
CA RL
VON

OSS I ET Z KY

Carl von Ossietzky Universität Oldenburg
Fakultät II - Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Map-based Localization for
Automated Vehicles using LiDAR

Features

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften der Carl von Ossietzky
Universität Oldenburg zur Erlangung des Grades und Titels eines

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

angenommene Dissertation
von

Constanze Hungar
geboren am 07.05.1993

in Oldenburg

1. Gutachterin: Prof. Dr. Susanne Boll
2. Gutachter: (BetreuerIn oder Dibo)

Map-based Localization for Automated
Vehicles using LiDAR Features

Von der Fakultät für Informatik, Wirtschafts- und
Rechtswissenschaften der Carl von Ossietzky Universität Oldenburg

zur Erlangung des Grades und Titels einer

Doktorin der Ingenieurwissenschaften (Dr.-Ing.)

angenommene Dissertation

von Frau Constanze Hungar

geboren am 07.05.1993 in Oldenburg



Gutachter Prof. Dr. Frank Köster
Weitere Gutachter Prof. Dr. Stephan Schmidt

Tag der Disputation 09.07.2021



Kurzfassung

Lokalisierung spielt eine wichtige Rolle für die Entwicklung automatisierter Fahrzeuge. Das ist der Fall,
da sich Teilprobleme des automatisierten Fahrens, wie die Prädiktion von dynamischen Objekten und
die Trajektorienplanung, auf Karteninformationen stützen. Dadurch ist eine Karten-relative Lokalisier-
ung unabdingbar. Zusätzlich wird in vielen Fällen eine globale Ortung der Fahrzeuge im Zusammen-
hang mit kooperativen Fahrfunktionen, wie z. B. Fahrzeug-zu-Fahrzeug-Kommunikation, benötigt.

Eine Lokalisierung, die eine globale und eine Karten-relative Fahrzeugpose berechnet, kann auf ver-
schiedene Weisen gelöst werden. Häufig ruhen Lokalisierungslösungen auf statischen, semantischen
Objekten, wie Straßenschildern oder Häuserkanten, sog. Landmarken. Um unabhängig von diesen
Infrastrukturelementen zu sein, wird in dieser Arbeit ein generalisiertes Konzept zur Realisierung einer
Feature-basierten Lokalisierung anhand von Light Detection and Ranging (LiDAR) Sensoren, genannt
LiDAR-Feature-basierte Lokalisierung, entwickelt. Das Konzept dieser Arbeit kommt ohne präzise Se-
mantik der Feature aus.

Hierfür werden nicht-semantische Muster für jeden Punkt der LiDAR-Punktwolke bestimmt. Ein
solches Muster eines Punktes ist definiert durch eine Deskription, welcher charakteristische Beziehun-
gen zwischen Abtastpunkten innerhalb der lokalen Nachbarschaft um den jeweiligen Punkt beschreibt.
Diese Deskription wird durch einen Algorithmus, welcher Deskriptor genannt wird, ermittelt. Da sich
nicht jeder Punkt einer Punktwolke für eine robuste Lokalisierung eignet, wird in dieser Arbeit ein
automatisiertes Verfahren zur Detektion signifikanter und persistenter Charakteristiken, genannt Fea-
ture, vorgeschlagen und umgesetzt. Dabei verwendet das Verfahren die Deskriptionen und Positio-
nen der Punkte, um die Eignung der Punkte zu überprüfen. Das Extrahieren der Feature findet sowohl
zu Laufzeit im Fahrzeug als auch offline zur Erstellung einer global referenzierten Feature-Karte statt.
Ein Abgleich zwischen den im Fahrzeug detektierten und aus der Karte gelesenen Feature liefert die
fahrzeugeigene Pose. Um die Praktikabilität des Feature-basierten Lokalisierungsansatzes zu testen,
werden die Feature in einem dem Stand der Technik entsprechenden Lokalisierungsalgorithmus inte-
griert. Dafür wird in dieser Arbeit ein Graphen-basierter Ansatz gewählt.

Mit gründlichen Analysen und einem Fokus auf die Umsetzung in Realdaten wird untersucht, in-
wiefern die Verwendung von nicht-semantischen Feature einen Nutzen für eine funktionsfähige Lo-
kalisierung hat. Dafür wurden eigene entwickelt und bereits existierende Deskriptoren, die häufig
lediglich anhand von synthetischen Daten, wie dicht abgetasteten Hasenmodelle, untersucht wurden,
auf deren Tauglichkeit für den Einsatz in Verkehrsszenerien analysiert. Es kann gezeigt werden, dass
Deskriptoren aus dem Stand der Technik einige der praxisrelevanten Kriterien erfüllen. Für die An-
forderungen, welche die Deskriptoren nicht einhalten, werden Erweiterungen, eine Handhabung mit
diesen oder neue Entwicklungen vorgestellt. Für die eigens entwickelten Deskriptoren, genannt DeLL,
GRAIL und modified HoPD, wird empirisch demonstriert, dass sie einige Eigenschaften der existieren-
den Deskiptoren im Praxiseinsatz verbessern, wie zum Beispiel die Distanzunabhängigkeit. Des Weit-
eren wird bestätigt, dass das entwickelte Feature Detektionsverfahren für eine robuste Lokalisierung
geeignete Elemente extrahiert. Hierbei wird ein bestehendes auf Deskriptionen basierendes Extrak-
tionsverfahren, welches nicht eigens für eine Lokalisierung entworfen wurde, zum empirischen Ver-
gleich herangezogen. Es wird anhand von Realdaten bestätigt, dass die in dieser Arbeit realisierte
Methode deutlich besser für die Lokalisierung geeignet ist. Ebenso wird mit realen Punktwolken un-
terschiedlicher Szenerien demonstriert, dass Szenerie-unabhängig Feature detektiert werden können.

Die Untersuchungen der LiDAR-Feature-basierte Lokalisierung zeigen, dass der gewählte nicht-se-
mantische Ansatz für die Praxis tauglich ist. Das bedeutet, dass eine Posengenauigkeit erreicht wird,
welche die einer Lösung basierend auf Satelliteninformationen (Globale Navigationssatellitensysteme)
unterbietet. Dies steht dem hohen Rechenaufwand einer nicht-semantischen Lokalisierung gegenüber.
Ein Vorteil des Algorithmus, der experimentell gestützt wird, stellt die Einsetzbarkeit der Lokalisierung
in beliebigen, nicht vordefinierten Gebieten dar.

III





Abstract

Localization is crucial for the development of automated vehicles. This is the case because subprob-
lems of automated driving, such as the prediction of dynamic objects and trajectory planning, rely on
prior knowledge in form of map information. This means that a map-relative localization is required.
In addition, in many cases, a global positioning of vehicles considering cooperative driving functions,
such as vehicle-to-vehicle communication, is needed.

Localization which calculates a global and a map-relative vehicle pose can be solved in various ways.
Localization solutions often rely on static, semantic objects, like road signs or house corners, called
landmarks. In order to be independent of these infrastructure elements a generalized concept for the
realization of non-semantic localization relying on data sampled with Light Detection and Ranging
(LiDAR) sensors, called LiDAR-Feature-based Localization, is developed in this thesis. The concept of
this thesis manages without precise semantics of the feature.

For this purpose, non-semantic patterns are determined for each point of the LiDAR point cloud.
Such a pattern of a point is defined by a description which depicts characteristic relations between
sampling points within the local neighborhood around the respective point. This description is de-
termined by an algorithm called descriptor. Since not every point of a point cloud is suitable for a
robust localization, an automated method for the detection of significant and persistent characteris-
tics, called feature, is proposed and implemented in this thesis. The procedure uses the descriptions
and positions of the points to check the suitability of the points. The feature is extracted both during
runtime on-board the vehicle and offline to create a globally referenced feature map. A comparison
between the features detected on-board and those read from the map provides the vehicle’s pose. In
order to test the practicability of the feature-based localization approach, the features are integrated in
a localization algorithm corresponding to the current state of the art. For this purpose, a graph-based
Simultaneous Localization And Mapping (SLAM) approach is chosen in this work.

With thorough analyzes and a focus on the realization in real data, it is examined to what extent the
use of non-semantic features has a benefit for a functional localization. For this, own descriptors were
developed and already existing descriptors, which were often only examined on the basis of synthetic
data, such as densely scanned rabbit models, were analyzed for their suitability for use in traffic sce-
narios. It can be shown that state-of-the-art descriptors already meet many of the criteria relevant in
practice. For the requirements that the descriptors do not comply with, expansions, handling of these
or new developments are presented. For the specially developed descriptors, called DeLL, GRAIL, and
modified HoPD, it is empirically demonstrated that they improve some properties of the existing de-
scriptors in practice, such as distance independence. It is also confirmed that the feature detection
method extracts suitable elements for robust localization. An existing extraction process based on de-
scriptions, which was not specially designed for localization, is used for the empirical comparison. It
is confirmed on the basis of real data that the method implemented in this work is significantly bet-
ter suited for localization. Also, real point clouds of different sceneries are used to demonstrate that
features can be detected independently of the scenery.

The investigations of the LiDAR-Feature-based Localization show that the selected non-semantic
approach is suitable for practice. This means that a positional accuracy is achieved which outper-
forms that of a solution based on satellite information (Global Navigation Satellite Systems). How-
ever, this contrasts with the high computational effort of non-semantic localization. An advantage
of the algorithm, which is experimentally supported, is that localization can be used in any desired,
non-predefined domains.

V





Acknowledgment

The results of my work as a PhD-student at the department Localization and Map of the Volkswagen
Group Research in cooperation with the department Intelligente Transportsysteme of the Carl von Ossi-
etzky Universität Oldenburg are presented in this thesis.

First of all, I would like to take this opportunity to thank Prof. Dr. Frank Köster for supervising me
during my PhD. His regular feedback and creative discussions have greatly improved my work. With
his structured comments, he also helped drive the constant progress of my research.

I would also like to thank my sub-department leader at the Volkswagen AG Dr. Bernd Rech, who
always supported me and this thesis’ topic while keeping the tasks that would have hindered me in
my work away from me. His advice and support have helped me a lot throughout the entire time. A
big thank you also goes to Dr. Stefan Jürgens. He was a great help, especially in challenges regarding
this thesis, as were his reviews of my publications and this work. I would like to offer my special thanks
to my colleagues and students of the department for their contributions and effort.

Throughout the whole time as a PhD student, the team members working at the localization and
map project were a reliable help for the implementation of the designed concept to whom I would
like to extend my sincere thanks to. Especially, I would like to thank the team members at my sub-
department for sharing their expertise. My special thanks go to Daniel Laubrich and Jonas Jung with-
out their implementation expertise and vehicle integration tips I would not have been able to advance
this quickly. They were always ready to answer my questions until I had none.

I am equally grateful to my colleagues in the department Automated Driving at Volkswagen Group
Research. They have created a friendly and open-minded work environment in which I felt very wel-
come and comfortable.

Lastly, my gratitude needs to be expressed to my family and friends for their unwavering support
and belief in me. I could always rely on them and they were there to listen to my doubts and complaints
and to encourage me. Especially, I want to thank my father Priv. Doz. Dr. Hardi Hungar, who gave me
the best tips on how to work scientifically and always supported me.

VII





Disclaimer

The results, opinions and conclusions expressed in this thesis are not necessarily those of Volkswagen
Aktiengesellschaft.
Ergebnisse, Meinungen und Schlüsse dieser Dissertation sind nicht notwendigerweise die der Volks-
wagen Aktiengesellschaft.

IX





Statement

I completed the work independently and used only the indicated resources.
Ich habe die Arbeit selbständig verfasst und nur die angegebenen Hilfsmittel benutzt.

XI





List of Publications

• [54] C. Hungar, F. Köster, and S. Jürgens. Ein Beitrag zur Karten-basierten Positionierung von
Fahrzeugen mittels Mustererkennung in LiDAR-Daten. AAETAutomatisiertesundvernetztesFahren,
pages 135–155, 2019

• [52] C. Hungar, S. Brakemeier, S. Jürgens, and F. Köster. GRAIL: A gradients-of-intensities-based
local descriptor for map-based localization using LiDAR sensors. In Proceedings of the IEEE Inter-
national Conference on Intelligent Transportation Systems (ITSC), pages 4398–4403, 2019

• [53] C. Hungar, J. Fricke, S. Jürgens, and F. Köster. Detection of feature areas for map-based local-
ization using LiDAR descriptors. In IEEEWorkshoponPositioning,NavigationandCommunications
(WPNC), pages 1–6, 2019

• [55] C. Hungar, S. Jürgens, D. Wilbers, and F. Köster. Map-based localization with factor graphs
for automated driving using non-semantic lidar features. In Proceedings of the IEEE International
Conference on Intelligent Transportation Systems (ITSC), pages 1–6, 2020

XIII





Contents

Acronyms and Symbols XIX

I. Context of LiDAR-Feature-based Localization 1

1. Introduction 3
1.1. Motivating LiDAR-Feature-based Localization . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Introducing Feature-based Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. RelatedWork and Basics 11
2.1. Relevant Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1. LiDAR Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2. Extraction of Non-Semantic Elements . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3. Localization with Non-Semantic LiDAR Data . . . . . . . . . . . . . . . . . . . . 27
2.1.4. Conclusions from Relevant Literature for this Thesis . . . . . . . . . . . . . . . . 32

2.2. Mathematical Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.1. Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.2. Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.3. Iterative Closest Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.4. Ramer-Douglas-Peucker Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.5. Daisy Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.6. Density-based Spatial Clustering of Applications with Noise . . . . . . . . . . . 42
2.2.7. k-Medoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.8. Graph-based Simultaneous Localization and Mapping . . . . . . . . . . . . . . 44

II. Describing and Selecting Features 51

3. LiDAR-Based Descriptors 53
3.1. Terms and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1. Defining the Description Computation . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.2. Procedure of Descriptor Evaluations and Extensions . . . . . . . . . . . . . . . 54
3.1.3. Research Questions of the Application of Descriptors . . . . . . . . . . . . . . . 59

3.2. Geometry-Based Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1. Analyzes of Geometry-Based Descriptors in Real-World Environment . . . . . . 60
3.2.2. Own Developments and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3. Intensity-Based Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.1. Theoretical Analyzes on State-of-the-Art Algorithms . . . . . . . . . . . . . . . 88
3.3.2. Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.3. Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

XV



Contents Contents

3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4. Feature Area Extractions 95
4.1. Terms and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1. Defining the Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1.2. Procedure of Feature Area Extraction . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.3. Research Questions of the Application of Feature Extraction . . . . . . . . . . . 101

4.2. Generation of Feature Areas in Non-Semantic Way . . . . . . . . . . . . . . . . . . . . . 102
4.2.1. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.2. Description Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.3. Spatial Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3. Extraction of Map and On-Board FAs applying the LIG . . . . . . . . . . . . . . . . . . . 105
4.4. Implementation of Extraction Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.1. Implementation of Description Clustering . . . . . . . . . . . . . . . . . . . . . 111
4.4.2. Implementation of Euclidean Clustering . . . . . . . . . . . . . . . . . . . . . . 114
4.4.3. Implementation LIG’s Distinctiveness . . . . . . . . . . . . . . . . . . . . . . . . 115
4.4.4. Map Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5. Analyzes of Extraction Process Using Real-World Data . . . . . . . . . . . . . . . . . . . 117
4.5.1. Position Accuracy Matching Map and On-Board Feature Areas . . . . . . . . . . 118
4.5.2. Persistence of Extracted Map and On-Board Feature Areas . . . . . . . . . . . . 119
4.5.3. Scenery Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5.4. Compressibility of Map Feature Area Extraction . . . . . . . . . . . . . . . . . . 122

4.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

III. Positioning with Features 125

5. Localization using LiDAR Feature Areas 127
5.1. Terms and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1.1. Defining the Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.2. Procedure of Localization with LiDAR Feature Areas . . . . . . . . . . . . . . . . 128
5.1.3. Research Questions of the Application of the Localization Algorithm . . . . . . 131

5.2. Integration of Features into Graph-Based SLAM . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.1. Collection of On-Board Feature Areas and Map Generation . . . . . . . . . . . 132
5.2.2. Association of Feature Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.3. Map Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.4. Graph Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2.5. Graph Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.6. Sliding Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3. Analyzes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.1. Position Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.2. Demand for Computing Resources . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6. Conclusion 153
6.1. Key Findings and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

List of Figures 169

XVI



Contents Contents

List of Tables 172

Appendices 175
A. AI-Based Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
B. Number of Clusters in Description Space . . . . . . . . . . . . . . . . . . . . . . . . . . 187
C. Feature Area Extraction with Intensity-based Descriptors . . . . . . . . . . . . . . . . . 189

XVII





Acronyms and Symbols

Acronyms

ABS Anti-Lock Braking System

AI Artificial Intelligence

B-SHOT Binary Signatures of Histograms of OrienTations

CAD Computer-Aided Design

CAE Convolutional Auto-Encoder

CAE-LO Convolutional Auto-Encoder based LiDAR Odometry

CLARA Clustering LARge Applications

CNN Convolutional Neural Network

CPU Central Processing Unit

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DELIGHT DEscriptor of LiDAR Intensities as a Group of HisTograms

DeLL Depth Leap Local

DoF Degree of Freedom

DOG Difference Of Gaussians

DON Difference Of Normal

EKF Extended Kalman Filter

ENU East North Up

ESP Electronic Stability Program

FA Feature Area

FAR Feature Area Representative

FPFH Fast Point Feature Histogram

FWHM Full Width at Half Maximum

GLARE Geometric Landmark Relations

GLONASS GLObal Navigation Satellite System

GNSS Global Navigation and Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit



Contents

GRAIL GRAdients of Intensities as a Local descriptor

HOG Histogram of Oriented Gradients

HoPD Histogram of Point Distributions

HT Hough Transformation

ICP Iterative Closest Point

IMU Inertial Measurement Unit

ISHOT Intensity Signatures of Histograms of OrienTations

ISS Intrinsic Shape Signatures

KPQ Key Point Quality

LiDAR Light Detection And Ranging

LIG Localization Information Gain

LRF Local Reference Frame

LSP Local Surface Patches

LTP Local Tangential Plane

MAP Maximum A Posteriori

MeshDOG Mesh Difference Of Gaussians

MeshHOG Mesh Histogram of Oriented Gradients

MFA Map Feature Area

MLP Multi-Layer Perception

MSER Maximally Stable Extremal Regions

NARF Normal Aligned Radial Feature

OFA On-board Feature Area

PC Personal Computer

PCA Principal Component Analysis

PCL Point Cloud Library

PFH Point Feature Histogram

RADAR Radio Detection And Ranging

RAM Random Access Memory

RANSAC RANdom SAmple Consensus

RMS Root Mean Square

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

RoPS Rotational Projection of Statistics



Contents

RTK Real-Time Kinematic

SDS Self-Driving System

SHOT Signatures of Histograms of OrienTations

SI Spin Images

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization And Mapping

SOD Sum Of Differences

SOM Self-Organizing Map

SPFH Simplified Point Feature Histogram

SRF Sensor Reference Frame

STN Spatial Transformation Network

SURF Speeded Up Robust Feature

T-Net Transformation Network

TriSI Tri-Spin-Image

USC Unique Shape Context

UTM Universal Transverse Mercator

V2X vehicle-to-everything

VD-LSD Variable Dimensional Local Shape Descriptor

VRF Vehicle Reference Frame

WGS84 World Geodetic System of 1984

3DHoPD 3D Histogram of Point Distribution

3DSC 3D Shape Context





Contents

Symbols

Matrices are denoted in upper case bold letters (A), vectors are represented as lower case bold letters
(a), corresponding elements are denoted in lower case using the same letter (a), sets are marked with
an upper case calligraphic letter (A). Transpose operations are marked with a superscripted (·)ᵀ. The
power set of a set is denoted with P(·).

Symbol Unit Description
P – Point cloud with geometry and intensity information
Px,y,z – Point cloud with geometry information
Pi – Point cloud with intensity information
p m×m×m×I Point of a point cloud with geometry and intensity information
px,y,z m×m×m Point of a point cloud with geometry information
pi I Point of a point cloud with intensity information
NP,r(p

x,y,z) – Local neighborhood of point cloud P around point p with ra-
dius r

X – Set of vehicle poses
χv m×m×rad Vehicle pose in the UTM coordinate system
xv m Easting of vehicle pose in the UTM coordinate system
yv m Northing of vehicle pose in the UTM coordinate system
θv rad Heading of vehicle pose in the UTM coordinate system
D – Descriptor
D – Set of descriptions
d specific Description
F3D

Pk,DPk
– Feature Area with points Pk and descriptions DPk

FPk,DPk
– 2D Feature Area Representative of points Pk and descriptions

DPk

FO – On-board Feature Area
FM – Map Feature Area
FC,[t1,tn] – On-board Feature Area cluster for points in time t1, . . . , tn
C[t1,tn] – 2D On-board Feature Area cluster representative for points in

time t1, . . . , tn
R rad Rotation matrix
t m Translation vector
ρ̄ specific Arithmetic mean of random variable ρ
J specific Jacobian matrix
C specific Covariance matrix
Ω specific Information matrix
xUTM, VRF, SRF m x-axis in UTM or ISO 8855 coordinate system
yUTM, VRF, SRF m y-axis in UTM or ISO 8855 coordinate system
zUTM, VRF, SRF m z-axis in UTM or ISO 8855 coordinate system





Part I.

Context of LiDAR-Feature-based
Localization

1





1. Introduction

This chapter motivates and introduces this thesis’ subject of LiDAR-Feature-based Localization - a lo-
calization approach for automated vehicles using non-semantic patterns in the environment sampled
by Light Detection And Ranging (LiDAR) sensors. The work puts an emphasis on practicality. This is
reflected in the contributions, which are presented in Section 1.3. The introduction concludes with an
overview of the thesis whose main part is divided into three content-related steps: i) the description of
non-semantic patterns, ii) the detection of significant and persistent patterns, and iii) the localization
using these significant and persistent detections together with their descriptions.

1.1. Motivating LiDAR-Feature-based Localization

Automated and autonomous driving has gained a lot of attention in the research community in the last
years. The Self-Driving Systems (SDSs) have a high potential to reduce the number of road fatalities,
which has been studied for example in the work of Vaa et al. [147]. 88% of all accidents in Germany are
attributed to the misbehavior of the driver [124]. This includes turning errors, violation of right-of-way,
too low distance to other road users, and unadjusted speed. This can be avoided by the introduction
of SDSs. Additionally, automated and autonomous driving can increase the driver’s productivity, e.g.,
by using the vehicle as a mobile office, and can provide an independent mobility, i.e., for people who
are not allowed or able to drive [75].

Self-localization is an essential functionality for any automated vehicle. State-of-the-art SDSs need
to know a global as well as a map-relative pose. For example, cooperative systems like vehicle-to-
everything (V2X) systems exchange messages containing their poses to improve the road safety, e.g.,
with special vehicle warnings. In the context of V2X, the pose is given in a global coordinate system.
This is important so that the receivers are able to interpret the messages’ contents. However, the path
planning task commonly relies on a priori knowledge in the form of map data because it requires
further information that the vehicle might not be able to derive from its on-board sensor data. For
instance, the road markings bounding the vehicle’s lane might not be correctly recognized in unfa-
vorable weather conditions. Therefore, such tasks also uses the vehicle’s pose within a given map to
be able to extract map information. The same applies to the navigation task at which the vehicle’s
navigation trajectory relies on map information and thus needs a map-relative pose as well.

Several popular localization solutions address the problem. As most maps for automated vehicles
are globally referenced, standard input for localization are Global Navigation and Satellite Systems
(GNSSs). Close to serial production GNSSs alone are in many cases not accurate enough. They suffer
from strong multipath and blocked line of sight effects, especially in urban areas [2, 140, 141]. Even the
poses of expensive Real-Time Kinematic (RTK) capable GNSSs with integrated Inertial Measurement
Units (IMUs) are not reliable in regions with degraded or missing satellite reception, especially in long
tunnels and parking garages or even in urban environments [72]. This result was confirmed by own
evaluations with thorough test drives in Hamburg.

Hence, position information from close to production GNSSs is combined with localization based
on additional sensor data, e.g., from cameras, LiDAR or Radio Detection And Ranging (RADAR) sensors.
These sensors will most likely be available on automated or autonomous vehicles as they are necessary
for detecting dynamic vehicles, anyway [77, 144]. One opportunity is offered by associating on-board

3



1.1. Motivating LiDAR-Feature-based Localization 1. Introduction

Figure 1.1: Concept of the LiDAR-Feature-based Localization. Scheme of the factor-graph-based local-
ization using non-semantic detections, in this case, calculated with Fast Point Feature His-
togram descriptors (white-blue bar charts) [110]. On-board detections ( ) are matched
with map elements ( ) to estimate optimal present and past poses ( ) together with third-
party pose information ( ), like GPS poses, and odometry information [55].

and offline saved sensor raw data, like LiDAR or RADAR point clouds [88, 118, 168]. Often, sparse, on-
board point clouds are matched with dense and globally referenced map point clouds to achieve an
accurate vehicle pose. This is for example done by minimizing the difference between on-board and
map sensor data [9]. Raw data, especially dense map point clouds, require a large amount of memory
and thus are hard to process. Another drawback of this approach is that raw data changes over time,
hence the map is quickly outdated.

Other map-based localization solutions rely on static, semantic landmarks, like road signs or building
corners, to reduce the computational effort and to make localization more robust [14, 24, 114, 160].
They estimate the transformation of on-board detected landmarks with respect to landmarks stored
in a map. In this way, they calculate the vehicle pose in a map-relative coordinate system. By globally
referencing the map, a global vehicle pose is computed simultaneously. However, this only works in
predefined domains where these specified, semantic landmarks occur.

This thesis develops fundamentals of a localization solution based on non-semantic LiDAR features
to be independent of semantic infrastructure elements, called LiDAR-Feature-basedLocalization. Based
on camera data, such non-semantic approaches already exist [23, 148]. However, as automated vehi-
cles will most likely be equipped with LiDAR sensors for the perception of the vehicle’s environment,
this thesis focuses on such sensors. They are particularly suited for the localization task as they mea-
sure the distance to the sampled environment and they are independent of lighting conditions. These
properties distinguishes them from cameras, for which the application of features is widespread, e.g.,
SIFT and SURF [6, 79]. The baseline data of this approach are on-board detections of characteristic
regions in LiDAR point clouds, called features, which are extracted without the use of semantic prior
knowledge. Features are detected by looking for patterns in geometrical descriptions computed for
every point of a point cloud. As this method is not based on prior knowledge, the description of every
point of the LiDAR’s point cloud is necessary. Next, the descriptions are used to detect prominent and
persistent characteristics, the features, which benefit the localization task. This has to be done because
not every pattern is suitable for localization. The feature observations are the input for the actual local-

4



1. Introduction 1.2. Introducing Feature-based Localization

ization algorithm, in this thesis a graph-based sliding window optimization, which is a state-of-the-art
method for vehicle positioning [160]. Also, the matches of the on-board features with map features,
GNSS measurements, and odometry are fed into the graph as nodes and vertices. The optimization of
the graphs yields the estimation of the vehicle pose minimizing the errors between on-board observa-
tions and map data. The principles of the LiDAR-Feature-based Localization are visualized in Figure 1.1
and explained in more detail in the following section.

Within the thesis, the definition and implementation of each step of a method called LiDAR-Feature-
based Localization is formulated. The thesis focuses on the analyzes of each step’s practical benefit,
especially the advantage for localization in terms of position accuracy, long-term robustness, and types
of scenes in which features are of use. That means that this thesis focuses on examining whether
descriptor algorithms and elements detected applying them are suitable for localization. It does not
focus on developing a fully integrated localization solution, which should also consider other sources
of positioning information like semantic landmarks. Finally, this thesis answers the following research
question:

Research Problem:
Develop a procedure to detect robust non-semantic pat-
terns in LiDAR sensor data with a high scenery coverage and
demonstrate the usefulness of the detected patterns for vehi-
cle localization.

1.2. Introducing Feature-based Localization

The LiDAR-Feature-based Localization, or more precisely the map-based localization for automated ve-
hicles using LiDAR features, consists of three main steps.

LiDAR point clouds are the input for the first main step. The point clouds consist of the three-
dimensional geometric information and further the normalized reflectivity of the sampled object. The
main idea of the first step is to calculate a local description for every point of a preprocessed point
cloud with a local neighborhood around that point with an algorithm, called descriptor. In this thesis,
a sphere with the origin at the query point is used as local neighborhood. In the preprocessing step, the
points are selected for which descriptions should be calculated. This is measured with the local neigh-
borhood around a query point. If it includes enough points to characterize the three-dimensional
structure a description calculation is performed. A descriptor function D is a function that maps the
local neighborhood NP,r(p) with radius r ∈ R>0 around a point p to an element in Rm, summarized
in the following problem formulation of the first step:

D : {NP,r(p)| P ⊂ R3 × [0, 1], p ∈ R3 × [0, 1]} → Rm. (1.1)

Often, geometric properties of the sampling points within the point’s local neighborhood, like the
mean curvature or point distributions, are used as descriptor functions [35, 58, 110, 134]. But also,
intensity information of the LiDAR point cloud is used to calculate descriptions [20, 42]. The outcome
of the first main step of the method of this thesis are descriptor functions for production type sensors
and real driving scenarios.

In the second main step, only those areas of the point cloud are extracted as input for the localization
algorithm which are most useful for localization. These extractions are called features. As a description
is assigned to every point of the preprocessed point cloud in the first step, the data size is automatically
reduced to the subset of significant and persistent characteristics within the patterns’ space. For that,

5



1.2. Introducing Feature-based Localization 1. Introduction

connected sets of points with similar descriptions are summarized in a cluster using descriptions and
spatial information. The next step consists in choosing these sets of points based on a measure called
Localization Information Gain (LIG). This measure is intended to capture the benefit for localization of
each cluster to realize the selection in a non-semantic, automatic way. It captures the distinctiveness
(low for features with descriptions of similar values and high for vectors with peaks), uniqueness (iden-
tifiability within a scene by its description), and spatial diversity (spatial distribution within a scene).
The LIG(F) for each feature F is used to select the significant subset F with significance level α and
quantile q1−α, which leads to the overall problem formulation for the second step:

F = {F| LIG(F) ≥ q1−α}. (1.2)

For on-board point clouds, all three values are considered. As this approach relies on map-data, the
non-semantic features need to be extracted for the map as well. Usually, globally referenced, dense
LiDAR point clouds form the basis for any map generation, e.g., maps for other localization concepts,
path planning or navigation tasks. For the consistency of these maps, the map generation in this the-
sis is realized extracting map features from these point clouds. When extracting features from dense
point clouds, only the distinctiveness is taken into account. All distinctive features are saved into the
map. Thus, it includes all features which are considered helpful in the localization task besides the
uniqueness and the spatial diversity. These measures are dependent on the current section of the
environment whose consideration makes no sense in the map-generation process as this is a global
display of the whole environment. The outcome of the second main step is a set of LiDAR features in
the map that can be recognized in the vehicle.

The third main step comprises the localization algorithm. This includes several data association
steps to make localization robust.

Firstly, the decision is made which features extracted from the on-board point cloud can be matched
with features detected from previous process steps. Here, a distance measuring the feature’s similarity
is calculated for every feature extracted in each time step to every feature association group built in
previous time steps. The local vehicle’s odometry data is used to interpolate the position data of the
features. In this way, dynamic objects changing their position and infrequently detected elements are
filtered out.

Secondly, the decision is made, which of the associated features, the output of the previous step, can
be matched with map features. This is done by transforming the local on-board features into a global
coordinate system with an estimated pose of the localization computation of a previous time step. This
is a significant advantage since, in this way, the possibility is created to deal with missing on-board
feature detections, e.g., due to line-of-sight blockages, or features detected in the vehicle by mistake
(parking cars’ descriptions resembling walls). The map matching step is performed independently in
every time step. It ensures that at the current time, a wrong map match can be dismissed, and missing
map matches are still included in the vehicle pose estimation.

A graph-based optimization is applied to compute an optimal estimate of the vehicle state, includ-
ing the vehicle pose, building a factor graph, among the odometry and other things, with the outcome
of the previous steps: the clustered features and the map match factors. This graph is optimized, thus
estimating the most likely vehicle statex∗ given the observationsz. This consists mainly in minimizing
a sum of quadratic errors ei given inaccuracies Ωi:

x∗ = argmax
x

p(x|z) ≈ argmin
x

∑
i

eᵀi (x, zi)Ωiei(x, zi). (1.3)

The outcome of the third main step is a global and map-relative pose of the vehicle, thus completing
the LiDAR-Feature-based Localization.

6



1. Introduction 1.3. Contributions

During this thesis, not an Artificial Intelligence (AI)-based concept is pursued but a model-based
approach. This is done due to the fact that the verification and validation has not yet been solved for
AI-based processes and model-based methods are more comprehensible. Additionally, characteristic
properties, such as geometry, can also be described in a conventional manner. As a third reason, this
thesis’ motivation is based on the fact that localization should not only be possible in predefined sce-
narios where, for example, semantic objects occur, but can be generalized. This is inconsistent with
the use of training data and can lead to problems if the localization is used outside the domain of the
training data.

1.3. Contributions

The research illustrated in this thesis provides the following contributions for localization of automated
vehicles. The main contribution of this thesis is a comprehensive method for self-localization based
on recognition of non-semantic features in LiDAR sensor data. The results of the thesis are based on
a wide range of concepts, approaches and findings from the literature. These have been analyzed,
improved and extended to be combined into a comprehensive method comprising the construction of
feature maps from measurement data, online feature recognition from on-board sensor data, feature
matching and advanced pose calculation employing error compensation. It has been validated on
field data covering urban, rural and highway sceneries throughout one year. The validation established
a high quality of the vehicle localization in many conditions. In detail, the contributions of the thesis
are as follows:

Analyzes on the practicality of geometry-based descriptors and display of extensions and de-
velopments: The first contribution provides thorough analyzes of state-of-the-art 3D LiDAR de-
scriptors and presents resulting extensions and new developments. Descriptors for point clouds
already exist. However, these are often evaluated using very dense, synthetic point clouds, not
using data from traffic sceneries. Therefore, the focus of the studies in this thesis lies on the po-
tential of geometry-based descriptors for the localization task, especially in real-driving scener-
ies. This is measured with several criteria, e.g., distance and viewing angle independence. It
can be shown that the descriptors specially designed for localization in this thesis improve the
aspects which the state-of-the-art algorithms fail. The examinations, implemented extensions
and new developments are provided in Section 3.2.

Development of a novel intensity-based descriptor algorithm - GRAIL: The second contribution
introduces a novel descriptor algorithm describing local neighborhoods of LiDAR point clouds
with intensity information. Only few descriptors focusing on the description of intensity infor-
mation exist and they are not suitable for the application of this thesis. The gradients of build
intensity shapes within the local neighborhoods are encoded into the local description, the
GRAdients of Intensities as a Local descriptor (GRAIL). As the point clouds’ intensities do not pro-
vide as much information compared to their 3D data, the extraction of non-semantic features is
crucial for a working localization. Section 3.3 introduces this extraction method, including the
GRAIL algorithm, and presents its potential for localization.

Development of a robust on-board feature extraction process: The third contribution consists of
a feature extraction algorithm with on-board point clouds in a non-semantic way. There are
very few extraction methods based on descriptors. For example, individual points, e.g., with a
large surface curvature, are extracted. On the one hand, individual points are very difficult to
robustly recognize for localization. On the other hand, points or objects that have no curvature,
such as building walls, are also useful for localization, like for lateral positioning. Therefore, a

7



1.4. Overview 1. Introduction

descriptor-based method has been developed in this thesis that is specially tailored for localiza-
tion extracting features. A feature, or more precisely a Feature Area (FA), is a set of connected
points with similar geometry-based descriptions rather than multiple single key points. The sig-
nificant subset of FAs is the set of extractions, the input for localization. Their scene-dependent
significance is measured with their benefit for the localization task without using class labels or
other semantic information. The method is introduced and analyzed in more detail in Chapter 4.

Developmentofaautomatedmapgenerationalgorithm: The fourth contribution depicts a method
for the automated generation of feature maps. Usually, maps are not only used for the localiza-
tion task but also for the navigation and path planning problem. As the different tasks rely on
different map information, the map is divided into several consistent map layers. In the context
of the LiDAR-Feature-based Localization, a map layer containing non-semantic elements needs
to be created. Commonly, the baseline data for any map generation are globally referenced,
dense LiDAR point clouds. This data is used in the proposed feature map generation algorithm
to extract scene-independent Feature Areas (FAs). Section 4.3 and Subsection 4.4.4 provides a
detailed explanation creating non-semantic feature maps.

Integration of features into a graph-based localization: The fifth contribution presents an exten-
sion of a graph-based localization solution with features. The localization can be understood as
a composition of a positioning and a Simultaneous Localization And Mapping (SLAM) approach
just making use of the localization part of the SLAM algorithm. Familiar to the SLAM concept, the
vehicle and feature positions are estimated while no update or generation of the map is imple-
mented. The feature representations are fed into the graph whose optimization determines the
vehicle and feature positions. For this, a robust data accumulation and the matching of the data
with the map must be tailored to the data type, i.e., features, and implemented. The details of
the feature representation are depicted in Chapter 4. The extensions of the feature integration
into the graph-based localization and the localization accuracies are provided in Chapter 5.

Demonstration of the practical benefit of the LiDAR-Feature-based Localization: The sixth con-
tribution presents the potential of the LiDAR-Feature-based Localization. The practical benefit
is measured with several indicators. The persistence analysis with measurements of the same
route over one year suggests that the LiDAR-Feature-based Localization works throughout the
year, regardless of seasonal changes. The findings of the persistence analysis are explained in
more detail in Subsection 4.5.2. Another indicator is the number of covered scenery types by
the features, like rural, urban, or on highways. This shows the achieved independence of infras-
tructure elements with non-semantic elements. In Subsection 4.5.3, these findings are provided
in more detail. The last indicator is the computational effort of the calculations. The generic
non-semantic description and extraction of patterns are accompanied by a considerable com-
putational effort. Nevertheless, localization should be real-time capable which is only possible
with the concept of parallelization. This is depicted in Subsection 5.3.2.

1.4. Overview

The thesis is divided into three logical parts. The first part introduces the topic of LiDAR-Feature-based
Localization. It includes in Chapter 2 a thorough literature review on the subjects of descriptors and
detectors as well as localization based on non-semantic elements. Also, the chapter summarizes the
mathematical basics which are applied in this thesis. The part concludes with derivations of the liter-
ature review for the context of localization for automated vehicles, i.e., the challenges of this thesis.
Therefore, in the last section of this part, vehicle oriented research questions are defined, which form
the basis for this research.

8



1. Introduction 1.4. Overview

LiDAR point cloud
P ⊂ R3 × [0, 1]

LiDAR-Based
Descriptors

Chapter 3

Feature Area
Extractions

Chapter 4

Localization Using
LiDAR Features

Chapter 5

odometry
O ⊂ R2 × [0, 2π)

descriptions
D ⊂ Rm

features
FO ⊂ R2+ × Rm

map features

FM ⊂ R2+ × Rm

Part II. Describing and Selecting Features Part III. Positioning with Features

poses
X ⊂ R2 × [0, 2π)

GNSS data
G ⊂ R2 × [0, 2π)

Figure 1.2: Overview of the thesis’ central part

Hereafter, the central part of the thesis begins. It is illustrated in Figure 1.2, which additionally de-
picts the data flow of its main steps. It consists of the second part focusing in Chapter 3 on the de-
scriptor algorithms. The algorithms assign every point of the point cloud P a description, forming
the set of descriptions of the whole point cloud D. Several geometry- and intensity-based algorithms
are explained in detail, extended or developed, and subsequently analyzed. The algorithms are ana-
lyzed with simulated, perfect point clouds based on LiDAR sensor models, post-processed, dense point
clouds of the real environment, and sparse, on-board point clouds recorded with close-to-production
type sensors. In Chapter 4, the detection of significant features using the geometry-based descrip-
tions is outlined as only the most suitable objects should be used for localization. Features F , or more
precisely Feature Areas, aggregate a set of connected points to comprise the information of the point
cloud. Their extraction should work with on-board point clouds resulting in on-board features FO
as well as with dense point clouds, which are the input for the map generation process with map
features FM. Both methods are presented in this chapter. The findings demonstrate that the pro-
posed approach with areas as input for localization is more accurate than point-based localization on
a real-world data set. Furthermore, this chapter answers parts of the practicability of the LiDAR-Feature-
based Localization, i.e., the achieved scenery coverage and persistence of the approach. It can be seen
that valid and persistent features including different type of objects are extracted with the detection
method of this thesis on a highway, in urban, rural, suburb, and industrial areas.

The last part of the thesis displays the feasibility of the non-semantic localization approach. Chap-
ter 5 depicts the graph-based sliding window localization with non-semantic features. In particular,
the feature representations and their integration into the graph-based localization are introduced in
this chapter. The localization further processes odometryO, GNSS dataG, and map featuresFM. With
the realization of this step, the map-based and global vehicle poses X can be calculated in each time
step. Afterward, the localization’s accuracy is evaluated and demand of computational resource of the
whole method.

Finally, Chapter 6 summarizes and discusses the thesis’ outcomes. It also presents research problems
going beyond the questions of this thesis.

9





2. RelatedWork and Basics

The thesis’ main part is divided into three chapters, as introduced in Chapter 1. The ideas of each
step, the concept of characterizing neighborhoods in LiDAR point clouds, detecting non-semantic el-
ements, and positioning with these elements, have been a topic of research for quite some time. Thus,
the results of these areas need to be considered when developing a holistic implementation for LiDAR-
Feature-based Localization. Subsections 2.1.1 to 2.1.3 outline the relevant work independently for each
of the three steps. Afterward, in Subsection 2.1.4, the review are taken as a basis to conclude research
topics for this thesis. The last part of this chapter introduces existing technologies, methods, and math-
ematical fundamentals which will be referred to in this thesis.

2.1. Relevant Literature

The following provides a systematic literature review in the area of LiDAR-Feature-based Localization.
The chapter begins with a discussion of the description of neighborhoods of LiDAR point clouds. Af-
ter that, Subsection 2.1.2 outlines related extraction methods detecting outstanding elements with
the geometry information of LiDAR point clouds, and Subsection 2.1.3 presents relevant literature on
localization approaches relying on non-semantic elements.

2.1.1. LiDAR Descriptors

In this section, the related work on LiDAR descriptors is reviewed, the algorithms to characterize pat-
terns, i.e., descriptions, within point clouds. The fundamental challenge in this field is to describe char-
acteristic relations, like curvature or surface variation values, between sampling points in neighbor-
hoods for every point of a LiDAR point cloud. Figure 2.1 summarizes the identified key LiDAR feature
descriptor types and gives examples for each type.

There are two fundamentally different approaches to construct descriptor algorithms: AI- and model-
based algorithms. This thesis focuses on handcrafted, i.e., model-based, descriptor algorithms to re-
duce the subjects examined in this thesis. An outlook of analyzes on AI-based descriptor algorithm
can be found in appendix A. Therefore, this thesis and literature review gives a more detailed look into
model-based descriptor algorithms. These methods can be divided into two categories: description-
and detector-based methods. Description-based in comparison to detector-based techniques charac-
terize every point of a point cloud, while detector-based methods select salient points based on simple
attributes. The standard category is the description-based method, for which many algorithms have
been developed.

AI-basedMethods:

AI-based descriptor algorithms often use class labels during the training process. The most popular
network processing 3D LiDAR data is the PointNet byQi et al. [100]. The PointNet is designed to directly
take point clouds without discretization, like voxelization or rendering, as input and output class labels.
The PointNet architecture consists of two core building blocks, the Transformation Networks (T-Nets)
and the symmetric function. The T-Nets, in this case Spatial Transformation Network (STN) [127], are

11



2.1. Relevant Literature 2. RelatedWork and Basics

LiDAR De-
scriptors

AI-based
Methods

CAE-LO [166]
Volumetric
CNNs [99]

PointNet [100]
PointNet++ [101]

PointNetVLAD
[146]

LFD [26]
MVCNN [126]

DeepShape [31]
3DShapeNet [162]

Kd-network [62]
OctNet [106]

3DFeat-Net [165]

Model-based

Detector-
based Methods

NARF [125]
MeshDOG/
HOG [167]

Description-
based Methods

Unorganzied
Structures

Organized
Structures

Unprocessed
Height

Intensity
Distance

Dimensionality
Verticality
Linearity
Planarity

Scattering
Eigenentropy
Omnivariance

[41]
Anisotropy [41]
Curvature [41]

Spatial
Volume
Density

Local neigh-
borhood size

Geometric
(F)PFH

[109, 110]
(B-)SHOT [96,
112, 134, 136]

ISS [169]
ThrIFT [33]

LSP [16]

Spatial
SI [58]

TriSI [44]
3DSC [35]
USC [135]

RoPS [43, 45]
3DHoPD [97]

Intensity-
based

DELIGHT [20]
ISHOT [42]

Figure 2.1: Overview of 3D feature descriptor types with some examples

12



2. RelatedWork and Basics 2.1. Relevant Literature

used to deal with spatial invariances. Part of the network architecture of the PointNet, the symmet-
ric function realized through the max-pooling process, is the calculation of a feature vector used for
the classification of the point cloud. This feature vector can be interpreted as a description vector for
the entire input. The vector is used to learn the classification using Multi-Layer Perception (MLP). As
the MLP is designed to learn the feature vector from each point independently and disregards rela-
tions between points, the PointNet++ was developed by Qi et al. to represent local feature vectors
of neighboring points [101]. Furthermore, there are several works based on the research of Qi et al.,
like [146, 165], using semantic class labels and calculating within the network architecture description
vectors [26, 31, 62, 99, 106, 126, 162].

The training process of the AI-based methods described above relies on semantic class labels. Ap-
plying them to the context of this work, self-localization for automated vehicles, the learned descrip-
tions only work in scenes containing those object categories. Therefore, the application of semantic
class labels to compute description vectors is unfavorable because the approach of this thesis is to
detect non-semantic elements circumventing the scene dependence. In contrast to this, a procedure
by Yin et al. learns local feature descriptions without class labels [166]. This fully unsupervised method
is based on Convolutional Auto-Encoders (CAEs) to detect key points and determine their description
vectors. As input for the CAE local voxel patches are generated with centers on the interest points. The
CAE, with pooling layers and fully connected layers, compresses the voxel to represent the description
vector. The Convolutional Auto-Encoder based LiDAR Odometry (CAE-LO) is an example for artificial
detector-based methods.

Model-basedMethods:

Furthermore, there exist many hand-crafted descriptor algorithms. These hand-crafted algorithms de-
pend on models and therefore are called model-based methods. The literature review on them is
presented in the following.

Detector-basedMethods: In the following, two further detector-based methods are listed, which
are hand-crafted. The first detector-based algorithm by Steder et al., namely Normal Aligned Radial
Feature (NARF), is based on depth images generated from point clouds [125]. The main idea of the
NARF algorithm is to detect key points from the point cloud and describe them using depth informa-
tion. A key point is defined as a point of the point cloud i) which is independent of the view angle,
ii) in whose local neighborhood great depth changes occur, and iii) whose dominant direction of the
depth changes is significant. Subsequently, the descriptions values are determined for every extracted
key point. Therefore, a normal aligned distance patch is generated around each key point. Within the
patch, depth changes along multiple orientations with the center at the patch center, forming a star-
like pattern, are considered for the description computation - every orientation results in one descrip-
tion value. The higher the depth changes along an orientation are, the higher the description value
gets. In order to achieve rotational invariance, the highest value, i.e., depth change in one orientation,
can become the first entry of the description vector maintaining the order of the orientations.

The second detector-based algorithm is by Zaharescu et al. [167]. The descriptor algorithm Mesh
Histogram of Oriented Gradients (MeshHOG) is performed on key points detected with the Mesh Dif-
ference Of Gaussians (MeshDOG) extraction method. A mesh is defined as a discrete surface domain
on which the MeshHOG is performed. The MeshHOG is a generalization of the Difference Of Gaus-
sians (DOG)1 used to construct a discrete Laplacian operator. It enables a representation of scalar
functions over multiple scales, in this case, convolution with a discrete Laplacian operator, and the
detection of key points as local extrema. The MeshHOG is a generalization of the descriptor algorithm

1The DOG is a subtraction of an original image smoothed with a Gaussian kernel from another, less smoothed variant of the
original.

13



2.1. Relevant Literature 2. RelatedWork and Basics

ns = u

ps

x

v

y

z

w

||pt − ps||

pt

v

nt

w

ns = u

θ
α

φ

Figure 2.2: Darboux frame (u,v,w)between a point pair (ps,pt) for the calculation of the FPFH angles
θ, α, and φ - based on [110]

Histogram of Oriented Gradients (HOG) for 2D images by Dalal and Triggs [22]. For it, a local, normal
aligned coordinate system is computed. Gradient vectors determined with the Laplacian for each of
the three planes of the coordinate system are the input for the HOG algorithm yielding description
values of the MeshHOG method.

Description-based Methods: Since detector-based methods reduce the input dimension for the
description calculation, they are faster to process than handling the whole point cloud as in description-
based procedures. However, detector-based methods extract single key points which are not robust
for a self-localization, especially concerning sparse LiDAR point clouds from close-to-production sen-
sors. Additionally, elements used for localization should be persistent, which is hard to examine with
single points or general characteristics as introduced before. Thus, the description-based method is
pursued in this thesis. A distinction should be made between organized and unorganized structured
descriptors. While unorganized structured descriptors directly capture the local neighborhood’s char-
acteristics, e.g., mean height, mean intensity or scattering, organized structured descriptors arrange
the characteristics in a specific order, e.g., histograms or signatures. Several popular descriptors are
explained in the following, some of them in more detail as they are used for examinations later in the
thesis.

Unorganized Structures: Unorganized structured descriptors are partitioned into three groups:
i) spatial, ii) dimensionality, and iii) unprocessed descriptors. Spatial descriptors capture the points’
spatial expansion within a local neighborhood, like volume, point density, or local neighborhood size,
which are easy to implement. Dimensionality descriptorsmeasure the salient direction in space within a
local neighborhood, like linearity, planarity or scattering. Often, the computation of those descriptions
depends on eigenvalue calculations, e.g., by Gross and Thoennessen, Han et al., Vandapel et al. [41, 47,
149]. The three eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 are obtained by a Principal Component Analysis
(PCA) with the local neighborhood around the query point. The eigenvalues’ sum is normalized to
one. Resultant, the linearity l, planarity p, scattering s, anisotropy a, eigenentropy e, omnivariance o,
and the surface variation vs can be determined:

l =
λ1 − λ2
λ1

, p =
λ2 − λ3
λ1

, s =
λ3
λ1
, a =

λ1 − λ3
λ1

,

e = −λ1 ln(λ1)− λ2 ln(λ2)− λ3 ln(λ3), o = 3 · 3
√
λ1λ2λ3, vs = 3 · λ3

λ1 + λ2 + λ3
.

(2.1)

14



2. RelatedWork and Basics 2.1. Relevant Literature

p

(a) PFH

p

2

2

2

2

2
2

2

2

2

(b) FPFH

Figure 2.3: Relations between sampling points in the local neighborhood (gray) with radius r around
query point p (red) for the description calculation of the PFH and FPFH. In the case of the
PFH, relations between every point pair of the local neighborhood are taken into account.
In the case of the FPFH, not every point pair is considered but some with double weight (2
on point connection) and even some outside the local neighborhood (orange) - based on
[108–110].

All descriptions of Equation 2.1 take on a value in [0, 1], due to the normalization of the eigenvalues.
Unprocessed descriptors directly characterize the points’ coordinates, like height or distance, or inten-
sities. All of these unorganized structures are easy to process and implement. However, they are de-
pendent on the local neighborhoods resolution, especially for sparse on-board point clouds, and little
descriptive.

Organized Structures: Organized structured descriptors can be divided into three categories: i)
geometric, ii) spatial, and iii) intensity-based. Geometric descriptors capture the 3D information of the
point cloud’s local neighborhoods, like surface variation values or curvature. A histogram-based de-
scriptor algorithm is the PFH [108, 109] and its further development FPFH [110] by Rusu et al., which
are part of the Point Cloud Library (PCL) [107]. Both describe the mean curvature around the query
point within its local neighborhood using surface normals. Using surface normals serves to achieve
independence from view angles.

The calculation of the PFH and the FPFH for a query point of a point cloud are very similar. It starts
with the formation of point pairs within the local neighborhood around the query point. For every
point pair, the point of the point pair is defined as source point ps whose normal ns and connecting
line ∥pt − ps∥ form the smaller angle and the other is the target point pt. These points are used to
build the Darboux frame. The Darboux frame can be seen in Figure 2.2. The axes of the Darboux frame
u ⊥ v ⊥ w with their origin in ps are defined as

u = ns, v = u× (pt − ps), w = u× v. (2.2)

15



2.1. Relevant Literature 2. RelatedWork and Basics

The Darboux frame is used to calculate three angles θ, α, and φ describing the point pair’s curvature:

θ = atan
(
u · nt

w · nt

)
α = acos (v · nt)

φ = acos
(
u · pt − ps

∥pt − ps∥

)
.

(2.3)

This calculation results in 3-tuples for every point pair of the local neighborhood.
For the PFH descriptor, this is computed for every point pair within the local neighborhood, refer to

2.3a. Its description vector is formed by dividing the three angles into five intervals, respectively. Bin-
ning every combination into a histogram yields a 53 = 125-dimensional vector. For the FPFH descrip-
tor, the angles of Equation 2.3 are determined between the query point and its neighbors and between
their neighbors, refer to Figure 2.3b. All of these 3-tuples are binned independently into a histogram,
which is normalized to 100%. This histogram is called Simplified Point Feature Histogram (SPFH).

The SPFH is calculated not only for the local neighborhood of the query point but for every local
neighborhood of all points in the query point’s neighborhood. The final FPFH is determined from all
k SPFHs of the query point’s pi local neighborhood:

FPFH(pi) = SPFH(pi) +
1

k

k∑
j=1

1

wj
· SPFH(pj), (2.4)

with weight wj = ∥pi − pj∥, which represents the distance between the query point pi and each
unequal neighbor point pj .

Similar to the FPFH approach, the Signatures of Histograms of OrienTations (SHOT) descriptor intro-
duced by Tombari et al. depicts relations of surface normals in a subdivided local neighborhood, here
a sphere [112, 134, 136]. It combines geometric information with spatial information. Since the de-
scribing part of the descriptor consists of the determination of normal differences, it is assigned to the
geometric descriptor category. A robust Local Reference Frame (LRF) computation based on the PCA
is performed for every point of the point cloud. This LRF is robustified by weighting the local neighbor-
hood points depending on their distance to the query point. Next, the local neighborhood is divided
using an isotropic spherical grid, as shown in Figure 2.4a. Therefore, two different local neighborhood
radii are used. Both spheres are divided in their middle and the resulting parts are further divided
along the azimuth angle. For each part of the grid, the differences between the normals of the points
and the query point are accumulated into histogram bins. The final SHOT is the concatenation of every
histogram of each partition. Prakhya et al. introduced a variation of the SHOT, called Binary Signatures
of Histograms of OrienTations (B-SHOT), to decrease the computation time and the memory capacity
[96]. Each value of the SHOT is replaced with binaries encoding every successive four values of the
SHOT.

Another geometric descriptor, namely the Intrinsic Shape Signatures (ISS), was devised by Zhong
[169]. This descriptor, like the SHOT, unites geometric information with spatial information but is cat-
egorized as a geometric descriptor due to its characterization focus. First, a LRF (e1, e2, e1 × e2) is
determined for a query point with a spherical local neighborhood around it, where ei are the eigen-
vectors computed with a PCA. Then, an octahedron is used to create a spherical grid of the angular
space with several partitions. A sample grid is visualized in 2.4b. Finally, the weighted sum of points
in each partition is binned into a 3D histogram, which is the definite description.

16



2. RelatedWork and Basics 2.1. Relevant Literature

(a) SHOT (b) ISS

(c) 3DSC

Figure 2.4: Local neighborhood partitions of different description calculations - based on [35, 134, 169]

Based on the popular work on the object recognition in 2D images, Scale-Invariant Feature Trans-
form (SIFT) and Speeded Up Robust Feature (SURF) of Lowe and Bay et al., the ThrIFT descriptor was
developed by Flint et al. [6, 33, 79]. This descriptor adapts the idea of SIFT and SURF to work with 3D
point clouds considering orientation information. Two normals nsmall and nlarge are determined from
the least squares’ plane windows, a small and a large-scaled window, for each query point and point
within the query points’ local neighborhood. The angle β between those two normals is binned into
a histogram forming the description:

β = acos
(

nsmall · nlarge

∥nsmall∥ · ∥nlarge∥

)
. (2.5)

Chen and Bhanu introduced a descriptor called Local Surface Patches (LSP) [16], which is also based
on the comparison of normals. It describes local neighborhoods around query points by binning the
shape index values of neighboring points and the normal angles between the query point and the
neighboring points into a histogram.
Spatial descriptors, as in unorganized structured descriptors, measure the spatial expansion within

a local neighborhood while binning it into ordered systems, like intervals. The most popular local
3D descriptor method is the Spin Images (SI) algorithm by Johnson and Hebert [58]. The SI algorithm
characterizes the relations of neighboring points with two distances. The points’ distance on their local

17



2.1. Relevant Literature 2. RelatedWork and Basics

x

z

xLRF

yLRF

zLRF

xy

xz

(1)
Local Reference

Frame

(2)
transfor-

mation QLRF

(3)
rotation
Qx

LRF(θk)

(5)
distribution
matrix Dx

(6)
statistics vector

sx

(7)
sub-descrip-
tor dx(θk)

(4)
projection
Q̃x

LRF(θk)

yz

y

Figure 2.5: Scheme of RoPS description construction for one sample rotation - based on [43]

tangential plane distt and the orthogonal distance distn to their neighbor points pn are calculated for
every point within their local neighborhood:

distt = nq · (pq − pn), distn =

√
∥pq − pn∥2 − dist2t , (2.6)

with nq as the normal of the query point pq . For every neighboring point, these values are binned
into a histogram resulting in the SI description vector. A variation of the SI descriptor is the Tri-Spin-
Image (TriSI) descriptor by Guo et al. [44]. It builds three SIs by rotating the SIs around each axis of a
LRF. The final TriSI is generated with the concatenation of the three SI descriptions.
Fromeetal.propose a descriptor algorithm called 3DSC [35]. The local neighborhood around a point

of the point cloud is built using a spherical support region. The north pole of the sphere is pointing
in the direction of the surface normal. Then, the sphere is equally divided into partitions with fixed
azimuth and elevation and logarithmic spacing radial dimension. Finally, the 3DSC description is cal-
culated as the weighted sum of the number of points falling into the partitions. The approach called
Unique Shape Context (USC) by Tombari et al. [135] extends the idea of the 3DSC. It computes the
spherical histogram in the same way while adding a unique, local reference frame with an eigenvector
decomposition weighted covariance matrix.

The descriptor RoPS [43, 45] by Guo et al. is based on a similar idea. A local reference frame is used
to describe the distribution (central moments and eigenentropy) with five statistics while rotating the
local neighborhood around all three axes of the LRF. In Figure 2.5 all seven steps of the RoPS calcula-
tion are presented. Here, the points of the local neighborhood, a sphere, are called local point cloud
Q = {q1, . . . , qn+1}. (1) First, the LRF is built with a PCA and the local point cloud is (2) transformed
into the LRF QLRF. (3) For every angle θk , the transformed point cloud is rotated around the xLRF axis
yielding the rotated point cloudQx

LRF(θk). (4) The discretized projections Q̃x
LRF(θk) of the rotated point

cloud into all three planes of the LRF are (5) the input for the calculation of the distribution matrix D.
The distribution is characterized as the normalized number of points within each discretization cell.

18



2. RelatedWork and Basics 2.1. Relevant Literature

φ

Figure 2.6: Specification of the simplex angle - based on [50]. The simplex angle φ is defined as the
cutting angle between the two triangles (blue lines) built by three neighbor points (red)
and a sphere (blue) formed by those neighbor points.

(6) The four central moments µ11, µ12, µ21, and µ22, and the Shannon entropy e by [120] summarize
the distribution matrix Dx:

µmn =

L∑
k=1

L∑
s=1

(k − k̄)m(s− s̄)nDx(k, s), e = −
L∑

k=1

L∑
s=1

Dx(k, s) log(Dx(k, s)),

with k̄ =

L∑
k=1

L∑
s=1

kDx(k, s), s̄ =

L∑
k=1

L∑
s=1

sDx(k, s).

(2.7)

This yields for the three distribution matrices of each plane a 5D statistics vector sx, which are concate-
nated (7). Step (3) to (7) are repeated for rotation with every angle θk around each axis what results in
a 3 · k · 5-dimensional description d(θk) concatenating the statistics vectors.

The 3D Histogram of Point Distribution (3DHoPD) descriptor by Prakhya et al. depicts depth infor-
mation of the point cloud [97]. First, the local neighborhood is transformed into a LRF. Subsequently,
the range along the x-axis is partitioned into intervals and binned into a histogram. This partitioning
is repeated for the y- and z-axes and merged into the final description.
Intensity-baseddescriptors process the local neighborhoods’ reflectivity instead of 3D information as

before. It has received some attention in recent years. Barfoot et al. [5] generate intensity images from
high-resolution LiDAR data recorded with a ILRIS3D, extract SURF descriptions, and perform feature-
based localization in dark environments. In contrast to that, Cop et al. [20] introduce the DEscriptor of
LiDAR Intensities as a Group of HisTograms (DELIGHT). It is a global descriptor computing one vector
for the point cloud by counting the differences of raw reflectivity returns of subdivisions. The Intensity
Signatures of Histograms of OrienTations (ISHOT) descriptor by Guo et al. [42] refined the idea of the
DELIGHT descriptor. Instead of counting the differences of intensity returns, the ISHOT method bins
the direct intensity return of a local neighborhood into a histogram. Without any preprocessing step,
the last two descriptors are dependent on different distances and point cloud densities.

2.1.2. Extraction of Non-Semantic Elements

This section provides an overview of the relevant literature on the detection of non-semantic elements
in 3D LiDAR data. The research area handles the detection of prominent and persistent descriptions
along with their precise position within a point cloud. The literature review is based on previous re-
search of several survey papers [39, 46, 90, 111, 137, 143] - Figure 2.7 structures the different extraction
methods.

19



2.1. Relevant Literature 2. RelatedWork and Basics

Extraction of
Non-Semantic

Elements

Key Point
Detection

Surface
Variation
Methods

Zhong [169]
Guo et al. [43]

Sipiran and
Bustos [121]

Ioannou
et al. [57]

Pauly et al. [92]
Matei et al. [84]
Mian et al. [86]
Unnikrishnan
and Hebert

[145]

Curvature-
based

Methods
Mokhtarian

et al. [87]
Yamany and
Farag [163]

Lo and
Siebert [78]
Rusu et al.

[109]
Chen and

Bhanu [16]
Rusu and

Cousins [107]
Gal and

Cohen-Or [37]
Knopp

et al. [63]
Flint et al. [34]

Point Cloud
Segmentation

Edge-based
Methods

Bhanu
et al. [10]

Sappa and
Devy [113]
Wani and

Arabnia [156]

Region-based
Methods
Besl and
Jain [8]

Tóvári and
Pfeifer [139]
Vosselman
et al. [155]

Pu et al. [98]
Belton and

Lichti [7]
Vo et al. [153]

Chen and
Chen [17]

Model-based
Methods
Rabbani

et al. [102]
Schnabel

et al. [117]
Gelfand and
Guibas [38]

Tarsha-Kurdi
et al. [130]
Li et al. [74]

Clustering
Methods

Macqueen [82]
Lavoué

et al. [69]
Comaniciu

and Meer [19]
Yamauchi
et al. [164]

Figure 2.7: Overview of extraction of non-semantic elements from 3D point clouds with some exam-
ples.

20



2. RelatedWork and Basics 2.1. Relevant Literature

The extraction of non-semantic elements can be classified into two categories: key point detec-
tion and point cloud segmentation. Key point detection is the process of extracting local surfaces
around specific, distinct key points of 3D point clouds. Often, key point detection is applied in the
field of object recognition [46]. Point cloud segmentation is the problem of dividing a 3D point cloud
into multiple homogeneous areas consisting of points with similar characteristics [90]. Here, the key
points’ distinctiveness and the segments’ characteristics are measured with mostly simple descriptors
or sometimes with complex descriptors described in Subsection 2.1.1. In the following, the review of
both research areas is presented.

Key Point Detection:

Non-semantic elements in 3D LiDAR data are often key points extracted based on prominent description-
like characteristics. For instance, often the curvature and surface variation values within a query points
local neighborhood are used to detect prominent points in a non-semantic way. In this thesis, they
are divided into two categories: curvature-based and surface variation methods. Both of them are
presented hereafter.

Curvature-based Methods: Curvature values can be used as distinctiveness measures to detect
prominent key points in multiple ways. Mokhtarian et al. [87] determine the Gaussian and mean cur-
vature around a point using a fixed neighborhood. Points whose curvature values exceed a minimum
threshold within their neighborhood are declared as key points. The curvature is depicted with the sim-
plex angle φ, defined by Hebert et al. [50], in the work of Yamany and Farag [163] to detect key points.
This angle measures the angular variation between neighboring points. It is called simplex angle be-
cause it is the angle between two 2-simplices, triangles, of a 3-simplex, tetrahedron, built with two
neighbor points, refer to Figure 2.6 for a visualization. A point is specified as key point if the simplex
angle satisfies the constraint

|sin(φ)| ≥ t (2.8)

based on a global threshold t.
Furthermore, several works apply elaborate descriptors, refer to Subsection 2.1.1, to extract key

points based on fixed thresholds [16, 34, 78, 109]. In the work of Lo and Siebert [78], an enhanced
version of the SIFT algorithm by Lowe [80], called 2.5D SIFT, is introduced. They compute multiple
scaled depth images within the point cloud by smoothing the depth images with a Gaussian kernel
and calculating DOGs. These depth images are the input for comparing the ratio of the points’ prin-
cipal curvatures to a fixed threshold. Points whose ratio is higher than the threshold are extracted as
key points. In the work of Flint et al. [34], they adopted their ThrIFT descriptor for the key point extrac-
tion task. The adopted ThrIFT is calculated by subtracting the angles between the normal of the query
point and these of the neighboring points. These angles are binned into a weighted histogram. All
points whose differences are larger than a threshold are assigned as key points. Moreover, Rusu et al.
et al. [109] select points whose PFH descriptions, refer to Subsection 2.1.1, differ by a chosen factor
from the standard deviation to the pre-computed mean description of the considered data set. Con-
sequently, with this scene-dependent threshold, they take global, not local variations into account.

However, the performance of those key point detection methods highly depends on the choice of
an appropriate threshold. Chen and Bhanu [16] overcome this issue by defining LSP with shape index
values for every point, which characterize shape variations around each point, refer to Subsection 2.1.1.
A key point is identified by a local optimum of the shape index value within a neighborhood. These
characteristics lead to spatially distributed key points but is sensitive to noise. Another adaption of
the SIFT algorithm, namely 3D-SIFT, was developed as a part of the Point Cloud Library (PCL) [107] to
detect key points. First, the Gaussian scale-space is calculated for a local neighborhood of the point
cloud by downsampling the neighborhood with differently sized voxel grid filters and smoothing the

21



2.1. Relevant Literature 2. RelatedWork and Basics

downsampled points. The smoothing is realized with a weighted average of the neighbor points’ prin-
cipal curvatures. The DOG method yields local optima within the neighborhood whose corresponding
points are declared as key points. Afterward, all key points in regions with low curvature values are re-
jected. Gal and Cohen-Or [37] also detect key points without the use of thresholds by computing a
linear combination of the sum of curvatures of neighboring points and the variance of the curvature
values within a neighborhood. This linear combination is called saliency grade. The resulting saliency
grades for every point are used for the key point extraction by a region growing algorithm. Further-
more, the idea of Knopp et al. [63], namely 3D SURF, is to voxelize the local neighborhood of the point
cloud and compute second-order derivatives at each voxel with increasing standard deviations. Local
optima within a saliency measure based on the Hessian matrix over all voxels and devations are used
to define key points.

Surface Variations Methods: Also other surface variation values can be used to omit key points
from 3D LiDAR data. The work by Zhong [169] and by Guo et al. [43] select key points used as input for
their description calculation of ISS and RoPS, respectively, refer to Subsection 2.1.1. Their extraction
is based on the ratio of combinations of the eigenvalues’ magnitudes within a fixed neighborhood.
The eigenvalues of every local neighborhood are computed with a PCA and sorted in a decreasing
order λ1 ≥ λ2 ≥ λ3 ≥ 0. Zhong keep those points of the point cloud whose eigenvalues satisfy the
following conditions:

λ2
λ3

< t2,3 ∧ λ1
λ2

< t1,2, (2.9)

while respecting predefined thresholds t2,3 and t1,2. Guo et al. choose those points as key points
whose local neighborhoods’ eigenvalues fulfill

λ3
λ2

> t, (2.10)

for some fixed threshold t. There are further approaches, e.g., presented by Pauly et al. [92], Matei et al.
[84] and the Key Point Quality (KPQ) by Mian et al. [86], that use eigenvalues to derive a surface variation
measure for key point detection. Pauly et al. apply the surface variation value vs of Equation 2.1. Local
maxima within the smoothed surface variation space are estimated to extract the key points. Matei
et al. only use the smallest eigenvalue λ3 to measure the surface variation and assign those points
with a large λ3 as key points. First, Mian et al. rotate the local neighborhood points around a query
point such that the normal, computed with a PCA, is aligned with the z-axis. Here, the ratio of the
two largest eigenvalues λ1 > λ2 determined with the PCA describes the surface variation. Points who
meet the following condition

λ1
λ2

> t, (2.11)

where t is a fixed threshold, are kept as key points.

Sipiran and Bustos [121] proposed a detector called Harris 3D, an extension of the Harris Corner De-
tector [48]. First, the neighboring points for every point of the point cloud are translated to the neigh-
borhoods’ centroids. Then, they are rotated into the best fitting plane such that the z-axis of the plane
is aligned to the normal of that neighborhood. The normal is assumed as the smallest eigenvalue com-
puted with a PCA. Subsequently, the neighboring points are translated such that the query point is
in the center of the xy-plane. A quadratic surface is fit to the translated points with the least square
method of the paraboloid form

f(x, y) =
[a1
2
, a2,

a3
2
, a4, a5, a6

]ᵀ [
x2, xy, y2, x, y, 1

]
. (2.12)

22



2. RelatedWork and Basics 2.1. Relevant Literature

Hereafter, the derivatives of the quadratic surface are calculated with a continuous Gaussian function
to formulate the autocorrelation matrix E. The surface variation value, namely Harris operator value,
related to the neighborhood structure of the query point is calculated as in the Harris Corner Detector

det(E)− k (tr(E))
2
, (2.13)

where det(·) and tr(·) represent the determinant and the trace of a matrix, respectively, and k is a
constant factor that needs to be determined experimentally. The query points with the highest Harris
operator value are extracted as key points.
Ioannou et al. [57] model an operator, called multi-scale Difference Of Normal (DON), characterizing

the surface variation of different local neighborhood radii. The normals are calculated with a PCA using
different sized local neighborhood radii around the same query point. One normal is negated if the
angle between two normals of two different radii is greater than π

2 to maintain a consistent direction
of the normals throughout the normal calculation of different radii. Points with a small DON values, i.e.,
less surface variation, are discarded. Furthermore, Unnikrishnan andHebert [145] proposed an integral
operator Iop(p, r) to measure the surface variation around point p with local neighborhood radius r
and detect key points based on it. The integral operator is determined by displacing the query point
along its normal and in proportion to its curvature, i.e., the mean curvature within its local neighbor-
hood. Next, the surface variation is defined as

2 ∥p− Iop(p, r)∥
r

exp
(
−2 ∥p− Iop(p, r)∥

r

)
(2.14)

to keep those points whose surface variation is larger than a threshold.

Point Cloud Segmentation:

Another approach detecting prominent characteristics in 3D point clouds sampled with LiDAR sensors
is the point cloud segmentation. Point cloud segmentation is the problem of dividing the point cloud
into non-semantic elements, i.e., areas with small changes in their characteristics. The 3D point cloud
segmentation procedures can be grouped into four categories: edge-based, region-based, model-
based, and clustering methods, refer to Figure 2.7. All of them are presented in the following.

Edge-based Methods: Edge-based methods divide the point cloud into different regions in two
central steps: i) identifying edges to contour the borders of multiple areas, and ii) grouping points
inside the edges to extract the segments. The edges are detected by local variations in the points’ sur-
face characteristics, similar to simple descriptors Subsection 2.1.1. Often, characteristics like gradients,
normals, or principal curvatures are taken into account.

Bhanu et al. [10] introduced three edge detection methods. The first approach is to calculate depth
gradients in the point cloud to obtain the magnitude and direction of an edge. If the edge magnitude
of a query point exceeds some threshold or the size of its two neighbors with the same edge direction,
the query point belongs to an edge. They connect points belonging to the same edge with the edge
magnitude and direction. The second approach is to fit straight lines into local neighborhoods of the
point cloud. For this, the unit direction vector for each point of the point cloud is calculated. If two
direction vectors point in the opposite direction, the corresponding query points lie on a straight line.
If there are at least two straight lines within a local neighborhood threshold, the neighborhood’s query
point is no edge. Each point not fulfilling the last condition is considered as edge points. The third
approach is to calculate the change in surface normals in local neighborhoods of a point. If the surface
normals differences are significant, the query point is defined as an edge point.

In [113], Sappa andDevy segment the point cloud using edges in two main stages. First, they create
a binary edge map by defining scan lines, i.e., planar curves, and detecting jump edges within them. A

23



2.1. Relevant Literature 2. RelatedWork and Basics

jump edge is characterized by a discontinuity on the surface using surface normals. The jump edges
are approximated as polylines applying quadratic functions building the binary edge map. Next, they
outline the edges following a graph strategy. The points of the binary edge map are triangulated over
the 2D space. A weighted graph is calculated with the points of the triangular mesh as nodes and
links of the mesh as edges. The distance between the two points of the mesh forms the weights of the
graph edges. Some optimizations of the graph edges lead point cloud edges of regions.
Wani and Arabnia [156] propose another edge-based approach with an equidepth voxelized point

cloud as input. First, two key points are extracted from the voxelized neighborhood with coordinates
of the ith voxel as (xi, yi) whose

θi = acos
(

ai,k · bi,k
∥ai,k∥ · ∥bi,k∥

)
, (2.15)

withai,k = (xi−xi+k, yi−yi+k) and bi,k = (xi−xi−k, yi−yi−k having k voxels is below a threshold.
Then, key points categorized as fold edges, semistep edges, and boundary edges and close key points
of the same types are linked. The edges are grown from these key points applying edge masks.

Edge-based methods enable a fast segmentation, but they are not robust when noise or irregular
densities occur in point clouds [39, 90]. Noise or irregular densities often occur in on-board LiDAR data.

Region-basedMethods: Region-based methods segment the point cloud into different areas start-
ing from one or more points with prominent characteristics, called seed points, and then grow around
or subdivide neighboring points with similar characteristics. These characteristics, e.g., surface orien-
tations or curvature values, are related to simple descriptors, refer to Subsection 2.1.1. Region-based
methods can be divided into two groups: i) bottom-up methods, and ii) top-down methods. Bottom-
up methods start with a few seed points and grow the regions based on similar characteristics of neigh-
boring points. Top-down methods start with assigning every point of the point cloud to one group
and subdividing the group into smaller groups.
Besl and Jain [8] introduced the initial bottom-up approach. It comprises two steps. First, points are

identified based on their curvature values. Besl and Jain apply differential geometry to the point cloud
by computing mean curvatures and Gaussian curvatures with least squares. These are used to extract
seed points which define initial regions that are not adjacent and good for surface fitting. Next, they
grow the regions based on characteristics of the points starting with the seed points. A variable-order
bivariate surface fitting finds the regions of a seed point based on proximity of points and planarity
of surfaces. New seed points representing the determined regions the best are detected to repeat
the second step until the regions don’t change anymore, the surface fitting’s order is larger than a
threshold, or the maximum number of iterations is reached.

Furthermore, Tóvári and Pfeifer [139] introduce another bottom-up approach for airborne LiDAR
data. They randomly select seed points and perform the region growing based on three criteria sub-
sequently. Points within a local neighborhood around a seed point are assigned to the seed point’s
region: i) if its angle difference to the surface normals is smaller than a fixed threshold, ii) if its distance
to an adjusting plane, i.e., an orthogonal distance regression plane, is smaller than a fixed threshold,
iii) if its distance to the seed point is smaller than a fixed threshold. The region growing is performed
until there are no more points fulfilling the criteria.
Vosselman et al. [155] developed a planar surface growing algorithm. In this case, the seed points

are selected randomly and then tested if a minimum number of their neighbor points build a plane
forming seed surfaces. The region growing is realized based on the proximity of points and perpendic-
ular distance to a fitted plane. This method results in planar segments. Pu et al. [98] applied the planar
surface growing algorithm of Vosselman et al. to segment terrestrial LiDAR data. They derive five con-
straint categories to label building features within the segments. i) The size constraint describes the
specific size, e.g., of walls, windows, or doors. ii) The position constraint depicts that certain groups

24



2. RelatedWork and Basics 2.1. Relevant Literature

m

b

x

y

(x1, y1)

(x2, y2)

voxel space parameter space

b = −x1m+ y1

b = −x2m+ y2

(mHT, bHT)

Figure 2.8: 3D HT: All points (green and red) on a mathematical representation (here straight blue line)
in the voxel space intersect at a common point (violet) in the parameter space yielding the
fitted shape primitive - based on [4].

appear in certain positions, e.g., roofs on top of walls. iii) The direction constraint states that, for ex-
ample, walls and roofs can be distinguished by their directions, e.g., walls are often vertical. iv) The
topology constraint claims that specific segments have topology relations with other segments, e.g.,
roofs intersect walls. v) The miscellaneous constraint summarizes additional properties, e.g., windows
reflect fewer points resulting in a low density compared to solid walls.
Vo et al. [153] voxelize the point cloud to incrementally merge neighbor voxels with similar charac-

teristics within the region growing procedure. These characteristics are measured with normal angles
applying the PCA and residual values, i.e., the quadratic mean of the perpendicular distances di from
the query points to the plane fitted into the local neighborhood built by k-nearest neighbors:√√√√1

k

k∑
i=1

d2i . (2.16)

They can be interpreted as simple descriptors, refer to Subsection 2.1.1. The region growing, i.e., merg-
ing of voxels with similar characteristics, is realized with an octree approach.

In [7], Belton and Lichti combine edge-based segmentation with a bottom-up region-based method.
They use points labeled as edges as boundaries for the region growing algorithm.

Chen and Chen [17] introduce an example of a top-down region-based approach. They compute
surface normals with a PCA assuming normals of points on a plane point in the same direction. These
normals are used to subgroup the point cloud into multiple planar segments.

Both region-based approaches, bottom-up and top-down, require a priori knowledge [39, 90]. Bottom-
up approaches need a good start estimation for the seed points, while the main difficulty of the top-
down methods is the criteria for the division, e.g., number of regions.

Model-basedMethods: Another category of point cloud segmentation algorithms are model-based
methods. These methods rely on geometric shape primitives for segmenting the point cloud, e.g.,
planes, cylinders, and spheres. The segmentation is performed fitting the shape primitives into the
point cloud and assigning those points to one segment whose mathematical representation is approx-
imately the same.

A common basis for the fitting of shape primitives are the Hough Transformation (HT) and the RAN-
dom SAmple Consensus (RANSAC) algorithm developed by Ballard [4] and Fischler and Bolles [32],
respectively. Both algorithms are used to detect curves like straight lines, circles, or ellipses in local

25



2.1. Relevant Literature 2. RelatedWork and Basics

Figure 2.9: RANSAC: First, initial points (red) are selected to fit the mathematical representation of the
model (solid blue line) and of the threshold (dashed blue lines). Next, the consensus set
(blue points) is assigned to the mathematical representation rejecting outliers (green). The
model fitting was successful if the cardinality of the consensus set is large enough - based
on [32].

neighborhoods of the point cloud. The HT iteratively tests the mathematical representation of a shape
within the voxelized parameter space by counting the best fit for a parameter combination. The pa-
rameter combination that occurred most frequently is chosen for the shape primitive Figure 2.8.

The RANSAC fits shape primitives by randomly picking a subset of points building candidates, e.g.,
least squares. Then, the candidate shapes are checked with all points of the local neighborhood. If the
number of points whose distance between those points and the model is smaller than a fixed threshold
(consensus set) is larger than a specific amount, the model fitting is successful, refer to Figure 2.9.

Tarsha-Kurdi et al. [130] compare 3D HT and RANSAC algorithms for the detection of roof planes
in LiDAR data. In doing so, they discovered that the RANSAC method is more efficient, considering
segmentation accuracy and computational effort. The 3D HT method is slower and more sensitive to
its parameter values. Schnabel et al. [117] propose an approach based on the RANSAC algorithm to
detect shape primitives in point clouds as segments. They identify regions that are mathematically
represented as planes, spheres, cylinders, cones, tori. In [38], Gelfand and Guibas enhance the model
representations to slippable shapes. A slippable shape is defined as a rotational and translational sym-
metrical shape such as spheres, planes, cylinders, and helices. They segment the point cloud by merg-
ing initial slippable surfaces to complex shape structures. Li et al. [74] based their work on the model
fitting algorithm RANSAC as well. The RANSAC is used to fit models into local neighborhoods. Next, a
global coupling refines the results of the RANSAC incrementally with correlations between the locally
fitted shapes, i.e., orientation, placement, and equality. This method corrects the parameters of the
fitted primitives when segmenting point clouds.

Rabbani et al. [102] introduce another model-based approach. Initially, the normal for each point of
the point cloud is computed within a local neighborhood with a plane fitting parameterized with the
Hesse normal form. The residual in the plane fitting is used to identify highly curved areas. Then, the
region growing is performed based on the normal calculation and plane fitting. These characteristics
are used to take the local connectivity of areas, and the surface smoothness of areas into account.
I. e., the normal differences between the seed point and the points associated with a region, and the
residuals are below fixed thresholds, refer to Equation 2.16.

Model-based segmentation is fast and robust with outliers. They are efficient when segmenting
point clouds into geometrically simple parameterized shapes, e.g., lines, planes, cylinders, or spheres.

26



2. RelatedWork and Basics 2.1. Relevant Literature

x

y

x

y

x

y

c1

c2

c3
c1

c2

c3 c1,new

c2,new

c3,new

i) selection of cluster centroids ii) association to cluster centroids iii) update cluster centroids

Figure 2.10: The three steps of the k-means algorithm. Here, three clusters are grouped with mean ci
updated at step iii) as ci,new - based on [82].

When dealing with complex shapes, their efficiency and the accuracy of the segmentation results de-
creases [39, 90]. The application of local descriptors has been proven to provide a more accurate seg-
mentation result for automated implementations and the detection of complex shapes [95].

Clustering Methods: Some segmentation algorithms are based on clustering methods assigned
to the unsupervised machine learning category [39]. Their algorithms are designed to form points of
several groups, often applying characteristics of the points. Considering point cloud segmentation,
hierarchical and especially centroid-based clustering are applied.

The most popular centroid-based clustering method is the k-means algorithm by Macqueen [82].
The elements pi of a data set D are separated into k partitions, so every element is assigned to one of
the k means of the clusters. The k-means algorithm consists of three steps: i) selection of k random
cluster centroids c1,...,k fromD, ii) associate each elementpi to one of the k clusters by computing the
squares of Euclidean distances to the cluster centroids c1,...,k,new, and iii) update the cluster centroids
by calculating the mean of every cluster with the associated points. Step i) and ii) are repeated until
the clusters don’t change any more. In Figure 2.10, the steps of the k-means algorithm are visualized.

Several works adopted thek-means algorithm for the point cloud segmentation application. Lavoué
et al. [69] applied the k-means classification to vertex principal curvatures. The algorithm allows them
to segment the point cloud by detecting smooth curvature transitions, inflexion points, and regions
surrounded by high curvatures. In [19], Comaniciu andMeer adjusted the mean shift algorithm to clus-
ter sparse point clouds in a non-parametric way. The mean shift algorithm by Fukunaga and Hostetler
[36] is an extension of the k-means algorithm. The adoption of Comaniciu andMeer applies the mean
shift algorithm to search for local maxima of a density function. They want to detect modes in the
color or intensity feature space to segment the point cloud. Yamauchi et al. [164] rely on the mean
shift algorithm as well. For segmenting the point cloud, they cluster mesh normals using the mean
shift, thus capturing the point cloud’s curvature.

2.1.3. Localization with Non-Semantic LiDAR Data

The following section provides an introduction to the self-localization of automated vehicles relying
on non-semantic objects since this thesis focuses on a non-semantic approach based on LiDAR data,
called LiDAR-Feature-based Localization. A considerable amount of research has been conducted on
the self-localization based on non-semantic data. An overview of the studies is presented in this sec-

27



2.1. Relevant Literature 2. RelatedWork and Basics

Localization with Non-
Semantic LiDAR Data

Global De-
scriptors

Kim and Kim [60]
Kim et al. [61]

Schlichting and
Brenner [115]

Schlichting and
Feuerhake [116]

Himstedt et al. [51]
Haunert and
Brenner [49]

Generalized
Landmarks

Serafin et al. [119]
Li and Olson [73]
Weiss et al. [158]

Local Features

Point Cloud
Space

Wolcott and
Eustice [161]

Levinson
et al. [71]

Levinson and
Thrun [70]

Wiest
et al. [159]

Attributes
Space

Lu et al. [81]
Dubé et al. [28]

Bosse and
Zlot [13]

Collier et al. [18]

Figure 2.11: Overview of the localization methods based on non-semantic 3D LiDAR data with some
examples.

tion. The studies can be divided into three central categories based on the non-semantic data ex-
tracted from LiDAR data: i) global descriptors, ii) local features, and iii) generalized landmarks. An
overview of the research categories is given in Figure 2.11.

Global Descriptors: Localization solutions based on global descriptors capture characteristics for
a whole scene. Kim and Kim [60] introduce a global descriptor, called Scan Context, partitioning the
LiDAR into sectors with specific azimuth angles and into rings with specific radial values. They call
an intersection of a sector and a ring bin, refer to Figure 2.12. Each bin is assigned the largest height
of the points falling into that bin forming the description matrix. The vehicle’s localization is realized
with a similarity score between Scan Contexts with pairwise scoring and nearest search hierarchically.
In further work, Kimetal. [61] extend the work an Scan Contexts to Scan Context Images. Here, the Scan
Context matrix is normalized and converted into three channels representing the RGB color space. The
height is saturated using a jet colormap with a large variance. The localization is carried out using AI,
i.e., a Convolutional Neural Network (CNN), learned with LiDAR data recorded during one day.

In [115], Schlichting and Brenner detect vertical and planar features via LiDAR sensors. The spatial
relations between those vertical and planar features are calculated, representing their scene’s char-
acteristics. The localization is realized, not only matching the local pattern shaped by the extracted
features but also associating their descriptions with the map. Another work by Schlichting and Feuer-
hake [116] pursue a non-semantic concept by obtaining descriptions from vertical lines of a 2D LiDAR
sensor trained with a neural network (on-board and offline for the map generation). Then, the labeled
data is the input for the localization algorithm, in this case, a sequence mining method.
Himstedt et al. [51] follow a similar approach, as in [115]. They extract key points as points with high

curvature values within their local neighborhood, i.e., local extrema of one-dimensional range curves.
These are the input for the Geometric Landmark Relations (GLARE) estimation, the global description
of a scene. The GLARE encodes the spatial relations of the extracted key points. First, the Euclidean

28



2. RelatedWork and Basics 2.1. Relevant Literature

Figure 2.12: In the Scan Context descriptor algorithm, the bins of a scene are divided in radial (red) and
azimuth (green) directions - based on [60].

distances ρi,j of each key points ki = {xi, yi} to all other key points kj = {xj , yj} for i ̸= j are
calculated within each scene. Additionally, the bearings θi,j and θj,i of the corresponding key points
are computed

θi,j = atan2(yi − yj , xi − xj), (2.17)

while only θ+i,j = max(θi,j , θj,i) is kept for further calculations. Both the Euclidean distances and
the bearings are quantized into uniform bins. Then, the two-dimensional histogram Hi,j at position
m = (mρ,mθ) is generated with a multivariate Gaussian function centered on the bin n = (nρ, nθ)

Hi,j(m) = N (m− n,CH) (2.18)

with covariance matrix CH . The GLARE for a scene is calculated with a normalized sum

η
∑
i

∑
j

Hi,j . (2.19)

The GLARE descriptions are collected in a global repository. Scan retrieval with multiple randomized
kd-trees yields the vehicles pose.
Haunert and Brenner [49] also pursue a related concept by determining the spatial relation of point

landmarks, i.e., pole-like objects like poles of traffic signs or tree trunks. Triangles are used to connect
the points creating a point pattern or fingerprint of a scene. The Delaunay triangulation-based finger-
print verification [76] is recreated as the map-based localization solution. Therefore, a set of observed
triangles is matched with a set of reference triangles extracted from a pre-built map.

Local Features: Localization solutions relying on local features, extract non-semantic elements with
prominent, locally spread characteristics, and use them for the positioning algorithms. There are local
features, which are extracted i) based on their characteristics in the attributes space or ii) based on
characteristics in the point cloud space. In this work, a distinction between those two types is made
in the context of LiDAR-Feature-based Localization.

Point Cloud Space: Local features detected in the point cloud space commonly are in the form of
grid cells. These localization methods directly quantize the point cloud information. The point cloud
data consists of spatial and reflectivity information. For instance, the work of Wolcott and Eustice [161]
relies on spatial data. They quantize thex and y information of the point cloud into a 2D grid. A grid cell

29



2.1. Relevant Literature 2. RelatedWork and Basics

is assigned a one-dimensional Gaussian mixture function modeling the z, i.e., the height, distribution.
In this process, a Gaussian mixture map is generated. The registration of an observation in a Gaussian
mixture map establishes the vehicle’s pose. The timing efficiency is enhanced with a multiresolution
branch-and-bound search.

Moreover, several works are processing the intensity information of the point cloud for the LiDAR-
Feature-based Localization. Levinson et al. [71] quantize the reflectivity data into a 2D x and y grid. In
this way, they generate the map using GraphSLAM. The actual localization based on the reflectivity
grid is carried out with a particle filter.

In a further development, Levinson and Thrun [70] also capture the reflectivity in a 2D x and y grid.
Here, in every grid cell not only the average infrared reflectivity of all points falling into that cell is saved
but also the variance of the cell’s reflectivity. This grid is called a probabilistic map and is generated
with the GraphSLAM algorithm. The localization is performed with a 2D histogram filter.

Another localization solution by Wiest et al. [159] focuses on reflectivity as input data. In their work,
an occupancy grid map based on the reflectivity values is used to detect objects with the Maximally
Stable Extremal Regions (MSER) descriptor by Matas et al. [83]. Again, a particle filter solves the local-
ization task.

Attribute Space: Local features recognized within the attributes space are based on descriptors or
simple versions of them, refer to Subsection 2.1.1. Commonly, simple descriptions such as curvature
values are applied here. This is the case in the work of Bosse andZlot [13]. They cluster all regions of the
point cloud, which have high curvature values. The curvature is calculated from the second derivative
of the LiDAR’s range image. Bosse and Zlot only keep regions with large positive curvature values
as points with large negative curvature often occur due to occlusion boundaries and are not stable.
Furthermore, they propose two additional methods of extracting segments from the point cloud. For
one thing, they segment the point cloud into regions of connected points whose Euclidean distance
is less than 3.5% of their average range. For another, they apply the mean shift algorithm to calculate
a locally weighted mean until it converges to a stable point. For each region extracted with each of
the three methods, the centroids or the stable points are saved as key points and used in a second
step, respectively. The next step is to determine a descriptive characterization given the key point
positions. Therefore, Bosse and Zlot choose five descriptors: i) Normal Orientation Histogram Grid
[80], ii) Orientation and Projection Histograms [12, 157], iii) Hough Transform Peaks [138], iv) gestalt
[13], and v) moments grid [13]. These descriptions are calculated on-board and offline as a map. A
map voting process is carried out to compute the vehicle pose.

In [18], Collier et al. calculate the Variable Dimensional Local Shape Descriptor (VD-LSD) for every
point in the LiDAR point cloud. The VD-LSD was developed by Taati et al. [129] and is based on the
PCA calculations. The covariance matrix is used for the eigenvalue decomposition to calculate an or-
thonormal frame and the three eigenvalues. This yields to a 22-dimensional description vector, in-
cluding seven positional, nine rotational, and six dispersion properties. The optimal subset of these
characteristics is extracted as in the work of Taati and Greenspan [128]. Then, this is used offline as in-
put for the k-means clustering algorithm extracting features for the bag of words algorithm. The bag
of words method provides a basis for the ASLAM algorithm built upon the FAB-MAP process, which
was initially introduced by Cummins and Newman [21]. The bag of words method solves the actual
localization solution.

In recent years, the description calculation with neural networks is gaining popularity [100, 101],
which also can be used for the non-semantic localization with local features [28, 81]. Luetal. [81] extract
local features based on a learned description that is semantically trained in a network. The architecture
of their method is visualized in Figure 2.13. They detect a fixed number of key points considering those
as key point candidates whose neighborhoods have enough points to build a dense subset of points.
From this subset, those points are extracted as key points with strong linear and scattering properties

30



2. RelatedWork and Basics 2.1. Relevant Literature

PointNet CNNs RNNs

on-board
point cloud

map
point cloud

optimal
pose

Figure 2.13: The architecture of the AI-based localization with local features by Lu et al.. It takes the
on-board, a pre-built map point cloud, and a predicted vehicle pose as inputs to learn
descriptions with PointNet and extract feature points (red), construct cost volumes over
the solution space, apply CNNs and RNNs to finally estimate the vehicle pose - based on
[81].

and are widely scattered in the environment. For each key point, a description is learned based on the
PointNet algorithm using semantically labeled, unordered point clouds developed by Qi et al. [100]
with a fixed number of 64 neighbors. The localization is also realized with AI with three steps. First, a
cost volume and 3D CNNs are constructed to infer and regularize the localization offset configurations
for each key point, respectively. Second, a consensus of all key point offsets is found by a probability
offset volume for every LiDAR point cloud. The consensus implies the total matching cost between
the on-board point cloud and the 3D map specified offset. Third, the sequential LiDAR point clouds
are represented as sequential processes with RNNs creating a temporal smoothness.
Dubé et al. [28] as well train a description for a preprocessed point cloud used for localization. Their

algorithm, called SegMap, consists of three steps. First, the voxelized point cloud is segmented into
regions within a specific radius around the vehicle with a incremental region growing algorithm. In
the next step, features are extracted from the point cloud with an AI-based descriptor. Therefore, the
point cloud’s voxelized segments are transformed into a LRF by applying a PCA. These transformed
segments are the input for an Autoencoder encoding the points into the 64-dimensional description
space and decoding it to the original voxels’ dimensions. Additionally, the inner 64-dimensional layer
is the input for classification of the segment realized with batch normalization. Third, candidate corre-
spondences are detected between the offline generated map segments based on dense point clouds
and the on-board segments with k-nearest neighbors in the feature space, which are verified with ge-
ometric consistency on the segments’ centroids. When a set of correspondences is found, a 6 Degree
of Freedom (DoF) transformation between the on-board point cloud and the dense map point cloud
is executed. This transformation is fed into GraphSLAM, generating a vehicle pose.

GeneralizedLandmarks: Localization based on generalized landmarks rely on abstractions of land-
marks, such as vertical lines, without using semantic class labels. In the work of Serafin et al. [119], such
localization is introduced. They detect geometric structures based on the assumption of a good fea-
ture. That means that the same feature must be identified in most of the point clouds in a set of consec-

31



2.1. Relevant Literature 2. RelatedWork and Basics

utive point clouds while the point clouds might be sparse and noisy. In detail, Serafin et al. establish
four criteria defining a good feature: i) sensitivity, ii) repeatability, iii) robustness, and iv) distance mea-
sure. Sensitivity means that there are no long periods where no feature is identified. Repeatability
means that the same feature is identified under multiple observation states. Robustness means that
the same feature is identified under various external conditions like weather or lighting. It should be
possible to define a distance measure comparing the characteristics of the feature. Therefore, they
identify abstract landmarks as such features, in this case, 3D vertical lines and 3D planes. These gener-
alized landmarks are fed into a GraphSLAM, estimating the vehicle pose.

The generalized landmarks of Li and Olson [73] are in the form of edges. First, the point cloud is
projected onto the x and y plane and quantized. In the next step, they apply the Kanade-Tomasi
detector [133] to detect corners in the 2D plane. They modify the approach to suppress corners that
occur based on occlusions.
Weiss et al. [158] don’t label the data with semantic information but detect abstract objects, i.e., verti-

cally elongated elements, in a map as well as in on-board sensor data. The map data is used as ground
truth, to match the on-board detections with it. The localization consists of five steps. First, the global
ego movements, i.e., the odometry in a global coordinate system, are calculated with a pose of a GNSS.
Given the global ego movements, the on-board detected generalized landmarks are transformed into
the vehicle’s local tangent plane. Conclusive, the transformed features are associated with the map
features with the Triangle Association algorithm computing and correcting the vehicle’s pose.

2.1.4. Conclusions from Relevant Literature for this Thesis
The literature review provides an overview of related work for the idea of a map-based localization
relying on non-semantic LiDAR features. In the review, similar works of the concept of LiDAR-Feature-
based Localization have been identified, the description of LiDAR points, non-semantic extraction of
areas of the point cloud, and related localization approaches have been examined. Several conclusions
can be drawn from the review, which serve as the basis for the development of a concept for the LiDAR-
Feature-based Localization. For the following chapters, which present the individual steps of the LiDAR-
Feature-based Localization, they should be kept in mind . The conclusions are explained hereinafter
with the references to the preceding subsections.

Descriptors in RealData: Many descriptors in the literature are mainly tested on synthetic data unlike
the real environment, like sampled Computer-Aided Design (CAD) models. These models create
a different testing environment than real data recorded with on-board LiDAR sensors or with
realistic synthetic data based on LiDAR models. This discrepancy has three facets.

1. The literature’s generated synthetic data compared to real data is not noisy. Besides, in
most literature, the sampling is done uniformly, and third, the so generated point clouds are
of high resolution. Noise, which is often present in real data, creates scattering within the
local neighborhood used for the description calculation. Noise impacts multiple descriptor
algorithms capturing the geometric characteristic, e.g., point density or curvature, as they
are very sensitive to noise. Thus, the distinctiveness decreases, i.e., a differentiation can
only be made between vastly different patterns, not patterns with small differences. For
example, in the presence of noise, the descriptions of a planar surface and a slightly curved
surface converge.

2. In many cases, the on-board LiDAR sensors’ resolution is not uniform resulting in non-equi-
distant points in the point cloud. Commonly, the horizontal resolution of LiDAR sensors
is much higher than the vertical resolution due to the vertically positioned diodes. Non-
uniform sampling raises the problem of choosing the local neighborhood’s best size, refer
to the following conclusion, and induces more sensitivity to the descriptor algorithm. In

32



2. RelatedWork and Basics 2.1. Relevant Literature

particular, this creates effects of the variances of the x, y, and z coordinates resulting in un-
stable Local Reference Frames (LRFs). It is also a drawback when dealing with quantized lo-
cal neighborhoods, i.e., voxelized or gridded neighborhoods. In this case, there arise empty
or shifted voxels or grid cells which are hard to deal with.

3. The high resolution of the literature’s synthetic data captures details that produce a large
variance in the description space, which rarely occurs in sparse on-board point clouds, only
if the sensor is close to the sampled objects which is seldom the case.

Consequently, the descriptor algorithms’ expressiveness, especially their practical relevance for
the localization task, needs to be evaluated on real data. Hence, in Subsection 3.2.1 and Sub-
section 3.3.3, thorough analyzes of multiple descriptors are carried out and discussed regarding
their practical relevance for localization on real data. The evaluation includes a viable definition
of metrics for the comparison between descriptions and criteria what specifies a good descrip-
tor. Also, several novel descriptors are developed in the course of this thesis, overcoming the
shortcomings found in these analyzes.

Local Neighborhood for Descriptors: For the description calculation, most of the examined liter-
ature choose either a fixed number of neighbors or a fixed radius for the whole point cloud.
When dealing with real data sampled by LiDAR sensors, the environment is often not captured
in homogeneous, uniformly distributed point clouds, as the point density depends on the radial
distance to the sensors’ origin. Points with a large radial distance have a poor sampling density
relative to the sensed surface compared to points with a small radial distance. In addition, often,
the sensors’ resolution is not uniform due to their design. On the one hand, a local neighbor-
hood around each query point of the point cloud built with a fixed number of neighbors does
not enclose the same volume throughout the point cloud. A fixed number of neighbors results
in differently sized neighborhood sections of the environment. Thus, the description character-
izes different parts of the environment, i.e., the description of the same object depends on the
object’s distance and sensor’s sampling rate. Characterizing different parts is not suitable for
localization, which should be repeatable under rotations and translations. On the other hand,
the same section of the environment is described with a local neighborhood of a fixed size. It
is hardly possible to choose a fixed size which is suitable for the whole on-board point cloud.
This is the case since the resolution of objects which are far away is much lower than of objects
which are close to the sensor. Thus, a fixed neighborhood size for the whole point cloud is lim-
iting when enclosing a sufficiently large local neighborhood while being able to depict details
of more densely sampled objects. I. e. a fixed neighborhood forces a weighing of being able
to depict details and enabling a sufficient data basis at large distances. This consideration be-
comes more clear through the example of pillar- and plane-like objects. While the curvature of
pillar-like objects with a small radius, e.g., posts of road signs, are hard to describe from far away
with few sampling points on it, plane-like objects are still describable from far away.

Concluding, the existing literature does not provide a viable solution on how to choose a local
neighborhood size that enables the descriptor to characteristically describe the object. There-
fore, Section 3.2 approaches these shortcomings and suggests a solution for a choice of the local
neighborhood size.

Features for Localization: Reviewing the literature, features are commonly selected based on their
significantly large curvature and surface variation values, as mentioned in the previous conclu-
sion. That means that points lying on planar surfaces and less curved parts are less likely selected.
However, points on planar surfaces provide information along their extensions, i.e., orthogonal
to their surface normals, which is helpful for the positioning of autonomous vehicles, especially
considering the vehicle’s heading. In particular, those features should be extracted which are

33



2.1. Relevant Literature 2. RelatedWork and Basics

most suitable and useful for the localization task. Most authors only take the feature’s robust-
ness into account when extracting features, see the previous conclusion. The geometric con-
stellation or the identifiability of the features within each scene also influence the localization’s
performance.

Hence, a definition of the suitability of a feature is a prerequisite for the localization task, while
no common definition seems to exist in the related work. Therefore, Section 4.3 defines a metric
to extract only those features from the point cloud which are most useful for the localization
task.

Robust Extraction of Features: Non-semantic features employed for localization need to be reliably
identified under several variations, including viewpoint changes, sensor noise, occlusion, clut-
ter, and point density variation. In the literature, often, features extracted from LiDAR sensors
are key points with large curvature and surface variation values. This process is a significant
downside for map-based localization since it is difficult to handle a repeatable matching of sin-
gle key points with map key points using sparse point clouds of LiDAR sensors. This is the case
because these single key points need not exist in the sparse point clouds and the closest point
may even be far away. Also, commonly, the related work extracts a fixed number of features
without considering scene-dependent characteristics. A fixed number may result in extracted
features that are unstable. For example, while an urban scene with many anthropogenic objects,
such as houses or road signs, contains many robust features, a rural scene only contains a few
robust features. Hence, a variable number of features in each scene needs to be detectable. Fur-
thermore, a consistent definition of a robust feature does not exist in the related work, which is a
prerequisite for the feature extraction task. While the relevant literature highlights the necessity
of a consistent definition, the feasibility and the usefulness vary a lot concerning the application.

In conclusion, the related work does not provide an extraction method for robust features in real-
world data in the context of localization. Therefore, Section 4.2 presents an algorithm to detect
various feature areas instead of points. It respects characteristics of each scene while applying a
definition of the robustness and usefulness of a feature.

Application of Features in Localization: Reviewing the related work, it has been shown that every
type of element used for localization, e.g., landmarks, point clouds, or non-semantic features,
must be integrated into a convenient localization algorithm. The non-semantic features should
be applied to a state-of-the-art localization solution enabling comparability and an evaluation of
the research question of this thesis. Especially concerning non-semantic elements, the match-
ing of the on-board detected features with map features is an essential task, which should be
performed with high accuracy. In the case of map-based positioning, it is often a problem of
keeping the map up-to-date. Therefore, a deterministic localization algorithm with the possibil-
ity of updating the map should be employed. Further, since SDSs integrate multiple sensors, an
algorithm with an integrated sensor fusion needs to be implemented.

Deriving from the literature review, the LiDAR-Feature-based Localization should be realized with
a state-of-the-art deterministic localization algorithm enabling a high localization accuracy, fuse
multiple sensor data, and a possibility to update the map. These properties are present in the
GraphSLAM algorithm, which therefore builds the basis for the self-localization. The integration
of the features into the method is presented in Section 5.3. Validation of the LiDAR-Feature-based
Localization in a real-world data set is outlined in Section 5.2.

Practical Relevance: The existing localization approaches relying on non-semantic LiDAR features
have not been tested concerning their practical relevance with regard to existing semantic meth-
ods. However, it is necessary to examine the scene coverage of the features compared to in-
frastructure elements mainly used for the semantic localization to evaluate the contribution of

34



2. RelatedWork and Basics 2.2. Mathematical Fundamentals

the non-semantic approach. The examination is especially important since the idea of the non-
semantic localization compared to the semantic localization is that it does not limit the range of
application to predefined domains due to the semantic knowledge. As the automatic detection
of robust and suitable non-semantic features without semantic a priori knowledge is expensive,
its benefit needs to be traded off.

Concluding, the practical relevance of non-semantic features for the localization task needs to
be evaluated. All of these experiments are performed and demonstrated in Section 5.3.

These conclusions serve as valuable input for the development of the concept of the LiDAR-Feature-
based Localization and the subsequent analyzes. Chapter 3 takes the existing descriptor algorithms as
the starting point to analyze them with realistic synthetic or real data. The applicability of state-of-the-
art descriptor algorithms in real-world data can be deduced from these analyzes. They also provide
information about possible improvements of state-of-the-art algorithms, like extensions and further
developments of the descriptor algorithms. It includes the proposition of a method for choosing a con-
venient local neighborhood size. In Chapter 4, the identified missing aspects of the feature extraction
are integrated into an algorithm to robustly extract features and select those who are most useful for
localization. Chapter 5 addresses the application of non-semantic features into an appropriate local-
ization solution factoring in the association of the on-board features to the map and the map updating
problems. Section 5.3 outlines the analyzes of the application focusing on the practical relevance of
the algorithms.

2.2. Mathematical Fundamentals

In this section, the theoretical basics and algorithms that are employed in the course of this work or
contribute to the understanding of this work are introduced.

2.2.1. Coordinate Systems

In this thesis, mainly three reference frames are applied: the Universal Transverse Mercator (UTM), the
Sensor Reference Frame (SRF), and the Vehicle Reference Frame (VRF). Figure 2.14 depicts all three
coordinate systems.

UTM The Universal Transverse Mercator (UTM) coordinate system is a Cartesian world reference
frame {xUTM,yUTM, zUTM} describing the vehicle’s pose in global coordinates. It divides the earth into
60 vertical zones, each of the zone capturing 6◦of longitude in width, and projects each zone to a
plane, for the basis of its Cartesian coordinates. Moreover, for each zone, a distinct secant transverse
Mercator projection is applied to receive the Cartesian cells, to approximate each zone with the best
fitting plane. A sample zone is depicted in Figure 2.14. The x-axis points east, the y-axis points north.
Therefore, the x-axis is called easting and the y-axis is called northing. The altitude is captured with
the ellipsoid height zUTM. Each of these values are specified in meters. Furthermore, a fourth dimen-
sion, measured clockwise from xUTM, serves to describe the vehicle’s orientation, also called heading
θUTM. Here, 0◦refers to pointing to the east. As the computation of relative distances in an ellipsoid
coordinate system, e.g., World Geodetic System of 1984 (WGS84), is a challenging task, the UTM coor-
dinate system is used throughout this thesis. Alternatively, a Local Tangential Plane (LTP) system, also
refereed to as East North Up (ENU) coordinate system, can be employed.

SRF according to ISO 8855 The coordinate system defined by the ISO 8855 standard [56] is applied
to capture the geometric information in a sensor’s point of view, mainly in case of the LiDAR sensor.
The Cartesian reference frame {xSRF,ySRF, zSRF} is illustrated in Figure 2.14. Its origin is centered at the

35



2.2. Mathematical Fundamentals 2. RelatedWork and Basics

xUTM (easting)

yUTM (northing)

zUTM

UTM zone

ISO 8855

vehicle reference point
θUTM

zSRF

ySRF
xSRF

βVRF

κVRF

zVRF

yVRF

xVRF

ψVRF

Figure 2.14: The three coordinate systems employed in this thesis: the global UTM system (red), the
local SRF (blue), and the local VRF (orange), the latter two according to ISO 8855.

sensor’s origin. The coordinate system’s orientation defined by the standard is defined by the xSRF-
axis, pointing in the specified direction of the sensor. In this thesis, this coordinate system is used to
describe the LiDAR point cloud in reference to the sensor.

VRF according to ISO 8855 The coordinate system defined by the ISO 8855 standard [56] is also ap-
plied to capture the position in a vehicle’s point of view. The Cartesian reference frame{xVRF,yVRF, zVRF}
is again presented in Figure 2.14. Its origin is centered at the projection of the rear axis’ center onto the
ground (yellow point in Figure 2.14). The coordinate system’s orientation defined by the standard is
defined by the xVRF-axis, parallel to the support surface pointing in the direction of the vehicle. The ro-
tation around any of the three axes describes the vehicle’s current dynamic state, where κVRF describes
the roll, βVRF the pitch andψVRF the yaw of the vehicle. This coordinate system is employed throughout
this thesis to depict measurements, like LiDAR point clouds or objects, in reference to the vehicle.

2.2.2. Principal Component Analysis

The Principal Component Analysis (PCA) is the method of determining the principal components in
data sets, i.e., the eigenvectors of the covariance matrix of the data, to transform the data into a new
basis. The axes of the new reference system are aligned along the principal components according to
the existing data structure. In this thesis, the PCA is used to transform an extract of the point cloud
with the center of a query point into a viewing-angle independent coordinate system [122]. In the
following, the steps of the PCA are explained in more detail, applying it to point cloud data sets as
used in this thesis.

Let P ⊂ R3 be a 3D point cloud with m points p1, . . . ,pm ∈ R3 with a query point pq ∈ R3 in the
center. In the first step, the query point is shifted to the origin of the point cloud by subtracting it from
each point pi:

p′
i = pi − pq ∀i = 1, . . . ,m. (2.20)

The covariance matrix C ∈ R3×3 is determined of the shifted points p′
i.

36



2. RelatedWork and Basics 2.2. Mathematical Fundamentals

By solving the characteristic equation, the eigenvalues   λ can be calculated from the covariance
matrix C :

det(λ1 −C) = 0. (2.21)

The eigenvectors ei result as solutions of the linear equation

(λi1 −C)ei = 0. (2.22)

The eigenvectors are normalized to length |ei| = 1. They are chosen so that the following applies:

λ1 ≥ λ2 ≥ λ3. (2.23)

The eigenvector corresponding to the greatest eigenvalue represents the the first principal com-
ponent of the point cloud. This is the direction with the greatest variance within the data. As the
eigenvalue decreases, the variance decreases in the direction of the associated eigenvector, so that
the eigenvector with the smallest eigenvalue corresponds to the direction with the lowest variance.

The eigenvectors, i.e., principal components, are used perform a change of basis into the new ref-
erence system on the data by multiplying E =

[
e1 e2 e3

]
with the initially shifted points p′

i and
reshifting the point cloud to its initial origin:

pitrans = (Eᵀ · p′ᵀ
i )ᵀ + pq,∀i = 1, . . . ,m. (2.24)

2.2.3. Iterative Closest Point

A fundamental concept when dealing with LiDAR point clouds is the Iterative Closest Point (ICP) algo-
rithm registering 3D point clouds developed by Besl and McKay [9], which is explained in this section.

The ICP aims to estimate the allocation of two point clouds by determining the translation vector
and the rotation matrix for the transformation from one point cloud to the other given two corre-
sponding point clouds, the target point cloud C1 = {p1,1, . . . ,p1,n} and the reference point cloud
C2 = {p2,1, . . . ,p2,n}.

To begin with, the target point cloud is initialized for the first iteration of the ICP algorithm:

0. The target point cloud is initialized with

C0
1 = {p0

1,1, . . . ,p
0
1,n} = {p1,1, . . . ,p1,n}. (2.25)

Then the ICP algorithm is carried out in four steps for every iteration step k:

1. For each point of C2 the closest point in Ck
1 is determined, i.e., minimizing ∥pk

1,j − p2,i∥2 for all
i, j, allowing ambiguous assignments.

2. The rotation matrix Rk and the translation vector tk is calculated minimizing the sum of the
squared error

ek =
1

n

n∑
i=1

∥Rkpk
1,i + tk − p2,i∥2. (2.26)

3. The point cloud Ck
1 is shifted and rotated corresponding to the transformation parameters of the

previous step
Ck+1
1 =

{
pk+1
1,i |pk+1

1,i = Rkpk
1,i + tk , pk

1,i ∈ Ck
1

}
. (2.27)

37



2.2. Mathematical Fundamentals 2. RelatedWork and Basics

4. The distance dk+1 between the two point clouds is calculated

dk+1 =

n∑
i=1

∥pk+1
1,i − p2,i∥2. (2.28)

The steps of the ICP are repeated, until dk+1 is smaller than a given threshold ε or k is higher than the
preset maximum number of iterations. Optionally, instead of considering the distance between every
point of the two point clouds, just the point pairs with 100−α% of the smallest distances can be taken
into account with a rejection parameter of α%.

A sufficient initial registration of both point clouds is necessary for an accurate ICP registration [9].
I. e. too large offsets or different orientations of the point cloud lead to imprecise registration results.
Additionally, the ICP algorithm assumes that all points of the target point cloud correspond to the
reference point cloud.

Overcoming these issues, a modified version of the ICP by Wilbers et al. [160] is applied in this
thesis. Here, the point cloud is rotated with every rotation matrix Rk for a specific number of angles in
a preset interval. The algorithm is carried out in three steps for every iteration step k to find the best
shift concerning each rotation:

1. The Euclidean distances ekj between every point of the rotated target point cloud C
′k+1
1 and

every point of the reference point cloud C2, i.e., ∀j = 1, . . . , n, are calculated

C
′k+1
1 =

{
p

′k+1
1,i |p

′k+1
1,i = Rkpk

1,i , p
k
1,i ∈ Ck

1

}
,

ekj =
[
∥p

′k+1
1,1 − p2,j∥2 . . . ∥p

′k+1
1,n − p2,j∥2

]ᵀ
.

(2.29)

2. Every point of the processed target point cloud C
′k+1
1 is shifted with each Euclidean distance

vector ekj , i.e., ∀j = 1, . . . , n for each vector whose norm is smaller than a preset range threshold

Ck+1
j =

{
pk+1
1,i |pk+1

1,i = p
′k+1
1,i + ekj , p

′k+1
1,i ∈ C

′k+1
1

}
. (2.30)

3. The best shift is calculated minimizing the mean distances dk+1
j between the points of each

shifted point cloud Ck+1
j , i.e., ∀j = 1, . . . , n, and the reference point cloud C2

dk+1
j =

1

n

n∑
i=1

∥pk+1
1,i − p2,j∥22

ekmin = argmin
ek
j

dk+1
j .

(2.31)

These steps are performed for every angle of the rotation matrix of a predefined interval. The point
cloud rotated with the angle and shifted with the translation vector belonging to the smallest mean
distance of Equation 2.31 over all iteration steps represents the registered point cloud. Optional, if a
distance of ∥pk+1

1,i − p2,j∥2 is greater than a preset threshold, a penalty factor can be multiplied with
the distance. In this way, a possible non-match between the point clouds, specified with the preset
threshold, is punished severely.

Additionally, this procedure can be extended to work with additional elements besides points, like
lines. In this case, the points are still used to find the best shift, but the additional elements are consid-

38



2. RelatedWork and Basics 2.2. Mathematical Fundamentals

Table 2.1: Parameters of the Daisy description calculation - based on [132].

parameter symbol explanation
radius r Distance from query pixel to outermost grid point
radius quantization q Number of standard deviations for smoothing of orientation maps (layers)
angle quantization t Number of considered pixel per layer
histogram quantization h Number of gradient orientations and thus of orientation maps
number of grid points s Total number of considered pixels depends on q and t
size of description d Total size of description depends on s and h

ered when calculating the mean distance dk+1
j in step 3, see Equation 2.31. For instance, an average

can be built of the Euclidean distance between points and the perpendicular distance between lines.
This algorithm finds the global solution within the predefined rotation interval but has a high com-

putational effort.

2.2.4. Ramer-Douglas-Peucker Algorithm

The Ramer-Douglas-Peucker algorithm by Douglas and Peucker, Ramer is a calculation specification
designed to decrease the number of points of a curve to an approximated curve with fewer points
[27, 103].

The algorithm recursively partitions the curve. Initially, the curve c ∈ R2+ consists of an ordered set
of n points p1, . . . ,pn ∈ R2: c = {p1, . . . ,pn} and a threshold ε > 0 is defined. As an approximation
of c, the distance from the first to the last point p1pn is considered. Both points are marked as to be
kept for the approximation. In order to check whether this approximation is sufficient, the point of
the remaining subset of inner points c \ {p1,pn}, i.e., the points that are not marked as to be kept,
is determined which is farthest from the line segment. Here, different distance metrics can be used,
e.g., the perpendicular distance or the shortest distance from a point to a line segment. If this point
is closer to the line segment than ε, all points, which are not marked as to be kept, can be dismissed.
Otherwise, the point is marked as to be kept and the algorithm recursively carries out the same steps
for the first point and the farthest point and subsequent with the farthest point and the last point. After
the recursion is finished the output curve is defined as the ordered set of all points which are marked
as to be kept.

During this thesis, the Ramer-Douglas-Peucker algorithm is used to abstract the shape of multiple
points of a point cloud in 2D to a curve.

2.2.5. Daisy Descriptor

A popular descriptor for image processing, i.e., processing two-dimensional, rectangular pixel grids,
the Daisy descriptor by Tola et al. [132], is presented here. Its computation is based on the greyscale
gradients of the image pixels using differently parameterized Gaussian smoothing kernels. Starting
with the gradient of the query pixel, further gradients of surrounding pixels are considered. The algo-
rithm is carried out in three steps.

First, the local neighborhood of the query point is built. Therefore, the number and positions of
the surrounding image values, whose greyscale gradients should be considered besides the query
pixel’s gradients, are determined. As the positions are formed using a radial grid, see Figure 2.15, the
considered neighbor pixels are also called grid points. The number and positions depend on preset
parameters, the maximal distance to the position r, the quantization parameter for the radius q and
for the angle t, which are outlined in Table 2.1. The total number of grid points s is determined from

39



2.2. Mathematical Fundamentals 2. RelatedWork and Basics

σ3

σ2

σ1

Figure 2.15: Structure of the considered pixels (crosses) with three layers or standard deviations q =
3 (each in the same color) and eight orientations t = 8 used for the Daisy description
calculation - based on [132].

the number of radial partitions q, called layers, and the number of azimuth partitions t:

s = q · t+ 1, (2.32)

with regard to the query point. The coordinates (xi,grid, yi,grid) of each grid point with i = 1, . . . , t are
calculated with the following formula:

xi,grid =
r

q
· cos

(
2 · i · π

t

)
yi,grid =

r

q
· sin

(
2 · i · π

t

)
.

(2.33)

The positions of all grid points also define the size of the differently parameterized Gaussian smoothing
kernels, see circles of Figure 2.15. The further away a grid point is, the larger the standard deviation of
the Gaussian kernel gets. In Figure 2.15, the positions of the grid points and the standard deviations
are visualized. They form the shape of a daisy, which is where the name of the descriptor origins.

Second, gradient images of the input images are calculated and smoothed with different Gaussian
kernels. Therefore, the input image is smoothed with standard deviation σ = 0.5. The smoothing of
images is performed by a convolution with a 2D Gaussian kernel with a specified standard deviation.
These gradient images Gi in h evenly distributed orientations are calculated based on the smoothed
input image I :

Gi =

(
cos(θi)

δI

δx
+ sin(θi)

δI

δy

)+

, (2.34)

for every angle θ1,...,h with (a)+ = max(a, 0). They are called orientation maps. The numerical differ-
entiation is performed with a convolution ofI with theh-times rotated vector [0.5, 0, 0.5]. The gradient
images are then smoothed with a standard deviation of σ ≈ 1.5, resulting in a total standard devia-
tion of σtot =

√
0.52 + 1.52 ≈ 1.6 regarding the smoothing of the input image. Next, these smoothed

40



2. RelatedWork and Basics 2.2. Mathematical Fundamentals

(xquery, yquery)

(ximg, yimg)
xgrid

(xnn, ynn)
ydiff

xdiff

ygrid

(a) Coordinates in image

(ua, va)
ydiff

xdiff

(ub, vb) (uc, vc)

(ud, vd)

(ximg, yimg)

(b) Coordinates in considered
pixels

Figure 2.16: Illustration of the coordinates of the considered pixels (green) for the calculation of the
Daisy descriptor - based on [132].

images are again smoothed with q different standard deviations σi:

σi =
r(i+ 1)

2q
∀i = 1, . . . , q. (2.35)

The standard deviations are proportional to the size of the considered neighborhood r, and there exist
q standard deviations corresponding to the radial quantization. These multiple convolutions with the
Gaussian kernel are divided into consecutive convolutions to reduce the computational effort. Thus,
the standard deviations σj of the consecutive convolutions need to be determined:

σj =
√
σ2
2 − σ2

1 , with σ2 > σ1. (2.36)

The size of each convolution kernel ki depends on the determined standard deviation:

ki =

{
max(⌊5σi⌋, 3) + 1, if mod (k, 2) = 0

max(⌊5σi⌋, 3), otherwise.
(2.37)

Consequently, each of the h orientation maps, i.e., gradient images, exist with q different smoothing
applications.

Third, the actual description of size d is determined based on the gradient images by examining
gradient values neighboring coordinates within the grid cells starting with the query pixel. Therefore,
the coordinate within the grid cells (xi,img, yi,img) is computed for every offset from the query pixel to
the considered pixel (xi,grid, yi,grid) with i = 1, . . . , t (cf. Figure 2.16a):

xi,img = xi,query + xi,grid

yi,img = yi,query + xi,grid,
(2.38)

41



2.2. Mathematical Fundamentals 2. RelatedWork and Basics

with (xi,query, yi,query) representing the coordinates of the query pixel. See 2.16a for the visualization
of the coordinates within the grid. As the determined coordinates (xi,img, yi,img) do not fall within the
center of a pixel, the differences (xi,diff, yi,diff) between the determined coordinates (xi,img, yi,img) and
the pixel around the determined pixel with coordinates (xi,nn, yi,nn), which is nearest to the center
pixel, are computed (cf. 2.16a):

xi,nn = ⌊xi,img⌋,
yi,nn = ⌊yi,img⌋,
xi,diff = xi,img − xi,nn,

yi,diff = yi,img − yi,nn.

(2.39)

Therefore, the gradient values of the pixels surrounding the determined positions, as in Equation 2.38,
are considered. The column vectors hi,a, hi,b, hi,c, and hi,d specify the gradients of the pixels
(ui,a, vi,a), (ui,b, vi,b), (ui,c, vi,c), and (ui,d, vi,d) for h orientations. With the weights of the distances
xi,diff and yi,diff the gradient vector hi is calculated. This gradient vector represents the vector for the
originally determined coordinates (xi,img, yi,img) (cf. 2.16b):

hi = (1− yi,diff) · (xdiff · hi,c + (1− xi,diff) · hi,a) + yi,diff · (xi,diff · hi,d + (1− xi,diff) · hi,b). (2.40)

The resulting vector hi of length h builds one row of the final description, but the gradients are based
on the differently smoothed gradient images (cf. Equation 2.35). The calculations of Equation 2.40 are
carried out for each of the s = q ·t+1 grid points resulting in s description rows and thus a description
matrix of size s×h. This yields, refer to Figure 2.15, to the Daisy descriptor matrixD for the query point
of:

D =
(
ĥᵀ
σ1

ĥᵀ
σ1
(l1(r1)) . . . ĥᵀ

σ1
(lt(r1)) . . . ĥᵀ

σq
(l1(rq)) . . . ĥᵀ

σq
(lt(rq))

)ᵀ
, (2.41)

with q as the number of circular layers, ri the corresponding radii, and σi the corresponding standard
deviation for the Gaussian kernels, as in Figure 2.15. The position on the layer is specified by lj(ri)with
j = 1, . . . , t as angle quantization number. Every row of the description hᵀ

σ1
is normalized with the

vectors norm for every pixel to reduce occlusion effects, which is denoted with (̂·).

2.2.6. Density-based Spatial Clustering of Applications with Noise

For the extraction of features, point cloud clustering methods are often applied. This is also the case in
this thesis. Therefore, first, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm by Ester et al. [29] is outlined hereafter.

The DBSCAN is a density-based clustering approach grouping points together which are close to
each other while detecting outliers. This approach underlies the assumption that the point density
of a cluster is greater than outside the cluster. Ester et al. use the number of points within the neigh-
borhood with the preset radius ε to define the density of a point pi, called ε-environment. At least a
preset thresholdm points have to be within the neighborhood to build a cluster.

Ester et al. define three types of point categories: i) core point, ii) border point, iii) outlier. A core
point is defined as a point whose number of points within the ε-environment amounts at least m. A
border point is no core point but lies within the ε-environment of some core point. An outlier is neither
a core point nor a border point.

The idea of the DBSCAN is that two core points whose distance is at most ε are assigned the same
cluster, border points are assigned the cluster of the correspondent core point, and outliers are ne-
glected. The algorithm consists of five steps:

42



2. RelatedWork and Basics 2.2. Mathematical Fundamentals

ε

Figure 2.17: The three point categories used in the DBSCAN algorithm with m = 3 including core
points (red), border points (green), and noise (blue) with their ε-environment (circles) -
based on [29].

1. The data points are identified as core points, border points, or outliers.

2. All outliers are subtracted from the data set.

3. An edge connects all core points lying within an ε-environment.

4. A set of connected core points build a separate cluster.

5. The border points are assigned the cluster with the adjacent core point.

The DBSCAN successfully filters noise and can group clusters of any form and size, but fails in the
case of clusters with different densities.

2.2.7. k-Medoids

Another clustering method by Kaufman and Rousseeuw [59], called k-medoids, is described in this
subsection. The k-medoids algorithm partitions a data set into k clusters. Each cluster is represented
by one instance, i.e., data point, of the cluster. This data point has a minimal average distance to all
other data points within the cluster. It is called a medoid. The algorithm is performed in three steps,
which are visualized in Figure 2.18:

1. k cluster representatives, i.e., medoids, M = {m1, . . . ,mk} are selected randomly from the
data set C = {p1, . . . ,pn}.

2. Assign every data point to the nearest medoid using a distance metric. This yields the subsets
of data points associated to mi with i = 1, . . . , k, i.e., clusters Ci.

3. Let dist(·, ·) be a distance function between two data points. A medoid mi is replaced by an-
other point p ∈ Ci of cluster Ci if∑

p′∈Ci

dist(p′,p) <
∑
p′∈Ci

dist(p′,mi)∀Ci ∀p ∈ Ci\{mi}. (2.42)

43



2.2. Mathematical Fundamentals 2. RelatedWork and Basics

x1

x2

x1

x2

x1

x2

m1

m2

m3

m1

m2

m3 m1,new

m2,new

m3,new

i) selection of cluster medoids ii) association to cluster medoids iii) update cluster medoids

Figure 2.18: The three steps of the k-medoid algorithm. Here, three clusters are grouped with medoid
mi updated at step iii) as mi,new - based on [59].

The result of this original algorithm depends heavily on the initial selection of the medoids. There-
fore, some improvements have been made [59, 89].

2.2.8. Graph-based Simultaneous Localization andMapping

In this subsection, the details of the Graph-based Simultaneous Localization And Mapping (SLAM) are
presented [40, 131]. The problem of SLAM is to solve the positioning of a robot or vehicle and map-
ping at the same time. Measurements of different on-board sensors are the only information of the
environment, which are afflicted with errors and inaccuracies. The handling of these is the main issue
of SLAM [131].

In the literature, a differentiation is made between two definitions of the SLAM problem [40, 131].
The first definition is called full SLAM. Solving the full SLAM problem includes estimating the probability
of the robot’s total trajectory and the map given all measurements and the initial position. The second
definition is called online SLAM. Here, the problem to be solved consists of the estimation of the robot’s
pose at one timestamp given the current measurements and the map. In addition to the map, only
the current pose and the associated measurements are relevant here. In recent years, multiple meth-
ods were developed to solve the SLAM problem. The best-known methods are the Extended Kalman
Filter (EKF), the particle filter, and the graph-based approach [131]. The filter-based approaches only
solve the online SLAM problem, while the smoothing-based approach enables the full SLAM solution.
Therefore, in this thesis, the smoothing-based approach is applied. The intuitive way to formulate
the smoothing-based approach is the graph-based method, which is employed in this thesis and pre-
sented in this section.

Problem Formulation: The problem of SLAM is to estimate the state vector of a robot x =
(x1, . . . ,xm)ᵀ, i.e., the robot’s pose and its on-board observations, given their measurements z [40].
Let zi be a measurement of the i-th state xi and hi(x) be a (nonlinear) function that predicts the
measurement depending on the state vector x. The problem is formulated as a Maximum A Poste-
riori (MAP) approach finding the most probable state x∗ that maximizes the probability under the
condition of all measurement states z, i.e., which explains the measurements the best:

x∗ = argmax
x

p(x|z), (2.43)

where p(x|z) is called posterior distribution.

44



2. RelatedWork and Basics 2.2. Mathematical Fundamentals

The state vector x∗ is specified as the state with the smallest global error. Therefore, the error func-
tion is defined as the sum of the squared error terms of the individual factors ei(x, zi), which are
defined as the difference between the actual and the predicted measurements:

e(hi(x), zi) = hi(x)− zi. (2.44)

In case of additional information like probability distributions of measurement uncertainties, the indi-
vidual error terms of the squared error terms can be weighted with the information matrix Ωi of the
i-th measurement:

ei(x, zi) = e(hi(x), zi)
ᵀΩie(hi(x), zi). (2.45)

Often, Ωi is chosen as the inverse of the measurement’s covariance matrix Ci.
Deriving the numerical problem: In the following, the conversion of the MAP approach to the

minimization of the weighted squared error terms is depicted. The derivation is based on the work of
the working group at Volkswagen and Grisetti et al., Thrun and Leonard [40, 131]. Using Bayes rule, the
problem Equation 2.43 is transformed into

x∗ = argmax
x

p(z|x)p(x), (2.46)

wherep(z|x) is named likelihood distribution andp(x) is named prior distribution. Three assumptions
about these distributions are made [40]:

Assumption 2.1 (Independent Measurements and Terms). The measurement and prior terms are in-
dependent and identically distributed.

As a result, the individual probabilities can be multiplied to form the overall probability:

p(x) =
∏
j

p(xj)

p(z|x) =
∏
i

p(zi|x).
(2.47)

Assumption 2.2 (Gaussian Distributions). The likelihood distributions are Gaussian.

The likelihood distributions are defined as:

p(zi|x) = N (zi|hi(x),Ci) ∼ exp
(
−1

2
(hi(x)− zi)

ᵀC−1
i (hi(x)− zi)

)
= exp

(
−1

2
e(hi(x), zi)

ᵀΩie(hi(x), zi)

)
.

(2.48)

Assumption 2.3 (Gaussian or Uniform Distributions). The prior distributions are either Gaussian or
uniform.

The prior distributions are defined as either:

p(xj) = N (xj |µj ,Cj) ∼ exp
(
−1

2
(xj − µj)

ᵀC−1
j (xj − µj)

)
(2.49)

or
p(xj) = ε, (2.50)

with error function e(xj) with consistent notation according to Equation 2.44.

45



2.2. Mathematical Fundamentals 2. RelatedWork and Basics

The option between a uniform and a Gaussian prior for each considered state enables to apply prior
knowledge in the practical usage whenever it exists. For the following derivation, Gaussian prior distri-
butions are assumed. Otherwise, if uniform distributions are assumed, the according terms cancel out
such that the following derivation still is correct. Under the assumptions, Equation 2.43 is transformed
into:

x∗ = argmax
x

p(x|z)

(2.46)
= argmax

x
(p(z|x)p(x))

(2.47)
= argmax

x

∏
i

p(zi|x)
∏
j

p(xj)


= argmin

x

− log

∏
i

p(zi|x)
∏
j

p(xj)


= argmin

x

−

∑
i

log(p(zi|x)) +
∑
j

log(p(xj))


= argmin

x

∑
i

e(hi(x), zi)
ᵀΩie(hi(x), zi) +

∑
j

e(xj)
ᵀΩje(xj)

 .

(2.51)

Representing the error vector ek with k = {i, j} as the results of either e(hi(x), zi) or e(xj) the MAP
approach of Equation 2.43 can be written as:

x∗ = argmin
x

∑
k

eᵀkΩkek. (2.52)

Often, the error vector is called global error function F (x):

x∗ = argmin
x

F (x). (2.53)

Concluding, it can be shown, that under the Assumptions 2.1, 2.2, and 2.3 finding the most probable
state x∗ is equivalent to finding the state x∗ which minimizes the sum of the weighted squared error
terms.

Problem Solution: For the solution of the SLAM problem of Equation 2.53, the global minimum of
the sum of the weighted squared error terms must be found. As there is often no closed-form solution
to this non-linear minimization problem, in the following a numerical iterative method, the Gauss-
Newton method, is presented.

The Gauss-Newton method approximates the solution of Equation 2.53 in an iterative process. It
consists of five steps.

First, the initial state x̆ is estimated. In the very first iteration, for instance, this could be a GNSS pose
or a preceding pose predicted to the current time with odometry data.

The second step deals with the linearization of the error terms as the non-linear components of the
global error function are the individual error terms. This is realized by the approximation to a first-order
Taylor series expansion about x̆: F (x̆ + ∆x) ≈ Flin(x̆,∆x). It is performed by analyzing the global

46



2. RelatedWork and Basics 2.2. Mathematical Fundamentals

error function at the initial state x̆ with an added update vector ∆x:

F (x̆+∆x) =
∑
i

e(x̆+∆x, zi)
ᵀΩie(x̆+∆x, zi) (2.54)

The linearization of e(x̆+∆x, zi) with the Taylor series expansion yields:

e(x̆+∆x, zi) ≈ e(x̆) + J̆i∆x, (2.55)

with Jacobian matrix J̆i = ∂e(x,zi)
∂x

∣∣∣∣
x=x̆

assuming the update vector is small. Substituting Equa-

tion 2.55 in Equation 2.54 results in the linearized global error function Flin(∆x):

F (x̆+∆x) ≈ Flin(∆x) =
∑
i

(e(x̆) + J̆i∆x)ᵀΩi(e(x̆) + J̆i∆x)

=
∑
i

e(x̆)ᵀΩie(x̆)︸ ︷︷ ︸
=:ci

+2 e(x̆)ᵀΩiJ̆i︸ ︷︷ ︸
=:bᵀ

i

∆x+∆xᵀ J̆ᵀ
i ΩiJ̆i︸ ︷︷ ︸
=:Hi

∆x

=
∑
i

ci︸ ︷︷ ︸
=:c

+2
∑
i

bᵀi︸ ︷︷ ︸
=:bᵀ

∆x+∆xᵀ∑
i

Hi︸ ︷︷ ︸
=:H

∆x

= c+ 2bᵀ∆x+∆xᵀH∆x.

(2.56)

In the third step, the linearized function is differentiated with respect to the update vector ∆x:
∂Flin(∆x)

∂∆x . Therefore, the derivative of the global error function is determined:

∂F (x̆+∆x)

∂∆x

(2.56)

≈ ∂Flin(∆x)

∂∆x
= 2b+ (H +Hᵀ)∆x = 2b+ 2H∆x. (2.57)

Fourth, the root of the derivative is determined to find optimal update vector ∆x∗: ∆x∗ =
argmin∆x Flin(∆x). For this purpose, the minimum value of the global error function is computed:

∆x∗ = argmin
∆x

Flin(x̆,∆x). (2.58)

The minimum is calculated by setting the previously determined derivative to zero:

2b+ 2H∆x = 0

⇔ H∆x = −b.
(2.59)

The second derivative of the linearized global error function does not depend on ∆x:

∂2Flin(x̆,∆x)

∂(∆x)2
= 2H. (2.60)

Consequently, ∆x is a minimum of the linearized global error function because H is symmetric and
positive semi-definite. Therefore, by solving the linear equation 2.59 by multiplying the inverse of H ,
the optimal update vector is obtained. In practice, the matrix inversion is a computationally expensive
operation. The solution of the linear equation can be accomplished by applying the Moore-Penrose-
inverse [94], a Cholesky decomposition, QR factorization, or other methods.

47



2.2. Mathematical Fundamentals 2. RelatedWork and Basics

zm
0

xp
2

xs
0

xs
1

za
0zs

2 zs
3

zs
1 zs

4

zo
0 zo

1 zo
2xp

1xp
0

zs
0

xp
3

Figure 2.19: Representation of a sample factor graph with factors as square nodes and variables as cir-
cular nodes. The factor graph consists of pose variables xp

i (red), support point variables
xs
i (green), odometry factors zo

i (black), landmark factors zs
i (green), map factors zm

i (or-
ange), and absolute pose factors za

i (blue). The optimization of this graph estimates the
optimal states.

The last step is the update of the state estimation x̆ as the sum of the update vector ∆x and the
current state estimation x̆:

x̆∗ = x̆+∆x∗. (2.61)

This yields the initial state for the next iteration step.
These five steps are performed until either ∆x is smaller than a preset threshold or a maximum

number of iterations is reached.
Factor Graph Representation: The probabilistic SLAM problem of Equation 2.43 can be repre-

sented with factor graphs [65, 160]. A factor graph is a bipartite undirected graph established by Kschis-
chang et al. [66]. It serves as a visualization to break down probabilistic problems like SLAM, consisting
of a product of functions with many variables. In these problems, the joint probability distribution is
divided into multiple factors. These factors depend just on a subset of the random variables, which
creates a clear decomposition of the complex probabilistic problem. The dependencies between the
random variables are the measurements. The goal variables x are represented as nodes. The measure-
ments z are represented as factors constraining the nodes.

Figure 2.19 shows a sample factor graph with the desired variables xi, which are often illustrated
as circular nodes. The variables include the robot’s poses xp

0, . . . ,x
p
3 and the poses of the landmarks

xs
0 and xs

1. Landmarks are distinctive elements in the environment, often called landmarks, which are
used to estimate the robot’s pose by detecting those characteristic objects on-board and matching
them with the map landmarks. All variables together form the state vectorx. As the solution approach
of the SLAM problem optimizes the state vector, the poses of the landmarks are optimized as well as
the robot’s pose.

The measurements zi, i.e., the factors, constrain the random variables which are connected to them
by edges and square nodes in the factor graph. In Figure 2.19, multiple types of factors are shown. The
absolute measurement za

0 , which could be a Global Positioning System (GPS) pose, is only connected
with one node constraining just the vehicle pose xp

3 . That means that the error between za
0 and xp

3

should be minimal. It is therefore called unary factor. The absolute map factor zm
0 is also connected

to only one node, the state vector’s landmark pose xs
0. This map factor is determined by matching

48



2. RelatedWork and Basics 2.2. Mathematical Fundamentals

an on-board detected landmark with a map landmark. The map landmark is generated offline as a
detected landmark using data capturing the environment with high precision. The corresponding
pose of the map landmark forms the map factor. It is therefore only relevant for the state vector’s
matched, corresponding on-board landmark, here xs

0. In this case, the difference between zm
0 and xs

0

is represented by the constraint.
The odometry measurements zo

i and the on-board measurements of the landmarks zs
i are relative

measurements. They connect two nodes and thus are called binary factors. Odometry measurements,
capturing the relative movement of the vehicle, constrain two consecutive robot poses. I. e. the error
between the odometry and the difference between two consecutive robot poses should be minimized.
Relative landmark measurements link robot poses with the landmark pose of the state vector. A land-
mark can be measured on-board from multiple robot poses. E. g. the state vector’s landmark xs

0 is
connected to the poses xp

0 and xp
1 . The difference between the measured landmark pose and the

difference between the state vector’s landmark pose and the robot’s pose should be minimized.
The main problem of the Graph-based SLAM is the association of data. Here, one has to identify

relations between landmarks measured at different times with respect to the uncertainties of the mea-
surements. This is done to determine which landmarks, extracted on-board at the current time step,
can be matched with landmarks, extracted on-board at former time steps. Additionally, the measured
landmarks need to be associated with the map landmarks. It is decided which of the associated on-
board landmarks, the output of the previously described step, correspond to which map landmark.

The computation time depends on the number of elements of the state vector while optimizing the
factor graph for solving the SLAM problem. Applying the factor graph in real-time, one new pose with
corresponding measurements is added every time step. Simultaneously, the number of elements of
the state vector increases which increases the computational time of optimizing the graph and the
complexity of the problem. Therefore, the sliding window approach is used to restrict the computa-
tional time. It limits the number of poses in the factor graph to a maximal threshold. If that threshold
is reached, the oldest pose with its measurements is removed from the factor graph [160].

49





Part II.

Describing and Selecting Features

51





3. LiDAR-Based Descriptors
The review of the related work in Section 2.1 illustrates the relevance of LiDAR-based descriptors. Their
definition is the main task of the LiDAR-Feature-based Localization’s first step. Several research works
already introduced methods to describe local neighborhoods within the point cloud expressively. Of-
ten, the focus is not set on real driving scenarios. Consequently, the problem of the right choice of
the local neighborhood size is neglected. This chapter focuses on the research topics identified in the
literature review of Subsection 2.1.4. This chapter’s methodology, including the assessment criteria
of descriptors and the derived research questions, is presented in Section 3.1. Based on these criteria,
several existing descriptors, geometry- and intensity-based descriptors, are evaluated and extended in
real driving scenarios, refer to Section 3.2 and Section 3.3. Additionally, novel descriptors overcoming
the issues of the existing methods are presented in Section 3.3.

3.1. Terms andMethodology

The following section presents the methodology of the descriptors’ evaluation and further develop-
ments. Therefore, the criteria for defining an expressive descriptor are established. The research ques-
tions derived from the literature review are introduced, which are answered later in this chapter. Ref-
erences to related publications resulted from this work are given where they are applicable.

3.1.1. Defining the Description Computation
In this subsection, the terms of the first step of the LiDAR-Feature-based Localization are defined. The
first step is to characterize patterns within a local neighborhood around individual points in the LiDAR
sensor’s point cloud. A description defines these patterns.

Therefore, the local neighborhood must be defined.

Definition 3.1 (Local Neighborhood). LetP = (Px,y,z,Pi) ⊂ R3 × [0, 1] be a measured point cloud
with 3D and intensity information and letm : R3 × R3 → R≥0 be somemetric. Then, the local neighbor-
hoodNP,r(p

x,y,z
j )with radius r ∈ R>0 around the j-th point p

x,y,z
j ∈ R3 is defined by

NP,r(p
x,y,z
j ) = {(px,y,z,pi) ∈ P = (Px,y,z,Pi) |m(px,y,z,px,y,z

j ) ≤ r}.

The term NP,r replaces the term NP,r(p
x,y,z
j ) in cases where no risk of confusion exists. A local

neighborhood is called spherical when the metricm induced by the l2-norm is used.
The definition of the local neighborhood enables the definition of the descriptor function.

Definition 3.2 (Descriptor Function). Let r ∈ R>0 be fixed. The descriptor function, or short descriptor,
is a function

D : {NP,r(p
x,y,z
j ) | P ⊂ R3 × [0, 1], px,y,z

j ∈ R3 } → Rm

mapping a local neighborhoodNP,r(p
x,y,z
j ) around the j-th point px,y,z

j ∈ R3 to an element inRm.

The descriptor function aims to compress the information contained in a local neighborhood with-
out losing relevant information.

After this definition, a description can be defined.

53



3.1. Terms andMethodology 3. LiDAR-Based Descriptors

Definition3.3 (Description). Let r ∈ R>0 befixedand letD : {NP,r(p
x,y,z
j ) | P ⊂ R3×[0, 1], px,y,z

j ∈
R3 } → Rm be a descriptor function mapping NP,r(p

x,y,z
j ) around the j-th point px,y,z

j ∈ R3 to an
element inRm. Then, the descriptiond ∈ Rm of point px,y,z

j ∈ R3 is defined by

D(NP,r(p
x,y,z
j )) = d.

For a local neighborhoodNP,r(p
x,y,z
j ) the termD(NP,r(p

x,y,z
j )) is called the description ofpj . The

set of descriptions of all points in a point cloud P is denoted with DP .
Thus, the goal of the first step of the LiDAR-Feature-based Localization can be formulated as follows.

Problem Formulation:
Let P = (Px,y,z,Pi) ⊂ R3× [0, 1] be a measured point cloud
with 3D and intensity information. The goal is, for a given de-
scriptor D, for each point p ∈ P , and for neighborhood radii
r ∈ R>0 , to determine descriptions DP such that the com-
puted descriptions are good.

3.1.2. Procedure of Descriptor Evaluations and Extensions

The procedure of the descriptor analyzes consists of two steps: the selection and the evaluation of
descriptors. It is based on the conclusions drawn from the relevant literature, see Subsection 2.1.4.

Selection of Descriptors: Several descriptors are selected from the literature. For this purpose, the
division of the key descriptor types in Subsection 2.1.1 is taken into account, refer to Figure 2.1. While
some categories are omitted, from each of the remaining categories, some descriptors are picked.

This thesis concentrates on handcrafted descriptors to narrow down the topics that are studied in
this thesis, refer to Subsection 2.1.1. In this work, a model-based as opposed to an AI-based approach
is pursued. On the one hand, model-based processes are more comprehensible than AI-based ones
and their verification and validation has not yet been resolved for AI-based procedures. On the other
hand, the motivation of the work is based, among other things, on the fact that localization should not
only be possible in predefined scenarios, but can be generalized. This is in contradiction to available
training data. This effect becomes problematic as soon as the domain of the training data is left in the
practical application of neural networks. Since the geometric properties of the point clouds can be
described conventionally, a model-based method is used in this work. Therefore, AI-based descriptors
are not included in the analyzes of this chapter. Nevertheless, they were shortly examined during the
time of this thesis. In appendix A, an outlook of these examinations is depicted. The results show that
the trained networks do not achieve generalization of the training data. This is not an indication that
AI-based approaches are fundamentally unsuitable for use. However, it doesn’t seem easy to apply.

Also, the concept of detector-based descriptors are neglected in this thesis. Detector-based meth-
ods only describe single salient points, which are extracted beforehand based on simple characteris-
tics. This preselection is not based upon characteristics for localization, which is advisable applying the
descriptors in this use case. For example, those points of a LiDAR point cloud are often kept for the de-
scribing step which have high depth changes in their neighborhood. Nevertheless, points with small
depth changes, like walls, provide additional information for localization, i.e., knowledge about the lat-
eral position. Additionally, as described in Subsection 2.1.4, the use of single key points in localization
is not suitable. A repeatable matching of single key points of sparse point clouds is hardly possible.
Consequently, in this thesis, the concept of detector-based algorithms is disregarded. However, the

54



3. LiDAR-Based Descriptors 3.1. Terms andMethodology

principle of the describing part of the detector-based MeshHOG descriptor is applied to develop a
novel descriptor [167].

For those reasons, this thesis considers mostly descriptor-based methods. Descriptor-based meth-
ods are divided into two groups, unorganized structures and organized structures. Unorganized de-
scriptors describe local neighborhoods of point clouds in a straightforward way without preprocessing
steps, which would make the algorithm more robust. This approach is easy to implement but is very
sensitive to noise, occlusion, and clutter. Therefore, their application to real-world data is not desirable
and not considered part of this thesis. Nevertheless, some experiments on unorganized descriptors
can be seen in [54], which was published during the work for this thesis.

Of the group of organized structures, all subgroups are considered. Two descriptors are selected
from the geometric descriptors subgroup. The popular FPFH descriptor is chosen, an improved al-
gorithm of the PFH [108–110], refer to Subsection 2.1.1. As a second popular geometric descriptor,
the SHOT descriptor is chosen [134], refer to also Subsection 2.1.1. Further, a spatial descriptor, the
RoPS by Guo et al., is considered in this thesis [43, 45]. Descriptors from both categories process the x,
y, and z data of the LiDAR point cloud, and hence, their analyzes as geometry-based descriptors are
summarized in Section 3.2.

Besides, intensity-based descriptors are investigated. The potential of intensity-based descriptors
has not been analyzed completely yet. Two of a few approaches have been summarized in [20, 42] by
Cop et al. and Guo et al., refer to Subsection 2.1.1. These descriptors, called DELIGHT and ISHOT, are
examined in theory.

In total, five descriptors are chosen from the literature, the FPFH, the SHOT, the RoPS, the DELIGHT,
and the ISHOT descriptor.

Evaluation of Descriptors: The selected descriptors should be evaluated for their application in
the LiDAR-Feature-based Localization. Therefore, several criteria must be specified, defining a good
descriptor applicable in the context of this thesis.

Definition 3.4 (Good Descriptor). A descriptorD is called good if there is a functionR(P,p) = r com-
puting a radius and a descriptor-specificmetricmd : Rm × Rm → R≥0 such that the following conditions
are fulfilled:

(i) LetNP,r(p
x,y,z
j ) be a local neighborhood, thenD(NP,r(p

x,y,z
j )) has to describe characteristic rela-

tions between sampling points enclosed by the local neighborhood in the context of localization.

(ii) LetNP,r(p
x,y,z
j )andNP′,r(p

′x,y,z
j )be local neighborhoods enclosing points of a similar object and

letmd : Rm × Rm → R≥0 be somemetric, thenmd(D(NP,r(p
x,y,z
j )), D(NP′,r(p

′x,y,z
j ))) ≈ 0.

(iii) LetNP,r(p
x,y,z
j ) andNP′,r(p

′x,y,z
j ) be local neighborhoods enclosing points of dissimilar objects

and letmd : Rm × Rm → R≥0 be somemetric, thenmd(D(NP,r(p
x,y,z
j )), D(NP′,r(p

′x,y,z
j ))) ≫

0.

(iv) LetNP,r(p
x,y,z
j )andNP′,r(p

x,y,z
j )be local neighborhoods around the samepointpx,y,z

j enclosing
points of the same object with point cloudsP andP ′ of different densities and letmd : Rm×Rm →
R≥0 be somemetric, thenmd(D(NP,r(p

x,y,z
j )), D(NP′,r(p

x,y,z
j ))) ≈ 0.

(v) LetNP,r(p
x,y,z
j )andNP′,r(p

x,y,z
j )be local neighborhoods around the samepointpx,y,z

j enclosing
points of the same object with point cloudsP andP ′ of different viewing angles and letmd : Rm ×
Rm → R≥0 be somemetric, thenmd(D(NP,r(p

x,y,z
j )), D(NP′,r(p

x,y,z
j ))) ≈ 0.

(vi) LetNP,r(p
x,y,z
j )andNP′,r(p

x,y,z
j )be local neighborhoods around the samepointpx,y,z

j enclosing
points of the same object sampled from different distances with point cloudsP andP ′ and letmd :
Rm × Rm → R≥0 be somemetric, thenmd(D(NP,r(p

x,y,z
j )), D(NP′,r(p

x,y,z
j ))) ≈ 0.

55



3.1. Terms andMethodology 3. LiDAR-Based Descriptors

camera

PC

LiDAR
antenna

ref. odo.

camera

cameracamera
LiDAR

LiDARLiDAR LiDAR
antenna

PC PC

antenna

odometry

(a) Architecture of test vehicle (b) Test vehicle [154]

Figure 3.1: Sensor setup, architecture, and image of the test vehicles with five LiDAR sensors (red), four
cameras (blue), a low-cost GPS (pink antenna), a localization reference system with two an-
tennas (orange), three PCs (green), and an odometry module (gray).

This definition, including the six criteria, is explained in more detail in the following. The first Re-
quirement (i) is strongly linked to the local neighborhood radius r. If the radius is too small, the local
neighborhood does not contain information about the environment’s 3D structure. If the radius is
too large, the local neighborhood encloses multiple objects. Thus, descriptions often capture an am-
biguous superposition of these characteristics. In both cases, a descriptor function may not describe
expressive characteristic relations suitable for the localization process. Hence, the local neighborhood
choice, i.e., the radius r, is an essential task. Moreover, descriptions of points on similar physical ob-
jects should be approximately the same, refer to criterion (ii), and the descriptor function should be
insensitive to moderate changes of the point density of the point cloud, referring to criterion (iv). This
means that a point’s description must be similar despite whether sparse or dense point clouds are be-
ing used. This is, for example, important because a descriptor function should be able to be applied
independently of the sensor type. However, the descriptions of points on dissimilar objects should
be very dissimilar, refer to Requirement (iii). The last two requirements (v) and (vi) state that a point’s
description should be both insensitive to moderate changes of the sensor’s viewing angle and of the
distance between the sensor and the point. For example, the description of a point on a wall should be
approximately the same regardless of the vehicle’s distance to the wall and of the vehicle’s orientation.

These criteria are used in this second step to evaluate the selected descriptors. For each of the crite-
ria, theoretical or practical experiments are designed and performed in the following. The experiments’
results are used to evaluate the selected descriptors. Based on these results, some descriptors are ex-
tended and novel algorithms are developed to overcome the issues of state-of-the-art descriptors,
which are detected in the evaluation.

Data Sets: For the evaluation, several data set types of LiDAR point clouds are used as input data
for the description calculation: Synthetic data modeled after existing LiDAR sensors and real data,
recorded with close-to-production-type LiDAR sensors with the test vehicle shown in Figure 3.1 and
sampled and accumulated in postprocessing with a mobile data acquisition system, are considered.

56



3. LiDAR-Based Descriptors 3.1. Terms andMethodology

10
20

30
40

50

0
0

10
20

30
40

50

20

15

10

5

z
SR

F
[m

]

ySRF [m]

xSRF
[m

]

(a) Synthetic data

10
20

30
40

50

0
0

10
20

30
40

50

20

15

10

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
U

TM
[m

]

yUTM [m]

xUTM
[m

] N
or

m
al

iz
ed

In
te

ns
ity

(b) Dense real data

10
20

30
40

50

0
0

10
20

30
40

50

20

15

10

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z
VR

F
[m

]

yVRF [m]

xVRF
[m

] N
or

m
al

iz
ed

In
te

ns
ity

(c) Sparse on-board real data

Figure 3.2: Sample LiDAR point clouds of each data set type used in this thesis in their corresponding
coordinate system. The dense and sparse real data capture the same section of the environ-
ment.

57



3.1. Terms andMethodology 3. LiDAR-Based Descriptors

Sample LiDAR point clouds of all of the three data sets are depicted in Figure 3.2. The synthetic data can
be understood as ideal data, while the real data contains measurement inaccuracies and noise. Intu-
itively, the descriptors should yield more accurate results on synthetic data than on real data. Though,
concerning the application of the descriptors in a vehicle, the experiments with real data are more
important.

For the generation of realistic synthetic data, geometric objects of different size, which often occur
in the environment, like planes, edges, and cylinders, are constructed. They are combined into a com-
plete scene with walls, building edges, pillars, and advertising pillars. In this thesis, a virtual scanner
is implemented to model the beams of LiDAR sensors and determines the intersections between the
beams and the objects. The virtual scanner is instantiated to the specifications of the Velodyne VLP 16
[151] and the Velodyne VLP 32-C [150] LiDAR sensor generating the synthetic point cloud.

For the generation of real world point clouds, on the one hand, the test vehicles’ LiDAR sensors on
the front left side, i.e., the Velodyne VLP 16 [151] and the Velodyne VLP 32-C [150], are used to create
the on-board real-world point clouds, see 3.1. As the names of the sensors state, the first sensor has
16 diodes and the second sensor has 32 diodes. The measurements in one horizontal direction of one
diode form a layer, the measurements in one vertical direction of all diodes lie in one channel. The
Velodyne VLP 16 samples the environment with 2◦in vertical and 0.2◦in horizontal solution. It has a
vertical field of view of -15◦to 15◦, which makes in total an opening angle of 30◦. The Velodyne VLP 32-
C samples the environment with approximately 9◦to 0.333◦in vertical and 0.2◦in horizontal solution,
i.e., with a non-uniform vertical resolution, see Figure 3.2. It has a vertical field of view of -15◦to 25◦,
which makes in total an opening angle of 40◦. The sensors provide data with 10 Hertz. The on-board
point clouds represent one LiDAR scan, i.e., rotation of the sensor, either in the local SRF or transformed
into the local VRF with high-precision calibration data, whenever needed.

On the other hand, the dense point clouds are given in the global coordinate system UTM. In the
figures of this thesis, the UTM coordinates are shifted to an origin lying in the point cloud’s range. These
point clouds are collected by the mobile data acquisition system Trimble MX8 [105, 142], accumulating,
postprocessing, and globally referencing the point clouds. It yields highly accurate measurements.
The resulting sampling resolution of the dense data is approximately 34 points

100 cm2 and its point cloud is
assumed to be equidistant. These accurate point clouds are later used as a basis to create the map for
localization as they represent the real world nearly ideally.

The same excerpt of a real-world scenery is shown in figures 3.2b and 3.2c. It can be seen that
both point clouds look very different even though they depict the same section. Hence, it is difficult
to similarly interpret both data set types with a descriptor, thus yielding similar descriptions, to fulfill
Requirement (iv). However, this is important to handle so that the on-board data, sparse point clouds,
can be matched with the map data, dense point clouds, for localization.

However, the test vehicles are equipped with additional sensors, whose data is used in this thesis.
The vehicle’s odometry is measured with a software module called EgoMaster [3]. The odometry is
calculated in the VRF, refer to Subsection 2.2.1. It is a software module, computing the vehicle’s odom-
etry based on data from standard and close-to-production type sensors integrated into the Electronic
Stability Program (ESP) and Anti-Lock Braking System (ABS). The sensors are angular rate sensors, steer-
ing angle sensors, wheel speed sensors, chassis lift sensors, and IMUs. The EgoMaster fuses the data
received from the sensors applying an EKF to compute the odometry. The odometry data is provided
with 100 Hertz. GNSS data is received with a standard production-type GPS sensors. In this thesis, the
NovAtel FlexPak-G2 OEMStar [91] is mounted on the test vehicle including an antenna receiving GPS
and GLObal Navigation Satellite System (GLONASS) signals. In the test drives of this thesis, the data
rate is set to 5 Hertz. Position reference data is gained with the high-precision Applanix POS LV 520
system [1] with a data rate of 200 Hertz. For a more accurate estimation of the heading, two antennas
are mounted on different lateral positions of the vehicle receiving RTK-GPS data. The data of the inte-

58



3. LiDAR-Based Descriptors 3.1. Terms andMethodology

grated IMU is applied in postprocessing estimating a highly-precise vehicle trajectory (0.02 meters in
x, and y direction, 0.015°for the heading).

All of the sensor data is logged and passed on on three PCs in the test vehicles.

3.1.3. Research Questions of the Application of Descriptors

Below, the research questions addressed in this chapter are listed and explained in more detail. An
overview of the papers, which were published during the course of this thesis and which investigate
this research questions, is given thereafter.

Are geometry-based descriptors well-suited for a real-world localization?

• As explained in Subsection 2.1.4, the performance of descriptors largely depends on the data
they are applied to. The main difficulties in this thesis when dealing with real data lie in the
sparsity and the noisiness of on-board LiDAR point clouds.

• Selected algorithms are applied to all data sets, either modeling or capturing a typical envi-
ronment, to evaluate geometry-based descriptors’ suitability. The assessment of descriptors is
based on several evaluation parameters, refer to Definition 3.4, like the distinction between ob-
jects, the dependence on the range, and the dependence on the local neighborhood size. Real
data of on-board sensors are used to compute odometry and global localization accuracies.

Are intensity-based descriptor algorithms as useful for localization as geometry-based ones?

• Intensity information of LiDAR point clouds is just one-dimensional compared to the correlating
three-dimensional geometric data. Thus, it does not provide as much information for a descrip-
tor function.

• State-of-the-art descriptors are evaluated in theory and a novel descriptive descriptor is devel-
oped to estimate the suitability of intensity-based descriptors in Section 3.3. The development’s
focus lies on the challenging problem of handling real intensity data. Then, the concept of
intensity-based descriptors is evaluated by comparing it to geometry-based descriptors and ap-
plying both descriptor types to a simple odometry and localization algorithm to real-world data
collected with LiDAR sensors on-board test vehicles.

During the course of this work, two publications examining the preceding research questions were
made.

In [54], the findings for several evaluation parameters of the first research question are presented.
The accuracy with which road objects can be recognized by their descriptions for localization tasks
depending on the distance and direction of view of the sensor is shown using synthetic and real data.
Here, the FPFH descriptor and unorganized structured descriptors, see Equation 2.1, are applied. Fur-
thermore, the accuracy allocating an object only based on its descriptions is determined on the exam-
ple of a building corner. As a result of these investigations into the description calculation, conclusions
about the localization accuracy that can be achieved are drawn.

The developed intensity-based descriptor is introduced and compared to geometry-based descrip-
tors in [52], answering the second research question. The intensity-based descriptor is called GRAdi-
ents of Intensities as a Local descriptor (GRAIL). The position accuracies of the GRAIL applying a global
localization with respect to a map are compared to the accuracies achieved with the FPFH, RoPS, and
SHOT descriptors. This has been thoroughly examined on a real-world data set.

59



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

3.2. Geometry-Based Descriptors

The algorithms selected in Subsection 3.1.2, which process only the geometry information of the LiDAR
point cloud, are evaluated in this section. Following the findings of these evaluations, further algo-
rithms are developed.

3.2.1. Analyzes of Geometry-Based Descriptors in Real-World Environment

The FPFH, the SHOT, and the RoPS descriptor is evaluated based on Definition 3.4. Each descriptor is
assessed with experiments addressing every criterion of this definition. In the following, the experi-
ments and their results are depicted, referring to the tested criterion.

1. Influences of the Local Neighborhood Size:

In the following experiments, the impact of the local neighborhood size on the descriptions is evalu-
ated. These experiments inspect the Requirement (i) of the definition of a good descriptor 3.4. There-
fore, two experiments are presented. The first experiment addresses the effect of non-uniform sam-
pling on the choice of the local neighborhood’s radius. The second experiment deals with the influence
of the local neighborhood size on the description calculation outcome. In both experiments, only the
metricm of the local neighborhood Definition 3.1 induced by the maximum-norm is used.

Requirement (i) of Definition 3.4 states that the descriptor should enable a representation of the
three-dimensional characteristic of an object within a local neighborhood, i.e., the right choice of the
local neighborhood radius. Therefore, the following definition is introduced:

Definition 3.5 (Large Enough Radius of a Local Neighborhood). Let pm1
, . . . ,pmn

∈ NP,r(p
x,y,z
j )

be points of the local neighborhood in layers with numbers lm1
, . . . lmn

∈ N, respectively. A radius r of a
local neighborhoodNP,r(p

x,y,z
j ) around point pj in layer with number lj ∈ N of an ordered point cloud

is called large enough if at least three layer numbers of {lj , lm1 , . . . , lmn} are different.
If exactly three layer numbers are different the radius is calledminimal.

This definition of the large enough neighborhood radius r ensures that the point environment’s
three-dimensional structure is characterized within a large enough local neighborhood. If the lo-
cal neighborhood encloses less than three layers, the local neighborhood’s line characteristic dom-
inates the description values. If the local neighborhood encloses at least three layers, the three-
dimensionality, x, y, and z, can be described in the local neighborhood. Therefore, the radius of local
neighborhood is large enough and its neighborhood must enclose at least three layers to enable the
description to capture the three-dimensional characteristic.

First experiment: In the first experiment, typical sampling characteristics of close-to-production
LiDAR sensors are considered to examine the influence of the local neighborhood size. Therefore, two
sensors are examined, the Velodyne VLP 16 and the Velodyne 32-C, which are used throughout this
thesis, but reflect typical problems with on-board LiDAR sensors. The main problem of real on-board
sensors concerning the local neighborhood size is caused due to the different horizontal resolution of
these sensors compared to the vertical resolution, refer to Subsection 3.1.2. This affects the eigenvalue
decomposition many descriptors depend upon, refer to Subsection 2.1.1.

Figure 3.3 shows the eigenvalues computed with a Principal Component Analysis (PCA) with respect
to the local neighborhood size around a point on the middle of a synthetic vertical plane modeled for
both sensor types. See Subsection 2.2.2 for an explanation of the PCA. As the plane is two-dimensional,
only two eigenvalues are depicted, with λ1 > λ2. The blue eigenvalues represent the eigenvalues of
the vertical plane sampled with the VLP 32-C, and the orange eigenvalues correspond to the VLP 16.
The red line visualizes the reference eigenvalues of a uniformly sampled plane with a high resolution.

60



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Radius [m]

Ei
ge

nv
al

ue
[1 m

]

λ1,2,ref

λ1,VLP 16

λ2,VLP 16

λ1,VLP 32-C

λ2,VLP 32-C

Figure 3.3: Eigenvalues of a synthetic vertical plane sampled with the Velodyne VLP 16 and the VLP
32-C as a function of the radial local neighborhood radius around a point in the middle of
the plane

The eigenvalueλ2 is represented by a dashed line, the smaller with a solid line. For a uniformly sampled
plane, both eigenvalues are the same, visible with the red line. The eigenvalues of the VLP 16 show
that the point cloud’s sparsity leads to discretization effects even if the horizontal layers are equally
distanced. Each time that the local neighborhood encloses one additional layer, a significant change
of the two eigenvalues can be seen. For differently distanced layers, the eigenvalues drift apart with
larger local neighborhood radii. This experiment shows that the local neighborhood size distorts the
eigenvalues in case of on-board, close-to-production-type LiDAR sensors, which are the basis for many
descriptors. This may lead to description inaccuracies, as often the LRF of a description is calculated
using eigenvalues. The effect becomes especially obvious, looking at unstructured geometry-based
descriptors, refer to Subsection 2.1.1 or see Equation 2.1. As the eigenvalues of a planar wall are no
longer the same in case of non-uniform sampling, the linearity and the planarity are not zero and one
even for synthetically, noise-free data.

Secondexperiment: In the second experiment, the description differences, depending on the local
neighborhood radius, are examined. The experiment is divided into two parts, a qualitative and quanti-
tative evaluation. The first part examines the absolute descriptions for each local neighborhood radius,
while the second part considers the relative changes of the descriptions.

For the first part, real data from measuring a pillar is the input for the description calculations. The
same pillar is sampled with the VLP 16 sensor and also extracted from the dense point cloud data.
Hence, this experiment also explores the difference between differently sampled data, refer to Require-
ment 3.4 (iv). The descriptions are computed with a local neighborhood radius from one centimeter,
in case of the dense point cloud, and from 10 centimeters, in case of the sparse point cloud, to one
meter for every centimeter.

Figure 3.4 illustrates the histograms of the FPFH descriptor of these calculations. The 11 bins of
the three angles θ, α, and φ are presented independently. Each bin of the 11 bins is marked in the
same color, while the 11 bins are stacked for every description of each local neighborhood. It can be
seen that the description changes a lot with increasing local neighborhood radii. With a small local

61



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

0 20 40 60 80 100
0

20

40

60

80

100

Radius [cm]

Ra
tio

of
Po

in
ts

in
O

ne
Bi

n
[%

]

(a) Dense: First 11 bins of the FPFH descriptor binning θ

0 20 40 60 80 100
0

20

40

60

80

100

Radius [cm]

Ra
tio

of
Po

in
ts

in
O

ne
Bi

n
[%

]

(b) Sparse: First 11 bins of the FPFH descriptor binning θ

0 20 40 60 80 100
0

20

40

60

80

100

Radius [cm]

Ra
tio

of
Po

in
ts

in
O

ne
Bi

n
[%

]

(c) Dense: Second 11 bins of the FPFH descriptor binning α

0 20 40 60 80 100
0

20

40

60

80

100

Radius [cm]

Ra
tio

of
Po

in
ts

in
O

ne
Bi

n
[%

]

(d) Sparse: Second 11 bins of the FPFH descriptor binning α

0 20 40 60 80 100
0

20

40

60

80

100

Radius [cm]

Ra
tio

of
Po

in
ts

in
O

ne
Bi

n
[%

]

(e) Dense: Third 11 bins of the FPFH descriptor binning φ

0 20 40 60 80 100
0

20

40

60

80

100

Radius [cm]

Ra
tio

of
Po

in
ts

in
O

ne
Bi

n
[%

]

(f ) Sparse: Third 11 bins of the FPFH descriptor binning φ

1. bin 2. bin 3. bin 4. bin 5. bin 6. bin 7. bin 8. bin 9. bin 10. bin 11. bin

Figure 3.4: The ratio of points in a histogram bin as a function of the local neighborhood radius for every angle
of the FPFH description in a stacked bar using the example of a real data pillar of radius 20 cm: dense
(left) and sparse (right)

62



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

0 50 100 150 200
0

0.01

0.1

1

Radius [cm]

N
or

m
al

iz
ed

Eu
cl

id
ea

n
D

is
ta

nc
e θ

α
φ

Figure 3.5: Normalized Euclidean distance as a function of the local neighborhood radius in a logarith-
mic scale for every angle of the FPFH description using the example of a dense real-data
wall

neighborhood radius up to 20 centimeters, the description does not capture the pillar’s curvature, ne-
glecting the effects where the local neighborhood encloses only a few points. As the neighborhood
is so small, these points in it lie almost on a plane. Thus, the description looks like that of a plane ob-
ject with no curvature. This results in a FPFH description with a high percentage of points for θ in the
first bin and the other angles in the middle bin. With a larger local neighborhood, the points in the
local neighborhood form the curved pillar. Thus, the description depicts a curved geometry with more
points with different angles falling into different bins, i.e., essentially in the fifth, sixth, and seventh bin.
This is true for both the dense and the sparse point clouds, while the local neighborhood radius needs
to be larger for sparse point clouds to enclose and capture the pillar’s curvature. This is the case since
there are less points in local neighborhoods of the sparse point cloud. The description graphs look
very much alike except that the graph generated with the dense point cloud looks smoother, which
could be expected.

The same holds for the other selected descriptors, except that the description representing the pillar
starts with a much larger local neighborhood as they divide the neighborhood into multiple parts
for all three dimensions, refer to Subsection 2.1.1. According to Definition 3.5, every part of the local
neighborhood must enclose enough points to be minimal. Therefore, to capture the 3D information
with the description, the local neighborhood is larger. Hence, the total local neighborhood size must
be larger in partitioned local neighborhoods than non-partitioned ones. A resulting disadvantage is
that this larger local neighborhood enclosing more points increases the computational effort. Besides,
LiDAR sensors sample the surface of the objects in the environment. Thus, a partition of the local
neighborhood in the direction of the depth is not beneficial, in general.

This part of the second experiment indicates with qualitative analyzes that the right choice of the
local neighborhood is essential to get a characteristic description of an object. This statement is true
for every type of descriptor, while the local neighborhood which subdivide the local neighborhood
into partitions needs to be larger to capture the characteristics. It also suggests that the descriptions
of sparse and dense point clouds are nearly identical, even in their dependence on the local neighbor-
hood size.

The second part of this experiment underlines the effect that a minimum local neighborhood must
be reached to measure an object’s characteristic description by analyzing the relative change of the
descriptions. In this example, a dense real data wall is examined again on the example of the FPFH

63



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

descriptor. The FPFH description is calculated for every local neighborhood radius starting from one
centimeter to two meters. Here, the normalized Euclidean distance mFPFH

n eucl is used to measure the
change of the 33-dimensional descriptions dFPFH between two local neighborhood radii:

mFPFH
n eucl =

1√
2 · 3

·

√√√√N=33∑
n=1

(
dFPFH,1
n − dFPFH,2

n

)2
, (3.1)

where dFPFH,i
n denotes the n-th entry of the i-th description. The FPFH description consists of three

to [0, 1] normalized histograms for each angle θ, α, φ. For each histogram, the maximal difference
between two different descriptions is 2. Thus, for the three concatenated histograms, i.e., the FPFH
description, the normalization factor is 1√

2·3 .
Figure 3.5 shows the normalized Euclidean distances between two FPFH descriptions calculated

with increasing neighborhood radius for each of the three angles of the description independently.
It can be seen that the relative changes for every angle of the FPFH description are large when the
local neighborhood is small. At about 25 centimeters, the normalized Euclidean distance is relatively
small and does not change until it increases at approximately 160 centimeters. The reason for this is
that the characteristic description of the wall is reached with approximately 25 centimeters, as there
are enough points in the local neighborhood forming a wall. Additionally, the point cloud’s noisiness
decreases in the description of the FPFH due to the averaging the more points are enclosed in the local
neighborhood. This effect influences the size of the local neighborhood to reach the characteristic
description of an object. The descriptions stay the same until the local neighborhood encloses points
of other objects at 160 centimeters. At this radius, the normalized Euclidean distance is smaller than
the Euclidean distances up to 25 centimeters, because more points are located on the wall than on the
newly enclosed object. I. e. the ratio of the number of points on the wall to the number of points on
the other object is large. Thus, the change of the FPFH histogram is relatively small.

Repeating this experiment with other descriptors yields similar graphs, but the description changes
are smaller when the local neighborhood encloses other objects’ points. The same reason as above ap-
plies here as well. The division of the local neighborhood into multiple parts leads to smaller segments
of the local neighborhood, which still must enclose enough points to capture the three-dimensional
characteristic of the newly enclosed objects.

In this second part of the experiment, the quantitative analyzes show the relative changes of the
descriptions depending on the local neighborhood radius. It can be seen that a minimum local neigh-
borhood radius must be chosen to compute the characteristic description of an object sampled by
on-board LiDAR sensors. This part also demonstrates that the description changes again when points
of other geometric objects are enclosed by the local neighborhood, indicating a maximum local neigh-
borhood for an object in the environment.

Summarizing, these experiments show that the size of the local neighborhood affects the descrip-
tions a lot. With the discrete sampling of the environment by LiDAR sensors, the eigenvalue compu-
tation, which is the basis for many LRFs, is affected depending on the local neighborhood radius. This
effect is more visible in case of non-uniformly distributed layers. The second experiment shows that
a specific minimum local neighborhood size must be chosen to characterize an object distinctively,
while a too-large local neighborhood might enclose points belonging to other objects, which also
causes changes in the description.

2. Distinguishing Between Objects:

Requirements (ii) and (iii) of Definition 3.4 are examined for the FPFH, SHOT, and RoPS descriptor in
this paragraph. They state that a description of unlike geometric objects should be dissimilar and

64



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

similar for alike geometric objects. Therefore, three different types of objects are picked, often used
as landmarks for a semantic localization: a wall, a pillar, and a vertical edge [14, 119, 123, 160]. The
descriptions of these objects are compared to each other in a distance matrix.

A description of an object is defined as medoid of all descriptions of the points of the object. There-
fore, the medoid is defined.

Definition 3.6 (Medoid). LetA = {a1, . . . ,an} be a set containingn elements in a space and letm be a
distance function. Themedoidamedoid is defined as

amedoid = argmin
a′∈A

n∑
i=1

m(a′,ai).

In this experiment, the three objects are sampled synthetically using the Velodyne VLP 16 model,
and they are recorded on-board with the actual LiDAR sensor. When generating the synthetic point
cloud, the wall is modeled as a planar, vertical surface, the pillar is modeled as a cylinder, and the
vertical edge is modeled by two planes perpendicular to each other. The descriptions are calculated
for every point of the object and their computed medoid. The medoid represents the whole object
the best. The description distances are calculated with normalized Euclidean distances. As the nor-
malization is different for every descriptor type, the following formulas for the (normalized) Euclidean
distancesm(norm)eucl are introduced, where di

n represents the n-th entry of the i-th description:

FPFH: mFPFH
n eucl =

1√
2 · 3

·

√√√√N=33∑
n=1

(
dFPFH,1
n − dFPFH,2

n

)2
, (3.2)

SHOT: mSHOT
n eucl =

1√
2 · 32

·

√√√√N=352∑
n=1

(
dSHOT,1
n − dSHOT,2

n

)2
, (3.3)

RoPS: mRoPS,i
n eucl =

√√√√N=27∑
n=1

(
dRoPS,1
n − dRoPS,2

n

)2
, ∀i = 1, . . . , 5. (3.4)

The FPFH description vector is 33-dimensional and consists of three components, the angles θ, α,
and φ. This leads to N = 33. As described in the previous experiment this yields the normalization
factor of 1√

2·3 . The SHOT description vector is 352-dimensional and consists of 32 to [0, 1] normalized
histograms, the 32 parts of the local neighborhood. This leads to N = 352. Like for the FPFH descrip-
tor, the maximal difference between two different descriptions is 2 for each histogram. Thus, for the
32 histograms, the normalization factor is 1√

2·32 . In the case of the RoPS descriptor, the individual mo-
ments and the entropy are examined separately. The RoPS has in total 135 description entries. These
are spread over 27 description entries, each for the four moments and the entropy. For each of the five
description components (four moments and the entropy), the Euclidean distance is calculated from
the 27 descriptions, which leads to N = 27 for every description component. Here, normalization is
not performed, as the RoPS describes absolute moments and the entropy, which are not relative as for
the FPFH and the SHOT histogram-based descriptors. Normalization with the maximum descriptions
is also not carried out since the maximum descriptions differ a lot depending on the object. The best
way to compare the description of the RoPS is by looking at the absolute values.

In the following, we discuss the differences between the three object classes based on the reference
medoid distances of Table 3.1. For all descriptors, it can be seen that the descriptors can distinguish
between the three object classes.

65



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

Table 3.1: Distance matrix of FPFH, SHOT, and RoPS medoid descriptions for a real and synthetic wall,
pillar, and vertical edge specified with (normalized) Euclidean distance of Equation 3.1 sam-
pled with Velodyne VLP 16 (model) with the same local neighborhood size of 70 centimeters

wall pillar vertical edge

FP
FH

walla - 0.214 0.432
pillara 0.214 - 0.153

vertical edgea 0.432 0.153 -

FP
FH

wallb - 0.323 0.466
pillarb 0.323 - 0.054

vertical edgeb 0.466 0.054 -

SH
O

T walla - 0.384 0.391
pillara 0.384 - 0.041

vertical edgea 0.391 0.041 -

SH
O

T wallb - 0.423 0.498
pillarb 0.423 - 0.038

vertical edgeb 0.498 0.038 -

Ro
PS

walla - 0.06 0.04 0.05 0.06 0.06 0.1 0.09 0.14 0.04 0.06
pillara 0.06 0.04 0.05 0.06 0.06 - 0.06 0.1 0.07 0.05 0.04

vertical edgea 0.1 0.09 0.14 0.04 0.06 0.06 0.1 0.07 0.05 0.04 -

Ro
PS

wallb - 0.15 0.14 0.08 0.1 0.09 0.17 0.15 0.15 0.08 0.04
pillarb 0.15 0.14 0.08 0.1 0.09 - 0.08 0.12 0.08 0.07 0.05

vertical edgeb 0.17 0.15 0.15 0.08 0.04 0.08 0.12 0.08 0.07 0.05 -
a Real data.
b Synthetic data.

66



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

In detail, Table 3.1 shows that the description of a wall differs greatly from that of a pillar and a vertical
edge, cf. Requirement (iii). What is also apparent is that the distances of the descriptions of an edge
and a pillar are relatively small, cf. Requirement (ii). Looking at the geometrical structure of the three
objects, this becomes clear. A wall is a planar object, where all normals point in the same direction,
while the edge and the pillar are more curved with larger surface normal differences. The same effect
holds for the spatial point distribution, in case of the RoPS descriptor. The local neighborhood of the
RoPS is divided into three 2D grids. In the 2D grid, the points of a wall fall into other grid cells. For
example, in synthetic data, the differences of the SHOT description of a wall and a pillar amount to
0.423 compared to the description differences of a pillar and an edge amount to 0.038.

Additionally, the real data objects’ differences are almost exclusively smaller compared to those of
the synthetic data. The cause for the smaller differences is the noisiness of the real data. The descrip-
tion of a noisy wall results in noisy normals and more spread points. Thus, the noisy wall description
resembles the pillar and the edge description. This results in a greater distinction between objects in
the environment in real data.

In summary, this experiment shows on the example of three object types that the geometry-based
descriptors can distinguish between the object types and thus fulfill the requirement (iii) of definition
3.4. However, due to the noisiness in real data, the distinguishability is smaller compared to synthetic
data. Hence, the criterion (ii) of definition 3.4 is met for these descriptors.

3. Difference Between Sparse and Dense Data:

In this experiment, the differences of descriptions between differently sampled real data point clouds
are examined. This experiment evaluates the descriptors corresponding to criterion (iv) of Defini-
tion 3.4. For one thing, this is an important requirement, as the descriptors should be accurate with
any sampling resolution independent of the sensor type. Additionally, this is crucial for matching on-
board and map data, a part of the third step of the LiDAR-Feature-based Localization. Thus, three differ-
ent types of objects are chosen, which are frequently employed as semantic landmarks: walls, pillar,
and vertical edges [14, 119, 123, 160].

These objects are sampled in real-world with the Velodyne VLP 16, and their corresponding point
clouds are extracted from the globally referenced dense point cloud. These point clouds are the input
for the description calculation applied for the FPFH, SHOT, and RoPS algorithms. Then, the medoids
of these descriptions are built to get the representations of the whole objects instead of the segments
of the local neighborhoods. Every medoid of the sparse point cloud is compared to the medoid of the
dense point cloud using the (normalized) Euclidean distances of Equation 3.2, 3.3, and 3.4.

Table 3.2 states the differences between sparse and dense real data of a wall, a pillar, and a vertical
edge. It can be seen that the differences between the sparse and dense wall and edge are small for
every descriptor. This is the case since the description of a noisy wall looks similar to the description
of an edge. That means that the different sampling resolutions of the real data and their different
noisiness affect the description calculation for these objects. Larger differences compared to the other
objects can be seen considering the pillar. Here, the different densities of the point cloud induce a
difference in the descriptions. This is due to the fact that a wall does not need to be sampled with a

Table 3.2: (Normalized) Euclidean distances between sparse and dense real data for the descriptors
FPFH, SHOT, and RoPS

descriptor wall pillar vertical edge
FPFH 0.003 0.15 0.06
SHOT 0.02 0.20 0.02
RoPS 0.05 0.16 0.05 0.06 0.05 0.02 0.04 0.14 0.11 0.06 0.01 0.02 0.09 0.11 0.02

67



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

high resolution to built the characteristic description as it has no curvature. It is still distinctive with
few points on the wall. Therefore, the planar structure can also be captured with the data from the
Velodyne VLP 16 sensor. The same applies to the edge. As an edge consists of two planar walls, a
few points on that edge or the two walls suffice for a characteristic description of that object. This
is different in the case of the pillar. The pillar is a homogeneous curved object, where the captured
description depends on the sampling resolution, which is shown in the results of Table 3.2. This effect
is hard to compensate with descriptors, as there is no more information which can be processed within
the algorithm. Notably, the need for compensation contradicts the claim that the algorithms should
be very distinctive. I. e., if a distinctive description should capture the point cloud’s characteristics in
great detail, a compensation might predominate the fine structures within the point cloud. Moreover,
a compensation might blur the point cloud’s geometric information. In addition to the noise present
in the point cloud, this compensation would enhance this effect.

Concluding, the examined descriptors are considerably independent of the sampling resolution and
thus match criterion (iv) of Definition 3.4. However, they are not able to compensate for the missing
information in the case of sparse point clouds entirely.

4. Dependence on Viewing Angle:

This experiment analyzes the dependence on the viewing angle of the descriptors FPFH, SHOT, and
RoPS. This requirement is defined by criterion (v) of Definition 3.4. The independence on the viewing
angle is crucial in the case of automated driving, as objects should be detectable from different per-
spectives. As a vehicle moves on mostly planar ground, this experiment only analyzes the dependence
on the viewing angle in 2D. Here, three objects are chosen, which are often implemented as semantic
landmarks: walls, pillar, and vertical edges [14, 119, 123, 160]. Therefore, these objects are the input
for the description computation. Because this rotation is hard to record on-board a test vehicle in real
data, the objects are modeled synthetically for the Velodyne VLP 16 and rotated around the height axis
from 0◦to 45◦. The wall is modeled as a planar, vertical surface, the pillar is modeled as a cylinder, and
the vertical edge is modeled by two planes perpendicular to each other. In this experiment, the Eu-
clidean differences of the description values are determined according to Equation 3.2, 3.3, and 3.4 on
page 65. Each description of a rotated object is compared with the not rotated object, i.e., 0◦rotation.

This analysis shows that the descriptions do not change when rotating a wall or a pillar. The nor-
malized Euclidean distances are always zero. As most descriptors rely on the eigenvalue computation,
which is independent of the viewing angle, the algorithm itself is independent of the viewing angle.
The descriptions are just dependent on the sampling of the objects. This becomes obvious, looking
at the results when rotating an edge. In Figure 3.6, the description differences of the rotated edge
compared to the not rotated edge are illustrated. This figure shows that the differences of the SHOT
description do not change a lot, when the viewing angle is changed. The differences of the FPFH and
the RoPS description vary greatly the further the edge is rotated. This results from the fact that the
description of an edge rotated by 45◦to the sensor represents a plane and not an edge because it can
no longer scan one of the planes forming the edge. Thus, the description of an edge point represents a
wall, not an edge due to the sampling. The difference of the 45◦rotated edge is similar to the difference
of a description of a wall and an edge, refer to Table 3.1.

In summary, it can be said that if the objects are sampled sufficiently, the eigenvalues, the basis
for many descriptors can be reliably, independent of the viewing angle, determined. The statistical
distribution of the points, captured by the RoPS description, is also independent of the viewing angle
when the examined object is sufficiently scanned.

68



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

Rotation [°]

N
or

m
al

iz
ed

Eu
cl

id
ea

n
D

is
ta

nc
e

FPFH
SHOT

(a) FPFH and SHOT

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

Rotation [°]

Eu
cl

id
ea

n
D

is
ta

nc
e

µ11
µ22
µ12
µ21

entropy

(b) RoPS

Figure 3.6: Description deviations of a rotated sparse edge point compared to the edge, pointing at
the sensor, as a function of the viewing angle of the sensor on the edge point

5. Dependence on Distance:

This experiment investigates the dependence on the distance of the chosen descriptors FPFH, SHOT,
and RoPS. It deals with criterion (vi) of Definition 3.4. The independence on the distance is crucial for
the descriptions application for automated vehicles, as the descriptions should remain the same when
approaching or moving away from an object. In particular, for localization, it is crucial to detect objects
which are far away in order to estimate an accurate heading of the vehicle. Here, a pillar with a radius
of 20 centimeters is taken as a sample object to examine the distance behavior, which is often used as
a semantic landmark and can be detected from a large distance with this semantic prior knowledge
[14, 119, 123, 160]. The recording with a LiDAR sensor of a pillar depending only on the distance is
hard to realize in a test vehicle. Often, these geometric objects are not located separated from other
objects or at the end of large straight street. Therefore, the pillar, modeled as a cylinder, is sampled
synthetically with the Velodyne VLP 32-C model from different distances. The descriptions of the point
in the middle of the sparse pillar are compared to the middle point’s description of a dense pillar, which
was modeled based on the dense real data, using Equation 3.2, 3.3, and 3.4 on page 65. This simulates
the matching of dense and sparse data, which is important for the map matching part of localization,
belonging to the third step of the LiDAR-Feature-based Localization.

Figure 3.7 visualizes the (normalized) Euclidean distances over the distance of five to 100 meters
with a resolution of one meter for each descriptor. With increasing distance, the (normalized) Euclidean
distance between the description of the sparse pillar and the reference pillar increases. This is due to
the fact that the pillar is sampled more sparsely, the larger the distance to it is. The figure also shows
that the deviations of all descriptions vary greatly from a distance of approximately 57.5 meters. At 57.5
meters, the pillar’s curvature is no longer sampled by the LiDAR sensor, but the points are falling onto
the pillar are points on top of each other, forming a straight line, not a curved cylinder. The straight
line represents no longer a curved object, which results in large distances compared to a curved pillar.

Additionally, in Figure 3.7, steep increases of the Euclidean distances can be seen, before the 57.5
meters mark is reached, e.g., at approximately 29 meters. These increases occur, where the distance
of the sensor to the pillar has increased that much so that no point of one certain channel is located

69



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

Distance [m]

N
or

m
al

iz
ed

Eu
cl

id
ea

n
D

is
ta

nc
e

FPFH
SHOT

(a) FPFH and SHOT

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

Distance [m]
Eu

cl
id

ea
n

D
is

ta
nc

e

µ11

µ22

µ12

µ21

entropy

(b) RoPS

Figure 3.7: Description deviations of a sparse, synthetic pillar compared to a dense, synthetic pillar as
a function of the distance to the pillar

on the pillar, e.g., instead of points of five channels, points of four channels are on the pillar. From a
certain distance, the point distances in the vertical direction are too large, so that there are only zero
entries in the description of the sparse point cloud. This starts at 86.5 meters. From this distance, the
(normalized) Euclidean distance corresponds to the Euclidean norm of the description of the reference
pillar, so that a constant value can be seen in all graphs.

It can be concluded that the presented descriptors largely depend on the distance. This is due to the
fact that the selected algorithms need a relatively large amount of points on an object to capture the
geometric information. For example, a histogram-based description’s resolution is only as accurate as
the number of points in the local neighborhood, e.g., for four points 25%.

6. Spatial Allocation Accuracy:

In this experiment, an additional property of the descriptors is investigated, besides Definition 3.4.
Here, the accuracy with which an object can be spatially detected within a typical scenery using the
presented descriptors, FPFH, SHOT, and RoPS, is investigated. This is a good indicator to deduce the
localization accuracy when using a specific object with the selected descriptors. The experiment is
performed on the example of a vertical edge but could be carried out with other objects. Since usually
no point hits the edge directly, the edge is a compelling case to study.

The descriptions of points on the same layer of the LiDAR sensor are compared to the reference
description of an edge point. Again the medoid description is chosen as reference, using Equation 3.2,
3.3, and 3.4 on page 65. These distances are the input for the estimation of the standard deviation σ.
The standard deviation indicates how precisely the localization algorithm can associate an edge. In
this case, an inverse Gaussian normal distribution is assumed to calculate the standard deviation from
this with a variation of the Full Width at Half Maximum (FWHM)2 h:

σ =
h

2
√

2 ln(2)
. (3.5)

2The FWHM of a function with a maximum is the difference between the two argument values for which the function values
have dropped to half the maximum.

70



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

Table 3.3: Standard deviations measuring the allocation accuracy of an edge point computed with
Equation 3.5 for the descriptors FPFH, SHOT, and RoPS. For a synthetic edge, modeled with
the Velodyne VLP 16 model, and for a real data edge, sampled by the Velodyne VLP 32-C,
with two radii rmin and rplus.

σ for rmin [cm] σ for rplus [cm]

FP
FH synthetic edge 33 76

real edge 9 16
SH

O
T synthetic edge 15 22

real edge 42 44

Ro
PS synthetic edge 27 8 3 4 16 49 16 41 31 25

real edge 27 82 32 44 16 49 16 40 31 25

The standard deviation indicates how precisely an edge can be associated by the localization algo-
rithm. The smaller the standard deviation is, the more the object is weighted in localization compared
the other detected objects [160]. The standard deviation, therefore, has an important impact on the
location accuracy.

In this experiment, two local neighborhood radii are used within the description calculation for each
descriptor. One radius is the minimal local neighborhood radius rmin for each descriptor, refer to Defi-
nition 3.5. That means the local neighborhood built with rmin encloses three layers. The second radius
is a radius that is nearly twice rmin, called rplus. This is chosen as this enables a local neighborhood
enclosing five layers. Otherwise, the increase would evoke a small effect. The descriptions are com-
puted for real and synthetic data of a building corner or an edge, respectively, the real data sampled
on-board with the Velodyne VLP 32-C and the synthetic data modeled with the Velodyne VLP 16. The
synthetic vertical edge is modeled by two planes perpendicular to each other. Figure 3.8 shows the
evaluation with the synthetic data. Figure 3.9 illustrates the differences of the real data.

Both figures demonstrate that the closer a point is to the edge point, the more similar the descrip-
tions get, except for discretization effects caused by the sparsely sampled point clouds. In the figures,
the graphs show approximately a parabolic graph. This holds for every descriptor.

Looking at some sample standard deviations of Table 3.3 for synthetic data, the standard deviation
computed with the FPFH descriptor and rmin equals 33 centimeters. With rplus it equals 76 centimeters.
It can be deduced that the values of the standard deviation and the size of the local neighborhood
radius correlate. The following applies: The larger the local neighborhood radius is chosen for edge
points, the larger is the noise of the edge’s normals, and the larger is the standard deviation. As a result,
the edge is spatially less precisely assigned if the local neighborhood’s radius size increases. The results
show that the local neighborhood’s radius is the upper limit for the size of the standard deviation. From
this and the apparent differences between the object classes, it follows that, based on the descriptors
presented, edges are particularly suitable for localization if the local neighborhood radius is chosen to
be as small as possible in order to be still large enough, see Definition 3.5.

For the real data, the standard deviation determined with the FPFH descriptor and rmin equals 9
centimeters. With rplus it equals 16 centimeters. Also, for real data, the statements from before are
true, i.e., that the local neighborhood size and the standard deviations correlate. The edge can be
more precisely allocated compared to the results of the synthetic data. This is because a 32-layer LiDAR
sensor was used in the real data experiment, which has a higher resolution than the LiDAR sensor
model with 16 layers. Therefore, using the example of the edge and the differences of the object
classes of previous experiments, it can also be shown in real data that the selected descriptors are
suitable for localization in on-board data.

71



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

−180 −85 0 85 180
0

0.01

0.1

Distance to Edge Point [cm]

N
or

m
al

iz
ed

Eu
cl

id
ea

n
D

is
ta

nc
e

FPFH rplus

FPFH rmin

SHOT rplus

SHOT rmin

(a) FPFH and SHOT

−180 −85 0 85 180
0

0.05

0.1

0.15

0.2

Distance to Edge Point [cm]

Eu
cl

id
ea

n
D

is
ta

nc
e

µ11
µ22
µ12
µ22

entropy

(b) RoPS with rmin

−180 −85 0 85 180
0

0.05

0.1

0.15

0.2

Distance to Edge Point [cm]

Eu
cl

id
ea

n
D

is
ta

nc
e

µ11
µ22
µ12
µ22

entropy

(c) RoPS with rplus

Figure 3.8: Description deviations of synthetic edge points, modeled after VLP 16, depending on the
distance to the exact edge with the minimum local neighborhood radius rmin and a larger
radius rplus according to Definition 3.4

72



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

−100 −50 0 50 100
0

0.01

0.1

Distance to Edge Point [cm]

N
or

m
al

iz
ed

Eu
cl

id
ea

n
D

is
ta

nc
e

FPFH rplus

FPFH rmin

SHOT rplus

SHOT rmin

(a) FPFH and SHOT

−100 −50 0 50 100
0

0.05

0.1

0.15

0.2

Distance to Edge Point [cm]

Eu
cl

id
ea

n
D

is
ta

nc
e

µ11
µ22
µ12
µ22

entropy

(b) RoPS with rmin

−100 −50 0 50 100
0

0.05

0.1

0.15

0.2

Distance to Edge Point [cm]

Eu
cl

id
ea

n
D

is
ta

nc
e

µ11
µ22
µ12
µ22

entropy

(c) RoPS with rplus

Figure 3.9: Description deviations of real edge points, sampled with VLP 32-C, depending on the dis-
tance to the exact edge with the minimum local neighborhood radius rmin and a larger
radius rplus according to Definition 3.4

73



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

It can be summarized that the selected descriptors are able to spatially allocate objects both in syn-
thetic and real data. The experiments have shown that the local neighborhood size correlates with the
spatial allocation accuracy: the smaller the local neighborhood, the more precise the allocation. Thus,
the local neighborhood should be chosen as small as possible if used for the localization task.

3.2.2. Own Developments and Extensions
In this subsection, the findings of the analyzes are reviewed to answer the first research question of this
thesis. Next, it is derived in which respect the algorithms need to be improved to be useful in the con-
text of LiDAR-Feature-based Localization. Subsequent follows the presentation of such improvements.
These consist in definitions of functions determining the right choice of the local neighborhood, but
also in novel descriptors.

Possibilities for Improvement

In the previous analyzes, it can be seen that the state-of-the-art descriptors meet several criteria of Def-
inition 3.4, but not every criterion. Answering the first research question of this thesis: The geometry-
based descriptors are suited in many aspects for a real-world localization, but some aspects need to
be improved or compensated. In the following, the two main issues of the state-of-the-art descriptors
are explained:

• The experiments show that the outcome of the descriptors largely depends on the local neigh-
borhood size. The descriptions change with an increasing local neighborhood size until a char-
acteristic description of an object is reached. For instance, if a local neighborhood is small, a
description depicting the point cloud’s curvature captures only planar characteristics. Therefore,
an approach to determine the local neighborhood radius for a characteristic description of an
object must be developed.

• Additionally, the analyzes show that the descriptors only work in short ranges, where the point
cloud’s density is large enough. The quality of the description decreases with increasing distance
until no expressive description is possible. Based on the example of a pillar with a radius of 20
centimeters, this is reached at about 57.5 meters. For an automated vehicle, the localization
requirements can be analyzed and from this, requirements on the specified range of descrip-
tors can be derived. Reid et al. [104] examined the localization requirements, which have to be
fulfilled for automated vehicles on local streets in the US. They say that the 1σ-accuracy of the
heading should be 0.17◦. Through the example of the pillar with a radius of 20 centimeters,
the pillar must be detected at 0.2 m

tan( 0.17
2 ·π/180) = 134.8 meters for a 1σ-accuracy. This is more

than twice the distance which can be reached with the state-of-the-art descriptors. However, it
makes clear that the state-of-the-art descriptors do not reach the required independence on the
distance. Thus, a novel descriptor should be developed to describe objects with a large distance
to the sensor.

Determining Characteristic Local Neighborhood Size

A method for an automatic choice of the local neighborhood radius is proposed in the following, to
ensure that the computed description is characteristic for each object. This has been become very
clear in the experiment 1. Influences of the Local Neighborhood Size. If the local neighborhood
radius is too small, the description of a pillar looks like a planar object. If the local neighborhood radius
is too large, further objects are enclosed by the local neighborhood and the description is no longer
characteristic for the pillar. Therefore, the definition of the characteristic radius of a local neighborhood
is introduced.

74



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

Definition 3.7 (Characteristic Radius of a Local Neighborhood). LetD be a descriptor function, let
NP,r1 , . . . ,NP,r1+ε·i, . . . ,NP,r1+(k−1)·ε, . . . ,NP,(r1+(k−1)·ε)+ε·i be k · i local neighborhoods with in-
creasing radii r1 < r1 + ε · i < . . . < r1 +(k− 1) · ε < (r1 +(k− 1) · ε)+ ε · i around the same pointp
with an appropriate radius increment ε > 0 and an appropriate number i > 1, letmd : Rm × Rm → R≥0

be a descriptor-specificmetric, let

e1,1 = md(D(NP,r1), D(NP,r1+ε)), . . . ,

e1,i−1 = md(D(NP,r1+ε·(i−1)), D(NP,r1+ε·i)), . . . ,

ek,1 = md(D(NP,r1+(k−1)·ε), D(NP,r1+k·ε)), . . . ,

ek,i−1 = md(D(NP,(r1+(k−1)·ε)+ε·(i−1)), D(NP,(r1+(k−1)·ε)+ε·i))

be k · i differences between all descriptions of consecutive local neighborhoods, and let σ1 =
stdd(e1,1, . . . , e1,i−1), . . . , σk = stdd(ek,1, . . . , ek,i−1) be k standard deviations of description differ-
ences. A radius r1 is called characteristic, if the standard deviations σ1, . . . , σk < ϵ for an ϵ > 0.
If there is no smaller radius r1 fulfilling this requirement, the radius is calledminimal characteristic.

This definition further specifies the local neighborhood radius compared to Definition 3.5. It ensures
that the three-dimensional structure of the point environment is characterized within the so defined
local neighborhood, but also that the description captures the geometry of each object.

Here, two assumptions are made to determine the characteristic radius for each object automati-
cally. First, it is assumed that the description values change marginally for radii greater or equal to the
minimal characteristic radius. It is also assumed that the description values change smoothly. This
assumption is made plausible by the previous experiment on the local neighborhood size.

In the following, the definition is explained in more detail. Considering a radius r1, i increments ε
are added to r1. For every radius, all i descriptions are determined with a descriptorD. The differences
e1,1, . . . , e1,i−1 are computed with a descriptor-specific metricmd. The standard deviationσ1 of the i−
1 differences yields an information on the scattering of the description differences. For radii r1, . . . , rk ,
the standard deviationsσ1, . . . , σk are computed in this way. If all standard deviations are smaller than
a small enough threshold ϵ > 0 the radius r1 is characteristic. I. e. small scattering indicates that with
increasing radii the descriptions only slightly differ from one another since the same object is always
described by the descriptions. The smallest radius fulfilling this is defined as the minimal characteristic
radius.

For that, the (normalized) Euclidean distances according to Equations 3.2, 3.3, and 3.4 are computed
between consecutive descriptions of increasing local neighborhood radii. The increment of the radii
must be chosen appropriately. For increasing local neighborhood radii around the same point, the
minimal characteristic radius is reached, if several standard deviations of several consecutive descrip-
tion distances are smaller than a predefined threshold.

Additionally, an upper bound of the characteristic radius is determined to limit the radius, so that
the neighborhood does not enclose other objects. It is assumed that the descriptions change a lot for
radii greater or equal to the minimal characteristic radius, and the local neighborhood encloses other
objects. The upper limit of the characteristic radius is chosen, if one standard deviation of several
consecutive description distances is greater than a predefined threshold.

In this thesis, the experiments on several objects with all descriptors of a dense point cloud have
shown that with an increment of one centimeter and a standard deviation, which is computed based
on five consecutive description distances, smaller or greater than 0.01 yield a reasonable result of the
characteristic radius.

Figure 3.10 illustrates the results of this calculation on a dense real-data wall on the example of the
FPFH descriptor. The normalized Euclidean distance is displayed as a function of the local neighbor-
hood size for each angle of the FPFH description. The minimal characteristic radius is marked as a red

75



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

0 50 100 150 200
0

0.01

0.1

1

Radius [cm]

N
or

m
al

iz
ed

Eu
cl

id
ea

n
D

is
ta

nc
e θ

α
φ

Figure 3.10: Normalized Euclidean distance between two descriptions computed with local neighbor-
hoods with increasing radii as a function of the local neighborhood radius in a logarithmic
scale for every angle of the FPFH description using the example of a dense real-data wall.
The minimal characteristic radius and the upper limit of the characteristic radii are marked
(red).

line at 27 centimeters. For small local neighborhood radii, the normalized Euclidean distances are large.
This is since the local neighborhood radius is not large enough to yield expressive descriptions. Then,
confirming the first assumption, the normalized Euclidean distances remain small because the local
neighborhood encloses the same object points. The upper limit of the characteristic radii is marked
at 165 centimeters, which corresponds to the distance from the center of the local neighborhood to
another object, i.e., a building edge. As seen in further experiments, the upper limit can only be deter-
mined accurately if the local neighborhood encloses enough points of another object. Otherwise, the
percentage of the other object’s points is too small to change the description. This is no drawback, as
the descriptions stay the same, i.e., the description still represents the object.

In Figure 3.11, the histograms of the FPFH descriptor are shown as a function of the local neighbor-
hood size from the same point cloud as before. The three angles θ, α, and φ are presented separately.
Each bin of the 11 bins is marked in the same color, while the 11 bins are stacked for every descrip-
tion. It can be seen that the minimal characteristic radius (at 27 centimeters) is marked, where the
descriptions even out. The upper limit of the characteristic radii is set (at 165 centimeters), where the
descriptions begin to change.

Long-Range Descriptors

In this part, two novel descriptors, together with some variations of them, are presented, which are
capable of describing objects with a large distance to the sensor characteristically. Thus, they are called
long-range descriptors.

First, the points of the input point cloud are selected whose local neighborhood provides suffi-
cient information to calculate a description. Next, the local neighborhood’s transformation around
the query point into a viewing-angle independent LRF is presented. Afterward, the transformed local
neighborhood’s rasterization is depicted, which is the input for the description calculation. Then, every
method of the actual description computation is presented, characterizing the neighborhoods’ depth
and point distribution information. Concluding, it is shown that the developed descriptors are able to
depict objects with a large distance to the LiDAR sensor and able to differentiate between different
objects.

76



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

0 40 80 120 160 200
0

20

40

60

80

100

Radius [cm]

Ra
tio

of
Po

in
ts

in
O

ne
Bi

n
[%

]

(a) First 11 bins of the FPFH description binning θ

0 40 80 120 160 200
0

20

40

60

80

100

Radius [cm]

Ra
tio

of
Po

in
ts

in
O

ne
Bi

n
[%

]

(b) Second 11 bins of the FPFH description binning α

0 40 80 120 160 200
0

20

40

60

80

100

Radius [cm]

Ra
tio

of
Po

in
ts

in
O

ne
Bi

n
[%

]

(c) Third 11 bins of the FPFH description binning φ

1. bin 2. bin 3. bin 4. bin 5. bin 6. bin 7. bin 8. bin 9. bin 10. bin 11. bin

Figure 3.11: The ratio of points in a histogram bin as a function of the local neighborhood radius for
every angle of the FPFH description in a stacked bar using the example of a real data wall
in a scene. The minimal characteristic radius and the upper limit of the characteristic radii
are marked (red).

77



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

1. Preprocessing of the Point Cloud: First, those points of the point cloud are identified which are
not suited for the description calculation due to lack of data or without value for the localization task.
Those points are discarded whose local neighborhood radius is smaller than the minimum radius of
Definition 3.5. In the practical implementation, the local neighborhood radius is smaller than the min-
imum radius, if one of the two following requirements are fulfilled. First, points on the outer layers of
the point clouds are discarded since they only have one neighboring layer, and therefore a sufficient
distribution of points within the local neighborhood is not present. Second, all points with a distance
to the neighboring layer that is greater than half of the local neighborhood size are sorted out before
the description calculation. If the distance is greater than that, the local neighborhood does not en-
close this neighboring layer, which again leads to no sufficient distribution of points within the local
neighborhood, refer to step 3 for more details. In both cases, the local neighborhood lacks sufficient
environmental information in the local neighborhood so that misinterpretations can occur if only one
layer is recorded, refer to Definition 3.5.

A disadvantage of this restriction is that half of the layers are no longer taken into account even at
medium distances from the LiDAR sensor. However, increasing the overall size of the grid would, in
turn, have the disadvantage of reduced descriptiveness.

α1

α2

Figure 3.12: Illustration of two angles of incidenceα1,2: The angle of incidenceα1 is larger than 100°, so
that the associated sampling point is not taken into account for the description calculation.
The angle of incidenceα2 is smaller than 100°, so that the associated sampling point is not
taken into account for the description calculation.

Additional points are discarded for whom the angle of incidence of the LiDAR beam is greater than
100◦since these points lie for the most part on the horizontal plane, e.g., in the street level, and have no
use for the description calculation characterizing depth or point distribution information. Figure 3.12
visualizes the angle of incidence for a horizontal case and for a vertical case.

2. Transformation of the Local Neighborhood: The second step of the description calculation is
the transformation of the local neighborhood points, which are measured in the VRF or SRF, into the
LRF. If the point cloud is measured in the VRF, the sensors’ calibration data is used for the transfor-
mation into the SRF. The transformation from the SRF into the LRF is necessary in order to achieve a
viewing-angle independence. According to Definition 3.4 item (v), this step is crucial, since a descrip-
tion should be similar for the same object viewed from different angles. The transformation requires a
calculation of a PCA, and thus the determination of the covariance matrix and eigenvalues and eigen-
vectors. This is performed based on Salti et al. [112]. The eigenvectors form the vectors of the LRF,
the axes corresponding to the size of the eigenvalue. The x-axis is the eigenvector with the largest
eigenvalue, the y-axis is the eigenvector with the second largest eigenvalue, and the z-axis is the
eigenvector with the smallest eigenvalue. The z-axis is assumed the surface normal vector, because
LiDAR sensors scan the surface of objects and the variance of the value is most likely the smallest one,
which is orthogonal to the surface. The x- and the z-axis point in the direction where more points
are located, the y-axis corresponding. Refer to Subsection 2.2.2 for a more detailed explanation of the
PCA.

78



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

xSRF

ySRF

zSRF

xLRF

yLRF

zLRF

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 3.13: Transformation from the SRF (gray) into the LRF (black) on the example of a pillar, sampled
by a Velodyne VLP 32-C

Figure 3.13 illustrates the definition of the LRF through the example of a pillar, which was sampled
by a Velodyne VLP 32-C. The considered sample point whose local neighborhood is transformed is
at the origin of the LRF. However, the determination of the LRF is optimized in that the covariance
matrix is only calculated with a subset of the points from the local neighborhood. Downsampling is
performed to compensate for point density differences within the local neighborhood. Differences
in point density occur, for example, at building corners, on which one side is sampled less due to its
viewing angle. This step stabilizes the LRF’s viewing-angle independence.

xLRF

yLRF

(a) Grid with seven raster
intervals

xLRF

yLRF

(b) Grid with five raster in-
tervals

xLRF

yLRF

(c) Grid with three raster
intervals

Figure 3.14: 2D Grid variants using the example of the pillar from Figure 3.13. The points’ depth value
(blue = low, red = high) on the pillar are rasterized in two dimensions in the LRF. The xLRF-
axis points in the direction of the greatest variance so that the pillar is rotated by 90◦in the
LRF.

3. Rasterization of the Local Neighborhood: After the local neighborhood has been transformed
into a viewing-angle independent coordinate system, it is rasterized to determine the descriptions
with the neighborhood’s center in the grid’s origin. Depending on the distance of the feature point to
the LiDAR sensor, this is done in 2D or 3D grids with seven, five or three raster intervals along the two or

79



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

xLRF

yLRF

zLRF

(a) Grid with three raster intervals
along xLRF-axis

xLRF

yLRF

zLRF

(b) Grid with three raster intervals
along yLRF-axis

xLRF

yLRF

zLRF

(c) Grid with three raster intervals
along zLRF-axis

Figure 3.15: 3D Grid variants. The points distributions are rasterized in three dimensions along each
axis of the LRF depending on their distance. In this example, each axis is divided into three
parts. Each color indicates the considered cells.

three axes of the LRF. Rasterizing the local neighborhood is the elementary step in achieving distance-
independent behavior since only one point per grid cell is required to produce a similar effect as with a
high-resolution point cloud. The aim is to apply the different rasterizations at different distances from
the LiDAR sensor and thus adapt the level of detail in the rasterization to the decreasing point density.

The variant with seven raster intervals has the highest descriptiveness and is used in the smallest
distance range in which there is a sufficiently high point density. The variant with five raster intervals
has a lower level of detail and is used to describe objects in medium distances. The variant with three
raster intervals has the lowest descriptiveness and is used in the largest distance range since the point
density is lowest in this area.

In the following, the size of the local neighborhood, the size of the cells of the three variants, and
the three distance ranges are derived from the Velodyne VLP 32-C sensor’s specification as this sensor
has the highest resolution and thus still can achieve a reasonable density at a large distance. On the
example of the pillar with a radius of 20 centimeters, refer to above, points of three layers fall onto the
pillar of two meters height until 80 meters. After that, it cannot be secured that a pillar is sampled with
at least three points. Thus, 80 meters are picked as an upper distance range limit for the description
calculation. For the derivation, the vertical resolutionαvert = 0.333◦ is used. This is a simplification con-
sidering the Velodyne VLP 32-C as this sensor has a non-uniform layer distribution, refer to Section 3.1.
The simplification is chosen as the middle 16 layers of the Velodyne VLP 32-C have the highest vertical
resolution of 0.333◦and thus, at least 16 layers are reliably taken into account here [150].

The size of the local neighborhood r is determined with the largest distance of 80 meters, as the local
neighborhood size should be the same at every distance but the resolution is lowest at 80 meters. A
minimal grid cell size smin is determined:

smin = tan(0.333◦ · π

180
) · 80 m = 0.465 m. (3.6)

For a distance range up to 80 meters, the grid with three raster intervals is used. Therefore, the total
size of the grid stotal can be determined from the minimal grid cell size smin:

s′total = 3 · smin = 3 · 0.465 m = 1.395 m. (3.7)

80



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

The required local neighborhood radius r can be determined from the size of the grid stotal:

r =
s′total ·

1
r

cos(π4 )
= 0.986 m. (3.8)

Here, the radius is rounded to one. Rewriting Equation 3.8 with r = 1, yields:

stotal = cos
(π
4

)
· 2 = 1.414 m. (3.9)

For the three variants of the grid cells, this yields the following grid cell sizes s3,5,7:

s3 =
stotal

3
=

1.414 m
3

= 0.471 m

s5 =
stotal

5
=

1.414 m
5

= 0.283 m

s7 =
stotal

7
=

1.414 m
7

= 0.202 m.

(3.10)

Following, the sizes of the individual grid cells are used to determine the upper limits of the distance
ranges, in which the three different grids are valid:

d3 =
s3

tanαvert
=

0.471 m
tan(0.333◦ · π

180 )
= 81.11 m

d5 =
s5

tanαvert
=

0.283 m
tan(0.333◦ · π

180 )
= 48.66 m

d7 =
s7

tanαvert
=

0.202 m
tan(0.333◦ · π

180 )
= 34.76 m.

(3.11)

Thus, the variant with seven raster intervals is used up to 30 meters, the variant with five raster intervals
from 30 meters to 45 meters, and the variant with seven raster intervals from 45 meters to 80 meters.
If the variant with seven or five raster intervals is used in larger distances with a lower point density,
it is not ensured that points fall into the individual grid cells. This would distort the descriptions and
should be prevented.

4. Description Calculation: After the local neighborhood has been transformed into a viewing
angle independent coordinate system and the points have been rasterized into a grid to generate
distance-independence, the descriptions are calculated. Therefore, two types of novel descriptors and
some versions are introduced in the following: the Depth Leap Local (DeLL), a simplified version of it,
and the modified Histogram of Point Distributions (HoPD) versions.

4.a Depth Leap Local Descriptor: The Depth Leap Local (DeLL) descriptor is based on the idea
of the Daisy descriptor by Tola et al. [132], refer to Subsection 2.2.5. The main idea of the proposed
descriptor is to characterize the 2D shape of the depth information of the aligned local neighborhood
around a point using gradients. A variation of the Daisy descriptor is realized independently for every
2D grid variation, refer to Figure 3.14.

Initially, the grid cells G(j, k) at position (j, k) are filled with the mean relative distance of all M
points p = [xi, yi, zi] specified in the VRF or SRF falling within the grid cell:

G(j, k) =
1

M
·

(
M∑

m=1

√
x2m + y2m + z2m − min

n

(√
x2n + y2n + z2n

))
. (3.12)

81



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

Table 3.4: Daisy parameters of all three grid variants

parameter grid w. 7 intervals grid w. 5 intervals grid w. 3 intervals
radius r 3 2 1

radius quantization q 3 2 1
angle quantization t 8 8 8

histogram quantization h 8 8 8
grid points s 25 17 9

size of description d 200 136 72

The grid is the input of the DeLL description calculation for the first step: determining the grid points
of the Daisy descriptor. The radius r, radius quantization q, and angle quantization tdefine the number
and positions of the grid points, refer to Subsection 2.2.5. While the angle quantization is identical for
all three 2D grid variants with t = 8, the radius and the radius quantization change depending on the
grid variant. For the variant with seven raster intervals, the radius is r = 3 and the radius quantization
is q = 3. For the variant with five raster intervals, the radius is r = 2 and the radius quantization is
q = 2. For the variant with seven raster intervals, the radius is r = 1 and the radius quantization is
q = 1. Figure 3.16 shows the three grid variants and the grid points according to the Daisy descriptor.
The radius and the radius quantization correspond to the number of grid cells. Thus, the description
reproduces the information content adapted for each raster. The number of grid points s is calculated
according to Equation 2.32, and the size of the description d is computed as ds = s ·h, with histogram
quantization h = 8 according to [132]. The resulting parameters are summarized in Table 3.4.

In the second step of the DeLL description calculation, the gradient images, i.e., orientation maps,
are determined. This is done as described in Subsection 2.2.5 but is supplemented by an extension.
In this case, the input image, one of the three grid variants filled with the depth information, is first
smoothed and then convoluted in x- and y-directions with a filter operator to obtain the orientation
maps. Both in the smoothing and the calculation of the orientation maps, border effects can occur. In
order to avoid these border effects, an expansion of the input image is performed. For this purpose,
the input grids are expanded by two grid cells in each direction.

After smoothing and calculating the orientation maps with the extended grids, the original sizes of
the grids are used and the border grid cells are discarded. The h orientation maps are calculated anal-
ogously to the original Daisy descriptor, refer to Subsection 2.2.5. The q different standard deviations
for the smoothing of the orientation maps are determined according to Equation 2.35 and are listed
for the three different grid variants in Table 3.5.

(a) Grid points for grid with
seven raster intervals

(b) Grid points for grid with five
raster intervals

(c) Grid points for grid with
three raster intervals

Figure 3.16: Grid points of the Daisy descriptor for each of the three grid variants

82



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

Table 3.5: Standard deviations for the smoothing of the orientation maps for every grid variant

standard deviationσi grid w. 7 intervals grid w. 5 intervals grid w. 3 intervals
first layer: σ1 1 1 1

second layer: σ2 1.5 1.5 -
third layer: σ3 2 - -

The final step is the actual description calculation. This is done based on the smoothed orientation
maps exactly as described in Subsection 2.2.5, but with an adapted normalization of the descriptions.
While Tola et al. normalize each row to length one, here, the entire DeLL description D is normalized
to Dnorm with its largest gradient value:

Dnormi,j
=

Di,j

maxm,n(Dm,n)
∀i, j. (3.13)

As a result, the relation of the descriptions is preserved. In the following, the largest gradient of the
descriptor is referred to as the normalization factor and is stored in the descriptor as an additional
entry.

Consequently, the variant with seven raster intervals results in d = 200 descriptions. The variant
with five raster intervals results in d = 136 descriptions. And the variant with three raster intervals
results in d = 72 descriptions. In each case, a further entry for the normalization factor is added.

4.b Simplified Depth Leap Local Descriptor: The simplified Depth Leap Local (DeLL) descriptor is
a highly reduced version of the DeLL descriptor to reduce the description’s size, albeit that this causes
less distinctiveness compared to the DeLL. It is also based on the three different grid variants filled
with depth information and applying the Daisy descriptor to it. The simplified DeLL descriptor is de-
signed to reduce the DeLL description to its first row, thus, corresponding to the description entries
of the central grid point. Accordingly, there are eight description entries, regardless of the underlying
grid, which are normalized so that the largest gradient is equal to one. These description entries are
relocated, maintaining their previous order, so that the largest value, which is equal to one after the
normalization, is vector entry one. This creates a total viewing angle independence but neglects the
spatial information of the description.

4.c Modified Histogram of Point Distribution: The main idea of the modified Histogram of Point
Distributions (HoPD) is to describe the point distributions in 3D grid variations, refer to Figure 3.15.
This is done by counting the points specified in the VRF or SRF in grid cells G(j, k, i) at position (j, k, i)
of size s3,5,7 around query point px,yz

j , refer to Equation 3.11. This number is normalized based on the
total number of points within the local neighborhood of size stotal:

G(j, k, i) =
1∣∣{px,y,z ∈ Px,y,z| ∥px,y,z − px,yz

j ∥∞ ≤ stotal}
∣∣ ·∣∣{px,y,z ∈ Px,y,z| ∥px,y,z − px,yz

j ∥∞ ≤ s3,5,7}
∣∣ (3.14)

The idea is based on the descriptor called 3DHoPD by Prakhya et al. [97]. While Prakhya et al. divide
the intervals between the minimum and maximum coordinates of each spatial axis, in this thesis, these
are divided like the three different 3D grid variants across the entire local neighborhood. Since the
restrictions regarding point density apply here as well, the three different grid variants are only used
in the associated distance range as defined before. Three versions of the modified HoPD are introduced
in the following.

83



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

The simple version of the modified HoPD is called uncorrelated HoPD. For every grid variant, the
number of points with the first, second, or third coordinate discretized is binned into a histogram.
Therefore, each spatial axis is divided into cuboids, refer to the colored cuboids of Figure 3.15. This
results in a 21-dimensional description for the variant with seven raster intervals, a 15-dimensional
description for the variant with five raster intervals, and a nine-dimensional description for the variant
with three raster intervals.

Another version of the modified HoPD is called correlated HoPD. The three spatial axes are consid-
ered together rather than individually. Therefore, the 3D local neighborhood is divided into equally
sized cubes, refer to the cubes with black borders of Figure 3.15. Each cube’s points are counted and
divided by the total number of points in the local neighborhood. Each cube corresponds to one value
in the correlated HoPD. This results in a 343-dimensional description for the variant with seven raster
intervals, a 125-dimensional description for the variant with five raster intervals, and a 27-dimensional
description for the variant with three raster intervals.

A third version of the modified HoPD is called smoothed HoPD. The input for the smoothed HoPD
is the description of the uncorrelated HoPD. This description is smoothed to compensate for the non-
uniform sampling of point clouds. The smoothing is done by filtering the uncorrelated HoPD with the
smoothing operatorH = [ 14 ,

1
2 ,

1
4 ]. External pixels are assumed to be zero. As the smoothing can lead

to the sum of the descriptions of an axis no longer equal to one, normalization is carried out again
after smoothing. Like the uncorrelated HoPD, the smoothed HoPD has 21, 15, or nine descriptions
depending on the number of intervals per coordinate axis.

5. Analyzes: In the following, the descriptors are analyzed with two experiments. The first experi-
ment determines distances of descriptions of a synthetic pillar computed with every of the developed
descriptors to investigate their distance independence. In preceding experiments, it was shown that
state-of-the-art descriptors lack this requirement. In the second experiment, distances of the descrip-
tions of a real-world pillar and corner computed with every of the developed descriptors are compared.
This is performed to examine whether the descriptor variants with seven intervals is more expressive
than the variants with five or three intervals.

5.a Analysis on Dependence on Distance: In the following, it is demonstrated that the presented
descriptors are capable of characteristically describing objects even with a large distance to the sensor.

For that, the same experiment as in 5. Dependence on Distance analyzing the distance behavior
is performed. Nevertheless, a short summary of the methodology of this experiment is given in the
following.

A synthetically sampled pillar with a radius of 20 centimeters is used again as a sample object to
examine the distance behavior, as it is known that this object can be stably detected applying semantic
prior knowledge [14, 119, 123, 160]. In this case, the Velodyne VLP 32-C model is employed.

The descriptions d1 of each distance of this sparse point cloud are compared to the description dref

of a densely sampled pillar using a normalized Euclidean distancemnormeucl. For this, the descriptions
of the point on the middle of each pillar are considered. The normalized Euclidean distance is com-
puted as follows according to every descriptor, where dn represents the n-th description entry:

DeLL: mDeLL
n eucl =

1

maxDeLL,ref
·

√√√√ N∑
n=1

(
dDeLL,1
n − dDeLL,ref

n

)2
(3.15)

For the DeLL, the largest sum of the descriptions from all points of the reference point cloud maxDeLL,ref
is used for the normalization, since the DeLL is not a histogram distribution, but normalization is nec-
essary for comparability between the three grid variants. The variable N specifies the number of de-

84



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

scriptions and, depending on the grid variant, is 200, 136, or 72.

simplified DeLL: ms. DeLL
n eucl =

1

maxs. DeLL,ref
·

√√√√N=8∑
n=1

(
ds. DeLL,1
n − ds. DeLL,ref

n

)2
(3.16)

For the simplified DeLL, the Euclidean distance is normalized analogously to the DeLL by the largest
sum of the descriptions from all points of the reference point cloud maxs. DeLL,ref.

uncorrelated HoPD: muncorr. HoPD
n eucl =

1√
2 · 3

·

√√√√ N∑
n=1

(
duncorr. HoPD,1
n − duncorr. HoPD,ref

n

)2
(3.17)

correlated HoPD: mcorr. HoPD
n eucl =

1√
2
·

√√√√ N∑
n=1

(
dcorr. HoPD,1
n − dcorr. HoPD,ref

n

)2
(3.18)

smoothed HoPD: ms. HoPD
n eucl =

1√
2 · 3

·

√√√√ N∑
n=1

(
ds. HoPD,1
n − ds. HoPD,ref

n

)2
(3.19)

The normalization of the HoPD variants is straight forward, as they are histogram-based descriptors.
Figure 3.17 shows the descriptors’ distance dependence. First, several general statements about the

three different grid variations are made, regardless of the descriptor algorithm.
The descriptor variants with grid variations of seven raster intervals are not robust at large distances,

which is true for every descriptor algorithm. The descriptor variants with grid variation of three raster
intervals are able to calculate equal descriptions up to 100 meters. The descriptor variants with grid
variation of five raster intervals represents a trade off between the other two variations. However, the
distance independence might counteract with the expressiveness of each variation, see the next ex-
periment.

Looking at the description distances of the DeLL description, it can be seen that the description de-
viations are comparably small. The descriptions calculated with the grid with three raster intervals do
not differ from the descriptions of the reference pillar. This is because points of the sparsely sampled
pillar fall at every distance in the same raster as points of the dense pillar, i.e., because of the rough
rasterization and the large grid cells. Therefore, the descriptions are the same. However, the descrip-
tions computed with the grid with seven or five intervals differ at larger distances from the dense pillar.
But this occurs mostly after their previously defined application range except of some discretization
effects. Therefore, the effect is negligible. These discretization effects can be seen in some outliers
and are due to the fine rasterization, whenever points of the pillar fall into neighboring cells due to the
non-uniform resolution of the Velodyne VLP 32-C.

The graphs of the simplified DeLL look very similar to the one of the DeLL descriptor. The descrip-
tions computed with the grid with three raster intervals are equal to those of the reference pillar. For
the other two variants, the normalized Euclidean distances are larger compared to the DeLL descriptor.
This is due to the fact that the simplified DeLL is based on the depth information of the grid’s central
point hardly considering the neighboring grid cells. Therefore, compared to the DeLL, it does not even
out discretization effects by considering more cells if, e.g., no point falls into the central points.

The graphs of the uncorrelated HoPD show relatively large deviations compared to the other descrip-
tors. If the pillar diameter is smaller than the grid cell size so that differences along the localx-axis only
cause derivations of the normalized Euclidean distances, an association to the reference pillar is possi-
ble. However, if the points of the pillar fall into several sections in all three spatial directions, discretiza-

85



3.2. Geometry-Based Descriptors 3. LiDAR-Based Descriptors

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

Distance [m]

N
or

m
al

iz
ed

Eu
cl

id
ea

n
D

is
ta

nc
e

7 intervals
5 intervals
3 intervals

(a) DeLL

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

Distance [m]

N
or

m
al

iz
ed

Eu
cl

id
ea

n
D

is
ta

nc
e

7 intervals
5 intervals
3 intervals

(b) simplified DeLL

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

Distance [m]

N
or

m
al

iz
ed

Eu
cl

id
ea

n
D

is
ta

nc
e

7 intervals
5 intervals
3 intervals

(c) uncorrelated HoPD

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

Distance [m]

N
or

m
al

iz
ed

Eu
cl

id
ea

n
D

is
ta

nc
e

7 intervals
5 intervals
3 intervals

(d) correlated HoPD

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

Distance [m]

N
or

m
al

iz
ed

Eu
cl

id
ea

n
D

is
ta

nc
e

7 intervals
5 intervals
3 intervals

(e) smoothed HoPD

Figure 3.17: Description deviations of a sparse, synthetic pillar compared to a dense, synthetic pillar as
a function of the distance to the pillar for the descriptors developed in this thesis

86



3. LiDAR-Based Descriptors 3.2. Geometry-Based Descriptors

tion effects can be seen. Then, the descriptor fails with increasing distance, since occurring gaps in the
grid in three spatial axes cause a large normalized Euclidean distance to the high-resolution reference.
In summary, it can be stated that the distance behavior of the uncorrelated HoPD is not sufficient to
meet the requirement for a description independent of the point density or distance.

In the case of the correlated HoPD, it can be seen, for the same reasons as for the uncorrelated HoPD,
the correlated HoPD cannot describe the local neighborhood independently of the point density or
distance. The uneven vertical scanning of the Velodyne VLP-32C and resultant gaps in the grid have an
effect on all three axes of the LRF. By describing all three spatial axes in one histogram, the effect is very
large and causes large degradation with larger distances. Thus, the normalized Euclidean distances
computed with the correlated HoPD are larger than those determined with the uncorrelated HoPD.

The smoothed HoPD variant changes the least with increasing distance compared to the other HoPD
versions and compared to the DeLL, because it compensates the gap problem of the other HoPD ver-
sions by smoothing the grid entries. Nevertheless, as the distance increases, there are occasionally
stronger increases in the normalized Euclidean distance or outliers for the grid variant with seven or
five raster intervals. However, this effects are relatively small and can be neglected. One additional ef-
fect has to be pointed out. Against expectations, up to 15 meters, the normalized Euclidean distance
decreases. This can be explained looking at the different densities between the compared pillars. The
number of points falling into the subdivisions differs from the high-resolution reference pillar which re-
sults in the small description differences. However, the smoothed HoPD shows the smallest deviations
and is thus preferable to the other descriptors.

Compared to distance behavior of state-of-the-art algorithms, cf. Figure 3.7, it can be seen that the
DeLL and the smoothed HoPD descriptor show smaller description deviations and thus outperform
these algorithms. Therefore, the DeLL and the smoothed HoPD algorithms outperform that of the
state-of-the-art and show a practicability for an application in localization.

5.b Analysis on Distinguishing Between Objects: The following experiment aims to investigate
how descriptive the individual descriptors, i.e., DeLL, simplified DeLL, uncorrelated HoPD, correlated
HoPD, and smoothed correlated HoPD, are depending on their rasterization variant. It is to be ex-
pected that the descriptor variant with seven intervals depicts the points of a local neighborhood more
expressive than the variant with five or three intervals for each developed descriptor.

For this experiment, the point clouds of a real-world pillar and house corner sampled with the Velo-
dyne VLP 32-C sensor are considered. A pillar, a house corner, and a wall are often objects that are
used for localization, refer to previous experiments. However, the grid of a wall does not differ for
grids with different number of cells. Therefore, only the pillar and the house corner are examined here.
Both objects were sampled at approximately 8 meters in nearly the same conditions, i.e., weather, tem-
perature, and time of day. The descriptions are determined of a point which is located on the middle
of each object so that their descriptions capture the geometry of the object. Then, the (normalized)
Euclidean distances between the two descriptions are computed for every descriptor. For the uncorre-
lated HoPD, correlated HoPD, and smoothed correlated HoPD descriptors, the normalized Euclidean
distances according to Equations 3.17, 3.18, 3.19 are computed. For the DeLL and simplified DeLL de-
scriptors, the Euclidean distances are calculated omitting the normalization factor of Equations 3.15
and 3.16 as these were the maximal distance, which does not make sense here. The following idea
is assumed for the Euclidean distances: the higher the distance between the two objects, the more
expressive the descriptor variant is able to characterize the geometry of the object.

In Table 3.6, the results of this analysis are listed. It can be seen for every descriptor that the more
cells are used for the rasterization, the greater is the distance between the two objects. That means
that the descriptor is more expressive when more cells are used. Thus, it makes sense to apply only
the grid variant with three intervals, showing the best distance behavior, but to apply the grid variant
to its specified distance to ensure descriptiveness.

87



3.3. Intensity-Based Descriptors 3. LiDAR-Based Descriptors

Table 3.6: (Normalized) Euclidean distances between real-data corner and pillar for the descriptors
DeLL, simplified DeLL, uncorrelated HoPD, correlated HoPD, and smoothed correlated HoPD

grid variant DeLL simplified DeLL uncorrelated HoPD correlated HoPD smoothed HoPD
w. 7 intervals 0.024 0.0012 0.7 0.11 0.09
w. 5 intervals 0.027 0.0018 0.74 0.14 0.1
w. 3 intervals 0.029 0.0029 0.8 0.18 0.13

In summary, the developed descriptors create distance independence by rasterizing the local neigh-
borhood. The analyzes on them demonstrate that the rasterizing can successfully solve the problem
when suitably processing the rastered data. Here, the descriptors smoothing the 2D or 3D grid, i.e.,
DeLL and smoothed HoPD, show the best distance behavior and thus, overcoming the issue of the
non-uniform sampling, which is essential when rasterizing. Concerning the normalized Euclidean dis-
tance at distances of five to 15 meters, the gradient-based descriptors DeLL and simplified DeLL have
the advantage that the relative number of points per grid cell does not influence the description com-
pared to the smoothed HoPD. However, the less cells are used the more is the descriptor distance
independent. Therefore, a second experiment shows that it makes sense to apply a grid with more
cells to ensure a descriptiveness of the descriptors.

3.3. Intensity-Based Descriptors

In this section, the state-of-the-art intensity-based descriptors are theoretically examined, and a novel
descriptor, overcoming their issues, is introduced. This section answers the second research question
of this chapter, whether also the intensity-based descriptors not-only the geometry-based are well-
suited for localization.

3.3.1. Theoretical Analyzes on State-of-the-Art Algorithms

Intensity-based descriptors have received some attention in recent years.
Cop et al. [20] introduce the DEscriptor of LiDAR Intensities as a Group of HisTograms (DELIGHT) de-

scriptor. It is designed as a global descriptor computing one vector for the whole point cloud. The
description is calculated by dividing the point cloud into 16 parts and counting the differences of
raw reflectivity returns in these subdivisions. A global descriptor is not suitable in the context of lo-
calization, as it is not very robust. Changes in parts of the environment affect the global description
representing a scene, which may cause a large inaccuracy of localization with global descriptors. Ad-
ditionally, only stable elements of the environment should be used for localization, which is hard to
realize with global descriptors.

Guo et al. [42] refined the idea of the DELIGHT descriptor. Their algorithm, called Intensity Signa-
tures of Histograms of OrienTations (ISHOT) descriptor, is designed as a local descriptor that depicts a
local neighborhood around a point of the point cloud instead of the whole point cloud at once. The
ISHOT descriptor divides a spherical local neighborhood into multiple subdivisions, as introduced in
the SHOT descriptor, refer to 2.4a in Subsection 2.1.1. Instead of counting the differences of intensity
returns within each subdivision, the ISHOT method bins the intensity return in each part of the local
neighborhood into a histogram.

Without any preprocessing step, both descriptors are dependent on different distances, viewing
angles, and point cloud densities. They follow a simple approach by binning occurrences and differ-
ences of intensities into histograms. These approaches directly process the raw intensity data without
adding a step to make the descriptors robust. They do not solve the problem of differently sampled

88



3. LiDAR-Based Descriptors 3.3. Intensity-Based Descriptors

xSRF

ySRF

zSRF

xLRF

yLRF

zLRF

1. Preprocessing 3. Descriptor Calculation2. Pattern Generation

Figure 3.18: Scheme of the proposed GRAIL descriptor. 1. Points of a local neighborhood are normal
aligned to be independent of the viewing angle, and 2. their intensities (blue = low, red =
high) are binned into a grid. 3. With the Daisy description computation using the grid, the
normalized description of the local neighborhood is calculated.

objects, like sampling the same object from different distances or non-uniformly sampled LiDAR point
clouds. Accordingly, a novel descriptor based on intensity data overcoming these issues is introduced.

3.3.2. Developments

In the following, the intensity-based descriptor, developed in this thesis, is presented. The main idea
of the descriptor, called GRAdients of Intensities as a Local descriptor (GRAIL), is based on the Daisy
descriptor by Tola et al. [132], refer to Subsection 2.2.5, describing the shape of the intensity in the
local neighborhood with gradients.

The computation of the description consists of three central steps, refer to Figure 3.18 for an illus-
tration. At first, a spherical local neighborhood around every query point of the point cloud in the
Sensor Reference Frame (SRF) is computed and transformed into a viewing independent Local Refer-
ence Frame (LRF). Next, the local neighborhood’s intensities are rasterized, which is the input for a
variation of the Daisy description calculation. The resulting description is normalized hereafter. The
three steps are explained in more detail in the following.

1. Preprocessing: First, points of the point cloud are chosen which provide sufficient information to
calculate a description. This procedure follows the idea of the long-range descriptors DeLL and HoPD
versions, refer to Subsection 3.2.2. Thus, points are discarded whose local neighborhood radius does
not fulfill Definition 3.5. That means that points on the outer layers of the point clouds are rejected, as
only one neighboring layer exists. Including those points would falsify the descriptions as the shape of
the intensities always forms an intensity edge. Furthermore, points with a distance to the neighboring
layer that is greater than half of the total grid size are discarded. In this case, the local neighborhood
does not enclose this neighboring layer, which also results in a misinterpretations if only one layer is
included.

For each of the remaining points, the description is calculated using the local neighborhood. Af-
ter the discarding process, the local neighborhood measured in the VRF or SRF is transformed into a
viewing-angle independent LRF. As defined in Requirement (v) of Definition 3.4, a description should
not change much if the same object is viewed from different angles. Hence, each spherical local neigh-
borhood is transformed into a LRF obtained by a PCA, as recommended by Tombari et al. [134] or Salti
et al. [112]. The eigenvectors of the PCA build the axes of the LRF, where the z-axis corresponds to
the eigenvector with the smallest eigenvalue. Refer to Subsection 2.2.2 for an explanation of the PCA.

89



3.3. Intensity-Based Descriptors 3. LiDAR-Based Descriptors

The z-axis is assigned as the surface normal vector. As LiDAR sensors scan the surface of objects, the
variance of the value will most likely be the smallest, which is orthogonal to the surface. Thus, the vec-
tor with the smallest eigenvalue is assumed as the surface normal. Figure 3.13 and Figure 3.18 show
examples of local neighborhoods being transformed from the SRF into the LRF.

2. Pattern Generation: Next, the transformed local neighborhood is rasterized into a 2D grid con-
sisting of equally sized cells. This step is fundamental for enabling distance independence of the de-
scriptor because at least one point in a grid cell is necessary, creating a similar description as with
high-resolution point clouds. Here, the dimension along the normal axis is eliminated. In this way, the
least information is lost during the reduction in two dimensions. Each equally sized square grid cell
of a square grid G(j, k) at position j, k is assigned the maximum value of the points‘ reflectivities ri
falling into that grid cell:

G(j, k) = max
i

(ri) . (3.20)

If no point falls into a pattern’s cell, the cell’s value is set to zero.
Since the query point is located at the origin of the LRF, the query point falls in the middle grid cell.

Consequently, the number of grid cells has to be odd. As introduced for the long-range descriptors,
three different rasterizations at three different distance ranges, maximal up to 80 meters, are applied
to adapt the level of detail in the rasterization to the decreasing density within a point cloud: with
seven, five, or three raster intervals.

The grid with seven raster intervals is able to describe the most details of the intensity shape but
requires the highest point density. Thus, it is used in the distance range near the sensor, i.e., zero to
30 meters, refer to Equation 3.11. The size of each grid cell is the smallest compared to the other two
variants, i.e., 0.202 meters, refer to Equation 3.10. The grid with five raster intervals is able to describe
fewer details of the intensity shape and is used at medium distances, i.e., 30 to 45 meters, refer to
Equation 3.11. The size of each grid cell is 0.283 meters, refer to Equation 3.10. The grid with three raster
intervals can describe the lowest level of details but can deal with the lowest point density. Therefore,
it can be applied for points of the point cloud, which are far away, i.e., from 45 to 80 meters, refer to
Equation 3.11. The size of each grid cell is 0.471 meters, refer to Equation 3.10.

3. Description Calculation: The 2D intensity-grids of the aligned local neighborhood around the
query point are used to describe the intensities’ shape using gradients. For this purpose, the Daisy
descriptor originally introduced by Tola et al. [132], refer to Subsection 2.2.5, is adapted. A modification
of the Daisy descriptor is applied separately for every grid variant.

The first step of the GRAIL descriptor is to determine the positions of the grid points of the Daisy de-
scriptor for each cell. This is realized according to the determination of the parameters of the DeLL
descriptor, refer to Subsection 3.2.2. The grid points’ positions are defined by the radius r, radius
quantization q, and angle quantization t. A visualization of the resulting grid points can be seen in
Figure 3.16, and the resulting parameters are summarized in Table 3.4.

The second step of the GRAIL descriptor is to compute the gradient images, i.e., orientation maps.
The orientation maps are computed as described in Subsection 2.2.5. Since the intensity grids are
much smaller than the camera images used by Tola et al., the border effects need to be compensated.
Initially, the intensity grids are smoothed. Next, they are folded in x- and y-directions with a filter oper-
ator in order to obtain the orientation maps. Both, in the smoothing and gradient calculation, values
outside of the local neighborhood are consulted, i.e., the input images are expanded by two pixels in
each direction. The values of the neighboring points are inserted into the additional pixels. Afterward,
the border grid cells are discarded to regain the original size of the input grid. This grid is used to
determine h orientation maps analogously to the original Daisy descriptor, refer to Subsection 2.2.5.

90



3. LiDAR-Based Descriptors 3.3. Intensity-Based Descriptors

According to Equation 2.35, the q different standard deviations for the smoothing of the orientation
maps are computed and are presented in Table 3.5 for each grid variant.

The third step of the GRAIL descriptor is the description calculation. The calculation is performed
using the smoothed orientation maps, as depicted in Subsection 2.2.5. The normalization of the de-
scriptions is executed differently from the one in [132] by Tola et al., where each row of the description
is normalized to length one. In the case of the GRAIL descriptor, the whole descriptionD is normalized
to Dnorm with its largest gradient value, refer to Equation 3.13. As a result, the relations of the intensity
gradients are kept. From now on, the description’s largest gradient is called the normalization factor
and is saved in the description as an additional entry.

In summary, the calculations yield a description with d = 200 values in case of the grid with seven
raster intervals, a description with d = 136 values in case of the grid with five raster intervals, and
a description with d = 72 values in case of the grid with three raster intervals, in each case with an
additional flag for the grid type and the normalization factor.

3.3.3. Analysis

In the following analysis, the suitability of the newly developed intensity-based GRAIL descriptor is
compared to the selected geometry-based descriptors, i.e., FPFH, SHOT, and RoPS descriptors, by com-
puting the sensitivity to changes of the relative movements of a test vehicle in real-world data.

Here, the accuracy of the approaches is examined by calculating the vehicle’s odometry using con-
secutive sparse point clouds measured with the Velodyne VLP 32-C. In total 3592 LiDAR scans with a
mean velocity of 8.79 m/s are considered. The scans were recorded in suburbs, highways and industrial
areas during fair and rainy weather. The computed odometry is compared to the reference odometry,
determined by the reference trajectory recorded with a high-precision Applanix POS LV 520 system [1],
refer to Figure 3.1a for the mounting of the reference system in the test vehicle.

The descriptions are calculated for the preprocessed points within each point cloud, to determine
the odometry based on the descriptions. The descriptions, together with the 3D information of the
point cloud, are the input for an odometry calculation, which is realized with the Iterative Closest
Point (ICP) [9], refer to Subsection 2.2.3. The ICP algorithm is an easy-to-implement method that serves
as a sufficient indicator for the descriptor’s suitability in the localization context. In this case, the ICP is
applied to register two consecutive LiDAR point clouds and thus to determine the translation vector
and rotation matrix between these consecutive point clouds based on the spatial and description in-
formation. As metric for comparing the spatial information the Euclidean distance is applied. As metric
for comparing the description information Equations 3.2, 3.3, and 3.4 are used for the FPFH, SHOT, and
RoPS descriptor. For the GRAIL descriptor, the following equation computes the differences between
two descriptions dGRAIL,1 and dGRAIL,2:

mGRAIL
n eucl =

1

maxGRAIL
·

√√√√ N∑
n=1

(
dGRAIL,1
n − dGRAIL,2

n

)2
, (3.21)

where maxGRAIL is the maximal difference occurring in the applied data set.
The ICP is applied with the rejection parameter option not considering 40% of the point pairs be-

tween the two consecutive point clouds. The rejection parameter of 40% implies that the point pairs
with a distance that is greater than 60% of all distances are not taken into account when determining
the translation vector and rotation matrix. In this experimental evaluation, it could be observed that
40% have yield the best odometry accuracies for all descriptors. For more details about the ICP and
rejection parameter, refer to Subsection 2.2.3. The results yield the three-dimensional movement of
the test vehicle between two point clouds.

91



3.4. Summary 3. LiDAR-Based Descriptors

Table 3.7: Average and standard deviation of absolute and rotational odometry errors calculated using
the FPFH, SHOT, RoPS, and GRAIL descriptor for the collected data using Velodyne VLP-32C

descriptor absolute [m] rotational [rad]
FPFH 0.43± 0.1 0.23±0.09
SHOT 0.5 ± 0.13 0.24±0.09
RoPS 0.12±0.13 0.24±0.09
GRAIL 0.45±0.19 0.2±0.13

Table 3.8: Average and standard deviation of absolute and rotational odometry errors calculated us-
ing the GRAIL descriptor for the collected data using Velodyne VLP-32C comparing three
different sceneries

sceneries absolute [m] rotational [rad]
highway 0.77± 0.11 0.19±0.14
suburb 0.12 ± 0.16 0.15±0.11

industrial 0.45±0.29 0.27±0.13

Table 3.7 reports the average absolute and rotational errors of the odometry as Root Mean Square
(RMS). The absolute error is specified as the root-mean-square error and the rotational error as the
radial angular difference between the two consecutive 3D driving directions. The results illustrate that
the intensity-based descriptor, GRAIL, achieves similar odometry deviations compared to the other
geometry-based descriptors, FPFH, SHOT, and RoPS. However, it can be seen that the standard de-
viation is much higher compared to the other descriptors. This is due to the fact that the position
accuracy largely depends on the variation of the intensity data. If no high reflecting objects, like road
signs, occur in a scene, the odometry accuracy decreases.

In Table 3.8, the average RMS absolute and rotational errors of the odometry of the three different
sceneries are compared. It turns out that the results of the descriptor are highly scene dependent. On
the one hand, the velocity has an influence on the odometry accuracy. The higher the velocity, the
greater the inaccuracies of the odometry calculation. While the point clouds of the highway scenery
are recorded with an average velocity of 19.5m/s, that of the industrial area scenery with an average
velocity of 5 m/s, and that of the suburban are scenery with an average velocity of 3 m/s. The higher
the velocity of the test drive, the greater the corresponding deviations from the reference odometry. A
scan is recorded every 1/10 seconds, which means that at an average speed of 19.5 m/s for the highway
scenery, 1.9 meter are traveled.

Summarizing, it can be said that the odometry accuracy of intensity-based descriptors are similar to
those of geometry-based descriptors. However, their results are not as robust compared to geometry-
based algorithms.

3.4. Summary

Based on the findings of the literature review provided in the previous chapter, this chapter covers
the topic of descriptors for real-world data in the context of the LiDAR-Feature-based Localization. A
description can be assigned to each point of the point cloud and captures numerically characteristic
relations between sampling points in a local neighborhood around that point of a LiDAR point cloud.

At the core of this chapter is the definition of criteria for well-suited descriptors for automated ve-
hicles’ self-localization. They state that descriptors need to detect the local neighborhood structure
expressively, that they need to distinguish between different object types, but characterize similar
objects in the same way independent of the point cloud densities. Additionally, they need to be inde-
pendent of the viewing angle and the distance between the LiDAR sensor and the object.

92



3. LiDAR-Based Descriptors 3.4. Summary

Following these criteria, the state-of-the-art descriptors characterizing the geometric information
are analyzed thoroughly with real-world data or synthetic data modeling the real-world environment
based on existing LiDAR sensors. In doing so, the first research question addressing the suitability
of geometry-based descriptors for real-world localization is answered. These analyzes show that the
state-of-the-art descriptors fulfill many of the criteria but lack the independence on the distance and
depend largely on the size of the local neighborhood.

Therefore, some algorithms and modifications overcoming these issues are introduced in this chap-
ter. This includes a method choosing the best local neighborhood size and distance independent de-
scriptors. Distance analyzes on the newly developed descriptors, called DeLL and HoPD, and variations
of them show they are independent of the distance between LiDAR sensor and object.

As an additional topic, this chapter discusses existing intensity-based descriptors and introduces a
novel intensity-based descriptor, called GRAIL. Because intensity-based descriptors use only the one-
dimensional intensity information of LiDAR point clouds compared to the three-dimensional informa-
tion processed by geometry-based descriptors, this part of the chapter examines the practicability for
localization of intensity-based descriptors compared to geometry-based descriptors, the second re-
search question. Odometry calculation results based on both types of descriptors show that they pro-
duce relative movements with similar accuracies. However, the standard deviation of the odometry
accuracies is larger because the accuracy depends on the occurrence of high-reflectivity information
within a scene. Hence, intensity-based descriptors provide sufficient information, which can be used
for localization, but not as a stand-alone solution.

The outcome of this first step of the LiDAR-Feature-based Localizationprovides descriptions for every
point of the point cloud. However, not every point of the point cloud should be used for localization, as
this results in a large amount of data and not every point provides useful information for localization.
Therefore, the next step of the LiDAR-Feature-based Localization is to use the descriptions to detect
those areas with information useful for localization. This is presented in the next chapter.

93





4. Feature Area Extractions

The first step of the LiDAR-Feature-basedLocalization computes descriptions for every point in the point
cloud. However, this leads to large amounts of data and not every point of the point cloud provides ro-
bust information which is useful for localization. Hence, in the second step of the LiDAR-Feature-based
Localization, the point cloud information and the descriptions computed with a fixed, arbitrary descrip-
tor are used to extract areas automatically which fulfill these requirements. This chapter focuses on the
extraction with geometry-based descriptors, since intensity-based descriptors need to be handled dif-
ferently. For the extraction of intensity-based descriptors, see appendix C. It depicts the methodology
of the extraction process, defining the criteria for an automated extraction method and the research
questions, in Section 4.1. The developments of the extraction process build upon these criteria. The
first step of the extraction process is the generation of connected sets of points with similar descrip-
tions, called Feature Areas (FAs), presented in Section 4.2. In the second step of the extraction process,
the benefit for localization of each computed FA is measured, refer to Section 4.3. The implementation
of these two steps are described in Section 4.4, which also includes the specification of the map data
format. The developed extraction process is analyzed and its results are presented in Section 4.5. Es-
pecially one experiment investigates an aspects of the practical relevance of the LiDAR-Feature-based
Localization: the scenery coverage of FAs Subsection 4.5.3.

4.1. Terms andMethodology

The methodology of the detection process is introduced in this section. It includes requirements for
developing the extraction of Feature Areas (FAs) and the research questions addressed in this chapter.

4.1.1. Defining the Feature Extraction

In the following subsection, the terms of the second step of the LiDAR-Feature-based Localization are
defined. This consists in extracting Feature Areas (FAs) with descriptions of 3D LiDAR data which are
most useful for localization in an automated way. This is done with on-board sparse point clouds to
extract On-board Feature Areas (OFAs) and with globally referenced dense point clouds to extract Map
Feature Areas (MFAs). The following definitions are specified for a fixed, arbitrary descriptor function
D.

Definition 4.1 (Connected Points). A subsetPx,y,z
k of a 3D point cloudPx,y,z ⊂ R3 is called connected

if
convex hull(Px,y,z

k ) ∩ Px,y,z = Px,y,z
k .

Definition 4.2 (Feature Area). Let Px,y,z
k ⊂ Px,y,z ⊂ R3 be a connected set of 3D points of the point

cloudP , letDPk
⊂ DP ⊂ Rm be the set of descriptions ofPk with local neighborhoodN , letmd : Rm ×

Rm → R≥0 be some descriptor-specific metric, and let ε > 0 be a predefined metric threshold. Then, a
Feature Area (FA)F3D

Pk,DPk
= (Pk,DPk

) is a set if

∀p, q ∈ Pk satisfymd(DPk
(N (p)), D(N (q))) < ε.

95



4.1. Terms andMethodology 4. Feature Area Extractions

In other words, a Feature Area (FA) is a connected set of points of a point cloud with similar descrip-
tions. The set of all FAs of one point cloud is denoted with FP or F where no risk of confusion exists.

Definition 4.3 (Feature Area Representative). Let F3D
Pk,DPk

⊂ Px,y,z
k × DPk

be a Feature Area with
the connected set of 3D pointsPx,y,z

k ⊂ Px,y,z ⊂ R3 of the point cloudP and descriptionsDPk
⊂ DP ⊂

Rm of Pk . Then, a Feature Area Representative (FAR)FPk,DPk
is the representation of aF3D

Pk,DPk
and an

element
(r,d) ∈ R2+ × Rm,

whered ∈ Rm is themedoid of all descriptionsDPk
and r ∈ R2+ a two-dimensional polygonal chain.

The term F replaces the term FPk,DPk
and the index k is omitted of the point subset Px,y,z

k in cases
where no risk of confusion exists.

The polygonal chain representing the points of a FA are derived from the projection of the points
to the x − y−plane. A 2D representation is sufficient since this thesis focuses on 2D localization. As
LiDAR sensors scan the surface of objects of the environment, the neglect of the depth information is
reasonable. That means that the distinction between one-dimensional objects, i.e., local objects, and
approximately two-dimensional objects, i.e., elongated objects, is adequate. A polygonal chain is a
union of connecting lines of a series of points.

In this thesis, FAs with local expansions in x- and y-direction smaller than 0.5 meters are modeled as
a polygonal chains containing only one point, the two-dimensional average of all points of a FA. Oth-
erwise, the areas are considered as polygonal chains with at least two points. The elongated objects
are represented as polygonal chains not lines, because these objects are often not formed like straight
lines, e.g., curb courses.

However, in some cases, FAs with local expansions in x- and y-direction larger than 0.5 meters may
be modeled as points, called center points. These center points are defined the two-dimensional av-
erage of all points of a FA. Here, the Feature Area Representative (FAR) is denoted with F̊Pk,DPk

.
Next, the function measuring the benefit for localization of each computed FAR is defined.

Definition 4.4 (Localization Information Gain I). LetF ∈ R2+ × Rm be a Feature Area Representative.
The Localization Information Gain (LIG) is a function

LIG : F ∈ R2+ × Rm 7→ [0, 1]k

stating the benefit for localization of each computed Feature Area Representative with kmeasures.

The definition of the Localization Information Gain (LIG) allows the definition of an On-board Feature
Area (OFA), i.e., online detections in the test vehicle.

Definition 4.5 (On-Board Feature Areas). Let FPon-board,DPon-board
⊂ R2+ × Rm be the set of all Fea-

ture Area Representatives of a sparse on-board point cloud Pon-board with descriptionsDPon-board , let LIG be
the functionmeasuring the benefit for localization of each computed Feature Area Representative, and let
q1−(α/100) be the k-dimensional (100− α)%-quantile of the LIG function’s distribution of all Feature Area
Representatives of the setPon-board × DPon-board with α ∈ [0, 100]. Then, the set of On-board Feature Areas
(OFAs)FO is defined by

FO = {FPon-board,DPon-board
∈ FPon-board,DPon-board

|LIG(FPon-board,DPon-board
) ≥ q1−(α/100)}.

Rephrased, thoseα% of FARs of an on-board point cloud with the highest LIG score are extracted as
OFAs.

Additionally, the definition of the LIG enables the definition of a Map Feature Area (MFA), i.e., offline
detections for the map generation.

96



4. Feature Area Extractions 4.1. Terms andMethodology

Definition 4.6 (Map Feature Areas). LetFPmap,DPmap
⊂ R2+ × Rm be the set of all Feature Area Rep-

resentatives of a dense map point cloud Pmap with descriptions DPmap , let LIG be the function measuring
the benefit for localization of each computed Feature Area Representative, and let q1−(α/100) be them-
dimensional (100 − α)%-quantile of the LIG function’s distribution of all Feature Area Representatives of
the setPmap ×DPmap withα ∈ [0, 100]. Then, the set of Map Feature Areas (MFAs)FM is defined by

FM = {FPmap,DPmap
∈ FPmap,DPmap

|LIG(FPmap,DPmap
) ≥ q1−(α/100)}.

To express it differently, those α% of FARs of a map point cloud are extracted as MFAs with the
highest LIG score.

Summarizing the definitions, the FA is defined as a connected set of points of a map or on-board
point cloud with similar descriptions. A FA are represented by a position and a description as FAR. The
evaluation function LIG for FARs is used to select the subset of OFAs FO and MFAs FM by keeping
the best α percent and representing them two-dimensional. Depending on the data type, i.e., on-
board sampled point clouds or globally referenced point clouds, different aspects of the LIG may be
considered.

Thus, the goal of the second step of the LiDAR-Feature-based Localization can be formulated as fol-
lows.

Problem Formulation:
Let P = (Px,y,z,Pi) ⊂ R3× [0, 1] be a measured point cloud
with 3D and intensity information and DP ⊂ Rm be the set
of descriptions of that point cloud. The goal is to extract Map
Feature Areas FM ⊂ R2+ × Rm of globally referenced point
clouds, which can be recognized in the vehicle as On-board
Feature Areas FO ⊂ R2+ × Rm of on-board point clouds.

4.1.2. Procedure of Feature Area Extraction

The procedure of the FA extraction approach consists of two steps: the development of a method ex-
tracting OFAs and MFAs, and the evaluation of the developed method in the context of LiDAR-Feature-
based Localization. The methodologies of these steps are explained in detail in the following.

Developing the Extraction Process: A method for extracting OFAs and MFAs shall be developed
for their application in the LiDAR-Feature-based Localization. Therefore, several requirements in the
context of LiDAR-Feature-based Localization are specified which the FA extraction algorithm must fulfill.

Requirements 4.7 (Feature Area Extraction Method). A method, extracting On-board Feature Areas
FO andMap Feature AreasFM, has to fulfill the following conditions:
The extractionmethod has to…

(i) detect areasF rather than single key points px,y,z in 3D LiDAR point cloudsP .

(ii) detect areas F based on their descriptions DP in 3D LiDAR point clouds P . This implies that the
extraction is not based on semantic interpretation.

(iii) process real-world data, i.e., real-world 3D LiDAR point cloudsP .

(iv) detect a variable number of areasF depending on the LiDAR point cloudP .

97



4.1. Terms andMethodology 4. Feature Area Extractions

These requirements for the FA extraction algorithms are explained in more detail in the following.
The first requirement states that areas should be detected in contrast to extracting single key points

from LiDAR point clouds. In the literature, often key points are extracted based on their large curvature
or surface variation values within their local neighborhood, refer to Subsection 2.1.2 [46, 111, 137, 143].
In the context of LiDAR-Feature-based Localization, this is a great disadvantage as points on planar sur-
faces and less curved parts will never be detected. Planar surfaces provide useful localization infor-
mation along the surfaces’ orientations. Additionally, it is difficult to handle a repeatable matching of
single key points with map key points using sparse point clouds of LiDAR sensors. Thus, it is favorable
to detect FAs, i.e., areas of connected points with similar descriptions, since they can be detected more
reliably than single key points. At the same time, by grouping the points with similar descriptions, the
data is compressed while maintaining the same information content as key-point-based concepts.

In the second requirement, it is specified that the FAs should be detected in a non-semantic way.
Based on the 3D point information and their descriptions, robust and persistent FAs should be ex-
tracted.

The extraction method has to cope with description data computed from real-world data. The third
requirement captures this. Description data is noisy and incomplete. Thus, it requires suitable algo-
rithms.

The fourth requirement specifies that a variable number of FAs must be detectable with the extrac-
tion method. Since the number of robust non-semantic patterns occurring in the environment or a
point cloud depends on the environment, methods are favorable whose calculation rule does not re-
quire an a priori definition of the number of FAs.

Based on these criteria, clustering algorithms are applied for the extraction concept developed in
this chapter similar to the point cloud segmentation methods, refer to Subsection 2.1.2 and Figure 2.7.
These enable the descriptions and points of a point cloud to be combined into groups of similar, non-
semantic patterns, meeting Requirement item (ii). Additionally, the clustering algorithms provide com-
pression of a large amount of map data, i. e. point cloud and description data, without losing informa-
tion, fulfilling Requirement (iv). The feature selection concept presented here is a two-stage clustering
process. Two clustering phases are combined, which take two different characteristics of the input
data into account, i.e., descriptions and point cloud coordinates, to group spatially connected points
with similar descriptions, cf. Definition 4.2. Therefore, one clustering step must be carried out in the
description space, the other one in the Euclidean space. This means that a first clustering algorithm
sorts all points of a point cloud into similar groups based on their multi-dimensional descriptions. A
second clustering algorithm orders the points in spatially similar groups with respect to their Euclidean
3D coordinates, i.e., areas and thus fulfilling Requirement item (i). Suitable clustering algorithms that
fulfill the other conditions are chosen later in this section, building the basis for the extraction process.

Evaluation of the Developed Extraction Process: The developed extraction method should be
evaluated for their application in the LiDAR-Feature-based Localization. The evaluation is divided into
two parts. First, the developed detection of FAs, i.e., connected points with similar descriptions, is
evaluated. Second, the developed detection of OFAs and MFAs, i.e., the on-board and map elements,
which are useful for localization, is evaluated.

The clustering algorithms build the basis for the evaluation of the FAs detection, see previous pro-
cedure step. They are applied for two reasons: to group similar descriptions and to group close points.
Therefore, two different sets of criteria for the evaluation of suitable clustering algorithms are specified
in the following.

98



4. Feature Area Extractions 4.1. Terms andMethodology

First, the criteria for the clustering algorithms applied for the description clustering are introduced.

Requirements 4.8 (Clustering in Description Space). A clustering algorithm, grouping descriptionsD,
has to fulfill the following conditions:

(i) Homogeneity: The descriptions within a cluster must be as similar to one another and as dissimilar
to descriptions from other clusters as possible.

(ii) Handling High-Dimensional and Noisy Data: A clustering algorithm must be able to process high-
dimensional and noisy descriptionsDP .

(iii) Level of Classification: The clusters foundmust represent the description dataDP in such away that
no patterns in the environment are lost (underclassification) and the division of a homogeneous set
of descriptions into several clusters is avoided (overclassification).

(iv) Uniqueness: All descriptionsDP are assigned to exactly one cluster.

(v) Outlier Robustness: An elimination of data outliers should be possible.

These criteria for the clustering algorithms applied in the description space are explained in more
detail.

The first requirement is the most important one. A clustering algorithm should enable a clear differ-
entiation between the different description patterns.

Also, the clustering algorithms have to group high-dimensional descriptions computed from real-
world data reliably. This second criterion is derived from Requirement 4.7 (iii). For instance, the FPFH,
the SHOT, and the RoPS descriptions are 33-, 352-, and 135-dimensional vectors, respectively, refer to
Subsection 2.1.1.

Additionally, no relevant information must be lost during the clustering process since clustering al-
gorithms reduce information. That means that inhomogeneous descriptions should not be assigned
to the same cluster, i.e., no underclassification, and uniform descriptions should occur in only one com-
mon cluster, i.e., no overclassification.

The fourth requirement includes the uniqueness of the cluster allocation, which is essential for ex-
tracting clear FAs. Accordingly, hard clustering methods (clear cluster allocation) are preferable to soft
clustering methods (cluster allocation based on probability values).

The algorithms must determine cluster assignments regardless of the quality of the description data,
captured by the fifth criterion. The presence of data outliers makes it challenging to assign an object
to a suitable cluster, which is why the results calculated by an algorithm can be influenced [30]. There-
fore, a natural selection of data outliers should be made possible, e.g., by grouping the outliers into a
separate cluster.

Second, the criteria for the clustering algorithms applied for the 3D point clustering are introduced.

Requirements 4.9 (Clustering in Euclidean Space). A clustering algorithm, grouping points of a point
cloudP , has to fulfill the following conditions:

(i) Uniqueness: All points of the 3D LiDAR point cloudP are assigned to at most one cluster.

(ii) Variable Number of Clusters: The cluster algorithms’ calculation rule should enable a variable num-
ber of clusters.

(iii) Outlier Robustness: An elimination of data outliers should be possible.

The previous criteria for the clustering algorithms applied in the Euclidean space are explained in
more detail.

99



4.1. Terms andMethodology 4. Feature Area Extractions

The first requirement states that the cluster allocation’s should be unique. The concept of LiDAR-
Feature-basedLocalization requires the selection of FAs that have a unique position for matching offline
generated MFAs with online in the vehicle detected OFAs. For this reason, the points of a point cloud
must only be assigned to exactly one cluster. Thus, hard clustering procedures (clear cluster allocation)
are preferable to soft clustering procedures (cluster allocation based on probability values).

The second requirement is derived from Requirements 4.7 (iv). The number of FAs is unknown a
priori. Thus, the clustering algorithm grouping areas must be able to detect a variable number of
Euclidean clusters.

In the third requirement, it is specified that a clustering algorithm should be capable to group real-
world 3D LiDAR point clouds reliably independent of their quality. Therefore, a selection of data out-
liers should be enabled by clustering algorithms.

These criteria are used to choose suitable clustering algorithms for the application in the descrip-
tion and Euclidean space to detect FAs. Selected clustering algorithms are evaluated based on each
criterion to choose a combination of two clustering algorithms. These clustering algorithms form the
basis for the generation of FAs.

The second evaluation step is assessing the detection of OFAs and MFAs, i.e., the on-board and map
elements, which are useful for localization. Therefore, the criteria for evaluating the extraction process
of OFAs and MFAs are defined in the following.

Requirements 4.10 (Extraction of On-Board and Map Feature Areas). An extraction algorithm, de-
tecting OFAs andMFAs, has to fulfill the following conditions:

(i) Usefulness: The extracted OFAsFO andMFAsFM are useful for localization.

(ii) Local Assignability: The extracted OFAsFO should change moderately from frame to frame during
a test drive.

(iii) Global Assignability: The extracted OFAs FO and MFAs FM should match. Ideally, the set of OFAs
should be a proper subset of the set of MFAs.

(iv) Compressibility: The extraction process has to compress the input data, i.e., point clouds P and de-
scriptionsDP , reducing thememory size of themap, i.e., MFAsFM.

These criteria for the extraction method applied for OFAs and MFAs are explained in more detail.
The first requirement defines that only those areas should be extracted which are beneficial for lo-

calization. The main task of feature selection is to differentiate between points of a point cloud that
are suitable and that are not relevant for localization. This measure is called Localization Information
Gain (LIG), refer to Definition 4.4.

In the second requirement, it is specified that in each test drive, enough similar OFAs are extracted.
The OFAs should only change moderately. Ideally, these test drives should be carried out under various
conditions, e.g., different weather conditions.

The third requirement states that the extracted OFAs and MFAs should match. This matching is
the essential step of the map-based localization and is therefore crucial. Additionally, the set of MFAs
should contain all elements of the set of OFAs to enable a robust matching.

The last requirement describes that the extraction method should compress the input data to re-
duce the map’s memory size. Thus, the input point cloud’s memory size and the input description
data should be reduced by building a compressed map.

These criteria are used to evaluate the process of selecting OFAs and MFAs from the set of FAs.

Data Sets: For the evaluation of selecting OFAs and MFAs from the set of FARs, two data set types of
LiDAR point clouds and the resulting descriptions are used as input data for the extraction. Therefore,

100



4. Feature Area Extractions 4.1. Terms andMethodology

real-world point clouds, recorded with close-to-production-type LiDAR sensors and recorded and ac-
cumulated in postprocessing with a mobile data acquisition system, are considered. Both types are de-
scribed in the previous chapter, refer to Section 3.1, and can be seen in Figure 3.2b and in Figure 3.2c.

On the one hand, data sets from close-to-production Velodyne VLP 16 [151] and Velodyne VLP 32-C
[150] are used. These sensors scan the surroundings with a non-uniform resolution as the horizon-
tal resolution is higher than the vertical resolution, see Figure 3.2. The point clouds measured with
these sensors are noisy and sparse. Besides, the scanning density decreases with increasing distance
between the sensor and the scanned environmental objects. Because of this, the data captures only
an incomplete representation of reality and is subject to measurement inaccuracies. This point cloud
data Pon-board forms the basis for the extraction of OFAs.

On the other hand, point clouds are used that were created by a mobile data acquisition system
[105, 142]. The Trimble MX8 sensor, which is integrated into this system, measures the environment
with high precision by repeated scanning and postprocessing to generate a globally referenced dense
point cloud with a sampling resolution of approximately 34 points

100 cm2 . Resulting point clouds build a
complete and ideal representation of the reality. This point cloud data Pmap forms the basis for the
extraction of MFAs, i.e., for the map generation.

These data sets are used to test, evaluate, and to determine parameters of the FAs extraction process.

4.1.3. Research Questions of the Application of Feature Extraction
In the following, two research questions are presented and explained which are addressed in this chap-
ter.

Whichmethods are well-suited to detect good Feature Areas?

• As stated in the previous subsection, the choice of well-suited methods to detect good FAs de-
pends on different criteria. For that, clustering algorithms are depicted to extract OFAs and MFAs
in a non-semantic way. The main difficulty in this thesis when clustering descriptions lies in their
high-dimensionality and noisiness. During clustering, often cluster representatives of descrip-
tions are computed to which the elements of the input data are associated. This is complex for
high-dimensional and noisy data.

• Several clustering algorithms are evaluated based on the criteria for description and point cloud
clustering to provide an answer to this research question, refer to Requirements 4.8 and Require-
ments 4.9. These evaluations serve to select the clustering algorithms used in this thesis for the
detection of FAs.

Which properties are well-suited to select good Feature Areas?

• OFAs and MFAs have to be selected from the set of FAs to enable the detection of robust areas
for a reliable localization. Suitable characteristics must be developed to evaluate the benefit of
these areas for localization. This measure is called Localization Information Gain (LIG), refer to
Definition 4.4.

• A distinction between OFAs and MFAs must be made when evaluating their benefit for local-
ization. As the OFAs should be ideally a proper subset of MFAs, i.e., MFAs should contain all
elements of OFAs, different aspects of the LIG must be considered, depending on the data type,
i.e., on-board sampled point clouds or point clouds used for the map generation.

One paper presenting investigations on the preceding research questions has been published which
resulted from this work. In [53], the developed extraction method is presented and evaluated. This
paper also includes the definition of the measure LIG measuring the benefit for localization.

101



4.2. Generation of Feature Areas in Non-Semantic Way 4. Feature Area Extractions

1) Preprocessing 2) Descriptor Clustering 3) Spatial Clustering

Figure 4.1: Scheme of the proposed FA generation method. 1) Suitable points of the point cloud (col-
ored in black) are selected and used for the description calculation (white-blue bar charts).
2) By clustering the point’s descriptions, differentiation between two classes (green, red)
is made, and 3) cluster those groups spatially (points belonging to the same cluster are
marked with one color). Based on [53].

4.2. Generation of Feature Areas in Non-Semantic Way

In the following, the method of the detection of FAs, i.e., connected points of a LiDAR point cloud
with similar geometry-based descriptions, is presented. The main idea of the FAs generation is a two-
step clustering approach considering both the point cloud and their descriptions. These unsupervised
algorithms are applied as non-semantic elements should be extracted in the environment, refer to
Subsection 4.1.2.

The FA generation consists of three steps. First, only descriptions of points in the input point cloud
with enough points in the local neighborhood are calculated. The next two steps are the two-stage
clustering approach taking the descriptions and the point’s euclidean coordinates as input data into
account. Therefore, points with similar descriptions are grouped as a first clustering step. Afterward,
description clusters are grouped into areas containing spatially connected points. This results in mul-
tiple spatially connected areas, i.e., non-semantic objects, with similar descriptions - FAs. Figure 4.1
illustrates the three steps. In the following, those three steps are depicted in more detail in separate
subsections.

4.2.1. Preprocessing

At first, those points of the input point cloud are selected which provide suitable information for the
description calculation and localization.

Those points are chosen whose local neighborhood includes enough points to characterize the
three-dimensional structure with the descriptions. For on-board point clouds, this is ensured if the
local neighborhood is large enough, refer to Definition 3.5. The horizontal resolution is often higher
than the vertical resolution of close-to-production type LiDAR sensors. Therefore, if the neighborhood
encloses enough points in the vertical direction to guarantee a three-dimensional structure, it encloses
enough points in the horizontal resolution. It follows from this that a local neighborhood with a large
enough radius must contain points at least of one layer above and below the query point [150, 151].
Additionally, points are selected for the description calculation if the number of points falling into the
local neighborhood NPon-board,r(p

x,y,z) around point p exceeds a threshold λ. This yields the subset of
preprocessed on-board points Ppreproc on-board ⊂ Pon-board, for which a description is computed.

Ppreproc on-board = {p ∈ Pon-board| |NPon-board,r(p
x,y,z)| > λ ∧ r is large enough} (4.1)

102



4. Feature Area Extractions 4.2. Generation of Feature Areas in Non-Semantic Way

Practical experiments on real-world data have shown that, for sparse on-board point clouds, a λ of 12
and, for dense map point clouds, a λ of 20 is suitable, refer to Subsection 4.1.2. Especially, the reso-
lution of histogram-based descriptions, e.g., the FPFH and the SHOT, largely depend on the number
of points in the local neighborhood. If their local neighborhood or parts of their local neighborhood
encloses only a few points, the descriptions’ precision of the numerical values is low. In this case, the
descriptions are too imprecise to later yield reliable clustering results. Hence, 4.1 results in the subset
of points used for the description computation of OFAs.

Regarding dense map point clouds of LiDAR sensors, the sampling is uniform. Thus, a point’s p
description is determined if the number of points falling into the local neighborhoodNPon-board,r(p

x,y,z)
exceeds the threshold λ. This yields the subset of preprocessed map points Ppreproc, map ⊂ Pmap, for
which a description is computed.

Ppreproc map = {p ∈ Pmap| |NPmap,r(p
x,y,z)| > λ} (4.2)

Prior to the description clustering, further points of the preprocessed map and on-board point cloud
Ppreproc map, on-board are rejected. As points lying on horizontal planes do not provide information for 2D
localization, points with this characteristic are discarded. The subset Ppreproc’ map, on-board is computed
for the preprocessed map and on-board point cloud Ppreproc map, on-board by

Ppreproc’ map, on-board = {p ∈ Ppreproc map, on-board|](zVRF,np) ≥ 20◦}, (4.3)

with ](zVRF,np) being the angle between the height-axis of the VRF and the normal np of the query
pointp. Choosing a threshold of 20◦ has proven to be suitable while dealing with real-world data, refer
to Subsection 4.1.2.

This results in the subset of points used for the description computation of MFAs.
This selection process is crucial regarding the following clustering algorithms. As clustering algo-

rithms consider the input data as a whole and descriptions are usually multi-dimensional vectors highly
sensitive to noise, imprecise data influence the clustering results a lot when computing cluster repre-
sentatives. These cluster representatives form often the basis of the clustering algorithm. Commonly,
during clustering, the elements of the input data are associated to the clustering representatives. Im-
precise data change these cluster representatives to be more similar to the imprecise data. Therefore,
the association to cluster representatives, which are similar to imprecise data, affects the clustering
results.

For the resulting point cloud subsets Ppreproc’ map, on-board, the descriptions are calculated with the
descriptors selected in Chapter 3, respectively, i.e., FPFH, SHOT, RoPS. However, the whole point clouds
Pmap, on-board are used for the description calculation of the query points of Ppreproc’ map, on-board. This is
the case since some points are not in Ppreproc’ map, on-board but in the query points local neighborhood.

4.2.2. Description Clustering

In this second step, a clustering step in the description space is carried out. The descriptions are cal-
culated with one given descriptor. That means that the description clustering is performed for each
descriptor independently but can be performed for multiple descriptors in parallel. This clustering
step uses descriptions as input data. It is done before the spatial clustering. To identify different non-
semantic objects it is vital to know points characterized by similar patterns. Starting with spatial clus-
tering, the spatial affiliation of the points would be prioritized above the similarity of their associated
descriptions, although objects should be detected based on their characteristics, not their spatial ex-
pansion. Therefore, the clustering in the description space is performed first.

This means that a clustering algorithm groups all points of a point cloud into similar groups based
on their multi-dimensional descriptions. Points with similar descriptions are clustered to compress the

103



4.2. Generation of Feature Areas in Non-Semantic Way 4. Feature Area Extractions

data by maintaining most of the information content. Thus, the amount of memory and the search
space for matching OFAs with MFAs is reduced, refer to Requirement (iii). The descriptions are used to
differentiate between various non-semantic patterns within the subsets Ppreproc map, on-board based on
geometric information.

As a result, there is a set of clusters with descriptions of the same pattern in the environment scanned
by the LiDAR sensor. For instance, a cluster consists of all points whose FPFH descriptions characterize
a planar geometry depending on the local neighborhood.

Hereafter, further discarding steps can be made to reduce the clusters to the most reliable ones.
As one criterion, the strongly structured clusters from all generated description clusters are kept

for further processing. Strongly structured clusters are clusters whose descriptions are similar to one
another and dissimilar to that of other clusters. This is explained in more detail in the following.

The description characteristics are identified by calculating the silhouette value s, which is defined
as follows [59].

Definition 4.11 (Description’s Silhouette Value). Let di be the i-th description of a cluster, let δdi,intra
be the average distance from the i-th description of a cluster to other elements of the same cluster, and let
δdi,inter be theminimum of the average distances from the i-th description of one cluster to all elements of
any other cluster. Then, the silhouette value of the description s(di) is defined as

s(di) =
δdi,inter − δdi,intra

max(δdi,intra, δdi,inter)
. (4.4)

The silhouette value ranges from -1 to +1. A silhouette value close to one indicates that the element
is well-matched to its cluster and poorly-matched to neighboring clusters. Values close to zero indicate
that the intra- and intercluster distance of the element are the same. Then, the element is equidistant
from two clusters and its assignment is indifferent. If the silhouette coefficient becomes negative, the
intracluster distance is greater than the intercluster distance. The element is then, on average, more
similar to another cluster than its own.

The definition of the description’s silhouette value enables the definition of the cluster’s silhouette
value. [59]

Definition 4.12 (Cluster’s Silhouette Value). Let C be a cluster containing l descriptionsD ⊂ Rm with
silhouette values s(di), where di ∈ D denotes the i-th description. Then, the silhouette value of cluster C
is defined as the average of its descriptions’ silhouette value:

s̄(C) = 1

l
·

l∑
i=1

s(di). (4.5)

This enables the definition of strongly structured clusters.

Definition 4.13 (Strongly Structured Cluster). Let C be a cluster of descriptions and s̄(C) its silhouette
value. Then, a cluster is called strongly structured, if it fulfills the following condition:

s̄(C) ≥ 0. (4.6)

A silhouette value which is greater or equal zero indicates that the cluster’s descriptions are well-
matched to its cluster and poorly-matched to neighboring clusters. This threshold is set to zero since
in practical experiments zero has been observed to be appropriate in noisy real-world data as it rep-
resents an adequate trade-off between keeping noisy clusters but rejecting clusters which can not be
separated accurately, refer to Subsection 4.1.2.

104



4. Feature Area Extractions 4.3. Extraction of Map and On-Board FAs applying the LIG

The subset of all strongly structured clusters from all description clusters is kept for further process-
ing. As the descriptions of one description cluster are similar, only a representative is kept to compress
the high-dimensional description data. Therefore, the medoid of all descriptions of a cluster is used as
part of the FAR, describing the characteristics of the cluster the best, cf. Definition 4.3.

The outcome of the description clustering into two clusters can be seen in Figure 4.1 on the example
of the FPFH descriptor.

4.2.3. Spatial Clustering

Subsequently, spatial clustering is carried out for each strongly structured cluster separately. For this
purpose, the Euclidean coordinates of the preprocessed point cloudPpreproc’ map, on-board are used as the
input for the spatial clustering. The points of the strongly structured description clusters are grouped
separately into multiple areas of spatially connected points. For example, from a cluster that contains
points with similar FPFH descriptions, several clusters can be formed that spatially divide these points
of similar patterns.

This step is crucial as localization requires this spatial information, which is used for two reasons. On
the one hand, the spatial information is required to realize a local association, i.e., enabling a repeatable
allocation of on-board detected clusters over multiple process steps of localization. On the other hand,
the spatial information is required to realize a global association matching on-board elements with
map elements.

The obtained clusters require the calculation of new FAR in the description space that best describe
each spatial cluster through its description. For this purpose, the medoid of all descriptions of a clus-
ter is computed as part of the FAR, cf. Definition 4.3. As spatial representative, a polygonal chain is
computed. Details about the FAR implementation are provided in Section 4.3.

In summary, this spatial clustering outputs FAs. The results of this clustering step trough the example
fo an on-board point cloud can be seen in Figure 4.1.

4.3. Extraction of Map and On-Board FAs applying the LIG

In this section, the definition of the components of the Localization Information Gain (LIG) are pre-
sented. The LIG measures the benefit for localization of each FAR, representing the FAs, refer to Def-
inition 4.4. This section answers the second research question of this chapter: Which properties are
well-suited to detect good feature areas, cf. Subsection 4.1.3?

The main idea of the LIG determination is the definition of five aspects which capture different eval-
uation criteria of localization. These are used to keep the best α% of FAs, thus extracting OFAs and
MFAs. The LIG is designed to fulfill Requirements 4.10 (i), (ii), and (iii), i.e., keeping only those FAs which
are useful for localization, which are recognizable through several test drives, and whose on-board
detections match those in the map.

The following five criteria are defined to compose the LIG. The first three are defined for FARs ex-
tracted based on the data of one LiDAR scan and the last two are defined for FARs extracted based
on the data of multiple LiDAR scans. Therefore, the first three are defined formally, the last two are
defined informally as their parameter space is too large for a comprehensible definition.

Definition 4.14 (Distinctiveness). For each descriptorD, LIGd,D is a function

LIGd,D : R2+ × Rm → [0, 1].

It assigns a value toa FeatureAreaRepresentativewhich captures how rare anddistinguishable thedescrip-
tion of a Feature Area Representative is.

105



4.3. Extraction of Map and On-Board FAs applying the LIG 4. Feature Area Extractions

sector 2 sector 1

sector 3 sector 4

annulus 3

annulus 2

annulus 1

xVRF

yVRF

F̊2

F̊5

F̊1

F̊3

F̊4

F̊6

Figure 4.2: The division of the environment scanned by the LiDAR sensor into four circular sectors (dif-
ferent transparency) and three concentric annuli (blue, red, green). The number of FARs F̊i

in each circular sector and annulus yields the spatial diversity.

The distinctiveness LIGd,D is defined with a descriptor-specific measure. E. g. the measure captures
the non-uniformity of the FAR’s component values of its description. That means the distinctiveness is
low for a FAR with a description of similar values and higher for vectors with peaks. For instance, a low
distinctiveness is the case for scattered objects, like plants.

Definition 4.15 (Uniqueness). Letdi ∈ DPon-board be a description of the i-th Feature Area Representative
Fi of an on-board point cloud Pon-board of n points computed with a given descriptor D, let dmax be the
maximum distance between two descriptions, and letDi =

[
md(d1,di) . . . md(dn,di)

]
be the i-th

row of the description distancematrix of all descriptions within the on-board point cloudwith a descriptor-
specific metricmd : Rm × Rm → R≥0 and D̄i its average. Then, for each descriptorD, the uniqueness
LIGu,D of Feature Area RepresentativeFi is a function

LIGu,D : R2+ × Rm → [0, 1],Fi 7→
D̄i

dmax
,

stating how unique its description is within the on-board point cloud.

The uniqueness is defined as the normalized mean distance of the FAR’s description to each FAR’s
description within a scene, i.e., an on-board LiDAR scan. A uniqueness of a FAR close to zero indicates
that similar descriptions to the FAR’s description are within the scene, and a uniqueness of a FAR close
to one indicates that the FAR’s description differs a lot from the other FARs’ descriptions in the scene. A
FAR can be easily locally and globally assigned if its description differs a lot from the other descriptions
within the on-board point cloud, refer to Requirements 4.10 (ii) and (iii).

Definition 4.16 (Spatial Diversity). Let di ∈ DPon-board be the description of the i-th Feature Area Repre-
sentative F̊i of an on-board point cloudPon-board containing l FAs, let the on-board point cloud be divided
into j uniform and concentric annuli and k equally sized circular sectors, let ni,ann be the number of other

106



4. Feature Area Extractions 4.3. Extraction of Map and On-Board FAs applying the LIG

FARs in the annuli of the i-th FAR F̊i, and let ni,cir be the number of other FARs in the circular sector of the
i-th FAR F̊i. Then, for each descriptorD, the spatial diversity LIGs,D of Feature Area Representative F̊i is a
measure

LIGs,D : {1, . . . , l} × (R2 × Rm)l → [0, 1], (i, F̊i) 7→
1

2
·
(

1

ni,ann
+

1

ni,cir

)
∀1 ≤ i ≤ l,

stating the spatial distribution of FARs within the on-board point cloud.

For an accurate localization, the detections used for the localization task need to be spatially dis-
tributed within a scene, i.e., an on-board LiDAR scan. This is represented with the value called spatial
diversity LIGs,D . In the case of 2D localization, the FARs have to be geographically dispersed in 2D. De-
pending on the number of FARs within an annulus nann or circular sector ncir a FAR benefits the spatial
diversity. The spatial diversity is high if a FAR is the only one in an annulus and circular sector and low
if a FAR is one of multiple FARs within one of them. Figure 4.2 visualizes the division of a point cloud
into four circular sectors and three concentric annuli. Depending on the maximum distant point of a
point cloud, the circle is divided into a close, middle, and long-range annulus. For example, the spatial
diversity of F̊5, in sector 4 with two other FARs on the outer annuli, equals 1

2 · ( 13 + 1
3 ) = 0.33 and the

spatial diversity of F̊2, the only FAR in sector 2 on the outer annulus, equals 1
2 · ( 11 + 1

3 ) = 0.67.
The following two LIG components are defined informally, as described above.

Definition 4.17 (Tracking Stability). For each descriptorD, LIGt,D is a function

LIGt,D :
(
R2+ × Rm

)n
→ [0, 1].

It assigns a value to a Feature Area Representative which captures the average immutability and durability
over a short time or small vehicle movements.

The tracking stability LIGt,D specifies the FAR’s robust descriptiveness of different points of view
over a short time or small vehicle movements, like frame-to-frame changes. Here, it is computed as
the mean changes of the FAR’s description and computed position. It is also possible to weight the
description and the position component of the tracking stability. A low tracking stability suggests that
the FAR changes a lot, e.g., a dynamic object changing its position. A high tracking stability suggests
that the FAR does not change its position or description.

Definition 4.18 (Persistence). For each descriptorD, LIGp,D is a function

LIGp,D :
(
R2+ × Rm

)n
→ [0, 1].

It assigns a value to a Feature Area Representative which captures the average immutability and durability
over over a long time.

The persistence LIGp,D is defined as the FAR’s immutability and durability over a long time, e.g., one
year. It measures the relative frequency of OFAs matching the same MFA extracted with data of test
drives carried out over a long time. If the persistence is close to one, the same OFA was extracted over
a long time. If it is close to zero, the FAR was rarely extracted.

The previous five definitions enable the practical definition of the Localization Information Gain (LIG).
Note that the following three LIG definitions are specified informally as the parameter space is very
large, which would lead to incomprehensible definitions.

107



4.3. Extraction of Map and On-Board FAs applying the LIG 4. Feature Area Extractions

xSRF [m]

z
SR

F
[m

]

y
SRF [m]

LIGd

LIGu

0

20

0

10

LIGs

−20 −20

0

20

Figure 4.3: Suitable points of an on-board point cloud scanned with a Velodyne VLP 32-C are colored
with respect to on-board LIG values using the additive RGB color space [53]. This example
is based on the FPFH descriptor [110].

Definition 4.19 (Localization Information Gain II). LetFi ∈ R2+ × Rm be the i-th Feature Area Rep-
resentative of a point cloud, let LIGd,D(Fi) be the distinctiveness of Fi, let LIGu,D(Fi) be the uniqueness
of Fi, let LIGs,D(F̊i) be the spatial diversity of F̊i, let LIGt,D(Fi) be the tracking stability of Fi, and let
LIGp,D(Fi) be the persistence ofFi. Then, the function Localization InformationGain (LIG) of Feature Area
RepresentativeFi consists of five components

LIG :R2+ × Rm → [0, 1]5

Fi 7→ [LIGd,D(Fi), LIGu,D(Fi), LIGs,D(F̊i), LIGt,D(Fi), LIGp,D(Fi)]
ᵀ

stating the benefit for localization of each computed Feature Area Representative.

The LIG components tracking stability and persistence require data collected over a small or a long
time using multiple point clouds, respectively. The tracking stability is applied when performing lo-
calization and not in the extraction process. This is done in the actual localization so as to not only
consider tracking stable OFAs, but rather tracking stable matches of OFAs and MFA. The determina-
tion of the persistence is not computable on-board. Therefore, in this thesis, it is suggested to use the
persistence only for evaluations of on-board data.

Depending on the data type, i.e., on-board sampled point clouds or map data, different aspects of
the remaining LIG components are considered to extract the best α% depending on their LIG value as
OFAs and MFAs, refer to Definition 4.5 and Definition 4.6. Therefore, for both data types, the specific
LIG is defined in the following.

Definition 4.20 (On-Board Localization Information Gain). Let Fi ∈ R2+ × Rm be the i-th Feature
Area Representative of an on-board point cloud, let LIGd,D(Fi) be the distinctiveness ofFi, let LIGu,D(Fi)

be the uniqueness ofFi, and let LIGs,D(F̊i) be the spatial diversity of F̊i. Then, the on-board Localization
Information Gain of Feature Area RepresentativeFi consists of three components

LIGon-board :R
2+ × Rm → [0, 1]3

Fi 7→ [LIGd,D(Fi), LIGu,D(Fi), LIGs,D(F̊i)]
ᵀ

stating the benefit for localization of each on-board computed Feature Area Representative.

108



4. Feature Area Extractions 4.3. Extraction of Map and On-Board FAs applying the LIG

For extracting OFAs, the consideration of the distinctiveness, the uniqueness, and the spatial diver-
sity is crucial. For instance, in the case of blockage in the on-board scan, FAs with high LIG scores could
be blocked, leading to the extraction of FAs with comparably lower scores.

See Figure 4.3 for a colored representation of the LIG values of selected OFAs. The point cloud was
sampled with a Velodyne VLP 32-C, and descriptions were computed with the FPFH descriptor. Here,
60% of the FAs with the highest LIG score are extracted as OFAs, equally considering every LIG compo-
nent, i.e.,

∑
j∈{d,u,s} LIGj,D(F) being greater than or equals the 60%-quantile. Each of the three LIG

components is represented by one color component in the additive RGB space. The distinctiveness
is represented with the red component, the uniqueness with the green component, and the spatial
diversity with the blue component. As the LIG components are normalized to [0, 1], the percentage
of each color corresponds to the value of the LIG component. Because there are many walls in the
scene of Figure 4.3, their uniqueness is low. Thus, the green component of the walls is small. However,
there is little vegetation in the scene and, therefore, the green component is large. The pillar (pink)
is far away from other OFAs, i.e., it is spatially diverse. Hence, the pillar has a large blue component.
Additionally, the pillar is very distinctive and, thus, the red component is large. This results in a pink
color of the pillar.

Definition 4.21 (Map Localization Information Gain). LetF ∈ R2+ ×Rm be a Feature Area Represen-
tative of a map point cloud and let LIGd,D(F) be the distinctiveness ofF . Then, the measure Localization
Information Gain (LIG) of Feature Area RepresentativeF consists of one component

LIG :R2+ × Rm → [0, 1]

Fi 7→ [LIGd,D(F)]

stating the benefit for localization of each computed Feature Area Representative.

When extracting MFAs from globally referenced dense point clouds, only the distinctiveness LIGd,D

is taken into account as only those FAs with good description characteristics should be kept. The goal
of the extraction is to fulfill the global assignability of Requirement 4.10 (iii), i.e., to generate MFAs
as a proper subset of OFAs. Therefore, only globally valid LIG values are taken into account scene-
dependent measures, i.e., neither spatial diversity nor uniqueness. Persistence may be included into
the map. However, in this thesis, the map data is considered separately from the on-board data.

Figure 4.4 shows sample OFAs and MFAs extracted from a sparse and globally referenced dense point
cloud in a suburb with descriptors computed with the FPFH descriptor. Here, 60% of the FAs with the
highest LIG value are extracted as OFAs and MFAs. Only the distinctiveness for the MFAs is taken into
account and the distinctiveness, uniqueness, and spatial diversity are taken into account for the LIG.
The points belonging to the OFAs and MFAs are marked in the same color when they belong to the
same OFAs or MFAs and the other way around. In this example, mainly walls and pillars are extracted.

After the extraction of the best FAs as OFAs and MFAs with the LIG, the areas’ 2D representation
is determined. Since the focus of this thesis lies in 2D localization, the selected OFAs and MFAs are
represented as either a point or a polygonal chain. MFAs or OFA with local expansions in x- and y-
direction smaller than 0.5 meters are modeled as points, i.e., the arithmetic mean of all points of FAs.
In practice, 0.5 meters have been proven to provide a sufficient distinction between locally extended
areas and elongated objects. Otherwise, areas are considered as polygonal chains with the Ramer-
Douglas-Peucker algorithm [27, 103], refer to Subsection 2.2.4. This distinction is reasonable since
geometric information of the environment is used for the description calculation. If areas cannot be
represented as polygonal chains, often there is a change in their curvature, which is reflected by a
change of descriptions. In the first clustering step, the description clustering, refer to 4.2.2, points
belonging to those areas are already assigned to different description clusters.

Figure 4.5 shows sample 2D representations of MFAs and OFAs in a suburb. Note that in the figure the

109



4.4. Implementation of Extraction Process 4. Feature Area Extractions

x SR
F

[m
]z

SR
F

[m
]

ySRF [m]
0

−20

0

20

0

20

15

(a) On-board features sampled with a Velodyne VLP 32-C. Only significant
features are selected.

x
UTM

[m
]z

U
TM

[m
]

yUTM [m]

40

60

0 40

60

20
20

15

(b) Map features generated with a globally referenced, dense point cloud.
Only distinctive features are selected.

Figure 4.4: Sample OFAs and MFAs (colored areas) in a sparse and dense point cloud (gray) in a suburb
using the FPFH descriptor [110]. Only FAs with distinctive descriptions are selected as MFAs
and with distinctive, unique, and spatial diverse characteristics are selected as OFAs. The
dense point cloud is plotted in the shifted UTM coordinate system, see Subsection 3.1.2.

corresponding MFAs and OFAs do not have the same color. The descriptions used for this extraction are
calculated with the FPFH descriptor. It can be seen that the walls on the left and right side of the street
are extracted in the dense map point cloud as well as in the sparse on-board point cloud. For example,
while the wall on the right side in the dense map point cloud are extracted as one MFA (orange), they
are extracted as multiple OFAs in the on-board point cloud (orange, green, and blue). Due to the on-
board point cloud’s sparsity, the wall extracted as OFAs is separated into multiple parts. Some artifacts,
like parking vehicles, are also extracted, which are not suitable for localization, but hard to distinguish
e.g., from walls based on their geometric information.

4.4. Implementation of Extraction Process

In the following section, the algorithms for the extraction process introduced in Section 4.2 are selected
based on the criteria defined in Subsection 4.1.2 to answer the first research question of this chapter,
cf. Subsection 4.1.3. I. e. it is investigated which methods are well-suited to extract good feature areas.
The extraction process consists of two main steps, clustering first the description data and second the
description clusters separately in the Euclidean space. Therefore, clustering algorithms for both spaces

110



4. Feature Area Extractions 4.4. Implementation of Extraction Process

0 10 20−10

0

10

20

−10

−20

xUTM [m]

y
U

TM
[m

]

−20

(a) 2D representations of MFAs

0 10 20−10−20

0

10

20

−10

−20

xSRF [m]

y
SR

F
[m

]

(b) 2D representations of OFAs

Figure 4.5: Sample 2D representations of MFAs and OFAs (colored points and polygonal chains) in a
dense and sparse point cloud (gray) in a suburb. Suitable points (black circles) are used
previously as the input for the FPFH description calculation [110]. The dense point cloud is
plotted in the shifted UTM coordinate system, see Subsection 3.1.2. The dense and sparse
real-world data capture the same section of the environment.

are selected in the following subsections. Additionally, the implementation of the descriptor-specific
LIG value called distinctiveness, cf. Definition 4.14, is introduced as well as the map format developed
in this thesis.

4.4.1. Implementation of Description Clustering

The first step of the extraction process after the preprocessing is the clustering of the description data.
In the following, clustering algorithms for description clustering are compared based on the list of
Requirements 4.8. There exist five groups of clustering algorithms: partitioning, hierarchical, density-
based, network-based, and model-based [30, 152]. According to Fahad et al. [30] and Venkatkumar
and Shardaben [152], hierarchical, network-based, and density-based clustering methods cannot pro-
cess high-dimensional data. Defining density in a high-dimensional space is particularly tricky with
density-based methods. For this reason, the algorithms for description clustering are selected from
the partitioning and model-based methods.

Therefore, the Self-OrganizingMap algorithm by Kohonen [64] is picked a model-based clustering
algorithm. Self-Organizing Maps (SOMs) represent a form of artificial neural networks, whose neurons
group the data based on unsupervised learning processes. Their functioning is modeled after the
processes in human brains, in which delimited areas of neurons are responsible for the stimulus control
of some regions of the body.

The x-means and k-medoid algorithms are chosen from the group of partitioning clustering algo-
rithms. The x-means algorithm developed by Pelleg and Moore [93] is based on the calculation rule
of the k-means algorithm by Macqueen [82], associating the data to k initially guessed cluster centers
and calculating means of the associated data as new cluster centers, cf. Subsection 2.1.2. The method
x-means introduces a lower and upper limit for the number of clusters instead of a fixed parameter

111



4.4. Implementation of Extraction Process 4. Feature Area Extractions

Table 4.1: Evaluation of clustering algorithms based on Requirements 4.8 for clustering in the descrip-
tion space

Requirement SOM x-means k-medoids
Homogeneity (i) X X X

Handling High-Dimensional and Noisy Data (ii) 7 7 X
Level of Classification (iii) X X X

Uniqueness (iv) X X X
Outlier Robustness (v) 7 7 7

k and carries out the k-means algorithm for every number within the interval. On the other side, the
k-medoids algorithm by Kaufman and Rousseeuw [59] determines the cluster centers by calculating
the medoid, see Subsection 2.2.7.

These three algorithms are compared to each other based on the criteria 4.8. For each request made,
a checkmark or cross in the third column of Table 4.1 indicates whether this requirement is met or not.

In the following, the evaluation of Table 4.1 is explained in more detail.
All algorithms can meet the requirement of homogeneity. Homogeneity can be achieved by choos-

ing suitable parameters. These are: the network size (SOM), an upper and lower limit of the number
of clusters (x-means), or a number of clusters k, which can increase the possibility of minimizing the
intracluster similarity.

The k-medoid algorithm is the only algorithm meeting the second criterion of being capable of
handling high-dimensional and noisy data. As the SOM and the x-means compute the cluster repre-
sentative by shifting the data, e.g., averaging all data of one cluster, the noisiness of the data is en-
hanced. However, a medoid characterizes a set of descriptions by minimizing the average difference
to all other descriptions in the cluster. When dealing with noisy real-world data sets, using medoids
instead of means as cluster representatives is crucial. Computing the mean over each iteration while
clustering would enhance the noisiness of the data leading to distorted clustering results. With the use
of medoids, existing descriptions are considered and compared, thus enabling a more precise cluster-
ing in the presence of noise.

This is illustrated in the following. Figure 4.6 shows the issue of the calculation of cluster representa-
tives through the example of the FPFH descriptor. The 33 bins of the FPFH algorithm are visualized for
each representative, 11 bins for each angle of the descriptor in a different color (θ = red, α = blue, φ =
green), dividing the angles into 11 equal intervals. See Subsection 2.1.1 for an explanation of the FPFH
algorithm. Here, a real-world wall is sampled with the Velodyne VLP 32-C LiDAR sensor and a synthetic
wall as reference is modeled after the same sensor. The mean and the medoid of the real-world wall
descriptions are calculated, representing the cluster of a wall-like object e.g., by applying the x-means
or the k-medoid algorithms, respectively. In comparison to the synthetic case, where the medoid and
the mean description are equal, it can be seen that both real-world representatives are noisy. Addition-
ally, it can be stated that the medoid description is less noisy compared to the mean description. This is
due to the fact that the mean calculation averages the noise of every description vector in one vector,
while the medoid description contains the noise of only one description vector. Clustering a whole
scene enhances this effect, which leads to very noisy mean cluster representatives. With this noisy
cluster representative a distinction between different description characteristics is difficult. Thus, the
clustering results obtained with algorithms computing the cluster representatives mixing the same
entries of multiple descriptions are less precise than without mixing entries.

The third criterion states that over- and underclassification should be avoided. Concerning all clus-
tering algorithms, it depends on the specific parameter. If the grouping of too many or too little clus-
ters is enabled by the parameter selection, over- and underclassification can occur. Therefore, the

112



4. Feature Area Extractions 4.4. Implementation of Extraction Process

[−
1
8
0
,−

1
4
7
.3

] . . .
[−

1
6
.4
,1
6
.4

] . . .
[1
4
7
.3
,1
8
0

]
[1
8
0
,1
4
4
.9

] . . .
[9
5
.2
,8
4
.8

] . . .
[3
6
,0

]
[1
8
0
,1
4
4
.9

] . . .
[9
5
.2
,8
4
.8

] . . .
[3
6
,0

]0

20

40

60

80

100

Bins [°]

Ra
tio

of
po

in
ts

in
on

e
bi

n
[%

] θ
α
φ

(a) Mean
[−

1
8
0
,−

1
4
7
.3

] . . .
[−

1
6
.4
,1
6
.4

] . . .
[1
4
7
.3
,1
8
0

]
[1
8
0
,1
4
4
.9

] . . .
[9
5
.2
,8
4
.8

] . . .
[3
6
,0

]
[1
8
0
,1
4
4
.9

] . . .
[9
5
.2
,8
4
.8

] . . .
[3
6
,0

]0

20

40

60

80

100

Bins [°]

Ra
tio

of
po

in
ts

in
on

e
bi

n
[%

] θ
α
φ

(b) Medoid

[−
1
8
0
,−

1
4
7
.3

] . . .
[−

1
6
.4
,1
6
.4

] . . .
[1
4
7
.3
,1
8
0

]
[1
8
0
,1
4
4
.9

] . . .
[9
5
.2
,8
4
.8

] . . .
[3
6
,0

]
[1
8
0
,1
4
4
.9

] . . .
[9
5
.2
,8
4
.8

] . . .
[3
6
,0

]0

20

40

60

80

100

Bins [°]

Ra
tio

of
po

in
ts

in
on

e
bi

n
[%

] θ
α
φ

(c) Synthetic

Figure 4.6: Cluster representatives of synthetic and real-world wall sampled with Velodyne VLP 32-C
for the FPFH algorithm. Each corresponding FPFH description is plotted, including the first,
middle, and last interval limits of each angle.

113



4.4. Implementation of Extraction Process 4. Feature Area Extractions

Table 4.2: Evaluation of clustering algorithms based on Requirements 4.9 for clustering in the Eu-
clidean space

Requirement DBSCAN x-means
Uniqueness (i) X X

Variable Number of Clusters (ii) X -
Outlier Robustness (iii) X 7

parameter choice of each clustering algorithm is crucial, i.e., size of the network topology for the SOM
algorithm, upper and lower limit of the number of clusters for the x-means algorithm, and the the
number of clusters k for the k-medoid.

Besides, all algorithms fulfill the uniqueness requirements, since the elements of a data set can be
clearly assigned to a cluster due to the calculation rules.

According to Fahad et al. [30], all algorithms cannot handle data outliers well, since they are grouped
into an existing cluster and are not selected separately. They, therefore, do not meet this requirement.
However, the concept presented in Section 4.2 can counter this by sorting out elements that are not
statistically meaningful. This is done after the description clustering by keeping the strongly structured
clusters, refer to Definition 4.13.

Considering all requirements and especially Requirement (ii), in this thesis, the k-medoids algorithm
is chosen as a description clustering algorithm. The preprocessed points of Ppreproc map, on-board are clus-
tered into two classes, resulting in two clusters to avoid over- and underclassification. This is done
since geometric information only allows a reliable distinction between curved and non-curved areas,
refer to the experiments of the descriptors in Chapter 3, e.g., Table 3.1. For further details about the
number of clusters, refer to appendix B.

The description clustering is performed for every selected descriptor of Chapter 3, the FPFH, the
SHOT, and the RoPS descriptor. Therefore, the Euclidean distance is used as a metric for the descriptor
clustering, as often proposed in the literature [11, 68]. Metrics considering the characteristics of the
descriptions, e.g., the cross-bin metric by Cha and Srihari [15], punish differences less hard than the
Euclidean distance. Consequently, in this thesis, they are not applied.

This step’s outcome are two different groups of non-semantic patterns with small intra-cluster vari-
ances compared to the SOM and x-means clustering algorithms.

4.4.2. Implementation of Euclidean Clustering

The second step of the extraction process after the description clustering is to group the two descrip-
tion clusters separately into multiple spatially connected areas. Equivalent to Subsection 4.4.1, in the
following, clustering algorithms for Euclidean clustering are compared based on the list of Require-
ments 4.9.

Many clustering algorithms could be applied for the Euclidean clustering step. In this thesis, two
algorithms are chosen which are often applied to this problem. The algorithms DBSCAN by Ester et al.
[29], see Subsection 2.2.6, and x-means by Pelleg and Moore [93], see Subsection 2.1.2, are employed.
Both algorithms are compared to each other based on the criteria 4.9, whose selection is thereby sub-
stantiated. For each request made, a checkmark or a cross in Table 4.2 indicates whether this require-
ment is met or not. A straight line indicates that the algorithm meets the requirement partially.

In the following, the evaluation of Table 4.2 is explained in more detail.
Both the DBSCAN and the x-means algorithm meet the requirement of a hard clustering process

since the elements of a data set can be clearly assigned to a cluster through the calculation rules, cf.
Subsection 2.2.6 and Subsection 2.1.2.

114



4. Feature Area Extractions 4.4. Implementation of Extraction Process

The DBSCAN algorithm groups together points of similar density, which can be identified indepen-
dently of a specified number of clusters or an upper and lower limit. For this reason, the DBSCAN
algorithm meets the requirement that a priori no fixed number of clusters must be defined to group
the FAs in every type of scene. By defining an upper and lower limit for the number of clusters in the
x-means algorithm, a possible range of the actual resulting number of clusters is specified. Its calcu-
lation rule enables the statistically best number of clusters to be determined. The x-means algorithm
only meets second requirement of enabling a variable number of clusters if a sensible choice of an
upper and lower limit for the number of clusters is made.

Density-based algorithms are particularly suitable for the selection of data outliers since they do not
have enough points in their neighborhood to form a cluster or to be able to be assigned to an existing
cluster. They are explicitly marked as data outliers and are not taken into account for cluster forma-
tion. Since the DBSCAN is a density-based algorithm, it is suitable for the selection of data outliers. In
contrast, according to Fahad et al. [30], partitioning algorithms, like the x-means, do not deal well with
data outliers, since they are grouped into an existing cluster and are not selected separately. Hence,
the x-means algorithm does not fulfill the third requirement.

As the DBSCAN fulfills every requirement compared to the x-means algorithm, in this thesis, the
DBSCAN is chosen as a clustering algorithm applied for the Euclidean clustering of the 3D point cloud
data.

The Euclidean clustering’s outcome are multiple groups of a connected set of points with similar
description data.

4.4.3. Implementation LIG’s Distinctiveness

The distinctiveness is one of the components forming the LIG, refer to Definition 4.14. It is descriptor
specific, depending on the characteristics a descriptor captures. In the following, the distinctiveness
is defined for each of the selected descriptors, i.e., the FPFH, SHOT, and RoPS.

In the case of the geometry-basedFPFHdescriptor, the distinctness is given, if a bin of the histogram
per angle is pronounced and its angle is not scattered. If the calculated angles of the query point’s local
neighborhood points fall in a common bin, i.e., the description is peaked, the geometry represented
by this set of points is distinctive. In contrast, a non-distinctive description shows similarly strong ex-
pression in all intervals. For instance, this behavior is expected for vegetation since the normal vectors
belonging to these points point in different directions, which leads to strongly varying angle values.
Thus, the Sum Of Differences (SOD) is introduced to evaluate the non-uniformity on the basis of the
differences between all 11 intervals of the description for each angle θ, α, and φ:

SODFPFH
ω (F) =

11∑
i=1

11∑
j=1

|dω
i − dω

j | ∀ω ∈ {θ, α, φ}, (4.7)

with dω
i as the i-th entry of each angle’s part of the FPFH description, cf. Subsection 2.1.1. The FPFH

description consists of three to [0, 1] normalized histograms for each angle θ, α, φ. For a maximal non-
uniform description of an angle, one bin equals 1 the others equal 0, i.e., dω

max =
[
1 0 . . . 0

]
. Sub-

stituting dω
max in Equation 4.7 yields the maximum SOD of 20 for each angle. For a uniform description

of an angle, every bin equals the same, i.e., dω
min =

[
1
11 . . . 1

11

]
. Substituting dω

min in Equation 4.7
yields the minimum SOD of zero for each angle.

In order to obtain a SOD value for an entire FPFH description, the three SOD values are added and
normalized:

LIGd,FPFH(F) =
1

60
· (SODFPFH

θ (F) + SODFPFH
α (F) + SODFPFH

φ )(F). (4.8)

115



4.4. Implementation of Extraction Process 4. Feature Area Extractions

Thus, the LIGd,FPFH is zero for a non-distinctive FPFH description and one for a distinctive FPFH descrip-
tion.

The distinctiveness is calculated similarly for the SHOT, since it is also a histogram-based descrip-
tor. The SHOT description is distinctive if the calculated normal differences of the query point’s local
neighborhood points fall in a common bin, i.e., the description is not uniform. If the calculated normal
differences are scattered over every bin uniformly, the description is not distinctive. The Sum Of Dif-
ferences (SOD) is again used to measure the non-uniformity on the basis of the differences between
all 11 intervals of the description for each of the 32 local neighborhood divisions:

SODSHOT
κ (F) =

11∑
i=1

11∑
j=1

|dκ
i − dκ

j | ∀1 ≤ κ ≤ 32, (4.9)

with dκ
i as the i-th entry of each local neighborhood part of the SHOT description, cf. Subsection 2.1.1.

The SHOT description consists of 32 to [0, 1] normalized histograms for each part of the local neigh-
borhood. For a maximal non-uniform description of a local neighborhood part, one bin equals 1 the
others equal 0, i.e., dκ

max =
[
1 0 . . . 0

]
. Substituting dκ

max in Equation 4.9 yields again the max-
imum SOD of 20 for each local neighborhood part. For a uniform description of an angle, every bin
equals the same, i.e.dκ

min =
[

1
11 . . . 1

11

]
. Substituting dκ

min in Equation 4.9 yields the minimum SOD
of zero for each local neighborhood part.

Toward a SOD value for an entire SHOT description, the 32 SOD values are added and normalized:

LIGd,SHOT =
1

640
·

32∑
i=1

SODSHOT
i (F). (4.10)

Hence, the LIGd,SHOT is zero for a non-distinctive SHOT description and one for a very distinctive SHOT
description.

The RoPS descriptor’s distinctiveness computation differs from the previous methods, since the in-
dividual elements of the 135-dimensional description do not represent the frequency distribution of
an individual characteristic but somewhat repetitive values of five independent characteristics. For the
RoPS descriptor, the distinctiveness is determined depending on the change in the individual statistics
of the 5-tuple, cf. Subsection 2.1.1. Not elongated patterns are particularly important for localization,
from which both longitudinal and lateral position information can be derived. These patterns have a
comparable statistical point distribution in all rotations or projections. If a statistic value for a selection
point changes significantly within the 27 local neighborhood parts of the 5-tuples, there is no similar
statistical point distribution in all rotations or projections. In this case, the RoPS description vector is
not distinctive. Their standard deviation can describe the change in the individual statistics across all
27 5-tuples so that a value results for each statistic value (σµ11 , σµ12 , σµ21 , σµ22 , σe). The sum of all
standard deviations is build for the distinctiveness:

σsum(F) = ση
µ11

+ ση
µ12

+ ση
µ21

+ ση
µ22

+ ση
e ∀1 ≤ η ≤ 27. (4.11)

A maximum achievable summed standard deviation σsum = 0.1 over all 27 local neighborhood parts
follows from the maximum achievable values of the statistics.

This leads to the normalized distinctiveness of the RoPS description:

LIGd,RoPS(F) = 1− σsum(F)

0.1
. (4.12)

116



4. Feature Area Extractions 4.5. Analyzes of Extraction Process Using Real-World Data

Map Data Format

General MFA
Position

Surface Normal
Angle

Characteristic
Radius Interval

• MFA ID

• UTM cell

• Northern
Hemisphere

• Descriptor Type

• Position 1 x

• Position 1 y
...

• Position n x

• Position n y

• Lower Limit

• Upper Limit

Description
Vector

Figure 4.7: Structure and content of the map data format

A distinctiveness of one stands for the continuity of the individual statistics, i.e., a standard deviation
of zero, and a distinctiveness of zero stands for the maximum achievable standard deviation.

These definitions are used to compute the LIG’s distinctiveness, applied to extract OFAs and MFAs.

4.4.4. Map Data Format
The 2D representations of the map elements, i.e., the MFAs, are represented in a map. This subsection
presents the corresponding map data format.

The map contains five blocks of data, i.e., general information, the 2D positions of the MFA repre-
sentation, the angle of the MFA’s surface normal, the lower and upper limit of the characteristic local
neighborhood radius, and the description vector, as depicted in Figure 4.7. The General data provides
a unique identifier for every MFA in an ordered sequence, the MFA’s UTM cell, a Boolean value speci-
fying its belonging to the northern hemisphere, and the descriptor type. The identifier is used for its
unique assignability.

The specification of the UTM cell and the northern hemisphere’s belonging is necessary to provide
a uniqueness of the MFA’s positions, refer to Subsection 2.2.1. The descriptor type is used to state the
descriptor applied to extract the MFAs. The Feature Area Positions provide the global coordinates of
the 2D representation of the MFAs in the UTM coordinate system. Depending on the shape of the
MFA, the number of positions differs. For instance, for a point MFA only one x and one y position is
used. From the northing in the mathematically positive direction, the Surface Normal Angle is defined
as the MFA’s orientation. The Characteristic Radius Interval denotes the lower and upper limit of the
characteristic local neighborhood radius of the MFA, refer to Subsection 3.2.2 and Definition 3.7. The
DescriptionVector defines the medoid description, representing the MFA the best. This vector depends
on the descriptor type.

4.5. Analyzes of Extraction Process Using Real-World Data

In the following analyzes, the proposed MFA and OFA selection is evaluated on several real-world data
sets, checking whether Requirements 4.10 for the extraction method are met. First, position deviations
are computed, matching the extracted MFAs with the OFAs, and compared to deviations determined

117



4.5. Analyzes of Extraction Process Using Real-World Data 4. Feature Area Extractions

with a key-point-based extraction method, checking Requirement (i) and (ii). Furthermore, general
ideas of the LiDAR-Feature-based Localizationare evaluated. Therefore, the persistence of the extracted
MFAs and OFAs, cf. Definition 4.18, is analyzed with test drives recorded over one and a half years, ex-
amining Requirement (iii). Additionally, it is analyzed whether different geometric objects of diverse
sceneries are present. The compressibility achieved with the extraction method regarding the map
generation is examined comparing the memory size of the raw data and the map data, verifying Re-
quirement (iv).

4.5.1. Position Accuracy MatchingMap and On-Board Feature Areas

The first experiment is designed to demonstrate that the extracted MFAs and OFAs are well-suited for
determining a 2D global vehicle position by matching sparse on-board data with dense map data, and
that the extraction method provides a good tracking stability, cf. Definition 4.17. To begin with, the
generation of the map, i.e., MFAs extraction, and the extraction of OFAs are outlined in this context
and the method of calculating the global vehicle position, a simple localization algorithm, is proposed.
Next, the test environment is introduced, comparing the extraction method of this chapter to another
extraction method based on key points. Finally, the position accuracies presented and discussed.

The main idea of localization is to match OFAs with MFAs. This is a map-based localization, and it is
applied to estimate the vehicle position with respect to a globally referenced map.

The map is created in three stages. Initially, the dense, globally referenced point cloud Pmap is col-
lected by the mobile data acquisition system Trimble MX8 in suburbs and urban areas by repeated
scanning of the environment, refer to Subsection 4.1.2 for more details. Next, descriptions are deter-
mined for those points of the point cloud Ppreproc map which are suited for the description calculation.
For a detailed explanation, refer to Subsection 4.2.1. For that, the descriptors selected in Chapter 3 are
taken into consideration, namely, FPFH, RoPS, and SHOT. Last, the MFAs are extracted as defined in
sections 4.2, 4.3, and 4.4, building the map. Here, lines instead of polygonal chains are used for the
2D representation. However, this still indicates whether extracted MFAs and OFAs are well-suited for
computing a vehicle position.

The OFAs are extracted similarly. First, sparse on-board point clouds Pon-board sampled by the Velo-
dyne VLP-32C of the same region as the map are the input for the description calculation. The test
drive has a total length of approximately 1.5 kilometers. The descriptions are calculated only for suited
points of a point cloud Ppreproc on-board, refer to Subsection 4.2.1. The same descriptors as for the MFA
extraction are applied.

The self-localization of the vehicle with the extracted MFAs and OFAs is realized with a simple al-
gorithm. It is sufficient to show the suitability of the proposed extraction method. However, a well-
developed localization algorithm would increase the overall position accuracy but is not necessary to
demonstrate the extraction method’s capabilities. The implemented localization algorithm consists of
three steps. First, the vehicle’s pose is initialized from the on-board, close-to-production GPS sensor
NovAtel OEMStar [91]. In this way, the approximate position in the map is known and only an excerpt
instead of the whole map must be loaded to compare the OFAs with the MFAs. Next, the MFAs and
OFAs are the input for the modified ICP algorithm [160], see Subsection 2.2.3, to iteratively match the
OFAs with the MFAs considering several rotations and translations. The global 2D vehicle position is
finally determined by shifting the initial GPS pose by the rotation and translation computed with the
modified ICP.

The 2D positions computed with the extraction method proposed in this thesis are compared to a
key-point-based method, namely the ISS [169], refer to Subsection 2.1.2 for details of this method. For
this purpose, key points are extracted from the dense globally referenced point cloud Pmap, forming
the map, and from the sparse on-board point cloud Pon-board. As the ISS outputs many key points

118



4. Feature Area Extractions 4.5. Analyzes of Extraction Process Using Real-World Data

Table 4.3: Average 2D position errors and standard deviations of the errors determined based on the
proposed extraction method, considering absolute, longitudinal, and lateral errors in the
collected data using a Velodyne VLP-32C. The test drives add up to a total distance of 1.5
kilometers, including suburbs and urban areas [53].

method absolute [m] longitudinal [m] lateral [m]
ISS 1.84±2.8 1.28±1.96 1.5±2.12

proposed w. FPFH 0.54±0.53 0.38±0.41 0.41±0.36
proposed w. RoPS 0.61 ±0.49 0.47±0.37 0.39±0.36
proposed w. SHOT 0.58 ±0.59 0.4±0.41 0.43±0.43

0 100 200 300 400 500 600 700

600

500

400

300

200

100

0

xUTM [m]

y
U

TM
[m

]

Test trajectory

Figure 4.8: Trajectory of the test drives over one and a half years with shifted UTM coordinates, refer to
Subsection 3.1.2 [55].

compared to the number of OFAs and MFAs, the modified ICP algorithm would be very slow. Therefore,
the extracted key points are used in the unmodified ICP algorithm to calculate a global 2D pose [9],
refer to Subsection 2.2.3.

Both global 2D positions are compared to a high-precision GNSS combined with a high-precision
IMU, the Applanix POS LV 520 system, serving as a reference [1]. This comparison yields the accuracy.

In Table 4.3, the position accuracies in terms of average RMS trajectory errors are listed for every
method. It shows that the proposed algorithm is more precise than the key-point-based ISS extrac-
tion method in terms of localization accuracies. This is caused by the fact that key points cannot be
detected reliably from LiDAR scan to LiDAR scan and differ a lot from the map detections. Further, the
ISS algorithm seems to extract rather random points in on-board point clouds due to its sparsity. Ad-
ditionally, the results show that the proposed extraction method works with all descriptors, resulting
in similar position accuracies.

This experiment shows that the extraction process proposed in this chapter is suitable for localiza-
tion. Also, it can be obtained from this evaluation that the extraction method is able to generalize
independent of the geometry-based descriptor algorithm.

4.5.2. Persistence of ExtractedMap and On-Board Feature Areas

In the second experiment, the persistence of the extracted OFAs is analyzed, cf. Definition 4.18. Per-
sistence measures the robustness of the extracted FAs. Robustness is one of the main aspects stating
the practicability of the LiDAR-Feature-based Localization, cf. research question 1.1 of the introduction.
This experiment examines whether the same OFAs matching the MFAs are extracted over a long time

119



4.5. Analyzes of Extraction Process Using Real-World Data 4. Feature Area Extractions

along the same navigational route, see Figure 4.8. This characteristic is a major aspect of the practi-
cality of the LiDAR-Feature-based Localization. The extracted FAs need to be robust, i.e., persistent, see
research question 1.1.

The MFAs are extracted in three steps. First, the dense, globally referenced point cloud Pmap is
recorded by the mobile data acquisition system Trimble MX8 by multiple scanning of the environment,
see Subsection 4.1.2. Then, for points of the point cloud Ppreproc map suited for the description determi-
nation, descriptions are calculated, refer to Subsection 4.2.1. The descriptors selected in Chapter 3 are
applied, i.e., FPFH, RoPS and SHOT. Finally, the MFAs are extracted as defined in Section 4.2, Section 4.3,
and Section 4.4.

For this analysis, multiple test drives along the same route over one and a half years were performed.
Their point cloudsPon-board of every frame of these test drives sampled with an on-board Velodyne VLP-
32C LiDAR sensor are examined. These are used to extract the OFA. The same descriptors as for the
MFA extraction are applied to determine the descriptions of these point clouds for suited points of a
point cloudPpreproc on-board, refer to Subsection 4.2.1. Since the OFAs are extracted from on-board point
clouds, their representation is in the VRF or SRF. They are transformed into the same global coordinate
system as the MFAs, i.e., UTM, using an Applanix POS LV 520 reference system for their comparability.
All transformed OFAs are accumulated along the entire trajectory and associated with each other by
clustering them.

Then, the OFA clusters are matched with the extracted MFAs by comparing their positions. OFA clus-
ters with a position distance of λ2 = 1 m and a description distance of λ1 = 15% to the MFAs’ position
and descriptions are considered a match, refer to Definition 4.18. The extraction method’s persistence
is shown by measuring the OFAs’ relative frequency as specified in Definition 4.18. This means that
OFAs with one matching MFA in every single test drive over one and a half years are considered as
100% persistent. If there is a match with one MFA in only a few test drives the persistence for that OFA
decreases accordingly.

This analysis shows that most of the extracted OFAs are persistent and can be detected throughout
a long time, in this case, one and a half years. Within the 1.5 kilometer test drive, 83.8% of the selected
OFAs are considered sufficiently persistent as they were detected in more than half of our real-world
data sets. Besides, even 16.2% of the selected OFAs were detected in each considered data set.

4.5.3. Scenery Coverage

Another main aspect analyzing the practicability of the LiDAR-Feature-based Localization is the diver-
sity of sceneries where the FAs are extracted, cf. the research question of the introduction. The moti-
vation of extracting non-semantic elements, i.e., FAs, is to be independent of semantic infrastructure
elements. Therefore, this experiment shows that with a geometry-based descriptor many diverse ob-
jects can be detected in different sceneries.

In this experiment, dense point clouds of five different sceneries, i.e., urban, rural, suburb, industrial,
and on a highway, are used to extract MFAs on the example of the FPFH descriptor. The MFAs were
extracted as described in this chapter. Here, 60% of the FAs according to the LIG value are extracted
as MFAs.

Figure 4.9 illustrates the three-dimensional view of MFAs detected in these five sceneries. The point
of the dense point cloud belonging to MFAs are highlighted in the same color when they belong to
the same or MFAs. Points are marked gray if they are not extracted.

The figures show that with the proposed method applying one descriptor various types of objects
can be extracted automatically depending on the different geometries present in a scene. In the ur-
ban scenery of Figure 4.9c, mostly pillars, curbs, and road signs are extracted. Figure 4.9d shows the
detected MFAs of a suburban scenery. Here, mainly house walls and pillars are extracted. In the indus-
trial scenery cf. Figure 4.9e, the house walls of the office blocks and factory buildings and a fence are

120



4. Feature Area Extractions 4.5. Analyzes of Extraction Process Using Real-World Data

x
U

TM
[m

]

z
U

TM
[m

]

0 −20 −40 −60
0

0

10

yUTM [m]

10

−80 −100−120−140

(a) Highway

x
UT

M
[m

]

z
U

TM
[m

]

0
−20 −40 −60

−10
0

20

0
10

yUTM [m]

−10

10−80
−100

−120 −140

(b) Rural

xUTM [m]
y

UTM [m]

z
U

TM
[m

]

0
20

−20
−40

−60
−20

0
20

0

10

(c) Urban [53]
x

UTM
[m

]

z
U

TM
[m

]

yUTM [m]

40

60

0 40

60

20
20

15

(d) Suburban

xUTM [m]

y
UTM [m]

z
U

TM
[m

]

0
50

−50
−50

0

50

0

20

100

100

(e) Industrial

Figure 4.9: Three-dimensional view of sample MFAs (colored areas) in dense point clouds (gray) of five
different sceneries using the FPFH descriptor [110]. The dense point clouds are plotted in
the shifted UTM coordinate system.

121



4.5. Analyzes of Extraction Process Using Real-World Data 4. Feature Area Extractions

SHOT

RoPS

FPFH

2.16 · 107

8.28 · 106

2.12 · 106

4,410

2,428

528

Raw data [kB]
Map [kB]

Figure 4.10: Comparison of the memory size of the raw data map point cloud and its descriptions (or-
ange) and the memory size of the map for the FPFH, RoPS, and SHOT descriptor (blue)
through the example of a scene.

detected. In these cases, the bushes and trees are discarded as they are not distinctive compared to
other objects in each scene. This is different in the rural scenery, see Figure 4.9b. In the rural scenery,
the bushes on the side of the road are mostly the only type of object in the scene. Therefore, they
are extracted here additionally to a fenced area (yellow) enclosing a shed (blue). On the highway in
Figure 4.9a, mostly guardrails are extracted. Additionally, it can be seen that a road sign (light blue) is
detected.

However, in all sceneries, additional elements are extracted as the point clouds are not cleaned
from dynamic objects, mostly vehicles, which were present during the collection of the dense data.
For instance, trucks are extracted in the industrial scenery Figure 4.9e (dark blue, blue, and orange at
approximately (0, 0)). The description of trucks are very distinctive, similar to walls, and thus are ex-
tracted from the point cloud. Further, sometimes clutter is extracted due to boundary effects, e.g., the
red element in the right corner in the urban scenery of Figure 4.9c.

Summarizing, this experiment shows that the proposed extraction method is able to detect ele-
ments of the environment independently of the type of scenery. Therefore, the proposed approach
fulfills the requirement of being independent from infrastructure elements, which was the main moti-
vation of pursuing this research. In a refining step, the map or the dense point cloud should be cleaned
from dynamic objects and clutter.

4.5.4. Compressibility of Map Feature Area Extraction

One requirement for using clustering algorithms for the FA extraction is to reduce the memory size of
the map, cf. Requirement (iv). This examination analyzes the compressibility of the extraction method
by comparing the memory size of the raw data map point cloud and its descriptions with the map’s
memory size . The map contains all the necessary information of the MFAs, e.g., their ID or 2D point
and polygonal chain representation, refer to Subsection 4.4.4 for more details. A simplified investiga-
tion is carried out for this purpose, indicating the respective memory size in kilobytes in the comma-
separated values file format.

Figure 4.10 shows the results of the analyzes of the memory size depending on the applied descrip-
tor, i.e., FPFH, RoPS, and SHOT, through the example of a suburban area on the test trajectory, cf. Fig-
ure 4.8. The memory size for the raw data point cloud and the associated file for the FPFH, RoPS, or
SHOT descriptor are marked in orange, for the map file for each descriptor in blue. A memory size
of 2.12 · 106 kilobytes can be read off for the sample scene’s raw data using the FPFH descriptor. In
this case, the compressed map data has a 528 kilobytes memory size, achieving compression factor

122



4. Feature Area Extractions 4.6. Summary

of 4 · 103. High compressibility can also be determined using the RoPS and SHOT descriptors. While
their descriptions are of higher dimension, the total memory sizes are higher for both the raw and the
map data. For the RoPS descriptor, the raw data is compressed from 8.12 · 106 kilobytes to 2428 kilo-
bytes with compression factor of 3 · 103. For the SHOT descriptor, the raw data is compressed from
2.16 · 107 kilobytes to 4410 kilobytes with compression of 5 · 103.

According to the analyzes of the memory size, it can be summarized that, for the FPFH, RoPS, and the
SHOT descriptor, a significant reduction in memory size can be achieved using the proposed extraction
method compared to saving the entire raw data points with the associated description files. Thus, the
Requirement (iv) is fulfilled by the developed extraction algorithm.

4.6. Summary

Whereas Chapter 3 focused on the description of characteristic relations between sampling points in
local neighborhoods, the first step of the LiDAR-Feature-based Localization, this chapter focuses on the
method to extract areas with significant and persistent characteristics automatedly, its second step.

For the non-semantic detection of these significant and persistent areas, a set of connected points
with similar geometry-based descriptions with a benefit for the localization task is extracted in four
steps. First, the geometry-based descriptions are calculated for those points of the point cloud with
enough points in their local neighborhood. Then, a clustering algorithm applied in the description
space is carried out to group points with similar descriptions using the k-medoid algorithm. These
clusters of points with similar descriptions are the input for the clustering in the Euclidean space. Here,
the description clusters are grouped separately into multiple areas of spatially connected points using
the DBSCAN. In the last step, the best α percent of the resulting clusters are kept, measuring their sig-
nificance with the benefit for localization, i.e., the Localization Information Gain (LIG), and represented
as 2D points and polygonal chains. The LIG unites several values, e.g., measuring the distinctiveness,
uniqueness, and spatial diversity of the areas. The outcome of this method are Feature Areas (FAs) in
the map, which can be recognized in the vehicle. The map elements are called Map Feature Areas and
the detection in the test vehicle are called On-board Feature Areas.

This method is implemented and tested in real-driving scenarios, examining the requirements on
the extraction algorithm, cf. Requirements 4.10. For that, a map containing the 2D representations of
the Map Feature Areas (MFAs) is generated from a dense and globally referenced LiDAR point cloud,
following the proposed algorithm. Real-world point clouds sampled with close-to-production type
LiDAR sensors are recorded and used to extract On-board Feature Areas (OFAs). A simple localization
algorithm matching OFAs with MFAs is employed to evaluate Requirements (i) and (ii), i.e., the use-
fulness of the extractions for the localization task. This demonstrates that the proposed extraction
algorithm provides persistent and more accurate results than existing key-point-based methods con-
sidering global, map-based localization. Verifying the Requirement item (iii), the persistence of the
extracted OFAs and MFAs is analyzed by determining the OFAs’ relative frequency using data collected
over one and a half years along the same navigational route. The findings of this examination demon-
strate that most of the extracted OFAs are persistent and can be detected throughout a long time. The
compressibility of the proposed algorithm, i.e., Requirement (iv), is analyzed in the third experiment
by comparing the memory size of the raw point cloud data and its descriptions with the map’s mem-
ory size. A significant reduction in the memory size can be accomplished by applying the proposed
extraction method. Additionally, it can be seen that the detection of non-semantic FAs enables the
possibility to cover more scenes rather than predefined domains.

All of the analyzes demonstrate the potential of a localization relying on non-semantic elements by
fulfilling each of the Requirements 4.10. The next chapter presents a robust localization solution using
the extracted non-semantic OFAs and MFAs.

123





Part III.

Positioning with Features

125





5. Localization using LiDAR Feature Areas

The two preceding chapters presented and analyzed the first two steps of the LiDAR-Feature-based Lo-
calization. First, descriptor algorithms are applied to determine characterizations for suitable points
of on-board and map point clouds sampled with LiDAR sensors. Second, the point cloud information
and the descriptions with high information content are used to extract significant and persistent Fea-
ture Areas for the map and in the test vehicle automatedly. These detections are called Map Feature
Areas (MFAs) and On-board Feature Areas (OFAs), respectively. In this chapter, these non-semantic ex-
tractions are integrated into a robust localization algorithm, evaluating the practical relevance of the
approach of the LiDAR-Feature-based Localization. The localization forms the third step of the LiDAR-
Feature-based Localization. Therefore, the methodology of applying a localization algorithm is out-
lined, including the criteria for a robust localization algorithm and the research questions of this chap-
ter, see Section 5.1. The choice of a localization algorithm, operating on the FAs, is made based on
these criteria. The integration of the FAs into the localization algorithm is presented in Section 5.2.
The practical relevance of the FAs’ application to a robust localization is analyzed and its results are
presented in Section 5.3. These experiments evaluate several aspects of practical relevance of the
LiDAR-Feature-based Localization: position accuracies in Subsection 5.3.1, and the necessary comput-
ing resources in Subsection 5.3.2.

5.1. Terms andMethodology

Here, the methodology of the localization algorithm is provided. It includes criteria for choosing a
localization algorithm integrating non-semantic elements. It also contains the research questions ad-
dressed in this chapter.

5.1.1. Defining the Localization

The terms of the third step of the LiDAR-Feature-based Localization are specified in the following sub-
section. The third step is to match the OFAs with the MFAs computed with the same descriptor in a
robust way to achieve an accurate 2D pose of the vehicle.

The vehicle pose must be defined, which is the output of the localization algorithm.

Definition 5.1 (Vehicle Pose). Let xv ∈ R be the easting position, let yv ∈ R be the northing position,
and let θv ∈ [0, 2π) be the vehicle’s heading, every scalar as defined in the UTM coordinate system. Then,
the vehicle pose is defined asχv = [xv, yv, θv].

The vehicle pose is specified in a global coordinate system, here the UTM reference frame. The ap-
plication of the standardized global Cartesian coordinate system has two reasons.

Since Cartesian systems enable distance computations with low distortions, they are easier to deal
with when processing data, for example, compared to an ellipsoid coordinate system like the WGS84.

Additionally, the vehicle pose is required in a global coordinate system. For instance, V2X systems
send and receive messages, which include their poses, to enhance road safety, e.g., with special ve-
hicle warnings. The vehicle pose must be given in a global coordinate system so that the receivers
are capable of interpreting the messages’ contents. At the same time, the vehicle pose is needed in

127



5.1. Terms andMethodology 5. Localization using LiDAR Feature Areas

a map-relative system. For example, the path planning task depends on a priori knowledge, i.e., map
data, since they require further information that the vehicle might not be able to derive from its on-
board sensor data. This could be the case if road markings bounding the vehicle’s lane are not precisely
recognized in unfavorable weather conditions. Hence, such tasks also depend on the vehicle’s pose
within a given map to be able to obtain map information. Therefore, the map elements are also defined
in the UTM reference system, refer to Subsection 4.4.4.

Since this thesis focuses on two-dimensional localization for simplification, the vehicle pose is de-
fined in the two-dimensional UTM coordinate system.

Thus, the goal of the third step of the LiDAR-Feature-based Localization can be formulated as follows.

Problem Formulation:
Let FO ⊂ Px,y,z

on-board × DPon-board be a set of On-board Feature
Areas of different times and let FM ⊂ Px,y,z

map × DPmap be a
set of Map Feature Areas computed with the same descriptor.
The goal is to estimate the most likely two-dimensional vehi-
cle pose χv ∈ R2 × [0, 2π) depending on all OFAs matching
the MFAs.

5.1.2. Procedure of Localization with LiDAR Feature Areas
The procedure of approaching the localization algorithm consists of two steps: the integration of FAs
into a selected localization method, and the evaluation of the proposed algorithm in the context of
LiDAR-Feature-based Localization. In the following, the methodology of both steps is explained in de-
tail.

Selecting and Expanding the Localization Algorithm: This thesis’ approach of a localization rely-
ing on non-semantic elements should be revised in this chapter. Therefore, the approach should be
examined based on a state-of-the-art localization algorithm, applying the extracted FAs. In the follow-
ing, several requirements are defined, which the localization algorithm has to fulfill.

Requirements 5.2 (Localization Algorithm). A localization algorithm estimating the most likely vehi-
cle pose relying on On-board Feature AreasFO and matching Map Feature AreasFM, has to fulfill the
following conditions:

(i) Full SLAM: The localization algorithm has to enable the consideration of past vehicle poses.

(ii) Small Influence of Linearization Errors: The localization algorithm has to mitigate the influence of
linearization errors on the estimation.

(iii) Vehicle Applicability: The localization algorithm has to be applicable on-board in a vehicle environ-
ment.

In the following, the requirements listed above for selecting of a localization algorithm are described
in more detail.

The first requirement states that a localization algorithm should factor in the information of past
times, not only the current observations. This includes past vehicle poses and OFAs extracted in pre-
vious point clouds. The requirements state that past determined vehicle poses should be updated,
making use of the current information. That means that the full SLAM problem should be solved. This
requirement enables the localization algorithm to make the vehicle pose determination more robust
by applying past information.

128



5. Localization using LiDAR Feature Areas 5.1. Terms andMethodology

Table 5.1: Evaluation of localization algorithms based on Requirements 5.2 for LiDAR-Feature-based Lo-
calization

Requirement Filtering-based Smoothing-based
Full SLAM (i) 7 X

Small Influence of Linearization Errors (ii) 7 X
Vehicle Applicability (iii) X -

Since, in practice, the localization problem is often non-linear, its linearization is carried out for effi-
ciency reasons, incorporating linearization errors. Therefore, in the second requirement, it is defined
that the localization algorithm should keep linearization errors as small as possible.

The third requirement states that a localization algorithm should be applicable in an on-board test
vehicle. That means that it should provide accurate and robust results. Additionally, the method’s
computational effort should fit to on-board environments.

Hereafter, these requirements are used to select an appropriate localization algorithm, refer to Ta-
ble 5.1 for a summary. For each criterion, a checkmark or a cross in Table 5.1 displays whether this
requirement is fulfilled or not. A straight line displays that the method fulfills the requirement partially.
In the literature, localization approaches are divided into two categories. Such methods can be de-
fined as filtering- or smoothing-based approaches. Further, in recent years, AI-based approaches have
been developed, approaching the localization problem. However, AI-based approaches are not taken
into account in this thesis.

Filtering-based methods formulate the localization problem as estimating the vehicle’s pose at one
timestamp with the current measurements and the map. Popular methods belonging to this category
are the two-stepped Extended Kalman Filter (EKF), particle, or information filters [131]. Thus, Require-
ment 5.2 (i) is not met. They assume the Markov property and thus, large linearization errors can occur,
contradicting Requirement 5.2 (ii) [85]. However, just solving the localization problem for the current
measurements induces a low computational effort.

Smoothing-based methods view the localization problem as solving a sequence of vehicle poses at
specific time instances, meeting Requirement 5.2 (i). Usually, these methods depend on least-square
error minimization strategies. These algorithms are able to reduce the influence of linearization errors
by applying relinearization repeatedly. Therefore, they fulfill Requirement 5.2 (ii). One downside to
these methods is that the problem which has to be solved expands over time. Hence, the computa-
tional effort grows and reduces the vehicle applicability, i.e., Requirement 5.2 (iii). Several procedures
have been developed to overcome this effect, including a sliding window. This sliding window either
removes old measurements and adds new ones or performs marginalization. Marginalization is the
strategy preserving old measurements’ data within the optimization problem while deleting them
from the estimation.

In this thesis, taking all requirements into account, a smoothing-based approach is selected as a
localization algorithm. An intuitive way of expressing the smoothing-based methodology is by the
graph-based framework utilized in this thesis. This approach can be viewed constructing a factor
graph, refer to Subsection 2.2.8 for more details. Nodes in the factor graph are current and previous
poses of the vehicle, OFAs, and MFAs. Edges between two nodes in the factor graph are measurements
limiting the nodes. The localization algorithm works by computing a factor graph which explains best
the measurements. In this thesis, a sliding window approach is applied to overcome the growing com-
putational effort. For more details, refer to Subsection 2.2.8.

As this is a state-of-the-art process, the main task of the implementation is to integrate the OFAs and
MFAs into the factor graph-based localization algorithm. In this thesis, the work of Wilbers et al. [160]
provides a basis for the localization algorithm.

129



5.1. Terms andMethodology 5. Localization using LiDAR Feature Areas

Evaluating theLocalizationAlgorithm: The overall concept of applying the localization algorithm
should be evaluated for their application in the real world. Consequently, requirements for evaluating
the LiDAR-Feature-based Localization are stated below, referring to the research question defined for
this thesis in Section 1.1. This thesis focuses on the potential of applying non-semantic information to
localization. Therefore, the requirements do not include the criteria like real-time capability and the
computational effort.

Requirements 5.3 (Localizing with On-Board and Map Feature Areas). A localization algorithm,
matching OFAs andMFAs, has to fulfill the following conditions:

(i) Accuracy: The LiDAR-Feature-based Localization has to provide accurate results.

(ii) Long-Term Robustness: The LiDAR-Feature-based Localization has to provide accurate results over a
long time, e.g. a year.

(iii) Scene Coverage: The LiDAR-Feature-based Localization has to provide accurate results in multiple
types of scenes, e.g., suburbs, rural areas, and urban areas.

The preceding criteria for a localization relying on non-semantic data are described in more detail
in the following.

In the first requirement, it is defined that the non-semantic localization should provide accurate
results. Since localization is developed in the context of automated driving, it should meet the accuracy
demands of this application. Reid et al. [104] derived accuracy requirements for an US freeway and
local roads. They state that a passenger vehicle on an US freeway should achieve a 95% accuracy
in lateral direction of 0.14 meters and in longitudinal direction of 0.48 meters. On US local roads, a
passenger vehicle should achieve a 95% accuracy in lateral and longitudinal direction of 0.10 meters.
These specifications are used in this chapter to evaluate the localization results.

The second requirement specifies that the non-semantic localization can be applied over a long
time, e.g., one year. As the semantics of the OFAs and MFAs are not known, their persistence cannot
be assumed. Therefore, the long-term robustness is crucial to ensure a localization that can be applied
during all seasons of the year.

In the last requirement, it is stated that the non-semantic localization shall extract FAs which provide
accurate localization in various types of scenes, like suburbs, rural areas, and urban areas. As the mo-
tivation of the LiDAR-Feature-based Localization is to be independent of infrastructure elements, this
requirement embraces the core criterion. That is why its fulfillment is crucial.

These criteria are used to evaluate the practical benefit of the LiDAR-Feature-based Localization.

Sensors: For the calculation of the vehicle pose, not only the OFAs and MFAs, extracted from on-
board and offline generated LiDAR scans are used, but also the vehicle’s odometry data, and GNSS
data. Details of the sensors recording these data are summarized hereafter. A detailed description
about the sensors and the architecture of the used test vehicles can be found in Subsection 3.1.2.

The close-to-production LiDAR sensors Velodyne VLP 16 [151] and Velodyne VLP 32-C [150] are used
to extract OFAs. The LiDAR sensors sample the environment non-uniformly with a higher horizontal
resolution compared to the vertical resolution. The resulting scans are sparse and afflicted with noise.
Furthermore, the sensors’ sampling density decreases with increasing distance between the sensor
and the scanned object. As a result, the point clouds are only an incomplete representation of the
real-world.

The Trimble MX8 LiDAR sensor integrated into a mobile data acquisition system is used to extract
MFAs [105, 142]. This sensor measures the surroundings with high precision by repeated scanning and
postprocessing. This process yields a globally referenced dense point cloud with a sampling resolution
of approximately 34 points

100 cm2 . The point clouds obtained represent a complete and ideal image of the
real world.

130



5. Localization using LiDAR Feature Areas 5.2. Integration of Features into Graph-Based SLAM

A software module called EgoMaster [3] estimates the odometry data based on data from standard
and close-to-production type sensors integrated into the ESP and ABS. It provides data with 100 Hertz.

GNSS data is received with standard production-type GPS sensors. In this thesis, the NovAtel FlexPak-
G2 OEMStar [91] is used. This is a close-to-production type GPS sensor.

5.1.3. Research Questions of the Application of the Localization Algorithm
The research questions addressed in this chapter are introduced and depicted in detail in the following
subsection.

How should FAs be integrated into a state-of-the-art localization algorithm?

• Most graph-based localization algorithms rely on semantic landmarks like pillars, house build-
ings, or road markings. However, in this thesis, non-semantic data needs to be integrated into
a graph-based localization method. As these on-board and map elements are composed of 2D
position information, i.e., points and polygonal chains, and descriptors, their localization infor-
mation needs to be integrated suitably.

• Section 5.2 presents the integration of the OFAs and MFAs into the graph-based localization.

What is the practical benefit of the LiDAR-Feature-based Localization?

• Compared to the sensing of semantic data, the LiDAR-Feature-based Localization detection of
non-semantic data is more expensive and time-consuming, assuming no prior knowledge about
the LiDAR data. This additional effort is tolerable if this induces independence of infrastructure
elements for localization. Therefore, the practical benefit must be examined.

• Section 5.3 presents the results of several examinations of the practical benefit of the LiDAR-
Feature-based Localization.

The publication [55] arose from this thesis and presents the localization method’s integration of FAs.
It depicts the localization algorithm and accuracy results when integrating point and line FARs.

5.2. Integration of Features into Graph-Based SLAM

In the following section, the integration of the OFAs and MFAs into the localization algorithm is pre-
sented. In the following, the OFAs and MFAs are considered for each descriptor type separately. An
overview of one cycle of the localization algorithm, i.e., one time step, is illustrated in Figure 5.1. The
algorithm’s main idea is a sliding window graph-based localization with non-semantic LiDAR FAs on a a
priori generated map. 1) CollectionofOFAs The OFAs are extracted from on-board LiDAR scansPon-board
calculating descriptions with a descriptor algorithm.
2) Association of FAs They are associated over time regarding OFAs from consecutive timestamps

corresponding to each other. The associated OFAs are matched with MFAs. Subsequent, the associated
OFAs, the matched MFAs, the vehicle’s odometry and GNSS measurements are the input for a factor
graph generation.
3) Graph-basedOptimization The factor graph is optimized to estimate the vehicle pose. These three

steps, carried out at predefined time steps, are explained in more detail, focusing on the last two steps
in Subsection 5.2.1, Subsection 5.2.2, Subsection 5.2.3. Additionally, the map generation process, i.e.,
the detection of MFAs is summarized in Subsection 5.2.1. A sliding window is integrated into the opti-
mization problem to reduce the computational effort. The principle of the sliding window is explained
in Subsection 5.2.6.

131



5.2. Integration of Features into Graph-Based SLAM 5. Localization using LiDAR Feature Areas

LiDAR point clouds
P ⊂ P(R3 × [0, 1])

Feature Area
Collection

Feature Area
Association

odometry
O ⊂ R2 × [0, 2π)

Map Matching

OFAs
FO ⊂ R2+ × Rm

OFA Clusters
FC ⊂ P(R2+ × Rm)

MFAs
FM ⊂ R2+ × Rm

Optimization

Valid Map Matches

M ∈ P(P(R2+ × Rm)

×(R2+ × Rm))

1) Collection of OFAs 2) Association of FAs 3) Graph-based Optimization

poses
X ⊂ R2 × [0, 2π)

GNSS data
G ⊂ R2 × [0, 2π)

Figure 5.1: Scheme of one time step of the localization computation using LiDAR point clouds, GNSS
data, odometry, and map information. 1) For every timestamp, OFAs are extracted from
point clouds through descriptor calculations (green). 2) These OFAs are clustered, matched
with MFAs, and stabilized, taking previous map matches into account (blue). 3) The vehicle
pose is estimated building and optimizing a factor graph from all input data (orange) [55].

5.2.1. Collection of On-Board Feature Areas andMap Generation

At first, the OFAs are extracted, as described in Chapter 4. A summary is given below.
Descriptions of suitable points of a LiDAR scan Ppreproc on-board ⊂ Pon-board are calculated performing

a descriptor algorithm. These descriptions are determined for those points whose local neighborhood
includes enough points to characterize a three-dimensional structure.

Since descriptions are computed for nearly every point of the point cloud, the data size should be
reduced and only those data should be used for localization which is robust and useful for localization.
Therefore, the next two steps consist of a two-stepped clustering method, compressing the 3D point
cloud and description data. Both the descriptions and the points’ euclidean coordinates are taken into
account. First, the data is compressed by clustering points with similar descriptions while preserving
most of the useful information. For this step, the k-medoids algorithm by Kaufman and Rousseeuw
[59] is applied. In Subsection 4.4.1, a detailed reason of the choice of the cluster algorithm is given.
In doing so, the descriptions DPpreproc on-board are sorted into two classes because noisy descriptions only
permit a reliable distinction between two classes. Taking the example of the FPFH descriptor, this
yields a distinction between strongly curved and weakly curved descriptions. Second, the two de-
scription cluster are grouped separately into multiple spatially connected areas. This is realized with
the DBSCAN algorithm by Ester et al. [29]. As a result, this process detects multiple areas of spatially
connected points with similar descriptions, i.e., FAs.

The detected FAs are modeled as 2D points and polygonal chains. Since this thesis concentrates
on 2D localization, a 2D representation is sufficient. A FA with a local expansion in x- and y-direction,
which is smaller than 0.5 meters, is represented as a point. If that condition is not fulfilled, the FA is
represented as a polygonal chain. Because elongated objects are often formed like the course of the
road in the real world, e.g., walls or curbs, they are not always linear. Therefore the FAs are modeled as
polygonal chains, not lines.

Next, those FAs are extracted from the set of FAs which are useful for localization. For this purpose,
a set of different measures describing the FAs’ suitability is used. They are summarized in the Local-
ization Information Gains (LIGs). For on-board point clouds, it captures the distinctiveness, i.e., how
explicitly a FA’s can be described, the uniqueness, i.e., the identifiability within a point cloud by the FA’s
description, and the spatial diversity, i.e., the contribution of the FA to the spatial distribution within
a point cloud, refer to definitions 4.14, 4.15, 4.16. One LIG value, containing the three components, is

132



5. Localization using LiDAR Feature Areas 5.2. Integration of Features into Graph-Based SLAM

computed for every FA of the point cloud. The FAs with the highest LIG value are extracted as OFAs.
The process is repeated for every point cloud within each time step. This yields OFAs FO,ti at times

ti ∈ R.
This is done similarly for the offline MFAs extraction. Instead of sparse on-board LiDAR point clouds

dense, globally referenced point clouds are used. The clustering is carried out in the same way. How-
ever, only the distinctiveness is considered while extracting MFAs from the set of FAs. This is due to
the fact that only those FAs with good descriptor characteristics should be kept. The LIG values’ spa-
tial diversity and uniqueness cannot be computed based on the single FAs as they are point-cloud
dependent.

5.2.2. Association of Feature Areas

The OFAs are extracted for every point cloud for every time step for each descriptor type separately,
as described in the previous subsection. In the second step, an association of OFAs is carried out. This
is done to determine which OFAs, extracted from the on-board point clouds of the current time step,
can be matched with OFAs extracted from point clouds of former time steps.

The idea of association is to compare the current OFAs with previously associated OFAs determined
with the same descriptor, or rather their representatives. All associated OFAs are grouped into an OFA
clusters, whose definition is given below. Only same types of OFAs are clustered, i.e., computed with
the same descriptor and with the same position representation (points or polygonal chains).

Definition 5.4 (On-Board Feature Area Cluster). Let t1, . . . , tn ∈ R be the points in time of consecutive
on-board measurements, letFO,ti ∈ R2+ × Rm be an On-board Feature Areas at time ti ∈ Rwith either
point or polygonal chain position representations rti ∈ R2+ and description representatives dti ∈ Rm

determined with a descriptor function, letmd : Rm × Rm → R≥0 be some descriptor specific metric with
metric thresholdε1 ∈ R>0, and letmp : R2+×R2+ → R≥0 besomemetricwithmetric thresholdε2 ∈ R>0.
Then, anOn-board Feature AreaCluster (OFA cluster) is defined by the setFC,{t1,tn} ⊂ R2+ ×Rm, contain-
ing all On-board Feature Areas whose representations and descriptions fulfill the following conditions

(i) mp(rti , rtj ) < ε1 ∀i, j = 1, . . . , n,

(ii) md(dti ,dti) < ε2 ∀i, j = 1, . . . , n.

The position and description data is compared to find those OFAs which are likely the same. Here, a
distinction is made between two types of OFAs, considering the 2D representation of the OFAs. Point
OFAs clusters can only consist of point OFAs, and polygonal chain OFAs clusters can only consist of
polygonal chain OFAs. As position and description data is compared, a weighting can be performed
with ε1 and ε2.

In this thesis, the following metrics are applied. For the descriptor specific metric md, (normalized)
Euclidean distances like Equation 3.2, 3.3, and 3.4 are used. For the metric mp measuring the spatial
differences, a distinction is made between points and polygonal chains, containing at least two points.
Considering points, the Euclidean distance is used. Considering polygonal chains containing at least
two points, the metric used is more complex. For every point of an OFA cluster representative rp ∈ R2,
its orthogonal projection o ∈ R2 onto every MFA line segment of the polygonal chain, i.e., with start
point s1 ∈ R2 and endpoint s2 ∈ R2, is determined:

o = s1 +
(rp − s1)

ᵀ(s2 − s1)

(s2 − s1)ᵀ(s2 − s1)︸ ︷︷ ︸
=:t

(s2 − s1) if 0 ≤ t ≤ 1. (5.1)

133



5.2. Integration of Features into Graph-Based SLAM 5. Localization using LiDAR Feature Areas

Then, for every orthogonal projection, the minimal Euclidean distance of o to the nearest point of the
polygonal chain of the MFA is computed. The mean of all minimal Euclidean distances yieldsmp.

Next, the position representative of a set of polygonal chains and set of points must be defined.

Definition 5.5 (Position Representative of Set of Points). Let t1, . . . , tn ∈ R be the points in time of
consecutive on-board measurements and let rt1 =

[
rt1,1 rt1,2

]
, . . . , rtn =

[
rtn,1 rtn,2

]
∈ R2 be

point position representations of a OFA cluster. Then, a position representative r{t1,tn} ∈ R2 is defined as

r{t1,tn} =
[
1
n

∑n
i=1 rti,1

1
n

∑n
i=1 rti,2

]
.

Definition 5.6 (Position Representative of Set of Polygonal Chains). Let t1, . . . , tn ∈ R be the
points in time of consecutive on-board measurements and let rt1 , . . . , rtn ∈ R2+ be polygonal chain po-
sition representations of a OFA cluster. Then, a position representative r{t1,tn} ∈ R2+ is determined from
rt1 , . . . , rtn with the Ramer-Douglas-Peucker algorithm [27, 103].

Note, that details about the Ramer-Douglas-Peucker algorithm can be found in Subsection 2.2.4.
Then, the OFA cluster representative for the current time step can be defined.

Definition5.7 (On-BoardFeatureAreaClusterRepresentative). LetFC,{t1,tn} ⊂ R2+×Rm beanOn-
board Feature Area cluster of times t1, . . . , tn ∈ R, and let r{t1,tn} ∈ R2+ be the position representative
and d{t1,tn} ∈ Rm the description representative, i.e., medoid description, of all elements inFC,{t1,tn}.
Then, an On-board Feature Area cluster representative (OFA cluster representative) C{t1,tn} ∈ R2+ × Rm

of times t1, . . . , tn ∈ R of the On-board Feature AreaFC,{t1,tn} is defined by

C{t1,tn} = (r{t1,tn},d{t1,tn}).

The OFA cluster representative consists of one description and the spatial information, i.e., a point
or a polygonal chain. In this thesis, the description is calculated as the medoid description of all OFAs
descriptions.

The OFA association consists of four steps. All of them are explained in the following. Note that only
point OFAs can be associated with point OFAs, and polygonal chain OFAs with polygonal chain OFAs.
In this thesis, OFAs determined with the same descriptor function are associated. Initially, every OFAs
extracted from the first point cloud of a test drive are made into singleton clusters each portrayed with
a OFAs cluster representative. The association process is carried out for all subsequent point clouds or
rather OFAs cluster representatives based on the local vehicle’s odometry data O. OFA cluster repre-
sentatives from previous time steps are translated and rotated, interpolating the odometry data to the
time of each current OFAs, i.e., the average time of all points of their corresponding FA. The translated
and rotated OFA cluster representatives and current OFAs cluster representative of the point cloud are
clustered checking conditions (i) and (ii) of Definition 5.4. That means if the distance of the description
of a currently detected OFA to an OFA cluster representative’s description is small enough and if the
distance of the current OFAs’ position to an OFA cluster representative’s position is small enough, the
OFA cluster is updated. That means, a current OFA is added to that OFA cluster and new OFA cluster
representatives are determined from all elements within the cluster. If one of the two conditions is not
met, a new cluster is created, containing only this current OFA.

Thus, the association process groups similar OFAs into clusters. This enables the association of data
from several time steps and point clouds. At the same time, arising position errors of the OFAs are
averaged by calculating the position of the OFA cluster representative from all elements of that cluster,
assuming uniform distributed noise of the sensor data.

134



5. Localization using LiDAR Feature Areas 5.2. Integration of Features into Graph-Based SLAM

5.2.3. MapMatching

After the association of OFAs, it is decided which of the OFA clusters, the output of the previous step,
correspond to which MFAs. In this thesis, this is called map matching. The map matching process is
performed once in every time step.

In the case of one OFA cluster corresponding to one MFA, the pair is called a map match. This is
defined in the following.

Definition 5.8 (Map Match). Let C{t1,tn} = (r{t1,tn},d{t1,tn}) ∈ R2+ × Rm be an On-board Feature
Area cluster representative transformed into the UTM system with either a point or polygonal chain posi-
tion representation of an On-board Feature Area clusterFC,{t1,tn} ⊂ R2+ × Rm of times t1, . . . , tn ∈ R

determined with a descriptor function, let FM = (rM,dM) ∈ R2+ × Rm be a Map Feature Area,
let md : Rm × Rm → R≥0 be a descriptor specific metric with metric threshold ε1 ∈ R>0, and let
mp : R2+×R2+ → R≥0 beametricwithmetric thresholdε2 ∈ R>0. Then, the2-tuple (FC,{t1,tn},FM) ∈
P(R2+ × Rm)× (R2+ × Rm) is calledmapmatch if the following conditions are fulfilled

(i) md(d{t1,tn},dM) < ε1

(ii) mp(r{t1,tn}, rM) < ε2.

A map match is only defined for either point OFAs and point MFAs, or polygonal chain OFAs and
polygonal chain MFAs. The metrics used in this thesis for the map matching are the same as for the
association of FAs, refer to Subsection 5.2.2.

Map matching includes three steps. Note that only point OFAs can be matched with point MFAs,
and polygonal chain OFAs with polygonal chain MFAs. In this thesis, OFAs are matched to MFAs which
were determined with the same descriptor function.

As the MFAs are specified in the global UTM reference system and the OFA cluster representatives
in the VRF of the current time, the OFAs are transformed into the UTM system first. The conversion
is carried out by transforming all OFAs cluster representatives into the UTM system with a preceding
determined vehicle pose. It is accurate enough to use no current, but an outdated pose since the
global positions are just processed to limit the search space to match the OFAs with the MFAs. In this
way, not the whole map needs to be searched.

Second, to find OFA cluster representative matching the MFAs, the best rotation and translation
between them are determined. For this determination, the modified ICP is applied, refer to Subsec-
tion 2.2.3. The application of the modified ICP in the context of FAs is presented hereafter. The OFA
cluster representatives are iteratively rotated and translated. Therefore, the following steps are per-
formed for each rotation and translation. The Euclidean distances between the positions of each point
OFA cluster representative and point MFA is computed, assuming at least one point OFA exists. For
each Euclidean distance which is small enough, every OFA cluster representative is shifted with the
Euclidean distance. The best shift of all Euclidean distances is computed by taking not only the shifted
OFAs cluster representative’s and MFAs’ position but also their description into account. Here, a dis-
tance measures the similarity of one OFA cluster representative with one MFA. This distance is called
a map matching error and is defined as follows.

Definition 5.9 (Map Matching Error). Let C{t1,tn} = (r{t1,tn},d{t1,tn}) ∈ R2+ × Rm be an On-board
Feature Area cluster representative transformed into theUTM systemwith either a point or polygonal chain
position representation of anOn-board Feature Area clusterFC,{t1,tn} ⊂ R2+ ×Rm of times t1, . . . , tn ∈
R determined with a descriptor function, let FM = (rM,dM) ∈ R2+ × Rm be a Map Feature Area, let
md : Rm×Rm → R≥0 be somedescriptor specificmetric, and letmp : R2+ ×R2+ → R≥0 be somemetric.

135



5.2. Integration of Features into Graph-Based SLAM 5. Localization using LiDAR Feature Areas

Then, themapmatching error em ∈ R2 is defined by

em =

{[
md(d{t1,tn},dM),mp(r{t1,tn}, rM)

]ᵀ
if (FC,{t1,tn},FM) is amapmatch,

c otherwise,

with some penalty vector cᵀ ∈ R2
>0.

Optionally, both components of the map matching distance can be combined into a one-
dimensional map matching error by forming a weighted sum of them. A map matching error is only
defined for either point OFAs and point MFAs or polygonal chain OFAs and polygonal chain MFAs.

The map matching error is computed for every shifted OFA to every MFA. To determine the best shift
of all distances, the total map matching error is considered. Its definition is specified in the following.

Definition 5.10 (Total MapMatching Error). Let there be k On-board Feature Area clusters determined
with a descriptor function, let there be lMap Feature Areas, and let em,1,1, . . . , dm,k,l ∈ R2 be their map
matching errors. Then, the total mapmatching error etotm ∈ R2 is defined by

etotm =
1

k

k∑
i=1

1

l

l∑
j=1

em,i,j .

Optionally, both components of the total map matching error can be combined to a one-
dimensional total map matching error by forming a weighted sum of them.

Then, the best shift of all Euclidean distances, here called residual, equals the Euclidean distance
corresponding to the minimal total map match error over all shifts.

This is performed for every rotation and translation of certain intervals. The rotation and translation
with the smallest residual represent the best rotation and translation between the OFA clusters and
MFAs. These are carried out to find map matches.

Afterwards, the map matches are determined in the third step by applying Definition 5.8 to the
rotated and translated OFA clusters and MFAs.

This rather expensive procedure is a major advantage as it enables the handling of small common
intersection of both sets. This can be the case when OFA clusters are missing or are falsely detected.
Missing OFA clusters often occur due to line-of-sight blockages, while falsely detected OFA clusters
might arise, for example, when parking vehicles are detected as their descriptions resemble a wall.

The determination of map matches is performed for every time step independently. That means
that the map matches do not depend on previous map matches. While repeating the map match-
ing process once for every time step, the map matching process yields various sets of map matches
over time. Not all elements of these map match sets are equal. Since these map matches may occur
only once or a few times over time, they are not fed directly into the optimization problem. Also, OFA
clusters that appear just once or a few times over time generate computational effort without gaining
reliable localization information. Therefore, only valid map matches are applied in the optimization.
Valid map matches are defined in the following.

Definition 5.11 (Valid MapMatch). LetFC,{t1,t1}, . . . ,FC,{t1,tk} ⊂ R2+ × Rm be the sameOn-board
Feature Area cluster with either a point or polygonal chain position representation transformed into
the UTM system at k different time steps t1, . . . , tk ∈ R determined with a descriptor function, let
FM ∈ R2+ × Rm be a fixed Map Feature Area, let (FC,{t1,t1},FM), . . . , (FC,{t1,tl},FM) be l map
matches determined in different time steps, and let c1 ∈ N and c2 ∈ N be some threshold. Themapmatch
(FC,{t1,tl},FM) is valid if it fulfills the following conditions

(i) k > c1, (ii) l > c2.

136



5. Localization using LiDAR Feature Areas 5.2. Integration of Features into Graph-Based SLAM

That means only those map matches are valid when often enough OFA clusters are matched with
the same MFA and the OFA cluster contains enough associated OFAs. This is checked for every MFA
individually. This validity check’s advantage is that map matches not found in the current cycle can
still be included in the optimization even if they were missed in the current time step.

Additionally, map matches can be revised through this process. If it was found later in time that
an OFA cluster was matched more often to a different MFAs than in preceding time steps, the map
matches are changed to the current more likely choice.

The set of all valid map matches M ⊂ P(P(R2+ × Rm)× (R2+ × Rm)) of each time step and the
possible corrected map matches are fed into optimization, thus, solving the localization problem for
every time step.

5.2.4. Graph Building

After generating the map with MFAs, extracting OFAs, associating the OFAs, and matching the associ-
ated OFAs with MFAs, the factor graph can be built. The factor graph is an intuitive way to illustrate
the localization optimization problem. The goal of this phase is to represent all available information
in the graph. This is done in every time step.

As described in Subsection 2.2.8, the graph consists of nodes and factors. All variables of the state
vector are represented as nodes. That includes 2D vehicle poses. As the optimization should deter-
mine these, they are initialized in two different ways, depending on two cases. The initial pose is set
with a GPS measurement. The subsequent poses are specified initially with the preceding pose, shifted,
and rotated with the odometry data. Hereby, the odometry data constraints two consecutive poses
as factors with its Euclidean distance and the angular difference between two vehicle poses. The GPS
poses constrain the vehicle poses as unary factors and their Euclidean distances and the angular dif-
ferences to them whenever available. The core information of the factor graph represent the valid
map matches. Point OFA cluster representatives are added to the graph as nodes, constraining the
vehicle poses by their distance in the Euclidean space to the vehicle poses without considering the
vehicle’s heading. The MFAs positions are included in the factor graph as unary factors limiting the
point OFA cluster representatives with a distance in the Euclidean space combined with a descriptor
specific distance in the description space. In the case of polygonal chain OFA cluster representatives,
unary factors are implemented.

In this way, the factor graph is composed of the vehicle’s odometry, GPS measurements, and valid
map matches.

Figure 5.2 shows a sample factor graph representation applying the proposed method using the
FPFH descriptor with a real-world data set in a suburban scenery, refer to Subsection 3.1.2 for the data
set and to Subsection 5.1.2 for the applied sensors. MFAs are illustrated in violet with lines connecting
multiple points, GPS factors as green triangles, the vehicle trajectory as orange triangles, the connec-
tions from the vehicle poses to MFAs corresponding to valid map matches as green lines, the estimated
vehicle pose as orange rectangle, the GPS pose as green rectangle, and the pose of the reference sys-
tem as blue rectangle, i.e., the vehicle pose measured with the Applanix POS LV 520 system. MFAs were
extracted from dense point clouds as described in the previous chapter. The GPS data is recorded with
a close-to-production NovAtel FlexPak-G2 OEMStar sensor. The odometry data from the EgoMaster
modules was applied. OFAs were extracted from Velodyne VLP 32-C [150] point clouds using the FPFH
descriptor. It can be seen that multiple valid map matches between observed OFAs and MFAs can be
found. They constrain together with the odometry and GPS data the vehicle trajectory, whose current
pose is close to that of the reference position.

137



5.2. Integration of Features into Graph-Based SLAM 5. Localization using LiDAR Feature Areas

Figure 5.2: Representation of the localization optimization problem as a sample factor graph in a real-
world data set on the example of the FPFH descriptor. The MFAs are represented with the
symbol (the points of polygonal chains are connected with a violet line), the GPS factors
as , the vehicle trajectory as , the connections from the vehicle poses to MFAs corre-
sponding to valid map matches as green lines, the current vehicle pose as , the current
GPS pose as , and the current pose of the reference system as .

5.2.5. Graph Optimization

In the optimization, the optimal state vector x = [χv,t1 , . . . ,χv,tj χC,{ta,tb}, . . . ,χC,{tc,td}] should
be found, i.e., j poses of the vehicleχt1 , . . . ,χtj ∈ R2×[0, 2π) anddpoint OFAs cluster representatives
rC,{ta,tb}, . . . , rC,{tc,td} ∈ R2. That means, in this step, the optimization problem Equation 2.53 should
be solved. This is done by finding the maximum a posteriori solution x∗ maximizing the probability
p(x|z), where z contains all measurements.

In Subsection 2.2.8, it has been shown that finding the maximum a posteriori solution can be simpli-
fied. For simplification, error terms are introduced. The error terms represent the deviation between
the actual measurement z and the predicted measurement h(x) with h as a (nonlinear) function that
predicts the measurement x:

e(h(x), z) = h(x)− z. (5.2)

These terms are defined for every data type applied in the optimization problem. In the following,
eg denotes the error terms between a GPS and a state vector’s vehicle pose with GPS measurement un-
certainties Ωg given by the GPS sensor. eo denotes the error terms between the relative poses of two
vehicle poses of the state vector compared to odometry data with odometry measurement uncertain-
ties Ωo given by the EgoMaster. efp denotes the error terms between a state vector’s points of OFA
cluster representative and vehicle pose compared to the measured distance from the vehicle to the
point OFA cluster representative with experimentally determined measurement uncertainties of the
OFA detection Ωfp . efc denotes the error terms between the distance of a state vector’s vehicle pose
to a polygonal chain MFA and a measured polygonal chain OFA cluster representative with experimen-
tally determined measurement uncertainties of the OFA detection Ωfc . Finally, em denotes the error
terms between a matched MFA and the corresponding state vector’s point OFA cluster representative
with map generation uncertainties Ωm.

138



5. Localization using LiDAR Feature Areas 5.2. Integration of Features into Graph-Based SLAM

With the error terms’ introduction, finding the maximum a posteriori solution can be simplified to
finding the state vector which minimizes the sum of the weighted squared error terms:

x∗ = argmax
x

p(x|z)

≈ argmin
x

∑
i

eo(x, zo
i )

TΩo
ie

o(x, zo
i )

+
∑
i

eg(x, zg
i )

TΩg
i e

g(x, zg
i )

+
∑
i

efp(x, z
fp
i )TΩ

fp
i efp(x, z

fp
i )

+
∑
i

efc(x, zfc
i )TΩfc

i efc(x, zfc
i )

+
∑
i

em(x, zm
i )TΩm

i em(x, zm
i ),

(5.3)

where the individual error terms are weighted with the information matrixΩi of the i-th measurement
as the inverse of the measurement’s covariance matrix Ci, i.e., measurement uncertainties.

The practical solution of Equation 5.3 is gained through the numerical iterative Gauss-Newton
method, refer to Subsection 2.2.8. For the numerical solution, the error terms are explicitly defined
in the following together with their Jacobian matrices, cf. Equation 2.55, for each data type. As a re-
minder, the Jacobian matrices consist of the partial derivatives of the error function according to the
state vector.

Between Point MFA and Point OFA cluster representative: Let FM = (rM,dM) ∈ R2 × Rm

be a point MFA specified in the UTM system, let FC,{t1,tk} ⊂ R2 × Rm be a measured On-board
Feature Area cluster with a point cluster representative with k different time steps t1, . . . , tk ∈ R, let
(FC,{t1,tk},FM) be a valid map match, and let F ′

C,{t1,tk} ⊂ R2 × Rm be an On-board Feature Area
cluster with a point cluster representative C′

O,{t1,tk} = (χO,{t1,tk},d
′
O,{t1,tk}) of the state vector spec-

ified in the UTM system with k different time steps t1, . . . , tk ∈ R.
Then, the error terms em(rM,χO,{t1,tk}) ∈ R2 between the measured point MFA and the point

OFA cluster representative of the state vector are defined as:

em(rM,χO,{t1,tk}) = χO,{t1,tk} − rM. (5.4)

The error terms are defined as the difference between the global point OFA cluster representative and
the point MFA. That means that the point OFA is constrained by the point MFA cluster representative,
i.e., when optimizing the graph, both positions should be as similar as possible.

The resulting Jacobian matrix Jm ∈ R2×dim(x) consists of the identity matrix 12×2 ∈ R2×2 at the
columns belonging to χO,{t1,tk}. The columns with the partial derivatives according to the other ele-
ments of the state vector contain only zero entries:

Jm =
[
0 . . . 12×2 . . . 0

]
. (5.5)

This is due to the fact that the point OFA cluster representative is part of the state vector.
Between Absolute Poses and Vehicle Poses: Let zg = [xg, yg, θg] ∈ R2 × [0, 2π) be an absolute

pose measured in the UTM coordinate system, e.g., a GPS pose, and letχv = (xv, yv, θv) ∈ R2× [0, 2π)
be the vehicle pose of the state vector specified in the UTM coordinate system. The measurement
uncertainties of the absolute pose is specified in the VRF while the measurement of the absolute pose
is defined in the UTM coordinate system. The angle error does not depend on the reference system

139



5.2. Integration of Features into Graph-Based SLAM 5. Localization using LiDAR Feature Areas

and does not need to be transformed. For this, the error terms between the GPS and the vehicle pose
are specified in the VRF by rotating the poses difference with the rotation matrix Rᵀ

g ∈ R3×3 with a
measured vehicle heading θg . Then, the error terms eg(χv, zg) ∈ R3 between a GPS and a vehicle
pose are defined as:

eg(χv, zg) = Rᵀ
g (χv − zg), with Rᵀ

g =

 cos(θg) sin(θg) 0
− sin(θg) cos(θg) 0

0 0 1

 . (5.6)

Here, the error terms are defined as the difference between the absolute and the vehicle pose, which
is rotated into the VRF. That means that the vehicle pose is constrained by the measured absolute
pose, i.e., when optimizing the graph, both poses should be as similar as possible. However, here, the
transformation of the UTM coordinate system into the VRF needs to be taken into account.

Consequentially, the Jacobian matrix Jg ∈ R3×dim(x) consists of the rotation matrix Rᵀ
g at the

columns belonging to χv :
Jg =

[
0 . . . Rᵀ

g . . . 0
]
. (5.7)

Between Relative Vehicle Poses Compared to Odometry: Let χv,ti = [tv,ti , θv,ti ],χv,ti+1
=

[tv,ti+1
, θv,ti+1

] ∈ R2 × [0, 2π) be vehicle poses of two consecutive time steps ti, ti+1 ∈ R of the
state vector in the UTM coordinate system and let zo,{ti,ti+1} = [to,{ti,ti+1}, θo,{ti,ti+1}] ∈ R2× [0, 2π)
be the odometry measurement between the two consecutive vehicle poses measured in the VRF of
χv,ti . Here, the idea of the error terms is to compare the odometry measurement with the relative
vehicle pose of the state vector’s two consecutive poses.

Therefore, the relative vehicle pose χv,{ti,ti+1} = [tv,{ti,ti+1}, θv,{ti,ti+1}] ∈ R2 × [0, 2π) between
the consecutive poses is calculated as the difference between them:

χv,{ti,ti+1} =

[
tv,ti+1

θv,ti+1

]
−
[
tv,ti
θv,ti

]
. (5.8)

As both vehicle poses are defined in the global UTM coordinate system but the odometry is measured
in the VRF, the relative vehicle pose is rotated into the VRF by rotating it with the transposed rotation
matrix Rᵀ

v,ti ∈ R3×3:

χ′
v,{ti,ti+1} = Rᵀ

v,tiχv,{ti,ti+1}, with Rv,ti =

cos(θti) − sin(θti) 0
sin(θti) cos(θti) 0

0 0 1

 . (5.9)

Then, the difference between the relative vehicle poses and the odometry measurement leads to
the error terms eo(χv,ti ,χv,ti+1

, zo,{ti,ti+1}). Since the measurement uncertainties of the odometry
are defined in the VRF, the difference is rotated with the rotation matrix Rᵀ

o ∈ R2×2:

eo(χv,ti ,χv,ti+1 , zo,{ti,ti+1}) = Rᵀ
o(χ

′
v,{ti,ti+1} − zo,{ti,ti+1})

=

[
Rᵀ

o(R
ᵀ
v,ti(tv,ti+1 − tv,ti)− to,{ti,ti+1})
θv,ti+1

− θv,ti − θo,{ti,ti+1}

]
,

with Ro =

[
cos(θo,{ti,ti+1}) − sin(θo,{ti,ti+1})
sin(θo,{ti,ti+1}) cos(θo,{ti,ti+1})

]
.

(5.10)

That means that two consecutive vehicle poses are constrained by the odometry measurement, i.e.,
when optimizing the graph, both difference between the vehicle poses should be as similar as pos-

140



5. Localization using LiDAR Feature Areas 5.2. Integration of Features into Graph-Based SLAM

sible to the odometry. However, here, the transformation of the vehicle poses defined in the UTM
coordinate system into the VRF of the first vehicle pose needs to be taken into account.

The dependence on multiple poses also has an effect on the Jacobian matrix Jo ∈ R3×dim(x). The
partial derivatives according to the two poses are represented by the respective partial matrices. Ex-
cept for them, the Jacobian matrix consists only of zero entries:

Jo =
[
0 . . . ∂eo

∂χv,ti

∂eo

∂χv,ti+1
. . . 0

]
, (5.11)

with ∂eo

∂χv,ti
=

[
Rᵀ

oR
ᵀ
v,ti Rᵀ

o

∂Rᵀ
v,ti

∂θv,ti
(tv,ti+1

− tv,ti)

0 −1

]
and ∂eo

∂χv,ti+1
=

[
Rᵀ

oR
ᵀ
v,ti 0

0 1

]
.

Between Vehicle Pose and Point OFA Cluster Representative: Let χv,ti = [tv,ti , θv,ti ] ∈ R2 ×
[0, 2π) be a vehicle pose of the state vector, let FC,{t1,tk} ⊂ R2 × Rm be an On-board Feature Area
cluster with a point cluster representative (χC,{t1,tk},dC,{t1,tk}) of the state vector specified in the
UTM system with k different time steps t1, . . . , tk ∈ R, let F ′

C,{t1,tk} ⊂ R2 × Rm be a measured
On-board Feature Area cluster with a point cluster representative (r′C,{t1,tk},d

′
C,{t1,tk}) specified in

the VRF with k different time steps t1, . . . , tk ∈ R. In this case, the main idea of the error terms is
to compare the position of the measured OFA cluster representative, specified in the VRF, with the
position difference between the state vector’s OFA cluster representative and its vehicle pose, both
specified in the UTM system.

Therefore, the difference χdiff between the positions of the state vector’s OFA cluster representative
χC,{t1,tk} and its vehicle position tv,ti is determined and rotated into the VRF:

χdiff = Rᵀ
v,ti(χC,{t1,tk} − tv,ti), with Rv,ti =

[
cos(θv,ti) − sin(θv,ti)
sin(θv,ti) cos(θv,ti)

]
. (5.12)

Since the measurement uncertainties are also specified in the VRF, a transformation does not need
to be performed. Then, the difference between the rotated position difference and the measured OFA
cluster representative yields the error terms efp(χv,ti ,χC,{t1,tk}, r

′
C,{t1,tk}):

efp(χv,ti ,χC,{t1,tk}, r
′
C,{t1,tk}) = χdiff − r′C,{t1,tk} = Rᵀ

v,ti(χC,{t1,tk} − tv,ti)− r′C,{t1,tk}. (5.13)

The idea of this error term is comparable to that of the odometry measurements. That means that the
difference between the state vector’s vehicle pose and a point OFA cluster representative is constrained
by the measured point OFA cluster representative, i.e., when optimizing the graph, both the difference
and the measured point OFA cluster representative should be as similar as possible.

Since the error terms depend on the vehicle pose and the OFA cluster representative of the state
vector (not the measured one), there are only entries in the corresponding columns of the Jacobian
matrix Jfp ∈ R2×dim(x):

Jfp =
[
0 . . . ∂efp

∂χv,ti
. . . 0 . . . ∂efp

∂χC,{t1,tk}
. . . 0

]
, (5.14)

with ∂efp

∂χv,ti
=
[
−Rᵀ

v,ti

∂Rᵀ
v,ti

∂θv,ti
(χC,{t1,tk} − tv,ti)

]
∈ R2×3 and ∂efp

∂χC,{t1,tk}
=
[
Rᵀ

v,ti

]
∈ R2×2.

141



5.2. Integration of Features into Graph-Based SLAM 5. Localization using LiDAR Feature Areas

Between Vehicle Pose and Point of Polygonal ChainMFA: Let χv,ti = [tv,ti , θv,ti ] ∈ R2 × [0, 2π)

be a vehicle pose of the state vector, let F ′
C,{t1,tk} ⊂ R2+ × Rm be a measured On-board Feature

Area cluster with a polygonal chain cluster representative (r′C,{t1,tk},d
′
C,{t1,tk}) specified in the VRF

with j points r′C,{t1,tk} = {r′C,{t1,tk},1, . . . , r
′
C,{t1,tk},j} k different time steps t1, . . . , tk ∈ R, and let

FM ∈ R2 × Rm be a polygonal chain MFA specified in the UTM system, and let (F ′
C,{t1,tk},FM) be a

valid map match.
Let vm = [vm,x, vm,y] ∈ R2 be the unit vector used for the orientation of n line segments of the

MFA. In the error terms’ determination, each point of the polygonal chain OFA cluster representative
and each line segment of the polygonal chain MFA is considered individually. Therefore, for each point
and line segment of the polygonal chain, the error terms efc(χv,ti , r

′
C,{t1,tk},l, rM) are determined by

rotating the OFA cluster representative into the UTM system and building the orthogonal distance be-
tween the OFA cluster representative and the MFA. The error terms determine the minimum distance
between the measured point and the corresponding line segment:

efc(χv,ti , r
′
C,{t1,tk},l, rM) = (Rv,tir

′
C,{t1,tk},l + tv,ti)

ᵀ ·
[
vm,y

−vm,x

]
,

with Rv,ti =

[
cos(θti) − sin(θti)
sin(θti) cos(θti)

]
.

(5.15)

Similar to the error term before, the idea here is that the difference between the state vector’s vehi-
cle pose and a point of a polygonal chain OFA cluster representative is constrained by the measured
point of a polygonal chain OFA cluster representative, i.e., when optimizing the graph, both the differ-
ence and the measured point of a polygonal chain OFA cluster representative should be as similar as
possible.

Since the error terms are only dependent on the vehicle pose the Jacobian matrix Jfc ∈ R1×dim(x)

becomes:
Jfc =

[
0 . . . vm,y −vm,x (∂e

fc

∂θti
. . . 0)

]
, (5.16)

with ∂efc

∂θti
=

([
cos(θti) − sin(θti)
sin(θti) cos(θti)

]
· r′C,{t1,tk},l

)ᵀ
·
[
vm,y

−vm,x

]
.

5.2.6. SlidingWindow

The computational effort when solving the optimization problem depends on the number of elements
of the state vector. The state vector is the vector containing all OFAs and vehicle poses. Thus, the
computational effort largely depends on the number of OFAs and poses. The more OFA variables,
which are available to minimize the weighted error squares, the more complex the problem is.

In the real-time application, the variables of the optimization problem are supplemented by new
vehicle poses with the associated measurements in each time step. If measurements of OFA are de-
tected for the first time in a time step, they can be added to the optimization problem. As a result, the
number of elements in the state vector grows. In order to enable a real-time capability, the complexity
and thus the computing effort must be limited.

Therefore, the sliding window approach is introduced to limit the number of OFAs and poses. As
the OFA measurements are associated with the poses, the number of elements in the state vector is
controlled with the number of poses. If the limit value is reached, the oldest pose with the associated
OFA measurements is removed for each time step. The same applies to OFAs which are no longer
linked to any poses by measurements.

142



5. Localization using LiDAR Feature Areas 5.3. Analyzes

0 100 200 300 400 500 600 700 800

xUTM

0

100

200

300

400

500

600

y
U

TM
GPS

Computed

Ref. Syst.

(a) Full trajectory

600
xUTM

0

100

200

y
U

TM

(b) Zoom of trajectory with ref.
lines every five meters

Figure 5.3: Vehicle trajectory computed with the method proposed in this thesis compared to a refer-
ence trajectory and a GPS trajectory on the example of the FPFH descriptor

5.3. Analyzes

In the following, the non-semantic localization matching OFAs with MFAs is analyzed. Therefore, the
position accuracy of this approach is evaluated. Also an outlook on the computation effort computing
this localization is given.

5.3.1. Position Accuracy

The experimental evaluation is designed to evaluate the proposed graph-based localization using non-
semantic features on real-world data sets by determining position deviations compared to reference
positions. It investigates Requirement 5.3 (i).

The first step of localization, Feature Area Collection, is realized in the following way. First, the map
is created by extracting MFAs from the dense and globally referenced point cloud data set generated
by accumulating multiple records of a Trimble MX8 LiDAR sensor. Second, the OFAs are collected from
the sparse on-board point clouds recorded with a Velodyne VLP 32-C LiDAR sensor. Both extractions
are performed as described in Chapter 4. Here, 60% of the FAs according to the LIG value are extracted
as OFAs and MFAs. In this experiment, three geometry-based descriptors are applied, the FPFH, the
SHOT, and the RoPS. Therefore, the descriptor-specific distinctiveness measures are applied according
to Equations 4.8, 4.10, and 4.12.

In the second step of localization, Association of Feature Areas, on-board detected data is clustered
according to Subsection 5.2.2. Additionally, some metrics and thresholds need to be defined to as-
sociate OFAs. For comparing positions of polygonal chains containing at least two points, the posi-
tions of orthogonal projections of the points of the polygonal chains onto one another are compared.
The metric is explained in detail in Subsection 5.2.2. If the polygonal chain consists only of one point,

143



5.3. Analyzes 5. Localization using LiDAR Feature Areas

Table 5.2: Absolute position errors of the LiDAR-feature-based localization method averaged over a
test drive in an urban scenery of 1.6 kilometers. The ground truth is an Applanix POS LV 520
system. The errors are compared to the average absolute position errors measured with a
close-to-production GNSS OEMStar.

absolute [m] lateral [m] longitudinal [m]
FPFH 0.45± 0.37 0.23± 0.24 0.41± 0.28
SHOT 0.51± 0.41 0.24± 0.28 0.47± 0.42
RoPS 0.46± 0.43 0.22± 0.3 0.4± 0.32

OEMStar 1.1± 0.74 0.73± 0.59 0.93± 0.46

the Euclidean distance is applied. For comparing the descriptions, descriptor-specific (normalized) Eu-
clidean distances are used according to Equations 3.2, 3.3, and 3.4. The maximum Euclidean distance
for a point OFA cluster and a point OFA to be associated is set to two meters, for polygonal chain OFA
clusters to three and a half meters. These thresholds were determined to be suitable in real-world data
analyzing multiple test drives, refer to Subsection 3.1.2 for the description of the used data set. The
maximum (normalized) Euclidean distance for the FPFH descriptor is set to 0.2, for the SHOT to 0.25,
and for the values of the RoPS descriptor to 0.01, 0.2, 0.2, 0.15, 0.1. These thresholds were set based
on practical testing with the data set according to Table 3.2.

In the third step of localization, MapMatching, the clustered OFAs are matched to MFAs according
to Subsection 5.2.3. Equally to the preceding step, some metrics and thresholds are specified, which
are used in this experiment. For all metrics, the same ones are applied in the map matching step as in
the association of FAs step. The same description thresholds are used for each descriptor. However,
different thresholds are chosen for the metrics comparing the spatial information. For the point repre-
sentations, a maximal distance of one meter is set. For the polygonal chain representations, a maximal
distance of 0.75 meters is set. A map match is considered valid if the map match consists of an OFA
cluster containing at least three OFAs and a MFA, with which this OFA cluster was matched at least
three times, refer to Definition 5.11. The graph build with this data as a sliding window length of 100
vehicle poses and OFA. These values were identified based on practical experiments with the data set
according to Table 3.2.

The fourth step of localization, Optimization, is performed using g2o, which is an open-source C++
framework [67]. g2o is designed for optimizing graph-based nonlinear error functions, where in this
thesis the Gauss-Newton method of g2o was employed. This outputs the actual vehicle pose applying
all steps of the LiDAR-Feature-based Localization.

The test data was collected driving the trajectory in an urban scenery. The odometry data of the test
vehicle is measured with the software module EgoMaster. Refer to Subsection 5.1.2 for the sensors of
the test vehicle seen in Figure 3.1. The test drive has a total length of approximately 1.6 kilometers
and includes velocities from minimal 0m

s to maximal 16.6m
s . See Figure 5.3 for a visualization of the

trajectory. Within this experiment, the accuracy of the calculated poses is measured with an Applanix
POS LV 520 system serving as a reference. Additionally, as a comparison, the accuracy of a close-to-
production GPS, i.e., NovAtel FlexPak-G2 OEMStar sensor, is shown.

The results of this experiment are shown in 5.2. It demonstrates that the approach of this thesis
yields RMS position errors which are in a range of 0.4 to 0.5 meters, which outperforms the position
calculation of the OEMStar accuracy of 1.1 meters. The mean absolute lateral errors are smaller com-
pared to the longitudinal errors. This is due to the fact that in the test drive more polygonal chain FAs
could be matched compared to point FAs. Elongated polygonal chain FAs provide more information
about the lateral vehicle position compared to the longitudinal position.

144



5. Localization using LiDAR Feature Areas 5.3. Analyzes

Compared to the requirements of Reid et al. [104], i.e., that in 95% of the cases 0.1 meters accuracy
is reached, it can be seen that localization implemented in this thesis is not accurate enough. There
are several reasons for this. Since the map, i.e., the MFAs, is generated automatically based on raw
dense point clouds, which still include dynamic objects like parking vehicles or pedestrians, the map
matching process includes systematic errors. Thus, the possible MFA with which the OFAs clusters can
be matched are more complex and include non-persistent objects. For example, walls detected on-
board might be matched with a parking truck of the map. Therefore, some map elements should be
deleted from the map, e.g., using semantics like excluding vehicles from the map with an algorithm or
manually by hand. Additionally, it can be discovered that the generated MFAs, i.e., the map, includes
artifacts created during the process of the non-semantic map generation. These artifacts should be
discarded in a next step, e.g., unifying two MFAs or discarding MFAs which look like clutter. Further, the
C++ code implemented for this evaluation is in the state of a proof-of-concept code. For instance, it
can be seen that the polygonal chain map matches are added to the factor graph very late. That means
that it occurs sometimes that no map matches are in the graph if additionally no point FAs could be
matched. In these cases, localization relies only on GPS and odometry information. This results in
an estimated vehicle position which drifts off due to odometry inaccuracies. The drifting effect can
be seen in Figure 5.3b. After a period where no map matches were found and the estimated vehicle
position drifted, and then map matches are found, the estimated vehicle position jumps close to the
reference position.

The experiment shows that the concept of a localization relying on non-semantic elements of the
environment is practically relevant. In the next step, the implementation must be further refined and
developed for practical use.

5.3.2. Demand for Computing Resources

In this experiment, the demand of computing resources of the LiDAR-Feature-based Localization are
examined. However, this thesis focuses on the localization’s potential, not on the real-time capabil-
ity. This thesis pays attention to whether it is possible to compute an accurate vehicle pose based
on non-semantic data, not on implementing it regarding computation time. Therefore, overall, the
computation time plays a minor role in this thesis.

Two analyzes are carried out in this context. First, theoretical considerations on the dependencies
of algorithms’ complexity on the the input parameters are presented. After that, an empirical analysis
measures the computation time of the implemented code of this thesis based on real-world data.

Theoretical Considerations:
The following theoretical evaluations consider the complexity in dependence of the input data. These
estimations are carried out for each of the three work steps of this thesis, i.e., description calculation,
selection, and localization.

At the beginning, the effort of the description calculation in dependence on the input data is esti-
mated. The number of points within the local neighborhood of a query point as input for description
calculation and the number of descriptions to be calculated within a point cloud are used as param-
eters for estimating the complexity. To do this, these sensor type specific indicators are compared
to one another to estimate the dependency of the description calculation’s complexity on the sensor.
First, a synthetic scene is created and sampled with three different types of sensors. Second, real-world
data sampled with two sensors with different sampling rates, resolutions and ranges is generated. De-
pending on the sensor characteristics, it is examined how the parameters and thus the complexity
change.

For this purpose, a synthetic scene, as seen in Figure 3.2a, is sampled using a Velodyne VLP 16 [151], a
Velodyne VLP 32-C [150], and a modified Velodyne VLP 16 model. The modified Velodyne VLP 16 model
is based on the characteristics of the Velodyne VLP 16 but with 1◦vertical resolution instead of 2◦(thus,

145



5.3. Analyzes 5. Localization using LiDAR Feature Areas

Table 5.3: Average total number of points within the point clouds, average number of points within the
preprocessed point clouds, and average number of points withing the local neighborhoods
for description calculation. The numbers were computed based on synthetic data (s) with
Velodyne VLP 16, Velodyne VLP 32-C, and a modified Velodyne VLP 16 models and based
on real-world point clouds of an urban scenery (r) recorded with the Velodyne VLP 16, the
Velodyne VLP 32-C.

total preprocessed point cloud local neighborhood
Velodyne VLP 16s 23,470 17,074 349

Velodyne VLP 32-Cs 48,293 36,506 107
mod. Velodyne VLP 16s 45,518 38,804 620

Velodyne VLP 16r 13,803 3,667 66
Velodyne VLP 32-Cr 43,430 10,843 38

a higher resolution with 32 layers in the same vertical field of view). Then, the total number of points
within the point clouds, the number of points within the preprocessed point clouds (points which
provide suitable information for the description calculation, cf. Subsection 4.2.1), and the average
number of points within the local neighborhoods around the query points of the preprocessed point
cloud are determined dependent on the sensor. The same experiment is performed with real-world
data. Here, real-world point clouds were recorded with the Velodyne VLP 16 and the Velodyne VLP
32-C along the same urban trajectory with 2760 point clouds. Then, the same indicators as before are
calculated, however, the total number of points and the number of points of the preprocessed point
clouds are averaged.

Table 5.3 presents the determined (average) number of points. Comparing the numbers computed
with the synthetic data of the Velodyne VLP 16 and the modified Velodyne VLP 16 with double the
resolution but same other sensor characteristics, it can be seen that with a higher sensor resolution
all numbers become larger. The number of points in the local neighborhood, which indicates the
complexity of the description calculation for one point, is nearly doubled with twice the resolution. The
number of descriptions which need to be calculated for the synthetic scene is defined by the number
of points of the preprocessed point cloud. Here, the same effect as for the number of points in the local
neighborhood can be observed. Twice the resolution results in nearly twice the number of points in
the preprocessed point cloud. Concluding, with double the resolution, twice as many descriptions
have to be calculated and twice as many neighborhood points have to be considered per description.
This leads to a quadratic influence of the resolution on the complexity.

However, another effect can be seen when comparing the results of the Velodyne VLP 16 to the
Velodyne VLP 32-C for both, the synthetic and the real-world data. While the total number of points
and number of points within the preprocessed point clouds of the Velodyne VLP 16 point cloud is
significantly smaller compared to the Velodyne VLP 32-C point cloud, the number of points within the
local neighborhoods of the preprocessed point clouds are approximately twice as large. This is due
to the different vertical resolutions, opening angles and ranges of the sensors. The Velodyne VLP 16
has a vertical field of view of 30◦and an equidistant vertical resolution. The Velodyne VLP 32-C has a
vertical field of view of 40◦and a non-equidistant vertical resolution with middle layers with a very high
resolution but with outer layers which are far apart. The points on the outer layers of the Velodyne
VLP 32-C are much further apart than the points on its inner layers and than the outer layers of the
Velodyne VLP 16. This in total leads to a smaller number of points within the local neighborhoods.
In practice, this effect is increased as the Velodyne VLP 32-C has a higher range (up to 200 meters)
than the Velodyne VLP 16 (up to 100 meters). It is able to sparsely sample objects which are far away,
which the Velodyne VLP 16 is not capable of. Hence, the Velodyne VLP 32-C preprocessed point cloud
contains more points which are far away and thus neighborhoods which are sparsely sampled.

146



5. Localization using LiDAR Feature Areas 5.3. Analyzes

Regarding the complexity of the description calculation, it can be said that the larger the actual
resolution, the larger the input for the description calculation and the more descriptions need to be
calculated per point cloud. That means that a linear relation between the resolution and the input data
for the calculation of one description can be assumed, but the complexity has a quadratic dependence
of the sensor resolution for the total description calculation of the whole point cloud. For descriptors
with linear complexity, e.g., the FPFH descriptor [110], this also means a linear increase in complexity
for the actual description calculation for one point. For descriptors with quadratic complexity, e.g.,
the PFH descriptor [108–110], this means a quadratic increase in complexity for the actual description
calculation for one point. Thus, the sensor resolution has severe influences on the computation time,
even larger for descriptors with quadratic complexities like the PFH. However, it can be seen that not
only the resolution but also the range and the distribution of the sensors’ layers must be taken into
account.

The complexity of the selection step is more difficult to estimate theoretically. As clustering algo-
rithms are applied in the selection, the complexity largely depends on the algorithms’ parameters.
In the first part of the selection step, all calculated descriptions are grouped into two clusters in the
description space applying the k-medoid, cf. Subsection 2.2.7. The effort involved depends heavily
on the number of input descriptions and the length of the individual descriptors. As can be seen in
the paragraph before, the number of input descriptions depends on the sensor resolution. The larger
the resolution of a sensor, the larger the number of points of the preprocessed point cloud, i.e., the
number of input descriptions, for the k-medoid clustering is. The size of the descriptions depends on
the applied descriptor. For example, the FPFH descriptor [110] is 33-dimensional, the SHOT descriptor
[112, 134, 136] is 352-dimensional, and the RoPS descriptor [43, 45] is 135-dimensional, as defined in
the PCL [107]. The larger the size of the description, the more entries have to be compared with one an-
other in the distance metric of the clustering. Additionally, the parameters of the k-medoid clustering
need to be considered when discussing complexity. A maximum number of k-medoid clustering itera-
tions of 100 has proven to be practicable for the application of this thesis, which represents a trade off
between accuracy and effort. In the second part of the selection, the two description clusters are sep-
arated into many spatial clusters applying DBSCAN. That depends heavily on the number of points in
the respective description cluster. Again, the number of points of the preprocessed point cloud is the
decisive factor, which depends on the sensor resolution, as seen before. Additionally, the parameters
used applying DBSCAN have an effect on the complexity. Here, a good trade off of an ε-environment
of ε = 0.5 and a minimum number of points within the ε-environment ofm = 15 has been discovered
in empirical analyzes, cf. Subsection 2.2.6. The last part, the selection and representation of FAs, largely
depends on the number of points of in each FAs and the number of selected FAs. There is a quadratic
influence here. For each FAs, the 3D points must be represented as 2D points and polygonal chains.
This means that the more FAs are extracted, the more points have to be put into the representation
algorithm. As the number of FAs depends on the scenery, no assumptions are made about that here.
But here, too, the sensor resolution is crucial when calculating the 2D representations, the effect of
which was discussed in detail before.

For the estimation of the complexity of the localization, the number of elements in the factor graph
used for localization are a good indicator. The optimization of the factor graph yields the estimated
vehicle pose. Therefore, the number of nodes and factors in factor graphs was measured in a real test
drive along a 1.6 kilometer long trajectory in an urban setting, cf. Figure 5.3. The required calcula-
tion time for localization, i.e., FA association, map matching and graph optimization, per vehicle pose
estimation was set against this.

Figure 5.4 visualizes the results of this experiment as a box plot. The red line in each box presents
the median, the lower edges of the boxes the 25%-percentile, the upper edges of the boxes the 75%-
percentile, the whiskers the extreme data points (without considering outliers), and the red cross sym-
bols the outliers. The number of nodes and factors of the graph are summarized in intervals of lengths

147



5.3. Analyzes 5. Localization using LiDAR Feature Areas

[0
, 1
00
]

[1
01
, 2
00
]

[2
01
, 3
00
]

[3
01
, 4
00
]

[4
01
, 5
00
]

[5
01
, 6
00
]

[6
01
, 7
00
]

0

200

400

600

800

1,000

Number of Nodes and Factors

Pr
oc

es
si

ng
Ti

m
e

pe
rP

os
e

Es
tim

at
io

n
[m

s]

Figure 5.4: Relation of computational time and number of nodes and factors in factor graph as a box
plot.

100. It can be seen that the larger the number of nodes and factors in the graph the longer the com-
putation time. This is approximately a linear relation, which indicates a linear complexity depending
on the factor graph size.

In summary, it can be said that some statements can be made about the relationships between the
input data and the complexity. While the resolution of the sensor has a linear influence on the num-
ber of neighborhood points and a quadratic influence on the total description calculation, in practice
other characteristics of a sensor (in addition to the resolution) are decisive for the complexity. The se-
lection’s complexity depends heavily on the chosen parameters of the applied algorithms, the sensor
resolutions, and the lengths of the descriptions. In addition, a linear relationship between the num-
ber of nodes and factors in the factor graph used for localization with respect to complexity can be
identified.

Empirical Analyzes:
The empirical analyzes are based on a real-world data set, refer to Subsection 3.1.2. The code was
implemented using C++. All calculations were performed on an Intel Core i7-6820HQ Central Process-
ing Unit (CPU), or a NVIDIA Quadro M2000M Graphics Processing Unit (GPU), and with 16 gigabyte
Random Access Memory (RAM).

For this, first, the computation time of the description calculation is determined. Here, real-world
point clouds are recorded in a suburban area. Five minutes of the test drive, i.e., 3000 point clouds, are
used to calculate descriptions for a sample geometry-based descriptor of the selected ones in Chap-
ter 3, i.e., the FPFH descriptor. The FPFH descriptor is applied for practical reasons since there exists a
sequential and parallel version in the Point Cloud Library (PCL) [107]. Therefore, the FPFH descriptor
implementation of the PCL just needs to be integrated into this thesis’ framework. The descriptions
are determined for every point of each point cloud of the test drive with the FPFH descriptor. The av-
erage computation time of the descriptor calculation for the whole point cloud is calculated from all
3000 point clouds.

148



5. Localization using LiDAR Feature Areas 5.3. Analyzes

4500

4000

3500

3000

2500

2000

1500

1000

500

4270 ms

3582 ms

666 ms

0 ms 0 ms 2 ms

total

initia
lizatio

n
norm

als

descrip
tio

ns

validatio
n

accuracies

Computation Step

0

Pr
oc

es
si

ng
Ti

m
e

pe
rP

oi
nt

Cl
ou

d
[m

s]

(a) Sequential Normal and Descriptor Calculation

4500

4000

3500

3000

2500

2000

1500

1000

500

837 ms

154 ms

649 ms

0 ms 0 ms 3 ms

total

initia
lizatio

n
norm

als

descrip
tio

ns

validatio
n

accuracies

Computation Step

0

Pr
oc

es
si

ng
Ti

m
e

pe
rP

oi
nt

Cl
ou

d
[m

s]

(b) Sequential Normal Calculation and Parallel Descriptor
Calculation

4500

4000

3500

3000

2500

2000

1500

1000

500 259 ms 155 ms
69 ms

0 ms 0 ms 3 ms

total

initia
lizatio

n
norm

als

descrip
tio

ns

validatio
n

accuracies

Computation Step

0

Pr
oc

es
si

ng
Ti

m
e

pe
rP

oi
nt

Cl
ou

d
[m

s]

(c) Parallel Normal and Descriptor Calculation

Figure 5.5: Comparison of computational times for sequential and parallel calculation of descriptions
on the example of the FPFH descriptor. The average of 3000 point clouds is denoted.

149



5.3. Analyzes 5. Localization using LiDAR Feature Areas

4000

3000

2000

1000

5481 ms

4240 ms

1323 ms

18 ms

total

k-m
edoids

DBSCAN

LIG selectio
n

Computation Step

0

Pr
oc

es
si

ng
Ti

m
e

pe
rP

oi
nt

Cl
ou

d
[m

s]

5000

6000

Figure 5.6: Demands on the computation effort of the OFAs detection on the example of the FPFH
descriptor. The average of 2760 point clouds is denoted.

Figure 5.5 illustrates the results of these calculations. The required computation time is split into
single determination steps. In this thesis’ framework, an initialization phase is preceded to the PCL’s
normal and description calculation followed by an additional validation step and a determination of
the accuracy of the calculation. That means the computation time of the normal and description cal-
culation can be separately examined considering either the sequential or the parallel determination.

In Figure 5.5a, the normal and the description calculation are carried out sequentially. It can be
seen that the main total calculation time of 4270 milliseconds arose from the actual description de-
termination of 3582 milliseconds and the normal determination of 666 milliseconds. That means the
description calculation constitutes 84% of the total computation time.

Computing the descriptions in parallel and the normals still sequentially, a total calculation time of
837 milliseconds is yielded, see Figure 5.5b. This is approximately 19% of the computation time com-
pared to that of the previous determination. The description calculation amounts to 154 milliseconds,
i.e., 4% of the sequential computation.

Figure 5.5c shows the components of the computation time when the normal and description cal-
culation is executed in parallel. Here, a total time of 259 milliseconds is reached with 6% of the se-
quential computation time, which is much closer to a real-time capability for LiDAR sensors providing
point clouds with 10 Hertz. The computation time of the parallel determination of the normals is 69
milliseconds, just 10% of the sequential determination.

Second, the computation time of the OFAs detection is computed. Similar to the experiment above
but with a different data set, real-world point clouds are sampled in an urban area. 2760 point clouds
are the input for the OFAs detection on the example of the FPFH descriptor. The OFAs are detected
in every point cloud of the test drive. Detecting OFAs for every of the 2760 point clouds, the average
computation time is determined.

150



5. Localization using LiDAR Feature Areas 5.3. Analyzes

300

250

150

100

387 ms

225 ms

135 ms

total

FA associatio
n

Map Matching

Optim
izatio

n

Computation Step

0

Pr
oc

es
si

ng
Ti

m
e

pe
rP

os
e

Es
tim

at
io

n
[m

s] 350

400

27 ms

200

50

Figure 5.7: Demands on the computation effort of the actual localization on the example of the FPFH
descriptor with a sliding window length of 100 vehicle poses and OFAs.The average of 2760
point clouds is denoted.

In Figure 5.6, the average computation time for the OFAs detection is shown. The computation time
is divided into three calculation steps, after the k-medoids clustering with k = 2, after the DBSCAN
clustering, and after the selection of the best OFAs according to the LIG value (LIG selection). The k-
medoids is implemented as the Clustering LARge Applications (CLARA) algorithm by Kaufman and
Rousseeuw [59]. It can be seen that the computation time in general is very large with 5481 millisec-
onds. While the k-medoid algorithm is relatively fast with 18 milliseconds, the DBSCAN and especially
the selection of the best OFAs according to the LIG value are slow requiring 1323 milliseconds or 4140
milliseconds, respectively. On the one hand, this is due to the fact that the data is high-dimensional,
which requires a lot of computation effort. On the other hand, especially the selection of the best
OFAs was implemented straight forward without the intention of computational performance. As a
solution to reduce these demands of computing resources, the selection of the best OFAs could be im-
plemented with a focus on computational performance. Additionally, non-distinctive clusters could
be sorted out after the k-medoid algorithm, i.e., before the DBSCAN clustering, refer to the definition
of the distinctiveness in Section 4.3. These steps would reduce the computational time largely.

Third, the computation time of the actual localization is computed. The experiment is performed
in the same environment as the second experiment on the computing resource, i.e., in an urban area
with 2760 point clouds. The OFAs detected with the FPFH descriptor from the second experiment are
the input for localization. MFAs were extracted from dense point clouds as described in the previous

151



5.4. Summary 5. Localization using LiDAR Feature Areas

chapter. The GPS data is recorded with a close-to-production NovAtel FlexPak-G2 OEMStar sensor. The
odometry data from the EgoMaster modules was applied. The localization is performed with a sliding
window length of 100 vehicle poses and OFAs, which is a crucial parameter for the amount of the
computation time. A vehicle pose is calculated every 0.1 seconds.

Figure 5.7 visualizes the average computation time for the actual localization. The whole computa-
tion time is divided into three computation steps, Feature Area association, map matching, and the
optimization of the graph, see Figure 5.1. The graph optimization is performed using g2o [67]. It can
be seen that the computation time of localization of 387 milliseconds is smaller compared to the com-
putation times of the other two steps of the LiDAR-Feature-based Localization(without parallelization).
While the FA association is relatively fast with 27 milliseconds, the map matching and the optimization
of the graph are slow requiring 135 milliseconds or 225 milliseconds, respectively. The actual optimiza-
tion of the graph takes 20 milliseconds while building the graph requires 205 milliseconds. It can be
seen that the graph itself is very large, i.e., contains many edges, cf. Figure 5.2. That is why the graph
construction takes so long. The straight forward way to reduce the computation time is to chose a
smaller sliding window length. Additionally, the map matching time could be decreased by perform-
ing the map matching just every few seconds not every cycle, in this case every 0.1 seconds. However,
these procedures would reduce the the accuracy of the estimated vehicle pose.

Concluding, the computation of the LiDAR-Feature-based Localization is very expensive. However, a
parallelization and additional time reducing actions, e.g., the sorting of non-distinctive cluster before
the spatial clustering, provide a high potential to reach real-time capability.

5.4. Summary

In this chapter, the FAs are integrated into a state-of-the-art localization algorithm. As algorithm a
graph-based sliding window SLAM solution is picked.

The main task of the graph-based sliding window SLAM is to process the input data, i.e., OFAs, odom-
etry data, MFAs, and GNSS data, robustly. This is done in two steps, see Section 5.2. As OFAs are col-
lected for every on-board LiDAR point cloud, an association needs to be performed to determine which
OFAs, extracted from the on-board point clouds of the current time step, can be matched with OFAs
extracted from point clouds of former time steps. Therefore, the OFAs of all time steps are clustered
based on their position and description data to find those OFAs which are likely the same.

After the association of OFAs, it is decided which of the OFA clusters correspond to which MFAs. This
is called map matching. Again, their position and description data are taken into account to estimate
the best rotation and translation between the two sets of OFA clusters and MFAs. The determination
of map matches is performed for every time step independently. While repeating the map match-
ing process once every time step, it yields various sets of map matches over time. Since these map
matches may occur only once or a few times over time, they are not used in localization. Only those
map matches are used where often enough OFA clusters are matched with the same MFA and the OFA
clusters contain enough associated OFAs.

These map matches are then used to solve localization as an optimization problem estimating the
optimal state vector, i.e., vehicle poses and OFA cluster representative positions. This is done in a nu-
merical way applying the Gauss-Newton optimization algorithm.

While the concept of a non-semantic localization does not make assumptions about semantics in
the environment it requires large computation effort. However, it can be shown that a parallelization
enables a great reduction in computation time, demonstrating a potential real-time capability. The
average accuracy reached with this non-semantic localization is approximately 40 centimeters and
outperforms that of a GPS based localization.

152



6. Conclusion

In this thesis, the practicability of localization based on non-semantic elements detected in Light Detec-
tion And Ranging (LiDAR) data has been studied. This concept is called LiDAR-Feature-based Localiza-
tion. Here, the key findings and contributions of this thesis are summarized, and promising directions
of future work are indicated.

6.1. Key Findings and Contributions

The LiDAR-Feature-based Localization developed in this thesis consists of three steps: characterizing
neighborhoods in LiDAR point clouds with descriptor algorithms, detecting significant and persistent
non-semantic elements (called Feature Areas (FAs)) on-board and in the map, and computing an esti-
mation of the position of the ego vehicle. The focus of this work is to investigate whether descriptor
algorithms and elements extracted using them are suitable for localization, not to develop a fully in-
tegrated localization solution, which should also consider other sources of positioning information.
These topics are presented in individual chapters, namely Chapters 3, 4, and 5.

For each topic, research questions have been defined based on a thorough literature review. Chap-
ter 2 presents the findings of this review and the conclusions drawn from it. To summarize the con-
clusions, many related methods for each of the three steps can be found in the literature. However, it
cannot always be said that they are applicable in the context of this thesis’ concept.

First, the literature review revealed that, for a practical application, descriptor algorithms have not
been studied thoroughly, yet. In most cases, the findings from the literature do not fully cover the
properties of a descriptor algorithm needed to judge its suitability for localization. Many state-of-the-
art descriptors are only evaluated with simulated data largely differing from a real world environment,
such as uniformly sampled Computer-Aided Design (CAD) models. However, in practice, the environ-
ment is not captured in homogeneous, uniformly distributed point clouds. Additionally, a fixed num-
ber of neighbors or a fixed radius around the query point is set while determining descriptions for every
query point of the point cloud. This is also not feasible for non-uniform point clouds. The artificial CAD
models are artificial and often very different from objects occurring in street sceneries.

Second, in the reviewed literature, non-semantic elements are usually extracted based on their char-
acteristics. This just takes the element’s identifiability, but not their practicability for localization into
account. For instance, some elements are selected based on their significantly large curvature and
surface variation values. However, for localization, they have to be reliably detected under several
variations, e.g., viewpoint changes, sensor noise, and inhomogeneous point densities.

These issues motivate several research questions. The key findings and contributions of each chap-
ter to these research questions are listed below.

Are geometry-based descriptor algorithms well-suited for a real-world localization? To answer
this research question, requirements for well-suited descriptor algorithms in the context of self-
location of automated vehicles are defined in Chapter 3. They state that descriptor algorithms
need to detect the local neighborhood structure expressively, that they need to differentiate be-
tween different object classes and classify similar objects in the same manner, independently of
the point cloud densities. Following these requirements, state-of-the-art descriptor algorithms
characterizing geometric data are evaluated thoroughly. For that, simulated data generated

153



6.1. Key Findings and Contributions 6. Conclusion

with close-to-production-type LiDAR sensor models and real-world data are used. These exper-
iments show that the descriptor algorithms meet many of the requirements, but lack distance
independence and are highly dependent on the local neighborhood size.

Several methods and improvements are presented in Chapter 3 to resolve these deficiencies.
This includes approaches on how to choose an optimal local neighborhood size and newly de-
veloped descriptor algorithms. In experiments, it is verified that the developed algorithms are
insensitive to moderate changes in the distance.

Are intensity-based descriptor algorithms as useful for localization as geometry-based ones?
Chapter 3 presents an intensity-based descriptor algorithm developed in this thesis. Intensity-
based descriptors only process one-dimensional intensity information from LiDAR point clouds
compared to three-dimensional information processed by geometry-based descriptors. Calcu-
lations of odometry accuracies based on both types of descriptor algorithms indicate that they
enable a comparable accuracy. Thus, intensity-based descriptor algorithms may be considered
for realizing localization.

Which methods are well-suited to detect good Feature Areas? In a first step answering this ques-
tion, criteria are defined in Chapter 4, specifying the requirements for the extraction of non-
semantic elements, i.e., Feature Areas (FAs). They specify that i) areas rather than single key
points should be detected, ii) the FAs should be detected in a non-semantic way, iii) the extrac-
tion method has to deal with descriptions determined from real-world data and not idealized
synthetic data, and iv) the number of selected FAs must be flexibly adjustable to the available
areas and needs of localization.

To meet these requirements a method based on clustering algorithms is defined, which fulfill
these. Furthermore, these algorithms compress the used data while retaining most of the useful
information. As the first step of this method, the geometry-based descriptors are calculated for
those points of the point cloud with enough points in their local neighborhood. A clustering
algorithm applied in the description space is performed to group points with similar descrip-
tions using the k-medoid algorithm. These clusters of points with similar descriptions are the
input for clustering in the Euclidean space. Here, each description clusters is grouped separately
into multiple areas of spatially connected points using the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN).

Examinations show that persistent and more accurate results than with existing key-point-based
methods can be reached with this thesis’ method. Additionally, a significant reduction in mem-
ory size can be accomplished by applying the proposed extraction method.

Which properties are well-suited to select good Feature Areas? Not every detected cluster pro-
vides information which is robust and useful for localization. This research question is answered
in Chapter 4 by defining metrics for capturing the benefit of the FAs for localization. For that, a
measure called Localization InformationGain (LIG) has been defined. It integrates several aspects,
considering the distinctiveness, uniqueness, and spatial diversity of the extracted FAs. Those α
percent of the computed clusters are kept which have the largest LIG value. This method’s out-
come are Feature Areas (FAs) in the map which can also be recognized in on-board data.

Map elements are called Map Feature Areas (MFAs), and detections in the test vehicle are called
On-board Feature Areas (OFAs). The localization of this thesis is based on matching OFAs with
MFAs. Therefore, as a first experiment, the LIG’s suitability is evaluated performing a very simplis-
tic localization algorithm. The results of this experiment demonstrate that the proposed extrac-
tion algorithm provides useful results.

154



6. Conclusion 6.2. FutureWork

How should Feature Areas be integrated into a state-of-the-art localization algorithm? This re-
search question is answered in Chapter 5. Here, FAs have been integrated into a state-of-the-art
localization algorithm, a graph-based sliding window solution. The main task to integrate FAs
into localization is the association of data.

OFAs are determined on-board for every LiDAR point cloud, i.e., for every time step. Thus, one
object in the scenery gives rise to a number of OFAs in consecutive time steps. These are associ-
ated with each other by clustering them using their position and description data.

Subsequently, OFAs are related to MFAs is performed. This step is called map matching. In map
matching, it is determined which of the OFA clusters correspond to which MFAs by comparing
their position and description data. This yields the best rotation and translation of OFA clusters
to the map for every time step. The matches may vary over time. Thus, only those map matches
are included an optimal rotation and translation with these map matches minimizing overall
deviations.

What is the practical benefit of the LiDAR-Feature-based Localization? The last research question
aims at the core question of this thesis, the practicability of a localization based on non-semantic
elements detected in LiDAR data. The answers to this research question are depicted in Chap-
ters 4 and 5.

The precision obtained with an expensive non-semantic localization constructed from the de-
velopments of this thesis outperforms that of Global Positioning System (GPS) positioning, but
does not meet the accuracy required for automated driving, yet. Enhancing the map by deleting
artifacts and improving the implementation, e.g., the integration of polygonal chain OFAs into
the factor graph, can reduce the position errors. However, it can be shown that the detection
of non-semantic FAs ensures a scenery independent detection of elements in the environment,
which is a great advantage and main motivation compared to semantic localization solutions.

It can be summarized that non-semantic elements provide scenery independent information
for a localization, which, together with a robust implementation, enable the practicability of a
non-semantic approach.

Even without including other positioning information the concept of this work achieves good lo-
calization results. This indicates that the integration of non-semantic elements into a full localization
solution would yield a substantial localization. Consequently, this thesis achieves a fully positive an-
swer to the specified research question, which guided the research of this work.

6.2. FutureWork

In this thesis, a localization concept relying on non-semantic Feature Areas (FAs) detected in LiDAR
data has been developed. It consists of describing points of point clouds, detecting significant and
persistent FAs automatically on-board and offline in the map in a non-semantic way, and determining
a vehicle pose based on these FAs. All of these steps were evaluated thoroughly. Nevertheless, several
further issues should be addressed in consecutive research.

Keeping the Map Up To Date: An important task, which should be examined in future work, is the
problem of keeping the map up to date. The localization which has been proposed in this thesis
relies on a prerecorded map. If the environment changes after the map was generated, localiza-
tion is affected. For instance, this could result in wrong map matches, like an on-board extracted
FA is matched with an outdated map FA. This could induce a poor localization accuracy. As a
result, updating the map is crucial for any practical application. One way to do that employs

155



6.2. FutureWork 6. Conclusion

the graph-based localization algorithm, which was introduced in Chapter 5. As the positions
of the on-board detected FAs are included to the state vector of the vehicle which is optimized
to solve the localization problem they are optimized as well. That means that those positions
of the on-board detected FAs are calculated which explain all measurements best. These opti-
mized on-board FAs positions could be used to update the map, i.e., delete, add, or correct the
map elements. This contributes to the problem of dynamic objects in the map, refer to Subsec-
tion 4.5.3.

Hybrid Localization: What should also be investigated in future work is a hybrid localization relying
on semantic and non-semantic elements, i.e., landmarks and FAs. This thesis only focuses on us-
ing non-semantic FAs for localization. As the computation of these elements is very expensive, a
localization applying FAs, where few, a bad geometric constellation, or an ambiguous formation
of semantic landmarks occur, should be examined. This is compatible with the graph-based lo-
calization applied in this thesis. In a first step, the landmarks and the FAs should be considered
separately, i.e., the association and map matching should be carried out for landmarks and FAs
individually. All valid matches of landmarks and FAs could then be fed into the optimization
resulting in a localization depending on both types of elements.

Generate the Map from Online Data: The concept of this thesis has been to generate the map, i.e.,
MFAs, from dense LiDAR point clouds. To determine a vehicle pose, OFAs are matched with MFAs.
OFAs are extracted from sparse on-board LiDAR point clouds. Experiments of Section 3.2 have
shown that the descriptions from OFAs and MFAs differ. Hence, a map generated from globally
referenced, optimized OFAs instead of MFAs might simplify the matching

AI-basedDescriptorAlgorithms: In this thesis, only handcrafted descriptors were applied to the con-
cept of the LiDAR-Feature-based Localization. The outlook on Artificial Intelligence (AI)-based al-
gorithms, refer to appendix A, considered two potential usages of AI techniques: one employing
connected autoencoder, the other a siamese network. Neither techniques produced useful re-
sults in the experiments performed. They were not able to generalize when trained with the used
test data. However, a more thorough investigation using a training data set, containing point
clouds containing many different geometric objects, should be examined and could produce
trained networks being able to generalize.

Reducing Computational Effort: As this thesis concentrated on the potential of LiDAR-Feature-based
Localization, there has been no focus on keeping the computation time low. The analyzes of
Subsection 5.3.2 show that the computation of the descriptions and the extraction of the non-
semantic FAs take a lot of computation time. However, it is obvious that the parallelization of
these algorithms would reduce computation time significantly. Hence, to parallelize and opti-
mize the code is recommended for a real-time application of the LiDAR-Feature-based Localiza-
tion.

156



Bibliography

[1] Applanix. Applanix POS LV 520 datasheet, 2017.

[2] P. Axelrad, C. J. Comp, and P. F. Macdoran. Snr-based multipath error correction for gps differential
phase. IEEE Transactions on Aerospace and Electronic Systems, pages 650–660, 1996.

[3] M. Baer, M. E. Bouzouraa, C. Demiral, U. Hofmann, S. Gies, and K. Diepold. Egomaster: A central
ego motion estimation for driver assist systems. In IEEE International Conference on Control and
Automation, pages 1708–1715, 2009.

[4] D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition,
pages 111–122, 1981.

[5] T. D. Barfoot, C. McManus, S. Anderson, H. Dong, E. Beerepoot, C. H. Tong, P. Furgale, J. D. Gammell,
and J. Enright. Into darkness: Visual navigation based on a lidar-intensity-image pipeline. In
Robotics Research, pages 487–504, 2013.

[6] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 404–417, 2006.

[7] D. Belton and D. D. Lichti. Classification and segmentation of terrestrial laser scanner point clouds
using local variance information. International Archives of the Photogrammetry, Remote Sensing
and Spatial Information (ISPRS), pages 44–49, 2006.

[8] P. J. Besl and R. C. Jain. Segmentation through variable-order surface fitting. IEEE Transactions
on Pattern Analysis andMachine Intelligence, pages 167–192, 1988.

[9] P. J. Besl and N. D. McKay. A method for registration of 3-D shapes. IEEE Transactions on Pattern
Analysis andMachine Intelligence, pages 239–256, 1992.

[10] B. Bhanu, S. Lee, C. C. Ho, and T. Henderson. Range data processing: representation of surfaces
by edges. In International Conference on Pattern Recognition (ICPR), pages 236–238, 1986.

[11] D. J. Bora and A. K. Gupta. Effect of different distance measures on the performance of k-means
algorithm: An experimental study in matlab. (IJCSIT) International Journal of Computer Science
and Information Technologies, 5:2501–2506, 2014.

[12] M. Bosse and R. Zlot. Map matching and data association for large-scale two-dimensional laser
scan-based slam. International Journal of Robotics Research, pages 667–691, 2008.

[13] M. Bosse and R. Zlot. Keypoint design and evaluation for place recognition in 2D lidar maps.
Robotics and Autonomous Systems, pages 1211–1224, 2009.

[14] C. Brenner. Vehicle localization using landmarks obtained by a lidar mobile mapping system. In
Proceedings of the Photogrammetric Computer Vision and Image Analysis, pages 139–144, 2010.

[15] S.-H. Cha and S. N. Srihari. On measuring the distance between histograms. Pattern Recognition,
35(6):1355–1370, 2002.



Bibliography

[16] H. Chen and B. Bhanu. 3D free-form object recognition in range images using local surface
patches. In International Conference on Pattern Recognition (ICPR), volume 3, pages 136–139,
2004.

[17] J. Chen and B. Chen. Architectural modeling from sparsely scanned range data. International
Journal of Computer Vision, pages 223–236, 2008.

[18] J. Collier, S. Se, V. Kotamraju, and P. Jasiobedzki. Real-time lidar-based place recognition using
distinctive shape descriptors. In Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence Series, 2012.

[19] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis andMachine Intelligence, pages 603–619, 2002.

[20] K. P. Cop, P. V. K. Borges, R. Dubé, K. P. Cop, P. V. K. Borges, and R. Dubé. DELIGHT: An efficient
descriptor for global localisation using lidar intensities. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 3653–3660, 2018.

[21] M. Cummins and P. Newman. Highly scalable appearance-only slam - fab-map 2.0. Proceedings
of the Robotics: Science and Systems Conference (RSS), pages 1100–1123, 2009.

[22] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 886–893, 2005.

[23] M. Dawood, C. Cappelle, M. E. El Najjar, M. Khalil, and D. Pomorski. Harris, SIFT and SURF features
comparison for vehicle localization based on virtual 3d model and camera. In International Con-
ference on Image Processing Theory, Tools and Applications (IPTA), pages 307–312, 2012.

[24] H. Deusch, J. Wiest, S. Reuterand D. Nuss, M. Fritzsche, and K. Dietmayer. Multi-sensor self-
localization based on maximally stable extremal regions. In IEEE Intelligent Vehicles Symposium,
pages 555–560, 2014.

[25] A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard. Rigid scene flow for 3d lidar scans. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1765–1770, 2016.

[26] A. Dewan, T. Caselitz, and W. Burgard. Learning a local feature descriptor for 3D lidar scans. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
4774–4780, 2018.

[27] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature. Cartographica: The International Journal forGeographic
Information and Geovisualization, pages 112–122, 1973.

[28] R. Dubé, A. Cramariuc, D. Dugas, J. I. Nieto, R. Siegwart, and C. Cadena. SegMap: 3D segment
mapping using data-driven descriptors. International Journal of Robotics Research, 2018.

[29] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of Second International Conference on Knowl-
edge Discovery and DataMining, pages 226–231, 1996.

[30] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya, S. Foufou, and A. Bouras. A survey
of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Transactions on
Emerging Topics in Computing., 2(3):267–279, 2014.



Bibliography

[31] Y. Fang, J. Xie, G. Dai, M. Wang, F. Zhu, T. Xu, and E. Wong. 3D deep shape descriptor. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2319–2328, 2015.

[32] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM, pages
381–395, 1981.

[33] A. Flint, A. Dick, and A. v. d. Hengel. Thrift: Local 3D structure recognition. In DICTA: International
Conference on Digital Image Computing: Techniques and Applications, pages 182–188, 2007.

[34] A. Flint, A. Dick, and A. van den Hengel. Local 3D structure recognition in range images. IET
Computer Vision, pages 208–217, 2008.

[35] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik. Recognizing objects in range data using
regional point descriptors. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 224–237, 2004.

[36] K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function, with applica-
tions in pattern recognition. IEEE Transactions on Information Theory, pages 32–40, 1975.

[37] R. Gal and D. Cohen-Or. Salient geometric features for partial shape matching and similarity.
ACM Transactions on Graphics, 25:130–150, 2006.

[38] N. Gelfand and L. J. Guibas. Shape segmentation using local slippage analysis. In Symposiumon
Geometry Processing, pages 214–223, 2004.

[39] E. Grilli, F. Menna, and F. Remondino. A review of point clouds segmentation and classification
algorithms. InternationalArchivesof thePhotogrammetry, RemoteSensingandSpatial Information
(ISPRS), pages 339–344, 2017.

[40] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on graph-based SLAM. IEEE
Intelligent Transportation SystemsMagazine, pages 31–43, 2010.

[41] H. Gross and U. Thoennessen. Extraction of lines from laser point clouds. International Archives
of the Photogrammetry, Remote Sensing and Spatial Information (ISPRS), 36(3):86–91, 2006.

[42] J. Guo, P. V. K. Borges, C. Park, and A. Gawel. Local descriptor for robust place recognition using
LiDAR intensity. Computing Research Repository, pages 1470–1477, 2018.

[43] Y. Guo, F. Sohel, M. Bennamoun, M. Lu, and J. Wan. Rotational projection statistics for 3D local
surface description and object recognition. Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 105(1):63–86, 2013.

[44] Y. Guo, F. Sohel, M. Bennamoun, M. Lu, and J. Wan. TriSI: A distinctive local surface descriptor for
3D modeling and object recognition. In Proceedings of the International Conference on Computer
GraphicsTheoryandApplicationsand InternationalConferenceon InformationVisualizationTheory
and Applications, pages 86–93, 2013.

[45] Y. Guo, F. Sohel, M. Bennamoun, J. Wan, and M. Lu. RoPS: A local feature descriptor for 3D rigid
objects based on rotational projection statistics. International Conference on Communication,
Signal Processing and Their Applications, pages 1–6, 2013.

[46] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan. 3D object recognition in cluttered scenes with
local surface features: A survey. IEEE Transactions on PatternAnalysis andMachine Intelligence, 36
(11):2270–2287, 2014.



Bibliography

[47] X.-F. Han, J. Jin, J. Xie, M.-J. Wang, and W. Jiang. A comprehensive review of 3D point cloud
descriptors. Computing Research Repository, 2018.

[48] C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of Alvey Vision
Conference, pages 147–151, 1988.

[49] J.-H. Haunert and C. Brenner. Vehicle localization by matching triangulated point patterns. InGIS:
Proceedings of the ACM International Symposium on Advances in Geographic Information Systems,
pages 344–351, 2009.

[50] M. Hebert, K. Ikeuchi, and H. Delingette. A spherical representation for recognition of free-form
surfaces. IEEE Transactions on Pattern Analysis andMachine Intelligence, pages 681–690, 1995.

[51] M. Himstedt, J. Frost, S. Hellbach, H. Böhme, and E. Maehle. Large scale place recognition in
2d lidar scans using geometrical landmark relations. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5030–5035, 2014.

[52] C. Hungar, S. Brakemeier, S. Jürgens, and F. Köster. GRAIL: A gradients-of-intensities-based local
descriptor for map-based localization using LiDAR sensors. In Proceedings of the IEEE Interna-
tional Conference on Intelligent Transportation Systems (ITSC), pages 4398–4403, 2019.

[53] C. Hungar, J. Fricke, S. Jürgens, and F. Köster. Detection of feature areas for map-based localiza-
tion using LiDAR descriptors. In IEEE Workshop on Positioning, Navigation and Communications
(WPNC), pages 1–6, 2019.

[54] C. Hungar, F. Köster, and S. Jürgens. Ein Beitrag zur Karten-basierten Positionierung von Fahrzeu-
gen mittels Mustererkennung in LiDAR-Daten. AAET Automatisiertes und vernetztes Fahren,
pages 135–155, 2019.

[55] C. Hungar, S. Jürgens, D. Wilbers, and F. Köster. Map-based localization with factor graphs for
automated driving using non-semantic lidar features. In Proceedings of the IEEE International
Conference on Intelligent Transportation Systems (ITSC), pages 1–6, 2020.

[56] International Organization for Standardization. ISO 8855:2011: Road vehicles - vehicle dynamics
and road-holding ability - vocabulary. Standard, DIN, November 2011.

[57] Y. Ioannou, B. Taati, R. Harrap, and M. A. Greenspan. Difference of normals as a multi-scale op-
erator in unorganized point clouds. Proceedings of the International Conference on 3D Imaging,
Modeling, Processing, Visualization and Transmission (3DIMPVT), pages 501–508, 2012.

[58] A. E. Johnson and M. Hebert. Using spin images for efficient object recognition in cluttered 3D
scenes. In IEEE Transactions on Pattern Analysis andMachine Intelligence, pages 433–449, 1999.

[59] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. John
Wiley & Sons, 1990.

[60] G. Kim and A. Kim. Scan context: Egocentric spatial descriptor for place recognition within 3D
point cloud map. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4802–4809, 2016.

[61] G. Kim, B. Park, and A. Kim. 1-day learning, 1-year localization: Long-term lidar localization using
scan context image. IEEE Robotics and Automation Letters, pages 1948–1955, 2019.



Bibliography

[62] R. Klokov and V. Lempitsky. Escape from cells: Deep Kd-networks for the recognition of 3D point
cloud models. InProceedingsof the IEEE InternationalConferenceonComputerVision (ICCV), pages
863–872, 2017.

[63] J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. V. Gool. Hough transform and 3D SURF for
robust three dimensional classification. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 589–602, 2010.

[64] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

[65] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press,
2009.

[66] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory, pages 498–519, 2001.

[67] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general framework for
graph optimization. In Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 3607–3613, 2011.

[68] V. Kumar, J.Chhabra, and D. Kumar. Performance evaluation of distance metrics in the clustering
algorithms. INFOCOMP Journal of Computer Science, 13(1):38–52, 2014.

[69] G. Lavoué, F. Dupont, and A. Baskurt. A new cad mesh segmentation method, based on curvature
tensor analysis. Computer-Aided Design, pages 975–987, 2005.

[70] J. Levinson and S. Thrun. Robust vehicle localization in urban environments using probabilis-
tic maps. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
pages 4372–4378, 2010.

[71] J. Levinson, M. Montemerlo, and S. Thrun. Map-based precision vehicle localization in urban
environments. In Proceedings of the Robotics: Science and Systems Conference (RSS), 2007.

[72] T. Li, H. Zhang, Z. Gao, Q. Chen, and X. Niu. High-accuracy positioning in urban environments
using single-frequency multi-GNSS RTK/MEMS-IMU integration. Remote Sensing, 2018.

[73] Y. Li and E. B. Olson. A general purpose feature extractor for light detection and ranging data.
Sensors, 10(10):10356–10375, 2010.

[74] Y. Li, X. Wu, Y. Chrysanthou, A. Sharf, D. Cohen-Or, and N. J. Mitra. GlobFit: Consistently fit-
ting primitives by discovering global relations. ACM Transactions on Graphics, pages 52:1–52:12,
2011.

[75] T. Litman. Autonomous Vehicle Implementation Predictions: Implications for Transport Planning.
Victoria Transport Policy Institute, 2013.

[76] N. Liu, Y. Yin, and H. Zhang. A fingerprint matching algorithm based on delaunay triangulation
net. In International Conference on Computer and Information Technology, pages 591–595, 2005.

[77] Waymo LLC. Introducing the 5th-generation waymo driver: Informed by experience, designed
for scale, engineered to tackle more environments, 2020. URL https://blog.waymo.com/2020/
03/introducing-5th-generation-waymo-driver.html. [Access: 04/16/2020].

[78] T.-W. R. Lo and J. P. Siebert. Local feature extraction and matching on range images: 2.5D SIFT.
Computer Vision and Image Understanding, 113(12):1235–1250, 2009.

https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html


Bibliography

[79] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 1150–1157, 1999.

[80] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60:91–110, 2004.

[81] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song. L3-Net: Towards learning based LiDAR localization
for autonomous driving. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 6382–6391, 2019.

[82] J. Macqueen. Some methods for classification and analysis of multivariate observations. In IEEE
Transactions on Pattern Analysis andMachine Intelligence, pages 281–297, 1967.

[83] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from maximally stable
extremal regions. In Image and Vision Computing, pages 761–767, 2002.

[84] B. Matei, Y. Shan, H. S. Sawhney, Y. Tan, R. Kumar, D. Huber, and M. Hebert. Rapid object indexing
using locality sensitive hashing and joint 3D-signature space estimation. IEEE Transactions on
Pattern Analysis andMachine Intelligence, 28(7):1111–1126, 2006.

[85] C. Merfels. Sensor fusion for localization of automated vehicles. PhD thesis, Rheinische Friedrich-
Wilhelms-Universität Bonn, 2018.

[86] A. Mian, M. Bennamoun, and R. Owens. On the repeatability and quality of keypoints for local
feature-based 3D object retrieval from cluttered scenes. International Journal of Computer Vision,
89(2-3):348–361, 2010.

[87] F. Mokhtarian, N. Khalili, and P. Yuen. Multi-scale free-form 3D object recognition using 3D mod-
els. Image and Vision Computing, 19:271–281, 2001.

[88] F. Moosmann and C. Stiller. Velodyne SLAM. In IEEE Intelligent Vehicles Symposium, pages 393–
398, 2011.

[89] R. T. Ng and J. Han. CLARANS: a method for clustering objects for spatial data mining. IEEE
Transactions on Knowledge and Data Engineering, pages 1003–1016, 2002.

[90] A. Nguyen and B. Le. 3D point cloud segmentation: A survey. In IEEE Robotics & Automation
Magazine, pages 225–230, 2013.

[91] NovAtel. NovAtel OEMStar, 2015.

[92] M. Pauly, R. Keiser, and M. Gross. Multi-scale feature extraction on point-sampled surfaces. Com-
puter Graphics Forum, 22:281–289, 2003.

[93] D. Pelleg and A. Moore. X-means: Extending k-means with efficient estimation of the number
of clusters. In Proceedings of the International Conference on Machine Learning, pages 727–734,
2000.

[94] R. Penrose. A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philo-
sophical Society, pages 406––413, 1955.

[95] F. Poux, P. Hallot, R. Neuville, and R. Billen. Smart point cloud: Definition and remaining chal-
lenges. In 3D GeoInfo Conference, pages 119–127, 2016.



Bibliography

[96] S. Prakhya, B. Liu, and W. Lin. B-SHOT: A binary feature descriptor for fast and efficient keypoint
matching on 3D point clouds. InProceedingsof the IEEE/RSJ InternationalConferenceon Intelligent
Robots and Systems (IROS), pages 1929–1934, 2015.

[97] S. Prakhya, J. Lin, V. Chandrasekhar, W. Lin, and B. Liu. 3DHoPD: A fast low-dimensional 3-D
descriptor. IEEE Robotics and Automation Letters, pages 1472–1479, 2017.

[98] S. Pu, G. Vosselman, and C. Vi. Automatic extraction of building features from terrestrial laser
scanning. International Archives of the Photogrammetry, Remote Sensing and Spatial Information
(ISPRS), pages 33–39, 2006.

[99] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. Guibas. Volumetric and multi-view CNNs for
object classification on 3d data. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5648–5656, 2016.

[100] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep learning on point sets for 3D classification
and segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
77–85, 2017.

[101] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep hierarchical feature learning on point
sets in a metric space. In Conference onNeural Information Processing Systems, pages 5099–5108,
2017.

[102] T Rabbani, F. A. Heuvel, and G. Vosselman. Segmentation of point clouds using smoothness
constraint. International Archives of the Photogrammetry, Remote Sensing and Spatial Information
(ISPRS), pages 248–253, 2006.

[103] U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer
Graphics and Image Processing, pages 244–256, 1972.

[104] T. Reid, S. Houts, R. Cammarata, G. Mills, S. Agarwal, A. Vora, and G. Pandey. Localization require-
ments for autonomous vehicles. Computing Research Repository, 2019.

[105] Riegl. Riegl VQ-450 Datasheet. Riegl Laser Measurement Systems, 2013.

[106] G. Riegler, A. O. Ulusoy, and A. Geiger. OctNet: Learning deep 3D representations at high reso-
lutions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 6620–6629,
2017.

[107] R. B. Rusu and S. Cousins. 3D is here: Point cloud library (PCL). In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1–4, 2011.

[108] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Aligning point cloud views using persistent
feature histograms. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5117–5122, 2008.

[109] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz. Persistent point feature histograms for 3D
point clouds. In Proceedings of the International Conference on Intelligent Autonomous Systems
(IAS), 2008.

[110] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (FPFH) for 3D registration. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 3212–
3217, 2009.



Bibliography

[111] S. Salti, F. Tombari, and L. Di Stefano. A performance evaluation of 3D keypoint detectors. In
Proceedingsof the International Conferenceon3D Imaging,Modeling, Processing, Visualizationand
Transmission (3DIMPVT), pages 236–243, 2011.

[112] S. Salti, F. Tombari, L. Di Stefano, S. Salti, F. Tombari, and L. Di Stefano. SHOT: Unique signatures of
histograms for surface and texture description. Computer Vision and Image Understanding, 125:
251–264, 2014.

[113] A. D. Sappa and M. Devy. Fast range image segmentation by an edge detection strategy. In IEEE
3-D Digital Imaging andModeling, pages 292–299, 2001.

[114] U. Scheunert, H. Cramer, and G. Wanielik. Precise vehicle localization using multiple sensors
and natural landmarks. Proceedings of the International Conference on Information Fusion, pages
649–656, 2004.

[115] A. Schlichting and C. Brenner. Localization using automotive laser scanners and local pattern
matching. In IEEE Intelligent Vehicles Symposium, pages 414–419, 2014.

[116] A. Schlichting and U. Feuerhake. Global vehicle localization by sequence analysis using lidar
features derived by an autoencoder. In IEEE Intelligent Vehicles Symposium, pages 656–661, 2018.

[117] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for point-cloud shape detection. Computer
Graphics Forum, pages 214–226, 2007.

[118] F. Schuster, M. Wörner, C. G. Keller, M. Haueis, and C. Curio. Robust localization based on radar
signal clustering. In IEEE Intelligent Vehicles Symposium, pages 839–844, 2016.

[119] J. Serafin, E. Olson, and G. Grisetti. Fast and robust 3D feature extraction from sparse point clouds.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4105–4112, 2016.

[120] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:
379–423, 1948.

[121] I. Sipiran and B. Bustos. Harris 3D: a robust extension of the Harris operator for interest point
detection on 3D meshes. The Visual Computer, pages 963–976, 2011.

[122] L. Smith. A Tutorial On Principal Components Analysis, 2002.

[123] R. Spangenberg, D. Goehring, and R. Rojas. Pole-based localization for autonomous vehicles in
urban scenarios. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2161–2166, 2016.

[124] Statistisches Bundesamt. Unfallentwicklung auf Deutschen Strassen 2017, 2017.

[125] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard. Point feature extraction on 3D range scans
taking into account object boundaries. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 2601–2608, 2011.

[126] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller. Multi-view convolutional neural networks
for 3D shape recognition. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pages 945–953, 2015.

[127] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and provably informative multi-scale signature
based on heat diffusion. Computer Graphics Forum, pages 1383–1392, 2009.



Bibliography

[128] B. Taati and M. Greenspan. Satellite pose acquisition and tracking with variable dimensional local
shape descriptors. InProceedingsof the IEEE/RSJ InternationalConferenceon IntelligentRobotsand
Systems (IROS), pages 4–9, 2005.

[129] B. Taati, M. Bondy, P. Jasiobedzki, and M. Greenspan. Variable dimensional local shape descrip-
tors for object recognition in range data. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 1–8, 2007.

[130] F. Tarsha-Kurdi, T. Landes, and P. Grussenmeyer. Hough-transform and extended ransac al-
gorithms for automatic detection of 3d building roof planes from lidar data. In International
Archives of the Photogrammetry, Remote Sensing and Spatial Information (ISPRS), pages 407–412,
2007.

[131] S. Thrun and J. J. Leonard. SpringerHandbookof Robotics, chapter Simultaneous Localization and
Mapping, pages 871–889. Springer Berlin Heidelberg, 2008.

[132] E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense descriptor applied to wide-baseline stereo.
IEEE Transactions on Pattern Analysis andMachine Intelligence, 32(5):815–830, 2010.

[133] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical report, International
Journal of Computer Vision, 1991.

[134] F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of histograms for local surface descrip-
tion. In Proceedings of the European Conference on Computer Vision (ECCV), pages 356–369, 2010.

[135] F. Tombari, S. Salti, and L. Di Stefano. Unique shape context for 3D data description. In Proceed-
ings of the ACMworkshop on 3D object retrieval, pages 57–62, 2010.

[136] F. Tombari, S. Salti, and L. Di Stefano. A combined texture-shape descriptor for enhanced 3D
feature matching. In Proceedings of the International Conference on ImageProcessing (ICIP), pages
809–812, 2011.

[137] F. Tombari, S. Salti, and L. Di Stefano. Performance evaluation of 3D keypoint detectors. Interna-
tional Journal of Computer Vision, 102(1-3):198–220, 2013.

[138] M. Tomono. A scan matching method using euclidean invariant signature for global localization
and map building. In Proceedingsof the IEEE International ConferenceonRobotics andAutomation
(ICRA), pages 866–871, 2004.

[139] D. Tóvári and N. Pfeifer. Segmentation based robust interpolation- a new approach to laser data
filtering. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information
(ISPRS), pages 79–84, 2005.

[140] B. R. Townsend and P. C. Fenton. A practical approach to the reduction of pseudorange multipath
errors in a L1 GPS receiver. International Technical Meeting Satellite Division Institute Navigation
ION GPS, pages 143–148, 1994.

[141] B. R. Townsend, D. J. R. van Nee, P. C. Fenton, and K. J. van Dierendock. Performance evaluation
of the multipath estimating delay lock loop. International Technical Meeting Satellite Division
Institute Navigation ION GPS, pages 503––514, 1995.

[142] Trimble. Trimble MX8 Datasheet. Trimble Navigation Limited, 2013.

[143] T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: A survey. Foundations and
Trends in Computer Graphics and Vision, 3(3):177–280, 2008.



Bibliography

[144] Uber Advanced Technologies Group. Introducing uber atg’s latest self-driving vehicle,
2020. URL https://www.uber.com/us/en/careers/teams/advanced-technologies-group/. [Ac-
cess: 04/16/2020].

[145] R. Unnikrishnan and M. Hebert. Multi-scale interest regions from unorganized point clouds.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1–8, 2008.

[146] M. A. Uy and G. H. Lee. PointNetVLAD: Deep point cloud based retrieval for large-scale place
recognition. In Computing Research Repository, pages 4470–4479, 2018.

[147] T. Vaa, M. Penttinen, and I. Spyropoulou. Intelligent transport systems and effects on road traffic
accidents: State of the art. Intelligent Transport Systems (IET), pages 81–88, 2007.

[148] C. Valgren and A. J. Lilienthal. SIFT, SURF and seasons: Long-term outdoor localization using
local features. In Proceedings of the European Conference of Mobile Robots (ECMR), pages 253–
258, 2007.

[149] N. Vandapel, D. F. Huber, A. Kapuria, and M. Hebert. Natural terrain classification using 3-D ladar
data. In Proceedingsof the IEEE InternationalConferenceonRobotics andAutomation (ICRA), pages
5117–5122, 2004.

[150] Velodyne. VLP-32 User Manual. Velodyne LiDAR, Inc., 63-9325 rev. B edition, 2017.

[151] Velodyne. VLP-16 User Manual. Velodyne LiDAR, Inc., 2018.

[152] I. A. Venkatkumar and S. J. K. Shardaben. Comparative study of data mining clustering algorithms.
In International Conference on Data Science and Engineering (ICDSE), pages 1–7, 2016.

[153] A.-V. Vo, L. Truong-Hong, D. Laefer, and M. Bertolotto. Classification and segmentation of terres-
trial laser scanner point clouds using local variance information. ISPRS International Journal of
Photogrammetry and Remote Sensing, pages 88–100, 2015.

[154] Volkswagen AG. Autonomous driving – on the way to market matu-
rity, 2020. URL https://www.volkswagenag.com/en/news/stories/2019/11/
autonomous-driving-on-the-way-to-market-maturity.html. [Access: 05/20/2020].

[155] G. Vosselman, B. Gorte, G. Sithole, and T. Rabbani. Recognising structure in laser scanner point
clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information
(ISPRS), pages 33–38, 2004.

[156] M. A. Wani and H. R. Arabnia. Parallel edge-region-based segmentation algorithm targeted at
reconfigurable multiring network. The Journal of Supercomputing, pages 43–62, 2003.

[157] G. Weiss, C. Wetzler, and E. von Puttkamer. Keeping track of position and orientation of moving
indoor systems by correlation of range-finder scans. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 595–601, 1994.

[158] T. Weiss, N. Kaempchen, and K. Dietmayer. Precise ego-localization in urban areas using laser-
scanner and high accuracy feature maps. In IEEE Intelligent Vehicles Symposium, pages 284–289,
2005.

[159] J. Wiest, H. Deusch, D. Nuss, S. Reuter, M. Fritzsche, and K. C. J. Dietmayer. Localization based on
region descriptors in grid maps. IEEE Intelligent Vehicles Symposium, pages 793–799, 2014.

https://www.uber.com/us/en/careers/teams/advanced-technologies-group/
https://www.volkswagenag.com/en/news/stories/2019/11/autonomous-driving-on-the-way-to-market-maturity.html
https://www.volkswagenag.com/en/news/stories/2019/11/autonomous-driving-on-the-way-to-market-maturity.html


Bibliography

[160] D. Wilbers, C. Merfels, and C. Stachniss. Localization with sliding window factor graphs on third-
party maps for automated driving. In Proceedings of the IEEE International Conference onRobotics
and Automation (ICRA), pages 5951–5957, 2019.

[161] R. Wolcott and R. Eustice. Fast LIDAR localization using multiresolution Gaussian mixture maps.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages
2814–2821, 2015.

[162] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3D ShapeNets: A deep representa-
tion for volumetric shapes. In IEEE Conference onComputer Vision and Pattern Recognition (CVPR),
pages 1912–1920, 2015.

[163] S. M. Yamany and A. A. Farag. Surface signatures: an orientation independent free-form surface
representation scheme for the purpose of objects registration and matching. IEEE Transactions
on Pattern Analysis andMachine Intelligence, 24(8):1105–1120, 2002.

[164] H. Yamauchi, S. Lee, Y. Lee, Y. Ohtake, A. Belyaev, and H.-P. Seidel. Feature sensitive mesh seg-
mentation with mean shift. In ShapeModeling International (SMI), pages 236–243, 2005.

[165] Z. J. Yew and G. H. Lee. 3DFeat-Net: Weakly supervised local 3D features for point cloud reg-
istration. In Proceedings of the European Conference on Computer Vision (ECCV), pages 630–646,
2018.

[166] D. Yin, Q. Zhang, J. Liu, X. Liang, Y. Wang, J. Maanpää, H. Ma, J. Hyyppä, and R. Chen. CAE-LO:
Lidar odometry leveraging fully unsupervised convolutional auto-encoder for interest point de-
tection and feature description. arXiv preprint arXiv:2001.01354, 2020.

[167] A. Zaharescu, E. Boyer, K. Varanasi, and R. Horaud. Surface feature detection and description with
applications to mesh matching. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 373–380, 2009.

[168] J. Zhang and S. Singh. LOAM: lidar odometry and mapping in real-time. In Proceedings of the
Robotics: Science and Systems Conference (RSS), 2014.

[169] Y. Zhong. Intrinsic shape signatures: A shape descriptor for 3D object recognition. Proceedings
of the IEEE International Conference on Computer Vision (ICCV), pages 689–696, 2009.





List of Figures

1.1. Concept of the LiDAR-Feature-based Localization . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Overview of the thesis’ central part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1. Overview of 3D feature descriptor types with some examples . . . . . . . . . . . . . . 12
2.2. Darboux frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3. Relations between sampling points for the description calculation of the Point Feature

Histogram (PFH) and Fast Point Feature Histogram (FPFH) . . . . . . . . . . . . . . . . . 15
2.4. Local neighborhood partitions of different description calculations . . . . . . . . . . . 17
2.5. Scheme of Rotational Projection of Statistics (RoPS) description construction for one

sample rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6. Specification of the simplex angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7. Overview of extraction of non-semantic elements from 3D point clouds with some ex-

amples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8. Illustration of 3D HT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9. Illustration of RANSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10. The three steps of the k-means algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.11. Overview of the localization methods based on non-semantic 3D LiDAR data with some

examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.12. Visualization of the Scan Context descriptor algorithm . . . . . . . . . . . . . . . . . . 29
2.13. The architecture of the AI-based localization with local features by Lu et al. . . . . . . . 31
2.14. The three coordinate systems employed in this thesis . . . . . . . . . . . . . . . . . . . 36
2.15. Structure of the considered pixels for the Daisy description calculation . . . . . . . . . 40
2.16. The coordinates of the considered pixels for the calculation of the Daisy descriptor . . 41
2.17. The three point categories used in the DBSCAN algorithm . . . . . . . . . . . . . . . . 43
2.18. The three steps of the k-medoid algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.19. Representation of a sample factor graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1. Sensor setup, architecture, and image of the test vehicles . . . . . . . . . . . . . . . . . 56
3.2. Sample LiDAR point clouds of each data set type used in this thesis . . . . . . . . . . . 57
3.3. Eigenvalues of a synthetic vertical plane as a function of the radial local neighborhood

radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4. The ratio of points in a histogram bin as a function of the local neighborhood radius . 62
3.5. Normalized Euclidean distance as a function of the local neighborhood radius in a log-

arithmic scale for every angle of the FPFH description using the example of a dense
real-data wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6. Description deviations of a rotated edge compared to a non-rotated edge as a function
of the viewing angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7. Description deviations of a sparse, synthetic pillar compared to a dense, synthetic pillar
as a function of the distance to the pillar . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8. Description deviations of synthetic edge points depending on the distance to the exact
edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9. Description deviations of real edge points depending on the distance to the exact edge 73



List of Figures

3.10. Normalized Euclidean distance between two descriptions computed with local neigh-
borhoods with increasing radii as a function of the local neighborhood radius . . . . . 76

3.11. The ratio of points in a histogram bin as a function of the local neighborhood radius . 77
3.12. Illustration of two angles of incidence α1,2 . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.13. Transformation from the Sensor Reference Frame (SRF) into the Local Reference Frame

(LRF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.14. 2D Grid variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.15. 3D Grid variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.16. Grid points of the Daisy descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.17. Description deviations of a sparse pillar compared to a dense pillar as a function of the

distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.18. Scheme of the proposed GRAdients of Intensities as a Local descriptor (GRAIL) descriptor 89

4.1. Scheme of the proposed FA generation method . . . . . . . . . . . . . . . . . . . . . . 102
4.2. Visualization of the division for the spatial diversity . . . . . . . . . . . . . . . . . . . . 106
4.3. Illustration of the on-board Localization Information Gain (LIG) value . . . . . . . . . . 108
4.4. Sample OFAs and MFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.5. Sample 2D representations of MFAs and OFAs . . . . . . . . . . . . . . . . . . . . . . . 111
4.6. Cluster representatives of synthetic and real-world wall . . . . . . . . . . . . . . . . . . 113
4.7. Structure and content of the map data format . . . . . . . . . . . . . . . . . . . . . . . 117
4.8. Test trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.9. Sample MFAs of five different sceneries . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.10. Comparison of the memory size of the raw data map and FAs map . . . . . . . . . . . 122

5.1. Scheme of one time step of the localization computation . . . . . . . . . . . . . . . . . 132
5.2. Sample factor graph in a real-world data set . . . . . . . . . . . . . . . . . . . . . . . . 138
5.3. Computed vehicle trajectory compared to a reference and a GPS trajectory . . . . . . 143
5.4. Relation of computational time and size of factor graph . . . . . . . . . . . . . . . . . . 148
5.5. Comparison of computational times for calculation of descriptions . . . . . . . . . . . 149
5.6. Demands on the computation effort of the OFAs detection . . . . . . . . . . . . . . . . 150
5.7. Demands on the computation effort of the actual localization . . . . . . . . . . . . . . 151

A.1. Local neighborhood partitions of AI-based descriptors . . . . . . . . . . . . . . . . . . 177
A.2. Architecture of each of the two connected autoencoders . . . . . . . . . . . . . . . . . 179
A.3. Value of additional penalty for different weight values on the validation set . . . . . . 180
A.4. Clustering the descriptions of points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.5. Architecture of the siamese network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.6. Architecture of the fully connected network . . . . . . . . . . . . . . . . . . . . . . . . 182
A.7. Architecture of the dense blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.8. Receiver Operating Characteristic (ROC) curves using the test data set . . . . . . . . . 184
A.9. ROC curves using the additional point cloud . . . . . . . . . . . . . . . . . . . . . . . . 184

B.1. Clustering of a sample point cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

C.1. Distinctive shapes of the intensity patterns the GRAIL descriptor can differentiate be-
tween. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

C.2. Least squares regression of reflectivity returns and distance to highly reflective material 190
C.3. Sample key points extracted with selection method for the GRAIL descriptor in a dense

map and sparse on-board point cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192







List of Tables

2.1. Parameters of the Daisy description calculation - based on [132]. . . . . . . . . . . . . . 39

3.1. Distance matrix of FPFH, Signatures of Histograms of OrienTations (SHOT), and RoPS
medoid descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2. (Normalized) Euclidean distances between sparse and dense real data for the descrip-
tors FPFH, SHOT, and RoPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3. Standard deviations measuring the allocation accuracy of an edge point for FPFH,
SHOT, and RoPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4. Daisy parameters of all three grid variants . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5. Standard deviations for the smoothing of the orientation maps . . . . . . . . . . . . . 83
3.6. (Normalized) Euclidean distances between real-data corner and pillar . . . . . . . . . . 88
3.7. Average RMS and standard deviation of absolute and rotational odometry errors of the

GRAIL descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.8. Average RMS and standard deviation of absolute and rotational odometry errors of the

GRAIL descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1. Evaluation of clustering algorithms for clustering in the description space . . . . . . . 112
4.2. Evaluation of clustering algorithms for clustering in the Euclidean space . . . . . . . . 114
4.3. Average 2D RMS position errors and standard deviations determined with the pro-

posed extraction method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1. Evaluation of localization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2. Absolute RMS position errors and standard deviation of the LiDAR-Feature-based Local-

ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3. (Average) Total number of points within the point clouds, (average) number of points

within the preprocessed point clouds, and average number of points within the local
neighborhoods for description calculation . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.1. Different architectures and input-output combinations . . . . . . . . . . . . . . . . . . 178
A.2. Accuracy of the network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.3. Validation accuracies of the description clustering method for autoencoder one . . . . 185
A.4. Validation accuracies of the description clustering method for autoencoder two . . . . 186

C.1. Distance metric of twelve distinctive shapes of GRAIL in percent . . . . . . . . . . . . . 191
C.2. Description differences of minor changes of shapes of GRAIL in percent . . . . . . . . 191

173





Appendices

175





A. AI-Based Descriptors

This thesis focuses on the application of hand-crafted descriptors, such as the FPFH, RoPS, SHOT algo-
rithms. Since it was demonstrated that AI is an effective method in several activities, in this chapter,
two novel learned descriptors are designed for the task of this thesis. The first AI-based descriptor is
based on autoencoders. The second AI-based descriptor follows the idea of a siamese network. Both
descriptors rely on preprocessed LiDAR data. Therefore, at first, the preprocessing is introduced fol-
lowed by a detailed explanation of the two descriptor algorithms.

A.1. Preprocessing of AI-Based Descriptors

To be able to determine descriptions using a neural network, it is important to transform the neigh-
borhood so that the resulting representation has a fixed dimension. This problem is solved by using a
voxel grid, i. e. a regular grid in the three-dimensional Euclidean space.

Let px,y,z
j ∈ Px,y,z be a point of a point cloud and let r ∈ R be a fixed radius. First, the local

neighborhood is computed as follows:

N (px,y,z
j ) = {(px,y,z,pi) ∈ P = (Px,y,z,Pi) | ∥px,y,z − px,y,z

j ∥∞ ≤ r}. (A.1)

All points allocated inside a cube with center px,y,z and edge length 2r are of the local neighborhood
N (px,y,z

j ). The local neighborhood is partitioned in multiple rectangular boxes, called voxels, for ex-
ample three along each of the three spatial axes. See Figure A.1 for this example of the local neighbor-
hood partitions.

In this case, a fixed local neighborhood radius r is applied. A point’s description is only calculated
if the local neighborhood radius is ideal, refer to definition 3.5. Additional points are rejected if the
local neighborhood includes fewer than 30 points. Otherwise, the point’s description might not be
representative of the local neighborhood, especially when applying the partitioned cube.

A Principal Component Analysis (PCA) is implemented as LRF after determining the local neighbor-
hood, in order to ensure the independence of the viewing angle, cf. requirement 3.4 (v). In this way,

Figure A.1: Local neighborhood partitions of AI-based descriptors

177



A.2. Descriptor Based on Connected Autoencoders A. AI-Based Descriptors

Table A.1: Different architectures and input-output combinations. The → denotes which type of input
is mapped to which type of output.

architecture name first autoencoder second autoencoder description size
ssdd2 sparse → sparse dense → dense 4× 4× 2
ssdd4 sparse → sparse dense → dense 4× 4× 4
sdds2 sparse → dense dense → sparse 4× 4× 2
sdds4 sparse → dense dense → sparse 4× 4× 4

the local neighborhood is transformed into a viewing angle independent coordinate system. This is
done with a linear orthogonal transformation, resulting in a coordinate system where the largest vari-
ance of the data points is on the x-axis, the second largest variance on the y-axis, and the smallest
variance on the z-axis.

Since a cube is not rotationally symmetric some points of the local neighborhood, prior to apply-
ing the PCA, no longer are part of the transformed local neighborhood and the other way around.
Therefore, before the transformation, a local neighborhood radius

√
2r is considered. After the trans-

formation, the local neighborhood radius is reduced to r.
Then, in each voxel, the mean squared distance to the center px,y,z

j and the mean reflectivity of
points within the voxel are stored. If a subset is empty both values are set to 0.

This voxel grid is the input for both AI-based descriptors, which are explained in the following.

A.2. Descriptor Based on Connected Autoencoders

In the following section, a method of learning a descriptor is presented using autoencoders.
The network of autoencoders consist of many layers which are divided into two parts. First, au-

toencoders encode high-dimensional input data to a latent space representation. Then, the decoder
reconstructs the input from the latent space representation.

In this approach, the autoencoder architecture is applied so that the network is forced to learn the
most important information of the input by encoding the input data, i. e. the voxel grid of size 16 ×
16×2. The output at the bottleneck layer can be interpreted as the input’s description since it contains
compressed information of the input data.

The idea of applying autoencoders is to enforce similarity of points’ descriptions of a dense and a
sparse point cloud of similar objects, i. e. learning requirement 3.4 (iv). This is realized with two con-
nected autoencoders, which have the same architecture. The first autoencoder is supposed to learn
encoding and decoding of dense voxels and the second of sparse voxels. The two autoencoders run
in parallel and are connected at their bottleneck layers by a penalty term that penalizes dissimilar out-
puts. The connected autoencoders represent two descriptor-functions which generate descriptions
from sparse and dense data, respectively.

Figure A.2 illustrates the architecture of each autoencoder of the two connected autoencoders. The
convolutional kernels are of size 3 × 3 with padding so that the spatial dimension stays the same. A
stride length of 2 is applied, which reduces the spatial dimension by a factor of two. In each layer
except the last, ReLU is implemented as activation function. The activation function of the last layer
has to be selected suitable for the values of the voxel being reconstructed. Therefore, an activation
function with outputs in the range [−1, 0] is needed, refer to Section A.1. Hence, tanh is applied here.

In order to evaluate the connected autoencoder approach, four variations of the architecture are
compared to one another. They are summarized in Table A.1. Additional to learning a reconstruction
of the input, it is examined if learning a mapping from sparse to dense voxels and dense to sparse

178



A. AI-Based Descriptors A.2. Descriptor Based on Connected Autoencoders

Figure A.2: Architecture of each of the two connected autoencoders

patches leads to reasonable results. Furthermore, a large (4×4×4) and a small (4×4×2) description
size are compared.

All of these different architectures are trained with synthetic and real-world sparse and dense train-
ing data, refer to Subsection 3.1.2. Therefore, synthetic objects like planes, spheres and cylinders in
different sizes are constructed. Transforming and combining them results in a complete scene with
multiple objects. The voxel grids of these synthetic scenes and real-world point clouds are used as
training data. The goal of the training is to solve the reconstruction task and minimize the difference
of the descriptions of the same point. The binary cross entropy function comparing input and output
data is used to evaluate the network parameters with an added weighted squared error penalty term
comparing the two descriptions of the connected autoencoders. As optimizer, Adam is applied. Adam
is an upgrade of the stochastic gradient descent, as it uses various learning rates for each network pa-
rameter and adapts them in the training process.

Now, the trained network is evaluated to check requirements 3.4 (iii) and (iv). It is investigated if
the two descriptions determined by the network are similar when a penalty is enforced for dissimilar
descriptions. In addition, it is examined if the determined descriptions can be applied to distinguish
between dissimilar objects by clustering the descriptions of one scene with different objects.

The similarity of dense and sparse descriptions is examined by checking the value of the added
penalty term of the loss function in relation to the added weight. For the evaluation of the network,
the real-world data is used, comprising 8267 voxel pairs. The results are illustrated in Figure A.3, where
the third architecture of Table A.1 was trained on 80% of the data set. It can be seen that with larger
values of the penalty weight the penalty itself decreases, which is to be expected. That means, the
more the similarity between the descriptions of the two autoencoders is forced the smaller the penalty
term gets.

In order to examine if the determined descriptions can be applied to distinguish between dissim-
ilar objects, a clustering in the descriptor space is applied. Therefore, in the second experiment, the
descriptions are grouped into clusters and evaluate if, for example, walls are grouped into a different
clusters than poles. For this purpose, the knowledge about which patch was generated from which
type of object is used by applying the synthetic data set. More precisely, the data used for creating the

179



A.3. Descriptor Based on Siamese Network A. AI-Based Descriptors

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Weight

Pe
na

lty
Te

rm

Figure A.3: Value of additional penalty for different weight values on the validation set

voxels comprises 562 sparse synthetic point clouds of poles and 542 sparse synthetic point clouds of
walls with varying distances from the sensor. From those, 4328 voxel pairs of poles and 14054 voxel
pairs of walls are determined. As clustering algorithm the k-medoids with k = 2 is used, refer to Sub-
section 4.4.1. The clustering is performed on the four different architectures as shown in Table A.1.
Furthermore, 46 different weight parameters of the additional penalty term between 0.0 and 0.5 are
applied. In total, this yields to 368 different parameter combinations being investigated. Each network
is trained for a minimum of 25 epochs and a maximum of 40 epochs. Each epoch takes at least 5 min-
utes to train. With the time for evaluation in between epochs, a total training time of more than 1000
hours is gained.

After each epoch, the results of the clustering are reported for the training (80% of the dataset) and
the test (20% of the dataset) set, respectively. They are shown in Table A.3 and Table A.4. The results
show that it is not clear which parameters provide the best results because many different combina-
tions lead to similar results. Using a bias, seems to hinder the learning of the network. There seems to
be no significant difference in using a description size of 4× 4× 2 or 4× 4× 4.

For an illustration of the results, the descriptions of each point in a scene are computed and visual-
ized in Figure A.4. For this purpose, a pretrained network is applied. In Figure A.4, the results with the
third architecture of Table A.1 with a penalty weight of 0.024 are shown. It can be seen that the points
are not clustered according to their object class, rather the network seems to detect edges. This could
be due to the fact that the voxels might contain redundant and misleading information or the chosen
parameters might not be optimal.

Concluding, the connected autoencoder succeeds in producing similar descriptions for sparse and
dense voxel pairs on real data. The second experiment has shown that the network cannot distinguish
between dissimilar objects but rather detects edges in the voxels.

A.3. Descriptor Based on Siamese Network

This section presents an approach of learning a descriptor using a siamese network with the idea of
obtaining similar descriptions for points lying on objects with comparable geometric structures.

The goal is to train the network with two voxel grids of two local neighborhoods of size 16× 16× 2

180



A. AI-Based Descriptors A.3. Descriptor Based on Siamese Network

0
5

−5
−10

−15

10
15

3

2

1

0

−1

0
5

10

−5
xSRF

[m
]

ySRF [m]

z
SR

F
[m

]

Figure A.4: Clustering the descriptions of points of a synthetically generated scene with walls and
poles.

as input, which determines descriptions for each voxel grid and categorizes the descriptions as either
a match or a non-match. The idea of this network is based on the work of Dewan et al. [26]. They use
the rigid scene flow algorithm [25] to classify two points in consecutive point clouds to define whether
they belong to the same object, a match, or not, a non-match. This method may result in wrong labels.
For example, a point cloud might contain walls on each side of the street. Here, the rigid scene flow
algorithm labels points of the same wall as a match and points of the different walls as a non-match.
Thus, this method does not ensure that descriptions belonging to similar geometric structures are
similar.

For this purpose, in this work, a different labeling process is developed. Here, the idea is to label data,
i. e. voxels, that are categorized according to the geometric structure of the underlying object. There-
fore, the FPFH descriptor computing descriptions based on the curvature within a local neighborhood
is applied. The FPFH descriptions are similar if the points belong to objects with similar curvatures.
This enables the labeling of the data with the FPFH descriptor. However, other descriptors may also
be applied.

For labeling the data, real-world LiDAR point clouds sampled with on-board sensors are the input
for the determination of the FPFH descriptions. These descriptions are clustered into two classes with
the k-medoid algorithm, refer to Subsection 4.4.1. As a result, the clustering generates labeled point
clouds where two points either belong the same class, called match, or to the other class, called non-
match.

The labeled data is applied in a siamese network, whose architecture is illustrated in Figure A.5.
Siamese networks are neural networks with two identical networks sharing the same weights and run-
ning in parallel. The network learns the descriptions and a metric for classifying the descriptions as
match or non-match. The number of channels of the network are varied depending on the parameter
s ∈ R>0. The input of the network are two 16×16×2 voxel grids. Each stream of the siamese network
is similar to an encoder of an autoencoder. That means that the input voxel grid are transformed to a
lower-dimensional space with two convolution layers which are followed by an average pooling layer,
two dense blocks, again followed by average pooling layers, and a bottleneck layer, i. e. which is a
convolution layer. After every convolution layer follows an application of the ReLU activation function,
except in the dense blocks. The last convolution layer outputs the learned description.

The architecture of the dense blocks is visualized in Figure A.7. Here, the input of the dense block is

181



A.3. Descriptor Based on Siamese Network A. AI-Based Descriptors

Figure A.5: Architecture of the siamese network with parameter s ∈ R>0. For example, setting s = 1.5
yields [16s] = [16 · 1.5] = 36.

Figure A.6: Architecture of the fully connected network with parameter s ∈ R>0.

Figure A.7: Architecture of the dense blocks with parameter s ∈ R>0. The input has size (W,H,D) ∈
N3.

182



A. AI-Based Descriptors A.3. Descriptor Based on Siamese Network

Table A.2: Accuracy of the network, rounded to one decimal place, on the test set and the additional
point clouds for different network sizes and epochs.

epochs
5 10

s = 1.0
test data set 82.5% 89.8%
additional point cloud 51.0% 50.4%

s = 1.5
test data set 94.5% 99.8%
additional point cloud 52.8% 51.3%

s = 2.0
test data set 99.4% 100%
additional point cloud 50.9% 52.8%

transformed using a batch-normalization, ReLU, and a convolution layer with a fixed output depth of4s
channels. Then, the output of the convolution layer and the input of the dense block are concatenated
and transformed using the same sequence of batch-normalization, ReLU and convolution layers. This
results in the output of the dense block as the concatenation of the input, the first transformation and
the second transformation.

Figure A.6 depicts the metric learning network. It consists of five fully connected (fc) layers with ReLU
activation functions, except for the last layer, which applies a softmax activation function. As input, the
metric learning network obtains the the flattened concatenation of the output of the bottlenecks of
both streams. As output, it exports the probability of both descriptions being a matching pair.

The training process is performed to minimize the binary cross-entropy loss added with a l2-
regularization term on the network parameters to counteract the overfitting. The total data set consists
of nine different point clouds sampled with on-board LiDAR sensors with 544600 voxel grid pairs of
which 292552, i. e. 54%, are matches. As the number of different point clouds is relatively small com-
pared to the number of voxel grid pairs, it is expected that the network achieves a high accuracy on the
data used for training and a low accuracy on new data. Therefore, eight point clouds with 401220 voxel
grid pairs are used for training the network, where 55% match. This remaining data set is divided into
two equally sized sets for training and testing, yielding a number of training voxel grid pairs is 200610.
The batch size is set to 32 and the regularization parameter to η = 5× 10−4. For training, Adam opti-
mizer is carried out with a learning rate of 10−4 and different network sizes (parameters s = 1, s = 1.5,
and s = 2) and number of epochs (5 and 10). Then, the network is retained with a learning rate of 10−5

and the same number of epochs and network sizes as in the first training phase. The whole training
time on an NVIDIA GeForce 940M graphics card is about one to five hours, depending on the size of
the network.

The test and the remaining point cloud are applied to evaluate the matching accuracy of the net-
work. The accuracy for different network sizes and number of epochs is explained in Table A.2. The
highest accuracy of 100% is reached with s = 2 and 10 epochs. The lowest accuracy of approximately
50% is reached for every parameter on the additional point cloud. This confirms the assumptions.

Further, the true positive rate depending on the false positive rate are examined with the ROC curves.
Figure A.8 illustrates the ROC curves for the test data set. They support the results of Table A.2 and it
can be seen that the ROC curve for s = 2 with 10 epochs is nearly ideal.

The ROC curves for the additional point cloud are visualized in Figure A.9. It can be seen that all
trained networks are approximately guessing the label. The best ROC curves are achieved for s = 1.5
with 5 epochs as well as for s = 2 with 10 epochs.

Summarizing, the results with the test data set show that the siamese network can in principal de-
termine similar descriptions for points lying on objects with similar curvatures. However, this only
holds to similar scenes which are contained in the training set. It can be seen that the network is not

183



A.3. Descriptor Based on Siamese Network A. AI-Based Descriptors

(a) Total ROC curve (b) Zoom of ROC curve

Figure A.8: ROC curves using the test data set for different network sizes and number of epochs

(a) Total ROC curve (b) Zoom of ROC curve

Figure A.9: ROC curves using the additional point cloud for different network sizes and number of
epochs

184



A. AI-Based Descriptors A.3. Descriptor Based on Siamese Network

Table A.3: Validation accuracies of the description clustering method for autoencoder one for different
regularization parameters. The best accuracy (acc) for each penalty weight α is reported
with the epoch (ep) in which it was reached. For an explanation of the abbreviations sdds
and ssdd we refer the reader to Table A.1. True and False describe if a bias was used or not.
All accuracies of 100% are marked green, while red markings depict runs where the output
of the autoencoder is random.

sdds2 sdds4 ssdd2 ssdd4
α True False True False True False True False

acc ep acc ep acc ep acc ep acc ep acc ep acc ep acc ep
0.000 0.855 21 0.998 1 0.780 15 0.999 12 0.879 16 0.994 1 0.988 9 0.968 13
0.012 0.999 2 0.999 20 0.992 19 0.996 22 0.764 1 0.878 5 0.996 5 0.992 17
0.024 1.000 13 0.996 16 0.999 1 0.999 19 0.989 4 0.981 22 0.995 5 0.995 1
0.036 0.999 1 0.996 10 0.996 3 0.996 15 0.981 18 0.995 1 0.997 2 0.992 2
0.048 0.500 1 0.994 2 0.959 9 0.999 7 0.932 5 0.995 3 0.500 2 0.990 10
0.060 0.998 2 0.999 1 0.996 4 1.000 1 0.999 8 0.946 1 0.994 8 0.991 15
0.072 0.999 2 0.999 5 0.995 15 1.000 3 0.981 21 0.941 7 0.999 7 0.990 14
0.084 0.999 5 1.000 5 0.998 1 0.999 11 1.000 4 0.739 7 0.500 1 0.994 2
0.100 0.996 1 0.998 21 0.992 1 0.999 6 0.980 12 0.977 11 0.500 2 0.993 3
0.120 1.000 16 0.990 3 0.996 1 0.997 3 1.000 6 1.000 32 1.000 3 0.999 26
0.140 1.000 1 0.993 7 0.998 4 0.996 13 0.997 20 0.991 18 0.833 28 1.000 17
0.160 0.501 1 1.000 1 0.999 1 1.000 1 1.000 2 1.000 29 1.000 7 0.998 12
0.180 0.500 2 1.000 9 0.997 13 1.000 3 1.000 16 0.999 5 1.000 6 0.999 37
0.200 0.998 11 0.999 3 0.999 1 0.999 14 1.000 3 0.999 10 1.000 11 1.000 5
0.220 0.500 1 1.000 5 0.998 1 1.000 3 0.968 24 1.000 20 0.529 1 1.000 14
0.240 0.996 7 1.000 1 0.999 1 0.999 9 1.000 11 0.993 1 0.502 6 0.995 37
0.260 0.994 10 0.999 3 0.989 18 0.998 11 0.882 20 0.999 40 0.525 1 1.000 25
0.280 0.993 16 0.999 18 0.500 1 0.999 2 0.882 7 0.999 32 0.960 31 1.000 14
0.300 0.500 3 0.989 10 0.500 1 1.000 1 0.764 1 0.999 19 0.501 7 1.000 4
0.320 0.500 1 1.000 2 0.500 1 1.000 3 0.882 7 0.999 25 1.000 6 0.992 39
0.340 0.992 1 1.000 1 0.998 5 0.997 9 0.764 1 0.820 17 0.500 1 1.000 19
0.360 0.500 1 1.000 2 0.995 21 0.998 5 0.764 1 1.000 11 0.507 3 0.999 14
0.380 0.500 2 0.999 15 0.500 1 0.996 8 1.000 10 0.969 3 1.000 3 0.999 5
0.400 0.500 1 1.000 2 0.500 1 1.000 2 0.882 3 0.997 24 0.500 6 0.999 26
0.420 0.500 1 0.998 3 0.500 1 0.999 4 0.956 23 0.997 20 0.998 32 0.999 11
0.440 0.500 2 0.994 2 0.500 1 0.999 1 1.000 8 0.998 32 1.000 5 0.981 36
0.460 0.998 1 1.000 1 0.500 1 0.999 10 1.000 6 0.999 39 0.500 3 0.999 39
0.480 0.500 1 0.999 12 0.998 1 0.994 5 0.882 8 1.000 3 0.501 21 1.000 14
0.500 0.998 1 0.997 18 0.999 12 1.000 4 1.000 27 1.000 4 0.998 34

able to generalize, when testing on a completely new scene. This coincides with the expected results
mentioned before. In order to overcome this disadvantages, it is recommended to apply a training set
which contains many different point clouds and only a small number of voxel grids of each point cloud.
This would avoid overfitting of the network to the point clouds used in the training set.

185



A.3. Descriptor Based on Siamese Network A. AI-Based Descriptors

Table A.4: Validation accuracies of the description clustering method for autoencoder two for different
regularization parameters. The best accuracy (acc) for each penalty weight α is reported
with the epoch (ep) in which it was reached. For an explanation of the abbreviations sdds
and ssdd we refer the reader to Table A.1. True and False describe if a bias was used or not.
All accuracies of 100% are marked green, while red markings depict runs where the output
of the autoencoder is random.

sdds2 sdds4 ssdd2 ssdd4
α True False True False True False True False

acc ep acc ep acc ep acc ep acc ep acc ep acc ep acc ep
0.000 0.993 8 0.998 1 1.000 1 0.993 1 0.981 21 0.987 1 0.996 22 1.000 3
0.012 0.996 14 1.000 3 0.996 4 0.999 2 0.764 1 0.998 8 0.998 4 0.998 22
0.024 1.000 9 0.993 3 0.997 4 0.990 12 0.992 17 0.995 17 0.999 2 0.997 1
0.036 1.000 1 0.992 6 1.000 1 0.987 15 0.998 1 0.981 7 0.995 21 0.998 2
0.048 0.500 1 1.000 1 0.999 1 1.000 2 0.985 6 0.999 1 0.997 1 0.999 2
0.060 0.999 1 1.000 2 0.999 1 1.000 1 0.982 2 1.000 3 0.997 1 1.000 13
0.072 0.999 1 1.000 1 0.990 13 1.000 4 0.994 17 1.000 1 0.996 2 1.000 7
0.084 0.997 5 0.998 5 0.999 1 1.000 3 1.000 1 0.997 9 0.500 1 0.999 5
0.100 0.995 5 1.000 7 0.992 16 0.995 1 0.999 12 0.997 4 0.997 3 1.000 18
0.120 1.000 9 0.976 1 0.995 1 0.994 1 1.000 9 1.000 37 1.000 3 1.000 1
0.140 1.000 1 1.000 1 1.000 14 0.993 4 1.000 9 1.000 2 0.920 16 0.997 29
0.160 0.500 2 0.994 6 0.946 15 0.995 8 1.000 3 1.000 7 1.000 6 0.961 1
0.180 0.500 2 1.000 1 0.999 6 0.864 19 1.000 15 1.000 2 1.000 6 0.992 28
0.200 0.997 5 1.000 2 0.999 1 0.995 3 1.000 3 0.999 3 1.000 12 1.000 5
0.220 0.500 1 1.000 1 0.501 4 1.000 3 0.952 23 1.000 1 0.508 1 1.000 1
0.240 0.501 7 0.985 1 1.000 1 1.000 1 0.999 11 1.000 1 0.505 1 1.000 1
0.260 0.992 3 1.000 7 0.501 21 1.000 8 0.882 10 1.000 3 0.501 11 1.000 9
0.280 0.500 6 1.000 3 0.500 1 1.000 1 0.882 10 1.000 13 0.501 19 1.000 3
0.300 0.500 3 0.988 18 0.500 1 1.000 2 0.882 5 1.000 1 0.501 5 1.000 1
0.320 0.500 1 1.000 1 0.500 3 1.000 5 0.764 2 1.000 1 1.000 6 0.997 1
0.340 0.995 1 0.980 1 0.998 5 1.000 2 0.764 1 0.999 1 0.501 8 1.000 19
0.360 0.500 1 1.000 1 0.990 7 1.000 1 0.764 1 1.000 1 0.921 1 0.993 2
0.380 0.500 4 1.000 4 0.500 1 0.992 7 1.000 23 1.000 9 1.000 3 0.994 4
0.400 0.500 1 1.000 2 0.500 2 1.000 2 0.764 1 1.000 26 0.501 34 1.000 33
0.420 0.501 2 0.997 1 0.500 1 1.000 2 0.975 12 1.000 19 0.989 22 1.000 1
0.440 0.999 1 0.996 5 0.500 1 1.000 1 1.000 12 0.997 22 1.000 30 0.998 31
0.460 0.993 20 0.997 1 0.500 1 0.993 14 1.000 5 0.997 1 0.501 11 1.000 3
0.480 0.500 1 0.995 15 0.998 1 0.994 8 0.882 3 1.000 2 0.502 7 1.000 1
0.500 0.998 6 0.998 20 1.000 1 1.000 3 1.000 1 1.000 40 0.988 39

186



B. Number of Clusters in Description Space

For the detection of Feature Areas (FAs), a two-staged clustering process is performed, as explained
in Section 4.2. A FA is a set of connected points of a LiDAR point cloud with similar geometry-based
descriptions. The FAs generation is based on the main idea of a two-stepped clustering approach,
considering both the point cloud and their descriptions.

Initially, descriptions of points with enough points in their local neighborhood are determined with
one descriptor. Following, the two-stage clustering method is performed. For this reason, the first
clustering step groups points with similar descriptions. These groups are individually used to cluster
points into areas including spatially connected points, only considering suited point of the point cloud.
In this way, multiple spatially connected areas, i. e. non-semantic objects, with similar descriptions are
obtained, i. e. the FAs.

In the following sections, details about the clustering in the description space and the selection of
suited points for the Euclidean clustering are depicted.

In this section, more details about the first clustering step, the clustering in the description space,
are explained. As the k-medoids method is selected as clustering algorithm a number of clusters must
be defined previously, cf. Subsection 2.2.7. In Subsection 4.4.1 it is argued that two clusters are appro-
priate in this step to avoid over- and underclassification.

Here, it is explained why a grouping into two clusters is reasonable. Therefore, Figure B.1 shows the
results of the description clustering with the k-medoids into two, three, or four clusters. It is illustrated
based on a sample point cloud recorded with a Velodyne VLP 32-C LiDAR sensor in a typical suburb
area. The descriptions are calculated with the FPFH descriptor. Points as part of the same cluster are
colored either in red, green, blue, or yellow. The points marked in gray are rejected in the preprocessing
step of the FA extraction.

It can be seen that a typical environment does not have a large variety of different geometries of ob-
jects. This is largely caused by the poor sampling of on-board sensors. They prevent the capturing of
details, which would enhance the descriptions’ variety. Therefore, too many classes causes overclassifi-
cation. This is obvious when clustering into four classes, see B.1c. Walls are divided into multiple parts,
even when the sampling rate is relatively large. Especially at larger distances, where the sampling rate
becomes smaller, the clustering into three or four groups leads to noisy clusters.

Therefore, clustering into more than two groups is not advisable when dealing with real-world data.
Otherwise, the clustering would include a higher computational effort and yield less practical results.

187



B. Number of Clusters in Description Space

xSRF [m]

y
SR

F
[m

]
z

SR
F

[m
]

10 20 30 400−10−20−30−40

−10

10

0

0

10

15

5

(a) Two classes

xSRF [m]

y
SR

F
[m

]
z

SR
F

[m
]

10 20 30 400−10−20−30−40

−10

10

0

0

10

15

5

(b) Three classes

xSRF [m]

y
SR

F
[m

]
z

SR
F

[m
]

10 20 30 400−10−20−30−40

−10

10

0

0

10

15

5

(c) Four classes

Figure B.1: Clustering of a sample point cloud recorded with a Velodyne VLP 32-C in the description
space with k-medoids into two, three, or four clusters through the FPFH descriptor. Each
point belonging to the same cluster is colored either in red, green, blue, or yellow. Gray
points are sorted out in the FA extraction’s preprocessing step.

188



C. Feature Area Extraction with
Intensity-based Descriptors

In the first step of the LiDAR-Feature-based Localization, descriptions for every point of the point cloud
are determined. This results in data which requires a lot of memory. In addition, not every point con-
tributes to the localization. Therefore, the second step of the LiDAR-Feature-based Localization extracts
FAs automatically which provide useful information for the localization. As Chapter 4 concentrates on
the extraction with geometry-based descriptors, this chapter provides a procedure for intensity-based
descriptors on the example of the descriptor developed in this thesis, called GRAdients of Intensities as
a Local descriptor (GRAIL), refer to Subsection 3.3.2. The intensity-based extraction is also introduced
in [52].

The extraction is performed in the same way for both on-board and map point clouds. Initially, for
every point of the point cloud whose local neighborhood is large enough, the intensity-based descrip-
tions are determined, refer to Definition 3.5. Secondly, the extraction is performed to select those
points whose descriptions are distinctive, cf. Definition 4.14. Concluding, the LIG to extract FAs of
intensity-based descriptors, in this case the GRAIL descriptor, only consists of the distinctiveness for
on-board as well as for map point clouds. It is called intensity LIG. As intensity data only provides
one-dimensional information, the diversity of descriptions of a point cloud is low. Thus, the number
of robust elements in the environment described with intensity-based descriptor algorithms is small.
Hence, the spatial diversity and the uniqueness is discarded for the intensity LIG only considering the
distinctiveness.

Compared to geometry-based descriptor algorithms, the intensity LIG and the intensity distinctive-
ness are defined for three-dimensional local neighborhoods, not two-dimensional Feature Area Rep-
resentatives (FARs).

Definition C.1 (Intensity Distinctiveness). For each intensity-based descriptorD, LIGi
d,D is a function

LIGi
d,D : P(R3 × [0, 1])× Rm → [0, 1].

It assigns a value to a large enough local neighborhood which captures how rare and distinguishable the
description of a large enough local neighborhood is.

Definition C.2 (Intensity Localization Information Gain). LetNP,r(p
x,y,z
j ) ∈ P(R3 × [0, 1]) × Rm

be a large enough local neighborhood with radius r ∈ R>0 around the j-th point p
x,y,z
j ∈ R3 of a point

cloud P with some metricm, let d ∈ Rm be its intensity-based description, and let LIGi
d,D(NP,r(p

x,y,z
j ))

be the intensity distinctiveness ofNP,r(p
x,y,z
j ). Then, the intensity Localization InformationGainof a large

enough local neighborhoodNP,r(p
x,y,z
j ) consists of one component

LIGi :P(R3 × [0, 1])× Rm → [0, 1]

NP,r(p
x,y,z
j ) 7→ [LIGi

d,D(NP,r(p
x,y,z
j ))]

stating the benefit for localization of each computed large enough local neighborhood determined with
intensity-based descriptor algorithms.

189



C. Feature Area Extraction with Intensity-based Descriptors

Figure C.1: Distinctive shapes of the intensity patterns the GRAIL descriptor can differentiate between.
Pattern cells with maximum reflectivity values are colored red. Pattern cells with zero inten-
sity or no points falling into that cell are colored blue [52].

N
or

m
al

iz
ed

Re
fle

ct
iv

ity

0.4

0.6

0.8

1

Distance [m]

20 40 60 80 100 120 140

Return
Least Squares

Figure C.2: The functional relation between the normalized reflectivity returns of a Velodyne VLP 32-C
and the distance to a planar, highly reflective material is approximated by a least square
regression [52].

In case of the GRAIL descriptor, the distinctiveness is measured binarily using the shapes of the 2D
grid and the amount of the intensity return. Only descriptions which resulted from distinctive shapes,
which often occur in the environment, are considered as distinctive. For that, real-world data was
examined to select shapes which can be found frequently, refer to Subsection 3.1.2 for the applied data
set. The investigations show that twelve different shapes are suitable for the extraction, which can be
seen in Figure C.1. This has three reasons. First, the descriptor can distinguish only between a number
of distinctive forms, since the gradients of the intensity image are calculated for eight directions only.
Therefore, the number of shapes to be considered are limited. Here, linear combinations or minor
deviations of these shapes are not taken into account. Second, the shapes must be dissimilar to one
another in order to be able to identify them with certainty. To ensure that this is true for the twelve
shapes the distance metric is determined with Equation 3.21 and can be seen in Table C.1. Third, minor
changes of the shapes result in minor changes of the description values. Table C.2 illustrates that this
holds for the twelve picked shapes. The distances between the minor changes of the shapes and the
original shapes, refer to Figure C.1, are computed with Equation 3.21. Here, only the basic forms are
investigated as their rotation does not result in different distances.

190



C. Feature Area Extraction with Intensity-based Descriptors

Table C.1: Distance metric of twelve distinctive shapes of GRAIL in percent

0 27.3 27.3 42.16 12.26 36.02 36.02 12.26 21.92 21.92 35.03 41.53

- 0 42.16 27.3 12.26 36.02 12.26 36.02 21.92 21.92 41.53 35.03

- - 0 27.3 36.02 12.26 36.02 12.26 21.92 21.92 41.53 35.03

- - - 0 36.02 12.26 12.26 36.02 21.92 21.92 35.03 41.53

- - - - 0 33.95 26.77 26.77 30.5 14.23 41.74 41.74

- - - - - 0 26.77 26.77 30.5 14.23 41.74 41.74

- - - - - - 0 33.95 14.23 30.5 41.74 41.74

- - - - - - - 0 14.23 30.5 41.74 41.74

- - - - - - - - 0 29.45 37.36 37.36

- - - - - - - - - 0 37.36 37.36

- - - - - - - - - - 0 47.73

- - - - - - - - - - - 0

Table C.2: Description differences of minor changes of shapes of GRAIL in percent

4.23

5.24

2.72

13.09

191



C. Feature Area Extraction with Intensity-based Descriptors

y [m]

x [m
]

20

40

60

20

40

60

0

15

z
[m

]

(a) Map point cloud

20

40

60

20

40

60

y [m]

x [m
]

0

15

z
[m

]

(b) On-board point cloud

Figure C.3: Sample key points extracted with selection method for the GRAIL descriptor in a dense
map and sparse on-board point cloud in a suburb area. The color visualizes the intensity
values (red = high, blue = low). The extracted key points are circled in black [52].

Additionally, those points are extracted whose maximal intensity within its 2D grid is greater than
a predefined threshold. As the software of many sensors, like the Velodyne VLP-32C, internally com-
pensate for the squared energy loss by the traveled distance of the light pulses this is considered, here.
However, Figure C.2 visualizes that the values of the sensors’ intensity returns still decrease linearly de-
pending on the traveled distance, here, in case of the Velodyne VLP-32C sensor. Hence, in this thesis,
the characteristic curve of the intensity loss for a Velodyne VLP-32C is determined, see Figure C.2. This
is done by driving towards a highly reflective material to establish the reflectivity as a function r of the
measured distance d. The curve is approximated with a least squares regression to yield the functional
relation:

r : R → [0, 1]

d 7→ −0.004d+ 0.99.
(C.1)

Therefore, in this thesis, the maximal intensity threshold t is distance dependent resulting in:

t : R → [0, 1]

d 7→ −0.004d+ 0.99− 0.2,
(C.2)

i. e. 0.2 smaller than the maximal intensity measured at each distance. This threshold was determined
in practical experiments, refer to Subsection 3.1.2 for the data set.

Thus, those points are considered as distinctive whose descriptions do not differ more than 15%
from that of the twelve shapes of Figure C.1 and whose intensity is large enough considering t. In
real-world data environment, this threshold has been shown as feasible, refer to Subsection 3.1.2 for
the data set, and is often a lot smaller than the differences between the shapes itself, refer to Table C.1,
except for the intensity edge, which is very similar to the corner. Then, the extracted points of the
point cloud are clustered using the DBSCAN by Ester et al. [29], see Subsection 2.2.6, to yield a set of
connected points.

??depicts a sample point cloud used for the map generation of a suburb area and an on-board point
cloud together with their key points extracted with this method.

192



C. Feature Area Extraction with Intensity-based Descriptors

193


	Titelseite
	Kurzfassung
	Abstract
	Acknowledgment
	Disclaimer
	Statement
	List of Publications
	Contents
	Acronyms and Symbols
	Context of LiDAR-Feature-based Localization
	1 Introduction
	1.1 Motivating LiDAR-Feature-based Localization
	1.2 Introducing Feature-based Localization
	1.3 Contributions
	1.4 Overview

	2 Related Work and Basics
	2.1 Relevant Literature
	2.2 Mathematical Fundamentals


	Describing and Selecting Features
	3 LiDAR-Based Descriptors
	3.1 Terms and Methodology
	3.2 Geometry-Based Descriptors
	3.3 Intensity-Based Descriptors
	3.4 Summary

	4 Feature Area Extractions
	4.1 Terms and Methodology
	4.2 Generation of Feature Areas in Non-Semantic Way
	4.3 Extraction of Map and On-Board FAs applying the LIG
	4.4 Implementation of Extraction Process
	4.5 Analyzes of Extraction Process Using Real-World Data
	4.6 Summary


	Positioning with Features
	5 Localization using LiDAR Feature Areas
	5.1 Terms and Methodology
	5.2 Integration of Features into Graph-Based SLAM
	5.3 Analyzes
	5.4 Summary

	6 Conclusion
	6.1 Key Findings and Contributions
	6.2 Future Work

	List of Figures
	List of Tables
	Appendices
	A AI-Based Descriptors
	A.1 Preprocessing of AI-Based Descriptors
	A.2 Descriptor Based on Connected Autoencoders
	A.3 Descriptor Based on Siamese Network

	B Number of Clusters in Description Space
	C Feature Area Extraction with Intensity-based Descriptors


