ k[x, x−1]

π|V0 π|V∞ π

π|V0,∞

n n

n

Figure 2.1: Open subsets and coordinate rings induced by finite morphism

Here A→ B means A ⊆ B, A↔ B means A ∼= B and A B indicates a morphism from A to B

The following statement and its proof will establish notation of covers of P1
k.

Proposition 2.2.5. If (X,π) is a cover of P1
k, then the same is true for each (Xi, π|Xi)

of its finite irreducible components together with the restriction of π.

Proof. Obviously, every irreducible component of a curve over k is a curve over k. More-
over, irreducible components of projective schemes are projective and since being Cohen-
Macaulay is a local property, irreducible components of Cohen-Macaulay schemes are
Cohen-Macaulay. Since Xi is an irreducible component of X, we have a closed immersion
τi : Xi → X and obtain thus a morphism πi := π|Xi := π ◦ τi to P1

k. Since closed im-
mersions are finite morphisms, see [Sta18, Tag 035C], and the composition of two finite
morphisms is again finite, see [Sta18, Tag 01WK], πi : Xi → P1

k is a finite morphism from
Xi to P1

k. Moreover, the properties (ii) and (iii) from Definition 2.1.3 are clearly satisfied
as well.

We denote the degree of πi by ni.

Definition 2.2.6. As before, the morphism πi : Xi → P1
k induces an affine cover of Xi by

Vi,0 = π−1
i (U0) = τ−1

i (V0) and Vi,∞ = π−1
i (U∞) = τ−1

i (V∞). We denote the corresponding
coordinate rings by Ri,0 respectively Ri,∞. Since closed subschemes of affine schemes are
given by a unique ideal corresponding to the closed immersion, see [Sta18, Tag 01IH],
there are unique prime ideals Pi,0 in R0 and Pi,∞ in R∞ such that Ri,0 = R0/Pi,0 and
Ri,∞ = R∞/Pi,∞. We denote by R+

0 =
⊕m

i=1Ri,0 the affine coordinate ring corresponding
to the disjoint union of the Vi,0. 4
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Remark 2.2.7. The canonical epimorphisms R0 → Ri,0 provide a homomorphism R0 → R+
0

which is injective if and only if R0 is reduced. 4

Proposition 2.2.8. Let (X,π) be a reduced cover of P1
k. Then n =

∑m
i=1 ni.

Proof. By definition, n equals the rank of π∗OX and ni the rank of (πi)∗OXi . In particular,
n = rkk[x]R0 and ni = rkk[x]Ri,0. By Lemma B.5.6, we have an isomorphism

φ : Frac(R0)→
m⊕
i=1

Frac(Ri,0).

Moreover, by Lemma B.4.10 we have Frac(R0) = R0 ⊗k[x] k(x) as well as Frac(Ri,0) =
Ri,0⊗k[x]k(x). Since rkk[x]R0 = dimk(x) Frac(R0) as well as rkk[x]Ri,0 = dimk(x) Frac(Ri,0),
we find that the assertion follows from the isomorphism φ.

On the level of topological spaces, the irreducible components of open subspaces are pre-
cisely given by the intersection of the irreducible components of the ambient space with
the given subspace. Thus the Vi,0 and the Vi,∞ are the irreducible components of the affine
schemes V0 and V∞, respectively.

For completeness we also define the pole divisor of x here but refer the reader to
Section 3.1 about divisors for the general treatment of divisors and to Definition 5.6.3
where the generalised pole divisor of x is defined.

Definition 2.2.9. We will denote the pole divisor of x ∈ KX(X) on X, which is given by
the configuration

{(V0, 1), (V∞, x−1)},

by (x)∞. The multiples r(x)∞ correspond to the configuration {(V0, 1), (V∞, x−r)} and
thus we will also use the notation r(x)∞ = (xr)∞. The pole divisor of x ∈ KXi(Xi) on the
irreducible component Xi, which is given by the configuration

{(Vi,0, 1), (Vi,∞, x−1)},

will be denoted by (x)Xi,∞. 4

Until now everything is symmetric, but we will introduce some asymmetry by considering
the fibre of the point P∞ at infinity of P1

k under π. We will define an affine scheme S
whose set of closed points is one to one with π−1(P∞) and which comes with a birational
injective morphism of schemes µ : S → X.

Definition 2.2.10. Let T = k[x−1] \ x−1k[x−1] be the complement of the maximal ideal
of k[x−1] generated by x−1. Then O∞ = T−1k[x−1] is the local ring of the point at
infinity P∞ ∈ P1

k. We set OS = T−1R∞ and S = Spec(OS). Furthermore, set OSi =
T−1(R∞/Pi,∞) = T−1R∞/T

−1Pi,∞ and Si = Spec(OSi) where Pi,∞ is a minimal prime of
R∞ as in Definition 2.2.6. By S we denote the affine scheme (S,OS) and by Si the affine
scheme (Si,OSi). 4

We immediately see that Si are closed subschemes of S with closed immersions σi :
Si ↪→ S corresponding to the ring epimorphisms OS → OS/Pi,∞OS = OSi where Pi,∞
denotes the minimal prime ideal of R∞ corresponding to the irreducible componentXi∩V∞
of V∞. Moreover, S =

⋃m
i=1 Si.

Proposition 2.2.11. The scheme S is finite and of dimension one. Its closed points are
one to one with π−1(P∞) and its generic points are one to one with the generic points of X.
Moreover, S is the disjoint union of the closed subschemes Si and thus OS =

⊕m
i=1OSi.
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Proof. By definition, the prime spectrum of OS is one to one with the prime ideals of R∞
that have trivial intersection with T . Any maximal ideal POS of OS therefore satisfies
P ∩k[x−1] ⊆ k[x−1]\T = x−1k[x−1] and thus, since π maps closed points to closed points,
see Corollary B.4.2, we must have P ∩ k[x−1] = P∞. Moreover, since any minimal prime
ideal Pi,∞ of R∞ only consists of zero-divisors, see Corollary B.4.14, and R∞ is torsion-free
over k[x−1], we must have Pi,∞ ∩ T ⊆ Pi,∞ ∩ (k[x−1] \ {0}) = ∅. That is, every minimal
prime ideal of R∞ corresponds to a minimal prime ideal of OS . Since π : X → P1

k is a finite
morphism, the fibres of points under π are finite. This shows the first four assertions. Since
X is a cover of P1

k, the points in π−1(P∞) do not lie on several irreducible components.
This implies that the Si have no intersection points and thus S is the disjoint union of the
Si. This provides OS =

⊕m
i=1OSi .

Note that the same result as in Proposition 2.2.11 also holds for Si. That is, Si consists
of finitely many points, its closed points are one to one to π−1(P∞) ∩Xi and its generic
point corresponds to that of Xi.

Proposition 2.2.12. The O∞-module OS is free of rank n. Moreover, every k[x−1]-basis
of R∞ also constitutes an O∞-basis of OS.

Proof. By definition, we have OS = T−1R∞ ∼= R∞ ⊗k[x−1] T
−1k[x−1]. By Lemma 2.2.4,

R∞ is a free k[x−1]-module of rank n and thus we may write R∞ =
⊕n

i=1 ωi k[x−1] for some
k[x−1]-basis ω1, . . . , ωn of R∞. Then R∞ ⊗k[x−1] T

−1k[x−1] =
(⊕n

i=1 ωi k[x−1]
)
⊗k[x−1]

T−1k[x−1] which is by [AM69, 2.14] isomorphic to
⊕n

i=1 ωi T
−1k[x−1] =

⊕n
i=1 ωiO∞

providing the assertion.

Definition 2.2.13. By µa : S → V∞ we denote the morphism of schemes corresponding
to the injective ring homomorphism R∞ ↪→ T−1R∞. By µ we denote the composition of
µa and the open immersion V∞ ↪→ X. 4

Proposition 2.2.14. Both µa and µ are morphisms of schemes that map the closed points
of S bijectively onto the set of points π−1(P∞) lying over P∞. Moreover, both morphisms
are birational morphisms in the sense of [Sta18, Tag 01RO].

Proof. By the properties of localisation, we see that the points of Spec(T−1R∞) are the
prime ideals PT−1R∞ where P ∈ Spec(R∞) with P ∩ T = ∅. By definition, µa maps
PT−1R∞ to P and hence by Proposition 2.2.11, we see that µa maps the closed points of
S bijectively to π−1(P∞). The same is then obviously true for µ. That both µa and µ are
birational also follows from Proposition 2.2.11.

Notation 2.2.15. In the following we will treat S as a subset of X, that is we will use
notations as U ∩ S for subsets U ⊆ X of X. Moreover, note that since S contains every
generic point of X, any non-empty open subset U ⊆ X will have non-empty intersection
U ∩ S 6= ∅ with S. Hence, we will sometimes say that U is disjoint to S when their
intersection does not contain any closed point of S. 4

Remark 2.2.16. Note that by definition the morphism of sheaves µ# : OX → µ∗OS from
the morphism µ : S → V∞ → X of schemes factors through (i∞)∗OV∞ and thus we have
for U ⊆ X open:

µ#(U) : OX(U)→ OX(U ∩ V∞)→ T−1OX(U ∩ V∞)

Here, by abuse of notation, T denotes the image of T = k[x−1] \ x−1k[x−1] ⊆ OX(V∞)
under the restriction homomorphismOX(V∞)→ OX(U∩V∞). In particular, if U∩V∞ = ∅,
then µ#(U) is the zero map. If U = V∞, then µ#(U) is the localisation map R∞ → OS .
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If U = π−1(U ′) with U ′ ⊆ P1
k affine and U ∩ V∞ 6= ∅ but U ∩ S does not contain a

closed point, then µ#(U) is an embedding OX(U ∩ V∞) → Frac(OX(U ∩ V∞)). Indeed,
in that case x−1 ∈ OX(U ∩ V∞)× since its only zeros in V∞ are the closed points of
S. But then every non-zero element in k[x−1] is invertible in T−1OX(U ∩ V∞) and thus
T−1OX(U ∩V∞) ∼= OX(U ∩V∞)⊗k[x−1] k(x) = Frac(OX(U ∩V∞)), see Lemma B.4.10 and
note that Frac(OP1(U ′)) = k(x). 4

Definition 2.2.17. By µa,i : Si → Vi,∞ we denote the morphism of schemes corresponding
to the injective ring homomorphism Ri,∞ ↪→ T−1Ri,∞. By µi we denote the composition
of µa,i and the open immersion Vi,∞ ↪→ Xi. 4

By applying the same lines of arguments as in the proof of Proposition 2.2.14, we can
prove the same result for Si and an irreducible component Xi of X.

Corollary 2.2.18. Both µa,i and µi are morphisms of schemes that map the closed points
of Si bijectively onto the set of points π−1(P∞)∩Xi in Xi lying over P∞. Moreover, both
morphism are birational morphisms in the sense of [Sta18, Tag 01RO].

Remark 2.2.19. Obviously, µa and µa,i are affine morphisms. Since both the R∞-module
T−1R∞ and the Ri,∞-module T−1Ri,∞ are not finitely generated, the morphisms µa and
µa,i are not finite. In particular, they are neither proper nor projective. 4

Lemma 2.2.20. Let X be a cover of P1
k. Then both V0 and V∞ are Cohen-Macaulay

curves over k, that is curves over k which are Cohen-Macaulay. Moreover, the scheme S
is a Cohen-Macaulay curve of finite residual-type over k.

Proof. Being Cohen-Macaulay is defined locally, and thus all of the involved schemes are
Cohen-Macaulay as asserted. Since P1

k is non-empty and π : X → P1
k is surjective, all of the

above schemes are non-empty as well. Open subschemes of locally noetherian schemes are
locally noetherian, see [Sta18, Tag 01OW]. Moreover, affine schemes are quasi-compact,
see [Sta18, Tag 01S7], and thus V0 as well as V∞ are noetherian. The restriction of
X → Spec(k) to V0 or V∞ is still a morphism of finite type, see [Sta18, Tag 01T2]. The
first of the three equivalent properties in Definition 2.1.1 is a local condition and thus V0
and V∞ satisfy these. This shows that V0 and V∞ are curves over k.

Since S is affine with noetherian coordinate ringOS (R∞ is noetherian and localisations
of noetherian rings are noetherian, see [Sta18, Tag 00FN]), S is noetherian. Now since
V∞ is of finite type over k, R∞ is a finitely generated k-algebra, see [Sta18, Tag 01T2].
Thus by Lemma B.4.4 its residue class fields of closed points have finite dimensions over
k. But since the residue class fields of closed points of OS are isomorphic to those of the
closed points of V∞ lying over P∞, the closed points of S have residue class fields of finite
dimensions over k.
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X KX(X) Frac(R0) Frac(R0,∞) Frac(R∞) Frac(OS)

R0,∞ OS

R0 R∞

k[x, x−1] O∞

P1
k k(x) k[x] k[x−1]

π n n

n n

Figure 2.2: Coordinate rings and total ring of fractions induced by finite morphism

Here A→ B means A ⊆ B and A B indicates a morphism from A to B

By introducing the scheme S with coordinate ring OS , we somehow introduced a possible
asymmetry by symbolically replacing the second right column in Figure 2.2 with the most
right column, that is replacing k[x−1] ↪→ R∞ ↪→ Frac(R∞) with O∞ ↪→ OS ↪→ Frac(OS).
This idea will play an important role by coming up with solutions for the computation
in the Picard group of a cover X of P1

k. One of the main reasons is the following: Both
R∞ and OS are of Krull dimension one, but OS is semi-local and thus every invertible
ideal of it will be principal. We can use this fact to represent divisor classes on X (which
otherwise are, at least to some extend (see chapter 4 for further information), represented
by its sections over V0 and V∞) solely by its sections over V0.

2.3 Representation of Covers of P1
k

Following the exposition of section 2.2, we have seen that any curve X over k with a finite
morphism to P1

k implies a certain commutative algebra setup:
LetX be a curve over k together with a finite morphism π : X → P1

k. The isomorphisms
Eq. (2:2) represented the gluing information of the affine curves V0 and V∞ over k along
V0,∞. That is, the curve X over k is completely represented by the two coordinate rings
R0 and R∞ together with an isomorphism (R∞)x−1 → (R0)x. This leads to commutative
algebra characterisation of such curves over k together with a finite morphism to P1

k.

Lemma 2.3.1. Any pair (X,π), where X is a projective curve over k and π : X → P1
k a

finite morphism, can be represented by the commutative diagram of ring extensions

Figure 2.3: Curve over k as a commutative diagram - not necessarily Cohen-Macaulay

(R0)x (R∞)x−1

R0 R∞

k[x]x k[x−1]x−1

k[x] k[x−1]

Φ

λx λx−1

x← [x
λx λx−1

The case that X is projective but not necessarily Cohen-Macaulay.

42



Chapter 2 2.3. Representation of Covers of P1
k

such that

(i) the affine schemes Spec(R0) and Spec(R∞) are curves over k,

(ii) the homomorphisms λx and λx−1 are the localisation homomorphisms with regards
to the elements x respectively x−1, and

(iii) Φ is an isomorphism.

Additionally, X is Cohen-Macaulay if and only if we have the additional condition that

(iv) the rings R0 and R∞ are Cohen-Macaulay or, equivalently, the vertical arrows rep-
resent free extensions of the same rank n.

Figure 2.4: Curve over k as a commutative diagram - Cohen-Macaulay case

(R0)x (R∞)x−1

R0 R∞

k[x]x k[x−1]x−1

k[x] k[x−1]

Φ

λx λx−1

n

x←[x

n

λx

n n

λx−1

The case that X is projective and Cohen-Macaulay.

Proof. Assume (X,π) to be a pair as asserted. The finite morphism π provides the finite
morphisms of affine schemes π|V0 : V0 → U0 and π|V∞ : V∞ → U∞ corresponding to
the finite ring extensions k[x] ↪→ R0 respectively k[x−1] ↪→ R∞. The lower level of
diagram Figure 2.3 is due to the gluing of the projective line and that gluing corresponds
to the identification of DU0(x) and DU∞(x−1), denoted by U0,∞. Since the preimage
of basic open subsets under morphisms between affine schemes are again basic open,
we have π−1(DU0(x)) = DV0(x) and π−1(DU∞(x−1)) = DV∞(x−1). Under the above
identification we thus obtain DV0(x) = DV∞(x−1) in X which provides the isomorphism
(R∞)x−1 → (R0)x. Moreover, if X is Cohen-Macaulay, then for any affine open subset of
X the respective coordinate ring is Cohen-Macaulay. Equivalently, see Proposition D.2.4,
we have that the respective ring extensions are free of the same rank n as π∗OX over OP1 .

Conversely, assume that we have given a commutative algebra setting as indicated in
Figure 2.3. The affine curves Spec(R0) and Spec(R∞) over k glue together along Φ to a
curve X over k. The finite ring extensions k[x] ↪→ R0 and k[x−1] ↪→ R∞ correspond to
finite morphisms π0 : Spec(R0) → Spec(k[x]) and π∞ : Spec(R∞) → Spec(k[x−1]). The
lower level of diagram Figure 2.3 shows that the affine schemes Spec(k[x]) and Spec(k[x−1])
glue together to a copy of P1

k. Then the diagram ensures that the two morphisms π0 and
π∞ are compatible and provide a finite morphism π : X → P1

k as asserted. By [GW10,
12.89], this means that π is affine and proper. The structure morphism P1

k → Spec(k)
is proper, too. Since the composition of proper morphisms is proper, see [Liu02, 3.3.16],
X → Spec(k) is proper and thus by Lemma B.5.18, X is a projective scheme over k. The
assertion considering (iv) now follows from Proposition D.2.4 again.

Definition 2.3.2. Let (X,π) be represented as in Lemma 2.3.1. We use the isomorphism
Φ to identify (R0)x with (R∞)x−1 and denote it by R0,∞. Similarly, we identify k[x]x with
k[x−1]x−1 which can be written as k[x, x−1]. Since both (R0)x as well as k[x, x−1] are still
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localisations of k[x−1] by x−1 we denote the composition of λx−1 with Φ again by λx−1 .
Then the diagram in Figure 2.3 becomes:

Figure 2.5: Curve over k as a commutative diagram - condensed gluing information

R0,∞

R0 R∞

k[x, x−1]

k[x] k[x−1]

λx λx−1

λx λx−1

Gluing information condensed into R0,∞, together with the localisation homomorphisms λx and λx−1

4

It turns out that the situation in Definition 2.3.2 extends to the respective total rings of
fractions.

Lemma 2.3.3. Let (X,π) be as in Definition 2.3.2. Then the localisation homomorphisms
λx and λx−1 extend to Frac(R0) and Frac(R∞), respectively. In other words, we obtain a
commutative diagram

Figure 2.6: Curve over k as a commutative diagram - with total ring of fractions and OS

Frac(R0) Frac(R0,∞) Frac(R∞) Frac(OS)

R0,∞ OS

R0 R∞

k[x, x−1] O∞

k[x] k[x−1]

λx λx−1

λx λTλx−1

λx
λTλx−1

Localisation homomorphisms extend to total rings of fractions

Proof. Since the statement is symmetric, we only prove it for λx. The homomorphism
λx extends to Frac(R0) via a/b 7→ (a/b)/1 where we identify the latter with the element
a/b in Frac(R0,∞). Hence λx : Frac(R0) → Frac(R0,∞) maps a/b to a/b. The embedding
R0,∞ ↪→ Frac(R0,∞) maps a/b ∈ R0,∞ to (a/b)/1 = a/b in Frac(R0,∞). This already shows
that the asserted square commutes.

We can thus represent a projective curve over k with finite morphism to P1
k by a diagram

as in Figure 2.6. The information on how to glue R0 and R∞ together is encoded in
the fact that both embed via the localisation homomorphism into a common localisation
R0,∞. This common embedding then also extends to the total rings of fractions and thus
provides a common ambient k[x, x−1]-module Frac(R0,∞) in which everything takes place.
We will see in Section 4.2 that this representation also enables us to give representations
of so called OX -ideals.
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Remark 2.3.4. By Lemma D.2.5, V0,∞ is schematically dense in X. Hence by [Liu02,
7.1.15], we have Frac(R0,∞) ∼= KX(X) which underpins the understanding of Frac(R0,∞)
playing the role the function field plays in the integral case. 4

2.4 Iterating on Irreducible Components

Let X be a reduced scheme with finitely many irreducible components X1, . . . , Xm. Here
we fix the sequence (X1, . . . , Xm) by which we mean that the order is relevant. In this sec-
tion we will give definitions relative to the above sequence of irreducible components. We
refer the reader also to section B.3 in the appendix where some statements and definitions
about the irreducible components can be found.

We will use this setup and the statements that follow extensively in chapters 4 and 5
where we want to use results that hold for any of the Xi’s to provide similar statements
for X. To do so, we iterate over all Xi and include their intersection behaviour in our
considerations to deduce the desired statement for the whole of X.

We will denote the closed immersions of the i-th irreducible componentXi by τi : Xi ↪→
X. The corresponding morphism of sheaves τ#

i : OX → (τi)∗OXi induces a morphism of
sheaves OX →

⊕m
i=1(τi)∗OXi . As it turns out, this morphism is injective if and only if X

is reduced, see Proposition B.3.3.

Definition 2.4.1. Let SX be such that the sequence

0 −→ OX −→
m⊕
i=1

(τi)∗OXi −→ SX −→ 0 (4:3)

is exact, see Eq. (3:4). For i = 1, . . . ,m let

Yi =
i⋃

j=1
Xi

denote the scheme theoretic union of the X1, . . . , Xi inside of X, see [Sta18, Tag 0C4J].
Let Y0 be the empty scheme with OY0 = 0. By definition, Ym = X. By definition, for
every i = 2, . . . ,m we have a natural surjective morphism of schemes

υi : Yi−1 tXi → Yi

compatible with the closed immersions Yi−1 ↪→ Yi and Xi ↪→ Yi, i.e. the following diagram
commutes:

Yi

Yi−1 Yi−1 tXi Xi

hi−1
υi

ji

Locally, on any affine open subset U = Spec(R) of X, the corresponding morphism υ#
i is

given by
υ#
i (U) : R/Ii → R/Ii−1 ⊕ R/Pi

r + Ii 7→ (r + Ii−1 , r + Pi)

where I` = P1∩ . . .∩P` and P` denote the minimal prime ideal of R that correspond to the
irreducible component X` ∩U of U . By Corollary B.4.42, we have that υ#

i (U) is injective
since X was reduced. Moreover, Corollary B.4.42 provides the exact sequence

0 −→ R/Ii
φi−→ R/Ii−1 ⊕R/Pi

ψi−→ R/(Ii−1 + Pi) −→ 0.
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Let Si denote the sheaf ofOYi-algebras which makes the corresponding sequence of sheaves
of OYi-algebras

0 −→ OYi −→ (hi−1)∗OYi−1 ⊕ (ji)∗OXi −→ Si −→ 0 (4:4)

exact. Furthermore, let Ji ∈ OXi denote the sheaf of OXi-ideals that cuts out Yi−1 ∩Xi

in Xi, that is V (Ji) = Yi−1 ∩Xi. 4

Proposition 2.4.2. The sheaves S and Si as in Definition 2.4.1 are skyscraper sheaves
and hence satisfy

H0 (X,SX) =
⊕

P∈X(SX)P with χ(X,SX) =
∑

P∈X dimk(SX)P and
H0 (Yi,Si) =

⊕
P∈Yi(Si)P with χ(Yi,Si) =

∑
P∈Yi dimk(Si)P .

Moreover, all involved dimensions are finite.

Proof. The sheaf S is supported on the intersection points of the components Xi of X.
By Lemma B.5.3, we know that these are finite in number and hence S is a skyscraper
sheaf. The very same line of argument shows that Si is a skyscraper sheaf on Yi. The
statements about the Euler characteristic now follow from Lemma B.2.8.

Note that all S and Si are coherent OX - and OYi-modules (even algebras which
are coherent as modules) and thus by [Sta18, Tag 02O6] we obtain that H0 (Yi,Si) and
H0 (X,S ) are finite k-modules.

Lemma 2.4.3. Let X be a reduced cover of P1
k. Then

χ(X,SX) =
m∑
i=1

χ(Yi,Si).

Proof. Let π : X → P1
k be the finite morphism of degree n. Let R = OX(V0) where V0 =

π−1(U0). Moreover, by Pi we denote the minimal prime ideal of R corresponding to the
irreducible component Xi∩V0. It is easy to see that the irreducible components of an open
subset U of a topological space X are given by the intersections of U with the irreducible
components of X. Then Xi ∩ V0 ∼= Spec(R/Pi) and Yi ∩ V0 ∼= Spec(R/(

⋂i
j=1 Pj)).

Moreover, by assumption Supp(SX) and Supp(Si) are disjoint to π−1(P∞) and hence
we obtain by Proposition 2.4.2 the equalities

Sm := H0 (X,SX) =
⊕

P∈V0
(SX)P , χ(X,SX) =

∑
P∈V0

dimk(SX)P ,
Si := H0 (Yi,Si) =

⊕
P∈Yi∩V0

(Si)P , χ(Yi,Si) =
∑

P∈Yi∩V0
dimk(Si)P .

Note that by definition Y1 = X1 and hence S1 = 0 which implies S1 = 0. Moreover, if
m = 1, then Sm = 0, too. By Proposition 2.4.2, all involved dimensions are finite and
thus dimk S

m = χ(X,SX) as well as dimk Si = χ(Yi,Si). Hence the assertion is now
equivalent to

dimk S
m =

m∑
i=1

dimk Si.

But as we have seen above, for m = 1 we even have S1 = S1. Then by Lemma B.1.36, the
sequences Eq. (4:3) and Eq. (4:4), restricted to V0, become

0 −→ R −→
m⊕
i=1

R/Pi −→ Sm −→ 0 (4:5)
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respectively

0 −→ R

P1 ∩ . . . ∩ Pi
−→ R

P1 ∩ . . . ∩ Pi−1
⊕ R

Pi
−→ Si −→ 0. (4:6)

Considering the involved R-modules only as k-vector spaces, the sequences of k-vector
spaces split and we obtain the following isomorphisms of k-vector spaces

m⊕
i=1

R/Pi ∼= R⊕ Sm, (4:7)

respectively
R

P1 ∩ . . . ∩ Pi−1
⊕ R

Pi
∼=

R

P1 ∩ . . . ∩ Pi
⊕ Si, (4:8)

which are true for all m ≥ 1 and i ≤ m. Now we claim that Sm ∼=
⊕m

i=1 Si as k-vector
spaces which would imply the assertion: We prove it by induction on m, the number of
irreducible components of X. The case m = 1 is true by definition as we have seen above.

But first note that R = R/(P1 ∩ . . . ∩ Pm) since X, and a fortiori R, is reduced and
P1, . . . , Pm denote all minimal primes of R.

Now let the hypothesis be true for m−1, i.e. Sm−1 ∼=
⊕m−1

i=1 Si as k-vector spaces and
hence the sequence Eq. (4:5) provides the isomorphism

m−1⊕
i=1

R/Pi ∼=
R

P1 ∩ . . . ∩ Pm−1
⊕
m−1⊕
i=1

Si. (4:9)

Now we only need to use known isomorphisms: By Eq. (4:7), we have

R

P1 ∩ . . . ∩ Pm
⊕ Sm ∼=

m⊕
i=1

R/Pi ∼= R/Pm ⊕
m−1⊕
i=1

R/Pi

Eq. (4:9)  ∼= R/Pm ⊕
R

P1 ∩ . . . ∩ Pm−1
⊕
m−1⊕
i=1

Si

Eq. (4:8)  ∼=
R

P1 ∩ . . . ∩ Pm
⊕ Sm ⊕

m−1⊕
i=1

Si

and thus, since the resulting homomorphism acts as an isomorphism on the first summand,
Sm ∼= Sm ⊕

⊕m−1
i=1 Si =

⊕m
i=1 Si as desired.

Remark 2.4.4. Lemma 2.4.3 shows that the sum of the χ(Yi,Si) is independent of the
order (X1, . . . , Xm). But obviously, the χ(Yi,Si) themselves may be unbalanced. 4

Lemma 2.4.5. Let X be a reduced cover of P1
k. Let J ≤ OYi denote the ideal sheaf cutting

out Yi−1 ∩Xi in Yi. Then we have

χ(Yi,Si) = dimk
OX(Vi,0)
J (Vi,0) = degk J (Vi,0).

Proof. Let I and P be the ideals of R = OYi(Yi ∩ V0) that cut out Yi−1 ∩ V0 respectively
Xi ∩ V0 in Yi ∩ V0. Since Yi−1 and Xi only intersect at points in V0, the support of the
respective sheaves of OX -ideals cutting out Yi−1 respectively Xi in Yi have support equal

47



2.4. Iterating on Irreducible Components Chapter 2

to the support of I respectively P . Let J = J (Yi ∩ V0). Then we have J = I + P . Since

R/J ∼=
R/I

J/I
∼=
R/P

J/P
,

the degree of J in Yi can also be computed by computing the degree of its restriction to
Yi−1 or Xi. By assumption, R is reduced and noetherian and thus by Corollary B.4.42 we
obtain the exact sequence

0 −→ R
φ−→ R/I ⊕R/P ψ−→ R/J −→ 0

and therefore we have an isomorphism of R-modules R/J → Si(Yi ∩ V0). Since k ⊆ R,
this is also a k-vector space isomorphism and thus we finally obtain

dimk Si(Yi ∩ V0) = dimk R/J = degk J = degk J (V0).

Since Supp(Si) ⊆ Yi ∩ V0, by Proposition 2.4.2, we have

dimk Si(Yi ∩ V0) = dimkH
0 (Yi,Si) = χ(Yi,Si)

and thus the assertion follows.

Remark 2.4.6. Note that the proof of Lemma 2.4.5 tells us that χ(Yi,Si) is equal to the
degree of J , but also equal to the degree of the restriction of J to Yi−1 or Xi. 4
Remark 2.4.7. Let X be a proper scheme of dimension one over a field k. There are
several definitions of the genus of a scheme. In [Liu02, 7.3.19] the geometric genus of X
is defined as dimkH

1 (X,OX). For the so called arithmetic genus of X there are several
definitions. In [Liu02, 7.3.19] it is defined as pa(X) = 1 − χk(X,OX). In [Sta18, Tag
0BY6] the definition of the genus is made dependent on the dimension of the globally
regular functions over k, that is, dependent on dimkH

0 (X,OX). If dimkH
0 (X,OX) = 1,

which is equivalent to H0 (X,OX) = k, then by [Sta18, Tag 0BY5] we know that X is
connected, Cohen-Macaulay and of pure dimension one. In this case the genus of X is
defined as dimkH

1 (X,OX) and denoted by g. Note that this definition coincides with
that of the arithmetic genus in [Liu02, 7.3.19].

In the case that dimkH
0 (X,OX) > 1, [Sta18, Tag 0BY6] refers to [Ser55, p. 276] and

[HHSB66, p. 2] where the arithmetic genus is defined as χk(X,OX). 4

Definition 2.4.8. Since we do not want to impose the requirement H0 (X,OX) = k on
X, we will make the definition of the genus of X dependent on χk(X,OX). We call the
integer g = −χk(X,OX) the arithmetic genus of X. Some formulas will look nicer
using the notation pa(X) = 1 − χk(X,OX) = 1 − g but, since we do not want to cause
confusion, we will not give this invariant a name. 4

Proposition 2.4.9. Let X be a reduced proper scheme of dimension one over k and
let X1, . . . , Xm be all of its components. By SX we denote the sheaf defined in Defini-
tion B.3.4. Then g =

∑m
i=1 gi+χ(SX) and therefore pa(X) =

∑m
i=1 pa(Xi) +χ(X,SX) +

1−m.

Proof. By Definition B.3.4, we have an exact sequence of OX -modules

0 −→ OX −→
m⊕
i=1

(τi)∗OXi −→ SX −→ 0.

48

https://stacks.math.columbia.edu/tag/0BY6
https://stacks.math.columbia.edu/tag/0BY6
https://stacks.math.columbia.edu/tag/0BY5
https://stacks.math.columbia.edu/tag/0BY6


Chapter 2 2.4. Iterating on Irreducible Components

Applying the Euler characteristic to the above sequence, we obtain by Lemma 2.4.3

m∑
i=1

χ(OXi) = χ

(
m⊕
i=1

(τi)∗OXi

)
= χ(OX) + χ(SX).

Subtracting the involved characteristics of structure sheaves we obtain

g = −χ(OX) = −
m∑
i=1

χ(OXi) + χ(SX) =
m∑
i=1

gi + χ(SX)

as desired. The last asserted equation now follows by adding m on both sides.

The following definition will fix an invariant of X together with a fixed order (X1, . . . , Xm)
of its irreducible components if X is reducible and if it is irreducible it will define an
invariant of X solely. This invariant will play an important role in this thesis since we
will work with polynomial matrices whose entries have degree linearly bounded by that
invariant.

Definition 2.4.10. Let X be an integral cover of P1
k. Then we define

cX =
⌈

2g + dimkH
0 (X,OX) + n

n

⌉
.

If X is a reduced but reducible cover of P1
k with a fixed order (X1, . . . , Xm) of irreducible

components, we instead define

ci,X := ci(X, (X1, . . . , Xm)) :=
⌈
χ(Si) + 2gi + dimkH

0 (Xi,OXi) + ni
ni

⌉
and

cX := c(X, (X1, . . . , Xm)) := mmax
i=1
{ci,X} .

Note that the notions ci,X and cX in the case of reducible X are misleading since they do
depend on the fixed order (X1, . . . , Xm) of the irreducible components of X. 4

Lemma 2.4.11. We have
∑m

i=1 ci,Xni ≤ 2(g + n+ χ(SX)) + dimkH
0 (X,OX).

Proof. It easy to see that ci,Xni ≤ χ(Si) + 2gi+ dimkH
0 (Xi,OXi) + 2ni. Thus we obtain

m∑
i=1

ci,Xni ≤
m∑
i=1

(χ(Si) + 2gi + dimkH
0 (Xi,OXi) + 2ni)

≤ 2g + χ(SX) + 2n+
m∑
i=1

dimkH
0 (Xi,OXi)

= 2(g + n+ χ(SX)) + dimkH
0 (X,OX) .
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Chapter 3

Divisors, Invertible Sheaves and
OX-Ideals

This chapter is organised as follows: In Section 3.1 we recall the basic definitions of
Cartier divisors on arbitrary schemes. These involve the group of Cartier divisors and
the group of Cartier divisor classes. Moreover, for curves over k we define the degree of
divisors in a local sense using the degree of OX,P -ideals. Furthermore, we introduce the
notion of OX -ideals which are a generalisation of sheaf of ideals on X. We show that the
invertible OX -ideals form a group which is isomorphic to the group of Cartier divisors.
This isomorphism is induced by the well known map D 7→ OX(D) which associates to each
Cartier divisor an invertible sheaf. We will show some properties of the relation between
divisors and invertible OX -ideals.

In Section 3.2 we analyse divisors on covers of P1
k. We will mainly be interested

in how to move divisors between the different schemes that are involved when talking
about covers of P1

k. That is, we take care of the question of how to restrict divisors
on the cover X of P1

k to V0, V∞ or S. Or if X is reducible with irreducible components
X1, . . . , Xm, then about how to restrict divisors on X to a component Xi. Finally, we
introduce a way of restricting OX -submodules of KX in a way that is compatible with the
above way of restricting divisors.

3.1 Cartier Divisors

Let X be a scheme. We start by defining the second most important sheaf (right after OX
itself) we will work with, the so called sheaf of meromorphic functions or sheaf of stalks of
meromorphic functions which will be the sheaf whose sections admit the local equations
defining a divisor on a scheme. About this sheaf there has been some misconceptions
which have been illuminated by Kleiman in [Kle79]. We now provide its definition as in
[Sta18, Tag 01X2] where it is defined as recommended in [Kle79].

Definition 3.1.1. Let (X,OX) be a locally ringed space. For any open subset U ⊆ X let
SX(U) ⊆ OX(U) denote the set of regular functions s on U such that the multiplication
by s morphism OU → OU , f 7→ f · s is injective. The rule U 7→ SX(U) defines a subsheaf
of sets of OX . Now SX(U) is a multiplicative subset of OX(U) and hence the localisation
SX(U)−1OX(U) is defined. Then the rule

U 7→ SX(U)−1OX(U)

defines a presheaf K′X of rings on X. We denote the sheafification of K′X by KX and call
it the sheaf of meromorphic functions on X and denote it by KX . Moreover, a global
section of KX is called a meromorphic function on X. 4
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Remark 3.1.2. It is straightforward to show that K′X is separated, see Lemma B.1.8. Thus
we can apply Lemma B.1.22 (ii) toKX to see that its sections over some open U ⊆ X can be
represented by an open cover U = ∪i∈IUi and sections fi = ri/si ∈ SX(Ui)−1OX(Ui) of K′X
such that (fi)|Ui∩Uj = (fj)|Ui∩Uj for all i, j ∈ I. The latter is equivalent to (risj)|Ui∩Uj =
(rjsi)|Ui∩Uj in OX(Ui ∩ Uj). 4
The Definition 3.1.1 coincides with the one given in [Liu02, 7.1.13]. There are situations
in which there is a well-defined pullback of meromorphic functions and as we will see later
that will be the case every time we need that notion of pullback.

Definition 3.1.3. Let f : Y → X together with f# : f−1OX → OY be a morphism of
schemes. We say that the pullback of meromorphic functions along f is defined
if for every pair of open subsets V ⊆ Y and U ⊆ X such that f(V ) ⊆ U , and if for any
section s ∈ SX(U) the pullback f#(V )(s) ∈ OY (V ) actually lies in SY (V ).

By definition of SX and KX , the morphism f# : f−1OX → OY extends to a morphism
f−1KX → KY which we also denote by f#. Then we obtain two equivalent commutative
diagrams

f−1OX OY

f−1KX KY

f#

f#

and
OX f∗OY

KX f∗KY .

f#

f#

4

Remark 3.1.4. Note that if the morphism f# : f−1OX → OY extends to f−1KX → KY , or
equivalently, f# : OX → f∗OY extends to KX → f∗KY , then the pullback of meromorphic
functions along f is defined. This is due to the fact that the units in KX(U) and KY (V ) are
given by quotients of elements in SX(U) respectively SY (V ) and that ring homomorphisms
send units to units. Therefore, the pullback of meromorphic functions along f is defined
if and only if f# : f−1OX → OY extends to f−1KX → KY . 4
Note that by Lemma B.1.37, both K×X and O×X are sheaves of abelian groups. In the fol-
lowing we will denote the group law of the multiplicative group H0 (X,K×X/O×X) additive.
Definition 3.1.5. Let X be a scheme. By Div(X) = H0 (X,K×X/O×X) we denote the
group of divisors on X. An element of Div(X) is called Cartier divisor or short
divisor on X. We have a natural morphism of sheaves

K×X → K
×
X/O

×
X

providing a morphism φ : H0 (X,K×X)→ Div(X). The image of φ is a subgroup of Div(X)
and denoted by Princ(X). An element of it is called a principal divisor on X. Two
divisors D,E ∈ Div(X) are called linearly equivalent if D−E is a principal divisor. A
divisor D ∈ Div(X) is called effective, denoted by D ≥ 0, if it lies in the image of the
map H0 (X,OX ∩ K×X) → Div(X). The quotient group Div(X)/Princ(X) is denoted by
CaCl(X) and is called the group of Cartier divisor classes on X. 4

Since K×X/O
×
X is the sheafification of the presheaf U 7→ KX(U)×/OX(U)×, we may un-

ravel the definition of Cartier divisors a bit by using our descriptions of sections of the
sheafification of a presheaf, see Section B.1.
Remark 3.1.6. Following Section B.1, we see that every divisor D ∈ Div(X) is represented
by a weakly matching family (Ui, fi · OX(Ui)×)i∈I where X = ∪i∈IUi, fi ∈ KX(Ui)×
and for every i, j ∈ I we have fi|Ui∩Uj · OX(Ui ∩ Uj)× = fj |Ui∩Uj · OX(Ui ∩ Uj)×, that is
fi|Ui∩Uj/fj |Ui∩Uj ∈ OX(Ui∩Uj)×. We call such a weakly matching family a configuration
representing or inducing D.
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Two configurations (Ui, fi · OX(Ui)×)i∈I and (Vj , hj · OX(Vj)×)j∈J define the same
global section of K×X/O

×
X and thus induce resp. represent the same divisor if and only if

for all (i, j) ∈ I × J we have fi|Ui∩Vj/hj |Ui∩Vj ∈ OX(Ui ∩ Vj)×.
A divisor D on X is a principal divisor if and only if it may be represented by a

configuration of the form (X, f · OX(X)×) for some f ∈ KX(X)×. 4

Definition 3.1.7. By the above description, we see that a divisor D is effective if and
only if can be represented by a configuration of the form (Ui, fi · OX(Ui)×)i∈I with fi ∈
OX(Ui). Given two divisors D and E by configurations (Ui, fi · OX(Ui)×)i∈I respectively
(Vj , gj · OX(Vj)×)j∈J , the sum D + E is represented by the configuration

(Ui ∩ Vj , figj · OX(Ui ∩ Vj)×)(i,j)∈I×J .

Thus the inverse −D of a divisor D which is induced by (Ui, fi · OX(Ui)×)i∈I will be
represented by (Ui, f−1

i · OX(Ui)×)i∈I . For two divisors D and E on X we write D ≥ E
if D − E ≥ 0. The support of D, denoted by Supp(D), is defined to be the support of
D as a section of the sheaf K×X/O

×
X , see Definition B.1.5. This comes down to

Supp(D) = {P ∈ X | DP 6= 1} = {P ∈ X | (fi)P /∈ OX,P×}. 4

Lemma 3.1.8. Let X be a scheme. Let D be a divisor on X. Then

(i) Supp(D) is a closed subset of X not containing any generic point of X.

(ii) If X has additionally dimension one, then every point in Supp(D) is a closed point
of X.

(iii) If X is additionally noetherian, then Supp(D) is also finite.

Proof. First of all, by Lemma B.1.6, the support of any section of a sheaf of abelian
groups on X is a closed subset of X. Hence Supp(D) is closed. Let us now prove that
it does not contain any generic point of X. Let η ∈ X0 be a generic point of X. Then
by [Sta18, Tag 0BA9], the local ring OX,η is a zero-dimensional ring. In particular, the
maximal ideal P ofOX,η is also the unique minimal prime ideal. Hence by Corollary B.4.14,
it consists solely of zero-divisors. Therefore, every regular element of OX,η is a unit and
thus Frac(OX,η) ∼= OX,η. Now using Lemmas B.1.19 and B.1.37 provides

(K×X/O
×
X)η ∼= (K×X)η/(O×X)η ∼= K×X,η/O

×
X,η.

Hence Proposition B.2.2 implies that (K×X/O
×
X)η is trivial. Therefore, every divisor (as

a section of K×X/O
×
X) has zero germ at every generic point of X. This proves the first

assertion.
The second assertion follows immediately since every point of X lies on at least one

irreducible component of X and is thus by Lemma B.5.1, either a closed point or the
generic point of that component. Whence any non-generic point of X and a fortiori every
point of Supp(D) is closed in X.

Since Supp(D) solely consists of closed points of X, its points are its irreducible com-
ponents. Since X is noetherian, the same is true for Supp(D) due to [Sta18, Tag 0052].
But again by [Sta18, Tag 0052], noetherian spaces only have finitely many irreducible
components which thus proves the last assertion.

Notation 3.1.9. Note that, by abuse of notation, we will mainly denote configurations
that represent a divisor simply by (Ui, fi) without mentioning that Ui, i ∈ I for some
index set I will form an open cover of X and also suppressing that the local representative
fi should actually be fi · OX(U)×. 4
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If X is a curve over k, see Definition 2.1.1, then in [Liu02, 7.3.1] the notion of degree of a
Cartier divisor is introduced. We will not recall what that definition is at this point here,
but refer the reader to Lemma C.4.8 where this is stated in the proof. Moreover, we have
shown there that the notion introduced in [Liu02, 7.3.1] is equivalent to the following one.

Definition 3.1.10. Let X be a curve over k. Let D ∈ Div(X) and we denote its germ
at (K×X/O

×
X)P = K×X,P /O

×
X,P by DP = aP /bP with aP , bP ∈ Frac(OX,P )×. We define the

degree of D over k, or short degree of D, to be

degkD =
∑
P∈X0

dimkOX,P /aPOX,P − dimkOX,P /bPOX,P .

This is well-defined since the elements aP , bP are unique up to multiplication with units
in OX,P . 4

Note that on more general schemes the notion of degree of a divisor is more involved and
cannot (due to dimensional reasons) be stated solely in terms of multiplicities at closed
points.
Remark 3.1.11. The degree of divisors establishes a group homomorphism degk : Div(X)→
Z. Furthermore, in the proof of Lemma C.4.8 it is shown that

degkD =
∑
P∈X0

degkDPOX,P

where degkDPOX,P denotes the degree of the OX,P -ideal DPOX,P , see Definition C.1.14
in Section C.1. Then the statement about being a group homomorphism follows from
Proposition C.1.26. 4

Lemma 3.1.12 ([Liu02], 7.3.18). If X is projective, then every principal divisor divX(f) ∈
Div(X) has degree zero.

In Chapter 5 we will define and analyse the so called Picard group Pic(X) which is the
set of isomorphism classes of invertible sheaves on X together with the tensor product of
OX -modules as group law, see Definition 5.0.1. Recall that a sheaf F on a scheme X is
called an invertible sheaf if it is a locally free OX -module of rank 1. That is, for every
P ∈ X there is an open neighborhood U ⊆ X of P such that F|U is isomorphic to OU .

We are now going to establish a 1-to-1 correspondence between divisors on X and
so called invertible OX -ideals which will also be an isomorphism of abelian groups. In
Chapter 5 we will link both divisors and invertibleOX -ideals with the Picard group Pic(X).
Throughout this thesis OX -ideals will play the role of a generalisation of divisors. We
decided to care about those since many of the techniques we will use to cope with the
computation in the Picard group even work for OX -ideals instead of for divisors only.
Moreover, some theoretical results that are well known for divisors extend to OX -ideals
as well. In Chapter 4 for instance, we will talk about the representation of global sections
of OX -ideals and more generally for generalised vector bundles.

Definition 3.1.13. Let k be a field and let X be a curve of finite residual-type over k
(e.g. X a cover of P1

k, see Remark 2.1.2). Let F be a coherent OX -submodule of KX .
If F is invertible at the generic points of X, then we say that F is an OX-ideal. This
is equivalent to F(U) being an OX(U)-ideal for every affine open subset U ⊆ X, see
Definition C.1.2 on page 260. 4

Example 3.1.14. Obviously, any invertible OX -submodule of KX is an OX -ideal. More-
over, if U ⊆ X is an open subset, then the restriction F|U of an OX -ideal F to U is an
OU -ideal. 4
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Definition 3.1.15. Let F ,G ≤ KX be two OX -ideals. Since KX is a sheaf of OX -algebras,
the map U 7→ F(U)G(U) defines a presheaf using the restriction maps of F and G (that
is, that of KX). We denote its sheafification by FG and call it the product of the OX-
ideals F and G. Since KX is a sheaf, it is separated by definition. Now the presheaf
U 7→ F(U)G(U) is a subpresheaf of KX and hence by Lemma B.1.9 it is separated. By
definition of the sheafification, see Definition B.1.14, and Lemma B.1.22 we have

(FG)(U) = {(si, Ui)i∈I | U = ∪i∈IUi, si ∈ F(Ui)G(Ui) : ∀i, j ∈ I si|Ui,j = sj |Ui,j}

where Ui,j = Ui ∩ Uj and the restriction si|Ui,j is the image of si ∈ KX(U) under the
restriction map of KX from U to Ui,j . Now since F(Ui),G(Ui) ⊆ KX(Ui), we have
F(Ui)G(Ui) ⊆ KX(Ui) and thus the compatibility condition of the local section si above
provide that (si, Ui) provide a section in KX(U). This yields that FG ≤ KX is also an
OX -ideal. Now we obviously have F = FOX = OXF for any OX -ideal F and hence the
set of OX -ideals together with the multiplication (which is associative) forms a monoid
which we call the monoid of OX-ideals on X and denote by MonoId(X). 4

Lemma 3.1.16. Let F ,G ≤ KX be two OX-ideals. Then for every P ∈ X we have
(FG)P = FPGP .

Proof. Since (F#)P = FP for every presheaf F on X and P ∈ X, see Lemma B.1.15
and Remark B.1.16, we only need to prove the equality for the presheaf (FG)p. For every
P ∈ X we find an affine neighborhood U of P and since F and G are quasi-coherent, we
have FP = F(U)P and GP = G(U)P . Now it is obvious that (F(U)G(U))P = F(U)PG(U)P
as subsets of Frac(OX(U)) = KX(U). Hence (F(U)G(U))P = FPGP as asserted.

Lemma 3.1.17. Let F ,G be two OX-ideals. Then for any affine open U = Spec(A)
we have (FG)(U) ∼= F(U)G(U). In particular, (FG)|U is quasi-coherent with (FG)|U ∼=
(F(U)G(U))∼.

Proof. Since F and G are quasi-coherent, by [Liu02, 5.1.7], we have that F(U)∼ ∼= F|U and
G(U)∼ ∼= G|U . Moreover, we have F(U)P ∼= FP , G(U)P ∼= GP and for all basic open subset
D(a) ⊆ U of U with a ∈ A we have F(D(a)) = F(U)a as well as G(D(a)) = G(U)a. Let us
define a homomorphism φ : F(U)G(U)→ (FG)(U): By Corollary D.1.3, for every P ∈ U
we have a basic open neighborhood VP = D(aP ) with aP ∈ A and thus Definition B.1.14
together with Lemma B.1.22 provide that any section s of FG over U can be given by a
weakly matching family (s(VP ), VP )P∈U with s(VP ) ∈ F(VP )G(VP ) = F(U)aP G(U)aP and
s(VP )|VP∩VQ = s(VQ)|VP∩VQ in F(U)aP aQG(U)aP aQ for all P,Q ∈ U . Now let us define

φ : F(U)G(U) → (FG)(U)
s 7→ (s|VP , VP )P∈U

where VP = D(aP ) with aP ∈ A and s|VP denotes the image of s under the presheaf
restriction map

ρUVP ((FG)p) : F(U)G(U)→ F(VP )G(VP ) = F(U)aP G(U)aP = (F(U)G(U))aP .

Obviously, this restriction map is simply the localisation homomorphism λaP by aP . The
induced homomorphism φP for P ∈ X is obviously the homomorphism sending the germ
sP of s to (s|VP )P = sP . Indeed, for given sP ∈ F(U)PG(U)P the homomorphism φP
sends sP to the image of s under the homomorphism

F(U)G(U) −→ (F(U)G(U))aP −→ ((F(U)G(U))aP )P
∼=−→ (F(U)G(U))P
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which is obviously just the localisation homomorphism F(U)G(U)→ (F(U)G(U))P where
the latter is by Lemma 3.1.16 isomorphic to (FG)P . Thus φ is an isomorphism.

Lemma 3.1.18. Let F ,G ≤ KX be two invertible OX-ideals.

1. Then F ⊗OX G ∼= FG.

2. Let H be an invertible OX-ideal. Then F ≤ G implies FH ≤ GH.
More precisely, let F be given by F|Ui = fiOUi for fi ∈ KX(Ui)× and i ∈ I. Then
for any embedding of OX-ideals i : F ↪→ G we have an embedding i′ : FH ↪→ GH
such that i′(Ui) : F(Ui)H(Ui) ↪→ G(Ui)H(Ui) maps fih to i(fi)h for h ∈ H(Ui).

Proof. We define a morphism of presheaves φ given by

φ(U) : F(U)⊗OX(U) G(U) → F(U)G(U)
f ⊗ g 7→ fg

where the product fg is computed in KX(U). Now since both F(U) and G(U) are in-
vertible, by [Eis95, 11.6], φ(U) defines an isomorphism of OX(U)-modules. Hence φ is
an isomorphism of presheaves. Since associating the sheafification of a presheaf to that
presheaf defines a functor from the category of presheaves to the category of sheaves,
see [GW10, 2.24], this isomorphism of presheaves results in an isomorphism of sheaves
φ : F ⊗OX G → FG as asserted.

The particular part follows from the fact that the functor − ⊗OX H is left-exact.
Indeed, if i : F → G is injective, then F ⊗OX H → G ⊗OX H is also injective. Then the
above isomorphisms F ⊗OX H → FH and G ⊗OX H → GH provide an injective morphism
FH → GH which by the construction of the above isomorphisms clearly maps fih to i(fi)h
as asserted.

Definition 3.1.19. Let F ,G ≤ KX be two invertible OX -ideals. Then FG is again an
invertible OX -ideal since being locally free can be checked on the level of stalks. Now
the product of invertible OX -ideals together with OX as the neutral element defines a
multiplicative abelian group, the group of invertible OX-ideals, denoted by InvId(X).
Corollary 3.1.25 proves that there are indeed inverse elements. The invertible OX -ideals of
the form fOX with f ∈ KX(X)× form a subgroup of InvId(X) which we call the subgroup
of principal invertible OX-ideals and denote it by PrincId(X). We call the respective
quotient group the class group of invertible OX-ideals and denote it by ClInvId(X).

4

Remark 3.1.20. We will see in Chapter 4, Remark 4.1.5 that the notion of OX -ideals is
equivalent with the notion of generalised divisors introduced in [Har07] for the schemes
in question. Now considering OX -ideals up to linear equivalence, that is, up to isomor-
phism given by a regular global section f ∈ KX(X)× (see for instance the upcoming
Lemma 3.1.26), we obtain an equivalent of the so called generalised line bundles, see
[Car20, p. 1]. 4
Remark 3.1.21. In the appendix, in Section C.4 we will define the degree degk of OX -
ideals for curves of finite residual-type over k, see Definition C.4.1. Similar to the degree
of Cartier divisors introduced above, the degree of OX -ideals also establishes a group
homomorphism degk : InvId(X)→ Z, see Lemma C.4.7.

In Proposition 3.1.27 we will see that there is a correspondence between Cartier divisors
on X and invertible OX -ideals. Moreover, we will also see there that the two notions of
degree are also related. 4
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Remark 3.1.22. By definition, any invertible OX -ideal is an invertible OX -module on X
and hence defines an element in Pic(X). This provides a map InvId(X)→ Pic(X) which
is by Lemma 4.1.2 surjective. 4

Lemma 3.1.23. Every F ∈ InvId(X) comes with some open cover ∪i∈IUi = X of X and
fi ∈ KX(Ui)× such that F|Ui = fiOUi. In particular, we obtain a map InvId(X)→ Div(X).

Proof. Let F be an invertible OX -ideal. Then there is an open cover ∪i∈IUi = X and
isomorphisms γi : OUi → F|Ui of OUi-submodules of KUi . Since γi is an isomorphism, the
isomorphism γi(Ui) : OX(Ui) → F(Ui) corresponds to the image of the unit section in
OX(Ui) which is a generator, say fi, of F(Ui) ⊆ KX(Ui) as an OX(Ui)-module. The same
holds for any open subset Vi ⊆ Ui with generator fVi ∈ KX(Vi)× of F(Vi). By definition
of γi, the following diagram commutes:

OX(Ui) F(Ui) = fiOUi

OX(Vi) F(Vi) = fViOVi

ρUi,Vi,OX

γ(Ui)

ρUi,Vi,F

γ(Vi)

In particular, γ(Vi)(ρUi,Vi,OX (1)) = ρUi,Vi,F (γ(Ui)(1)) and thus fVi = fi|Vi . This shows
that F|Ui = fiOUi .

To prove the particular part let us denote Ui ∩ Uj by Ui,j . Now for all i, j ∈ I we
have that both the restrictions of fi and of fj to Ui,j generate F|Ui,j over OUi,j , that
is fi|Ui,jfj

−1
|Ui,j ∈ OX(Ui,j)×. Hence we can form the configuration (Ui, f−1

i ) which then
defines a divisor D ∈ Div(X). It is obvious that any other open cover and local generators
for F will provide by construction the same divisor and thus we obtain the asserted well-
defined map.

Lemma 3.1.24. Let F ,G ∈ InvId(X) be given by F|Ui = fiOUi for i ∈ I and G|Vj = gjOVj
for j ∈ J , respectively. Then FG is the OX-ideal given by (FG)|Ui∩Vj = figjO|Ui∩Vj .

Proof. By definition, we have

(FG)(Ui ∩ Vj) = {(sk,Wk)k∈I | Ui ∩ Vj = ∪k∈IWk, sk ∈ F(Wk)G(Wk) :
∀ k, h ∈ I sk |Wk∩Wh

= sh|Wk∩Wh
}

and since F|Ui = fiOUi and G|Vj = gjOVj as well as Wk ⊆ Ui ∩ Vj , we have sk ∈
F(Wk)G(Wk) = figjOX(Wk) and thus sk = figjwk for some wk ∈ OX(Wk). Now the com-
patibility condition sk |Wk∩Wh

= sh|Wk∩Wh
translates to (figjwk)|Wk∩Wh

= (figjwh)|Wk∩Wh

which is equivalent to (wk)|Wk∩Wh
= (wh)|Wk∩Wh

. Thus (Wk, wk) glues to a section of
OX(Ui ∩ Vj) and hence we obtain

(FG)(Ui ∩ Vj) = figjOX(Ui ∩ Vj)

which provides the assertion.

Corollary 3.1.25. Let F ∈ InvId(X) be given by F|Ui = fiOUi for i ∈ I. Then the
inverse F−1 of F is the element in InvId(X) defined by (F−1)|Ui = f−1

i OUi.

Proof. Since F ∈ InvId(X), there is a unique G ∈ InvId(X) with G|Ui = f−1
i OUi . More-

over, (FG)|Ui = fif
−1
i OUi = OUi by Lemma 3.1.24 and hence FG = OX as asserted.

Lemma 3.1.26. The subgroup PrincId(X) equals the set of invertible OX-ideals isomor-
phic to OX . In particular, two invertible OX-ideals are isomorphic if and only if they
differ multiplicatively by an element in PrincId(X).
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Proof. Obviously, every principal OX -ideal fOX is isomorphic to OX by the isomorphism
OX → fOX given by the multiplication with f .

Let F be an invertible OX -ideal isomorphic to OX by the isomorphism γ : OX → F .
In particular, γ(X) : OX(X) → F(X) corresponds to a generator f ∈ F(X) ⊆ KX(X)
of F(X). Since γ(X) is an isomorphism, we have f ∈ KX(X)×. Now we argue that the
restriction of f to any open subset U ⊆ X is the generator of F(U). By the same line
of argument as above, the morphism γ(U) : OX(U) → F(U) corresponds to an element
fU ∈ KX(U)× generating F(U). Since for any open subset U ⊆ X the diagram

OX(X) F(X)

OX(U) F(U)

ρX,U,OX

γ(X)

ρX,U,F

γ(U)

commutes, we have
ρX,U,F (γ(X)(1)) = γ(U)(ρX,U,OX (1))

and hence f|U = fU . This provides F = fOX .
Let us now prove the second assertion. Let α : F → G be an isomorphism of OX -

modules. Since F is invertible and invertible OX -modules are flat, the induced morphism
F ⊗OX F−1 → G ⊗OX F−1 is again an isomorphism. Using Lemma 3.1.18 we thus have
an isomorphism

OX = FF−1 → F ⊗OX F
−1 → G ⊗OX F

−1 → GF−1.

Using the first assertion thus provides GF−1 = fOX for some f ∈ KX(X)×. Now multi-
plying both sides with F provides G = fF .

Conversely, if G = fF , then the multiplication with f−1 ∈ KX(X)× morphism G =
fF → F yields an isomorphism.

There is a natural relation between invertible OX -ideals and divisors which tells us that
they are essentially the same.

Proposition 3.1.27. Every divisor D ∈ Div(X) given by the configuration (Ui, fi) induces
a unique invertible OX-ideal OX(D) given by OX(D)|Ui = f−1

i OUi.

(i) This induces an isomorphism of abelian groups

φ : Div(X) → InvId(X)
D 7→ OX(D)

under which principal divisors div(f) with f ∈ KX(X)× correspond to f−1OX .

(ii) For every D ∈ Div(X) we have

D ≥ 0 ⇔ OX ≤ OX(D) ⇔ OX(−D) ≤ OX .

(iii) For every D ∈ Div(X) we have degkD = −degkOX(D) where the latter is defined
in Section C.4.

(iv) If X is projective, then principal divisors and principal OX-ideals have degree zero.

Proof. Let us prove Item (i) first: Let D ∈ Div(X) be given by the configuration (Ui, fi)
for some open cover ∪i∈IUi = X. Since for all i, j ∈ I we have fif−1

j ∈ OX(Ui ∩ Uj)×,
setting Fi = f−1

i OUi does indeed define a sheaf F on X with the obvious restriction maps
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such that F|Ui = Fi. The sheaf F is obviously an OX -ideal. Now any other OX -ideal
G with G|Ui = f−1

i OUi need necessarily be equal to F : Since both F and G are OX -
subsheaves of KX , equality is a question of having the same stalk at every point of X, and
this is obviously true. Taking any other configuration (Vj , gj)j∈J of D does not change
the induced sheaf: By hypothesis and the definition of divisors, we have for all i, j that
figj ∈ OX(Ui∩Vj)×. In particular, fi|Ui∩VjO|Ui∩Vj = gj |Ui∩VjO|Ui∩Vj and thus the induced
sheaves coincide. Hence for every divisor D on X we find a unique OX -ideal OX(D) such
that OX(D)Ui = f−1

i OUi which establishes the well-defined map φ. That assertion about
the principal divisors and principal OX -ideals is evident from the construction of φ.

If D ∈ Div(X) with φ(D) = OX(D) = OX , then by definition of φ, we have the
equality OX(D)Ui = OUi which is equivalent to fi ∈ OX(Ui)× for all i ∈ I. Therefore D
was already the zero divisor on X and hence φ is injective.

The inverse map φ−1 is given by the map constructed in Lemma 3.1.23. That φ is
a homomorphism of abelian groups is obvious, see [Liu02, 7.1.18]. This proves the first
assertion.

Now we prove Item (ii): Let D ∈ Div(X). Then D ≥ 0 if and only if D is induced by
a configuration (Ui, fi)i∈I with fi ∈ OX(Ui) for all i ∈ I. This is equivalent to OX(Ui) ⊆
f−1
i OX(Ui) = OX(D)|Ui for all i ∈ I. Clearly, since φ is a group homomorphism, we
have OX(D)−1 = OX(−D). Note that by Lemma 3.1.18 OX ≤ OX(D) is equivalent to
OX(−D) ≤ OX (via multiplication with OX(D)−1 respectively OX(D)). This provides
the second assertion. Item (iii) is due to Lemma C.4.8. Finally, consider Item (iv). That
principal divisors have degree zero is Lemma 3.1.12 and then by the third assertion we
can complete the proof.

Definition 3.1.28. Let F be an OX -ideal and D ∈ Div(X). Then we denote F ⊗OX
OX(D) by F(D). This is in accordance with the notation OX(D) which clearly satisfies
OX(D) = OX ⊗OX OX(D). 4

Corollary 3.1.29. The isomorphism Div(X) → InvId(X) extends to an isomorphism
between CaCl(X) and ClInvId(X).

Proof. Any principal divisor D = div(f) corresponds to f−1OX under the isomorphism
φ in Proposition 3.1.27. Hence the subgroups Princ(X) and PrincId(X) are isomorphic
under the isomorphism φ : Div(X)→ InvId(X) and hence the assertion follows.

Remark 3.1.30. The isomorphism Div(X) ∼= InvId(X) provides a map Div(X)→ Pic(X)
that is compatible with the map InvId(X)→ Pic(X), see Remark 3.1.22. 4

Lemma 3.1.31. If X is a noetherian scheme without embedded points, then the homomor-
phisms InvId(X) → Pic(X) and Div(X) → Pic(X) provide isomorphism ClInvId(X) ∼=
CaCl(X) ∼= Pic(X).

Proof. That Div(X) → Pic(X) provides the isomorphism CaCl(X) ∼= Pic(X) is [Liu02,
7.1.19]. The rest of the assertion follows from Corollary 3.1.29.

In the following lemma we collect some rather immediate relations between D and its
corresponding invertible OX -ideal OX(D).

Lemma 3.1.32. The correspondence Div(X)↔ InvId(X), D 7→ OX(D) satisfies:

(i) Supp(D) = {P ∈ X | OX(D)P 6= OX,P },

(ii) For f ∈ KX(X)× and D ∈ Div(X) we have

f ∈ OX(D)(X)⇔ div(f) +D ≥ 0.
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Proof.
(i) Let D be given by {(Ui, fi)}i∈I . Then DP = (fi)POX,P for every i with P ∈ Ui. By

Definition B.1.5, we have

Supp(D) = {P ∈ X | DP 6= 1} = {P ∈ X | (fi)P /∈ OX,P×}

and by definition of OX(D) we have OX(D)P ∼= (f−1
i )POX,P which proves the first

assertion.

(ii) Let D be given by {(Ui, fi)}i∈I . By definition we have f ∈ OX(D)(X) if and only
if for all i ∈ I we have f|Ui ∈ OX(D)(Ui) = f−1

i OX(Ui) since OX(D) is a subsheaf
of KX and f ∈ KX(X), see Lemma B.1.29. On the other hand, by definition we
have that div(f) +D is the divisor given by {(Ui, f|Uifi)}i∈I and this is is greater or
equal to zero if and only if f|Uifi ∈ OX(Ui) for all i ∈ I. But this is equivalent to
f|Ui ∈ f

−1
i OX(Ui) and thus the assertion follows.

3.2 Restricting Divisors

We will now turn to our setup in which we want to analyse how we can transport divisors
between the appearing schemes. It turns out that there is a reasonable way of pulling back
divisors along morphisms f : Y → X for which the pullback of meromorphic functions
is defined, see Definition 3.1.3. We will see that this is the case for the Y in question.
Moreover, this notion of pulling back divisors D is compatible with the notion of pulling
back the corresponding invertible sheaf OX(D).
Remark 3.2.1. Let f : Y → X be a morphism of schemes. Then f comes along with a
morphism of sheaves OX → f∗OY called the pullback map of regular functions along f .
This datum of a pullback map along f (as a morphism of presheaves) is equivalent to the
morphism of sheaves f−1OX → OY . Hence we denote both of them by f#. All of this
follows from the fact that there is a bijection

HomSh(Y )(f−1G,F)↔ HomPreSh(X)(G, f∗F)

functorial in the sheaf F on Y and the presheaf G on X, see [GW10, 2.27]. 4
We start with a corollary of Proposition B.1.44.
Corollary 3.2.2. Let f : Y → X be a morphism of schemes. We have a natural map
φ : f∗K×Y /f∗O

×
Y −→ f∗(K×Y /O

×
Y ) with φ(U) sending

(Ui, si · O×Y (f−1(Ui))) to (f−1(Ui), si · O×Y (f−1(Ui)))

where si ∈ K×Y (f−1(Ui)) and {Ui | i ∈ I} forms an open cover of the open subset U ⊆ X.
Proof. The assertion follows from Proposition B.1.44 where we replace OX by O×X and
regard both f∗O×Y and f∗K×Y as sheaves of multiplicative abelian groups on X.

Proposition 3.2.3. Let f : Y → X be a morphism of schemes. Whenever the morphism
f# : OX → f∗OY extends to ϕ : KX → f∗KY , we obtain a group homomorphism f∗ :
Div(X)→ Div(Y ) sending(

Ui,
ai
bi
· O×X(Ui)

)
to

(
f−1(Ui),

f#(Ui)(ai)
f#(Ui)(bi)

· O×Y (f−1(Ui))
)
.

Moreover, f∗ satisfies the following properties:
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(i) OY (f∗(D)) ∼= f∗OX(D) for all D ∈ Div(X),

(ii) If D ≥ 0 in Div(X), then (f∗D) ≥ 0 in Div(Y ).

.

Proof. By assumption we obtain a commutative diagram

f∗O×Y f∗K×Y f∗K×Y /f∗O
×
Y f∗(K×Y /O

×
Y )

O×X K×X

φ

f# ϕ

where φ is the natural morphism of Corollary 3.2.2. Then ϕ together with φ induce a
morphism of sheaves

K×X/O
×
X

ϕ−→ f∗K×Y /f∗O
×
Y

φ−→ f∗(K×Y /O
×
Y ). (2:1)

Taking global sections provides a morphism of multiplicative groups

Div(X) = H0 (X,K×X/O×X)→ H0 (Y, f∗(K×Y /O×Y )
)

= H0 (Y,K×Y /O×Y ) = Div(Y )

which we denote by f∗. Let X =
⋃
i∈I Ui be an open cover of X. By the above and

Corollary 3.2.2, f∗ works as follows:

(K×X/O
×
X)(X) → (f∗K×Y /f∗O

×
Y )(X) → (f∗(K×Y /O

×
Y ))(X)

(Ui, si · O×X(Ui)) 7→ (Ui, ϕ(Ui)(si) · O×Y (f−1(Ui))) 7→ (f−1(Ui), ϕ(Ui)(si) · O×Y (f−1(Ui)))
(2:2)

By Remark 3.1.2, the sections of K×X over some open U ⊆ X are locally on Ui (with Ui
forming an open cover of U) given by fractions of regular elements of OX(Ui). Now since
ϕ : K×X → f∗K×Y is the extension of f# : O×X → f∗O×Y , we therefore have

ϕ(Ui)
(
ai
bi

)
= f#(Ui)(ai)
f#(Ui)(bi)

(2:3)

where both ai and bi are regular elements of OX(Ui). Now combining Eq. (2:2) and
Eq. (2:3) provides the main assertion.

The proof of (i) simplifies a lot if we assume X and Y to be projective over an affine
base or affine itself since in both cases, by Corollaries D.1.3 and D.1.4, respectively, we
find suitable affine open neighborhoods for a given finite set. The proof for the general
case will be given in Remark B.5.8.

Let us now prove (i) in the above setting. Consider D ∈ Div(X) given by a configu-
ration {(Ui, bi/ai)}i∈I with ai, bi ∈ OX(Ui). Note that by Lemma B.5.7, we may choose
an affine cover of X which is a refinement of the cover {Ui | i ∈ I}. Then taking the
restrictions of ai/bi to the smaller affine opens as the local equations of D, we may with-
out loss of generality assume that the cover {Ui | i ∈ I} is an affine cover. We have
OX(D)|Ui = (ai/bi)OUi . Now fix some Ui along with its open immersion j : Ui → X
for which then j∗OX(D) = OX(D)|Ui holds. Then set Vi = f−1(Ui). By the simplifying
assumption on Y , we may use Corollary D.1.4 or Corollary D.1.3 to find for every P ∈ Vi
an affine open subset Vi,P such that P ∈ Vi,P ⊆ Vi and thus f(Vi,P ) ⊆ Ui. Now we can
use Lemma 3.2.27 which provides

(f∗OX(D))|Vi,P ∼= (OX(D)(Ui)⊗OX(Ui) OY (Vi,P ))∼.
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But since OX(D)|Ui = (ai/bi)OUi , we have

OX(D)(Ui)⊗OX(Ui) OY (Vi,P ) ∼= (ai/bi)OX(Ui)⊗OX(Ui) OY (Vi,P )
∼= OX(Ui)⊗OX(Ui) f

#(Vi,P )(ai/bi)OY (Vi,P )
= f#(Vi,P )(ai/bi)OY (Vi,P )

= f#(Vi,P )(ai)
f#(Vi,P )(bi)

OY (Vi,P )

providing

(f∗OX(D))|Vi,P ∼=
f#(Vi,P )(ai)
f#(Vi,P )(bi)

OVi,P .

The invertible sheaf f∗OX(D) on Y defined by the above equation defines a divisor E on
Y , see Proposition 3.1.27, via the configuration(

Vi,P ,
f#(Vi,P )(ai)
f#(Vi,P )(bi)

)
i∈I,P∈Vi

.

Now since f# is a morphism of sheaves on Y , we have f#(Vi)(ai)|Vi,P = f#(Vi,P )(ai) and
similarly for bi. This provides E = f∗D.

Let us now prove (ii). Let D ∈ Div(X) be effective, i.e. D ≥ 0. Hence we may assume
that it is given by {(Ui, ai)}i∈I with ai ∈ OX(Ui). By assumption, the following diagram
of morphisms of sheaves on X is commutative:

O×X f∗O×Y

K×X f∗K×Y

f#

ϕ

By the main assertion, f∗(D) is given by {(f−1(Ui), ϕ(Ui)(ai)}i∈I . The commutativity of
the above diagram now implies that ϕ(Ui)(ai) ∈ (f∗O×Y )(Ui) = OY (f−1(Ui))× and thus
f∗(D) ≥ 0 in Div(Y ).

Corollary 3.2.4. Let the situation be as in Proposition 3.2.3. Then the pullback of prin-
cipal divisors are principal and thus the restriction of the group homomorphism f∗ :
Div(X) → Div(Y ) to the subgroup of principal divisors Princ(X) on X yields a group
homomorphism

f∗|Princ(X) : Princ(X)→ Princ(Y ).

In particular, if D ∼ E in Div(X), then f∗(D) ∼ f∗(E) in Div(Y ).

Proof. Let D = div(g) with g ∈ KX(X)× be a principal divisor. By Proposition 3.2.3, the
pullback f∗(D) of D is given by the configuration (Y, ϕ(X)(g)) where ϕ : KX → f∗KY
is the extension of OX → f∗OY . In particular, ϕ(X)(g) ∈ KY (Y )× and hence f∗(D) is
principal.

The particular part follows from the fact that f∗ is a group homomorphism, see Propo-
sition 3.2.3, and the first assertion. Indeed, let D − E = divX(g) for some g ∈ KX(X)×.
Then the assertion follows from

f∗(D)− f∗(E) = f∗(D − E) = f∗(divX(g)) = divY (ϕ(X)(g)).

We might summarise the above insight as follows: Whenever the pullback of regular
functions along a morphism extends to quotients of regular functions, then pulling back
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the local equations for a divisor yields a well-defined notion of pullback of a divisor.

Definition 3.2.5. Let f : Y ↪→ X be an injective morphism of schemes. Whenever the
morphism OX → f∗OY extends to KX → f∗KY , we say that the restriction of divisors
from X to Y along f is defined. In this case we may also just say that the restriction
of divisors from X to Y or that the restriction of divisors along f is defined.

Sometimes we will also call the restriction of divisors more generally the pullback of
divisors. We also denote the restricted divisor as D|Y = f∗D.

Note that the restriction of divisors along f is defined if and only if the pullback of
meromorphic functions is defined, see Definition 3.1.3 and Remark 3.1.4. 4

Remark 3.2.6. Let (X,π) be a cover of P1
k. By Definition 2.2.9, we have that the pole

divisor (x)P1
k,∞

on P1
k (which together with the identity morphism P1

k → P1
k is a cover of

P1
k) is given by the configuration

{(U0, 1), (U∞, x−1)}.

Thus by Proposition 3.2.3, we know that π∗(x)P1
k,∞

is given by the configuration

{(V0, 1), (V∞, x−1)}

and thus equals the pole divisor (x)∞ of x on X. Since π∗ : Div(P1
k)→ Div(X) is a group

homomorphism, this also provides r(x)∞ = π∗(r(x)P1
k,∞

). 4
We will use the restriction of divisors respectively their corresponding invertible sheaves
(and even more general OX -ideals) for several schemes Y which will come with an injective
morphism of schemes Y → X. Note that Y need not be a subscheme of X.

But first we give sufficient conditions such that OX → f∗OY extends to KX → f∗KY .

Lemma 3.2.7 ([Liu02], 7.1.33). Let f : Y → X be a morphism of schemes. We suppose
that one of the following hypotheses is verified:

1. f is flat;

2. Y is reduced, having only a finite number of irreducible components, and every of
these dominates one of X.

Then the canonical morphism OX → f∗OY extends to KX → f∗KY .

Remark 3.2.8. In [Sta18, Tag 02OU] this is proved for more general cases and we list two
of them here where the latter is an implication of the former:

1. X is locally Noetherian, and any associated point of X maps to a generic point of
an irreducible component of Y ,

2. X is locally Noetherian, has no embedded points and any generic point of an irre-
ducible component of X maps to the generic point of an irreducible component of
Y . 4

Proposition 3.2.9. Let f : Y → Z and g : Z → X be two morphisms of schemes. If
both OZ → f∗OY and OX → g∗OZ extend to KZ → f∗KY respectively KX → g∗KZ , then
OX → (g ◦ f)∗OY extends to KX → (g ◦ f)∗KY . Moreover, OX → (g ◦ f)∗OY factors
through g∗OZ and KX → (g ◦ f)∗KY factors through g∗KZ .

Proof. The natural morphisms OZ → f∗OY and OX → g∗OZ provide, via pushforward of
the former by g, the morphism

OX → g∗OZ → g∗(f∗OY ) = (g ◦ f)∗OY
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By assumption, we have the morphisms KZ → f∗KY and KX → g∗KZ . Hence we obtain
a morphism KX → g∗KZ → g∗(f∗KY ) = (g ◦ f)∗KY . Using that the morphisms of the
sheaf of stalks of meromorphic functions are the extension of the morphisms of structure
sheaves, we obtain the commutative diagram

OX g∗OZ (g ◦ f)∗OY

KX g∗KZ (g ◦ f)∗KY

which shows that OX → (g ◦ f)∗OY extends to KX → (g ◦ f)∗KY . It also shows the last
part of the assertion.

Definition 3.2.10. Let X be a scheme. We call an open subscheme U ⊆ X schemati-
cally dense in X if Ass(OX) ⊆ U . 4

Note Lemma B.2.5 for equivalent descriptions of schematically dense open subsets.

Lemma 3.2.11. Let X be a locally noetherian scheme. Let V ⊆ X be a schematically
dense open subset with open immersion i : V ↪→ X. Then OX ↪→ i∗OV extends to
KX → i∗KV (which is an isomorphism) and hence the restriction of divisors from X to V
is defined.

Proof. This is Lemma B.2.6 and [Liu02, 7.1.15].

Remark 3.2.12. Proposition 3.2.3 shows that Div(X)→ Div(V ) locally works (on numer-
ator and denominator) as the restriction i#(U) : OX(U)→ OX(U ∩ V ) for U ⊆ X open.
Hence, if (Ui, fi/gi) with fi, gi ∈ OX(Ui) regular is a configuration of a divisor D on X,
then i∗(D) is given by the configuration(

Ui ∩ V,
i#(Ui)(fi)
i#(Ui)(gi)

)
=
(
Ui ∩ V,

(fi)|Ui∩V
(gi)|Ui∩V

)
. 4

Lemma 3.2.13. Let X be a scheme and Y an irreducible component of X with closed
immersion τ : Y ↪→ X. Moreover, assume Y to be reduced. Then OX → τ∗OY extends to
KX → τ∗KY and hence the restriction of divisors from X to Y is defined.

Proof. Since Y is an irreducible component of X, it dominates (via τ) an irreducible
component of X and is reduced. Hence the assertion follows from Lemma 3.2.7.

Remark 3.2.14. Proposition 3.2.3 shows that Div(X)→ Div(Y ) locally works (on numer-
ator and denominator) as the ring homomorphism

τ#(U) : OX(U)→ OY (τ−1(U))) = OX(U)/J

for U ⊆ X open and J = J (U) where J is the sheaf of OX -ideals that cuts out Y inX. We
also see that τ#(U) sends regular elements to regular elements since J is a minimal prime
ideal of OX(U) and thus only zero-divisors get send to zero-divisors, see Remark 3.2.8. If
Y was only a closed subscheme of X, then locally J need not be a minimal prime ideal
and hence regular elements may be sent to zero-divisors. 4
Let X be a reduced scheme and X1, . . . , Xm all of its irreducible components. By Y
we denote the disjoint union of the Xi as in Definition B.3.1. Then we have a natural
surjective morphism of schemes τ : Y → X. Now we can use Lemma 3.2.13 for all
irreducible components and apply this to Y and τ .
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Corollary 3.2.15. Let X and Y be as above. Then OX → τ∗OY extends to KX → τ∗KY
and hence the restriction of divisors from X to Y is defined.

Proof. Obviously, as in Lemma 3.2.13, the second hypothesis of Lemma 3.2.7 is satisfied
and hence the assertion follows.

Remark 3.2.16. Proposition 3.2.3 shows that Div(X) → Div(Y ) works locally, that is
on every open U ⊆ X (on numerator and denominator), as the diagonal map τ#(U)
constituted of the ring homomorphisms

τ#
i (U) : OX(U)→ OXi(τ−1

i (U))) = OX(U)/Ji

for Ji = Ji(U) where Ji is the sheaf of OX -ideals that cuts out Xi in X. That is, locally
it works as

τ#(U) : OX(U) ↪→
m⊕
i=1
OXi(τ−1

i (U))) =
m⊕
i=1
OX(U)/Ji

which maps a to (a+J1, . . . , a+Jm). Note that τ#(U) is injective since X is reduced. 4

Proposition 3.2.17. Let X be a cover of P1
k. Then we have (µa)∗KS = KV∞ and µ∗KS ∼=

KX .

Proof. The first assertion follows from the fact that Frac(T−1R∞) = Frac(R∞). The
second from

µ∗KS = (i∞ ◦ µa)∗KS = (i∞)∗((µa)∗KS) = (i∞)∗KV∞ ∼= KX

where the last isomorphism is due to Lemma B.2.6 and the last equality used the first
assertion.

Replacing X by Xi and S by Si we obtain:

Corollary 3.2.18. Let X be a cover of P1
k. Then we have (µa,i)∗KSi = KVi,∞ and

(µi)∗KSi ∼= KXi.

Lemma 3.2.19. The restriction of divisors from V∞ to S and from Vi,∞ to Si is defined.

Proof. Since both morphisms are given by localisation homomorphisms, they are flat, see
[Sta18, Tag 00HT] and [Liu02, 4.3.3]. Thus the assertion follows from Lemma 3.2.7.

Remark 3.2.20. Proposition 3.2.3 shows that µ∗ locally, that is on every open U ⊆ X (on
numerator and denominator), works as

µ#(U) : OX(U) −→ OS(µ−1(U)).

Note that by construction of S, we have µ#(V∞) : R∞ → T−1R∞ = OS is the localisation
map. Moreover, if U = D(h) with h ∈ R∞ is basic open, then

µ#(U) : (R∞)h → (T−1R∞)h = (OS)µ#(V∞)(h). 4

Proposition 3.2.21. Let D be a divisor on X such that D|S = 0 is the zero divisor on
S. Then there is some open subset W ⊆ V∞ such that µ(S) ⊆W with D|W = 0.

Proof. Since the restriction of divisors is transitive, see Corollary 3.2.23, any divisor that
restricts to zero on S restricts to a divisor D on V∞ whose restriction to S is the zero
divisor. If D = 0, then we are done. Thus let D on V∞ be given by a configuration
(Ui, fi)i∈I . Let P1, . . . , Pr denote the points of V∞ that correspond to those in S. By
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Lemma B.5.17, there is an affine open neighborhood D(gi) of Pi in V∞ given by a regular
element gi ∈ R∞. Using these we may assume that D on V∞ is given by open subsets Uj
for which those with Pi ∈ Ui will be of the form D(gi). Moreover, then fi = ai/g

ri
i . Now

the restriction of D to S is given by

(µ−1(D(gi)), µ#(D(gi))(fi))

where µ#(D(gi)) : (R∞)gi → (T−1R∞)gi is the localisation homomorphism, which is
injective since gi is regular. By assumption, D restricts to the zero divisor and thus

µ#(D(gi))(fi) = ai/g
ri
i

1 = ai
grii

is a unit in (T−1R∞)gi . Hence ai is of the form pig
`i
i for pi ∈ T and `i ∈ Z. But this means

that the restriction of fi to D(gi) ∩D(pi) = D(gipi) is a unit. Note that since pi ∈ T , we
have x−1 - pi and thus D(pi) contains the point Pi. Thus the finite union of the D(gipi)
provide an open subset W ⊆ V∞ which contains µ(S) such that D restricts to zero on W .

Proposition 3.2.22. Let X be a cover of P1
k. The following diagram of morphisms of

schemes commutes. Moreover, the pullback of divisors along every one of the appearing
morphisms is defined.

S V∞ X

Y =
⊔m
i=1Xi

Si Vi,∞ Xi

µa i∞
τ

µa,i

σi

i∞|Vi,∞

(τi)|Vi,∞ τi

Proof. Let R be a ring, P an ideal of R and T ⊂ R a multiplicatively closed subset. Then,
after identifying T−1(R/P ) with T−1R/T−1P the following diagram is commutative:

T−1R R

T−1(R/P ) R/P.

This provides the commutativity of the left square. The commutativity of the right square
is evident as well as the commutativity of the triangle on the right hand side. That the
restriction of divisors along i∞ and i∞|Vi,∞ are defined is Lemma 3.2.11. The same follows
for the pullback along τi and (τi)|Vi,∞ from Lemma 3.2.13. Since both S and Si are finite
schemes and Si embeds as a closed subscheme, we see that every irreducible component
of Si (each of its points) dominates an irreducible component of S (one of its points).
Since X is reduced, Si is reduced and thus the restriction of divisors along σi is defined by
Lemma 3.2.7. Finally, restriction of divisors fromX to Y is defined by Corollary 3.2.15.

Now we can conclude that restricting divisors from X to the various schemes involved in
our context behaves very well in the following sense.

Corollary 3.2.23. The following diagram of groups and group homomorphisms is com-
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mutative.

Div(S) Div(V∞) Div(X) ⊕m
i=1 Div(Xi)

Div(Si) Div(Vi,∞) Div(Xi)

σ∗i

µ∗a

(τi|Vi,∞ )∗

i∗∞

τ∗

τ∗i

µ∗a,i (i∞|Vi,∞ )∗

The map
⊕m

i=1 Div(Xi)→ Div(Xi) is simply the projection onto the i-th summand.

Proof. The existence of the diagram with its maps follows from Proposition 3.2.22. That
it is commutative follows from Proposition 3.2.9.

Definition 3.2.24. For the readability we will denote the pullback/restriction of divisors
naturally with the restriction symbol. For clarity, we list some examples of the notations
explicitly below:

D ∈ Div(X) D|V∞ := i∗∞(D)
D|V0 := i∗0(D)
D|Xi := τ∗i (D)
D|Vi,∞ := ((i∞)|Vi,∞ ◦ τi)∗(D)

= ((τi)|Vi,∞ ◦ i∞)∗(D)
D ∈ Div(Xi) D|Vi,∞ := (i∞)∗|Vi,∞(D)
D ∈ Div(V∞) D|Vi,∞ := (τi)∗|Vi,∞(D)

D|Si := (µa,i ◦ (τi)|Vi,∞)∗(D)
= (σi ◦ µa)∗(D)

4

3.2.1 Restricting OX-submodules of KX
Let f : Y ↪→ X be a morphism of schemes. Whenever the restriction of divisors of X to
Y (along f) is defined, we have seen in Proposition 3.2.3 that for any divisor D on X its
restriction to Y satisfies OY (D|Y ) ∼= f∗OX(D). Thus, if we define the restriction of an
OX -module F to Y as the pullback f∗F along f , then this notion of restricting sheaves
will be compatible with that of the restriction of divisors.

Definition 3.2.25. Let f : Y ↪→ X be an injective morphism of schemes. For any OX -
module F set F|Y := f∗F and call it the restriction of F to Y along f or simply
restriction of F to Y if the context already admits what f is. 4

Remark 3.2.26. As mentioned above, if D is a divisor on X and the restriction of divisors
along f is defined, we have

OX(D)|Y ∼= f∗OX(D) ∼= OY (f∗D) ∼= OY (D|Y ). 4

In the case of affine schemes and quasi-coherent OX -modules the pullback operation is
very easily expressed using the extension of scalars.

Lemma 3.2.27 ([Liu02], 5.1.14 (b)). Let f : Y → X be a morphism of schemes. Let
F be a quasi-coherent OX-module. Let U ⊆ Y be an affine open subset of Y such that
f(U) ⊆ V for some affine open V ⊆ X. Then

(f∗F)|U ∼= (F(V )⊗OX(V ) OY (U))∼.
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In particular, f∗F is quasi-coherent.

If f : Y → X is an open immersion of an affine open Y into anyX and F is a quasi-coherent
OX -module, then we obviously have f∗F = f−1F = F(Y )∼.

This together with the property that “(f ◦g)∗ ∼= g∗ ◦f∗” holds for the pullback functor
of sheaves on locally ringed spaces, see [Sta18, Tag 0097], yields a very concrete description
of what the restriction to S is.

Proposition 3.2.28. Let X be a cover of P1
k. Let F be a quasi-coherent OX-module.

Then
F|S = (T−1F(V∞))∼ = (F(V∞)⊗R∞ OS)∼.

In particular, F|S(S) = T−1F(V∞) and (F|S)P = FP . Moreover, if F ≤ KX , then F|S
defines a unique OS-ideal which we also denote by F|S. If FP is additionally invertible for
all P ∈ S, then F|S is free of rank one such that F|S(S) = fOS with f ∈ Frac(OS).

Proof. By definition, we have F|S = µ∗F = (i∞ ◦ µa)∗F and now applying [Sta18, Tag
0097] yields (i∞ ◦ µa)∗F = µ∗a(i∗∞F) where the latter is equal to µ∗a(F(V∞)∼) by what
we have said above. Since the ring homomorphism corresponding to µa : S → V∞ is the
localisation homomorphism R∞ → T−1R∞ = OS , applying Lemma 3.2.27 with U = S
and V = V∞ finally yields

F|S = µ∗a(F(V∞)∼) ∼= (F(V∞)⊗R∞ T−1R∞)∼ ∼= (T−1F(V∞))∼.

The particular part now follows by taking global sections and the fact that F|S is the
quasi-coherent OS-module given by T−1F(V∞). Note that for P ∈ S we have P ∩ T = ∅
and thus T ⊆ (R∞\P ) which provides (T−1F(V∞))P = F(V∞)P = FP . The last assertion
follows from the fact that

F|S(S) ∼= T−1F(V∞) ⊆ T−1KX(V∞) = T−1 Frac(R∞) = Frac(T−1R∞) = Frac(OS),

together with F|S = (F|S(S))∼ and the proof of Lemma C.4.10 telling us that (F|S(S))∼ ≤
KS . An alternative of proving it this way is to use the correspondence in Lemma C.4.10,
the fact that F|S ∼= (F|S(S))∼ = (T−1F(V∞))∼ and that the localisation T−1M of an
R-ideal M is an T−1R-ideal, see Lemma C.1.7.

If FP is invertible over OX,P for all P ∈ S, then F|S(S) is an invertible OS-ideal. Now
since S is finite, OS is a semi-local ring and therefore Lemma B.4.6 provides that every
invertible ideal is principle. This completes the proof.

Lemma 3.2.29. Let F and G be two OX-ideals on a cover X of P1
k. Then F = G if and

only if F(V0) = G(V0) and F(S) = G(S).

Proof. Note that by definition, both F and G are subsheaves of KX . Hence by Corol-
lary B.1.30, we have F = G as subsheaves of KX if and only if FP = GP as subsets of
KX,P . Now F(V0) = G(V0) implies FP = GP for all P ∈ V0 and F(S) = G(S) implies
FP = GP for all P ∈ S and hence we have FP = GP for all P ∈ X. The other implication
is trivial.

Lemma 3.2.30. Let X be a cover of P1
k. Let F be a quasi-coherent OX-module. Then

F|Xi is quasi-coherent with

F|Xi(Vi,0) ∼= F(V0)⊗R0 R0/Pi,0 = F(V0)/Pi,0F(V0).

Proof. This follows instantly using Lemma 3.2.27 with V = V0 and U = Vi,0 and that
both V0 and Vi,0 are affine.
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Remark 3.2.31. In the case of F being an OX -subsheaf of KX this resembles the construc-
tion of the restriction of divisors since it uses the morphism KX → f∗KY . 4
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Chapter 4

Global Sections and π-invariants

In this chapter we continue working with OX -ideals on covers of P1
k. We will analyse

their global sections (which can be thought of generalised Riemann-Roch spaces), show
how they can be represented using polynomial matrices and introduce their so called π-
invariants. The insights we obtain in this chapter do have their own value, but we will
definitely benefit from them in our approach to provide algorithms to compute in the
Picard group. First and foremost, the bounds of the π-invariants will provide that we can
represent the arithmetic objects by matrices with degree bounded by the invariant cX .

The chapter is organised as follows: In Section 4.1 we introduce the notion of gener-
alised vector bundles which are generalisations of OX -ideals to higher rank. These will
essentially be those OX -modules on a cover X of P1

k whose sections over V0 and V∞ are
free over k[x] respectively k[x−1].

In Section 4.2 we show how OX -ideals respectively generalised vector bundles can be
represented by their sections over V0 and V∞ respectively by their sections over V0 and S.
Moreover, the arithmetic operations necessary in the monoid of OX -ideals can be carried
out using the latter pair F(V0),F(S) of ideals. We will use this later on in the algorithms
to compute in the Picard group to represent OX -ideals of a specific form only using a
polynomial matrix of bounded degree.

In Section 4.3 we state a structure theorem for the global sections of OX -ideals respec-
tively generalised vector bundles by providing a k-basis constituted by a specific reduced
basis of F(V0) combined with successive powers of x up to integer bounds depending on
F . These integers are called π-invariants and they provide first and foremost bounds for
the possible degree of basis matrices of bases of F(V0). The latter will be crucial since
OX -ideals of a specific form can be solely represented by such a basis matrix. We will give
first bounds for the π-invariants for integral covers of P1

k.
In Section 4.4 we examine the case when X is a reducible cover of P1

k. We illustrate the
relation between OX -ideals F and their restrictions F|Xi to the irreducible components
of X. This enables us to represent F(V0) in terms of fixed reduced bases of OXi on the
irreducible component Xi. Then we prove that there are bases of F(V0) that have bounded
degree in terms of the above fixed bases.

In Section 4.5 we can use the insights of Section 4.4 to prove bounds for the π-invariants
of OX -ideals and of X itself in the case of reducible X implying the existence of basis
matrices of F(V0) with degree bounded by the degree of F(V0) and cX .

Section 4.6 relates reduced bases of OX to those of OXi for Xi being an irreducible
component of X. Moreover, we will provide algorithms that compute a basis matrix of
F(V0) that has row-blocks whose degrees are linearly bounded by the degree of F|Xi(Vi,0)
and ci,X . This enables us to work with matrices that do not only have bounded degree but
with matrices whose blocks have bounded degrees depending on the respective components.

Finally, in Section 4.7 we characterise when a divisor is principal which can be used
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for the test of equality in the Picard group.

4.1 OX-Ideals and Generalised Vector Bundles

In this section we introduce the notion of generalised vector bundles F on a scheme X
which are a generalisation of OX -ideals to a higher rank. Most the analysis in this chapter
(having free sections over V0 and V∞, being represented by sections over V0 and V∞,
structural theorem for the global sections) can be done for generalised vector bundles and
not only for OX -ideals. But for the sake of brevity we decided to only define generalised
vector bundles and then do the analysis only for OX -ideals which are generalised vector
bundles of rank one. This also suits our primary goal to use the insights gathered in this
chapter for computing with invertible OX -ideals in Chapter 6.

Definition 4.1.1. Let F be a coherent sheaf of OX -modules. We call F a generalised
vector bundle of rank r on X if it is an OX -subsheaf of KrX which is free of rank r at
the generic points of X. Note that a generalised vector bundle of rank one is an OX -ideal
as defined in Definition 3.1.13. 4

The following lemma shows that being free of a given rank r at the generic points of a
scheme is enough for being isomorphic to a generalised vector bundle of rank r. But since
we only want to deal with such sheaves which are already embedded in KrX , our definition
already requires being embedded in KrX .

Lemma 4.1.2. Let X be a noetherian S1-scheme. Let F be a coherent OX-module. If F
is locally free of rank r at each generic point η of X, then the isomorphisms Fη ∼= OrX,η
for η ∈ X0 provide an OX-module embedding of F into KrX .

Proof. Since X is noetherian, by [Sta18, Tag 0BA8], we know that it only has a finite num-
ber m of irreducible components X1, . . . , Xm with respective generic points P1, . . . , Pm.
Due to the S1-hypothesis on X, the set of generic points equals the set of associated points
of X. For every i ∈ {1, . . . ,m} there is an open subset

Ui := Xi \
⋂
j 6=i

(Xj ∩Xi) = X \
⋃
j 6=i

Xj

of X such that Ui ∩ Xj = ∅ for all i 6= j. By assumption, FPi ∼= OrX,Pi and thus
due to Lemma B.4.26 and Remark B.4.27, for every generic point Pi there is some open
neighborhood Vi such that F|Vi ∼= OrVi . Now setting Wi = Ui ∩ Vi we obtain F|Wi

∼= OrWi

with Wi ∩ Xj = ∅ for all j 6= i. We set W =
⋃m
i=1Wi and denote with i : W ↪→ X the

inclusion morphism. We claim that the canonical morphism F → i∗(F|W ) is an injection:
First of all, being injective is a property of local nature since it can be checked at stalks.
Moreover, we have that OX → i∗OW is injective as long as W is schematically dense,
see Lemma B.2.5, and thus contains all associated points of X. The latter is satisfied by
construction of W . Furthermore, the open set W was constructed such that

F|W ∼=
m⊕
j=1
F|Wj

∼=
m⊕
j=1
OrWj

∼= OrW

and hence F|W is free of rank r. Hence we obtain

F ↪→ i∗(F|W ) ∼= i∗(OrW ) ↪→ i∗(KrW ) ∼= KrX

where the last isomorphism is given by Lemma B.2.6.
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Proposition 4.1.3. Let R be a noetherian Cohen-Macaulay ring of dimension one. Then
any finite R-submodule M of Frac(R) is torsion-free and thus satisfies S1.

Proof. Since M ⊆ Frac(R), every element of M is of the form a/r with a, r ∈ R and r
regular. Now for any s ∈ R we have s · (a/r) = (as)/r = 0 in Frac(R) if and only if there
is some t ∈ R regular such that t(as) = 0. Hence as = 0 and thus s is a zero-divisor
in R. Whence M is torsion-free. Since R is Cohen-Macaulay, it satisfies S1 and thus by
Corollary B.4.21, M also satisfies S1.

Definition 4.1.4. Let X be a scheme and F a quasi-coherent OX -module. We call F
torsion-free if for every affine open U ⊆ X the OX(U)-module F(U) is torsion-free. 4

Remark 4.1.5. Hartshorne developed the theory of generalised divisors in several publica-
tions [Har86], [Har94] and [Har07]. In [Har07] he defined them for noetherian, equidimen-
sional, embeddable schemes which satisfy S2. He calls every coherent OX -submodule I
of KX a fractional ideal and non-degenerate if for all generic points η ∈ X0 we have
Iη = KX,η. Moreover, a generalised divisor on X is a non-degenerate fractional ideal
which satisfies S2.

LetX be a noetherian projective scheme of pure dimension one which satisfies S1. Thus
the notion of generalised divisors on X is defined. Moreover, since X has dimension one,
being S1 and being Sd for d ≥ 0 is equivalent. By Corollary B.4.21, any quasi-coherent OX -
module F satisfies S1 if it is torsion-free. By Proposition 4.1.3, any OX -submodule of KX
is torsion-free and thus every OX -ideal is indeed a generalised divisor on X. Moreover,
every generalised divisor on X is an OX -ideal. Hence the two notions coincide for the
schemes in question. 4

Lemma 4.1.6. Let S be a principal ideal domain and let R ⊇ S be a ring extension such
that R is free of rank n over S. Let M ⊆ Frac(R) be a finitely generated R-module which
contains a regular element of R. Then M is a free S-module of rank n.

Proof. Note that M ⊆ Frac(R) already implies that M is torsion-free over R. Indeed,
any c ∈ R annihilating a/b ∈ M provides that cad = 0 for some regular d ∈ R. Hence
ac = 0 and thus c was a zero-divisor. Let K = Frac(S). The freeness of R over S
provides that R is torsion-free over S and hence the same is true for M by assumption.
Analogously, M is finitely generated over S and thus free over S. Then by Lemma B.4.10,
we have Frac(R) = R⊗S K and hence rkKM ≤ n. Every regular element b ∈M provides
rkKM ≥ rkK R: Indeed, the R-module homomorphism R → M given by multiplication
with b is injective. Then every S-basis of R will be mapped to an S-linear independent
set.

Now we replace Frac(R) by Frac(R)m.

Proposition 4.1.7. Let R be a ring. Then Frac(Rm) = Frac(R)m.

Proof. By construction, Frac(R) is the localisation of R by its regular elements. The zero-
divisors of Rm are such (r1, . . . , rm) 6= 0 with at least one ri is a zero-divisor or ri = 0.
Thus the regular elements are those (r1, . . . , rm) 6= 0 with ri non-zero regular elements for
all i = 1, . . . ,m. Thus Frac(Rm) ⊆ Frac(R)m. Now let (r1/a1, . . . , rm/am) ∈ Frac(R)m
be arbitrary. Then (r1/a1, . . . , rm/am) = (r1, . . . , rm) · (a1, . . . , am)−1 and the former is
in Rm and the latter is a unit in Frac(Rm). Hence (r1/a1, . . . , rm/am) ∈ Frac(Rm) and
therefore Frac(R)m ⊆ Frac(Rm).

Lemma 4.1.8. Let S be a principal ideal domain and let R ⊇ S be a ring extension such
that R is free of rank n over S. Let M ⊆ Frac(R)m be a finitely generated R-module which
contains a regular element of Rm. Then M is a free S-module of rank nm.
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Proof. We want to use Lemma 4.1.6 with ground ring Rm. Since Rm is free of rank
m over R and the latter is free of rank n over S, we deduce that Rm is free of rank
nm over S. By Proposition 4.1.7, we have M ⊆ Frac(R)m = Frac(Rm). Finally, M is
finitely generated over Rm since it is already finitely generated over R and the scalar
multiplication R ×M → M factorises as needed, i.e. R ×M → Rm ×M → M where
R→ Rm, r 7→ (r, . . . , r). Now Lemma 4.1.6 provides the assertion.

The following lemma is (to some extent) stated in the appendix as Proposition C.1.10 in
the context of R-ideals and thus for a specific class of rings.

Lemma 4.1.9. Let M ⊆ Frac(R) be a finitely generated R-module where R is a one-
dimensional ring that satisfies S1 and has finitely many minimal prime ideals (e.g. R
noetherian and reduced). Then M contains a regular element of R if and only if M is
invertible at all minimal primes of R.

Proof. LetM contain no regular element ofR. Then every numerator ofM is a zero-divisor
and thus by the finiteness assumption there is some regular g ∈ R such that gM ⊆ R.
Moreover, gM ⊆

⋃
i Pi where Pi denote the finitely many associated primes of R which

are exactly the minimal primes of R by the S1 assumption. The prime avoidance lemma
Lemma B.4.5 now provides that gM ⊆ P for one minimal prime. ThenM ↪→ gMP ⊆ PRP
and therefore MP cannot be isomorphic to RP as an RP -module since PRP only contains
zero-divisors. Conversely, let M contain a regular element a ∈ R. Again the finiteness
assumption provides a regular g ∈ R with ga ∈ gM ⊆ R and therefore, for any minimal
prime P the image of ga in MP is a unit in RP . Hence MP is invertible at P .

Lemma 4.1.9 can be generalised to R-submodules of Frac(R)m. LetM be an R-submodule
of Frac(R)m, then M =

⊕m
i=1Mi with Mi ⊆ Frac(R) being a fractional ideal of R. The

R-scalar multiplication R×M →M maps (r, (x1, . . . , xm)) to (rx1, . . . , rxm).

Lemma 4.1.10. Let M ⊆ Frac(R)m be a finitely generated R-module where R is a one-
dimensional ring that satisfies S1 and has finitely many minimal prime ideals (e.g. R
noetherian). Then M contains a regular element of Frac(R)m if and only if M is free of
rank m at all minimal primes of R.

Proof. SinceM is a finite R-module, there is some regular g ∈ R such that gM ⊆ Rm. Let
P be a minimal prime ideal of R. Let MP be free of rank m over R. Hence MP

∼= gMP =⊕m
i=1 g(Mi)P is free of rank m over RP . Since g(Mi)P ⊆ RP , the rank of g(Mi)P over

RP is at most 1 and hence we deduce that g(Mi)P ∼= RP for all i = 1 . . . ,m. But since
g(Mi)P ⊆ RP , the former is a principal ideal of RP generated by a regular element ai of
RP . Therefore we obtain gMP =

⊕m
i=1 aiRP and the latter clearly contains (a1, . . . , am)

which is no zero-divisor in RmP . Clearing out the denominator provides a regular in gM
and hence a regular element in M .

Conversely, let (a1/b1, . . . , am/bm) ∈M =
⊕m

i=1Mi be a regular element of Frac(R)m.
Hence ai ∈ R are regular for i = 1, . . . ,m. Multiplying with the product of the denomina-
tors provides a = (a1, . . . , am) ∈M . The image of a under the localisation homomorphism
M →MP for a minimal prime ideal P of R yields an element in

⊕m
i=1(Mi)P whose entries

are regular elements in RP . But since P was minimal, the regular elements of RP are the
invertible element of RP and hence MP =

⊕m
i=1(Mi)P =

⊕m
i=1RP = RmP .

Corollary 4.1.11. Let X be a noetherian, Cohen-Macaulay scheme of dimension one.
Let F be a generalised vector bundle of rank m on X. Then for any affine open subset
U = Spec(R) of X there exists a section of F over U which is a regular element of Rm.

Proposition 4.1.12. Let (X,π) be a cover of P1
k. Let U ⊆ P1

k be a non-empty affine open
subset of P1

k with coordinate ring A and let V = Spec(R) = π−1(U). Let F be a generalised
vector bundle of rank m on X. Then F(V ) is free of rank mn over A.
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Proof. First of all, for X as above, Theorem D.1.6 provides the existence of a finite mor-
phism π : X → P1

k. By [GW10, 13.77], π is also an affine morphism and hence V is indeed
affine. Now by Lemma B.5.20, we have a ring extension A ⊆ R with A being a principal
ideal domain. By assumption, X is Cohen-Macaulay and thus by Proposition D.2.4, we
see that R is free of rank n over A. By definition, F(V ) ⊆ KX(V )m = Frac(R)m where
the last equality is Proposition B.2.2. Hence by Corollary 4.1.11, the requirements for
Lemma 4.1.8 are met and we deduce that F(V ) is free of rank mn over A.

4.2 Representation of OX-Ideals

We have seen in Section 2.3 that any pair (X,π) with a projective curve X over k and a
finite morphism π : X → P1

k can be completely represented by a commutative diagram as in
Figure 2.6 in Lemma 2.3.3. See also Lemma 2.3.1 and Definition 2.3.2. This commutative
algebra setting also enables us to represent OX -ideals by an R0-ideal and an R∞-ideal.
To prove the asserted statement, we first prove that any OX -ideal is characterised by its
sections over V0 and V∞. In the following let (X,π) be a cover of P1

k.
As mentioned in the beginning of Section 4.1, we would like to emphasise that all of the

statements we make for OX -ideals in the following can be easily generalised to generalised
vector bundles.

Lemma 4.2.1. Every OX-ideal F is, as a sheaf of abelian groups, represented by its
sections over V0 and V∞.

Proof. By assumption, we have F(V0) ⊆ Frac(R0) and F(V∞) ⊆ Frac(R∞). The sections
of F over any open subset U ⊆ X can be given by a weakly matching family as follows

F(U) =
{

(f0, f∞) ∈ F(U ∩ V0)×F(U ∩ V∞) | ρU∩V0
U∩V0,∞

(F)(f0) = ρU∩V∞U∩V0,∞
(F)(f∞)

}
.

By assumption, F is quasi-coherent and thus the sections of F|V0 = F(V0)∼ over any
open subset of V0 are completely determined by F(V0). Moreover, the same is true for
the restriction maps of F|V0 . By symmetry, we see that the same is true for F|V∞ and
therefore we obtain that both the sections of F over any open U ⊆ X are characterised
by F(V0) and F(V∞) and the restriction maps as well.

Remark 4.2.2. Let F be an OX -ideal. Then F(V0) and F(V∞) are R0- respectively R∞-
submodules of Frac(R0) respectively Frac(R∞). Since F is quasi-coherent, the same is
true for F|V0 and F|V∞ . Moreover, we have that V0,∞, as an open subset of V0, is basic
open with V0,∞ = DV0(x). Similarly, V0,∞ is basic open in V∞ with V0,∞ = DV∞(x−1).
Hence, we have

(F|V0)(V0,∞) = (F|V0)(V0)x = F(V0)x and
(F|V∞)(V0,∞) = (F|V∞)(V∞)x−1 = F(V∞)x−1 .

Since the left hand sides are clearly equal, we see that F(V0)x = F(V∞)x−1 represents the
gluing condition for the modules F(V0) and F(V∞) to be sections of the same sheaf. 4
The above Remark and Lemma 4.2.1 show that F(V0) and F(V∞) do not only suffice to
represent F but we also have a gluing or compatibility condition imposed on F(V0) and
F(V∞). Next we will show a somewhat converse.

Lemma 4.2.3. Let M0 be an R0-submodule of Frac(R0) and let M∞ be an R∞-submodule
of Frac(R∞). If (M0)x = (M∞)x−1, then there exists an OX-submodule F of KX with
F(V0) = M0 and F(V∞) = M∞. Moreover, if M0 and M∞ are R0- respectively R∞-
ideals, then F is an OX-ideal.
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Proof. We consider the quasi-coherent sheaves M∼0 = F0 and M∼∞ = F∞ induced by M0
on V0 respectively by M∞ on V∞. Then V0 ∪ V∞ = X and the sheaves F0 and F∞ are
compatible on V0,∞ by assumption. Indeed, (M0)x = (M∞)x−1 shows that (F∞)|V0,∞
and (F0)V0,∞ are isomorphic via Φ from diagram Figure 2.3 in Lemma 2.3.1. Thus the
sheaves F0 and F∞ glue together to a quasi-coherent OX -module F on X. But since KX
is quasi-coherent, we have F|V0 = F0 ≤ (KX)|V0 and F|V∞ = F∞ ≤ (KX)|V∞ . Thus we
may glue F0 and F∞ as well as (KX)|V0 and (KX)|V∞ and the resulting sheaves will satisfy
F ≤ KX . Finally, if M0 and M∞ are R0- respectively R∞-ideals, then they are invertible
at the minimal prime ideals of R0 respectively R∞. This shows that F is invertible at the
generic points of X and thus an OX -ideal.

Corollary 4.2.4. We have a bijection between the set of OX-submodules F of KX and
the set of pairs (M0,M∞) where M0 is an R0-submodule of Frac(R0) and M∞ an R∞-
submodule of Frac(R∞) such that (M0)x = (M∞)x−1. Moreover, if X is Cohen-Macaulay,
then the OX-ideals correspond under this bijection the to the pairs (M0,M∞) with M0
being an R0-ideal and M∞ being an R∞-ideal.

We may summarise the situation with a diagram:

Figure 4.1: OX -ideals on curve over k as a commutative diagram

Frac(R0) Frac(R0,∞) Frac(R∞) Frac(OS)

(M0)x = (M∞)x−1 T−1M∞

M0 M∞

R0,∞ OS

R0 R∞

k[x, x−1] O∞

k[x] k[x−1]

λx λx−1

λx λx−1

λx λTλx−1

λx
λTλx−1

Localisation homomorphisms extend to total rings of fractions.

Remark 4.2.5. Let F be an OX -ideal. The modules F(V0) and F(V∞) can be em-
bedded into Frac(R0,∞) via the localisation maps λx : Frac(R0) → Frac(R0,∞) and
λx−1 : Frac(R∞) → Frac(R0,∞). Note that this is not the same as localising them by
x respectively x−1. But since λx and λx−1 map as the identity map, see Lemma 2.3.3,
we can already regard F(V0) and F(V∞) as subsets of Frac(R0,∞) (but not as R0,∞-
submodules of Frac(R0,∞) since we need to localise them to do so). In particular, we may
consider the sets F(V0) ∩ F(V∞) ⊆ F(V0) ∩ F(S). 4
In terms of arithmetic representation and operations in the monoid MonoId(X), the pairs
(F(V0),F(S)) already suffice.

Lemma 4.2.6. Every element F of the monoid of OX-ideals MonoId(X) on X, see Def-
inition 3.1.15, can be represented by the pair (F(V0),F(S)). Moreover, the arithmetic
operations being relevant for the arithmetic in MonoId(X), that is, multiplication and
checking for equality, can be carried out using that pair.
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Proof. First of all, by Lemma 3.2.29, the map F 7→ (F(V0),F(S)) is injective. By
Lemma 3.1.17, we know that (FG)(V0) and (FG)(V∞) can be identified with (FG)(V0)
respectively F(V∞)G(V∞). Thus

(FG)(S) = T−1(FG)(V∞) = T−1F(V∞)G(V∞) = T−1F(V∞)T−1G(V∞) = F(S)G(S)

which provides the assertion.

Remark 4.2.7. Though the pair (F(V0),F(S)) does what we want in terms of arithmetic in
MonoId(X), it does not provide in general a way to reconstruct F . The latter would mean
that we are able to compute F(V∞) from (F(V0),F(S)) which in general is not possible.
Given any O∞-basis of F(S) which is not simultaneously a k[x−1]-basis of F(V∞), we are
in general only able to compute a k[x−1]-submodule of F(V∞). 4

Lemma 4.2.8. Let F be an OX-ideal. Then F(X) = F(V0) ∩ F(V∞) = F(V0) ∩ F(S)
where we regard the involved sets as subsets of Frac(R0,∞) as in Remark 4.2.5.

Proof. Note that we have ρV0
V0,∞

(F) = λx : F(V0) → F(V0)x and ρV∞V0,∞
(F) = λx−1 :

F(V∞)→ F(V∞)x−1 . Then the proof of Lemma 4.2.1 shows that

F(X) = {(f0, f∞) ∈ F(V0)×F(V∞) | λx(f0) = λx−1(f∞)} .

Since F is an OX -ideal, we have the following commutative diagram:

Frac(R0) Frac(R0,∞) Frac(R∞) Frac(OS)

F(V0)x = F(V∞)x−1 T−1F(V∞)

F(V0) F(V∞)

λx λx−1

λx λx−1

(2:1)

Therefore, after regarding f0 and f∞ as elements of Frac(R0,∞), the commutativity of
diagram (2:1) provides that they both lie in F(V0)x = F(V∞)x−1 . Hence f0 = f∞ as
elements in Frac(R0,∞) if and only if λx(f0) = λx−1(f∞) as elements of F(V0) respectively
F(V∞). This provides F(X) = F(V0) ∩ F(V∞). The second equality in the assertion
follows again by the commutativity of the diagram (2:1) and by the fact that F(V∞) ⊆
T−1F(V∞).

Let F be an OX -ideal. To represent the OX -module structure of F , we need to encode
the scalar multiplication OX(V ) × F(V ) → F(V ) for open V ∈ {V0, V∞}. We have seen
in Proposition 4.1.12 that if F is an OX -ideal, then F(V0) and F(V∞) are free of rank n
over k[x] respectively k[x−1]. Note that this also holds for F = OX and thus R0 as well
as R∞ are free of rank n over k[x] respectively k[x−1]. We can use this to represent the
OX -module structure. Let (V,R) ∈ {(V0, R0), (V∞, R∞)}. One possible way to go is to
store a basis of F(V ), a basis of R and a matrix which tells us how the products of these
bases are represented again. But this sums up to storing a (n×n2)-matrix for each F(V ).

But there is another way around this:

Proposition 4.2.9. Let F be an OX-ideal. By storing two (n × n2)-matrices once for
all, both independent of F , one over k[x] and one over k[x−1], F can be represented by its
sections over V0 and V∞.

Proof. By the above discussion, we only need to show that we can represent theOX -module
structure of F . Let (U, V,R) ∈ {(U0, V0, R0), (U∞, V∞, R∞)}. The task comes down to
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storing the information of how the scalar product of a basis of F(V ), say v1, . . . , vn, with
a basis of R, say ω1, . . . , ωn, is again represented by the vi. Now both F(V ) and R are
contained in the same k(x)-vector space Frac(R0,∞) which is of dimension n. Hence there
is some basis transformation matrix M = (µij)ij ∈ k(x)n×n such that (ω1, . . . , ωn)M =
(v1, . . . , vn). Then the scalar product of vj with some f ∈ R with f =

∑n
i=1 fiωi is given

by f vj =
∑n

i=1 fi(ωivj) =
∑n

i=1 fi (
∑n

`=1 µ`,jω`ωi) =
∑n

i,` fiµ`,j(ω`ωi). This means that if
we are only working with coefficient vectors regarding a fixed basis ω1, . . . , ωn of R, then,
to represent the R-module structure of F(V ), it is sufficient to know the matrix M and
a multiplication table T ∈ OP1(U)n2×n in which the coefficients of the products ω`ωi are
stored.

Thus to represent OX -ideals F , there are two things to do: First, we need to fix two
bases, one of R0 over k[x] and one of R∞ over k[x−1], and then store the information
about the products of the first kind in a multiplication table. Second, we represent both
F(V0) and F(V∞) with bases over k[x] respectively k[x−1]. The latter can be done by
each storing a matrix, containing the coefficients of the basis elements regarding the fixed
bases of R0 and R∞. Hence this provides a way to represent divisors D on X via its
corresponding invertible sheaf OX(D) and this in turn with its free modules OX(D)(V0)
and OX(D)(V∞).
Remark 4.2.10. Note that by Proposition 2.2.12, the k[x−1]-basis of F(V∞) is also an
O∞-basis of F(S) = T−1F(V∞) and hence the latter is free of rank n as well. Hence the
above representation via basis matrices provides a representation of F(S) as well. 4
We will see in what follows that we might want to replace F(V∞) by F(S) (which by
Remark 4.2.10 does not change the representation via bases at all) to be able to use
matrix diagonalisation statements.

These will provide invariants of pairs (M0,MS) where M0 is an R0-ideal and MS an
OS-ideal. By what we have seen above, we thus obtain invariants for every OX -ideal.

4.3 Reduced Bases, π-Invariants and Global Sections

Consider the following situation: Let X be a integral and non-singular projective curve
over k with function field k(X). When dealing with (Weil) divisors D on X, one is mainly
interested in the set of functions

L(D) = {f ∈ k(X) | vP (f) + vP (D) ≥ 0} ∪ {0} (3:2)

that satisfy the requirements (regarding orders of poles and zeros) the divisor prescribes.
This k-vector space is called the Riemann-Roch space of the divisor D and it has finite
dimension over k. These Riemann-Roch spaces and the theorem of Riemann-Roch which
relates the dimension of L(D) with the degree of D (and even gives an equation that
predicts the dimension of L(D) if the degree of D is large enough, we refer the reader to
Section E.2 where we provide this kind of equation for a broader class of curves over k
and broader class of sheaves) has huge areas of application in the geometry of curves over
k. If OX(D) denotes the invertible sheaf associated to D, see Proposition 3.1.27, then
Lemma 3.1.32 provides that

OX(D)(X) = {f ∈ KX(X)× | divX(f) +D ≥ 0} ∪ {0} (3:3)
= L(D).

On more general schemes, for instance if X is a projective curve over k, L(D) cannot be
defined as in Eq. (3:2) (since for singular points P on X there is no discrete valuation
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vP available) and thus OX(D)(X) seems to be the right replacement for L(D). But for
reducible X, there may be elements from KX(X) \ KX(X)× appearing in OX(D)(X)
which shows that the elements in the right hand side of Eq. (3:3) do not constitute all of
OX(D)(X).

However, the invertible sheaves OX(D) associated to divisor can be regarded as a
suitable class of sheaves for which it is worthwhile to examine the structure of their global
sections. We go a bit further and want to analyse the global sections of OX -ideals. We
will use the fact that F(V0) and F(S) are both free or rank n over k[x] respectively O∞.
This enables us to represent F(X) using a specific kind of basis of F(V0) which is directly
linked to and provides a basis of F(S) as well. Before we can introduce the above kind of
basis, which we will call reduced, we need to introduce some of the mechanics used in the
section Lattices and Basis Reduction over k[x] of [Hes02]. These will enable us to relate
bases of F(V0) and F(S) by a diagonal matrix with powers of x on its diagonal.

Definition 4.3.1. Let k((x−1)) denote the field of formal Laurent series in x−1. For f ∈
k((x−1)) let deg(f) denote the largest power of x that appears in f . For v ∈ k((x−1))n let
deg(v) denote the maximum of the degrees of the entries of v. We call deg(v) the (column)
degree of v. Let M = (v1 . . . vn) = (vi,j)i,j ∈ k((x−1))m×n with vi ∈ k((x−1))m. By
LC(M) = (di,j)i,j ∈ km×n we denote the matrix with

di,j =
{
`c(vi,j), deg vi,j = deg(vj)
0, otherwise

and call it the leading coefficient matrix of M . 4

Remark 4.3.2. Note that we have k(x) ⊆ k((x−1)) and for f/g ∈ k(x) with f, g ∈ k[x]
we have deg(f/g) = deg(f)− deg(g) where the former degree is the one of the element in
k((x−1)) and the latter that of k[x]. Indeed, we can write f = xdeg(f)f̃ and g = xdeg(g)g̃
where both f̃ , g̃ ∈ k[x−1] not divisible by x−1. In particular, both f̃ and g̃ have degree
zero in k((x−1)) which is equivalent to be a unit in k((x−1)). Moreover, this yields f̃/g̃ =
ε ∈ k((x−1))× with ε having non-zero constant coefficient and all coefficients of positive
powers of x are zero. Then

f

g
= xdeg(f)−deg(g) · ε

and thus the degree of the right hand side, as an element in k((x−1)), is equal to deg(f)−
deg(g) as asserted. 4

Definition 4.3.3. Let M ∈ k((x−1))n×n be a matrix with columns v1, . . . , vn. We say
that M is reduced if it satisfies the following equivalent properties:

(i) No k[x]-unimodular column operation does decrease the sum of column degrees of
M ,

(ii) LC(M) has full rank,

(iii)
∑n

i=1 deg(λivi) = max{deg(λivi))}, and

(iv) deg detM =
∑n

i=1 deg(vi).

For the equivalence of these properties see [Hes02, Lemma 1]. 4

Remark 4.3.4. For any M ∈ k((x−1))n×n we might perform k[x]-unimodular column op-
erations on M which strictly decrease the sum of the column degrees of M . If this is not
possible, then the result is reduced by Definition 4.3.3 (i). Moreover, this process needs
to terminate since by Definition 4.3.3, (iv) the sum of the column degrees has as lower
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bound the degree of the determinant of M (which does not change under k[x]-unimodular
column operations). Hence any matrix might be reduced this way.

Moreover, if M ∈ k(x)n×n, then we may write M = M0/f with f ∈ k[x] and M0 ∈
k[x]n×n. In this case it is enough to reduce M0, that is, if M ′0 is a reduced right equivalent
matrix of M0, then M ′0/f is a reduced right equivalent matrix of M0/f . 4
We state a very important matrix diagonalisation lemma which is originally due to Birkhoff.
To do so, we first cite a statement from [Hes02].

Lemma 4.3.5 (Corollary 3, [Hes02]). Let M ∈ k(x)n×n. There exist unimodular matrices
T1 ∈ On×n∞ and T2 ∈ k[x]n×n and uniquely determined rational integers d1 ≥ . . . ≥ dn such
that

T1 ·M · T2 = (x−djδi,j)i,j . (3:4)

The matrix T2 is the basis transformation matrix obtained by the reduction algorithm (as
mentioned in Remark 4.3.4) performed on the columns of M . The column degree of the
j-th column of M · T2 is equal to −dj.

The following corollary is a slight adaptation of [Hes02, Corollary 4].

Corollary 4.3.6. Let V be an n-dimensional k(x)-vector space. Let M0 be a k[x]-module
and M∞ be an O∞-module both free of rank n inside of V . To any such two modules we
find bases v1, . . . , vn of M0 and b1, . . . , bn of M∞ such that

(v1, . . . , vn) = (b1, . . . , bn) · (x−djδi,j)i,j .

The sequence d1 ≥ . . . ≥ dn is uniquely determined by M0 and M∞ and we call them the
k(x)-invariants of (M0,M∞).

Proof. Every k[x]-basis of M0 and every O∞-basis of M∞ provide a k(x)-basis of V .
Both the existence of the bases and the uniqueness of the integers d1 ≥ . . . ≥ dn is due
to Lemma 4.3.5 applied to an arbitrary basis transformation matrix from a k(x)-basis
provided by M∞ to a k(x)-basis provided by M∞.

Remark 4.3.7. Note that if we want to compute the invariants d1 ≥ . . . ≥ dn of (M0,M∞),
then we may start with any two bases of M0 and M∞. Then the transformation matrix
can be reduced performing unimodular k[x]-column operations as in Lemma 4.3.5. The
resulting matrix has column degrees −d1, . . . ,−dn.

In particular, since the above unimodular column operations do strictly decrease the
sum of the column degrees of a transformation matrix, any given transformation matrix
M with degree bounded by d provides an upper bound: −d1 ≤ . . . ≤ −dn ≤ d. 4

Definition 4.3.8. Let F be an OX -ideal. Then by Corollary 4.2.4, F is represented by the
pair (F(V0),F(V∞)) which both in turn can be represented by bases over k[x] respectively
k[x−1]. Following Remark 4.2.10, the pair (F(V0),F(V∞)) given by bases induces the
pair (F(V0),F(S)). The basis of F(V0) over k[x] provides a k(x)-basis of Frac(R0,∞) and
that of F(S) over O∞ (which comes from a k[x−1]-basis of F(V∞)) does the same. Thus
Corollary 4.3.6 applies and provides k(x)-invariants of (F(V0),F(S)) which we call the
π-invariants of F and denote them by |F|1 ≥ . . . ≥ |F|n. For the sake of readability we
abbreviate |X|i := |OX |i and |D|i := |OX(D)|i for any divisor D ∈ Div(X). 4

Remark 4.3.9. In Chapter E of the appendix we will talk about the invariants a finite
morphism π : X → P1

k induces in general. We will see that the π-invariants defined above
are essentially the same. 4
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Remark 4.3.10. Let F be an OX -ideal. Any k[x]-basis of F(V0) is an k[x, x−1]-basis of
F(V0)x and any k[x−1]-basis of F(V∞) is an k[x, x−1]-basis of F(V∞)x−1 . Now since
F(V0)x = F(V∞)x−1 , any two such bases provide k[x, x−1]-bases of the same k[x, x−1]-
module. Hence there is a basis transformation matrix relating them which is an element
in GL(n, k[x, x−1]). 4

Lemma 4.3.11. For A ∈ GL(n, k[x, x−1]) there are T ∈ GL(n, k[x−1]), S ∈ GL(n, k[x])
and uniquely determined integers d1 ≥ . . . ≥ dn such that TAS = (x−diδi,j)i,j.

Proof. By [Hes02, Corollary 3], there are matrices T ∈ GL(n,O∞), S ∈ GL(n, k[x])
and integers d1 ≥ . . . ≥ dn with TAS = (x−diδi,j)i,j . Hence T−1 = AS(xdiδi,j)i,j has
determinant in O×∞ ∩ {a · xm | a ∈ k,m ∈ Z} = k×. Moreover, since all matrices A,S
and (xdiδi,j)i,j have entries in k[x, x−1] and T−1 is defined over O∞, its entries lie in
O∞ ∩ k[x, x−1] = k[x−1].

The latter equality holds more general: Let R be a noetherian domain and let f ∈ R
be a prime element in R. Then R(f) ∩ Rf = R where the intersections take place in the
quotient field Frac(R) of R. Let a/b = c/f r with r ≥ 1 hold in Frac(R) such that f - c in R
and b /∈ fR. Then by definition, we have af r = bc and thus f | bc which is a contradiction.
Thus we obtain r = 0 and hence a/b = c ∈ R which implies the assertion.

Lemma 4.3.12. Let F be an OX-ideal.

(i) There are bases α1, . . . , αn and β1, . . . , βn of F(V0) respectively F(V∞) and integers
d1 ≥ . . . ≥ dn such that αi = βix

−di.

(ii) For any two bases α1, . . . , αn and β1, . . . , βn as in Item (i), the set

{xjαi | 1 ≤ i ≤ n, 0 ≤ j ≤ di}

is a k-basis of F(X).

Proof. We first prove Item (i). By Remark 4.3.10, any two bases of F(V0) and F(V∞)
are also k[x, x−1]-bases of F(V0)x and F(V∞)x−1 and hence there is a transformation
matrix A ∈ GL(n, k[x, x−1]). Applying Lemma 4.3.11 to A provides bases α1, . . . , αn and
β1, . . . , βn of F(V0) respectively F(V∞) with αi = βix

−di . Now we prove Item (ii). By
Lemma 4.2.8, the global sections of F consist of those elements in Frac(R0,∞) that have
both a preimage under λx in F(V0) and one under λx−1 in F(V∞). By Remark 4.3.10, we
know that every k[x]-basis of F(V0) is also a k[x, x−1]-basis of F(V0,∞) and every k[x−1]-
basis of F(V∞) is also a k[x, x−1]-basis of F(V0,∞). Hence α1, . . . , αn and β1, . . . , βn
are k[x, x−1]-bases of F(V0,∞). Let f ∈ F(V0,∞) be arbitrary. Now f has a preimage
under λx if and only if φ(αi)(f) ∈ k[x]n and f has a preimage under λx−1 if and only if
φ(βi)(f) ∈ k[x−1]n. Let f =

∑n
i=1 λiαi with λi ∈ k[x, x−1]. Then φ(αi)(f) = (λ1, . . . , λn)T .

Since αi = βix
−di , we have φ(βi)(f) = diag(xdi) · φ(αi)(f). This provides that f ∈ F(X) if

and only if deg(λi)− di ≤ 0 and hence the assertion follows.

Remark 4.3.13. Note that the integers di can (and will be, for instance, for F = OX we
will have 0 ≥ d1 ≥ . . . ≥ dn) be negative. 4
Note that the k[x−1]-basis β1, . . . , βn of F(V∞) will also be an O∞-basis of F(S). Natu-
rally, the question of how to obtain such nice bases as given in Lemma 4.3.12 is, at this
point, still open. Theorem 4.3.15 will answer this question in an algorithmically insightful
way.

Lemma 4.3.14. Let M = (v1 . . . vn) ∈ k(x)n×n be a unimodular and reduced matrix. Let
−di denote the degree of the column vi. Then M · diag(xdi) is unimodular over O∞.
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Proof. First of all,M ·diag(xdi) is defined over O∞ since each column vi ofM is divided by
xdeg(vi) and thus has degree lower or equal to zero. SinceM is reduced, by Definition 4.3.3
(iv), we have

∑n
i=1−di =

∑n
i=1 deg(vi) = deg detM . Hence the determinant of M ·

diag(xdi) has degree zero and is thus a unit in O∞.

We now state one of the fundamental ingredients of our algorithms. The following theorem
originates from [Hes02, Theorem 7] which is stated for the function field case of an integral,
non-singular and plane projective curve. Theorem 4.3.15 also considers the reducible,
singular and non-plane case, but the proof of [Hes02, Theorem 7] still works. However,
we will give a slightly different and more constructive proof since it will provide some
algorithmic insights.

Theorem 4.3.15. Let F be an OX-ideal with π-invariants |F|1 ≥ . . . ≥ |F|n. Then there
is a k[x]-basis v1, . . . , vn of F(V0) such that{

xjvi | 1 ≤ i ≤ n, 0 ≤ j ≤ |F|i + r
}

forms a k-basis of F(r(x)∞)(X) for all r ∈ Z. We call such a basis of F(V0) a reduced
basis of F respectively F(V0).

Proof. Note that by Lemma D.2.23 and Corollary D.2.24, we have F(r(x)∞)(V0) = F(V0)
and F(r(x)∞)(S) ∼= xrF(S). Let α1, . . . , αn be a basis of F(V0) and β1, . . . , βn be a
basis of F(S). These are related by a transformation matrix M ∈ k(x)n×n such that
(β1, . . . , βn) ·M = (α1, . . . , αn). We are interested in a basis v1, . . . , vn of F(V0) such that
v1 x

d1 , . . . , vn x
dn is a basis of F(S) and thus v1 x

d1+r, . . . , vn x
dn+r is basis of xrF(S). If

we find such v1, . . . , vn, then Lemma 4.3.12 (ii) already implies the assertion. To produce
such a basis, let g ∈ k[x] be a common denominator of the entries of M , i.e. gM is defined
over k[x]. Now reduce the matrix gM by running RedMat, see Theorem A.2.7 and note
Remark A.2.9, and then multiply the result with g−1 and call it N with column degrees
−di. Note that N is reduced in the sense of Lemma 4.3.14. Since RedMat returns a
matrix right equivalent to gM , (v1, . . . , vn) := (β1, . . . , βn) · N is again a basis of F(V0).
We multiply from the right with diag(xdi) (this is just division of each column ui by
xdeg(ui)) and obtain (v1, . . . , vn) ·diag(xdi) = (β1, . . . , βn) ·N ·diag(xdi). By Lemma 4.3.14,
N · diag(xdi) is unimodular over O∞. This shows that v1x

d1 , . . . , vnx
dn is an O∞-basis

of F(S) and thus that v1x
d1+r, . . . , vnx

dn+r is one of xrF(S). Now Lemma 4.3.12 (ii)
provides the assertion. The uniqueness of the di is proven in [Hes02].

Corollary 4.3.16. We have

dimkH
0 (X,F) =

∑
|F|i≥0

(|F|i + 1) ≥ #{i ∈ {1, . . . , n} : |F|i = 0}.

In particular,

dimkH
0 (X,OX) ≥ #{i ∈ {1, . . . , n} : |X|i = 0} and |X|1 ≥ 0.

Proof. We apply Theorem 4.3.15 with F = OX and r = 0. This already provides
the first assertion. The second follows immediately from the first and the fact that
dimkH

0 (X,OX) ≥ 1.

Definition 4.3.17. Let us from now on denote a reduced basis of OX by Ω = (ω1, . . . , ωn)
and its corresponding basis of R∞ by ω̃1, . . . , ω̃n with ω̃i = ωix

|X|i . 4
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Definition 4.3.18. Let F be an OX -ideal. Every k[x]-basis α1, . . . , αn of F(V0) has a
basis transformation matrix, which we usually denote by TF = (λi,j)i,j , satisfying

(α1, . . . , αn) = Ω · TF = (ω1, . . . , ωn) · TF ,

by which we mean that αj =
∑

i=1 λi,jωi for all j = 1, . . . , n. After fixing the basis Ω, by
Proposition 4.2.9, we can consider TF , independent of the basis itself, as the representation
of the R0-module F(V0). 4

Remark 4.3.19. From Theorem 4.3.15 we immediately deduce that r ≥ |F|i holds if and
only if increasing r by one increases the dimension of F(r(x)∞)(X) by at least i, that is

r ≥ −|F|i ⇔ dimk F((r + 1)(x)∞)(X)−F(r(x)∞)(X) ≥ i. (3:5)

To be more precise, we have

dimk F((r + 1)(x)∞)(X)−F(r(x)∞)(X) = #{i : r ≥ −|F|i}. (3:6)

Moreover, F(r(x)∞)(X) 6= 0 if and only if r ≥ −|F|1. 4

Corollary 4.3.20. Let F be an OX-ideal such that F(S) = xsOS and F(V0) ⊆ R0. Let
TF denote the basis matrix of some k[x]-basis of F(V0). Then diag(x−|X|i−s) ·TF is a basis
transformation matrix from a basis of F(S) to one of F(V0). Moreover, then

(i) the degree of column i of RedMat(diag(x−|X|i) · TF ) · x−s is equal to |F|i, and

(ii) diag(x|X|i) · RedMat(diag(x−|X|i) · TF ) is the basis matrix of a reduced basis of
F(V0).

Proof. Let TF be the basis matrix of F(V0) corresponding to the basis α1, . . . , αn. Thus
we have (xs w̃1, . . . , x

s w̃n) · diag(x−|X|i−s) · TF = (α1, . . . , αn) and hence the desired
transformation matrix is given by diag(x−|X|i−s) · TF as asserted. Then with N :=
RedMat(diag(x−|X|i) ·TF ) ·x−s the proof of Theorem 4.3.15 together with noticing that
the degrees of the columns of N will be the π-invariants of F provides (i). Again, following
the proof of Theorem 4.3.15 and noticing that βi = xsω̃i provides that (xs w̃1, . . . , x

s w̃n)·N
is a reduced basis of F(V0), that is, diag(x|X|i)·RedMat(diag(x−|X|i)·TF ) is a basis matrix
of that reduced basis.

The insights of Corollary 4.3.20 immediately provide algorithms both to compute a basis
matrix TF of a reduced basis of F(V0) and the π-invariants of F for an OX -ideal F given
by an arbitrary basis matrix of F(V0).

Algorithm 1 Computing basis matrix of a reduced basis
Precomputed Reduced basis Ω of R0; π-invariants −|X|1 ≤ . . . ≤ −|X|n of X

Input T basis matrix of F(V0) where F is OX -ideal
Output TF basis matrix of F(V0) representing a reduced basis

1: procedure RedBasMat(T )
2: T ← ScaleRows(T, x−|X|1 , . . . , x−|X|n)
3: T ← RedMat(T )
4: return ScaleRows(T, x|X|1 , . . . , x|X|n)
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Algorithm 2 Computing π-invariants of OX -ideal
Precomputed Reduced basis Ω of R0; π-invariants −|X|1 ≤ . . . ≤ −|X|n of X

Input T basis matrix of F(V0) where F is OX -ideal
Output π-invariants −|F|1 ≤ . . . ≤ −|F|n of F

1: procedure PiInvariants(T )
2: s← Degree(Determinant(T ))
3: T ← ScaleRows(T, x−|X|1 , . . . , x−|X|n)
4: T ← RedMat(T )
5: for j = 1, . . . , n do
6: dj ← Degree(SubMatrix(T, (1, j), (n, 1)))
7: return d1 + s, . . . , dn + s

Lemma 4.3.21. The algorithms RedBasMat and PiInvariants, see Algorithm 1 re-
spectively Algorithm 2, are correct. Moreover, if d is an upper bound for both −|X|n and
the degree of the input matrix, then they both require at most O∼(nωd) operations in k.
Moreover, RedBasMat returns a matrix with degree bounded by 2d.

Proof. The correctness of both algorithms follows from Corollary 4.3.20. Let us first
consider the running time assertion of RedBasMat and the assertion regarding the output
degree. By assumption, d is both an upper bound of −|X|1 ≤ . . . ≤ −|X|n and of degM .
Thus by Lemma A.1.2 (i), ScaleRows at line 2 requires at most O∼(nωd) operations
in k and returns a matrix with degree bounded by 2d. By Theorem A.2.7, RedMat
thus requires at most O∼(nωd) operations in k and returns a matrix with degree bounded
by 2d as well. Thus the argument from above applies again and ScaleRows at line 4
also requires at most O∼(nωd) operations in k. This proves both the assertion about the
output degree as well as the running time assertion of RedBasMat.

By Lemma A.1.2 (ii), Determinant requires at mostO∼(nωd) operations in k whereby
Degree has constant cost, see Lemma A.1.2 (iv). As we have shown above, the calls of
ScaleRows and RedMat in line 3 and 4 require at most O∼(nwd) operations in k and
both return a matrix with degree bounded by 2d. By Lemma A.1.2 (vi), SubMatrix has
constant cost which finally provides the assertion.

Assume for a moment that X is an integral and a local complete intersection (e.g. non-
singular) projective scheme of dimension one over k. By K we denote a canonical divisor
on X. Then for any divisor D ∈ Div(X) the Riemann-Roch space of K − D (whose
dimension equals that of H1(X,D)) vanishes whenever degkD > degkK. This, together
with the Riemann-Roch equation provides an explicit description of the dimension of the
Riemann-Roch space of D solely dependent on degkD and the arithmetic genus of X
whenever degkD > degkK. The following theorem generalises this to quite arbitrary
integral projective schemes of dimension one over a field and to more general sheaves as
well. The proof uses the theory of the dualising sheaf which we present in Chapter E of
the appendix.

Theorem 4.3.22. Let X be an integral projective scheme of dimension one over the field
k. Let F be a coherent and torsion-free OX-module which is invertible at the generic point
of X (i.e. F is isomorphic to an OX-ideal). Then degk F < −2g − dimkH

0 (X,OX)
implies H1 (X,F) = 0.

Proof. By Lemma C.4.4, we have degk F = −g − χ(F) which implies

degk F ≥ −g − dimkH
0 (X,F) . (3:7)
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Assume that 0 6= dimkH
1 (X,F) = dimkH

0 (X,F∗) where F∗ = HomOX (F , ωX), see
[Liu02, 6.4.20]. Then there is some non-zero f ∈ HomOX (F , ωX) which we claim to be
injective: By [Sta18, Tag 0AVL], f is injective if fP is injective for all P ∈ Ass(F). Since
F is torsion-free, the latter is a subset of the generic points of X, see Lemma B.4.23,
and hence we only need to show that fη is injective for the generic point η of X. By
Proposition E.1.19, we know that ωX,η 6= 0. Since X is integral, it is a fortiori reduced
and thus Cohen-Macaulay. Hence, by Corollary E.1.15, we know that ωX is torsion-free
and since it is quasi-coherent, the same is true for ωX,η. By assumption, Fη is invertible
and hence fη is characterised by the image of the generator of Fη. In particular, by
assumption that image is not zero. Now the torsion-freeness of ωX,η implies that fη is
injective. Thus f provides

dimkH
0 (X,F) ≤ dimkH

0 (X,ωX)
= dimkH

1 (X,OX)
= dimkH

0 (X,OX) + g

and this together with the Eq. (3:7) implies

degk F ≥ −2g − dimkH
0 (X,OX) = −g − dimkH

1 (X,OX) .

Therefore, degk F < −2g − dimkH
0 (X,OX) implies H1 (X,F) = 0 as asserted.

Whenever X is integral, we can use Theorem 4.3.22 to give some effective bounds for the
π-invariants of OX -ideals.

Theorem 4.3.23. Let X be an integral cover of P1
k. Then for any OX-ideal F its π-

invariants satisfy

(i)
⌈

degk F
n

⌉
≤ −|F|1 ≤ . . . ≤ −|F|n ≤

⌈
degk F+2g+dimkH

0(X,OX)
n

⌉
and

(ii) −|F|1 <
⌈

degk F+g
n

⌉
.

Proof. We have degk F = −g − χ(F) and hence

degk F(r(x)∞) = dimkH
1 (X,F(r(x)∞))− dimkH

0 (X,F(r(x)∞))− g (3:8)

and by Theorem 4.3.22, we know that dimkH
1 (X,F(r(x)∞)) = 0 as soon as degk F(r(x)∞) <

−2g − dimkH
0 (X,OX). By Proposition D.2.10, we have

degk F(r(x)∞) = degk F − rn. (3:9)

Therefore, the condition for dimkH
1 (X,F(r(x)∞)) to vanish becomes

degk F − rn < −2g − dimkH
0 (X,OX)

⇔ degk F + 2g + dimkH
0 (X,OX) < rn.

Hence, for

r ≥
⌈

degk F + 2g + dimkH
0 (X,OX)

n

⌉
(3:10)

Eq. (3:8) becomes

degk F − rn = −dimkH
0 (X,F(r(x)∞))− g

85

https://stacks.math.columbia.edu/tag/0AVL


4.3. Reduced Bases, π-Invariants and Global Sections Chapter 4

which is equivalent to

dimkH
0 (X,F(r(x)∞)) = −degk F + rn− g. (3:11)

Now for r in the given order of magnitude as in Eq. (3:10) we have rn−degk F ≥ −2g and
hence the right hand side of Eq. (3:11) is positive and thus increasing r by 1 in Eq. (3:11)
does indeed increase dimkH

0 (X,F(r(x)∞)) by exactly rn. By Remark 4.3.19, this implies
r ≥ −|F|n which proves the upper bound in (i).

To prove the lower bound in (i), note that by Remark 4.3.19, we have F(r(x)∞)(X) = 0
if and only if r < −|F|1. Now Lemma C.4.6 provides that degk F(r(x)∞) > 0 already
implies H0 (X,F(r(x)∞)) = 0. By Eq. (3:9), we have degk F(r(x)∞) = degk F − rn and
thus r <

⌈
degk F
n

⌉
is sufficient and hence the lower bound in (i) follows.

By Remark 4.3.19, −|F|1 ≤ r is equivalent to F(r(x)∞)(X) 6= 0. Hence to find an
upper bound for −|F|1 we are looking for a sufficiently large r such that the dimension of
F(r(x)∞)(X) is at least one. From Eq. (3:8), we deduce

dimkH
0 (X,F(r(x)∞)) = dimkH

1 (X,F(r(x)∞))− degk F(r(x)∞)− g
≥ − degk F(r(x)∞)− g

Proposition D.2.10 = − degk F + rn− g
> 0

if r > (degk F + g)/n which provides (ii).

Corollary 4.3.24. Let X be an integral cover of P1
k. Then we have

0 = −|X|1 ≤ . . . ≤ −|X|n ≤
⌈

2g + dimkH
0 (X,OX)

n

⌉
≤ cX .

Proof. All inequalities follow from plugging in OX for F in Theorem 4.3.23 and noting
that degkOX = 0. Moreover, this also shows |X|1 ≤ 0. By Corollary 4.3.16, we have
|X|1 ≥ 0 and combining this with the above provides |X|1 = 0. The last inequality follows
from the Definition 2.4.10 of cX in the integral case.

That |Xi|1 vanishes for every irreducible component of a reduced cover of P1
k also shows

that the same is true for |X|1.

Corollary 4.3.25. Let X be an reduced cover of P1
k. Then |X|1 = 0.

Proof. By Corollary 4.3.16, we have |X|1 ≥ 0 and thus we are left to show that |X|1 ≤ 0.
Assume |X|1 > 0, then both ω1 and xω1 lie in OX(X). By Corollary 4.3.24, we have
|Xi|1 = 0 for all irreducible components X1, . . . , Xm of X. This provides that for all
i = 1, . . . ,m we have dimkOXi(Xi) = 1. Since ω1 is non-zero, there is an irreducible
component Xi such that (ω1)|Xi is non-zero as well. The same then holds for (xω1)|Xi .
But since dimkOXi(Xi) = 1, (ω1)|Xi and (xω1)|Xi are linearly dependent over k which
provides (λ− x)(ω1)|Xi = 0 for some λ ∈ k and hence x = λ, a contradiction.

Proposition 4.3.26. Let F and G be two OX-ideals such that F(V0) ⊆ G(V0) and F(S) ⊆
xsG(S) for some s ∈ Z. Then −|F|n ≥ −|G|n − s. Moreover, the basis transformation
matrix from a reduced basis of G to a reduced basis of F has degree bounded by −|F|n +
s+ |G|1. In particular, if X is integral, then the above basis matrix has degree bounded by
s+ cX + −degk G+degk F+n

n .

86



Chapter 4 4.3. Reduced Bases, π-Invariants and Global Sections

Proof. Let β1, . . . , βn be a reduced basis of G and let α1, . . . , αn be a reduced basis of F .
Then there is a basis transformation matrix T = (λi,j)i,j ∈ k[x]n×n of full rank such that

(α1, . . . , αn) = (β1, . . . , βn) · T.

By assumption and Lemma 4.2.8, we have

F(r(x)∞)(X) = F(V0) ∩ xrF(S) ⊆ G(V0) ∩ xr+sG(S) = G((r + s)(x)∞)(X). (3:12)

Now set r = −|F|n. Then by the reducedness of α1, . . . , αn, we have α1, . . . , αn ∈
F(r(x)∞)(X) as well as α1, . . . , αn ∈ G((r + s)(x)∞)(X) by Eq. (3:12). Reducedness
of β1, . . . , βn yields

G(V0) ∩ xr+sG(S) =
{

n∑
i=1

λiβi | λi = 0 or 0 ≤ deg(λi) ≤ r + s+ |G|i

}
.

In particular, αi =
∑n

j=1 λi,jβj with λi,j = 0 or deg(λi,j) ≤ r + s + |G|j . Now for every
j = 1, . . . , n there is some i such that λi,j 6= 0. Otherwise, there is some βj not appearing in
any of the linear combinations of the αi implying that T cannot have full rank. Therefore,
for every j = 1, . . . , n there is some λi,j 6= 0 and thus we have 0 ≤ deg(λi,j) ≤ r+ s+ |G|j .
This provides −|F|n + s = r + s ≥ −|G|j for all j = 1, . . . , n. Since |G|1 ≥ . . . ≥ |G|n this
implies −|F|n + s ≥ −|G|n.

Moreover, all non-zero λi,j have degree bounded by −|F|n+s+ |G|j ≤ −|F|n+s+ |G|1.
We conclude that

deg(T ) = max{deg(λi,j) | i, j ∈ {1, . . . , n}} ≤ −|F|n + s+ |G|1.

Now if X is integral, then by Theorem 4.3.23 (i), we have |G|1 ≤ −
⌈

degk G
n

⌉
and

−|F|n ≤
⌈

degk F + 2g + dimkH
0 (X,OX)

n

⌉
which yields

deg(T ) ≤ s−
⌈

degk G
n

⌉
+
⌈

degk F + 2g + dimkH
0 (X,OX)

n

⌉
≤ s+ −degk G + degk F + 2g + dimkH

0 (X,OX) + 2n
n

≤ s+ cX + −degk G + degk F + n

n
.

Corollary 4.3.27. Let F be an OX-ideal such that F(V0) ⊆ R0 and F(S) = xsOS. Then
−|F|n ≥ −|X|n − s. Moreover, the basis transformation matrix T from a reduced basis of
OX to a reduced basis of F has degree bounded by −|F|n+s. In particular, if X is integral,
then the above matrix has degree bounded by s+ degk F

n + cX . If furthermore degk F = 0,
then deg T ≤ degk F(V0)

n + cX . Moreover, in this case −|F|n ≥ −|X|n − degk F(V0)
n

Proof. This is Proposition 4.3.26 with G = OX . The particular part follows from Corol-
lary C.4.13, together with Corollary D.2.9 which tell us that degk F(V0) = −degk F(S)
and degk F(S) = degk xsOS = −sn.

Lemma 4.3.28. Let X be an integral cover of P1
k. Let F be an OX-ideal. Let TF be any

basis transformation matrix from a fixed reduced basis Ω of OX to any basis of F(V0), see
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Definition 4.3.18. Then TF satisfies

deg(RedMat(TF )) ≤ degk F(V0)
n

+ cX .

Moreover, if d is both an upper bound of deg(TF ), then the computation of RedMat(TF )
requires at most O∼(nωd) operations in k.

Proof. By Theorem A.2.7, we know that RedMat(TF ) has minimal column degrees among
all k[x]-right equivalent matrices of TF . Now the matrix T from Corollary 4.3.27 is among
these right equivalent matrices and thus deg(T ) provides the asserted upper bound. By
Corollary A.2.8, RedMat requires at most O∼(nωd) operations in k where d is an upper
bound of the degree of TF .

Lemma 4.3.29. Let Ω = (ω1, . . . , ωn) be a reduced basis of OX . Without loss of generality
we can assume that ω1 = 1.

Proof. By Corollary 4.3.25, we have |X|i ≤ 0 for all i = 1, . . . , n. Let m = dimkOX(X).
Hence, by Theorem 4.3.15, we know that ω1, . . . , ωm will span all of OX(X) with coef-
ficients in k. In particular, there are µi ∈ k such that 1 =

∑m
i=1 µiωi. Without loss of

generality we assume that µ1 6= 0. Then we interchange ω1 for 1 and see that we still have
a k[x]-basis of OX(V0) since

ω1 = µ−1
1 · 1 +

m∑
i=2

µiµ
−1
1 ωi (3:13)

provides that we can still generate ω1 over k[x]. Next we show that the new basis is
still reduced in the sense of Theorem 4.3.15. To see this, it is enough to ensure that for
arbitrary r ∈ Z every element of OX(r(x)∞))(X) can be uniquely written as a k[x]-linear
combination λ1 · 1 + λ2ω2 + . . . + λnωn with coefficients λi ∈ k[x] such that deg λi ≤
r + |X|i. Note that by assumption, the same is true for the elements ω1, . . . , ωn. So let
a =

∑n
i=1 λiωi ∈ OX(r(x)∞))(X) with deg λi ≤ r + |X|i be arbitrary. Now we substitute

ω1 following Eq. (3:13) and obtain

a =
n∑
i=1

λiωi = λ1(µ−1
1 · 1 +

n∑
i=2

µiµ
−1
1 ωi) +

n∑
i=2

λiωi

= λ1µ
−1
1 · 1 +

n∑
i=2

(λi + µiµ
−1
1 )ωi

which tells us that 1, ω2, . . . , ωn also generate OX(r(x)∞))(X) as desired.

Definition 4.3.30. Combining Lemma 4.2.8 and the definition of the pole divisor (x)∞
of x, see Definition 2.2.9, we see that OX(r(x)∞)(X) = R0 ∩ xrOS . For f ∈ R0 we define
deg∗(f) = min{r ∈ Z | f ∈ OX(r(x)∞)(X)}. 4

We collect immediate consequences of the definition of deg∗.

Corollary 4.3.31. Let λ ∈ k[x] and f, g ∈ R0. Then

(i) deg∗(λ) = deg λ,

(ii) deg∗(ωi) = −|X|i, and

(iii) deg∗(fg) ≤ deg∗(f) + deg∗(g).
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Proof. By Lemma 4.3.29, without loss of generality we have ω1 = 1. Moreover, by Corol-
lary 4.3.24, we also have |X|1 = 0. Hence, by Theorem 4.3.15, we have λ ∈ OX(r(x)∞)(X)
if and only if deg λ ≤ r which provides (i). Property (ii) follows immediately from The-
orem 4.3.15. To prove (iii), assume that f ∈ xrOS and g ∈ xsOS both numbers r, s
being minimal with this property, that is deg∗(f) = r and deg∗(g) = s. In particular,
fg ∈ R0 ∩ xr+sOS and thus deg∗(fg) ≤ r + s which finally provides (iii).

Lemma 4.3.32. Let f =
∑n

i=1 λiωi ∈ R0. Then

deg∗(f) + |X|n ≤ deg φΩ(f) ≤ deg∗(f).

Proof. Theorem 4.3.15 tells us that f ∈ R0 with λi ∈ k[x] lies in OX(r(x)∞)(X) if and only
if deg λi ≤ r + |X|i for all i = 1, . . . , n. Let d = deg φΩ(f). Then r ≥ d− |X|n guarantees
f ∈ OX(r(x)∞)(X) and hence deg∗(f) ≤ d− |X|n providing the first inequality.

Let r = deg∗(f). Then f ∈ OX(r(x)∞)(X) and thus deg λi ≤ r + |X|i for all i =
1, . . . , n. Now since |X|i ≤ 0, see Corollary 4.3.16 and Theorem 4.3.15, we deduce deg λi ≤
r for all i = 1, . . . , n and thus deg φΩ(f) ≤ deg∗(f) as asserted.

Definition 4.3.33. The coefficients µi,j,` ∈ k[x] defined by ωiωj =
∑n

`=1 µi,j,`ω` define
the multiplication table given by the 3-dimensional array (µi,j,`)i,j,`. 4

Lemma 4.3.34. The entries µi,j,` of the multiplication table satisfy

degµi,j,` ≤ −|X|i − |X|j ≤ −2|X|n.

In particular, if X is integral, then

degµi,j,` ≤ 2
⌈

2g + dimkH
0 (X,OX)

n

⌉
≤ 2cX .

Proof. By Corollary 4.3.31 (ii), we have deg∗(ωi) = −|X|i. Moreover, Corollary 4.3.31
(iii) then provides deg∗(ωiωj) ≤ deg∗(wi) + deg∗(wj) = −|X|i − |X|j . In particular,
deg∗(ωiωj) ≤ −2|X|n. The particular part follows from Corollary 4.3.24 and the definition
of cX , see Definition 2.4.10.

Lemma 4.3.35. Let X be a cover of P1
k. Let Ω = (ω1, . . . , ωn) be a reduced basis of

OX . Let f ∈ R0 with deg φΩ(f) ≤ d. Then the k[x]-basis fΩ = (fω1, . . . , fωn) of fR0
has a basis matrix Tf with deg(Tf ) ≤ d − 2|X|n. In particular, if X is integral, then
deg(Tf ) ≤ d+ 2cX .

Proof. By definition, the j-th column of a basis matrix Tf of fΩ contains the coefficients
of fωj with respect to Ω. If f =

∑n
i=1 λiωi, then

fωj =
n∑
i=1

λiωiωj =
n∑
i=1

λi

n∑
`=1

µi,j,`ω` =
n∑
`=1

(
n∑
i=1

λiµi,j,`

)
ω`.

By Lemma 4.3.34, we have degµi,j,` ≤ −2|X|n and by assumption deg(λi) ≤ d. Thus the
j-th column of Tf has degree bounded by d − 2|X|n and thus the same is true for all of
Tf . The particular part follows from Lemma 4.3.34.

In general, if X is not integral and decomposes into several irreducible components, then
it is not at all clear how to come up with bounds for both the π-invariants of X or F and
the degree of basis matrices of reduced bases of F(V0) where F is an OX -ideal. In the
next section we will investigate in how to come up with bases of F(V0) that are not too
far away from inducing reduced bases of F|Xi(Vi,0) on the components Xi of X.
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4.4 OX-Ideals on Reducible Schemes

In this section we will explicitly assume that X is a reducible and reduced cover of P1
k with

irreducible components X1, . . . , Xm. It turns out that we can restrict an OX -ideal F to
an irreducible component Xi such that it is isomorphic to some OXi-ideal F|Xi . Similarly
to the injection

OX −→
m⊕
i=1

(τi)∗OXi (4:14)

this will provide an injection

F −→
m⊕
i=1

(τi)∗F|Xi . (4:15)

As we have already seen in this chapter, after fixing bases we can represent the sections of
F over V0 via a basis with respect to a basis of OX over V0 and we can do the same for the
sections of F|Xi over Vi,0 with respect to the sections of OXi over Vi,0 for all i = 1, . . . ,m.
Then the embeddings in Eqs. (4:14) and (4:15) provide that we can relate the above bases.

4.4.1 Connection to the Restrictions to Components

Lemma 4.4.1. Let F be an OX-ideal. Then F|Xi, see Definition 3.2.25, is isomorphic to
some OXi-ideal.

Proof. By Lemma D.2.5, we know that V0 is schematically dense in X. In particular,
it contains all generic points η1, . . . , ηm ∈ X0 of X. By the quasi-coherence of F , we
therefore obtain F(V0)Pi,0 ∼= Fηi ∼= OX,ηi ∼= (R0)Pi,0 where Pi,0 is the minimal prime of
R0 corresponding to ηi. The restriction F|Xi of F to Xi is quasi-coherent and due to
Lemma 3.2.30, it moreover satisfies

F|Xi(Vi,0) ∼= F(V0)⊗R0 R0/Pi,0 = F(V0)/Pi,0F(V0).

Now we may apply Corollary B.4.33 to M = F(V0) which provides that F|Xi(Vi,0) and
thus F|Xi is also invertible at ηi. Now Lemma 4.1.2 tells us that the isomorphism F|Xi,ηi →
OXi,ηi provides an OXi-module embedding of F|Xi into KXi .

By Definition B.3.1, we can relate F with its restrictions F|Xi to the Xi: Let τi : Xi → X
denote the closed immersion corresponding to Xi. Then by Definition 3.2.25, we have
F|Xi = τ∗i F . In particular, (τi)∗F|Xi = (τi)∗(τ∗i F) and for the latter there is a canonical
morphism F → (τi)∗(τ∗i F), see [GW10, 7.8.10]. Hence we obtain canonical morphisms
F → (τi)∗F|Xi which thus induces a canonical morphism φ : F →

⊕m
i=1(τi)∗F|Xi .

Proposition 4.4.2. Let F be a quasi-coherent, torsion-free OX-module. The morphism
φ : F →

⊕m
i=1(τi)∗F|Xi introduced above is injective.

Proof. First of all, by Remark B.1.11, we know that φ is injective if and only if φP is
injective for all P ∈ X. Let P ∈ X be arbitrary with affine open neighborhood U =
Spec(R). Let Pi denote the minimal prime ideals of R that correspond to the irreducible
components Xi meeting U . Then the morphism τi restricted to U , denoted by τU,i, is given
by the ring homomorphism R → R/Pi. Since F is quasi-coherent, there is a torsion-free
R-moduleM with F|U = M∼. Now by Lemma 3.2.30, we have τ∗U,iF|U ∼= (M⊗RR/Pi)∼ ∼=
(M/PiM)∼. By [GW10, 7.24 (1)], in turn we have

(τU,i)∗(τ∗U,iF|U ) ∼= (τU,i)∗(M ⊗R R/Pi)∼ ∼= (M ⊗R R/Pi)∼
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where in the latterM⊗RR/Pi is regarded as an R-module via the map R→ R/Pi. Hence
the morphism

φ(U) : F(U)→
⊕

i:Xi∩U 6=∅

((τU,i)∗F|Xi∩U )(U)

is given by
M →

⊕
i:Xi∩U 6=∅

M ⊗R R/Pi︸ ︷︷ ︸
= M/PiM

, m 7→ (m+ PiM)i

which is injective due to Proposition B.4.37 and M being torsion-free. This provides that
the induced morphism on the level of stalks at P ∈ U will be injective. Since the affine
open subsets form a base of the topology of X, this shows that φP is injective for all P ∈ X
and thus the assertion follows.

Remark 4.4.3. By Lemma 4.4.1, we know that F|Xi is isomorphic to some OXi-ideal and
thus embeds into KXi . Combining this with Proposition 4.4.2 we see that we have the
OX -module embeddings

F ↪→
m⊕
i=1

(τi)∗F|Xi ↪→
m⊕
i=1

(τi)∗KXi ∼= KX . (4:16)

4

Notation 4.4.4. From now on we will assume that every OX -ideal F is an OX -submodule
of KX via the embedding given by Eq. (4:16). In particular, we also assume this for the
OX -ideal OX . 4

Remark 4.4.5. Notation 4.4.4 enables us to relate the bases of F|Xi(Vi,0) and those of
Ri,0 = OXi(Vi,0). Both are Ri,0-submodules of KXi(Vi,0) = Frac(Ri,0) and the latter is
free of rank ni over k(x). Now every k[x]-basis vi,1, . . . , vi,ni of F|Xi(Vi,0) provides a k(x)-
basis of Frac(Ri,0) and the same is true for any basis ωi,1, . . . , ωi,ni of Ri,0. Hence there is
a basis transformation matrix TFi ∈ k(x)n×n such that

(vi,1, . . . , vi,ni) · TFi = (ωi,1, . . . , ωi,ni)

similar to Definition 4.3.18. 4
Remark 4.4.5 enables us to represent the k[x]-module F|Xi(Vi,0) via a basis transformation
matrix TFi by fixing a reduced k[x]-basis of Ri,0. Moreover, by Notation 4.4.4, we have
embeddings of k[x]-modules

R0 ↪→ R+
0 =

m⊕
i=1

Ri,0 and F(V0) ↪→
m⊕
i=1
F|Xi(Vi,0)

and we know that both R0 and F(V0) are also free of rank n over k[x]. In particular,
there are k[x]-basis transformation matrices T0,F from a basis of

⊕m
i=1F|Xi(Vi,0) to one of

F(V0), and T0,OX from a basis of R+
0 to one of R0. Note that the bases vi,1, . . . , vi,ni and

ωi,1, . . . , ωi,ni for i = 1, . . . ,m constitute a basis of
⊕m

i=1F|Xi(Vi,0) respectively R+
0 . This

provides a diagram that gives an overview of this basis transformation situation:

R+
0 R0

⊕m
i=1F|Xi(Vi,0) F(V0)

(ωi,j)i,j (ωi)

(vi,j)i,j (vi)i

diag(TF1 ,...,TFm )

T0,OX

T

T0,F
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We will now try to put this into a kind of definition (which is more a fixation of notation)
that we will use throughout this thesis. Moreover, we will try to establish some notation
with regards to the iterating process over the irreducible components of X fixed in an
order (X1, . . . , Xm). We refer the reader to Section 2.4 where the notations and basic
results regarding the iterating process over the components are provided.

Before we can write down the notations we try to fix, we first need to give a convenient
definition of how we denote matrices that admit a block structure.

Definition 4.4.6. Let n =
∑m

i=1 ni. AnyM ∈ k[x]n×n can be described by block matrices
Mi,j ∈ k[x]ni×nj , i, j = 1, . . . ,m. That is,

M =


M1,1 M1,2 . . . M1,m

M2,1 M2,2 . . . M2,m
...

... . . . ...

︸ ︷︷ ︸
n1

Mm,1 ︸ ︷︷ ︸
n2

Mm,2 . . . ︸ ︷︷ ︸
nm

Mm,m



and we write M = (Mi,j)i,j . In the following we will often just specify the blocks Mi,j to
determine M in the given n-block-form. 4

Notation 4.4.7. Let X be a reduced cover of P1
k with irreducible components Xi for

which we fix an order (X1, . . . , Xm). Let Yi be defined as in Definition 2.4.1. Let Ji ∈ OXi
be the ideal sheaf of OXi cutting out Yi−1∩Xi in Xi. Let F be an OX -ideal. Let v1, . . . , vn
denote a basis of F(V0). For i = 1, . . . ,m let

(i) ni denote the degree of the restriction of π to Xi,

(ii) Ωi = (ωi,1, . . . , ωi,ni) denote a reduced basis of Ri,0,

(iii) Fi := F|Xi denote the restriction of F to Xi, if F = OX(D), we set Di = D|Xi ,

(iv) vi,1, . . . , vi,ni denote a reduced basis of Fi(Vi,0),

(v) ci,1, . . . , ci,ni denote a reduced basis of Ji(Vi,0)Fi(Vi,0),

(vi) Ci denote a basis transformation matrix from ωi,1, . . . , ωi,ni to ci,1, . . . , ci,ni , that is

(ci,1, . . . , ci,ni) = (ωi,1, . . . , ωi,ni) · Ci, (4:17)

(vii) TFi denote a basis transformation matrix from ωi,1, . . . , ωi,ni to vi,1, . . . , vi,ni , that is

(vi,1, . . . , vi,ni) = (ωi,1, . . . , ωi,ni) · TFi . (4:18)

If F = OX(D), we also write TDi .

Moreover, let

(viii) Ωm
i := (ωi,j)i,j := (ωi,1, . . . , ωi,ni)i=1,...,m denote the corresponding basis of R+

0 ,

(ix) (vi,j)i,j := (vi,1, . . . , vi,ni)i=1,...,m denote the corresponding basis of
⊕m

i=1Fi(Vi,0),

(x) TF denote the basis transformation matrix from (ωi,j)i,j to (vi,j)i,j , that is

(vi,j)i,j = (ωi,j)i,j · TF , (4:19)
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thus TF = (Ti,j)i,j with

Ti,j =
{
TFi , i = j

0, i 6= j,

if F = OX(D), we also write TD,

(xi) T0,F denote a basis transformation matrix from (vi,j)i,j to v1, . . . , vn, that is

(v1, . . . , vn) = (vi,j)i,j · T0,F , (4:20)

(xii) Let MF denote the basis transformation matrix from (ωi,j)i,j to v1, . . . , vn, that is

(v1, . . . , vn) = (ωi,j)i,j ·MF . (4:21)

If F = OX(D), we also write MD.

By definition, we thus have MF = (Mi,j)i,j = TF · T0,F . If T0,F = (Ti,j)i,j , then Mi,j =
TFi · Ti,j . 4

Remark 4.4.8. By Notation 4.4.7, if F is an OX -ideal with basis matrixMF with respect to
Ωm
i , then MF is in n-block-form with row blocks Mi,F ∈ k[x]ni×n. The row block matrix

Mi,F contains by definition the coefficients of the basis elements of F(V0) restricted to
Xi respectively regarded as elements in F|Xi(Vi,0) as column vectors. In particular, the
columns ofMi,F represent a generating set of F|Xi(Vi,0) and thus ColumnBasis applied to
Mi,F returns a basis matrix of F|Xi(Vi,0). Frankly speaking, the matrixMF therefore does
not only represent F(V0) via a basis but does also provide the algorithmic possibility to
compute the restrictions F|Xi(Vi,0). The algorithm ComputeComponentMatrices will
compute these restrictions by computing the mentioned basis matrices, see Algorithm 5.

4
What we have seen in Remark 4.4.8 that the representation of F(V0) via a basis that
itself is represented with respect to the basis Ωm

i in contrast with a representation solely
with respect to Ω has the advantage of being able to compute the restrictions to the
irreducible components. This will turn out not only to be handy but also to be crucial
if we want to see whether a given OX -ideal is isomorphic to OX . After we have proven
the existence of small bases and thus be able to give bounds for the π-invariants −|X|n
in the next section, we will see in Section 4.6 that the representation of a reduced basis Ω
with respect to Ωm

i will provide the possibility to efficiently change from a representation
with respect to Ω to one with respect to Ωm

i (note that the converse is not true in general,
see the remarks we make in the introductory text of Section 6.3). This will give us access
to the advantages revealed in Remark 4.4.8 of the latter representation in the case of the
former representation.

4.4.2 Finding Small Bases in the Case of Reducible Schemes

In this section we will prove the existence of bases of F(V0) over k[x] whose basis matrix
MF as in Notation 4.4.7 (xii) has bounded row degrees in terms of degk Fi(Vi,0) and
invariants of X. Here F is any OX -ideal. Moreover, we will give an effective algorithm
that is able to compute the desired basis matrix MF given any basis matrix of F(V0) with
respect to Ωm

i . We will depend on this when it comes to computing basis matrices from
which we compute so called modification functions, see Section 5.7.2. We will achieve all
of the above by using linear algebra over k[x] and the so called Popov form of polynomial
matrices.
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Furthermore, the following lemma tells us that any basis transformation matrix T0,F
will provide a transformation matrix from which we might compute the π-invariants of F .
This will enable us to give bounds for the π-invariants of general OX -ideals in Section 4.5.

Lemma 4.4.9. Let X be a reduced cover of P1
k. Let F be an OX-ideal. Any basis transfor-

mation matrix T0,F from (vi,j)i,j to a basis v1, . . . , vn of F(V0) yields a basis transformation
matrix

T = diag(x−|Fi|j ) · T0,F

from F(S) to F(V0). Now if we drop the assumption that S is disjoint to the intersection
points of X and assume that F|S = ⊕mi=1F|Si, then T as before yields the same basis
transformation matrix.

Proof. Let v1, . . . , vn be a basis of F(V0) and (vi,1, . . . , vi,ni) a reduced basis of Fi(Vi,0),
that is (ṽi,1, . . . , ṽi,ni) = (vi,1x|Fi|1 , . . . , vi,nix|Fi|ni ) is a basis of F|Si(Si). In both cases, the
assumptions provide that F|S(S) =

⊕m
i=1F|Si(Si) and thus we may choose (ṽi,j)i,j to be

a basis of the former. Then we have

(v1, . . . , vn) = (vi,j)i,j · T0,F

= (ṽi,j)i,j · diag(x−|Fi|j )i,j · T0,F

which yields the assertion in both cases.

Now Lemma 4.3.5 combined with Corollary 4.3.6 tells us that the column degrees of the re-
duction of T as above will constitute the π-invariants of F . In particular, by Remark 4.3.7,
the ordered column degrees of T will be an upper bound for the π-invariants of F . By
Theorem 4.3.23, we already know bounds for the π-invariants of Fi for all i = 1, . . . , n.
Hence we are left to argue why we are able to find a basis of F(V0) which is small in
relation to the reduced bases (vi,j)i,j of

⊕m
i=1Fi(Vi,0).

The main idea to achieve this is the following: Assume X to have two irreducible
components X1 and X2. Then we would like to find a basis of F(V0) which is small
both in terms of the reduced bases of F1(V1,0) and F2(V2,0). Since F(V0) embeds into
F1(V1,0)⊕F2(V2,0) and this embedding is compatible with the surjection F(V0)→ Fi(Vi,0),
we find a basis of F(V0) mapping to a given one of F1(V1,0). But its image in F2(V2,0)
may be arbitrary. But we are able to show that we might reduce that image by a reduced
basis of the ideal cutting out X1 ∩X2 in X2. The degree of this ideal only depends on X
and its components (and how those intersect inside of X). For general X we can iterate
this procedure to finally obtain the desired basis of F(V0).

The line of argument here is a pure linear algebra one and only deals with bases of
free modules. An important statement which will be used here is Proposition C.2.2.

We will start by introducing matrices that are not only reduced but also satisfy further
properties, matrices in the so called Popov form.

Definition 4.4.10. Let M = (vi,j)i,j ∈ k[x]n×n be a reduced matrix with columns
v1, . . . , vn ∈ k[x]n×1. For every j = 1, . . . , n we denote by pivj(M) = piv(vj) the row
index of the lowermost non-zero entry in LC(vj) and call it the pivot index of vj . Con-
sider the following properties that M might satisfy:

(i) The pivot indices of v1, . . . , vn are all distinct.

(ii) The entry vpiv(vj),j is monic.

(iii) We have deg(v1) ≤ deg(v2) ≤ . . . ≤ deg(vn) and if deg(vj) = deg(vj+1), then
piv(vj) < piv(vj+1).
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(iv) For all j = 1, . . . , n and ` ∈ {1, . . . , n} \ {j} we have deg(vpiv(vj),j) > deg(vpiv(vj),`).

If M satisfies Item (i), then M is called in weak Popov form. If M satisfies Items (i)
to (iv), then M is called in Popov form. 4

Remark 4.4.11. Let M ∈ k[x]n×n be a matrix in weak Popov form (resp. Popov form).
Then for all j = 1, . . . , n the matrix obtained by deleting row piv(vj) and column j is still
in weak Popov form (resp. Popov form). Indeed, deleting row piv(vj) and column j from
M does not affect the pivot indices of the columns v` for ` 6= j and, moreover, since M is
in weak Popov form, all piv(vj) are distinct which stays true after deleting. 4

Lemma 4.4.12. Let b = (b1, . . . , bm)T ∈ k[x]m, P ∈ k[x]m×m be such that P is in Popov
form. Let d = deg(b) = maxmi=1{deg(bi)} > deg(P ). We define the matrix

M :=


0 xd

b1

P
...
bn


and denote by Q = Popov(M) its Popov form computed by algorithm Popov, see Theo-
rem A.2.16. Let U ∈ k[x]m+1×m+1 denote the matrix with Q = MU . Then

Q =


0 xd

b′1

P
...
b′n

 and U =
(

Em Vm,1
01,m E1

)

with Vm,1 ∈ k[x]m×1 and for all i = 1, . . . ,m we have deg(b′i) < deg(ppiv(pji )) for some
ji ∈ {1, . . . ,m}. In particular, for b′ = (b′1, . . . , b′m)T we have deg(b′) < deg(P ).

Proof. First of all, note that both the Popov form of a non-singular matrix and the trans-
formation matrix providing the Popov form are unique. Moreover, its column degrees are
unique and minimal under those of matrices right equivalent to the original matrix. The
column degrees of the Popov form add up to the degree of the determinant since it is
reduced, see Definition 4.3.3 (iv). Since P is reduced, LC(P ) has full rank and thus obvi-
ously the same is true for LC(M) and therefore M is already reduced. Hence the column
degrees of M equal the column degrees of its Popov form. Furthermore, by assumption,
we have deg(P ) < d and P is in Popov form, that is, the column degrees of M are already
ordered non-decreasingly which will also be true for its Popov form. From the above we
can deduce that Popov will neither change the order of the columns of M nor will it
increase any column degree. This shows that the column operations that will be carried
out by Popov on M (those that will not be reversed) can not involve the last column as
one of the column that alters another one. Any alteration of the first m columns of M
involving the last column produces an entry in the uppermost row with degree at least d
which then increases the column degree of the column in which it appears. This is not
possible since the column degrees of the Popov form ofM are already determined by those
ofM . Therefore any such alteration need to be reversed with the appropriate action using
the last column since it is the only column with non-zero uppermost entry. The above
also shows that the pivot indices of the Popov form of M are already determined by those
of P and that of the last column will be 1.

However, any column operations only involving the leftmost m columns of M need to
be reversed since otherwise this contradicts that P is in Popov form. Therefore, the only
possible (not-reversed) column operations that Popov will carry out onM are alterations
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of the rightmost column by the leftmost m columns. Those will ensure that the degrees
of the lowermost m entries of the rightmost column of the output matrix will be strictly
bounded by the respective degrees of the entries of P at the pivot indices of P . This
proves the assertion about the output matrix of Popov. The restrictions on the possible
column operations carried out by Popov shows that the transformation matrix U with
Popov(M) = MU is indeed of the asserted form.

Proposition 4.4.13. Let B = (bi,j)i,j = (b1, . . . , bn) ∈ k[x]m×n, P = (pi,j)i,j ∈ k[x]m×m
be two matrices such that P is in Popov form. Let di := deg(bi) > d and assume d1 ≤
. . . ≤ dn. We define the matrix

M :=


xd1

0 . . .
xdn

P b1 . . . bn


and denote by Q = Popov(M) its Popov form computed by algorithm Popov, see Theo-
rem A.2.16. Let U ∈ k[x]m+n×m+n denote the matrix with Q = MU . Then

Q =


xd1

0 . . .
xdn

P b′1 . . . b′n

 and U =
(
Em Vm,n
0 En

)

with Vm,n ∈ k[x]m×n and, moreover, for all i = 1, . . . , n we have deg(b′i,j) < deg(ppiv(pj),j)
for some j ∈ {1, . . . ,m}. In particular, deg(B + PVm,n) < deg(P ).

Proof. We prove the assertion by induction on n. The base case n = 1 is proven by
Lemma 4.4.12. Now let us assume that the assertion is true for every (m − 1 ×m − 1)
matrix M . Let

Mm,n =


xd1

0 . . .
xdn−1

xdn

P b1 . . . bn−1 bn

 and Mm,n−1 =


xd1

0 . . .
xdn−1

P b1 . . . bn−1


where Mm,n−1 originates from Mm,n by deleting row n and column n+m. By induction
hypothesis,

Qm,n−1 := Popov(Mm,n−1) = Mm,n−1 · Um,n−1

= Mm,n−1 ·
(
Em Vm,n−1
0 En−1

)

=


xd1

0 . . .
xdn−1

P b′1 . . . b′n−1


for some Vm,n−1 ∈ k[x]m×n−1, b′j = (b′1,j , . . . , b′m,j)T and for all i = 1, . . . ,m we have
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deg(b′i,j) < deg(ppiv(pj),j) for some j ∈ {1, . . . ,m}. Now we set

Mm,1 =
(

0 xdn

P bn

)
and apply Lemma 4.4.12 to obtain

Qm,1 = Popov(Mm,1)
= Mm,1 · Um,1

= Mm,1 ·
(
Em vm,1
0 1

)
=
(

0 xdn

P b′n

)
with vm,1, b′n ∈ k[x]m, b′n = (b′1,n, . . . , b′m,n)T and for all i = 1, . . . ,m we have deg(b′i,n) <
deg(ppiv(pj),j) for some j ∈ {1, . . . ,m}. Now we define

Vm,n =
(

Vm,n−1
0 vm,1

)
and Um,n =

(
Em Vm,n
0 En

)
.

Then we easily see that

Qm,n := Mm,n · Um,n =


xd1

0 . . .
xdn−1

xdn

P b′1 . . . b′n−1 b′n

 .

By assumption, we have d1 ≤ . . . ≤ dn and di > deg(P ) which now together with

∀ i = 1, . . . ,m deg(b′i,j) < deg(ppiv(pj),j)

provides that Qm,n is in Popov form. Since both the Popov form of non-singular matrices
and the transformation matrix providing the Popov form are unique, we have

Qm,n = Popov(Mm,n)

with unique transformation matrix Um,n which finishes the proof.

The following algorithm is the algorithmic implementation of Proposition 4.4.13. We will
not need it in our algorithms and we only state it for completeness. Instead, we will only
need the statement of Proposition 4.4.13 to come up with the basis we are looking for.
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Algorithm 3 Reducing a matrix by a matrix in Popov form
Assumption: The algorithm Popov returns both the Popov form of the input matrix

and the corresponding transformation matrix
Input B ∈ k[x]m×n; P = (pi,j)i,j ∈ k[x]m×m in Popov form

Output U ∈ k[x]m×n and B′ such that B′ := B + PU = (b′i,j)i,j and for all
i = 1, . . . , n we have deg(b′i,`) < deg(ppiv(pj),j) for some j ∈ {1, . . . ,m}

1: procedure ReduceByPopov(B,P )
2: for j = 1, . . . , n do
3: dj ← maxmi=1{deg(bi,j)}
4: D ← diag(xd1 , . . . , xdn)

5: M ←
(

0 D
P B

)
6: Q,V ← Popov(M)
7: U ← SubMatrix(V, (1,m+ 1), (m,n))
8: return U,B + PU

Proposition 4.4.14. The algorithm ReduceByPopov, see Algorithm 5, is correct.
Moreover, if d is an upper bound of the degrees of both B and P , then ReduceByPopov
requires at most O∼((m+ n)ωd) operations in k and returns matrices B′ and U such that
B′ = B + PU and deg(B′) < deg(P ).

Proof. The correctness of ReduceByPopov follows from Proposition 4.4.13. By con-
struction, the matrix M in line 5 has degree bounded by d and thus Popov requires at
most O∼((m+ n)ωd) operations in k, see Theorem A.2.16.

The following proposition shows that if we can find suitable unimodular column operations
for a given matrix that result in row degree bounds, then by suitable scaling we can employ
the Popov algorithm to compute a matrix with the desired row degree bounds.

Proposition 4.4.15. Let M = (mi,j)i,j ∈ k[x]m×n be a polynomial matrix. If there are
unimodular column operations on M such that the i-th row of the resulting matrix has
degree di and d := maxmi=1{di}, then

M ′ = diag(xd1−d, . . . , xdm−d) ·Popov(diag(xd−d1 , . . . , xd−dm) ·M)

is a right equivalent matrix of M which has row degrees e1, . . . , em beginning from top such
that ei ≤ di for all i = 1, . . . ,m.

Proof. Let U ∈ k[x]n×n denote the unimodular matrix such that M · U has row degrees
d1, . . . , dm beginning from top. Obviously, every row of

N := diag(xd−d1 , . . . , xd−dm) ·M · U

then has degree d. Note that since diag(xd−d1 , . . . , xd−dm) ·M and N are right equivalent,
their Popov forms coincide. Moreover, the column degree of every column of N is bounded
by d. Therefore, its Popov form has column degrees that are bounded by d as well.
Moreover, due to the definition of the Popov form we know that the same holds for the
row degrees of Popov(N). Now we set M ′ := diag(xd1−d, . . . , xdm−d) · Popov(N) and
see that its row degrees e1, . . . , em satisfy ei ≤ di for all i = 1, . . . ,m. Finally, that M ′ is
right equivalent toM follows easily from the fact that Popov computes a right equivalent
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matrix, that is, we have

M ′ = diag(xd1−d, . . . , xdm−d) ·Popov(diag(xd−d1 , . . . , xd−dm) ·M)
= diag(xd1−d, . . . , xdm−d) · (diag(xd−d1 , . . . , xd−dm) ·M) · T
= M · T

for some unimodular T ∈ GL(n, k[x]).

Proposition 4.4.16. Let n =
∑m

i=1 ni. For every matrix M = (Mi,j)i,j in n-block-form
there is a right equivalent matrix M ′ = MU such that

M ′ =



C1 0 . . . 0
N2,1 C2 0 . . . 0
N3,1 N3,2 C3 0 . . . 0
...

... . . . . . . . . . ...
Nm−1,1 Nm−1,2 . . . Nm−1,m−2 Cm−1 0
Nm,1 Nm,2 . . . Nm,m−2 Nm,m−1 Cm


,

where Ci is in Popov form and for all j = 1, . . . ,m the `-th row of Ni,j has degree strictly
bounded by the `-th row of Ci. In particular, deg(Ni,j) < deg(Ci) for all i = 1, . . . ,m.

Proof. We compute a column basis of the first row block (Mi,j)j=1,...,m using Column-
Basis, compute its Popov form with Popov, call it C1 and apply the necessary column
operations to all of M . The resulting matrix now looks like

M1 =



C1 0 . . . 0
N2,1 N2,2 . . . N2,m
N3,1 N3,2 . . . N3,m
...

...
...

...
...

...
Nm−1,1 Nm−1,2 . . . Nm−1,m
Nm,1 Nm,2 . . . Nm,m


.

Now we can apply the same method again and compute the Popov form of a basis of the
column space of [N2,2| . . . |N2,m] and apply the unimodular column operations to all of M1
which then provides

M2 =



C1 0 . . . 0
N ′2,1 C2 0 . . . 0
N ′3,1 N ′3,2 . . . N ′3,m
...

...
...

...
...

...
N ′m−1,1 N ′m−1,2 . . . N ′m−1,m
N ′m,1 N ′m,2 . . . N ′m,m


with C2 in Popov form. Thus by Proposition 4.4.13, there are further unimodular column
operations that reduces the row degrees of N ′2,1 accordingly. This shows that the assertion
follows from induction over the number m of row blocks of M .

Corollary 4.4.17. Let X be a reducible and reduced cover of P1
k. Let F be an OX-ideal.
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There is a k[x]-basis v1, . . . , vn of F(V0) such that

MF =



C1 0
N2,1 C2 0
N3,1 N3,2 C3 0
...

... . . . . . . . . .
Nm−1,1 Nm−1,2 . . . Nm−1,m−2 Cm−1 0
Nm,1 Nm,2 . . . Nm,m−2 Nm,m−1 Cm


,

is the basis matrix with respect to the basis Ωm
i , that is,

(v1, . . . , vn) = Ωm
i ·MF .

Moreover, Ci is in Popov form and for all j = 1, . . . ,m the `-th row of Ni,j has degree
strictly bounded by the `-th row of Ci. If F is invertible or satisfies FP = OX,P for all
P ∈ Supp(S ), then the matrices Ci satisfy

deg(Ci) ≤
degk Fi(Vi,0)

ni
+ ci,X .

Proof. The existence of MF in the asserted form follows from Proposition 4.4.16. We
show the assertion about the Ci only for Cm since the general statement then follows by
induction. In general, the i-th row block of MF contains a generating set of Fi(Vi,0).
Moreover, by construction, (Nm,1 | . . . | Nm,m−1 | Cm) has rank nm and thus represents
a k[x]-generating set of Fi(Vm,0). Due to the form of MF , the matrix Cm represents a
basis of the submodule of Fm(Vm,0) of those elements vanishing on X1 ∪ . . .∪Xm−1. This
precisely is the submodule Jm(Vm,0)Fm(Vm,0), see Proposition C.2.2. Let us now prove
that the assumptions on F provide degk JiFi = degk Ji + degk Fi for i = 1, . . . ,m. In the
case that F is invertible, this is due to Lemma C.4.7. In the case that FP = OX,P for all
P ∈ Supp(OXi/Ji) ⊆ Supp(S ), we have

Ji,PFi,P =
{
Fi,P , P 6∈ Supp(OXi/Ji)
Ji,P , P ∈ Supp(OXi/Ji)

which then provides

degk JiFi =
∑
P∈X
Ji,PFi,P =

∑
P∈Supp(OXi/Ji)

Ji,P +
∑

P 6∈Supp(OXi/Ji)

Fi,P

= degk Ji + degk Fi.

Now by Lemmas 2.4.5 and 4.3.28, we have

deg(Ci) ≤
Ji(Vi,0)Fi(Vi,0)

ni
+ cXi

≤ degk Fi(Vi,0) + χ(Yi,Si)
ni

+ cXi

which by Definition 2.4.10 yields

deg(Ci) ≤
degk Fi(Vi,0)

ni
+ ci,X

and thus finishes the proof.
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Corollary 4.4.18. Let X be a reducible and reduced cover of P1
k. Let F be an OX-ideal.

There is a k[x]-basis v1, . . . , vn of F(V0) such that

T0,F =



En1 0
N2,1 C2 0
N3,1 N3,2 C3 0
...

... . . . . . . . . .
Nm−1,1 Nm−1,2 . . . Nm−1,m−2 Cm−1 0
Nm,1 Nm,2 . . . Nm,m−2 Nm,m−1 Cm


,

is the basis transformation matrix regarding the basis (vi,j)i,j

(v1, . . . , vn) = (vi,j)i,j · T0,F .

Moreover, Ci is in Popov form and for all j = 1, . . . ,m the `-th row of Ni,j has degree
strictly bounded by the `-th row of Ci. If F is invertible or satisfies FP = OX,P for all
P ∈ Supp(S ), then the matrices Ci satisfy

deg(Ci) ≤ cXi .

Proof. The prove is the very same as the one of Corollary 4.4.17 with one exception: The
matrices Ci are basis matrices of the free k[x]-modules Ji(Vi,0)Fi(Vi,0) with respect to the
reduced basis vi,1, . . . , vi,ni instead of ωi,1, . . . , ωi,ni . In particular, C1 = En1 . Both JiFi
and Fi are OXi-ideals with Ji(Vi,0)Fi(Vi,0) ⊆ Fi(Vi,0) and Ji(S)Fi(S) = Fi(S). Thus we
may apply Proposition 4.3.26 with s = 0 to obtain

deg(Ci) ≤
−degk Fi + degk JiFi + ni

ni
+ cXi

= degk Ji(Vi,0) + ni
ni

+ cXi

where we have used the assumption on F that provides degk JiFi = degk Ji + degk Fi.
Therefore, as in the proof of Corollary 4.4.17 we use Lemma 2.4.5 and Definition 2.4.10
to obtain deg(Ci) ≤ ci,X as asserted.

Remark 4.4.19. We will later combine Corollaries 4.3.6 and 4.4.18 and Lemma 4.4.9 to
obtain a bound for the π-invariants for general OX -ideals F and for OX . 4

Proposition 4.4.20. Let X be a reducible and reduced cover of P1
k. Let F be an OX-ideal.

Let M be any basis matrix of F(V0) with respect to Ωm
i . Let di =

⌈
degk Fi(Vi,0)

ni
+ ci,X

⌉
.

Then
diag(xd1−d, . . . , xdm−d) ·Popov(diag(xd−d1 , . . . , xd−dm) ·M)

is a basis matrix of F(V0) in n-block-form whose i-th row block has degree bounded by di.
In particular, its degree is bounded by maxmi=1{degk Fi(Vi,0)/ni + ci,X}.

Proof. Corollary 4.4.17 shows that there is a right equivalent matrix ofM that has the de-
sired bounded row block degrees. Therefore, the assertion follows from Proposition 4.4.15
which provides a right equivalent matrix of M and therefore another basis matrix of
F(V0).
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Algorithm 4 Compute component reduced basis matrix
Input M ∈ k[x]n×n in n-block-form; n =

∑m
i=1 ni; d1, . . . , dm desired row block

degrees
Output T = (Ti,j)i,j ∈ k[x]n×n in n-block-form, right equivalent to M with

deg(Ti,j) ≤ di for all j = 1, . . . ,m

1: procedure RowBlockReduce(M,d1, . . . , dm)
2: D ← max{d1, . . . , dm}
3: M ← ScaleRows(M,xD−d1 , . . . , xD−dm)
4: P ← Popov(M)
5: P ← ScaleRows(P, xd1−D, . . . , xdm−D)
6: return P

Proposition 4.4.21. If there is a right equivalent matrix of M with row block degrees
bounded by d1, . . . , dm, then the algorithm RowBlockReduce, see Algorithm 4, is cor-
rect. Moreover, if d is a common bound for D and degM , then RowBlockReduce
requires at most O∼(nωd) operations in k. The output matrix has degree bounded by
maxmi=1{di} ≤ d.

Proof. The correctness of RowBlockReduce follows from Proposition 4.4.20. This al-
ready provides deg(RowBlockReduce(M)) ≤ maxmi=1{di}. Note that after the first
scaling the row block degrees are all equal to D and thus Popov does not increase the
row block degrees (it may increase the degrees of columns but this can not exceed D) since
otherwise the result would not be reduced. This provides maxmi=1{di} ≤ d.

Scaling a square matrix N of dimension n with xD requires at most n2 polynomial
multiplications of polynomials with degree bounded by D+deg(N). Therefore, it requires
at most O∼(n2(D + deg(N))) operations in k, see Proposition A.2.3. Applying this to
M we obtain that line 3 requires at most O∼(n2d) operations in k. Since d is an upper
bound of both D and deg(M), 2d is an upper bound for the scaled version of M which
is the input of Popov in line 4. Thus, by Theorem A.2.16, the computation of P at line
4 requires at most O∼(nωd) operations in k and provides by construction a matrix with
degree bounded by D. Finally, the scaling argument from above applies again and we can
finish the proof.

4.5 Bounds for π-Invariants in the General Case

In this section we mainly use Corollary 4.4.18 to prove bounds of the π-invariants of
a general OX -ideal. The same argument will be used to show that −|X|i are linearly
bounded by cX .

Lemma 4.5.1. Let X be a reduced cover of P1
k. Let F be an OX-ideal. Assume that F is

invertible or that FP = OX,P for all P ∈ Supp(S ). Then

(i) −|F|n ≤ maxmi=1

{
degk Fi
ni

+ 2cXi
}
≤ maxmi=1

{
degk Fi
ni

}
+ 2cX and

(ii) maxni=1{− degk Fi/ni} ≤ −|F|1.

Proof. We prove Item (i) first. We can write down a basis transformation matrix from a
basis of F(S) to one of F(V0) and then use the insights of Theorem 4.3.15. Let (ṽi,j)i,j
be the O∞-basis of F(S) =

⊕m
i=1F(Si) that is provided by the reduced bases of F(V0),

that is ṽi,j = x|Fi|jvi,j . Let T0,F be as in Corollary 4.4.18 and let (v1, . . . , vn) denote the
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corresponding k[x]-basis of F(V0). Then by Lemma 4.4.9, a basis transformation matrix
M from the basis (ṽi,j)i,j of F(S) to (vi)i, one of F(V0), is provided by

M = diag(x−|Fi|j | i = 1, . . . , n, j = 1, . . . , ni) · T0,F .

By Corollary 4.4.18, we thus have

M = (Mi,j)i,j =


diag(x−|Fi|` | ` = 1, . . . , n1), i = j = 1
diag(x−|Fi|` | ` = 1, . . . , ni) · Ci, i = j > 1
diag(x−|Fi|` | ` = 1, . . . , ni) ·Ni,j , i > j

0, i < j.

In particular, the degree of M and thus the maximum of the column degrees of M is
bounded by

mmax
i=1
{degMi,i} = mmax

i=1
{ nimax
j=1
{−|Fi|j + deg col(j, Ci)}}

≤ mmax
i=1
{ nimax
j=1
{−|Fi|ni + degCi}}

= mmax
i=1
{−|Fi|ni + degCi}}

Corollary 4.4.18 ≤ mmax
i=1
{−|Fi|ni + cXi} .

By Remark 4.3.7, this provides the upper bounds for −|F|i.
Now let us prove Item (ii). By Remark 4.3.19, r ≥ −|F|1 is equivalent to F(r(x)∞)(X) 6=

0 and thus r < −|F|1 is equivalent to F(r(x)∞)(X) = 0. Hence if we find r ∈ Z such
that F(r(x)∞)(X) vanishes, r provides a lower bound for −|F|1. By Proposition 4.4.2,
we have an embedding

φ : F(r(x)∞)→
m⊕
i=1

(τi)∗F(r(x)∞)|Xi . (5:22)

By Definition 2.2.9, the pole divisor of x on X restricts to the pole divisor of x on Xi.
This together with the fact that the pullback of sheaves respects the tensor product of
sheaves provides F(r(x)∞)|Xi = F|Xi(r(x)Xi,∞). Now taking global sections in Eq. (5:22)
provides

H0(X,F(r(x)∞))→
m⊕
i=1

H0(X,F|Xi(r(x)Xi,∞)).

Now since X is reduced, Xi is integral and thus we may apply Lemma C.4.6 which tells
us that F|Xi(r(x)Xi,∞) vanishes whenever degk F|Xi(r(x)Xi,∞) > 0. By Lemma C.4.7, we
have

degk F|Xi(r(x)Xi,∞) = degk F|Xi + r degk(x)Xi,∞
= degk F|Xi + rni > 0

if r > −degk F|Xi/ni. Since we need all F|Xi(r(x)Xi,∞) to vanish, the assertion follows.

Corollary 4.5.2. Let X be a reduced cover of P1
k. Then

0 = −|X|1 ≤ . . . ≤ −|X|n ≤ cX .

Proof. We apply Lemma 4.5.1 (i) and obtain−|X|n ≤ cX as desired. The equality−|X|1 =
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0 follows from Corollary 4.3.16.

Corollary 4.5.3. Let X be a cover of P1
k. Let Ω = (ω1, . . . , ωn) be a reduced basis of OX .

Let f ∈ R0 with deg φΩ(f) ≤ d. Then the k[x]-basis fΩ = (fω1, . . . , fωn) has a basis
matrix Tf with deg(Tf ) ≤ d+ 2cX .

Proof. Combine Corollary 4.5.2 and Lemma 4.3.35.

Corollary 4.5.4. Let X be a reducible and reduced cover of P1
k. Let F be an OX-ideal

such that F(V0) ⊆ R0 and F(S) = xsOS. The basis transformation matrix T from a
reduced basis of OX to a reduced basis of F has degree bounded by

deg T ≤ s+ mmax
i=1

{
degk Fi
ni

}
+ 2cX .

In particular, if degk F|Xi = 0 for all i = 1, . . . ,m, then the above basis matrix has degree
bounded by

deg T ≤ degk F(V0)
n

+ 2cX .

Proof. By Corollary 4.3.27, we know that the respective basis matrix degree is bounded
by s−|F|n and thus Lemma 4.5.1 provides the assertion. The particular part follows from
degk F|Xi = 0 and

s = sn

n
= −degk F(S)

n
= degk F(V0)

n

where the second and third equality are due to Corollaries C.4.13 and D.2.9, respectively.

With the same line of argument as in Lemma 4.3.28 we obtain that we are always able to
compute a basis matrix of F(V0) with degree bounded in terms of the degree of F .

Corollary 4.5.5. Let X be a reducible and reduced cover of P1
k. Let F be an OX-ideal

such that F(V0) ⊆ R0 and F(S) = xsOS. Moreover, assume that degk F|Xi = 0. Given
any basis matrix TF of F(V0) with respect to a reduced basis of OX , we have that

deg(RedMat(TF )) ≤ degk F(V0)
n

+ 2cX .

Proof. By Theorem A.2.7, we know that RedMat(TF ) has minimal column degrees among
all k[x]-right equivalent matrices of TF . Now the matrix T from Corollary 4.5.4 is among
these right equivalent matrices and thus deg(T ) provides the asserted upper bound.

4.6 Reduced Basis of OX in the General Case

In this section we use Corollary 4.4.18 to see that a reduced basis Ω of OX respectively R0
has bounded degrees with respect to Ωm

i . We also provide some fundamental properties
of the multiplication table of Ωm

i . Using the above we are able to show that the standard
basis matrix of fR0 with respect to Ωm

i has bounded degrees as well. We will furthermore
see how to compute basis matrices of reduced bases of Fi(Vi,0) only given a basis matrix
of F(V0) with respect to a reduced basis of R0.

Corollary 4.6.1. There exists a k[x]-basis ω1, . . . , ωn of R0 with ω` =
∑m

i=1
∑ni

j=1 ν`,i,jωi,j
such that ν`,i,j ∈ k[x] and

deg ν`,i,j ≤ cXi .
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Moreover, let µi,j,q,s denote the multiplication tables of Xi, i.e. ωi,jωi,q =
∑ni

s=1 µi,j,q,sωi,s.
Then

deg(ν`,i,j · µi,j,q,s) ≤ 3cXi .

Proof. We apply Corollary 4.4.18 to OX and obtain a basis matrix T0,OX of a k[x]-basis
ω1, . . . , ωn of R0 = OX(V0) with regards to Ωm

i . We denote its entries by ν`,i,j where
` = 1, . . . , n runs through the columns and i = 1, . . . ,m, j = 1, . . . , ni together indicate
the rows. That is, ω` =

∑m
i=1
∑ni

j=1 ν`,i,jωi,j . Now by Corollary 4.4.18, this basis matrix
has entries whose degree is bounded as asserted. By Lemma 4.3.34, µi,j,q,s satisfies

degµi,j,q,s ≤ 2 · 2gi + dimkH
0 (Xi,OXi) + ni
ni

≤ 2cXi

and hence we deduce

deg(ν`,i,j · µi,j,q,s) ≤ cXi + 2ci,X ≤ 3cXi .

as asserted.

Not only did we find a k[x]-basis of R0 which has small degree with respect to Ωm
i , but

this does also imply that a reduced basis of R0 has small degree with respect to Ωm
i , too.

Lemma 4.6.2. There exists a reduced basis Ω of R0 whose basis matrix TΩ with respect
to Ωm

i has degree bounded by 2cX .

Proof. Since X is a cover of P1
k, by Definition 2.1.3 (ii), we know that OS =

⊕m
i=1OSi

and thus (ω̃i,j)i,j with ω̃i,j = x|Xi|jωi,j forms an O∞-basis of OS . By Corollary 4.6.1,
there exists a basis β1, . . . , βn of R0 whose basis matrix T0 with respect to Ωm

i has degree
bounded by cX . In particular, T := diag(x−|Xi|j ) · T0 is a basis transformation matrix
from a basis of OS to one of R0. By Corollary 4.3.24, we know that −|Xi|j ≤ cXi for all
i, j ∈ {1, . . . , n} and hence the degree of the diagonal matrix diag(x−|Xi|j ) is bounded by

max
i,j∈{1,...,n}

{−|Xi|j} ≤ max
i∈{1,...,n}

{cXi} ≤ cX .

In particular, deg T ≤ 2cX . By the proof of Theorem 4.3.15, we know that RedMat(T ) is
a basis matrix of a reduced basis of R0 with respect to (ω̃i,j)i,j . In particular, diag(x|Xi|j ) ·
RedMat(T ) is the respective basis matrix with respect to Ωm

i = (ωi,j)i,j . Since |Xi|j ≤ 0
for all i, j ∈ {1, . . . , n} and deg(RedMat(T )) ≤ deg T , see Theorem A.2.7. This provides
the desired basis matrix of a reduced basis of R0 with respect to Ωm

i having degree bounded
by 2cX .

Definition 4.6.3. Let us fix a reduced basis Ω as in Lemma 4.6.2 and we denote its
basis matrix with respect to Ωm

i by TΩ. Note that analogously to Corollary 4.6.1 the
multiplication table entries of Ω have degree bounded by 4cX . 4

Remark 4.6.4. As already advocated in the end of Lemma 4.4.1, the matrix TΩ provides
a possible change of representation, see Remark 4.4.8 and the text following it. If T is a
basis matrix of the basis B with respect to Ω, then we obviously have

B = Ω · T = Ωm
i · TΩ · T

and thus M = TΩ ·T is a matrix representing the basis B with respect to Ωm
i . This matrix

representation now provides the advantage of computing the restrictions to the irreducible
components as revealed in Lemma 4.4.1. The computation of the matrix product M =
TΩ · T requires at most O∼(nωd) operations in k if d is a common bound of 2cX and the
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degree of T . That is, if T has degree in O(cX), then the change of representation can be
computed using at most O∼(nωcX) operations in k. 4
The next algorithm computes the basis matrices TFi as in Notation 4.4.7 from a given
basis matrix with respect to either Ω or Ωm

i . We will pass the information whether the
given basis matrix represents a basis with respect to Ω or Ωm

i to the algorithm in form of
a Boolean c. We will use this notation throughout this thesis and it could be read as

c =
{
true, components are relevant: with respect to Ωm

i

false, components are irrelevant: with respect to Ω

Algorithm 5 From a basis matrix with respect to Ω to one with respect to Ωm
i

Precomputed Basis Ωm
i of R+

0 ; basis matrix TΩ of a reduced basis Ω
Input MF basis matrix of F(V0) either with respect to Ω (c = false) or to

Ωm
i (c = true) where F is an OX -ideal; c Boolean whetherMF is with

respect to Ω or to Ωm
i

Output TF1 , . . . , TFm basis matrices of F1(V1,0), . . . ,Fm(Vm,0), respectively

1: procedure ComputeComponentMatrices(T, c)
2: if c = false then
3: T ← TΩ · T
4: for i = 1, . . . ,m do
5: pi ← 1 +

∑i−1
j=1 nj

6: Ti ← SubMatrix(T, (pi, 1), (ni, n))
7: Ti ← RedMat(ColumnBasis(Ti))
8: return T1, . . . , Tm

Proposition 4.6.5. The algorithm ComputeComponentMatrices, see Algorithm 5,
is correct. Moreover, if d is an upper bound of the degrees of both T = MF and TΩ, then
ComputeComponentMatrices requires at most O∼(nωd) operations in k and returns
matrices with degree bounded by d.

Proof. If c equals true, then T = MF is a basis matrix of F(V0) with respect to Ωm
i .

Otherwise, if B denotes the basis that is represented by MF , we have

B = Ω ·MF = Ωm
i · TΩ ·MF

and hence T := TΩ · MF is the basis matrix representing B with respect to Ωm
i . In

particular, if we write

T =


T1
T2
...
Tm

 ,
with Ti ∈ k[x]ni×n of rank ni, then the columns of Ti represent a k[x]-generating set
of F(Vi,0). In particular, its column space equals F(Vi,0) and thus ColumnBasis(Ti) ∈
k[x]ni×ni is a basis matrix of F(Vi,0), see Theorem A.2.15. Now the correctness of RedMat
finally provides the correctness of ComputeComponentMatrices, see Theorem A.2.7.

Let us consider the running time assertion. The computation of the matrix product
T = TΩ ·MF requires at most O∼(nωd) operations in k. By assumption, 2d is an upper
bound of deg(T ). We consider the running time complexity of each for loop iteration: By
Lemma A.1.2 (vi), we know that SubMatrix has constant cost. Since T has degree
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bounded by 2d, the same holds for all Ti. In particular, the average column degree
si of Ti is bounded by deg(Ti) ≤ 2d. Thus, by Theorem A.2.15, the computation of
ColumnBasis(Ti) requires at mostO∼(nω−1

i nd) operations in k and it has degree bounded
by 2d. Thus, by Theorem A.2.7, calling RedMat requires O∼(nωi d) operations in k. Now
since n ≥ ni, each for loop iteration requires at most O∼(nind) operations in k. A simple
computation shows

m∑
i=1

(nω−1
i nd) = nd

m∑
i=1

(nω−1
i ) ≤ nd(

m∑
i=1

ni)ω−1 ≤ ndnω−1 = nωd

and hence the for loop overall requires at most O∼(nωd) operations in k and hence the
running time assertion follows.

Now we can combine ComputeComponentMatrices and RowBlockReduce to com-
pute a row block reduced matrix for a given basis matrix of some OX -ideal F with
F(Si) = xriOSi .

Algorithm 6 Compute row block reduced basis matrix
Precomputed Basis Ωm

i of R+
0 ; n1, . . . , nm; c1,X , . . . , cm,X

Input M basis matrix of F(V0) with respect to Ωm
i where F is a degree zero

OX -ideal such that F(Si) = xriOSi for all i = 1, . . . ,m
Output M basis matrix of F(V0) in n-block-form with row blocks Mi such

that degMi ≤ (degk Fi(Vi,0))/ni + ci,X

1: procedure CompWiseRedMat(M)
2: M1, . . . ,Mm ← ComputeComponentMatrices(M, true)
3: for i = 1, . . . ,m do
4: ri ← (Degree(Determinant(Mi)))/ni
5: di ← ri + ci,X

6: M ← RowBlockReduce(M,d1, . . . , dm)
7: return M

Remark 4.6.6. Note that by Proposition 4.4.20, the desired row block degrees

di =
⌈

degk Fi(Vi,0)
ni

+ ci,X

⌉
are those we can achieve using RowBlockReduce in algorithm CompWiseRedMat.
But Proposition 4.4.21 shows that every, maybe easier to compute, upper bound of row
block degrees of a possible right equivalent matrix of M suffices. 4

Proposition 4.6.7. The algorithm CompWiseRedMat, see Algorithm 6, is correct.
Moreover, if d is an upper bound of the degree of MF , then CompWiseRedMat requires
at most O∼(nωd) operations in k. In addition, the output matrix has degree bounded by d.

Proof. The correctness of ComputeComponentMatrices provides that the matrices
Mi are the basis matrices of a reduced basis of Fi(Vi,0), see Proposition 4.6.5. The
correctness of Degree and Determinant, together with Proposition D.2.7 provides
deg det(Mi) = degk Fi(Vi,0). Since F has degree zero, by Corollary C.4.13, the latter
equals −degk F(Si) = rini and thus ri = (deg det(Mi))/ni. By Proposition 4.4.20, we
know that di = ri + ci,X is an upper bound for the degree of the i-th row block of some
right equivalent matrix ofM . Thus, by Proposition 4.4.21, the algorithm RowBlockRe-
duce does indeed compute a right equivalent matrix ofM whose i-th row block has degree
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bounded by di. This proves the correctness of CompWiseRedMat. The statement about
the degree of the output matrix follows directly from Proposition 4.4.21.

Next we prove the running time assertion. Let d be an upper bound of degM . Then by
Proposition 4.6.5, the computation of the matrices M1, . . . ,Mm require at most O∼(nωd)
operations in k. The matrices Mi are reduced basis matrices of Fi(Vi,0) and thus, by
Lemma 4.3.28, they satisfy degMi ≤ (degk Fi(Vi,0))/ni + cXi = ri + cXi where the last
equality follows from what we have already seen above. Therefore, by Lemma A.1.2 (ii)
and (iv), the computation of ri at line 4 requires at most O∼(nωi (ri + cXi)) operations in
k. The following computation

m∑
i=1

nωi (ri + cXi) ≤
mmax
i=1
{ri + cXi} ·

m∑
i=1

nωi ≤
mmax
i=1
{ri + cXi} · (

m∑
i=1

ni)ω

≤ mmax
i=1
{ri + cXi} · nω,

together with Lemma 2.4.11 and ri = (degk Fi(Vi,0))/ni provides

m∑
i=1

nωi (ri + cXi) ≤
mmax
i=1
{(degk Fi(Vi,0))/ni + ci,X} · nω.

Therefore, the for loop requires overall at most O∼(maxmi=1{(degk Fi(Vi,0))/ni+ci,X}·nω)
operations in k. Since d is an upper bound of degM , Proposition 4.4.20 provides that
d ≥ degM ≥ maxmi=1{(degk Fi(Vi,0))/ni + ci,X} and thus d is an upper bound as required
for Proposition 4.4.21. The latter therefore provides that RowBlockReduce requires at
most O∼(nωd) operations in k.

With RedMat and CompWiseRedMat we now have two algorithms at hand to compute,
given any basis matrix M of F(V0) (where F is an OX -ideal), a right equivalent matrix
of M with reduced degree. We can use RedMat if M represents a basis with respect to
Ω and CompWiseRedMat if M represents a basis with respect to Ωm

i . But both play
the same role of reducing a given basis matrix and will in Chapter 6 be used in the very
same moments. Therefore, we introduce the algorithm ReduceBasisMatrix which calls
one of them depending on the fixed basis (Ω or Ωm

i as above) with respect to which the
matrix is defined.

Definition 4.6.8. Let ReduceBasisMatrix denote the algorithm that, given a matrix
M ∈ k[x]n and a Boolean c, calls CompWiseRedMat(M) if c = true and RedMat(M)
if c = false and then returns the result. 4

Lemma 4.6.9. The products of the ωi,j satisfy

(i) ωi,j · ωh,` = 0 if i 6= h, and

(ii) deg φΩmi (ωi,j · ωi,`) ≤ −|Xi|j − |Xi|`.

Proof. As elements of
⊕m

i=1Ri,0 we clearly have ωi,j · ωh,` = 0 whenever i 6= h. Property
(ii) follows from Lemma 4.3.34.

Lemma 4.6.10. Let f, g ∈ R+
0 =

⊕m
i=1Ri,0 with

f =
m∑
i=1

ni∑
j=1

λi,jωi,j , and g =
m∑
k=1

nk∑
`=1

εk,`ωk,`.
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Let us denote the entries of the multiplication table of Xi by µi,j,q,s, that is ωi,jωi,q =∑ni
s=1 µi,j,q,sωi,s. Then

fg =
m∑
i=1

ni∑
s=1

 ni∑
j=1

ni∑
`=1

λi,jεi,`µi,j,`,s

ωi,s (6:23)

and thus
deg φΩmi (fg) ≤ deg φΩmi (f) + deg φΩmi (g) + 2cX .

In particular, Eq. (6:23) shows that
∑ni

j=1
∑ni

`=1 λi,jεi,`µi,j,`,s are the coefficients of f|Xig|Xi
with respect to ωi,1, . . . , ωi,ni and hence φΩmi (fg) is simply the concatenation of the vectors
φΩi(f|Xig|Xi).

Proof. A simple computation shows

fg =

 m∑
i=1

ni∑
j=1

λi,jωi,j

 ·( m∑
k=1

nk∑
`=1

εk,`ωk,`

)

=
m∑
i=1

ni∑
j=1

m∑
k=1

ni∑
`=1

λi,jεk,`ωi,jωk,`

Lemma 4.6.9 (i) =
m∑
i=1

ni∑
j=1

ni∑
`=1

λi,jεi,`ωi,jωi,`

=
m∑
i=1

ni∑
j=1

ni∑
`=1

λi,jεi,`

(
ni∑
s=1

µi,j,`,sωi,s

)

=
m∑
i=1

ni∑
s=1

 ni∑
j=1

ni∑
`=1

λi,jεi,`µi,j,`,s

ωi,s.

By Lemma 4.3.34, we have

degµi,j,`,s ≤ 22gi + dimkH
0 (X,OXi) + ni
ni

≤ 2ci,X

and thus maxmi=1{degµi,j,`,s} ≤ 2cX which provides the assertion.

Corollary 4.6.11. Let f =
∑

i,j λi,jωi,j ∈ R0 ⊆ R+
0 =

⊕m
i=1Ri,0 satisfy deg λi,j ≤ d

for all i = 1, . . . ,m and j = 1, . . . , ni. Then the k[x]-basis matrix Mf representing the
k[x]-basis fΩ = (fω1, . . . , fωn) of fR0 satisfies

degMf ≤ d+ 3cX .

Proof. The entries ofMf are the coefficients of fω` with respect to Ωm
i . By Lemma 4.6.10,

we know that the above coefficients that are non-zero are
∑ni

j=1
∑ni

q=1 λi,jν`,i,qµi,j,q,s. By
Corollary 4.6.1, we have deg(ν`,i,q) ≤ cX and thus Lemma 4.6.10 provides the assertion.

Remark 4.6.12. After fixing the bases Ω = ω1, . . . , ωn and Ωm
i = (ωi,j)i,j and having

the products ν`,i,qµi,j,q,s precomputed, the proof of Corollary 4.6.11 resp. Lemma 4.6.10
already shows that the computation of the basis matrix Mf requires the computation of∑m

i=1 n
3
i ≤ n3 polynomial products of degree max{d, 3cX}. We will see that this might

be too many products and hence we will come up with an efficient way of computing the
required coefficients with a complexity in the order of

∑m
i=1 n

2
i respectively n2. 4
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Proposition 4.6.13. Let f ∈ R0 be arbitrary. Then

(i) deg TrFrac(R0)/k(x)(f) ≤ deg φΩmi (f) + 3cX and

(ii) deg TrFrac(R0)/k(x)(f) ≤ deg φΩ(f) + 2cX .

Proof. By definition, we have TrFrac(R0)/k(x)(f) = Tr(Mf ) where Mf denote the k[x]-basis
matrix of fR0 representing the k[x]-basis fΩ = (fω1, . . . , fωn). Hence

deg(TrFrac(R0)/k(x)(f)) = deg(Tr(Mf )) ≤ degMf .

By Corollary 4.6.11, we have degMf ≤ deg φΩmi (f) + 3cX which provides (i). By Corol-
lary 4.5.3, we have degMf ≤ deg φΩ(f) + 2cX which provides (ii).

4.7 Regular Global Sections and Test of Identity

In this section we look for the general analogue of the following statement which is standard
for integral schemes. This establishes the theoretical background for deciding whether a
given degree zero divisor is principal or not.

Lemma 4.7.1 ([Liu02], 7.3.25). Let X be an integral projective scheme over k. Let
D ∈ Div0(X). Then D is principal if and only if OX(D)(X) 6= 0.

Remark 4.7.2. The proof of Lemma 4.7.1 reveals that any of the non-zero elements f in
OX(D)(X) will satisfy div(f−1) = D in the case that D is principal. 4

Lemma 4.7.3. Let X be an integral cover of P1
k. Let D ∈ Div0(X). Let α1, . . . , αn be a

reduced basis of OX(D)(V0). Then the following are equivalent:

(i) D is principal,

(ii) OX(D)(X) 6= 0, and

(iii) div(α−1
1 ) = D.

Proof. The equivalence between (i) and (ii) is due to Lemma 4.7.1. The implication (iii)
⇒ (i) is obvious. Now assume that D is principal. Hence OX(D)(X) 6= 0 and thus, by
Remark 4.3.19, we have 0 ≥ −|D|1 providing |D|1 ≥ 0 and hence, by Theorem 4.3.15, this
implies α1 ∈ OX(D)(X). Now Remark 4.7.2 provides D = div(α−1

1 ).

In the more general case of reducible X this does not stay true anymore. But with a slight
adaption in which we only care about regular global sections of OX(D) it will, at least to
some extent, still be true. For notational reasons we introduce the following notion:

Definition 4.7.4. Let D ∈ Div(X) be a Cartier divisor on X. Then set Lreg(D) =
OX(D)(X) ∩ KX(X)×. 4

Lemma 4.7.5. Let D ∈ Div(X). Then we have

Lreg(D) = {f ∈ KX(X)× | div(f) +D ≥ 0}.

Proof. By Lemma 3.1.32, we have f ∈ OX(D)(X) if and only if div(f) +D ≥ 0 for every
f ∈ KX(X)×.

Lemma 4.7.6 ([Liu02], 3.3.21). Let X be a reduced, connected projective scheme over a
field k. Then H0 (X,OX) is a finite field extension of k. Moreover, if X is geometrically
reduced and geometrically connected, then H0 (X,OX) = k.

110



Chapter 4 4.7. Regular Global Sections and Test of Identity

Lemma 4.7.7. Let X be a projective curve over k. Let D ∈ Div(X) be effective and have
degree zero. Then D = 0.

Proof. Then we have OX(−D) ≤ OX and by [Liu02, 7.3.5], we deduce 0 = degkD =∑
P∈X dimkOX,P /OX(−D)P and thus dimkOX,P /OX(−D)P = 0 which givesOX(−D)P =

OX,P for all P ∈ X. Now Corollary B.1.30 already provides OX(D) = OX and hence
D = 0.

Lemma 4.7.8. Let X be a projective curve over k. Let D ∈ Div(X) and f ∈ KX(X)×.
Then

Lreg(D + div(f)) ∼= f−1Lreg(D).

In particular,
Lreg(div(f)) ∼= f−1H0 (X,OX)× .

If H0 (X,OX) = k, then Lreg(div(f)) ∼= f−1k×.

Proof. By definition of Cartier divisors, we have div(g) + div(f) = div(gf) for any two
f, g ∈ KX(X)×. Thus

Lreg(D + div(f)) = {g ∈ KX(X)× | div(g) + div(f) +D ≥ 0}
= f−1{g ∈ KX(X)× | div(g) +D ≥ 0}
= f−1Lreg(D).

To prove the particular part note that every g ∈ Lreg(0) satisfies div(g) ≥ 0 and thus
by Lemma 4.7.7 we deduce div(g) = 0. This is equivalent to g ∈ OX(X)× and hence
Lreg(0) = H0 (X,OX)×.

Lemma 4.7.9. Let X be a projective curve over k. Let D ∈ Div0(X) be a degree zero
Cartier divisor on X. Then Lreg(D) 6= ∅ if and only if D is principal.

Proof. By definition, we have Lreg(D) = {f ∈ KX(X)× | div(f) +D ≥ 0}. If D = div(g)
for some g ∈ KX(X)×, then div(g−1) + D = 0 and thus g−1 ∈ Lreg(D). Conversely, if
f ∈ Lreg(D), then E := div(f) + D ≥ 0 is effective and still has degree zero. Thus by
Lemma 4.7.7, we have E = 0 and hence deduce D = −div(f) = div(f−1).
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Chapter 5

Picard Group and its Structure

In this chapter we examine the so called Picard group and the associated degree zero
Picard group of a scheme. First, we give the definitions of both groups. To do so, the
reader may recall that invertible sheaves on a scheme X (or more generally, on a locally
ringed space) are those OX -modules that are locally free of rank 1. These are OX -modules
that are locally isomorphic to OX . That is, the OX -module F is invertible if and only if
for every P ∈ X there is an open neighborhood U ⊆ X of P such that F|U is isomorphic
to OU . It is straightforward to prove that for every invertible sheaf F , the OX -module
F∨ = HomOX (F ,OX) is again invertible and satisfies F ⊗OX F∨ ∼= OX . This justifies
that we also write F−1 := F∨ in this case.

Definition 5.0.1. Let X be a scheme. By Pic(X) we denote the set of isomorphism
classes of invertible sheaves on X. As we have seen above, Pic(X) together with the
tensor product ⊗OX of OX -modules form a group with neutral element OX . We call this
group the Picard group of X. 4

Note that the Picard group could also be defined for ringed spaces. To define the degree
zero Picard group, we need to define the degree of invertible sheaves first. Since the sheaf
OX(D) associated to a divisor D ∈ Div(X) is invertible, the notion of degree of an invert-
ible sheaf should be compatible with the degree of the divisor D and, moreover, compatible
with the degree of the OX -ideal OX(D). As we have already seen in Definition 3.1.10, the
degree of divisors is only defined for divisors on curves over k. Moreover, the degree of
OX -ideals, see Definition C.4.1, is defined for OX -ideals on curves of finite residual-type
over k. These definitions do depend on the dimension of X and are only well-defined if
X has dimension at most one. We want to use the degree of OX -ideals to define the de-
gree of invertible sheaves on curves of finite residual-type over k. By Lemma 4.1.2, every
invertible sheaf L is isomorphic to some OX -submodule F of KX which is then by Defi-
nition 3.1.13 an OX -ideal. Therefore, we could define the degree of L to be the degree of
F . This makes sense since the degrees of two isomorphic OX -ideals are equal. Whenever
X is additionally projective, by Lemma C.4.4, we have degk F = χ(OX) − χ(F). We do
only care about the degree zero Picard group in the case of projective curves over k and
thus we define the degree of an invertible sheaf as follows.

Definition 5.0.2. Let X be a projective curve over k. Let L be an invertible sheaf on X.
Then we define its degree as

degk L = χ(OX)− χ(L). 4

In the literature, the degree zero Picard group of an irreducible scheme X is defined to be
the subgroup of Pic(X) consisting of those isomorphism classes of degree zero. To expand
this definition to the class of reducible schemes, we require the invertible sheaf to have
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degree zero restrictions to every single irreducible component of X. This enables us to link
the degree zero Picard group of a reducible scheme to those of its irreducible components.

Definition 5.0.3. Let X be a reduced projective curve over k. By Pic0(X) we denote the
subset of Pic(X) consisting of those isomorphism classes that have degree zero restriction
to every irreducible component of X. By Proposition C.4.15 and Lemma C.4.7, we see
that Pic0(X) together with the tensor product of OX -modules forms a subgroup of Pic(X)
which we call the degree zero Picard group of X. 4

Remark 5.0.4. Moreover, this definition is not too far away from the more general definition
which does not take into account what the degrees of the restrictions are and only requires
the global degree to be zero. For instance, if k̄ denotes an algebraic closure of k, then
the above (more general) definition of the degree zero Picard group comes down to those
isomorphism classes whose restriction to the i-th component of the base extended Xk̄ =
X ⊗k k̄ has degree zero, see [BLR90, Chapter 9, Cor. 13]. In particular, our definition
coincides with the general one for algebraically closed k. 4

Definition 5.0.5. Analogously to Definition 5.0.3, we define the group ClInvId0(X) of
degree zero invertible OX -ideals. 4

As we will see in what follows, the Picard group is very closely related to the group of
Cartier divisor classes and also to the first cohomology group of O×X . Moreover, we will
define the degree zero divisor class group and will see that it is essentially the same as
Pic0(X).

This chapter is organised as follows: In Section 5.1 we will try to give a characterisation
of the Picard group in the affine case. In Section 5.2 we will see the close relation between
the Picard group and H1(X,OX×) and will conclude that the groups

ClInvId(X), CaCl(X), H1(X,OX×) and Pic(X)

are all isomorphic, see Corollary 5.2.12.
In Sections 5.3 and 5.4 we will examine the relation between divisors on a scheme and

divisors on a schematically dense open subscheme respectively the relation between divisors
on a reducible scheme and divisors on the irreducible components. Then in Section 5.5 we
relate divisors on a cover X of P1

k to divisors on V0 and S to see that the former and the
latter are essentially the same. In Section 5.6 we define CaCl0(X), the group of degree zero
Cartier divisor classes, and CaCl0π(X), the group of degree zero Cartier divisor classes with
respect to π which only considers representatives of the former group of a specific form.
We will conclude that CaCl0(X) ∼= CaCl0π(X) are both isomorphic to a specific ideal
class group Iπ/Pπ which is a rather general result which to the best knowledge of the
author has not been well known yet. Moreover, there will be two kinds of representatives,
one which is somehow independent of the irreducible components of X and one which
is component dependent. In what follows by then we will distinguish between these two
representatives that reflect two different algorithmic approaches on how to compute in
Iπ/Pπ. The elements by which we may alter representatives in the ideal class group Iπ/Pπ
are called modification functions and in Section 5.7 we will analyse those and give proofs
of their existence with bounded degree and we will also provide algorithms to compute
them. In Sections 5.8 and 5.9 we prove that each class in Iπ/Pπ has a representative with
bounded degree and we show how to compute with those representatives only using basis
matrices.
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5.1 Divisor Group and Picard Group in the Affine Case

In this section we will show how the Picard group looks like in the case of an affine
scheme X.

Lemma 5.1.1. Let R be a noetherian ring. The set of isomorphism classes of invertible
R-modules together with the tensor product of R-modules forms a group, denoted by Pic(R)
and called the Picard group of R.

Proof. The name is suggested in [Eis95, p. 255] and the assertion follows entirely from
[Eis95, 11.6].

But there is a certain subclass of invertible R-modules that do indeed form a group without
considering equivalence classes. The set of invertible R-ideals M , which are all embedded
in Frac(R), and thus yield a more explicit inverse M−1 = {x ∈ Frac(R) | xM ⊆ R}
resulting in an equality MM−1 = R, yield a group with the ideal product being the group
law.

Lemma 5.1.2. Let R be a noetherian ring. The set of invertible R-ideals together with
the product of R-ideals form a group. This group is sometimes denoted by C(R) and called
the group of Cartier divisors.

Proof. Again, the name is suggested in [Eis95, p. 255 f.]. The assertion follows from
[Eis95, 11.6].

Note that we have already proved in Proposition 3.1.27 that InvId(X) is isomorphic to
the group Div(X) of Cartier divisors on X for any scheme X. Next we justify the above
names by proving that InvId(Spec(R)) ∼= C(R) and Pic(Spec(R)) ∼= Pic(R).

Proposition 5.1.3. Let X be an affine curve of finite residual-type over k. Then

C(R) → InvId(X)
M 7→ M∼

defines an isomorphism of abelian groups.

Proof. By Lemma C.4.10, the map M 7→ M∼ establishes an equivalence of categories
between the category of R-ideals and the category of OX -ideals. Clearly, MP

∼= (M∼)P
for all P ∈ Spec(R) and thusM is invertible if and only ifM∼ is invertible. Hence, the map
M 7→M∼ gives a bijection between C(R) and InvId(X). Finally, we prove thatM 7→M∼

defines a group homomorphism. For all P ∈ X we obviously have (MN)P = MPNP as
subsets of Frac(RP ). This means that both (MN)∼ and M∼N∼ have equal stalks for all
P ∈ X (by definition, we have (FG)P = FPGP inside KX,P for OX -ideals F and G) and
thus by Corollary B.1.30, they are equal as subsheaves of KX .

Proposition 5.1.4. Let X be an affine curve of finite residual-type over k. Then there is
an isomorphism Pic(R) → Pic(X) given by C(R) → InvId(X) from Proposition 5.1.3 on
representatives.

Proof. Since R is noetherian, [Eis95, 11.7] provides that the natural map C(R)→ Pic(R)
sending an invertible R-ideal to its isomorphism class is surjective. Moreover, its kernel is
given by principal R-ideals fR with f ∈ Frac(R)×. Therefore, for every isomorphism class
in Pic(R) we find a representative M ∈ C(R) which corresponds by Proposition 5.1.3
to M∼ ∈ InvId(X). Then the surjective map InvId(X) → Pic(X), see Remark 3.1.22,
sending an invertible OX -ideal to its isomorphism class provides that we may associate to
each element in Pic(R) an element in Pic(X). Now any two representatives M,N ∈ C(R)
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of the same class in Pic(R) differ multiplicatively by some fR with f ∈ Frac(R)×, due
to [Eis95, 11.7]. Hence M = fN and thus M∼ = (fN)∼ = (fR)∼N∼ = fOXN∼ by
Proposition 5.1.3. This provides that the multiplication with f morphism N∼ → M∼

is an isomorphism and hence we obtain a well-defined map φ : Pic(R) → Pic(X). By
construction, this provides a commutative diagram:

C(R) InvId(X)

Pic(R) Pic(X)

M 7→M∼
∼=

φ

Now φ is obviously surjective and its kernel is given by classes with representatives M
such that M∼ ∼= OX . By Lemma 3.1.26, the latter is equivalent to M∼ = fOX and
hence by Proposition 5.1.3, we have M = (fOX)(X) = fOX(X) = fR ∼= R providing the
injectivity of φ.

5.2 Picard Group and Cohomology

Sometimes the Picard group of a scheme is defined as H1(X,O×X), the first Čech coho-
mology group of the sheaf of invertible regular functions on X. We will see that this is
justified by proving that H1(X,O×X) is isomorphic to Pic(X). Moreover, we will also show
more isomorphic models of Pic(X).

In the following we will, very briefly, recall what the Čech cohomology is. To do so, we
follow the exposition in and refer to [Liu02, Chapter 5.2] for more information and proofs
of the statements we make.

Let X be a topological space, U = {Ui | i ∈ I} an open cover and we put Ui0,...,ip :=
Ui0 ∩ . . . ∩ Uip . For a sheaf F on X and p ≥ 0 let the set of p-cochains of U in F be

Cp(U ,F) =
∏

(i0,...,ip)∈Ip+1

F(Ui0,...,ip)

which comes with a map dp : Cp(U ,F)→ Cp+1(U ,F) sending (αi0,...,ip) to

(dpαi0,...,ip)i0...,ip+1 =
p+1∑
k=0

(−1)k(αi0,...,îk,...,ip+1
)|Ui0,...,ip+1

where îk means “omitted”. For all p we have dp+1 ◦ dp = 0, that is the Cp(U ,F) with dp
form a complex. For p ≥ 0 we set

Hp (U ,F) = ker(dp : Cp(U ,F)→ Cp+1(U ,F))
im(dp−1 : Cp−1(U ,F)→ Cp(U ,F)) (2:1)

and, by convention, C−1(U ,F) = 0 which implies H−1 (U ,F) = 0.

For the cases p = 0, 1 we have by definition:

1. H0 (U ,F) = F(X):
By definition, H0 (U ,F) equals the kernel of d0 : C0(U ,F)→ C1(U ,F) which maps
as follows: ∏

i∈I F(Ui) →
∏
i,j∈I F(Ui ∩ Uj)

(fi)i∈I 7→ ((fi)|Ui∩Uj − (fj)|Ui∩Uj )i,j∈I
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Hence its elements are given by local sections of F over an open covering of X which
agree on the overlaps. This equals the definition of the global sections of F .

2. H1 (U ,F) consists of the group of αi0,i1 in
∏

(i0,i1)∈I2 F(Ui0,i1) such that

∀ i0, i1, i2 ∈ I3 : (αi0,i1)Ui0,i1,i2 = (αi0,i2)Ui0,i1,i2 − (αi1,i2)Ui0,i1,i2

modulo the group of those αi0,i1 in
∏

(i0,i1)∈I2 F(Ui0,i1) such that

αi0,i1 = (αi0)|Ui0,i1 − (αi1)|Ui0,i1

with αij ∈ F(Uij ), j = 1, 2, for all i0, i1 ∈ I.

For two covers U = {Ui | i ∈ I} and V = {Vj | j ∈ J} we say that V is a refinement of
U if there is a map σ : J → I such that for every j ∈ J we have Vj ⊆ Uσ(j). This induces
a homomorphism, which is also denoted by σ,

σ : Cp(U ,F)→ Cp(V,F), σ(α)j0,...,jp = (ασ(j0),...,σ(jp))|Vj0,...,jp .

Since σ commutes with the maps dp, we obtain a homomorphism

σ∗ : Hp (U ,F)→ Hp (V,F) . (2:2)

It can be shown that the map σ∗ is independent of the choice of σ, [Liu02, 5.2.8].
An implication of this is that if U is a refinement of V and vice versa, then σ∗ is an
isomorphism.

The “is a refinement of ”-property defines a partial ordering on the family of open
coverings of X which is filtering since for any two coverings U = {Ui | i ∈ I} and V = {Vj |
j ∈ J} the open cover {Ui ∩ Vj | i ∈ I, j ∈ J} is a refinement of both U and V. We call
two coverings equivalent if and only if one is a refinement of the other and vice versa.
Hence, up to isomorphism, Hp (U ,F) only depends on the equivalence class of U .

Definition 5.2.1. Let X be a topological space and F a sheaf on X. We set

Hp (X,F) = lim−→
U
Hp (U ,F)

where U runs through the classes of open coverings of X. The group Hp (X,F) is called
the p-th (Čech) cohomology group of F . 4

The natural map Hp (U ,F) → Hp (X,F) turns out to be an isomorphism of groups for
all p ≥ 0 whenever the objects involved are nice enough:

Proposition 5.2.2. Let X be a separated scheme, F a quasi-coherent sheaf on X and U
an affine cover of X. Then the natural map Hp (U ,F) → Hp (X,F) is an isomorphism.
In particular, for every two affine open covers U and V of X, we have for all p ≥ 0

Hp (U ,F) ∼= Hp (V,F) .

Proof. This is [Liu02, 5.2.19].

That is, up to isomorphism, the cohomology groups of quasi-coherent modules are inde-
pendent of the chosen affine cover on a separated scheme.

We shortly list some of the properties of the Čech cohomology groups we need.
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Lemma 5.2.3. Let X be a separated scheme and F a quasi-coherent sheaf on X. If there
is an affine cover of X made up of n open sets, then Hp (X,F) = 0 for all p ≥ n.

Proof. This is [Liu02, 5.2.19], together with [Liu02, 5.2.5].

Corollary 5.2.4. Let X be a projective scheme of dimension n over the field k. Let F be
a quasi-coherent sheaf on X. Then Hp (X,F) = 0 for all p > n.

Proof. By Theorem D.1.6, there is a finite morphism π : X → Pnk which is, by [Sta18, Tag
01WN], affine. Hence it induces an affine cover made up of n+1 open subsets by considering
the affine open preimages of the standard affine patches of Pnk . Then the assertion follows
from Lemma 5.2.3.

Lemma 5.2.5 ([Liu02] 5.2.15). Let X be a topological space and let

0→ F α→ G β→ H→ 0 (2:3)

be an exact sequence of sheaves on X. Then there exists a canonical homomorphism
δ : H0 (X,H)→ H1 (X,F) such that the sequence

0→ F(X)→ G(X)→ H(X) δ−→ H1 (X,F)→ H1 (X,G)→ H1 (X,H)

is exact. We call δ the 1-connecting morphism or simply the connecting morphism
of the sequence (2:3).

Proof. We only want to highlight how the proof constructs the map δ and refer the reader
for the rest of the proof to [Liu02, 5.2.15]. By the definition of surjectivity of a morphism
of sheaves, the morphisms βP : GP → HP for all P ∈ X are surjective. Hence, for every
global section h ∈ H(X) there is an open cover U = {Ui | i ∈ I} of X (which depends on
h) and sections gi ∈ G(Ui) such that β(Ui)(gi) = h|Ui . For i, j ∈ I let Ui,j = Ui ∩Uj . Now
for all i, j ∈ I we have

β(Ui,j)(gi|Ui,j − gj |Ui,j ) = 0

and thus by the exactness of the sequence, there are fi,j ∈ F(Ui,j) such that

α(Ui,j)(fi,j) = gi|Ui,j − gj |Ui,j .

Since U forms an open cover of X, the same is true for V := {Ui,j | i, j ∈ I}. Therefore,
the family {(Ui,j , fi,j) | i, j ∈ I} forms an element of C1(V,F). Now the proof of [Liu02,
5.2.15] provides that this also induces an element of H1 (V,F) and thus one in H1 (X,F).
Moreover, it shows that the latter is independent of the choice of U . Hence we obtain a
well-defined morphism δ : H0 (X,H)→ H1 (X,F).

Remark 5.2.6. To summarise the construction on the connecting morphism δ, we may
phrase it as a recipe: Once we are able to come up with local preimages of a global section
of the right hand side sheaf, we take their pair-wise differences (or quotient whenever we
work multiplicatively) and these define a well-defined element in the first Čech cohomology
group of the left hand side sheaf. 4

Proposition 5.2.7. Let X be a locally noetherian scheme. Then the group homomorphism
induced by the following map on representatives

δ : H0 (X,K×X/O×X) → H1 (X,O×X)(
Ui,

fi
gi

)
i∈I

7→
(
Ui ∩ Uj , figjfjgi

)
i,j∈I

is an isomorphism CaCl(X)→ H1(X,O×X).
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Proof. First of all, recall that CaCl(X) is defined as H0 (X,K×X/O×X) modulo the image of
the morphism H0 (X,K×X) −→ H0 (X,K×X/O×X). We have the canonical exact sequence

0 −→ O×X −→ K
×
X −→ K

×
X/O

×
X −→ 0.

By Lemma B.2.4, we haveH1 (X,K×X) = 0 and thus the long exact sequence of cohomology
groups from Lemma 5.2.5 derived from the sequence above is

0 −→ H0 (X,O×X) −→ H0 (X,K×X) −→ H0 (X,K×X/O×X) δ−→ H1 (X,O×X) −→ 0.

The morphism δ is the connecting morphism and maps (which can be seen by examining
the proof of Lemma 5.2.5 and following the recipe of how to compute the connecting
morphism in Remark 5.2.6) representatives as follows:

δ : H0 (X,K×X/O×X) → H1 (X,O×X)(
Ui,

fi
gi

)
i∈I

7→
(
Ui ∩ Uj , figjfjgi

)
i,j∈I

Note that by Lemma 5.2.5, the morphism δ is well-defined and surjective.
Let D = (Ui, fi/gi)i∈I be a configuration of a divisor lying in the kernel of δ. That is,

figj
fjgi

= 1 and therefore fi
gi

= fj
gj

over all Ui∩Uj and all i, j ∈ J . Hence, D lies in the image of
H0 (X,K×X)→ H0 (X,K×X/O×X) and is therefore a principal divisor. Conversely, let D =
(X, f) with f ∈ KX(X)× be a principal divisor, then δ(D) = (Ui ∩ Uj , 1)i,j∈I is the trivial
element inH1 (X,O×X). Therefore, we obtain ker δ = im(H0 (X,K×X)→ H0 (X,K×X/O×X))
and together with the surjectivity of δ this provides the desired isomorphism.

Proposition 5.2.8 ([DG67]). Let X be a scheme satisfying one of the following hypothe-
ses:

1. X is locally noetherian and Ass(OX) is contained in an affine open subset, or

2. X is reduced and the number of irreducible components of X is locally finite.
Then the canonical homomorphism Div(X)→ Pic(X) induced by φ from Proposition 3.1.27
(i) is surjective and induces an isomorphism

CaCl(X) ∼= Pic(X).

Remark 5.2.9. The injectivity of CaCl(X) → Pic(X) can be deduced using the isomor-
phism Div(X) → InvId(X), see Proposition 3.1.27 (i). The surjectivity of CaCl(X) →
Pic(X) then follows from the fact that every invertible sheaf is isomorphic to some OX -
ideal, see Lemma 4.1.2. 4
Remark 5.2.10. Note that by Remark 3.1.22, we have a surjective map InvId(X)→ Pic(X).
By Corollary 3.1.29, we have an isomorphism CaCl(X) ∼= InvId(X) and we deduce with
Proposition 5.2.8 that the map above extends to an isomorphism ClInvId(X) ∼= Pic(X).

4
Remark 5.2.11. In Definition 5.6.1 we will define the degree zero divisor class group
CaCl0(X) which is a subgroup of CaCl(X). Since φ is compatible with the respective
notions of degree, the isomorphism CaCl(X) ∼= Pic(X) will provide an isomorphism
CaCl0(X) ∼= Pic0(X). 4
Corollary 5.2.12. Let X satisfy one of the conditions in Proposition 5.2.8, then

H1 (X,O×X) ∼= CaCl(X) ∼= ClInvId(X) ∼= Pic(X).

In particular, the above holds whenever X is a cover of P1
k.
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Proof. The first assertion follows by combining Propositions 5.2.7 and 5.2.8. If X is
noetherian and projective over some field k, then Theorem D.1.6 provides a finite morphism
π : X → P1

k. Since X is Cohen-Macaulay, [Sta18, Tag 0BXG] provides that X has no
embedded points. Hence Ass(OX) equals X0, the set of generic points of the irreducible
components of X. By [Liu02, 7.3.10], π sends generic points to generic points and hence
Ass(OX) is contained in the preimage of the affine open subset U0 ∩ U1 of P1

k where U0
and U1 form a standard affine open cover of P1

k. By [GW10, 13.77], finite morphisms
are affine and thus the requirements of Proposition 5.2.8 are met. The isomorphism
ClInvId(X) ∼= Pic(X) follows from Remark 5.2.10.

5.3 Divisors and Open Subschemes

In this section we draw a connection between divisors on a scheme X and the divisors on
a schematically dense open subscheme. The scheme X will at least be locally noetherian
and typically U ⊆ X will denote the schematically dense open subscheme of X, see
Definition 3.2.10 and Lemma B.2.5 for a characterisation of schematically dense open
subschemes. Note that we will use the term schematically dense open subset meaning
schematically dense open subscheme.

Proposition 5.3.1. Let X be a locally noetherian scheme and U ⊆ X be a schematically
dense open subset. The following diagram is commutative with exact rows and columns:

1 1

1 i∗O×U i∗K×U i∗(K×U/O
×
U ) 1

1 O×X K×X K×X/O
×
X 1

1 1 i∗O×U /O
×
X

1

ξ

α

The morphism ξ is the composition of the projection i∗K×U → i∗K×U/i∗O
×
U with the natural

isomorphism i∗K×U/i∗O
×
U → i∗(K×U/O

×
U ). The dashed morphism is the morphism induced

by the composition of the isomorphism α with ξ. Moreover, it is equal to the morphism
given in Eq. (2:1) in Proposition 3.2.3.

Proof. Since U ⊆ X contains all associated points of X, by Lemma 3.2.11, the injective
morphism O×X ↪→ i∗O×U extends to the isomorphism α : K×X → i∗K×U . This provides the
left square and its commutativity. The sequence

1 −→ i∗O×U −→ i∗K×U −→ i∗K×U/i∗O
×
U −→ 1

is trivially exact. Composing the projection i∗K×U −→ i∗K×U/i∗O
×
U with the natural mor-

phism i∗K×U/i∗O
×
U → i∗(K×U/O

×
U ), which is an isomorphism by Corollary B.1.45, provides

the surjective morphism ξ. It is obvious that the image of i∗O×U → i∗K×U is equal to the
kernel of ξ and hence we obtain the exactness of the first row. The exactness of the second
row is evident.

The kernel of ξ ◦ α is the isomorphic preimage of i∗O×U under α which, by the com-
mutativity of the left square, contains O×X . Hence we deduce the existence of the dashed
morphism, which is also surjective since the same is true for ξ ◦α. After identifying i∗O×U
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with its preimage under α it follows immediately that the kernel of the dashed morphism is
i∗O×U /O

×
X . By construction, the dashed morphism K×X/O

×
X → i∗(K×U/O

×
U ) is, as asserted,

the same as the morphism given in Eq. (2:1) in Proposition 3.2.3.

Lemma 5.3.2. Let X be a locally noetherian scheme and let U ⊆ X be a schematically
dense open subset. Then the elements of H0(X, i∗O×U /O

×
X) are given by collections of the

form {
(U, 1 · OX(U)×), (Vi, si · OX(Vi)×) | si ∈ OX(U ∩ Vi)×, si/sj ∈ OX(Vi ∩ Vj)×

}
where U and the Vi together form an open cover of X.

Proof. By Lemma B.1.22 (ii), the global sections of i∗O×U /O
×
X are given by collections of

the form {
(Wi, ti · OX(Wi)×) | ti ∈ OX(U ∩Wi)×, ti/tj ∈ OX(Wi ∩Wj)

}
where the Wi form an open cover of X. Now for all Wi ⊆ U we have ti ∈ OX(Wi)× and
hence for any such Wi we deduce (Wi, ti · OX(Wi)×) = (Wi, 1 · OX(Wi)×). That means
that the restriction of the global section to U is given by the neutral element section and
thus we may replace all those (Wi, ti · OX(Wi)×) with Wi ⊆ U by (U, 1 · OX(U)×). Now
we denote all those Wi with Wi 6⊆ U by Vi. Together with U these Vi form an open cover
of X. This already provides the assertion.

Proposition 5.3.3. Let X be a noetherian scheme of dimension one and let U ⊆ X be
a schematically dense open subset. Then (i∗OU )×/O×X is a skyscraper sheaf and thus we
have H1 (X, (i∗OU )×/O×X

)
= 0.

Proof. Since Ass(OX) ⊆ U , we have that U meets every irreducible component Xi of X.
Hence Xi \ (U ∩Xi) is a proper closed subset of the one-dimensional irreducible scheme Xi

and thus it is finite, see Proposition B.5.2. Since noetherian schemes have finitely many
irreducible components, say X1, . . . , Xm, see [Sta18, Tag 0BA8], X \U =

⋃m
i=1(Xi\U∩Xi)

is finite, too.
Note that by Lemma B.1.37, we know that (R×)P = R×P for every sheaf of rings R on

X for which R× is indeed a sheaf. Let us examine how the stalks of the quotient i∗O×U /O
×
X

look like: (
i∗O×U
O×X

)
P

∼=
((i∗OU )×)P

(O×X)P
=

(i∗OU )×P
O×X,P

which is zero whenever (i∗OU )P = OX,P and thus whenever P ∈ U . Hence its support
is contained in X \ U which is finite by the above. Whence the quotient is a skyscraper
sheaf and thus satisfies H1 (X, (i∗OU )×/O×X

)
= 0 by Lemma B.2.8.

Lemma 5.3.4. Let X be a locally noetherian scheme of dimension one and let U ⊆ X
be a schematically dense open subset. Let i : U ↪→ X denote the corresponding open
immersion. Moreover, assume that X = U ∪ V for some open V ⊆ X. Then we have an
exact sequence

0→ H0(O×X)→ H0(i∗O×U )→ H0(i∗O×U /O
×
X) δ→ CaCl(X) i∗→ CaCl(U)→ 0.

The morphism δ sends a global section s of H0(i∗O×U /O
×
X) given by

{(U, 1 · OX(U)×), (Vi, hi · OX(Vi)×) | hi ∈ OX(U ∩ Vi)×, hi/hj ∈ OX(Vi ∩ Vj)×, i ∈ I}
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to the divisor on X given by the configuration {(U, 1), (Vi, hi)i∈I}. Moreover, the map
CaCl(X)→ CaCl(U) is induced by the pullback of divisors along i.

Proof. Since X is locally noetherian and Ass(OX) ⊆ U , by Lemma B.2.6, the morphism
OX → i∗OU is injective. Thus we may consider the exact sequence

1 O×X (i∗OU )× (i∗OU )×/O×X 1

which, by Lemma 5.2.5, provides a long exact sequence by applying Čech cohomology:

0 H0 (X,O×X) H0 (X, i∗O×U ) H0 (X, i∗O×U /O×X)
H1 (X,O×X) H1 (X, i∗O×U ) H1 (X, i∗O×U /O×X)︸ ︷︷ ︸

= 0

δ

(3:4)

Here we denoted the group laws additively and H1 (X, (i∗OU )×/O×X
)

= 0 is due to Propo-
sition 5.3.3. By Lemma 5.3.2, any element h in H0 (X, i∗O×U /O×X) is given by

{(U, 1 · OX(U)×), (Vi, hi · OX(Vi)×) | hi ∈ OX(U ∩ Vi)×, hi/hj ∈ OX(Vi ∩ Vj)×, i ∈ I}

where the Vi together with U form an open cover of X. Now, following Remark 5.2.6 and
Lemma 5.2.5, the elements hi/hj ∈ OX(Ui,j)× provide an element κ of H1(X,O×X) given
by {(Ui,j , hi/hj) | i, j ∈ I}.

We easily observe that the image of the global section h under the monomorphism
δ′ : i∗O×U /O

×
X ↪→ K×X/O

×
X , see Lemma B.2.6, maps under the homomorphism

H0 (X,K×X/O×X)→ H1 (X,O×X)
given in Proposition 5.2.7 to the element κ constructed above. Therefore, the following
diagram is commutative:

H0 (X, i∗O×U /O×X) H1 (X,O×X) H1 (X, i∗O×U )
H0 (X,K×X/O×X) H0 (X, i∗K×U/i∗O×U )

δ′(X)

i∗

(3:5)

The morphisms in the top row are those provided by the sequence (3:4) and that of the
bottom row is the one provided by Proposition 5.3.1. Note that the latter is the pullback
of divisors on X to divisors on U along i, see Propositions 3.2.3 and 5.3.1 again. Hence, by
Proposition 5.2.7, it allows us to replace H1 (X,O×X) and H1 (X, i∗O×U ) in the sequence
(3:4) by CaCl(X) respectively CaCl(U), such that we obtain the exact sequence

0 H0 (X,O×X) H0 (X, i∗O×U ) H0 (X, i∗O×U /O×X)
CaCl(X) CaCl(U) 0

δ (3:6)

where the morphism δ is now, on representatives, given by the map δ′ from (3:5). That
δ maps representatives as asserted can now easily be checked by examining how the map
i∗O×U /O

×
X ↪→ K×X/O

×
X works, see Lemma B.2.6. The last assertion is due to the fact that

the morphism in the lower row of (3:5) was the pullback of divisors on X to divisors on U
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along i.

Corollary 5.3.5. The kernel of the restriction morphism i∗ : CaCl(X)→CaCl(U) consists
of divisor classes given by representatives

{(U, 1 · OX(U)×), (Vi, hi · OX(Vi)×) | hi ∈ OX(U ∩ Vi)×, hi/hj ∈ OX(Vi ∩ Vj)×, i, j ∈ I}

where U and the Vi, i ∈ I, form an open cover of X.

Corollary 5.3.6. Let X be a cover of P1
k. Then we have an exact sequence

0→ H0(O×X)→ H0(i∗O×V0
)→ H0(i∗O×V0

/O×X) δ→ CaCl(X)
·|V0→ CaCl(V0)→ 0.

where δ sends a global section h of H0(i∗O×V0
/O×X) given by

{(V0, 1 ·R×0 ), (Vi, hi · OX(Vi)×) | hi ∈ OX(V0 ∩ Vi)×, hi/hj ∈ OX(Vi ∩ Vj)×, i, j ∈ I},

where
⋃
i∈I Vi contains the closed points of S, to the divisor on X given by the configuration

{(V0, 1), (Vi, hi)i∈I}. Moreover, the map CaCl(X) → CaCl(V0) is induced by the pullback
of divisors along i0 : V0 ↪→ X.

Example 5.3.7. If X is a cover of P1
k, then the generalised pole divisor of x, which will

be defined in Definition 5.6.3, will lie in the kernel of i∗ : CaCl(X)→CaCl(V0). 4

Remark 5.3.8. Note that the assumption regarding the dimension ofX is only necessary for
H1 (X, i∗O×U ) = 0 and thus for the surjectivity of the map i∗ : CaCl(X)→ CaCl(U). 4

Lemma 5.3.9. Let X be a noetherian scheme of dimension one over k and let U ⊆ X be
a schematically dense open subset. The following diagram is commutative with exact rows
and columns:

0

H0(O×X)

0 H0(i∗O×U )

0 H0(i∗O×U /O
×
X) H0(i∗O×U /O

×
X) 0

0 H0(O×X) H0(K×X) Div(X) CaCl(X) 0

0 H0(i∗O×U ) H0(i∗K×U ) Div(U) CaCl(U) 0

0 0

δ′(X)

id

δ

i∗ i∗

The morphism i∗ : Div(X) → Div(U) is the pullback of divisors as in Proposition 3.2.3,
see also Lemma 3.2.11. Note that we denoted the group laws additively.

Proof. For any scheme X we have the canonical exact sequence

1 O×X K×X K×X/O
×
X 1
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which extends to the long exact sequence provided by applying Čech cohomology

0 H0 (X,O×X) H0 (X,K×X) H0 (X,K×X/O×X)
H1 (X,O×X) H1 (X,K×X)︸ ︷︷ ︸

= 0

where H1 (X,K×X) = 0 by Lemma B.2.4. By definition, we have H0 (X,K×X/O×X) =
Div(X) and by Proposition 5.2.7, H1 (X,O×X) = CaCl(X) which finally provides the two
exact row sequences.

Let us examine the left column: By Proposition 5.3.1, we have an exact sequence

1 −→ i∗O×U /O
×
X −→ K

×
X/O

×
X −→ i∗(K×U/O

×
U ) −→ 1. (3:7)

The corresponding long exact sequence, for which we denote the group laws additive, is

0 H0 (X, i∗O×U /O×X) H0 (X,K×X/O×X) H0 (X, i∗(K×U/O×U )
)

H1 (X, i∗O×U /O×X)︸ ︷︷ ︸
= 0

δ′(X)

where H1 (X, i∗O×U /O×X) = 0 by Proposition 5.3.3. Note that the connecting morphism is
indeed the morphism δ′(X) (notation as in the proof of Lemma 5.3.4) since δ′ is the one
induced by the sequence (3:7). By definition, we have

H0 (X, i∗(K×U/O×U )
)

= H0 (U,K×U/O×U ) = Div(U)

and H0 (X,K×X/O×X)
)

= Div(X) which provides the exactness of the left column. More-
over, by Proposition 5.3.1, the morphism K×X/O

×
X → i∗(K×U/O

×
U ) is the same as the mor-

phism given in (2:1) in Proposition 3.2.3 and thus on the level of global sections it is equal
to the pullback i∗ of divisors along i as in Proposition 3.2.3.

The existence of the exact sequence on the right hand side is due to Lemma 5.3.4.
Moreover, by Lemma 5.3.4, the morphism CaCl(X) → CaCl(U) is the pullback i∗ of
divisors along i and thus we obtain the commutativity of the lower square connecting all
three exact sequences.

Finally, by the proof of Lemma 5.3.4, the morphism δ is the morphism induced by
δ′(X) on representatives.

To get a better grip on what the difference is between the divisors on X and those on an
schematically dense open subset U ⊆ X as in Lemma 5.3.9, we investigate the kernel of
the map Div(X)→ Div(U).

Corollary 5.3.10. Let X be a noetherian scheme of dimension one over k and let U ⊆ X
be a schematically dense open subset. The kernel of the map i∗ : Div(X) → Div(U) is
given by the divisors D on X with configurations of the form

{(U, 1), (Vi, hi) | hi ∈ OX(U ∩ Vi)×, hi/hj ∈ OX(Vi ∩ Vj)×, i, j ∈ I}

where the Vi together with U form an open cover of X. Those divisors D on X are
exactly those whose ideal sheaf OX(D) vanishes on U , i.e. OX(D)|U = OU or equivalently
Supp(D) ⊆ X \ U .
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Proof. First of all, note that OX(U ∩ Ui) ⊆ KX(U ∩ Ui) ∼= KX(Ui) for any open Ui ⊆ X,
see Lemma B.2.6, and thus the asserted configuration makes sense. Now the assertion is
a direct consequence of the fact that the kernel is, by Lemma 5.3.9, the image of

H0 (X, i∗O×U /O×X)→ H0 (X,K×X/O×X) ,
how the morphism i∗O×U /O

×
X → K

×
X/O

×
X maps (using the mentioned embedding OX(U ∩

Ui) ↪→ KX(Ui)) and how the elements of H0 (X, i∗O×U /O×X) look like, see Lemma 5.3.2.
The last part of the assertion follows immediately.

We consider the following simple example to see how these divisors look like for the
projective line and a standard affine open.

Example 5.3.11. Let X = P1
k = Proj(k[x0, x1]) with U0 = D+(x1) = X \ {(1 : 0)}.

Set P∞ = (1 : 0) and denote x = x0/x1, then we have OX(U0) = k[x]. Moreover, X is
covered by U0 and U∞ := X \ (0 : 1) where OX(U∞) = k[x−1]. Obviously, X satisfies the
requirements for Corollary 5.3.10 and thus the divisors on X that restrict to zero on U0
are given by configurations of the form

{(U0, 1), (Ui, fi) | fi ∈ OX(U0 ∩ Ui)×, fi/fj ∈ OX(Ui ∩ Uj)×, i ∈ I}

where
⋃
i∈I Ui contains X \U0 = {P∞}. Now we can drop every of the Ui except one since

any of them contains P∞ and we only need one to still induce the same divisor on X. Let
W denote the open Ui which is left. Without loss of generality we may not only assume
that W ⊆ U∞ holds but also (since U∞ is affine and any open subset of an affine open is
covered by a finite number of basic open subsets) we may also assume that W is a basic
open subset of U∞. We also denote fi by f . Thus W = DU∞(g) with g ∈ k[x−1] and
x−1 - g. Removing the zeros of the denominator of f ∈ KX(W ) = Quot(k[x−1]g) = k(x)
by replacing g with the product of g and the denominator of f , we may also assume
f ∈ OX(W ) = k[x−1]g. Since U0 ∩ U∞ = DU∞(x−1), the restriction map OX(W ) →
OX(U0 ∩W ) is the ring monomorphism k[x−1]g → k[x, x−1]g. Thus fi ∈ OX(U0 ∩W )×

means that fi ∈ k[x−1]×g ∪ {xr | r ∈ Z}. If fi ∈ k[x−1]×g , then the induced divisor is the
zero divisor. Otherwise, f is of the form bxr with b ∈ OX(W )× and hence we may assume
that f is a power of x. Therefore, we obtain that the kernel of i∗ : Div(P1

k) → Div(U0)
consists of divisors on P1

k provided by configurations of the form

{(U0, 1), (W,xr) | P∞ ∈W ⊆ U∞}. 4

We can generalise the previous example, at least to some extent, to covers of P1
k.

Proposition 5.3.12. Let X be a cover of P1
k. Let P1, . . . , Ps be the finitely many closed

points in the fibre of P∞ under π : X → P1
k. Then the kernel of i∗ : Div(X) → Div(V0)

consists of divisors provided by configurations of the form

{(V0, 1), (U1, f1), . . . , (Us, fs) | Ui ⊆ V∞, Ui ∩ π−1(P∞) = Pi,

fi ∈ OX(V0 ∩ Ui)×,∀j 6= i : fi ∈ OX(Ui ∩ Uj)×}.

Proof. Clearly, X satisfies the requirements of Corollary 5.3.10 and thus for U = V0 =
π−1(U0) we obtain that the kernel of i∗ : Div(X) → Div(V0) is given by divisors with
configurations of the form

{(V0, 1), (Ui, fi) | fi ∈ OX(U0 ∩ Ui)×, fi/fj ∈ OX(Ui ∩ Uj)×, i, j ∈ I}

where
⋃
i∈I Ui contains X \ V0 = π−1(P∞). As in the proof of Example 5.3.11, we may
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drop all Ui except for one for each P ∈ π−1(P∞). Since π−1(P∞) = {P1, . . . , Ps} is finite,
let Ui, i = 1, . . . , s, denote the open neighborhood of Pi. Without loss of generality we may
remove any Pj , j 6= i, from Ui and may thus assume that Ui∩π−1(P∞) = Pi. Furthermore,
we may also remove the points in V0 \ V∞ from every Ui and can thus assume Ui ⊆ V∞.
Therefore, the kernel is given by divisors with configurations of the form

{(V0, 1), (U1, f1), . . . , (Us, fs) | Ui ⊆ V∞, Ui ∩ π−1(P∞) = Pi,

fi ∈ OX(V0 ∩ Ui)×, ∀j 6= i : fi ∈ OX(Ui ∩ Uj)×}

with fi ∈ KX(Ui)×. Since Ui are open subsets of an affine scheme V∞, they are covered
by a finite union of basic open subsets in V∞. Now, for each i = 1, . . . , s, pick any of
these covering basic open subsets that contain Pi and then we obtain the same divisor.
Thus, we may assume Ui to be basic open subsets of V∞. By further shrinking Ui to a
smaller basic open subset (by removing the zeros of the denominator of the fi), we may
also assume fi ∈ OX(Ui). Now since both Ui and V0,∞ are basic open subsets of V∞, the
intersection U0∩Ui ⊆ Ui is basic open in Ui. Moreover, since V0,∞ = DV∞(x−1) in V∞, we
have U0 ∩ U1 = DUi(x−1). Hence the restriction map from Ui to U0 ∩ Ui is the injective
localisation homomorphism OX(Ui) → OX(Ui)x−1 . Since the units in OX(Ui)x−1 are of
the form bx−ri with b ∈ OX(Ui)× and ri ∈ Z, we obtain

fi = bx−ri with b ∈ OX(Ui)×.

Since we can always alter fi multiplicatively with units in OX(Ui), we may finally assume
fi = xri for some ri ∈ Z which provides the assertion.

The following lemma tells us that we can extend divisors from the complement of a finite
set to all of the scheme by providing local equations on the finite set of points. It also
implies the surjectivity of the morphisms Div(P1

k)→ Div(U) and Div(X)→ Div(V0) from
Example 5.3.11 and Proposition 5.3.12.

Lemma 5.3.13. Let X be a noetherian scheme of dimension one. Let P1, . . . , Ps ∈ X0
whose open complement is denoted by U . Then for any Cartier divisor D on U and for
arbitrary fi ∈ KX(Vi)×, i = 1, . . . , s where Vi ⊆ X are open neighborhoods of Pi, there
exists a divisor E on X with E|U = D and EPi = fiOX,Pi.

Proof. Let D be given by the data (Uj , gj) where U =
⋃
j Uj and gj ∈ KX(Uj)×. Since U

is open in X, the same is true for the Uj . Since X is noetherian and of dimension one, by
Lemma 3.1.8, the support of D is a finite set of closed points of X. By definition, we thus
have

Supp(D) = ∪j {P ∈ Uj | (gj)POX,P 6= OX,P } = ∪j{P ∈ Uj | gj /∈ O×X,P }.

By assumption, fi ∈ KX(Vi)× and thus the respective images in H0(X,K×Vi/O
×
Vi

) are
principal divisors on Vi which, by the same line of argument as above, have finite support.
That is, for all i the sets {P ∈ Vi | fi 6∈ O×X,P } are finite sets of closed points, too.
Therefore, the set

W := {P ∈ ∪i,jVi ∩ Uj | ∀ i, j : fi, gj ∈ O×X,P }

is open in X as the complement of the finite union of all these finite closed sets. Obviously,
the complement of Wi := W ∪ {Pi} is finite and thus Wi is open. Now we have found an
open cover of X =

⋃
j Uj ∪

⋃
iWi and we define the divisor E on X by using this cover and

as the local functions we use gj on Uj and fi on Wi. This indeed defines a divisor since
on the overlaps Uj ∩Wi ⊆ W the condition fi/gj ∈ OX(Uj ∩Wi)× is obviously satisfied
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because the functions itself are already units at the considered points. The divisor E
obviously satisfies the asserted properties.

5.4 Divisors and Irreducible Components

In this section we draw a connection between the divisors on a reducible scheme X and
the divisors on its irreducible components. This connection will be heavily used in our
approach of computing in the Picard group. If not mentioned otherwise, in the following
X denotes a scheme with finitely many irreducible components X1, . . . , Xm and Y denotes
their disjoint union as introduced in Section B.3. Note that we will also use the notation
introduced there.

Lemma 5.4.1. Let X be a locally noetherian and reduced scheme. Then the rows and
columns of the following diagram are exact and the squares commute.

1 1

1 O×X
⊕m

i=1(τi)∗OXi× (
⊕m

i=1(τi)∗OXi×)/O×X 1

1 K×X
⊕m

i=1(τi)∗K×Xi 1

K×X/O
×
X

⊕m
i=1(τi)∗(K×Xi/OXi

×) 1

1 1

τ#

τ#

σ ρ

φ

(4:8)
Moreover, φ is the pullback of divisors from X to Y , i.e. the component-wise restriction
of a divisor on X to the irreducible components of X.

Proof. Note that by abuse of notation we denote the extension of τ# : OX → τ∗OY to
the morphism KX → τ∗KY , see Corollary 3.2.15, again by τ#. This already provides the
commutativity of the top square. That the left column is exact follows immediately from
the fact that OX is a subsheaf of KX and thus O×X one of K×X . By Corollary B.1.45, we
have

(τi)∗(K×Xi/O
×
Xi

) ∼= (τi)∗K×Xi/(τi)∗O
×
Xi

and thus the exactness of the right column follows due to the isomorphism τ∗KY /τ∗OY ∼=⊕m
i=1(τi)∗KX,i/(τi)∗OXi . The top row is exact since, by Proposition B.3.3, τ# : OX →

τ∗OY is injective since X is reduced. That τ# : K×X →
⊕m

i=1(τi)∗K×Xi = τ∗KY is an
isomorphism, and thus the middle row is exact, is given by Corollary B.3.8.

Due to the commutativity of the top square, we see that O×X is contained in the kernel
of the map ρ ◦ τ# : KX →

⊕m
i=1(τi)∗(K×Xi/OXi

×) and thus we obtain a well-defined
morphism

φ : K×X/O
×
X 99K

m⊕
i=1

(τi)∗(K×Xi/OXi
×)

which is indeed surjective since τ# is an isomorphism between KX and τ∗KY and ρ is
obviously surjective. By construction, the morphism φ is the induced morphism

K×X/O
×
X → τ∗K×Y /τ∗O

×
Y = τ∗(K×Y /O

×
Y )
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given in (2:1) in Proposition 3.2.3. Thus φ is the pullback of divisors from X to Y and
by Corollary 3.2.23, it is equal to the component-wise restriction of divisors on X to an
irreducible component. The lower square commutes by construction.

Proposition 5.4.2. There is an exact sequence

1 −→
(

m⊕
i=1

(τi)∗OXi×
)
/O×X

α−→ K×X/O
×
X

φ−→
m⊕
i=1
K×Xi/OXi

× −→ 1 (4:9)

with φ, σ and τ as in diagram (4:8) in Lemma 5.4.1 and α = σ ◦ (τ#)−1. In particular, φ
is the component-wise restriction of divisors on X to the respective irreducible component.

Proof. Consider the commutative diagram (4:8). By construction of the morphism φ :
K×X/O

×
X →

⊕m
i=1(τi)∗(K×Xi/OXi

×), its kernel is (ker ρ ◦ τ#)/O×X . Since τ# : K×X → τ∗KY
was an isomorphism, we have

ker ρ ◦ τ# = (τ#)−1

(
m⊕
i=1

(τi)∗OXi×
)
.

Therefore, the kernel of φ is the image of
⊕m

i=1(τi)∗O×Xi under the composition α of (τ#)−1

with σ. The rest of the assertion follows from Lemma 5.4.1.

Corollary 5.4.3. Let X be a reduced, noetherian scheme of dimension one. Then the
support of (

m⊕
i=1

(τi)∗OXi×
)
/O×X

is contained in the set of intersection points of the irreducible components of X. In par-
ticular, it is a skyscraper and thus H1 (X, (⊕m

i=1(τi)∗OXi×
)
/O×X

)
= 0.

Proof. By Lemma B.1.37, we have(
m⊕
i=1

(τi)∗OXi×
)
P

=
m⊕
i=1

(OX,P /Ji,P )×

where Ji denotes the ideal sheaf cutting out the component Xi and Ji,P its stalk at P . By
Lemma B.1.37, we have (O×X)P = O×X,P . For P lying on exactly one irreducible component
ofX, the quotient

⊕
P∈Xi(OX,P /Ji,P )/OX,P and thus

⊕m
i=1(OX,P /Ji,P )×/O×X,P vanishes.

Therefore, as asserted, the support of the sheaf in question is contained in the set of
intersection points of the irreducible components of X. Now by Lemma B.5.3, this set is
finite and hence, by Lemma B.2.8, the assertion follows.

Corollary 5.4.4. Let X be a reduced, noetherian scheme of dimension one. Let X1, . . . , Xm

be its irreducible components. Then there is an exact sequence

0 −→ H0

(
X, (

m⊕
i=1

(τi)∗OXi×)/O×X

)
−→ Div(X) φ−→

m⊕
i=1

Div(Xi) −→ 0 (4:10)

where we denoted the group laws additively. Here φ denotes the component-wise restriction
of divisors on X to the respective Xi’s, that is φ(D) = (D|X1 , . . . , D|Xm).

Proof. We consider the long exact sequence provided by taking cohomology of sequence
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(4:9) in Proposition 5.4.2:

1 H0
(
X,

⊕m
i=1(τi)∗OXi

×

O×X

)
H0 (X,K×X/O×X) H0

(
X,
⊕m

i=1K
×
Xi
/OXi×

)
1

Here the sequence ends in the trivial multiplicative group since

H1
(
X, (

⊕m

i=1
(τi)∗OXi×)/O×X

)
= 1

by Corollary 5.4.3. Note that taking cohomology commutes with direct sums, see [Har77,
2.9.1]. Now denoting the group laws additively and plugging in the definition Div(X) =
H0 (X,K×X/O×X) for any scheme X, we see that Proposition 5.4.2 provides the assumption.

Corollary 5.4.5. The kernel of φ : Div(X)→
⊕m

i=1 Div(Xi) is given by divisors given by
configurations of the form

{(Uj , sj)j∈J | ∪j∈J Uj = X, sj = (sj,i){i|Xi∩Uj 6=∅}, sj,i ∈ OXi(Xi ∩ Uj)×,
sj/sh ∈ OX(Uj ∩ Uh)×, h, j ∈ J}.

That is, the kernel consists of those divisors with local functions s on open subsets U that
restrict to invertible regular functions s|Xi∩U on all irreducible components Xi meeting U .

Proof. The kernel of φ is given by the image of H0 (X, (⊕m
i=1(τi)∗OXi×)/O×X

)
under the

embedding into H0 (X,K×X/O×X). By Lemma B.1.22 (ii), the global sections of the sheaf
(
⊕m

i=1(τi)∗OXi×)/O×X are given by collections (Uj , sj · OX(Uj)×)j∈J for some index set J
and open Uj ⊆ X such that⋃
j∈J

Uj = X, sj = (sj,i){i|Xi∩Uj 6=∅}, sj,i ∈ OXi(Xi∩Uj)× and sj/sh ∈ OX(Uj ∩Uh)×.

Here we identify sj with its image (sj,i){i|Xi∩Uj 6=∅} under the injection

OX(Uj) ↪→
⊕

{i|Xi∩Uj 6=∅}

OX(Xi ∩ Uj).

By Proposition 5.4.2, α(X) maps the above section using the above identification, which
is given by τ# : K×X →

⊕m
i=1(τi)∗K×Xi from the diagram (4:8) in Lemma 5.4.1, and the

injection
⊕m

i=1(τi)∗O×Xi →
⊕m

i=1(τi)∗K×Xi as asserted to the configuration

{(Uj , sj)j∈J | ∪j∈J Uj = X, sj = (sj,i){i|Xi∩Uj 6=∅}, sj,i ∈ OXi(Xi ∩ Uj)×,
sj/sh ∈ OX(Uj ∩ Uh)×, h, j ∈ J}.

Lemma 5.4.6. The restriction of φ : Div(X) →
⊕m

i=1 Div(Xi) to the subgroup of prin-
cipal divisors yields a group epimorphism φ|Princ(X) : Princ(X)→

⊕m
i=1 Princ(Xi). More-

over, if f ∈ KX(X)× corresponds to (f1, . . . , fm) under the identification KX(X)× ∼=⊕m
i=1KXi(Xi)×, then

φ(divX(f)) = (divX1(f1), . . . ,divXm(fm)).

Proof. That the restriction induces the asserted group homomorphism follows from Corol-
lary 3.2.4. The surjectivity φ|Princ(X) follows easily: Consider the principal divisor in⊕m

i=1 Div(Xi) given by (f1, . . . , fm) ∈
⊕m

i=1KXi(Xi)×. Let f denote the preimage of
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(f1, . . . , fm) under the isomorphism τ# : KX(X)× ∼=
⊕m

i=1KXi(Xi)×. Then the commu-
tativity of diagram (4:8) in Lemma 5.4.1 provides that divX(f) gets sent to the principal
divisor given by (f1, . . . , fm) under φ.

In general, the map φ|Princ(X) : Princ(X)→
⊕m

i=1 Princ(Xi) is not injective as the follow-
ing example shows.

Example 5.4.7. Let k be a field with char k 6= 2. Let X = Spec(R) with R = k[x, y]/I
where is I the ideal generated by xy. The affine scheme X has two irreducible components
(the two coordinate axes in A2

k) corresponding to the two minimal prime ideals generated
by y + I respectively x+ I. Since R is reduced, this provides the injection

R ↪→ R1 ×R2 := k[x, y]/(y)× k[x, y]/(x), f + I 7→ (f + (y), f + (x))

which extends to an isomorphism Frac(R)→ k(y)×k(x). These two morphisms correspond
to the morphisms of sheaves OX ↪→ (τ1)∗OX1 ⊕ (τ2)∗OX2 and KX ∼= KX1 ⊕ KX2 along
which the local equations of divisors get mapped with φ. Consider the regular element
f = (x+2y) · (x+y)−1 ∈ Frac(R)× which defines a principal divisor on X. The image of f
under the isomorphism above is the tuple (f1, f2) := (1 + (y), 2 + (x)). Obviously, we have
fi ∈ R×i and thus the image of divX(f) under φ|Princ(X) is the tuple (divX1(1),divX2(2)) =
(0, 0). This is also the image of the zero divisor 0 = divX(1) on X. Since x + y is no
unit in R, the same is true for f and, therefore, divX(f) 6= divX(1) which provides that
φ|Princ(X) is not injective. 4

Lemma 5.4.8. Let φ : Div(X) →
⊕m

i=1 Div(Xi) denote the component-wise restriction
of divisors from Corollary 5.4.4. Then for every D ∈ Div(X) we have

degk φ(D) =
m∑
i=1

degkD|Xi = degkD.

Proof. First of all, the first equality is obvious since Div(Y ) =
⊕m

i=1 Div(Xi) for Y
being the disjoint union of the irreducible components Xi. By Proposition 3.2.3, we
have OXi(D|Xi) ∼= (τi)∗OX(D) = OX(D)|Xi . Thus, by Proposition 3.1.27, we see that
degkD|Xi = −degkOXi(D|Xi) = −degkOX(D)|Xi . Now Proposition C.4.15 provides
degkOX(D) =

∑m
i=1 degkOX(D)|Xi and thus we finally obtain

degkD = −degkOX(D) =
m∑
i=1
−degkOX(D)|Xi =

m∑
i=1
−degkOXi(D|Xi) =

m∑
i=1

degkD|Xi

where we have used OX(D)|Xi ∼= OXi(D|Xi), due to Proposition 3.2.3.

Definition 5.4.9. Define K to be the kernel of φ, i.e. K are exactly those divisors on
X restricting to the zero divisor on every component Xi of X. Let H ⊆ Div(X) denote
the preimage of

⊕m
i=1 Princ(Xi) under φ in Corollary 5.4.4. That is, H consists of those

divisors on X whose restriction to every irreducible component is a principal divisor. By
Lemma 5.4.6, H thus consists of those divisors sharing the same restrictions as a principal
divisor on X. Now Lemma 5.4.6 already provides Princ(X) ⊆ H. Since the zero divisor is
the principal divisor of 1 ∈ KX(X)×, we have K ⊆ H. 4

Lemma 5.4.10. The morphism Div(X) →
⊕m

i=1 Div(Xi) extends to a surjective mor-
phism ψ : CaCl(X)→

⊕m
i=1 CaCl(Xi) providing the exact sequence

0 −→ H/Princ(X) −→ CaCl(X)→
m⊕
i=1

CaCl(Xi) −→ 0. (4:11)

130



Chapter 5 5.5. Divisors on X, V0 and S

Proof. We can extend the homomorphism φ by the surjection
m⊕
i=1

Div(Xi)→
⊕m

i=1 Div(Xi)⊕m
i=1 Princ(Xi)

=
m⊕
i=1

Div(Xi)
Princ(Xi)

=
m⊕
i=1

CaCl(Xi)

and obtain an epimorphism Div(X) →
⊕m

i=1 CaCl(Xi) whose kernel is obviously H.
Since Princ(X) ⊆ H by Lemma 5.4.6, this yields an epimorphism ψ : CaCl(X) →⊕m

i=1 CaCl(Xi) with kernel H/Princ(X).

Remark 5.4.11. Summarising the above, we see that the restriction of divisors and thus
also of divisor classes is provided by the natural surjective map K×X/O

×
X →

⊕
iK
×
Xi
/OXi×.

That is, we just restrict the quotients of regular functions defining the divisor to the
respective components which would also be the first intuitive way to restrict divisors in a
geometric way. By the above we have seen that this is independent of the local representing
functions and is therefore well-defined. 4

5.5 Divisors on X, V0 and S

In this section we investigate how we might express divisors on X in terms of divisors on
V0 and on S. Let X be a reduced cover of P1

k as introduced in Section 2.2.
The following Lemma tells us that divisors on an affine scheme with finitely many

points are given by principal divisors.

Lemma 5.5.1. Let X be an affine scheme with finite underlying topological space. Then

Div(X) ∼=
⊕
P∈X
K×X,P /O

×
X,P
∼= KX(X)×/OX(X)× = Frac(OX(X))×/OX(X)×.

Proof. Set X = Spec(R). Combining Propositions 3.1.27 and 5.1.3 provides an isomor-
phism of abelian groups Div(X) ∼= InvId(R). By assumption, R only has finitely many
maximal ideals and hence, by Lemma B.4.6, any non-zero invertible R-ideal is princi-
pal. Hence we have the desired isomorphism between Cartier divisors on X and principal
R-ideals. Obviously, we can alter any principal R-ideal by units in R.

Corollary 5.5.2. Since both S and the Si are affine schemes with finite underlying topo-
logical space, see Proposition 2.2.11, we have Div(S) ∼= Frac(OS)×/O×S and Div(Si) ∼=
Frac(OSi)×/O×Si.

Proposition 5.5.3. Let X be a scheme which is a finite disjoint union of schemes
X1, . . . , Xm. Then Div(X) =

⊕m
i=1 Div(Xi) where a divisor D on X is equal to the

tuple (D|X1 , . . . , D|Xm). Obviously, we then have degkD =
∑m

i=1 degkD|Xi.

Proof. This follows immediately from the fact that we can without loss of generality choose
the open covers defining divisors to be the disjoint unions of covers of the Xi.

Corollary 5.5.4. We have Div(S) =
⊕m

i=1 Div(Si).

Proof. By Proposition 2.2.11, we have OS =
⊕m

i=1OSi and thus S = Spec(OS) is the
disjoint union of the Si = Spec(OSi). Now the assertion follows from Proposition 5.5.3.

Lemma 5.5.5. Restricting divisors to the open subset V0 and restricting divisors to S,
see Definition 3.2.24, provides an isomorphism of abelian groups

Div(X) → Div(V0) × Div(S)
D 7→ (D|V0 , D|S).
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Proof. We have already seen that the restriction (or pullback along morphisms as in Propo-
sition 3.2.3) of divisors is a group homomorphism. Hence the product of these group
homomorphisms is a group homomorphism Div(X)→ Div(V0)×Div(S).

The surjectivity is provided by Lemma 5.3.13. To prove injectivity, let D ∈ Div(X)
get sent to 0 in Div(V0) × Div(S). Now D is the zero divisor if and only if there is an
open cover {Ui} of X with D|Ui = 0 for all i. By assumption, D|V0 = 0 and D|S = 0. By
Proposition 3.2.21, the latter implies that there is some open subsetW ⊆ V∞ with S ⊆W
such that D|W = 0. Hence V0 and W form an open cover of X such that D restricts to
zero on both of them and thus by the above we deduce D = 0.

Remark 5.5.6. By Proposition 2.2.11, we have OS =
⊕m

i=1OSi which implies Div(S) =⊕m
i=1 Div(Si) and thus we also have an isomorphism of abelian groups

Div(X) → Div(V0) ×
⊕m

i=1 Div(Si)
D 7→ (D|V0 , D|S1 , . . . , D|Sm).

4
Therefore, by Lemma 5.5.5, we may uniquely represent every divisor on X as its restriction
to V0 and to S (or to V0 and to all of the Si). Moreover, we may also carry out the addition
of divisors by adding their respective restrictions.

Notation 5.5.7. The above identification of a divisor D with its restrictions to V0 and S
will be denoted by D = (D|V0 , D|S) = D|V0 +D|S or, equivalently, by

D = (D|V0 , D|S1 , . . . , D|Sm) = D|V0 +D|S1 + . . .+D|Sm .

This sum notation interprets D|V0 as a divisor on X by extending it by zero on S and D|S
as a divisor on X by extending it by zero on V0. That is, D|V0 is the short notation for
(D|V0 , 0) and D|S for (0, D|S). 4

Lemma 5.5.8. Let V ⊆ X be a schematically dense open subset. Restricting divisors on
X to divisors on V provides a surjective group homomorphism Princ(X)→ Princ(V ).

Proof. By Lemma 3.2.11, the restriction of divisors from X to V is defined. From Corol-
lary 3.2.4 we know that the restriction of principal divisors are principal. This gives
the desired group homomorphism Princ(X) → Princ(V ). The surjectivity follows from
the fact that KX → i∗KV is an isomorphism for the open immersion i : V → X, see
Lemma B.2.6, and that the restriction of divisors maps the local defining functions along
this isomorphism.

Lemma 5.5.9. The restriction of divisors Div(V∞) → Div(S) restricted to the group of
principal divisors on V∞ is a group epimorphism Princ(V∞)→ Div(S).

Proof. By Remark 3.2.20, the restriction of divisors fromX to S is defined. By Lemma 5.5.1,
all divisors on S are principal divisors and, by Proposition 3.2.17, we know that KX →
µ∗KS is an isomorphism. Thus any divisor D on S is given by some f ∈ (µ∗KS)(X) =
KS(S) which is isomorphic to KX(X). Since the restriction of divisors maps the local
defining functions along this isomorphism, it is evident that the respective preimage of f
provides a preimage of the divisor D which is principal.

Corollary 5.5.10. The restriction of divisors provides a surjective group homomorphism
Princ(X)→ Div(S).

Proof. This is just the combination of Lemmas 5.5.8 and 5.5.9.
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Remark 5.5.11. Corollary 5.5.10 tells us that, for any given divisor D on X, we will find a
principal divisor on X which has the same restriction to S as D. Hence we can always find
representatives of classes in CaCl(X) that are only supported outside of S, i.e. that have
support in V0. This may suggest that the restriction map Div(X) → Div(V0) extends to
an isomorphism under linear equivalence, i.e. to an isomorphism CaCl(X) → CaCl(V0).
But this is false in general: Although the map is well-defined, for any divisor D with
support in V0 whose restriction to V0 is a principal divisor on V0, we find by Lemma 5.5.8
a principal divisor divX(f) on X with divX(f)|V0 = D|V0 . But since the support of
divX(f) may meet S, the difference D − divX(f) ∈ Div(X) in general need not be zero.
For instance, let X be integral and non-singular such that S = {P}. Choose D ≥ 0 such
that D|V0 = divV0(f) 6= 0. Then f−1R0 = OX(D)(V0) ⊆ R0 and thus vQ(f−1) ≥ 0 for all
points Q ∈ V0. Since f−1 /∈ R×0 , there is some Q0 ∈ V0 such that vQ0(f−1) ≥ 1 and since
degk divX(f) = 0, see Proposition 3.1.27 (iv), vP (f) < 0 and hence Supp(divX(f))∩S 6= ∅.
Therefore the desired map is not injective though it is surjective by Lemma 5.3.13. 4
As we have seen above, Corollary 5.5.10 ensures that we might always find representatives
of elements in CaCl(X) which are only supported on V0. Those would correspond to
divisors in Div(V0) which are thus given by elements in InvId(R0), see Proposition 5.1.3.
In the next section we want to find specific representatives of elements in CaCl(X) (we even
want to find a suitable isomorphism of the degree zero part on CaCl(X)) which ensure
that we only need to deal with elements in InvId(R0). Hence it seems to be the case
that everything perfectly fits together. But we do not only want to work with elements
InvId(R0) but even with integral ideal representatives. But those would correspond to
effective divisors on V0, see Proposition 3.1.27, and therefore the above would imply that
we are working with representatives (on X) which are effective and have degree zero.
But the only divisor on X that has degree zero and is effective is the zero divisor, see
Lemma 4.7.7. Hence we will see that we need to allow the representative to be non-zero
on S but still of a specific form.

5.6 Isomorphic Models of the Picard Group

In this section we will define the degree zero divisor class group CaCl0(X) analogously
to the definition of Pic0(X). Moreover, we will define the degree zero divisor class group
CaCl0π(X) with respect to π by only considering representatives in CaCl0(X) of a specific
form. This will provide an isomorphism between the former and the latter. Furthermore,
we will present two different types of representatives in CaCl0π(X) that will each correspond
to an approach of computing in CaCl0π(X) later on in Chapter 6.

5.6.1 Degree Zero Divisor Class Group with Respect to π

As mentioned above, in this section we will define the degree zero divisor class group
CaCl0(X) and the degree zero divisor class group CaCl0π(X) with respect to π. To do so,
we will introduce the generalised pole divisor of x. In this section (X,π) will denote a
reduced cover of P1

k.
Note that if D,E ∈ Div(X) are two divisors whose restrictions D|Xi , E|Xi to the irre-

ducible componentXi have degree zero, then the sumD+E also has degree zero restriction
to Xi. This is due to the fact that the restriction map φ : Div(X) →

⊕m
i=1 Div(Xi) and

the degree map degk : Div(X) → Z both are group homomorphisms, see Corollary 5.4.4
respectively Remark 3.1.11.

Definition 5.6.1. Let X be a reduced cover of P1
k. Let D0(X) ⊆ Div(X) denote the

subset of those divisors whose restriction on each irreducible component has degree zero.
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By what we have said above, D0(X) forms a subgroup of Div(X). Note that the re-
striction of a principal divisor to an irreducible component is again a principal divisor,
see Corollary 3.2.4, and since principal divisors on projective curves have degree zero,
see Lemma 3.1.12, Princ(X) is a subgroup of D0(X). Then we define the degree zero
divisor class group of X as the quotient group CaCl0(X) = D0(X)/Princ(X). 4

As already advocated by Remark 5.2.11, we now can state the following lemma.

Lemma 5.6.2. The isomorphisms CaCl(X)→ InvId(X)→ Pic(X) from Proposition 5.2.8
provides the isomorphisms CaCl0(X) ∼= ClInvId0(X) ∼= Pic0(X).

Next we define the generalised pole divisor of x, a divisor on X that restricts to prescribed
multiples of the pole divisor of x on Xi.

Definition 5.6.3. By Lemma D.2.15, there are regular hi ∈ R∞ with Si ⊆ D(hi) ⊆
V∞ \ (S \ Si). Fix such h1, . . . , hm ∈ R∞. By construction, for any i = 1, . . . ,m we have
(X \ Si) ∩D(hi) ⊆ V0,∞. Moreover, xr ∈ (R∞)hi restricts to a unit in OX(V0,∞). Hence
the configuration

{(X \ Si, 1), (D(hi), x−ri)}

does define a divisor on X which we denote by (xri)i,∞. By mild abuse of notation,
x−ri denotes the image of x−ri in (R∞)hi under the injective localisation homomorphism
R∞ → (R∞)hi . By definition, we have

OX((xri)i,∞)P =
{
OX,P , P /∈ Si
xriOX,P , P ∈ Si

andOX((xri)i,∞)(V ) = OX(V ) for all V ⊆ V0 as well asOX((xri)i,∞)(D(hi)) = xri(R∞)hi .
The inclusion D(hi)∩D(hj) ⊆ V0,∞ corresponds to the ring homomorphisms (R∞)x−1 →
(R∞)hihj under which the unit xr, r ∈ Z, gets sent to a unit. Hence for A := {1, . . . ,m}
the divisor

∑
i∈A(xri)i,∞ is given by the configuration

{(V0, 1), (D(hi), x−ri)i∈A}

which implies

OX(
∑

i∈A
(xri)i,∞)P =

{
OX,P , P /∈ S
xriOX,P , P ∈ Si

as well asOX(
∑

i∈A(xri)i,∞)(V ) = OX(V ) for all V ⊆ V0 andOX(
∑

i∈A(xri)i,∞)(D(hi)) =
xri(R∞)hi . Note that by definition, we have (xr)i,∞ = r(x)i,∞ for all r ∈ Z. 4

Remark 5.6.4. We could have defined the divisors (xri)i,∞ without the basic open subsets
D(hi) and use V∞ \ (S \ Si) instead. But the advantage of the way we have done it, is
that we can immediately see what the restriction to Si will be. This is due to the fact
that the morphism S → V∞ resp. Si → Vi,0 is induced by the localisation homomorphism
regarding T = k[x−1] \x−1k[x−1] and hence we can clearly determine how it works on the
level on basic opens. 4

Proposition 5.6.5. The restriction of (xri)i,∞ to Xi is equal to ri(x)Xi,∞ and its restric-
tion to Xj with j 6= i is equal to the zero divisor on Xj.

Proof. Note that Xi \ Si = Vi,0. By Remark 3.2.14, the configuration {(X \ Si, 1),
(D(hi), x−ri)} gets sent to the configuration {(Vi,0, 1), (D(hi), x−ri} where, by abuse of
notation, hi and x−ri also denote their images under the residue map R∞ → Ri,∞. Since
x gets sent to a unit in Vi,0 ∩ D(hi) ⊆ Vi,0 ∩ Vi,∞, this configuration induces the same
divisor as the configuration {(Vi,0, 1), (Vi,∞, x−ri)}. But the latter configuration induces
the ri-multiple ri(x)Xi,∞ of the pole divisor of x. The second assertion if obvious.

134



Chapter 5 5.6. Isomorphic Models of the Picard Group

Definition 5.6.6. Let us denote the restriction of (x)Xi,∞ to Si by (x)Si,∞. Moreover,
we denote the restriction of (x)∞ to S by (x)S,∞. 4

Corollary 5.6.7. Let A = {1, . . . ,m}. Then(∑
i∈A

(xri)i,∞
)
|Xj

= rj(x)Xj ,∞

and hence (∑
i∈A

(xri)i,∞
)
|Sj

= rj(x)Sj ,∞.

Proof. The first statement follows immediately from Proposition 5.6.5 if we take into
account that the restriction map τ∗j : Div(X) → Div(Xj) is a group homomorphism, see
Proposition 3.2.3 and Lemma 3.2.13. The second assertion follows by further restricting
to Sj and by Corollary 3.2.23.

Remark 5.6.8. In particular, under the identification from Remark 5.5.6, the divisor∑
i∈A(xri)i,∞ corresponds to (0, r1(x)S1,∞, . . . , rm(x)Sm,∞). 4

Proposition 5.6.9. Let A = {1, . . . ,m}. Then we have

(i) degk
∑

i∈A(xri)i,∞ = degk
(∑

i∈A(xri)i,∞
)
|S =

∑
i∈A rini, and

(ii) degk(
∑

i∈A(xri)i,∞)Sj = degk(xrj )|Sj = rjnj.

Proof. Let us prove the first assertion. By Proposition C.4.18 (ii), we have

degk
∑

i∈A
(xri)i,∞ = degk

(∑
i∈A

(xri)i,∞
)
|V0

+ degk
(∑

i∈A
(xri)i,∞

)
|S

and since, by definition,
∑

i∈A(xri)i,∞ restricts to the zero divisor on V0, the first equality
of the first assertion follows. Now by Proposition C.4.18 (iii), we have

degk
∑

i∈A
(xri)i,∞ =

∑
j∈A

degk
(∑

i∈A
(xri)i,∞

)
|Xj

=
∑

j∈A
degk rj(x)Xj ,∞

where the last equality is due to Corollary 5.6.7. Now by Corollary D.2.14, we have
degk rj(x)Xj ,∞ = rjnj and thus the second equality of the first assertion follows as well.
The second assertion is an immediate consequence of Corollary 5.6.7.

Remark 5.6.10. Let A = {1, . . . ,m}. If ri = r for all i ∈ A, then∑
i∈A

(xri)i,∞ = r(x)∞. 4

Lemma 5.6.11. Let f = (f1, . . . , fm) ∈ KX(X)×. Then

1. divX(f)|S = divS(f) where the latter f is the image of the former under the ring
monomorphism R∞ → OS, and

2. divX(f)|Si = divSi(fi).

Proof. By definition, divX(f) is given by the configuration {(X, f)}. By Corollary 3.2.23,
we have divX(f)|S = (divX(f)|V∞)|S and by Remark 3.2.12, divX(f)|V∞ is given by the
configuration {(V∞, f)} where we identified f with its image under the isomorphism
KX(X) ∼= KX(V∞). Therefore, by Remark 3.2.20, (divX(f)|V∞)|S and hence divX(f)|S
is given by {(S, f)} where we identified f with its image under the ring monomorphism
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R∞ → OS . This proves the first assertion. To prove the second, recall that by Re-
mark 3.2.14, the restriction of divX(f) to the component Xi is given by {(Xi, f|Xi)} where
f|Xi denotes the image of f under the ring epimorphism KX(V∞)→ KXi(Vi,∞). But this
equals fi under the identification KX(X) ∼= KX(V∞) ∼=

⊕m
i=1KXi(Vi,∞) and hence yields

the second assertion.

Proposition 5.6.12. Let A = {1, . . . ,m}. The various restrictions of
∑

i∈A(xri)i,∞ are
given as follows:

1. The restriction to V∞ is given by the configuration

{(V0,∞, 1), (D(hi), x−ri)i∈A}.

2. The restriction to S is given by the configuration

{(Si, x−ri)i∈A} (6:12)

and hence by the principal divisor on S given by f = (x−r1 , . . . , x−rm) ∈ OS =⊕m
i=1OSi.

3. The restriction to Si is given by the principal divisor of x−ri on Si and is thus equal
to ri(x)Si,∞.

Proof. Since D(hi) ⊆ V∞ for all i = 1, . . . ,m, by Remark 3.2.12, the first assertion follows
immediately. By Corollary 3.2.23, the restriction from X to S can be computed by first
restricting from X to V∞ and then from V∞ to S. By Remark 3.2.20, the restriction map
from D(hi) to D(hi) ∩ S = Si is given by the map (R∞)hi → (T−1R∞)hi . Moreover, the
intersection of V0,∞ with S is empty. Hence the restriction to S is given by the asserted
configuration where x−ri is the image of x−ri under the above ring homomorphism. That
the principal divisor divS(f) on S equals the one induced by the configuration (6:12)
is due to Corollary 5.5.4 and the fact that divS(f)|Si = divSi(x−ri) which follows from
Lemma 5.6.11. The third assertion follows now immediately since we can (again with
Corollary 3.2.23) just further restrict divS(f) to Si which yields the asserted principal
divisor on Si.

Corollary 5.6.13. Let A = {1, . . . ,m}. Let f = (f1, . . . , fm) ∈ KX(X)×. Then the
following are equivalent.

1. divX(f)|S = (
∑

i∈A ri(x)i,∞)|S,

2. for all i ∈ A we have divSi(fi) = ri(x)Si,∞, and

3. for all i ∈ A we have f−1
i OSi = xriOSi.

Proof. By Corollary 5.5.4, two divisors on S are equal if and only if all of their restrictions
to Si are equal. Hence, we have divX(f)|S = (

∑
i∈A ri(x)i,∞)|S if and only if for all

i = 1, . . . ,m
(divX(f)|S)|Si = ((

∑
i∈A

ri(x)i,∞)|S)|Si .

By Lemma 5.6.11 and Proposition 5.6.12, this is equivalent to

divSi(fi) = ri((x)Xi,∞)|Si = ri(x)Si,∞

for all i = 1, . . . ,m. By Corollary D.2.14, the latter is the principal divisor of x−ri on
Si. By definition, these two principal divisors on Si are equal if and only if their defining
functions differ multiplicatively by a unit in OSi . Equivalently, f−1

i OSi = xriOSi for all
i = 1, . . . ,m.
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In what follows, we will define the degree zero divisor class group with respect to π which
is closely related to CaCl0(X) but requires its representatives to have the same restriction
to S as the generalised pole divisor, see Definition 5.6.3. This will enable us to prove that
it is isomorphic to some ideal class group associated to R0.

Definition 5.6.14. Let (X,π) be a reduced cover of P1
k. We set

Div0
π(X) =

{
D +

∑
i∈A

ri(x)i,∞ ∈ D0(X) | Supp(D) ⊆ V0

}
which is obviously a subgroup of D0(X). We call Div0

π(X) the degree zero divisor
group of X with respect to π. Analogously,

Princπ(X) = Div0
π(X) ∩ Princ(X)

is a subgroup of Div0
π(X). The morphism Div0

π(X) ↪→ D0(X)→ CaCl0(X) then provides
an embedding

CaCl0π(X) := Div0
π(X)/Princπ(X) ↪→ CaCl0(X).

We call CaCl0π(X) the degree zero divisor class group of X with respect to π 4

Remark 5.6.15. Due to Proposition 5.6.9, the fact that the restrictions ofD+
∑

i∈A ri(x)i,∞
to any irreducible component have degree zero and Proposition C.4.18 (ii), we have
degkD|Vi,0 = −rini. Hence we deduce degkD|V0 =

∑
i∈A−rini, see Proposition C.4.18

(iii). 4

Proposition 5.6.16. The embedding CaCl0π(X) ↪→ CaCl0(X) is an isomorphism of
abelian groups.

Proof. By Lemma 5.5.1, every divisor D ∈ Div(X) restricts to a principal divisor on S. By
Corollary 5.5.10, there is some principal divisor onX which restricts to exactly that divisor
on S. This provides that we find representatives of classes in CaCl0(X) which are trivial
on S. In particular, these representatives define a class in CaCl0π(X) since

∑
i∈A ri(x)i,∞

where ri = 0 for all i ∈ A is the zero divisor on X. This provides the assertion.

Remark 5.6.17. By abuse of naming, we will also call CaCl0π(X) the degree zero divisor
class group of X. 4
Remark 5.6.18. The isomorphism KX → (i0)∗KV0 from Lemma B.2.6 provides that every
principal divisor on V0 given by some f ∈ KV0(V0)× = Frac(R0)× provides an element in
KX(X)× and thus a principal divisor on X. Since the restriction of divisors from X to
V0 uses the isomorphism KX → (i0)∗KV0 which is the extension of OX → (i0)∗OV0 , we
see that the restriction of the above divisor to V0 is the principal divisor on V0 given by f
again. 4

Definition 5.6.19. Let Pπ ⊆ InvId(R0) be the set of invertible R0-ideals whose (regular)
generator f provides (as in Remark 5.6.18) a principal divisor divX(f) on X satisfying the
equivalent properties in Corollary 5.6.13. That is

divX(f) = (divX(f)|V0 , divX(f)|S) = (divV0(f), r1(x)S1,∞, . . . , rm(x)Sm,∞),

see Notation 5.5.7. We easily see that Pπ together with the multiplication of ideals forms
a subgroup of the abelian group InvId(R0). 4

Proposition 5.6.20. Every element fR0 in Pπ with f = (f1, . . . , fm) ∈ KX(X)× satisfies
deg fiRi,0 = rini for some ri ∈ Z, i = 1, . . . ,m. In particular, degk fR0 =

∑m
i=1 rini.
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Proof. Principal divisors have degree zero, see Lemma 3.1.12. Hence, by Proposition 3.1.27,
we have degk divX(f) = 0 and degk divXi(fi) = 0. Moreover, by Lemma C.1.28, we have

degk fR0 =
m∑
i=1

degk fR0/fPi =
m∑
i=1

degk fi(R0/Pi) (6:13)

where we have used that fR0/fPi is isomorphic to the R0/Pi-ideal fi(R0/Pi). By as-
sumption on f , we have fiOSi = x−riOSi , see Corollary 5.6.13. This together with
degk divXi(fi) = 0 and Corollary C.4.13 yields degk fi(R0/Pi) = degk fiOSi = degk x−riOSi .
The latter is equal to rini by Corollary D.2.9 which, together with Eq. (6:13), provides
the assertion.

Definition 5.6.21. Let Spec(R0)0 = {P1, . . . , Pm} denote the minimal prime ideals of
R0. Then we define

Iπ = {M ∈ InvId(R0) | degkM/PiM = rini}.

By Lemma C.1.28, we have degkM =
∑m

i=1 rini for every M ∈ Iπ. Then Iπ together
with the multiplication of R0-ideals forms a subgroup of InvId(R0). Indeed, by Proposi-
tion C.1.26, we have degkMN = degkM + degkN for any two M,N ∈ InvId(Ri,0). By
Proposition 5.6.20, Pπ is a subgroup of Iπ. 4

Proposition 5.6.22. The map

γ : Div0
π(X) → Iπ

D +
∑

i∈A ri(x)i,∞ 7→ OX(D)(V0)

is a group isomorphism.

Proof. The representation D +
∑

i∈A ri(x)i,∞ is unique, see Remark 5.5.6. Hence

D +
∑

i∈A
ri(x)i,∞ 7→ D

induces a group homomorphism Div0
π(X) → Div(X) whose image consists of divisors

D on X with D|Xi having degree equal to rini for some ri ∈ Z, see Remark 5.6.15.
Thus the isomorphism Div(X) → InvId(X) as in Proposition 3.1.27 followed by the
homomorphism InvId(X) → InvId(R0), F 7→ F(V0) provides a group homomorphism
Div0

π(X) → InvId(R0) sending D +
∑

i∈A ri(x)i,∞ to OX(D)(V0). By Remark 5.6.15, we
have degkD|Vi,0 = rini for some ri ∈ Z and thus with Lemma C.4.8 and Corollary C.4.12
we deduce

degkOX(D|Vi,0)(Vi,0) = degkOX(D|Vi,0) = −degkD|Vi,0 = −rini.

In particular, by Lemma 3.2.30, we have

degkOX(D)(V0)/PiOX(D)(V0) = degkOX(D|Vi,0)(Vi,0) = −rini

and therefore OX(D)(V0) ∈ Iπ. This proves that the above homomorphism is equal to γ
which in turn proves that γ is a group homomorphism.

Now let us prove that γ is surjective. Let I ∈ Iπ be an invertible R0-ideal such that
degk I/PiI = rini for all i ∈ A. Let D0 denote the preimage of I under the isomorphism
Div(V0)→ InvId(R0) as in Proposition 3.1.27. That is OV0(D0)(V0) = I and

degk(D0)|Vi,0 = −degkOVi,0((D0)|Vi,0)(Vi,0) = degk I/PiI = rini.
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Now using Lemma 5.3.13 with S being the finite set and fj = 1 for all points Qj ∈ S
we see that there is a divisor D on X such that D|V0 = D0 and D|S = 0. Then, by
construction, we have D +

∑
i∈A ri(x)i,∞ ∈ Div0

π(X) as well as OX(D)(V0) = I which
proves the surjectivity of γ.

The kernel of γ is given by divisors D +
∑

i∈A ri(x)i,∞ with Supp(D) ⊆ V0 such that
OX(D)(V0) = R0. The latter is equivalent to OX(D)|V0 = OV0 and thus to D|V0 = 0. In
particular, since the restriction map is a group homomorphism, see Corollary 3.2.23, we
have

(D +
∑

i∈A
ri(x)i,∞)|Xj = D|Xj + (

∑
i∈A

ri(x)i,∞)|Xj = (
∑

i∈A
ri(x)i,∞)|Xj = rj(x)Xj ,∞

where we have used Corollary 5.6.7. Now the former has, by assumption, degree zero.
The latter has degree rjnj and hence we deduce that rj = 0 for all j ∈ A. That is, γ is
injective as well and thus the assertion follows.

Corollary 5.6.23. We have an isomorphism of abelian groups CaCl0π(X)→ Iπ/Pπ given
by

φ : CaCl0π(X) → Iπ/Pπ
[D +

∑
i∈A ri(x)i,∞] 7→ [OX(D)(V0)]

where Supp(D) ⊆ V0. In particular, Pic0(X) ∼= CaCl0(X) ∼= Iπ/Pπ.

Proof. By Proposition 5.6.22, we have the isomorphism of abelian groups

γ : Div0
π(X) → Iπ

D +
∑

i∈A ri(x)i,∞ 7→ OX(D)(V0).

We are left to prove that γ(Princπ(X)) = Pπ. But this is trivial since γ(divX(f)) =
OX(divX(f))(V0) = f|V0R0 is a principal ideal and lies in Iπ by Proposition 5.6.22. The
particular part now follows from Proposition 5.6.16.

Since we now see that the functions in Princ0
π will be those by which we alter representa-

tives in CaCl0π, we give them a name.

Definition 5.6.24. Let f ∈ KX(X)×. If fR0 ∈ Pπ or, equivalently, divX(f) ∈ Princπ(X),
f is called a modification function. Consider the following two cases:

1. D ∈ Div(X) and f ∈ Princπ(X) such that f ∈ OX(D)(V0), and

2. I ∈ Iπ and f ∈ I such that fR0 ∈ Pπ.

In these cases we call f a modification function of D respectively a modification
function of I. By definition, f is a modification function of D if and only if f is a
modification function of OX(D)(V0). 4

Let f ∈ R0 be arbitrary. The following Lemma provides a sufficient condition for fR0 to
lie in Pπ, that is for f to be a modification function. From an algorithmic point of view, it
will be very convenient that this condition is entirely expressed in terms of the coefficients
of f with respect to the fixed k[x]-basis Ω of R0.

Lemma 5.6.25. Let Ω = (ω1, . . . , ωn) be a reduced basis of R0. Then ω̃i = ωix
|X|i is a

k[x−1]-basis of R∞ and O∞-basis of OS. If f =
∑n

i=1 λiωi with λi ∈ k[x] such that

deg(λi) < deg(λ1) + |X|i for i = 2, . . . , n,

then it satisfies fOS = xdeg(λ1)OS. Note that for λi = 0 there is no condition imposed on
the degree of λ1 with respect to −|X|i.
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Proof. Let f =
∑n

i=1 λiωi with deg λ1 = r and deg λi < r+ |X|i. Note that for every λi ∈
k[x] \ {0} we have a unique representation λi = xdeg(λi)εi with εi ∈ k[x−1] \ x−1k[x−1] ⊆
O×∞. Then we have

f =
n∑

i:λi 6=0
λix
−|X|i · ω̃i = xr ·

n∑
i:λi 6=0

λix
−r−|X|i · ω̃i

= xr ·
n∑

i:λi 6=0
εi x

deg(λi)−r−|X|i · ω̃i

= xr ·

ε1 x
deg(λ1)−r−|X|1 · ω̃1 +

n∑
i≥2:λi 6=0

εi x
deg(λi)−r−|X|i · ω̃i


= xr ·

ε1 +
n∑

i≥2:λi 6=0
εi x

deg(λi)−r−|X|i · ω̃i

 .

Let z :=
∑n

i≥2:λi 6=0 εi x
deg(λi)−r−|X|i · ω̃i. Then by the above, we have f = xr · (ε1 + z).

By assumption, we have deg(λi) − r − |X|i < 0 for all i = 2, . . . , n. Thus z ∈ x−1R∞
and therefore z is contained in every maximal prime ideal of OS . Moreover, since ε1 ∈
k[x−1] \ x−1k[x−1], it is not contained in any of the maximal primes of OS and hence
ε1 + z ∈ O×S .

Note that Lemma 5.6.25 does indeed imply that f is a modification function, but its
implications are even stronger: It says that the principal divisor of f (if f ∈ KX(X)×)
corresponds to

(divV0(f),divS(xdeg(λ1))) = (divV0(f), divS1(xdeg(λ1)), . . . ,divSm(xdeg(λ1)))

under the identification in Notation 5.5.7. That is, choosing f as above implies that the
coefficients of the generalised pole divisor in the representation of divX(f) will all be the
same. Thus we face the problem that this method does not provide any possibility to con-
trol the coefficients ri of ridivSi(x) = divSi(xri). But we can overcome this disadvantage
by applying Lemma 5.6.25 for all the irreducible components X1, . . . , Xm.

5.6.2 Component Dependent and Independent Representation

In this section we will distinguish between two possible types of representatives in CaCl0π(X),
those that have the same restriction to every Si and those who may have different re-
strictions to the Si. We will call the approach of solely working with the former type
of representatives the component independent case and working with the latter type of
representatives is called the component dependent case.

As we have already mentioned in Remark 5.6.10, by putting ri = r for all i ∈ A, the
generalised pole divisor

∑
i∈A ri(x)i,∞ equals the pole divisor r(x)∞. That is, degree zero

divisors of the form D + r(x)∞ ∈ D0 with Supp(D) ⊆ V0 are possible representatives
of classes in CaCl0π(X). The next theorem and its corollary show that every class in
CaCl0π(X) admits such a representative.

Theorem 5.6.26. Let X be a cover of P1
k. For every invertible OX-ideal F there is some

invertible OX-ideal L and s ∈ Z such that

F ∼= L(s(x)∞), L ≤ OX and Supp(L) ⊆ V0 (resp. L|S = OS).
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Proof. Let F be an invertible OX -ideal. Since F is invertible, the same is true for F|S by
Proposition 3.2.28. Also, by Proposition 3.2.28, we have F(S) = hOS for some regular
h ∈ Frac(R0). Then multiplication by h−1OX provides that we may without loss of
generality assume that F|S = OS and thus Supp(F) ⊆ V0.

The next (and last) step is to find a regular global section which wedges F(V0)
into R0 and behaves like a power of x over S. To do so, we set G := F−1((xr)∞)
and H := F−1((xr−1)∞). Note that by Proposition 3.1.27, we have GP = xrOX,P
and HP = xr−1OX,P for all P ∈ S. Then any regular global section f of G satisfies
fOX ≤ F−1((xr)∞) and thus

L := fF((x−r)∞) ≤ OX

will therefore satisfy L|V0
∼= fF(V0) ⊆ R0. Moreover, since f is regular, L ∼= F((x−r)∞).

If moreover, fOS = xrOS , then L will also satisfy L|S ∼= OX(xr−r)|S = OS . Then
F = f−1OX ⊗OX L((xr)∞) ∼= L((xr)∞) with L ≤ OX and Supp(L) ⊆ V0 as asserted.

To find such global section, we want to employ the Approximation Theorem 5.7.1. To
use it, H1 (X,H) = 0 needs to be satisfied. By Proposition D.2.3, we have that (x)∞ is
an ample divisor, i.e. OX((x)∞) is an ample invertible sheaf on X. Since F−1 is coherent,
by [Liu02, 5.3.6] there is n0 such that for all n ≥ n0 and p ≥ 1 we have

0 = Hp
(
X,F−1 ⊗OX OX((x)∞)⊗n

)
.

By [Liu02, 7.1.18 (a)], we have OX(D)⊗r ∼= OX(rD) for every r ∈ Z. Thus OX((x)∞)⊗n ∼=
OX(r(x)∞) = OX((xr)∞) which provides H1 (X,F−1((xr)∞)

)
= 0 for some r ∈ Z.

Now we require 0 6= gP = xr ∈ GP for P ∈ S with r ∈ Z as above and gP = fP ∈ GP for
P ∈ V0 where FP = fPOX,P for all P ∈ V0 (thus no further requirement in V0). Then the
Approximation Theorem 5.7.1 guarantees the existence of g ∈ G(X) with gP = xr+xr−1bP
for bP ∈ OX,P for all P ∈ S. Hence gP = xr(1 + x−1bP ) where 1 + x−1bP ∈ O×X,P since
x−1 ∈ POX,P . Whence gPOX,P = xrOX,P for all P ∈ S and hence gOS = xrOS as global
sections of KS as desired. In particular, g corresponds to a regular global section of KX
via the isomorphism KX → µ∗KS , see Proposition 3.2.17.

In Corollary E.2.18 in the appendix we will provide bounds for the integers n0 ∈ Z such
that for all r ≥ n0 the term H1(X,F(r(x)∞)) vanishes. By the proof of Theorem 5.6.26,
this gives the following corollary.

Corollary 5.6.27. The integer s in Theorem 5.6.26 can be bounded by
mmax
i=1
{(degk F|Xi)/ni + 2ci,X} ≤

mmax
i=1
{(degk F|Xi)/ni}+ 2cX .

Corollary 5.6.28. For every divisor D ∈ Div(X) there is some divisor E ∈ Div(X) with
E ≤ 0 and Supp(E) ⊆ V0 such that D and E+s(x)∞ are linear equivalent for some s ∈ Z.
Moreover, there is E such that s is upper bounded by

mmax
i=1
{(−degkD|Xi)/ni + 2ci,X} ≤

mmax
i=1
{(−degkD|Xi)/ni}+ 2cX .

Proof. Apply Theorem 5.6.26 to OX(D) and obtain OX(E + (xr)∞) ∼= OX(D) with
OX(E) ≤ OX and Supp(E) ⊆ V0. Now OX(E) ≤ OX is equivalent to E ≤ 0, see
Proposition 3.1.27 (ii). Moreover, since any two invertible OX -ideals are isomorphic if
and only if they differ multiplicatively by the invertible sheaf associated to a principal
divisor, see Lemma 3.1.26, E satisfies the asserted properties. The last part follows from
Corollary 5.6.27.
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Remark 5.6.29. In Section 5.8 we will see that the bound for the integer s in Corol-
lary 5.6.28 can be obtained solely by the existence of a divisor of the form D + r(x)∞
with unbounded r using modification functions. The method introduced there has the
advantage that it also tells us how to reduce a divisor class given by a representative of
the form D+r(x)∞ by using modification functions. This will be crucial in our algorithms
that implement the arithmetic in Pic0(X). 4
Remark 5.6.30. Corollary 5.6.28 shows that the group CaCl0π(X) is isomorphic to the
group of divisor classes with representatives D + r(x)∞ ∈ D0, Supp(D) ⊆ V0, modulo
principal divisors divX(f) with divS(f) = r(x)∞. If X is integral, these two groups are
equal by definition. 4
Therefore, we may either work with representatives of the form D+ r(x)∞ ∈ D0 or of the
form D+

∑
i∈A ri(x)i,∞ ∈ D0 both with Supp(D) ⊆ V0. Since we want to work with both

forms, we give these two types of approaches to compute in CaCl0π(X) names.

Notation 5.6.31. We call the approach of working with representatives of the form
D + r(x)∞ ∈ D0 the component independent case. The approach of working with
representatives of the form D+

∑
i∈A ri(x)i,∞ ∈ D0 is called the component dependent

case. 4

In the component independent case one tries to avoid the irreducible components of X
and rather treats X as if it was irreducible. Actually, after working out how one could
compute fast enough in CaCl0(X) in the case of irreducible X, this should be the first
approach of dealing with the more general case of reducible X. But as we have seen in
Section 4.5, especially in Lemma 4.5.1 and Corollary 4.5.2, to obtain effective bounds for
the π-invariants of both divisors and X itself, it was necessary to examine the irreducible
components of X and the restriction of divisors to those. We will see in Section 5.8 that
the degree of the ideal representatives will depend on these bounds. Therefore, one could
say that using the component dependent mindset to work out the above bounds and try
to come up with algorithms to cope with the component dependent case finally provides
the possibility to (almost) forget about the irreducible components at all.
Remark 5.6.32. We want to highlight some properties of working in the component in-
dependent case: Let D + r(x)∞ ∈ D0 with D ≤ 0 denote a representative of an element
in Div0

π(X). Then degkD = −rn and degkOX(D)(V0) = rn, see Lemma D.2.13 and
Proposition C.4.18 (i), (ii). Moreover, since D ≤ 0, we have OX(D)(V0) ⊆ R0, see Propo-
sition 3.1.27 (ii). Therefore, in the component independent case we work with integral
ideals that have degree which is a multiple of n. The same holds for the modification
functions by which we alter the ideal representatives. 4
In the rest of this section, we show how the definitions of Iπ, Pπ and CaCl0π(X) play out
in the case of X being integral. We will see that this resembles what we have already seen
in Remark 5.6.32. Let (X,π) be an integral cover of P1

k. As already mentioned in Re-
mark 5.6.10, setting all ri to the same number r, the generalised pole divisor

∑
i∈A ri(x)i,∞

defined in Definition 5.6.3 equals a multiple r(x)∞ of the pole divisor of x on X, see Def-
inition 2.2.9. Then the definition of Div0

π(X) and Princ0
π(X) translate into

(i) Div0
π(X) = {D + r(x)∞ ∈ D0 | Supp(D) ⊆ V0, r ∈ Z}, and

(ii) Princ0
π(X) = {div(f) ∈ Princ(X) | div(f)|S = r((x)∞)|S , r ∈ Z}.

Moreover, the definitions of Iπ and Pπ still apply in the integral case and then translate
into

(i) Iπ = {M ∈ InvId(R0) | degkM = rn for some r ∈ Z}, and
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(ii) Pπ = {fR0 ∈ InvId(R0) | f ∈ Frac(R0), fOS = xrOS for some r ∈ Z}.

Furthermore, the isomorphism γ in Proposition 5.6.22 translates into

γ : Div0
π(X) → Iπ

D + r(x)∞ 7→ OX(D)(V0) (6:14)

finally providing the isomorphism

φ : CaCl0π(X) → Iπ/Pπ
[D + r(x)∞] 7→ [OX(D)(V0)]. (6:15)

Summarising the above, we deduce that we can carry out the group law in CaCl0(X) by
computing with invertible ideals of R0 having a degree that is a multiple of n and be able
to modify by principal ideals whose generator generates the same principal ideal over OS
as some power of x does.
Remark 5.6.33. Note that by construction the restriction map ρi : InvId(R0)→ InvId(Ri,0),
I 7→ I/Pi,0I sends elements in Iπ to elements in Iπi . Moreover, the elements in Pπ are
those principal ideals fR0 in Iπ such that for all i = 1, . . . ,m we have ρi(fR0) ∈ Pπi .
That is, the modification functions on X are exactly those functions that restrict to mod-
ification functions on all of the irreducible components X1, . . . , Xm of X. Hence to find a
modification function on X, it is sufficient to find a function that restricts to modification
functions on the components. 4

5.7 Modification Functions

In this section we will examine modification functions of divisors more closely. We will
prove that for every divisor D ≤ 0 on X with support away from S (that is, for all
ri ∈ Z we have D +

∑
i∈A ri(x)i,∞ ∈ Div0

π(X)) there is a modification function f ∈
Lreg(D +

∑
i∈A ri(x)i,∞) with fR0 ⊆ OX(D)(V0) and fR0 ∈ Pπ.

Modification functions will play an eminent role in our algorithmic approach of com-
puting in CaCl0π(X) as we will see in Chapter 6. However, also theoretically they provide
fundamental insights. For instance, they enable us to find representatives for each class
in Iπ/Pπ (and thus in CaCl0π(X)) that are integral and have bounded degree.

Since we want to work with two approaches, the component independent case and
the component dependent case, we need to provide existential statements of modification
functions in both cases. In Section 5.7.1 we will give the somewhat constructive proofs
of their existence in both cases. These proofs have a very geometric character and are,
at least with respect to their basic ideas, easy to follow. The proofs themselves are quite
technical. They rely heavily on the Approximation Theorem 5.7.1 which we will provide
in a very general sheaf theoretic fashion. Moreover, since the proof in the component
dependent case uses an iterative argument, it relies on some commutative algebra which
cares about characterising the image of the natural morphism M →

⊕m
i=1M/PiM which

is treated in Section B.4 of the appendix.
The reader that is mainly interested in the algorithmic aspect of this thesis, that

is, in the concrete computation in CaCl0π(X) may skip Section 5.7.1 altogether since in
Section 5.7.2 we do not only provide the explicit algorithms for computing the desired
modification functions but these algorithms do also provide the existential statements of
the modification functions. The degree bounds there are not as good as the ones we can
provide in Section 5.7.1, but they are asymptotically the same.

The main difference between the two approaches to prove the existence of modification
functions is the following: The first and more geometric approach uses that we can come
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up with modification functions on integral schemes and thus on the irreducible components
of X. Given a modification function on the first (we will fix an order of the irreducible
components to do so) irreducible component X1 of X, we will try to find one on the second,
say X2, which agrees with the first one on X1 ∩X2. This provides a modification function
on X1 ∪ X2 and thus we can proceed iteratively in this manner which finally yields the
desired modification function on all of X. While doing so, we follow the commutative
algebra instructions given in Section B.4 that guarantee that the computed element f
actually lies in OX(D)(V0). The second and very algorithmic approach uses the basis
matrix of the ideal OX(D)(V0) with respect to Ωm

i . It then finds a suitable element in the
column space of that matrix such that its i-th row block (which contains the coefficients
of the restriction of that element to the i-th irreducible component with respect to Ωi)
satisfies the sufficient conditions of Lemma 5.6.25. The latter provides that the respective
restriction is indeed a modification function on that component.

Summarising the above, one approach uses an iterative procedure to successively find
modification functions in OXi(D|Xi)(Vi,0) on the irreducible components Xi such that
the result actually lies in OX(D)(V0) and not only in

⊕m
i=1OXi(D|Xi)(Vi,0). The other

approach constructs an element within the ideal OX(D)(V0) that satisfies the sufficient
conditions in Lemma 5.6.25 on each irreducible component.

5.7.1 Existence of Modification Functions

We start by stating the Approximation Theorem 5.7.1 in a very general setting and for
OX -ideals. We note that the Approximation Theorem 5.7.1 even holds for more general
sheaves, see Remark 5.7.2.

Theorem 5.7.1 (Approximation Theorem). ] Let L,F be non-zero OX-ideals with F ≤ L
and H1 (X,F) = 0. Then the following sequence is exact:

0 −→ H0 (X,F) −→ H0 (X,L) −→
∐
P∈X
LP /FP −→ 0.

Proof. By taking cohomology, the exact sequence of OX -modules

0 −→ F −→ L −→ L/F −→ 0,

provides the exact sequence

0 −→ H0 (X,F) −→ H0 (X,L) −→ H0 (X,L/F) −→ H1 (X,F) = 0,

see Lemma 5.2.5. By Corollary C.3.3, we obtain H0 (X,L/F) =
∐
P∈X LP /FP and the

result follows.

Remark 5.7.2. The proof of the Approximation Theorem 5.7.1 shows that we do not rely
on F and L being OX -ideals, but only on the fact that Cohomology is defined for such
sheaves and that the quotient sheaf L/F is a skyscraper sheaf. Thus the Approximation
Theorem 5.7.1 may also be formulated for X a topological space and sheaves defined over
a category that provides the possibility of subsheaves. 4
Remark 5.7.3. The name “Approximation Theorem” is justified in the following sense:
We may choose arbitrary elements aP ∈ LP for all P ∈ X and then the exactness of the
sequence provides the existence of g ∈ L(X) such that gP + FP = aP + FP . Thus, up to
values in FP we can approximate an element in L(X) with prescribed values in LP for all
P ∈ X. 4
The following proposition tells us that for any given divisor D ≤ 0 with support away
from S there are functions f ∈ Lreg(D + r(x)∞) with fOS = xrOS where the power r
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depends on maxmi=1{−(degkD|Xi)/ni}. That is we may find modification functions with a
common power r on all irreducible components.

Proposition 5.7.4. Let X be a reduced cover of P1
k. Let D ∈ Div(X) be a divisor on X

with D ≤ 0 and Supp(D) ⊆ V0. Let r ∈ Z be any integer with r > maxmi=1{−(degkD|Xi)/ni
+2ci,X}. Then there is f ∈ KX(X)× such that

(i) f ∈ Lreg(D + r(x)∞) and

(ii) fOS = xrOS.

Proof. Let D be given by the data (Ui, h−1
i ) for which we know that hi ∈ OX(Ui) since

D ≤ 0. Then OX(D)|Ui = hiOUi and thus OX(D)P = hiOX,P for every P ∈ Ui. We set
L = OX(D + r(x)∞) and F = OX(D + (r − 1)(x)∞). Then we have

LP =
{
xrOX,P , P ∈ S
hiOX,P , P ∈ V0

, FP =
{
xr−1OX,P , P ∈ S
hiOX,P , P ∈ V0

(7:16)

By Corollary E.2.18, we have H1 (X,F) = H1 (X,OX(D + (r − 1)(x)∞) = 0 if r −
1 ≥ maxmi=1{(degkOX(D)|Xi)/ni + 2ci,X}. By Lemma C.4.8, we have degkOX(D)|Xi =
−degkD|Xi and thus r > maxmi=1{−(degkD|Xi)/ni+2ci,X} is sufficient for H1(X,OX(D+
(r − 1)(x)∞) to vanish. We set

aP =
{
xr +

∑n
i=2 x

r−1+|X|iωi, P ∈ S
hi, P ∈ V0

∈ LP

and note that

xr +
n∑
i=2

xr−1+|X|iωi = xr +
n∑
i=2

xr−1ω̃i = xr

(
1 +

n∑
i=2

x−1ω̃i

)
.

Hence aP = xr · εP where εP ∈ O×X,P for all P ∈ S. Now for r in the asserted order
of magnitude we obtain by the Approximation Theorem 5.7.1 the existence of f ∈ L(X)
(which will turn out to be regular due to its behaviour on S) such that fP +FP = aP +FP
for all P ∈ X. Thus, by Eq. (7:16), we have fP = aP + xr−1bP for some bP ∈ OX,P and
hence fP = xrεP + xr−1bP = xr(εP + x−1bP ). Now since εP ∈ O×X,P and x−1 ∈ POX,P
for all P ∈ S, we have εP + x−1bP ∈ O×X,P and hence fPOX,P = xrOX,P for all P ∈ S.
Since OSi is an integral domain with field of fractions Fi, the function field of Xi, we see
that fPOX,P = xrOX,P for all P ∈ Si together with OSi = ∩P∈SiOX,P easily provides the
equality fOSi = xrOSi . Since OS =

⊕m
i=1OSi , we therefore obtain fOS =

⊕m
i=1 fiOSi =⊕m

i=1 x
rOSi = xrOS . In particular, f ∈ KX(X)×.

In general, the degree of the restrictions D|Xi of a divisor D may be independent of the
degree of D and thus to effectively use Proposition 5.7.4 we need to ensure that we will
deal with divisors D whose restrictions have bounded degrees.

To do so, we will tweak the proof of Proposition 5.7.4 and apply it to the irreducible
components of a cover of P1

k.
Let X be an integral cover of P1

k and let D ≤ 0 be a divisor on X. We can use
the Approximation Theorem 5.7.1 to find modification functions for D that are regular
functions on V0 and which agree with a given function on a given closed subscheme away
from S. Moreover, we can ensure that the degree of that modification function is linearly
bounded by the degree of D, the arithmetic genus of X and some term determined by
the closed subscheme. This will be the main step to prove the existence of modification
functions for a general reduced cover of P1

k.
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Proposition 5.7.5. Let X be an integral cover of P1
k. Let Z ( X be a closed subscheme

of X (which is thus zero-dimensional, see Proposition B.5.2) disjoint to S. Let J ≤ OX
be the ideal sheaf corresponding to Z. Let D ∈ Div(X), D ≤ 0, be a non-zero divisor with
support away from S and let r > (−deg(D) + deg(J ))/n+ cX . Then for any g ∈ OZ(Z)
there is f ∈ F× such that

(i) f ∈ OX(D + r(x)∞)(X)

(ii) f|Z = g, and

(iii) f =
∑n

i=1 λiωi where λi ∈ k[x], deg(λ1) = r is monic and deg(λi) ≤ r− 1 + |X|i for
all i = 2, . . . , n.

In particular, fOS = xrOS. Note that, by (iii), we have f ∈ R0.

Proof. Let F denote the function field of X. The finite morphism π provides an affine
cover V0 and V∞ of X where S = V∞ \ (V0∩V∞). Since Z = Supp(OX/J ) is disjoint to S,
we have JP = OX,P for all P ∈ S. Let D be given by the data (Ui, h−1

i ) for which we know
that hi ∈ OX(Ui) since D ≤ 0. Then OX(D)|Ui = hiOUi and thus OX(D)P = hiOX,P for
every P ∈ Ui. We set L = OX(D + r(x)∞) and F = J (D + (r − 1)(x)∞). Let R0 denote
the coordinate ring of V0 and I resp. J the ideals corresponding to OX(D) respectively
J on V0. We have

LP /FP ∼=

{
(OX/J )P , P ∈ V0

xrOX,P /xr−1OX,P , P ∈ S
.

Indeed, for P ∈ V0 ∩ Ui we have

LP
FP

= OX(D)P
OX(D)PJP

= hiOX,P
hiOX,PJP

∼=−→
OX,P
JP

= (OX/J )P .

Further, by assumption on D, we have OX(D)P = OX,P for P ∈ S. Moreover, for P ∈ S
we have JP = OX,P which provides

LP
FP

= xrOX(D)P
xr−1OX(D)PJP

= xrOX,P
xr−1OX,P

.

The exactness of 0 −→ F −→ L −→
∏
P∈X LP /FP −→ 0 provides by Lemma B.1.36 the

exact sequence

0 −→ F(V0) −→ L(V0) −→
∏
P∈V0

L(V0)P /F(V0)P −→ 0.

By construction of F and L, we have L(V0) = I and F(V0) = JI. Hence we obtain an
exact sequence

0 −→ JI −→ I −→
∏
P∈V0

IP /JP IP −→ 0.

We can argue as above with J instead of F and OX instead of L to obtain the exact
sequence

0 −→ J −→ R0 −→
∏
P∈V0

(R0)P /JP −→ 0.

Both these sequences are compatible in the sense that we have a commutative diagram
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with exact rows:

0 JI I
∏
P∈V0

IP /JP IP 0

0 J R0
∏
P∈V0

(R0)P /JP 0

φ1

ψ∼=
φ2

(7:17)

We may identify g ∈ OZ(Z) with some element g ∈ R0 which is only unique up to addition
with some element in J . The image of g under ψ−1 ◦ φ2 in diagram (7:17) has due to the
exactness of the top sequence a preimage under φ1, say f . Then, by construction, f and
g map via φ2 onto the same element and thus by the exactness of the bottom sequence,
f − g ∈ J . If the sequence of global sections

0 −→ H0 (X,F) −→ H0 (X,L) −→
∐
P∈X
LP /FP −→ 0

is exact, then we can add this as a top sequence to the diagram in (7:17) with the restriction
maps connecting the sequences resulting in a commutative diagram:

0 F(X) L(X)
∏
P∈X LP /FP 0

0 JI I
∏
P∈V0

IP /JP IP 0

0 J R0
∏
P∈V0

(R0)P /JP 0

φ0

φ1

ψ∼=
φ2

(7:18)

Now any global section f of L that maps via φ0 to an element in
∏
P∈X LP /FP that

restricts to (ψ−1 ◦ φ2)(g), then f|Z = g|Z as desired. Since IP /JP IP = hi,P (R0)P /hi,PJP
for P ∈ Ui and the isomorphism ψ is given by mapping hi,Pa+ hi,PJP to a+ JP , we have
(ψ−1 ◦ φ2)(g) = (hi,P g + hi,PJP )P∈V0 . Finally, all of the above shows that the sufficient
condition for f|Z = g|Z is f ∈ L(X) such that its image in LP is hi,P g.1

Since X is integral, Theorem 4.3.22 provides that degk F < −2g−dimkH
0(X,OX) im-

plies H1 (X,F) = 0. Thus for degk F < −2g−dimkH
0(X,OX) we can apply the Approx-

imation Theorem 5.7.1 5.7.1. By Proposition D.2.10, we have degkOX(D + (xr−1)∞) =
degkOX(D)+OX((xr−1)∞). Moreover, by Lemma D.2.13, we have degk(xr−1)∞ = (r−1)n
and thus Lemma C.4.8 provides OX((xr−1)∞) = (1 − r)n as well as degkOX(D) =
−degkD. Note that both OX(D + (xr−1)∞) and J are OX -ideals of which the former is
invertible. Hence, by Lemma C.4.7, we deduce that

degk F = degk(OX(D + (xr−1)∞)⊗OX J )
= − degkD + (1− r)n+ degk J
< − 2g − dimkH

0(X,OX)
1We want to note that the assumption D ≤ 0 guarantees a common ambient structure R0 of J and I

such that we can argue with the diagram in (7:17) – this is the only place where we need this and thus
there are may be other possible variants of this theorem.
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if and only if

r >
−degkD + degk J + 2g + dimkH

0(X,OX) + n

n

= −degkD + degk J
n

+ 2g + dimkH
0(X,OX) + n

n︸ ︷︷ ︸
= cX

.

Hence for r as required in the assumption, the Approximation Theorem 5.7.1 Theo-
rem 5.7.1 provides that for any given (aP )P∈X ∈

∐
P∈X LP there is some f ∈ L(X) =

OX(D + r(x)∞)(X) satisfying f = aP + bP for some bP ∈ FP . Note that this equation
holds in F since all involved modules are submodules of F . Now we set

aP =
{
xr +

∑n
i=2 x

r−1+|X|iωi, P ∈ S
hi,P g, P 6∈ S and P ∈ Ui

and note that

xr +
n∑
i=2

xr−1+|X|iωi = xr +
n∑
i=2

xr−1ω̃i = xr

(
1 +

n∑
i=2

x−1ω̃i

)
.

Hence aP = xr · ε where ε ∈ O×S for all P ∈ S. Thus there is some f ∈ L(X) such that

f =
{
xr · ε+ xr−1 · cP = xr · (ε+ x−1 · cP ), P ∈ S where cP ∈ OX,P
g + j, P 6∈ S where j ∈ J.

Again, since these equations hold in F , we deduce that all cP coincide in F . Thus f =
xr(ε + x−1c) = g + j with c ∈

⋂
P∈S OX,P = OS and j ∈ J . To prove that f satisfies

the third part of the assertion, note that f ∈ OX(D + (xr)∞)(X) = R0 ∩ xrOS . Note
that by Corollary 4.3.24, we have r > −(degkD + degk J )/n + cX ≥ −|X|n + 1 (since
−degkD > 0 because of D 6= 0) and thus we have

xrε = xr

(
1 +

n∑
i=2

x−1ω̃i

)
= xr +

n∑
i=2

xr−1+|X|iωi ∈ R0

since ω1, . . . , ωn was a reduced basis of OX , see Theorem 4.3.15 and Definition 4.3.17.
Hence xrε ∈ R0 ∩ xrOS = OX((xr)∞)(X). Thus we have xr−1c = f − xrε ∈ R0 ∩ xrOS
and since c ∈ OS , xr−1c /∈ xrOS . That is xr−1c ∈ R0 ∩ xr−1OS and, by Theorem 4.3.15,
we have that

{xjωi | 1 ≤ i ≤ n, 0 ≤ j ≤ r − 1 + |X|i}

is a k-basis of OX((xr−1)∞)(X) = R0∩xr−1OS . Therefore there are polynomials λi ∈ k[x]
of degree smaller than r − 1 + |X|i with xr−1c =

∑n
i=1 λiωi. Hence

f = xr +
n∑
i=2

xr−1+|X|i ωi +
n∑
i=1

λi ωi

= (xr + λ1) +
n∑
i=2

(xr−1+|X|i + λi) ωi

satisfies all asserted properties. From this we can immediately deduce the particular part
of the assertion – which alternatively already followed by the equation f = xr(ε + x−1c)
with ε ∈ O×S .
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Applying Proposition 5.7.5 with the empty scheme Z provides the following.

Corollary 5.7.6. Let X be an integral cover of P1
k. Let D ∈ Div(X), D ≤ 0, be a divisor

with support away from S and let r = d−deg(D)/n + cXe. Then there is f ∈ F× such
that

(i) f ∈ OX(D + r(x)∞)(X)

(ii) f =
∑n

i=1 λiωi where λi ∈ k[x], deg(λ1) = r is monic and deg(λi) ≤ r− 1 + |X|i for
all i = 2, . . . , n.

In particular, fOS = xrOS. Note that by (ii), we have f ∈ R0.

Corollary 5.7.7. Let X be an integral cover of P1
k. Let D ≤ 0 be a divisor on X with

Supp(D) ⊆ V0 and set I = OX(D)(V0). Then the function f from Corollary 5.7.6 satisfies

(i) f ∈ I, fR0 ∈ Pπ, and

(ii) degk I ≤ degk fR0 ≤ degk I + (cX + 1)n.

Proof. First we prove (i). By Corollary 5.7.6 (i), the function f satisfies

f ∈ Lreg(D + r(x)) = OX(D)(V0) ∩ xrOS ∩ KX(X)×

and thus f ∈ I as asserted. The last part of (i) follows from Corollary 5.7.6. Now we
prove (ii). Due to fR0 ⊆ I, Lemma C.1.27 already provides degk fR0 ≥ degk I. By
Proposition C.4.18 (ii), together with Proposition 3.1.27 (iv) and Corollary D.2.9, we
know that

degk fR0 = degk fOS = degk xrOS = rn ≤ −deg(D) + (cX + 1)n

which together with −degk(D) = degk I, see Proposition C.4.18 (i), finally provides (ii).

Remark 5.7.8. Note that the assumption that S does not meet the intersection points of
the irreducible components, which is Definition 2.1.3 (ii), enables us to, at least to some
extent, only work on the affine open V0. Moreover, the assumption Z ∩ S = ∅ also makes
the considerations a bit easier. However, we are not convinced that these assumptions are
necessary. 4
From now on let X be a reduced cover of P1

k. Our aim is to use Proposition 5.7.5 suc-
cessively to find functions on the irreducible components of X with prescribed behaviour
given by an effective divisor on X. To do so, we need to introduce some (admittedly
laborious) notation (which sometimes makes the whole idea look more difficult than it is)
which makes it possible for us to effectively talk about functions on the union of (not all)
irreducible components of X.

Definition 5.7.9. To shorten the notation, we set

g(X,SX) := 2pa(X) + 2(m− 1)− χ(SX)
= 2(g +m)− χ(SX)

and for i = 2, . . . ,m

ci =


⌈

2pa(Xi)
ni

⌉
, i = 1⌈

2pa(Xi)+χ(Si)
ni

⌉
, i = 2, . . . ,m.

4
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Lemma 5.7.10. We have
∑m

i=1 cini ≤ g(X,SX) + n.

Proof. In general, for a, b ∈ Z we have by division with remainder a = bk + r with r < b.
This yields ⌈a

b

⌉
=
⌈
kb+ r

b

⌉
=
⌈
k + r

b

⌉
=
{
k, r = 0
k + 1, r 6= 0.

Then for r = 0 we clearly have da/be = a and otherwise⌈a
b

⌉
· b = kb+ b = kb+ r − r + b = a− r + b ≤ a+ b.

Applying this to cini we obtain

cini ≤ 2pa(Xi) + χ(Si) + ni

and thus
m∑
i=1

cini ≤
m∑
i=1

(2pa(Xi) + χ(Si) + ni)

= 2
(

m∑
i=1

pa(Xi)
)

+ χ(SX) + n

Lemma 2.4.3, Proposition 2.4.9 = 2 · (pa(X)− χ(SX) +m− 1) + χ(SX) + n

= 2pa(X) + 2(m− 1)− χ(SX) + n

= g(X,SX) + n.

Theorem 5.7.11. Let X be a reduced cover of P1
k. By (X1, . . . , Xm) we fix an order of

the irreducible components of X. We set

ri =
{
d(2pa(X1)− degkD|X1)/n1e, i = 1⌈
(2pa(Xi)− degkD|Xi + χ(Si))/ni

⌉
, i = 2, . . . ,m.

Then for any divisor D ∈ Div(X) with D ≤ 0 and Supp(D) ⊆ V0 there is a regular f ∈ R0,
f = (f1, . . . , fm) with

(a) f ∈ Lreg(D +
∑

i∈A ri(x)i,∞),

(b) fi ∈ OXi(D|Xi + ri(x)Xi,∞)(Xi),

(c) fi =
∑ni

j=1 λi,j ωi,j, deg(λi,1) = ri is monic, deg(λi,j) ≤ ri − 1 + |Xi|j, and

(d) degk fR0 ≤ g(X,SX)− degkD + n.

In (d) the sheaf SX is defined by the sequence (4:3) given in Definition 2.4.1.

Proof. We prove the assertion by induction on the numberm of irreducible components Xi

of X. The case m = 1 follows from Proposition 5.7.5 with J = OX . Indeed, by Proposi-
tion 5.7.5, there is f ∈ k(X)× such that f ∈ OX(D+ r(x)∞)(X) which thus results in f ∈
Lreg(D+r(x)∞). Moreover, we have r = d(2pa(X)−degkD)/ne and f|SOS = xrOS . Thus,
by Proposition C.4.18 (i) and (ii), we have degk f|V0R0 = −degk f|SOS = −degk xrOS and
the latter is by Corollary D.2.9 equal to rn. By the proof of Lemma 5.7.10, we finally
obtain

degk f|V0R0 = rn ≤ 2pa(X)− degkD + n = g(X,SX)− degkD + n
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as asserted. Note that m = 1 and SX = 0 together imply g(X,SX) = 2pa(X).
We will now use the notations introduced in Section 2.4. Assume the assertion to be

true for all reduced covers of P1
k with m− 1 irreducible components.

Let X be a reduced cover of P1
k with irreducible components X1, . . . , Xm. For every

i = 1, . . . ,m we fix a reduced basis ωi,1, . . . , ωi,ni of Ri,0. Let D ∈ Div(X) be a divisor on
X with D ≤ 0 and Supp(D) ⊆ V0. By definition, we have X = Ym and Ym−1 = ∪m−1

i=1 Xi

has m − 1 irreducible components which can obviously be identified with X1, . . . , Xm−1.
We immediately see that Ym−1 is also a reduced cover of P1

k. Set Dm−1 = D|Ym−1 which
satisfies Dm−1 ≤ 0 in Div(Ym−1) by Proposition 3.2.3 (ii). Since the restriction of divisors
is transitive, see Proposition 3.2.9, we have (Dm−1)|Xi = D|Xi . We set W0 = Ym−1 ∩ V0.
Hence, by induction hypothesis, there is fY = (f1, . . . , fm−1) ∈ KYm−1(Ym−1)× with fY ∈
OYm−1(W0) such that for all i = 1, . . . ,m− 1 we have

(H1) fY ∈ Lreg(Ym−1, Dm−1 +
∑m−1

i=1 (xri)Ym−1,∞),

(H2) fi ∈ OXi(D|Xi + ri(x)Xi,∞)(Xi),

(H3) fi =
∑ni

j=1 λi,j ωi,j , deg(λi,1) = ri is monic, deg(λi,j) ≤ ri − 1 + |Xi|j , and

(H4) degk fYOYm−1(V0 ∩ Ym−1) ≤ g(Ym−1,SYm−1)− degkDm−1 +
∑m−1

i=1 ni.
Here SYm−1 is the sheaf defined by the exact sequence

0 −→ OYm−1 −→
m−1⊕
i=1

(τi)∗OXi −→ SYm−1 −→ 0

in accordance with (4:3) in Definition 2.4.1. Hence, by Lemma 2.4.3, we have

χ(Ym−1,SYm−1) =
m−1∑
i=1

χ(Yi,Si)

and thus, again by Lemma 2.4.3, this provides

χ(X,SX) =
m∑
i=1

χ(Yi,Si) (7:19)

=
m−1∑
i=1

χ(Yi,Si) + χ(Ym,Sm)

= χ(Ym−1,SYm−1) + χ(X,Sm).

Let P1,0, . . . , Pm,0 denote the minimal prime ideals of R0. Set M = OX(D)(V0) and
Im−1 = ∩m−1

i=1 Pi,0. Then we see that OYm−1(W0) = R0/Im−1 as well as OXm(Vm,0) =
R0/Pm,0. By Lemma 3.2.27 and Proposition B.4.8, we have

OW0(D|W0) ∼= OV0(D|V0)|W0
∼= (M ⊗R0 R0/Im−1)∼ ∼= (M/Im−1M)∼

as well as OVm,0(D|Vm,0) ∼= (M/Pm,0M)∼. By Corollary B.4.47, we have an exact sequence
of R0-modules

0 −→M
φm−→M/Im−1M ⊕M/Pm,0M

ψm−→M/(Im−1M + Pm,0M) −→ 0 (7:20)

where φm maps diagonal and ψm takes the difference of the representatives. Due to (H1),
we have

fY ∈ OW0(D|W0)(W0) ∩ ⊕m−1
i=1 x

riOSi = M/Im−1M ∩ ⊕m−1
i=1 x

riOSi
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where the intersection takes place in KYm−1(Ym−1). Thus fY = h + Im−1M for some
h ∈ M . Moreover, by (H3), together with Lemma 5.6.25, we have fiOSi = xriOSi for all
i = 1, . . . ,m− 1 and thus fY (⊕m−1

i=1 OSi) = ⊕m−1
i=1 x

riOSi .
Let Jm ≤ OXm denote the sheaf of ideals that cuts out Ym−1∩Xm as a closed subscheme

of Xm. By construction, Jm(Vm,0) equals the ideal in R0/Pm,0 generated by Im−1, that is
Jm(Vm,0) = (Im−1 + Pm,0)/Pm,0. We apply Proposition 5.7.5 to

X = Xm, D = D|Xm , J = Jm, g = h+ Pm,0

and obtain the existence of fm + Pm,0 ∈ R0/Pm,0 ⊆ KXm(Xm)× such that

(S1) fm + Pm,0 ∈ Lreg(Xm, D|Xm + (xrm)Xm,∞),

(S2) fm − h ∈ Im−1 + Pm,0,

(S3) fm + Pm,0 =
∑n

i=1 λm,iωm,i where λm,i ∈ k[x], deg(λm,1) = rm is monic and
deg(λm,i) ≤ rm − 1 + |Xm|i for all i = 2, . . . , nm.

where rm = d(2pa(Xm) − degkD|Xm − degk Jm)/nme. First of all, (S3) together with
Lemma 5.6.25 provides fmOSm = xrmOSm . Then (S1) tells us that fm + Pm,0M ∈
M/Pm,0M and (S2) says that (h + Im−1M,fm + Pm,0M) lies in the kernel of ψm and
thus, by the exactness of sequence (7:20), in the image of φm. Therefore, there is f ∈ M
such that f + Im−1 = h + Im−1 = fY and f + Pm,0 = fm + Pm,0. Since the restric-
tion fi of fY to Xi for i = 1, . . . ,m − 1 is regular and fm is regular, f is regular. As
elements of Frac(R0) =

⊕m
i=1 Frac(Ri,0) we have f = (f1, . . . , fm−1, fm). In particular,

f|SiOSi = fiOSi = xriOSi for all i = 1, . . . ,m.
Due to (H2) and (S1), f satisfies condition (b). By (H3) and (S3), f satisfies condition

(c). By the above, we have f ∈ M = OX(D)(V0) regular with fOS = ⊕mi=1x
riOSi . Thus

f ∈ OX(D)(V0) ∩ ⊕mi=1x
riOSi = Lreg(D +

∑
i∈A ri(x)i,∞). Hence f satisfies property (a).

Therefore, we are left to prove that f also satisfies property (d). By (H4), we have

degk(h+ Im−1)(R/Im−1) ≤ g(Ym−1,Sm−1)− degkDm−1 +
m−1∑
i=1

ni (7:21)

and due to fmOSm = xrmOSm , together with Proposition 3.1.27 (iv), Proposition C.4.18
(ii) and Corollary D.2.9, we have

degk(fm + Pm,0)(R0/Pm,0) = − degk fmOSm (7:22)
= − degk xrmOSm
= rmnm

≤ 2pa(Xm)− degkD|Xm − degk(Im−1 + Pm,0) + nm.
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For the last inequality we have used Corollary D.2.12. By Lemma C.1.28, we have

degk fR0 =
m∑
i=1

degk f|XiRi,0 (7:23)

=
m−1∑
i=1

degk fiRi,0 + degk fmRm,0

= degk(h− Im−1)(R0/Im−1) + degk(fm + Pm,0)R0/Pm,0

≤ (g(Ym−1,SYm−1)− degkDm−1 +
m−1∑
i=1

ni)

+ (2pa(Xm)− degkD|Xm − degk(Im−1 + Pm,0) + nm).

By definition and Eq. (7:19), we have

g(Ym−1,SYm−1) = 2pa(Ym−1) + 2(m− 2)− χ(Ym−1,SYm−1) (7:24)
= 2pa(Ym−1) + 2(m− 2)− χ(X,SX) + χ(X,Sm).

Note that by Lemma 2.4.5, we have

χ(X,Sm) = χ(Ym,Sm) = dimk
R0/Pm,0

Im−1 + Pm,0
= degk Im−1 + Pm,0 = degk Jm. (7:25)

Now plugging Eq. (7:25) into Eq. (7:24) and then the result into Eq. (7:23) provides

degk fR0 ≤ 2pa(Ym−1) + 2(m− 2)− χ(X,SX)− degkDm−1 +
m∑
i=1

ni (7:26)

+ 2pa(Xm)− degkD|Xm .

By Proposition C.4.18 (iii), we have degkDm−1 =
∑m−1

i=1 degkD|Xi and by Proposi-
tion 2.4.9, we have

pa(Ym−1) =
m−1∑
i=1

pa(Xi) + χ(Ym−1,SYm−1) + 1− (m− 1) (7:27)

Eq. (7:25) =
m−1∑
i=1

pa(Xi) + χ(X,SX)− χ(X,Sm)−m+ 2

≤
m−1∑
i=1

pa(Xi) + χ(X,SX)−m+ 2.

Now plugging degkDm−1 =
∑m−1

i=1 degkD|Xi and Eq. (7:27) into Eq. (7:26) finally provides

degk fR0 ≤ 2(
∑m−1

i=1
pa(Xi) + χ(X,SX)−m+ 2)

+ 2(m− 2)− χ(X,SX)− degkD + n+ 2pa(Xm)

= 2(
∑m

i=1
pa(Xi) + χ(X,SX) + 1−m)

+ 2 + 2(m− 2)− χ(X,SX)− degkD + n

Proposition 2.4.9 = 2pa(X) + 2(m− 1)− χ(X,SX)− degkD + n

Definition 5.7.9 = g(X,SX)− degkD + n.
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Remark 5.7.12. Note that the proof of Theorem 5.7.11 shows that the statement is not
only true for the chosen ri but also for all si ≥ ri. 4
Remark 5.7.13. Note that Theorem 5.7.11 requires a divisor defined on all of X whose sup-
port is contained V0 or equivalently which is not supported in S. But by Lemma 5.3.13,
we see that we may extend any divisor D0 on V0 uniquely to a divisor D on X which
restricts to D0 on V0 and which is not supported in S. This establishes a 1-to-1 corre-
spondence between divisors on X not supported in S and Div(V0). Hence we will use
Theorem 5.7.11 for both such divisors. Put in the notation introduced in Notation 5.5.7,
we use Theorem 5.7.11 for divisors D of the form (D0, 0) with D0 ≤ 0. 4

Corollary 5.7.14. Let the situation be as in Theorem 5.7.11. Then f satisfies divX(f) =
(divV0(f|V0),

∑
i∈A−ri(x)i,∞). In particular, fR0 ∈ Pπ.

Proof. By Theorem 5.7.11 (c), together with Lemma 5.6.25, we have f|XiOSi = xriOSi for
all i ∈ A. Hence, by Corollary 5.6.13, we deduce

−divX(f)|S = divX(f−1)|S = (
∑

i∈A
ri(x)i,∞)|S

which is equivalent to divX(f)|S = (
∑

i∈A−ri(x)i,∞)|S and hence provides the assertion.
The particular part follows from Definition 5.6.19.

The function constructed in Theorem 5.7.11 does indeed provide a modification function
of D.

Lemma 5.7.15. Let X be a reduced cover of P1
k. Let D ≤ 0 be a divisor on X with

Supp(D) ⊆ V0 and set I = OX(D)(V0). Then the function f from Theorem 5.7.11 satisfies

(i) f ∈ I, fR0 ∈ Pπ, and

(ii) degk I ≤ degk fR0 ≤ degk I + 2g + 2m+ n− χ(SX).

Proof. First we prove (i). By Theorem 5.7.11 (a), the function f satisfies

f ∈ Lreg(D +
∑

i∈A
ri(x)i,∞) = OX(D)(V0) ∩ (⊕i∈AxriOSi) ∩ KX(X)×

and thus f ∈ I as asserted. The last part of (i) follows from Corollary 5.7.14. Now
we prove (ii). From fR0 ⊆ I Lemma C.1.27 already provides degk fR0 ≥ degk I. By
Theorem 5.7.11 (d), we already know that

degk fR0 ≤ g(X,SX)− degkD + n.

Note that by Definitions 2.4.8 and 5.7.9, we have

g(X,SX) = 2pa(X) + 2(m− 1)− χ(SX)
= 2(1 + g) + 2(m− 1)− χ(SX)
= 2g + 2m− χ(SX).

Moreover, by Proposition C.4.18 (i), we have −degk(D) = degkOX(D)(V0) = degk I and
thus combining the above provides the assertion.

Corollary 5.7.16. Let X be a reduced cover of P1
k. Let D+r(x)∞ ∈ Div0

π(X) with D ≤ 0
and I = OX(D)(V0). Then the modification function f from Theorem 5.7.11 satisfies
f ∈ I and

degk I ≤ degk fR0 ≤ degk I + 2g + 2m+ n− χ(SX).
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Corollary 5.7.17. Since f ∈ Lreg(D +
∑

i∈A ri(x)i,∞), we have

div(f) +D +
∑

i∈A
ri(x)i,∞ ≥ 0.

Moreover, by Corollary 5.7.14, we have divS(f) =
∑

i∈A−ri(x)i,∞. Hence

divV0(f) +D|V0 ≥ 0.

5.7.2 Computing Modification Functions

As already mentioned in the introduction to Section 5.7, in this section we provide algo-
rithms to explicitly compute modification functions given a basis matrix of the R0-ideal
OX(D)(V0). Furthermore, these algorithms also provide existential statements of modifi-
cation functions in general. We divide this endeavor into two cases, first we examine how
to compute modification functions in the component independent case and then do the
same in the component dependent case. We chose this order since, as we will see, the idea
used in the component independent case can be extended to the component dependent
one.

5.7.2.1 Component Independent Case

We start with some fundamental observations with regards to the leading coefficients
matrix LC(M) of a matrix M ∈ k[x]m×n. The following shows why we do care about
this. Let f =

∑n
i=1 λiωi ∈ R0 with λi ∈ k[x]. Then φΩ(f) = (λ1, . . . , λn)T and we

set x−|X|φΩ(f) := (x−|X|1λ1, . . . , x
−|X|nλn)T . Then f satisfies the sufficient conditions in

Lemma 5.6.25 to be a modification function if and only if

LC(φΩ(x−|X|φΩ(f))) = (µ, 0, . . . , 0)T

for any µ ∈ k×. This will help us to find a suitable linear combination of a given basis
matrix which results in a modification function.
Remark 5.7.18. Let λ = (λ1, . . . , λn) ∈ k[x]1×n be a row vector. Let d = maxni=1{deg λi}
be its degree. Obviously, no unimodular column operation over k[x] on λ can decrease
the degree of λ below zero. In particular, no unimodular column operation over k[x] on
f · λ = (f · λ1, . . . , f · λn) can decrease its degree below deg f − d. Moreover, applying
unimodular column operations over k[x] on f · λ = (f · λ1, . . . , f · λn) yields a row vector
such that every non-zero entry is still a multiple of f . 4
The following lemma is particularly useful for finding linear combinations of columns of a
reduced matrix with prescribed LC-vector.

Lemma 5.7.19. Let M ∈ k[x]m×n be a reduced matrix with columns v1, . . . , vn ∈ k[x]m
of degrees d1, . . . , dn, respectively. Let µ = (µ1, . . . , µn)T ∈ kn be arbitrary and set d =
max{di | µi 6= 0}. Then we have

LC(M) · µ = LC

M ·
µ1x

d−d1

...
µnx

d−dn


 .

Proof. Let vj = (v1,j , . . . , vn,j)T , that is M = (vi,j)i,j . We set LC(M) · µ = (λ1, . . . , λn)n.
Then

λi =
n∑
j=1

ai,j · µj with ai,j =
{
`c(vi,j), deg(vi,j) = deg(vj) = dj

0, otherwise.
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By definition, we have

N := M ·

µ1x
d−d1

...
µnx

d−dn

 =


∑n

j=1 µjx
d−djv1,j

...∑n
j=1 µjx

d−djvm,j

 .

Since M is reduced, we have

mmax
i=1
{deg(

∑n

j=1
µjx

d−djvi,j)} = deg(N) = nmax
i=1
{deg(µjxd−dj · vj)} = d.

Therefore, the non-zero entries of LC(N) do only depend on the coefficients of entries of
N of degree d. The coefficient of xd in

∑n
j=1 µjx

d−djvi,j equals∑
j:deg(vi,j)=dj

`c(vi,j) · µj = λi

which thus proves the assertion.

We can use Lemma 5.7.19 to give an algorithm that computes a modification function of
an ideal given by its k[x]-basis matrix. Note that the suffix “CF” stands for components
free and represents the component independent case.

Algorithm 7 Computing a modification function in the component independent case
Precomputed Reduced basis Ω of R0; π-invariants −|X|1 ≤ . . . ≤ −|X|n of X

Input T basis matrix of F(V0) where F is an OX -ideal
Output φΩ(f) where f is a modification function of F(V0)

1: procedure ModFctCF(T )
2: T ← ScaleRows(T, x−|X|1 , . . . , x−|X|n)
3: N ← RedMat(T )
4: L← LeadCoeffMat(N)
5: (µ1, . . . , µn)← SolveLESk(L, (1, 0, . . . , 0)T )
6: I = {i | µi 6= 0}
7: d1, . . . , dn ← 0, . . . , 0
8: for i ∈ I do
9: di ← Degree(SubMatrix(N, (1, i), (n, i)))

10: D ← max{di | i ∈ I}
11: for i = 1, . . . , n do
12: µ′i ← µix

D−di

13: f ← N · (µ′1, . . . , µ′n)T
14: f ← ScaleRows(T, x|X|1 , . . . , x|X|n)
15: return f

Theorem 5.7.20. The algorithm ModFctCF, see Algorithm 7, is correct. Moreover, if
d is a common bound of deg(T ) and −|X|n, then ModFctCF requires at most O∼(nωd)
operations in k and returns a vector with degree bounded by d− |X|n ≤ d+ cX .

Proof. We work with the notation as in Algorithm 7. Since RedMat does not increase the
degree of the input matrix and computes a right equivalent of it, Remark 5.7.18 provides
that every non-zero entry of the i-th row ofN has at least degree−|X|i. Moreover, degN ≤
deg T − |X|n. Since N is reduced, there is a vector µ ∈ kn such that L ·µ = (1, 0, . . . , 0)T .
By Lemma 5.7.19, we know that f from line 13 satisfies LC(f) = (1, 0, . . . , 0)T . We have
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seen above that every non-zero entry of the i-th row of N has at least degree −|X|i and
thus the same is true for the i-th row of f . Moreover, by construction, the latter has degree
D ≤ degN ≤ deg T − |X|n ≤ d − |X|n. Therefore, the output vector f = (f1, . . . , fn)T
satisfies deg fi < deg f1 + |X|i for all non-zero fi and deg f = deg f1 ≤ d − |X|n. This
proves the correctness of Algorithm 7.

Now we prove the running time assertion. Let d be a common bound of deg(T ) and
maxmi=1{−|Xi|ni}. Hence, calling RedMat requires at most O∼(nωd) operations in k, see
Theorem A.2.7. Therefore, any scaling of the rows of T by the appearing powers of x
only produce matrices and vectors with degree bounded by 2d. Hence the running time
assertion follows from Lemma A.1.2 (i), (iv), (v) and (vi).

Lemma 5.7.21. The element f ∈ KX(X) computed by ModFctCF satisfies f ∈ F(V0)∩
xeOS ∩ KX(X)× where e = deg φΩ(f). In particular, −divS(f) = e(x)∞. If F = OX(D)
for some Supp(D) ⊆ V0, then f ∈ Lreg(D + e(x)∞).

Proof. By construction, we have f ∈ F(V0). Moreover, it is constructed such that
LC(φΩ(f)) = (1, 0, . . . , 0)T and thus Lemma 5.6.25 provides fOS = xeOS . The particular
part follows from Corollary 5.6.13 and the fact that f 6= 0.

5.7.2.2 Component Dependent Case

We want to generalise the procedure used in Algorithm 7 to compute modification functions
in the component dependent case. To do so, we state a lemma that will help us prove the
correctness of Algorithm 8.

Lemma 5.7.22. Let M ∈ k[x]n×n be in n-block-form with det(M) 6= 0 and m row blocks
Mi ∈ k[x]ni×n of degree di. Let d = maxmi=1{di}. Let N be the matrix we obtain by
scaling the row blocks Mi in M by xd−di. By N1 we denote a reduction of N with columns
v′1, . . . , v

′
n ∈ k[x]n. Let µ = (µ1, . . . , µn)T ∈ kn be a vector over k such that

LC(N1) · µ = (1, 0, . . . , 0 | . . . | 1, 0, . . . 0)T .

Set d′ = max{deg(µjv′j) | j ∈ {1, . . . , n}}. Let N2 be the matrix we obtain by scaling the
i-th row block of N1 by xdi−d. Then the vector

f :=

 f1
...
fm

 := N2 ·

µ1x
d′−deg(v′1)

...
µnx

d′−deg(v′n)


satisfies LC(fi) = (1, 0, . . . , 0)T and deg fi ≤ di for all i = 1, . . . ,m. Moreover, by con-
struction, f lies in the column space of M .

Proof. By construction, the row blocks of N all have degree d. That is, degN ≤ d. There-
fore, N1 := (v′1 . . . v′n) := RedMat(N) has degree bounded by d as well. In particular, the
degree of the row blocks N1,i of N1 also have degree bounded by d. Since N1 is reduced,
LC(N1) has full rank over k and thus there is a vector µ = (µ1, . . . , µn)T ∈ kn over k such
that

LC(N1) · µ = (1, 0, . . . , 0 | . . . | 1, 0, . . . 0)T . (7:28)

We set v = N1 · (µ1x
d′−deg(v′1), . . . , µnx

d′−deg(v′n))T . By Lemma 5.7.19, we obtain

LC(N1) · µ = LC(v).
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By construction, deg(v) ≤ d′ ≤ d. Let N2 be the matrix and f be the column vector we
obtain by scaling the i-th row block of N1 respectively of f by xdi−d. Then

f :=

 f1
...
fm

 := N2 ·

µ1x
d′−deg(v′1)

...
µnx

d′−deg(v′n)


and the i-th row block fi of f has degree bounded by d′ − d + di ≤ di. By Eq. (7:28),
we know that the first entry of the i-th row block of v has strictly larger degree than the
other entries of the i-th row block of v. Since fi emerges by scaling the i-th row block of
v, the same is true for fi. Finally, that f lies in the column space of M follows from the
fact that N2 emerges from M by scaling columns from the left and reverse the very same
scaling after applying some unimodular column operations.
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Algorithm 8 Computing a modification function in the component dependent case
Precomputed Basis Ωm

i of R+
0 ; for all i = 1, . . . ,m: π-invariants −|Xi|1 ≤ . . . ≤

−|X|ni of Xi

Input M basis matrix of OX -ideal F with respect to Ωm
i ,

Output φΩmi (f) = (φΩ1(f1), . . . , φΩm(fm)) where fi is a modification function
of Fi(Vi,0)

1: procedure ModFctC(M)
2: for i = 1, . . . ,m do
3: for j = 1, . . . , ni do
4: M ←MultiplyRow(M, j +

∑i−1
`=1 n`, x

−|Xi|j )
5: for i = 1, . . . ,m do
6: pi ← 1 +

∑i−1
j=1 nj

7: di ← Degree(SubMatrix(M, (pi, 1), (pi + ni − 1, n)))
8: d← max{d1, . . . , dm}
9: for i = 1, . . . ,m do

10: for j = 1, . . . , ni do
11: M ←MultiplyRow(M, j +

∑i−1
`=1 n`, x

d−di)
12: N1 ← RedMat(M)
13: L← LeadCoeffMat(N1)
14: for i = 1, . . . ,m do
15: e1,i ← (1, 0, . . . , 0) ∈ kni

16: e← ColumnConcat(e1,1, . . . , e1,m)
17: µ = (µ1, . . . , µn)← SolveLESk(L, e)
18: d′1, . . . , d

′
n ← 0, . . . , 0

19: for i = 1, . . . , n do
20: d′i ← Degree(SubMatrix(N1, (1, i), (n, i)))
21: d′ ← max{d′i | i ∈ {i | µi 6= 0}}
22: for i = 1, . . . , n do
23: µ′i ← µi · xd

′−d′i

24: µ′ ← (µ′1, . . . , µ′n)T
25: f ′ ← N1 · µ′
26: f ← f ′

27: for i = 1, . . . ,m do
28: for j = 1, . . . , ni do
29: f ←MultiplyRow(f, j +

∑i−1
`=1 n`, x

di−d+|Xi|j )
30: return f

Theorem 5.7.23. The algorithm ModFctC, see Algorithm 8, is correct. Moreover, if
d is a common bound of deg(M) and maxmi=1{−|Xi|ni}, then ModFctC requires at most
O∼(nωd) operations in k and returns a vector

φΩmi (f) = (φΩ1(f1), . . . , φΩm(fm))T

with deg φΩi(fi) ≤ ai−|Xi|ni ≤ ai+ cXi where ai is a degree bound of the i-th row block of
M . Moreover, φΩi(fi) = (fi,1, . . . , fi,ni)T with fi,j ∈ k[x] such that deg fi,j < deg fi,1+|Xi|j
for all i = 1, . . . ,m and j = 2, . . . , ni.

Proof. We work with the notation as in Algorithm 8. To prove the correctness, we can
simply use Lemma 5.7.22: Let di denote the degree of the i-th row block of M after line 5.
Hence di ≤ ai − |Xi|ni . By definition, d = maxmi=1{di}. By Lemma 5.7.22, we know that
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f ′ := (f ′1, . . . , f ′m)T := N1 · µ′ satisfies deg f ′i ≤ d′ ≤ d and LC(f ′i) = (1, 0, . . . , 0)T ∈ kni .
Let f ′i = (f ′i,1, . . . , f ′i,ni)

T for all i = 1, . . . ,m. If we write f := (f1, . . . , fm) for f , then

fi := (fi,1, fi,2 . . . , fi,ni)T = (xdi−df ′i,1, xdi−d+|Xi|2f ′i,2, . . . , x
di−d+|Xi|nif ′i,ni)

T

and since deg f ′i,j < deg f ′i,1 for all i = 1, . . . , n and j = 2, . . . , ni, we deduce

deg fi,j = deg f ′i,j + |Xi|j + di − d
< deg f ′i,1 + |Xi|j + di − d
= deg fi,1 − (di − d) + |Xi|j + di − d
= deg fi,1 + |Xi|j

for all i = 1, . . . , n and j = 2, . . . , ni. Moreover, since deg f ′i ≤ d, we obtain

deg fi = nimax
j=1
{deg fi,j}

= nimax
j=1
{deg f ′i,j + |Xi|j + di − d}

= nimax
j=1
{deg f ′i,j + |Xi|j}+ di − d

≤ deg f ′i + di − d
≤ d+ di − d
= di

≤ ai − |Xi|ni

for all i = 1, . . . ,m. This shows the correctness of ModFctC.
Now we prove the running time assertion. Let d be a common bound of deg(M) and

maxmi=1{−|Xi|ni}. Therefore, any scaling of the rows of M by the appearing powers of x
only produce matrices and vectors with degree bounded by 2d. Hence the running time
assertion follows from Theorem A.2.7, Theorem A.2.12 and Lemma A.1.2 (i), (iv), (v),
(vi), (viii).

Example 5.7.24. We give an example that shows that the rescaling of f ′ with the powers
x|Xi|j does not necessarily decrease the degree of the i-th row block of f ′ to the degree ai:
Let M be given by

M =

 x x 0
1 0 x
x2 x3 x5


and let −|Xi|j be given by −|X1|1 = −|X2|1 = 0, see Corollary 4.3.24, and −|X2|2 = 10.
First, we scale the third row of M by x10 which results in x x 0

1 0 x
x12 x13 x15

 .

The maximal appearing row block degree is now 15 and thus we scale the first row block
with x14 which results in x15 x15 0

1 0 x
x12 x13 x15

 .
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We subtract the first column from the second and then we subtract the now second column
multiplied with x2 from the third which results inx15 0 0

1 −1 −x2 + x
x12 x13 − x12 0

 having leading coefficient matrix L :=

1 0 0
0 0 −1
0 1 0


and therefore it is reduced. The matrix L satisfies L · (1, 0,−1)T = (1, 1, 0)T and thus we
set

f ′ :=

f1
f2
f3

 :=

x15

1
x12

− x13 ·

 0
−x2 + x

0

 =

 x15

x15 − x14 + 1
x12

 .

We rescale the first row block by x−14 and obtain x

x15 − x14 + 1
x12

 .

Now rescaling with the respective powers of x with respect to −|Xi|j in this case comes
down to multiply the third row with x−10 which finally results in

f :=

 x

x15 − x14 + 1
x2

 .

The row block degrees of M were 1 respectively 5. We see that f has row block degrees
1 and 15 where 15 = 10 + 5 = −|X2|2 + 5. This shows that rescaling with x|Xi|j need not
necessarily decrease the row block degrees of f ′. 4

Lemma 5.7.25. The element f ∈ KX(X) computed by ModFctC satisfies

(i) f ∈ F(V0) ∩
⊕m

i=1 x
eiOSi ∩ KX(X)× where ei = deg φΩi(f|Xi) and

(ii) f|XiOSi = xeiOSi for all i = 1, . . . ,m.

In particular, −divS(f) =
∑

i∈A ei(x)i,∞. If F = OX(D) for Supp(D) ⊆ V0, then f ∈
Lreg(D +

∑
i∈A ei(x)i,∞).

Proof. By construction, we have f ∈ F(V0). Moreover, it is constructed such that
LC(φΩi(f|Xi)) = (1, 0, . . . , 0)T and thus Lemma 5.6.25 provides f|XiOSi = xeiOSi . This
shows both Items (i) and (ii). The particular part follows from Corollary 5.6.13 and the
fact that f|Xi 6= 0 for all i = 1, . . . ,m.

Remark 5.7.26. Let ModFct denote the algorithm that, given a matrix M ∈ k[x]n and
a Boolean c, calls ModFctC(M) if c = true and ModFctCF(M) if c = false and then
returns the result. By Theorems 5.7.20 and 5.7.23, we see that ModFct requires at most
O∼(nωd) operations in k if d is a common bound of deg(M) and maxmi=1{−|Xi|ni} (c =
true) or of deg(M) and −|X|n (c = false). 4

5.8 Reduced Class Representatives

In this section we will prove that for each class in CaCl0π(X) there is a representative
whose restriction to V0 has bounded degree. We will achieve this for both the component
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independent case and the component dependent case by using modification functions. This
is one of the very important applications of modification functions in this thesis. This is
not only a nice theoretical result, but also the basis that we can assume the ideals that
we get as input for our algorithms to have bounded degree, that is, degree in O(ncX).
Moreover, we also show that the degree bound on the input ideal representatives provide
bounds for the basis matrices representing those ideals. This implies that we may assume
that the input matrices for our algorithms have degree in O(cX).

Furthermore, both Sections 5.8 and 5.9 provide the theoretical background for and
justify why we can carry out the group law of CaCl0π(X) only using the basis matrices of
OX(D) where D is the respective representative of a given class.

5.8.1 Component Independent Representation

The main goal of this section is to provide for every class in CaCl0π(X) a representative
of the form D + r(x)∞ ∈ D0 with D ≤ 0 and r linearly bounded by cX . Moreover, the
existence of a basis matrix representing OX(D)(V0) with degree in O(cX) will also be
proven.

Notation 5.8.1. For the rest of this thesis we set

µX =
{

1, if X is irreducible
2, if X is reducible. 4

The following two statements provide the existence of basis matricesMD of OX(D)(V0) for
representatives of the form D+ r(x)∞ with degree bounded by r+µXcX and also bounds
of the degree of modification functions that can be computed by ModFctCF using MD.

For the rest of this section let X be a reduced cover of P1
k.

Lemma 5.8.2. Let D = D0 + r(x)∞ with D0 ≤ 0 be a representative of a class in
CaCl0π(X). Then there exists a basis matrix MD of OX(D)(V0) with respect to Ω such
that degMD ≤ r + µXcX .

Proof. By Corollaries 4.3.27 and 4.5.4, we know that there exists a basis matrix MD with
respect to Ω such that degMD ≤ (degkOX(D)(V0))/n+ µXcX . Due to Corollary C.4.13
and Lemmas C.4.8 and D.2.13, we have

degkOX(D)(V0) = −degkOX(D)(S) = −degkOX(r(x)∞)(S) = degk xrOS = rn

and thus the assertion follows.

Lemma 5.8.3. Let D = D0 + r(x)∞ be a representative of a class in CaCl0π(X) with
basis matrix MD as in Lemma 5.8.2. Then φΩ(f) = ModFctCF(MD) satisfies s :=
deg φΩ(f) ≤ r + (µX + 1)cX . Moreover, we have divS(f) = −s(x)∞.

Proof. By Lemma 5.8.2, we have degMD ≤ r+µXcX and, by Theorem 5.7.20, we therefore
obtain the bound for s. The algorithm ModFctCF computes f such that its coefficient
vector φΩ(f) = (f1, . . . , fn)T satisfies deg fi < deg f1 − |X|i and thus, by Lemma 5.6.25,
this provides fOS = xsOS which in turn induces divS(f) = −s(x)∞ due to the definition
of the pole divisor of x.

Corollary 5.6.28 already provided representatives of classes in CaCl0π(X) that have the
desired form D+r(x)∞ and bounded r. However, the following statement will also provide
the desired representative. Moreover, it directly tells us how to compute a reduction of a
representative which has too large degree. This will be used in the explicit arithmetic in
CaCl0π(X).
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Proposition 5.8.4. Let D = D0 + a(x)∞ ∈ Div0
π(X) with D0 ≤ 0. Let MD be a basis

matrix of OX(D)(V0) with respect to Ω such that degMD ≤ a + µXcX (which exists due
to Lemma 5.8.2). Let φΩ(f) = ModFctCF(MD) and set E = −D − divX(f). Let
ME denote a basis matrix of OX(E)(V0) with respect to Ω as in Lemma 5.8.2 and let
φΩ(g) = ModFctCF(ME). Then

F = D + div(fg−1) = F0 + r(x)∞

with F0 ≤ 0, Supp(F0) ⊆ V0 and r ≤ (µX+1)cX . In particular, −degk F|V0 ≤ (µX+1)cXn.

Proof. By Lemma 5.8.3, f satisfies divS(f) = −s(x)∞, s ≤ a+ (µX + 1)cX and divX(f) +
D0 + s(x)∞ ≥ 0. By definition, we have E = −D − divX(f) = −D0 − a(x)∞ − divX(f)
and thus

E = − (D0)|V0 − divV0(f)− divS(f)− a(x)∞
= − (D0)|V0 − divV0(f) + (s− a)(x)∞.

As above, by Lemma 5.8.3, g satisfies divS(g) = −t(x)∞, t ≤ (s− a) + (µX + 1)cX and

divX(g)− (D0)|V0 − divV0(f) + t(x)∞ ≥ 0.

In particular, (D0)|V0 + divV0(f)− divV0(g) ≤ 0. Therefore, we finally obtain

D + divX(fg−1) = D|V0 + a(x)∞ + divX(f)− divX(g)
= D|V0 + a(x)∞ + divV0(f) + divS(f)− divV0(g)− divS(g)
= D|V0 + divV0(f)− divV0(g)︸ ︷︷ ︸

≤ 0

+(a− s+ t)(x)∞

and a− s+ t ≤ a− s+ s− a+ (µX + 1)cX = (µX + 1)cX . The particular part now follows
from Proposition C.4.18 (ii) and degk F = 0.

Corollary 5.8.5. Let X be a reduced cover of P1
k. For every class in CaCl0π(X) there

is a representative of the form D = D0 + r(x)∞ with D0 ≤ 0, Supp(D0) ⊆ V0 and
r ≤ (µX + 1)cX .

Proof. By Corollary 5.6.28, for every class in CaCl0π(X) there is a representative of the
form D = D0 + r(x)∞ with D0 ≤ 0, Supp(D0) ⊆ V0. Now we only need to apply
Proposition 5.8.4 to D and obtain the asserted representative.

Corollary 5.8.6. Let X be a reduced cover of P1
k. For every class in Iπ/Pπ there is a

representative I ⊆ R0 with (degk I)/n ≤ (µX +1)cX . Moreover, there exists a basis matrix
MI of I with respect to Ω with degMI ≤ (2µX + 1)cX .

Proof. By Corollary 5.8.5, there is a representative for every class in CaCl0π(X) of the
form D = D0 + r(x)∞ with D0 ≤ 0, Supp(D0) ⊆ V0 and r ≤ (µX + 1)cX . Hence
I = OX(D)(V0) = OX(D0)(V0) ⊆ R0 by Proposition 3.1.27 (ii) and

degk I = −degkOX(D)(S) = −degk xrOS = rn

by Corollaries C.4.13 and D.2.9 which thus results in the asserted bound of (degk I)/n.
The existence of MI is due to Corollaries 4.3.27 and 4.5.4.
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5.8.2 Component Dependent Representation

The main goal of this section is to prove that every class in CaCl0π(X) has a representative
D = D0 +

∑
i∈A ri(x)i,∞ ∈ D0 with Supp(D0) ⊆ V0 and ri ≤ 2ci,X . Moreover, we prove

that there is a basis matrix MD in n-block-form representing OX(D)(V0) for D as above
such that the i-th row block of MD has degree bounded by 3ci,X . In particular, this yields
degMD ≤ 3cX .

Proposition 5.8.7. Let D = D0 +
∑

i∈A ai(x)i,∞ ∈ Div0
π(X) such that D0 ≤ 0 and

Supp(D0) ⊆ V0. Let MD be a basis matrix of OX(D)(V0) with respect to Ωm
i in n-block-

form such that the i-th row block MD,i of MD satisfies degMD,i ≤ ai + ci,X (which exists
due to Proposition 4.4.20). Let φΩmi (f) = ModFctC(MD) be a modification function of
D. We set E = −(div(f) + D)|V0 and by ME we denote a basis matrix of OX(E)(V0)
with respect to Ωm

i in n-block-form such that the i-th row block ME,i of ME satisfies
degME,i ≤ degkOX(E|Xi)(Vi,0)/ni + ci,X (as above, see Proposition 4.4.20). We set
φΩmi (g) = ModFctC(ME). Then

F = D + div(fg−1) = F0 +
∑

i∈A
si(x)i,∞

with F0 ≤ 0, Supp(F0) ⊆ V0 and si ≤ 2ci,X . In particular,

−degk F|V0 ≤ 4(g + n+ χ(SX)) + dimkH
0 (X,OX) .

Proof. By assumption, we have degkD|Xi = −aini. By Theorem 5.7.23 and Proposi-
tions 4.4.20 and 4.4.21, f satisfies

di := deg φΩi(f|Xi) ≤ ai + ci,X − |Xi|ni ≤ ai + 2ci,X .

By Lemma 5.7.25, f satisfies −divS(f) =
∑

i∈A di(x)Si,∞ and div(f)+D+
∑

i∈A di(x)i,∞ ≥
0. Let us now add div(f) to the divisor we started with:

div(f) +D +
∑

i∈A
ai(x)i,∞ = divV0(f) +D|V0 + divS(f) +

∑
i∈A

ai(x)Si,∞

= div(f)|V0 +D|V0︸ ︷︷ ︸
≥0

+
∑

i∈A
( ai − di︸ ︷︷ ︸
≥ −2ci,X

)(x)Si,∞ (8:29)

Set E = −divV0(f) − D|V0 ≤ 0 which satisfies −degk E|Xi = (di − ai)ni due to the fact
that divX(f) +D still has degree zero, see Eq. (8:29) and Proposition C.4.18 (ii). Now let
ME be a basis matrix of OX(E)(V0) as asserted and set φΩmi (g) = ModFctC(ME) with
ei := deg φΩi(g|Xi). As above, by Theorem 5.7.23 and Propositions 4.4.20 and 4.4.21, g
satisfies

ei ≤ (degkOX(E|Xi)(Vi,0))/ni + 2ci,X
Proposition C.4.18 (i) = (−degk E|Xi)/ni + 2ci,X

= (di − ai) + 2ci,X . (8:30)

Moreover, by Lemma 5.7.25, g satisfies −divS(g) =
∑

i∈A ei(x)Si,∞ and div(g) + E +∑
i∈A ei(x)i,∞ ≥ 0. In particular,

− div(g)− E −
∑

i∈A
ei(x)i,∞ ≤ 0. (8:31)
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Now we consider F := D + divX(fh−1) = D0 +
∑

i∈A ai(x)i,∞ + divX(fg−1): We have

F|V0 = − divV0(g) + divV0(f) +D0

= − divV0(g)− E|V0 ≤ 0

due to Eq. (8:31). Moreover,

F|S = divS(f)− divS(g) +
∑

i∈A
ai(x)Si,∞

=
∑

i∈A
−di(x)Si,∞ +

∑
i∈A

ei(x)Si,∞ +
∑

i∈A
ai(x)Si,∞

=
∑

i∈A
(−di + ei + ai)(x)Si,∞.

Finally, Eq. (8:30) yields

−di + ei + ai ≤ −di + (di − ai) + 2ci,X + ai = 2ci,X .

Thus F = F|V0 + F|S with F|V0 ≤ 0 and F|S =
∑

i∈A si(x)Si,∞ such that si ≤ 2ci,X . In
particular,

−degk F|V0 ≤
m∑
i=1

2ci,Xni ≤ 4(g + n+ χ(SX)) + dimkH
0 (X,OX)

due to Lemma 2.4.11.

Corollary 5.8.8. Let I ∈ Iπ. Let MI be a basis matrix of I with respect to Ωm
i in n-

block-form such that the i-th row block MI,i of MI satisfies degMI,i ≤ degk Ii/ni + ci,X
(which exists due to Proposition 4.4.20). Let φΩmi (f) = ModFctC(MI) be a modification
function of I. We set J = fI−1 and byMJ we denote a basis matrix of J with respect to Ωm

i

in n-block-form such that the i-th row blockMJ,i ofMJ satisfies degMJ,i ≤ degk Ji/ni+ci,X
(as above, see Proposition 4.4.20). We set φΩmi (g) = ModFctC(MJ). Then

H = gf−1I

satisfies H ⊆ R0 and degkHi/ni ≤ 2ci,X . In particular,

degkH ≤ 4(g + n+ χ(SX)) + dimkH
0 (X,OX) .

Proof. Let D = φ−1(I) = D0 +
∑

i∈A ai(x)i,∞ be the corresponding divisors of I under
the isomorphism in Proposition 3.1.27. Note that

ai = −(degk(D0)|Xi)/ni = (degkOXi((D0)|Xi(Vi,0))))/ni = (degk Ii)/ni.

Let E = −D0 − divV0(f). This equality becomes under φ, see Proposition 3.1.27, the
equation

J = OX(E)(V0) = fI−1.

The product H = gJ−1 = (gf−1)I corresponds under φ to −divV0(g)− E = −divV0(g) +
D + divV0(f) and thus the rest of the assertion follows from Proposition 5.8.7 using the
properties being preserved under φ, see for instance Proposition C.4.18.

Corollary 5.8.9. Every divisor class in CaCl0π(X) has a representative D = D0 +∑
i∈A ri(x)i,∞ with D0 ≤ 0, Supp(D0) ⊆ V0 and ri ≤ 2ci,X yielding −degkD0 ≤ 4(g +

n+ χ(SX)) + dimkH
0 (X,OX). Moreover, that representative has a basis matrix MD in

n-block-form with row blocks MD,i satisfying degMD,i ≤ 3ci,X yielding degMD ≤ 3cX .
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Proof. By Corollary 5.6.28, there is a representative of the formD+r(x)∞ with Supp(D) ⊆
V0, D ≤ 0 and some r ∈ Z. Now since r(x)∞ =

∑
i∈A r(x)i,∞, see Remark 5.6.10, we can

apply Proposition 5.8.7 to that representative to obtain the new one with the desired
properties. The statement about the basis matrix follows from Proposition 4.4.20 and
ri ≤ 2ci,X .

Proposition 5.8.10. Every ideal class in Iπ/Pπ has a representative I with I ⊆ R0 and
degk I/PiI ≤ 2ci,X yielding degk I ≤ 4(g + n + χ(SX)) + dimkH

0 (X,OX). Moreover,
that representative has a basis matrix MI in n-block-form with row blocks MI,i satisfying
degMI,i ≤ 3ci,X yielding degMI ≤ 3cX .

Proof. By Proposition 3.1.27, we have an isomorphism CaCl0π(X)→ Iπ/Pπ given by

[D +
∑

i∈A
ri(x)i,∞] 7→ [OX(D)(V0)].

By Lemma 3.2.30, we have

OVi,0(D|Vi,0)(Vi,0) ∼= OX(D)|Vi,0(Vi,0) ∼=
OX(D)(V0)

Pi,0OX(D)(V0)

which provides, if we write I = OX(D)(V0), that

degk I/Pi,0I = degkOVi,0(D|Vi,0)(Vi,0) = −degkD|Vi,0 = −degkD|Xi = rini

where the second equality is due to Proposition C.4.18 (i) and the second last due to
the fact that Supp(DXi) ⊆ Vi,0. The last equality follows from the fact that D +∑

i∈A ri(x)i,∞ ∈ Div0
π(X) and Proposition C.4.18 (iii). Now everything follows from the

isomorphism in Corollary 5.6.23 together with Corollary 5.8.9 and Lemma C.1.28.

5.9 Arithmetic Operations in CaCl0π
While we have shown in Section 5.8 that there are representatives of bounded size, we want
to prove in this section that computing the difference of two classes in CaCl0π respectively
the quotient of two classes in Iπ/Pπ using reduced representatives yields a representative
of the resulting class that does not have too large degree. Moreover, we will establish
statements concerning the arithmetic operations we will carry out later on with explicit
algorithms in Chapter 6.

5.9.1 Component Independent Case

Proposition 5.9.1. Let D = D0 + a(x)∞, E = E0 + b(x)∞ ∈ Div0
π(X) with E0, D0 ≤ 0.

Let MD be a basis matrix of OX(D)(V0) with respect to Ω such that degMD ≤ a+ µXcX
(which exists due to Lemma 5.8.2). Let φΩ(f) = ModFctCF(MD). Then

F = E −D − div(f) = F0 + r(x)∞

with F0 ≤ 0, Supp(F0) ⊆ V0 and r ≤ b+ (µX + 1)cX . In particular,

−degk F|V0 ≤ −degk E0 + (µX + 1)cXn.

Proof. By Theorem 5.7.20 and Lemma 5.8.3, we know that f ∈ Lreg(D0 + s(x)∞) where
s ≤ a+(µX +1)cX such that divS(f) = −s(x)∞. In particular, −divV0(f)−D0 ≤ 0. Thus

F = E −D − divX(f) = E0 −D0 − divV0(f) + (b− a+ s)(x)∞
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with F|V0 = E0 − D0 − divV0(f) ≤ 0 by the above and the fact that E0 ≤ 0. Moreover,
b−a+s ≤ b−a+a+(µX+1)cX = b+(µX+1)cX . Since degk F = 0, by Proposition C.4.18
(ii), we finally have

−degk F|V0 = degk F|S = rn ≤ bn+ (µX + 1)cXn = degk E|S + (µX + 1)cXn
Proposition C.4.18 (ii) = − degk E0 + (µX + 1)cXn.

Corollary 5.9.2. Let I, J ∈ Iπ and let MI be a basis matrix of I with respect to Ω such
that degMI ≤ degk I/n + µXcX . Let f = ModFctCF(MI). Then fJ/I ⊆ R0 and
degk fJ/I ≤ degk J + (µX + 1)cXn.

Proof. Let E = φ−1(J) = E0 +b(x)∞ and D = φ−1(I) = D0 +a(x)∞ be the corresponding
divisors of J respectively I. Note that a = −(degkD0)/n = (degk I)/n. Let F = E−D−
divX(f). Under φ this equality becomes, see Proposition 3.1.27, the equation

OX(F )(V0) = fJ · I−1 = fJ/I.

Now Proposition 5.9.1 implies −degk F|V0 ≤ − degk E|V0 + (µX + 1)cXn. By Proposi-
tion C.4.18 (i), we have

−degk F|V0 = degkOX(F )(V0) = degk fJ/I, and
−degk E|V0 = degkOX(E)(V0) = J

which then completes the proof.

Corollary 5.9.3 (of Proposition 5.8.4). Let I ∈ Iπ and let MI be a basis matrix of I with
respect to Ω such that degMI ≤ degk I/n + µXcX . Let f = ModFctCF(MI) and set
J = fI−1 ⊆ R0. Let MJ be a basis matrix of J such that degMJ ≤ degk J/n + µXcX .
Let g = ModFctCF(MJ) and set H = gJ−1 = (gf−1)I. Then H ⊆ R0 and degkH ≤
(µX + 1)cXn.

Proof. Let D = φ−1(I) = D0 + a(x)∞ be the corresponding divisors of I. Note that
a = −(degkD0)/n = (degk I)/n. Let E = −D− divX(f). Under φ this equality becomes,
see Proposition 3.1.27, the equation

J = OX(E)(V0) = fI−1.

The product H = gJ−1 = (gf−1)I corresponds under φ to −divX(g) − E = −divX(g) +
D + divX(f) and thus the rest of the assertion follows from Proposition 5.8.4.

Proposition 5.9.4. Let X be integral. Let D = D0 + a(x)∞ ∈ Div0
π(X) with D0 ≤ 0.

Then D is principal if and only if 0 ≥ −|D|1.

Proof. By Lemma 4.7.9, D is principal if and only if OX(D)(X) 6= 0 and thus, by Re-
mark 4.3.19, if and only if 0 ≥ −|D|1.

Remark 5.9.5. Note that if X is integral, given any basis matrix of OX(D)(V0), we can
compute −|D|1 using Algorithm 2. For reducible, reduced X, see Proposition 5.9.8. In
particular, the test of principality or the zero test cannot be performed independent of the
irreducible components. 4

5.9.2 Component Dependent Case

Proposition 5.9.6. Let D = D0 +
∑

i∈A ai(x)Si,∞, E = E0 +
∑

i∈A bi(x)Si,∞ ∈ Div0
π(X)

with E0, D0 ≤ 0. Let MD be a basis matrix of OX(D)(V0) with respect to Ωm
i in n-

block-form with row blocks MD,i such that degMD,i ≤ ai + ci,X (which exists due to
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Proposition 4.4.20). Let φΩ(f) = ModFctC(MD). Then

F = E −D − div(f) =
(
F|V0 ,

m∑
i=1

(bi + di)(x)i,∞

)

with F|V0 ≤ 0 and di ≤ 2ci,X . In particular, −degk F|V0 ≤ −degk E0 +4(g+n+χ(SX))+
2 dimkH

0(X,OX).

Proof. By Theorem 5.7.23, the modification function f computed by ModFctC satisfies
ei := deg φΩi(fi) ≤ di+ci,X where di is an upper bound of degMD,i. Hence ei ≤ ai+2ci,X .
Moreover, by Lemma 5.7.25, we have

− divS(f) =
∑
i∈A

ei(x)i,∞ and f ∈ Lreg(D0 +
∑
i∈A

ei(x)i,∞) (9:32)

where the latter provides −divV0(f) − D0 ≤ 0. Hence from E0 ≤ 0 and Eq. (9:32), we
deduce F|V0 = E0 − div(f)|V0 −D0 ≤ 0. By definition and Eq. (9:32), we have

F|S = E|S −D|S − divS(f) =
∑

i∈A
(bi − ai + ei)(x)Si,∞.

Note that we have di := −ai + ei ≤ −ai + ai + 2ci,X = 2ci,X . By assumption, we have
degk(E0)|Xi = −bini. Since E, D as well as divX(f) have degree zero, the same is true for
F and hence, by Proposition C.4.18 (ii) and Lemma 5.7.10, we obtain

−degk F|V0 =
∑
i∈A

(bi + di)ni =
∑
i∈A

bini +
∑
i∈A

dini

= − degk E0 +
∑
i∈A

dini

Lemma 2.4.11 ≤ − degk E0 + 4(g + n+ χ(SX)) + 2 dimkH
0(X,OX).

Proposition 5.9.7. Let I, J ∈ Iπ. Let f ∈ J be given by φΩmi (f) = ModFctC(MJ)
where MJ is a basis matrix of J with respect to Ωm

i in n-block-form with row blocks MJ,i

such that degMJ,i ≤ (degk Ji)/ni + ci,X (which exists due to Proposition 4.4.20). Then
H := fI/J ⊆ R0 with degkHi ≤ degk Ii+2ci,X and degkH ≤ degk I+4(g+n+χ(SX))+
2 dimkH

0(X,OX).

Proof. Let E = φ−1(I) = (E0,
∑

i∈A bi(x)Si,∞) and D = φ−1(J) = (D0,
∑

i∈A ai(x)Si,∞)
be the corresponding divisors of I and J . Let F = E−D−divX(f). Under φ this equality
becomes, see Proposition 3.1.27, the equation

OX(F )(V0) = (IfR0) · J−1 = fI/J = H

and hence the assertion follows from Proposition 5.9.6.

Proposition 5.9.8. Let E = D+
∑

i∈A ri(x)i,∞ ∈ Div0
π(X) with D ≤ 0. Let αi,1, . . . , αi,ni

for i = 1, . . . ,m be a reduced basis of OX(E|Xi)(Vi,0). By α ∈ KX(X)× we denote the
element corresponding to (α1,1, . . . , αm,1). Then E is principal if and only if 0 ≥ −|E|Xi |1
for all i = 1, . . . ,m and α ∈ OX(E)(V0).

Proof. By Lemma 4.7.9, E is principal if and only if Lreg(E) 6= ∅. Hence, if E is principal
with E = div(α−1), then, by Lemma 4.7.8, we have α ∈ Lreg(E) ⊆ OX(E)(X). Let α =
(α1, . . . , αm). Moreover, we have E|Xi = div(α−1

i ) which provides αi ∈ Lreg(E|Xi). In par-
ticular, 0 ≥ −|E|Xi |1 since this is equivalent to OX(E|Xi)(Xi) 6= 0, see Remark 4.3.19. By
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Lemma 4.7.3, we see that αi = εiαi,1 with εi ∈ k. Finally, since Lreg(E) ⊆ OX(E)(X) =
OX(E)(V0) ∩

⊕m
i=1 x

riOSi , we also have α ∈ OX(E)(V0).
Conversely, let 0 ≥ −|E|Xi |1 hold. By Theorem 4.3.15 and Remark 4.3.19, this is

equivalent to αi,1 ∈ OX(E|Xi)(Xi) \ {0} = Lreg(E|Xi) which together with degk E|Xi = 0
implies E|Xi = div(α−1

i,1 ), see Lemmas 4.7.8 and 4.7.9. Since αi,1 6= 0 for all i = 1, . . . ,m,
we have that α = (α1,1, . . . , αm,1) is contained in KX(X)×. By assumption we have
α ∈ OX(E)(V0). Since div(α−1

|Xi) = E|Xi = D|Xi + ri(x)i,∞, we see that α|Xi ∈ xriOSi . In
particular, α ∈

⊕m
i=1 x

riOSi which together with α ∈ OX(E)(V0) yields α ∈ OX(E)(X).
Now since α ∈ KX(X)×, we finally have α ∈ Lreg(E).

Remark 5.9.9. Note that, given basis matrices of OX(E|Xi)(Vi,0), we can compute the
π-invariants −|E|X1 |1, . . . ,−|E|Xm |1 using Algorithm 2. Moreover, using Algorithm 1 we
can compute a basis matrix of OX(E|Xi)(Vi,0) representing a reduced basis αi,1, . . . , αi,ni .
Hence we are able to compute the coefficient vectors φΩ1(α1,1), . . . , φΩm(αm,1). 4

Corollary 5.9.10. Thus if we want to test whether E is principal, we might equivalently
ask whether the linear system

ME · µ =

 φΩ1(α1,1)
...

φΩm(αm,1)


has a solution µ ∈ k[x]n. For the definition of ME, see Notation 4.4.7 (xii).
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Chapter 6

Main Result – Computing
Asymptotically Fast in Pic0(X)

In this chapter we will present the main result and contribution of this thesis: An algo-
rithmic toolkit for computing asymptotically fast in the degree zero Picard group Pic0(X)
of X as follows.

Theorem 6.6.1. Let X be a reduced cover of P1
k. The elements in Pic0(X)

can be represented by matrices in k[x]n×n with degree in O(cX). The combi-
nation of the Algorithms 19 and 20 provides randomised algorithms to compute
both the group law in Pic0(X) and the inverse of a given element. Moreover,
Algorithms 21 and 22 provide a deterministic algorithm to test whether a given
element in Pic0(X) is the neutral element. All the above algorithms use at most
O∼(nωcX) operations in k and the randomised algorithms have positive constant
success probability.

In this chapter we will discuss the necessary theory behind the algorithms we will propose
in this thesis to compute in Pic0(X). It is organised as follows:

In Section 6.1 we will show that we can represent the elements in Iπ/Pπ (and thus
those in Pic0(X)) by matrices in k[x]n×n with degree in O(cX). Moreover, we will outline
the strategy we will follow in this chapter to actually compute in Pic0(X).

In Section 6.2 we will provide an algorithm to compute the basis matrix of the quotient
of two R-ideals that are themselves given by their basis matrices. Moreover, since the above
algorithm requires an ideal generating set, we will provide probabilistic statements of how
to find such a set.

Section 6.3 is solely devoted to computing the basis matrix of a principal R0-ideal.
We will compute the necessary products to do so by using fast polynomial multiplication
in two indeterminates. In order to reduce to the polynomial multiplication, we need to
provide a primitive element of KX(X) over k(x).

Section 6.4 gives an overview of precomputations that need to be done once before we
can use the presented algorithms.

In Section 6.5 we introduce the algorithms that provide the toolkit to compute in
Pic0(X). Among these are the division algorithm, the algorithm that reduces a given
class representative and the zero test.

Finally, in Section 6.6 we prove their correctness and that they can be used to compute
asymptotically fast in Pic0(X), see Theorem 6.6.1.

We have already stated in Chapter 5 that the groups Pic0(X), ClInvId0(X) and CaCl0(X)
are isomorphic, see Lemma 5.6.2. Moreover, as we have seen in Section 5.6, we have an
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isomorphism CaCl0(X) → CaCl0π(X), see Proposition 5.6.16. Moreover, we have an iso-
morphism Div0

π(X) → Iπ extending to an isomorphism CaCl0π(X) → Iπ/Pπ, see Propo-
sition 5.6.22 and Corollary 5.6.23. Therefore, we may compute in Iπ/Pπ instead of com-
puting in CaCl0π(X) respectively in Pic0(X) to carry out the group law of the degree zero
Picard group.

In Section 5.8 we have shown that there are representatives of classes in both CaCl0π(X)
and in Iπ/Pπ that have bounded degree solely in terms of invariants of X. In the compo-
nent independent case we have representatives D of the form

D = D0 + r(x)∞, D0 ≤ 0, Supp(D0) ⊆ V0, r ≤ (µX + 1)cX ,

see Corollary 5.8.5, yielding ideal representatives

I ⊆ R0, (degk I)/n ≤ µXcX , degMI ≤ (2µX + 1)cX ,

see Corollary 5.8.6.
In the component dependent case we have representatives D of the form

D = D0 +
∑

i∈A
ri(x)i,∞, D0 ≤ 0, Supp(D0) ⊆ V0, ri ≤ 2ci,X ,

− degkD0 ≤ 4(g + n+ χ(SX)) + dimkH
0 (X,OX) ,

see Corollary 5.8.9. This yields ideal representatives

I ⊆ R0, (degk I/PiI)/ni ≤ 2ci,X

with basis matrix MI in n-block-form with row blocks MI,i satisfying

degMI ≤ 3cX , degMIi ≤ 3ci,X ,

see Proposition 5.8.10. This has been done by proving that there is a way of reducing
the respective given class representative by a suitably chosen modification function, see
Proposition 5.8.7 and Corollary 5.8.8.

In Section 5.9 we have seen that we can subtract two divisor classes or divide two
ideal classes which results in a class with a representative that again has bounded de-
gree, see Proposition 5.9.6 and Proposition 5.9.7 in connection with Proposition 5.8.7.
Moreover, also in Section 5.9 we have shown that there is a deterministic way of decid-
ing whether a given representative in CaCl0π(X) or Iπ/Pπ represents the trivial class, see
Proposition 5.9.8.

To finally give concrete algorithms that carry out the group law, we need an algorithmic
representation of the elements in CaCl0π(X) and Iπ/Pπ. This connection has already been
established in Chapter 4 where we have discussed reduced bases of F(V0) for any OX -ideal
F on a cover X of P1

k. Moreover, we have shown that there are bases of F(V0) in the case
of a reducible and reduced cover X of P1

k which are not too far away (in terms of degree)
of reduced bases of Fi(Vi,0). We will use the basis matrices of those bases to represent the
elements in CaCl0π(X) respectively Iπ/Pπ.

6.1 Algorithmic Representation of Elements in Pic0(X)

Let X be a reduced cover of P1
k. To represent OX -ideals with basis matrices we need

to fix bases of R0 and Ri,0 for i = 1, . . . ,m with respect to which we can represent the
respective bases. The computation of those bases only need to be done once and can thus
be precomputed as part of the algorithmic setup.

172



Chapter 6 6.1. Algorithmic Representation of Elements in Pic0(X)

Notation 6.1.1. For all i = 1, . . . ,m let Ωi = (ωi,1, . . . , ωi,ni) denote a reduced basis
of Ri,0. The basis of R+

0 =
⊕m

i=1Ri,0 constituted by the Ωi is denoted by Ωm
i . By

Ω = (ω1, . . . , ωn) we denote a reduced basis of R0 as in Lemma 4.6.2. We denote the basis
matrix of Ω with respect to Ωm

i by TΩ. By Lemma 4.6.2, we have deg TΩ ≤ 2cX . We
assume that we have computed the multiplication tables of all the above bases. 4

Remark 6.1.2. We want to emphasise the flexibility that the precomputation of Ω and
Ωm
i together with TΩ provides. Following Remarks 4.4.8 and 4.6.4, if TF is a basis matrix

of F(V0) with respect to Ω, then the matrix MF = TΩ · TF represents the same basis
with respect to Ωm

i and thus enables us to compute the restrictions F|Xi(Vi,0) of F(V0)
applying ComputeComponentMatrices which employs ColumnBasis. Moreover, the
computation of MF given the matrix TF is efficient using fast matrix multiplication as
long as the degree of TF lies in O(cX). 4
In Section 4.2 we have seen that every OX -ideal F can be completely represented by the
tuple (F(V0),F(V∞)), see Corollary 4.2.4. Conversely, any pair (M0,M∞) where M0 is
an R0-ideal and M∞ is an R∞-ideal for which we know that (M0)x = (M∞)x−1 holds
represents an OX -ideal. Due to Lemma 4.2.6, we know that (F(V0),F(S)) does represent
F in terms of the arithmetic demands in the monoid of OX -ideals MonoId(X).

Since we have fixed the bases Ω and Ωm
i , we may also represent F(V0), F(V∞) and

F(S) by a k[x]-, k[x−1]- respectively O∞-basis. But this means that we replace the
tuple (F(V0),F(V∞)) with a pair of matrices (T0, T∞) with T0 ∈ k[x]n×n and T∞ ∈
k[x−1]n×n and the tuple (F(V0),F(S)) with a pair of matrices (T0, TS) with T ∈ k[x]n×n
and TS ∈ On×n∞ . By Remark 4.2.10, we also see that T∞ (regarded as a matrix over O∞)
also represents F(S). As already indicated by Lemma 4.2.6, we will use the arithmetic
representation (F(V0),F(S)) given by (T0, TS). We distinguish between the component
independent and the component dependent case.

6.1.1 Component Independent Case

Let X be a reduced cover of P1
k. The following lemma shows that a k[x]-basis matrix of

F(V0) does already suffice to represent F in the case that degk F = 0 and F(S) = xrOS .

Lemma 6.1.3. Let F be an OX-ideal of degree zero such that F(S) = xrOS. Then the
pair (F(V0),F(S)) can be solely represented by a k[x]-basis matrix of F(V0).

Proof. The pair (F(V0),F(S)) may be represented by a pair of basis matrices (T0, TS)
with T0 ∈ k[x]n×n and TS ∈ On×n∞ . But since F(S) = xrOS for some r ∈ Z, TS is the
diagonal matrix with xr on the diagonal. Hence to compute TS it is enough to know r.

First of all, by Corollary D.2.9, we have degk F(S) = degk xrOS = −rn. Moreover,
by Corollary C.4.13, we deduce degk F(S) = −degk F(V0) which then finally provides
r = degk F(V0)/n. Since we can compute the degree of F(V0) via its k[x]-basis matrix T0,
see Proposition D.2.7, we therefore have (deg detT0)/n = r.

Lemma 6.1.4. For every class in CaCl0π(X) there is a representative of the form E =
D + r(x)∞ with r ≤ (µX + 1)cX and if we set F = OX(E), then F can be represented by
a basis matrix TF of F(V0) with degree bounded by (2µX + 1)cX .

Proof. By Corollary 5.8.5, we always find representatives of classes in CaCl0π(X) in the
asserted form. Moreover, by Lemma 5.8.2, there is a basis of F(V0) whose basis matrix
TF has degree bounded by r+ µXcX ≤ (2µX + 1)cX . Now Lemma 6.1.3 tells us that F is
represented by TF .
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6.1.2 Component Dependent Case

Let X be a reducible and reduced cover of P1
k. Recall the definitions we have made

in Notation 4.4.7. In the case that F = OX(E) is the invertible OX -ideal of a divisor
E = D +

∑
i∈A ri(x)i,∞ ∈ Div0

π(X), things do not really get more complicated. As
before, it turns out that we will only need a basis matrix of F(V0) with respect to Ωm

i to
represent F . The only difference here is that we need to be able to compute the restrictions
Fi(Vi,0) := F|Xi(Vi,0) from that given basis matrix. The following lemma shows how we
represent the restrictions Fi.

Lemma 6.1.5. Let E = D +
∑

i∈A ri(x)i,∞ ∈ Div0
π(X) and set F = OX(E). Then F|Xi

is solely represented by a k[x]-basis matrix TFi of F|Xi(Vi,0).

Proof. By Corollary 5.6.7, we have E|Xi = (D|Vi,0 , ri(x)Si,∞) with the notation as in
Notation 5.5.7. That is F|Xi(Si) = OXi(ri(x)Xi,∞)(Si) = xriOSi . Hence the requirements
for Lemma 6.1.3 are met and thus we deduce that the F|Xi are solely represented by a
k[x]-basis matrix TFi of F|Xi(Vi,0), respectively.

Now we consider a global representation of F(V0) from which we are able to compute
the restrictions and therefore yields a complete arithmetic representation of F in the
component dependent case.

Lemma 6.1.6. Let E = D +
∑

i∈A ri(x)i,∞ ∈ Div0
π(X) and set F = OX(E). Then F is

solely represented by MF where MF is any basis matrix of F(V0) with respect to Ωm
i .

Proof. Following Lemma 4.2.6, we may represent F by the pair (F(V0),F(S)). But since
S is the disjoint union of the Si, we have F(S) =

⊕m
i=1F|Xi(Si). Moreover, by assumption

on F , we have F|Xi(Si) = xriOSi and thus (F(V0), r1, . . . , rm) is enough to represent F .
Instead of representing F(V0) via a k[x]-basis matrix with respect to Ω, we represent it
with a basis matrix MF with respect to Ωm

i . Hence F is represented by (MF , r1, . . . , rm),
and therefore we are left to argue that MF already provides the integers r1, . . . , rm. Due
to Lemma 6.1.3, it is therefore enough to prove that we can compute a basis matrix of
F|Xi(Vi,0) given MF . Finally, Proposition 4.6.5 shows that ComputeComponentMa-
trices exactly provides this feature.

Remark 6.1.7. In the integral case the degree degk F(V0) can be determined by simply
computing deg detTF , see Proposition D.2.7. But in the reducible case, we need to take
care. By Proposition D.2.7, we have

degk F(V0) = deg detM

where M ∈ k(x)n×n is a basis transformation matrix from a basis of R0 to one of F(V0).
The representation of F(V0) by MF , a basis matrix with respect to Ωm

i , does also provide
degk F(V0) as follows: Let B denote the k[x]-basis of F(V0). Since F(V0) ⊆ R0 ⊆ R+

0 , we
have

B = Ω ·MΩ,F

for some matrix MΩ,F ∈ k[x]n×n. Thus with Ω = Ωm
i · TΩ we have

B = Ωm
i · TΩ ·MΩ,F .

Now since B = Ωm
i ·MF , this finally provides MF = TΩ ·MΩ,F . In particular,

deg detMF = deg detTΩ + deg detMΩ,F
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and thus

degk F(V0) = deg detMΩ,F = deg detMF − deg detTΩ.

Note that deg detTΩ can be precomputed. Moreover, by Lemma B.4.11, we have

deg detTΩ = dimk R
+
0 /τ

#(V0)(R0)

where τ : OX →
⊕m

i=1(τi)∗OXi is the canonical monomorphism from Definition B.3.4.
Since X is a cover of P1

k, we have Supp SX ⊆ V0 and thus, by Definition B.3.4, we have
χ(SX) = dimk SX(X) = dimk R

+
0 /τ

#(V0)(R0) where the first equality is due to the fact
that SX is a skyscraper sheaf. Therefore

degk F(V0) = deg detMF − χ(SX). 4

Remark 6.1.7 tells us that the degree will be computed in different ways dependent on
with respect to which basis the given basis matrix represents F(V0). Algorithm 9 provides
the functionality of computing the degree of an R0-ideal accordingly.

Algorithm 9 Computing the degree of an R0-ideal
Precomputed Ω fixed basis of R0; Ωm

i fixed basis of R+
0 ; χ(SX)

Input MI basis matrix of the ideal I; c Boolean whetherMI is a basis matrix
with respect to Ωm

i (c = true) or with respect to Ω (c = false)
Output degk I

1: procedure DegOfIdeal(MI , c)
2: d← Degree(Determinant(MI))
3: if c then
4: return d− χ(SX)
5: return d

Lemma 6.1.8. The algorithm DegOfIdeal, see Algorithm 9, is correct. Moreover, if
d is an upper bound of the degree of MI , then DegOfIdeal requires at most O∼(nωd)
operations in k.

Proof. The correctness of DegOfIdeal was discussed in Remark 6.1.7. The running time
assertion follows from Notation A.1.1.

Regarding the representation of an element in Iπ we want to treat the modification func-
tions, that is the elements in Pπ, differently.

Notation 6.1.9. Let f ∈ R0 be a modification function, that is fR0 ∈ Pπ. Let c be a
Boolean encoding whether basis matrices of R0-ideals are given with respect to Ωm

i (c =
true) or with respect to Ω (c = false). We assume the matrix Tf := TfR0 to be the basis
matrix of the standard basis fΩ = (fω1, . . . , fωn) with respect to{

Ω, if c = false
Ωm
i , if c = true.

By Corollary 4.6.11, if deg φΩ(f) ≤ d, then deg Tf ≤ d + 3cX in the case c = true. By
Lemma 4.3.34 and Corollary 4.5.2, the same bound holds in the case c = false. 4

175



6.2. Quotients of Ideals and Ideal Generating Sets Chapter 6

6.1.3 Strategy

To carry out the group law in CaCl0π(X), we thus need to work basis matricesMF over k[x]
of F(V0) for which we know that they represent F = OX(E) for some representative E =
D +

∑
i∈A ri(x)i,∞ of a class in CaCl0π(X). Since CaCl0π(X) → Iπ/Pπ, E 7→ OX(E)(V0)

is an isomorphism of abelian groups, see Proposition 5.6.22 and Corollary 5.6.23, this
is the same as to carry out the group law in Iπ/Pπ. The basis matrix MF obviously
represents the ideal I = F(V0). Now the addition in CaCl0π(X) corresponds under φ to
the multiplication in Iπ/Pπ and being the neutral element in both groups is equivalent to
have a principal representative. We will compute in Iπ/Pπ using the matrices MF which
we might denote by MI instead. Now to carry out the group law in Iπ/Pπ means to be
able to compute the product of two ideal classes given by some matrices T1 and T2 as
above and then represent the product again as some matrix T3 representing the result
after applying the group law. Moreover, we need to do the same for the inverse of a class,
which is given by the inverse of the ideal representative. And, finally, we need to be able
to test whether the class a given pair represents is the trivial class which is the case if and
only if the representative ideal lies in Pπ.

The main strategy we will pursue is the following:

Strategy 6.1.10. Due to computational speed up, instead of computing the product, we
compute the quotient of ideals in Iπ. If we are able to do this, we can compute the inverse
of an element in Iπ/Pπ as well. We will achieve this by the following steps:

(I) The first step is to compute the quotient of J over I for which we know that the
result (J : I) satisfies (J : I) ⊆ R0.

(II) The second step is to compute arbitrary quotients I over J by modifying with a
suitable modification function f which makes the quotient integral again, that is
(fJ : I) ⊆ R0. To do so, we need to be able to compute the basis matrix of the
standard basis of a principal R0-ideal.

(III) After computing a quotient, the degree of the considered ideals may have grown and
thus we need to come up with a method choosing a representative which has degree
bounded by some invariants of X.

(IV) Finally, we need to introduce a method for deciding whether two given ideals represent
the same class, or equivalently, whether a given ideal represents the trivial class.

Basically, we have already treated the theory behind Items (III) and (IV) in Sections 5.8
and 5.9 and we will simply write down the respective algorithms implementing the methods
provided there. The algorithm that reduces the representative of a given class is given in
Algorithm 20. Therefore, we are primarily left to come up with linear algebra algorithms
that implement Items (I) and (II). Item (I) will be treated next in Section 6.2 and the
computation of the basis matrices of principal ideals given by modification functions is
examined in Section 6.3 which will provide Item (II).

6.2 Quotients of Ideals and Ideal Generating Sets

6.2.1 Quotients of Free Ideals

In this subsection we provide a lemma which shows how to compute a basis of the quotient
of two ideals efficiently only given their respective bases. Since the procedure is not
specifically dependent on our setup, we will consider the following situation:
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Notation 6.2.1. Let R be a reduced ring such that all R-ideals are free of rank n over
some ring A. For instance, this is the case if R = R0 = OX(V0) where X is a reduced
cover of P1

k of degree n over P1
k. We fix some A-basis Ω = (ω1, . . . , ωn) of R. By φΩ(f)

we denote the coefficient vector of f ∈ R with regards to Ω. Mostly, we will work with
A = k[x]. 4

Since we will use ideal generating sets instead of A = k[x]-bases, we need to be able to
check whether a given set of elements of an ideal is actually an ideal generating set.

Lemma 6.2.2. Let f1, . . . , fh ∈ Frac(R) be elements with deg φΩ(fi), deg Tfi ≤ d such
that at least one fiR is invertible. Let G =

∑h
i=1 fiR. Let T = [Tf1 | . . . | Tfh ] denote the

concatenated matrix of dimension n× hn. Then G is an R-ideal, free of rank n over k[x]
and there exists a basis matrix TG of G with degree bounded by d which is given by

TG = ColumnBasis(T ) ∈ k[x]n×n.

Proof. First of all, since one of the fiR is invertible, the respective element fi is a regular
one and therefore G contains a regular element of R. By Proposition C.1.10, we therefore
see that G is an R-ideal. Moreover, by Lemma 4.1.6, G is free of rank n over k[x]. Let
T = [Tf1 | . . . | Tfh ] denote the concatenated matrix of dimension n × hn. Then, by
construction, the column space of T is the k[x]-span of

{fiωj | i = 1, . . . , h, j = 1, . . . , n}

and thus equal to G. Hence the column space of T over k[x] has rank n. By Theo-
rem A.2.15,

TG := ColumnBasis(T ) ∈ k[x]n×n

is a basis matrix of the column space of T and its degree is bounded by the average column
degree of T which is, by assumption, upper bounded by d.

The next statement gives us a tool to test whether (randomly chosen) elements of an ideal
constitute a generating system.

Lemma 6.2.3. Let J ⊆ I be two integral ideals of R0, then J = I if and only if degk J =
degk I.

Proof. The only if part is trivial. Therefore, let us assume degk J = degk I and J ⊆ I.
The latter implies that each basis of J can be represented by a basis of I. In terms of
basis matrices this means that for all basis matricesMI ,MJ there is T ∈ k[x]n×n such that
Ω ·MJ = Ω ·MI ·T . This implies degk I = degk J + deg det(T ) by Proposition D.2.7 Thus,
by assumption, deg det(T ) = 0 which is det(T ) ∈ k. Since MJ is invertible, det(T ) 6= 0.
Thus det(T ) ∈ k×, that is, T is unimodular and hence J = I.

Now we can use Lemmas 6.2.2 and 6.2.3 to provide an algorithm that test whether a given
set of elements in an ideal constitute an ideal generating set of that ideal. Since we will
use it for our algorithms that provide a toolkit to compute in Pic0(X), we will formulate
it for the two cases, the component independent and the component dependent. But it
also works in the general setting described in Notation 6.2.1
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Algorithm 10 Test for ideal generating set
Precomputed Ω fixed basis of R0; Ωm

i fixed basis of R+
0

Input TI basis matrix of I; Tβ1 , . . . , Tβh ∈ k[x]n×n basis matrices of βiR
such that βi ∈ I; c Boolean whether TI , Tβi are basis matrices with
respect to Ωm

i (c = true) or with respect to Ω (c = false)
Output true if I =

∑h
i=1 βiR, otherwise false

1: procedure TestIGS(TI , Tβ1 , . . . , Tβh , c)
2: dI = DegOfIdeal(TI , c)
3: Tβ = ColumnBasis(Tβ1 _ . . . _ Tβh)
4: dβ = DegOfIdeal(Tβ, c)
5: if dI = dβ then
6: return true
7: return false

Lemma 6.2.4. The algorithm TestIGS, see Algorithm 10, is correct if one of the βiR
is invertible. Moreover, if d is a common bound for the degrees of the input matrices and
h ∈ O∼(1), then TestIGS requires at most O∼(nωd) operations in k.

Proof. By assumption, G =
∑h

i=1 βiR ⊆ I and thus G = I if and only if degkG = degk I,
see Lemma 6.2.3. Since one of the βiR is invertible, ColumnBasis in line 3 does indeed
compute a basis matrix TG of G, see Lemma 6.2.2. By Lemma 6.1.8, DegOfIdeal in
line 2 and 4 computes dI = degk I respectively dβ = degkG. Hence the correctness of
TestIGS follows.

By assumption, d is a common upper bound for the degrees of all Tβi , and thus
Lemma 6.2.2 provides that Tβ has degree bounded by d (it is even bounded by the av-
erage column degree of all the columns of the Tβi). By Theorem A.2.15, we know that
ColumnBasis in line 3 requires at most O∼(nω−1(hn)s) operations in k where h ∈ O∼(1)
by assumption and s is the average column degree of all the columns of the Tβi which is
bounded by d. In particular, ColumnBasis only requires O∼(nωd) operations in k. By
Lemma 6.1.8, DegOfIdeal in line 2 and 4 requires at most O∼(nωd) operations in k
since d is an upper bound of the input matrices. Hence TestIGS requires overall at most
O∼(nωd) operations in k as asserted.

To compute a basis of the integral quotient of two R-ideals, the following lemma represents
the main statement we will use. The main idea is to switch from a basis (whose cardinality
is n) of the denominator to an ideal generating system with asymptotically negligible
cardinality (e.g. log(n)). For the definition of the R-ideal quotient, see Definition C.1.5.

Proposition 6.2.5. Let I, J be two integral R-ideals and let β1, . . . , βh be an ideal gener-
ating set of I. Let TJ denote the basis matrix of the ideal J and for all i = 1, . . . , h let Tβi
denote the standard basis matrix of βiR. Then for every f ∈ R0 the following equivalence
holds:

f ∈ (J : I)⇔ ∃ µ1, . . . , µh ∈ An :


Tβ1 TJ 0 . . . 0
Tβ2 0 TJ . . . 0
...

... 0 . . . 0
Tβh 0 . . . 0 TJ


︸ ︷︷ ︸

=: M(J,β1,...,βh)


φΩ(f)
µ1
...
µh

 = 0

Proof. By Definition C.1.5, f ∈ (J : I) holds if and only if fI ⊆ J and the latter is
equivalent to fβi ∈ J for all i = 1, . . . , h since β1, . . . , βh is an ideal generating set of

178



Chapter 6 6.2. Quotients of Ideals and Ideal Generating Sets

I. The product fβi satisfies φΩ(fβi) = Tβi · φΩ(f). Indeed, column j of Tβi contains
the coefficients of βiωj with respect to Ω. If we write f =

∑n
j=1 λjωj with λj ∈ A, then

fβi =
∑n

j=1 λjβjωj as claimed. Now fβi ∈ J if and only if the equation Tβi ·φΩ(f) = TJ ·µi
has a solution µi ∈ An. This already provides the assertion since the matrix equation
formulates this for all i = 1, . . . , h simultaneously.

Definition 6.2.6. In the following we will denote the big matrix in Proposition 6.2.5 by
M = M(J, β1, . . . , βh). In Notation A.1.1 (vii) we define the algorithm BigMatrix that
builds the big matrix M from above and which we will use in the rest of this thesis. 4

Lemma 6.2.7. Let the situation be as in Proposition 6.2.5. The kernel of the matrix
M = M(J, β1, . . . , βh) from Proposition 6.2.5 has rank n over A.

Proof. Since the hn× hn diagonal submatrix of M built by the MJ has full rank and the
number of rows of M is equal to hn, we obtain that M has rank hn. We can now use
the rank-nullity theorem for free modules over principal ideal domains (which is a direct
consequence of the facts that submodules of free modules over principal ideal domains are
free again and that short exact sequences whose last (non-zero) module is free is split,
see [Hun11, Thms. 3.4. and 6.1]) to see that (h + 1)n = rk kerM + rkM and therefore
rk kerM = (h+ 1)n− hn = n.

Corollary 6.2.8. As an A-module, the kernel of the big matrix M = M(J, β1, . . . , βh) of
Proposition 6.2.5 is of the form ker(M) = {(λ µ1 · · ·µh)T ∈ A(h+1)n | Tβi · λ = −TJ · µi}.
The µi are the coefficient vectors of fβi in terms of the basis of J given by TJ . The top
(n× n)-matrix of a basis of ker(M) provides a basis matrix T(J :I) of (J : I). Conversely,
any basis matrix T(J :I) of (J : I) provides a possible configuration of the top (n×n)-matrix
of a basis of ker(M).

Proof. The proof of Proposition 6.2.5 shows the first two assumptions. We denote the
column vectors of a basis of kerM by gj = (λj µ1j . . . µhj)T for j = 1, . . . , n. Then, by
Proposition 6.2.5, for every element α of (J : I) there are a1, . . . , an ∈ A such that φΩ(α) is
equal to the (n×1)-vector obtained by taking the top n entries of

∑n
j=1 ajgj . Thus λ1 . . . λn

generate (J : I) over A. By Lemma 6.2.7, the gj are A-linearly independent. Assume there
is a non-trivial linear combination 0 =

∑n
j=1 ajλj . By the second assertion, the latter hn

entries of
∑n

j=1 aigj are the coefficients of (
∑n

j=1 ajλj)βi = 0 for all i = 1, . . . , h with
respect to the basis of J given by TJ and hence zero. That is, we also have

∑n
j=1 aigj = 0

which provides ai = 0 for all i = 1, . . . , n. Therefore λ1, . . . , λn is an A-basis of (J : I).
The converse statement is trivial.

We can use Proposition 6.2.5 and Corollary 6.2.8 to provide an algorithm that computes
a basis matrix of the quotient ideal of two R-ideals. It works in the general setting that is
described in Notation 6.2.1 where A = k[x].

Algorithm 11 Compute ideal quotient which is integral
Input TJ , Tf , Tβ1 , . . . Tβh ∈ k[x]n×n basis matrices of ideals J, fR0, β1R0, . . . , βhR0,

respectively
Output TH ∈ k[x]n×n basis matrix of H = (J : I) with I = fR0 +

∑h
i=1 βiR0

1: procedure IdealQuotient(TJ , Tf , Tβ1 , . . . Tβh)
2: M ← BigMatrix(Tf , Tβ1 , . . . , Tβh , TJ)
3: K ←MatrixKernel(N)
4: TH ← RedMat(SubMatrix(K, (1, 1), (n, n)))
5: return TH
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Lemma 6.2.9. The algorithm IdealQuotient, see Algorithm 11, is correct. If h ∈
O∼(1) and d is an upper bound for both the degree of the input matrices and the minimal
degree of basis matrices representing the kernel of M , then it requires at most O∼(nωd)
operations in k and returns a matrix with degree in O(d).

Proof. That TH is the asserted basis matrix of (J : I) if I = fR0 +
∑h

i=1 βiR0 follows
from Corollary 6.2.8. This proves the correctness of IdealQuotient. By assumption, d
is a bound for the minimal degree of basis matrices representing the kernel of M and thus
for K as well, see Theorem A.2.6. By Theorem A.2.7, RedMat returns a matrix which
also has degree bounded by d which proves the asserted degree of the output matrix.

Building the big matrix from Proposition 6.2.5 with BigMatrix has constant cost, see
Lemma A.1.2 (vii). By Theorem A.2.6, the computation of K in step 3 requires at most
O∼(nωd) operations in k and by assumption deg(K) ≤ d. Moreover, by Lemma A.1.2
(vi), SubMatrix has constant cost. Therefore, IdealQuotient requires overall at most
O∼(nωd) operations in k.

Therefore, to use IdealQuotient properly, we need to prove that for given J and I (by
the ideal generating set β1, . . . , βh) there is a basis of kerM(J, β1, . . . , βh) that has degree
in the same order of magnitude as a basis matrix T(J :I) of a reduced basis of (J : I) does.
We distinguish between the component independent and component dependent case.

Lemma 6.2.10. Let X be a reduced cover of P1
k. Let J, I ∈ Iπ be integral R0-ideals with

degk I, degk J ≡ 0 mod n such that (J : I) ⊆ R0 is integral again. Assume that TJ is
reduced and has degree bounded by d. Let β1, . . . , βh be elements in I with deg φΩ(βi) ≤ d
and I =

∑h
i=1 βiR0. Then there exists a basis matrix N ∈ k[x]hn×n with degree in bounded

by 2d+(µX +2)cX representing the kernel of the big matrix M in Proposition 6.2.5 whose
top (n × n)-matrix is a basis matrix of (J : I) which itself is degree upper bounded by
d+ µXcX .

Proof. By Corollary 6.2.8, we know that every basis matrix T(J :I) of a basis δ1, . . . , δn of
(J : I) together with the coefficients of βiδj with regards to the basis of J represented
by TJ provides a possible basis matrix of kerM(J, β1, . . . , βh). By Definition C.1.5, we
know that (J : I) is an R0-ideal and the same is true for I−1 = (R0 : I). Moreover, since
I ⊆ R0, we have by definition I ⊆ R0 ⊆ I−1 and thus from Lemma C.1.27, we obtain
degk I−1 ≤ 0. Since J is invertible, Proposition C.1.26 provides

degk(J : I) = degk JI−1 = degk J + degk I−1 ≤ degk J.

Hence degk(J : I) ≤ deg detTJ ≤ dn. By Corollaries 4.3.27 and 4.5.4, we know that there
is a basis matrix T(J :I) of (J : I) with

deg(T(J :I)) ≤ degk((J : I))/n︸ ︷︷ ︸
≤d

+µXcX ≤ d+ µXcX .

By assumption, we have deg φΩ(βi) ≤ d. Let δ1, . . . , δn denote the basis of (J : I) repre-
sented by the matrix T(J :I). Thus deg φΩ(δj) ≤ d+ µXcX . By Lemma 4.3.32, we have

deg∗(βiδj) + |X|n ≤ deg φΩ(βiδj) ≤ deg∗(βiδj),

and, by Corollary 4.3.31 (iii), we have deg∗(βiδj) ≤ deg∗(βi) + deg∗(δj). Combining these
two and Corollary 4.3.24 we obtain

deg φΩ(βiδj) ≤ deg φΩ(βi) + deg φΩ(δj) + 2cX ≤ 2d+ (µX + 2)cX .
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The coefficients of βiδj with respect to the basis B of J represented by MJ satisfy

MJ · φB(βiδj) = φΩ(βiδj).

We write MJ = (v1 . . . vn) with vj ∈ k[x]n as well as φB(βiδj) = (λ1, . . . , λn)T and
φΩ(βiδj) = (µ1, . . . , µn)T . Now we know that MJ is reduced and hence

degµi = nmax
j=1
{deg(λjvj)} = max

j:λj 6=0
{deg(λj) + deg(vj)}.

By assumption, degMJ ≤ d and thus deg(vj) ≤ d. Moreover, we have shown that
deg(µj) ≤ 2d + (µX + 2)cX . Therefore, deg(λj) ≤ 2d + (µX + 2)cX as well. There-
fore, we have found a possible basis matrix of kerM where its top (n × n)-matrix has
degree bounded by d + µXcX and the lower (hn × n)-matrix has degree bounded by
2d+ (µX + 2)cX .

Remark 6.2.11. Note that the proof of Lemma 6.2.10 shows that I need not be invertible.
It suffices that I = F(V0) for some degree zero OX -ideal F with F(S) = xrOS and
r = (degk I)/n ∈ Z. Moreover, we can even circumvent to assume that J is invertible.
The proof shows that it suffices that degk(J : I) ≤ degk J holds. One can prove that the
R-ideal (J : I) satisfies (J : I) ⊇ J · (R : I) ⊇ J since I ⊆ R and thus we can apply
Lemma C.1.27 to obtain degk(J : I) ≤ degk J . 4

Lemma 6.2.12. Let X be a reducible and reduced cover of P1
k with irreducible components

(X1, . . . , Xm). Let J, I ∈ Iπ be integral ideals such that (J : I) is integral again. Assume
that there are basis matrices TJi respectively TIi of all Ji respectively Ii with degree bounded
by d. Moreover, assume that both MI and MJ are reduced and have degree bounded by d
as well. Let β1, . . . , βh be elements of I with deg φΩmi (βj) ≤ d and I =

∑h
j=1 βjR0. Then

there exists a basis matrix with degree bounded by 2d+ 3cX representing the kernel of the
big matrix M in Proposition 6.2.5 whose top (n × n)-matrix is a basis matrix of (J : I)
which itself is degree upper bounded by d+ cX .

Proof. The proof works completely analogous to that of Lemma 6.2.10. We only need to
cite the appropriate statements for degree bounds in the reducible case.

As in the proof of Lemma 6.2.10 we have 0 ≤ degk JiI−1
i ≤ degk Ji ≤ dni. By

Proposition 4.4.20, this provides the existence of a basis matrixM(J :I) with degree bounded
by d + cX . Let δ1, . . . , δn denote the basis of (J : I) represented by the matrix M(J :I).
Thus deg φΩmi (δj) ≤ d+ cX . Hence, by Lemma 4.6.10, we have

deg φΩmi (βiδj) ≤ deg φΩmi (βi) + deg φΩmi (δj) + 2cX
≤ d+ (d+ cX) + 2cX
= 2d+ 3cX .

Again, we have MJ · φB(βiδj) = φΩmi (βiδj) and thus the very same argument using the
reducedness of MJ as in Lemma 6.2.10 provides the assertion.

Remark 6.2.13. Note that the proof of Lemma 6.2.12 shows that I need not necessarily
be invertible. It suffices that I = F(V0) for some degree zero OX -ideal F with F(S) =⊕m

i=1 x
riOSi and FP = OX,P for all P ∈ Supp(SX). In particular, degk Ii ≡ 0 mod ni is

necessary. 4

Corollary 6.2.14. If d is an upper bound of the input matrices of Algorithm 11 and
cX ∈ O(d), then Lemma 6.2.9 can be more precise: The required number of operations in
k are still O∼(nωd), but the output matrix has degree bounded by d+ µxcX .
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Proof. This follows from combining Lemmas 6.2.10 and 6.2.12 with Lemma 6.2.9.

Let the situation be as in Notation 6.2.1.

Lemma 6.2.15. Let I be an R-ideal with basis matrix TI and let f ∈ R be regular such
that fR has basis matrix Tf . Then TfI := TI · Tf is a basis matrix of fI.

Proof. Let α1, . . . , αn denote the basis of I represented by TI . Then fα1, . . . , fαn is a
k[x]-basis of fI. Moreover, if αj =

∑n
i=1 λi,jωi, then fαj =

∑n
i=1 λi,jfωi. By definition,

the coefficients of fωi with regards to ω1, . . . , ωn form the columns of Tf , and we have
TI = (λi,j)i,j ∈ k[x]n×n. Hence the j-th column of the product TI · Tf contains the
coefficients of fαj which proves the assertion.

6.2.2 Ideal Generating Sets

We want to use Proposition 6.2.5 to compute a basis of (J : I) explicitly and hence we
need a method to come up with a generating system of an integral invertible ideal.

Let I ⊆ R0 be an invertible ideal and s1, . . . , sh ∈ I. We can characterise whether the
si are an ideal generating set of I or not by the “zeros of the si relative to I”.

Definition 6.2.16. Let I ⊆ R be an invertible ideal. For f ∈ I we say that f has a
zero at P ∈ Spec(R) relative to I if f ∈ IP . For any subset T ⊆ R we call the set
VI(T ) = {P ∈ Spec(R) | T ⊆ PI} the set of common zeros of T relative to I. 4

Lemma 6.2.17. Let I ⊆ R be an invertible ideal. Let s1, . . . , sh ∈ I be arbitrary. Then
s1, . . . , sh form a generating set of I if and only if they do not share a common zero relative
to I.

Proof. Let J denote the ideal generated by s1, . . . , sh. Assume that J = I and assume
there is P such that J ⊆ PI, then R = JI−1 ⊆ P , a contradiction. Conversely, let
s1, . . . , sn do not have any common zero relative to I, that is for all P ∈ Spec(R) we have
J 6⊂ PI and therefore JI−1 6⊂ P . That is JI−1 is an integral ideal not contained in any
prime ideal and therefore, by Zorn’s lemma, it must be equal to R, hence J = I.

Definition 6.2.18. Let W be a k-vector space of dimension n and let Σ ⊆ k be a
finite subset of the ground field k. Fix a k-basis w1, . . . , wn of W . Now a Σ-random
element s ∈W or an element s ∈W which is chosen Σ-randomly is a linear combination
s = a1w1 + . . .+ anwn where the ai ∈ Σ are chosen independently and uniformly random
from Σ. In the following, Pr(S) denotes the probability of the statement S to be true. 4

Lemma 6.2.19 ([KM07], Lemma 4.2). Let W be a k-vector space with basis w1, . . . , wn.
Let Σ ⊆ k be a finite subset of k and let H1, . . . ,Hr (W be proper subspaces.

(1) For a Σ-random element s ∈W , Pr(s ∈ H1 ∪ . . . ∪Hr) ≤ r/#Σ.

(2) For a tuple s1, . . . , sj ∈W j of independent Σ-random elements s1, . . . , sj ∈W ,

Pr((s1, . . . , sj) ∈ Hj
1 ∪ . . . ∪H

j
r ) ≤ r/(#Σ)j .

Proposition 6.2.20. Let R be a noetherian k-algebra of Krull dimension one. Let I be
an invertible ideal of R and f ∈ I a regular element. Then the set VI(f) of common
zeros of f relative to I is finite, say r = #VI(f). Let Σ ⊆ k denote a finite set. Let
f1, . . . , fh be Σ-randomly chosen elements. Then the probability that f, f1, . . . , fh form an
ideal generating set of I is at least 1− r/(#Σ)h, that is

Prob
(
fR+

∑h

i=1
fiR = I

)
≥ 1− r/(#Σ)h.
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Proof. We obviously have VI(f) ⊆ V (f) = {P ∈ Spec(R) | T ⊆ P}. Since f is a regular
element of R, by Corollary B.4.14, it cannot be contained in one of the minimal prime
ideals of R. In particular, the Krull dimension of R/fR is zero. Since noetherian rings
of Krull dimension zero have finite spectrum, see [Sta18, Tag 00KJ], V (f) and a fortiori
VI(f) is finite. Let VI(f) = {P1, . . . , Pr}.

Let B be a finite ideal generating set of I and set W = Spank(B). Then B 6⊆ IPi since
any ideal generating set does not share a common zero relative to I, see Lemma 6.2.17.
Set Hi = W ∩ IPi. Now if Hi = W , then B ⊆ W ⊆ IPi which is a contradiction to what
we have said above. Moreover, since IPi are ideals of R, the Hi are indeed k-subvector
spaces ofW . Note that by definition, H1∪ . . .∪Hr is the set of elements ofW that share a
common zero with f relative to I. By Lemma 6.2.17, for any s ∈W the pair f, s generates
I if and only if the elements in f and s do not share a common zero relative to I. By the
above, this is equivalent to s /∈ H1 ∪ . . . ∪ Hr. Analogously, for every f1, . . . , fh ∈ W , f
together with f1, . . . , fh generate I if and only if (f1, . . . , fh) /∈ Hh

1 ∪ . . . ∪Hh
r .

Let f1, . . . , fh ∈W be Σ-randomly chosen. Then, by Lemma 6.2.19, we have

Prob((f1, . . . , fh) ∈ Hh
1 ∪ . . . ∪Hh

r ≤ r/(#Σ)h

and thus equivalently

Prob((f1, . . . , fh) 6∈ Hh
1 ∪ . . . ∪Hh

r ≥ 1− r/(#Σ)h.

This yields Prob(fR+
∑h

i=1 fiR = I) ≥ 1− r/(#Σ)h as asserted.

Lemma 6.2.21. Let R be a noetherian k-algebra of Krull dimension one. Let f ∈ R be
regular. Then #V (f) ≤ dimk R/fR.

Proof. By Corollary B.4.14, f is not contained in any of the minimal prime ideals of R
and thus R/fR has Krull dimension zero. Therefore V (f) is finite, see [Sta18, Tag 00KJ].
Let V (f) = {P1, . . . , Pr} and set Q =

⋂r
i=1 Pi. Then f ∈ Q and thus R/fR → R/Q is a

surjection and therefore dimk R/fR ≥ dimk R/Q. Since all elements of V (f) are maximal,
they are pairwise coprime and thus the Chinese Remainder Theorem provides

R/Q ∼=
r∏
i=1

R/Pi

and since we have an injection k ↪→ R/Pi this already provides r ≤ dimk R/Q and hence
the assertion follows.

Corollary 6.2.22. Let the situation be as in Proposition 6.2.20. Then

Prob(fR+
∑h

i=1
fiR = I) ≥ 1− dimk R/fR

(#Σ)h .

Moreover, for every η such that 0 < η < 1 we set

h =
⌈

log(dimk R/fR)− log(η)
log(#Σ)

⌉
.

Then Prob(fR+
∑h

i=1 fiR = I) ≥ 1− η.

Proof. The first assertion follows directly from Proposition 6.2.20, together with Lemma 6.2.21.
Due to the first assertion, proving the second assertion reduces to prove

1− dimk R/fR

(#Σ)h ≥ 1− η (2:1)
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for the asserted choice of h. Obviously, Eq. (2:1) is equivalent to

η ≥ dimk R/fR

(#Σ)h .

Rearranging provides (#Σ)h ≥ (dimk R/fR)/η and then taking the logarithm for fixed
base shows that Eq. (2:1) is equivalent to

h · log(#Σ) ≥ log(dimk R/fR)− log(η)

which finally provides the second assertion as well.

Corollary 6.2.23. Let the situation be as in Proposition 6.2.20. We consider the following
three cases:

(i) Let Σ = {0, 1}. Choosing h = dlog2(dimk(R/fR)) + re many Σ-random linear com-
binations f1, . . . , fh of elements in W provides an ideal generating set f, f1, . . . , fh
of I with probability ≥ 1− 2−r.

(ii) Assume that k = Fq is finite. Let Σ = k. Choosing h =
⌈
logq(dimk(R/fR)) + r

⌉
many Σ-random linear combinations f1, . . . , fh of elements in W provides an ideal
generating set f, f1, . . . , fh of I with probability ≥ 1− q−r.

(iii) Assume that k is infinite and provides the functionality of giving out samples of
elements of prescribed cardinality.
Then choosing Σ ⊆ k such that log2(#Σ) ≥ log2(dimk R/fR) + r provides that f, f1
is an ideal generating set of I with probability ≥ 1− 2−r.

Proof. Using Corollary 6.2.22 with Σ = {0, 1} and η = 2−r we obtain (i) and using
Corollary 6.2.22 with Σ = k and η = 2−r we obtain (ii). To prove (iii), note that by
assumption, we can choose Σ ⊆ k such that log2(#Σ) ≥ log2(dimk R/fR) + r is always
possible and thus the assertion follows from Corollary 6.2.22 with η = 2−r.

Now we formulate an algorithm that computes, given a basis matrix T of an invertible
ideal I and a finite subset Σ of the ground field k, a set of random elements in the k-vector
space spanned by the columns of T .

Algorithm 12 Randomised attempt to compute an ideal generating set
Input T ∈ k[x]n×n; h number of elements to produce; Σ finite subset of k

Output β1, . . . , βh ∈ k[x]n with degree bounded by deg(T ) which are Σ-randomly
chosen k-linear combinations of the columns of T

1: procedure TryIGS(T, h,Σ)
2: for j = 1, . . . , n do
3: for i = 1, . . . , h do
4: λi,j ← Random(Σ)
5: βj ← (λ1,j , . . . , λn,j)
6: return Tβ1, . . . , Tβh

Lemma 6.2.24. The algorithm TryIGS, see Algorithm 12, is correct. Moreover, if d is
an upper bound of deg(T ) and #Σ ∈ O∼(1), then TryIGS requires at most O∼(n2dh)
operations in k.
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Proof. The correctness is obvious. Since #Σ ∈ O∼(1), by Lemma A.1.2 (ix), Random
requires at most O∼(1) operations in k. Hence running through the nested loops requires
at most O∼(nh) operations in k. Since βi ∈ kn, any of the multiplications Tβi requires at
most O(n2d) operations in k and thus all of them require at most O(n2dh) operations in
k.

We use TryIGS, see Algorithm 12, to provide a randomised algorithm that tries to provide
an ideal generating set for a given R0-ideal. Using the insights of Corollary 6.2.23, we
call TryIGS while prescribing a sufficiently large number of generators such that the
probability of successfully finding an ideal generating set is adequate for our purposes.
The algorithm will either return a correct result or return that it failed.

Note that we assume for the moment that we have an algorithm PrincBasMat at
hand that is able to compute the principal basis matrix Tf of a principal ideal fR0 and that
requires at most O∼(nωcX) operations in k. We will justify this assumption in Section 6.3,
see Remark 6.3.39. We will cite the respective statement of Section 6.3 in the proof of the
correctness of Algorithm 13.

Algorithm 13 Providing an ideal generating set
Precomputed Ω fixed basis of R0; Ωm

i fixed basis of R+
0

Input TI ∈ k[x]n×n basis matrix of ideal I; Tf standard basis matrix of
the first regular generator; r, t ∈ Z≥1 probability parameters; Σ finite
subset of k; c Boolean whether TI , Tf are basis matrices with respect
to Ωm

i (c = true) or with respect to Ω (c = false)
Output Boolean ’igs’ that informs whether the algorithm was successful and

either 0 if igs equals false or [(β1, . . . , βh), (Tβ1 , . . . , Tβh)] if igs equals
true; here βi ∈ k[x]n and Tβi ∈ k[x]n×n is the basis matrix of βiR0

1: procedure ProvideIGS(TI , Tf , r, t,Σ, c)
2: dI ← DegOfIdeal(TI , c)
3: if dI = 0 then || I = R0

4: return true, [(1, 0, . . . , 0)T , (En)]
5: df ← DegOfIdeal(Tf , c)
6: h← d(log2(df ) + r)/ log2(#Σ)e
7: igs ← false
8: `← 0
9: while igs = false and ` < t do

10: β1, . . . , βh ← TryIGS(TI , h,Σ)
11: for i = 1, . . . , h do
12: Tβi ← PrincBasMat(βi, c)
13: igs ← TestIGS(TI , Tf , Tβ1 , . . . , Tβh)
14: `← `+ 1
15: if igs = true then
16: return igs, [(β1, . . . , βh), (Tβ1 , . . . , Tβh)]
17: return igs, 0

Lemma 6.2.25. The algorithm ProvideIGS, see Algorithm 13, is correct if f is regular.
Moreover, if d is an upper bound for the degree of the input matrices, cX ∈ O(d) and r, t ∈
O∼(1), then ProvideIGS requires at most O∼(nωd) operations in k and returns vectors
and matrices whose degrees are bounded by d respectively d + 2cX . The probability that
ProvideIGS returns an ideal generating set is lower bounded by 1− 2−rt. In particular,
with r = log2(n) the above probability becomes lower bounded by 1− n−t.
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Proof. Let us prove the correctness of ProvideIGS first. Assume that f ∈ R0 is a regular
element. If deg detTI = 0, then degk I = 0 = degk R0 and thus I ⊆ R0 together with
Lemma 6.2.3 provides I = R0. The correctness of the algorithms TryIGS, PrincBasMat
and TestIGS, see Lemmas 6.2.4 and 6.2.24 and Theorems 6.3.32 and 6.3.38, provide that
each iteration of the while loop comes up with a possible ideal generating set f, β1, . . . , βh
of I and the Boolean igs storing whether it does indeed generate I. This already provides
the correctness of ProvideIGS.

Let us now prove the asserted running time complexity. By assumption, d is an upper
bound for the degrees of the input matrices and hence, by Lemma 6.1.8, the computation
of dI and df require at most O∼(nωd) operations in k. By assumption, r ∈ O∼(1) and
thus, by construction, we have h ∈ O∼(1) as well. Let us examine the running time of
each while loop iteration. Since deg(Ti) ≤ d and h ∈ O∼(1), Lemma 6.2.24 provides
that TryIGS requires at most O∼(nωd) operations in k and that it returns coefficient
vectors with degree bounded by d again. Therefore, Theorems 6.3.32 and 6.3.38 tell us
that the computation of Tβi requires at most O∼(nωd) operations in k. Since all of the
input matrices of TestIGS are degree upper bounded by d, Lemma 6.2.4 tells us that
TestIGS requires at most O∼(nωd) operations in k. The above shows that each iteration
of the while loop requires at most O∼(nωd) operations in k and since we have at most
t ∈ O∼(1) many iterations, the while loop overall requires O∼(nωd) operations in k. This
proves the asserted running time of ProvideIGS.

Next we prove the assertion concerning the degrees of the output vectors and matri-
ces. By assumption, d is an upper bound of the input matrices and thus, by how TryIGS
constructs the proposed ideal generating elements, we see that deg(βi) ≤ d as well. There-
fore, by Theorems 6.3.32 and 6.3.38, we see that the output of PrincBasMat indeed has
degree bounded by d+ 2cX .

We consider the assertion regarding the probability of ProvideIGS successfully re-
turning an ideal generating set. First of all, by assumption, deg(Tf ) ≤ d. Thus

dimk R0/fR0 = degk fR0 = deg(det(Tf )) ≤ nd

and hence logq(dimk R0/fR0), log2(dimk R0/fR0) ∈ O(lognd) ⊆ O∼(1). Thus, by r ∈
O∼(1), we have h ∈ O∼(1). By Corollary 6.2.23 (i), we know that

Prob
(
fR0 +

h∑
i=1

βiR0 = I

)
≥ 1− 2−r

for every one of the at most t loop iterations. Hence the probability that TryIGS does not
return an ideal generating set in any of the loop iterations (and thus that ProvideIGS will
not be successful) is upper bounded by 2−rt providing the second last assertion. Moreover,
let r = log2(n) ∈ O∼(1). Then 2−rt = 2−t log2(n) = (2log2(n))−t = n−t provides the last
assertion.

Remark 6.2.26. Note that according to Corollary 6.2.23, we could also always use Σ =
{0, 1} and then set h = dlog2(df ) + re to obtain the respective algorithm with the same
probability of success. Moreover, in the respective cases, Corollary 6.2.23 (ii) and (iii)
provide the respective lower bounds for the probability of success if we alter h accordingly.

4

6.3 Computation of Basis Matrices of Principal Ideals

This section is dedicated to finding a way of computing the basis matrix Tf of the standard
basis fω1, . . . , fωn of the principal ideal fR0 for some f ∈ KX(X)×. By definition, we
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therefore need to compute the products fωi for all ωi ∈ Ω while f and ωi are given by
coefficient vectors. Doing so naively would end up using n3 many polynomial products
which would exceed our running time goal of O(nωd) where d denotes the degree of the
matrices respectively polynomials we are dealing with. The basic idea to circumvent this
is to compute the respective products in an algebraic structure that is better suited for
multiplication. We are going to represent the elements in question as polynomials in
two indeterminates x and y where x generates k[x] as a k-algebra and y is a primitive
element of KX(X) over k(x). To be more precise, we want to find a plane affine curve
given by S = k[x, y] with y ∈ R0 such that the corresponding index ν of the extension
S ⊆ R0 satisfies Sν = (R0)ν . Then any element h ∈ k[x] which is coprime to ν will satisfy
R0/hR0 ∼= S/hS and thus we can use fast polynomial multiplication in two indeterminates
with bounded degree in y (bounded by n) and bounded degree in x (given by the degree
of h) to carry out the necessary multiplications steps. We will see that the degree of h
depends on the choice of y. To be exact, the degree of h will depend on the degree of
the trace of y and thus it is mandatory to find such y whose trace has sufficiently small
degree.

Depending on which approach we use, the component independent or the component
dependent case, we assume f to be given by either the coefficient vector φΩ(f) with respect
to Ω or by the coefficient vector φΩmi (f) with respect to Ωm

i . We will start with the
component independent case which completely forgets about X possibly being reducible.
After we have shown how this works, we can use the obtained insights and the main idea
mentioned above for the irreducible components of X simultaneously and work out the
component dependent case.

At this point we want to emphasise why we indeed need two distinct approaches
depending on whether we have to deal with the component independent or the component
dependent case. Generally, to reduce both scenarios to only one algorithm, we need to be
able to change efficiently between the representations of vectors φΩ(f) and φΩmi (f) as well
as respective basis matrices. The precomputed matrix TΩ, see Lemma 4.6.2, such that
Ω = Ωm

i · TΩ and the principal basis matrix fΩ = Ω · Tf together provide

φΩmi (f) = TΩ · φΩ(f) and fΩ = Ωm
i · TΩ · Tf .

That is, by multiplication with the matrix TΩ of degree 2cX , see Lemma 4.6.2, we can
change from the component independent to the component dependent case. But to change
from the component dependent to the component independent case we need to multiply
with T−1

Ω = det(TΩ)−1 · adj(TΩ) where adj(TΩ) may have degree ncX . This implies that,
in general, only one direction of change is efficient enough for our considerations and
hence it does not suffice to come up with one algorithm in one of the cases, use it for the
computations and then reinterpret the results by changing to the desired representation.

6.3.1 Existence of Primitive Element

In this section we prove that there is a primitive element y ∈ R0 of KX(X) over k(x) with
deg φΩ(y) ≤ logq(n) if k = Fq and deg φΩ(y) ≤ 1 otherwise.

Let X be reduced cover of P1
k. We will accomplish this by using the isomorphism

Frac(R0) ∼=
⊕m

i=1 Frac(Ri,0), see Proposition B.2.2, and by proving that there are primitive
elements yi of the function field extensions Frac(Ri,0) over k(x) of small degree using the
constructive proof of the theorem of the primitive element. After that we prove that
suitably altering the yi suffices that the corresponding element in Frac(R0) is actually a
primitive element of Frac(R0) over k(x).

We will use the following statement iteratively to construct the needed primitive el-
ements yi ∈ Ri,0 such that Frac(Ri,0) = Ri,0[yi] with deg φΩi(yi) ≤ 2 logq(ni) whenever
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k = Fq is a finite field.

Proposition 6.3.1 (Theorem of the primitive element). Let A be an integral domain with
field of fractions K. Let B be a finite A-algebra with A ⊆ B which is an integral domain.
Let a, b ∈ B be such that a is separable over K. By fa, fb ∈ K[t] we denote the minimal
polynomials of a respectively b over K. Let a = a1, . . . , ar denote the zeroes of fa and
b = b1, . . . , bs those of fb in a splitting field C of fafb. We set

E(y) = {aiy + bj | 2 ≤ i ≤ deg(fa), 1 ≤ j ≤ deg(fb)} .

Then every y ∈ K with c = ay+ b /∈ E(y) satisfies K[a, b] = K[c]. In particular, there are
at most (r − 1)s elements y in K such that c = ay + b is no primitive element of K[a, b]
over K.

Proof. By assumption, fa is separable and thus a, a2, . . . , ar are all distinct. Moreover, by
definition of E(y), for every c = ay + b /∈ E(y) we have ∀ i, j : c− aiy 6= bj . In particular,
for such c we have

∀ i = 2, . . . , r : fb(c− aiy) 6= 0. (3:2)

Set h to be the greatest common divisor of fa and fb(c − yt) in K[c][t]. Obviously, a is
both a zero of fa and of fb(c−yt) since fb(c−ay) = fb(ay+b−ay) = fb(b) = 0. Therefore,
t− a divides h in C[t] and no higher power of t− a does divide h since fa is separable. In
C[t], fa splits into the linear factors t− ai and thus h is a product of these linear factors.
If t − ai divides h, then it must divide fb(c − yt) and thus fb(c − aiy) = 0 in C[t] which
is not possible due to Eq. (3:2). Hence t − a is the only possible factor of h and thus we
deduce h = t − a. By definition of h, we have h ∈ K[c][t] and thus a ∈ K[c] which then
provides b = c− ay ∈ K[c] as well. Hence K[a, b] ⊆ K[c]. The other direction is obvious:
Since y ∈ K, we have c = ay + b ∈ K[a, b] and thus K[c] ⊆ K[a, b].

The particular part follows easily: Every y ∈ K with c = ay + b ∈ E(y) satisfies
y = (b− bj)(a− ai)−1 for some i = 2, . . . , r and j = 1, . . . , s. Therefore, there are at most
(r − 1)s many such elements in K that do not provide c that is a primitive element.

Now we can use Proposition 6.3.1 to provide primitive elements for the function fields of
the irreducible components of X with bounded degree.

Lemma 6.3.2. Let F = k(x)[a1, . . . , a`] be a field that is a finite and separable k(x)-
algebra of dimension n over k(x). Then there are polynomials λ2, . . . , λ` ∈ k[x] with

deg λj ≤
{

2 logq(n), k = Fq
1, k infinite

such that for all i = 1, . . . , ` the element yi := a1 + λ2a2 + . . .+ λiai satisfies

k(x)[a1, . . . , ai] = k(x)[yi].

In particular, there is y =
∑`

i=1 λiai ∈ k[x][a1, . . . , a`] with F = k(x)[y] such that deg λi ≤
2 logq(n) if k = Fq is finite and deg λi ≤ 1 otherwise.

Proof. We prove the assertion by induction on the number ` of generators of F over k(x).
The case ` = 1 already provides a primitive element y = a1 as asserted. Now assume that
the statement is true for `−1 ≥ 1. That is, there are polynomials λ2, . . . , λ`−1 ∈ k[x] with

∀ i = 2, . . . , `− 1 : deg λi ≤
{

2 logq(n), k = Fq
1, k infinite
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such that yi := a1 +λ2a2 + . . .+λiai ∈ k(x)[a1, . . . , ai] satisfies k(x)[a1, . . . , ai] = k(x)[yi].
By definition, we have F = k(x)[y`−1, a`]. Let fy`−1 , fa` ∈ k(x)[t] denote the mini-

mal polynomials of y`−1 respectively a` over k(x). Since both K[y`−1] and K[a`] are K-
subvector spaces of F , we have d := deg fy`−1 , e := deg fa` ≤ n. Let y`−1 = y`−1,1, . . . , y`−1,d
respectively a` = a`,1, . . . , a`,e denote the respective zeros of fy`−1 and fa` in a splitting
field of fy`−1fa` . By Proposition 6.3.1, we know that every λ ∈ k[x] with

λ 6=
a`,j − a`

y`−1 − y`−1,i
∀ i = 2, . . . , d, j = 1, . . . , e

satisfies F = k(x)[y`−1, a`] = k(x)[y`−1 +λa`]. Therefore, the number of possible elements
in k[x] that we wish to avoid is at most (d − 1)e ≤ (n − 1)n ≤ n2. Hence if k is infinite,
then there is an infinite number of polynomials of degree one. Hence in this case there is
λ ∈ k[x] of degree one such that

y` := y`−1 + λa` = a1 + λ2a2 + . . .+ λ`−1a`−1 + λ`a`

is a primitive element of F over k(x) as asserted. For the rest of the proof we assume
k = Fq to be a finite field with q elements. We examine what a degree bound b ∈ N is
such that the cardinality of the set Pb(k) of all polynomials over k of degree b exceeds
n2 ≥ (d − 1)e. Since k is a finite field with q elements, for every of the b (non-leading)
coefficients in k of an arbitrary polynomial of degree b there are q possibilities in k and for
the leading coefficient there are exactly q − 1. Therefore, we obtain #Pb(k) = qb(q − 1).
This implies that

#Pb(k) = qb(q − 1) > n2

is satisfied if b + logq(q − 1) > 2 logq(n). Since logq(q − 1) ≥ logq(1) = 0, b > 2 logq(n)
is a sufficient degree bound. Therefore, there is a polynomial λ` ∈ k[x] of degree at most
2 logq(n) such that y` := y`−1 + λ`a` satisfies k(x)[a1, . . . , a`] = k(x)[y`−1, a`] = k(x)[y`].
The induction hypothesis already provides the asserted properties of yi and λi for i =
1, . . . , `− 1 and thus y` provides the assertion.

Using Lemma 6.3.2 for each Frac(Ri,0) over k(x) we obtain the following corollary.

Corollary 6.3.3. For i = 1, . . . ,m there are primitive elements yi ∈ Ri,0 such that
Frac(Ri,0) = k(x)[yi] and degΩi φ(yi) ≤ logq(ni) if k = Fq and degΩi φ(yi) ≤ 1 otherwise.

Next we alter the existing primitive elements y1, . . . , ym such that the corresponding el-
ement y in Ri,0 is a primitive element of Frac(Ri,0). The following statement gives a
sufficient criterion for whether this is the case only depending on the minimal polynomials
fi ∈ k(x)[t] of yi.

Lemma 6.3.4. For i = 1, . . . ,m let fi ∈ k(x)[t] be the minimal polynomial of αi, the
primitive element of Frac(Ri,0)/k(x). If for all i 6= j we have gcd(fi, fj) = 1, then the
corresponding element y of (y1, . . . , ym) is a primitive element of Frac(R0)/k(x).

Proof. Set F := Frac(R0), Fi := Frac(Ri,0) and K := k(x). The element y ∈ F is a
primitive element of F over K if and only if for every a ∈ F there is a polynomial f ∈ K[t]
such that a = f(y). Therefore, it is enough to show that there are polynomials gi ∈ K[t],
i = 1, . . . ,m, such that gi(y) gets sent to (0, . . . , 0, 1, 0, . . . , 0) where 1 is at the i-th place.
Because in this case the element y · gi(y) gets sent to the tuple (0, . . . , 0, yi, 0, . . . , 0) which
generates Fi over K and thus t · gi ∈ K[t] yields the desired polynomial.

By assumption, there are ai,j ∈ K such that

1 = ai,jfi + aj,ifj (3:3)
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For each i ∈ {1, . . . ,m} define hi =
∏
j 6=i aj,ifj ∈ K[t]. Then by equation (3:3), we

have hi =
∏
j 6=i(1 − ai,jfi). By definition, we have hi(yk) = δi,k where δi,k denotes the

Kronecker-Delta.
Let ρ denote the K-isomorphism F →

⊕m
i=1 Fi and let ρi denote the composition of ρ

followed by the projection onto the i-th component. Then by definition of ρ and since it
is a K-algebra homomorphism, we have

ρ(f(y)) = (f(ρ1(y)), . . . , f(ρm(y))) = (f(y1), . . . , f(ym)) (3:4)

for every f ∈ K[t]. In particular,

ρ(hi(y)) = (hi(y1)︸ ︷︷ ︸
=0

, . . . , hi(yi−1)︸ ︷︷ ︸
=0

, hi(yi)︸ ︷︷ ︸
=1

, hi(yi+1)︸ ︷︷ ︸
=0

, . . . , hi(ym)︸ ︷︷ ︸
=0

)

= (0, . . . , 0, 1, 0, . . . , 0)

and thus the assertion follows.

By Lemma 6.3.4, we need to alter given y1, . . . , ym such that their respective minimal
polynomials are coprime over k[x][t].

Lemma 6.3.5. Let F/K be a finite field extension with F = K[y]. Let f ∈ K[t] denote
the minimal polynomial of y over K. Let c ∈ K, then y + c has minimal polynomial
f(t− c). Obviously, y + c is still a primitive element of F over K.

Proof. The ring homomorphism K[t] → K[t], g 7→ g(t − c) is an isomorphism and hence
f ∈ K[t] is irreducible if and only if f(t − c) is irreducible. Hence f(t − c) is irreducible.
That f(t− c)(y + c) = f(y) = 0 is obvious and thus the assertion follows.

Remark 6.3.6. Let f ∈ K[t] be arbitrary with f =
∑d

i=0 ait
i. For every c ∈ K we have

f(t+ c) =
∑d

k=0 t
k(
∑d−k

l=0
(
l+k
k

)
clal+k). In particular, the coefficient of t0 in f(t+ c) equals∑d

l=0 c
lal. 4

For two irreducible polynomials in k(x)[t] to be not equal it is enough that their respective
coefficient of t0 (which is non-zero since they are both irreducible) do not coincide. Hence
for given f ∈ k(x)[t] we face the task to choose c ∈ k(x) such that

∑d
l=0 c

lal 6= b for
given b ∈ k(x). At this point it is easy to see that if k is infinite, then there is an infinite
number of polynomials over k of degree one. Therefore, we can alter the primitive elements
y1, . . . , ym successively by suitable polynomials ci ∈ k[x] of degree one such that at the end
the resulting minimal polynomials f1, . . . , fm are pairwise coprime. Only if the ground
field k is finite, we need to give an argument that finding ci ∈ k[x] is still possible while
keeping their respective degrees reasonably small.

Lemma 6.3.7. Let K be a field. Let f ∈ K[t] be non-zero and irreducible polynomial of
degree d. For given b ∈ K there are at most d + 1 possible distinct elements c in K such
that f(t+ c) has constant coefficient b.

Proof. For every c the constant coefficient of f(t + c) is equal to f(0 + c) = f(c). If for
d + 1 distinct choices of c ∈ K this equals the same b ∈ K, then f − b has d + 1 zeros
in K. Since f is of degree d, this implies f = b ∈ K which is a contradiction to f being
irreducible.

Lemma 6.3.8. Let K = k(x) for some finite field k with q elements. Let f1, . . . , fi ∈ K[t]
be monic and irreducible polynomials and let f ∈ K[t] of degree d = deg(f) be equal to one
of the fj. Then there is c ∈ k[x] of degree bounded by dlogq(d+ 1 + i)e such that f(t+ c)
is not equal to any of the f1, . . . , fi.
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Proof. We will use Lemma 6.3.7 to alter f by a suitable c1 of small degree. Without
loss of generality we assume that f = f1. There are qs many polynomials over k having
degree bounded by s. Therefore, there are d+ 1 distinct polynomials over k having degree
bounded by dlogq(d + 1)e. Hence by Lemma 6.3.7, there is c1 ∈ k[x] of degree bounded
by dlogq(d+ 1)e such that f(t+ c1) has constant coefficient which is distinct to that of f1
and hence f(t+ c1) 6= f1. Now if f(t+ c1) does not equal any of the remaining f2, . . . , fi,
then we are done. Otherwise, assume without loss of generality that f(t + c1) = f2. We
can use the same argument as above to find c2 ∈ k[x] with f(t + c1 + c2) 6= f2. But we
need to satisfy that f(t + c1 + c2) 6= f1 as well which is the case if and only if c2 = −c1.
This additional condition prohibits at most one of the possible candidates for c2 under
those of degree bounded by dlogq(d + 1)e. Therefore, we are able to find c2 such that
deg(c2) ≤ dlogq(d + 2)e. Proceeding in the same manner, in step j we need to ensure
that cj satisfies cj 6= −

∑j−1
l=r cl for all r = 1, . . . , j − 1. This provides that f(t+

∑j
l=1 cl)

does not equal any of the f(t +
∑h

l=1 cl) for h = 1, . . . , j − 1. Thus in step j there are j
polynomials that we need to avoid choosing cj . Therefore, we are able to find cj ∈ k[x]
with deg(cj) ≤ dlogq(d+1+ j)e such that f(t+

∑j
l=1 cl) 6= fh for all h = 1, . . . , j−1. This

finally yields that for c =
∑i

l=1 cl we have that f(t+c) does not equal any of the f1, . . . , fi
and that deg(cj) ≤ dlogq(d + 1 + j)e. Whence deg(c) ≤ maxil=1{dlogq(d + 1 + l)e} =
dlogq(d+ 1 + i)e.

Corollary 6.3.9. Let X be a reduced cover of P1
k. Then for all i = 1, . . . ,m there is a

primitive element yi ∈ Ri,0 of Frac(Ri,0) over k(x) with deg φΩi(yi) ≤ 3 logq(n) such that
the corresponding element y = (y1, . . . , ym) ∈ Frac(R0) is a primitive element of Frac(R0)
over k(x).

Proof. By Corollary 6.3.3, there are primitive elements y1, . . . , ym with deg φΩi(yi) bounded
by logq(ni). Let f1, . . . , fm ∈ k(x)[t] denote the corresponding minimal polynomials. By
Lemma 6.3.8, there is c2 ∈ k[x] with deg(c2) ≤ dlogq(n2 + 2)e such that f2(t + c2) 6= f1.
Using Lemma 6.3.8 successively, we see that for all i = 2, . . . ,m there are ci ∈ k[x] with
deg(ci) ≤ dlogq(ni + i)e such that fi(t + ci) 6= fj(t + cj) for all j = 1, . . . , i − 1. This
correponds to a change of the i-th primitive element by −ci ∈ k[x] and thus

deg φΩi(yi − ci) ≤ deg φΩi(yi) + deg(ci) ≤ logq(ni) + logq(ni + i) ≤ 3 logq(n)

which provides the assertion.

Lemma 6.3.10. There is a primitive element y of Frac(R0) over k(x) such that y ∈ R0
and deg φΩ(y) ≤ 2ncX + 3 logq(n).

Proof. By Corollary 6.3.9, there is a primitive element y ∈ Frac(R0) of Frac(R0) over
k(x) such that its restrictions yi ∈ R0 satisfy deg φΩi(yi) ≤ 3 logq(n). Obviously, y is
not necessarily an element of R0 just because its restrictions yi lie in Ri,0 and in general
we have y = zf−1 where z ∈ R0 and f ∈ k[x] (since Frac(R0) = R0 ⊗k[x] k(x)). The
transformation matrix TΩ ∈ k[x]n×n satisfies φΩmi (f) = TΩ · φΩ(f) for every f ∈ Frac(R0)
and deg TΩ ≤ 2cX , see Lemma 4.6.2. Therefore,

φΩ(y) = T−1
Ω · φΩmi (y) = det(TΩ)−1 · adj(TΩ) · φΩmi (y)

and since adj(TΩ) as well as φΩmi (y) are defined over k[x], the denominators of the entries
of φΩ(y) have at most degree deg det(TΩ) ≤ 2ncX . Therefore, multiplying y with a
polynomial in k[x] of degree at most 2ncX yields an element z of R0 which is still a
primitive element of Frac(R0). By the above, we see that deg φΩ(z) ≤ 2ncX+deg φΩmi (y) ≤
2ncX + 3 logq(n).
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6.3.2 Reducing Polynomial

In this section we provide the existence of the polynomial h ∈ k[x] being coprime to
the index of S in R0 as already mentioned in the above introduction. If not mentioned
otherwise, we assume that X is a reduced cover of P1

k.

Notation 6.3.11. In this section we will use the short notation degΩ(f) = deg φΩ(f) for
all f ∈ KX(X). 4

Definition 6.3.12. Let y ∈ R0 be a primitive element as in Lemma 6.3.10. For the
following considerations let S denote the ring k[x, y]. By construction, we have S ⊆ R0.
The k[x]-module S has basis 1, y, . . . , yn−1 and there is a basis transformation matrix
T ∈ k[x]n×n with (1, y, . . . , yn−1) = (ω1, . . . , ωn)T . Let us denote ν = det(T ) ∈ k[x] and
call it the index of S in R0. 4

We will need the following two properties of the index.

Proposition 6.3.13. The index ν satisfies the equation ν2disc(R0)k[x] = disc(S)k[x] and,
regarding S and R0 only as k[x]-modules, ν provides νR0 ⊆ S.

Proof. Let β1, . . . , βn denote a k[x]-basis of R0 and γ1, . . . , γn a k[x]-basis of S. The first
assertion follows from the definition of the discriminant and observing that (Tr(γiγj)ij)
= T t (Tr(βiβj)ij)T .1 For the second we need to consider the Smith-Normal-Form TS =
AT B with diagonal entries λ1, . . . , λn ∈ k[x] and A, B ∈ GL(n, k[x]). By definition of T ,
we have (γi)i = (βi)iA−1AT which we multiply with B from the right to obtain (γi)iB =
(βi)iA−1AT B = (βi)iA−1 TS . Now if we denote the new bases as (γ′i)i = (γi)iB and
(β′i)i = (βi)iA−1, then we have (γ′i)i = (β′i)i diag(λ1, . . . , λn), that is γ′i = β′i λi. Finally,
with ν = det(T ) = µ · det(TS) = µ ·

∏n
i=1 λi where µ ∈ k× we obtain ν

∑n
i=1 β

′
i k[x] ⊆∑n

i=1 γ
′
i k[x] which provides the assertion.

We will now show the existence of some h ∈ k[x] with sufficiently small degree and which
is coprime to the index ν. Note that if char(k) = 0, then we can always take a linear
polynomial h ∈ k[x] which is not a divisor of ν.
Remark 6.3.14. Let f ∈ Fq[x], f 6= 0 be arbitrary. A simple counting argument shows that
there exist a polynomial h ∈ Fq[x] with deg(h) ∈ logq deg(f) such that gcd(h, f) = 1. 4
Following Remark 6.3.14, to show the existence of h ∈ k[x] with deg(h) ∈ O(d) for some
d and coprime to ν, we need to show the appropriate bound of deg(ν).
Remark 6.3.15. From Proposition 6.3.13 we deduce deg(ν) ≤ deg(disc(S)). By definition,
the latter is given by disc(S) = disc(1, y, . . . , yn−1) and the latter is, by definition,

det(TrFrac(R0)/k(x)
(
yi+j

)
i,j

)

and thus
deg(ν) ≤ n · max

0≤i≤2n−2
{deg(TrFrac(R0)/k(x)(yi))} 4

Lemma 6.3.16. The index ν satisfies

deg(ν) ≤
{

4n3cX + 6n2 logq(n), k = Fq
n2 · (4cX + 2), k infinite.

Proof. By Proposition 4.6.13 (ii), we know that the degree of TrFrac(R0)/k(x)(y2n−2) is
bounded by

deg(TrFrac(R0)/k(x)(y2n−2)) ≤ deg φΩ(y2n−2) + 2cX .
1Here T t denotes the transpose of the matrix T .
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By Lemma 4.3.32 and Corollary 4.3.31 (iii), we have

deg φΩ(y2n−2) ≤ deg∗(y2n−2) ≤ (2n− 2) · deg∗(y) ≤ (2n− 2) · (degΩ(y)− |X|n)

and thus, by Corollary 4.5.2, we finally obtain

deg φΩ(y2n−2) ≤ (2n− 2) · (degΩ(y) + 2cX).

Since y is a primitive element of Frac(R0)/k(x) as in Lemma 6.3.10, we have degΩ(y) ≤
2ncX + 3 logq(n) if k = Fq is finite and degΩ(y) ≤ 1 if k is infinite. Combining all the
above we obtain

deg(TrFrac(R0)/k(x)(y2n−2)) ≤
{

(2n− 2) · (2ncX + 3 logq(n) + 2cX) + 2cX , k = Fq
(2n− 2) · (1 + 2cX) + 2cX , k infinite

≤

{
4n2cX + 6n logq(n), k = Fq
n · (4cX + 2), k infinite.

Then Remark 6.3.15 provides the assertion.

Corollary 6.3.17. There exists h ∈ k[x] coprime to ν with

deg(h) ∈
{
O(logq(n) + logq(cX)), k = Fq
O(1), k infinite.

Proof. If k is infinite, then there is an infinite number of polynomials in k[x] of degree
one which are coprime to h and we may choose one of them. Let k = Fq be finite. By
Lemma 6.3.16, we have deg(ν) ≤ 4n3cX + 6n2 logq(n). Remark 6.3.14 shows that there is
such a polynomial h ∈ k[x] with

deg(h) ∈ O(logq(4n3cX + 6n2 logq(n))) ⊆ O(logq(4n3cX)) = O(logq(n) + logq(cX))

which provides the assertion.

Lemma 6.3.18. Let m ∈ k[x] with mR0 ⊆ S, h ∈ k[x] with gcd(m,h) = 1, then S/hS ∼=
R0/hR0.

Proof. By assumption, there are s, t ∈ k[x] such that ms + th = 1. Consider the homo-
morphism ϕ : S → R0/hR0, a 7→ a+hR0 with kernel kerφ = hR0∩S. Now hS ⊆ hR0∩S
and further let hα ∈ hR0 ∩ S with α ∈ R0, then 1 = ms + th multiplied by α gives
α = mα · s+ hα · t ∈ S and hence kerϕ = hS. Thus S/hS ∼= ϕ(S) and now we are left to
show that ϕ is surjective. For this purpose let a+ hR0 6= 0 in R0/hR0 be arbitrary, then
ms · a = (1− th) · a = a− ath ≡ a mod hR0 and since m · sa ∈ S holds, we are done.

Proposition 6.3.19. There is some h ∈ k[x] with S/hS ∼= R0/hR0 such that

deg(h) ∈
{
O(logq(n) + logq(cX) + logq logq(n)), k = Fq
O(1), k infinite.

Proof. This is a direct consequence of Corollary 6.3.17 and Lemma 6.3.18.

6.3.3 Computation of Principal Basis Matrices

In this section we want to implement our plan and use the primitive element y ∈ R0 of
KX(X) and h ∈ k[x] coprime to the index of k[x, y] in R0 to provide algorithms to compute
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the principal basis matrices Tf for given f ∈ R0. We distinguish between the component
independent and the component dependent case.

6.3.3.1 Component Independent Case

Let X be a reduced cover of P1
k with KX(X) = k(x)[y] as in Lemma 6.3.10. Let h ∈ k[x]

be a polynomial as in Proposition 6.3.19. Let Ω = (ω1, . . . , ωn) denote a reduced basis
of R0. Let us denote the basis transformation matrix from Ω to 1, y, . . . , yn−1 as in
Definition 6.3.12 by T .

Definition 6.3.20. We will abbreviate

R :=
n⊕
i=1

ωi (k[x]/(h)) and Ry :=
n⊕
i=1

yi−1 (k[x]/(h)) . 4

Lemma 6.3.21. The bases of R0 and S as k[x]-modules will also provide k[x]/hk[x]-bases
of the k[x]/hk[x]-modules R0/hR0 and S/hS. In particular, as k[x]/hk[x]-modules we have
R0/hR0 ∼= R and S/hS ∼= Ry.

Proof. By Proposition B.4.8, we have R0/hR0 ∼= R0 ⊗k[x] k[x]/hk[x] as well as S/hS ∼=
S ⊗k[x] k[x]/hk[x]. Now the isomorphisms R0 →

⊕n
i=1 ωik[x] and S →

⊕n
i=1 y

i−1k[x]
provide the asserted k[x]/hk[x]-algebra isomorphisms

R0/hR0 → R, and S/hS → Ry.

Here we used that the direct sum and tensor product of modules behave distributively.

Remark 6.3.22. Recall that the ring extension R0/S comes with an k[x]-algebra monomor-
phism ϕ : S ↪→ R0 represented by the matrix T . In particular, T behaves multiplicative in
the following sense: For given f, g ∈ S, we may on the one hand compute the product fg
using the multiplication table in S (that is using polynomial multiplication in two indeter-
minates and division with remainder). Alternatively, we may compute φΩ(f) and φΩ(g)
using T and the representations φ(yi−1)(f) and φ(yi−1)(g), then use the multiplication ta-
bles of R0 and polynomial multiplication in k[x] to compute φΩ(fg) and then compute
φ(yi−1)(fg) via T−1. We can reverse this scenario for any element in R0 that is also an
element of S. 4
Remark 6.3.23. The isomorphism S/hS → R0/hR0 in Proposition 6.3.19 is induced by the
k[x]-algebra monomorphism ϕ : S ↪→ R0 acting on representatives. Now ϕ was represented
by the matrix T ∈ k[x]n×n with determinant ν coprime to h. Since the bases of S and of
R0 as k[x]-modules also provide bases of S/hS and R0/hR0 as k[x−1]/hk[x−1]-modules,
see Lemma 6.3.21, we see that the matrix T ∈ GL(n, k[x−1]/hk[x−1]) (invertible since
its determinant ν is coprime to h) represents the k[x−1]/hk[x−1]-algebra isomorphism
Φ−1 : Ry → S/hS → R0/hR0 → R. Moreover, as in Remark 6.3.22 the transport with T
is multiplicative as it represents an algebra homomorphism. 4
Remark 6.3.24. In Remark 6.3.23 we may replace h by a suitable power of it to allow
coefficients of intended degree. 4

Lemma 6.3.25. The matrices T, T−1 ∈ GL(n, k[x]/hk[x]) can be represented by the ma-
trices Redh(T ) respectively Redh(s · adj(T )) defined over k[x].

Proof. Of course, the reduced representation of T is simply Redh(T ). The matrix T ∈
GL(n, k[x]/hk[x]) satisfies by Cramer’s rule the identity T−1 = ν−1 · adj(T ). To represent
T with entries that has coefficients in k[x] reduced modulo h, we do so to obtain a rep-
resentation of T as a matrix defined over k[x]: Let 1 = th+ sν be the Bézout identity of
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gcd(h, ν) in k[x]. Then ν = s−1 · (1− th) and thus ν−1 = s · (1− ht)−1 ≡ s mod h. Hence
the reduced representation of T−1 with entries in k[x] is Redh(s · adj(T )).

Definition 6.3.26. We abbreviate T ′h = Redh(T ) and Th = Redh(s adj(T )). 4

Corollary 6.3.27. Assume we have precomputed the Bézout identity 1 = th + sν of h
and ν with deg(t) < deg(ν) and deg(s) < deg(h). Let Φ : R → Ry be the isomorphism
as in Remark 6.3.23. Let β ∈ R be given by φΩ(β) ∈ k[x]n and let α ∈ Ry be given by
φ(yi−1)(α) ∈ k[x]n. Then

(i) φ(yi−1)(Φ(β)) = Th · φΩ(β), and

(ii) φΩ(Φ−1(α)) = T ′h · φ(yi−1)(α).

Here the coefficients of the right hand sides need be regarded as elements in k[x]/hk[x]
again.

Remark 6.3.28. Every element f of R0 with f =
∑n

i=1 λiωi such that deg(λi) < deg(h)
for all i = 1, . . . , n (that is deg(φΩ(f)) < h) can be regarded as an element of R. 4
Remark 6.3.29. By construction, we have y ∈ R0 and since R0 is finite over k[x], it
is a fortiori integral over k[x]. Hence its minimal polynomial f := fy over k(x) is an
element of k[x][t]. Since S ∼= k[x][t]/fk[x], we can view the elements in S as polynomial
representatives in k[x, t] that are reduced modulo f . Altogether we can view the elements
of Ry as such polynomial representatives in k[x, t] that are reduced modulo h and f . 4
By Remarks 6.3.28 and 6.3.29, we may regard elements in R0 with suitable bounded
coefficient degrees as elements in R and can thus transport those using the matrix Th ∈
k[x]n×n, see Remark 6.3.23, to Ry where we can compute the product and then transport
the result back to R using T ′h and reinterpret it as an element of R0.

Proposition 6.3.30. The multiplication of two elements in Ry given by reduced poly-
nomial representatives in (k[x]/(h))[t]/(f) can be carried out using O∼(n · deg(h)) many
operations in k. Here “multiplication” in (k[x]/(h))[t]/(f) includes the needed division
with remainder. We denote the algorithm that computes such a product Multy.

Proof. We regard the elements of Ry as elements in (k[x]/(h)) [t]/(f). Since f has degree n
in t, by Lemma A.2.11, the multiplication can be carried out using O∼(n) many operations
in the coefficient ring k[x]/(h). In the worst case those are multiplication itself which, by
Proposition A.2.3, can be carried out using O(deg h) field operations in k. This completes
the proof.

Now we can describe an algorithm to compute the product of two elements in R0 only
using their coefficients with regards to Ω.

Theorem 6.3.31. The algorithm CompEltProd, see Algorithm 14, is correct and uses
at most O∼(n2 deg(h)) operations in k.

Proof. If f ∈ R0 is only given by its representation (fi +hk[x])i as an element of R0/hR0,
see Remark 6.3.28, but we do know that its coefficients with regards to Ω as an element of
R0 have degree strictly smaller than deg(h), then we may compute the latter by computing
fi = f ′i + rih with deg f ′i < deg(h) to obtain the unique φΩ(f) = (f ′1, . . . , f ′n) ∈ k[x]n.

Since degΩ(f), degΩ(g) < deg(h), we may regard f and g uniquely as elements of R,
see Remark 6.3.28. Moreover, by Corollary 4.3.31 (iii) and Corollary 4.3.24, we know that

degΩ(fg) ≤ deg∗(fg) ≤ deg∗(f) + deg∗(g) ≤ degΩ(f) + degΩ(g) + 2cX
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Algorithm 14 Computing product of elements
Precomputed Reduced basis Ω of R0; y ∈ R0 primitive element of KX(X)/k(x);

h ∈ k[x] coprime to the index ν of k[x, y] in R0; Th and T ′h as in
Definition 6.3.26

Input φΩ(f), φΩ(g) such that deg φΩ(f) + deg φΩ(g) + 2cX ≤ deg(h)
Output φΩ(fg) such that φΩ(fg) ≤ deg(h)

1: procedure CompEltProd(φΩ(f), φΩ(g)))
2: (f1, . . . , fn)← Redh(Th · φΩ(f))
3: (g1, . . . , gn)← Redh(Th · φΩ(g))
4: (e1, . . . , en)←Multy((f1, . . . , fn), (g1, . . . , gn))
5: return Redh(T ′h · e)

which is, by assumption, smaller than deg(h). Hence fg as an element of R has a unique
representation φΩ(fg) with entries of degree smaller than deg(h). Hence, due to what we
have said at the beginning of the proof, if we have a representation of fg as an element of R
given by a representative coefficient vector over k[x], we only need to reduce it entry-wise
modulo h to compute the unique representation φΩ(fg) ∈ k[x]n we are after.

In particular, we may transport f and g to Ry using Th, compute the product there
using polynomial multiplication in two indeterminates with bounded degrees and transport
it back to R using T ′h. This results in a coefficient vector with representative polynomial
entries which we only need to reduce entry-wise modulo h to obtain the desired φΩ(fg).
This proves the correctness of CompEltProd.

The matrix by vector multiplications in step 2 and 3 use n2 operations in k[x], see
Lemma A.2.5. Since all Th and φΩ(f), φΩ(g) have degree smaller than deg(h), by Propo-
sition A.2.3, the computation uses O∼(n2 deg(h)) operations in k and the result also has
degree bounded by 2 deg(h) ∈ O(deg(h)). Thus, by Lemma A.1.2 (iii), the algorithm
Redh uses O∼(n deg(h)) operations in k. By Proposition 6.3.30, the algorithm Multy in
step 4 requires O∼(n deg(h)) operations in k. The degree of the coefficients ei are bounded
by deg(h) and thus, as above, the matrix vector product computation uses O∼(n2 deg(h))
operations in k. Moreover, the result has degree in O(deg(h)) and thus Redh uses again
O∼(n deg(h)) operations in k. Thus the most expensive steps required O∼(n2 deg(h))
many operations in k and thus we can complete the proof.

Now we want to use the fast bivariate polynomial multiplication to write down an algo-
rithm that computes the basis matrix Tf representing the basis fΩ = (fω1, . . . , fωn) with
respect to Ω. If we do it naively, we end up using n3 deg(h) many operations in k which we
would like to avoid. Put it more concretely, we could use algorithm Algorithm 14 for every
one of the products fω1, . . . , fωn. But then we end up calling algorithm Algorithm 14 n
times which yields a cubic complexity in n. We circumvent this issue by transporting all
involved elements into Ry using fast matrix multiplication and then compute the prod-
ucts in Ry instead where one multiplication uses O∼(n deg(h)) operations in k and thus
we can easily afford to do this n times. Note that we formulated Algorithm 15 just for
computing the products fω1, . . . , fωn but it works for all arbitrary products of the form
fα1, . . . , fαn. In this case, we need to compute Th ·Mα where Mα contains the vectors
φΩ(αi) additionally and then use Th ·Mαei instead of Thei at line 3.

Note that by definition, the i-th column of Th equals φ(yi−1)(ωi). If we denote by ei
the i-th standard vector in k[x]n, then we obtain Thei = φ(yi−1)(ωi).

Theorem 6.3.32. The algorithm PrincBasMatCF, see Algorithm 15, is correct. More-
over, if d is an upper bound of deg h, then PrincBasMatCF requires at most O∼(nωd)
operations in k.
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Algorithm 15 Computing basis matrix of principal ideal: component independent case
Precomputed Reduced basis Ω of R0; y ∈ R0 primitive element of KX(X)/k(x);

h ∈ k[x] coprime to the index ν of k[x, y] in R0; Th and T ′h as in
Definition 6.3.26

Input φΩ(f) such that deg φΩ(f) + 2cX ≤ deg(h)
Output Basis matrix Tf representing fω1, . . . , fωn with deg(Tf ) ≤

deg φΩ(f) + 2cX

1: procedure PrincBasMatCF(φΩ(f))
2: f ′ ← Redh(Th · φΩ(f))
3: M ← (Multy(f ′, The1), . . . ,Multy(f ′, Then))
4: return Redh(T ′h ·M)

Proof. In step 1 we compute Φ(f) as a coefficient vector with regards to 1, . . . , yn−1.
In step 2 we compute the products Φ(f)Φ(ω1), . . . ,Φ(f)Φ(ωn) and write the respective
coefficient vectors with regards to 1, . . . , yn−1 column-wise in the matrix M . Hence the
proof of Theorem 6.3.31 shows that T ′h multiplied with column i of M provides φΩ(fωi).
Hence T ′h ·M provides the asserted standard basis matrix of fR0. The statement about the
degree of the output matrix is due to Corollaries 4.3.24, 4.3.31 and 4.5.2 and Lemma 4.3.32.

The first step uses, as argued in the proof of Theorem 6.3.31, O∼(n2 deg(h)) operations
in k and the resulting vector has coefficients with degree bounded by 2 deg(h) ∈ O(deg(h)).
Thus, by Lemma A.1.2 (iii), the algorithm Redh uses O∼(n deg(h)) operations in k. By
Proposition 6.3.30, the algorithm Multy in step 4 requires O∼(n deg(h)) operations in k
and hence calling it n times with the same input size requires O∼(n2 deg(h)) operations
in k. Since the degree of f ′ and of Th lie in O(deg(h)), the same is true for the matrix
M . Finally, the matrix product T ′h ·M requires O∼(nω deg(h)) operations in k and is
thus the most expensive step of the algorithm. Therefore, PrincBasMatCF requires
O∼(nω deg(h)) operations in k.

Remark 6.3.33. Let T ∈ k[x]a×a and M ∈ k[x]a×b have both degree d. Then the compu-
tation of the product T ·M requires at most O∼(db/aeaωd) = O∼(baω−1d) operations in
k. Indeed, let b = ca + r with r < a be the division with remainder of b by a. We can
split M into c square matrices M1, . . . ,Mc of dimension a and one which has dimension
a× r. We append zero columns to the latter to make it square and call it Mc+1. Then we
can compute the product T ·M by computing the products T ·Mj and concatenate the
result, that is

T ·M = (T ·M1) _ . . . _ (T ·Mc) _ (T ·Mc+1).

Then the computation requires calling the square matrix multiplication algorithm in di-
mension a with degree d, which requires itself O∼(aωd) operations in k, a total number of
c+ 1 = db/ae times. Hence the complexity bound. 4
The following adaptation of Algorithm 15 simply computes the products fα1, . . . , fαr
with arbitrary r. We will need that in Algorithm 17.

Lemma 6.3.34. The Algorithm CompEltProdList, see Algorithm 16, is correct. It
requires at most O∼(rnω−1 deg(h)) operations in k.

Proof. The correctness follows from all above considerations and the arguments in the
proof of Theorem 6.3.32. By Remark 6.3.33, the matrix product Th ·M requires at most
O∼(rnω−1 deg(h)) operations in k. By the degree assumptions, we also know that the result
has degree in O(deg(h)) and thus Redh requires, due to Lemma A.1.2 (iii), O∼(rndeg(h))
operations in k. By assumption on the degrees of M and φΩ(f), we know that the matrix
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Algorithm 16 Computing products of given element with a list of elements
Precomputed Reduced basis Ω of R0; y ∈ R0 primitive element of KX(X)/k(x);

h ∈ k[x] coprime to the index ν of k[x, y] in R0; Th and T ′h as in
Definition 6.3.26

Input φΩ(f); M = (φΩ(α1) . . . φΩ(αr)) ∈ k[x]n×r such that deg φΩ(f) +
deg(M) + 2cX ≤ deg(h)

Output Matrix T representing fα1, . . . , fαr with deg(T ) ≤ h

1: procedure CompEltProdList(φΩ(f),M)
2: f ′ ← Redh(Th · φΩ(f))
3: M ′ ← Redh(Th ·M)
4: N ← (Multy(f ′,M ′e1), . . . ,Multy(f ′,M ′er))
5: return Redh(T ′h ·N)

N computed in step 4 has degree in O(deg(h)). Then Remark 6.3.33 again shows that the
matrix product T ′h · N requires O∼(rnω−1 deg(h)) operations in k. Moreover, the result
has degree in O(deg(h)) and thus Redh requires, due to Lemma A.1.2 (iii), O∼(rndeg(h))
operations in k.

Remark 6.3.35. We could also use Algorithm 16 to compute the basis matrix of fR0 by
setting M = En where En denotes the identity matrix in dimension n. But there is no
need to do this since once we have computed the basis matrix Mf of fR0, we can just
compute Mf ·MI to compute the basis matrix of fI. 4

6.3.3.2 Component Dependent Case

Let X be a reduced and reducible cover of P1
k with irreducible components (X1, . . . , Xm).

By yi ∈ Ri,0 we denote a primitive element of KXi(Xi) over k(x) as in Lemma 6.3.10.
By Ti ∈ k[x]ni×ni we denote the basis transformation matrix as in Definition 6.3.12,
that is (1, yi, . . . , yni−1

i ) = Ωi · Ti. Moreover, let hi ∈ k[x] denote a polynomial which is
coprime to the index of Si := k[x, yi] in Ri,0. Furthermore, Thi denotes the matrix as in
Definition 6.3.26.

Definition 6.3.36. Let v = (v1, . . . , vm) ∈ Rm and w = (w1, . . . , wn) ∈ Rn for R a
commutative ring and n,m ∈ N. By v _ w we denote the concatenation of v and w,
that is v_w = (v1, . . . , vm, w1, . . . , wn). 4

Definition 6.3.37. Let X be a reduced cover of P1
k with fixed order (X1, . . . , Xm) of

irreducible components whose degrees over P1
k are n1, . . . , nm, respectively, satisfying∑m

i=1 ni = n. We divide every v ∈ k[x]n into m vectors v1, . . . , vm such that vi ∈ k[x]ni
and v = v1 _ . . . _ vm. If f ∈ R+

0 and v = φΩmi (f), then vi ∈ k[x]ni is the coefficient
vector of f|Xi with regards to Ωi, that is vi = φΩi(f|Xi). 4

Note that Lemma 4.6.10 already told us that computing the product of f, g ∈ R+
0 com-

pletely reduces to computing the products f|Xig|Xi where f|Xi denote the restriction of f
with respect to the i-th irreducible component, that is to Ri,0. This already tells us how
to compute the matrix Tf by computing the products f|Xi(wj)|Xi .

Note that the suffix “C” in PrincBasMatC can be read as component dependent.

Theorem 6.3.38. The algorithm PrincBasMatC, see Algorithm 17, is correct. If d is
an upper bound of maxmi=1{deg(hi)} and cX ∈ O(d), it requires at most O∼(nωd) operations
in k.
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Algorithm 17 Computing basis matrix of principal ideal: component dependent case
Precomputed Basis Ωm

i of R+
0 , TΩ basis matrix of Ω with respect to Ωm

i ; for all
i = 1, . . . ,m : yi ∈ Ri,0 primitive elements of Fi/k(x); hi ∈ k[x]
coprime to the index νi of k[x, y] in R0; Thi , T ′hi as in Definition 6.3.26

Input φΩmi (f) such that for all i = 1, . . . ,m and j = 1, . . . ,m we have
deg φΩmi (f)i + 3cXi ≤ deg(hi)

Output Tf basis matrix of fω1, . . . , fωn with respect to Ωm
i in n-block-form

such that its i-th row block has degree bounded by deg φΩmi (f)i+3cXi

1: procedure PrincBasMatC(φΩ(f))
2: for i = 1, . . . ,m do
3: Ni ← SubMatrix(MΩ, (1 +

∑i−1
j=1 nj , 1), (ni, n))

4: Mi ← CompEltProdList(φΩ(f)i, Ni)
5: Tf ← ColumnConcat(M1, . . . ,Mm)
6: return Tf

Proof. We first prove the correctness: The matrix Ni computed in line 3 contains the
coefficient vectors φΩmi (ωj)i for j = 1, . . . , n. Hence, by Lemma 6.3.34, the matrix Mi

computed in step 4 contains the coefficient vectors of f|Xi(ωj)|Xi for all j = 1, . . . , n. By
definition, the target matrix Tf contains as columns the vectors φΩmi (fωj) for j = 1, . . . , n.
By Lemma 4.6.10, we have

φΩmi (fωj)T = (φΩ1((fωj)|X1) _ . . . _ φΩm((fωj)|Xm))T ,

and, moreover,

deg φΩi((fωj)|Xi) ≤ deg φΩi(f|Xi) + deg φΩi((ωj)|Xi) + 2ci,X
≤ deg φΩi(f|Xi) + 3ci,X
≤ deg hi

where we also used Corollary 4.6.1. In particular, Tf is in n-block-form whose i-th row
block has degree bounded by deg φΩi(f|Xi) + 3ci,X . Therefore, the matrix Tf equals the
column style concatenated matrix obtained by the matrices M1, . . . ,Mm which finally
proves the correctness of PrincBasMatC.

Now we prove the running time assertion. To do so, we investigate how many op-
erations in k are needed to compute one of the m iterations in the for loop. By Defi-
nition 4.6.3 and Corollary 4.6.1, the matrices N1, . . . , Nm have degree bounded by cXi ,
respectively. By Lemma A.1.2 (vi), the algorithm SubMatrix has constant cost. By
Lemma 6.3.34, the computation of Mi requires O∼(nnω−1

i di) operations in k where di =
deg φΩi(f)i + degNi + 2cXi ≤ deg φΩi(f)i + 3cXi ≤ deg hi. Moreover, the result satisfies
degMi ≤ di ≤ deg hi. Hence the i-th iteration of the for loop requires, due to n ≥ ni and
cXi ≤ ci,X ≤ cX ,

O∼
(
nnω−1

i di
)
⊆ O∼

(
nnω−1

i d
)

operations in k. Now the following simple computation

m∑
i=1

nnω−1
i d = nd

m∑
i=1

nω−1
i ≤ nd

(
m∑
i=1

ni

)ω−1

= ndnω−1 = nωd

shows that the complete for loop requires O∼(nωd) operations in k. We have already
argued above that deg(Mi) ≤ d for all i = 1, . . . ,m and thus, by Lemma A.1.2 (viii),
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the computation of Tf has constant cost. Therefore, we obtain that PrincBasMatC
requires, as asserted, at most O∼(nωd) operations in k.

Remark 6.3.39. Let PrincBasMat denote the algorithm that, given a vector v ∈ k[x]n
and a Boolean c, calls PrincBasMatC(v) if c = true and PrincBasMatCF(v) if c =
false and then returns the result. 4
Remark 6.3.40. By Remark 6.3.24, we may choose a suitable power of hi to give it an
intended degree such that the hypotheses

deg φΩmi (f)i + deg(φΩmi (ωj)i) + 2cXi ≤ deg(hi) (3:5)

for all i = 1, . . . , n are satisfied. Moreover, we know that deg(φΩmi (ωj)i) ≤ cX , and
if deg φΩmi (f)i ∈ O(cX), then deg(hi) ∈ O(cX) is sufficient to satisfy the requirement
Eq. (3:5). Hence the assumption in Theorem 6.3.38 is justified. Moreover, later on we will
call the algorithms PrincBasMatC and PrincBasMatCF with input that has degree
bounded by some d. Every time we do that, we assume that d is large enough to satisfy

deg φΩmi (f)i + deg(φΩmi (ωj)i) + 2cXi ≤ deg(hi) ≤ d

respectively
deg φΩ(f) + 2cX ≤ deg(h) ≤ d.

Then both PrincBasMatC and PrincBasMatCF require at most O∼(nωd) operations
in k. 4
We want to end this section by noting that Algorithm 17 which computes the principal
basis matrix in the component dependent case has the advantage over the algorithm
applied in the component independent case that it is accessible for parallelisation.

6.4 Precomputations

As we have seen in the last section, there are some computations we need to carry out
once to establish a computational respectively algorithmic environment in which we can
use the presented algorithms to finally carry out the arithmetic in Pic0(X). At the various
points in this thesis where precomputed data was necessary, we already mentioned what
needs to be precomputed. In the following we want to give an overview of what needs to
be precomputed overall. Therefore, we briefly summarise what kind of such precomputa-
tions need to be done generally and which are necessary in the component independent
respectively the component dependent case.

As mentioned in Notation 6.1.1, we compute and fix a reduced basis Ω of R0 respec-
tively OX and reduced bases Ωi of Ri,0 respectively OXi . This implicitly includes the
precomputation of the partition n =

∑m
i=1 ni. The Ωi then constitute the basis Ωm

i . By
TΩ we compute the basis matrix of Ω with respect to Ωm

i , that is, by definition we have
Ω = Ωm

i · TΩ. By Lemma 4.6.2, we have deg TΩ ≤ 2cX . Moreover, by Remark 4.6.4, we
know that the change of representation with respect to Ω to a representation with respect
to Ωm

i can be done by multiplying with TΩ. Furthermore, this change of representation is
fast enough if the degree of the matrix respectively vector involved is linearly bounded by
cX . In Algorithm 6 we need explicit values or suitable bounds for the invariants ci,X for
i = 1, . . . ,m to compute a block-wise degree reduced basis matrix in the component de-
pendent case. In Algorithm 9 we need the integer χ(SX) to be able to compute the degree
of a given R0-ideal regardless whether the ideal is represented by a matrix with respect
to Ω or with respect to Ωm

i . We have seen that the randomised algorithm ProvideIGS
requires as input a finite subset Σ of the ground field k from which it chooses uniformly
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random coefficients to come up with an ideal generating set. We can choose Σ ⊆ k once
and for all or use a separate one for every call of the randomised algorithms presented. In
Section 6.3 we have seen that there are a number of necessary precomputations to deal
with the computation of the basis matrices of principal ideals. First and foremost, we
need to compute primitive elements y ∈ R0 of KX(X) over k(x) respectively yi ∈ Ri,0 of
KXi(Xi) over k(x) as in Lemmas 6.3.2 and 6.3.10. Then we need to compute the reducing
polynomials h, hi ∈ k[x] which are coprime to the indices of k[x, y] in R0 respectively of
k[x, yi] in Ri,0. Related to these, the matrices Th, T ′h ∈ k[x]n×n and Thi , T ′hi ∈ k[x]ni×ni as
introduced in Definition 6.3.26 need be precomputed to transfer between the coefficient
vector representation of elements in R0 with respect to Ω respectively Ωm

i to the bivari-
ate polynomial representation in Ry, see Definition 6.3.20. This also involves the Bézout
identity 1 = th+ sν with respect to h and ν.

For the sake of the overview, we list the above precomputations enumerated and ar-
ranged by whether these are necessary in general or either for one of the two approaches,
the component independent or the component dependent case.
Needed Precomputations:

(i) Generic precomputations:

(a) Reduced basis Ω of R0 and reduced bases Ωi of Ri,0 for all i = 1, . . . ,m.
(b) The finite subset Σ ⊆ k (not necessary).
(c) Basis transformation matrix TΩ from Ωm

i to Ω. We have deg TΩ ≤ 2cX , see
Lemma 4.6.2.

(d) The π-invariants |X|1, . . . , |X|n of X and for all of its components X1, . . . , Xm

the π-invariants |Xi|1, . . . , |Xi|ni .

(ii) Precomputations in the component independent case:

(a) Primitive element y ∈ R0 such that KX(X) = k(x)[y].
(b) Basis transformation matrix T from Ω to 1, y, . . . , yn−1.
(c) Polynomial h ∈ k[x] coprime to ν = det(T ) and the Bézout identity 1 = th+sν.
(d) The matrices Th and T ′h as in Definition 6.3.26,

T ′h = Redh(T ) and Th = Redh(s adj(T )).

(iii) Precomputations in the component dependent case: For all i = 1, . . . ,m we compute

(a) c1,X , . . . , cm,X and χ(SX).
(b) Primitive element yi ∈ Ri,0 such that Fi := KXi(Xi) = k(x)[yi].
(c) Basis transformation matrix Ti from Ωi to 1, yi, . . . , yni−1

i .
(d) Polynomial hi ∈ k[x] coprime to ν = det(Ti) and the Bézout identity 1 =

tihi + siνi.
(e) The matrices Thi and T ′hi as in Definition 6.3.26,

T ′hi = Redh(Ti) and Thi = Redh(si adj(Ti)).

Note that the multiplication tables for R0 and Ri,0 for all i = 1, . . . ,m are strictly speaking
necessary to represent the OX -module structure of an OX -ideal F . But for the concrete
computations within our algorithms we do not need them at all. That is, if we do not
compute the multiplication tables, we solely represent the OP1-module π∗F . But under
the assumption that the input data of our algorithms represent an OP1-module π∗F with
F being an OX -module, this suffices for our algorithms.
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Remark 6.4.1. Moreover, note that we will not give a complete list of the necessary precom-
putations in every algorithm. We explicitly require that algorithm A which calls algorithm
B has the precomputations available that algorithm B needs to have at hand for its own
computations. 4

6.5 Algorithms for Computing in the Picard group

In this section we will present the missing algorithms that enable us to compute in Pic0(X).
Further, we will discuss the respective running times of the algorithms. All presented algo-
rithms can handle both the component independent and the component dependent case,
see Section 5.6.2. We will give randomised algorithms for the computation of integral and
arbitrary quotients and for reducing the degree of a class representative, see Algorithms 18
to 20. Moreover, we will provide deterministic algorithms (one for each case: component
independent and component dependent) to determine whether a given representative of a
class represents the trivial class, see Algorithms 21 and 22. Both together yield a deter-
ministic algorithm to test whether a given class is the neutral one. All these algorithms
will require at most O∼(nωd) operations in k where d is a suitable bound for the degree
of the involved matrices and for the π-invariants of X. We will see in Section 6.6 that it
can be shown that cX is a valid value for d.

As outlined by Strategy 6.1.10, we start with an algorithm that computes the integral
quotient of two R0-ideals that represent elements in Iπ/Pπ, see Strategy 6.1.10 (I). Note
that as already mentioned in Section 6.2, we need to come up with ideal generating
sets of the involved denominator ideal to explicitly use Proposition 6.2.5 to compute a
basis of the ideal quotient. See also Lemmas 6.2.10 and 6.2.12. As we have discussed in
Section 6.2.2, we are able to provide an ideal generating set of an invertible ideal in a
probabilistic way. That is, we may Σ-randomly choose k-linear combinations of a basis of
the denominator ideal which together with a given modification function provides an ideal
generating set with lower bounded probability, see Proposition 6.2.20 and Corollary 6.2.22.
The algorithm ProvideIGS internally computes such an ideal generating set candidate
and uses TestIGS to verify if it indeed is an ideal generating set. If so, it returns the
respective ideal generating set and otherwise it returns that it failed. This provides a
randomised algorithm IntegralDivision as follows in which we can plug in parameters
that affect the probability of success.
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Algorithm 18 Division of two ideals with integral result
Precomputed Ω fixed reduced basis ofR0; Ωm

i fixed basis ofR+
0 ; χ(SX); π-invariants

−|X|1 ≤ . . . ≤ −|X|n of X
Input TJ , TI , Tf matrices representing elements J, I, fR0 in Iπ/Pπ, respec-

tively, such that JI−1 ⊆ R0; f ∈ I a modification function of I;
r, t ∈ Z≥1 probability parameters; Σ finite subset of k; c Boolean
whether the matrices are basis matrices with respect to Ωm

i (c =
true) or with respect to Ω (c = false)

Output Basis matrix TH where H ⊆ R0 and H ≡ JI−1 in Iπ/Pπ if successful;
otherwise 0

1: procedure IntegralDivision(TJ , TI , Tf , r, t,Σ, c)
2: dJI−1 ← DegOfIdeal(TJ , c)−DegOfIdeal(TI , c)
3: if dJI−1 = 0 then || I = J

4: return En
5: isIGS, [(β1, . . . , βh), (Tβ1 , . . . , Tβh)] ← ProvideIGS(TI , Tf , r, t,Σ, c)
6: if isIGS = false then || no IGS found
7: return 0
8: TH ← IdealQuotient(TJ , Tf , Tβ1 , . . . , Tβh)
9: return TH

Lemma 6.5.1. The algorithm IntegralDivision, see Algorithm 18, is correct. If r, t ∈
O∼(1), d is an upper bound for all the degrees of the input matrices and cX ∈ O(d), then
it requires at most O∼(nωd) operations in k and returns a matrix with degree bounded
by d + (µX + 2)cX ∈ O(d). The probability of IntegralDivision successfully returning
a basis matrix is lower bounded by 1 − 2−rt. In particular, with r = log2(n) the above
probability becomes lower bounded by 1− n−t.

Proof. We consider the correctness of IntegralDivision first. By Lemma 6.1.8, we
know that dJI−1 = degk JI−1. Thus if dJI−1 = 0, then by Lemma 6.2.3, it follows that
J = I. Assume that ProvideIGS does not fail at line 5. By Lemma 6.2.25, we know that
I = fR0+

∑h
i=1 βiR0. Therefore, by the correctness of IdealQuotient, see Lemma 6.2.9,

TH computed at line 8 is indeed a basis matrix of JI−1. This proves the correctness of
IntegralDivision.

Assume that d is an upper bound of the degrees of the input matrices. By Lemma 6.1.8,
the computation of dJI−1 at line 2 requires at most O∼(nωd) operations in k. By the
assumption on d, Lemma 6.2.25 provides that ProvideIGS requires at most O∼(nωd)
operations in k and returns matrices with degrees bounded by d+ 2cX . By assumption on
d, the latter is still in O(d). Hence d+ 2cX is now a common upper bound for the input
matrices of IdealQuotient in line 8 and thus by Lemma 6.2.9 and Corollary 6.2.14,
IdealQuotient requires at most O∼(nωd) operations in k and TH has degree upper
bounded by d+ 2cX + µXcX = d+ (µX + 2)cX which is still in O(d) by assumption. This
proves the assertions about the output degree and the running time.

Now we consider the assertion regarding the probability of IntegralDivision being
successful. This is the case if and only if ProvideIGS in line 5 successfully provides and
ideal generating set of I. By Lemma 6.2.25, the probability for the above is lower bounded
by 1− 2−rt which provides the last part of the assertion.

To be able to compute arbitrary quotients, we need to employ modification functions
as indicated by Strategy 6.1.10 (II). The following algorithm provides the functionality of
computing such arbitrary quotients. In addition to IntegralDivision it invokes the algo-
rithm ModFct that provides a modification functions and the algorithm PrincBasMat
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which computes the respective principal ideal basis matrix. This results in a randomised
algorithm which again enables us to alter the lower bound of the probability of success.

Algorithm 19 Division of arbitrary ideals
Precomputed Bases Ω of R0 and Ωm

i of R+; π-invariants −|X|i of X and −|Xi|j of
all Xi

Input TJ , TI matrices representing elements I respectively J in Iπ; r, t ∈
Z≥1 probability parameters; Σ finite subset of k; c Boolean whether
the matrices are basis matrices with respect to Ωm

i (c = true) or with
respect to Ω (c = false)

Output Basis matrix TH where H ≡ JI−1 in Iπ/Pπ and H ⊆ R0 if successful;
otherwise 0

1: procedure Division(TJ , TI , r, t,Σ, c)
2: f ←ModFct(TI , c)
3: Tf ← PrincBasMat(f, c)
4: TH ← IntegralDivision(Tf · TJ , TI , Tf , r, t,Σ, c)
5: if TH 6= 0 then
6: return TH || IntegralDivision failed

7: return 0 || IntegralDivision successful

Lemma 6.5.2. The algorithm Division, see Algorithm 19, is correct. Moreover, if d
is an upper bound both for the degree of the input matrices and for the π-invariants
−|X|1, . . . ,−|X|n and −|X1|n1 , . . . ,−|Xm|nm, then it requires at most O∼(nωd) operations
in k and returns a matrix with degree in O(d). The probability that Division is successful
is lower bounded by 1−2−rt. In particular, with r = log2(n2) the above probability becomes
lower bounded by 1− n−t.

Proof. Since d is an upper bound of the degrees of the input matrices, the computa-
tion of f in line 2 requires at most O∼(nωd) operations in k and returns a vector with
degree bounded by 2d, see Remark 5.7.26 and Theorems 5.7.20 and 5.7.23. Thus by Re-
mark 6.3.39, PrincBasMat requires O∼(nωd) operations in k and returns a matrix with
degree in O(d). By Lemma 6.2.15, we know that the product Tf · TJ is a basis matrix of
fJ and satisfies deg(Tf · TJ) ∈ O(d). Therefore, by Lemma 6.5.1, the computation of TH
requires at most O∼(nωd) operations in k and returns a matrix with degree in O(d) if it is
successful. This provides the correctness of Division and proves the running time asser-
tion. Moreover, by Lemma 6.5.1, we also know that the computation of TH is successful
with probability at least 1− 2−rt which completes the proof.

In Strategy 6.1.10 (III) we have already mentioned that the degree of the representative
resulting from computing the quotient of two ideals may increase. Moreover, by Proposi-
tions 5.9.1 and 5.9.6, we indeed see that the resulting representative has degree which is
larger than the initial nominator in the order of ncX and g(X,SX), see Proposition 5.9.1
respectively Proposition 5.9.6. The following algorithm uses modification functions in
accordance with the ideas presented in Proposition 5.8.7 and Corollary 5.9.3 as well as
the algorithm ReduceBasisMatrix to compute a degree reduced representative of the
input class. Since it uses the IntegralDivision algorithm twice, it is also a randomised
algorithm similar to IntegralDivision and Division.
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Algorithm 20 Reduction of the class representative
Precomputed Bases Ω of R0 and Ωm

i of R+; π-invariants −|X|i of X and −|Xi|j of
all Xi

Input TI matrix representing an element I in Iπ; r, t ∈ Z≥1 probability
parameters; Σ finite subset of k; c Boolean whether the matrices are
basis matrices with respect to Ωm

i (c = true) or with respect to Ω
(c = false)

Output Basis matrix TH if successful whereH ≡ I in Iπ/Pπ such thatH ⊆ R0
and bounded degree, see Lemma 6.5.3; otherwise 0

1: procedure ReduceRepresentative(TI , r, t,Σ, c)
2: TI ← ReduceBasisMatrix(TI , c)
3: f ←ModFct(TI , c) || mod. fct. of I
4: Tf ← PrincBasMat(f, c)
5: TJ ← ReduceBasisMatrix(IntegralDivision(Tf , TI , Tf , r, t,Σ, c), c)
6: if TJ = 0 then || line 5 failed
7: return 0
8: g ←ModFct(TJ , c) || mod. fct. of J
9: Tg ← PrincBasMat(g, c)
10: TH ← ReduceBasisMatrix(IntegralDivision(Tg, TJ , Tg, r, t,Σ, c), c)
11: if TH = 0 then || line 10 failed
12: return 0
13: return TH

Lemma 6.5.3. The algorithm ReduceRepresentative, see Algorithm 20, is correct.
We distinguish between the cases c = true and c = false:

(i) c = true: Let d be a common upper bound of: the degree of TI , the invariants −|Xi|ni
and (degk Ii)/ni + ci,X . Furthermore, assume that cX ∈ O(d). Then ReduceRep-
resentative requires at most O∼(nωd) operations in k. Moreover, it returns a basis
matrix TH in n-block-form with row blocks TH,i such that deg TH,i ≤ 3ci,X .

(ii) c = false: Let d be both an upper bound of the degree of TI and for the π-invariants
{−|X|n, −|Xi|ni | i = 1, . . . ,m}. Furthermore, assume that cX ∈ O(d). Then
ReduceRepresentative requires at most O∼(nωd) operations in k. Moreover, it
returns a matrix TH with degree bounded by (µX + 2)cX .

The probability that ReduceRepresentative is successful is lower bounded by 1−2−rt+1.
In particular, with r = log2(n2) the above probability becomes lower bounded by 1−n−t+1.

Proof. We first prove the correctness of ReduceRepresentative. Due to the correctness
of ModFct and PrincBasMat, Tf is indeed the basis matrix of a modification function
of I, see Remarks 5.7.26 and 6.3.39. Thus the input of IntegralDivision in line 5 is
correct and hence, by Lemma 6.5.1, we know that the ideal J , whose basis matrix TJ is
computed in line 5, equals fI−1 ⊆ R0. The same line of argument as above shows that
TH computed in line 10 is indeed the basis matrix of H = gJ−1 = g(fI−1)−1 = (gf−1)I.

By Corollaries 5.8.8 and 5.9.3, we see that the above steps do indeed compute a repre-
sentative H of the same class as I in Iπ/Pπ such that either degkH|Xi ≤ 2ci,Xni if c = true
or degkH ≤ (µX +1)cXn if c = false. By Corollary 4.5.5 and Lemma 4.3.28, we know that
deg RedMat(TH) is bounded by (degkH)/n+µXcX ≤ (2µX + 1)cX in the case c = false.
If c = true, by Propositions 4.4.20 and 4.4.21, we know that RowBlockReduce(TH) is
in n-block-form with row blocks TH,i satisfying deg TH,i ≤ (degkH|Xi)/ni + ci,X ≤ 3ci,X .
This proves the correctness of ReduceRepresentative.
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Now we prove the assertion concerning the running time of ReduceRepresentative.
First, assume that c = false. Since deg TI ≤ d, Definition 4.6.8 and Theorem A.2.7 provide
that ReduceBasisMatrix at line 2 requires at most O∼(nωd) operations in k and returns
a matrix with degree bounded by (degk I)/n+µXcX , see Lemma 4.3.28 and Corollary 4.5.5.
In particular, its degree is still bounded by d. Therefore, the computation of f in line 3
requires at most O∼(nωd) operations in k and returns a vector with degree bounded by 2d,
see Theorem 5.7.20. Thus, to apply Theorem 6.3.32, the precomputed h need to satisfy
2d + 2cX ≤ deg h. Then PrincBasMat requires at most O∼(nωd) operations in k and
returns a matrix with degree bounded by 2d+ 2cX . By Lemma 6.5.1, IntegralDivision
requires at most O∼(nω(2d + 2cX)) operations in k and returns a matrix with degree
bounded by 2d+ 2cX + (µX + 2)cX = 2d+ (µX + 4)cX . Note that ReduceBasisMatrix
in line 5 does nothing in the case c = false since it only calls RedMat which is already
called inside of IntegralDivision. Again, by Theorem 5.7.20, the computation of g at
line 8 requires at most O∼(nω(2d+(µX +4)cX)) operations in k and returns a vector with
degree bounded by 4d+ (2µX + 8)cX . Thus, to apply Theorem 6.3.32, the precomputed h
need to satisfy 4d+(2µX+8)cX+2cX = 4d+(2µX+10)cX ≤ deg h. Then PrincBasMat
requires at most O∼(nω(4d + (2µX + 10)cX)) operations in k and returns a matrix with
degree bounded by 4d + (2µX + 10)cX . By Lemma 6.5.1, IntegralDivision at line 10
requires at most O∼(nω(4d + (2µX + 10)cX)) operations in k and returns a matrix with
degree bounded by 4d + (2µX + 10)cX + (µX + 2)cX = 4d + (3µX + 12)cX . Finally, by
Theorem A.2.7, RedMat at line 15 requires O∼(nω(4d + (3µX + 12)cX)) operations in
k. The running time is clearly bounded by O∼(nω(4d + (3µX + 12)cX)) operations in k.
The assumption cX ∈ O(d) now provides that the overall running time is bounded by
O∼(nωd).

Let us now consider the case c = true. By Proposition 4.6.7, ReduceBasisMatrix
at line 2 requires at most O∼(nωd) operations in k and provides a basis matrix TI in
n-block-form whose i-th row block has degree bounded by (degk Ii)/ni + ci,X ≤ d. By
Theorem 5.7.23, the vector f = (f1, . . . , fm)T computed in line 3 satisfies

deg fi ≤ ((degk Ii)/ni + ci,X) + cXi ≤ (degk Ii)/ni + 2ci,X . (5:6)

To apply Theorem 6.3.38, the precomputed polynomials hi need to satisfy deg hi ≥ deg fi+
3cXi and thus, by the above,

deg hi ≥ (degk Ii)/ni + 5ci,X

is sufficient. In this case PrincBasMat in line 4 returns a matrix whose i-th row block
is degree bounded by (degk Ii)/ni + 5ci,X and it requires at most O∼(nωd) operations in
k to do so. Now (degk Ii)/ni + 5ci,X is a common degree upper bound for the i-th row
block of Tf and TI . Thus δ := maxmi=1{(degk Ii)/ni + 5ci,X} ≤ d + 4cX is a common
degree upper bound of Tf and TI . Therefore, by Lemma 6.5.1, IntegralDivision in line
5 requires at most O∼(nωδ) operations in k and returns a matrix with degree bounded
by δ + (µX + 2)cX ≤ d + (µX + 6)cX ∈ O(d). Also in line 5, by Proposition 4.6.7,
ReduceBasisMatrix returns a matrix whose i-th row block has degree bounded by

(degk Ji)/ni + ci,X = (degk fiRi,0 − degk Ii)/ni + ci,X

Eq. (5:6) ≤ (degk Ii + 2ci,Xni − degk Ii)/ni + ci,X

= 3ci,X ∈ O(d).

In particular, deg TJ ≤ 3cX . Since the input matrix had degree bounded by d + (µX +
6)cX ∈ O(d), ReduceBasisMatrix requires at most O∼(nωd) operations in k to compute
TJ . Now as before with f , we see that the vector g = (g1, . . . , gm)T computed in line 8
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satisfies

deg gi ≤ (degk Ji)/ni + ci,X + cXi = (degk Ji)/ni + 2ci,X ≤ 4ci,X . (5:7)

To apply Theorem 6.3.38, the precomputed polynomials hi need to satisfy deg hi ≥ deg gi+
3cXi and thus, by the above, deg hi ≥ 7ci,X is sufficient. In this case PrincBasMat in
line 9 returns a matrix whose i-th row block is degree bounded by 7ci,X . Therefore,
7cX ∈ O(d) is a common degree bound for both Tg and TJ . Therefore, by Lemma 6.5.1,
IntegralDivision requires at most O∼(nωd) operations in k and returns a matrix with
degree bounded by 7cX + (µX + 2)cX = (µX + 9)cX ∈ O(d). By Proposition 4.6.7,
ReduceBasisMatrix in line 10 returns a matrix whose i-th row block has degree bounded
by

(degkHi)/ni + ci,X ≤ 2ci,X + ci,X = 3ci,X ,

see Corollary 5.8.8. Moreover, since the degree of the input matrix was bounded by
(µX + 9)cX ∈ O(d), it only requires at most O∼(nωd) operations in k. This proves the
running time assertion.

ReduceRepresentative is successful if and only if the two calls of IntegralDivi-
sion are successful. This probability is lower bounded by

(1− 2−rt)2 = (1− 2−rt+1 + 2−2rt) ≥ (1− 2−rt+1)

which completes the proof.

The algorithms IntegralDivision, Division and ReduceBasisMatrix together pro-
vide a toolkit to compute in Iπ/Pπ and thus in CaCl0π(X), CaCl0(X) as well as in Pic0(X).
The Division algorithm can either be seen to already carry out the group law of Pic0(X)
or it can be applied twice to compute products instead of quotients respectively sums
instead of differences. Moreover, being able to compute quotients respectively differences
of group elements using Division, we can therefore also compute the inverse of a given
element. After every such operation, the algorithm ReduceBasisMatrix can be applied
to reduce the resulting representative and to obtain one that is given by either a matrix
in n-block-form with row blocks of degree bounded by 3ci,X (in the component depen-
dent case) or by a matrix with degree bounded by (µx + 2)cX ≤ 4cX in the component
independent case.

Therefore, the only missing part of a complete toolkit for the arithmetic in Pic0(X) is
to give an algorithm that tests whether a given element is the neutral one of the group or
equivalently (given the possibility to carry out the group law and computing the inverse)
one that decides whether two given elements are equal. This is what follows next.

Propositions 5.9.4 and 5.9.8 did already show what is needed to test whether a given
representative F represents the trivial class in Pic0(X). From this we deduce the following
algorithms in the respective cases. We start with the component independent case.
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Algorithm 21 Zero test if X is irreducible
Precomputed Reduced basis Ω of R0; π-invariants −|X|1 ≤ . . . ≤ −|X|n of X

Input TF ∈ k[x]n×n representing OX -ideal F
Output true if F represents the trivial element in CaCl0π(X); otherwise false

1: procedure ZeroTestIntegral(TF )
2: d1, . . . , dn ← PiInvariants(TF )
3: if d1 ≤ 0 then
4: return true
5: return false

Lemma 6.5.4. The algorithm ZeroTestIntegral, see Algorithm 21, is correct. More-
over, if d is a common upper bound of deg TF and −|X|n, then ZeroTestIntegral
requires at most O∼(nωd) operations in k.

Proof. By Lemma 4.3.21, the algorithm PiInvariants requires at most O∼(nωd) opera-
tions in k and thus the assertion follows.

Now we state the respective algorithm in the component dependent case.

Algorithm 22 Zero test if X is reducible
Precomputed Basis Ωm

i of R+
0 or basis Ω of R0 dependent on the Boolean c; for all

i = 1, . . . ,m: π-invariants −|Xi|1 ≤ . . . ≤ −|Xi|ni of Xi

Input TF basis matrix of OX -ideal F = OX(D) with D = D0 +∑
i∈A ri(x)i,∞ either with respect to Ωm

i (c = true) or with respect to
Ω (c = false); c Boolean whether TF is with respect to Ωm

i or Ω
Output true if F represents the trivial element in CaCl0π(X), false otherwise

1: procedure ZeroTest(T, c)
2: T1, . . . , Tm ← ComputeComponentMatrices(T, c)
3: for i = 1, . . . ,m do
4: αi ← SubMatrix(Ti, (1, 1), (ni, 1)))
5: di ← (di,1, . . . , di,ni)← PiInvariants(Ti)
6: ri ← DegOfIdeal(Ti, c)/ni
7: if ri < di then
8: return false
9: α← ColumnConcat(α1, . . . , αm)

10: (gβ, g)← RationalSystemSolve(T, α)
11: if deg(g) 6= 0 then
12: return false
13: return true

Lemma 6.5.5. The algorithm ZeroTest, see Algorithm 22, is correct whenever TF rep-
resents an element of CaCl0π(X). Moreover, if TF has degree bounded by d and d is also
an upper bound for all −|X1|ni , . . . ,−|Xm|nm, then ZeroTest requires at most O∼(nωd)
operations in k.

Proof. We first prove the correctness. Let F = OX(E) with E = D +
∑

i∈A ri(x)i,∞.
Note that E = D + r(x)∞ is possible. We abbreviate Fi := F|Xi . For all i = 1, . . . ,m
let αi,1, . . . , αi,ni denote a reduced basis of Fi(Vi,0) and define α to satisfy φΩmi (α) =
φΩ1(α1,1) _ . . . _ φΩm(αm,1). By Proposition 5.9.8, F represents the trivial class if and
only if degk Fi(Vi,0)/ni = ri ≥ −|Fi|1 for all i = 1, . . . ,m and α ∈ F(V0). Before the for
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loop, ComputeComponentMatrices computes the basis matrices TFi of reduced bases
αi,1, . . . , αi,ni of Fi(Vi,0). That ComputeComponentMatrices does indeed return the
asserted matrices and that it at most requires O∼(nωd) operations in k, follows from
Proposition 4.6.5.

The i-th iteration of the for loop computes

(i) by αi the coefficient vector φΩi(αi,1), this is due to what SubMatrix does, see
Notation A.1.1 (vi),

(ii) by ri it computes the number ri from the representation of E above; this is due to
the fact that

degk Fi(Vi,0)/ni = ri

and Proposition 5.6.9, Proposition C.4.18 (ii) as well as what DegOfIdeal does,
see Algorithm 9,

(iii) by di = −|Fi|1 the respective first invariant of Fi, this is due to the correctness of
PiInvariants, see Lemma 4.3.21.

By what we have said above, see Proposition 5.9.8, if in some iteration of the for loop we
have ri < di, then F is indeed not principal. After we have passed the loop completely,
we know that ri ≥ −|Fi|1 and thus F is principal if and only if α ∈ F(V0). Due to
what ColumnConcat does, see Notation A.1.1 (viii), we know that the computation of
α is indeed correct and has constant cost, see Lemma A.1.2 (viii). Since TF has non-zero
determinant, by Theorem A.2.13, we know that the algorithm RationalSystemSolve
computes a tuple (gβ, g) where β ∈ k(x)n is a solution of TF · β = α and g ∈ k[x] of
minimal degree such that gβ ∈ k[x]n. In particular, β ∈ k[x]n if and only if deg(g) = 0.
Therefore, α ∈ F(V0) if and only if deg(g) = 0 which finally provides the correctness of
ZeroTest.

Now we prove the asserted running time complexity. By assumption, the matrix T has
degree bounded by d. Hence, by Proposition 4.6.5, the matrices T1, . . . , Tm have degree
bounded by d as well. By Lemma A.1.2 (vi), calling SubMatrix in line 4 has constant
cost. Since deg Ti ≤ d, by Lemma 4.3.21, the algorithm PiInvariants in step 5 requires
at most O∼(nωi d) operations in k. Moreover, by Lemma 6.1.8, DegOfIdeal requires at
most O∼(nωi d) operations in k. Hence each iteration of the for loop requires at most
O∼(nωi d) operations in k. Now we have

m∑
i=1

nωi d = d ·
m∑
i=1

nωi ≤ d ·

(
m∑
i=1

ni

)ω
= d · nω

and therefore, the for loop altogether requires at most O∼(nωd) operations in k.
Since Ti has degree bounded by 2d, the same is true for αi computed in line 4. Again,

calling ColumnConcat has constant cost as mentioned above. Therefore, the input
matrix T has degree bounded by d and α has degree bounded by 2d and thus, by Corol-
lary A.2.14, the algorithm RationalSystemSolve in step 10 requires at most O∼(nωd)
operations in k which finally completes the proof.

The algorithms presented in this section constitute a complete toolkit to compute in
Pic0(X) solely depending on the degree and the dimension of the input matrices (and
bounds for the invariants −|X|n respectively −|Xi|ni) representing the respective elements
in Pic0(X). In the next section we summarise all of this in a theorem that represents the
main result of this thesis.
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6.6 Main Result

The following theorem summarises that the presented algorithms provide a complete
toolkit to compute in Pic0(X). It also represents the main result of this thesis.

Theorem 6.6.1. Let X be a reduced cover of P1
k. The elements in Pic0(X) can be repre-

sented by matrices in k[x]n×n with degree in O(cX). The combination of the Algorithms 19
and 20 provides randomised algorithms to compute both the group law in Pic0(X) and the
inverse of a given element. Moreover, Algorithms 21 and 22 provide a deterministic al-
gorithm to test whether a given element in Pic0(X) is the neutral element. All the above
algorithms use at most O∼(nωcX) operations in k and the randomised algorithms have
positive constant success probability.

Proof. That we can represent every element in CaCl0(X) with a matrix in k[x]n×n follows
from Lemma 6.1.4 in the case thatX is integral and from Lemma 6.1.6 whenX is reducible.
By Corollaries 5.8.6 and 5.8.9, for each such representative there exists a basis matrix with
degree in O(cX).

By Lemma 6.5.2, Algorithm 19 computes a matrix representation of the difference
of two divisor representatives which is the same as the division of the corresponding
R0-ideals. Now we can use subtraction as the group law of CaCl0(X) or just subtract
twice to compute the sum of two given divisor representatives respectively the product
of two given ideal representatives. Using Algorithm 20 after each call of Algorithm 19
guarantees that the degree of the respective divisor and representing matrix is still in
the desired order. To compute the inverse of a given element in CaCl0(X), we can call
Algorithm 19 to divide the neutral element by the given representative. By Lemma 6.5.2,
Algorithm 19 requires at most O∼(nωd) operations in k if d is an upper bound for both
the degree of the input matrix and the invariants −|Xi|ni , i = 1, . . . ,m, and −|X|n. By
Corollaries 4.3.24 and 4.5.2, we know that cX itself is a bound for all the above invariants.
As we have seen above, the input matrices have degree in O(cX) which thus provides that
Lemma 6.5.2 requires at most O∼(nωcX) operations in k. Also note that we precompute
the polynomials h1, . . . , hm such that their degree bounds the degree of all appearing
instances of modification functions and still have degree in O(cX). The statement about
the success probability follows immediately since we need to apply Algorithms 19 and 20
at most in succession, and therefore, the assertion follows from Lemmas 6.5.2 and 6.5.3.
With the same arguments as above the asserted running time for Algorithms 21 and 22
follow from Lemmas 6.5.4 and 6.5.5.

Theorem 6.6.1 states that the asymptotic running time complexity of the problem of com-
puting in Pic0(X) for a reduced cover X of P1

k is bounded by O∼(nwcX) operations in
k where n denotes the degree of X over P1

k and cX an invariant of X defined in Defini-
tion 2.4.10. For simplicity, in the case of X being irreducible, cX is roughly equal to g/n
where g denotes the arithmetic genus of X and in the case of X being reducible, cX is
roughly equal to the maximum of the cXi of the irreducible components of X, see Re-
mark E.2.21. For a thorough comparison of Theorem 6.6.1 with the existing algorithms,
see Section 1.3 and Table 1.2.
Remark 6.6.2. We note that Theorem 6.6.1 does not discriminate between the component
dependent and the component independent representation of the elements in CaCl0π(X)
since the asymptotic running time is the same. Though the basis matrices in these two
cases have the same degree (maximal appearing degree), we would like to emphasise that
the component dependent representation is better than the component independent repre-
sentation with respect to the following: In the component independent case the restrictions
of the represented divisor satisfy the same degree bound which depends on a global in-
variant of X. But in the component dependent case each restriction satisfies a different
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degree bound that only depends on an invariant of the component (and additionally on the
order of the components). In a nutshell, this means that in the component independent
case the degree bounds of the restrictions of the represented divisor are all the same and
in the component dependent case they can be chosen to be optimal with respect to the
respective component. 4
Theorem 6.6.1 unites the results of the two approaches we presented in this thesis, the
component independent and the component dependent case. Both cases are very similar in
the sense that they both follow the strategy we outlined in Strategy 6.1.10. Though both
work with different type of representatives of elements in Pic0(X), we were able to prove
the existence of representatives of both types that have bounded degree and therefore
have representing matrices of bounded degree as well. In both cases we heavily rely on
the modification functions which can be employed to reduce the general division of two
ideals to the case of integral division of ideals, see Strategy 6.1.10 (II). Moreover, we can
use them to find new representatives of a given class in Pic0(X) that have bounded degree
again, see Strategy 6.1.10 (III). Therefore, both approaches rely on modification functions,
but they need to compute them in a different way due to the different representation types.
However, the test whether a given element is the neutral element of Pic0(X) is independent
from modification functions and needs to be implemented differently depending on whether
X is irreducible or reducible.

Additionally, we want to note that we can easily compute the neutral element of
Pic0(X) within our representation setup: The identity matrix of dimension n works in
both the component independent and component dependent case.

211



6.6. Main Result Chapter 0

212



Appendices

213





Appendix A

Used Algorithms

A.1 Basic Matrix Algorithms

In this section we collect some basic matrix algorithms that use naive attempts to solve
simple tasks with respect to matrices over the polynomial ring k[x]. The reason we mention
such algorithms and collect them here is the readability of the algorithms we propose
throughout this thesis.

The following enumeration determines names of algorithms together with a description
of what these algorithms compute. We will explicitly assume that we use the fastest known
implementations of algorithms solving the described task. In Lemma A.1.2 we will give
naive and known bounds for the running time of those algorithms.

Notation A.1.1.

(i) By MultiplyRow we denote an algorithm that computes, given a matrix M ∈
k[x]m×n, a polynomial f ∈ k[x] and an index i ∈ {1, . . . ,m}, the matrix obtained
by multiplying the i-th row of M with f . Moreover, by ScaleRows we denote an
algorithm that computes, given M as above and a list of polynomials f1, . . . , fm ∈
k[x], the matrix we obtain by successively applying MultiplyRow(M, i, fi) for i =
1, . . . ,m.

(ii) By we Determinant denote an algorithm that computes, given a matrix M ∈
k[x]n×n, the determinant detM of M .

(iii) Let h ∈ k[x]. By Redh we denote an algorithm that reduces any M ∈ k[x]m×n
entry-wise modulo h.

(iv) By Degree we denote an algorithm that computes, given a matrix M ∈ k[x]m×n,
the degree degM of M .

(v) By LeadCoeffMat we denote an algorithm that computes, given a polynomial
matrix M ∈ k[x]m×n, the matrix LC(M). See Definition 4.3.1.

(vi) By SubMatrix we denote an algorithm that returns for given matrix M = (mi,j)i,j
the submatrix SubMatrix(M, (i, j), (m,n)) of M whose top left entry is mi,j and
which has dimension m× n.

(vii) By BigMatrix denote an algorithm that computes, given matrices Tβ1 , . . . , Tβh , TJ ,
the big matrix M(J, β1, . . . , βh) from Proposition 6.2.5, see Definition 6.2.6.

(viii) By ColumnConcat we denote an algorithm that returns, given matricesM1, . . . ,Mr

with Mi ∈ k[x]ri×c, the concatenated block matrix M ∈ k[x]
∑r
i=1 ri×c whose i-th row

block is given by Mi.
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(ix) By Random we denote an algorithm which returns, given a finite subset Σ of the
field k, a uniformly random chosen element in Σ.
Since coming up with a random integer in the range 1, . . . ,#Σ yields a random
element in Σ, the cost of Random in our cost model is constant. See Section 1.2. 4

Now we give naive and more involved bounds for the running time of the above algorithms
with respect to our cost model, see Section 1.2.

Lemma A.1.2.

(i) Let d be a common bound of the degree of the i-th row of M and of deg f . Then
MultiplyRow requires at most O∼(nd) operations in k.
Let d be a common bound of degM and maxmi=1{deg fi}. Then ScaleRows requires
at most O∼(mnd) operations in k.
We note that the algorithms MultiplyRow and ScaleRows may also be applied
for f = x−i with the same running time under the assumption that all the affected
entries of M are multiples of xi.

(ii) Let M ∈ k[x]n×n have degree d. Then Determinant requires at most O∼(nωd)
operations in k.

(iii) Let d be a common bound of the degree of h ∈ k[x] and of the degree of M ∈ k[x]m×n.
Then Redh requires at most O∼(mnd) operations in k.

(iv) Degree has constant running time.

(v) LeadCoeffMat has constant running time.

(vi) SubMatrix has constant running time.

(vii) BigMatrix has constant running time.

(viii) ColumnConcat has constant running time.

Proof.

(i) Let d be a common bound of the degree of the i-th row of M and of deg f . The
algorithm MultiplyRow then obviously requires at most n multiplications in k[x]
of polynomials with degree bounded by d. These require at most O∼(nd) operations
in k, see Proposition A.2.3.
Let d be a common bound of degM and maxmi=1{deg fi}. The algorithm ScaleRows
then calls MultiplyRow m times and thus obviously requires at most O∼(mnd)
operations in k, see Proposition A.2.3.

(ii) This is Theorem A.2.10.

(iii) Let M ∈ k[x]m×n with deg h,deg(M) ≤ d. Obviously, Redh computes mn divisions
with remainder with polynomials that have degree bounded by d. Therefore, by
Proposition A.2.1, Redh requires at most O∼(mnd) operations in k.

(iv) Comparing degrees only require operations in Z and thus due to our cost model,
these do not count. Since determining the degree of a polynomial has constant cost
in our cost model, the same is true for Degree.

(v) That LeadCoeffMat has constant running time is due to our cost model, see
Section 1.2.
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(vi) That SubMatrix has constant running time is due to our cost model, see Section 1.2.

(vii) That BigMatrix has constant running time is due to our cost model, see Section 1.2.

(viii) That ColumnConcat has constant running time is due to our cost model, see
Section 1.2.

A.2 Linear Algebra Algorithms over Polynomial Rings

In contrast to Section A.1, we will collect statements about more advanced algorithms for
solving more involved problems with regards to matrices over k[x].

Recall that 2 ≤ ω ≤ 3 denotes the matrix multiplication constant, that is, multiplying
two n × n matrices over a field k uses O(nω) operations in k. To the best knowledge of
the author the best bound is ω ≤ 2.373, see [Wil12].

Proposition A.2.1. Let a, b ∈ R[x] be two polynomials over the commutative ring R.
Assume deg(b) < deg(a) and deg(a) ∈ O(deg(b)). Then division with remainder of a by b
uses O∼(deg(b)) operations in R.

Proof. This follows directly from [GG03, Theorem 9.6].

Definition A.2.2. Let k be a field. By M(d) we denote the number of operations in
k needed for computing the product of two polynomials in one indeterminate over k of
degree d. By B(d) we denote the number of operations in k needed for computing the gcd
of two polynomials in degree d over k. 4

Proposition A.2.3. Let k be a field. Then M(d) ∈ O∼(d) and B(d) ∈ O∼(d).

Proof. The first assertion is the last Theorem (without numbering) in [CK91]. Regarding
the second: The Euclidean algorithm uses at most log d many divisions with remainder of
which each work with polynomials of degree at most d. But division with remainder in
degree d uses O∼(d) operations in k, see Proposition A.2.1.

Remark A.2.4. LetM, D ∈ Rn×n be two square matrices over a ringR whereD is diagonal.
Moreover, let b ∈ Rn. Then the multiplication of M with D requires n2 multiplications
in R. Obviously, the transposed versions is also true. Moreover, computing the product
M · b requires at most n2 multiplications and n(n− 1) additions in R. 4

Lemma A.2.5. Let M, D ∈ k[x]n×n with D diagonal. Moreover, let b ∈ k[x]n. Assume
that d is a bound for the degrees of M,D and b. Then computing the products M ·D and
M · b both require at most O∼(nωd) operations in k.

Proof. By Remark A.2.4, we know that both computations requires at most O(n2) oper-
ations in k[x]. These operations are either additions or multiplications which by Proposi-
tion A.2.3 require at most O∼(d) operations in k which already proves the assertion.

Theorem A.2.6. LetM ∈ k[x]m×n be a matrix of degree d. Then there exist an algorithm
MatrixKernel which computes a basis of the k[x]-module kerM = {p ∈ k[x]n |Mp = 0}
in form of a matrix N ∈ k[x]n×∗ whose columns are the basis vectors. Moreover, the
matrix N is column reduced, that is, the basis represented by N has the lowest degrees of
all possible bases of M .1 The computation of N uses O∼n,g(nωdmd/ne) operations in k.

1This is congruent with our definition of a polynomial matrix being reduced, see Definition 4.3.3. Note
that we only formulated the sqaure matrix case, but being reduced can be formulated for rectangular
matrices as well, see [Hes02, p. 1].
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Proof. Algorithm 1 in [ZLS12] computes kerM in form of the required matrix. That
matrix is column reduced since Algorithm 1 in general computes a ~s-reduced basis where
~s = [s1, . . . , sm] ∈ Zm. Regarding the definition see [ZLS12, 2.1]. We are only interested in
the case ~s = [d, . . . , d] from which one can deduce that N is column reduced. The fact that
the running time of Algorithm 1 is indeed in the asserted order follows from [ZLS12, Cor.
4.6].

Now we turn to an algorithm which reduces a matrix over k[x] in a sufficiently small
amount of steps in k, see [GSSV12].

Theorem A.2.7 (See Theorem 18 in [GSSV12]). There exist an algorithm RedMat
which computes for given regular matrix M ∈ k[x]n×n of degree d a right equivalent matrix
of M such that it has minimal column degrees among all right equivalent matrices of
M .2 The algorithm RedMat uses O

(
nω
(
(logn)2M(d) +B(d)

))
operations in k. Here

B(d) denotes the complexity of solving the gcd-problem in degree d and M(d) denotes the
complexity of multiplying two polynomials in one indeterminate of degree d.

Corollary A.2.8. If degM ∈ O(d), then by Theorem A.2.7 and Proposition A.2.3 Red-
Mat uses O∼(nωd) operations in k to reduce M .

Remark A.2.9. We can use algorithm RedMat to reduce any matrix M ∈ k(x)n×n if we
find d ∈ k[x] such that dM ∈ k[x]n×n. Then RedMat provides a right equivalent matrix
dMT of dM which has minimal column degrees among all right equivalent matrices of
dM , and, evidently, the same is true for MT . 4

Theorem A.2.10 (See [ZL14]). Let M ∈ k[x]n×n be of degree O(d). Then there exists an
algorithm Determinant which computes det(M) using O∼(nωd) operations in k.

Lemma A.2.11 (9.7 in [GG03]). Let R be a commutative ring with unity and let f ∈
R[t] be a monic polynomial of degree n. Then the multiplication in R[t]/fR[t] (including
division with remainder) uses O∼(n) operations in R.

Theorem A.2.12 (Solution of Problem 2.3a (LIN·SOLVE1 ) on p. 104 in [BP94]). Let
A be an arbitrary m× n matrix over the field k and b ∈ kn. Then there is an algorithm
SolveLESk computing a solution vector x ∈ kn such that Ax = b which requires at most
O(nω−1m) operations in k.

Theorem A.2.13 (Theorem 12 in [GSSV12]). Let M ∈ k[x]n×n be a polynomial matrix
of degree d and non-zero determinant. Let b ∈ k[x]n×1 have degree in O(nd). If the
solution A−1b satisfies A−1b ∈ k[x]n, then there is an algorithm RationalSystemSolve
that computes A−1b. If A−1b /∈ k[x]n, then RationalSystemSolve computes (gA−1b, g)
with g ∈ k[x] with minimal degree such that gA−1b ∈ k[x]n. In both cases the algorithm
has cost O(nω(logn)2M(d) + nB(nd)).

Corollary A.2.14. Let M ∈ k[x]n×n be a polynomial matrix of degree d and non-zero
determinant. Let b ∈ k[x]n×1 have degree in O(nd). Then the cost of computing A−1b is
O∼(nωd).

Proof. This is Theorem A.2.13, together with Proposition A.2.3.

Theorem A.2.15 (Theorem 6.2 and lemma 5.1 in [ZL13]). There exists an algorithm
ColumnBasis that computes, given a matrixM ∈ k[x]m×n of rank r such that r ≤ m ≤ n,
a matrix C ∈ k[x]m×r of full rank whose columns form a basis of the column space of
M . If s denotes the average column degree of M , then ColumnBasis requires at most
O∼(mω−1ns) operations in k and then C has degree bounded by s.

2See Footnote 1.

218



Chapter 1 A.2. Linear Algebra Algorithms over Polynomial Rings

Theorem A.2.16. There exists an algorithm Popov that computes, given a non-singular
matrix M ∈ k[x]n×n, a matrix P ∈ k[x]n×n in Popov form. If d = deg(M), then Popov
requires at most O∼(nωd) operations in k.

Proof. By [SS11, Thm. 13 and 18], there exists an algorithm that computes for given
reduced M ∈ k[x]n×n (it even works for m× n with M ≥ n) a matrix in Popov form and
that requires at most O∼(nωd) operations in k. Hence we only need to reduce the input
matrix by using RedMat which requires as well at most O∼(nωd) operations in k, see
Theorem A.2.7.
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Appendix B

Foundational Theory

In this chapter we collect some of the foundational definitions and statement about some
of the objects that are involved in this thesis. This chapter has evolved as a growing source
of reference within this thesis and is not intended to be standalone. That is, we do not
cover (in any sense) all of the material needed in this thesis. We rather state propositions
we need and that we have not found in the literature (at least not in a way appropriate
for this thesis).

This chapter is organised as follows: In Sections B.1 and B.2 we provide most of the
basic definitions and statements for presheaves and sheaves on topological spaces and on
schemes. Section B.3 provides the basic theory for treating the irreducible components of
a scheme X in an iterative way. This will be key for examination of the relation of divisors
on X and divisors on the irreducible components of X. In Sections B.4 and B.5 we provide
rather foundational statements with respect to commutative algebra respectively algebraic
geometry.

B.1 Presheaves and Sheaves

In this section we introduce (and mostly recall) the notion of sheaves, those objects which
play a central role in this thesis and, of course, in all of algebraic geometry. We do not state
every definition and proposition that is used in this thesis, and we do not claim to provide
an introduction to sheaves as a whole. We only state those definitions and propositions
which turned out to be useful to state in the context of this thesis. The interested reader
is referred to the standard texts as [Liu02], [GW10], [Sta18], [Har77], [EH14], [THPlns75]
as well as every other standard textbook on algebraic geometry.

We define sheaves the same way [Liu02] does, that is, as sheaves of abelian groups. This
definition easily translates to the definition of sheaves of rings, of modules and algebras of
a fixed ring etcetera. We want to keep the definition as brief as possible and do not want
to define sheaves as functors in all of its generality.

Definition B.1.1. Let X be a topological space. A presheaf on F (of abelian groups)
on X consists of the following data

• an abelian group F(U) for each open subset U of X and

• a group homomorphism ρUV (F) : F(U) → F(V ) for every inclusion of open subsets
V ⊆ U called the restriction morphism

such that

1. F(∅) = 0,

2. ρUU (F) = idF(U),

221



B.1. Presheaves and Sheaves Chapter 2

3. if there are three open subsets W ⊆ V ⊆ U of X, then ρUW (F) = ρVW (F) ◦ ρUV (F).

The elements s ∈ F(U) are called sections of F over U . Let V ⊆ U be open subsets ofX.
We also denote the image of s ∈ F(U) under the restriction map ρUV (F) : F(U) → F(V )
by s|V and call it the restriction of s to V . Consider the following two conditions a
presheaf F on X may (or may not) satisfy:

(a) (Separatedness) For any open subsets U ⊆ X of X and open cover U = ∪i∈IUi any
two sections s, t ∈ F(U) are equal if and only if ρUUi(F)(s) = ρUUi(F)(t) for all i ∈ I,
i.e. s|Ui = t|Ui for all i ∈ I.

(b) (Gluing local sections) For any open subset U ⊆ X of X, open cover U = ∪i∈IUi and
sections si ∈ F(Ui) such that for all i, j ∈ I we have si|Ui∩Uj = sj |Ui∩Uj in F(Ui∩Uj)
there exists s ∈ F(U) such that s|Ui = si for all i ∈ I. In this case we sometimes say
that s glues together from the sections si.

A presheaf F on X is called separated if it satisfies condition (a). If F further satisfies
condition (b), then it is called a sheaf F on X. A subpresheaf G of a presheaf F is a
presheaf G such that for all open subsets U ⊆ X we have that G(U) ⊆ F(U) is a subgroup
and the restriction maps of G are induced by those of F . If both G and F are sheaves,
then G is called a subsheaf of F . In both cases, G being a subpresheaf or subsheaf of F ,
we write G ≤ F . 4

Example B.1.2. Let X be a topological space and F ,G be two subpresheaves of the
presheaf H, i.e. F ,G ≤ H. Then the rule U 7→ F(U) ∩ G(U) defines a subpresheaf F ∩ G
of H. Here the restriction maps are just those of F (or G and by definition those of H as
well). Furthermore, if F and G are sheaves, then F ∩ G is a sheaf as well. 4

Remark B.1.3. In a analogous way we define presheaves and sheaves (and all related
definitions in Definition B.1.1) of rings, of modules or algebras over a given ring etcetera.
If F is a sheaf on the topological space X, then the section s glued together is unique.
Indeed, if there are s, t ∈ F(U) such that s|Ui = t|Ui for all i ∈ I, then the separatedness
axiom (a) in Definition B.1.1 ensures that s = t in F(U). 4

Definition B.1.4. Let X be a presheaf on the topological space X. Let P ∈ X be
arbitrary. We define the stalk of F at P as the direct limit

FP = lim−→
U⊆X, P∈U

F(U)

where U runs over all open neighborhoods of P in X. If F is a presheaf of R-modules, then
FP is an R-module and if F is a presheaf of rings, then FP again is a ring. By definition,
any element in FP is given by some section s of F over U where P ∈ U , denoted by (U, s).
Any two such representations (U, s) and (V, t) define the same element in FP if and only
if there is some open neighborhood W ⊆ U ∩ V such that s|W = t|W .

For any open subset U ⊆ X such that P ∈ U we have a natural map (group homo-
morphism) F(U)→ FP sending s to the element defined by (U, s) in FP . We denote the
image of s under this map as sP and call it the germ of s at P . 4

Definition B.1.5. Let X be a topological space and F a presheaf on X. Then for any
f ∈ F(X) we call the set

Supp(f) := Supp(F , f) := {P ∈ X | fP 6= 0 in FP }

the support of f on X. 4
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Lemma B.1.6. Let X be a topological space and F a presheaf on X. Then for any
f ∈ F(X) the support Supp(f) is closed in X.

Proof. Consider the complement Z(f) of Supp(f) in X which consists of those points
P ∈ X for which fP = 0. Then, by definition of the stalk FP of F , for every P ∈ Z(f)
there exists an open neighborhood UP of P for which f|UP = 0 in F(UP ). Moreover, for
every Q ∈ UP we obviously have fQ = 0. In particular, UP ⊆ Z(f) and thus the open
subsets UP ⊆ X for P ∈ Z(f) cover Z(f). Whence Z(f) is open in X and therefore
Supp(f) is closed in X.

Remark B.1.7. Let F be a presheaf on the topological space X and U ⊆ X an open subset
of X. Let s ∈ F(U) be a sections of F over U . Then s defines a function which we (by
slight abuse of notation) also denote by s : U →

∐
P∈U FP , P 7→ sP .

Now let t ∈ F(V ) be another sections of F but over V ⊆ X with W = U ∩ V 6= ∅.
Now if s|W = t|W in F(W ), then by construction the functions s and t agree on W and
hence we may consider the function

u : U ∪ V →
∐

P∈U∪V
FP , P 7→

{
sP , P ∈ U
tP , P ∈ V

defined on U ∪ V . This interpretation of sections of F as functions into the stalks of F
does suggest that this function u should correspond to a section u ∈ F(U ∪ V ). But this
need not hold in general. It does hold for arbitrary U and V if and only if F satisfies the
gluing local sections condition (b) in Definition B.1.1.

This already suggests how we should overcome this missing property of F , namely
by adding such functions u as above. We will see this later in detail when talking about
sheafification which does also want to ensure the separatedness condition (a) in Defini-
tion B.1.1. 4

Lemma B.1.8. Let F be a presheaf on the topological space X. Then F is separated if
and only if the natural map F(U) →

∏
P∈U FP , s 7→ (sP )P∈U is injective for all open

subsets U ⊆ X.

Proof. Assume that F is separated. Let U ⊆ X be any open subset of X and s ∈ F(U)
with sP = 0 in FP for all P ∈ U . Thus, by definition, for every P ∈ U there is an open
neighborhood UP ⊆ U of P such that s|UP = 0. Since the UP cover U , the separatedness
of F provides s = 0 in F(U).

Conversely, let F(U) →
∏
P∈U FP be injective. Let s, t ∈ F(U) satisfy s|Ui = t|Ui for

all i ∈ I for some open cover U = ∪i∈IUi. In particular, s − t restricts to zero on every
Ui. Since the Ui cover U , the germ (s− t)P is zero for every P ∈ U and hence s− t must
be zero by the injectivity assumption.

Lemma B.1.9. Let F , G be presheaves (of abelian groups) on the topological space X
such that G ≤ F as presheaves. If F is separated, then G is separated.

Proof. By definition, for every open subset U ⊆ X we have G(U) ⊆ F(U) is a subgroup and
the restriction map G(U)→ G(V ) is simply the restriction of the restriction homomorphism
F(U) → F(V ) for every open subset V ⊆ U . Now let U = ∪i∈IUi be an open cover,
s ∈ G(U) such that s|Ui = 0 for all i ∈ I. Since s ∈ F(U) and s|Ui = ρUV (F)(s) we can use
that F is separated which yields s = 0 in F(U). But since G(U) ⊆ F(U) and s ∈ G(U),
this yields s = 0 in G(U) as well. Hence G is separated as asserted.
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Definition B.1.10. Let X be a topological space and F , G two presheaves (of abelian
groups) on X. A morphism of presheaves f : F → G is a collection of group homo-
morphism f(U) : F(U)→ G(U) for all open subsets U ⊆ X such that for all open subsets
V ⊆ U the following diagram commutes.

F(U) G(U)

F(V ) G(V )

f(U)

ρUV (F) ρUV (G)
f(V )

If F and G are sheaves on X, then a morphism of sheaves f : F → G is a morphism
of the presheaves F and G. Every morphism of presheaves f : F → G provides for any
P ∈ X a morphism of the stalks fP : FP → GP mapping (U, s) to (U, f(U)(s)) and
satisfying (f(U)(s))P = fP (sP ). We call fP the morphism induced by f on the
stalks. We say that f is injective if f(U) is injective for all open subsets U ⊆ X. We
say that f is surjective if the induced map on the stalks fP is surjective for all P ∈ X.
We say that f : F → G is an isomorphism if it has a two-sided inverse g : G → F . A
morphism of sheaves is just a morphism of presheaves f : F → G where F and G are
sheaves. 4

Remark B.1.11. If a morphism of presheaves is injective, then the induced map on the
stalks is injective. The converse is true for a morphism of separated presheaves.

If for all open subsets U ⊆ X the map f(U) is surjective, then f is surjective. But if
f is surjective, then f(U) need not be surjective for all open subsets U ⊆ X. 4
Whether a morphism of sheaves is an isomorphism or not can be checked on the level of
stalks.

Lemma B.1.12 ([Liu02], 2.2.12). A morphism of sheaves f : F → G is an isomorphism
if and only if fP is an isomorphism for all P ∈ X.

The same is not true for presheaves since we are not able to glue a preimage together from
local sections that agree on overlaps.
Remark B.1.13. Morphisms of sheaves φ : F → G on the topological space X provide
some natural examples of presheaves on X. Let U ⊆ X be any open subset of X. Then
the following mappings define presheaves on X:

1. The presheaf kernel of φ defined by U 7→ ker(φ(U)),

2. the presheaf image of φ defined by U 7→ im(φ(U)),

3. the presheaf cokernel of φ defined by U 7→ coker(φ(U)).

Here the presheaf kernel of φ is also a sheaf on X, but the presheaf cokernel and presheaf
image of φ are no sheaves on X in general. The presheaf kernel of φ is a subsheaf of F and
the presheaf image of φ is a subpresheaf of G. If F ,G are two sheaves on the topological
space X such that G ≤ F , then we have an inclusion morphism G ↪→ F and its presheaf
cokernel is separated. 4
The next definition tries to come up with a sheaf F# starting from a presheaf F by adding
those sections glued from local sections of F agreeing on intersections (ensuring the gluing
local sections condition) and dropping those knocking out the separatedness condition.
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Definition B.1.14. Let F be a presheaf (of abelian groups) on the topological space X.
Consider

F#(U) :=
{
f : U →

∐
P∈U
FP | ∀ P ∈ U ∃ VP ⊆ U ∃ s ∈ F(VP ) : ∀ Q ∈ VP f(Q) = sQ

}

for any open subset U ⊆ X. Taking the restriction of functions as the restriction maps
this defines a presheaf (of abelian groups) on X. We call F# the sheafification of F . 4
The name already suggests that F# will indeed be a sheaf. The following lemma provides
this fact and does also show that this construction of a sheaf from the presheaf F is
universal.
Lemma B.1.15 ([Liu02], 2.2.15). Let F be a presheaf (of abelian groups) on the topological
space X. Then F# is a sheaf (of abelian groups) on X and it comes with a morphism
of presheaves θ : F → F#. Moreover, the pair (F#, θ) satisfies the following universal
property: For every morphism of presheaves β : F → G, where G is a sheaf, there exists a
unique morphism α : F# → G such that β = α ◦ θ.
Remark B.1.16. The morphism of presheaves θ : F → F# is the obvious one: For any
open subset U ⊆ X and s ∈ F(U) the section s defines a function s : U →

∐
P∈U FP

via P 7→ sP as already introduced in Remark B.1.7. Note that θP : FP → F#
P is an

isomorphism.
Moreover, if we identify the sections s ∈ F(U) over U for any given presheaf F with the

functions s : U →
∐
P∈U FP given by P 7→ sP , as in Remark B.1.7, then the sheafification

F# simply adds those functions U →
∐
P∈U FP such that there is an open cover U =

∪i∈IUi and functions si : Ui →
∐
P∈Ui FP given by sections si ∈ F(Ui) that agree (as

functions to the stalks) on the overlaps Ui ∩ Uj for all i, j ∈ I. Then θP will not only be
an isomorphism for all P ∈ X, but also the identity map. 4
A morphism of presheaves that is an isomorphism on the level of stalks need not be an
isomorphism of presheaves. But we will see now that the respective sheafifications are
isomorphic.
Lemma B.1.17. Let f : F → G be a morphism of presheaves on the topological space X.
If the induced homomorphism fP is an isomorphism for all P ∈ X, then F# ∼= G#.
Proof. We compose f with θG : G → G# and obtain a morphism of presheaves F → G#

with the codomain being a sheaf. By Lemma B.1.15, this morphism factors through F#

and hence we obtain a commutative diagram:

F G

F# G#

f

θF θG

f#

On the level of stalks this provides a commutative diagram

FP GP

(F#)P (G#)P

fP

θF,P θG,P

f#
P

which together with the fact that θF ,P , θG,P and fP are isomorphisms provides that the
induced map f#

P is an isomorphism as well. Then Lemma B.1.12 provides f# : F# → G#

is an isomorphism of sheaves.
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Definition B.1.18. Let φ : G → F be a morphism of sheaves on the topological space X.
We denote the sheafifications of the presheaf kernel, presheaf cokernel and presheaf image
by ker(φ), coker(φ) respectively im(φ). If G ≤ F and φ is the inclusion morphism, then
we define F/G = coker(φ) to be the quotient sheaf of F by G. 4

The proof of the following lemma in the case ofOX -modules can be found in every standard
algebraic geometry textbook, for instance [GW10, (7.3.1)-(7.3.3)]. But the same line of
argument works for sheaves of abelian groups where no OX -module structure need to be
involved.

Lemma B.1.19. Let φ : G → F be a morphism of sheaves (of abelian groups) on the
topological space X. Let P ∈ X be arbitrary. Then ker(φ)P ∼= ker(φP ), coker(φ)P ∼=
coker(φP ) and im(φ)P ∼= im(φP ). In particular, for G ≤ F we have (F/G)P ∼= FP /GP .

Definition B.1.20. Let F be a presheaf on the topological space X. Let U ⊆ X be an
open subset of X. For f, g ∈ F(U) we say that f and g are equal on a cover, denoted
by f ≡∪ g, if and only if there is a cover U =

⋃
i∈I Ui such that for each i ∈ I we have

f|Ui = g|Ui . Being equal on a cover obviously defines an equivalence relation on F(U). 4

Remark B.1.21. If F is a separated presheaf on the topological space X, then being equal
on a cover and being equal is the same for sections of F . That is, for every open subset
U ⊆ X two sections f, g ∈ F(U) we have f ≡∪ g if and only if f = g in F(U). 4

Lemma B.1.22. Let F be a presheaf on the topological space X.

(i) For every open subset U ⊆ X and s, t ∈ F(U) we have s ≡∪ t if and only if sP = tP
for all P ∈ U . That is, two sections are equal on a cover if and only if their induced
functions into the stalks are equal.

(ii) Every section of F# over U can be represented by a family of sections of F that
are pairwise equal on a cover. That is, for every s ∈ F#(U) there is an open cover
U = ∪i∈IUi and sections si ∈ F(Ui) such that si|Ui∩Uj ≡∪ sj |Ui∩Uj for all i, j ∈ I.
Such a family of sections is often called a weakly matching family of F and
denoted by (Ui, si)i∈I .
In particular, if F is separated, then for every s ∈ F#(U) there is an open cover
U = ∪i∈IUi and sections si ∈ F(Ui) such that si|Ui∩Uj = sj |Ui∩Uj in F(Ui ∩ Uj) for
all i, j ∈ I.

(iii) Two weakly matching families (Ui, fi)i∈I and (Vj , gj)j∈J of sections of F represent
the same section of F# over U if and only if for all (i, j) ∈ I×J we have fi|Ui∩Vj ≡∪
gj |Ui∩Vj .

Proof.

(i) Let f, g ∈ F(U) be sections of F over the open subset U ⊆ X. Assume that f ≡∪ g,
that is there is an open cover U = ∪i∈IUi such that f|Ui = g|Ui for all i ∈ I. Since
the Ui cover U , for every P ∈ U there is some i ∈ I such that P ∈ Ui and fP = gP .
Conversely, let fP = gP for all P ∈ U . Then for every P ∈ U there are open
neighborhoods Uf,P and Ug,P of P such that (Uf,P , f) and (Ug,P , g) define the same
element in FP . That is, there is some open subset Uf,g,P ⊆ Uf,P ∩ Ug,P containing
P such that f|Uf,g,P = g|Uf,g,P . Obviously, these Uf,g,P cover U and hence f ≡∪ g.

(ii) Let f : U →
∐
P∈U FP be an element of F#(U). Hence for every P ∈ U there is

some VP ⊆ U and s(P ) ∈ F(VP ) such that for all Q ∈ VP we have f(Q) = s(P )Q.
Now consider the family (VP , s(P )) of sections of F . Let P, P ′ ∈ U be two distinct
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points in U such that W := VP ∩ VP ′ 6= ∅. Then by definition of F#(U), we have
s(P )Q = s(P ′)Q for all Q ∈W and hence, by Item (i), we obtain s(P )|W ≡∪ s(P ′)|W .
The particular part now follows from Remark B.1.21.

(iii) Let (VP , s(P ))P∈U and (WP , t(P ))P∈U be two weakly matching families coming from
f : U →

∐
P∈U FP , f ∈ F#(U), as above. That is, for all Q ∈ VP we have

s(P )Q = f(Q) and for all Q ∈ WP we have t(P )Q = f(Q). In particular, for all
Q ∈ VP ∩WP we have s(P )Q = t(P )Q. By Item (i), this means s|VP∩WP

≡∪ t|VP∩WP
.

Conversely, let (VP , s(P ))P∈U be a weakly matching family coming from f : U →∐
P∈U FP , f ∈ F#(U), and (WP , t(P ))P∈U another weakly matching family coming

from g : U →
∐
P∈U FP , g ∈ F#(U), such that s(P )|VP∩WP

≡∪ t(P )|VP∩WP
. By

Item (i) again, this yields that for all Q ∈ VP ∩WP we have s(P )Q = t(P )Q which
means that f(Q) = g(Q) for all Q ∈ VP ∩WP . Now since the intersections VP ∩WP

for P ∈ U constitute an open cover of U , we obtain that f and g are equal as
functions from U to the stalks of F and therefore as sections of F#.

Corollary B.1.23. Let G ≤ F be two sheaves on the topological space X. Then every
global sections of F/G is represented by a weakly matching family (Ui, fi+G(Ui))i∈I where
X = ∪i∈IUi, fi ∈ F(Ui) and for every i, j ∈ I we have fi|Ui∩Uj + G(Ui ∩ Uj) = fj |Ui∩Uj +
G(Ui ∩ Uj), that is fi|Ui∩Uj − fj |Ui∩Uj ∈ G(Ui ∩ Uj). Two such representations (Ui, fi +
G(Ui))i∈I and (Vj , hj + G(Vj))j∈J define the same global section of F/G if and only if for
all (i, j) ∈ I × J we have fi|Ui∩Vj − hj |Ui∩Vj ∈ G(Ui ∩ Vj). Here we denoted the group law
of G and F additively.

Proof. By Remark B.1.13, the presheaf U 7→ F(U)/G(U) is separated. Moreover, F/G is
its sheafification. Thus Lemma B.1.22 already provides the assertion.

If a presheaf is not separated, then being local equal on a cover is the most we can ask for
in a representation of a section of the sheafification. That is the restrictions of the local
sections do not agree on the intersection but only on some cover of the intersection. The
following example shows a presheaf that is not separated and for which we find a section
of the sheafification whose local sections of the presheaf do not agree on the intersection.
Example B.1.24 is taken from a mathoverflow post1.

Example B.1.24. Let X be the topological set X = {a, b, c, d} where the open sets are
given by X, ∅, {a}, {b}, U = {a, b, c}, V = {a, b, d}, U ∩ V = {a, b}. Then we define

F(W ) =


Z, W ∈ {X,U, V, U ∩ V }
Z/2Z, W ∈ {{a}, {b}}
0, W = ∅

and the restriction maps F(W ) → F(Y ) for Y ⊆ W are given by either the canonical
surjection Z → Z/2Z, the identity map on Z or the zero map. This defines a presheaf
F on X. Since the points a, b ∈ X form open subsets of X, the stalk FP equals Z/2Z
for P ∈ {a, b}. The only two open neighborhoods of c ∈ X are U and X. Hence every
element of Fc is given by (U, s) with s ∈ F(U) = Z. Analogously, the only two open
neighborhoods of d ∈ X are V and X. Hence every element of Fd is given by (V, t) with
t ∈ F(V ) = Z. Consider the natural map

Z = F(U ∩ V )→
∐
P∈U
FP = Fa ×Fb ∼= Z/2Z× Z/2Z

1https://mathoverflow.net/questions/31372/describing-global-sections-of-sheafifications
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sending s ∈ F(U) to the sequence of its germs (sP )P∈U , that is s 7→ (s mod 2, s mod 2).
Obviously, its kernel is 2Z and hence it is not injective providing that F is indeed not
separated, see Lemma B.1.8.

Let us now consider what the global sections F#(X) of the sheafification F# are. By
definition those are maps

f : X = {a, b, c, d} → Fa ×Fb ×Fc ×Fd ∼= Z/2Z× Z/2Z× Z× Z

for which there are open neighborhoods VP for every point P ∈ X on which f is given by
a section of F(VP ). The neighborhoods of c and d which are not all of X (in this case f
is given by some s ∈ F(X) = Z, that is f(P ) = s for all P ∈ X) are U respectively V .
Therefore, by definition, f(P ) = u for some u ∈ F(U) = Z for all P ∈ U and f(P ) = v for
some v ∈ F(V ) = Z for all P ∈ V . In particular, f(P ) = u = v for all P ∈ U ∩V = {a, b}.
That is, u and v coincide in the stalks Fa, Fb which are both given by Z/2Z. Hence
u ≡ v mod 2. Thus every f ∈ F#(X) is already completely determined by (u, v) ∈ Z2

such that u ≡ v mod 2. Consider f ∈ F#(X) given by (0, 2), that is the map

{a, b, c, d} → Z/2Z× Z/2Z× Z× Z

maps a 7→ (0, 0, 0, 0), b 7→ (0, 0, 0, 0), c 7→ (0, 0, 0, 0) and d 7→ (0, 0, 0, 2). Then f is
represented by the weakly matching family fU = 0 ∈ F(U) and fV = 2 ∈ F(V ) for which
we obviously have (fU )P = (fV )P for all P ∈ U ∩ V and thus (fU )|U∩V ≡∪ (fV )|U∩V by
B.1.22 (i). This can also be seen by covering U ∩ V = {a, b} by {a} ∪ {b} for which we
then have (fU )|{a} = (fV )|{a} and (fU )|{b} = (fV )|{b} since the restriction map F(U) =
F(V )→ F({a}) = F({b}) is the projection Z→ Z/2Z.

But the restriction of fU = 0 ∈ Z = F(U) to F(U ∩ V ) = Z is 0 again and that of
fV = 2 ∈ Z = F(V ) to F(U ∩ V ) = Z is 2 and hence fU and fV do not coincide on
U ∩ V . 4

There are ways of transporting sheaves along continuous maps of topological spaces.

Definition B.1.25. Let f : X → Y be a continuous map. Let F be a presheaf on X and
let G be a presheaf on Y .

1. We define a presheaf f∗F on Y by the rule

V 7→ F(f−1(V ))

for any open subset V ⊆ Y . The restriction maps are given by those of F . We call
f∗F the direct image of F under f and sometimes the pushforward of F by
f . Note that if F is a sheaf on X, then f∗F is a sheaf on Y .

2. We define a presheaf f−1G on X by the rule

U 7→ lim−→
V⊇f(U), V⊆Y open

G(V )

for any open subset U ⊆ X and take the restriction maps to be induced by those of
G. We denote it sheafification by f−1G and call it the inverse image of G under
f . 4

Definition B.1.26. A sheaf F on a topological space X is called flasque if for every
inclusion U ⊆ V ⊆ X the restriction map F(V )→ F(U) is surjective. 4

Definition B.1.27. Let X be a topological space and F a sheaf (of abelian groups) on
X. The support of F is defined as Supp(F) = {P ∈ X | FP 6= 0}. We say that F is a
skyscraper sheaf if it has finite support. 4
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Lemma B.1.28. If F is a skyscraper sheaf on the topological space X with support con-
sisting of closed points of X, then for all open U ⊆ X we have F(U) =

∐
P∈U∩Supp(F)FP .

Proof. Let U ⊆ X be any open subset of X. As a sheaf is separated by definition, by
Lemma B.1.8, the natural map

F(U)→
∐
P∈U
FP , s 7→ (sP )P∈U

is injective. Since the stalk of F at P is zero for every P 6∈ Supp(F), the map F(U) →∐
P∈U∩Supp(F)FP is also injective. To prove the assertion, we show that this map is also

surjective. Let {P1, . . . , Pn} be the finitely many closed points constituting U ∩ Supp(F).
Let I = {1, . . . , n} and let (si)i∈I ∈

∐
i∈I FPi be arbitrary. Then for every i ∈ I there is

an open neighborhood Ui of Pi and a section si ∈ F(Ui) such that siPi = si. Now since
the points Pi are closed, we may remove every point Pj with j 6= i from Ui and thus we
may assume that the Ui, i ∈ I, form a disjoint open cover of U . This provides that the
sections si agree on intersections (since those are empty) and thus the gluing local sections
condition (b) in Definition B.1.1 provides a unique section s ∈ F(U) such that s|Ui = si

and thus s gets mapped to (si)i∈I under the considered map.

Lemma B.1.29. Let F be a subsheaf of H on the scheme X. Then for any open subset
U ⊆ X and h ∈ H(U) we have h ∈ F(U) if and only if hP ∈ FP for all P ∈ U .

Proof. By definition, if h ∈ F(U), then hP ∈ FP . Conversely, let h ∈ H(U) satisfy
hP ∈ FP for all P ∈ U . Thus for every P ∈ U there is an open neighborhood UP of
P such that h|UP ∈ F(UP ) ⊆ H(UP ). The UP cover U and then we have (h|UP )|UQ =
h|UP∩UQ = (h|UQ)|UP as sections of F since h ∈ H(U) and the restriction maps of F are
those induced by the restriction maps of H. That is, we have a collection of sections of F
on an open cover of U that agree on intersections and hence they glue to a section f in
F(U). Now since gluing is unique, we have f = h in H(U) and hence h ∈ F(U).

Corollary B.1.30. Let F ,G ≤ H be two subsheaves of H on the scheme X. Then F = G
as subsheaves of H if and only if FP = GP as subsets in HP for all P ∈ X.

Proof. The only if part is trivial. Since both F and G are subsheaves of H, their restric-
tion maps are those induced by those of H. Hence it suffices to prove that for all open
subsets U ⊆ X we have F(U) = G(U) as subsets of H(U). Let f ∈ F(U) ⊆ H(U). By
Lemma B.1.29, this is equivalent to fP ∈ FP for all P ∈ U . Now since FP = GP , we have
fP ∈ GP for all P ∈ U and thus Lemma B.1.29 again provides f ∈ G(U). By symmetry,
this proves the assertion.

Proposition B.1.31. Let f : X → Y be a morphism of schemes and F a sheaf on X.
Then we have a natural morphism

(f∗F)f(x) → Fx

whose image consists of those pairs (f−1(U), sf−1(U))∼ with x ∈ f−1(U) and sf−1(U) ∈
F(f−1(U)) for open subsets U ⊆ Y . Moreover,

(f−1(U), sf−1(U))∼ = (f−1(V ), sf−1(V ))∼ ⇔ (sf−1(U))|W = (sf−1(V ))|W

for some W ⊆ f−1(U ∩ V ). Furthermore, if every open subset W ⊆ f−1(U) is of the
form W = f−1(W ′) for some open subset W ′ ⊆ X, e.g. f open, then (f∗F)f(x) → Fx is
bijective.
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Proof. By definition, we have a map

(f∗F)f(x) = lim−→
U3f(x)

F(f−1(U)) = lim−→
x∈f−1(U)

F(f−1(U))→ lim−→
x∈V
F(V ) = Fx

which sends a tuple (f−1(U), sf−1(U))∼1 to the tuple (f−1(U), sf−1(U))∼2 . Here

(f−1(U), sf−1(U))∼1 = (f−1(V ), sf−1(V ))∼1 ⇔ (sf−1(U))|f−1(W ′) = (sf−1(U))|f−1(W ′)

for some open W ′ ⊆ U ∩ V and

(f−1(U), sf−1(U))∼2 = (f−1(V ), sf−1(V ))∼2 ⇔ (sf−1(U))|W = (sf−1(U))|W

for some open W ⊆ f−1(U ∩ V ). Thus if every open subset W ⊆ f−1(U) is of the form
W = f−1(W ′) for some open W ′ ⊆ X, this provides injectivity. Moreover, the surjectivity
also follows since the index sets over which the direct limits run coincide.

Remark B.1.32. Let X be a topological space. We want to note that at least for sheaves,
it is enough to define it on a base of the topology of X to obtain a unique sheaf on X. The
reader is referred to the section Bases and sheaves in [Sta18, Tag 009H]. In particular,
note the statements [Sta18, Tag 009R] and [Sta18, Tag 009U]. 4

Definition B.1.33. A sequence

. . .
αi−1−−−→ Fi

αi−→ Fi+1
αi+1−−−→ . . .

of sheaves is called exact if im(αi) = ker(αi+1) for all i. 4

Lemma B.1.34. Any exact sequence of sheaves Fi on X

. . .
αi−1−−−→ Fi

αi−→ Fi+1
αi+1−−−→ . . .

provides for any open U ⊆ X an exact sequence

. . .
αi−1|U−−−−→ (Fi)|U

αi|U−−−→ (Fi+1)|U
αi+1|U−−−−→ . . .

Proof. Let α : F → G be a morphism of sheaves. Note that the presheaves defined by
V 7→ im(α(V )) and W 7→ im(α|U (W )) for W ⊆ U open coincide if restricted to U . Hence
im(α)|U = im(α|U ) as sheaves where im denotes the sheafification of V 7→ im(α(V )). The
same is true for the kernel sheaf: ker(α)|U = ker(α|U ). This provides the assertion.

Definition B.1.35. Let X be a topological space and O a presheaf of rings on X. A
presheaf of O-modules on X is a presheaf F of abelian groups on X together with a
morphism of presheaves of sets O × F → F such that for every open subset U ⊆ X the
map O(U)×F(U)→ F(U) makes the group F(U) into an O(U)-module. If additionally,
both O and F are sheaves, then we call F a sheaf of O-modules on X. If (X,OX) is a
ringed space, then we call any sheaf of OX -modules on X an OX-module. 4

Lemma B.1.36. Let
0 −→ F −→ G −→ H −→ 0 (1:1)

be an exact sequence of OX-modules where F is quasi-coherent. Let U ⊆ X be an affine
open subset. Then

0 −→ F(U) −→ G(U) −→ H(U) −→ 0 (1:2)

is an exact sequence of OX(U)-modules.

230

https://stacks.math.columbia.edu/tag/009H
https://stacks.math.columbia.edu/tag/009R
https://stacks.math.columbia.edu/tag/009U


Chapter 2 B.1. Presheaves and Sheaves

Proof. By Lemma B.1.34, the sequence

0 −→ F|U −→ G|U −→ H|U −→ 0

is exact and F|U is still quasi-coherent. Then the assertion follows from [GW10, 12.34]
since the global sections of F|U are F(U).

In the following lemma one should think of R as being the sheaf of regular functions on a
scheme.

Lemma B.1.37 (Stalks of a sheaf of units). Let X be a topological space and R be a sheaf
of rings on X. Then for any open subset U ⊆ X the rule U 7→ R(U)× defines a sheaf of
abelian groups on X. Moreover, for any P ∈ X we have (R×)P = (RP )×.

Proof. First of all, since R is a sheaf of rings, R(U)× is an abelian group and a subset of
R(U). Since units get sent to units under ring homomorphisms ρUV (R) : R(U)→ R(V ) for
U ⊆ V , we have that ρUV (R) restricted to R(U)× yields a homomorphism of abelian groups
R(U)× → R(V )×. We take these homomorphisms as the restriction maps of U 7→ R(U)×.
This easily defines a presheaf of abelian groups on X which we denote by R×. To prove
that R× is a sheaf, note that if s ∈ R×(U) = R(U)× restricts to the unit in R×(Ui) for
an open cover U = ∪i∈IUi, then the separatedness axiom of R provides s = 1 in R(U)
and thus in R×(U). Thus R× satisfies the separatedness axiom. To prove the gluing
local sections axiom, let U = ∪i∈IUi be an open cover of an open subset U and write
Ui,j = Ui ∩ Uj . Then let si ∈ R×(Ui) be such that si|Ui,j = sj |Ui,j for all i, j ∈ I. The
gluing local sections axiom of R provides the existence of a unique section s ∈ R(U) which
restricts to the si on Ui. Hence we are left to prove that s ∈ R×(U). By assumption, we
have si ∈ R×(Ui) for all i ∈ I. Therefore, there are ti ∈ R×(Ui) such that siti = 1 in
R×(Ui). In particular, for all i, j ∈ I we also have si|Ui,j · ti|Ui,j = 1. Hence ti|Ui,j is the
unique inverse of si|Ui,j in R(Ui). But since this is also true for tj |Ui,j by construction, we
obtain ti|Ui,j = tj |Ui,j for all i, j ∈ I. We deduce that there is a unique section t ∈ R(U)
such that t|Ui = (s|Ui)−1. Hence (st)|Ui = 1 for all i ∈ I and thus st = 1 in R(U) since R
was a sheaf. This proves that R× indeed is a sheaf on X.

To prove the second assertion, consider the direct system consisting of the groups
(R×)(Ui) = R(Ui)× with group homomorphisms fi,j : R(Ui)× → R(Uj)× for all Uj ⊆ Ui.
Note that since R(Ui)× ⊆ R(Ui), we obtain maps ψi : R(Ui)× → (RP )× sending gi
to the germ (gi, Ui) whose inverse in (RP )× is given by (g−1

i , Ui). Hence we obtain the
commutative diagram (the dashed arrow is left out with respect to the commutativity)
where Uj ⊆ Ui:

R(Ui)×

lim−→
W3P

R(W )× (RP )×

R(Uj)×

φi

fi,j

ψi

φj

ψj

Now we argue that we find the dashed morphism making the whole diagram commute.
Then, since the direct limit satisfies the universal property, the same would be true for
R×P . This would prove, due to the uniqueness of the direct limit, that

(R×)P = lim−→
W3P

R(W )× ∼= R×P .
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Let g ∈ R×P be arbitrary. Since R×P ⊆ RP and the latter itself is a direct limit, we find a
representation of g as (g, Ui) with Ui being an open neighborhood of P and (g−1, Ui) being
its inverse. Hence (g, Ui) ∈ R(Ui)× is a preimage of g under ψi and can thus be mapped
to lim−→W3P R(W )× via φi. Since both (R×)P and R×P are direct limits, the choice of the
representation of g is irrelevant for the map and hence the latter is well-defined.

Lemma B.1.38. Let X be topological space and Ui, i ∈ I, an open cover of X. Let Fi
be sheaves on Ui and assume that for each i, j ∈ I with Ui,j := Ui ∩ Uj 6= ∅ we have an
isomorphism φi,j : (Fi)|Ui,j → (Fj)|Ui,j satisfying the cocycle conditions

φi,i = id and ∀ i, j, k ∈ I with Ui ∩ Uj ∩ Uk 6= ∅ : φj,k ◦ φi,j = φi,k.

Then there exists a sheaf F on X which is unique up to isomorphism such that there exists
isomorphisms ψi : F|Ui → Fi, i ∈ I with ψj ◦ ψ−1

i = φi,j on Ui,j.
The sections of F are defined as

F(U) =
{

(si)i∈I ∈
∐
i∈I
Fi(Ui ∩ U) | (sj)|U∩Ui,j = φi,j((si)|U∩Ui,j )

}

and F is called the sheaf glued from the Fi along the φi,j.

Proof. The assertion is easily verified with the definition of the sections of F given above.

Definition B.1.39. Let O be a presheaf of rings on the topological space X. Let F ,G
be two presheaves of O-modules on X. Then we define the presheaf tensor product of
presheaves of O-modules on X by the rule

U 7→ F(U)⊗O(U) G(U)

for every open subset U ⊆ X and denote it by F ⊗pO G. If O is a sheaf of rings and both
F and G are sheaves of O-modules, then we call the sheafification of the above presheaf
the tensor product of O-modules and denote it by F ⊗sO G or more commonly by
F ⊗O G. 4

The following lemma shows that it does not matter if we sheafify the presheaves F , G and
O and then form the tensor product or if we just sheafify right away the presheaf tensor
product of F and G over O.

Lemma B.1.40. Let O be a presheaf of rings on the topological space X. Let F ,G be two
presheaves of O-modules on X. Then we have an isomorphism

(F ⊗pO G)# −→ F# ⊗sO# G#.

Proof. We have a natural morphism of presheaves

F ⊗pO G −→ F# ⊗pO# G#

F(U) ⊗pO(U) G(U) −→ F#(U) ⊗O#(U) G#(U)

using the natural morphism θ : F → F# as in Lemma B.1.15. Since θP is an isomorphism
for all P ∈ X, it is obvious that the induced homomorphisms on the level of stalks are
isomorphisms of OP -modules. Then Lemma B.1.17 provides that the sheafifications are
isomorphic and since the sheafification of the codomain is by definition F# ⊗sO# G#, the
assertion follows.
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Let f : Y → X be a continuous map of topological spaces and H,F be two sheaves on X
such that H ≤ F . For the restriction resp. pullback of divisors we will later need that we
have a natural morphism of sheaves on X provided by the pushforward f∗:

f∗F/f∗H −→ f∗(F/H)

To explicitly see how this map works, we unpack the definitions of the quotient sheaf (as
a sheafification of a presheaf) in general and apply it to the quotients appearing above.

The definition of sheafification of a presheaf provides a description of the sections
of a sheafification over some open subset, see Lemma B.1.22, and thus gives us, using
Corollary B.1.23, the following lemma.

Lemma B.1.41. Let H,F be two sheaves (say of abelian groups) on a topological space
X such that H ≤ F . Then the sections of the quotient sheaf F/H (whose group law we
denote additively) over the open subset U ⊆ X are classes of families (Ui, si+H(Ui)) with
{Ui | i ∈ I} an open cover of U and si + H(Ui) ∈ F(Ui)/H(Ui) sections that agree on
overlaps, that is

(si)|Ui∩Uj − (sj)|Ui∩Uj ∈ H(Ui ∩ Uj)

for all i, j ∈ I. Two such families (Ui, si +H(Ui)) and (Vj , tj +H(Vj)) define the same
class if and only if for all i, j ∈ I we have (tj)|Ui∩Vj − (si)|Ui∩Vj ∈ H(Ui ∩ Vj).

Corollary B.1.42. Let f : Y → X be a morphism of schemes and F , H be OY -modules
or sheaves of abelian groups on Y . The sections of f∗F/f∗H over U ⊆ X open are classes
of families

(Ui, si +H(f−1(Ui)))

with {Ui | i ∈ I} an open cover of U and si + H(f−1(Ui)) ∈ F(f−1(Ui))/H(f−1(Ui))
sections that agree on overlaps, i.e. (si)|f−1(Ui∩Uj) − (sj)|f−1(Ui∩Uj) ∈ H(f−1(Ui ∩Uj)) for
all i, j ∈ I. Two such families

(Ui, si +H(f−1(Ui))) and (Vj , tj +H(f−1(Vj)))

define the same class if and only if for all i, j we have

(tj)|f−1(Ui∩Vj) − (si)|f−1(Ui∩Vj) ∈ H(f−1(Ui ∩ Vj)).

Corollary B.1.43. Let f : Y → X be a morphism of schemes and F , H be OY -modules
or sheaves of abelian groups on Y . Then (f∗(F/H))(U) = (F/H)(f−1(U)) consists of
classes of families

(Vi, si +H(Vi))

with {Vi | i ∈ I} an open cover of f−1(U) and si + H(Vi) ∈ F(Vi)/H(Vi) sections that
agree on overlaps, i.e. (si)|Vi∩Vj−(sj)|Vi∩Vj ∈ H(Vi∩Vj) for all i, j ∈ I. Two such families

(Vi, si +H(Vi)) and (Wj , tj +H(Wj))

define the same class if and only if for all i, j we have (tj)|Vi∩Wj
−(si)|Vi∩Wj

∈ H(Vi∩Wj).

We have seen above that the sections of both f∗(F/H) and f∗F/f∗H over the open subset
U ⊆ X are locally given by elements in F(Vi)/H(Vi) where Vi form an open cover of
f−1(U) and the local representations coincide on the overlaps. The difference is that for
f∗(F/H) the open subsets Vi covering f−1(U) may be arbitrary and for f∗F/f∗H they
need to be preimages of an open cover Ui of U . But this tells us that we can find a natural
map from the latter to the former.
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Proposition B.1.44. Let f : Y → X be a morphism of schemes and F , H be OY -modules
or sheaves of abelian groups on Y . We have a natural map φ : f∗F/f∗H −→ f∗(F/H)
with φ(U) sending (Ui, si +H(f−1(Ui))) to (f−1(Ui), si +H(f−1(Ui)).

Proof. Let (Ui, si +H(f−1(Ui)) ∈ (f∗F/f∗H)(U) with U =
⋃
i∈I Ui. Then f−1(Ui), i ∈ I

defines an open cover of f−1(U) and thus (f−1(Ui), si + H(f−1(Ui)), i ∈ I, does indeed
define an element in (f∗(F/H))(U). If (Wj , tj + H(f−1(Wj))), j ∈ J , defines the same
element in (f∗F/f∗H)(U) as (Ui, si +H(f−1(Ui))) does, then for all i ∈ I, j ∈ J we have
(si)|f−1(Ui∩Wj) − (tj)|f−1(Ui∩Wj) ∈ H(f−1(Ui ∩Wj)). Now (f−1(Wj), tj + H(f−1(Wj))),
j ∈ J , defines the same element as (f−1(Ui), si +H(f−1(Ui))) does: For all i ∈ I, j ∈ J
we have

(tj)|f−1(Ui)∩f−1(Wj) +H(f−1(Ui ∩Wj)) = (tj)|f−1(Ui∩Wj) +H(f−1(Ui ∩Wj))
= (si)|f−1(Ui∩Wj) +H(f−1(Ui ∩Wj))
= (si)|f−1(Ui)∩f−1(Wj) +H(f−1(Ui ∩Wj)).

That φ is compatible with the restriction maps follows immediately since the sections in
question stay the same: For (Ui, si) as a section of f∗F/f∗H over U with cover Ui and
V ⊆ U we have the following diagram which obviously commutes and thus provides the
assertion:

(Ui, si +H(f−1(Ui))) (f−1(Ui), si +H(f−1(Ui)))

(Ui ∩ V, (si)|Ui∩V +H(f−1(Ui ∩ V ))) (f−1(Ui ∩ V ), (si)|Ui∩V +H(f−1(Ui ∩ V )))

φ(U)

resF/H,f−1(Ui),f−1(Ui∩V ) resF/H,f−1(Ui),f−1(Ui∩V )

φ(V )

Corollary B.1.45. If every open cover of f−1(U) is induced by an open cover of U , e.g.
f is the morphism embedding Y as a subscheme in X (open or closed), then the morphism
in Proposition B.1.44 maps as the identity and induces an isomorphism.

B.2 Sheaves on Schemes

We omit the definition of schemes and its fundamental properties.

Definition B.2.1. Let X be a scheme. By X0 we denote the set of generic points of the
irreducible components of X. By X0 we denote the set of closed points of X. 4

Proposition B.2.2. Let X be a locally noetherian scheme with a finite number of irre-
ducible components, e.g. X noetherian. Furthermore, assume that X has no embedded
points. For η ∈ X0 let jη : Spec(OX,η)→ X denote the canonical map of schemes. Then

(i) KX =
⊕
η∈X0

(jη)∗OX,η =
∏

η∈X0
(jη)∗OX,η,

(ii) KX(U) =
⊕

η∈U∩X0
OX,η =

⊕
η∈U∩X0

Frac(OX,η), for U ⊆ X open,

(iii) KX,P := (KX)P = Frac(OX,P ),

(iv) KX is a quasi-coherent sheaf of OX-algebras, and

(v) KX(U) = Frac(OX(U)) for every affine open U ⊆ X.
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Proof. Since X is locally noetherian, the weakly associated points of X coincide with the
associated points of X, see [Sta18, Tag 05AR]. Moreover, each of these is by assumption
a generic point of an irreducible component of X. Hence the requirements for X in
[Sta18, Tag 0EMF] are met. All of the assertions are proven there. The only exception is
Item (ii) which directly follows from Item (i) and the definitions:

((jη)∗OX,η) (U) = OX,η(j−1
η (U)) =

{
OX,η(Spec(OX,η)) = OX,η, η ∈ U
OX,η(∅) = 0, η 6∈ U

Note that the assumption we impose on X are stronger than the one given in [Sta18, Tag
0EMF], see [Sta18, Tag 05AR].

Corollary B.2.3. Let X and the notation be as in Proposition B.2.2 with X1, . . . , Xm

being the irreducible components of X. Let τi : Xi → X denote the closed immersion
corresponding to Xi. Then KX =

⊕m
i=1(τi)∗KXi.

Proof. Let ηi denote the generic point of Xi and by ji = jηi : Spec(OXi,ηi)→ X we denote
the natural morphism. The latter obviously factors through Xi, i.e. ji = τi◦ji,η with ji,ηi :
Spec(OXi,ηi)→ Xi. By definition, we have KXi = (ji,ηi)∗OXi,ηi and by Proposition B.2.2
(i), we have

KX =
m⊕
i=1

(ji)∗OX,ηi =
m⊕
i=1

(τi ◦ ji,ηi)∗OX,ηi =
m⊕
i=1

(τi)∗ ((ji,ηi)∗OX,ηi)︸ ︷︷ ︸
=KXi

.

Lemma B.2.4. The sheaves KX and K×X are both flasque and satisfy H i (X,KX) = 0 and
H i
(
X,K×X

)
= 1 for all i > 0.

Proof. The statement about the cohomology groups follows from [Har77, III 2.5] once we
have shown the flasqueness of KX and K×X . First of all, by Lemma B.1.37, K×X is indeed
a sheaf of rings on X. By Proposition B.2.2 (ii), the restriction maps KX(V ) → KX(U)
for open U ⊆ V are given by the identity map whenever U ∩X0 = V ∩X0 and otherwise
by projecting. Hence the restriction maps are surjective and thus KX is flasque. By
Proposition B.2.2 (ii), KX(U) is the direct sum of its localisations at points in U ∩ X0.
Thus

(K×X)(U) = KX(U)× =
(⊕

η∈U∩X0
KX,η

)×
=
⊕

η∈U∩X0
K×X,η =

⊕
η∈U∩X0

(K×X)η

and hence for K×X , as for KX before, its sections are given by a finite sum of its localisations
which analogously to the argument above provide that the restriction maps of K×X are
surjective and therefore, that K×X is flasque as well.

Lemma B.2.5. Let X be a locally noetherian scheme. Then for every open subscheme
U ⊆ X with open immersion i : U ↪→ X the following are equivalent.

(i) U is schematically dense in X,

(ii) i# : OX → i∗OU is injective, and

(iii) for every open subscheme V ⊆ X the only closed subscheme Y of V such that
U ∩ V ⊆ Y is V itself.

Proof. The proof is the combination of [Liu02, 7.1.9] and [GW10, 9.19].

Lemma B.2.6. Let X be a locally noetherian scheme. Let i : U ↪→ X be the open
immersion of a schematically dense open subset U ⊆ X. Then
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(i) KX ∼= i∗KU , i∗K×U = (i∗KU )× ∼= K×X ,

(ii) OX → i∗OU as well as O×X → (i∗OU )× = i∗O×U are injective, and

(iii) all the above provide a monomorphism i∗O×U /O
×
X ↪→ K×X/O

×
X .

Proof. The isomorphism KX ∼= i∗KU is [Liu02, 7.1.15] and the injectivity of OX → i∗OU
(this is even an if and only if) is [Liu02, 7.1.9]. The identities i∗K×U = (i∗KU )× and
(i∗OU )× = i∗O×U follow by definition. Now since injectivity can be checked at the level of
stalks, Lemma B.1.37 provides the second assertion. Now we prove the last assertion. The
monomorphism O×U ↪→ K×U provides the monomorphism i∗O×U ↪→ i∗K×U which composed
with the isomorphism i∗K×U → K

×
X provides the monomorphism i∗O×U ↪→ K×X . The latter

morphism is compatible with the monomorphisms O×X ↪→ i∗O×U and O×X ↪→ K×X in the
sense that the diagram

i∗O×U K×X

O×X O×X
id

is commutative. Now composing i∗O×U ↪→ K×X with the projection K×X → K
×
X/O

×
X provides

the desired monomorphism i∗O×U /O
×
X ↪→ K×X/O

×
X .

Remark B.2.7. For a more detailed and elaborated analysis of the third statement of
Lemma B.2.6, we refer the reader to Proposition 5.3.1. 4

Lemma B.2.8. Let F be a skyscraper sheaf on the scheme X. Then for i > 0 we have
H i (X,F) = 0.

Proof. Obviously, skyscraper sheaves are flasque since their restriction maps are given by
projecting. Now [Har77, III 2.5] provides the assertion.

Lemma B.2.9 ([Sta18], Tag 0AVL). Let X be a locally noetherian scheme. Let ϕ : F → G
be a map of quasi-coherent OX-modules. Assume that for every x ∈ X at least one of the
following happens

1. Fx → Gx is injective, or

2. x 6∈ Ass(F).

Then ϕ is injective.

B.3 Irreducible Components

Let X and Y be two schemes. Let Ui form an open cover of Y and let fi : Ui → X be
morphisms of schemes. If the fi agree on intersections, i.e. for all i, j we have (fi)|Ui∩Uj =
(fj)|Ui∩Uj , then there is a unique morphism of schemes f : Y → X such that f|Ui = fi.

We can use this property of gluing morphisms of schemes to obtain a natural map
from the disjoint union of the irreducible components of a scheme X to X itself: Let X be
a scheme with finitely many irreducible components X1, . . . , Xm and closed immersions
τi : Xi → X. By Y we denote the disjoint union of the X1, . . . , Xm. Obviously, the Xi are
open since their complements are finite unions of closed subsets (here we need that Y is
the disjoint union). Moreover, they cover Y and we have morphisms τi : Xi → X which
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agree on intersections since these are empty. Hence there is a unique morphism τ : Y → X
such that the following diagram commutes:

Xi Y =
⊔m
i=1Xi

X

τi

υi

τ

Here υi denotes the inclusion map which is both an open and a closed immersion of the
connected and irreducible component Xi of Y respectively.

The structure sheaf OY of Y is given by the direct sum of the structure sheaves of the
Xi, that is OY =

⊕m
i=1OXi with OY (U) =

⊕m
i=1OXi(U ∩Xi). Moreover, the restriction

map for V ⊆ U is given by the sum of the restriction maps of OXi .
The corresponding morphisms of structure sheaves OX → (τi)∗OXi , OY → (υi)∗OXi

and OX → τ∗OY satisfy that the composed morphism

OX → τ∗OY → τ∗((υi)∗OXi) = (τ ◦ υi)∗OXi

equals OX → (τi)∗OXi . That is, for every open subset U ⊆ X the following diagram
commutes:

OX(U)
⊕m

i=1OXi(U ∩Xi)

OXi(U ∩Xi)

τ#

τ#
i

υ#
i

We fix this situation in a definition where we intentionally omit the morphisms υi.

Definition B.3.1. Let X be a scheme with finitely many irreducible components Xi,
i = 1, . . . ,m and closed immersions τi : Xi → X. By Y we denote the disjoint union of
the components of X and the morphism glued together from the closed immersions τi is
denoted by τ : Y → X. It comes with a morphism of sheaves

OX → τ∗OY =
m⊕
i=1

(τi)∗OXi

which is the product of the morphisms OX → (τi)∗OXi . That is, for U ⊆ X open with
I = {i ∈ {1, . . . ,m} : U ∩Xi 6= ∅} it maps

OX(U) →
⊕

i∈I OXi(U ∩Xi) =
⊕

i∈I OX(U)/Pi
f 7→ (f + Pi)i∈I

(3:3)

where {Pi | i ∈ I} denote the minimal prime ideals of OX(U). 4

Proposition B.3.2. The morphism τ : Y → X as in Definition B.3.1 is finite.

Proof. Note that being a finite morphism is a local property in the sense that it is equiv-
alent to finding an affine open cover for which the induced morphisms are finite, see
[Sta18, Tag 01WI]. Furthermore, closed immersions are finite morphisms, see [Sta18, Tag
035C]. Since the affine open covers of the Xi yield an affine open cover of Y , we obtain
that τ : Y → X is a finite morphism.

Proposition B.3.3. The morphism OX → τ∗OY as in Definition B.3.1 is injective if and
only if X is reduced.

Proof. The ring homomorphisms OX(U) →
⊕

i∈I OX(U)/Pi as in Eq. (3:3) have kernel⋂
i∈I Pi. Hence the kernel is the nilradical of OX(U) which is zero if and only if OX(U) is
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reduced. By [Liu02, 2.4.2], this holds for every open subset U ⊆ X of X if and only if X
is reduced.

Since the morphism OX → τ∗OY is injective whenever X is reduced, we consider the
corresponding exact sequence of sheaves:

Definition B.3.4. Let X be a reduced scheme with finitely many irreducible components
Xi, i = 1, . . . ,m. Let Y =

⊔m
i=1Xi be as in Definition B.3.1. By S = SY/X we denote

the cokernel of the injective morphism OX → τ∗OY =
⊕m

i=1(τi)∗OXi . Hence we have an
exact sequence of sheaves

0 −→ OX −→
m⊕
i=1

(τi)∗OXi −→ S −→ 0. (3:4)
4

Lemma B.3.5. Let the situation be as in Definition B.3.1. We have an isomorphism

(τ∗OY )P =
⊕
P∈Xi

OX,P /Ji,P

where Ji denotes the sheaf of ideals on X that cuts out the irreducible component Xi.
Moreover, by Ji,P we denote the stalk of Ji at P .

Proof. Since direct limits commute with direct sums, we have

(τ∗OY )P =
m⊕
i=1

((τi)∗OXi)P =
m⊕
i=1

(OX/Ji)P ,

and since (OX/Ji)P = 0 for all P /∈ Xi, we obtain the desired result.

Remark B.3.6. Let X be a scheme with finitely many irreducible components Xi, i =
1, . . . ,m. Let Xi := X \

⋃m
j 6=iXj ⊆ Xi and set U i := U ∩Xi for any U ⊆ X. Since there

are only a finite number of irreducible components, Xi is open in X and hence U i is open
for any open U ⊆ X. By construction, U i has no intersection with any other irreducible
component of X. That is, the family of non-empty open subsets of X that meet Xi has
a cofinal subfamily consisting of those open and non-empty subsets meeting Xi and no
other irreducible component. Now computing direct limits for a given directed set is (up
to isomorphism) the same as computing it for a cofinal subset. Therefore, whenever we
consider a direct limit running over all open neighborhoods of a generic point ηi of Xi of
X, then we might as well compute it via running over all open subsets of X that only
meet Xi and no other irreducible component. 4
In Corollary 3.2.15 we will see that the morphism OX → τ∗OY will extend to KX → τ∗KY .
But by the definition of the sheaf KX , we will see that the sheaves KX and τ∗KY are
isomorphic when we take into account that the respective local rings at the same generic
point of X are isomorphic as the following lemma shows.

Lemma B.3.7. Let X be a reduced scheme with irreducible components X1, . . . , Xm. Let
Y denote the disjoint union of the Xi, see Definition B.3.1. Then for any generic point
ηi of Xi we have

OXi,ηi ∼= OX,ηi ∼= OY,ηi
where we identified the generic point ηi of Xi with the corresponding generic point of X
and Y .
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Proof. In Remark B.3.6 we have seen that we might compute the respective direct limits
via the cofinal directed set of those open subsets which are contained in Xi and do not
meet any other irreducible component of X. Hence

OY,ηi = lim−→⊔m
j=1 Uj⊆Y open

OY (tmj=1Uj) = lim−→⊔m
j=1 Uj⊆Y open

m⊕
j=1
OXi(Ui)

Remark B.3.6 ∼= lim−→
Ui⊆Xi open in Xi

OXi(Ui)

= OXi,ηi .

Now the surjective morphism OX → (τi)∗OXi gives a surjective homomorphism of rings
OX,ηi → OXi,ηi . But since both X and Xi are reduced, the rings OX,ηi and OXi,ηi are
fields, see Lemma B.4.29. But any ring homomorphism of fields is clearly injective and
thus we obtain the desired isomorphism.

Corollary B.3.8. The morphism KX → τ∗KY is an isomorphism of sheaves on X.

Proof. This follows from Proposition B.2.2 and Lemma B.3.7.

B.4 Commutative Algebra

The following Theorem is called the Nullstellensatz in its general form, it can be found in
[Eis95, 4.5]. A Jacobson ring is a ring in which every prime ideal is the intersection of
maximal ideals. This is trivially true for fields.

Theorem B.4.1. Let R be a Jacobson ring. Let f : R→ S make the ring S into a finitely
generated R-algebra. Then S is a Jacobson ring. Further, if n ⊆ S is a maximal ideal,
then f−1(n) is a maximal ideal of R, and S/n is a finite field extension of R/f−1(n).

Corollary B.4.2. Let f : A → B be a k-algebra homomorphism of the finite k-algebras
A and B. Then f−1(m) is a maximal ideal of A for every maximal ideal m of B.

Proof. Without loss of generality, we assume that k ⊆ A and k ⊆ B such that the
embedding is compatible with f . We can regard C = A/f−1(m) as a k-subalgebra of the
field B/m. Hence we have ring extensions k ↪→ C ↪→ B/m. By Theorem B.4.1, B is a
Jacobson ring and the extension B/m over k is a finite extension of fields. In particular,
the dimension of B/m over k is finite and thus the same is true for C. This already implies
that C is a field: Every non-zero element in C provides via multiplication an injective k-
vector space automorphism (since C is a domain as it is contained in a field) which is
thus also surjective. This provides an inverse element and hence C is a field. Whence
A/f−1(m) is a field and therefore f−1(m) a maximal ideal of A.

Definition B.4.3. Let R be a k-algebra. We call R a k-algebra of finite residual-type
or a finite residual-type k-algebra if for all maximal ideals P ∈ Spec(R)0 the k-vector
space R/P ∼= RP /PRP has finite dimension. 4

Lemma B.4.4. Every finitely generated k-algebra is a finite residual-type k-algebra.

Proof. Let f : k → R be the k-algebra homomorphism that makes R into a k-algebra.
Then, by Theorem B.4.1, we see that for any maximal ideal P ∈ Spec(R)0 the k-vector
space R/P has finite dimension. However, we have RP /PRP ∼= R/P as rings since lo-
calisation commutes with taking quotients, see [Sta18, Tag 00CT]. This proves the asser-
tion.
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Lemma B.4.5 (Prime Avoidance lemma, see [Sta18] Tag 00DS). Let R be a ring. Let
Ii ⊆ R, i = 1, . . . , r, and J ⊆ R be ideals. Assume

(i) J 6⊆ Ii for i = 1, . . . , r, and

(ii) all but two of Ii are prime ideals.

Then there exists an x ∈ J such that x /∈ ∪ri=1Ii. In particular, if J ⊆ ∪ri=1Ii, then J ⊆ Ii
for some i.

Lemma B.4.6. Let R be a semi-local commutative ring, that is, R has only a finite
number of maximal ideals. Then every invertible fractional ideal of R is principal.

Proof. Suppose that I ⊆ Frac(R) is a non-zero invertible ideal of R with inverse J ⊆
Frac(R), i.e. IJ = R. We denote the maximal ideals by m1, . . . ,m`. For all j ∈ {1, . . . , `}
there are aj ∈ I and bj ∈ J such that ajbj ∈ R\mj since otherwise IJ ⊆ mj . Moreover, we
find λji ∈ mj\(mj∩mi) for all j 6= i and can set λi =

∏
j 6=i λji with λi ∈ mj for all j 6= i and

λi /∈ mi. Let a =
∑`

i=1 λiai ∈ I and b =
∑`

j=1 λjbj ∈ J . Then we have ab =
∑

i,j λiλjaibj .
By construction, λiλiaibi /∈ mi and for j 6= i we have λiλjaibj ∈ mi, that is ab /∈ mi for all
i ∈ {1, . . . , `}. Whence ab is a unit in R and thus I = abI ⊆ aIJ = aR which together
with aR ⊆ I yields the assertion.

Lemma B.4.7. Let k be a field. Let R be a noetherian k-algebra of Krull dimension
one. Let I be an ideal of R such that R/I has Krull dimension zero. Then for all A ∈
{Spec(R), V (I),Spec(R)0} we have

R/I ∼=
⊕
P∈A

RP /IP .

Moreover, if R is of finite residual-type (e.g. R is a finite k-algebra, see B.4.4), then for
all such A the sum

dimk R/I =
∑
P∈A

dimk RP /IP

is finite.

Proof. By assumption, the quotient R/I has Krull dimension zero. Since any noetherian
ring of dimension zero is artinian, see [Sta18, Tag 00KH], R/I is artinian. Then, by
[Sta18, Tag 00JB], we have R/I ∼=

⊕
P∈V (I)RP /IP . For any P ∈ Spec(R) not contained

in V (I) the quotient RP /IP is trivial since IP then is equal to RP . Hence we might also
let P run through all prime ideals of R. Every ideal in V (I) is maximal and thus we might
also let P only run over all maximal ideals of R. This proves the first assertion.

Now assume that the residue class fields of R, i.e. R/P ∼= RP /PRP for P ∈ Spec(R),
have finite dimension over k. We are left to prove that S = RP /IP has finite dimension
over k. By [Sta18, Tag 00KJ], S is a zero-dimensional and local artinian ring whose
maximal ideal m is nilpotent. Denote by κ = S/m the residue class field of S which is a
finite dimensional k-vector space since it is isomorphic to RP /PRP . We obtain a filtration
of the k-vector space S

0 = mn ( mn−1 ( . . . ( m2 ( m ( S

whose quotients κ and mi/mi+1 have finite k-dimension: Indeed, dimk κ is finite by as-
sumption and the κ-vector spaces mi/mi+1 = mi/mmi are of finite dimension since m
(recall that R and thus S is noetherian) and thus mi is finitely generated as an S-module.
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In particular, the multiplicativity of the dimension of vector spaces implies that mi/mi+1

is also of finite dimension over κ. We have a short exact sequence of k-vector spaces

0 −→ m −→ S −→ κ −→ 0

which yields (since κ is a free module over k and thus projective, i.e. the short exact
sequence splits) S ∼= m ⊕ κ as k-vector spaces. Hence S is of finite k-dimension if both
κ and m are. Since κ is finite-dimensional over k, it is left to show that m is finite-
dimensional over k. But the same argument shows that m is finite-dimensional over k if
both m2 and m/m2 are. Proceeding as above (or using induction) we see that S is finite-
dimensional over if all quotients mi/mi+1 are (since mn = 0) and this has already been
proven above.

Proposition B.4.8. Let R be a ring with I ⊆ R being an ideal. Let M be an R-module.
Then M ⊗R R/I and M/IM are isomorphic as R-modules and as R/I-modules.

Proof. We have the canonical exact sequence

0 −→ I −→ R −→ R/I −→ 0

of R-modules. Now tensoring this sequence withM over R provides, by [Sta18, Tag 00DF],
an exact sequence

I ⊗RM
φ−→ R⊗RM

ψ−→ R/I ⊗RM −→ 0

with φ(r⊗m) = r⊗m and ψ(r⊗m) = (r+ I)⊗m. We identify R⊗RM with RM = M
and under this identification we have φ(I⊗RM) = IM . Hence the exactness of the above
sequence implies

M ⊗R R/I ∼= ψ(M) ∼= M/ ker(ψ) = M/φ(I ⊗RM) = M/IM.

Clearly, both M/IM and M ⊗R R/I are R/I-modules. The isomorphism we obtain from
above is given by

M ⊗R R/I →M/IM, m⊗ (r + I) 7→ rm+ IM

which is clearly also R/I-linear providing the last part of the assertion.

Lemma B.4.9. Let n =
∑m

i=1 ni. Given two matrices A = (Ai,j)i,j , B = (Bi,j)i,j ∈
k[x]n×n in n-block-form, see Definition 4.4.6, we can multiply those by treating their block
entries as entries of a normal matrix, that is

AB = (Ci,j)i,j with Ci,j =
m∑
`=1

Ai,` ·B`,j .

Proof. The (i, j)-entry of the product AB of two arbitrary matrices A,B with compatible
dimensions is given by the product of the i-th row of A with the j-th column of B. This
directly provides the assertion.

Lemma B.4.10. Let B ⊇ A be a finite ring extension such that A is a domain with field
of fractions Frac(A) = K. Then B ⊗A K = Frac(B).

Proof. By assumption, B⊗AK is a finite dimensional K-vector space. Since B ⊆ B⊗AK,
we have Frac(B) ⊆ Frac(B⊗AK) and hence it suffices to show Frac(B⊗AK) = B⊗AK.
To do this, we show that every regular element of B ⊗A K is invertible: By assumption,
the linear map given by multiplying with a regular element is injective and hence by the
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rank-nullity theorem also surjective. This provides an inverse linear map corresponding
to an inverse element.

Lemma B.4.11. Let N ⊆M be two free k[x]-modules of the same rank n. Let T be a basis
transformation matrix from a basis of M to a basis of N . Then dimkM/N = deg detT .

Proof. Let m1, . . . ,mn and n1, . . . , nn be bases of M respectively N such that

(m1, . . . ,mn) · T = (n1, . . . , nn). (4:5)

Let S = diag(f1, . . . , fn) denote the Smith-Normal-Form of T , then Eq. (4:5) becomes

(m̃1, . . . , m̃n) · S = (ñ1, . . . , ñn). (4:6)

with m̃1, . . . , m̃n and ñ1, . . . , ñn bases ofM respectively N . Note that we have deg detT =
deg detS =

∑n
i=1 deg fi. Now we obviously have

M/N =
⊕n

i=1 m̃ik[x]⊕n
i=1 ñik[x] =

⊕n
i=1 m̃ik[x]⊕n
i=1 m̃ifik[x]

∼=
n⊕
i=1

m̃ik[x]
m̃ifik[x]

∼=
n⊕
i=1

k[x]
fik[x]

and the latter has dimension
∑n

i=1 deg fi over k. This provides the assertion.

Definition B.4.12. Let R be a noetherian ring and M a finite R-module. Let i ≥ 0 be
an integer. Then we say that M has property Sk or is Sk if for every prime ideal P of R
we have depthRP (MP ) ≥ min{i,dim Supp(MP )}. 4

To prove that every minimal prime ideal of any ring solely consist of zero-divisors, we cite
a result which we will use.

Lemma B.4.13 ([Kap70], Theorem 84). Let R be a ring and let M be a non-zero R-
module. Let P be a prime ideal of R which is minimal over AnnR(M). Then P is
contained in the set of zero-divisors of R.

Corollary B.4.14. Let R be a ring. Then any minimal prime ideal of R solely consists
of zero-divisors.

Proof. ConsiderM = R as an R-module. Then AnnR(M) = 0 and thus, by Lemma B.4.13,
any prime ideal of R which is minimal over 0 is contained in the set of zero-divisors of R.
But the prime ideals of R that are minimal over 0 are exactly the minimal prime ideals of
R.

In a reduced ring, we also have that every zero-divisor is contained in some minimal prime
ideal.

Lemma B.4.15 ([Sta18], Tag 00EW). Let R be a reduced ring. Then the union of the
minimal prime ideals of R equals the set of zero-divisors of R.

We can extend the definition of zero-divisor to modules.

Definition B.4.16. Let R be a ring and let M be an R-module. An element a ∈ R is
called a zero-divisor on M if there is some non-zero m ∈M such that am = 0 in M . 4

We want to call a moduleM on which this cannot happen to be torsion-free. But since any
zero-divisor pair a, b of R with ab = 0 provides (independently of M !) zero-divisors a, b on
M with a · (bm) = 0, we restrict the definition to those elements not being zero-divisors
in R:
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Definition B.4.17. Let R be a ring and letM be an R-module. We sayM is a torsion-free
R-module or torsion-free over R if any zero-divisor on M is a zero-divisor in R. 4

Every annihilator AnnR(m) of an elementm ∈M is an ideal only consisting of zero-divisors
on M . Obviously, the union of all such annihilators provides the set of zero-divisors on
M . Whenever R is noetherian, the set of all such annihilator ideals has maximal elements
which turn out to be prime ideals and are called the associated primes ofM . This provides
the following lemma.

Lemma B.4.18 ([Sta18], Tag 00LD). Let R be a noetherian ring and M an R-module.
Then the set of zero-divisors on M is equal to

⋃
P∈AssR(M) P .

Definition B.4.19. Let R be a ring and M an R-module. The elements of AssR(M)
which are not minimal in AssR(M) are called the embedded associated primes of M or
sometimes short embedded primes of M . 4

The following lemma and its corollary draw a connection between being torsion-free and
being S1.

Lemma B.4.20 ([Sta18], Tag 031Q). Let R be a noetherian ring andM a finite R-module.
Then M is S1 if and only if M has no embedded primes.

A direct implication of the definition of torsion-free and Lemma B.4.18 is:

Corollary B.4.21. Let R be a noetherian ring satisfying S1 and M a torsion-free R-
module. Then every associated prime of M is a minimal prime ideal of R. In particular,
M has no embedded primes and thus, if M is finite, by Lemma B.4.20, satisfies S1.

Proof. By definition, the set of zero-divisors on M is a subset of the set of zero-divisors in
R. Since R satisfies S1, it has no embedded primes and thus, by Lemma B.4.18, the set of
zero-divisors in R is the union of the minimal primes of R. Hence every associated prime of
M is contained in the union of the minimal primes of R. Thus the prime avoidance lemma
Lemma B.4.5 provides that every associated prime ofM is contained in and hence equal to
a minimal prime of R. The particular part follows immediately from Lemma B.4.20.

Lemma B.4.22 ([BH98], Proposition 1.2.1). Let R be a noetherian ring and M a finite
R-module. If an ideal I ⊆ R consists of zero-divisors on M , then I ⊆ p for some p ∈
AssR(M).

Lemma B.4.23. Let R be a noetherian ring satisfying S1. Let M be an R-module. If
M is torsion-free over R, then AssR(M) ⊆ Spec(R)0. Conversely, if M is finite over R,
then AssR(M) ⊆ Spec(R)0 implies that M is torsion-free over R. In particular, any finite
R-module M is torsion-free if and only if AssR(M) ⊆ Spec(R)0.

Proof. LetM be torsion-free and P ∈ AssR(M). By Corollary B.4.21, we have AssR(M) ⊆
Spec(R)0 and M satisfies S1. Conversely, let M be finite over R such that AssR(M) ⊆
Spec(R)0. Let a ∈ R be a zero-divisor on M with non-zero m ∈ M such that am = 0.
Then aR ⊆ AnnR(m) and hence it solely contains zero-divisors on M . By Lemma B.4.22,
aR is contained in an associated prime of M . Hence, by assumption, a ∈

⋃
p∈Spec(R)0 p is

a zero-divisor.

The following proposition shows that being torsion-free is a local property whenever the
ground ring satisfies S1, is noetherian and of dimension one.

Proposition B.4.24. Let R be a noetherian ring of dimension one which satisfies S1 and
letM be a finite R-module. ThenM is torsion-free over R if and only ifMP is torsion-free
over RP for all maximal ideals P in R.
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Proof. By Lemma B.4.23, M is torsion-free over R if and only if AssR(M) ⊆ Spec(R)0.
Since R is noetherian, by [Sta18, Tag 0310], we have P ∈ AssR(M) if and only if PRP ∈
AssRP (MP ). The minimal primes of RP correspond to the minimal primes of R contained
in P . Assume that M is torsion-free and thus AssR(M) ⊆ Spec(R)0. Let P be a maximal
ideal of R and QRP ∈ AssRP (MP ). Then QRP is either a minimal prime in RP and thus
minimal in R or Q = P . If Q = P , by [Sta18, Tag 0310], P ∈ AssR(M) which is minimal
by assumption.

Conversely, assume that AssRP (MP ) ⊆ Spec(RP )0 for all maximal ideals P of R. Let
P ∈ AssR(M) be arbitrary. By [Sta18, Tag 0310], we have that PRP ∈ AssRP (MP ) ⊆
Spec(R)0 is minimal in RP and thus minimal in R.

Injectivity of module homomorphisms is decided at the prime ideals not associated to the
domain. The proof was adopted from the statement [Sta18, Tag 0AVL] which states this
fact for quasi-coherent OX -modules on a locally noetherian scheme.

Lemma B.4.25. Let R be a noetherian ring and M,N two R-modules together with an
R-module homomorphism f : M → N . Then f is injective if and only if the induced
homomorphism fP : MP → NP is injective for all P ∈ AssR(M).

Proof. Clearly, if f is injective, then fP : MP → NP is injective for all prime ideals of
R. Conversely, consider the R-module K = ker(f) ≤ M . By assumption, KP = 0 for all
P ∈ AssR(M). For every R-module, the associated primes are a subset of the support.
Now any associated prime of K is an associated prime ofM and hence AssR(K) = ∅ which
is only possible for the zero module since R is noetherian, see [Sta18, Tag 0587].

Lemma B.4.26. Let R be a noetherian ring and M a finite R-module. If MP is isomor-
phic to RP as RP -modules for some P ∈ Spec(R), then there is some f ∈ R \P such that
Mf
∼= Rf .

Proof. First we choose h ∈ R \P such that λ : Mh →MP is injective as follows: Consider
the coherent sheaves M∼ and M∼P on X = Spec(R) where the latter is the skyscraper
sheaf located at P ∈ X. The localisation homomorphism λP : M → MP provides a
morphism of sheaves φ : M∼ → M∼P . Obviously, φP = id and thus the sheaf ker(φ)
satisfies ker(φ)P = 0. Now since ker(φ)P = lim−→h∈R\P ker(φ)h, we know that there is some
h ∈ R \ P such that ker(φ)h = 0 and thus λ : Mh →MP is injective.

Let x1, . . . , xm be a generating set of Mh as an Rh-module and let m/r be a generator
of MP over RP . There are are uniquely determined ai/si such that

λ(xi) = ai
si

m

r
.

Now set g = r
∏m
i=1 si and then we see that m generates Mhg over Rhg. In particular, we

have an exact sequence
0→ K → Rhg →Mhg → 0

where the map Rhg → Mhg sends 1 to m. Now localising at P we see that KP = 0
and since K is finitely generated, there is some b ∈ R \ P such that Kb = 0. Now set
f = ghb ∈ R \ P and we obtain Mf

∼= Rf as asserted.

Remark B.4.27. Lemma B.4.26 holds more generally. The statement stays true if we
replace MP is isomorphic to RP with MP is isomorphic to RrP for some r ≥ 1 which then
provides Mf

∼= Rrf . The proof is basically the same and we just need to take care about
the denominators of all of the basis elements of MP . 4

Proposition B.4.28 ([Sta18], Tag 0311). Let R be a noetherian ring and let M be an
R-module. Then the canonical map M →

∏
P∈AssR(M)MP is injective.
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Lemma B.4.29 ([Sta18], Tag 00EU ). Let R be a reduced ring and let P be a minimal
prime of R. Then RP is a field.

Corollary B.4.30. Let R be a reduced ring and let P be a minimal prime of R. Let M
be an R-module. Then (M/PM)P ∼= MP .

Proof. We know that M/PM ∼= M ⊗R R/P and hence we obtain

(M/PM)P ∼= MP ⊗RP RP /PRP = MP ⊗RP RP = MP

where we have used PRP = 0 since RP was a field, see Lemma B.4.29.

Lemma B.4.31. Let R be a reduced noetherian ring and let P be a minimal prime ideal
of R. Then

φ : (R/P )P (R/P ) → RP
r+P
s+P 7→ r

s
(4:7)

is an isomorphism of rings.

Proof. By Lemma B.4.29, we know that PRP = 0 and thus φ is well-defined. It is obviously
surjective. Moreover, if r/s = 0 in RP , then there is some t ∈ R \P such that tr = 0 in R.
In particular, t+P 6= 0+P and (t+P )(r+P ) = 0 in R. Since R/P is an integral domain,
φ is therefore injective as well. Finally, the homomorphism property is evident.

Lemma B.4.32. Let R be a reduced noetherian ring and let P be a minimal prime ideal
of R. Let M be a finite R-module which is invertible at P . Then MP can be considered
as an R/P -module and

φ : (M/PM)P (R/P ) → MP
m+PM
r+P 7→ m

r .
(4:8)

is an isomorphism of R/P -modules.

Proof. First of all, RP is an R/P -algebra and as such, isomorphic to Frac(R/P ). We
have a map R/P → RP that maps r + P to r/1 and since PRP is the zero ideal, see
Lemma B.4.29, we see that it is indeed well-defined. Moreover, it is an injective ring
homomorphism. The homomorphism property is evident and if r/1 = 0 in RP , then there
is some s ∈ R\P such that rs = 0 in R. In particular, rs ∈ P and thus r ∈ P . This makes
RP into an R/P -algebra. Now since MP = M ⊗R RP , we see that MP also carries the
structure of an R/P -module and we have PMP = 0 since PRP = 0, see Lemma B.4.29.
The scalar multiplication is thus defined by (s + P ) · (m/r) = (sm)/r. Now consider the
map φ from Eq. (4:8). Since PMP = 0, we know that φ is well-defined. It is obviously
surjective. If m/r = 0 in MP , then there is some s ∈ R \ P such that sm = 0 in M . In
particular, s+P 6= 0 +P and (s+P )(m+PM) = 0 in M/PM . Hence φ is also injective.
Finally, we prove that φ is R/P -linear. Let s+P ∈ R/P , (m+PM)/(r+P ) be arbitrary.
Then

φ

(
(s+ P ) · m+ PM

r + P

)
= φ

(
sm+ PM

r + P

)
= sm

r
.

Moreover,

(s+ P ) · φ
(
m+ PM

r + P

)
= (s+ P ) · m

r
= sm

r

which completes the proof.
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Corollary B.4.33. Let R be a reduced noetherian ring and let M be a torsion-free R-
module. Let P be a minimal prime of R. If M is invertible at P , then M/PM is invertible
at P (R/P ).

Proof. By Lemma B.4.32, we have (M/PM)P (R/P ) ∼= MP and, by Lemma B.4.31, we have
(R/P )P (R/P ) ∼= RP . The latter isomorphism is also an isomorphism of RP -modules and
thus we obtain

(M/PM)P (R/P ) ∼= MP
∼= RP ∼= (R/P )P (R/P )

as asserted.

Lemma B.4.34. Let R be an integral domain and let M be a torsion-free R-module which
is invertible at the zero ideal (0). Then

M ↪→M(0)
∼=−→ R(0)

∼=−→ Frac(R)

is an R-module embedding of M into Frac(R).

Proof. Since M is a torsion-free R-module, we know that the localisation homomorphism
M → M(0) is injective. By assumption, we have an isomorphism M(0) → R(0) and the
latter is obviously isomorphic to Frac(R). Composing the above homomorphisms provides
the asserted R-module embedding.

We can even state a more general form of Corollary B.4.33.

Lemma B.4.35. Let R be a noetherian reduced ring with minimal prime ideals {P1, . . . , Pm}.
Let B ⊆ {P1, . . . , Pm} and I =

⋂
P∈B P . Let M be a torsion-free R-module which is in-

vertible at the minimal primes of R. Then M/IM is invertible at the minimal prime ideals
of R/I.

Proof. The prime ideals of R/I are those given by P + I with P ∈ B. Note that for a
minimal prime P + I the multiplicative set (R/I)\P + I is the image of the multiplicative
set R \ P under the canonical projection R→ R/I. Therefore, by [Sta18, Tag 00CT], we
have

(R/I)P+I ∼= RP /IRP = RP (4:9)

where the latter equality is due to the fact that RP is a field, see Lemma B.4.29. In
particular,

(M/IM)Pi+I ∼= (M ⊗R R/I)⊗R/I (R/I)Pi+I ∼= (M ⊗R R/I)⊗R/I RPi
∼= M ⊗R RPi
∼= MPi

∼= RPi
Eq. (4:9) ∼= (R/I)P+I

providing the assertion.

Remark B.4.36. We have seen in Lemma 4.1.2 that freeness of an R-module M at the
minimal primes of R provide an R-module embedding into Frac(R). By Lemma B.4.35,
we see that the same is true for M/IM as well. One should note that the proof of
Lemma 4.1.2 embeds M into Frac(R) using the isomorphism MP

∼= RP for minimal
primes P ∈ Spec(R)0. The proof of Lemma B.4.35 in turn shows that the isomorphism
(M/IM)P (R/I) ∼= (R/I)P (R/I) stems from that ofMP

∼= RP . This provides a commutative
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diagram as follows:
Frac(R) Frac(R/I)

M M ⊗R R/I = M/IM
id⊗π

From this we can deduce that for any regular g ∈ R such that gM ⊆ R, we have (g +
I)(M/IM) ↪→ R/I. Indeed, since the diagrams

R Frac(R)

gM M

and
R Frac(R)

R/I Frac(R/I)

commute as well, (g+I)(M/IM) = (id⊗π)(gM) embeds into Frac(R/I) and has preimage
under Frac(R)→ Frac(R/I) which is contained in R and thus it embeds into R/I. 4
Proposition B.4.37. Let R be a reduced noetherian ring and let M be a finite and
torsion-free R-module. Then the natural map M →

∏
P∈AssR(M)M/PM is injective.

Proof. By Lemma B.4.25, it suffices to show that the induced local homomorphism for all
associated primes ofM is injective. By Lemma B.4.23, we have AssR(M) ⊆ Spec(R)0 and
thus it suffices to show the injectivity at minimal primes of R. Let p ∈ Spec(R)0 be a mini-
mal prime of R. Then the localised homomorphism is Mp →

∏
P∈Spec(R)0(M/PM)p. Now

by Corollary B.4.30, we have (M/PM)p ∼= Mp for P = p and hence the homomorphism
embeds Mp as a direct summand in the codomain and is therefore injective.

Remark B.4.38. The statement stays true for M being an R-algebra and the homomor-
phism M →

∏
P∈Ass(R)M/PM being an R-algebra homomorphism. Moreover, note that

since M is a torsion-free R-module, by Lemma B.4.23, we have AssR(M) ⊆ Spec(R)0.
Therefore, M →

∏
P∈Spec(R)0 M/PM is injective. 4

Corollary B.4.39. Let R be a reduced noetherian ring and let M be a torsion-free R-
module. Then

⋂
P∈AssR(M) PM = 0.

Lemma B.4.40. Let R be any ring and I, J two ideals in R with I ∩ J = 0. Then the
following sequence

0 −→ R
φ−→ R/I ⊕R/J ψ−→ R/(I + J) −→ 0

with φ(a) = (a+ I, a+ J) and ψ(a+ I, b+ J) = (a− b+ I + J) is exact.
Proof. Obviously, a ∈ ker(φ) if and only if a ∈ I ∩ J = 0. Moreover, since ψ is taking the
difference of the entries, ψ ◦ φ = 0. Now let ψ(a+ I, b+ J) be zero, that is a− b ∈ I + J .
Hence there are a′ ∈ I and b′ ∈ J such that a − a′ = b − b′ in R. Then (a + I, b + J) =
(a− a′ + I, b− b′ + J) = φ(a− a′) and thus ker(ψ) ⊆ im(φ).

Lemma B.4.41. Let R be a reduced ring with minimal prime ideals P1, . . . , Pm. Let
I =

⋂
i∈A Pi and J =

⋂
i∈B Pi with A,B ⊆ {1, . . . ,m}, A∪B = {1, . . . ,m} and A∩B = ∅.

Then the injection R ↪→ R/I ⊕ R/J extends to an isomorphism Frac(R) → Frac(R/I) ⊕
Frac(R/J).
Proof. We use the fact that for reduced rings R, the injection R ↪→

⊕m
i=1R/Pi extends

to an isomorphism Frac(R)→
⊕m

i=1 Frac(R/Pi), see [Liu02, 7.5.1]. So by assumption, we
have

R/I ↪→
⊕
i∈A

(R/I)/(Pi/I)︸ ︷︷ ︸
∼= R/Pi

and R/J ↪→
⊕
i∈B

(R/J)/(Pi/J)︸ ︷︷ ︸
∼= R/Pi
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and these homomorphisms extend to isomorphisms

Frac(R/I) ∼=
⊕
i∈A

R/Pi respectively Frac(R/J) ∼=
⊕
i∈B

R/Pi.

In particular, the inclusion R ↪→
⊕

i∈A∪B R/Pi, which does extend to an isomorphism
Frac(R) ↪→

⊕
i∈A∪B Frac(R/Pi), factors through R/I ⊕ R/J . Now since the homomor-

phisms R →
⊕

i∈A∪B Frac(R/Pi) and R → R/I ⊕ R/J ↪→
⊕

i∈A∪B Frac(R/Pi) coincide,
the assertion follows.

Corollary B.4.42. Let R be a reduced ring with minimal prime ideals P1, . . . , Pm and we
set Ii =

⋂i
j=1 Pj. Then for all i = 2, . . . ,m the following sequence

0 −→ R/Ii
φi−→ R/Ii−1 ⊕R/Pi

ψi−→ R/(Ii−1 + Pi) −→ 0

with φi(a+ Ii) = (a+ Ii−1, a+ Pi) and ψi(a+ Ii−1, b+ Pi) = (a− b+ Ii−1 + Pi) is exact.

Proof. Since R is reduced and P1, . . . , Pm are all the minimal prime ideals of R, we have
P1 ∩ . . . ∩ Pm = 0 in R. More general, R/Ii is also reduced since all its minimal prime
ideals are P1 + Ii, . . . , Pi + Ii and thus their intersection equals the zero ideal Ii of R/Ii.
Moreover, Ii−1 ∩Pi = Ii and hence we can use Lemma B.4.40 to deduce the assertion.

Remark B.4.43. Let R be a ring and I1 ⊆ I2 ⊆ . . . ⊆ Im any chain of ideals. Let
fi : R → R/Ii denote the canonical epimorphism r 7→ r + Ii. Then fm factors through
any R/Ii for i = 1, . . . ,m − 1. Moreover, we can naturally compose the fi to obtain a
homomorphism

R→ R/I1 → R/I2 → . . .→ R/Im−1 → R/Im

where R/Ii → R/Ii−1 maps r + Ii to fi+1(r) = r + Ii+1. Then the above homomorphism
equals fm. 4

Definition B.4.44. We can extend the homomorphisms φi by the sum idi := id⊕i of
m− i identity maps to obtain the maps

φi ⊕ idi : R/Ii ⊕
m⊕

j=i+1
R/Pj −→ R/Ii−1 ⊕R/Pi ⊕

m⊕
j=i+1

R/Pj .

Now by Remark B.4.43, the composition (φ2 ⊕ id2) ◦ . . . ◦ (φm−1 ⊕ idm−1) ◦ φm : R →⊕m
i=1R/Pi equals the homomorphism φ : R →

⊕m
i=1R/Pi sending f to (f + P1, . . . , f +

Pm). 4

The following lemma just tells us that finding preimages of (f1+P1, . . . , fm+Pm) iteratively
under φi ⊕ idi yields a preimage under φ.

Lemma B.4.45. Let the situation be as in Corollary B.4.42. Then (f1 + P1, . . . , fm +
Pm) ∈

⊕m
i=1R/Pi lies in the image of φ : R→

⊕m
i=1R/Pi if and only if for all i = 2, . . . ,m

(f i−1
1 + Ii−1, fi + Pi) ∈ im(φi). (4:10)

Here f i−1
1 +Ii−1 = φ−1

i−1(f1+P1, . . . , fi−1+Pi−1) ∈ R/Ii−1 for i ≥ 3 and f1
1 +Ii−1 = f1+P1.

Proof. First of all, (f i−1
1 + Ii−1, fi + Pi) ∈ im(φi) if and only if

(f i−1
1 + Ii−1, fi + Pi, . . . , fm + Pm) ∈ im(φi ⊕ idi).

We prove the assertion by induction on m, the number of minimal prime ideals of R. In
the case m = 2 we have I1 = P1, I2 = P1 ∩ P2 and the homomorphism φ : R = R/I2 →
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R/P1 ⊕ R/P2 coincides with the homomorphism φ2 : R/I2 → R/P1 ⊕ R/P2. Hence the
assertion is true for m = 2.

Now assume the assertion to be true for all rings with m − 1 minimal prime ideals,
m ≥ 2. Then consider R to have m minimal prime ideals P1, . . . , Pm. Then S := R/Im−1
has m − 1 minimal prime ideals P1S, . . . , Pm−1S. Note that for all i = 1, . . . ,m − 1 we
have an isomorphism given by

αi : R/Pi
∼=−→ S/PiS, r + Pi 7→ (r + Im−1) + Pi(R/Im−1).

For i = 2, . . . ,m− 1 we set

Ji = ∩ij=1(PjS) = (∩ij=1Pj)S = IiS ⊆ S

for which
βi : R/Ii

∼=−→ S/Ji, r + Ii 7→ (r + Im−1) + Ii(R/Im−1)

is an isomorphism for all i = 1, . . . ,m − 1. Let ψi : S/Ji → S/Ji−1 ⊕ S/PiS and φi :
R/Ii → R/Ii−1 ⊕ R/Pi denote the respective diagonal homomorphisms. Then we easily
see that the following diagram commutes for all i = 2, . . . ,m− 1:

S/Ji S/Ji−1 ⊕ S/PiS

R/Ii R/Ii−1 ⊕ R/Pi

ψi

βi

φi

βi−1 αi (4:11)

In particular, for f i−1
1 , fi ∈ R we have

(f i−1
1 + Ii, fi + Pi−1) ∈ im(φi)⇔ (f i−1

1 + Ji, fi + Pi−1S) ∈ im(ψi) (4:12)

for all i = 2, . . . ,m − 1. Here f i−1
1 + Ji and fi + Pi−1S denote the respective elements

induced by f i−1
1 and fi in S/Ji−1 respectively S/PiS. The following diagram is rather

obviously commutative:

0 R S ⊕R/Pm R/(Im−1 + Pm) 0

⊕m−1
i=1 S/PiS ⊕R/Pm

⊕m−1
i=1 R/Pi ⊕R/Pm

φ

φm

ψm−1⊕id

∑m−1
i=1 α−1

i ⊕id

(4:13)

Thus, by the commutative diagram in (4:13) and Corollary B.4.42, we have that

(f1 + P1, . . . , fm−1 + Pm−1, fm + Pm) ∈ im(φ)

if and only if

(i) (f1 + P1S, . . . , fm−1 + Pm−1S) lies in the image of ψm−1, with preimage, say fm−1
1 ,

and

(ii) fm−1
1 − fm ∈ Im−1 + Pm.
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By induction hypothesis, (i) is equivalent to

(f i−1
1 + Ji, fi + Pi−1S) ∈ im(ψi) for all i = 2, . . . ,m− 1

and thus, by Eq. (4:12), equivalent to

(f i−1
1 + Ii, fi + Pi−1) ∈ im(φi) for all i = 2, . . . ,m− 1

where f i−1
1 +Ii−1 = φ−1

i−1(f1 +P1, . . . , fi−1 +Pi−1) ∈ R/Ii−1. By Corollary B.4.42, we have
that (ii) is equivalent to (fm−1

1 + Im−1, fm + Pm) ∈ im(φm) which thus finally provides
the assertion for the case m and thus finishes the proof.

One wishes to extend the above insights into how to find preimages under the R-module
homomorphism M →

∏
P∈AssR(R)M/PM for suitable R-modules M . That is, can we

replace R by M and R/I by M/IM in the above analysis? The answer in general is
no. But if we consider M to be finite and torsion-free over R and R to be reduced and
noetherian, then we can extend the above theory to such modules.

Lemma B.4.46. Let R be a reduced noetherian ring with minimal prime ideals P1, . . . , Pm.
Let I =

⋂
i∈A Pi and J =

⋂
j∈B Pj for A,B ⊆ {1, . . . ,m} such that A ∪ B = {1, . . . ,m}.

Let M be a finite, torsion-free R-module. Then the sequence of R-modules

0 −→M
φ−→M/IM ⊕M/JM

ψ−→M/(IM + JM) −→ 0

with φ(m) = (m + IM,m + JM) and ψ(m + IM,m′ + JM) = m −m′ + (IM + JM) is
exact.

Proof. In general, we have(⋂
i∈A

Pi

)
M =


m∑
j=1

ajmj | mj ∈M,aj ∈
⋂
i∈A

Pi,m ∈ N

 .

Let
∑m

j=1 ajmj ∈ (
⋂
i∈A Pi)M . Then aj ∈ Pi for all i ∈ A and thus ajmj ∈

⋂
i∈A PiM .

Therefore

IM =
(⋂
i∈A

Pi

)
M ⊆

⋂
i∈A

PiM.

The kernel of φ is obviously ker(φ) = IM ∩ JM . Therefore,

IM ∩ JM ⊆
⋂

i∈A∪B
PiM =

m⋂
i=1

PiM

and the latter is the zero submodule of M by Lemma B.4.23 and Corollary B.4.39. The
kernel of ψ is

ker(ψ) = {(m+ IM, n+ JM) | m,n ∈M,m− n ∈ IM + JM}.

Let (m + IM, n + JM) ∈ ker(ψ). Then there are a ∈ IM and b ∈ JM such that
m+ a = n+ b in M . Hence

(m+ IM, n+JM) = (m+a+ IM, n+ b+JM) = (m+a+ IM,m+a+JM) = φ(m+a)

and thus ker(ψ) ⊆ im(φ). Conversely, any φ(m) = (m + IM,m + JM) trivially satisfies
m−m = 0 ∈ ker(ψ). The surjectivity of ψ is evident.
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Corollary B.4.47. Let R be a reduced noetherian ring with finitely many minimal prime
ideals P1, . . . , Pm and we set Ii =

⋂i
j=1 Pj. LetM be an R-ideal. Then for all i = 2, . . . ,m

the sequence of R-modules

0 −→M/IiM
φi−→M/Ii−1M ⊕M/PiM

ψi−→M/(Ii−1M + PiM) −→ 0

with φi(m + IiM) = (m + Ii−1M,m + PiM) and ψi(m + Ii−1M,n + PiM) = m − n +
(Ii−1M + PiM) is exact.

Proof. We use Lemma B.4.46 successively starting with A = {1, . . . ,m−1} and B = {m}.
This provides the exact sequence

0 −→M = M/ImM
φm−→M/Im−1M ⊕M/PmM

ψm−→M/(Im−1M + PmM) −→ 0.

By Lemma C.1.8, we know that the restriction M/Im−1M of the R-ideal M to R/Im−1
as defined in Definition C.1.9 is isomorphic to an R/I-ideal. This implies that we can
apply Lemma B.4.46 again to M/Im−1M and thus the assertion follows by induction on
the number m of minimal prime ideals of R.

Lemma B.4.48. Let R be a local ring containing a field k and whose maximal ideal is m.
Let M be an R-module. Then lenR(M) · dimk R/m = dimk(M).

Proof. We prove the assertion by induction on the length of M over R. By [Sta18, Tag
00J2], we have that lenR(M) = 1 if and only if M ∼= R/m as R-modules. Hence the
assertion is true for lenR(M) = 1. Now let the assertion be true for all modules of length
n. Let M be any R-module of length n+ 1 and let

0 = M0 (M1 ( . . . (Mn (Mn+1 = M

be a composition series for M . Consider the short exact sequence

0 −→Mn −→Mn+1 −→Mn+1/Mn −→ 0. (4:14)

Since the length is additive in short exact sequences, see [Sta18, Tag 00IV], we have

lenR(Mn+1) = lenR(Mn) + lenR(Mn+1/Mn).

By definition, the quotient Mn+1/Mn is a simple R-module. Hence it has length one and
now the induction hypothesis provides

lenR(Mn+1) = dimk(Mn)
dimk R/m

+ 1

= dimk(Mn)
dimk R/m

+ dimk R/m

dimk R/m

and hence lenR(Mn+1) ·dimk R/m = dimk R/m+ dimk(Mn). The exact sequence in (4:14)
considered as a sequence of k-vector spaces splits and thus provides

dimk R/m + dimk(Mn) = dimkMn+1

which completes the proof.

Lemma B.4.49. Let (R,m, κ) be a local reduced k-algebra of dimension one where k is
a field. Assume R to have finitely many minimal prime ideals P1, . . . , Pm. Then for any
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regular element a ∈ R we have

dimk R/aR =
m∑
i=1

dimk R/(aR+ Pi).

Proof. The proof relies on the equality

lenR(R/aR) =
m∑
i=1

lenRPi (RPi) · lenR/Pi(R/aR+ Pi) (4:15)

which is proved for R in the proof of [Liu02, 7.5.7]. Note that since R is reduced, by
Lemma B.4.29, we obtain that RPi is a field and thus lenRPi (RPi) = 1. Moreover, by
Lemma B.4.48, we obtain lenR(R/aR) = dimk R/aR · (dimk κ)−1 and analogously

lenR/Pi(R/aR+ Pi) = dimk R/aR+ Pi · (dimk(R/Pi)/(m/Pi))−1

= dimk R/aR+ Pi · (dimk R/m)−1

= dimk R/aR+ Pi · (dimk κ)−1.

Plugging this into Eq. (4:15) provides the assertion.

Lemma B.4.50. Let R be a ring and let M be a finite R-module. Then for any two ideals
I, J ⊆ R of R we have IM + JM = (I + J)M .

Proof. Let m1, . . . ,mn be a generating set of M over R. Every element of the submodule
IM of M has the form

∑n
i=1 aimi with ai ∈ I. We have

IM + JM = {a+ b | a ∈ IM, b ∈ JM}

and thus

IM + JM =
{

n∑
i=1

aimi +
n∑
i=1

bimi | ai ∈ I, bi ∈ J

}

=
{

n∑
i=1

(ai + bi)mi | ai ∈ I, bi ∈ J

}

=
{

n∑
i=1

cimi | ci ∈ I + J

}
= (I + J)M.

B.5 Algebraic Geometry

Recall that a topological space is called Kolmogorov if for any two distinct points x, x′ ∈
X, x 6= x′, there is a closed subset of X that contains exactly one of the two points.
Since singletons {x} ⊆ X of a topological space X are irreducible and the closure of
irreducible sets is irreducible, {x} is a closed and irreducible subset of X. Therefore, if
X is Kolmogorov, then any two distinct points have distinct closures. Furthermore, recall
that a topological space X is called sober if every irreducible and closed subset of X
has a unique generic point. Thus, by definition, a topological space X is Kolmogorov
respectively sober if and only if the map

X → {Y | Y ⊆ X closed and irreducible}
x 7→ {x} (5:16)
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is injective respectively bijective. In particular, sober topological spaces are Kolmogorov.
By [Sta18, Tag 01IS], a scheme is sober and thus Kolmogorov.

Lemma B.5.1. Let X be non-empty, noetherian and irreducible topological space which
is sober. Then X has a unique generic point ξ with {ξ} = X. Furthermore, any proper
closed subset Y ( X does not contain ξ and any non-empty open subset U ⊆ X contains
ξ. If X is moreover of dimension one, then any point x ∈ X with x 6= ξ is a closed point.
In particular, any finite set Y ⊆ X which does not contain ξ is closed in X.

Proof. Since X is sober, X has a unique generic point ξ ∈ X and thus X is the smallest
closed subset of X that contains ξ. Hence every proper closed subset Y ( X can not
contain ξ. Now if U ⊆ X is a non-empty open in X, then its complement is a proper
closed subset of X and thus it cannot contain ξ and hence ξ ∈ U .

Now assume X to be of dimension one. Since every noetherian space is quasi-compact,
see [Sta18, Tag 04ZA], we deduce that X has a closed point, see [Sta18, Tag 005E]. Let
y ∈ X be distinct to ξ and set Y = {y}. Since {y} is irreducible, its closure Y = {y}
is irreducible, see [Sta18, Tag 004W]. Since y 6= ξ, the injectivity of the map in (5:16)
provides Y ( X. Thus, by [Liu02, 2.5.5], we deduce dim(Y ) = 0. Hence Y is a zero-
dimensional, noetherian and irreducible topological space which is Kolmogorov. Hence
there are no proper irreducible closed subsets of Y and thus {x} = Y for every x ∈ Y and
thus, by sobriety of Y , we deduce that x = y for all x ∈ Y and thus Y = {y} is closed.

In particular, every set Y ⊆ X not containing ξ only contains closed points and is thus
closed itself if it is finite.

Proposition B.5.2. Let X be a noetherian and irreducible scheme of dimension at most
one. Then any proper closed subset of X is finite.

Proof. If X has dimension zero, every of its irreducible components has dimension zero as
well. But irreducible schemes of dimension zero are singletons. Since X is noetherian, it
has only finitely many irreducible components, see [Sta18, Tag 0BA8], and thus X itself
is finite. Let us consider the case that X has dimension one. Since X is noetherian,
it is quasi-compact, see [Sta18, Tag 04ZA]. Therefore, we can cover it by finitely many
affine open subsets. Thus it suffices to prove the assertion for X being affine. So let
X = Spec(R) such that R is a noetherian of dimension one with unique minimal prime
ideal P0. Now any proper closed subset V (I), with P0 ( I ( R being an ideal of R, has
only finitely many irreducible components, see [Sta18, Tag 0BA8]. Any such component
corresponds to a prime ideal P ⊇ I ) P0 which is thus maximal since R is of dimension
one. Therefore, V (I) is the finite union of its components which are all closed points by
the above. Hence V (I) itself is finite.

Lemma B.5.3. Let X be a noetherian scheme of dimension one and X1, . . . , Xm finitely
many distinct closed irreducible subschemes of X. For all i, j ∈ {1, . . . ,m}, i 6= j, the
number #Xi ∩Xj of intersection points is finite. In particular, the total number of points
lying in at least two of the subschemes is also finite.

Proof. The intersection Xi ∩Xj is closed in both Xi and Xj . Since X is one-dimensional,
the subschemes Xi are at most one-dimensional. By assumption, Xi 6= Xj for all i 6= j
and hence Xi ∩ Xj is a proper closed subset of a noetherian and irreducible scheme of
dimension at most one. Therefore, Proposition B.5.2 provides the assertion.

Lemma B.5.4. Let M be an R-module and let P ⊆ Q be two prime ideals of R. If
MQ = 0, then MP = 0 as well. In particular, if MP 6= 0, then MQ 6= 0 for all Q ⊇ P .
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Proof. Since P ⊆ Q, we have R \Q ⊆ R \ P . By definition, every element of MQ can be
written as m/r with m ∈M and r ∈ R \Q. Moreover, m/r = 0 in MQ if and only if there
is some s ∈ R \ Q such that sm = 0 in M . Assume MQ = 0, then by the above, for all
m ∈M there is s ∈ R \Q such that sm = 0. Let m/r ∈MP with r ∈ R \ P arbitrary be
an arbitrary element of MP . By assumption, there is s ∈ R \Q ⊆ R \P such that sm = 0
and thus m/r is zero in MP . Therefore, MQ = 0 implies MP = 0. In particular, MP 6= 0
implies MQ 6= 0.

Corollary B.5.5. Let X be a non-empty noetherian scheme and let F be a quasi-coherent
OX-module. If Fξ 6= 0 for some generic point of an irreducible component Z of X, then
Z ⊆ Supp(F).

Proof. Since the statement is of local nature, we may assume that X = Spec(R) is affine
and since F is quasi-coherent, we have F = M∼ for some R-module M . Then the
statement follows from Lemma B.5.4.

Lemma B.5.6. Let X be a reduced scheme with irreducible components X1, . . . , Xm.
Then for any schematically dense open subset U ⊆ X the ring monomorphism OX(U) ↪→⊕m

i=1OXi(U ∩Xi) extends to an isomorphism

Frac(OX(U)) −→
m⊕
i=1

Frac(OXi(U ∩Xi)).

Proof. This follows from [Liu02, 7.5.2].

Lemma B.5.7. Let X either be a projective scheme over an affine base or itself an affine
scheme. Then for every open cover U = {Ui | i ∈ I} of X, there is an affine open cover
V = {Vj | j ∈ J} which is a refinement of U , that is, for all j ∈ J there is some i ∈ I such
that Vj ⊆ Ui.

Proof. In both cases, X being projective over an affine base or itself being affine, for
every inclusion {P} ⊆ Ui ⊆ X with P ∈ X and open subset Ui ⊆ X we find, due to
Corollary D.1.4 and Corollary D.1.3, an affine open subset Vi,P such that {P} ⊆ Vi,P ⊆ Ui.
Obviously, the Vi,P for P ∈ Ui cover Ui. Thus V = {Vi,P | i ∈ I, P ∈ Ui} is an affine open
cover of X which is a refinement of U as asserted.

Remark B.5.8. Let the situation be as in Proposition 3.2.3. Then OY (f∗D) ∼= f∗OX(D).
We give the proof for the general Y and X as indicated in the proof of Proposition 3.2.3:

Consider D ∈ Div(X) given by a configuration {Ui, bi/ai}i∈I with ai, bi ∈ OX(Ui). We
have OX(D)|Ui = (ai/bi)OUi . Now fix some Ui along with its open immersion j : Ui → X
for which then j∗OX(D) = OX(D)|Ui holds. Then set Vi = f−1(Ui) along with its open
immersion h : Vi → Y . Then, by construction, f ◦ h = j ◦ f|V and hence (f ◦ h)∗OX(D) =
(j ◦ f|Vi)∗OX(D). Since the pullback along the composition of morphisms is the reversed
composition of pullbacks, we obtain

h∗(f∗(OX(D))) = (f ◦ h)∗OX(D) = (j ◦ f|Vi)
∗OX(D) = f∗|Vi(j

∗OX(D)) = f∗|ViOX(D)|Ui .

As above, we have h∗(f∗(OX(D))) = f∗(OX(D))|Vi and thus

f∗(OX(D))|Vi = f∗|ViOX(D)|Ui = f∗|Vi(ai/bi)OUi .

By definition of the pullback of sheaves of OX -modules along f|Vi , we have

f∗|Vi(ai/bi)OUi = OVi ⊗f−1
|Vi
OUi

f−1
|Vi (ai/bi)OUi
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where the tensor product is defined over f−1
|ViOUi and OVi is an f−1

|ViOUi-module via the
pullback morphism f#

|Vi : f−1
|Vi KUi → KVi (being the extension of f#

|Vi : f−1
|ViOUi → OVi)

which itself is the restriction of the pullback morphism f# : f−1KX → KY . Now we are
pretty much done since now locally the generator ai/bi can be pulled to the other factor of
the tensor product using the morphism f#

|Vi : f−1
|Vi KUi → KVi over which the tensor product

is defined. The rest of the proof is the technical elaboration of the above idea.
By Lemma B.1.40, we have F# ⊗O# G# ∼= (F ⊗pO G)# where O is a sheaf of rings on

X, F ,G are presheaves of O-modules on X and ⊗pO denotes the presheaf tensor product
as defined in Definition B.1.39. Applying this we obtain

OVi ⊗f−1
|Vi
OUi

f−1
|Vi (ai/bi)OUi ∼= O

#
Vi
⊗(f−1,p

|Vi
OUi )

# (f−1,p
|Vi (ai/bi)OUi)#

∼= (OVi ⊗
p

f−1,p
|Vi
OUi

f−1,p
|Vi (ai/bi)OUi)#

where f−1,p
|Vi F denotes the presheaf defined by V 7→ lim−→f|Vi (V )⊆U F(U) whose sheafification

is f−1
|Vi F . Now we can apply that the tensor product commutes with direct limits, that

is, for (Ai)i∈I a direct system of rings and (Mi)i∈I as well as (Ni)i∈I direct systems of
Ai-modules, we have

lim−→
i∈I

Mi ⊗lim−→i∈I
Ai lim−→

i∈I
Ni
∼= lim−→

i∈I
(Mi ⊗Ai Ni).

This provides an isomorphism of presheaves on Vi

OVi⊗
p

f−1,p
|Vi
OUi

f−1,p
|Vi (ai/bi)OUi −→

V 7→ lim−→
U : f|Vi (V )⊆U⊆Ui

OVi(V )⊗OX(U) (ai/bi)|UOX(U))


where the tensor product on the right hand side is defined via the ring homomorphism
f#
|Vi(V ) : KUi(U)→ KVi(V ). Hence

OVi(V )⊗OX(U) (ai/bi)|UOX(U)) ∼= f#
|Vi(V )(ai/bi)OVi(V )

and therefore

OVi ⊗
p

f−1,p
|Vi
OUi

f−1,p
|Vi (ai/bi)OUi ∼=

V 7→ lim−→
U : f|Vi (V )⊆U⊆Ui

f#
|Vi(V )((ai/bi)|U )OVi(V )


as presheaves. We easily see that the sheafification of the latter is the sheaf f#

|Vi(Vi)(ai/bi)OVi
and thus isomorphic to the sheafification of the former, which is f∗(OX(D))|Vi . Therefore

f∗(OX(D))|Vi ∼= f#
|Vi(Vi)(ai/bi)OVi =

f#
|Vi(Vi)(ai)

f#
|Vi(Vi)(bi)

OVi = f#(Vi)(ai)
f#(Vi)(gi)

OVi

as asserted. 4

Lemma B.5.9 (Projection Formula, [Sta18], Tag 01E8). Let f : X → Y be a morphism
of locally ringed spaces. Let F be an OX-module. Let G be a finite locally free OY -module.
Then there are isomorphisms for all r ≥ 0:

G ⊗OY R
rf∗F −→ Rrf∗(F ⊗OX f

∗G)
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In particular, G ⊗OY f∗F −→ f∗(F ⊗OX f∗G).
Theorem B.5.10 ([GW10], 11.51). Let F be a locally free sheaf of rank r on P1

k. Then
there are uniquely determined integers d1 ≥ . . . ≥ dr such that F =

⊕r
i=1OP1(di).

Lemma B.5.11. Let λ ∈ Z. Then we have

dimkH
0 (P1

k,OP1(`)
)

=
{

0, ` < 0
`+ 1, ` ≥ 0

, dimkH
1 (P1

k,OP1(`)
)

=
{
−`− 1, ` < 0
0, ` ≥ 0.

(5:17)
Proof. This is the combination of [BPoMSS02, Lemmas 6.2, 6.7, 6.8, 6.9].

Lemma B.5.12 ([GW10], 12.37). Let f : X → Y be an affine morphism of schemes and
let F be a quasi-coherent sheaf on X. Then H1 (Y, f∗F) ∼= H1 (X,F).
Definition B.5.13. Let k be a field. Let X be a proper scheme over k. Let F be a
coherent OX -module. The Euler-Poincaré characteristic of F over k or shorter the
Euler characteristic of F over k is defined as the integer

χk(X,F) =
∑
i≥0

dimkH
i (X,F) .

Sometimes if k and X is known from the context, we may write χ(F) instead of χk(X,F).
4

Lemma B.5.14 ([Sta18], Tag 08AA). Let k be a field. Let X be a proper scheme over k.
Let 0→ F1 → F2 → F3 → 0 be a short exact sequence of coherent OX-modules. Then

χk(X,F2) = χk(X,F1) + χk(X,F3).

Lemma B.5.15 ([Sta18], Tag 0AYT). Let k be a field. Let X be a proper scheme over k.
Let F be a coherent sheaf with dim(Supp(F)) ≤ 0. Then
(i) F is generated by global sections,

(ii) H i(X,F) = 0 for i > 0,

(iii) χ(X,F) = dimk Γ(X,F), and

(iv) χ(X,F ⊗ E) = nχ(X,F) for every locally free module E of rank n.
Lemma B.5.16. Let f : Y → X together with f# : f−1OX → OY be an affine morphism
of schemes for which the restriction of divisors is defined (see Definition 3.2.5). Let
H = hOX with h ∈ KX(X)× be an OX-ideal. Then f∗H = f#(X)(h)OY .
Proof. First of all, by Remark 3.2.1, we have a pullback map of regular functions f# :
f−1OX → OY . By assumption on f , OX → f∗OY extends to KX → f∗KY and, by
[GW10, 2.27], we obtain that this datum is equivalent to f−1KX → KY . Here the latter
indeed is the extension of f−1OX → OY and hence, by a bit more abuse of notation, we
denote f−1KX → KY also by f#.

By assumption on f , any affine open cover X = ∪i∈IUi of X provides an affine open
cover Y = ∪i∈IVi of Y with Vi = f−1(Ui). Then, by definition, we have (f−1

|Vi F)(Vi) =
F(Ui). By [Liu02, 5.1.12], we have

(f∗F)(Vi) = (OY ⊗f−1OX f
−1F)(Vi)

= (OY (Vi)⊗(f−1OX)(Vi) (f−1F)(Vi)
= OY (Vi)⊗OX(Ui) F(Ui)
= OY (Vi)⊗OX(Ui) h|UiOX(Ui).
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The tensor product is defined via the morphism f# : f−1OX → OY which extends to
f# : f−1KX → KY . Hence

(f∗F)(Vi) = f#(Vi)(h|Ui)OY (Vi)⊗OX(Ui) OX(Ui) = f#(Vi)(h|Ui)OY (Vi)
= f#(X)(h)|ViOY (Vi)

and thus (f∗F)|Vi = f#(X)(h)|ViOVi = (f#(X)(h)OY )|Vi . That is, f∗F as anOY -subsheaf
of KY is equal to the sheaf f#(X)(h)OY , see Corollary B.1.30.

Lemma B.5.17. Let X be a noetherian scheme. Then for every point x ∈ X and affine
open neighborhood U of x there is some non-zero-divisor g ∈ OX(U) such that x ∈ DU (g).

Proof. Since X is noetherian, it has finitely many irreducible components, say X1, . . . , Xm

with unique generic points ξ1, . . . , ξm, respectively. Set E = {x, ξ1, . . . , ξm}. Since X is
noetherian, it is quasi-compact and quasi-separated and thus we can apply Lemma D.1.2
to E ⊆ W = U and L = OU and obtain s ∈ OX(U) such that E ⊆ Xs ⊆ U . Since
Xs contains E, sξi is non-zero for all i = 1, . . . ,m and thus no zero-divisor in OX(U).
Furthermore, we have x ∈ DU (s).

Lemma B.5.18. Let X be a proper scheme over a field k. If dim(X) ≤ 1, then X is
projective over k.

Proof. This is [Sta18, Tag 0A26] which says that X is H-projective and then we use
[Sta18, Tag 0B45] which states the equivalence of being projective and H-projective for
schemes over some field.

Corollary B.5.19. Let X be a scheme over a field k with dim(X) ≤ 1. Then X is
projective if and only if X is proper.

Proof. The only if part is [Liu02, 3.3.30] and the if part is B.5.18.

Lemma B.5.20. Let φ : A′ → A be a homomorphism of rings such that dim(A′) =
dim(A). Let A′ be an integral domain and let the corresponding morphism of affine schemes
be finite. Then φ : A′ → A is injective.

Proof. This follows from [DG67, I. 1.2.7].

Lemma B.5.21 ([KM98], 5.4). Let f : X → Y be a finite morphism of one-dimensional
schemes. Let F be a coherent sheaf on X with Supp(F) = X. Then f∗F is S1 if and only
if F is S1.
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Appendix C

Properties of R-Ideals and
OX-Ideals

In this chapter we introduce the local respectively affine variants of OX -ideals, the so
called R-ideals where R is the respective affine coordinate ring. Analogously to OX -ideals
being a kind of generalisation of sheaves of ideals, R-ideals will be a kind of generalisation
of ordinary ideals of the ring R (which do not solely consists of zero-divisors from R). To
be precise, R-ideals will be fractional ideals of R that are invertible at the minimal prime
ideals of R. We will define the degree of R-ideals and then use it to define the degree of
divisors and the degree of OX -ideals. To properly define the degree of divisors, we have
seen in Definition 3.1.10 that we need to work on a scheme that has dimension at most
one. Therefore, we will introduce R-ideals for rings R of Krull dimension at most one.
Moreover, we assume R to be an algebra over a field k since we will define the degree of
R-ideals as the finite dimension of a quotient vector space over k. Frankly speaking, the
theory behind R-ideals does form some of the important basis of working with divisors
and OX -ideals.

The chapter is organised as follows: In Section C.1 we will define R-ideals and their
degree. We will show that there are useful notions of restricting R-ideals to irreducible
components of Spec(R), of how R-ideals may be localised and of the quotient of R-ideals.
We will see that the degree of R-ideals satisfies useful properties. For instance, it may
be computed locally, it behaves additively for products of R-ideals if one of the factors
is invertible and the degree of an invertible R-ideal can be computed as the sum of the
degrees of its restrictions to irreducible components of R.

In Section C.2 we provide a statement that characterises the image of the natural map
M →

⊕m
i=1M/PiM where M is an R-ideal and P1, . . . , Pm denote the minimal prime

ideals of R. This will be used in Section 5.7.1 to prove the existence of modification
functions in a geometric fashion.

In Section C.3 we collect a few general properties of OX -ideals that are not concerned
with their degree. For instance, we show that quotients of OX -ideals have finite support
which can be used to apply the Approximation Theorem 5.7.1 in Section 5.7.1.

Finally, in Section C.4 we define the degree of OX -ideals and examine its properties.
Since the degree of R-ideals could be computed locally, we define the degree of OX -ideals
locally an then show that it can also be computed globally using the Euler characteristic
of the respective OX -ideal. We will show that the degree of OX -ideals naturally inherits
basically all of the properties of the degree of R-ideals. At the end of Section C.4 we
translate the most important properties of the degree ofOX -ideals to the degree of divisors.
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C.1 Degree of R-Ideals over k

In this section k denotes a field and R a noetherian ring of Krull dimension one which
is a finite residual-type k-algebra, see Definition B.4.3. A common example of such rings
are the rings of regular functions OX(U) for X a curve of finite residual-type over k and
U ⊆ X some open subset.
Remark C.1.1. Let X be a cover of P1

k. Then, by Lemma 2.2.20, the affine coordinate ring
R ∈ {R0, R∞,OS} of V0, V∞ respectively S satisfies the above properties. Moreover, R is
also Cohen-Macaulay. 4

Definition C.1.2. Let M be a finitely generated R-submodule of Frac(R). We call M
an R-ideal if it is invertible at the minimal primes of R. 4

Example C.1.3. Let I ⊆ Frac(R) be an invertible ideal of R. Then I is an R-ideal since
it is invertible at all primes of R and a fortiori at the minimal ones. 4

Note that for an R-ideal M there always is, by taking the common denominator of a
generating set, a regular element f ∈ R such that fM ⊆ R.

Lemma C.1.4. Let M be a finitely generated R-submodule of Frac(R). Then M is in-
vertible at all minimal prime ideals of R if and only if for all regular f ∈ R such that
fM ⊆ R we have R/fM has Krull dimension zero.

Proof. Assume thatM is invertible at all P ∈ Spec(R)0. We prove that the ideal fM ⊆ R
is not contained in any minimal prime of R. Otherwise, there is some minimal prime P ∈
Spec(R)0 such that fM ⊆ P and thus λ(f)MP ↪→ PRP where λ : R → RP denotes the
localisation homomorphism. Moreover, by assumption, we have an isomorphism µ : RP →
MP which provides an RP -module monomorphism ϕ : λ(f)RP ↪→ PRP . Since ϕ is RP -
linear, it maps λ(f)r 7→ λ(f)ϕ(r) into PRP . Since f ∈ R is regular, by Lemma B.4.13, we
have f /∈ P and thus λ(f) /∈ PRP . In particular, ϕ provides an RP -module monomorphism
h : RP ↪→ PRP which is absurd. Indeed, since PRP only contains zero-divisors, see
Corollary B.4.14, the generator h(1) of h(RP ) is a zero-divisor with b ∈ R \ {0} such that
b · h(1) = 0. Hence h(b) = b · h(1) = 0 and thus h maps b to zero. Therefore, if M
is invertible at the minimal prime ideals of R, then fM 6⊆ P for all P ∈ Spec(R)0. In
particular, R/fM has Krull dimension strictly lower than that of R, that is, dimension
zero.

Conversely, assume that for all regular f ∈ R such that fM ⊆ R we have that R/fM
has Krull dimension zero. In particular, for every minimal prime ideal P ∈ Spec(R)0 we
have fM 6⊆ P . Since f ∈ R is regular, the R-module homomorphism M → fM given
by the multiplication with f is an isomorphism and hence the localised homomorphism
MP → λ(f)MP stays an isomorphism (due to localisation being exact). Moreover, since
fM embeds into R, exactness of localisation provides again that we obtain a commutative
diagram

M fM R

MP λ(f)MP RP

λ λ λ

which thus provides that λ(f)MP embeds into RP . Hence λ(f)MP is an ideal in RP whose
corresponding ideal fM in R is not contained in P and thus satisfies λ(f)MP 6⊆ PRP .
Hence λ(f)MP = RP and thus MP is isomorphic to RP .

If R does not only contain the field k but is also a finite ring extension of k[x] of degree n
for some transcendental x, then any R-ideal will be free of rank n over k[x].
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Definition C.1.5. Let R satisfy S1. Let J, I be two R-ideals. Then the R-ideal quotient
of J by I is defined as (J : I) := {a ∈ Frac(R) | aI ⊆ J}. 4

Lemma C.1.6. Let R satisfy S1. Let J, I be two R-ideals. Then (J : I) is an R-ideal.
Moreover, I is invertible if and only if I(R : I) = R. In particular, if I is invertible, then
(J : I) = JI−1 for all R-ideals J .

Proof. It is straight forward to prove that (J : I) is an R-submodule of Frac(R). Since R
satisfies S1, by Proposition C.1.10, we know that being invertible at the minimal primes
of R is equivalent to containing a regular element of R. Thus there is some f ∈ I and
g ∈ J which are regular. In particular, gI ⊆ JI ⊆ J and thus g ∈ (J : I). Thus we are left
to prove that (J : I) is finitely generated as an R-module. We have a natural R-module
homomorphism

Ψ : (J : I) → HomR(I, J)
a 7→ φa

where φa : I → J , b 7→ ab. If Ψ(a) = φa = 0, then for all b ∈ I we have ab = 0. But since
f ∈ I regular, we obtain a = 0. Hence Ψ is an R-module embedding. Since both I, J are
finitely generated and R noetherian, the R-module HomR(I, J) is finitely generated and
a fortiori the same is true for (J : I).

By [Eis95, 11.6 (d)], we have that I is invertible if and only if I(R : I) = R. By
definition, we have J(R : I) ⊆ (J : I). Multiplying with I provides (since I is invertible)
J = J(R : I)I ⊆ (J : I)I ⊆ J and thus (J : I)I = J . Then multiplying with I−1 finally
provides (J : I) = JI−1 as asserted.

Basic properties of localisation provide that being an R-ideal carries over to arbitrary
localisations of R.

Lemma C.1.7. LetM be an R-ideal and S ⊆ R a multiplicative subset of R. Then S−1M
can be considered as an S−1R-ideal.

Proof. First of all, since M ⊆ Frac(R) and Frac(R) = U−1R for U being the set of regular
elements of R, we have, by [Sta18, Tag 02C6], that S−1M ↪→ S̄−1(U−1R) ∼= (SU)−1R.
Here SU = {su | s ∈ S, u ∈ U} for two multiplicative subsets S,U of R and S̄ denotes
the image of S under the localisation map λU : R → U−1R. By symmetry, we obtain
S−1M ↪→ (SU)−1R ∼= Ū−1(S−1R) where Ū denotes the image of U under the localisation
map λS : R→ S−1R. Since λS sends regular elements to regular elements, we have that Ū
is contained in the set V ⊆ S−1R of regular elements of S−1R. Hence, by further localising,
we obtain an embedding Ū−1(S−1R) ↪→ V −1(S−1R) = Frac(S−1R) which finally yields
S−1M ↪→ Frac(S−1R) as S−1R-modules. Hence we may regard S−1M as an S−1R-ideal.

By assumption, we have MP
∼= RP for all Spec(R)0. The prime ideals Spec(S−1R)

in S−1R are exactly those of the form S−1P for P ∈ Spec(R) with P ∩ S = ∅ and
Spec(S−1R)0 = {S−1P ∈ Spec(S−1R) | P ∈ Spec(R)0}. Thus consider the localisation
(S−1M)S−1P of S−1M at the minimal prime ideal S−1P of S−1R. By [Sta18, Tag 02C6]
again, we have (S−1M)S−1P

∼= λP (S)−1MP where λP : R → RP denotes the localisation
homomorphism. Since S−1P ∈ Spec(S−1R), we have P ∩S = ∅ and thus S ⊆ R\P which
provides λP (S) ⊆ RP

×. Moreover, by assumption, we have MP
∼= RP as RP -modules

for all P ∈ Spec(R)0. Hence (S−1M)S−1P
∼= λP (S)MP = MP

∼= RP and the latter is
isomorphic to (S−1R)S−1P due to [Sta18, Tag 02C6].

Lemma C.1.8. Let M be an R-ideal. Let P1, . . . , Pm denote all of the minimal prime
ideals of R and set I =

⋂
P∈B for some B ⊆ {P1, . . . , Pm}. Then M/IM is isomorphic to

an R/I-ideal.

Proof. This is a combination of the Lemmas B.4.35 and 4.1.2.
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Definition C.1.9. Let M be an R-ideal. Let I = ∩P∈BP for some B ⊆ Spec(R)0. Then
we define the restriction ofM with regards to I asM/IM . If I = P for P ∈ Spec(R)0,
then we call M/PM the restriction of M to the irreducible component Spec(R/P )
of Spec(R). Lemma C.1.8 shows that M/IM is isomorphic to an R/I-ideal. In general,
we will identify M/IM with that R/I-ideal. 4

Proposition C.1.10. Let M ⊆ Frac(R) be a finitely generated R-module. If M contains
a regular element, then M is an R-ideal. If R satisfies S1 and M is an R-ideal, then M
contains a regular element.

Proof. Let M contain the regular element a ∈ R. The finiteness assumption provides a
regular g ∈ R with ga ∈ gM ⊆ R being regular. In particular, by Corollary B.4.14, we
have ga /∈ P for every minimal prime ideal P of R. Therefore for any minimal prime P
the image of ga in MP is a unit in RP . Hence MP is invertible at P .

Now assume R to satisfy S1. Let M contain no regular element of R. Then every nu-
merator ofM is a zero-divisor and thus, by the finiteness assumption, there is some regular
g ∈ R such that gM ⊆ R. Moreover, by [Sta18, Tag 00LD], we have gM ⊆

⋃
P∈AssR(R) P .

But since R satisfies S1, we have AssR(R) = Spec(R)0. The prime avoidance lemma
Lemma B.4.5 now provides that gM ⊆ P for one minimal prime P ∈ Spec(R)0. Then
MP ↪→ gMP ⊆ PRP and thereforeMP cannot be isomorphic to RP as an RP -module since
PRP only contains zero-divisors and thus every RP -module homomorphism RP → PRP
fails to be injective (as in the proof of C.1.4).

Corollary C.1.11. Let R satisfy S1. Then a finitely generated R-submodule of Frac(R)
is an R-ideal if and only if it contains a regular element of R.

Remark C.1.12. Let M be an R-submodule of Frac(R), i.e. M is a fractional ideal of
R. Then M is torsion-free as an R-module. Indeed, assume am = 0 where a ∈ R and
m ∈ M . Write m = b/c with b, c ∈ R. Then ab/c = 0 in Frac(R) which is equivalent
to the existence of some regular d ∈ R such that abd = 0. Since d is regular, this yields
ab = 0 and thus a is a zero-divisor in R. 4

Proposition C.1.13. Let N ⊆M be two R-ideals. Then Supp(M/N) is finite.

Proof. By [Eis95, Cor. 2.7], we have Supp(M/N) = V (Ann(M/N)). We have Ann(M/N)
= {x ∈ R | xM ⊆ N}. Moreover, N, M ⊆ Frac(A) and there is some regular a ∈ R such
that aM, aN ⊆ R. Then xM ⊆ N if and only xaM ⊆ aN and hence Ann(M/N) ⊇
Ann(M) ∪ aN . Then

Supp(M/N) ⊆ V (Ann(M) ∪ aN) ⊆ V (aN)

and since N is an R-ideal, R/aN is a zero-dimensional noetherian ring, see Lemma C.1.4,
and hence artinian, due to [Sta18, Tag 00KH]. Moreover, by [Sta18, Tag 00JB], R/aN is
equal to the finite product of its localisation at its maximal ideals. In particular, V (aN)
is finite.

A lot of the analysis that follows can be easily extended to the more general case of
R-vector-bundles of rank r which we may define analogously to R-ideals as finitely
generated R-submodules of Frac(Rr) = Frac(R)r that are free of rank r at the minimal
primes of R. These represent the affine respectively local model of generalised vector
bundles which are introduced in Section 4.1 and defined in Definition 4.1.1. Analogously
to the case of R-ideals, R-vector-bundles will be free over any principal ideal domain A
if R is free over A, see Lemma 4.1.8. But similar to our treatment of generalised vector
bundles in Section 4.1 and in this thesis in general, we also restrict ourselves in this section
to the case of R-vector-bundles of rank 1 which are precisely the R-ideals.
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We would like to define a degree of R-ideals over k. For integral R-ideals M we could
define the degree of M in terms of the dimension of the k-vector space R/M . We can
extend this to the general case by using a “wedging element” f ∈ R with fM ⊆ R.

Definition C.1.14. Let M be an R-ideal and let f ∈ R be regular with fM ⊆ R. We
define the degree of M over k as

degkM = dimk R/fM − dimkM/fM.

In the following we will call such an f a wedging element of M . The above definition-
itself depends on f , but we will show that it is independent of the choice of f . 4

Remark C.1.15. In the case that both R and M have finite dimension over k, we can
consider the two following exact sequences of k-vector spaces

0 −→ fM −→ R −→ R/fM −→ 0
0 −→ fM −→ M −→ M/fM −→ 0

for any wedging element f ∈ R for M . This provides

dimk R− dimkM = dimk R/fM − dimkM/fM

= degkM. 4

Next we want to show that the degree of R-ideals is finite. To do so, we need the following
elementary statement.

Lemma C.1.16. Let N ≤ M be two torsion-free R-modules. Let a ∈ R be a regular
element. Then

φ : M/N → aM/aN
m+N 7→ am+ aN

is an isomorphism of R-modules.

Proof. Letm+N = m+n+N ∈M/N with n ∈ N . Then clearly φ(m+N) = φ(m+n+N)
and thus φ is well-defined. By definition, we have aM = {am | m ∈ M}. Thus the
homomorphism is surjective. If am+ aN = φ(m+N) is zero in aM/aN , then am ∈ aN
and thus, by the above, we have am = an for some n ∈ N . In particular, a(m − n) = 0
and since a was regular and M is torsion-free, we must have m = n which proves that φ
is injective.

Lemma C.1.17. Let M be an R-ideal and let f ∈ R be regular with fM ⊆ R. Then the
degree degkM is finite. Moreover, the dimensions over k involved can be computed locally,
that is

dimk R/fM =
∑

P∈Spec(R)0
dimk RP /fMP =

∑
P∈Spec(R)0

degk fMP and
dimkM/fM =

∑
P∈Spec(R)0

dimkMP /fMP .

yielding

degkM =
∑

P∈Spec(R)0

dimk RP /fMP − dimkMP /fMP =
∑

P∈Spec(R)0

degkMP .

Proof. Note that R is a finite residual-type k-algebra. Since M is an R-ideal, fM is
an integral ideal of R such that R/fM has Krull dimension zero, see Lemma C.1.4.
Thus, by Lemma B.4.7, dimk R/fM is finite. Moreover, by Lemma C.1.16, we have a
monomorphism of k-vector spaces M/fM

∼=−→ fM/f2M ↪→ R/f2M and, by the above,
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the latter has finite dimension over k. That is, both dimk R/fM and dimkM/fM and
thus degkM is finite. The part about computing the dimension as the sum over the
localisations is also due to Lemma B.4.7.

To visualise this, consider the following diagram

M R

fM

d2 d1

in which the number along the arrow indicates the respective k-dimension of the quotient.
Thus we have degkM = d1 − d2. Note that if M ⊆ R, then we may take f = 1 and thus
d2 = 0 which then provides degkM = d1.

We now show that the definition is independent of the wedging element. To do so, we
need the following elementary result.

Lemma C.1.18. Let R be a ring and let M be an R-ideal with fM ⊆ R and f ∈ R
regular. Then for all ideals I ⊆ R we have the following exact sequences:

0 −→ fR/fIM −→ R/fIM −→ R/fR −→ 0
0 −→ fM/fIM −→ M/fIM −→ M/fM −→ 0

In particular, if R contains a field k and if IM ⊆ R holds, then we obtain

dimk R/fIM = dimk R/IM + dimk R/fM
dimkM/fIM = dimkM/IM + dimkM/fM.

Proof. The exactness of the sequences is evident. The dimension implication follows by the
additivity of the dimension along exact sequences of finite dimensional vector spaces and
by the isomorphism given in Lemma C.1.16. Note thatM is torsion-free by Remark C.1.12.

Proposition C.1.19. The definition of the degree of R-ideals is independent of the choice
of the wedging element.

Proof. Let M be an R-ideal. By assumption, there is some regular f ∈ R with fM ⊆ R.
Now take another regular g ∈ R such that gM ⊆ R. Consider the following diagram in
which the numbers attached to an arrow denote the k-dimension of the respective quotient:

M R

fM gM

fgM

d2

d1e2
e1

d
e2 d2 e

By Lemma C.1.16, we have M/fM ∼= gM/gfM for all regular g ∈ R. By Lemma C.1.18,
the numbers on the arrows in the diagram behave additively, that is, we have d = d2 + e2
and e = e1 + d2. In particular, e− d = e1 − e2. Moreover,

d1 − d2 = d1 − d2 + e2 − e2 = d1 + e2 − (d2 + e2) = e− d

which proves e1 − e2 = d1 − d2.

Using the exact sequences of Lemma C.1.18 we obtain a surprising result:
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Lemma C.1.20. LetM be an R-ideal and f ∈ R regular with fM ⊆ R. Then dimk R/fR =
dimkM/fM . In particular,

degkM = dimk R/fM − dimk R/fR

= degk fM − degk fR.

Proof. We consider the degree of M and expand the terms appearing by another wedging
element g: Let f, g ∈ R be two regular wedging elements for M . Then

degkM = dimk R/fM − dimkM/fM

Lemma C.1.16 = dimk gR/gfM − dimk gM/gfM

Lemma C.1.18 = (dimk R/gfM − dimk R/gR)− (dimkM/gfM − dimkM/gM)
= (dimk R/gfM − dimkM/gfM)︸ ︷︷ ︸

=degkM

+ dimkM/gM − dimk R/gR.

Now subtracting degkM on both sides provides dimkM/gM = dimk R/gR.

Hence for integral R-ideals we see that Lemma C.1.20 can be applied to any regular
element of R. This together with the isomorphism from Lemma C.1.16 provides the
following result.

Proposition C.1.21. Let M be an R-ideal. Then for any regular a ∈ R we have
dimkM/aM = dimk R/aR.

Proof. Let f ∈ R be regular with fM ⊆ R. We may apply Lemma C.1.20 to fM and any
regular a ∈ R, since any such a is a wedging element for fM , to obtain dimk fM/a(fM) =
dimk R/aR. Now by Lemma C.1.16, we have the isomorphism of R-modules M/aM ∼=
fM/a(fM) which then finally provides the assertion.

Combining Lemma C.1.20 and Lemma C.1.17 provides the following Corollary.

Corollary C.1.22. Let M be an R-ideal and let f ∈ R be regular with fM ⊆ R. Then

degkM =
∑

P∈Spec(R)

degkMP =
∑

P∈Spec(R)0

degkMP

where MP is regarded as an RP -ideal, see Lemma C.1.7.

Proof. As mentioned above, the assertion is the combination of Lemmas C.1.17 and C.1.20.

Lemma C.1.23. Let M be an R-module and a ∈ R regular. The map ϕ : a−1M/M →
M/aM with ϕ(a−1m+M) = m+ aM is an R-module isomorphism.

Proof. That ϕ is well defined follows from

a−1m+m′ +M = a−1m+ a−1am′ +M = a−1(m+ am′) +M

and therefore

ϕ(a−1m+m′ +M) = ϕ(a−1(m+ am′) +M) = m+ am′ + aM = m+ aM

= ϕ(a−1m+M).

The map ϕ is obviously surjective and R-linear. Let ϕ(a−1m + M) = m + aM = aM
which is equivalent to m ∈ aM . Then m = am′ for m′ ∈ M and thus a−1m ∈ M which
finally provides the injectivity.
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Corollary C.1.24. Let M be an R-ideal and let a ∈ R be a regular element. Then

dimk a
−1M/M = dimkM/aM = dimk R/aR.

Proof. Combining Lemma C.1.23 and Proposition C.1.21 provides the assertion.

Proposition C.1.25. Let M be an R-ideal and I ⊆ R be an ideal of R. Then

dimkM/IM = degk IM − degkM.

Proof. Let f ∈ R be regular with fM ⊆ R. Consider the exact sequence

0 −→ fM/IfM −→ R/IfM −→ R/fM −→ 0

which, by Lemma C.1.16, provides

dimkM/IM = dimk R/IfM − dimk R/fM. (1:1)

By Lemma C.1.20, we have

degkM = dimk R/fM − dimk R/fR.

Since f is also a wedging element for IM , we analogously have

degk IM = dimk R/IfM − dimk R/fR.

Therefore,

degk IM − degkM = (dimk R/IfM − dimk R/fR)− (dimk R/fM − dimk R/fR)
= dimk R/IfM − dimk R/fM

(1:1) = dimkM/IM.

The following two results show that invertible R-ideals behave very well with respect to
the degree. They show that the degree is additive if one of the factors is invertible and
that the degree of an invertible R-ideal can be computed as the sum of the degrees of its
restrictions to the irreducible components of Spec(R).

Proposition C.1.26. If M is an invertible R-ideal and I any R-ideal, then

degk IM = degk I + degkM.

Proof. First, we prove the statement for I ⊆ R and then extend the result to arbitrary
R-ideals I. By Proposition C.1.25, we have degk IM = degkM + dimkM/IM and thus
we are left to prove that dimkM/IM = dimk R/I since the latter is equal to degk I. By
Eq. (1:1) in the proof of Proposition C.1.25, we have

dimkM/IM = dimk R/IfM − dimk R/fM.

Hence, if we set J = fM ⊆ R, it suffices to show that

dimk R/IJ − dimk R/J = dimk R/I (1:2)

holds for integral and invertible R-ideals J . By Proposition C.1.19, the degree of an
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integral R-ideal I equals dimk R/I and thus, by Corollary C.1.22, we have

dimk R/IJ =
∑

P∈Spec(R)

dimk RP /IPJP .

Now since J is invertible, for all P ∈ Spec(R) we have JP = aPRP for some aP ∈ RP . For
any two integral R-ideals I, J we have the exact sequence

0 −→ J/IJ −→ R/IJ −→ R/J −→ 0

which then provides
dimk R/IJ = dimk J/IJ + dimk R/J.

Applying this to IP and JP = aPRP we obtain

dimk RP /IPJP = dimk RP /aP IP = dimk aPRP /aP IP + dimk RP /aPRP

Lemma C.1.16 = dimk RP /IP + dimk RP /aPRP

= dimk RP /IP + dimk RP /JP .

Hence

dimk R/IJ =
∑

P∈Spec(R)

dimk RP /IPJP

=
∑

P∈Spec(R)

dimk RP /IP + dimk RP /JP

=
∑

P∈Spec(R)

dimk RP /IP +
∑

P∈Spec(R)

dimk RP /JP

= dimk R/I + dimk R/J

as desired. This proves the assertion in the case I ⊆ R.
Now let I be an arbitrary R-ideal. There are regular wedging elements f, g ∈ R such

that fM ⊆ R and gI ⊆ R. Now using Lemma C.1.20 we obtain

degk IM = degk fgIM − degk fgR. (1:3)

Now since fgI ⊆ R, we can apply what we have shown above and have

degk fgIM = degk fgI + degkM.

Plugging this into Eq. (1:3), we obtain

degk IM = degk fgI + degkM − degk fgR

and, by Lemma C.1.20 again, we have degk fgI−degk fgR = degk I which finally provides
the assertion.

Lemma C.1.27. Let I, J be two R-ideals such that J ⊆ I. Then degk J ≥ degk I.

Proof. Let f be wedging elements of I, i.e. fJ ⊆ fI ⊆ R. Then the surjection R/fJ →
R/fI provides an exact sequence of R-modules

0 −→ fI/fJ −→ R/fJ −→ R/fI −→ 0

where fI/fJ ∼= I/J by Lemma C.1.16. In particular, since all of the above k-vector spaces
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are finite dimensional, we obtain

dimk R/fJ︸ ︷︷ ︸
= degk J

= dimk R/fI︸ ︷︷ ︸
= degk I

+ dimk I/J︸ ︷︷ ︸
≥ 0

and thus the assertion.

Lemma C.1.28. Let M ∈ InvId(R) be an invertible R-ideal. Then

degkM =
m∑
i=1

degkM/PiM

where P1, . . . , Pm denote the minimal prime ideals of R andM/PiM denotes the restriction
of M to an R/Pi-ideal, see Lemma C.1.8 and Definition C.1.9.

Proof. First of all, by Corollary C.1.22, we may compute the degree of M as the sum of
the degrees of MP for P ∈ Spec(R)0. Since M is invertible, we have MP

∼= RP for every
P ∈ Spec(R). There is some regular f ∈ R such that fM ⊆ R and thus λ(f)MP ⊆ RP is
an ideal of RP and isomorphic to MP

∼= RP . Here λ : R → RP denotes the localisation
homomorphism. So

(fM)P =
{
λP (f)MP , fM ⊆ P
RP , otherwise,

and in the former case λP (f)MP is a proper ideal of RP which is free of rank one over
RP . Hence λP (f)MP = λP (a)RP for some a ∈ R in that case. In the latter case we have
degkMP = 0 and in the former we have

degkMP = degk λP (f)MP − degk λP (f)RP
= degk aPRP − degk λP (f)RP

where we set aP = λP (a). By Lemma B.4.49, the degree of a principal R-ideal can be
computed as the sum of the degrees of the restrictions to the irreducible components of
Spec(RP ), i.e.

degkMP = degk aPRP − degk λP (f)RP
=
∑
Pi⊆P

(degk(aPRP + PiRP )− degk(λP (f)RP + PiRP )) . (1:4)

Now fix some minimal prime Pi ∈ {P1, . . . , Pm} such that Pi ⊆ P . By Remark B.4.36,
we have that the f ∈ R from above satisfies (f + Pi)(M/PiM) ↪→ R/Pi. Since M is
invertible, we have (M/PiM)P ∼= RP /PiRP ∼= (R/Pi)P and thus M/PiM is invertible as
an R/Pi-module as well. Similar to above, we have

((f + Pi)(M/PiM))P =
{

(λP (f) + Pi)(MP /PiMP ), fM,Pi ⊆ P
(R/Pi)P , fM 6⊆ P ∨ Pi 6⊆ P

and in the former case (λP (f) + Pi)(MP /PiMP ) ∼= (λP (a) + PiRP )(RP /PiRP ) with the
same a ∈ R as above. Therefore, with the same line of argument as above, we obtain

degkM/PiM =
∑

P∈Spec(R/Pi)0

degk(M/PiM)P

=
∑
Pi⊆P

degk(λP (a)RP + PiRP )− degk(λP (f)RP + PiRP )
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which yields
m∑
i=1

degkM/PiM =
m∑
i=1

∑
Pi⊆P

degk(λP (a)RP + PiRP )− degk(λP (f)RP + PiRP )

=
∑

P∈Spec(R)0

∑
Pi⊆P

degk(λP (a)RP + PiRP )− degk(λP (f)RP + PiRP )

Eq. (1:4) =
∑

P∈Spec(R)0

degkMP

= degkM

as asserted.

C.2 R-Ideals and Approximation of Elements and Bases

In this short section we provide the analogue of Lemma B.4.45 for R-ideals. The next
lemma tells us how to construct elements in the restrictions M/PiM of an R-ideal M that
will actually come from an element of M itself.

Lemma C.2.1. Let R be a reduced ring with minimal prime ideals P1, . . . , Pm and we set
Ii =

⋂i
j=1 Pj. Let M be an R-ideal. Then (m1 +P1M, . . . ,mm +PmM) ∈

⊕m
i=1M/PiM

lies in the image of φ : M →
⊕m

i=1M/PiM if and only if for all i = 2, . . . ,m we have

(mi−1
1 + Ii−1M,mi + PiM) ∈ im(φi). (2:5)

Here mi−1
1 + Ii−1M = φ−1

i−1(m1 + P1M, . . . ,mi−1 + Pi−1M) ∈ M/Ii−1M for i ≥ 3 and
m1

1 + Ii−1M = m1 + P1M .

Proof. The proof is literally the same as the one of Lemma B.4.45. We only use Corol-
lary B.4.47 instead of Corollary B.4.42.

Proposition C.2.2. Let the situation be as in Lemma B.4.46. Assume that R, R/I and
R/J are free ring extensions of k[x] such that

R

R/I R/J

k[x]

n

n2n1

commutes. Then n = n1 + n2. Assume M to be an R-ideal. Then M is free of rank
n. Moreover, M/IM and M/JM are isomorphic to R/I- respectively R/J-ideals. In
particular, they are free over k[x] of rank n1 respectively n2. Then we have

im(φ) = {(m+ IM,m+ z + JM) | m ∈M, z ∈ IM + JM}.

Fix any bases B1 and B2 of M/IM respectively M/JM . Then im(φ) has a k[x]-basis
whose basis matrix with respect to (B1,B2) is of the form(

En1 0
N C

)
∈ k[x](n1+n2)×(n1+n2).
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Here C can be chosen to be an arbitrary basis matrix of the free submodule (IM+JM)/JM .

Proof. By Lemma B.4.41, we have n = n1 + n2 since the rank of R over k[x] is equal to
the k(x)-dimension of Frac(R), see Lemma B.4.10. By Lemma 4.1.6, M is free of rank
n. By Lemma C.1.8, M/IM and M/JM are isomorphic to R/I- respectively R/J-ideals,
and thus Lemma 4.1.6 again provides the statement about the freeness.

Let S = {(m+ IM,m+ z+ JM) | m ∈M, z ∈ IM + JM}. Then S ⊆ ker(ψ) = im(φ)
since m − (m + z) = −z ∈ IM + JM . Conversely, let (m + IM, n + JM) ∈ ker(ψ).
Then m − n ∈ IM + JM and thus n = m + z with z ∈ IM + JM . This proves the
assertion about im(φ). In particular, this shows that if {mi + IM} is a generating set of
M/IM over k[x] and {zi + IM + JM} is a generating set of (IM + JM)/JM over k[x],
then φ({mi} ∪ {zi}) generates im(φ) over k[x]. Let B1 = (α1 + IM, . . . , αn1 + IM) and
z1 + JM, . . . , zn2 + JM be bases of M/IM respectively (IM + JM)/JM over k[x]. Set
I = (α1, . . . , αn1) and Z = (z1, . . . , zn2). Then

B = (φ(I), φ(Z)) = (φ(α1), . . . , φ(αn1), φ(z1), . . . , φ(zn2))

generates im(φ). But since im(φ) is free of rank n = n1 +n2, B need to be a basis of im(φ)
over k[x]. The basis transformation matrix T from (B1,B2) to B is thus given by

T =
(
En1 0
N C ′

)
∈ k[x](n1+n2)×(n1+n2).

The top right zero matrix is due to zi ∈ IM + JM which means that zi vanishes in
M/IM . By construction, C ′ is the basis matrix of the basis φ(Z) of (IM + JM)/JM
over k[x]. Now we may reduce the matrix C ′ by unimodular column operations over k[x]
which finally yields

TU =
(
En1 0
N C

)
with C being reduced. These unimodular column operations perform a base change of
φ(Z) and im(φ) and hence we deduce the assertion.

Remark C.2.3. The key point here is that M (and thus φ(M)) and M/IM ⊕M/JM have
the same rank over k[x]. This is the case whenever M is an R-ideal and thus embedded
in Frac(R), see Lemma B.4.41. 4
Remark C.2.4. Proposition C.2.2 can be used to find bases of the image of M in M/IM ⊕
M/JM that restricts to a given basis of M/IM and whose restriction in M/JM can be
arbitrarily altered by any basis of (IM + JM)/JM . The algorithm ReduceByPopov
enables us to reduce the image of the found basis in M/JM by that of (IM + JM)/JM
in terms of matrices. This results in finding a basis whose matrix representation as in
Proposition C.2.2 satisfies degN < degC. We will rely on this in the endeavour of finding
a suitable basis of F(V0) for OX -ideals F that restricts to elements in F(Vi,0) having
coefficient vectors with respect to Ωi with bounded degree. 4

C.3 General Properties of OX-Ideals
If not mentioned otherwise, in this section X will denote a curve of finite residual-type
over k, see Definition 2.1.1.

Lemma C.3.1. Let F ≤ L be two OX-ideals. Then Supp(L/F) is finite and thus
H1 (X,L/F) = 0. In particular, if X is projective, then χk(X,L/F) = H0 (X,L/F).
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Proof. By assumption, we can cover X by a finite set of affine opens. Hence the support
of L/F is finite if and only if the support of its restrictions to those affine opens are finite.
Thus the first statement follows from Proposition C.1.13. But this means that L/F is a
skyscraper sheaf on X and thus, by Lemma B.2.8, we have H1 (X,L/F) = 0. This also
proves the particular part.

The sections of sheaves with finite support can easily be characterised by the stalks.

Lemma C.3.2. Let X be a curve over k. Let F be a sheaf on X. If Supp(F) is finite,
then F(U) ∼=

∐
P∈U FP for all open U ⊆ X.

Proof. We can define a sheaf Fs by Fs(U) =
∐
P∈U FP and obtain a canonical morphism

of sheaves ϕ : F → Fs. Since F is a sheaf, it is separated and thus by Lemma B.1.8 the
morphism ϕ is injective. Thus, by Lemma B.1.12, ϕ is an isomorphism if and only if ϕP
is surjective for all P ∈ X. For instance, this is the case whenever the stalk of Fs at P is
isomorphic to FP . To show FsP ∼= FP , it suffices to show that there is some open subset U
containing P but no other point of S := Supp F . For instance, this is the case if S solely
consists of closed points of X since then we could just remove the other points. We will
prove that this is the case which thus proves the assertion: Every irreducible component
of X is again a curve over k and thus, by Lemma D.2.1, we see that each of them, and
any non-empty affine open subset of it, contains infinitely many points. Therefore, since
S is finite, it cannot contain an irreducible component of X (neither an affine open of a
component). By Corollary B.5.5, we know that ξi ∈ Si ⊆ Supp(F) implies Xi ⊆ Supp(F)
which is not possible by the above. Hence Si does not contain the unique generic point
ξi of Xi and thus, by Lemma B.5.1, it consists solely of closed points of Si. In particular,
the same is true for S which proves the assertion.

Corollary C.3.3. Let X be a curve over k and let F ≤ L be two OX-ideals. Then
H0 (X,L/F) =

∐
P∈X LP /FP . In particular, if X is projective, then χk(X,L/F) =∑

P∈X dimk LP /FP .

Proof. By Lemma C.3.1, Supp(L/F) is finite and thus Lemmas C.3.1 and C.3.2 provide
the assertions.

Lemma C.3.4. Let X be a Cohen-Macaulay curve of finite residual-type over k and let
F be a coherent OX-submodule of KX . Then F(U) contains a regular element of OX(U)
for all affine open U ⊆ X if and only if F is invertible at the generic points of X if and
only if there is an affine cover U = {Uα} of X such that F(Uα) contains a regular element
of OX(Uα) for all Uα ∈ U .

Proof. We prove the equivalence between the first two. Let F be invertible at the generic
points of X and let U ⊆ X be an affine open. Then the minimal primes of OX(U) are in
1-to-1 correspondence to the generic points ofX contained in U . Since F is quasi-coherent,
F(U) is invertible at the minimal primes of OX(U) and hence Proposition C.1.10 implies
that F(U) contains a regular element of OX(U). Conversely, let F(U) contain a regular
element of OX(U) for all open and affine U ⊆ X. Every generic point ξ of X lies in an
affine open U and corresponds to a minimal prime P of OX(U). By the coherence of F ,
there is some regular c ∈ OX(U) such that cF(U) ⊆ OX(U). Moreover, by assumption,
there is some regular a ∈ OX(U) contained in F(U). Hence acF(U)P is an integral ideal
of OX,P containing a regular element and since P was minimal, every regular element in
OX,P is invertible. Therefore, Fξ ∼= F(U)P ∼= OX,P . The same argument shows that one
affine cover is sufficient and hence the last equivalence is trivial.
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C.4 Degree of OX-Ideals
After we have introduced the notion of degree for R-ideals for every finite residual-type
k-algebra R, the next step is to enlarge this to OX -ideals for a curve X of finite residual-
type over k. Since the degree of R-ideals can be computed locally in the sense of Corol-
lary C.1.22, we might define the degree of an OX -ideal F as the sum of the degree of the
OX,P -ideals FP .

Throughout this section, if not explicitly mentioned otherwise, k denotes a field and
X a curve of finite residual-type over k.

Definition C.4.1. Let F be an OX -ideal. We define the degree of F over k as

degk F =
∑
P∈X0

degk FP .

Here the definition makes sense since for every P ∈ X there is some affine open neighbor-
hood U = Spec(R) such that F(U) ∼= M∼, see [Liu02, 5.1.7], where M is a finitely gen-
erated R-submodule of KX(U) = Frac(R), see Proposition B.2.2. Hence M is an R-ideal
and thus, via applying Lemma C.1.7, we see that MP = FP is an RP = OX,P -ideal. 4

Another possible way to define the degree of OX -ideals over k, one that is equivalent to
the one we introduced above, is to find a wedging divisor instead of a wedging element.
This resembles the idea of reducing the question to the integral ideal case. Moreover, in
the definition introduced above we need a wedging element for every FP , and to give a
regular element for every P ∈ X strongly resembles the idea of a Cartier divisor.

Lemma C.4.2. Let X be a curve of finite residual-type over k. Let F be an OX-ideal.
Then there exists an (integral) invertible OX-ideal G ≤ OX such that FG ≤ OX . Note
that we also have FG ≤ F .

Proof. Since X is noetherian, it may be covered by finitely many affine opens. Take any
finite affine open cover of X given by Ui = Spec(Ri) for i ∈ I = {1, . . . ,m}. Since F is an
OX -ideal, we have that F(Ui) is an Ri-ideal. Moreover, there is some regular ai ∈ Ri such
that aiF(Ui) ⊆ Ri. The idea is now, roughly speaking, to collect all such ai and form an
invertible OX -ideal G which satisfies G(Ui) = aiRi and thus satisfies (FG)(Ui) ⊆ Ri.

Since ai is regular, it is not contained in any minimal prime ideal of Ri, see Corol-
lary B.4.14. In particular, Ri/aiRi is the affine coordinate ring of the closed subscheme
V (ai) ⊆ Ui and it is a noetherian ring of Krull dimension zero. Thus, by [Sta18, Tag
00KJ], it is a finite product of local artinian rings. In particular, V (ai) is not only closed
in Ui, but also a finite union of closed points of X. Since Ai := V (ai) does not contain
any minimal prime of Ri and thus no generic point of Ui, it does not contain any generic
point of X at all. Let X1, . . . , Xm denote the finitely many irreducible components of X.
Now Ai ∩ Xj is a finite set not containing the generic point of Xj and is thus closed in
Xj by Lemma B.5.1. Thus Ai = ∪mj=1(Ai ∩Xj) is closed in X as well. Then we define an
OX -ideal Gi by (Gi)|Ui = aiOUi and (Gi)X\Ai = OX\Ai . This does indeed define a sheaf
of OX -modules since ai restricts, by construction, to a unit in (X \ Ai) ∩ Ui. Moreover,
we even see that (Gi)P is invertible for all P ∈ X and thus Gi is an invertible OX -ideal.
Now define the OX -ideal G as the finite product of the Gi. Hence, by Lemma 3.1.24, G
is the invertible OX -ideal given by G|UJ =

∏
j∈J(aj)|UJOUJ on every UJ = ∩j∈JUj for

arbitrary J ⊆ I. Note that {UJ | J ⊆ I} form an open cover of X. Since X is separated
with an affine base, by [Sta18, Tag 01KP], we have that UJ is an affine open subset of X.
Therefore, by Lemma 3.1.17, we have an embedding

(FG)(UJ) ∼= F(UJ)G(UJ) = (
∏

j∈J
(aj)|UJ )F(UJ) ⊆ OX(UJ). (4:6)
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Note that the embedding of OX(UJ)-modules in (4:6) provides an embedding of quasi-
coherent OUJ -modules that are compatible with the restriction maps of the corresponding
sheaves. Now since the homomorphisms F → G of general OX -modules F and G form a
sheaf HomOX (F ,G), we obtain a morphism of OX -modules FG → OX which is injective.

In the case of X being a cover of P1
k, the proof simplifies a lot as the following remark

shows.
Remark C.4.3. Let X be a cover of P1

k. Let F be an OX -ideal. Then there exist an effective
divisor D ≥ 0 such that F(−D) ≤ OX . Indeed, we have seen in Lemma 4.3.12 that for
every OX -ideal F there are bases of F(V0) and F(V∞) which are related by a matrix
diag(xdi). But this means that the common denominator a0 ∈ k[x] of the basis of F(V0)
and the common denominator a∞ ∈ k[x−1] of the basis of F(V∞) will only differ by a power
of x, which itself is a unit in OP1(U0 ∩ U∞) = k[x, x−1]. This means we may define an
effective divisor D ≥ 0 by {(V0, a0), (V∞, a∞)} since a0/a∞ ∈ OX(V0 ∩ V∞)×. Obviously,
D satisfies F(−D) ≤ OX since locally on V0 we have F(−D)(V0) ∼= a0F(V0) ⊆ R0 and on
V∞ we obtain F(−D)(V∞) ∼= a∞F(V∞) ⊆ R∞. 4

Lemma C.4.4. Let X be a projective curve over k. Let F be an OX-ideal. Then for
every invertible OX-ideal G ≤ OX such that FG ≤ OX , we have

degk F = χ(OX/FG)− χ(F/FG).

Moreover, we also have

degk F = χ(OX)− χ(F).

Proof. Let G ≤ OX be an invertible OX -ideal such that FG ≤ OX . Then FG ≤ F , see
Lemma C.4.2. We first prove the equality

χ(OX)− χ(F) = χ(OX/FG)− χ(F/FG).

By the above, we have two short exact sequences

0 −→ FG −→ OX −→ OX/FG −→ 0,
0 −→ FG −→ F −→ F/FG −→ 0.

By assumption, X is projective and thus proper over k, see Corollary B.5.19. Hence
the Euler characteristic χk(F) := χk(X,F) is defined, see Definition B.5.13. It behaves
additively on short exact sequences, see Lemma B.5.14. This yields

χk(OX) = χk(FG) + χk(OX/FG) and
χk(F) = χk(FG) + χk(F/FG).

Now subtracting the latter from the former, we deduce

χk(OX)− χk(F) = χk(OX/FG)− χk(F/FG).

Next we prove that χk(OX/FG) − χk(F/FG) is equal to degk F . Note that all OX , F
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and FG are OX -ideals. Then, by Corollary C.3.3, we obtain

χk(OX/FG)− χk(F/FG) =
∑
P∈X

dimkOX,P /(FG)P − dimk FP /(FG)P

Lemma 3.1.16 =
∑
P∈X

dimkOX,P /FPGP − dimk FP /FPGP .

Now since G is invertible, its stalks are principalOX,P -ideals GP = aPOX,P with aP ∈ OX,P
and hence, by the definition of the degree of OX,P --ideals, we have

dimkOX,P /FPGP − dimk FP /FPGP = dimkOX,P /aPFP − dimk FP /aPFP
= degk FP

where the latter is the degree of FP as an OX,P -ideal. Finally, this gives

χk(OX/FG)− χk(F/FG) =
∑
P∈X

degk FP = degk F

as asserted.

Corollary C.4.5. Let F ≤ G be two OX-ideals. Then degk G = degk F−dimkH
0 (X,G/F).

In particular, degk F ≥ degk G.

Proof. By assumption, we have a short exact sequence

0 −→ F −→ G −→ G/F −→ 0

which together with Lemma B.5.14 provides χ(G) = χ(F) + χ(G/F). Multiplying this
equation with −1 and then adding χ(OX) on both sides, together with Corollary C.3.3
provides

χ(OX)− χ(G) = χ(OX)− χ(F)− dimkH
0 (X,G/F)

which is equivalent to

degk G = degk F − dimkH
0 (X,G/F) .

As is turns out, OX -ideals with positive degree on integral schemes do not have non-zero
global sections.

Lemma C.4.6. Let X be an integral and projective curve over k. Let F be an OX-ideal.
If degk F > 0, then F(X) = 0.

Proof. Every non-zero global section f of F corresponds to a non-zero element of KX(X) =
F , the function field of X. Thus fOX is an invertible OX -ideal with fOX ≤ F . By
Corollary C.4.5, this provides

degk F = degk fOX − dimkH
0 (X,F/fOX) .

By Lemma 3.1.12, we have degk fOX = 0 and whence degk F = −dimkH
0 (X,F/fOX) ≤

0. Hence if degk F > 0, then we necessarily have H0 (X,F) = 0.

Proposition C.1.26 has shown that the degree of the product of two R-ideals is additive if
one of the factors is invertible. This generalises to OX -ideals.

Lemma C.4.7. Let F ,G be two OX-ideals such that for all closed points P ∈ X at least
one of the stalks of F or G is an invertible OX,P -ideal. For instance, this is the case if
one of F and G is invertible. Then degk FG = degk F ⊗OX G = degk F + degk G.
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Proof. For all P ∈ X we have (F ⊗OX G)P ∼= (FG)P = FPGP . By assumption, FP or GP
is invertible and hence Proposition C.1.26 provides that degk FPGP = degk FP + degk GP
for all closed P ∈ X. By definition, this provides

degk FG =
∑

P∈X, P cl.
degk FPGP

=
∑

P∈X, P cl.
degk FP + degk GP

=
∑

P∈X, P cl.
degk FP +

∑
P∈X, P cl.

degk GP

= degk F + degk G.

Lemma C.4.8. For any D ∈ Div(X) we have degkD = −degkOX(D).

Proof. We refer the reader to [Liu02] for the definition of the degree of Cartier divisors.
The degree of a divisor D ∈ H0 (X,K×X) with DP = aP /bP , aP , bP ∈ OX,P , is defined as

degkD =
∑
P∈X

(lenOX,P (OX,P /aP )− lenOX,P (OX,P /bP )) · [κ(P ) : k]

where κ(P ) denotes the residue class field of OX,P . However, by Lemma B.4.48, we have

lenOX,P (OX,P /aP ) · [κ(P ) : k] = dimkOX,P /aP

and since bP is a wedging element for DPOX,P , Lemma C.1.20 provides

degkD =
∑
P∈X

dimk aPOX,P − dimk bPOX,P

=
∑
P∈X

degk aPOX,P − degk bPOX,P

=
∑
P∈X

degkDPOX,P .

Now since OX(D)P ∼= D−1
P OX,P , see Proposition 3.1.27, we therefore obtain

degkOX(D) =
∑
P∈X

degkOX(D)P

=
∑
P∈X
−degkDPOX,P

= − degkD.

Remark C.4.9. The degree of an invertible sheaf L is in [Liu02, Definition 7.29] defined as
χ(L)− χ(OX) and thus the only difference to our definition of the degree of OX -ideals is
the sign. 4

Lemma C.4.10. Let X = Spec(R) be an affine curve of finite residual-type over k. Then
every OX-ideal F is given by some M∼ where M is an R-ideal. Conversely, every R-ideal
M provides an OX-ideal M∼. This provides an equivalence of categories:

OX-ideals → R-ideals
F 7→ F(X)

M∼ ←[ M
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Proof. Since R is noetherian, by [Sta18, Tag 01OW], X = Spec(R) is locally noetherian.
By [Har77, II, 5.5], there is an equivalence of the category of R-modules and the category
of quasi-coherent OX -modules given by M 7→ M∼ for any R-module M and its inverse
F 7→ F(X) for any OX -module F .

Let F be an OX -ideal. Then F ≤ KX implies F(X) ⊆ KX(X) = Frac(R) since X
is affine, see Proposition B.2.2. Since F is coherent and X locally noetherian, F(X) is
finitely generated, see [Liu02, 5.1.11]. Moreover, we have FP ∼= F(X)P and thus F(X) is
invertible at the minimal prime ideals of R since F is invertible at the generic points of
X. Whence F(X) is an R-ideal such that F ∼= F(X)∼.

Conversely, if M is an R-ideal, then M ⊆ Frac(R) and M is invertible at the minimal
prime ideals of R. We claim that this implies that M∼ is an OX -submodule of KX :
First of all, the basic affine open subsets U = D(f) for some f ∈ R form a base of the
Zariski topology on X. By [GW10, 7.12], we have that M∼(D(f)) = Mf defines a sheaf
on the base of basic open subsets of X. By Remark B.1.32, this is enough to provide a
sheaf M∼ of OX -modules on X such that M∼(D(f)) = Mf . Now by Proposition B.2.2,
for any U = D(f) we have KX(U) = Frac(Rf ) and KX is quasi-coherent on X. That
is, K := KX(X) = Frac(R) satisfies KX(U) ∼= Kf and thus, again by [GW10, 7.12], K∼
defines a sheaf on the base of basic open subsets of X. However, we obviously haveM ⊆ K
and thus [Sta18, Tag 009U] provides that M∼ ≤ K∼ ∼= KX is an OX -submodule of KX .
SinceM is finitely generated and X locally noetherian, by [Liu02, 5.1.11],M∼ is coherent.
Moreover, since M is invertible at minimal primes of R, M∼ is invertible at the generic
points of X. Therefore, M∼ is an OX -ideal.

Corollary C.4.11. Let X = Spec(R) be an affine curve of finite residual-type over k. Let
F be an OX-ideal. Then degk F = degk F(X) where the former denotes the degree of the
OX-ideal Fand the latter the degree of the R-ideal F(X).

Proof. By Lemma C.4.10, we have F ∼= F(X)∼ and thus FP ∼= F(X)P which then
provides the equality due to the definitions of the degree of OX -ideals Definition C.4.1
and the degree of R-ideals Definition C.1.14.

Corollary C.4.12. Let X be a cover of P1
k and V ∈ {V0, V∞}. Let F be an OX-ideal.

Then
degk F|V = degk F(V ) and degk F|S = degk F|S(S).

Proof. Due to Lemma 2.2.20, we have that V is an affine (Cohen-Macaulay) curve over k.
In particular, V is an affine curve of finite residual-type over k. Moreover, F|V is an OV -
ideal, see Example 3.1.14. Hence, by Corollary C.4.11, the first identity follows. Moreover,
by Proposition 3.2.28, we have that F|S is an OS-ideal. By Lemma 2.2.20, we know that
OS is an affine curve of finite residual-type over k. Therefore, again by Corollary C.4.11,
the second identity follows.

An immediate consequence of Corollary C.4.12 is the following statement which enables
us to compute the degree of an OX -ideal locally on the affine schemes V0 and S.

Corollary C.4.13. Let X be a cover of P1
k. Let F be an OX-ideal. Then

degk F = degk F(V0) + degk F(S).

Proof. By Proposition 3.2.28, we have for all closed points P ∈ S0 the identity (F|S)P =
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FP and thus we obviously have

degk F =
∑
P∈X0

degk FP =
∑

P∈(V0)0

degk FP +
∑
P∈S0

degk FP

=
∑

P∈(V0)0

degk(F|V0)P +
∑
P∈S0

degk(F|S)P

= degk F|V0 + degk F|S

which then together with Corollary C.4.12 provides the assertion.

We shall note that in general, the degree of OX -ideals does not behave additively with
regards to the restriction to irreducible components. But if the irreducible components
are also the connected components (i.e. they are disjoint) or if the respective OX -ideal is
invertible, then the degree does indeed behave additively.
Remark C.4.14. The proof in the case of disjoint irreducible components is trivial since
we can compute the degree as the sum over all degree of stalks and no such stalk appears
multiple times due to the disjointness. 4

Proposition C.4.15. Let X be a reduced and proper scheme over a field k. Let X1, . . . , Xm

be all of X irreducible components. Let F be an invertible sheaf on X. Then degk F =∑m
i=1 degk F|Xi.

Proof. We denote by τi : Xi → X the closed immersion corresponding to the closed
subscheme Xi. The injection OX →

⊕m
i=1(τi)∗OXi from Definition B.3.1 provides, due to

Proposition B.3.3, an exact sequence

0 −→ OX −→
m⊕
i=1

(τi)∗OXi −→ S −→ 0, (4:7)

where S is a skyscraper sheaf by Lemma B.5.3. Since F is invertible, it is flat, see
[Liu02, 5.2.31 b], and hence tensoring sequence (4:7) with F provides an exact sequence
of OX -modules

0 −→ F −→
m⊕
i=1

(τi)∗F|Xi −→ S ⊗OX F −→ 0.

Now applying the Euler characteristic, see Lemma B.5.14, yields
m∑
i=1

χ(X, (τi)∗F|Xi) = χ(X,F) + χ(X,S ⊗OX F).

By Lemma B.5.15 (iv), we have χ(X,S ⊗OX F) = χ(X,S ) and, by Lemma B.5.12, we
deduce

χ(X, (τi)∗F|Xi) = χ(Xi,F|Xi),

which together provides
m∑
i=1

χ(Xi,F|Xi) = χ(X,F) + χ(X,S ). (4:8)

Applying the Euler characteristic to sequence in (4:7) and using again the additivity on
short exact sequences, see Lemma B.5.14, we obtain

m∑
i=1

χ(Xi,OXi) = χ(X,OX) + χ(X,S ). (4:9)
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Now subtracting
∑m

i=1 χ(Xi,F|Xi) from Eq. (4:9) and using Eq. (4:8), we deduce

m∑
i=1

χ(Xi,OXi)−
m∑
i=1

χ(Xi,F|Xi) = χ(X,OX) + χ(X,S )− (χ(X,F) + χ(X,S ))

= χ(X,OX)− χ(X,F)

which implies
m∑
i=1

degk F|Xi =
m∑
i=1

χ(Xi,OXi)− χ(Xi,F|Xi) = χ(X,OX)− χ(X,F) = degk F .

Remark C.4.16. There is a proof of this fact in [Liu02, 7.5.7] where the degree of L, as
already mentioned in Remark C.4.9, is set as degk L = χk(X,L)− χk(X,OX) in contrast
to our definition, see Definition C.1.14 and Lemma C.4.4, degk F = χk(X,OX)−χk(X,F).
Moreover, in [Liu02, 7.5.7] X need not be reduced, but then the equation becomes

degk F =
m∑
i=1

di degk F|Xi

where di = lenOX,ηi (OX,ηi) is the minimal power ni such that the maximal ideal mi satisfies
mni
i = 0 in OX,ηi (which is equal to one if X is reduced and thus OX,ηi a field, see

Lemma B.4.29). Also note that the author endows the components Xi with the reduced
subscheme structure. 4
Remark C.4.17. Another proof that only works locally can be derived using Lemma C.1.28
which shows the respective statement for the case of R-ideals where R is local and reduced.
In that case we only need that X is reduced at closed points since computing the degree
can be done only using closed points, see Definition 3.1.13 and Corollary C.1.22. 4
In the following proposition we collect the most important properties of the degree of
OX -ideals we have stated above in the special case of divisors on covers of P1

k.

Proposition C.4.18. Let X be a curve of finite residual-type over k with irreducible
components X1, . . . , Xm. Let D,E ∈ Div(X). Then the following assertions are true.

(i) Let X be affine. Then degk(D) = −degkOX(D)(X).

(ii) Let X be a cover of P1
k. Then

degkD = degkD|V0 + degkD|S = degkD|V0 +
m∑
i=1

degkD|Si .

In particular, if degkD = 0, then

degkD|V0 = −degkD|S = −
m∑
i=1

degkD|Si .

(iii) degkD =
∑m

i=1 degkD|Xi and if X is a cover of P1
k, then

degkD =
m∑
i=1

degkD|Xi =
m∑
i=1

degkD|Vi,0 + degkD|Si .

(iv) degk(D + E) = degkD + degk E.
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Proof. First of all, we will use the fact degkD = −degkOX(D), see Lemma C.4.8. Then
(i) follows from Corollary C.4.11. The former equality from (ii) is the combination of
Corollaries C.4.12 and C.4.13 and the latter is due to the fact that S is the disjoint union
of the Si, see Proposition 5.5.3. The first equality of (iii) is due to Proposition C.4.15
and the second one is the result of applying (ii) to D|Xi since Xi is a cover of P1

k, see
Proposition 2.2.5. Assertion (iv) follows from Lemma C.4.7.
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Appendix D

Properties of Covers of P1
k

In this chapter we provide some of the fundamental properties of covers of P1
k. For instance,

due to the lack of reference, we provide a proof of the existence of a finite morphism onto
Pnk for every projective scheme over k of dimension n. We deduce from this that for every
projective schemeX over k of dimension one there is a finite and surjective morphism to P1

k

which additionally is flat if and only if X is Cohen-Macaulay. Moreover, such morphisms
send closed points to closed points and generic points to generic points.

The chapter is organised as follows: In Section D.1 we provide the existence of the
finite morphism onto P1

k and show some of its properties. In Section D.2 we provide a
wide range of properties of covers of P1

k that will be used frequently throughout this thesis.

D.1 Finite Morphism to Projective Space

To prove the existence of a finite morphism onto projective space, we need some existence
lemmas for global sections of ample sheaves whose zero loci have codimension one.

Proposition D.1.1. Let X be a proper scheme over k where k is a field. Let L be
an ample invertible sheaf on X and let s ∈ L(X) be a section of L. Then Xs =
{P ∈ X | sPOX,P = LP } is an affine open subset of X.

Proof. By assumption, there is some m > 0 such that L⊗m is very ample for a closed
immersion φ : X → Pnk . Then φ corresponds to global sections s0, . . . , sn ∈ L⊗m(X). We
show that the morphism ψ : X → Pn+1

k given by the sections s⊗m, s0, . . . , sn ∈ L⊗m(X)
is a closed immersion. Let Y := Pn+1

k \ {(1 : 0 : . . . : 0)} and consider the morphism
p : Y → Pnk given by forgetting the first coordinate which was due to s⊗m. Then φ = p◦ψ.
Let P be a property of morphisms of schemes such that a closed immersions satisfy P
and P is stable under composition and base change. Let f : X → Y and g : Y → Z be
morphisms of schemes such that g is separated and g ◦ f satisfies P. Then [Liu02, 3.3.15]
provides that f satisfies P. By [Sta18, Tag 01JY and Tag 02V0] and [Sta18, Tag 01KU
and Tag 01KU], being separated and a closed immersion are examples for P. Thus it
suffices to show that p is separated. By [Sta18, Tag 0DVA], the inclusion Y ↪→ Pn+1

k is
separated and hence the composition Y ↪→ Pn+1

k → Spec(k) of separated morphisms is
separated. Therefore, we may use [Liu02, 3.3.15] again on Y p→ Pnk → Spec(k) to complete
the proof.

Lemma D.1.2 ([GW10] 13.49). Let X be a quasi-compact and quasi-separated scheme.
Let L be an ample OX-module. For every finite subset E of X and open neighborhood
W of E there exists an n > 0 and a section s ∈ L⊗n(X) such that Xs is affine and
E ⊆ Xs ⊆W .
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Corollary D.1.3. Let X be an affine scheme. Then for any finite subset E of X and
open neighborhood W of E there exists h ∈ OX(X) such that E ⊆ D(h) ⊆W .

Proof. Note that an affine scheme is quasi-separated and quasi-compact, see [Sta18, Tag
01KN] and [GW10, 2.5]. In particular, any affine scheme is quasi-affine, see the definition
in [Sta18, Tag 01P6]. Moreover, by [Sta18, Tag 01QE], a scheme X is quasi-affine if and
only if OX is ample. Hence we may apply Lemma D.1.2 to X and L = OX which clearly
provides the assertion.

Corollary D.1.4. Let X be a projective scheme over an affine base scheme Spec(R).
Then for any finite subset E of X and open neighborhood W of E there exists an affine
open subset U ⊆ X such that E ⊆ U ⊆W .

Proof. First of all, every affine scheme has an ample line bundle: Let L be an invertible
sheaf on an affine schemeX. Let F be a quasi-coherent sheaf onX. Then L⊗OXF is quasi-
coherent by [Liu02, 5.1.12] and quasi-coherent sheaves on affine schemes are obviously
generated by global sections. Hence L is ample on X. Hence we may apply [Sta18, Tag
0B45] which tells us that any projective scheme X → S over an affine base S has an ample
invertible sheaf. By [Sta18, Tag 0B45], we see that X is proper and a fortiori separated.
By [Sta18, Tag 04XU], every universally closed morphism is quasi-compact. Hence every
proper scheme and thus X is quasi-compact. Therefore the requirements of Lemma D.1.2
are met and we can deduce the assertion.

Proposition D.1.5. Let X be a noetherian scheme and Z a non-empty, closed subset of
X. Let L be an ample invertible sheaf on X. Then there exists an n > 0 and a section
s ∈ L⊗n(X) such that s does not vanish identically on any irreducible component of Z.

Proof. Since X is noetherian and Z is closed, Z decomposes into finitely many, distinct
irreducible components Z1, . . . Zm which are closed in X. For each i there is x ∈ Xi\ ∪mj 6=i
Zj . As a noetherian scheme, X is quasi-compact by definition and quasi-separated by
[Sta18, Tag 01OY]. We apply Lemma D.1.2 with E = {x} and W = X\ ∪mj 6=i Zj . This
gives si ∈ L⊗ni(X) for some ni > 0 such that x ∈ Xsi ⊆ W . Now si vanishes at y ∈ X
if and only if y 6∈ Xsi , so si vanishes on every Zj but not on Xi. Then for n = n1 · · ·nm,
the section s =

∑m
i=1 s

⊗(n/ni)
i ∈ L⊗n(X) satisfies the assertion.

Theorem D.1.6. Let X be a projective scheme of dimension n over the field k. Then
there exists a finite morphism π : X → Pnk .1

Proof. Let n = dim(X). We will show that there is an ample invertible sheaf L and global
sections s0, . . . , sn ∈ L(X) which will define the desired finite morphism X → Pnk .

As a first step we now prove by induction that for each i with 0 ≤ i ≤ n there
exists an ample invertible sheaf Li and global sections s0, . . . , si such that the intersection
Zi :=

⋂i
j=0 V (sj) of their zero loci satisfies codim(Xi, X) = i+ 1. Then Zn = ∅ and hence⋃n

i=0Xsi = X. By assumption, there is an ample invertible sheaf L0 corresponding to a
closed immersion X → PNk for N > 0. The case i = 0 is provided by Proposition D.1.5.
Now assume there is an ample invertible sheaf Li−1 on X and global sections s0, . . . , si−1 ∈
Li−1(X). Then, by Proposition D.1.5, there is si ∈ L⊗mi−1(X) for some m > 0 such that
si does not vanish identically on any irreducible component of Zi−1. Thus codim(Zi−1 ∩
V (si), X) ≥ codim(Zi−1, X) + 1. Moreover, equality holds by Krull’s Hauptidealsatz, see
[Liu02, 2.5.12]. The ample invertible sheaf L⊗mi−1 and its sections s⊗m0 , . . . , s⊗mi−1, si complete
the induction.

The first step provides an ample invertible sheaf L and s0, . . . , sn ∈ L(X) such that
X =

⋃n
i=0Xsi . Therefore L is globally generated by the si. From [Liu02, 5.1.31]

1Thanks to Kiran Kedlaya for his useful input.

282

https://stacks.math.columbia.edu/tag/01KN
https://stacks.math.columbia.edu/tag/01KN
https://stacks.math.columbia.edu/tag/01P6
https://stacks.math.columbia.edu/tag/01QE
https://stacks.math.columbia.edu/tag/0B45
https://stacks.math.columbia.edu/tag/0B45
https://stacks.math.columbia.edu/tag/0B45
https://stacks.math.columbia.edu/tag/04XU
https://stacks.math.columbia.edu/tag/01OY


Chapter 4 D.2. Miscellaneous Properties

we obtain a morphism of k-schemes π : X → Pnk such that Xsi = π−1(Ui), Ui =
Spec(k[T0/Ti, . . . , Tn/Ti]) and π#(Ui)(Tj/Ti) = sj/si. We will show that this morphism
is finite by showing that it is affine and projective, see [GW10, 13.77] for the equivalence
of these properties. By Proposition D.1.1, the Xsi are affine and thus, by [GW10, 12.1], it
follows that π is affine. Since X is projective over k, π followed by the structure morphism
of Pnk is projective. The structure morphism of Pnk is separated and thus, by [Liu02, 3.3.32],
we obtain that π is projective.

We will see that the finite morphism constructed above will be surjective and, moreover,
flat if we additionally require X to be Cohen-Macaulay.

Proposition D.1.7. Let X, Y be two schemes of the same finite dimension and Y irre-
ducible. Then every finite morphism π : X → Y is surjective.

Proof. We can restrict π to a morphism ψ : X → Z, where Z is the scheme theoretic
image of π. Since π is finite and Z → Y is closed and separated, ψ is also finite. Moreover,
finite morphisms are closed, so π(X) is a closed subset of Y , thus Z = π(X) and ψ is
surjective. Finite morphisms are also integral, so [Sta18, Tag0ECG] applied to ψ provides
dim(Z) = dim(X). By assumption, dim(Z) = dim(Y ) and Y irreducible and therefore we
finally obtain Z = Y .

Corollary D.1.8. Let X be a proper scheme of dimension one over k. Then there exist
a finite and surjective morphism π : X → P1

k. If X is additionally Cohen-Macaulay, then
any finite morphism to P1

k is flat.

Proof. First of all, due to Corollary B.5.19, X is projective over k. The existence of π is
then given by Theorem D.1.6 and Proposition D.1.7. The second assertion is a consequence
of the so called Miracle Flatness Theorem, see [GW10, 14.128].

Remark D.1.9. Let X be a projective scheme over k of dimension n with a finite and
surjective morphism π : X → Pnk as in Theorem D.1.6. Let Z be one of its irreducible
components with closed immersion i : Z → X. Then π ◦ i : Z → Pnk is also finite. But if
dimZ < n, then π ◦ i cannot be surjective. Therefore, if X is of pure dimension n, then
every finite and surjective morphism from X to Pnk provides such a morphism for every of
its irreducible components. 4

Proposition D.1.10. Let f : X → Y be a morphism of projective curves over k. Then f
sends closed points to closed points. It also sends generic points to generic points if and
only if it is finite.

Proof. By [Liu02, 7.3.10], a morphism of projective curves over k is finite if and only if it
sends generic points to generic points.

Since the statement is of local nature, it is enough the prove the statement about
the closed points for the k-algebra homomorphisms induced by an affine open cover of
Y . That is, for any affine open U = Spec(A) of Y , we know that V = f−1(U) is again
affine with V = Spec(B) and then f|V is given by a homomorphism of finite k-algebras
A→ B. Therefore it is enough to prove that the preimage of a maximal ideal of B under
A → B is a maximal ideal of A. This statement is Corollary B.4.2 of the Nullstellensatz
Theorem B.4.1.

D.2 Miscellaneous Properties

Lemma D.2.1. Every non-empty affine open subset of a curve over k has infinitely many
points. In particular, every curve over k has infinitely many points.
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Proof. Let U ⊆ X be an affine open subset of X. Since X is of finite type over k, i.e. the
structure morphism X → Spec(k) is of finite type, by [Sta18, Tag 01T2], we have that
k → OX(U) =: R is a ring map of finite type. That is, R is a finitely generated k-algebra
and thus, by [Sta18, Tag 00OY], we obtain a subring S ⊆ R such that S ∼= k[x] and the
ring extension R/S is finite. In particular, every prime ideal of S lies under some and at
most under finitely many prime ideals of R. Thus R has at least as many primes as S
does. But Euclid’s proof of the existence of infinitely many primes in Z extends to the
case of S and thus yields the assertion.

Corollary D.2.2. Let X be a cover of P1
k. Then each Vi,0 and Vi,∞ has infinitely many

closed points. In particular, each irreducible component of X has infinitely many closed
points.

We recall the definition of the set where a global section of an invertible sheaf does generate
the stalk of that sheaf. Let F be an invertible sheaf on the scheme X. Let s ∈ F(X).
Then we set

Xs = {x ∈ X | Fx = sxOX,x}.

If X is affine and F = OX , then Xs = D(s).

Proposition D.2.3. Let X be a cover of P1
k with finite morphism π : X → P1

k. The pole
divisor (x)∞ of x (given by OP1(U0) = k[x]) is ample.

Proof. By [Liu02, 5.1.35], it suffices to show that there are global sections s1, . . . , sr ∈
OX((x)∞)(X) such that Xsi are affine subsets of X which cover X. By Lemma 4.2.8, we
have

OX((x)∞)(X) = OX((x)∞)(V0) ∩ OX((x)∞)(V∞) = R0 ∩ xR∞
where the intersection takes place in Frac(R0) ∼= Frac(R∞). Now π implies that

k[x] ∩ xk[x−1] ⊆ R0 ∩ xR∞

and we claim that x, x − 1 ∈ k[x] ∩ xk[x−1] satisfy the desired properties. By definition,
we have

OX((x)∞)P =
{
OX,P , P ∈ V0

xOX,P , P ∈ S

and thus Xx = {P ∈ V0 | OX,P = xOX,P } ∪ {P ∈ S | xOX,P = xOX,P }. The former set
is the set of points where x does not vanish on V0, that is, the preimage of the basic open
subset DU0(x) which is V0 \ π−1(P0). The latter is all of S. Hence

Xx = V0 \ π−1(P0) ∪ S = V0 \ π−1(P0) ∪ V∞ = X \ π−1(P0) = π−1(D+(x0)) = V∞

is affine. Completely analogous we obtain

Xx−1 = {P ∈ V0 | OX,P = (x− 1)OX,P } ∪ {P ∈ S | xOX,P = (x+ 1)OX,P }

where the former set is the set where x − 1 ∈ R0 does not vanish and the latter is again
all of S since x− 1 = x(1− x−1) and 1− x−1 is a unit in OX,P for all P ∈ S. Thus

Xx−1 = V0 \ V (x− 1) ∪ S = (V0 ∪ V∞) \ V (x− 1) = X \ V (x− 1)

where V (x− 1) ⊆ V0. Now X = (X \V (x− 1))∪V∞ since we even have V (x− 1) ⊆ V0,∞.
Hence we are left to show that X \ V (x− 1) is affine.

To do so, we use that the elements x and x−1 are pullbacks of functions on P1
k and that

the π : X → P1
k is affine (since it is finite). Let P1

k = Proj(k[x0, x1]) and set x = x1/x0.
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Then P1
k is covered by the affine subsets U0 = D+(x0) and U∞ = D+(x1) with coordinate

rings k[x] respectively k[x−1]. We consider the open subset D+(x0 − x1) of P1
k which is

affine, see [Liu02, 2.3.36 (a)], and which in turn is covered by D+((x0 − x1) · x0) ⊆ U0
and D+((x0 − x1) · x1) ⊆ U∞. By [Liu02, 2.3.36 (b)], we have that D+((x0 − x1) · x0) is
isomorphic to the basic open subset

D

(
(x0 − x1) · x0

x2
0

)
= D

(
x0 − x1
x0

)
= D

(
1− x1

x0

)
= D(1− x)

in U0, that is D+((x0 − x1) · x0) ∼= Spec(k[x]1−x). Analogously, we have that D+((x0 −
x1) · x1) is isomorphic to the basic open subset

D

(
(x0 − x1) · x1

x2
1

)
= D

(
x0 − x1
x1

)
= D

(
x0
x1
− 1
)

= D(x−1 − 1)

in U∞, that is D+((x0 − x1) · x1) ∼= Spec(k[x−1]x−1−1). Note that V (1 − x) = V (x − 1)
inside of U0 ∩ U∞ = Spec(k[x, x−1]) since 1 − x = x(x−1 − 1) and x ∈ k[x, x−1]×. In
particular,

D+(x0 − x1) = (U0 \ V (1− x)) ∪ (U∞ \ V (x−1 − 1)) = P1
k \ VU0(1− x).

Therefore, the preimage π−1(D+(x0 − x1)) is

X \ Vπ−1(U0)(π#(U0)(1− x)) = X \ VV0(1− x) = X1−x = Xx−1

and hence Xx−1 is affine.

The next statement basically says that covers of P1
k have coordinate rings OX(V ) that are

free over OP1(U).

Proposition D.2.4. Let X be a proper scheme over k of dimension one with finite sur-
jective morphism π : X → Y = P1

k. Then the following are equivalent:

1. π∗OX is a locally free OY -module,

2. X is Cohen-Macaulay, and

3. X has no embedded points.

If the above statements are true, then we say that π has degree d where d is rank of π∗OX
over OY .

Proof. Any proper scheme over k is noetherian. The equivalence between the last two
statements is thus given by [Sta18, Tag 0BXG].

Let X be Cohen-Macaulay. Then, by Corollary D.1.8, π : X → P1
k is flat. By [Sta18,

Tag 02KB], this is equivalent to π∗OX being a locally free OP1-module.
Conversely, assume that π∗OX is locally free over OP1 . By [Sta18, Tag 02KB] again,

π : X → P1
k is flat and hence the local homomorphisms OP1

k,p
↪→ OX,P with π(P ) = p are

flat ring maps. Now since OP1
k,p

is Cohen-Macaulay and both X and P1
k are noetherian,

[Sta18, Tag 00R5] provides that OX,P is Cohen-Macaulay, too. Now since X is Cohen-
Macaulay if and only if OX,P is Cohen-Macaulay for all P ∈ X, see [Sta18, Tag 02IP], we
deduce that X indeed is Cohen-Macaulay.

Lemma D.2.5. Let f : X → Y be a finite morphism of projective curves with Y integral
and X without embedded points. Then for all non-empty open subsets U ⊆ Y its preimage
f−1(U) is schematically dense in X.
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Proof. By [Liu02, 7.3.10], f sends generic points to generic points. Since U ⊆ Y is non-
empty, it contains the generic point of Y and hence f−1(U) contains all generic points
of X. Since X has no embedded points, Ass(OX) equals the set of generic points of X.
Therefore Ass(OX) ⊆ f−1(U) and thus f−1(U) is a schematically dense open subset of
X.

Lemma D.2.6. The open immersions i0 : V0 ↪→ X and i∞ : V∞ ↪→ X are affine mor-
phisms.

Proof. The situation is completely symmetric and thus we only consider i0 : V0 ↪→ X. The
affine open subset V0 and V∞ cover X and obviously, i−1

0 (V0) = V0 is affine. Moreover,
i−1
0 (V∞) = V0 \ V (x) which is an affine basic open subset. Thus we have found an affine
open cover of X whose preimages under i0 are again affine. Then [Sta18, Tag 01S8]
provides the assertion.

Proposition D.2.7. Let X be a cover of P1
k. Let F be an OX-ideal. Let U ∈ {U0, U∞},

A = OP1(U) and R = OX(V ) with V = π−1(U). For a ∈ A let deg(a) denote the degree
in the respective polynomial ring. Let MF denote a basis matrix of F(V ) regarding a fixed
basis of R. Then degk F(V ) = deg detMF where deg f/g = deg f − deg g for f, g ∈ A.

Proof. Assume that I = F(V0) ⊆ R. Then Lemma B.4.11 provides the assertion. Now let
I be arbitrary with wedging element w ∈ R such that wI ⊆ R. Thus we have degk wR =
dimk R/wR = deg detMw and degk wI = dimk R/wI = deg detMwI . Now the definition
of the degree of R-ideals provides

degk I = dimk R/wI − dimk R/wR = deg detMwI − deg detMw.

Since the basis matrix of MwI is simply the product of Mw and MI , we obtain

deg detMwI − deg detMw = deg detMw + deg detMI − deg detMw

= deg detMI

which finally provides degk I = deg detMI .

Lemma D.2.8. For any r ∈ Z≥0 we have dimkOS/x−rOS = dimk R∞/x
−rR∞.

Proof. Let R := R∞. Obviously, since R ⊆ OS , we have dimkOS/x−rOS ≥ dimk R/x
−rR.

We show that a basis of R/x−rR is a generating set of OS/x−rOS over k which then
provides equality: By definition of OS , we only need to show that we can generate elements
of the form 1/h where h ∈ T (recall that T = k[x−1] \ x−1k[x−1]). Now h is a unit in
k[x−1]/(x−r) since it is coprime to x−1. Thus there is some f ∈ k[x−1] with deg f < r
such that h · f = 1 in k[x−1]/(x−r). We use this to generate 1/h with 1, x−1, . . . , x−r+1

over k: 1/h = h · f/h = f in OS/x−rOS .

Corollary D.2.9. For any s ∈ Z we have degk xsR∞ = −sn and degk xsR0 = sn. In
particular, degk xsOS = degk xsR∞ = −sn.

Proof. Note that for g = xs with s ∈ Z we have s = degx g = −degx−1 g. Then the first
assertion is provided by applying Corollary D.2.12 with g = xs.

Now we prove the particular part. Assume s ≥ 0. By C.1.20 and the fact that x−s is
a wedging element, we have

degk xsOS = −dimk x
sOS/OS = −dimkOS/x−sOS = −dimk R∞/x

−sR∞

where the second last equality is due to Corollary C.1.24 and the last is due to Lemma D.2.8.
Now since s ≥ 0, we have dimk R∞/x

−sR∞ = degk x−sR∞ = sn by the first assertion.
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Hence degk xsOS = −degk x−sR∞ = −sn. If s ≤ 0, then xsOS is an integral ideal of OS
and hence

degk xsOS = dimkOS/xsOS = dimk R∞/x
sR∞ = degk xsR∞ = −sn

where the second equality is due to Lemma D.2.8 and the last equality is due to the first
assertion we have already proven.

Proposition D.2.10. Let F be an OX-ideal. Then degk F((xr)∞) = degk F − rn.

Proof. By Proposition 5.6.9, we have degk
∑

i∈A ri(x)i,∞ =
∑

i∈A rini. By Lemma C.4.8,
we obtain degkOX(

∑
i∈A ri(x)i,∞) =

∑
i∈A−rini. Note that, by Remark 5.6.10, we have∑

i∈A r(x)i,∞ = (xr)∞ and thus degkOX((xr)∞) = −rn. By Lemma C.4.7, we thus have

degk F((xr)∞) = degk F + degkOX((xr)∞) = degk F − rn.

Proposition D.2.11. Set fP = [κ(P ) : k] for P ∈ S, then
∑

P∈S fP ≤ n.

Proof. [GW10, 12.21] with Y = P1
k and y = P∞ says that n = deg(π) =

∑
P∈S eP · [κ(P ) :

k] where eP ≥ 1 (since OX,P 6= 0 for P ∈ S) if π is finite locally free. Now [GW10,
12.19] provides that π is finite locally free if π is finite and flat which is the case due to
Corollary D.1.8.

Corollary D.2.12. Let X be a cover of P1
k. Let f, g ∈ k(x) with f = a/b, g = c/d

and a, b ∈ k[x], c, d ∈ k[x−1]. Then degk fR0 = n · (degx(a) − degx(b)) and degk gR∞ =
n · (degx−1(c)− degx−1(d)). In particular,

degk xrR0 = rn and degk xrR∞ = n · degx−1 xr = −rn.

Proof. Since X is a cover of P1
k, we have k(x)× ⊆ KX(X)×. Set F = OX(−div(f)) which

satisfies F(V∞) = fR∞. Now apply Proposition D.2.7 to F(V0) which yields

degk F(V0) = degk fR0

= degk aR0 − degk bR0

= degx detMa − degx detMb

= n · degx(a)− n · degx(b)
= n · (degx(a)− degx(b)).

Now set G = OX(−div(g)) which satisfies G(V∞) = gR∞. Analogously, we have

degk G(V∞) = degk gR∞
= degk cR∞ − degk dR∞
= degx−1 detMc − degx−1 detMd

= n · degx−1(d)− n · degx−1(d)
= n · (degx−1(d)− degx−1(d)).

The particular part now follows immediately.

Lemma D.2.13. Let X be a cover of P1
k of degree n. The pole divisor (x)∞ of x on X

satisfies

1. Supp((x)∞) ⊆ S,

2. degk(x)∞ = n,
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3. ((x)∞)|S = divS(x−1).

Proof. By definition, D := (x)∞ is given by the configuration {(V0, 1), (V∞, x−1)}. Since
on the level of closed points we have S = X \ V0, the first assertion follows immediately
from the definition. We have seen in Lemma C.4.8 that we have degkD = −degkOX(D).
Moreover, by Corollary C.4.13, we have degkOX(D) = degkOX(D)|V0 + degkOX(D)|S .
However, by the first assertion, we have degkOX(D)|V0 = degkOX |V0 = 0. By Proposi-
tion 3.2.3, we furthermore have degkOX(D)|S = degkOS(D|S). By Corollary 3.2.23, the
restriction of D to S is given by D|S = (D|V∞)|S . By Remark 3.2.12, D|V∞ is given by the
configuration {(V∞, x−1)} and then, by Remark 3.2.20, we have that (D|V∞)|S is given by
{(S, x−1)}. Hence D|S is the the principal divisor of x−1 on S. Therefore

degkOX(D)|S = degkOS(D|S) = degkOS(divS(x−1)) = degk xOS .

Now x−1 is a wedging element for the OS-ideal xOS and hence, by definition, we obtain

−degkD = degk xOS = dimkOS/x−1xOS − dimk xOS/x−1xOS
= − dimk xOS/OS .

By Corollary C.1.24, the latter is equal to−dimkOS/x−1OS and hence we obtain degkD =
dimkOS/x−1OS . Moreover, by Lemma D.2.8, dimkOS/x−1OS = dimk R∞/x

−1R∞.
By Proposition D.2.7, the latter equals dimk R∞/x

−1R∞ = degx−1 detM . Here M ∈
k[x−1]n×n is the basis transformation matrix from any k[x−1]-basis of R∞ to one of x−1R∞.
Obviously,M can be chosen to be the diagonal matrix with x−1 on the diagonal and hence
we finally obtain degkD = degx−1 detM = degx−1(x−n) = n.

We prove the third assertion. By Remark 3.2.20, the configuration {(V0, 1), (V∞, x−1)}
gets sent to {(S, x−1)} since V0 has no closed points in common with S. Here we identified
x−1 with its image under the ring monomorphism R∞ → OS . But {(S, x−1)} induces
obviously the principal divisor of x−1 on S.

Corollary D.2.14. Since any irreducible component Xi of X is also a cover of P1
k of

degree ni and in this case (x)Xi,∞ equals the pole divisor of x on Xi, we also have

1. Supp((x)Xi,∞) ⊆ Si,

2. degk(x)Xi,∞ = ni,

3. ((x)Xi,∞)|Si = divSi(x−1).

Lemma D.2.15. Let X be a cover of P1
k. For every i ∈ {1, . . . ,m} there is a basic open

subset D(hi) of V∞ such that Si ⊆ D(hi) ⊆ V∞ \ (
⋃m
j 6=i Sj). Moreover, we may assume hi

to be a regular element of R∞.

Proof. Since V∞ is affine, it is quasi-affine and hence OV∞ is ample, see [Sta18, Tag
01QE]. Since V∞ is affine, it is separated, see [Sta18, Tag 01KN]. Moreover, since V∞
is noetherian, it is quasi-compact. By Corollary D.2.2, any irreducible component Vi,∞
of V∞ has infinitely many closed points. Hence for each i = 1, . . . ,m we may choose
m − 1 closed points yj ∈ Vj,∞ which are not contained in Si. We denote them by Mi =
{y1, . . . , yi−1, yi+1, . . . , ym}.

Now the requirements for Lemma D.1.2 are met and we can plug in V∞ for X, Si∪Mi

for E, V∞ \ (
⋃m
j 6=i Sj) for W and OV∞ for L to obtain hi ∈ OV∞(V∞) = R∞ such that

Si ∪Mi ⊆ D(hi) ⊆ V∞ \ (
⋃m
j 6=i Sj). Since hi does not vanish identically on any of the

irreducible components of V∞, it need be a regular element of R∞.

Proposition D.2.16. We have OX(V0,∞) ∼= OX(V0)x and OX(V0,∞) ∼= OX(V∞)x−1.
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Proof. The proof is obvious since the preimage of basic open subsets is basic open.

Corollary D.2.17. Let F be a quasi-coherent OX-module. The restrictions

ρV0
V0,∞

: F(V0)→ F(V0,∞) and ρV∞V0,∞
: F(V∞)→ F(V0,∞)

are localisation by x respectively x−1.

Proof. The open subsets V0, V∞ and V0,∞ are all affine by construction and thus the re-
striction map ρVV0,∞

: F(V )→ F(V0,∞) is given by localisation, i.e. F(V )→ F(V )⊗OX(V )

OX(V0,∞), see [Liu02, 5.1.14 (b)]. Thus we have ρV0
V0,∞

: F(V0) → F(V0)x and ρV∞V0,∞
:

F(V∞)→ F(V∞)x−1 .

Remark D.2.18. By [Sta18, Tag 00KJ], every zero-dimensional, noetherian ring R is iso-
morphic to

⊕
P∈Spec(R)RP .

The following proposition collects facts about the points lying over the point at infinity
P∞ of Y .

Proposition D.2.19. For P ∈ Spec(R∞) the following are equivalent: (i) P ∩T = ∅, (ii)
P ∩ k[x−1] = P∞, (iii) P ⊇ P∞.

Proof. The proof is immediate since f maps closed points to closed points, see Proposi-
tion D.1.10.

Remark D.2.20. Obviously, for any P ∈ {quasi-coherent, coherent, invertible} we know
that F|S is P if F was P .

Lemma D.2.21. Let X be a cover of P1
k. Let F be an OX-ideal. Then F|S is (as a sheaf

of OS-modules) an OS-ideal and F|S(S) is (as an OS-module) an OS-ideal.

Proof. By Example 3.1.14, we know that F|V∞ is an O∞-ideal. By Lemma C.4.10, this
implies that F(V∞) is an R∞-ideal. By definition, we have F|S(S) = T−1F(V∞). There-
fore, by Lemma C.1.7, F|S(S) can be considered as an OS-ideal and, by Lemma C.4.10
again, this also provides that F|S is an OS-ideal.

Corollary D.2.22. Let F be an OX-module. Then

F|S ∼= (F(V∞)⊗R∞ OS)∼ ∼= (T−1F(V∞))∼.

Moreover, if F is invertible, then F|S ∼= hOS for some h ∈ KX(X)×.

Proof. By basic properties of the pullback of sheaves, we have

µ∗(F) = (µ∗a◦ι∗)(F) = µ∗a(F|V∞) ∼= F(V∞)⊗R∼∞O
∼
S
∼= (F(V∞)⊗R∞OS)∼ ∼= (T−1F(V∞))∼

where the first appearing isomorphism is [GW10, 7.24]. Now if F is invertible, we may
assume (see [Liu02, 7.1.19]) that F ≤ KX and hence F(V∞) ⊆ KX(V∞) = Frac(OS). Thus
M∞ := F(V∞)⊗R∞OS ⊆ Frac(OS). By Remark D.2.20, we know that F|S is an invertible
Spec(OS)-module and hence M∞ ⊆ Frac(OS) is invertible. Hence, by Lemma B.4.6,
M∞ = hOS is a principal ideal with h ∈ KS(S)×. But since KS(S) ∼= Frac(OS) =
Frac(R∞) ∼= KX(X), h corresponds to a regular element in KX(X)× as asserted.

Lemma D.2.23. For every quasi-coherent OX-module F we have

F((xr)∞)(V0) = F(V0) and F((xr)∞)(V∞) ∼= xrF(V∞).
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Moreover,

F(div(xr)0)(V0) ∼= x−rF(V0) and F(div(xr)0)(V∞) = F(V∞).

Proof. By definition, we have OX(div(xr)0)V0 = x−rOV0 and OX(div(xr)0)V∞ = OV∞ and
similarly OX((xr)∞)V0 = OV0 and OX((xr)∞)V∞ = xrOV∞ . The assertion now follows
from the fact that the restriction to affine opens of the tensor product of quasi-coherent
sheaves is given by the product of the restrictions, see [Liu02, 5.1.12].

Corollary D.2.24. Let F be an OX-module and let (xr)∞ denote the pole divisor of x.
Then F((xr)∞)|S ∼= xrF(S)∼.

Proof. By Corollary D.2.22, we have F((xr)∞)|S ∼= [T−1F(V∞)⊗OX(V∞)OX((xr)∞)(V∞)]∼.
From Lemma D.2.23 we know OX((xr)∞)|V∞ ∼= xrOV∞ and thus we obtain F((xr)∞)|S ∼=
xrF(S)∼.
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Appendix E

Dualising Sheaf and the Dual of
OX-Ideals

In this chapter we will recall some basic notions of the dualising (r-dualising) sheaf of
a proper morphism of schemes. The 1-dualising sheaf ωX helps us to express the first
cohomology term of any quasi-coherent sheaf F on a scheme X over a field k as the global
sections of its ωX -dual HomOX (F , ωX). In particular, these have the same dimension as
k-vector spaces and thus the first cohomology term of F vanishes if and only if its ωX -dual
vanishes. We will use this connection and the decomposition of vector bundles over P1

k into
a direct sum of invertible sheaves to deduce a vanishing theorem for the first cohomology
term of F(r(x)∞) for r sufficiently large in terms of the degree of F|Xi and the invariant
cX . This establishes a variant of the Riemann-Roch equation for OX -ideals which makes
it possible to give an explicit formula for the dimension of the global sections of OX -ideals
of the form F(r(x)∞) and r sufficiently large.

This chapter is organised as follows: In Section E.1 we define the r-dualising sheaf,
refer to proofs of its existence in the case of r = 1 for noetherian projective schemes of
dimension one and prove and provide some fundamental properties. Moreover, we will see
that the 1-dualising is isomorphic to an OX -ideal for reduced, projective curves over k. In
Section E.2 we will define the degree of coherent and torsion-free sheaves which extends
the definition of the degree of OX -ideals and already provides a Riemann-Roch equation.
We will define the ωX -dual, prove some of its fundamental properties and define the
decomposition invariants of coherent and torsion-free sheaves F that uniquely determine
the pushdown π∗F to the projective line. In the case of OX -ideals these coincide with
the π-invariants. This enables us to draw a connection between the π-invariants of OX -
ideals and the decomposition invariants of its ωX -dual. This culminates in a description
of the dimension of H1(X,F(r(x)∞)) solely in terms of the π-invariants of F and r. This
description provides sufficient condition for H1(X,F(r(x)∞)) to vanish. The latter implies
the mentioned Riemann-Roch equation providing an explicit description of the dimension
of the global sections of F(r(x)∞) solely in terms of invariants of X, the degree of F and
r for OX -ideals F and r sufficiently large in terms of the degree of its restrictions to the
irreducible components of X. To the best of the author’s knowledge, there is no such
explicit formula present in the relevant literature.

E.1 The Dualising Sheaf and its Properties

Throughout this section, if not mentioned otherwise, X will be a noetherian, projective
Cohen-Macaulay scheme of dimension one over the field k. By Corollary D.1.8, for such
curves there is a finite and surjective morphism π : X → P1

k which is also flat. Examples
for such curves are reduced curves over k. Now we define the r-dualising sheaf for a proper
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morphism of schemes which is, for instance, introduced in [Liu02, Section 6.4].

Definition E.1.1. Let ψ : X → Y be a proper morphism of schemes with fibres of
dimension ≤ r where Y is locally noetherian. The r-dualising sheaf of ψ is a quasi-
coherent sheaf ωψ on X, endowed with a morphism of OY -modules

trψ : Rrψ∗ωψ → OY

such that for any quasi-coherent sheaf F on X, the natural bilinear map

ψ∗HomOX (F , ωψ)×Rrψ∗F → Rrψ∗ωψ
trψ→ OY

induces an isomorphism

ψ∗HomOX (F , ωψ) ∼= HomOY (Rrψ∗F ,OY ). (1:1)

Here Rrψ∗F denotes the higher direct image of F , for further information see [Liu02,
5.2.28]. 4

Remark E.1.2. Since R0ψ∗F = ψ∗F , see [Liu02, 5.2.29], the 0-dualising ωψ of ψ satisfies

ψ∗HomOX (F , ωψ) ∼= HomOY (ψ∗F ,OY ). 4

The definition of Rrψ∗F for ψ : X → Spec(A) with A some ring provides the following
property of ωψ we will heavily use later on. We will only use it for A being a field.

Lemma E.1.3. Let X be any scheme. Let ψ : X → Spec(k) be a proper morphism with
fibres of dimension ≤ r (e.g. dim(X) ≤ r). Then for every quasi-coherent sheaf F on X
we have an isomorphism

HomOX (F , ωψ) ∼= Hr (X,F)∨

where the dual is seen as the dual of the k-vector space Hr (X,F). In particular,

dimkH
0 (X,HomOX (F , ωψ)) = dimkH

r (X,F) .

Proof. This is [Liu02, 6.4.20].

Lemma E.1.4 ([Liu02] 6.4.25). Let f : X → Y be a finite morphism of locally noetherian
schemes. For every quasi-coherent sheaf G on Y we set

f !G = HomOY (f∗OX ,G)

which is canonically endowed with the structure of a quasi-coherent OX-module. Moreover,
there is a morphism trG : f∗(f !G) → G. Then f !OY together with trOY is the 0-dualising
sheaf for f .

Example E.1.5. Let φ : P1
k → Spec(k) be the projective and smooth structure morphism.

By [Liu02, 6.4.22, 6.4.32 and 6.1.22], the 1-dualising sheaf ωφ exists and is isomorphic to
OP1(−2). In particular, it is invertible and thus the same is true for π∗ωφ for every
morphism π : X → P1

k. 4

Since we know that the 1-dualising exists for P1
k, we can show that the 1-dualising of every

noetherian projective scheme ψ : X → Spec(k) exists and that it is related to that of
φ : P1

k → Spec(k).

Proposition E.1.6. Let X be a noetherian projective scheme of dimension one over the
field k. Let ψ : X → Spec(k) denote the projective structure morphism which decomposes
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into a finite morphism π : X → P1
k followed by φ : P1

k → Spec(k), see Theorem D.1.6.
Then the 1-dualising ωψ exists and satisfies

ωψ = π!ωφ = ωπ ⊗OX π
∗ωφ

where ωπ is the 0-dualising sheaf for π and ωφ the 1-dualising sheaf for φ as in Exam-
ple E.1.5.

Proof. By [Liu02, 6.4.26], ωψ does indeed exist and satisfies ωψ = π!ωφ. By definition of
π!ωφ, see Lemma E.1.4, we have π!ωφ = HomOY (f∗OX , ωφ) and since ωφ is locally free,
we obtain by how HomOY (f∗OX , ωφ) is considered an OX -module, the isomorphism

HomOY (f∗OX , ωφ) ∼= HomOY (f∗OX ,OY )⊗OX π
∗ωφ

which finally with Lemma E.1.4 provides that ωψ = ωπ ⊗OX π∗ωφ where ωπ denotes the
0-dualising sheaf for π.

Notation E.1.7. Let X be a noetherian projective scheme of dimension one over the field
k. If the morphism ψ : X → Spec(k) is given by the context, we denote the 1-dualising
sheaf for ψ simply by ωX . For instance, if (X,π) is a cover of P1

k, then ψ = φ ◦ π where
φ : P1

k → Spec(k). 4

For the sake of the argument, we will now introduce the notion of TfS2-sheaves and of
TfS2-dualising sheaves which are introduced in [Kol18] as the “correct analogs” of reflexive
sheaves on non-normal schemes, see [Kol18, p. 1,4]. We will see in Proposition E.1.13 that
the 1-dualising sheaf ωX on a projective Cohen-Macaulay scheme of dimension one over a
field k is also a TfS2-dualising sheaf on X. This enables us to deduce some properties for
ωX , see for instance Corollaries E.1.15 and E.2.3

Definition E.1.8. Let X be a scheme. Let F be a coherent sheaf on X. Then F is called
torsionfree if AssOX (F) ⊆ X0, i.e. if the associated points of F are generic points of X.
Sheaves that are coherent, torsionfree and S2 are called TfS2-sheaves. 4

Remark E.1.9. The notion of being torsionfree, as in Definition E.1.8, coincides with our
notion of being torsion-free if X is S1, see Lemma B.4.23. Thus if X is a Cohen-Macaulay
scheme of dimension one, then, by Corollary B.4.21, F is TfS2-sheaf if and only if F is
coherent and torsion-free. 4

Definition E.1.10. A TfS2-dualising sheaf on X is a TfS2-sheaf ω̃X such that for all
TfS2-sheaves F the natural map

F −→ HomOX (HomOX (F , ω̃X), ω̃X)

is an isomorphism. If X = Spec(R) and ω̃X is TfS2-dualising on X given by the module
R-module ω̃R, then ω̃R is called a TfS2-dualising module on R. 4

Remark E.1.11. If X is non-empty and the TfS2-dualising sheaf exists, it is non-zero.
Indeed, by definition, we have OX ∼= HomOX (HomOX (OX , ω̃X), ω̃X) and if ω̃X = 0, then
HomOX (OX , ω̃X) = 0 and thus OX = 0 which is absurd. 4

Proposition E.1.12 ([Kol18], Cor. 40). Let X be a regular scheme. Then a coherent
sheaf F is TfS2-dualising if and only if F is invertible.

Proposition E.1.13. Let X be a noetherian, projective Cohen-Macaulay scheme of di-
mension 1 over the field k. Then the 1-dualising sheaf ωX on X is also a TfS2-dualising
sheaf on X.
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Proof. By Corollary D.1.8, we know that there is a finite morphism π : X → P1
k which

is surjective and flat. Since X is Cohen-Macaulay, by Proposition D.2.4, we know that
π∗OX is a free OY -module. Now any torsion-free OX -module F thus satisfies that π∗F
is torsion-free over π∗OX . Now since π∗OX is free over OP1 , it is a fortiori torsion-free
over OP1 and hence the same is true for π∗F . If F is coherent, by [Liu02, 5.1.14 (d)], π∗F
is coherent as OP1-module. In particular, each stalk of π∗F is a finitely generated and
torsion-free module over a principal ideal domain and thus free. Hence π∗F is locally free.
Thus π∗F is locally free if F is coherent and torsion-free on X. In particular, the same
holds true for all TfS2-sheaves F . Clearly, any locally free sheaf is a TfS2-sheaf and thus
we may apply [Kol18, Prop. 32] and see that π!ω̃P1

k
is a TfS2-dualising sheaf on X for every

TfS2-dualising sheaf ω̃P1
k
on P1

k. By [Kol18, Cor. 40], being TfS2-dualising is equivalent to
being invertible. Now let ωP1

k
= OP1(−2) be the 1-dualising sheaf on P1

k, which is invertible
and thus, by [Kol18, Cor. 40], a TfS2-dualising sheaf on P1

k. By [Liu02, 6.4.26 (a)], we
know that ωX = π!ωP1

k
is the 1-dualising sheaf on X and, by [Kol18, Prop. 32], it is also

a TfS2-dualising sheaf on X.

Remark E.1.14. By Proposition E.1.6, we know that ωX exists. Moreover, if X is addi-
tionally Cohen-Macaulay, by Proposition E.1.13, ωX is also a TfS2-dualising sheaf on X
and therefore Remark E.1.11 provides that it is non-zero. 4

Corollary E.1.15. Let X be a noetherian, projective Cohen-Macaulay scheme of dimen-
sion 1 over the field k. Then the 1-dualising sheaf ωX on X is also a TfS2-sheaf on X
and thus coherent, S2 and satisfies AssOX (ωX) ⊆ X0. Since X is Cohen-Macaulay, by
Lemma B.4.23, the latter is equivalent to ωX being torsion-free.

Definition E.1.16. Let X be a scheme of dimension one. We say that X is Gorenstein
in codimension 0, denoted by “X is G0”, if the local rings OX,P for all generic points
P ∈ X0 of X are local Gorenstein rings. 4

Remark E.1.17. A local noetherian ring (R,m, κ) is, by definition, a Gorenstein ring if
it has finite injective dimension, that is, if sup{i | ExtiR(κ,R) 6= 0} is finite. Now
since Ext0

R(κ,R) = HomR(κ,R), we know that if R is itself a field, then R = κ and
thus HomR(κ,R) 6= 0 providing that fields are local Gorenstein rings. In particular, by
Lemma B.4.29, every reduced scheme is both Cohen-Macaulay and Gorenstein in codi-
mension 0. 4

Proposition E.1.18. Let X be a projective curve over k which is Cohen-Macaulay and
Gorenstein in codimension 0 (e.g. X reduced). Let ωX be the 1-dualising sheaf on X.
Then ωX is isomorphic to some OX-ideal.

Proof. Since X is reduced, it is S1 and since it is of dimension 1, it also satisfies Sd for
all d ≥ 1. Thus, by [Kol18, Lem. 27], we know that F is a TfS2-dualising sheaf on X if
and only if FP is a TfS2-dualising module on OX,P for all P ∈ X. By Corollary E.1.15,
the 1-dualising ωX is also a TfS2-dualising sheaf on X and hence ωX,P is a TfS2-dualising
module on OX,P . In particular, this holds for the generic points of X as well. Since X
is noetherian, the local ring OX,P for P ∈ X0 is a zero-dimensional noetherian ring and
thus, by [Sta18, Tag 00KH], it is artinian. Now the TfS2-duality on artinian schemes is
the same as the Matlis-duality since on such a scheme every coherent sheaf is S2. Now
combine [BH98, 3.2.12] and [Eis95, 21.1 and 21.2] to see that every TfS2-dualising module
Ω on a local artinian ring (A,m, κ) is isomorphic to the injective hull E(κ) of κ. See
also [Kol18, Lem. 35]. Therefore, ωX,P is isomorphic to the injective hull E(κ(P )). By
[BH98, 3.2.12], we know that any finite faithful R-module (where (R,m, κ) is a noetherian
local ring) of type 1 is isomorphic to E(κ). Moreover, by [BH98, 3.3.13], if R is additionally
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Cohen-Macaulay, then the so called canonical module of R is a faithful maximal Cohen-
Macaulay R-module of type 1 and thus, by the above, isomorphic to E(κ). Finally,
since X is reduced, by Lemma B.4.29, OX,P is a field for every P ∈ X0 and therefore,
by Remark E.1.17, it is a local Gorenstein ring. Now [BH98, 3.3.7] provides that the
canonical module of a local Gorenstein ring R is isomorphic to R and hence we deduce
that ωX,P ∼= E(κ(P )) ∼= OX,P . Now since ωX is invertible at the generic points of X
and the latter is Cohen-Macaulay, we can apply Lemma 4.1.2 to deduce that there is an
OX -module embedding ωX ↪→ KX . By Corollary E.1.15, we know that ωX is coherent
and thus we conclude that ωX is isomorphic to some OX -ideal, see Definition 3.1.13.

Proposition E.1.19. Let X be an integral, noetherian and projective Cohen-Macaulay
scheme of pure dimension over the field k. Let η ∈ X be the generic point of X. Then
ωX,η 6= 0.

Proof. By [Sta18, Tag 0587], we have ωX 6= 0 if and only if AssOX (ωX) 6= ∅. By Corol-
lary E.1.15, we know that AssOX (ωX) ⊆ X0 = {η}. Moreover, by Remark E.1.14, we know
that ωX 6= 0 and hence, by the above, AssOX (ωX) 6= ∅. Therefore, AssOX (ωX) = {η} and
[Sta18, Tag 05AD] tells us that that AssOX (ωX) ⊆ Supp(ωX) which provides the asser-
tion.

E.2 The ωX-Dual and the Riemann-Roch Equation

Throughout this section, if not mentioned otherwise, X will be a noetherian, projective
Cohen-Macaulay scheme of dimension one over the field k. By π : X → P1

k we denote a
finite morphism which does exist due to Corollary D.1.8.

As a generalisation of the degree of OX -ideals we define analogously the degree of
coherent and torsion-free sheaves on X.

Definition E.2.1. Let F be a coherent and torsion-free sheaf on X. Then we define

degk F = χ(OX)− χ(F).

If F is an OX -ideal, then the above degree coincides with the degree of F as an OX -
ideal. 4

In the usual sense, the Riemann-Roch equation connects the Euler characteristic of an
invertible sheaf (resp. that of a divisor) with its degree (resp. the degree of the corre-
sponding divisor). Moreover, one wishes that the first cohomology term vanishes if the
degree is large enough and thus one can predict the exact dimension of the global sections
of the given sheaf (the Riemann-Roch space of the divisor) over k. There are two ways of
coming up with such an equation:

(i) One defines the degree of such a sheaf independent of its Euler characteristic (e.g.
as the degree of the corresponding divisor), then proves the Riemann-Roch equation
and tries to find a way to show that the first cohomology term vanishes for large
enough degree, or

(ii) one defines the degree of the given class of sheaves such that a Riemann-Roch equa-
tion holds by definition and proves the vanishing of the first cohomology term for
large enough degree.

Definition E.2.1 provides a notion of degree for coherent and torsion-free sheaves which im-
mediately provides an equation in the sense of Riemann-Roch. The reader should note that
the degree of OX -ideals coincides with the definition of degree given in Definition E.2.1,
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see Lemma C.4.4, and thus OX -ideals naturally satisfy a Riemann-Roch equation. The
reader may compare with [Liu02, 7.3.17 and 7.3.26] where such an equation is provided for
invertible sheaves corresponding to divisors on projective schemes of dimension one over
a field k. Moreover, if X is an integral and local complete intersection projective curve
over k, [Liu02, 7.3.33] states the vanishing of the first cohomology term if the degree of
the given divisor exceeds 2pa(X)−2. In this section we will show a sufficient condition for
the first cohomology term to vanish if we increase the degree of a given sheaf by tensoring
with a suitable multiple of the pole divisor of x. We emphasise that the mentioned van-
ishing works for the large class of schemes X as mentioned in the beginning of this section
(noetherian, projective Cohen-Macaulay scheme of dimension one over the field k).

To prove what we have said above, we need to introduce the ωX -dual of coherent
OX -modules and prove some of its fundamental properties.

Definition E.2.2. For every coherent OX -module F we define its ωX-dual or simply
dual by F∗ = HomOX (F , ωX). 4

Corollary E.2.3 (of Proposition E.1.13). For all coherent and torsion-free sheaves F on
X we have F∗∗ ∼= F .

Proof. By Proposition E.1.13, the statement is true for all TfS2-sheaves on X. By Re-
mark E.1.9, the assertion holds for all coherent and torsion-free sheaves on X.

Lemma E.2.4. Let X be any scheme. If F ,G are coherent OX-modules, then the same
is true for HomOX (F ,G). If F ,G are invertible at a common set Y ⊆ X of points in X,
then the same is true for HomOX (F ,G).

Proof. Since F and G are coherent, by [Sta18, Tag 01CQ], the same is true forHomOX (F ,G).
By definition, any coherent OX -module is finitely presented and thus, by [Sta18, Tag
01CP], we know that

HomOX (F ,G)P → HomOX,P (FP ,GP )

is an isomorphism for all P ∈ X. Now for all P ∈ Y let fPOX,P = FP and gPOX,P = GP
be the generators of FP respectively GP . Then every element in

HomOX,P (FP ,GP ) = HomOX,P (fPOX,P , gPOX,P )

corresponds uniquely to an element in OX,P (φ corresponds to φ(fP )) providing

HomOX,P (fPOX,P , gPOX,P ) ∼= OX,P

and thus the assertion.

Proposition E.2.5. Let X be a noetherian scheme. Let F ,G be coherent OX-modules.
Then

AssOX (HomOX (F ,G)) ⊆ AssOX (G).

Proof. First of all, since X is locally noetherian, by [Sta18, Tag 05AG], we have G 6= 0 if
and only if AssOX (G) 6= ∅. Thus if AssOX (G) = ∅, then G = 0 and thus HomOX (F ,G) =
0 as well which again provides AssOX (HomOX (F ,G)) = ∅. Hence suppose that both
AssOX (HomOX (F ,G)) and AssOX (G) are non-empty. Let P ∈ AssOX (HomOX (F ,G)),
then POX,P ∈ AssOX,P (HomOX (F ,G)P ) by definition. Since F is of finite presentation,
by [Sta18, Tag 01CP], we have the isomorphism

(HomOX (F ,G))P → HomOX,P (FP ,GP ).

Hence POX,P is the annihilator of a non-zero homomorphism f : FP → GP . In particular,
FP ,GP 6= 0. Therefore, for all p ∈ POX,P we have pf(a) = 0 for all a ∈ FP . Hence POX,P

296

https://stacks.math.columbia.edu/tag/01CQ
https://stacks.math.columbia.edu/tag/01CP
https://stacks.math.columbia.edu/tag/01CP
https://stacks.math.columbia.edu/tag/05AG
https://stacks.math.columbia.edu/tag/01CP


Chapter 5 E.2. The ωX -Dual and the Riemann-Roch Equation

annihilates the non-zero (otherwise FP = 0 or f = 0) OX,P -submodule f(FP ) ⊆ GP . In
particular, POX,P only consists of zero-divisors on GP and since the latter is finitely
generated over OX,P , by Lemma B.4.22, we know that P ⊆ Q for some Q ∈ AssOX,P (GP ).
Since P was maximal in OX,P , we have P = Q and thus P ∈ AssOX,P (GP ).

Proposition E.2.6. Let F be a coherent, torsion-free OX-module. Then the same is true
for F∗. Moreover, if X is Gorenstein in codimension 0 and F is invertible at the generic
points of X, then same is true for F∗ as well.

Proof. First of all, by Corollary E.1.15, we know that ωX is coherent and satisfies

AssOX (ωX) ⊆ X0.

Now since F is coherent by assumption, by Lemma E.2.4, we know that F∗ is coherent,
too. Moreover, since X is Cohen-Macaulay, by Lemma B.4.23, we know that a coherent
OX -module H is torsion-free if and only if AssOX (H) ⊆ X0. By Proposition E.2.5, we
have

AssOX (F∗) ⊆ AssOX (ωX) ⊆ X0

and hence F∗ is torsion-free. By Proposition E.1.18, we know that if X is Gorenstein in
codimension 0, then ωX is isomorphic to some OX -ideal. In particular, ωX is invertible at
all generic points of X. Thus, if F is invertible at P for all P ∈ X0, then, by Lemma E.2.4,
we know that the same is true for F∗ as well.

Corollary E.2.7. Let F be a quasi-coherent OX-module. By Lemma E.1.3, we obtain

dimkH
1 (X,F) = dimkH

0 (X,F∗) .

Proposition E.2.8. Let F be a coherent and torsion-free OX-module. Then π∗F is free
of finite rank r and there are uniquely determined integers |F|1 ≥ . . . ≥ |F|r such that

π∗F ∼=
r⊕
i=1
OP1(|F|i).

Proof. By [Liu02, 5.1.14], π∗F is a coherent OP1-module since P1
k is locally noetherian.

Since X is Cohen-Macaulay, the finite morphism π is flat, see Corollary D.1.8. By [Sta18,
Tag 00NX], finitely generated modules over noetherian rings are locally free if and only
if they are flat. Hence π∗OX is a locally free OP1-module. Hence the torsion-freeness of
F as an OX -module implies that π∗F is a torsion-free OP1-module. That is, each stalk of
π∗F is a torsion-free and finitely generated module over a principal ideal domain of rank
r (since P1

k is regular) and hence π∗F is locally free of some rank r. That is, π∗F is a
locally free OP1-module and thus, by Theorem B.5.10, it is isomorphic to a direct sum of
r invertible sheaves OP1(di) for unique integers d1 ≥ . . . ≥ dr on P1

k which provides the
assertion.

Remark E.2.9. The notation |F|i was already used for the π-invariants of OX -ideals. But
as we will see in Corollary E.2.13, these notions will coincide if F is an OX -ideal. 4

Corollary E.2.10. Let (X,π) be a Cohen-Macaulay cover of P1
k. Let F be an OX-ideal.

Then π∗F is free of rank n and there are uniquely determined integers |F|1 ≥ . . . ≥ |F|n
such that

π∗F ∼=
n⊕
i=1
OP1(|F|i).
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Proof. We only need to prove that the rank of π∗F over OP1 is equal to n since the rest
follows from Proposition E.2.8. However, by Proposition 4.1.12, we know that (π∗F)(U) =
F(π−1(U)) is free of rank n for all non-empty affine open subsets U ⊆ P1

k.

Proposition E.2.11. Let F be a coherent, torsion-free OX-module. Then π∗F∗ and π∗F
have the same rank r and

π∗F∗ ∼=
⊕r

i=1OP1(−|F|i − 2) and thus |F∗|i = −|F|i − 2

Proof. Let π∗F have rank r. Due to Proposition E.1.6 we have ωX = ωπ ⊗OX π∗ωφ where
ωπ is the 0-dualising sheaf for π and ωπ is the 1-dualising sheaf for φ : P1

k → Spec(k).
Moreover, by Example E.1.5, we know that ωφ ∼= OP1(−2) and thus π∗ωφ is invertible. In
particular, we deduce

F∗ = HomOX (F , ωX) ∼= HomOX (F , ωπ)⊗OX π
∗ωφ,

see [GW10, 7.7]. Since both F and ωπ are coherent, HomOX (F , ωπ) is coherent, see
Lemma E.2.4. Since ωφ is invertible and hence flat, we can use the Projection Formula
B.5.9 to deduce

π∗(HomOX (F , ωπ)⊗OX π
∗ωφ) ∼= π∗HomOX (F , ωπ)⊗OP1 ωφ.

The defining property of the 0-dualising ωπ, see Eq. (1:1) in Definition E.1.1, provides

π∗F∗ ∼= HomOP1 (π∗F ,OP1)⊗OP1 ωφ.

Plugging in ωφ ∼= OP1(−2) and HomOP1 (π∗F ,OP1) = (π∗F)∨ provides

π∗F∗ ∼= (
⊕r

i=1OP1(|F|i))∨ ⊗OP1 OP1(−2). (2:2)

Now obviously

(
r⊕
i=1
OP1(|F|i))∨ ∼=

r⊕
i=1
OP1(|F|i)∨ ∼=

r⊕
i=1
OP1(|F|i)−1 ∼=

r⊕
i=1
OP1(−|F|i)

since F∨ ∼= F−1 for invertible sheaves F . Plugging this into Eq. (2:2) finally provides

π∗F∗ ∼=
⊕r

i=1OP1(−|F|i − 2). (2:3)

This proves that π∗F∗ also is locally free of rank r.

Lemma E.2.12. Let F be a coherent, torsion-free OX-module. For r ∈ Z we have
|F(r(x)∞)|i = |F|i + r.

Proof. By Remark 3.2.6, we have r(x)∞ = π∗(r(x)P1
k,∞

). By Proposition 3.2.3 (i), we
have OX(r(x)∞) ∼= π∗OP1((x)P1

k,∞
). Since OY (divY (xr)∞) is invertible, we may use the

Projection Formula B.5.9 to deduce

π∗(F(r(x)∞)) = π∗(F ⊗OX OX(r(x)∞))
= π∗(F ⊗OX π

∗OP1(r(x)P1
k,∞

))

= π∗F ⊗OX OP1(r(x)P1
k,∞

). (2:4)

By Theorem B.5.10, we haveOP1(r(x)P1
k,∞

)) ∼= OP1(`) for some uniquely determined ` ∈ Z.

298



Chapter 5 E.2. The ωX -Dual and the Riemann-Roch Equation

Now due to Lemma C.4.4, the degree of the OP1-ideal satisfies

degkOP1(`) = χ(OP1)− χ(OP1(`))
= χ(OP1) + dimkH

1 (P1
k,OP1(`)

)
− dimkH

0 (P1
k,OP1(`)

)
= − `. (2:5)

where the last equation is due to Lemma B.5.11. Since P1
k has degree one as a cover of P1

k,
by Lemma D.2.13, we have degk(r(x)P1

k,∞
) = r and hence, by Proposition 3.1.27 (iii), we

obtain degkOP1(r(x)P1
k,∞

)) = −r. Therefore, by Eq. (2:5), this means OP1(r(x)P1
k,∞

)) ∼=
OP1(r). Plugging this into Eq. (2:4) provides

π∗(F(r(x)∞)) = π∗F ⊗OX OP1(r)

=
m⊕
i=1
OP1(|F|i)⊗OP1 OP1(r)

=
m⊕
i=1
OP1(|F|i + r)

wherem is the rank of π∗F . By the uniqueness of the integers |F|i+r, see Theorem B.5.10,
we deduce that |F(r(x)∞)|i = |F|i + r.

Corollary E.2.13. Let (X,π) be a cover of P1
k. Let F be an OX-ideal. Then the uniquely

determined integers d1 ≥ . . . ≥ dn such that

π∗F ∼=
n⊕
i=1
OP1(di)

equal the π-invariants of F , see Definition 4.3.8 and Theorem 4.3.15, that is, for all
i = 1, . . . , n we have |F|i = di.

Proof. By Theorem 4.3.15, the integers |F|1 ≥ . . . ≥ |F|n are uniquely determined by the
property

dimkH
0 (X,F(r(x)∞)) =

∑
|F|i+r≥0

(|F|i + r + 1)

for all r ∈ Z. By definition, H0 (P1
k, π∗F(r(x)∞)

)
= H0 (X,F(r(x)∞)) and thus, by

Lemmas B.5.11 and E.2.12, we do have

dimkH
0 (X,F(r(x)∞)) =

∑
di+r≥0

(di + r + 1)

which therefore provides that for all i = 1, . . . , n we have |F|i = di as asserted.

Proposition E.2.14. Let F be a coherent, torsion-free OX-module on X. Then χ(F∗) =
−χ(F). In particular, degk F∗ = degk F + 2χ(F).

Proof. This first assertion follows from Propositions E.2.11 and E.2.16. By Proposi-
tion E.2.6, F∗ is also coherent and torsion-free and thus degk F∗ is defined. To prove
the latter assertion, we obtain by Lemma C.4.4 and Definition E.2.1

degk F − degk F∗ = (χ(OX)− χ(F))− (χ(OX)− χ(F∗))
= − χ(F) + χ(F∗)
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and thus, by the first assertion, this becomes

degk F − degk F∗ = − 2χ(F)

and hence degk F∗ = degk F + 2χ(F) as asserted.

Corollary E.2.15. For coherent, torsion-free OX-modules F we have

degk F∗ + degk F = −2g.

In particular, degk ωX = −2g.

Proof. By definition, we have

degk F∗ + degk F = χ(OX)− χ(F∗) + χ(OX)− χ(F)

and, by Proposition E.2.14, we have −χ(F∗) = χ(F) and thus this becomes

degk F∗ + degk F = 2χ(OX)

as asserted. Now we plug in F = OX in the equation above and note that ωX = O∗X as
well as degkOX = 0. Thus we obtain degk ωX = −2g.

Since OP1(`)(P1
k) = 0 for ` < 0, we see that if r is chosen appropriately, then F(r(x)∞) has

no global sections. We can use this together with the dualising property of ωX to deduce
that H1 (X,F(r(x)∞)) = 0 for appropriate r ∈ Z.

Proposition E.2.16. Let F be a coherent, torsion-free OX-module on X such that π∗F
has rank r. Then

dimkH
0 (X,F) =

∑
|F|i≥0(|F|i + 1) and dimkH

0 (X,F∗) = −
∑
|F|i<0(|F|i + 1).

Therefore, we have χ(F) =
∑r

i=1(|F|i + 1).

Proof. Since F(X) = (π∗F)(P1
k), we have dimk F(X) =

∑
i dimkOP1(|F|i)(P1

k). Then,
by Lemma B.5.11, we directly obtain dimkH

0 (X,F) =
∑
|F|i≥0(|F|i + 1). Now using

Proposition E.2.11 we analogously obtain

dimk F∗(X) =
∑
|F∗|i≥0

(|F∗|i + 1) =
∑

−|F|i−2≥0

(−|F|i − 1)

and since −|F|i − 2 ≥ 0 is equivalent to |F|i < −1 and the summand −|F|i − 1 for
|F|i = −1 does not change the sum, we finally obtain dimk F∗(X) =

∑
|F|i<0(−|F|i − 1).

By the dualising property of the 1-dualising ωX , see Lemma E.1.3, we have

χ(F) = dimkH
0 (X,F)− dimkH

1 (X,F)
= dimkH

0 (X,F)− dimkH
0 (X,F∗)

=
∑
|F|i≥0

(|F|i + 1)−
∑
|F|i<0

(−|F|i − 1)

=
r∑
i=1

(|F|i + 1).

Proposition E.2.16 characterises exactly when the first cohomology term of a coherent
and torsion-free sheaf F vanishes. It does if and only if |F|i ≥ 0 for all i = 1, . . . , r
where r is the rank of π∗F . Meeting the wish of the vanishing of H1 (X,F) just if the
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degree of F is large enough is simply not possible for reducible X in general. But the
following statement shows that if we tensor with OX(r(x)∞) for r large enough, then
H1 (X,F(r(x)∞)) vanishes independently of X being reducible or not.

Corollary E.2.17. Let F be a coherent, torsion-free OX-module on X such that π∗F has
rank n. Then

dimkH
1 (X,F(r(x)∞)) =

∑
−|F|i>r

(−|F|i − r − 1).

In particular, H1 (X,F(r(x)∞)) = 0 if and only if r ≥ −|F|n.

Proof. By Proposition E.2.16, we have

dimkH
1 (X,F(r(x)∞)) = −

∑
|F(r(x)∞)|i<0

(|F(r(x)∞)|i + 1)

and, by Lemma E.2.12, we have |F(r(x)∞)|i = |F|i + r and thus we obtain

dimkH
1 (X,F(r(x)∞)) = −

∑
|F|i+r<0

(|F|i + r + 1)

=
∑
−|F|i>r

(−|F|i − r − 1)

providing both assertions.

We have shown in Lemma 4.5.1 (i) that there is an upper bound for the π-invariants of
an OX -ideal F depending on the degree of F and thus we obtain the following result for
OX -ideals.

Corollary E.2.18. Let X be reducible with irreducible components X1, . . . , Xm. Let F be
an OX-ideal. Then H1 (X,F(r(x)∞)) = 0 if

r ≥ mmax
i=1

{degk F|Xi
ni

+ 2ci,X
}
.

In particular, if r ≥ maxmi=1{(degk F|Xi)/ni}+ 2cX , then H1 (X,F(r(x)∞)) = 0.

Proof. This follows from Lemma 4.5.1 (i) and Corollary E.2.17.

Remark E.2.19. Note that if X is integral, then a similar result was already provided by
Theorem 4.3.22. 4

Corollary E.2.20. Recall the definition of the arithmetic genus g = −χ(OX) in Defini-
tion 2.4.8. By Proposition E.2.16, we have g = (

∑n
i=1−|X|i) − n where n denotes the

rank of π∗OX . Now Corollaries 4.3.24 and 4.5.2 provide g ≤ ncX − n = n(cX − 1) and
thus g/n ≤ cX .

Remark E.2.21. Hence, by Definition 2.4.10, we see that if X is integral, then cX is quite
a good approximation of g/n since we have

g

n
≤ cX ≤

2(g + n) + dimkH
0(X,OX)

n
.

Moreover, if X is reducible, then we have

g

n
≤ cX ≤

mmax
i=1

{
2(gi + ni) + dimkH

0(X,OXi) + χ(Si)
ni

}
. 4
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By Corollary E.2.17, we know that an upper bound s of the invariants −|F|i shows that
H1 (X,F(r(x)∞)) vanishes for r ≥ s. To give such a bound requires a bit of work, see
Section 4.4.2 and Lemma 4.5.1 (i). But a lower bound can be easily derived as we will see
now.

Proposition E.2.22. Let F be an OX-ideal. Then

−|F|n ≥
degk F + g

n
.

Proof. By Corollary E.2.17, we have r ≥ −|F|n if and only if H1 (X,F(r(x)∞)) = 0. Since
F and OX(r(x)∞) are OX -ideals, by Definition 3.1.15, the same is true for F(r(x)∞).
Therefore, by Lemma C.4.4, we have

degk F(r(x)∞) = χ(OX)− χ(F(r(x)∞))
= − g − dimkH

0 (X,F(r(x)∞))) + dimkH
1 (X,F(r(x)∞)))

which, by rearranging, provides

dimkH
1 (X,F(r(x)∞))) = degk F(r(x)∞) + g + dimkH

0 (X,F(r(x)∞)))
≥ degk F(r(x)∞) + g. (2:6)

Now since F(r(x)∞) = F · OX(r(x)∞) and OX(r(x)∞) is an invertible OX -ideal, by
Lemma C.4.7, we obtain degk F(r(x)∞) = degk F + degkOX(r(x)∞). By combining
Lemmas C.4.8 and D.2.13, we obtain degkOX(r(x)∞) = rn. In particular, if

dimkH
1 (X,F(r(x)∞))) = 0,

by Eq. (2:6), we obtain r ≥ (degk F + g)/n. Now plugging in r = −|F|n we obtain the
desired result.

Corollary E.2.23. Let F be an OX-ideal. Then H1 (X,F) = 0 implies (degk F)/n ≤
−g/n.

Proof. By Proposition E.2.22, we have −|F|n ≥ (degk F + g)/n and, by Corollary E.2.17,
we see that H1 (X,F) = 0 if and only if 0 ≥ −|F|n. Thus H1 (X,F) = 0 implies
0 ≥ (degk F + g)/n and hence the assertion follows.

In this section we have defined the degree of coherent and torsion-free sheaves which satis-
fies a kind of Riemann-Roch equation by definition. Moreover, this degree coincides with
the degree of OX -ideals and thus we saw that OX -ideals do satisfy with the local defini-
tion of their degree a Riemann-Roch equation. We have characterised in Corollary E.2.17
the vanishing of H1 (X,F(r(x)∞)) in terms of the π-invariants of the OX -ideal F . This
allowed us to give a sufficient criterion for the vanishing of H1 (X,F(r(x)∞)) only depen-
dent on the maximum of the degree of the restrictions F|Xi and the invariant cX . The
latter part need to be emphasised since without further investigation it is not at all clear
how to prove the vanishing without choosing r as large as m · maxmi=1{degk F|Xi}. We
have seen in Corollary E.2.23 that F does indeed need to satisfy a degree condition for
H1 (X,F) to vanish, but we do not know how to provide a condition solely dependent on
the degree of F such that H1 (X,F) vanishes in general. Thus we have come up with a
vanishing result for H1 (X,F(r(x)∞)) which mimics the degree growth by multiples of n
which eventually leads to the vanishing of H1 (X,F(r(x)∞)). That is, instead of “a large
enough degree leads to vanishing H1-term” we have “we may tensor with OX(r(x)∞) with
sufficiently large r such that the H1-term of the resulting sheaf vanishes”.
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If X is projective over k (or proper over any affine base) and L an ample and in-
vertible sheaf on X, then for every coherent F on X there is an integer n0(F) such that
H1(X,F ⊗OX Ln) = 0 for all n ≥ n0(F). Moreover, in this case Lr is very ample for
X → Spec(k) for sufficiently large r. For further information, see [Liu02, 5.3.6]. There-
fore, since (x)∞ is an ample divisor on X, see Proposition D.2.3, we have proven a bound
for n0(F) dependent on the degree of F .
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Appendix F

More on π-Invariants

In this chapter we provide some more observations regarding the π-invariants −|X|1 ≤
. . . ≤ −|X|n for some cover X of P1

k.
In Section F.1 we observe that giving an upper bound of −|X|n is equivalent to the

existence of a divisor on P1
k whose pullback to X has vanishing first cohomology term. In

Section F.2 we examine the explicit case of (X,π) being a cover of P1
k which is embedded

in PNk such that π : X → P1
k is given by the projection onto two coordinates. In this case

we provide an explicit formula for the invariant −|X|n from which we can also give an
explicit formula for the arithmetic genus of X solely in terms of its defining polynomials,
N and n. If not mentioned otherwise, (X,π) will denote a cover of P1

k.

F.1 Relation to Divisors on P1
k

In this section we prove the simple observation that every upper bound for −|X|n is given
by an integer d ∈ Z such that π∗OP1(d) has vanishing first cohomology term.

Lemma F.1.1. For every d ≥ 0 there is some effective divisor D ≥ 0 on P1
k such that

OP1(d) ∼= OP1(D).

Proof. By [GW10, 11.14.3], we have the isomorphism deg : CaCl(P1
k)→ Z and thus every

divisor class is characterised by its degree. Since

degOP1(d) = χ(OP1(d))− χ(OP1)
= dimkH

0 (P1
k,OP1(d)

)︸ ︷︷ ︸
= d+1

−H1 (P1
k,OP1(d)

)︸ ︷︷ ︸
= 0

−χ(OP1)︸ ︷︷ ︸
= 1

= d,

we know that there is some divisor D ∈ Div(P1
k) of degree d such that OP1(D) ∼=

OP1(d). By the theorem of Riemann-Roch, there is some homogeneous polynomial f ∈
OP1(d)(P1

k) = k[x0, x1]d of degree d and hence fOP1 ≤ OP1(d). Therefore we have
OP1(D) ∼= f−1OP1(d) ≥ OP1 for some divisor D of degree d. But OP1(−D) ≤ OP1 is
equivalent to D ≥ 0.

Lemma F.1.2. Let d ∈ Z. Then

H1 (X,π∗OY (d)) ∼= H0(P1
k,
⊕n

i=1
OP1(−|X|i − 2− d)).

Proof. Since π is finite, it is affine and thus, by [Sta18, Tag 089W], we have Hp (X,F) ∼=
Hp
(
P1
k, π∗F

)
for every quasi-coherent OX -module F . Therefore,

H1 (X,π∗OY (d)) ∼= H1 (P1
k, π∗π

∗OY (d)
)
.
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By [Liu02, Ex. 5.1.1 (c)], we have π∗π∗OY (d) ∼= π∗OX ⊗OY OY (d). Combining this with
Grothendieck duality on P1

k we deduce

H1 (X,π∗OP1(d)) ∼= H1 (X,π∗π∗OP1(d))
∼= H1 (P1

k, π∗OX ⊗OP1 OP1(d)
)

∼= H0 (P1
k, (π∗OX ⊗OP1 OP1(d))∨ ⊗OP1 OP1(−2)

)
∼= H0(P1

k, (
⊕n

i=1
OP1(−|X|i)⊗OP1 OP1(−d− 2))

∼= H0(P1
k,
⊕n

i=1
OP1(−|X|i − 2− d)

as asserted.

Corollary F.1.3. Let d ∈ Z. Then

−|X|n < d+ 2⇔ H1 (X,π∗OY (d)) = 0.

Proof. By Lemma B.5.11, we have dimkH
0 (P1

k,OP1(r)
)

= 0 if and only if r < 0 and ≥ 1
otherwise. Taking dimensions in Lemma F.1.2, we therefore obtain

0 = dimkH
1 (X,π∗OY (d)) =

n∑
i=1

dimkOP1(−|X|i − 2− d)

if and only if we have −|X|n < d+ 2.

F.2 Finite Morphism is the Projection onto Coordinates

In this section we examine the special case of a cover X of P1
k which is embedded in

some projective space PN and endowed with a finite morphism onto P1
k which is just the

projection onto two of the coordinates of PN . In this case we can explicitly prove what
the π-invariants are and how we may compute the arithmetic genus g from a given set of
generators of the ideal cutting out X in PN .

Proposition F.2.1. Let X ⊆ PNk be a cover of P1
k such that

X = Proj(k[x0, x1, . . . , xN ]/I)

where I is a homogeneous ideal. Assume that I = (f2, . . . , fs) where

fi = αi x
ai
i +

∑
(j0,j1,...,ji):

∑i
`=0 j`=ai

αj0,j1,...,ji x
j0
0 x

j1
1 · · ·x

ji
i

is homogeneous of degree ai ≥ 2 and αi, αj0,j1,...,ji ∈ k. Moreover, assume that π : X → P1
k

is given by projection onto the first two coordinates x0, x1. Then

g = n · (
∑N

i=2 ai − (N − 1)) + 2n
2 and − |X|n =

N∑
i=2

ai − (N − 1)

which provides
−|X|n = 2 ·

( g
n
− 1
)
∈ O

( g
n

)
Proof. Let A = k[x1, x1, . . . , xN ]. Let Ui = D+(xi) ⊆ P1

k for i = 1, 2 be the standard
affine open cover of P1

k with OP1(U0) = k[x1/x0] and OP1(U1) = k[x0/x1]. By assumption,
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this induces the affine open cover V0 = D+(x0) ⊆ PNk and V∞ = D+(x1) ⊆ PNk . Then,
by [Liu02, 2.3.36], we have V0 ∼= Spec(A/I(x0)) and V∞ ∼= Spec(A/I(x1)) where I(x0) =
IAx0∩A(x0) and I(x1) = IAx1∩A(x1). By Lemma 2.2.4, OX(V0) and OX(V∞) are both free
of rank n over k[x1/x0] respectively k[x0/x1]. Moreover, by assumption, for all i = 2, . . . , N
the following relation holds

xi
x0

= xi
x0
· x1
x1

= xi
x1
· x1
x0
.

Now let x = x1/x0 and yi = xi/x0, i ≥ 2, as well as x−1 = x0/x1 and zi = xi/x1, i ≥ 2.
Then the above gives yi = zix for all i = 2, . . . , N . By assumption, we have

I(x0) = (f2,0, . . . , fs,0) and I(x1) = (f2,1, . . . , fs,1)

where

fi,0 = αi y
ai
i +

∑
(j0,j1,...,ji):

∑i
`=0 j`=ai

αj0,j1,...,ji x
j1yj22 · · · y

ji
i

fi,1 = αi z
ai
i +

∑
(j0,j1,...,ji):

∑i
`=0 j`=ai

αj0,j1,...,ji (x−1)j0zj22 · · · z
ji
i .

Set Bi,0 = k[x, y2, . . . , yi]/(f2,0, . . . , fi,0) and Bi,1 = k[x−1, z2, . . . , zi]/(f2,1, . . . , fi,1). Then,
by the above, we have that Bi,0 is finite free of rank ai over Bi−1,0 with basis 1, yi, . . . , yai−1

i .
And similarly that Bi,1 is finite free of rank ai over Bi−1,1 with basis 1, zi, . . . , zai−1

i . Hence
BN,0 is finite free over k[x] of rank

∏N
i=2 ai with basis

{yj22 · · · y
jN
N | 0 ≤ ji ≤ ai − 1}

over k[x]. Analogously, BN,1 is finite free over k[x−1] of rank
∏N
i=2 ai with basis

{zj22 · · · z
jN
N | 0 ≤ ji ≤ ai − 1}.

These two bases are now related by the relation

yj22 · · · y
jN
N · x

(−
∑N
i=2 ji) = zj22 · · · z

jN
N .

Now since we have found bases of R0 and R∞ over k[x] respectively k[x−1] which are
related by a diagonal transformation matrix whose diagonal elements are x

∑N
i=2 ji where

0 ≤ ji ≤ ai − 1, the set {
∑N

i=2 ji | 0 ≤ ji ≤ ai − 1} coincides with {−|X|i | i = 1, . . . , n},
see Corollary 4.3.6. Now since g − n =

∑n
i=1−|X|i, we thus have

g − n =
∑

{(j2,...,jN )|0≤ji≤ai−1}

N∑
i=2

ji

=
∑

(j2,...,jN )

j2 + . . .+
∑

(j2,...,jN )

jN . (2:1)

For a fixed k ∈ {2, . . . , N} we have∑
(j2,...,jN )

jk =
∑

(j2,...,jN ),jk=0

jk +
∑

(j2,...,jN ),jk=1

jk + . . .+
∑

(j2,...,jN ),jk=N

jk (2:2)
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and for ` ∈ {1, . . . , ak − 1} we have∑
(j2,...,jN ),jk=`

jk = ` ·#{(j2, . . . , jN ) | jk = `, 0 ≤ ji ≤ ai − 1}

= ` ·
N∏
i 6=k

ai = ` · n
ak
.

We substitute this back into Eq. (2:2) and obtain

∑
(j2,...,jN )

jk =
N∑
`=1

` · n
ak

=
N∑
`=1

` · n
ak

= n

ak
·
N∑
`=1

` = n

ak
· ak(ak + 1)

2 = n(ak + 1)
2 . (2:3)

Substituting this back into Eq. (2:1) we finally obtain

g − n =
∑

(j2,...,jN )

j2 + . . .+
∑

(j2,...,jN )

jN

= n(a2 + 1)
2 + . . .+ n(aN + 1)

2

=
N∑
i=2

n(ai + 1)
2

= n

2 ·
((

N∑
i=2

ai

)
− (N − 1)

)
.

Now let a =
∑N

i=2 ai. Then the above implies

2g
n

= (a− (N − 1)) + 2.

We obviously have

−|X|n = max{
N∑
i=2

ji | 0 ≤ ji ≤ ai − 1} =
N∑
i=2

(ai − 1) = a− (N − 1)

which thus provides
−|X|n = 2 ·

( g
n
− 1
)
∈ O

( g
n

)
.
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Appendix G

Conclusion and Future Work

In this thesis we provide a toolkit to compute asymptotically fast in the degree zero Picard
group Pic0(X) of rather general algebraic curves X over a field k. In particular, these may
have large genus, have singularities, be non-plane and be reducible. To the authors’ best
knowledge our algorithms are the first ones that implement the group law in Pic0(X) for
this kind of curves. Moreover, our algorithms require O∼(nωcX) operations in k where
n denotes the degree of a finite morphism X → P1

k and cX is an invariant of X which
is roughly equal to g/n where g denotes the arithmetic genus of X. In particular, our
algorithms do not only enlarge the class of curves for which fast arithmetic in Pic0(X) is
available, but they are also at least as fast as the fastest known algorithms for irreducible,
plane and non-singular curves over k.1 Therefore, our main contribution is that we gave
the problem of how to compute fast in Pic0(X) a comprehensive answer by providing
algorithms that implement the arithmetic in Pic0(X) and that have a uniform running
time.

At this point we would like to briefly discuss possible future work that may generalise
our contribution to science. First of all, we can not imagine another way of implementing
the arithmetic in Pic0(X) which is significantly faster than ours. But there might be slight
improvements and also generalisations. We conject that our general idea should work
out the same way if we drop the assumption that the intersection points of irreducible
components of covers of P1

k do not meet S, see Definition 2.1.3 (ii). Alternatively, we
believe that it should not be too hard to argue that every reduced projective curve over
k admits a finite morphism to P1

k satisfying Definition 2.1.3 (ii). Another possible way
to generalise our result is to work over an affine base Spec(A) given by a ring A that is
not necessarily a field k. That is, analogous to Ivey-Law who generalised in [IL12] the
ideas of Khuri-Makdisi given in [KM04], there might be a way to generalise our result to
suitable rings A. In [IL12] the new ground rings A (which the author called amenable
rings) needed to admit fast linear algebra of projective modules over A. Analogously, the
new ground ring for our approach should admit fast linear algebra over A[x]. Although
this should be hard enough, another point where this should get difficult is by coming up
randomly with ideal generating sets of ideals by using the probabilistic statements given
in Section 6.2.2. These methods do not apply to more general rings A off-handedly. This
seems to be the same reason why [IL12] could not profit from the speedup Khuri-Makdisi
gave in [KM07] in contrast to [KM04].

1For a more thorough classification of our result with respect to the previous work, see the Abstract at
the beginning of this document and Section 1.1.
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List of Symbols

What follows is an overview of symbols used in this document together with the page
number where they first appear.

Ideal arithmetic related symbols

(J : I) := {a ∈ Frac(R) | aI ⊆ J} quotient of two R-ideals, page 255

VI(T ) = {P ∈ Spec(R) | T ⊆ PI}, page 176

Divisor related symbols

(D|V0 , D|S1 , . . . , D|Sm) image of the divisor D on the cover X of P1
k under the embedding

Div(X) ↪→ Div(V0)×
⊕m

i=1 Div(Si); also denoted by D|V0 +D|S1 +
. . .+D|Sm , page 128

(D|V0 , D|S) image of the divisor D on the cover X of P1
k under the embedding

Div(X) ↪→ Div(V0)×Div(S); also denoted by D|V0 +D|S , page 128

(xri)i,∞ extension by zero of pole divisor of x on irreducible component Xi

to X; given by configuration {(X \ Si, 1), (D(hi), x−ri)}, page 130

CaCl(X) = Div(X)/Princ(X), group of Cartier divisor classes on X, page 52

CaCl0(X) = D0(X)/Princ(X), degree zero divisor class group of X, page 129

CaCl0π(X) = Div0
π(X)/Princπ(X); degree zero divisor class group of X with

respect to π, page 132

ClInvId(X) class group of invertible OX -ideals, page 56

ClInvId0(X) group of degree zero invertibleOX -ideals, see Definition 5.0.5, page 110

Div(X) = H0 (X,K×X/O×X), group of Cartier divisors on X, page 52

Div0
π(X) degree zero divisor group of X with respect to π, page 132

Iπ invertible R0-ideals whose restriction to an irreducible component
Xi ∩ V0 of V0 has degree rini for some ri ∈ Z, page 133

InvId(X) group of invertible OX -ideals, page 56

D0(X) divisors on X with degree zero restrictions to the irreducible com-
ponents of X, page 129

H those divisors on X restricting to a principal divisor on every com-
ponent of X, page 126

K kernel of the divisor restriction map Div(X)→
⊕m

i=1 Div(Xi), page 126
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MonoId(X) the monoid of OX -ideals on X, see Definition 3.1.15, page 55

Pic(R) the Picard group of the ring R; the group of isomorphism classes of
invertible R-modules, page 111

Pic(X) Picard group of the scheme X, see Definition 5.0.1, page 109

Pic0(X) degree zero Picard group of X, see Definition 5.0.3, page 110

Pπ principal invertibleR0-ideals whose generator satisfies the conditions
of Corollary 5.6.13, page 133

Princ(X) subgroup of principal Cartier divisors on X, page 52

Princπ(X) = Div0
π(X) ∩ Princ(X), page 132

PrincId(X) group of principal invertible OX -ideals, page 56

C(R) the group of Cartier divisors of the ring R; the group of invertible
R-ideals, page 111

D|Y restriction of the divisor D ∈ Div(X) to the scheme Y where f :
Y → X is a morphism of schemes for which the restriction of divisors
is defined; see Definition 3.2.5, page 67

Sheaf related symbols

Ass(F) associated points of the sheaf F , page 230

χk(X,F) or χ(F); Euler characteristic of the OX -module F on the proper
k-scheme X, page 250

F presheaf or sheaf (of abelian groups, rings, modules or algebras (for
a fixed ring)) on a topological space X, page 215

F/G quotient sheaf of F by the subsheaf G, defined as the sheafification
of U 7→ F(U)/G(U), page 219

FG product of the OX -ideals F and G, page 55

F∗ = HomOX (F , ωX) where ωX denotes the 1-dualising sheaf on X,
page 288

F# sheafification of the presheaf F , page 219

FP stalk of the presheaf or sheaf F at the point P , page 216

F|Y restriction of the sheaf F on X to the scheme Y where f : Y ↪→ X
is a morphism of schemes, see Definition 3.2.25, page 67

G ≤ F the presheaf or sheaf G is a subpresheaf or subsheaf of F , page 216

KX sheaf of stalks of meromorphic functions of X, page 52

K′X presheaf whose sheafification is KX , page 52

R sheaf of rings, page 225

ρUV (F) restriction map F(U)→ F(V ) of the presheaf F , page 215
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S Skyscraper sheaf sitting at intersection points of irreducible compo-
nents, page 45

Si Skyscraper sheaf sitting at intersection points, page 46

Supp(F) support of the sheaf F , page 222

f ≡∪ g the sections f, g ∈ F(U) of the presheaf F are equal on a cover ,
page 220

f : F → G morphism of the presheaves or sheaves F and G, page 218

f−1G inverse image of G under the map f , page 222

f∗F direct image of F under the map f , page 222

fP : FP → GP morphism induced by f : F → G on the stalks, page 218

sP the germ of s ∈ F(U) at the point P ∈ U of the presheaf F , page 216

s|V = ρUV (F)(s), restriction of the section s of F over U to a section of
F over V , page 216

|F|i the i-th π-invariant of the OX -ideal F defined in Definition 4.3.8 ,
page 78

|D|i the i-th π-invariant of the OX -ideal OX(D) corresponding to the
divisor D defined in Definition 4.3.8, page 78

Algorithm input related symbols

Σ finite subset of the ground field k from which the randomised al-
gorithms that try to provide ideal generating sets choose uniformly
random elements to compute a Σ-random element, page 178

c Boolean that encodes whether the input basis matrices of ideals
represent the respective basis with respect to Ωm

i (in this case, the
representation depends on the components, thus c =true) or with
respect to Ω (then c =false) , page 103

r, t ∈ Z≥1 probability parameters of randomised algorithms that affect the
lower bound of the probability of the respective algorithm to be suc-
cessful. Here r affects the number of Σ-randomly chosen elements
trying to come up with ideal generators and t affects the total num-
ber of tries coming up with an ideal generating set , page 179

Linear algebra related symbols

(Mi,j)i,j matrix M ∈ k[x]n×n defined by matrices Mi,j ∈ k[x]ni×nj where
n =

∑m
j=1 nj , see Definition 4.4.6, page 89

LC(M) LeadingCoefficient matrix of the polynomial matrixM ∈ k((x−1))n×n,
page 77

Running time related symbols

Σ−random see Definition 6.2.18, page 176
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B(d) number of operations in a ground field k needed for computing the
greatest common divisor of two univariate polynomials with degree
at most d, page 211

M(d) number of operations in a ground field k needed for computing
the product of two univariate polynomials with degree at most d,
page 211

Scheme related symbols

µX integer depending on whether X is irreducible or not, see Nota-
tion 5.8.1, page 156

ci =
⌈

2pa(Xi)+χ(Si)
ni

⌉
; invariant of the scheme X with regards to a fixed

order of irreducible components X1, . . . , Xm of X, page 145

g = −χ(X,OX); arithmetic genus of X, see Definition 2.4.8 and the
discussion in Remark 2.4.7, page 48

g(X,SX) = 2pa(X) + 2(m − 1) − χ(SX) = 2(g + m) − χ(SX); invariant of
the scheme X, page 145

G0 a scheme X of dimension one is G0 if its local rings OX,P for P ∈ X0

are local Gorenstein rings, page 286

pa(X) = 1− χ(X,OX), see Definition 2.4.8, page 48

X0 set of generic points of the irreducible components of X, page 228

X0 set of closed points of X, page 228

|X|i the i-th π-invariant of the OXdefined in Definition 4.3.8 , page 78

Symbols Related to Covers of P1
k

(ωi,j)i,j = (ωi,1, . . . , ωi,ni)i=1,...,m basis of
⊕m

i=1Ri,0 constituted by the re-
duced bases of Ri,0, page 90

(vi,j)i,j = (vi,1, . . . , vi,ni)i=1,...,m basis of
⊕m

i=1Fi(Vi,0) constituted by the
reduced bases of Fi(Vi,0), page 90

(x)∞ Pole divisor of the function x ∈ KX(X) on X, page 39

(x)Si,∞ = ((x)Xi,∞)|Si , page 130

(x)Xi,∞ Pole divisor of the function x ∈ KXi(Xi) on Xi, page 39

(xr)∞ = r(x)∞ multiple of the pole divisor of x of the function x ∈ KX(X)
on X, page 39

Fi = F|Xi where F is an OX -ideal on the cover X of P1
k, page 90

Ji ≤ OXi , sheaf of ideals on Xi cutting out Yi−1 ∩Xi in Xi, page 89

µ = µa ◦ i∞; Morphism S → V∞ → X, page 40

µa Morphism S → V∞, page 40

µa,i Morphism Si → Vi,∞ corresponding to Ri,∞ ↪→ T−1Ri,∞, page 41
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µi Morphism Si → Xi, page 41

ν index of S = k[x, y] inR0 where y is primitive element ofKX(X)/k(x)
and X a cover of P1

k, page 186

O∞ = T−1k[x−1]; local ring of P∞ ∈ P1
k, page 40

OS = T−1R∞; structure sheaf of S; OS =
⊕m

i=1OSi , page 40

Ω = (ω1, . . . , ωn) a fixed reduced basis of OX respectively R0, see
Notation 6.1.1, page 167

Ωi = (ωi,1, . . . , ωi,ni) a fixed reduced basis of OXi respectively Ri,0, see
Notation 6.1.1, page 167

Ωm
i = (ωi,j)i,j the fixed basis of R+

0 constituted by Ω1, . . . ,Ωm, see No-
tation 6.1.1, page 167

OSi = T−1Ri,∞; structure sheaf of Si, page 40

P1
k Projective line over the field k, page 37

π Finite morphism X → P1
k of the cover X of P1

k, see Definition 2.2.1,
page 37

πi Restriction of the finite morphism π : X → P1
k to Xi, page 39

Ωi = ωi,1, . . . , ωi,ni fixed reduced basis of Ri,0, page 90

Ωm
i = (ωi,1, . . . , ωi,ni)i=1,...,m basis of

⊕m
i=1Ri,0 constituted by the re-

duced bases of Ri,0, page 90

Ci basis transformation matrix from ωi,1, . . . , ωi,ni to ci,1, . . . , ci,ni , page 90

cX maxmi=1 {ci,X}, here X denotes a cover of P1
k and X1, . . . , Xm its irre-

ducible components; if X is integral, then cX = 2g+dimkH
0(X,OX)+n
n ,

page 49

ci,1, . . . , ci,ni reduced basis of Ji(Vi,0)Fi(Vi,0) where F is an OX -ideal on the
cover X of P1

k, page 90

ci,X
χ(Si)+2gi+dimkH

0(Xi,OXi)+ni
ni

, here X denotes a cover of P1
k and Xi

its i-th irreducible component, page 49

Di = D|Xi where D is a divisor on the cover X of P1
k, page 90

i∞ Open immersion V∞ → X, see Definition 2.2.1, page 37

i0 Open immersion V0 → X, see Definition 2.2.1, page 37

m Number of irreducible components of the cover X of P1
k, page 38

MF basis transformation matrix from (ωi,j)i,j to v1, . . . , vn, page 90

MD basis transformation matrix from (ωi,j)i,j to v1, . . . , vn for F =
OX(D), page 90

n Degree of the cover X of P1
k; equal to

∑m
i=1 ni, page 37

ni Degree of the curve Xi over P1
k, page 39
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P∞ Point at infinity of P1
k, page 40

Pi,∞ Minimal prime ideal of R∞ corresponding to the irreducible compo-
nent Vi,∞, see Definition 2.2.6, page 39

Pi,0 Minimal prime ideal of R0 corresponding to the irreducible compo-
nent Vi,0, see Definition 2.2.6, page 39

r-dualising of a proper morphism ψ : X → Y satisfies a duality property, see
Definition E.1.1, page 284

R∞ Coordinate ring of the affine open patch V∞ of the cover X of P1
k,

see Definition 2.2.1, page 37

Ri,∞ Coordinate ring of Vi,∞, see Definition 2.2.6, page 39

R0,∞ Coordinate ring of the affine open patch V0,∞ of the cover X of P1
k,

see Definition 2.2.1, page 37

R0 Coordinate ring of the affine open patch V0 of the cover X of P1
k,

see Definition 2.2.1, page 37

R+
0 =

⊕m
i=1Ri,0, coordinate ring of disjoint union of the Vi,0, see Defi-

nition 2.2.6, page 39

Ri,0 Coordinate ring of Vi,0, see Definition 2.2.6, page 39

S Affine scheme with closed points corresponding to π−1(P∞), page 40

Si Affine scheme with closed points corresponding to π−1
i (P∞); irre-

ducible component of S, page 40

T = k[x−1] \ x−1k[x−1], page 40

TF basis transformation matrix from (ωi,j)i,j to (vi,j)i,j , page 90

TD = TF for F = OX(D), page 90

T0,F basis transformation matrix from (vi,j)i,j to v1, . . . , vn, page 90

TFi basis transformation matrix from ωi,1, . . . , ωi,ni to vi,1, . . . , vi,ni , page 90

TDi basis transformation matrix from ωi,1, . . . , ωi,ni to vi,1, . . . , vi,ni where
the latter is a reduced basis of OXi(Di)(Vi,0), page 90

U∞ Standard affine patch of P1
k with coordinate ring k[x−1], see Defini-

tion 2.2.1, page 37

U0,∞ Intersection of U0 and U∞ with coordinate ring k[x, x−1], see Defi-
nition 2.2.1, page 37

U0 Standard affine patch of P1
k with coordinate ring k[x], see Defini-

tion 2.2.1, page 37

V∞ Affine patch of the cover X of P1
k lying over U∞, see Definition 2.2.1,

page 37

Vi,∞ = V∞ ∩Xi = π−1
i (U∞), page 39

V0,∞ = V0 ∩ V∞, see Definition 2.2.1, page 37
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V0 Affine patch of the cover X of P1
k lying over U0, see Definition 2.2.1,

page 37

v1, . . . , vn basis of F(V0) where F is an OX -ideal on the cover X of P1
k, page 89

Vi,0 = V0 ∩Xi = π−1
i (U0), page 39

vi,1, . . . , vi,ni reduced basis of Fi(Vi,0) where F is anOX -ideal on the cover X of P1
k,

page 90

Xi The i-th irreducible component of the cover X of P1
k, page 38
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Glossary

Notation Description

R-ideal an R-ideal of the finite residual-type k-algebra
R is a finitely generated R-submodule of
Frac(R) that is invertible at the minimal
primes of R, see Definition C.1.2.

Σ-random for the subset Σ ⊆ k of the field k, an el-
ement w of the k-vector space W with ba-
sis w1, . . . , wn is chosen Σ-randomly if w =∑n

i=1 λiwi where λ1, . . . , λn ∈ Σ are chosen
independently and uniformly random from Σ,
see Definition 6.2.18.

π-invariants π-invariants |F|1 ≥ . . . ≥ |F|n of an OX -ideal
F as defined in Definition 4.3.8.

ωX -dual for a coherent OX -module F the ωX -dual F∗
of F is given by HomOX (F , ωX), see Defini-
tion E.2.2.

n-block-form a matrix M ∈ k[x]n×n is in n-block form, if
there is a partition n =

∑m
j=1 nj and Mi,j ∈

k[x]ni×nj such that M = (Mi,j)i,j , see Defini-
tion 4.4.6.

r-dualising see Definition E.1.1.

OX -ideal is a coherent OX -submodule of KX which is
invertible at the generic points of X, see Def-
inition 3.1.13.

absolute curve over k a curve of finite residual-type over k which is
of finite type over k; the same as a curve over
k.

arithmetic genus arithmetic genus of the one-dimensional
schemeX over k, defined as g = −χk(X,OX);
see Definition 2.4.8.

common zeros relative to I VI(T ) = {P ∈ Spec(R) | T ⊆ PI}, see Defini-
tion 6.2.16.
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Notation Description

component dependent case this is the approach of computing in
CaCl0π(X) by working with representatives
of the form D +

∑
i∈A ri(x)i,∞, see Nota-

tion 5.6.31.

component independent case this is the approach of computing in
CaCl0π(X) by working with representatives of
the form D + r(x)∞, see Notation 5.6.31.

configuration a configuration is a weakly matching family
of a global section of K×X/O

×
X and thus repre-

sents a divisor on X.

cover of P1
k a curve X over k which is projective and

Cohen-Macaulay together with a finite mor-
phism onto P1

k satisfying specific conditions,
see Definition 2.1.3.

curve of finite residual-type over k separated, non-empty and noetherian scheme
of dimension one over k whose irreducible
components have dimension one as well.

curve over k the same as absolute curve over k.

degree of a divisor the degree of a divisor D on X over k is de-
fined in Definition 3.1.10.

degree of a morphism degree of π : X → P1
k, where X is Cohen-

Macaulay, is defined as the rank of π∗OX
as an OP1-module, see for instance Defini-
tion 2.2.2 for the case of X being a cover of
P1
k.

degree of an OX -ideal the degree of an OX -ideal is defined in Defi-
nition C.4.1.

degree of an R-ideal the degree of an R-ideal is defined in Defini-
tion C.1.14.

degree zero divisor class group defined as the quotient group CaCl0(X) =
D0(X)/Princ(X), see Definition 5.6.1.

divisor a global section of K×X/O
×
X , see Defini-

tion 3.1.5.

effective a divisor D is effective if D ≥ 0, or
equivalently, if it lies in the image of
H0 (X,OX ∩ K×X)→ Div(X) .

equal on a cover two sections f, g ∈ F(U) are equal on a cover
if there is an open cover {Ui | i ∈ I} of U such
that f|Ui = g|Ui for all i ∈ I.
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Notation Description

Euler characteristic the Euler characteristic of the OX -module F
is defined as χ(F) = χk(X,F), see Defini-
tion B.5.13.

finite residual-type a k-algebra R is of finite residual-type if its
residual class fields have finite dimension over
k, see Definition B.4.3; there is also the notion
of curves of finite residual-type over k.

flasque a sheaf F is flasque or flabby if every restric-
tion map of F is surjective. For instance,
skyscraper sheaves are flasque.

generalised vector bundle a generalised vector bundle of rank r on
a cover X of P1

k is an OX -subsheaf of K⊕rX
which is free of rank r at the generic points of
X.

Gorenstein in codimension 0 a scheme X of dimension one is Gorenstein in
codimension 0 if OX,P is a local Gorenstein
ring for all generic points P ∈ X0, see Defini-
tion E.1.16.

group of degree zero Cartier divisor classes group of degree zero Cartier divisor classes
is the quotient of the degree zero group of
divisors by the group of principal divisors .

group of divisors the abelian group H0 (X,K×X/O×X).
group of Cartier divisor classes group of Cartier divisor classes is the quotient

of the group of divisors by the group of prin-
cipal divisors .

index of N in M for N ⊆ M being free modules over the ring
R, the index denotes the determinant of a ba-
sis transformation matrix from M to N , see
Definition 6.3.12 for the application.

linearly equivalent two divisors D,E are linearly equivalent if
they differ additively by a principal divisor.

modification function generators f of elements in Princπ(X) are
called modification function. If furthermore
f ∈ OX(D)(V0) holds, then f is called modifi-
cation function of D respectively OX(D)(V0),
see also Definition 5.6.24.

monoid of OX -ideals the monoid of OX -ideals on X with neutral
element OX and the product of OX -ideals as
binary operation, see Definition 3.2.25.
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Notation Description

Picard group group of isomorphism classes of invertible
sheaves on a scheme X, see Definition 5.0.1.

pivot index the pivot index of a column v ∈ k[x]n×1 is the
row index of the lowermost non-zero entry in
LC(v), see Definition 4.4.10.

pole divisor of x see Definition 2.2.9.

Popov form a reduced matrix with further properties, see
Definition 4.4.10.

principal divisor a divisor defined by an element of KX(X)×;
an element in the image of H0 (X,K×X) →
H0 (X,K×X/O×X).

pullback of meromorphic functions along the morphism f : Y → X of schemes
is defined if the morphism f# : f−1OX →
OY sends elements of SX to SY , see Defini-
tion 3.1.3.

reduced basis a k[x]-basis v1, . . . , vn of F(V0) is reduced if
{xjvi | 1 ≤ i ≤ n, 0 ≤ j ≤ r + |F|i} forms
a k-basis of F(r(x)∞)(X) for all r ∈ Z, see
Theorem 4.3.15.

reduced matrix a matrix M ∈ k((x−1))n×n is reduced if it
satisfies the equivalent conditions of Defini-
tion 4.3.3.

restriction of OX -module the restriction of an OX -module F along a
morphism of schemes f : Y ↪→ X is defined
as F|Y = f∗F , see Definition 3.2.25.

restriction of divisors along the morphism f : Y ↪→ X of schemes is
defined if the morphism OX → f∗OY extends
to KX → f∗KY , see Definition 3.2.5.

schematically dense an open subset U ⊆ X is schematically dense
in X if it satisfies the equivalent conditions of
Lemma B.2.5, see also Definition 3.2.10.

separated a presheaf is separated if it satisfies the sepa-
ratedness condition (a) in Definition B.1.1.

sheafification the sheafification of a presheaf is defined in
Definition B.1.14.

skyscraper a sheaf is a skyscraper sheaf if it has finite
support.

support of a divisor the support of a divisor is defined as the sup-
port of it as a global section of K×X/O

×
X .
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Notation Description

support of a section the support of a section s of a presheaf F on
X is the set of points P ∈ X where the germ
sP is non-trivial (not equal to the neutral el-
ement).

support of a sheaf the support of a sheaf F on X is the set of
points where the stalk of F is non-zero.

torsion-free R-module an R-module M is torsion-free if the only
zero-divisor on M in R are zero-divisors of
R.

torsion-free OX -module a quasi-coherent sheaf F is torsion-free if for
every open affine U the OX(U)-module M is
torsion-free.

weak Popov form a reduced matrix with whose pivot indices are
distinct, see Definition 4.4.10.

weakly matching family a weakly matching family of a global section
of a presheaf F is a collection of sections of F
on an open cover which are pairwise equal on
a cover.

wedging element f ∈ R is a wedging element of M ⊆ Frac(R)
if fM ⊆ R holds.

zero relative to I f ∈ R has a zero at P ∈ Spec(R) relative to
I if f ∈ IP , see Definition 6.2.16.
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