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KURZFASSUNG iii

Kurzfassung

Der erste Teil der vorliegenden Dissertation beschäftigt sich mit quasihomogenen Blow-ups

einer Untermannigfaltigkeit Y in einer umgebenen Mannigfaltigkeit mit Ecken. Quasiho-

mogene Blow-ups verallgemeinern das Konzept von radiellen Blow-ups. Die Grundidee

ist das Zuordnen von Gewichten zu Funktionen, die auf Y verschwinden. Diese Idee wird

durch eine Filtrierung

(0.1) I(Y ) = F (1) ⊆ F (2) ⊆ F (3) ⊆ . . .

realisiert, wobei F (m) ein Raum glatter Funktionen ist, deren quasihomogene Ordnung

bei Y mindestens m ist. Der Spezialfall I ⊂ I2 ⊂ I3 ⊂ . . . entspricht hierbei dem

klassischen radiellen Blow-up. Obwohl quasihomogene Blow-ups bereits in verschiedenen

Arbeiten verwendet werden (siehe zum Beispiel [7, 9, 12]), wurden in diesen Arbeiten

bisher nur Spezialfälle eingeführt. Eine Ausarbeitung allgemeiner quasihomogenen Blow-

ups wurde in [22] begonnen, und teilweise aufgeschrieben. In dieser Arbeit liefern wir

eine formale Definition allgemeiner quasihomogener Blow-ups und vervollständigen die

vorläufige Einführung in [22].

Der zweite Teil dieser Arbeit beschäftigt sich mit der Hd-Kompaktifizierung SL(n,R) von

SL(n,R). Diese Kompaktifizierung wurde für allgemeine semisimple Lie Gruppen von Al-

bin, Dimakis, Melrose und Vogan in [1] eingeführt. SL(n,R) ist eine Mannigfaltigkeit mit

Ecken, deren Randflächen in einer Bijektion mit den Äquivalenzklassen von parabolischen

Untergruppen von SL(n,R) stehen. Wir konstruieren eine Resolution von SL(n,R), die

wir mit X bezeichnen, sodass die rechts-invarianten Differentialoperatoren auf SL(n,R) zu

Operatoren auf X mit simplem Verhalten an den verschieden Randflächen von X geliftet

werden.

Wir konstruieren eine Algebra von Pseudodifferentialoperatoren Ψm
X auf X, die sowohl die

Lifts von rechts-invarianten Differentialoperatoren auf SL(n,R) enthalten, als auch erste

Parametrixen für solche Operatoren. Wir definieren Ψm
X mithilfe einer Resolution von X2,

die wir mit X2
e bezeichnen und die aus X2 durch eine Folge von quasihomogenen Blow-ups

konstruiert wird. Wir zeigen ein Kompositions-Theorem für Operatoren in Ψm
X mithilfe

eine Resolution von X3, die wir mit X3
e bezeichnen.
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Abstract

In the first part of this thesis we consider the quasihomogeneous blow-up of a submanifold

Y in a surrounding manifold with corners X. It generalizes the concept of radial blow-up

and revolves around the idea of assigning different weights to functions vanishing at the

submanifold Y . This yields a filtration of the space I(Y ) of smooth functions vanishing

on Y , given by subspaces of function vanishing to a certain quasihomogeneous order

(0.2) I(Y ) = F (1) ⊆ F (2) ⊆ F (3) ⊆ . . .

It generalizes the filtration I ⊂ I2 ⊂ I3 ⊂ . . . . Although quasihomogeneous blow-ups

are used in [7, 9, 12], only special cases of this concept are introduced in these works,

sufficient for the situations considered in them. An exhaustive treatment of the general

case was started and written down partially in [22]. In this thesis, we provide a detailed

formal definition of quasihomogeneous blow-ups and thereby, complete the preliminary

introduction to this concept in [22].

In the second part of this thesis we consider the hd-compactification of SL(n,R), denoted by

SL(n,R), introduced by Albin, Dimakis, Melrose and Vogan in [1] for arbitrary semisimple

Lie groups. SL(n,R) is a compact manifold with corners, with boundary faces correspond-

ing to conjugacy classes of parabolic subgroups. We introduce a resolution of SL(n,R),

denoted by X, such that the right-invariant differential operators on SL(n,R) lift to X,

and become operators with simple degeneracies at the different boundary faces of X.

We construct an algebra of pseudodifferential operators Ψm
X on X that contains the lifts of

right-invariant differential operators on SL(n,R), together with basic parametrices of these

operators. It is constructed using a resolution of X2, denoted X2
e , by a series of blow-ups.

Since the lift of right-invariant operators on X vanish to a variety of different degrees

at the boundary faces, quasihomogeneous blow-ups are used. A composition theorem for

operators in Ψm
X is proven, using a resolution of the triple product space X3

e .
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CHAPTER 1

Introduction

The analysis of elliptic operators on noncompact and singular spaces is a large field of

research and has been growing steadily in the past decades. A rather geometric approach

used in this field is to compactifiy or desingularize the space in question to a manifold with

boundary (or corners), on which the operators one wants to analyze have a specific de-

generacy at the boundary. It is a general scheme in this field to ‘trade’ non-compactness

or singularities for boundary together with certain degeneracy at this boundary. For a

very simple example of such a process, consider the ‘+∞’-end of the real line R, say the

interval (1,∞). Using the map f : (1,∞) → (0, 1), x 7→ 1/x, one may take [0, 1] as a

compactification. When the old coordinate x approaches ∞, the new coordinate t = 1/x

approaches the new boundary t = 0. The vector field ∂x (and similarly any differential

operator) then becomes the degenerate vector field −t2∂t.
One approach to analyze operators on these compact manifolds with boundaries is by

studying algebras of pseudodifferential operators adapted to the degenerate behavior at

the boundary. Unlike the case of a compact manifold without boundary, where such a

calculus is discussed by Hörmander in [10], there is not one specific natural algebra, but

rather several different ones, all arising naturally from the underlying geometry under con-

sideration. Due to the different phenomena that may occur there is little general theory

surrounding these different pseudodifferential calculi. Rather, great effort has gone into a

large collection of such algebras. The first of these was the b-calculus by Richard Melrose,

introduced in [21], also present in [23]. Using similar methods, a lot of which introduced by

Melrose, there followed numerous different calculi, for example [16, 15, 26, 7, 20, 17, 14, 13,

9, 25, 6]. Many of the steps involved in building an elliptic theory for these different calculi

are based on the same set of principles. One of those is the definition of the algebra itself.

In the original pseudodifferential calculus on a compact manifold X without boundary, the

algebra of pseudodifferential operators is defined by characterizing their Schwartz kernels

as distributions on the double product space X2. More specifically, they are characterized

by their singular behavior near the diagonal 4X = {(p, p) | p ∈ X} ⊂ X2. In the more

singular settings mentioned above, this characterization needs to include the behavior at

the boundary of X. Even if X has smooth boundary, the double space X2 is already a

manifold with corners and the diagonal 4X ⊂ X2 meets this boundary in an analytically

rather poor way. Analyzing the Schwartz kernels near the intersection of the diagonal

with the boundary in X2 is usually one of the biggest challenges of these approaches. A

commonly used geometric approach is to construct a resolution of the space X2 into a

manifold with corners B(X2) via a sequence of real blow-ups, which is a geometric way

of constructing a new manifold form an old one by introducing polar coordinates along a
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submanifold. The resolved space B(X2) is equipped with a map back β : B(X2) → X2

called the blow-down map, under which the diagonal lifts and becomes resolved at the

boundary of B(X2). Then an algebra of pseudodifferential operators can be defined as

having Schwartz kernels on X2 that are given push-forwards of distributions on B(X2)

with certain simple degeneracies at the different boundaries of B(X2).

1.1. Major contributions of this thesis

The concept of manifolds with corners and real blow-up of submanifolds are essential tools

in the different calculi mentioned above. In some situations (for example in [7, 9, 12]),

a generalization of real blow-up of submanifolds is used, called quasihomogeneous blow-

ups. It revolves around the concept of assigning weights to functions vanishing at the

submanifold in question. Although quasihomogeneous blow-ups are used in [7, 9, 12], only

special cases of this concept are introduced in these works, sufficient for the situations

considered in them. An exhaustive treatment of the general case was started and written

down partially in [22].

The first major contribution of this thesis, is to provide a detailed formal definition of

quasihomogeneous blow-ups and thereby, complete the preliminary introduction to this

concept in [22].

In Part 2 of this thesis we consider right- (or left-) invariant differential operators on the

Special Linear Group SL(n,R). This is a non-compact smooth manifold. In [1], Albin, Di-

makis, Melrose and Vogan introduced the hd-compactification for semisimple Lie Groups.

For the case of SL(n,R), we denote this compactification by SL(n,R). It is a compact

manifold with corners. We move to a resolution of SL(n,R), denoted by X. The algebra

of right-invariant differential operators on SL(n,R) lifts to X and becomes an algebra of

operators with simple degeneracies at the different boundary faces of X.

The second major contribution of this thesis is the construction of an algebra of pseudodif-

ferential operators Ψm
X on X that contains the lifts of right-invariant differential operators

on SL(n,R), together with basic parametrices of these operators. It is constructed using a

resolution of X2, denoted X2
e , by a series of blow-ups. Here, quasihomogeneous blow-ups

are used. A composition theorem for operators in Ψm
X is proven, using a resolution of the

triple product space X3
e .

The thesis is structured as follows: In Section 1.2 of this introduction we shortly recall the

basic definitions surrounding manifolds with corners and real radial blow-up, in an effort

to clearly outline the generalization to the quasihomogeneous case. In Section 1.3 we in-

troduce the concept of a quasihomogeneous structure and the corresponding blow-up. In

Section 1.4, we introduce the hd-compactification SL(n,R), the resolution space X, and

the lifted differential operators on X.
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In Chapter 2, we give the definition and basic properties of quasihomogeneous blow-ups. In

Chapter 3, we generalize commutativity results from the case of classical radial blow-ups to

the case of quasihomogeneous ones. In Chapter 4, marking the beginning of Part 2 of this

thesis, we shortly recall some Lie Group theory, that is necessary for the following analysis.

In Chapter 5, we introduce the hd-compactification of SL(n,R). In Chapter 6, we restrict

to the case of SL(3,R) and introduce the resolution space of the hd-compactification,

analyze the lift of right- and left invariant operators to this resolved space, and start to

develop an elliptic theory for theses operators. In Chapter 7, we generalize the results of

Chapter 6 for arbitrary n. Finally, we give a outlook on potential future work in Chapter

8.

1.2. Basic definitions of manifolds and radial blow-up

A smooth real manifold with boundary of dimension n is a topological space that is

equipped with a smooth structure locally modeled over the half space Rn1 = R+ × Rn−1

where R+ := [0,∞). Analogously, a manifold with corners X is a space with a smooth

structure locally modeled over Rnk := Rk+ × Rn−k. Thus for each point p ∈ X there is a

diffeomorphism mapping an open neighborhood of p into an open domain in Rnk (equipped

with the restricted topology of Rn). Each point p ∈ X has a uniquely defined codimension

k given by the minimal k such that a neighborhood of p may be modeled over Rnk
1. The

closure of a connected component of points with a fixed codimension is called a boundary

face of X. The set of all boundary faces is denoted by M(X), those of codimension k

by Mk(X). As part of the definition, we require each boundary face to be embedded. It

follows from this that each boundary face of a manifold with corners is again a manifold

with corners. Boundary faces of codimension 1 are called boundary hypersurfaces. Each

of the hypersurfaces H ∈ M1(X) has a globally defined boundary defining function xH ,

which is a non-negative smooth function on X such that H = {xH = 0} and dxH is non

vanishing on H. This is of course not unique.

As an example consider the manifold with corners R3
2 = {(x1, x2, y) | xi ≥ 0}. It has

two hypersurfaces H1 = {x1 = 0}, H2 = {x2 = 0} with boundary defining functions for

example x1, x2 respectively. And it has one codimension 2 boundary face F = H1 ∩H2.

Vector fields: The tangent bundle TX of a manifold with corners may be constructed

analogously to a manifold with boundary. Recall however, that tangent vectors do not

need to relate to the boundary. For each p ∈ X, the tangent space has a inward pointing

part T+
p X ⊂ TpX. These no longer form a vector bundle. There is however another nat-

ural appearing vector bundle other then TX on a manifold with corners that does relate

nicely to the boundary, called the compressed tangent bundle and denoted by bTX. More

precisely it is defined as follows.

Let Vb be the space of all smooth vector fields on X that are tangent to all boundary faces.

In a local model Rnk = {(x1, . . . , xk, y1, . . . yn−k) | xi ≥ 0} they are spanned by xi∂xi , ∂yi .

They form a Lie algebroid and thus are the C∞-sections of a vector bundle, denoted by

1Notice that one could also model a smooth manifold without boundary over Rnk , simply by staying away
from the boundary. A point p having codimension k is equivalent to being able to choose a local model
that maps p to 0 ∈ Rnk .
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bTX. This bundle can also be constructed directly by setting

(1.1) bTpX = Vb(X)�I(p) · Vb(X).

Submanifolds: As with vector fields, general submanifolds may relate well or poorly

to the boundary faces of a manifold with corners. There are several different classes

for submanifolds defined on manifolds with corners (for an extensive treatment see, for

example, [22]). The most relevant class of submanifolds in this thesis are so called p-

submanifolds. A subset Y ⊂ X is called a p-submanifold of X if for each p ∈ Y there

are local coordinates (x, x′, y, y′) (x, x′ ≥ 0) of X such that locally Y = {x′ = y′ = 0}.
The ‘p’ stands for product, since this is equivalent to saying that X takes local product

form X = Y × X ′ near each point p ∈ Y . Boundary faces are always p-submanifolds.

For another example, consider the two subsets S, T ⊂ R2
2 = {(x1, x2) | xi ≥ 0} given by

S = {x1 = 1} and T = {x1 = x2}. Then S is a p-submanifold of R2
2 and T is not, since

near the origin no product coordinates can be chosen.

Radial blow-up: The concept of blowing up submanifolds Y ⊂ X is a systematic and

geometric way of introducing polar coordinates along Y . For an exhaustive treatment see

[22], we only give a brief introduction here. We start with the local model. Consider again

a p-submanifold Y ⊂ X. By definition, we may choose a local model such that

(1.2) Y = Rn
′
k′ × {0} ⊂ Rnk = X (n′ < n, k′ ≤ k),

with standard coordinates x, x′, y, y′ such that Y = {x = y = 0}. Then local polar

coordinates are given by x, y, r, φ with

(1.3) r ∈ (0,∞), φ ∈ Sn−n′−1
k−k′ := Sn−n

′−1 ∩ Rn−n′k−k′

where Sl ⊂ Rl is the unit sphere. This identifies X \Y locally with Rn′k′ × (0,∞)×Sn−n′−1
k−k′ .

The radial blow-up of Y ⊂ X is given by compactifying this local model at r = 0. Thus

the blow-up of Rn′k′ × {0} ⊂ Rnk is a new manifold, denoted by [Rnk ;Rn′k′ × {0}] given by

(1.4) [Rnk ;Rn
′
k′ × {0}] = Rn

′
k′ × [Rn−n

′

k−k′ ; {0}] = Rn
′
k′ × [0,∞)× Sn−n′−1

k−k′ .

This is again a manifold with corners2.The newly created boundary hypersurface {r =

0} ⊂ [Rnk ;Rn′k′ ×{0}] is called the front face, denoted by ff(Rn′k′ ×{0}). The blown-up space

is equipped with a blow-down map

(1.5) β : [Rnk ;Rn
′
k′ × {0}]→ Rnk , (x, y, r, φ) 7→ (x, y, rφ).

The radius r is the lift of r =
√
|x|2 + |y|2 and is a global boundary defining function of

ff(Rn′k′ × {0}).
For a general submanifold Y ⊂ X, one can define the blow-up of Y on X, denoted by

[X;Y ] using the local models above. Of course the local polar coordinates depend on the

local product coordinates chosen in this construction. A (rather non trivial) fundamental

result about blow-up, and ultimately the reason for its usefulness, is the fact the the

space [X;Y ] is a uniquely defined manifold with corners independent of the choice of

2The only thing one needs to check is that Sn−n
′−1

k−k′ := Sn−n
′−1 ∩Rn−n

′

k−k′ is a manifold with corners, which
is straight forward using standard polar coordinates on the sphere.
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local coordinates. More precisely, any diffeomorphism on X that is equal to the identity

on Y lifts to a diffeomorphism on [X;Y ]. An alternative way of formulating this (that

may give an better intuition of what this uniqueness actually means) is to say that the

statement ‘a function f is smooth in polar coordinates along Y ’ is well stated without

any further information on what polar coordinates are meant precisely. One consequence

of this naturality is that blow-up may be iterated easily, meaning a new p-submanifold

in [X;Y ] may be chosen and blown up, allowing for the resolution on rather complicated

situations.

There is also a global construction of [X;Y ] without the use of local coordinates: Given

Y ⊂ X, the inward pointing part of its normal bundle is given at each p ∈ Y by N+
p Y =

T+
p X�TpY The inwards pointing part of the spherical normal bundle of Y is defined at

each point by

(1.6) S+NpY = (N+
p Y \ {0})�R+

.

The blown-up space may then be set as

(1.7) [X;Y ] := X \ Y t S+NY.

The C∞-structure is then defined using the existence of a normal fibration, which identifies

a neighborhood of Y with a neighborhood of the zero section of the inward pointing part

of the normal bundle N+Y .

One of the most fundamental result about vector fields, regarding the question of how to

use blow-ups as a means of resolution, is the following:

Theorem 1.1: Let Y ⊂ X be a closed p-submanifold. Then the space of vector fields

V ∈ Vb(X) that are tangent to Y lift under β : [X;Y ]→ X to become smooth vector fields

on [X;Y ] that span, over C∞([X;Y ]), the space Vb([X;Y ]).

A proof may be found in [22], Proposition 5.3.1.

1.3. Quasihomogeneous blow-up

In the first part of this thesis we generalize the construction of radial blow-up to quasi-

homogeneous ones. In special cases, quasihomogeneous blow-ups have already been used

extensively, for example in [12] or [7]. An exhaustive treatment of the general case was

started and written down partially in [22]. The first major contribution of this thesis, is to

provide a detailed formal definition of quasihomogeneous blow-ups and thereby, complete

the preliminary introduction to this concept in [22].

Consider again a p-submanifold Y ⊂ X. Denote by Im(Y ) the ideal of those functions

that vanish to order at least m ∈ N at Y , which form a filtration

(1.8) I(Y ) ⊃ I2(Y ) ⊃ I3(Y ) ⊃ . . .

It is easy to see by definition of radial blow-up, that each Im(Y ) lifts to [X;Y ] to become

elements of the ideal Im(ff(Y )) of functions vanishing to order at least m on ff(Y ). In
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local product coordinates Y = {xi = 0} these spaces are given by

(1.9) Im(Y ) =
∑
|α|≥m

xαC∞(X).

A quasihomogeneous structure at Y ⊂ X is a more general structure of this type. Intu-

itively, it is constructed by giving different coordinate functions different weights, resulting

in a filtration of I(Y )

(1.10) I(Y ) = F (1) ⊃ F (2) ⊃ F (3) ⊃ . . .

given by ideals F (m) consisting of those function whose ‘weighted order’ at Y is at least

m (see Definition 2.27). As a simple example, consider the p-submanifold {0} ⊂ R2 and

choose the standard coordinates x1, x2. Then giving x1 the weight 1 and x2 the weight 3

results in the ideals

(1.11) F (m) =
∑

a+3b≥m
xa1x

b
2C
∞(R2).

Meaning

F (1) = spanC∞{x1, x2}

F (2) = spanC∞{x2
1, x2}

F (3) = spanC∞{x3
1, x2}

F (4) = spanC∞{x4
1, x1x2, x

2
2}

F (5) = spanC∞{x5
1, x

2
1x2, x1x

2
2, x

2
2}

. . .

(1.12)

Locally, one possibility to define such a structure in general near a point in a submanifold

Y ⊂ X is to chose local product coordinates xi, x
′
j , Y = {xi = 0} (some of the xi

might be in R+) and associate to each xi a weight κi. We may assume for simplicity

that the κi are ordered κ1 ≤ κ2 ≤ · · · ≤ κk. Using multi indecies xα = xα1
1 · · ·x

αk
k and

κ · α := κ1α1 + · · ·+ κkαk we get a (locally defined) quasihomogeneous structure by

(1.13) F (m) =
∑
κα≥m

xαC∞(X).

Such a filtration of I(Y ) also yields a filtration of the conormal bundle N∗Y

(1.14) N∗Y = S1 ⊃ S2 ⊃ S3 ⊃ . . .

given by Sm = {dfN∗Y | f ∈ F (m)}. The largest m for which Sm 6= 0 is also the largest

weight given to a function. We call such a filtration of the conormal bundle Y a conor-

mal filtration. The quasihomogeneous blow-up of Y with respect to a quasihomogeneous

structure will then again be a new manifold [X;Y ]qh consisting of X \ Y disjointly united

with a front face ff(Y ) together with a blow-down map β : [X;Y ]qh → X under which

each F (m) lifts to become smooth and an element of the ideal Im(ff(Y )).

The idea of assigning different coordinate functions weights is used in several different

areas of mathematics. Besides the use in differential geometry presented here, it is also

used in algebraic geometry and many other fields, where it is also called weighting or goes
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under yet another term. A recent paper by Meinrenken and Loizides ([18], at the present

a paper in preparation) gives a comprehensive overview of the use of weighting in the

setting of differential geometry. The idea of using a filtration as described above to define

a quasihomogeneous structure in the setting of manifolds with corners and real blow-up

goes back to Richard Melrose in [22]. There, the fundamental ideas and definitions sur-

rounding such a structure and the blown-up space are already present, although details

and proofs are only partially available. The fist part of the thesis aims to contribute a

comprehensive treatment of quasihomogeneous blow-ups in the setting of p-submanifolds

of manifolds with corners and thus, provide a theoretical foundation for potential future

use in the resolution of singular structures.

More precisely, in Chapter 2 we introduce the basic definition of a quasihomogeneous struc-

ture at a submanifold Y ⊂ X and the blown-up space [X;Y ]qh. In order to introduce this

construction, consider again the local model in (1.2), however using simplified notation,

given by coordinates xi, x
′
j with Y = {xi = 0} (thus, some of the xi, x

′
i are restricted to

being positive). In the case of the radial blow-up r =
√
x2

1 + · · ·+ x2
k is a 1-homogeneous

function that lifts to become a boundary defining function of the front face and a local

model for the blown-up space was [0,∞)× Sn−n′−1
k−k′ = [0,∞)× {x ∈ Rn−n′−1

k−k′ | r(x) = 1}.
In the quasihomogeneous case, where each xi has an associated weight κi, we replace the

radial function by one that has ‘weighted homogeneity’ 1, for example

(1.15) rκ(x) =

(
k∑
i=1

x
2(κk)!/κi
i

)1/2(κk)!

.

Since each xi has ‘weighted homogeneity’ κi, the homogeneity of each summand is 2(κk)!,

making rκ a 1-homogeneous function. The use of (κk)! is somewhat arbitrary. It could be

replaced with any number that is a multiple of all κi, that appear. We then may use as a

model for the blown-up space

(1.16) [0,∞)︸ ︷︷ ︸
3r

×(Sn−n
′−1

k−k′ )qh,

where (Sn−n
′−1

k−k′ )qh is the inward pointing part of the non-round sphere

(1.17) (Sn−n
′−1

k−k′ )qh = {x ∈ Rn−n′−1
k−k′ | rκ(x) = 1}.

Similar to the radial case, we will also give a global definition of the blown-up space in

Chapter 2. One of the main challenges of the construction is to prove its naturality,

meaning its independence of the chosen local coordinates. Of course, the construction

of [X;Y ]qh depends on the quasihomogeneous structure F (m). One of the main theorems

(Theorem 2.26) of Chapter 2 states that the blown-up space depends only on this filtration.

To be more precise, given two quasihomogeneous structures F (m), F̃ (m) at Y , the identity

lifts to a diffeomorphism [X;Y ]qh ∼= [X;Y ]q̃h if and only if F (m) = F̃ (m).

Of course, this leaves an even more fundamental question open: what exactly defines

a quasihomogeneous structure? One question that might be asked is if the filtration of

the normal bundle N∗Y = S1 ⊃ S2 ⊃ . . . defined above already fully defines such a

structure. For an example that shows that this is not true, consider again 0 ∈ R2 with
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weights associated to x1, x2 being 1 and 3 respectively. Consider the two coordinate

transformations

x̃1 = x1, x̃2 = x2 + x2
1

x̃1 = x1 + x2
2, x̃2 = x2

(1.18)

with associated weights staying 1 and 3 in both cases respectively. A simple calculation

shows that both transformations still yield the same filtration of N∗Y , but only the second

one yields the same filtration of I(Y ).

In Chapter 2, we give a full characterization of coordinate transformations under which a

given quasihomogeneous structure is stable. Furthermore, we give a global, coordinate-free

characterization of what filtrations F (m) actually define a quasihomogeneous structure and

show its equivalence to the existence of local coordinates under which it takes the form

(1.13).

After these basic definitions and theorems, we continue in Chapter 2 by discussing vector

fields and their lifts under quasihomogeneous blow-up. Recall that under radial blow-up,

the ideal of all smooth vector fields V ∈ Vb(X) that are tangent to Y lift to become

smooth vector fields on [X;Y ] and span, over C∞, the ideal Vb([X;Y ]). Such a vector

field V satisfies V I(Y )m ⊂ I(Y )m for all m. In other words, a vector field is tangent to

Y if and only if it does not decrease the order of vanishing of a function at Y . Similarly,

given a quasihomogeneous structure at Y , one can define the Lie algebra of vector fields

V ∈ Vb(X) that do not decrease the weighted order of a function, i.e. those that satisfy

V F (m) ⊂ F (m), denoted by V0
Π. We show, that these vector fields lift to [X;Y ]qh to

become smooth elements of Vb([X;Y ]qh). Unfortunately, they only span Vb([X;Y ]qh) over

C∞ almost everywhere. Denote by q the largest weight appearing in the quasihomogeneous

structure at Y . Then V0
Π is in fact only one element of a filtration

(1.19) Vb(X) = V−qΠ ⊃ V−q+1
Π ⊃ · · · ⊃ V0

Π ⊃ V1
Π ⊃ . . .

where for m ∈ Z we set V−mΠ = {V ∈ Vb(X) | V F (m′) ⊂ Fm′−m ∀m′}, i.e. the set of

all vector fields that decreases the weighted order of a function at Y by at most m. It is

easy to see that any vector field can reduce the weighted order of a function by at most q,

showing that V−qΠ = Vb(X). Also, by definition we have [V−m,V−m′ ] ⊂ V−m−m′ . In fact,

such a filtration of Vb(X) may also be used to characterize a quasihomogeneous structure.

Filtrations of the space of smooth vector fields satisfying such a commutator condition are

often called singular Lie filtrations and have been studied extensively in different contexts

of differential analysis (see e.g. [18] [4])

We continue in Chapter 3 with analyzing the question of lifting- and commutativity re-

sults in this more general setting. This thesis contributes analogous versions of standard

commutativity result for radial blow-up and also states some less frequently used results

generalized to this setting. One main difficulty in doing so is that one needs to extend the

definition of lifting submanifolds under blow-up to lifting quasihomogeneous structures.

These results mark the end of Part 1 and will be used to resolve a structure associated to

left- and right-invariant differential operators in the Lie Group SL(n,R) in Part 2 of this

thesis.
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1.4. Pseudodifferential calculus on SL(n,R)

In the second part of this thesis, we consider the real reductive Lie group SL(n,R). We

shortly recall some basics on Lie Groups in Chapter 4. We consider the Lie algebra of

right- (or left-) invariant vector fields on SL(n,R). Their universal enveloping algebra is a

ring of right invariant differential operators, denoted by Diff∗ri, for which we aim to develop

an elliptic theory. The group SL(n,R) is, of course, not compact. As described in the

beginning of the introduction, we ‘trade’ non-compactness for a boundary by moving to a

compactification. Different compactifications of Lie groups have been studied extensively

and a large amount of research has gone into the study of several different options. One

of the most famous one being the one by De Concini and Procesi [5], called the wonderful

compactification. Since the goal of this thesis is a differential analysis of operators acting

on the (real) manifold SL(n,R), we chose the hd-compactification introduced by Albin,

Dimakis, Melrose and Vogan in [1]. It is viewed by the authors as a real analog of the

wonderful compactification and is closely related to it. To be more precise, for a complex

semisimple Lie group, the real blow-up of the exceptional divisor of the adjoint group in

the wonderful compactification yields a hd-compactification.

1.4.1. Hd-compactification of SL(n,R). We define a compactification of a real

non compact manifold M as a compact manifold with corners M̄ together with a map

I : M ↪→ M̄ that is a diffeomorphism onto the interior of M̄ . This is not unique, and a

‘good’ compactification always fulfills additional properties. In the case of the manifold

M being a group, one can demand that the compactification relates nicely to the group

action and the invariant vector fields on G. In this thesis, we consider the specific group

SL(n,R). In this case, the hd-compactification can be constructed explicitly as follows.

First, take the standard Hilbert Schmidt norm on the space of n× n-matrices and denote

by

(1.20) SH(n) = {A ∈ Mat(n× n) | ||A|| = 1}

the unit sphere of matrices. Then A 7→ A
||A|| maps each element of SL(n,R) onto SH(n).

We denote the image of this map by SI+(n) ⊂ SH(n). It consists of all matrices with

norm one that have positive determinant SI+(n) = {A ∈ SH(n) | detA > 0}. It is easy to

see that this map is a diffeomorphism onto its image SI+(n), since the inverse is explicitly

given by A 7→ A
det(A)1/n . Of course, one possibility of compactifying SL(n,R) would be to

simply take the closure of SI+(n) as a subset of the compact manifold SH(n), however, for

n > 2 we take further steps. The boundary ∂ SI+(n) in SH(n) is the set of all matrices

with norm 1 and determinant 0

(1.21) ∂ SI+(n) = {A ∈ SH(n) | detA = 0}.

This space is stratified by the matrices with a fixed rank k = 1, . . . n− 1. Thus, by setting

Sk = {A ∈ SH(n) | rankA = n− k} we get

(1.22) ∂ SI+(n) =

n−1⊔
k=1

Sk.
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A schematic visualization of the situation in the case SL(3,R) is given in the left half of

Figure 1.1. For a better intuition one can consider the following matrices in SL(3,R) as

an example:

(1.23) A1(ε) =

1/ε2

ε

ε

 , A2(ε) =

1/ε

1/ε

ε2

 .

Both A1(ε) and A2(ε) are elements of SL(3,R) for ε > 0. As ε→ 0, the matrices ‘approach

infinity’. Their projections onto SH(3,R) are given (up to higher order terms in ε) by

(1.24) Ā1(ε) =

1

ε2

ε2

 , Ā2(ε) =
1√
2

1

1

ε2

 .

As ε→ 0 they tend to the boundary of SI+(3) where they hit it and Ā1(0) ∈ S1, Ā2(0) ∈
S2.

For a general n, the deepest stratum Sn−1 is a compact submanifold without boundary of

SH(n). Thus we may define the (real radial) blow-up [SH(n);Sn−1]. By a general result

about group actions (see [2], Theorem 7.5) the next higher stratum Sn−2 lifts under this

blow-up to become a compact p-submanifold of [SH(n);Sn−1]. Iterating this process and

blowing up all Sk yields a compact manifold with corners

(1.25) SH(n) := [SH(n);Sn−1; . . . ;S1].

The closure of the lift of SI+(n) to this space is one of two connected components of SH(n)

and by definition the hd-compactification of SL(n,R), denoted by SL(n) (see right site of

Figure 1.1). We denote the boundary hypersurface generated from Sk by Hk.

SI+

S1 S2

SL

H1
H2

Figure 1.1. A schematic visualization of SH(3), SI+(3), SH(3), SL(3) and Sq.

Each boundary hypersurface Hk fibers over two copies of the Grassmannian of type k

(1.26)

SH(n− k)× SH(k) Hk

Gr(Rn, k)×Gr(Rn, k)

One of the two Grassmanians corresponding to the image of an element A ∈ Sq, the

other to the (orthogonal complement) of the kernel. The fiber is modeled inductively over
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SH of lower dimension. The first factor of the fiber corresponds to the restriction of A

to the orthogonal complement of its kernel, and the other one to the remainder, when

approaching A.

The different boundary hypersurfaces Hk intersect each other. A phenomenon that one

might expect, but is not the case here, is that the different fibrations would be iterated,

in the sense that whenever two hypersurfaces meet, the two fibrations restricted to the

intersection, form a tower in the fibers. This is not the case here, however, there is

a similar, but slightly weaker structure, that one might call partially ordered iteration:

Let q̄ = {q̄1, . . . q̄l} ⊂ {1, . . . , n − 1} be any index subset. Then the intersection Fq̄ =

Hq̄1 ∩ · · · ∩Hq̄l is non empty and is a connected boundary face of SL(n). In fact, the set

of boundary surfaces of SL(n) is indexed by these q̄. The fibers of the different fibrations

Hq̄i → Gr(q̄i)
2 restricted to Fq̄ intersect each other cleanly and their intersections form

smaller fibers of a common larger fibration: Denote by Fq̄ the Flag manifold of type q̄,

meaning the space of all flags U1 ⊂ U2 ⊂ . . . Ul where dimUi = q̄i. Then the boundary

face Fq̄ fiber over two copies of this Flag variety Fq̄ → Fq̄ ×Fq̄. and each of the fibrations

of Hq̄i restrict to Fq̄ to form a tower

(1.27) Fq̄ → Fq̄ ×Fq̄ → Gr(q̄i)×Gr(q̄i),

where the second map is simply given by projection from the flag onto its dim q̄i-subspace.

In fact, given any two boundary faces Fq̄, Fq̄′ such that the first is also a boundary face

of the second Fq̄ ↪→ Fq̄′ we necessarily have q̄ ⊃ q̄′ and a natural projection map between

the flag varieties Fq̄ → Fq̄′ such that the diagram

(1.28)

Fq̄ Fq̄′

Fq̄ Fq̄′

φq̄ φq̄′

πq̄,q̄′

commutes. The single boundary face of maximal codimension corresponding to q̄ =

{1, . . . , n − 1} is called the Borel face. A point p in the base fixes an Iwasawa decom-

position

(1.29) SL(n) = SO(n)ApNp

of the group and a corresponding decomposition of the Lie algebra

(1.30) sl(n) = so(n)⊕ ap ⊕ np

which may be used to analyze the lift of the right-invariant vector fields on SL(n,R). We

will see that ap decomposes into n − 1 one-dimensional spaces, each of which induces a

local boundary defining function of the hypersurface Hi near p. By smoothness in p, this

gives rise to a set of globally defined boundary defining functions τi for Hi under which

all the fibrations Fq̄ → F2
q̄ extend into the interior and, restricted to a single fiber, τi∂τi is

an element of the Lie algebra. The root space decomposition of np induces a filtration on

11



the tangent space of each flag manifold Fq̄ indexed over multi indexes

Eα ⊂ TFq̄ , α ≤ β ⇒ Eα ⊂ Eβ ,

Eα + Eβ ⊂ Eα+β , [Vα,Vβ] ⊂ Vα+β ,
(1.31)

where Vα = C∞(Fq̄;Eα). The notation Eα for one subbundle of TFq̄ for all q̄ is justified

by the fact that they behave as expected under projection Fq̄ → Fq̄′ .
This structure induces a Lie algebroid of vector fields Ve ⊂ Vb consisting of those vector

fields tangent to the boundary and tangent to the fibers of all fibrations Fq̄ −→ F2
q̄

π∗−→ Fq̄
over the left or right flag manifold (depending on considering right- or left-invariant vector

fields) and with normal vanishing properties encoded by the bundles Eα.

Right-invariant vector fields are elements of this Lie algebroid Ve. Intuitively, Ve consist

of those vector fields whose vanishing behavior at the boundary of the compactification

SL(n,R) is modeled by the right-invariant vector fields.

1.4.2. Resolution of the compactification. The main goal of the second part

in this thesis is the resolution of Ve. Even though it is a Lie algebroid, the fact that the

fibrations of the different hypersurfaces Hi are not iterated in the strong sense complicates

the analysis.

The solution pursued in this thesis is to move to a resolution space, denoted by X that

is constructed from SL(n,R) via a series of real radial blow-up. To be more precise, it is

the total boundary blow-up of SL(n,R), meaning that every boundary face Fq̄ is blown up

to generate a boundary hypersurface Hq̄. The fibration of Fq̄ lifts to a fibration of Hq̄.

It is an easy consequence of (1.28) that wherever some collection of these newly created

hypersurfaces Hq̄1 , . . . ,Hq̄k meet, their intersection F = Hq̄1 ∩ · · ·∩Hq̄k is a boundary face

of X, the corresponding multi-indexes are totally ordered q̄1 ≥ · · · ≥ q̄k, and the fibrations

of the different Hq̄i restricted to F form a tower

(1.32) F Fq̄1 Fq̄2 Fq̄3 . . . Fq̄k .
φq̄1

φq̄2
φq̄3

φq̄k

πq̄1,q̄2 πq̄2,q̄3

This means that X carries an iterated fibration structure. Such structures are the focus of

recent work in several different situations, for example [6], [24], [3].

The Lie algebroid Ve lifts to X and becomes a sub Lie-algebra of Vb(X). Due to the fact

that new fiber coordinates are introduced by the total boundary blow-up, the lift of Ve
to X is no longer a Lie algebroid. However, its C∞ span is again a Lie algebroid on X,

denoted by VSL.

Of course, X is also a compactification of SL(n,R), since the blow down map X → SL is

a diffeomorphism of the interiors, but one should think of it more as a resolution of SL

into a manifold carrying an iterated fibration structure.

Lifting both the Lie algebra of right-invariant vector fields Vri and Ve to X we get

(1.33) Vri ⊂ Ve ⊂ VSL ⊂ Vb.
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The universal enveloping algebras of theses spaces give rise to different classes of differential

operators on X, namely

(1.34) Diffri ⊂ Diffe ⊂ DiffSL .

Although operators in Diffri are the main interest of this study, for large parts of the

elliptic theory it is more natural to study elements of DiffSL, since VSL is a Lie algebroid

on X and thus consist of the smooth sections of a vector bundle SLTX.

Schwartz kernels of operators in DiffSL can thus be studied by analyzing the lift of VSL

from either the left or the right to the double space (X)2. As usual when dealing with

manifolds with any kind of boundary, the diagonal 4 ⊂ X2, which is of primary interest

in the analysis of the Schwartz kernels, hits the boundary rather poorly from an analytical

standpoint and analyzing the vector fields VSL near the intersection of the diagonal with

the boundary in X2 is the main challenge when developing an elliptic theory for DiffSL.

One of the main contributions of the second part of the thesis is the construction of a

resolution of X2, denoted by X2
e under which the diagonal lifts to become a p-submanifold

and Vi lifts from either the left or right to become transversal to the diagonal. The space

X2
e is constructed via a series of blow-ups. Here, quasihomogeneous blow-ups are used in

order to resolve the different orders of vanishing appearing from (1.31).

This resolution allows to define an algebra of pseudodifferential operators, whose Schwartz

kernels are the push-forward of certain (rather simple) distributions on X2
e . This algebra

contains DiffSL together with weak parametrices for these operators. A composition theo-

rem for these pseudodifferential operators is proven, again using a geometric approach by

constructing a resolution of the triple space X3, denoted by X3
e .

Part 2 of this thesis is structured as follows: In Chapter 4 we briefly recall basic definitions

and properties of semisimple Lie Groups. In Chapter 5 we discuss the hd-compactification

of SL(n,R) together with the lift of right-invariant vector fields on it. In Chapter 6 we

construct the resolution and the pseudodifferential calculus as described above for the

special case of n = 3. Most of the challenges for the general case are already present in

this case and it serves as a guidance for general n, which is described in Chapter 7.
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Part 1

Quasihomogeneous blow-ups of

p-submanifolds





CHAPTER 2

Construction and basic properties

We start with a short discussion of the general case of arbitrary p-submanifolds Y of a

surrounding manifold with corners X. We then restrict the construction to the special

case of blowing up 0 in a vector space, and continue by moving to more and more general

cases before finishing this chapter with arbitrary p-submanifolds.

First, we define a conormal filtration at a p-submanifold. It is motivated by the idea of

giving different codirections in the cotangent bundle weights. For this, we briefly need

to recall some basic definitions about manifolds with corners: Let Y ⊂ X be a bound-

ary p-submanifold. We denote by Fa(Y ) the smallest boundary face of X that contains

Y . Furthermore we set Hu(Y ) = Hu(Fa(Y )) ⊆ M1(X) to be the set of all boundary

hypersurfaces of X that contain Fa(Y ). Recall that we then have

(2.1) Fa(Y ) ⊆
⋂

H∈Hu(Y )

H and N∗ Fa(Y ) =
⊕

H∈Hu(Y )

N∗H.

Definition 2.1: Let M be a manifold (with corners) and Y ⊂ X a p-submanifold. A

conormal filtration at p is a fan

(2.2) N∗YX = S1 ⊇ S2 ⊇ . . . Sq ⊇ {0} = Sq+1 = . . .

of decreasing subbundles of N∗YX. When Y is a boundary submanifold, we have to pose

a condition for the Sk to relate nicely to the boundary, namely that there is a sequence of

integers κH for each H ∈ Hu(Y ) such that

Sk ∩N∗Y Fa(Y ) =
⊕
κH≥k

N∗YH for all k(2.3)

There are some things to note about this definition:

(1) It is to be interpreted as following: A codirection dx ∈ Sk has the associated

weight at least k. Since the subspaces are nested, each codirection dx has a

assigned weight, given by the highest index k for which dx ∈ Sk.
(2) Some consecutive Sk might be equal. For example, if there are some codirec-

tions with weight 3 but no codirections with weight 2, then S2 = S3. However,

this information is not redundant, since it encodes the weights of the different

codirections 1.

(3) It is convenient to require Sq to be of dimension at least 1. Therefore q is the

highest homogeneity that actually occurs.

1Equivalently, one could define the fan as strictly decreasing in dimension and additionally assign a (strictly
increasing) weight to each Sk.
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For concrete calculations below, the notion of matching coordinates will become important:

Definition 2.2: Let (Sk) be a conormal filtration at Y ⊂ X. Local product coordinates

(xi, yj) of Y (where Y is given by {xi = 0}) are said to match (Sk) if there is an increasing

series of numbers 1 = N(1) ≤ N(2) ≤ . . . N(q) such that

(2.4) Sk|y = span{dxi | i = N(k), . . . , n}

for k = 1 . . . q. Each dxi then has the associated weight κi = j :⇔ dxi ∈ Sj but dxi /∈ Sj+1.

The κi are increasing and κn = q.

Notice that the multi-index κ ∈ Nn does not depend on the choice of matching coordi-

nates, but only on (Sk). In fact, it only depends on the dimensions of the (Sk), where the

first (dimS1 − dimS2) of the κi are equal to one, the next (dimS2 − dimS3) are equal to

2 and so forth.

Similarly, any choice of local product coordinates (xi, yi) of Y where Y = {xi = 0} to-

gether with an associated weight κi ∈ N for each xi yields locally a conormal filtration

given by Sk = span{dxi|N∗Y | κi ≥ k}.

Normal fibration: Before we start, we will briefly recall the concept of a normal fibration,

since it is of vital importance later on. Let Y ⊂ X be a p-submanifold of a manifold with

corners. Then the normal bundle NY of Y is a vector-bundle over Y with fiber over each

p ∈ Y given by TpX/TpY . It has the structure of a manifold with corners. Let 0NY

denote the zero-section of NY , which is naturally identified with Y . A normal fibration of

Y is an identification of a neighborhood of Y (in X) and a neighborhood of 0NY in NY .

Formally it is a map φ : U⊆NY → V⊆X (where U is an open neighborhood of 0NY and V

is an open neighborhood of Y ) such that φ is a diffeomorphism and φ|0NY is equal to the

identification of 0NY and Y . Since NY is a vector bundle it can be locally trivialized. This

local product structure can be pulled back under φ−1 to V . The tubular neighborhood

theorem states that such a normal fibration always exists.

2.1. Zero in a vector space

We start by considering {0} ⊂ V where V is a n-dimensional real vector space. A conormal

filtration at {0} is then simply a filtration of the dual space

(2.5) V ∗ = T ∗0 V = S1 ⊇ S2 · · · ⊇ Sq.

As we will see below, in this special case such a filtration already defines a unique quasi-

homogeneous blow-up [V, 0](Sk) as a manifold with boundary constructed as follows:

We start by constructing the front face of the blown-up space as a set and add the C∞-

structure afterwards. The annihilators of the (Sk) define a filtration of V

(2.6) V = S⊥q+1 ⊇ S⊥q ⊃ · · · ⊃ S⊥2 ⊃ S⊥1 = {0}.

Using this, we define the associated graded space of V to be

(2.7) VS := V�S⊥q
⊕ S

⊥
q�S⊥q−1

⊕ · · · ⊕ S
⊥
3�S⊥2

⊕ S⊥2 ,
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which is again a vector space of the same dimension as V and is the direct sum of q − 1

real vector spaces S
⊥
k+1�S⊥k

(some of these might be zero dimensional). VS and V are

not naturally identified, however any choice of linear coordinates on V that match the

conormal filtration (Sk) as in Definition 2.2 yields such a identification. As an example,

consider V = R3 with standard coordinates x1, x2, x3. Associate the weights 1, 1, 3 to these

functions respectively. In other words, the conormal filtration is given by S1 = V ∗, S2 =

S3 = span{dx3}. The dual flag is given by S⊥3 = S⊥2 = span{x1, x2}, S⊥1 = {0}. Thus VS

has the two (not zero dimensional) factors V�S⊥3
and S⊥2 . The linear coordinates x1, x2, x3

give an identification V ∼= VS . In general, one should think of the factor S
⊥
k+1�S⊥k

as the

part of the vector space with weight exactly k (compared to S⊥k+1 being the part of weight

at most k). This statement is of course only meaningful on VS , not V .

Recall that on any real vector space W there is a canonically defined ‘standard outgo-

ing vector field’ given in any linear coordinates xi by
∑
xi∂xi . It is a straight forward

calculation to check that this is well-defined, independent of the linear coordinates. This

standard outgoing vector field of often simply denoted by x∂x. We now set RS to be

the (well-defined) vector field on VS that is given on S⊥k+1�S⊥k
by the k-th multiple of the

standard outgoing vector field. Given any linear matching coordinates xi on V (and thus

an identification V ∼= VS) with associated weights κi it is given by

(2.8) RS =
n∑
i=1

κixi∂xi

Again, it is not unique on V , only in VS . The flow-out of this vector field defines a R>0-

group action VS ×R+ → VS , (x, t) 7→ Φt
RS

(x). The quotient of VS \{0} by this action will

be our model for the front face:

(2.9) ff := (VS \ {0})�R>0
, [V ; 0](Sk) := (V \ {0}) t ff.

For the C∞-structure choose linear coordinates (xi) that match (Sk). Under the R>0

action of RS , the function

(2.10) rκ(x) =

(
n∑
i=1

x
2(κn)!/κi
i

)1/2(κn)!

is homogeneous of degree 1, since each xi is homogeneous of degree κi
2. This function

will serve as a replacement for the standard radius used in the radial blow-up. Since rκ is

homogeneous of degree 1 under the R>0 action of RS , it defines a diffeomorphism

(2.11) V \ {0} 3 x 7→ (rκ(x), ω) ∈ (0,∞)× Sn−1
κ

where Sn−1
κ := {x ∈ V : rκ(x) = 1} can be identified with ff . The second factor of the

map is given by the projection along the flow of Rκ, so

(2.12) ωi =
xi

rκ(x)κi
.

The inverse of this maps extends smoothly to r = 0 and will define our blow-up:

2The use of (κn)! is somewhat arbitrary. The least common multiple of all κi would work as well.
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Definition 2.3: Let (Sk) be a conormal filtration at 0 ∈ V . Let (xi) be linear coordinates

that match (Sk). We define the blow-up of 0 with respect to (Sk) as in (2.9) together with

the C∞-structure and blow-down map given by

(2.13) β : [V ; 0](Sk) = [0,∞)× Sn−1
κ 3 (r, ω) 7→ (rκ1ω1, . . . , r

κnωn) ∈ V.

Of course we need to check that the C∞-structure is independent of the choice of linear

coordinates. To do this, projective coordinates on the new manifold are very useful.

2.1.1. Projective coordinates. Similar to the radial blow-up, concrete calculations

are often the easiest using projective coordinates. We start again linear coordinates xi on

V . Let i ∈ {1, . . . n} be a fixed index. Let x̃j = β∗(xj) be the pullback of xj to the

blown-up space (2.13). If there is no room for confusion we omit the .̃ On the blown-up

space [0,∞) × Sn−1
κ we clearly have x̃j = 0 at (r, ω) if and only of r = 0 or ωj = 0. On

{(r, ω) ∈ [V ; 0](SK) | r 6= 0, ωi 6= 0} define the functions ξ1, . . . , ξn by

(2.14) ξj =

x̃
1/κi
i (j = i)

x̃j x̃
−κj/κi
i (j 6= i)

.

Proposition 2.4: The functions (ξj) extend smoothly to

(2.15) Di = {(r, ω) ∈ [V ; 0](Sk) | ωi 6= 0}

and form a coordinate system on this domain where ξi is a local boundary defining function

of the front face.

Proof. In the interior, i.e. for r > 0 there is nothing to show, since then β is a local

diffeomorphism and the ξj are smooth with independent differential. Now let us consider

the behavior for r → 0. We first consider ξi and then ξj for j 6= i. At an interior point of

the domain (r, ω) ∈ D◦i (i.e r > 0, ωi 6= 0) we have

(2.16) ωi =
x̃i
rκi

and therefore x̃i = ωir
κi

as calculated earlier. Therefore, at (r, ω), we have

(2.17) ξi = x̃
1/κi
i = ω

1/κi
i r.

This is smooth down to r = 0 and a local boundary defining function of the front face.

Now let j 6= i. Then we have

(2.18) ξj = x̃j x̃
−κj/κi
i = ωjr

κjω
−κj/κi
i r−κi = ωjω

−κj/κi
i

which is independent of r and thus smooth down to r = 0. On Di, these ξj form local

coordinates. �

It is easy to see that the set of all the domains Di cover the blown-up space:

(2.19)
n⋃
i=1

Di = [V ; {0}](Sk).

We are now able to show the naturality of the blow-up construction.
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Lemma 2.5: Let (xi), (x̃i) be two matching linear coordinate systems with respect to (Sk).

Then the coordinate change lifts to a diffeomorphism on [V ; 0](Sk).

Proof. We have x̄ = Ax for a real invertible matrix. Since the coordinates both

match (Sk) we have

(2.20) dxi ∈ Sk ⇒ d(Axi) ∈ Sk.

Therefore the k-th row Ak of A has only non zero entries Ak,l whenever κl ≥ κk. The lift

of this coordinate change in the interior is given by β̄−1 ◦A ◦ β. Recall that in projective

coordinates corresponding to ξi we have

(2.21) (ξ1, . . . , ξn)
β→ (ξ1ξ

κ1
i , . . . , ξ

κi
i , . . . , ξnξ

κn
i )

and in projective coordinates η corresponding to x̄j we have

(2.22) (x̄1, . . . , x̄n)
β̄−1

→ (x̄1x̄
−κ1/κj
j , . . . , x̄

1/κj
j , . . . , x̄nx̄

κn/κj
j ).

We therefore get

(ξ1, . . . ξn)

β−→(ξ1ξ
κ1
i , . . . , ξ

κi
i , . . . , ξnξ

κn
i )

A−→(A1(β(ξ)), . . . , An(β(ξ)))

β̄−1

−→(A1(β(ξ))Aj(β(ξ))−κ1/κj , . . . , Aj(β(ξ))1/κj , . . . , An(β(ξ))Aj(β(ξ))−κn/κj ).

Notice that each term of Aj(β(ξ)) has ξj-power of at least κj , making the map smooth

down to ξi → 0. Thus A lifts to become a diffeomorphism on the blown-up space.

�

2.1.2. 0 in Rnk . The results above immediately generalize to blowing up 0 in Rnk , if we

interpret it as a subspace of the vector space Rn, i.e. only considering linear coordinates

on it. A conormal filtration then defines a filtration of the inward pointing tangent space

at 0 where each space in (2.7) is replaced by its inward-pointing part:

(2.23) VS = T+
0 R

n
k�S⊥+

q
⊕ S

⊥+
q �S⊥+

q−1
⊕ · · · ⊕ S

⊥+
3 �S⊥+

2
⊕ S⊥+

2 .

For the C∞-structure, Sn−1
κ is replaced by Sk,n−1

κ := Sn−1
κ ∩ Rnk . Notice that the extra

condition in Definition 2.1 becomes necessary for the identification of Sn−1
κ ∩Rnk with the

new front face ff . The rest is completely analogous. In particular, the definition of the

projective coordinates ξj and their range Di are identical.

2.1.3. The function spaces F (m). Recall that I(0) ⊂ C∞(V ) is the space of smooth

function on V (or Rnk) that vanish at 0. Furthermore, there is a decreasing sequence of

subspaces

I(0) ⊃ I2(0) ⊃ I3(0) . . .(2.24)
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where Im(0) is the space of functions vanishing to order at least m at 0. For a given

conormal filtration (Sk) there are related subspaces F (m) of functions vanishing at 0 to

‘quasihomogeneous’-order at least m:

Definition 2.6: Let (Sk) be a conormal filtration at 0 ∈ V with associated weights κ ∈ Nn.

We set

(2.25) F (m) =
∑
κα≥m

xαC∞(V ).

In particular xi ∈ F (κi) but xi /∈ F (κi+1). Of course, F (m) ⊂ C∞(V ) depends on the

conormal filtration (Sk), which is not represented in the notation since it rarely leads to

confusion.

The fact that this is well-defined is a simple consequence of the fact that any linear

coordinate change x̄i =
∑

l ai,lxl that fixes (Sk) necessarily satisfies ai,l = 0 whenever

κi < κk.

Notice that one can reconstruct the Sk from these spaces since

Sk = {df | f ∈ F (k)}.(2.26)

The following statements are direct consequences of this definition:

Lemma 2.7: Let (Sk) be a conormal filtration at 0 ∈ V and F (m) as above.

(1) F (m) is a C∞ module.

(2) I(p) = F (1) ⊇ F (2) ⊇ . . . .
(3) F (m) · F (m′) ⊆ F (m+m′).

(4) F (∞) = I(∞) where F (∞) =
⋂
mF (m) and I(∞) =

⋂
m I(m).

Proposition 2.8: Let β : [V ; 0](Sk) → X be a quasihomogeneous blow-up. Then the

elements f ∈ F (m) are precisely those smooth functions, whose lifts β∗f ∈ C∞([V ; 0](Sk))

are elements of Im(ff).

Proof. We will use projective coordinates on [V ; 0](Sk) corresponding to linear coor-

dinates (xi) on V matching the conormal filtration. Recall that the projective coordinates

(ξj) corresponding to one of the coordinate functions xi are given by

(2.27) ξi = x
1/κi
i and ξj = xjx

−κj/κi
i for j 6= i

with the blow-down map locally taking the form

(2.28) xi = ξκii and xj = ξjξ
κj
i for j 6= i.

Furthermore, ξi is a boundary defining function of ff on its domain. Therefore, we locally

have Im(ff) = ξmi · C∞(X). Now, take f ∈ F (m). Since F (m) is generated by xα with

ακ ≥ m we only need to consider those as f . We have

β∗(xα)(ξ1, . . . , ξn) = ξα1
1 ξκ1

i · ξ
α2
2 ξα2κ2

i · · · ξαiκii · · · ξαnn ξαnκni

= ξακi ·
∏
j 6=i

ξ
αj
j ∈ I

m(ff).(2.29)
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For the other direction, take a smooth function f that satisfies β∗f ∈ Im(ff). Writing f

in Taylor series f =
∑

α λαx
α, we can see from (2.29) that β∗f ∈ Im(ff) implies λα = 0

whenever κα < m. �

Proposition 2.9: Given (Sk) and matching coordinates (xi) at 0 ∈ V with associated

function spaces F (m), the following sequence is exact for each m:

(2.30) 0 −→ F (m+1) + (F (m) ∩ I2(0)) −→ F (m) d|0−→ Sm�Sm+1
−→ 0.

Furthermore

(2.31) F (m) ∩ I2(0) =
∑

n1+···+nk=m
k≥2, nj≥1

F (n1) · · · F (nk).

Proof. The first map is injective, since it is an embedding. Now consider the second

map. We know that Sm is spanned by those dxi with κi ≥ m. Furthermore xi ∈ F (κi).

Therefore F (m) d|0−→ Sm is well-defined and surjective.

Next, take f = f1 + f2 ∈ F (m+1) + (F (m) ∩ I2(0)). Since f2 ∈ I2(0), we have df2|0 = 0.

Furthermore, since f1 ∈ F (m+1), we have df1|0 ∈ Sm+1 which shows that df |0 = [0] ∈
Sm�Sm+1

.

Now take f ∈ F (m) with df |0 = [0] ∈ Sm�Sm+1
, yielding df |0 ∈ Sm+1. Writing f in Taylor

series with respect to the coordinates (xi), we can see that only those xi-coefficients may

be non zero, where dxi ∈ Sm+1. Thus we can divide f into its linear part, which is in

F (m+1), and the rest, which is in I2. Since F (m) is a module, this rest is also in F (m).

This proves the exactness.

Moving on to the second statement, first take f ∈
∑

n1+···+nk=mF (n1) · · · F (nk). Since

k ≥ 2, the fact that F (n) ⊆ I implies f ∈ I2 and the fact that F (n) · F (n′) ⊂ F (n+n′)

implies f ∈ F (m). Now take f ∈ F (m) ∩ I2. Using Taylor series again, it is clear that the

space F (m) ∩ I2 is spanned by those xα where κα ≥ m and |α| ≥ 2. We can therefore

divides the summands arbitrarily in xα = xα1xα2 with α1 + α2 = α, |αi| > 0 which is

clearly an element of F (κα1) · F (κα2) where κα1 + κα2 = κα ≥ m. �

Remark: The second part of the proposition shows that all the information of the F (m)

is contained in the first F (1), . . . ,F (q), since F (m) ∩ I2 = F (m) for m > q, which becomes

clear in Taylor series.

2.2. Zero section of a vector bundle

We can immediately generalize these definitions to the zero section of a vector bundle or

Rnk -bundle by blowing up each fiber. Let V be an Rnk -bundle over the base Y (being a

manifold with corners). We then identify Y with the zero-section 0V in V . We denote

the fiber over a point y ∈ Y by Vy. Let (Sk) be a conormal filtration at Y . Then clearly

(Sk)|y is a conormal filtration at 0 in Vy for each y ∈ Y . We then define the blow-up of

the zero section Y with respect to (Sk) as

(2.32) [V ;Y ](Sk) =
⊔
y∈Y

[Vy; 0](Sk)|y
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with blow-down map defined on each fiber. The C∞-structure on [V ;Y ](Sk) is given by

the local product structure. To show that this is well-defined, we need to show that local

bundle-isomorphisms Φ : V → U lift to a diffeomorphism Φ̃ : [V ;Y ](Sk) → [U ;Y ](Sk). This

follows directly from Lemma 2.5 since Φ is linear on the fibers and depends smoothly on

local coordinates in the base.

Projective coordinates: Near a point p ∈ Y ⊂ V let yi be local coordinates in Y .

Let xi be linear coordinates in Rnk . Then a local trivialization of the vector bundle near

p 3 U wW⊆Y ⊕Rnk allows the xi to be pulled back to V to become local fiber coordinates.

With the ξj defined as before (yi, ξj) become local coordinates on [V ;Y ](Sk).

The function spaces F (m): The function spaces F (m) may be defined identically as

in (2.25), when choosing local coordinates (xi, yj) as above. Furthermore Lemma 2.7,

Proposition 2.8 and Proposition 2.9 all still hold.

2.3. Point in a manifold

Next, we to consider the case of a point p ∈ X in a manifold with corners. Let (Sk) be a

conormal filtration at p. The construction of the new front face as in (2.9) still works in the

same way. Following the construction of radial blow-ups, it would be natural to construct

the C∞-structure by using a normal fibration of p. The normal bundle of a single point is

of course just the tangent space TpX. Let φ : U⊆TpX → V⊆X be such a normal fibration.

The cotangent space of p ∈ X is naturally identified with the cotangent space of 0 ∈ TpX
(there are the same space after all), so the conormal filtration at p is naturally identified

with a conormal filtration at 0 ∈ TpX. Since φ is a diffeomorphism, we may define the

blow-up of p ∈ X by blowing up 0 ∈ TpX (using linear matching coordinates on TpX).

For a single point p, local coordinates (xi) centered at p always define a normal fibration,

since it identifies TpX with span{∂x1 , . . . ∂xn}. On the other hand, a normal fibration φ

together with linear coordinates (xi) on TpX also defines local coordinates at p by pulling

back the xi under φ−1. Thus, in the case of a single point, choosing a normal fibration

coincides with choosing local coordinates (although there is no 1-1 correspondence). Of

course, this opens the question of whether or not the C∞-structure is independent of the

choice of normal fibration. We have already seen in the last section that it is independent

of linear transformations on TpX. However two normal fibrations φ, ψ may vary in more

complicated ways.

Example: Consider 0 ∈ R2 in standard coordinates x1, x2. We define the conor-

mal filtration by

(2.33) S1 = span{ dx1, dx2} , S2 = S3 = span{ dx2} , S4 = {0} = . . .

Therefore, the weights κ = (κ1, κ2) associated with dx1 and dx2 are 1 and 3

respectively. By definition, the coordinates x1, x2 match the (Sk), therefore we

can construct the blow-up and blow-down map β : [R2; 0](Sk) → R2 using these

coordinates. There are two systems of projective coordinates, corresponding to x1
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and x2 respectively (see figure 2.1). Now consider the coordinate transformation

(2.34) (x1, x2)
Φ7→ (x1, x2 + x2

1) = (x̄1, x̄2).

Clearly the new coordinates also match (Sk) since, dx̄1 = dx1 and dx̄2 = dx2.

Therefore, we may define the blow-up β̄ : [R2; 0](Sk) → R2 together with the

analog projective coordinates (ξ̄1, ξ̄2), (η̄1, η̄2) (see figure 2.1). We can now write

x1

x2

(ξ1, ξ2) 7→ (ξ1, ξ
3
1ξ2)

(η1, η2) 7→ (η1η2, η
3
2)

β

Φ

(x1, x2)
7→ (x1, x2 + x2

1)

ξ1

ξ2

η1

η2

x̄1

x̄2

(x̄1, x̄2) 7→ (x̄1,
x̄2

x̄3
1
)

(x̄1, x̄2) 7→ ( x̄1

x̄
1/3
2

, x̄
1/3
2 )

β̄−1

ξ̄1

ξ̄2

η̄1

η̄2

Figure 2.1. An example for two quasihomogeneous blow-ups of the same (Sk).

down the lift of Φ in local coordinates (η1, η2) and (η̄1, η̄2):

(η1, η2)
β7→ (η1η2, η

3
2)

Φ7→ (η1η2, η
3
2 + η2

1η
2
2)

β̄−1

7→

 η1η2

(η3
2 + η2

1η
2
2)1/3︸ ︷︷ ︸

=η̄1

, (η3
2 + η2

1η
2
2)1/3︸ ︷︷ ︸

=η̄2

 .
(2.35)

Notice that the η̄2-variable is not smooth, when η2 → 0. Therefore, the diffeo-

morphism Φ does not lift to become a diffeomorphism on the blown-up spaces.

So what happened? Looking at the coordinate change, it seems that we just added a higher

order term to the second coordinate. However, since we are performing a quasihomoge-

neous blow-up, the standard notion of order is not the correct one to consider. Instead, we

really should be considering a quasihomogeneous order: Since dx2 has assigned weight 3,

the function x2 should be considered to have quasihomogeneous weight 3. And since dx1

has assigned weight 1, the function x2
1 should be considered to have quasihomogeneous

weight 2. Therefore, we actually changed the second coordinate to lower order than the

coordinate itself. This leads us back the function spaces F (m):

2.3.1. The function spaces F (m).
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Definition 2.10: Let (Sk) be a conormal filtration at a point p ∈ X and φ : U⊆TpX → V⊆X

be a normal fibration. We set

(2.36) F (m)
φ := {f ∈ C∞(X) | f |V ∈ (φ−1)∗(F (m))} ⊂ C∞(X).

Lemma 2.11: Let (Sk), φ, F
(m)
φ be as above.

(1) If φ is given by matching coordinates (xi) (i.e. the (xi) are the pullbacks of

matching linear coordinates on TpX) then F (m)
φ again takes the local coordinate

form as in (2.25)

(2.37) F (m)
φ = F (m)

(xi)
=
∑
κα≥m

xαC∞(X).

(2) Lemma 2.7, proposition 2.8 and proposition 2.9 are all true for the spaces F (m)
φ ⊂

C∞(X).

Proof. The first point is clear by definition. The second follows from the fact that φ

is a diffeomorphism and all the mentioned results are stable under diffeomorphism. �

Lemma 2.7 and Proposition 2.9 actually characterize what kind of sequences may occur:

Proposition 2.12: Let F (m) ⊂ C∞(X) be a sequence of function spaces for m ∈ N that

satisfy:

(1) Sk = {df | f ∈ F (k)} is a conormal filtration at p ∈ X.

(2) F (m) satisfies (1)-(5) in Lemma 2.7.

(3) The sequence as in (2.30) is well-defined and exact.

Then there exists a normal fibration φ : U⊆TpX → V⊆X that linearizes F (m) in the sense

that F (m) = F (m)
φ with respect to the conormal filtration (Sk). In other words, there exist

coordinates (xi) centered at p matching the conormal filtration such that the F (m) takes

the form (2.25).

Proof. Since S1 = T ∗pX and Sq+1 = {0} we have

(2.38) dim

(⊕
m

Sm�Sm+1

)
= n.

Therefore we can choose x1, . . . , xn with independent differential at p (and therefore local

coordinates) such that

(2.39) Sk = spani=N(k)...n{dxi}

with a suitable increasing sequence of integers N(k). These then also define the integers

κi associated to each xi as before. Furthermore, since we assume the sequences in (2.30)

to be exact, we can choose the xi in such a way that xi ∈ F (κi) but xi /∈ F (κi+1). The

first of which immediately implies

(2.40)

 ∑
κα≥m

xαC∞(X)

 ⊆ F (m).

26



Knowing this for all m, we can prove the set equality by induction over m. Since F (1) = I,

the equality is clear for m = 1. Now assume the set equality holds in (2.40) for all m̃ < m

and assume that there exists a 0 6= f ∈ F (m) \
{∑

κα≥m x
αC∞(X)

}
. Writing f in Taylor

series and using (2.40) we may assume without loss of generality that it takes the form

(2.41) f =
∑
κα<m

λαx
α.

Furthermore, we know that the linear part of f is mapped by d into Sm, which means

by choice of the xi that only those xi-coefficients are non zero where κi ≥ m. We can

therefore again by (2.40) assume that f has no order one terms, yielding d|pf = 0. By the

exactness of the sequence we then get

(2.42) f ∈ F (m+1) +
∑

n1+···+nk=m
k≥2, nj≥1

F (n1) · · · F (nk).

However, by induction, any function in the sum on the right has only Taylor coefficients

non zero whenever κα ≥ m, yielding that we in fact have f ∈ F (m+1). Since we already

know that d|pf = 0, we can use the exact sequence for m+ 1 to get

(2.43) f ∈ F (m+2) +
∑

n1+···+nk=m+1
k≥2, nj≥1

F (n1) · · · F (nk).

However, since we clearly have

(2.44)
∑

n1+···+nk=m+1
k≥2, nj≥1

F (n1) · · · F (nk) ⊆
∑

n1+···+nk=m
k≥2, nj≥1

F (n1) · · · F (nk)

we again already have f ∈ F (m+2) and so forth, yielding f ∈ Fk for all k. Using the last

condition (6) from Lemma 2.7, this yields f ∈ I∞, contradicting (2.41). �

2.3.2. Quasihomogeneous structure. We now have all the ingredients we need to

define a full quasihomogeneous structure. In fact, we can give two equivalent definitions.

Definition/Theorem 2.13: Let p ∈M .

(1) A series of function spaces F (m) satisfying the conditions of Proposition 2.12 is

call a quasihomogeneous structure at p ∈M .

(2) For an equivalent characterization, let (Sk) be a conormal filtration at p ∈ X. We

say two matching coordinate systems (xi) and (x̄i) (or two normal fibrations) are

equivalent, if F (m)
(xi)

= F̄ (m)
(x̄i)

for all m as in Definition 2.10, written (xi) ∼S (x̄i).

This defines an equivalence relation on the set of all matching coordinates. A

tuple Πp = ((Sk), [x]∼S ) is also a quasihomogeneous structure at p ∈ X. We call

such a equivalence class [x] an jet of quasihomogeneous order (Sk).

We denote a quasihomogeneous structure given in either form by Π.

Proof. The only thing to show is that the two definitions coincide. As shown in

proposition 2.12, for each (F (m)) there is a corresponding ((Sk), [x]∼S ) and visa versa. �
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Remark 2.14: Notice that the definition of quasihomogeneous jet actually generalizes the

definition of a jet, where a classical jet of order r corresponds to the conormal filtration

given by Sk = T ∗pX for k ≤ r and Sk = {0} for k > r.

Before we state the theorems that justify this definition we want to characterize the equiv-

alence of coordinate systems in Taylor series.

Proposition 2.15: Let (Sk) with associated κ ∈ Nn be as before. Let φ, φ̄ be two normal

fibrations at p given by two matching coordinate system (xi) and (x̄i). Let us write the

coordinate transformation in Taylor series

(2.45) xi ∼
∑
α

λi,αx̄
α.

Then (xi) ∼S (x̄i) if and only if λi,α = 0 whenever κα < κi.

Proof. To start with, assume the coordinate transformation takes the form above.

We know that F (m)
(xi)

is spanned by xβ with κβ ≥ m. Given such a β, we have

xβ =

n∏
i=1

(∑
α

λi,αx̄
α

)βi
= Sum of terms λ(xα1)β1 · · · (xαn)βn where αiκ ≥ κi ∀j.

(2.46)

Here, each αi is a multi-index and β = (βj) is a single multi-index. We then have

(2.47) κ · (α1β1 + · · ·+ αnβn) = κ · α1β1 + · · ·+ κ · αnβn ≥ κ1β1 + · · ·+ κnβn = κβ ≥ m

which implies xβ ∈ F (m)
x̄i and therefore F (m)

xi ⊆ F
(m)
x̄i .

For the reverse set inequality, it seems that one needs to deal with the Taylor coefficients

of the inverse transformation. Fortunately, one does not. Instead we use induction over

m and a dimension argument. Clearly F (1)
xi = F (1)

x̄i = I(p). Now assume F (m)
xi = F (m)

x̄i for

some fixed m. Consider the space
F (m)
xi �F (m+1)

xi
. Equation (2.37) implies that this quotient

is a finite dimensional vector space spanned over R by xα with κα = m. Furthermore all

these monomials are linear independent in
F (m)
xi �F (m+1)

xi
, since a linear combination of them

never lies in F (m+1)
xi (this is again clear form the coordinate representation). Therefore

it is a finite-dimensional vector space of dimension #{α ∈ Nn | κα = m}. By the same

argument we get

(2.48) dim

(
F (m)
xi �F (m+1)

xi

)
= dim

(
F (m)
x̄i �F (m+1)

x̄i

)
.

Together with F (m)
xi = F (m)

x̄i and F (m+1)
xi ⊆ F (m+1)

x̄i this implies F (m+1)
xi = F (m+1)

x̄i .

Now take (xi) ∼S (x̄i), i.e. F (m)
xi = F (m)

x̄i for all m. Since xi ∈ Fκixi we know that

(2.49) xi =
∑
α

λi,αx̄
α ∈ F (κi)

x̄i

which implies that λi,α = 0 whenever κα < κi, showing the equivalence. �
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Remark 2.16: Proposition 2.15 actually proves a non trivial result about the inversion

of power series: Given a smooth invertible function f : Rn → Rn with Taylor series

fi =
∑

α λi,αx
α and a multi-index κ, then the following holds: If λi,α = 0 whenever

κα < κi, then the Taylor series of f−1 satisfies the same.

We can now define the quasihomogeneous blow-up of a point p as before

Definition 2.17: Let p ∈ X and F (m) a quasihomogeneous structure at p. Let the set ff

be defined as before in (2.9) as

VS = T+
p X�S⊥+

q
⊕ S

⊥+
q �S⊥+

q−1
⊕ · · · ⊕ S

⊥+
3 �S⊥+

2
⊕ S⊥+

2

ff = (VS \ {0})�R>0

(2.50)

with the R>0 action defined as before by the vector field RS given by the k-th multiple of

the standard outgoing vector field on S⊥+
k+1�Sk.

We define the blow-up of Y with respect to F (m) as

(2.51) [X; p]Π := ff t (X \ {p})

with C∞ structure and blow-down map constructed using a matching normal fibration

φ : U⊆TpX → V⊆X .

Projective coordinates on the blown-up space are defined as before in Section 2.1.1.

Before we can prove that the C∞ structure of [X; p]Π is well-defined, we need to study

how vector fields behave under quasihomogeneous blow-ups.

2.3.3. Vector fields.

Definition 2.18: Let Π be a quasihomogeneous structure at p ∈ X. We say a vector

field V ∈ C∞(X, bTX) is of quasihomogeneous order −m with respect to Π, if V F (m′) ⊆
F (m′−m) for each m′ (Where for negative m we extend the filtration by F (m) = C∞(X)).

We denote the space of these vector fields by V(−m)
Π .

Intuitively, a vector field of order −m reduces the order of a function by at most m. As

the notation suggest, the space V(−m)
Π is well-defined, that is it only depends on Π, which

is clear since the F (m) are well-defined.

Lemma 2.19: V(−m)
Π is a R-vector-space, a C∞-module, and the Lie bracket satisfies

(2.52) [V(−m)
Π ,V(−m′)

Π ] ⊂ V(−m−m′)
Π .

In particular, V(0)
Π is a Lie-Algebra.

Proof. The first two statements follow directly from the definition, since the F (m)

are vector spaces and C∞-modules. The last part also follows directly from the definition.

For V ∈ V(−m)
Π , W ∈ V(−m′)

Π and f ∈ F (n) we have W (V f)− V (Wf) ∈ F (n−m−m′). �

Lemma 2.20: Let Π = ((Sk), [x]∼S ) with associated κ. Then

(2.53) V(−m)
Π =

∑
κα≥κj−m

C∞(X) xα
∂

∂xj
=

n∑
j=1

F (κj−m) ∂

∂xj
.
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Proof. First, we check that the spanning vector fields are actually elements of V(−m)
Π .

So take α with κα ≥ κj −m and set V = xα∂/∂xj . We know that F (m′) is spanned by

xβ with κβ ≥ m′. If βj = 0 then V xβ = 0 ∈ F (m′−m). Otherwise V xβ = xαxβ−ej where

ej = (0, . . . 1, . . . 0) is the j-th unit index. We have κ(α + β − ej) = κα + κβ − κj ≥
κj −m+ κβ + κj = κβ −m ≥ m′ −m and therefore V xβ ∈ F (m′−m).

Next take any V ∈ V(−m)
Π with

(2.54) V =
n∑
j=1

aj(x)
∂

∂xj
.

Since xj ∈ F (κj) and V xj = aj , we know that aj ∈ F (κj−m). Therefore, when writing aj

in Taylor series, it only has coefficients xα with κα ≥ κj −m, proving the statement. �

Corollary 2.21: Each V(−m)
Π is locally finitely generated and they define a filtration of

all smooth vector fields. Let q be the maximal order present in Π. Then we have

(2.55) . . .V(1)
Π ⊂ V(0)

Π ⊂ V(−1)
Π ⊂ . . .V(−q+1)

Π ⊂ V(−q)
Π = Vb(X).

In fact, such a filtration of the smooth vector fields yields another way of defining a

quasihomogeneous structure.

Proposition 2.22: For each m let V(−m)
Π be a finitely generated C∞-module of vector

fields that satisfy (2.52) and (2.55). Then they define a quasihomogeneous structure at

Y ⊂ X.

Proof. We will not prove this here, since there are a lot of cumbersome details in-

volved. A full proof can be found in [18]. We will however consider a special case later on

in Proposition 2.39. �

Proposition 2.23: The vector fields V ∈ V(0)
Π lift under β to become smooth on [X; p]Π

and elements of the Lie algebra Vb([X; p]Π). It spans Vb([X; p]Π) over C∞ except possibly

for a null set of the front face.

Proof. By Lemma 2.20 we only have to consider the lifts of xα∂/∂xj with κα ≥ κj .
We use projective coordinates to calculate the lift. Recall that for each i ∈ {1, . . . , n}
there are associated projective coordinates given by

(2.56) ξi = x
1/κi
i and ξj = xjx

−κj/κi
i for j 6= i

with the blow-down map locally taking the form

(2.57) xi = ξκii and xj = ξjξ
κj
i for j 6= i.

Next, see that

∂ξk
∂xi

=

 1
κi
x

(1/κi −1)
i (k = i)

−κk
κi
xkx

−κk/κi −1
i (k 6= i)

and(2.58)

∂ξk
∂xj

=

x
−κk/κi
i (k = j)

0 (k 6= j)
for j 6= i(2.59)
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and therefore

(2.60) β∗(
∂

∂xj
) =

n∑
k=1

∂ξk
∂xj

∂

∂ξk
=

 1
κi
ξ

1−κj
i

∂
∂ξj
−
∑

k 6=i
κk
κi
ξkξ
−κi
i

∂
∂ξk

(j = i)

ξ
−κj
i

∂
∂ξj

(j 6= i)
.

Also recall that

(2.61) β∗(xα) = ξακi ·
∏
j 6=i

ξ
αj
j

which proves that whenever κα ≥ κj we get

(2.62) β∗(xα
∂

∂xj
) =

λ · ξi ∂∂ξi −
∑

k 6=i λk
∂
∂ξk

(j = i)

λ · ∂
∂ξj

(j 6= i)
∈ Vb([X; p]Π).

It is also easy to see that wherever all ξj 6= 0 for all j 6= i, Vb([X; p]Π) is spanned by these

vector fields, since β∗(xj∂xj ) = ξj∂ξj . �

2.3.4. Exceptional subset. As mentioned in the proposition above, there may occur

points on the front face, where Vb([X; p]Π) is not spanned by β∗(V0
Π). As an example

consider the blow-up of 0 ∈ R2 where x1 is given the weight 2 and x2 is given the weight

3. Local projective coordinates obtained by scaling by x1 are given by

(2.63) ξ1 = x
1/2
1 , ξ2 = x

−3/2
1 x2.

We then have for 2α1 + 3α2 ≥ 2

(2.64) β∗(xα1
1 xα2

2 ∂x1) = ξ2α1+3α2−1
1 ξα2

2 ∂ξ1 −
3

2
ξ2α1+3α2−2

1 ξα2+1
2 ∂ξ2

where the second summand is zero at ξ = 0. Furthermore, for 2α1 + 3α2 ≥ 3 we have

(2.65) β∗(xα1
1 xα2

2 ∂x2) = ξ2α1+3α2−3
1 ξα2

2 ∂ξ2

which is also equal to zero at ξ = 0 since either α2 6= 0 or α1 ≥ 2. Therefore ∂ξ2 cannot

be part of the C∞-span of β∗(V(0)
Π ).

Definition 2.24: Given a quasihomogeneous blow-up [X; p]Π we define the exceptional

subset of the front face, denoted by E(ff), as the set of points p ∈ ff at which Vb([X; p; Π])

is not spanned over C∞ by β∗(V0
Π).

We already have seen that this is always a null set in ff. We explicitly calculate it in local

projective coordinates.

Lemma 2.25: Given a quasihomogeneous blow-up and projective coordinates ξi, ξj as in

(2.56), the intersection of E(ff) with the domain Di of the projective coordinates is given

by the equation

(2.66) Di \ E(ff) =
{
ξ | ∀l : κl ∈ spanN0

({κi} ∪ {κj | ξj 6= 0})
}
.

In particular, whenever κi = 1, then E(ff) ∩Di = ∅.
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Proof. We have to show that near any ξ lying in the set defined in (2.66) the lift of

V(0) spans Vb([X; p; Π]) over C∞. Consider a fixed j 6= i, then there is a multi-index α

satisfying ∀j 6= i : αj 6= 0 ⇒ ξj 6= 0 and κα = κj . Therefore xα∂xj ∈ V(0) and the lift is

given by

(2.67) β∗(xα∂xj ) =

∏
αj 6=0

ξ
αj
j

 ∂ξj ,

which spans, over C∞ near ξ, the vector field ∂ξj . Furthermore

(2.68) β∗(xi∂xi) = ξi∂ξi −
∑
j 6=i

ξj∂ξj .

which proves the statement. �

The exceptional subset can also be expressed directly as a subset of ff as defined in (2.50).

Consider a point v = (vq, . . . , v1) ∈ VS , meaning vk ∈ S
⊥
k+1�S⊥k

. Then

(2.69) E(ff) =

{
[v] ∈ ff | ∃l : S

⊥
l+1�S⊥l

6= {0} and l /∈ spanN0
{k | vk 6= 0}

}
.

In other words, the exceptional subset consist of all those points [v], where the set of all

weights k for which vk 6= 0 does not span all the weight that occur in the quasihomogeneous

structure.

2.3.5. Main theorem. Lastly, we state the theorem showing that the definition of

quasihomogeneous structure is actually meaningful.

Theorem 2.26: Let Π = ((Sk), [x]∼S ) and Π̄ = ((S̄k), [x̄]∼S̄ ) be two quasihomogeneous

structures at p ∈ X. Then the identity on X lifts to become a diffeomorphism [X; p]Π ∼=
[X; p]Π̄ if and only if Π = Π̄.

Proof. First, assume that the identity on X lifts to become a diffeomorphism Φ :

[X; p]Π
∼=→ [X; p]Π̄. Let ff ⊂ [X; p]Π and ff̄ ⊂ [X; p]Π̄ be the two front faces. Then we clearly

have Φ(Im(ff)) = Im(ff̄). Now Proposition 2.8 immediately implies that F (m) = F̄ (m) for

each m. Therefore Π = Π̄.

Now, take Π = Π̄, that is Π = ((Sk), [x]∼s) and Π̄ = ((Sk), [x̄]∼s) with (x) ∼s (x̄). To start

with, we assume that the coordinate transformation is linear. That is, we have x̄ = Ax

for a real invertible matrix. Since the coordinates both match (Sk), Lemma 2.5 implies

that A lifts to a diffeomorphism.

Returning to the general case x ∼S x̄, we now can assume that the coordinate transfor-

mation x̄ = Φ(x) has a linear term equal to the identity. We then may connect Φ to the

identity by a homotopy

(2.70) Φt := Id +t(Φ− Id) , t ∈ [0, 1]

Since Φ∗F (m) = F (m), we also have Φ∗tF (m) = F (m). Such a parameter dependent family

of maps Φt is always given by the integration of a (parameter dependent) vector fields Wt

32



characterized by the equation

(2.71)
d

dt
Φ∗t f = Φ∗t (Wtf) for all f ∈ C∞

If f ∈ F (m), we then also have Wtf ∈ F (m) because F (m) is invariant under Φt for all

t. Thus, Wt ∈ V(0) by Definition 2.18. Proposition 2.23 now states that we may lift Wt

to a vector field W̃t ∈ Vb([NY ;Y ](Sk)). The lift Φ̃t of Φt is now again determined by the

equation

(2.72)
d

dt
Φ̃∗t f = Φ̃∗t (W̃tf) for all f ∈ C∞ , Φ̃0 = Id .

Then, the lift of Φ is given by Φ̃1.

�

2.4. General p-submanifold

In the case of a single point, we defined a quasihomogeneous structure using both equiva-

lent classes of normal fibrations and in a coordinate-free way using function spaces F (m)

of quasihomogeneous weight m. Both can be generalized to p-submanifolds, we start with

the latter one:

Definition 2.27: Let F (m) be function spaces for m ∈ N that satisfy:

(1) Sk = {df |N∗Y | f ∈ F (k)} ⊆ N∗Y is a conormal filtration at Y ⊂ X.

(2) F (m) is a C∞-Module.

(3) I(Y ) = F (1) ⊇ F (2) ⊇ . . . .
(4) F (m) · F (m′) ⊆ F (m+m′)

(5) The sequence

(2.73) 0 −→ F (m+1) +
∑

n1+···+nk=m
k≥2, nj≥1

F (n1) · · · F (nk) −→ F (m) d|N∗Y−→ C∞(Y ;Sm�Sm+1
) −→ 0

is well-defined and exact for each m.

(6) F (∞) = I(∞) where F (∞) =
⋂
mF (m) and I(∞) =

⋂
m I(m).

Then we call F (m) a quasihomogeneous structure at Y ⊂ X.

As before, we have

Lemma 2.28: Given a conormal filtration (Sk) at Y ⊂ X together with a normal fibration

φ of Y , the spaces F (m)
φ as in Definition 2.10 are a quasihomogeneous structure at Y .

We move on to the coordinate description of these spaces, although only locally for the

beginning:

Definition 2.29: Local product coordinates (xi, yj) of Y near p are said to match the

quasihomogeneous structure F (m) if there are weights κ such that, restricted to the domain

of the coordinates, F (m) = F (m)
(xi)

where the latter function space is only defined locally.

Lemma 2.30: Let F (m) be a quasihomogeneous structure at Y ⊂ X. Then at any p ∈ Y
there are local product coordinates that match F (m).
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Proof. Start with any local coordinates yj in Y . Then the proof of proposition 2.12

then applies. �

We do have a need for a global version of this.

Definition 2.31: Given a conormal filtration (Sk) at Y and a normal fibration φ :

U⊆NY → V⊆X , we call the quasihomogeneous structure F (m)
φ the linearized quasiho-

mogeneous structure of (Sk) under φ at Y .

Definition 2.32: We say that a normal fibration φ : U⊆NY → V⊆X matches a quasi-

homogeneous structure F (m) at Y ⊂ X if F (m)
φ = F (m) for all m, in other words if φ

linearizes F (m).

A matching normal fibration φ yields local matching coordinates everywhere by taking a

local trivialization of φ together with product coordinates where the fiber ones are taken

to be linear.

We can now write down the ‘coordinate’-version of the definition of a quasihomogeneous

structure:

Definition 2.33: Let Y ⊂ X be a p-submanifold. A quasihomogeneous structure at

Y may equivalently be defined as a tuple ((Sk), [φ]) where (Sk) is a conormal filtration at

Y and [φ] is a equivalence class of normal fibrations, where two normal fibrations φ, φ̄ are

said to be equivalent if F (m)
φ = F (m)

φ̄
. We denote a quasihomogeneous structure in any of

those two forms by Π.

The following Proposition yields the equivalence of Definition 2.27 and 2.33.

Proposition 2.34: Let F (m) be a quasihomogeneous structure at Y ⊂ X. Then there is

a matching normal fibration φ : U⊆NY → V⊆X that linearizes it, i.e. F (m) = F (m)
φ .

Proof. Start with any tubular neighborhood φ̄ : U⊆NY → V⊂X of Y . The matching

condition above is local near any point p ∈ Y . Near such a p take local product coordinates

x̄i, yj (with Y = {x̄i = 0}) that trivialize φ̄. The pullback of the quasihomogeneous

structure at NY is then precisely represented by the x̄i. Furthermore, we may choose

local coordinates xi tangent to the fibers that linearizes the original quasihomogeneous

structure at Y . Thus, we may compose the coordinate transformation from xi to x̄i

(extended by the identity away from p) with φ̄ to get a new normal fibration φ that

linearizes the original F (m). �

Definition 2.35: As before we define the vector fields of homogeneous order at least −m
as the space

(2.74) V(−m)
Π = {V ∈ Vb(X) Y | V F (m′) ⊂ F (m′−m) for all m′}.

Lemma 2.19 still holds. The local coordinate representation in Lemma 2.20 also holds

except for additional terms of unrestricted b-vector fields in the y-coordinates. Equation

2.55 still holds. Proposition 2.22 as well.

We can now define the quasihomogeneous blow-up in the general case:
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Definition 2.36: Let Y ⊂ X be a submanifold and F (m) be a quasihomogeneous structure

at Y . Let the set ff be defined as before in (2.9) as

NS = N+Y�S⊥+
q
⊕ S

⊥+
q �S⊥+

q−1
⊕ · · · ⊕ S

⊥+
3 �S⊥+

2
⊕ S⊥+

2

ff = (NS \ {0})�R>0

(2.75)

with the R>0 action defined as before by the vector field RS given by the k-th multiple of

the standard outgoing vector field on S⊥+
k+1�Sk.

We define the blow-up of Y with respect to F (m) as

(2.76) [X;Y ]Π := ff t (X \ Y )

with C∞ structure and blow-down map constructed using a matching normal fibration

φ : U⊆NY → V⊆X .

As before, we have to prove that the C∞ structure is well-defined. Let φ, ψ : U⊆NY → V⊆X

be two normal fibration both matching F (m). Then there is a diffeomorphism f (given by

ψ ◦ φ−1) defined on V such that ψ = f ◦ φ. Since both φ and ψ match the F (m), f clearly

maps F (m) to itself. Now the proof as in the local case applies. First approximate f to

arbitrary high order using vector fields that necessarily are elements of V(0)
Π , afterwards

connect f to the identity by a homotopy as before. The definition of V(0)
Π is identical to

before, as is its local coordinate characterization.

Corollary 2.37: For any Y,Π the blow-down map β : [X;Y ]Π → X is a b-map.

Proof. Clearly, β is a smooth map between manifolds with corners. If Y is an interior

p-submanifold of X then there is nothing else to show. Now let Y ⊆ ∂X. Recall from

the definition of a conormal filtration 2.1 that for any boundary hypersurface H ∈ Hu(Y )

that contains Y there is a associated number κH ∈ N such that N∗H ⊆ SκH but N∗(H) *
SκH+1. Now it is easy to see in local projective coordinates that β is in fact a b-map

with the e(H,G) from the definition of b-map satisfying e(H,ff) = κH for H ∈ Hu(Y ) and

e(H,ff) = 0 for H /∈ Hu(Y ). �

Local projective coordinates are constructed as before. For any local product coordinates

(x, y) (with Y = {x = 0}) that linearize the quasihomogeneous structure Π, one gets local

projective coordinates (ξ, y) as before in Section 2.1.1, by scaling all x coordinates by a

fixed xi.

Product structure: Consider two p-submanifolds Y,Z ⊂ X, such that their intersection

Y ∩ Z is again a p-submanifold of X. Given quasihomogeneous structures ΠY at Y and

ΠZ at Z, we want to understand under which conditions these define a quasihomogeneous

structure at Y ∩ Z. One simple case where this is true is the following:

Lemma 2.38: Consider two p-submanifold Y,Z ⊂ X with quasihomogeneous structure

ΠZ , ΠY given by filtrations F (m)
Y ,F (m)

Z respectively. If Y and Z intersect transversally,
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then

(2.77) F (m)
Y ∩Z =

∑
n+n′=m

F (n)
Y F

(n′)
Z

is a quasihomogeneous structure at Y ∩ Z.

Proof. Since Y and Z intersect transversally, one can chose local product coordinates

x, x′, x′′ near each p ∈ Y ∩ Z such that Y = {x = 0} and Z = {x′ = 0}. We may also

chose x, x′ in such a way, that these coordinates linearize both F (m)
Y =

∑
κα≤m x

αC∞(X)

and F (m)
Z =

∑
κ′β≤m x

′βC∞(X). In these coordinate we now have

(2.78) F (m)
Y ∩Z =

∑
κα+κ′β≤m

xαx′βC∞(X),

which is a quasihomogeneous structure at Y ∩ Z. �

2.5. Defining vector fields

As we have already seen, one may define a quasihomogeneous structure not only by a

filtration of the space of smooth functions, F (m), but also by a filtration of the space of

smooth vector fields, V(−m)
Π . As we have seen, one simple way to construct such a filtration

F (m) is to choose local coordinates and associate a weight to each coordinate function.

We now want to study an analogous way of constructing a filtration V(−m)
Π , by choosing

a collection of vector fields that span the normal bundle of the submanifold one wants to

blow up and associating a negative weight to each of these vector fields. Since we left out

the proof of Proposition 2.22, we do want to give a full proof in this special setting.

Setting: Let Y ⊂ X be a p-submanifold. Let N1, . . . Nk be smooth vector fields that,

projected to NY , span NY everywhere. Each Ni has a negative weight −κi associated.

We assume that the Ni span a Lie algebra and that the Lie bracket is compatible with

the associated weights in the sense that

(2.79) [Ni, Nj ] ∈ spanC∞{Nm | κm ≤ κi + κj}.

We introduce some additional notation: Let I = (i1, . . . , in) be a sequence of integers

im ∈ {1, . . . k}. We set NI = Ni1 . . . Nin . We denote the length of I by |I| and furthermore

we define the weight of I as 〈I〉 := κi1 + · · ·+ κin . We then want to prove the following:

Proposition 2.39: The function spaces

(2.80) F (m) := {f ∈ C∞ | ∀I, I < m : NIf ∈ I(Y )}

define a quasihomogeneous structure at Y where the filtration of the conormal-bundle

N∗Y = S1 ⊇ S2 . . . is given by

(2.81) Sm = (span{Ni|NY | κi < m})◦.

The weights −κi associated to Ni then coincide with the weights of Ni with respect to this

quasihomogeneous structure.
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Preparations for the proof: First we want to replace the indices I by something simpler.

Let α = (α1, . . . , αk) be a k-multi-index of arbitrary integers. Set Nα = Nα1
1 . . . Nαk

k . The

weight associated to α is simply κα. The condition (2.79) now guarantees the following:

Lemma 2.40: For all I there are smooth coefficients λI,α such that

(2.82) NI =
∑

κα≤〈I〉

λI,αN
α.

Proof. In short, we may commute NI step by step to sort the indexes in I. We may

use induction over |I|. For |I| = 1 the statement is trivial. The induction step reduces to

showing that any NiN
α̃ (with |α̃| = |α|−1) takes the form as above. We may successively

commute Ni with all Nj , j < i, producing error terms which are the sums of some λN Ĩ

with |Ĩ| = |I| − 1, 〈Ĩ〉 ≤ 〈I〉. This proves the Lemma by induction. �

Using this result, we can simplify the definition of (2.80) to obtain

(2.83) F (m) = {f ∈ C∞ | ∀κ, κα < m : Nαf ∈ I(Y )}.

Definition 2.41: We say local product coordinates yi, x1, . . . xk, where Y = {x = 0}, are

linearly adapted to N1, . . . Nk if Ni|{x=0} = ∂xi |{x=0}. Such coordinates always exist.

Lemma 2.42: Let (xi) be local coordinates that are linearly adapted to the Ni. We then

have

(2.84) Nα(xβ)(0) =

∂αx (xβ)(0) (|α| = |β|)

0 (|α| < |β|)
.

Proof. Since (xi) are linearly adapted to the Ni we have for each i

(2.85) Ni = ∂xi +
∑
j 6=i

λi,j∂xj +
∑
s

µs∂ys , λi,j ∈ I(Y ).

Since xβ ∈ I |β|(Y ) this shows that

(2.86) Nix
β = ∂xi(x

β) +
∑
j 6=i

λi,j∂xj (x
β)︸ ︷︷ ︸

∈I|β|(Y )

.

Continuing in this manner proves the Lemma. �

Proof of the proposition 2.39: We need to show that the function spaces F (m) as in

(2.83) satisfy conditions (1) to (5) of Definition 2.27.

Proof of (1),(3): This is clear by definition.

Proof of (5): I∞(Y ) ⊂ F (∞) is trivial. The other inclusion follows immediately from

Lemma 2.42.

Proof of (2): Let a ∈ C∞, f ∈ F (m). Then

(2.87) Nα(af) =
∑

β+β′≤α
λβ,β′N

βaNβ′f

for some constants λβ,β′ . since we always have κβ′ ≤ κα < m, we have Nβ′f ∈ I(Y )

showing that Nα(af) ∈ I(Y ).
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Proof of (4): This follows for the same reason as (2), by assuming a ∈ F (m′).

Proof of (5): The fact that the first map is injective is clear, since it is an inclusion (as

shown by (4)). Next we show that the map

(2.88) F (m) d|Y−→ Sm

is well-defined and surjective, which then of course implies that the map into Sm�Sm+1

is also well-defined and surjective. First take any f ∈ F (m). By definition this implies

that Nif(0, y) = 0 for all κi < m. This shows that df |NY ∈ Sm and thus the map is

well-defined. For the surjectivity, start with any local coordinates xi that are linearly

adapted to the Ni. Then Sm is spanned by those dxi with κi ≥ m. Of course xi does not

need to be an element of F (m). Now consider functions of the form

(2.89) x̃i = xi +
∑
κβ<κi
2≤|β|

λi,βx
β

for some constants λi,β. We have dx̃i|NY = dxi|NY . We want to prove that there are some

constants λi,β (which will turn out to be unique) such that x̃i ∈ F (m). This is true if and

only if

(2.90) ∀α, κα < m : 0 = Nα(x̃i)(0) =

Nα(xi) +
∑
κβ<κi
2≤|β|

λi,βN
α(xβ)

 (0).

Using Lemma 2.42, this simplifies to

(2.91) ∀α, κα < m : 0 = Nα(xi)(0) + α!λi,α +
∑
κβ<κi

2≤|β|<|α|

λi,βN
α(xβ)(0).

To better focus on what is important, we write Nα(xi)(0) = cα and Nα(xβ)(0) = cα,β

since they are simply constants. Thus we obtain that x̃i ∈ F (m) if and only if

(2.92) ∀α, κα < m : 0 = cα + α!λi,α +
∑
κβ<κi

2≤|β|<|α|

λi,βcα,β.

For |α| = 2, this is satisfied by setting α!λi,α = cα. We can now inductively over |α| set

(2.93) α!λi,α = −cα −
∑
κβ<κi

2≤|β|<|α|

λi,βcα,β.

This finishes the prove of the surjectivity of F (m) d|NY−→ Sm�Sm+1
.

In fact, the functions (x̃i) are again local coordinates that now linearize the function space

F (m) in the usual sense (which follows simply from Taylor series). The exactness of the

sequence now follows from this coordinate representation.

As mentioned above, we will not go into to much detail regarding the precise relation

between the vector fields Ni and the quasihomogeneous structure F (m). However, there is

one easy corollary that we will also need later on:
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Corollary 2.43: The quasihomogeneous structure F (m) given by vector fields N1, . . . , Nk

as above is independent of the tangential parts of Ni to Y . To be more precise, adding any

vector field that is tangent to Y onto Ni does not change F (m).

2.6. Special cases

We want to point out two special cases in which a conormal filtration (Sk) actually uniquely

defines a full quasihomogeneous structure. These are rather important, since in a lot of

situations where quasihomogeneous blow-ups can be used, the (Sk) appear quite natu-

rally (and intuitively), but the F (m) do not seem to be given in an equally natural way.

Often enough, the reason for this is that the F (m) already are uniquely defined by the (Sk).

Proposition 2.44: The parabolic case: If (Sk) is a conormal filtration at Y ⊂ X that

satisfies S3 = {0}, then (Sk) uniquely determines full quasihomogeneous structure.

Proof. First notice that S3 = {0} also implies Sk = {0} for all k > 3. In other

words, only the weights 1 and 2 appear. The fact that there is only a single choice for the

function spaces F (m) immediately follows from the local coordinates characterization in

Proposition 2.15, since any two coordinate systems (xi), (x̃i) that match such a (Sk) are

equivalent. �

Proposition 2.45: The boundary case: If (Sk) is a conormal filtration at a boundary

p-submanifold Y ⊂ ∂X that satisfies S3 ⊆ N∗ Fa(Y ), then (Sk) uniquely determines a full

quasihomogeneous structure. In other words, if each direction with weight greater then 2

is a normal direction.

Proof. With the parabolic case in mind, we may in fact assume S2 ⊆ N∗ Fa(Y )

without loss of generality. Again we use local coordinates. Let xi, x̄i be any two sets

of local coordinates matching (Sk). Let j denote the index such that S2 is spanned by

dxj , . . . , dxn. Then for each i ≥ j both xi and x̄i are local boundary defining function

of a hypersurface H ∈ Hu(Y ) (potentially after reordering). Thus, each summand in the

Taylor series of xi (with respect to x̄) contains x̄i at least to first order. Now, again using

proposition 2.15, we have (xi) ∼S (x̄i), proving the proposition. �

In particular, the quasihomogeneous blow-up of any boundary face Y ∈ M(X) is com-

pletely determined by the (Sk). In fact, since the filtration (Sk) is by definition required

to decompose over N∗Y =
⊕

H∈Hu(Y )N
∗Y H, the filtration (Sk) itself is already fully

determined by associating a weight κH to each H ∈ Hu(Y ). This is a special case of a

generalized blow-up introduced by Kottke and Melrose in [12].
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CHAPTER 3

Commutativity of blow-ups

When performing a series of (quasihomogeneous or radial) blow-ups of p-submanifolds in

a manifold with corners X, one is frequently concerned about commutativity. We start by

shortly recalling the definition of the lift of submanifolds under blow-up and the standard

commutativity results in the radial case.

3.1. Lifting submanifolds

Definition 3.1: Let Z be a closed subset of a manifold with corners X. Furthermore, let

Y be a p-submanifold of X. Denote by β : [X;Y ]→ X the radial blow-up of Y in X. We

define the lift of Z to [X;Y ], denoted by β∗(Z), in two cases:

(1) If Z ⊂ Y , then we set β∗(Z) = β−1(Z).

(2) If Z = cl(Z \ Y ), then we set β∗(Z) = clβ−1(Z \ Y ).

If neither is the case, then the lift is not defined.

In order to perform the blow-up of β∗(Z) in [X;Y ], it has to be a p-submanifold of

[X;Y ]. In what cases this occurs is well understood but rather lengthy to recall completely.

Instead, we only recall a special case that is needed for the commutativity results presented

below:

Lemma 3.2: Let Y,Z be p-submanifolds of X that intersect cleanly, meaning that for each

p ∈ Y ∩Z we have TpY ∩ TpZ = Tp(Y ∩Z) (or equivalently that near any such p they can

be linearized by local coordinates simultaneously). Then Z lifts to become a p-submanifold

of [X;Y ] (and, by symmetry, vice versa).

Proof. The definition of cleanly intersecting implies that near each point p ∈ Y ∩ Z
one can choose local coordinates x, x′, x′′, y of X such that locally Y = {x = x′ = 0},
Z = {x′ = x′′ = 0}. The statement of the lemma now follows directly calculating the lift

of Z in local projective coordinates on [X;Y ]. �

3.2. Standard commutativity results

We recall three frequently used results concerning commutativity of radial blow-ups.

Theorem 3.3: Let X be a manifold with corners and Z ⊂ Y ⊂ X be two nested p-

submanifolds. Then the identity on X lifts to become a diffeomorphism:

(3.1) [X;Z;Y ] ∼= [X;Y ;Z].

Proof. Clearly, this result is local near the preimage of Z. Furthermore, by naturality

of blow-up, we may replace X by the normal bundle NZ. We can also choose this normal

fibration in such a way, that Y is a subbundle of NZ. To simplify further, by the product
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structure of blow-up, we may assume that Z is simply a point. Thus it suffices to consider

the model

X = Rnk × Rn
′
k′

Y = {0} × Rn′k′

Z = {0} × {0}

(3.2)

with standard coordinates xi on Rnk and x′i on Rn′k′ , thus the first k of the xi and the first k′

of the x′i are ≥ 0. We then have Y = {xi = 0}. We may construct projective coordinates

on [X;Y ] by scaling all xi by a fixed xa yielding coordinates

(3.3) ξi =

xa (i = a)

xi
xa

(i 6= a)
, x′i.

Considering all choices of a, these coordinate domains cover the whole of [X;Y ]. The lift

of Z to [X;Y ], denoted by Z∗, is given in these coordinates by

(3.4) Z∗ = {ξa = 0, x′i = 0}.

Thus, we may construct local projective coordinates on [X;Y ;Z] by scaling these coordi-

nates either by ξa or a fixed x′b.

Scaling by ξa, we get projective coordinates

(3.5) ξi , ηi =
x′i
ξa

on [X;Y ;Z]. Scaling by x′b, we get projective coordinates

(3.6) λ =
ξa
x′b

, ξi (i 6=a) , ηi =

x′b (i = b)
x′i
x′b

(i 6= b)
.

The domain of all these coordinate systems cover [X;Y ;Z]. We will compute the lift of the

identity explicitly for all these coordinate systems: First consider those coordinates where

we first scaled by xa and then by x′b, yielding coordinates λ, ξi (i 6=a), ηi. The blow-down

map to [X;Y ] is then locally given by

(3.7) ξi, x
′
i =

ηb (i = b)

ηbηi (i 6= b)
.

From here, the local blow-down map to X is given by

(3.8) xi =

ξa = ληb (i = a)

ξaξi = ληbξi (i 6= a)
, x′i =

ηb (i = b)

ηbηi (i 6= b).

We may now get local projective coordinates on [X;Z] by scaling by x′b, yielding

(3.9) ξ̃i =
xi
x′b

, η̃i =

x′b (i = b)
x′i
x′b

(i 6= b)
.
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The lift of Y to [X;Z], denoted by Y ∗ is then locally given by Y ∗ = {ξ̃i = 0}. Scaling by

ξ̃a, we obtain projective coordinates on [X;Z;Y ] given by

(3.10) µi =

ξ̃a (i = a)

ξ̃i
ξ̃a

(i 6= a)
, η̃i.

We can now explicitly calculate the lift of the identity in these local coordinate systems:

(3.11) µi =

ξ̃a = xa
x′b

= ληb
ηb

= λ (i = a)

ξ̃i
ξ̃a

=
xix
′
b

xax′b
= ξiληb

ληb
= ξi (i 6= a)

, η̃i =

x′b = ηb (i = b)
x′i
x′b

= ηiηb
ηb

= ηi (i 6= b)
.

Clearly, this coordinate system is smooth up to the boundary. Lastly, we do the same

procedure for the projective coordinates in [X;Y ;Z] obtained from first scaling by xa and

then by ξa, yielding coordinates ξi, ηi. The local blow-down map to [X;Y ] is given by

(3.12) ξi, x
′
i = ηiξa.

The local blow-down map to X is then given by

(3.13) xi =

ξa (i = a)

ξiξa (i 6= a)
x′i = ηiξa.

We now obtain local coordinates on [X;Z] by scaling with xa:

(3.14) ξ̃i =

xa = ξa (i = a)

xi
xa

= ξiξa
ξa

= ξi (i 6= a)
, η̃i =

x′i
xa

=
ηiξa
ξa

= ηi.

The lift of Y to [X;Z] is disjoint from the domain of these coordinates. Thus, they are

also coordinates on [X;Z;Y ]. These coordinates are smooth up to the boundary, finishing

the proof of the proposition.

�

Theorem 3.4: Let X be a manifold with corners and Y,Z ⊂ X be two p-submanifolds

that intersect transversally, meaning for each p ∈ Y ∩Z we have TpY +TpZ = TpX. Then,

the identity on X lifts to become a diffeomorphism:

(3.15) [X;Y ;Z] ∼= [X;Z;Y ].

Proof. From the definition of transversal intersection, it follows that locally near any

point p ∈ Y ∩ Z there is a local decomposition of X of the form

(3.16) X = X1 ×X2 ×X3 , Y = {p1} ×X2 ×X3 , Z = X1 × {p2} ×X3.

Now, the result immediately follows, since both blown-up spaces are simply

(3.17) [X;Y ;Z] = [X;Z;Y ] = [X1; {p1}]× [X2; {p2}]×X3.

�

The following corollary is also used several times later on.
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Theorem 3.5: Let Y, Z ⊂ X be two cleanly intersecting p-submanifolds. Then the identity

on X lifts to become a diffeomorphism:

(3.18) [X;Y ; (Y ∩ Z);Z] ∼= [X;Z; (Y ∩ Z);Y ].

Proof. From the two results above it follows that [X;Y ; (Y ∩ Z);Z] = [X; (Y ∩
Z);Y ;Z]. Since Y , Z lift to become disjoint after the blow-up of their intersection, their

blow-up commutes. Putting it all together we get

(3.19) [X;Y ; (Y ∩ Z);Z] = [X; (Y ∩ Z);Z;Y ] = [X;Z; (Y ∩ Z);Y ].

�

We have a need for quasihomogeneous versions of theorems 3.3 and 3.4. To address it, we

first need to address the issue of lifting not only submanifolds, but also their associated

quasihomogeneous structures.

3.3. Lifting quasihomogeneous structures

Let Y,Z be two p-submanifolds ofX with associated quasihomogeneous structures ΠY , ΠZ .

Recall that when lifting a submanifold Z to [X;Y ] (in the radial case), we asked that they

intersect each other cleanly, which can be defined by demanding that near any point in

their intersection, they can be linearized simultaneously by a choice of local coordinates.

We can strengthen this definition to include the quasihomogeneous structures as well:

Recall Definition 2.29 of matching local coordinates.

Definition 3.6: We say that the quasihomogeneous structures ΠY , ΠZ intersect cleanly,

if near each p ∈ Y ∩Z there are local product coordinates of Y,Z that match both ΠY and

ΠZ as in Definition 2.29. If either Y or Z is contained in the other, we additionally ask

that the associated weights κi of ΠY and κ̃i of ΠZ agree on those coordinates that are zero

in both Y and Z.

We can now define the lift of ΠZ to [X;Y ]ΠY . As before, we need to differentiate between

the two cases Z ⊂ Y and Z = cl(Z \ Y ).

Definition/Theorem 3.7: Let Z ⊂ Y ⊂ X be p-submanifolds with associated cleanly

intersecting quasihomogeneous structures ΠZ ,ΠY . Let ΠZ be given by the function spaces

F (m)
Z as in Definition 2.27. Then, ΠZ lifts to a quasihomogeneous structure β∗(ΠZ) of

β∗(Z) in [X;Y ]ΠY , given by the function spaces F (m)∗
Z = spanC∞ β

∗(F (m)
Z ).

Note: Recall that the conormal bundle of Y restricted to Z is naturally embedded in the

conormal bundle of Z, N∗Y |Z ↪→ N∗Z. In the special case where both Y and Z are blown

up at most parabolicly, and thus the quasihomogeneous structures are simply given by

subbundles S2,Y ⊂ N∗Y, S2,Z ⊂ N∗Z, the quasihomogeneous structures intersect cleanly

if and only if S2,Y |Z = S2,Z ∩N∗Y |Z .

Proof. Of course, we need to prove that F (m)∗
Z does in fact define a quasihomogeneous

structure at β∗(Z). Conditions (1) to (4) and (6) in Definition 2.27 immediately follow

form the definition of F (m)∗
Z . Condition (5) can of course be checked locally, which we will
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do in projective coordinates. Since the quasihomogeneous structures intersect each other

cleanly, we may choose local coordinates xi, x
′
i, yi near any point p ∈ Z with associated

weights κi for xi and κ′i for x′i such that locally Z = {xi = x′i = 0}, Y = {xi = 0} and the

quasihomogeneous structures of Y and Z are locally given by xi, x
′
i, κi, κ

′
i. Recall that

part of the definition of cleanly intersecting quasihomogeneous structure was the fact that

the weights κi assigned to xi with respect to either ΠY or ΠZ are identical. Thus, we have

locally

(3.20) F (m)
Z =

∑
κα+κ′α′≥m

xαx′α
′
C∞(X).

We can construct local projective coordinates on [X;Y ]ΠY by scaling by any fixed xi,

denoted by xa:

(3.21) ξi =

x
1/κa
a (i = a)

xix
−κi/κa
a (i 6= a)

, x′i, yi.

Therefore, we have xa = ξκaa and xi = ξiξ
κi
a for i 6= a. This yields xα = ξκαa

∏
i 6=a ξ

αi
i .

Locally, we have β∗(Z) = {ξa = x′i = 0}. On this coordinate domain we get

F (m)∗
Z = spanC∞

∑
κα+κ′α′≥m

ξκαa
∏
i 6=a

ξαii x
′α′C∞(X)

=
∑

k+κ′α′≥m
ξkax
′α′C∞([X;Y ]).

(3.22)

These function spaces have again the form of a quasihomogeneous structure, where the x′i
have associated weights κ′i and ξa has associated weight 1. For this, we have already seen

in Proposition 2.9 that it satisfies the exact sequence form condition (5) in Definition 2.27

of the quasihomogeneous structure Thus finishing the proof. �

Next, we consider the case where Z = cl(Z\Y ). For this, recall that β∗(Z) = clβ−1(Z\Y ).

Also recall that the blow-down map β : [X;Y ]ΠY → X is a diffeomorphism outside of the

front face.

Definition/Theorem 3.8: Let Y, Z be p-submanifolds of X with associated quasihomo-

geneous structures ΠY , ΠZ . Furthermore, assume that Z = cl(Z \ Y ) and that ΠY and

ΠZ intersect cleanly. Then, ΠZ lifts to a quasihomogeneous structure β∗(ΠZ) of β∗(Z)

in [X;Y ]ΠY defined by the function spaces F (m)∗
Z consisting of those smooth functions on

[X;Y ]ΠY that, restricted to any open set disjoint from the front face, are in the lift of

F (m)
Z :

(3.23) F (m)∗
Z =

f ∈ C
∞([X;Y ]ΠY ) |

∀U ⊂ [X;Y ]ΠY closed with U ∩ ffY = ∅ : f |U ∈ β∗(F (m)
Z )

 .

Notice that F (m)∗
Z is not equal to β∗(F (m)

Z ). For example, if Z ⊃ Y , functions in β∗(F (m)
Z )

necessarily vanish on the front face, since they vanish on Y . This is not the case for

functions in F (m)∗
Z . Also notice that this is in fact the same philosophy as lifting Z: We
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lift F (m) ‘away form the front face’ and then take its closure in C∞.

Proof. Again, we have to prove that F (m)∗
Z actually defines a quasihomogeneous

structure at β∗(Z) in [X;Y ]ΠY . Similarly to the previous case, conditions (1)-(4) and (6)

in Definition 2.27 are clear, since they are ‘smooth’ conditions. For the last condition (5)

we again use local coordinates. Since ΠY and ΠZ intersect cleanly, we may chose local

coordinates near any p ∈ Y ∩ Z given as xi, x
′
i, x
′′
i , yi such that locally Z = {xi = x′i =

0}, Y = {x′i = x′′i = 0} with the x, x′, x′′ having associated weights κ, κ′, κ̃′, κ′′ (where

κ′, κ̃′ are the associated weights of xi by ΠY and ΠZ respectively). We therefore have

locally

(3.24) F (m)
Z =

∑
κα+κ̃′α′≥m

xαx′α
′
C∞(X).

Furthermore, we may construct local projective coordinates by scaling by either x′i or x′′i .

The coordinate domain of those projected coordinates constructed by scaling by x′i do

not intersect the lift of β∗(Z). In this case the statement is clear, since we simply (and

correctly) get locally F (m)∗
Z = C∞([X;Y ]). Scaling by a fixed x′′a, we get local coordinates

(3.25) xi , ξ
′
i = x′ix

′′−κ′i/κ′′a
a , ξ′′i =

x
′′1/κ′′a
a (i = a)

x′′i x
′′−κ′′i /κa
a (i 6= a)

, yi.

In these coordinates we get

β∗(Z) = {xi = ξ′i = 0},

ffY = {ξ′′a = 0}.
(3.26)

Furthermore, we get x′α
′

= ξα
′
ξ′′κ

′α′
a and thus

(3.27) β∗(F (m)
Z ) =

∑
κα+κ′α′≥m

xαξ′α
′
ξ′′κ̃

′α′
a β∗C∞(X).

Those smooth functions that lie in this space for any ξ′′a ≥ ε > 0 are precisely

(3.28) F (m)∗
Z =

∑
κα+κ̃′α′≥m

xαξ′α
′
C∞([X;Y ]ΠY ).

Again, this is locally a quasihomogeneous structure of β∗(F ) with associated weights κ to

xi and κ̃′ to ξ′i, for which we already know condition (5) to be true by Proposition 2.9.

�

3.4. Standard results in the quasihomogeneous case

We are now ready to state the analogous results of Theorems 3.3 and 3.4 in the case of

quasihomogeneous blow-ups:

Theorem 3.9: Let X be a manifold with corners and Z ⊂ Y ⊂ X be two nested p-

submanifolds with cleanly intersecting quasihomogeneous structures ΠZ , ΠY . Then, the

identity on X lifts to become a diffeomorphism

(3.29) [[X;Z]ΠZ ;Y ]ΠY
∼= [[X;Y ]ΠY ;Z]ΠZ .
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Proof. Again, this result is local near the preimage of Z. Since the quasihomoge-

neous structures intersect cleanly, we may reduce to the case of having local coordinates

xi, x
′
i with associated weights κi, κ

′
i such that Y = {xi = 0}, Z = {xi = x′i = 0}. We

may construct projective coordinates on [X;Y ] by scaling all xi by a fixed xa yielding

coordinates

(3.30) ξi =

x
1/κa
a (i = a)

xix
−κi/κa
a (i 6= a)

, x′i.

Considering all choices of a, these coordinate domains cover the whole of [X;Y ]. In these

coordinates, the lift of Z to [X;Y ], denoted by Z∗, is given by Z∗ = {ξa = 0, x′i = 0}.
We already have seen that the quasihomogeneous structure lifts to be locally linearized by

these coordinates with the associated weight of ξa being 1. Thus, we may construct local

projective coordinates on [X;Y ;Z] by scaling these coordinates either by ξa or a fixed x′b.

Scaling by ξa, we get projective coordinates

(3.31) ξi , ηi = x′iξ
−1/κi
a

on [X;Y ;Z]. Scaling by x′b, we get projective coordinates

(3.32) λ =
ξa

x
′1/κ′b
b

, ξi (i 6=a) , ηi =


x
′1/κ′b
b (i = b)
x′i

x
′κ′
i
/κ′
b

b

(i 6= b)
.

Again, all these coordinate systems together cover [X;Y ;Z]. We will compute the lift of

the identity explicitly for all these coordinate systems: Consider first those coordinates

where we first scaled by xa and then by x′b: Thus we have coordinates λ, ξi (i 6=a), ηi. The

blow-down map to [X;Y ] is then locally given by

(3.33) ξi, x
′
i =

η
κ′b
b (i = b)

η
κ′i
b ηi (i 6= b)

.

From here, the local blow-down map to X is given by

(3.34) xi =

ξκaa = λκaηκab (i = a)

ξκia ξi = λκiηκib ξi (i 6= a)
, x′i =

η
κ′b
b (i = b)

η
κ′i
b ηi (i 6= b).

We now may get local projective coordinates on [X;Z] by scaling by x′b, yielding

(3.35) ξ̃i =
xi

x
′κ′i/κ′b
b

, η̃i =


x
′1/κ′b
b (i = b)
x′i

x
′κ′
i
/κ′
b

b

(i 6= b)
.

The lift of Y to [X;Z], denoted by Y ∗, is then locally given by Y ∗ = {ξ̃i = 0} with

associated weights κi to ξ̃i. Scaling by ξ̃a, we obtain projective coordinates on [X;Z;Y ]

given by

(3.36) µi =

ξ̃
1/κa
a (i = a)

ξ̃i

ξ̃
κi/κa
a

(i 6= a)
, η̃i.
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We can now explicitly calculate the lift of the identity in these local coordinate systems:

µi =


ξ̃

1/κa
a = x

1/κa
a

x
′1/κ′

b
b

= ληb
ηb

= λ (i = a)

ξ̃i

ξ̃
κi/κa
a

= ξi(ληb)
κi

(ληb)
κi

= ξi (i 6= a)
,(3.37)

η̃i =


x
′1/κ′b
b = ηb (i = b)

x′i

x
′κ′
i
/κ′
b

b

=
ηiη

κ′i
b

η
κ′
i
b

= ηi (i 6= b)
.(3.38)

Clearly, this is smooth up to the boundary. Lastly, we have to do the same for the

projective coordinates in [X;Y ;Z] obtained from first scaling by xa and then by ξa, yielding

coordinates ξi, ηi. The local blow-down map to [X;Y ] is given by

(3.39) ξi, x
′
i = ηiξ

κ′i
a .

The local blow-down map to X is then given by

(3.40) xi =

ξκaa (i = a)

ξiξ
κi
a (i 6= a)

x′i = ηiξ
κ′i
a .

Scaling by xa, we now obtain local coordinates on [X;Z] given by

(3.41) ξ̃i =

x
1/κa
a = ξa (i = a)

xi

x
κi/κa
a

= ξiξ
κi
a

ξ
κi
a

= ξi (i 6= a)
, η̃i =

x′i

x
κ′i/κa
a

=
ηiξ

κ′i
a

ξ
κ′i
a

= ηi.

The lift of Y to [X;Z] is disjoint from the domain of these coordinates, thus they are

also coordinates on [X;Z;Y ]. These coordinates are clearly smooth up to the boundary,

finishing the proof of the proposition. �

Theorem 3.10: Let X be a manifold with corners and Y,Z ⊂ X be two p-submanifolds

that intersect transversally, meaning for each p ∈ Y ∩Z we have TpY +TpZ = TpX. Then,

any quasihomogeneous structures ΠY , ΠZ of Y and Z, respectively, intersect each other

cleanly and we have

(3.42) [[X;Z]ΠZ ;Y ]ΠY
∼= [[X;Y ]ΠY ;Z]ΠZ .

Proof. From the definition of transversal intersection, it follows that locally near any

point p ∈ Y ∩Z there are local coordinates xi, yi, zi such that Y = {yi = 0}, Z = {zi = 0}.
Now, one can linearize ΠY simply by changing yi into ỹi and ΠZ by changing zi into z̃i.

Thus, they can be linearized simultaneously. The fact that the blow-ups commute now

follows for the same reason as in the radial case in Theorem 3.4. �

3.5. Radial extension of a quasihomogeneous structure

Consider again the situation of two nested p submanifolds Z ⊂ Y ⊂ X. Let ΠY be a

quasihomogeneous structure at Y . Then ΠY cannot be restricted to a quasihomogeneous

structure at Z. One way to see this is that a normal fibration NY → X of Y does not

restrict to become a normal fibration of Z. Put simply, Z has more normal codirections

then Y , for which ΠY does not yield any information.
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An extension of ΠY at Z can simply be viewed as any quasihomogeneous structure of Z

that intersects ΠY cleanly. This is of course far from unique. A canonical way to proceed

is to use the radial extension defined below, which requires no additional information.

Philosophically, it is constructed by giving all ‘new’ codirections the weight 1:

Definition/Theorem 3.11: Let Z ⊂ Y ⊂ X be p-submanifolds and ΠY be a quasihomo-

geneous structure at Y given by the function spaces F (m)
Y . Then, the function spaces

(3.43) F (m)
Z =

m∑
k=0

Ik(Z)F (m−k)
Y

define a quasihomogeneous structure, denoted by Πrad,Y
Z , at Z. This quasihomogeneous

structure called the radial extension of ΠY at Z. It intersects ΠY cleanly.

Proof. Again, we have to check all 6 conditions in Definition 2.27. Condition (1)

follows from the fact {f ∈ F (m)
Z | df 6= 0} = {f ∈ F (m)

Y | df 6= 0}. Conditions (2)-(4)

and (6) follow from the fact that they are true for both F (m)
Y and Im(Z). Condition (5)

is again easily checked in local coordinates using proposition 2.9, which also immediately

implies that Πrad,Y
Z and ΠY intersect cleanly. �

3.6. Separating submanifolds

There is another concept related to the questions of commutativity of blow-ups, called

separating submanifolds. In this section, all blow-ups can be either radial or quasihomo-

geneous. We start with the special case of blowing up boundary faces. Let X be a manifold

with corners and A,B,C ∈M(X) be some boundary faces. We denote by Fa(B +C) the

smallest face of X that contains both B and C. We then have the following result:

Lemma 3.12: If A,B,C satisfy

(3.44) B ⊂ A ( Fa(B + C),

then B and C lift do become transversally intersecting on [X;A] and thus

(3.45) [X;A;B;C] ∼= [X;A;C;B].

In this case, we say that A separates B and C. Note that A 6= Fa(B + C) is a necessary

condition.

Proof. A boundary face is locally always given as the zero-set of a collection of

boundary defining functions of some of the boundary hypersurfaces of X. Therefore, we

have

(3.46) Fa(B + C) = {xi = 0}

for some collection xi of such boundary defining functions. Since B ⊂ A ⊂ Fa(B+C) and

both are again boundary faces, we have

A = {xi = 0, yi = 0},

B = {xi = 0, yi = 0, zi = 0}
(3.47)
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for some additional boundary defining functions yi, zi. Notice that there has to be at

least one yi since otherwise A = Fa(B + C). Lastly, C ⊂ Fa(B + C) is again a boundary

face and, by definition of Fa(B+C), non of the defining functions yi, zi vanish on C, since

that would immediately yield a smaller face containing both B and C. Thus, we have

(3.48) C = {xi = 0, wi = 0}

for some more defining functions wi. Next, let us consider the lift of B, C under the

blow-up of A. The blow-up

(3.49) βA : [X;A]→ X

introduces a new hypersurface with a new boundary defining function, denoted by ρ.

Boundary defining functions of the old boundary faces are given by rescaled versions of

the old ones. To be more precise, for any boundary defining function xi of a boundary

hypersurface Hi, the function β∗A(xi)/ρ, defined on the interior of [X;A], extends smoothly

to the boundary and becomes a boundary defining function of β∗(Hi), which we denote

by x̃i. Since C is not contained in A (since there is at least one yi), it lifts to

(3.50) β∗A(C) = {x̃i = 0, w̃i = 0}.

Since B ⊂ A, its lift β∗A(B) is defined as the preimage of B under βA. Clearly, a point

p ∈ β∗A(B) must satisfy ρ = 0, and thus its image under blow-down satisfies xi = 0, yi = 0.

Thus, it is easy to see that

(3.51) β∗A(B) = {ρ = 0, z̃i = 0}.

Clearly, β∗A(B) and β∗A(C) intersect transversally, which proves the statement. �

Example: Consider

(3.52) X = R4
+

with its standard boundary defining functions x1, x2, x3, x4. Set

B = {x1 = x2 = x3 = 0},

C = {x1 = x4 = 0}.
(3.53)

Notice that B and C do not intersect transversally. We have Fa(B + C) = {x1 = 0}.
Thus, with

(3.54) A = {x1 = x2 = 0}

the conditions of the lemma are satisfied and we get

(3.55) [X;A;B;C] = [X;A;C;B].

Notice that this does not follow from any of the ‘standard’ commutativity results.

General p-submanifolds: If A,B,C ⊂ X are cleanly intersecting p-submanifolds, we

can write down an analogous result. However, we cannot just copy the condition from

above: If B,C are interior p-submanifolds that do not intersect transversally, then Fa(B+

C) = X. Thus, we can take for example B,C to be two intersecting lines in R3 and A
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to be the plane they span. These submanifolds satisfy the conditions of the lemma above

but the commutativity result clearly does not hold. However, even though the condition

of the Lemma above is formulated as a global one, it might as well have been formulated

locally, since the transversality of B and C on [X;A] is a local result. Translating the

condition into a local one yields the correct condition for p-submanifolds:

Lemma 3.13: Let A,B,C ⊂ X be cleanly intersecting p-submanifolds. If B ⊂ A, B∩C 6=
∅ and for each p ∈ B ∩ C we have

(3.56) TpB ⊂ TpA ( TpB + TpC,

then B and C lift do become transversally intersecting on [X;A] and thus

(3.57) [X;A;B;C] ∼= [X;A;C;B].

In this case, we say that A separates B and C.

Proof. The proof is now completely analogous. We show that under the blow-up of

A, the lift of B and C intersect transversally. This is of course a local property that is

trivial away from B ∩C so we only need to consider a neighborhood of a point p ∈ B ∩C.

Near such a point we may now chose local coordinates as before. This gives

A = {xi = 0, yi = 0}

B = {xi = 0, yi = 0, zi = 0}

C = {xi = 0, wi = 0}.

(3.58)

where the ∂xi span TpB + TpC and then copy the proof from above. �

Stability under additional blow-ups: Given submanifolds A,B,C ⊂ X such that A

separates B and C, it is not clear whether or not the same is true for the lifts of A,B,C

under additional blow-ups. In fact, generally this is not the case. We formulate two cases

that are sufficient for most settings:

Lemma 3.14: If A,B,C satisfy B ⊂ A ( Fa(B + C), we have

(3.59) [X;A; . . . ;B;C] ∼= [X;A; . . . ;C;B].

Proof. This follows directly form the fact that ‘transversal intersection’ is stable

under lifting to blown-up spaces. �

We also want to analyze the stability under the blow-up of a submanifold F that occurs

prior to the blow-up of A;B;C. A sufficient condition for stability is the following:

Lemma 3.15: Let F,A,B,C ⊂ X with A,B,C satisfying (3.44) and all four intersecting

cleanly. Furthermore, we assume

(3.60) B ⊆ F ⇒ A ⊆ F,

meaning F contains either both A and B or neither. Denote the blow-up of F by βF :

[X;F ]→ X. Then, the lifts β∗F (A), β∗F (B), β∗F (C) ∈M([X;F ]) again satisfy (3.44).
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Proof. First assume F contains neither. Recall that the definition of the lift of a

submanifold differentiates two cases. This condition assures that the same case applies

for A and B. If F contains both A and B, then their lifts are β∗F (A) = β−1(A), β∗F (B) =

β−1(B). If F contains neither, then their lifts are defined as β∗F (A) = cl(β−1(A \ F )),

β∗F (B) = cl(β−1(B \ F )). The Lemma now follows from simple calculations in local

coordinates separately for the cases of C also being contained in F and the case where it

is not. �

One can check that the condition (3.60) is itself stable under additional blow-ups. However,

writing it down is a bit cumbersome, since one has to differentiate several cases.

Corollary 3.16: Let A ⊂ X separate B and C. Let F = F1; . . . ;Fk be a list of p-

submanifolds such that for each i Fi lifts to a p-submanifold under blow up of F1, . . . Fi−1

and Fi, A,B,C intersect cleanly and satisfy the condition (3.60). Denote the blow-up of

F by β : [X;F ]→ X. Then, β∗(A) separates β∗(B) and β∗(C).

Example Same as before, but replace R4
+ with R4.

3.7. Commutativity and boundary structure

Lastly, we want to formulate a result that connects commutativity with the boundary

structure of the blown-up spaces. Although it is not used explicitly later on in this thesis,

it was very useful during the ‘trial and error’ part of the constructions done in the following

chapters and thus we include it here:

Setting: Let X be a manifold with corners and boundary Hypersurfaces H1, . . . ,Hr. Let

F1, . . . , Fk ∈ M(X) be a sequence of distinct boundary faces of X. Furthermore, let

σ = (σ1, . . . , σk) be a permutation of the indexes. We want to answer the question of

whether or not the identity on X lifts to a diffeomorphism

(3.61) [X;F ] := [X;F1; . . . ;Fk] ∼= [X;Fσ1 ; . . . ;Fσk ] =: [X;Fσ].

Condition: A necessary condition is that the two manifolds [X;F ], [X;Fσ] have the

same boundary structure. This can be made precise in the following sense:

For a manifold with corners X, let M(X) be the set of all boundary faces. It is partially

ordered by inclusion. The blow-down map βF : [X;F ]→ X induces a map M([X;F ])→
M(X), since β is a b-map and thus maps boundary faces to boundary faces. This induced

map is compatible with the partial order of both sets. We then get the following definition:

Definition 3.17: We say that [X;F ] and [X;Fσ] have the same boundary structure,

written M([X;F ]) ∼=β M([X;Fσ]), if there is a bijection between the two sets that is

compatible with the partial order and for which the following diagram commutes:

(3.62)

M([X;F ]) M(X)

M([X;Fσ])

∼=β

βF

βFσ .
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As mentioned before, this condition is necessary for the two blown-up spaces to be diffeo-

morphic. We now show that it is fact also sufficient:

Theorem 3.18: The identity on X lifts to a diffeomorphism

(3.63) [X;F ] ∼= [X;Fσ]

if and only if [X;F ] and [X;Fσ] have the same boundary structure as defined above:

(3.64) M([X;F ]) ∼=β M([X;Fσ]).

Proof. We only need to prove the ‘if’ part. We use the theory of generalized blow-ups

and monoidal complexes introduced by Kottke and Melrose in [12].

In short, the proof will go as follows: Both blow-ups are generalized blow-ups

with respect to refinements given by a series of star subdivisions. Since the same

boundary faces are blown up, the same generators are used in these subdivisions,

and thus the same minimal (one dimensional) monoids are present in both refine-

ments in the end. All other monoids in the refinements are direct sums of these

minimal ones. Which of these sums are present is fully determined by the bound-

ary structure of the blown-up space. Since these are equal, so are the refinements

and thus so are the blown-up spaces. Let us fill in the details:

Recall from [12] that a monoidal complex is a set of monoids σa indexed over a poset

(A,≤) together with monoid isomorphisms ia,b : σa → τ ≤ σb whenever a ≤ b, called

face maps. Any manifold with corners X has an associated ‘basic monoidal complex’, PX ,

consisting of smooth monoids

(3.65) σF =
⊕

G∈M1(X)
F≤G

NeG, F ∈M(X)

together with morphisms

(3.66) σF ′ ↪→ σF , F
′ ≤ F ∈M(X).

In other words, the monoids in PX are indexed over M(X). A morphism φ between

monoidal complexes consist of a map between the indexing posets φ# together with monoid

homomorphisms φab : σa → σb whenever b = φ#(a), that are required to commute with

the face maps.

In Corollary 7.3 in [12] it is shown that the iterative blow-up of boundary faces is a

generalized blow-up with a refinement given by the subsequent star-subdivision of PX by

elements vFi where vFi is the sum of the generators of the hypersurfaces meeting at Fi.

Let us denote these refinements by RF → PX , RFσ → PX . This gives

(3.67) [X;F ] ∼= [X;RF ] , [X;Fσ] ∼= [X;RFσ ].

In Theorem 6.2 in [12] it is shown that the blow-down map

(3.68) β : [X;RF ]→ X
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defines a map β] : P[X;RF ] → PX that factors through an isomorphism

(3.69)

P[X;RF ] PX

RF

∼= .

We want to show that there is an isomorphism between the monoidal complexes

(3.70) RF ∼= P[X;RF ]

∼=→ P[X;RFσ ]
∼= RFσ .

The identification (3.64) defines a bijection between the posets M([X;F ]) ∼=M([X;Fσ])

over which the two monoidal complexes are indexed. Furthermore, if F, F ′ are identified,

then σF ∈ P[X;RF ] and σF ′ ∈ P[X;RFσ ] are naturally identified by (3.65) and the fact that

{G ∈ M1([[X;RF ]]), F ≤ G} and {G′ ∈ M1([[X;RFσ ]]), F ′ ≤ G′} are identified by

(3.64).

To show that these two monoidal complexes are also isomorphic as refinements of PX we

need to show that the diagram

(3.71)

RF PX

RFσ

∼=

commutes. The maps between the posets over which these monoidal complexes are indexed

commute by assumption, see (3.62). It is left to show that the monoid homomorphisms

commute as well. This follows from the definition of star-subdivision: As mentioned

earlier, the refinements RF , RFσ were constructed through a series of star subdivisions

by elements vFi . Thus, the minimal (one dimensional) monoid NeG ∈ RF and its identified

monoid in RFσ , where G = ff(Fi), are both mapped to NvFi ⊂ RX . All other monoids

are direct sums of these minimal ones and, by definition of star-subdivision, are mapped

to the direct sum of the images NvFi , which are identical. This shows that the two

refinements RF , RFσ of PX are isomorphic and thus Corollary 6.4 in [12] proves that

[X;RF ] ∼= [X;RFσ ].

�

Note: This result can easily be generalized to the case where the Fi are a cleanly inter-

secting family of p-submanifolds, since the question of weather or not the identity lifts

to a diffeomorphism is a local question, and locally a family of cleanly intersecting p-

submanifolds are all boundary faces with respect to a suitable ‘slicing’ of the manifold

into quadrants. Of course this is quite a restrictive condition on the Fi and it would be

interesting to gain a deeper understanding in less restrictive situations.

Example: Unfortunately, the set of all boundary faces M(X) can get quite large. For

example, consider a manifold X with two hypersurfaces that meet. Then, the b-resolution

of the triple space X3
b already has 676 boundary faces. So one should ask if this result can

be of any use in ‘real life’ examples.

Fortunately, the functor that maps X to M(X) commutes with blow-up. Therefore, it is
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very easy to computeM([X;F ]) fromM(X) provided F is a boundary face of X (and thus

given as an element of M(X)). It is also easy to calculate the lift of any other boundary

face β∗(F ′) as an element of M([X;F ]). These operations are easily performed by any

computer algebra system, and they have been implemented in Python in the special case

where the boundary structure is relatively simple: If one assumes that each boundary

face is equal to the intersection of some hypersurfaces (and thus does not have several

components), one can identify M(X) as a subset of the power set of M1(X) with the

partial order being the inclusion.

Using such an implementation, the question of commutativity when one only blows up

boundary faces can easily be checked with a computer. Interested readers may contact

the author concerning the Python code.
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Part 2

Pseudodifferential Calculus on SL(n,R)





CHAPTER 4

Semisimple Lie groups

4.1. Introduction

Before we start with the analysis on SL(n,R), we will briefly recall some key elements

of Lie Group theory that are needed in this part of the thesis. The theory of Lie groups

and Lie algebras is very mature and there is an abundance of literature on the topic. To

name only one book that combines a good introduction with great depth, see [11]. Here,

we only go through what is needed in the analysis later on.

At first glance, a Lie Group and a Lie Algebra are two completely different objects, we

recall their definitions and their connection below.

A Lie algebra g is a vector space over a field equipped with a bilinear product [·, ·] : g×g→ g

satisfying certain criteria. Before we recall the full definition, we start with some examples:

Example 1: Let M be a real manifold (possibly with corners). Then the space of all

smooth vector fields X(M), equipped with the standard commutator bracket [X,Y ] :=

XY − Y X is a Lie algebra.

Example 2: The space g = gl(n,K) of all n × n-matrices over a field K equipped with

the standard commutator bracket [A,B] = AB−BA is a Lie algebra. Especially the cases

K = R,C are of primary interest. gl(n,K) has several interesting sub algebras, for example

sl(n,K) = {a ∈ gl | trA = 0}. These matrix Lie algebras have been studied extensively

and whole books have been written on even just one of these.

Example 3: The Lie algebra of a Lie group G. This is defined later on and example 2 is

a special case.

Let us continue with the actual definition of a Lie algebra.

Definition 4.1: Let g be a vector space over a field K. g is called a Lie algebra if it is

equipped with a bilinear product [·, ·] that satisfies

(1) [X,X] = 0 for all X ∈ g.

(2) For any X,Y, Z ∈ g the Jacobi identity is satisfied:

(4.1) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

The first statement implies that [X,Y ] = −[Y,X].

We continue with some basic definitions surrounding Lie algebras. We set

(4.2) ad : g→ EndK g , (adX)(Y ) = [X,Y ].

For an X ∈ g, adX is called the adjoint endomorphism of X. The fact that it is an

endomorphism follows from the linearity in the second factor of [·, ·]. The map ad itself is

also linear, which follows from the linearity in the first factor.
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A linear map φ : g→ h between two Lie algebras is called a homomorphism if it satisfies

(4.3) φ([X,Y ]) = [φ(X), φ(Y )] for all X,Y ∈ g.

For any subsets a, b ⊂ g we set [a, b] = {[X,Y ] | X ∈ a, Y ∈ b}. A Lie subalgebra h of

g is a subspace satisfying [h, h] ⊂ h. It is again a Lie algebra. Such an h is an ideal, if it

satisfies [h, g] ⊂ h.

Next, we recall the definition of a Lie group and its associated Lie algebra: A Lie group

G is a group equipped with the structure of a smooth manifold, such that multiplication

and inversion are smooth maps. The most common examples are the matrix Lie groups

GL(n,R) = {A ∈ Mat(n× n) | detA 6= 0} and its subgroups, for example

(4.4) SL(n,R) = {A ∈ GL(n,R) | detA = 1}.

Let x ∈ G. We denote the multiplication with x from the left with Lx : G → G and

from the right with Rx : G → G. A vector field X on G is called right-invariant (and

analogously left-invariant) if for any x, y

(4.5) (dRx−1y)(X(x)) = X(y),

thus if X (as an operator on smooth functions) commutes with Rx. By definition, a right-

invariant vector field is uniquely determined by its vector at a single point. Thus the map

X 7→ X(1) is a 1-1 map between the right-invariant vector fields and T1G. The inverse

map is simply given by the equation Xf(x) = X(1)(Lx−1f). It is easy to see that this

space is closed under the Lie bracket. The Lie bracket of these vector fields induces a Lie

bracket on T1G, which therefore becomes a Lie algebra. This g = T1G is simply called

the Lie algebra of G. This justifies the notation gl, sl from the example above, since one

can easily check (by computing T1G) that these are the Lie algebras of the general- and

special linear group GL(n,R), SL(n,R) respectively.

The centralizer of a Lie algebra g with respect to a subset s ⊂ g is defined as

(4.6) Zg(s) = {X ∈ g | [X,Y ] = 0 for all Y ∈ s}.

It is a Lie subalgebra of g. One is commonly interested in the centralizer of a single element

S ∈ g. Similarly, if s is a Lie subalgebra of g, we define the normalizer of s as

(4.7) Ng(s) = {X ∈ g | [X,Y ] ∈ s for all Y ∈ s}.

4.1.1. Ideals. Recall that a subset h ⊂ g is called an ideal, if it satisfies [h, g] ⊂ h.

They play an important role in the analysis of Lie algebras and we briefly recall some

concepts surrounding them.

Lemma 4.2: If a, b are ideals in g, then so are a + b, a ∩ b and [a, b].

Given an ideal a ⊆ g, The quotient g�a becomes a Lie algebra under the bilinear form

[X + a, Y + a] = [X,Y ] + a. It is an easy exercise to check that this is well-defined. An

important theorem concerning ideals is the second isomorphism theorem. It states that

given two ideals a, b ⊂ g such that a+b = g, then g�a ∼= b�a ∩ b. This is easily proven, since
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the map is explicitly given by A+B + a 7→ B + (a ∩ b). There are some important ideals

defined in any Lie algebra. The center Zg = Zg(g) = {X ∈ g | [X,Y ] = 0 for all Y ∈ g}
is an ideal of g, and so is the commutator ideal [g, g] ⊆ g. Furthermore, for any

homomorphism φ : g→ h, the kernel kerφ is an ideal.

Next we recursively define

g0 = g, gi+1 = [gi, gi] for i ≥ 0,

g0 = g, gi+1 = [g, gi] for i ≥ 0.
(4.8)

The two resulting decreasing sequences

g = g0 ⊇ g1 ⊇ g2 ⊇ . . . ,

g = g0 ⊇ g1 ⊇ g2 ⊇ . . .
(4.9)

are called the commutator series and lower central series of g respectively. Each gi

and gi is an ideal, which follows from the fact that ideals are stable under the Lie bracket.

The Lie algebra g is called solvable if gi = 0 for some i.1 We say g is nilpotent if gi = 0

for some i. To give an example, the Lie algebra of all upper triangle matrices is solvable,

the Lie algebra of all strict upper triangle matrices is nilpotent. Solvable and nilpotent

ideals are stable under taking subalgebras and quotients. Furthermore, if an ideal a ⊂ g

and the quotient g�a are both solvable, then so is g. Lastly, the sum of two solvable

ideals a + b is again solvable, which is a simple consequence of the second isomorphism

theorem. As a result, any finite dimensional Lie algebra has a unique solvable ideal that

contains all solvable ideals. This ideal is called the radical of g, denoted by rad g. A Lie

algebra is called simple, if it is nonabelian and has no proper nonzero ideals. It is called

semisimple if rad g = 0, i.e. if it has no nonzero solvable ideals.

Recall that for eachX ∈ g, adX is an endomorphism on g. Thus, if g is a finite-dimensional

vector space, it makes sense to define

(4.10) B : g× g→ K , B(X,Y ) = tr(adX ◦ adY ).

This is a symmetric bilinear form, called the Killing form. It is connected to the concept

of semisimplicity and solvability via Cartan’s Criterion:

Theorem 4.3: (Cartan’s Criterion). A Lie algebra g is semisimple if and only if its

Killing form is non degenerate, meaning that its radical radB = {X ∈ g | B(X,Y ) =

0 for all Y ∈ g} is zero.

g is solvable if and only if its Killing form satisfies B(X,Y ) = 0 for all X ∈ g and

Y ∈ [g, g].

A proof can be found for example in [11]. An important consequence of this is the following

theorem, that also justifies the name ‘semisimple’:

Theorem 4.4: A Lie algebra g is semisimple if and only if it is a direct product g = g1⊕
· · ·⊕gm of ideals gi, each of which is a simple Lie algebra. In this case, the decomposition

is unique and all ideals of g are sums of these ideals.

1We call a Lie group solvable, if its Lie algebra is solvable. The same is true for all the following properties
of Lie algebras.
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Again, a proof can be found in [11]. If g is semisimple and a ⊆ g is an ideal then

the orthogonal complement a⊥ with respect to the Killing form B is again an ideal and

g = a ⊕ a⊥. We say a Lie Algebra is reductive, if for any ideal a ⊆ g there is a

corresponding ideal b such that g = a⊕ b. Thus any semisimple Lie algebra is reductive.

The following statement, which is proven by an iterative scheme and Theorem 4.4, shows

a connection the other way around.

Theorem 4.5: If g is reductive, then g = [g, g] + Zg with [g, g] being semisimple.

This implies that any reductive Lie Group with center 0 is semisimple. For real or complex

matrix Lie algebras, reductiveness can be checked via the following criteria:

Lemma 4.6: Let g be a real Lie algebra over R or C. Then g is reductive if it is closed

under conjugate transpose.

Proof. This is a simple consequence of the fact that

(4.11) 〈X,Y 〉 := Re tr(XȲ ⊥)

is a real inner product on any matrix Lie algebra. Therefore the orthogonal complement

can be taken with respect to this inner product. �

This equivalent characterization can be used to prove the semisimplicity of a large collec-

tion of real and complex matrix Lie algebras. Examples can again be found in [11]. Here,

we only prove it for the Lie algebra that is the topic of this chapter:

Lemma 4.7: sl(n,R) = {A ∈ gl(n,R) | trA = 0} is a semisimple Lie algebra.

Proof. The fact that sl(n,R) is closed under brackets (and thus a Lie algebra) and

closed under transpose is clear by definition. Therefore, it is a reductive Lie algebra. The

only thing left to show is that it has center 0. This follows directly from that fact that

each 0 6= A ∈ sl(n,R) has non zero image and non zero kernel, so for a given A take any

B that does not have full rank (yielding trB = 0), has image contained in the kernel of A

and is non zero on the image of A. Then [A,B] = AB −BA = −BA 6= 0. �

Lastly, we need a decomposition theorem for semisimple Lie algebras that will play a vital

role in the analysis of the following chapters.

4.2. The Iwasawa decomposition

The Iwasawa decomposition is defined for any semisimple Lie Group. It can be viewed as

a generalization of the fact that any matrix can be decomposed into an orthogonal matrix

and a upper triangle matrix. A comprehensive discussion can be found in [11]. Here we

briefly recall its construction.

4.2.1. The Cartan decomposition. We start with recalling the Cartan decompo-

sition, which generalizes the polar decomposition of matrices to any semisimple Lie group.

Definition 4.8: Let g be a semisimple Lie algebra with Killing form B(·, ·).

(1) We call a Lie algebra homomorphism θ : g→ g an involution if θ2 = Id.
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(2) We call an involution a Cartan-involution if the bilinear form

(4.12) Bθ(X,Y ) := −B(X, θY )

is positive definite.

Lemma 4.9: Every semisimple Lie Algebra g has a Cartan involution. Any two Cartan

involutions θ1, θ2 are conjugate under some g ∈ g, meaning θ1 = g−1θ2g.

Proof. A proof can be found in [11]. �

Example: On g = sl(n,R) = {A ∈ Rn×n | trA = 0} the map θ : g → g, A 7→ −A>

is a Cartan involution. On sl(n,R), the Killing form is given by B(X,Y ) = 2n tr(XY ).

Therefore Bθ(X,X) = 2n tr(XX>) which is positive definite.

Since a Cartan involution of g satisfies θ2 = Id, it has only the two eigenvalues ±1. Let

k denote the 1-eigenspace and p denote the −1-eigenspace. Then p is the orthogonal

complement of k with respect to Bθ. This yields the eigenspace decomposition

(4.13) g = k⊕ p,

which is called a Cartan decomposition of g.

Lemma 4.10: Let g = k⊕ p be a Cartan decomposition, then we have

(1) [k, k] ⊆ k, [p, k] ⊆ p, [k, p] ⊆ p, [p, p] ⊆ k,

(2) k is a Lie subalgebra, p is not.

Proof. Since θ is a Lie algebra automorphism, the Lie bracket of two eigenspaces

is contained in the eigenspace corresponding to the product of the two corresponding

eigenvalues. �

Example 4.11: Consider g = sl(n,R) and

(4.14) θ : sl(n,R)→ sl(n,R), A 7→ −A>.

We have

k = {X | X = −X>} = so(n),

p = {X | X = X>} = {pos. def. matrices}.
(4.15)

The Lie subgroups corresponding to the decomposition k and p are SO(n) and P , denoting

the positive definite matrices, respectively. Thus, the Cartan decomposition yields the polar

decomposition SL(n) = SO(n)P .

Lastly, we consider the different Cartan involutions one could have chosen for g = sl(n,R)

instead of the one above. Lemma 4.9 implies that any other Cartan involution θ′ is related

to θ by

θ′(X) = −g(g−1Xg)>g−1 = −gg>X>(g−1)>g−1

= −hX>h−1 = hθ(X)h−1
(4.16)

63



for some fixed g ∈ sl(n,R) and h = gg>. Additionally, whenever θ = θ′, we have X =

hXh−1 and thus h = Id. Therefore a choice of Cartan involution on sl(n) is equivalent to

the choice of a positive definite matrix h (= gg>).

In fact, Lemma 4.9 shows, that any two Cartan decompositions of an arbitrary semisimple

Lie group are conjugate.

4.2.2. The Iwasawa decomposition. An Iwasawa decomposition is now derived

from a Cartan decomposition g = k⊕ p.

Choose a maximal subalgebra a ⊂ p. Such a subalgebra is automatically abelian (meaning

[x, y] = 0 ∀x, y ∈ a), since [p, p] ⊂ k and, since a is a Lie algebra, [a, a] ⊂ a ⊂ p. We proceed

by defining the root system relative to a.

Definition 4.12: Let λ : a→ R be a real linear form on a (in other words, λ ∈ a∗). Then

we set

(4.17) gλ = {X ∈ g | [H,X] = λ(H)X ∀H ∈ a}.

We then call the set

(4.18) Σ = {λ 6= 0 | gλ 6= {0}}

the root system relative to a.

This results in the direct sum

(4.19) g = g0 ⊕
∑
λ∈Σ

gλ.

Notice that whenever λ ∈ Σ we also have −λ ∈ Σ. A choice of one of these for each such

pair, denoted by Σ+ ⊂ Σ, is called a positive root system, if for any λ1, λ2 ∈ Σ+ that

satisfy λ1 + λ2 ∈ Σ, we have λ1 + λ2 ∈ Σ+. Let Σ+ be such a choice. We then set

(4.20) n :=
∑
λ>0

gλ.

Notice that this is a subalgebra, since we again have [gλ, gµ] ⊂ gλ+µ. Next, we take a closer

look at g0. The Cartan decomposition of g yields

(4.21) g0 = (k ∩ g0)⊕ (a ∩ g0)
a max.

= (k ∩ g0)⊕ a =: m⊕ a.

However, we do need to prove that this sum is actually direct. To do so, take X =

K +P ∈ g0. Then we have 0 = [H,K +P ] = [H,K]︸ ︷︷ ︸
∈p

+ [H,P ]︸ ︷︷ ︸
∈k

which yields [H,K] = 0 and

[H,P ] = 0. So far, we get the decomposition

(4.22) g = m⊕ a + n +
∑
λ<0

gλ.

Now take X ∈
∑

λ<0 gλ. Notice that θ(gλ) = g−λ and θ(X + θX) = θX +X, which shows

that X = X + θX − θX ∈ k + n. We therefore conclude that

(4.23) g = k⊕ a⊕ n
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which is called the Iwasawa decomposition. We do however still need to show that this

is in fact a direct sum. This can be shown by applying θ to (4.23), followed by some

straight-forward calculations. If g is the Lie algebra of a Lie group G, then let K,A,N

denote the Lie subgroups of G generated by k, a, n respectively. Then G = KAN is called

the Iwasawa decomposition of G. Again, this decomposition is unique up to conjugation:

Lemma 4.13: The Iwasawa decomposition (4.23) of a semisimple Lie group is unique up

to conjugation by an element g ∈ g.

A proof can be found in [11].

4.2.3. Example: SL(n). Consider g = sl(n) = {A ∈ Rn×n | trA = 0}.
As shown above, θ : X 7→ −X> is a Cartan-involution, which results in the following

Cartan-decomposition

g = k⊕ p,(4.24)

k = {x ∈ sl | X = −X>} = orth. matrices in sl,(4.25)

p = {x ∈ sl | X = X>} = pos. def. matrices in sl.(4.26)

We now need to chose a maximal subalgebra of p: For this we consider the subalgebra of

diagonal matrices

(4.27) a = {diag(d1, . . . , dn) |
∑

di = 0}.

We now need to find all λ ∈ a∗ such that gλ 6= {0}. To do so, it is convenient to

choose a basis of g. Let Eij denote the matrix with a 1 at (i, j) and zeros everywhere

else. Clearly, g is spanned by the Eij with i 6= j together with the elements of a. Let

D = diag(d1, . . . , dn) ∈ a, then we have

(4.28) [D,Eij ] = DEij − EijD = (di − dj)Eij

and of course [D,D′] = 0 for all D′ ∈ a. Therefore, all roots λ with gλ 6= {0} are given by

λij : D 7→ (di − dj) with

gλij = span{Eij},(4.29)

g0 = a.(4.30)

We therefore get the root-decomposition

(4.31) g = a⊕
∑
i 6=j

span{Eij}.

Next, we need to chose a positive root system. One obvious choice is

(4.32) Σ+ = {λij | j > i}.

This results in

(4.33) n =
∑
j>i

span{Eij} = { strictly upper triangle matrices}.

65



We therefore get the Iwasawa decomposition

(4.34) g = k⊕ a⊕ n,

where k are the orthogonal matrices, a are the diagonal matrices with trace 0 and n are

the strictly upper diagonal matrices. The corresponding decomposition of SL(n) into the

subgroups generated by these subalgebras is

(4.35) SL(n) = SO(n)AN

where A is the set of positive diagonal matrices and N is the set of upper diagonal matrices

with all diagonal entires one.

Any other Iwasawa decomposition of SL(n,R) is conjugate to this one by an element

g ∈ SL(n,R). Since SO(n) is stable under conjugation, they are given by SL(n,R) =

SO(n)AgNg with Ag = g−1Ag and Ng = g−1Ng.
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CHAPTER 5

Hd-compactification of SL(n,R)

In [1] Albin, Dimakis, Melrose and Vogan introduce the hd-compactification of semisimple

Lie groups, which can be understood as the real analogue of the wonderful compactifica-

tion. The right- (or left-) invariant vector fields lift to become a Lie algebra of b-vector

fields and thus, allow for the construct a pseudodifferential calculus adapted to the degen-

erate behavior of these vector fields at the boundary of the compactification. We consider

this for the special case of SL(n,R).

In this case one can write down the construction of the hd-compactification explicitly.

Since we only consider SL(n,R) in the next chapter, we will restrict to it in the discussion

of the hd-compactification as well. For details and for the general case, see [1].

Definition 5.1: An hd-compactification of a real reductive Lie group with compact center

is a compact manifold with corners Ḡ and a diffeomorphism into the interior G ↪→ Ḡ such

that

(1) (inversion) Inversion extends to a diffeomorphism of Ḡ.

(2) (b-normality) The right action of G extends smoothly to Ḡ with isotropy algebra

at each boundary point containing the b-normal space.

(3) (b-transversality) The combined action of G×G on left and right is b-transitive,

i.e. has Lie algebra spanning bTḠ.

(4) (minimality) Near the interior of a boundary face of codimension d the span of

the Lie algebra for the right action contains vector fields xjvj (j = 1, . . . , d) where

the xj are defining functions for the local boundary hypersurfaces and the vj are

locally independent tangent vector fields not themselves in the span of the Lie

algebra.

As one can see, conditions (2)-(3) are all closely linked to the Lie algebra of right-invariant

vector fields and therefore can be shown by analysis of the Lie algebra of SL(n), which is

g = Te SL(n).

5.1. Construction and geometric properties

We will now explicitly construct an hd-compactification for SL(n,R).

Let us start by considering the inclusion

(5.1) SO(n,R) ⊂ SL(n,R) ⊂ GL(n,R) ⊂ Hom(n,R)

where Hom(n,R) = Hom(Rn,Rn) is the space of linear maps with the standard Hilbert-

Schmidt norm of an element A = (aij)ij given by

(5.2) ||A|| =
(∑

a2
ij

)1/2
.
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Moreover, let

(5.3) SH = {e ∈ Hom(n) ; ||e|| = 1} ⊂ Hom(n)

be the unit sphere in Hom(n)1 and SI = GL(n) ∩ SH(n) be the open subset of invertible

maps with norm 1. Consider the map

(5.4) SL(n)→ SI(n) ; e 7→ e

||e||
given by scaling each element to have norm 1.

Lemma 5.2: The radial scaling above is a diffeomorphism onto its range

(5.5) SI+(n) = {e ∈ SH(n) | det e > 0} ⊂ SI(n).

Proof. The map

(5.6) SI+(n) 3 e 7→ e/(det(e))1/n ∈ SL(n)

is obviously the inverse, proving the statement. �

One should picture the image on the unit sphere SI+(n) to be one open half of SH(n), where

the other open half consists of the matrices with negative determinant. The ‘equator’ in the

middle is the closed set of matrices of determinant zero. This ‘equator’ has the additional

structure of a stratified space over the sets of matrices with a fixed rank

(5.7) Sq = {e ∈ SH(n) | e has corank at most q}.

These are a nested sequence of submanifolds

(5.8) Sn−1 ⊂ Sn−2 ⊂ · · · ⊂ S1 ⊂ SH .

The situation may be visualized as in Figure 5.1 The subsets Sq \ Sq+1, consisting of

matrices of corank exactly q, are actually the isotropy types of the action of SO(n) on

SH(n) by conjugation and therefore, they can be blown up successively to resolve this

action.

SI+

S1 S2

Figure 5.1. A schematic visualization of SH(3), SI+(3) and Sq. Of course
it is actually eight-dimensional.

The hd-compactification will now be constructed by iterative blow-ups of all Sq. By a

general result of Albin and Melrose on the resolution of group actions [2], the deepest

1The field considered in this thesis is always R, so it is dropped in the notation when convenient.

68



stratum Sn−1 is a submanifold and iteratively, after the blow-up of Sq, the lift of the next

stratum Sq−1 becomes a submanifold. Therefore we may define the iterative blown-up

space

(5.9) SH(n) := [SH, Sn−1, . . . , S1].

Then, the hd-compactification of SL(n) is given by

(5.10) SL(n) := {closure of the lift of SI+ in SH(n)}.

We denote by Hq the new boundary hypersurface generated by the blow-up of Sq. The

situation may be visualized as in Figure 5.2

SL

H1
H2

Figure 5.2. A schematic visualization of SH(3).

Before we can prove that this is actually an hd-compactification we need to understand

the geometry of the newly created boundary faces.

In the inductive argument used below, we generalize the situation slightly for notational

convenience. Let W1,W2 be two euclidean vector spaces of equal dimension n. Let

(5.11) Hom(W1,W2) ⊃ SH(W1,W2) ⊃ SI(W1,W2) , Sq(W1,W2) , SH(W1,W2)

be defined analogously to before.

We start by looking at the structure of each Sq \ Sq+1. An element of e ∈ Sq \ Sq+1 can

be characterized by the following three objects:

(1) The image of e, which is a n− q-dimensional subspace U2 ⊂W2.

(2) The kernel of e, or equivalently the orthogonal complement of it, which is a

n− q-dimensional subspace U1 ⊂W1.

(3) The restricted linear map e|U1 ∈ SH(U1, U2).

Therefore, Sq \ Sq+1 fibers over the double Grassmannian

(5.12)

SH(n− q) Sq \ Sq+1

Gr(W1, n− q)×Gr(W2, n− q)

with the fiber over a point (U1, U2) in the base being the space SH(U1, U2). The geometry

of Hq is now similar to the one of Sq, but with larger fiber. Namely the spherical normal
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bundle is glued in. In order to understand the geometry of the normal bundle, we will

specifically construct a normal bundle of Sq \ Sq+1 in SH(W1,W2).

Consider an element a ∈ SH(W1,W2) sufficiently close to Sq \ Sq+1 and consider its left-

and right polar-decompositions

(5.13) a = u1p1 = p2u2.

Since ui ∈ SO (i = 1, 2), pi has also norm 1. Since pi is diagonalizable and is again close

to a matrix of rank 1, it must have q eigenvalues near 0 and n− q away from 0 (counted

with multiplicity). Let Ui ⊂ Wi denote the product of the eigenspaces corresponding to

the eigenvalues of pi away from 0 for i = 1, 2.

Lemma 5.3: With a, U1 and U2 as above, the map a takes block-diagonal form with respect

to U1, U2 i.e.

(5.14) a(U1) ⊂ U2 , a(U⊥1 ) ⊂ U⊥2 .

Proof. Recall, that p1 = (a∗a)1/2, p2 = (aa∗)1/2. Furthermore, recall that for the

square-root of a matrix m and λ > 0 we have

v is eigenvector of m with eigenvector λ

⇐⇒ v is eigenvector of m1/2 with eigenvector λ1/2.
(5.15)

Let v be an eigenvector with corresponding eigenvalue λ of a∗a, i.e. a∗av = λv. Applying

a to this equation, we see that aa∗(av) = λ(av). In other words, a maps eigenvectors of

p1 to eigenvectors of p2 with the same corresponding eigenvalue. This immediately proves

the statement. �

Lemma 5.3 yields the following.

Lemma 5.4: We denote by E the vector bundle with base Sq \Sq+1 and fiber over (U1, U2)

(in the base of Sq \ Sq+1), given by Hom(U⊥1 , U
⊥
2 ). Let U ⊂ E be the open neighborhood

of the zero section with point-wise vector norm < 1/4. Let

(5.16) ι : U → SH(W1,W2) , (e, f) 7→ [e+ ρfπ]

where [·] denotes the projection onto SH, π : W1 → U⊥1 denotes the projection and ρ :

U⊥2 ↪→ W2 denotes the inclusion. Then ι is a diffeomorphism onto its image, i.e. it

defines a tubular neighborhood of Sq \ Sq+1 and therefore identifies the normal bundle of

Sq \ Sq+1 with E.

Proof. Clearly, ι is smooth. We show that it is a diffeomorphism by explicitly con-

structing its inverse. Near the zero section f has norm near 0. For a given a sufficiently

close to Sq \Sq+1 we may use the above lemma to see that a decomposes and we can define

the inverse by t a 7→ (a|U1 , a|U⊥1 ). �

Lemma 5.4 shows that the normal bundle of Sq \Sq+1 can be identified with the bundle E.

The normal space at each point p ∈ Sq, with base point (U1, U2) of the fibration (5.12), is

70



given by Hom(U>1 , U
>
2 ). Thus, the spherical normal bundle is identified as

(5.17) SNp(Sq \ Sq+1) ∼= (Hom(U>1 , U
>
2 ) \ {0})�R>0

∼= SH(q).

In order to formulate the next theorem, we need to introduce some additional notation.

Given subspaces U1 ⊂W1 and U2 ⊂W2 of equal dimension, we may interpret an element

f ∈ SH(U1, U2) as an element SH(W1,W2), denoted by f (W1,W2), by setting f (W1,W2) to be

the composition of the orthogonal projection W1 → U1 and f and the inclusion U2 →W2.

We denote the boundary hypersurface of SH(W1,W2) corresponding to the blow-up of Sq

by Hq. It is not connected, but rather has several components. Nonetheless, we refer to

it as one hypersurface.

Theorem 5.5: The resolution SH(W1,W2) := [SH;Sn−1; . . . ;S1] is a compact manifold

with corners, where the boundary hypersurfaces Hq fibers over the double Grassmannian

with fiber modeled (inductively) by resolved spaces

(5.18)

SH(n− q)× SH(q) Hq

Gr(Rn, n− q)×Gr(Rn, n− q)

,

where the fiber over (U1, U2) is SH(U1, U2) × SH(U⊥1 , U
⊥
2 ). Each hypersurface Hq has a

boundary defining function, denoted by τq, that is defined in a neighborhood of Hq. This

identifies a neighborhood of Hq in SH with Hq × [0, ε). An element p in H◦q × [0, ε) is

therefore given by a triple (τq, e, f), where τq ∈ [0, ε), e ∈ SH(U1, U2) for some subspaces

(U1, U2), and f ∈ SH(U⊥1 , U
⊥
2 ). The blow-down map β : SH→ SH is then locally given by

(5.19) (τq, e, f) 7→ [e(W1,W2) + τqf
(W1,W2)]

with [·] being the projection onto SH.

Intuitively, both the base and the first factor of the fiber in (5.18) are a result of (5.12),

while the second factor of the fiber is a result of (5.16). We also need to analyze the

geometry for boundary faces of arbitrary codimension, not only the hypersurfaces, which

will be done in Theorem 5.6. Since the statement of Theorem 5.5 is a special case of

Theorem 5.6, we omit the prove here and only give a prove of Theorem 5.6.

In order to describe the geometry of the higher-codimension faces, we need some additional

notation. For any multi-index q̄ = {q1, q2 . . . , qr} ⊂ {1, . . . , n − 1} (where we assume

1 ≤ q1 < q2 < · · · < qr ≤ n− 1) we denote

(5.20) Fq̄ := Hq1 ∩ · · · ∩Hqr ⊂ SH(W1,W2).

Fq̄ is a boundary face of codimension r. Again, even though Fq̄ has several connected

components, we refer to it as one boundary face.

For an n-dimensional Euclidean vector space W and a fixed multi-index q̄, we denote the
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partial flag manifold of type q̄ of W by Fq̄(W ). That is, elements of Fq̄(W ) are flags of

subspaces

(5.21) Vr ⊂ Vr−1 ⊂ · · · ⊂ V1 ⊂W,

where dimVk = n−qk. For later notational convenience we rather denote these flags using

the orthogonal complements between the different subspaces, meaning elements of Fq̄(W )

are given by flags

(5.22) Ur ⊂ Ur ⊕ Ur−1 ⊂ · · · ⊂ Ur ⊕ · · · ⊕ U1 ⊂W

with

(5.23) dimUk = qk+1 − qk =: pk,

where qr+1 := n. Furthermore, we denote by U0 the orthogonal complement of Ur⊕· · ·⊕U1

in W with dimension q1 =: p0. Using this notation, we formulate a generalization of

Theorem 5.5.

Theorem 5.6: With the notation from above, the boundary face Fq̄ ⊂ SH(W1,W2) is the

total space of a fibration

(5.24)

∏r
i=0 SH(pi) Fq̄

Fq̄(W1)×Fq̄(W1)

with fiber over the base point

(U1,r ⊂ · · · ⊂ U1,r ⊕ · · · ⊕ U1,0 = W1) ∈ Fq̄(W1)

(U2,r ⊂ · · · ⊂ U2,r ⊕ · · · ⊕ U2,0 = W2) ∈ Fq̄(W2)
(5.25)

given by
∏k+1
i=1 SH(U1,i, U2,i). There are local boundary defining functions τqi for each Hqi

near Fq̄, identify a neighborhood of Fq̄ in SH with Fq̄ × [0, ε)r. This extends the fibration

(5.24) into the interior. Elements p ∈ F ◦q̄ × [0, ε)r are given by tuples

(5.26) (τq1 , . . . , τqr , e0, . . . , er)

with τqi ∈ [0, ε) and ei ∈ SH
◦
(U1,i, U2,i). Since ei is assumed to lie in the interior of

SH(U1,i, U2,i), it may be interpreted as an element ei ∈ SI(U1,i, U2,i) ⊂ SH(U1,i, U2,i). The

blow-down map locally takes the form

(τq1 , . . . , τqr , e0, . . . , er)

7→[er + τqr
(
er−1 + τqr−1 (. . . (e1 + τq1e0) . . . )

)
]

=

[
r∑
i=0

(∏
i′>i

τqi′

)
ei

]
=: γ

(5.27)

where [·] is the projection onto SH. To be more precise, each ei in the blow-down map

should be replaced with e
(W1,W2)
i , which is not written out for better readability.

Proof. First of all, notice that the fibration (5.18) and the local representation of

the blow-down map (5.19) are special cases of (5.24) and (5.27), respectively. The proof
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follows an inductive argument over q, starting with the first blow-up of Sn−1. Denote

by H ′n−1 the resulting hypersurface in [SH(W1,W2);Sn−1]. Notice that it is not equal to

Hn−1, since the subsequent blow-ups of Sq (q < n− 1) alter it. Applying Lemma 5.4 and

using the naturality of blow-up, we see that H ′n−1 is the total space of a fibration

(5.28)

SH(n− 1) H ′n−1

Sn−1

.

Plugging in the fibration (5.12) of Sn−1, we get

(5.29)

SH(1)× SH(n− 1) H ′n−1

Gr(Rn, 1)×Gr(Rn, 1)

with fiber over (U1, U2) being SH(U1, U2)× SH(U⊥1 , U
⊥
2 ).

Consider a neighborhood of H ′n−1. The function ||f || from (5.16) lifts to become a bound-

ary defining function

(5.30) τn−1 := β∗(||f ||)

ofH ′n−1. Elements of a neighborhood ofH ′n−1 are now parameterized by tuples (τn−1, (e, f)),

where τ1 ∈ [0, ε), e ∈ Sn−1, f ∈ SH(U⊥1 , U
⊥
2 ) with (U1, U2) being the base point of e under

(5.12). Using this parametrization, the blow-down map takes the form

(5.31) (τn−1, (e, f))[e+ τn−1f ].

This matrix has block-diagonal form with respect to U1, U
⊥
1 , U2 and U⊥2 . The matrix

[e+ τn−1f ] is an element of Sq (for q < n− 1) if and only if f has corank q as an element

of SH(n − 1). This shows that the blow-ups of the subsequent Sq restrict to H ′n−1 to be

precisely the resolution of the fiber SH(n− 1) to SH(n− 1). Therefore, the final boundary

hypersurface Hn−1 in SH(n) is the total space of a fibration as in (5.18).

Notice that this finishes the proof for the case n = 2, since no further blow-ups occur in

that case.

For the remaining steps, we introduce the following notation. For any q ≤ n we write

(5.32) SH
q
(W1,W2) := [SH(W1,W2);Sn−1; . . . ;Sq],

meaning SH
1
(W1,W2) = SH(W1,W2) and SH

n
(W1,W2) = SH(W1,W2). We now prove

the following statements inductively over q.

Fix an index q ∈ {1, . . . n − 1}. After the blow-up of all Sq′ with q′ > q, denote the lift

of Sq ⊂ SH(W1,W2) to the space SH
q+1

(W1,W2) by S∗q . Then S∗q is the total space of a
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fibration

(5.33)

SH(n− q) S∗q

Gr(W1, n− q)×Gr(W2, n− q)

.

At each point p ∈ S∗q with base (U1, U2), the normal space is naturally identified with

Hom(U⊥1 , U
⊥
2 ). Denote by H ′q the hypersurface corresponding to S∗q in SH

q
(W1,W2). Then

it is the total space of a fibration

(5.34)

SH(n− q)× SH(q) H ′q

Gr(Rn, n− q)×Gr(Rn, n− q)

,

where the norm in the fiber Hom(U⊥1 , U
⊥
2 ) lifts to a boundary defining function τq of H ′q,

uniquely defined in a neighborhood of H ′q. The remaining blow-ups of Sq−1, . . . , S1 restrict

to H ′q to resolve the second factor of the fiber and yield the fibration (5.18).

For q′ > q, temporarily denote the hypersurface corresponding to Sq′ in SH
q
(W1,W2) by

Hq̄′. For any q̄ = {q1, . . . , qr} (with q1 ≤ q2 ≤ · · · ≤ qr) that satisfies q1 ≥ q, denote by

F ′q̄ = H ′q1 ∩· · ·∩H
′
qk

the codimension r boundary face in SH
q
(W1,W2). Then it is the total

space of a fibration

(5.35)

∏r
i=1 SH(pi)× SH

q
(p0) F ′q̄

Fq̄(W1)×Fq̄(W2)

with the remaining blow-ups of Sq−1, . . . , S1 restricting to F ′q̄ to resolve the last factor of

the fiber and yield the fibration (5.24). The blow-down map takes the form (5.27).

Notice that we already showed all of these statements for the case of q = n − 1. This

includes the fibrations (5.35), since the only multi-index q̄ with q1 ≥ n− 1 is q̄ = {n− 1}.
Also notice that for the case of q = 1, the statements above prove Theorems 5.5 and 5.6.

Now assume the statements above to be true for all q′ > q. Consider a neighborhood of

an interior point of any boundary face

(5.36) F ′q̄ ⊂ SH
q+1

(W1,W2).

Using (5.35) for the case of q+ 1, we have a local parametrization of such a neighborhood

by elements

(5.37) (τq1 , . . . τqr , e0, . . . er),

where τqi ∈ [0, ε) and, since we consider an interior point of the boundary face, ei ∈
SI(U1,i, U2,i) for i = r, . . . 1 and e0 ∈ SH(U1,0, U2,0) \Sq+1(U1,0, U2,0). The blow-down map
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SH
q+1

(W1,W2) → SH(W1,W2) now takes the local form (τq1 , . . . τqr , e0, . . . er) 7→ γ as in

(5.27). For all τqi > 0 we then have

(5.38) γ ∈ Sq ⊂ SH(W1,W2) ⇐⇒ e0 ∈ Sq(U1,0, U2,0).

By continuity of the lift, this shows that, near F ′q̄, the lift S∗q is given by

(τq1 , . . . τqr , e0, . . . er) ∈ S∗q (W1,W2) ⊂ SH
q+1

(W1,W2)

⇐⇒ e0 ∈ S∗q (U1,0, U2,0) ⊂ SH
q
(U1,0, U2,0)

.(5.39)

Using (5.33) inductively over the dimension n, we know that S∗q (U1,0, U2,0) fibers over the

double Grassmannian Gr(U1,0, p0 − q) × Gr(U2,0, p0 − q). Denote the base point for an

element e0 by U1,a ⊂ U1,0, U2,a ⊂ U2,0. This locally defines a projection

(5.40) S∗q (W1,W2)→ Gr(W1, n− q)×Gr(W2, n− q)

given by

(τq1 , . . . τqr , e0, . . . er)

7→(U1,r ⊕ · · · ⊕ U1,1 ⊕ U1,a︸ ︷︷ ︸
=:V1

, U2,r ⊕ · · · ⊕ U2,1 ⊕ U2,a︸ ︷︷ ︸
=:V2

).(5.41)

Elements (τq1 , . . . τqr , e0, . . . er) ∈ S∗q (W1,W2) lying in the fiber over (V1, V2) are naturally

identified with elements in SH(V1, V2) that lie near the corresponding face Fq̄(V1, V2) ⊂
SH(V1, V2), simply by interpreting each Uα,i not as a subspace of Wα, but of Vα. Us-

ing Theorem 5.6 inductively for lower dimension n, we see that elements near this face

Fq̄(V1, V2) ⊂ SH(V1, V2) are also parameterized precisely by (τq1 , . . . τqr , e0, . . . er).

The fact that this holds for any boundary face F ′q̄ yields global fibration (5.33) of S∗q ⊂
SH

q+1
(W1,W2).

The normal space at each point is given by the normal space of e0 ∈ S∗q (U1,0, U2,0) ⊂
SH

q
(U1,0, U2,0). We denote U1,b = U1,0	U1,a and U2,b = U2,0	U2,a. Using induction over

the dimension n, we see that the normal space at e0 is identified with Hom(U1,b, U2,b). This

proves (5.34) for the blow-up of S∗q . The intersection of the lifted boundary face F ′q̄ with the

newly created boundary hypersurface H ′q is now a boundary face F ′q̄∪{q} ⊂ SH
q
(W1,W2).

The subspace Uα,r, . . . , Uα,1, Uα,a, Uα,b yield the fibration (5.35) for the boundary face

F ′q̄∪{q} with the blow-down map taking the form.

(τq1 , . . . , τqr , e0, . . . , er)

7→[er + τqr
(
er−1 + τqr−1 (. . . (e1 + τq1 [ea + τqeb]) . . . )

)
].

(5.42)

Replacing τ1 by τ1(1 + τq)
−1/2 and τq by τq(1 + τq)

−1/2 yields (5.27) The fact that the

remaining blow-ups, restricted to this face, resolve the last factor of this fibration follows

from the analogous argument as before in (5.38). �
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Notice that the Uα,j (for fixed i = 1, 2) are pairwise orthogonal and their direct sum is

Wi. In terms of these decompositions the element γ in (5.27) has block-diagonal form

U2,r U2,r−1 · · · U2,i · · · U2,0

U1,r

U1,r−1

...

U1,i

...

U1,0



er

τqrer−1

. . .

τqr · · · τqi+1ei
. . .

τqr · · · τq1e0


· λ

(5.43)

where λ is a scaling factor close to 1 for small τ . We continue with some further remarks

on the fibrations (5.24). By definition of the different fibrations (5.24), they agree in the

following sense. For q ∈ q̄, the face Fq̄ is also a boundary face of the hypersurface Hq. The

fibration in (5.18), restricted to Fq̄, and the fibration in (5.24) form a tower and commute

with the projection of the flag manifold F2
q̄ onto the n − q Grassmannian in each factor,

i.e.

(5.44)

Fq̄ Hq

F2
q̄ Gr(n− q)2

,

where the map F2
q̄ → Gr(n− q)2 is given by projection in each factor. In fact, whenever

q̄ ≥ q̄′, the boundary face Fq̄ is also a boundary face of Fq̄′ . The two corresponding

fibrations, restricted to the smaller face Fq̄, form a tower and commute with the natural

projection from the double flag variety of type q̄ to the one of type q̄′, i.e.

(5.45)

Fq̄ Fq̄′

F2
q̄ F2

q̄′

.

Example: In order to get a better understanding of what the Theorems 5.5 and 5.6 state,

we consider the following example. Consider elements of SH(R3,R3) near the codimen-

sion 2 boundary face F{1,2} = H1 ∩H2. Theorem 5.6 states that elements close to F{1,2}
are parameterized by (τ1, τ2, e1, e2, e3) with ei being an element of some two-point space

SH(U1,i, U2,i). Consider a curve of elements pt = (t, t, e1, e2, e3). For t = 0, this is an

element of F{1,2}. Denote the blow-down of pt by γt ∈ SH(R3,R3), given as in (5.27). The

situation may be visualized as in Figure 5.3. Then Theorem 5.6 implies that (for small

t) γt decomposes into block-diagonal form with three blocks (in this case each having di-

mension 1), where the norm of the first block tends to 1 as t→ 0, the norm of the second

block tends to 0 to first order, and the norm of the third block tends to 0 to second order.
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SI+

S1 S2

γt pt
SL

H1
H2

Figure 5.3. A visualization of the blow-down map SH(3)→ SH(3).

SH(n) versus SL(n): Recall that SH(W1,W2) has two connected components. The hd-

compactification SL(W1,W2) is defined as only that component, which interior consists of

the matrices with positive determinant. In other words, each element p ∈ SH(W1,W2) has

an associated sign

(5.46) sgn(p) :=

1 (p ∈ SL(W1,W2))

−1 (otherwise)
.

In the interior, it is given by the sign of the determinant. The fibration (5.24) in Theorem

5.6 shows that the boundary face Fq̄ ⊂ SH(W1,W2) has 2|q̄|+1 components. Since the

determinant of a block-diagonal matrix is the product of the determinants of each block,

precisely half of the components of Fq̄ lie in SL(W1,W2), given by those (e0, . . . er) ∈∏k+1
i=1 SH(U1,i, U2,i) for which

∏
i sgn(ei) = 1.

From now on, Fq̄ only refers to those connected components that lie in SL(W1,W2).

Theorem 5.6 now still holds for Fq̄ ⊂ SL(W1,W2) simply by replacing the normal fiber in

(5.24) with its corresponding positive part

(5.47)

(
k+1∏
i=1

SH(ki)

)
+

:= {(e0, . . . , er) ∈
k+1∏
i=1

SH(ki) |
∏
i

sgn(ei) = 1}.

5.2. Proof of correctness

Theorem 5.6 allows us to prove that the constructed space SL(n,R) is in fact a hd-

compactification of SL(n,R) with respect to Definition 5.1. We start with the inversion.

Theorem 5.7: The inversion map on SL(n,R) lifts to become a diffeomorphism on SL(n,R).

Proof. The only thing to show is that the inversion extends smoothly from the in-

terior of SL(n) to the boundary. Let γ be as in eq. (5.27) with all τqi > 0, i.e. the image

under the blow-down of an interior point in SL(n) near the interior of a boundary face

Fq̄. This γ is an element of SI(n). After rescaling, the corresponding element in SL(n) is
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given by

(5.48) g = det(γ)1/nγ = det(γ)1/n
r∑
i=0

(∏
i′>i

τqi′

)
ei.

Since g has block-diagonal form, inversion yields

g−1 = det(γ)−
1
n

r∑
i=0

(∏
i′>i

τq−1
i′

)
e−1
i

= det(γ)−
1
n

(
r∏
i=1

τ−1
qi

)
r∑
i=0

∏
i′≤i

τqi′

 e−1
i .

(5.49)

Scaling back to an unit norm element with norm, we get

(5.50) γ̃ = a

r∑
i=0

∏
i′≤i

τqi′

 e−1
i ,

where a is a smooth positive function with values close to 1, since the first summand e0

has norm close to 1 and all other summands have norm close to 0. Under the fibration

(5.24), γ is projected onto the double-flag

(5.51) {0} ⊂ Uα,r ⊂ Uα,r ⊕ Uα,r−1 ⊂ · · · ⊂ Uα,r ⊕ · · · ⊕ Uα,1 ⊂ Rn.

γ̃ is projected onto the double-flag given by the inverse flags of orthogonal complements

(5.52) {0} ⊂ Uα,1 ⊂ Uα,1 ⊕ Uα,2 ⊂ · · · ⊂ Uα,1 ⊕ · · · ⊕ Uα,r ⊂ Rn.

Therefore, γ̃ lies close to a different boundary face than γ. However, as a map between

flag manifolds, mapping the upper flags to the lower ones is smooth. The action on the

fibers, i.e. the inversion of the ei is also smooth. This shows that inversion is smooth up

to the boundary. �

Theorem 5.8: The left- and right action of SL(n) on itself extend smoothly to SL(n).

Therefore, the combined action

(5.53) SL(n)× SL(n) 3 (a, b) 7→
[
g 7→ agb−1

]
also extends smoothly. Furthermore, the following holds:

(1) The extended combined action (5.53) acts transitively on the interior of each

boundary face of SL(n).

(2) For a fixed (a, b) ∈ SL(n) × SL(n) the lift of the map g 7→ agb−1 is a diffeomor-

phism on SL(n) (as a manifold with corners).

Proof. First, the left- and right action of SL(n) on all of Hom(Rn,Rn) are smooth

after projection to SH and they fix each Sq. Therefore, both actions lift and are smooth on

the blown-up space SH(n). Also, for a fixed (a, b), the map g 7→ agb−1 is a diffeomorphism,

since it is smooth and its inverse is given by g 7→ a−1gb. The only thing left to show is

that the combined action of SL(n) acts transitively on each boundary face. To see this,

consider the combined action on a boundary face Fq̄. As shown above, Fq̄ fibers over a
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double flag-manifold with flags of the form

(5.54) {0} ⊂ Uα,r ⊂ Uα,r ⊕ Uα,r−1 ⊂ · · · ⊂ Uα,r ⊕ · · · ⊕ Uα,1 ⊂ Rn,

for α = 1, 2. Let p, q ∈ F ◦q̄ where p lies over the double flag corresponding to {Uα,j}
and q over {Ũα,j}. Now, elements γ in the interior that lie over the same fiber as p take

block-diagonal form as in (5.43). Let ei be the corresponding block-entries of p and ẽi of

q, respectively. SO(n) acts transitively on flag-manifolds (of any type) from the left and

the right. Therefore, there exists an element b ∈ SL(n) such that the right action of b

maps each Ũ1,i to U1,i and, analogously, an element a whose left action maps U2,i to Ũ2,i.

This reduces the proof to the case where p and q lie in the same fiber, i.e. Uα,j = Ũα,j .

Since γ has block-diagonal form, we may reduce further to each block, i.e. the right action

of SL(U1,j) and the left action of SL(U2,j) each on SI(U1,j , U2,j). The combined action on

the left and right is transitive. In fact, just one of these actions is sufficient. The right

action of eiẽ
−1 maps ei to ẽi, i.e. we may chose a = (ai) and b = (bi) such that

γ =
r∑
i=0

(∏
i′>i

τqi′

)
ei

7→ a−1γb =

r∑
i=0

(∏
i′>i

τqi′

)
aieibi =

r∑
i=0

(∏
i′>i

τqi′

)
ẽi.

(5.55)

Letting each τqi tend to zero shows that the extended action maps

(5.56) p 7→ apb−1 = q.

�

The proof above also implies the following Lemma about the orbits of the left- and right

action.

Corollary 5.9: The orbits of the right action of SL(n) on SL(n), restricted to the interior

of any boundary face, consist of all points with fixed right flag in the base (i.e. arbitrary

left flag and full fibers).

Proof. The only thing that is left to check is that the orbits are not even larger. In

fact, in the interior near a boundary face, the right action does also act on the right flag.

However, this vanishes at least to first oder at the boundary. To see this, let p ∈ Sq be

a point with corank exactly equal to q. Associated to p are the two (n − q)-dimensional

subspaces U1q, being its kernel, and U2q , being the orthogonal complement of its image.

These spaces are precisely the subspaces occurring in the flags associated to points in the

blown-up space lying over p. The action on the right by any element a ∈ SL may change

the kernel, but not the image, therefore fixing U2q. �

We can now move on to prove that we actually constructed an hd-compactification:

Theorem 5.10: SL(n,R) is an hd-compactification of SL(n,R).
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Proof. Recall the definition of an hd-compactification, Definition 5.1. The first part

of the definition has already been proven by Theorem 5.7, so we move on to the second part.

b-normality: The fact that the right action extends smoothly to SL(n) has also been

shown in Theorem 5.8. Now we need to show, that the right-invariant vector fields span

the b-normal space at each boundary point. Here, Theorem 5.8 helps again. We only need

to show b-normality of an interior point of each boundary face. Using Theorem 5.8, we

can then extend the result to all boundary points. To do this, it is sufficient to show the b-

normality of a neighborhood of a single point in the boundary face of maximal codimension

F = H1∩· · ·∩Hn−1, since such a neighborhood intersects the interior of all boundary faces.

In fact, not even a whole neighborhood is needed. Showing b-normality for elements near

a fixed point in F that lie in the same fiber (of the boundary decomposition near F , as in

(5.26)) is sufficient for the same reason. F fibers over the product of two copies of the full

flag-manifold F(Rn, n)×F(Rn, n) with discrete fiber (being the product of the two-point

spaces SH(V1,j , V2,j) where the Vi,j are one-dimensional). We choose the standard flag for

which the kth subspace is spanned by the first k elements of the standard basis of Rn for

both flags. This fixes an Iwasawa decomposition

(5.57) SL(n) = SO(n)AN

where A is the set of positive diagonal matrices and N is the set of upper diagonal matrices

with all diagonal entires one.

Note: A point in the flag-variety fixes a Iwasawa decomposition in the following way.

Consider any flag {Ui}. We may choose an orthonormal basis (xi) of Rn such that Uk is

spanned by x1, . . . , xk. In fact, such a basis is unique up to the negation of any single xi,

i.e. replacing it with −xi. Therefore, after a consistent choice of signs, these bases are

uniquely determined for each point in the flag variety. This orthonormal basis identifies

elements of SL(n) with matrices. In fact, we have seen in Chapter 4 that this actually

defines a Iwasawa decomposition SL(n) = SO(n)ApNp where Ap is the group of positive

diagonal matrices and Np consists of the upper diagonal matrices with all diagonal entries

one.

On a Lie algebra level the decomposition (5.57) corresponds to

(5.58) sl(n) = so(n)⊕ a⊕ n

where

so = {A | −A> = A},

a = {diag(a1, . . . , an) | tr a = 0},

n = {strict upper triangle matrices}.

(5.59)

The space n is spanned by the matrices Ei,j with a single non-zero entry 1 at (i, j) for i > j.

The Ei,j are joint eigenvectors of the adjoint action of a with {λi,j = [a 7→ (ai−aj)]} being

the root system. The simple roots are the λi := λi,i+1. These simple roots form a basis of
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the dual space a′. The corresponding dual basis of a, denoted by Λi, is characterized by

(5.60) λiΛj = δi,j .

Therefore, we have

(5.61) Λi = diag(1− i

n
, . . . 1− i

n︸ ︷︷ ︸
i times

,− i
n
, · · · − i

n︸ ︷︷ ︸
n−i times

).

We therefore have

(5.62) exp(tΛi) = diag(et(1−
i
n

), . . . , et(1−
i
n

), e−t, . . . , e−t).

Up to a scalar (t-dependent) multiple, this is equal to

(5.63) Di(t) := diag(et(
i
n
−1) exp(tΛi) = diag(1, . . . , 1, e−t

n
n−i , e−t

n
n−i ).

Now consider a point p in the boundary face of maximal codimension F = H1∩· · ·∩Hn−1

which has the standard flag of Rn as its left flag, i.e. U1,i = span{ei}. Let τ1, . . . τn−1 be

defined as above. Then, (τ1, . . . , τn−1, e1, . . . en−1) as in (5.26) are local fiber coordinates.

With respect to these coordinates, elements γ = (τ1, . . . , τn−1, e1, . . . en−1) that are in the

same fiber as p take diagonal form as in (5.43) (where r = n − 1). The right action of

Di(t) on γ does not change either flag. In fact, this action is given as the multiplication

of two diagonal matrices

(5.64) γDi(t) =



[
er

] [
τrer−1

]
. . . [

e−tτr · · · τn−iei
]

. . . [
e−tτr · · · τ1e0

]


.

In terms of the parametrization (5.26), the projection of γDi onto the unit sphere is given

by

(5.65) γDi = (τ1, . . . , τn−i−1, e
−tτn−i, τn−i+1, . . . , τn−1, e1, . . . en−1).

resulting from the fact that changing τn−i also changes λn−1. Therefore, the corresponding

vector field ∂t|t=0 (π(γDi(t))) is equal to −τn−i∂τn−i at γ. Since any boundary face has

such a γ as an interior point we can use Theorem 5.8 to conclude the b-normality at any

boundary point of SL(n). In fact, the analysis above allows for a more explicit result:

Let p ∈ Hi be a point in the hypersurface Hi (even in the boundary of Hi) with

corresponding subspaces U1, U2 of dimension dimUi = n−i. Let τi be a boundary

defining function of Hi. Let D ∈ g be the element in the Lie algebra, that is given

by (1 − n−i
n ) Id on U1 and −n−i

n Id on U>1 (note that this is in fact an element

of g since it has trace 0). Then, the corresponding right-invariant vector field is

equal to τi∂τi at p.
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b-transversality: Again, consider a point in the boundary face of maximal codimension

p ∈ F with both flags being the standard one in Rn and each ei = 1. We have already

seen that the right action of SL(n) acts surjectively on the left flag. Moreover, the right

action of SL on p is smooth, the identity maps p to itself and an open neighborhood of the

identity is mapped surjectively to an open neighborhood of the standard flag in the left

flag variety. Therefore, g = TId SL is mapped surjectively to the tangent space of the left

flag manifold at p. Analogously, the Lie algebra of the left action maps surjectively to the

tangent space of the right flag manifold. The b-normal space is in the span of the right

action as seen above. The fiber at p is discrete. Therefore, b-transversality is given at p.

Due to the smoothness of the map from SL× g× g to bTSL, the surjectiveness extends to

an open neighborhood of p. Since such a neighborhood contains an interior point of every

boundary face of SL we may use Theorem 5.8 to extend the result to the whole boundary

of SL(n).

Minimality: Again, we only need to show minimality near one point in the maximal

codimension boundary face F and then extend the result using the SL×SL action. Con-

sider the same p ∈ F and a point γ near p lying in the same fiber. As already seen in

(5.43), γ takes the form

(5.66) γ = diag(1, τn−1, ..., τn−1 · ... · τ1).

Setting σ1 := 1, σ2 := τn−1, ... σi := τn−1 · ... · τn−i+1 yields γ = diag(σ1, . . . , σn). Further-

more, for j > i we set

(5.67) σij =
σj
σi

= τn−i · · · τn−j+1.

We want to calculate the vector field corresponding to Eij ∈ n at γ. Since E2
ij = 0, we

have

(5.68) γ · exp(tEij) = γ · (Id +tEij) = γ + tσiEij =: a.

Recall that the tangent space at γ consist of the tangent directions in both flag manifolds

and the normal direction. Since the fiber is discrete, it contributes no additional tangent

directions. To start with, we want to understand the action on the right flag manifold.

Therefore, we need to understand the eigenspaces of the right polar decomposition. We

have

aa∗ = (γ + tσiEij)(γ + tσiEji)

= γ2 + tσ2
i σij(Eij + Eji) + t2σ2

iEii.
(5.69)

Notice that this matrix has block-diagonal form corresponding to the one-dimensional

spaces Uk = span{ek} for k 6= i, j and the single 2-dimensional space Ui⊕Uj . The matrix

aa∗ has only one eigenvalue near 1 with corresponding one-dimensional eigenspace Ũ1

(still being U1). The remainder lies in the orthogonal complement and, after rescaling,

has a single eigenvalue near 1 with corresponding one-dimensional eigenspace Ũ2, and so

forth. From (5.69) it follows that all Uk = span{ek} remain unchanged for k 6= i, j, while

Ui, Uj change into Ũj , Ũj . However, due to the block-diagonal form of aa∗, we still have

82



Ui ⊕ Uj = Ũj ⊕ Ũj .
After rescaling by σ−2

i , the matrix aa∗, restricted to Ui ⊕ Uj , takes the form

(5.70) σ−2
i aa∗|Ui⊕Uj =

(
1 + t2 σijt

σijt σ2
ij

)
=

(
1 σijt

σijt σ2
ij

)
+O(t2),

whose has eigenvalue near 1 is given by

(5.71) λ =
1

2

(
1 + σ2

ij +
√

(1− σ2
ij)

2 + 4σ2
ijt

2
)

+ +O(t2).

The corresponding eigenspace of λ, denoted by Ũi, is spanned by

(5.72) v1 =

(
1
2

(
1− σ2

ij +
√

(1− σ2
ij)

2 + 4σ2
ijt

2
)

σijt

)
=

(
1− σ2

ij

σijt

)
+O(t2).

Consequently, since Ũj has to be the orthogonal complement of this in Ui ⊕ Uj , we have

(5.73) Ũj = span

{(
−σijt

1− σ2
ij

)
+O(t2, σ2

ij)

}
.

Therefore, the action of Eij on the right flag restricted to Ui ⊕ Uj is given by

(5.74)

(
1− σ2

ij −σijt
σijt 1− σ2

ij

)
+O(t2).

The full flag manifold may be identified with SL(n)/NA and therefore the tangent space

at each point may be identified with so(n), again using the Iwasawa decomposition. At

least to first order in σij , the action above is identical to the action of

(5.75) b =

(
0 −σij
σij 0

)
∈ so(n)

since

(5.76) exp(tb) =

(
cos(jτt) − sin(σijt)

sin(σijt) cos(jτt)

)
=

(
1 −σijt
σijt 1

)
+O(t2).

To summarize, the vector field corresponding to Eij at γ projected to the tangent space

of the right flag manifold is equal (at least to first order in σij) to σij(Eji −Eij) ∈ so(n).

In fact, this is true for any γ, that is projected to an arbitrary flag p ∈ F(Rn), when Eij

is replaced with the corresponding matrix defined by the Iwasawa decomposition SL(n) =

SO(n)ApNp. Of course, Eij may also act on the left flag manifold. However, we have

already seen in Corollary 5.9 that all of these individual directions lie in the span of the

Lie algebra. For j = i + 1 this action vanishes at the boundary to first order, so the

minimality condition holds.

�

As mentioned in Corollary 5.9, the orbit of the right action of SL(n,R) that goes through

this point consists of all points with identical right flag in the base. All other orbits are

conjugate to this choice under the action of SO(n). The Iwasawa decomposition conjugates

under this action as well, yielding SL(n,R) = SO(n)ApNp for each right flag p. This

decomposition yields elements (Eij)p of the Lie algebra that satisfy the same calculation
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as above in their respective orbits of the right action. The (Eij)p depend smoothly on p,

so we can define the following.

Definition 5.11: We denote by Nij the smooth vector field, defined semi-globally on a

neighborhood of the boundary ∂SH(n), given on each orbit of the right action by the

(Eij)p ∈ sl defined as above.

These vector fields are not right-invariant themselves, but restricted to each fiber of the

fibrations (5.18), they are equal to a right-invariant vector field. Projected to the right

flag F(Rn, q̄) of a fibration (5.24), the vector field Nij is given by (Eji) − (Eij) ∈ so(n).

Thus, it is nonzero on this flag if only if ∃ q ∈ q̄ : n− j < q ≤ n− i. We also denote this

projected vector field on F(n) by Nij , abusing notation slightly.

As mentioned above, the vector fields σINI are themselves not part of the Lie algebra of

right-invariant vector fields. Furthermore, the Lie algebra is not a C∞-module. After all,

it is simply a finite-dimensional real vector space. For these reasons it is convenient to

consider a larger Lie algebra for the following analysis, that contains the right-invariant

vector fields and consists of those smooth vector fields that have the same asymptotic

behavior at the boundaries of SL(n).

Definition 5.12: We set Ve to be the C∞-span of the right-invariant vector fields on

SL(n,R).

Lemma 5.13: Let p ∈ F = H1 ∩ · · · ∩Hn−1 be a point in the boundary face of maximal

codimension. Let τ1, . . . τn−1 be the boundary defining functions as in (5.30). Then, Ve is

locally spanned near p by

(1) the radial vector fields τi∂τi,

(2) the vector fields spanning the fibers of the projection onto the right flag and

(3) the vector fields σijNij defined as above.

This result extends to all boundary faces Fq̄, via the right action of SL(n). The lemma

above may be formulated analogously, except only the σijNij , that do not vanish on the

partial flag manifold Fq̄, are relevant. From the calculation above it follows, that these

are precisely those for which σij vanishes on Fq̄.

Lemma 5.14: Let p be an interior point of the boundary face Fq̄ = Hq̄1 ∩ · · · ∩ Hq̄k

corresponding to some multi-index q̄. Let τq̄1 , . . . τq̄k be the boundary defining functions as

in (5.30). Then, Ve is locally spanned near p by

(1) the normal vector fileds τqi∂τqi ,

(2) the vector fields spanning the fibers of the projection onto the right flag manifold

Fq̄ × [0, ε)k → Fq̄ and

(3) the vector fields σijNij for all j > i such that the condition ∃ qk ∈ q̄ : n − j <
qk ≤ n− i is satisfied.

Since the vector fields Nij are given explicitly at each point by elements of the Lie algebra,

we may calculate their commutators by matrix-calculation. To write down the commuta-

tors compactly, it is convenient to switch to a different indexing scheme for the Nij . Since
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1 ≤ i < j ≤ n, we may associate the integer interval Iij = {n− j + 1, . . . n− i} to such a

tuple (i, j) and use the set of these intervals as a new index set

(5.77) I = {Iij | 1 ≤ i < j ≤ n}.

In other words, I is the set of all subintervals of {1, . . . , n− 1}. Furthermore, we set

(5.78) Iq̄ := {I ∈ I | I ∩ q̄ 6= ∅} ⊂ I

and set σI = σIij = σij . Now, the lemma above becomes

Lemma 5.15: Ve is as Lie algebroid. Let p be a point near the boundary face Fq̄ =

Hq̄1 ∩ · · · ∩ Hq̄k corresponding to some multi-index q̄. Let τq̄1 , . . . τq̄k be the boundary

defining functions as in (5.30). Then, Ve is locally spanned by

(1) the normal vector fields τqi∂τqi ,

(2) the vector fields spanning the fibers of the projection onto the right flag manifold

Fq̄ × [0, ε)k → Fq̄ and

(3) the vector fields σINI for all I ∈ Iq̄.

Moreover, we obtain the following commutator result:

Lemma 5.16: Let I, J ∈ I. Then, the vector fields NI satisfy

(5.79) [NI , NJ ] =


NI\J if J ⊂ I and I \ J is an interval,

NI∪J if I and J are adjacent but non overlapping,

0 otherwise

modulo vector fields tangent to the fibers fibers of Fq̄ × [0, ε)k → Fq̄. Since, by definition,

NIτj = 0 for all I, j, we additionally have

(5.80) [σINI , σJNJ ] =


σI∪JNI\J if J ⊂ I and I \ J is an interval,

σI∪JNI∪J if I and J are adjacent but non overlapping,

0 otherwise.

For usage later on, it is convenient to consider the subbundles of the tangent bundle

spanned by the NI :

Each NI spans a one-dimensional subbundle of TFq̄ for each q̄, such that q̄∩I 6= ∅, denoted

by EIq̄ . These subbundles are independent and span TFq̄. Thus, they stratify TFq̄. The

commutators of these subbundles are, as in (5.79), given by

(5.81) [EIq̄ , E
J
q̄ ] =


E
I\J
q̄ if J ⊂ I,

EI∪Jq̄ if I and J are adjacent but non overlapping,

0 otherwise.

The projection πq̄,q̄′ : Fq̄ → Fq̄′ (q̄ ≥ q̄′) maps each EIq̄ with q̄′ ∩ I 6= ∅ onto EIq̄′ and each

EIq̄ with q̄ ∩ I 6= ∅, but q̄′ ∩ I = ∅, onto 0.

The analysis of the commutators above shows that Ve is in fact a Lie algebra and, by

definition, it is a C∞-module.
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CHAPTER 6

Calculus on SL(3,R)

The goal of this chapter is to develop an elliptic theory for differential operators on

SL(3,R), lifted to the compactification SL(3,R), that lie in the universal enveloping alge-

bra of Ve. As seen in the last chapter, these include right-invariant differential operators.

Of course the same can be done for left-invariant operators. The main concern of this

chapter is the resolution of Ve. We start by summarizing the results of the last chapter

for the case of SL(3,R).

6.1. Geometry of SL(3,R)

Let us summarize the results above for the case of SL(3): Recall that SL(3) is only one of

the two connected components of SH(3).

SL(3) is an eight-dimensional manifold with corners that has two boundary hypersurfaces

H1, H2, meeting in a codimension 2 boundary face F = H1 ∩H2. We will summarize the

necessary results for the calculus about the geometry and the Lie algebra Ve at each of

the boundary faces.

The boundary face F : We know that F fibers over the product of two copies of the

full flag manifold F(R3) × F(R3), which we parameterize using two sets of orthogonal

one-dimensional spaces U1,j and U2,j for j = 1, 2, 3 such that the two flags are given by

(6.1) Uα,1 ⊂ Uα,1 ⊕ Uα,2 ⊂ Uα,1 ⊕ Uα,2 ⊕ Uα,3 = R3 for α = 1, 2.

The fiber of F → F(R3) × F(R3) over such a double flag consist of those 4 points in

the 8-point space
∏3
j=1 SI(U1,j , U2,j) such that γ in (5.27) has positive determinant. F

is six-dimensional, with each of the two factors of the base being three-dimensional and

the fiber being discrete. F also fibers over only the right flag manifold, where the left one

becomes an additional factor in the fiber. We denote this fibration

(6.2)

{+++, +- -, -+-, - -+} × F(R3) F

F(R3)

φF

by φF with now both base and fiber being three-dimensional.

Let τ1, τ2 be the boundary defining functions of H1, H2 respectively, as defined before by

the normal fibration (5.16). Thus, near F , SL(3) takes the form [0, ε)2 × F (see Figure

6.1).
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H1

H2

F

Figure 6.1. A visualization of SL(3) near F .

Locally near a point p ∈ F let z1, z2, z3 be local coordinates tangential to the fibers of

φF . Recall the local characterization of Ve given in Lemma 5.15. In this chapter the three

vector fields N{1}, N{2}, N{1,2} are simply denoted by N1, N2, N3, respectively. Then

Lemma 5.15 states that Ve is locally spanned by the vector fields

(6.3) τ1∂τ1 , τ2∂τ2 , ∂z1 , ∂z2 , ∂z3 , τ1N1, τ2N2, τ1τ2N3

with commutator satisfying [τ1N1, τ2N2] = τ1τ2N3.

Some additional structure of F : The geometry of F may be understood even

more directly: We may parameterize F by tuples (U1,j , U2,j , ej) where the Uα,j

are as above and the ej are elements of the two-point spaces ej ∈ SI(U1,j , U2,j).

Consider the map

(6.4)
SO(3)× SO(3) −→ F

(a, b) 7→ (U1,j = a(bj), U2,j = b(bj), ej = ab−1|U1,j )

where bj is the subspace of Rn spanned by the j-th standard vector.

Notice that this map is not 1− 1 but in fact 4− 1 where multiplying both a and

b from the right with the same element of Z = {d = diag(±1,±1,±1) | det d =

1}, |Z| = 4, yields the same image. This identifies F with

(6.5) F = SO(3)×Z SO(3)

where Z acts diagonally. This has two fibrations, on the left and right, over

SO(3)/Z, which bases are the left and right flag manifold.

The boundary face H1: Recall Theorem 5.5 and Corollary 5.9. H1 fibers over the

right Grassmannian φ1 : H1 → Gr(R3, 2) which is two-dimensional. Recall that there

is a natural projection π1 : F(R2) → Gr(R3, 2) given by forgetting the one-dimensional

subspace. The fibrations φ1, φF agree on F in the sense that

(6.6) φ1|F = π1 ◦ φF .

SO(3) acts on Gr(R3, 2). The vector field generated by N2, as a vector field on Gr(R3, 2).

The other two vector fields N1, N3, as vector fields on Gr(R3, 2), generate linear indepen-

dent vector fields on Gr(R3, 2) that therefore span its tangent space everywhere.

For any interior point p ∈ H1 let z1, . . . z4 be local coordinates tangent to the fibers. Then

Ve near p is spanned by

(6.7) τ1∂τ1 , ∂zi , τ1N1, τ1N3.

88



The boundary face H2: The situation is analogous. H2 fibers over the right Grassman-

nian φ2 : H2 → Gr(R3, 1) which is two-dimensional. Let π2 : F(R2) → Gr(R3, 1) again

denote the projection. We then have

(6.8) φ2|F = π2 ◦ φF .

For any interior point p ∈ H2 let z1, . . . z4 be local coordinates tangential the fiber. Then

Ve near p is spanned by

(6.9) τ2∂τ2 , ∂zi , τ2N2, τ2N3.

We may summarize the connection between the three fibrations φF , φ1, φ2 with the fol-

lowing commutative diagram:

(6.10)

H1 F H2

Gr(R3, 2) F(R3) Gr(R3, 1)

φ1 φF φ2

π1 π2

One may visualize the fibers of the different fibrations as in Figure 6.1, where the fibers

on F are represented by points (being the intersection of the different fibers of φ1 and φ2).

Recall that the three vector fields N1, N2, N3, as vector fields on the base, span the tangent

space of F(R3). The two vector fields N1, N3 also span the tangent space of Gr(2) under

projection by π1 and N2, N3 span the tangent space of Gr(1) under projection by π2. Thus,

near F , we can choose local coordinates y1, y2, y3 that are the pullback of coordinates on

F(R3) such that locally N3 = ∂y3 and

(1) either y1, y3 are pullbacks of coordinates on Gr(R3, 2) and thusN1 ∈ span{∂y1 , ∂y3}
(2) or y2, y3 are pullbacks of coordinates on Gr(R3, 1) and thus N2 ∈ span{∂y2 , ∂y3}.

We can not do both simultaneously. Furthermore, we can not trivialize N1, N2, N3 simul-

taneously, since [N1, N2] = N3.

H1

H2

F

Figure 6.2. A visualization of how the fibers on H1 and H2 intersect.

6.2. The resolved single space

We want to resolve Ve, i.e. we want to construct a resolution of the double space such

that the lift of Ve from either factor becomes smooth and transversal to the diagonal.
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Additionally, the two maps back to the single space (given first by blow-down and then by

projection from either the left or right) are required to be b-fibrations. The whole process

is governed by (6.3).

However, before passing to the double space, we start by blowing up F in SL(3). Clearly,

one should ask why we do so. The main reason for this is that the fibrations φ1, φ2 of the

two hypersurfaces H1, H2 of SL(3,R) are not iterated. This means that, restricted to their

intersection F , they do not form a tower. However, as described above, the intersection

of the fibers of the two fibrations φ1, φ2 restricted to F are the fibers of a common larger

fibration φF . The blow-up of F resolves this and the blown-up space becomes a manifold

with fibered corners. What this means exactly is described below.

Manifolds that carry such a structure have gained a lot of interest in recent years, for

example in [6]. This resolution of the fibrations is used extensively in the resolution of Ve.
This does not mean that a resolution is impossible without this extra step. However, any

such resolution would certainly come with its own challenges compared to the approach

taken here.

We set

(6.11) X = [SL(3);F ]

and denote the new boundary hypersurface by HF (see Figure 6.3).

H1

H2

HF

Figure 6.3. A visualization of the resolved single space X.

The fibrations φF : F → F(R3) lifts to become a fibration φHF : HF → F(R3) where the

fiber gains an additional factor given by the inward pointing part of the spherical normal

bundle of F . The three vector fields Ni lift to HF to become independent vector fields

spanning (under projection) the tangent space of the base of φHF .

Both φ1 and φ2 lift as well by composing with the blow-down map which is a diffeomor-

phism on H1 and H2. By a slight abuse of notation, we denote the lifts of H1,2 together

with the fibrations φ1,2 again by H1,2, φ1,2, yielding the following commutative diagram

(6.12)

H1 ∩HF HF ∩H2

H1 HF H2

Gr(R3, 2) F(R3) Gr(R3, 1)

φ1 φF φ2

π1 π2

.
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Near HF and away from H1 we may construct new local coordinates form the old ones

used in (6.3) by replacing τ2 with the projective coordinate t = τ2/τ1. The lifts of the

spanning vector fields in (6.3) then become

(6.13) τ1∂τ1 , t∂t, ∂zi , τ1N1, tτ1N2, tτ
2
1N3

(for i = 1, . . . , 4) up to additional terms that lie in the span of the remaining ones and

thus can be omitted. Near HF and away from H2 the situation is completely analogous

by introducing the projective coordinate t2 = τ1/τ2:

(6.14) t2∂t2 , τ2∂τ2 , ∂zi , τ2ρN1, τ2N2, t2τ
2
2N3.

The lift of of Ve on X is not a C∞-module, since new variables have been introduced

through blow-up. Thus we move to an even larger Lie algebra.

Definition 6.1: Let VSL denote the C∞-span of the lift of Ve on X.

VSL is a Lie algebroid and now locally spanned over C∞ by the vector fields (6.13). This

implies that VSL consist of the sections of a vector-bundle SLTX (see for example [22])

that is naturally associated to VSL, yielding VSL = C∞(X, SLTX). The bundle SLTX

is equipped with a map into the ordinary b-vector bundle ιSL : SLTX → bTX that is

induced by the inclusion VSL → Vb. The universal enveloping algebra of VSL is the ring of

differential operators denoted by Diff∗SL that is locally given by operators L of the form

L =
∑

λa,b,ci,d,e,f (τ1∂τ1)a(t∂t)
b(∂zi)

ci(τ1N1)d(tτ1N2)e(tτ2
1N3)f .(6.15)

Notice that the order of different factors does change the coefficients, since they do not

commute. As usual, this space is filtered by differential operators of degree m, denoted by

DiffmSL.

Furthermore, DiffmSL has several natural subalgebras that arise from the construction of

the space X. Differential operators on SL(n) arising from Ve lift to become elements of

DiffmX . They form a subalgebra of DiffmSL, denoted by Diffme . Secondly, there is an even

smaller subalgebra of differential operators arising form right-invariant vector fields on

SL(n), denoted by Diffmri , yielding

(6.16) Diffmri ⊂ Diffme ⊂ DiffmSL .

There is a symbol map that associates to each L ∈ DiffmSL, given by a homogeneous

polynomial of degree m on the fibers of SLT ∗X, denoted by SLσm(L). Locally the vector

fields (6.13) yield a basis of SLTpX. Let ξ, η, ζi, ϑj denote its dual basis in SLT ∗pX. If L

has the local form (6.15), then we have

SLσm(L)(p, (ξ, η, ζi, ϑj)) =∑
a+b+

∑
ci+d+e+f=m

λa,b,ci,d,e,f (ξ)a(η)b(ζi)
ci(ϑ1)d(ϑ2)e(ϑ3)f .(6.17)

This yields the notion of a elliptic operator:

Definition 6.2: We say L ∈ DiffmSL is elliptic, if for all p ∈ X the symbol satisfies
SLσm(L)(p, ·) 6= 0 on SLT ∗pX \ {0}.
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The next goal is the construction of a resolution of the double space X2. As a first step

in this resolution, we move to the so called symmetric lexicographic blow-up. Since we will

need it again in the resolution of the triple space and in the discussion of SL(n,R), we

define it in general in the next section.

6.3. Symmetric lexicographic blow-up

Setting: Consider a manifold with corners M that has a partial order on the set of bound-

ary hypersurfaces (M1(M), ≤) such that whenever two hypersurfaces F,G ∈M1(M) have

non empty intersection F ∩G 6= ∅, they are comparable.

We will define the symmetric lexicographic blow-up of the double- and triple space M2,

M3, denoted by M2
lex, M3

lex, respectively, although the same concept translates to any

power Mk. We then proceed to show the existence of projections maps M3
lex →M2

lex.

Symmetric lexicographic blow-up of M2: Let the set of hypersurfaces of M be

indexed by some index I, thus givingM1(M) = {Ha | a ∈ I}. Consider those codimension

two faces of M2 that are given by the product of two hypersurfaces of M

(6.18) M2(M2) ⊃ P := {Hab = Ha ×Hb | a, b ∈ I}.

There is a partial order on P given by Hab ≤ Ha′b′ if and only if Ha ≤ Ha′ and Hb ≤ Hb′ .

A linear extension of this partial order on P is a total order on P that is compatible with

this partial order. Such an extension always exist for a partial order on a finite set. It can

be constructed by starting with any minimal element og P and continuing iteratively. Of

course, such a linear extension is not unique. Let P be an exhaustive list of all elements in

P that is ordered increasingly according to any linear extension of the partial order on P .

This is equivalent to the fact that whenever Hab ≤ Ha′b′ , then Hab appears before Ha′b′ in

P. We then define

(6.19) M2
lex = [M2;P].

Of course we have to check that this is unique, which is shown in the next Lemma.

Lemma 6.3: The resolution M2
lex is independent of the choice of linear extension. To

be precise, whenever P, P̃ are two comprehensive lists of P that are ordered according to

two linear extensions of the partial order in P , then the identity on M lifts to become a

diffeomorphism

(6.20) [M2;P] ∼= [M2; P̃].

Proof. Any two linear extensions P, P̃ can be transformed into each other by swap-

ping neighboring, non comparable (with respect to the partial order) elements.

Let Hab, Ha′b′ ∈ P be not comparable. By definition of the partial order on P , this can

happen in two cases: Either Ha, Ha′ or Hb, Hb′ are not comparable. In this case they

have to be disjoint and thus Hab, Ha′b′ are disjoint. Therefore the order of blow-ups can

be switched if they are adjacent in P. If both Ha, Ha′ and Hb, Hb′ are comparable, we
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denote by Hã, Hb̃ the smaller one of the two, respectively. Then we have Hãb̃ ≤ Hab and

thus Hãb̃ is blown up before Hab, Ha′b′ . Furthermore Hab ∩ Ha′b′ ⊂ Hãb̃ with neither of

them being included on its own. Thus the lifts of Hab, Ha′b′ are disjoint and thus their

order of blow-up may be switched.

�

Lemma 6.4: The blow-down map β : M2
lex → M2 composed with either the left or right

projection π : M2 →M is a b-fibration.

Proof. The map π ◦ β is an interior b-map. We have to check that its b-differential

at each point is surjective both as a map between the b-tangent and the b-normal spaces.

The first statement is clear, since it is the case for β and π. The second statement is also

easy to see since any ff(Hab) is mapped to either Ha or Hb (depending on which projection

π is used). �

Symmetric lexicographic blow-up of M3: Similarly, consider the codimension three

faces of M3 that are the products of three hypersurfaces of M

(6.21) M3(M2) ⊃ C := {Habc = Ha ×Hb ×Hc | a, b, c ∈ I}

with partial order being defined analogously. Also consider the codimension two faces of

M3 which are the product of two hypersurfaces of M and an additional factor M . For a

simpler notation, we write M = H0 (and assume 0 is not an element of the index set I).

Set

(6.22) E := {Habc = Ha ×Hb ×Hc | precisely one of the a, b, c is 0}.

Again, there is a partial order on E given by the partial order on M1(M) together with

H0 = M added as a new greatest element. In fact, this yields a partial order on C ∪ E.

No element of E can be smaller then an element of C.

Analogously to before, let E be a exhaustive list of E that is ordered according to a linear

extension of the partial order on E. Let C be an exhaustive list of C that is ordered

according to a linear extension of the partial order on C. We define

(6.23) M3
lex = [M3; C, E ].

The fact that this is well-defined follows analogously to the case of M2
lex.

Projection maps: The set E decomposes into three parts

ELM = {Habc ∈ E | Hc = M},

ELR = {Habc ∈ E | Hb = M},

EMR = {Habc ∈ E | Ha = M}.

(6.24)

Let ELM , ELR, EMR be exhaustive lists of these three sets, each of which being ordered

with respect to a linear extension of the partial order on E.
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Lemma 6.5: We have

M3
lex = [M3; C; E ] ∼= [M3; C; ELM ; ELR; EMR]

∼= [M3; ELM ; C; ELR; EMR]

∼= [M3; ELR; C; ELM ; EMR]

∼= [M3; EMR; C; ELM ; ELR]

(6.25)

Proof. The first equality follows form the fact that any two faces from different Eα

have intersection contained in one of the codimension three faces in C. Therefore, they

lift to become disjoint when blowing up C. By symmetry, we only need to prove the first

one of the last three equalities. For this, we successively commute the first element of

ELM with all elements in C, then the second one, and so on. For this, it suffice to show

the following. The blow-ups of Habc and Hij0 commutes after all Ha′b′c′ ≤ Habc and all

Hi′j′0 ≤ Hij0 have already been blown up. We show this by distinguishing between three

cases.

(1) If Ha = Hi and Hb = Hj , then Habc ⊂ Hij0 and since no other F with Habc ⊂ F
is blown up before, the inclusion is also true for the lifts of Habc and Hab0. Thus

their blow-ups commutes.

(2) If either Ha ≥ Hi (or analogously Hb ≥ Hj), then Habc∩Hij0 ⊂ Hibc with neither

of them being contained and Hibc ≤ Habc. Thus Habc and Hij0 lift to become

disjoint through the blow-up of Hibc.

(3) Lastly, consider the case Ha ≤ Hi and Hb ≤ Hj with at least one of these

inequalities being strict, lets say Ha 6= Hi. If additionally Hb 6= Hj , then Habc and

Hij0 are disjoint. Otherwise Hab0 ≤ Hij0 and Habc ⊂ Hab0 ( Fa(Habc + Hij0) =

H0j0 and thus Hab0 separates Habc and Hij0, yielding that their lifts intersect

transversally. Furthermore, no boundary face containing Habc is blown up before

Hab0.

�

Now the definition of the projection maps are clear. We write it down for the first case

(corresponding to LM): Denote by γLM : M3
lex → [M3; ELM ] the collective blow-down of

C; ELR; EMR. We now have [M3; ELM ] ∼= M2
lex ×M . Denote by φLM : M2

lex ×M → M2
lex

the corresponding projection. Then set

(6.26) πLMlex : M3
lex →M2

lex, π
LM
lex = φLM ◦ γLM .

Corollary 6.6: The three lifted projection maps παlex : M3
lex →M2

lex for α = LM,LR,MR

are b-fibrations.

Proof. By symmetry, we only need to prove the case α = LM . Both γLM and

φLM are surjective b-maps and b-submersion and thus, so is their composition. By a

general theorem about b-fibrations (see e.g. [19]), the only thing left to show is that no

hypersurface of M3
lex is mapped to a boundary face of codimension 2 or higher by πLMlex . For

any Hab0 ∈ ELM the image of the corresponding hypersurface ff(Hab0) ⊂ M3
lex under the

lifted projection πLMlex is simply ff(Hab) ⊂ M2
lex. For any Ha,b,c ∈ C; EMR; ELR the image
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of the corresponding hypersurface ff(Ha,b,c) under πLMlex is given by the lift of Habc ⊂ M3

under [M3; ELM ]→M3. Since [M3; ELM ] ∼= M2
lex ×M and by the naturality of blow-up,

this lift is given by the lift in each factor. Thus, after projection to the first factor, the

image of ff(Ha,b,c) is given by the lift of Hab ⊂M2 to M2
lex, which is always a hypersurface

of M2
lex. �

6.4. The resolved double space

Let us return to SL(3). Recall that X = [SL(3);F ]. The goal of this section is to con-

struct a resolution of X2 via a series of blow-ups so that the diagonal 4 ⊂ X2 lifts to

a p-submanifold and VSL lifts to become smooth and transversal to the lifted diagonal.

Furthermore, we require the blow-down map composed with the projection from either

the left or right back to X to be a b-fibration. The first step in this resolution will be the

symmetric lexicographic blow-up.

Consider the lifts (from the left or right factor) of these vector fields to the double space

X2. We fix the notation 4U = {(p, p) | p ∈ U} ⊂ X2 for any U ⊂ X. Furthermore, for

any local coordinate function x on X we denote the lifts to the left and right to X2 by x

and x′, respectively, although this is a slight abuse of notation. Note that

(6.27) 4X ∩∂X2 = 4H1 ∪4HF ∪4H2

where

(6.28) 4H1 ∩4HF 6= ∅ , 4HF ∩4H2 6= ∅ , 4H1 ∩4H2 = ∅.

We move to the symmetric lexicographic blow-up of X2. The partial order of the boundary

faces ofX is given by the size (dimension) of the fibers defined on it, meaningH1, H2 ≥ HF .

Thus the symmetric lexicographic blow-up is given by

(6.29) X2
lex := [X2;H22;H11;H21;H12;H2F ;HF2;H1F ;HF1;HFF ]

with blow-down map denoted by

(6.30) β1 : X2
lex → X2

where Hab = Ha × Hb as before. We call the new resulting boundary hypersurfaces

ff(Hab). The lift of the vector fields VSL from either the left or the right are tangential to

the boundary faces Hab, since VSL ⊂ Vb. Therefore, they lift smoothly to X2
lex. From (6.27)

we can conclude that the lift of the diagonal (which we again denote by 4X
1) is resolved

to a p-submanifold. It intersects the boundary of X2
lex in ff(H11), ff(H22) and ff(HFF ),

yielding an interior p-submanifolds in each of these three faces. All other blow-ups in

(6.29) occur away from the (lift of the) diagonal. In other words, near the diagonal the

symmetric lexicographic resolution and the b-resolution of the double space are identical.

Since we are mainly interested in the behavior of VSL near the diagonal, one should ask

the question whether or not the remaining blow-ups in (6.29) are necessary. While it is

1This is a slight abuse of notation. The same will be done in the second step of the resolution. From the
context it should always be clear which diagonal is meant.
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true that the lifted diagonal does not intersect with these front faces, they do alter the

boundary of ff(H11), ff(H22) and ff(HFF ), which therefore changes the model operators in

a potential large calculus.

We will analyze the lift of VSL on each of the three new boundary hypersurfaces that

intersect the diagonal individually.

On ff(HFF ): Recall from (6.12) that HF has a fibration HF → F(R3). Thus, we have a

fibration HFF → F(R3)2. However, HFF is blown up last in X2
lex, thus we are interested

in the structure of the lift of HFF after all previous blow-ups. By the naturality of blow-

up, the lift of HFF after blow-up of Hab is equal (diffeomorphic) to [HFF ; (HFF ∩Hab)].

Again recall from (6.12) that for both i = 1, 2 the intersection Hi ∩HF ↪→ HF → F(R)

fibers over the same base. From the local product structure of the fibration it follows

that the blow-up [HFF ; (HFF ∩Hab)] occurs in the fiber, thus the lift of HFF again fibers

over F(R)2 with now slightly altered fiber (through blow-up). The new front face ff(HFF )

also fibers over this base with the fiber gaining an additional factor, namely the spherical

normal bundle of HFF . We denote this fibration by φFF :

(6.31)

ff(HFF )

F(R3)×F(R3)

φFF .

Let p ∈ ff(HFF )◦. Then β1(p) lies in H◦FF . Local coordinates on X near F may be

pulled back from the left and right to give local coordinates on X2. Starting with local

coordinates on X as in (6.13), we can chose local coordinates on X2 centered at β1(p) given

by t, t′, τ1, τ
′
1, zi, z

′
i together with some coordinates yi, y

′
i which are pullbacks of coordinates

on left and right copies of the flag manifold in the base. In these coordinates H2
F is given

locally by {τ1 = τ ′1 = 0}. Again, we may construct new coordinates on the blown-up space

from the old ones by taking

(6.32) t, t′, τ1, ψ = τ ′1/τ1, zi, z
′
i, yi, y

′
i,

where ψ is tangent to the fibers of the spherical normal bundle of HFF . In these coordi-

nates, the lift from the left of the spanning vector fields (6.13) become

(6.33) τ1∂τ1 − ψ∂ψ, t∂t, ∂zi , τ1N1, tτ1N2, tτ
2
1N3.

In term of these local coordinates, the lift of the diagonal restricted to ff(HFF ) is given

by ψ = 1, t = t′, z = z′, y = y′. Therefore, on 4X ∩ ff(HFF ) the first vector fields

τ1∂τ1 −ψ∂ψ, t∂t, ∂zi in (6.33) do not vanish and are tangent to the fibers of φFF and the

last three vector fields still vanish.

On ff(H22): Analogously to before, recall from (6.12) that H2 has a fibration H2 →
Gr(R3, 1) and thus we have a fibration H22 → (Gr(R3, 1))2, which in return yields a

fibration of ff(H22). However, unlike in the case of ff(HFF ), there are blow-ups occurring

in the construction of X2
lex after H22 is blown up. These blow-ups restricted to ff(H22)
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again occur in the fibers, thus yielding a fibration of the final front face

(6.34)

ff(H22)

Gr(R3, 1)×Gr(R3, 1)

φ22 .

Using local coordinates as in (6.9) and their dashed counterparts, we may chose the pro-

jective coordinates

(6.35) τ2, ψ2 = τ ′2/τ2, z1, . . . , z4

in which the lift of the vector fields (6.9) become

(6.36) τ2∂τ2 − ψ2∂ψ2 , ∂zi , τ2N2, τ2N3.

Again, with respect to these local coordinates the lift of the diagonal4X is given by ψ2 = 1.

Near ff(HFF ) ∩ ff(H22): We may use local coordinates as in (6.13) near a point p ∈
H2 ∩ HF to get local coordinates t, t′, τ1, τ

′
t , zi, z

′
i, yi, y

′
i near a point in H22 ∩ HFF such

that locally HFF = {τ1 = τ ′1 = 0} and H22 = {t = t′ = 0}, so we may chose the projective

coordinates

(6.37) t, ρ = t′/t, τ1, ψ = τ ′1/τ1, zi, z
′
i, yi, y

′
i.

In this coordinate system, the spanning vector fields take the form

(6.38) τ1∂τ1 − ψ∂ψ, t∂t − ρ∂ρ, ∂zi , τ1N1, tτ1N2, tτ
2
1N3.

The diagonal is locally given by {ψ = ρ = 1}.

On ff(H11): On ff(H11), the situation is completely analogous where it has a fibration

(6.39)

ff(H11)

Gr(R3, 2)×Gr(R3, 2)

φ11

and local coordinates constructed using (6.14) as a starting point instead of (6.13).

Again, we get a commutative diagram showing the connection between the fibrations:

(6.40)

ff(H11) ∩ ff(HFF ) ff(HFF ) ∩ ff(H22)

ff(H11) ff(HFF ) ff(H22)

(Gr(R3, 2))2 (F(R3))2 (Gr(R3, 1))2

φ11 φFF φ22

π1 π2
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In the local coordinates (6.37) we have ff(HFF ) = {τ1 = 0} and ff(H22) = {t = 0}. Now

let us check how the lift of the diagonal meets the boundary:

4X ∩ ff(HFF ) = {τ1 = 0, ψ = 1, ρ = 1, y = y′, z = z′}

4X ∩ ff(H22) = {t = 0, ψ = 1, ρ = 1, y = y′, z = z′}.
(6.41)

The last three vector fields in (6.38) still vanish on 4X ∩ ffF and the last two still vanish

on 4X ∩ff2. The situation at ff1 is analogous where the third to last and last vector fields

still vanish. Therefore, we need a second step in the resolution where we will blow up a

p-submanifold in each of the ff(Hii). Again, we analyze the situation first on ffF and then

on ff2. For this we use local coordinates as in (6.37).

On ff(HFF ): Consider the flow-out of 4X ∩ ff(HFF ) under the lift of VSL, denoted by

SF . The vector fields in (6.38) that do vanish on ff(HFF ) are precisely the last three, all

others do not. Thus we get

(6.42) SF := (φFF )−1(4F(R3)) ⊂ ff(HFF ).

Since 4F(R3) ⊂ F(R3)2 is clearly a p-submanifold, so is SF ⊂ ff(HFF ). As a submanifold

of ffF , it has codimension 3. In local coordinates as in (6.37) the flow-out is

(6.43) SF = {τ1 = 0, y = y′}.

Notice that the last vector field tτ2
2N3 vanishes to second order on SF , so we need to blow

it up parabolically.

Also note that SF is in fact the lift under the symmetric lexicographic blow-up of a sub-

manifold (also denoted by) SF ⊂ HFF , which is again the fiber diagonal under the fibration

HFF → F(R3)2, i.e. the preimage of 4F(R3) under HFF → F(R3)2. We may interpret

SF as a submanifold of X2
lex or X2 depending on the context.

On ff(H22): Analogously, the flow-out of 4X ∩ ff(H22) under VSL is a p-submanifold of

ff2 given by

(6.44) S2 = (φ22)−1(4Gr(R3, 1)) ⊂ ff(H22).

As a submanifold of ff2, it has codimension 2. In the local coordinates (6.37) it takes the

form

(6.45) S2 = {t = 0, y2 = y′2, y3 = y′3}.

This blow-up does not need to be parabolic, since the two vanishing vector fields N2, N3

both vanish to first order.

Again, notice that S2 is the lift of a p-submanifold S2 ⊂ H22 ⊂ X2 under lexicographic

blow-up, given by the fiber diagonal with respect to the fibration of H2.
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On ff(H11): Again, the situation is analogous to the one at ff2. The flow-out of 4X ∩
ff(H11) under VSL is given by

(6.46) S1 = (φ11)−1(4Gr(R3, 2)) ⊂ ff(H11).

As a submanifold of ff1 it has codimension 2. Again, this blow-up will be radial, since

the two vanishing vector fields N1, N3 both vanish to first order. S1 is the lift under a

submanifold S1 ⊂ H11 ⊂ X2 under lexicographic blow-up, given by the fiber diagonal with

respect to the fibration of H1.

Quasihomogeneous structure at SF : As mentioned earlier, the blow-up of SF needs

to be parabolic, since the last vector field tτ2
2N3 vanishes to second order on SF . Since

SF ⊂ ff(HFF ) is the fiber diagonal with respect to the fibration ff(HFF ) → F(R3)2, its

normal bundle (as as submanifold of ff(HFF )) is identified with the tangent bundle of

the base TF(R3). The three vector fields N1, N2, N3 (without the prefactor), projected

to this normal bundle, span the normal bundle everywhere. Together with the normal

vector field ∂τ1 , they span the normal bundle of SF as a submanifold of X2
lex. Thus, we

may define a quasihomogeneous structure at SF by associating a negative weight to each

of these vector fields, as in Proposition 2.39. We associate the weight −2 to N3 and −1

the the remaining ones. This is a parabolic structure, since the largest (negative) weight

appearing is 2. We denote the resulting quasihomogeneous structure by ΠF .

The second step in the resolution of X2 will therefore consist of blowing up the three

submanifolds Si ⊂ ff(Hii) where i = 1, 2, F . The Si are neither disjoint (except S1 and S2)

nor do they meet transversally, as can be seen from the coordinate representation (6.43)

and (6.45), so the order matters.

One may visualize the situation as in Figure 6.4.

S2

S1

SF

Figure 6.4. A schematic visualization of the three submanifolds S1, S2, SF .

As with the lexicographic blow-up, we choose the same order and blow up the ones with

bigger fibers (S1, S2) first. We set

(6.47) X2
e = [[X2

lex;S1, S2];SF ]ΠF ,

where the index ΠF on the second blow-up denotes the fact that it is parabolic. We denote

the blow-down map by

(6.48) β2 : X2
e → X2

lex
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and the three new boundary hypersurfaces by ffS1 , ffS2 , ffSF , respectively. One may vi-

sualize X2
e as in Figure 6.5.

4X ∩ ∂X2
e

ff(H22)

ff(H22)

ffS2

ff(H11)

ff(H11)

ffS1

ff(HFF )

ff(HFF )

ffSF

Figure 6.5. A schematic visualization of X2
e .

We analyze this blow-up locally near SF ∩ S2 by constructing new coordinates in which

SF and S2 take product form. Recall the local coordinates (6.37). Also recall that the

coordinates yi, y
′
i are pull-backs from the left and right factor of the base φffF : ffF →

F(R3) × F(R3). Recall from (6.40) that this base fibers again by F(R3) × F(R3) →
Gr(R3, 1)×Gr(R3, 1). Thus, we may chose yi in such a way that y2, y3, y

′
2, y
′
3 are pullbacks

of coordinates on the base under π2 and, additionally, such that the vector field N3 is

locally given by ∂y3 . Furthermore, we then know that

N2 ∈ spanC∞{∂y2 , ∂y3},

N1 ∈ spanC∞{∂y1 , ∂y2 , ∂y3}.
(6.49)

Notice that since [N1, N2] = N3 we may not trivialize N1, N2, N3 simultaneously. We

define new coordinates starting from (6.37) by setting

t, τ1, ρ̄ = ρ− 1, ψ̄ = ψ − 1, z̄i = zi − z′i, z̄′i = zi + z′i,

ȳi = yi − y′i, ȳ′i = yi + y′i.
(6.50)

. Since locally N3 = ∂y3 , the vector fields on (6.38) take the local form

(6.51) τ1∂τ1 − ∂ψ̄, t∂t − ∂ρ̄, ∂z̄i + ∂z̄′i , τ1N1, tτ1N2, tτ
2
1 (∂ȳ3 + ∂ȳ′3)
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and we have spanC∞{N1, N2, N3} = spanC∞{∂ȳ1 , ∂ȳ2 , ∂ȳ3}. The submanifolds take the

product form

SF = {τ1 = ȳ1 = ȳ2 = ȳ3 = 0},

S2 = {t = ȳ2 = ȳ3 = 0},

SF ∩ S2 = {t = τ1 = ȳ1 = ȳ2 = ȳ3 = 0},

4X = {ψ̄ = ρ̄ = ȳi = z̄i = 0}.

(6.52)

On ffS2: Let us compute the lift of V after the first blow-up of S2, again by using

projective coordinates. As before, we only need to compute the behavior near the lift of

the diagonal, so a single set of projective coordinates suffices. Starting from 6.50), we get

local projective coordinates on ffS2 by rescaling in t:

(6.53) τ1, z̄i, z̄
′
i, ȳ
′
i, ȳ1, ρ̄, ψ̄, t, ỹ2 =

ȳ2

t
, ỹ3 =

ȳ3

t
.

The lifts of the vector fields in (6.51) then become

(6.54) τ1∂τ1 − ∂ψ̄, t∂t − ∂ρ̄, ∂z̄i + ∂z̄′i , τ1Ñ1, τ1Ñ2, τ
2
1 (∂z̃3 + t∂z̄′3)︸ ︷︷ ︸

=:Ñ3

,

where spanC∞{Ñ1, Ñ2, Ñ3} = spanC∞{∂ȳ1 , ∂ỹ2 , ∂ỹ3}.
On ffSF (near ffS2): Analogously, we construct new projective coordinates starting from

(6.53) by rescaling by τ1. Recall that this blow-up is parabolic, where dỹ3 is given the

weight 2:

(6.55) τ1, z̄i, z̄
′
i, ȳ
′
i, ρ̄, ψ̄, t, ŷ1 =

ȳ1

τ1
, ŷ2 =

ỹ2

τ1
, ŷ3 =

ỹ3

τ2
1

.

The lift of the vector fields in (6.54) then are

(6.56) τ1∂τ1 − ∂ψ̄ − ŷi∂ŷi , t∂t − ∂ρ̄, ∂z̄i + ∂z̄′i , N̂1, N̂2, ∂ẑ3 + tτ2
1∂z̄′3︸ ︷︷ ︸

=:N̂3

,

where spanC∞{N̂1, N̂2, N̂3} = spanC∞{∂ŷ1 , ∂ŷ2 , ∂ŷ3}. In these projective coordinates the

diagonal is given by

(6.57) 4X = {ψ̄ = ρ̄ = ȳi = ẑi = 0}.

Furthermore, ffS2 = {t = 0} and ffSF = {τ1 = 0}. As one can see, the lifted vector fields

(6.56) are in fact transversal to the lift of the diagonal.

On ffS1: Again, the situation is analogous to the one at ffS2 .

Lastly, we need to check that our combined blow-down map is a b-fibration.

Lemma 6.7: Let π : X2 → X be either the left or the right projection. Then the map

(6.58) π ◦ β1 ◦ β2 : X2
e → X

is a b-fibration.
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Proof. All three maps π, β1, β2 are surjective b-maps and b-submersion, and thus so

is their composition. By a general theorem about b-fibrations (see e.g. [19]), the only thing

left to show is that no hypersurface of X2
e is mapped to a boundary face of codimension 2

or higher by π◦β1◦β2. A hypersurface ff(Hab) generated in the first step of the resolution is

mapped to Ha or Hb (depending on which projection is used). The hypersurfaces ff(Si) are

mapped (under both projections) to Hi, since its image in X2 contains the corresponding

diagonal part in Hi ×Hi. �

We summarize the needed result in a theorem.

Theorem 6.8: The Lie algebra VSL lifts to X2
e from either the left or right to become

smooth vector fields that are transversal to the lift of the diagonal 4X . The two maps back

from X2
e to X (first blowing down and then projecting from either the left or right) are

b-fibrations.

This immediately implies the following.

Corollary 6.9: If L ∈ Diff∗X is elliptic, then its lift to X2
e is transversally elliptic to 4X .

6.5. Pseudodifferential operators

We are now ready to define a calculus that consists of a ring of pseudodifferential operators

Ψ∗X(X), which contains Diff∗X as a subring and also contains basic parametrices for elliptic

operators. It will be defined as operators on the interior of X, whose Schwartz kernels are

push-forwards of distributions on X2
e with very simple structure.

There is however one obstacle to overcome when using Schwartz kernels as a definition.

Schwartz kernels act on densities, not functions. There are several approaches to solve

this: One is to fix a density µ on X from the beginning and then define the action on a

smooth function f to be the action on fµ. This has the disadvantage of having to choose

a (arbitrary) density to start with. Another possibility is to simply define the operator

to act on densities, which has the disadvantage of the resulting object being a function

(and not again a density). There are several other options, the one we choose here is for

the operator to act on half-densities (with the resulting object again being a half-density).

For this to work, we have to regard the Schwartz kernels as distributional section of the

half-density bundle Ω1/2(X2) as well.

To motivate the definition below, we consider the lift of Schwartz kernels of elements in

Diff∗X to X2
e . The simplest such operator is the identity I. Its Schwartz kernel is the delta-

function along the diagonal on X2. However, we want to regard this as a distributional

half-density. In terms of coordinates on X2 that are chosen to be identical coordinates of

X on each of the two factors as in (6.13), choose a canonical half-density

(6.59) µ =
√
dτ1 dt dy dz dτ ′1 dt

′ dy′ dz′.

This is well-defined up to a smooth positive function. Denote the Schwartz kernel of the

identity operator by KI . In local coordinates as above it takes the form

(6.60) KI = δ(τ1 − τ ′1)δ(t− t′)δ(y − y′)δ(z − z′)µ.
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Any distributional half-density K on X2 is identified with the distributional half-density

β∗(K) on X2
e via the blow-down map, since they are objects defined on the interior, where

β is a diffeomorphism. We may calculate this lift for KI in local coordinates as in (6.55).

The Jacobi-determinant of the map βe : X2
e → X2 is equal to t3τ5

1 up to a smooth function

that is non-vanishing on ff(SF ) and ff(S2). Recall that t and τ1 are locally boundary

defining functions of ff(S2) and ff(SF ), respectively. For the sake of a global definition

below, let r1, r2, rF denote global boundary defining functions of ff(S1), ff(S2), ff(SF ),

respectively. Using both local coordinate systems (6.13),(6.14) it is easy to see that the

Jacobi determinant of βe : X2
e → X2 is globally given by

(6.61) rdet := r3
1r

3
2r

5
F

up to a smooth, nowhere vanishing function. Thus the lift of µ is given by r
1/2
det ν where ν

is a non vanishing standard half-density on X2
e . The Schwartz kernel of the identity KI

lifts to

β∗KI = r−1
detδ(ψ̄)δ(ρ̄)δ(ȳi)δ(z̄i)r

1/2
det ν

= δ(ψ̄)δ(ρ̄)δ(ȳi)δ(z̄i)r
−1/2
det ν.

(6.62)

Therefore, we may interpret the identity operator as a distributional section of the singular

half-density bundle r
−1/2
det Ω1/2(X2

e ), where it becomes a simple delta distribution along the

lifted diagonal 4e. We may lift any L ∈ Diff∗X to X2
e and interpret its kernel as a

distributional section KL of r
−1/2
det Ω1/2(X2

e ). Thus, it is given by κLr
−1/2
det ν, where κL =

L(κI) is called the normalized kernel of KL with respect to a half-density r
−1/2
det ν. Thus,

κL is given by smooth multiples of derivatives of the delta function along the diagonal.

This motivates the following definition of the small calculus.

Definition 6.10: Consider kernels A that are distributional sections of the half-density

bundle r
−1/2
det Ω1/2(X2

e ). Thus A has the form A = κAr
−1/2
det ν, where κA is called the nor-

malized kernel of A with respect to the half-density ν. We set Ψ∗X(X,Ω1/2) to be the space

of those A, which normalized kernels κA are conormal to the lifted diagonal 4X ⊂ X2
e ,

smoothly up the front faces ffSF ,ffS1
,ffS2

, and vanishes to infinite order at all other bound-

ary hypersurfaces of X2
e .

Note that the class of kernels κA described in the definition above is a special case of a

large class of function spaces with specific behavior at the boundary, called polyhomoge-

neous functions. These play a vital role when one wants to extend the calculus presented

here to include more elaborate parametrices. We will prove in the next section that the

space defined above is a ring, meaning it is closed under composition.

The space Ψ∗X is filtered by the subspaces Ψm
X of those elements whose kernels κA have

singularities at the diagonal of order at most m.

Next, let us define how such an A ∈ Ψ∗X acts on half-densities. Let γ be any half-density

on X. In order to define the action of A on γ, we need to fix an auxiliary positive nowhere

vanishing half-density γ̄ on X. Denote by π̄L, π̄R : X2
e → X the lifts of the left and right

projection πL, πR : X2 → X, i.e. π̄L,R = β ◦ πL,R. Since γ and γ̄ are half-densities on
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X, π∗R(γ)π∗L(γ̄) is a half-density on X2. Its lift to X2
e , which is given by π̄∗R(γ)π̄∗L(γ̄), is

therefore a half-density on X2
e . We now can define the action of A on γ by the equation

(6.63) A(γ)γ̄ = (π̄L)∗(A · π̄∗R(γ)π̄∗L(γ̄)).

The right-hand side of this equation is a density on X. Therefore, dividing booth sides

by γ̄ yields a half density A(γ) ∈ Ω1/2(X). This is defined independent of the choice of

auxiliary half density γ̄.

The symbol map SLσm given by (6.17) extends to Ψm
X in the following way. Since the

associated normalized kernel κA of an operator A ∈ Ψm
X is a conormal distribution to the

diagonal in X2
e , the symbol map

(6.64) κA 7→ SLσm(κA) ∈ S{m}(N∗4X ; Ω1/2(N∗4X)⊗ π∗(Ω1/2X))

is defined as by Hörmander ([10]). The bracket in the order denotes the fact that the

symbols are quotients of symbols of one order lower.

Theorem 6.8 shows that N∗4X
∼= SLT ∗X, thus we may interpret the symbol as a half-

density on SLT ∗X. This yields the short exact sequence

(6.65) 0→ Ψm−1
X ↪→ Ψm

X

SLσm→ S{m}(SLT ∗X)→ 0.

We now may extend the definition of an elliptic operator to Ψ∗X :

Definition 6.11: We say A ∈ Ψm
X is elliptic, if its symbol a = SLσm(A) is an invertible

element of S{m}(SLT ∗X), i.e. if there is an element b ∈ S{−m}(SLT ∗X) such that a · b ≡
b · a ≡ 1.

In the next section of this chapter, we will prove that the space Ψ∗X is closed under

composition and that the symbol is multiplicative in the sense that

(6.66) SLσm+m′(A ◦B) = SLσm(A) · SLσm′(B).

For now, we use this multiplicity to prove the following main theorem of this chapter by

the standard iterative inversion scheme.

Theorem 6.12: Let A ∈ Ψm
X be an elliptic pseudodifferential operator. Then there exist

an operator B ∈ Ψ−mX such that both AB − I and BA − I are elements of Ψ−∞X . The

parametrix B is unique up to an element of Ψ−∞X .

The two remainders AB−I and BA−I are smoothing in the interior, since their Schwartz

kernels are smooth functions on X2
e . However, their push-forward to X2 is not smooth.

Unfortunately, this implies that the remainders are not compact, as was shown for example

in [23]. This is the main motivation to carry the calculus further. This is done by adding

elements to Ψm
X that have weaker conditions imposed at the boundary faces of X2

e . The

geometric foundation for such a larger calculus is already shown in this thesis. However,

since a large amount of analytical work is needed for such a calculus, it will not be carried

out here. Instead, it opens the door for a great deal of future work.

For now, the construction above still misses a composition theorem and a proof of equation

(6.66), which will be the topic of the next section.
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6.6. Resolution of the triple space

In the previous section, we left out the proof of the fact that Ψ∗X is closed under composition

and the symbol map is multiplicative in the sense of (6.66). In order to prove such a

composition theorem, we use a geometric approach of constructing a resolution of the

triple product space X3, as already used several times in similar calculi, e.g. [17], [15], [9]

and many more. The idea behind using the triple space is the following: When composing

to operators A, B, we may regard B as acting on the third factor and mapping to the

second and A as acting on the second and mapping to the first factor. Thus A ◦B acts on

the third and maps to the first factor. We may write this symbolically for the Schwartz

kernels κA, κB, κA◦B as

(6.67) κA◦B = (πM )∗(π
∗
RκAπ

∗
LκB),

where πL, πM , πR : X3 → X2 are the three projections dropping the left, middle and right

factor, respectively. Using this equation, one can easily analyze the behavior of κA◦B using

the Pullback- and Pushforward-Theorem as in [19] .

However, the Schwartz kernels of operators in Ψ∗X are interpreted as distributions on X2
e ,

rather than X2, so the equation above is hard to analyze. To solve this, we resolve the

triple product space, again by a series of blow-ups, into a space denoted by X3
e on which we

may interpret the composition as a product of Schwartz kernels lifted from X2
e . We require

that the resolution space X3
e has interior diffeomorphic to the interior of X3. Secondly,

we require that it is equipped with three lifted projections maps π̄α : X3
e → X2

e replacing

the projections in (6.67). These maps are required to be b-fibrations (as defined in [19]).

This is necessary for the Pullback- and Pushforward-Theorem to still apply. Such a space

together with the lifted projections is constructed below. We then show that they fulfill

our requirements in Proposition (6.16). An immediate consequence of this construction

will be the following theorem.

Theorem 6.13: For any m,m′ we have Ψm
X ◦ Ψm′

X ⊂ Ψm+m′

X with the symbol map being

multiplicative, i.e. satisfying (6.66).

Proof. As said above, the proof uses an analog version of (6.67) on the resolved triple

space X3
e together with the Pullback- and Pushforward-Theorem by Melrose ([19]). The

details of this approach have been carried out several times in the past, for example in

[17], [15], [8] . Thus, we omit them here and carry on with the construction of X3
e . �

Construction of X3
e : Recall that X2

e = [X2
lex;S1;S2;SF ]. As a first step in the construc-

tion of X3
e , we move to the symmetric lexicographic blow-up that we already discussed

earlier, denoted by X3
lex. As with the double space, there is a second step in the resolution

given by the blow-up of double- and triple-fiber-diagonals.

There are three projections πα : X3 → X2 for α = LM,LR,MR given by dropping the

last, middle and first factor X, respectively. Recall that in the resolution of the double

space, the second step consisted of the blow-up of (the lifts of) three submanifolds Si ⊂ Hii

for i = 1, 2, F , where the blow-up of SF is quasihomogeneous. For each Si and each of

the three πα we denote the preimage of Si under πα by Sαi ⊂ X3, giving a total of nine
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submanifolds. We then have for example SLMF ⊂ HFF0, SMR
2 ⊂ H022 et cetera. In general,

Sαi ⊂ Habc where two of the three indices a, b, c are equal to i (according to α) and the

remaining one is 0.

Quasihomogeneous structure at SαF : The quasihomogeneous structure of SF ⊂ X2 simply

lifts under each projection to become a quasihomogeneous structure of SαF . Since it is

parabolic, it is simply given by a subbundle of the conormal bundle.

Each Sαi has a non-empty intersection with precisely those Habc that have two of the

indices a, b, c equal to i (again according to α) and the last one being any of the four

1, 2, F, 0. For example, SLMF has non-empty intersection with HFF1, HFF2, HFFF , HFF0.

Thus, the preimage of each of the Sαi under the symmetric lexicographic blow-up consists

of four parts, each being a submanifold of a different front face in X3
lex. These four parts

are denoted by Sα,ji ⊂ ff(Habc) where j = 0, 1, 2, F and two of the indices a, b, c are equal

to i (according to α) and the remaining one is equal to j. In fact, Sα,ji is the lift of

Sαi ∩Habc (with Habc as above) under symmetric lexicographic blow-up. For example, we

have SLR,F2 = β∗lex(SLR2 ∩H2F2) ⊂ ff(H2F2), et cetera. For the second step in the resolu-

tion we will blow up all 36 Sα,ji , following lexicographic order with respect to i, j. Before

doing so there is one more thing to notice: all Sα,ji with i 6= j lie in different boundary

faces ff(Habc). However, when i = j the three Sα,ii (for fixed i) all lie in ff(Hiii). It is easy

to see that the intersection of any two of the three Sα,ii yields a submanifold denoted by

Ti ⊂ ff(Hiii), which is a triple-fiber diagonal.

Quasihomogeneous structure at Sα,iF and TF : The quasihomogeneous structure of SαF can

be radially extended according to Definition 3.11 to each SαF ∩ Habc. We need to check

that this structure lifts to a quasihomogeneous structure of Sα,iF under the radial blow-

up of the corresponding Habc. The cornormal bundles of Habc and SαF , restricted to the

conormal bundle of SαF ∩ Habc, intersect only in {0}. Therefore, the radial quasihomo-

geneous structure of Habc and the radial extension of the quasihomogeneous structure to

Sα,iF intersect cleanly according to Theorem 3.7. This theorem then implies that we can

lift the quasihomogeneous structure Sα,iF under the blow-up of Habc. Lastly, we construct

the quasihomogeneous structure of TF . Recall that TF is the intersection of any two of the

three Sα,FF . Since the quasihomogeneous structures of Sα,FF are parabolic, they are simply

given by subbundles of their conormal bundles. We set the quasihomogeneous structure

at TF to be again parabolic and defined by the sum of the three bundles of Sα,FF restricted

to TF . It is easy to see that this quasihomogeneous structure intersects cleanly with any

of the three quasihomogeneous structures of Sα,FF . The blow-ups of Sα,iF and TF below are

quasihomogeneous according to these structures. All other blow-ups are radial. Theorems

3.9 and 3.10 assure that normal commutativity results apply.

We are now ready to define the second step of our resolution:
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Definition 6.14: With the notation above, we define for fixed i ∈ {1, 2, F}, j ∈ {1, 2, F, 0}
the following lists of submanifolds

(6.68) S∗,ji :=

 SLM,j
i ;SLR,ji ;SMR,j

i (j 6= i),

Ti;S
LM,i
i ;SLR,ii ;SMR,i

i (j = i).

For fixed i = 1, 2, F we define the lists

(6.69) S∗∗i := S∗,1i ;S∗,2i ;S∗,Fi ;S∗,0i .

We then set the second resolution of the triple space to

(6.70) X3
e := [X3

lex;S∗∗1 ;S∗∗2 ;S∗∗F ].

As a first step, we show that this is in fact symmetric in α, meaning that the space X3
e is

independent of the order of the three submanifolds SLM,j
i ;SLR,ji ;SMR,j

i in the definition

above. This is a consequence of the following lemma, that is purposely formulated stronger

then needed here for later use.

Lemma 6.15: For i 6= j any two Sα,ji , Sβ,j
′

i′ are separated by the boundary face Habc that

contains Sα,ji , as in Lemma 3.13. For example, SLM,F
1 , SMR,F

F are separated by H11F .

For i = j any two Sα,ii , Sβ,ii are separated by Ti.

Proof. The second statement is clear by definition of Ti. Notice that in the first

statement i and i′ (and j and j′) need not be identical, even though that would suffice

in order to show that X3
e is symmetric in α. Recall that we need to show that at any

p ∈ Sα,ji ∩ Sβ,j
′

i′ we have TpS
α,j
i ⊂ TpHabc ⊂ TpS

α,j
i + TpS

β,j′

i′ . Also recall that Sα,ji is the

fiber diagonal corresponding to the fibration φi of Hi in the two factors of corresponding

to α. Restricted to Sα,ji ∩ Sβ,j
′

i′ , the two fibrations φi, φi′ either coincide or form a tower.

Now the statement of the lemma is a straightforward calculation in local coordinates.

In order to not introduce any unnecessary and cumbersome notation, we only do so in

an example. The general case works completely analogously. Consider SLM,F
1 ⊂ H11F

and SMR,F
F ⊂ HFFF . On H1 ∩ HF we have φ1 = φF ◦ πF,1, thus we may choose local

coordinates τ1, τF , x, y, z such that x is tangent to the fibers of φF and x, y are tangent

to the fibers of φ1. Lifting these coordinates (together with their dashed and double

dashed counterparts) to the triple space, we locally get H11F = {τ1 = τ ′1 = τ ′′F = 0},
SLM,F

1 = {τ1 = τ ′1 = τ ′′F = 0, x = x′, y = y′}, SMR,F
F = {τF = τ ′F = τ ′′F = 0, x′ = x′′},

showing that H11F separates SLM,F
1 and SMR,F

F . �

We are now ready to construct the lifted projections παr : X3
e → X2

e and show that they

are b-fibrations in the next proposition.

Proposition 6.16: For each α = LM,LR,MR there is a b-fibration παr : X3
e → X2

e fixed

by the condition that it commutes with the corresponding projections

(6.71)

X3
e X3

lex X3

X2
e X2

lex X2.

παr παlex πα
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Proof. By symmetry, we only need to construct παr for α = LM . The main idea of

the construction is to successively commute the blow-ups in (6.70) such that all blow-ups

related to α = LM are made first, which will be shown in equation (6.85) As we will

see, this will allow for a straightforward definition of παr as a composition of the collective

blow-down of all remaining blow-ups together with a projection.

We introduce the notation

SLM,∗
i := SLM,1

i ;SLM,2
i ;SLM,F

i ;SLM,0
i ,

S\LMi := S∗∗i \ SLMi .
(6.72)

The list SLM,∗
i ;S\LMi is therefore a reordering of the list S∗∗i .

As a first step, we will show that

(6.73) X3
e
∼= [X3

lex;SLM,∗
1 ;SLM,∗

2 ;SLM,∗
F ;R1]

with R1 = S\LM1 ;S\LM2 ;S\LMF . For this, we need to ‘move’ all SLM,j
i to the front, starting

with the first one (SLM,1
1 ). Notice that any two Sα,ji , Sβ,j

′

i′ with α 6= β have been separated

as shown in the previous lemma. Furthermore, Ti and SLM,i
i commute since Ti ⊂ SLM,i

i .

Any other SLM,j
i (fixed i, j 6= i) that is blown up afterwards then commutes with Ti since

SLM,i
i separates them. Lastly, Ti and SLM,j

i′ with i′ ≥ i commute since they are separated

by SLM,j
i , as shown in (6.73).

Next, we continue to move the SLM,j
i further to the front by commuting them with as

many blow-ups of X3
lex as possible. Recall the definition of X3

lex and C, E , Eα and (6.25)

where we have shown that

(6.74) X3
lex = [X3; ELM ; C; ELR; EMR].

Plugging this in, we next show that

(6.75) X3
e
∼= [X3; ELM ; C;SLM,∗

1 ;SLM,∗
2 ;SLM,∗

F ;R2]

with R2 = ELR; EMR;R1. This follows from the fact that the intersection of any SLM,j
i

with an element of ELR; EMR is contained in an element of C and thus they lift to become

disjoint after blowng up all elements of C.

Recall that C is ordered lexicographically, meaning whenever Habc ≤ Ha′b′c′ , then Habc is

blown up first. Also recall that SLM,j
i ⊂ Hiij . Thus, as already argued in the construction

of the symmetric lexicographic resolution, whenever Habc and Hiij are not comparable,

there is a common larger element of C that contains their intersection and thus they may

be commuted. Furthermore, if Hiij ≤ Habc, then the blow-up of Hiij separates Habc and

SLM,j
i . Thus we may commute SLM,j

i with all Habc except the ones where Habc ≤ Hiij .

Consequently, we may commute the blow-ups of C;SLM,∗
1 ;SLM,∗

2 ;SLM,∗
F in the following

way: We introduce the notation

(6.76) Hab∗ := Hab1;Hab2;HabF .

108



Then

(6.77) X3
e
∼= [X3; ELM ;H11∗;SLM,∗

1 ;H22∗;SLM,∗
2 ;HFF∗;SLM,∗

F ;R3]

with R3 defined accordingly.

We proceed by some commutations in each of the three blocks Hii∗;S
LM,∗
i . Since they all

work rather analogously, we only do one in detail. We have

(6.78) HFF∗;SLM,∗
F = HFF1;HFF2;HFFF ;SLM,1

F ;SLM,2
F ;SLM,F

F ;SLM,0
F .

Repeating the argument from above, we may commute the elements of this list in (6.77)

to

(6.79) HFF1;SLM,1
F ;HFF2;SLM,2

F ;HFFF ;SLM,F
F ;SLM,0

F ,

with the result being again diffeomorphic to X3
e . Next, notice that SLM,0

F is by definition

the lift of SLMF under all previous blow-ups (in particular the blow-up of HFF0 in ELM )

and SLM,F
F is precisely the lift of SLMF ∩ HFFF . Plugging this in, we can write the list

(6.79) as

(6.80) HFF1;SLM,1
F ;HFF2;SLM,2

F ;HFFF ; (SLMF ∩HFFF );SLMF .

The lifts of these last three submanifolds under all previous blow-ups still satisfy (SLMF ∩
HFFF )∗ = SLM∗F ∩H∗FFF , since all previous blow-ups either contain both SLMF and HFFF

or neither. We now make use of the standard commutativity result 3.5 which lets us

commute the list (6.80) to

(6.81) HFF1;SLM,1
F ;HFF2;SLM,2

F ;SLMF ; (SLMF ∩HFFF );HFFF ,

without changing the resulting space X3
e . Repeating the same argument twice we end up

with

(6.82) SLMF ; (SLMF ∩HFF1);HFF1; (SLMF ∩HFF2);HFF2; (SLMF ∩HFFF );HFFF .

We do the same for the other two blocks Hii∗;S
LM,∗
i . In order to write down the result of

this commutations, we introduce the notation

(6.83) (H ∩ S)LMi := (SLMi ∩Hii1);Hii1; (SLMi ∩Hii2);Hii2; (SLMi ∩HiiF );HiiF .

Then the commutations above yield

(6.84) X3
e
∼= [X3; ELM ;SLM1 ; (H ∩ S)LM1 ;SLM2 ; (H ∩ S)LM2 ;SLMF ; (H ∩ S)LMF ;R3].

Next, notice that SLM2 is disjoint from all elements in (H ∩S)LM1 . Furthermore, SLMF and

Hiij (i = 1, 2) have been separated by the blow-up of Hii0 ∈ ELM . SLMF and (SLMi ∩Hiij)

have been separated by the blow-up of SLMi . Thus we may commute to obtain

(6.85) X3
e
∼= [X3; ELM ;SLM1 ;SLM2 ;SLMF ;R4]

with R4 = (H ∩ S)LM1 ; (H ∩ S)LM2 ; (H ∩ S)LMF ;R3.
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Denote by βLMR4
: X3

e → [X3; ELM ;SLM1 ;SLM2 ;SLMF ] the collective blow-down of R4. No-

tice that

(6.86) [X3; ELM ;SLM1 ;SLM2 ;SLMF ] ∼= X2
e ×X.

Denote by γ̃ : X2
e ×X → X2

e the projection onto the first factor. We then set

(6.87) πLMe = γ̃ ◦ βLMR4
: X3

e → X2
e .

The fact that this commutes with the other blow-downs and projection maps is clear by

construction. It remains to show that πLMe is a b-fibration, which follows again by noticing

that the image of each hypersurface of X3
e is a hypersurface in X2

e . �
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CHAPTER 7

Calculus on SL(n,R)

In this Chapter, we generalize the results of the previous Chapter to the case of SL(n,R) for

arbitrary n. All major obstacles already occurred in some form in the case of SL(3,R) and

the structure of this Chapter is largely analogous. We start with recalling the geometric

properties of the hd-compactification SL(n,R) and the Lie algebra of vector fields Ve.

7.1. Geometry of SL(n,R)

Recall from Chapter 5 that SL(n,R) has n−1 boundary hypersurfaces H1, . . . Hn−1. Each

hypersurface Hq has a fibration over two copies of the Grassmannian Hq → Gr(n − q) ×
Gr(n − q), as shown in (5.18). Composing this with the projection onto the right factor

yields another fibration, denoted by

(7.1)

SH(n− q)× SH(q)×Gr(n− q) Hq

Gr(n− q).

φq

Let q̄ = {q1, . . . , qr} ⊆ {1, . . . n − 1} be any nonempty subset. The intersection of the

corresponding hypersurfaces

(7.2) Fq̄ := Hq1 ∩ · · · ∩Hqr

is non-empty and a boundary face of SL(n,R). Recall from (5.24) that Fq̄ fibers over

two copies of the flag manifold Fq̄ of type q̄. Again, we get another fibration of Fq̄ by

composing this with the projection onto the right factor denoted by

(7.3)

(∏r
i=0 SH(pi)

)
+
×Fq̄ Fq̄

Fq̄.

φq̄

Elements of the flag manifold Fq̄ = F(Rn, q̄) of type q̄ are flags of the form

(7.4) Vqr ⊂ Vqr−1 ⊂ · · · ⊂ Vq1 ⊂ Rn , dim(Vqi = n− qi).

For notational convenience we denote such flags by

(7.5) Uqr ⊂ Uqr ⊕ Uqr−1 ⊂ · · · ⊂
⊕
r...1

Uqi , dim(Uqi) = qi+1 − qi

where qr + 1 = n.

Whenever q̄ ⊇ q̄′ there is a natural projection πq̄,q̄′ : Fq̄ → Fq̄′ . Furthermore, whenever

Fq̄ ↪→ Fq̄′ is a boundary face, we have q̄ ⊇ q̄′. In this case, the two fibrations are compatible
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in the sense that the following diagram commutes:

(7.6)

Fq̄ Fq̄′

Fq̄ Fq̄′

φq̄ φq̄′

πq̄,q̄′

Notice that the map πq̄,q̄′ defines a fibration of the flag manifold Fq̄. The fibers are again

partial flag manifolds in appropriate orthogonal complements between the Uqi .

Later on we will need the following Lemma and its Corollary:

Lemma 7.1: Fix q̄ and take any q̄′ with q̄ ⊇ q̄′. Then the fibers of all fibrations Fq̄
πq̄,q̄′→ Fq̄′

intersect cleanly.

Proof. This again follows directly by the global existence of the vector fields NI but

it can also be shown directly from the definition of the πq̄,q̄′ . Take a point p ∈ Fq̄ with

fiber S of πq̄,q̄′ running through it. Then S is equal to all flags with identical subspaces

Uq to p for all q ∈ q̄′. These intersect cleanly. �

Corollary 7.2: Let q̄ ⊇ q̄′. Denote by TSq̄,q̄′ ⊂ TFq̄ the subbundle given by the tangent

space of the fiber of Fq̄
πq̄,q̄′→ Fq̄′ at each point. Then for any collection of q̄′i ⊆ q̄ the sum

(7.7)
∑
i

TSq̄,q̄′i ⊂ TFq̄

is a vector subbundle (of fixed dimension).

Recall form Lemma 5.15 that we are interested in resolving the Lie algebra of vector fields

Ve. Let p be a point near the boundary face Fq̄ = Hq̄1 ∩ · · · ∩Hq̄k . Let τq̄1 , . . . τq̄k be the

boundary defining functions as in (5.30). Then Ve is locally spanned by

(1) The normal vector fields τqi∂τqi ,

(2) The vector fields spanning the fibers of the projection onto the right flag manifold

Fq̄ × [0, ε)k → Fq̄,
(3) and the vector fields σINI for all I ∈ Iq̄.

The vector fields NI where defined for each interval I ∈ I of integers between 1 and

n−1. They are (semi) globally defined vector fields near the boundary of SL(n,R). When

restricted Fq̄, these vector fields are non-zero if and only if I ∩ q̄ 6= ∅. The set of all such

intervals is denoted by Iq̄. The projection of these NI , i ∈ Iq̄, to the base Fq̄ of φq̄, span

the tangent space TFq̄. They satisfy

(7.8) [NI , NJ ] =


NI\J if J ⊂ I,

NI∪J if I and J are adjacent but non overlapping,

0 otherwise.

7.2. The resolved single space

As in the case of SL(3) the different fibrations φq of the hypersurfaces Hq do not form a

iterated fibration structure. Therefore we resolve the single space. In this case, we need to
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perform the total boundary blow-up of SL(n,R), denote by

(7.9) X = SL(n,R)tb.

The total boundary blow-up of a manifold with corners M consist of blowing up all of its

boundary faces F ∈ M(M) of codimension at least 21 in the following order: Start with

all boundary faces of maximal codimension k. By definition, these are manifolds without

boundary and disjoint from each other. Therefore one can blow them up in any order,

resulting in the same space. The boundary faces of codimension k − 1 of M lift under

theses blow-ups and become disjoint from each other. Thus they can be blown up in any

order. Continuing in this matter yields the total boundary blow-up. The details of this

construction can be found in [22].

In our case the resulting space X has boundary hypersurfaces Hq̄ for each multi-index q̄

corresponding to the blow-up of the boundary face Fq̄ of SL(n,R).

Lemma 7.3: Denote by S+Fq̄ the normal fiber of the inwards pointing part of the spherical

normal bundle of Fq̄. Then the fibration φq̄ lifts under the total boundary blow-up to become

a fibration of the hypersurface Hq̄

(7.10)

(∏r
i=0 SH(pi)

)
+,tb
×Fq̄ × (S+Fq̄)tb Hq̄

Fq̄

ψq̄

where
(∏r

i=0 SH(pi)
)

+,tb
is the total boundary blow-up of

(∏r
i=0 SH(pi)

)
+

and (S+Fq̄)tb is

the total boundary blow-up of the normal fiber S+Fq̄.

Proof. Consider a boundary face Fq̄ of codimension |q̄|. The base of the fibration

(7.3) is a smooth manifold with corners, so is the factor Fq̄ of the normal fiber. Therefore,

the collection of all boundary faces Fq̄′ ⊂ SL(n,R) with fixed codimension |q̄′| > |q̄|
restricts to Fq̄ to become the collection of all codimension |q̄′| − |q̄| boundary faces of the

first factor of the fiber
(∏r

i=0 SH(pi)
)

+
. Denote by F ∗q̄ the lift of Fq̄ under the blow-up of

all Fq̄′ with |q̄′| > |q̄|. Then F ∗q̄ is the total space of a fibration

(7.11)

(∏r
i=0 SH(pi)

)
+,tb
×Fq̄ F ∗q̄

Fq̄.

φq̄

The front face generated by the blow-up of F ∗q̄ fibers over F ∗q̄ with normal fiber S+Fq̄. The

remaining blow-ups of the total boundary fibration restrict to this hypersurface to resolve

S+Fq̄ into its total boundary blow-up, proving the statement. �

Furthermore, we get a whole family of fibrations of Hq̄ by composing ψq̄ with any of the

projections πq̄,q̄′ : Fq̄ → Fq̄′ . These fibrations do not form a tower nor a tree, but they are

1Blowing up a boundary face of codimension 1 (i.e. a hypersurface) does not change the manifold, i.e. the
blown-up space is diffeomorphic to the original one.
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partially ordered. To give an example, take n = 5, q̄ = {1, 2, 4}, we then have:

(7.12)

Hq̄

Fq̄

F{1,2} F{1,4} F{2,4}

F{1} F{2} F{4}.

The boundary hypersurfaces Hq̄ of X are partially ordered by the codimension of the

original boundary face Fq̄ of SL(n,R). This partial order coincides with the partial order

of the indices q̄. A general result concerning the total boundary blow-up (see [22]) states

that whenever a boundary face

(7.13) F = Hq̄1 ∩ · · · ∩Hq̄k

is non-empty, the boundary hypersurfaces Hq̄1 , . . . ,Hq̄k are totally ordered. Thus we may

assume q̄1 ≥ · · · ≥ q̄k. Therefore the k fibrations of F , given by the restriction of the

fibration ψq̄i of Hq̄i to F , form a tower of fibrations

(7.14) F Fq̄1 Fq̄2 Fq̄3 . . . Fq̄k
ψq̄1

ψq̄2
ψq̄3

ψq̄k

πq̄1,q̄2 πq̄2,q̄3

or briefly, for any q̄i ≥ q̄j appearing above we have

(7.15) ψq̄i |F = πq̄i,q̄j ◦ ψq̄j |F .

In other words, X is a manifold with fibered corners as in [6].

Vector fields: Let us consider the lift of the Lie Algebra Ve from SL(n,R) to X. Since

Ve ⊂ Vb, vector fields in Ve lift to become smooth on X. Consider a point in a boundary

face Hq̄. Let τq̄ denote the boundary defining function of Hq̄ as before. When blowing

up a boundary face of a manifold with corners, the normal vector fields τqi∂τqi lift to

become smooth and span, over C∞, both the normal vector field τq̄∂τq̄ and those vector

fields that are tangent to the fibers of the spherical normal bundle. Thus the normal

vector fields together with the vector fields tangent to the fibers of φq̄ : Fq̄ → Fq̄ lift to

span, over C∞, the normal vector fields and those tangent to the fibers of ψq̄ : Hq̄ → Fq̄.
Next consider the lifts of the vector fields NI . Recall that I is an interval of the form

I = Iij = {n− j + 1, . . . , n− i}. The vector fields NI are not themselves element of Ve,
but σINI = τn−i · · · τn−j+1NI are. However, the NI are tangent to the boundary, hence

they lift to smooth vector fields on X and, when restricted to Hq̄ and projected to the

base Fq̄, span the tangent space TFq̄ everywhere. The only thing left to to is calculate
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the lift of the prefactor σI :

We denote by τq̄ a boundary defining function of the new hypersurface Hq̄. This is of

course not unique. One possibility is to take the lift of the sum τq̄ = τq̄1 + · · · + τq̄k .

However the only thing we have to assume is that τq̄ is a function of the τi on SL(n,R),

since then we still have that NIτq̄ = 0 for any I, q̄. We do not need to calculate the exact

lift, but only its order of vanishing at each boundary face Hq̄. First, consider the lift of a

single τk from SL(n,R) to X. Clearly, the lift vanishes to first order at precisely those Hq̄

for which k ∈ q̄. Thus we get (up to higher order terms)

(7.16) β∗(σI) =

j−1∏
k=i

∏
n−k∈q̄

τq̄ =
∏
q̄

τ
|q̄∩I|
q̄ =: τ̄I .

In other words, the order of vanishing of τ̄I at a boundary face Hq̄ is given by #{qk ∈
q̄ | n− j < qk ≤ n− i} = |I ∩ q̄|.

Therefore all vector fields V ∈ Ve lift to X to become smooth vector fields in Vb.

Definition 7.4: We denote by VSL the C∞-span of the lift of Ve to X.

The calculations above show that this is a Lie algebroid and locally given in the following

way:

Lemma 7.5: Let p be an interior point of a boundary hypersurface Hq̄. Then VSL is a

Lie algebroid contained in Vb(X) and is locally spanned in by

(1) The normal vector field τq̄∂τq̄ ,

(2) the vector fields spanning the fibers of ψq̄,

(3) and the vector fields τ̄INI for all I ∈ Iq̄.

Since the new boundary defining functions are chosen to only depend on the old ones, we

still have NI τ̄J = 0 and thus the commutativity-result (5.80) lifts to become

(7.17) [τ̄INI , τ̄JNJ ] =


τ̄I∪JNI\J if J ⊂ I

τ̄I∪JNI∪J if I and J are adjacent but non overlapping

0 otherwise

.

We also need to describe the behavior of VSL at boundary faces of higher codimension of

X. Fortunately, there is hardly any work to do: The first two points of the Lemma above

still hold at higher dimensional boundary by the general phenomena of the total boundary

blow-up that the normal vector fields lift to span the normal vector fields together with

those tangent to the fibers of the spherical normal bundles. Recall that at a boundary

face F = Hq̄1 ∩ · · · ∩ Hq̄k the multi-indices are totally ordered, i.e. q̄1 ⊃ · · · ⊃ q̄k. The

corresponding fibrations form a tower. By continuity we get the following result.
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Lemma 7.6: Let p be an interior point of a boundary face F = Hq̄1 ∩ · · · ∩Hq̄k where we

assume q̄1 ≥ · · · ≥ q̄k. Then VSL is locally spanned near p by

(1) The normal vector field τq̄1∂τq̄1 , . . . , τq̄k∂τq̄k
(2) The vector fields spanning the fibers of ψq̄1,

(3) and the vector fields τ̄INI for I ∈ Iq̄1.

Let 1 < l ≤ k. Then the vector fields spanning the fibers of ψq̄1 together with those NI

with I ∈ Iq̄1 \ Iq̄l span the vector fields tangent to the fibers of ψq̄l.

As in the case of SL(3), VSL is a Lie algebroid and thus has a naturally associated vector

bundle SLTX such that VSL = C∞(X, SLTX). Again, the bundle SLTX is equipped with

a map into the b-vector bundle ιX : SLTX → bTX induced by the inclusion VSL ↪→ Vb.
Local coordinates: We have a need for adapted local coordinates near p ∈ F . Recall

equation (7.14). We may chose local coordinates (y1, . . . , yk, z) on F centered at p that

locally decompose all fibrations in (7.14)

(7.18)

F Fq̄1 Fq̄2 . . . Fq̄k−1
Fq̄k
yk

.

Fq̄1
z

Fq̄1,q̄2
y1

Fq̄2,q̄3
y2

Fq̄k−1,q̄k
yk−1

ψq̄1 πq̄1,q̄2 πq̄k−1,q̄k

Combined with the τq̄, these form local coordinates on X near p. We may chose them in

such a way that

span{∂yl} = span{NI | I ∈ Iq̄l \ Iq̄l+1
} for all 1 ≤ l ≤ k.(7.19)

As in the case of SL(3), we set Diff∗SL to be the universal enveloping algebra of VSL. It is

locally given by

(7.20) L ∈ Diff∗SL ⇔ L =
∑
ai,β,cI

(τq̄i∂τq̄i )
ai(∂z)

β(τ̄INI)
cI

Diff∗SL is filtered by differential operators of degree at most m, denoted by DiffmSL. As before

in the case of SL(3), DiffmSL has naturally occurring sub-algebras given by the enveloping

algebras of the subbundles Ve and Vri lifted to X, denoted by

(7.21) Diffmri ⊂ Diffme ⊂ DiffmSL .

Each L ∈ DiffmSL has an associated symbol SLσm(L) ∈ C∞(X, SLT ∗X) defined analogously

in comparison to (6.17).

Definition 7.7: We say L ∈ DiffmSL is elliptic, if for all p ∈ X the symbol satisfies
SLσm(L)(p, ·) 6= 0 on SLT ∗pX \ {0}.

Following the scheme presented in the previous chapter, we continue to construct a reso-

lution of the double space X2, denoted by X2
e , on which the Schwartz kernels of operators

in DiffmSL take a relatively simple form and thus admits the construction of a pseudodif-

ferential calculus.
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7.3. The resolved double space

We follow the construction from the case of SL(3) closely. From now on, we will only

consider the lift (from either the left or the right) of VSL. As before, for any local coordinate

function x on X we denote the pullback from the left and right to X2 by x and x′.

Set 4U = {(p, p) | p ∈ U} ⊂ X2 for any U ⊂ X. We then have

(7.22) 4X ∩∂X2 =
⋃
q̄

4Hq̄

where 4Hq̄ ⊂ H2
q̄ . As before, we move to the symmetric lexicographic blow-up defined as

in Section 6.3 as a first step in the resolution:

(7.23) βlex : X2
lex → X2.

The codimension 2 faces that are blown up in this step are now indexed by two multi-

indices q̄, w̄ ⊂ {1, . . . n− 1}. We denote the newly generated front face, generated by the

blow-up of Hq̄,w̄, by ff(Hq̄,w̄). We continue to calculate the lift of VSL near the lift of the

diagonal. The lift of the diagonal only intersects the boundary in the hypersurfaces ff(Hq̄,q̄).

Let F = Hq̄1 ∩ · · · ∩Hq̄k be a boundary face of X as in Lemma 7.6. Let p be an interior

point of F ×F ⊂ X2. We then may chose local coordinates τq̄i , τ
′
q̄i , y1, y

′
1, . . . yk, y

′
k, z, z

′ as

in (7.18) centered at p ∈ X2. The Lie algebra VSL is then locally spanned by

(7.24) τq̄i∂τq̄i , ∂zj , τ̄INI (I ∈ Iq̄1).

In local the coordinates above, Hq̄1,q̄1 is given by {τq̄1 = τ ′q̄1 = 0}, thus we may get

projective coordinates by replacing τ ′q̄1 with ξq̄1 =
τ ′q̄1
τq̄1

. Doing this successively for the blow-

ups of all Hq̄i,q̄i , we get coordinates on X2
lex whose domain cover an open neighborhood of

β−1
lex(p) given by

(7.25) τq̄i , ξq̄i =
τ ′q̄i
τq̄i
, y1, y

′
1, . . . yk, y

′
k, z, z

′

The lift of the vector fields (7.24) is locally given by

(7.26) τq̄i∂τq̄i − ξq̄i∂ξq̄i , ∂zj , τ̄INI .

The lift of the diagonal is locally given by

(7.27) 4X = {ξq̄i = 1, yi = y′i, z = z′}.

Thus, on ff(Hq̄l,q̄l) near p the flow-out of 4X under Ve is given by

(7.28) Sq̄l = {τq̄l = 0, yl+1 = y′l+1, . . . , yk = y′k, z = z′} ⊂ ff(Hq̄l,q̄l).

This equals the fiber diagonal under the lifted fibration ff(Hq̄l,q̄l) → Fq̄l × Fq̄l . Thus on

each ff(Hq̄,q̄) the flow out of 4X ∩ ff(Hq̄,q̄) under VSL is precisely the fiber diagonal

(7.29) Sq̄ := ψ−1
q̄,q̄ (4Fq̄) ⊂ ff(Hq̄l,q̄l)

where ψq̄,q̄ : ff(Hq̄l,q̄l) → Fq̄ × Fq̄ is the lift of the fibration Hq̄l,q̄l → Fq̄ × Fq̄ given on

each factor by (7.10). It is the lift of the fiber diagonal in Hq̄l,q̄l under the lexicographic

blow-up. As a second step of the resolution, we will blow up all Sq̄, again in a symmetric
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lexicographic order according to the indices q̄.

These blow-ups need to be quasihomogeneous, since we aim to resolve the τ̄INI , which

vanish to different orders. Thus we need to construct quasihomogeneous structures at

each Sq̄ and show that they lift when blowing up all Sq̄ in lexicographic order.

Quasihomogeneous structure at Sq̄: Recall that the vector fields NI as in Lemma 7.5

span, at each point, the normal space of Sq̄. Thus we may define a quasihomogeneous

structure at Sq̄ by associating negative weights to each of these NI as described in Propo-

sition 2.39. The weight we associate to NI at Sq̄ is given by −|q̄ ∩ I|. We denote this

quasihomogeneous structure by F (m)
q̄ .

Denote by (Sq̄)q̄ any increasing ordering of the Sq̄. We then define the second step in our

resolution by

(7.30) X2
e = [X2

lex; (Sq̄)q̄]

where the blow-up of each Sq̄ is quasihomogeneous with respect to its quasihomogeneous

structure defined above. Whenever some of the Sq̄ have nonempty intersection, they are

totally ordered. This X2
e is well-defined. Lastly, we need to calculate that this does in

fact resolve VX . We start with the local coordinates (7.25) near ff(Hq̄1,q̄1)∩· · ·∩ff(Hq̄k,q̄k).

Recall that we assume q̄1 ≥ q̄2 ≥ · · · ≥ q̄k, thus Sq̄k is blown up first, followed by the

remaining Sq̄i in decreasing order. We define new local coordinates from (7.25) by setting

τq̄i , ξq̄i ,
ȳ1 := y1 − y′1
ȳ′1 := y1 + y′1

, . . .
ȳk := yk − y′k
ȳ′k := yk + y′k

,
z̄ := z − z′

z̄′ := z + z′
(7.31)

In these, we locally have

4X = {ξq̄i = 1, ȳi = 0, z̄ = 0},

Sq̄l = {τq̄i = 0, ȳl+1 = . . . ȳk = z̄ = 0}.
(7.32)

Equation (7.19) becomes

span{∂z̄i + ∂z̄′i} = span{NI | I ∈ Iq̄k}

span{∂ȳl + ∂ȳ′l} = span{NI | I ∈ Iq̄l−1
\ Iq̄l} for all 1 ≤ l ≤ k

(7.33)

We first blow up Sq̄k = {τq̄k = 0, z̄ = 0} with respect to the quasihomogeneous structure

F (m)
q̄k . We define new projective coordinates on ffSq̄k starting with (7.31) and scaling by

τq̄k :

(7.34) τq̄i , ξq̄i , ȳ1, ȳ
′
1, . . . ȳ

∗
k =

ȳk
τκ∗q̄k

, ȳ′k, z̄, z̄
′

where κ∗ is a suitable power. Recall that the negative weight associated to NI on Sq̄k was

−|I ∩ q̄k|. Thus the vector field τ
|I∩q̄k|
q̄k NI has weight zero and thus lifts to a smooth vector

field, which we denote by N∗I . Also recall that τI =
∏
q̄ τ
|q̄∩I|
q̄ . Thus the vector fields (7.26)

lift to become

(7.35) τq̄i∂τq̄i − ξq̄i∂ξq̄i , ∂zi ,
∏
q̄ 6=q̄k

τ
|q̄∩I|
q̄ N∗I .
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The lift of Sq̄k−1
is given by Sq̄k−1

= {τq̄k−1
= 0, ȳ∗k = 0, z̄ = 0}. The lifted vector fields

N∗I still satisfy the commutativity result (5.79). Thus they still define quasihomogeneous

structures at the other Sq̄′ . We now may get projective coordinates on ff(Sq̄k−1
) by scaling

by τq̄k−1
, giving new coordinates ȳ∗k−1 =

ȳk−1

τκ∗q̄k−1

and (by abuse of notation) ȳ∗k =
ȳ∗k

τκ∗q̄k−1

.

Following the same pattern, we get local projective coordinates

(7.36) τq̄i , ξq̄i , ȳ
∗
1, ȳ

′
1, . . . ȳ

∗
k, ȳ
′
k, z̄
∗, z̄′.

on the final spaceX2
e where in each step, when blowing up Sq̄l , the coordinates z̄∗, ȳ∗l , . . . , ȳ

∗
r

are scaled by a suitable power of τq̄l with respect to the quasihomogeneous structure of

Sq̄l . The lift of the vector fields (7.35) take the form

(7.37) τq̄i∂τq̄i − ξq̄i∂ξq̄i , ∂zi ,
∏

q̄ /∈{q̄1,...q̄k}

τ
|q̄∩I|
q̄ N∗I

where (again by slight abuse of notation) N∗I denotes the lift of of τ
|I∩q̄l|
q̄l N∗I when blowing

up Sq̄l after each step. After all blow-ups the lift of the diagonal takes the form

(7.38) 4X = {ξq̄i = 1, ȳ∗i = 0, z̄∗ = 0}

and we have

span{∂ȳ∗l + ∂ȳ′l} = span{N∗I | I ∈ Iq̄l \ Iq̄l+1
} for all 1 ≤ l ≤ k.(7.39)

This certainly implies the following result:

Proposition 7.8: The vector fields in the Lie algebra VX lift (from either the left or the

right) to become smooth b-vector fields on X2
e and are transversal to the lift of the diagonal

4X ⊂ X2
e . The two maps back from X2

e to X (first blow down to X2 followed by projecting

from either left or right) are b-fibrations.

Proof. The only thing not shown in the calculation above is the fact that the two

lifted projections πL,R ◦β : X2
e → X are b-fibrations. This follows again form the fact that

it is a b-submersion and the fact that each hypersurface of X2
e is mapped to a hypersurface

of X. �

Corollary 7.9: If L ∈ Diff∗SL is elliptic then its lift to X2
e is transversally elliptic to 4X .

7.4. Pseudodifferential operators

As for SL(3), we want to define pseudodifferential operators in terms of their Schwartz

kernels, which we will view as distributional sections of a singular half-density bundle

on X2
e . We need to understand what singular factor we need to pull out in order for

differential operators to have (normalized) Schwartz kernels that are simple derivatives of

delta distributions on the lifted diagonal 4X ⊂ X2
e . For this, we analyze the lift of the

Identity kernel, again interpreted as a half-density. In terms of local coordinates on X2

that are given by identical ones on each factor as in (7.18) consider a canonical half-density

on X2 given by µ =
√
dτq̄idydzdτ

′
q̄idy

′dz′. Then the Schwartz kernel KI of the identity
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operator is given locally as

(7.40) KI = δ(τq̄I − τq̄I )δ(y − y
′)δ(z − z′)µ.

Next, we compute the order of vanishing of the Jacobi Determinant of the blow-down map

β : X2
e → X2 at the different boundary hypersurfaces. Recall from the local coordinate

computations (7.31), (7.34) and (7.36) that τq̄i was locally a boundary defining function

of the front face ff(Sq̄i). Let rq̄ denote a global boundary defining function of ff(Sq̄).

Then from the local coordinate calculations (7.31) - (7.36) one can see that the Jacobi

Determinant is given by

(7.41) rdet :=
∏
q̄

r
(1+

∑
I∈I |I∩q̄|)

q̄

up to a smooth function that is non vanishing on any ff(Sq̄). Note that the 1 in the

exponent is a result of the blow-up of Hq̄,q̄ and each |I ∩ q̄| coming from the projective

coordinate change in the coordinate function corresponding to NI .
2

Thus the lift of µ is given by r
1/2
det ν where ν is a non vanishing standard half-density on

X2
e . The Schwartz kernel of the identity operator then lifts to

β∗KI = r−1
detδ(ξq̄i − 1)δ(ȳ∗i )δ(z̄

∗)r
1/2
det ν

= δ(ξq̄i − 1)δ(ȳ∗i )δ(z̄
∗)r
−1/2
det ν.

(7.42)

Therefore we may interpret the identity as a distributional section of the singular half-

density bundle r
−1/2
det Ω1/2(X2

e ) where it becomes a simple delta distribution along the

lifted diagonal. As before, we now may interpret any L ∈ Diff∗e as such a section with the

normalized kernel being a sum of derivatives of delta distributions along the diagonal. We

may now define the small calculus:

Definition 7.10: Consider kernels A that are distributional sections of the half-density

bundle r
−1/2
det Ω1/2(X2

e ). Thus A has the form A = κAr
−1/2
det ν, where κA is called the nor-

malized kernel of A with respect to the half-density ν. We set Ψ∗X(X,Ω1/2) to be the space

of those A, which normalized kernels κA are conormal to the lifted diagonal 4X ⊂ X2
e ,

smoothly up the front faces ff(Sq̄) and vanish to infinite order at all other boundary hyper-

surfaces of X2
e .

It is again filtered by subspaces Ψm
X of operators of oder m. The action of an A ∈ Ψm

X

on a half-density is defined analogously to (6.63), as is the symbol map A 7→ Xσm(A) ∈
S{m}(XT ∗X) ⊂ C∞(X,XT ∗X). Again, this results in the short exact sequence

(7.43) 0→ Ψm−1
X ↪→ Ψm

X

Xσm→ S{m}(XT ∗X)→ 0.

As before, we say an element A ∈ Ψm
X is elliptic, if its symbol is an invertible element of

S{m}(XT ∗X). In the next section we will prove the following

2Note that for a fixed q̄ ⊆ {1, . . . , n− 1}, we have
∑
I∈I |I ∩ q̄| =

∑
k∈q̄ k(n− k).
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Theorem 7.11: For any m,m′ we have Ψm
X ◦ Ψm′

X ⊂ Ψm+m′

X with the symbol map being

multiplicative, i.e. it satisfies

(7.44) SLσm+m′(A ◦B) = SLσm(A) · SLσm′(B).

Problem 1: This theorem is proven in Section 7.5.

By the standard iterative scheme we get the following main theorem of this chapter:

Theorem 7.12: Let A ∈ Ψm
X be an elliptic pseudodifferential operator. Then there exist

an element B ∈ Ψ−mX such that both AB − I and BA − I are elements of Ψ−∞X . The

parametrix B is a unique up to an element of Ψ−∞X .

As for SL(3), the remainders AB − I and BA − I are not compact, so a larger calculus

should be investigated in future work. For now, we finish with the proof of the composition

theorem in the next section.

7.5. Resolution of the triple space

In this section, we prove the composition Theorem 7.11. The proof is analogous to the

one of Theorem 6.13, meaning it is a direct consequence of the existence of a triple space

resolution denoted by X3
e together with three lifted projection maps π̄α : X3

e → X2
e that

are be b-fibrations. The construction of this space together with these maps is the content

of the section and is the last piece in the construction of the small calculus.

Construction of X3
e : As a first step we move to the symmetric lexicographic blow-up

as defined in Section 6.3, denoted by X3
lex. As with the double space, there is a second

step in the resolution given by the blow-up of double- and triple-fiber-diagonals: There

are three projections πα : X3 → X2 for α = LM,LR,MR given by dropping the last,

middle and first factor X, respectively. Recall that in the resolution of the double space,

the second step consisted of the blow-up of (the lifts of) submanifolds Sq̄ ⊂ Hq̄q̄ where

these blow-ups were quasihomogeneous. For each Sq̄ and each of the three πα we denote

the preimage of Sq̄ under πα by Sαq̄ ⊂ X3.

Quasihomogeneous structure at Sαq̄ : The quasihomogeneous structure of Sq̄ ⊂ X2 lifts

under each projection to become a quasihomogeneous structure of Sαq̄ .

Each Sαq̄ has a non-empty intersection with precisely those Hq̄1,q̄2,q̄3 that have two of

the indices q̄1, q̄2, q̄3 equal to q̄ (according to α) and the last one being arbitrary. For

example, SLMq̄ has non-empty intersection with all Hq̄,q̄,∗ where ∗ is either 0 (meaning

X = H0) or any q̄′. Thus the preimage of each of the Sαq̄ under the symmetric lexico-

graphic blow-up consists of submanifolds, one for each Hq̄1,q̄2,q̄3 . These parts are denoted

by Sα,p̄q̄ ⊂ ff(Hq̄1,q̄2,q̄3) where two of the indices q̄1, q̄2, q̄3 are equal to q̄ (according to α)

and the remaining one is equal to p̄. In fact Sα,p̄q̄ is the lift of Sαq̄ ∩ Hq̄1,q̄2,q̄3 under the

symmetric lexicographic blow-up, with Hq̄1,q̄2,q̄3 as above.

For the second step in the resolution we will blow up all Sα,p̄q̄ again following lexicographic
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order with respect to q̄, p̄. Before doing so there is one more thing to notice: All Sα,p̄q̄

with q̄ 6= p̄ lie in different boundary faces ff(Hq̄1,q̄2,q̄3). However, when q̄ = p̄ the three

corresponding Sα,q̄q̄ (for different α) all lie in ff(Hq̄,q̄,q̄). The intersection of any two of

these three Sα,q̄q̄ yields a submanifold denoted by Tq̄ ⊂ ff(Hq̄,q̄,q̄) which is the lift of the

triple-fiber diagonal in Hq̄,q̄,q̄ with respect to the fibration Hq̄ → Fq̄.

Quasihomogeneous structure at Sα,p̄q̄ and Tq̄: The quasihomogeneous structure of Sαq̄ can

be extended radially according to Definition 3.11 to each Sαq̄ ∩Hq̄1,q̄2,q̄3 . We need to check

that this structure lifts to a quasihomogeneous structure of Sα,p̄q̄ under the radial blow-up

of the corresponding Hq̄1,q̄2,q̄3 . The conormal bundles of Hq̄1,q̄2,q̄3 and Sαq̄ , restricted to the

conormal bundle of Sαq̄ ∩Hq̄1,q̄2,q̄3 , intersect only in {0}. Therefore, the radial quasihomo-

geneous structure of Hq̄1,q̄2,q̄3 and the radial extension of the quasihomogeneous structure

to Sα,p̄q̄ intersects cleanly according to Theorem 3.7, which implies that the quasihomoge-

neous structure of Sαq̄ ∩Hq̄1,q̄2,q̄3 lifts under the blow-up of the corresponding Hq̄1,q̄2,q̄3 .

The submanifold Tq̄ is the intersection of any two Sα,q̄q̄ . As submanifolds of Hq̄q̄q̄ these

pairwise intersect transversally, which is easily seen in local product coordinates with re-

spect to the fibration Hq̄ → Fq̄. Therefore, the quasihomogeneous structures of any such

two Sα,q̄q̄ define a quasihomogeneous structure at Tq̄ by Lemma 2.38. By symmetry, this is

independent of the choice of Sα,q̄q̄ among these three. The blow-ups of Sα,p̄q̄ and Tq̄ below

are always meant to be quasihomogeneous according to these structures. Theorems 3.9

and 3.10 assure that normal commutativity results apply.

We are now ready to define the second step of our resolution:

Definition 7.13: For a fixed multi index q̄ and a fixed p̄ being either a multi index or ∅,
define the following lists

(7.45) S∗,p̄q̄ :=

 SLM,p̄
q̄ ;SLR,p̄q̄ ;SMR,p̄

q̄ (q̄ 6= p̄),

Tq̄;S
LM,q̄
q̄ ;SLR,q̄q̄ ;SMR,q̄

q̄ (q̄ = p̄).

For fixed q̄ we define

(7.46) S∗∗q̄ := (S∗,p̄q̄ )p̄,lex

the list of all S∗,p̄q̄ (for fixed q̄) in any lexicographic order of p̄. This includes the case of

p̄ = ∅ corresponding to the full manifold X rather then any boundary hypersurface. We

then set the second resolution of the triple space to

(7.47) X3
e := [X3

lex; (S∗∗q̄ )q̄,lex].

Note that since the order of this list is lexicographic, S∗,∅q̄ is the last element of the list

S∗∗q̄ . As a first step, we show that this is in fact symmetric in α, meaning that the

space X3
e is independent of the order of the three submanifolds SLM,p̄

q̄ ;SLR,p̄q̄ ;SMR,p̄
q̄ in

the definition above. This is a consequence of the following lemma, which is purposely

formulated stronger than required here.

122



Lemma 7.14: For q̄ 6= p̄ any two Sα,p̄q̄ , Sβ,p̄
′

q̄′ are separated by the boundary face Hq̄1,q̄2,q̄3

containing Sα,p̄q̄ .

For q̄ = p̄ any two Sα,q̄q̄ , Sβ,q̄q̄ are separated by Tq̄.

Proof. The proof is analogous to the one of Lemma 6.15. �

We are now ready to construct the three lifted projections παe : X3
e → X2

e and show that

they are b-fibrations.

Proposition 7.15: For each α = LM,LR,MR there is a b-fibration παe : X3
e → X2

e fixed

by the condition that it commutes with the corresponding projections

(7.48)

X3
e X3

lex X3

X2
e X2

lex X2

παe παlex πα .

Proof. By symmetry, we only need to construct παr for α = LM . The main idea of

the construction is to successively commute the blow-ups in (6.70) such that all blow-ups

related to α = LM are made first. As we will see, this will allow for a straightforward def-

inition of παe as a composition the collective blow-down of all remaining blow-ups together

with a projection.

We introduce the notation

SLM,∗
q̄ := (SLM,p̄

i )p̄,lex,

S\LMq̄ := S∗∗q̄ \ SLMq̄ .
(7.49)

Therefore, the list SLM,∗
q̄ ;S\LMq̄ is a commutation of the list S∗∗q̄ .

As a first step, we show that

(7.50) X3
e
∼= [X3

lex; (SLM,∗
q̄ )q̄,lex;R1]

with R1 = (S\LMq̄ )q̄,lex. For this, we need to ‘move’ all SLM,p̄
q̄ to the front, starting with

the first one. Notice that any two Sα,p̄q̄ , Sβ,p̄
′

q̄′ with α 6= β have been separated as shown in

the previous lemma. Furthermore, Tq̄ and SLM,q̄
q̄ commute since Tq̄ ⊂ SLM,q̄

q̄ . Any other

SLM,p̄
q̄ (fixed q̄, p̄ 6= q̄) that is blown up afterwards then commutes with Tq̄ since SLM,q̄

q̄

separates them. Lastly, Tq̄ and SLM,p̄
q̄′ with q̄′ ≥ q̄ commute since they are separated by

SLM,p̄
q̄ , as shown in (7.50). We want to continue to move the SLM,p̄

q̄ further to the front

by commuting them with as many blow-ups of X3
lex as possible. Recall the definition of

X3
lex and C, E , Eα and (6.25) where we saw that

(7.51) X3
lex = [X3; ELM ; C; ELR; EMR].

Plugging this in, we show that

(7.52) X3
e
∼= [X3; ELM ; C; (SLM,∗

q̄ )q̄,lex;R2]

with R2 = ELR; EMR;R1. This follows from the fact that the intersection of any SLM,p̄
q̄

with an element of ELR; EMR is contained in an element of C and thus they lift to become
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disjoint after the blow-up of all elements in C.

Next, recall that C is ordered lexicographically, that is whenever Hq̄1,q̄2,q̄3 ≤ Hq̄′1,q̄
′
2,q̄
′
3
, then

Hq̄1,q̄2,q̄3 is blown up first. Also recall that SLM,p̄
q̄ ⊂ Hq̄q̄p̄. Thus, as already argued in the

construction of the symmetric lexicographic resolution, whenever Hq̄1,q̄2,q̄3 and Hq̄q̄p̄ are

not comparable, there is a common larger element of C that contains their intersection

and thus they may be commuted. Furthermore, if Hq̄q̄p̄ ≤ Hq̄1,q̄2,q̄3 , then the blow-up

of Hq̄q̄p̄ separates Hq̄1,q̄2,q̄3 and SLM,p̄
q̄ . Thus we may commute SLM,p̄

q̄ with all Hq̄1,q̄2,q̄3

except the ones where Hq̄1,q̄2,q̄3 ≤ Hq̄q̄p̄. Consequently, we may commute the blow-ups of

C; (SLM,∗
q̄ )q̄,lex in the following way: We introduce the notation

(7.53) Hq̄1,q̄2,∗ = (Hq̄1,q̄2,q̄)q̄,lex
q̄ 6=∅

.

Then

(7.54) X3
e
∼= [X3; ELM ; (Hq̄q̄∗;SLM,∗

q̄ ;SLM,∅
q̄ )q̄,lex

q̄ 6=∅
;R3].

We proceed by some commutations in each of the blocks Hq̄q̄∗;SLM,∗
q̄ ;SLM,∅

q̄ . Repeating

the argument from above, we may commute this block in (7.54) further to

(7.55) (Hq̄q̄p̄;SLM,p̄
q̄ )p̄,lex;SLM,∅

q̄

with the result still being diffeomorphic to X3
e . Notice that SLM,∅

q̄ is by definition the lift

of SLMq̄ under all previous blow-ups (in particular the blow-up of Hq̄q̄0 in ELM ) and SLM,p̄
q̄

is precisely the lift of SLMq̄ ∩Hq̄q̄p̄. Plugging this in we get

(7.56) (Hq̄q̄p̄;SLMq̄ ∩Hq̄q̄p̄)p̄,lex;SLMq̄ .

For each p̄ in the list, we use the standard commutativity result and ‘swap’ Hq̄q̄p̄ and SLMq̄ .

Repeating this for all p̄, starting with the last one in the list, we get

(7.57) SLMq̄ ; (SLMq̄ ∩Hq̄q̄p̄;Hq̄q̄p̄)p̄,lex.

Plugging this in yields

(7.58) X3
e
∼= [X3; ELM ; (SLMq̄ ; (SLMq̄ ∩Hq̄q̄p̄;Hq̄q̄p̄)p̄,lex)q̄,lex;R3].

We want to commute SLMq̄ further to the front. Whenever q̄ and q̄′ are not comparable

SLMq̄ is disjoint from all elements in (SLMq̄′ ∩ Hq̄′q̄′p̄;Hq̄′q̄′p̄)p̄,lex. When q̄′ ⊆ q̄, SLMq̄ and

Hq̄′q̄′p̄ have been separated by the blow-up of Hq̄′q̄′0 ∈ ELM and SLMq̄ and (SLMq̄′ ∩Hq̄′q̄′p̄)

have been separated by the blow-up of SLMq̄′ . Thus we may commute the blow-ups further

to obtain

(7.59) X3
e
∼= [X3; ELM ; (SLMq̄ )q̄,lex;R4].

with R4 = (SLMq̄ ∩Hq̄q̄p̄;Hq̄q̄p̄)p̄,lex)q̄,lex;R3.
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Denote by

(7.60) βLMR4
: X3

e → [X3; ELM ; (SLMq̄ )q̄,lex]

the collective blow-down of R4. Notice that

(7.61) [X3; ELM ; (SLMq̄ )q̄,lex] ∼= X2
e ×X.

Denote by γ̃ : X2
e ×X → X2

e the projection onto the first factor. We then set

(7.62) πLMe = γ̃ ◦ βLMR4
: X3

e → X2
e .

The fact that this commutes with the other blow-downs and projection maps is clear by

construction. It remains to show that πLMe is a b-fibration, which follows again from the

fact that the image of each hypersurface of X3
e is a hypersurface in X2

e . �

Theorem 7.11 is now a direct consequence of Theorem 7.15. Therefore, this also finishes

the proof of Theorem 7.12.
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CHAPTER 8

Outlook - where to continue

We finish this thesis with a short outlook on some of the questions remaining unanswered

and potential future work.

Regarding Part 1: Quasihomogeneous blow-ups.

The treatment of quasihomogeneous blow-ups in Part 1 of this thesis aimed to be com-

prehensive and ready to use in a variety of future work. However, there is always more to

learn about the fundamentals.

Recall that in the case of radial blow-up, the Lie algebra of vector fields tangent to Y ⊂ X
lifts to span, over C∞, the space Vb([X;Y ]). The analogous result for quasihomogeneous

blow-ups, Theorem 2.23, only states this spanning result almost everywhere on the front

face. To be more precise, the front face has an exceptional subset, given in Definition 2.24,

on which the lift of the 0-homogeneous vector fields V(0)
Π does not span, over C∞, the space

Vb([X;Y ]Π). This is related to the fact, that in general the lift of m-quasihomogeneous

functions F (m) does not span, over C∞, the space Im(ff). As stated in Proposition 2.8,

F (m) consist of all smooth functions on the manifold X, which lift to [X;Y ]Π lie in Im(ff).

Intuitively, the reason that the lift of F (m) does not span Im(ff) is, that there are ‘not

enough’ smooth function of weighted homogeneity precisely m. A deeper understanding

of this phenomena would be desirable.

In Chapter 3, we stated a collection of commutativity results for both radial and quasiho-

mogeneous blow-ups. In Lemma 3.13, we defined the concept of a separating submanifold

A, given two intersecting submanifolds B and C and showed, that the blow-up of B and

C commutes after the blow-up of A, i.e. [X;A;B;C] ∼= [X;A;C;B]. In Lemma 3.14

and Lemma 3.15 we gave sufficient conditions, under which the relationship ‘A separates

B and C’ is stable under additional blow-ups. We would like to have a comprehensive

understanding of this stability.

Regarding part 2: Pseudodifferential calculus on SL(n,R).

In Chapter 7, we constructed an algebra of pseudodifferential operators Ψ∗X , that contains

right-invariant operators on SL(n,R) together with basic parametrices for these operators.

In Theorem 6.12 we have shown, that these parametrices exist for elliptic operators and

that the error term is a smoothing operator on the resolved space X. The elliptic theory
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for these operators developed in this thesis is far from finished. While the parametrix con-

structed in Theorem 6.12 does remove the singularity at the diagonal, it is not compact,

since it is only smooth on the resolved space.

This yields the smoothness of solutions on the resolved spaces X. However, it is not

enough to formulate a more general result on the polyhomogeneity of solutions.

Thus, a larger calculus, that aims to refine the parametrix constructed in Theorem 6.12, is

desirable. To do this, one need to analyze (and invert) model operators on the boundary

faces ff(Sq̄) ⊂ X2
e , that intersect the lifted diagonal. Theorem 5.6 and Lemma 7.3 sug-

gest, that inverting these model operators can be done (at least partially), by an iterative

scheme of using the small calculus developed here on the lower dimensional factors SH(pi)

in the fibers (see Equation (7.10)). As a first step in the direction of such an iterative

scheme, a detailed description of the lift of the fibration (7.10) to a fibration of ff(Sq̄)

would be needed. A comprehensive description and analysis of these model operators and

a potential iterative scheme to invert them would be desirable.

Furthermore, a generalization to a general semisimple Lie groups G is a possibility for

future work. The hd-compactification, constructed in [1], is applicable for these more

general groups. In [1], the boundary faces of the constructed compactification Ḡ are shown

to be in 1-1 correspondence with the conjugacy classes of parabolic subgroups, which are

indexed over subsets S of the Dynkin diagram D. For each such subset S ⊂ D, Ḡ has a

boundary face FS that fibers over two copies of a corresponding flag variety FS . However,

a more detailed description of the geometry and the behavior of right-invariant vector

fields near any boundary face of the compactification, as in Theorem 5.6 and Lemma 5.15,

would be needed.
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