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Summary

The ability to understand spoken language is a remarkable achievement of the human brain. It is
very robust against various distortions and adaptable to multiple languages. Regardless of the high
interest to scientists in neuroimaging research, this complex process has not been fully understood
yet. One reason for this are the limited possibilities to investigate the intact brain and the large
amounts of data that are required by these methods. In the past decade methods like multivariate
pattern analysis (MVPA) have been established, which have proven to be more sensitive than previous
approaches to investigate brain imaging data. Even though the vast variety of statistical methods
constantly bears new possibilites, it makes it di�cult to compare the results obtained from di�erent
studies using di�erent approaches.

This thesis is composed of two parts. In the �rst part, a new approach to evaluate the results
obtained from the searchlight classi�cation analysis of fMRI data is presented, named Searchlight
Classi�cation Informative Region Mixture Model (SCIM). The evaluation model assumes that the dis-
tribution of classi�cation performance results can be decomposed into informative searchlights, and
non-informative searchlights. While BOLD patterns in informative searchlights contain information
about corresponding contrasted conditions, the classi�cation of non-informative searchlights corre-
sponding to two contrasted conditions is not signi�cantly above chance level. The decomposition is
accomplished with a two-component Gaussian mixture model. The method is compared to commonly
used methods like the binomial test and the random permutation test in di�erent statistical evaluations
of a simulation dataset and a real auditory fMRI dataset. The SCIM method has shown to be highly
robust to the choice of signi�cance levels in comparison to the reference methods and bene�ts from its
comparably low numerical e�ort. In the second part of the thesis the results obtained from an auditory
fMRI study to investigate the cortical activation during the semantic processing of spoken language
are presented.

Many datasets only allow for the investigation of one particular part of spoken language processing
or include degraded speech as contrast condition to normal speech. The stimulus set used in the study
presented in this thesis includes, amongst four other acoustic stimulus conditions, a speech condition
which is composed of valid spoken sentences, and a control condition, which is physically identical to
normal speech but does not contain any meaningful statements. Therefore, it permits the identi�cation
of the cortical activation corresponding to the semantic processing of spoken language, while acoustic
di�erences between the contrasted stimulus conditions are decreased. Results on a group level are
obtained by the generation of group result maps and the statistical evaluation of single subject result
maps across the group of participants. To disentangle the di�erent stages of spoken language processing,
the classi�cation performance results obtained from thirteen condition contrast analyses are correlated
with the corresponding di�erences of the stimulus features. This approach permits the identi�cation of
local brain activation patterns corresponding to di�erent stages of spoken language processing. While
correlation e�ects with acoustic property di�erences are found to be located in the auditory cortex
and its belt and parabelt areas and in the inferior frontal cortex, the semantic processing of speech is
found to activate a broadly distributed network of structures across the cortex.

The e�ective connectivity between these areas was investigated with the analysis of their generalized
psychophysiological interactions (gPPI). Global activation patterns corresponding to spoken language
processing could be identi�ed as three di�erent sub-networks. The left frontal cortex, structures of
the temporo-parietal junction bilaterally and the cingulate gyri are part of the semantic processing of
speech. The acoustic processing is re�ected in connections between the temporo-parietal junction and
the temporal lobe structures. The perception of unintelligible speech activates a network between the
left temporal lobe, the right inferior frontal lobe and the cingulate gyrus.

The di�erent approaches to analyze the fMRI dataset permit the investigation of the research ques-
tion from di�erent perspectives. The evaluation of local and global brain activation patterns, obtained
from the analysis of a single dataset, supplement the respective other analysis approach.
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Zusammenfassung

Gesprochene Sprache zu verstehen ist eine bemerkenswerte Fähigkeit des menschlichen Gehirns. Men-
schen bewältigen diese Aufgabe bis heute besser als künstliche Algorithmen, sowohl in herausfordernden
akustischen Situationen als auch teilweise für mehrere unterschiedliche Sprachen. Trotz des groÿen In-
teresses der Wissenschaft im Bereich der kognitiven Verarbeitung von Sprache, konnte dieser Prozess
bisher nicht vollständig nachvollzogen werden. Dies liegt unter anderem an den limitierten und indirek-
ten Möglichkeiten, kognitive Prozesse innerhalb des menschlichen Gehirns zu erfassen. Die Methoden
setzen groÿe Datenmengen und die komplexe statistische Verarbeitung der Daten voraus. In den
letzten zwei Jahrzehnten wurden viele neue Ansätze entwickelt, um neurokognitive Daten e�ektiver zu
analysieren, wie etwa die multivariate Musteranalyse (MVPA). Die Vielzahl statistischer Methoden zur
Analyse neurokognitiver Daten macht eine Vergleichbarkeit unterschiedlicher Studien jedoch schwierig.
Diese Arbeit setzt sich zusammen aus einem methodischen Teil und einem Teil, in dem die Daten

einer auditorischen fMRI Studie aus verschiedenen Perpektiven analysiert werden. Im methodischen
Teil wird ein neues Verfahren zur Evaluierung der Ergebnisse der Searchlight Classi�cation Analyse
vorgestellt, die Searchlight Classi�cation Informative Region Mixture Model Methode. Sie baut auf
der Annahme auf, dass die Klassi�kationsergebnisse einer solchen Analyse in zwei Unterverteilugen
aufgeteilt werden können: eine Verteilung, die Voxel und deren Umgebung repräsentiert, in denen
Information über die jeweils betrachteten Konditionen enthalten ist, und eine Verteilung von Voxeln,
in denen keine Information enthalten ist. Grundlage dieser Trennung von Verteilungen ist ein Gaussian
Mixture Model. Die SCIM Methode wird mit zwei gängigen Referenzmethoden, dem Binomial-Test
und dem Permutationstest anhand eines Simulationsdatensatzes und eines fMRT Datensatz verglichen.
Es zeigt sich, dass die SCIM Methode sehr viel weniger abhängig von der Wahl des Signi�kanzniveaus
ist und im Vergleich zum Permutationstest zudem einen sehr viel geringen Rechenaufwand erfordert.
Im zweiten Teil werden die Ergebnisse einer auditorischen fMRT Studie präsentiert, die mithilfe der

SCIM Methode und weiteren Methoden erlangt wurden. In vielen Studien, in denen die Verarbeitung
von Sprache untersucht wird, wird degradierte Sprache als Kontrastkondition zu normaler Sprache ver-
wendet. Wird klare Sprache verwendet, kann oft nur ein Aspekt dieses komplexen Vorgangs abgebildet
werden. Neben vier weiteren akustischen Stimuli beinhaltet die Zusammenstellung der Stimuli dieser
Studie eine Kondition mit ganzen, alltäglichen Sätzen und als Kontrastkondition einen Stimulus mit
den physikalischen Eigenschaften normaler Sprache, jedoch ohne jeglichen semantischen Inhalt. So
kann die Verarbeitung gesprochener Sprache als Ganzes untersucht werden, wobei der Ein�uss akusti-
scher Eigenschaften der Stimuli reduziert wird. Die Gruppenergebnisse werden sowohl durch über die
Gruppe gemittelte Karten, als auch durch statistische Analysen von einzelnen Probanden-Ergebnissen
über die Gruppe hinweg ermittelt. Zudem werden nicht nur separate Kontraste betrachtet, sondern die
Korrelation von Erkennungsraten aus der Klassi�kationsanalyse mit den jeweiligen Unterschieden bes-
timmter Eigenschaften von Sprache über die Kontraste hinweg betrachtet. So konnten kortikale Areale
ermittelt werden, deren unterschiedliche Aktivierung mit den Unterschieden bestimmter Eigenschaften
von Sprache einhergehen.
Die e�ektive Konnektivität dieser Areale wurde anhand ihrer generellen psychophysiologischen Inter-

aktion (gPPI) bestimmt. Anhand dieser globalen Aktivierungsmuster konnten drei kortikale Netzwerke
in Zusammenhang mit der Verarbeitung gesprochener Sprache identi�ziert werden. Semantisch sinn-
volle Sprache geht einher mit der Aktivierung eines Netzwerks zwischen de Arealen innerhalb des linken
Frontalkortex, des bilateralen temporo-parietalen Übergangs und des Gyrus cinguli. Bei der akustis-
chen Verarbeitung zeigt sich eine e�ektive Konnektivität zwischen den bilateral temporalen Gyri und
den Arealen des temporo-parietalen Übergangs. Nicht verständliche Sprache scheint ein Netzwerk
zwischen dem linken, inferioren Temporallappen, dem rechten Frontalkortex und dem Gyrus cinguli
zu aktivieren.
Die unterschiedlichen Ansätze, die zur Analyse dieses fMRT Datensatzes genutzt wurden, ermöglichen

eine Bewertung der Ergebnisse aus unterschiedlichen Perspektiven. Es zeigt sich, dass die Untersuchung
lokaler und globaler Aktivierungsmuster die Ergebnisse des jeweils anderen Ansatzes gut ergänzen und
erweiterte Möglichkeiten zur Interpretation der Daten bieten.
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1. General Introduction

Spoken language processing is a task on which humans perform remarkably well. The integration
from acoustic stimuli to an abstract meaning is very robust even in noisy environments and for dis-
torded or degraded speech. Additionally, the mapping from these acoustic features to a meaning is
not spec�c. Humans can understand di�erent languages that developed from fundamentally di�erent
phoneme groups, di�erent idioms or even non-tonal speech like whispering. The neural correlates of
this task, in which humans still outperform computers up to date, are therefore of large interest to
scientists in neurocognition.

Early statements about the functional segmentation of the cortex go back to lesion studies. Parti-
culary known became the publications by Paul Broca (1861), in which he postulated a localization of
the cortical region that permits the verbal expression in the frontal lobe, and Carl Wernicke (1874),
who reported a disfunction in the understanding of spoken language in patients with lesions in the
left posterior temporal lobe. The respective cortical stuctures, Broca`s area and Wernicke`s area, are
named after these researchers and also the dysfunctionalities, called aphasia, are still named after
them. The expressive aphasia, the inability to form spoken language, is called Broca`s aphasia, while
the receptive aphasia, the inability to understand spoken language, is called Wernicke`s aphasia. Later
research has provided evidence, that more regions than just Broca`s area and Wernicke`s area are
involved in spoken language processing (Hagoort, 2014). The classic model of langue processing, the
Broca-Wernicke-Lichtheim model, derived in the 19th century, has been overtaken by later research
(Ben Shalom and Poeppel, 2008).

The introduction of non-invasive neuroimaging methods like fMRI in the early 1990s (Whitten, 2012)
has opened possibilities to heavily increase the number of subjects to examine. The possibility to in-
vestigate cortical function in healthy participants was also a crucial step towards the understanding of
�normal� processes in the brain. These studies provided evidence that the brain structures which are
involved in the perception and production of spoken language are not as well de�ned as assumed by
the lesion studies by Broca and Wernicke (Tremblay and Dick, 2016).

Visual modalities are very attractive for fMRI since the projection from the retina to the visual
cortex is quite linear (Morland et al., 2001) and, therefore, largely intuitive. But also for the audi-
tory modality fundamental representations have been found. There is, e.g., a topology representing
spectral cues with spatial location in the cochlea but also in the auditory cortex (Wessinger et al., 1997).

Sinusoids are represented in the tonotopy in the auditory cortex with respect to the frequency of
their periodic sound pressure level (SPL) changes. With decreasing frequency, temporal amplitude mo-
dulations are perceptable and are represented along the auditory pathway in di�erent stages (Giraud
et al., 2000) up to the auditory cortex including the primary auditory cortex in the medial Heschl's
gyrus. The recognition of an auditory stimulus as speech induces speci�c activation in the lateral part
of the Heschl`s Gyrus (Uppenkamp et al., 2006) that showed no activation for non-speech sounds. With
increasing information encoded in a speech signal, the corresponding neural activation can be located
increasingly in areas around the primary and secondary auditory areas.

Since communication via spoken language is so crucial for the social interaction between humans,
neural correlates of language processing can be found in broad networks across the cortex. In many
di�erent studies neural activations are ivestigated, which correspond to very fundamental tasks like
the processing of temporal modulation over the processing of more speech speci�c characteristics like
formants or a voice pitch to abstract representations like semantic content or syntactic structure. While
the acoustic processing is understood very well thanks to multiple studies that examined these processes
from di�erent perspectives, the abstract interpretation of spoken language is not fully understood yet.

There are some models, that summarize the current status of research on spoken language processing
like those by Hickok and Poeppel (2007) and Friederici (2002). The models propose an acoustic process-
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ing of spoken language in the superior temporal lobes bilaterally, while the activation corresponding to
further, more abstract processing is located left lateralized in the frontal lobe. Further research on this
topic has enlarged these models with increased informational detail. However, the research on spoken
language processing, in particular the processing of sentences as they occur in everyday context, is still
limited in the possibilities of evaluating the cognitive processes due to two major obstacles:

1) In comparison to studies in the viusal domain, the amount of data that can be collected in audi-
tory fMRI studies is rather small due to the information that can be mediated within a speci�c time
frame and due to the sparse imaging paradigm that is often used for auditory fMRI studies. This
paradigm is bene�cal for auditory studies, since it temporally separates the scanner noise from the
target stimuli (Edmister et al., 1999; Hall et al., 1999). On the other hand, sparse imaging leads to
long times of repeat (TR) and simultaneously to smaller data sets. Therefore, robust methods for the
identi�cation of regions that are involved in the processing of complex auditory stimuli are required.
Norman et al. (2006), Kriegeskorte et al. (2006) and others proposed multivariate pattern analyses
(MVPA) as an alternative for the univariate general linear model (GLM, Friston et al., 1995). The
statistical power of highly noisy single voxel time series is accumulated to increase the sensitivity of the
analysis. Even though the method is up to day commonly used, it lacks an established framework to
evaluate the outcome from MVPA methods like the searchlight classi�cation that is one very intuitive
approach to evaluate local blood oxygen level dependent (BOLD) patterns (Etzel et al., 2013). The
usage of di�erent methods, evaluation tools and thresholds (ranging between p <0.001 to p <0.05)
increases the variability of results obtained from di�erent studies and impede a good comparability of
those. However, a good comparability of �ndings from di�erent studies is essential to understand the
highly complex processes of the brain.

2) Spoken sentences are very complex acoustic structures. With increasing complexity of a stimulus,
the risk of mixing di�erent characteristics of speech in the conditions increases. Therefore, it is di�cult
to design a stimulus set that separates the e�ect of interest from confounds. The number of studies,
in which the the neural correlates of spoken language processing on the sentence level have been in-
vestigated, is small in comparison to the studies that provide evidence for the models that describe
speech processing on the acoustic level or on a phoneme, phrase or word level. Study designs that
exclusively include natural spoken language often only permit the investigation of one aspect of spoken
language interpretation upon the acoustic processing (e.g., syntax vs. semantic). Degraded speech
stimuli that still hold spectral characteristics of speech, like noise vocoded speech (NVS) or spectrally
rotated speech, can be manipulated in their intelligibility with regard to the context in which they
are presented or the number of channels they have been created with. However, there is no su�cient
evidence that the use of degraded speech for the investigation of abstract speech features like semantic
content or syntactic structure does not lead to confounds and that the �ndings from these studies are
speci�c for the e�ect of interest.

The work described in this thesis shall depict some possibilities how to deal with these obstacles and
supplement the current knowledge about the neural spoken language processing in local and global
patterns of BOLD activity in the brain.

1.1. The identi�cation of information regions

Multivariate pattern analyses (MVPA) have been proven to have some advantages over mass-univariate
analysis methods like the general linear model (GLM) (Norman et al., 2006; Kriegeskorte et al., 2006).
One promising possibility to explore neural correlates of speci�c tasks is the supervised classi�cation
of BOLD patterns (Mahmoudi et al., 2012). Instead of statistically evaluating rather noisy single
voxel time courses, machine learning models are trained with patterns of multiple voxels. From the
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classi�cation performance on unseen data the informational content about the speci�c cognitive task
encoded in the BOLD patterns can be inferred. Whole brain maps that re�ect the informational con-
tent of local BOLD patterns can be derived, e.g., from the searchlight algorithm (Kriegeskorte et al.,
2006). Spatially overlapping subsets of imaging data are extracted from the data set and analyzed
separately. The classi�cation performance is mapped to the respective center-voxel, providing a map
of classi�cation performance values. The further estimation of the statistical power of single searchlight
results, however, still lacks a general test method. In Chapter 2 an algorithm is presented named
Searchlight Classi�cation Informative Region Mixture Model (SCIM) that is built on the assumption
that the distribution of voxels can be decomposed into informative voxels and non-informative voxels
based on their searchlight classi�cation performance value. Subsequent to the searchlight classi�cation
and a spatial smoothing of the classi�cation performance maps, the distribution of performance values
is decomposed with a two-component Gaussian mixture model (GMM, Dempster et al., 1977). While
the non-informative values are distributed around chance level, the informative searchlights build a
sub-distribution around higher classi�cation performance values, while both distributions overlap. The
separation of informative and non-informative searchlights is �nally based on the a-posteriori proba-
bility for the non-informative searchlight distribution. Comparable methods based on a GMM have
previously been proposed, e.g, by Everitt and Bullmore (1999), for the evaluation of activation maps in
mass-univariate analysis algorithms. The reference tests for the evaluation of multivariate searchlight
analysis results are the binomial test (e.g., used in Abrams et al., 2012; Akama et al., 2012, 2014; Oost-
erhof et al., 2010) and the random permutation test (e.g., used in Allefeld and Haynes, 2014; Arsenault
and Buchsbaum, 2015; Hausfeld et al., 2014). The binomial test, separating informative searchlights
from non-informative searchlights based on their binomial probability of the classi�er's performance,
is built on strong assumptions about the distribution of performance values, that are already violated
when using cross-validation during the classi�cation analysis (Stelzer et al., 2013). The random per-
mutation test has been described to be advantageous to the binomial test (Stelzer et al., 2013; Allefeld
et al., 2016; Pereira and Botvinick, 2011). However, it is attached to a very high numerical e�ort since
it requires a large amount of repetitions of the whole classi�cation analysis (usually about 1000 times).

1.2. The disentanglement of stimulus features

The intelligibility of speech cannot be predicted by a single feature of the acoustic stimulus (Arai and
Greenberg, 1998). Temporal amplitude modulations are essential for the comprehension of spoken ut-
terances (Riecker et al., 2002). However, they are not su�cient to understand speech (Giraud, 2004),
because, amongst other properties, also the formant structure has a considerable impact on speech
intelligibility (Lattner et al., 2005; Heinrich et al., 2008). The complex nature of spoken language
makes it, accordingly, very di�cult to build stimulus sets in which contrasts between the di�erent con-
ditions are limited to one speci�c feature of speech, in particular when the research question focuses
on the more abstract cognitive tasks in spoken language comprehension. The recognition of speech,
inferred from vowel perception, is accompanied with neural activation in the lateral part of Heschl`s
gyrus (Belin et al., 2000; Uppenkamp et al., 2006). Subsequently, the information that is encoded in
speech is initially represented in words. Di�erent patterns of cortical activation can be found for the
perception of existing words in comparison to non existing words as reported by Binder et al. (2000b),
Poldrack et al. (1999) and Kouider et al. (2010). Existing words, in turn, are categorized, which is
re�ected in cortical activation in the parietal lobe (Hwang et al., 2009) and in the inferior frontal cortex
(Seghier et al., 2004). The meaning of ambiguous words can be clari�ed during the comprehension on
the sentence level. Many studies, in which the neural correlates of the spoken sentence comprehension
are explored, focus on the explicit di�erence between the processing of semantic content and syntactic
structure (Humphries et al., 2006; Friederici et al., 2003; Rogalsky and Hickok, 2009). Of comparable
interest is the e�ect of semantic priming or predicitability on the intelligibility of speech and the cor-
responding cortical activations (Obleser et al., 2007a; Rothermich and Kotz, 2013; Blank and Davis,
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2016).

In Chapter 3 the results of an fMRI study are presented, which di�ers in its composition from
the above mentioned studies as follows: the stimuli that have been used to compare the semantic and
syntactic processing from the physical recognition of speech are based on a natural speech recording.
While being physically both similar to natural speech, one condition comprises valid spoken utterances
(named semantic speech throughout this work) and the other does not hold any meaningful semantic
or syntactic structure (named non-semantic speech in the following). In addition to these two condi-
tions, the study design includes four further acoustic conditions. The idea of comparing classi�cation
results obtained from the MVPA across conditions, as done in Okada et al. (2010), is adapted with a
correlation analysis across di�erent contrasts between conditions. This permits a more sophisticated
separation of di�erent speech features entangled in single conditions.

Another problem that is considered in that chapter, is the high inter-subject variability of functional
foci (Poldrack et al., 1999; Laumann et al., 2015). This is, in particular, observable for increasing
complexity of cognitive tasks due to increasing individuality of strategies to solve the corresponding
task (Seghier et al., 2004, 2008). This problem is accounted for with a statistical evaluation across the
group of subjects instead of only presenting group result maps.

1.3. Task related connectivity between cortical structures

Cognitive processes are often not only re�ected in a segregated neural activity, but rather in inte-
grational information across spatially distinct cortical areas. The strength of the connection between
cortical structures can be derived from two measures, namely structural and functional connectivity.
The structural connectivity can be quanti�ed with di�usion weighted imaging methods (Uddin, 2013),
re�ecting the density of �bers within the white matter of the brain between gray matter cortical struc-
tures. Functional connectivity, on the other hand, is derived from temporal coactivation, as inferred
in BOLD responses, in separate brain regions (Aertsen et al., 1989; Friston and L. Harrison, 2003).
Disregarding the long-term plasticity of the brain, structural connections between cortical regions are
anatomical structures that cannot rapidly change for speci�c tasks. Synchronized spontaneous �uctu-
ations of brain activity in spatially distant brain strcutures, as identi�ed in resting state fMRI, also
re�ect task-independent correlations of neural activity that give insight to the general functional orga-
nization of the brain (van den Heuvel and Hulsho� Pol, 2010). Some synchronized neural activation
patterns are, however, speci�c for cognitive tasks and re�ect the interaction between those cortical
structures in order to solve the corresponding task. Those functional connections are identi�ed with
functional connectivity and e�ective connectivity. Functional connectivity is inferred by temporal co-
variances of pairs of voxel or time-series of voxels in a region, often determined by the �rst component
of a singular value decomposition (SVD) of the set of voxel-timeseries in a spatial neighborhood of
voxels (Friston2004). The e�ective connectivity is, on the other hand, represented by the in�uence of
spatially distant structures` activations (Friston 1994). One very intuitive model of the several e�ec-
tive connectivity approaches is the model of the psychophysiological interactions (PPI, Friston et al.,
1997). The GLM that is �tted to the time-series of voxels or averaged time-series of regions includes
the activation of distant cortical areas as regressors. The resulting regression-coe�cients depict the
in�uence of the cortical activation in a speci�c region on the activation in the considered region or
voxel. McLaren et al. (2012) expanded this approach to the general psychophysiological interactions
(gPPI) that permit the parallel investigation of multiple conditions.

There are many di�erent studies investigating the cortical connectivity during semantic processing
in the visual domain, using picture categorization tasks (de Zubicaray and McMahon, 2009) or read-
ing tasks (Hauk et al., 2004; Mashal et al., 2009). However, there are only few studies that focus
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on the functional or e�ective connectivity during the abstraction from acoustic input to a meaningful
statement. From studies that investigated the segregated activity during spoken language processing,
activity in the following cortical structures contributes considerably to this abstract cognitive task,
since they have been repeatedly reported to show activation during di�erent speech related tasks: su-
perior temporal lobe (Davis and Gaskell, 2009; Friederici, 2011; Obleser and Kotz, 2010; Heim et al.,
2009), the middle temporal gyrus (Davis and Gaskell, 2009; Mashal et al., 2009; Rogalsky and Hickok,
2009), the inferior temporal lobe (Sharp et al., 2009; Akama et al., 2012; Awad et al., 2007), the inferior
frontal gyrus (Gonzalez-Castillo and Talavage, 2011; Newman and Twieg, 2001; Rodd et al., 2005),
the superior frontal gyrus (SFG Kouider et al., 2010; Birn et al., 2010; Tremblay and Dick, 2016), the
middle frontal gyrus (Whitney et al., 2009; Sharp et al., 2009; Heim et al., 2009), the angular gyrus
(Obleser et al., 2007a; Mashal et al., 2009; Clos et al., 2014), the supramarginal gyrus (Raettig et al.,
2010; Friederici et al., 2010; Richardson and Price, 2009), the fusiform gyrus (von Kriegstein et al.,
2003; Davis and Gaskell, 2009; Abrams et al., 2012) and the cingulate gyrus (Evans and Davis, 2015;
Smirnov et al., 2014; Obleser et al., 2007a).

In Chapter 4, the gPPI method has been used to investigate the cortical activation during the pro-
cessing of spoken language in spatially distinct regions and their in�uence on the respective other
regions to identify neural networks that re�ect interaction speci�c for spoken language processing.

1.4. Outline of the dissertation

This work is composed of a methodological part (Chapter 2) and an experimental part (Chapter 3 and
4). The neurophysiological results that are presented troughout this work are based on one auditory
fMRI study, investigating the neural correlates of spoken language processing and the comparison of
those on an acoustic and an abstract level. To acoount for both, local and global patterns that might
be encoded in the BOLD reponses, the data set was investigated with di�erent methods: 1) searchlight
classi�cation that permits the identi�cation of local activation patterns and 2) e�ective connectivity
analysis based on generalized psychophysiological interactions that permit the identi�cation of inte-
grational brain patterns, re�ecting the interaction between distant brain regions.

In Chapter 2, the mathemathical background of the proposed SCIM method is presented. The com-
parison of the performances of the SCIM method and the reference methods on a subset of the fMRI
dataset (only one contrast has been investigated between semantic speech and non-semantic speech)
and the simulation data revealed some advantages of the SCIM method. The results obtained from
the di�erent methods are compared with respect to their sensitivity and speci�city, their robustness
against di�erent applied p-value thresholds and the plausibility of their neurophysiological interpreta-
tion. Considering the advantages of the SCIM method that have been observed on a part of the data
set, the method is used for the further analysis.

The results obtained from the searchlight classi�cation analysis with the SCIM method are presented
in Chapter 3. In addition to the contrast between clear semantic speech and clear non-semantic speech,
further contrasts between the BOLD responses corresponding to six acoustic conditions in total are
described. To account for the di�erent characteristics of the acoustic conditions, that di�er in their
content of temporal modulation, human voice pitch and semantic content, the analysis was expanded
to a comparison across the contrasts. A Spearman rank-correlation between the quanti�ed di�erences
of the conditions and the corresponding classi�cation performance values of the respective searchlight
was used for the indenti�cation of regions that show BOLD responses whose di�erentiablility correlates
with speci�c di�erences of speech features across conditions.

In Chapter 4, the results obtained from the comparison of local activation and integrated brain activ-
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ity are presented. Statistical parametric maps obtained from the standard GLM, which are presented
here for the contrast semantic speech and non-semantic speech, are compared to the gPPI analysis.
The identi�cation of gPPIs is also based on the GLM method, but includes the activation in di�er-
ent brain regions as potential regressors to explain the temporal variance of cortical activation in the
respective voxel or brain region. The results obtained from this analysis, combined with an interpreta-
tion of results from several previous studies on the topic of spoken language processing, allow for the
identi�cation of separate neural networks for di�erent stages of the processing of spoken language.

The �ndings that are presented in Chapter 3 and Chapter 4 are put into relation to each other in
Chapter 5. The advantages and limitations of the stimulus set and the analysis methods are discussed.
An outlook is given which presents possibilities with the proposed SCIM method from Chapter 2 and
future studies that might improve and supplement the results presented here.
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2.1. Abstract 2. SCIM

2.1. Abstract

The investigation of abstract cognitive tasks, e.g., semantic processing of speech requires the simulta-
neous use of a carefully selected stimulus design and sensitive tools for the analysis of corresponding
neural activity, that are comparable across di�erent studies investigating similar research questions.

Multi-voxel pattern analysis (MVPA) methods are commonly used in neuroimaging to investigate
BOLD responses corresponding to neural activation associated with speci�c cognitive tasks. Regions
of signi�cant activation are identi�ed by a thresholding operation during multivariate pattern analysis,
the results of which are susceptible to the applied threshold value. Investigation of analysis approaches
that are robust to a large extent with respect to thresholding, is thus an important goal pursued here.

The present paper contributes a novel statistical analysis method for fMRI experiments, searchlight
classi�cation informative region mixture model (SCIM), that is based on the assumption that the
whole brain volume can be subdivided into two groups of voxels: spatial voxel positions around which
recorded BOLD activity does convey information about the present stimulus condition and those that
do not. A generative statistical model is proposed that assigns a probability of being informative to
each position in the brain, based on a combination of a support vector machine searchlight analysis
and Gaussian mixture models.

Results from an auditory fMRI study investigating cortical regions that are engaged in the semantic
processing of speech indicate that the SCIM method identi�es physiologically plausible brain regions
as informative, similar to those from two standard methods as reference that we compare to, with
two important di�erences. SCIM-identi�ed regions are very robust to the choice of the threshold for
signi�cance, i.e., less �noisy�, in contrast to, e.g., the binomial test whose results in the present experi-
ment are highly dependent on the chosen signi�cance threshold or random permutation tests that are
additionally bound to very high computational costs.

In group analyses, the SCIM method identi�es a physiologically plausible pre-frontal region, anterior
cingulate sulcus, to be involved in semantic processing that other methods succeed to identify only in
single subject analyses.

2.2. Introduction

Multi-voxel pattern analysis is a tool that has been established in functional magnetic resonance imag-
ing (fMRI) analyses investigating acquired data obtained from cognitive studies. The approach provides
multiple advantages compared to conventional univariate analyses strategies, e.g. general linear models
(GLM, Friston et al., 1995) due to its' higher sensitivity (Norman et al., 2006). Information from com-
parably weak functional BOLD signals in single voxels are accumulated to better discriminable patterns
of BOLD responses, which can increase the statistical power (Kriegeskorte et al., 2006). However, a
standard for evaluation and interpretation of outcomes from theses multivariate analyses has not been
established yet. Since the statistical nature of results from multivariate analyses (e.g., classi�cation
accuracies or area under the ROC curve for classi�cation analyses) di�ers from those obtained by
univariate analyses (e.g., z-scores, t-scores, beta-values), di�erent statistical tests need to be applied
to distinguish statistically signi�cant results. In this paper we present the searchlight classi�cation
informative regions mixture model (SCIM) algorithm, a procedure to statistically evaluate multivari-
ate pattern analysis (MVPA) results obtained from fMRI data that is robust against threshold choices
while being less computationally expensive in comparison to commonly used random permutation tests.

To identify cortical regions that show distinguishable BOLD patterns for contrasted conditions, one
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method is the searchlight classi�cation algorithm (Kriegeskorte et al., 2006). Local patterns of BOLD
responses in spherically shaped spatial data subsets are evaluated in a classi�cation analysis, resulting in
three dimensional maps representing the local informational content about the contrasted conditions,
with a classi�cation performance value for each searchlight`s center-voxel. To separate informative
searchlight regions from those without information, classi�cation results need to be tested for statis-
tical signi�cance. Di�erent approaches have been used for evaluating classi�cation performance results.

In some neuroimaging studies the single subjects results of secondary interest compared to group-
level analyses due to the high variability across humans. In these cases one approach to extract
informative regions from searchlight analyses are voxelwise t-tests across subjects for the classi�cation
performance against chance level (Bode and Haynes, 2009; Carlin et al., 2012; Kahnt et al., 2010).
Since the number of subjects and therefore the samples per test are limited to low numbers in most
studies, this approach for information-like measures was often criticized (Stelzer et al., 2013; Brodersen
et al., 2013; Allefeld et al., 2016).

Under the null hypothesis that a classi�er cannot �nd information about di�erenes between two
conditions in the BOLD data for underlying cognitive tasks, the classi�cation of these data can be
modelled as a Bernoulli trial, resulting in a binomial distribution for n independent tests, requiring
independence of trials (Pereira et al., 2009). The binomial test was utilized by multiple fMRI studies
(Abrams et al., 2012; Akama et al., 2012, 2014; Oosterhof et al., 2010). Most fMRI MVPA studies,
however, compensate for the low number of trials accessible per subject with cross-validation in the
classi�cation analysis, violating the independence of trials in the analysis leading to too optimistic
results in statistical evaluation with the binomial test. Random permutation test are a frequently used
alternative to binomial tests (Allefeld and Haynes, 2014; Arsenault and Buchsbaum, 2015; Hausfeld
et al., 2014) motivated by the few assumptions about the data they require (Stelzer et al., 2013; Allefeld
et al., 2016; Pereira et al., 2009; Pereira and Botvinick, 2011). Under the assumption that data samples
are independent of class labels, the null hypothesis expects the original classi�cation performance to
be drawn from a distribution derived by repetitions of classi�cation analysis with randomly permuted
class labels. The probability for the null hypothesis, respective, p-value is determined by the number of
permutations that lead to an equally high or higher classi�cation performance than the original anal-
ysis. However, the smallest p-value that can be achieved is one divided by the number of repetitions.
Due to the high dimensionality of fMRI data, these test are computationally very expensive.

Instead of arti�cially creating a distribution of classi�cation performance values that are obtained
from classi�cation of non-informative searchlight volumes by permutation of class labels, we propose to
use the assumption that, for cognitive tasks, only speci�c brain regions will be involved while large cor-
tical regions remain una�ected. The distribution of classi�cation performance values obtained from all
searchlight regions from the brain can then be decomposed into a non-informative searchlight distribu-
tion and an informative searchlight distribution with a two-component Gaussian mixture model (GMM,
Dempster et al., 1977), assuming a Gaussian nature of the sub-distribution due to the high dimension-
ality of the searchlight numbers (about 105 searchlights/voxels respectively). In mass-univariate fMRI
analyses similar approaches have been applied to decompose activated voxel distributions and non-
activated voxel distribution, using, e.g, fundamental power frequency for decomposition (Everitt and
Bullmore, 1999; Vincent et al., 2010; Hartvig and Jensen, 2000) or activation clusters (Kim et al., 2010;
Penny and Friston, 2003; Oikonomou and Blekas, 2013). Pendse et al. (2009) used three-component
Gaussian mixture models for this purpose - in addition to the non-activated and activated distribution,
and they assumed a deactivated distribution with a decreased BOLD response for speci�c conditions.
Given the non-directional nature of classi�cation results, we propose to apply a two-component GMM
for MVPA results.

A reliable and robust statistical evaluation is of increasing importance for the investigation of rather
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Figure 2.1.: Proposed searchlight classi�cation informative region (SCIM) algorithm procedure. Sub-
sequent to fMRI data classi�cation with the searchlight algorithm, the resulting area-
under-curve (AUC) performance values are spatially smoothed and decomposed into a
non-informative and an informative searchlight distribution using a two-component GMM.
Searchlights with a-posteriori probability for the informative distribution above threshold,
equivalent to the non-informative distribution posterior below threshold, de�ne the infor-
mative region map (IRM).

complex and abstract cognitive tasks, e.g., the semantic interpretation while listening to spoken lan-
guage. We therefore show the applicability of the proposed method not only on arti�cial simulation
data but also on data from an auditory fMRI study, investigating the di�erences in cortical regions
involved in the processing of semantically valid speech utterances compared to an acoustic signal that
is physically identical to normal speech but without any semantic content. The amount of literature
covering speech processing by humans indicates the importance of this topic for research on human
communication. Studies range from very fundamental tasks like voiced pitch or vowel perception (Up-
penkamp et al., 2006; Liebenthal et al., 2010; Formisano et al., 2008) and speech recognition to more
abstract tasks like phoneme recognition and �nally semantic interpretation on a lexical word level
(LoCasto et al., 2004; Handjaras et al., 2016) and sentence level (Friederici et al., 2000). However,
abstract tasks require very careful study designs and more research is required to obtain reliable results
to understand human communication basics.

The comparison of the proposed SCIM method to the binomial test shows a high robustness of SCIM
against threshold choices, leading to similar results to those obtained by the frequently proposed per-
mutation test. However, the computational cost is considerably reduced, allowing for an increased
number of comparisons of conditions and better insights into cognitive processes.

2.3. Methods

2.3.1. Algorithm architecture

The proposed algorithm computes for each voxel the a-posteriori probability of how likely it is that the
small brain volume surrounding this voxel conveys information about the experimental condition. The
resulting three-dimensional probability map is subsequently referred to as the informative region map
(IRM). Fig. 2.1 provides an overview of the algorithm's main steps, described in detail in subsequent
sections.
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A-posteriori probabilities are computed based on a two-component Gaussian mixture model, which
models the distribution of decoding accuracy (area-under-curve values, AUC) across spatial analysis
positions. Decoding is performed using searchlight classi�cation with linear support vector machines
(SVM), from which the classi�cation accuracy for each voxel position, averaged across all stimulus
presentations, is obtained.

2.3.2. Informative vs. non-informative region mixture model

We hypothesize that brain volumes, containing results from searchlight analyses, can be divided into
two populations: (1) searchlights that carry information about a condition contrast and (2) searchlights
that do not contain this information. Classi�cation performance of the former is expected to be on
average higher than chance level, albeit it may �uctuate considerably among informative searchlight
volumes. Classi�cation performance associated with the non-informative searchlight volumes, instead,
necessarily �uctuates around chance level.

To construct a generative probabilistic model that re�ects the diversity of observed classi�er perfor-
mance within the two groups, we adopt a two-component Gaussian mixture model where one mixture
component models the non-informative searchlight distribution and the second component models the
informative distribution.

Component distributions for searchlight area-under-curve (AUC) performance values, shown in
Fig. 2.2, for the informative (NI , blue) and non-informative (NN , red) components are computed
from the whole brain AUC histogram using the expectation-maximization (EM) algorithm (Dempster
et al., 1977). The underlying mixture model links the component distributions to the joint distribution
P (black) according to

P(ρk|µI ,µN ,σI ,σN ,πI ,πn) = πINI(ρk) + πNNN (ρk)

= πIN (ρk|µI ,σI) + πNN (ρk|µN ,σN ),
(2.1)

where ρk is the classi�cation performance AUC reached by the k-th SVM classi�er, operating on the
k-th searchlight volume. Estimated values of prior probabilities πI , πN , distribution means µI , µN ,
and standard deviations σI , σN are obtained from subsequent iterations of expectation-step (E-step)
and the maximization-step (M-step) of the EM-algorithm that maximizes the logarithmic likelihood
function

lnP({ρk}Kk=1 |µI ,µN ,σI ,σN ,πI ,πn)

=
K∑
k=1

ln {πIN (ρk|µI ,σI) + πNN (ρk|µN ,σN )} .
(2.2)

The a-posteriori probability for the k-th searchlight to belong to the subset CI of informative searchlight
volumes is given by

p(k informative|ρk) ≡ p(CI |ρk)

=
p(CI)p(ρk|CI)

p(CI)p(ρk|CI) + p(CN )p(ρk|CN )

=
πIN (ρk|µI ,σI)

πIN (ρk|µI ,σI) + πNN (ρk|µN ,σN )
.

(2.3)
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Conversely, the probability of k being from the subset CN of non-informative searchlight volumes is

pSCIM(k) ≡ p(k non-informative|ρk) = p(CN |ρk)

=
πNN (ρk|µN ,σN )

πIN (ρk|µI ,σI) + πNN (ρk|µN ,σN )

= 1− p(CI |ρk).

(2.4)

The latter quantity, pSCIM, is used throughout the manuscript since it facilitates comparison with
the classic p-value of reference methods that denotes the probability of accepting the Null-hypothesis.
Thus, searchlight volumes with pSCIM below threshold indicate informative searchlight volumes and in
their entity constitute the informative region map (IRM).

2.3.3. Searchlight classi�cation

The searchlight algorithm requires the spatial division of the data set into overlapping, near spherically
shaped searchlight volumes centered around each voxel, the center-voxel of the respective searchlight
sphere, with the radius set to three voxels. BOLD activations of voxels within a particular searchlight
span a multidimensional feature-space vector x from which the corresponding experiment condition
label y = ±1 is to be predicted.

Subsequent to all searchlight volumes being analyzed independently of each other, classi�cation
performance results are mapped to the respective center-voxel of each searchlight, resulting in a three-
dimensional information-based map (Kriegeskorte et al., 2006) that re�ects the information conveyed
within local BOLD regions about the experimental contrast. Information-based maps re�ect the in-
formational content in local BOLD patterns based on their separability in a high-dimensional feature
space. The absolute activation strength is not important for the interpretation.

2.3.4. Support vector machine

The classi�cation analysis was based on a linear support vector machine analysis (SVM, Schölkopf and
Smola, 2001), which is a suitable and robust classi�cation method for fMRI data (e.g., Misaki et al.,
2010). A logistic regression model in pilot experiments led to comparable but slightly lower classi�cation
performance results. SVMs are discriminative classi�ers, �nding a separating hyper-plane in feature
space with maximum distance to the respective class-samples. The resulting model is parameterized
by an optimum weight-vector w∗ that projects data-samples xi orthogonally to the separating hyper-
plane. To allow for overlapping class-distributions, the soft-margin linear SVM solution is obtained
by minimizing a cost function that includes the projection term wTxi as well as a regularization term
wTw, resulting in the optimum

w∗ = argmin
w

(1
2
wTw + C

l∑
i=1

max(1− yiwTxi,0)
2
)
. (2.5)

To avoid over�tting, the regularization parameter C is determined from experimental data by nested
cross-validation in which an inner cross-validation loop is employed to �nd the optimal C through grid-
search, and an outer cross-validation loop repeatedly estimates classi�er performance on held-out data.

2.3.5. Area under the curve (AUC) analysis

Performance of the classi�er at each searchlight's spatial position is measured as the area under the
curve (AUC), a quantity that is independent of a speci�c classi�er threshold value since it is computed

14



2. SCIM 2.3. Methods

by integrating the area under the receiver operating characteristic (ROC) curve of true- and false-
positive rates. AUC has been shown to provide a reliable performance measure with advantageous
properties in a number of classi�cation problems, as con�rmed by, e.g., Bradley (1997), and can be in-
terpreted as the probability of a correct classi�er decision in a pairwise comparison task of one positive
and one negative example being drawn at random from the data ensemble (Green and Swets, 1966).
In a number of analyses performed here (cf. results), the overall accuracy measure of the percentage of
correct classi�cations is used as an alternative to AUC, to investigate the impact on the overall SCIM
system's analysis results.

2.3.6. Spatial smoothing

To decrease the e�ect of inter-individual anatomical di�erences across participants and to avoid de-
stroying potential �ne grained structure that might support classi�cation, classi�cation performance
maps were spatially smoothed with a Gaussian kernel (FWHM 3mm) instead of a spatial smoothing
step during the preprocessing as it is common in multivariate analysis procedures.

2.3.7. Metrics for separation of informative and non-informative distributions

The degree to which our hypothesis of underlying informative and non-informative voxel distributions
is ful�lled can be estimated by the separation of the informative distribution (mean µI , standard
deviation σI) and the non-informative distribution (µN , σN ) after the two-component mixture model
has been �t to the searchlight AUC performance values. The classic metric for the separation of two
normal distributions is the sensitivity index, which is given by

d′ =
µI − µN√
1
2(σ

2
I + σ2N )

. (2.6)

The resulting d′ values are included as a model selection parameter in the cross-validation procedure
for regularization.
We note that a number of separation criteria have been evaluated as alternatives to the sensitiv-

ity index, including several mean- and variance-based measures, geometric distribution overlap, and
Kullback-Leibler divergence. The corresponding results showed no systematic di�erences to the d′

sensitivity index.

2.3.8. Baseline statistical tests

Previous studies have applied a number of di�erent statistical tests to obtain thresholded result maps
from multivariate fMRI analyses, two commonly used tests being the binomial test (Abrams et al.,
2012; Akama et al., 2012; Oosterhof et al., 2010) and the random permutation test (Allefeld and
Haynes, 2014; Hausfeld et al., 2014; Kumar et al., 2016).
In the binomial test, p-values are computed as the probability for n coincidentally correct classi�ca-

tions in N trials according to Eq. 2.7, with pT the a priori probability of the target class, i.e., the prior
probability of a semantic speech stimulus, and pF = 1− pT the probability of a non-target stimulus,

pbin(k) =

(
N

n

)
pnT p

(N−n)
F . (2.7)

The random permutation test is based on repeated application of the entire classi�cation procedure
(cf. searchlight classi�cation) on data with label-independent data. In each of Nr repetitions, target
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Figure 2.2.: The histogram of searchlight area under the curve (AUC) values in an example map from
single-subject results analysis is overlain with the respective GMM and the correspond-
ing informative and non-informative searchlight distributions. Additionally means and
variances of distributions as basis of metrics for separation criteria are displayed.

labels are shu�ed randomly to simulate independence of samples and targets. p-values are subsequently
obtained from the number of repetitions nh, that led to an equal or higher classi�cation performance
than the performance obtained from the original (unshu�ed) data set, divided by the total number of
repetitions Nr,

prp(k) =
nh
Nr

. (2.8)

A direct comparison for the two reference evaluation tests can be found in Stelzer et al. (2013).

2.3.9. Speech stimuli

The aim of the present study is the identi�cation of cortical structures that are engaged in semantic
processing of speech. To disambiguate simultaneous physical and semantic stimulus di�erences that
occur, e.g., when contrasting speech with noise, we employed two stimulus sets, semantic and non-
semantic speech, that are characterized by largely identical acoustic properties while di�ering only in
the presence vs. absence of semantic meaning.

Non-semantic speech utterances were taken from the �International Speech Test Signal� (ISTS, Hol-
ube et al., 2010), originally designed as a test signal for language-independent hearing aid evaluation.
ISTS is constructed from speech material from six female speakers with di�erent native languages
(Arabic, English, French, German, Mandarin and Spanish), each reading a text in her mother tongue.
It has been subdivided into segments of 100 ms - 600 ms duration, that were subsequently rearranged
in a pseudo-random order to form a continuous stream of speech utterances. The resulting ISTS gen-
erates the percept of nonsense speech that does not contain any semantically valid statements.

Semantic speech stimuli are sentences chosen at random from the Göttingen sentence test (Kollmeier
and Wesselkamp, 1997), a speech intelligibility test comprised of phonetically balanced sentences, that
each convey a short semantically valid statement. To achieve perceptual comparability to the ISTS,
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the sentence test's male voice was transformed to a female voice percept by pitch-shifting and digitally
changing the vocal tract using the tandem straight (Kawahara and Morise, 2011) method.

2.3.10. Data aquisition

FMRI data were recorded in a 3 T Siemens MRI scanner. 19 subjects participated in the study (11
male, 8 female, 23.5 ± 2.6 years in age), 18 of them with German as mother tongue. The latter partic-
ipants were considered for further data analysis. All subjects participated voluntarily with an expense
allowance.

Subjects were presented with semantic and non-semantic speech stimuli, as described above, in a
passive listening paradigm. A sparse imaging design was employed with a time of repetition (TR)
of 9 s, including 6.1 s of sound presentation followed by 2.9 s of EPI sequence data acquisition of a
complete brain volume in 21 slices with a voxel size of 3. 125 mm × 3. 125 mm × 3. 9 mm, a �eld of
view of 20 cm × 20 cm, a matrix size of 64 × 64 and an echo time (TE) of 55 ms. Sparse imaging
allows for the separation of the presentation of auditory stimuli and the scanner noise in time. In
addition, the temporal overlap of measured BOLD responses for di�erent stimuli is decreased, which
has proved to be an advantage for auditory fMRI experiments (Edmister et al., 1999; Hall et al., 1999)
and is also a big advantage for fMRI classi�cation analysis. We note that semantic and non-semantic
trial conditions were interleaved with �ve additional acoustic stimulus conditions, whose analysis is
beyond the current scope and will be reported in a subsequent publication. One session comprised 50
min, including four runs with 70 trials (10 trials per condition). A T1-weighted anatomical image was
recorded for each participant to allow for localization of resulting active brain regions. Preprocessing
including fMRI time series motion correction, realignment and normalization to the standard MNI
brain, was performed with SPM8 software (Friston et al., 1995).

2.3.11. Simulation data

Ten simulation data sets have been created to evaluate how accurate the proposed SCIM method and
the reference methods can identify regions in a data set that has been manipulated by position infor-
mation about di�erent conditions at speci�c locations. These spatial locations de�ne a template map
that is compared to the result maps obtained from the di�erent evaluation methods.

A total of 80 experimental trials, 40 each per target and non-target condition, were simulated that
carried information about the experimental condition only within a spatially limited template mask
area, resembling the SCIM method's informative region map from one subject. In voxel regions outside
of the template mask, simulated voxel activations were generated at random from a normal distribu-
tion with voxel-wise mean and variance that was identical to mean and variance computed across
all experimental fMRI data across target and non-target condition. For voxels within the template
mask region, voxel-wise class-speci�c mean and variance values were identical to mean and variance
computed across all experimental fMRI data computed separately for the target and non-target con-
dition, respectively. Obtained normal distribution voxel activations in the template mask region were
spatially smoothed with a Gaussian kernel, full-width-half-maximum 3mm, to simulate dependencies
across adjacent voxels.
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2.3.12. Group level analysis

For all three considered analysis methods, SCIM, permutation test and binomial test, group results
are obtained by pooling classi�cation performance values separately for every voxel-position.

For the SCIM method, classi�cation performance results are averaged across subjects, resulting in
one map that represents for each voxel the mean classi�cation performance value. Subsequently, the
distribution of averaged performance values is decomposed into a non-informative and an informative
searchlight distribution, similar to single subject analysis, resulting in a-posteriori probabilities for the
non-informative searchlight distribution that are comparable to p-values from other statistical evalua-
tion methods.

Permutation test group results are calculated similar to the proposed method in Stelzer et al. (2013).
Classi�cation performance values are averaged voxelwise. For every subject a set of r = 100 analysis
repetitions with randomized labels is performed and the classi�cation performance results are stored in
r separate maps per subject. In the subsequent voxelwise analysis, one random sample from the set of r
samples per subjects is selected and the corresponding classi�cation performance at the spatial location
is averaged across subjects. This procedure is repeated 100000 times, resulting in a Null-distribution
containing 100000 samples per voxel. The resulting prp-value is calculated as the number of samples
within this Null-distribution that are higher or equal to the original average classi�cation performance
divided by the number of trials (100000).

For the binomial test, the number of correct samples per searchlight/voxel is summed voxelwise.
Now the assumption for one subject that the probability for the null-hypothesis' is equal to the bi-
nomial probability for n correct classi�cations in N samples is adapted to the the sum of all correct
classi�cations

∑
nm inM×N samples with a group size ofM subjects, with nm the number of correct

classi�cations from the data of subject m. The resulting pbin-value is determined by

pbin =

(
M ×N∑

nm

)
p
∑

nm

T p
(M×N−

∑
nm)

F . (2.9)

2.4. Results

2.4.1. Simulations

The reliability of the searchlight classi�cation informative region mixture model (SCIM) was veri�ed
with a classi�cation analysis of simulated data. We compared informative region maps (IRMs) obtained
from the SCIM method analysis to maps from searchlight classi�cation with subsequent binomial test,
random permutation test (n=100 repetitions) and to the template map that underlies the simulation
data.

Ten repetitions of simulation data analysis were carried out, with procedures identical to those used
for experimental fMRI data, including both smoothed (Fig. 2.3) and unsmoothed AUCs (Fig. 2.4).

Both �gures show results from one simulation run for the SCIM method, the random permutation
test and the binomial test (red maps), as well as the ground-truth template map (cyan map). After
spatial smoothing of the AUC maps (Fig. 2.3), simulation data analyzed with the SCIM method and
the random permutation test lead to comparable results. Informative regions obtained from these
methods are slightly larger than those in the template map, which can be explained by the searchlight
algorithm that spatially smears over information contained in voxels and additional spatial smoothing
of AUC maps subsequent to the searchlight classi�cation step. However, the random permutation
test result map shows small additional informative regions that are not present in the template map.
Results obtained with the binomial method are only valid for high signi�cance thresholds (p < 0. 01).
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For unsmoothed AUC maps (Fig. 2.4), both reference methods, the random permutation test and the
binomial test, exhibit informative regions not present in the template map. While these false positive
results could be handled with cluster thresholds for the random permutation test results, the binomial
test leads to invalid results. Results obtained with the SCIM method on unsmoothed AUC maps are
slightly less sensitive compared to those obtained from smoothed AUC maps. Still, in comparison to
the reference methods, the SCIM method best reproduces the template map.

The overlap of simulation result maps and the template map was de�ned as the number of voxels
active in template and result maps, relative to the average total number of active voxels,

overlap =
nt∩r

0. 5(nt + nr)
, (2.10)

with nt∩r the number of voxels that were active in both maps, nt active voxels in the template map,
and nr active voxels in the result map.
The statistical evaluation of simulation analysis results supports the advantage of the SCIM method

compared to the reference methods. Spatial overlap of IRMs with the underlying template map for
di�erent signi�cance thresholds is shown in Fig. 2.5 with correction for the false discovery rate (FDR,
Benjamini and Hochberg, 1995, panel A) and without correction for multiple comparisons (panel B).
Medians across ten repetitions are displayed as lines and the inter-quartile range is shown as semi-
transparent plane, however, not visible due to very small variance across repetitions. For low p-value
thresholds, the overlap values are comparable for the SCIM and the binomial results, while the ran-
dom permutation test results include no informative regions for very low p-values due to the upper
limitation of resulting prp-values, restricted by the number of repetitions (pmin = 1

nrep
). For increasing

threshold values, the overlap with results obtained by the reference methods decreases signi�cantly,
while the overlap of SCIM results with the template map stays almost constant. Even though p-values
larger than 0.05 have little relevance in practice, the corresponding result range is shown for values up
to p =1 in order to prove the robustness of the proposed method.

The sensitivity, the speci�city and the ROC curves for the di�erent methods are depicted in Fig. 2.6
for result maps with and without correction for multiple comparison. Except for the SCIM method
with unsmoothed AUC maps, all methods reach a high sensitivity for p-values larger than 0.01. The
di�erence between the speci�city for smoothed and unsmoothed maps in the SCIM algorithm, however,
is comparably small. The speci�city of the permutation test and the binomial test decreases compara-
bly fast for p-values larger than 0.01. The ROC curves for the corrected tests show an advantageous
curve course of the permutation test with the smoothed AUC maps for p-values larger than 0.01. How-
ever, for smaller p-values the sensitivity of the permutation test is zero. For unsmoothed AUC maps,
the curve courses can be separated in two groups, where the methods are applied to smoothed and
unsmoothed maps, respectively.

2.4.2. Single subject results

In this section analyses of single subject results are presented. For the spatial distribution of clas-
si�cation analysis results, single slices from single subject results are displayed for three di�erent
participants. Quantitative analyses are performed across all subjects.

Spatial p-value distribution

In Fig. 2.7 the spatial distribution of a-posteriori probabilities from the SCIM analysis and p-values
from the random permutation test and the binomial test are displayed for a single slice (at z = 6mm)
for three single subject results. Transparent slices are located at p = 0. 05, separating informative from
non-informative searchlights for non-corrected analyses. The SCIM analysis provides plateaus of high
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Figure 2.3.: Results obtained from simulated data on smoothed AUC maps. Template map (A) for
comparison with simulation result maps obtained from analysis with SCIM method (B),
random permutation test (C) and binomial test (D) of spatially smoothed AUC maps.
Due to spatial smearing e�ects based on the searchlight algorithm, results obtained from
all methods show larger spatial extent than the template map. The map based on SCIM
analysis is most similar to the template map. The map obtained from random permutation
test shows larger smearing e�ects, while binomial test results in informative regions that
are not present in the template map. The locations of the transversal slices are depicted
on a sagittal slice (x = 0).
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Figure 2.4.: Results obtained from simulated data on unsmoothed AUC maps. The SCIM result maps
(panel B) are comparable to those obtained with spatial smoothing (Fig. 2.3) while in the
permutation test results (panel C) and in the binomial test results (panel D) numerous
small informative regions can be found that are not in line with the template map (panel
A).
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Figure 2.5.: Overlap of simulation result maps with underlying ground truth map obtained from SCIM
analysis, random permutation test and binomial test for ten repetitions of simulation
analysis and di�erent applied signi�cance p-value thresholds, respectively. Median values
across ten repetitions are presented as lines, inter-quartile ranges are displayed as semi-
transparent plane but not visible due to the very small variance across repetitions. For very
small p-values, SCIM and binomial test results show comparable overlap with ground truth
maps. However, overlap decreases for binomial results with increasing p-values, while SCIM
results stay almost constant. Result maps obtained from random permutation test show
minimum p-values of prp = 0. 01 (resulting from 100 repetitions) and exhibit no informative
regions for lower p-value thresholds. For p-values higher than 0. 5, both reference methods,
random permutation test and binomial test, are limited by the additional criterion of
AUC > 0. 5 for searchlights to be informative and overlap values converge to a constant
value. For results obtained with the SCIM method, this value is achieved for p-value
threshold close to 1.
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Figure 2.6.: Comparison of the sensitivity (panels A and B), speci�city (panels C and D) and ROC
curves (panels E and F) for the di�erent methods SCIM, permutation test and binomial
test. All methods were tested with smoothed and unsmoothed AUC maps. The results
with FDR correction are depicted in the left panels and results without correction for
multiple comparison are depicted in the right panels.
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signi�cance levels for all displayed single subject results, while non-informative searchlights correspond
to regions of signi�cance levels larger than p = 0. 4, that are not displayed in the plots. The described
e�ects below are true for all slices and all subjects, the plots are limited to one slice of three subjects,
respectively, due to space limitations.

Informative regions obtained from permutation tests are predominantly similar to those obtained
from the SCIM analysis, with the exception of isolated small informative regions that occur in the
permutation test results. However, signi�cance levels for informative and non-informative regions are
not as clearly separated as in the SCIM analysis and the presence of the previously mentioned small
informative regions is dependent on the applied signi�cance thresholds.

The distribution of p-values resulting from the binomial test analysis shows a gradual transition from
informative to non-informative searchlight areas in a narrow interval of p-values. This leads to high
dependence of informative regions on the applied signi�cance threshold.

Single subject informative region maps

Single slices (at z = 6mm) of IRMs obtained from single subject analyses and the corresponding statis-
tical distribution of results in the whole result map are displayed in Fig. 2.8. Result maps obtained with
the SCIM method, the random permutation test and the binomial test were thresholded at p < 0. 05,
respectively. Informative regions obtained without correction for multiple comparisons are colored in
red, the corresponding informative regions with FDR correction are colored in orange. Permutation
test results show no informative regions after FDR correction for subjects 2 and 3, while with other
methods (and for subject 1 also with random permutation) FDR correction leads to slightly decreased
sizes of informative regions. Anatomical regions identi�ed to be engaged in the semantic processing
task are qualitatively similar for all methods. The right panels of Fig. 2.8 show the histograms of clas-
si�cation performance values across all brain-searchlights, the assumed Null-distribution for the SCIM
method (blue line) and the corresponding a- posteriori probabilities for classi�cation performance val-
ues obtained with the SCIM method. Black dots show p-values obtained from random permutation
tests, and the dashed lines show the Null-distributions for one voxel with high (red), mid (green)
and low (blue) classi�cation performance, respectively. Null-distributions obtained from the random
permutation test are comparable for all three subjects, while the original distribution of AUC values
is di�erent. AUC maps resulting from the analysis of data from Subject 1 (A) are shifted towards
lower values, maxima of distributions from Subject 2 (B) and Subject 3 (C) are located at chance
level (pchance = 50%). Only searchlights with AUC > 50% are considered to be informative, and less
searchlights satisfying this criterion involve less comparisons to be corrected for in the FDR procedure.
Therefore, the FDR corrected IRM for Subject 1 is comparable to the uncorrected one, while IRMs
for Subject 2 and 3, with more searchlights being associated to the distribution of searchlights with
AUC > 50% show no informative regions after FDR correction. The dark red dotted lines show the
binomial distribution resulting from study design with N = 80 samples and pchance = 0. 5. This distri-
bution also shows p-values for accomplished classi�cation performance results as well as the assumed
Null-distribution for the binomial test.

In�uence of signi�cance threshold

Quantitative analyses of single subject results are displayed in Fig. 2.9. The left panels show the
portion of informative searchlights from all brain searchlights for di�erent applied signi�cance thresh-
olds for the three evaluation methods, (1) SCIM, (2) random permutation and (3) binomial test and
classi�cation performance measures, AUC and accuracy. Lines represent the median across subjects,
while semi-transparent areas display the inter-quartile range. FDR corrected SCIM analysis results
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Figure 2.7.: Spatial distribution of a-posteriori probabilities pSCIM (SCIM) and p-values (random per-
mutation test and binomial test) across a single slice (z = 6mm, single subject, evaluation
measure AUC, spatial smoothing for SCIM, random permutation and binomial) of single
subject results from three di�erent subjects. Left panels: distribution of pSCIM-values
resulting from the Searchlight Classi�cation Informative Region Mixture Model (SCIM,
semi-transparent plane located at pSCIM = 0. 05) has plateaus of high signi�cance levels
for informative searchlight regions and a low noise �oor across non-informative areas. Cen-
ter panels: p-values resulting from random permutation analysis (semi-transparent plane
located at pperm = 0. 05). Right panels: The distribution of binomial-test p-values (semi-
transparent plane located at pbin = 0. 05) shows gradual transition from informative to
non-informative searchlight areas in a narrow p-value interval. Di�erences between in-
formative and non-informative areas are best delineated by the SCIM method and less
pronounced with random permutation and binomial methods.
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Figure 2.8.: Single slice (at z = 6mm) of subject informative region maps (IRMs). IRMs obtained
from single subject results with SCIM methods (�rst column), Permutation test (second
column) and binomial test(third column) for three di�erent subjects at a signi�cance level
pSCIM < 0. 05, prp < 0. 05 and pbin < 0. 05, without correction for multiple comparison
(red) and with FDR correction (orange), respectively. For subjects 2 (panel B) and 3
(panel C), no informative voxels can be found when FDR correction is applied. For the
SCIM method and binomial method, maps obtained with FDR correction exhibit slightly
smaller informative regions. Right panels show the results' distribution across voxels.
A histogram of AUC values is presented as bar-plot. A-posteriori probabilities obtained
from SCIM analysis (red circles) and p-values obtained from permutation test (black dots)
and binomial test (dark red dashed line) are displayed, as well as underlying assumed
Null-distributions for the di�erent tests, SCIM method (dark blue line) and permutation
test with one distribution for a voxel with high (blue), middle (green) and low (red)
performance, respectively. For subject 1 (panel A) the distribution peaks for AUC values
lower than 50%, while for the other subjects the maximum is located at chance level
AUC=50%.
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are approximately constant up to threshold levels of p = 0. 1. For higher thresholds the number of
informative searchlights increases only marginally. The number of informative searchlights obtained
from the random permutation tests di�er across subjects. For higher thresholds than p = 0. 05 the
upper quartile of the group shows a strongly increasing number of informative searchlights with in-
creasing p-value thresholds, while the median of the group shows an almost constant trend, similar to
the results obtained with the SCIM method.

Since searchlights that lead to very low classi�cation performance results are associated with low
p-values but are not expected to be highly informational, only searchlights with higher classi�cation
performance than 50% are considered to be informative. This additional criterion is the limiting factor
for thresholds around prp = 0. 5 for the random permutation test and pbin = 0. 08 for the binomial
test. For higher signi�cance thresholds all searchlights with a higher performance value than 50% are
considered to be informative, irrespective of the exact applied p-value thresholds.

Corresponding statistics for non-corrected maps in the lower left panel show strong dependencies on
applied p-value thresholds for both performance measures, AUC and accuracy for the binomial test,
and AUC measure for the random permutation test. SCIM method results and random permutation
results obtained from the accuracy analysis are nearly constant up to p-values of 0. 05. The number of
informative searchlights obtained from the SCIM analysis increases slowly for higher thresholds, while
IRMs obtained from the random permutation analysis show a sharply increasing number of searchlights
with increasing p-value thresholds.

Usual p-value thresholds vary between p = 0. 01 and p = 0. 05 across studies. The impact of di�erent
applied thresholds for signi�cance is represented in the right panels (B and D) of Fig. 2.9 as the inverse
slope of median curves from panels A and C in the range between p = 0. 01 and p = 0. 05, respec-
tively. The red lines show the median, the boxes the inter-quartile range, the dashed lines 5%- and
95%-quantiles and the red crosses show outliers. For FDR corrected maps (panel B), the SCIM results
show very low di�erences in this range. Random permutation tests lead to no informative searchlight
with FDR correction, except for two subjects, that show larger di�erences in the mentioned range than
SCIM results. Binomial tests show larger di�erences across thresholds than both, SCIM and random
permutation results. Without correction for multiple comparisons (panel D) inverse slopes for SCIM
results only di�er marginally from those obtained with FDR correction. For the random permuta-
tion test on AUC values, the absolute value of the inverse slope and therefore the change of numbers
of informative searchlights is signi�cantly larger than for the SCIM analysis. Results obtained with
the accuracy measure are comparable for SCIM analysis and random permutation tests. Binomial test
results lead to signi�cantly larger absolute values of inverse slopes for both, AUC and accuracy measure.

2.4.3. Group level results

Summary of evaluation methods and classi�cation measures

Fig. 2.10 shows the group level informative region maps (IRMs) obtained with the three di�erent ap-
proaches SCIM method, random permutation test and binomial test. Informative regions obtained
with an applied p-value threshold of p < 0. 05 are colored in red, respective informative regions for
p < 0. 01 in dark violet and p < 0. 001 in pale violet. For AUC measures (panel A) the informative
regions do not di�er considerably for the di�erent applied thresholds and with or without FDR cor-
rection when signi�cance evaluation is performed with SCIM or random permutation test. Binomial
test results show additional informative regions to those obtained with the previous two methods in
anatomical areas that do not overlap with results known from literature for the investigated cognitive
task, both with and without FDR correction. However, informative regions obtained with the binomial
test methods with signi�cance thresholds lower than p = 0. 01 are similar to those obtained with the
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Figure 2.9.: Quantitative analysis of single subject maps across subjects. (A) and (C) Cumulative his-
tograms of fraction on searchlight volumes (in %, abscissa) whose pSCIM-value is below a
chosen threshold pthr-value (ordinate), i.e., which are considered informative. Curves indi-
cate group median for SCIM method, random permutation method and binomial method
with area-under-curve (AUC) and accuracy (acc) measures, respectively. Semi-transparent
areas depict the inter-quartile range. (B) and (D) Average inverse slopes of curves in panels
(A) and (C) within the interval 0. 05 > pthr > 0. 01. Upper panels (A and B) show FDR
corrected results, lower panels (C and D) show respective non-corrected results. Results
indicate that the SCIM method is characterized by a strong separation of informative and
non-informative searchlight volumes, both for FDR corrected and non-corrected maps,
while results obtained with AUC measurement and random permutation test are highly
dependent on the applied thresholds. Binomial test results show this dependency in all
cases.
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Figure 2.10.: Single slices (z = 6mm, respectively) of group maps with AUC measure (panel A) and
accuracy measures (panel B). First and third column show results with FDR correction,
second and fourth column respective results without correction for multiple comparison.
Group results obtained with the proposed SCIM methods are displayed in the �rst row,
random permutation test results in the second row. Third row represents results from
binomial test group results. Informative regions at a threshold with p < 0. 05 are colored
in red, respective results for thresholds p < 0. 01 in dark violet and p < 0. 01 in light
violet.

two other methods. For accuracy measures (panel B), the IRMs obtained with the random permutation
test and the binomial test for p-value thresholds at p < 0. 05 include informative regions in anatomical
areas that are not consistent with areas known from the literature. Informative regions obtained with
thresholds p < 0. 01 are consistent with those obtained from AUC analysis and SCIM analysis.

Group level p-value distribution

The spatial distribution of a-posteriori probabilities pSCIM obtained from the SCIM analysis and prp-
values from the random permutation test as well as pbin-values from the binomial test are displayed
for a single slice (z = 6mm) of group result maps in Fig. 2.11. Other slices show similar e�ects, but
are not shown here due to space restrictions. The semi-transparent slices are located at thresholds of
p = 0. 001. Informative regions, i.e. , the segments above a semi-transparent plane, are comparable
for results obtained from SCIM and the random permutation test. However, the random permutation
test on accuracy measures leads to just below threshold results that are not as clearly separated from
informative regions as compared to results obtained from AUC measures or the SCIM analysis on both
measures, AUC and accuracy. The pbin-values obtained from the binomial test lie in a very small value
range that does not permit a reliable separation of informative from non-informative regions. While
the other methods, SCIM and random permutation test, show spatially smooth plateaus of high signi-
�cance (respectively low p-values), binomial test results show very homogeneous spatial distributions
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for both, AUC and accuracy measure.

Statistical distribution of group level results

The distribution of group results obtained with the di�erent approaches can be found in Fig. 2.12
for the AUC measure (A) and the accuracy measure (B). Light blue bars display the histogram of
the respective average classi�cation performance results across all subjects. Red circles show the cor-
responding a-posteriori probabilities obtained with the SCIM method, with less data points for the
accuracy measure due to the limited resolution of 80 samples per searchlight. The underlying assumed
Null-distributions for the SCIM analyses are shown as dark blue lines. The prp-values resulting from
the random permutation tests are displayed as black dots. In comparison to single subject results
(cf. Fig. 2.8), group result random permutation prp-values show less variance for respective perfor-
mance measures. However, low prp-values are associated with lower classi�cation performance values
compared to a-posteriori probabilities (pSCIM ) obtained from SCIM analyses. For the binomial test,
the assumed distribution is equal to the resulting pbin-values for respective classi�cation performance
values. These are displayed as dashed dark red lines.

For the AUC measure, the assumed Null-distributions from SCIM analyses and the random permu-
tation analyses do not peak at the expected chance level at pchance = 0. 5 in contrast to the assumed
Null-distribution for accuracy measure. However, while the SCIM Null-distribution is determined by
the histogram of AUC values the Null-distribution resulting from random permutation tests does not
follow the histogram of achieved AUC values. The binomial Null-distribution, on the other hand,
that only depends on the study design but not on analysis results, is distributed around the expected
chance level. For the accuracy measure, all Null-distributions are centered around chance level. For
both measures, AUC and accuracy, the SCIM analysis provides a more stringent selector for informa-
tive regions in classi�cation performance maps than the random permutation test and the binomial test.

Group level informative region maps

In Fig. 2.13 informative regions are displayed for the contrast semantic speech vs. non-semantic speech,
emerging from fMRI analysis with the proposed SCIM method based on AUC measure (A), on ac-
curacy measure (B) and the corresponding maps obtained from commonly used random permutation
test (C and D).

Informative regions arising from the proposed method (SCIM) overlap with those arising from ran-
dom permutation test with AUC measure to a large extent, with slightly larger informative regions in
the random permutation test results. The location of informative regions obtained from the described
analyses are in primary auditory and adjacent regions in Heschl's gyrus and the superior temporal
gyrus, in Broca's area in the inferior frontal gyrus region and posterior to the auditory cortex in
Wernicke's area. Additionally informative regions for semantic processing have been found in fronto-
cortical regions in anterior cingulate gyrus.

The previous statistical evaluation has shown that the statistical power of the binomial test is con-
siderably lower than the power of the SCIM method and the permutation test. Therefore, and in order
to be able to display several slices of the real data within a reasonable amount of space, the result maps
are focused on those obtained from the SCIM method and the permutation test. The corresponding
result maps obtained from the binomial test can be found in the supplementary material.
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Figure 2.11.: Spatial distribution of a-posteriori probabilities pSCIM (SCIM) and p-values (random per-
mutation test and binomial test) across a single slice from group result maps (z = 6mm,
group results, evaluation measure AUC (A-C) and accuracy (D-F), spatial smoothing).
Left panels (A and D): distribution of pSCIM-values resulting from the Searchlight Clas-
si�cation Informative Region Mixture Model (SCIM, semi-transparent plane located at
pSCIM = 0. 001) has plateaus of high signi�cance levels for informative searchlight re-
gions and a low noise �oor across non-informative areas. Center panels (B and E):
p-values resulting from random permutation analysis (semi-transparent plane located at
pperm = 0. 001). Right panels (C and F): Distribution of binomial-test p-values (semi-
transparent plane located at pbin = 0. 001) in a very narrow p-value interval. Di�erences
between informative and non-informative areas are best delineated by the SCIM method,
however, very similar to those in results obtained from random permutation test. For
accuracy measure, the random permutation test exhibits sub-threshold non-informative
regions, that are not as well separated from informative regions as compared to results
map from AUC analysis or SCIM analysis. Results obtained from the binomial method
are almost non-separable into informative and non-informative regions, since the the range
of emerging p-values is very small.
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Figure 2.12.: Statistical evaluation of group results based on (A) AUC measures and (B) accuracy
measures. Histograms show the distribution of classi�cation performance results emerging
in group mean maps. Red circles show a-posteriori probabilities obtained from SCIM
analysis for respective classi�cation performance values and the blue line the underlying
Null-distribution. In random permutation test p-values are calculated independently for
all voxels that are shown with black dots. p-values obtained with the binomial test result
from the binomial distribution that also represents the assumed Null-distribution for this
test.

2.5. Discussion

This paper presents a novel method for the evaluation of results obtained from multivariate searchlight
classi�cation analysis of fMRI data. Simulation data and data from a real auditory fMRI experiment
are analyzed with the proposed SCIM method and results are compared to those obtained from two
references methods, the random permutation test and the binomial test. The evaluation and compar-
ison of the methods is based on the spatial distribution of obtained p-values, robustness of results for
di�erent signi�cance thresholds and classi�cation measures (AUC and accuracy) and consistency with
results described in previous studies investigating semantic processing of acoustic stimuli.

2.5.1. SCIM method for a-posteriori probability estimation

The analyses of simulation data in Sec. 2.4.1 con�rm the general applicability of the SCIM method
and advantages over reference methods, random permutation test and binomial test, when results are
compared to ground-truth. All methods reproduce the template map for low p-values with minor dif-
ferences depending on certain processing stages, in particular spatial smoothing, cf. Fig. 2.5. Without
spatial smoothing, the reference methods exhibit false positive informative regions, not included in the
template map, while the SCIM method shows largest consistency with the template map for both,
smoothed and unsmoothed AUC maps with lower sensitivity but higher speci�city with unsmoothed
maps. As re�ected in Fig. 2.6 the SCIM method has a low sensitivity when it is used without spatial
smoothing of the AUC maps and even with spatial smoothing the sensitivity of the reference meth-
ods is higher for p-values than 0.01. However, these di�erences are very small in comparison to the
di�erences in speci�city for p-values> 0.01, where the SCIM method outperform the reference methods.

For the experimental data, all three methods successfully identify informative regions, as re�ected in
low a-posteriori probabilities (pSCIM) for the SCIM method, and low prp- and pbin-values for the ran-
dom permutation and binomial methods, respectively. Robustness of the spatial extent of informative
region maps (IRMs) with respect to the threshold value applied during analysis, however, is found to be
dependent on the choice of the analysis method. While the spatial map obtained with a binomial test
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Figure 2.13.: Group result maps for the contrast semantic speech vs. non-semantic speech, with pro-
posed SCIM method on (A) AUC maps, (B) accuracy maps, random permutation test
on (C) AUC and (D) accuracy maps in �ve transversal slices and one saggital slice to
display location of transversal slices. Informative regions for group results obtained with
random permutation test and SCIM method on AUC maps are qualitatively consistent,
however spatial extent of informative regions from random permutation test is slightly
larger compared to those obtained from SCIM method analysis. While SCIM result maps
based on accuracy measure show spatially smaller informative regions with less reliability,
corresponding maps obtained from random permutation test seem to be too optimistic
and lead to non-interpretable informative regions. For AUC measures informative regions
are located in primary and secondary auditory cortex, namely in Heschl's gyrus (HG) and
superior temporal gyrus (sts) as well as adjacent regions, Broca's area and Wernicke's
area, that have been associated previously with speech processing. Additional informa-
tive regions can be found outside of temporal cortex, in anterior and posterior cingulate
gyrus, previously being associated to semantic processing.

33



2.5. Discussion 2. SCIM

is highly dependent on the applied threshold and leads to non-plausible results for increased p-value
thresholds (lower signi�cance levels), the random permutation analysis test is more robust than the
binomial test at the price of very high computational cost. IRMs obtained with the SCIM method are
characterized by spatially smooth, low pSCIM-values in informative regions that are clearly separated
from non-informative, high pSCIM-regions (cf. Fig. 2.7), and this partitioning is largely independent
of the chosen threshold value. The same e�ect is visible for group results, as presented in Fig. 2.13
and Fig. 2.11, when comparing SCIM results with random permutation test. For AUC measure, a-
posteriori probabilities obtained from group analysis with the SCIM method are comparable to those
obtained from the random permutation test, though computationally of immensely higher e�ciency.
For the accuracy measure, the random permutation test is not only involved with high computational
costs but leads also to non-interpretable results � in contrast to SCIM results, that are similar to
those obtained with AUC measure, however with slightly smaller informative regions.

The dependence on applied thresholds was quantitatively illustrated in Fig. 2.9. The number of
informative searchlights in IRMs is almost constant for a-posteriori probabilities smaller than 0. 1. In
binomial test result maps, the number of informative searchlights increases in the range of typically
used thresholds between p = 0. 01 and p = 0. 05. The same e�ect can be observed for random permu-
tation result maps based on the AUC measure without FDR correction. These results emphasize the
need for false discovery correction in result maps arising from random permutation and binomial tests.
Shifted thresholds have a small impact on resulting IRM informative areas. In most of the quantitative
comparisons of the SCIM method with the reference methods in this paper a value range up to p=1
is depicted, even though values of p >0.05 have little relevance for the experiment data. This was
done to illustrate the robustness of the SCIM method. Given the robustness of spatial patterns for
large values of p >0.05, it is reasonable to expect highly robust results for lower choices of p-values (or,
more speci�cally: for lower chosen a-posteriori probability levels). Therefore, the SCIM method might
provide a tool for fMRI analysis that to some degree maintains sensitivity with increased speci�city
(Lieberman and Cunningham, 2009).

Across experiments and simulations presented here, our analyses failed to identify situations where
use of SCIM would induce a considerable disadvantage compared to reference methods. Methodological
di�erences, e.g., underlying assumptions of the methods and associated numerical e�ort, also did not
negatively a�ect the range of situations where SCIM is applicable. Under the scenario of p-values larger
than 0.01 and a simultaneous emphasis on high speci�city, the permutation test might be preferred
when its high computational cost is irrelevant. However, this scenario is of limited relevance for most
studies. We expect that future studies will contribute to a broader understanding of the algorithm's
qualities.

2.5.2. Smoothing of classi�cation performance maps

Spatial smoothing in�uences the outcome of statistical tests and estimated posterior probabilities,
since it alters the underlying AUC (and respectively accuracy) distributions in informative and non-
informative brain regions in di�erent ways. Regions of high spatial continuity, corresponding to com-
parably low standard deviation, are expected to coincide with informative regions of high mean AUC
and accuracy, respectively. Smoothing further reduces their deviation even more and, thus, reduces
the number of searchlights at the far right-hand tail of the distribution, as would be detected by a �xed
threshold. Non-informative regions are characterized by lower spatial continuity, resulting in a compar-
atively larger reduction of the standard deviation being induced by spatial smoothing. The proposed
SCIM method adaptively tracks changes in these underlying distributions since the two-component
Gaussian mixture model adapts to the informative and non-informative distributions that are implied
by the observed data, i.e., smoothed or unsmoothed AUC and accuracy. Spatial smoothing applied
to the random permutation and binomial reference methods has predominantly the e�ect of reducing
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spatially �noisy� false positive searchlights (cf. Fig. 2.3 and Fig. 2.4, third and fourth rows), however,
occasionally coinciding with a reduction in informative map extent. The higher sensitivity that can
be achieved with all three methods is also re�ected in the panels A and B of Fig. 2.6 and the ROC
curves in panel F of the same �gure. The SCIM method bene�ts from smoothing in particular through
the inclusion of additional searchlight volumes into the informative region estimate, with an overall
increase in physiological plausibility (cf. Fig. 2.3 and Fig. 2.4, second row).

2.5.3. Classi�cation performance measure

Group result maps obtained from SCIM analysis in Fig. 2.13 (A and B) display larger informative
regions resulting from the AUC measure than from the accuracy measure, with the former providing a
better match across the spatial extent of physiologically task-relevant areas known from literature (cf.
discussion of physiological results below). Robustness, evaluated as the dependency of the number of
informative searchlights on applied thresholds, shown in Fig. 2.9, is comparable for both performance
measures in the SCIM method. For random permutation tests, results based on accuracy are hard
to interpret and inconsistent with informative regions known from literature for the task of semantic
processing.

These observations likely re�ect principled advantages of the AUC measure for classi�er evaluation
over the accuracy measure. AUC has been shown to provide a performance measure that is invariant
to a priori class probabilities and exhibits increased sensitivity and decreased standard error (Green
and Swets, 1966; Bradley, 1997; Spackman, 1989). In the context of the SCIM method, it provides
us with a tool to perform reliable regularization and model selection in the SVM learning step and,
thus, prevents over-�tting in the searchlight classi�cation step. The informative and non-informative
distributions, obtained in the GMM step of the SCIM method, are characterized by a small standard
deviation due to e�ectively �decreased noise� in the AUC measure. This facilitates the decomposition
into an informative and non-informative searchlight distribution in the SCIM method and increases
the robustness of informative regions in IRMs.

2.5.4. Physiological results

The analyses presented above consistently found informative brain regions in auditory cortex areas
that are associated with speech perception. Speci�cally, we identi�ed superior temporal sulcus (STS)
which was shown to play a role in speech processing in general (Markiewicz and Bohland, 2016; Osnes
et al., 2011; Uppenkamp et al., 2006) and the processing of intelligible speech in particular (Abrams
et al., 2012; Davis and Johnsrude, 2003; McGettigan et al., 2012). Heschl's gyrus, another brain region
labeled as informative by the SCIM method, has previously been connected with di�erent degrees of
speech clarity (Wild et al., 2012), perception of vowels (Formisano et al., 2008), intelligible speech
(McGettigan et al., 2012) and syllables (Markiewicz and Bohland, 2016). In auditory cortical areas
associated with higher order auditory processing, regions in inferior frontal sulcus showed informative
content for the semantic vs. non-semantic speech contrast. They had previously been reported to be
relevant for semantic and phonological processing, word and syllable counting (Poldrack et al., 1999),
as well as for hierarchical structures and sentence processing (Makuuchi et al., 2009), speech working
memory (Friederici et al., 2006), and processing of intelligible speech (Abrams et al., 2012). In fronto-
cortical areas, our group analyses showed reliable results in cingulate gyrus (pSCIM < 0. 001), which
is consistent with �ndings by Adank and Devlin (2010) for processing of auditory sentences, and for
output-related vowel information by Markiewicz and Bohland (2016). In Rissmann et al. (2003), this
region showed higher activation for words compared to non-words. Binder et al. (2009) described this
area in their meta-analysis as interface between the semantic retrieval and episodic encoding systems.
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2.6. Conclusion

This work explored a novel method to evaluate neurophysiological data that was tested on data ob-
tained from an auditory fMRI study, investigating cognitive processes during the semantic processing
of speech. The method is based on searchlight classi�cation analysis with subsequent division of
searchlight results into informative and non-informative searchlight regions and permits a more robust
discrimination of informative vs. non-informative cortical regions than common evaluation methods
like the random permutation tests or the binomial test. Informative regions obtained with the method
are qualitatively consistent with those obtained from reference methods. Yet, a-posteriori probabilities
resulting from the SCIM method dissociate into two distinctly separate distributions, whereas separa-
tion of signi�cant from non-signi�cant results in the reference methods are highly threshold-dependent.
Since changes in applied thresholds change resulting informative region maps to a lesser degree, the
SCIM method provides an evaluation tool that increases the speci�city of multivariate fMRI analysis
without degrading sensitivity in a considerable manner. The method is applicable to all fMRI studies
that permit a classi�cation of BOLD responses into distinct classes of tasks or conditions. It is bene-
�cial in particular for fMRI studies in which sparse imaging is used and the data set is rather small.
The example data presented in this study illustrate that the procedure allows for robust identi�cation
of plausible group e�ects that were not found with univariate statistical analysis.
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3.1. Abstract

The understanding and interpretation of speech is both, indispensable for basic human interaction and
a complex and abstract cognitive task for the human brain. Disentangling the neural substrates of
processing di�erent speech features requires a strategically designed stimulus set and a careful combi-
nation of individual results to group results.

In this chapter results from an auditory fMRI study encompassing stimuli that di�er in the extent of
semantic content, human voice pitch and amplitude modulation are presented. In addition to results
from searchlight classi�cation analysis, inter-contrast di�erences of fMRI data obtained from a corre-
lation analysis approach are presented. Conclusions from the integration of quantitative single subject
results di�er partially from the investigation of group result maps and indicate a superior e�ect caused
by modulation in known auditory regions like Heschl`s gyrus, the superior and medial temporal gyrus
and inferior frontal regions. Correlation e�ects for voice pitch content can be identi�ed predominantly
in belt and parabelt areas of the auditory cortex and in the inferior frontal gyrus, while regions in
occipito-parietal areas and structures of the limbic system correlate more likely with semantic process-
ing.

3.2. Introduction

A large part of human communication is relying on understanding spoken language, which is a com-
plex cognitive operation including basic processes like pitch perception up to highly abstract tasks like
semantic interpretation. To understand underlying neural substrates of this hierarchically structured
process (Hickok and Poeppel, 2007), di�erent stages of speech comprehension need to be investigated
and compared across di�erent stimuli. Furthermore, the investigation of rather complex cognitive pro-
cesses requires careful methods to combine single subject results to group results. This is due to the
increasing inter-individual variance of brain activity for abstract tasks that might lead to oversight of
important e�ects in conservative group analysis approaches.

Human speech perception and comprehension shows an impressive robustness to everyday distur-
bance and variations. It is not possible to extract a single speech feature that predicts speech intelli-
gibility (Arai and Greenberg, 1998) since di�erent stages of speech perception are not fully separable.
Their neural correlates show overlapping patterns and science has not been able to fully disentangle
and understand these processes yet. However, much research has been conducted on the particular
speech features and their representation in neural patterns during speech perception.

In acoustic speech, amplitude modulations are one important cue for information encoded in the
signal. Giraud et al. (2000) showed that amplitude modulations contribute to neural activation from
lower brainstem areas up to higher cortical stages, depending on the frequency and its correlate in
speech perception. They found activation corresponding to higher frequencies in rather early stages
of the auditory pathway, describing voicing and prosody. Lower modulation frequencies, correlating
with articulation and syllabic rate, accompanied activation in areas around the primary and secondary
auditory cortex. Even though amplitude modulations contribute to the semantic meaning of spoken
utterances (Riecker et al., 2002), they are not su�cient for comprehension when they are imprinted
as a speech envelope, e.g., on a simple noise carrier signal (Giraud, 2004). Another important cue for
understanding the perception of human speech is the processing of formant structures. These have
considerable impact on the perception as natural speech (Lattner et al., 2005; Heinrich et al., 2008).
Results of a behavioral study by Johnsrude et al. (2013) indicate that the voice that is determined
by the formant structure in�uences the intelligibility of spoken utterances, both when the speaker`s
voice or a disturbing speaker`s voice are familiar to a listener. Areas that are voice sensitive have been
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identi�ed in multiple studies, comparing speech vs. non-speech sounds (Belin et al., 2000; Uppenkamp
et al., 2006), manipulation of speech-sounds (Jäncke et al., 2002; Meyer et al., 2004; Heinrich et al.,
2008; Warren et al., 2006) or variation of speakers (Formisano et al., 2008; Lattner et al., 2005). These
studies consistently reported activation in areas along the temporal lobe, overlapping with activation
for other speech features, e.g., prosody as a percept resulting from variations in pitch, duration and
loudness of spoken words (Gandour et al., 2002).

The extraction of meaning from spoken language can be examined on two di�erent levels: (1) the
lexical semantic stage that assigns speci�c meaning from perceived phoneme combinations to items in
a lexical storage and (2) the conceptual semantic stage, where potential ambiguous meaning is clari�ed
in context, typically on sentence level. Literature provides insights from studies investigating both
stages of semantic processing. Lexical semantic processing has been subject of research in studies
investigating neural activity during word- and pseudoword-processing (Binder et al., 2000a; Poldrack
et al., 1999), word generation (Hwang et al., 2009; Birn et al., 2010; Jeon et al., 2009), word catego-
rization (Akama et al., 2012; Birn et al., 2010; Handjaras et al., 2016) and, more particular, in contrast
from ambiguous and unambiguous word-pairs (Bilenko et al., 2009).

On sentence level, the interpretability of speech can be modulated via syntactic and semantic vi-
olations. Humphries et al. (2006) examined the question, whether the cognitive load for processing
sentences compared to randomly ordered words is due to the absence of syntactic structure or the
absence of relations between content words. Contrasting e�ects of violations in syntactic vs. semantic
structures of sentences has been also object in various other studies (Friederici et al., 2003; Rogalsky
and Hickok, 2009; Tyler and Marslen-Wilson, 2007). Another aspect of semantic processing is the
bene�cial e�ect of semantic priming on speech intelligibility, which has been investigated by Obleser
et al. (2007b), Rothermich and Kotz (2013), Schmidt and Seger (2009), Blank and Davis (2016), Rodd
et al. (2012), and Davis et al. (2011); Devauchelle et al. (2008).

Cortical structures engaged in the extraction of semantic meaning from acoustic signals have been
identi�ed in areas associated with lower-level speech perception in the temporal lobe (Davis et al.,
2011; Abrams et al., 2012; Devauchelle et al., 2008; Friederici et al., 2003; Humphries et al., 2006).
However, more abstract tasks in speech processing correlate with activation more distant from the
auditory cortex (Davis and Johnsrude, 2003), like the inferior frontal gyrus (Abrams et al., 2012; De-
vauchelle et al., 2008) or the angular gyrus (Abrams et al., 2012; Golestani et al., 2009; Humphries
et al., 2006).

The aim of this study is the identi�cation of cortical structures that are engaged in the extrac-
tion of semantic meaning from acoustically perceived sounds. For this purpose we presented subjects
during a sparse imaging fMRI experiment with six di�erent acoustic stimuli. The stimuli varied in
their comparability to natural speech in semantic content and acoustic properties, in particular voice
pitch and temporal modulation. The speech-like stimuli are of primary interest in this study, since
their construction permits a comparison of cortical activation during the perception of normal spoken
sentences and stimuli that are constructed from human speech recordings but do not hold semantic
content without distortion of the physical stimulus properties.

Accounting for results from the previously mentioned studies, we derive the following two hypotheses:

H1: Cortical structures that are involved in the semantic processing of spoken language are located
in a widely distributed network outside of the core auditory areas.

H2: The components of spoken language are processed hierarchically with an initial detection of
temporal changes in early primary auditory areas, followed by the detection of a human voice percept
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in belt and parabelt areas and the analysis and interpretation of perceived stimuli in higher level cor-
tical regions.

Results obtained from the analysis across subjects require a careful interpretation, especially for
abstract cognitive tasks like the extraction of semantic meaning, since, e.g., individual strategies for
speci�c tasks can cause di�erences in the localization of brain activity for these tasks (Seghier and
Price, 2016). Seghier et al. (2004) showed high inter-subject di�erences in the localization of activation
in the same anatomical area (prefrontal cortex) for semantic and phonological tasks in particular. High
inter-subject variability in the prefrontal cortex has been also described in the literature (Poldrack,
2017; Laumann et al., 2015). Even after smoothing fMRI data in the pre-processing steps, the goal
to normalize potential activation across subjects remains unful�lled (Mikl et al., 2008). Local shifts of
particular brain regions can be in the order of 1 cm (Thirion et al., 2007), which makes the comparison
of e�ects in comparably small anatomical regions very challenging. Hence, group results su�er from an
inter-subject variability that is in the same magnitude as the intra-subject variations (Wei et al., 2004).

The approaches presented in this study aim to compensate for this problem by analyzing the quan-
titative results in the particular anatomical brain regions on single subject basis and examine the
resulting statistics across subjects. The BOLD activation is analyzed in the multivariate whole brain
searchlight algorithm (Kriegeskorte et al., 2006) in combination with a support vector machine (SVM)
classi�er. The quantitative analysis of single subject result maps permits the observation of e�ects
across contrasts that are not extractable from standard group result maps. They indicate the presence
of patterns in the results that allow for the disentanglement of neural activity corresponding to the
processing of di�erent speech features.

Another challenge for the design of neuro-cognitive studies is the separation of tasks or stimulus
features, while maintaining a high naturalness and comparability to real life tasks. The stimuli uti-
lized in this study also di�er in multiple dimensions that can be summarized essentially to the content
of semantic meaning, voice pitch, and temporal modulation. To disentangle the neural correlates of
speech-processing regarding these features, we propose to analyze data not only across subjects, but
also across contrasts. A Spearman rank-correlation between classi�cation analysis results and the
ranking positions is calculated on a voxel basis. This provides whole brain maps, displaying the spatial
distribution of implicitly correlated neural activity to the investigated task.

Correlated region maps (CRM) obtained from this analysis indicate a spatial separation of cortical
structures that are engaged in the processing of acoustic features compared to the extraction from
semantic meaning and a broadly distributed network for the extraction of semantic meaning from
speech, in particular outside of the auditory temporal lobe.

3.3. Methods

3.3.1. Stimuli

The aim of this study is the investigation of di�erent stages of spech understanding with cortical re-
presentations for the extraction of semantic meaning from spoken language in particular. The study
design comprises six di�erent acoustic conditions plus one control condition without any stimulus pre-
sentation via headphones to separate neural correlates of di�erent speech processing stages.

To compare cortical activity during the processing of speech with semantic content in contrast to
the processing of speech without semantic content, we utilized, amongst others, two speech stimuli:
semantic speech and non-semantic speech. Non-semantic speech utterances were fragments extracted
from the International Speech Test Signal (ISTS, Holube et al., 2010), a test signal designed for language
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Figure 3.1.: Spectrograms of example stimuli from presented stimuli. Upper panels: Speech stimuli,
semantic speech taken from the Göttingen Sentence Test (GÖSA) and non-semantic speech
taken from International Speech Test Signal (ISTS) material. Both conditions show typical
formant structure and are physically comparable. Middle panels: Semantic and non-
semantic speech overlaid with speech-simulating noise from GÖSA material, respectively.
In low frequency ranges formants are still observable. Lower panels: Noise vocoded speech
(left panel) obtained from �ltering white noise with LPC coe�cients of GÖSA sentences
and speech simulating noise (right panel) taken from GÖSA material.
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independent hearing aid evaluation. It is comprised of speech recordings from six female speakers,
whose particular native language is Arabic, English, French, German, Mandarin or Spanish. Sequences
of 100 ms - 600 ms duration were rearranged in pseudo-random order under speci�c conditions that
allow for the impression of a continuous natural speech stream. The resulting signal is controlled for
physical properties of speech but does not contain any valid statements.
Each semantic speech condition sample contained two randomly chosen sentences from the Göttin-

gen Sentence Test (GÖSA, Kollmeier and Wesselkamp, 1997) with an accumulated length of approx-
imately 6 s, respectively. The GÖSA is a phonetically balanced speech intelligibility test in German
language, containing short semantically meaningful statements. The perceptual comparability to the
non-semantic condition was increased by a digital pitch shift towards higher frequencies and a digital
vocal tract change, both under usage of Tandem Straight (Kawahara and Morise, 2011). This trans-
formation of the original male voice allowed for the percept of a female voiced semantic speech stimulus.

Speech-simulating noise, generated from the GÖSA material, provided a noise signal without per-
ceptable amplitude modulation but with long-term spectral similarity to speech stimuli. This stimulus
was utilized as contrast stimulus for the speech stimuli and also as masker for the two speech stimuli,
semantic speech (GÖSA) and non-semantic speech (ISTS) at a signal to noise ratio (SNR) of −6 dB.
To create noise vocoded speech (NVS) stimuli, white noise was �ltered with the �rst twelve linear
predictive coding (LPC) coe�cients (Madisetti and Williams, 1998) of the original GÖSA material.
All presented stimuli had a duration of approximately 6 s and have matching long-term, speech-like
spectra. The stimuli utilized in this study mainly di�er in the dimensions semantic content, voiced
pitch and modulation.

3.3.2. Data acquisition

FMRI data were recorded with a 3 T Siemens MRI scanner. The group of participants included 19
volunteers (11 male, 8 female, 23,5 ± 2,6 years in age), 18 of whom were native speakers of German
and were included in further analysis. In a passive listening paradigm, the subjects were presented
with the previously described stimuli in a random order, that was �xed across participants. In the
sparse imaging design with a trial duration of 9 s, a stimilus presentation of about 6 s was followed by
an EPI data aquisition sequence of 2.9 s duration for a complete brain volume in 21 slices with a voxel
size of 3. 125 mm× 3. 125 mm× 3. 9 mm, a �eld of view of 20 cm × 20 cm, a matrix size of 64×64 and
an echo time (TE) of 55 ms. One complete session comprised 50 min, including 4 runs with 70 trials
each (10 trials per condition), respectively, and the acquisition of a T1-weighted anatomical image for
the exact localization of resulting active brain regions.

3.3.3. Data analysis

Raw fMRI data were preprocessed with the software SPM8 (Friston et al., 1995), including a spatial
realignment to reduce artifacts caused by head movements during the data acquisition. Subsequently,
all structural and functional images were normalized to MNI space to allow for inter-subject compari-
sons.
Preprocessed data were analyzed within the searchlight algorithm (Kriegeskorte et al., 2006). The
BOLD response maps from each subject were spatially divided into overlapping sub-datasets. A spher-
ically shaped �searchlight� with a three voxel radius surrounds each voxel, the corresponding center-
voxel for the searchlight, containing 123 voxels in total. Sub-datasets are composed of 80 samples (two
classes with 40 samples each) and 123 features (voxels in the �searchlight sphere�) and are analyzed
separately in a nested cross-validation procedure. Classi�cation analysis was performed with a support
vector machine (SVM) and classi�cation performance results, expressed as the area under the ROC
curve (AUC), are mapped to the center voxel, respectively. Choosing the AUC as classi�cation per-
formance measure has proven to result in more reliable informative region maps as compared to those
results obtained with an accuracy measure (cf. Chapter 2). The described classi�cation procedure
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Figure 3.2.: Analysis algorithm procedure. FMRI data are classi�ed in the searchlight algorithm with a
linear kernel support vector machine. Resulting performance values are spatially smoothed
and either decomposed into sub-distributions with a Gaussian mixture model (GMM),
resulting in informative regions maps (IRM), or correlated with stimulus di�erences in
semantic content, voice pitch, and modulation. Searchlights are, in turn, decomposed
into correlated and non-correlated searchlights based on the distribution of the correlation
coe�cient from every searchlight with di�erences in the stimulus features, respectively,
resulting in correlated region maps (CRM).
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results in an �information-based map� (Kriegeskorte et al., 2006) that represents the informational
content of a voxel and its surrounding neighborhoood. The spatial smoothing of information based
maps has shown to be advantageous for the further processing. It accounts for inter-subject variations
of the exact location of cortical structures and reduces the variance of classi�cation performance results
in regions without informative BOLD activation patterns (cf. Chapter 2). Therefore, AUC maps are
spatially smoothed with a Gaussian kernel (full width half maximum = 3mm). According to the SCIM
algorithm, which has been presented in the previous chapter, searchlight regions, whose BOLD response
patterns allowed for a reliable classi�cation into one of two contrasted conditions, are separated from
those searchlight regions, whose BOLD response patterns did not contain information regarding the
contrasted conditions. A histogram of all smoothed searchlight AUCs is processed in an Expectation
Maximization (EM) algorithm (Dempster et al., 1977) to determine a two-component Gaussian mix-
ture model (GMM) that decomposes all searchlight results into an informative searchlight distribution
and a non-informative searchlight distribution. This approach is of very low computational e�ort as
compared to the random permutation test and has shown to be considerably more robust against
the choice of signi�cance levels (cf. Chapter 2). From the converged GMM, a-posteriori probabili-
ties for the informative and non-informative searchlight distribution can be derived, the latter being
similarly handled like a null-hypothesis' probability. Thresholds for a-posteriori probabilities are set
to values between pa = 0. 01 and pa = 0. 05. Voxels containing searchlight AUCs corresponding to
below-threshold pa-values appear in binary result masks.

3.3.4. Contrasts

In this study, participants were presented with six di�erent acoustic stimuli, namely semantic speech
(Sem), non-semantic speech (NSem), semantic speech in noise (SemN ), non-semantic speech in noise
(NSemN ), noise vocoded speech (NVS ) and Noise (see section Stimuli). From the BOLD responses
corresponding to these six acoustic conditions, thirteen contrasts between two stimuli in each case were
selected for the analysis.

Based on the di�erences of the stimulus features (semantic content, voice pitch and modulation)
between the two respective conditions, the contrasts were sorted with respect to each of these stimulus
features. Since the correlation analysis is based on a Spearman rank-correlation (Spearman, 1904),
only the order and not the absolute values are of interest, to avoid making assumptions about the dis-
tribution of feature peculiarities. Equidistant di�erences between contrasts do not re�ect equidistant
e�ects.
The assumptions that in�uenced the ranking are the following for modulation: (1) Clear speech condi-
tions (SemN and NSemN ) are fully modulated signals with the highest ranking in modulation, followed
in the ranking by NVS that provides a percept of a constant noise �oor. (2) Contrasts between the
noisy speech condition presented with an SNR of −6 dB and noise are ranked higher than clear speech
conditions vs. noisy speech conditions, since the latter hold perceptable modulation e�ects in both
conditions, yet, of di�erent value. (3) Sem and NSem are both fully modulated, however, acoustic
di�erences between SemN and NSemN are even less perceptable.
Pitch: (1) Clear speech conditions (Sem and NSem) contain the highest portion of voiced pitch. How-
ever, since the semantic speech stimuli have been manipulated to construct a female voice percept, the
NSemN sounds slightly more natural than SemN and is provided with a higher voice pitch ranking
in the contrasts. (2) Noisy speech conditions contrasted with noise get a higher ranking than noisy
speech conditions contrasted with their clear versions, since the latter hold perceptable voice pitch
components on both sides.
Semantic: (1) Non-Semantic speech contains isolated monosyllable words and, therefore, holds a mi-
nimal lexical semantic component. (2) Single words of the NVS could be understood when the clear
version of these words was presented immediately before. Therefore, NVS holds a small semantic
component.
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The ranking of the contrasts is presented in Tab. 3.1. High values correspond to a high ranking and
large di�erences between the corresponding conditions regarding the particular stimulus feature.

Modulation Pitch Semantic

Sem vs. NSem 2 3 8
SemNvs. NSemN 1 2 6
Sem vs. Noise 8 7 9
Sem vs. SemN 5 4 6
SemN vs. Noise 6 5 7
NSem vs. Noise 8 8 5
NSem vs. NSemN 5 4 4
NSemN vs. Noise 6 6 4
NVS vs. Noise 7 1 1
NVS vs. Sem 3 7 8
NVS vs. SemN 4 5 6
NVS vs. NSem 3 8 3
NVS vs. NSemN 4 6 2

Table 3.1.: The table displays the ranking of contrasts regarding the three di�erent stimulus features
modulation,voice pitch and semantic. The motivation for the ranking and underlying as-
sumptions are discussed in the text. High values correspond to high di�erences between
the conditions. Since the values are used in a Spearman rank-correlation analysis, only
the order but not absolute values are of interest and equidistant rankings do not re�ect
equidistant feature di�erences.

3.3.5. Correlation analysis

As presented in Tab. 3.1, contrasts between conditions were ranked in their di�erences regarding their
content of semantic meaning, voice pitch and temporal amplitude modulations to separate potential
BOLD e�ects caused by these perceived properties in subsequent analyses. We hypothesize a correlation
e�ect between the extent of BOLD di�erences in fMRI data, expressed as pattern di�erences and,
accordingly, the area under the ROC curve (AUC) values obtained from searchlight classi�cation
analysis, and the di�erences between contrasted stimulus condition properties. Therefore, a correlation
coe�cient ρm according to Eq. 3.1 is calculated for each voxel m:

ρm =
cov(rgAUC,rgf )

σrgAUC · σrgf
=

1
N

∑N
i=1(rg(AUCim)− rg(AUCm)) · (rg(fi)− rg(f))

σrgAUC · σrgf
(3.1)

with N the number of contrasts (13 in this study), AUCim the searchlight AUC value in the i-th
contrasts and the m-th voxel, fi the feature di�erence in the i-th contrast and rg the respective rank
across values obtained from all contrast.
These calculations result in one correlation map per stimulus-feature, containing a correlation co-

e�cient for every voxel. The entirety of correlation coe�cients is separable into correlated and non-
correlated voxels, comparable to the separation into informative and non-informative searchlights from
the SCIM method (cf. Chapter 2). However, a large portion of searchlight results showed a negative
correlation with the feature di�erence and therefore also a three-component GMM was �tted to the
results, including a third anti-correlated sub-distribution of voxels/searchlights. Results obtained from
both approaches have been compared across subjects and for group results. A-posteriori probabilities
for the assignment to the non-correlated (and anti-correlated/correlated) voxel distribution preserve
a base to separate correlated regions and anti-correlated regions from non-correlated regions, and to
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create correlated region maps (CRM) for all three investigated stimulus features, respectively.

Regions obtained from these maps do not inevitably derive from the conjunction of informative re-
gions regarding the investigated contrasts: While some searchlight classi�cation results might be not
robust enough for the detection as informative in single contrast analyses, the correlation of AUCs
with property di�erences across contrasts might accentuate these subtle e�ects. Stable informative
regions, however, might occur for multiple contrasts with diverse foci and show no strong correlation
with speci�c features.

3.3.6. Group analysis

The statistical analyses of BOLD responses in this study result in informative region maps (IRM),
displaying searchlight regions with distinguishable BOLD patterns for speci�c conditions and corre-
lated region maps (CRM), displaying regions with high correlation between classi�cation performance
results and stimulus-feature di�erences. Group results obtained from theses analyses are presented in
two manners within this chapter: (1) group result maps obtained from voxelwise averaging of clas-
si�cation performance results (AUCs) or correlation coe�cients and subsequent evaluation of these
average AUC/correlation maps, and (2) statistical evaluation of single subject e�ects in anatomical
regions across subjects.

(1) Subsequent to the searchlight classi�cation analysis of single subject data, the average classi�ca-
tion performance map for every contrast is created for each voxel across subjects. Within the SCIM al-
gorithm (cf. section Data Analysis), group informative searchlights are separated from non-informative
searchlights based on every searchlight's a-posteriori probability for non-informative searchlight distri-
bution in the converged GMM. For CRMs, the correlation of the voxelwise average correlation coe�-
cients across subjects is calculated and correlating searchlights are separated from non-correlating and
anti-correlating searchlights with a three-component GMM.

(2) Single subject result maps have been overlaid with the automated anatomical labeling template
(AAL, Tzourio-Mazoyer et al., 2002) to determine the borders of the anatomical areas. For every
anatomical area, the ratio of active (informative, correlating, anti-correlating) voxels to all voxels
within the area is computed, giving the proportion of the area's involvement in the underlying cogni-
tive process. In combined presentations, medians, quantiles and outliers of single subject results can
be compared for di�erent contrasts, properties and hemispheres. This permits a more di�erentiated
evaluation of group results compared to conventional group results described in (1). This approach con-
siders the large spatial inter-subject variance and allows for identi�cation of weak but consistent e�ects.

3.4. Results

3.4.1. Informative region maps - IRMs

In the following, the expression speech conditions describes the entirety of the conditions that contain
natural physical speech properties like human voice pitch and modulation. These include semantic
speech (Sem), non-semantic speech (NSem), semantic speech in noise (SemN ) and non-semantic
speech in noise (NSemN ).

Group result maps obtained from the classi�cation analysis of the 13 selected contrasts can be found
in Fig. 3.3. All contrasts show similar patterns of informative regions for the di�erent contrasts. The
highest consistency across contrasts can be found in the superior and the middle temporal cortex. The
contrast Sem vs. NSem shows the largest left lateralized dilatation towards posterior parts in the
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temporal cortex extending into the angular gyrus (AnG). Inferior frontal regions, like the opercular
part of the inferior frontal gyrus (OpIFG), the triangular part of the IFG (TrIFG) and the orbital
part of the IFG (OrIFG) also contain information about several of the considered contrasts, as well
as the precentral gyrus (PrG) and the postcentral (PoG) gyrus and surrounding regions. Systematic
di�erences between contrasts are described in the following subsections.

Semantic vs. non-semantic speech

For both contrasts, Sem vs. NSem and SemN vs. NSemN , the medial part of the temporal cortex
and the insular cortex (INS) are detected to be informative regions. For the contrast between clear
conditions, additional informative regions in the anterior and the posterior parts of the temporal cortex
can be observed. Informative regions could also be found in the PrG, the supramarginal gyrus (SMG),
the AnG and the middle frontal gyrus (MFG).

NVS vs. speech conditions

The superior to middle temporal cortex regions consistently hold informative regions for contrasts
between NV S and speech conditions with stronger dilatation toward anterior parts of the temporal
cortex, in particular in the left hemisphere. For contrasts containing NV S and speech conditions, con-
sistent informative regions can also be found for the IFG as well as the inferior part of the SMG and the
INS. Informative regions in the PrG occur for all contrasts between NV S and speech conditions with
decreased spatial extent for the contrast NV S vs. NSem. This contrast instead shows more prominent
informative regions around the central sulcus. NV S contrasted with noisy speech conditions leads to
additional informative regions in the PoG compared to NV S vs. clear speech conditions. The contrast
NV S vs. Noise shows comparable patterns to the NV S vs. speech contrasts. Informative regions
outside of the temporal cortex are less prominent or absent in the right hemisphere for all contrasts
between NV S and the other acoustic stimuli.

Noise vs. speech conditions

The contrasts between speech conditions and Noise lead to consistent informative regions in the
temporal cortex from anterior parts (extending into temporal pole regions) to posterior regions, in
particular for contrasts between clear speech conditions and noise in the left hemisphere, including
the INS. Informative regions in the OpIFG, the TrIFG and the PrG are of smaller spatial extent for
contrasts between noisy speech conditions vs. Noise compared to clear speech conditions vs. Noise.
Informative regions in the OrIFG and the inferior part of the SMG are only present for clear speech
conditions vs. Noise. In the PoG, informative regions are smaller for Sem vs. Noise compared to the
other speech conditions vs. Noise. A left lateralization can be observed across all contrasts between
speech conditions and noise.

Speech clarity

Di�erences between BOLD responses for speech conditions with di�erent stages of speech clarity can
be found in the contrasts Sem vs. SemN and NSem vs. NSemN . Both contrasts show informative
regions in the superior and middle temporal cortex of comparable spatial extent across both contrasts,
but more prominent in the left hemisphere. Inferior frontal regions as well as the PrG and the PoG
show larger informative regions for the non-semantic speech contrasts compared to the semantic speech
contrasts.
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Figure 3.3.: Group results for 13 contrasts chosen from the combination of the six acoustic conditions
semantic speech, semantic speech in noise, non-semantic speech, non-semantic speech in
noise, noise vocoded speech (NVS) and noise. For all contrasts, informative regions can
be found in the superior temporal gyrus (STG) and the middle temporal gyrus (MTG).
In the frontal cortex informative regions can be identi�ed for all contrasts except for Sem
vs. SemN and SemN vs. NSemN . Activation around the central sulcus is present for
all contrasts except for SemN vs. NSemN , with largest spatial extent in Sem vs. Noise,
NSem vs. Noise and NV S vs. Noise. The results are presented at an FDR-corrected
signi�cance threshold of p<0.05.
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Statistics across single subject results

Fig. 3.4 shows the statistical analysis of single subject results in comparison to group analysis results.
Statistical analyses are shown for the contrasts between clear speech conditions, NV S and Noise
(panel A, blue colors), as well as noisy speech conditions, NV S and Noise (panel B, pink colors). The
location of the anatomical areas listed in panels A and B can be found in overlay images of one sub-
ject's anatomical image and the respective parts of the AAL template in two transversal slices (panel C).

The comparison of the BOLD responses for clear speech conditions and Noise results in large in-
formative regions in the superior temporal gyrus (STG) and Heschl's gyrus (HG), while contrasts of
clear speech vs. NV S results in less informative searchlights in these areas with larger variance across
participants. In the middle temporal gyrus (MTG), the superior temporal pole (StmP) and the poste-
rior part of the INS, on average half of the searchlights are informative for contrasts Noise vs. speech
conditions, while for NV S vs. speech conditions the portion of informative searchlights in these areas
ranges from 0% to 50%.

The corresponding contrasts containing noisy speech conditions (panel B) show comparable trends
in the MTG, the StmP, the STG and the lateral HG, however, on average with a decreased size of
informative regions compared to the corresponding contrasts with clear speech conditions. For the me-
dial HG and the INS, the trend for more informative regions resulting from contrasts between Noise
and speech conditions compared to NV S with speech conditions is inverted. In these regions, Noise
vs. speech conditions contrasts result in less informative searchlights with higher variance across sub-
jects, while NV S vs. speech condition contrasts show more informative searchlights with less variance
across subjects.

3.4.2. Correlation analysis results

The correlation analysis leads to correlated region maps (CRMs) for the three investigated stimu-
lus features semantic (SEM), voice pitch (V P ) and modulation (MO). These display for every
voxel/searchlight position the correlation coe�cient obtained from the Spearman rank-correlation be-
tween the classi�cation performance (AUC) and the corresponding feature difference between the
conditions.

Statistical distribution of correlation coe�cients

The distributions of correlation coe�cients across all single subject result brain voxels and the voxelwise
average across subjects are presented in Fig. 3.5. The CRMs for the MO condition on single subject
level contain many voxels with negative correlation coe�cients. However, voxelwise averaging results
in less negative values on the left-sided tail of the data distribution, while the entirety of the single
subject result distributions and the group result distribution are comparable on the right-hand side.
This indicates that high correlation coe�cients are spatially consistently located across group subjects.
For V P results similar e�ects are observable, however, less distinct. The distribution of group average
correlation coe�cients for SEM shows a small variance with a small, not very pronounced deviation
from a normal distribution towards negative correlation coe�cients. Compared to MO and V P , the
group SEM distribution is the only one that permits the identi�cation of an anti-correlated searchlight
distribution that is separable from the other distributions within a three-component Gaussian mixture
model (GMM).

Yet, the comparison of results obtained from a two-component GMM (2C-GMM) and a three-
component GMM (3C-GMM) �tted to the result data, depicted in Fig. 3.6, indicates for all features
a better �t of the 3C-GMM. In the histograms in panel (A), a higher overlap of the original data (bar
plot) and the �tted mixture model (solid black line) is observable for the 3C-GMM. The accumulated
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Figure 3.4.: Quantitative comparison of single subject results and group results for di�erent contrasts.
Panel A displays the quantitative statistics across all subjects for single subject IRMs for
all contrasts that have been obtained from the combination of two conditions, respectively,
from semantic speech (Sem), non-semantic (NSem) speech, noise vocoded speech (NV S)
and noise at a signi�cance threshold of p<0.05. Black lines display the median portion of
informative searchlights from all searchlights within an anatomical region determined by
the automated anatomical labeling (AAL) template. Inter-quartile ranges are displayed as
colored bars for the corresponding contrasts, 5% and 95% percentiles as colored lines, and
outliers are represented by colored crosses. Respective portions of informative searchlights
in group result maps are displayed as �lled circles. In panel B, the corresponding statistics
are shown for combinations of conditions semantic speech in noise (SemN ), non-semantic
speech in noise (NSemN ), NV S and Noise. The location of the speci�ed anatomical
areas in panels A and B are displayed in two transversal slices in panel C.
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Figure 3.5.: Statistical distribution of correlation coe�cients obtained from the correlation analysis
across all brain voxels for single subject results (thin colored lines) and group results
(thick colored lines). The modeled distributions obtained from a GMM decomposition are
depicted in thick dashed lines for the mixture model, solid lines for the non-correlated
sub-distribution, dashdot-lines for the correlated sub-distribution and dotted lines for the
anti-correlated sub-distribution.
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di�erence between the original data and the model is expressed as error in panel (B) for all single
subject results. It is signi�cantly smaller for the 3C-GMM in the MO condition across the group of
subjects. For V P and SEM , the di�erences are not signi�cant. For group SEM results (open circles),
the 3C-GMM error decreases remarkably compared to the 2C-GMM error. The log-likelihood that
expresses how well the model explains the underlying data, is signi�cantly higher for all conditions
across subjects for the 3C-GMM. In addition to the statistical advantages, the 3C-GMM approach
results in more plausible sub-distributions. With the 2C-GMM approach the correlated distribution
includes searchlights with negative correlation coe�cients which appears somehow counterintuitive
and the non-correlated distribution is centered around negative correlation coe�cients. The 3C-GMM
approach results in a model with a non-correlated distribution centered around zero for MO and only
very few negative correlation coe�cients included in the correlated sub-distribution for all conditions.
The non-correlated distributions for V P and SEM are shifted slightly towards positive correlation
coe�cients, similar to the complete searchlight distribution.

Correlated region maps

The in�ated brain images in Fig. 3.7 depict those regions that include voxels whose searchlight classi-
�cation results correlate positively or negatively with stimulus feature di�erences of the corresponding
conditions. The determination as correlated or anti-correlated voxels is based on a three-component
GMM: correlated regions are those with an a-posteriori probability smaller than p = 0. 05 for the
uncorrelated and for the anti-correlated searchlight distribution, respectively. Anti-correlated regions
are determined correspondingly from the quantity of searchlights with a smaller a-posteriori proba-
bility than p = 0. 05 for the uncorrelated and the correlated searchlight distribution. The correlation
coe�cients are color-coded individually for every condition to permit a better visual separability of
high and low values.

In the following, correlating searchlights describe those searchlights whose BOLD response classi-
�cation analysis leads to AUC results that show high positive correlation with speci�c di�erences in
stimulus properties between the investigated conditions. Correlating regions describe the according
anatomical regions that contain many correlating searchlights or voxels. An equivalent terminology is
applied to anti-correlation e�ects.

The quantitative statistical analyses for single subject CRMs are presented in Fig. 3.8 for regions
of the temporal lobe, in Fig. 3.9 for regions of the frontal lobe and in Fig. 3.10 for regions in other
cortical regions. Filled bars (single subject results) and circles (group results) depict positive correla-
tion e�ects, while open circles depict anti-correlation e�ects in group results. Negative correlation or
respective anti-correlated regions are only found rarely in single subject results, depicted by crosses.

The quantitative results are only shown for cortical structures with a minimum correlated portion
of searchlights of 5% in at least �ve single subject CRMs. Since these criteria are ful�lled in very
few structures in the parietal lobe, occipital lobe and structures of the limbic system, results from
structures in these regions are presented collectively.

Acoustic features - modulation and voice pitch

Cortical structures that are engaged in the cognitive processing of modulation and voice pitch informa-
tion from acoustic stimuli largely overlap. As shown in Fig. 3.7, di�erences between stimuli correlate
primarily with the performance for classi�cation analysis comparing BOLD patterns in the temporal
lobe and small parts of the frontal and parietal lobe near the central sulcus. A comparison of correla-
tion e�ects in the particular cortical structures determined by the AAL template in Fig. 3.8 shows that
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Figure 3.6.: Comparison of a two-component GMM (2C-GMM) vs. a three-component GMM (3C-
GMM) for the distribution of correlation coe�cients obtained from the Spearman-ranking
correlation analysis. Panel (A) shows the distribution of group mean CRMs, overlain
with the distribution obtained from the mixture models. For all the features the 3C-
GMM, assuming the existence of an anti-correlated searchlight distribution, shows a better
accordance with the data. The error, expressing the di�erence between mixture model and
the data is shown for single subject results as box-plot in panel (B) for modulation (blue),
voice pitch (green) and semantic (red). Horizontal lines designate the medians, �lled boxes
the inter-quartile ranges, vertical lines the 5% and 95% percentiles, crosses the outliers and
circles the corresponding values for the group CRMs. The �nal log-likelihood on panel (C)
expresses how well the model explains the data. The symbols are chosen equivalent to
panel (B).
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large parts of the HG and the STG correlate with MO on single subject and especially on group level.
A slight left-lateralization can be observed, in particular in the medial HG. Anti-correlation e�ects can
only be found in single subject outliers results in the ITG.

Condition di�erences for V P show very small correlation e�ects in the primary auditory cortex (me-
dial HG), but almost the full lateral part of the HG consists of correlating searchlights. Correlated
regions in the STG and the MTG are smaller than for MO, but consistently observable across single
subject results and group results. Outside of the temporal lobe, correlation e�ects with MO can be
found in the IFG and the rolandic operculum (RO) as well as the PrG, the SMG, and small e�ects in
the posterior part of the middle cingulate gyrus (pMCgG). E�ects for V P can only be found in the
anterior part of the RO as well as in the OpIFG and the TrIFG.

Abstract feature - semantic

The CRMs in Fig. 3.7 show a main di�erence between correlated regions from SEM compared to the
acoustic conditions: Group correlation analysis reveals considerably large anti-correlated regions in
the temporal lobe, mainly located in the STG, the HG and the INS, depicted in Fig. 3.8. Correlated
regions are located at the most anterior and posterior end of the temporal lobe, in the inferior temporal
gyrus (ITG), the IFG as well as in the posterior part of the cingulate gyrus (CgG). Quantitative results
across corresponding cortical structures in Fig. 3.8 to Fig. 3.10 indicate increasing correlation e�ects
for SEM with increasing distance to core auditory areas, with no correlation in the STG, some e�ects
in the MTG and slightly higher e�ects in the ITG. Single subject results show no large e�ects in the
frontal lobe areas. However, in the TrIFG in the left-hemisphere correlated regions for SEM can be
found. E�ects on single subject level as well as on group level can be found in the precuneus (PCun),
the AnG and the posterior half of the CgG. Yet, only in small parts of the particular regions high
correlation coe�cients could be found. Even though e�ects are small, a clear left lateralization can
be observed. Positively correlated regions are very rare and small in the right hemisphere, and also
anti-correlated regions are smaller as compared to the left hemisphere. Anti-correlated regions can
only be located on group result level in the auditory cortex, in the RO and in the SMG - remarkably
those regions that show the largest correlation e�ect for the acoustic conditions, in particular MO.

Specialization of cortical areas

Results that show areas with consistently larger portions of correlated regions for one stimulus feature
compared to the other features indicate a specialization of these cortical structures for the processing of
the particular stimulus feature. To quantify di�erences across stimulus features within the anatomical
areas, di�erences between the size of correlated regions within anatomical areas are determined with
a signed rank test across single subject results. The corresponding results are displayed in Fig. 3.11.
It must be pointed out that the absence of large di�erences within an anatomical area does not at all
exclude that this area is involved in the processing of one feature. It only indicates that this area is
not specialized for one feature but involved in multiple stages of the stimulus processing.

Many regions in the temporal lobe and in the IFG seem to show higher correlation to the acoustic
conditions (MO and V P ) compared to SEM , as indicated by dark blue and green boxes, whereas the
primary auditory cortex (mHG) shows stronger specialization to MO than to V P . In most areas out-
side of the temporal and the frontal lobe, only small di�erences between the sizes of correlated regions
can be observed. However, the posterior part of the cingulate gyrus (pMCgG and pCgG), especially
in the left hemisphere, shows signi�cantly larger correlated regions for SEM compared to MO and
V P . Single subject results, on which the results in Fig. 3.11 rely, do not show e�ect-di�erences for the
anterior ITG, the superior PCun and AnG. However, for group results these regions show larger corre-
lation e�ects for SEM compared to the acoustic conditions. In the TrIFG single subject results show
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Figure 3.7.: Group correlation region maps (CRM). Regions which show high correlation between aver-
age classi�cation performance results across subjects and di�erences between contrast-
conditions are presented on in�ated brain maps. Correlated regions can be located in
superior (STG) and middle (MTG) and inferior temporal gyrus (ITG), from anterior to
posterior regions, inferior frontal regions, rolandic operculum, bilaterally and precentral
gyrus (PrG), postcentral gyrus (PoG), sub-parietal sulcus and small parts of middle cin-
gulate gyrus, left lateralized. Correlated regions for pitch correlation analysis are located
in regions identical to modulation correlation. The correlation with semantic di�erences
results in correlated regions in the anterior part of middle temporal gyrus (MTG) in the
left hemisphere (LH), inferior frontal sulcus (bilaterally), posterior cingulate gyrus (pCgG,
LH) and occipito-temporal regions (LH). The results are presented at an FDR-corrected
signi�cance threshold of p<0.05
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Figure 3.8.: Quantitative correlation analysis - Temporal lobe. The box-plots display the median por-
tion of correlated searchlights from all searchlights within an anatomical area, determined
by the AAL template across all subjects (black lines), with the inter-quartile range shown
as colored bars and outliers plotted as crosses. The portion of correlated regions in the
group CRMs are shown as �lled circles. The location of anatomical regions can be found
in Fig. 3.4 C and D. Correlation with modulation di�erences results in largest correlated
regions in the primary auditory cortex (PAC) regions, showing also high variance across
subjects. Correlation with pitch results in considerably smaller sizes of correlated regions
in the superior and the middle temporal gyrus (STG and MTG) as well as superior tem-
poral pole (StmP). Correlation with semantic di�erences can only be found in the anterior
part of the inferior temporal gyrus (aITG). The group analysis shows correlated regions
for modulation analysis across almost the full STG and MTG, and Heschl's Gyrus (HG).
Group results for pitch analysis are comparable to those obtained from modulation analy-
sis, however, correlated regions in the medial part of Heschl's Gyrus (mHG) are of decreased
spatial extent. Correlation with semantic di�erences can only be found in th anterior part
of ITG, left lateralized and anterior part of fusiform gyrus (aFuG), right lateralized. Single
subject results are displayed at a signi�cance threshold of p<0.05 with corrections for mul-
tiple comparison, group results are depicted at an FDR-corrected signi�cance threshold of
p<0.05
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Figure 3.9.: Quantitative correlation analysis - Frontal lobe. The box plots in panel A display the
median portion of correlated searchlights from all searchlights within an anatomical area
determined by the AAL template across all subjects (black lines), with the inter-quartile
range shown as colored bars and outliers plotted as crosses. The portion of correlated
regions in the group maps are shown as �lled circles. The location of anatomical regions
mentioned in panel A can be found in panel B. Correlated regions obtained from modula-
tion correlation analysis are most prominent in the posterior and anterior part on rolandic
operculum (pRo, aRo) and in the aRo for pitch correlation analysis. In the inferior frontal
gyrus (OrIFG, TriIFG, OpIFG) and the precentral gyrus (PrG) modulation correlation
analysis leads to additional correlated regions. For single subjects, correlated regions ob-
tained from semantic correlation analysis can be found in the medial frontal gyrus (MFG),
thr superior frontal gyrus (SFG) and the supplementary motor area (SMA). Single subject
results are displayed at a signi�cance threshold of p<0.05 with corrections for multiple com-
parison, group results are depicted at an FDR-corrected signi�cance threshold of p<0.05
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Figure 3.10.: Quantitative correlation analysis - regions outside of temporal and frontal cortex. The
box plots in panel A display the median portion of correlated searchlights from all search-
lights within an anatomical area, determined by the AAL template across all subjects
(black lines), with the inter-quartile range shown as colored bars and outliers plotted as
crosses. The portion of correlated regions in the group maps resulting from correlation of
average classi�cation performance across subjects and di�erences between contrast condi-
tions are shown as �lled circles. The location of anatomical regions mentioned in Panel A
can be found in panel B. Modulation correlation analysis results in correlated regions in
the supramarginal gyrus (SMG) and the inferior part of the postcentral gyrus (PoG). The
SMG, the inferior parietal lobule (iPL) and iPoG show correlated regions for group analy-
sis, however, single subjects results are below signi�cance threshold in these areas. In the
angular gyrus (AnG), superior parietal lobule (sPL) and posterior cingulate gyrus(pCgG)
semantic correlation analysis e�ects can be observed. Single subject results are displayed
at a signi�cance threshold of p<0.05 with corrections for multiple comparison, group
results are depicted at an FDR-corrected signi�cance threshold of p<0.05
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signi�cantly larger correlated regions for MO compared to SEM in both hemispheres, while group
results show a larger correlated region for SEM compared to the acoustic conditions. In conclusion
temporal regions and large parts of the frontal lobe seem to be more correlated to acoustic stimulus
processing, while a network of cortical structures in the parietal lobe and in the limbic system responds
to semantic processing tasks.

3.5. Discussion

The aim of this study was the identi�cation of cortical structures that are engaged in di�erent aspects
of speech processing, in particular the extraction of semantic content from acoustic stimuli. To dis-
entangle these di�erent processes, subjects were presented with six acoustic conditions, semantically
valid sentences (clear and in noise), speech-like stimuli that are physically identical to normal speech
but without semantic content (clear and in noise), noise vocoded speech and speech-simulating noise.
Corresponding BOLD responses have been analyzed with the multivariate searchlight classi�cation ap-
proach and results have been evaluated on single subject level and group level for 13 di�erent contrasts
between two di�erent conditions respectively.

The contrasted conditions di�er in multiple features whose corresponding e�ects on BOLD responses
are not separable within common contrast investigation. The resulting group level maps show not very
pronounced di�erences that permit the identi�cation of cortical structures engaged in the particular
speech feature processing. Therefore, these 13 contrasts were ranked regarding the contrasted condi-
tion's feature di�erences and a Spearman rank-correlation coe�cient was calculated for the relation
between classi�cation performance results obtained from searchlight classi�cation and the respective
condition's speech feature di�erence rank.

The correlation analysis permits the identi�cation of structures whose BOLD response di�erences for
particular conditions show anti-correlation e�ects with stimuli feature di�erences. The anti-correlation
indicates that for contrasts with large stimulus feature di�erences low classi�cation performance results
are found, while for small feature di�erences large classi�cation performance results are found. This
can be explained by the fact that contrasts with small di�erences between a speci�c feature might
hold simultaneously large di�erences for another feature that permits a good separability of BOLD
responses corresponding to the contrasted conditions. The second part of the explanation is based on
the nature of BOLD responses that only represent indirectly the activation of cortical structures via
the �ow of oxygenic blood. If a cortical structure that is not engaged in a cognitive task is located close
to structures that are active during the cognitive task, the inactive region might provide additional
oxygenic blood for the active region, potentially leading to a lower recorded BOLD response compared
to an active region and, particularly, other inactive regions not adjacent to an active region. Large
feature di�erences lead to large cognitive demands in speci�c cortical structures which decreases the
measured "activation" in neighboring inactive structures.

This motivates the separation of distributions of correlation coe�cients across all brain voxels into
three sub-distributions, namely a correlated, a non-correlated, and an anti-correlated distribution
with a GMM in comparison to the two-component Gaussian mixture model, separating informative
from non-informative searchlights. A direct comparison of the two-component GMM and the three-
component GMM shows advantages for the three-component GMM in both dimensions, the di�erence
between the model and the underlying data as well as the log-likelihood that serves as quality measure
during the Equalization Maximazation (EM) algorithm.

With the correlation analysis, cortical structures were identi�ed whose BOLD responses show cor-
relation e�ects with speci�c stimulus features that could not be identi�ed on this level with common
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Figure 3.11.: Specialization of areas to the processing of stimulus features. The di�erences between
sizes of correlated regions within determined anatomical areas across single subject results
were calculated with the signed rank test. The left panels show the results for the left
hemisphere, the right panels the respective right hemisphere results. Only areas, where
signi�cant di�erences between the sizes of correlated regions were identi�ed, are shown.
All panels are divided into nine sub-boxes. First row boxes (blue) display logarithmic
color-coded p-value results obtained from a signed rank test across single subject results
to test whether correlated regions for MO analysis are larger than those obtained from
V P analysis (second column) or from SEM analysis (third column). The second row
(green) shows corresponding results to test whether V P correlated regions are larger
than MO correlated regions (�rst column) or SEM correlated regions (third column).
Third row results show corresponding results to test whether SEM correlated regions
are larger than MO correlated regions (�rst column) or V P correlated regions (second
column). Signi�cant di�erences are marked as * for p < 0. 05, ** for p < 0. 01, and ***
for p < 0. 001.
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group result maps showing di�erences between presented conditions, e.g., in structures of the lymbic
system. According to the second hypothesis H2, the present results indicate a hierarchical processing
structure for acoustic features in the primary and secondary auditory cortex and in areas known to be
involved in speech processing, while semantic processing involves a large network of structures across
the di�erent cortical lobes. Further e�ects are discussed below in the particular section for the inves-
tigated speech features.

3.5.1. Amplitude modulations

The stimuli used in this study exhibit either no amplitude modulations (Noise) or amplitude mo-
dulation with speech rate (semantic speech (in noise), non-semantic speech (in noise), noise vocoded
speech). Therefore, results obtained from the correlation analysis described here are restricted to am-
plitude modulation in the speech rate or with speech rhythm. It has to be noted, additionally, that
results obtained from this study do not permit the di�erentiation of cortical structures engaged in the
processing from those who are involved only in the perception of modulation characteristics.

In the primary auditory cortex (PAC), located in the medial part of Heschl's gyrus (HG), correlation
e�ects for modulation are smaller compared to those in the lateral part of the HG (cf. Fig. 3.8), but
still very prominent. The high correlation e�ects in PAC are expected to be induced by the percep-
tion of amplitude modulation, a basic stimulus processing step, that is larger in the left hemisphere,
comparable to BOLD responses found for processing of amplitude modulation in speech rate in the
left HG and the superior temporal lobe (Giraud et al., 2000). Furthermore, in the belt and parabelt
areas, MO correlation e�ects are larger in the left hemisphere compared to the right hemisphere. This
might depict the speech-like nature of amplitude modulations present in the stimuli, whose processing
has previously been found to induce cortical activation in superior temporal regions, e.g., by Kubanek
et al. (2013), who found the STG to be activated during the processing of speech envelopes, or Hall
et al. (2000), who found higher activation for modulated signals compared to static signals in the STG
anterior to the HG. An engagement of the posterior STG in the cognitive processing of amplitude
modulation has previously been found for, e.g., the comparison of �attened speech to normal speech
(Meyer et al., 2004), isochronous vs. non-isochronous pseudosentence processing (Geiser et al., 2008),
isochronous vs. non-isochronous syllable repetition (Riecker et al., 2002) or prosody, indicated by into-
national phase boundaries (Ischebeck et al., 2008). Giraud et al. (2000) also reported the location of
areas that are involved in the processing of amplitude modulations with speech rate in the posterior
temporal lobe.

Other cortical structures that have previously been found to be involved in prosody processing of
speech stimuli are the RO (Ischebeck et al., 2008; Hervé et al., 2012; Geiser et al., 2008) and the left
temporo-parietal junction (Hervé et al., 2012; Geiser et al., 2008). The posterior part of the RO as
well as the inferior PoG and the SMG, with the inferior part lying in the temporo-parietal junction,
also show signi�cantly higher correlation to modulation e�ects compared to correlation e�ects to voice
pitch or semantic. This indicates a specialization of these areas to the temporal analysis of speech
stimuli.

3.5.2. Voice pitch

The percept of a voice pitch and the recognition of a sound to be a human voice is a basic aspect of
human communication. Information like the speaker's identity (Formisano et al., 2008) or the speaker's
emotional state can be extracted from voice pitch information. However, the amount of cognitive re-
sources required for this process is expected to be smaller than for, e.g., processing modulation that
re�ects the speech envelope and can, in combination with high spectral detail, carry information with
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regard to the content of speech. Both, the number of involved cortical structures as well as the size of
correlated regions for voice pitch perception, are smaller as compared to those identi�ed for modulation
processing, although also for voice pitch processing no di�erentiation between analysis and perception
was made. The largest correlation e�ects were found in the left lateral part of the HG, which has
previously been identi�ed to be involved in the perception of human voice (Uppenkamp et al., 2006),
as well as in the di�erentiation between female and male voices (Lattner et al., 2005) and even the
identi�cation of speaker's identities (Formisano et al., 2008). Large correlation e�ects were also found
in the StmP bilaterally as the most anterior part of the superior temporal lobe. The anterior part of
the temporal lobe also showed higher activation during the perception of human voices as compared
to animal sounds (Fecteau et al., 2004) and female voices as compared to male voices (Lattner et al.,
2005), while other studies identi�ed anterior to posterior regions of the superior temporal lobe to be
voice-selective (Moerel et al., 2012; Pernet et al., 2015; Liebenthal et al., 2005).
In addition, the MTG showed considerable correlation between di�erences in BOLD responses and
di�erences in voice pitch content. Activation in this area has been found for contrasting normal sen-
tences with speech envelope shaped noise (von Kriegstein et al., 2003), vocal and non-vocal sounds
(Belin et al., 2000) or to be sensitive to the acoustic complexity of speech sounds controlled by the
number of presented frequency channels (Warren et al., 2006). These �ndings support an involvement
of the MTG in human voice recognition or perception, as indicated by the present results. Only small
correlation e�ects can be found outside of the temporal lobe, in the anterior part of the RO and the
IFG, left lateralized, consistent with the identi�cation of increased activation in these areas during the
processing of spectral and temporal cues of speech (Gandour et al., 2002), �attened speech compared
to degraded speech (Meyer et al., 2004), and vocal sounds compared to non-vocel sounds (Pernet et al.,
2015).

Since no di�erentiation between di�erent hierarchical steps of voice processing has been considered in
the correlation analysis, the results do not permit insights into hierarchical voice processing. However,
those areas identi�ed to be involved in human voice pitch processing accord with those found in previous
studies, are of di�erent cognitive demand and range from voice perception (Uppenkamp et al., 2006) to
the identi�cation of speaker's identity (Formisano et al., 2008) and still seem to share involved cortical
networks.

3.5.3. Semantic

The main aim of this study was the identi�cation of cortical structures that are engaged in the se-
mantic processing of spoken language. A network of cortical structures, whose BOLD classi�cation
performance results correlate positively with di�erences in semantic content, could be identi�ed across
all cortical lobes. Temporal lobe regions that show correlation e�ects with semantic content are lo-
cated at the most anterior and posterior end of the temporal gyri, predominantly in the ITG and
the MTG, including the temporal pole. While the e�ects in the MTG are left lateralized with only
small di�erences in the weighting between anterior and posterior regions, the observable bilateral e�ect
in the ITG is more pronounced in anterior regions. Semantic processing on sentence level has been
associated with cortical processing in both, the MTG (Mashal et al., 2009; Rogalsky and Hickok, 2009;
Adank and Devlin, 2010; Devauchelle et al., 2008; Obleser and Kotz, 2010; von Kriegstein et al., 2003;
Kuperberg et al., 2000) and the ITG (Sharp et al., 2009; Kuperberg et al., 2000; Rodd et al., 2005;
Awad et al., 2007), while semantic processing on word level has been rather reported in the MTG
(Davis and Gaskell, 2009; Diaz and McCarthy, 2009; Hwang et al., 2009). This could lead to the
hypothesis that the MTG is predominantly involved in the semantic processing of word level semantics
which supports the interpretation of heard sentences by identifying and integrating series of phonemes
to words and their meaning. Even though the correlated regions obtained from group level analysis
represent only about 20% of the MTG, this left lateralized process seems to be spatially consistent
across participants, taking into account that the group level correlated region is larger than the highest
individual correlated regions in this area. The bilateral e�ect of semantic correlation in the anterior
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ITG, however, supports an involvement in sentence semantic processing on an on average higher level
than in the MTG. This comes along with higher inter-individual di�erences induced by larger corre-
lated regions obtained from individual single subject analysis compared to group level analysis. The
bilateral nature of this e�ect also supports the hypothesis of the involvement of the corpus callossum
in auditory sentence processing to support the inter-hemispheric interaction for prosody and syntactic
processing (Friederici et al., 2007). This region also shows positive correlation e�ects with semantic
di�erences as can be seen for group level correlated region maps in Fig. 3.7.

The di�erent parts of the IFG have also been associated with higher order speech processing in
several studies. Regions within the OrIFG have been identi�ed to be involved in the recognition of
words (Davis and Gaskell, 2009; Nosarti et al., 2010), sentence comprehension (Sharp et al., 2009;
Tyler and Marslen-Wilson, 2007) and semantic retrieval in general (Price, 2010). In previous studies,
the TrIFG has shown increased activation for words compared to pseudo-words (Kotz et al., 2009),
reading metaphors compared to literal sentences (Schmidt and Seger, 2009) as well as word generation
(Jeon et al., 2009; Whitney et al., 2009; Heim et al., 2009). In this study, the size of correlated regions
in the OpIFG and the TrIFG are comparable, whereas the TrIFG shows a slightly larger correlated
region obtained from group CRM. Additional correlated regions for the semantic processing to those
discussed above could be identi�ed in rather dorsal regions of the parietal and occipital lobe as well
as in structures of the limbic system. Single subject correlated regions in these areas are larger as
compared to group correlated regions, indicating a large spatial inter-individual variance in activation
for semantic processing. The high inter-individual di�erences indicate the involvement of these areas
in highly abstract tasks that demand individual solving-strategies and therefore di�erent activation
patterns across subjects (Seghier and Price, 2016).

On group level, correlated regions could be identi�ed in the left PCun, while single subject correlated
regions of individual subjects show bilateral correlation e�ects in this area. In previous studies, an en-
gagement of the PCun in di�erent semantic speech processing stages has been reported. These include
the identi�cation of existing words (Davis and Gaskell, 2009), the interpretation of metaphors (Mashal
et al., 2009; Schmidt and Seger, 2009), the evaluation of sentences' plausibility (Mashal et al., 2009),
and narrative language processing in general (Whitney et al., 2009). In other studies, deactivation
for speech-speci�c tasks has been observed in the PCun (Abrams et al., 2012; Kouider et al., 2010).
Correlated regions on group level were also identi�ed in the AnG, having been associated to sentence
processing (Sharp et al., 2009; Mashal et al., 2009; Obleser and Kotz, 2010; McGettigan et al., 2014)
as well as semantic context of words (Golestani et al., 2009) or semantic relatedness between words
(Sharp et al., 2009). The pCgG as well as the pMCgG have shown left lateralized group level correla-
tion e�ects, consistent with previous �ndings for sentence processing (Mashal et al., 2009; Awad et al.,
2007; Obleser et al., 2007a; Schmidt and Seger, 2009) and lexical processing of words (Newman et al.,
2001). In the lingual gyrus (LgG), no correlation e�ect could be observed on group level. However,
single subject results showed correlated regions in up to 50% of the LgG, in particular in the posterior
part. The comparison of single subject correlated region sizes for the di�erent speech features indicates
a higher correlation in the right LgG for semantic features as compared to the acoustic features. Being
associated with speech production or word generation (Hwang et al., 2009), it also has been shown to
be involved in higher order sentence processing (Kuperberg et al., 2000; Schmidt and Seger, 2009; von
Kriegstein et al., 2003) and word categorization (Bilenko et al., 2009). Negatively correlated regions
for semantic processing could only be identi�ed on group level in the posterior STG for a larger portion
as compared to the anterior STG and in the HG and posterior INS. As described above, these negative
correlations might arise from orthogonal feature di�erences between contrast for di�erent features, and
might indicate that these areas are not activated for semantic processing, while they probably are for
other feature recognition processes.

In summary, from correlation analysis a wide network across all cortical lobes could be identi�ed,
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with probable increasing distance of involved areas to the auditory core for increasing complexity of
the cognitive processes of semantic processing. This supports the �rst hypothesis H1 of a largely dis-
tributed network for semantic processing of speech as compared to the processing network for acoustic
speech features. Regions that seem to be specialized for the semantic processing of speech and not
to the acoustic processing appear to be the posterior half of the cingulate gyrus, the lingual gyrus
and the precuneus. In single subject CRMs, correlated regions in these areas for acoustic features
can be found as well, which might indicate an integration of these acoustic features for the semantic
interpretation in the particular areas. However, the size of correlated regions in the particular cortical
structures is rather small, potentially supporting the hypothesis of a dynamic and individual network,
which needs further systematic investigation to identify consistent processing strategies across humans.

3.6. Conclusion

In this chapter, results from an auditory fMRI study are presented, in which subjects were presented
with six di�erent acoustic stimulus conditions that di�ered in their content of semantic, voice pitch
and amplitude modulation. Regions that are involved in di�erent speech processing steps were initially
identi�ed within the searchlight algorithm in combination with an SVM classi�cation and subsequent
identi�cation of signi�cant results with the SCIM algorithm, from which informative region maps
(IRMs) were obtained. However, informative regions across the 13 investigated contrasts did not per-
mit a systematic identi�cation of specialized regions for the processing of semantic content, voice pitch
or amplitude modulation. The contrasts were ranked independently for each stimulus feature, serving
as input for a Spearman rank-correlation. Based on this ranking, the relation between BOLD response
classi�cation performance and di�erences between conditions regarding the three named stimulus fea-
tures was evaluated, resulting in correlated region maps (CRMs). The results show that the processing
of abstract cognitive tasks can be realized via individual strategies across subjects and pooling results
into group level maps might smear observable e�ects. Additionally, these abstract tasks are di�cult to
reproduce with stimulus conditions that di�er only in the processing task of interest. It is, therefore,
meaningful to combine di�erent conditions and analyze cognitive responses to these conditions across
contrasts.

Within the correlation analysis, separate networks for the processing of acoustic stimulus features
and for the semantic processing of auditory perceived speech could be identi�ed. While the temporal
cortex and areas located in the inferior frontal gyrus seem to be more sensitive to acoustic properties of
speech, regions in a network ranging from the far anterior and posterior middle and inferior temporal
gyrus, over motor regions, to structures in the limbic system seem to be involved in the semantic
processing of speech.
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4.1. Abstract

Humans cope with the interpretation of spoken language every day remarkably well even in very
distorted acoustic situations. However, it has not been possible yet to fully connect the di�erent
�ndings from various studies in which the neural correlates of di�erent aspects of this complex task
have been investigated. While there are well established models for the acoustic processing of speech,
the extraction of meaning from spoken language is much less investigated. A large obstacle is the
choice of stimuli that permit the disentanglement of physical from abstract characteristics. Therefore,
it is often only possible to examine one speci�c feature of spoken language interpretation. In this
chapter, results from an auditory fMRI study are presented, in which neural responses to stimuli
are compared that are both physically similar to natural speech. While one condition comprises
valid spoken sentences, the contrast condition consists of randomized speech fragments in six di�erent
languages, that are controlled for acoustic properties of speech but do not have perceptible semantic
content or syntactic structure. To account for global patterns of activation across the cortex, the
psychophysiological interactions in fMRI data have been investigated in addition to the statistical
parametric maps. For intelligible speech, a largely left lateralized network has been identi�ed between
the temporal lobe, the frontal lobe, the temporo-parietal junction and the cingulate gyri. The same
areas, although with di�erent connections, are part of an excitatory and an inhibitory network which
have been identi�ed for the processing of natural sounding speech that is unintelligible.

4.2. Introduction

Spoken language is a fundamental part of human social interaction and remarkably robust against
various distortions. We can not only understand language in very distorted versions but also the
integration from phonemes to an abstract meaning can be achieved by human listeners for di�erent
languages that might contain di�erent phoneme groups and patterns. The cognitive processes that
re�ect the interpretation of spoken language have been the object of many studies. Still, the neural
interactions in the cortex have not been fully understood yet.

Cortical structures that are frequently described to be part of a language processing network are the
frontal cortex, the temporal lobe structures, the supramarginal gyri, the angular gyri and the cingulate
gyri. Functional or e�ective connectivity between these structures for semantic processing is mostly
investigated for visual modalities (Snijders et al., 2009; Smirnov et al., 2014; Burianova et al., 2010;
Davey et al., 2016; Canini et al., 2016). However, Graessner et al. (2019) presented subjects with
auditory two-word phrases, di�ering in their plausibility, and they identi�ed connectivity between the
left inferior frontal gyrus (IFG), the bilateral pre-supramarginal gyri (SMG) and the angular gyrus
(AnG) during a task of plausibility assessment.
Depending on the research question and the stimuli that are presented, the previously mentioned

structures are coactivated in di�erent subgroups. The processing of pseudo-words compared to normal
speech has been associated with activation in the left IFG (Newman and Twieg, 2001; Davis and
Gaskell, 2009; Baumgaertner et al., 2002; Kotz, 2002), in the left inferior parietal lobe (IPL) (Davis
and Gaskell, 2009; Baumgaertner et al., 2002; Humphries et al., 2006), bilateral temporal lobe structures
(Humphries et al., 2006; Davis and Gaskell, 2009) and the posterior cingulate gyrus (CgG, Davis and
Gaskell, 2009). Semantic priming and the corresponding increased intelligibility of spoken language
lead to increased activation in the same subgroup. Left IFG activation has been reported for priming
e�ects in various studies (Clos et al., 2014; Smirnov et al., 2014; Sohoglu et al., 2012; Baumgaertner
et al., 2002; Graessner et al., 2019). While Sharp et al. (2009) found deactivation e�ects in the
superior temporal lobe bilaterally, these areas showed activation in studies by Obleser et al. (2007b)
and Obleser and Kotz (2010). However, some studies did only identify corresponding activation in the
left superior temporal lobe (Devauchelle et al., 2008; Sohoglu et al., 2012). Activation in the IPL or
AnG is in�uenced by priming as identi�ed by Sharp et al. (2009), Baumgaertner et al. (2002), Obleser
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and Kotz (2010), and Graessner et al. (2019).

Obleser et al. (2007b) found additional activation for priming in the SMG, middle frontal gyrus
(MFG) and middle temporal gyrus (MTG) of the left hemisphere. The latter area showed bilateral
e�ects in studies by Devauchelle et al. (2008) and Baumgaertner et al. (2002). The ability to di�eren-
tiate between words and pseudo-words, as well as the advantage of priming e�ects for the intelligibility
of spoken language, leads to cognitive memory demands : short-term memory for priming e�ects and
intermediate-term to long-term memory for the identi�cation of pseudo-words.

Dissolving ambiguity or the evaluation of plausibility requires an assessment of perceived spoken
language and addresses only a few of the previously mentioned structures. In particular, the right
hemisphere seems to be less included in this cognitive task. Rodd et al. (2005) and Bilenko et al.
(2009) found bilateral activation in the IFG in addition to a left lateralized inferior temporal gyrus
(ITG) and MTG activation for the processing of ambiguous words. However, Rogers and Davis (2017),
Rodd et al. (2012) and Snijders et al. (2009) could only identify corresponding activation in the ITG,
the MTG and the CgG of the left hemisphere. A similar pattern becomes apparent for the estimation
of the plausibility of spoken language. An involvement of the left IFG and superior frontal gyrus (SFG)
could be identi�ed by Ye and Zhou (2009), while Mashal et al. (2009) found corresponding activation
in the left MTG and posterior CgG. Both studies reported activation in the left AnG for plausibility
estimation. These �ndings support the proposed model of increasing lateralization for increasing ab-
stractness and cognitive demands during spoken language processing by Peelle (2012).

To investigate the processing of intelligible speech in general, a very popular method is the presenta-
tion of noise vocoded speech, for which the intelligibility can be controlled by the number of channels
for the generation of the signal. While some studies use di�erent numbers of channels (Obleser et al.,
2007b; Obleser and Kotz, 2010; Blank and Davis, 2016), others compared intelligible noise vocoded
speech to their spectrally rotated, unintelligible version (Scott, 2000; Narain, 2003; Eisner et al., 2010;
Okada et al., 2010).

The left frontal cortex, in particular the IFG, seems to play a crucial role for the understanding of
speech compared to the processing of degraded speech (Sharp et al., 2009; Clos et al., 2014; Obleser
et al., 2007b; Obleser and Kotz, 2010; Eisner et al., 2010; McGettigan et al., 2012; Sohoglu et al.,
2012). The left AnG consistently shows activation across studies with a study design incorporating
noise vocoded speech (Evans and Davis, 2015; Awad et al., 2007; Obleser et al., 2007b; Obleser and
Kotz, 2010; Eisner et al., 2010), too. Activation across the left temporal lobe, in the MTG (Clos et al.,
2014), the STG (Scott, 2000; Narain, 2003; Obleser et al., 2007b; Obleser and Kotz, 2010; Okada et al.,
2010; McGettigan et al., 2012; Sohoglu et al., 2012), and the fusiform gyrus (FuG) (McGettigan et al.,
2012) has also been found to be associated with the perception of intelligible speech contrasted with
degraded, non-intelligible speech.

Even though it is possible to learn understanding noise vocoded speech, there is a considerable per-
ceptual di�erence to natural human speech. To avoid a potential interaction between the extraction
of meaning from spoken language and acoustic deviations from natural speech, the stimuli we used
consist of natural human speech recordings without physical speech degradation. We presented sub-
jects during fMRI acquisition with spoken everyday sentences and compared the neural responses with
those corresponding to the presentation with a speech-like stimulus of real human speech recordings,
without syntactic structure or semantic meaning. The stimuli are a pseudo-randomized composition of
short speech fragments, obtained from speech recordings in six di�erent languages, that are controlled
for acoustic properties of speech. E�ective connectivity, indicated as psychophysiological interactions,
is investigated to disentangle overlapping cortical activations during the acoustic and the abstract pro-
cessing of spoken language. The regions of interest (ROIs) comprise the temporal lobes, the superior,
middle and inferior frontal gyri, the cingulate gyri, the supramarginal gyri and the angular gyri. Three
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networks, one for the processing of acoustic features of spoken language, one for the interpretation of
valid spoken language and one for the processing of non-semantic speech could be identi�ed, that are
in line with results from previous studies and relate those �ndings to a considerable degree.

4.3. Materials and methods

4.3.1. Stimuli

The stimuli used in this study and the data analysis strategy have been described in the methods
section of the previous chapter. Six auditory conditions and one silent condition are included in the
design. Each example of the semantic speech condition is composed of two randomly chosen sentences
from the Göttingen Sentence Test (Kollmeier and Wesselkamp, 1997, GÖSA) corpus with meaning-
ful everyday content, respectively. Non-semantic speech stimuli were fragments of 6 s duration from
the International Speech Test Signal (ISTS, Holube et al., 2010). This is a signal that permits the
impression of natural speech without containing any valid content. Speech-simulating noise obtained
from the GÖSA material served both as a separate noise condition and as a masker for noisy semantic
speech and noisy non-semantic speech. The noisy speech conditions were presented at an SNR of
-6 dB. Noise vocoded speech (NVS) has been obtained by �ltering a white noise carrier with the �rst
twelve linear predictive coding (LPC) components of the GÖSA trials, resulting in a stimulus that
cannot be understood without presentation of the natural stimulus immediately before. The silence
condition served as baseline condition for the subsequent generalized psychophysiological interaction
(gPPI) analyses.

4.3.2. Subjects and data-acquisition

The study was conducted with 19 voluteers (11 male, 8 female, 23.5 ± 2.6 years in age) with a 3 T
Siemens MRI scanner. 18 of the 19 participants were native speakers of German and their results were
included for further analyses. The previously described stimuli were presented in a randomized order
for a passive listening task. For the temporal separation of the auditory stimuli and the noise during
the EPI sequence, we used sparse imaging with a TR of 9 s including 2.9 s for the EPI data acquisition
of a complete brain volume.

4.3.3. Preprocessing

The data preprocessing was conducted with the SPM software SPM12 (Friston et al., 1995) and in-
cluded coregistration, spatial realignment, normalization to MNI space and Gaussian smoothing with
a full width at half maximum of 5 mm. Subsequently, the data passed through the default denoising
pipeline implemented in the CONN toolbox (Whit�eld-Gabrieli and Nieto-Castanon, 2012).

4.3.4. Generalized psychophysiological interaction � gPPI

Psychophysiological interaction analysis is a method to analyze integrated brain activity and to identify
networks between distal cortical areas for speci�c cognitive tasks. The approach is based on the well-
known general linear model (GLM, Friston et al., 1995), where the neural activity xij in a voxel j at
the time point i is modeled as:

xij = gi,1β1j + gi2β2j+. . .+giKβiK + eij (4.1)

with gik being explanatory variables that describe covariates of no interest, e.g., the global cerebral
blood �ow (CRB), time, or indicator variables, indicating levels or factors regarding the experimental
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conditions under which the observation (response CRB) was made. The error eij is independent for
each measure xij . The model from Eq. 4.1 can also be written in matrix form as:

X = Gβ + e (4.2)

with X being a response CRB matrix, containing elements xij , one row per scan i and one column
per voxel j. The matrix G represents the design matrix which comprises the elements gik and contains
one row per scan i and one column per e�ect (covariate or factor) k. Column vectors βj for every voxel
j build a parameter matrix β. Later, Gitelman et al. (2003) added a step, where the factorial column
is convolved with the hemodynamic response function (HRF), to account for the temporal nature of
the BOLD signal and therefore provides a and better model of the neural activity. This allows for the
application of this approach in studies with an event related design.
Assuming that there are two factors of interest relating to condition A and condition B, the design

matrix G is composed of the column vectors gA and gB and a matrix consisting of column vectors
representing confound variables Gc, so that G = [gAgBGc], leading to:

X = [gAgBGc]β + e (4.3)

as described in Friston et al. (1997).
Assuming further that in a factorial design the interaction between condition A and B is of interest,

the design matrix is expanded with the column vector gA x gB which is an element-wise multiplication
of the two vectors gA and gB.

xj = gAxgBβ1 + [gAgBGc]βG (4.4)

Comparable to the interaction of two factors that in�uence the activity in a voxel j, a factor can
modulate the activity xn in another voxel or region n. This interaction may in�uence the activity in
voxel or region i, which leads to the model in Eq. 4.5, where β1 represents the contribution of the
activity in voxel or region n that was modulated by the experimental factor A to the activity in voxel
j and all other β-weights modeling confound parameters.

xj = gAxgnβ1 + gAβ2+. . .+gKβK + ej (4.5)

This approach supposes that the activity in a voxel or region j can also be modeled as the sum of
in�uences from all other regions n, leading to:

xij =
∑
n

Cjnxin (4.6)

where Cjn represents the e�ective connectivity between voxel or region j and voxel or region n, when
all regions or voxels are included. There is no self-connectivity in this model (Cjj=0) and the matrix
C is not symmetric (Cjn 6= Cnj).
The parameter β1 in Eq. 4.5 only represents a contribution to the activity in voxel j but does not

represent the e�ective connectivity, since only the activation in this one region was considered in the
model. The more regions are included, the more comparable are the corresponding β-values to the
e�ective connectivity weights that represent the psychophysiological interactions (PPI).
Considering the potential in�uence of all other brain regions leads to the following model for a single

e�ect gPPI for N regions or voxels contributing to the activity in voxel j with a matrix G∗, including
the design matrix for region or voxel j and the time-series from regions n :

xj =
N∑
n

gAxgn +G∗βG∗ + ej. (4.7)

McLaren et al. (2012) introduced a generalized form of the gPPI to model psychophysiological
interactions for more than one condition A or a di�erence vector A − B between two conditions. In
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this model, the column vector gA is replaced by a matrix with one column vector for each condition
and permits the identi�cation of single gPPI e�ects or similar e�ects across conditions.

4.3.5. Network identi�cation

The connections between spatially distal cortical regions have been identi�ed with the ROI-to-ROI
analyses which shows the extent of connectivity between pre-selected ROIs. The seeds have been de-
termined based on the automated anatomical template (AAL Tzourio-Mazoyer et al., 2002). Large
regions within this template have been divided into two parts based on their direction of the largest
spatial extent along the anterior-posterior axis, the superior-inferior axis or the medial-lateral axis,
respectively. The ROIs' time-series have been summarized from all voxel time-series within the re-
spective ROI in the �rst component of a singular value decomposition (SVD). A previous z-scoring of
the data has explicitly not been performed to emphasize time-series from voxels that show the largest
e�ects.

The choice of the set of ROIs is based on previous results from correlation analysis (cf. chapter 3)
and results from studies described in the introduction. They incorporate the bilateral superior, middle
and inferior temporal gyri (STG, MTG, ITG), Heschl's gyri (HG), the angular gyri (AnG), the supra-
marginal gyri (SMG), the fusiform gyri (FuG), the cingulate gyri (CgG) and the inferior, middle and
superior frontal gyri (IFG, MFG, SFG). The areas were chosen to be selected bilaterally to investigate,
if a left lateralization e�ect can be observed in the current data. Additionally, the results obtained
from the correlation analyses described in the previous chapter, showed e�ects in the right hemisphere,
even though they have been smaller than left-hemisphere e�ects.

According to the network-based statistics (NBS) presented by Zalesky et al. (2010) the connecti-
vity or psychophysiological interaction between each pair of ROIs has been calculated as depicted in
Fig. 4.1. The corresponding non-thresholded (upper row) and thresholded (lower row) non-symmetric
connectivity matrices contain the F-values obtained from group level analyses for four conditions, re-
spectively contrasts. The order of the ROIs in this matrix, which in�uences each ROI's neighborhood
within the matrix, is determined by temporal correlations between time-series. To test the signi�cance
of gPPI-links between ROIs, clusters of supra-thresholded links in the connectivity matrix are identi-
�ed, as depicted in the lower panels of Fig. 4.1, and the number of supra-threshold links within this
cluster (the cluster's size) is stored. In a subsequent permutation test, condition labels are permuted
and the same procedure is repeated M (in this study 1000) times, each time storing each cluster's size
as part of the underlying null-distribution. Each cluster's p-value is then determined by the number
of permutations that leads to a higher or equal cluster size as compared to the cluster size observed in
the original data, normalized by M .

4.4. Results

In this study we compare the activation maps obtained from the GLM analyses with the connec-
tions graphs obtained from generalized psychophysiological interaction (gPPI) analyses for BOLD
responses to di�erent acoustic conditions. These conditions comprise valid everyday content sentences
and speech-like stimuli that are physically comparable to speech but do not contain any semantic con-
tent or a syntactic structure. Both conditions have been presented to participants in a clear version
and overlaid with speech-simulating noise at -6 dB SNR. The e�ective connectivity, expressed as psy-
chophysiological interactions, is based on ROI-to-ROI analyses, with ROIs being determined by the
automated anatomical labeling (AAL) template. To decrease the spatial extent of the ROIs and allow
for a di�erentiation between sub-parts of anatomical areas, the ROIs have been subdivided into two
parts along the axis of the largest spatial extent, resulting in an anterior and a posterior, an inferior
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Figure 4.1.: gPPI connectivity matrices for the conditions semantic speech (Sem) and non-semantic
speech (NSem) as well as semantic speech and semantic speech in noise (SemN ) (weighted
1 and 0.5, respectively) and non-semantic speech with non-semantic speech in noise
(NsemN ) (weighted 1 and 0.5, respectively). The upper panels represent the F-values
obtained from the group level F-test and the lower panels depict the absolute values of
the supra-threshold (p<0.05, uncorrected) links between ROIs, that have a minimum of n
spatially connected neighbors (24-neighbors criterion). Correction for multiple comparison
was subsequently done using the network-based statistics. Note that the order of ROIs has
been determined by temporal correlation of ROI time-series for the respective conditions
and is not comparable across conditions.
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Figure 4.2.: Result maps obtained from univariate GLM, Sem > NSem red, Nsem > Sem blue,
Sem + SemN > NSem + NSemN magenta, NSem + NSemN > Sem + SemN cyan.
Activation could be identi�ed in the Heschl Gyrus and in the posterior temporal lobe in
Wernicke's area.

and a superior or a lateral and a medial part, respectively.

4.4.1. General linear model contrasts

In this section, the GLM results are presented to identify regions that show di�erent activations for
semantic and non-semantic speech and regions that show di�erent activations for clear and noisy stim-
uli.

To shorten the names of contrasts that have been investigated, the following abbreviations are intro-
duced: Sem (semantic speech), SemN (semantic speech in noise), NSem (non-semantic speech) and
NSemN (non-semantic speech in noise). For the identi�cation of cortical areas that show di�erent
activations for semantic vs. non-semantic speech we utilized four contrasts, namely Sem vs. NSem in
both directions and Sem SemN vs. NSem NSemN in both directions.

In Fig. 4.2, the corresponding activation maps are depicted for an FWE-corrected p-value thresh-
old of p < 0. 05. For the contrast Sem > NSem (red), signi�cantly higher activation in the left
posterior superior temporal gyrus (STG) could be identi�ed, while no signi�cant activation could be
found for the contrast Sem+ SemN > NSem+NSemN . Both contrasts, NSem > Sem (blue) and
NSem + NSemN > Sem + SemN (cyan), show similar activation patterns with higher activation
in the left middle STG and bilateral Heschl's Gyrus (HG). For the contrasts SemN > NSemN , no
supra-threshold activations were found after FWE correction.

To show trends in the data and to determine regions to be investigated with the gPPI analyses, the
uncorrected maps for the contrasts Sem > NSem (red), NSem > Sem (blue), SemN > NSemN

(magenta), and NSemN > SemN (cyan) are depicted in Fig. 4.3. For Sem > NSem, increased ac-
tivation is located from the left anterior to the posterior STG, the left posterior middle frontal gyrus
(MFG) and the left anterior superior frontal gyrus (SFG) as well as in the left paracingulate sulcus
(PCGS) and in the right central sulcus. For SemN > NSemN there is only increased activation in
the left lateral �ssure. In the auditory cortex areas, bilaterally in the anterior STG and HG both
NSem > Sem and NSemN > SemN show increased activation. For the contrast NSemN > SemN

additional regions with increased activation are located in the left inferior, postcentral gyrus (PoG),
the right parietal gyrus and the right SFG. The sagittal view of the left hemisphere (x=-50 mm) shows
the increased activation for the non-semantic condition as compared to the semantic conditions in the
left auditory cortex, with increased activation for semantic speech as compared to non-semantic speech
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Figure 4.3.: Trends for the di�erences between semantic and non-semantic speech. The activation
map for Sem > NSem (red), NSem > Sem (blue), SemN > NSemN (magenta) and
NSemN > SemN (cyan) are shown without correction for multiple comparison to present
trends in the data.

Figure 4.4.: E�ect of clarity: Speech>Speech in Noise (red) and ISTS>ISTS in noise (blue)

areas that are located around the auditory cortex.

The result maps for the contrasts Sem > SemN (red) and NSem > NSemN (blue) are depicted
in Fig. 4.4. For both contrasts, the clear conditions lead to increased activation across the STG, the
HG and the lateral �ssure (LF) bilaterally for the clear versions as compared to the noisy versions.
However, for the semantic speech, this e�ect can be rather observed in the anterior and posterior end
of the STG, while for the non-semantic conditions the e�ect can be observed in a connected cluster
along the STG. For the inverse direction, noisy stimuli > clear stimuli, no e�ect can be found for
the semantic speech version and a small cluster in the inferior frontal gyrus (x=-28 mm, y=24mm,
z=36mm) for NSemN > NSem.
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Figure 4.5.: Contrast of gPPI: Sem(1) and SemN (0.5) vs. NSem (-1) and NSemN (-0.5). Orange and
red colors indicate a stronger connection during the semantic speech conditions, blue colors
indicate a stronger connectivity during non-semantic conditions. Darker colors depict
stronger connections in both cases.

4.4.2. ROI-to-ROI analyses

In this section, the results obtained from ROI-to-ROI analyses are presented for the contrast between
semantic speech conditions and non-semantic speech conditions, as well as for both classes, semantic
speech and non-semantic speech in separate analyses. To account for the di�erent extent of perceivable
speech, both semantic or non-semantic, the clear versions are weighted with 1 while the noisy versions
are weighted with 0.5. The contrast between speech conditions (semantic speech (1), semantic speech
in noise (0.5)) and non-semantic speech conditions (non-semantic speech (-1) and non-semantic speech
in noise (-0.5)) is presented in Fig. 4.5. Red colors depict connections that are signi�cantly stronger
for semantic speech conditions than for non-semantic conditions, while blue colors depict the opposite
e�ect. Connections between the posterior part of the cingulate gyrus (CgG) bilaterally and the left
inferior frontal gyrus (IFG) are stronger for semantic speech conditions, while non-semantic stimuli
lead to higher interconnection e�ects within the left auditory cortex and between the left auditory
cortex and the CgG. The presentation of the connection on the glass brain shows that for both direc-
tions e�ects can be found primary in the left hemisphere. While connections that are stronger for the
semantic speech conditions are located rather in a transversal plane, connections that are stronger for
the non-semantic conditions are spread in all directions.

The gPPI ROI-to-ROI e�ects obtained for the semantic speech (clear weighted with 1, and in noise
weighted with 0.5), depicted in Fig. 4.6, indicate three clusters of connections. All connection-values
are positive, meaning that only positive regression slopes were found for the in�uence between distant
ROIs on another in the GLM. Regions in the left IFG and the right posterior inferior temporal gyrus
(ITG) as well as the right angular gyrus (AnG) are interconnected, while an �orthogonal� cluster of con-
nections between the right IFG/MFG region and the left AnG can be identi�ed. A third cluster shows
a more symmetrical pattern of inter-hemispheric connections, including cingulate gyrus regions being
connected to the bilateral posterior superior temporal gyrus (pSTG), supramarginal gyrus (SMG) and
the orbital part of the right SFG.

Fig. 4.7 depicts clusters of signi�cant connections identi�ed for the non-semantic speech conditions
(clear weighted with 1, noisy weighted with 0.5). One cluster of positive connections could be identi-
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Figure 4.6.: Generalized PPIs for the conditions speech (weighted 1) and speech in noise (weighted 0.5),
including temporal cortex regions, angular gyrus, supramarginal gyrus, fusiform gyrus,
cingulate cortex, and inferior, middle and superior frontal gyrus. A: Spatial distribution
of the three observed clusters (one per row) obtained from the gPPI analysis. B: Graph of
signi�cant connections. Light red lines depict low, positive values as compared to dark lines
depicting large, positive values. Positive values represent positive slopes for the regression
slope obtained from the GLM that includes the respective ROI time series as regressors.
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�ed, representing positive regression slopes obtained from the GLM with BOLD-time series being used
as regressors. Negative connections, respectively, indicate negative regression slopes. The regions in
the right frontal lobe (IFG/SFG and MFG) are negatively interconnected and connected to the right
posterior MTG and bilateral SMG as well as to the left auditory cortex (STG and lHG). Positive
connections can be found bilaterally between the SMG with the lingual gyrus (LgG), the FuG and the
right posterior ITG, as well as between the middle part of the CgG and the LgG.

The e�ective connections, including their directions, are summarized in Fig. 4.8 and show that the
processing of semantic speech and non-semantic speech involve three partly overlapping networks, with
the cingulate gyri and the angular gyri bilaterally playing an intersection role in these networks. While
these structures only get input from the temporal lobes (with some left lateralization) for non-semantic
speech, they are largely interconnected with the left inferior frontal gyrus as well as with the middle
and superior frontal gyrus for semantic speech. The supramarginal gyrus, however, communicates
bidirectionally with the temporal lobe (pITGr, FuG) and with the IFG for non-semantic speech. For
semantic speech, there are only bidirectional connections to the posterior middle cingulate gyrus. A
third, inhibitory network for non-semantic speech processing is observable between the left temporal
lobe, the right frontal lobe and the anterior cingulate gyrus, bilaterally.

4.5. Discussion

In the previous sections the results obtained from the analysis of di�erences between the BOLD re-
sponses to the perception of meaningful sentences (semantic speech) and a natural speech stream
without any semantic meaning or syntactic structure (non-semantic speech) in clear and noisy versions
have been presented. Based on the activation maps and the psychophysiological interaction graphs
that have been depicted, the previous neural network models for the processing of meaningful spoken
language can be con�rmed. The stimuli have not been controlled for di�erences between semantic
meaning or syntactic structure. Both classes of stimuli, semantic and non-semantic speech, contain
naturally spoken language recordings but di�er in their content of interpretable abstract features.

4.5.1. Extraction of meaning from semantic speech

For the processing of syntactically correct and semantically meaningful spoken language � named
semantic speech in this study � a processing network could be identi�ed, which includes areas that
have been associated with a more complex and abstract task than acoustical processing. This net-
work involves left hemispheric frontal lobe structures, the middle to posterior cingulate gyrus (CgG)
and structures of the temporo-parietal junctions, namely the the supramarginal gyrus (SMG) and
the angular gyrus (AnG). The SMG in both hemispheres is bilaterally and bidirectionally connected
to the posterior to middle CgG. This sub-network can be observed in the present analysis both for
the contrast semantic speech and semantic speech in noise > non-semantic speech and non-semantic
speech in noise and for the condition analysis semantic speech and semantic speech in noise vs. base-
line. The posterior CgG has been described to be involved in the processing of sentences (plausible
vs. implausible sentences (Mashal et al., 2009), high predictable sentences (Obleser et al., 2007b), or
to the narrative language comprehension (Smirnov et al., 2014)) and also the semantic processing of
words (pseudo-words>words, (Newman and Twieg, 2001)). The SMG has also been associated with
sentence processing (semantically challenging context (Obleser and Kotz, 2010), sentence comprehen-
sion (Richardson and Price, 2009; Raettig et al., 2010; Price, 2010) and cross-modal intelligibility
(Akama et al., 2012)). Some studies associated this area in particular with the syntactic processing
(syntactic errors, grammatical errors (Raettig et al., 2010), syntactically complex sentences (Friederici
et al., 2003), sentences where meaning depends on the order of words (Richardson and Price, 2009),
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Figure 4.7.: Generalized PPIs for conditions NSem (weighted 1) and NSemN (weighted 0.5), including
temporal cortex regions, angular gyrus, supramarginal gyrus, fusiform gyrus, cingulate
cortex, and inferior, middle and superior frontal gyrus. A: Spatial distribution of the three
observed clusters (one per row) obtained from the gPPI analysis. B: Graph of signi�cant
connections obtained from the gPPI analyses. Light red lines depict low, positive values as
compared to dark lines depicting large, positive values. Blue lines represent negative values,
respectively. Positive values represent positive slopes for the regression slope obtained from
the GLM that includes the respective ROI time series as regressors, while negative values
represent negative regression slopes.
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Figure 4.8.: Network for the processing of spoken language. Red arrows depict connections that are
present during the processing of semantic speech and that are stronger for semantic speech
than for non-semantic speech and which are therefore interpreted to be speci�c for valid
spoken language processing. Pink arrows depict conections that can be identi�ed for
semantic speech and semantic speech in noise, but which are not signi�cantly stronger than
for the processing of non-semantic speech. They re�ect spoken language processing on an
acoustic level. Dark blue arrows represent connections that are present for the processing
of non-semantic speech and not for the processing of semantic speech, while black arrows
depict inhibitory connections for the same task. These connections seem to be part of
an error detection network. Light blue arrows represent those connections, which are
interpreted as part of a network to process the acoustic characterictics of spoken language
and which are increased for increased task demands, when spoken language cannot be
understood.
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syntactically correct but semantically incorrect sentences (Hickok, 2012), or word order constraints
(Price, 2010)). The interaction between the SMG and the posterior cingulate gyrus might therefore
re�ect the transition from the syntactic to the semantic analysis of spoken language.

Connections from the left inferior frontal gyrus (IFG), superior frontal gyrus (SFG) and the middle
frontal gyrus (MFG) to the bilateral middle to posterior cingulate gyrus and the angular gyrus (AnG)
bilaterally are found for the contrast semantic speech > non-semantic speech and for the condition
semantic speech and semantic speech in noise. They seem to be involved in the semantic processing
of speech. For non-semantic speech > semantic speech, the posterior cingulate gyrus and the AnG
are bidirectionally connected to the anterior middle temporal gyrus (MTG) and the posterior superior
temporal gyrus (STG) bilaterally. The left AnG is connected in both directions with the left infe-
rior temporal gyrus (ITG) and the left fusiform gyrus (FuG). It must be noted that the connections
described for the analysis of the conditions semantic speech vs. non-semantic speech are obtained with-
out correction for multiple comparison. Connections that are stronger for non-semantic speech than
for semantic speech only show a trend. They might be on average slightly stronger for non-semantic
speech as compared to semantic speech due to increased task demands, but might be not speci�c for
stimuli that contain acoustic features of natural speech but no valid meaning. However, those results
that describe connections that are stronger for semantic speech than for non-semantic speech, can
also be identi�ed for the investigation of the conditions semantic speech and semantic speech in noise
(with FDR-correction). This can be interpreted as an e�ect that is speci�c for the interpretation of
meaningful spoken language.

These results imply a coordination function of the AnG and the posterior CgG. Acoustic stimuli
that are identi�ed to contain speech are processed in the AnG and the pCgG. In a pre-analysis, e.g.,
a syntactic structure analysis, the activation in the frontal gyrus, in particular in the left IFG, might
increase for the analysis regarding interpretable content. However, if no language structure beyond the
acoustic features can be identi�ed, the temporal lobe structures closely located to the auditory cortex
might be increased in activation via top-down processes due to the apparently increased task demand.
The AnG has been associated with both, sentence processing and word processing. It has shown in-
creased activation for plausible vs. implausible sentence (Sharp et al., 2009), and for non-degraded
speech as compared to degraded speech with respect to the processing of the sentence meaning (Clos
et al., 2014). Its activation also showed correlation with the predictability of sentences (Obleser and
Kotz, 2010). In studies by Golestani et al. (2009) and Sharp et al. (2009) a relation between activation
in the AnG and the semantic relation between words has been described. From these observations,
an integration function from single word interpretation to meaning can be concluded, that requires
neuronal communication with the left hemispheric frontal cortex.

4.5.2. Lateralization of spoken language processing

The left IFG, in particular the opercular part and the orbital part, have been reported to be activated
during the processing of plausibility of sentences (Ye and Zhou, 2009), the ambiguity of sentences
(Rodd et al., 2005), di�erences between semantic and syntactic processing of sentences (Schafer and
Constable, 2009), or the predictability of sentences (Obleser and Kotz, 2010). Gonzalez-Castillo and
Talavage (2011) reported a rather bilateral network that is involved when listening to sentences. The
lateralization of the neural activation during the processing of spoken language on a word level is also
a matter of debate. Sharp et al. (2009) observed a dominance of left hemisphere structures like IFG,
MFG and SFG during a semantic relation task for words, and the comparison of words and pseudo-
words was discovered to be represented in a left lateralized network (Kotz et al., 2009). On the other
hand, Newman and Twieg (2001) found considerable involvement of right hemispheric structures for
the processing of pseudo-words as compared to words. Also Bilenko et al. (2009) discovered a rather
bilateral network of structures that are involved in resolving ambiguity. Some studies found evidence
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for a lexico-semantic processing in the MFG and SFG (Sharp et al., 2009) and word-production in the
MFG (Whitney et al., 2009; Jeon et al., 2009; Heim et al., 2009). In these studies language process-
ing was investigated on a word-level and not on sentence level. All identi�ed a rather left lateralized
network for semantic processing. Mashal et al. (2009) and colleagues discuss in their work that the
inconsistencies of lateralization e�ects could possibly be explained by task di�erences.

The present data support a model presented in Peelle (2012) that assumes an increasing left late-
ralization with increasing task complexity. While acoustic features like amplitude modulations and
a part of the phonetic analysis are located in bilateral auditory cortex structures, the processing of
words and sentences requires cognitive resources outside of the auditory cortex, predominantly in the
left hemisphere. This is consistent with the present observation of strong connections between the left
frontal cortex with the AnG and the posterior CgG for semantic speech conditions against baseline.
The e�ective connectivity for probably more basic speech feature stages can be identi�ed between bi-
lateral frontal cortex structures and bilateral temporal structures (bilateral STG, right FuG and right
ITG). These connections could be identi�ed in the network for semantic speech and semantic speech
in noise, but not signi�cantly stronger for the semantic speech conditions than for the non-semantic
speech conditions. The activation maps in Fig. 4.2 to Fig. 4.4 are in line with this assumption. Acous-
tical di�erences, like those between clear and noisy stimuli, are re�ected in activation di�erences in
the auditory cortex. The presentation with non-semantic speech that might demand more resources
in the auditory cortices to increase putative decreased signal quality, leads to higher activation in the
auditory cortex. Simultaneously, the automated processing of normal spoken language processing is
re�ected in increased activation in the left AnG, the bilateral frontal cortices and the CgG. Bilateral
connections can also be found for semantic speech and semantic speech in noise between the anterior
and posterior parts of the CgG as well as inter-hemispheric connections between these structures.

The anterior CgG has been associated with both speech production (Ali et al., 2010; Haupt et al.,
2009; Birn et al., 2010) and speech perception on a rather acoustic level, e.g., increased activation
for masked speech as compared to clear speech (Evans and Davis, 2015) or the emotional prosody of
sentences (Wittfoth et al., 2010), while the posterior CgG has been associated to sentence process-
ing, as described before. Since the anterior and posterior part of the CgG are e�ectively connected
to temporal lobe structures for both semantic and non-semantic speech processing, an integration of
information from the anterior to the posterior part of the CgG with top-down connections leading back
to the auditory cortex is concluded.

4.5.3. Processing of invalid spoken language

Another strongly lateralized e�ect that can be observed for the processing of non-semantic speech is the
inhibitory e�ective connectivity of the right frontal cortex to the left temporal cortex and bilaterally to
the anterior CgG. This network appears to represent a network orthogonal to the acoustic processing
of valid spoken language, with connections between the right inferior temporal lobe and the left inferior
and middle frontal cortex. The negative connection values might re�ect inhibitory connection e�ects
between the temporal lobe and the right frontal cortex for incongruent speech as it has been described
by Dick et al. (2009) to be re�ected in right inferior frontal lobe activations.

Positive connections for the conditions non-semantic speech and non-semantic speech in noise can
be found bilaterally between the inferior temporal lobe (ITG and FuG) with the bilateral SMG and
the anterior CgG. Studies which cover the cortical activation during the processing of speech have
found increased activation in the ITG for plausible vs. implausible sentences (Price, 2010) or normal
vs. anomalous sentences (Kuperberg et al., 2000), for cross-modal intelligibility (Akama et al., 2012),
ambiguity of sentences (Rodd et al., 2005) or speech comprehension in general (Awad et al., 2007).
In the FuG increased activation has been identi�ed for words compared to pseudo-words (Davis and
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Gaskell, 2009), or spoken sentence processing with the attention directed to the verbal content (von
Kriegstein et al., 2003). The SMG and the anterior CgG are both inhibitorily in�uenced by the right
inferior frontal cortex for non-semantic speech processing. They might be nodes in a feedback loop that
contribute to the identi�cation of structures that characterize speech. Depending on the similarity of
the perceived stimulus to spoken language on an acoustic and semantic or syntactic level, they might
coordinate the activation and cognitive load in the auditory cortex.

4.6. Conclusion

In this study we compared the neuronal processing of natural spoken sentences to the processing of
stimuli that are acoustically similar to speech but do not have any meaningful content on the activation
level and on the level of e�ective connectivity between spatially distant cortical structures. We found
that some e�ects are not re�ected in the absolute activation level, but rather in condition speci�c
connectivity patterns between di�erent cortical structures. This includes a network for the processing
of natural spoken language that is bilaterally distributed for the more basic, acoustic processing steps
with increasing left lateralization for increasing abstractness of the task. The cingulate gyrus and the
bilateral angular gyri and supramarginal gyri seem to play a crucial role in the integration of infor-
mation to extract meaning from spoken language. For the processing of invalid spoken language, the
top-down connections to the auditory cortex and the inferior temporal lobe are more pronounced than
during the processing of valid sentences, and a control feedback loop could be identi�ed that controls
for the validity of the perceived stimuli. The identi�ed network is very complex and further investiga-
tions are required to verify the di�erent processes that have been described. However, the results are
consistent in their structure and are in line with results obtained by previous studies. Simultaneously,
they build a quite complex framework that summarizes di�erent aspects of the extraction of meaning
from spoken language.
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5.1. Analysis methods

In the previous chapters the results from an auditory fMRI study investigating the cortical activation
corresponding to spoken language processing, in particular on the semantic level, have been presented
and discussed. In addition to the presentation of physiological results, di�erent analysis methods have
been applied to the data set and their applicability and results have been compared to each other as
well as to results obtained from previous studies.

The stimulus set used for the fMRI study was composed of six di�erent acoustic conditions and
one silence condition as baseline. The conditions of the highest interest are the semantic speech con-
dition and the non-semantic speech condition. Stimuli from both conditions are acoustically similar
to normal speech. However, while the semantic speech condition is composed of valid sentences, the
stimuli from the non-semantic speech condition do not hold any meaningful semantic content. Both
conditions have been overlaid with speech-simulating noise to create two additional conditions. For the
comparison with non-speech stimuli with comparable spectral characteristics, the subjects have been
additionally presented with the speech-simulating noise itself and with noise vocoded speech, derived
from the �ltering of white noise with the LPC coe�cients of the material from the semantic speech
condition. The analysis of the BOLD responses corresponding to these stimuli has been realized with
di�erent methods that are summarized, compared and discussed in the following.

In Chapter 2, the Searchlight Classi�cation Informative Region Mixture Model (SCIM) method, a
novel method for the evaluation of classi�cation performance results obtained from the searchlight clas-
si�cation with a support vector machine, has been presented. The approach is based on the assumption
that the distribution of classi�cation performance values obtained from a whole brain searchlight clas-
si�cation can be decomposed into informative searchlights, which re�ect di�erences between BOLD
patterns corresponding to two contrasted conditions in high classi�cation performance values, and,
respectively, non-informative searchlights. The non-informative searchlight distribution can be inter-
preted as a Null-distribution which has to be separated from those searchlights, whose BOLD patterns
contain information about the investigated conditions. This separation is realized with a Gaussian
mixture model (GMM), which is �tted to the joint distribution of all classi�cation performance results
from a whole brain classi�cation analysis. From the converged model, an a-posteriori probability for
each searchlight can be extracted that re�ects the probability of the searchlight's classi�cation per-
formance to be drawn from the Null-distribution or non-informative distribution. The SCIM method
has two major advantages: 1) it does not assume a speci�c characteristic of the Null-distribution, as
it is the case for the binomial test, and 2) since the Null-distribution is represented by the junction of
non-informative searchlights in the brain, the numerically expensive and time-consuming repetition of
the analysis as done in the random permutation test is not necessary. The di�erences of the results ob-
tained from the analysis of the contrast semantic speech vs. non-semantic speech from the fMRI dataset
and from the analysis of a simulation data set with the SCIM method and with the reference methods
can be summarized as follows: Compared to the reference methods, in particular the binomial test, the
results obtained with the SCIM method are found to be highly robust with respect to changing p-value
thresholds. This high dependence on those thresholds is more pronounced for the binomial test than
for the random permutation test. However, the result maps obtained from the random permutation
test also show informative regions that are not in line with �ndings from previous research on this topic.

The spatial smoothing of classi�cation performance results was found to have a bene�cial impact on
the quality of result maps. In combination with the SCIM method, the sensitivity was increased due
to a better separability of the informative and non-informative searchlight distribution. For the ref-
erence methods, spatial smoothing increases the speci�city of the analysis, which is re�ected by fewer
informative regions in areas which are physiologically non-plausible and across the di�erent methods
inconsistent.
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The evaluation of the classi�cation performance with the AUC has some advantages over the ac-
curacy measure. It bene�ts from an increased sensitivity with a decreased standard error (Green
and Swets, 1966; Bradley, 1997; Spackman, 1989), which allows for a dependable regularization and
prevents over-�tting in the training phase. The decreased standard error of the AUC measure, as com-
pared to the accuracy measure, facilitates the decomposition of the informative and non-informative
searchlight distribution and supports the robustness of the SCIM method. The SCIM method, with an
AUC measure as performance quanti�cation and spatial smoothing of resulting AUC maps, provides an
evaluation tool that reliably identi�es informative regions based on di�erences of local BOLD patterns.

The results obtained from the analysis of the full data set with the SCIM method have been presented
in Chapter 3. These include - in addition to the contrast semantic speech vs. non-semantic speech -
the results of the analysis of twelve further contrasts on single subject level and group level. The di�er-
ent contrasts between the conditions are very similar, even though they re�ect the discriminability of
local BOLD patterns corresponding to acoustic stimuli that vary on di�erent speech features, respec-
tively. The quantitative analysis of single subject result maps, as inferred by the portion of informative
voxels in anatomical regions determined by the automated anatomical labels (AAL, Tzourio-Mazoyer
et al., 2002) atlas, however, showed some systematic di�erences in the superior temporal gyrus (STG),
Heschl's gyrus (HG) and the insulae (INS) between the contrasts, that can be assorted to groups of
contrasts.

The six acoustic conditions di�ered in their content of semantic structure, human voice pitch and
temporal modulation. In a subsequent analysis, the thirteen contrasts have, therefore, been sorted
due to the degree of di�erences between the contrasted conditions with respect to these three speech
features. With a Spearman rank correlation (Spearman, 1904) the voxelwise correlation between the
rank of feature di�erence and the searchlight classi�cation performance has been evaluated to create
correlation-based maps, equivalent to the information-based maps (Kriegeskorte et al., 2006) obtained
from the searchlight classi�cation itself. Similar to the decomposition of informative searchlights from
non-informative searchlights, the distribution of correlated searchlights has been separated from the
non-correlated searchlights and anti-correlated searchlights, which allows for the identi�cation of those
regions whose discriminability of activation patterns correlates with the di�erence of speci�c speech
features. For the correlation analysis, a three-component GMM has shown to be advantageous in com-
parison to a two-component GMM, which leads to an additional distribution of anti-correlated regions.

5.2. Cortical structures and neural networks

Di�erences in the depth or presence of temporal modulation showed the largest correlation e�ects in
the temporal lobe, in particular in the primary auditory cortex, which has previously been associated
with temporal modulations in the frequency range of the speech rate (4Hz, Giraud, 2004). The superior
temporal lobe has also been associated with the processing of speech envelopes (Kubanek et al., 2013)
and speech rhythm (Geiser et al., 2008; Ischebeck et al., 2008). The activation corresponding to speech
rhythm has been identi�ed in the rolandic operculum (RO, Ischebeck et al., 2008; Heinrich et al., 2008;
Geiser et al., 2008) and the temporo-parietal junction (Hervé et al., 2012; Geiser et al., 2008). Those
regions also showed correlation e�ects with modulation di�erences in the present study.

Those regions which show correlation e�ects with voice pitch di�erences are located within the lateral
HG, the temporal pole, the superior and middle temporal gyri (STG and MTG) and in the left inferior
frontal lobe (IFG). Activation in the HG has been associated with voice pitch perception on di�erent
stages. The perception of vowels in contrast to non-speech sounds has found to induce activation in
the HG (Uppenkamp et al., 2006), but also interpretational tasks like the identi�cation of a speaker's
sex (Lattner et al., 2005) or identity (Formisano et al., 2008). Voice selective regions have also been
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identi�ed along the superior temporal lobe (Moerel et al., 2012; Pernet et al., 2015; Liebenthal et al.,
2005) and in the MTG (von Kriegstein et al., 2003; Belin et al., 2000; Warren et al., 2006). Activation
in the frontal lobe has found to be associated with the processing of spectral details of speech stimuli
(Gandour et al., 2002; Meyer et al., 2004). The cortical structures, whose BOLD patterns were found
to contain information about voice pitch di�erence again seem to be hierarchically structured. The
initial recognition of speech is re�ected in cortical activation in the auditory cortex, while the inter-
pretation of voice pitch information is re�ected in both, frontal lobe areas and in the auditory cortex.
Further insights to neural networks for the processing of voice pitch information might be obtained
from connectivity analyses of data sets that are focused upon this stage of spoken language processing.

With the correlation analysis only small regions showing high correlation between classi�cation per-
formance values and stimulus feature di�erences could be identi�ed for the semantic processing of
spoken language. These are located in the bilateral inferior temporal gyrus (ITG), the left MTG, the
inferior frontal gyrus (IFG), the precuneus (Pcun), the angular gyrus (AnG), the lingual gyrus (LgG)
and the posterior cingulate gyrus (pCgG). While activation in the MTG has previously been found to
be related to semantic processing on word level (Davis and Gaskell, 2009; Diaz and McCarthy, 2009),
the ITG has also been found to be related to the more complex sentence processing (Rodd et al.,
2005; Price, 2010). Activation in the inferior frontal lobe has previously been reported for both, the
processing of words (Kotz et al., 2009; Nosarti et al., 2010) and the processing of sentences (Sharp
et al., 2009; Tyler and Marslen-Wilson, 2007). This is also the case for the PCun, which was found to
be involved in the identi�cation of existing words (Davis and Gaskell, 2009) but also in the interpre-
tation of spoken sentences (Mashal et al., 2009) and narrative spoken language processing in general
(Whitney et al., 2009). Activation in the AnG has been particularly associated with the integration of
words to a meaning (Golestani et al., 2009; Sharp et al., 2009), while the LgG has been identi�ed to be
involved in word categorization (Bilenko et al., 2009) and higher order sentence processing (Kuperberg
et al., 2000; von Kriegstein et al., 2003). Negative correlation e�ects have been identi�ed in the HG,
the posterior STG, the RO and the SMG.

The cortical regions, whose involvement in the semantic processing has been identi�ed with the cor-
relation analysis, have also been repeatedly identi�ed in previous studies on spoken language processing
on a semantic level. These regions include the temporal lobe regions, frontal lobe regions, the temporo-
parietal junction (SMG, AnG), the lingual gyri and the cingulate gyri. They have been involved in
the e�ective connectivity gPPI analysis, which is presented in Chapter 4. The results obtained from
the gPPI analysis indicate separate neural networks for the acoustic processing of spoken language,
the interpretation of valid sentences and semantic content, and for the processing of natural speech
without any meaningful content.

For the extraction of meaning from spoken language, a neural network has been identi�ed which
includes left frontal lobe structures, regions of the temporo-parietal junction, namely the AnG and the
SMG, and the posterior CgG. While the posterior cingulate gyrus has been associated with a lexico-
semantic processing on both, sentence level (Mashal et al., 2009; Obleser and Kotz, 2010; Smirnov
et al., 2014) and word level (Newman et al., 2001), the SMG has found to be involved in sentence
processing on a conceptual level (Obleser and Kotz, 2010; Richardson and Price, 2009; Price, 2010),
which explicitly involves the processing of syntactic structure (Raettig et al., 2010; Richardson and
Price, 2009; Hickok, 2012). We interpret the connections between the SMG and the posterior CgG,
therefore, as part of a processing stage to integrate information from syntactic structure to semantic
meaning. Activation in the AnG has been reported to be related to an interpretational level of spoken
language processing to evaluate the plausibility (Sharp et al., 2009), the predictability (Obleser and
Kotz, 2010) or the relatedness between words (Golestani et al., 2009; Sharp et al., 2009). The AnG
and the pCgG have been found to be connected for non-semantic speech with bilateral temporal lobe
structures, while they are connected with the left frontal lobe for semantic speech. With respect to
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their role identi�ed in previous studies, we assume a coordinating function in spoken language process-
ing for these areas.

For non-semantic speech a bilateral network between the inferior temporal lobe, the bilateral SMG
and the anterior CgG could be identi�ed, which might re�ect feedback processes, induced by the in-
creased task di�culty to extract meaning from a non-intelligible speech stimulus. The SMG and the
anterior CgG, which has shown to be involved in both speech production (Ali et al., 2010; Haupt
et al., 2009; Birn et al., 2010) and speech perception (Evans and Davis, 2015; Wittfoth et al., 2010),
detect inconsistencies in the non-semantic speech and increase via top-down processing the activation
in the inferior temporal lobe. An inhibitory network between the left inferior temporal lobe, the right
frontal lobe and the left anterior CgG as well as the bilateral SMG is consistent with activation in
the right IFG for incongruent speech (Dick et al., 2009) and higher activation during the perception
of pseudo-words compared to words (Newman and Twieg, 2001). It might re�ect a control network to
economize cognitive resources, when stimuli are classi�ed as unintelligible.

5.3. Lateralization of spoken language processing

The lateralization of spoken language processing was observed in the data from this study both in
local activation patterns and in connection to spatially distinct patterns. Even though the correlated
regions for semantic processing obtained from the correlation analysis in Chapter 3 are small, they
show a clear left lateralization, while a lateralization for the processing of acoustic features is much
less pronounced. The activation maps for the contrasts between semantic speech and non-semantic
speech in Chapter 4 (cf. Fig. 4.2) also support the assumption that the acoustic processing is less lat-
eralized than the abstract processing. The bilateral temporal lobes show increasing activation during
the processing of non-semantic speech as compared to semantic speech, which might be driven by the
increased task demand. Semantic speech processing, on the other hand, leads to increased activation
in the left temporo-parietal lobe. The e�ective connectivity, presented in Chapter 4, also shows a
lateralization e�ect, which seems to correlate with the abstractness of the task (cf. Fig. 4.8). The
lateralization of cortical activation during spoken language processing is still a matter of debate. In
particular, cortical regions that are associated with higher levels of task demands, are reported to show
lateralization e�ects. The left IFG has found to be involved in sentence processing (Ye and Zhou, 2009;
Rodd et al., 2005; Schafer and Constable, 2009), while Gonzalez-Castillo and Talavage (2011) found
rather bilateral e�ects for sentence processing. Lateralization e�ects for language processing on a word
level have been reported by Kotz et al. (2009) and Sharp et al. (2009), while Bilenko et al. (2009)
reported rather bilateral activation during an ambiguity resolving task. These inconsistencies are ex-
plained by Mashal et al. (2009) to arise from di�erences in the experimental task. The data presented
in this thesis support a model by Peelle (2012), in which an increasing lateralization with increasing
task complexity is predicted. For local BOLD patterns and connectivity measures, bilateral e�ects
for the acoustic processing of spoken language can be observed, while the activation corresponding to
interpretation on an abstract level is strongly left lateralized.

5.4. Conclusion and outlook

This work demonstrates that di�erent analysis approaches on the same data set can lead to remarkably
di�erent results. The di�erent methods are based on di�erent assumptions, which have to be controlled
carefully. The multivariate analysis methods have shown to be more sensitive than univariate methods
(Norman et al., 2006; Kriegeskorte et al., 2006).
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5.4. Conclusion and outlook 5. General Discussion

The general linear model (GLM, Friston et al., 1995), on the other hand, has the big advantage
that it can account for overlapping BOLD responses since it is easier to convolve the cognitive con-
dition regressors with the hemodynamic response function than deconvolving the BOLD responses to
separate the responses from each other. Additionally, di�erent regressors, that might explain variance
triggered by the cognitive demands to solve an attention task, can be included. This is not possible in
classi�cation analysis. In a sparse imaging design with passive listening, these problems are not very
pronounced, however they should be considered for other studies with a smaller TR and with tasks to
control the attention of participants. The SCIM method is therefore particularly bene�cial for passive
listening tasks in a sparse imaging design, which permits the creation of condition contrasts. However,
future studies will certainly contribute to a more detailed evaluation of the method's advantages and
disadvantages.

The correlation analysis has shown to facilitate the disentanglement of BOLD responses corres-
ponding to di�erent stimulus features. In this study, a Spearman rank correlation was calculated to
quantify the relation between the separability of BOLD responses and the stimulus feature di�erences,
since it was di�cult to quantify the stimulus features directly. For future studies it might be more
bene�cial to create a data set which permits a parametric variation of the stimulus features across the
conditions. It can be assumed that measurable di�erences increase the bene�cial e�ect of this method.

The results obtained from this work have supplemented the current knowledge with respect to the
neural correlates of spoken language processing. While many studies have investigated very speci�c
aspects of this complex task, the data which have been presented here permit a rough disentanglement
of acoustic from abstract processing stages for meaningful and nonsense speech stimuli. Since the
inter-individual solving strategies for cognitive tasks increase with increasing complexity (Seghier and
Price, 2016), it is very di�cult to �nd robust group results with respect to very speci�c aspects of
spoken language. The neural network models presented here can be interpreted as a framework which
supports and merges current established models. However, the di�erent parts of this framework require
further investigation with studies that focus on one stage, respectively.
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A. Supplementary Material Chapter 2

Figure A.1.: Spatial distribution of a-posteriori probabilities pSCIM (SCIM) and p-values (random per-
mutationtest and binomial test) across a single slice (z= -2mm, single subject, evaluation
measure AUC, spatialsmoothing for SCIM, random permutation and binomial) of single
subject results from three di�erent subjects. Panel A depicts results for subject 1, panel
B depicts results for subject 2 and panel C depicts results for subject 3.
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A. Supplementary Material Chapter 2

Figure A.2.: Spatial distribution of a-posteriori probabilities pSCIM (SCIM) and p-values (random per-
mutationtest and binomial test) across a single slice (z= 2mm, single subject, evaluation
measure AUC, spatialsmoothing for SCIM, random permutation and binomial) of single
subject results from three di�erent subjects. Panel A depicts results for subject 1, panel
B depicts results for subject 2 and panel C depicts results for subject 3.
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A. Supplementary Material Chapter 2

Figure A.3.: Spatial distribution of a-posteriori probabilities pSCIM (SCIM) and p-values (random per-
mutationtest and binomial test) across a single slice (z= 10mm, single subject, evaluation
measure AUC, spatial smoothing for SCIM, random permutation and binomial) of single
subject results from three di�erent subjects. Panel A depicts results for subject 1, panel
B depicts results for subject 2 and panel C depicts results for subject 3.
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A. Supplementary Material Chapter 2

Figure A.4.: Spatial distribution of a-posteriori probabilities pSCIM (SCIM) and p-values (random per-
mutationtest and binomial test) across a single slice (z= 14mm, single subject, evaluation
measure AUC, spatial smoothing for SCIM, random permutation and binomial) of single
subject results from three di�erent subjects. Panel A depicts results for subject 1, panel
B depicts results for subject 2 and panel C depicts results for subject 3.
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A. Supplementary Material Chapter 2

Figure A.5.: Spatial distribution of a-posteriori probabilities pSCIM (in the panels A and D) and p-
values (random permutation test in the panels B and E and binomial test in the panels C
and F) across a single slice from group result maps (z= -2mm, group results, evaluation
measure AUC (A-C) and accuracy (D-F), spatial smoothing.
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A. Supplementary Material Chapter 2

Figure A.6.: Spatial distribution of a-posteriori probabilities pSCIM (in the panels A and D) and p-
values (random permutation test in the panels B and E and binomial test in the panels
C and F) across a single slice from group result maps (z= 2mm, group results, evaluation
measure AUC (A-C) and accuracy (D-F), spatial smoothing.
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A. Supplementary Material Chapter 2

Figure A.7.: Spatial distribution of a-posteriori probabilities pSCIM (in the panels A and D) and p-
values (random permutation test in the panels B and E and binomial test in the panels C
and F) across a single slice from group result maps (z= 10mm, group results, evaluation
measure AUC (A-C) and accuracy (D-F), spatial smoothing.

Figure A.8.: Spatial distribution of a-posteriori probabilities pSCIM (in the panels A and D) and p-
values (random permutation test in the panels B and E and binomial test in the panels C
and F) across a single slice from group result maps (z= 14mm, group results, evaluation
measure AUC (A-C) and accuracy (D-F), spatial smoothing.
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