
CoVEGI: Cooperative Verification via
Externally Generated Invariants

Jan Haltermann�(�) and Heike Wehrheim

Department of Computer Science, Paderborn University, Paderborn, Germany
jfh@mail.upb.de, wehrheim@upb.de

Abstract. Software verification has recently made enormous progress
due to the development of novel verification methods and the speed-up
of supporting technologies like SMT solving. To keep software verifi-
cation tools up to date with these advances, tool developers keep on
integrating newly designed methods into their tools, almost exclusively
by re-implementing the method within their own framework. While this
allows for a conceptual re-use of methods, it nevertheless requires novel
implementations for every new technique.
In this paper, we employ cooperative verification in order to avoid re-
implementation and enable usage of novel tools as black-box components
in verification. Specifically, cooperation is employed for the core ingre-
dient of software verification which is invariant generation. Finding an
adequate loop invariant is key to the success of a verification run. Our
framework named CoVEGI allows a master verification tool to delegate
the task of invariant generation to one or several specialized helper in-
variant generators. Their results are then utilized within the verification
run of the master verifier, allowing in particular for crosschecking the va-
lidity of the invariant. We experimentally evaluate our framework on an
instance with two masters and three different invariant generators using
a number of benchmarks from SV-COMP 2020. The experiments show
that the use of CoVEGI can increase the number of correctly verified
tasks without increasing the used resources.

Keywords: Cooperation, Software Verification, Invariant Generation

1 Introduction

Recent years have seen a major progress in software verification as for instance
witnessed by the annual competition on software verification SV-COMP [2]. This
success is on the one hand due to advances in SAT and SMT solving and on the
other hand due to novel verification methods like interpolation in model check-
ing [36], automata-based software verification [31] or property directed reacha-
bility [16]. Still, automatic verification remains a complex and error-prone task.
In particular, it is often the case that one tool can verify a particular class

� This author was partially supported by the German Research Foundation (DFG)
under contract WE2290/13-1.

c© The Author(s) 2021
E. Guerra and M. Stoelinga (Eds.): FASE 2021, LNCS 12649, pp. 108–129, 2021.
https://doi.org/10.1007/978-3-030-71500-7 6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71500-7_6&domain=pdf
http://orcid.org/0000-0002-5098-0495
http://orcid.org/0000-0002-2385-7512
https://doi.org/10.1007/978-3-030-71500-7_6

CoVEGI: Cooperative Verification via Externally Generated Invariants 109

of programs, but fails to verify other classes (or even gives incorrect answers),
whereas it is the reverse situation for another tool. Moreover, to keep their tools
up to date with novel techniques, tool developers keep on integrating them by
re-implementation within their framework.

An approach for changing this unsatisfactory situation is cooperative veri-
fication (for an overview see [13]). Cooperative verification builds on the idea
of letting tools (and thus techniques) cooperate on verification tasks, thereby
leveraging the tool’s individual strengths. In particular, cooperative verification
aims at black box combinations of tools, using existing tools off-the-shelf without
re-implementation. While this sounds like a natural idea, its realization poses a
number of challenges, the major one being the exchange and usage of analysis in-
formation. For cooperation, tools are required to produce (partial) results which
other tools can understand and employ in their verification run. With conditional
model checking [7], the first proposal of an exchange format for verification re-
sults was made. A conditional model checker outputs its (potentially partial)
result in the form of a condition which can be read by other conditional model
checkers in order to complete the verification task. Since verification tools nor-
mally do not understand conditions, reducers [23,9] have been proposed to bring
conditions back into a form understandable by verifiers, namely into (residual)
programs describing the so far unverified program part. This allows the result
of a conditional model checker to be made usable by arbitrary other verifiers.
A second type of existing result usage is the validation of tool’s results [4,34],
similar to proof-carrying code [37]. Both of these types are sequential forms
of cooperation: a first verifier starts and a second verifier continues, either by
completing or by validating a first result.

In this paper, we propose CoVEGI, a cooperation framework which comple-
ments these existing approaches by a new type of cooperation. Conceptually,
this framework (depicted in Figure 1) consists of a master verifier and a number
of helper invariant generators. The master verifier has the overall control on the
verification process and can delegate tasks to helpers as well as continue its own
verification process with (partial) results provided by helpers. The helpers run
in parallel as black boxes without cooperation. The task to be delegated is an in-
tegral part of software verification, namely invariant generation. The framework
allows cooperation via outsourcing the task of invariant generation, leveraging
the strength of specialized invariant generation tools.

Like for other types of cooperation, the question of the exchange format for
results comes up. Here, we have chosen correctness witnesses [3] for this purpose.
Correctness witnesses are employed in witness validation and certify a verifier’s
result stating the correctness of a program. These witnesses are particularly well
suited for our intended usage, because their format is standardized and a number
of verifiers already produce correctness witnesses. To account for the incoopera-
tion of helper verifiers not producing witnesses, our framework also foresees the
inclusion of adapters transforming invariants into correctness witnesses. We pro-
vide an implementation of two such adapters. Witnesses are then injected into
the verification run of the master. For stating the task to be solved by invariant

110 J. Haltermann and H. Wehrheim

Master
Verifier

WitnessInjector

Adapter

Helper Invari-
ant Generator

Adapter

Helper Invari-
ant Generator

Mapper Mapper

Invariant

Witness

Invariant

WitnessPro
g+P

rop
Prog+Prop

Task Task

|| . . . ||

Program

Property

Result

Fig. 1: Cooperative verification via externally generated invariants

generators we furthermore require mappers transforming program and property
to be proven into a task format understandable by the helper tools. Figure 1
depicts our framework for cooperative verification via externally generated in-
variants. The framework can be arbitrarily configured with different masters and
helpers, provided that suitable adapters and mappers are given.

We have implemented CoVEGI within the CPAchecker framework [10]
and have employed different configurations of it as master verifier. As helpers
we have chosen publicly available verification tools, some producing and one
not producing witnesses. We have then experimentally evaluated 14 different
combinations of master and helper on benchmarks of the annual competition
of software verification SV-COMP [2]. The experiments show an improvement
over the verification capabilities of the master tool, without incurring significant
overhead. In some cases, the verification time is even decreased in cooperative
verification.

Summarizing, we make the following contributions.

– We propose a framework for cooperative software verification based on a
master-helper architecture using externally generated invariants.

– We construct 14 different instantiations of the framework using 2 masters
and 3 helpers, running both helpers in isolation as well as in parallel.

– For the inclusion of helper verifiers, we implement two adapters, one trans-
forming invariants expressed in the LLVM IR language1 into correctness
witnesses, the other bringing a generated witness into the right format.

– We carry out an extensive experimental evaluation demonstrating the effec-
tiveness and efficiency of collective invariant generation.

2 Fundamentals

We aim at the cooperative verification of programs written in GNU C, focusing
on the validation of safety properties. To be able to define safety properties, a

1 https://llvm.org/docs/LangRef.html

CoVEGI: Cooperative Verification via Externally Generated Invariants 111

formal representation of programs as well as their semantics is needed. Thus we
briefly introduce the syntax and semantics of programs which we consider here.

We follow the notation of Beyer et al. [6] describing programs as control-flow
automata (CFAs). A CFA is basically a control-flow graph with edges annotated
with program statements. More formally, a program is represented as a control-
flow automaton C = (L, l0, G), consisting of a set of program locations L, an
initial location l0 ∈ L and the control-flow edges G,G ⊆ L × Op × L. The set
Op contains all possible operations on integer variables2 present in the program,
namely conditions (as of conditionals and loops), assignments, method calls and
return statements. Figure 2(a) shows a C-program taken from the SV-COMP
benchmarks3, and Figure 2(b) its corresponding CFA. The program also con-
tains a special error label, used for encoding the property to be verified. The
verification task for this program is to show the non-reachability of the error
label at location 9, i.e., for our example program the verifier has to prove that
y equals n after the loop which is true (since n is unsigned).

For the semantics, we start by defining program states. Let Var denote the
set of all integer variables occurring in programs, BExp the set of boolean ex-
pressions and AExp the set of arithmetic expressions over Var . Then a state σ of
the program is a mapping from the variables to the integers, i.e., σ : Var → Z.
We lift the mapping to also contain the evaluation of arithmetic and boolean
expressions so that σ maps AExp to Z and BExp to B. A finite program path π is

a sequence of transitions 〈σ0, l0〉 g0→ 〈σ1, l1〉 · · · gn−1→ 〈σn, ln〉, such that σ0 assigns
0 to all variables, ln is a leaf in the CFA and (li, gi, li+1) ∈ G holds for each

transition 〈σi, li〉 gi→ 〈σi+1, li+1〉 in π. Infinite program paths are defined analo-
geously. As for state changes in paths: If gi is a boolean expression, method call
or return statement, then σi = σi+1 holds. If gi is an assignment x = a, where
a ∈ AExp, then σi+1 = σi[x '→ σi(a)]. Finally, we denote all paths of a program
represented by a CFA C by paths(C).

Here, we are interested in verifying safety properties of programs given as
CFAs. For the purpose of this paper, we define a safety property P as a pair of a
location � ∈ L and a boolean condition ϕ ∈ BExp. There can be multiple safety
properties required to hold in a program. For our example program of Figure 2
the property is (8, n = y). For the verifier this is encoded in the form

8: if (!(n==y))

9: Error: return 1;

A CFA (or program) C violates a safety property P = (�, ϕ) when the pro-
gram reaches location � in a state which does not satisfy ϕ. More formally, P is

violated by C, if there is some path π ∈ paths(C), π = 〈σ0, l0〉 g0→ 〈σ1, l1〉 · · · gn−1→
〈σn, ln〉 and some i, 0 ≤ i ≤ n, such that �i = � and σi(ϕ) = false.

2 In our formalization, we use integer variables only, the implementation covers C
programs.

3 https://github.com/sosy-lab/sv-benchmarks

112 J. Haltermann and H. Wehrheim

1 int main() {

2 unsigned int n = nondet();

3 unsigned int x = n, y = 0;

4 while(x > 0){

5 x--;

6 y++; }

7 // Safety property

8 if (!(n == y)) {

9 Error: return 1; }

10 return 0;}

(a) C code example

1

2

3

4

5

6

8

911

12 10

n=nondet()

x=n

y=0
¬ (x>0)

(x>0)

x- -
y++

n==y ¬ (n==y)

ret 0 ret1

(b) The corresponding CFA

q1 q2 q3

q4

q5 q6

q7n == x+y

1,enterFunc 3,enterLoopHead 4,else

4,then6,enterLoopHead

8,then

8,else

o/w o/w o/w

o/w

o/w

o/w

o/w

(c) Part of the witness

Fig. 2: An example program, its control flow automaton and one witness

Cooperatively verifying safety of programs is achieved in our framework via
external (loop) invariant generation. Syntactically, a loop invariant is a boolean
expression associated to a loop head. A loop invariant needs to hold (1) before the
first loop execution and (2) after each loop execution. The expression n = x+ y,
for instance, is a loop invariant for the program in Figure 2(a), associated to
the loop head at location 4. This loop invariant facilitates verification, because
in conjunction with the negated loop condition and information about initial
variable values it ensures n to be equal to y after the loop. Other valid loop
invariants would be x ≥ 0 or n = 3 ⇒ y ≤ 5, which however all do not help in
proving the safety property. Especially the loop invariant true does not provide
any information. Thus, we call it a trivial invariant.

As stated before, we chose witnesses (more specifically, correctness witnesses)
as exchange format during collective invariant generation. Formally, a witness is
a finite state automaton in which transitions are labelled with so called source
code guards and states can be equipped with boolean expressions. When all
these boolean expressions are either true or false, we call the witness trivial.
Source code guards are of the form location,type where type can be then,
else, enterFunc and enterLoopHead. The guard o/w (otherwise) is used if a
source code line does not match the other guards present. Via these labels we
can match transitions of the automaton with edges in the CFA. Syntactically,
correctness witnesses are stored in an XML format and consist of two parts:

CoVEGI: Cooperative Verification via Externally Generated Invariants 113

(1) general information like the program associated with the witness, and (2)
a GraphML representation of the witness automaton. More information and a
formal specification of correctness witnesses can be found in [3].

In Figure 2(c), we see a correctness witness for our example program. State
q3 is reached by transitions labelled 3,enterLoopHead or 6,enterLoopHead and
thus corresponds to the loop head at program location 4. Associated with this
state is the invariant n = x+ y.

3 Concept

In this section, we introduce our novel concept of Cooperative Verification via
Externally Generated Invariants (CoVEGI), shown in Figure 1. The framework
contains two sorts of main components: Master verifiers (one) and helper invari-
ant generators (several). Next, we state some requirements on and explain the
functionality of these components as well as their cooperation.

3.1 Components of the CoVEGI-Framework

The most important component of the framework is the master verifier, which
we build out of an existing verifier. The master is responsible for coordinating
the verification process and can, if needed, request support from the second type
of components, the helpers, in the form of invariants as described by correctness
witnesses. Hence, the master is also steering the cooperation.

In the following, we explain the two sorts of main components in more detail:

Master Verifier A master verifier gets as input the program C as CFA and a
safety property P . It computes as output a boolean answer b, stating whether
the property holds, and possibly (but not necessarily) provides an overall
witness ω. To be able to process the provided support in form of invariants
stored inside of correctness witnesses, a master is required to implement an
internal function called injectWitness. The function loads a witness, extracts
the invariants present in it and injects them into the analysis of the master
verifier. The witness injection can either happen before (re-)starting the
analysis or during runtime.

Helper Invariant Generator A helper invariant generator gets as input the
program C as CFA and a safety property P . It computes as output a set of
invariants, stored in a verification witness ω′. The generated invariants are
neither required to be helpful for the master verifier nor to be correct. Thus,
helper invariant generators are also allowed to generate trivial invariants or
invariant candidates which might turn out to be wrong.

We can neither expect existing verification tools which we wish to use as helpers
to be able to work on CFAs, nor to understand the safety property or to produce
witnesses. Hence, we foresee two further sorts of components in our framework:

114 J. Haltermann and H. Wehrheim

Table 1: Overview of the configuration options available
Name Description Values

restartMaster restart the master after invariant generation boolean
termAfterFirstInv use first witness only boolean

timerM max. time for master until requestsForHelp is send time(s)
timeoutH max. time for helpers to generate an invariant time(s)

Mapper A mapper transforms the safety property specification inside the pro-
gram into the desired input format of the helper. A mapper basically con-
ducts some simple syntactic code replacements. For instance, for our running
example some helpers might instead require the safety property to be written
as assert(n==y); or as if(!(n==y)) {verifier error();}.

Adapter An adapter generates a correctness witness out of the computed loop
invariants of a helper. Furthermore, some helper invariant generators work
on intermediate representations (IR) of the C-language (e.g. LLVM) or inter-
mediate verification languages (e.g. Boogie). Then, the computed invariants
(formulated in terms of IR-variables) first of all need to be translated back
to the namespace of the C-program. An adapter for LLVM is explained in
more detail in Section 3.4.

3.2 Cooperation within CoVEGI

After having explained the individual components, we define their interaction
in the framework. In this paper, we focus on the parallel execution of several
helpers which implement complementary approaches so that we can leverage
their individual strengths. Algorithm 1 describes the form of cooperation. It
is steered by several user configurable options which fix aspects like time and
resource limits of master and helpers. Table 1 summarizes the configuration
options. We next describe them in detail.

Master options The following aspects of the master’s behavior need to be
fixed: First, when to delegate tasks to helpers, and second, how to continue
the verification process after invariant generation. For the delegation, we let
the master verifier run until it requests support, which can be checked by in-
specting the master’s flag requestsForHelp. The master gets a configurable
timelimit (called timerM) after which it is expected to send this request.
By adding such an explicit request for help, we allow the master to send a
request for other reasons (besides the timer) in the future. Then, after in-
variant generation, the master can either be freshly restarted or continued
(option restartMaster).

Helper option When at least two helpers run in parallel, eventually one of
them first computes a witness. We can then either (1) directly stop the
other helpers, or (2) wait for all to complete before injecting witnesses into
the master. This option is called termAfterFirstInv.

CoVEGI: Cooperative Verification via Externally Generated Invariants 115

Algorithm 1 CoVEGI-algorithm

Input: C � CFA
P � safety property
M � master
Helpers � set of helpers
conf � configuration

Output: ω � witness
b � result

1: M.start(C, P, conf.timerM);
2: wait until (M.requestsForHelp ∨ M.hasSolution());
3: if (M.hasSolution()) then
4: return M.getSolution();

5: for each H ∈ Helpers do parallel � run helpers in parallel
6: H.start(C, P, conf.timeoutH);
7: wait until (H.timedout() ∨ H.hasSolution() ∨ H.stopped());
8: if (H.hasSolution() ∧ nonTrivial(H.getSolution())) then
9: witnesses := witnesses ∪ H.getSolution();
10: if (conf.termAfterFirstInv) then
11: for each H’ ∈ helpers \{ H } do parallel
12: H’.stop(); � stop other helpers

13: if (M.hasSolution()) then
14: return M.getSolution();

15: if (witnesses �= ∅) then � invariants found
16: if (conf.restartMaster) then
17: M.stop();

18: M.inject(witnesses); � inject witnesses into master
19: if (conf.restartMaster) then
20: M.start(C,P, ∞);

21: join(M); � wait for M to finish
22: return M.getSolution();

Timeouts Finally, similar to the master, we can set a specific timeout for the
helpers which fixes how long they are allowed to try to generate invariants.
The timeout option is called timeoutH.

Next, we explain the CoVEGI algorithm shown in Algorithm 1 in detail. We as-
sume that master and helpers run as threads and can be started and stopped. We
furthermore employ methods wait for waiting until some condition is achieved
and join for waiting for a specific thread to complete.

Initially, the master verifier is started without any helper invariant generators
running in parallel (line 1), providing the opportunity to verify programs on its
own. It runs standalone until it requests for help (either due to not being able to
solve the problem alone or due to hitting its timer) or until it computes a result
which is subsequently returned (line 3). Afterwards all helpers are started in
parallel (lines 5 and 6). They also run until they reach their timeout, a solution
is found or they are stopped. Their solutions (invariants) are inserted into the

116 J. Haltermann and H. Wehrheim

witness set (line 9). Depending on option termAfterFirstInv, either all but the
first finished helper are stopped or it is waited until all helpers either computed a
solution or ran into their timeout. If invariants (witnesses) have been computed,
these are injected into the master (line 18). If the restartMaster option is set,
the master needs to be stopped before injection and restarted afterwards. Then
the master continues and completes its verification (without any further request
for help) and the result is finally returned.

Example 1. To explain the framework’s functionality, we demonstrate the CoV-
EGI algorithm on the example presented in Figure 2(a). Assume that we instan-
tiate the framework with a master verifier and four helper invariant generators,
that are used in parallel4. Moreover, we configure the framework as follows: We
set restartMaster to true, terminateAfterFirstInv to false, timerM to 50
seconds and timeoutH to 300 seconds.

Initially, the master verifier runs standalone and after 50 seconds runtime it
requests help. The master runs in parallel with the four helper invariant genera-
tors being called. Let us assume that the first helper returns only trivial invari-
ants (after 10s), the second one the invariant n ≥ y (after 50s), the third one the
invariant n = x+ y (after 100s) and the fourth the invariant n−x− y = 0 (after
500s). The trivial invariant is ignored (see check in line 8) and when the second
helper returns a solution, the third and fourth helper are still not stopped, due
to the chosen configuration. The algorithm waits until the third helper computes
the invariant and the fourth (only being able to compute an invariant after 500s)
hits the timeout after 300s. Then the master is stopped, the invariants n ≥ y
and n = x+ y are injected and the master is restarted. The master verifier can
use both invariants and might now compute the correct result.

3.3 Witness Injection

As master verifiers need to offer witness injection, we explain a possible pro-
cedure for predicate abstraction and k-induction, which are the two techniques
we use as masters during the evaluation. For both, the invariants are extracted
from the witness and then added to the analysis information already computed
by the master verifier. Both analyses store their analysis information in an ab-
stract reachability graph (ARG). Broadly speaking, an ARG is a CFA equipped
with predicates. More formally, an ARG is a finite state automaton, where nodes,
called abstract states, consist among others of analysis information (i.e. predi-
cates) and program locations. Two nodes within an ARG are connected if their
program locations are connected within the CFA. Note that a program location
may occur in multiple abstract states, e.g. when the analysis unrolls a loop.
Hence, witness injection has to update all the abstract states for whose program
location the witness contains an invariant.

Predicate Abstraction. We use a predicate abstraction technique [11],
conducting predicate refinement using a CEGAR (counter example guided ab-

4 In [29] is is shown that more than two helpers does not practically make sense.

CoVEGI: Cooperative Verification via Externally Generated Invariants 117

Invariants over
IR-variables with

IR-locations

Invariants over
C-variables with

C-locations
witness

translate construct

Fig. 3: Workflow of an adapter for an helper working on an IR

straction refinement) scheme [20] with lazy-abstraction [33] and Craig interpo-
lation [32].
Witness Injection: The predicate abstraction maintains, for each abstract state,
one set of available predicates (called precision) and one set of valid predicates.
Witness injection is realized by extracting all predicates and the corresponding
locations from the invariants. If these predicates contain conjunctions of clauses,
these are furthermore split up and inserted individually. Splitting predicates in-
creases the performance due to the fact that SMT solvers perform better on
many small predicates than on few larger ones5. These predicates are added to
the precision of abstract states corresponding to the locations specified in the
witness. Thereby, the predicates are used during the next abstraction performed
by the analysis. The abstraction function itself guarantees that only predicates
from the candidate set being valid at the current location are used. Thus, in-
valid invariants are ignored. This procedure can also be used when restarting
predicate abstraction, by adding the predicates from the witness to the initial
precision of the abstract states corresponding to the locations specified in the
witness (which is empty otherwise).

k-Induction. The basic idea of k-induction [25] is to generalize bounded
model checking (BMC) [14] via induction. After proving k-bounded program ex-
ecutions safe using BMC, a generalization is aimed for. Therefore, it generates
auxiliary invariants that are continuously refined using a CEGAR based analy-
sis [5]. These invariants are combined with the information generated by BMC
and generalized to a safety proof by successfully conducting an induction step.
Witness Injection: For both cases, adding invariants into a running analysis or
adding before restarting, we make use of the same idea: Whenever a witness is
made available to the analysis, the encoded predicates and the program loca-
tions are added as candidates to the set of auxiliary invariants, generated by
the analysis. New elements in this set are periodically checked for validity by k-
induction. Thereby, valid externally generated invariants are conjoined with the
predicates stored in the analysis abstract states, corresponding to the invariants
location. Invalid invariants are thus ignored.

3.4 Adapter for LLVM-based Helper Invariant Generators

Next, we exemplify an adapter for helper invariant generators working on LLVM,
following the general construction depicted in Figure 3. Often, tools associates
invariants to LLVM basic blocks. A basic block is a code fragment having a single

5 This has been reported by tool developers and has also shown in our experiments.

118 J. Haltermann and H. Wehrheim

entry location (the first) and a single exit location (in general the last location of
the block). To construct a witness containing the invariants, we need to translate
them and find the matching C-code location for the basic block. For both, we
use the LLVM-IR equipped with debug information, using the compiler with
launch parameter -g. Thereby, we obtain the IR-code fragment of the program
in Figure 2(a), shown in simplified form and containing the most important
debug information as comments. The example contains two basic blocks, entry
and bb.

1 entry:

2 v1 = bitcast i32 (...)* @nondet to i32 ()* �n
3 v2 = icmp eq i32 v1, 0

4 br i1 v2, label %error, label %_bb

5
6 _bb:

7 v3 = phi i32 [0, %entry], [v6, %_bb] �y
8 v4 = phi i32 [v1, %entry], [v5, %_bb] �x
9 v5 = add i32 v4, -1

10 v6 = add i32 v3, 1

11 v7 = icmp eq i32 v5, 0

12 br i1 v7, label %error, label %_bb �line 4

The helper invariant generator computes the invariant v1 − v4 − v3 = 0 for
the example and associates it with the basic block bb. At first, we need to
transform the variables from the IR to C-variables occurring in the program.
In this example we can use the debug information, as shown in comments in
the code. In general, a more sophisticated procedure is needed since LLVM-IR
uses a three address code. Therein, complex expressions are split into several
statements using intermediate variables which are resolved to C-expressions.

Afterwards, the transformed invariant needs to be associated with the correct
location in the C-code. We analyze the LLVM IR program structure to map the
basic blocks back to C-locations. In the example, the block bb is identified as
being the loop of the program, thus the invariant is mapped to the loop head.
For this, we employed some basic functions provided by PHASAR [41] in our
adapter. Finally, we construct the CFA of the C-program, store the invariants
at the nodes and convert the equipped CFA to a verification witness.

4 Evaluation

In the following, we evaluate different instantiations of CoVEGI. We focus on
both effectiveness and efficiency, generally aiming at checking whether the use
of CoVEGI can increase the number of correctly solved verification tasks within
the same resource limits. A more detailed evaluation of CoVEGI can be found
in an extended pre-print [29].

4.1 Research Questions

In the evaluation, we were interested in the following three research questions.

CoVEGI: Cooperative Verification via Externally Generated Invariants 119

Table 2: Summary of tools used as helpers
Tool Techniques Mapper Adapter

SeaHorn generation and solving constrained horn clauses � �

Ultimate-
Automizer

predicate abstraction, automata, path-based
refinement

� (�)

VeriAbs portfolio of 4 different sequential compositions � �

RQ1. Can collective invariant generation increase the effectiveness of the master
verifier? Evaluation plan: We let the framework run with a single invariant
generator and compare the results to a standalone run of the master verifier.

RQ2. Does cooperation impact the overall efficiency of the verification? Eval-
uation plan: We compare the run time of CoVEGI with one helper against
the two master verifiers running standalone.

RQ3. Does it pay off to run two invariant generators in parallel? Evaluation
plan: We let the framework run with two invariant generators and compare
the results to a run, where only a single invariant generator is used.

4.2 Experimental Setup

Tools. To be able to evaluate the performance of our framework CoVEGI, we
instantiated it with predicate abstraction and k-induction as master verifiers and
three helpers, using existing off-the-shelf invariant generation tools. We based
the implementation of our CoVEGI algorithm on CPAchecker6 1.9.1. To the
best of our knowledge, there are no standalone and publicly available invariant
generators, that generate invariants for both, global and local variables, without
doing a full verification. To be able to evaluate CoVEGI, we decided to use off-
the-shelf verifiers as invariant generators instead, by only using the generated
invariants. We thus looked at current and past participants of the annual compe-
tition of software verification SV-COMP [2] for invariant generation. We chose
the tools SeaHorn [28], UltimateAutomizer [30] and VeriAbs [1]. Both
UltimateAutomizer and VeriAbs achieved excellent results in this year’s
SV-COMP, being the reason to chose them. As third tool we use SeaHorn, a
verification tool neither currently participating in the SV-COMP nor producing
witnesses. It operates on the LLVM intermediate representation, therefore we
used the adapter exemplified in Section 3.4. The three helper invariant genera-
tors are used as black-boxes and employ verification techniques complementary
to those of both the other helpers and the two masters. An overview of the
techniques employed in these tools is given in Table 2. The table also states
whether the helpers require mappers and adapters. For VeriAbs and Ulti-
mateAutomizer we used the versions as used in the SV-COMP 20207. Due to
the fact that there is no precompiled binary of SeaHorn, we employ the docker

6 https://github.com/sosy-lab/cpachecker, Revision (8646a85)
7 https://gitlab.com/sosy-lab/sv-comp/archives-2020/tree/master/2020

120 J. Haltermann and H. Wehrheim

Table 3: Comparison of the two master verifiers running standalone and using a
single helper.

Tool - k-induction predicate abstr.
Combination alone +SH +UA +VA alone +SH +UA +VA

correct overall 146 148 158 163 116 122 132 125
correct true 102 104 114 119 78 84 94 87
correct false 44 44 44 44 38 38 38 38

additional true - +3 +13 +19 - +6 +16 +9
additional false - 0 0 0 - 0 0 0
uniquely solved 1 0 8 15 0 0 6 3

container of the latest version8. All three helper invariant generators are used in
their default configuration.

During evaluation, we used the following default configurations for our own
framework: We set termAfterFirstInv and restartMaster to true, setting the
timerM to 50s9 and the timeoutH to 300s. In general, we will use the abbrevia-
tions SH for SeaHorn, UA for UltimateAutomizer and VA for VeriAbs.

Verification Tasks. The verification tasks used are taken from the set of
SV-COMP 2020 benchmarks10. As we are interested in finding suitable loop
invariants, we selected all tasks from the category ReachSafety-Loops. To obtain
a more broad distribution of tasks, we randomly selected 55 additional tasks
from the categories ProductLines, Recursive, Sequentialized, ECA, Floats and
Heap, yielding in total 342 tasks.

Computing Resources. We conducted the evaluation on three virtual ma-
chines, each having an Intel Xeon E5-2695 v4 CPU with eight cores and a fre-
quency of 2.10 GHz and 16GB memory, running an Ubuntu 18.04 LTS with
Linux Kernel 4.15. We run our experiments using the same setting as in the
SV-COMP, giving each task 15 minutes of CPU-time on 8 cores and 15GB of
memory. We employed Benchexec guaranteeing these resource-limitations [12].

Availability. Our tool and all experimental data are available11.

4.3 Experimental Results

We implemented the CoVEGI-framework as proof-of-concept in the CPA-
checker-framework. For this, we had to extend the existing implementations
of k-induction and predicate abstraction with witness injection. For the helper
invariant generators we did not change a single line of code, only adding adapters
if needed. Integrating helpers like VeriAbs, not requiring an adapter or a map-
per, can be done within a few lines of code. Although the implementation is
a proof-of-concept, this shows that the presented framework works in practice

8 suggested by the developers; used docker seahorn/seahorn-llvm5 (4c01c1d)
9 Which has turned out to be a preferable value, as we explain in [29]

10 https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp20
11 https://covercig.github.io/covegi/

CoVEGI: Cooperative Verification via Externally Generated Invariants 121

and is applicable to all kinds of off-the-shelf helper invariant generators, those
producing verification witnesses as well as those generating invariants in IR.

RQ1 (Effectiveness). To evaluate whether a master verifier benefits from
the support of a helper, we execute a combination of a master and a helper
in the default configuration and compare it to the master running standalone.
Here, we are interested in the number of correct verification results, i.e., the
verifier correctly reporting the safety property to be fulfilled (result true) or not
(result false). Running standalone, k-induction can correctly solve 146 of the
verification tasks, predicate abstraction 116.

Table 3 gives the results of this experiment. In the table we see the overall
number of correct results, the number of correct true and correct false results
plus the number of tasks additionally solved when using a helper and uniquely
solved by the configuration. Through the cooperative invariant generation, the
performance of both masters is increased. As expected, this applies to verification
tasks with fulfilled safety property only, i.e., the invariant generators can help in
proving a property to hold, but cannot help in refuting properties (as they cor-
rectly do not generate invariants in these cases). Besides the additionally solved
tasks, there is also one (for SH and UA) and two (for VA) tasks, respectively,
which cannot be correctly solved anymore. In these cases, the master consumes
most of the CPU time available, hence sharing resources in cooperation with the
helpers results in a timeout.

On our data set, the total number of correctly solved tasks using CoVEGI
increases by 12% for k-induction and 14% for predicate abstraction as master.

RQ2 (Efficiency). Next, we evaluate the efficiency of CoVEGI, analyzing
the CPU time spend solving the verification tasks. As CoVEGI eventually shares
the CPU time between master and helpers, we expect that more time is needed
to compute a correct result after the helper is started.

Figure 4 shows two quantile plots of the verification runs, 4(a) with k-
induction and 4(b) with predicate abstraction as master. A datapoint (x, y)
in the plot means that the verifier computes the x-fastest correct results in at
most y seconds. As CoVEGI instances behave like masters standalone in the
first 50 seconds, we only show results not solved within these 50 seconds. We
see that for tasks requiring a low amount of time, all instances (including the
master alone) require a similar amount of CPU time. For tasks requiring more
time, CoVEGI is actually often faster, the extreme being predicate abstraction
as master which alone is unable to solve more difficult tasks in the given time.

We exemplarily also compared the CPU time of k-induction standalone with
CoVEGI using VeriAbs as helper per task. It turns out that sharing does only
slightly impact the runtime, as shown in Figure 5. The scatter plot compares
the CPU time of k-induction standalone as master and k-induction supported by
VeriAbs, in case both tools solved the task correctly. A datapoint (x, y) means
that k-induction standalone takes x seconds to solve the task and in combination
with VeriAbs y seconds. The red dashed box contains all tasks solved within 50
seconds, where both tools behave equally, since the master does not request for

122 J. Haltermann and H. Wehrheim

90 100 110 120 130 140 150 160 170

100

1,000

90
50

n-th fastest correct result

C
P
U

ti
m
e
(s
) kInd

kInd-SH

kInd-UA

kInd-VA

(a) CoVEGI using k-induction as master

90 95 100 105 110 115 120 125 130 135

100

1,000

50

n-th fastest correct result

C
P
U

ti
m
e
(s
) pred

pred-SH

pred-UA

pred-VA

(b) CoVEGI using predicate abstraction as master

Fig. 4: Quantile plots for CoVEGI using different single helpers.

help in these cases. We see some tasks for which helping increased the runtime,
but also some for which it decreased it. In most of the cases, the CPU time used
by CoVEGI is not significantly higher.

Finally, we compare the average CPU time needed to correctly solve a task.
Table 4 shows the average time needed for all tasks and – in brackets – for the
correctly solved tasks only. We observe that the runtime increases when only
looking at correctly solved tasks (in particular for VeriAbs), however, when
considering all tasks the CPU time is even decreased. The latter effect is due to
the number of timeouts of the master decreasing when cooperating with helpers.
Concluding, we can make the following observation.

On our dataset, collaborative invariant generation does not negatively impact
the effectiveness; in some cases we even see small improvements.

RQ3 (Combination of helpers). In RQ3, we were interested in finding
out (a) whether it is beneficial to run two invariant generators in parallel, and
(b) if yes, which pair is best for this. We thus studied the number of correctly
solved tasks using the three possible pairs of helpers, each running two helpers
in parallel. Table 5 shows the results.

CoVEGI: Cooperative Verification via Externally Generated Invariants 123

1 10 100 1,000
1

10

100

1,000

k-induction standalone (s)

C
o
V
E
G
I
w
it
h
k
In
d
-V

e
r
iA

b
s(
s)

Fig. 5: Scatter plot for kInd and kInd-VA

Table 4: Total CPU time for
all tasks and average CPU time
taken for a correct answer in
brackets, both in seconds.

Master kInd Pred

standalone 491.000
(50)

479.000
(30)

+SH 489.000
(63)

468.000
(39)

+UA 477.000
(68)

454.000
(51)

+VA 482.000
(107)

470.000
(49)

Table 5: Number of correctly solved tasks using different forms of cooperation
with two or three helpers running in parallel.

Master +SH-UA +SH-VA +UA-VA +SH-UA-VA

k-induction 153 156 163 154
predicate abstr. 130 130 136 129

For checking whether parallel execution of helpers is beneficial, these num-
bers need to be compared against those for a single helper as given in Table 3.
We see that predicate abstraction benefits from using two helpers, especially
using UltimateAutomizer and VeriAbs. Using CoVEGI with these tools
perfectly combines their strengths, thereby increasing the number of correctly
solved tasks in total by 17%. In contrast, it turns out that for k-induction none
of the combinations of two helpers outperforms CoVEGI using VeriAbs only.
For UltimateAutomizer and VeriAbs as helpers, the total number does not
change, only the set of solved tasks. For instance, nearly 50% of the additional
tasks solved by kInd-UA-VA are not solved using kInd-UA and vice versa. This
result is based on the fact that they have to share the available CPU time in
the combination. Hence, tasks that are solved using one of them as helper alone
could not be solved anymore in a combination because of timeouts. This phe-
nomenon is even more an issue when running all three helpers in parallel.
The combination of all three helpers solves only 154 tasks correctly for k-
induction and 129 for predicate abstraction. In addition, we evaluated different
values for parameter timeoutH in [29], whereas it turns out that waiting for all
helpers to finish does not increase the number of correctly solved tasks.

On our dataset, CoVEGI can increase the total number of correctly solved
tasks using UA and VA in parallel; in general waiting for the other tool to
also finish its computation does not pay off.

124 J. Haltermann and H. Wehrheim

4.4 Threads to Validity

We have conducted our evaluation using a random sample of tasks as well as
those in the category Loops. Although this guarantees some diversity, our find-
ings may not completely carry over to arbitrary real-world programs.

The experiments are conducted using the reliable framework Benchexec
on identical machines with same resource limitations, guaranteeing comparable
results. As SeaHorn is used within a docker-container, its CPU usage however
cannot be measured by Benchexec. We therefore measured this externally,
rounded it up and added it to the measured CPU time, obtaining a lower bound
for the correctly solved tasks. Thereby, all results stay valid, especially of the
best performing instantiations of CoVEGI, as they do not use SeaHorn.

Our implementation of CoVEGI relies on the correctness of the used mas-
ter verifiers and helpers (which are given) as well as on the adapters (which
we build). An incorrectly translated invariant may however influence the per-
formance only negatively. Both master verifiers used as well as UltimateAu-
tomizer and VeriAbs are participating in the annual SV-COMP, hence they
might be tuned to the tasks employed. This does however not influence the va-
lidity of the results since our interest is in the additional number of tasks solved
by cooperation, not the solved ones per se.

5 Related work

In this paper, we presented a framework for cooperative verification via collec-
tive invariant generation. The idea of collaboration for verification by combin-
ing known techniques has been widely employed before. For instance, there are
combinations of verification with testing approaches [21,22,26,18,19,24] and with
approaches for invariant generation [40,27,39,15,17]. The latter combinations are
conducted in a white box manner using strong coupling between the components,
making the addition of a new approach a challenging task. Our framework con-
ceptually decouples the invariant generation from the verification, making it
more flexible. In addition, using a black box integration with defined exchange
formats allows us to easily exchange or integrate new approaches.

There are also existing concepts for collaboration between different tech-
niques in a black-box manner. Conditional model checking is a technique for
sequentially composing different model checkers, sharing information between
the tools in form of conditions [7]. Beyer and Jakobs developed a concept for
combining model checking with testing [8]. Although both approaches enable co-
operation, none combines a verification tool and tools for invariant generation.

We next shortly discuss three approaches which are conceptually closer to
our framework. Frama-C is a framework for code analysis, aiming for analyzing
industrial size code [35]. The framework contains different plugins, each imple-
menting a verification or testing technique. The plugins can exchange informa-
tion in form of ASCL source code annotations. Within Frama-C, the analyzers
can collaborate by being either sequentially or parallelly composed. For this, par-
tial results produced by an analysis can be completed by a second one or several

CoVEGI: Cooperative Verification via Externally Generated Invariants 125

partial results computed in parallel are composed to a complete result. Frama-
C offers the general possibility to define cooperation between existing plugins.
To the best of our knowledge, Frama-C does however not provide a conceptual
collaboration of a verification approach and tools for invariant generation driven
by the verification approach’s demand for support.

The approach of using continuously refined invariants for k-induction [5] uses
a lightweight dataflow analysis which can be considered to be a helper for ver-
ification. Therein, the supporting invariant generator runs in parallel to the k-
induction analysis. Compared to our framework, the main difference is the form
of cooperation used. Beyer et al. use a white-box integration for the cooperation
between k-induction and the invariant generator, building hardly wired connec-
tions between both analyses and sharing the information inside the tool. Thus,
integrating external tools is hard to achieve. Moreover, the approach is designed
to work for k-induction only. Note that an analogeous approach is proposed by
Brain et al. [17].

Pauck and Wehrheim proposed CoDiDroid, a framework for cooperative
taint flow analysis for Android apps [38]. Within their framework, different
analysis tools with specialized capabilities are combined as black-boxes. Co-
DiDroid is however tailored to the needs of Android taint flow analysis, thus
the exchanged information differs. Thus CoDiDroid is not able to orchestrate
or exchange information on safety analysis with shared invariant generation.

To summarize, there are a lot of existing approaches for cooperative verifica-
tion, but most of them are white-box combinations, and the existing black-box
combinations are not general enough to allow for collective invariant generation.

6 Conclusion

In this paper, we have presented a novel form of black box cooperation for
software verification via externally generated invariants. Within the configurable
framework named CoVEGI, the so called master verifier steering the verification
process is able to delegate the task of invariant generation to one or several
helper invariant generators.

We implemented CoVEGI within the CPAchecker framework using k-
induction and predicate abstraction as master analysis supported by three exist-
ing helpers SeaHorn, UltimateAutomizer and VeriAbs. Our evaluation on
a set of SV-COMP verification tasks shows that CoVEGI increases the number
of correctly solved tasks without increasing the overall verification time. The
best combination of helpers, UltimateAutomizer and VeriAbs in parallel,
yields an increase of 12% for k-induction and 17% for predicate abstraction.

Next, we plan to enhance the cooperation by analyzing the behavior of the
master in order to identify an optimal point to request for help. Moreover, ex-
tending CoVEGI by additionally taking error traces found by the helper into
account is also scheduled. In addition, we intend to investigate whether a selec-
tion of helpers on the basis of the given verification task is beneficial.

126 J. Haltermann and H. Wehrheim

References

1. Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke, P., Datar, A., Kumar,
S., Venkatesh, R.: Veriabs : Verification by abstraction and test generation. In:
ASE. pp. 1138–1141. IEEE (2019). https://doi.org/10.1109/ASE.2019.00121

2. Beyer, D.: Software verification with validation of results - (report on SV-COMP
2017). In: Legay, A., Margaria, T. (eds.) TACAS. LNCS, vol. 10206, pp. 331–349.
Springer, Berlin, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 20

3. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: ex-
changing verification results between verifiers. In: Zimmermann, T., Cleland-
Huang, J., Su, Z. (eds.) FSE. pp. 326–337. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2950290.2950351

4. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness valida-
tion and stepwise testification across software verifiers. In: Nitto, E.D., Harman,
M., Heymans, P. (eds.) ESEC/FSE. pp. 721–733. ACM, New York, NY, USA
(2015). https://doi.org/10.1145/2786805.2786867

5. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Kroening, D., Pasareanu, C.S. (eds.) CAV. LNCS, vol. 9206, pp.
622–640. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 42

6. Beyer, D., Gulwani, S., Schmidt, D.A.: Combining model checking and data-flow
analysis. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook
of Model Checking, pp. 493–540. Springer (2018). https://doi.org/10.1007/978-3-
319-10575-8 16

7. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional
model checking: a technique to pass information between verifiers. In:
Tracz, W., Robillard, M.P., Bultan, T. (eds.) FSE. p. 57. ACM (2012).
https://doi.org/10.1145/2393596.2393664

8. Beyer, D., Jakobs, M.: Coveritest: Cooperative verifier-based testing. In: Hähnle,
R., van der Aalst, W.M.P. (eds.) FASE. LNCS, vol. 11424, pp. 389–408. Springer
(2019). https://doi.org/10.1007/978-3-030-16722-6 23

9. Beyer, D., Jakobs, M., Lemberger, T., Wehrheim, H.: Reducer-based
construction of conditional verifiers. In: Chaudron, M., Crnkovic, I.,
Chechik, M., Harman, M. (eds.) ICSE. pp. 1182–1193. ACM (2018).
https://doi.org/10.1145/3180155.3180259

10. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifica-
tion. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806, pp. 184–190.
Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 16

11. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Bloem, R., Sharygina, N. (eds.) FMCAD. pp. 189–197. IEEE,
Washington, DC, USA (2010), http://ieeexplore.ieee.org/document/5770949/

12. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements
and solutions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

13. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification:survey
and unifying component framework. In: Margaria, T., Steffen, B. (eds.) ISoLA.
LNCS, vol. 12476, pp. 143–167. Springer (2020). https://doi.org/10.1007/978-3-
030-61362-4 8

14. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-
ing. Advances in Computers 58, 117–148 (2003). https://doi.org/10.1016/S0065-
2458(03)58003-2

https://doi.org/10.1109/ASE.2019.00121
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1007/978-3-642-22110-1_16
http://ieeexplore.ieee.org/document/5770949/
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2

CoVEGI: Cooperative Verification via Externally Generated Invariants 127

15. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., Rival, X.: A static analyzer for large safety-critical soft-
ware. In: Cytron, R., Gupta, R. (eds.) PLDI. pp. 196–207. ACM (2003).
https://doi.org/10.1145/781131.781153

16. Bradley, A.R.: Sat-based model checking without unrolling. In: Jhala, R.,
Schmidt, D.A. (eds.) VMCAI. LNCS, vol. 6538, pp. 70–87. Springer (2011).
https://doi.org/10.1007/978-3-642-18275-4 7

17. Brain, M., Joshi, S., Kroening, D., Schrammel, P.: Safety verification and refutation
by k-invariants and k-induction. In: Blazy, S., Jensen, T.P. (eds.) SAS. LNCS,
vol. 9291, pp. 145–161. Springer (2015). https://doi.org/10.1007/978-3-662-48288-
9 9

18. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and test-
ing with explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.)
FM. LNCS, vol. 7436, pp. 132–146. Springer, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32759-9 13

19. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic exe-
cution toward unverified program executions. In: Dillon, L.K., Visser, W.,
Williams, L. (eds.) ICSE. pp. 144–155. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2884781.2884843

20. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003).
https://doi.org/10.1145/876638.876643

21. Csallner, C., Smaragdakis, Y.: Check ’n’ crash: combining static checking and
testing. In: Roman, G., Griswold, W.G., Nuseibeh, B. (eds.) ICSE. pp. 422–431.
ACM, New York, NY, USA (2005). https://doi.org/10.1145/1062455.1062533

22. Csallner, C., Smaragdakis, Y., Xie, T.: DSD-Crasher: A hybrid analysis tool for bug
finding. TOSEM 17(2), 8:1–8:37 (2008). https://doi.org/10.1145/1348250.1348254

23. Czech, M., Jakobs, M., Wehrheim, H.: Just test what you cannot verify! In: Egyed,
A., Schaefer, I. (eds.) FASE. LNCS, vol. 9033, pp. 100–114. Springer, Berlin, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46675-9 7

24. Daca, P., Gupta, A., Henzinger, T.A.: Abstraction-driven concolic testing. In: Job-
stmann, B., Leino, K.R.M. (eds.) VMCAI. LNCS, vol. 9583, pp. 328–347. Springer,
Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 16

25. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification us-
ing k-induction. In: Yahav, E. (ed.) SAS. LNCS, vol. 6887, pp. 351–368. Springer
(2011). https://doi.org/10.1007/978-3-642-23702-7 26

26. Ge, X., Taneja, K., Xie, T., Tillmann, N.: Dyta: dynamic symbolic execu-
tion guided with static verification results. In: Taylor, R.N., Gall, H.C., Med-
vidovic, N. (eds.) ICSE. pp. 992–994. ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1985793.1985971

27. Gupta, A., Rybalchenko, A.: Invgen: An efficient invariant generator. In: Bouaj-
jani, A., Maler, O. (eds.) CAV. LNCS, vol. 5643, pp. 634–640. Springer (2009).
https://doi.org/10.1007/978-3-642-02658-4 48

28. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Kroening, D., Pasareanu, C.S. (eds.) CAV. LNCS, vol. 9206, pp.
343–361. Springer (2015). https://doi.org/10.1007/978-3-319-21690-4 20

29. Haltermann, J., Wehrheim, H.: Cooperative Verification via Collective Invariant
Generation. arXiv e-prints arXiv:2008.04551 (2020), https://arxiv.org/abs/2008.
04551

https://doi.org/10.1145/781131.781153
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1145/2884781.2884843
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/1062455.1062533
https://doi.org/10.1145/1348250.1348254
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-49122-5_16
https://doi.org/10.1007/978-3-642-23702-7_26
https://doi.org/10.1145/1985793.1985971
https://doi.org/10.1007/978-3-642-02658-4_48
https://doi.org/10.1007/978-3-319-21690-4_20
https://arxiv.org/abs/2008.04551
https://arxiv.org/abs/2008.04551

128 J. Haltermann and H. Wehrheim

30. Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate automizer and
the search for perfect interpolants - (competition contribution). In: Beyer, D.,
Huisman, M. (eds.) TACAS. LNCS, vol. 10806, pp. 447–451. Springer (2018).
https://doi.org/10.1007/978-3-319-89963-3 30

31. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV. LNCS, vol. 8044, pp.
36–52. Springer (2013). https://doi.org/10.1007/978-3-642-39799-8 2

32. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Jones, N.D., Leroy, X. (eds.) POPL. pp. 232–244. ACM, New York,
NY, USA (2004). https://doi.org/10.1145/964001.964021

33. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Launch-
bury, J., Mitchell, J.C. (eds.) POPL. pp. 58–70. ACM, New York, NY, USA (2002).
https://doi.org/10.1145/503272.503279

34. Jakobs, M., Wehrheim, H.: Certification for configurable program analysis. In:
Rungta, N., Tkachuk, O. (eds.) SPIN. pp. 30–39. LNCS, ACM, New York, NY,
USA (2014). https://doi.org/10.1145/2632362.2632372

35. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
c: A software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

36. McMillan, K.L.: Interpolation and model checking. In: Clarke, E.M., Henzinger,
T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 421–446.
Springer (2018). https://doi.org/10.1007/978-3-319-10575-8 14

37. Necula, G.C.: Proof-carrying code. In: Lee, P., Henglein, F., Jones, N.D.
(eds.) POPL. pp. 106–119. ACM Press, New York, NY, USA (1997).
https://doi.org/10.1145/263699.263712

38. Pauck, F., Wehrheim, H.: Together strong: cooperative Android app analysis. In:
Dumas, M., Pfahl, D., Apel, S., Russo, A. (eds.) ASE. pp. 374–384. ACM (2019).
https://doi.org/10.1145/3338906.3338915

39. Rocha, W., Rocha, H., Ismail, H., Cordeiro, L.C., Fischer, B.: Depthk: A k-
induction verifier based on invariant inference for C programs - (competition contri-
bution). In: Legay, A., Margaria, T. (eds.) TACAS. LNCS, vol. 10206, pp. 360–364
(2017). https://doi.org/10.1007/978-3-662-54580-5 23

40. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Cousot, R. (ed.) VMCAI. LNCS, vol. 3385,
pp. 25–41. Springer (2005). https://doi.org/10.1007/978-3-540-30579-8 2

41. Schubert, P.D., Hermann, B., Bodden, E.: Phasar: An inter-procedural static anal-
ysis framework for C/C++. In: Vojnar, T., Zhang, L. (eds.) TACAS. LNCS,
vol. 11428, pp. 393–410. Springer (2019). https://doi.org/10.1007/978-3-030-17465-
1 22

https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/2632362.2632372
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-319-10575-8_14
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/3338906.3338915
https://doi.org/10.1007/978-3-662-54580-5_23
https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-3-030-17465-1_22
https://doi.org/10.1007/978-3-030-17465-1_22

CoVEGI: Cooperative Verification via Externally Generated Invariants 129

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	CoVEGI: Cooperative Verification via Externally Generated Invariants
	1 Introduction
	2 Fundamentals
	3 Concept
	3.1 Components of the CoVEGI-Framework
	3.2 Cooperation within CoVEGI
	3.3 Witness Injection
	3.4 Adapter for LLVM-based Helper Invariant Generators

	4 Evaluation
	4.1 Research Questions
	4.2 Experimental Setup
	4.3 Experimental Results
	4.4 Threads to Validity

	5 Related work
	6 Conclusion
	References

