
Coaction of Input Parameters and
Model Sensitivities in Numerical

Power System Modeling

Von der Fakultät für Mathematik und Naturwissenschaften der Carl

von Ossietzky Universität Oldenburg zur Erlangung des Grades eines

Doctor rerum naturalium

angenommene Dissertation

von Herrn Bruno Umberto Schyska

geboren am 19.10.1986 in Berlin



Gutachter: Prof. Dr. Joachim Peinke

Weiterer Gutachter: Prof. Dr. Alexander Hartmann

Tag der Disputation: 17.02.2021



To Ante, Beeke, Tue and Ove



Ich habe einen Kopf
und zwei Augen.

Ich kann seh’n, sprechen, denken und glauben.
Ich hab einen Namen und ein Gesicht.
Ich sag "Hallo, Hurra, hier bin ich".

[aus dem Lied "Hier bin ich" von Gisbert zu Knyphausen und Nils Koppruch]

Oldenburg, January 5, 2022
Bruno Umberto Schyska



Contents

1 Introduction 1

2 Basics of Power System Modeling 3
2.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Numerical Complexity of Power System Expansion Models . . . . . . . . 5
2.3 Duality and Locational Marginal Pricing . . . . . . . . . . . . . . . . . . . . 7
2.4 Data, Models and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Coacting Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Research Question 1 17
3.1 Aims and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Methodology and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Reference Site Selection: Spatio-Temporal Clustering . . . . . . . . 18
3.2.2 Upscaling and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Wind Power Generation Data . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Circulation Weather Types . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Cluster Centres and Reference Site Weights . . . . . . . . . . . . . . 23
3.3.2 Upscaling Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Benefit from Training for Weather Types . . . . . . . . . . . . . . . 26

3.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Research Question 2 29
4.1 Aims and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Power System Expansion Modelling . . . . . . . . . . . . . . . . . . 31
4.2.2 Locational Marginal Prices for Electricity . . . . . . . . . . . . . . . 32
4.2.3 Cost of Capital Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.4 Generation and Load Data . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Research Question 3 45
5.1 Aims and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Defining a misallocation metric . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.1 The Sensitivity to the Capital Cost of Generation Capacities . . . . . 48

iii



Contents

5.3.2 The Sensitivity to the Capacity Factor Time Series . . . . . . . . . . 49
5.3.3 The Sensitivity to Reduced Spatial and Temporal Resolution . . . . . 53

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6.1 Power System Model and Data . . . . . . . . . . . . . . . . . . . . 59
5.6.2 Reducing the Spatial and Temporal Resolution of PSEM . . . . . . . 60
5.6.3 Computing the misallocation metric . . . . . . . . . . . . . . . . . . 61

6 Extending Research Questions and Outlook 63
6.1 Correlation Lengths of Wind and Solar Power . . . . . . . . . . . . . . . . . 63
6.2 Tracing the Flow of Electricity . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Parametric Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Stochastic Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Summary and Conclusions 77

References 79

Appendix 89

iv



Nomenclature

Abbreviations

LCOE Levelized Cost of Electricity [e/ MWh]

Li-ion Lithium-Ion (battery)

LMPE Locational Marginal Prices of Electricity /MWh [e]

OCGT Open Cycle Gas Turbine

PSEM power system expansion model(s)

ROR runoff river

Decision Variables

f l nominal transmission capacity of transmission line l [MWkm]

gn,s nominal generation capacity of generation source s at bus n [MW]

fl ,t electricity transmission via transmission line l at time t [MWh]

gn,s,t electricity generation of resource s at bus n and time t [MW]

sn,t load shedding at bus n and time t [MWh]

socn,s,t state of charge of storage unit of category s at bus n [MWh]

Indices

l transmission line ∈ L

n bus ∈ N

s resource ∈ S

t time step

Parameters

Ḡ
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Chapter 1

Introduction

In order to address the issue of climate change and sustainability, countries around the world
make great efforts to transform their power systems. In this context, large shares of renewable
power sources need to be integrated into existing power systems [Pacala and Socolow, 2004].
This is a challenging task which requires a great number of political decisions and great
financial and technical efforts. It is mainly the intermittency of the renewable resources, i.e.
their weather-dependence, which causes difficulties for the operation of power systems and
electricity markets [Pinson et al., 2007, Morales et al., 2013]. Basically, it makes it more
difficult to ramp up electricity generation when the demand is high and to shut down plants
when the demand is low. Renewable power plants are only partially committable. The need
to account for the turbulent character of wind energy has for instance been stressed by Milan
et al. [2013]. Haehne et al. [2019] showed that non-Gaussian time-correlated fluctuations in
the renewable feed-in perturb electricity grids on a sub-second time scale and Pineda et al.
[2016] showed that errors in wind power forecasts even affect the optimal expansion of a
power system.
Solutions to cope with these issues proposed by research are manifold [Lund, 2007, Con-

nolly et al., 2010]. Some of them are relatively straight-forward as, for instance, the large-
scale integration of storage technologies [Steinke et al., 2013, Weitemeyer et al., 2016],
which can store electricity in times of over-generation and dispatch it during times of low
resource availability, the extension of the transmission grid [Rodriguez et al., 2014, Kies
et al., 2016e] in order to distribute generation over large geographical areas and to smooth
out fluctuations (see also Section 2.5), or the over-installation of renewable capacities to
reduce the need for backup energy [Heide et al., 2011]. Others focus on the meteorological
aspects and propose to use meteorological information to find the optimal spatial deployment
of generation capacities [Grams et al., 2017] or to optimise the mix of different renewable
generation sources [Ming et al., 2017, Jurasz and Ciapała, 2017, Santos-Alamillos et al.,
2015]. Focusing on the flexibility options on the demand-side, Kies et al. [2016f] found that
demand-side management can balance generation-side fluctuations for a renewable share of
up to 65% in Europe. Even more flexibilities could be used by coupling the different sectors
of the energy system, i.e. electricity, heat and transportation. The synergies between these
sectors have been investigated by Brown et al. [2018]. Lund and Kempton [2008] proved
the usefulness of vehicle-to-grid technologies for the integration of renewables. Hirth and
Müller [2016], Chattopadhyay et al. [2017] and Pfenninger et al. [2014] proposed to deploy
system-friendly generation assets which are able to deliver ancillary services. Accordingly,
this would ease the operation of power systems with high shares of renewables and, hence,
might support the integration of these new resources. A new market scheme which explicitly
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Chapter 1 Introduction

accounts for the uncertainty in renewable power forecasts has been proposed by Morales
et al. [2014].

All of these proposed solutions come with their own specific characteristics, their specific
advantages and weaknesses and at their own specific cost. Making a decision about which of
them is suited best and which should consequently be envisaged with priority is challenging.
Commonly, power system models are the method of choice to support this process of decision-
making. As power system models often are complex linear or mixed-integer programs, the
(optimal) solution of these programs depends on a great number of parameters from different
fields: economics, electrical engineering, meteorology and geography. The interplay of these
different aspects, the way they coact towards the optimisation function, is complex, the
sensitivity of power system models to this interplay and to different choices of the model
parameters not yet fully explored.

The aim of this thesis is the description of the complex coaction of the input parame-
ters in numerical power system models and the quantification of the power system models’
sensitivities on different choices of model parameters and model designs. In particular, I will
address the following research questions: (i) How is the relation between weather classes
and wind power production?, (ii) How do regional differences in cost of capital influence the
optimal design of power systems? and (iii) How large is the sensitivity of power system ex-
pansion models? I will show that (i) the availability of wind power can clearly be linked to the
prevailing weather situation, that (ii) there is a need to consider regional differences in the
cost of capital in defining the optimal design of a highly renewable European power system
and that (iii) power system models are especially sensitive to the choice of the underlying
weather data and the temporal resolution. In Section 6, more examples for the concept of
parameter coaction will be given by investigating the correlation length in wind and solar
power, the potential use of a flow tracing algorithm to allocate cost for grid expansion, the
possible evaluation of forecast skill via a stochastic dispatch model and the use of parametric
optimisation for reducing the model complexity.
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Chapter 2

Basics of Power System Modeling

2.1 Mathematical Formulation

Throughout this thesis, a common formulation of a power system expansion model (PSEM)
will be used. It has the aim to find the least expensive design of a power system given
the constraint that the CO2 emissions from power plants may not exceed an upper limit.
In the formulation used here, it consists of two parts (compare Section 2.2): While the
first part minimises the investment cost in generation, storage and transmission capacities
keeping all capacities within given bounds, the second part minimises the operational cost
of the power system ensuring the security of supply and keeping the generation lower or
equal the capacities derived from the upper level. For volatile renewable resources – such as
wind and solar PV – the available dispatchable capacity is additionally limited by prevailing
meteorological conditions, i.e. the capacity factor time series. Furthermore, the consistency
of the state of charge of storage units must be ensured.
Mathematically, the expansion problem can be formulated as a linear problem: Let us

consider a power system described by a set of buses N . Assume that these buses n ∈ N
are connected by lines denoted with the index l ∈ L. Each bus is assigned with an inelastic
electricity demand (or load) time series Dn,t . This load can be served by electricity generation
from a set of generators and storage units installed at the respective bus Sn. The generation
itself may be connected with costs, the operational (or marginal) costs of the generator or
storage On,s as well as CO2 emissions En,s . Note that we assume time-independent marginal
costs here. Furthermore, the generation is limited by the installed nominal power of the
generator or storage gn,s and by the availability of the power source, which may vary in
time G̃n,s,t . For variable renewable sources G̃n,s,t given in units of the nominal power gn,s is
determined by the meteorological conditions, while for conventional generation technologies
and storage units G̃n,s,t is either constant or reflects downtimes due to maintenance and/or
fuel shortages. Furthermore, we assume that the nominal power can be expanded. The
related investment costs are denoted with Cn,s .
In order to be able to serve the electricity demand, the electricity must be distributed

between the buses, where it is generated, and the buses, where it is consumed. The task of
distributing electricity is accomplished by transmission lines. Similar to the generators, the
lines are assigned with a nominal capacity f l and investment costs Cl . Let us assume that
transmitting electricity is not related to any marginal costs. Denote the flow along line l with
fl ,t .
Beyond the supply of electricity, storage units additionally fulfill the task of balancing

temporal fluctuations in the availability of power by providing storage capacity expressed as
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Chapter 2 Basics of Power System Modeling

multiples of their nominal power. The factor has the unit of hours and can be interpreted
as the number of hours the storage can supply electricity at full power. It is denoted with
Rn,s . In contrast to generators, storage units cannot only supply electricity but also take
energy up. gn,s,t can also be negative. Each of these processes, i.e. storage dispatch dn,s,t
and storage uptake un,s,t , occur with a certain efficiency ηdispatchn,s and ηstoren,s respectively.
Additionally, there may be storage units exhibiting a natural inflow, e.g. hydro reservoir
storage, inf lown,s,t . Part of this inflow may also be spilled, which is described by the variable
spi l ln,s,t . All these variables are related by the state of charge, i.e. the amount of energy
stored, socn,s,t .

Following these assumptions, the problem of minimising total system costs can mathe-
matically be formulated as a linear optimisation problem of the following form

min
gn,s ,gn,s,t ,f l ,za

[∑
n

∑
s

(
Cn,sgn,s +

∑
t

WtOn,sgn,s,t

)
+
∑
l

Cl f l

]
(2.1)

Equation 2.1 reflects a rather simplified version of a power system expansion problem. It
does not include binary variables originating from the consideration of unit commitment or of
minimum/maximum down and up times for power generators (for instance). In this setup, the
nominal power of generators and transmission lines gn,s , f l and the electricity dispatch gn,s,t
are decision variables. za are auxiliary variables used to define the load flow. The network
topology described by the incidence matrix K, electricity demand Dn,t and availability G̃n,s,t
enter as parameters (or exogenous data). Wt are optional snapshot weightings. Throughout
this thesis only power system expansion problems of the same form as 2.1 will be considered.

The objective is subject to the following constraints:

1. At each bus n and at each time step t generation and exports must match the demand
(nodal balancing): ∑

s

gn,s,t −
∑
l

Knl fl ,t = Dn,t ,∀n, t (2.2)

2. Generation may not exceed the available nominal power

gn,s,t − G̃n,s,t · gn,s ≤ 0 (2.3)

3. The state of charge of the network’s storage units is given by

socn,s,t = (1− ηstandn,s )Wt socn,s,t−1 −Wt(1/ηdispatchn,s dn,s,t − ηstoreun,s,t−
inf lown,s,t + spi l ln,s,t)

(2.4)

Here,ηstandn,s describes the standing losses. In many cases an additional periodicity
constraint is formulated, which fixes the state of charge at the first time step to the
state of charge at the last time step, i.e.

socn,s,t=0 = socn,s,t=|T | (2.5)

where T is the set of time steps.
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2.2 The Numerical Complexity of Power System Expansion Models

4. Global constraints:

• limit overall CO2 emissions∑
n,s,t

1

εn,s
En,sgn,s,t ≤ CAPCO2

(2.6)

• limit overall transmission capacity∑
l

Ll f l ≤ CAPtrans (2.7)

where Ll denotes the line length.

5. variable bounds

0 ≤gn,s,t (2.8)

G
min
n,s ≤gn,s ≤ G

max
n,s (2.9)

F
min
l ≤f l ≤ F

max
l (2.10)

0 ≤dn,s,t ≤ gn,s (2.11)

0 ≤un,s,t ≤ gn,s (2.12)

0 ≤socn,s,t ≤ rn,sgn,s (2.13)

0 ≤|fl ,t | ≤ f l (2.14)

6. The flow of electricity, i.e. active power, along any line can be expressed as a function
of the net active power pn and some auxiliary variables za [Hörsch et al., 2018b]:

fl = fl(pn, za) (2.15)

Note, that the choice of this function can significantly impact the computational cost
for solving the optimisation problem. See the Appendix for a detailed description of
load flow calculations.

This formulation is similar to the formulation of e.g. Brown et al. [2018], Schlachtberger
et al. [2017], Schlott et al. [2018].

2.2 The Numerical Complexity of Power System Expansion
Models

Beyond the objective function itself, the complexity of power system expansion problems and
consequently the computational burden to solve them is mainly determined by the following
factors: (i) the number of decision variables, (ii) the number of constraints (iii) the type of
the decision variables, (iv) the number of parameter values to be stored in memory, (v) the
sparsity or density of the constraint matrix an (vi) the shape of the solution space close to
the optimum (e.g. Hörsch et al. [2018b]). Obviously (i), (ii) and (iv) are not independent.
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Chapter 2 Basics of Power System Modeling

When the number of decision variables increases, usually also the number of constraints and
parameter values increases. (i), (ii) and (iii) set the requirements for the numerical solver
algorithm applied to solve the expansion problem. Different algorithms need to be applied
depending on whether the problem is purely continuous or whether it includes binary or integer
variables for instance. The number of parameter values, however, mainly defines the storage
requirements, which in many cases might be the limiting factor.

In our case, the linear program 2.1 (plus constraints) can be considered as a bilevel optimi-
sation problem [Conejo et al., 2016]. The upper level is the investment problem of a fictitious
system planner, who needs to decide about his investments in generation and transmission
facilities. The system planner bases his decision upon the lower level problem. This lower level
represents the market clearing aiming on maximizing social welfare. As such it determines
the price at which electricity is sold and consequently the profit of the generation facilities.
Mathematically, the upper level is constrained by (i) the upper level constraints 2.7, 2.9, 2.10
and a row of lower-level problems, one for each time-step t, each being represented by an
optimisation problem with corresponding constraints itself. The upper level cannot be solved
without having solved the lower level.

Additional complexity comes from the appearance of so called complicating variables [ibid.].
These complicating variables prevent the lower level problems to be solvable independently
from the upper level. In our case, the complicating variables are the generation and trans-
mission capacities gn,s , f l , i.e. the decision variables of the upper level. Without knowing
the capacities, the market cannot be cleared. This becomes clear when looking at the com-
plicating constraints 2.3 through 2.15. These constraints link the lower lever variables to the
decision variables of the upper level. Note, that without the complicating variables and the
corresponding complicated constraints the lower level problems could be solved independently
from the investment decision, i.e. the upper level.

In general, two types of solution approaches exist for this kind of bilevel optimisation
problems [Conejo et al., 2016]:

1. direct solution: all variables, constraints and parameters are constructed and solved at
once by applying a solution algorithm for linear problems (e.g. the simplex algorithm
or the interior-point algortihm [Boyd and Vandenberghe, 2004a]).

2. approaches based on decomposition techniques: decompose the upper and lower level
in order to be able to solve the lower level independently from the upper level (e.g.
Benders’ decomposition [ibid.])

While the second approach usually increases the computation time, because the global solu-
tion is calculated in an iterative manner, the direct solution usually requires more memory.
For this thesis, I will only apply the direct solution approach. But since I am using a com-
mercial solver, decomposition techniques may still be used under the hood. Most simulations
were performed with the open-source software toolbox Python for Power System Analysis
(PyPSA) [Brown et al., 2017] and the commercial solver Gurobi on the high performance
cluster facilities of the University of Oldenburg and the DLR Institute of Networked Energy
Systems.
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2.3 Duality and Locational Marginal Pricing

The power system expansion problem described above can be considered as a linear program-
ming problem of the following general form:

Min
x

f (x) (2.16)

s.t. h(x) = 0 (2.17)

g(x) ≤ 0 (2.18)

with f (x) = cT x being the linear cost function, h(x) representing the equality constraints for
the nodal balancing and the state-of-charge and g(x) representing the inequality constraints
including the complicating constraints (2.3). From (2.16) - (2.18) the corresponding La-
grangian can be derived as:

L(x, λ, µ) = f (x) + λT h(x) + µT g(x) (2.19)

As shown in Boyd and Vandenberghe [2004b], the infimum of (2.19)

d(λ, µ) = inf
x
L(x, λ, µ) (2.20)

defines a lower bound to the optimal solution of the optimisation problem (2.16) - (2.18)
depending on the two parameters λ and µ. Consequently, an optimisation problem can
be defined aiming at finding the best – meaning maximum – lower bound of the original
optimisation problem [ibid.]. This optimisation problem is called the dual, d(µ, λ) the dual
function and the original optimisation problem (2.16) - (2.18) the primal.

Here, I show that in the context of power system expansion problems – more precisely
in the context of market clearing problems – the λ∗ corresponding to the nodal balancing
(Equation 2.2) can be interpreted as locational marginal prices of electricity and that linear
power system expansion problems represent an efficient cost-allocation mechanism. Let us
for now neglect any global constraints and any constraints effecting the state of charge of
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Chapter 2 Basics of Power System Modeling

storage devices in our power system expansion problem. Then, the Lagrangian reads:

L =
∑
n

∑
s

(
Cn,sgn,s +

∑
t

WtOn,sgn,s,t

)
+
∑
l

Cl f l+

λn,t

(∑
s

gn,s,t −Dn,t −
∑
l

Kn,l fl ,t

)
+

µ1

(
gn,s,t − G̃n,s,t ḡn,s

)
−

µ2gn,s,t+

µ3(ḡn,s − Ḡminn,s )+

µ4(Ḡminn,s − ḡn,s)+

µ5(f̄l − F̄minl )+

µ6(F̄minl − f̄l)+

µ7(fl ,t − f̄l)−
µ8(fl ,t − f̄l)

(2.21)

Applying the necessary conditions for optimality, namely primal feasibility

h(x∗) = Dn,t −
∑
s

g∗n,s,t −
∑
l

Kn,l f
∗
l ,t = 0 ,∀n, t (2.22)

complementary slackness
µT g(x∗) = 0 (2.23)

and the Karush-Kuhn-Tucker conditions for stationarity

∇f (x∗) + λ∇h(x∗) + µ∇g(x∗) = 0 (2.24)

(see Boyd and Vandenberghe [2004b]) we finally find:

∑
n,s

(
Cn,sg

∗
n,s +

∑
t

WtOn,sg
∗
n,s,t

)
+
∑
l

Cl f
∗
l =

∑
n,s

λ∗n,tg
∗
n,s,t +

∑
l ,n,t

λ∗n,tKn,l f
∗
l ,t

=
∑
n,t

λ∗n,tDn,t

(2.25)

All terms related to the inequality constraints vanish. From (2.25) several things can be
observed. First, λ gives the change in the objective function value of the primal with a
marginal increase in the right hand side of the corresponding constraint, here the demand
D in the nodal balancing equation [Bazaraa et al., 2013]. If D increases by D′, the overall
cost increase by λD′. This fact is used to define so called cuts in the context of Benders
Decomposition. These cuts iteratively define additional constraints to the upper level of the
original problem, iteratively narrowing the solution space until the optimal solution is found
[Conejo et al., 2016].

Second, λ has the unit of cost or of a price: e per MWh. It represents a so-called shadow
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2.3 Duality and Locational Marginal Pricing

price, which in the context of power markets commonly is referred to as locational marginal
price of electricity (LMPE). If consumers at node n pay this price λn,t for the electricity they
consume, each electricity provider at the same node receives λn,tgn,t and each transmission
operator of a line l connected to n receives λn,tKn,l fl ,t . Then, in summary over the whole
time period considered each electricity provider and transmission operator exactly receives
her cost. This is the economical equilibrium, commonly understood as welfare maximization.
Let us now additionally consider the global constraints (2.6) and (2.7). If these two con-

straints are binding, adding them to the optimisation program would lead to an increase in the
optimal objective function value. They would force the system to expand capacities, which
would not have been built in the ’pure’ economic case. (2.6) and (2.7) can be considered
normative constraints. Let us relate µCO2

to (2.6) and µtrans to (2.7) and perform the same
analysis as above. We find two additional terms added to the right-hand side of (2.25):∑

n,s

(Cn,sg
∗
n,s+

∑
t

wtOn,sg
∗
n,s,t) +

∑
l

Cl f
∗
l =

∑
n,t

λ∗n,tDn,t + µ∗CO2

∑
n,s,t

1

εn,s
En,sg

∗
n,s,t + µ∗trans

∑
l

Ll f̄
∗
l

(2.26)

Note, that µCO2
and µtrans are lower equal zero. Increasing the corresponding right-hand

sides relaxes the corresponding constraints and consequently potentially reduces costs. Fur-
thermore, dual variables are only non-zero when the corresponding constraint is binding,
meaning when the limit defined by the constraint is met (see complementary slackness,
Equation (2.23)):

µCO2

{
= 0, if

∑
n,s,t

1
εn,s
En,sgn,s,t < CAPCO2

< 0, if
∑
n,s,t

1
εn,s
En,sgn,s,t = CAPCO2

(2.27)

→ µCO2

∑
n,s,t

1

εn,s
En,sgn,s,t = µCO2

CAPCO2
(2.28)

(µtrans analogue). Hence, (2.26) can be reformulated to:∑
n,s

(Cn,sg
∗
n,s+

∑
t

wtOn,sg
∗
n,s,t) +

∑
l

Cl f
∗
l +

|µ∗CO2
|CAPCO2

+ |µ∗trans |CAPtrans =
∑
n,t

λ∗n,tDn,t
(2.29)

Consequently, invoking global constraints implicitly increases the LMPE and it is again the
consumers, who compensate the additional costs originating from manually pushing the sys-
tem away from its economical optimum. It is also noteworthy, that invoking the global CO2

constraint allows to derive a price for CO2 (µCO2
), which must be chosen in order to achieve

a power system design, which only emits as much CO2 as the constraint allows.
Note, that the LMPE vary in space and time. Consequently, they potentially provide

incentives to either shift the demand in time (from expensive to cheaper times) or to make
investments at places where the price is comparably high. They are used in some deregulated
markets especially in the United States, Singapore and New Zealand. In Section 4, I will use
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Chapter 2 Basics of Power System Modeling

the concept of LMPE to investigate the impact of regional differences in the cost of capital
on the optimal power system design. Furthermore, an alternative cost-allocation mechanism
based on tracing the flow of electricity will be introduced in Section 6.2.

2.4 Data, Models and Software

Technology investment
(e/kW)

fixed O&M
(e/kW/a)

marginal
(e/MWh)

lifetime (a)

onshore wind 1182 35 0.015a 25
offshore wind 2506 80 0.02a 25
solar PV 600 25 0.01a 25
OCGT 400 15 58.4b 30
run-of-river 3000 60 0 80
hydrogen storagec 1966d 9.2 0 20
central batteryc 1178d 9.3 0 20
hydro reservoir 2000 20 0 80
transmission 400 e/MWkm 2% 0 40

Table 2.1: Overview of technologies and associated overnight costs.

Throughout this thesis, a comparably simple setup of a Pan-European power system will
be used. For each grid model, five different generation sources are considered: onshore wind,
offshore wind, solar photovoltaics (PV), open cycle gas turbines (OCGT) and run-of-river
(ROR). Electricity generated from these sources can be distributed between nodes via trans-
mission lines and/or idealized high-voltage transmission links (please refer to the appendix
for a description of the load flow calculations) and stored in hydrogen (H2) and central Li-
ion battery storage units. Furthermore, hydro reservoir storage units are considered. These
units provide electricity from natural water inflow into their reservoirs. They cannot actively
take up electricity from the network. Hydro reservoir storage as well as ROR power plants
can only be deployed at buses where capacity exists today and only up to a certain multiple
of today’s capacity (see Figure 2.1) in order to take care of environmental, political and/or
societal acceptance issues.

Each generation and storage technology is characterized by a set of associated annualized
costs for investment in power and/or energy and for operation and maintenance (O&M),
by marginal costs, lifetime, efficiency, power-to-energy ratio rn,s and CO2 emissions. All
assumptions with respect to these quantities are summarized in tables 2.1 and 2.2. Except
for Section 4, overnight investment costs were converted to net present costs using a discount
rate of 7% over the entire lifetime. All costs assumption besides the one for H2 and battery
storage units are estimates for 2030 taken from Schröder et al. [2013].

aChoosing small marginal costs for these resources allows to determine the order of curtailment.
bIncluding fuel costs of 21.6 e/MWh.
cCosts for storage units were taken from Budischak et al. [2013].
dFor storage units, investment costs for energy storage are assumed to be included in the investment
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2.4 Data, Models and Software

Technology efficiency
(fraction)

CO2 emissions
(t/MWh)

rn,s (h)

onshore wind 1 0
offshore wind 1 0
solar PV 1 0
OCGT 0.39 0.19
run-of-river 0.9 0
hydrogen storage 0.75 · 0.58 0 168
central battery 0.9 · 0.9 0 6
hydro reservoir 0.9 0 fixed
transmission 1 0

Table 2.2: Overview of technologies and their specifications.
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Figure 2.1: Storage size of hydro reservoir storage units in hours at full nominal power; taken
from Kies et al. [2016c]; The dashed lines mark the median.

The main difference between the three storage technologies is their ability to store energy
over different time horizons. For this thesis, battery storage units are considered as intra-
day storage. They are able to store energy equivalent to six hours at full nominal power
(rn,s = 6 hours for s=Li-ion). Main purpose of these storage units is, for example, to
store excess energy from solar PV generated during the day for the evening demand peak.
Hydrogen storage units exhibit a much bigger energy storage (rn,s = 168 hours for s=H2).
Consequently they are, for instance, able to shift energy from one week to another. The
energy storage size of hydro reservoirs storage units are computed from the size of existing
dams by Kies et al. [2016b]. Hence, rn,s for s=hydro varies between nodes (see Figure 2.1)
with a median rn,s of roughly 1600 hours. Because of this large energy storage and the
typical seasonal cycle of the water inflow, hydro storage units play a rather extraordinary role
within the power system compared to battery and hydrogen storage units.

costs for power.
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Chapter 2 Basics of Power System Modeling

2.5 Coacting Parameters

As described above, power system expansion models depend on economical, (electro-)technical
and meteorological parameters. It is the coactions of all these different aspects which deter-
mines the optimal design and operation of the power system (see also Section 5). Important
parameter features are, for instance, the co-relation of the different volatile resources and the
demand, the system’s ability to store and distribute electricity and the technology-specific
cost. With increasing shares of renewables the dependency of the power system design on
the specific characteristics of the renewable resources increases as well [Bloomfield et al.,
2018]. Jensen and Greiner [2014] and Schill [2020], for instance, found a phase transition in
the need for and use of storage devices at a renewable share of 100%. Kies et al. [2016f]
found that demand-side flexibility options can balance fluctuations in the residual load up to
a renewable share of 67% and that the presence of these flexibility options significantly in-
creases the optimal share of solar power in a highly renewable European power system (from
19 to 36%). Tranberg et al. [2018] investigated the interplay of the generation sources and
different storage technologies based on tracing the flow of electricity. They found, that solar
power mainly interacts with short-term storage devices, such as batteries, while wind power
rather interacts with hydrogen cavern storage. The reason for this is quite simple: Solar
irradiance exhibits a pronounced diurnal cycle. Compared to this, the variability on a weekly
scale is small. Furthermore, solar power shows a comparably high co-occurrence with the
demand. Let us investigate this with the concept of residual load duration curves [Ueckerdt
et al., 2015]. Figure 2.2 shows the residual load duration curves for solar PV, wind power and
a combination of the two resources for Oldenburg in 2019 in hourly resolution. Electricity
generation was scaled to meet the annual electricity demand. For PV, there is a comparably
high share of hours with relatively little residual load (see Figure 2.2 center). This decreases
the need to store large amounts of electricity over longer time spans. However, this effect is
superimposed by variations on the seasonal scale. The seasonal cycle in solar power is anti-
correlated with the seasonal cycle in the demand (at least in Germany): While the demand
is highest during the winter season, solar power exhibits its highest potential during summer.
This is expressed in a small number of hours of negative residual load during winter and
many hours of relatively strong negative residual load during summer. Wind speed, however,
does not exhibit any clear diurnal cycle. Hence, variations on the weekly scale explain a
higher ratio of the variability. This is expressed on a higher number of hours with relatively
high residual load compared to PV (Figure 2.2 top). Furthermore, wind power shows less
pronounced differences between the four seasons. There is an increased number of hours of
negative residual load during winter compared to the summer season, but this effect is small
compared to the seasonal differences in the residual load duration curves for PV. On the
positive side of the duration curve, this effect is even smaller. This is caused by a positive
correlation of the seasonal cycles of wind power and the electricity demand. The winter
months in Germany are potentially windier but also darker and colder. The first increases
the potential generation from wind power, the second increases the demand for electricity.

The described differences in PV and wind power adumbrate that a combination of both
resources might cancel out some of the specific weaknesses and thus might be beneficial from
a power system’s perspective. This is the background for studies investigating the optimal
mix of different generation resources (e.g. Heide et al. [2010], Kies et al. [2016d]). In fact,
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Figure 2.2: Exemplary, synthetic residual load duration curve for Oldenburg 2019 for 100%
electricity from wind (top), PV (center) and from a generation mix (bottom);
the PV share is given in the legend of the lower figure; renewable feed-in is scaled
to meet demand; standard load profile for households.
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this optimal mix can be derived from power system expansion models. Hence, it depends on
all the different parameters mentioned earlier. For Oldenburg, we find, that a combination
of both resources (wind + PV) flattens the residual load duration curve (Figure 2.2 bottom),
especially at the extremes at both sides of the duration curve and for relatively little shares
of PV compared to wind power.

A similar effect can be observed when generation is accumulated over large geographical
areas. Suppose there is only little solar irradiance in Oldenburg due to a thick cloud cover,
there might still be bright sunshine a bit further South, say in Burgholzhausen, a village
325 km almost exactly South of Oldenburg (and vice versa). Consequently, one might use this
statistical independence of the resources at the two locations by adding both generation time
series. This would cancel out part of the variability of the single time series and potentially
help to reduce the residual load. This effect is commonly referred to as spatial smoothing
[Liu et al., 2014, Miettinen et al., 2014, Marrone et al., 2008]. Of course, the statistical
dependence of the resources at two different locations, i.e. their correlation, is a function of
the distance between the two locations. The point (distance) of statistical independence is
called the correlation length. For Europe, the correlation lengths for wind and solar power
can amount up to several hundreds of kilometers [Martin et al., 2015, Schlott et al., 2018].
Hence, generation assets from volatile renewable resources would optimally be deployed as
far away from each other as possible, e.g. by spanning an inter-continental transmission grid
[Krutova et al., 2017]. This of course would require huge transmission capacities between all
locations and a lot of space at the generation sites for the erection of sufficient generation
capacity to meet large parts of the demand of a whole power system. While building these
huge transmission capacities might be economically, technically and politically infeasible, the
space for power plants is mainly limited by land use restrictions expressed in Ḡmax (see Section
2.1). We just found another complex coaction of model parameters implicitly included in
power system expansion models with high shares of renewables. I will further elaborate on
the importance of the spatial extend and the spatial resolution for power system optimisation
in Section 6.1.

Here, let us investigate the spatial smoothing effect by considering the residual load
duration curve for the aggregated generation from wind and PV at (i) Oldenburg and
Burgholzhausen and (ii) Oldenburg and Almería in Spain approximately 2000 km South-
West of Oldenburg for a PV share of 25% in Oldenburg and Burgholzhausen (Bgh 0.25)
and 75% in Almería (Al 0.25). Indeed, the spatial smoothing acts as the mixing: We can
observe an additional flattening of the load duration curve (Figure 2.3). This flattening is
more pronounced for Almería and even more pronounced, when the generation comprises
half from solar PV in Almería and half from wind power in Oldenburg (Al opt). In a similar
manner, we could, for instance, investigate the effect of sector coupling, storage units and/or
demand-side flexibilities.

Of course, the optimal mix and the spatial smoothing are no independent effects. Indeed,
the ability to smooth variability strongly affects the optimal mix. And the ability to smooth
variability is as much determined by meteorology as it is determined by the available storage
and backup technologies. Nevertheless, there is an obvious need to represent meteorologi-
cal variability as accurate as possible in power system models – including the variability on
seasonal to climatic time scales [Bloomfield et al., 2016]. This rises the issue of numerical
complexity and tractability, since the number of decision variables and constraints increases
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Figure 2.3: Exemplary, synthetic residual load duration curve combined for Olden-
burg+Burgholzhausen or Oldenburg+Almería 2019; renewable feed-in is scaled
to meet demand; standard load profile for households.

with the length of the parameter time series (compare Sections 2.2 and 5.6.2). The sensitivity
of power system expansion models on different representations of the weather (expressed in
the availability parameter G̃n,s,t) along with the sensitivities on cost assumptions and model
resolutions is the subject of Section 5. The relation between different prevailing weather
situations and the continent-wide wind power production will be considered in Section 3.
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Chapter 3

Research Question 1: How is the relation
between weather classes and wind power
production

This chapter has been published as:
Schyska, Bruno U., Couto, António, von Bremen, Lüder, Estanqueiro, Ana and Heinemann,
Detlev (2017): Weather dependent estimation of continent-wide wind power generation

based on spatio-temporal clustering, Advances in science and research, 14, doi:
10.5194/asr-14-131-2017

Europe is facing the challenge of increasing shares of energy from variable renewable

sources. Furthermore, it is heading towards a fully integrated electricity market, i.e. a
Europe-wide electricity system. The stable operation of this large-scale renewable power
system requires detailed information on the amount of electricity being transmitted now and
in the future. To estimate the actual amount of electricity, upscaling algorithms are applied.
Those algorithms – until now – however, only exist for smaller regions (e.g. transmission
zones and single wind farms). The aim of this study is to introduce a new approach to
estimate Europe-wide wind power generation based on spatio-temporal clustering. We fur-
thermore show that training the upscaling model for different prevailing weather situations
allows to further reduce the number of reference sites without losing accuracy.

3.1 Aims and Motivation

A fully integrated European energy market is one of the priority policy areas of the European
Commission [e.g. European Commission, accessed 2016-09-22]. Transmission system op-
erators use estimates of the energy production from variable renewable sources within their
transmission zones already today. Besides technical aspects, such as the reinforcement of the
transmission grid [e.g. Becker et al., 2014, Kies et al., 2016d], also the upscaling algorithms
behind these renewable power estimates need to be revised when trading zones are extended
– in particular for increasing shares of renewables. In fact, the large-scale integration of vari-
able renewable energy sources (VRES) – such as wind power – introduces additional factors
of uncertainty. This uncertainty poses new challenges to the power system operator since it
is necessary to keep the balance between production and consumption at every moment, in
order to ensure the stability of the power system [Holttinen et al., 2011, Perez-Arriaga and

17
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Batlle, 2012, Estanqueiro, 2008]. In this sense, it is crucial to know the actual and future
generation from the VRES within the system. While the future generation is subject of fore-
casting technologies, this work focuses on the introduction of an upscaling methodology to
estimate the Europe-wide actual wind power generation based on spatio-temporal clustering
[S. Kisilevich and Rinzivillo, 2010, e.g.]. With the application of upscaling methodologies on
the European scale additional potential benefits are expected: Aggregating wind parks with
a wide geographical dispersion, for instance, is an effective way to reduce the short term
variability and forecast errors by taking advantage of the statistical smoothing effect [Liu
et al., 2014, Miettinen et al., 2014, Marrone et al., 2008].

In the current literature, several upscaling approaches can be found: In Ishihara et al. [2007]
a typical upscaling function using a bi-exponential function to estimate the cross-correlation
is proposed. Pinson et al. [2003] performed a benchmarking of different approaches based on
dynamic fuzzy neural networks. In Lobo and Sanchez [2012] the upscaling technique is based
on smoothing techniques to construct the predictions of the aggregated wind generation from
historical wind speed predictions and the associated wind generation measurements. Recently,
Li et al. [2015] proposed a probabilistic approach showing that this type of methodology can
provide competitive interval forecasts when compared to conventional statistical approaches.
However, all of the upscaling methodologies described above are usually applied to a set of
wind parks, and not to the European scale.

As wind is a meteorological quantity, weather conditions may have a strong impact on
the wind power variability as well as on the uncertainty of its forecasts [Giebel et al., 2011,
Ernst et al., 2007]. Lange and Heinemann [2003] for instance show that the presence of
cyclonic systems with strong dynamics – such as cold fronts – can be related to larger errors
in the forecast when compared with prevailing weather conditions associated with stationary
systems such as anticyclonic systems. A similar methodology was also applied to several wind
parks in Portugal demonstrating the weather dependency of the wind power forecast errors
[Trancoso, 2012]. Vincent [2010] shows that strong wind variability can be associated with
certain weather patterns and Couto et al. [2014] show a strong impact of weather regimes on
wind power ramps in Portugal. Consequently, taking into account the underlying role of the
synoptic weather patterns could be an important step towards reliable upscaling algorithms.

The objective of this work is to introduce a new upscaling approach for Europe-wide wind
power generation based on spatio-temporal clustering (section 3.2.1). The upscaling model
will be trained and evaluated for different circulation weather types (CWTs, section 3.2.2)
using a set of Europe-wide wind power generation data (section 3.2.3). The training for
specific CWTs will be compared to the training over all time steps in the training period
in order to investigate its weather dependency and the potential benefit from the weather
dependent training (section 3.3). Conclusions will be drawn in section 3.4.

3.2 Methodology and Data

3.2.1 Reference Site Selection: Spatio-Temporal Clustering

Focus of this work is the presentation of a reference site selection scheme based on spatio-
temporal clustering. In order to derive a finite set of reference sites to upscale the generation
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h

.......

h = τ

r1 r2 ... rk-1 rkΩ0

Figure 3.1: Schematic dendrogram for illustration of steps 4 and 5 of the spatio-temporal
clustering approach.

of wind power across Europe at a certain point of time the following procedure is applied:

1. Cluster the locations of wind farms (latitude/longitude coordinates) into N (geograph-
ical) clusters via the kmeans algorithm [MacQueen et al., 1967].

2. For each of the N geographical clusters, select the site with the highest wind power
capacity. Obtain the set Ωgeo with size |Ωgeo | = N.

3. Compute pairwise (temporal) correlations %(ri , rj) = %
(
p(ri , t), p(rj , t)

)
∀ ri , rj ∈ Ωgeo

of the historical generation time series p(ri , t) at the N sites ri , i = 1, . . . N selected
in the previous step.

4. Use the correlation information to apply a hierarchical clustering [e.g. Rockach, 2010]
with the distance between sites ri and rj being defined as d(ri , rj) = 1− |%i j |.

5. Cut the dendrogram obtained from the hierarchical (temporal) clustering at height
h = τ . Yield k = k(τ) ≤ N clusters. Here, τ is the distance between two clusters.
For each cluster, again, select the site with the highest wind power capacity as cluster
centres to obtain the final set of k reference sites Ω0. This step is illustrated in Figure
3.1.

Note that if the average group linkage method is used to agglomerate clusters, τ can be
interpreted as 1 minus the average intra-cluster correlation. In other words, the final set of
reference sites can be determined by choosing the average intra-cluster correlation:

D(A,B) :=
1

(|A|+ |B|)(|A|+ |B| − 1)

∑
x,y∈A∪B

d(x, y)

=
1

(|A|+ |B|)(|A|+ |B| − 1)

∑
x,y∈A∪B

(1− %(x, y))

= 1− %C

(3.1)
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Figure 3.2: Modelled spatial distribution of rated wind power capacity across Europe.

Figure 3.3: Locations of the 16 points used for the circulation weather type identification.

For two clusters (sets) A and B and C = A ∪ B, i.e. the cluster resulting from the
union of set A and set B. Choosing the average intra-cluster correlation as key-parameter
to determine the reference sites allows to further investigate the behavior of the clustering
approach from a physical-meteorological perspective. This is the major advantage of the
proposed methodology compared to, for instance, st-DBSCAN [Birant and Kut, 2007], which
does not allow for using different distance measures than the euclidean distance.

3.2.2 Upscaling and Evaluation

The upscaling estimate itself for time t = t ′ is computed as a weighted sum of the generation
measured at the reference sites:

E(t = t ′) =
∑
ri∈Ω0

w(ri)p(ri , t = t ′) (3.2)

Where the weights wi are computed from a multiple linear regression of the generation
at the k reference sites rk ∈ Ω0 on the total Europe-wide generation performed over a
pre-chosen training period. Note, that in general the wi may vary in dependency of τ and N.
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3.2 Methodology and Data

For this study, the upscaling estimate derived from equation 3.2 will be evaluated based
on the Pearson correlation and the root mean square error (RMSE) between the upscaling
estimate E(t) and the reference time series for a testing period. Here, the sum of all grid
cells of the wind power generation data (section 3.2.3) is used as reference. RMSE values
have been normalized to the average hourly wind power production.
In order to investigate the dependency from the prevailing weather situation and the even-

tual benefit from training the model for specific weather situations, both training and testing
will be performed for the nine most common circulation weather types in Europe (see section
3.2.4).
We use five years (2008 - 2012) for training and one year (2013) for testing.

3.2.3 Wind Power Generation Data

all , h = 0.2 , k = 97
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SW , h = 0.2 , k = 88
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Figure 3.4: Location of the cluster centres and the weights assigned to them by the linear
regression (size scale) for %C = 0.8 (=̂τ = 0.2) and training over all time steps
(left) and over the time steps with prevailing CWT SW (right).

The upscaling methodology introduced above is tested for a data set of modeled hourly
onshore wind power generation across Europe. This data bases on two data sets: COSMO-
EU analysis data provided by the German Weather Service [Doms and Baldauf, 2011] used for
the statistical downscaling of MERRA reanalysis data provided by the National Aeronautics
and Space Administration of the United States [Bosilovich et al., 2008]. MERRA was used
to capture a longer period of time.
The spatial distribution of rated wind power across Europe is modeled as a function of

the average (computed over the period considered) wind speed for each location (grid cell)
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Chapter 3 Research Question 1

in Europe. The relation between wind speed and rated power is estimated based on the
available data of deployed wind power capacity in Germany. Since this relation is not very
distinct, artificial noise has additionally been added:

y(r) = aw(r) + b + ε (3.3)

Here, y(r) is the rated wind power at location r , w(r) is the average wind speed at the same
location, a and b are coefficient and intercept fitted from the available data and ε is artificial
Gaussian noise with zero mean.

The spatial distribution is shown in Figure 3.2. Note, that it does not – and is not meant
to – represent the real spatial distribution. Furthermore, offshore locations are not included.

Wind speed is converted to wind power by applying the regional power curve model for the
largest German transmission zone developed by Späth et al. [2015]. The procedure described
here is similar to the one used by Kies et al. [2016e]. For this study, the years 2008 - 2013
are considered.

3.2.4 Circulation Weather Types

Classification of atmospheric circulation into distinct states is a widely used tool for describ-
ing and examining weather patterns and their impact on meteorological phenomena, e.g.,
rainfall [Philipp et al., 2010]. In the literature, several methodologies of weather circulation
classification are available [Jenkinson and Collison, 1977, Huth et al., 2008, Philipp et al.,
2010, Couto et al., 2014]. In this study, an automatic version of the Lamb weather type
classification is applied to MERRA sea level pressure fields in order to obtain a time series
of prevailing circulation weather types. This method was initially proposed by Jenkinson and
Collison [1977] and thereafter applied by several authors [e.g., Trigo and DaCamara, 2000,
Costa et al., 2006].

The algorithm bases on the sea level pressure at the 16 points depicted in Figure 3.3.
Assuming geostrophic conditions, westerly and southerly winds can be computed from the
meridional and zonal pressure gradient respectively. Doing so, six circulation indices (southerly
flow SF , westerly flow WF , resultant flow FT , southerly shear vorticity ZS, westerly shear
vorticity ZW and total shear vorticity ZT ) can be computed from the sea level pressure data
via:

SF = A · 1/4 · (p5 + 2p9 + p13 − p4 − 2p8 − p12) (3.4)

WF = 1/2 · (p12 + p13 − p4 − p5) (3.5)

FT =
√
SF 2 +WF 2 (3.6)

ZS = B · 1/4 · (p6 + 2p10 + p14 − p5 − 2p9 − p13 − p4− (3.7)

2p8 − p12 + p3 + 2p7 + p11)

ZW = C · 1/4 · (p15 + p16 − p8 − p9)− (3.8)

D · 1/4 · (p8 + p9 − p1 − p2)

ZT = ZS + ZW (3.9)
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3.3 Results

Southerly and westerly shear vorticity are estimated from the wind shear in the center of
the domain. Subscribed numbers indicate the location. The four coefficients A, B, C and D
are determined by the central latitude of the chosen raster ϕ0 (here: ϕ0 = 45◦):

A =
1

cos (ϕ0)
(3.10)

B =
1

2 cos2 (ϕ0)
(3.11)

C =
sin (ϕ0)

sin (ϕ0 − 5◦)
(3.12)

D =
sin (ϕ0)

sin (ϕ0 + 5◦)
(3.13)

From the six circulation indices 26 circulation weather types (CWTs) can be deduced as
follows:

• If |ZT | < FT the mean flow dominates over the vorticity (local curvature of the wind
field). These CWTs are called directional and named after the eight directions North
(N), Northeast (NE), East (E), Southeast (SE), South (S), Southwest (SW), West
(W) and Northwest (NW). The flow direction is given by tan−1 WF/SF if WF ≤ 0 and
tan−1 WF/SF + 180◦ if WF > 0, respectively.

• If |ZT | > 2FT the vorticity exceeds the mean flow. The circulation is either cyclonic
(L) if ZT > 0 or anticyclonic (H) if ZT < 0

• If FT < |ZT | < 2FT both, vorticity and mean flow, are equally strong. These CWTs
are called hybrid and named after the prevailing circulation, i.e. either cyclonic or
anticyclonic, plus one of the eight flow directions.

For this study, the nine most common CWTs in Europe are chosen for evaluation. These
are the directional types except for Southeast, the cyclonic type and the anticyclonic type.

3.3 Results

3.3.1 Cluster Centres and Reference Site Weights

As mentioned above, the number of reference sites varies in dependency of the chosen average
intra-cluster correlation. Figure 3.4 shows the locations of the reference sites obtained from
the spatio-temporal clustering exemplary for the training over all time steps (left) and the
time steps with prevailing Southwestern circulation type (right). The average intra-cluster
correlation was exemplary set to %C = 0.8. The size of the dots additionally indicates the
weights given to the reference sites by the linear regression. Points with |w(r)| < 0.5 · σ are
considered as neutral. Here, σ denotes the standard deviation computed from all weights.
Obviously, the number of reference sites for the CWT SW (3.4 right) is lower (88 to 97).

Hence, the correlations of wind power generation at the geographical clusters is higher than

23



Chapter 3 Research Question 1

average during time steps of Southwesterly flow – especially on the Iberian Peninsula where
the reduction of reference sites is most apparent. Here, wind power production exhibits
a relatively coherent spatial structure. This can be related to the passage of large-scale
atmospheric phenomena associated with southwesterly circulation, such as cold fronts, able to
cover the whole region [Jiménez et al., 2009, Peña et al., 2011]. However, not all of the nine
CWTS considered exhibit this higher-than-average correlation. In contrary to southwesterly
circulation, some CWTS are usually associated with relatively weak and diffused synoptic
scale phenomena. These may cause a less coherent spatial structure of the wind field.
Therefore, the number of reference sites for %C = 0.8 ranges between 88 for SW and 105
for the Easterly flow type (not shown).

From Figure 3.4 it can also be seen, that the weights given to the selected reference sites
vary as well. The reference sites on the Iberian Peninsula get relatively higher weights for
the Southwesterly circulation type than for all time steps.

3.3.2 Upscaling Evaluation
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Figure 3.5: Correlation versus the average intra-cluster correlation %C for CWT SW obtained
from the specific training for this CWT (black) and from the training over all time
steps (green) respectively.

The skill of the methodology introduced in section 3.2 measured by correlation and RMSE
is exemplary shown in Figures 3.5 and 3.6 for the Southwesterly circulation type. It can be
seen, that very high (> 0.95) values for the correlation can be achieved for average intra-
cluster correlations above 0.1. For the Southwesterly CWT this corresponds to a number
of reference sites k = 17 for whole Europe. For higher %C the correlation asymptotically
approaches 1.
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Figure 3.6: As Figure 3.5 but for the RMSE normalised to the average generation.
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Figure 3.7: Time series of the upscaling estimate [GWh] versus the reference time series
[GWh] for all time steps (green) and time steps with prevailing Southwesterly
circulation (black).
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Figure 3.8: Range of correlation values achieved by training the upscaling for the specific
CWTs (black) and from training over all time steps (green).
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Figure 3.9: As Figure 3.8 but for the RMSE normalised to the average generation.

A similar behaviour is found for the RMSE. For %C > 0.1 the RMSE drops below 10% of
the average wind power generation in Europe. For average intra-cluster correlations above
0.45 – corresponding to k = 41 – RMSE values below 5% of the average generation can be
achieved.

The good agreement between the upscaling estimate and the reference time series can
additionally be seen from the scatter plot (Figure 3.7, again for %C = 0.8). A systematic
error only appears for extreme high (above 75 GWh) wind power generation values. Here,
the upscaling model systematically underestimates the generation. Furthermore, all these
extreme values occur during Southwesterly circulations. This reduces the skill of the upscaling
model for this CWT disproportionately strong.
%C = 0 does not involve any hierarchical clustering. The corresponding data point is

considered as non-representative and therefore neglected from the further analysis.

3.3.3 Benefit from Training for Weather Types

In general, the Southwesterly CWT is the one, for which the introduced upscaling methodol-
ogy works best with respect to the correlation (Figure 3.8, black bars). Other CWTs exhibit
lower correlations. With respect to the RMSE, the SW type only skills average (Figure 3.9,
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black bars). Here, especially the Easterly type benefits from the specific training.
Figures 3.8 and 3.9 show the range of the correlation and the RMSE for all %C ∈ ]0, 1]

obtained from (i) the training specifically for the particular CWTs in black and (ii) training
over all time steps in green. Evidently, the upscaling skill benefits from the specific training.
The range of both, correlation and RMSE, can be reduced significantly. It can furthermore
be observed that the cyclonic CWT and the Southerly CWT perform worst – with respect to
both correlation and RMSE – while the Easterly, Southwesterly and Cyclonic type perform
best. The benefit from the CWT specific training is strongest for the Northeasterly and
Northwesterly type with respect to correlation and RMSE, respectively.

3.4 Discussion and Conclusions

In order to derive a reduced set of reference sites to estimate Europe-wide wind power
production, a new spatio-temporal clustering approach has been developed. To test the
methodology, model data is used, which is known to be smoother than measured data.
Keeping this in mind, we have shown that a rather low number of around 40 reference sites
– when chosen carefully – is sufficient to estimate the actual wind power generation across
whole Europe with adequate accuracy. We have also shown that it is beneficial to train the
upscaling model for different prevailing circulation weather types.
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Chapter 4

Research Question 2: How do regional
differences in cost of capital influence the
optimal design of power systems?

This chapter has been published as:
Schyska, Bruno U. and Kies, Alexander (2020): How regional differences in cost of capital

influence the optimal design of power systems, Applied Energy, 262, doi:
10.1016/j.apenergy.2020.114523

In order to reduce greenhouse gas emissions of the power sector, high shares of renewable

power sources need to be integrated into existing systems. This will require vast amounts of
investments. Cost of the capital needed for these investments are unevenly distributed among
European regions. They show a clear North-South and West-East divide, which has not
exhibited significant signs of narrowing in recent years. Power system studies investigating
a continent-wide European power system, however, usually assume homogeneous cost of
capital.
The objective of this paper is to investigate how regional differences in cost of capital af-

fect the result of these studies with respect to the optimal power system design. Our analysis
is based on power system optimization with inhomogeneous cost of capital in Europe. We
find that assuming homogeneous cost of capital leads to estimates on the levelized costs of
electricity in a highly renewable European power system, which are too conservative. The
optimal system design is significantly affected compared to an inhomogeneous scenario. In
particular, we show that inhomogeneous cost of capital favors overall wind power deployment
in the case of Europe, while the investment in solar power decreases.

4.1 Aims and Motivation

In the European Union, renewable shares are growing rapidly. This requires vast amounts of
capital for investments. Contrary to conventional generation, where generation and opera-
tion cost (fuel costs, maintenance, etc.) is crucial, renewable energy sources like wind and
solar PV require large upfront investments, while fuel costs are non-existent. In addition,
most mentioned integration options are capital-intensive or might even require building up
entirely new infrastructures such as demand-side management with smart meters or electric
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vehicles and their charging infrastructure. This increases the need for investments even fur-
ther. The European Commission estimates necessary investments of 379 billion Euro p.a. in
the European Union after 2021 [European Comission, Accessed: 2018-09-30]. Zappa et al.
[2019] estimate the cost for building a 100% renewable European power system until 2050
to be 560 billion Euro p.a.. These costs are to a large extent driven by the cost of the capital
needed to make investments. According to Noothout et al. [2016], conditions to invest in
renewables vary considerably between regions in Europe. These variations are reflected in
different rates at which investors can raise funds. Noothout et al. [2016] measure these rates
as the weighted average cost of capital (WACC). Regional differences in WACC mainly orig-
inate from different financing and tariff-related risks for renewables [Noothout et al., 2016].
Egli et al. [2018] reported that financing conditions for solar PV and wind power projects in
Germany have improved significantly over the last years contributing to the reduction of the
levelized cost of electricity from these two resources.

In this context, Klessmann et al. [2013] suggested to reduce the capital needs for renew-
ables by applying political means to reduce financing risks in the renewables sector. Tem-
perton [2016] proposed to establish a transnational European facility in order to reduce the
cost for financing renewable projects in Europe. And Kitzing et al. [2012] showed that a
convergence of policies to support renewables could be observed, which might spur a slight
convergence of WACC in the future. However, Brückmann [2018] found that no tightening
of this WACC gap has occurred in recent years. An interaction between the WACC and the
price for CO2 emissions has been found by Hirth and Steckel [2016]. Accordingly, higher
WACC require higher CO2 prices to achieve the same reduction target.

Existing power system studies often do not consider regional differences in the cost of
capital: Schlachtberger et al. [2017], for instance, assumed spatially homogeneous costs
for optimizing a European power system and for investigating the benefits from increased
continent-wide transmission capacity limits. Schlott et al. [2018] investigated the impact of
climate change on a similar system with the same homogeneous cost assumption. Bearing
the results of Noothout et al. [2016] in mind, the assumptions made in these studies appear
questionable.

The aim of this study is to investigate the effect of regional differences in cost of capital in
Europe on the cost-optimal design of power systems with ambitious CO2 reduction targets.
Unlike other studies in the same field of research of recent years, we directly consider regional
differences in the cost of capital. We investigate changes in expenditures for investment and
operation compared to a homogeneous reference setup and relate these changes to differ-
ences in the cost-optimal deployment of generation capacity. Furthermore, we investigate
the impact on overall system costs and the effect of diverging cost of capital. By doing so,
our work contributes to a deeper understanding of the effect of input parameter uncertainties
on the results of power system optimization models.
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4.2 Data and Methods

4.2.1 Power System Expansion Modelling

In this paper, we investigate the impact of regional differences of the cost of capital on
the cost-optimal design of a simplified highly renewable European power system. This cost-
optimal design is derived from a greenfield expansion model. No existing generation, transmis-
sion and storage assets or retirement of these assets is considered. Instead, the cost-optimal
expansion of all assets (starting from scratch) is determined using mathematical programming
(Equation (2.1) - (2.15)). The power system considered comprises one node per country (30
in total) and 52 simplified transmission links connecting them. Electricity generation may
stem from solar PV, on- and offshore wind, open cycle gas turbines (OCGT), run-of-river
power plants and hydro reservoirs. Furthermore, we considered pumped hydro storage units
and two generic storage types with fixed power-to-energy ratios (Table 2.1). Generation
from coal and nuclear power plants has not been included for the following reasons: Firing
coal for the generation of electricity contradicts the European Union’s goals to significantly
reduce greenhouse gas emissions. This goal is implemented by a global cap on CO2 emissions
(see below). Nuclear power is expected not to be cost-competitive. According to Wealer
et al. [2019], investing in nuclear power is uneconomical independent of the cost of capital,
electricity prices and specific investment costs. Lazard [2019] found levelized costs for elec-
tricity (LCOE) for nuclear power to be between 112 and 183 USD/MWh, which is far above
the LCOE for utility scale PV (43-53 USD/MWh) and onshore wind (30-60 USD/MWh).
Furthermore, nuclear power exhibits a similar ratio between capital and marginal costs as
the renewable resources, i.e. high upfront investments and almost no marginal generation
costs. Thus, results likely hold if new developments render nuclear power a cost-efficient
alternative.
In our model, the generation capacity of PV, wind and OCGT as well as the transmission

capacity were expandable, but we fixed the capacity of hydro dams, run-of-river plants and
pumped hydro storage units to the values published by Kies et al. [2016c].
Different formulations of power system expansion models exist. The main difference is

whether unit commitment of the generators or discrete expansion steps for the generator’s
nominal power or the transmission capacity are considered. In both cases, the optimization
problem to be solved would be a mixed-integer problem. For this study, we use the pure linear
approach, which has been used in several studies before, e.g. [Brown et al., 2018, Schlacht-
berger et al., 2017, Schlott et al., 2018]. The optimization problem used to derive the
optimal system design contains investments in generation, storage and transmission capacity
as well as hourly operational costs originating from load dispatch. For the mathematical
formulation of this problem see Section 2.1.
For this paper, we assumed a global limit on transmission capacity of three times today’s

net transfer capacities (3·31.25 TWkm) as an appropriate compromise between cost-optimal
extension and technical and social concerns. Although, this assumption is slightly more
conservative than the compromise grid defined in Schlachtberger et al. [2017] and Brown
et al. [2018] at four times today’s values, it allows to capture large parts of the benefits
of distributing electricity from renewable resources due to the non-linear decrease in system
costs with increasing transmission capacity [Schlachtberger et al., 2017]. Inline with European
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emission reduction targets, we define a global CO2 cap of 5% of the historic level of 1990.
In this model, OCGT is the only generation type with non-zero CO2 emissions. Emissions
en,s and efficiency ηn,s are set to 0.18 tonnes per MWh and 0.39, respectively.
The same methodology has been used to study, for instance, the impact of climate change

[Schlott et al., 2018], synergies between sector coupling and transmission [Brown et al.,
2018], the benefit of cooperation in a highly renewable European power system [Schlacht-
berger et al., 2017] or the impact of CO2 constraints [Weber et al., 2019]. We used the
software-toolbox Python for Power System Analysis [Brown et al., 2017] and the commercial
Gurobi solver to solve the optimization problem.

4.2.2 Locational Marginal Prices for Electricity

Besides the cost-optimal deployment of generation capacity and the dispatch of electricity,
the power system expansion modeling also delivers some information about how prices must
develop to achieve this optimal system design via its dual problem. For instance, if a global,
i.e. system-wide, CO2 cap constraint is enforced, the corresponding dual variable µCO2 to
this constraint yields a price for CO2 emissions. If this price was set to the emissions in
the primal problem without CO2 constraint, the exact same optimization result would be
obtained. In the same manner, the dual problem determines the price for electricity for each
time step and at each bus within the system, i.e. the LMPE (compare Section 2.3).

The dual problem corresponding to Equation 2.1 - 2.15, again, is a linear problem. By
applying the Karush-Kuhn-Tucker conditions, its objective function reads:

max
λ,µCO2

,µtrans

∑
n,t

λn,tDn,t + µCO2

∑
n,s,t

1

εn,s
gn,s,tEn,s + µtrans

∑
l

f̄lLl (4.1)

At the global optimum, primal and dual are in equilibrium, Equation (2.1) equals Equation
(4.1), which is equivalent to:∑

n,s

Cn,s ḡ
∗
n,s +

∑
n,s,t

O′n,sg
∗
n,s,t +

∑
l

(Cl − µ∗trans)Ll f̄
∗
l =

∑
n,t

λ∗n,tDn,t (4.2)

with µ∗CO2
and µ∗trans being the global CO2 price and the global price for expanding the trans-

mission lines by one MWkm, respectively. Recall from Section 2.3 that relaxing constraints
(2.7) and (2.6) leads to a decrease of the objective function. Hence, µtrans and µCO2 are less
than or equal to zero. λn,t is the LMPE, which is the price consumers at a node n and at time
t would have to pay for their electricity demand Dn,t in equilibrium. According to Equation
(4.2), these payments cover the following three cost terms: (i) the regional investment in
generation and/or storage capacity, (ii) the operational costs for generating electricity locally
depending on the respectively available generation sources and (iii) the investment in trans-

mission capacity. Here, the updated operational costs O′n,s,t =
(
On,s − µ∗CO2

En,s/εn,s

)
also

include the costs for CO2 emissions and the effective costs for transmission reinforcements
are given by the sum of the capital costs and the shadow price for transmission related to
the global transmission capacity limit (Equation 2.7).

32



4.2 Data and Methods

0 2 4 6 8 10 12
% p.a.

Figure 4.1: Weighted average cost of capital taken from Noothout et al. [2016].

4.2.3 Cost of Capital Scenarios

Investors raise funds from different funding sources and at different rates. The cost of capital
– when measured by the WACC – is the weighted average of these rates. It comprises the
costs of equity (between 6 % and 15 %) and debt (between 1.8 % and 12.6 %). If financial
risk was equal across different regions, e.g by removing information asymmetry and taxes, the
cost of equity and debt should be equal as well [Modigliani and Miller, 1958, 1963]. Hence,
the WACC reflects varying market conditions between regions [Noothout et al., 2016]. In
order to investigate the impact of these varying conditions, we used the WACC obtained from
Noothout et al. [2016] for the EU states. The WACC of the four remaining states in the
area of interest have been assigned manually from their respective most similar neighbouring
country. Resulting WACC are shown in Fig. 4.1. Germany has by far the lowest WACC at
4 %, whereas the value peaks in South-Eastern Europe at 12 %. In Noothout et al. [2016],
the WACC are only given for wind onshore projects, but reasons given for varying WACC –
such as financing environment and policy risks – hold true for all investments in renewables.
We therefore assumed one uniform WACC for all generation and storage technologies per
country. Because tariff-related risks are the major cause for discrepancies in WACC between
European countries [Temperton, 2016], it is unlikely that increasing shares of foreign direct
investment or increasing capital investments due to increasing shares of renewables would
have a relevant effect on WACC.
For this study, we varied the WACC for a number of scenarios:

1. The today scenario used the WACC values shown in Fig. 4.1.

2. The homogeneous scenario considered a constant WACC of 7.1% across Europe. 7.1%
was obtained as the demand-weighted average of WACC from the today scenario. The
homogeneous scenario is used as the main reference throughout this study.
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3. For the inhomogeneous scenario, the difference between every region and the average
WACC has been doubled compared to the today scenario.

4. For nineteen scenarios indexed with the numbers -9 to 9, the WACC was linearly
interpolated between the homogeneous scenario (index 9) and the inhomogeneous
scenario (index -9) to investigate potential path-dependencies.

When used as the return rate r , the WACC determines the annuity an,s of an asset s in
region n with lifetime ls via

an,s =
rn (1 + rn)ls

(1 + rn)ls − 1
(4.3)

From these annuities and the investment costs c inv
n,s the annualized capital costs cn,s of an

asset can be computed via

Cn,s = C inv
n,s · an,s (4.4)

They are given in Euro per MW per year for a generator s in region n.
The investment refers to the product of the capital costs and the installed capacity ḡn,s .

Similarly, the operational costs are defined as the product of the marginal costs, i.e. the
costs for generating one (additional) unit of electricity, of a generator On,s and the actual
generation gn,s,t . Capital costs Cn,s and operational costs On,s for all technologies are given
in Table 2.1.

We derived a cost-optimal design of a European power system with an ambitious CO2

reduction target by solving the previously introduced optimization problem for the four afore-
mentioned scenarios. Regional expenditures for investment and operation were measured
as:

In =

∑
s Cn,s · ḡ∗n,s∑

t Dn,t

and

Rn =

∑
s,t O

′
n,s · g∗n,s,t∑
t Dn,t

(4.5)

respectively and compared between the simulations. Here, the asterisk indicates the optimal
solution obtained from solving Equation (2.1) - 2.15.

In Equation (2.1) through (2.15), investment in the inter-connecting transmission grid
is included via cost-optimization as well as through the assumption of a global limit on
transmission capacity extension. This reflects that the expansion of the power system often
is not purely a technical-economical problem. Instead, it is often hampered by political and
social constraints – such as missing public acceptance, for instance – meaning that although
transmission grid extension might be cost-optimal, it cannot be realized. Consequently, the
costs for transmission expansion can only be estimated with great uncertainty. As shown
above one can, nevertheless, derive a shadow price for transmission grid expansion µtrans.
However, this shadow price is a political price, which cannot directly be compared to the
market prices Cn,s and On,s . Therefore, we focus on the investment in generation and
storage assets in Section 4.3.
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4.2.4 Generation and Load Data

We use one year of hourly availability data for onshore wind, offshore wind and solar PV
as described by Kies et al. [2016c]. The underlying weather data stems from the MERRA
reanalysis [Rienecker et al., 2011] as well as Meteosat First and Second Generation. Feed-in
from wind has been modeled using the power curve of an Enercon E-126 at 140 m hub
height. AC power from PV modules has been simulated by applying the Heliosat method
[Cano et al., 1986, Hammer et al., 1998], the Klucher model [Klucher, 1979] as well as the
parameters of a Sunny Mini Central 8000TL converter. The natural inflow to hydro dams
and run-of-river power plants is taken from Kies et al. [2017]. It has been modeled as a
linear function of the potential energy of the the run-of data obtained from the ERA Interim
reanalysis [Dee et al., 2011]. More details on the methodology applied to generate the time
series are given by Kies et al. [2016c,g]. Load time series were derived from historical load
data provided by ENTSO-E and modified within the RESTORE 2050 project to account for
expected increasing shares of e-mobility and electric heat pumps [Kies et al., 2016a].

4.3 Results

If the regional distribution of the cost of capital would not affect the optimal system design,
investments would change between these scenarios in the same way as there is a difference
in the WACC: It would rise in countries where cost of capital increases and shrink where
cost of capital decreases compared to the reference. Instead, we observe highest increases
in investments in the country, which exhibits the lowest WACC: Germany. Here, investments
in generation and storage assets increase by approximately 37.5 Billion Euro per annum or
96 % (Fig. 4.2 top). Increasing investments are also observed for Belgium, Austria, Spain,
Greece, Bulgaria, Portugal and Finland. Of these countries, Belgium, Austria and Finland
exhibit relatively low cost of capital like Germany, while they are relatively high in the others
(Fig. 4.1). This evidences significant changes in system design, expressed by changes in
optimal capacity deployment, which in turn influences regional operational costs (Fig. 4.2
bottom).
Compared to the homogeneous scenario, inhomogeneous WACC lead to a strong ag-

glomeration of power generation capacity in Central-Western Europe, especially in Germany,
France, Austria and Belgium (see supplementary material in the appendix 7). Consequently,
the penetration rate, i.e. the ratio of local electricity generation over local demand, in Ger-
many and Austria increases by 120 % and 50 % respectively (Fig. 4.3). While both are net
importers in the homogeneous scenario, they become net exporters in the today scenario.
In turn, many countries in Eastern Europe exhibit a higher dependency on imports in the
inhomogeneous scenario. This is reflected in penetration rates below one and in a distinct
step-wise increase in the locational marginal price for electricity the further the respective
country is from the exporting countries in Central-Western-Europe (Fig. 4.4 right).
We assume equal marginal costs for each type of generator, no matter at which node the

generator is located. Hence, a rise in operational costs as depicted in Fig. 4.2 (bottom)
can only be caused by a replacement of generators with low marginal costs, i.e. wind and
PV, with gas power plants and/or the intensified use of gas power. Again, this shift from
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Figure 4.2: Change in regional investment in generation and storage units (top) and opera-
tional costs (bottom) between the homogeneous and the today scenario.
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Figure 4.3: Electricity penetration (local generation divided by demand) in the homogeneous
scenario (top) and the today scenario (bottom).
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one generation technology to another between the today and the homogeneous scenario
is most pronounced in Germany. Expenditures for the regional operation of power plants
decrease by approximately 908 Million Euro per annum. France and the Czech Republic profit
from the cheap electricity generation in Germany (-350 and -848 Million Euro per annum,
respectively). And Hungary increasingly imports electricity from Austria, which leads to a
decrease in regional operational costs of 253 Million Euro per annum. In Italy, Poland, Spain
and the South-Eastern European countries, however, regional expenditures for operation
increase due to the intensified deployment and use of less capital-intensive gas power (see
Appendix 7). Overall, a slight increase in operational costs is observed due to an increased
generation share of offshore wind power in the today scenario compared to the homogeneous
scenario.
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Figure 4.4: Difference in inequality in regional expenditures for electricity as measured by
the 20:20 ratio [a.u.] relative to the today scenario (left) and cascade in LMPE
for four countries downstream of Germany normalized to the LMPE of Germany
[a.u.] (right).

In combination, the mentioned effects have different implications for different countries
in Europe concerning the optimal deployment of the different generation technologies and
the regional expenditures. In Germany, for instance, below-average WACC would lead to
increasing overall investment and capacity deployment, especially of capital intensive wind
power (+280 GW, see Appendix 7). Nevertheless, LMPE would fall due to significantly higher
penetration rates (+120 %, Fig. 4.3) and a lower dependency on gas power (-11 GW) and
imports (Fig. 4.5). The Czech Republic profits from its proximity to the ’export country’
Germany. The fact that Germany exports electricity reduces the need for local investments
and the expenditures for operation in the neighbouring Czech Republic. Transmission cost
are low, because the two countries are directly connected, and consequently the LMPE
decreases. A similar effect can be observed in Sweden and Denmark. In Hungary, LMPE
rise, although the expenditures for investment and operation and the penetration decrease
here as well. This is due to the fact that Hungary is located further away from the exporting
countries (Fig. 4.4 right). Thus, LMPE need to cover more investment in transmission
capacity upstream.

Wind power in general – both onshore and offshore – profits from relatively low WACC
in Germany as, to a smaller extent, in Belgium, France and Finland. Besides relatively low
cost of capital, these countries exhibit relatively good wind resources and, at least in the
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case of Germany, high demand for electricity and a favourable topological position within
the network. This leads to the aforementioned additional 280 GW onshore wind power in
Germany, 24 GW in France, 7 GW in Belgium and 4 GW in Finland in the today scenario
compared to the homogeneous reference. Additional offshore wind power deployment only
occurs in Germany: +30 GW. In most other countries, onshore wind power deployment
drops: Denmark -77 GW, Poland -65 GW, the Netherlands -47 GW, Italy -39 GW. In sum,
continent-wide onshore and offshore wind power installations increase by 8 GW and 21 GW,
respectively. Figures showing the regional changes in nominal power and investment per
generation source can be found in the Appendix 7.
In contrast to wind power, continent-wide solar PV installations decrease by 24 GW be-

tween the homogeneous scenario and the today scenario. The main reason for this is the
reduction of deployment of PV power in countries with high cost of capital, especially the
Czech Republic (-30 GW), Hungary (-22 GW), Croatia (-16 GW) and Serbia (-11 GW).
As described above, this reduction is not driven by the costs of capital alone, but triggered
by the relative proximity to countries with relatively low WACC, i.e. Germany and Austria.
In these countries increased deployment of PV power can be observed (Germany +6 GW,
Austria +38 GW). In Belgium PV power deployment rises by 26 GW. In Spain, PV replaces
10 GW of even more capital-expensive wind power.
It has been shown by Tranberg et al. [2018] that solar PV and gas power are suitable

complements. In countries with relatively good solar resources, gas power plants – potentially
together with battery storage units – are used to cover load peaks and to bridge times of low
sunshine. Consequently, as PV power deployment reduces, the continent-wide deployment of
gas power plants decreases by 10 GW in the today scenario compared to the homogeneous
scenario as well.
It is also noteworthy that, although operational costs only decrease slightly, overall sys-

tem costs significantly dependent on the spatial distribution of the WACC. Compared to
the homogeneous scenario, inhomogeneous WACC lead to a reduction of levelized costs of
electricity of approximately 2.5 % in the today scenario and of up to more than 5 % in the
inhomogeneous scenario (insert of Fig. 4.5). This reduction in LCOE is due to the complex
interaction of regional demand, costs, the quality of the volatile renewable resources and
the capabilities of transmitting and storing electricity. We describe this complex interaction
by investigating the levelized costs for electricity separately for each generator type. It is
defined as the sum of generator type specific investment and operational costs divided by the
electricity generation. Since the implemented CO2 cap (Equation (2.6)) is reached in each
scenario, the generation from gas power plants – the only generator type with non-zero CO2

emissions considered – does not change between the scenarios. Additionally, a decrease in
gas power capacity installation can be observed (Fig. 4.6 left). Hence, the utility rate for
gas power increases in the today scenario compared to the homogeneous scenario. However,
because gas power is increasingly deployed in countries with relatively high cost of capital,
levelized cost for gas power only decrease slightly by less than 1 %. A similar effect can be
observed for solar PV: As mentioned above, PV power suffers from the relatively high cost
for capital in the countries with relatively good solar resources. This leads to an increase
in levelized costs for PV power of approximately 6 %. Consequently, the decrease in LCOE
must be driven by a reduction in the levelized costs for wind power. Indeed, the levelized
cost for onshore wind power decreases by around 8 % and for offshore wind power by 15 %
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between the today and the homogeneous scenario caused by the co-occurrence of high de-
mand, relatively low costs and good wind resource quality in the Central-Western European
countries mentioned already. A slight increase in the levelized costs for storage units (batter-
ies +1 %, H2 +2 %) counteracts this effect. For storage units, operational costs have been
determined from the product of LMPE and energy uptake as suggested by Pawel [2014].

15 10 5 0 5 10 15
%

scenario no.

8 6 4 2 0 2 4 6 8

95.0

97.5

100.0

%

Figure 4.5: Regional relative change in locational marginal prices for electricity between the
homogeneous scenario and the today scenario. The insert shows the system costs
normalized to the systems costs of the homogeneous scenario.

However, the reported reduction in costs is unevenly distributed among countries. In 17 out
of 30 countries, LMPE rise due to a relative increase of cost of capital leading to higher local
investments, higher shares of generators with low capital but high marginal costs and a higher
dependency on imports, i.e. investment in transmission. This causes a growth in inequality
of regional expenditures for electricity of up to 10 % in the today scenario compared to the
reference scenario (Fig. 4.4 left). Here, inequality is measured as the so-called 20:20 ratio
defined as the ratio between the 20th and 80th percentile of the levelized nodal expenditures
for electricity. One main reason for this rising inequality are higher LMPE in countries with
weaker economies, e.g. Greece, Romania, Serbia, Latvia and Lithuania (Fig. 4.5). In these
countries the Human Development Index is below the value of, for instance, Germany and
France [Kovacevic et al., 2018]. Higher LMPE would put an additional burden on electricity
consumers in these countries, which potentially suffer from economic hardship already and
can, therefore, hamper the acceptance of renewables and the mitigation towards climate
goals.

Overall, it has been demonstrated that diverging WACC lead to an increased inequality in
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Figure 4.6: Left: Change in overall power generation capacity deployment for various gen-
eration sources; Right: Sum of absolute nodal differences in power generation
capacity deployment for various generation sources.

regional expenditures for electricity and a reduction of levelized costs of electricity – driven
by changes in regional investment and resulting changes in regional generation and electricity
penetration. We also explained that wind power profits from low cost of capital in wind-rich,
high-demand countries such as Germany, France and Belgium. If WACC diverge further,
this effect accelerates, leading to additional 116 GW onshore wind power capacity for the
inhomogeneous scenario compared to the homogeneous case (Fig. 4.6 left). Offshore wind
power, however, remains more or less stable around an additional 11 GW. The deployment
of gas and PV capacity simultaneously falls. Besides these changes in overall capacity ex-
pansion, there is a significant redistribution of deployment between countries (right panel
of Fig. 4.6). This redistribution is most pronounced for onshore wind power: Compared
to the homogeneous scenario, more than 1 TW are shifted from one country to another,
expressing the agglomeration of wind power in Germany, France and Belgium mentioned
earlier. Additionally, the inequality in regional expenditures for electricity rises up to 16 % in
the inhomogeneous case compared to the homogeneous scenario (Fig. 4.4 left).

4.4 Discussion

Inline with Hirth and Steckel [2016] our study emphasizes the importance of cost of capital
in the context of fostering the integration of renewable generation sources into future power
systems. We show that regional differences in weighted average cost of capital lead to
significant changes in the optimal design of a European power system with an ambitious
CO2 reduction target when compared to a setup with homogeneous WACC. The latter is an
often made assumption in power system modeling and – as we explained – potentially leads
to wrong conclusions concerning the optimal system design and the spatial distribution of
costs. Schlachtberger et al. [2017] for instance assumed a constant return rate of 7 % across
Europe. They reported an optimal cost share for solar PV of at least 30 % (depending on
the global transmission capacity limit) in Hungary. Considering the relatively high WACC in
Hungary we find an optimal share of solar PV of less than one per cent of the annualized
system costs. Similarly, Schlachtberger et al. [2017] found a PV cost share of 40 % to
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approximately 75 % in Austria. In our study, Austria exhibits a relatively low WACC. Together
with its position within the network and good solar resources this leads to a PV cost share
of 91 %. Furthermore, the assumption of homogeneous WACC across Europe leads to
too conservative estimates of the levelized costs of electricity, mainly caused by too high
estimates of the levelized costs for wind power.

The relative increase of wind power in Europe in the case of inhomogeneous WACC also
modifies the variance of the generation time series. Wind power in general exhibits lower
diurnal variability and a seasonal cycle opposite to the seasonal cycle of solar PV [Heide
et al., 2010]. Hence, modifications of the generation mix lead to different requirements for
flexibility as well. Consequently, our results – at least partially – change the interpretation
of other studies investigating the optimal generation mix, the need for flexibility options
and/or the interplay of generation and storage under the assumption of homogeneous cost
of capital across Europe: e.g. [Brown et al., 2018, Schlott et al., 2018, Tranberg et al.,
2018]. Schlott et al. [2018], for instance, found an increasing importance of PV power
in Europe under different climate change scenarios. This effect might be weakened when
the relative high costs for investments in the Southern European countries are taken into
account. Brown et al. [2018] describe how the integration of battery electric vehicles (BEV),
long-term thermal energy storage (LTES) and power-to-gas units (P2G) helps smoothing the
variability from solar and wind power generation in a sector-coupled European power system.
In particular, BEV interact with the diurnal variability of solar power and load, while LTES
and P2G mainly balance the synoptic to seasonal variations. These findings are confirmed
by Tranberg et al. [2018]. Since synoptic variations are more pronounced for wind power
(for solar power the diurnal cycle dominates), an increased share of wind power might favour
LTES and P2G while decreasing the importance of short-term storage, such as batteries and
BEV.

Some critical remarks: Although our model setup is inline with a number of similar studies,
the concept of foreign direct investment (FDI) is not considered. Wall et al. [2019] describe
how policies influence FDI in renewable energies. Accordingly, increasing FDI has supported
the global expansion of renewable energies. The main source of FDI is Europe, in partic-
ular Germany and Spain, investing in renewable energy projects in the remaining European
countries [Hanni et al., 2011]. Such effects cannot be covered by the chosen model design.
However, unlimited FDI could indeed be simulated by assuming the minimum WACC within
the region of interest for all regions, meaning that all capital needed to make investment
would be acquired in the region of minimum WACC. This resembles the setup of the homo-
geneous scenario and, thus, does not affect the general findings of this work. Furthermore,
differences in WACC for renewable energy are mostly caused by tariff-related risks which ap-
ply for foreign direct investment as well [Temperton, 2016]. As mentioned in Section 4.2.3,
WACC reflects varying market conditions between regions. Changing amounts of investment
should not alter this. Concerning the generation and storage technologies available for ex-
pansion, we follow the conservative assumptions made in Brown et al. [2018]. In particular,
other dispatchable zero emission technologies such as biomass and geothermal are not taken
into account. Combined cycle gas turbines could in general be included. But since they would
only partially replace OCGT, keeping the share of variable renewable generation sources un-
changed, the inclusion would not affect the overall findings. Consequently, we excluded them
in order to keep the model setup as simple as possible and the computation time appropriate
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as recommended by DeCarolis et al. [2017].

4.5 Conclusion

Because power system modeling is an important tool for policy advise and system planning,
the validity of the underlying assumptions is of crucial importance. Additionally considering
the overall importance and urgency of establishing low-emission power systems to tackle
climate change and the fact that no homogenization in WACC has been observed in Europe,
we stress that the regional inhomogeneity in WACC needs to be taken into account in future
studies or should at least be considered as a potential scenario. Furthermore, the uncertainty
of the input parameters in power system models should be respected more carefully. Future
work might focus on investigating the effects of this uncertainty on the outcome of power
system optimization models.
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Chapter 5

Research Question 3: How large is the
sensitivity of power system expansion
models?

This chapter has been published as:
Schyska, Bruno U., Kies, Alexander, Schlott, Markus, von Bremen, Lueder and Medjroubi,
Wided (2021): The Sensitvity of Power System Expansion Problems, Joule, 5(10), doi:

10.1016/j.joule.2021.07.017

Power system expansion models are a widely used tool for planning power systems, es-

pecially considering the integration of renewable resources. Studies using these models form
the basis for far-reaching political decisions. The backbone of power system models is an
optimisation problem, which depends on a number of economic and technical parameters.
Although these parameters contain significant uncertainties, a consistent way to quantify the
sensitivity to these uncertainties does not exist. Here we analyse and quantify the sensitivity
of power system expansion models to different model parameters and model definitions based
on a novel misallocation metric. While measuring the sensitivity as a simple cost term, this
metric can contribute to openness and transparency in power system research. We demon-
strate its applicability by three prominent test cases: the definition of capital cost, different
weather periods and different spatial and temporal resolutions.

5.1 Aims and Motivation

As described in Section 1, many solutions proposed to ease the inegration of renewable
resources into existing power systems are the result of studies using power system expansion
models (PSEM, Section 2). Over the last years, PSEM have become progressively more
complex. They include more and more aspects of power systems in an increasing level of
detail. Furthermore, they depend on a number of uncertain parameters. Assumptions made
for costs or the availability of weather-dependent generation sources as well as the reduction
of the model resolution to make models tractable introduce uncertainty Trutnevyte [2016],
Mavromatidis et al. [2018], Schlachtberger et al. [2018]. Recently, Nacken et al. [2019]
applied a method called modelling to generate alternatives (MGA) to a future German energy
supply and showed that it produces a number of significantly different energy scenarios. MGA
is based on changing the PSEM structure by setting the cost-optimal objective value plus
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some slack as a new constraint and exploring the resulting solution space Brill Jr et al.
[1982], Price and Keppo [2017], DeCarolis et al. [2016]. Neumann and Brown [2019] used a
similar method to explore the near-optimal solution space of a cost-optimised European power
system. They observed a high variance in the deployment of individual components near the
optimal solution. Based on a global sensitivity analysis, Moret et al. [2017] found that the
uncertainty of economic parameters has the highest influence on the results of an energy
model. Similarly, Shirizadeh et al. [2019] investigated the robustness of a fully renewable
power system model of France to uncertainties in future cost of generation technologies.
They found that, although the optimal generation mix clearly depends on the respective cost
for the different technologies, overall system costs are relatively insensitive. For an overview
of methods applied in the context of uncertainty in power system modeling see Yue et al.
[2018].

As the results of power system studies often are the basis for far-reaching political decisions
and societal discussions, data and methods behind these results must be trustworthy and
challengeable Pfenninger [2017b]. Hence, quantifying and documenting uncertainties and
their implications on power system studies is crucial. However, a clear and concise way to
do this does not yet exist.

The aim of this paper is the analysis of the sensitivity of a common power system ex-
pansion model to different model parameters and designs. We quantify this sensitivity via
a novel misallocation metric. It expresses the sensitivity as the additional cost arising from
misallocating generation capacities and allows to cross-validate input data and to find rep-
resentative data sets. By quantifying the sensitivity to three prominent parameter scenarios
this study contributes to increasing transparency in power system research.

5.2 Defining a misallocation metric

Consider a linear program of the form:

min
x

cT x

s.t Ax ≥ b
x ≥ 0

(5.1)

In order to solve this program, the parameter matrix A, the parameter vector b and the
objective coefficients c need to be defined. They determine the actual problem. If A and/or b
and/or c are modified, the solution of the linear program changes depending on the sensitivity
to the respective parameters (compare Section 2.5).

Now, let x∗αi be a realisation of the random variables {x1, x2, . . . , x|x |} solving the lin-
ear program under a given set of parameters (in the following referred to as scenario) αi .
Furthermore, let Γαi0 be the optimal (minimum) value of the objective function, i.e.

Γα0 = cT x∗αi (5.2)

If one is interested in the effect of using another different set of parameters expressed as
scenario αj , one could, for instance, measure the difference in the objective function value
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∆Γ = Γαi0 − Γ
αj
0 or the Euclidean norm of the optimal values of the decision variables,

∆x∗ = ‖x∗αi − x
∗
αj
‖. The difference between the two solutions can then be distinguished into

four cases:

1. small ∆Γ and

a) small ∆x∗: In this case, the error is obviously small. The linear problem can be
considered insensitive to the choice of the two scenarios considered.

b) large ∆x∗: Here, drawing a clear conclusion is difficult. On the one hand, the error
when deciding for one solution might indeed be large. Then, the difference in the
objective function value would be small only by chance and we could consider the
linear problem to be sensitive to the choice of the scenario. On the other hand,
the error might be small because the solution space is flat near the optimal point
or a secondary optimum exists. The linear problem, again, is insensitive.

2. large ∆Γ and

a) small ∆x∗: This case is possible if the linear program is very sensitive towards
changes in some decision variables or if the parameters strongly differ between
both scenarios. We consider the linear problem to be insensitive.

b) large ∆x∗: In this case, the error would obviously be large. The linear problem is
sensitive towards the input dataset.

In order to determine the actual error originating from considering only one of the two
scenarios (e.g. αi), one could set the solution x∗αi as lower bound to the respective other
linear program from scenario αj and vice versa. If the program is insensitive, this should not
cause any large additional cost. However, if the program is sensitive, this should cause large
additional cost because large adaptations to x∗αi are necessary in order to make it a solution
of the linear program from scenario αj . Let us denote the optimal value of the objective
function with lower bounds defined by the optimal solution of the linear program Γ

αj
αi and

Γαiαj , respectively. The additional cost, caused by constraining the solution downwards is then
given by Γαiαj − Γαi0 and the overall sensitivity of the linear program to the choice of the
scenario can be quantified by the following misallocation metric :

Mαi
αj

= Γαiαj − Γαi0 + Γ
αj
αi − Γ

αj
0 (5.3)

As stated above, x∗αi refers to the solution of the problem with minimum lower bounds, i.e.
the unconstrained problem. Γαi0 denotes the corresponding value of the objective function. In
order to compute the constrained solution x∗αi ,αj and Γαiαj , the solution of the corresponding
counter-scenario is set as lower bounds to at least some of the decision variables, which
means that the following constraint is added to the linear program:

xi ≥ x∗αj , xi ∈ x̄ ⊂ x (5.4)

In this paper, these additional constraints are applied to variables representing long-term
investment decisions, i.e. generation, storage and transmission capacities.
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M is driven by the difference in Γαi0 and Γαiαj . When this difference is small, the sensitivity
is also small. M fulfills the properties of a pseudometric, it is positive definite

Mαi
αj
≥ 0 (5.5)

because Γαi0 ≤ Γαiαj , symmetric to the order of the scenarios

Mαi
αj

= M
αj
αi (5.6)

and fulfills the triangle inequality

Mαi
αj
≤ Mαi

αk
+ Mαk

αj
. (5.7)

5.3 Results

5.3.1 The Sensitivity to the Capital Cost of Generation Capacities

One major parameter to PSEM are the capital cost for all generation, storage and transmis-
sion assets. Let us, as a first example, assume we would like to investigate the sensitivity
of the model to different specifications of these capital cost. In order to do so, we define
two scenarios: The first scenario (hom) assumes a homogeneous distribution of the cost of
capital across the European countries. The second scenario (dia) takes regional differences
into account. The cost of capital is set as reported from the diacore project Noothout et al.
[2016]. In this scenario, the rate of return on capital ranges from 12% in the South-Eastern
European Countries to only 4% in Germany (Figure 4.1).

Schyska and Kies [2020] have shown that these two scenarios lead to significantly different
solutions for the cost-optimal generation capacity layout x∗hom and x∗dia and the system cost
Γhom0 and Γdia0 . In particular, the optimal solution for the dia scenario contains a larger share
of offshore wind power, while the share of onshore wind power, solar photovoltaics (PV) and
OCGT decreases compared to the hom scenario. After computing Γhomdia and Γdiahom, one finds

Mhom
dia∑
n,t dn,t

= 4.6
EUR

MWh

with dn,t being the demand at node n and time t. This is 6.5 % (6.4 %) of Γhom0 (Γdia0 ).
Note that the difference in Γhom0 and Γdia0 suggests a smaller error of only 1.4 EUR/MWh.
By applying our new metric we are able to show that the sensitivity of the power system
expansion problem to the regional distribution of the cost of capital is indeed much higher
(more than 3-fold) than this difference in the levelized costs suggests.

This higher sensitivity can be explained by taking a look at the shape of the solution space:
In general, the solution space for the upper level problem of the expansion problem is steeper
than for the lower level problems. This means that slight changes in the capacity layout
may lead to significantly different investment cost, while there potentially exist many ways
to solve the operational problem with similar cost. This effect is enhanced, if additional
regional differences in the cost of capital are considered. Building an offshore wind park
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Figure 5.1: Investment in generation capacity relative to the unconstrained solution for the
homogeneous scenario constrained with the solution of the inhomogeneous case
(left, blue) and for the inhomogeneous scenario constrained with the solution of
homogeneous case (right, orange), crosses indicate the minimum investment for
each generation source.

in Germany or in Greece, for example, makes a bigger difference now as it made in the
homogeneous case. For our first example, we modified the regional distribution of capital
cost but kept the nodal loads and the weather time series, which determine the availability of
the volatile renewable resources, unchanged. Consequently, we find that both solutions of the
unconstrained problems x∗dia and x

∗
hom also solve the operational problems of the respective

other problem. This is reflected in the fact, that no changes to the capacity layouts are
necessary (Figure 5.1). However, since the two capacity layouts are quite different (as
reported above) the investment cost in the constrained cases increase by 6 % and 5 %,
respectively, compared to the unconstrained cases due to the different cost assumptions in
the two scenarios (Figure 5.2).

5.3.2 The Sensitivity to the Capacity Factor Time Series

Second, we investigate the sensitivity of the PyPSA-Eur model to the capacity factor time
series ḡn,s,t . These time series specify the temporal availability of all volatile resources in the
power system at any node. They are given in units of the installed capacity, i.e. ḡn,s,t ∈ [0, 1].
For wind and solar power the capacity factor is determined by the prevailing weather situation
and, as weather changes from time to time, capacity factors vary as well, from hour to hour
but also from year to year and from decade to decade due to climate variability and climate
change. Depending on the chosen weather period, the power system optimisation might,
consequently, lead to different optimal capacity shares. The years 2000-2006, for instance,
exhibit a higher average solar power capacity factor over almost entire Europe except for the
Iberian Peninsula as predicted for the years 2094-2101. In contrast, the average onshore wind
power capacity factor is lower in Central-Western Europe and higher especially in the South-
East (Figure 5.3). For this investigation, data from Schlott et al. [2018] has been used. It
includes time series of the capacity factors for onshore and offshore wind, solar PV and run-off
river as well as of the natural inflow into hydro dams from the climate model CNRM Voldoire
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Figure 5.3: Relative difference in solar power capacity factors (left) and onshore wind power
capacity factors (right) between the years 2000-2006 and 2094-2101 [% of 2000-
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Figure 5.4: Difference in the cost-optimal capacity deployment for three different time slices
compared to the years 2000-2006 [GW].

et al. [2013] downscaled to a higher spatial resolution within the EURO-CORDEX project
Jacob et al. [2014] for each node of the PyPSA-Eur model in its one-node-per-country setup.
We use four time slices of length 6-7 years in 3-hourly resolution: 1970-1976, 2000-2006,
2038-2044 and 2094-2101.
The average capacity factor, however, is only one aspect of the quality of renewables

resources. The temporal variability, the spatial and temporal co-occurrence of different re-
sources, the correlation with the electricity demand, the system’s ability to distribute genera-
tion over large areas and the possibility to interact with different kind of storage technologies
are equally important. The complex interaction of all these aspects determines the optimal
capacity layout of a power system. Indeed, optimising the PyPSA-Eur model based on ei-
ther the period 2000-2006 or the period 2094-2101 leads to different optimal investment
in generation capacities: Compared to the years 2000-2006, the period 2094-2101 leads to
an increase in investment in solar power capacities of 48 % and a decrease in onshore wind
power capacity by 4 % (Figure 5.4). Offshore wind is only marginally deployed and can be
neglected in both cases. Interestingly, the levelized cost for all periods differ only slightly.
The differences range from 0.16 EUR/MWh for the combination (2038-2044, 2094-2101) to
0.56 EUR/MWh for the combination (1970-1976, 2094-2101). Schlott et al. [2018] found
similar results for CNRM. Other climate models lead to more diverse results in the objective
function Schlott et al. [2018].
Let us now compute the sensitivity metric. Therefore, we set the solution for the period

2000-2006 as lower bound to the linear problem with the capacity factors taken from 2094-
2101 and vice versa. Adding up the differences in the (two) constrained and unconstrained
solutions (Equation (5.3)) leads to an overall sensitivity of 5.1 EUR/MWh (Figure 5.5). This
is the highest sensitivity for all possible combinations of the four weather periods considered.
The second highest sensitivity is observed for the combinations (1970-1976, 2000-2006)
and (2000-2006, 2038-2044). And the combination (1970-1976, 2038-2044) exhibits the
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Figure 5.5: Sensitivity to different weather periods quantified by the misallocation metric M
[EUR/MWh]. Blue bars indicate the difference between the constrained and the
unconstrained problem of the respective earlier period, the red bar indicates the
difference for the later period. Note that for all combinations the difference in
the unconstrained solutions is below 0.6 EUR/MWh.

lowest sensitivity of 3.5 EUR/MWh. These findings additionally allow to make an inference
on the suitability of using a specific climate period for power system investigations. Since
the differences between 2000-2006 and the other time periods is the largest, the period
2000-2006 seems not to be representative and hence not a good choice for power system
modelling.

In contrast to the introductory example of modifying the regional distribution of capital
cost, we now fixed the cost and varied the availability time series for the different volatile
generation sources. In this case, the capacity layout obtained from one optimisation is no
longer necessarily able to ensure the supply under the constraints of another optimisation
problem based on another weather period. If this would be the case, setting one solution
as lower bounds to another scenario would not cause any major additional cost, despite
possibly some relatively small changes in the operational cost due to the less effective use
of generation, storage and transmission capacities (e.g.). The problem would be insensitive
to the differences in the capacity factors from the two scenarios considered, M close to
zero. However, for the weather periods (2000-2006) and (2094-2101) this is not the case.
As mentioned above, optimising the power system based on (2094-2101) leads to a more
solar dominated system, adopted to climate change. Setting this relatively high solar PV

52



5.3 Results

OCGT onwind solar
6

4

2

0

2

In
ve

st
m

en
t

Figure 5.6: Difference in investment in generation capacity compared to the unconstrained
solution for the weather period (2000-2006) constrained with the solution of the
weather period (2094-2101). Crosses indicate the minimum investment for each
generation source.

capacity as lower bound to the optimisation based on (2000-2006) causes major changes
in the optimal capacity deployment of the other generation sources as well: The optimal
investment in onshore wind power capacity decreases by more than 2.5 Bill. Euro, the
investment in OCGT capacity by approximately 0.2 Bill. Euro (Figure 5.6). This leads to
an increase in the levelized cost of electricity (LCOE) of 8 % of the constrained solution
compared to the unconstrained solution. This increase in LCOE is the dominating term
in Equation (5.3) and determines the sensitivity of the investigated linear problem to the
scenarios considered.

5.3.3 The Sensitivity to Reduced Spatial and Temporal Resolution

As a third demonstration example, we investigate the sensitivity of the linear program (2.1)
to the temporal and spatial resolution. In order to reduce the spatial resolution, the original
PyPSA-Eur network has been scaled down to 45, 64, 90 and 128 nodes using the network
clustering approach introduced by Hörsch and Brown [2017]. The temporal resolution has
been reduced by averaging the parameter time series over consecutive time spans of length
τ ∈ {3, 6, 12, 24} hours as described in Section 5.6.2.
The misallocation metric M for all possible combinations of these different parameter sets

sizes exhibits a clear pattern (Figure 5.7). Basically, it can be divided into three different
blocks: two blocks of (relatively) low sensitivity where M ≤ 4.2 EUR/MWh and one of
(relatively) high sensitivity where M ≥ 7.2 EUR/MWh. The first block of low sensitivity
contains all combinations of scenarios with a temporal resolution higher than 6 hours, i.e.
(N, 1H), (N, 3H) and (N, 6H), independent from the spatial resolution N. The second
block of low sensitivity contains all combination of scenarios with a temporal resolution
smaller than 12 hours – again independent from the spatial resolution. And the block of
high sensitivity contains all combinations of scenarios where one scenario has high (≤ 6
hours) temporal resolution and the other scenario has low temporal resolution (≥ 12 hours).
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5.3 Results

From this definition of blocks one can already see that the expansion problem is much less
sensitive to changes in the spatial resolution as it is to changes in the temporal resolution.
For instance, the sensitivity of the problem with hourly temporal resolution to increases in
the spatial resolution from 45 nodes up to 128 nodes is below 4 EUR/MWh. In contrast,
the sensitivity of the 128 node setup to reductions in the temporal resolution from hourly to
minimum 12-hourly reaches a maximum value of almost 13 EUR/MWh.
The reasons for this are twofold. First of all, increasing the spatial resolution does not

necessarily lead to a higher degree of information in the time series, and vice versa. Con-
sequently, the results obtained from models with different spatial resolutions do not differ
much. This phenomenon is of meteorological nature: Hourly wind power and solar PV ca-
pacity factor time series exhibit large correlation lengths. Consequently, aggregating nodes,
which are geographically close, does not lead to a significant loss of information about the
temporal characteristics of the aggregated nodes. For a detailed investigation of the corre-
lation lengths of wind and solar PV in the PyPSA-Eur model see Section 6.1. In contrast,
modifying the temporal resolution potentially leads to significant differences in the optimal
capacity deployment, especially when the temporal resolution ’jumps’ from one of the blocks
we defined above to another. Main reason for this is, that downsampling the time series via
averaging removes part of the temporal variability. In general, a rolling window averaging can
be understood as a filter. For instance, averaging a time series with a rolling 24 hour window
filters out most of the sub-24 hour variability of the time series, including the diurnal cycle
(if present). If such a filter is applied to both the capacity factor time series and the demand
time series, the residual load gets implicitly filtered as well. As a consequence, any storage
technology meant to flatten the sub-12 hour variability of the residual load time series would
no longer be needed (because there is no sub-12 hour variability).
In general, storage technologies can be assigned to a characteristic variability in the residual

load time series via their energy-to-power ratio r , i.e. the number of hours they can store
(dispatch) electricity at full power when starting from empty (full) storage. In the setup used
here, batteries are characterized by an energy-to-power ratio of r = 6 hours. They are meant
to balance discrepancies between demand and availability which occur on the intra-day scale.
As described above, these discrepancies disappear when the demand and capacity factor time
series are downsampled to a lower resolution. Consistently, no battery storage devices are
optimally deployed in the model setups with a temporal resolution below 6 hours (Figure 5.8).
In contrast, hydrogen cavern storage units exhibit an energy-to-power ratio of r = 168 hours,
making them a weekly storage. As the weekly variability is still present in the downsampled
time series, hydrogen storage devices are still useful.
In broad terms, filtering the high-frequency part of a time series’ variability can be un-

derstood as removing scatter. This in turn also increases the correlation between the time
series, again not only between the availability time series but also between the availability
and the demand. Apparently, this rise in correlation mainly increases the system-friendliness
of solar PV. Its investment share grows from approximately 40 Bill. Euro for the 3-hourly
time series to more than 60 Bill. Euro for the 24-hourly time series (Figure 5.8). In turn,
the importance of offshore wind power, which is mainly used to cover the baseload in the
highly resolved model, decreases, because the filtered time series no longer contain any non-
baseload part. The offshore wind power share drops from approximately 23 Bill. Euro to
zero. Overall, downsampling time series leads to reduced cost and a significantly different

55



Chapter 5 Research Question 3

3 6 12 24

temporal resolution [hours]

0

20

40

60

80

100

120

in
ve

st
m

en
t [

Bi
ll.

 E
ur

o]

128 nodes

OCGT
offwind
onwind
solar
H2
battery

Figure 5.8: Optimal investment in generation and storage capacity [Bill. Euro] for the 128
node network and for different temporal resolutions of the exogeneous parameter
time series.

56



5.4 Discussion

capacity mix. Setting this capacity mix as lower bound to the highly resolved model causes
large additional costs, mainly because the model is forced to deploy much more solar PV as
it would optimally deploy. Vice versa the offshore and battery storage investment exceeds its
optimal value. Overall, this is expressed in a high sensitivity.
However, there is one effect counteracting this phenomenon. This effect appears when the

spatial resolution is modified in addition to the temporal resolution. In this case, averaging
takes not only part in the temporal dimension but also in the spatial dimension. More pre-
cisely, models with a higher spatial resolution experience less averaging on the spatial scale
than models with a coarser spatial resolution – assuming that the models’ resolutions are in
any case below the resolution of the underlying weather data. This potentially leads to higher
capacity factors in the highly resolved case. When transmission capacity is sufficiently avail-
able and/or the network is sufficiently meshed, higher capacity factors require less generation
capacity as the model with lower spatial resolution. Setting these relatively low capacities
as lower bounds to the coarser model does not lead to any additional costs because the
optimal capacities are above these bounds anyhow. The lower bounds are non-binding. Con-
sequently, the sensitivity is determined by the additional cost arising from setting the optimal
capacities of the coarser model as lower bounds to the finer resolved model. Apparently,
these additional cost are small compared to the costs arising from modifying the temporal
resolution. When the spatial resolution is not modified, both differences in the Equation for
the sensitivity metric (Equation (5.3)) are non-zero. This causes the sensitivity between two
models of the same spatial but different temporal resolutions, i.e. (N, 1H) and (N, 24H) to
be larger as between two models of different spatial and temporal resolutions (N, 1H) and
(M, 24H).

5.4 Discussion

In this study, we introduced a novel method to study the sensitivity of power system opti-
misation models to different input data scenarios. Core of this method is a metric which is
based on setting the decision derived from using one input data set as the lower boundary
to the PSEM solving the same program with another parameter scenario. In the sense of
modifying and re-solving the original optimisation problem it is comparable to the methods
applied by Nacken et al. [2019] and Neumann and Brown [2019]. However, we quantify the
sensitivity by one number – the additional cost arising from misallocating generation, storage
and transmission capacities caused by using information for long-term planning which differs
from the information the model experiences in short-term operation – instead of exploring it
visually.
In order to test this methodology, we used a simplified setup of a European power sys-

tem model. For instance, we limited the available technologies for electricity generation to
OCGT, wind, solar and hydro power. Other technologies such as nuclear or combined-cycle
gas turbines have not been considered. Furthermore, no coupling of the electricity sector to
others sectors has been modeled. However, the explanations for the described sensitivities
are rather general. We believe that including more technologies and/or incorporating sec-
tor coupling would not influence these general findings and the general applicability of the
proposed method.
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In future research, it seems reasonable to compare and combine the proposed methods
with the MGA approach of Nacken et al. [2019] or the methods to investigate the shape of
the solution space proposed by Neumann and Brown [2019] to study the uncertainty of energy
system models. Furthermore, the sensitivity to modifications in the temporal resolution could
be further investigated by applying the approach of coupling design periods introduced by
Gabrielli et al. [2017] or the time series aggregation approach based on hierarchical clustering
with connectivity published by Pineda and Morales [2018].

5.5 Conclusions

From the results described above we draw the following conclusions:

1. In summary, we found an on average sensitivity to the choice of the underlying weather
data. Our results indicate that the period 2000 through 2006 is not suitable for deriving
general conclusions about the optimal design of the European power system. It let to
the highest misallocation of generation and storage capacities compared to the other
periods considered. This finding emphasizes the importance of using representative
weather data sets and demonstrates how our metric can be used to identify them.

2. Similarly, the capital cost of generation assets should be defined according to the state
of the art. The sensitivity to the geographical distribution of the cost of capital was
found to be as high as the sensitivity to the capacity factor time series.

3. As long as the temporal resolution of the underlying time series does not include any
information about microscale meteorological processes, the spatial resolution of the
power system model is of minor importance. The sensitivity to increases and decreases
in the number of nodes is relatively small. Modeling the European power system with
only a few dozens of nodes seems reasonable. This may change when more detailed
information about the regional distribution of the demand and demand-side flexibilities
(e.g.) are included.

4. In contrast, the temporal resolution of the underlying time series must be chosen
carefully, especially with storage devices involved. The power system model shows the
highest sensitivity to modifications of the temporal resolution across the characteristic
storage horizon of the storage devices. As a conclusion, the temporal resolution should
be chosen such that the variability, which the storage devices are supposed to balance,
is well represented. Particularly, the temporal resolution should be greater than 6-hourly
when daily storage units – such as batteries – are considered. Contrarily, time series
with daily resolution might be appropriate when only weekly and/or seasonal storage
types are part of the model.

We showed that common PSEM exhibit significant sensitivities. Considering the potential
political and societal impacts of power system studies, it appears crucial to quantify and
report these model sensitivities and uncertainties along with the model results.
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5.6 Experimental Procedures

5.6.1 Power System Model and Data

In this study, we investigate the sensitivity of a common power system expansion problem
to (i) different capital cost assumptions (ii) the capacity factor time series for the available
volatile renewable resources, (iii) different temporal and spatial resolutions as well as (iv)
different model formulations for coupled and decoupled representative periods of different
lengths. For a mathematical formulation of PSEM please see Section 2.1.
Upper bounds for system-wide transmission capacities and CO2 emissions are defined in

Equation (2.7) and (2.6), respectively. For this paper, we assumed a global limit of three
times today’s net transfer capacities (3·31.25 TWkm) as an appropriate compromise between
cost-optimal extension and technical and social concerns. Inline with European emission
reduction targets, CO2 emissions are limited to 5 % of the historic level of 1990.
For this study, we use the PyPSA-EUR model published by Hörsch et al. [2018a]. In its full

spatial and temporal resolution this model consists of 3567 substations and 6047 transmission
lines and covers one year in hourly resolution. It includes time series of capacity factors for
onshore and offshore – where applicable – wind power as well as solar PV power and time
series of electricity demand for each substation. Furthermore, time series for the inflow
into hydro reservoirs and runoff river power plants, based on a potential energy approach
Kies et al. [2016g], and upper bounds for the extendable generation capacity per renewable
technology and substation are included.
Capacity factor time series are commonly derived from reanalyses data sets [Jurasz et al.,

2020]. In PyPSA-Eur, time series for wind power capacity factors and the inflow to hydro-
electric power plants are derived based on the ERA5 reanalysis [Copernicus Climate Change
Service (C3S), 2017]. Onshore and offshore wind power capacity factors have been computed
using the power curves of a 3 MWVestas V112 with 80 m hub height and the NREL Reference
Turbine with 5 MW at 90 m hub height, respectively. Solar PV capacity factor time series
have been computed from the Heliosat (SARAH) surface radiation data set [Pfeifroth et al.,
2017] using the electric model of Huld et al. [2010] and the electrical parameters of the
crystalline silicon panel fitted in the same publication. All solar panels are assumed to face
south at a tilting angle of 35 degrees. Hourly electricity demand for all European countries
has been obtained from the European Network of Transmission System Operators (ENTSO-
E) [ENTSO-E, 2012] and assigned to substations via a linear regression of the GDP and
the population. Upper limits of generation capacities have been derived by restricting the
available area to agricultural areas and forest and semi natural areas given in the CORINE
Land Cover data set [Corine Land Cover, 2017] and by excluding all nature reserves and
restricted areas [Natura 2000, 2016]. From the available area, the maximally extendable
generation capacity has been computed via fixed densities of 3 MW per square kilometer
for onshore wind and 1.45 MW per square kilometer for solar PV, respectively. For further
details on the data set and the underlying methodology please see Hörsch and Brown [2017].
From this data set, the parameters for the corresponding PSEM (2.1)-(2.15) have been

defined. Therefore, we fixed the nominal power of all hydro power plants and pumped hydro
storage units to the values reported by Kies et al. [2016b], while the nominal power of wind,
solar PV and open-cycle gas turbine (OCGT) power plants can be expanded within given
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bounds. Additionally, we consider two generic storage types with fixed power-to-energy ratio
r :

1. batteries: r = 6 h

2. hydrogen storage: r = 168 h

Their nominal power can be expanded as well. For each technology the investment and
operational costs depicted in Table 2.1 have been used.

In full resolution, this model can hardly be solved (compare Section 2.2). Therefore, we use
the network clustering algorithm introduced by Hörsch and Brown [2017] to derive clustered
versions of the original data set with 45, 64, 90 and 128 substations, respectively. The
time series aggregation method described in section 5.6.2 is then applied to these clustered
networks.

Although most PSEM aim at finding optimal solutions for power system design, they may
significantly vary in structure and in scope. For a list of models see for instance the Open
Energy Platform (https://openenergy-platform.org/factsheets/models/).

5.6.2 Reducing the Spatial and Temporal Resolution of PSEM

In general, two types of time series aggregation methods can be distinguished. The first one
aims at decreasing the number of time steps by reducing the resolution of the parameter
time series. The downsampling approach described below, for instance, can be assigned to
this class.

The second class aims at decreasing the number of time steps, while keeping the temporal
resolution unchanged. In this way, as much of the temporal variability as possible shall be
conserved. Usually, this is achieved by selecting a limited number of representative design
periods from the original time series. Depending on the periods’ lengths the variability on
different temporal scales can be retained. This, of course, breaks the natural order of the
time steps and, consequently, no variability on time scales longer than the periods’ lengths
can be pictured. Hence, ways need to be found, which allow to model the variability on
long time scales (months - seasons), which is represented by the natural inflow into hydro
power plants or the seasonal cycle in electricity demand, e.g.. For an overview of these
methodologies see Pfenninger [2017a] and Kotzur et al. [2018].

In order to account for different time step intervals, weightings need to be defined for each
time step considered in the expansion problem: first, in the objective (wt in Equation (2.1))
and second, in the definition of the storage units’ state of charge (ωt in Equation (2.4)).
For this study, we applied a simple downsampling technique. It averages the original

exogenous parameter time series over consecutive time spans of length τ . Hence, it yields
T/τ time steps at constant intervals. The snapshot weightings wt and ωt are set to τ .
The spatial resolution of the PSEM is modified by applying the network clustering approach

introduced by Hörsch and Brown [2017]. The original model is clustered to 45, 64, 90 and
128 nodes.

60

https://openenergy-platform.org/factsheets/models/


5.6 Experimental Procedures

5.6.3 Computing the misallocation metric

For each of the parameter sets αi the expansion problem (2.1)-(2.15) is first solved without
any lower bounds to the nominal power. The resulting solution vector for the cost-optimal
generation capacities G∗n,s is then set as the lower bound to the nominal power for the
respective partner problem αj :

[Gn,s ]
αj
αi
≥
[
G∗n,s

]αi
0

(5.8)

Following this procedure in both directions delivers the terms of Equation (5.3).
In case the number of substations of the two parameter sets differs, i.e. Ni 6= Nj , the lower

bounds for each parameter set are computed from the corresponding cluster of buses of the
other parameter set: LetNi = {Si ,1, Si ,2, . . . , Si ,m, . . . , Si ,Ni},Nj = {Sj,1, Sj,2, . . . , Sj,k , . . . , Sj,Nj}
be the two sets of clusters of buses derived from the original full-resolution data set with
|Ni/j | = Ni/j . In the clustered networks, each of these clusters S is merged into one single
bus n(Si ,m), n(Sj,k). Then, the lower bound to a generator of technology s at a bus of set
Ni is set to the weighted sum of the optimal capacity of the buses of set Nj and vice versa:

[
Gmin
n(Si ,m),s

]αj
αi

=

Nj∑
k=1

wk

[
G∗n(Sj,k),s

]αi
0

,∀Si ,m, n(Si ,m) (5.9)

where the weights wk are determined from the number of common nodes of the two clusters
Si ,m, Sj,k :

wk =
|Si ,m ∩ Sj,k |
|Sj,k |

(5.10)

Here, |Si ,m ∩ Sj,k | is the number of nodes, which appears in both clusters, i.e. the clusters’
intersection.
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Extending Research Questions and Outlook

6.1 Correlation Lengths of Wind and Solar Power

In meteorology, there is a clear relation between a phenomenon’s characteristic temporal
and spatial scale. Usually, one differentiates between the microscale, the mesoscale and
the synoptic scale. While the microscale basically includes turbulent motions acting within
second to minutes and with a spatial extent of millimeters to centimeters, the mesoscale
covers phenomena like thunderstorms, hurricanes, fronts and convective systems occurring
within minutes to days and on several kilometers extent. The synoptic scale includes high and
low pressure systems possibly lasting for up to several days on 100 to 1000 kilometers extent
Grue et al. [2012]. Hence, hourly weather time series – as used throughout this thesis – only
contain the variability introduced by mesoscale and synoptic processes. Sub-hourly microscale
processes, e.g. the sub-second perturbations of the grid caused by turbulent wind power
found by Haehne et al. [2019], are filtered out. As mesoscale and synoptic processes act on
relatively large spatial scales, the correlation lengths of wind speed can consequently be up to
several hundreds kilometers. For wind speed, Martin et al. [2015] found a correlation length
of 273 km in Canada and 368 km in Australia. They computed these correlation lengths
for the high frequency, stochastic, part of the time series by applying a high-pass filter and
by removing the seasonal cycle prior to estimating the correlation length. However, PSEM
have to cope with both aspects of the time series, the high-frequency (stochastic) and the
low-frequency (deterministic) part. It is the interplay of these two aspects which determines
the need for balancing and the optimal capacity share of the respective resources. Low
frequency variations, in general, exhibit an even higher correlation length as the stochastic
time series. For Europe, Schlott et al. [2018] estimated a correlation length in wind speed of
300 to 700 km which is likely to increase in Northern-Central Europe and to decrease around
the Mediterranean towards the end of the century due to climate change. Without applying
any data pre-processing we find that the spatial extent of the PyPSA-Eur model (5000 km
max) is not sufficient to determine the correlation length of the wind power capacity factor
(Figure 6.1 left). We do so by integrating correlation over distance via

ξ(rn) =

n∑
k=2

1

2
(rk − rk−1)(ρrk + ρrk−1

) (6.1)

for the PyPSA-Eur 1024 node setup. For calculating the correlation length, the pairwise
distance r and correlation ρ between all nodes have been computed. Correlation data has
then been sorted according to node separation. As ξ(rn) does not saturate until the largest
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Figure 6.1: Left: Integrated correlation data of wind power capacity factor time series for
the PyPSA-Eur 1024 node setup and different temporal resolutions; the value
at largest node separation is referred to as correlation length; correlation data is
integrated over separation using the trapezoid rule, for further details see Martin
et al. [2015]. Right: Average line length versus number of buses obtained from
clustering the original 380-kV network.

separation, the derived correlation length of approximately 670 km (the integrated correlation
at the largest node separation) still is an underestimate of the correlation length which the
model experiences.

Compared to wind power, the time series of the solar power availability exhibit a larger
deterministic component: the diurnal cycle. On the other hand, incremental changes might
be larger. The transition from cloud (shadow) to sun (light) is potentially faster than the
transition from windy times to less windy times. As sunrise and sunset occur at the same
time over large geographical areas, the correlation length of solar power is even larger as the
correlation length of wind power.

For the PyPSA-Eur network, the average distance between two nodes varies between
60 km for 1000 nodes and 350 km for the 45 node setup (Figure 6.1 right). These distances
are far below the estimated correlation length and although the amount of meteorological
information lost depends on the distance of the aggregated nodes, the loss of information –
at least of the kind of information which is relevant for investment decisions – when buses
are aggregated is comparably small. As described in Section 5.3.2, this is expressed in a
relatively small sensitivity to the spatial resolution. Presumably, this would only change
when time series with a higher temporal resolution would be used or when an even smaller
number of buses would be considered. Time series with a higher temporal resolution would
include a higher share of high frequency variability originating from microscale meteorological
phenomena. As these phenomena act on smaller spatial scales, the correlation lengths would
decrease, too. When the number of buses would be reduced further, the distance between
the aggregated nodes might exceed the correlation length.

Additionally to their temporal variability, time series can be described by their amplitude.
In the context of renewable resource assessment, the quality of the resource is commonly
described by the average or the sum of the capacity factor time series, the latter being
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referred to as full load hours. As shown in Section 5.3.2, this quantity varies as well but
with an ever lower frequency: on seasonal to climatological scales. The spatial variance
of the full load hours is to a large extent determined by the orography and the latitude.
Locations close to the shore, for instance, generally exhibit higher wind power full load hours
as locations upcountry. Locations far North are less sunny as locations in the South and,
hence, exhibit lower solar power full load hours. Consequently, there is no clear relationship
between the distance between two nodes and the difference in the full load hours and the
effect of aggregating nodes is hard to assess. It depends on the specific location.

6.2 Tracing the Flow of Electricity

In Section 2.3 I showed how the concept of Locational Marginal Pricing can be used to
allocate cost in a power system. Here, another mechanism based on tracing the flow of
electricity shall be introduced: The aim of flow tracing is to express one node’s generation
Gn,t =

∑
s gn,s,t as a function of the nodal loads Dn,t , i.e. the loads of all other nodes in

the network. Starting from the nodal balancing equation

Gn,t −Dn,t = F outn,t − F inn,t (6.2)

we write
F inn,t + Gn,t = F outn,t +Dn,t (6.3)

and define the nodal through-flows

Φd
n,t := F outn,t + Ln,t

Φu
n,t := F inn,t + Gn,t

(6.4)

where d and u denote the downstream and upstream case respectively [Bialek, 1996, Tranberg
et al., 2015]. From Equation 6.3 it can be seen, that Φd

n,t = Φu
n,t at any time.

Let Nn be the set of neighboring nodes of node n. We can then define two time dependant
subsets of neighboring nodes downstream of node n N d

n,t ⊂ Nn,t and upstream of node n
N u
n,t ⊂ Nn,t , respectively. Considering the downstream case, we can write for the load of

node n
Dn,t = Φd

n,t − F outn,t

= Φd
n,t −

∑
j∈N d

n,t

|Fn−j,t |

= Φd
n,t −

∑
j∈N d

n,t

anj,tΦ
d
j,t

(6.5)

with anj,t = |Fn−j,t |/Φd
j,t. In matrix form this yields

~Dt = Adt ~Φ
d
t

or

~Φd
t =

[
Adt
]−1 ~Dt

(6.6)
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Figure 6.2: Electricity exports to German regions in an idealised German electricity grid from
the North Sea (left) and Baltic Sea (right) [

√
GWh]; isolated scenario.

where
[
Adt
]−1 denotes the inverse of matrix Adt given by

Adij,t =


1 , if i = j

−ai j,t = − |Fi−j,t |
Φd
j,t

, if j ∈ N d
n,t

0 , else

(6.7)

Here again, |Fi−j,t | is the flow from link i to j . Equation 6.6 expresses the nodal through-flows
as a function of the nodal loads. For one node n we get

Φd
n,t =

N∑
k=1

[
Adt
]−1

nk
Dk,t (6.8)

To get a function for the nodal generation, we consider the generation of node n as an inflow
and write:

|F→n,t | = Gn,t =
Gn,t

Φd
n,t

Φd
n,t =

Gn,t

Φd
n,t

N∑
k=1

[
Adt
]−1

nk
Dk,t (6.9)

From Equation 6.9 we see, that each node k contributes

Gn,t

Φd
n,t

[
Adt
]−1

nk,t
Dk,t =: Γnk,t (6.10)

to the nodal generation of node n. Note, that Γnk,t has the unit of power. This approach
has been introduced by Tranberg et al. [2015] based on the derivations of Bialek [1996] and
used by Tranberg et al. [2018, e.g.] to investigate the interplay of different generation and
storage assets in a power network. Here, we will exemplary use this method to trace the
flow of electricity in an idealised German electricity network. The results of this investigation
could for instance be used for the definition of grid development plans and/or for allocating
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6.3 Parametric Optimisation

the cost for transmission grid expansion to specific generators and/or consumers. Let us
consider the same data set as used by Kies et al. [2016e], once in an isolated scenario, i.e.
without any connection to neighboring countries, and once in an embedded scenario, where
Germany is embedded in a European system. Here, each country is represented by one node.
In this setup, the electricity generated in the North Sea mainly distributes across the

Western part of Germany, while the electricity from the Baltic Sea mainly flows towards
the Eastern part including the major load centers Berlin and Munich (Figure 6.2). A similar
divided picture can be found for the other European countries (Figure 6.3). While the
electricity from the North Sea mainly contributes to fulfill the demand in France and the
Netherlands, electricity from the Baltic Sea is mainly (outside Germany) consumed in Poland.
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Figure 6.3: Electricity exports to European countries from the North Sea (left) and Baltic
Sea (right) [TWh]; idealised German electricity grid; embedded scenario.

6.3 Parametric Optimisation

This section has appeared as:
Schyska, Bruno U., Pinson, Pierre, Kies, Alexander and von Bremen, Lueder (2017):

Reducing Power System Expansion Problems via Variable Parameterization, proceedings of
the Wind Integration Workshop, Berlin, 2017

Countries worldwide decide to transform their power systems – from fossil fuels to re-

newable sources. The question about the optimal pathway along which this transformation
shall take place becomes increasingly important. Power system expansion models used to
give answers are complex and computationally expensive. To overcome this issue, so called
scenario reduction techniques are applied. The number of scenarios, i.e. the number of
time steps considered, shall be minimised. In contrast to these techniques, we introduce an
approach, which addresses the size of the power system. Installed capacities are estimated
as a linear regression of pre-chosen, non-linearly weighted basis functions.
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6.3.1 Introduction

As explained in Section 2, power system expansion models are optimisation problems aiming
on minimising investment costs plus some operation costs. While the investment costs are
determined by the investment costs of the different generator types and the total amount of
capacity, which shall be installed, operation costs strongly depend on the temporal fluctuation
of (i) the generation from volatile sources and (ii) the fluctuation of the demand. Since the
temporal fluctuation of the generation is not only determined by meteorology (the fluctuation
of wind and solar irradiance) but also by the installed capacities, minimising investment
costs and minimising operation costs are coupled by this very capacity (compare Section
2.2: The expansion problem needs to find the optimal trade-off between investment costs
and operation costs. The fact that investment and operation levels are coupled, however,
yields complex and computationally expensive problems – especially when the power system
under consideration is large and when many different generator types shall be considered.
Furthermore, the operation part of the expansion problem would ideally be solved for a very
high number of scenarios that covers the full range of variability, as described in Section 2.5.
To overcome the issue of high computational costs, so called scenario reduction techniques
are applied (e.g. Liu et al. [2017], Baringo and Conejo [2013], Pina et al. [2011], compare
Section 5.6.2). These techniques aim on minimising the number of scenarios to a feasible
number without losing to much information about the variability.

The aim of this section is to present an approach, which – in contrast to scenario reduction
techniques – addresses the size of the power system. We developed an approach to reduce
the number of decision variables in a power system expansion problem via spatial models: The
installed capacities are estimated as a linear regression of pre-chosen, spatially weighted (using
Gaussian weighting kernels) basis functions. We show results from applying this approach to
a simplistic expansion problem and a model of an idealized German power system consisting
of more than 400 nodes and more than 1000 links.

6.3.2 Methodology

For this study, we consider a heuristic version of an power system expansion problem as
defined in Section 2.1. Instead of assigning costs to the expansion of transmission capacities,
we minimise the quadratic flows along the branches. The objective is of the form

min
ḡ,g,f

∑
n,s

Cn,s ḡn,s +
∑
n,s,

On,sgn,s,t + a
∑
l ,t

f 2
l ,t (6.11)

where a is a tuning parameter to control the influence of the flow term on the optimisation
result. Transmission capacities are set to infinity (f̄l = ∞ ∀ l). This approach can be
interpreted as a heuristic way to assign costs to transmission.

In order to reduce the computational costs of this model, we introduce the following
approach: Assume the nominal power of renewable power generation technologies can be
expressed as a model of the form

ḡn,s = S(xn,β) + εn,s (6.12)
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where

S(xn,s ,β) =

|B|∑
i=1

J∑
j=1

βi jπj(xn,s)bi(xn,s) (6.13)

and bi(xn,s) ∈ B being the ith basis function evaluated at location xn,s , πj(xn,s) being a
non-negative weighting kernel centered at position µj evaluated at location xn,s and β =

(β1, . . . , β|B|J)T being a vector of unknown random coefficients. This approach is similar
to the dynamic models for spatio-temporal data introduced by Stroud et al. [2002]. The
expansion model can then be reduced by taking into account the following constraint

ḡn,s =

|B|∑
i=1

J∑
j=1

βi jπj(xn,s)bi(xn,s) + εn,s ,∀n, s (6.14)

Following the idea of least-squares (’choose regression coefficients such that the sum of
quadratic residuals is minimised’), we furthermore adopt the objective function as

min
ḡ,g,f

∑
n,s

(
Cn,s ḡn,s + ε2

n,s

)
+
∑
n,s,

On,sgn,s,t + a
∑
l ,t

f 2
l ,t (6.15)

(added ε2
n,s to the first term). Note, that in Equation 6.14 the variables for the nominal

generation capacities ḡn,s are no longer independent but coupled via the βi j – the new
decision variables. In this case, the number of free decision variables reduces from |N ||S| to
|B|J which reduces the complexity of the linear program.

For this study, we choose linear surfaces as basis functions:

B = {b1(xn,s), b2(xn,s), b3(xn,s)}
with

b1(xn,s) = 1 = const.

b2(xn,s) = xn1,s ,∀s
b3(xn,s) = xn2,s ,∀s

(6.16)

evaluated at locations
xn,s =

(
〈Dn〉t , 〈G̃n,s〉t

)T
,∀ s ∈ SREn (6.17)

where 〈. . . 〉t denotes the arithmetic temporal mean and SREn is the set of volatile renewable
resources at node n. Furthermore, we use spherical Gaussian weighting kernels with uniform
variance σ = 1

πj(x) =
1√
2π

exp (−0.5(x− µj)2) (6.18)

Kernel centers µj are determined by clustering the xn,s using the kmeans [MacQueen et al.,
1967] algorithm with J cluster centroids. Here, we set J = 50 and compare the results to a
reference with uniform weights π1 = π2 = π3 = 1. In the reference setup, the ḡn,s will be
the z-value of a tilted plane at locations xn,s. β1 then determines the overall offset of that
plane in z-direction and β1 and β2 determine the tilt in the direction of 〈Dn〉t and 〈G̃n,s〉t
respectively.
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For illustration purposes we, furthermore, consider one time step only using averaged
values of Dn,t and G̃n,s,t and only one conventional generation technology (OCGT) as well
as only one renewable generation technology (wind). Variable operation costs for wind power
generation are set to zero, the parameter a to one. OCGT generation capacities are assumed
to be available as needed, i.e. only the deployment of wind power capacity is optimised. Eq.
6.15, hence, further simplifies to

min
βi ·j ,fl ,t ,εn,s

∑
l

f 2
l +∑

n

(CVwindgwind,n + ε2
wind,n+

COOCGT
(
〈Dn〉t − gwind,n〈G̃wind,n〉t

)
(6.19)

This model is applied to the idealistic German power system used by Kies et al. [2016e]
consisting of 402 buses and 1024 branches. 〈Dn〉t and 〈G̃n,s〉t are computed from weather
data obtained from reanalysis products spanning three years with hourly resolution (same
data as Kies et al. [2016e]). Costs assumptions for capital costs of wind power (1182
e/kW overnight) and variable operation costs for OCGT (58.4 e/MWh) were taken from
Schlachtberger et al. [2017]. The expansion model was solved using the R-Gurobi interface.

6.3.3 Results

Figure 6.4 illustrate the results. For the left column both solutions obtained from the full and
reduced model respectively have been interpolated onto a grid in the

(
〈D〉t , 〈G̃n,s〉t

)
domain.

Each of the three sub-figures in the left column of Figure 6.4 will can be explained as follows:
Figure 6.4 top, left shows the full, meaning non-parameterised, solution. Obviously, the

highest covariance can be found between the installed capacity and the average demand.
The higher the load, the higher the installed wind power capacity. This positive correlation is
less pronounced with the capacity factor. There are, however, a few buses characterized by
relatively low demand and relatively high capacity factors exhibiting relatively high wind power
capacities while others characterized by average demand and low capacity factors exhibit zero
installed capacity. The latter is visible from the sharp decrease in installed capacities at the
left border of the plotted surface. The reduced problem with uniform weights (Figure 6.4
center, left) is able to capture the main dependency on the average demand. Since we chose
linear surfaces as basis functions, the plotted surface is a (tilted) plane. Any non-linearities
(as the sharp decrease at the left border of the surface mentioned above) cannot be captured,
which results in a more uniform distribution of wind power capacities. Note that the lowest
point of the plane is the left corner in the front. Installed capacity increases towards the right
corner (buses with very low demand but high capacity factors mainly located at the North
Sea coast, compare Fig. 6.4 center, right). In contrast to the solution using uniform weights,
the solution with 50 Gaussian weighting kernels is able to produce non-linear surfaces (Figure
6.4 bottom, left). The variance illustrated in Figure 6.4 top, left is captured well. Note that
the grid is only evaluated at locations xn,s . Any effects at the boundary of the plotted surface
or at any locations in between the xn,s are of no consequence. Hence, the spatial distribution
of installed wind power capacity compares well with the full solution (Figure 6.4 top, right
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and bottom, right).

6.3.4 Conclusion

We showed that variable parameterisation is a valuable tool to reduce the complexity of
power system expansion models and the computation costs resulting from this complexity.
Our model was proven to be able to reproduce the full solution well – even with a rather small
number of basis functions. We plan to apply the presented approach on a detailed model of
the European power system.

6.4 Stochastic Optimisation

Until now, we considered a linear program, which can be used to derive the cost-optimal
expansion of power systems. It derives the optimal system design based on the investment
cost for generation, storage and transmission assets, the marginal cost for generation and
time series of electricity demand and resource availability. As described in Section 2.2, the
linear program consists of an upper level for the investment decisions and a lower level for
the operational decisions. More precisely, the lower level is an implementation of an idealised
network-constraint electricity market. Based on the marginal cost of the generation assets it
derives the least-cost generation schedule which ensures that the demand is met at any place
in space and time and that the network equations are fulfilled. In the formulation used here
(Equations (2.1)-(2.15)), we assume a perfect foresight for the availability of renewable re-
sources: We assume, that the market is cleared at exactly that time the electricity is needed
and that we know the exact availability of all generation assets in the system at that time.
This perfect foresight is implemented by deriving the availability time series from reanalysis
products and by optimising the market clearing for at least a whole year at once. This of
course is a keen simplification. In reality, the electricity market is cleared at several stages
prior to the actual delivery: from day-ahead to intra-day. To be able to do so, providers of
renewable electricity and market operators rely on forecasts. As wind speed, solar irradiance
(the sources if wind and solar power) and electricity demand are stochastic variables, fore-
casts of these quantities are subject to uncertainties [Pinson, 2006]. In numerical weather
prediction, this uncertainty is commonly accounted for by not only deriving one forecast of a
specific quantity, but an ensemble of several ideally independent forecasts (see for instance
Molteni et al. [1996]). These forecasts are called ensemble forecasts or stochastic forecasts.
While a single (point) forecast would be called deterministic forecast.
A simple network-constrained market model can be formulated as:

min
gn,s,t ,za

∑
n,s

On,sgn,s,t (6.20)

subject to constraints (2.2), (2.3) and (2.15). Where the resource availability G̃n,s,t in (2.3)
is derived from forecasts and the nominal power of the generation assets is no longer a
decision variable but a parameter to the optimisation problem, i.e. gn,s = Gn,s . For now, let
us assume that the market (6.20) is cleared day-ahead, meaning at noon of the day prior to
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the day of delivery. Hence, we consider forecasts with a forecast horizon of 12 - 24 hours.
Let us, furthermore, assume perfect foresight of the electricity demand, i.e. Dn,t is known.

Now, we additionally consider the stage of delivery. At that stage, adaptations to the
day-ahead schedule might be necessary, due to errors in the power forecasts. The actual
observed availability might be different from the forecasted. Similarly to Morales et al. [2014],
we assume, that this discrepancy can be balanced by some flexible producers. These flexible
producers are able to reduce or ramp up their generation with very short lead times. However,
the willingness to do so comes at relatively high costs. Flexible providers receive premiums
for modifications to their day-ahead schedule. Hence, keeping the balancing actions small
is beneficial in the sense of maximizing welfare (compare Section 2.3). Which generator
optimally balances the potential forecasting errors, again, is decided on a market. According
to Morales et al. [2014] such a balancing market can mathematically be defined as:

min
g

+/−
n,s,t ,za

∑
n,s

(
O+
n,sg

+
n,s,t +O−n,sg

−
n,s,t

)
(6.21)

where g+/−
n,s,t denote the deviation from the day-ahead schedule Gn,s,t in either direction

and O+/−
n the corresponding cost, respectively. Equation (6.21) is subject to the following

constraints:

∑
s

(
g+
n,s,t − g−n,s,t

)
−
∑
l

Kn,l fl ,t + sn,t = Dn,t −
∑
s

Gn,s,t ,∀n, t (6.22)

g+
n,s,t − g−n,s,t ≤ Õn,s,tḠn,s − Gn,s,t (6.23)

g−n,s,t ≤ Gn,s,t (6.24)

(6.22) ensures the nodal balances after modifying the original schedule. (6.23) limits the
modified generation schedule for each generation asset to its actual observed availability and
(6.24) limits the reduction from the original schedule to the original day-ahead schedule. In
(6.22), an auxiliary load shedding variable sn,t is introduced in order to ensure the feasibility
of the constraint. Note that in (6.23) the forecasted availability G̃n,s,t has been replaced by
the observed availability Õn,s,t .

As shown by Morales et al. [2014], this setup of two separate market stages potentially
leads to non-optimal market clearings on the day-ahead market because the day-ahead mar-
ket does not account for the uncertainty in power forecasts and, hence, cannot anticipate
potential additional costs originating from necessary balancing actions. Both market stages
are considered independent. But in fact, they are not. This can be clearly seen from the
fact that the solution of the day-ahead market enters the balancing market as a parameter,
i.e. Gn,s,t = g∗n,s,t . Consequently, gn,s,t can be considered a complicating variable (compare
Section 2.2) and both market stages can be combined to form a bi-level optimisation prob-
lem, which derives the optimal day-ahead schedule while implicitly taking into account the
uncertainty in the power forecasts [Morales et al., 2014]:

min
g,g+/−,s,za

∑
n,s

On,sgn,s,t + E[CB]t (6.25)
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subject to (2.2), (2.3), (2.15) and (6.22) - (6.24). Here, E[CB] denotes an estimate of the
expected balancing costs. This estimate is derived from a set of scenarios. Each of these
scenarios computes the expected balancing cost from one member of an ensemble forecast
and the day-ahead decision gn,s,t . Let us, in the following, call (6.20) a deterministic and
(6.25) a stochastic day-ahead market. In both cases, the total cost for electricity generation
can be computed as the sum of the optimal solutions from the day-ahead and the balancing
market. It has been shown by Morales et al. [2014], that a stochastic market clearing leads
to overall reduced cost. Overall, this setup can be considered as decision making under
uncertainty (refer to Conejo et al. [2010, e.g] for an introduction).

Here, we use this setup to quantify the economical value of improved probabilistic power
forecasts. The hypothesis is as follows: When the forecast skill is increased, the expected
balancing costs can be estimated more precisely and the total cost for electricity generation
can be reduced further. If this hypothesis holds, each improvement in forecast skill could be
assigned an economical value in the sense of a reduction of costs.

For a first proof of concept let us consider the following setup: The power system is
defined as an optimised version of the PyPSA-Eur data set with 256 nodes. The nominal
power of generation, storage and transmission assets is derived by solving (2.1) - (2.14)
with a global CO2 emission limit of 5 % of the level of 1990 and a global transmission
capacity limit of 1.5 times today’s value over one year. For this idealised power system,
the deterministic market is implemented and solved first. Then, the stochastic market is
implemented and solved for two different ensemble forecasts. The first ensemble forecast
considered is the raw ensemble of the ensemble prediction system (EPS) of the European
Center for Medium-range Weather Forecasts [Molteni et al., 1996]. This EPS provides
50 ensemble members for each forecast horizon considered here. The second ensemble
forecast considered is a bias-corrected version of the raw ensemble. In order to do this
bias correction, yearly (for wind speed) and monthly (for solar irradiance) biases of the
ensemble forecast compared to a reference data set have been computed and subtracted
from the raw ensemble. Here, the ERA5 reanalysis [Copernicus Climate Change Service
(C3S), 2017] serves as both, the reference for the bias correction and the observations used
for the balancing market. I measure the increase in forecast skill via the Continuous Ranked
Probability Skill Score (CRPSS) [Gneiting et al., 2007]. This skill score evaluates the forecast
skill by the quadratic area between the cumulative probability function of the probabilistic
forecast and the observation.

As shown in Figure 6.5 top, the bias correction leads to an increased forecast skill for wind
power mainly in regions of pronounced orography (the Alps, the Balkan and Norway). For
the whole system, the forecast skill could be improved by approximately 5 %.

In order to investigate whether this increase in forecast skill has an economical effect,
we solve the stochastic market model two times for each day in January through March
2017: first with the raw ensemble forecast and second with the bias-corrected forecasts.
The difference in these two solutions is depicted in Figure 6.5 center. Obviously, the largest
differences occur in Italy, the South of Spain and France, Denmark and in England. Note,
that the sum of all changes sum up to zero, since the same demand for electricity must
be met in both setups. Hence, we only observe shifts of electricity generation from one
generator to another. Nevertheless, these changes in the day-ahead schedule clearly influ-
ence the required balancing actions. The difference in nodal balancing cost shows a quite
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heterogeneous picture: In France, Northern England, the Iberian Peninsula, Northern Italy,
Southern Germany, Austria and the Czech Republic balancing costs decrease. In contrast,
they increase in Poland, Northern Germany, the Benelux and Southern Italy. Overall, the
day-ahead schedule derived from the stochastic market clearing with improved forecasts leads
to a reduction in balancing cost of 20 %.

In summary, we can – for the chosen power system – relate an increase in forecast skill
of 5 % to a decrease in balancing cost of 20 %. Whether this is a lucky circumstance
or systematic still has to be proven. Therefore, this work is currently extended to cover a
longer time frame, to use more differently calibrated forecasts and system designs and with
additional intra-day market stages between the day-ahead and the balancing market.

6.5 Outlook

As described above, power system models can mathematically be formulated as linear or
mixed-integer programs of varying complexity. Addressing all parameter coactions and sen-
sitivities of these models would clearly go beyond the scope of this thesis. Therefore, I
focused my analysis on the coaction of meteorological and economical parameters. Coac-
tions between technical and economical parameters and sensitivities on technical parameters,
as e.g. the efficiencies of storage units, have not been considered. Furthermore, I kept the
model setup comparably simple. On the one hand, this obviously neglects some aspects of
real-world power systems and might, hence, appear arbitrary and unrealistic. On the other
hand, the simplifications made reduce the complexity of the model, which allows to perform
the simulations within reasonable time and at reasonable computational cost. The model’s
reduced complexity makes the model easier understandable for non-experts, allows to easily
reproduce the simulations and, consequently, contributes to the transparency of the results
(compare Pfenninger [2017b], DeCarolis et al. [2017]). Additionally, the results obtained
from the simulations should, from my point of view, be as generally applicable as possible
and not characteristic to only one specific model design. Although modifying the model
design and/or complexity clearly may change the simulation results, the general conclusions
drawn from them should not significantly be affected.

Nevertheless, it is clear, that this thesis only addresses some aspects of power systems.
Indeed, power systems are much more complex as power system expansion models can picture.
This gives rise to the question how the ecological and/or societal scale could be incorporated,
for example by linking power system optimisation to life cycle assessment and by investigating
the resource needs and energy returned on energy invested (EROI) [Cleveland et al., 1984]
for different system designs and shares of renewables.

In the future, this thesis might be extended by performing a dynamical fixed-point analysis
of the availability time series as Mücke et al. [2015] did for power curves and Rinn et al.
[2015] for market stages at the stock exchange. These fixed-points might be linked to
weather situations or used as a weather classification mechanism itself. Furthermore, the
results from research question 3 could be used to set up a framework for the quantification
and comparison of model sensitivities in the context of the activities of the open modeling
initiative (see http://openmod-initiative.org/) and/or to derive representative data
sets for power system expansion studies.
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Chapter 7

Summary and Conclusions

In this thesis, I compiled an overview of parameter coaction in numerical power system mod-
eling and of the sensitivities of a common power system expansion model on the specific
parameter choices and model resolutions. The concept of parameter coaction has been in-
troduced via a simple toy-model and some theoretical derivations of the shadow prices in
power system optimisation programs and of the numerical complexity of these programs. In
particular, I explained how complicating variables and constraints, which couple the invest-
ment problem with the operational problems in power system expansion models, prevent the
efficient distributed solution of these models, how the concept of Locational Marginal Prices
derived from the corresponding dual can be used to allocate costs within a power system
and how spatial smoothing, storage units and sector coupling influence the optimal mix of
generation resources and the characteristics of the residual load.
By addressing the three research questions (i) How is the relation between weather classes

and wind power production? (ii) How do regional differences in cost of capital influence
the optimal design of power systems? and (iii) How large is the sensitivity of power system
expansion models? I exemplarily investigated some of the aspects of parameter coaction
in more detail, focusing on the coaction of meteorological and economical parameters: For
research question 1 I bridged the gap between traditional meteorology, i.e. the definition of
weather classes, and the issue of operating a power system with high shares of wind power
by showing that the availability of the wind resource can clearly be linked to the prevailing
weather situation and that more accurate estimates of the actual wind power production can
be derived when the information about the weather situation is explicitly taken into account.
Research question II focused on the importance of making adequate assumptions for the
model parameters, here the investment cost for generation assets. I explained that whether
regional differences in these cost are considered or not significantly influences the optimal
design of a highly renewable European power system and the way how costs are allocated
within the system via the Locational Marginal Prices of Electricity. The sensitivity of power
system expansion models has been investigated in research question III by introducing a
novel misallocation metric for quantifying the sensitivity. Again, I stressed the importance
of making adequate parameter choices. Furthermore I concluded, that sensitivities should
be reported along with the model results in order to increase the transparency in power
system modeling and I explained why power system expansion models in hourly resolution are
relatively insensitive to the spatial resolution by considering one basic meteorological aspect
of wind and solar power: their correlation lengths. In fact, the sensitivity of power system
expansion models to a specific parameter choice can be interpreted as the strength of the
coaction of that specific parameter with the other parameters: The higher the sensitivity, the
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stronger the parameter co-acts with the other parameters towards the optimisation result.
Possible extensions of the presented works have been given in Section 6. Here, I showed

how probabilistic power forecasts can be incorporated in electricity market models, how these
improved market models can be used to quantify the economical effect of increased forecast
skill, how the concept of flow tracing can be used as an alternative way to allocate costs
and how the concept of variable parameterisation can be used to decrease the numerical
complexity of power system expansion models.

In summary, this work can contribute to a deeper understanding of the specific character-
istics of power system expansion models and their sensitivities. Power system models are a
valuable tool to address many of the open research questions in the context of the trans-
formation of power and energy systems. I believe that power system modeling can make
significant contributions to the societal decision-making process and, hence, support the
technical, societal and political progress which is needed to cope with global environmental
change. In fact, getting decisions societal and politically accepted might be more challenging
as making the decision itself but this is beyond the scope of this thesis. In this context, the
reliability of the models and the results obtained from them is crucial. Hence, power system
modeling should clearly dedicate itself to transparency and openness in research. Further-
more, models should on the one hand be as close to what people experience in everyday
life as possible and on the other hand explainable also to non-experts. Simplifications where
needed should be conscientiously motivated and discussed.
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Appendix

Load Flow Calculation

Starting point of the theoretical derivation of load flows are the line equation for the active
power Φl and reactive power Ql over a transmission line l connecting a bus n with another
bus m in an alternating current (AC) network:

Φl = Φl(δn,m, Vn,m) = |Vn|2gl + |Vn||Vm| (gl cos(δn − δm) + bl sin(δn − δm)) (A1)

Ql = Ql(δn,m, Vn,m) = |Vn|2bl + |Vn||Vm| (gl sin(δn − δm)− bl cos(δn − δm)) (A2)

with Vn,m being the voltage magnitude at buses n and m respectively, δn,m being the voltage
angles and bl , gl being the susceptance and conductance of the transmission line, respectively.
In the following, this section follows the derivations of Kies [2017] on the nodal injection
pattern. It introduces the so-called DC-approximation for load flows in AC networks, which
can also be found in text books.
Aim of the DC approximation is the linearization of the above-mentioned non-linear equa-

tions, in order to be able to include the load flows, i.e. the active power, in a linear optimiza-
tion problem. It bases on the following four assumptions:

1. Reactive power in an AC network is small and can consequently be neglected.

2. Voltage angle differences are also small, hence sin(δn − δm) ≈ δn − δm ,∀n,m ∈ N

3. The conductance is much smaller than the susceptance, such that the corresponding
term can be neglected.

4. Voltage magnitudes are approximately one.

When these assumptions hold, equation A1 can finally be simplified to

Φl = bl(δn − δm) = fl (A3)

This equations expresses the load flow along a transmission line l as a function of the voltage
angles at the terminating buses n andm. Due to its similarity to the load flow in DC networks,
where voltage angles are replaced by the voltage magnitudes, this equation is called the DC
approximation.
Physicality of the flows fl is ensured by invoking Kirchoff’s current (KCL) and voltage law

(KVL), which state that (i) the power reaching each bus must equal the power withdrawn
from the bus – either via attached lines or by consumption – and (ii) all partial voltages, i.e.
differences in the electrical potential, along a closed cycle sum up to zero. For the following
derivations we need to define the following three matrices:
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1. the incidence matrix K with

knl =


1 if line l begins at node n

−1 if line l ends at node n

0 otherwise.

(A4)

2. the diagonal susceptance matrix X with xl l = bl and

3. the network Laplacian Λ = KXKT

With the incedence matrix, the flows can be expressed as

fl = bl
∑
n

knlδn ,∀l = 1 . . . L (A5)

and KCL reads

pn =
∑
l

knl fl (A6)

=
∑
m

λnmδm ,∀n = 1 . . . N (A7)

where pn is the net active power at bus n, i.e. the difference between consumption and
generation, and λnm is the element of the network Laplacian Λ.
From these considerations, several different methods to determine the flow of electricity

in the framework of a power system model, i.e. to define constraint 2.15, can be derived,
for instance the well known Power Transfer Distribution Factors (PTDF). For this thesis, I
mainly used the following formulation (compare Hörsch et al. [2018b]): In order to determine
the active power flow, the voltage angles are set as auxiliary variables to the linear program
(2.1)-(2.15), i.e. za = δn, and the following corresponding constraints are invoked:∣∣∣∣∣∑

n

(
XKT

)
ln
δn

∣∣∣∣∣ ≤ fl ,∀l = 1 . . . L (A8)

pn =
∑
m

λnmδm ,∀n = 1 . . . N (A9)

δ0 = 0 (A10)

Here, (A8) prohibits line overloading, (A9) ensures the fulfillment of KCL and (A10) fixes the
voltage angle at a reference bus (the slack) because (A9) is under-determined. Compared to
the PTDF approach, this formulation increases the number of decision variables and equality
constraints. However, PTDF lead to a significant increase in the solution time for a number
of different test cases caused by dense matrices in the PTDF formulation and corresponding
large file sizes [Hörsch et al., 2018b].

In a more simplified setup, the transmission lines are replaced by simplified HVDC links. In
this case, the load flow along these links are introduced as additional decision variables and
the only constraint ensures that these flows do not exceed the net transfer capacity of the
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respective link (Eq. 2.14). This setup is used in chapter 4.
Note, that unless stated otherwise, a global transmission capacity limit constraint (equa-

tion 2.7) is invoked in all simulations limiting overall transmission capacity to a multiple of
today’s capacity. In this case, the price for transmission expansion is given by the dual variable
corresponding to constraint 2.7 and transmission costs Cl are consequently set to zero.

Research Question 2: Supplemental Figures

delta solar capacity

20 0 20

delta solar investment

2 0 2

Figure A1: Regional differences in installed solar PV capacities [GW] (left) and investments
[Bill. Euro] (right) between the homogeneous and the today scenario.

91



Appendix

delta onwind capacity

200 100 0 100 200

delta onwind investment

20 10 0 10 20

Figure A2: Regional differences in installed onshore wind capacities [GW] (left) and invest-
ments [Bill. Euro] (right) between the homogeneous and the today scenario.
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delta offwind capacity

20 10 0 10 20

delta offwind investment

5.0 2.5 0.0 2.5 5.0

Figure A3: Regional differences in installed offshore wind capacities [GW] (left) and invest-
ments [Bill. Euro] (right) between the homogeneous and the today scenario.
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delta gas capacity

10 5 0 5 10

delta gas investment

0.4 0.2 0.0 0.2 0.4

Figure A4: Regional differences in installed OCGT capacities [GW] (left) and investments
[Bill. Euro] (right) between the homogeneous and the today scenario..
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