
Carl von Ossietzky Universität Oldenburg
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Distributed Controllers for
Provably Safe, Live and Fair

Autonomous Car Manoeuvres
in Urban Traffic

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften
der Carl von Ossietzky Universität Oldenburg
zur Erlangung des Grades und Titels eines

Doktors der Naturwissenschaften

angenommene Dissertation

von Maike Schwammberger

geboren am 10.03.1986 in Osterholz-Scharmbeck

Gutachter:

Datum der Einreichung:
Datum der Verteidigung:

Prof. Dr. Ernst-Rüdiger Olderog
Prof. Dr. Kim Guldstrand Larsen

30. November 2019
20. März 2020

Abstract

During the last years, automated driving techniques are increasingly capturing the mar-
ket. Therefore, it is particularly important to consider vital functional properties of these
systems. Amongst others, safety in the context of collision freedom is to be guaranteed
at all times.

With Multi-lane Spatial Logic (MLSL), a formal approach was introduced to logically
reason about the safety of traffic situations on multi-lane motorways and country roads.
Safety (collision freedom) of an informally specified lane change controller for highways
and of an overtaking protocol for country roads was proven.

The main focus of this thesis is to develop an extension of MLSL to deal with urban traffic
scenarios, thereby focusing on safety aspects of crossing manoeuvres at intersections.
To this end, we introduce a generic topology of urban traffic networks and a crossing
controller using formulae of our extension Urban Multi-lane Spatial Logic (UMLSL) for
turn manoeuvres at intersections. We show that even at intersections we can use purely
spatial reasoning, detached from the underlying car dynamics, to prove safety of the
crossing controller.

While all existing MLSL approaches focus solely on guaranteeing safety, we also examine
liveness and fairness of the controllers. Here, liveness means that something good, e.g.
a lane change manoeuvre, finally happens. Further on, fairness means that no car has
to wait unreasonably long before starting a planned manoeuvre. We verify these system
properties with the help of UPPAAL, a model-checker for (extended) timed automata.

Furthermore, we introduce a case study, where we adapt the MLSL approach to a hazard
warning communication protocol. Again with the assistance of UPPAAL, we show that
with our protocol, a hazard warning message is delivered timely.

i

Zusammenfassung

Während der letzten Jahre erobern autonome Fahrsysteme mehr und mehr die Märkte.
Deshalb ist es insbesondere wichtig, zentrale Funktionen dieser Systeme sicherzustellen.
Beispielsweise muss die Sicherheit im Sinne von Kollisionsfreiheit stets gewährleistet
werden.

Die Multi-lane Spatial Logic (MLSL) erlaubt es, logische Schlussfolgerungen über die
Sicherheit von Verkehrssituationen sowohl auf mehrspurigen Autobahnen als auch auf
Landstraßen zu führen. Die Sicherheit eines informell skizzierten Controllers für Fahr-
spurwechsel auf Autobahnen und eines Überhol-Protokolls für Landstraßen wurde damit
bewiesen.

Das Hauptanliegen dieser Doktorarbeit ist es, die Logik MLSL so zu erweitern, dass
auch Stadtverkehr betrachtet werden kann. Konkret bedeutet dieses, dass die Sicherheit
von Abbiege-Manövern an Kreuzungen untersucht wird. Hierfür wird eine Graph-Struktur
vorgestellt, um Stadtverkehr-Netzwerke zu formalisieren, und die Logik MLSL zur Urban
Multi-lane Spatial Logic (UMLSL) erweitert. Weiterhin wird ein Kreuzungs-Controller
vorgestellt, der UMLSL-Formeln für Abbiege-Manöver an Kreuzungen benutzt. Wir zei-
gen, dass wir sogar an Kreuzungen formale räumliche Schlussfolgerungen nutzen können,
um die Sicherheit des Kreuzungs-Controllers zu beweisen.

Während sich die bisher existierenden Ansätze zu MLSL lediglich mit Sicherheits-Aspek-
ten befassen, untersuchen wir weiterhin die Lebendigkeit und Fairness sowohl des Fahr-
spurwechsels- als auch des Kreuzungs-Controllers. In diesem Fall bedeutet Lebendigkeit,
dass ein wünschenswertes Ziel, beispielsweise ein Fahrspurwechsel, schließlich passiert.
Weiterhin bedeutet Fairness, dass kein Auto unangemessen lange warten muss, bevor
es ein geplantes Fahr-Manöver starten kann. Wir zeigen diese System-Eigenschaften mit
Hilfe des Model-Checking Tools UPPAAL.

Als Fallstudie stellen wir zudem eine Erweiterung des MLSL-Ansatzes zu einem Kommu-
nikations-Protokoll zum Warnen vor Hindernissen vor. Wieder mit Hilfe von UPPAAL
beweisen wir, dass Unfall-Warn-Nachrichten zeitig genug übermittelt werden.

iii

Acknowledgements

Looking back, it feels like I have not just sat in my office writing this thesis but sometimes
visited rather dark places, where I basically wished to throw things at other things, but
also quite joyful places, where I have been proud of an achievement or simply pleased by
a particularly neat formulated sentence that I pondered on for apparent hours. I thank
all those different people that abode me when I have been in the darker places and that
helped me visit the joyful places more often.

I thank Ernst-Rüdiger Olderog for being such a kind and supporting supervisor and for
giving me a lot of freedom both in research and in teaching. I feel that I have become
an independent researcher with your help. I also thank you for the always very detailed
feedback, without which this thesis could not have become what it is now. For being
a second mentor throughout my PhD and always being willing to lend an ear, I thank
Martin Georg Fränzle. For suffering my presence when I have been in those places where
I wanted to throw things, I thank Christopher Bischopink.

While I wrote this thesis, Almuth Meyer, Christoph Peuser, Christopher Bischopink,
Heinrich Ody, Nick Würdemann and Nils Worzyk gave me their valuable time and feed-
back, for which I thank you all. I thank Martin Hilscher and Sven Linker for inspiring
my topic. My gratitude goes also to the board of examiners: Ernst-Rüdiger Olderog,
the external examiner Kim Guldstrand Larsen, chairman Martin Georg Fränzle and Eike
Möhlmann. I especially thank you for supporting me and seeing my disputation through
during and despite the memorable chaos of the corona situation in March 2020.

For the friendly environment and nice lunch or coffee chats about anything and every-
thing, I thank my former colleagues from the different groups working on theoretical com-
puter science in Oldenburg: Björn Engelmann, Christian Sandmann, Christoph Peuser,
Christopher Bischopink, Elke Wilkeit, Evgeny Erofeev, Hans Fleischhack, Heinrich Ody,
Hendrik Radke, Mani Swaminathan, Manuel Gieseking, Martin Hilscher, Nick Würde-
mann, Nils-Erik Flick, Okan Özkan, Paul Hannibal, Stephanie Kemper, Sven Linker,
Tim Strazny, Uli Schlachter and Valentin Spreckels. Special thanks goes to Annegret
Habel for the nice mentoring pub evenings we had with our students and to Andrea
Göken, Ira Wempe, Jörg Lehners, Marion Bramkamp, Mark Kettner, Nicolai Degen and
Patrick Uven for your help with administrative and technical issues. Further thanks goes
to my colleagues from the graduate school “Scare” for the stimulating discussions in our
weekly meetings and for the inspiring annual retreats.

Last, but not least, I thank my friends and family for always supporting me and helping
me throughout the tough times of the last years. I owe you much. Thank you.

v

Contents

1 Introduction 1
1.1 Overview of the Research Field of MLSL 2

1.2 Contribution of this Thesis . 3

1.3 Related Work . 5

1.4 Structure of this Thesis . 8

1.5 Sources . 9

2 Preliminaries 11
2.1 Z Specification Language . 11

2.2 Model and Logic MLSL for Highway Traffic 13

2.3 Extended Timed Automata . 22

2.4 Controller for Highway Traffic and Country Roads 29

3 A Model for Urban Multi-lane Intersections 35
3.1 Assumptions for the Model . 37

3.2 Topology . 38

3.2.1 Urban Road Networks . 39

3.2.2 Infinite Paths and Finite Sequences 40

3.2.3 Coarser Networks and Paths . 42

3.3 Traffic Snapshot . 43

3.3.1 Traffic Snapshot: The Global Picture 44

3.3.2 Traffic Snapshot Evolution . 46

3.4 Virtual View . 52

3.4.1 An Intuition on why and how to Straighten Views 52

3.4.2 Virtual Lanes and Virtual View . 54

3.4.3 Perception of Cars through Sensors 59

3.5 Urban Multi-lane Spatial Logic . 61

3.6 Overview of More Complex Intersections and Special Cases 65

3.7 Related Work . 67

4 Automotive-Controlling Timed Automata 69
4.1 Syntax . 69

4.2 Semantics . 75

4.3 Broadcast Communication with Data Constraints 78

4.4 Synchronisation and Networks of ACTA 81

vii

Contents

5 Controllers for Safe Crossing Manoeuvres 87
5.1 Interplay of Controllers: One Car, Several Controllers 88
5.2 Assumptions for the Controllers . 91
5.3 Controller Construction . 93

5.3.1 Crossing Controller . 93
5.3.2 Road Controller . 96

5.4 A more Realistic Approach: Manoeuvres with Imperfect Knowledge . . . 97
5.4.1 Communication Multi-View . 98
5.4.2 Communicating Crossing and Helper Controller 100

5.5 Related Work . 106

6 Desirable System Properties for Autonomous Cars 109
6.1 Approach and Meaning of the System Properties 109
6.2 Properties of the Highway Traffic Lane Change Controller 113

6.2.1 Implementation of Highway Traffic Manoeuvres in UPPAAL . . . 114
6.2.2 Verification of the Properties . 120

6.3 Safety of Crossing Manoeuvres . 128
6.4 Fairness and Liveness of the Crossing Controller 134

6.4.1 The Urban Traffic Model and Controller in UPPAAL 134
6.4.2 Verification of Safety and Liveness 139
6.4.3 Ensuring Liveness and Introducing Fairness by Cooperation 143
6.4.4 Introducing Uncertain Communication into the Protocol 147

6.5 Related Work . 150

7 Case study: A Hazard Warning Communication Protocol with MLSL 153
7.1 Abstract Model with Hazards and HMLSL 154
7.2 The Hazard Warning Communication Protocol 157
7.3 Analysis of the Protocol and Proof of Hazard Safety 161

7.3.1 Implementation in UPPAAL . 162
7.3.2 Proof of Timely Warning and Hazard Safety 167

8 Conclusion 171
8.1 Summary . 171
8.2 Evaluation – How Realistic is our Approach? 172
8.3 Recent Work: Explainability . 174
8.4 Directions for Future Work . 175

Bibliography 177

Index 189

List of Symbols 195

viii

List of Figures

2.1 Abstract model for highway traffic . 15

2.2 Traffic snapshot evolution . 18

2.3 Ext. timed automaton AP for a pedestrian traffic light. 25

2.4 Ext. timed automaton AC for a car traffic light. 27

2.5 Parallel composition of AP and AC . 28

2.6 Lane change controller Alc for highway traffic from [HLOR11] 31

2.7 Abstract model for country roads . 31

2.8 Protocol for overtaking manoeuvres from [HLO13]. 32

3.1 Abstract model for a 2-by-2 urban traffic intersection (running example). 36

3.2 Abstract model for a 2-by-4 intersection. 39

3.3 Urban road network N for abstract model from Fig. 3.1 40

3.4 Topology with highlighted paths through intersection from Fig. 3.2. . . . 44

3.5 Virtual view with cars for view V (E) from Fig. 3.1 53

3.6 Unknown paths through the intersection from Fig. 3.2. 53

3.7 Parallel virtual lanes for the model from Fig. 3.2. 57

3.8 Abstract model and topology for a roundabout. 65

3.9 Topologies and virtual views for a parking spot and a dead-end. 66

4.1 A basic example for an ACTA . 75

4.2 Two ACTA with communication. 81

4.3 A third ACTA with communication. 83

4.4 A network of communicating ACTA. 84

5.1 Overview over discrete control and dynamics in an autonomous system. . 88

5.2 One-lane scenario with distance keeping from [LMT15] 90

5.3 Problem of distance keeping in multi-lane highway scenario [HLOR11] . . 91

5.4 Overview of the crossing controller phases. 94

5.5 Crossing controller Acc . 95

5.6 Road controller Arc for changing lanes between intersections 97

5.7 Abstract Model for imperfect knowledge. 98

5.8 Communication view VC(E) relating to Fig. 5.7. 99

5.9 Overview over crossing controller protocol A′cc with communication. . . . 102

5.10 Communicating crossing controller A′cc. 103

5.11 Overview over helper controller protocol. 104

5.12 Helper controller Ahc. 105

ix

List of Figures

6.1 Traffic snapshot T S0 for highway traffic UPPAAL implementation. 115
6.2 UPPAAL implementation LCP of lane change controller Alc from Fig. 2.6. 117
6.3 Observer1 checking for a collision. 121
6.4 Observer(ego) checking for successful lane changes for LCP(ego) 122
6.5 Adapted controller LCP′ without zeno behaviour and livelocks. 123
6.6 Adapted lane change controller LCP′′ with increased liveness. 126
6.7 Abstract model for UPPAAL implementation. 135
6.8 UPPAAL implementation CRP of crossing controller Acc from Fig. 5.5. . . 138
6.9 Adapted crossing controller CRP′ with increased liveness. 142
6.10 Fair and live controller extension CRPF that uses priorities. 143
6.11 Helper controller HPF comparing priorities of (other) cars. 145
6.12 ObserverF(ego) checking for fair treatment of the controller CRPF(ego). . 147
6.13 An example for a PACTA. 148
6.14 Transition with uncertain communication from adapted controller CRPprob. 149

7.1 Traffic situation with a hazard and communication chain. 154
7.2 Hazard detection controller Adet . 160
7.3 Forwarding controller Afor for forwarding hazard messages. 161
7.4 Adapted UPPAAL detection controller DET. 163
7.5 Adapted UPPAAL forwarding controller FOR. 164
7.6 Observer1 monitoring the (timely) message delivery from initial sender

to final receiver. 165
7.7 Observer2 monitoring successful message sending between two cars. . . . 166

8.1 A model with an intersection where obstacles restrict the view of car E. . 173
8.2 A model with a hazard on a country road. 176

x

List of Tables

1.1 Overview of the existing MLSL approaches. 3
1.2 Weaving in own contribution into the MLSL approaches. 4

2.1 Traffic snapshot entries for the cars in traffic snapshot T S0 16

3.1 Exemplary traffic snapshot and sensor function values for Fig. 3.1 61
3.2 Calculation of visible segments for car E for traffic situation from Fig. 3.1. 61

4.1 List of possible controller actions . 74
4.2 Configurations for car E for example 21 78

6.1 Evaluation of time-bounded liveness for LCP′ with different time bounds. . 124
6.2 Evaluation of time-bounded liveness for LCP′′ with different time bounds. 127
6.3 Evaluation of time-bounded liveness for CRP with different time bounds. . 141
6.4 Evaluation of time-bounded liveness for CRP′ with different time bounds. . 142
6.5 Evaluation of time-bounded liveness for CRPF with different time bounds. . 146
6.6 Evaluation of bounded liveness for CRPprob with uncertain communication. 149
6.7 Evaluation of bounded fairness for CRPprob with uncertain communication. 150

xi

1 Introduction

In a more and more mobile and autonomous world, traffic safety of autonomously driving
cars is a topic of the utmost importance. To increase road safety in Europe, in 2011, the
European Commission released a white paper stating their “Vision zero”, which includes
the goal for moving close to zero fatalities in road transport by 2050 and halving road
casualties by 2020 [Com11]. However, the Annual Road Safety Performance Index (PIN)
Report from the European Transport Safety Council (ETSC) from 2018 shows that the
number of deathly road accidents in the EU has only fallen by 20% since 2010 [Cou18].
While 20% is already a notable progress, it was far from enough to reach the goal of
halving road deaths in the EU by 2020. Thus, in 2018, the commission adapted their
vision zero to now halve road deaths only by 2030 [Cou19].

However worthily such a Vision Zero is, experts in the field of autonomous driving
state that official institutions like the European Commission pay only little attention
to road fatalities caused by “fully autonomous cars” [SS16], meaning cars at Society of
Automotive Engineers (SAE) driving level 5 [Int18]. But for those (partly) automated
cars already driving on the worlds’ roads, system failures are not uncommon and even
human fatalities have been reported every now and then [Har, DB16]. Nonetheless,
driving assistance systems and fully autonomously driving cars are increasingly capturing
the market and gaining visibility for consumers.

All the more, traffic safety of these autonomous systems needs to be thoroughly investi-
gated. In the context of road traffic, safety means collision freedom and thus reasoning
about car dynamics and spatial properties. An example for such a spatial property
could be the information that two cars are positioned one behind the other, while an
example for a dynamic property is the exact position of a car after some time elapsed,
in general calculated as an integral of its speed. A lot of research approaches in the
field of autonomous driving use hybrid automata to handle such dynamic aspects. But
these complex hybrid models are hard to reason about and to verify. Thus, two widely
used approaches are to either use modular verification, meaning to verify the system
component by component [MC81, KFS13], or to use abstraction techniques, meaning to
separate out some parts of concern [CGL94].

An approach to separate the car dynamics from the spatial considerations and thereby
to simplify reasoning, was introduced in [HLOR11] with the Multi-lane Spatial Logic
(MLSL) for expressing spatial properties on multi-lane motorways with one driving di-
rection for all cars. This logic and its dedicated abstract model was extended with length
measurement in [HLO13] for country roads to reason about the distance to oncoming

1

1 Introduction

traffic. The authors informally introduce respective controllers for lane change manoeu-
vres on motorways and country roads. These controllers use formulae of MLSL to reason
about traffic situations and to decide if a car can safely change lanes.

Besides highway traffic and country roads, considerations about urban traffic scenar-
ios are of high importance. As urban land structures are dense and individual travel
routes are short, there is a rapid expansion of Mobility-on-Demand (MoD) Services, like
car-sharing. Together with more and more promising research results on autonomous ve-
hicles, a new urban traffic transportation type arises: Autonomous Mobility-on-Demand,
where a fleet of connected autonomous cars provide travel services on-demand [IRW+18].
Also foresight institutions claim that the city-of-tomorrow will be a hypermobile city
[Hei16]. In these urban traffic scenarios, managing lane intersections are especially crit-
ical as several cars may enter them from various directions and fatal intersection related
accidents account for more than 20% during the last decade [ERSO12].

Thus, we focus on safety at such urban traffic lane intersections in this thesis, whereby
a major part of this thesis is to develop an extension of MLSL to deal with urban
traffic scenarios, focusing on desirable properties of controllers for crossing manoeuvres
at intersections. We give a detailed overview of our contribution in Sect. 1.2. Before
that, we start with an introduction to the existing related work for the MLSL approach
in the next section.

1.1 Overview of the Research Field of MLSL

The approach of logical reasoning about autonomous car manoeuvres with MLSL origi-
nates from the group of E.-R. Olderog from University of Oldenburg. Table 1.1 gives an
overview of the different MLSL contributions, sorted by type of traffic that is considered
and the level of knowledge the autonomous cars and their respective controllers have,
e.g. about their surroundings. For reasons of clarity and comprehensibility, only topics
directly related to the original MLSL from [HLOR11] are included into Table 1.1. Nev-
ertheless, other significant approaches using MLSL in some way, we also cover at the end
of this section. Besides the works covered in the following paragraphs, several masters
and bachelors theses related to MLSL exist, which we do not mention in this section,
but in the respective chapters and sections they relate to.

A recap about the different approaches with (extensions of) MLSL is also provided by
Olderog in [Old18]. We summarise the different approaches in the following and refer to
the respective works for more details.

As mentioned before, [HLOR11] is the paper, where the approach with the spatial traffic
logic MLSL for multi-lane highway traffic manoeuvres is introduced first by Hilscher,
Linker, Olderog and Ravn. Besides the logic MLSL itself, both a controller for a concept
of perfect knowledge and a controller with less knowledge are introduced. While the

2

1.2 Contribution of this Thesis

Basic Cases Extensions Implementations

Highway Traffic [HLOR11] [FHO15], [Lin15] [Lin17a,17b]

[Sch14] [Ody15,17,19]

Country Roads [HLO13]

Table 1.1: Overview of the existing MLSL approaches.

controllers were introduced informally in [HLOR11], we provided them with a semantic
structure in our master’s thesis [Sch14].

While in [HLOR11] only one-way highway traffic is considered, in [HLO13] the authors
extend their approach to reason about overtaking manoeuvres on country roads with
oncoming traffic. As overtaking cars need to measure the distance to an oncoming car
on their overtaking lane, the core contribution of [HLO13] is to extend MLSL by distance
measurement to formalise an overtaking protocol.

In [Lin15], Linker shows that the spatial fragment of the logic MLSL is undecidable and
in [Ody15], Ody proves that even robust satisfiability of MLSL is undecidable. In this
case robust means that values are only known approximately. Fortunately, in [FHO15],
Fränzle, Hansen and Ody prove that MLSL is decidable, when considering only a bounded
number of cars. This is a constraint motivated by reality, because actual autonomous
cars can only process state information of finitely many environmental cars in real-
time. In [Ody17, Ody19], the author considers monitoring of traffic situations, where
also the abstract model and bounded version of MLSL from [FHO15] is used. For
single sequences of traffic snapshots it is automatically checked if an MLSL formula
holds globally throughout the sequence, which is again a statement into the direction of
robustness of the logic MLSL.

The first computer-based approach for reasoning with a new hybrid extension of MLSL
(HMLSL) was introduced by Linker [Lin17b]. In this case, hybrid means that con-
cepts of Hybrid Logic [Brä11] and universal modalities are introduced to MLSL. The
modality @c from hybrid logic is used within Hybrid MLSL to be able to switch the
car from whose perspective a traffic situation is considered. The author successfully
investigates safety constraints for the motorway traffic scenarios from [HLOR11] with
Isabelle/HOL [NPW02]. Details for the logic HMLSL and the implementation embedded
into Isabelle/HOL can be found in [Lin17a].

1.2 Contribution of this Thesis

We extend the existing model and logic MLSL to urban traffic scenarios with com-
plex multi-lane intersections and construct distributed crossing controllers with different
types of knowledge which we prove to operate safely. Besides safety, we also examine

3

1 Introduction

other controller properties (i.e. (bounded) liveness and fairness) and conduct a hazard
warning case study to emphasise the versatility of our approach.

Our approach for urban traffic focuses on intersections. Since the purely spatial reasoning
with MLSL is very convenient for verification, we reuse the approaches of [HLOR11]
and [HLO13] by extending them to our urban traffic manoeuvres. However, MLSL
is defined on infinite and parallel highway or country road lanes, whereas in urban
traffic, lanes intersect. We thus introduce a complex urban road network, consisting of
intersections connected by several finite lane segments. To enable reasoning with our
new urban extension of MLSL over such a road network, we introduce a procedure for
flattening finite parts of the urban road network.

Only after that, we introduce an extended timed automata syntax and semantics for
MLSL traffic controllers and construct crossing controllers for turn manoeuvres at inter-
sections. We first introduce a controller with a concept of perfect knowledge, but after
that weaken this assumption and introduce now communicating controllers, capable of
committing crossing manoeuvres safely with less information.

We mathematically prove the safety of the crossing controllers. Besides safety, other
properties are desirable for autonomous cars. We examine the (bounded) liveness be-
haviour of the lane change controller from [HLOR11] and our crossing controllers with
an implementation in UPPAAL [BDL04]. Here, liveness means that something good,
i.e. a planned lane change or crossing manoeuvre, can finally be achieved under certain
assumptions. Bounded liveness restricts the time within the good thing has to happen.
We also examine fairness properties of the crossing controller, by introducing a fair ex-
tension of the crossing controller which ensures that no car has to wait unreasonably
long in front of an intersection. We further on weaken an assumption about having
completely reliable communication by introducing probabilities for failures.

Finally, we apply our approach in a case study by introducing and implementing a hazard
warning communication protocol with our logic and controllers. We prove the correctness
of our hazard warning protocol with a proof assisted by UPPAAL.

Consider Table 1.2, which extends Table 1.1 from the previous section by a new row
for our urban traffic contributions. Our UPPAAL implementation of the lane change
controller and the hazard warning case study are added and highlighted in the first row.
We describe the depicted publication abbreviations later in Sect. 1.5.

Basic Cases Extensions Implementations

Highway Traffic [HLOR11] [FHO15], [Lin15] [Lin17a,17b]

[Sch14] [Ody15,17,19], [OS17] [Sch18b]

Country Roads [HLO13]

Urban Traffic [HS16, Sch18a] [Sch17] [BS19]

Table 1.2: Weaving in own contribution into the MLSL approaches.

4

1.3 Related Work

1.3 Related Work

In this section, we give an overview of related work regarding the overall content of the
thesis. We give dedicated related work for the specific content of the following chapters
exactly there in the respective chapters and sections. We split-up this related work
section into two parts:

� Related formalisms for urban traffic scenarios at intersections, including works on
intelligent transportation systems,

� Related approaches for non-urban automotive traffic scenarios and also related
approaches for other autonomous domains (e.g. aeroplanes) as results of other
domains can often be applied to the automotive domain,

Related formalisms for autonomous urban traffic at intersections.

Several promising approaches to safety of autonomous cars in urban traffic have been
brought forwards in the course of the DARPA Urban Challenge. However, a great
weakness of even the most successful DARPA entries is that most of them use algorithms
solely applicable for the specific road map of the DARPA Urban Challenge, which is not
applicable for real world settings.

To overcome this weakness, several follow-up projects arose from successful DARPA
Challenge candidates. E.g. the team behind second placed ‘Junior’ [Mea08] in DARPA
Grand Challenge 2007 summarise their recent research towards safe and robust au-
tonomous manoeuvres in more realistic traffic situations in [LAB+11]. Instead of just
using the DARPA map, Junior now generates high resolution maps of its surround-
ings using an automatically calibrating lidar sensor. Improved perception and image
recognition algorithms allow Junior to recognise the type of other traffic participants
(e.g. cyclists, pedestrians, other cars) and to dynamically plan its route. However, in
unexpected events, manual control is needed to preserve safety.

A notable German follow-up project from DARPA Grand Challenge 2007 finalist ‘Car-
oline’ [WF08] is TU Braunschweig’s Stadtpilot project [Bra]. After the DARPA Grand
Challenge, the team around Stadtpilot further improved their approach by developing
the autonomous vehicle ‘Leonie’ [NHO+11]. According to the authors, ‘Leonie is one of
the first [vehicles] worldwide to show the ability of driving autonomously in real urban
traffic scenarios [at the time the paper was published in 2011]’. In a public demonstra-
tion in 2010, Leonie drove in mixed traffic without errors for 40km within the 4 hours of
the demonstration. A sound safety concept is presented. However, Leonie is built solely
to drive on Braunschweig’s inner city ring road with again a fixed road map. Nonethe-
less the result is impressive, as it is one of the few approaches on autonomous cars that
already seem fit for driving on (a limited part of) a real road in 2010.

Beside the DARPA candidates, at the present day, several other labels exist under whose
names autonomous cars (successfully) drive far more miles on real roads [WB18]. In

5

1 Introduction

Germany, research centres of both Mercedes-Benz and BMW have been testing auto-
mated cars on real roads in challenging driving situations (e.g. morning traffic) close to
Stuttgart and Munich by 2018. Besides approaches in Europe, far more autonomous cars
are launched on the roads in the USA, especially in California due to less legal restric-
tions. To name only some of them, [WB18] reports that Google’s Waymo has already
run over 5 million road miles in 25 cities (e.g. in San Francisco) and even reaches maxi-
mum velocity on highways. Waymo is based on results of the previous project ‘Google
Driverless Car’ [DSB16], which already launched some (semi-) autonomous self-driving
cars onto the streets in some US states several years before. Similarly, Tesla, General
Motors and several other companies can report successful tests with autonomous cars
on real roads in the USA for many thousand miles [DB16, WB18]. However, collisions,
and from time to time also fatalities, have been reported for several of the approaches,
meaning safety is not guaranteed [DB16]. Further on, other common (non-lethal) system
failures (e.g. uncomfortable speed change, failures to detect lanes) have been reported
as of [DB16].

The previously described approaches concern mixed traffic, where besides autonomous
cars other traffic participants are considered. As motivated in the introduction, we
consider fully autonomous cars, where all our cars drive autonomously. With this, we
can ensure complete safety. However, mixed traffic with both autonomous and human-
driven cars is a widely researched field and closer to market introduction than fully
autonomous vehicles, even though in these scenarios safety can only be approximated
and the previously described system failures are quite common [DB16, LAB+11].

Mixed traffic includes cases where people or other non-autonomous objects (e.g. human-
driven cars) may invade the safety envelope of autonomous cars. For this, we refer to the
group of Althoff from Munich [AD14, AM16]. In [AD14], the authors verify safety of cars
online with respect to uncertain inputs (e.g. sensor noise, disturbances). Additional to
that, in [AM16], the authors compute an over-approximation of possible occupancies of
traffic participants over time. With this, one can formally prove, whether an automated
car can possibly collide with other traffic participants in the near future.

An approach for coordinating vehicles in urban traffic that avoid collisions while moving
towards their driving goals is presented in [BTK07]. The core of the work are planning
methods for a dynamic communication network with real-time assumptions. The authors
prove and simulate safety of their system. However, the trajectories chosen by their
dynamically moving cars do not strictly follow predefined lanes and often use large
detours to avoid trajectories of other cars.

A wide range of intelligent transportation systems (ITS) [FJM+01] were introduced to
increase safety, security and comfort of autonomous driving during the last years. In
these systems often centralised scheduling mechanisms are employed to improve vehicular
safety and efficiency. These systems are especially often applied in urban traffic, as the
density of road-side units, acting as schedulers, is far higher in urban environments
than in rural areas. We present some selected approaches from the ITS community in

6

1.3 Related Work

the following paragraphs. The huge difference of all these approaches is that our self-
organising MLSL controllers decentrally plan and negotiate traffic manoeuvres and that
no central scheduler is used.

Further on, in [LP11] an approach for simple intersections of single lanes with one car
on each lane is proposed. The authors use traffic lights as a central control mechanism,
where a car is not permitted to enter an intersection when the light is red. Though
limited to single lanes with only one car on each lane, the strong point of this work is
that the authors verify the safety of their hybrid systems with the tool KeYmaera.

A different approach to intelligent traffic lights as a centralised scheduler is presented
in [EHK+17]. There, the authors propose to use the tool UPPAAL Stratego [DJL+15],
which combines machine learning and the model checking techniques of basic UPPAAL,
to minimise waiting times, energy consumption and CO2 emissions at intersections. In
comparison to the approach with MLSL, the latter approach focuses on traffic flow opti-
misation at intersections and not on safety aspects of self-organised traffic manoeuvres.

Related work for other autonomous traffic scenarios and other domains.

Amongst the vast amount of different approaches for autonomous traffic manoeuvres,
one of the approaches possibly soonest to be released for market introduction is the
platooning concept, in general applied to highway traffic scenarios. Two international
projects solely focusing on platooning are the California PATH project [LGS98] and the
European project SARTRE [LUS12]. In the platooning approach one leader vehicle exists
for each platoon, which is in general not-autonomous. Numerous cars can autonomously
follow this steady driving leader with minimal space between the vehicles, reducing both
space and fuel waste on highways. As much advanced as platooning might be, thorough
certification of correct functionality and safety of platooning is still an issue.

A concept of platooning may also be introduced to urban traffic as shown in [NB04,
LW06]. With that, cars may simultaneously pass an intersection. In [NB04], cars build
a virtual platoon via communication. Safety is guaranteed and aspects like efficiency,
environment protection and comfort are taken into account. Possible conflicts between
these objectives are identified and an optimal compromise is suggested. In [LW06], a
Virtual Traffic Light (VTL) concept is introduced, where one of the vehicles approaching
an intersection is cooperatively selected to be the VTL leader. This VTL leader is then
responsible for the trajectory planning of a virtual platoon through the intersection.

In [DMPR18], the authors introduce a formal semantics for Traffic Sequence Charts
(TSCs), which provide a visual specification language for describing first-order logic
predicates for traffic situations. As TSCs are based on Life sequence charts (LSCs)
[DH01], they are designed to specify the dynamic evolution of traffic situations. An oracle
is used to take the future evolution of traffic into account for movement decisions. They
also include dynamic models of other traffic participants and present cars as non-linear
hybrid automata. For now, perfect knowledge is assumed and cooperating cars are not

7

1 Introduction

considered. For future work, simulation runs are planned to check TSCs for consistency
and completeness. Amongst others, a strength of TSCs are their self-explaining visuals.
However, TCSs are a young and new topic and hitherto the authors abstract from several
aspects.

In the MLSL approaches, we do not consider how an autonomous car plans its route and
e.g. selects a fitting gap on a neighbouring lane to change into. Instead, our controllers
randomly pick a lane to change to and also do not accelerate or brake to find a fitting gap,
which would surely optimise the waiting times for changing lanes for our cars, but would
again mean reasoning on a dynamic level. However, in [CSB+17], the authors introduce
and evaluate an approach for gap selection with small inter-vehicle gaps in dense traffic
situations, to which we refer to. There the authors calculate possible longitudinal and
lateral trajectories for changing lanes on a highway into smaller gaps on adjacent lanes.
The authors demonstrate safety and robustness of their controller by simulation.

Focusing on a different transport domain, in [CRT09] the authors extend linear-time
temporal logic with regular expressions and hybrid aspects for formalisation and vali-
dation of specifications of the European train control system (ETCS) [Gro02]. There
e.g. timely braking manoeuvres are safety-critical. Additionally, in [MFHR08], duration
calculus safety specifications for the ETCS system are verified.

Furthermore, an approach on the verification of cooperating traffic agents is introduced in
[DHO06]. This approach is applicable to avionics (cf. traffic alert and collision avoidance
system (TCAS) [LLL00]), train applications (cf. ETCS) or even automotive applications
(cf. platooning [LGS98, LUS12]). However, the difference of these approaches from
our urban traffic scenario is the intersection problem: In the mentioned systems the
traffic is considered one-dimensional. In this context, “one-dimensional” means that
intersecting travelling routes are not considered. For instance, in avionics, planes use
distinct flight tunnels and probable flight adjustments due to collision risks are not
negotiated spontaneously but planned far ahead in time. In train applications, only the
distance to a train or obstacle in front is of interest, as trains cannot evade sideways and
railway crossings are centrally controlled.

1.4 Structure of this Thesis

As first part of this thesis, in Chapter 2, we give the preliminaries for our work. We
introduce the MLSL for highway traffic and briefly recapitulate knowledge about the well-
known concept of timed automata. We further on give an overview of the lane change
controllers for highway traffic and country roads from [HLOR11] and [HLO13].

In Chapter 3, we introduce our abstract model for the urban traffic networks of intersec-
tions and explain how real traffic situations are abstractly captured in our model. We
also introduce our flattening process of the complex graph topology and introduce how
to reason with our logic Urban Multi-lane Spatial Logic in this topology.

8

1.5 Sources

The following Chapter 4 introduces our automotive-controlling timed automata (ACTA)
we use for our various car controllers. Besides syntax and semantics of these ACTA, we
also introduce the synchronisation procedure of these automata via broadcast commu-
nication channels with data types and introduce networks of ACTA.

Subsequently in Chapter 5, we explain the interplay of different types of discrete and
dynamic controllers in one autonomous car and construct our crossing controllers, which
we prove to be safe, live and fair in Chapter 6. We introduce both a crossing controller for
a concept of perfect knowledge and one with less knowledge that needs to communicate
to cope with the imperfect knowledge in Chapter 5.

In Chapter 7 we introduce our case study on a hazard warning communication protocol.
There we first explain the adaptations of our MLSL approach to cope with hazards,
construct our hazard warning controllers and finally prove their correct behaviour with
a proof assisted by UPPAAL.

We finish this thesis with a short summary of our work in Chapter 8, followed by an
informal evaluation of our approach, a brief overview of recent work and an outlook to
possible future work directions.

1.5 Sources

The very heart of this thesis goes back to the content about an abstract model for
crossing manoeuvres introduced in [Sch18a], which is an extension and adaptation of
the conference paper [HS16]. Besides the crossing controller and its safety proof, the
abstract model for complex urban networks and the process of gaining virtual views to
reason about traffic situations is the central part of [Sch18a] (cf. Chapter 3 and Sects. 5.3
and 6.3). Whereas in [HS16] the abstract model for urban traffic was defined hard-coded
specifically for 2-by-2 intersections, in [Sch18a] we generalise that approach to cope with
intersections where any numbers of lanes meet. As the latter approach is more powerful
and universal, we omit details for the hard-coded case throughout the thesis, but refer
to [HS16] for details on that.

Mainly focusing on the controllers, [Sch17] introduces a new communicating extension of
the controller concept from [Sch18a], capable of crossing manoeuvres with less knowledge
(cf. Sect. 5.4). Additionally, in [Sch18b] and [BS19] implementation approaches using
UPPAAL are provided to examine certain desirable system properties of the controllers:
Safety, (bounded) liveness and fairness (cf. Chapter 6).

Finally, in [OS17] the case study is introduced, where we apply the MLSL approach
to a hazard warning communication protocol (cf. Chapter 7). The semantics of the
controllers used in all previously mentioned publications bases on the work in [Sch14]
(cf. Chapter 4). Only as an outlook on recent work, we consider explainability of cyber-
physical systems in [BGG+19] (cf. Sect. 8.3).

9

2 Preliminaries

In this chapter, we introduce the preliminaries for our work. For this, we start in Sect. 2.1
with a brief introduction to the Z notation from [WD96] which we use throughout this
thesis to formalise concepts. In Sect. 2.2, we give an overview of the abstract model
and logic MLSL for highway traffic from [HLOR11]. In Sect. 2.3, we briefly discuss
extended timed automata, which serve as a base for the automotive-controlling timed
automata that we introduce later in this thesis. In Sect. 2.4, we introduce the lane
change controller for highway traffic from [HLOR11] and we also informally introduce
the overtaking protocol for country roads from [HLO13].

2.1 Z Specification Language

The Z notation is a formal specification language which is based on set theory and
mathematical logic. It is thoroughly introduced and examined in [WD96]. As a reference
manual we also recommend [Spi89]. In this section, we only briefly introduce those
Z concepts that we actually use within this thesis and refer to the named books for
details.

First-order logic, sets and general notation. Using Z, the notation of expressions and
formulae is slightly different than commonly used. E.g. if we translate the first-order
logic formula

∃n ∈ N, i ∈ {1, . . . , n} : n > 10 ∧ n > i

into Z notation, we write

∃n : N; i : {1 .. n} • n > 10 ∧ n > i.

For abbreviations we write symbol == term, where symbol is a new name for the ex-
pression term that is defined elsewhere. For a power set of some set X, we write PX in
Z notation instead of P(X).

A well-known mathematical construct for the separation of specific parts of a set M is

{x : M | F},

where those elements x are separated, for which the predicate logic formula F holds.

11

2 Preliminaries

Z offers a unique additional method to separate specific elements from one set:

{x : M | F • exp}.

Here, first those elements x are selected, for which F holds. Then, the given expression
exp transforms the elements x into other elements. For examples for this notation, we
refer to the next paragraph, where it is used to denote specific operations on relations.

Relations and functions. A relation R between the sets X and Y is denoted by R : X ↔
Y . For x ∈ X and y ∈ Y , we may write x 7→ y if (x, y) ∈ R. The domain of such a
relation R : X ↔ Y is the set of elements in X related to some elements in Y :

domR = {x : X; y : Y | x 7→ y ∈ R • x}.

On the other hand, the range of R is the set of elements of Y to which some element of
X is related:

ranR = {x : X; y : Y | x 7→ y ∈ R • y}.

Sometimes, it is desirable to consider only a part of a function. For this, both the domain
and the range may be restricted or subtracted. For a subset A of the set X, we denote
the domain restriction of R to A by A / R which is defined by

A / R = {x : X; y : Y | x 7→ y ∈ R ∧ x ∈ A • x 7→ y}.

The concepts of range restriction as well as domain and range subtraction are defined
analogously but left out here as we do not use them within this thesis.

For defining a partial finite function f from a set X to a set Y we write f : X −→pp Y .
Such a function f maps each element of a finite subset of X to at most one element of
Y . Further on, for a total bijective function g from X to Y , we write g : X �� Y . The
function g maps each element of X exactly to one unique element of Y , meaning g is
both injective and surjective.

Further on, we use the overriding operator ⊕, where for a function f : X → Y with an
expression f⊕{x1 7→ y1} the value of x1 is updated to y1. All other parts of the function
remain the same.

Sequences. A sequence s is an ordered collection of objects and is formally defined as
a partial finite function defined on the natural numbers and ranging over some set X.
The set of all finite sequences of elements from a given set X is denoted by:

seqX == {s : N −→pp X | ∃n : N • dom s = 1 .. n}.

A sequence s consisting of elements a, b, c is written as s = 〈a, b, c〉. It stands for the
function s = {1 7→ a, 2 7→ b, 3 7→ c} from indices 1, 2, 3 to elements a, b, c. Thus the i-th
element of s is obtained by the function application s(i), e.g., s(2) = b. The length of s
is denoted by #s, here #s = 3. For the empty sequence 〈〉 the length is 0.

12

2.2 Model and Logic MLSL for Highway Traffic

Sequences may be composed using the sequence concatenation operator a. For instance,
we can write 〈a, b, c〉 a 〈c, d〉 = 〈a, b, c, c, d〉. As and abbreviation, we use 〈d1〉 = d1 for a
sequence with only one element.

Further on, the function head s returns the first element of a non-empty sequence s
while the function tail s returns the part that follows the first element of s, such that
s = 〈head s〉 a tail s. To this notation we add the function second s, which returns the
second element of s for |s| > 1. With s′ == tail s and second s = head s′, this leads to
s = 〈head s〉 a 〈second s〉 a tail s′.

It can be of interest to compress a finite function defined upon the natural numbers to
a sequence. For instance, this can be useful, if a range restriction applied to a sequence
has left empty spaces within that sequence. For this, Z offers the operator squash which
compacts the domain of a finite function defined upon N to remove any empty spaces,
while preserving the order of the remaining elements. For instance, we have

squash {1 7→ a, 3 7→ c, 5 7→ e} = {1 7→ a, 2 7→ c, 3 7→ e} = 〈a, c, e〉.

We use sequences defined over Z starting from Sect. 3.2 and also define and use an
adapted version of squash over Z directly there (cf. Def. 15, p. 40).

2.2 Model and Logic MLSL for Highway Traffic

In general, when speaking of ‘the MLSL approach’, we consider the following five cen-
tral concepts, which all exist in different versions in the highway traffic approach from
[HLOR11], in the country roads approach from [HLO13], as well as in the urban traffic
approach described in the main part of this thesis:

Abstract model: An abstracted version of real-world traffic situations. It consists e.g.
of abstracted versions of driving lanes, intersections and cars.

Traffic snapshot: The ‘global picture’ of all traffic. One distinct traffic snapshot cap-
tures e.g. the current positions of all cars in the abstract model.

View: A cut-out of a traffic snapshot. This is used to consider only the local traffic
around a specific car to simplify reasoning.

Logic: The spatial traffic logic MLSL (or one of its extensions). It is used to reason
about the specific traffic situation captured in a view.

Controller: An automaton-style controller, implementing the lane change or turn pro-
cedures. It uses formulae of (extended) MLSL to determine whether a lane change
or turn manoeuvre can be safely conducted or not.

13

2 Preliminaries

Note that while all our three traffic approaches use these five concepts, the respective
instances sometimes differ greatly. For instance, while the abstract model for highway
traffic consists only of a number of infinite adjacent lanes with the same driving direction,
for urban traffic, we have an abstract model consisting of a complex network of different
intersections connected to some other intersections by finite lane segments.

Common to all MLSL approaches, we assume that all cars on the road are driving
autonomously and thus do not model human drivers. This assumption is done because
we do not cope with cars driving completely unpredictable and possibly even violating
traffic rules. Approaches with mixed traffic in general need to include some type of
probabilities, as the behaviour of unpredictable traffic participants obviously can only
be guessed, not known. With this, a proof of absolute safety is no longer possible.
Some basic ideas on how to introduce human drivers into the MLSL approach can be
found in [Bis18]. There, the author extends our traffic controllers with probabilities for
communication failures.

We now briefly introduce the above concepts up to the controller part for the first an
easiest case: highway traffic (cf. [HLOR11]). For reasons of clarity, before introducing the
lane change controller in Sect. 2.4, we first give an overview of extended timed automata
in next Sect. 2.3 as the controller uses concepts of timed automata. We start with the
abstract model for highway traffic and refer to [HLOR11] for more details.

Abstract Model for Highway Traffic

The abstract model for highway traffic consists of a set L = {0, . . . , N} of infinite neigh-
bouring lanes of continuous space, heading in the same direction, for some fixed N ≥ 1.
Typical elements from L are l,m, n. Every car has a unique car identifier from the set I
with typical elements A,B, . . . and a real value for its position pos on a lane. An example
for a traffic situation in our abstract model is depicted in Fig. 2.1. We use the concept
of an ego car as the car under consideration and use the special variable ego to refer
to this car. For Fig. 2.1, we assume that E is our ego car and thus have the valuation
ν(ego) = E.

In the abstract model, the space that a car E is currently occupying on a lane is repre-
sented by its reservation res(ego), while a claim clm(ego) is akin to setting the direction
indicator (cf. dotted part of car E in Fig. 2.1, showing the desire of E to change to lane
2). Thus, a claim represents the space a car plans to drive on in the future.

The car rectangles depicted in Fig. 2.1 comprise the safety envelopes of the cars, for
now including both the physical size and the braking distance of the cars. To indicate
that cars vary in size and that their braking distance also varies in size due to different
speed values, the rectangles also have different sizes. By considering the braking distance
within the safety envelope, each car may perform an emergency brake and still remain
safe.

14

2.2 Model and Logic MLSL for Highway Traffic

T S0 :

0 G

1 E

D

C

2 A

B

E

F3

View V (E,TS)

pos(E)h h

Figure 2.1: Abstract model with adjacent lanes 0 to 3 and cars with unique identifiers.
The ego car E plans to change to lane 2, indicated by its dotted claim on
lane 2. Cars D and F are too far away from car E to be considered in E’s
standard view V (E,TS).

Traffic Snapshot

Static information about cars like their positions and their reserved or claimed lanes is
captured in a traffic snapshot T S. One distinct traffic snapshot T S describes the traffic
on the freeway at a given point in time.

Definition 1 (Traffic snapshot [HLOR11]). A global traffic snapshot T S is a structure
T S = (res, clm, pos, spd , acc), where res, clm, pos, spd and acc are functions

� res : I→ P(L) such that res(C) is the set of lanes that car C reserves,

� clm : I→ P(L) such that clm(C) is the set of lanes that car C claims,

� pos : I→ R such that pos(C) is the position of the rear of car C on its lane,

� spd : I→ R such that spd(C) is the current speed of car C,

� acc : I→ R such that acc(C) is the current acceleration of car C.

Example 1 (Traffic snapshot). Consider the depicted traffic situation in Fig. 2.1 as an
excerpt of a traffic snapshot T S0. We give the respective sets for reservations and claims
of the cars and their position values in T S0 in the following table:

Note that in Table 2.1 the position, speed and acceleration values are exemplary and
possibly do not scale exactly to Fig. 2.1. An intuition behind the chosen values is that
car D currently brakes (negative acceleration), while cars F and G accelerate (positive
acceleration). All other cars drive constantly at their indicated speeds. 4

Def. 1 does not restrict the structure of a traffic snapshot, thus including completely
senseless ones. E.g., it allows for a car C to claim, and thus change to, a lane which is
not neighbouring to its currently occupied lane. To exclude such insane traffic snapshots.
Linker [Lin15] introduces the following notion of sanity conditions.

15

2 Preliminaries

Car A B C D E F G

Reservation res {2} {3} {1} {0} {1} {3} {0}
Claim clm ∅ ∅ ∅ ∅ {2} ∅ ∅

Position pos 20 83 110 135 70 165 35
Speed spd 130 135 90 95 110 150 80

Acceleration acc 0 0 0 −15 0 30 25

Table 2.1: Respective sets of claimed and reserved lanes and possible real position, speed
and acceleration values for the cars visible in the excerpt of traffic snapshot
T S0 depicted in Fig. 2.1.

Definition 2 (Sanity conditions [Lin15]). A traffic snapshot T S is sane, if the following
conditions hold for all cars C ∈ I.

1. res(C) ∩ clm(C) = ∅
2. 0 ≤ #clm(C) ≤ 1

3. 1 ≤ #res(C) ≤ 2

4. 1 ≤ #res(C) + #clm(C) ≤ 2

5. #res(C) = 2 implies ∃n : L • res(C) = {n, n+ 1}
6. clm(C) 6= ∅ implies ∃n : L • res(C) ∪ clm(C) = {n, n+ 1}.

Let TS denote the set of all sane traffic snapshots.

With conditions 1 and 2 and 6, it is ensured, that a car can only claim one lane at
once, which has to be neighbouring to the currently reserved lane. Likewise, condition
5 states that if a car can only change to a neighbouring lane. Further on, condition 4
forbids that a car claims a lane while changing lanes and thus #res(C) = 2. Finally,
condition 3 ensures that there always remains a reservation for each car and thus cars
do not completely disappear from the highway. This is necessary, as the lanes in the
abstract model from [HLOR11] are infinite and an option to leave the highway is not
provided.

To describe changes that may occur to an arbitrary traffic snapshot T S, the following
traffic snapshot transitions are introduced. We use the overriding notation ⊕ of Z for
function updates. With the update clm′(C) = clm⊕{C 7→ {n}}, we e.g. update the set
of claimed lane segments for car C to {n}.

Definition 3 (Traffic snapshot transitions [HLOR11]). The following transitions describe
the changes that may occur at a traffic snapshot T S = (res, clm, pos, spd , acc). We use
the overriding notation ⊕ of Z for function updates (cf. Sect. 2.1).

T S t−→T S ′ ⇔ T S ′ = (res, clm, pos ′, spd ′, acc)

16

2.2 Model and Logic MLSL for Highway Traffic

∧∀C ∈ I : pos ′(C) = pos(C) + spd(C) · t+ 1
2acc(C) · t2

∧∀C ∈ I : spd ′(C) = spd(C) + acc(C) · t (2.1)

T S acc(C,a)−−−−−→T S ′ ⇔ T S ′ = (res, clm, pos, spd , acc′)

∧ acc′ = acc ⊕ {C 7→ a} (2.2)

T S c(C,n)−−−−→T S ′ ⇔ T S ′ = (res, clm′, pos, spd , acc)

∧ |clm(C)| = 0 ∧ |res(C)| = 1

∧{n+ 1, n− 1} ∩ res(C) 6= ∅
∧ clm′ = clm⊕ {C 7→ {n}} (2.3)

T S wd c(C)−−−−−→T S ′ ⇔ T S ′ = (res, clm′, pos, spd , acc)

∧ clm′ = clm⊕ {C 7→ ∅} (2.4)

T S r(C)−−→T S ′ ⇔ T S ′ = (res′, clm′, pos, spd , acc)

∧ clm′ = clm⊕ {C 7→ ∅}
∧ res′ = res⊕ {C 7→ res(C) ∪ clm(C)} (2.5)

T S wd r(C,n)−−−−−−→T S ′ ⇔ T S ′ = (res′, clm, pos, spd , acc)

∧ res′ = res⊕ {C 7→ {n}}
∧n ∈ res(C) ∧ |res(C)| = 2 (2.6)

We start with describing transition (2.3) for claiming a lane n for car C. The side
conditions for this transition e.g. state that car C is not allowed to have already claimed
other lanes and further on it is checked whether the lane n is actually neighbouring to
the lane car C is already driving on. The transition (2.4) for withdrawing a claim is
much easier, as it only empties the set of claimed lanes clm(C) of car C.

For reserving a lane the transition (2.5) is used. Here the claimed lane is inserted into
the set of reserved lanes res(C) and again, the set of claimed lanes clm(C) of car C is
emptied. For withdrawing a reservation with transition (2.6), the car C has to have two
reservations. This ensures that after withdrawing a reservation, there still exists one
reservation for car C.

With the time transition (2.1), the movement of cars according to their respective speed
and acceleration when some time t passes is formalised. Formula (2.2) defines how a car
may change its acceleration. Note that a very abstract formalisation is used here for the
car dynamics, as we abstract from them (also cf. explanation in Sect. (5.1)). We still
give a definition for them here, to have a defined continuous behaviour of the cars, if
time passes.

At this point, we like to follow the idea of Linker, who introduced the notion of evolution
transitions in [Lin15] by combining a finite number of time transitions (2.1) and acceler-
ation transitions (2.2). We denote such an evolution transition by T S T S ′ and refer
to [Lin15] for the formal definition of evolutions.

17

2 Preliminaries

Example 2 (Traffic snapshot transitions). As the initial traffic snapshot for the following
transition sequence, consider again the traffic snapshot T S0 from Fig. 2.1, where car E
drives on lane 1 and has already claimed a space on lane 2. In the following, we give
a transition sequence, where T S0 evolves to a future traffic snapshot T S5. The traffic
snapshot T S0 up to T S5 are depicted in Fig. 2.2.

We first consider some time t1 passes and all cars move according to their speed and
acceleration. Secondly, car E reserves its previously claimed space on lane 2 and after
some time t2 passes withdraws its reservation to lane 2 solely, as it finished its lane
change manoeuvre. Finally, we consider that an evolution transition occurs, where car
E accelerates on its new lane 2 and after some time passes starts overtaking car C.

T S0 t1−−−→T S1
r(E)−−−−→ T S2 t2−−−→T S3

wd r(E,2)−−−−−−−→ T S4 T S5
We have T S0 ⇒ T S5. 4

T S0 :

0 G

1 E

D

C

2 A

B

E

F3

View V (E,TS)

pos(E)h h T S1 :

0 G

1 E

D

C

2 A

B

E

3

View V (E,TS)

pos′(E)h h

T S2 :

0 G

1 E

D

C

2 A

B

E

3

View V (E,TS)

pos′(E)h h T S3 :

0 G

1 E

D

C

2 A

B

E

H3

View V (E,TS)

pos′′(E)h h

T S4 :

0 G

1

D

C

2 A

B

E

H3

View V (E,TS)

pos′′(E)h h T S5 :

0 G

1

D

C

2 A

B

E

H3

View V (E,TS)

pos′′′(E)h h

Figure 2.2: Stepwise evolution of the initial traffic snapshot T S0 from Fig. 2.1 to a traffic
snapshot T S5.

The traffic snapshot transitions are well-defined, meaning that when we start from a
sane traffic snapshot T S, only sane traffic snapshots are reachable via the transitions
from Def. 3. A proof for this property can be found in [Lin15].

As lanes are of infinite size, we also have an infinitely large traffic snapshot with infinitely
many cars in it. However, for checking safety and liveness properties of our lane change
controller, only cars within some bounded view V around our ego car E are of interest.

18

2.2 Model and Logic MLSL for Highway Traffic

View

We use a local view for logical reasoning about traffic situations with MLSL. If a certain
area around ego car E is considered in a view, we name it by the standard view of E.
For example, in Fig. 2.1, the standard view of car E is indicated by the blue rectangle.

Definition 4 (View and standard view). For an arbitrary traffic snapshot T S, the view
V , owned by car E ∈ I, is defined by V = (L,X,E), where L ⊆ L is an interval of lanes
visible in V and X = [r, t] ⊆ R is an interval of space along the lanes. We define the
standard view of car E by V (E, T S) = (L, [pos(E) − h, pos(E) + h], E), where h is a
sufficiently large horizon for looking forwards resp. backwards from the position pos(E),
as given in the traffic snapshot T S.

We assume there exists a minimal positive value for the size of all cars, thus only finitely
many cars are considered in a view. We furthermore assume that there exists a maximum
velocity for all cars and the horizon h is big enough to consider the fastest car that could
endanger E contained in its standard view V (E, T S). In the example in Fig. 2.1, car
D is not considered in V , as it is to far away from E. We use a car dependent sensor
function ΩE : I × TS → R+ which, given an identifier C ∈ I and a traffic snapshot
T S ∈ TS, provides the size ΩE(C, T S) of C as perceived by E’s sensors.

We assume a concept of perfect knowledge in the following: the size of a car includes
its’ physical size and its braking distance. With this, safety is already violated if a car
invades the braking distance of another car. The idea is that every car is supposed to be
able to perform an emergency braking manoeuvre at every moment, without causing a
collision. In [HLOR11], the authors also introduce the more realistic concept of imperfect
knowledge, where each car only knows the physical size of other cars. We do not describe
the approach with imperfect knowledge for highway traffic here for reasons of brevity.
However, we describe this concept of imperfect knowledge later more detailed in our
assumptions for our crossing controllers in Sect. 5.2, as we introduce crossing controllers
both for perfect and imperfect knowledge in the respective Sects. 5.3 and 5.4.

Abbreviation 1 (Visible elements in a view). For a view V = (L,X,E) and a traffic
snapshot T S = (res, clm, pos, spd , acc), we introduce the following abbreviations, used
for the semantics definition of the logic MLSL in the next section:

resV : I→ P L with resV (C) = res(C) ∩ L (2.7)

clmV : I→ P L with clmV (C) = clm(C) ∩ L (2.8)

lenV : I→ P L with lenV (C) = [pos(C), pos(C) + ΩE(C, T S)] ∩X (2.9)

4

The functions (2.7) and (2.8) restrict their counterparts res(C) and clm(C) from T S
to the set of lanes considered in V . Function (2.9) defines the part of car C that E
perceives with its sensors in the extension X of the considered view V .

19

2 Preliminaries

Multi-lane Spatial Logic

Multi-lane Spatial Logic (MLSL) is inspired by Interval Temporal Logic (ITL) [Mos85]
and Duration Calculus (DC) [CHR91], which both allow for one-dimensional reasoning
by specification of temporal intervals. With these intervals, one can e.g. specify sys-
tem states happening one after the other. Further on, Shape Calculus [Sch05] extends
Duration Calculus by more dimensions as it allows an arbitrary amount of spatial and
temporal dimensions.

Taking up this idea of a multi-dimensional logic, MLSL and its derivatives, including the
urban logic proposed in this thesis, extend ITL and DC by a second dimension, whilst
considering continuous (positions on lanes) and discrete components (the number of a
lane). With these two-dimensional features we can, for instance, express that a car is
occupying a certain space on a lane.

However, all versions of MLSL are not comparable to Shape Calculus, as they are created
for a specific field of application: motorway traffic, country roads, or urban traffic. To
this end, MLSL allows for quantification over cars, which is not implementable in Shape
Calculus. Therefore, a reduction of MLSL to a decidable subset of Shape Calculus is not
possible.

Syntax of MLSL. With MLSL, we can reason about traffic situations in our local view
V = (L,X,E). We distinguish car variables c, d, . . . from the set CVar, valuated with
car identifiers from the set I, and lane variables n, l, . . . from the set LVar, valuated with
lanes from L. We define ego ∈ CVar and the set of all variables Var = CVar ∪ LVar
has typical elements u, v. We now introduce the valuation function ν for car and lane
variables.

Definition 5 (Valuation of variables). A valuation ν is a function ν : Var→ I∪L, where
Var = CVar ∪ LVar and ν : CVar→ I and ν : LVar→ L.

Formulae of MLSL are built from atoms, Boolean connectors and first-order quantifiers.
As spatial atoms, we use free to represent free space on a lane and re(c) (resp. cl(c))
to formalise the reservation (resp. claim) of a car. We also allow for the comparison of
variables u = v for variables u, v,∈ Var of the same type.

We utilise concepts of interval temporal logic (ITL) [Mos85] for the spatial interval-like
arrangement of MLSL formulae. In ITL, the term σ 7→ (P = 0) states that within the
discrete time interval σ the signal P has the value 0. ITL allows for length specification
of such a temporal interval, where e.g. the formula [len > n∧ (P = 0)] states that P has
the value 0 in an interval of time greater than n. One can also divide time intervals into
adjacent subintervals in ITL. Here, [(P = 0); skip; (P = 1)] evaluates to true, iff there
exists an interval, where P is 0 for a while and then jumps to 1.

We use this ITL chop operator for MLSL, by defining a horizontal chop operator , denoted
by a instead of ; for interval temporal logic, and a vertical chop operator given by the

20

2.2 Model and Logic MLSL for Highway Traffic

vertical arrangement of formulae. Please note that the operator a as used in MLSL
formulae, has a different meaning as the Z sequence concatenation operator a (cf. p. 13),
which we frequently use later for our urban traffic in Sects. 3.2 and 3.4. Intuitively,
a formula φ1aφ2 holds if we can split the view V horizontally into two views V1 and
V2 such that on V1 the formula φ1 holds and V2 satisfies φ2. Similarly a formula φ2

φ1
is

satisfied by V , if V can be chopped at a lane into two subviews, V1 and V2, where Vi
satisfies φi for i = 1, 2.

Definition 6 (Syntax of MLSL). The syntax of a Multi-lane Spatial Logic formula φM
is defined by

φM ::= true | u = v | free | re(c) | cl(c) | ¬φ | φ1 ∧ φ2 | ∃c : φ1 | φ1aφ2 | φ2φ1,

where c ∈ CVar and u, v ∈ Var. We denote the set of all MLSL formulae by ΦM.

Note that in MLSL the type of the variable c in ∃c : φ1 is fixed: c ranges over the set I
of car identifiers.

Semantics of MLSL. The semantics of MLSL formulae is defined with respect to a traffic
snapshot T S, a view V and a valuation of variables ν. We denote the length of a real
interval X ⊆ R by |X|.

Definition 7 (Semantics of MLSL). The satisfaction of MLSL formulae ϕ with respect
to a traffic snapshot T S, a view V = (L,X,E) with L = [l, n] and X = [r, t], and a
valuation ν of variables is defined inductively as follows:

T S, V, ν |= true for all T S, V, ν
T S, V, ν |= u = v ⇔ ν(u) = ν(v)

T S, V, ν |= free ⇔ |L| = 1 and |X| > 0 and ∀i ∈ IV : lenV (i) ∩ (r, t) = ∅
T S, V, ν |= re(c) ⇔ |L| = 1 and |X| > 0 and ν(c) ∈ IV and resV (ν(c)) = L

and X = lenV (ν(c))

T S, V, ν |= cl(c) ⇔ |L| = 1 and |X| > 0 and ν(c) ∈ IV and clmV (ν(c)) = L

and X = lenV (ν(c))

T S, V, ν |= ¬ϕ ⇔ not T S, V, ν |= ϕ

T S, V, ν |= ϕ1 ∧ ϕ2 ⇔T S, V, ν |= ϕ1 and T S, V, ν |= ϕ2

T S, V, ν |= ∃c : ϕ1 ⇔T S, V, ν |= ∃α ∈ IV : T S, V, ν ⊕ {c 7→ α} |= ϕ1

T S, V, ν |= ϕ1aϕ2 ⇔∃s ∈ R : r ≤ s ≤ t and T S, V[r,s], ν |= ϕ1 and T S, V[s,t], ν |= ϕ2

T S, V, ν |= ϕ2

ϕ1
⇔∃m ∈ N : l − 1 ≤ m ≤ n+ 1 and T S, V [l,m], ν |= ϕ1

and T S, V [m+1,n], ν |= ϕ2

21

2 Preliminaries

In this thesis we often use the abbreviation 〈φ〉 to state that a formula φ holds somewhere
in the considered view of car E. This somewhere modality is used to abstract from exact
positions in MLSL formulae. Note that in MLSL formulae, 〈 and 〉 are not to be confused
with the Z sequence delimiters 〈 and 〉 we use later in Sects. 3.2 and 3.4.

Abbreviation 2 (Somewhere modality). For a formula φ ∈ ΦM we write

〈φ〉 ≡ true a

Ñ
true
φ

true

é
a true,

where 〈φ 〉 distributes over disjunction by Def. 7:

〈φ1 ∨ φ2〉 ≡ 〈φ1〉 ∨ 〈φ2〉.

4

Example 3 (MLSL formulae and somewhere modality). Consider Fig. 2.1 and assume
a valuation of variables ν(ego) = E, ν(a) = A, ν(c) = C, ν(d) = D and ν(g) = G.
Consider the following MLSL formulae:

ϕ1 ≡ 〈re(ego)a free〉

ϕ2 ≡ 〈
Å

cl(ego)
re(ego)

ã
a free a re(c)〉

ϕ3 ≡ 〈cl(g)a free a re(d)〉

In view V (E, T S) the formula ϕ1 holds, as there is free space in front of car E, meaning
T S, V (E, T S), ν |= ϕ1. However, ϕ2 does not hold, as even while there is free space
both in front of the claim and the reservation of car E, the reservation of car C is only in
front of E’s reservation, not in front of its claim. Thus T S, V (E, T S), ν 6|= ϕ2. Likewise,
T S, V (E, T S), ν 6|= ϕ3, as car D is not part of view V (E, T S). 4

Before introducing the lane change controller for highway traffic from [HLOR11], we
introduce extended timed automata which may serve as its semantic basis.

2.3 Extended Timed Automata

As a formal semantics for all controllers introduced within this thesis, we introduce
automotive-controlling timed automata (ACTA) later in Chapter 4. ACTA are an exten-
sion of the well-known concept of timed automata from [AD94], which we introduce in this
section. We also use some concepts of the extended UPPAAL timed automata [BDL04]
in Chapter 4 and thus also briefly introduce them here. As a worthwhile introduction

22

2.3 Extended Timed Automata

to timed automata and further formalisms from the topic of real-time systems, we also
recommend the book [OD08], which inspired some of the definitions in this section.

Notation. Before giving more details on (extended) timed automata, we delimit our
meaning of the following three terms that are frequently used throughout our thesis and
that are confusion-prone:

Location: The specific (syntactical) location an (extended) timed automaton is in.

State: The (semantical) system state of an (extended) timed automaton, meaning one
specific configuration of the automaton during a run.

Phase: A phase a traffic controller is in, e.g. the ‘crossing ahead phase’.

A main advantage of timed automata is that they are capable of representing timing
behaviour. This is done with clock variables x, y from the set of all clock variables X
which range over a continuous time dimension Time. For these clock variables, we define
clock constraints ϕX.

Definition 8 (Clock constraints). For clock variables x, y ∈ X, the set ΦX of all clock
constraints ϕX is defined by

ϕX ::= x ∼ c | x− y ∼ c | ¬ϕX | ϕX,1 ∧ ϕX,2,

where c ∈ Q≥0 and ∼∈ {<, >, ≤, ≥}. Constraints of the type x − y ∼ c are named
clock differences.

An example for a clock constraint ϕX is x > 10, where the clock x is compared with the
value 10. While clock constraints are used in guards and invariants of timed automata,
clock resets like x := 0 are used to reset a clock variable x to 0.

Additional to the clock variables from [AD94], UPPAAL introduces data variables with
respective data constraints and data updates, which we also use for our ACTA. As these
UPPAAL data constraints and updates are defined analogously to the previous clock
constraints and resets, we omit a definition for them at this point and introduce our own
usage of data variables and data constraints for ACTA directly later in Chapter 4.

For the synchronisation of automata, there exist two widely used concepts. The first one
is the so-called handshake communication, where automata communicate in a one-to-
one fashion directly with each other. The sender has to synchronise with the receiving
automaton and thus has to wait until the receiving automaton can synchronise with it.
Such a handshake synchronisation concept is e.g. described by Milner in [Mil82] for his
Calculus of Communicating Systems. The second one is the broadcast communication
UPPAAL implements that we use later for our automotive-controlling timed automata
in Chapter 4. With broadcast communication, one sending automaton can synchronise
with none or an arbitrary number of receiving automata. Broadcast communication is
an extended version of handshake communication. Thus, we decide to only define the

23

2 Preliminaries

simpler handshake communication as of [Mil82] in this preliminary section as an easier
introduction to the concept of synchronisation of automata via channels. We introduce
the broadcast communication concept later in the respective Sect. 4.3 on communication
of ACTA in Chapter 4.

Definition 9 (Channels, actions and alphabets). For a channel a from the set of all
channels Chan there exist two visible actions:

� a? is an input action and

� a! is its respective output action,

where a?, a! /∈ Chan. Further on there exists the internal action τ , with τ /∈ Chan. The
set Act of all actions α, β is defined by

Act = {a? | a ∈ Chan} ∪ {a! | a ∈ Chan} ∪ {τ}. (2.10)

An alphabet B is a set of channels with B ⊆ Chan. To each alphabet B there exists a
set of actions B?!, where

B?! = {a? | a ∈ B} ∪ {a! | a ∈ B} ∪ {τ}. (2.11)

For B?! we observe B?! ⊆ Act = Chan?!.

With this, we now define extended timed automata from [AD94], merged with the broad-
cast communication concept of UPPAAL timed automata [BDL04].

Definition 10 (Extended timed automaton). An extended timed automaton A is a tuple
A = (L,B,X, I, E, lini), where

� L is a finite set of locations l,

� B ⊆ Chan is a finite set of channels,

� X is a finite set of clock variables,

� I : L→ Φ(X) is an invariant, assigning a clock constraint to each location,

� E ⊆ L×B?! × Φ(X)× P(X)× L is the set of all directed edges and

� lini ∈ L is the initial location.

An element (l, α, ϕ, Y, l′) ∈ E describes a transition from location l to l′, labelled with an
action α, a guard ϕ and a set Y ∈ X of clock variables. All clocks in Y are reset when
taking this transition.

24

2.3 Extended Timed Automata

Example 4 (Traffic lights). In Fig. 2.3, we present an example for an extended timed
automaton AP describing the possible behaviour a pedestrian traffic light. Initially,
the traffic light is in location l0 showing green for pedestrians for 10 time units. After
that, the automaton changes to location l1 showing red for pedestrians, while informing
whoever may listen via broadcast channel stop about this change. After 15 time units,
the automaton changes back to the initial location l0, only if a respective message was
received via channel go. 4

AP :

l0 : green
x1 ≤ 10

l1 : red
x1 ≤ 15

stop! x1 ≥ 10

x1 := 0

go? x1 ≥ 15

x1 := 0

Figure 2.3: Extended timed automaton AP for a pedestrian light using channels stop
and go.

For defining the semantics of extended timed automata, we first introduce the following
valuation function for clock variables.

Definition 11 (Clock valuation). Consider a continuous time dimension Time. A valu-
ation ν of clock variables x ∈ X is a mapping

ν : X → Time.

For a clock constraint ϕX (cf. Def. 8), we have

ν |= ϕX,

where this satisfaction of clock constraints ϕX is inductively defined by

ν |= x ∼ c iff ν(x) ∼ c,
ν |= x− y ∼ c iff ν(x)− ν(y) ∼ c,
ν |= ϕX1 ∧ ϕX2 iff ν |= ϕX1 and ν |= ϕX2,

with ∼∈ {=, 6=, <,>,≤,≥}.

Further on, we observe two possible operations for changing the value of clock variables:

Time shift: The valuation ν is increased by some t ∈ Time, denoted by ν+t, as follows:

(ν + t)(x) = ν(x) + t

for all clock variables x ∈ X.

25

2 Preliminaries

Modification: The valuation ν of a subset of clock variables x ∈ Y with Y ⊆ X is set
to a value t ∈ Time, denoted by ν[Y := t], which is defined as follows:

ν[Y := t](x) =

ß
t , if x ∈ Y ,
ν(x) , else

for all clock variables x ∈ X.

Note that in timed automata, clock variables are generally reset to 0 and other variables
are not existent in the timed automata as of Def. 10. We give the operational semantics
of extended timed automata in the following.

Definition 12 (Operational semantics of an extended timed automaton). The operational
semantics of an extended timed automaton A = (L,B,X, I, E, lini) is defined by a labelled
transition system

T (A) = (Conf (A), B?! ∪ T, { λ−→ | λ ∈ B?! ∪ Time}, Cini), (2.12)

where

� the set of all configurations Conf(A) is defined by

Conf (A) = {〈l, ν〉 | l ∈ L ∧ ν : X→ Time ∧ ν |= I(l)},

� Cini = {〈lini, νini〉} ∩ Conf (A) is the initial configuration with νini(x) = 0 for all
clock variables x ∈ X,

� the set B?! ∪ Time contains all labels possible at transitions,

� to each label λ ∈ B?! ∪ Time the transition relation
λ−→ is of one of the following

types:

– Time transition: Time passes, but the location remains unchanged. We have

〈l, ν〉 t−−→ 〈l, ν + t〉,

where ν + t′ |= I(l) for all t′ ∈ [0, t].

– Discrete transition: An action α ∈ B?! is done and clock variables can be
reset, but no time passes. We have

〈l, ν〉 α−−→ 〈l′, ν ′〉,

iff a transition (l, α, ϕ, Y, l′) ∈ E exists with ν |= ϕ and ν ′ = ν[Y := 0], where
ν ′ |= I(l′).

26

2.3 Extended Timed Automata

In the above definition, the set intersection of the initial configuration with the set of all
configurations ensures that the initial configuration is contained in the set of all allowed
configurations.

A location is reachable, if a configuration of the form 〈l, ν〉 is reachable by a transition
sequence

〈l0, ν0〉 λ1−−→ 〈l0, ν0〉 λ2−−→ 〈l0, ν0〉 λ3−−→ . . .

This concept of reachability (resp. unreachability) of good (resp. bad) configurations is
often used to show that desirable properties hold in a system (resp. to show the absence
of undesirable properties) (cf. [BK08] and Chapter 6). To remember how much time
passed since the start of a transition sequence, time stamped configurations 〈l, ν〉, t are
used. In contrast to the values of clocks variables in normal configurations, the time
stamp t is never reset and thus comprises the global time. Time-stamped transition
sequences are referred to as computation paths or runs, depending on what time stamps
are allowed.

Before introducing formal details, we motivate the synchronisation of two extended timed
automata via communication channels by continuing the previous example.

Example 5 (Traffic lights, cont.). In the previous Example 4, in Fig. 2.3, we introduced
an automaton AP , controlling a pedestrian traffic light. Fig. 2.4 depicts the respective
automaton AC controlling the traffic light for the cars. Initially, this controller is in
location m0 showing a red light for the cars. Only when receiving a stop message from
the pedestrian light controller AP , it switches to green light for the cars and after 15
time units it switches to red light for the cars while informing the pedestrian light via
go about the change. 4

AC :

m0 : red
x2 ≤ 10

m1 : green
x2 ≤ 15

stop? x2 ≥ 10

x2 := 0

go! x2 ≥ 15

x2 := 0

Figure 2.4: Extended timed automaton AC for a traffic light for cars capable of commu-
nication with AP from Fig. 2.3 via channels stop and go.

For the parallel composition, two automata either synchronise via handshake commu-
nication or not. The latter case is called interleaving , where one automaton takes a
transition, while the configuration of the other automaton remains unchanged.

27

2 Preliminaries

Definition 13 (Parallel composition of extended timed automata). The parallel composi-
tion A1 ‖ A2 of two extended timed automata

A1 = (L1, B1,X1, I1, E1, lini,1) and A2 = (L2, B2,X2, I2, E2, lini,2)

with disjoint sets of clock variables X1 and X2 yields the extended timed automaton

A1 ‖ A2 = (L1 × L2, B1 ∪B2,X1 ∪ X2, I, E, (lini,1, lini,2)).

Here the invariants for locations l1 ∈ L1 and l2 ∈ L2 are conjugated:

I(l1, l2)
def⇐⇒ I(l1) ∧ I(l2) (2.13)

The transition relation E is constructed according to the following rules:

� Handshake synchronisation: An output a! is synchronised with an input a?, yielding
an internal action τ . For respective transitions (l1, a!, ϕ1, Y1, l1

′) ∈ E1 and
(l2, a?, ϕ2, Y2, l2

′) ∈ E2, we have

((l1, l2), τ, ϕ1 ∧ ϕ2, Y1 ∪ Y2, (l1′, l2′)) ∈ E.

� Interleaving: Here we observe two different cases:

– If for l1 ∈ L1 there exists a transition (l1, α, ϕ1, Y1, l1
′) ∈ E1, then for all

locations l2 ∈ L2 there exists the transition ((l1, l2), α, ϕ1, Y1, (l1
′, l2)) ∈ E.

– If for l2 ∈ L2 we have a transition (l2, α, ϕ2, Y2, l2
′) ∈ E2, then for all locations

l1 ∈ L1 there exists the transition ((l1, l2), α, ϕ2, Y2, (l1, l2
′)) ∈ E.

Example 6 (Parallel composition). Parts of the parallel composition AP ‖ AC of the
two traffic light controllers from Figs. 2.3 and 2.4 are depicted in Fig. 2.5. Note that we
only show the transitions where the automata synchronise and leave out the interleaving
transitions for reasons of brevity. Here, the output action stop! in AP synchronised with
the respective input action stop? in the automaton AC , leads to an internal action τ . 4

AP ‖ AC :

(l0,m0)
x1 ≤ 10∧
x2 ≤ 10

(l1,m1)
x1 ≤ 15∧
x2 ≤ 15

x1 ≥ 10 ∧ x2 ≥ 10

x1 := 0, x2 := 0

x1 ≥ 15 ∧ x2 ≥ 15

x1 := 0, x2 := 0

Figure 2.5: In their parallel composition AP ‖ AC , the respective input and output
actions of AP and AC synchronised to a the internal invisible action τ .

28

2.4 Controller for Highway Traffic and Country Roads

For the operational semantics of networks of timed automata, a configuration now con-

tains a vector
−→
l = (l1, . . . , ln) with the locations of the networks’ components, together

with the variable valuation ν for the variables of all components. For the transition
relation between configurations, three different types exist:

� Local transition: Only one component takes a discrete transition. For the other
components neither location nor variable valuation is affected by this.

� Synchronisation transition: Two automata synchronise their output and input
actions.

� Delay transition: Time passes and clock variables are updated.

For reasons of brevity, we refer to [OD08] for details and the formal definiton of the
operational semantics of networks of timed automata.

2.4 Controller for Highway Traffic and Country Roads

Our thesis bases on the previously introduced models and controllers for lane change
manoeuvres in highway traffic [HLOR11] and overtaking manoeuvres on country-roads
[HLO13], which we briefly explain in this section.

Lane Change Controller for Highway Traffic

In this section, we recall the lane change controller Alc from [HLOR11]. The crossing
controller we introduce in Chapter 5 for urban crossing manoeuvres is an adaptation
of this controller. We also present an implementation of this highway lane change con-
troller with UPPAAL in Sect. 6.2, where we examine some desirable properties of this
controller.

While the authors of [HLOR11] did not provide a formalism for their lane change con-
troller, their protocol can be expressed as an automotive-controlling timed automaton
(ACTA), which we introduce in Chapter 4. In this section, we describe the lane change
controller only informally, but refer to Chapter 4 for a formal semantics of the controller
Alc depicted in Fig. 2.6.

The overall goal of the lane change controller is to undertake lane change manoeuvres
safely in freeway traffic. Here, safety of ego car means collision freedom and thus dis-
junction of the reserved spaces of ego and other cars, expressed by the MLSL formula

Safe(ego) ≡ ¬∃c : c 6= ego ∧ 〈re(ego) ∧ re(c)〉 . (2.14)

The main idea for the lane change controller is to first claim the space on a lane it
wants to enter and reserve it only if no collision is detected. We assume a lane change

29

2 Preliminaries

to take at most tlc time to finish. The lane change controller is constructed for the ego
car (ν(ego) = E in the example from Fig. 2.1) but is applicable to all cars as ego can be
substituted by an arbitrary car variable c ∈ CVar.

We explain the construction of the controller starting with the initial state. As we want
to prevent different reservations from overlapping, we introduce a collision check for the
ego car expressed by the MLSL formula

col(ego) ≡ ∃c : c 6= ego ∧ 〈re(ego) ∧ re(c)〉. (2.15)

Formula (2.15) is evaluated to true iff nowhere there exists a car different from the ego
car whose reservation overlaps with the actors reservation. We assume ¬col to hold in
the initial state of our controller. Next the lane change controller can claim some space
on either the lane to its left or right, provided such a lane exists. Here N is the lane
identifier of the highest lane from the set of all lanes L.

In order to transform a claim into a reservation and thus finally change lanes, a car first
needs to check if there are overlaps of other cars’ claims or reservations with its own
claim. This is formalised by the potential collision check

pc(c) ≡ c 6= ego ∧ 〈cl(ego) ∧ (re(c) ∨ cl(c))〉. (2.16)

Formula (2.16) evaluates to true iff there exists a car different from the ego car whose
claim or reservation overlaps with ego car’s own claim. A (temporary) potential colli-
sion is allowed, because it does not endanger the safety property (2.14). However, if a
potential collision is detected, the car must withdraw its claim immediately.

If ∃c : pc(c) does not hold, the car reserves the claimed lane and starts changing lanes. To
prevent deadlocks, we set a time bound t in state q2 for the time that may pass between
claiming and reserving crossing segments. After a successful reservation, tlc time passes
before the lane change is finished and the reservation of car E is reduced to the new
lane.

Model and Overtaking Protocol for Country Roads

In this section we briefly introduce the abstract model and overtaking protocol for country
roads with oncoming traffic and refer to [HLO13] for formal details. We use the controller
introduced here later in Chapter 5 for a road controller, which deals with overtaking
manoeuvres on roads between two intersections.

Abstract model for country roads. The abstract model for country roads differs only
slightly from the abstract model for highway traffic we introduced in Sect. 2.2. We
still consider infinite neighbouring lanes of continuous space from the set of all lanes
L = {0, . . . , N} (cf. p. 14). The difference is that now we introduce a border b ∈ L,
where traffic on lanes l ≤ b drives in the direction of increasing position values of R
and traffic on lanes l > b drives in the direction of decreasing values of R. We give an

30

2.4 Controller for Highway Traffic and Country Roads

q0 : ¬col q1 q2 :
¬∃c :
pc(c)
∧x ≤ t

q3 : x ≤ tlc

n+ 1 ≤ N
/ c(ego, n+ 1);
l := n+ 1

0 ≤ n− 1
/ c(ego, n− 1);
l := n− 1

∃c : pc(c)
wd c(ego) ¬∃c : pc(c)

/x := 0

∃c : pc(c)/wd c(ego)

¬∃c : pc(c)
/r(ego);
x := 0

x ≥ tlc/
wd r (ego);
n := l

Figure 2.6: Lane change controller Alc for highway traffic from [HLOR11].

example for a country road model with Fig. 2.7. We use this example to visualise the
idea of the overtaking protocol instead of giving all formal details from [HLO13].

Considering a border b = 1 in Fig. 2.7, cars on lanes 0 and 1 drive from ‘left to right’ and
cars on lanes 2 and 3 drive from ‘right to left’. However, in general, on the border lanes
b and b+ 1, cars are allowed to temporarily drive in opposing direction for an overtaking
manoeuvre. This can be observed in Fig. 2.7, where the claim of car E on the lane 2
with opposing direction indicates its plan to overtake car C.

0 FB

1 E C D

2 E

3 G

A

H

d

Figure 2.7: Abstract model with adjacent lanes 0 to 3, where lanes 0 and 1 have the
direction from “left to right” and lanes 2 and 3 are from the set of lanes with
opposing direction. For its overtaking manoeuvre, car E has to take the
distance d to the oncoming car A under consideration.

Multi-lane Spatial Logic with length measurement. To enable the overtaking controller
to measure distances to other cars, we introduce length measurement into the logic MLSL
from Def. 6 in Sect. 2.2. This extension of MLSL by length measurement consists of two
small features which we describe subsequently in the following two paragraphs.

Consider the atom u = v for u, v ∈ Var, from basic MLSL. For Extended Multi-lane
Spatial Logic EMLSL, we extend the set Var to Var = CVar∪RVar, where RVar is a set

31

2 Preliminaries

idle 1. change lane

2. overtaking3. change back

Figure 2.8: Protocol for overtaking manoeuvres from [HLO13].

of variables ranging over values from R. Now, e.g. with an EMLSL formula c1 = 2.5, we
can check the size of a constant c1.

The second extension is to add the atom ` = θ to MLSL, where the letter ` stands
for length and θ is a real-valued term. Such a term can e.g. involve a function. As
an example, consider the function dot : I × I → R+, returning the distance needed for
one car to overtake another car. With the MLSL formula freedot(E,C), the car E from
our example could e.g. determine, whether there is enough free space on lane 2 for
successfully overtaking car C. Note that the authors of [HLO13] use far more complex
distance functions for their overtaking protocol, which we do not discuss here in detail.

Overtaking protocol and controllers. Consider again Fig. 2.7. To avoid a collision with
car A, car E is only then allowed to transform its claim on lane 2 into a reservation,
if the distance d to car A driving in opposing direction is big enough to complete the
following phases of the overtaking protocol:

1. Change lanes onto the lane with opposing traffic,

2. Overtake the car on the original lane and

3. Change back onto the original lane in front of the overtaken car.

An overview of these phases is depicted in Fig. 2.8.

For each of these steps one distinct controller exists. The first controller is an adaptation
of the lane change controller for highway traffic we introduced in Sect. 2.2. Additionally
to the known lane change concept, this controller checks whether the free space needed
for the overtaking manoeuvre is big enough. The second controller is a simple controller
that accelerates the ego car to a higher speed to pass the car ahead. The third controller
is a simplified version of the first controller as less distances need to be calculated for
changing back onto the original driving lane in front of the overtaken car.

For the third step, enough space needs to be available in front of the car that is supposed
to be passed. To ensure this, a helper controller is introduced. We again illustrate the
idea of this helper concept with our running example. As soon as car E starts the
overtaking manoeuvre, it sends a message to inform the overtaken car C about the
manoeuvre. During the whole manoeuvre of E, the duty of helper car C is to ensure
that the free space in front of it remains big enough for car E to change into it. Any
requests of other cars to change into this space are declined immediately by car C.

32

2.4 Controller for Highway Traffic and Country Roads

Chapter summary. In this preliminary chapter, we first gave an overview of the Z
notation that we use throughout this thesis and then introduced the approaches for
safe car manoeuvres on highways and country roads our thesis bases on. Additionally,
extended timed automata were introduced.

33

3 A Model for Urban Multi-lane
Intersections

In this chapter, we introduce our abstract model for urban traffic scenarios. As one of our
basic goals is to extend the original MLSL from [HLOR11], we re-use as many concepts as
possible, however adapting and extending them wherever needed to cope with our urban
traffic requirements. Thus, while some concepts are known from Sect. 2.2, we introduce
how they are adapted and used now. We also introduce additional new concepts. For all
definitions in this Chapter, we use the Z specification language [WD96] (cf. Sect. 2.1).
This chapter is based on our work published in [Sch18a].

From Highway Traffic MLSL to Urban Traffic with Intersections

First of all, we like to outline the key changes we have to face when adapting the basic
highway traffic or country roads MLSL approach from to urban traffic scenarios.

The existing abstract models from [HLOR11] and [HLO13] consist of adjacent lanes of
infinite length, where cars move along the lanes whenever time passes. This is no longer
sufficient for urban traffic, as we deal with intersecting lanes, where the intersections are
critical parts of the model as traffic participants coming from different directions wish to
enter them. We therefore now deal with finite lanes starting and ending at intersections.
For this, we consider finite lanes and introduce special segments for modelling the inter-
section. To formalise the connections of the finite lanes with intersections, we introduce
a generic graph topology, comparable with an abstraction of a street map, capable of
representing intersections of any numbers of lanes meeting there.

For statements about the safety of one distinct car, we do not consider traffic situa-
tions throughout the whole topology, but focus on the local surroundings of that car
by considering a dedicated view as known from the highway traffic model. However,
for urban traffic with arbitrary sized intersections, we introduce flattened virtual views
to cope with turning at intersections. We then extend MLSL by an atom for express-
ing intersection segments with our Urban Multi-lane Spatial Logic (UMLSL). With this
logic, we can reason about traffic situations in a view. In later chapters, we introduce
syntax and semantics of automotive-controlling timed automata (ACTA) to construct a
crossing controller which uses UMLSL formulae to determine if an intersection can safely
be passed. Over the semantics of UMLSL and ACTA, we prove safety of our crossing
controller.

35

3 A Model for Urban Multi-lane Intersections

An Informal Introduction to the Abstract Model

We now give a brief overview of our abstract model for urban traffic scenarios and
give formal details in the respective following subsections (cf. forward references in the
following paragraphs). An example for our abstract model and urban traffic approach
is given in Fig. 3.1, which we use throughout the dissertation to explain concepts. We
now explain the concepts visible in Fig. 3.1.

0

F

1

2

3
C

D

D

4

C

5

B

6 A
B

7 E c0 c1

c2
C

c3
B

20

pos(E) = 50

res(E) = {7}
size(E) = 20

segV (E) = {(7, [50, 70])}

V (E)

r3

r2

r1

r0

Figure 3.1: In its view V (E), indicated by the grey shading, car E sees car A driving on
lane segment 6 and cars B and C, which are currently both turning right at
the intersection. V (E) does not cover the road segments r0 and r1 and thus
not the cars F and D. Car D is currently changing lanes to lane segment 2,
indicated by the dotted part of D.

Our abstract model for urban traffic focuses on modelling traffic situations at intersections
and contains a set CS of crossing segments c0, c1, . . . and a set L of lane segments 0, 1, . . .
connecting crossings. Each crossing segment and each lane segment has a finite length.
See e.g. the grey dotted lane segment 1 in Fig. 3.1, ending where crossing segment c1
begins.

All adjacent lane segments are bundled to road segments with typical representatives
r, r0, r1, r2, . . . ∈ RS. We assign the type RS ⊆ PL and considering again Fig. 3.1,
the depicted road segments comprise r0 := {0, 1}, r1 := {2, 3}, r2 := {4, 5} and
r3 := {6, 7}. Similarly, all adjacent crossing segments are grouped to intersections/ cross-
ings cr, cr0, cr1 . . . ∈ CR, in the example we have the intersection cr := {c0, c1, c2, c3}.
Similarly to the case for road segments, we have CR ⊆ PCS as the type for crossings. The
connections of lane and crossing segments are defined by an underlying graph topology
called urban road network N (cf. Sect. 3.2).

36

3.1 Assumptions for the Model

As in [HLOR11], every car has a unique car identifier A,B, . . . from the set I of all car
identifiers and a real value for the position pos of its rear on a lane or crossing segment.
We again use car E as the car under consideration with valuation ν(ego) = E to refer
to this car. When we are talking about an arbitrary car, we use the identifier C.

While the reservation res(E) (resp. cres(E)) contains all lane segments (resp. crossing
segments) car E is actually occupying, a claim clm(E) (resp. cclm(E)) of a lane segment
(resp. of crossing segments) is akin to setting the direction indicator (cf. dotted part of
car D in Fig. 3.1, showing the desire of car D to change its lane segment from 3 to 2).
Thus, a claim represents the segment a car plans to drive on in the future. To allow for
uncertain sensors, both reservations and claims might be seen as over-approximations of
the actual space occupied by the cars. The static information about cars like the road
network N , positions, reservations and claims of all cars is captured in a traffic snapshot
T S (cf. Sect. 3.3). Reserved and claimed spaces of a car have the extension of its safety
envelope, which includes the car’s physical size and its braking distance. For now, we
use a concept of perfect knowledge, which means we assume that every car perceives the
full safety envelopes of all other cars.

To simplify reasoning, only local parts of traffic are considered as every car has its own
local view (cf. Sect. 3.4), like view V (E) of car E in Fig. 3.1. Using the size of a car
C as perceived by E’s sensors, we calculate the visible segments segV (C) of the car in
the considered view V . If no crossing is within some given horizon, the standard view
V (E) of car E only contains a bounded extension of all adjacent lane segments. If an
intersection is within the horizon of car E, its standard view covers a bounded part of
the road segment it is driving on, the intersection itself, and a bounded extension of
the road segment it is about to drive on after passing the crossing. We refer to this as
a bended view as the car E may turn left or right at the crossing. We straighten this
bended view to virtual lanes, to allow for purely spatial reasoning around the corner with
our logic Urban Multi-lane Spatial Logic (UMLSL) (cf. Sect. 3.5). UMLSL extends the
logics introduced in [HLOR11] and [HLO13] by atoms to formalise traffic situations on
crossing segments and has a continuous (real positions on lane segments) and a discrete
dimension (number of lane and crossing segments).

3.1 Assumptions for the Model

The overall goal of our approach is to enable and undertake formal logical reasoning about
traffic situations and to prove correct functionality of autonomous driving manoeuvres.
Thus, we now collect assumptions we postulate for our abstract model of real-world
urban traffic situations. Note that we wish to only list the assumptions informally at
this point of the thesis, and introduce formal details for them (if needed) in the respective
sections, where they are introduced and used (cf. forward references). Also note that
this section only covers assumptions for the abstract model, while assumptions for our
controllers and the actual traffic manoeuvres are provided later in Sect. 5.2.

37

3 A Model for Urban Multi-lane Intersections

Driving direction and movement on lane segments. We distinguish between the move-
ment of cars on lane segments and crossing segments. We allow for two-way traffic on
lane segments of continuous space and finite length, assuming every lane segment has
one driving direction, although cars may temporarily drive in the opposite direction to
perform an overtaking manoeuvre (cf. Sect. 3.2).

Discretisation of crossing segments. As a car’s direction will change while turning on an
intersection, in contrast to lane segments, we cannot assign one specific driving direction
to a crossing segment. Therefore, we consider crossing segments as discrete elements
which are either fully occupied by a car or empty. When a car is about to drive onto a
discrete crossing segment and time elapses, the car’s safety envelope will stretch to the
whole crossing segment, while disappearing continuously on the lane segment it drove
on. Consider e.g. car B in Fig. 3.1, leaving lane segment 5 and entering lane segment 6
continuously, while it occupies the whole discrete crossing segment c3.

Minimal distance between two intersections. We assume two different intersections to be
at least a fixed minimal distance apart from each other, to allow for our view construction
method in the following sections. With this, we exclude that one view contains two
intersections. This assumption is reasonable, as for the safety of crossing manoeuvres
only the intersection where the manoeuvre is planned on is interesting. However, this
assumption could be softened in future work, see Sect. 8.4 for details on this.

Sensor function. We abstract from specifying a concrete procedure for perceiving the
surroundings of cars through sensors. However, we give details on our abstract version
of a sensor function in Sect. 3.4.3 on p. 59.

3.2 Topology

We allow for road segments between intersections with arbitrarily many parallel lane
segments and do not restrict the number of lane segments for each direction. With this,
we allow for common 2-by-2 intersections (cf. example in Fig. 3.1), but we also allow
for modelling bigger intersections (cf. Fig. 3.2) and one-way streets in our topology.
The graph topology we introduce in this section is capable of modelling any type of
intersections of any number of lanes and roads meeting there, e.g. also n-by-m-by-o-
by-p-by-q intersections are possible. However, we name these bigger intersections by
n-by-m intersections throughout this thesis, whenever we do not mean a particular
intersection.

While giving a lot of freedom in the construction of our topology, we have to restrict it
partially to prevent deadlocks and senseless topologies. We e.g. demand that each lane or
crossing segment has a predecessor and a successor. Note that with this assumption we
can still model blind alleys, as we can consider the end of a blind alley as a u-turn-only
intersection. Later in this section in Def. 16, we formalise these restrictions as topological
sanity conditions.

38

3.2 Topology

c0 c1 c2 c3

c4 c5 c6 c7

c0 c1 c2 c3

c4 c5 c6 c7

0 1 2 3

4

5

6789

10

11

B C D

F

G

DC

AA

E

C

C

D

D

Figure 3.2: Abstract model for a 2-by-4 intersection, depicting the reservations of cars A
to G, including their braking distances. Note that car A is currently changing
lanes and thus reserves both lane segments 8 and 9.

3.2.1 Urban Road Networks

We describe the connections between lane segments from the set L ⊆ N and crossing
segments from the set CS by an urban road network N , whose nodes are elements from
L and CS with L ∩ CS = ∅. Additionally, as we are dealing with traffic that is evolving
over time, we need to capture the size of lane and crossing segments in our graph. In
our model, a car moves gradually and continuously in a lane segment, but for crossing
segments we assume that a car is either outside of it or reserves it fully. Thus, crossing
segments are discrete elements in our network.

We later use the information given by the urban road network N to determine the parts
segV (C) of lane and crossing segments the so-called safety envelope of an arbitrary car
C occupies and to construct virtual lanes for our bended view in Sect. 3.4.

Definition 14 (Urban road network N). An urban road network is defined as a graph
N = (V, Eu, Ed, ω), where

� V = L ∪ CS is a finite set of nodes,

� Eu ⊆ L× L is the set of undirected edges, i.e., Eu is a symmetric relation on L,

� Ed ⊆ (V × V) \ (L× L) is the set of directed edges, and

� ω : V → R+ is a mapping that assigns a positive, real-valued size to each node in
V.

The set of all edges is defined by E == Eu∪Ed. We forbid self-loops, i.e. ∀v : V•(v, v) /∈
E.

39

3 A Model for Urban Multi-lane Intersections

Two elements v1, v2 ∈ L with (v1, v2) ∈ Eu constitute two neighbouring lane segments,
where the undirected edge allows for bidirectional lane change manoeuvres between these
two lane segments. A part of the road network N corresponding to Fig. 3.1 is depicted
on the left-hand side of Fig. 3.3.

N :

r1

r2

r3

r0 cr

0
80

1
80

2

100

3

100

4

80

5

80

6

100

7

100

c0
5

c1
5

c2
5

c3
5

NC :

cr

r1

r2

r3

r0

Figure 3.3: Urban road network N corresponding to Fig. 3.1 on the left-hand side and
coarser version NC , only depicting the strongly connected components and
their relations with each other, at the right-hand side.

3.2.2 Infinite Paths and Finite Sequences

We define infinite paths pth in the urban road network N which represent possible
travelling routes through N . We also introduce finite path sequences −→π by defining a
restricted version seqE V of the Z data type seqV describing finite sequences of objects
from the set V. In Sect. 3.4, we also use inverted path sequences ←−π backwards through
the topology resembling lanes with opposing traffic. For defining these, we use the
relational inverse E∼ of E.

Definition 15 (Infinite paths pth and finite path sequences). In the network N with the
set E of edges the set pthN of infinite paths pth is defined by

pthN = {pth : Z→ V | ∀i : Z • (pth(i), pth(i+ 1)) ∈ E}.

We define the set seqE V of finite path sequences −→π over E as follows:

seqE V = {−→π : seqV | ∀i : 1 ..#−→π − 1 • (−→π (i),−→π (i+ 1)) ∈ E}.

We denote the set of all inverted path sequences ←−π by seqE∼ V, where E∼ is the rela-
tional inverse to E. In Sect. 3.4 we consider also seqEd

V for the set Ed of directed edges
instead of all edges E. We denote that a finite path sequence −→π ∈ seqE V is a cut-out
of a path pth ∈ pthN by −→π @ pth, with

−→π @ pth ⇔ ∃p : Z −→pp V • p ⊆ pth ∧ −→π = squashZ(p),

40

3.2 Topology

where squashZ is an adaptation of the Z operation squash (cf. Sect. 2.1) for functions
with domain over N to cope with functions f with dom f ⊆ Z:

squashZ (f) = (µ g : 1 ..#f → V | ∃β : 1 ..#f �� dom f •
(∀i, j : 1 ..#f • (i < j ⇔ β(i) < β(j)) ∧ g = β # f)).

Informally, squashZ (f) squeezes the possibly scattered elements of dom f in an order-
preserving way to a cohesive interval in N, leading to a sequence from seqV. The
restriction of seqV to seqE V guarantees that all finite path sequences −→π ∈ seqE V are
consistent with the underlying graph topology N , whereas the set seqV also contains
sequences 〈v, v′〉 of nodes v, v′ ∈ V with (v, v′) /∈ E. Note that in Z, the arrow −→pp is
used for partial, finite functions and the arrow �� denotes a total, bijective function.

We use the Z sequence notation with brackets 〈 〉 not only for finite sequences, but
informally also for infinite paths pth, however indicating their infinity by

Example 7 (Infinite paths and finite sequences). For the traffic situation depicted in
Fig. 3.1 and the related road networkN in Fig. 3.3, the path pth = 〈. . . , 7, c0, c1, c2, 4, . . .〉
is a suitable travelling path for car E, when it plans to turn left. A finite cut-out −→π ∈
seqE V with −→π @ pth is −→π = 〈7, c0, c1〉 with its inversion ←−π = 〈c1, c0, 7〉 from seqE∼ V,
which denotes moving backwards through the intersection from crossing segment c1 to
lane segment 7. 4

Inspired by the sanity conditions for traffic snapshots from [Lin15] (cf. Def. 2, p. 16),
we introduce topological sanity conditions to exclude unrealistic urban road networks N ;
e.g. crossing segments without an outgoing edge, which are useless for infinite paths and
would only serve to trap cars in them.

Definition 16 (Topological sanity conditions). An urban road network N with the set of
edges E is sane, if the following conditions hold.

∀v : V • ∃v′, v′′ : V • v 6= v′ ∧ v 6= v′′ ∧ (v′, v) ∈ Ed ∧ (v, v′′) ∈ Ed, (3.1)

∀v : CS • ∃s, s′ : seqEd
CS, ∃l, l′ : L •

〈v〉 a s a 〈l〉 ∈ seqEd
V ∧ 〈l′〉 a s′ a 〈v〉 ∈ seqEd

V. (3.2)

Sanity condition (3.1) ensures that every node in N has at least one incoming and at
least one outgoing edge to prevent deadlocks in the topology. Condition (3.2) ensures
that somewhere there exists a lane segment both in the prefix and postfix path of any
crossing segment. This prevents a topology that only consists of a crossing. For our
current approach, e.g. for the virtual view construction in Sect. 3.4, these restrictions to
Nare sufficient. However, for scenarios not covered here, other sanity conditions might
be required.

41

3 A Model for Urban Multi-lane Intersections

3.2.3 Coarser Networks and Paths

For the view construction in Sect. 3.4, we also consider a coarse-grained version NC of
N . While N contains crossing segments cs ∈ CS and lane segments l ∈ L as nodes, NC
contains abstracted versions of these as nodes. Following [CGP99], we define strongly
connected components r ∈ RS (road segments) resp. cr ∈ CR (intersections/ crossings)
in our graph topology N as sets of maximal subgraphs of nodes solely from L (resp. CS).
These maximal subgraphs can be formalised as equivalence classes of lane segments
(resp. crossing segments).

Definition 17 (Strongly connected components). Consider a road network Nwith nodes
V = L∪CS and edges E. For an arbitrary lane segment l ∈ L we define the equivalence
class fL(l), where fL : L→ P(L) with

fL(l) = {l′ : L | l E∗u l′}. (3.3)

Similarly, we define for an arbitrary crossing segment cs ∈ CS the equivalence class
fCS(cs), where fCS : CS→ P(CS) with

fCS(cs) = {cs′ : CS | cs ((Ed ∪ E∼d) ∩ (CS× CS))∗ cs′}. (3.4)

With fL and fCS, we derive the respective sets CR and RS of all strongly connected
components in N as follows:

RS = {X : P(L) | ∃l : L • X = fL(l)},
CR = {Y : P(CS) | ∃cs : CS • Y = fCS(cs)}.

Formula (3.3) yields for an arbitrary lane segment l ∈ L its equivalence class fL(l) by
including only those lane segments l′ ∈ L connected with l solely by edges from Eu.
Formula (3.4) analogously defines for an arbitrary crossing segment cs ∈ CS the equiv-
alence class fCS(cs), containing solely crossing segments cs′ ∈ CS strongly connected to
cs. The sets RS resp. CR contain all respective strongly connected components defined
by the equivalence classes from (3.3) and (3.4).

We now construct the coarse urban road network NC starting with set of nodes VC =
CR∪RS. By Def. 14, edges from the sets L×CS and CS×L are directed, whereby entry
and exit points to an intersection cr ∈ CR and to a road segment r ∈ RS are defined
unambiguously. Here a road segment r is connected with a crossing cr with a directed
edge (r, cr) resp. (cr, r) iff there exists a corresponding directed edge in the underlying
graph N . Thus, NC is an existential abstraction (over-approximation) of N .

Definition 18 (Coarse-grained urban road network NC). To an urban road network N =
(V, Eu, Ed, ω) with connected components CR and RS from Def. 17, the corresponding
coarse-grained urban road network is defined by the graph NC = (VC , EC), where

� VC = CR ∪ RS is the set of nodes and

42

3.3 Traffic Snapshot

� EC ={ec:VC × VC |∃(v, v′) : Ed • ec = (fL(v), fCS(v′)) ∨ ec = (fCS(v), fL(v′))}
is the set of directed edges.

The coarser version NC of the urban road network N for Fig. 3.1 is depicted on the right-
hand side of Fig. 3.3. For the coarse network NC , we define coarse-grained paths pthC
and finite coarse-path sequences −→πC both analogously to the finer paths from Def. 15.

Definition 19 (Coarse path pthC and coarse sequence). In a coarse grained urban road
network NC with the set of edges EC an infinite coarse-grained path is defined by pthC :
Z→ VC, where

∀i : Z • (pthC(i), pthC(i+ 1)) ∈ EC.
The set of all possible paths in NC is defined by pthNC . We derive finite coarse sequences
−→πC from the set seqEC VC analogously to Def. 15.

Example 8 (Coarse-grained path). Consider again Example 7 for the traffic situation
depicted in Fig. 3.1 and the path pth = 〈. . . , 7, c0, c1, c2, 4, . . .〉. A coarser version of
pth is pthC = 〈. . . , r0, cr, r3, . . .〉. Here the lane segments 7 and 4 are mapped to their
respective road segments r0 = fL(7) resp. r3 = fL(4), and the crossing segments c0, c1
and c2 are condensed to the intersection cr = fCS(c0) = fCS(c1) = fCS(c2). 4

Note that while a path pth ∈ pthN can be mapped to exactly one coarser path pthC ∈
pthNC due to the unambiguously defined functions fCS and fL (cf. Def. 17), the reverse
direction is not unambiguous; A coarse path pthC is generally associated with more than
one fine-grained path pth.

Example 9 (Several finer paths relating to one coarse path). Consider the bigger in-
tersection from Fig. 3.2 and the respective corresponding fine and coarse topologies N2

and N2,C depicted in Fig. 3.4. For turning left from road segment rleft = {10, 11} to
rabove = {6, 7, 8, 9}, we have the coarse path sequence −→πC == 〈rleft, cr, rabove〉. For −→πC ,
there exist the four fine path sequences as indicated by the different shading. 4

We show a general procedure for retrieving all fine path sequences relating to one arbi-
trary coarse path sequence through an intersection later in Sect. 3.4.

3.3 Traffic Snapshot

In Sect. 2.2, we introduced a traffic snapshot for the highway traffic approach, e.g.
containing information about current positions and reserved lanes of cars. As of previous
Sect. 3.2, the topology of our abstract model for urban traffic at intersections is a lot
more complex compared to the highway traffic case. We thus also extend the traffic
snapshot, e.g. by information about reserved crossing segments and the path of each
car.

43

3 A Model for Urban Multi-lane Intersections

N2 :

0 1 2 3

4

5

6789

10

11 c0 c1 c2 c3

c4 c5 c6 c7

N2,C :

cr

rbelow

rright

rabove

rleft

Figure 3.4: Fine and coarse topologies for 2-by-4 intersection from Fig. 3.2 with high-
lighted finer paths through the intersection.

3.3.1 Traffic Snapshot: The Global Picture

Compared to the traffic snapshot from preliminary Sect. 2.2, the global traffic snapshot
for urban traffic T S now captures the traffic on an urban road network N at a given
arbitrary moment. We recall definitions from the preliminary section, extending them
where needed.

To formalise two-way traffic on road segments, we assume that every lane segment has
one direction and cars normally drive on a lane segment in the direction of increasing
real values. Cars may only temporarily drive in the opposite direction of a lane segment
to perform an overtaking manoeuvre. The first main extension is that we introduce
claims and reservations for crossing segments, where we now differentiate between claims
and reservations on lane segments (clm, res) and on crossing segments (cclm, cres).
Remember that a reservation is the space a car is currently occupying and a claim is the
space the car plans on driving in the future (cf. setting the turn signal).

The second extension concerns the position of a car, as it is no longer sufficient to consider
only a real position pos(C) for each car C in a topology like our urban road network.
Additionally to the position pos of each car, we assign an infinite path pth(C) ∈ pthN
to every car C (cf. Def. 15, p. 40). Onwards, we denote the index of the path segment
from pth(C) car C is currently driving on by curr(C). The real-valued position pos(C)
now defines the position of the rear of car C on the current segment pth(C)(curr(C)).

Definition 20 (Traffic snapshot). Given a road network N , a traffic snapshot T S is a
structure T S = (N , res, clm, cres, cclm, pth, curr , pos, spd , acc) with

� res : I → P(L) such that res(C) is the set of lane segments which are reserved by
a car C,

� clm : I→ P(L) such that clm(C) is the set of lane segments which are claimed by
car C,

44

3.3 Traffic Snapshot

� cres : I → P(CS) such that cres(C) is the set of crossing segments which are
reserved by a car C,

� cclm : I→ P(CS) such that cclm(C) is the set of crossing segments that are claimed
by a car C,

� pth : I→ pthN such that pth(C) is the path pursued by car C,

� curr : I→ Z such that curr(C) is the index of the path element of pth(C) currently
occupied by the rear of C,

� pos : I→ R such that pos(C) is the position of the rear of car C in pth(C)(curr(C)),

� spd : I→ R+ such that spd(C) is the current speed of car C and

� acc : I→ R such that acc(C) is the current acceleration of car C.

Let TS denote the set of all traffic snapshots.

Example 10 (Traffic snapshot). Consider Fig. 3.1 as a cut-out of a traffic snapshot
T S1 with related road network N from Fig. 3.3. We exemplarily list the entries in
T S1 for car E. We have res(E) = {7} for the reservation of E on lane segment 7 but
clm(E) = cclm(E) = cres(E) = ∅, as car E neither claims a lane segment nor claims or
reserves a crossing segment in T S1. Consider pth(E) = 〈. . . , 7, c0, c1, c2, 4, . . .〉, already
informally used as a path for E in examples in Sect. 3.2. As index of the current path
element 7 in pth(E), let us assume curr(E) = −2 and let pos(E) = 50 for the position
of E in segment 7, as indicated in Fig. 3.1. Consider spd(E) = 40 and acc(E) = 0. 4

Analogously to the sanity conditions for traffic snapshots we introduced in Def. 2 for
highway traffic, we introduce respective sanity conditions for the urban traffic case to
exclude senseless traffic snapshots. E.g., assuming that intersections are a specific dis-
tance apart from each other (cf. Sect. 3.1), it should not be allowed that a car has
reserved crossing segments on two incoherent intersections.

Note that we keep all sanity conditions from Def. 2 for claims or reservations on lane
segments between intersections, with the exception of conditions 5 and 6 which state
that a second reservation (resp. a claim) on a lane segment must be on a neighbouring
lane segment to the currently occupied one. The reason is that at intersections we have
to claim and later reserve some space on the lane segment after the intersection. E.g. in
our example from Fig. 3.1, car E currently reserves space on lane segment 7 and needs
to reserve some space on lane segment 4 in the future to be able to leave the intersection
after its turn left manoeuvre. Thus at some point we will have res(E) = {4, 7} in our
traffic snapshot, whereas easily observable, lanes 4 and 7 are not neighbouring.

Definition 21 (Urban traffic snapshot sanity sonditions). We recall sanity conditions 1-4
from Def. 2 for highway traffic. An urban traffic snapshot T S is sane, if the following
conditions hold for all cars C ∈ I.

45

3 A Model for Urban Multi-lane Intersections

1. #cres(C) ∪#res(C) > 0

2. cres(C) 6= ∅ equivalent cclm(C) = ∅

3. cclm(C) 6= ∅ equivalent clm(C) = ∅

4. cclm(C) 6= ∅ implies ∀n : res(C),∃cs : cclm(C) • (n, cs) ∈ Ed
5. #cres(C) > 0 implies ∀cs, cs′ : cres(C) • cs 6= cs′ → fCS(cs) = fCS(cs′)

6. #res(C) = 2 and cres(C) = ∅ implies ∃n : L • res(C) = {n, n+ 1}

7. #res(C) = 2 and cres(C) 6= ∅ implies
∀n ∈ res(C) ∃cs : cres(C) • (n, cs) ∈ Ed ∨ (cs, n) ∈ Ed

8. #clm(C) = 1 implies (#cres(C) > 0 ∧ ∃cs : cres(C), n : clm(C) • (cs, n) ∈ Ed)
or (#res(C) = 1 ∧ ∃n : res(C), l : clm(C) • (n, l) ∈ Eu)

Let TS denote the set of all sane traffic snapshots.

Condition 1 states that there always must exist some reservation for each car C, let
it be a reservation on a lane or a crossing segment. The next condition 2 ensures
that no car C can reserve (resp. claim) crossing segments while already involved in an
active crossing manoeuvre with a claim (resp. reservation). With condition 3, we forbid
to simultaneously start a lane change and a crossing manoeuvre. Condition 4 states
that a crossing claim is only possible if a reservation on the lane segment before the
intersection exists and condition 5 states that no car may reserve crossing segments of
two incoherent intersections. Condition 6 is the adapted version of old sanity condition
5 with the addition that two reservations on lane segments are only then neighbouring,
when no crossing reservation exists for car C (i.e. during a lane change manoeuvre).
Additionally to that, condition 7 states that with an active crossing reservation of car C
two reservations on lane segments may not be not neighbouring, but one is before and
the other one after the intersection. Finally, condition 8 adapts the old condition 6 by
stating that a claim is either on a neighbouring lane segment or after an intersection for
which a crossing reservation exists.

3.3.2 Traffic Snapshot Evolution

As in highway traffic snapshots from Sect. 2.2, we allow for transitions between traffic
snapshots to model the behaviour of cars in urban traffic. We introduce new transitions
for crossing claims and crossing reservations and adapt all of the existing transitions
introduced in Sect. 2.2, Def. 3. This is due to new pre- and postconditions for the
traffic snapshot transitions in urban traffic. In Sect. 5.3, we define that our controllers
can only commit one manoeuvre at a moment, thus for now we exclude simultaneous
transitions. For a more thorough discussion of concurrent traffic snapshot transitions,
see [BHLO17].

46

3.3 Traffic Snapshot

Before giving the formal definitions of the new transitions, we discuss the change on a
traffic snapshot, when time elapses. In the previous approaches on highway traffic and
country roads, cars moved forwards on their currently reserved infinite lanes according
to their speed and acceleration when time passes. While the MLSL approach abstracts
from the dynamics, this movement was nonetheless expressed with the formula pos ′(C) =
pos(C) + spd(C) · t + 1

2acc(C) · t2. As we now consider finite lane segments in urban
traffic that start resp. end at intersections, cars now move along their paths in N as
follows.

When some time t elapses, every car C with a positive speed spd(C) changes its position
within path pth(C). With the following algorithm, we calculate the index next(C) of the
node in pth(C) that is reached after time t. We also calculate the new position pos ′(C)
of car C on pth(C)(next(C)). This node can either be a crossing or lane segment. Note
that curr(C) = next(C) iff C did not move far enough to leave its current node. Recall
from Def. 14 that ω is a mapping, assigning a size to each node v ∈ V.

Algorithm 1 (Reached node and position after t time units). Consider a traffic snapshot
T S ∈ TS, t ∈ Time and C ∈ I.

newPosT S (C, t) {
i := 0;

dist0 := spd(C) · t+ 1
2acc(C) · t2;

n := curr(C);

p0 := pos(C);

while (disti > 0)

disti+1 := disti − (ω(pth(C)(n))− pi);
pi+1 := pi + disti;

if (pi+1 > ω(pth(C)(n)))

pi+1 := 0;

n := n+ 1

fi;

i := i+ 1

end while;

return (n, pi);

}

We assign the return values to next(C) == first(newPosT S(C, t)) and
pos ′(C) == second(newPosT S(C, t)).

With dist0, we calculate the distance car C moves within t time. Starting at the segment
pth(C)(curr(C)) and pos(C), we calculate the new position on this current segment by

47

3 A Model for Urban Multi-lane Intersections

pos(C) + dist0. If the new position exceeds the size ω(pth(C)(curr(C))) of the current
segment, we increase the index i by one and calculate the new distance dist1 yet to go
from the new segment. We subsequently repeat this procedure until disti ≤ 0 and we
have the position with pi and the index of the next segment with n.

Note that while the node pth(C)(next(C)) is only one distinct segment, the safety enve-
lope of car C might stretch over more than this single segment. E.g. if pth(C)(next(C))
is a lane segment l, but the position of car C on l is close to the next intersection. How-
ever, we consider the size of safety envelopes from local viewpoints of distinct cars and
do not include them in the central traffic snapshot. We calculate the occupied segments
of the safety envelopes of cars on lane and crossing segments in Sect. 3.4 with Alg. 2.

In Defs. 22 to 27, we now give the definitions of the traffic snapshot transitions, starting
with the previously motivated time transition in Def. 22. We again use the overriding
notation ⊕ of Z for function updates. With the update clm′(C) = clm ⊕ {C 7→ {n}},
we e.g. update the set of claimed lane segments for car C to {n}. For all transitions we
assume a current traffic snapshot T S = (N , res, clm, cres, cclm, pth, curr , pos, spd , acc)
as origin.

For turn manoeuvres, we require a car C to reserve all needed crossing segments at
once to prevent deadlocks. We derive the set of these crossing segments by the function
nextCr(C, next(C)) which is included in following Def. 22.

Definition 22 (Time transition). For all C ∈ I and for a distinct t ∈ Time, we use
next(C) and pos ′(C) as calculated with newPosT S (C, t) in Alg. 1 and obtain

T S t−→T S ′ ⇔ T S ′ = (N , res′, clm, cres′, cclm, pth, curr ′, pos ′, spd ′, acc)

∧∀C : I • (res′=res⊕ {C 7→ {pth(C)(next(C))}}
∧ cres′ = cres⊕ {C 7→ {nextCr(C ,next(C))}}
∧ curr′(C) = next(C)

∧ 0 ≤ pos ′(C) ≤ ω(pth(C)(next(C)))

∧ spd ′(C) = spd(C) + acc(C) · t),

where nextCr : I× Z→ P(CS) is defined by

nextCr(C ,n) =

ß ∅ , if pth(C)(n) 6∈ CS
ran({k+1, . . . ,m−1} / pth(C)) , else,

(3.5)

where the indices k and m restricting the domain of pth(C) are defined by

k == max{i : Z | i < n ∧ pth(C)(i) ∈ L}
m == min{j : Z | j > n ∧ pth(C)(j) ∈ L}.

In formula (3.5), with the Z operator /, we restrict the domain of pth(C) to the sequence
of crossing segments through the intersection. The Z range operator ran is only used to
ensure the result is a set of segments, not a sequence.

48

3.3 Traffic Snapshot

As a result of the time transition, the position pos ′(C) of car C can either be on the same
segment as before, or on a new lane or crossing segment, as determined with Alg. 1. If
curr(C) 6= curr ′(C), i.e. if the current path segment of C changed, the set res(C) for
reservations on lane segments and the set cres(C) for reservations on crossing segments
is updated. Note that res′(C) is updated with the empty set, iff pth(C)(next(C)) ∈ CS.
The index curr(C) is changed to the calculated new index. The speed of all cars is
updated according to their current acceleration.

In Defs. 23 and 24, we adapt the transitions from [HLOR11] for creating (resp. removing)
a claim or reservation for a neighbouring lane segment or for a lane segment following
an intersection. These transitions are only allowed on road segments between two inter-
sections as they only apply for lane segments. We start with the claim transition and
its dedicated withdraw claim transition.

Definition 23 (Claim and withdraw claim transition). For all C ∈ I and for n ∈ L the
following transitions hold:

T S c(C,n)−−−−→T S ′ ⇔ T S ′ = (N , res, clm′, cres, cclm, pth, curr , pos, spd , acc)

∧#clm(C) = #cclm(C) = 0

∧ (#res(C) = 1 ∨#cres(C) > 0)

∧ (∃l : res(C) • (l, n) ∈ Eu ∨ (n, l) ∈ Eu ∨
∃cs : cres(C) • (cs, n) ∈ Ed)
∧ clm′ = clm⊕ {C 7→ {n}}

T S wd c(C)−−−−−→T S ′ ⇔ T S ′ = (N , res, clm′, cres, cclm, pth, curr , pos, spd , acc)

∧ clm′ = clm⊕ {C 7→ ∅}

The application condition for setting a new claim for an arbitrary car C is that neither a
claim on a lane segment clm(C) nor a claim on a crossing segment cclm(C) exists. In our
urban traffic scenario, we observe two possible, but not compulsory mutually exclusive
cases for claims on lane segments:

1. A claim on a neighbouring lane segment n, while #res(C) = 1, i.e. while driving
on a lane segment between two intersections. This is a claim to perform a lane
change for an overtaking manoeuvre, as ensured by an existing undirected edge
(l, n) ∈ Eu or (n, l) ∈ Eu in the road network.

2. A claim on a lane segment n, while #cres(C) > 0, i.e. while being on a crossing.
This is a claim to leave an intersection and enter a lane segment which is connected
to the intersection, as ensured by an existing directed edge (cs, n) ∈ Ed.

With c(C, n) the set of claimed lane segments for car C is updated to {n} while the
withdrawal transition empties the set of claimed lane segments.

49

3 A Model for Urban Multi-lane Intersections

Definition 24 (Reservation and withdraw reservation transitions). For all C ∈ I and for
n ∈ L the following transitions hold:

T S r(C)−−→T S ′ ⇔ T S ′=(N , res′, clm′, cres, cclm, pth, curr , pos, spd , acc)

∧#clm(C) > 0 ∧ clm′ = clm⊕ {C 7→ ∅}
∧ res′ = res⊕ {C 7→ res(C) ∪ clm(C)}

T S wd r(C,n)−−−−−−→T S ′ ⇔ T S ′=(N , res′, clm, cres, cclm, pth, curr , pos, spd , acc)

∧ res′ = res⊕ {C 7→ {n}} ∧ n ∈ res(C)

∧ (#res(C) = 2 ∨#cres(C) > 0)

With the reservation transition r(C) an existing claim for car C is transformed into a
reservation. With the conditions for wd r(C, n), car C is only then allowed to withdraw
a reservation of a lane segment, if it is about to finish a lane change manoeuvre and thus
#res(C) = 2 or if it reserves some crossing segments and thus #cres(C) > 0. Note that
n is not the lane segment, for which the reservation is withdrawn, but the lane segment
car C reserves after wd r(C, n).

With the following Definitions 25 and 26 we add four transitions which create (resp.
remove) claims and reservations for crossing segments to pass through an intersection.
For crossing claims and reservations, the traffic snapshot claims or reserves crossing
segments for a car C ∈ I according to its path pth(C). Thus, we do not have a parameter
for crossing segments at the transition cc(C) in Def. 25.

Definition 25 (Crossing claim and withdraw crossing claim transition). We reuse the
function nextCr from Def. 22, now with curr(C) + 1 as next index. With this, for all
C ∈ I the following transitions hold:

T S cc(C)−−−→T S ′ ⇔ T S ′ = (N , res, clm, cres, cclm′, pth, curr , pos, spd , acc)

∧#res(C) = 1

∧#clm(C) = #cclm(C) = #cres(C) = 0

∧ cclm′ = cclm⊕ {C 7→ {nextCr(C , curr(C) + 1)}}

T S wd cc(C)−−−−−−→T S ′ ⇔ T S ′ = (N , res, clm, cres, cclm′, pth, curr , pos, spd , acc)

∧ cclm′ = cclm⊕ {C 7→ ∅}

Transition cc(C) only allows for a crossing claim, if #res(C) = 1, i.e., if there is no
active lane change manoeuvre for car C. Further on, with #clm(C) = 0, we forbid a
crossing claim with an active claim on a lane segment. As the next segment in pth(C)
has to be a crossing segment to commit a crossing claim, we derive all needed crossing
segments with nextCr(C , curr(C) + 1).

Note that as before in Def. 23 for setting a claim on a lane segment, we explicitly forbid
to simultaneously commit a claim on a lane segment and a claim on a crossing segment,

50

3.3 Traffic Snapshot

because we only allow a car to either perform an overtaking manoeuvre on a road segment
or a turn manoeuvre at an intersection.

Definition 26 (Crossing reservation and withdraw crossing reservation transition). For
all C ∈ I the following transitions hold:

T S rc(C)−−−→T S ′ ⇔ T S ′ = (N , res, clm, cres′, cclm′, pth, curr , pos, spd , acc)

∧#res(C) = 1 ∧ #cclm(C) > 0 ∧ #clm(C) = 0

∧ cclm′ = cclm⊕ {C 7→ ∅}
∧ cres′ = cres⊕ {C 7→ cclm(C)}

T S wd rc(C)−−−−−→T S ′ ⇔ T S ′ = (N , res, clm, cres′, cclm, pth, curr , pos, spd , acc)

∧#res(C) = 1 ∧ #cres(C) > 0

∧ cres′ = cres⊕ {C 7→ ∅}

A crossing reservation for car C requires a reservation on a lane segment (i.e. the
car is approaching an intersection) and a crossing claim. Then the crossing claim is
transformed into a crossing reservation. The withdrawal transition requires the car to
have a reservation on a lane segment to ensure that there still exists a reservation for
car C. The last possible transition is the acceleration transition, where with acc(C, a)
the value of acc(C) is updated to a.

Definition 27 (Acceleration transition). For all C ∈ I and a ∈ R the following transition
holds:

T S acc(C,a)−−−−−→T S ′ ⇔ T S ′ = (N , res, clm, cres, cclm, pth, curr , pos, spd , acc′)

∧ acc′ = acc ⊕ {C 7→ a}

Example 11 (Traffic snapshot evolution). In the following we give an example for the
evolution of the traffic snapshot T S1 from Example 10 to a future traffic snapshot T S7
using the transitions defined in Defs. 22 to 27.

T S1 t1−→ T S2
wd rc(C)−−−−−→T S3 t2−→ T S4

cc(E)−−−→T S5 t3−→ T S6
rc(E)−−−→T S7.

When some time ti passes for i ∈ {1, 2, 3}, all cars move according to their paths and
speed (cf. Alg. 1). Let us focus on cars C and E, ignoring that after ti time, car D might
arrive at the intersection or that B possibly leaves the intersection.

First, some time t1 passes, where all cars move according to their paths and speed.
After t1 time, we assume car C finished the crossing manoeuvre depicted in Fig. 3.1
and thus withdraws its crossing reservation with wd rc(C). Again some time t2 passes,
after which we assume that car E arrived at the intersection and thus with cc(E) claims
the upcoming crossing segments c0, c1 and c2 according to pth(E). As car C already

51

3 A Model for Urban Multi-lane Intersections

left the intersection, there is no potential for a collision of E with another car on the
claimed crossing segments and thus after waiting t3 time units, car E finally reserves
the previously claimed crossing segments with rc(E) and enters the intersection. For
reasons of brevity we omitted the process, where car C eliminates its reservation on lane
segment 3. 4

3.4 Virtual View

For examining functional properties like safety and liveness of our car manoeuvres, we
restrict ourselves to finite parts of the traffic snapshot T S from the previous section. The
intuition is that the functionality of a car depends only on its immediate surroundings.
We formalise this by introducing a structure called view V (E), which only contains the
parts of lanes and crossing segments that lie within a certain range around the considered
car E.

In the remainder of this section, we describe the challenges and our solution to derive a
view for complex multi-lane intersections to reason in the logic we introduce in the next
Sect. 3.5. We start with an informal introduction to concepts and give formal details for
them later.

3.4.1 An Intuition on why and how to Straighten Views

In previous work [HLOR11, HLO13] covering highway and country road traffic, the set
of lanes L in a view was obtained by taking a subinterval of the global set of parallel
lanes L. This is no longer possible for urban traffic, since the relation between lane
segments is defined through the network N with the equivalence classes from Def. 17.
If an intersection is within the considered range around car E, we deal with a bended
view as cars are allowed to turn in any possible direction at the crossing (cf. V (E) in
Fig. 3.1). Original two-dimensional MLSL was created for logical reasoning on straight
parallel lanes. Equally, our urban extension UMLSL, which we introduce in Sect. 3.5,
cannot reason about lanes that go around the corner. As a first step, in [HS16], we
construct a straight virtual view corresponding to the bended view from the urban road
network N and the path pth(E) of car E solely for 2-by-2 intersections. The goal of
this straightened view is to reuse concepts from the country roads approach, where
the set of lanes is split up into lanes in driving direction from “left to right” and lanes
in the opposing driving direction. Consider Fig. 3.5, where the depicted virtual view
corresponds to bended view V (E) from Fig. 3.1.

This virtual view consists of one virtual lane from the path pth(E) and one virtual lane
from the opposing driving direction. These two virtual lanes are parallel and allow for
reasoning with UMLSL. For this explicit view construction tailored solely for 2-by-2
intersections, we refer to [HS16].

52

3.4 Virtual View

6 A B B B

7 E 4

5

c0 c1 c2
C

C

c3

V (E)

Figure 3.5: Virtual view with cars for view V (E) from Fig. 3.1.

In this thesis, we consider the more general case of n-by-m intersections. This is because
in Sect. 3.2, we already allow for an urban road network N with n-by-m intersections
where arbitrary many lane segments n resp. m meet at an intersection (cf. [Sch18a]).
For these complex intersections, our virtual view construction changes dramatically,
compared with [HS16].

In general, we formally construct a view from the urban road network N (cf. Sect. 3.2),
the current traffic snapshot T S (cf. Sect. 3.3), a real-valued interval X = [a, b] for the
horizontal extension and a considered car E, which we call owner of the view. We adapt
the view definition from [HLOR11] as follows.

Definition 28 (View). For T S ∈ TS defined over an urban road network N , the view
V (E) = (L,X,E) owned by car E ∈ I contains

� a finite sequence L ∈ seq (seqEd
V ∪ seqE∼d V),

� the space interval along the lanes X = [a, b] ⊆ R visible in V (E), and

� the car identifier E itself.

The remainder of this section covers how to retrieve the finite sequence L, which we
call virtual lanes. Whereas in Fig. 3.5, the depicted view can be figuratively compared
to unbending the view from the original traffic situation in Fig. 3.1, this procedure is
more difficult e.g. for the traffic situation from Fig. 3.2. Consider Fig. 3.6, where an
attempt is conducted to straighten the traffic situation from Fig. 3.2 analogously to the
(informal) straightening process depicted in Fig. 3.5. How should the respective road
segments r0 == {10, 11} on the left and r1 == {6, 7, 8, 9} on the right be connected
using crossing segments?

10

11 E

9

8

7

6

A

A

C

D
???

Figure 3.6: Unknown paths through the intersection for the traffic situation from Fig. 3.2.

53

3 A Model for Urban Multi-lane Intersections

Basically, the answer to this question is to consider all possible paths that cars can take
for driving through the intersection from r0 to r1. For the example we observe four
possible paths for turning left at the intersection from Fig. 3.2 which are highlighted in
the topology depicted on the right-hand side of Fig. 3.4.

First, we briefly motivate this new construction method for straightening arbitrary com-
plex intersections by retrieving all paths through an intersection. To cope with different
numbers n and m of lane segments meeting at an intersection, we build several virtual
views Vi = (Li, X,E) (cf. Def. 28) for one intersection. For this, we undertake the
following steps, which are formally defined in Defs. 29 to 32 on the following pages:

1. As a cut-out of the path pth(E), construct the finite path through the intersection
πE @ pth(E) and abstract it to the coarse path sequence −→πC ∈ seqEC VC (cf. Defs. 19
and 29).

2. As refinements of −→πC from step 1, build all finite virtual lanes through the inter-
section −→πE ∈ seqEd

V in driving direction of pth(E) and virtual lanes←−πE ∈ seqE∼d V
in opposite driving direction (cf. Def. 30).

3. Bundle virtual lanes from step 2 to sequences Li we call parallel virtual lanes (cf.
Def. 31).

4. Finally build one virtual view Vi = (Li, X,E) for each Li from step 3 with the
same horizontal extension X = [a, b] along the lanes. The set of all Vi is named
multi-view VM (E, T S) (cf. Def. 32).

3.4.2 Virtual Lanes and Virtual View

We introduce the construction method for the coarse excerpt −→πC from step 1 and the
virtual lanes −→πE and ←−πE from step 2 with the following example.

Example 12 (Coarse path and virtual lanes.). Consider the 2-by-4 intersection from
Fig. 3.2 on p. 39. We assume, car E plans to turn left, with path through the inter-
section πE = 〈11, c0, c1, c2, c3, c7, 6〉. The corresponding coarse path excerpt is −→πC =
〈rleft, cr, rabove〉, where rleft and rabove are the respective road segments left and above
of the intersection cr. With the connections from the topology on the right-hand side of
Fig. 3.2, we retrieve four possible finite virtual lanes from −→πC , two in E’s driving direction

(
−→
ΠE) and two in the opposing driving direction (

←−
ΠE):

−→
ΠE = {〈11, c0, c1, c2, c3, c7, 6〉, 〈11, c0, c1, c2, c6, 7〉}
←−
ΠE = {〈10, c4, c5, 8〉, 〈10, c4, 9〉}.

We exclude unnecessarily long virtual lanes, e.g. virtual lanes with loops in it, and thus
retrieve no further virtual lanes. 4

54

3.4 Virtual View

Following the previous example, we start from the finite path through the intersection
πE @ pth(E) for car E. Besides the intersection itself, πE also contains the respective
lane segments directly before and after the intersection. We abstract πE to −→πC ∈ seqEC VC
using the equivalence classes of elements from πE , whereas −→πC consists of three elements:
The current road segment (−→πC(1)), the next crossing (−→πC(2)) and the road segment car
E plans to drive on in the future (−→πC(3)).

Definition 29 ((Coarse) path through the intersection). Consider the owner of the view
E ∈ I with pth(E) and current path element pth(E)(curr(E)) ∈ L and pth(E)(curr(E)+
1) ∈ CS. Let

k == min{i : Z | i > curr(E) ∧ pth(E)(i) ∈ L}. (3.6)

Then E′s path through the intersection πE @ pth(E) is defined by

πE = {curr(E), . . . , k} / pth(E). (3.7)

We derive the coarse path through the intersection −→πC ∈ seqEC VC by

−→πC = 〈fL(πE(1)), fCS(πE(2)), fL(πE(#πE))〉. (3.8)

With formula (3.6), we get the index k of the first lane segment after the intersection
and with formula (3.7), we restrict the domain of pth(E) to indices from curr(E) to
k. For part (3.8), we only abstract the first crossing segment πE(2) from πE to the
corresponding intersection fCS(πE(2)), as the other crossing segments in πE relate to
the same connected component and repeated occurrences of elements are not allowed in
−→πC by definition of seqEC VC .
As suggested in Example 12, for the virtual lanes we have to find all possible paths
through the intersection starting from the first coarse segment −→πC(1) in −→πC and ending at
its last element −→πC(3). As one of the sanity conditions from Def. 16 demands that every
lane segment is connected with a crossing segment, we retrieve for each lane segment
from the two road segments in −→πC at least one respective virtual lane.

We distinguish between virtual lanes −→πE ∈ seqEd
V in driving direction of pth(E) leading

forwards from −→πC(1) to −→πC(3) and virtual lanes ←−πE ∈ seqE∼d V in the opposite driving

direction, backwards from −→πC(1) to −→πC(3).

Definition 30 (Virtual lanes). For E ∈ I with −→πC from Def. 29, we derive the set of

virtual lanes
−→
ΠE ⊆ seqEd

V in driving direction of pth(E) with

−→
ΠE = {−→πE : seqEd

V | fL(−→πE(1)) = −→πC(1) ∧ fL(−→πE(#−→πE)) = −→πC(3) (3.9)

∧ ∃s : seqEd
CS • ∀cs : s • fCS(cs) = −→πC(2) (3.10)

∧ 〈−→πE(1), s(1)〉 ⊂ −→πE ∧ 〈s(#s),−→πE(#−→πE)〉 ⊂ −→πE}. (3.11)

55

3 A Model for Urban Multi-lane Intersections

We define the set of inverted virtual lanes
←−
ΠE ⊆ seqE∼d V in the opposing driving direc-

tion symmetrically to the previous definition with

←−
ΠE = {←−πE : seqE∼d V | fL(←−πE(1)) = −→πC(1) ∧ fL(←−πE(#←−πE)) = −→πC(3)

∧ ∃s : seq−1E CS • ∀cs : s • fCS(cs) = −→πC(2) (3.12)

∧ 〈←−πE(1), s(1)〉 ⊂ ←−πE ∧ 〈s(#s),←−πE(#←−πE)〉 ⊂ ←−πE}.

The set of all virtual lanes ←→πE is defined by
←→
Π E ==

−→
ΠE ∪

←−
ΠE.

With formula (3.9) we ensure that the first (resp. last) element of each virtual lane −→πE
is a lane segment from −→πC(1) (resp. −→πC(3)). Formula (3.10) and (3.11) demand that
there exists a sequence solely of crossing segments CS connecting the two lane segments
−→πE(1) and −→πE(#−→πE). Formula (3.12) analogously builds the virtual lanes ←−πE backwards
through the intersection.

We consider the special case of an intersection cr with a one-way road segment rone
meeting a two-way road segment rtwo. For rone we observe either an edge (rone, cr) ∈ EC
or (cr, rone) ∈ EC in the underlying topology NC . We thus cannot connect every lane

segment from rtwo with a lane segment from rone with a virtual lane from
←→
Π E from

Def. 30. However, since we cannot just ignore these unconnected lane segments from

rtwo for safety reasons, we extend
←→
Π E from Def. 30 by using additional placeholder lane

segments lp ∈ Z\L. With considering these separately from actual lane segments from
L, we ensure that lp is not part of any path from pthN . Thus no car can ever enter lp
and it is used solely as a placeholder for building virtual lanes.

Remark 1 (Special case: one-way roads). Consider an intersection of a one-way road
segment rone with a two-way road segment rtwo. For all elements π ∈ rtwo not contained

in any virtual lane←−πE ∈
←→
Π E, we add a virtual lane←→πp == 〈lp〉 a sCS a 〈π〉 to

←−
ΠE, where

lp ∈ Z\L is a placeholder lane segment and sCS ∈ seqE∼d CS. The case for intersections
of a two-way road segment with a one-way road segment is handled symmetrically.

Remember that we aim to build a virtual view Vi containing a set of parallel and neigh-
bouring lanes Li. However, we cannot simply align the virtual lanes from Def. 30 to
parallel neighbouring lanes to create a view like the one for the 2-by-2 intersection in
Fig. 3.5. With n-by-m intersections, there exists not only one refined path per direction
through the crossing, but possibly several (cf. virtual lanes from example 12). Thus, it

is possible that one lane segment l is contained in several virtual lanes from
←→
Π E .

Example 13 (Parallel virtual lanes). Consider again Example 12 relating to Fig. 3.7,
where lane segments 10 and 11 are each contained twice throughout all four virtual lanes.
Including lane segment 11 twice in our virtual view would result in a duplication of the

56

3.4 Virtual View

reservation of E. This would wrongly indicate a lane change for E. We thus build the
sequences of parallel virtual lanes

L1 = 〈〈11, c0, c1, c2, c3, c7, 6〉, 〈10, c4, 9〉〉 ,

L2 = 〈〈11, c0, c1, c2, c6, 7〉, 〈10, c4, c5, 8〉〉 ,

L3 = 〈〈11, c0, c1, c2, c3, c7, 6〉, 〈10, c4, c5, 8〉〉 ,

L4 = 〈〈11, c0, c1, c2, c6, 7〉, 〈10, c4, 9〉〉

each containing one different virtual lane from
−→
ΠE and

←−
ΠE . The first two of these

parallelised virtual lanes are depicted in Fig. 3.7. 4

L1:
10

11 E

9

6

Ac4

c0 c1 c2 c3 c7
C D

L2:
10

11 E

8

7

C C

D

Ac4 c5

c0 c1 c2 c6
C D D

Figure 3.7: Parallel virtual lanes L1 and L2 for a left-turn view for car E in Fig. 3.2.

In each of the parallel lanes Li defined in the following Def. 31 we maintain the spatial
structure in road segment rcurr (in the example road segment {10, 11}), but build up
the remaining parts with the virtual lanes −→πE resp. ←−πE from Def. 30. While maintaining
the spatial structure in rcurr, we lose information about vertical spatial aspects on the
intersection and in the road segment after the intersection. Consider for example car A
in Fig. 3.7. We still perceive two reservations in total for car A, one in each set of parallel
lanes L1 resp. L2, but we lost the property that those reservations were neighbouring
(cf. Fig. 3.2). This is no problem for the later safety considerations with our crossing
controller (cf. Sect. 5.3). For collision freedom, we only need the information, that there
is a car occupying a specific space or approaching an intersection, not which car exactly
it is. It is also sufficient, to know that a car occupies a crossing segment. We still intend
to generalise this view construction for future considerations (cf. Sect. 8.4).

For the following Def. 31, recall that two lane segments from the same road segment are
neighbouring iff they are connected with an undirected edge in the set Eu in the road
network N .

Definition 31 (Parallel virtual lanes). Consider a network N with undirected edges Eu,

car identifier E ∈ I, −→πC from Def. 29 and
←→
Π E from Def.30 and Remark 1. We define

the set L of sequences of parallel virtual lanes L by

L :={L ∈ seq
←→
Π E | ∀l : −→πC(1) • ∃1i : 1, ..,#L • l = L(i)(1) (3.13)

∧ ∀j : 1..#L− 1 • (L(j)(1), (L(j + 1)(1)) ∈ Eu (3.14)

∧∃m : 0..#L • (∀j : 1..m; k : m+1..#L • L(j) ∈ −→ΠE ∧ L(k) ∈ ←−ΠE)}. (3.15)

57

3 A Model for Urban Multi-lane Intersections

For formulae (3.13) and (3.14), we recall from Def. 30 that the first element ←→πE(1) in all

virtual lanes←→πE ∈
←→
Π E is a lane segment from the current road segment (represented by

−→πC(1)). Thus, (3.13) states that each lane segment from that road segment is represented
exactly once in each L ∈ L. With formula (3.14), we define the previously described
property of maintaining the structure of −→πC(1); for any two neighbouring parallel lanes
L(j), L(j+1), we require an undirected edge from the set Eu between their respective first
elements. With (3.15), we finally define that there exists a value m ∈ N with m ≤ #L,

which splits up the sequence L in lanes from
−→
ΠE with the same driving direction as

pth(E) and in lanes from
←−
ΠE in the opposite direction.

The parallel lanes L obtained through Def. 31 are finite, as they consist of finite virtual
lanes from Def. 30. However, virtual lanes can still be arbitrarily long. We thus restrict
the horizontal extension of the parallel lanes L by defining the size of the extension
X = [a, b] of a view along the virtual lanes. It is consistent with reality to assume that
there exists a maximum velocity vmax for all cars, where no car may drive faster than
vmax. We use a sufficiently large horizon h, such that any car driving at vmax can come
to a complete standstill within this distance. We demand that h is big enough, to include
a car approaching the intersection that could already have a claim or reservation for the
intersection. We consider the same extension X = [pos(E) − h, pos(E) + h] for each
sequence of lanes Li from Def. 31.

Definition 32 (Virtual multi-view). For a car identifier E ∈ I, T S ∈ TS, parallel virtual
lanes Li ∈ L from Def. 31, the horizon h ∈ R+ and the interval X = [pos(E)−h, pos(E)+
h], one respective virtual view Vi of E is defined by Vi(E, T S) = (Li, X,E). All virtual
views are collected in the multi-view VM (E, T S) = (V1(E, T S), . . . , Vn(E, T S)), where
n = #L.

Example 14 (Virtual multi-view). For i ∈ {1, 2, 3, 4}, for each of the sequences of virtual
lanes Li from Example 13 (cf. Fig. 3.7), with X = [pos(E)− h, pos(E) + h], we retrieve
a respective virtual view Vi(E, T S) = (Li, X,E). With this, we obtain the multi-view
VM (E, T S) = (V1(E, T S), V2(E, T S), V3(E, T S), V4(E, T S)). 4

We adapt the chopping operations of views from [LH15] to the new notion of views in the
following definition. While horizontal chopping : is analogous to ITL [Mos85], vertical
chopping 	 is defined for arbitrarily many lanes.

Definition 33 (Chop operations on views). Let V = (L,X,E) be a view of traffic snapshot
T S ∈ TS. Then we have V = V1 	 V2 for views V1 and V2, iff V1 = (L1, X,E) and
V2 = (L2, X,E) with L = L1

a L2 and L1 ∩L2 = ∅, where L1 and L2 both are sequences
of parallel lanes as of Def. 31. Furthermore, V = V1 : V2, iff V = (L, [r, t], E) and
∃s ∈ [r, t] such that V1 = (L, [r, s], E) and V2 = (L, (s, t], E).

58

3.4 Virtual View

3.4.3 Perception of Cars through Sensors

So far in this section, we specified how we internally represent a cut-out of an urban road
network as a virtual view, consisting of parallelised virtual lanes. Before introducing our
logic Urban Multi-lane Spatial Logic to reason about traffic situations in such a view, we
need to specify what a car perceives in its virtual view. As stated in Sect. 3.1 on p. 37,
we use two different concepts of knowledge about what a car perceives in its virtual
view VM (E, T S). However, we now address how the car E retrieves this knowledge.
Recall that the physical size of a car together with its braking distance is called safety
envelope.

To estimate the size of (parts of) other cars the car E perceives in its view, we model
sensor capabilities by introducing a car dependent abstract sensor function ΩE . This
function returns the size of a car as perceived by the sensors of E. For now, let this size
comprise the whole safety envelope of cars, meaning their physical size together with
their braking distances. We explain different concepts of what is contained in the safety
envelope of a car later in Sect. 5.2, before we introduce our controllers.

Definition 34 (Sensor function). For E ∈ I with virtual view Vi(E, T S) and an arbitrary
car C ∈ I, the sensor function ΩE : I × TS → R+ yields the size of C as perceived in
view Vi(E, T S) by E’s sensors.

For urban traffic, we consider crossing manoeuvres at intersections and build virtual
views only if the ego car E approaches an intersection. As indicated earlier, road seg-
ments between intersections are comparable to country roads, where for lane change
manoeuvres on these we refer to [HLO13]. Such a lane change manoeuvre on roads with
opposing traffic means that a car may temporarily drive against driving direction on
lane segments. As it would go beyond the scope of this thesis, we do not introduce how
cars that drive against driving direction are perceived by car E, but refer to [HLO13]
for this. However, it is planned for future work to formally integrate the country roads
approach from [HLO13] and the urban traffic approach from this thesis (cf. Sect. 8.4).

In our urban traffic scenario, it is not sufficient to solely know the size ΩE(C) of a car C
as given through Def. 34, as the visible parts of car C can be distributed over several lane
and crossing segments. In Alg. 2, we thus calculate the set of visible segments segV (C)
occupied by a car C, where one element (si, Xi) ∈ segV (C) contains a lane or crossing
segment si ∈ V and the interval of space Xi car C occupies on it. We only consider those
parts of C, which are actually visible in one virtual view Vi. Remember that in Sect. 3.2
in Def. 14 for the road network N , we consider a real size ω(v) for each node v ∈ V.
Using the size of car C as given by Def. 34 and starting at pth(C)(curr(C)), we introduce
Alg. 2, which subsequently calculates the real intervals of space that car C occupies on
lane or crossing segments along pth(C). Note that Alg. 2 uses a comparable procedure
as Alg. 1 from Sect. 3.3, calculating the reached position of a car C after t time units.
However, the results in Alg. 1 differ greatly from those in the following Alg. 2.

59

3 A Model for Urban Multi-lane Intersections

Algorithm 2 (Visible segments of cars in a view). Consider E ∈ I with virtual view
Vi(E, T S) = (Li, X,E) and an arbitrary car C ∈ I with path pth(C), index curr(C) and
position pos(C).

visSegVi(E,T S) (C) {
i := 0;

segV (C) := ∅;
s0 := pth(C)curr(C);

a0 := pos(C);

size0 := ΩE(C, T S);

while (sizei > 0)

if (si ∈ CS)

bi := ω(si)

else;

bi := min(ai + sizei, ω(si))

fi;

Xi := [ai, bi];

sizei+1 = sizei − (bi − ai);
if (sizei+1 > 0)

ai+1 := 0;

si+1 := pth(C)curr(C)+i+1

fi;

if (∃←→π :
←→
Π • si ∈ ←→π)

segV (C) := segV (C) ∪ {(si, Xi)}
fi;

i := i+ 1

end while;

return (segV (C)); }
The case where C drives against the direction of the considered lane segment, i.e. during
a lane change manoeuvre, is handled symmetrically; instead of adding the size, we have
to subtract it.

In the first part of the algorithm, we calculate the value of bi to estimate the interval
Xi = [ai, bi] in which car C is visible on segment si. If sizei does not exceed the size of
the current segment si, we have bi := ai+sizei. If the size of si is exceeded, or if si ∈ CS,
we set bi := ω(si). We then calculate the remaining size sizei+1 of C’s safety envelope
and set ai+1 to 0, as on next segment si+1, the visible part of car C will again start at 0.
We add only those segments si to our set of visible segments segV (C) that are part of one
of the virtual lanes of car E. The algorithm ends, if sizei ≤ 0. As in every iteration we

60

3.5 Urban Multi-lane Spatial Logic

id pth(id) res(id) pos(id) ΩE(id)

A 〈. . . , c3, 6, c7, . . .〉 {6} 60 20

B 〈. . . , 5, c3, 6, . . .〉 {5} 70 20

C 〈. . . , 3, c2, 4, . . .〉 {3} 95 20

Table 3.1: Exemplary traffic snapshot and sensor function values for the traffic situation
from Fig. 3.1.

i sizei si ai bi segV (B)

0 ΩE(B) = 20 5 70 min(90, 80) = 80 {(5, [70, 80])}
1 20− (10) = 10 c3 0 ω(c3) = 5 {(5, [70, 80]), (c3, [0, 5])}
2 10− (10) = 0 6 0 min(10, 100) = 10 {(5, [70, 80]), (c3, [0, 5]), (6, [0, 10])}

Table 3.2: Calculation of visible segments for car E using Alg. 2 and the values from
Fig. 3.1.

have bi ≥ ai by definition of bi, we observe that with sizei+1 = sizei− (bi−ai) the value
of sizei indeed decreases with every iteration and the algorithm actually terminates.

Example 15 (Visible segments of cars). Consider again the traffic situation from Fig. 3.1
with exemplary traffic snapshot and sensor function values for cars A, B and C as given
in Table 3.1. We calculate the visible segments segV (B) of car B from the viewpoint
of car E with Alg. 2. For the size ω(si) of lane and crossing segments si, consider the
corresponding topology in Fig. 3.3. The stepwise calculation of segV (B) is captured in
Table 3.2. The result of Alg. 2 is segV (B) = {(5, [70, 80]), (c3, [0, 5]), (6, [0, 10])}. 4

3.5 Urban Multi-lane Spatial Logic

In the previous section, we constructed our virtual standard view VM (E) for car E
and estimated the parts of other cars that E perceives in its view. For logical reasoning
about traffic situations in VM (E), we introduce Urban Multi-lane Spatial Logic (UMLSL)
in this section. Recall that we introduced the original MLSL from [HLOR11] and its
extension by length measurement for country roads from [HLO13] in Sects. 2.2 and 2.4.
With UMLSL, we can e.g. examine if a space on a neighbouring (virtual) lane is free, or
if a car approaches an intersection.

In the following paragraphs, we specify the syntactic extension of the logics from [HLOR11,
HLO13] to UMLSL. After that, we define the evaluation of UMLSL formulae over a traffic
snapshot T S and a (virtual) view V . Note, that the intention of our UMLSL approach
is to re-use as many concepts as possible from the original MLSL, only extending or
modifying it where absolutely necessary.

61

3 A Model for Urban Multi-lane Intersections

Syntax

For the syntax extension to UMLSL, we use the basic MLSL from Def. 6, p. 21. We
also use a part of the extension by length measurement introduced for country roads;
however, where the there described MLSL extension includes real-valued terms for the
length measurement, for our purposes real-valued constants r ∈ R are sufficient. With
this, we allow for a real-valued length atom denoted by ` = r in UMLSL. For real
variables we again use the set RVar from Sect. 2.4.

We do not need specific variables for crossing segments and also do not introduce a
specific set of lane variables, as L ⊂ N ⊂ R and thus RVar also ranges over L. We
again use the set CVar for car variables and assume RVar ∩CVar = ∅ and now consider
Var == RVar ∪ CVar.

Besides length measurement, UMLSL also extends MLSL by the spatial atom cs to
represent crossing segments. Hereby, we can, e.g., state that car E occupies a crossing
segment (cs∧re(ego)) or that a crossing segment is free (cs∧free). We can also distinguish
if a reservation is on a lane with re(ego) ∧ ¬cs.

Definition 35 (Syntax of UMLSL). Consider c ∈ CVar, r ∈ RVar and u, v ∈ Var. The
syntax of the Urban Multi-lane Spatial Logic extends Def. 6 by the atomic formulae cs
and ` = r with r ∈ RVar, such that atomic UMLSL formulae are defined by

a ::= cs | true | u = v | ` = r | free | re(c) | cl(c).

With that, an arbitrary UMLSL formula φU is formalised by

φU ::= a | ¬φ | φ1 ∧ φ2 | ∃v : φ1 | φ1aφ2 | φ2φ1.

We denote the set of all UMLSL formulae by ΦU.

Note that our use of existential quantification is automatically bound to the type of car
variables from CVar and thus we do not specify any type in the UMLSL formula itself.

Before we define the semantics of UMLSL formulae, we adapt the valuation function
from preliminary Sect. 2.2 ν for variables from the now extended set Var.

Definition 36 (Valuation and modification). Consider the set of variables Var = CVar ∪
RVar. A valuation is a function ν : Var → I ∪ R respecting the types of variables. We
modify the valuation of a variable v ∈ Var with ν ⊕ {v 7→ α}, where the value of v is
modified to α.

Example 16 (UMLSL formula and valuation). Consider the view V (E) of car E in
Fig. 3.1 and its corresponding straight virtual view from Fig. 3.5, together with the
valuation of variables ν(ego) = E and ν(c) = C. In a part of this view, the UMLSL
formula φ ≡ re(ego)a free a (cs ∧ free)a (cs ∧ re(c)) holds. Here, re(ego) is the space

62

3.5 Urban Multi-lane Spatial Logic

car E reserves on lane segment 7, the atom free represents the free space in front of car
E, the part cs∧ free stands for the unoccupied space on crossing segments c0 and c1 and
with cs ∧ re(c) the part car C reserves on segment c2 is formalised. 4

Semantics

While the syntax of UMLSL is not very different from previous versions of MLSL
[HLOR11, HLO13], the semantics of the spatial atoms change dramatically, to accom-
modate for virtual views (cf. Sect. 3.4). Further on, we now use the atoms cl(c) and re(c)
for both, lane and crossing claims and reservations. The following semantics for UMLSL
formulae is defined over a traffic snapshot T S, a view V and a valuation of variables ν.
Remember that we calculate the set segV (C) of segments and resp. intervals of space a
car C occupies in a view V with Alg. 2. We denote the length of a real interval X ⊆ R
by |X|. While the following definition holds for a view V = (L,X,E) as of Def. 28, we
define the semantics for a multi-view VM (E, T S) = (V1(E, T S), . . . , Vn(E, T S)) as of
Def. 32 in the next Def. 38.

Definition 37 (Semantics of UMLSL). The satisfaction of UMLSL formulae φ with respect
to a traffic snapshot T S, a virtual view V = (L,X,E) and a valuation of variables ν is
defined inductively as follows:

T S, V, ν |= true for all T S, V, ν
T S, V, ν |= ¬φ ⇔ not T S, V, ν |= φ

T S, V, ν |= φ1 ∧ φ2 ⇔T S, V, ν |= φ1 and T S, V, ν |= φ2

T S, V, ν |= u = v ⇔ ν(u) = ν(v)

T S, V, ν |= free ⇔#L = 1 and |X| > 0 and

∀c : CVar • segV (ν(c)) = ∅
T S, V, ν |= cs ⇔#L = 1 and |X| > 0 and

∀π : L(1) • π ∈ CS
T S, V, ν |= re(c) ⇔#L = 1 and |X| > 0 and

∀πi : L(1);∃Xi ⊆ X • πi ∈ cres(ν(c)) ∪ res(ν(c))

and (πi, Xi) ∈ segV (ν(c)) and X ⊆
#L(1)⋃
i=1

Xi

T S, V, ν |= cl(c) ⇔#L = 1 and |X| > 0 and

(∀π : L(1) • π ∈ CS and π ∈ cclm(ν(c)) or

(#L(1) = 1 and ∃π : L; ∃X ′ ⊆ R •
(π,X ′) ∈ segV (ν(c)) and π = L(1)(1) and X ⊆ X ′)

T S, V, ν |= ` = r ⇔ |X| = ν(r)

T S, V, ν |= ∃v : φ1 ⇔∃α ∈ I ∪ R • T S, V, ν ⊕ {v 7→ α} |= φ1

63

3 A Model for Urban Multi-lane Intersections

T S, V, ν |= φ1aφ2 ⇔∃V1, V2 • V = V1 : V2 and

T S, V1, ν |= φ1 and T S, V2, ν |= φ2

T S, V, ν |= φ2

φ1
⇔∃V1, V2 • V = V1 	 V2 and

T S, V1, ν |= φ1 and T S, V2, ν |= φ2

To satisfy the atomic formulae cs, free, cl(c) and re(c), the view V has to be occupied
completely by the respective element. This is the case if the view consists of only one
virtual lane (#L = 1) and has a positive extension (|X| > 0). For free, we demand
that no part of any car is contained in the considered view V . For re(c), where we first
check, if for all segments πi in our virtual lane L(1) we have a (crossing) reservation in
T S and a related element (πiXi) in segV (ν(c)). If all of these conditions are satisfied,
we finally have to check that all segments in V are completely occupied by ν(c). For
cl(c), we distinguish between a crossing claim solely of elements from CS or a lane claim
where the considered virtual lane L(1) consists of only that lane. For the semantics of
the chop operators, we refer to Def. 33 for chop operations on views. In case of ` = r,
the interval X is of length ν(r).

In case of a single (virtual) view V (E) of car E, the semantics of UMLSL formulae is
evaluated as in Def. 37. In case of a standard multi-view VM containing several views
Vi (cf. Def. 32), we define the following satisfaction of a formula φ over VM .

Definition 38 (Multi-view semantics of UMLSL formulae). For a multi-view VM =
{V0, . . . , Vn}, a traffic snapshot T S and a valuation ν the satisfaction of a UMLSL
formula φ ∈ ΦU is defined by the existential satisfaction

T S, VM , ν |= φ ⇔ ∃Vi : VM • T S, Vi, ν |= φ.

With Def. 38, it is e.g. sufficient, if our controllers observe a collision in one virtual
view.

Twisted views and the evaluation of UMLSL formulae. For highway traffic and country
roads [HLOR11, HLO13], spatial formulae of MLSL are evaluated from “left to right”.
In urban traffic, a car C builds up the virtual multi-view from its own perspective to
evaluate formulae of the UMLSL. E.g. consider the virtual views V1(E) and V2(E) from
Example 14 with sequences of virtual lanes L1 and L2 as depicted in Fig. 3.7. In both
views, the formula φ ≡ 〈re(E)a free a cs〉 holds. Now consider the respective view
V (A), comprising the same road segments as V1(E) and V2(E), but build up from the
sight of car A. This view is built up from virtual lanes L == L1 ∪ L2, twisted around
by 180 degrees. In V (A), the formula φ ≡ 〈re(E)a free a cs〉 does not hold, whereby its
inverse version φ−1 ≡ 〈csa free a re(E)〉 holds.

Last but not least, as UMLSL is an extension of MLSL, the (un-) decidability results
from related work, as described in the beginning in Sect. 1.1, apply for UMLSL too.

64

3.6 Overview of More Complex Intersections and Special Cases

3.6 Overview of More Complex Intersections and Special Cases

In this section, we first give a brief overview over some special cases for topologies,
which can also be modelled with all concepts we hitherto introduced in this chapter.
Additionally, as by default we consider a rather coarse segmentation for our crossing
segments, we take a glance on how to generate finer-grained intersections.

Special Cases for Intersections

Note that with the definition of our topology and the sanity conditions, we not only
allow for n-by-m intersections with arbitrary n,m ∈ N (cf. Fig. 3.2), but also for even
more complex intersections. Imagine we would erase lane nodes 6 and 9 and all their
outgoing or incoming edges from the topology on the right-hand side of Fig. 3.2. This
would result in a 2-by-2-by-2-by-4 intersection where three road segments contain two
lane segments, and only one road segment (the one below the intersection) contains four
lane segments. Still all driving possibilities are clearly defined by the topology as the
directed edges are defined unambiguously.

Now consider a roundabout, as depicted in Fig. 3.8. Again a fixed driving direction de-
termines the driving direction from a lane segment onto a roundabout segment (hitherto
“crossing segment”), as indicated by the arrows in the figure. For the depicted example,
we can simply reuse the topology from Fig. 3.3, for a standard 2-by-2 intersection.

0

F

1

2

3D

45

6 A

7 E
c0 c1

c2
B

c3

Figure 3.8: Abstract model for a roundabout. The arrows indicate the directed edges
from the underlying graph topology (cf. Fig. 3.3).

To cope with dead-ends, we simply model the dead-end as an intersection, where a car
turns to again leave the dead-end (cf. right-hand side of Fig. 3.9). Of course, this requires
that there exists a lane segment leading away from the dead-end, which is always fulfilled
as of sanity condition (3.2) from Def. 16, p. 41.

Additionally, to the left-hand side of Fig. 3.9, an example for an abstract model for a
parking spot is depicted, where the parking spot itself is formalised by a segment p0.

65

3 A Model for Urban Multi-lane Intersections

Again, as long a we can present a valid topology for such an abstract model, we can
build a virtual view to reason in with our logic UMLSL. However, note that the depicted
virtual lane ends on the left-hand side, as the parking spot from the example also has
no second exit or entry.

Parking spot:

0 1

2 3

c0c1p0

B

A

C

0 1

.

c1 c0p0

2 3

.

Topology:

Undbend to virtual lanes:

p0

p0 1

0

c1 c0

c1 B

C

Dead-end:

0 1

c0c1

B
C

0 1

.

c1 c0

Topology:

Unbend to virtual lane:

0 1c1 c0B C

Figure 3.9: A parking spot, formalised by a segment p0 and a dead-end road with re-
spective relating topology and virtual view.

In all mentioned cases, we can reuse the definitions from this chapter for our topology and
our virtual view without any redefinition. Also, we can use the crossing controller concept
that we introduce later in this thesis. However, for parking spots a slight adaptation of
our controller is needed.

Generating Topologies and Finer Segmentations

Note that we are not providing an explicit generic procedure for actually generating
urban road networks for different traffic situations, but instead only give restrictions for
what networks we can use with our approach with Def. 16 in Sect. 3.2.

Also, we give no limitation in how fine an intersection is segmented. Our running example
from Fig. 3.1 is a 2-by-2 intersection with four crossing segments. Of course a finer
segmentation of intersections (e.g. 16 crossing segments for the running example) is
possible to e.g. improve traffic flow. All our concepts in this thesis actually function for
arbitrarily fine segmentations.

However, as the controllers from Chapter 5 always reserve all crossing segments they
need for their turn manoeuvre at once, a finer segmentation would currently not improve
anything. We reserve all segments at once, to prevent deadlocks on the intersection. Us-
ing a step-wise reservation of crossing segments would require implementing a currently
non-existent deadlock-prevention strategy.

66

3.7 Related Work

3.7 Related Work

The notions of a claim and a reservation as introduced in [HLOR11] are not completely
novel to the MLSL approach, as similar notions are e.g. used in [VMDS08]. Further
on, we use a directed graph topology for modelling urban traffic networks, which is
also not unique to our approach. For instance, in [ASS11], the authors introduce a
discretised network, where each car fully occupies exactly one node and each node is
either fully occupied by one car or empty. Cars have no right to access intersection
nodes by themselves, as those are controlled by a centralised control mechanism called
Autonomous Intersection Management (AIM).

Such a discretised road network, as described for AIM in [ASS11], is also introduced
under the term space-grid model in [XL16, XL17]. There, the authors attempt to broaden
the spatial approach of MLSL for highway traffic and country roads to intersection
scenarios, quite comparable to our goal in this thesis. In their approach, single discrete
grids may belong to horizontal lanes or vertical lanes or to no lane at all, e.g. because
they are blocked or because they simply do not belong to a road. Horizontal lanes (resp.
vertical lanes) are labelled with even integers (resp. odd integers), and the driving
dimension of an arbitrary car C is dim(C) = 0 (resp. dim(C) = 1) on horizontal lanes
(resp. vertical lanes). However, the authors only apply their results to T-junctions and
construct a timed automaton controller for this special case. Moreover, for changes in
traffic situations, only a discrete time dimension is used instead of continuous time. The
authors extend their approach in [XL17] by an estimation structure to predict future
driving decisions of other cars. Further on, a case study including amongst others a
multi-lane roundabout is introduced in [XLGD19] (see also Sect. 6.5, p. 150).

As a coarser version of such a grid model, traffic cellular automata (TCA) [MM05] can
be mentioned for modelling urban traffic networks. However, TCA are rather used for
a correct description of macroscopic traffic behaviour, while the description of detailed
microscopic interactions (i.e. single cars) is minimised. For instance, in [MM05], the
authors describe an application of TCA to optimise traffic flow from one cell to the
next.

In contrast to all of the previously mentioned approaches, we allow for continuous traffic
on lanes between intersections, motivated by reality and to enable a smoother movement
on lane segments. Also, continuous lanes allow for re-using an adapted version of the lane
change controller for country roads from [HLO13] for overtaking manoeuvres between
intersections. We give more details on the adaptations needed to re-use the overtak-
ing controller from [HLO13] for our urban traffic purposes later in Sect. 5.3, where we
introduce our urban traffic controllers.

Lastly, while the authors of [XL16, XL17] limit their model to only two possible driving
dimensions (horizontal and vertical), our topology allows for arbitrary driving dimen-
sions. This is because in our case, driving directions are determined by directed edges
in our topologies. For instance, if five roads meet at an intersection, it is not possible

67

3 A Model for Urban Multi-lane Intersections

to only consider horizontal and vertical lanes as this only allows for at most four roads
meeting at an intersection.

We restrict our graph topology with sanity conditions to forbid senseless topologies.
Related work on building such a correct traffic network as an assembly of smaller provably
correct components like (different types of) intersections can be found in [MMP15]. The
authors also verify their large networks component-based with support from their tool
SAFE-T.

The principle of considering only a certain part of a dynamically changing, possibly
infinitely large system of systems, similar to our concept of a view, is introduced as
Spotlight Principle in [WW07]. The idea is to partition the systems processes into
a spotlight and a shade. The processes inside the spotlight are considered, while the
systems in the shade are summarised to one component and considered as unknown. In
[TWR10] the authors extend their approach to systems that vary dynamically in size
and topology which directly applies for the considered surroundings of our ego car. Over
time new cars around ego will come closer, while others move further away from ego due
to different values for speed and acceleration. As an example for this, consider again
the traffic snapshot evolution example from Sect. 2.2 depicted in Fig. 2.2 on page 18.
There, in traffic snapshot T S0, car D is not contained in the view V (E, T S0) of ego car
E. But after some time passes, car D is contained in the view V (E, T S5) of the reached
traffic snapshot T S5. This is due to the assumption that car E drives faster than D
(cf. Table 2.1). An optimised solution on how systems can be moved better from the
shade to the spotlight and vice versa, is considered in [Tim14].

In our thesis, we leave the process of retrieving what a car perceives about other cars
abstract (cf. sensor function ΩE from Sect. 3.4.3. In general, information about an au-
tonomous cars’ surroundings, like the size of (safety envelopes of) other cars is retrieved
by an interplay of various different sensors. Widely used are e.g. radar sensors, lidar
sensors, ultrasonic sensors and optical cameras [WHLS15]. The different and possibly
impaired sensor information is processed by a perception unit in the car, where with sen-
sor fusion a preferably accurate image of the surroundings is generated [Elm01, Kle99].
An old, but still powerful and state-of-the-art sensor fusion algorithm, is the Kalman
Filter [Kal60].

Chapter summary. In this chapter, we introduced an urban road network N and a traffic
snapshot T S for formalising abstract models of urban traffic situations. Further on, we
described a procedure for generating flattened virtual views VM (E) to reason in with
our urban logic UMLSL. Finally, we gave an outlook on some special cases for abstract
models we can handle with our approach.

68

4 Automotive-Controlling Timed Automata

In Chapter 3, we introduced our abstract model for urban traffic. Particularly in
Sect. 3.3, we formalised the evolution transitions for changes in a traffic snapshot T S.
Apart from the uncontrollable time transition, occurring whenever time elapses, the
changes in a traffic snapshot T S are actively triggered by the traffic participants; In our
case the autonomous cars. For this, we introduced lane change controllers for highway
traffic and country roads from related work in Sect. 2.4. For crossing manoeuvres, we
introduce a crossing controller in Chapter 5 and variations of it as well as other traffic
controllers in the following Chapters 6 and 7.

For all these traffic controllers, we now introduce an extension of timed automata [AD94]
as underlying automaton type. Besides the original timed automata from [AD94], we
use some of the extensions UPPAAL[BDL04] introduces, where for details on these ex-
tended timed automata we refer to the preliminary Sect. 2.3. We name our automata
automotive-controlling timed automata (ACTA). These ACTA use special controller ac-
tions to undertake traffic manoeuvres and trigger traffic snapshot changes with those
actions. Further on, our ACTA use the logic UMLSL from previous Sect. 3.5 to reason
about traffic situations.

We define syntax and semantics of ACTA without communication in the respective
Sects. 4.1 and 4.2. We start with an ACTA definition without communication as it is
easier to understand and as several of our controllers do not use communication. For
instance, the first crossing controller we introduce in Chapter 5 and also the basic high-
way traffic lane change controller from Sect. 2.4 do not need to communicate. However,
we also introduce several controllers using communication to cope with an imperfect
knowledge of their surroundings or to optimise their performance. Thus, we devote
Sect. 4.3 to a broadcast communication concept for ACTA, followed by an introduction
into synchronisation and networks of ACTA in Sect. 4.4.

We recall and extend definitions for basic concepts for extended timed automata as
provided in preliminary Sect. 2.3, wherever needed.

4.1 Syntax

For the syntax of our ACTA, we start with introducing the sets of possible variables.
As for timed automata, we use clock variables x from the set X of all clock variables
ranging over the continuous time domain Time = R≥0.

69

4 Automotive-Controlling Timed Automata

As indicated in Sect. 2.3, we follow UPPAAL by using data variables d from the set of
all data variables D additionally to clock variables. For instance, UPPAAL allows for
bounded integers, Boolean variables and arrays of these. To the range of data variables
that UPPAAL allows, we add three types of data variables, motivated by our automotive
application. We now briefly introduce them together with the sets of values over which
they range:

� Lane variables l , n, . . . ∈ DL: Variables l ranging over the set of lane segments L.

� Crossing segment variables cs, csA, csB, . . . ∈ DCS: Variables cs ranging over the
power set of crossing segments from CS. The intuition to have sets instead of single
crossing segments is that our crossing controller (cf. Chapter 5) generally reserves
a set of crossing segments to traverse an intersection. However, we allow for the
abbreviation c1 == {c1} in case of a singleton with c1 ∈ CS.

� Car variables c, d,−→c . . . ∈ DI: Variables c ranging over the set of sequences of
car identifiers from I. For this, we use the Z notation [WD96] of sequences, as
introduced in Sect. 2.1. We use sequences, as sometimes we wish to reason about
specific orders of cars, e.g. for the hazard warning communication protocol we
introduce in Chapter 7. As before, we allow for the abbreviation C == 〈C〉 in case
of a singleton with C ∈ I.

The set of all data variables D is given by D == DL ∪DCS ∪DI. According to the above
informal description, we now define the valuation function ν for our data variables from
D. For the valuation of clock variables from X, we refer to Def. 11 (p. 25).

Definition 39 (Data valuation). Consider data variables from D = DL ∪DCS ∪DI. Then
the valuation ν of a variable d ∈ D is defined by

ν(d) =

m ∈ L , if d ∈ DL
pcs ∈ PCS , if d ∈ DCS
s ∈ seq I , if d ∈ DI

.

For clock variables from X, we introduced clock constraints ϕX from the set ΦX in Def. 8
on p. 23. Analogously to clock constraints, we introduce data constraints ϕD for our
data variables. For defining data constraints, we first introduce data terms comprising
possible mathematical operations on data variables and on the values they map to. As
we use three types of data variables, we respectively have data terms on:

� Lane variables: Simple arithmetic operations with variables from the set DL and
values from N. With this, one can e.g. calculate the neighbouring lane l+ 1 to an
arbitrary lane l ∈ DL.

� Crossing segment variables: Set operations for variables from DCS or sets of vari-
ables from CS. With this, one can e.g. check whether two sets of reserved crossing
segments csE = {c0, c1, c2} and csC = {c2} for two cars E and C intersect with a
data term csE ∩ csC .

70

4.1 Syntax

� Car variables: Atomic expressions with sequences of variables from DI or sequences
of values from I. We also allow for functions on sequences here as introduced for Z
sequences in Sect. 2.1. For instance, we recall the function head 〈B,C,A〉, which
with 〈B〉 returns the first element B of the given sequence. The motivation for
using functions in our data types is to enable further modification of data variables.

The intuition of introducing three different kinds of data terms is that a car variable
c ∈ DI needs to be handled differently than a lane variable l ∈ DL. E.g. it is type
coherent to calculate l + 1 as DL ranges over L ⊆ N. On the other hand, a term like
c+1 is completely senseless, as DI ranges over (sequences of) car identifiers A,B, . . . ∈ I,
which do not allow for conventional arithmetic integer calculations.

Definition 40 (Data terms). Consider data variables l ∈ DL, −→c ∈ DI, cs ∈ DCS and
values k ∈ N, s ∈ seq I and pcs ∈ PCS. Further on, consider functions f : N → N and
g : seq I→ seq I. The sets of data terms ΨDi for the respective sets of data variables Di
with i ∈ {L,CS, I} are then defined by

ψDL ::= l | k | ψDL1 + ψDL2 | ψDL1 − ψDL2 | f ψDL,

ψDCS ::= cs | pcs | ψDCS1 ∩ ψDCS2 | ψDCS1 ∪ ψDCS2 and

ψDI ::= −→c | s | g ψDI.

We collect all possible data terms in the set ΨD == ΨDL ∪ΨDI ∪ΨDCS.

Note that the types of data variables we currently use in our approach in the set D could
be even more extended for future considerations. E.g. one could broaden the usage of
data term ψDL from natural numbers to reals and also add further arithmetic operations
to this data term. With this, real-valued distance measures could be compared in a
guard. However, for our current use case the data terms as defined in Def. 40 are
sufficient.

Using these data terms, we now define data constraints to be used as guards and invari-
ants in our ACTA.

Definition 41 (Data constraints). Consider a data variable d ∈ D and data terms as
defined in Def. 40 and values k ∈ N, s ∈ seq I and pcs ∈ PCS. The set of all data
constraints ΦD is inductively defined by

ϕD ::= ψDL ∼ k | ψDL ∼ k | ψDCS = pcs | ψDI = s | ∃d : ϕD | ¬ϕD | ϕD1 ∧ ϕD2 ,

where ∼∈ {=, <,>,≤,≥}.

The satisfaction ν |= ϕD of data constraints, follows similar rules as the satisfaction of
clock constraints as defined in Def. 11, whereas we refer to that definition for this. For
the existential quantifier we refer to the satisfaction of the respective UMLSL formula
which is defined in Def. 37.

71

4 Automotive-Controlling Timed Automata

Example 17 (Data constraints). With c, d ∈ DI, a simple example for a data constraint
is c = d (abbreviation for 〈c〉 = 〈d〉), where two car identifiers are compared with each
other. Further on, consider two sets of claimed crossing segments csa and csb for two
different cars. With a data constraint csa ∩ csb = ∅ it can be compared whether the
claimed segments are disjoint. 4

With this definition of data constraints we can define which sorts of formulae may occur
as guards ϕ of transitions and in invariants I in locations q of ACTA. We build up
our guards and invariants from the previously defined clock and data constraints and
UMLSL formulae.

Definition 42 (Guards and invariants). With data constraints ϕD ∈ ΦD (cf. Def. 41), clock
constraints ϕX ∈ ΦX (cf. Def. 8 ,p. 23) and UMLSL formulae ϕU ∈ ΦU (cf. Def. 35,
p. 62), a guard or invariant ϕ is defined by

ϕ ::= ϕD | ϕX | ϕU | ϕ1 ∧ ϕ2 | true.

The set of all guards and invariants is denoted by Φ.

Example 18 (Guards and invariants). Consider the guard (resp. invariant) ϕ ≡ ∃c, d :
〈re(c) ∧ re(d)〉 ∨ x > t with a clock variable x ∈ X and a constant t ∈ R≥0. Guard ϕ
consists of the UMLSL formula ∃c, d : 〈re(c) ∧ re(d)〉 and the clock constraint x > t.
It states that somewhere exists a collision between cars ν(c) = C and ν(d) = D or the
clock x exceeds t. 4

Using the data terms as given in Definition 40, we now introduce variable modifications
by extending the definition for resets of clock variables described in [AD94] to modifica-
tions of data and clock variables. As we do not yet use modifications of data variables
ranging over CS, we omit a definition for those here.

Definition 43 (Variable modifications). Consider a clock variable x ∈ X, a car variable
c ∈ DI, a lane variable l ∈ DL and a crossing segment variable cs ∈ DCS. A variable
modification νact is defined by

νact ::= l := ψDL | c := ψDI | cs := ψDCS | x := 0 | νact,1; νact,2 | ε,

where ψDi ∈ ΨDi is a data term for each set of data variables Di with i ∈ {L,CS, I} as
of Def. 41. The set of all possible variable modifications is denoted by VAct.

Example 19 (Variable modifications). An example for a variable modification with l ∈
DL is l := l + 1, where a lane variable l is set to the value of its neighbouring lane. 4

72

4.1 Syntax

Note that Def. 43 allows for the occurrence of multiple variable modifications νact,i,
distinguished from each other by the symbol ‘;’. To avoid variable modifications being
in conflict with each other, we assume that the variable modification is executed ‘from
left to right’. For instance, with a variable modification νact,1 == l := l + 1; l := l − 1,
where l ∈ DL as before, the variable l is first incremented by 1 and after that this new
incremented value for l is again decremented by 1. Thus, after completion of νact,1, the
value of l is not changed.

We express possible driving manoeuvres by controller actions, which may occur at the
transitions of an ACTA. Controller actions e.g. enable a car to set or withdraw a (cross-
ing) claim or a (crossing) reservation. Table 4.1 presents an informal description of all
available controller actions.

Definition 44 (Controller actions). With c ∈ DI, a controller action cact is defined by

cact ::= c(c, ψDL) | wd c(c) | cc(c) | wd cc(c) | r(c) | wd r(c, ψDL)
| rc(c) | wd rc(c) | τ ,

where ψDL as in Def. 40 and τ is a null action. The set of all controller actions is defined
by CtrlAct.

With τ , we allow for transitions in an ACTA without any controller action. Note that
in contrast to c(c, ψD), the action cc(c) does not need a second parameter, because the
path through the crossing is automatically claimed by the traffic snapshot (cf. Sect. 3.3).
The case for wd rc(c) is analogous. We omit a controller action for acceleration, as we
do not implement a speed or distance controller and thus do not yet use acceleration for
our controllers. However, we refer to our traffic snapshot definition Def. 27, where we
define an update for a cars acceleration in the traffic snapshot. We keep that definition
there to allow for an easier introduction of acceleration for future considerations.

Def. 44 also does not allow for concatenation of controller actions, as we only allow for
one controller action per transition in our ACTA for reasons of simplicity.

We are considering at least three controllers (distance controller, lane change controller,
crossing controller) in one single car. Thus, we need a way to identify the car in which
an ACTA is located, as their different data variables might refer to the same car. For
this purpose we introduce an identifying tuple I ∈ DI∪{ego}× I whereby for a controller
action r(c) with I = (c, C) the traffic snapshot will recognise a reservation for car C.
We identify the car under consideration E with ego and the tuple I = (ego, E).

Additionally we use committed locations, as introduced for UPPAAL. Whenever an
ACTA is in a committed location, time may not pass and the committed location has to
be left with the next possible transition. Thus, no other automaton is allowed to take a
transition until an automaton in a committed location has left this location. Later, we
also use urgent locations but do not include them in the following definition for reasons
of brevity (cf. Sect. 5.4, p. 105).

73

4 Automotive-Controlling Timed Automata

cact Informal semantics of command (for ν(c) = C)

c(c, n) Claim lane segment n for car C.
wd c(c) Withdraw currently claimed lane segment for car C.
cc(c) Claim needed crossing segments of next crossing for car C.
wd cc(c) Withdraw all currently claimed crossing segments for C.
r(c) Reserve all previously claimed lane segments for C.
wd r(c, n) Withdraw lane reservations for C, except for the one on n.
rc(c) Reserve C’s previously claimed crossing segments.
wd rc(c) Withdraw reservation for all crossing segments of C.
τ Null action.

Table 4.1: Possible controller actions (cf. Def. 44) for arbitrary car ν(c) = C and their
informal meaning.

Definition 45 (Syntax of an automotive-controlling timed automaton). An ACTA is
defined by a tuple A = (Q,C,X,D, I, T, qini, I), where

� Q is a finite set of locations q0, q1, q2, . . .,

� C ⊆ Q is a finite set of committed locations q0, q1, q2, . . .

� X is the set of clocks x, y, z, . . .,

� D = DL ∪ DI ∪ DCS is the set of data variables d1, d2, d3, . . .,

� I : Q→ Φ assigns an invariant I(q) to every location q,

� T ⊆ Q× Φ× CtrlAct × VAct ×Q is the set of all directed edges, where an element
(q, ϕ, cact, νact, q

′) ∈ T is an edge from locations q to q′ labelled with a guard ϕ, a
controller action cact and a set of variable modifications νact,

� qini ∈ Q is the initial locations, and

� I ∈ DI ∪ {ego} × I identifies the car for which the controller works.

Notation. We denote an element of T as follows:

q
ϕ/ cact; νact−−−−−−−−→ q′

Informally, this means that for elements before ’/’ the truth value of ϕ is checked, while
elements after ’/’ resemble executions: controller actions cact are executed or variables
are set to specific values with νact.

Note that while Def. 44 only allows for one controller action per transition, we allow for
arbitrarily many variable modifications νact with Def. 43. As mentioned before, the lane
change controller Alc informally introduced in Fig. 2.6, on p. 31 is one example for an
ACTA. However, we introduce a simpler example in the following. We will come back

74

4.2 Semantics

to the lane change controller Alc in an example for the semantics of ACTA later on in
Sect. 4.2.

Example 20 (ACTA Syntax). Consider the ACTA in Fig. 4.1, which is not intended to
be a sane or safe controller, but is only a basic example. The depicted automaton with
identifying tuple (c, C) starts in initial location q0 with the invariant 〈re(c)〉, stating that
somewhere exists a reservation for the related car C. If somewhere exists a free space,
and thus the guard 〈free〉 holds, the automaton changes to location q1 while setting a
reservation for car C and resetting the clock variable x to 0. After 10 time units, the
car withdraws its reservation and is again in its initial location. 4

q0 : 〈re(c)〉 q1 : x ≤ 10

〈free〉/ r(c); x := 0

x ≥ 10/ wd r(c)

Figure 4.1: A basic example for an ACTA.

We introduce the parallel composition of ACTA later in Sect. 4.4, there already for
ACTA with the communication concept that we introduce in Sect. 4.3. We now first
focus on the semantics of an ACTA in the following section.

4.2 Semantics

In Sect. 3.3, specifically in Defs. 22 to 27, we introduced traffic snapshot transitions
to describe the changes that may occur to a traffic snapshot T S. As the semantics
of an ACTA is linked to the traffic snapshot, we observe corresponding changes to the
possible system states of an ACTA A. These system states are called configurations C
and consist of a traffic snapshot T S, a valuation ν for all clock and data variables, and a
location q the automaton A is in in that particular configuration. The formal semantics
of A is then built from the set of all possible configurations Conf (A) and the transitions
between these configurations.

We define the configuration of an ACTA, where we recall Def. 39 for the variable valuation
ν from the previous section.

Definition 46 (Configuration of an ACTA). Let A = (Q,X,D, I, T, qini, I), T S ∈ TS, a
valuation ν(v) for all v ∈ X ∪ D and a location q ∈ Q. The configuration C of A at
location q is then defined by

C = 〈T S, ν, q〉,

75

4 Automotive-Controlling Timed Automata

where the initial configuration Cini ∈ Conf (ACTA) is given by

Cini = 〈T Sini, νini, qini〉,

with initial traffic snapshot T Sini ∈ TS, ∀x ∈ X : νini(x) = 0 and νini |= I(qini). The set
of all configurations is given by

Conf (A) = {〈T S, ν, q〉 | q ∈ Q ∧ (T S, VM (E, T S), ν |= I(q))}.

As indicated before, both, controller actions and the elapse of time, change not only the
configuration of the controller A but also the traffic snapshot T S. Basically, the possible
changes can be sorted into three different types of transitions:

� Controller action: A controller action occurs and the respective change in the
configuration of A triggers a change in the current traffic snapshot T S. Note that
in the following Def. 47, we distinguish the two cases of controller actions with two
parameters (e.g. c(c, n)) and those with only one parameter (e.g. r(c)).

� Internal transition: An internal transition occurs in A and while the configuration
of A changes, there is no corresponding change in the traffic snapshot T S.

� Time transition: Time passes and there is no change in the configuration of A
observable, apart from new values for all clock variables. Also, the current traffic
snapshot changes: all cars C ∈ I move according to their velocity and their path
pth(C) with new values for position and speed (cf. Def. 22).

With these preliminary considerations, we define the semantics of an ACTA A, given by
its transition system T (A).

Definition 47 (Semantics of an ACTA). For an ACTA A, with Conf (A) and Cini as in
Def. 46, the semantics of A is defined by the transition system

T (A) = (Conf (A), CtrlAct ∪ Time, { λ−−→ | λ ∈ CtrlAct ∪ Time}, Cini).

The set CtrlAct ∪ Time contains all labels that may appear at transitions. We examine

the types of the transition relation
λ−→⊆ Conf (A)× Conf (A):

Controller actions (with one parameter): Consider an arbitrary car variable c ∈ DI
with ν(c) = C and controller actions ∼∈ {cc, wd c, wd cc, r, rc, wd rc}. The

transition 〈T S, ν, q〉 ∼(c)−−−−→ 〈T S ′, ν ′, q′〉 exists iff there are corresponding transi-

tions T S ∼(C)−−−−−→ T S ′ and q
ϕ/∼(c);νact−−−−−−−→ q′, where T S, VM (E, T S), ν ⊕ I |= ϕ and

T S ′, VM (E, T S ′), ν ′ ⊕ I |= I(q′) hold.

76

4.2 Semantics

Controller actions (with two parameters): With controller actions ∼∈{c, wd r} and

a lane segment n ∈ L, we have a transition 〈T S, ν, q〉 ∼(c,n)−−−−−→ 〈T S ′, ν ′, q′〉 iff

there exist respective transitions T S ∼(C,n)−−−−−−→ T S ′ and q
ϕ/∼(c,l);νact−−−−−−−−→ q′, where

T S, VM (E, T S), ν ⊕ I |= ϕ holds and for l ∈ DL with ν ′(l) = n also the expression
T S ′, VM (E, T S ′), ν ′ ⊕ I |= I(q′) holds.

Internal transition: The internal transition 〈T S, ν, q〉 τ−−→ 〈T S, ν ′, q′〉 exists iff there

exists q
ϕ/νact−−−−→ q′ where T S, VM (E, T S), ν ⊕ I |= ϕ and T S, VM (E, T S), ν ′ ⊕ I |=

I(q′) hold.

Time passes: If λ ∈ Time, we have a transition 〈T S, ν, q〉 t−−→ 〈T S ′, ν ′, q〉 iff q 6∈
C and a transition T S t−−→ T S ′ exists and for all points in time t′ ∈ [0, t] the

valuation update ν ′ = ν⊕{x 7→ ν(x)+t′} with x ∈ X implies T S ′, VM (E, T S ′), ν ′ |=
I(q).

Note that the time transition requires the invariant I(q) to hold not only after t time
but also during all time units from the interval [0, t].

Similar as for extended timed automata, a location q in an ACTA is reachable, if there
exists a transition sequence starting from an initial configuration 〈T S0, ν0, q0〉 leading
to a configuration 〈T S, ν, q〉 (cf. Sect. 2.3, p. 27). Also recall from Sect. 2.3 that a
time-stamped transition sequence is named a computation path or run.

Example 21 (ACTA semantics). Consider again the preliminary Example 2, p. 18, from
Sect. 2.2, where we show traffic snapshot transitions from an initial traffic snapshot T S0
to a traffic snapshot T S5. There, parts of a lane change manoeuvre for a car E are
examined and depicted in Fig. 2.2. We further on consider the lane change controller
Alc from preliminary Sect. 2.4, depicted in Fig. 2.6, p. 31, to be our ACTA in this
example.

Let us now focus on the first four steps of Example 2 and the configuration of the
controller Alc of car E. We do not discuss the respective traffic snapshot changes here,
as those are shown in Example 2. We list the contents of the configurations Ci for
i ∈ {1, . . . , 4} for Alc in Table 4.2.

As our car E already has a claim in T S0, we derive from the lane change controller
that our controller is already in its location q2. We further on conclude the following
valuation of variables from Example 2: ν0(l) = 2, ν0(n) = 1 and ν0(x) = 1. With that,
we start from the initial configuration C0 = 〈T S0, ν0, q2〉. Further on, we set the two
time constants t1 and t2 from Example 2 to t1 := 1 < t and t2 := tlc = 2. With this, we
have

〈T S0, ν0, q2〉 1−→〈T S1, ν1, q2〉
r(E)−−−→〈T S2, ν2, q3〉 2−→〈T S3, ν3, q3〉

wd r(E,2)−−−−−−−→ 〈T S4, ν4, q0〉.

77

4 Automotive-Controlling Timed Automata

i T Si νi qi Ci
0 T S0 ν0(l) = 2, ν0(n) = 1, ν0(x) = 1 q2 C0 = 〈T S0, ν0, q2〉
1 T S1 ν1(l) = 2, ν1(n) = 1, ν1(x) = 2 q2 C1 = 〈T S1, ν1, q2〉
2 T S2 ν2(l) = 2, ν2(n) = 1, ν2(x) = 0 q3 C2 = 〈T S2, ν2, q3〉
3 T S3 ν3(l) = 2, ν3(n) = 1, ν3(x) = tlc q3 C3 = 〈T S3, ν3, q3〉
4 T S4 ν4(l) = 2, ν4(n) = 2, ν4(x) = tlc q0 C4 = 〈T S4, ν4, q0〉

Table 4.2: Exemplary configurations Ci = 〈T Si, νi, qi〉 for i ∈ {0, .., 4} for car E for
the respective transitions from Example 21, relating to the traffic snapshot
changes from Example 2 and to the lane change controller Alc from Fig. 2.6.

For the two time transitions to be valid, we require the respective invariants of q2 and
q3 to hold. The time invariants x ≤ t (resp. x ≤ tlc) hold as we set the constants t1 and
t2 appropriately. Further on, we can recognise from Fig. 2.2, that the second part of the
invariant of q2, namely the potential collision check ¬∃pc(c), holds, as no intersections
of the claim of car E with any other car exists.

For the reservation transition from location q2 to q3 to be valid, the guard ¬∃pc(c) has
to hold, which we again can conclude from Fig. 2.2. There, the clock x is reset, as the
reader can observe in Table 4.2. For the last transition from location q3 to q0, the guard
x ≥ tlc needs to hold. On the previous transition, tlc time units passed, whereas it is
x = tlc and the guard subsequently holds. On this transition, the lane variable n is
updated to l. 4

Note that, with our definition of ACTA, only controllers for lane change or crossing ma-
noeuvres are possible. However, further controller actions are of course imaginable, as
long as the underlying concept is also integrated into our traffic snapshot from Sect. 3.3.
For this we also recall Sect. 3.6, where we already hinted at possible other traffic situa-
tions besides normal intersections and highway lanes running in parallel. E.g. a parking
manoeuvre as in Fig. 3.9 could be conducted by a parking controller using the previously
presented controller actions cc and rc (resp. wd cc and wd rc).

While the semantics as described in this section is defined for independent ACTA, let us
now consider a communication concept, which allows for synchronisation of ACTA via
broadcast messages.

4.3 Broadcast Communication with Data Constraints

As indicated in the introduction of this chapter, there are several cases where commu-
nication between ACTA is required. Possible cases we examine in this thesis are the
following:

78

4.3 Broadcast Communication with Data Constraints

� Lack of knowledge (cf. imperfect knowledge, Sect. 5.4),

� Priorities that shall be communicated and negotiated between cars (cf. Sect. 6.4.3),

� Warning messages that should be propagated between cars (cf. Chapter 7).

To this end, we introduce a concept of guarded broadcast communication with data con-
straints for our ACTA in this section. As an important inspiration on the communication
between distributed systems, we refer to the approach from Tony Hoare on Communi-
cating Sequential Processes [Hoa78].

In any kind of traffic situation, autonomous cars can be understood as dynamic nodes in
a Vehicular ad-hoc network (VANET)[SD14], without a fixed wireless infrastructure and
in our case without taking roadside units into account. We use broadcast communication,
meaning that when one controller sends a message via an output action, all cars that
are in a location with a possible relating input action are required to synchronise with
the sender.

In Sect. 4.1, we introduced data variables and data constraints to be used in guards,
invariants and variable updates of our ACTA, comparable to the use of data variables
in the extended timed automata from [BDL04] for UPPAAL. We now broaden this use
of data variables and data constraints in timed automata even further by sending data
via our broadcast channels. On receiving a message, the data is analysed with a special
communication guard for its relevance for the receiving ACTA.

Our type of broadcast communication is inspired by the Calculus for Attribute-based
Communication [ADNL+15], which itself is inspired by the calculus of mobile processes
of Milner [MPW92]. The authors of [ADNL+15] consider systems with a large amount
of dynamically adjusting components that interact via broadcast channels. Components
broadcast valuations of data variables u via an attribute-based output (u)@Π to all
processes whose attributes satisfy the predicate Π. By using updates a := u of local
attributes a, the received data u can be used locally by these processes. Other compo-
nents only synchronise with an output (u)@Π if they have an input Π(x) and their local
attributes a, together with the received message x, satisfy the predicate Π.

In our case the attributes to be sent are sequences
−→
d of data variables from our set

D. Similarly to the handshake communication introduced in Sect. 2.3, Def. 13, we have
output actions a! for sending messages on a broadcast channel a and input actions a?
for receiving messages. We add the communication guard ϕ to input actions, where the
received data is analysed for its relevance for the respective receiving controller. The
type of a communication guard is the set of all guards and invariants Φ as of Def. 42.

Definition 48 (Input and output actions). For a finite sequence of data variables
−→
d ∈

seqD and a communication guard ϕ ∈ Φ we define an output action out on a broadcast

channel a ∈ Chan by out := a!
−→
d and a related input action in by in := a?

−→
d : ϕ. We

allow for the empty input action in := true and the empty output action out := τ . The
respective sets of all input and output actions are IN and OUT .

79

4 Automotive-Controlling Timed Automata

We now extend Def. 45 to a definition for the syntax of ACTA with communication. By
construction, we forbid more than one communication action occurring on an edge of an
ACTA with communication, meaning either an input action or an output action may
occur, but not both on the same edge.

Definition 49 (Syntax of an ACTA with communication). An ACTA with communication
is defined by a tuple A = (Q,C,B,X,D, I, T, qini, I), where

� B is a set of broadcast channels with B ⊆ Chan and

� T ⊆ Q×Φ× IN ×OUT ×CtrlAct×VAct×Q is the set of all directed edges, where
an element (q, ϕ, in, out, cact, νact, q

′) ∈ T is an edge from location q to q′ labelled
with a guard ϕ, a input action in on a channel b ∈ B, an output action out on a
channel b ∈ B, a controller action cact and a set of variable modifications νact.

All other elements of the tuple A remain as defined in Def. 45. For each element of T
we require that if in 6= true we have out = τ and vice versa.

Notation. With the extension of broadcast communication, the action language of T
now is of the following syntax:

q
ϕ∧ in / out; cact; νact−−−−−−−−−−−−−→ q′

We motivate ACTA with communication and their synchronisation with the following
example. As we only introduce two ACTA with communication in the example, for now
the actual synchronisation is not much different to the synchronisation via handshake
communication we defined for the parallel composition in Def. 13, except for the treat-
ment of data. Thus note that the example is solely meant to illustrate how data is sent
and how guarded synchronisation with communication guards is done. We define the
actual synchronisation process after the example and motivate networks of ACTA in the
following Sect. 4.4.

Example 22 (Input and output actions). Consider cars A and E, a variable valuation
ν(ego) = E and ν(a) = A and respective sets of crossing segments for the next intersec-
tion csE for car E and csA for car A. Now consider the two simple controllers AE and
AA as depicted in Fig. 4.2.

After some waiting time greater than 1 a request of car E for its claimed crossing
segments csE is sent via broadcast channel cross with the output action cross!〈ego, csE〉.
Consider the corresponding input action in AA on the edge from p0 to p1. The controller
checks whether the request is sent from a car different than its own car with a 6= d1
and it checks disjointedness of the requested crossing segments with its own claimed or
reserved segments with csA ∩ cs1 = ∅. Only if these two communication guards hold,
the controller synchronise on this transition. Note that on synchronisation we have

80

4.4 Synchronisation and Networks of ACTA

AE :

q0 q1

xE > 1/cross! 〈ego, csE〉;
xE := 0

xE ≥ 10/finished ! ego

no? d : ego = d

AA:

p0 p1

cross? 〈d1, cs1〉 : a 6= d1 ∧ csA∩cs1 = ∅
/c1 := d1

finished? d2 : c1 = d2

Figure 4.2: ACTA AE with output actions on broadcast channels cross and finished on
the left and ACTA AA with compatible input actions on the right.

ν(d1) = ν(ego) = E and ν(cs1) = ν(csE). Secondly, with c1 := d1 the controller stores
the received data in a local variable c1 and we have ν(c1) = ν(d1) = E.

Likewise, after 10 time units, the respective input and output actions for channel finished
synchronise, as ν(c1) = E from before and after synchronisation also ν(d2) = E holds.
Note that it is not possible for AE to execute the transition labelled with no? d : ego = d,
as the controller has to wait for a suitable output action on channel no for that. 4

4.4 Synchronisation and Networks of ACTA

The example from the previous section emphasises that in contrast to the classical broad-
cast communication, which e.g. UPPAAL uses, a peculiarity of our guarded broadcast
communication is that the receiving automata do not compulsorily synchronise with the
sender. Thus, on synchronisation, we have to keep some information about the com-
munication guards and we do not solely get a simple τ -transition as observed for the
unguarded communication from Def. 13. As formalised in the following definition, the
result of our guarded broadcast synchronisation is a conjunction of (negations of) the
respective (communication) guards of the receiving automata.

Definition 50 (Synchronisation of input and output actions). Consider an ACTA A with

an output action out == a!
−→
d in OUT on a broadcast channel a ∈ Chan, where

−→
d ∈

seqD is a finite sequence of data variables. Further on consider ACTA Ai with respective
guards ϕi,1 ∈ Φ, each conjugated with a respective input action ini == a?−→ci : ϕi,2 in IN ,
where ϕi,2 ∈ Φ is a communication guard and i ∈ {1, . . . , n}.

Now assume that m of the input actions ini synchronise with out, with 0 ≤ m ≤ n and
that the remaining n −m input actions ini do not synchronise with out, either because
ϕi,1 or ini does not hold. After the synchronisation process we derive the following

synchronisation expression syn, with a variable valuation σ == {−→ci 7→ ν(
−→
d)}:

syn :=
∧m

i=1
(ϕi,1 ∧ ϕi,2(σ)) ∧

∧n

i=m+1
¬(ϕi,1 ∧ ϕi,2(σ)). (4.1)

81

4 Automotive-Controlling Timed Automata

On synchronisation, besides the expression syn, the variable modification νact and the
controller action cact of the sender A, together with all variable modifications νact,i and
controller actions cact,i for automata Ai, i ∈ {1, . . . ,m}, are kept but updated with the
valuation σ, yielding the expressions

cact,syn := cact; cact,1; . . . ; cact,m (σ), (4.2)

νact,syn := νact; νact,1; . . . ; νact,m (σ). (4.3)

In formula syn (4.1), with the updated variable valuation σ, the value of −→c is set to the

sent data
−→
d . With that, the sent data is used in the respective communication guards

ϕi,2, which match the type of a normal guard ϕ ∈ Φ, as does the entire expression syn.
Thus, while more complex in appearance than τ , syn nevertheless leads to an internal
transition, as no details about the actual communication part are kept.

Note that only ACTA Ai for i ∈ {1, . . . ,m} actually synchronise with A, while the
information that automata did not synchronise is kept with the negated guards in the
right part of the expression syn. Equally, only variable modifications and controller
actions of the sender A and ACTA Ai for i ∈ {1, . . . ,m} are kept, as formalised in
expressions (4.2) and (4.3). It is necessary to apply σ to both controller actions and
variable modifications, as it is possible to update internal variables with sent data or to
use sent data in controller actions.

In contrast to Defs. 49 resp. 45 for single ACTA (with communication), we allow for the
occurrence of multiple controller actions in the expression cact,syn (4.2). Analogously to
the case for multiple variable modifications as explained after Def. 43, we assume mul-
tiple controller actions are executed from ‘left to right’. For instance, for an expression
cact,syn == c(ego, n); c(ego,m), the claim for ego on lane n is overwritten by its claim on
lane m.

For building a network of several ACTA using broadcast communication, we observe two
design choices:

� We build the network in one step,

� We build the network consecutively by adding one ACTA after the other.

In both cases, if we wish to enable adding another ACTA to the network, e.g. whenever
a car enters a view, we would have to keep information about the output action to
allow for synchronisation with a new automaton. Note that, even for standard timed
automata, it is generally not possible to remove one timed automaton from a network
of timed automata, as information about each single timed automaton gets lost during
the process of building a network. Thus, as we could not remove an ACTA whenever a
car leaves a view, it seems inconsistent to allow for adding an ACTA when a car enters
the view. Due to this, and as it seems the natural choice for automata with broadcast
communication, where several automata may synchronise with one sender, we decide to
take the first choice and build a network of ACTA in one step. With this, we assume

82

4.4 Synchronisation and Networks of ACTA

that we already know all cars we need to consider for our crossing manoeuvre on building
the network.

Example 23 (Networks of ACTA). To illustrate our approach of building a network,
we continue the previous Example 22 with the two ACTA AE and AA from Fig. 4.2
together with a third automaton AA,help , which is depicted in Fig. 4.3. We assume that,
same as for AA, the ACTA AA,help is located in car A and we thus assign the identifying
tuple (a,A) to AA,help . With that, this new ACTA also uses the car variable a and the
same set of crossing segments csA.

The intuition for AA,help is to prevent the ego car E from starting a crossing manoeuvre
with an output action on channel no, if there is an overlap of A and E’s crossing segments.
To send the message no!c2 without any delay, location r1 is committed as indicated with
the C. Similarly to the case in Example 22, the three controllers synchronise on channel
cross, if the respective (communication) guards hold.

r0

AA,help :

r1
C

cross? 〈d3, cs2〉 : a 6= d3 ∧ csA ∩ cs2 6= ∅
/c2 := d3;xA := 0

xA = 0/no! c2

Figure 4.3: A third ACTA AA,help with compatible input and output actions to AE . The
intuition of AA,help is to prevent the ego car to do a crossing manoeuvre if
its crossing segments overlap with the segments of car A.

The network AE ‖ AA ‖ AA,help is depicted in Fig. 4.4. On sending cross! 〈ego, csE〉,
only one of the automata AA and AA,help can synchronise with the sender AE , as the
respective communication guards on the transitions from p0 to p1 (resp. r0 to r1) con-
tradict each other. Thus, semantically, the successor locations (q1, p1, r1) and (q1, p0, r0)
are unreachable, but do exist syntactically. However for reasons of simplicity, these two
unreachable locations are not depicted in Fig. 4.4.

Let us consider more detailed how the edge to location (q1, p1, r0) in Fig. 4.4 was con-
structed. For that edge, it is assumed that AA did synchronise with AE , while AA,help

did not. Applying Def. 50 thus yields the synchronisation expression

(a 6= d1 ∧ csA ∩ cs1) = ∅) (σ1)∧ (4.4)

(¬(a 6= d3 ∧ csA ∩ cs2 6= ∅)) (σ2),

with σ1 == {d1 7→ ego, cs1 7→ csE} and σ2 == {d3 7→ ego, cs2 7→ csE}. The first part
of expression (4.4) corresponds to the communication guard of AA and the second part

83

4 Automotive-Controlling Timed Automata

to the communication guard of AA,help . The result where σ1 and σ2 are already applied
to (4.4) is depicted as guards on the considered edge in the network in Fig. 4.4. Equally
the variable modification c1 := d1 from the corresponding edge in AA is updated to
c1 := d1(σ1). Note that both the guard xE > 1 and the clock update xE := 0 from
ACTA AE are kept for the considered transition.

The edge to location (q1, p0, r1) is constructed analogously, representing the case where
AA,help did synchronise with AE , while AA did not. Note that the joint location
(q1, p0, r1) is committed as the included location r1 is committed. 4

(q0, p0, r0)(q1, p1, r0)

AE ‖ AA ‖ AA,help:

(q1, p0, r1)
C

xE > 1 ∧ a 6= ego ∧ csA∩csE = ∅
∧ ¬(a 6= ego ∧ csA∩csE 6= ∅)
/ c1 := ego; xE := 0

xE ≥ 10 ∧ c1 = ego

xE > 1 ∧ a 6= ego ∧ csA ∩ csE 6= ∅
∧ ¬(a 6= ego ∧ csA ∩ csE = ∅)
/ c2 := ego; xE := 0; xA := 0

ego = ego ∧ xA = 0

Figure 4.4: Parallel composition AE ‖ AA ‖ AA,help without unreachable locations.

With this, we now give the formal definition for the parallel composition of several ACTA
Ai. Remember that by construction, we forbid the occurrence of multiple synchronisation
processes at one transition (only one communication action is allowed on one edge of an
ACTA, cf. Def. 49).

Definition 51 (Parallel composition of ACTA with communication). For N == {1, .., n}
with n ≥ 2 and i ∈ N consider several ACTA

Ai = (Qi, Ci, Bi,Xi,Di, Ii, Ti, qini,i, Ii),

where the sets Xi and Di are each disjoint. The parallel composition
fAi of all ACTA

Ai is defined by the network

n
Ai =(Q1 × ..×Qn, C1 ∪ .. ∪ Cn, B1 ∪ .. ∪Bn,X1 ∪ .. ∪ Xn,D1 ∪ .. ∪ Dn, I, CtrlAct,

T, (qini,1, .., qini,n), I1 ∪ .. ∪ In),

where the respective invariants Ii are conjugated as follows:

I(q1, .., qn)
def⇐⇒

∧n

i=1
I(qi).

For the construction of the transition relation T we observe the following two possibilities:

84

4.4 Synchronisation and Networks of ACTA

Interleaving: If for an arbitrary ACTA Ai with i : N with qi ∈ Qi, without any com-
munication, i.e. ini = true and outi = τ , there exists a transition
(qi, ϕi, true, τ, cact,i, νact,i, qi

′) ∈ Ti, then for all j : N\{i} for all locations qj ∈ Qj
there exists the transition ((q1, .., qn), ϕi, true, τ, cact,i, νact,i, (q1, .., qn){qi 7→ qi

′}) ∈
T . If qk ∈ Ck for some k ∈ {1, .., n}, then qi ∈ Ci.

Guarded communication via a broadcast channel: In an arbitrary ACTA Ai for a

channel a : Bi and a data sequence
−→
d : seqD, we have an output action outi = a!~d

and the transition (qi, ϕi, true, outi, cact,i, νact,i, qi
′) ∈ Ti. The other ACTA Aj with

j : N\{i} and transitions (qj , ϕj , inj , τ, cact,j , νact,j , qj
′) ∈ Tj synchronise with the

sender Ai as defined in Def. 50 iff their respective input actions inj are defined on
the channel a. Assuming that m ACTA Aj did synchronise (cf. Def. 50), we de-
rive a transition ((q1, .., qn), syn, τ, cact,syn, νact,syn, (q1, .., qn){ql 7→ ql

′}) ∈ T , where
l ∈ {i} ∪ {1, . . . ,m}. If qk ∈ Ck for some k ∈ {1, .., n}, then qi ∈ Ci or qj ∈ Cj,
where j ∈ {1, . . . ,m} and thus Aj is an ACTA that did synchronise with Ai.

Note that Def. 51 includes that whenever there exists an ACTA Ai in a committed
location qi ∈ Ci, then the transition relation T must include that Ai leaves its committed
location.

Comparable to the semantics of one single ACTA as defined in Def. 47, the operational
semantics of a network

fAi of ACTA Ai is defined by a transition system T (
fAi). One

specific configuration of T (
fAi) now is defined by

C‖ = 〈T S, ν,−→q 〉,

where ν is the valuation ν(v) for all variables v ∈ X ∪ X1 ∪ .. ∪ Xn ∪ D1 ∪ .. ∪ Dn and
−→q ∈ Q1× ..×Qn. However, in contrast to networks of pure timed automata without the
extension of committed locations, for the semantics of networks of ACTA we can only
partially re-use the semantics of a single ACTA A from Def. 47. The reason for this is
that we have to consider the meaning of committed locations in the context of the entire
network

fAi. Thus, we informally describe the three possible cases for the transition
relation of T (

fAi):
Internal transition: The i-th ACTAAi executes a transition, thus the respective guards

and invariants must be satisfied as defined in Def. 47 for one single ACTA. The
locations and variable valuation of all other ACTA remain unchanged.

Synchronisation transition: A synchronisation transition exists and the variable valu-
ation satisfies the synchronisation expression syn as of Def. 50. For the satisfaction
of syn, we refer to the satisfaction of guards and invariants (cf. p. 72). If there
exist some ACTA Ai in a committed location, they have to be involved in the
synchronisation process and leave their committed location in its course.

Delay transition: Time passes and for all ACTA Ai for all clock variables the vari-
able valuation is changed as defined in Def. 47 for one single ACTA. For a delay
transition, no ACTA Ai may be in a committed location.

85

4 Automotive-Controlling Timed Automata

Chapter summary. In this chapter, we presented syntax and semantics of automotive-
controlling timed automata, which are used in the following chapters to construct con-
trollers for traffic manoeuvres. Our ACTA are capable of committing controller actions
for car manoeuvres, use formulae of UMLSL as guards and invariants and can use and
analyse different data variables. Also a guarded broadcast communication concept for
networks of ACTA was presented, with which controllers only synchronise, if a possible
communication guard holds.

86

5 Controllers for Safe Crossing Manoeuvres

In Chapter 3, we introduced our abstract model for urban traffic and formalised the
evolution transitions for changes in a traffic snapshot T S in Sect. 3.3. Apart from the
passive time transition, occurring whenever time elapses, the changes in a traffic snap-
shot T S are actively triggered by the traffic participants. For this, we now introduce
controllers, which use our logic UMLSL from Sect. 3.5 to reason about traffic situations
and perform traffic manoeuvres. The underlying automaton type of our traffic manoeu-
vre controllers are the ACTA we introduced in the previous Chapter 4. One of the main
requirements for the controllers is to preserve a safety property which can be formalised
by the UMLSL formula

Safe ≡ ∀c, d : c 6= d→ ¬〈re(c) ∧ re(d)〉. (5.1)

Formula (5.1) states that for all possible pairs of different cars there does nowhere exist
an overlap of their reserved spaces. We prove that the controllers which we introduce in
this Chapter fulfil safety requirement (5.1) and other desirable system properties in the
following Chapter 6.

For urban traffic manoeuvres, we introduce three types of controllers in this chapter: A
road controller to cover lane change manoeuvres on road segments, a crossing controller
to handle crossing manoeuvres and a distance controller that maintains the safety dis-
tance to a car in front or an occupied crossing. For this, we first assume a concept
of perfect knowledge, where we assume a car has certain knowledge about other cars.
Later in this chapter, we drop the assumption of perfect knowledge by introducing a
crossing controller for imperfect knowledge, which has less information about other cars’
behaviours and needs to communicate to cope for the lack of knowledge.

The structure of this chapter is as follows; in Sect. 5.1, we start with an overview over
what different types of controllers we consider in our approach and also delimit our
discrete control from dynamics components in an autonomous car. After that, we give a
list of all assumptions for our controllers in Sect. 5.2, similarly as we did in Sect. 3.1 for
our abstract model. The heart of this chapter is the actual construction of our crossing
controller that we explain in Sect. 5.3, followed by a discourse about an approach to
weaken some of our assumptions from Sect. 5.2 to make our approach more realistic in
Sect. 5.4. For this, we introduce a communicating variant of our crossing controller that
performs crossing manoeuvres with the help of other cars.

87

5 Controllers for Safe Crossing Manoeuvres

5.1 Interplay of Controllers: One Car, Several Controllers

In this section, we classify in which layer of an autonomous car the different controllers
we construct in the following sections can be found. For this, we give an overview over the
different layers in an autonomous system with Fig. 5.1, which is inspired by a respective
figure from [KRS+12].

Environment/ Car

Sensors
(+ Preprocessing)

Motors
(+ Contention Scheduler)

Dynamic Control

Episodic Memory
(+ Object Identification)

Actions
(Reflexes,Habits,Behaviour)

Reactive Layer

Working Memory
(Current/ goal states)

Behaviour Generation
and Modulation

Monitor
(Goal Tracking)

Semantic Memory
(Knowledge, Rules, Model) Planner

Decision Layer

Creative Cognition
(Reasoning, Solver)

Explanation Layer

Figure 5.1: Overview over the interplay of discrete control and dynamics in an au-
tonomous system.

In our approach, we explicitly separate our controllers from the reactive layer and focus
on the decision making level. Thus, our MLSL controllers can be found in the decision
layer, while dynamic control, e.g. an emergency braking manoeuvre, is planned and
conducted directly in the reactive layer. That is, our controllers, e.g., decide how and
whether a lane change or a crossing manoeuvre is conducted, but do not steer the
motors for actually committing the manoeuvre. This approach allows for a purely spatial
reasoning with our logic UMLSL.

We now map the concepts depicted in Fig. 5.1 to our approach, starting with the decision
layer, where our MLSL controllers can be found.

88

5.1 Interplay of Controllers: One Car, Several Controllers

Controllers on the Decision Layer

Considering Fig. 5.1, the decision layer gets information about its surroundings via
object identification units from the reactive layer. Note that the decision layer does not
process sensor data itself. These information about surroundings are an input of the
working memory of an MLSL controller A, which is the state the automaton is in, i.e.
its current configuration Conf (A) (cf. Sect. 4.2). This information received from the
reactive layer thus might change the system state, e.g. because some space that was free
before now is occupied by a car, as evaluated by an MLSL formula (cf. Sect. 3.5).

Respective goal states in our case are desirable system states of the controller, e.g. a
state where a UMLSL formula formalising an on-crossing check

oc(ego) ≡ 〈re(ego) ∧ cs〉

holds invariantly in a location qi. The on-crossing check states that somewhere there
exists a reservation of car E on at least one crossing segment, meaning our car successfully
entered an intersection. The semantic memory of an MLSL controller is the static
knowledge it has about the road, e.g. about connections of segments as formalised by
our urban road network N (cf. Sect. 3.2) and the existing preconditions for changes of
the traffic snapshot T S (cf. Sect. 3.3).

Depending on the current state of the controller, together with possible (and desirable)
goal states and knowledge about the semantic memory, respective decisions are planned
by the controller (e.g. to reserve some crossing segments, because there is enough free
space). This reasoning about traffic situations is done via creative cognition, which in
our case is the crossing controller protocol we introduce in Sect. 5.3. As a result of the
reasoning process, some needed behaviour is generated to conduct the previously planned
manoeuvre (e.g. a controller action rc(ego) is committed, cf. Sect. 4.1).

Note that our controllers in the decision layer do not control any motors directly. For
instance, if the crossing controller which we introduce later successfully reserves some
space on the intersection with the action rc(ego), only this generated behaviour is for-
warded to the reactive layer. Thus, our crossing controller does not control the motors’
speed or the angle at which the car drives onto the intersection.

We introduce our crossing controller and a road controller for roads between intersections
which are located on the decision layer later in Sect. 5.3.

Controllers on the Reactive Layer

Referring to Fig. 5.1, in this section we focus on the part of dynamic control . Thus, for
details on (preprocessing of) sensor information, object identification, as well as action
and motor control we refer to relevant related work (e.g. [WHLS15]). For dynamic
control, we briefly introduce the field of duty of a distance controller and a velocity
controller .

89

5 Controllers for Safe Crossing Manoeuvres

Distance Controller. In the beginning of this chapter we claimed that our controllers
are designed to preserve, amongst other properties, the safety property (5.1) in the
sense of disjointedness of reservations under all time and action transitions. Note that
by demanding the disjointedness of (the speed-dependent) reserved spaces, the formula
indirectly requires that any car C lowers its speed (to shorten its reserved space) when
a car ahead of it starts breaking. Thus, to maintain safety property (5.1) under time
transitions, each car is equipped with a distance controller Adc.

Furthermore, for urban traffic we demand that the distance controller keeps a dis-
tance ≥ 0 to an intersection, if the car does not get permission to enter the intersection
fast enough. This means in the worst case the car comes to a standstill in front of the
crossing until it successfully reserves the needed crossing segments for its turn manoeu-
vre.

We do not explicitly construct a distance controller in this thesis, but refer to a formally
verified distance controller that can be found in [DHO06] (cf. Sect. 1.3 (related work),
p. 8). This distance controller is applicable for avionics (cf. TCAS), train applications
(cf. ETCS) or automotive applications. Further on, the authors provide proof rules for
verifying safety of their distance controller. Additionally, in [RIA16], reasonable safety
distances for autonomous vehicles are considered.

Distance keeping is also the major goal of Adaptive Cruise Control (ACC) approaches,
where e.g. in [LMT15] Larsen, Mikučionis and Taankvist present a distance controller
which is synthesised with the UPPAAL extension Stratego [DJL+15]. As the authors
base their work on the spatial model of MLSL, this approach is of high interest for our
work. However, they only consider a model consisting of one single lane without any
neighbouring lanes and only two specific cars ego and front (cf. Fig. 5.2). Their idea
is that the ego car keeps always track of its distance to the front car. Additionally,
their goal is to minimise the distance between ego and front . For this, one UPPAAL
automaton each for ego and front is used, additionally to a system controller.

0 frontegoX

distance

vel ego
acc ego

vel front

acc front

Figure 5.2: One-lane scenario with distance keeping from [LMT15].

For an extension of the approach in [LMT15] to a multi-lane scenario as needed for the
highway traffic lane change controller, consider a traffic situation as depicted in Fig. 5.3.
It is not enough to keep track of the distance to front , as cars A, B, C and D might
change lanes and thus be in front of ego any time. Thus, we also need to keep track of
the distances to these cars. A problem here is the state space explosion, as the number
of considered parallel timed automata for UPPAAL increases significantly when using
the approach from [LMT15] directly. A second problem is the discretisation of space in

90

5.2 Assumptions for the Controllers

their approach. Further on, the extension to our urban traffic scenarios would be even
more demanding.

0 Z B D

1 frontegoX

2 Y A C

3 V W
Cars of interest for ego

Figure 5.3: Cars of interest for ego car for distance keeping in multi-lane highway scenario
[HLOR11].

Hence, in the implementations of our approach in UPPAAL we present later in Sect. 6.2
for highway traffic and in Sect. 6.4 for urban traffic, we do not implement a distance
controller. We give details on why this is reasonable for the implementations directly in
the respective sections.

Velocity and Steering Controller. For any acceleration, speed keeping and braking ma-
noeuvres, we assume that each car is equipped with a velocity controller Avc which sets
inputs for the motors and actuators in the reactive layer. Such a controller is also re-
sponsible for e.g. the acceleration to enter an intersection after a car came to a standstill
in front of an intersection. Being a variant of a velocity controller, we assume our veloc-
ity controller includes a steering controller , e.g. to enable lateral movement for our car
when changing lanes or turning at intersections.

An example for a case study on a component-based velocity and steering controller on the
reactive layer is given in [DMR14]. There, depending on certain system assumptions,
certain guarantees are ensured to hold for the specified hybrid system. Further on,
in [NBCF17], an approach for estimation of optimal trajectories for changing lanes is
proposed. Particularly interesting in this approach is that in [CSB+17], the authors
optimise their steering controller so that now it accelerates resp. brakes appropriately
to fit into especially small traffic gaps on a neighbouring lane.

5.2 Assumptions for the Controllers

As in Sect. 3.1 on p. 37 where we postulate the assumptions for our abstract model
for urban traffic situations, we have assumptions for our traffic manoeuvre controllers.
Some of these assumptions are deduced from the previous Sect. 5.1. We explain the
assumptions briefly here and refer forwards for formal details, whenever applicable.

All are cars autonomous. Later in Chapter 6 for analysing and proving the validity of our
system properties, we assume that all cars follow specific rules. An example is that each
car first needs to claim its crossing segments before entering an intersection. Moreover,

91

5 Controllers for Safe Crossing Manoeuvres

in our approach we do not consider a model for a human driver. This is necessary for
proving absolute safety of our approach, as when e.g. considering a human driver falling
asleep and losing control of his car somewhere on the road, we could not warrant 100%
safety of our autonomous cars anymore. For an outlook on how to broaden our approach
to mixed traffic situations see Sect. 8.4 on future work.

Perfect and imperfect knowledge. We use two different concepts of the degree of knowl-
edge a car has about its surroundings. In Sect. 5.3 we first introduce a crossing controller
using a concept of perfect knowledge, where every car perceives not only the physical sizes
but also the braking distances of all other cars in its view. We again name the physical
size of a car, together with its braking distance, safety envelope. Later in Sect. 5.4, we
weaken this strong assumption of perfect knowledge to a more realistic approach with
less knowledge. In the so-called concept of imperfect knowledge, we assume a car knows
its own braking distance, but perceives only the physical size of other cars in its view.

Same technology. We demand that all our autonomous cars are equipped with the same
technology, e.g. the same sensors. With this, we ensure that all cars are capable of
interacting at a sufficient level with their surroundings.

Controllers. We demand that all cars are equipped with the controllers as specified in
the previous and following sections of this chapter:

Longitudinal controllers: Distance controller for distance keeping and velocity con-
trollers for speed keeping and braking/ acceleration (cf. Sect. 5.1)

Road controller: Controller for overtaking manoeuvres between intersections
(cf. Sect. 5.3)

Crossing controller: Controller for turn manoeuvres at intersections (cf. Sect. 5.3)

With this, we ensure that other cars behave expectably and we can exclude unknown
behaviour.

Communication. Each car is equipped with the same communication mechanism. With
this, we know that all cars are capable to answer, whenever a car enquires something.
For an example for related work on reliability and security of wireless mobile networks we
refer to [PT02]. Note that we briefly present an approach on weakening the assumption
about having 100% reliable communication later in Sect. 6.4.4, where we present an
implementation of the crossing controller in UPPAAL Stratego.

Lane keeping. We abstractly assume that a car occupies the whole lane width, not taking
swerving back and forth of a car within the lane into account in our approach. However,
there exists a lot of related work on lane keeping assistance systems (LKAS) and we
refer to [BDH+19] or [DMR14] for research on this topic.

92

5.3 Controller Construction

5.3 Controller Construction

Let us now construct our controllers in the decision layer of Fig. 5.1. We first intro-
duce the crossing controller Acc for turning manoeuvres at crossings in Sect. 5.3.1. In
Sect. 5.3.2, we adapt the lane change controller for two-way traffic from [HLO13] to
a road controller Arc for manoeuvres on road segments between intersections and for
leaving intersections. Note that we prove desirable system properties, i.e. safety and
liveness of Acc and an adaptation to a fair crossing controller, later in Chapter 6.

5.3.1 Crossing Controller

Our crossing controller Acc is based on the idea of the lane change controller from
[HLOR11]. Therefore, we first claim an area we want to enter and reserve it only if no
potential collision is detected. We assume a crossing manoeuvre to take at most tcr time
to be completed. The term ‘crossing manoeuvre’ e.g. includes manoeuvres like turning
left and driving straight ahead. The crossing controller is constructed for the car under
consideration E (also referred to as ‘actor’ or ‘ego car’ in the following) with ν(ego) = E
but scales to all cars as ego can simply be substituted by an arbitrary car variable c ∈ DI.
We give an overview over the three possible crossing controller phases of Acc in Fig. 5.4
and start with a description of the respective phases in the next paragraph. After that
we introduce the detailed crossing controller which is depicted in Fig. 5.5. In Fig. 5.4
it is indicated, which locations qi of the detailed controller map to which of the three
phases. Note that the controller introduced in this section should be considered as a
basic crossing controller protocol, which we show to be safe in Sect. 6.3. However, later
in Sects. 6.4.2 and 6.4.3, we introduce respective extensions of Acc, each displaying a
new desirable and provable feature beyond safety.

Crossing controller phases (cf. Fig. 5.4). The locations of the crossing controller can be
summarised to three basic phases:

1. Away from the intersection (initial phase),

2. In the crossing ahead phase, where a distance dc to the intersection is crossed over
and

3. On the crossing, meaning the car now occupies some crossing segments.

We assume that initially in phase 1 no intersection is close but as soon as a crossing comes
ahead within a distance dc the car changes to the crossing ahead phase. We assume dc is
a constant, with a length of at least the size of the safety envelope of the fastest car with
the weakest brakes. With that, any car can brake fast enough in front of the intersection
if it does not get access to it soon enough. Note that this assumed size of the distance
dc includes that a car at maximum speed might have to conduct an emergency braking
manoeuvre in front of an intersection. While this might lower the driving comfort, the
system remains safe, which is the overall goal of our approach. Certainly, the size of

93

5 Controllers for Safe Crossing Manoeuvres

dc might be adapted to increase driving comfort for future considerations. For this, we
again refer to [RIA16], where reasonable safety distances for autonomous vehicles are
considered.

Recall from Sect. 3.1 the assumptions we stated for our model for urban traffic. For
instance, we stated that intersections are far enough apart from each other. With this, it
is reasonable to assume that there exists a phase where a car is away from the intersection
and thus the distance to the intersection is > dc.

Phase 2 is the most complex phase, as several details have to be considered to ensure that
no collision is caused on entering phase 3 and thus driving onto the intersection. Thus,
to prepare the crossing manoeuvre, in phase 2 needed crossing segments are claimed and
potential collisions are examined. If no potential collision is detected, phase 3 is entered
and the crossing manoeuvre begins (i.e. the car is on the crossing now). After tcr time
we assume the crossing manoeuvre to be finished and phase 3 is left. Now the crossing
controller is prepared for the next crossing manoeuvre as soon as another intersection
comes ahead.

q0 : Away {q1, q2, q3} : Crossing ahead

q4 : On crossing

approaching
crossing

starting
crossing

manoeuvre

finished

Figure 5.4: Overview over the crossing controller phases.

Details (cf. Fig. 5.5). We explain the construction of the crossing controller Acc starting
with the initial location. As our main goal, we want to prevent different reservations
from overlapping, an thus recall the collision check formula for the actor E from p. 30
formalised by

col(ego) ≡ ∃c : c 6= ego ∧ 〈re(ego) ∧ re(c)〉. (5.2)

Formula (5.2) is evaluated to true iff somewhere there exists a car different from E whose
reservation overlaps with the actor’s reservation. As this would be an unsafe situation,
we assume ¬col(ego) to hold in the initial location q0 of Acc. Next we need to detect
whether E approaches an intersection. To that end, we formalise the crossing ahead
check for car E by the formula

ca(ego) ≡ 〈re(ego)a (free<dc ∧ ¬〈cs〉)a cs〉, (5.3)

where the subformula free<dc states that there is an interval of free space with a size
less than dc. With that, formula (5.3) states that in front of E’s reservation there is

94

5.3 Controller Construction

an intersection within less than dc distance to E. Thus, car E has not yet entered the
intersection, but is close to it within a distance in the interval [0, dc) and there is no
other car between E and the intersection. We add a preferably small time bound t to
the locations q1 and q2 to ensure progress of Acc. We also add the guard x ≥ t to
the outgoing edges of q1 and q2, together with resetting x, whereas the time t may be
considered as a reaction time for the controller, as it is unrealistic to consider immediate
reactions. For a more thorough explanation for these time bounds, see Sect. 6.4.3, where
liveness and fairness of Acc is examined.

q0 : ¬col(ego) q1:
ca(ego)
x ≤ t q2 ::

ca(ego)
x ≤ t

q3 ::
ca(ego)

∧¬∃c : pc(c)
∧x ≤ tc

q4 ::
x ≤ tcr
∧oc(ego)

ca(ego)
x := 0

x ≥ t/ cc(ego); x := 0

x ≥ t ∧ ∃c : pc(c)/
wd cc(ego);x := 0

x ≥ t
∧¬∃c : pc(c)
/x := 0

x ≥ tc
∨∃c : pc(c)

/ wd cc(ego);
x := 0

¬∃c : pc(c) ∧ ¬lc(ego)
/ rc(ego); x := 0

x ≥ tcr/
wd rc (ego)

Figure 5.5: Crossing controller Acc.

Similarly to the case for changing lanes in Sect. 2.4, but now in order to enter a crossing,
a car first needs to claim a path through the crossing (cc(ego)) and check if there are any
overlaps of other cars’ claims or reservations, for which we recall the potential collision
check from p. 30

pc(c) ≡ c 6= ego ∧ 〈cl(ego) ∧ (re(c) ∨ cl(c))〉. (5.4)

Formula (5.4) evaluates to true iff somewhere exists a car different from E whose claim
or reservation on a lane or crossing segment overlaps with E’s own claim. Unlike for
the collision check (5.2), a (temporary) potential collision is allowed, because it does not
endanger the safety property (5.1). However, if a potential collision is detected, the car
must withdraw its claim immediately (wd cc(ego)).

Further on, we want to exclude that the actor is entering an intersection while changing
lanes. Therefore we introduce the lane change check

lc(ego) ≡
≠
re(ego)
re(ego)

∑
, (5.5)

95

5 Controllers for Safe Crossing Manoeuvres

which states that somewhere exist two neighbouring reservations for car E and therefore
E currently changes lanes. When lc(ego) does not hold, the actor reserves the claimed
path and starts the crossing manoeuvre. Again to ensure progress, we set a time bound
tc for the time that may pass between claiming and reserving crossing segments. Only if
no potential collision is detected and there exists no ongoing lane change manoeuvre, the
car may reserve the previously claimed crossing segments (rc(ego)). If car E is driving
on the intersection, the on-crossing check

oc(ego) ≡ 〈re(ego) ∧ cs〉 (5.6)

we already introduced on p. 89 holds, meaning the ego car has entered some crossing
segments. When the actor has left the last crossing segment and is driving on a normal
lane segment, the crossing manoeuvre is finished. The reservation of actor E is then
reduced to the lane segment that is the next segment in pth(E) (wd rc(ego)).

Note that our crossing controller does not explicitly have the functionality for ‘leaving an
intersection’, as the construction goal of the controller is to always enter an intersection
safely and timely (liveness). Both of these properties are fulfilled, as we show in the
next Chapter 6. Thus for now, let us assume that the part behind the intersection
is implicitly reserved on reserving the crossing segments, e.g. by considering it as an
additional crossing segment. For now, this results in several reserved segments at once
for one crossing manoeuvre.

5.3.2 Road Controller

The road controller Arc is responsible for overtaking manoeuvres on road segments
between intersections. These road segments are structurally comparable to country
roads, as in both cases neighbouring lane segments with (possibly) two different driving
directions and thus oncoming traffic are considered. Thus, we refer to [HLO13], where
an overtaking controller for these types of roads was presented (cf. Sect. 2.4). However,
while in [HLO13] infinite lanes are considered, we now consider finite lane segments.

We thus modify the overtaking controller from [HLO13] to ensure that, as soon as the
car approaches an intersection and ca(ego) holds, any claim for a lane segment must
be withdrawn immediately and no new claim or reservation on a lane may be created
until the crossing is entered. Additionally, the controller may only start an overtaking
manoeuvre, if it can be finished before the car reaches an intersection. That is, it must
be possible to finish the phase ‘change back’ from the protocol introduced in Sect. 2.4
before the intersection is reached (cf. Fig. 2.8).

However, the car may finish an already begun overtaking manoeuvre. Therefore we make
sure that the distance dc used in ca(ego) is big enough to do so. We depict a simplified
version of the adapted overtaking protocol including its phases in Fig. 5.6. In the phase
‘Prepare overtaking’, the car has only claimed a lane and must withdraw the claim if
ca(ego) holds, while in the phase ‘Overtaking manoeuvre’, the actual overtaking protocol

96

5.4 A more Realistic Approach: Manoeuvres with Imperfect Knowledge

as of Fig. 2.8 is conducted, which may be finished even if ca(ego) holds. We add the
invariant lc(ego) indicating the overtaking manoeuvre and ¬oc(ego) to ensure that the
intersection is not entered before the overtaking manoeuvre is finished.

q0 : ¬col(ego) q1 :

Prepare
overtaking
¬ca(ego)

q2 :

Overtaking
manoeuvre

lc(ego)∧¬oc(ego)

¬ca(ego)/c(ego, n)

ca(ego)/wd c(ego)

¬ca(ego)/r(ego)x ≥ tot/ wd r(ego)

Figure 5.6: Simplified version of road controller Arc, based on the overtaking controller
from [HLO13], adapted for changing lanes between intersections.

5.4 A more Realistic Approach: Manoeuvres with Imperfect
Knowledge

Until now, we considered the concept of perfect knowledge for our cars, meaning that
all cars know the braking distances of the other cars. As this is a strong assumption,
let us now adapt the controller for perfect knowledge from the previous section to a
communicating crossing controller with imperfect knowledge, meaning that, besides its
own braking distance, a car only perceives the physical size of other cars (cf. Sect. 5.2).
To cope with this limitation, we extend the crossing controller by using the guarded
broadcast communication with data constraints as introduced in Sect 4.3. Remember
that there we consider output actions OUT which can synchronise with appropriate input
actions IN in another controller. As a communication counterpart, we introduce helper
cars, which roughly follows the helper approach for imperfect knowledge for highway
traffic from [HLOR11].

This section bases on our work from [Sch17]. However, in [Sch17], we consider the 2-by-2
intersections as they were introduced in [HS16]. Thus, in this section, we introduce an
adaptation of the approach from [Sch17] to the more complex intersections introduced
in [Sch18a] (cf. Chapter 3).

For this, in Sect. 5.4.1, we describe the changes needed in the abstract model, where we
also introduce a communication view covering all roads that meet at an intersection to
enable communication with all cars approaching an intersection. Next, in Sect. 5.4.2,
we first introduce our new controller concept, including a motivation for needed helper

97

5 Controllers for Safe Crossing Manoeuvres

cars to communicate with. We then subsequently introduce the adapted communicating
crossing controller and the related helper controller.

5.4.1 Communication Multi-View

With imperfect knowledge, we assume that the actor E only perceives those parts of
other cars it can perceive with its sensors: the physical position and size of the car (cf.
solid parts of cars in Fig. 5.7), but not the braking distance (cf. dashed parts). Only
the ego car E itself knows its own braking distance and thus its whole safety envelope,
while the braking distances of the other cars are invisible to E. Remember that in our
approach, the safety property is already violated if a car invades the braking distance
of another car and not only if a physical collision occurs. The idea is that in case of an
emergency braking manoeuvre our safety property is still valid.

0

F

1

D

2G

3C G

45

B

6

7 E c0 c1

c2c3
A

V (E)

r0

r3

r2

r1

Figure 5.7: Car E perceives the physical size of other cars in its view V1(E). The dashed
braking distances of other cars are invisible for E.

For perfect knowledge, it was sufficient to consider only that multi-view VM (E) for
the actor E which corresponds to its path pth(E) (cf. Sect. 3.4). In the example from
Fig. 5.7, this is the view VM1(E) = {V (E)}, where E plans on turning left. However, with
imperfect knowledge, E cannot perceive whether the safety envelope of a car that is not
(yet) physically driving on the crossing already stretches to some crossing segments.

For this, consider that in Fig. 5.7 car E cannot perceive the braking distance of car D
which already stretches to the intersection. Thus, to cope with the imperfect knowledge,
we propose that car E communicates with all cars on the intersection and with all cars
that are approaching the intersection from any direction. Therefore, we need to consider
more than the multi-view VM1(E) and introduce the concept of a communication view

98

5.4 A more Realistic Approach: Manoeuvres with Imperfect Knowledge

VC(E). The communication view VC(E) = {VM1(E), VM2(E), VM3(E), VM4(E)} for the
example consisting of four multi-views VMi(E) is depicted in Fig. 5.8. This view covers
the already introduced view VM1(E) (‘turning left’), as well as the view VM2(E) covering
road segment r0, the intersection and segment r2 (‘driving straight ahead’), the view
VM3(E), covering r0, the intersection and r1 (‘turning right’) and the view VM4(E),
covering r0, the intersection and r0 again (‘u-turn’). Thus, a communication view is
built from several multi-views. Note that we need to consider the u-turn direction as
there can also be cars different from the ego car approaching from that direction, e.g. if
there are more than one lane leading to the intersection from ego’s road segment.

6
A

7 E 4

5B

c0 c1
D c2

c3A

VM1(E) :

6
A

7 E 2

3C

c0 c1
D

c2c3A

VM2(E) :

6
A

7 E 0F

1D

c0

c1c2c3
A

VM3(E) :

6
A

7 E 6
A

7E

c0 c1 c2 c3
AD

c3 c2 c1 c0
A D

VM4(E) :

Figure 5.8: The communication view VC(E) = {VM1(E), VM2(E), VM3(E), VM4(E)} of
car E covers the road segment E is driving on, the intersection and all other
road segments linked to the intersection from Fig. 5.7.

To formally build the communication view, we first identify the road segment E is
currently driving on with the underlying graph topology (cf. Sect. 3.2) and the data
from the traffic snapshot (cf. Sect. 3.3). The current path segment E is driving on is
defined by pth(E)(curr(E)) in the traffic snapshot (cf. Def. 20, p. 44) and the related
road segment r is given through the strongly connected component Il(pth(E)(curr(E)))
(cf. Def. 17, p. 42). In the example we have pth(E)(curr(E)) = 7 and Il(7) = r0.
When a crossing is ahead, the first crossing segment E will drive on when entering the
intersection is given by pth(E)(curr(E) + 1) and therefore the whole intersection cr is
obtained through the connected component Ics(pth(E)(curr(E) + 1)). In the example
we have pth(E)(curr(E) + 1) = c0 and Ics(c0) = cr.

Next we identify all road segments r′ which are connected to the intersection cr with a
directed edge (r′, cr) in the coarser graph NC (cf. Def. 18, p. 18). This way, we derive

99

5 Controllers for Safe Crossing Manoeuvres

all road segments r′ from which cars can enter the junction and derive respective virtual
views VMi(E) as defined in Defs. 30 to 32 in Sect. 3.4. Finally, we collect all of these
virtual views VMi(E) in our communication view VC(E). This sketched procedure is
formalised in the following definition.

Definition 52 (Communication view). Consider a car E and a traffic snapshot T S with
pth(E)(curr(E)) as current path segment. As a precondition assume pth(E)(curr(E)) ∈
L and pth(E)(curr(E) + 1) ∈ CS. We derive a set

−→
ΠC of coarse path sequences −→πC ∈

seqEC VC through the intersection (cf. Def. 29) using the coarse network NC:
−→
ΠC == {−→πC : seqEC VC | ∃r, cr, r

′ : VC • −→πC = 〈r, cr, r′〉 ∧ r = Il(pth(E)(curr(E))) (5.7)

∧ cr = Ics(pth(E)(curr(E) + 1)) ∧ (r′, cr) ∈ EC}.

For each −→πC ∈
−→
ΠC and with i ∈ {1, ..,#−→ΠC}, we build a respective virtual view

VM,−→πC(E, T S) as of Defs. 30 to 32 from Sect. 3.4 and derive our communication view
VC with

VC(E) == {VM,−→πC(E, T S) | −→πC ∈
−→
ΠC}. (5.8)

With formula (5.7), we determine all finite path sequences −→πC ∈ seqEC VC through the
intersection that have the structure −→πC = 〈r, cr, r′〉. Here, the road segment r we are
currently driving on and the next intersection cr are retrieved through their respective
strongly connected components Il and Ics. With the subformula (r′, cr) ∈ EC , we ensure
that it is possible to enter the intersection from road segment r′. Finally, the views VM,−→πC
we collect in formula (5.8) are the respective virtual multi-views relating to a coarse path

sequence −→πC ∈
−→
ΠC from formula (5.7).

With this notion of a communication view, we now extend our crossing controller protocol
from Sect. 5.3 by communication parts.

5.4.2 Communicating Crossing and Helper Controller

Similarly to the crossing controller Acc from Sect. 5.3, the ego car must withdraw its
claim, whenever a potential collision is detected with the potential collision check pc(c).
However, with imperfect knowledge the ego car is not able to detect a potential collision
with the whole safety envelope of another car, but only with its physical size. There-
fore, it has to communicate with cars that might cause a potential collision. Following
[HLOR11], we call those cars helper cars. We motivate how to determine these helper
cars in the following.

In urban traffic, a helper car for the ego car either has an own reservation on at least one
crossing segment of the considered intersection or is approaching it from any direction.
The first case where a car is driving on a crossing segment is formalised by the already
known on crossing check oc(c) from formula (5.6), p. 96.

100

5.4 A more Realistic Approach: Manoeuvres with Imperfect Knowledge

The second case, meaning a car C ∈ I different from the ego car E approaching the
intersection from another direction, is a little bit more complicated. If the ego car is
approaching an intersection within the distance dc, its crossing controller is supposed to
start claiming crossing segments. For an arbitrary other car C approaching the intersec-
tion from an opposite side of the intersection, we do not know the braking distance and
therefore add the maximum safety envelope se max (C) to dc, yielding the extended dis-
tance d′c = dc + se max (C). We formalise that a car approaches an intersection from an
opposite side of the intersection within the distance d′c with the opposing car approaching
the crossing check

ocac(c) ≡ 〈re(ego)〉 a 〈cs a ¬cs ∧ free<d
′
c a re(c)〉 ∧ dir(c). (5.9)

The atom dir(c) in formula (5.9) returns whether a car drives in the direction to the
intersection, which the ego car is able to perceive with its sensors. This atom is needed
to exclude cars driving away from the intersection. A car that is driving away from
the intersection is not of interest, as its own braking distance cannot stretch to the
intersection and as it might leave the view of ego car E soon anyway.

Remember that we generally forbid a car entering an intersection while changing lanes
as the directed edges in our topology do not allow this (cf. Sect. 3.2). Therefore, we
re-use the lane change check lc(ego) from formula (5.5), p. 95.

With formulae (5.6), (5.9) and (5.5), the ego car identifies all described suitable helper
cars apart from itself with the potential helper check

ph(c) ≡ c 6= ego ∧ (oc(c) ∨ ocac(c)) ∧ ¬lc(c). (5.10)

Crossing Controller with Communication

We now construct the adapted crossing controller A′cc with imperfect knowledge, based
on the crossing controller Acc from Sect. 5.3 (cf. Fig. 5.5). Again, the overall goal
of the crossing controller is to perform turn manoeuvres at intersections while always
maintaining the safety property (5.1). We keep several concepts of the controllerAcc from
Sect. 5.3, e.g. the basic idea of claiming and only after that reserving crossing segments.
We start with explaining the new communication concept using a coarser version of A′cc
in Fig. 5.9. After that, we introduce details concerning the detailed crossing controller
A′cc which is depicted in Fig. 5.10. Note that the location names qi denoted in Fig. 5.9
refer to the respective location in the detailed controller in Fig. 5.10.

Overview over the crossing controller phases (cf. Fig. 5.9). We again assume the initial
location of the controller to be safe, i.e. no collision exists (location q0). When a crossing
is ahead (locations q1 and q2), the car may enter the intersection by itself iff no helper
car exists (e.g. the multi-view is empty except for the ego car). This case resembles the
crossing procedure of the original crossing controller Acc without communication from
Fig. 5.5, as Acc also commits crossing manoeuvres without help.

101

5 Controllers for Safe Crossing Manoeuvres

q0 : Safe {q1, q2} : Crossing ahead

q3 :
Wait for

communication
{q4, q5} : On crossing

approaching
crossing

no helper
(at least one)
helper exists

all yes

one no or
timeoutfinished

Figure 5.9: Overview over crossing controller protocol A′cc with communication.

If at least one potential helper exists, the actor needs to communicate with the helpers.
For this, after sending a broadcast request, Acc waits for answers (location q3). If one
helper sends a no-message or one helper does not answer timely, the actor withdraws the
crossing claim and may try to enter the intersection later again (eventually the conflicting
other car will have left the intersection). If and only if all helpers send a yes-message,
the ego car may safely enter the intersection and finish the crossing manoeuvre.

Details (cf. Fig. 5.10). If the formula ca(ego) (5.3) holds, the crossing controller becomes
active and claims the crossing segments needed for the turn manoeuvre with the con-
troller action cc(ego) on the transition from location q1 to q2. If no potential collision is
detected, the controller evaluates whether a helper for the manoeuvre is available. This
is done with the potential helper check ph(c) (5.10). For ph(c) we observe two possible
results:

1. No helper car is available or
2. At least one helper car exists.

In the first case, the controller proceeds without help (transition above of q2). Similarly
as for Acc, if the lane change check lc(ego) and the potential collision check pc(c) do not
hold, the actor reserves the claimed crossing segments and starts the crossing manoeuvre
moving to location q5. We again assume the crossing manoeuvre to be finished after tcr
time. The reservation of the ego car is then reduced to the next segment after the
intersection in pth(E).

In the second case, where helper cars are available, the crossing controller needs to
communicate because of the missing information about the braking distances of the
helpers (transition below of q2). E sends the message cross!〈ego, csego〉, where csego is
the set of crossing segments the ego car claims according to pth(E). We attach the set
csego to the broadcast message, as with imperfect knowledge the other cars also do not
now the full safety envelope of the ego car. With this, cars can compare their respective
own sets of claimed or reserved crossing segments with csego and with this detect a
potential collision.

102

5.4 A more Realistic Approach: Manoeuvres with Imperfect Knowledge

q0 : ¬col(ego) q1 :
ca(ego)
∧x ≤ t q2 :

ca(ego)
∧x ≤ t

q3 :
ca(ego)

∧¬∃c : pc(c)
∧ x ≤ tw

q4 :
x ≤ tcr
∧ oc(ego)

q5 :
x ≤ tcr
∧ oc(ego)

ca(ego) x ≥ t/cc(ego);x := 0

x ≥ t ∧ ∃c : pc(c)/
wd cc(ego);x := 0

¬∃c : (pc(c) ∨ ph(c)) ∧ ¬lc(ego)
/ rc(ego);x := 0

x ≥ t∧∃c : ph(c)
∧¬∃c : pc(c)
∧¬lc(ego)
/cross!〈ego, csego〉;
H := ∅;x := 0

yes?〈c, d〉 : c = ego
/H := H ∪ {d}

no?c : c = ego
∨(x ≥ tw ∧ ∃c : (ph(c) ∧ c 6∈ H))

∨∃c : pc(c)
/ wd cc(ego);

finished !ego

x ≥ tw∧¬∃c : (ph(c)∧c 6∈ H)
∧¬∃c : pc(c) ∧ ¬lc(ego)
/ rc(ego);x := 0

x ≥ tcr/
wd rc(ego);
finished !ego

x ≥ tcr/
wd rc(ego)

Figure 5.10: Communicating crossing controller A′cc.

If E receives its own car identifier via channel no, it immediately withdraws its claim
and changes back to q1. While only one no-message is sufficient to abort the crossing
manoeuvre, it is not enough to receive only one yes-message to enter the intersection.
Therefore, the controller waits tw time units for the answers of the helpers, where we
assume tw to be a worst case time bound in which all helpers are technically able to
answer. For realistic worst case time bounds in real-time broadcast communication, we
refer to the work of Asplund et al. [ANT12].

On waiting in location q3, the controller A′cc collects all identifiers of helpers that an-
swered via channel yes in a set H. After tw time, it compares H with the available
potential helpers with ¬∃c : (ph(c) ∧ c 6∈ H). This guard holds if there does not exist a
car not collected in H which is a potential helper and thus did not answer timely.

Depending on whether all potential helpers answered with yes timely, the controller
either reserves the claimed crossing segments with rc(ego) or withdraws the claim with
wd cc(ego), if at least one potential helper did not answer. Once the crossing controller
entered location q3 and thus started the communication, it informs the helpers when it
either withdraws a claim or successfully finishes the manoeuvre via broadcast channel
finish. With this the helper cars are informed that they do no longer need to help the
ego car.

103

5 Controllers for Safe Crossing Manoeuvres

Helper Cars and Helper Controller

As introduced in the beginning of this section, a helper car is either driving on the
crossing or approaching it from a different lane segment than the ego car. An arbitrary
car is allowed to be helper for more than one requesting car. This is needed e.g. if four
cars turn simultaneously right at an intersection. We therefore assume that every car
owns several clones of the helper controller Ahc, but only one of the helper controllers
assists one specific car at once. As done in the previous paragraph for the Acc, we first
briefly explain an overview over Ahc which is depicted in Fig. 5.11. The detailed helper
controller Ahc is depicted in Fig. 5.12 and explained in the remainder of this section.
Note that we call a car searching for a helper enquirer from now on.

q0 : idle {q2, q4} : Helping

{q1, q3, q5} : Decline requests

initial request & no conflict

helping finished
additional request

& conflict with
initial enquirer

request
declined

initial request
but conflict

Figure 5.11: Overview over helper controller protocol.

Overview over the helper controller phases (cf. Fig. 5.11). Whenever an idle helper con-
troller receives a crossing request it checks if it meets the helper requirements (on crossing
or approaching crossing) and whether there exist a potential collision of the request with
its own crossing claim or reservation. Depending on this, it either declines the request
or starts to help the enquirer. If the helper controller receives a conflicting request from
another car during the helping process, it declines this request immediately.

Details (cf. Fig. 5.12). In the helper controller Ahc we use the unique variable a to
identify the helper controller. Furthermore, we use the set csa == cclm(a) ∪ cres(a)
to denote the claimed and reserved crossing segments of the helper car itself. If a car
receives a broadcast request cross!〈c, cs〉, its helper controller Ahc first checks if it is a
potential helper for c with the inverse potential helper check

ph−1(c, cs) ≡ a 6= c ∧ (oc(a) ∨ ca(a)) ∧ ¬lc(a) ∧ (csa ∩ cs = ∅). (5.11)

With the first part of the formula, the potential helper checks if its position is suitable
(i.e. approaching or on crossing) and whether it is currently changing lanes. With the
latter part of the formula the potential helper checks for disjointedness of its own crossing
segments csa and the received crossing segments cs. Note that this check resembles the
potential collision check for lanes. However, we cannot simply use the potential collision
check here, as with imperfect knowledge the helper car itself also does not perceive the

104

5.4 A more Realistic Approach: Manoeuvres with Imperfect Knowledge

safety envelope of the enquirer. If csa∩cs = ∅ does not hold and thus the helper controller
detects a potential collision, it changes to the urgent location q1. If a controller is in an
urgent location, not time may pass before the urgent location was left. Thus, after
entering q1, Ahc immediately sends a no-message to the enquiring car (cf. transitions
between locations q0 and q1).

Note that for timed automata, the concept ‘urgency’ is weaker than the concept ‘com-
mitment’ (cf. Sect.2.3, p. 74). This is because urgency allows that other automata take
transitions while another automaton is in an urgent location. Due to this, committed
locations are generally more deadlock-prone than urgent locations. Also in our case, we
would allow a deadlock to occur, if we would use committed instead of urgent locations
for Ahc. For instance, consider two cars A, B that both have intersecting crossing seg-
ments with an enquirer E. Due to that, the related helper controllers of A and B would
both change to their respective location q1, if E sends a request cross!〈ego, cse〉. This
would cause a deadlock, if q1 would be committed.

q0

q1 :U

q2 :
ph−1(h, csh)
∧x ≤ t

q3 :U

q4 :
ph−1(h, csh)
∧x ≤ tw+tcr

q5 :U

cross?〈c, cs〉 : c 6= a
∧cs ∩ csa 6= ∅

/d := c

/no!d

cross?〈c, cs〉 : ph−1(c, cs)
/h := c; csh := cs;

x := 0

finished?c : c = h∨
(x ≥ t∧¬ph−1(h, csh))/no!h

cross?〈c, cs〉 : c 6= h
∧csh ∩ cs 6= ∅/d := c

no!d

ph−1(h, csh)
/yes!〈h, a〉;
x := 0

cross?〈c, cs〉 : c 6= h
∧csh ∩ cs 6= ∅/d := c no!d

finished?c : c = h
∨¬ph−1(h, csh) ∨ x ≥ tcr + tw

Figure 5.12: Helper controller Ahc.

If a car is a potential helper (including that no potential collision with the enquirer
exists), Ahc changes to location q2 and stores the received car identifier of the car it
is helping in an internal variable h. Further on, it stores the received set of crossing
segments of the car h relates to in the internal variable csh.

Once in location q2, Ahc sends a yes-message to the enquiring car in up to t time units.
We assume t < tw, where tw is the time bound the crossing controller waits for the
answers of the helpers (cf. Fig. 5.10). With that, it is ensured that the yes answers

105

5 Controllers for Safe Crossing Manoeuvres

are sent timely enough. We do not require the yes messages to be sent urgently, as we
assume the communication to take some time.

While helping, Ahc additionally declines crossing requests from other cars whose requests
overlap with the crossing segments of the car the helper already assists (cf. transitions
upwards from q2 and q4). Here, we use the internal variable d to store the identifier of
additionally enquiring car whose set of crossing segments overlaps with csh in. We again
require the locations q3 and q5 to be urgent to ensure that the no! messages are sent
without any elapse of time to the enquiring car.

The helping process is finished and Ahc returns to its initial location for two possible
cases. In the first case, the car Ahc is located in left the intersection and with that no
longer is a potential helper, meaning the inverted potential helper check ph−1(h, csh)
does not hold anymore. The second case is that the crossing manoeuvre of the enquirer
is finished, whereas Ahc receives the message finished?c : c = h from the originally
enquiring car h.

5.5 Related Work

Our approach is to construct controllers that behave correct w.r.t. certain desired system
behaviour and properties. Another approach is to synthesise controllers from given prop-
erties. This was investigated for basic MLSL for highway traffic in [BHLO17]. Also, in
[DPRW13], the authors propose a design and verification approach for cooperative driver
assistance systems, where controller strategies are synthesised. However, in [BHLO17],
the synthesised controllers abstract from a continuous time dimension and in [DPRW13],
only driver assistance systems are considered instead of fully autonomous cars. More-
over, it is far more difficult to synthesise controllers for the more complex urban traffic
case. Nonetheless, controller synthesis is a direction worthwhile to investigate in future
work (cf. Sect. 8.4).

The idea pursued in this thesis, to separate dynamics from control laws, follows the
work by Raisch et al. [MRO02] and van Schuppen et al. [HCvS06]. However, it is still
of great interest to relate the purely spatial reasoning to car dynamics and thus link the
approaches with MLSL to hybrid systems. In [ORW17], the authors propose a concrete
dynamic model suitable for the abstract model for MLSL. There the authors refine the
abstract spatial atoms of MLSL to concrete distance measures.

Also related, in [KDM+17] the authors distinguish between dynamic behaviour and
higher-level planning components in an approach concerning vehicle platooning. A com-
bined verification approach is used, where UPPAAL is used to verify timing behaviour
and the model-checker AJPF [DFWB12] is used to evaluate autonomous decisions. Par-
ticularly interesting, in [KLF19] an approach was presented to combine the approach of
[KDM+17] with the MLSL highway traffic controller from [HLOR11]. Additionally to

106

5.5 Related Work

the results already achieved within [KDM+17], the authors can now also guarantee cor-
rectness of their spatial model by using the results from [HLOR11]. On the other hand,
the authors of [HLOR11] now have a sound extension of their lane change controller to
a platooning system.

Further on, in [LP11] an approach only fitted for simple intersections of single lanes
with one car on each lane is proposed. The authors use traffic lights as a central control
mechanism, where a car is not permitted to enter an intersection when the light is
red. Though limited to single lanes with only one car on each lane, the strong point
of this work is that the authors verify the safety of their hybrid systems with the tool
KeYmaera.

In Sect. 3.7, we briefly introduced the approach from [ASS11] where a discretised traffic
network is used as a model. In that approach, cars have no right to access intersec-
tion nodes by themselves, as those are controlled by a centralised control mechanism
called Autonomous Intersection Management (AIM). Such centralised control mecha-
nisms for intersections are often collected under the name cooperative intersection man-
agement (CIM), where a road-side unit, e.g. a traffic light, acts as a centralised sched-
uler (e.g. also [LP11]). However, these approaches are limited to signalised intersections.
In contrast to that, we use decentralised controllers that independently negotiate access
to all parts of the network. The advantage of this is that no roadside-units are required.
Furthermore, our controllers accomplish their manoeuvres as independently as possible,
and thus use as few as possible communication actions (cf. crossing controller Acc from
Sect. 5.3). This has the advantage of minimising faulty behaviour that is caused by inse-
cure or unreliable communication mechanisms. Note that we nevertheless take uncertain
communication into account for our approach later in Sect. 6.4.4.

Certainly, several other approaches on decentralised traffic control without road-side
units exist. We briefly introduce an approach on a virtual traffic light (VTL) for urban
traffic platooning in Sect. 1.3. In [FFCa+10], a VTL concept is used for scheduling at
intersections. There, one of the vehicles approaching an intersection is cooperatively
selected to be the VTL leader. This leader then again acts as a central scheduler for all
cars approaching the crossing. However, [FVP+13] points out that a problem with VTL
is the leader selection, as this a) takes some time and b) possible communication failure
during the negotiation phase may lead to a disagreement in the leader selection.

For more literature concerning both decentralised and centralised CIM, we also refer to
the overview paper [CE16].

Chapter summary. In this chapter, we distinguished controllers working on different
layers in an autonomous car and briefly introduced the assumptions we have about con-
trollers on the reactive layer, e.g. a distance controller. We then introduced our crossing
controller for the case of perfect knowledge, followed by an extension to a communicat-
ing crossing controller committing crossing manoeuvres at intersections with the help of
other cars.

107

6 Desirable System Properties for
Autonomous Cars

In [HLOR11] and [HLO13], as well as initially in this thesis, the main goal for the intro-
duced traffic controllers was to fulfil a safety property. For this, the safety formula (5.1)
was given in the beginning of Chapter 5. While safety is a crucial system property for
autonomous cars, other system properties are also desirable. Consider e.g. a controller
with which no autonomous car ever moves. This controller obviously fulfils the safety
property, but liveness is non-existent. The desirable system properties we examine for
the (U)MLSL controllers are the following:

� Safety,

� Liveness,

� Bounded liveness, and

� Fairness.

We give details of our approach for showing these system properties, together with
our interpretation of their (formal) meaning in Sect. 6.1. Afterwards, we start with
examining the system properties for the lane change controller for highway traffic with
an UPPAAL[BDL04] implementation in Sect. 6.2. In Sect. 6.3, we prove safety of the
crossing controller for urban traffic for both perfect and imperfect knowledge with a
mathematical proof by hand. We then examine (bounded) liveness and fairness of our
crossing controller from Sect. 5.3 in Sect. 6.4, again with UPPAAL.

6.1 Approach and Meaning of the System Properties

UMLSL formulae are used to specify purely spatial aspects in one single traffic snapshot
T S. Now, for proving system properties, we show the validity of the property throughout
possible traffic snapshots reachable from one initial traffic snapshot T S0. For this, we
analyse the property throughout the system’s runs (cf. Sect. 4.2). In our case, the
system consists of controllers for all cars inside the specified view around the ego car
(cf. Sect. 3.4), all executed in parallel. Recall from Sect. 4.4 that one specific system
state (or configuration) 〈T S, ν,−→q 〉 of such a network of ACTA contains the location
qi of each automaton, a variable valuation ν and the current traffic snapshot T S. A
run of such a system contains one specific evolution of an initial configuration Cini to a

109

6 Desirable System Properties for Autonomous Cars

future configuration Ck, also including the evolution of an initial traffic snapshot T S0
to a future traffic snapshot T Sk. As an example for proving a system property, it could
be shown that in all possible system runs, there does not exist a configuration, where
the considered property does not hold. Alternatively, it might be of interest to show
that a specific property holds at least once during each run. These system properties
are expressible as formulae of temporal logic [Pnu77]. In temporal logic, the expression
�ϕ formalises that ϕ holds globally and with ♦ϕ it is formalised that ϕ holds finally .

Besides a mathematical proof provided in Sect. 6.3, we use respective UPPAAL [BDL04]
implementations for the highway traffic lane change controller from [HLOR11] in Sect. 6.2
and for the urban traffic crossing controller in Sect. 6.4 for showing our properties. With
UPPAAL, we can conveniently analyse all possible runs of our controllers and hereby
detect and correct unwanted behaviour. As UPPAAL implements model-checking for
(extended) timed automata [ACD90, HNSY94, LPY95], it starts from one specific traffic
snapshot T S0 as its model and then simulates all possible system runs starting from T S0
to verify a query. If a property is not satisfied, it is possible to analyse a counterexample
trace.

As specification language for their verification queries, UPPAAL uses a subset of timed
computation tree logic (TCTL) [ACD90, HNSY94]. In addition to the modal operators
� and ♦ from temporal logic, traditional CTL [CE82, QS82] introduces quantification
over paths of the system. Here, A means ‘along all paths’, while E means ‘along at
least one path’. The main difference between TCTL and traditional CTL is that TCTL
allows clocks. The specific subset of TCTL UPPAAL uses is TCTL with only one path
quantifier.

The version of UPPAAL we use is the UPPAAL extension Stratego [DJL+15] (version
4.1.20-stratego-4). UPPAAL Stratego includes UPPAAL SMC [DLL+15], which allows
for statistical model checking. With that, we can estimate the probability with which
a property holds among random runs of the system within some time bound, if that
property does not hold generally in our system. Note that we never actually use the
extensions Stratego itself offers (strategies for stochastic priced timed games) in this
thesis, but still use UPPAAL Stratego, as to our best knowledge this includes the latest
version of UPPAAL SMC. For reasons of brevity note that whenever the name ‘UPPAAL’
is written in the remainder of this chapter, we mean the previously mentioned version
of UPPAAL Stratego, resp. UPPAAL SMC.

One after the other, we motivate our system properties in the next paragraphs. We
also give interpretations of our properties as CTL-style formulae. Note that we do not
formally extend our UMLSL from Sect. 3.5 by temporal operators. Thus, the CTL-style
formulae given in the following should only be considered as a motivating instrument for
the following sections. One benefit of giving these CTL-style formalisations here is that
they may be mapped conveniently to the respective UPPAAL queries we introduce later
in Sects. 6.2 and 6.4. Further on, with the CTL-style formalisations, in particular with
using the quantifier A, we can express that a property is supposed to hold throughout
all reachable traffic snapshots.

110

6.1 Approach and Meaning of the System Properties

Safety

As introduced in the beginning of Chapter 5, safety in our case means collision freedom,
expressed by the UMLSL formula

Safe ≡ ∀c, d : c 6= d→ ¬〈re(c) ∧ re(d)〉. (6.1)

We require formula 6.1 to hold globally throughout all reachable traffic snapshots, start-
ing from an arbitrary initial safe traffic snapshot T S0. We formalise this with the
CTL-style formula

A� Safe. (6.2)

We show safety of our crossing controller with a mathematical proof by induction over all
reachable configurations 〈T S, ν, q〉 in Sect. 6.3. More precisely, we prove that indepen-
dent of the location q and the valuation ν, all traffic snapshots T S which are reachable
from an arbitrary safe initial traffic snapshot T S0 remain safe.

Additionally, we subsequently confirm the mathematically proven safety result of the
lane change controller from [HLOR11] and our crossing controller from Sect. 5.3 with
each a UPPAAL implementation that we present in the respective Sects. 6.2 and 6.4.
In contrast to our mathematical proof by induction, UPPAAL can only use a specific
initial model for model checking. Thus, only one specific initial traffic snapshot T S0 is
used as starting point of the verification. However, we use representative models T S0,
allowing for a variety of possible future traffic snapshot T Sk.

Liveness

According to [Lam77], liveness means that something good finally happens. ‘Something
good’ in our case is a desired lane change manoeuvre for the highway traffic controller
respectively a crossing manoeuvre for our crossing controller, as expressed with the
following MLSL formulae for an arbitrary car C with ν(c) = C:

GoodH(c) ≡
≠
re(c)
re(c)

∑
GoodU (c) ≡ 〈cs ∧ re(c)〉. (6.3)

Here GoodH(c) implements the lane change check given with formula (5.5), p. 95 and
GoodU (c) is the on-crossing check oc(c) from formula (5.6), p. 96. After a claim was set
the respective formulae (6.3) should finally hold in some traffic snapshot T S. This can
be expressed by the CTL-style formula

Livei ≡ A�∀c : (〈cl(c)〉 → A♦Good i(c)), (6.4)

where i ∈ {H,U}. With formula (6.4) we state that for all cars, whenever a claim resp.
crossing claim was set, finally the car changes lanes respectively enters an intersection.

111

6 Desirable System Properties for Autonomous Cars

Note that this type of liveness formula (6.4) may be also interpreted as a ‘leads-to’
property, here 〈cl(c)〉 Good i(c).

A simplified liveness formula is

Live ′i ≡ ∀c : A♦Good i(c), (6.5)

which we frequently use later in Sects. 6.2.2 and 6.4.2. It is sufficient to use this sim-
plified version, as in our implementation we implicitly force our controllers to non-
deterministically claim a lane or some crossing segments every now and then with a
time-bound invariant in the initial location. Thus a controller that never wishes to claim
a lane or crossing segment does nor occur and property (6.5) implies that before the
reservation a claim must have been set anyway. Also, with UPPAAL SMC it is not pos-
sible to estimate the probability for a leads-to query of the form φ1 φ2 or a ‘globally’
query A�φ, like formula (6.4). However, it is possible to estimate the probability that
a query of the type A♦φ, like formula (6.5), holds.

We analyse liveness for the lane change controller from [HLOR11] with our UPPAAL
implementation in Sect. 6.2.2. The lane change controller shows both a variant of zeno
behaviour and livelocks, leading to starvation of (parts of) the system. We give details
on this in Sect. 6.2.2 and also present an adaptation to a controller that is live, with the
exception of one special case.

The crossing controller we presented in Sect. 5.3 also shows a high degree of liveness
but may also have a livelock for the same special case. We give details on this faulty
behaviour and an implementation to correct it in Sect. 6.4.2. We use UPPAAL to show
that both the adapted lane change controller and the adapted crossing controller indeed
have a high probability of being live, by examining bounded liveness, as we explain in
the following paragraph.

Bounded Liveness

Liveness in our case only states that at some point in the future something good happens.
Thus, a lot of time is allowed to pass before the desired behaviour happens, which is
unrealistic for real-life implementations. As a first step we adapt the liveness property
from formula (6.4) to the bounded liveness property

Bd Livei ≡ A�∀c : (〈cl(c)〉 → A♦<t Good i(c)). (6.6)

Formula (6.6) states that after a (crossing) claim was set Good i(c) should always occur
in less than t time. With UPPAAL, we can estimate the probability confidence interval
with which a property holds within some time bound bound. For this, the UPPAAL
extension SMC offers evaluation queries of the type

Pr [bound] (<> prop). (6.7)

112

6.2 Properties of the Highway Traffic Lane Change Controller

With such a query, the probability interval [p−ε, p+ε] is estimated with which property
prop holds before bound time units (for p = Pr(<> prop)). Here, ε is the uncertainty
parameter . Additionally, with the parameter for false negatives α, the confidence 1− α
is estimated with which UPPAAL computes the probability interval. For this, UPPAAL
analyses the query within a specific number of system runs that are calculated during run-
time. Note that a smaller value for ε results in more slim and more accurate probability
intervals, but more system runs have to be examined by UPPAAL, whereas verification
time increases. For details on UPPAAL SMC’s estimation algorithm, see [DLL+15].

While both the lane change controller Alc and the crossing controller Acc are live with
a high probability, they are also boundedly live with a high probability.

Fairness

While bounded liveness is an improvement compared to pure liveness, it is still possible
that one car has to wait unreasonably longer for a planned manoeuvre than other cars.
Thus we introduce fairness to our controllers, which in our case means that no car has
to wait unreasonably long for Good i to happen.

We omit a CTL interpretation of fairness at this point but explain our notion of this
property in the following informally. As we only outline an approach for a fair lane
change controller in Sect. 6.2.2, we focus on crossing manoeuvres in the following.

In the previous paragraph about liveness, we indicated that both hitherto presented
controllers for highway resp. urban traffic are not completely live. They moreover are
not fair. However, we present an implementation of a fair crossing controller Af

cc in
Sect. 6.4.3. This fair crossing controller negotiates priorities for committing manoeuvres
via our guarded broadcast communication. Conveniently, Af

cc also implements total
liveness. However, adding communication increases the complexity of the controllers and
again leads to questions about security and reliability of communication (cf. Sect. 5.2).
Thus, we present an approach on weakening the assumption about having 100% reliable
communication in Sect. 6.4.4.

6.2 Properties of the Highway Traffic Lane Change Controller

We examine the system properties of the lane change protocol from [HLOR11] (cf.
Sect. 2.4), where this section bases on our contribution [Sch18b]. We use a preferably
generic UPPAAL model which we introduce in Sect. 6.2.1. Further on, we explain the
needed adaptations of the lane change controller for the implementation in UPPAAL
in that section. While safety of the controller was informally proven in [HLOR11], we
strengthen their proof result by showing safety and deadlock freedom of the controller
in the beginning of Sect. 6.2.2. We then explain and examine with UPPAAL, why both

113

6 Desirable System Properties for Autonomous Cars

the lane change controller for highway traffic from [HLOR11] and the overtaking con-
troller from [HLO13] implement unlive behaviour and adapt the original controller from
[HLOR11] to a new almost live lane change controller. We show (a high degree of) live-
ness of the new controller with UPPAAL and also give details on the only special case
for which our new controller still shows unlive behaviour. We finally correct this ‘only
almost’ live behaviour by briefly sketching an adaptation to a completely live and fair,
now communicating, lane change controller in the end of Sect. 6.2.2.

6.2.1 Implementation of Highway Traffic Manoeuvres in UPPAAL

We introduce the abstract model we examine with UPPAAL and state the considered
assumptions and restrictions for it in the following paragraphs. After that, we introduce
the UPPAAL implementation of the crossing controller.

An Abstract Model for a Highway Traffic Snapshot in UPPAAL

We now introduce the abstract model that we examine with UPPAAL and state the
considered assumptions and restrictions for it. Recall from the previous section that
with UPPAAL, our approach is model-checking (for timed automata). Thus, we use the
specific model described in the following as our initial traffic snapshot T S0. The purpose
of the used model is to allow for detecting potential incorrectness of the controller, e.g.
absence of safety or liveness. Note that we also tried variations of the described model
for testing purposes. We give details on the model in the following paragraphs. Note
that we also explain the purpose and goals of the chosen model in the last paragraph of
this section.

Abstract model. The model we examine with UPPAAL is the traffic situation depicted
in Fig. 6.1, where we consider lanes 0 to 3 and the cars A, B and E contained in view
V (E, T S0) of ego car E. Car D is too far away from car E to be considered in V (E, T S0).
We set the initial traffic snapshot values for the cars in view V (E, T S0) as follows:

� Positions: pos(A) = 10, pos(B) = 12 and pos(E) = 30.

� Sizes of cars as perceived by ego car E: ΩE(A) = 5, ΩE(B) = 5 and ΩE(E) = 5.

� Reservations: res(A) = {2}, res(B) = {0} and res(E) = {3}.
� Claims: clm(A) = {}, clm(B) = {} and clm(E) = {}.

Note that we initially require empty sets of claims, as for the model checking procedure
with UPPAAL all controllers start in their initial locations without any claim. Thus, we
ignore the depicted claims for cars A and B in Fig. 6.1, as these were only included in
the figure to illustrate the potential for collisions between cars A and B.

Data structure. For implementing a version of our spatial reasoning about traffic
situations in UPPAAL, we first have to encode a representation of our abstract model.

114

6.2 Properties of the Highway Traffic Lane Change Controller

0 B

1 A B D

2 A

E3

View V (E,TS0)

pos(E)h h

Figure 6.1: Abstract model with adjacent lanes 0 to 3 and cars A, B, E and D, where
cars A and B have both a claim on lane 1.

For this, we represent the traffic snapshot T S0, more precisely the positions, claims and
reservations of the cars on the lanes, by a global data structure pos_t. For reservations
res this is encoded as follows:

pos t r e s [c a r i d t] = {
{ {0 ,0 ,1 ,0} , 10 , 5} ,
{ {1 ,0 ,0 ,0} , 12 , 5} ,
{ {0 ,0 ,0 ,1} , 30 , 5}
} ;

Here e.g. the first line represents car A and the Boolean lane list {0, 0, 1, 0} states that
A has a reservation only on lane 2. The second parameter 10 is the position of A on lane
2 and the last parameter 5 is the size of A. Thus the space A occupies is the interval
[10, 15] on lane 2. The other lines are the respective values for cars B and E, such that
B initially occupies interval [12, 17] on lane 0 and E is in interval [30, 35] on lane 3.

We have a similar structure pos t clm[carid t] for the claims of the cars, where initially
all Boolean lists for claims are empty, as explained before. Note that the ‘t’, e.g. in pos t,
is common for standard UPPAAL syntax and does not compulsory denote ‘time’.

Speed and distance keeping. The lane change controller is not responsible for distance
keeping. However, for cars with different acceleration and speed, a controller for distance
keeping would be inevitable to avoid rear-end collisions. We outlined the difficulties for
implementing such a distance controller for the multi-lane scenario from [HLOR11] in
Sect. 5.1 and thus do not implement one for now. However, if cars would accelerate or
brake without any distance control, we would have rear-end collisions. Due to this, we
restrict all cars to have the same constant speed whereby the relative distances between
the cars along the lanes never change.

Although this is a strong restriction, it is reasonable, as our goal is to show safety
and liveness of lane change manoeuvres, where collision freedom while changing lanes is
considered, not rear-end collisions. That is, for examining the safety and liveness solely

115

6 Desirable System Properties for Autonomous Cars

of the lane change manoeuvres with the controller from [HLOR11], we do not need to
consider a scenario with cars with different speed and acceleration.

Number of lanes. We decided to limit our abstract model to 4 lanes as this allows for
ample lane change manoeuvre possibilities for the cars. We tried up to 20 lanes and the
verification run-time seems to increase only linear by about 50 ms each time when we
add one lane. Not a surprising discovery, we observed a lower probability for potential
collisions with still 3 cars but more lanes. However, we decided to use 4 lanes for all
queries for the verification of our system properties in Sect. 6.2.2 as this seems to be a
realistic number for nowadays highways.

Number of cars. By restricting our abstract model to the three cars A, B and E, most
of the verification queries we present in Sect. 6.2.2 take about 5 to 30 seconds to verify.
However, we tried using 4 and 5 cars, where verification run-time appeared to increase
exponentially when adding a car, as the most queries took about 15 to 60 minutes for
4 cars and after two days the verification did not finish for 5 cars. This observation
is not surprising, as with each new car the UPPAAL system grows by one lane change
controller with an additional clock due to which the internal system state space grows
significantly during verification. However, we describe in the next paragraph why our
model containing 3 cars is still universal enough.

Appropriateness and purpose of the model. Despite the speed limitation and the fact
that we restrict the model to 3 cars, we claim to encode an appropriate model to verify
both safety and liveness. In particular, we expect the following behaviour for the cars
A, B and E and also explain their purposes in the chosen model:

� Cars A and B: These two cars cannot always change lanes, as their position inter-
vals [10, 15] and [12, 17] would intersect if the cars had reservations or claims on
the same lane. We thus expect potential collisions here, but show that the lane
change controller always prevents actual collisions. Further on, we expect that
liveness is at least limited between these two cars, as possibilities for blockage are
foreseeable.

� Car E: We use this car mainly for testing purposes. Of course, the expected
behaviour of car E is that it is always able to change lanes and that there can
never occur a potential collision or collision, as there is no conflicting car on any
neighbouring lane. Thus both, safety and liveness, should be guaranteed for this
car. However, we later show with car E that liveness is violated as traces exist
where even car E never changes lanes due to a livelock.

The Lane Change Controller in UPPAAL

For the UPPAAL implementation, we adapt the lane change controller Alc from Fig. 2.6,
p. 31 to UPPAAL syntax, as neither formulae of Multi-lane Spatial Logic (cf. Sect. 3.5,
p. 61) nor controller actions for claiming or reserving lanes (cf. Sect. 4.1, p. 69) are

116

6.2 Properties of the Highway Traffic Lane Change Controller

directly implementable in UPPAAL. The resulting UPPAAL lane change controller LCP
(‘Lane Change Protocol’) is depicted in Fig. 6.2. Each of the cars A, B and E in our
model owns one instance LCP(i) of the controller LCP, where i ranges over A, B and
E. The depicted controller in Fig. 6.2 is a direct implementation of the controller from
[HLOR11] and does not yet contain any adaptations, apart from those necessary for the
implementation in UPPAAL which we explain in the remainder of this section. Note
that internally in our UPPAAL implementation, the cars do not have the names A, B
and E, but instead i ranges over {1, 2, 3}. However, as it is easier to explain together
with our model from Fig. 6.1, we stick to LCP(A) instead of LCP(1) and respectively for
the other cars throughout this implementation section.

Figure 6.2: UPPAAL implementation LCP of the lane change controller Alc from Fig. 2.6.

Colour coding and fonts. Note that the UPPAAL automata in Figs. 6.2 to 6.12 use
the UPPAAL colour coding, where communication via broadcast channels is shown in
turquoise, guards are depicted in green, updates in blue, location names and invariants
in purple and selection statements are depicted in mustard yellow.

Additionally, we use the following fonts to distinguish ACTA from their respective UP-
PAAL implementations. While we name ACTA with labels likeAlc as usual (cf. Sect. 4.1),
we write UPPAAL automata in typewriter font like LCP, to distinguish them. As before,
we use the standard math font for ACTA concepts (e.g. location q2 or a guard x ≤ 1),
while we use a sans serif font for concepts of our UPPAAL automata (e.g. location q 2
or a guard x <= 1).

Timed automata semantics. For implementing Alc in UPPAAL, we are forced to
drop the subformula ¬∃c : pc(c) of the invariant I(q2) in location q2 (cf. Fig. 2.6). This
is due to the following feature of the general definition of timed automata semantics,
which also applies for the extended UPPAAL timed automata: for an action transition

117

6 Desirable System Properties for Autonomous Cars

〈li, νi〉 α−−→ 〈li+1, νi+1〉 to exist in the semantics of a timed automaton, the invariant I(li)

of the location li must hold, i.e. ν |= I(li), on executing the transition (cf. Def. 12, p. 26).
However, in the original controller Alc from [HLOR11], the guard on the transition from
q2 to q0 contains the formula ∃c : pc(c) which contradicts I(q2). Thus, it is not possible
to ever execute the transition from q2 to q0 in Alc, if I(q2) remains existent.

Fortunately, the adaptation we propose does not affect crucial construction goals of lane
change protocol Alc. The only change is that now the controller LCP from Fig. 6.2 may
remain in location q 2 for up to t time units while exists(c : caridt)pc(c) already holds.
However, if this formula still holds after t time, LCP has to change back to location q 0.
With that, the original safety result from [HLOR11] is not violated.

Initialisation of the controller. We add an additional initial location q init before the
regular initial location q 0 of the lane change controller from Fig. 2.6, to instantiate
internal date variables of the controller. The only data variable considered in the lane
change controller is n, encoding the lane on which the car is currently driving. For this,
the value lane corresponds to the entry res[ego].lane[lane] in the list of reserved lanes we
introduced in the previous section. The entry res[ego].lane[lane] contains the only flag
set to 1 in the Boolean list res[ego].lane.

Communication. The original lane change controller Alc from Fig. 2.6 does not contain
any communication. We however add internal sending operations, e.g. claiming[ego]!, for
communication of LCP with related observer automata, which are used for verification
purposes and thus introduced later in Sect. 6.2.2.

Time bounds. For the implementation we have to set specific values for the time
bounds in LCP. With t := 1 and t lc := 2, we choose small time bounds to avoid
slowing down the verification unnecessarily. The value 1 for t can be interpreted as the
computation time the controller needs to process information in location q 2. Note that
1 is the smallest possible constant > 0 UPPAAL allows for our time bound t. We give
detailed information on the influence of these chosen values on our verification results in
Sect. 6.2.2 on p. 124.

MLSL formulae. We now explain our UPPAAL representation of MLSL formulae. The
only MLSL formulae used by the lane change controller are the collision check cc (cf.
formula (2.15), p. 30) in the initial location q0 and the potential collision check pc(c)
(cf. formula (2.16), p. 30) used in several guards and invariants of the controller. Our
solution for implementing formulae (2.15) and (2.16) in UPPAAL bases on checking the
intersection of position intervals of cars with the Boolean UPPAAL function

bool i n t e r s e c t (const pos t p1 , const pos t p2) {
re turn e x i s t s (lane : l a n e i d t)

p1 . lane [l ane] and p2 . lane [l ane]
and not (p1 . pos > p2 . pos+p2 . s i z e

or p2 . pos > p1 . pos+p1 . s i z e) ;
}

118

6.2 Properties of the Highway Traffic Lane Change Controller

The function intersect checks for two position parameters pos t (cf. Sect. 6.2.1) if their
position intervals intersect and if both positions are on the same lane. If e.g. car A and
B both claim lane 1 with clm[A] = {{0, 1, 0, 0}, 10, 5} and clm[B] = {{0, 1, 0, 0}, 12, 5},
the function call intersect(clm[A], clm[B]) returns true.

With the intersect function, we encode the negation of the collision check formula
¬ col(ego) introduced with MLSL formula (2.15) by the function

bool cc () {
re turn not e x i s t s (c : c a r i d t) c != ego

and i n t e r s e c t (r e s [ego] , r e s [c]) ;
}

In the UPPAAL implementation cc() of ¬ col(ego) it is implied that the check is done
for the ego car. We further on encode the potential collision check pc(c) introduced in
MLSL formula (2.16) with

bool pc (c a r i d t c) {
re turn c != ego

and (i n t e r s e c t (clm [ego] , r e s [c])
or i n t e r s e c t (clm [ego] , clm [c])) ;

}

Note that apart from negating the collision check directly in the formula cc(), we use the
functions cc() and pc(c) in the UPPAAL controller LCP in Fig. 6.2 exactly in the same
manner as we use the respective MLSL formulae in the original lane change controller
Alc from Fig. 2.6. Also note that this implementation of MLSL formulae is general and
is usable for arbitrary traffic snapshot one could implement, not only for our specific
traffic snapshot T S0 from Fig. 6.1.

Controller actions. Besides MLSL formulae, we also encode controller actions for
claiming and reserving lanes and their respective withdrawal actions with UPPAAL
methods. For claiming a lane for the ego car, the related lane change controller calls the
method

void c la im (l a n e i d t lane) {
clm [ego] . l ane [l ane] = true ;

}

where in the Boolean list {0 , 0 , 0 , 0} for claims, the value of the forwarded lane lane
is set to true. Upon a reservation request from a lane change controller, we have to
check if there exists a claim for the related car and only then transform the claim into
a reservation. Thus, the method

void r e s e r v a t i o n (){
f o r (i : l a n e i d t) {

i f (clm [ego] . l ane [i]) {

119

6 Desirable System Properties for Autonomous Cars

r e s [ego] . l ane [i] = true ;
clm [ego] . l ane [i] = f a l s e ; } } }

changes the value of the respective lane in the reserved lanes for the ego car to true,
while setting the value for the transformed claim for the same lane to false. Similarly as
for the implementation of MLSL formulae, our implementation of controller actions is
independently of the specific controller LCP from Fig. 6.2 and of the specific model from
Fig. 6.1.

6.2.2 Verification of the Properties

We now examine our desired system properties for the UPPAAL implementation LCP

of the lane change controller from Fig. 6.2 with suitable verification queries. As our
model for the verification with UPPAAL, we use the traffic snapshot T S0 from Fig. 6.1.
This means that the UPPAAL system used for verification comprises three lane change
controllers LCP in parallel, one for each of the cars A, B and E. Note that we thoroughly
examine safety and liveness, but only sketch an approach on integrating fairness into the
lane change controller.

As a necessary precondition for showing any of our system properties, we examine dead-
lock freedom of our controllers. A deadlock would mean that some of our controllers wait
for a resource that is permanently blocked by another controller. With only one blocked
controller, the system gets stuck and no transition is possible anymore. In our case this
resource could e.g. be a space on a lane which is permanently claimed by two different
cars. We show deadlock freedom of our controllers, by successfully checking the query

A[] not deadlock (6.8)

on a normal work station in averagely 23 seconds with a memory usage peak of roughly
65KB. With this, we globally (‘[]’) exclude deadlocks in all (‘A’) runs of our system.
This result is not surprising, as our controllers can always withdraw an unsuccessful
claim, return to the initial location q 0 and try a new claim later if they are in locations
q 1 or q 2. Further on, if a controller already has a reservation and thus is in location
q 3, the invariant x <= t lc forces the controller to change back to the initial location
q 0 after t lc time. Thus, from each possible location the controllers LCP(i) are always
able to change back to the initial location q 0.

Safety

We confirm the hitherto informally proven safety property from [HLOR11] with our
UPPAAL implementation from the previous section. Recall from Sect. 6.1 that the
queries for the verifier in UPPAAL are formulated in a timed computation tree logic
(TCTL) specification language.

120

6.2 Properties of the Highway Traffic Lane Change Controller

To show the validity of the safety formula (6.1), our goal is to show unreachability of a
bad system state with a collision in the overall UPPAAL system. A bad state in this case
is a state were the collision check formula cc() from p. 119 holds for any two arbitrary
cars. Thus, we broaden the method cc() to

bool c c a l l () {
re turn not e x i s t s (c : c a r i d t) e x i s t s (d : c a r i d t)

c != d and i n t e r s e c t (r e s [d] , r e s [c]) ;
}

with which collisions between any two cars are considered. Further on, we introduce
the observer automaton Observer1, depicted in Fig. 6.3. This automaton is running
in parallel with the automata LCP(i) during UPPAAL system runs, observing whether
cc all() holds invariantly. If a collision is detected, Observer1 enters its location unsafe.
We use the query

A[] not Observer1.unsafe (6.9)

to show in averagely less than 3 seconds with a memory usage peak of 65KB that there
exists no system run where the formula cc all() does not hold. With this query, we thus
verify the safety property (6.1) (p. 111) for the lane change controller from [HLOR11].

Figure 6.3: Observer1 checking for a collision in the UPPAAL system.

Liveness

With query (6.8), we exclude deadlocks in our system, so the system cannot come into
a state where no transition is possible anymore. Nonetheless, the original lane change
controller Alc from Fig. 2.6, and thus also our implementation depicted in Fig. 6.2, is
not truly live. This is due to the fact that zeno behaviour and livelocks exist. Zeno
behaviour means that in a computation path of the system, time cannot pass beyond
some time tz but infinitely many actions happen. By livelock we mean that while a
controller could progress it does not but instead remains in one location forever.

To analyse liveness with our UPPAAL implementation, we introduce a second observer
automaton Observer(i), as depicted in Fig. 6.4. For every instance LCP(i) of the
lane change controller, we require an automaton Observer(i) which synchronises with
LCP(i) over communication channels. E.g. on claiming a lane for car A, LCP(A) sends a
message over the channel claiming[A] with which Observer(A) synchronises, such that

121

6 Desirable System Properties for Autonomous Cars

both controllers simultaneously change to a new location. Upon reserving a lane, LCP(A)
sends over reserving[A] and the observer changes to a location success. We approach our
liveness property from formula (6.4) by first checking the query

A<> (Observer(A).success or Observer(B).success or Observer(E).success),
(6.10)

which states that finally in every trace, at least one of the controllers LCP(i) is successful
in changing a lane. We later refine this property to a property where we require each
controller to be finally successful in all system runs. Remember, that we generally expect
query (6.10) to be successfully verified, as in our model at least car E should be able to
finally change a lane in every possible trace.

However, query (6.10) does not hold for the implementation LCP from Fig. 6.2, meaning
there exist system traces where no car that wishes to do so, finally changes lanes. We
discuss and correct the reasons for this faulty behaviour in the following in two steps.

Figure 6.4: Observer(i) checking for every instance LCP(i), if whenever car i claims a
lane, it finally changes lanes, or if a potential collision occurs.

Problem 1 (zeno behaviour and livelock). The first reason why query (6.10) does not
hold is that there exists a trace, where only cars A and B both infinitely often set and
withdraw their respective claim on lane 1 without any elapse of time and car C does not
execute any transition. Thus both controllers LCP(A) and LCP(B) circle between their
respective locations q 0, q 1 and q 2 infinitely long. This system behaviour is a strong
version of the previously sketched zeno behaviour, as time does not pass beyond time 0
in this trace. Additionally, LCP(E) is denied a possibility of executing a transition in the
sketched trace and thus starves.

The second reason why query (6.10) does not hold is that a trace exists, where each of
the automata LCP(i) stays in its respective location q 0 or q 1 infinitely long. Thus,
either the cars did not do anything at all or each car made a claim for a lane but never
withdraws it or turns it into a reservation. We call this observation livelock, as transitions
are available, but never taken.

122

6.2 Properties of the Highway Traffic Lane Change Controller

Solution 1. Both of the sketched undesirable system behaviours are easily solvable by
introducing a new time bound t idle and a respective invariant x <= t idle to location
q 0. Additionally, we introduce the invariant x <= t to location q 1 and place the guard
x >= t on the outgoing edges of q 1, as done in the adapted controller LCP′ depicted
in Fig. 6.5. For the analysis we set t idle = 10 and we recall that t = 1 was set in
Sect. 6.2.1. The idea is that a controller can wait a while (t idle) before starting a lane
change manoeuvre. However, after a claim was set, t again reflects the computation time
LCP′ needs to process data in location q 1.

With these adaptations, we successfully show query (6.10) in less than 0.5 seconds with
a memory usage peak of 40KB.

Figure 6.5: Adapted UPPAAL implementation LCP′ without livelocks and zeno be-
haviour due to new invariant in location q 1 and new guards x >= t on
the outgoing edges of q 1.

Problem 2 (unlive behaviour for special case). The verification query (6.10) is already a
type of a weak liveness property, as it shows that with the adapted controller LCP′ from
Fig. 6.5 in every simulation trace, at least one of the controllers finally changes lanes.
However, actually desired is the refined formula

A<> Observer(i).success, (6.11)

which states for an arbitrary car identifier i ∈ {A,B,E} that the car related to LCP′(i)
finally changes lanes and thus implements our liveness property from formula (6.5). With
the adapted controller LCP′, property (6.11) only holds for LCP′(E), as anticipated. The
reason is, that there still exists the special case, where cars A and B both unsuccessfully

123

6 Desirable System Properties for Autonomous Cars

time bound A B E

k = 5 [0.3031, 0.3231] [0.3001, 0.3201] [0.3447, 0.3647]

k = 10 [0.6691, 0.6891] [0.6568, 0.6880] [0.8336, 0.8536]

k = 15 [0.8235, 0.8435] [0.7806, 0.8006] ≥ 0.98

k = 20 [0.8951, 0.9151] [0.8619, 0.8819] ≥ 0.98

k = 30 [0.9511, 0.9711] [0.9577, 0.9777] ≥ 0.98

k = 50 ≥ 0.98 [0.9789, 0.9989] ≥ 0.98

Table 6.1: Statistical evaluation of the query Pr [<= k] (<> Observer(i).success)

for LCP′ with different upper time bounds k.

try to change to lane 1 infinitely often and thus create a potential collision infinitely often,
preventing both controllers from ever transforming their claim into a reservation.

Note that while the query (6.11) does not hold, moreover the implementation

Observer(i).wait -> Observer(i).success (6.12)

of the more complex liveness formula (6.5) does not hold.

Statistical analysis of Problem 2. While we cannot guarantee 100% liveness of the lane
change controller from Fig. 6.5, we can estimate its probability for time-bounded liveness.
For this, we use the SMC part of our UPPAAL version (cf. Sect. 6.1). In Sect. 6.1,
we introduced evaluation queries, with which UPPAAL can estimate the probability
confidence interval with which a property holds.

In our case, we adapt the liveness query (6.11) to the time-bounded evaluation query

Pr [<= k] (<> Observer(i).success), (6.13)

which returns the probability with which car i is successful in changing lanes in at most k
time (i ∈ {A,B,E}). For the probability parameter for false negatives, we use α = 0.01
and for the probability uncertainty parameter we use ε = 0.01. This results in slim
intervals containing the correct value with a confidence of 99%. We give the respective
probabilities for each car for different values for k in Table 6.1. Note that ≥ 0.98 is the
highest value for success UPPAAL returned with a confidence of 99%. All queries were
evaluated in averagely 5 seconds for k = 10 and averagely less than 3 seconds for all
other values for k. Note that for k ≥ 60 all controllers changed lanes with a probability
value ≥ 0.98.

Influence of the chosen parameters on the results in Table 6.1. The results in Table 6.1
highly depend on the values for the time constants t, t idle and t lc we set for the con-
troller LCP (cf. Sect. 6.2.1). For this reason, the probabilities for a successful reservation
are relatively low for all cars for k = 5, as each controller already needs at least t + t = 2
time units to set a reservation and further on may idle up to t idle = 10 time units in
location q 0. However, for the time bound k = 15, a probability for success greater than

124

6.2 Properties of the Highway Traffic Lane Change Controller

78% can be observed for all cars and after 30 time units each car successfully changes
lanes with a probability greater than 95%.

For examining the influence of t idle on our results more thoroughly, we also tried t idle =
1 for test purposes. With this, for k = 5 each car had already changed lanes with a
probability of > 81%, for k = 10 with a probability of > 93% and for k = 20 all cars did
change lanes with a probability bigger than 98%.

Further on, we varied the value for the time t lc a car needs to finish a lane change
manoeuvre. For t lc = 3, t lc = 4 and t lc = 5, the verification results did not change
for cars A and E. However, for B a decrease of averagely 2% for each increase of t lc
was notable for k ∈ {15, 20, 30}. We explain this observation by the fact that by taking
longer for a lane change manoeuvre, car A blocks car B longer on lane 1.

Additionally, the values in Table 6.1 depend on the arrangement of the cars in the model.
Thus, the probabilities for car E are the highest, as E has no other cars as competitors
for lanes. However, as E may idle in q0 for up to t idle = 10 time units, added with
the previously observed 2 time units for claiming a lane, for k = 5 and k = 10, car E
obviously does not have the maximal high probability for success (≥ 98%). However,
starting from k = 15, car E has the highest probability UPPAAL SMC returns with
confidence 99%, as by then it had enough time to change lanes. The values for car A
are slightly bigger than those of car B, as initially, car A has two possible lanes for its
manoeuvre while car B only has one. Finally, adding further lanes on top of the model
from Fig. 6.1 did not change the verification times notably.

An approach on increasing liveness and correcting claims made in [Sch18b]. Although
the results given in Table 6.1 are not bad, we tried different approaches to solve Problem
2, in order to fully guarantee liveness or at least reach higher probabilities for success.
For this, initially our goal was to stay as close as possible to the construction idea of
the original controller Alc from [HLOR11]. Thus, for now, we do not want to add some
kind of (de-) centralised scheduling algorithm, e.g. car-2-car or car-2-X communication.
With this we also want to avoid adding too much complexity to the controller.

In [Sch18b], we introduce an additional location q wait, in which the controller is forced
to wait for a bounded non-deterministic time after a potential collision was detected and
the controller withdrew its claim. We use a time bound t w and set t w = 4. With this,
we delimit the waiting time in q wait by the invariant x <= t w and the guard x >= 1
on its outgoing edge. Thus, on entering q wait, a controller has to wait there for some
time from the interval [1, 4]. After that, the initial location q 0 is entered again and the
controller may again claim a lane.

The idea is that with this adaptation, cars A and B should block each other from
changing a lane less often. Note that due to a technical error in our implementation in
UPPAAL, in our contribution [Sch18b] we incorrectly claimed that with this adaptation
the liveness property from query (6.11) holds for each of the cars A, B and E.

125

6 Desirable System Properties for Autonomous Cars

However, by only adding q wait, there still exists the very unlikely case where each time
both cars pick the same non-deterministic waiting time in q wait and continue to block
each other infinitely often. Thus, the properties

A<> Observer(A).success and A<> Observer(B).success (6.14)

still do not generally hold. Also, the probability values in Table 6.1 slightly decrease
for this adaptation for lower values for k. The reason for this decrease of liveness is
simple: each time a controller leaves the location q wait, it has to return to the initial
location q 0. There it may idle for up to t idle = 10 time units again. Thus, whenever a
controller withdraws a claim and enters q wait and q 0 subsequently, in the worst case
it may wait t w + t idle = 14 time units before claiming a lane again. Obviously, with
this, the evaluation query (6.13) returns lower probabilities.

Fortunately, we easily solve this problem by introducing the adapted controller LCP′′

which is depicted in Fig. 6.6. This controller contains the previously introduced location
q wait, but instead of returning to the initial location q 0 after some waiting time, the
controller enters a new committed intermediate location q im. With this, the controller
will try to claim a lane again directly after leaving q wait without idling for some time
in location q 0.

Figure 6.6: Adapted and more alive UPPAAL implementation LCP′′, where controllers
wait for some time in [0, t w] in location q wait after withdrawing a claim.

On analysing query (6.13) for the new controller LCP′′, we achieve values increased by 2
to 6% for liveness for time bounds k ≥ 15 as we show in Table 6.2. Note that the values

126

6.2 Properties of the Highway Traffic Lane Change Controller

time bound A B E

k = 5 [0.3043, 0.3243] [0.3102, 0.3302] [0.3423, 0.3623]

k = 10 [0.6860, 0.7060] [0.6576, 0.6776] [0.8410, 0.8410]

k = 15 [0.8898, 0.9098] [0.8013, 0.8213] ≥ 0.98

k = 20 [0.9466, 0.9666] [0.8923, 0.9123] ≥ 0.98

k = 30 ≥ 0.98 [0.9763, 0.9963] ≥ 0.98

k = 50 ≥ 0.98 ≥ 0.98 ≥ 0.98

Table 6.2: Statistical evaluation of the query Pr [<= k] (<> Observer(i).success)

for LCP′′ with different upper time bounds k.

for k = 5 and k = 10 remain small, as the controllers LCP′′(i) may still idle in location
q 0 for up to 10 time units once before they start claiming a lane.

On analysing liveness of the crossing controller in Sect. 6.4.2, we also use the waiting
location q wait, which significantly increases liveness there. We explain details for this
in the respective section.

Summary and Outlook on Fairness of the Highway Traffic Lane Change Controller.

With the traffic situation from Fig. 6.1, p. 115, and the corresponding implementation,
we present one specific scenario for model checking with UPPAAL, designed for the
following purposes:

� showing the absence of collisions between any cars in our model (i.e. proving safety
(6.1)),

� identifying and analysing the existing zeno behaviour and livelocks (i.e. missing
guards and invariants around location q1),

� eliminating the zeno behaviour and livelocks and showing a high probability for
liveness for the adapted lane change controller, and

� introducing location q wait to further increase liveness.

For this purpose, the restrictions for the scenario, e.g. on 3 cars and 4 lanes were sufficient
(cf. explanation on p. 116), although more cars (4) and lanes, as well as different values for
the various time constants t, t i, . . . were also examined for test purposes (cf. Sect. 6.2.1).
We conclude that our result of achieving only ‘almost’ live controllers coheres with the
fact that distributed scheduling without any means of cooperation and communication
between the autonomous cars has its limits.

Thus, for future considerations on achieving real liveness of the lane change controller,
it seems a natural choice that two cars which block each other should negotiate who
drives first between themselves. Thus, although adding complexity to the controllers,
we propose that cars communicate priorities between themselves to solve Problem 2

127

6 Desirable System Properties for Autonomous Cars

with a decentralised cooperating scheduling approach. With this, there would be a high
chance of finally guaranteeing liveness and additionally achieving fairness of the lane
change controller protocol Alc.

For now, we do not implement the sketched fair and cooperative behaviour for the high-
way traffic case, but instead leave it for future work (cf. Sect. 8.4). However, we refer
forward to the UPPAAL implementation for urban traffic in Sect. 6.4, where we imple-
ment the here proposed decentralised cooperative scheduling approach to successfully
achieve complete liveness and fairness of the crossing controller for urban traffic.

6.3 Safety of Crossing Manoeuvres

Before we analyse the system properties of the crossing controller Acc from Fig. 5.5
with a dedicated implementation for urban traffic in UPPAAL in Sect. 6.4, we give a
mathematical proof of safety for Acc in this section. However, we also examine safety
with our implementation in Sect. 6.4 to further strengthen the following mathematical
proof of safety of crossing manoeuvres.

In this section, we first show safety of the crossing controller Acc with perfect knowledge
from Sect. 5.3.1 and after that extend this proof for proving safety of the crossing con-
troller A′cc with imperfect knowledge from Sect. 5.4. Note that the safety proofs in this
section are mathematical proofs by hand over the semantics of the respective crossing
controllers (cf. Sect. 4.2).

Safety of Crossing Manoeuvres with Perfect Knowledge

The desired safety property from formula (6.1) states that everywhere the reservations
of two arbitrary different cars are not overlapping and thus at any moment the spaces
occupied by different cars are disjoint. A traffic snapshot T S is called safe if T S |= Safe
holds. For the following proof, we assume perfect knowledge and thus that every car
perceives the complete safety envelope of all other cars in its view. Furthermore, we rely
on the following assumptions for the overall safety property to hold.

Assumption A1. The initial traffic snapshot T S0 is safe.

Assumption A2. Every car is equipped with a a crossing controller Acc (cf. Sect. 5.3.1)
and a road controller Arc (cf. Sect. 5.3.2), together with a distance controller Adc
and a velocity controller Avc (cf. Sect. 5.1).

Theorem 1 (Urban traffic safety). If assumptions A1 and A2 hold, every traffic snapshot
T S that is reachable from T S0 by time transitions and transitions allowed by the road
controllerArc and the crossing controller Acc is safe.

128

6.3 Safety of Crossing Manoeuvres

Proof. We prove safety from the perspective of an arbitrary car E, because all cars
behave similarly. Therefore, we show that all traffic snapshots T S reachable from T S0
are safe, for all virtual views Vi(E, T S) ∈ VM (E, T S) of E and all valuations ν with
ν(ego) = E:

T S, Vi(E, T S), ν |= Safeego , with Safeego ≡ ¬∃c 6= ego ∧ 〈re(ego) ∧ re(c)〉. (6.15)

Our approach is a proof by induction over the number of transitions needed to reach a
specific traffic snapshot from T S0. The induction basis holds, as T S0 is already safe by
Assumption A1. Assume that a specific traffic snapshot T Sk is reachable from T S0 in
k+ 1 steps and that T Sk is safe. For the induction step we show for k 7→ k+ 1 that the
traffic snapshot T Sk+1, reachable from T Sk by one further transition, is safe as well.

Observe that overlaps of safety envelopes, and thus collisions, can only occur if either the
road controller Arc creates a reservation on a lane segment, the crossing controller Acc
creates a crossing reservation for a crossing segment or time passes and the positions
of cars on lanes and crossing segments change. A claim on a lane or crossing segment
can at most cause a potential collision, which does not threaten safety property (6.15).
Likewise, withdrawing of claims or reservations does not cause (potential) collisions and
thus need not be considered in the following proof.

Time passes. For time transitions T Sk t−−→ T Sk+1 the distance controller Adc ensures

that the distance to a car or an intersection ahead remains positive. If car E reaches
a crossing and Acc is not permitted to commit a crossing reservation in time and thus
leave the locations q1 to q3 in Acc, the invariant ca(ego) in these locations will force the
distance controller Adc of car E to decelerate and stop if the required crossing segments
are not yet available. In this case there is no automatic crossing reservation for E and
the safety property is not violated.

Reservations on lane segments. For lane reservations T Sk
r(E)−−−−→ T Sk+1, the road

controller Arc corresponds to the lane change controller proven safe in [HLO13] except
for one additional feature; as explained in Sect. 5.3.2, Arc will withdraw a committed
claim on a lane segment as soon as a crossing is ahead and will not create a new claim
or reservation on a lane segment, but E may finish an overtaking manoeuvre already
begun. In [HLO13] the authors specify lane change manoeuvres to take at most tlc time
to finish, wherefore we simply make sure the distance dc used in the crossing ahead
check is large enough to let E finish the overtaking manoeuvre. For the safety of such
overtaking manoeuvres on road segments between intersections, we refer to the safety
proof in [HLO13].

Crossing reservations. We now examine a crossing reservation transition from traffic
snapshot T Sk, which is safe by assumption, to next traffic snapshot T Sk+1:

T Sk
rc(E)−−−−−→ T Sk+1. (6.16)

129

6 Desirable System Properties for Autonomous Cars

For the crossing controller Acc introduced in Sect. 5.3.1, depicted in Fig. 5.5 on p. 95, the
only possibility of a crossing reservation violating safety is the transition from location
q3 to q4, as we only have a crossing reservation rc(ego) on that edge in Acc:

q3
¬∃c:pc(c)∧¬lc(ego) / rc(ego);x:=0−−−−−−−−−−−−−−−−−−−−−−→ q4. (6.17)

With the transition (6.16) between traffic snapshots T Sk and T Sk+1 and the transition
(6.17) from q3 to q4 in crossing controller Acc, together with the valuation ν of clock and
data variables and a future updated valuation ν ′, we now examine the following change
in the configuration of Acc:

〈T Sk, ν, q3〉
rc(ego)−−−−−−→ 〈T Sk+1, ν

′, q4〉. (6.18)

Of course, we consider a network of ACTA and thus a configuration from this network
would actually be considered. This means, previous traffic snapshot changes before T Sk
was reached might have been due to other cars and their controller actions. However,
as we examine an internal transition with the considered crossing reservation transition,
only the configuration of the specific considered ACTA changes (cf. networks of ACTA,
Sect. 4.4). Thus, for reasons of simplicity, we only consider the configuration of the
considered car, as this is the only part that changes in the considered network.

By the ACTA semantics defined in Sect. 4.2, the invariant I(q4) of future location q4
has to be satisfied to enable transition (6.18). Formally,

T Sk+1, Vi(E, T Sk+1), ν
′ |= x ≤ tcr ∧ oc(ego)

has to be valid. Obviously, x ≤ tcr is fulfilled on entering q4, as the clock x is reset to 0
on the transition from q3 to q4. From controller action rc(ego) on the transition to q4,
we can directly deduce the validity of invariant oc(ego) ≡ 〈cs ∧re(ego)〉, because rc(ego)
implies that in future traffic snapshot T Sk+1 formula oc(ego) holds (c.f. definition of
traffic snapshot transitions from Sect. 3.3).

Additionally, the guard on the transition from q3 to q4 in Acc has to be satisfied to allow
for transition (6.18). Therefore, we examine

T Sk, Vi(E, T Sk), ν |= ¬∃c : pc(c) ∧ ¬lc(ego).

The part ¬lc(ego) only states that there does not exist a second reservation on another
lane segment for car E. This does not endanger safety property (6.15) on crossing
segments, because Arc handles lane change manoeuvres on road segments. For this, we
refer to the previous paragraph where we treated reservations on lane segments and again
to the safety proof of Arc in [HLO13]. The validity of the second part ¬∃c : pc(c) follows
directly from the validity of the invariant I(q3) which we examine in the following.

130

6.3 Safety of Crossing Manoeuvres

Recall the crossing ahead check ca(ego) ≡ 〈re(ego)a free<dc ∧ ¬〈cs〉a cs〉 from p. 94.
By definition of the semantics of ACTA, traffic snapshot T Sk, view Vi(E, T Sk) and
variable valuation ν have to satisfy the invariant of location q3 in Acc

I(q3) ≡ ca(ego) ∧ ¬∃c : pc(c) ∧ x ≤ tc.

If more than tc time units pass and lc(ego) still holds or a potential collision is detected,
I(q3) and the outgoing transitions from location q3 force Acc to change back to q1 and
withdraw its crossing claim. Observe that the invariant ca(ego) holds until E is granted
a crossing reservation and Acc therefore changed to location q4 where oc(ego) holds.

Parts of the following formula transformations for the third subformula ¬∃c : pc(c) from
I(q3) are similar to those from the safety proof in [HLOR11] and therefore adapted from
there to the urban traffic scenario. In the following, we conclude from the validity of
the invariant I(q3) and of the second part of the guard ¬∃c : pc(c) to the validity of the
safety formula (6.1) in future traffic snapshot T Sk+1.

The subformula ¬∃c : pc(c) satisfies the following implication:

¬∃c : pc(c) ≡ ¬∃c : c 6= ego ∧ 〈cl(ego) ∧ (re(c) ∨ cl(c))〉
→ ¬∃c : c 6= ego ∧ 〈cl(ego) ∧ re(c)〉.

Together with the induction hypothesis, we derive

T Sk, Vi(E, T Sk), ν |= ¬∃c : c 6= ego ∧ 〈cl(ego) ∧ re(c)〉
∧ ¬∃c : c 6= ego ∧ 〈re(ego) ∧ re(c)〉. (6.19)

For the further transformation of formula (6.19), amongst other steps, we use the prop-
erty that our abbreviation somewhere 〈 〉 distributes over disjunction (cf. formula (2),
page 22):

¬∃c : c 6= ego ∧ 〈cl(ego) ∧ re(c)〉 ∧ ¬∃c : c 6= ego ∧ 〈re(ego) ∧ re(c)〉
←→ ¬∃c : c 6= ego ∧ (〈cl(ego) ∧ re(c)〉 ∨ 〈re(ego) ∧ re(c)〉)
(2)←→ ¬∃c : c 6= ego ∧ 〈(cl(ego) ∨ re(ego)) ∧ re(c)〉. (6.20)

To show that for crossing reservations we can indeed conclude safety of traffic snap-
shot T Sk+1 from formula (6.20), we exploit the fact that a created crossing reservation
occupies the same space as its previous crossing claim. For that, we use Reservation
Lemma 1 for crossing reservations, which we present and prove separately after this
proof. Applying Lemma 1 to formula (6.20) finally leads to

T Sk+1, Vi(E, T Sk+1), ν |= ¬∃c : c 6= ego ∧ 〈re(ego) ∧ re(c)〉,

for all virtual views Vi, which proves the validity of our safety property (6.15).

131

6 Desirable System Properties for Autonomous Cars

In the following, we extend the reservation lemma from [HLOR11] for reservations on
lanes to a reservation lemma for crossing segments for our urban traffic scenario. Recall
that in Sect. 3.5, we did not introduce a new UMLSL atom for crossing reservations, but
instead extended the semantics of the existing MLSL atom re(c). Therefore the lemma
itself only changes slightly syntactically compared to [HLOR11], while we have to add
some semantic arguments to its proof.

Lemma 1 (Reservations on crossing segments). We consider a crossing reservation tran-

sition T S rc(C)−−−−−→ T S ′ and an UMLSL formula φ′ ∈ ΦU which does not contain a

(crossing) claim cl(c) as a subformula. We further assume another UMLSL formula
φ ∈ ΦU results from φ′ by a replacement of all occurrences of re(c) in φ′ by re(c)∨ cl(c).
In that case for all virtual views Vi(E, T S) ∈ VM (E, T S) with C ∈ I and valuations ν
with ν(c) = C the following statement holds:

T S, Vi(E, T S), ν |= φ iff T S ′, Vi(E, T S ′), ν |= φ′.

We now adapt the proof of the reservation lemma for reservations on lanes for standard
MLSL from [HLOR11]. The proof is by structural induction on formula φ′. Therefore
we have to consider only those UMLSL formulae φ′ closer that are not syntactically
contained in standard MLSL or which have changed semantics. For the other cases we
refer to the proof from [HLOR11].

Proof. Consider traffic snapshots T S = (N , res, clm, cres, cclm, pth, curr , pos, spd , acc)
and T S ′ = (N , res, clm, cres′, cclm′, pth, curr, pos, spd, acc) with updated sets for claimed
crossing segments cclm′ = cclm ⊕ {C 7→ ∅} and for reserved crossing segments cres′ =
cres ⊕ {C 7→ cclm(C)} (c.f. definition of transitions between traffic snapshots from
Sect. 3.3).

Recall that a virtual view Vi for car E is defined by Vi(E, T S) = (Li, X,E), where

Li ∈ seq (
−→
ΠE ∪

←−
ΠE) (cf. Sect. 3.4). A virtual lane −→πE ∈

−→
ΠE is of the structure −→πE =

〈πl〉 a −→πc a 〈πl′〉, where πl, πl′ ∈ L and −→πc ∈ seqEd
CS is a non-empty sequence of crossing

segments (←−πE ∈
←−
ΠE is defined symmetrically).

In Lemma 1, for the considered traffic snapshots T S and T S ′, only crossing reservations
or claims are of particular interest, as the sets clm(C) and res(C) remain unchanged
in T S ′. Therefore, we can reduce the considered view Vi to V = (Lcs, X,E), where we
retrieve Lcs from Li as follows:

Lcs = {←→πcs : seq CS | ∃←→πE : Li • #←→πcs = #←→πE − 2

∧ ∀j : 2, ..,#←→πE − 1 • ←→πcs(j − 1) =←→πE(j)}

Induction basis. The cases φ′ ≡ free | u = v | true | cs are trivial. Consider φ′ ≡ re(c),
where φ ≡ re(c) ∨ cl(c), by assumption in Lemma 1. Assume V and ν such that

T S, V, ν |= φ resp. T S, V, ν |= re(c) or T S, V, ν |= cl(c)

132

6.3 Safety of Crossing Manoeuvres

Case 1: With T S, V, ν |= re(c), we have cres(C) ⊆ cres′(C) and thus deduce T S ′, V, ν |=
re(c) in both cases.

Case 2: With T S, V, ν |= cl(c), we observe cclm(C) = cres′(C) for a crossing claim
and deduce again T S ′, V, ν |= re(c).

For the other direction, consider T S ′, V, ν |= re(c). By definition of crossing reservation
transitions, we observe ran←→πcs ⊆ cres′(C) and furthermore also ran←→πcs ⊆ cres(C) or
ran←→πcs ⊆ cclm(C). Altogether this again leads to T S, V, ν |= re(c) ∨ cl(c).

Induction step. For φ ≡ ¬φ | φ1 ∧ φ2 | ∃c : φ1 | φ1aφ2 | φ2

φ1
we refer to the proof in

[HLOR11], as these UMLSL formulae do not have changed syntax or semantics compared
with standard MLSL.

Safety of Crossing Manoeuvres with Help

Consider the extended crossing controller A′cc for imperfect knowledge from Sect. 5.4,
depicted in Fig. 5.10, for which the previous safety proof only changes slightly. As the
controller includes communication, we add one assumption A3 to the assumptions A1
and A2 from the previous section:

Assumption A3. Each car is equipped with reliable communication technology
(cf. Sect. 5.2, p. 92).

Theorem 2 (Urban traffic safety with help). If assumptions A1, A2 and A3 hold, every
traffic snapshot T S that is reachable from T S0 by time transitions and transitions allowed
by the road controllerArc and the crossing controller A′cc is safe.

Proof. In A′cc, we observe two transitions with a crossing reservation rc(ego) that needs
to be examined. The first transition is for a crossing manoeuvre without help:

q2
¬∃c : (pc(c)∨ph(c))∧¬lc(ego) / rc(ego);x:=0−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q5. (6.21)

Compared with the respective reservation transition in Acc we examined thoroughly
in the previous section, the only addition to this guard is the subformula ¬∃c : ph(c).
Remember that the long version of the potential helper check from p. 101 is defined
by ph(c) ≡ c 6= ego ∧ (oc(c) ∨ ocac(c)) ∧ ¬lc(c). With this, we can easily transform
¬∃c : ph(c) as follows:

¬∃c : ph(c) ≡ ∀c : c = ego ∨ (¬oc(c) ∧ ¬ocac(c)) ∨ lc(c) (6.22)

From formula (6.22), we conclude that no car different from ego can be on the crossing
or approaching the intersection, apart from a car currently changing lanes, which again
excludes a crossing reservation for this car. Thus, no car can possibly have an overlap

133

6 Desirable System Properties for Autonomous Cars

of reserved crossing segments with the ego car E and E can safely reserve its claimed
crossing segments.

The second transition is for a crossing manoeuvre with help:

q3
x≥tw ∧¬∃c:(ph(c)∧c 6∈H)∧¬∃c : pc(c)∧¬lc(ego) / rc(ego);x:=0−−→ q4. (6.23)

In the guard of transition (6.23), only the subformulae x ≥ tw and ¬∃c : (ph(c)∧ c 6∈ H)
are new compared to the guard we considered in our proof for perfect knowledge in the
previous section. Here, x ≥ tw only specifies when the transition is conducted, where
tw is the time we considered in Sect. 5.4 to be the time needed for all potential helpers
to answer. With ¬∃c : (ph(c) ∧ c 6∈ H), we check whether each car that is a potential
helper answered and thus is contained in the set H. If there should be a car that did not
answer, we have T S, V, ν 6|= ¬∃c : (ph(c)∧ c 6∈ H) and the transition cannot be executed.
Thus, even if the communication should fail, safety is still guaranteed. If however each
car did answer with yes and is thus contained in H, the crossing manoeuvre can be safely
started. The case that at least one car answered no is covered with the transition from
q3 to q1.

6.4 Fairness and Liveness of the Crossing Controller

After showing safety of crossing manoeuvres in the previous section, we now implement
our crossing controller Acc from Fig. 5.5 in UPPAAL Stratego to examine its liveness
and fairness properties. The UPPAAL implementation of the abstract model is based
on the implementation for highway traffic from Sect. 6.2, but now with the urban traffic
model with crossing segments where cars follow paths. Together with examining liveness
and fairness of Acc, we also confirm the safety result from the previous section.

We explain the UPPAAL implementation of the urban traffic model in Sect. 6.4.1 and
give details on the implemented crossing controller in Sect. 6.4.1. After that, we examine
safety and liveness of the controller in Sect. 6.4.2 and present and analyse an adapted
fair crossing controller in Sect. 6.4.3. We weaken our assumption on 100% reliable
communication in Sect. 6.4.4 by briefly introducing probabilistic automotive-controlling
timed automata (PACTA) and analysing the effects this extension has regarding our
properties with UPPAAL Stratego.

6.4.1 The Urban Traffic Model and Controller in UPPAAL

We now introduce the UPPAAL implementation of our model of urban traffic manoeu-
vres and of the crossing controller. Note that we re-use and adapt several concepts from
the implementation for highway traffic that was introduced in Sect. 6.2.1. For instance,
we use an adapted version of the method intersect(c,d) from p. 118 for checking the
intersection of the occupied space for two cars c and d.

134

6.4 Fairness and Liveness of the Crossing Controller

Abstract Model

For our UPPAAL model, we implement a generic 2-by-2 intersection cr consisting of
road segments with each two lane segments as depicted in Fig. 6.7. We choose this
model, as it is a common type of intersection in urban areas and as our protocol is
generalisable to bigger intersections (cf. Sect. 3.6). Also, UPPAAL can only verify a
limited number of extended timed automata in parallel. This is due to the fact that
model checking for timed automata in general grows exponentially with the number of
automata [ACD90, HNSY94, LPY95]. We thus consider only those cars that are of
interest for our analysis with UPPAAL, i.e. cars approaching cr, where the crossing
ahead check ca(ego) (cf. formula (5.3), p. 94) holds or cars already on cr where the
on crossing check oc(ego) holds (cf. formula (5.1) p. 89) as only those potentially block
some crossing segments for other cars. Cars driving away from cr are not interesting, as
well as cars driving behind cars for which ca(ego) holds, as those are not already allowed
to claim or reserve crossing segments.

This dramatically reduces the amount of cars to be considered in our model, where we
consider only 4 cars, one car approaching from each of the four roads leading to cr, e.g.
like in the traffic situation depicted in Fig. 6.7.

0 1

A

2

3B

4

B

5

C

6

7D c0 c1

c2Bc3

dc

Figure 6.7: Abstract model for UPPAAL implementation.

Number of cars. Generally, we use the described 4 cars in our implementation through-
out the remainder of this chapter. However, in the following sections we present a
stepwise adaptation of our controller, w.r.t. certain properties. Some of these adap-
tations increase the systems complexity noticeably, so that the verification of specific
queries did not finish within several days. Thus, we use 4 cars in general, but explain
whenever we can only use 3 cars. Note that we always use 4 cars for time-bounded
queries (cf. Sect. 6.4.2, p. 139), as all of these can be verified comparatively fast due to
the time-boundedness of the query.

135

6 Desirable System Properties for Autonomous Cars

Path through the intersection. Even in the cases where only 3 cars are used, we cover
a large amount of different possible traffic situations at our 2-by-2 intersection. This is
because we allow for arbitrary turn manoeuvres at the intersection for each car, by non-
deterministically generating a path through the intersection for the cars on arriving at the
intersection (right-turn, straightforward, left-turn, u-turn). Each time a car successfully
finishes a crossing manoeuvre, it is newly spawned in front of the intersection at its last
starting point but with a newly generated path through the intersection. With this, we
indirectly simulate that more than our actual 4 (resp. 3) cars try to perform a crossing
manoeuvre at our intersection. However, we have at most 4 (resp. 3) cars at a time on
the intersection. Note that we allow for all possible four crossing manoeuvres at the
considered intersection: turning left, driving straight ahead, turning right and doing a
u-turn.

Thus, instead of the fixed highway traffic scenario we used in Sect. 6.2 for analysing the
system properties of the lane change controllerAlc, we now consider a 2-by-2 intersection,
where 4 (resp. 3) cars follow arbitrary paths through the intersection. With this, we cover
a vast amount of different possible traffic situations at the respective intersection.

Data structure. Similarly to the UPPAAL model for highway traffic from Sect. 6.2.1, we
encode information about crossing reservations and claims with a global data structure
model t res resp. model t clm, where now instead of lane segments crossing segments are
represented by a Boolean array with one entry for each of the four considered crossing
segments:

model t r e s [c a r i d t] = {
{ {0 ,0 ,0 ,0} } ,
{ {0 ,0 ,0 ,0} } ,
{ {0 ,0 ,0 ,0} } ,
{ {0 ,0 ,0 ,0} } } ;

Note that each line relates to one car and unlike in the implementation for highway
traffic, we do not need to represent position and size of each car in model t res anymore.
This is due to the fact that crossing segments are discrete and thus either fully occupied
by one car or empty (cf. Chapter 3). As can be seen in the structure above, initially, we
assume that none of the cars has a reservation or claim on any crossing segment.

A path through the intersection is represented as follows in our implementation: For
each direction from which a car might come, we remember the identifier of the crossing
segment the car has to enter first in an array int firstsegment[4] = {40, 41, 42, 43}. Here,
the numbers from the set {40, 41, 42, 43} are the internal representation of our crossing
segments c0, c1, c2 and c3. We chose this representation, as internally in UPPAAL, it is
more convenient to label our crossing segments with integers. We chose integers starting
from 40, as lower values are already reserved as identifiers for lane segments. Although
we currently do not consider lane segments in our crossing controller, we keep the lane
data structure from the highway traffic implementation (cf. Sect. 6.2.1) to allow for a
possible future integration of both approaches and implementations (cf. Chapter 8).

136

6.4 Fairness and Liveness of the Crossing Controller

For car A from our example we have firstsegment(A) = 41 w c1. On arriving at the
intersection, a random crossing segment segment from the set {40, 41, 42, 43} is non-
deterministically chosen as the last segment of the path through the intersection. E.g.,
if segment = 42 w c2 is chosen for car A, the resulting path through the intersec-
tion is 〈41, 42〉 w 〈c1, c2〉. Note that if firstsegment(A) = segment the path through
the intersection contains only that one element segment, meaning the related car turns
right at the intersection. Also note that, if in the example segment = 40 w c0 would
be chosen for car A, it would do a u-turn using the path through the intersection
〈41, 42, 43, 40〉 w 〈c1, c2, c3, c0〉. Whenever a car successfully finished its manoeuvre,
it again appears in front of the intersection as a new car with a newly generated path
through the intersection.

Representation of the movement of cars. For checking properties for our crossing
controller, crossing segments are our critical resource, not lane segments. As crossing
segments are discrete, we do not need to consider continuous movement of our cars in
our implementation. Instead recall the three phases in which our crossing controller can
be (cf. Sect. 5.3, p. 93):

1. away from the intersection (cf. car D in Fig. 6.7),

2. in the crossing ahead phase, where ca(ego) holds and thus the threshold dc is
crossed over (cf. cars A and C in Fig. 6.7) or

3. on the crossing, where oc(ego) holds and possibly some other cars have to wait
until a car leaves certain crossing segments (cf. car B in Fig. 6.7).

We abstractly model these three phases a car can be in in our urban traffic scenarios
through the implementation of Acc that we explain in the following section. This includes
our notion on how a car ‘approaches’ an intersection.

Implementation of the Crossing Controller

We now explain the translation of our crossing controller Acc from Sect. 5.3, Fig. 5.5,
into UPPAAL notation. The resulting UPPAAL automaton CRP (‘CRossing Protocol’)
is depicted in Fig. 6.9. Equally as our representation of the abstract model in UP-
PAAL we introduced in the previous section, CRP uses some of the concepts from the
implementation for highway traffic from Sect. 6.2.1. Note that equally as for the high-
way traffic controller LCP from Sect. 6.2.1, we for now only use internal communication
(e.g. claiming[ego]!) to communicate with some observer automata we introduce later.

Initialisation of the controller. The committed initial location q init is used to let
a car (again) appear in front of the intersection, initialised as a new car. For this,
UPPAAL offers so-called select constructs, whereas in our case with the select construct
segment : segmentid t the last segment for the cars path through the intersection is non-
deterministically selected and then stored in an internal variable cs.

137

6 Desirable System Properties for Autonomous Cars

In the original initial location q 0, the car is in phase 1, meaning ‘away from the inter-
section’ and may stay there for some random time from the interval [0, t away]. With
this, we simulate that the cars do not spawn directly in front of the intersection, but
may take some time until they reach the intersection. Then, Acc changes to location
q 1, which models that the car arrives in the ‘crossing ahead’ phase 2.

Figure 6.8: Implementation CRP of crossing controller Acc from Fig. 5.5 in UPPAAL.

Time bounds. Equally as before, we have to assign specific values to our time con-
stants for the UPPAAL implementation. We recall that we use t as a (preferably small)
reaction time for the controllers, whereas we set it to the smallest possible integer value
> 0 with t := 1. Note that while we use differently labelled constants t and tc in the
controller Acc from Fig. 5.5, for CRP we use the same constant t as upper bound for the
respective invariants in locations q 1 to q 3 for simplification (thus assuming t = tc).
With t away := 10, we allow a newly spawned car to take up to 10 time units to approach
the intersection. Further on we assume a crossing manoeuvre to take 3 time units and
set t cr := 3. Again, we analyse the influence of these time bounds on our verification
results in Sect. 6.4.2.

UMLSL formulae. The implementation of our UMLSL formulae collision check col(ego)
and potential collision pc(ego) use the following simplified version of the method inter-
sect(c,d) from the highway traffic implementation (cf. Sect. 6.2.1):

bool i n t e r s e c t (const model t p1 , const model t p2) {
re turn

e x i s t s (i : l a n e i d t)
(p1 . lane [i] and p2 . lane [i])

or
e x i s t s (i : segment id t)

(p1 . segment [i] and p2 . segment [i]) ; }

138

6.4 Fairness and Liveness of the Crossing Controller

The simplification is due to the fact that crossing segments are discrete (cf. previous
section). Thus, we do not check for an intersection of position intervals but instead
check for an intersection of the respective claimed or reserved lane or crossing segments
of two cars. With this, we re-use the functions bool cc() and bool pc (carid t c) from
Sect. 6.2.1. Note that we later also check for path intersection.

Our implementation of the formulae crossing ahead ca(ego) and on-crossing oc(ego)
correlates with the cars’ phases we introduced in the previous paragraph. As both
formulae describe the position of the car with respect to the intersection, these are
encoded by the respective location the controller is in. For instance, on entering location
q 1 the clock x is reset and we assume CRP enters phase 2, whereas now ca(ego) holds.

Controller actions. After some reaction time ≤ t in location q 1, CRP claims its re-
quired crossing segments with the method call cclaim(cs). This method internally uses
the first crossing segment as captured in the array firstsegment and the forwarded pa-
rameter cs contains the segment that was randomly chosen in the beginning as last
path segment. Then, ego’s path through the intersection is generated and simultane-
ously claimed, meaning the claimed crossing segments are set to 1 in the Boolean array
clm[ego]. For instance for car A from Fig. 6.7, again for driving straight ahead, after the
method call cclaim(cs) (here: cs = 42), we observe clm[ego] = {0, 1, 1, 0}. The controller
actions for withdrawing crossing claims or reservations and setting a crossing reservation
are equal as for highway traffic.

The remainder of the controller CRP is a straightforward implementation from the original
crossing controller Acc from Fig. 5.5 and additionally shares some concepts with the lane
change controller implementation LCP, described in Sect. 6.2.1.

6.4.2 Verification of Safety and Liveness

Similarly to highway traffic, we start with showing deadlock freedom of our crossing
controller CRP with the UPPAAL query

A[] not deadlock (6.24)

in averagely 27 seconds with a memory usage peak of roughly 126KB. For showing safety
of CRP, we use the same observer automaton Observer1 as introduced in Sect. 6.2.2 in
Fig. 6.3 for the highway traffic controller LCP. Again, with the query

A[] not Observer1.unsafe (6.25)

we show in averagely less than 3 minutes with a memory usage peak of 295KB that
formula cc all() holds globally in all possible traces (cf. p. 121). With this, we confirm
our safety proof from Sect. 6.3.

For the remainder of this section recall that we consider 4 different cars in our imple-
mentation (cf. Sect. 6.4.1), which we name A, B, C and D from now on to distinguish

139

6 Desirable System Properties for Autonomous Cars

them. Note that these names do not necessarily relate to the cars depicted in Fig. 6.7, as
we consider that the paths for the cars A, B, C and D are chosen non-deterministically
on arriving at the intersection. Thus, these cars are arbitrary cars. Also recall that our
cars arrive in front of the intersection again as a new car with a new path whenever
they successfully finished a crossing manoeuvre. Note that this implies that we expect
the same liveness result for each car, as all cars are treated similarly and for no car it is
more or less probable to be blocked than for any other car.

Unlive behaviour of CRP. Concerning liveness, note that our crossing controller CRP from
Fig. 6.8 does not show the zeno behaviour and livelocks that we sketched for the highway
traffic controller LCP as ‘Problem 1’ in Sect. 6.2.2 on p. 122. This is due to the fact that
CRP already contains the requested invariant x <= t in location q 2 and respective guards
including the subformula x >= t on the outgoing edges of that location. Thus, we do not
have to solve ‘Problem 1’ as it is already solved. Also note that, compared to LCP, after a
withdrawn crossing claim CRP does not return to the location q 0, where it could wait for
up to t away time units again. Thus, generally we might except faster verification result
for CRP than those achieved for the controller LCP′ without the additional adaptation
undertaken in Sect. 6.2.2.

For analysing liveness of CRP, we use the same observer automata Observer(i) for each
controller CRP(i) as in Sect. 6.2.2. Again, we consider the query

A<> Observer(i).success (6.26)

for verifying liveness of our system. However, without any adaptations, this query does
not hold for any of the four cars. This result is not surprising, as similarly to the case for
highway traffic from Sect. 6.2.2, we have to cope with ‘Problem 2’ (p. 123), the special
case where two or more cars block each other infinitely often.

Statistical liveness analysis of CRP. We give the statistical analysis results for the
evaluation query for time-bounded liveness

Pr [<= k] (<> Observer(i).success) (6.27)

in Table 6.3 using the same statistical parameters as before for highway traffic (α =
ε = 0.01, cf. p. 124). Note that in contrast to the observed values for highway traffic in
Sect. 6.2.2, the probability intervals do not differ between the cars A, B, C and D for
each k. This is because each car spawns in front of the intersection with a random path.
Thus, in contrast to the tables we presented in Sect. 6.2.2 for highway traffic, we present
only one column with estimation intervals for an arbitrary car i ∈ {A,B,C,D} in this
section.

The verification time for each k lay between 30 and 120 seconds and the memory usage
had peaks at 300KB. Compared to highway traffic, the observed verification time is no-
tably bigger, but still reasonably low. On the one hand this is due to the select statement
we use for the initialisation of CRP, with which a path is chosen non-deterministically
for each car. On the other hand, we ascribe the increased verification time to the fact

140

6.4 Fairness and Liveness of the Crossing Controller

time bound computed probability interval

k = 5 [0.1128, 0.1328]

k = 10 [0.2003, 0.2203]

k = 15 [0.2311, 0.2511]

k = 20 [0.2483, 0.2683]

k = 30 [0.2706, 0.2906]

k = 50 [0.3227, 0.3427]

Table 6.3: Statistical evaluation of the time-bounded liveness query Pr [<= k] (<> Ob-

server(i).success) for CRP with different upper time bounds k.

that in urban traffic more scenarios with potential collisions exist, as we have 4 cars that
can potentially collide instead of 2. This means, more system traces that need to be
examined by UPPAAL exist.

The observed values for the probability intervals are distinctly lower than for highway
traffic (about 15% to 48%). Further on, after 30 time units cars passed the intersection
only with averagely 28% and even after 50 time units the cars finished a crossing ma-
noeuvre only with averagely 33%. In highway traffic, cars with the respective controller
LCP already changed lanes with around 90% already after 20 time units. The reason
for this difference is again that there are a lot possibilities for the 4 cars to block each
other on the intersection. This is as with LCP, no particular crossing strategy is pursued
but the controllers only claim and reserve segments completely uncoordinated. It is also
noticeable that the values increase only slowly with each increase of k.

Concerning the influence of the chosen parameters, the influence of the time constant
t cr is relatively low for urban traffic. On decreasing (resp. increasing) t cr by 1 the
probabilities only grow (resp. drop) by averagely 3% each time. Further on, for highway
traffic, the influence of t idle on the verification results was large, as with t idle = 1 the
cars were successful in changing lanes with ≥ 93% already after k = 10 execution time.
In urban traffic, the counterpart of t idle is t away. However, on setting t away = 1,
instead of increased values, the probabilities for success drop immensely by averagely
30%. The reason for this is that the cars arrive faster at the intersection, whereas more
cars try to access crossing segments simultaneously.

An approach on increasing liveness. To increase liveness of CRP, we suggest adding a
location q wait, similarly as was done for highway traffic in Sect. 6.2.2 (p. 125). The
resulting adapted controller CRP′ is depicted in Fig. 6.9. As the adaptation is done
exactly as was done for highway traffic in Sect. 6.2.2 we directly start with checking our
verification queries for CRP′.

Naturally, query (6.26) still does not hold for any of the cars. This is because equally
as for highway traffic there still exists the case where two cars infinitely often follow the
loop of first claiming a crossing segment simultaneously, withdrawing the claim because
of the detected potential collison and then waiting for exactly the same time in location

141

6 Desirable System Properties for Autonomous Cars

Figure 6.9: Adapted crossing controller implementation CRP′ with additional location
q wait to improve liveness.

time bound computed probability interval

k = 5 [0.1593, 0.1793]

k = 10 [0.3561, 0.3761]

k = 15 [0.5372, 0.5572]

k = 20 [0.6705, 0.6905]

k = 30 [0.8324, 0.8524]

k = 50 [0.9506, 0.9706]

Table 6.4: Statistical evaluation of the query Pr [<= k] (<> Observer(i).success)

for the adapted controller CRP′ with different upper time bounds k.

q wait. However the statistical evaluation Pr [<= k] (<> Observer(i).success) of
query (6.26) provides quite satisfying results as we provide in Table 6.4. Already for k =
10, we observe an increased probability of success from averagely 21% to averagely 36%.
Additionally, for k = 30 the cars started their crossing manoeuvre with a probability of
more than 83%, whereas for CRP the respective value was averagely 28%.

While again the results for statistical liveness of the adapted controller CRP′ are quite
satisfying compared to those for CRP, we fail to show actual liveness of our crossing
controller due to the sketched special case of cars blocking each other (infinitely) long.
Similarly as concluded for highway traffic (cf. p. 127), we argue that our decentralised
uncooperative crossing controllers have their limits. Thus, we suggest that cars should
communicate with each other instead of blocking each other. With this we achieve
both, actual liveness and fairness of our crossing controller as we introduce in the next
section.

142

6.4 Fairness and Liveness of the Crossing Controller

Figure 6.10: Crossing controller CRPF that sends its priority for reserving some crossing
segments via the channel prio[ego].

6.4.3 Ensuring Liveness and Introducing Fairness by Cooperation

To finally show full liveness and introduce fairness to our crossing controller CRP′, we add
communication, so that the controllers may coordinate their crossing manoeuvres. For
this purpose, we introduce a concept of priorities, where the priority of a car increases
the longer it waits in front of an intersection without getting access to it. The results
of this section are described in [BS19]. We depict the adapted crossing controller CRPF
in Fig. 6.10. Further on, we introduce a helper controller HPF which evaluates priorities
sent by CRPF. We verify actual liveness and show fairness of CRPF later in this section,
starting on p. 145. In the following, we explain the controller CRP from the perspective
of the ego car with its controller instance CRPF(ego).

Crossing controller CRPF (Fig.6.10). Recall that for CRP′(ego), the path through the
intersection is built directly on claiming the needed crossing segments with the func-
tion cclaim(cs). However for CRPF(ego), ego’s path through the intersection is already
generated on initialisation with the function call pthgen(cs). Again, cs is the last path
segment non-deterministically generated with the select construct cs : segmentid t. The
benefit of generating the path at this point is that cars can already check for path inter-
sections before actually claiming the respective crossing segments. On approaching an
intersection and thus entering location q 1, the controller CRPF(ego)’s priority prior[ego]
is initially set to 0 and immediately sent to all other surrounding cars via a broadcast
channel prio[ego].

All other cars i each use a helper controller HPF(i) to determine whether the priority
of the newly approached car is big enough to enter the crossing, or if their own cars
may proceed first. We introduce this helper controller later in this section. If ego’s

143

6 Desirable System Properties for Autonomous Cars

request to enter an intersection was rejected, it enters location q wait, similarly as if it
detected a potential collision. There, CRPF(ego) waits some time between t and t w before
incrementing its priority with prior[ego] := prior[ego] + 1, changing back to location q 1
and sending it again. Such a reject happens either if CRPF(ego) receives a message
withdraw[ego]! by its own helper controller, or a message no[ego]! by some other car’s
helper controller.

However, if there was no reject detected within t time units while CRPF(ego) is in location
q 2, the path through the intersection is claimed with the controller action cclaim() and
CRPF(ego) proceeds to location q 3. There again, if a potential collision is detected
or a reject is received there, the controller also proceeds to q wait without entering
the intersection. This is needed as there might be another controller CRPF(i) that was
forced to wait but now has a significantly bigger priority for entering the intersection
than CRPF(ego). However, if no reject or potential collision was detected, the controller
reserves its path through the intersection after t time units. On entering the intersection,
prior[ego] is set to 0, as after the crossing manoeuvre CRPF(ego) is spawned in front of
the intersection as a new car with a new path through the intersection.

Note that with the output actions closer[ego]!, reserving[ego]! and finished[ego]! on some
transitions, CRPF(ego)’s own helper controller HPF(ego) is notified in which location the
controller is in. This is needed as the helper evaluates other cars’ priorities based on
this. Additionally, these communications are again used for observer automata to syn-
chronise with CRPF(ego). Note again that we consider these communications as internal
(i.e. wired), as the participating controllers are located in the same car.

Helper controller HPF (Fig.6.11). If the helper controller HPF(ego) is in its initial location
h 0, the related car is not close to an intersection and thus does not need to react to other
car’s requests. However, on receiving a message closer[ego]? from the related controller
CRPF(ego), the controller HPF(ego) changes to location h 1. There, on receiving a message
with prio[d]?, the controller checks for intersections between the own (planned or claimed)
path through the intersection and the claimed path of the requesting car the variable d
relates to. Note that we distinguish between two different types of intersections:

� Transition to the left of h 1: In this case, there exists an intersection between the
two paths of the cars ego and d (pthcc(d)) but ego does not yet have a claim and
thus there does not exist an intersection between ego’s claim and the requested path
of car d (!pthclmintersect(d)). Then, the priorities are compared as we describe in
the following.

� Transition to the right of h 1: In this case, ego already has a claim which intersects
with the requested path of car d (pthclmintersect(d)). For comparing the priori-
ties, ego uses an increased value prior[ego] + s, as we consider ego’s claim to be
worth more than the request of a potentially newly arrived car. Only if d has a
significantly (s) higher priority, it has the right to enter the intersection before ego.
A significant high priority may occur if a car already waited a long time before
the intersection and visited q wait perhaps several times. Also, we could assign a

144

6.4 Fairness and Liveness of the Crossing Controller

significant high priority to an emergency vehicle so that it always has the priority
to enter an intersection before all other cars.

Figure 6.11: Helper controller HPF comparing priorities of (other) cars.

If an intersection of path segments exists, there are two possible actions for HPF[ego]:

� The priority of ego is (significantly) greater or equal (prior[ego] ≥ prior[c]) than the
priority of the requesting car c = d, then no[c]! is sent and the crossing controller
CRPF(c) of the car ν(c) has to withdraw its claim, or

� The priority of ego is (significantly) smaller (prior[ego] < prior[c]) than the priority
of the requesting car c = d, then withdraw[ego]! is sent and CRPF(ego) has to
withdraw its own claim.

If the ego car enters an intersection and sends reserving[ego]! to its helper controller,
then HPF(ego) further on declines all possible requests concerning crossing segments ego
currently occupies. Finally, when ego announces a finished crossing manoeuvre with
sending finished[ego]!, HPF(ego) changes back to its initial location.

Verification of Actual Liveness and Fairness

We again analyse our queries for an arbitrary car. However, with our described adapta-
tions, verification time increases dramatically for several UPPAAL queries (i.e., queries
that are not UPPAAL SMC’s evaluation queries). This is due to the added communica-
tion and our new helper controllers HPF. However, evaluation queries are not affected by
this increase in verification time. Thus, we analyse our evaluation queries for 4 cars as
usual, but for the other queries we use a model containing three cars, where i ∈ {A,B,C}.
Note that we were only able to show safety of CRP using 2 cars, as verification for 3 cars
did not finish within a week.

145

6 Desirable System Properties for Autonomous Cars

time bound computed probability interval

k = 5 [0.3186, 0.3386]

k = 10 [0.6186, 0.6386]

k = 15 [0.8659, 0.8859]

k = 20 ≥ 0.98

k = 30 ≥ 0.98

k = 50 ≥ 0.98

Table 6.5: Statistical evaluation of the bounded liveness query
Pr[<= k](<> (Observer(i).success)) for the controller CRPF with dif-
ferent upper time bounds k.

Liveness. We finally show full liveness, as with the introduced cooperating controller
extension CRPF the query

A <> (Observer(i).success)

holds for an arbitrary car i ∈ {A,B,C}. The average verification time for this query
was already 27 min. and memory usage peaks reached 2, 7GB. For 4 cars, this query
did not finish after 2 days. However, as all cars use the same crossing protocol and thus
behave similarly, this result is transferable to more cars.

Nevertheless, as before, we also give the respective success intervals for time-bounded
liveness. With this, we can show that our property does not only hold finally but with
a high probability soon, within k time. For this, again the query

Pr[<= k](<> (Observer(i).success)) (6.28)

is used for 4 cars. We depict the results in Table 6.5 and use the same statistical
parameters as before (α = ε = 0.01, cf. p. 124). We can deduce from Table 6.5 that
using CRPF, the cars entered the intersection after k = 20 time units with a probability of
more than 98%, whereas before using CRP′, we only observed a probability of averagely
68% after 20 time units (cf. Table 6.5).

Fairness. For analysing fairness of CRPF, we first introduce a new observer automaton
ObserverF (cf. Fig. 6.12). For each instance CRPF(ego) of the fair crossing controller,
there exists a related controller ObserverF(ego). Whenever the ego car approaches an
intersection and CRPF(ego) sends its priority with prio(ego)!, ObserverF(ego) changes
to a location wait. There, if another controller CRPF(c) reserves crossing segments that
intersect with ego’s path through the intersection, although CRPF(c)’s priority is signifi-
cantly lower than ego’s, the observer changes to a location bad.

With this, for analysing fairness of CRPF, we introduce the query

E <> (
∨

i∈{A,B,C}

ObserverF(i).bad). (6.29)

146

6.4 Fairness and Liveness of the Crossing Controller

Figure 6.12: ObserverF(ego) checking for fair treatment of its related crossing controller
CRPF(ego).

If query 6.29 would hold, this would mean that there exists a system run in which a
controller with a (significantly) lower priority and an intersecting path with another
controller with a (significantly) higher priority entered the intersection before that con-
troller. This would mean unfair behaviour according to our notion. Thus, we expect
this property not to be satisfied.

Indeed, we can show in 30 min. average verification time with memory usage peaks of
2, 5GB that there does not exist a computation path, where this property holds. Note
that again, only a model with 3 cars was used, as query (6.29) is not a time-bounded
evaluation query and for 4 cars the query could not be checked within a reasonable time
bound (using approximately 85 GB of RAM, including 54 GB SWAP, within nearly 48
hours).

6.4.4 Introducing Uncertain Communication into the Protocol

In Sect. 5.2, we stated several assumptions we make for our controllers, amongst others
that the communication via broadcast channels never fails. This is a very strong as-
sumption that we relax in this section. The results presented in this section are again
based on our work published in [BS19].

We only briefly introduce Probabilistic ACTA (PACTA), before adding uncertain com-
munication to the crossing controller implementation CRPF from the previous section.
After that we analyse this probabilistic extension we name by CRPprob using UPPAAL.
For details on PACTA, see [BS19] and moreover [Bis18], where PACTA were first intro-
duced.

Probabilistic ACTA. For the probabilistic extension of our ACTA we use the respective
concept that was introduced for probabilistic timed automata in [KNPS04]. We directly
explain our extension using the PACTA AP depicted in Fig. 6.13. This controller waits
for 7 time units in its initial location, before proceeding to a committed intermediate
location c1. There, with a probability of 2

3 , the controller proceeds to location q2, while
withdrawing a crossing claim, and with a probability of 1

3 to q3, while transferring a
crossing claim into a reservation.

Following this example, probabilistic transitions are generally partitioned into two parts:

147

6 Desirable System Properties for Autonomous Cars

q0
x ≤ 7

AP :
c1

q2

q3

x ≥ 7
2
3 wd cc(ego)

1
3

rc(ego)

Figure 6.13: A PACTA AP . When the location c1 is reached, AP proceeds to q2 with
probability 2

3 and to q3 with probability 1
3 .

� one part leading to an intermediate committed location, where guards ϕ and input

actions a?
−→
δ : ϕ are allowed on, and

� a second part which contains transitions with probabilities leaving the committed
location. The sum of all these probabilities must equal 1. Only output actions

a!
−→
δ , controller actions cact and data modifications νact are allowed on this second

part of a probabilistic transition.

Crossing controller CRPprob with uncertain communication (cf. Fig. 6.14). For all com-
munication actions in the crossing controller CRPF from the previous section, we use
‘normal’ broadcast channels. However, some communication channels can be considered
to be used for inner-vehicle communication, i.e. all communications with the helper
controller HPF, as this controller is located in the same car. We assume that these com-
munication channels are therefore wired and have a failure rate near zero. In fact, the
only two channels used for real vehicle-to-vehicle (V2V) communication are prio and no.
We only use uncertainty on communications via these two V2V channels, as we consider
these channels to be unwired and to have a significantly larger rate of failure.

For the extension of CRPF to CRPprob this means that the only change occurs at the
transition from location q 1 to q 2, where the controller communicates via the – now
uncertain – channel prio. As all other concepts of the controller remain unchanged, we
only depict the changes that occur in that part of CRPprob in Fig. 6.14. There, we use
a probability p s for successful sending and a probability p f for unsuccessful sending.
We specify values for these probabilities in the following paragraph on the verification
of properties of CRPprob.

Likewise, the respective transition where a message is sent via the channel no in the helper
controller HPF changes. Note that input actions on uncertain channels do not change, as
we assume the uncertainty only occurs on sending a message, not on receiving a message.

Statistical verification of CRPprob. Given the probabilistic extension CRPprob of CRPF, we
now analyse how the properties of the protocol change. For this, recall from the previous
section that CRPF was safe, live and fair. As expected, the system is neither live nor fair
anymore if communication can fail. However, it remains safe. Due to an exponential

148

6.4 Fairness and Liveness of the Crossing Controller

Figure 6.14: Original transition from CRPF (Fig. 6.10) to the left and transition with
uncertain communication from the adapted controller CRPprob to the right.

increase in complexity, it was only possible to verify the safety property for two cars, as
for more than two cars the verification did not finish within several days.

To determine the impact of the lossy channels, we give the results for the query (6.28)
on time-bounded liveness Pr[<= k](<> Observer(i).success) in Table 6.6. As our
fairness query (6.29) does not hold generally with uncertain communication, we adapt
query (6.29) to a time-bounded version of fairness

Pr[<= k](<>
∨

i∈{A,B,C}

ObserverF(i).bad), (6.30)

similarly as done before for examining liveness. The results of this second query (6.30)
for showing the absence of fairness are given in Table 6.7. For both queries, we use 4 cars
as before for evaluation queries and examine the respective query with different values
for k, p s and p f.

k p s = 0.99, p f = 0.01 p s = 0.95, p f = 0.05 p s = 0.8, p f = 0.2

k = 5 [0.3164, 0.3364] [0.3157, 0.3357] [0.3146, 0.3346]

k = 10 [0.6154, 0.6354] [0.6139, 0.6339] [0.6112, 0.6312]

k = 15 [0.8616, 0.8816] [0.8552, 0.8752] [0.8360, 0.8560]

k = 20 ≥ 0.98 [0.9794, 0.9994] [0.9516, 0.9716]

Table 6.6: Results of the query for time-bounded liveness
Pr[<= k](<> Observer(i).success) with different parameters for k and p s.

The following two observations from Tables 6.6 and 6.7 are especially remarkable: Firstly
and unsurprisingly, the system becomes less live and fair the more lossy the channels
are. Secondly, the system becomes also less live and fair the longer the time k we observe
it (compared to the system without uncertainties). The reason for this is that at the
very start of the system run, the priorities are all 0 and it is not that likely that one
car’s priority increases much more than another car’s priority, thus communication is
not that important. This observation changes over time when cars finish their crossing
manoeuvres and start from the beginning again, leading to more significant differences
in their respective priorities.

Note that the values in Table 6.6 decrease (along the columns), as liveness is less and
less present, while in Table 6.7 the values increase, because the query asks for unfairness
instead of fairness. Thus, a probability of 18% for k = 20 and p s = 0.8 means that

149

6 Desirable System Properties for Autonomous Cars

after 20 time units fairness is still guaranteed in averagely 82% of the simulated system
runs.

Despite loosing liveness and fairness when allowing lossy broadcast channels, the system
still remains safe, i.e. there are never two intersecting reservations of two different cars
(recall: this query could only be analysed for two cars). Thus, the safety result from
[Sch18a] is still preserved in our extended crossing controller protocol. Also, the system
remains both live and fair with relatively high probabilities (cf. Tables 6.6 and 6.7). We
briefly present ideas where else to apply uncertainties in our approach in future work in
Chapter. 8.

k p s = 0.99, p f = 0.01 p s = 0.95, p f = 0.05 p s = 0.8, p f = 0.2

k = 5 [0, 0.0200] [0, 0.0200] [0, 0.0200]

k = 10 [0, 0.0200] [0.0022, 0.0222] [0.0109, 0.0309]

k = 15 [0.0027, 0.0227] [0.0182, 0.0382] [0.0838, 0.1038]

k = 20 [0.0032, 0.0232] [0.0444, 0.0644] [0.1787, 0.1987]

Table 6.7: Probability intervals for the time-bounded fairness query
Pr[<= k](<>

∨
i∈{A,B,C} ObserverF(i).bad) with different parameters for

k and p s.

6.5 Related Work

Safety. MLSL itself is a thoroughly researched and strong formal approach for proving
properties of autonomous traffic manoeuvres. Some years ago, the first computer-based
assistance for reasoning with a new hybrid extension of MLSL (HMLSL) was introduced
by Linker [Lin17b]. Hybrid in this case means that concepts from Hybrid Logic [] are in-
troduced to the MLSL approach. The author successfully investigates safety constraints
for the motorway traffic scenarios from [HLOR11] with Isabelle/HOL [NPW02]. In con-
trast to that approach, we investigate safety of the traffic manoeuvre controller protocols
in this thesis.

Further on, in [XL17, XLGD19], the authors use a scenario-based approach to show
safety of their autonomous driving system (see also Sect. 3.7, p. 67). For this, mixed
traffic with manned vehicles is considered where driving decisions of other cars may only
estimated and not known. The authors use UPPAAL SMC to estimate driving decisions
of other cars and to show relative safety of their system. Relative safety here means,
that the safety property holds with a certain probability within all reachable states of
their abstract model. It is stated that safety can only hold relatively because driving
decisions of other cars are uncertain and unobservable.

150

6.5 Related Work

For more related work on safety aspects of autonomous systems, we refer back to the
related work Sect. 1.3, where most of the presented approaches on car manoeuvres in-
vestigate safety aspects to some degree.

Liveness. The term of liveness was shaped by [Lam77], where safety and liveness were
investigated for a producer/consumer program. Further on, the authors use a formal
proof method, which is based on temporal logic, to reason about liveness properties
in [OL82]. Additionally, earlier in [Dij71], the author proposes a hierarchical ordering
of sequential processes with a director and a secretary granting processor time to the
various processes as a scheduling concept to avoid starvation in a system.

Another work to mention here is [Asp18], where a constraint solver is used to prove
the correctness of a vehicle coordination protocol for intersections. This work bases on
the more detailed described work in [AMB+12]. Similarly to our approach, phases like
farAway, close (to the intersection) are considered for their crossing controller. Both
safety and liveness in the sense of progress are considered. In contrast to our work, the
work focuses on the effect of parameters for longitudinal movement, whereas we focus
more on the effect of time and the choice of probabilities for communication failure.
Although uncertain communication is also possible in [Asp18], there are no quantitative
statements regarding the choice of such parameters.

Several centralised scheduling mechanisms exist for ensuring both safety and liveness at
intersections. The main difference to our approach is that we use decentralised schedul-
ing, where the cars plan and negotiate their manoeuvres themselves. For instance, in
[AS10], the authors introduce a motion planning algorithm for autonomous intersec-
tion management (AIM), where with a first come, first served (FCFS) policy, cars ap-
proaching at an intersection send reservation requests for the intersection to a centralised
scheduler. However, it is possible for cars to get stuck with the FCFS concept. This
intersection management concept is thus optimised in [ASS11], where the authors intro-
duce a batch processing method of reservations in AIM. The authors show by simulation
that with this adjustment, their intersection management method enforces liveness at
intersections. They also propose that a coordination mechanism is called fair, if it e.g.
chooses the vehicle waiting the longest to enter a specific position.

Additionally, in [CDV12], a centralised supervisor for collision avoidance at intersections
is presented. This supervisor is based on a hybrid algorithm and acts as a scheduler for
the cars. However, the complexity of this centralised supervisor grows polynomial with
the number of controlled agents. To solve this problem, the authors propose a discrete-
event system (DES) abstraction in [DCDVL17], where the system is discretised in space
and time. Additionally, in [DCDVL17], a limited set of uncontrolled vehicles are taken
into account. These uncontrolled vehicles are represented through uncontrollable events
of the DES abstraction. With that, now the goal is to synthesise the least restrictive
supervisor for the controlled cars, with which the system still remains safe and deadlock-
free. The considered state reduction could be a starting point to simplify our UPPAAL
implementation.

151

6 Desirable System Properties for Autonomous Cars

Fairness. In Sect. 5.5, we referred to (de-) centralised cooperative intersection manage-
ment (CIM) approaches (e.g. [LP11, FFCa+10]) that are widely used for the design and
implementation of crossing protocols. Many of these CIM approaches also examine safety
aspects of their protocol and several of them are designed and verified w.r.t. liveness
and fairness properties comparable to the properties we analysed in this chapter.

Finally worth mentioning is a distributed reservation approach that was proposed ear-
lier based on Petri-Net models [NRTT97]. For implementing fairness, the authors also
propose priorities depending on waiting time and velocity and support their claims by
simulation results. Only one car at a moment has a send-token and may thus communi-
cate with the other cars. However, time is not explicitly considered with the Petri-Net
models.

Chapter summary. We strengthened the respective MLSL approaches from [HLOR11]
and from this thesis by implementing the respective controllers for highway and urban
traffic in UPPAAL and successfully confirming their safety property. We additionally
optimised both controllers by examining and implementing liveness properties for them.
Finally, we added a fairness protocol using priorities to the crossing controller and pro-
posed PACTA for introducing uncertainty to MLSL controllers. This is a start for
weakening some of the assumptions we have for the controllers.

152

7 Case study: A Hazard Warning
Communication Protocol with MLSL

The previous approaches on MLSL, similarly as the controllers hitherto investigated in
this thesis, focus on traffic manoeuvres for different traffic types and desirable properties
of controllers conducting these manoeuvres. In this chapter, we examine a different
use-case of the MLSL approach: we introduce an MLSL hazard warning communication
protocol. Note that this chapter reflects the contents of [OS17].

For our case study, we investigate an approach of Müllner, Fränzle and Fröschle [MFF15],
where a communication protocol for a timely traffic-hazard warning to other traffic par-
ticipants was introduced. The authors use simulation techniques to estimate the proba-
bility that the hazard warning message is received in time. Their simulation framework
works with discrete time steps, where a decentralised environmental notification message
is sent at intervals of one time step.

We use the hazard warning scenario sketched in [MFF15] to perform a case study for
the MLSL approach. For this, we formalise the timing aspects of their simulation-based
analysis of the communication protocol by using automotive-controlling timed automata
(ACTA) (cf. Chapter 4). Using this formalisation, we prove the timely warning property
with a mathematical proof, assisted by verification with UPPAAL. Note that by using
ACTA, we also use a continuous time dimension instead of discrete time steps.

Additionally, we link the timely warning property with spatial reasoning to prove avoid-
ance of hazard collision by introducing the new MLSL extension Hazard Warning Multi-
lane Spatial Logic (HMLSL) to cope with hazards. As before, formulae of this logic
appear in the guards and invariants of ACTA to establish the desired spatial safety
properties. Note that the approach from [MFF15] addresses highway traffic manoeu-
vres, which is why we also only introduce hazards to the highway traffic MLSL from
[HLOR11]. However, we give hints on possible extensions to other traffic scenarios in
future work in Sect. 8.4.

This chapter is structured as follows. We start with introducing hazards to the abstract
model and logic from [HLOR11] in Sect. 7.1. After that, we introduce our hazard warning
communication concept in Sect. 7.2, where we also specify the actual hazard warning
controllers. Finally, we prove both timely and spatial hazard safety in Sect. 7.3.

153

7 Case study: A Hazard Warning Communication Protocol with MLSL

7.1 Abstract Model with Hazards and HMLSL

In this section, we adopt the basic scenario for our case study from [MFF15] and we
explain the needed modifications for the model from [HLOR11] that we introduced in
our preliminary Sect. 2.2. In both approaches, highway traffic scenarios are considered,
where all traffic drives in one direction. We assume that all cars are equipped with the
hazard warning controllers we introduce later. Furthermore, we demand that all cars are
equipped with the lane change, distance and velocity controllers introduced in Sect. 5.1
to guarantee collision freedom while the hazard warning message is propagated.

The approach from [MFF15] focuses on stationary traffic hazards, like traffic jams, col-
lisions, slippery street parts (ice, aquaplaning), and limited sight (e.g. due to fog). Such
stationary hazards are discussed in the ETSI standard 102638 [ETS09], amongst various
other possible hazardous scenarios that we do not consider here. We assume a hazard
to stretch over an arbitrary number of lanes and to have a positive extension along the
lanes. For now, we restrict the number of occurring hazards to one at a time. We give
an example to accompany the following introduction of our model with Fig. 7.1.

0 A

initial sender

C D E F

1 B

final receiver

G H I

2 J K L M

hazard

Figure 7.1: Traffic situation with a hazard to the right. The initial sender, car A, de-
tects a hazard on lanes L = {1, 2} and sends a timely warning message
via the communication chain −→c = 〈A,L,H,G,C,B〉 with intermediate cars
L,H,G,C to the final receiver, which is car B.

The first car to approach and perceive a hazardous situation, we call initial sender A. In
the previous chapters, we considered safety in the sense of collision freedom. The overall
safety goal in this chapter is that A transmits a hazard warning as fast as possible to a
specific final receiver B driving somewhere behind A. We assume that car B is about
to reach the hazard in t time units. The safety goal is missed if B reaches the hazard
without receiving a hazard warning before t time units after it has occurred. In that case
B may not be able to initiate braking or another emergency manoeuvre preventing it
from colliding with the hazard (e.g., leaving the highway or changing to a lane without a
hazardous situation). Note that we do not consider how such an emergency manoeuvre
is conducted, but concentrate on sending timely warnings. Also note that initial sender
A sends the warning even if it itself is not affected by the hazard because it is driving
on a non-hazardous lane (cf. Fig. 7.1).

154

7.1 Abstract Model with Hazards and HMLSL

The hazard warning is communicated via a broadcast channel hazard through a com-
munication chain comprising other traffic participants (cf. Fig. 7.1). Following the
approach from [MFF15], we assume every car to have the same communication tech-
nology and thus the same communication radius r. With this, we can determine the
minimal amount of cars needed to build a communication chain and send the hazard
warning from initial sender A to final receiver B. In the following, we assume that a
communication chain between initial sender and final receiver can always be established.
Additionally, we assume that the cars in the communication chain −→c drive spatially
behind one another.

Traffic snapshot. We recall the traffic snapshot from [HLOR11] that we presented in
Sect. 2.2. In [HLOR11], the focus was on safety of lane change manoeuvres, where the
authors showed that reserved spaces of different cars are mutually exclusive. Note that
while claimed spaces and acceleration were of some interest in [HLOR11] (cf. Sect. 2.2),
they are not in the focus of this case study. This is because we do not consider lane
change or overtaking in this chapter.

Instead, we now consider a new feature in the abstract model of road traffic: a hazard.
Intuitively, we think of a hazard as a space of rectangular shape on a multi-lane road
that, from a certain moment on, blocks several adjacent lanes. To this end, we modify the
traffic snapshot from Def. 1, Sect. 2.4 (p. 15) by a component haz with three attributes:

� a Boolean attribute haz .on ranging over {0, 1} and indicating whether the hazard
is present (haz .on = 1) or not,

� an attribute haz .lanes representing the set of lanes affected by the hazard, which
is a contiguous subset of L, and

� an attribute haz .ext representing a fixed horizontal extension of the hazard, which
is an interval [haz .start, haz .end] ⊆ R with haz .start < haz .end.

Thus, the traffic snapshot now is a structure T S = (pos, spd , res, haz) which besides haz
comprises the functions pos, spd , res:

� pos : I→ R such that pos(C) is the position of car C along the lanes,

� spd : I→ R such that spd(C) is the current speed of the car C,

� res : I→ P(L) such that res(C) is the set of lanes C reserves.

As motivated before, we do not consider lane change and acceleration in this chapter.
Due to that we omit the functions clm and acc that are included in the traffic snapshot
definition of original MLSL.

Traffic snapshot transitions. We recall the transitions, which are used to model changes
of the traffic snapshot from Def. 3, p. 16. In such a transition a hazard may occur
(by switching haz .on from 0 to 1) and remain present, i.e., haz .on = 1 is a stable

155

7 Case study: A Hazard Warning Communication Protocol with MLSL

predicate. The transition where a hazard occurs is given for a traffic snapshot T S =
(pos, spd , res, haz) with

T S haz .on−−−−→ T S ′ ⇔T S ′ = (pos, spd , res, haz ′) and haz = 0 ∧ haz ′ = 1.

We assume that a hazard occurs passively, e.g. an environment could trigger this transi-
tion. Further on, we adapt the time transition, where cars will move, i.e., their position
will increase, and they may change their speed. As we consider stationary hazards, a
hazard cannot move when time passes. For a time constant t ∈ R≥0, the time transition
is adapted as follows:

T S t−→ T S ′ ⇔T S ′ = (pos ′, spd ′, res′, haz ′) and

∀C ∈ I : pos ′(C) ≥ pos(C) and res′ = res and haz ′ ≥ haz ,

where haz ′ ≥ haz abbreviates haz ′.on ≥ haz .on, haz ′.lanes = haz .lanes and haz ′.ext =
haz .ext. This means that a hazard which is present in haz remains present in haz ′, but
it does not change its position and size when time is passing.

During a time transition, each car C continues to move, formalised by its increasing
position (pos ′(C) ≥ pos(C)), but it does not change its reserved lanes (res′ = res).
Note that the speed may change in an unconstrained manner. However, for collision
freedom a distance controller will have to adapt the speed so that a sufficient distance
is kept to the cars ahead and thus the reserved spaces remain disjoint.

MLSL with hazards. Recall that the basic MLSL for highway traffic consists of atoms,
propositional connectives, quantifiers over car variables and the two spatial chop opera-
tors. We now extend the syntax of MLSL from [HLOR11] (cf. Def. 6, p. 21) by a new
atom hz representing a hazard at the logical level. The resulting logic we call Hazard
Warning Multi-lane Spatial Logic (HMLSL).

Definition 53 (HMLSL syntax). The syntax of the Hazard Warning Multi-lane Spatial
Logic HMLSL is defined as

φ ::= true | u = v | free | re(c) | hz | ¬φ | φ1 ∧ φ2 | ∃c : φ1 | φ1aφ2 | φ2
φ1

,

where c, u, v ∈ Var. We denote the set of all HMLSL formulae by ΦH.

The new atom hz expresses that a space is occupied by a hazard. We accordingly extend
the semantics of MLSL from Def. 7, p. 21, to define in which circumstances a traffic
snapshot, a view and a variable valuation satisfy a given formula with the new atom hz .

Definition 54 (Semantics of hz). The satisfaction of the atom hz with respect to a traffic
snapshot T S, a view V = (L,X,E), and a valuation ν of the variables with ν(ego) = E
is defined as follows:

T S, V, ν |= hz ⇔ |L| = 1 and ‖X‖ > 0 and

hz .on = 1 and L ⊆ hz .lanes and X ⊆ hz .ext.

156

7.2 The Hazard Warning Communication Protocol

Note that the atom hz holds only in one lane. To express that a hazard holds in several
lanes, the vertical chop operator can be used. Often, we want to express that there is no
hazard in the considered space. With the extended logic HMLSL, we can specify hazard
safety with the following formula:

Safe-hz ≡ ¬∃c : 〈re(c) ∧ hz 〉 . (7.1)

Formula (7.1) means that no car has some overlap of its reserved space with a hazard.
The hazard detection controller we introduce in Sect. 7.2 uses the following formula as
a transition guard:

〈re(ego)〉 a 〈hz〉 . (7.2)

Formula (7.2) specifies that in front of the ego car (more precisely, of the car that the
variable ego currently evaluates to in the considered valuation ν) there is a hazard. By
the semantics of the two somewhere operators, the hazard needs not be on the same lane
that ego is driving on. This is e.g. the case for car A in Fig. 7.1.

7.2 The Hazard Warning Communication Protocol

We first give an intuition for the communication concept for the hazard warning approach
and after that present details on the hazard warning controllers.

Communication Concept

In our abstract model, the autonomous cars can be understood as nodes in a Vehicular
ad hoc network (VANET) [SD14], without a fixed wireless infrastructure and without
taking roadside units into account. Following the approach in [MFF15], an instantaneous
transitive bridge relay between the initial sender node A and the final receiver node B
is required, once a hazard is detected. This bridge relay we call communication chain
and formalise it as a finite sequence −→c of cars, the first one being the initial sender and
the last one being the final receiver (cf. Fig. 7.1).

The warning message is distributed via a broadcast channel hazard , where only cars
contained in the communication chain actively forward the message. This approach
avoids flooding the message by all traffic participants and thus avoids network overload.
Note that due to the use of broadcast channels, all the other cars – even while not
involved in the communication chain – receive the hazard warning, but they need not
react to it. With this, all cars between initial sender and final receiver will be warned
and can react to the hazard by e.g. (emergency) braking or changing to a non-hazardous
lane. However, in this chapter we focus on hazard safety of the cars in communication
chain −→c , particularly final receiver B.

157

7 Case study: A Hazard Warning Communication Protocol with MLSL

Communication chain. There are several results on how to calculate an optimal com-
munication chain. We refer to the approach of Claypool and Kannan [CK01], where
the authors introduce the concept of Selective Flooding for improved Quality-of-Service
Routing. This approach precomputes routes between all communication nodes, based
on static “snapshots” of the topology, which resemble our traffic snapshots T S. These
precomputed routes are then stored in a routing table. Whenever one node requests a
transitive communication link to another node, the optimal route between those nodes
is estimated by flooding control packages through the precomputed routes. The authors
furthermore propose a combination of Selective Flooding and Source Routing to cope
with network topology changes, like moving cars in our case.

In our approach, we assume that whenever one car forwards the warning message, it
listens on channel hazard if the next car in the communication chain really forwards the
message in some time bound tw. Therefore, the cars have to stay in communication range
until the message is successfully forwarded. In [SDD16], several methods are presented
for Cluster-based Routing Protocols in VANETs. In these hierarchical protocols, a cluster
head is obligated to communicate with the other nodes in his cluster to maintain the
cluster formation. Additionally, the authors describe how routes from a source to a
destination node can be established via Cluster-based Routing Protocols, which again is
interesting for generating our communication chain −→c .

We use the Z notation for sequences for the communication chain. Recall the functions
on Z sequences we introduced in the preliminary Sect. 2.1, where head s returns the
first element of a non-empty sequence s, second s returns the second element and tail s
returns the part that follows the first element of s.

Hazard warning controllers

For the hazard warning controllers, we again use ACTA with communication as intro-
duced in Chapter 4. On detecting a hazard, a warning message is sent via a broadcast
channel hazard . The corresponding output action is hazard !〈L ,−→c 〉, where L is the set
of lanes affected by the hazard and −→c is the communication chain, comprising unique
car identifiers. With this output action the current values ν(L) resp. ν(−→c) of these
two data variables are sent over broadcast channel hazard .

For synchronisation with this output, consider a related input action hazard?〈L,−→d 〉 :

head
−→
d = ego in another automaton. There, we first store the received values in local

variables L and
−→
d , such that ν(L) = ν(L) and ν(

−→
d) = ν(−→c). This input action

synchronises with the given output action only if the HMLSL formula head
−→
d = ego

evaluates to true, that is, if the first element of the communicated chain ν(
−→
d) = ν(−→c)

agrees with the value of ego.

For the actual hazard warning controllers, we adapt the formula (7.1) to

Safe-hz (ego) ≡ ¬ 〈re(ego) ∧ hz 〉 . (7.3)

158

7.2 The Hazard Warning Communication Protocol

Formula (7.3) states hazard safety for the ego car, meaning that there does not exist
a spatial overlap of ego’s reservation with a hazard anywhere in the considered view.
The main goal of our hazard warning controllers is to ensure that Safe-hz (ego) is never
violated. We prove this spatial hazard safety for our controllers later in Sect. 7.3.

In the locations of the controllers, we employ the invariant

Ih ≡ b→ Safe-hz (ego),

where b is a Boolean variable that is set to the value true if the controller detects a
hazard or receives a hazard warning message from another car. Informally, this means
that whenever a car has knowledge about a hazard, it avoids colliding with it. Thus a
kind of distance controller sensitive to hazards is part of the controllers. In the second
part of Sect. 7.3, we prove with the assistance of UPPAAL that the hazard warning will
arrive in time so that the car can react to it (timely hazard warning).

For the implementation of the communication protocol, we assume every car to be
equipped with two controllers. The first one is a hazard detection controller that detects
the hazard, determines the communication chain, and sends the initial hazard warning
message. The second controller is a forwarding controller that is used to forward the
message to all cars in reach of its communication radius. In order to send a hazard
warning message, we use the channel hazard to send and receive hazard warnings as
described previously. In the following, we will refer to the initial sender as car A and to
the final receiver as car B.

In timed automata, transitions may be taken immediately if guards and invariants allow
it. For the sake of reality, we assume a communication not to happen immediately, but
to take some positive upper time bound tc > 0 to take hardware limitations into account.
We assume all cars are equipped with the same communication technology and therefore
use the same time bound tc for all cars.

Hazard detection controller. The constructed hazard detection controller Adet is de-
picted in Fig. 7.2 and its construction is explained in the following, starting from the
initial location.

If the HMLSL formula 〈re(ego)〉 a 〈hz 〉 evaluates to true, the hazard detection controller
of initial sender A initiates the sending of the hazard warning message by changing from
its initial location q0 to q1. While doing so, A determines the set of affected lanes
using the function affected lanes() and stores them in a set named L . By definition of
our abstract model, we have affected lanes() = haz .lanes (cf. Sect. 7.1). On the same
transition, an optimal communication chain is calculated with the function com chain()
and stored in −→c . For details about deriving the communication chain we again refer
to the beginning of this section. The derived communication chain contains the car
identifier A of initial sender as first entry and the car identifier B of final receiver as last
entry. If we cannot establish a communication chain, comm chain() returns −→c = 〈A〉
and the controller changes back to its initial location, because there is no car to warn in
reach (#−→c ≤ 1).

159

7 Case study: A Hazard Warning Communication Protocol with MLSL

By setting the value of the Boolean control variable b to true, we remember whether
a warning message was already sent. With this we avoid unlimited resending of the
warning message and thus unnecessary flooding of channel hazard . As soon as the
hazard is detected, until the next car in the communication chain forwards the warning
message, initial sender A is obligated to maintain the communication link to the next
car in chain −→c .

After tc time units, the hazard detection controller sends the initial warning message to
the next car in −→c over broadcast channel hazard , along with the affected lanes L and the
communication chain −→c and changes to location q2. The identifier of the next car in −→c
is stored in a variable next . The controller then listens on channel hazard to ensure that
the forwarding controller of the next car really resends the message. If the forwarding
controller does not forward the message within a (reasonable short) time bound tw, the
hazard detection controller changes back to location q1 and repeats the warning message.
Note that one could implement a continuous warning message sending – as proposed for
common decentralised environmental notification messages – by assuming a time bound
tw = 0 (cf. ETSI standard 102 637-3 [ETS10]).

If the controller receives the forwarded message from the next car in −→c , the warning was
successful and it changes back to its initial location q0.

q0 : I q1 : x ≤ tc ∧ I

q2 : x ≤ tw ∧ I

〈re(ego)〉 a 〈hz 〉∧b = false / L := affected lanes();
−→c := comm chain(); b := true;x := 0

#−→c ≤ 1

#−→c > 1 ∧ x ≥ tc /
hazard !〈L ,−→c 〉;
next := second −→c ;x := 0

x ≥ tw
x := 0

hazard?〈L′ ,
−→
d 〉 : head

−→
d = next

Figure 7.2: Hazard detection controller Adet for detecting a hazard and starting the
hazard warning communication chain.

Forwarding controller. The constructed forwarding controllerAfor is depicted in Fig. 7.3
and we explain its construction in the following, as usual starting from the initial loca-
tion.

The forwarding controller copies part of the behaviour of the hazard detection controller.
The main difference is the transition from r0 to r1, where the forwarding controller
does not detect a hazard, but listens on channel hazard whether a hazard warning
message is forwarded. If a warning message is received, the forwarding controller of

160

7.3 Analysis of the Protocol and Proof of Hazard Safety

a car synchronises with the sender only if its car identifier is the second entry in the
communication chain. With this behaviour we prevent that every car that listens on
channel hazard resends the warning message.

If a car is second in the communication chain −→c , the forwarding controller synchronises
with the sender. Furthermore, we remove the first element of the communication chain
−→c , so that the car identifier of the active forwarding controller now is the first element
of the resulting shortened communication chain −→c ′ = tail −→c . If −→c ′ contains more
than one element, the forwarding controller sends the new communication chain via
channel hazard . The following behaviour is the same as that from the hazard detection
controller; the forwarding controller listens whether the next car in chain again forwards
the warning.

Provided the newly derived communication chain only contains the identifier of the
current car (#−→c ′ ≤ 1), the controller confirms that the message was delivered and
changes back to the initial location. Note that this is only the case if the current car is
the final receiver.

r0 : I r1 : x ≤ tc ∧ I

r2 : x ≤ tw ∧ I

(hazard?〈L′ ,−→c 〉 : second −→c = ego) ∧ b = false/
L := L′ ;−→c ′ := tail −→c ; b := true;x := 0

#−→c ′ ≤ 1 / hazard !〈L ,−→c ′〉

#−→c ′ > 1 ∧ x ≥ tc /
hazard !〈L ,−→c ′〉;
next := second −→c ′;x := 0

x ≥ tw/
x := 0

hazard?〈L′ ,−→c 〉 : head −→c = next

Figure 7.3: Forwarding controller Afor for forwarding hazard messages.

7.3 Analysis of the Protocol and Proof of Hazard Safety

In this section, we start with briefly explaining the implementation of the hazard warning
controllers in UPPAAL in Sect. 7.3.1. After that we conduct two proofs in Sect. 7.3.2:
The first proof shows that the warning messages are always sent timely and the second
proof shows spatial hazard safety for all cars.

161

7 Case study: A Hazard Warning Communication Protocol with MLSL

7.3.1 Implementation in UPPAAL

For our implementation in UPPAAL we conduct the following two adaptations of our
hazard detection controller Adet and forwarding controller Afor to the type of extended
timed automata UPPAAL uses. We distinguish these adapted automata from the con-
trollers introduced in Sect. 7.2 by naming the detection controller by DET and the for-
warding controller by FOR. As before, we name the first car to perceive the hazard by
the car identifier A and the car which is supposed to receive the timely warning message
by B (cf. Fig. 7.1).

With UPPAAL, we verify the timely behaviour of our automata and therefore abstract
from the spatial aspects. We do not consider the affected lanes L in our UPPAAL
implementation because it is not relevant for the timely forwarding process and only
interesting for manoeuvres that cars could conduct to avoid the hazard. Also, we do
not need the spatial invariant I described in Sect. 7.2 and hence neither the Boolean
variable b.

Setting and results. In our implementation, we successfully performed several sys-
tem executions with N cars for different values for N with 2 ≤ N ≤ 100. Following
[MFF15] our goal was that a warning message from A is delivered to B in at most t
time units, where t = 100, as proposed there. In the simulation with UPPAAL each car
i owns a detection controller DET(i) and a forwarding controller FOR(i). Additionally,
we introduce an environment and two observer controllers needed for the verification in
the following paragraphs. The overall number of UPPAAL timed automata for every
execution is thus 2 ·N + 3. Each one of the verification properties introduced later was
checked in less than 0.1 seconds with a memory usage peak each time less than 85 KB
on a normal work station. Note that only those automata are actively interacting with
each other through the broadcast channel hazard that are neighbouring in the commu-
nication chain −→c (e.g., the fourteenth car in −→c is only answering a forwarding request
from the thirteenth car). In the following paragraphs, we explain the adaptations of our
controllers to UPPAAL and the additional controllers needed for the verification as well
as the verification properties.

HMLSL formulae. The hazard detection controller Adet (cf. Fig. 7.2) is using the
formula 〈re(ego)〉 a 〈hz 〉 as a guard at the transition from q0 to q1. Instead of using
an HMLSL formula – which is not available in UPPAAL – for hazard detection, we
introduce an additional automaton Environment that places and removes hazards. On
placing a hazard, the Environment informs controllers via a broadcast channel att(ention)
about the existence of a hazard and additionally sets init id = A. Initially, all detection
controllers are in location q0 and listen on channel att. As every of those controllers
additionally checks the guard id == init id, only the detection controller DET of initial
sender A synchronises with this output. The resulting detection controller DET for the
implementation in UPPAAL is depicted in Fig. 7.4.

Sending data over channels. Sending data over channels is not provided by UPPAAL,

162

7.3 Analysis of the Protocol and Proof of Hazard Safety

Figure 7.4: Adapted UPPAAL detection controller DET.

therefore we cannot pass our communication chain from car to car. But a distinction
between local variables, only accessible and changeable by one specific automaton, and
global variables, accessible and changeable by all automata in the system, is available.
However, by using a global variable for the communication chain −→c , we have to restrict
the access to it.

Consider again the forwarding controllerAfor from Fig. 7.3. On sending a hazard warning
message (transition from location r1 to r2), the controller remembers the second element
of −→c in a local variable next . The controller in the next car in −→c synchronises with this
output (transition from its location r0 to r1), and removes the head of −→c on the same
transition with the function tail −→c . This is consistent with our definition of sending data,
because only a local version −→c ′ of −→c is shortened and sent later. However, with a global
communication chain in our UPPAAL implementation, next is likely to be valuated with
the wrong element, because write and read access for −→c is uncontrolled.

We overcome this problem in our forwarding controller FOR by simply separating the
function tail −→c from the transition from r 0 to r 1. For this, we introduce a new in-
termediate location r im between r 0 and r 1. The location r im is committed, so no
interleaving transitions from any other automata is allowed until r im was left. On the
transition from r 0 to r m, we keep the following constructs: the input message on the
channel hazard , all guards and also the reset operation for clock the x. Then, on the
transition from r im to r 1, the global communication chain is shortened with tail −→c .
Since no synchronisation happens on this transition, there is no read access on the global
communication chain at the same time.

Note that besides the initial generation of −→c in the first detection controller through
function generate chain(), only the function tail() manipulates the communication chain,
by removing its first element. The functions head(), second() and chain size() only return
the respective elements or the current size of −→c . Thus, there is no need to separate these
functions from their respective transitions.

163

7 Case study: A Hazard Warning Communication Protocol with MLSL

Because of the committed location r im, the special case where the current forwarding
controller is located in final receiver B, and thus #−→c ≤ 1, is handled slightly differently
in our UPPAAL implementation. Particularly, no transition from r 1 to r 0 exists, but
the behaviour of that transition is implemented within the function second(): if the
communication chain contains only one element, second() returns 0 and the additional
guard id! = 0 ensures that the transition is not taken. In detail, this means that the
last controller in −→c takes that transition once, namely when its identifier is the second
in −→c . This ensures that its predecessor receives the confirmation that the message was
sent successfully. With an additional transition vom r 2 to r 0, it is ensured that the
last controller does not wait in location r 2 infinitely long for a confirmation, as no
next sender exists. The adapted forwarding controller FOR for the implementation in
UPPAAL is given in Fig. 7.5.

Figure 7.5: Adapted forwarding controller FOR for the UPPAAL implementation with an
additional committed location r im.

Observer Automata and Verification.

We pursue two verification goals with UPPAAL. To this end, we introduce automata
Observer1 resp. Observer2. Remember that the overall goal of our approach is a hazard
warning message delivery before the final receiver B reaches the hazard after t time units
and that we assume one single communication to take tc time units.

Following [MFF15], we set t := 100 and assume one communication to take t c := 1 time
units due to hardware restrictions (cf. Sect. 7.2). With these assumptions, the hazard
warning is supposed to be timely delivered if at most N = 100 cars are considered for
the communication chain and the warning delivery is finished before t time units. This
fits the maximal amount of cars that were used in the simulation in [MFF15].

164

7.3 Analysis of the Protocol and Proof of Hazard Safety

Observer1 (end-to-end message delivery). This observer checks the end-to-end latency
of the warning message delivery between the initial sender and the final receiver. The
time bound t introduced in Sect. 7.1 we use as a failure time bound in Observer1. If
t is exceeded, Observer1 changes to a distinct bad location Observer1.fail and our
timely message delivery verification goal is missed. Observer1 monitors the following
three events in the given order:

1. The environment places a hazard (change to location Observer1.hz_on).

2. The detection controller of the initial sender (first element in −→c) sends the initial
warning message (change to location Observer1.warning_sent).

3. The forwarding controller of the final receiver (last element in −→c) confirms that it
received the warning message
(change to location Observer1.warning_received).

The automaton Observer1 is depicted in Fig. 7.6.

Figure 7.6: Observer1 monitors that when initial sender A forwards the hazard warning,
car B finally receives the message in less than t time units, where t is the
time in which car B would arrive at the hazard and our timely warning goal
would be missed.

Observer1 enters Observer1.fail if either 2. does not occur in less than t time units, or if
2. occurred timely, but 3. was not reached in less than t time units. This would be the
case if the final receiver reaches the hazard without receiving a warning. Note that the
transition from warning received to hz off is used for resetting the controller to its initial
location.

For a system consisting of N controllers DET, N controllers FOR and one entity of Ob-

server1 we examined the following requirements with UPPAAL for N ≤ 100. Here,
the symbol -> is the leads-to operator in the logic of UPPAAL (cf. Sect. 6.1, p. 112).

165

7 Case study: A Hazard Warning Communication Protocol with MLSL

Unreachability of fail I: A[] not Observer1.fail

Liveness I: Observer1.hz_on ->

(Observer1.warning_sent or chain_size <= 1))

Liveness II: Observer1.warning_sent ->

(Observer1.warning_received and Observer1.x <= t)

All three queries hold and were verified within seconds.

Observer2 (observing message delivery between two arbitrary cars). This observer
checks the timely forwarding of the hazard warning message between two consecutive
cars in the communication chain. In Observer2 we use the time bound t c for one single
communication as failure time bound. If a communication is not resent in less than t c
time units, the bad location Observer2.fail is entered. The automaton monitors the
following three events in the given order:

1. Wait for a hazard warning (by idling in location Observer2.wait).

2. A hazard warning of an arbitrary forwarding controller n is received (change to
location Observer2.listening).

3. Forwarding controller n + 1 forwarded the warning (and thus changes to location
Observer2.success).

We depict Observer2 in Fig. 7.7.

Figure 7.7: Observer2 monitors that whenever a car in the communication chain −→c
forwards a warning message, the next car in −→c really reforwards this message
in less than t c time units. This verification result is used in our proof by
induction for the timely hazard warning safety property.

166

7.3 Analysis of the Protocol and Proof of Hazard Safety

Note that Observer2 monitors not only one hazard warning procedure, but listens if
every single warning message itself is resent timely by the next automaton in commu-
nication chain −→c . We use this timed liveness property later in our inductive proof in
Sect. 7.3.2. The fail location Observer2.fail is entered, if a single communication is
not forwarded in less than t c time units.

We consider the last forwarding as a special case: If forwarding controller n+ 1 belongs
to the last car B in −→c , Observer2 does not change back to Observer2.wait, because
not further forwarding messages will occur. For a system consisting of N controllers DET,
N controllers FOR, N controllers Observer2 and one entity of Observer1, we examine
the following requirements with UPPAAL for N ≤ 100:

Unreachability of fail II: A[] not Observer2.fail

Liveness III: Observer2.wait -> Observer2.success

Both queries were successfully verified within seconds. We use the verification results of
our implementation in UPPAAL from this section to prove the timely message propaga-
tion in the following section.

7.3.2 Proof of Timely Warning and Hazard Safety

In this section we stipulate that every car is equipped with a hazard detection controller
Adet and a forwarding controller Afor as introduced in Sect. 7.2. We now prove that
warned cars do not collide with the hazard. The safety proof is divided into two steps.

Firstly, we show a timing property: whenever a hazard is detected by a car A, the
final receiver B in a communication chain from A to B is warned within some time
bound depending on the length of the chain. This proof is supported by the model
checker UPPAAL. Secondly, we link the timing property to a spatial property: when the
established time bound is below the time it takes car B to reach the hazard then we can
guarantee hazard safety of B in the sense that it satisfies the spatial property

Safe-hz (ego) ≡ ¬〈re(ego) ∧ hz 〉 ,

i.e., the reserved space of B does not overlap with the hazard.

Timely Hazard Warning Message Propagation

We begin with the timing property.

Theorem 3 (Timely warning). Suppose a communication chain −→c = 〈A, ..., B〉 of length
N ≥ 2 is built up after a hazard detection by the initial car −→c (1) = A in the chain. Then
a hazard warning message is received by the final car −→c (N) = B in the chain within
(N − 1) · tc time after it has occurred.

167

7 Case study: A Hazard Warning Communication Protocol with MLSL

Proof. We show by induction over i that

(∗) for every i ∈ {1, ..., N} a hazard warning message is received by car −→c (i)
within (i− 1) · tc time after it has occurred, and if i < N holds,
the hazard warning message is forwarded to car −→c (i+ 1) at most tc time later.

Induction basis: i = 1. By construction of Adet , the initial car −→c (1) = A senses the
hazard immediately, i.e., within 0 time after it has occurred, and forwards it to −→c (2) at
most tc time later.

Induction step: i→ i+1, where i+1 ≤ N . By induction hypothesis, the hazard warning
message is received by car −→c (i) within (i − 1) · tc time after it has occurred, and car
−→c (i) forwards it at most tc time later. This communication is instantaneously received
by the next car −→c (i+1) in the chain. Thus altogether the hazard warning is received by
car −→c (i+ 1) within i · tc time after it has occurred. By construction of Afor , if i+ 1 < N
holds, car −→c (i+ 1) forwards the hazard warning at most tc time later.

We checked the induction step for fixed values in our implementation of the controllers
with UPPAAL. We refer to Observer2 which monitors the properties Unreachability of
fail II and Liveness III (cf. Sect. 7.3.1). There we showed for a communication chain −→c
with N = 100 and a fixed constant tc that if an arbitrary car −→c (i) with i < N receives
a hazard warning message, this message is really resent to the next car −→c (i + 1) and
that this communication takes less than tc time units: The location Observer2.fail

is entered, iff one single communication exceeds tc time units. Unreachability of Ob-

server2.fail proves that indeed no single communication exceeds tc time units. The
property Liveness III verifies that whenever an arbitrary element −→c (i) receives a warn-
ing, it is successfully forwarded to −→c (i+ 1).

As we can only verify our properties in UPPAAL for a fixed and finite amount of cars
N , a forwarding exception is the special case −→c (N) = B, where B is the final receiver
and therefore last element in −→c . In this case, the message is not forwarded, because the
communication goal is reached. From (∗) the statement of the theorem follows.

As described, for the induction step we used the properties monitored by Observer2,
which observes if one single timely message forwarding process from an arbitrary car
−→c (i) to the next car −→c (i+ 1) is successful. Additionally to that, we derived interesting
verification results from Observer1, which monitors the overall timely message sending
from initial sender A to final receiver B. In several iterations, we showed for various
values of N with 2 ≤ N ≤ 100 that a warning message from A indeed is delivered to B
in at most t time units, where again t = 100, as proposed in [MFF15]. With Observer1,
the property Liveness I verifies that if A has knowledge of the hazard, it actually sends
the initial warning and Liveness II verifies that that message is finally received by B.
Unreachability of fail I shows that the overall message sending happens in at most t time
units.

168

7.3 Analysis of the Protocol and Proof of Hazard Safety

Avoidance of Hazard Collisions

We now turn to the spatial property. For the following safety theorem, we state the
following assumptions:

A1. T S0 is the traffic snapshot where the hazard first occurred. In T S0 all cars satisfy
the property Safe-hz.

A2. Car A is closest to the hazard and detects it in T S0, thereby building up a com-
munication chain −→c = 〈A, ..., B〉 of length N ≥ 2 to car B.

A3. Car B needs t time to reach the hazard and during this time it satisfies the property
Safe-hz.

A4. For the time bound tc used in the controllers Adet and Afor the inequality (N − 1) ·
tc ≤ t holds.

Theorem 4 (Hazard safety). Suppose the assumptions A1–A4 hold. Then in every traffic
snapshot T S∗ that is reachable from T S0 via time transitions car B satisfies the property
Safe-hz(ego) (under the valuation ν(ego) = B).

Proof. Note that by A2, Theorem 3 is applicable. Let T S∗ be reachable from T S0 via

time transitions. Then T S0 t∗−→ T S∗ for some time t∗ ∈ R≥0. If in T S∗ car B has not
yet received the hazard warning message sent by car A via the communication chain −→c ,
we know by Theorem 3 and A4 that t∗ < (N − 1) · tc ≤ t holds. Thus by A3, car B
satisfies Safe-hz (ego) in T S∗.

If in T S∗ car B has received the hazard warning message via its controller Afor , this
controller guarantees Safe-hz (ego) from the moment on that the hazard warning message
has first been received by B, say in the traffic snapshot T S1. Thus we can split the time
t∗ into t∗ = t1 + t2 such that

T S0 t1−→ T S1 t2−→ T S∗,

where t1 ≤ (N − 1) · tc ≤ t due to Theorem 3 and A4. Then car B satisfies Safe-hz (ego)
in T S∗ by the invariant of its controller Afor .

By a similar argument, we can extend the above theorem and show that every car in the
communication chain −→c satisfies the property Safe-hz (ego).

169

7 Case study: A Hazard Warning Communication Protocol with MLSL

Outlook (cars outside of −→c)

So far, we only prove hazard safety for the cars in communication chain −→c , because only
those synchronise with a hazard warning (cf. transition in Afor from r0 to r1). However,
with our broadcast communication we can also reach all other cars not involved in the
communication chain. We therefore assume the communication radius r to stretch over
all lanes L and to have a positive extension along the lanes. For formalisation, we refer
to the definition of a view from Section 3.4, as the communication radius of a car can be
considered to be a communication view VC . Only cars inside the communication view
VC(E) of a warning car E can synchronise with E.

For cars outside −→c to synchronise with a warning in their communication view, we add a
transition in the forwarding controllerAfor . The new transition leads from initial location
r0 to a new location r4, where the invariant I is required to hold (cf. Section 7.2). The
new transition gets the guard

(hazard?〈L ,−→c 〉 : not-element(−→c , ego) ∧ b = false

and the variable update b := true. The function not-element(−→c , ego) evaluates to true
if the car identifier that ego evaluates to is not included in −→c .

Chapter summary. In this chapter, we formalised the timing aspects of the simulation-
based analysis of a communication protocol for timely traffic hazard warning to other
traffic participants from [MFF15] by using our automotive-controlling timed automata
(ACTA) (cf. Chapter 4). With this formalisation we prove the timely warning property,
partly supported by the model checker UPPAAL [BDL04].

Also, we linked the timely warning property with spatial reasoning to prove avoidance of
hazard collision using a new extension of the Multi-lane Spatial Logic MLSL [HLOR11]
dealing with hazards, called HMLSL. Formulae of this logic appear in the guards and
invariants of ACTA to establish the desired spatial safety properties.

170

8 Conclusion

We split our conclusion into four parts. First, we summarise the results of this thesis
in Sect. 8.1. After that, we informally evaluate our results w.r.t real-world demands
in Sect. 8.2. The goal of this evaluation is to analyse the degree of abstraction of our
approach and to illustrate possibilities for approaching a more realistic approach in the
future. For this, we briefly summarise some of the assumptions that we already weakened
within this thesis and we point out possible directions for weakening further assumptions.
After that, we give a very brief overview over a topic we started working on recently in
Sect. 8.3, and finally conclude with some directions for future work in Sect. 8.4.

8.1 Summary

The innovation of our approach is the level of abstraction from car dynamics to merely
spatial reasoning for safety properties in urban traffic scenarios. In [HLOR11] and
[HLO13] this was shown for motorways and country roads. We were able to build on
these settings, by introducing methodologies for an extension to urban traffic for both
the abstract model and the controllers. Additionally, we introduced a formal semantics
for the traffic controllers with ACTA and examined different system properties for the
controllers. We introduced a case study on a hazard-warning communication protocol
to further strengthen our work and show its flexibility.

For the extension of the abstract model, we started with adding new topological features
to the abstract model; an urban road network allowing intersections where arbitrary
numbers of lanes meet and in which cars follow infinite paths. We included this new
urban road network into the traffic snapshot definition from [HLOR11] and also intro-
duced sanity conditions for both the topology and the new urban traffic snapshot. We
then introduced virtual multi-views, to cope with the bended views for the different
turn manoeuvres at intersections. We also added a representation of crossing segments
to Multi-lane Spatial Logic and defined the evaluation of UMLSL formulae over the
extended urban traffic snapshot and our virtual multi-views.

Furthermore, we constructed a crossing controller with new controller actions for crossing
manoeuvres (crossing claim and crossing reservation). With the syntax and semantics
of automotive-controlling timed automata (ACTA), we presented a generic type of au-
tomaton to formally implement our crossing controller as well as the lane change and
overtaking controllers from [HLOR11] and [HLO13] and other traffic controllers. We also

171

8 Conclusion

gave an overview over the different parts of (dynamic and discrete) control within one
autonomous system and delimited where our crossing controller can be placed in into
that bigger picture. To weaken some of our assumptions, we also introduced a version of
our crossing controller which uses communication to cope for an imperfect knowledge.

Next, we turned towards desirable system properties for both our crossing controller as
well as for the highway traffic lane change controller from [HLOR11]. The properties
we considered where safety, (bounded) liveness and fairness. For this, we proved safety
of our crossing controller with a mathematical proof, using an induction over all pos-
sible reachable traffic snapshots starting from an arbitrary initial safe traffic snapshot.
For showing the other system properties, we used an implementation of our abstract
model and controllers in UPPAAL SMC. With this, we were able to detect and resolve
unlive behaviour of both the lane change and the crossing controller. We improved the
controllers and showed (bounded) liveness for both controllers. We also introduced a
communication concept with priorities to the crossing controller, with which we were
able to show its fairness. Again to weaken some of the strong assumptions we make, we
introduced uncertain communication to the crossing controller.

We complete our work with the hazard warning case study for highway traffic, for which
we include hazards into the model and logic for highway traffic and introduce hazard
warning controllers. We show the timely hazard warning with a mathematical proof
by induction assisted with verification results obtained for an implementation of our
controllers in UPPAAL SMC.

8.2 Evaluation – How Realistic is our Approach?

As indicated before, some of the assumptions for our model that we give in Sect. 3.1,
as well as the assumptions for our controller that we give in Sect. 5.2, are quite strong
and lead to a high level of abstraction of our approach. However, abstraction from some
details is necessary if one strives to use formal methods for purely logical reasoning about
a system [CGL94]. Further on, if we can prove a result on a high level of abstraction, a
next step can be to weaken some of the strong assumptions that were made, to achieve
a more realistic approach.

We summarise which assumptions we already weakened within this thesis and give ideas
for further possibilities of approaching scenarios closer to reality with our approach.

We weakened the assumption about having perfect knowledge about perceiving the brak-
ing distances of other cars (cf. sensor function ΩE from Sect. 3.4.3, p. 59). This was done
by introducing a crossing controller with imperfect knowledge in Sect. 5.4, which only
perceives the physical size of cars within their safety envelopes with ΩE . This controller
copes for the imperfect knowledge by using communication. Of course, that notion of
’imperfect’ knowledge results in a model, where still a large amount of knowledge is
assumed and a high level of abstraction exists. However, using communication, we could

172

8.2 Evaluation – How Realistic is our Approach?

also compensate other types of lack of knowledge. For instance, we could assume a more
realistic sensor function ΩE , where also sensor failure is considered. With this, a car
that is not able to perceive sufficient information for its reasoning process could commit
traffic manoeuvres with the help of other cars or road-side units.

The second assumption that we weakened is the assumption about having 100% reliable
communication. For this, we introduced uncertain communication to the fair crossing
controller CRPF in Sect. 6.4.4 by introducing PACTA. Unsurprisingly, with our notion
of uncertain communication, the considered liveness and fairness properties now only
hold with a certain probability. However, safety remains invariantly valid. One goal for
future work could be to investigate more thoroughly what realistic values are for how
lossy and unreliably channels actually are. For this, results from the Vehicle-2-Vehicle
or Vehicle-2-X community are of importance [SD14].

Further on, we could apply uncertainties to more of the MLSL traffic scenarios. For
instance, in the country roads approach [HLO13] (cf. Sect. 2.4, p. 29), communication
with a helper car is used to safely overtake other cars. On using uncertain communication
channels in that approach, one could analyse how the system properties change.

Also, we previously sketched that sensor uncertainty is a topic worthwhile investigating.
We could use PACTA not only for introducing uncertainty to communication channels
to the MLSL controllers, but also to formalise uncertainty of the sensor function ΩE

from Sect. 3.4.3. Whenever an autonomous car detects uncertain sensor information,
it could e.g. communicate with an appropriate sensor helper controller for additional
information to complete a driving manoeuvre.

Communication could also be used if sensors are blocked by objects. For instance,
consider the traffic situation depicted in Fig. 8.1. There, the view of car E is blocked by
an obstacle. However, communication should be unaffected by the obstacle. Nonetheless,
if we assume communication failure, cars E and F might not perceive each other in time.
For this, car D can operate as a helper car and share its sensors’ information with cars
E and F .

0 1

F

2

3D

45

6

7 E c0 c1

c2c3

Figure 8.1: Intersection where obstacles restrict the view of car E.

173

8 Conclusion

One of the strongest assumptions that we have is to consider that all cars drive au-
tonomously and use the controllers that we introduce in Sect. 5.1. This assumption is
provided in Sect. 5.2 and assumed to hold for showing our system properties in Chap-
ter 6. Weakening this assumption would mean to consider unknown vehicles, which
are either human-controlled vehicles or vehicles using an (autonomous) driving technol-
ogy different from our approach. On facing such an unknown vehicle, we cannot know
which driving rules and driving plans the vehicle follows. However, several approaches
exist for estimating the possible driving trajectories of unknown vehicles. Taking the
estimated trajectories into account, our controllers could adapt their traffic manoeuvres
accordingly. However, with only estimated trajectories of other cars, our system prop-
erties – including safety – may only hold with a certain probability. An approach on
including human-controlled vehicles into the highway traffic approach from [HLOR11]
was sketched in [Bis18].

8.3 Recent Work: Explainability

A more recent topic that we started working on is the explainability of cyber-physical
systems (CPS). We did not include it in this thesis, as it is a topic beyond the scope of
this thesis and hitherto rather a vision than a thoroughly elaborated theory. The goal of
the work is that increasingly complex cyber-physical systems should gain the ability of
self-explaining their past, current and future behaviour. We claim that explainability of
CPS is essential to increase confidence and trust between the user and the system, as well
as to enhance possibilities of collaboration between different CPS. With that, in our case,
a system’s explanation is not only user-centred but also includes internal explanations
that can be provided to other systems. We introduce details on our Monitor, Analyse,
Build, Explain (MAB-EX) framework in [BGG+19]. MAB-EX is based on the Monitor,
Analyse, Plan, Execute (MAPE) loop for self-adaptive systems from IBM [Sin06] and
includes the following four phases:

� Monitor system data, the environment and the recipient of explanations (user,
other system,...),

� Analyse the monitored data to detect the need for an explanation,

� Build an explanation by evaluating an internal model of the system (explanation
model), and

� Explain the behaviour in question to the recipient.

In case of the autonomous urban traffic controllers from this thesis, there are several
observations that could be explained. For instance, if another car passes the intersection
before the own car, it could be explained that the other car had a larger priority for
passing the intersection. Equally, a car could estimate the time needed to pass an
intersection and pass this information to its driver or another car. Finally, in case of a
traffic accident involving an autonomous car, it would be useful if the car can provide
information about the cause of the accident, e.g. for legal and insurance questions.

174

8.4 Directions for Future Work

8.4 Directions for Future Work

Besides the approaches already sketched in the evaluation in Sect. 8.2, we see several
more possibilities to extend the work presented in this thesis.

Virtual view construction. In Sect. 3.4 on p. 57, we observed that with our view con-
struction, we loose vertical spatial information in the resulting virtual views, caused by
the different numbers n, m of lanes meeting at an intersection. Additionally, we in-
formally introduced placeholder lanes for one-way lanes in Remark 1, p. 56. We could
overcome the loss of vertical spatial information by filling up n-by-m intersections with
fake lanes upon creating a virtual view. This would result in an x-by-x intersection with
only one distinct virtual view again. However, we would have to introduce fake crossing
segments, too, to determine the connections of real lane segments with fake lanes. It
is non-trivial to determine where the fake lanes and fake crossing segments should be
added to the topology.

Decidability. In Sect. 1.1, p. 2, we describe related work [Lin15, Ody15] concerning the
undecidability of (robust) satisfiability of MLSL. This undecidability result also applies
for our UMLSL from Sect. 3.5. However, we also describe the approach from [FHO15]
in Sect. 1.1, where the authors prove that MLSL is decidable if only cars within some
specific scope are considered. It surely would be interesting to examine the applicability
of the results from [FHO15] to our approach with urban traffic.

Proof system. A proof system for an extension of MLSL including length measurement
and modal operators was proposed in [Lin15]. This proof system could be extended for
UMLSL to prove (safety) properties of our controllers by deduction. However, our urban
traffic approach is a lot more complex than the highway traffic approach, due to the more
complex topology and view construction. Thus, an extension of the proof system would
be complex and success is hardly foreseeable.

Controllers. An interesting point for future work concerning the controllers is to connect
and combine the existing approaches (highway traffic, urban traffic, ...) and controllers
(e.g. lane change controller, crossing controller, ...). As a vision, one could think of one
controller on top, coordinating the more specialised controllers. Further on, controllers
for currently not covered scenarios could be constructed using ACTA (e.g. parking
controller, highway-exit controller, ...).

Implementation. It is of interest to compare our UPPAAL implementation for high-
way traffic from Sect. 6.2 and our implementation for urban traffic from 6.4 with other
approaches regarding its efficiency. For this, in the highway traffic case, a distance con-
troller should be integrated into the approach. However, we refer back to Sect. 5.1,
where we gave details why this is a complex task. Nonetheless, one optimisation for the
highway traffic case could be to include that different models are automatically checked
as initial traffic snapshots T S0.

175

8 Conclusion

For the urban traffic case, an implementation allowing more complex intersections than
the 2-by-2 crossing used for our UPPAAL model in Sect. 6.4 might be helpful. A more
complex priority system where cars can increase their priority even if they are not di-
rectly in front of the crossing might help to increase the efficiency of the fairness protocol
further. Using such a system, it might be reasonable to examine the efficiency of urban
road networks instead of single intersections. Another point for future work is an opti-
misation of our controllers, to allow for more than 2 resp. 3 cars for the time-unbounded
verification (cf. Sects. 6.4.2 and 6.4.3).

Hazard warning. In Chapter 7, we consider only highway traffic scenarios. A linkage of
the hazard warning approach with the country roads approach from [HLO13] and the
urban traffic approach from this thesis is highly interesting for future work. In case of
country roads, the hazard warning message must be sent in the two driving directions,
using two communications chains (cf. Fig. 8.2). In urban traffic, the message possibly
needs to be sent in even more directions, depending on the location of the hazard.

0 E F

1 B

2 C L

3 D G H

4 K A

Figure 8.2: Extension of the hazard warning approach to country roads, where a hazard
may stretch over lanes with different driving directions.

Optimisation of traffic flow. Although this has not been in the scope of this thesis,
there are several starting points for an optimisation of traffic flow in our proposed urban
traffic scenario. For instance, one could consider including a concept of platooning
[LGS98, LUS12] (cf. Sect. 1.3, p. 7). If for instance two cars, one driving behind the other,
are approaching an intersection and both plan to conduct the same crossing manoeuvre,
they could conduct the traffic manoeuvre together as a temporary platoon. For the
availability of such a platoon, it is possible to take heavily trafficked streets into account,
as building a platoon is more likely on those kinds of roads. The sketched procedure
is e.g. described in [NB04, LW06] (cf. Sect. 1.3, p. 7). In both approaches, cars use
communication to build virtual platoons on approaching an intersection. In future work,
we could examine how to include approaches like these into our urban traffic approach.

More dynamical reservation of crossing segments. Further on, the crossing controller Acc
that we introduced in Sect. 5.3 reserves all needed crossing segments for its manoeuvre
at once, instead of one segment after the other. With this, it is for instance not possible
that two cars simultaneously turn left in front of each other. Surely, traffic flow may
be optimised if we reserve the needed segments more dynamically one after the other.
However, this is deadlock-prone, so this adaptation requires an additional mechanism to
prevent deadlocks.

176

Bibliography

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for
real-time systems. In 5th IEEE Symposium on Logic in Computer Science,
Proc., pages 414–425, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[AD14] Matthias Althoff and John M. Dolan. Online verification of automated
road vehicles using reachability analysis. IEEE Transactions on Robotics,
30(4):903–918, 2014.

[ADNL+15] Yehia Abd Alrahman, Rocco De Nicola, Michele Loreti, Francesco Tiezzi,
and Roberto Vigo. A calculus for attribute-based communication. In 30th
ACM Symp. on Applied Computing, Proc., pages 1840–1845. ACM, 2015.

[AM16] Matthias Althoff and Silvia Magdici. Set-based prediction of traffic par-
ticipants on arbitrary road networks. IEEE Trans. Intelligent Vehicles,
1(2):187–202, 2016.

[AMB+12] Mikael Asplund, Atif Manzoor, Mélanie Bouroche, Siobhàn Clarke, and
Vinny Cahill. A formal approach to autonomous vehicle coordination. In
Dimitra Giannakopoulou and Dominique Méry, editors, International Sym-
posium on Formal Methods, Proc., pages 52–67. Springer, 2012.

[ANT12] Mikael Asplund and Simin Nadjm-Tehrani. Worst-case latency of broadcast
in intermittently connected networks. International Journal on Ad Hoc
Ubiquitous Computing, 11(2/3):125–138, 2012.

[AS10] Tsz-Chiu Au and Peter Stone. Motion planning algorithms for autonomous
intersection management. In AAAI Workshop on Bridging The Gap Be-
tween Task And Motion Planning BTAMP, Proc., pages 2–9. AAAI Press,
2010.

[Asp18] Mikael Asplund. Automatically proving the correctness of vehicle coordi-
nation. ICT Express, 4:51–54, 2018.

[ASS11] Tsz-Chiu Au, Neda Shahidi, and Peter Stone. Enforcing liveness in au-
tonomous traffic management. In 25th Conference on Artificial Intelligence,
Proc., pages 1317–1322. AAAI Press, 2011.

177

Bibliography

[BDH+19] Yougang Bian, Jieyun Ding, Manjiang Hu, Qing Xu, Jianqiang Wang, and
Keqiang Li. An advanced lane-keeping assistance system with switchable
assistance modes. IEEE Transactions on ITS, pages 1–12, 2019.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on
uppaal. In Marco Bernardo and Flavio Corradini, editors, Formal Methods
for the Design of Real-Time Systems, pages 200–236. Springer, 2004.

[BGG+19] Mathias Blumreiter, Joel Greenyer, Francisco Javier Chiyah Garcia, Verena
Klös, Maike Schwammberger, Christoph Sommer, Andreas Vogelsang, and
Andreas Wortmann. Towards self-explainable cyber-physical systems. In
22nd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion, pages 543–548, 2019.

[BHLO17] Gregor v. Bochmann, Martin Hilscher, Sven Linker, and Ernst-Rüdiger
Olderog. Synthesizing and verifying controllers for multi-lane traffic ma-
neuvers. Formal Aspects of Computing, 29(4):583–600, 2017.

[Bis18] Cristopher Bischopink. Moving hazards - reasoning about humand drivers
in autonomous traffic. Master’s thesis, University of Oldenburg, 2018.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[Bra] Technische Universität Braunschweig. Project stadtpilot. https://www.tu-
braunschweig.de/stadtpilot. Project webpage, accessed: 11/26/2019.

[Brä11] Torben Bräuner. Hybrid Logic and its Proof-Theory. Springer, 2011.

[BS19] Christopher Bischopink and Maike Schwammberger. Verification of fair
controllers for urban traffic manoeuvres at intersections. In Emil Sekerin-
ski, Nelma Moreira, José N. Oliveira, Daniel Ratiu, Riccardo Guidotti,
Marie Farrell, Matt Luckcuck, Diego Marmsoler, José Campos, Troy As-
tarte, Laure Gonnord, Antonio Cerone, Luis Couto, Brijesh Dongol, Martin
Kutrib, Pedro Monteiro, and David Delmas, editors, Formal Methods. FM
2019 International Workshops - Porto, Portugal, October 7-11, 2019, Re-
vised Selected Papers, Part I, volume 12232 of Lecture Notes in Computer
Science, pages 249–264. Springer, 2019.

[BTK07] Kostas E. Bekris, Konstantinos I. Tsianos, and Lydia E. Kavraki. A de-
centralized planner that guarantees the safety of communicating vehicles
with complex dynamics that replan online. In IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Proc., pages 3784–3790. IEEE, 2007.

[CDV12] Alessandro Colombo and Domitilla Del Vecchio. Efficient algorithms for
collision avoidance at intersections. In 15th ACM Int. Conf. on Hybrid
Systems: Comp. and Control, HSCC, Proc., pages 145–154. ACM, 2012.

178

Bibliography

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Logic of
Programs, Workshop, pages 52–71. Springer, 1982.

[CE16] Lei Chen and Cristofer Englund. Cooperative intersection management: A
survey. IEEE Trans. on Int. Transportation Systems, 17(2):570–586, 2016.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-
ing and abstraction. ACM Transactions on Programming Languages and
Systems, 16(5):1512–1542, 1994.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, 1999.

[CHR91] Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. A calculus of dura-
tions. Information Processing Letters, 40(5):269–276, 1991.

[CK01] Mark Claypool and Gangadharan Kannan. Selective flooding for improved
quality-of-service routing. In Int. Symp. on Convergence of IT and Comm.,
ITCom, Proc., pages 33–44. Int. Society for Optics and Photonics, 2001.

[Com11] European Commission. White paper: Roadmap to a single European trans-
port area – towards a competitive and resource efficient transport system.
Technical Report COM(2011) 144 final, 2011.

[Cou18] European Transport Safety Council. Ranking eu progress on road safety –
12th road safety performance index report. Technical report, 2018.

[Cou19] European Transport Safety Council. Road safety priorities for the EU 2020-
2030 – briefing for the Europ. parliamentary elections. Technical report,
2019.

[CRT09] Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. Requirements
validation for hybrid systems. In Ahmed Bouajjani and Oded Maler, editors,
21st International Conference on Computer Aided Verification, CAV, Proc.,
pages 188–203. Springer, 2009.

[CSB+17] Rajashekar Chandra, Yuvaraj Selvaraj, Mattias Brännström, Roozbeh
Kianfar, and Nikolce Murgovski. Safe autonomous lane changes in dense
traffic. In IEEE 20th Int. Conf. on ITS, Proc., pages 1–6. IEEE, 2017.

[DB16] Murat Dikmen and Catherine M. Burns. Autonomous driving in the real
world: Experiences with tesla autopilot and summon. In 8th International
Conference on Automotive User Interfaces and Interactive Vehicular Appli-
cations (AutomotiveUI), Proc., pages 225–228. ACM, 2016.

[DCDVL17] Eric Dallal, Alessandro Colombo, Domitilla Del Vecchio, and Stéphane
Lafortune. Supervisory control for collision avoidance in vehicular net-
works using discrete event abstractions. Discrete Event Dynamic Systems,
27(1):1–44, 2017.

179

Bibliography

[DFWB12] Louise A. Dennis, Michael Fisher, Matthew P. Webster, and Rafael H. Bor-
dini. Model checking agent programming languages. Automated Software
Engineering, 19(1):5–63, 2012.

[DH01] Werner Damm and David Harel. LSCs: Breathing life into message sequence
charts. Formal Methods in System Design, 19(1):45–80, 2001.

[DHO06] Werner Damm, Hardi Hungar, and Ernst-Rüdiger Olderog. Verification of
cooperating traffic agents. Int. Journal of Control, 79(5):395–421, 2006.

[Dij71] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta
Informatica, 1(2):115–138, 1971.

[DJL+15] Alexandre David, Peter Gjøl Jensen, Kim G. Larsen, Marius Mikučionis,
and Jakob H. Taankvist. Uppaal stratego. In Christel Baier and Cesare
Tinelli, editors, Tools and Algorithms for the Construction and Analysis of
Systems, volume 9035 of LNCS, pages 206–211. Springer, 2015.

[DLL+15] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, and
Danny Bøgsted Poulsen. Uppaal SMC tutorial. STTT, 17(4):397–415, 2015.

[DMPR18] Werner Damm, Eike Möhlmann, Thomas Peikenkamp, and Astrid Rakow.
A formal semantics for traffic sequence charts. In Marten Lohstroh, Pa-
tricia Derler, and Marjan Sirjani, editors, Principles of Modeling - Essays
Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, pages
182–205. Springer, 2018.

[DMR14] Werner Damm, Eike Möhlmann, and Astrid Rakow. Component based
design of hybrid systems: A case study on concurrency and coupling. In 17th
International Conference on Hybrid Systems: Computation and Control,
HSCC, Proc., pages 145–150. ACM, 2014.

[DPRW13] Werner Damm, Hans-Jörg Peter, Jan Rakow, and Bernd Westphal. Can we
build it: formal synthesis of control strategies for cooperative driver assis-
tance systems. Math. Structures in Comp. Science, 23(4):676–725, 2013.

[DSB16] Shweta N. Dethe, Varsha S. Shevatkar, and R. P. Bijwe. Google driver-
less car. Int. Journal of Scientific Research in Science, Engineering and
Technology IJSR SET, 2:133 –137, 2016.

[EHK+17] Andreas B. Eriksen, Chao Huang, Jan Kildebogaard, Harry Lahrmann,
Kim G. Larsen, Marco Muniz, and Jakob H. Taankvist. Uppaal Stratego
for intelligent traffic lights. In 12th ITS European Congress, Proc., 2017.

[Elm01] Wilfried Elmenreich. An introduction to sensor fusion. Research Report
47/2001, TU Wien, Institut für Technische Informatik, 2001.

[ERSO12] European Road Safety Observatory. Basic Fact Sheet ”Junctions”, 2012.

180

Bibliography

[ETS09] ETSI. Intelligent Transport Systems (ITS); Vehicular Communications;
Basic Set of Applications; Definitions (ETSI TR 102 638 V1.1.1), 2009.

[ETS10] ETSI. Intelligent Transport Systems (ITS); Vehicular Communications;
Basic Set of Applications; Part 3: Specifications of Decentralized Environ-
mental Notification Basic Service (ETSI TS 102 637-3 V1.1.1), 2010.

[FFCa+10] Michel Ferreira, Ricardo Fernandes, Hugo Conceição, Wantanee Viriyasita-
vat, and Ozan K. Tonguz. Self-organized traffic control. In 7th ACM Int.
Workshop on VehiculAr InterNETworking, VANET, Proc., pages 85–90.
ACM, 2010.

[FHO15] Martin Fränzle, Michael R. Hansen, and Heinrich Ody. No need know-
ing numerous neighbours. In Roland Meyer, André Platzer, and Heike
Wehrheim, editors, Correct System Design: Symposium in Honor of Ernst-
Rüdiger Olderog on the Occasion of His 60th Birthday, Proc., volume 9360
of LNCS, pages 152–171. Springer, 2015.

[FJM+01] Lino Figueiredo, Isabel S. Jesus, José A. Machado, José R. Ferreira, and
J.L. Martins de Carvalho. Towards the development of intelligent trans-
portation systems. Intelligent Transportation Systems, 88:1206–1211, 2001.

[FVP+13] Negin Fathollahnejad, Emı́lia Villani, Risat Pathan, Raul Barbosa, and Jo-
han Karlsson. On reliability analysis of leader election protocols for virtual
traffic lights. In 43rd IEEE/IFIP Conference on Dependable Systems and
Networks Workshop, DSN-W, pages 1–12, 2013.

[Gro02] ERTMS User Group. ERTMS/ETCS System requirements specification,
2002.

[Har] Mark Harris. The 2,578 problems with self-driving cars.
https://spectrum.ieee.org/cars-that-think/transportation/

self-driving/the-2578-problems-with-self-driving-cars. IEEE
Spectrum, last checked-out on 20.11.2019.

[HCvS06] Luc C. G. J. M. Habets, Pieter J. Collins, and Jan H. van Schuppen. Reacha-
bility and control synthesis for piecewise-affine hybrid systems on simplices.
IEEE Transactions on Automatic Control, 51(6):938–948, 2006.

[Hei16] Dirk Heinrichs. Autonomous driving and urban land use. In Markus Mau-
rer, J. Christian Gerdes, Barbara Lenz, and Hermann Winner, editors,
Autonomous Driving: Technical, Legal and Social Aspects, pages 213–231.
Springer, 2016.

[HLO13] Martin Hilscher, Sven Linker, and Ernst-Rüdiger Olderog. Proving safety
of traffic manoeuvres on country roads. In Zhiming Liu, Jim Woodcock,
and Huibiao Zhu, editors, Theories of Programming and Formal Methods –
Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, volume
8051 of LNCS. Springer, 2013.

181

https://spectrum.ieee.org/cars-that-think/transportation/self-driving/the-2578-problems-with-self-driving-cars
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/the-2578-problems-with-self-driving-cars

Bibliography

[HLOR11] Martin Hilscher, Sven Linker, Ernst-Rüdiger Olderog, and Anders P. Ravn.
An abstract model for proving safety of multi-lane traffic manoeuvres. In
Shengchao Qin and Zongyan Qiu, editors, 13th Int. Conference on Formal
Engineering Methods, ICFEM, Proc., pages 404–419. Springer, 2011.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. Information and Compu-
tation, 111(2):193 – 244, 1994.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21:666–677, 1978.

[HS16] Martin Hilscher and Maike Schwammberger. An abstract model for proving
safety of autonomous urban traffic. In Augusto Sampaio and Farn Wang, ed-
itors, 13th Int. Colloquium on Theor. Aspects of Computing ICTAC, Proc.,
volume 9965 of LNCS, pages 274–292. Springer, 2016.

[Int18] SAE International. J 3016: Surface vehicle recommended practice – (r)
taxonomy and definitions for terms related to driving automation systems
for on-road motor vehicles, 2018.

[IRW+18] Ramón Iglesias, Federico Rossi, Kevin Wang, David Hallac, Jure Leskovec,
and Marco Pavone. Data-driven model predictive control of autonomous
mobility-on-demand systems. In IEEE International Conference on
Robotics and Automation ICRA, Proc., pages 1–7. IEEE, 2018.

[Kal60] Rudolph E. Kalman. A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

[KDM+17] Maryam Kamali, Louise A. Dennis, Owen McAree, Michael Fisher, and
Sandor M. Veres. Formal verification of autonomous vehicle platooning.
Science of Computer Programming, 148:88–106, 2017.

[KFS13] Savas Konur, Michael Fisher, and Sven Schewe. Combined model check-
ing for temporal, probabilistic, and real-time logics. Theoretical Computer
Science, 503:61 – 88, 2013.

[Kle99] Lawrence A. Klein. Sensor and Data Fusion Concepts and Applications.
Society of Photo-Optical Instrumentation Eng. (SPIE), 2nd edition, 1999.

[KLF19] Maryam Kamali, Sven Linker, and Michael Fisher. Modular verification
of vehicle platooning with respect to decisions, space and time. In Cyrille
Artho and Peter Csaba Ölveczky, editors, Formal Techniques for Safety-
Critical Systems, pages 18–36. Springer, 2019.

182

Bibliography

[KNPS04] Marta Kwiatkowska, Gethin Norman, David Parker, and Jeremy Sproston.
Performance analysis of probabilistic timed automata using digital clocks.
In Kim G. Larsen and Peter Niebert, editors, Formal Modeling and Analysis
of Timed Systems, pages 105–120. Springer, 2004.

[KRS+12] Tim Köhler, Christian Rauch, Martin Schröer, Elmar Berghöfer, and Frank
Kirchner. Concept of a biologically inspired robust behaviour control sys-
tem. In Chun-Yi Su, Subhash Rakheja, and Honghai Liu, editors, Intelligent
Robotics and Applications, pages 486–495. Springer, 2012.

[LAB+11] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held,
Sören Kammel, J. Zico Kolter, Dirk Langer, Oliver Pink, Vaughan R. Pratt,
Michael Sokolsky, Ganymed Stanek, David Michael Stavens, Alex Teich-
man, Moritz Werling, and Sebastian Thrun. Towards fully autonomous
driving: Systems and algorithms. In IEEE Intelligent Vehicles Symposium
(IV), Proc., pages 163–168. IEEE, 2011.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, 3(2):125–143, 1977.

[LGS98] John Lygeros, Datta N. Godbole, and Shankar Sastry. Verified hybrid con-
trollers for automated vehicles. IEEE Transactions on Automatic Control,
43(4):522–539, 1998.

[LH15] Sven Linker and Martin Hilscher. Proof theory of a multi-lane spatial logic.
Logical Methods in Computer Science, 11(3):1–27, 2015.

[Lin15] Sven Linker. Proofs for Traffic Safety – Combining Diagrams and Logic.
PhD thesis, University of Oldenburg, 2015.

[Lin17a] Sven Linker. Hybrid multi-lane spatial logic. Archive of Formal Proofs,
2017.

[Lin17b] Sven Linker. Spatial reasoning about motorway traffic safety with is-
abelle/hol. In Nadia Polikarpova and Steve Schneider, editors, Integrated
Formal Methods iFM, Proc., pages 34–49. Springer, 2017.

[LLL00] Carolos Livadas, John Lygeros, and Nancy A. Lynch. High-level modeling
and analysis of the traffic alert and collision avoidance system (TCAS).
Proceedings of the IEEE, 88(7):926–948, 2000.

[LMT15] Kim G. Larsen, Marius Mikučionis, and Jakob H. Taankvist. Safe and
optimal adaptive cruise control. In Roland Meyer, André Platzer, and Heike
Wehrheim, editors, Correct System Design: Symposium in Honor of Ernst-
Rüdiger Olderog on the Occasion of His 60th Birthday, LNCS, pages 260–
277. Springer, 2015.

183

Bibliography

[LP11] Sarah M. Loos and André Platzer. Safe intersections: At the crossing of hy-
brid systems and verification. In Kyongsu Yi, editor, 14th Int. IEEE Conf.
on Intelligent Transportation Systems (ITSC), pages 1181–1186, 2011.

[LPY95] Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-checking for real-time
systems. In Horst Reichel, editor, Fundamentals of Computation Theory,
pages 62–88. Springer, 1995.

[LUS12] Maider Larburu, Arkaitz Urquiza, and Javier Sánchez. Safe road trains for
the environment (SARTRE): Validation of SARTRE platoon service and
the SARTRE HMI. Technical report, 2012.

[LW06] Li Li and Fei-Yue Wang. Cooperative driving at blind crossings using in-
tervehicle communication. IEEE Transactions on Vehicular Technology,
55(6):1712–1724, 2006.

[MC81] Jayadev Misra and Kanianthra M. Chandy. Proofs of networks of processes.
IEEE Transactions on Software Engineering, SE-7(4):417–426, 1981.

[Mea08] Michael Montemerlo et al. Junior: The stanford entry in the urban chal-
lenge. Journal of Field Robotics, 25(9):569–597, 2008.

[MFF15] Nils Müllner, Martin Fränzle, and Sibylle Fröschle. Estimating the prob-
ability of a timely traffic-hazard warning via simulation. In 48th Annual
Simulation Symp. (ANSS), Proc., pages 130–137. Society for Computer
Simulation Intern., 2015.

[MFHR08] Roland Meyer, Johannes Faber, Jochen Hoenicke, and Andrey Rybalchenko.
Model checking duration calculus: A practical approach. Formal Aspects of
Computing, 20(4–5):481–505, 2008.

[Mil82] Robin Milner. A Calculus of Communicating Systems. Springer, 1982.

[MM05] Sven Maerivoet and Bart De Moor. Cellular automata models of road traffic.
Physics Reports, 419(1):1–64, 2005.

[MMP15] Andreas Müller, Stefan Mitsch, and André Platzer. Verified traffic networks:
Component-based verification of cyber-physical flow systems. In IEEE 18th
Int. Conf. on ITS, pages 757–764, 2015.

[Mos85] Ben Moszkowski. A temporal logic for multilevel reasoning about hardware.
Computer, 18(2):10–19, 1985.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, I. Inf. Comput., 100(1):1–40, 1992.

[MRO02] Thomas Moor, Jörg Raisch, and Siu O’Young. Discrete supervisory con-
trol of hybrid systems based on l-complete approximations. Discrete Event
Dynamic Systems, 12(1):83–107, 2002.

184

Bibliography

[NB04] Norbert Neuendorf and Torsten Bruns. The vehicle platoon controller in the
decentralised, autonomous intersection management of vehicles. In IEEE
Int. Conf. on Mechatronics ICM, Proc., pages 375–380, 2004.

[NBCF17] Julia Nilsson, Mattias Brännström, Erik Coelingh, and Jonas Fredriksson.
Lane change maneuvers for automated vehicles. IEEE Transactions on
Intelligent Transportation Systems, 18(5):1087–1096, 2017.

[NHO+11] Tobias Nothdurft, Peter Hecker, Sebastian Ohl, Falko Saust, Markus Mau-
rer, Andreas Reschka, and Jürgen R. Böhmer. Stadtpilot: First fully au-
tonomous test drives in urban traffic. In 14th Int. IEEE Conf. on Intelligent
Transportation Systems (ITSC), pages 919–924, 2011.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL -
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[NRTT97] Rolf Naumann, Rainer Rasche, Jürgen Tacken, and Christoph Tahedl. Val-
idation and simulation of a decentralized intersection collision avoidance
algorithm. In IEEE ITS Conf., Proc., pages 818–823, 1997.

[OD08] Ernst-Rüdiger Olderog and Henning Dierks. Real-time systems - formal
specification and automatic verification. Cambridge University Press, 2008.

[Ody15] Heinrich Ody. Undecidability results for multi-lane spatial logic. In Martin
Leucker, Camilo Rueda, and Frank D. Valencia, editors, ICTAC, volume
9399 of LNCS, pages 404–421. Springer, 2015.

[Ody17] Heinrich Ody. Monitoring of traffic manoeuvres with imprecise information.
Electronic Proceedings in Theoretical Computer Science, 257:43–58, 2017.

[Ody19] Heinrich Ody. Monitoring of Traffic Manoeuvres with Imprecise Informa-
tion. PhD thesis, University of Oldenburg, 2019. (submitted Nov. 2019).

[OL82] Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent
programs. ACM Trans. on Prog. Lang. and Syst., 4(3):455–495, 1982.

[Old18] Ernst-Rüdiger Olderog. Space for traffic manoeuvres: An overview. In
Cliff Jones, Ji Wang, and Naijun Zhan, editors, Symposium on Real-Time
and Hybrid Systems: Essays Dedicated to Professor Chaochen Zhou on the
Occasion of His 80th Birthday, pages 211–230. Springer, 2018.

[ORW17] Ernst-Rüdiger Olderog, Anders P. Ravn, and Rafael Wisniewski. Linking
spatial and dynamic models, applied to traffic maneuvers. In Mike Hinchey,
Jonathan P. Bowen, and Ernst-Rüdiger Olderog, editors, Provably Correct
Systems, NASA Monographs in System and Software Engineering, pages
95–120. Springer, 2017.

185

Bibliography

[OS17] Ernst-Rüdiger Olderog and Maike Schwammberger. Formalising a hazard
warning communication protocol with timed automata. In Luca Aceto,
Giorgio Bacci, Giovanni Bacci, Anna Ingólfsdóttir, Axel Legay, and Radu
Mardare, editors, Models, Algorithms, Logics and Tools – Essays Dedicated
to Kim G. Larsen on the Occasion of His 60th Birthday, volume 10460 of
LNCS, pages 640–660. Springer, 2017.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Symposium on
Foundations of Computer Science, Proc., SFCS, pages 46–57. IEEE, 1977.

[PT02] Adrian Perrig and J. D. Tygar. Secure Broadcast Communication in Wired
and Wireless Networks. Kluwer Academic Publishers, 2002.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of
concurrent systems in CESAR. In Mariangiola Dezani-Ciancaglini and Ugo
Montanari, editors, 5th Int. Symposium on Programming, Proc., pages 337–
351. Springer, 1982.

[RIA16] Albert Rizaldi, Fabian Immler, and Matthias Althoff. A formally verified
checker of the safe distance traffic rules for autonomous vehicles. In NASA
8th Int. Symp. on Formal Methods, Proc., pages 175–190, 2016.

[Sch05] Andreas Schäfer. A calculus for shapes in time and space. In Zhiming Liu
and Keijiro Araki, editors, Int. Conf. on Theoretical Aspects of Computing
(ICTAC), Proc., volume 3407 of LNCS, pages 463–478. Springer, 2005.

[Sch14] Maike Schwammberger. Semantik von Controllern für sicheren Fahrspur-
wechsel. Master’s thesis, University of Oldenburg, 2014.

[Sch15] Maike Schwammberger. Properties of communicating controllers for safe
traffic manoeuvres. In Bernhard K. Aichernig and Alessandro Rossini, edi-
tors, Doctoral Symp. of Formal Methods, Proc., pages 3–7, 2015.

[Sch17] Maike Schwammberger. Imperfect knowledge in autonomous urban traffic
manoeuvres. Electr. Proc. in Theor. Comp. Sci., 257:59–74, 2017.

[Sch18a] Maike Schwammberger. An abstract model for proving safety of au-
tonomous urban traffic. Theoretical Computer Science, 744:143–169, 2018.

[Sch18b] Maike Schwammberger. Introducing liveness into multi-lane spatial logic
lane change controllers using UPPAAL. Electronic Proceedings in Theoret-
ical Computer Science, 269:17–31, 2018.

[SD14] Christoph Sommer and Falko Dressler. Vehicular Networking. Cambridge
University Press, 2014.

[SDD16] Dhawale Satyajeet, Atul R. Deshmukh, and Sanjay S. Dorle. Heterogeneous
approaches for cluster based routing protocol in vehicular ad hoc network
VANET. Int. Journal of Computer Applications, 134(12):1–8, 2016.

186

Bibliography

[Sin06] David Sinreich. An architectural blueprint for autonomic computing. IBM
Autonomic Computing – White Paper, 2006.

[Spi89] J. Michael Spivey. The Z Notation: A Reference Manual. Prentice-Hall,
Inc., 1989.

[SS16] Miranda A. Schreurs and Sibyl D. Steuwer. Autonomous driving – political,
legal, social, and sustainability dimensions. In Markus Maurer, J. Christian
Gerdes, Barbara Lenz, and Hermann Winner, editors, Autonomous Driving:
Technical, Legal and Social Aspects, pages 149–171. Springer, 2016.

[Tim14] Nils Timm. Spotlight abstraction with shade clustering – automatic verifi-
cation of parameterised systems. In Theoretical Aspects of Software Engi-
neering Conference TASE, Proc., pages 18–25. IEEE, 2014.

[TWR10] Tobe Toben, Bernd Westphal, and Jan-Hendrik Rakow. Spotlight abstrac-
tion of agents and areas. In Quantitative and Qualitative Analysis of Net-
work Protocols, Dagstuhl Seminar Proc., 2010.

[VMDS08] Mark Van Middlesworth, Kurt Dresner, and Peter Stone. Replacing the
stop sign: Unmanaged intersection control for autonomous vehicles. In 7th
Int. Conf. on Auton. Agents and Multiagent Syst. AAMAS, Proc., pages
1413–1416. Int. Found. for Auton. Agents and Multiagent Syst., 2008.

[WB18] David Welch and Elisabeth Behrmann. Who’s winning the self-driving
car race? https://www.bloomberg.com/news/features/2018-05-07/

who-s-winning-the-self-driving-car-race, 2018. last checked-out on
25.11.2019.

[WD96] Jim Woodcock and Jim Davies. Using Z – Specification, Refinement, and
Proof. Prentice Hall, 1996.

[WF08] Jorn M. Wille and Thomas Form. Realizing complex autonomous driving
maneuvers the approach taken by team CarOLO at the DARPA urban
challenge. In IEEE Int. Conf. on Vehicular Electronics and Safety, Proc.,
pages 232–236, 2008.

[WHLS15] Hermann Winner, Stephan Hakuli, Felix Lotz, and Christina Singer, editors.
Handbuch Fahrerassistenzsysteme, Grundlagen, Komponenten und Systeme
für aktive Sicherheit und Komfort. Springer, 2015.

[WW07] Björn Wachter and Bernd Westphal. The spotlight principle. In 8th Int.
Conf. on Verification, Model Checking and Abstract Interpretation VMCAI,
Proc., pages 182–198, 2007.

[XL16] Bingqing Xu and Qin Li. A spatial logic for modeling and verification
of collision-free control of vehicles. In 21st Int. Conf. on Engineering of
Complex Computer Systems (ICECCS), pages 33–42, 2016.

187

https://www.bloomberg.com/news/features/2018-05-07/who-s-winning-the-self-driving-car-race
https://www.bloomberg.com/news/features/2018-05-07/who-s-winning-the-self-driving-car-race

Bibliography

[XL17] Bingqing Xu and Qin Li. A bounded multi-dimensional modal logic for
autonomous cars based on local traffic and estimation. In Int. Symposium
on Theoretical Aspects of Software Engineering (TASE), pages 1–8, 2017.

[XLGD19] Bingqing Xu, Qin Li, Tong Guo, and Dehui Du. A scenario-based approach
for formal modelling and verification of safety properties in automated driv-
ing. IEEE Access, 7:140566–140587, 2019.

188

Index

abstract model

country roads, 30

highway traffic, 14

urban traffic, 36

ACTA, 69

probabilistic, 147

action

controller, 73

input, 79

output, 79

actor, 93

automotive-controlling timed automata,
69

bounded liveness

crossing controller, 140

lane change controller, 124

bounded liveness property, 112

broadcast communication, 23, 79

car identifier, 14, 37

car variable, 20, 70

case study, 153

channel, 79

hazard, 155, 158

priority, 143

check

collision, 30, 94

crossing ahead, 94

inverse potential helper, 104

lane change, 95

on-crossing, 89, 96

opposing car appr. crossing, 101

potential collision, 30, 95

potential helper, 101

chop
horizontal, 20
vertical, 20
view, 58

claim, 14, 37
clock

constraint, 23
reset, 23
valuation, 25
variable, 23

coarse path sequence, 43
coarse urban road network, 42
collision check, 30, 94
collision freedom, 29
colour coding (UPPAAL), 117
committed location, 73
communication, 78

broadcast, 23
calculus, 79
chain, 155, 157
guard, 79
handshake, 23
internal, 144
radius, 155
view, 97, 98, 100

computation path, 27, 77
confidence (value), 113
confidence interval, 112
configuration

ACTA, 75, 109
ETA, 26

connected component, 42
constraint

clock, 23
data, 23

189

Index

controller, 87

crossing, 93

detection, 159

distance, 89

forwarding, 160

helper, 32, 104, 143

lane change, 29

road, 96

steering, 91

velocity, 89

controller action, 73

crossing (intersection), 36

crossing ahead check, 94

crossing controller, 93

fair, 113

phase, 93

UPPAAL, 137

crossing manoeuvre, 93

crossing segment, 36

variable, 70

data

constraint, 23, 70, 71

term, 70

type, 70

update, 23

variable, 23, 70

deadlock freedom

crossing controller, 139

highway traffic, 120

decidability, 3

decision layer, 89

detection controller, 159

distance (crossing), 93

distance controller, 89

domain, 12

domain restriction, 12

driving direction, 38

dynamic control, 89

ego car, 14, 93

EMLSL (Extended MLSL), 31

empty output action, 79

ETA (extended timed automaton), 24

evaluation query, 112

explainability, 174

Extended MLSL, 31

extended timed automaton (ETA), 24

fairness (crossing controller), 143

fairness property, 113

final receiver, 154

finally (temporal logic), 110

forwarding controller, 160

function

partial finite, 12

total bijective, 12

globally (temporal logic), 110

guard

ACTA, 72

communication, 79

timed automata, 23

guarded communication, 79

handshake communication, 23

hazard, 154

channel, 155, 158

safety property, 159

traffic snapshot, 155

Hazard Warning MLSL (HMLSL), 156

helper car, 32, 100

helper controller, 32, 104, 143

HMLSL (Hazard Warning MLSL), 156

horizon, 19, 58

Hybrid MLSL, 3

identifying tuple, 73

imperfect knowledge, 19, 97

infinite path, 40

initial sender, 154

input action, 79

interleaving, 27

intersection (crossing), 36

interval temporal logic (ITL), 20

invariant

ACTA, 72

timed automata, 23

190

Index

lane

infinite, 14

segment, 36

variable, 20, 70

virtual, 53, 55

lane change check, 95

lane change controller, 29

UPPAAL, 117

length measurement, 31

livelock, 112, 121

liveness

crossing controller, 140, 146

lane change controller, 121

liveness property, 111

bounded, 112

location, 23

committed, 73

urgent, 105

logic

EMLSL, 31

HMLSL, 156

ITL, 20

MLSL, 20

temporal logic, 110

timed CTL, 110

UMLSL, 61

MAB-EX framework, 174

manoeuvre

crossing, 93

lane change, 29

overtaking, 31, 32, 96

MLSL (Multi-lane Spatial Logic), 20

model (UPPAAL)

highway, 114

urban traffic, 135

model-checking, 110

Multi-lane Spatial Logic, 20

Extended, 31

Hazard Warning, 156

Urban, 61

multi-view, 54, 58

network (ACTA), 82

observer automaton, 121, 139, 146
on-crossing check, 96
one-way road, 56
output action, 79
overriding, 12
overtaking

manoeuvre, 32, 96
phases, 32
protocol, 30

overtaking manoeuvre, 31

PACTA (probabilistic ACTA), 147
parallel composition

ACTA, 84
timed automata, 27

parameter (UPPAAL)
false negatives, 113
uncertainty, 113

path, 40
coarse, 43
cut-out, 40
through intersection, 54, 136

path sequence, 40
path through intersection, 54
perfect knowledge, 19, 92
phase

controller, 23
crossing controller, 93
overtaking protocol, 32
road controller, 96

position, 14, 37
potential collision check, 30, 95
potential helper check, 101

inverse, 104
power set, 11
priority, 143
probabilistic ACTA, 147
probabilistic timed automata, 147
probability interval, 112
property

bounded liveness, 112
fairness, 113
liveness, 111
safety, 111

191

Index

query (UPPAAL), 110

evaluation, 112

range, 12

reachability, 27, 77

reactive layer, 89

real-valued term, 32

reservation, 14, 37

road controller, 96

phases, 96

road segment, 36

roadside-unit, 107

robustness, 3

run (system), 27, 77, 109

safety, 29

crossing controller, 128, 139

hazard warning controllers, 167

lane change controller, 120

safety envelope, 14

safety property, 111

hazard, 159

sanity condition

topology, 41

traffic snapshot (highway), 15

traffic snapshot (urban), 45

semantics

ACTA, 75

MLSL, 21

UMLSL, 63

sensor function, 19, 59

sequence, 12

concatenation, 13

length, 12

size

car, 14, 19, 59

node (road network), 39

somewhere, 22

squash, 13, 41

standard view, 19

starvation, 112

state (system), 23

bad, 121

steering controller, 91

synchronisation, 23, 81
syntax

ACTA, 69
MLSL, 20
UMLSL, 62

system
bad state, 121
run, 27, 109
state, 109

TA (timed automaton), 22
temporal logic, 110
term (real-valued), 32
time dimension, 23
time transition

hazard, 156
highway traffic, 16
urban traffic, 48

timed automata
model-checking, 110
probabilistic, 147

timed automaton (TA), 22
timed CTL, 110
traffic snapshot, 15, 44

evolution, 17
transition, 16, 46

transition
probabilistic, 147

UMLSL, 61
uncertainty (UPPAAL), 113
undecidability, 3
unreachability (state), 121
UPPAAL, 110

SMC, 110, 124
Stratego, 110

Urban Multi-lane Spatial Logic, 61
urban road network, 39

coarse, 42
urgent location, 105

valuation
clock, 25
data variables, 70
variable (MLSL), 20

192

Index

variable (UMLSL), 62
variable

car, 20, 62, 70
clock, 23
crossing segment, 70
data, 23, 70
lane, 20, 70
real, 62

variable modification, 72
velocity controller, 89
view, 19

communication, 97, 98, 100
multi, 54, 58
standard, 19
virtual, 54, 58

virtual lane, 53, 55
virtual view, 54, 58
visible segments, 59

Z notation, 11
zeno behaviour, 112, 121

193

List of Symbols

Abstract Model

; Chop operator in ITL logic. 20

〈ϕ〉 Somewhere abbr. in MLSL. 22

: Horizontal chop operator for views.
58

	 Vertical chop operator for views. 58

@ Operator for expressing that a finite
sequence is contained in an infinite
path, e.g. −→π @ pth. 40

a Chop operator in MLSL. 20

acc Set of real acceleration values, e.g.
acc(C) = 0. 15, 45

ci A crossing segment ci ∈ CS (i ∈ N).
36

cclm Set of crossing claims,
e.g. cclm(C) = {c0, c1}. 45

cl(c) Claim atom (MLSL). 20

clm Set of claims, e.g. clm(C) = {0}.
15, 44

clmV Visible claims in a view V . 19

cri An intersection cr ∈ CR. 36

CR Set of intersections, e.g. cr, cr1. 36,
42

cres Set of crossing reservations, e.g.
cres(C) = {c0, c1}. 45

cs Crossing segment atom (UMLSL).
62

CS Set of crossing segm., e.g. c0, c1. 36

curr(C) Current path index of pth(C). 44

CVar Set of car variables, e.g. c, d. 20

E Set of edges in N , E = Eu ∪Ed. 39

E∼ Relational inverse of E. 40

EC Set of directed edges in NC . 42

Ed Set of directed edges in N . 39

Eu Set of undirected edges in N . 39

ego Variable for car under consideration.
14, 93

fCS : CS→ P(CS) Equivalence class of cross-
ing segments. 42

fL : L→ P(L) Equivalence class of lanes. 42

free Free space (MLSL atom). 20

haz Hazard component in abstract model
with hazards. 155

haz .ext Horizontal extension of a hazard.
155

haz .lanes Set of lanes a hazard occupies.
155

haz .on Boolean attribute for a hazard. 155

hz HMLSL atom for a hazard. 156

I Set of car identifiers, e.g. A, B. 14,
37

` Length measurement in EMLSL. 32,
62

L Interval of lanes L = [l, n] in view.
19

L Set of lane segments, L ⊂ N. 14, 36

lenV Visible parts of cars in view V . 19

LVar Set of lane variables, e.g. l, n. 20

N Urban road network. 39

NC Coarse road network. 42

ν Variable valuation. 20

V Set of nodes in N , V = L ∪ CS. 39

VC Set of nodes in NC , VC = CR ∪ RS.
42

next(C) Next path index of pth(C). 44

ΩE Sensor function for car E. 19, 59

195

List of Symbols

−→π Sequence from the set seqE V. 40
−→πC Sequence from the set seqEC VC . 43

ϕM MLSL formula. 21

ΦM Set of all MLSL formulae. 21

ϕU UMLSL formula. 72

ΦU Set of all UMLSL formulae. 72

pos Set of position values for cars, e.g.
pos(C) = 40. 15, 45

pth Infinite path in N . 40, 45

pth(C) Path of car C. 44

pthC Infinite path in NC . 43

pthN Set of all infinite paths in N . 40, 45

ri A road segment ri ∈ RS (i ∈ N). 36

re(c) Reservation of car (MLSL atom). 20

res Set of reservations of cars,
e.g. res(C) = {1}. 15, 44

resV Visible reservations in view V . 19

RS Set of road segments, e.g. r0, r1. 36,
42

RVar Set of all real variables. 31, 62

segV (C) Set of visible segments in view. 59

seqV Set of sequences over V. 40

seqE V Set of sequences respecting edges E
over V. 40

seqEC VC Set of sequences respecting edges
EC over VC . 43

seqE∼ V Set of inverted sequences respect-
ing edges E∼ over V. 40

seqEd
V Set of finite sequences respecting

only directed edges Ed over V. 40

spd Set of speed values, e.g. spd(C) =
90. 15, 45

T S Traffic snapshot. 15, 44

TS Set of traffic snapshots. 16, 45

V View V = (L,X,E) (highway traf-
fic). 19

Var Set of all variables. 20, 31

VC Communication view, comprising sev-
eral multi-views VM . 100

Vi Virtual view. 58

VM Multi-view, comprising several vir-
tual views. 58

ω Weight of nodes in N , e.g. ω(v) =
20. 39

X Extension X = [r, t] of a view. 19

(Autom. Contr.) Timed Automata

‖ Parallel comp. operator for (AC)TA.
27, 84

A (automotive-controlling/ extended)
timed automaton. 24, 74, 80

a? Input action for TA. 24

a! Output action for TA. 24

Act Set of all actions for TA. 24

B Set of channels B ⊆ Chan. 24, 80

C Set of commited states. 74

C Configuration of an (AC)TA. 26, 75

cact Controller action. 73

cact,syn Controller action after synchronisa-
tion. 82

Cini Initial configuration of an (AC)TA.
26, 76

c(c, ψDL) lane claim from set CtrlAct. 73

cc(c) crossing claim from set CtrlAct. 73

Chan Set of comm. channels. 24

Conf (A) Set of all configurations of an (AC)TA
A. 26, 75

CtrlAct Set of all controller actions. 73

D Set of data variables. 70

d Data variable from D. 70
−→
d Data sequence of type seqD. 79

DCS Set of crossing segment data vari-
ables. 70

DI Set of car data variables. 70

DL Set of lane data variables. 70

E Transition relation of a TA 24

196

List of Symbols

I Identifying tuple I ∈ DI ∪{ego}× I.
73

I Set of invariants in an (AC)TA. 24,
74

in Input action for ACTA. 79

IN Set of input actions for ACTA. 79

l A location l ∈ L of an TA. 24

L Set of locations for TA. 24

lini Initial location for TA. 24

ν Data/ clock variable valuation. 25,
70

νact Variable modification. 72

νact,syn Variable modification after synchro-
nisation. 82

νini Initial variable valuation. 26, 76

VAct Set of all variable modifications. 72

out Output action for ACTA. 79

OUT Set of output actions for ACTA. 79

ϕ (Communication) guard or invariant.
24, 72, 79

Φ Set of guards and invariants. 24, 72

ϕD Data constraint from set ΦD. 71

ΦD Set of data constraints ϕD. 71

ϕX Clock constraint from set ΦX. 23

ΦX Set of clock constraints ϕX. 23

ψD Data term, 71

ΨD Set of data terms. 71

q Location of an ACTA. 74

Q Set of locations of an ACTA. 74

qini Initial location of an ACTA. 74

r(c) lane reservation from set CtrlAct. 73

rc(c) crossing reservation from set CtrlAct.
73

syn Synchronisation expression. 81

τ Internal, null or empty action. 24,
73, 79

T Transition relation of an ACTA. 74

T (A) Transition system of A. 26, 76

Time Time dimension for clocks. 23

wd c(c) withdraw lane claim from set CtrlAct.
73

wd cc(c) withdraw crossing claim from set
CtrlAct. 73

wd r(c, ψDL) withdraw lane reservation from
set CtrlAct. 73

wd rc(c) withdraw crossing reservation from
set CtrlAct. 73

X Set of clock variables, e.g. x, y. 23

Controller

� Globally operator (temp. logic). 110

♦ Finally operator (temp. logic). 110

A Quantifier over paths (CTL). 110

Acc Crossing controller. 93

A′cc Crossing controller with communi-
cation. 101

Af
cc Fair crossing controller. 113

Arc Helper controller. 104

Alc Lane change controller. 29

Arc Road controller. 93

Bd Lifei Bounded liveness property. 111
−→c Communication chain. 157, 158

ca(c) Crossing ahead check. 94

CRP UPPAAL implementation ofAcc. 137

CRP′ Liveness extension of CRP. 141

CRPF Fair extension of CRP′. 143

CRPprob Version of CRP with uncertainties.
147

CRPF(ego) Controller Acc for ego car. 143

col(ego) Collision check formula. 30, 94

dc Constant for distance to crossing. 93

DET Detection controller (UPPAAL). 162

dir(c) Function returning driving direction
of car ν(c). 101

E Quantifier over paths (CTL). 110

ε Parameter for uncertainty (UPPAAL
SMC). 113, 124, 140

197

List of Symbols

H Set of helper cars’ identifiers. 103

FOR Forwarding controller (UPPAAL). 164

hazard Channel for hazard warnings. 158

HPF Helper controller for CRPF. 143

Ih Invariant in hazard controllers. 159

lc(c) Lane change check. 95

L Set of lanes affected by a hazard.
158

LCP UPPAAL implementation ofAlc. 117

LCP′ Adapted implementation of LCP. 123

LCP′′ Liveness extension of LCP′. 126

LCP(i) Controller LCP for car i ∈ {A,B,E}.
117

Lifei Liveness property. 111

ocac(c) Opposing car approaching the in-
tersection check. 101

oc(c) On crossing check. 89, 96

pc(c) Potential collision check. 30, 95

ph(c) Potential helper check. 101

ph−1(c, cs) Inverse potential helper check.
104

prio[ego] Broadcast channel for ego for pri-
orities. 143, 146

prior[ego] Priority of controller CRPF[ego],
prior[ego] ∈ Z. 143

α Parameter for false negatives (UP-
PAAL SMC). 113, 124, 140

Safe Safety property. 87

r Communication radius. 155

t, ti Frequently used time constant. 93,
154

Z Notation

Length/ size (of a sequence/ set). 40
a Sequence concatenation. 13

〈〉 Sequence delimiters. 13, 41

⊕ Overriding operator. 12, 16, 48

/ Domain restriction. 12, 48

−→pp Partial finite function. 12, 41

�� Total bijective function. 12, 41

dom Domain of a function. 12, 41

head s Function on a sequence s. 13

PX Power set of a set X. 11, 36

ran Range of a function. 12, 48

second s Function on a sequence s. 13

seqX Finite sequence over a set X. 12, 40

squash Squash operator, defined over N. 13

squashZ Squash operator defined over Z. 41

tail s Function on a sequence s. 13

Z Z specification language. 11

198

	Titelblatt
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Overview of the Research Field of MLSL
	Contribution of this Thesis
	Related Work
	Structure of this Thesis
	Sources

	Preliminaries
	Z Specification Language
	Model and Logic MLSL for Highway Traffic
	Extended Timed Automata
	Controller for Highway Traffic and Country Roads

	A Model for Urban Multi-lane Intersections
	Assumptions for the Model
	Topology
	Urban Road Networks
	Infinite Paths and Finite Sequences
	Coarser Networks and Paths

	Traffic Snapshot
	Traffic Snapshot: The Global Picture
	Traffic Snapshot Evolution

	Virtual View
	An Intuition on why and how to Straighten Views
	Virtual Lanes and Virtual View
	Perception of Cars through Sensors

	Urban Multi-lane Spatial Logic
	Overview of More Complex Intersections and Special Cases
	Related Work

	Automotive-Controlling Timed Automata
	Syntax
	Semantics
	Broadcast Communication with Data Constraints
	Synchronisation and Networks of ACTA

	Controllers for Safe Crossing Manoeuvres
	Interplay of Controllers: One Car, Several Controllers
	Assumptions for the Controllers
	Controller Construction
	Crossing Controller
	Road Controller

	A more Realistic Approach: Manoeuvres with Imperfect Knowledge
	Communication Multi-View
	Communicating Crossing and Helper Controller

	Related Work

	Desirable System Properties for Autonomous Cars
	Approach and Meaning of the System Properties
	Properties of the Highway Traffic Lane Change Controller
	Implementation of Highway Traffic Manoeuvres in UPPAAL
	Verification of the Properties

	Safety of Crossing Manoeuvres
	Fairness and Liveness of the Crossing Controller
	The Urban Traffic Model and Controller in UPPAAL
	Verification of Safety and Liveness
	Ensuring Liveness and Introducing Fairness by Cooperation
	Introducing Uncertain Communication into the Protocol

	Related Work

	Case study: A Hazard Warning Communication Protocol with MLSL
	Abstract Model with Hazards and HMLSL
	The Hazard Warning Communication Protocol
	Analysis of the Protocol and Proof of Hazard Safety
	Implementation in UPPAAL
	Proof of Timely Warning and Hazard Safety

	Conclusion
	Summary
	Evaluation – How Realistic is our Approach?
	Recent Work: Explainability
	Directions for Future Work

	Bibliography
	Index
	List of Symbols

