
Scalable Unsupervised Learning for
Deep Discrete Generative Models

—

Novel Variational Algorithms and their
Software Realizations

Supervisor:

Prof. Dr. Jörg Lücke

Second assessor:

Prof. Dr. Ralf Häfner

Author:

Enrico Guiraud

born in Saronno, Italy

on April 30, 1991

This thesis has been accepted as fulfilling the requirements

for the degree of Doctor of Natural Sciences in

Faculty V - Mathematics and Science

October 22, 2020

ii

Abstract

Efficient, scalable training of probabilistic generative models is a highly sought
after goal in the field of machine learning. One core challenge is that maxi-
mum likelihood optimization of generative parameters is computationally in-
tractable for all but a few mostly elementary models. Variational approxima-
tions of the Expectation-Maximization (EM) algorithm offer a generic, pow-
erful framework to derive training algorithms as a function of the chosen form
of variational distributions. Also, usage of discrete latent variables in such
generative models is considered important to capture the generative process
of real-world data, which, for instance, has motivated research on Variational
Autoencoders (VAEs) with discrete latents.

Here we make use of truncated posteriors as variational distributions and
show how the resulting variational approximation of the EM algorithm can
be used to establish a close link between evolutionary algorithms (EAs) and
training of probabilistic generative models with binary latent variables. We
obtain training algorithms that effectively improve the tractable likelihood
lower bound of truncated posteriors. After verification of the applicability
and scalability of this novel EA-based training on shallow models, we demon-
strate how the technique can be mixed with standard optimization of a deep
generative model’s parameters using auto-differentiation tools and backprop-
agation, in order to train discrete-latent VAEs. Our approach significantly di-
verts from standard VAE training and sidesteps some of its standard features
such as sampling approximation, reparameterization trick and amortization.
For quantitative comparison with other approaches, we used a common image
denoising benchmark. In contrast to supervised neural networks, VAEs can
denoise a single image without previous training on clean data or on large
image datasets. While using a relatively elementary network architecture, we
find our model to be competitive with the state of the art in this “zero-shot”
setting. A review of the open-source software framework developed for training
of discrete-latent generative models with truncated posterior approximations
is also provided. Our results suggest that EA-based training of discrete-latent
VAEs can represent a well-performing, flexible, scalable and arguably more di-
rect training scheme than alternatives proposed previously, opening the door
to a large number of possible future research directions.

iii

iv

Declaration of Authorship

I, Enrico Guiraud, declare that this thesis and the work presented in it are my
own.
I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• I am aware of the guidelines of good scientific practice of the Carl von
Ossietzky University Oldenburg and observed them.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own
work.

• I have acknowledged all main sources of help.

• I have not availed myself of any commercial placement or consulting
services in connection with my promotion procedure.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signature

Date

v

vi

Acknowledgements

This work has been sponsored by the Wolfgang Gentner Programme of the
German Federal Ministry of Education and Research (grant no. 05E15CHA).

I feel extremely grateful to all the colleagues and friends that helped me out
in this journey, and to those that made it memorable.
I am under no illusion that I could have come this far on my own.
In particular, there are several people without whom this thesis would quite
literally not exist, and to whom I would like to offer my heartfelt thanks. First
of all, to my present and past supervisors Jörg Lücke, Danilo Piparo and Axel
Naumann, for their unyielding support throughout my doctoral studies. To
Jakob Drefs, for the numerous scientific discussions and his uplifting, positive
attitude and Imke Brumund, who saved me from the clutches of bureaucracy
in more than one occasion. I am grateful to my family, for their never-ending
encouragement and for providing a home I can always go back to. And to
Julie, who is with me in ups and downs, for her extraordinary patience and
love; thank you so much.

vii

viii

Contents

Abstract iii

Declaration of Authorship v

Acknowledgements vii

1 Introduction 1
1.1 Outline . 4
1.2 Mathematical notation . 6

2 Variational Inference with the Expectation-Maximization Al-
gorithm 7
2.1 Latent variable generative models 7

2.1.1 Example: the Noisy-OR model 9
2.1.2 Example: Binary Sparse Coding 10

2.2 Variational Expectation-Maximization 10
2.2.1 Full E-steps and full M-steps 12
2.2.2 Application to medical data: training a Noisy-OR model

on Common Audiological Functional Parameters 13
2.2.3 Factored variational distributions 14
2.2.4 Gaussian variational distributions 16

3 Truncated Variational Expectation-Maximization 17
3.1 Truncated Posteriors as Variational Distributions 17
3.2 Training Generative Models using Truncated Posteriors 19
3.3 Efficient numerical implementation of TVEM 20

3.3.1 Computational complexity and memory requirements . 20
3.3.2 Data parallelism . 21
3.3.3 Log-pseudo-joints, a useful numerical optimization . . . 22
3.3.4 No fast inference mode: a notable caveat 23

4 Evolutionary Expectation-Maximization 25
4.1 Related work: Truncated Variational Sampling 26
4.2 Evolutionary Expectation-Maximization 27

ix

Contents x

4.2.1 Choosing a fitness function 28
4.2.2 Choosing the genetic operators 29

4.3 Experimental validation . 31
4.3.1 Validation on artificial data 31
4.3.2 Scaling to larger datasets: training Noisy-OR on natural

image patches . 35
4.3.3 Scaling to larger datasets: training BSC on natural im-

age patches . 36
4.3.4 Denoising the “house” image 37

5 Truncated Variational Approximation and Variational Autoen-
coders 41
5.1 Training standard Variational Autoencoders 43

5.1.1 Excursus: maximum likelihood and the autoencoding
problem . 44

5.1.2 Parameter optimization 45
5.2 Discrete latent Variational Autoencoders 48
5.3 Training discrete latent Variational Autoencoders with trun-

cated posteriors . 50
5.3.1 Decoder optimization 51
5.3.2 Encoder optimization 52
5.3.3 Computational requirements and theoretical scaling . . 53

5.4 Numerical experiments . 54
5.4.1 Bars test . 55
5.4.2 Correlated bars test . 56
5.4.3 A note on local optima 57
5.4.4 Natural image patches 59
5.4.5 Denoising the “house” image 60
5.4.6 Performance comparison with noise2void 64

5.5 Computational performance . 66

6 A Software Framework for Truncated Variational EM 69
6.1 Why a new framework? . 70
6.2 Framework components and programming model 71
6.3 Extensibility via protocol-based interfaces 74
6.4 Black-box variational inference through automatic differentiation 75
6.5 Automatic inference of computing targets 76
6.6 Performance profiling . 76

7 Handling Large Datasets: Improving the Machine Learning
Pipeline at CERN 83
7.1 ROOT: a cornerstone of CERN’s software ecosystem 85
7.2 RDataFrame’s software design 86

7.2.1 Design principles . 86

Contents xi

7.2.2 Functional parts . 88
7.2.3 Parallelization scheme 88

7.3 High-level customization points 89
7.3.1 Data sources . 89
7.3.2 User-defined callbacks 90

7.4 A real-world RDataFrame application 90
7.5 Scaling and performance benchmarks 92
7.6 Exporting HEP data to the Python data science ecosystem with

RDataFrame . 93

8 Summary 95
8.1 Outlook . 97

A M-step equations 99
A.1 Noisy-OR . 99
A.2 Binary Sparse Coding . 100

B Log-pseudo-joints 101
B.1 Noisy-OR . 101
B.2 Binary Sparse Coding . 102

C Sparsity-driven mutation operator 103

D Truncated Variational Autoencoders with Poisson noise 105

E Truncated Variational Autoencoders with Bernoulli noise 107

F Performance profiling of Truncated Variational Autoencoders
Denoising Application 111

Bibliography 113

Contents xii

Chapter 1

Introduction

On the sixth of August 1991, Tim Berners-Lee, employed as a fellow at CERN,
Switzerland at the time, made the very first web page publicly available, effec-
tively ushering the world into the Information Age. Since then, thanks to the
internet, the World Wide Web and giant leaps in the capabilities of off-the-
shelf computing hardware (both in terms of storage capacity and operations
per second) data became, by and large, a commodity: it is not just scientists
and researchers that are looking for correlations, anomalies and other interest-
ing patterns hidden in datasets far too large to be combed through manually,
but also marketers, entrepreneurs, journalists and policy-makers.

Correspondingly, many recent achievements of machine learning applica-
tions can be traced back to the increased availability of computational re-
sources and large datasets, as well as to the development of algorithms that
can efficiently bring both to bear. At Uber, deep Bayesian models process
millions of observables to provide time series predictions with reliable uncer-
tainty estimations (Zhu and Laptev, 2017): this helps allocating driver incen-
tives and detect anomalous events in real-time. Deep learning methods have
been proposed for quick identification of victims of domestic violence based
on their public social media posts (Subramani et al., 2018). Fraud detection
systems as well as trading algorithms often integrate machine learning tech-
niques (see e.g. Faggella). Large-scale, automated content classification is a
necessary component of web services such as YouTube (Karpathy et al., 2014),
but similar image classification methods can assist medical professionals in di-
agnosing pathologies from X-ray scans, e.g. lung and breast cancer (Coudray
et al., 2018; Ribli et al., 2018) or arthritis (Xue et al., 2017). Mental health is-
sues can be diagnosed earlier (Shatte et al., 2019) and treated more effectively
(Buchlak et al., 2019) with the help of machine learning techniques. Buchlak
et al. (2019), in particular, note how more general methods that can aggre-
gate heterogeneous sources of information (such as phenomenological patient
features and neuroimaging data) are measurably more effective. Finally, as
we have been reminded by the current COVID-19 pandemic, responsive and

1

2

data-driven policy-making is highly desirable, especially during emergencies.
Anomaly detection algorithms are often proposed for early outbreak detection
and a common challenge researchers face is the computational cost and the
difficulty of scaling traditional methods to high-dimensional spaces (see e.g.
Wong et al., 2003; Mohsin et al., 2012; Buckeridge et al., 2005).

Although many machine learning applications in industry rely on (possi-
bly deep) supervised learning, unsupervised learning is just as an important
learning paradigm: not only as a tool to reach for when large amounts of
(often application-specific) labels are not available (e.g. to be integrated in
semi-supervised learning methods, as in Forster et al., 2018; Kingma et al.,
2014), but also because several common tasks are inherently unsupervised,
such as clustering and anomaly detection. Meanwhile, Rich Sutton describes
an interesting trend in his “bitter lesson” opinion piece (Sutton, 2019): gen-
eral methods that leverage computation are ultimately the most effective when
compared to highly application-specific methods engineered to incorporate a-
priori domain knowledge.

Latent variable probabilistic generative models are certainly one of the
most attractive unsupervised learning approaches in terms of generality. These
are stochastic, parametric models of the data generation process. During train-
ing, the model parameters are tuned such that the generation process has high
likelihood of producing datapoints similar to the observed data. Generality
of application derives from the fact that many apparently different problems
can be tackled as maximum likelihood optimization of an appropriate gener-
ative model (Hinton et al., 1999, offers an extensive discussion): for example,
anomaly detection is achieved by flagging datapoints for which a trained model
reports very low likelihood. Clustering is achieved by fitting a two-stage gener-
ative model (e.g., a Gaussian mixture model) that first selects a category and
then samples from a distribution whose parameters depend on the category
selected; in a trained model, the distribution corresponding to each category
will represent a cluster.

At a fundamental level, solving the generative problem forces a model to
pick up all sorts of complex correlations within data that, in comparison, a dis-
criminative model can afford to ignore: while it is sufficient to pick up certain
tell-tale patterns in order to classify images (e.g., fur or skin texture to classify
different animals), a generative model must incorporate vastly more informa-
tion in order to reproduce such images (e.g., eyes go above mouth, legs only
come in certain numbers and with certain orientations, etc.). It is therefore
to be expected that the training of probabilistic generative models is typically
more computationally demanding and harder to scale than the training of dis-
criminative models. Concretely, one important obstacle is represented by the
computational intractability of the model likelihood when the dimensionality
of the latent space is large. As a consequence, it is typical to reformulate the
problem in terms of maximization of a computable lower-bound of the exact

3

likelihood: this is precisely what gave rise to the rich landscape of training
algorithms based on variational approximations of the likelihood.

It is clear, at this point, that scalable methods for the training of prob-
abilistic generative models are a desirable goal if not a necessary pursuit. It
is equally desirable that such methods can be applied to a large variety of
generative models with little to no modification; indeed, an expert machine
learner will pick a generative model appropriate for the task at hand: Noisy-
OR Bayesian networks are often used as easily interpretable models for dis-
ease/symptom correlation (e.g. Halpern and Sontag, 2013; Heckerman, 1990)
or link analysis (Šingliar and Hauskrecht, 2006), linear sparse coding mod-
els have been used e.g. for image feature extraction (Henniges et al., 2010)
or image compression (Haft et al., 2004) but more sophisticated models have
been proposed e.g. to better deal with visual occlusion, which is an inherently
non-linear problem (Lücke et al., 2009). Interpretability can be traded for
expressiveness by choosing deeper, non-linear generative models such as Vari-
ational Autoencoders (Rezende et al., 2014; Kingma and Welling, 2014). The
generality of the problems solved by generative approaches therefore demands
a corresponding generality in the algorithms that can be employed to train
them.

Variational Autoencoders in particular are hugely popular, and not with-
out good reason: this deep, non-linear generative model with continuous latent
variables proved to be able to learn complex correlations efficiently. It can be
trained at scale with standard deep learning techniques (namely automatic
differentiation and stochastic gradient descent) and can efficiently leverage
modern computing hardware such as GPUs. Standard training of Variational
Autoencoders involves an amortized, Gaussian approximation of the poste-
rior distributions and a sampling approximation of the likelihood. However,
many real-world use cases suggest the use of discrete latent variables for a
more natural description of the generation process (e.g. Jojic and Frey, 2001;
Sheikh et al., 2014; Rolfe, 2016). The success of continuous-latent VAEs has
consequently spurred research on novel formulations that feature discrete la-
tents (e.g. Rolfe, 2016; Khoshaman and Amin, 2018; Roy et al., 2018; Sadeghi
et al., 2019; Vahdat et al., 2019). As the application of backpropagation is
made difficult by discrete distributions, Variational Autoencoders with dis-
crete latent variables are typically trained by relaxing discrete distributions
into parameterized continuous distributions that contain the discrete ones as
a limit case (Maddison et al., 2016; Jang et al., 2016) or by introducing auxil-
iary “smoothing” distributions (Rolfe, 2016); necessarily, these techniques add
extra hyperparameters or approximations on top of standard VAE training al-
gorithms.

Here we investigate a novel, scalable training algorithm for probabilistic gen-
erative models with discrete latent variables, including discrete Variational

1.1. Outline 4

Autoencoders. This novel training algorithm is based on a particular choice of
variational approximation, i.e. truncated distributions: while truncated poste-
riors were already introduced by Lücke and Eggert (2010), a fully variational
treatment of the approach, including a compact, efficiently computable form
of the variational lower bound, was introduced by Lücke (2019).

Building on those theoretical results, we introduce an algorithm that mixes
truncated variational approximations with evolutionary approaches to effi-
ciently train discrete-latent probabilistic generative models. We also demon-
strate, for the first time, how the truncated variational approximation can be
coupled with standard deep learning techniques to directly optimize discrete-
latent Variational Autoencoders. The resulting method is largely independent
of the specific generative model trained, lending itself to “black-box” applica-
tions, can train large models with O(1000) latent variables and, coupled with
discrete Variational Autoencoders, it establishes new state-of-the-art perfor-
mance on standard denoising benchmarks in the “zero-shot” setting, in which
the model is only given a single noisy image as input.

Special care was taken to produce a software implementation of the al-
gorithm that could be immediately useful for the application of our novel
methods on the part of other researchers and research groups. Our software
provides a production-ready implementation of black-box unsupervised train-
ing of binary-latent probabilistic generative models with truncated variational
distributions, marrying variational inference, genetic algorithms and gradient-
based training techniques.

Part of the results described in this work were published as Guiraud et al.
(2018) and I presented them on behalf of the authors in the occasion of that
conference. More recent results, extending our research in the direction of
more complex and deep generative models, are under review at the time of
writing.

1.1 Outline

Chapter 2 introduces the Expectation-Maximization algorithm, the general
framework for variational inference that we will employ in the rest of this
work. Chapter 3 discusses the concrete variational approximation we use,
Truncated Variational Expectation-Maximization (TVEM), which is based on
truncated posteriors as variational distributions. Chapter 4 shows how TVEM
can be mixed with evolutionary algorithms to provide a full training algorithm
for probabilistic generative models with discrete latent variables. Experiments
on shallow generative models are provided to demonstrate applicability and
scalability of the approach. This chapter is based on the contents of our pub-
lished paper Guiraud et al. (2018), “Evolutionary Expectation Maximization”.
Chapter 5 marries Evolutionary Expectation Maximization for variational op-
timization with gradient-based optimization of the model’s parameters to train

1.1. Outline 5

deeper models, namely discrete-latent Variational Autoencoders. It contains
novel state-of-the-art results on a denoising benchmark in the “zero-shot” set-
ting. Finally, Chapter 7 presents the work I have done as part of my residency
in the ROOT software development team at CERN in the context of high-
level, declarative data analysis interfaces and bridging high-energy physics
data formats with the Python data analysis ecosystem.

1.2. Mathematical notation 6

1.2 Mathematical notation

Throughout the document we will follow the convention that lower case sub-
scripts take values from 1 to the corresponding capital letter, so that, for
example,

∑
n is equivalent to

∑N
n=1.

Generally, variable names that refer to multi-dimensional quantities will be
indicated with an arrow, such as in ~y, otherwise variables are implied to be
scalar, except when subscripts clearly indicate dimensionality such as in Wdh.
For example, when discussing latent variable generative models:

• ~s refers to the array of values of all latent variables

• sh represents the value of one of the H latent variables

• ~y stands for the array of observed variables

• ynd is one of the D observed values of one of the N datapoints

Curly braces around arrays indicate collections of such arrays: for example,
{~y} refers to the full observed dataset, i.e. {~y 1, . . . , ~yN}, and

∑
{~s} indicates

a summation over all possible 2H latent states.

Other symbols we will often make use of:

• Φ represents the set of variational parameters

• Θ is the set of a model’s parameters

• DKL(p; q) is the Kullback–Leibler divergence between distributions p and
q

• N (x;µ, σ2) is the isotropic normal distribution with mean µ and variance
σ2

• Bern(p) is the Bernoulli distribution with parameter p

Chapter 2

Variational Inference with the
Expectation-Maximization
Algorithm

Producing algorithms that can learn to compactly describe interesting be-
haviour of real-world data, capturing complex correlations and robustly deal-
ing with data noise, is a highly sought-after goal in the field of machine
learning. In particular, for real-world applications, it is desirable that such
algorithms require as little as possible expert knowledge and can provide out-
of-the-box insights to domain experts, or can otherwise solve a given task with
as little as possible human intervention.

As a starting point towards this goal, here we tackle this general problem
using the theoretical framework of latent variable generative models trained
with the Expectation-Maximization (EM) algorithm. Sections 2.1 and 2.2 in-
troduce these concepts as well as the mathematical tools we will use through-
out this document. Section 2.2.2, in particular, demonstrates the application
of these tools to the real-world problem of inferring hearing-impairing health
conditions from reported symptoms.

Exact EM quickly becomes computationally intractable as the complexity
of the problem increases. The following chapter describes the generic varia-
tional approximation scheme we employ in this work to circumvent exact EM’s
intractability, Truncated Variational Expectation-Maximization (TVEM).

2.1 Latent variable generative models

Given a set of N data points {~y 1, . . . , ~yN}, a latent variable, probabilistic,
parametric generative model describes the data generation process as a joint
probability distribution pΘ(~y,~s) where ~y are the observed variables (or observ-
ables), ~s are unobserved or latent variables, and Θ are the model parameters.

7

2.1. Latent variable generative models 8

In other words, we think of observed data as sampled from the data distri-
bution pΘ(~y) =

∑
{~s } pΘ(~y,~s), i.e. the joint distribution marginalized over

unobserved state (the symbol
∑
{~s } denotes the summation over all possible

latent states). By including latent variables ~s in our model it is possible to take
into account missing or unobserved information that is nevertheless part of the
generative process: for example, if we were to model disease-symptom corre-
lations, but our dataset only reported observed symptoms, we might describe
presence/absence of a disease via a latent cause, i.e. an unobserved variable the
state of which conditions the behaviour of the observables (presence/absence
of symptoms). Concrete examples of latent variable generative models can be
found below. For our purposes, we will only consider generative models with
binary or discrete latent variables, which are the most natural application of
the novel techniques we describe in Chapter 4.

In order to be able to answer meaningful questions about the data or
the phenomenon they describe, we typically seek parameters Θ that make
data generated by the model as similar as possible to the true N observed
data points. More formally, we want our model distribution to be as close
as possible an approximation of the true data distribution. To this end, one
common approach is to seek maximum likelihood (ML) parameters, i.e. given
the data log-likelihood

L(Θ) =
∑
n

log

∑
{~s }

pΘ(~y n, ~s)

 , (2.1)

the training algorithm should efficiently search for Θ∗ = argmaxΘ L(Θ). This
is precisely where the Expectation-Maximization algorithm described in Sec-
tion 2.2 comes in.
A probabilistic generative model trained this way becomes then a powerful
tool that can be used to solve a wide variety of common machine learning
tasks: for example, a generative model with a single categorical latent vari-
able s = {c0, c1, . . .} could perform clustering by assigning each data point to a
cluster based on maxs p(s | ~y,Θ∗); whenever the latent space is smaller than the
observed space, probabilistic association of latent states and observables could
be used for feature extraction or lossy compression; the marginal probability
pΘ(~y n) of data points is immediately useful for anomaly or outlier detection;
finally, as the parametric distribution can directly model data noise, one can
perform automatic data noise estimation by looking at the learned value of
the noise parameters, and even denoising by using the model’s learned distri-
bution to estimate likely noise-free values from noisy observables (in Chapter
5 we discuss this use case in depth and provide state-of-the-art results for a
specific “zero-shot” problem setting).

How well a given model will perform on a given task depends, of course,
on how closely it can approximate the true data distribution (more expressive

2.1. Latent variable generative models 9

Figure 2.1: A small Noisy-OR model. The generative process first samples
each sh from a Bernoulli distribution; then each yd is sampled from a Bernoulli
distribution with parameter Nd(~s), generating a datapoint.

models can better approximate complex distributions), as well as how effi-
ciently the training procedure can find model parameters that (approximately)
maximize the data log-likelihood. In particular, for all but the simplest tasks
a full search of the parameter space is unfeasible and the objective function
is usually not convex; the performance of a model will therefore also depend
on the propensity of a given training algorithm to get stuck in undesirable,
shallow local optima.

2.1.1 Example: the Noisy-OR model

The Noisy-OR model (e.g. Singliar and Hauskrecht, 2006; Rotmensch et al.,
2017) is a highly non-linear bipartite data model with all-to-all connectivity
among hidden and observable variables. All variables take binary values. As
in all generative models that we will consider in this work, the joint prob-
ability factorizes in a prior distribution and a conditional data distribution:
pΘ(~y,~s) = pΘ(~s) pΘ(~y |~s). Noisy-OR employs a Bernoulli prior, and latents
activate observables based on the actual Noisy-OR rule:

p(~s) =
∏
h

πshh (1− πh)1−sh

p(~y |~s) =
∏
d

Nd(~s)
yd(1−Nd(~s))

1−yd

where Nd(~s) = 1−
∏
h

(1−Wdhsh)

(2.2)

In this context Θ = {~π,W}, where ~π is the set of values πh ∈ [0, 1] representing
the prior activation probabilities for the hidden variables sh and W is a D×H
matrix of values Wdh ∈ [0, 1] representing the probability that a latent sh, if
active, activates in turn the observable yd. The model owes its name to the
fact that the probability that yd is active corresponds to the probability that

2.2. Variational Expectation-Maximization 10

at least one of the latents sh successfully activates it. Figure 2.1 is a graphical
representation of a small Noisy-OR network.

Noisy-OR is often employed in disease-symptom modeling: in this set-
ting latent variables indicate presence/absence of a given disease, observables
represent presence/absence of a given symptom, model priors πh encode the
incidence of a disease and model weights Wdh the probability that a given
disease produces a given symptom. In section 2.2.2 we use precisely this prob-
lem setting and train a small Noisy-OR network on data related to hearing
impairment.

2.1.2 Example: Binary Sparse Coding

As a second example of latent variable generative model we would like to
introduce Binary Sparse Coding (BSC) (Haft et al., 2004; Henniges et al.,
2010). Similarly to Noisy-OR, latents follow a univariate Bernoulli distribution
(except that here we elect to use the same activation probability for each
hidden unit, i.e. πh = π ∀ h). Differently from Noisy-OR, BSC employs
continuous observables. The observables are drawn from a factorized multi-
variate Gaussian distribution whose mean is a linear superposition of the mean
values Wdh associated to each of the latent variables:

p(~s) =
∏
h

πsh (1− π)1−sh ,

p(~y |~s) =
∏
d

N (yd;
∑
h

Wdhsh, σ
2)

(2.3)

The parameters of the model are Θ = {π, σ,W}, where ~π has the same mean-
ing as in Noisy-OR, W is a D×H matrix of real values and σ (also real-valued)
determines the standard deviation of the isotropic Gaussian noise. BSC is a
simple and yet versatile generative model that can be an appropriate choice
whenever it is reasonable to assume that data noise is (approximately) Gaus-
sian. As an example application, Guiraud et al. (2018) applied BSC to an
image denoising task and showed that, when trained with the procedure out-
lined in Chapter 4, it can outperform other common sparse coding approaches
in the setting examined.

2.2 Variational Expectation-Maximization

It can be tempting to try to directly optimize the model parameters Θ w.r.t.
the log-likelihood of Eq. 2.1; however, analytical derivations for any but the
simplest generative models will prove impractical if not unfeasible, and meth-
ods based on gradient ascent would require frequent evaluation of summation∑
{~s }, which is intractable for models with more than a few latent variables.

As we will discuss in this section, variational optimization algorithms based

2.2. Variational Expectation-Maximization 11

on Expectation-Maximization (Dempster et al., 1977) help circumventing such
intractability.

In particular, here we will follow Neal and Hinton’s free energy reformu-
lation of the log-likelihood maximization problem (Neal and Hinton, 1998):
at the cost of introducing a set of appropriately chosen auxiliary probability
distributions, this reformulation provides a tractable lower bound of the log-
likelihood, the variational free energy, that can be optimized in its place. In
this sense, variational Expectation-Maximization is a meta-algorithm, i.e. a
framework to develop algorithms, because different choices of these auxiliary
distributions, called variational distributions, yield potentially very different
concrete training algorithms. The free energy is defined as follows:

F (Φ,Θ) =
∑
n

〈log pΘ(~y n, ~s)〉qnΦ −
∑
n

〈log qnΦ〉qnΦ , (2.4)

where qnΦ = qnΦ(~s) are the variational distributions, the exact functional form of
which is now an extra degree of freedom. The expectation value still expands
to the potentially computationally intractable summation over the full latent
space:

〈h(~s)〉qnΦ =
∑
{~s }

qnΦ(~s)h(~s) (2.5)

It is easy to relate log-likelihood and free energy, assuming distributions qnΦ
that are defined on and take strictly positive values for all latent states ~s:

F (Φ,Θ) =
∑
n

∑
{~s }

qnΦ(~s) (log pΘ(~y n, ~s)− log qnΦ(~s)) (2.6)

=
∑
n

〈log
pΘ(~y n, ~s)

qnΦ(~s)
〉qnΦ (2.7)

=
∑
n

〈log
p(~yn)pΘ(~s | ~y n)

qnΦ
〉qnΦ (2.8)

=
∑
n

〈log p(~yn)〉qnΦ + 〈log
pΘ(~s | ~y n)

qnΦ
〉qnΦ (2.9)

= L(Θ) −
∑
n

DKL(qnΦ(~s); pΘ(~s | ~y n)) (2.10)

and from the non-negativity of the Kullback–Leibler (KL) divergence DKL it
derives that

F (Φ,Θ) ≤ L(Θ) ∀ Φ and choice of (sufficiently well-behaved) qΦ. (2.11)

Another property of the free energy as defined in Eq. 2.4, that will be of interest
in Chapter 5, is that a manipulation of its terms analogous to the one in Eq. 2.8

2.2. Variational Expectation-Maximization 12

reveals it as an alternative writing of the Evidence Lower BOund (ELBO) com-
monly used as an optimization target in Variational Auto-Encoders (VAEs,
Kingma and Welling, 2014; Rezende et al., 2014):

F (Φ,Θ) =
∑
n

〈log
pΘ(~y n, ~s)

qnΦ(~s)
〉qnΦ (2.12)

=
∑
n

〈log
pΘ(~y |~s)pΘ(~s)

qnΦ
〉qnΦ (2.13)

=
∑
n

〈log pΘ(~y n |~s)〉qnΦ −
∑
n

DKL (qnΦ(~s); pΘ(~s)) . (2.14)

Note that, in this form, the first term contains the conditional data distribu-
tion rather than the joint distribution, and, differently from Eq. 2.10, the KL
divergence contains the prior rather than the posterior distribution. In the
following we will use the terms “free energy” and “ELBO” interchangeably,
preferring the former in the context of variational Expectation-Maximization
and the latter in the context of Variational Autoencoders.

2.2.1 Full E-steps and full M-steps

It is interesting to discuss, at this point, how this variational approxima-
tion represented by the free energy enables optimization of a given generative
model. We will revisit the logical steps that we go through in this section
when discussing truncated approximations in Chapter 3.

From Eq. 2.10 it can be observed that the variational free energy is max-
imized (i.e. becomes exactly equal to the log-likelihood) if and only if DKL is
zero for each datapoint, i.e. if and only if variational distributions are chosen
to be equal to the model’s posterior distributions, qnΦ(~s) = pΘ(~s | ~y n) ∀ ~s. As
a second key observation, please note that when optimizing the free energy
of Eq. 2.4 w.r.t. model parameters Θ we can completely disregard the sec-
ond term, which only depends on parameters Φ. These two observations are
the main ingredients of the EM algorithm with full E-steps and full M-steps.
Although it does not solve the computational intractability due to the expo-
nentially large number of possible latent states {~s} in summations

∑
{~s }, it

does enable analytical derivations of optimization algorithms for a large num-
ber of latent variable generative models. For the rest of this section we will
refer to the EM algorithm with full E-step and full M-step updates as “exact
EM”.

Exact EM alternatingly maximizes the free energy w.r.t. Θ and Φ, giving
rise to an iterative optimization loop that never decreases (and, in practice,
monotonously increases) F (Φ,Θ):
Expectation step: the E-step requires that we evaluate qnΦ(~s) = pΘ(~s | ~y n)
for all latent states ~s and all datapoints ~y n. Typically, for approximations of
exact EM, the E-step also consists of a search for better Φ; here, however, we

2.2. Variational Expectation-Maximization 13

make the optimal although computationally expensive choice of choosing pos-
teriors as variational distributions and therefore setting Φ equal to Θ. After
this step, the free energy is exactly equal to its upper bound, the log-likelihood,
hence the E-step never decreases the free energy.
Maximization step: the M-step seeks better model parameter values Θnew

such that: Θnew = argmaxΘ F (Φ,Θ). Optimizing the free energy w.r.t. Θ is
simpler than doing so for the log-likelihood directly: for many common gen-
erative models, including the Noisy-OR and BSC models introduced above,
it is even possible to solve ∇ΘF (Φ,Θ) = 0 w.r.t. Θ analytically to find its
extrema (which inspection of the second derivatives would confirm to be max-
ima). After this step, however, due to the change in model parameters Θ, qnΦ
have values different than the posterior distributions, so the free energy will
generally have lower values than the log-likelihood. By definition, the M-step
never decreases the free energy. Note that in general we are satisfied with
finding new model parameters such that F (Φ,Θnew) ≥ F (Φ,Θ) rather than
the global optimum parameters: this is sufficient to eventually converge to a
(local) optimum of the free energy. Equations for M-step parameter updates
for the models presented in this work are available in Appendix A.

2.2.2 Application to medical data: training a Noisy-OR model
on Common Audiological Functional Parameters

Exact EM is computationally expensive, but for small-enough scales it is still
a viable training algorithm for standard probabilistic generative models. Med-
ical data, production of which might require effort on the part of field experts,
often is relatively small-scale, and calls for inference algorithms that can ex-
tract interesting correlations from relatively few datapoints. In the context of
work by Mousavi et al. (2020) (currently in preparation), we applied Noisy-
OR, trained with the exact EM algorithm, to a dataset containing information
on the state of the audiological apparatus of anonymized patients. The Com-
mon Audiological Functional Parameters (CAFPAs) were introduced by Buhl
et al. (2020) as an abstract representation of audiological tests performed on
a patient. The dataset we use in these experiments is the output of an ex-
pert survey in which leading clinical audiologists and physicians labeled the
database from Hörzentrum Oldenburg, Germany, by indicating audiological
findings, treatment recommendations, and CAFPAs for single patient cases.
CAFPAs take continuous values in the interval [0, 1], where 0 represents a
normal (“healthy”) value and 1 a pathological value, and describe different
functional aspects of the auditory system: four CAFPA values are related to
hearing thresholds in different frequency ranges, two CAFPA values are re-
lated to suprathreshold deficits below and above 1.5 kHz, and finally binaural
hearing, neural processing, cognitive abilities, and a socioeconomic component
are associated to one CAFPA value each (see Buhl et al. (2020) for detailed

2.2. Variational Expectation-Maximization 14

information).

In these experiments we ignore the socioeconomic CAFPA. Furthermore,
we only take into account datapoints with audiological findings on high-frequency
hearing loss and broadband hearing loss. Our aim will be to train a Noisy-OR
model that can “diagnose” these conditions (i.e., infer the correct audiologi-
cal findings, which will play the role of hidden state) based on the observed
CAFPA values. As a performance metric, as it is common for medical ap-
plications, we will use the area under curve (AUC) for the receiver operating
characteristic (ROC) curve (true positive over false positive rate). We will
produce three such curves, one for high-frequency hearing loss, one for broad-
band hearing loss, and one for normal hearing. The dataset contains 124 data
points with D=9 CAFPA values each, in which 52 patients are diagnosed with
high-frequency hearing loss, 26 with broadband hearing loss, 9 with both and
37 have normal hearing.

As Noisy-OR requires binary observables, we binarize CAFPA values based
on a threshold and repeat the experiment for several binarization thresholds,
selecting the one that yields best AUCs (0.25 for these experiments). We em-
ploy 3-fold cross-validation. Fig. 2.2 shows ROC curves for each fold (dashed
lines) as well as the average across folds (solid lines) and the AUC value of the
solid lines.

2.2.3 Factored variational distributions

Factored variational approximations, or mean-field approximations, are a com-
mon technique to obtain computationally tractable EM algorithms. In this
setting, variational distributions are chosen so they have a factorized form:

qnΦ(~s) =
∏
h

q̃ nh (sh;φnh) (2.15)

The exact functional form of the factors q̃ nh usually depends on the generative
model, and it is chosen so that optimization is computationally tractable. A
common choice is to pick q̃ nh identical to the model’s prior distributions (e.g.
Jordan et al., 1999; Haft et al., 2004). Being a factored approach, mean-
field has the disadvantage of being unable to capture correlations between
hidden variables, potentially resulting in poor approximations of the exact
log-likelihood. Another way to see this is that, as we know that the theoretical
optimal choice would be to pick variational distributions equal to the model’s
posteriors, choosing qnΦ that can only poorly approximate the possibly complex
modes of the posteriors can be sub-optimal (see e.g. Vértes and Sahani, 2018,
for further discussion). Another downside of factored variational distributions
is that M-step update rules for the variational parameters Φ require per-model
mathematical derivations.

2.2. Variational Expectation-Maximization 15

Figure 2.2: Noisy-OR trained with exact EM on a real-world CAFPA dataset.
For the hearing conditions indicated in their titles, the sub-figures display
ROC curves for each fold in the 3-fold cross-validation (dashed lines) as well
as the average ROC curve across all folds (solid line) and its AUC.

2.2. Variational Expectation-Maximization 16

2.2.4 Gaussian variational distributions

As a versatile distribution with useful analytical properties, another common
choice of variational distributions is the Gaussian distribution:

qnΦ(~s) = N (~s, µn,Σn) (2.16)

where Φ = {µ1,Σ1, ..., µN ,ΣN}. By definition, Gaussian variational distribu-
tions only capture one posterior mode. As such, they are a common choice for
generative models known to have essentially mono-modal posteriors (see e.g.
Opper and Winther, 2005; Seeger, 2008; Opper and Archambeau, 2009).

Chapter 3

Truncated Variational
Expectation-Maximization

This chapter provides a review of truncated posteriors as a choice of variational
distributions in the context of the Expectation-Maximization framework dis-
cussed in Chapter 2. Sec. 3.1 highlights several interesting properties of such a
variational approximation; Sec. 3.2 presents the resulting training algorithm,
which, notably, still features an important degree of freedom in the optimiza-
tion of variational parameters; finally, Sec. 3.3 discusses several aspects related
to implementing training algorithms based on truncated posteriors efficiently.

Truncated posteriors have previously been used in the training of probabilistic
generative models (e.g. Lücke and Sahani, 2008; Sheikh et al., 2014) and fully
variational such approaches are discussed in detail by Lücke (2019).

3.1 Truncated Posteriors as Variational Distribu-
tions

Rather than Gaussian or factored distributions, for the purpose of this work
we will use truncated posteriors (e.g. Lücke and Sahani, 2008; Guiraud et al.,
2018) as variational distributions of choice:

qnΦ(~s; ~y n) :=
pΘ(~s | ~y n)∑

~s ′∈Φn

pΘ(~s ′ | ~y n)
δ(~s ∈ Φn) (3.1)

=
pΘ(~y n, ~s)∑

~s ′∈Φn

pΘ(~y n, ~s ′)
δ(~s ∈ Φn) . (3.2)

where

δ(~s ∈ Φn) =

{
1 if ~s ∈ Φn

0 otherwise
(3.3)

17

3.1. Truncated Posteriors as Variational Distributions 18

The truncated posterior qnΦ(~s; ~y) is proportional to the true posterior pΘ(~s | ~y n)
in a subset Φn of the latent state, and zero outside of the subset. The varia-
tional parameters Φn take then the form of sets of latent states, Φ being the
collection of all Φn. Compared to factored distributions, truncated posteriors
also yield a non-amortized training procedure (variational parameters Φn are
per-datapoint), but are non-factoring (yet numerically tractable) and yield a
generic E-step. Truncated posteriors are well-suited to generative models with
discrete latent variables (e.g. Sheikh et al., 2014; Hughes and Sudderth, 2016;
Lücke et al., 2018; Shelton et al., 2014; Forster and Lücke, 2018).

An interesting property of this choice of variational distributions is that it
contains both exact Expectation-Maximization and its maximum a posteriori
(MAP) approximation as limit cases: the former corresponds to the case in
which Φn contains all possible variational states, so that summations

∑
~s∈Φn

are equivalent to summations over the full latent space, and the latter corre-
sponds to the case in which Φn only contains a single element – the (estimated)
MAP state.

An immediate consequence of using truncated posteriors is that expecta-
tion values 〈h(~s)〉qnΦ can efficiently be computed given sufficiently small Φn:

〈h(~s)〉qnΦ =
∑
{~s }

h(~s) qnΦ(~s) =

∑
~s∈Φn

h(~s) pΘ(~y n, ~s)∑
~s ′∈Φn

pΘ(~s ′, ~y n)
. (3.4)

Eqn. 3.4 is required to evaluate many quantities of interest, including the free
energy itself and, often, M-step parameter updates.

Note, however, that it is not a given that truncated posteriors can be
plugged into the framework of Expectation Maximization without issues. In
particular, we would like to highlight two technical hurdles: firstly, truncated
posteriors, by definition, have hard zeros outside of the subset of latent space
represented by each Φn. In first approximation, this would seem to invalidate
the derivation of the variational lower bound in Eq. 2.11, in which qnΦ appears
at denominator or as argument of a logarithm; however, it is possible to show
that truncated posteriors are indeed a viable choice of variational distributions
e.g. by defining them so they take a small positive value for ~s 6∈ Φn and then
taking the limit in which that positive value goes to zero. Secondly, given that
our variational distributions depend on the model parameters Θ (since they
are defined in terms of the model’s posterior), it is not obvious that one can
neglect the entropy term in the free energy of Eq 2.4 when taking derivatives
w.r.t. the model parameters, which would greatly complicate derivations of
M-step equations; however, it is possible to show that the entropy term can
in fact be neglected, as one can consider, for the purpose of the optimization
algorithm, the Θ on which qnΦ depends as a different set of parameters than
those in pΘ; the first set of parameters is then updated to be equal to the
model’s parameters at every iteration of the EM algorithm. Alternatively, one

3.2. Training Generative Models using Truncated Posteriors 19

could define the truncated posteriors as having the same functional form but
different parameters Θ̂ than the model’s posteriors, and then show that indeed
setting Θ̂ = Θ is the optimal choice. We refer the reader to Lücke (2019) for
the relevant mathematical derivations and further discussion.

3.2 Training Generative Models using Truncated Pos-
teriors

Centrally for this work, truncated posteriors enable a specific reformulation of
the variational lower bound that is useful to efficiently optimize the variational
parameters Φ (see Lücke, 2019, for a derivation):

F (Φ,Θ) =
∑
n

log
∑
~s∈Φn

pΘ(~y n, ~s) . (3.5)

Note the similarity of Eq. 3.5 with the log-likelihood of Eq. 2.1. Thanks to
this specific form of the free energy, a simple optimization algorithm for the
variational parameters Φ becomes available: if we update the set Φn for a
given ~y n by replacing a state ~s old ∈ Φn with a state ~snew 6∈ Φn, then F (Φ,Θ)
increases if and only if:

pΘ(~y n, ~snew) > pΘ(~y n, ~s old) . (3.6)

or equivalently, via the monotonicity of the logarithm function,

log pΘ(~y n, ~snew) > log pΘ(~y n, ~s old) . (3.7)

Consequently, thanks to Eq. 3.5, pairwise comparisons of joint probabilities
are sufficient to optimize the free energy. This criterion is efficiently com-
putable whenever the model’s joint distribution is. The concrete form that
the EM algorithm takes when truncated posteriors are chosen as variational
distributions is denominated Truncated Variational Expectation Maximization
(TVEM) and it is shown in Alg. 1.

This algorithm is guaranteed to converge to a (local) optimum of the free
energy if M-step equations never decrease the free energy (which is commonly
the case). Smart initialization of model parameters Θ can improve time to
convergence and help avoid bad local optima. Also note that the same M-
steps can be applied as for any EM algorithm. In our experiments, we favor
sparse initialization of the variational parameters Φ, e.g. by sampling their
initial contents from a Bernoulli distribution with a small parameter.

The crucial problem that is left to solve is the initialization of the proposed
variational states Φnew in TVEM’s E-step: especially when the latent space
is large, it is important that this search for proposal states is able to exploit
available information to retrieve as many different high-posterior states as

3.3. Efficient numerical implementation of TVEM 20

Algorithm 1: Truncated Variational Expectation Maximization

Initialize model parameters Θ
Initialize each Φn with S distinct latent states
repeat

for each datapoint ~y n do
Initialize Φnew to S′ states ~s ′ s.t. ~s ′ 6∈ Φn

Φn = Φn ∪ Φnew

Truncate Φn to S elements with highest log pΘ(~y n, ~s) values

Update Θ using M-step equations and qnΦ as defined in Eq. 3.2

until parameters Θ have sufficiently converged

possible. A specific search procedure based on evolutionary algorithms is
discussed in the next chapter, and it is a major original contribution of this
work.

3.3 Efficient numerical implementation of TVEM

It is important, at this point, to ask whether an efficient numerical imple-
mentation of TVEM is possible. To answer the question, on one hand we
have to study its theoretical scaling properties, on the other we have to ask
whether implementations can easily take advantage of many-core architec-
tures and what possible drawbacks we expect TVEM to have when compared
to available alternatives.

3.3.1 Computational complexity and memory requirements

While TVEM M-steps employ the typical parameter update equation provided
by the Expectation-Maximization framework, the E-step algorithm (i.e., the
inner loop in Alg. 1) is specific to TVEM. Therefore, it is interesting to verify
that TVEM’s E-step does not involve undesirable scaling behavior with respect
to the problem dimensionality.

The most computationally intensive operations involved in the E-step are
the computation of joint probabilities and the selection of the best variational
states to include in each Φn set. Therefore, we are interested in the computa-
tional complexity of TVEM’s E-step with respect to the number of datapoints
N and the size of sets Φn; the dependency on the number of hidden and ob-
servable variables only comes into play via joint probability computations and
therefore it is really a function of the generative model and not a property of
TVEM.

TVEM’s E-step requires exactly N × S × S′ evaluations of the model’s
joint probability per training epoch, where N is the number of datapoints,

3.3. Efficient numerical implementation of TVEM 21

S is the size of Φn and S′ is the size of Φnew in Alg. 1; the number of joint
probability evaluations therefore scales linearly with respect to N , S and also
S′. Selection of the best S states in Φn ∪ Φnew does not require a full sort
of the union of the sets, but can be implemented in terms of efficient “k-th
element” partitioning algorithms which result in O(S) time complexity (see
e.g. Blum et al., 1973). The overall complexity of TVEM’s E-step therefore
scales linearly with respect to problem dimensionality.

In terms of memory requirements, however, TVEM does impose a non-
negligible extra load: the Φn sets must be kept in memory across epochs. They
occupy exactly N × S × H bytes, assuming boolean values occupy one byte
each, as it is typically the case. For large datasets and generative models, the
memory required by the algorithm might therefore exceed the capacity of off-
the-shelf single GPUs. Bit-packing (storing each boolean value as a single bit)
would reduce the memory load eight-fold, at the cost of runtime performance.
This kind of aggressive memory optimization is rarely necessary, however,
because TVEM’s data parallelism property (discussed above) implies that the
N sets Φn could be distributed across computing nodes or, if required, even
swapped to disk in chunks, with no changes required to the core algorithm
logic.

3.3.2 Data parallelism

TVEM’s E-step requires independent updates of each set Φn. This update, in
turn, requires the evaluation of the model’s joint (or log-joint) distributions
log pΘ(~y n, ~s) for each datapoint ~y n and each state ~s already in Φn, as well as
the new proposal states in Φnew. Indeed, the evaluation of the joint distribu-
tions is typically the most computationally demanding part of TVEM’s E-step.
However, note that the update of each Φn can be performed independently and
the evaluation of each log pΘ(~y n, ~s) is also trivially data-parallel. The compu-
tational workload of TVEM’s E-step can therefore be easily parallelized over
datapoints across computing resources.

For what regards M-steps, it is very commonly the case that factors that
are expensive to compute in M-step equations consist of sums of terms that
depend on a single datapoint

∑
nAn (compare e.g. App. A where we report

M-step equations for the Noisy-OR model and Binary Sparse Coding). There-
fore, all of TVEM can be implemented in terms of a MapReduce-like strategy,
where an arbitrary number of workers perform E-steps and evaluate M-step
factors An for part of the dataset, and then the global parameter updates are
evaluated by aggregating the terms computed by each worker. Data paral-
lelism is a highly desirable property for any machine learning algorithm, and
guarantees that proper TVEM software implementations can take full advan-
tage of modern many-core architectures as well as state-of-the-art multi-GPU
computing clusters.

3.3. Efficient numerical implementation of TVEM 22

3.3.3 Log-pseudo-joints, a useful numerical optimization

As mentioned above, evaluation of joint probabilities is often computationally
expensive, and in practice, for the workloads that we will examine in subse-
quent chapters, it occupies a large fraction of the runtime (between 30% and
40% of a training epoch even after the optimizations described in this section
are applied). Consequently, it can be interesting to make such computations
more efficient. At the same time, especially when the problem dimensionality
is high, it is likely that numerical values of joint probabilities become small
enough to cause catastrophic arithmetic errors due to the finite precision of
floating point representations. Log-pseudo-joints are a mathematical trick that
largely mitigates both of these issues (see e.g. Bornschein et al., 2013).

First of all, note that in the pairwise comparison criterion of Eq. 3.7, which
is at the core of the TVEM algorithm, joint or log-joint probabilities can be
substituted by any function thereof that does not alter the result of these
pairwise comparisons. Secondly, note that, when training a generative model
with TVEM, joint probabilities are only used either in the pairwise criterion
mentioned above, or as weights of expectation values in M-step equations (see
e.g. App. A). These expectation values are evaluated as per Eq. 3.4, which
first of all we re-express in terms of log-joint probabilities:

〈h(~s)〉qnΦ =

∑
~s∈Φn

h(~s) pΘ(~y n, ~s)∑
~s ′∈Φn

pΘ(~s ′, ~y n)
=

∑
~s∈Φn

h(~s) exp(log pΘ (~s, ~y n))∑
~s ′∈Φn

exp(log pΘ (~s ′, ~y n))
.

At this point we define the log-pseudo-joints ˜log pΘ as the set of terms in the
log-joint that depend on the latent variables ~s, and aggregate other terms in
a factor Cn that is constant with respect to ~s:

log pΘ(~y n, ~s) = ˜log pΘ(~y n, ~s) + Cn(~y n; Θ) , (3.8)

Finally, we note that expectations can be written as a function of the log-
pseudo-joints only, as the factors Cn can be elided:

〈h(~s)〉qnΦ =

∑
~s∈Φn

h(~s) exp(˜log pΘ(~s, ~y n) + Cn(~y n; Θ))∑
~s ′∈Φn

exp(˜log pΘ(~s ′, ~y n) + Cn(~y n; Θ))

=

∑
~s∈Φn

h(~s) exp(˜log pΘ(~s, ~y n))∑
~s ′∈Φn

exp(˜log pΘ(~s ′, ~y n))
. (3.9)

Not only expectation values 〈h〉qnΦ can efficiently be computed in terms of the
log-pseudo-joint functions as defined by Eq. 3.8, but also criterion Eq. 3.7:

log pΘ(~y n, ~snew) > log pΘ(~y n, ~s old) ⇔ ˜log pΘ(~y n, ~snew) > ˜log pΘ(~y n, ~s)
(3.10)

3.3. Efficient numerical implementation of TVEM 23

We can therefore express all computations required for TVEM training of gen-
erative models in terms of log-pseudo-joints. Only when we wish to recover
the full log-joint values (for instance if computation of the truncated free
energy Eq. 3.5 is desired), the terms Cn(~y n; Θ) need to be evaluated. Log-
pseudo-joints are less computationally expensive than full joint probabilities
and mitigate finite precision floating point arithmetic errors by moving com-
putations to log-space. In order to avoid computation of exponentials with
very large (positive or negative) arguments, we multiply both numerator and

denominator of Eq. 3.9 by a term exp(Bn) with Bn := −min~s∈Φn ˜log pΘ, which
guarantees that the largest exponent in each summation evaluates to exactly
zero. Note that log-pseudo-joints are not probability distributions: they do
not integrate to one. Explicit forms for the log-pseudo-joints of Noisy-OR and
Binary Sparse Coding can be found in App. B.

3.3.4 No fast inference mode: a notable caveat

When applying a (supervised or unsupervised) machine learning algorithm to
a given task, the expectation is often that a possibly long and computation-
ally intensive training phase is followed by a relatively faster inference phase,
in which the trained model is applied to the task at hand. Indeed this is
the case for many commonly applied machine learning algorithms, including
Boosted Decision Trees (Freund and Schapire, 1995), Deep Neural Networks
used as supervised classifiers, Generative Adversarial Networks (Goodfellow
et al., 2014) and Autoencoders (Kramer, 1991). Non-amortized learning al-
gorithms such as TVEM, on the other hand, have to perform at least some
form of parameter fitting at inference time as well as training time. In the
specific case of TVEM, even though the learned model parameters Θ can be
used as-is, this is not the case for the variational parameters Φn: valid sets of
variational states ~s must be searched for each datapoint in order to properly
perform inference tasks. Since this search amounts to a large fraction of the
training time, this limitation is worth pointing out. Other standard, amortized
EM approximation schemes such as the factored approximations discussed in
Sec. 2.2.3 do not suffer from this limitation.

On the other hand, it has been pointed out (see e.g. Kim et al., 2018; Cre-
mer et al., 2018) that amortization can result in worse inference performance.
The TVEM algorithm is not subject to such an amortization gap.

3.3. Efficient numerical implementation of TVEM 24

Chapter 4

Evolutionary
Expectation-Maximization

In Chapter 2 we have seen how the Expectation-Maximization framework can
be applied to derive variational approximations of the maximum likelihood
problem. In Chapter 3 we showed how, thanks to our choice of truncated
posteriors Eq. 3.2 as variational distributions, it is possible to overcome the
computational intractability of exact Expectation-Maximization without re-
curring to factored distributions that might not be able to capture complex
modes of the model’s posteriors.

In practice, the optimization of generative models with discrete latent vari-
ables has been re-framed as the optimization of sets of latent states Φn. The
criterion of Eq. 3.7, that we report here as a reminder, guides the process: we
seek latent states ~snew 6∈ Φn such that

log pΘ(~y n, ~snew) > log pΘ(~y n, ~s old) (3.7 revisited)

for any one ~s old ∈ Φn. Assuming that computation of the model’s log-joint
distribution log pΘ(~y,~s) is tractable, we are left with the challenge of effi-
ciently searching the latent space for good proposal states ~snew. Solving this
core problem will be the topic of this chapter: the behavior of the training
algorithm itself is strongly dependent on the search procedure of choice.

The content of this chapter is based on Guiraud et al. (2018). The origi-
nal idea of applying evolutionary algorithms to the search of proposal states
~snew was developed jointly with Jörg Lücke and Jakob Drefs. Jakob Drefs and
I settled the details of the algorithm, implemented, tested and fine-tuned it
and performed the experiments necessary to its investigation and validation.
In particular, I performed all experiments on the Noisy-OR generative model
and developed and implemented the GPU-friendly genetic operators employed
by the algorithm. The denoising results with the Binary Sparse Coding model
presented in this chapter were produced by Jakob Drefs.

25

4.1. Related work: Truncated Variational Sampling 26

4.1 Related work: Truncated Variational Sampling

Previous work (e.g. Guiraud et al., 2016; Lücke et al., 2018) has tackled the
challenge of finding good proposal states by sampling new variational states
~s new from appropriate proposal distributions. Because the variational lower
bound of Eq. 3.5 becomes a tighter and tighter approximation of the true log-
likelihood as the truncated posteriors of Eq. 3.2 capture more and more pos-
terior mass, the obvious choice would be to sample from the model’s posterior
distribution, ~s new ∼ pΘ(~s | ~y n), or, equivalently, from the joint distribution
~s new ∼ pΘ(~y n, ~s) at fixed ~y n. Posterior sampling, however, typically requires
per-model analytical derivations and can be computationally expensive. In
practice, it can be found that more generic, faster alternatives perform just as
well for our purposes.

First of all, note that, independently of the proposal distribution (and,
more in general, of the algorithm used to propose variational states ~s new),
Alg. 1 is guaranteed to never decrease the free energy. Therefore, at least
in principle, even random uniform sampling would be a viable option. How-
ever, in practice, we typically seek a relatively small number of “good”, high-
posterior states ~s, and random uniform sampling would explore the latent
space (which for a model with H binary latent variables has size 2H) terribly
inefficiently. We would rather employ a proposal distribution that focuses on
interesting portions of the latent space. One way to do so is to bias the sam-
pling procedure towards latent states with sparsity compatible with the one
learned by the model itself: this can be achieved by sampling from the model’s
prior distribution, ~s new ∼ pΘ(~s). For a sparsity value of S (where we define
sparsity as the average number of latents that are active during the generative
process, i.e. S = H〈πh〉h for a model with priors πh), we are now exploring
a sub-set of the latent space with size proportional to HS � 2H (assuming
S < H and sufficiently large H; the first assumption holds true whenever the
task at hand is compatible with a sparse representation in latent space, which
is often the case). Prior sampling, however, completely disregards information
relative to the datapoint ~y n for which latent states are being searched. To
solve this issue, in Guiraud et al. (2016) truncated posteriors are leveraged to
provide efficient sampling from an approximation of the marginal distribution
of ~s:

pΘ(sh = 1 | ~y n) = 〈sh〉pΘ(~s | ~y n) ≈ 〈sh〉qnΦ(~s) . (4.1)

When approximate marginals are chosen as proposal distributions, each latent
variable s new

h is sampled independently from a Bernoulli distribution with pa-
rameter 〈sh〉qn(~s): dependencies among latents are disregarded but information
relating to the datapoint is taken into account. Work by Lücke et al. (2018)
further explores this research direction: samples from the more exploratory
prior distribution and the more exploitative marginal distribution are mixed
into the sets Φnew, and a neural network, trained alongside the generative

4.2. Evolutionary Expectation-Maximization 27

model, is used to evaluate the marginal probability pΘ(sh = 1 | ~y n), which
has the advantage of sharing information across similar datapoints via the
network’s weights.

4.2 Evolutionary Expectation-Maximization

As the model’s posterior structure becomes more complex or as the latent
space dimensionality becomes larger, prior or marginal sampling might not be
able to find new and different high-posterior variational states ~snew efficiently
enough, because these distributions cannot accurately describe dependencies
among latent variables. Therefore, it is interesting to investigate whether we
can apply tools other than sampling to solve the optimization of the sets of
discrete latent states Φn. In this vein, note how our problem setting involves
a population of discrete variational states ~s that we wish to optimize based on
a score function f = log pΘ(~y n, ~s): from this perspective, our task is a natural
fit for evolutionary algorithms (EAs). Note that the discrete nature of the
latent variables, that we assumed when introducing the truncated posterior
approximation in Ch. 3, becomes even more relevant in the context of the
evolutionary algorithms we will consider.

Evolutionary algorithms are a well-known optimization technique inspired
by biological evolutionary processes such as mutation, recombination and
fitness-based selection (e.g. Fogel et al., 1966; Rechenberg, 1965), and they
have been successfully applied to many typical machine learning tasks such as
clustering (Pernkopf and Bouchaffra, 2005; Hruschka et al., 2009), reinforce-
ment learning (Salimans et al., 2017), and hierarchical unsupervised (Myers
et al., 1999) or deep supervised learning (see e.g. Stanley and Miikkulainen,
2002; Suganuma et al., 2017; Real et al., 2017, for recent examples). In some
cases, EAs have been employed as alternatives to standard procedures (e.g.
Hruschka et al., 2009), but most frequently EAs are used to solve specific sub-
problems: for example, for classification with Deep Neural Networks (DNNs,
LeCun et al., 2015; Schmidhuber, 2015), EAs are frequently applied to select
the best DNN architectures for a given task (e.g. Stanley and Miikkulainen,
2002; Suganuma et al., 2017) or more generally to find the best hyperparam-
eters of a DNN (e.g. Loshchilov and Hutter, 2016; Real et al., 2017) given a
specific dataset and application. Evolutionary algorithms have also been ap-
plied in conjunction with EM: Pernkopf and Bouchaffra (2005), for instance,
have employed EAs in clustering applications with Gaussian mixture models
(GMMs). In their approach, the GMM parameters are updated using EM,
while EAs are used to select the best GMM models for the clustering problem
(using a minimum description length criterion). Yet other approaches have
used EAs to directly optimize, e.g., a clustering objective, but in these cases
EAs replace EM approaches for optimization (compare e.g. Hruschka et al.,
2009).

4.2. Evolutionary Expectation-Maximization 28

In Guiraud et al. (2018), we instead investigate the possibility to link EAs
and variational optimization more tightly by leveraging evolutionary optimiza-
tion as a core element of the Truncated Variational Expectation-Maximization
algorithm described in Ch. 3. The variational nature of the approximation of
the log-likelihood maximization problem is retained, and evolutionary algo-
rithms are used by the inner loop to improve the truncated approximation
of the model posteriors. There is a certain freedom in the choice of fitness
function and genetic operators that can be employed, which we discuss below.
Alg. 2 describes the resulting algorithm, and section 4.3 reports the numerical
experiments we conducted in the context of this line of research and that have
been published in Guiraud et al. (2018).

Algorithm 2: Evolutionary Expectation Maximization

Initialize model parameters Θ
Initialize each Φn with S distinct latent states
repeat

for each datapoint ~y n do
Φnew = Φn

for each generation do
Φnew = mutation (crossover (selection (Φnew)))
Φn = Φn ∪ Φnew

Truncate Φn to S elements with highest log pΘ(~y n, ~s) values

Update Θ using M-step equations and qnΦ as defined in Eq. 3.2

until parameters Θ have sufficiently converged

4.2.1 Choosing a fitness function

In order to improve the truncated free energy objective of Eq. 3.5, it is sufficient
to select new individuals (i.e., new variational states) that respect criterion
Eq. 3.7. Consequently, we can choose any fitness function fΘ(~s; ~y n) for our
evolutionary optimization of sets Φn as long as it fulfills the property:

fΘ(~s new; ~y n) > fΘ(~s; ~y n) ⇔ log pΘ(~y n, ~snew) > log pΘ(~y n, ~s) . (4.2)

In other words, if Eq. 4.2 is satisfied, any mutation of ~s that increases the
fitness fΘ(~s; ~y n) will result in provably increased free energies if the muta-
tion of ~s substitutes the original state in the corresponding set Φn. Together
with M-step optimizations of model parameters, the resulting variational EM
algorithm will monotonically increase the free energy and therefore the log-
likelihood. As long as the chosen fitness function satisfies Eq. 4.2 we are free to
pick a form that enables an efficient evolutionary algorithm implementation.

4.2. Evolutionary Expectation-Maximization 29

Figure 4.1: Schematic representation of the optimization process of the vari-
ational parameters Φ(n) in EEM. A. Some states are selected as parents. B.
Crossover generates new children. C. Each child undergoes random mutation
(bitflips). D. Children are merged with the original population and the least
fit are discarded. New states are marked in gray, one of the candidates was
already part of the population.

Concretely, for our purposes we define the fitness as:

fΘ(~s; ~y n) := ˜log pΘ(~s; ~y n) (4.3)

where ˜log pΘ, the “log-pseudo-joint” distribution, is a monotonically increasing
function of the joint distribution defined to be more efficiently computable and
to have better numerical stability. More details regarding log-pseudo-joints are
available in Sec. 3.3.3.

4.2.2 Choosing the genetic operators

Our evolutionary algorithm includes three common genetic operators: parent
selection, generation of children by single-point crossover and stochastic mu-
tation of the children. We repeat this process over Ng generations in which
subsequent iterations use the output of previous iterations as input popula-
tion. These operations are performed on each datapoint-specific set Φn. The
offspring generated this way, together with the initial contents of each Φn, are
then sorted by fitness and the fittest S distinct states (where S is the size of
Φn) are retained as the updated contents of Φn. The whole procedure can be
seen as an evolutionary algorithm with perfect memory or very strong elitism

4.2. Evolutionary Expectation-Maximization 30

(individuals with higher fitness never drop out of the gene pool). Note that
the improvement of the overall fitness of the population (and therefore of the
variational lower bound) depends on generating as many as possible different
children with high fitness over the course of training. A discussion of genetic
operator follows, while Fig. 4.1 provides a visual representation of the process.

Parent Selection. This step selects Np parents from the population Φn.
Ideally, the selection procedure should balance exploitation of parents with
high fitness (which will more likely produce children with high fitness) and ex-
ploration of mutations of low-fitness parents (which might eventually produce
children with high fitness while increasing population diversity). Diversity is
crucial, as Φn is a set of unique individuals and therefore the improvement
of the free energy Eq. 2.4, which is our ultimate goal, depends on generating
different children with high fitness. In our numerical experiments we explore
fitness-proportional selection of parents and random uniform selection of par-
ents. In order to sample states proportionally to their fitness, we must ensure
that the fitness f always takes positive values, so that we can re-normalize
it and use it as desired average sampling frequency; for this purpose, when
fitness-proportional selection of parents is employed, we add an offset, con-
stant w.r.t. ~s, to the fitness defined in Eq. 4.3. For the experimental results

presented below, this offset was set to C = |2 min~s

(˜log pΘ(~s; ~y n)
)
| (evaluated

once per data point per EM iteration).

Crossover. During the crossover step, parents are combined in pairs; then
each pair is assigned a number c from 1 to H − 1 with uniform probability:
this is the crossover point; finally, the last H− c bits of the parents in the pair
are swapped to produce the offspring. We denote Nc the number of children
generated in this way. The crossover step can be skipped, making the EA
more lightweight but decreasing variety in the offspring. In our experiments,
whenever crossover was employed, each possible parent pair performed one
crossover, so this step produced Nc = Np(Np − 1) children (two per parent
pair).

Mutation. Finally, each of the Nc children undergoes a single random
bit-flip to further increase offspring diversity. In our experiments we compare
results of random uniform selection of the bits to flip with a more refined
sparsity-driven bit-flip algorithm (detailed in App. C). This latter technique
flips 0’s and 1’s with different probabilities so as to bias mutations towards
children with a sparsity compatible with the one learned by the model. In case
the crossover step is skipped, bit-flip mutations are performed on Nm identical
copies of each parent, i.e. Nc = NpNm.

A full run of the evolutionary algorithm therefore produces NgNc children
(or new states ~s new).

4.3. Experimental validation 31

4.3 Experimental validation

This section reports the numerical experiments that have been performed to
investigate the behaviour as well as validate performance and scaling of the
novel EEM algorithm in the context of Guiraud et al. (2018). Experiments
with the BSC model have been performed by Jakob Drefs, co-author of the
paper and doctoral student at the University of Oldenburg at the time.

Throughout the section, different choices of specific evolutionary algo-
rithms (i.e., different combinations of the genetic operators described in Sec. 4.2.2)
are named as follows:

• parent selection is labeled either “fitparents” for fitness-proportional se-
lection or “randparents” for random uniform selection

• if crossover is employed, the label “cross” is present in the name of the
algorithm

• the mutation operator is labeled either “sparseflips” or “randflips” for
sparsity-driven bitflips and random uniform bitflips respectively

EA hyperparameters (Ng, Np, Nm) were chosen by performing a grid-
search on a sensible subspace, although dependency of final free energy values
on these parameters was observed to be relatively weak as long as the product
NgNc remained constant and comparable to S (the size of each set Φn).

4.3.1 Validation on artificial data

To be able to properly characterize the behaviour of EEM and compare dif-
ferent combinations of genetic operators in controlled settings, we performed
several numerical experiments on artificial data for which the ground-truth
parameters are known. In particular, we employ the bars test as a standard
setup for our purposes (Földiák, 1990; Hoyer, 2003; Lücke and Sahani, 2008).
The Noisy-OR model and the BSC model, introduced in Sec. 2.1, are used
as standard examples of probabilistic generative models with discrete latent
variables. The first is a highly non-linear model that supports binary ob-
servables, while BSC is a standard linear superposition model that supports
continuous observables and assumes Gaussian noise. These relatively simple
experiments also serve to validate that EEM indeed has the highly desirable
property of model-independence: the same algorithm, with no modification,
will be applied to the training of two different models with no need for further
model-specific derivations.

The bars test datasets

In this experimental setting, the generative fields W gen
dh for h = 1...H are in-

terpreted as H images with
√
D×

√
D pixels each (where typically D = H2).

4.3. Experimental validation 32

Figure 4.2: Left: 16 datapoints extracted from the dataset used for the Noisy-
OR standard bars test. Right: ground-truth model weights Wdh displayed as
H grayscale images of

√
D ×

√
D pixels.

H/2 images (i.e., half of the generative fields) contain vertical bars on a neutral
background, and the remaining half contains horizontal bars. The prior prob-
ability πgen

h that a bar is present in a datapoint is identical for all components.
The dataset is composed of N images generated by running the generative
model with these parameters. Output images contain noisy superpositions of
vertical and horizontal bars, in black and white for the Noisy-OR model and
in gray-scale for BSC.

Training Noisy-OR on bars data

For this experiment, the dataset consists of bars data with H = 16 different
bars (compare e.g. Spratling, 1999; Lücke and Sahani, 2008), with the standard
average crowdedness of two bars per image (πgen

h = 2
H ∀ h). We train Noisy-

OR with EEM using different configurations of the evolutionary algorithm,
and compare the reliability (compare e.g. Spratling, 1999; Lücke and Sahani,
2008) of the EAs. Reliability is defined here as the fraction of runs for which
the learned free energy is above a certain minimum threshold and in which the
full dictionary of bars as well as the correct values for the prior probabilities
~π are recovered.

Figure 4.3 shows reliabilities over 10 different runs for each of the EAs.
On 8 × 8 images the more exploitative nature of “fitparents-sparseflips” is
advantageous over the simpler and more exploratory “randparents-randflips”.
Note that this is not necessarily true for lower dimensionalities or otherwise
easier-to-explore state spaces, in which a naive random search might still be
able to quickly find high-fitness individuals. The addition of crossover increases
variation in the EA’s offspring and therefore in the variational states explored,
with measurable benefit.

After the initial verification on a standard bars test, we now make the com-

4.3. Experimental validation 33

randparents-randflips

fitparents-cross-randflips

fitparents-sparseflips

fitparents-cross-sparseflips

randparents-cross-sparseflips
0.0

0.2

0.4

0.6

0.8

1.0

Re
lia

bi
lit

y

Figure 4.3: Reliability for the listed EAs over 10 runs of EEM for Noisy-OR
on noisy 8× 8 bars images. For all runs H = 16, N = 5000, Ng = 2, Np = 8,
Nm = 7, S = 120, iterations = 100.

ponent extraction problem more difficult by increasing overlap among the bars:
a highly non-linear generative model such as Noisy-OR is a good candidate
to model occlusion effects in images. Figure 4.4 shows the results of training
Noisy-OR with EEM (“fitparents-cross-sparseflips”) on a bars dataset in which
the latent causes have sensible overlaps. The test parameters were chosen to
be equal to those in Fig. 9 of Lücke and Sahani (2008); in particular, note the
absence of data noise, also visible from Fig. 4.4 here. After applying EEM with
Noisy-OR (H = 32) to N = 400 images with 16 strongly overlapping bars, we
observed that all H = 16 bars were recovered in 20 of 25 runs. Quantitative
comparison to NMF approaches, neural nets (DI, Spratling et al., 2009), and
MCA (Lücke and Sahani, 2008) shows that although EEM for Noisy-OR per-
forms well on average, other approaches can reach higher reliability. Of all the
approaches which recover more than 15 bars on average, however, most require
additional assumptions: NMF approaches, non-negative sparse coding (Hoyer,
2004) and R-MCA2 require constraints on weights and/or latent activations.
Only MCA3 and presumably DI do not require such constraints. DI is a neural
network approach, and MCA3 is a generative model with a max-non-linearity
as superposition model. When training, it explores all sparse combinations
with up to 3 components. Applied with H = 32 latents, it hence evaluates
more than 60000 states per data point per iteration. In comparison, EEM for
Noisy-OR evaluates order of S = 100 states per data point per iteration.

Training BSC on bars data

As for Noisy-OR, we first evaluate EEM’s ability to train the linear BSC model
on a bars test. For BSC, the bars are superimposed linearly (Henniges et al.,

4.3. Experimental validation 34

Figure 4.4: Sample input (left) and learned generative fields (right) for a
run on overlapping bars. Out of 25 runs, 20 recovered all 16 ground-truth
generative components, with the remaining runs missing one component or
recovering a distorted version of it. As H = 32, the model makes use of the
extra generative fields to explain common patterns with overlapping bars.

2010), which makes the problem easier. As a consequence, standard bars tests
were solved with very high reliability when using settings similar to those of
the Noisy-OR experiments. In order to make the task more challenging, we
therefore (A) increased the dimensionality of the data to D = 10 × 10 bars
images, (B) increased the number of components to H = 20, and (C) increased
the average number of bars per data point from two (the standard setting)
to five. We employed N = 5000 training data points and tested the same
five EA configurations as were evaluated for Noisy-OR. We set the number
of hidden units to H = 20 and used S = 120 variational states. Per data
point and per iteration, in total 112 new states (Np = 8, Nm = 7, Ng = 2)
were generated. Per configuration of the EA, we performed 20 independent
runs, each with 1000 iterations. The results of the experiment are depicted in
Fig. 4.5. Differently from what was observed for Noisy-OR, despite being the
simplest of the examined approaches, the “randparents-randflips” EA achieved
the highest reliability. Reliability decreases if parents are no longer selected
randomly but proportionally to their fitness. This observation could also be
made for lower dimensional data with lower crowdedness. A further impact on
the reliability is the bit-flip procedure. EAs in which bits are flipped according
to sparseness perform worse compared to the case of random bitflips. Taking
these observations together, it could be concluded for BSC that EAs with a
more exploratory and less exploitative nature are beneficial in a scenario of
increased data dimensionality and increased crowdedness. The observation
of sparseness-driven EAs performing poorly may also be explained by the
initialization of Φn and with the initialization of the model parameter π. These
values are initially drawn from a Bernoulli distribution with pΘ(sh = 1) = 1

H .

4.3. Experimental validation 35

fitparents-sparseflips

fitparents-cross-sparseflips

fitparents-cross-randflips

randparents-cross-sparseflips

randparents-randflips
0.0

0.2

0.4

0.6

0.8

1.0

Re
lia

bi
lit

y

Figure 4.5: Reliability for the listed EAs over 20 runs of EEM for BSC on
10x10 bars images. On average five bars occurred per data point.

Such a choice makes it difficult for EAs with a search space restricted to sparse
solutions to find new states with high crowdedness. The results show that
EEM can achieve high reliabilities (more than 80 %) in challenging scenarios
with high dimensionality and high crowdedness.

4.3.2 Scaling to larger datasets: training Noisy-OR on natural
image patches

Next, we verify the approach on natural data. We use patches of natural
images, which are known to have a multi-component structure, which are well
investigated, and for which, typically, models with high-dimensional latent
spaces are applied. The image patches are extracted from the van Hateren
image database (van Hateren and van der Schaaf, 1998).

We consider raw images patches, i.e., images without substantial pre-
processing which directly reflect light intensities. Such image patches were
generated by extracting random square subsections of a single 255×255 image
of overlapping grass wires (part of image 2338 of the database). We removed
the brightest 1% pixels from the dataset, scaled each datapoint to have gray-
scale values in the range [0, 1] and then created data points with binary entries
by repeatedly choosing a random gray-scale image and sampling binary pix-
els from a Bernoulli distribution with parameter equal to the gray-scale value
of the original pixel. Note that components in such light-intensity images
can be expected to superimpose non-linearly because of occlusion, which mo-
tivates the application of a non-linear generative model such as Noisy-OR.
We employ the “fitparents-cross-sparseflips” evolutionary algorithm that was
shown to perform best on artificial data (Fig. 4.3). Parameters were H = 100,
S = 120, Ng = 2, Np = 8, Nm = 7. To encourage the model to make use

4.3. Experimental validation 36

of all generative fields, prior values πh were clamped to a minimum of 0.01.
Figure 4.6 shows 50 of the generative fields learned over 200 iterations. EEM
allows learning of generative fields resembling curved edges, in line with ex-
pectations and with the results obtained in (Lücke and Sahani, 2008), showing
that EEM scales to the training of non-linear models with complex posteriors
and hundreds of latent variables.

Figure 4.6: 50 gray-scale generative fields learned by applying EEM
(“fitparents-sparseflips”) for Noisy-OR to natural image patches.

4.3.3 Scaling to larger datasets: training BSC on natural im-
age patches

Now we consider image patches pre-processed using common whitening ap-
proaches as they are customary for sparse coding approaches (Olshausen and
Field, 1997). We use N = 100, 000 patches of size D = 16 × 16 pixels, ran-
domly picked from the whole data set. The highest 2 % of the amplitudes
were clamped to compensate for light reflections and patches without signifi-
cant structure were excluded for learning. ZCA whitening (Bell and Sejnowski,
1997) was applied retaining 95 % of the variance (we used the procedure of
a recent paper (Exarchakis and Lücke, 2017)). We trained the BSC model
for 4,000 iterations using the “fitparents-cross-sparseflips” EA and employing
H = 300 hidden units and S = 200 variational states. Per data point and per
iteration, in total 360 new states (Np = 10, Nm = 9, Ng = 4) were sampled
to vary Φn. The results of the experiment are depicted in Fig. 4.7. The
obtained generative fields primarily take the form of Gabor functions with
different locations, orientations, phase, and spatial frequencies. This is a typ-
ical outcome of sparse coding being applied to images. On average more than
five units were activated per data point showing that the learned code makes

4.3. Experimental validation 37

use of the generative model’s multiple causes structure. The generative fields
converged faster than prior and noise parameters (similar effects are known
from probabilistic PCA for the variance parameter). The finite slope of the
free energy after 4000 iterations is presumably due to these parameters still
changing slowly.

0 1000 2000 3000 4000
Iteration

0

2

4

π
H

0 1000 2000 3000 4000
Iteration

0.4

0.5

0.6
σ

0 1000 2000 3000 4000
Iteration

250

200

150

F
(Θ
,K

)
/
N

A

B C D

Figure 4.7: Results of training the BSC model on natural images. A Full
dictionary learned from natural images by the BSC model trained with the
“fitparents-cross-sparseflips” EA using 4,000 iterations. The generative fields
are ordered according to their activation, starting with most active fields (high-
est πh). The colormap of each field is normalized individually so that zero
values sit in the middle of the scale (green color). B Evolution of the free
energy per data point over iterations. C Evolution of the expected number of
active hidden units per data point over iterations. D˙ Evolution of the stan-
dard deviation over iterations.

4.3.4 Denoising the “house” image

Having validated the viability and scalability of the EEM training algorithm,
we use it to apply BSC to the standard “house” image denoising benchmark.
We do so in a “zero-shot” setting, i.e. the noisy “house” image is the only data
that is used for the experiment: the algorithm has no access to a clean version
of the image nor to other images (compare e.g., Shocher et al., 2018; Imamura
et al., 2019). On one hand, this scenario often occurs in real-world applications,
e.g., electromagnetic imaging of viruses, imaging of astronomical observations,
very low resolution scans or pictures of hand-written documents or drawings,

4.3. Experimental validation 38

etc.; on the other hand, the “zero-shot” setting fits EEM (and TVEM in
general) particularly well, since it imposes no fast inference requirements (see
Sec. 3.3.4).

Following the procedure described in (Sheikh et al., 2014) we first added
Gaussian white noise with a standard deviation σ = 15 to the original 256×256
“house” image. Subsequently, we cut the noisy image into all possible 62,001
overlapping patches of size 8×8. For training we used the “fitparents-randflips”
EA on a BSC model with H = 256 hidden units, S = 200 variational states,
and hyperparameters Np = 10, Nm = 9, Ng = 4. Training lasted 5,000 epochs.

Finally we used the trained model to estimate the most likely value of each
of the image pixels in each of the patches. More concretely, given a trained
model with parameters Θ, we estimated the value of a pixel in a single patch
as yest

d = 〈yd〉pΘ(yd|~y). Using pΘ(yd | ~y) =
∑
{~s } pΘ(yd | ~s)pΘ(~s | ~y) we obtain:

yest
d =

〈
〈yd〉pΘ(yd|~s)

〉
pΘ(~s|~y)

=

〈∑
h

Wdhsh

〉
pΘ(~s|~y)

=
∑
h

Wdh〈sh〉pΘ(~s | ~y n) .

(4.4)
The expectation value in the right-hand-side of Eq. 4.4 is then approximated
by means of the learned truncated distributions using Eq. 3.4. The final de-
noised estimate for each of the image’s pixels is then a weighted average of
the estimates of a pixel value in different patches (see e.g. Burger et al., 2012).
Fig. 4.8 (right) shows the denoised picture resulting from this process and
reports the Pixel Signal-to-Noise Ration (PSNR) values for the noisy (center)
and denoised (right) versions of the image.

Figure 4.8: Left: Noiseless “house” image. Center: Image with additive
Gaussian noise applied (σ = 25, PSNR = 20.19 dB). Right: Image denoised
with EEM for BSC (PSNR = 32.32 dB).

These numerical experiments are a proof of concept which shows that EAs
are indeed able to train linear as well as non-linear generative models with large
latent spaces. The results published in Guiraud et al. (2018) that we reported
in this chapter represent, to our knowledge, the first examples of Noisy-OR
or probabilistic sparse coding models trained with EAs as an integral part of

4.3. Experimental validation 39

variational EM, although both models had been studied extensively before.
In the context of data reconstruction, EAs have been used e.g. for maximum
a-posteriori optimization of sparse coding models in a non-probabilistic setting
by Ahmadi and Salari (2016). Furthermore, note that EEM is formulated in
terms of joint probabilities and therefore generalizes well and has straightfor-
ward applicability to other generative models with binary latents. In particu-
lar, it is interesting to ask whether these techniques can be successfully applied
to more complex, deep hierarchical generative models and whether they can be
combined with state-of-the-art gradient-based upgrades of the weights of such
a model. The next chapter is dedicated to try answering this exact question.

4.3. Experimental validation 40

Chapter 5

Truncated Variational
Approximation and
Variational Autoencoders

The previous chapters have introduced Truncated Variational Expectation
Maximization and its specific incarnation that uses evolutionary algorithms
to optimize the variational parameters Φ, namely Evolutionary Expectation
Maximization (EEM). Given the novelty of the approach, the first question
we asked was whether EEM would in fact work in practice, even for large
latent spaces. Through the numerical experiments in Ch. 4, we were able to
provide a positive answer; furthermore, even with the elementary generative
models we employed, we could show that EEM is able to provide competitive
performance e.g. in denoising applications. These results open the door to
several further interesting research directions. One compelling question that
can be asked at this point is whether EEM can be successfully applied to more
sophisticated generative models, which will potentially feature a more complex
posterior structure.

Research work by Drefs et al. (2020) (currently under review) therefore
built on the results by Guiraud et al. (2018) and explored the application
of EEM to Spike-and-Slab Sparse Coding (SSSC), which has been employed
by several previous studies in a number of variants (e.g., Titsias and Lázaro-
Gredilla, 2011; Lücke and Sheikh, 2012; Goodfellow et al., 2012; Sheikh et al.,
2014). SSSC is a more expressive model than, for instance, BSC due to the
presence of an extra set of latent variables: a first set of binary variables
describes presence or absence of a given feature, just like in BSC, and one
other set of continous values describes the intensity of the feature. Importantly
for the application of EEM to this model, M-step equations for SSSC can
be derived in closed form and can be formulated as expectations w.r.t. the
posterior over just the binary latent space.

41

42

In parallel, I focussed on an equally interesting challenge: extending EEM
to deep generative models with no closed-form M-steps; in this scenario, our
algorithm for the optimization of truncated posteriors as variational distribu-
tions has to tie into model parameter optimization that is typically performed
via backpropagation and gradient ascent. Among such deep generative mod-
els, Variational Autoencoders (VAEs; Kingma and Welling, 2014; Rezende
et al., 2014) are a prominent and very actively researched topic in unsuper-
vised learning. VAEs, in their many different variations, have successfully
been applied to a large number of tasks including semi-supervised learning
(e.g. Maaløe et al., 2016), anomaly detection (e.g. An and Cho, 2015; Kiran
et al., 2018), sentence interpolation (Bowman et al., 2016), music interpolation
(Roberts et al., 2018) and drug response prediction (Rampasek et al., 2017).
A desired feature when applying VAEs to a given problem is that their latent
variables (i.e., the encoder output variables) correspond to meaningful prop-
erties of the data, ideally to those latent causes that have originally generated
the data. However, many real-world datasets suggest the use of discrete la-
tents as they often describe the data generation process more naturally. For
instance, the presence or absence of objects in images is best described by
binary latents (e.g. Jojic and Frey, 2001). Discrete latents are also a popular
choice in modeling sounds; for instance, describing piano sounds may naturally
involve binary latents: keys are pressed or not (e.g., Sheikh et al., 2014; Titsias
and Lázaro-Gredilla, 2011; Goodfellow et al., 2013). The success of standard
forms of VAEs has consequently spurred research on novel formulations that
feature discrete latents (e.g. Rolfe, 2016; Khoshaman and Amin, 2018; Roy
et al., 2018; Sadeghi et al., 2019; Vahdat et al., 2019).

In this chapter we investigate the possibility to apply the EEM algo-
rithm introduced in Ch. 4 to the training of Variational Autoencoders with
binary latents: in principle, this combination would result in a mathematically-
grounded, novel training algorithm for a widely popular deep generative model.
First and foremost, our goal will be to prove that such training is indeed pos-
sible. It is interesting to ask, then, whether such a training algorithm offers
any advantage with respect to other techniques applied to binary VAEs, and
whether it results in competitive performance in real-world applications.

Sec. 5.1 introduces the mathematical framework behind Variational Au-
toencoders, and Sec. 5.2 complements it by discussing popular techniques to
extend this framework to discrete latent variables. Sec. 5.3 discusses training
of binary-latent VAEs with the EEM algorithm, and subsequent sections are
dedicated to extensive testing and benchmarking of this model. At the time
of writing, the results presented in this chapter are under review as Guiraud
et al. (2020).

The idea was developed jointly with Jörg Lücke. I carried out first mathemat-
ical derivations to inspect the learning objective of a Variational Autoencoder

5.1. Training standard Variational Autoencoders 43

Figure 5.1: From left to right: generic VAE decoding model, continuous-
latent VAE model with Gaussian noise and binary-latent VAE model, in plate
notation.

model trained with the EEM algorithm, and verify theoretical viability in
particular with respect to scaling properties. Subsequently, I proceeded with
the numerical implementation of the training algorithms, designing the con-
crete model’s architecture and incorporating cyclical learning rate schedules.
I carried out all numerical experiments presented in this chapter, which were
conceived and analyzed in consultation with Jörg Lücke and Jakob Drefs. The
denoising experiments are based on the method used by Jakob Drefs for the
BSC model in Guiraud et al. (2018), which I adapted to Variational Autoen-
coders. A literature review on previous discrete VAE implementations was
carried out in collaboration Jörg Lücke. The overview of standard VAE train-
ing (Sec. 5.1) was written together with Jörg Lücke. As first author of Guiraud
et al. (2020) I was responsible for most of its preparation, but an extensive
review of previous work on image denoising was carried out by Jakob Drefs,
who also conducted the denoising experiments with the noise2void model that
we compare to in Section 5.4.6.

5.1 Training standard Variational Autoencoders

First of all, let us review standard training of Variational Autoencoders and
the core set of equations supporting it. The starting point is precisely the
log-likelihood maximization of probabilistic generative models discussed in
Ch. 3; we will try to underline the similarities between standard VAE training
and training of the simpler models that were introduced in previous chapters,
as well as notable differences. To cover continuous as well as binary decoding
models, in this section we will make use of the following generic VAE generative
model:

pΘ(~s) = P(~s; Θ) (5.1)

pΘ(~y |~s) = N
(
~y; ~µΘ(~s), σ2

Θ(~s)I
)
, (5.2)

5.1. Training standard Variational Autoencoders 44

where P could be a standard normal distribution (in the case of continuous
latent variables) or the Bernoulli distribution (in the case of binary latent
variables) and ~µΘ and σ2

Θ are deep neural networks (DNNs) parameterized
by Θ. Note that, if the task at hand were to call for it, the Gaussian noise
model could be swapped for a different distribution with little change to the
optimization procedure: for example, a common choice in case of binary data
is Bernoulli noise. Fig. 5.1 reports the different kinds of architectures that we
take into consideration here, in plate notation.

Given a dataset comprising N datapoints ~y n, variational autoencoders
then seek model parameters Θ which maximize the usual data log-likelihood
of Eq. 2.1, i.e.:

L(Θ) =
∑
n

log pΘ(~y n) =
∑
n

log
∑
{~s }

pΘ(~y n, ~s) . (2.1 revisited)

As we will focus on binary latent spaces, we chose
∑

~s in Eq. 2.1 as a place-
holder for summation as well as integration: given a latent space of dimension-
ality H, in the case of binary latents, the summation

∑
~s is intended over all

possible bit vectors ~s ∈ {0, 1}H ; in the case of continuous latents, with slight
abuse of notation we let the symbol denote an integral over the space in which
the variables ~s ∈ RH are embedded.

As discussed in Ch. 3, the summation (or integration) over ~s makes the
direct optimization of L(Θ) prohibitively computationally expensive for any
practical purpose. For instance, in the binary case, computation of gradients
for the optimization of the DNN weights of ~µΘ and ~σΘ would require passing all
possible 2H states ~s through the DNNs. Instead of maximizing L(Θ) directly,
VAEs therefore maximize the Evidence Lower BOund (ELBO), a particular
rewriting of the variational free energy of Eq. 2.4:

F (Φ,Θ) =
∑
n

〈log pΘ(~y n |~s)〉qnΦ −DKL(qnΦ (~s; ~y n); pΘ(~s)) (2.14 revisited)

This rewriting of the free energy is usually regarded as the “core equation” of
VAEs (e.g. Doersch, 2016).

5.1.1 Excursus: maximum likelihood and the autoencoding
problem

Without going into excessive detail, it is useful at this point to mention how
such a rewriting of the variational lower bound of the log-likelihood is con-
nected to the autoencoding problem, that is, the problem of passing data
through an encoding transformation (which typically compresses the input),
a successive decoding transformation (which brings data back to the original
variable space) and minimizing the reconstruction error of this process, i.e.,
the difference between original input and decoder output. This difference is

5.1. Training standard Variational Autoencoders 45

evaluated using a distance metric appropriate to the semantics of the kind of
data involved, and the identification of such a metric is an interesting prob-
lem in itself: for example, much work has been devoted to researching robust
image similarity metrics (see e.g. Wang et al., 2004; Zhao et al., 2016; Zhang
et al., 2018b). Typically, encoder and decoder are implemented as deep neural
networks joined at one extremity (the encoder’s output is the decoder’s input),
whose weights are optimized via gradient descent using an aggregation of the
reconstruction error of each datapoint as loss function.

The autoencoding problem is a popular research topic in unsupervised
machine learning because a well-performing autoencoder can be easily applied
to a variety of tasks, including dimensionality reduction or lossy compression
(trivially by running the encoder to compress data and the decoder to de-
compress it), anomaly detection (anomalous data is decoded very poorly) or
content generation (by “decoding” randomly sampled inputs).

The maximum-likelihood training of Variational Autoencoders as defined
in Eqs. 5.1 and 5.2 can be interpreted as solving a stochastic version of the
autoencoding problem. The variational distributions qnΦ(~s; ~y n) play the role
of a stochastic encoder: they define a mapping from observed to latent space
by introducing a correspondence between a datapoint ~y n and latent states
~s that are likely to be sampled from qnΦ. Similarly, the generative distribu-
tion pΘ(~y n |~s) can be seen as a stochastic decoder: it defines a mapping in
the opposite direction, from latent to observed space, by associating a latent
state ~s to datapoints that are likely to be generated by the model given that
particular latent state. In this perspective, the first term on the right-hand
side of Eq. 2.14 can then be interpreted as a stochastic reconstruction error:
the summands 〈log (pΘ(~y n |~s))〉qnΦ are greater when latent states ~s that are
likely to “correspond” to a given datapoint ~y n via the mapping defined by
qnΦ in turn are likely to be mapped back to ~y n, i.e., produce high values of
pΘ(~y n |~s). From here on we will therefore refer to variational distributions qnΦ
and generative distribution pΘ(~y n |~s) as the encoding and decoding model of
a VAE, respectively.

Bringing further the analogy between the approximate maximum likeli-
hood objective of Eq. 2.14 and the autoencoding problem, the second term
on the right-hand side of Eq. 2.14 can be seen as a regularization term that
prevents overfitting of the variational distributions by pulling them towards a
standard normal distribution.

5.1.2 Parameter optimization

The optimization of the VAE parameters Φ and Θ proceeds in a similar fashion
as the step-wise free energy optimization of the Expectation-Maximization

5.1. Training standard Variational Autoencoders 46

algorithm:

change Φold to Φnew such that F (Φnew,Θold) > F (Φold,Θold) (5.3)

change Θold to Θnew such that F (Φnew,Θnew) > F (Φnew,Θold) (5.4)

Concretely, the optimization of the decoder parameters Θ in Eq. 5.4 typically
only involves the first term on the right-hand side of Eq. 2.14 since for standard
VAE decoding models (Eqs. 5.1 and 5.2) the prior is the standard normal
distribution and does not depend on Θ. Consequently, the optimization of
the first term reduces to computing the gradient of 〈log pΘ(~y n |~s)〉qnΦ w.r.t. Θ.
This is usually achieved via a sampling approximation to efficiently estimate
the expectation value and subsequent gradient-based optimization of the DNN
parameters. Standard DNN optimization tools can then be used for efficient
training of the decoding parameters Θ, including automatic differentiation
frameworks and sophisticated gradient-based algorithms. We report below
the explicit form of the gradients that are required to be computed, as it will
be useful in order to compare to the alternative training scheme that is the
main focus of this chapter:

~∇WF (Φ,Θ) =
∑
n

~∇W 〈log
(
pΘ(~y n |~s)

)
〉qnΦ

=
∑
n

~∇W 〈log
(
N (~y n; ~µΘ(~s,W), σ2I

)
〉qnΦ

≈− 1

2σ2

∑
n

1

L

∑
l

~∇W ‖~y n − ~µΘ(~s l,W)‖2 ,

where ~s l ∼ qnΦ(~s)

We can slightly rewrite this expression to obtain:

~∇WF (Φ,Θ) ≈ − 1

2σ2

∑
n

∑
~s∼qnΦ

(1

L

)
~∇W ‖~y n − ~µΘ(~s,W)‖2 , (5.5)

The optimization of the lower bound F (Φ,Θ) w.r.t. the encoding param-
eters Φ (Eq. 5.3) poses a greater challenge. First and foremost, a specific
functional form must be chosen for the variational distributions qnΦ such that
optimization of the objective turns out to be efficiently implementable. Stan-
dard VAEs typically pick a Gaussian distribution which includes a second
DNN (or a second set of DNNs):

qnΦ(~s; ~y n) = N (~s; ~µΦ(~y n), ~ΣΦ(~y n)) (5.6)

where the mean ~µΦ(~y n) and the variance ~ΣΦ(~y n) are both non-linear functions
of ~y n parameterized by a DNN with weights Φ. Note that the covariance is
often assumed diagonal as in Eq. 5.2, although non-diagonal covariances could

5.1. Training standard Variational Autoencoders 47

be important because the true posterior that qnΦ(~s; ~y n) seeks to approximate
can be expected to show strong explaining-away effects.

For standard VAEs (Eqs. 5.1 and 5.2), the choice of encoding model of
Eq. 5.6 offers two main advantages: (A) the Gaussian form makes it possi-
ble to solve the KL-term in Eq. 2.14 analytically, and (B) the distribution
qnΦ(~s; ~y n) can be optimized by gradient ascent after computing gradients of
F (Φ,Θ) w.r.t. Φ. However, naive application of the gradient operator yields
high-variance gradient estimations when coupled with the sampling approx-
imation that is typically employed to make Eq. 2.14 efficiently computable.
More concretely, using the usual log-derivative trick:

∇Φ〈log pΘ(~y n |~s)〉qnΦ =
∑
{~s }

∇Φq
n
Φ(~s; ~y n) log pΘ(~y n |~s)

=
∑
{~s }

qnΦ(~s; ~y n) ∇Φ log qnΦ(~s; ~y n) log pΘ(~y n |~s)

= 〈∇Φ log qnΦ(~s; ~y n) log pΘ(~y n |~s)〉qnΦ
≈ 1

L

∑
l

∇Φ log qnΦ(~s l; ~y n) log pΘ(~y n |~s l)

where ~s l ∼ qnΦ(~s; ~y n) .

This gradient estimator exhibits very high variance (see e.g. Paisley et al.,
2012) and is generally impractical for VAE training. In order to obtain low-
variance estimates of the gradients, then VAEs take advantage of the reparame-
terization trick (Kingma and Welling, 2014; Rezende et al., 2014) to re-express
sampling from the encoding distribution using a set of novel latent variables
~ρ such that:

~s ∼ qnΦ(~s; ~y n) ⇔

{
~ρ ∼ p(~ρ)

~s = ~g(~ρ, ~y n,Φ)
, (5.7)

where p(ρ) is a distribution that does not depend on Φ, i.e., all parameter
dependencies are contained in the deterministic function ~g(~ρ, ~y n,Φ). Repa-
rameterization serves the purpose of enabling efficient stochastic gradient as-
cent of F (Φ,Θ) w.r.t. Φ: the gradient estimator after reparameterization is
sufficiently low-variance and takes the following form:

∇Φ〈log pΘ(~y n |~s)〉qnΦ ≈
1

L

∑
l

log pΘ(~y n |~sn,l)

where ~sn,l = ~g(~ρ, ~y n,Φ) and ~ρ ∼ p(~ρ) .

(5.8)

The gradient ∇ΦF (Φ,Θ) can therefore be computed as follows:

~∇ΦF (Φ,Θ) =
1

L

∑
n

∑
l

(
~∇Φ~g(~ρ l, ~y n,Φ)

)
~∇~s log pΘ(~y n |~s)

∣∣∣
~s=~g(~ρ l,~y n,Φ)

−
∑
n

~∇ΦDKL(qnΦ(~s; ~y n); pΘ(~s)).
(5.9)

5.2. Discrete latent Variational Autoencoders 48

Note that the first term of Eq. 5.9 now contains two gradients: the gradi-
ent

(
~∇Φ~g

)
is a standard gradient w.r.t. the DNN(s) of the encoding model,

while the second gradient involves the encoding as well as decoding model.
Again, for standard VAEs, the DKL term of Eq. 5.9 can typically be computed
analytically, which makes the gradients directly computable.

Given the gradient of Eq. 5.9, the encoding parameters Φ are then routinely
optimized using one or few samples of ~ρ for each data point ~y n. How many
samples ~ρ and ~y n are averaged over before Φ is updated is a design decision
made on the grounds of empirical performance evaluations. Fig. 5.2 (left side)
summarizes the sequence of methods used, which allows for the optimization
of the encoding model for standard VAEs.

As a final observation, it must be mentioned that standard VAE train-
ing is amortized: a single set of parameters applies to the whole dataset.
As discussed in Sec. 3.3.4, this enables fast inference and might yield quicker
convergence thanks to the ability of the training procedure to pool informa-
tion coming from similar datapoints. However, as discussed, the presence of
an “amortization gap” between variational lower bound and true model log-
likelihood can impose a measurable upper limit to the performance of such a
model (see e.g. Kim et al., 2018; Cremer et al., 2018).

5.2 Discrete latent Variational Autoencoders

Existing optimization procedures for VAEs with discrete latents follow the
same steps as those of standard VAEs described above. However, discrete
or binary latents pose substantial further obstacles in learning, mainly due
to the fact that backpropagation through discrete variables is generally not
possible (Rolfe, 2016; Bengio et al., 2013). Specifically, the gradients w.r.t.
latent variables ~s in Eq. 5.9, introduced via the reparameterization trick, are
problematic.

In order to maintain the general VAE framework for the optimization of
the encoding model, different groups have therefore suggested different possible
solutions: work by Rolfe (2016), for instance, extends VAEs with discrete la-
tents by auxiliary continuous latents such that gradients can still be computed.
Work on the concrete distribution (Maddison et al., 2016) or Gumbel-softmax
distribution (Jang et al., 2016) proposes newly defined continuous distributions
that contain discrete distributions as limit cases. The continuous distributions
can then be treated within the standard VAE framework. Finally, work by
van den Oord et al. (2017) and Roy et al. (2018) combines VAEs with a vector
quantization (VQ) stage in the latent layer. Latents become discrete through
quantization but gradients for learning are adapted from latent values before
they are processed by the VQ stage. All these approaches maintain the basic
setup of VAEs but add specific additional mechanisms to treat discrete la-
tents. These additional techniques are entangled, during training, with those

5.2. Discrete latent Variational Autoencoders 49

Figure 5.2: Standard series of methods applied to optimize the encoding model
of VAEs. Left: methods applied for encoding models of standard VAEs (e.g.,
with encoding model 5.6). Middle: additional methods applied to maintain
the standard procedure of encoding model optimization also for discrete latent
variables. Right: alternative approach to optimize the VAE encoding model
using direct discrete optimization in the form of EEM.

standard methods already in place for gradient computation. Furthermore,
they add further types of design decisions and hyperparameters, for example
parameters for annealing from softened discrete distributions to the (hard)
discrete distributions of the encoder. Fig. 5.2 (left and center) summarizes
this situation.

For VAEs with discrete latents, it may therefore be a desirable goal to in-
vestigate alternative, more direct optimization procedures that do not require
a softening of discrete distributions or the use of other indirect solutions. Such
a direct approach, however, is challenging because, once DNNs are used to de-

5.3. Training discrete latent Variational Autoencoders with
truncated posteriors 50

fine the encoding model, estimations of gradients of latent variables seem un-
avoidable. A more direct optimization procedure, as is investigated in Guiraud
et al. (2020) (under review at the time of writing), consequently has to change
VAE training more substantially.

TVEM, introduced in Ch. 3, and its particular implementation that is EEM
(see Ch. 4) offer a possible way forward: we will be able to maintain the vari-
ational setting and a decoding model with DNNs as non-linearity; gradient-
based optimization of the decoder’s DNN will also be maintained. However,
we will not use an encoder model parameterized by DNNs, but instead we
will make use of the truncated variational distributions of Eq. 3.2. Notably,
by employing truncated posteriors, the training algorithm will side-step all is-
sues relative to backpropagation of gradients through discrete latent variables,
completely removing the need for the techniques described above that all aim
at reframing the discrete optimization problem so that, mathematically, the
standard VAE training with reparameterization trick can still be employed.
We will instead address the training of the encoder directly, as a discrete op-
timization problem, without requiring alteration to the generative model nor
additional auxiliary probability distributions. The next section describes the
resulting training algorithm.

5.3 Training discrete latent Variational Autoencoders
with truncated posteriors

First of all, let us define a concrete generative model for VAEs with binary
latent variables:

pΘ(~s) = Bern(~s;~π) =
∏
h

πshh (1− πh)(1−sh)

pΘ(~y n |~s) = N
(
~y; ~µΘ(~s;W), σ2I

) (5.10)

The set of model parameters is Θ = {~π,W, σ2}, where W incorporates DNN
weights and biases that parameterize ~µΘ. We assume homoscedasticity of the
Gaussian distribution for simplicity, but note that there is no obstacle to gener-
alizing the model by inserting a DNN non-linearity that outputs a correlation
matrix; one advantage of employing a simpler (although less expressive) scalar
variance rather than parameterizing it with a DNN is that M-step update rules
can be derived analytically in closed form. Similarly, the training algorithm
that we are about to introduce could easily be generalized to different noise
distributions than Gaussian: indeed derivations for Poisson noise can be found
in App. D and preliminary experiments with Bernoulli noise can be found in
App. E.

For the purpose of this work, however, we will mainly focus on the most
elementary VAE models, with the form shown in Eq. 5.10. This generative

5.3. Training discrete latent Variational Autoencoders with
truncated posteriors 51

Figure 5.3: Graphical representation of the model architecture used in numer-
ical experiments.

model has Bernoulli- rather than Gaussian-distributed latents but is in all
other aspects identical to a vanilla VAE (see Fig. 5.1 for a schematic com-
parison). Fig. 5.3 is a graphical representation of this generative model, and
includes the exact architecture of the DNN that we employed in our numerical
experiments (see Sec. 5.4).

5.3.1 Decoder optimization

As discussed above, instead of using reparameterization or variance reduction,
we will compute gradients based on the truncated posteriors introduced in
Ch 3, that we report here for convenience:

qnΦ(~s; ~y n) :=
pΘ(~s | ~y n)∑

~s ′∈Φn

pΘ(~s ′ | ~y n)
δ(~s ∈ Φn) (3.2 revisited)

After substitution of the binary VAE model of Eqs. 5.1 and 5.2, we can com-
pute the gradient of the ELBO of Eq. 2.14 w.r.t. the decoder weights W .
Noting that the KL divergence term does not depend on W , this results in:

~∇WF (Φ,Θ) =
∑
n

〈~∇W log
(
N (~y n; ~µΘ(~s,W), σ2I

)
〉qnΦ

= − 1

2σ2

∑
n

∑
~s∈Φn

qnΦ(~s) ~∇W ‖~y n − ~µΘ(~s,W)‖2 .
(5.11)

Notably, no sampling approximation and no reparameterization trick are nec-
essary to obtain this result, and differently from standard VAE training this
approach is not amortized.

The right-hand-side has salient similarities to the gradient of VAE de-
coders, Eq. 5.5: for example, the familiar gradient of the mean squared error
(MSE), which shows that standard automatic differentiation tools can still be
applied. However, the decisive difference resides in the weighting factors qnΦ(~s):

5.3. Training discrete latent Variational Autoencoders with
truncated posteriors 52

instead of samples from a standard encoder, here the gradients are estimated
using the members of sets Φn. The size of Φn can consequently be thought
of as analogous to the number of samples used in a conventional estimation
of the gradient. Standard VAE training estimates the gradient by weighting
all samples equally and the gradient direction is approximated by drawing
sufficiently many samples from the encoding model. In contrast, truncated
gradient estimation uses the states in Φn, and the gradient is computed using
a weighted summation with weights qnΦ(~s). The gradient is then, notably, not
a stochastic estimation but exact, and, for small enough gradient step sizes,
the procedure is guaranteed to monotonically increase the variational lower
bound.

To complete the decoder optimization, update equations for variance σ2

and prior parameters ~π can be computed in closed-form (compare, e.g., Shelton
et al., 2011) and are given by:

~πnew = 1
N

∑
n

∑
~s∈Φn

qnΦ(~s) ~s

σ2,new = 1
DN

∑
n

∑
~s∈Φn

qnΦ(~s) ‖~y n − ~µΘ(~s,W)‖2 .
(5.12)

where N is the number of samples in the training dataset and D is the number
of observables, that is, the dimensionality of ~y.

5.3.2 Encoder optimization

The variational parameters of the encoding model, i.e., the sets of latent states
Φn that define the truncated posteriors qnΦ, are optimized with Evolutionary
Expectation-Maximization: at each epoch, for each datapoint ~y n, we seek
latent states ~s with higher fitness, i.e., higher log-pseudo-joint distributions
(see Sec. 4.2.1 for EEM’s usage of the fitness function, and Sec. 3.3.3 for the
definition of the log-pseudo-joints).

Let us take a closer look at the specific form of the log-pseudo-joints for
the binary VAE model of Eq. 5.10:˜log pΘ(~y,~s) = −‖~y − ~µΘ(~s,W)‖2 − 2σ2

∑
h

π̃h sh (5.13)

where π̃h = log
(
(1− πh)/πh

)
. The expression assumes an even more familiar

form, if we restrict ourselves for a moment to sparse priors πh = π < 1
2 , i.e.,

π̃h = π̃ > 0. The pairwise comparison criterion for the update of the Φn sets
in the TVEM algorithm, Eq. 3.7, then takes this form:

‖~y n− ~µΘ(~snew,W)‖2 + 2σ2π̃ |~s new| < ‖~y n− ~µΘ(~s old,W)‖2 + 2σ2π̃ |~s old|
(5.14)

where |~s| =
∑H

h=1 sh. Similar expressions are routinely encountered in sparse
coding applications: for each set Φn, we seek those states ~s that are recon-
structing ~y n well while being sparse (~s with few non-zero bits). For VAEs,

5.3. Training discrete latent Variational Autoencoders with
truncated posteriors 53

~µΘ(~snew,W) is a DNN and as such much more flexible in matching the distri-
bution of observables ~y that it may be expected from linear mappings. Further-
more, criteria like Eq. 5.14 usually emerge for maximum a-posteriori (MAP)
approximations of sparse coding. In contrast, here we seek a population of
states ~s in Φn for each data point rather than a single MAP state. Similarly
to what happens when increasing the number of samples in a Monte Carlo
approximation of an expectation value, the sets Φn thus allow for capturing a
richer posterior structure than a single MAP state.

We will refer to the generative model of Eq. 5.10, trained with TVEM, as
Truncated Variational Autoencoders (TVAEs). The full training procedure for
TVAEs is summarized in Alg. 3.

Algorithm 3: Training Truncated Variational Autoencoders

Initialize model parameters Θ = {W,~π, σ2}
Initialize each Φn with S distinct latent states
repeat

for each batch in dataset do
for each sample n in batch do

Φnew = Φn

for each generation do
Φnew = mutation (crossover (selection (Φnew)))
Φn = Φn ∪ Φnew

Truncate Φn to the S fittest elements based on Eq. 5.14

Use Adam to update W using Eq. 5.11

Use Eq. 5.12 to update ~π, σ2

until parameters Θ have sufficiently converged

5.3.3 Computational requirements and theoretical scaling

In this section we would like to discuss the computational complexity of TVAE
training; in particular, it is necessary to verify that TVAE does not introduce
undesirable scaling behavior with respect to problem parameters when com-
pared to standard VAE training. To this end, consider again the expressions
of the gradients for standard VAEs and TVAEs, respectively corresponding
to Eqs. 5.5 and 5.11. If, in standard VAEs, as many encoder samples L are
used, per data point, as there are states in each Φn, then the two summations∑

~s∼qnΦ
and

∑
~s∈Φn have the same number of summands. The evaluation of

the gradients of the mean square error (MSE) consequently involves precisely
the same computational load for both approaches.

The main computational difference then lies in the updates of Φn using
evolutionary algorithms, to be compared to the update of encoder DNNs for

5.4. Numerical experiments 54

conventional VAEs. Once the parameters Θ are updated using Eq. 5.11, new
states for Φn have to be sought based on the criterion Eq. 5.14. In practice,
for each datapoint ~y n, we generate S′ new states according to the applied
evolutionary procedure. To select the best states we have to pass all the S′

proposal states through the decoder DNN to evaluate Eq. 5.14. Furthermore,
we also have to pass all S states already in Φn through the decoder to re-
evaluate their fitness after parameters Θ have been updated. In summary,
TVAE requires O(N × (S+S′)) passes through the decoder DNN per training
epoch. As discussed in Sec. 3.3.1, selecting the S best states from the (S+S′)
states does not add complexity as this can be done in O(S + S′) for each n
(Blum et al., 1973). In summary, we do expect the evolutionary procedure to
have a visible impact in terms of computational load, but parent selection and
mutation only add a constant offset for each of the considered states and do
not increase algorithmic complexity.

On the other hand, in standard VAE training, if the encoder uses L sam-
ples, O(N × L) passes through the decoder DNN are required to update the
parameters Θ according to Eq. 5.5. For the encoder update, one requires N×L
passes through encoder and decoder DNN to estimate the gradient w.r.t. the
encoder weights. The additional overhead to actually draw the samples is
usually negligible.

In summary, overall algorithmic complexity is comparable with the one of
standard VAE training if S ≈ S′ ≈ L. However, conventional VAE training is
amortized, i.e., the update of encoder weights uses information from all data
points n. As discussed in Sec. 3.3.4, amortization can be a double-edged sword,
but it does mean that TVAE has higher memory requirements. Not only, but
the number of samples L for conventional VAE training is usually smaller than
best working sizes of Φn: for example, in the denoising experiments described
in Sec. 5.4.5, we used sizes up to |Φn| = 200; in contrast, even work that
is dedicated to increasing VAE performance by making better use of multi-
sample estimators such as Burda et al. (2015) does not make use of more than
50.

5.4 Numerical experiments

Truncated Variational Autoencoders significantly divert from any training pro-
cedure for binary VAEs that has been previously investigated. Indeed, to the
best of our knowledge, it is the first example of a VAE that is trained without
using a sampling approximation of the variational lower bound. A natural
starting point is, consequently, the investigation of model architectures that
are as elementary as possible. For this purpose, we used the binary VAE of
Eq. 5.10 and a decoder DNN with the architecture shown in Fig. 5.3: a single
middle layer with ReLU activations (Glorot et al., 2011) and an output layer
with identity activation. We were then interested in addressing the following

5.4. Numerical experiments 55

two questions:

• How well does this direct discrete optimization of binary VAEs scale
when dataset dimensionality and latent space dimensionality increase?

• Does the decoder’s DNN non-linearity result in improved performance
with respect to linear generative models?

Using relatively simple neural network architectures helps attributing bench-
mark performance to the capabilities of the training procedure itself rather
than to the expressiveness of complex DNNs. Nevertheless, even the basic
VAE decoder employed here can be benchmarked against recent state-of-the-
art DNNs. For this purpose, as already discussed in Sec. 4.3.4, a benchmark
which attracts recent attention is denoising in absence of clean data (the “zero-
shot” setting). DNN-based approaches applicable to this task have received
increasing attention: recent work (e.g. Lehtinen et al., 2018; Krull et al., 2019)
is based on standard feed-forward DNNs whose training objectives have been
altered to allow for training on noisy images. On the other hand, deep genera-
tive models are more naturally suited to training on noisy data as their learning
objective models noise explicitly and can be directly be applied. Therefore,
an interesting third research question that we would like to address is:

• Can TVAEs compete with state-of-the-art DNNs in the “zero-shot” de-
noising benchmark?

For the experiments that follow, training of the TVAE’s DNN is performed
with mini-batches, the Adam optimizer (Kingma and Ba, 2014) and decaying
or cyclical learning rate scheduling (Smith, 2017). Xavier/Glorot initialization
(Glorot and Bengio, 2010) is used for the DNN weights, while biases are always
zero-initialized. Parameters ~π and σ2 are updated via Eq. 5.12 and initialized
to 1

H (H is the size of ~π) and 0.01 respectively. Hyperparameter optimization
was conducted manually and, for the more complex datasets, it also made use
of black box Bayesian optimization based on Gaussian Processes (Nogueira,
2019). For what concerns the evolutionary optimization of EEM, for TVAE
we made a relatively simple choice of genetic operators: fitness-proportional
parent selection and random uniform one-bit mutations, with no crossover; we
tried different combinations of evolutionary algorithms finding this setting to
trade off computational cost and performance best for our purposes.

5.4.1 Bars test

Analogously to what was done for the simpler Noisy-OR and BSC models in
Ch. 4, first of all we evaluated TVAE on bars datasets with known ground-
truth parameters and log-likelihood, in order to verify the correct functioning
of the algorithm and to investigate possible local optima effects. The dataset
consisted of 500 4x4 images generated by linear superposition of vertical and

5.4. Numerical experiments 56

horizontal bars, with a small amount of Gaussian noise. The DNN’s input
and middle layers had 8 units each. The Φ(n) variational sets consisted of 64
hidden states each. Fig. 5.4 shows the evolution of the run that achieved the
highest ELBO value out of ten. All parameters were correctly recovered, and
the ELBO value was consistent with actual ground-truth log-likelihood.

Figure 5.4: TVAE training on simple bars data: noiseless output of the
TVAE’s DNN for the 8 possible one-hot input vectors over several training
epochs. Generating parameters are in the last row.

5.4.2 Correlated bars test

As we have seen in Ch. 4, however, such a simple test can also be solved
by linear models such as Noisy-OR and BSC. In order to demonstrate that
TVAEs can solve non-linear problems, taking advantage of the neural network
non-linearity embedded in the generative model, we introduced correlations
between pairs of bars: the bars combinations shown in the first two data-
points from the left in Fig. 5.5 were discouraged from appearing together. We
employed the same evolutionary scheme and again we selected the run with
highest peak ELBO value out of ten. The model correctly learns that cer-
tain combinations of bars are much more unlikely than others, and correctly
estimates their likelihood.

Fig. 5.6 offers some more insight into this particular experiment. The left
section of the figure shows the generative parameters for the dataset used:
W0 is the 8x8 weight matrix of the top-to-middle layer: this makes it so that
the activation of the first latent variable inhibits activation of the second, and
activation of the last latent variable inhibits activation of the first. Concretely,
this results in a dataset where these specific bars combinations are discouraged
from appearing. The weights W1, visualized as 8 4x4 matrices, generate the
actual bars. σ2 was set to 0.01 and the dataset contained an average of two

5.4. Numerical experiments 57

superimposing bars per datapoint (πh = 2/8 for each h). The middle section
of the figure shows the ELBO values (averages over all batches for each epoch)
as training progresses. The cyclical learning rate schedule is responsible for
the oscillatory behavior. The right section shows some example datapoints
together with samples from the trained TVAE model that reached the highest
ELBO value out of the ten runs. Although maybe of little statistical signifi-
cance, it can be observed that the combinations of bars with low log-likelihood
(the two datapoints on the left of Fig. 5.5) indeed do not appear. Notably, a
linear model such as BSC cannot, by construction, solve the correlated bars
test, as it cannot model the negative correlations between generative compo-
nents.

Figure 5.5: Correlated bars test. The plot shows the ratio between inferred
free energy log pΘ(~x) and ground-truth log-likelihoods log p∗Θ(~x) of datapoints
with interesting bar combinations. The inferred values are reported below the
datapoints themselves.

5.4.3 A note on local optima

Deep generative models such as VAEs and Generative Adversarial Networks
(Goodfellow et al., 2014) are known to be susceptible to local optima problems
and posterior collapse. The bars test in particular features certain local optima
that models often find difficult to overcome, in which superpositions of multiple
bars rather than single bars are recovered as generative fields. As it often
happens, a small amount of training noise can help the training procedure
overcome such local optima. Alg. 3 inherently includes a few sources of noise,
notably the variational approximation itself and the batch-wise model weights
updates typical of stochastic gradient ascent. In our experiments, however,
we have found that a cyclical learning rate schedule (Smith, 2017) also helps.
Fig. 5.7 shows the free energy values reached by TVAE in several training
configurations: on the left, we train a shallow TVAE model with no middle
layer in the network, on the right we train the full architecture as depicted
in Fig. 5.3. “Full EM” in the picture refers to the Expectation-Maximization

5.4. Numerical experiments 58

Figure 5.6: Top left: generative parameters for the correlated bars test;
Top right: ELBO values over epochs for 10 runs; Bottom left: example
datapoints; Bottom right: samples from the trained generative model.

Figure 5.7: Highest free energy reached for several 8x8 bars test experiments,
in different conditions. Each dot represents a different run of the experiment.
Left: a shallow TVAE model with no middle layer is trained. Right: a TVAE
model with a middle layer in the neural network is trained. The dotted lines
indicate the ground-truth log-likelihood value. Cyclical learning rates help
reaching higher free energy values more often.

algorithm with full E-steps and full M-steps. It can be observed that the
addition of a cyclic learning rate schedule helps reaching the ground-truth

5.4. Numerical experiments 59

log-likelihood values more often in all training configurations.

5.4.4 Natural image patches

The test on correlated bars showed that TVAE can take advantage of the
DNN’s non-linearity, but it is still to be seen whether that corresponds to
better approximate log-likelihoods on natural data. In order to answer this
question we ran a direct comparison with BSC: in this regard, note that, in-
terestingly, another way to interpret the binary VAE model of Eq. 5.10 is as
a BSC model with non-linear superposition of generative components rather
than the standard linear superposition; conversely, the TVAE model contains
BSC as the edge case in which the hidden layers of the TVAE’s neural network
compute the identity function. This property makes BSC a well-suited candi-
date to test whether TVAEs can take advantage of the DNN non-linearity.

Figure 5.8: ELBO gain of TVAE compared to BSC on image patches.

We used the same dataset as for the BSC scaling tests of Sec.4.3.3. First we
trained a BSC model with H=300 latent variables, with the same EEM algo-
rithm as TVAE. After 100 epochs we copied the weights of the BSC model to
the bottom layer of a TVAE model with three layers of 300, 300 and 16x16=256
units each. The upper layer weights were initialized to the identity matrix.
We also retained the learned Φ(n) sets as well as priors and variance. This
BSC pre-training for TVAE guarantees a common starting point for the two
models for the next 100 epochs of training. Fig. 5.8 shows the ELBO trajecto-
ries of BSC and TVAE for a typical such experiment. TVAE training quickly
optimizes the ELBO to higher values, exploiting the extra flexibility of the
neural network non-linearities.

While initializing TVAE weights with BSC can highlight the benefit of
the DNN non-linearity, we observed this BSC pre-training to not be necessary
in general. We also ran larger experiments in which we trained TVAE from
scratch on the same dataset, scaling to H=1000 latent variables and 100 units

5.4. Numerical experiments 60

in the network middle layer, with further increases in ELBO values up to a
value of 84.9 nats.

Fig. 5.9 shows some sample datapoints and samples from the trained gen-
erative model for the experiment on natural image patches.

Figure 5.9: Example datapoints and generative model samples for the experi-
ment on natural image patches. The colormap of each patch is normalized so
that zero values sit in the middle of the scale (green color).

5.4.5 Denoising the “house” image

Figure 5.10: Denoising application of TVAE on house image with noise level
σ = 50. The denoised image has PSNR=30.03, the best of the three runs of
Tab. 5.2.

Having established scalability of the TVAE model to large latent spaces,
and verified that it can in fact provide performance higher than shallow models
such as BSC, we now focus on the third research question we posed at the

5.4. Numerical experiments 61

beginning of this section: can TVAEs compete with state-of-the-art DNNs in
the “zero-shot” denoising benchmark?

In the context of denoising, the “house” image (Fig. 5.10 left), already in-
troduced in Sec. 4.3.4, offers the broadest possible comparison to other meth-
ods. The standard benchmark setting for this image employs additive Gaus-
sian white noise with standard deviations σ ∈ {15, 25, 50}. Fig. 5.10 (center)
shows the corrupted image with noise level σ = 50.

Given a noise value σ, we trained a TVAE on square patches extracted
from the noisy image. Subsequently, we used the trained model to estimate
the most likely value of each of the image pixels. We apply the same denoising
algorithm as described in Sec. 4.3.4 for BSC, with the following estimator:

yest
d = 〈µdΘ(~s)〉pΘ(~s|~y) ≈ 〈µdΘ(~s)〉qΦ(~s;~y) . (5.15)

Importantly, this benchmark enables direct comparison to other varia-
tionally optimized generative models including MTMKL (Titsias and Lázaro-
Gredilla, 2011), GSC (Sheikh et al., 2014) and S5C (Sheikh and Lücke, 2016),
which all showed state-of-the-art performance for probabilistic sparse coding
when they were first published. As a first experiment, we compare TVAE
to these other models in controlled conditions: all models benchmarked in
Tab. 5.1 used the very same patch size of D = 8 × 8 pixels and H = 64
latent variables. The table reports mean standard deviation of the PSNR
achieved by TVAE across three runs with three different noise realizations.
Values for MTMKL and GSC were taken from the respective original pub-
lications. As can be observed, TVAE performs significantly better than the
other methods for high noise levels. TVAE is able to learn the best data rep-
resentation for denoising and represents the state-of-the-art in this controlled
setting. According to Tab. 5.1, two factors enable the good performance of
TVAE compared to the other approaches: firstly, the evolutionary optimiza-
tion training algorithm itself seems to be beneficial as a comparison of BSC
to MTMKL and GSC suggests; secondly, denoising performance of TVAE is
significantly better than BSC (1dB for this establish benchmark represents a
major improvement), which implies that the decoder DNN of TVAE provides
the decisive performance advantage.

For σ = 25 and σ = 50, TVAE also significantly improves on MTMKL and
GSC results. All these three approaches are based on a spike-and-slab sparse
coding model (also compare Goodfellow et al., 2012). The decoder DNN of
TVAE more than compensates for its comparably less flexible Bernoulli prior,
and results in the highest PSNR values for high noise.

In order to further extend our comparison, in the next experiment we
considered this denoising task without controlled conditions. Concretely, we
allow for any approach that performs denoising on the benchmark includ-
ing approaches that are trained on large image datasets and/or use different
patch sizes (including multi-scale and whole image processing). Note that dif-

5.4. Numerical experiments 62

Table 5.1: Denoising performance in PSNR (dB) for the house image under
controlled conditions (D=8×8, H=64 for all algorithms).

σ=15 σ=25 σ=50

MTMKL 34.29 31.88 28.08
GSC 32.68 31.10 28.02
BSC 32.25 31.15 28.62
TVAE 34.27 ± 0.02 32.65 ± 0.06 29.61 ± 0.02

ferent methods will involve very different sets of hyperparameters that can be
optimized for denoising performance: for sparse coding approaches, hyperpa-
rameters include patch and dictionary sizes; for DNN approaches they include
all network and training scheme hyperparameters. By allowing for comparison
in this less controlled setting, we can include a number of recent approaches
including DNNs trained on clean data as well as DNN training approaches ded-
icated to noisy training data. Tab. 5.2 shows the denoising performance for
the three noise levels we investigated, with results for other algorithms taken
from their corresponding original publications with the exceptions of WNNM
and EPLL for which we cite values from Zhang et al. (2017). These other
methods include a deterministic sparse coding baseline (KSVD, Aharon et al.,
2006), a mixture model approach (EPLL, Zoran and Weiss, 2011), a non-local
image processing method (WNNM, Gu et al., 2014) and state-of-the-art de-
noising methods based on deep neural networks (BDGAN, Zhu et al. (2019)
and DPDNN, Dong et al. (2019)). These approaches can be distinguished,
e.g., by the amount of employed training data and by the requirement for
clean data. Note that the best performing approaches (lower half of the table)
cannot be trained on just the noisy data, while the algorithms in the upper
half of the table can.

Our novel TVAE model achieves new state-of-the art PSNR values in the
“zero-shot” setting for the “house” image denoising benchmark and high noise
levels. Performance is inferior, although competitive, with respect to algo-
rithms that leverage large datasets of clean images and complex neural net-
works.

In Tab. 5.3 we report the exact hyperparameters used to obtain the PSNR
values discussed above. In parentheses, the parameters for the run on data
with noise level σ = 50 and unconstrained hyperparameters are given, when
they differ from the other experiments.

5.4. Numerical experiments 63

Table 5.2: Denoising performance in PSNR (dB) for the house image for
different algorithms with different optimized hyperparameters. The methods
in the top section of the table only require the noisy data itself, the ones in the
middle require the noise level, while methods in the bottom section cannot
be trained on just noisy data and require (typically large) datasets of clean
images.

σ=15 σ=25 σ=50

MTMKL 34.29 31.88 28.08
GSC 33.78 32.01 28.35
S5C 33.50 32.08 28.35

var-BSC 33.50 32.32 28.91
TVAE 34.27 ± .02 32.65 ± .06 29.98 ± .05

KSVD 34.32 32.15 27.95
WNNM 35.13 33.22 30.33
BM3D 34.94 32.86 29.37

EPLL‡ 34.17 32.17 29.12
BDGAN 34.57 33.28 30.61
DPDNN 35.40 33.54 31.04

Table 5.3: Hyperparameters for the denoising experiments on the house image.

Neural network units
Input (H) 64 (512)
Middle 64 (512)
Output (D) 64 (144)

Cyclic Learning Rates
Min l.r. 0.0001
Max l.r. 0.01 (0.05)
Epochs/cycle 20
Batch size 32

Evolutionary parameters
Parents 10 (5)
Children 9 (4)
Generations 4 (1)
Size of Φ(n) 200 (64)

5.4. Numerical experiments 64

5.4.6 Performance comparison with noise2void

TVAE does not require clean images for training, and can be trained on just
a single noisy image. Instead, EPLL, BDGAN and DPDNN require clean
training data (typically tens or hundreds of thousands of samples are used in
training). Approaches such as noise2noise (n2n, Lehtinen et al., 2018) and
noise2void (n2v, Krull et al., 2019) occupy a middle ground: they can be
trained on noisy data but they typically require much larger amounts of data
than, e.g., TVAE or MTMKL. In the original n2v publication, for instance, 400
(noisy) 180×180 images from the BSD dataset (Martin et al., 2001) were used
to create a training dataset (this procedure also involved data augmentation,
see Krull et al. (2019)).

In Tab. 5.4 we report the denoising performance we obtained by applying
n2v to the “house” benchmark. We made use of the official, publicly available
code for n2v. After training on the default dataset (σ = 25) employed in the
original n2v publication, we applied the n2v network to denoise the “house”
image with σ = 25. The resulting PSNR value was 32.10 dB which is 0.76 dB
lower than the PSNR value for BM3D (32.86 dB). The difference is consistent
with an average 0.88 dB lower performance of n2v compared to BM3D on the
BSD68 test set (see Krull et al., 2019). The same network can also be used
to denoise an image with lower or higher noise level. The entry marked n2v†

in Tab. 5.4 reports PSNR values for the n2v network trained on σ = 25 and
then applied to a noisy image with σ = 15 or σ = 50 . Especially for high
noise levels, performance can be much improved, however, if the n2v network
is trained using images with the same noise level as the test image. In order to
do so, we followed the procedure described in the n2v publication, adapting the
training noise level to the one of the test image. The resulting PSNRs are listed
as n2v‡ in Tab. 5.4. The PSNR values obtained in this matched-noise-level
scenario are much higher compared to the scenario with unmatched noise level
(e.g., for σ = 50 the PSNR improvement is approximately 8 dB). The much
lower performance for mismatched noise for n2v is in this respect consistent
with observations for standard DNN denoising for which training with the
ground-truth noise level has been pointed out as important for performance
(Chaudhury and Roy, 2017; Zhang et al., 2018a).

The n2v model can also be trained on the single noisy image, without a-
priori knowledge of the noise level. We investigated this “zero-shot” denoising
feature of n2v and applied the algorithm to denoise the “house” image while
using the same noisy image for training that we seek to denoise. We took
the publicly available code of n2v as an example and manually adjusted hy-
perparameters as follows: we set the “Percentage of pixel to manipulate per
patch” to a value of 0.4, “Number of training epochs” to 400 and “Number
of parameter update steps per epoch” to 33. The obtained PSNR values are
listed as n2v∗ in Tab. 5.4.

5.4. Numerical experiments 65

Table 5.4: Denoising performance of n2v in PSNR (dB) for the “house” image
with additive white Gaussian (AWG) noise. For comparison, we also list the
performance of TVAE (numbers copied from Tab. 5.2). PSNR values for n2v?

are obtained by training only on the noisy image. n2v† reports performance
when additional training data in the form of noisy images with AWG noise
σ = 25 is used. n2v‡ corresponds to the performance obtained for the n2v
trained on data with noise level that matches the noise of the test image. See
the main text for further details.

σ=15 σ=25 σ=50

n2v? 32.05 29.20 25.42
n2v† 32.93 32.10 20.96
n2v‡ 33.91 32.10 28.94

TVAE 34.27 ± 0.02 32.65 ± 0.06 29.98 ± 0.05

Note that for all considered training settings of n2v and all noise levels,
PSNR values of TVAE are consistently higher. This is true even if n2v is
trained on external data with matched-noise level. Additional parameter tun-
ing may improve performance of n2v∗ to a certain extent but PSNRs are in
general much lower than n2v‡. Although for n2v‡ we followed the standard hy-
perparameter setting of the original publication (Krull et al., 2019), we cannot
exclude that further improvements could be obtained by fine-tuning training
parameters. However, we remark that the difference of n2v‡ and BM3D for the
“house” benchmark is comparable to the differences between n2v and BM3D
reported (for the BSD dataset) in the original n2v publication. However, it
must be noted that, once trained, n2v is typically faster to apply to new noisy
images than BM3D as well as TVAE.

For what concerns noise2noise (n2n), its PSNR values are usually very
closely aligned with those achievable by feed-forward DNNs: for example, n2n
uses a RED30 network (Mao et al., 2016) which achieves 31.07 dB PSNR on the
BSD300 data set if trained on clean data. If directly trained on noisy data,
RED30 achieves 31.06 dB (Lehtinen et al., 2018). n2n is therefore strongly
performing in terms of PSNR. The caveat of n2n compared to n2v is, however,
that the noisy data n2n uses is rather artificial. The pairs of images n2n is
trained on consist of two different noise realization of the very same underlying
clean image. For real data, such a setting is only approximately occurring at
most, which has motivated the n2v approach.

For the “zero-shot” setting, TVAE is consequently the best performing sys-
tem on the “house” benchmark. Notably, such a high performance is achieved
using a basic DNN and relatively small patch sizes of D = 8 × 8 (for σ = 15
and σ = 25) or D = 12×12 (for σ = 50). All feed-forward DNNs for denoising

5.5. Computational performance 66

use much larger patches (e.g., n2v use 64× 64). That a competitive denoising
performance can be achieved with small patch sizes argues in favor of VAE
approaches to denoising. Indeed, TVAE even comes close to state-of-the-art
approaches (BDGAN and DPDNN) that use very intricate DNN architectures
and large amounts of clean training data. We believe that such results under-
line the potential of the approach investigated here, especially considering its
novelty: further improvements to the decoder DNN as well as to the evolution-
ary optimization of the variational distributions can potentially yield further
gains in performance.

5.5 Computational performance

An important limitation of TVAE with respect to standard DNN-based meth-
ods is its computational demand. For our experiments on the “house” image
with noise level σ = 50 in Tab. 2 we used N = 60025 patches of D = 12× 12
pixels, which amounts to all possible non-overlapping square patches of that
size that can be extracted from the image. For training and denoising we used
a TVAE with H = 512 latent variables, sizes of |Φn| = 64, and 512 units in
the DNN middle layer of the decoder. TVAE training required 49 seconds
per training epoch when executing on a single NVIDIA Titan Xp GPU and
2.5 GB of GPU memory. We ran for 500 epochs which required between seven
and eight hours on the single GPU. We did not observe significant changes
in variational bound values or in denoising performance after 500 epochs in
any of the experiments we conducted for Tabs 1 and 2. Runtime complexity
increased linearly with the number of data points N , with the dimensionality
of the data D, with the number of the latents H, and with the size of the DNN
used. Empirically, we observed a sub-linear scaling with |Φn|: for example,
increasing from |Φn| = 64 to |Φn| = 128 (while keeping all other parameters
as above) computational time increases from 49 seconds per training epoch
to 75 seconds; presumably, this is due to a significant constant overhead in
computing time w.r.t. the size of Φn.

For noise levels σ = 15 and σ = 25 in Tab. 2 we used smaller patch sizes
(D = 8× 8) and fewer stochastic latents (H = 64) but larger Φn (i.e., |Φn| =
200). In general, if the patch size D is increased, more structure has to be
captured. This can be done either by increasing the size of the stochastic
latents H or by using larger DNNs. Both, in turn, requires more training
data in order to estimate the increased number of parameters. In the current
setup, the sizes of D which are currently feasible are comparably small. The
denoising performance based on small patches is, however, notably very high.

For comparison, n2v uses up to D = 64×64 and also all other feed-forward
DNN approaches use significantly larger patch sizes than TVAE. Still, n2v can
be trained efficiently on large patches requiring approximately 19 hours on a
NVIDIA Tesla K80 GPU for training on approximately 3k noisy images of

5.5. Computational performance 67

shape 180x180 and mere seconds for the denoising of one 256x256 image.
The higher computational demand of TVAE is also the reason why averaging
across databases with many images (such as BSD68) or applications to large
single images quickly becomes infeasible. As a novel approach, TVAE is,
however, far from being fully optimized algorithmically compared to large
feed-forward approaches, and there is certainly further potential to improve
training efficiency.

5.5. Computational performance 68

Chapter 6

A Software Framework for
Truncated Variational EM

In a research field such as machine learning, in which theory is deeply in-
tertwined with computing, powerful and user-friendly software libraries can
greatly encourage the adoption of new algorithms or paradigms. For deep
learning applications, this is nicely demonstrated by Theano (Theano Devel-
opment Team, 2016): at the time it was published, its versatile engine for sym-
bolic differentiation of mathematical expressions involving multi-dimensional
arrays lowered the bar for the development and investigation of new models
immensely. Ergonomic software libaries are just as important as effective al-
gorithms, both for rapid prototyping and research work as well as to foster
widespread adoption of new techniques.

On top of the promising scientific results described in previous chapters,
another notable product of my doctoral work has been a ready-to-use, well-
tested and extensible Python framework for Truncated Variational Expec-
tation Maximization. The software targets all Linux platforms and it has
been used for the majority of the experiments described in Chapters 4 and
5. In particular, it has enabled the state-of-the-art denoising results de-
scribed in the previous chapter. It will soon be made publicly available at
https://gitlab.com/mloldenburg/tvem.

I designed and implemented the framework in collaboration with Jakob Drefs.
My most notable personal contributions to the project were the protocol-based
design of model interfaces, efficient GPU-friendly implementations of EEM’s
genetic operators, black-box training functionality based on auto-differentiation,
and the implementations of the Noisy-OR model and of Truncated Variational
Autoencoders (TVAEs). The implementation of BSC’s data reconstruction al-
gorithms was contributed by Jakob Drefs. I later added support for TVAE’s
data reconstruction. I also set up most of the framework’s “DevOps” infras-
tructure, including continuous integration and deployment, testing, packaging

69

6.1. Why a new framework? 70

and automatic documentation generation.

6.1 Why a new framework?

The motivation for developing a full-fledged TVEM software framework is
twofold: firstly, we want to facilitate adoption of and experimentation with
the TVEM algorithm on the part of other researchers, within our same re-
search group as well as other groups that are interested in our novel training
methods; secondly, we wish to ensure the reproducibility of our experimental
results and provide a robust starting point for further improvements. These
reasons alone might not be seen as sufficient motivation to create a new soft-
ware package rather than integrating our methods with existing frameworks.
Indeed, the availability of production-grade machine learning software has dra-
matically grown in recent years: mostly thanks to the fruitful marriage of deep
learning techniques, auto-differentiation libraries and more powerful commod-
ity hardware (namely GPUs), software frameworks which provide industry as
well as academia with out-of-the-box solutions for the training and inference of
discriminative models have flourished in number and amount of contributors
(see e.g. Nguyen et al., 2019, for a recent review). Frameworks that natively
support probabilistic generative models or, more in general, probabilistic pro-
gramming, also exist: recently, Edward (Tran et al., 2016) and Pyro (Bingham
et al., 2019) have been gaining popularity. However, due to the fundamen-
tally different nature of TVEM’s variational parameters (sets of discrete latent
states rather than continuous parameters of a given variational distribution)
integration of TVEM training with such frameworks is non-trivial. Further-
more, both Edward and Pyro require users to learn their ad-hoc probabilistic
programming language, which might represent an undesirable entry barrier.

In comparison to a tool such as Pyro, our TVEM software framework
is narrower in scope: it is limited to training of discrete latent probabilistic
generative models with truncated posterior approximations and consequent
inference applications. However, we believe it provides a simple, ready-to-
use programming model that can feel natural to researchers and most (also
non-expert) Python users, as well as a robust starting point for algorithmic
extensions and modifications. The TVEM framework was designed with the
following goals in mind:
We strived for an intuitive programming model that minimizes the
lines of code required to reach the desired result. Great care has been put in
making standard use cases simple and expert use cases possible by using only
few, shallow abstraction layers on top of the Python programming language
and PyTorch (more on this below).
The framework is extensible via flexible protocol-based interfaces:
the most important extension points provided are the definition of arbitrary
generative models as well as TVEM optimization schemes (e.g. EEM or

6.2. Framework components and programming model 71

marginal sampling). Rather than basing customization on inheritance and
polymorphism, the TVEM framework embraces Python’s “duck typing” ca-
pabilities and allows users to implement their own custom logic as long as it
fits a well-defined protocol definition (i.e., user-defined objects must expose a
certain interface with pre-defined semantics). Sec. 6.3 elaborates on this point.
GPU acceleration and transparent multi-core parallelization on CPU
clusters: user code requires little to no change in order to be executed as a
single-threaded program or as a multi-process highly data-parallel application.
Similarly, when appropriate, computation can be dispatched to GPUs simply
by setting an ad-hoc environment variable.

Naturally, we avoided re-implementing standard tools, and opted instead
to offload automatic differentiation as well as heterogeneous hardware support
to the PyTorch library (Paszke et al., 2017), on which our framework relies
heavily. Compared to other production-grade frameworks such as Tensorflow
(Abadi et al., 2016) and MXNet (Chen et al., 2015), PyTorch provides the
right balance between computational performance, non-opinionated and flexi-
ble APIs (other frameworks, by design, heavily target deep learning use cases
at the expense of other areas) and ease of debugging. Finally, it is worth
pointing out that the development of our framework follows modern software
development best practices: a pipeline of continuous integration, testing and
deployment is in place to validate all changes before they are deployed. Sim-
ilarly, each release is automatically packaged and made available as part of
the Anaconda software ecosystem to facilitate installation. The code has over
95% test coverage thanks to a mix of unit tests as well as integration tests, for
a total of 450 individual test cases. Documentation is automatically generated
from code annotations and it is published as browsable web pages. Extensive
usage of Python 3 type annotations provides further documentation of the
interfaces and is used for static validation of the code-base as well as protocol-
based extensions.

The framework is fully open source and released under the Academic Free
License v3.0.

6.2 Framework components and programming model

Users of the TVEM framework manipulate three types of objects: models,
variational state optimizers and experiments. Fig. 6.1 reports a schematic
representation of each component’s role and interface. Listing 1 reports a full
usage example of the framework that trains a BSC model on the specified
input dataset.

A model object, at the very least, is expected to store the parameters of
a given generative model and implement the calculation of the correspond-
ing log-joint probabilities. The free energy of the model on a given dataset
can then be evaluated using the compact truncated free energy of Eq. 3.5,

6.2. Framework components and programming model 72

Figure 6.1: Schematic (simplified) representation of the main functional com-
ponents of the TVEM framework, as UML class diagrams: type name is shown
at the top of each box, data attributes in the middle section, methods at the
bottom. The update Θ method of Model is in gray because its implemen-
tation is optional: if not present, the framework falls back to gradient-based
parameter updates.

which in turn can be processed by an automatic differentiation tool and yield
gradient-based model parameter updates. Therefore, training of a model in
the TVEM framework does not require much more than the definition of a
log-joint probability. If M-step parameter update rules are available in closed
form, models can expose them as an optional method (method update Θ in
gray in Fig. 6.1). The TVEM framework expects parameters to be stored as
PyTorch tensors; input data and experiment outputs are stored in HDF5 for-
mat. The Noisy-OR, BSC and TVAE generative models are made available
by the library, but users can easily integrate their own.

A variational state optimizer contains the variational parameters Φ and
updates them according to a specific algorithm. The TVEM framework im-
plements Evolutionary Expectation Maximization (as presented in Ch. 4) as
well as full E-steps (i.e., “exact EM” as presented in Ch. 2) and random uni-
form sampling of variational states (useful as a performance baseline for other
algorithms or for testing purposes).

Finally, an experiment object aggregates a model and a variational state
optimizer and runs the Expectation-Maximization loop. Experiments are
passed a configuration object in order to set training parameters such as batch
size, optional random shuffling of the input data, training log output file or
which parameters should be stored in the training log. As it is visible from list-
ing 1, the optimization loop is run as a standard Python for loop so that users
can insert custom logic to be executed at the end of every epoch: this is useful,
for example, to implement custom logging, to validate model parameters or to
implement early quitting of the optimization loop.

The framework also provides logging facilities, and a companion code
repository that provides a few useful pre- and post-processing routines is avail-
able.

6.2. Framework components and programming model 73

from tvem.exp import ExpConfig, EEMConfig, Training

from tvem.models import BSC

Create a BSC model with random weight initialization

bsc = BSC(H=8, D=16)

Configure and create a Training experiment

estep_conf = EEMConfig(n_states=16,

n_parents=3,

n_children=2,

n_generations=2,

parent_selection="fitness",

mutation="uniform")

exp_conf = ExpConfig(shuffle=True, output="exp_log.h5")

exp = Training(exp_conf, estep_conf, bsc,

train_data_file="some_data.h5")

Run 500 epochs of training

for epoch_log in exp.run(500):

epoch_log.print()

Listing 1: Simple example usage of the TVEM framework. A BSC model is
trained with EEM for 500 epochs. Data is read from a file in HDF5 format.

6.3. Extensibility via protocol-based interfaces 74

6.3 Extensibility via protocol-based interfaces

Two major factors behind Python’s widespread adoption as the language of
choice of researchers (and specifically machine learners) are its rich library
ecosystem and its ability to enable quick iteration, refactoring and prototyp-
ing. Not only, but it could be argued that the growth of the Python software
ecosystem has been, in fact, greatly facilitated precisely by the short develop-
ment cycles the language enables. In this light, it might be easier to appreciate
the important role played by the language’s flexible type system: even though
the Python programming language is statically typed, its syntax does not re-
quire that function declarations explicitly specify the type of their arguments.
Instead, functions can accept arguments of any type, and no errors will be
produced as long as the argument type supports the usage the function makes
of it, or in other words adheres to the protocol the function requires. This
property of the Python language is often referred to as “duck typing”, a ref-
erence to the “duck test” of logical inference: “if it walks like a duck and
quacks like a duck, then it must be a duck”. Although protocols have always
been part of idiomatic Python usage (e.g., for the implementation of custom
iterators or context managers), with the advent of type annotations in Python
3, programming interfaces can explicitly document protocol requirements; not
only, but static analysis tools such as mypy can verify they are satisfied in
client code, making protocol-based programming interfaces the obvious choice
to provide user-facing customization points.

Thanks to duck typing, each function argument has the potential to serve
as a customization point for a given library or framework. In practice, library
designers can promote certain arguments to customization points by defin-
ing, in code, a custom protocol they are required to satisfy. Compared to
polymorphism through type inheritance (possibly the most common software
pattern for behavior customization, at least in object oriented programming
languages), protocols are more flexible and more easily composed: firstly, while
multiple inheritance is typically cumbersome in languages such as C++ (as
well as Python itself, due to non-obvious method resolution order), a given
type can easily adhere to multiple protocols; secondly, similarly to what hap-
pens in policy-based design (Alexandrescu, 2001) library code can easily pro-
vide fall-back implementations as well as take alternative code-paths depend-
ing on what parts of a protocol a type implements. Finally, and maybe triv-
ially, protocol-based customization points in Python are also preferred because
they fit nicely with the language’s duck typing mechanism.

Tab. 6.1 lists the protocols available when implementing a new model to be
integrated in the TVEM framework. Trainable is the simplest protocol for a
trainable TVEM model. It represents the bare minimum requirements for a
Python class to act as a TVEM model. Optionally, a Trainable model can
also implement update Θ to take advantage of analytical M-step update rules

6.4. Black-box variational inference through automatic
differentiation 75

Table 6.1: TVEM framework protocols for generative models. A TVEM model
must implement at least “Trainable”, and can optionally also implement “Op-
timized”, “Sampler” and “Reconstructor” to add support for the correspond-
ing features. See text for a description of each protocol.

Protocol Requirements

Trainable log joint(batch, Φ), parameter set theta
Optimized same as “Trainable”, plus log pseudo joint(batch, Φ)
Sampler generate data(n samples)

Reconstructor data estimator(batch, states)

instead of gradient-based optimization of the parameters. Optimized builds on
Trainable by adding support for the log-pseudo-joint numerical optimization
(see Sec. 3.3.3). Sampler is orthogonal to the other protocols and adds support
for sampling of datapoints from the generative model. Reconstructor is also
orthogonal to other protocols and adds support for data reconstruction for
this model. This is how denoising as well as in-painting are supported by the
TVEM framework.

6.4 Black-box variational inference through auto-
matic differentiation

An advantage of TVEM when compared to other common variational ap-
proximation schemes such as factored distributions (see Sec. 2.2.3) is that the
TVEM E-step does not require model-specific derivations. In fact, TVEM’s
E-step only depends on the specific generative model via the log-joint dis-
tributions: log-joints are used to select the best variational states to employ
as variational parameters of truncated posteriors. This is in contrast with
other frameworks for variational inference such as Pyro, which in general re-
quire that users define “guides”, i.e. that they provide a specific definition
for the variational distributions. For what regards the M-step, on the other
hand, closed-form parameter update equations such as those listed in App. A
naturally require model-specific mathematical derivations; however, given an
efficiently computable objective function such as the compact free energy of
Eq. 3.5, automatic differentiation techniques can be applied to evaluate gradi-
ents of the optimization objective with respect to model parameters. Therefore
we can optimize model parameters without requiring model-specific analytical
derivations at the cost of exchanging exact M-step updates with gradient-
based updates. On one hand, exact M-steps can reach optima faster and
are less computationally demanding; on the other, stochastic gradient ascent

6.5. Automatic inference of computing targets 76

introduces noise in the optimization process that is often useful to avoid un-
desirable, shallow local optima.

TVEM’s generic E-step, combined with automatic differentiation for M-
step parameter updates, yields a truly black-box optimization system for prob-
abilistic generative models: the only ingredient required is the definition of the
probabilistic generative model in terms of log-joint probabilities.

Listing 2 shows how the TVEM framework supports training of a model
for which only the log-joint probabilities have been specified.

6.5 Automatic inference of computing targets

The TVEM framework adds facilities to automatically distribute computation
on heterogeneous computing targets (single-node, MPI CPU clusters, GPU
nodes) on top of the capabilities of PyTorch. In particular, the Experiment

objects are able to automatically detect whether the program is being executed
as an MPI application and properly initialize process-local variables as well
as partition datasets between all available workers. For what regards GPU
processing, E-steps and M-steps can transparently be deployed to GPU targets
by setting the TVEM GPU environment variable to the index of the device where
computation should be executed. Mixing MPI multi-processing computation
with deployment to GPU is currently not supported although it is on our
road-map. Listing 3 shows how this looks in practice.

6.6 Performance profiling

Figure 6.2: Runtime per epoch (in seconds) as a function of batch size on CPU
(left) and GPU (right)

Much care has been taken in implementing efficient generic E-steps and
model-specific M-steps. One example, namely usage of numerically stable

6.6. Performance profiling 77

from tvem.exp import ExpConfig, EEMConfig, Training

from tvem.utils.model_protocols import Trainable

import torch as to

class BlackBoxModel(Trainable):

def __init__(self, H: int, D: int):

"""

Initialize model parameters as a dictionary

of PyTorch tensors _theta.

"""

self._theta = dict(pi=to.rand(H),

logsigma=to.tensor(1e-3),

W=to.rand(H, D))

def log_joint(self, batch: to.Tensor,

var_states: to.Tensor) -> to.Tensor:

"""

Evaluate log_joint probabilities for batch given

var_states.

"""

...

model = BlackBoxModel(H=16, D=256)

estep_conf = EEMConfig(n_states=8, n_parents=3, n_generations=2)

exp = Training(ExpConfig(), estep_conf, model,

train_data_file="blackbox_test.h5")

for log in exp.run(200):

log.print()

Model parameters `model._theta` have been updated.

Variational states can be accessed as `exp.train_states`.

Listing 2: This Python snippet shows how to train a user-defined model for
which only the log-joint probabilities have been defined with the TVEM frame-
work. Model parameters must be PyTorch tensors and are registered in the
self. theta attribute.

6.6. Performance profiling 78

$ # run the program on a single node

$ python run_exp.py

$ # run the program as an MPI application

$ mpirun run_exp.py

$ # run the program on GPU number 1

$ TVEM_GPU=1 python run_exp.py

Listing 3: Running a TVEM program on different computing targets.

and more computationally efficient log-pseudo-joints in place of full log-joint
computations, has already been discussed in Sec. 3.3.3. During performance
profiling, EEM’s genetic operators appeared as another potential hot spot; this
is not so surprising as evolutionary algorithms are applied to several variational
states per datapoint, making them part of the few computations that are
executed in “hot” loops with size O(N × ‖Φn‖). Therefore we implemented
batch-wise genetic operators that do not require Python for loops, but instead,
by substituting an imperative programming style with array programming,
move such expensive loops to efficient linear algebra libraries that execute them
at the speed of optimized machine code. As a consequence, the performance
of the TVEM software framework depends on the chosen batch size, i.e. the
amount of datapoints that E-steps and M-steps process in one go; similarly
to what typically happens in deep learning applications, a small batch size
results in worse runtimes due to an increase in overhead computations and
a lack of low-level parallelization or CPU vectorization of the computations,
while larger and larger batch sizes require more and more memory.

In order to investigate the dependency of runtime on hyperparameters such
as batch size or number of processing cores, we run a simple toy experiment:
different generative models are trained on a dataset consisting of N=1000
randomly generated arrays of size D=784. Models have H=128 latent variables
and TVAE, in particular, also has 128 units in the middle layer of its neural
network. We train with EEM using fitness-proportional parent selection and
random uniform mutations, and no crossover. Unless specified otherwise, we
will use ‖Φn‖ = 64 variational states and evolutionary algorithms will select 8
parent states and produce 7 children per parent in 1 generation. These tests
were run on a machine with a single NVIDIA Titan Xp GPU and 8 physical
Intel i7-7820X cores, with two threads per core.

Fig. 6.2 shows how the runtime of a training epoch changes w.r.t. the batch
size employed, for executions on CPU (left) and GPU (right). The plots
contain error bars, but they are actually smaller than the markers: epoch
runtimes are extremely stable for this use case. It can be noticed that, for both
CPU and GPU executions, the framework does take advantage of larger batch
sizes but there is no further benefit beyond batches of size 32, so in further

6.6. Performance profiling 79

experiments we will keep it fixed at this value. Except for Noisy-OR, GPU
runtimes are only marginally smaller than corresponding CPU runtimes for
this experiment. The reason is twofold: firstly, the lack of large speed-ups when
switching to GPU is due to the relatively small problem size, which highlights
the overhead of memory transfers between CPU and GPU when computations
are run on GPUs; in fact, for one of the TVAE denoising experiments of
Sec. 5.4.5, executing one epoch on CPU takes between 90 and 110 seconds
while, on GPU, epoch runtime is around 28 seconds. Secondly, even when
GPUs are targeted, there is one potentially expensive part of the algorithm
that is unconditionally run on CPUs: detection of duplicated variational states
when updating Φn by selecting the best ‖Φn‖ states in Φn ∪ Φnew (compare
Alg. 1). Such checks are necessary because Φn is required to be a set of unique
latent states. This search of duplicate latent states is not trivial to write as a
batch operation in array programming style, so for the TVEM framework it
has been implemented as a Python extension module using Cython (Behnel
et al., 2011), and it executes at C speeds. However, it is always executed on
CPU, even when a GPU is employed for all other computations, which does
require expensive data copies between devices. As model size increases w.r.t.
‖Φn‖, though, this becomes less and less of an issue.

Noisy-OR runtimes are much larger and display a slightly more surprising
behavior than BSC and TVAE: when running on CPU, runtime does not
depend on batch size, the speed-up when switching to GPU is much larger
than for the other models, but scaling with batch-size already plateaus at size
16. We believe the reason for this behavior is that, compared to the other
two models, Noisy-OR’s log-pseudo-joint and M-step computations make use
of larger arrays of size ‖Φn‖ × D × H × batch size (computations on which
dominate runtimes). As a consequence, with a batch size of 1 Noisy-OR
already fills the vectorization capacity of PyTorch’s CPU implementation of
the necessary linear algebra operators, and smaller batch sizes also fill the
GPU’s vectorization capacity. In the current implementation, such large arrays
also require expensive allocations of temporaries (which might hinder scaling
unless specially crafted memory allocators are used), although our attempts
to reduce the amount of allocations did not improve the scaling with batch
size.

Fig. 6.3 reports result for a similar experiment but with batch size fixed to
32 and a varying number of MPI worker processes, on a single worker node.
Because Noisy-OR computations require the allocation of large arrays (see
above) and MPI usage makes it so that the arrays need to be allocated once
per MPI worker, we had to reduce the problem’s dimensionality for Noisy-OR
and set N = 200. As mentioned before, EEM’s E-step is trivially data parallel
and the most computationally expensive of models’ M-steps also often are, so
distributing parts of the dataset to each worker process and aggregating the
partial results in a final reduction steps scales fairly well up to the available

6.6. Performance profiling 80

Figure 6.3: Runtime per epoch (in seconds) as a function of the number of
MPI worker processes for BSC and TVAE (left) and Noisy-OR (right).

number of physical cores. Note that runtimes with one worker process are
larger than the equivalent runtimes with no usage of MPI (i.e. those reported
in Fig. 6.2): multi-processing does involve a non-negligible runtime overhead
and also increases the amount of memory required to run the training, so it
is advisable to only adopt it when the problem is very large and the workload
can be distributed on different machines.

Finally, Fig. 6.4 shows how runtime per epoch changes as a function of the
size of the variational sets ‖Φn‖. The plot shows runtimes for the experiment
described above and the TVAE model, with batch size set to 32 (the full epoch
runtime does not match what was reported in Fig. 6.2 for batches of size 32
because this last experiment was run on a different machine with four Intel
i7-4790 physical cores). The lower line shows runtimes for the E-step only,
and the higher line the full epoch runtime. As expected, the dependency of
runtime on ‖Φn‖ is clearly linear, but note the small coefficient: runtimes go
from 0.64 seconds to 7.28 seconds when ‖Φn‖ goes from 1 to 256. Another
interesting observation is that, at least for the TVAE model, the impact on
runtime of larger ‖Φn‖ is dominated by the more and more expensive M-steps
rather than the increase runtime cost of EEM’s E-steps.

6.6. Performance profiling 81

Figure 6.4: Runtime per epoch as a function of the size of the sets Φn of
variational states. Time spent in the E-step is shown in blue, total epoch
runtime in orange.

6.6. Performance profiling 82

Chapter 7

Handling Large Datasets:
Improving the Machine
Learning Pipeline at CERN

Machine learning tools, including prominent deep learning frameworks such
as Tensorflow (Abadi et al., 2016) and Pytorch (Paszke et al., 2017), are typ-
ically designed with the expectation that training, validation and testing will
be performed on datasets that fit into the machine’s fast memory access ca-
pacity (i.e., that fit in a machine’s or a cluster’s RAM). At the same time,
however, typical dataset sizes have increased greatly with time, and faster
than the capacity of memory units. “Big data” is commonly used to refer
to datasets that are not only larger than memory, but that also exceed the
capacity of a single off-the-shelf storage drive; state-of-the-art deep learning
architectures are notoriously data-hungry; in general, as we have discussed in
previous chapters, both for supervised and unsupervised learning it is inter-
esting to develop algorithms and tools that can deal with large datasets as, at
a fundamental level, larger sample sizes provide a greater amount of statistics
and therefore a more precise insight on the problem at hand.

Workarounds for handling larger-than-memory datasets exist: for instance,
for many applications, including Truncated Variational Expectation Maxi-
mization, datasets can be stored on hard drives and batches of datapoints can
be swapped in and out of working memory at will during training. However,
such solutions typically have a high cost in terms of computing runtime.

As part of my thesis, I have been involved in the field of data analysis
software for the European Organization for Nuclear Research (CERN). High
Energy Physics (HEP) data analyses often involve machine learning techniques
as well as datasets with sizes in the order of terabytes or tens of terabytes,
but the very nature of HEP data analysis offers an alternative solution to
the problem of handling large datasets. Machine learning algorithms, in fact,

83

84

are typically applied at the final stages of the pipeline, at which point the re-
searcher has selected a small percentage of interesting datapoints (or “events”)
which are interesting for this last step. This event selection and pre-processing
step is often a bottleneck for researchers.

ROOT (Brun and Rademakers, 1997) is a large, mature software frame-
work that provides the necessary foundation for the processing and analysis of
data produced by CERN’s Large Hadron Collider as well as many other HEP
experiments. Working with the ROOT development team, I have helped deliv-
ering new high-level, modern data processing interfaces in Python and C++,
named ROOT::RDataFrame 1. As an outcome, not only HEP scientists have at
their disposal a new declarative, high-performance interface for data manipu-
lation, but they can also leverage RDataFrame to efficiently perform complex
event selections on larger-than-memory or larger-than-disk datasets and then
export interesting data to formats useful for further processing: interestingly
for machine learning applications, RDataFrame allows exporting ROOT data
as Numpy arrays, which makes it easy to select relevant parts of a dataset,
pre-process them and finally feed the transformed data to standard machine
learning libraries and tools.

This chapter first provides a brief introduction to ROOT and data analy-
sis at CERN (Sec. 7.1) as well as an overview of RDataFrame’s design and
features (Sec. 7.2). Then Sec. 7.4 presents a real-world use case in which
RDataFrame was used to build a data transformation tool for the ATLAS ex-
periment. Finally, Sec. 7.6 shows how this tool makes it possible to efficiently
skim larger-than-memory datasets and feed selected events to Python’s data
science ecosystem.

I have personally contributed most of the design and implementation of RDataFrame’s
interfaces in collaboration with Danilo Piparo, who was supervising my work
in the ROOT team. Multi-thread reading capabilities are based on previous
work by Enric Tejedor, and parallel writing leverages previous work by Guil-
herme Amadio (Amadio et al., 2019). I presented RDataFrame at the CHEP
2018 computing conference; the proceedings of the conference contribution,
on which the content of this chapter is based, are available as (Piparo et al.,
2019). The scaling plot of Fig. 7.7 was produced by Xavier Valls, another doc-
toral student that was collaborating with the ROOT team at the time. The
exporting of ROOT data as Numpy arrays has been developed in collaboration
with Stefan Wunsch, also a doctoral student at the time.

1in the following just RDataFrame, first presented publicly, when still at the
experimental stage, at the ACAT 2017 conference by (Amadio et al., 2018) as
ROOT::Experimental::TDataFrame

7.1. ROOT: a cornerstone of CERN’s software ecosystem 85

Figure 7.1: A schematic representation of the tiered data processing architec-
ture of the Worldwide LHC Computing Grid (WLCG). Raw signals coming
from the detector are “reconstructed” into physical entities (e.g., particles,
tracks, jets); a large amount of simulated data is also produced, and will serve
as validation data for all analyses. Given reconstructed events, datasets with
contents specific to a given physics topic are produced; these datasets are typ-
ically in the order of hundreds of GBs or a few TBs. Further analysis-specific
event selection brings datasets down to the order of GBs, at which point in-
memory processing becomes feasible; this final selections and analysis-specific
manipulations are the use case that RDataFrame mainly aims to satisfy. After
the reconstruction step, data is typically stored in ROOT format.

7.1 ROOT: a cornerstone of CERN’s software ecosys-
tem

ROOT (Brun and Rademakers, 1997) is an open-source software framework
for data processing, analysis and visualization. It was born at CERN in 1995
and it is mainly targeted at High Energy Physics (HEP) use cases.

First and foremost, ROOT provides a common data format for efficient I/O
of the kind of data that is typically handled by HEP analyses: columnar data
with nested collections, in which rows represent independent physical events
(e.g., collisions of proton bunches within CERN’s Large Hadron Collider) and
columns represent different kinds of physical entities (e.g., the momentum of
each electron produced by a collision, the missing transverse energy and so
forth). Although the ROOT format supports reading and writing of complex
C++ data structures (thanks to the Cling C++ interpreter, Vasilev et al.,
2012), at the level of interactive physics analysis (which is RDataFrame’s main

7.2. RDataFrame’s software design 86

target, see Fig. 7.12) column values mostly consist of fundamental data types
(integers and floating point numbers) and arrays thereof; nevertheless, the
presence of these nested arrays gives HEP datasets a “jagged” shape (as op-
posed to the rectangular shape of HDF5 tables, for instance, which is common
in deep learning applications) that often requires ad-hoc tools and interfaces
to be manipulated efficiently.

On top of the ROOT data format and the corresponding I/O layer, ROOT
offers a vast range of features, including a library for statistical fitting, efficient
(single- and multi-dimensional) histograms as well as a GUI toolkit and facil-
ities for data visualization and multi-thread and multi-process computation.

The ROOT project is committed to take physicists from data acquisition
to publication as effectively as possible. The need to offer analysts simpler
and yet powerful interfaces that could easily let them exploit the full potential
of their hardware became all the more apparent with the increased luminosity
and the upgrades of the LHC experiments foreseen for Run III (Albrecht et al.,
2019), HL-LHC (Apollinari et al., 2017) and FCC (Fernandez et al., 2012) –
with the consequent increase in the amount and complexity of available data.
RDataFrame has been developed in order to address these requirements. In a
similar vein to other modern data analysis frameworks such as Apache Spark’s
DataFrames (Zaharia et al., 2010) and Python’s data analysis library pandas
(McKinney et al., 2010), RDataFrame exposes a declarative API designed to be
easy to use correctly and hard to use incorrectly. Novel elements introduced
by RDataFrame with respect to pre-existing libraries are the choice of program-
ming language (C++), which allows usage of template metaprogramming to
avoid runtime overhead while maintaining generality of interfaces, the integra-
tion of just-in-time compilation of user-defined expressions to make analysis
definition concise when top performance is not required, and of course a tight
integration with the rest of the ROOT data analysis toolkit. User-transparent
task-based parallelism has been a goal since inception, and recently published
results (Avati et al., 2019) demonstrates that the programming model lends
itself to multi-node distributed execution with little to no changes.

7.2 RDataFrame’s software design

7.2.1 Design principles

At a high level, RDataFrame strives to expose modern, elegant and safe in-
terfaces. The introduction of elements of declarative programming in the
design (users say what they need to compute, RDataFrame chooses how to com-
pute it) provides user-visible advantages such as less typing, increased readabil-
ity and abstraction of complex operations. At the same time, by decoupling

2Image source: “Building the world’s largest Scientific Grid”, a presentation by Jamie
Shiers at the Oracle Tech Day 2004.

7.2. RDataFrame’s software design 87

Figure 7.2: The RDataFrame framework reads from a columnar data format via
a data source, applies transformations to the data (i.e. selects rows and/or de-
fines new columns) and produces results (i.e. data reductions like histograms,
new ROOT files, or any other user-defined object or side effect). Data sources
for ATLAS’ xAOD data format and LHCb’s MDF binary data format exist
but are not distributed with ROOT.

Figure 7.3: A simple C++ RDataFrame analysis that performs event selection,
defines a new quantity, produces a histogram and writes processed data to
disk. All registered operations will be executed in a single event loop.

the API from the underlying implementation, the declarative paradigm allows
transparent optimizations (e.g. user-transparent parallel processing of ranges
of events, lazy evaluation, caching) that it would not have been possible to
introduce in previous ROOT data analysis facilities such as TTree with a more
imperative API.
As shown in figure 7.3, the design also features elements of functional pro-
gramming such as pure and higher order functions which encourage users to
program in terms of small and reusable components with less side effects and
less shared state; this in turn increases thread safety and code correctness:
pure functions are thread safe by construction and are easier to test as they
do not carry dependencies on global state. Furthermore, thanks to PyROOT’s
automatic python binding generation (Generowicz et al., 2004), most of the
framework’s functionality is seamlessly available in Python, guaranteeing a

7.2. RDataFrame’s software design 88

consistent user experience across programming languages.

7.2.2 Functional parts

Concretely, the framework is composed of three kinds of objects:

• data sources read columnar data and expose a common format-independent
interface. This is a customization point: expert users can implement a
data source for their columnar data format of choice. Data sources are
discussed in more detail in Sec. 7.3.

• nodes are objects that represent one step of the data analysis workflow
specified by the user. They form a computation graph which represents
the full analysis workflow. With reference to figure 7.3, each Filter,
Define or Histo1D invocation creates a node object which is appended
to the node on which the method was called, hence forming a graph.

• results: most RDataFrame methods return a smart pointer to an ob-
ject produced through data processing. For example, Histo1D returns
a smart pointer to a histogram (TH1D) object. These smart pointers are
the mechanism through which lazy execution is implemented: the ac-
tual data processing is only triggered upon access to one of the results
produced by an RDataFrame (i.e. dereferencing of the smart pointer).
During the data processing all previously booked results are produced
simultaneously.

We distinguish between RDataFrame methods which return new RDataFrame-
like objects (such as Filter or Define) and methods which return results. We
refer to the former as transformations and to the latter as actions, following
Spark’s nomenclature.

7.2.3 Parallelization scheme

The actual event loop is parallelized by processing different chunks of data in
different tasks. Tasks are scheduled for execution on a thread pool, and the
execution of each task updates a thread-local copy of each desired result with
the output of the processing of the relevant data chunk. As an optional final
step, thread-local partial results are merged into a single result object that
will be handed to users. ROOT’s task scheduler is currently Intel’s Threading
Building Blocks (TBB) library (see Piparo et al., 2017).
Assuming the task scheduler employs a pool of worker threads of appropriate
size (as it happens with TBB), task-based parallelism offers several advantages:
there is no risk of over-committing computing resources, as the task scheduler

7.3. High-level customization points 89

ensures that each thread runs one task at a time, also taking into account
dependencies between tasks; this scheme also integrates well with other entities
(e.g. experiments’ frameworks) which schedule their own tasks, as long as all
tasks are submitted to a common scheduler. Finally, redundant decompression
of ROOT data is avoided by chunking inputs with the same granularity at
which they were compressed.

7.3 High-level customization points

7.3.1 Data sources

Figure 7.4: RDataFrame can read any columnar data format through a dedi-
cated data source implementation. Expert users can implement and seamlessly
integrate data sources for their format of choice.

Although the ROOT data format certainly plays a large role in HEP anal-
yses, it is however not the only format of interest in science: a common user
requirement is to read text files, in CSV format or similar, into ROOT; the AL-
ICE experiment also expressed interest in the possibility to use RDataFrame’s
declarative analysis paradigm to process Apache Arrow in-memory tables, as
part of their data analysis framework renovation effort (Eulisse et al., 2019).
In order to address these use cases, the framework provides the interface type
RDataSource which defines a minimal API that RDataFrame can use to read
arbitrary tabular data formats.

In practice, RDataSource is a C++ abstract base class which imposes
certain functional requirements onto its implementations; concrete derived
types will function as adaptors that RDataFrame can leverage to read any
kind of tabular data formats. RDataFrame calls into RDataSources to retrieve
information about the data, to obtain (thread-local) readers or “cursors” for
selected columns and to advance such readers to the desired data entry.

RDataSource not only extends RDataFrame to support other formats than
ROOT, but it decouples the analysis code from the format analysed so that
users can use the same exact code to process potentially very different datasets.

CSV and Apache Arrow inputs are currently supported through this mech-
anism and prototypes for LHCb’s MDF binary data format and ATLAS’
xAOD event data model (see Dharmaji, 2018) have been developed, which
goes to show the flexibility of the approach.

7.4. A real-world RDataFrame application 90

Figure 7.5: An example callback usage, commented line by line. The
drawHisto function is called by one of the worker threads every one hun-
dred entries processed, and it refreshes a canvas on which the state of the
histogram is displayed. The callback need not be thread-safe, as it is never
executed concurrently. In multi-thread executions, the partial result that the
callback will receive as argument will be the thread-local copy that the rele-
vant worker thread is employing.

7.3.2 User-defined callbacks

It is possible to schedule execution of arbitrary functions (callbacks) during
the event loop. Callbacks can be used, for example, to inspect the ongoing
filling of a histogram as the event loop is running, to save results to a file every
time a certain number of new entries are processed, or to display a progress
bar that indicates event loop progress.
As an example, figure 7.5 shows how one can draw an up-to-date version of a
result histogram every 100 entries.

At user’s discretion, callbacks can be called once at the beginning of the
event loop or every time a certain amount of new entries have been processed.
Users can also decide whether the callback should be called only by one thread
at a time (which thread calls the callback might vary during execution, but
the framework guarantees that the given amount of entries will have been
processed between calls) or by all threads, potentially concurrently, in which
case the user is responsible for providing a thread safe callback function.
This feature is currently only available in C++, not Python.

7.4 A real-world RDataFrame application

As a case study, we would like to discuss a real-world RDataFrame C++ ap-
plication developed by ROOT users from the ATLAS collaboration. Refer

7.4. A real-world RDataFrame application 91

Figure 7.6: A representation of the computation graph of an RDataFrame C++
application that performs ntuple to ntuple processing of simulated data. For
each of sixty different systematics, the input ntuple is skimmed and several
columns containing quantities relevant for further processing and dependent
on systematics are added. Sixty new output ROOT files are produced within
the same event loop.

to figure 7.6 for the application’s computation graph and a brief explanation
of its purpose. It is worth highlighting a few striking features of the applica-
tion’s code-base: first of all, thanks to the declarative programming model, the
program’s main function is a simple sequence of Filter and Define calls, fol-
lowed by a call to schedule a write-out of the processed ntuple (RDataFrame’s
Snapshot method); the definition of the analysis workflow is clearly separated
from the definition of the smaller helper functions. Given a little familiar-
ity with RDataFrame’s API, the workflow is grasped quickly, with no need to
dive into finer details if not required: such details are encapsulated in sev-
eral small, pure helper functions. Of course good software design practice is
to always make applications as readable and modular as possible; however,
RDataFrame’s programming model makes it natural and encourages users to
write code with such qualities.

Finally, it is worth noting that event selection, calculation of new quan-
tities and writing of the sixty output ROOT datasets all happen within a
single parallelized event loop, an achievement that would have required signif-

7.5. Scaling and performance benchmarks 92

icant effort and attention to low-level details with ROOT interfaces preceding
RDataFrame.

7.5 Scaling and performance benchmarks

Figure 7.7: Scaling of a Monte Carlo QCD Low-PT event generation and
analysis on the fly for an ad-hoc implementation using a patched ROOT 5 and
POSIX threads (labeled “original” in the plot) and an RDataFrame rewrite of
that same application (yielding identical results). No disk reads or writes are
performed by either application. KNL architecture, 64 physical cores.

In order to measure the scaling of a realistic RDataFrame application, we
took a pre-existing parallel code that generates low-pt QCD events, processes
them and plots some quantities of interest as ROOT histograms. This ap-
plication has been developed for research purposes by an expert ROOT user,
who based it on a fork of ROOT version 5 patched to allow multi-thread data
analysis. Data is produced and analyses on the fly: absence of direct disk
I/O makes it possible to scale to a large number of cores without being lim-
ited by the hardware’s reading speed. We compare the original code with an
RDataFrame-based rewriting which produces identical results and reuses most
of the numerical computation logic. As figure 7.7 shows, RDataFrame intro-
duces a small overhead with respect to the original ad-hoc code, which made
direct use of lower-level ROOT interfaces. On the other hand, RDataFrame
scales to a larger amount of cores thanks to task-based parallelism and less
lock contention during the event loop.

In order to assess RDataFrame’s I/O performance, the measurements of
(Blomer, 2018) were repeated with the latest release of ROOT; the results
are displayed in figure 7.8. No significant changes with respect to the original

7.6. Exporting HEP data to the Python data science ecosystem
with RDataFrame 93

Figure 7.8: Read speed (events/s) on an LHCb OpenData dataset for
three different reading APIs available in ROOT: TTree+SetBranchAddress,
TTreeReader, RDataFrame (with and without implicit multi-threading en-
abled). The benchmark was run on a machine with four physical cores, 3.6
GHz each, and an off-the-shelf SSD. TTreeReader adds a non-negligible over-
head on top of direct TTree usage, whose origin is understood. This overhead
will be reduced in future ROOT releases. RDataFrame employs TTreeReader

internally, inheriting the overhead as a consequence.

measurements of (Blomer, 2018) were detected: RDataFrame is the fastest
interface ROOT offers to analyse ROOT data if one takes into account the
simplicity of expressing parallelism, although single-thread execution suffers
from an important overhead with respect to direct usage of TTree. The cause
of such overhead has been identified and mitigations will be introduced in
future releases.

7.6 Exporting HEP data to the Python data science
ecosystem with RDataFrame

ROOT provides efficient C++ implementations of machine learning algorithms
that are typically employed in High Energy Physics (e.g., Boosted Decision
Trees) as well as facilities for fast inference with standard deep learning models.
However, ROOT cannot (nor tries to) compete with the rich and ever-evolving
landscape of machine learning tools and algorithms that the Python data sci-
ence ecosystem provides. When it comes to training models with the latest
variation of stochastic gradient descent, or applying recently published learn-
ing algorithms to HEP data, ROOT’s goal is to seamlessly bridge the HEP
ecosystem (namely, the ROOT data format) and the Python data science

7.6. Exporting HEP data to the Python data science ecosystem
with RDataFrame 94

Figure 7.9: An example usage of the AsNumpy method, commented line by
line.

ecosystem.
Numpy arrays are de-facto the “lingua franca” of data analysis and process-

ing tools in Python; therefore, an efficient export mechanism from the ROOT
data format to Numpy arrays is a highly desirable feature. Indeed, until re-
cent years ROOT lacked such an export mechanism and multiple third-party
libraries have been developed in order to fill this gap.

Thanks to RDataFrame, however, ROOT now provides a high-level, declar-
ative interface that not only allows fast multi-thread reading of ROOT data,
but, notably, can also apply complex event selection rules and can evaluate
new derived quantities on the fly while reading larger-than-memory data from
disk or from remote storage over the network. RDataFrame is therefore the
ideal tool to apply a pre-selection step and a pre-processing step that trans-
forms a dataset such that it is made digestible by external machine learning
libraries. Fig. 7.9 shows how the AsNumpy method can be used for this pur-
pose. Data is processed as it is read and large datasets can be reduced to a
form that fits in memory while they are being exported to Numpy arrays. As
usual, transparent multi-thread task parallelism guarantees that this poten-
tially time-consuming pre-processing step is executed quickly.

Chapter 8

Summary

The intractability of exact maximum likelihood inference in probabilistic gen-
erative models has spurred the development of a large number of approximate
inference techniques. In particular, the variational Expectation-Maximization
framework offers a generic, mathematically grounded procedure to derive ef-
ficient, scalable training algorithms, but the performance of such algorithms
strongly depends on the choice of variational distributions.

Although evolutionary algorithms (EAs) have been applied in conjunction
with the Expectation-Maximization algorithm before (see e.g. Pernkopf and
Bouchaffra, 2005, in which EAs are used to search the space of model hy-
perparameters), we here, for the first time, link EAs and optimization of the
variational lower bound much more intimately: genetic operators are employed
to optimize the variational parameters themselves, not to select the model’s
architecture or other hyperparameters. Indeed, one of our most notable contri-
butions consists of the first working application of EA-based variational infer-
ence to approximate maximum-likelihood training of probabilistic generative
models, opening the door to a large variety of applications and possible future
improvements. In Ch. 4, we provided numerical experiments that demonstrate
applicability of the approach to discrete-latent generative models, scalability
to large latent spaces, and a promising application to denoising.

In Ch. 5, we investigated whether this novel training algorithm can suc-
cessfully be applied to the training of Variational Autoencoders (VAEs) with
binary latent variables. Thanks to the direct optimization of the VAE encod-
ing model, estimation of gradients of the variational lower bound with respect
to the encoder parameters is side-stepped completely, making it possible to
train discrete-latent VAEs without exceptionally common approximations such
as sampling approximations of the gradients and factored Gaussian approxi-
mations of the model posteriors. Such approximations can introduce learning
biases (see e.g. the discussion by Vértes and Sahani, 2018; ?), so the investiga-
tion of alternative training methods could help shed light on the consequences
of specific approximation choices that are de-facto standard in the training of

95

96

Variational Autoencoders. Not only we show that EA-based optimization of
the encoder can be married with gradient-based optimization of the model pa-
rameters in a simple way, but we also prove that discrete-latent VAEs trained
this way can produce state-of-the-art results in one of the most frequently used
denoising benchmarks (the “house” image) in the “zero-shot” setting. Even
though we show that our approach scales up to O(1000), we acknowledge
that the current computational requirements of this non-amortized training
algorithm represent its main limitation.

As discussed in Ch. 6, a notable output of this thesis (as well as an impor-
tant tool for its realization) is a production-grade open source software library
that makes our novel training algorithm as well as all the models discussed
readily available to researchers that are interested in applying our techniques
or would like to reproduce our findings. That same software library is also ca-
pable of performing “black-box” variational inference of arbitrary generative
models with discrete latent variables: only the definition of the model’s log-
joint probability is required in order to start training. Furthermore, as part of
my residency at CERN I designed and developed a high-level, declarative data
analysis interface that CERN scientists can use to export high-energy physics
datasets to the Python data science ecosystem.

Finally, in Ch. 7 we presented a modern, declarative, parallel framework
for data analysis and manipulation. RDataFrame is officially part of ROOT as
of version 6.14, offers a C++ interface as well as Python bindings and it has
already been employed successfully in real-world HEP analyses. RDataFrame’s
task-based parallelism scales successfully to many-core architectures.

In summary, the following may be considered the main contributions of this
thesis:

• the very first investigation of the viability and scalability of the novel
Evolutionary Expectation Maximization algorithm (published as Guiraud
et al., 2018, which I presented at the GECCO 2018 conference); further
work on more complex sparse coding models is currently under review
as Drefs et al. (2020)

• the implementation, validation and performance optimization of Trun-
cated Variational Autoencoders, a novel training algorithm for Varia-
tional Autoencoders with discrete latents, including state-of-the-art re-
sults for the “house” denoising benchmark in the “zero-shot” setting
(under review as Guiraud et al., 2020, at the time of writing)

• the development of a full-blown, ready-to-use software library for black-
box variational inference which mixes Truncated Variational Expectation
Maximization and automatic differentiation for the training of arbitrary
discrete-latent generative models

8.1. Outlook 97

• the development of a modern, high-level data analysis tool for High
Energy Physics (HEP) datasets with C++ and Python interfaces, which
provides transparent multi-threading parallelism and a simple way to
export HEP data to the Python data science ecosystem (published as
Piparo et al., 2019, which I presented at the CHEP 2018 conference);
this work was immediately useful as the foundation for R&D such as by
Avati et al. (2019)

The introductions of Chs. 4, 5, 6 and 7 highlight my personal contributions as
well as collaborations with or contributions of other researchers in full detail.

8.1 Outlook

The work presented here can be extended in several different directions. The
development of evolutionary algorithms and genetic operators specialized for
the specific optimization problems arising in the training of generative mod-
els have great potential for future improvements of accuracy and scalability
of learning. In particular, operators that reflect hierarchical relationships be-
tween latent variables might prove beneficial for the application of truncated
approximations to models with structured latent spaces. Another natural
research direction is the one that tackles the interesting mathematical prob-
lem of generalizing truncated posteriors to continuous latent spaces: this is
a non-trivial extension, as a naive replacement of sums with integrals does
not automatically result in continuous analogous of the compact free energy
formulation Eq. 3.5 and the pair-wise criterion Eq. 3.7 that is at the core of
Truncated Variational Expectation Maximization.

For what concerns the application to more complex, deeper generative
models, a possible way to relax the algorithm’s computational requirements is
to optionally introduce amortization or another form of variational parameter
sharing. Such an extension would pave the way towards experimentation with
larger DNNs, less elementary decoders and, in general, more complex archi-
tectures that have been shown to improve inference on complex data such as
images (e.g. Gulrajani et al., 2016; Sadeghi et al., 2019).

There are also several important upgrades planned for the TVEM software
framework, geared towards consolidation of the existing features as well as
increased ease of use. Currently, the framework supports multi-node CPU
computation via MPI or single-node GPU computation: adding support for
transparent computation on multi-GPU setups is a natural extension. We plan
to add more probabilistic generative models as well as TVEM optimization
schemes. In order to facilitate adoption and integration of new models, it is
desirable to develop a thin logical layer on top of current TVEM black box
inference capabilities that would be able to parse the mathematical expression
that represents a probabilistic generative model definition and automatically

8.1. Outlook 98

generate the corresponding Python code necessary to train such a model. Such
a feature, together with the automatic computing target inference described in
Sec. 6.5, would simplify usage of the TVEM framework dramatically, lowering
the entry barrier and increasing adoption of the software and therefore the
TVEM optimization methods.

Finally, future work on RDataFrame will revolve around offering more
“pythonic” Python bindings and low-level performance optimization, espe-
cially aimed at reducing single-thread overhead with respect to direct data
access. R&D on distributed execution of RDataFrame-based analyses is also
being carried on and its first published application was Avati et al. (2019).

Appendix A

M-step equations

Here we report the M-step equations for the models introduced in Sec. 2.1.

A.1 Noisy-OR

The M-step equations for Noisy-OR are obtained by taking derivatives of the
free energy Eq. 2.4 after plugging in the model Eq. 2.2, equating them to zero
and solving the resulting set of equations. We report the results here for
completeness:

πnew
h =

1

N

∑
n

〈sh〉qnΦ (A.1)

W new
dh = 1 +

∑
n(y

(n)
d − 1) 〈Ddh(~s)〉qnΦ∑
n 〈Cdh(~s)〉qnΦ

(A.2)

where

Ddh(~s) :=
W̃dh(~s)sh

Nd(~s)(1−Nd(~s))

Cdh(~s) := W̃dh(~s)Ddh(~s)

W̃dh(~s) :=
∏
h′ 6=h

(1−Wdh′sh′)

(A.3)

The update equations for the weights Wdh do not have a closed form solu-
tion. We instead employ a fixed-point equation whose fixed point is the exact
solution of the maximization step. We exploit the fact that, in practice, one
single evaluation of A.3 is enough to (noisily, not optimally) move towards
convergence to iteratively improve on the parameters Wdh.

99

A.2. Binary Sparse Coding 100

A.2 Binary Sparse Coding

Similarly to what was described in the case of the Noisy-OR model, taking
derivatives of the BSC free energy w.r.t. the model parameters π, σ and W
leads to the M-step equations for BSC (see e.g. Henniges et al., 2010):

πnew =
1

NH

∑
n

∑
h

〈sh〉qnΦ (A.4)

σnew =

√
1

ND

∑
n

〈|| ~y n −W~s ||2〉qnΦ (A.5)

W new =

(∑
n

~y n 〈~s〉TqnΦ

)(∑
n

〈
~s~sT

〉
qnΦ

)−1

(A.6)

Appendix B

Log-pseudo-joints

As described in Sec. 3.3.3, it is often convenient to express expectations over
posteriors, as well as other quantities of interest, in terms of the “log-pseudo-
joints”: this quantity is equal to the model’s log-joint distributions with terms
that do not depend on latent variables elided. Assuming Noisy-OR and Bi-
nary Sparse Coding are defined as in Sec. 2.1, we report below the explicit
expressions of their log-pseudo-joints.

B.1 Noisy-OR

log pΘ(~y,~s) = ˜log pΘ(~y,~s) +

H∑
h=1

log(1− πh) (B.1)

˜log pΘ(~y,~s) =
∑
d

(yd log (Nd(~s)) + (1− yd) log (1−Nd(~s))) +
H∑
h=1

sh log

(
πh

1− πh

)
(B.2)

Nd(~s) = 1−
H∏
h=1

(1−Wdhsh) (B.3)

with the special exception of ~s = ~0 for which

˜log pΘ(~s = ~0, ~y) =

{
0 if ~y = ~0

− inf otherwise
(B.4)

For practical computations, we set ˜log pΘ to an arbitrarily low value rather
than the floating point infinite representation.

101

B.2. Binary Sparse Coding 102

B.2 Binary Sparse Coding

log pΘ(~y,~s) = ˜log pΘ(~y,~s) +H log(1− π)− D

2
log(2πσ2) (B.5)

˜log pΘ(~y,~s) = log

(
π

1− π

) H∑
h=1

sh −
1

2σ2
(~y −W~s) T(~y −W~s) (B.6)

Appendix C

Sparsity-driven mutation
operator

When performing sparsity-driven bitflips, we assign each bit of a particular
individual ~s a probability to be flipped that depends on its current state: bits
that are “off” are flipped with probability p0, the others with probability p1.
We denote pbf the average probability of flipping any bit in ~s. Our goal is then
to set p0 and p1 to values such that the mutation operator tends to produce
offspring with sparsity ξ =

∑
h sh compatible to the one learned by the model,

ξ∗ = H〈πh〉.
To this end, we impose the constraint that p1 = αp0 for some constant α

and that the average number of “on” bits after mutation be set to s̃. This
yields the following expressions for p0 and p1:

p0 =
Hpbf

H + (α− 1)|~s |
, α =

(H − |~s |) · (Hpbf − s̃+ |~s |)
(s̃− |~s |+Hpbf)|~s |

(C.1)

Random uniform bitflips correspond to the case p0 = p1 = pbf . For our
numerical experiments we chose s̃ based on the sparsity learned by the model:
we set s̃ =

∑
h πh for Noisy-OR and s̃ = Hπ for BSC. The overall probability

of a bitflip was set to pbf = 1
H as to perform one bitflip per variational state

on average.

103

104

Appendix D

Truncated Variational
Autoencoders with Poisson
noise

Truncated Variational Autoencoders as discussed in Ch. 5 leave a high degree
of flexibility in terms of the choice of data noise model. Although for the
purposes of the experiments in the main text we employed a Gaussian noise
model, if the application called for it we could instead, for instance, define
TVAEs with Poisson noise as follows:

p(~s) =
∏
h

πshh (1− πh)(1−sh) (D.1)

p(~y | ~s) =
∏
d

e−λd(~s)λd(~s)
yd

yd!
(D.2)

where ~λ(~s), the mean of the Poisson distribution, is the output of a deep neural
network.

The training algorithm of Alg. 3 does not require any modification. In this
scenario, the objective of gradient-based optimization of the decoding model
takes the following form:

E =
1

N

∑
n

∑
d

〈−ynd log λd(~s) + λd(~s)〉qnΦ(~s) (D.3)

This is similar to a cross-entropy loss but an extra regularization term
is present, namely 1

N

∑
n,d 〈λd(~s)〉qnΦ(~s), that comes from the Poisson’s distri-

bution normalization factor e−λd(~s). The common cross-entropy loss used in
deep learning ignores the regularization factor because it assumes the nor-
malization

∑
d λd = 1. If we introduce a normalization of the neural net-

work output,
∑

d λd = A and, correspondingly, we were to assume data was

105

106

contrast-normalized, then the neural network’s loss function would indeed take
the form of a cross-entropy weighted by the truncated variational distributions
qnΦ.

Appendix E

Truncated Variational
Autoencoders with Bernoulli
noise

As an empirical verification that our training scheme is easily adapted to noise
models other than Gaussian, we trained a TVAE model with Bernoulli noise
on dynamically binarized MNIST (see e.g. Rolfe, 2016; Sadeghi et al., 2019).
For each image in a batch, we sampled binary pixel values from Bernoulli
distributions with parameters equal to the original pixel values. The 60000
original images in the training set were used for training, while the test set,
as usual, consists of another 10000 images. The exact generative model is:

pΘ(~s) = Bern(~s;~π) =
∏
h

πshh (1− πh)(1−sh)

pΘ(~y n |~s) = Bern (~y n; ~µΘ(~s))

(E.1)

where ~µΘ is a neural network with the same architecture as in Fig. 5.3 except
that the output non-linearity is a sigmoid function to guarantee an output
between zero and one.

Although we have not performed extensive benchmarking or hyperparame-
ter search on this dataset, Bernoulli TVAE trained with the settings of Tab. E.1
yields a best ELBO value of -99.63 nats on the test set after 500 epochs of
training and running the evolutionary search for variational parameters on
the test set until ELBO converged sufficiently. This result is in line with what
e.g. Maddison et al. (2016) reports (for a statically binarized version of this
data) for simpler model architectures, although the ELBO value is lower than
the best reported in that work. It is to be noted however that this value is
a strict lower bound of the true log-likelihood, not a sampling approximation
like what it is typically reported.

We also trained on the standard static binarization of the MNIST dataset
of Salakhutdinov and Murray (2008) like it is done e.g. in Maddison et al.

107

108

(2016). Fig. E.1 shows example datapoints as well as samples from the trained
Bernoulli-noise TVAE.

These results are to be considered preliminary and are not indicative of
the best possible TVAE performance on this task.

Table E.1: Hyperparameters for training Bernoulli TVAE on dynamically bi-
narized MNIST.

Neural network units
Input 200
Middle 200
Output 784

Learning Rate Schedule
Min l.r. 0.0001
Max l.r. 0.001
Batch size 128

EEM parameters
Parents 8
Children 7
Generations 2
Size of Φ(n) 200

109

Figure E.1: Top: example datapoints. Middle: Bernoulli means for 20
random latent states. Bottom: 20 generated samples corresponding to the
Bernoulli means reported above.

110

Appendix F

Performance profiling of
Truncated Variational
Autoencoders Denoising
Application

Figure F.1: Flamegraph of the denoising experiment with TVAE described in
Sec. 5.4.5.

Figure F.1 reports a “Flamegraph” visualization for the denoising exper-
iments with the TVAE model described in Sec. 5.4.5. A flamegraph shows
call stacks on the y axis (e.g., em step calls train epoch which calls update
and update param batch, etc.) and the length of each block on the x axis is
proportional to the time the program spent in that function.

For this model and application, it can be observed that around 30% of the
runtime is spent in the update method, which implements the E-step (it up-
dates the variational parameters Φn and around 60% is spent in update param batch,
which is responsible for the M-step. Both of these methods actually end up
spending most of their time in the forward and backward methods, which
respectively implement a neural network forward pass and backpropagation
pass. This is the best case scenario, as it appears that logic specific to our

111

112

EEM algorithm is not a performance bottleneck except for the extra log joint

calls that it naturally involves.

Bibliography

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale
machine learning. In 12th USENIX symposium on operating systems design
and implementation (OSDI 16), pages 265–283, 2016.

M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing
Overcomplete Dictionaries for Sparse Representation. Signal Processing,
IEEE Transactions on, 54(11):4311–22, 2006.

K. Ahmadi and E. Salari. Single-image super resolution using evolutionary
sparse coding technique. IET Image Processing, 11(1):13–21, 2016.

J. Albrecht, A. A. Alves, G. Amadio, G. Andronico, N. Anh-Ky, L. Aphe-
cetche, J. Apostolakis, M. Asai, L. Atzori, M. Babik, et al. A Roadmap for
HEP Software and Computing R&D for the 2020s. Computing and software
for big science, 3(1):7, 2019.

A. Alexandrescu. Modern C++ design: generic programming and design pat-
terns applied. Addison-Wesley, 2001.

G. Amadio, J. Blomer, P. Canal, G. Ganis, E. Guiraud, P. M. Vila, L. Mon-
eta, D. Piparo, E. Tejedor, and X. V. Pla. Novel functional and distributed
approaches to data analysis available in ROOT. Journal of Physics: Con-
ference Series, 1085(4):042008, 2018.

G. Amadio, P. Canal, E. Guiraud, and D. Piparo. Writing ROOT Data in
Parallel with TBufferMerger. In EPJ Web of Conferences, volume 214, page
05037. EDP Sciences, 2019.

J. An and S. Cho. Variational autoencoder based anomaly detection using
reconstruction probability. Special Lecture on IE, 2(1), 2015.

G. Apollinari, I. Béjar Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, and
L. Tavian. High-Luminosity Large Hadron Collider (HL-LHC): Technical
Design Report V. 0.1. CERN Yellow Reports: Monographs. CERN, Geneva,
2017.

113

114

V. Avati, M. Blaszkiewicz, E. Bocchi, L. Canali, D. Castro, J. Cervantes,
L. Grzanka, E. Guiraud, J. Kaspar, P. Kothuri, et al. Declarative Big
Data Analysis for High-Energy Physics: TOTEM Use Case. In European
Conference on Parallel Processing, pages 241–255. Springer, 2019.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith.
Cython: The best of both worlds. Computing in Science & Engineering, 13
(2):31–39, 2011.

A. J. Bell and T. J. Sejnowski. The “independent components” of natural
scenes are edge filters. Vision Research, 37(23):3327–38, 1997.

Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation, 2013.

E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Kar-
aletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman. Pyro: Deep
universal probabilistic programming. The Journal of Machine Learning Re-
search, 20(1):973–978, 2019.

J. Blomer. A quantitative review of data formats for hep analyses. Journal of
Physics: Conference Series, 1085(3):032020, 2018.

M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. Journal of computer and system sciences, 7(4):448–461, 1973.

J. Bornschein, M. Henniges, and J. Lücke. Are v1 simple cells optimized for
visual occlusions? a comparative study. PLoS Comput Biol, 9(6):e1003062,
2013.

S. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio.
Generating sentences from a continuous space. In Proceedings of the Twen-
tieth Conference on Computational Natural Language Learning (CoNLL).,
2016.

R. Brun and F. Rademakers. ROOT - An Object Oriented Data Analysis
Framework. In Proceedings AIHENP ’96 Workshop. Nuclear Instruments
and Methods in Physics, 1997.

Q. D. Buchlak, N. Esmaili, J.-C. Leveque, F. Farrokhi, C. Bennett, M. Pic-
cardi, and R. K. Sethi. Machine learning applications to clinical decision
support in neurosurgery: an artificial intelligence augmented systematic re-
view. Neurosurgical review, pages 1–19, 2019.

D. L. Buckeridge, H. Burkom, M. Campbell, W. R. Hogan, A. W. Moore, et al.
Algorithms for rapid outbreak detection: a research synthesis. Journal of
biomedical informatics, 38(2):99–113, 2005.

115

M. Buhl, A. Warzybok, M. R. Schädler, O. Majdani, and B. Kollmeier. Com-
mon audiological functional parameters (cafpas) for single patient cases:
deriving statistical models from an expert-labelled data set. International
Journal of Audiology, pages 1–14, 2020.

Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoen-
coders. arXiv preprint arXiv:1509.00519, 2015.

H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can plain
neural networks compete with bm3d? In 2012 IEEE conference on computer
vision and pattern recognition, pages 2392–2399. IEEE, 2012.

S. Chaudhury and H. Roy. Can fully convolutional networks perform well
for general image restoration problems? In International Conference on
Machine Vision Applications, pages 254–257, 2017.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

N. Coudray, P. S. Ocampo, T. Sakellaropoulos, N. Narula, M. Snuderl,
D. Fenyö, A. L. Moreira, N. Razavian, and A. Tsirigos. Classification and
mutation prediction from non–small cell lung cancer histopathology images
using deep learning. Nature medicine, 24(10):1559–1567, 2018.

C. Cremer, X. Li, and D. Duvenaud. Inference suboptimality in variational au-
toencoders. In International Conference on Machine Learning, pages 1078–
1086, 2018.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm (with discussion). Journal of the
Royal Statistical Society B, 39:1–38, 1977.

W. U. Dharmaji. xAOD-DataSource: An implementation of ROOT’s RData-
Source interface for reading xAOD files through RDataFrame interface.,
July 2018.

C. Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

W. Dong, P. Wang, W. Yin, G. Shi, F. Wu, and X. Lu. Denoising Prior Driven
Deep Neural Network for Image Restoration. TPAMI, 2019.

J. Drefs, E. Guiraud, and J. Lücke. Evolutionary variational optimization of
generative models. Under review, 2020.

116

G. Eulisse, P. Konopka, M. Krzewicki, M. Richter, D. Rohr, and S. Wenzel.
Evolution of the ALICE Software Framework for Run 3. EPJ Web Conf.,
214:05010, 2019. doi: 10.1051/epjconf/201921405010.

G. Exarchakis and J. Lücke. Discrete Sparse Coding. Neural Computation,
29:2979–3013, 2017.

D. Faggella. Machine learning in finance – present and future applica-
tions. Mode of access: https://www.techemergence.com/machine-learning-
in-finance, last visited 30-08-2020.

J. A. Fernandez, C. Adolphsen, A. Akay, H. Aksakal, J. Albacete, S. Alekhin,
P. Allport, V. Andreev, R. Appleby, E. Arikan, et al. A large hadron electron
collider at cernreport on the physics and design concepts for machine and
detector. Journal of Physics G: Nuclear and Particle Physics, 39(7):075001,
2012.

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial intelligence through
simulated evolution. 1966.

P. Földiák. Forming sparse representations by local anti-Hebbian learning.
Biological Cybernetics, 64:165–170, 1990.

D. Forster and J. Lücke. Can clustering scale sublinearly with its clusters?
A variational EM acceleration of GMMs and k-means. In AISTATS, pages
124–132, 2018.

D. Forster, A.-S. Sheikh, and J. Lücke. Neural Simpletrons: Learning in the
Limit of Few Labels with Directed Generative Networks. Neural Computa-
tion, 30(8):2113–2174, 2018.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. In European conference on compu-
tational learning theory, pages 23–37, 1995.

J. Generowicz, W. T. Lavrijsen, M. Marino, and P. Mato. Reflection-based
python-c++ bindings. 2004.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 249–256, 2010.

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on artificial intel-
ligence and statistics, pages 315–323, 2011.

I. Goodfellow, A. C. Courville, and Y. Bengio. Large-Scale Feature Learning
With Spike-and-Slab Sparse Coding. In ICML, 2012.

117

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative Adversarial Nets. In NIPS. 2014.

I. J. Goodfellow, A. Courville, and Y. Bengio. Scaling up spike-and-slab models
for unsupervised feature learning. TPAMI, 35(8):1902–1914, 2013.

S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted Nuclear Norm Minimization
with Application to Image Denoising. In CVPR, pages 2862–2869. IEEE,
2014.

E. Guiraud, J. Bornschein, and J. Lücke. Large-Scale Noisy-OR Networks
as Models for Inference and Learning in Neurosensory Systems. In NIPS-
Workshop, Brains and Bits, 2016.

E. Guiraud, J. Drefs, and J. Lücke. Evolutionary Expectation Maximization.
In GECCO, 2018.

E. Guiraud, J. Drefs, and J. Lücke. Direct discrete optimization of variational
autoencoders with binary latents. Under review, 2020.

I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and
A. Courville. Pixelvae: A latent variable model for natural images. arXiv
preprint arXiv:1611.05013, 2016.

M. Haft, R. Hofman, and V. Tresp. Generative binary codes. Formal Pattern
Analysis & Applications, 6:269–84, 2004.

Y. Halpern and D. Sontag. Unsupervised learning of noisy-or bayesian net-
works. arXiv preprint arXiv:1309.6834, 2013.

D. Heckerman. A tractable inference algorithm for diagnosing multiple dis-
eases. In Machine Intelligence and Pattern Recognition, volume 10, pages
163–171. Elsevier, 1990.

M. Henniges, G. Puertas, J. Bornschein, J. Eggert, and J. Lücke. Binary
Sparse Coding. In LVA/ICA, pages 450–57. Springer, 2010.

G. E. Hinton, T. J. Sejnowski, T. A. Poggio, et al. Unsupervised learning:
foundations of neural computation. MIT press, 1999.

P. O. Hoyer. Modeling receptive fields with non-negative sparse coding. Neu-
rocomputing, 52-54:547–52, 2003.

P. O. Hoyer. Non-negative matrix factorization with sparseness constraints.
Journal of Machine Learning Research, 5:1457–69, 2004.

E. R. Hruschka, R. J. Campello, A. A. Freitas, et al. A survey of evolution-
ary algorithms for clustering. IEEE Transactions on Systems, Man, and
Cybernetics, 39(2):133–155, 2009.

118

M. C. Hughes and E. B. Sudderth. Fast Learning of Clusters and Topics via
Sparse Posteriors. arXiv preprint arXiv:1609.07521, 2016.

R. Imamura, T. Itasaka, and M. Okuda. Zero-Shot Hyperspectral Image De-
noising With Separable Image Prior. In IEEE International Conference on
Computer Vision Workshop, 2019.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-
softmax, 2016.

N. Jojic and B. Frey. Learning flexible sprites in video layers. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 2001.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to
variational methods for graphical models. Machine Learning, 37:183–233,
1999.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei. Large-scale video classification with convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2014.

A. H. Khoshaman and M. Amin. Gumbolt: extending gumbel trick to boltz-
mann priors. In Advances in Neural Information Processing Systems, pages
4061–4070, 2018.

Y. Kim, S. Wiseman, A. Miller, D. Sontag, and A. Rush. Semi-amortized
variational autoencoders. In International Conference on Machine Learning,
pages 2678–2687, 2018.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In ICLR,
2014.

D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling. Semi-
supervised learning with deep generative models. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 3581–3589.
Curran Associates, Inc., 2014.

B. Kiran, D. Thomas, and R. Parakkal. An overview of deep learning based
methods for unsupervised and semi-supervised anomaly detection in videos.
Journal of Imaging, 4(2):36, 2018.

M. A. Kramer. Nonlinear principal component analysis using autoassociative
neural networks. AIChE journal, 37(2):233–243, 1991.

119

A. Krull, T.-O. Buchholz, and F. Jug. Noise2void-learning denoising from
single noisy images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2129–2137, 2019.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and
T. Aila. Noise2Noise: Learning image restoration without clean data. In
ICML, volume 80, pages 2965–2974, 2018.

I. Loshchilov and F. Hutter. CMA-ES for Hyperparameter Optimization of
Deep Neural Networks. In ICLR Workshop, pages 513–520, 2016.

J. Lücke. Truncated Variational Expectation Maximization. arXiv preprint,
arXiv:1610.03113, 2019.

J. Lücke and J. Eggert. Expectation Truncation And the Benefits of Preselec-
tion in Training Generative Models. Journal of Machine Learning Research,
11:2855–900, 2010.

J. Lücke and M. Sahani. Maximal causes for non-linear component extraction.
Journal of Machine Learning Research, 9:1227–67, 2008.

J. Lücke and A.-S. Sheikh. Closed-Form EM for Sparse Coding and Its Ap-
plication to Source Separation. In LVA/ICA, pages 213–221, 2012.

J. Lücke, R. Turner, M. Sahani, and M. Henniges. Occlusive Components
Analysis. NIPS, 22:1069–77, 2009.

J. Lücke, Z. Dai, and G. Exarchakis. Truncated Variational Sampling for
“Black Box” Optimization of Generative Models. In LVA/ICA, pages 467–
478, 2018.

L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep
generative models. In 33rd International Conference on Machine Learning
(ICML 2016), 2016.

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A
continuous relaxation of discrete random variables, 2016.

X. Mao, C. Shen, and Y.-B. Yang. Image Restoration Using Very Deep Convo-
lutional Encoder-Decoder Networks with Symmetric Skip Connections. In
NIPS, pages 2802–2810, 2016.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms
and measuring ecological statistics. In Proc. 8th Int’l Conf. Computer Vi-
sion, volume 2, pages 416–423, July 2001.

120

W. McKinney et al. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, volume 445, pages
51–56. Austin, TX, 2010.

M. F. M. Mohsin, A. R. Hamdan, and A. A. Bakar. Review on anomaly de-
tection for outbreak detection. In International Conference on Information
Science and Managemen (ICoCSIM), volume 1, pages 22–28, 2012.

S. H. Mousavi, M. Buhl, E. Guiraud, J. Drefs, and J. Lücke. Learning the
maximal causes for beta distributed interval data. In preparation, 2020.

J. W. Myers, K. B. Laskey, and K. A. DeJong. Learning bayesian networks
from incomplete data using evolutionary algorithms. In GECCO, 1999.

R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. In M. I. Jordan, editor, Learning in Graphical
Models. Kluwer, 1998.

G. Nguyen, S. Dlugolinsky, M. Bobák, V. Tran, Á. L. Garćıa, I. Heredia,
P. Maĺık, and L. Hluchỳ. Machine learning and deep learning frameworks
and libraries for large-scale data mining: a survey. Artificial Intelligence
Review, 52(1):77–124, 2019.

F. M. F. Nogueira. Bayesian optimization package. github.com/fmfn/

BayesianOptimization, 2019.

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis
set: A strategy employed by V1? Vision Research, 37(23):3311–3325, 1997.

M. Opper and C. Archambeau. The variational Gaussian approximation re-
visited. Neural computation, 21(3):786–792, 2009.

M. Opper and O. Winther. Expectation consistent approximate inference.
Journal of Machine Learning Research, 6(Dec):2177–2204, 2005.

J. Paisley, D. Blei, and M. Jordan. Variational bayesian inference with stochas-
tic search. arXiv preprint arXiv:1206.6430, 2012.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in py-
torch. 2017.

F. Pernkopf and D. Bouchaffra. Genetic-based EM algorithm for learning
Gaussian mixture models. TPAMI, 27(8):1344–1348, 2005.

D. Piparo, E. Tejedor, E. Guiraud, G. Ganis, P. Mato, L. Moneta, X. V. Pla,
and P. Canal. Expressing Parallelism with ROOT. Journal of Physics:
Conference Series, 898(7):072022, 2017.

github.com/fmfn/BayesianOptimization
github.com/fmfn/BayesianOptimization

121

D. Piparo, P. Canal, E. Guiraud, X. V. Pla, G. Ganis, G. Amadio, A. Nau-
mann, and E. Tejedor. RDataFrame: Easy Parallel ROOT Analysis at
100 Threads. In EPJ Web of Conferences, volume 214, page 06029. EDP
Sciences, 2019.

L. Rampasek, D. Hidru, P. Smirnov, B. Haibe-Kains, and A. Goldenberg.
Dr.vae: Drug response variational autoencoder, 2017.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le,
and A. Kurakin. Large-scale evolution of image classifiers. In ICML, pages
2902–2911, 2017.

I. Rechenberg. Cybernetic solution path of an experimental problem. 1965.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic Backpropagation
and Approximate Inference in Deep Generative Models. In ICML, 2014.

D. Ribli, A. Horváth, Z. Unger, P. Pollner, and I. Csabai. Detecting and
classifying lesions in mammograms with deep learning. Scientific reports, 8
(1):1–7, 2018.

A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck. A hierarchical
latent vector model for learning long-term structure in music, 2018.

J. T. Rolfe. Discrete variational autoencoders. arXiv eprint 1609.02200, 2016.

M. Rotmensch, Y. Halpern, A. Tlimat, S. Horng, and D. Sontag. Learning
a Health Knowledge Graph from Electronic Medical Records. Scientific
Reports, 7(1):5994, 2017.

A. Roy, A. Vaswani, A. Neelakantan, and N. Parmar. Theory and experiments
on vector quantized autoencoders. arXiv preprint arXiv:1805.11063, 2018.

H. Sadeghi, E. Andriyash, W. Vinci, L. Buffoni, and M. H. Amin. Pixelvae++:
Improved pixelvae with discrete prior. arXiv preprint arXiv:1908.09948,
2019.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief
networks. In ICML, pages 872–879, 2008.

T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution Strate-
gies as a Scalable Alternative to Reinforcement Learning. arXiv preprint
arXiv:1703.03864, 2017.

J. Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

M. Seeger. Bayesian inference and optimal design for the sparse linear model.
Journal of Machine Learning Research, 9:759–813, 2008.

122

A. B. R. Shatte, D. M. Hutchinson, and S. J. Teague. Machine learning in
mental health: a scoping review of methods and applications. Psychological
Medicine, 49(9):1426–1448, 2019. doi: 10.1017/S0033291719000151.

A.-S. Sheikh and J. Lücke. Select-and-Sample for Spike-and-Slab Sparse Cod-
ing. In NIPS, 2016.

A.-S. Sheikh, J. A. Shelton, and J. Lücke. A Truncated EM Approach for
Spike-and-Slab Sparse Coding. Journal of Machine Learning Research, 15:
2653–2687, 2014.

J. A. Shelton, J. Bornschein, A.-S. Sheikh, P. Berkes, and J. Lücke. Select
and Sample – A Model of Efficient Neural Inference and Learning. NIPS,
24:2618–2626, 2011.

J. A. Shelton, J. Gasthaus, Z. Dai, J. Lücke, and A. Gretton. GP-select:
Accelerating EM using adaptive subspace preselection. arXiv:1412.3411,
now published by Neural Computation 29(8): 2177–2202, 2017, 2014.

A. Shocher, N. Cohen, and M. Irani. “Zero-Shot” Super-Resolution using Deep
Internal Learning. In CVPR, pages 3118–3126. IEEE, 2018.

T. Singliar and M. Hauskrecht. Noisy-OR Component Analysis and its Ap-
plication to Link Analysis. Journal of Machine Learning Research, 7:2189–
2213, 2006.

L. N. Smith. Cyclical learning rates for training neural networks. In 2017
IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 464–472. IEEE, 2017.

M. W. Spratling. Pre-synaptic lateral inhibition provides a better architec-
ture for self-organising neural networks. Network: Computation in Neural
Systems, 10:285 – 301, 1999.

M. W. Spratling, K. De Meyer, and R. Kompass. Unsupervised learning of
overlapping image components using divisive input modulation. Computa-
tional Intelligence and Neuroscience, pages 1–19, 2009.

K. O. Stanley and R. Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary Computing, 10(2):99–127, 2002.

S. Subramani, H. Wang, H. Q. Vu, and G. Li. Domestic violence crisis iden-
tification from facebook posts based on deep learning. IEEE Access, 6:
54075–54085, 2018.

M. Suganuma, S. Shirakawa, and T. Nagao. A Genetic Programming Approach
to Designing Convolutional Neural Network Architectures. In GECCO,
2017.

123

R. Sutton. The bitter lesson. Incomplete Ideas (blog), March, 13:12, 2019.

Theano Development Team. Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints, abs/1605.02688, May
2016. URL http://arxiv.org/abs/1605.02688.

M. K. Titsias and M. Lázaro-Gredilla. Spike and Slab Variational Inference
for Multi-Task and Multiple Kernel Learning. In NIPS, 2011.

D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, and D. M. Blei.
Edward: A library for probabilistic modeling, inference, and criticism. arXiv
preprint arXiv:1610.09787, 2016.

A. Vahdat, E. Andriyash, and W. G. Macready. Learning undirected
posteriors by backpropagation through mcmc updates. arXiv preprint
arXiv:1901.03440, 2019.

A. van den Oord, O. Vinyals, et al. Neural discrete representation learning.
In Advances in Neural Information Processing Systems, pages 6306–6315,
2017.

J. H. van Hateren and A. van der Schaaf. Independent component filters of
natural images compared with simple cells in primary visual cortex. Pro-
ceedings of the Royal Society of London. Series B: Biological Sciences, 265:
359–66, 1998.

V. Vasilev, P. Canal, A. Naumann, and P. Russo. Cling – the new interactive
interpreter for ROOT 6. In Journal of Physics: Conference Series, volume
396, page 052071, 2012.

E. Vértes and M. Sahani. Flexible and accurate inference and learning for deep
generative models. In Advances in Neural Information Processing Systems,
pages 4166–4175, 2018.

T. Šingliar and M. Hauskrecht. Noisy-or component analysis and its applica-
tion to link analysis. Journal of Machine Learning Research, 7:2189–2213,
2006.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions
on image processing, 13(4):600–612, 2004.

W.-K. Wong, A. W. Moore, G. F. Cooper, and M. M. Wagner. Bayesian
network anomaly pattern detection for disease outbreaks. In Proceedings of
the 20th International Conference on Machine Learning (ICML-03), pages
808–815, 2003.

http://arxiv.org/abs/1605.02688

124

Y. Xue, R. Zhang, Y. Deng, K. Chen, and T. Jiang. A preliminary examination
of the diagnostic value of deep learning in hip osteoarthritis. PLoS One, 12
(6):e0178992, 2017.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster computing with working sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10,
Berkeley, CA, USA, 2010. USENIX Association.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gaussian
Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE
Transactions on Image Processing, 26(7):3142–3155, 2017.

K. Zhang, W. Zuo, and L. Zhang. FFDNet: Toward a fast and flexible solution
for CNN based image denoising. IEEE Transactions on Image Processing,
2018a.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 586–
595, 2018b.

H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for image restoration
with neural networks. IEEE Transactions on computational imaging, 3(1):
47–57, 2016.

L. Zhu and N. Laptev. Deep and confident prediction for time series at
uber. In 2017 IEEE International Conference on Data Mining Workshops
(ICDMW), pages 103–110, 2017.

S. Zhu, G. Xu, Y. Cheng, X. Han, and Z. Wang. BDGAN: Image Blind
Denoising Using Generative Adversarial Networks. In Chinese Conference
on Pattern Recognition and Computer Vision, pages 241–252, 2019.

D. Zoran and Y. Weiss. From Learning Models of Natural Image Patches to
Whole Image Restoration. In IEEE International Conference on Computer
Vision, pages 479–486, 2011.

	Titelblatt
	Abstract
	Declaration of Authorship
	Acknowledgements
	Contents
	Introduction
	Outline
	Mathematical notation

	Variational Inference with the Expectation-Maximization Algorithm
	Latent variable generative models
	Example: the Noisy-OR model
	Example: Binary Sparse Coding

	Variational Expectation-Maximization
	Full E-steps and full M-steps
	Application to medical data: training a Noisy-OR model on Common Audiological Functional Parameters
	Factored variational distributions
	Gaussian variational distributions

	Truncated Variational Expectation-Maximization
	Truncated Posteriors as Variational Distributions
	Training Generative Models using Truncated Posteriors
	Efficient numerical implementation of TVEM
	Computational complexity and memory requirements
	Data parallelism
	Log-pseudo-joints, a useful numerical optimization
	No fast inference mode: a notable caveat

	Evolutionary Expectation-Maximization
	Related work: Truncated Variational Sampling
	Evolutionary Expectation-Maximization
	Choosing a fitness function
	Choosing the genetic operators

	Experimental validation
	Validation on artificial data
	Scaling to larger datasets: training Noisy-OR on natural image patches
	Scaling to larger datasets: training BSC on natural image patches
	Denoising the ``house'' image

	Truncated Variational Approximation and Variational Autoencoders
	Training standard Variational Autoencoders
	Excursus: maximum likelihood and the autoencoding problem
	Parameter optimization

	Discrete latent Variational Autoencoders
	Training discrete latent Variational Autoencoders with truncated posteriors
	Decoder optimization
	Encoder optimization
	Computational requirements and theoretical scaling

	Numerical experiments
	Bars test
	Correlated bars test
	A note on local optima
	Natural image patches
	Denoising the ``house'' image
	Performance comparison with noise2void

	Computational performance

	A Software Framework for Truncated Variational EM
	Why a new framework?
	Framework components and programming model
	Extensibility via protocol-based interfaces
	Black-box variational inference through automatic differentiation
	Automatic inference of computing targets
	Performance profiling

	Handling Large Datasets: Improving the Machine Learning Pipeline at CERN
	ROOT: a cornerstone of CERN's software ecosystem
	RDataFrame's software design
	Design principles
	Functional parts
	Parallelization scheme

	High-level customization points
	Data sources
	User-defined callbacks

	A real-world RDataFrame application
	Scaling and performance benchmarks
	Exporting HEP data to the Python data science ecosystem with RDataFrame

	Summary
	Outlook

	M-step equations
	Noisy-OR
	Binary Sparse Coding

	Log-pseudo-joints
	Noisy-OR
	Binary Sparse Coding

	Sparsity-driven mutation operator
	Truncated Variational Autoencoders with Poisson noise
	Truncated Variational Autoencoders with Bernoulli noise
	Performance profiling of Truncated Variational Autoencoders Denoising Application
	Bibliography

