
Carl von Ossietzky

Universität Oldenburg

Studiengang Marine Sensorik

MASTERARBEIT

Optimization of image processing operators

for the AI-based discrimination of planktonic morphotypes

vorgelegt von: Claudia Thölen

claudia.thoelen@uni-oldenburg.de

Betreuender Gutachter: Dr. rer. nat. Jan Schulz

Zweiter Gutachter: Prof. Dr. Oliver Zielinski

Wilhelmshaven, 10. September 2020

Acknowledgements

I

I Acknowledgements

First, and most important of all, I would like thank Dr. Jan Schulz for his exceptional support, which

cannot be taken for granted, throughout this thesis and even beyond, during the entire time of

the master program. I admire his devotion towards the LOKI project and appreciate every talk

and email we shared to push this thesis forward. Thank you also very much for providing such a

large pre-classified dataset!

I would like to thank André El-Ama for being extremely motivated, even within his free time,

sharing his enthusiasm for deep learning approaches, and offering a helping hand for frustrating

error messages and new CNN approaches.

I would like to thank Daniela Meier, not only for her super-speed proof reading and great critics,

but also for always supporting me on my road within the working group and being a great mud

shoveling companion.

I would like to thank Jana Schmitz and Lukas Roß, not only for being great listeners and critics at

the general rehearsal for the defense, but also for being my team members and friends

throughout the master program and beyond. I believe we have all learned a fair share from each

other and I would definitely dare to say, that I have personally and professionally improved

because of you.

I would like to thank Dr. Peter Kampmann for taking his time and providing an overview and ideas

within the world of artificial intelligence.

I would like to thank Prof. Dr. Oliver Zielinski for the bright advices and many chances he has

provided me by believing in my competence and for the ongoing support since my bachelor

thesis.

I would like to thank Dr. Thomas Badewien for being a great chief scientist on most of my research

vessel trips so far and for being a very honest adviser and supervisor during the research project.

I would like to thank the entire working group Marine Sensors, for being remarkably helpful and

friendly colleagues throughout my time as a student assistant, during the bachelor thesis and

master program and thesis. I am looking forward to being a member of this amazing team in a

few days.

Finally, I would like to thank Pablo, my friends, and especially my family for their love and support

during the thesis and always.

Table of Contents

II

II Table of Contents

I Acknowledgements .. I

II Table of Contents .. II

III Abstract .. IV

IV Zusammenfassung ... V

V List of Figures .. VI

VI List of Tables ... XI

VII Abbreviations ... XII

1 Introduction ... 1

1.1 Plankton Biology and Sampling .. 1

1.2 Lightframe On-sight Keyspecies Investigation – LOKI .. 3

1.3 Image Processing, Features, and Classification Methods .. 5

1.3.1 Object Detection .. 5

1.3.2 Feature Extraction and Selection ... 6

1.3.3 Image Classification from Standard Multivariate Statistics over Machine Learning

to Convolutional Neural Networks .. 7

1.4 Objectives .. 11

2 Material & Methods .. 12

2.1 Sampling and Data Availability ... 12

2.2 Image Processing ... 14

2.2.1 Documentation of the Original LOKI-Complete-data-primer Script 14

2.2.2 Changes and Improvements for the Script .. 19

2.3 Identification of Discriminating Features - Feature Selection 31

2.4 Classification Approaches with Multivariate Statistics, Machine Learning &

Convolutional Neural Networks ... 33

2.4.1 Multivariate Statistics - Linear Discriminant Analysis & random Forest 35

Table of Contents

III

2.4.2 Support Vector Machines (SVM) ... 36

2.4.3 Convolutional Neural Networks ... 37

3 Results ... 41

3.1 Change A .. 41

3.2 Change B .. 43

3.3 Change C and D ... 47

3.4 Feature Selection ... 48

3.5 Classification using Multivariate Statistics, Support Vector Machines and Convolutional

Neural Networks .. 50

3.5.1 Linear Discriminant Analysis Classification .. 52

3.5.2 Random Forest Classification ... 54

3.5.3 Support Vector Machine Classification .. 55

3.5.4 Convolutional Neural Network Classification... 57

4 Discussion .. 60

4.1 Objective 1: Evaluation of the adapted edge detection operation 60

4.2 Objective 2: Evaluation of the implemented feature selection. 61

4.3 Objective 3: Evaluation of the reduced feature table regarding the discriminability of

labeled morphotype groups, based on numerical parameters using LDA, random Forest and

SVM. ... 63

4.4 Objective 4: Approach of direct image discrimination with convolutional neural

networks. ... 66

5 Conclusion & Recommendations ... 70

References .. i

Appendix .. ix

Eidesstattliche Erklärung .. xv

Abstract

IV

III Abstract

Investigating the abundance, distribution and diversity of plankton organisms holds a key element

in understanding complex, marine food web structures, nutrient cycling, climate change effects

and anthropological influences on the world’s largest habitat. Over the past years, plankton

research has developed from discrete, integrating net samples to fine-scale, in situ, optical

detection of organisms. Camera systems like the Lightframe On-Sight Keyspecies Investigation

(LOKI) system allow a high resolution in capturing organisms below the size of 60 µm, while

connecting the image data with environmental measurements.

In this thesis the processing of LOKI plankton images, recorded 2014 in the Sognefjord, Norway,

is investigated and improved from edge detection over feature selection to the classification of

morphological groups with multivariate and machine learning classifiers. For the classifications, a

subset of calculated image features is determined individually for each method by evaluating a

decreasing number of image feature ranked by their Gini Index significance. Transfer learning is

used to implement a fine-tuned AlexNet convolutional neural network (CNN) as a first approach

towards deep learning classification of LOKI images.

The improvement of the image processing and edge detection was successful, as the

implementation of a Canny edge detection algorithm detects the edges much closer to the

organism. With the selected features the highest classification accuracy of 88.72 % is achieved

with a random Forest classification while the transfer learning CNN results achieve a classification

accuracy of 87.75 %.

This thesis has laid out new approaches for LOKI plankton image classification, which will help to

progress providing a complete processing chain from image capturing towards autonomous

classification and presorting of major morphological groups.

Zusammenfassung

V

IV Zusammenfassung

Die Untersuchung der Abundanz, Verteilung und Diversität von Planktonorganismen ist ein

Schlüsselelement für das Verständnis komplexer, mariner Nahrungsnetzstrukturen,

Nährstoffkreisläufe, Auswirkungen des Klimawandels und anthropologischer Einflüsse auf den

größten Lebensraum der Welt. In den letzten Jahren hat sich die Planktonforschung von der

diskreten, integrierenden Netzprobe bis hin zur feinskaligen, in situ optischen Detektion von

Organismen entwickelt. Kamerasysteme wie das Lightframe On-Sight Keyspecies Investigation

(LOKI)-System ermöglichen die hochauflösende Erfassung von Organismen unterhalb einer Größe

von 60 µm und verbinden die Bilddaten mit gemessenen Umweltparametern.

In dieser Studie wird die Verarbeitung von LOKI-Planktonbildern, die 2014 im Sognefjord,

Norwegen, aufgenommen wurden, untersucht und von der Kantendetektion über die

Merkmalsauswahl bis zur Klassifizierung morphologischer Gruppen mit multivariaten und

maschinell lernenden Klassifikatoren verbessert. Für die Klassifikationen wird eine Untermenge

von berechneten Bildmerkmalen individuell für jede Methode bestimmt, indem eine

abnehmende Anzahl von Bildmerkmalen ausgewertet wird, die nach ihrer Gini-Index-Signifikanz

gereiht werden. Transfer-Lernen wird verwendet, um ein fein abgestimmtes AlexNet (faltendes

neuronales Netz) als ersten Ansatz für eine „Deep-Learning“ Klassifikation von LOKI-Bildern zu

implementieren.

Die Verbesserung der Bildverarbeitung und Kantenerkennung war erfolgreich, da die

Implementierung eines Canny-Kantenerkennungsalgorithmus die Kanten viel näher am

Organismus erkennt. Mit den ausgewählten Merkmalen wird bei einer „random Forest“

Klassifikation die höchste Klassifikationsgenauigkeit von 88,72 % erreicht, während die Ergebnisse

des Transfer Lernens eine Klassifikationsgenauigkeit von 87,75 % erreichen.

In dieser Arbeit wurden neue Techniken für die LOKI-Planktonbildklassifikation vorgestellt, die

dazu beitragen werden, eine vollständige Verarbeitungskette von der Bilderfassung bis zur

autonomen Klassifikation und Vorsortierung der morphologischen Hauptgruppen

voranzubringen.

List of Figures

VI

V List of Figures

Figure 1: Lightframe On-sight Keyspecies Investigation (LOKI) system being deployed on board

R/V Heincke in November of 2019. This image was taken on the R/V Heincke cruise HE545 and

visualizes the plankton net with the camera underneath. Attached to the sides of the LOKI frame

are the computing and the battery units and a CTD. Image captured by C. Thölen. 4

Figure 2: Cross section and overview of Lightframe On-Sight Keyspecies Investigation (LOKI)

system. Attached to the cuvette module are the in- and outflow tubes. The LED and camera

module are separated from the cuvette module by an optical window. The camera module is

mounted on a piezo-motorized linear stage to adjust the distance between camera and object.

The image was created with the CAD-Software by Hagemann (2016) for a student report on the

LOKI system. .. 4

Figure 3: Images of multiple plankton specimen captured with the Lightframe On-sight Keyspecies

Investigation (LOKI) system. This image was created as a collage out of multiple images; therefore,

the imaged organisms are not to scale. ... 5

Figure 4: Example of a simple pretrained convolutional neural net (CNN) architecture with 12

layers. This particular CNN is called AlexNet and was developed by Krizhevsky et al. in 2012.

Modified according to Khan et al. (2020). ... 9

Figure 5: Sognefjord map of the Lightframe On-Sight Keyspecies Investigation (LOKI) system

stations during R/V Heincke cruise HE434 in 2014. ... 12

Figure 6: Recorded pressure in decibar versus the time in seconds during the cast of the

Lightframe On-Sight Keyspecies Investigation (LOKI) system at station 67 on R/V Heincke cruise

HE434 in 2014. The red lines indicate the moments of the device reaching a mean heaving speed

of 0.3 m·s-1 and the end of the cast when the speed falls below a heaving speed of 0.05 m·s-1. 13

Figure 7: Overview over the taxonomic ranks of the morphological plankton groups (gray)

included in the dataset used for plankton image classification. This graph does not show the

complete taxonomic classification, just an extract of the most important plankton affiliations for

this thesis. .. 14

Figure 8: Example of the folder structure used by the LOKI-Complete-data-primer script , in which

the Lightframe On-sight Keyspecies Investigation (LOKI) images are saved. 15

Figure 9: Source image with multiple organisms (left) and an example of the integer clusters of

detected, unconnected objects within the image on the image mask (right). The different shades

of gray imply different clusters, which each have an identifying integer number. 21

List of Figures

VII

Figure 10: Source image (left) and calculated image mask (right) showing the detected region of

interest (ROI), which is a light attribute of the LOKIs LEDs at the upper margin of the image

(purple). ... 21

Figure 11: Example of a linear convolution operation with a vertical 3x3 Sobel filter kernel (in red

on the left side) on a matrix with a clear intensity change (5x5 matrix on the left). The middle

shows the calculation steps for one cell (red number 50). The matrix on the right is the resulting

matrix if the kernel was applied to all cells. In this case, in order to calculate the cells on the margin

the matrix had to be replicated. The result shows a clear enhancement of the edge pixel cells

while the surrounding pixel are 0. ... 23

Figure 12: Two examples of source images together with the contour line (red dashed) using the

edge detection operation of the original LOKI-Complete-data-primer script. The green numbers

count the contour points. A gap between the contour and the organism is visible. 23

Figure 13: Within the Canny edge detection algorithm, a process called non-maximum

suppression selects only the one pixel of an edge gradient that has the highest value. Within the

applied non-maximum suppression, the spaces between the pixel were interpolated for a more

accurate decision. To interpolate the correct pixel for each edge-point the direction of the edges

angle - as calculated in Equation 6 - is used to define which neighboring pixel are to be utilized for

the interpolation. All angles between 0 to 45 and -135 to -180 are treated in the same way. Here

the green color within the angle circle (left, first matrix) corresponds with the green colored

matrix of neighboring pixel (right). The same applies for different angles as can be followed by

the color code. ... 27

Figure 14: Function Graph in three sections, some of the graphic elements were inspired by

Burger & Burge (2016). The first and second section correspond to the image processing steps

before the Canny edge detection and the last section displays the Canny edge detection

algorithm. First section: The raw plankton image I is filtered with a Gaussian blur filter G and then

further filtered with the horizontal Sx and vertical Sy Sobel filter. The horizontal and vertical

component are then used in three different equations (Equation 4 and Equation 5 to combine

the detected edges M2 and M and Equation 6 for the angle of the direction of the edge φ). Second

section: M2 is used in a thresholding procedure, where the edges of the region of interest are

enhanced. This result Mb
2 is then tripled and added to M. Third section: The Canny edge detection

algorithm consists of the non-maximum suppression NMS. A double thresholding DT and the

finding of connected weak edges SE. Finally the discovered edges are dilated again to connect

disconnected features that belong together and then a binary image mask is created which is

further processed in Change A (3.1). ... 28

List of Figures

VIII

Figure 15: LOKI image of large accumulation of plankton, mostly diatoms (filling some parts of the

picture, examples in red circles) and air bubbles (examples in blue circles). This image has a height

of 696 pixel and a width of 2336 pixel and is therefore discarded from the image processing since

with all its detail it would slow down the image processing dramatically. 30

Figure 16: Example of a pairs plot of 5 image features. The diagonal cells show the names of the

features and a histogram of point distribution of all the cells underneath each diagonal cell. On

the upper triangular matrix, the linear correlation coefficient can be found, printed in a font size

corresponding to the value. On the lower triangular matrix, the elements of each feature are

plotted against the elements of the other features. ... 33

Figure 17: Left: The figure was adapted from Bennett & Campbell (2000). Two datasets (blue

circles and red squares) are visualized in a two-dimensional plane. The solid line is a good

separator between the data clusters since it has maximally large margins (space until the dashed

line) towards the datapoints. The green circled data points represent the support vectors. Right:

A one dimensional dataset with two classes has one class lying in between values of the other

and cannot be separated by a line (empty circles). If the dataset is squared (filled circles), the

classes can be separated by a line. This is an example of a support vector machine. 36

Figure 18: Scheme of the learning process within deep neural networks architecture. The

prediction result of the layers is compared to the true targets creating a loss score. This loss score

is used to optimize the weights on the layers as a feedback and learning mechanism over a

destinated number of iterations. The figure was adapted from Chollet (2018) 38

Figure 19: Two example organisms in their source image together with the edge detection

contour result from before (left) and after (right) implementing Change A. Before Change A the

light attribute on the upper image margin was detected for both source images and after

implementing Change A the organism was detected correctly. .. 42

Figure 20: Two example plankton source images with the contour lines of the edge detection in

misidentified regions of interest (ROI). The images show the actual ROI in the center, but each

image also contains another organism which appears cropped at the margins of the image. In

these cases, the cropped organism has a longer contour and a larger vertical expansion, which is

an important part of the decision process in Change A to choose the correct ROI. Therefore, these

ROI are misidentified before and after Change A. If the contour line of the cropped organism in

the right image was to be shorter than the contour of the center organism, this would be an

example of Change A worsen the output, just because the cropped organism has a large vertical

expansion. ... 43

List of Figures

IX

Figure 21: Three examples LOKI plankton images of the edge detection from before (left) and

after (right) implementing Change B. The produced contour line lays much closer at the organism

itself when Change B is implemented.. 45

Figure 22: Example of the new output produced by the LOKI-Complete-data-primer script

visualizing the single image processing steps. The order of the steps is left to right and top to

bottom and will be numbered from 1-12 for better comprehension. The image processing starts

with the source image (1) which is then blurred to cancel out unwanted noise (2). The edge

detection images, produced through Equation 4 (3) and Equation 5 (4) and the threshold image

(5) are displayed. (6) consist of the sum of (3) and (5) and visualizes the enhanced detected edges

that will be further processed with the Canny edge detection algorithm. Non-maximum

suppression (7), double thresholding (8) and the finding of connected weak edges (9) is

conducted. For this image processing the deletion of the weak edges is disabled, to produce more

accurate results with the current state of the LOKI-Complete-data-primer script, therefore, (9)

and (10) are the same result. Finally, the binarized image mask is produced (11) and the contour

can be applied to the source image (12) for visual confirmation of the edge detection process.

 ... 46

Figure 23: Confusion matrix of the random Forest classification of the Sognefjord 26 groups

dataset in 26 classes. The true classes are displayed in the rows and the predicted classes in the

columns. On the right two extra columns are displayed showing the absolute number of images

that have been correctly or incorrectly classified. The sum per row is the number of images per

class. The two extra rows on the bottom show the percentage of correct and incorrect predictions

per class. The red box outlines the higher misclassification within all Copepoda classes. 51

Figure 24: After the exclusion of highly correlating image features, a random Forest model was

used to calculate the importance (Gini Index) of the remaining features. This graph shows the

classification accuracy of a linear discriminant analysis (LDA) over a decreasing number of features

ranked after the Gini Index. The LDA reaches its highest accuracy using 43 image features (vertical

line). ... 52

Figure 25: Confusion matrix of linear discriminant analysis of the Sognefjord 14 groups dataset in

14 classes. The true classes are displayed in the rows and the predicted classes in the columns.

On the right two extra columns are displayed showing the absolute number of images that have

been correctly or incorrectly classified. The sum per row is the number of images per class. The

two extra rows on the bottom show the percentage of correct and incorrect predictions per class.

 ... 53

Figure 26: After the exclusion of highly correlating image features a random Forest model was

used to calculate the importance (Gini Index) of the remaining features. This graph shows the

List of Figures

X

classification accuracy of a random Forest model over a decreasing number of features ranked

after the Gini Index. The random Forest reaches its highest accuracy using 40 image features

(vertical line). ... 54

Figure 27: Confusion matrix of the random Forest classification of the Sognefjord 14 groups

dataset in 14 classes. The true classes are displayed in the rows and the predicted classes in the

columns. On the right two extra columns are displayed showing the absolute number of images

that have been correctly or incorrectly classified. The sum per row is the number of images per

class. The two extra rows on the bottom show the percentage of correct and incorrect predictions

per class. .. 55

Figure 28: After the exclusion of highly correlating image features a random Forest model was

used to calculate the importance (Gini Index) of the remaining features. This graph shows the

classification accuracy of a support vector machine (SVM) over a decreasing number of features

ranked after the Gini Index. The SVM reaches its maximum accuracy using 26 image features

(vertical line). ... 56

Figure 29: Confusion matrix of the support vector machines on the Sognefjord 14 groups dataset

in 14 classes. The true classes are displayed in the rows and the predicted classes in the columns.

On the right two extra columns are displayed showing the absolute number of images that have

been correctly or incorrectly classified. The sum per row is the number of images per class. The

two extra rows on the bottom show the percentage of correct and incorrect predictions per class.

 ... 57

Figure 30: Confusion matrix of the convolutional neural net classification of the Sognefjord 14

groups dataset in 14 classes. The true classes are displayed in the rows and the predicted classes

in the columns. On the right two extra columns are displayed showing the absolute number of

images that have been correctly or incorrectly classified. The sum per row is the number of images

per class. The two extra rows on the bottom show the percentage of correct and incorrect

predictions per class. ... 59

Figure 31: Example organisms of all 14 classes from the Sognefjord 14 groups or Sognefjord

augmented dataset captured with the Lightframe On-Sight Keyspecies Investigation (LOKI)

system. a – Bubble, b – Chaetognatha, c – Cnidaria, d – Polychaeta, e – Ostracoda, f – Copepoda,

g – Detritus, h – Ctenophora, i – Egg, j – Faeces, k – Mysidae, l – Amphipoda, m – Acantharia,

n – Euphausiidae.. 66

List of Tables

XI

VI List of Tables

Table 1: Evaluation of the improvement in edge detection through Change B. Two contour image

features, which are expected to decrease in their value with a closer contour line are compared

for 100 random images primed with (after Change B) and without (before Change B) switching

on Change B. The difference columns show the subtraction of before-after. 44

Table 2: Mean accuracy and standard deviation of support vector machine classification of Peru

data set before and after Change B was implemented in order to evaluate the impact of the

improved edge detection on the classification accuracy. .. 47

Table 3: Processing times of the LOKI-Complete-data-primer script on 1524 telemetry and 1936

image files before and after implementing the parallelization in Change D. 48

Table 4: Image features sorted after the value of the mean Gini Index together with the Gini Index

standard deviation (SD) after a hundred execution of a random Forest model with a thousand

trees and the standard deviation of the Gini index. .. 49

Table 5: Variation of learning rate, momentum, and validation frequency to improve the

classification accuracy of the LOKInet approach. .. 58

Table 6: Summary of classification accuracies of different classifying methods. The dataset name,

number of classes, number of features, training and testing time and the accuracy are listed. . 64

Abbreviations

XII

VII Abbreviations

a Local edge orientation angle (Equation 6)

ANN Artificial Neural Network

API Application programming interface

bmp Windows Bitmap

CNN Convolutional Neural Networks

CPU Central Processing Unit

CTD Conductivity Temperature Depth

CV Cross validation

D Dilator (Equation 2)

DOF Depth of field

DSc Discriminant score (Equation 10)

DT Output of double thresholding

FOV Field of View

FSDA Forward stepwise discriminant analysis

G Gaussian filter kernel (Equation 7)

GPS Global Positioning System

h Hours

HE R/V Heincke
I Source Image

ID Identification number

IMG Image

IMGmask, IM Image mask, final step of image processing

ISIIS Ichthyoplankton imaging system

Ix, Iy Horizontally and vertically Sobel filtered images (Equation 3)

kc Class constant (Equation 10)

Kx, Ky Horizontal and vertical modified Sobel operator (Equation 1)

LD Linear discriminant

LDA Linear discriminant analysis

LOKI Lightframe On-sight Keyspecies Investigation System

m Meter

M Gradient magnitude image, square root of M2 (Equation 5)

M2 Gradient magnitude image of summed squares of Ix and Iy (Equation 4)

Mb
2 Binarized images of M2

min Minutes

ml Milliliter

mm Millimeter

ms Milliseconds

Ms Sum of Mb
2 and M, input of Canny edge detection

µ Mean feature values (Equation 9)

µm Micrometer

N Output of non-maximum suppression

NMS Non-maximum suppression

png Portable network graphics

φ Local edge orientation angle

R2 Linear correlation coefficient

ReLU Rectified linear unit

ROI Region of interest

Abbreviations

XIII

ROV Remotely operated vehicle

s Seconds

s Feature variance (Equation 9)

S, Sx, Sy Sobel filter with horizontal and vertical components (Equation 8)

SE Output of FindConnectedWeakEdges() function

SVM Support vector machines

t, thigh, tlow Thresholds for binarization and non-maximum suppression

TMD Telemetry

VPR Video plankton recorder

wcs Coefficients of linear discriminants (Equation 10)

xs Variables for LDA (Equation 10)

Introduction

1

1 Introduction

1.1 Plankton Biology and Sampling

The marine environment is under constant change. It is influenced by geological processes,

climatic impact or living organisms, especially human beings (Rockström et al., 2009). This impact

is reflected by the biological response to the environmental influences. In marine environments,

planktonic organisms are a key within bio-geochemical cycles (Mitra et al., 2014), food web

structures (Steele, 1974), ecosystem health (Beaugrand et al., 2002), and the biological response

to climate change effects (Roemmich & McGowan, 1995; Hays et al., 2005).

The term plankton originates in the Greek adjective πλαγκτός (planktos) and means “to wander”.

It was introduced by Hensen in 1887 (Hensen, 1887) and is used to summarize aquatic organisms,

which mostly float passively in the horizontal direction, being entrained in ocean currents (Tait &

Dipper, 1998). Multiple plankton species can move vertically between water masses, for feeding

purposes. The size of plankters ranges from microns to meters and includes representatives in all

domains of life and trophic levels (Lombard et al., 2019).

Phytoplankton are autotrophic pro- and eukaryotic algae and responsible for most of the primary

production in the aquatic environment. Zooplankton, the faunistic component, include

protozoans and metazoans that primarily feed on phytoplankton and maintain the main food

source for higher trophic taxa (Tait & Dipper, 1998).

Within aquatic food webs, climate-driven changes or fluctuations in environmental parameters

can affect the plankton community and cause nutritional effects cascading through the food web

up to the trophic levels of commercially exploited fish stocks (Frederiksen et al., 2006). The

distribution of plankton in the water column depends on small scale hydrographical conditions

(Banse, 1964; Yamazaki et al., 2002; Schulz et al., 2007 & 2012) and is sensitive to changes. Since

plankton organisms have short life spans, and only a few species are commercially exploited,

several observed long-term changes can be linked to both climate change and anthropogenic

influences (Hays et al., 2005) and their derived successive consequences.

Understanding the distribution, biodiversity and abundance of plankton organisms will provide

valuable information of the overall ecosystem health. Plankton is deeply involved in crucial

marine processes ranging from primary production over nutrient cycling to large scale marine

food web structures even influencing commercial fisheries. Plankton is a biological proxy for the

effects of climate change and overall global environmental changes (Beaugrand et al., 2002;

Lombard et al., 2019).

Introduction

2

Historically, information about plankton distribution, diversity and abundance have been

collected with net samples since the time of Hensen (1887). Sample processing needs large

amounts of time as well as taxonomists manpower to be evaluated. Over the years a multitude

of standard nets have been developed from simple WP2 or Bongo-Net to multi-opening/closing

nets or pumping systems, to multi-net systems and finally to multi-sensor systems being deployed

on towed devices or remotely operated vehicles (ROV). A good overview of the variety of net and

other plankton sampling systems is given by Wiebe & Benfield (2003).

Net sampling systems integrate over the sampled depth. Contact with strong turbulences can be

destructive to fragile plankton organisms. Thus, precise in situ information of plankton

distribution and morphology is diminished. To tackle this shortcoming, new possibilities arose

during the past decades as plankton research started using optical imaging technologies to

capture and identify plankton images in a non-invasive approach within their natural

environment. Imaging systems face many challenges like an even illumination, a fitting depth of

field (DOF) - distance of sharp focus in front of a lens -, and the quality of the image (Schulz et al.,

2010; Schulz, 2013; Pollio et al., 1979; Mustard et al., 2003). The organism of interest itself and

its aquatic habitat provide even more challenges. Plankton specimens not only vary greatly in size,

some taxa also undergo strong morphological changes during ontogenesis. Orientation within the

photographed volume - abundance of also entrained marine snow, sediment particles, air

bubbles or other organisms - further complicate identification (Benfield et al., 2007). Facing these

challenges, multiple approaches in plankton imaging investigation where contrived, designed and

implemented by different institutions worldwide (see reviews in Benfield et al., 2007 and

Lombard et al., 2019). Nevertheless, the optical systems often operate at the borders given by

the laws of physics (Schulz, 2013).

Plankton images are envisaged to replace the hands-on taxonomic classification by making it

possible to classify the images on the level of morphological groups further down to the species

level. The images can then be linked to simultaneously recorded fine-scale environmental data

and deliver high resolution information about biodiversity, distribution, state, and behavior of

planktonic organisms in relation to the ambient hydrography (Culverhouse et al., 2006).

Some developed imaging devices can be deployed from research vessels in hauled or towed

systems and deliver in situ images (e.g. VPR (Davis et al., 2004), ISIIS (Cowen & Guigand, 2008),

LOKI (Schulz et al., 2009, 2010), GUARD 1 (Corgnati et al., 2016), etc.). Other devices rely on a

prior taken net or water sample and image the specimens in the laboratory (e.g. ZooScan

(Grosjean et al., 2004)). The different approaches need to find tradeoffs in sampled volume and

depth of field and therefore the size range of organisms, which can be detected. Further reviews

Introduction

3

and summaries about the existing visual plankton systems can be found in Benfield et al. (2007),

Lombard et al. (2019) and Lumini & Nanni (2019).

1.2 Lightframe On-sight Keyspecies Investigation – LOKI

This thesis uses images captured by the Lightframe On-sight Keyspecies Investigation (LOKI)

system developed by Schulz et al. (2009 and 2010) (Figure 1). LOKI consists of multiple modular

parts and can be deployed in hauled systems as well as on moorings. LOKI was deployed on a

COSYNA Underwater-Node System in the North Sea to deliver valuable information on the spatio-

temporal zooplankton community assemblage (Baschek et al., 2017). LOKI can also serve as a

benchtop device with a Flow-cell (FLOKI, Schulz et al., 2008). The benchtop device has the

advantage that illumination conditions can be adjusted to capture brighter images, allowing a

more accurate classification, but it lacks the additional environmental information an in situ

device is able to record.

During deployment, a standard LOKI haul uses the up-cast to concentrate plankton with a tailored

net to least harm fragile plankton specimens entrained in the water column and guides them into

a flow-through imaging chamber. A specific optical design of the flow-through chamber a

relatively high DOF at a small sample volume (1.6 - 3.5 ml) with high magnification is realized. The

developed flash module consists of 96 XML_T6_6000K LEDs, which provide a white light with a

spectral composition of 6000K (Hagemann, 2016). “The system is based on an illumination

technique that either projects a light frame of high luminous flux into the water or constrains the

volume physically with transparent boundaries. Particles within this area are illuminated. Only

directly illuminated objects are visible for the camera, while those outside the focus range are

nearly invisible” (Schulz et al., 2010). The used camera is an Allied Vision Technologies Prosilica

with GigE interface and allows imaging of plankton and particles of sizes below 60 µm at a high

resolution with shutter times below 50 µs. To adjust the optimal depth of field, the camera must

be able to change the distance to the object. To achieve this inside the sealed LOKI housing the

camera is mounted on a piezo-motorized linear stage to adjust the distance between camera and

object (Hagemann, 2016) (Figure 2). Further technical details can be found in Schulz et al. (2009

and 2010).

The images used in this thesis have been taken by deploying LOKI as a hauled system from a

research vessel. Figure 1 shows such a deployment. The device is lowered into the water by the

research vessels winch. It is lowered (down-cast) to maximum depth and heaved (up-cast) again.

During the up-cast the upstream plankton net collects organisms and directs them through the

Introduction

4

flow-through chamber were the camera images them. Figure 3 shows a collage of sample

plankton images collected during different cruises with the LOKI system. Next to the LOKI system

a CTD (device measuring Conductivity, Temperature and Depth) is attached to the frame,

delivering essential information about the environmental factors of the plankton’s habitat.

Figure 1: Lightframe On-sight Keyspecies Investigation (LOKI) system being deployed on board R/V
Heincke in November of 2019. This image was taken on the R/V Heincke cruise HE545 and
visualizes the plankton net with the camera underneath. Attached to the sides of the LOKI frame
are the computing and the battery units and a CTD. Image captured by C. Thölen.

Figure 2: Cross section and overview of Lightframe On-Sight Keyspecies Investigation (LOKI)
system. Attached to the cuvette module are the in- and outflow tubes. The LED and camera
module are separated from the cuvette module by an optical window. The camera module is
mounted on a piezo-motorized linear stage to adjust the distance between camera and object.
The image was created with the CAD-Software by Hagemann (2016) for a student report on the
LOKI system.

Introduction

5

Figure 3: Images of multiple plankton specimen captured with the Lightframe On-sight Keyspecies
Investigation (LOKI) system. This image was created as a collage out of multiple images; therefore,
the imaged organisms are not to scale.

1.3 Image Processing, Features, and Classification Methods

The classification of plankton images is a requirement to precisely match species appearance in

relation to environmental parameters and to gain a deeper understanding about biodiversity,

spatio-temporal distribution, community structure, and behavior of plankton organisms.

Optical plankton detection systems are aiming towards an unsupervised, automated recognition

and classification of plankton images (Benfield et al., 2007; Bi et al., 2015; Corgnati et al., 2016;

Leow et al., 2015; Luo et al., 2018; Schröder et al., 2020; Sieracki et al., 1998; Sosik & Olson, 2007;

Tian et al., 2019; Wang et al., 2016; Zheng et al., 2017). Different approaches exist for the

classification process, ranging from multivariate statistics and machine learning algorithms (e.g.,

Hu & Davis, 2005; Schulz et al., 2016; Sosik & Olson, 2007) to deep learning algorithms (e.g., Leow

et al., 2015; Lumini et al., 2019; Luo et al., 2018). In the following it is explained how an image

with mere pixel intensities can be transformed into a classified result which can help to answer

relevant biological questions.

1.3.1 Object Detection

Before an organism can be classified, it must be recognized within an image. This is achieved by

detecting the edges of this organism. Edges are pixel intensity changes within an image distinctly

along a particular orientation. If the intensity change is high, the evidence for an edge at that

Introduction

6

position is provided (Burger & Burge, 2016). This gradient in intensity can be detected and

enhanced with edge detection operators, respectively filters or kernels. Some simple edge

detection operators have been defined by Kirsch (1971), Prewitt (1970) and Sobel in 1968 (Davis,

1975; Sobel & Feldman, 2015). Edge detection is used in multiple fields of research. Kekre &

Gharge (2010) state, that for mammographic images an extended Sobel filter (5x5 matrix) delivers

the best results compared to extended Kirsch (1971) or Prewitt (1970) filters. Simple edge

detection filters consider the first derivative of an image to find strong gradients, respectively

edges. Other methods use the second derivative of an image, in which edges can be found at zero

points or zero crossings and can be localized more precisely (Burger & Burge, 2016). The Canny-

Operator (Canny, 1986) is considered state of the art in edge detection and uses the second

derivative. It minimizes the number of false edge points (pixel, which do not represent the

maximum gradient of an edge), while achieving good localization of edges. Within the Canny edge

detection algorithm, the width of an edge is reduced to a single pixel (Burger & Burge, 2016).

Bature et al. (2015) compare the simple edge detection filters (Sobel, Prewitt, etc.) to the

Laplacian of Gaussian (Marr & Hildreth, 1980) and the Canny operator. In their results Gaussian

methods like Canny deliver the most robust solution localizing the edge points even in noisy

images.

1.3.2 Feature Extraction and Selection

The input for standard multivariate and machine learning classification algorithms are calculated

images features. To extract such feature information, objects on the images need to be

segmented and pixel - that belong to the respective object - need to be identified and localized,

as it was explained in the previous section. For common geometric features of plankton images

and a review of recent feature extraction methods used see Cheng et al. (2018). Features that

have been extracted from an image manually will be referred to as “manual” features in this thesis

to distinguish them from the deep features created by neural networks, which will be explained

in the following chapter. For the LOKI plankton images recurrence features have been used in a

previous study by Schulz et al. (2016), which, in the combination with standard manual features

and a classification using the linear discriminant analysis (LDA), produced a discrimination success

of 62.8 %.

Wang et al. (2016) used multi feature combinations and achieved good classification results

combining different types of image features. For classification purposes, it is important to find

useful feature combinations. Redundant or unimportant feature information might compromise

the performance of the classifier (Sosik & Olson, 2007). Feature selection methods aim to find a

Introduction

7

subset of features that would either improve the classifiers performance or at least maintain the

same level like with more features, while saving operational time (Dash & Liu, 1997). There are a

multitude of approaches for feature selection based on the dataset type and size, the number of

classes and for weather or not a dataset contains imbalanced class sizes. Leow et al. (2015) used

forward stepwise discriminant analysis (FSDA) and Zheng et al. (2017) implemented a wrapper

method by Kohavi & John (1997) for their feature selection. There are different strategies based

on multivariate statistics allowing to exclude redundant features. Linear discriminant analyses

(LDA) can be used on a pre-classified dataset to detect the variables or features that account for

the most variance within the dataset (Schlittgen, 2009). With the random Forest method,

developed by Breiman (2001), the Gini Index (Gini, 1912) can be calculated, providing information

about the separating importance (inequality) of different features. The dataset used within this

thesis contains continuous features, all representing the same number of classes. These

characteristics make the datasets features eligible to using the Gini Index for the importance

measures (Strobl et al., 2007).

1.3.3 Image Classification from Standard Multivariate Statistics over Machine Learning

to Convolutional Neural Networks

The selected features of a dataset span a multidimensional room containing every data element.

Most multivariate methods aim to reduce the dimensions of a dataset to describe the

relationships between the given features (Zelterman, 2015). Multivariate statistics can be used in

a variety of different technological, sociological, and scientific fields, allowing structuring,

simplifying, and classifying the elements that belong to the same class in a dataset. Within chapter

2.3 and 2.4 the multivariate statistical linear discriminant analysis (LDA) and the random Forest

method are described. Both are used for the feature selection and classification of the plankton

images. Multivariate statistical methods work with a predefined set of rules, which distinguishes

them to machine learning methods.

Machine learning means, that - instead of calling an algorithm with passed data of extracted

features and predefined rules - the extracted features are passed along with the associated

classes for the data and the algorithm produces the rules for classification (Chollet, 2018). A

feedback mechanism is used to optimize the algorithm calculations to produce rules that are

more suitable for the data to be sorted into the correct classes (Chollet, 2018). A “traditional”

classification approach of machine learning are support vector machines (SVM). SVMs have the

key idea of maximizing margins between data classes by finding applicable kernel functions

Introduction

8

(Bennett & Campbell, 2000). They will briefly be explained in chapter 2. For more detailed

information see Christianini & Shawe-Taylor (2000) or Vapnik (1995).

The learning process gets “deeper” and more versatile with the supply of multiple neuronal

calculation layers between input and output, hence deep learning. A representation of deep

learning models are convolutional neural networks (CNN), which are increasingly used for image

classification or speech recognition (Gu et al., 2018). CNNs are able to process a raw image

directly, without prior feature extraction, as the calculation of discriminating deep features is a

built-in part within their multi-layered network (Luo et al., 2018).

The architecture of a CNN is to some extent similar to the human visual system as they use

restricted receptive fields, and a hierarchy of layers, which progressively extract more and more

abstracted features (Lumini et al., 2019). A CNN consists of a series of stages, where the first few

stages contain convolutional and pooling layers. Figure 4 shows an example of a simple pre-

trained CNN with its architectural layers. This particular CNN is called AlexNet and was developed

by Krizhevsky et al. in 2012. In the following, the single layers of a CNN will be explained briefly.

The function of the convolutional layer is the detection of local feature combinations from the

input or previous pooling layer (Khan et al., 2020). The convolution layer contains a set of

convolutional kernels which work with the same basic principle like the edge detection kernels

convolution mentioned in chapter 1.3.1 and chapter 2.2.2. These kernels process the image by

dividing it into smaller pieces helping for the extraction of image features and create feature maps

(Khan et al., 2020). This deep feature extraction can be similar to the manual feature extraction

mentioned in the previous chapter. But through the depth of a CNN convolutional layers become

more and more abstract to the human eye. These layers have a specific set of weights adjusting

their behavior when data is passed through them. The weights are influenced by the feedback

mechanism of the CNN, called backpropagation (Aggarwal, 2018). For neural networks, learning

means to adjust the values for the weights of all layers in a network by backpropagation, until the

network assigns the right classes to testing samples (Chollet, 2018). This process is called training

and is conducted with a dataset of labeled images. For a deep neural network millions of weights

need to be trained, hence the training dataset needs to be large and training might take up a long

time.

A layer not shown in Figure 4 is the activation layer, which is also an important part of CNNs. The

output of a convolutional layer is assigned an activation function. One of the most popular ones

is called ReLU (rectified linear unit). It adds non-linearity to the output and transforms it, taking

away the negative values and setting them to zero (Khan et al., 2020).

Convolutional layers are followed by pooling layers. The role of the pooling layer is to merge

semantically similar features into one by summing up the information of the input feature map

Introduction

9

and returning the dominant response for a local region (Khan et al., 2020; LeCun et al., 2015). If

the pooling operation delivers the maximum of a certain input the approach is referred to as

max-pooling (Aggarwal, 2018). Pooling reduces the spatial resolution and the number of deep

features required for classification, which saves computational time.

The last few layers visible in Figure 4 are fully connected layers. Fully connected layers create a

non-linear combination of selected deep features (Khan et al., 2020) and lead the information to

a softmax layer which then creates possibilities rates for classification of the input data.

Figure 4: Example of a simple pretrained convolutional neural net (CNN) architecture with 12
layers. This particular CNN is called AlexNet and was developed by Krizhevsky et al. in 2012.
Modified according to Khan et al. (2020).

CNNs need minimal preprocessing of the images and require no prior knowledge in designing

manual features for classification. This represents a significant advance compared to “traditional”

machine learning methods such as artificial neural networks (ANN) and support vector machines

(SVM) (LeCun et al., 2015; Luo et al., 2018). Furthermore, it was indicated by Lumini et al. (2019)

that ensembles of more CNNs gain a higher performance than a single CNN. For further details

and comprehensive reading about CNNs the textbook “Neural Networks and Deep Learning” by

Aggarwal (2018) is recommended.

When a new CNN is created the weights of the layers are created randomly. It takes a large

amount of training to adjust the weights of the CNN layers for an accurate classification result.

Many CNNs for image classification have been developed over the past years and they are able

to distinguish between thousands of categories. So instead of building a completely new CNN

from scratch, transfer learning can be used to transfer the previously compiled knowledge of a

pre-trained CNN like AlexNet to an adapted CNN for plankton classification (Pan & Yang, 2009).

The adapted CNN has the right weight settings to classify images of everyday items like vacuum

cleaners, cats, or cars. It can be fine-tuned by using a labeled training dataset of plankton images

to allow classification of planktonic morphotypes.

Introduction

10

Lumini et al. (2019) state that research on plankton image classification has started to replace

“traditional” classifying methods, based on manual feature extraction, such as support vector

machines or random Forests, in favor of deep learning approaches. In their publications, Bi et al.

(2015) and Verikas et al. (2015) provide reputable summaries of recent approaches in plankton

image classification, that are noticeably developing towards deep learning solutions. Transfer

learning has also been used in the plankton classification implementations of González et al.

(2019) who determined that deep features calculated by pre-trained networks achieve better

classification results than manual features. For further information and a survey on transfer

learning see Pan & Yang (2009).

Introduction

11

1.4 Objectives

Some time has passed since the last innovations for the LOKI system were implemented. While

the technological side still provides state of the art plankton images, the software and

classification system need to catch up to modern standards of plankton recognition. Within this

thesis, the edge detection within the provided LOKI-Complete-data-primer script will be reviewed

and improved, and first attempts towards an automatic classification of LOKI plankton images and

feature tables using CNN and SVM will be taken and compared to multivariate classifiers.

Therefore, a selection of the most important manually extracted image features will be

implemented. This results in the following objectives for this thesis:

Objective 1: Evaluation of the adapted edge detection operation.

Objective 2: Evaluation of the implemented feature selection.

Objective 3: Evaluation of the reduced feature table regarding the discriminability of labeled

morphotype groups, based on numerical features using LDA, random Forest and SVM.

Objective 4: Approach of direct image discrimination with convolutional neural networks.

Materials & Methods

12

2 Material & Methods

2.1 Sampling and Data Availability

Data was collected in 2014 during R/V Heincke cruise HE434 (Badewien, 2014) in the North Sea

and in the Sognefjord (Norway) by Dr. Jan Schulz and Nicole Hildebrandt (Figure 5). On 17 stations

the LOKI system was deployed with one haul each, except for the first LOKI station, where two

separate hauls were conducted. Every haul included one cast (down- and up-cast), except for the

last LOKI station, where the device was deployed for three hauls down to 450 m and then left at

a depth of about 175 m for 10 minutes.

Figure 5: Sognefjord map of the Lightframe On-Sight Keyspecies Investigation (LOKI) system
stations during R/V Heincke cruise HE434 in 2014.

The raw data used in this thesis includes 53.4 GB of images and telemetry data (481,455 files)

containing both down- and up-cast of the LOKI system. The downcast data is not usable for

further calculations since the camera only captures organisms and particles that find their way

into the field of view through the narrow outflow at the cod-end of the LOKI. The captured

organisms would come from a much smaller sample volume than intended for the recordings. At

its deepest point, the LOKI system is stopped for the few seconds it takes to start hauling it back

up to the vessel. During this short period of time, the organisms and particles that might be in

front of the camera are captured multiple times which would falsify the results. In order to extract

only valid images at a steady flow during the up-cast, it was necessary to discard data prior to a

Materials & Methods

13

continuous heaving speed of 0.3 m s-1 during up-cast. This was achieved by using the telemetry

data and first smoothing the depth information with a running mean of 5 s to suppress the

influence of the ship’s movement. The deepest point of the cast was identified and the velocity

of the device during the cast was calculated. The timestamp was identified for the moment when

the device reached a speed of 0.3 m·s-1. Thereupon the beginning of the image data was cut to

this timestamp. At the end of each cast the LOKI system was heaved through more turbid surface

waters, which are influenced by the research vessel. This resulted in air bubbles in the field of

view (FOV). Also, the heaving speed decreased as the crew was waiting for further instructions

before heaving the device back on deck. As the LOKI systems velocity reaches values under 0.05

m·s-1 the timestamp is saved and used as the ending point of the up-cast. Figure 6 visualizes the

cropping of the up-cast to the valid timestamps.

Figure 6: Recorded pressure in decibar versus the time in seconds during the cast of the Lightframe
On-Sight Keyspecies Investigation (LOKI) system at station 67 on R/V Heincke cruise HE434 in
2014. The red lines indicate the moments of the device reaching a mean heaving speed of 0.3 m·s-

1 and the end of the cast when the speed falls below a heaving speed of 0.05 m·s-1.

Considering only the Sognefjord images during the cut-out timeframe, 113,551 images were left

for further processing and classification (Appendix 1). Out of this large dataset a total of 37,057

images were manually classified by Dr. Jan Schulz into morphological groups of different

taxonomical ranks from phylum down to species and genus level. This dataset (Sognefjord

classed) was used for classification approaches during this thesis. The dataset was originally

partitioned into 64 classes. For a first trail, the 64 classed were summarized into 26 morphological

groups (Sognefjord 26 groups) most of them containing organisms taxonomically determined to

a family level. For the following classification approaches the dataset was then summarized into

the most dominant morphological groups in 14 classes (Sognefjord 14 groups). Figure 7 provides

Materials & Methods

14

an overview over the plankton classes within the Sognefjord 26 groups dataset used for

classification. The ten classes colored in gray are complemented by four classes for bubbles,

detritus, eggs and faeces.

A third LOKI dataset with a total of 1023 images pre-classified into 21 morphological groups was

used for feature selection and testing of the classifying algorithms. This dataset was collected off

the coast of Peru in 2009 during Meteor expedition M77/4 by Hans-Jürgen Hirche and Kristina

Barz (Schulz et al., 2016; Stramma, 2009) (Appendix 1).

Figure 7: Overview over the taxonomic ranks of the morphological plankton groups (gray) included
in the dataset used for plankton image classification. This graph does not show the complete
taxonomic classification, just an extract of the most important plankton affiliations for this thesis.

2.2 Image Processing

After extracting the Sognefjord up-cast dataset, the processing of images takes place in multiple

steps. The first step is preparing and priming the images using the LOKI-Complete-data-primer

script in R (R-Core-Team, 2020). The script, in its original form, was internally provided by Dr. Jan

Schulz and further changed and optimized as one of the main objectives of this thesis. The main

scripts used within this thesis can be found in Appendix 7 and under https://gitlab.uni-

oldenburg.de/gorm2097/loki-image-processing-and-classification/.

2.2.1 Documentation of the Original LOKI-Complete-data-primer Script

The LOKI-Complete-data-primer script compiles all available image and telemetry information

collected during a LOKI cast and prepares and summarizes these information in two output tables

Materials & Methods

15

linked to the images over the image timestamp. The output of this script can further be used for

discrimination and classification purposes.

The script can be subdivided into three sections:

- (i) the set up and update section,

- (ii) the telemetry processing section

- (iii) the image processing section.

Changes and improvements within this thesis are mainly associated with the image processing

section. The first two sections are explained briefly in their use for the script itself and the

generated output.

Figure 8: Example of the folder structure used by the LOKI-Complete-data-primer script , in which
the Lightframe On-sight Keyspecies Investigation (LOKI) images are saved.

Set-up and update section (i). Within the set-up and update section the working directory and

data paths for the in- and outputs are defined. The input path points to a folder that contains

image and telemetry data in the lowest instance of its structure. The folder structure has a

predefined order and needs to be accurate for a correct output. Therefore, the right option for

the input path is the folder for the cruise number. The folder structure should be as following:

Cruise ID > Station > Haul > Device Name (Figure 8). Under Device Name there are three folders:

Log, Pictures, and Telemetry. The Log folder contains .log files with header information for the

output. This file is created once per haul. The Telemetry folder contains secondly averaged

telemetry data from the CTD (attached to the LOKI frame) and GPS information. Finally, the

Pictures folder contains minutely separated folders with the image data in lossless bitmap (.bmp)

or portable network graphics (.png) format. In this context an image is a part of the original

photographed picture by the LOKI camera. A closed code algorithm (provided by Medea-AV-

GmbH) is preselecting objects within the full camera frame that possess pixel intensities over a

certain threshold and crops them into smaller images by surrounding the object of interest with

a bounding box. The created images have a file name that contains the date, time, millisecond

(Format string: yyyyMMdd HHmmss SSSS) number of the image cropped from one full camera

frame within the respective millisecond range (one frame can hold multiple organisms) and the

Materials & Methods

16

x- and y-coordinates of the upper left corner of the image within the original camera frame (Figure

8).

After the definition of the input and output path the state of several switches and sub switches

can be adjusted. This means, that entire sections or single operations can be activated or

deactivated by the user, depending on the kind of information needed. The entire processing

sections of the telemetry and the image data can be switched on or off. The ability of the script

to update itself and the necessary R toolboxes can also be switched on or off. The set-up section

further defines several variables which are used within calculations throughout the script. An

important variable defined at this point is the filter kernel for the edge detection within the image

processing section. These filters or image processing operators are explained in detail in chapter

2.2.2.2. If required, some installations of tools and packages are also performed in this section. A

fundamental package which must be installed and linked to the script here, is the BiocManager

package as it provides many of the image processing functions. Other necessary packages are:

magick, readr, data.table, IM, Momocs and tools. Appendix 6 contains an overview over the used

packages and their references.

Telemetry processing section (ii). The telemetry data priming section is not a main object to

modifications and was just changed minimally. The changes being implemented were for reasons

of saving computation time and are further explained in chapter 2.2.2.4. This section’s output is

a table called Data.primedTMDdata which summarizes all the available telemetry data in 31

columns for each measured second of the haul (Appendix 5). The telemetry data is extracted from

the TMD files in the same folder structure. A single TMD file contains the sensor identification

numbers (ID) and corresponding measurements for one second of the haul. The TMD files are

listed and an additional file containing the sensor IDs as well as the associated column headers is

loaded into the script. The sensor IDs, the column headers and the iterative number of

observations are associated in a data frame to be able to assign the correct sensor names to the

TMD file information. Next, an empty matrix is created serving as the basis for the output table.

The number of columns is set to the number of sensor information plus seven slots for the date

and time information, which can be derived from the TMD file name, as well as information about

the cruise, station and haul which can be derived from the file path. The predefined column

names are then copied to the empty matrix. Then the result table is defined, and a temporary

matrix is set up to be filled by iterating recursively through all the available TMD files. Each

iteration reads a new TMD file from the TMD file list and extracts the data into the temporary

matrix. The file path is split up and the information about cruise, station and haul are also included

in the temporary matrix. If any of the superordinate folder structures is unavailable, it is marked

as unavailable in the matrix. The file name is extracted and parsed for the time value which is also

Materials & Methods

17

included in the temporary matrix. At the end of each iteration, the temporary matrix is

concatenated to the result table. The last step in the telemetry priming section is saving the final

table as Data.primedTMDdata in the result folder.

Image processing section (iii). The image processing section starts with preparing the final output

table by defining the table headers for the 15 columns for metadata information and 77 image

features (Appendix 3 and Appendix 4) plus 20 Taxonomical columns for future taxonomic

information after the classification. Next, a list is created that contains all the .png or .bmp image

file names that are found recursively within the defined data path. This operation is equivalent to

the creation of the TMD file list in the telemetry processing section. In the following, a large for-

loop processes each image individually and multiple computations are conducted. The calculated

information will be added to the output table. Within this loop the data path and file information

are read and checked weather superordinate folders are available. If so, their name information

will be added to the table in the previously mentioned order (Cruise Number > Station > Haul >

Device Name). To search at the right folder in the path the number of superordinate folders is

previously counted and if the information is unavailable, it will also be marked as unavailable in

the table. As the image file names contain all the necessary meta information regarding the date

and time and the position of the image within the original camera frame, the file name itself is

used to extract this information per image and later add it to the output table. The timestamp

within the file name can be used to link the image processing information to the TMD data

measured in the same second. The R package magick is used to get some of the internal file

information such as the format, color space and size. All the extracted information concerning

each image file is added as characters to the output table.

Thereafter starts the process of on extracting fundamental inherent image information. As a

security precaution, and to avoid the script from crashing, a small 7x7 fake matrix, with 3x3 white

pixel in the middle, is created to be processed in case the actual image fails to load. This fake

matrix could easily be spotted and ruled out within the results. Two different loading commands

are implemented for either .png or .bmp images. The source images are then converted to

grayscale images using the EBImage::channel() function. The EBImage::filter2() function is used

to apply the modified Sobel kernel filters (Equation 1), which were defined in the first section of

the script, vertically and horizontally to the grayscale image for edge detection. The

EBImage::filter2() function uses the setting replicate for how the filter behaves at image

boundaries. With this setting, the pixel outside of the image boundaries are assumed to have the

same value as the nearest border pixel value.

Materials & Methods

18

Modified Sobel operator

2 1 0 -1 -2

2 1 0 -1 -2

3 2 0 -2 -3

2 1 0 -1 -2

2 1 0 -1 -2

2 2 3 2 2

1 1 2 1 1

0 0 0 0 0

-1 -1 -2 -1 -1

-2 -2 -3 -2 -2

Equation 1

Dilator

0 1 1 1 0

1 1 2 1 1

1 2 4 2 1

1 1 2 1 1

0 1 1 1 0

x 28-1

Equation 2

A horizontal and a vertical edge detection matrix is created. The individual results are squared to

remove possible negative values and then added to each other. Next, a binarized image is

produced by setting all values within the image over a predefined threshold to 1 and all

underneath this threshold to 0. It is possible that certain image attributes belong together even

if their connecting pixel had a low intensity on the image so that they were set to 0 by the

binarization. To reconnect those attributes a 5x5 dilator (Equation 2) is used with the

EBImage::dilate() function. The dilation reconnects prominent image attributes which are located

close together. This step creates the image mask (IMGmask) which is then applied to the

EBImage::bwlabel() function, which labels all connected pixel in the image above a value of 0,

according to their pixel-cluster membership. Each cluster is assigned a unique increasing integer.

The contour length of the clusters within the image is calculated with the EBImage::ocontour()

function and the object with the longest contour is set to be the object of interest and therefore

chosen for the final IMGmask. This means that all other clusters within the image are ignored and

only the mask is retrieved for further calculations. The pixel within the IMGmask are set to 1 with

the EBImage::fillHull() function. This completes the image processing step. Next, and if switched

on, multiple calculations are being conducted on the IMGmask matrix for feature extraction to

gain more information about the object of interest within the image.

The manual extracted image features contain size, distance, intensity, and shape information,

Haralick parameters (texture features), contour line statistics, and recurrence analysis features.

For the size values, the image height and width are retrieved and then used to calculate the mass

center and elliptical fits. Then the distance values to the nearest border are calculated for each

pixel of the IMGmask using the Manhattan metric. In the next step the image pixel statistics are

Kx = Ky =

D =

Materials & Methods

19

calculated with the EBImage::computeFeatures.basic() function. These information include the

pixel intensity mean, standard deviation and quantiles. With the

EBImage::computeFeatures.shape() function shape information like the radius and area of the

IMGmask are calculated. Haralick features are textural features based on gray tone spatial

dependencies (Haralick et al., 1973) and can also be calculated with the

EBImage::computeFeatures() function. The MOMOCS package is used to calculate contour line

and shape statistics like area, fractionality and convexity of the shape and many more. Last, basic

recurrences features are extracted from the contour outline. Recurrence features give

information about the contour line’s curve progression by using an embedding of contour line

pixel distances from the mass center and can be used for discrimination purposes (Schulz et al.,

2016).

The calculated features are combined in a data table, which is saved as Image

data.primedIMGdata and accounts for the second and most important output of the LOKI-

Complete-data-primer script.

The third output is an image sheet with four plots containing different aspects of each image

processed. If the CreatePlots sub switch is activated, a folder is created on the same folder level

as the TMD and IMG output tables to save all the result plots. Then, an empty result .png-image

is created, named after the currently processed image file, and depicts four to six results plots for

inspecting image and success of the processing steps.

The first plot displays the grayscale image together with the contour line of the IMGmask. The

second plot shows an image intensity bar plot with lines for the mean, standard deviation, and

median absolute deviation value. The third plot displays the recurrence plot and the fourth a

border pixel distance map. After the creation of the result plots, the image processing for-loop is

finished and restarts with the next image. After all images are processed a final report is printed

containing the processing time and number of processed files.

2.2.2 Changes and Improvements for the Script

This chapter will explain the changes and improvements implemented to the original LOKI-

Complete-data-primer script in detail. The changes that were implemented into the (iii) image

processing and edge detection of the original script, are aiming at the optimization of the

detection of the region of interest (ROI) and creating an edge contour as close to the real

structure as possible. Additionally, it was an objective to increase general processing speed and

to minimize possible errors from corrupted or overexposed images and image structures.

Materials & Methods

20

The resulting changes can be divided in four main topics. Change A, B and D are implemented

into the final script with switches for de-/activation. Change C was implemented without a switch

as it saves the script from crashing when processing inappropriate images. If the switches for

these changes are deactivated the complementary parts of the original script will be used for the

image processing parts instead. The changes are not named in an order within the script but after

the implementation order during the improvement progress within the thesis.

2.2.2.1 Neutralize Image Artefacts (Change A)

The original script sometimes produces reoccurring misidentifications of the ROI. These

misidentifications occur when there are multiple objects or organisms in the image, often

associated with some overexposed areas in the background (Figure 9). Next to the occurrence of

multiple organisms, bubbles or detritus, some images have artefacts of incoming light from the

LOKIs LEDs at the margins of the camera frame. When an object is cropped out right at the margin

of the original camera frame by the Medea-AV-GmbH code, the resulting image can have a bright

artefact on its margins as well. This artifact can be recognized as an object since its pixel intensity

values are high. It also often has a larger contour than the actual ROI containing the organism.

Change A was implemented to prevent the script from choosing the light artefacts as the ROI.

As described in chapter 2.2.1 the detected objects on the original image are turned into integer

clusters with the same integer for every pixel of one object (Figure 9). The contour length is than

calculated from this cluster. To improve the cluster selection, the ROI should not only be

determined by the longest contour line but also by the vertical and horizontal expansion of the

object in the image. This will ignore the light artefacts, which are just a few pixel high and only

stretch usually horizontally over the margin of the image (Figure 10). In addition, it will improve

the detection of organisms over false image attributes since most organisms are more bulky

objects.

Materials & Methods

21

Figure 9: Source image with multiple organisms (left) and an example of the integer clusters of
detected, unconnected objects within the image on the image mask (right). The different shades
of gray imply different clusters, which each have an identifying integer number.

Figure 10: Source image (left) and calculated image mask (right) showing the detected region of
interest (ROI), which is a light attribute of the LOKIs LEDs at the upper margin of the image
(purple).

This change is implemented at the point in the script after the first IMGmask is created through

dilating the image with the detected edges. The previous method of determining the ROI is

expanded in the following way:

If there are multiple objects recognizable on the image, the three objects with the longest contour

lines are extracted and their integers are saved in a new vector. In addition, a matrix called

SizeOfCluster is created to serve as a summery for the following calculated lengths. In the next

step, a loop iterates through this vector and for every integer cluster it searches for the first and

last row and column of its appearance. Beforehand, the first appearance variable is set to the

maximum number of rows or columns, the last appearance variable to 1. Two separate loops then

iterate through the rows and columns of the IMGmask. The code searches for the first match of

the selected integer in the row or column and if it appears, as well as, if it is smaller than the

predefined number, it is set as the first or last row or column of the cluster. Through these

Materials & Methods

22

parameters the length of vertical and horizontal expansion is calculated. The expansions are

weighted and then summed. As the horizonal expansion is supposed to have less influence it is

weighted with 0.1, while the vertical expansion is weighted with 1.

Within the SizeOfCluster matrix, the cluster with the largest weighted sum of expansions is picked

to identify as the ROI. In the following the IMGmask is reduced to the pixel that are equal to the

chosen cluster. This IMGmask will now serve as the final mask for the feature calculations.

To evaluate how well Change A improved the detection of the actual ROI, a random subfolder of

the LOKI dataset is chosen which contains a total of 1264 images. These images are processed

with the LOKI-Complete-data-primer script in two cases, once with the Change A switch on and

once with the Change A switch off. In the results, the source image is displayed together with a

contour line around the ROI. Within the 1264 result images it is manually counted how many

times the light attributes were chosen as the ROI for each case.

2.2.2.2 Operator and Edge Detection Improvement (Change B)

Change B aims to improve the edge detection itself. To calculate exact features from the

IMGmask, it is important, that the edges are detected as close to the ROI as possible and allow

the IMGmask to represent the organism as good as possible. Edges in an image can be detected

by using filter kernels in the form of ZxZ-matrices. Filtering is carried out by convolving the original

image I with the appropriate filter kernel h, producing the filtered image I’ (Equation 3, (Burger

& Burge, 2016)). Figure 11 shows an example of a linear convolution with a Sobel kernel on a

matrix that clearly shows an intensity gradient and therefore an edge. In the resulting matrix on

the right, the area of the edge is detected and enhanced, while regions of no gradient or intensity

changes are 0.

𝐼′[𝑎, 𝑏] = ∑ ∑ ℎ[𝑖, 𝑗] ∗

𝑁−1

𝑗=0

𝑁−1

𝑖=0

𝐼[𝑎 − 𝑖, 𝑏 − 𝑗]
Equation 3

Materials & Methods

23

Figure 11: Example of a linear convolution operation with a vertical 3x3 Sobel filter kernel (in red
on the left side) on a matrix with a clear intensity change (5x5 matrix on the left). The middle
shows the calculation steps for one cell (red number 50). The matrix on the right is the resulting
matrix if the kernel was applied to all cells. In this case, in order to calculate the cells on the margin
the matrix had to be replicated. The result shows a clear enhancement of the edge pixel cells while
the surrounding pixel are 0.

Figure 12: Two examples of source images together with the contour line (red dashed) using the
edge detection operation of the original LOKI-Complete-data-primer script. The green numbers
count the contour points. A gap between the contour and the organism is visible.

The original script uses a modified Sobel operator (Equation 1) on the LOKI images. It detects the

edges of the ROI by emphasizing the region of the edge gradients (Figure 11). This leads to the

edge contour line appearing to have some distance to the actual ROI in some images, as can be

seen in Figure 12. During manual inspection of the resulting images, it was seen that the modified

Materials & Methods

24

Sobel operator is generally working well for finding the ROI. Therefore, the improvement of the

kernel itself is not a concern for narrowing the gap between the edge contour and the ROI. During

the work on an improvement of the narrow contouring of the ROI different methods were tested.

One of the first implementations was the Canny edge detection (Canny, 1986) as it was

implemented for MATLAB by Liang in 2017 and published on Github (Liang, 2017). The motivation

to try this method for this thesis was found in Kekre & Gharge (2010) and Bature et al. (2015).

Using this method alone helped narrowing the gap between the contour line and the ROI but also

provided new problems as significant features of the organisms like the antennas of copepods

were cut off in the edge detection process. Different methods were tried for a better overall

image enhancement. But even if the LOKI has a relatively large depth of field (DOF) the imaged

organisms may be unevenly illuminated. Rotation of body and uneven illumination inhibit

enhancement strategies, e.g. contrast limited adaptive histogram equalization (CLAHE). Single

body features like antennas are not as enhanced as the main body. The following, final chosen

method turned out to be the most successful in narrowing the contour line while detecting the

organism with all its body-features. A successful edge detection was achieved by applying a

combination of different methods on the source image. Figure 14 shows a function graph, which

contains graphical elements that were inspired by figures in Burger & Burge, 2016. This graph is

divided into three sections (i-iii) showing every image processing step:

First section (i): A gaussian 5x5 filter G (Equation 7) is used to slightly blur the source image I in

order to remove unwanted noise in the background. Next, a 5x5 Sobel filter S (Equation 8), which

is very similar to the modified Sobel filter K (Equation 1), is used to detect the edges on the blurred

image. This filter has a slightly higher value in the middle which emphasizes this layer. Both, the

Sobel, and the modified Sobel filter kernel have a horizontal Sx and a vertical Sy component. The

horizontal is equal to the vertical, turned by 90° and vice versa. The horizontal Ix and vertical Iy

components of the filtered image are further processed in three different procedures. The first

equation uses the original edge detection implementation with the sum of the squared

components (Equation 4). The resulting image M2 does not have strong visible edges and will be

further processed in the next section. The second equation calculates the gradients magnitude

(Equation 5, Burger & Burge, 2016) with the two components. This equation pronounces the body

edges well, but also does not show very strong edges at the antennas. The third calculation on

the horizontal and vertical components produces a matrix with information about the local edge

orientation angle φ (Equation 6, Burger & Burge (2016)), which will later be used in the following

image processing steps.

Second section (ii): During manual revision of the individual image processing results, it was clear,

that neither of these first two edge detections (Equation 4, Equation 5) alone delivers good results

Materials & Methods

25

for the overall edge detection. Keeping in mind the goal for Change B of finding edge contours

that are close to the organism and not to cut off important features like antennas on copepods.

To achieve this goal the detected edges had to be further enhanced. M and M2 are therefore

summed in the next step. At first, a threshold method is used on M2 to produce a binarized image

with thick edges Mb
2. This image will be used to further enhance the edges detected in M. Mb

2 is

multiplied with 3 to enhance its effect on the sum. With M enhancing the finer edge structures

and Mb
2 giving more weight to the broader contours of the ROI the resulting summed image Ms

can be used successfully in the following Canny edge detection.

 𝑀2 = 𝐼𝑥
2 + 𝐼𝑦

2 Equation 4

𝑀 = √𝐼𝑥

2 + 𝐼𝑦
2

Equation 5

𝑎 = tan−1 (

𝐼𝑦
2

𝐼𝑥
2)

Equation 6

Third section (iii): The Canny edge detection implementation from Liang (2017) was translated to

R and slightly adapted do deliver the best results. The first steps of this edge detection

implementation have already been carried out with the grayscale conversion and the Gaussian

blur G (first two sections of the function graph, Figure 14). Equation 4 and Equation 5 determine

the magnitudes of the edges. Here the implementation was adapted by summing the calculated

magnitudes to solve the previously mentioned problem of the detection of thinner body features

like antennas. Next, the local edge orientation angle φ of the detected edges was determined

with Equation 6. The detected edges of the resulting summed-up image Ms are still thick.

Therefore, a non-maximum suppression (NMS) is used on the image Ms to find the pixel with the

maximum value along the edge gradient. The NMS implementation works by going through each

pixel of the image and if there is an edge, by checking the local edge orientation angle φ, and then

performing an interpolation between the pixel according to the angle φ. For example, all angles

with a value between 0° and 45° or between -135° and -180° are treated equally. Angle categories

and corresponding pixel are shown in Figure 13. The chosen neighboring pixel correspond to the

direction of the edge gradient. The interpolation between the pixel is used to improve the

accuracy of the NMS. If the intensity value of the image is greater than the interpolated values

the intensity value is kept for the output. If the neighboring interpolated value is higher, the

Materials & Methods

26

regarded intensity pixel is set to 0. Only the pixel with the maximum will be left to build the output

N of the NMS. After the NMS, the output is normalized and taken to the next processing step.

Double thresholding is performed on the image N to differ between strong and weak edges. The

threshold values (thigh, tlow) are calculated for every image depending on their maximum pixel

intensity, by multiplying a threshold ratio to the maximum value of the image N. If the image N

pixel values lie over the high threshold thigh they are categorized as strong edges and set to 1. If

they lie under the low threshold tlow, they are set to 0. Between these thresholds, pixel are

interpreted as weak edges and not changed in their values. While the edges are evaluated, four

vectors are filled with the indices of the row and column of the strong or weak edges. They are

used in the following step to find connected weak edges.

A loop iterates through the number of strong edge pixel and the Find-connected-weak-edges()

function scans through a +/-5 pixel neighborhood for weak edges. If a weak edge pixel is found,

it is set to 1 and the function is recalled for that pixel to scan its +/-5 pixel neighborhood for more

connected weak edges. Here a small adaptation was made to the code as this recursive function

would recall itself so many times it would crash the script. Therefore, a maximum number of

iterations was included into the function call. The last step of the Canny edge detection

implementation is the deleting of remaining weak edges. This step was given a sub switch in the

set-up section of the LOKI-Complete-data-primer script, as it turns out that deleting all the

remaining weak edges often deletes the antenna parts of the copepods or other thin or smaller

plankton body features. Therefore, deleting of weak edges was again disabled within the final

script and is not part of the function graph (Figure 14).

Since the Canny edge detection algorithm produces many intermediate result images a new

output was defined for the script where all image processing steps are displayed. In the final

implantation of the script only every nth-image has an output for the processing steps since it

takes up a high calculation time to produce the image plots. An example for the image processing

steps can be seen in the Results chapter 3.2 or in the function graph (Figure 14).

To evaluate Change A, 1264 images were processed with the LOKI-Complete-data-primer script

for two cases with Change A switched on for the first case and Change A switched off for the

second. For both cases Change B was switched off. To evaluate Change B, the script was run again

with Change B switched on. 100 out of the 1264 images were then randomly chosen and their

contour line features were extracted from the Image data.primedIMGdata output table. The

contour line length and area results of the case of Change B switched on were compared to the

results of Change B being switched off (Change A on). It was made sure, that those 100 images

did not contain cropped body features, that both results contain the entire organism and that the

contour line is not connected to light attributes or other organisms.

Materials & Methods

27

For a second evaluation of the improvement through Change B the resulting feature tables were

classified using linear discriminant analysis (LDA) on the Peru dataset, which was also primed

twice (Change B switched on, Change B switched off). Since the Peru dataset contains a relatively

small number of images (1023) the splitting and the testing were conducted fifty times to

calculate the mean classification accuracy and its standard deviation.

Gaussian blur filter

1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

x 273 -1

Equation 7

Sobel operator

 2 1 0 -1 -2

2 1 0 -1 -2

4 2 0 -2 -4

2 1 0 -1 -2

2 1 0 -1 -2

 2 2 4 2 2

1 1 2 1 1

0 0 0 0 0

-1 -1 -2 -1 -1

-2 -2 -4 -2 -2

Equation 8

Figure 13: Within the Canny edge detection algorithm, a process called non-maximum suppression
selects only the one pixel of an edge gradient that has the highest value. Within the applied non-
maximum suppression, the spaces between the pixel were interpolated for a more accurate
decision. To interpolate the correct pixel for each edge-point the direction of the edges angle - as
calculated in Equation 6 - is used to define which neighboring pixel are to be utilized for the
interpolation. All angles between 0 to 45 and -135 to -180 are treated in the same way. Here the
green color within the angle circle (left, first matrix) corresponds with the green colored matrix of
neighboring pixel (right). The same applies for different angles as can be followed by the color
code.

G =

Sx = Sy =

Materials & Methods

28

Figure 14: Function Graph in three sections, some of the graphic elements were inspired by Burger
& Burge (2016). The first and second section correspond to the image processing steps before the
Canny edge detection and the last section displays the Canny edge detection algorithm. First
section: The raw plankton image I is filtered with a Gaussian blur filter G and then further filtered

Materials & Methods

29

with the horizontal Sx and vertical Sy Sobel filter. The horizontal and vertical component are then
used in three different equations (Equation 4 and Equation 5 to combine the detected edges M2
and M and Equation 6 for the angle of the direction of the edge φ). Second section: M2 is used in
a thresholding procedure, where the edges of the region of interest are enhanced. This result Mb

2
is then tripled and added to M. Third section: The Canny edge detection algorithm consists of the
non-maximum suppression NMS. A double thresholding DT and the finding of connected weak
edges SE. Finally the discovered edges are dilated again to connect disconnected features that
belong together and then a binary image mask is created which is further processed in Change A
(3.1).

2.2.2.3 Detection of Large or Corrupt Images (Change C)

Some of the images that were provided by the Medea-AV-GmbH’s algorithm are corrupted. They

lead to errors in the original script, which is why Change C was implemented with the tryCatch()

function to find the corrupted images before the image processing procedure starts. If a

corrupted image is found image processing is skipped and instead of image features the entry for

the image data table is “Image is corrupted”.

When the LOKI is heaved with less speed during the last meters of the up-cast, it may occur that

large masses of plankton are accumulated close together and the ROI detection algorithm of the

Medea-AV-GmbH creates large images with multiple organisms and/or air bubbles (Figure 15).

When these images are processed in the image processing chain in the original script, as well as

in the so far improved script, they cause errors within the feature detection. To prevent these

images from getting processed two measurements are performed.

First, the up-casts were generally cut at the second mark when the telemetry data showed a

speed of less than 0.05 m·s-1 (chapter 2.1). Second, a security step was taken within the script to

exclude all images with a horizonal or vertical pixel length of over 1,500 pixel or a contour length

of over 20,000 pixel. For these cases, the feature extraction is also skipped and the entry in the

image data table is either “IMG too large” or “Contour too long”. When the image has the right

size but the organism is so large, that it has a very long contour line (over 20,000 pixel) the

calculation is slowed down and eventually the feature extraction will produce errors, and these

images are therefore not processed.

Materials & Methods

30

Figure 15: LOKI image of large accumulation of plankton, mostly diatoms (filling some parts of the
picture, examples in red circles) and air bubbles (examples in blue circles). This image has a height
of 696 pixel and a width of 2336 pixel and is therefore discarded from the image processing since
with all its detail it would slow down the image processing dramatically.

2.2.2.4 Parallelization (Change D)

By default, R uses only one of the central processing unit (CPU) cores of the computer to run an

R script. When a loop needs to be repeated several times to process an image, each time, each

of these iterations is carried out successively. There are packages in R that allow the script to be

parallelized, to use multiple cores and to speed up computation time. For a Windows operating

system the required packages are parallel and doSNOW, which provides a parallel backend for

the %dopar% function, and foreach(), which provides a foreach looping construct. This looping

construct is similar to the for-loop but is able to occupy multiple CPUs at the same time. The input

for a foreach-loop is an iteration variable and several different options plus the required

expression. For this part it was necessary to concatenate the output rows via rbind, include the

image processing packages and get an in-order output. Additionally, a progress information is

printed into the console and errors that come up within the expression are passed to keep the

entire script running. To achieve a parallel process, the entire telemetry and image priming

sections of the script were captured within a function for each process which were then called in

the foreach-loops. These loops are implemented at the end of each section. For them to run and

use multiple cores, first the number of available cores needs to be detected and are clustered.

This cluster is then given to a function to register the SNOW parallel backend with the foreach

package, which provides the mechanism to run the loop in parallel. After the foreach-loop is done

the cluster needs to be stopped again. As an evaluation measure the script was implemented with

and without switching on Change D on the same dataset and the processing time was determined

and compared for both runs.

Materials & Methods

31

2.3 Identification of Discriminating Features - Feature Selection

In the following an image feature is considered as a numerical value representing a specific

characteristic extracted from the image. The performance of a classifier can be compromised if

redundant or irrelevant features are included in the classification process (Sosik & Olson, 2007).

Thus, feature selection is an important task to reduce the dimensions of a dataset before

classification methods are applied. For the selection of image features, which - when combined -

make it possible to discriminate and classify plankton images, it is necessary to work with a pre-

classified dataset, in order to confirm the separating power of the selected features.

For this task, the Peru dataset is used. It contains 1,023 images in 21 classes (Appendix 1). The

LOKI-Complete-data-primer script produces an output vector with 92 parameters for each image.

Seventeen of these parameters represent meta-data information and 75 are the manually

calculated image features (Appendix 4). To find final features of high importance for the

discrimination of the plankton images, redundant information is excluded from the feature pool.

At first, the 75 features are examined for their linear dependencies. A pairs plot displays the linear

correlation coefficients of all features tested against each other. The R-script ‚R-Basic‘ from Schulz

(2017) for the lecture ‚Multivariate statistics‘ in the study course Marine Sensorik, University

Oldenburg, produces a pairs plot (Figure 16) showing the linear correlation coefficient on the

upper triangular sub-matrix and data elements plotted against each other on the lower side.

Figure 16 shows an example of a pairs plot with a few image features. The pairs plot is used to

gain an overview over the feature dependencies. To sort out features with high correlation

coefficients the cor() function is used in R to access the linear correlation coefficients. All features

which have linear correlation coefficients of >= 0.98 are listed and excluded from the feature

pool. During the exclusion process a linear discriminant analysis (LDA) is computed. If there are

strongly collinear features still present within the dataset, the lda() function from the R package

MASS will display a warning message. After excluding features with correlation coefficients

>= 0.98 this warning was not displayed anymore.

Subsequently a random Forest model is computed to provide the importance of the given

features in the form of the Gini Index. Since random Forests provide results based on a

randomized selection of features, a sufficiently large number of trees needs to be occupied to

provide a stable Gini Index. Strobl et al. (2007) imply that if the feature values in the dataset are

continuous and only features representing the same number of classes are considered in the

sample, feature selection with random Forest feature importance measures is applicable.

A random Forest is a classifier consisting of a collection of single tree-structured classifiers. Each

classifier is an independent decision tree, which casts a vote for a target class from a randomly

Materials & Methods

32

selected vector out of a dataset (Breiman, 2001). Due to a large number of trees, single

misclassifications do not weight heavily into the overall classification result. A decision tree

consists of a root, containing all data and all features, nodes, where decisions about separating

the data based on the given features are made, and branches, representing the classified data

after each node. For the creation of a decision tree it is also necessary to use a pre-classified

dataset, which was previously divided into a training and a testing dataset. At each node, a

predefined number of features is randomly drawn from the training dataset. If multiple features

are drawn, the feature that best separates the data is chosen to work as the decision rule within

this node. The data is then separated by this rule into different branches each leading to a new

node. If a branch with separated data only contains data elements from one class, it is turned into

a leaf and not further processed, to save computational time. If the testing dataset is now

processed with this tree the data elements are led through to branches of the tree into their

predicted class. Within a random Forest, which contains dozens to thousands of decision trees,

each tree casts a vote for the class of each data element. In a final majority vote the class for each

element is determined. The importance measure of the features is the previously mentioned Gini

Index.

The Peru dataset is used to run a random Forest model and to obtain the Gini Index information

on the features. Although each random Forest model is independent and randomly created, a

pooled analysis was performed to identify the importance of the individual features in the

analysis. A random Forest model with 1000 trees was performed 100 times, the Gini Index was

recorded for each iteration and the mean value of all iterations as well as the standard deviation

were calculated.

At this point it is not known how many features are needed for the best classification. Therefore,

the mean Gini indices were sorted decreasingly and turned into an exclusion vector within a for-

loop that excludes the features stepwise; based on their Gini Index, unimportant ones first. Within

this loop the accuracies of a LDA, a SVM and a random Forest classification are calculated. It is

noted that each classification method has their accuracy maximum at a different number of

features within the feature subset. The accuracy was calculated from the sum of the diagonal

proportion of the confusion matrix of each method. These accuracies were then plotted against

the number of features still included in the model to define the optimal feature subset size.

Materials & Methods

33

Figure 16: Example of a pairs plot of 5 image features. The diagonal cells show the names of the
features and a histogram of point distribution of all the cells underneath each diagonal cell. On
the upper triangular matrix, the linear correlation coefficient can be found, printed in a font size
corresponding to the value. On the lower triangular matrix, the elements of each feature are
plotted against the elements of the other features.

2.4 Classification Approaches with Multivariate Statistics, Machine Learning &

Convolutional Neural Networks

The classification of plankton images can be attempted with a multitude of possible methods. The

methods chosen within this thesis try to cover different types of classification tools. The

“traditional” classification uses multivariate statistics and machine learning algorithms. These

methods require a table of image features, which were extracted from the images as invariant

values such as contour line metrics, grayscale distribution, pattern characteristics and others. The

computation of a respective table for each classification method was introduced in section 2.3.

A more recent approach to plankton image classification is deep learning, respectively

convolutional neural networks (CNN). Their basic structure and architecture have been described

in chapter 1.3.3. CNNs need a large training dataset to produce reasonable image classification.

In contrast to machine learning methods, they do not require a previous manually extracted

feature table since they operate directly on the images, calculating all necessary deep features

during their own computation. For this thesis, the use of CNNs was an outlook to further

Materials & Methods

34

improvements to the LOKI software. Therefore, classifying the LOKI dataset was tested by using

transfer learning with the AlexNet (Krizhevsky et al., 2012) in MATLAB (The MathWorks, 2019),

and within the Object Detection application programming interface (API) (Roboflow, 2020) from

TensorFlow 2 (TensorFlow).

As a first approach the Sognefjord 26 groups (Appendix 1) dataset was classified with a random

Forest analysis. The respective results are displayed in 3.5. It was then decided to summarize a

few classes to their next higher rank in order to achieve better classification accuracies. The

motivation for this step will be discussed in chapter 4.3.

All following classification methods use the pre-classified dataset Sognefjord 14 groups or

Sognefjord augmented (Appendix 1) in order to train, validate and test their models. This dataset

contains 14 morphological classes (Figure 7 and Appendix 2). CNNs work best when a large

training set is available, therefore, the classes that contain less than 250 images are

supplemented with augmented images. For the image augmentation the function

Augmentation() within the R package OpenImageR was used. The images were shifted, rotated,

or flipped to produce a larger dataset for the smaller classes. For the classification approaches

with the LDA, random Forest and SVM the manually calculated feature tables are needed. The

feature tables were created on the original dataset without the augmented images due to a high

sensitivity of the image processing to edges that are created during the augmentation process.

As previously described, the result from the LOKI-Complete-data-primer script comes in form of

a table with 17 metadata parameters and 75 image features. For the pre-classified datasets, the

result tables are supplemented with a column for the folder name, respectively the class name.

The R script 20200909_CreateTrainAndTestDataset_FromClassedTable.R (Appendix 7) is used to

split the result table into two separate tables, one for training and one for testing. The size

percentages for each subset are 80 % for training and 20 % for testing. These split datasets are

used for the “traditional” classification methods. In the CNN approach the training and testing

datasets are produced within the MATLAB implementation. All classification approaches will be

visualized with a confusion matrix. Confusion matrices are used to quantify the accuracy of a

classifier (Hu & Davis, 2005; Luo et al., 2018). To create a confusion matrix, the actual class

affiliation or each data element needs to be known next to a class prediction for each element by

a classifying method. In a matrix or table, the number of true positive elements, the number of

true negatives, the number of false positives and the number of false negatives for each class are

derived from the actual classes and the predictions (Lumini & Nanni, 2019).

Materials & Methods

35

2.4.1 Multivariate Statistics - Linear Discriminant Analysis & random Forest

The linear discriminant analysis (LDA) searches for linear combinations of features allowing the

best possible discrimination of the given classes (Schlittgen, 2009). The LDA model is set up by

using a dataset with previous known classes. Building the model works by searching for the largest

distance between the mean feature values µ of the predefined classes with the smallest feature

variance s within the class (Equation 9). The LDA attempts to reduce the dimensions of a dataset

by condensing many explanatory features to a few derived gradients with the least possible loss

of information (Leyer & Wesche, 2007). A linear plane - called the discriminant - is searched, that

best separates between the classes. A discriminant can always just separate two classes, so when

multiple classes are present linear discriminants are calculated for every combination of classes.

A goal of the LDA is to determine which features of the dataset are most important in the

discrimination of the different classes (Schlittgen, 2009). The lda() function delivers the

coefficients of linear discriminants which weigh the features in terms of the ability to distinguish

between the classes. Higher values indicate a higher separating power of the features (Leyer &

Wesche, 2007).

The coefficients of linear discriminants wcs can be used to calculate the discriminant score DSc

(Equation 10; Schulz, 2017). The discriminant score shows the probability of an element with

properties for the given features to belong to a predefined class. The class constant kc is added

to the sum of the product of the discriminant coefficients wcs and the variables xs for the number

of features n in a dataset. The results of the LDA can be summarized and displayed in a

classification matrix, where the number of elements that have been sorted into a class is

displayed in comparison to the predefined classes (Schulz, 2017). When the LDA model is set up

with a training dataset, a testing dataset can be used to verify the ability of the model to

discriminate between the different classes. The lda() function in R (MASS package) can perform a

leave-one-out-cross-validation. This means that subsets of the original data are left out during

the creation of the model and the model is later validated by those subsets.

Next to using a LDA to classify the images with the feature table, a random Forest classification is

performed as well. The methods of a random Forest analysis have previously been described in

chapter 2.3.

 (µ1 − µ2)2

𝑠1
2+𝑠2

2 Equation 9

Materials & Methods

36

𝐷𝑆𝑐 = 𝑘𝑐 + ∑ 𝑤𝑐𝑠 ∗ 𝑥𝑠

𝑛

𝑖 = 1

Equation 10

2.4.2 Support Vector Machines (SVM)

When searching for the best separation of data element clusters in a two-dimensional dataset

with two classes, the best separator would be a line that lies in the middle of the outermost data

elements of each class (Figure 17, left). This line is called the support vector classifier. The space

on both sides of the separating line up to the first data elements of each cluster is called the

margin. These elements are called support vectors (circled in green in Figure 17, left) (Bennett &

Campbell, 2000). The example in Figure 17 (left) is simple since the data is linearly separable in a

two-dimensional space. If this does not apply, like for a one-dimensional dataset with two classes,

which has one class lying in-between the elements of the other one (Figure 17, right - empty

circles), the dataset can be squared (Figure 17, right - filled circles), to separate the classes by a

line (the support vector classifier).

Figure 17: Left: The figure was adapted from Bennett & Campbell (2000). Two datasets (blue
circles and red squares) are visualized in a two-dimensional plane. The solid line is a good
separator between the data clusters since it has maximally large margins (space until the dashed
line) towards the datapoints. The green circled data points represent the support vectors. Right: A
one dimensional dataset with two classes has one class lying in between values of the other and
cannot be separated by a line (empty circles). If the dataset is squared (filled circles), the classes
can be separated by a line. This is an example of a support vector machine.

This method is called support vector machine (SVM). Basically, the method starts with data in a

relatively low dimension and moves it to a higher dimension to find a support vector classifier

that separates the higher dimensional data. The SVM converts a dataset from a lower to a higher

Materials & Methods

37

dimensional space, by applying a fitting kernel function to systematically find support vector

classifiers in the higher dimension. The kernel function calculates the relationships between the

data elements, which are then used to find the support vector classifier. This calculation is

conducted by applying the “kernel trick”, which allows the calculation of the relationships

between the data elements to take place in the same dimension using the dot product, instead

of converting every element to the higher dimension making the calculation more complex.

Generally, the margin of the support vector classifier is sought to be maximized while the error is

minimized (Bennett & Campbell, 2000). This sometimes means that there will be a tradeoff

between the bias of a classifier to sort a point into the right class and the variance a single class

may have.

To implement a SVM model in R, the R package e1071 is used. Within the SVM-script

20200909_SVM_14classes_37057_26features.R (Appendix 7) the pre-classified training table -

with the selected features for the SVM - is called to create a fitting SVM model. After the first

SVM model has been set up, it is tuned with the tune() function to find the best values for the

required input variables gamma and cost. The gamma variable defines how much influence every

training element has towards finding the support vector classifier. When gamma is low even the

elements further away from the support vector classifier influence its layout and when gamma is

high, just the elements close to the support vector classifier impact its layout. The cost variable

defines a tradeoff between the training accuracy and the margin space for the prediction

function. This means that high cost values create a complex support vector classifier which

misclassifies the least possible amount of training data, while a lower cost value will lead to a

simpler prediction function (Krizhevsky et al., 2012). The tune() function returns the best values

for these variables, which are included into the improved SVM model, which is then used to

predict the classes for the test set.

2.4.3 Convolutional Neural Networks

The general architecture of a convolutional neural network (CNN) has been outlined in the

introduction (see chapter 1.3.3). Within this chapter the learning process of a deep neural

network is further explained and first approaches with transfer learning using a 12-layer AlexNet

(Krizhevsky et al., 2012) as well as training a larger CNN for object detection with TensorFlow2

(TensorFlow) will be introduced.

Figure 18, was adapted from (Chollet, 2018) and shows the learning structure of a deep neural

network. The input is processed by convolutional, pooling, and fully connected layers until

resulting in a prediction of a class affiliation. These results are compared with the true target class

Materials & Methods

38

and the loss function computes a score of how well the prediction fit to the true target. This loss

score is used as a feedback signal, which is send to an optimizer adjusting the layer weights in the

deep neural networks’ architecture. This feedback mechanism is called backpropagation and is

the central algorithm in deep learning (Chollet, 2018). If a new CNN is created, the layer weights

are first set randomly and are then adjusted during the training process, with transfer learning

the weights have predefined values from previous learning processes (Pan & Yang, 2009). The

weights are further adjusted and tuned with the new dataset during the transfer learning training

process.

Figure 18: Scheme of the learning process within deep neural networks architecture. The
prediction result of the layers is compared to the true targets creating a loss score. This loss score
is used to optimize the weights on the layers as a feedback and learning mechanism over a
destinated number of iterations. The figure was adapted from Chollet (2018)

To approach the classification of LOKI plankton images using CNNs transfer learning was used

with the Deep Learning Toolbox Model for AlexNet Network (Appendix 6) in MATLAB. Additionally

to this toolbox, the Deep Learning Toolbox (Appendix 6) was also installed to provide the needed

framework. AlexNet was trained on 1.2 million images for 1,000 classes by Krizhevsky et al. in

2012. The pre-trained architecture has learned how to classify images and can be fine-tuned with

the LOKI plankton images to serve as a classifier for this custom cause. In MATLAB AlexNet can be

loaded into the workspace as a network structure. Its layers can be alternated and supplemented,

and the network options can be modified. The two layers of a CNN which are modified for a

transfer learning implementation are the fully connected layer and the output layer. The required

numbers of classes to be detected within the dataset are provided to these layers.

Within the MATLAB implementation, the LOKI images are stored in an image datastore with the

imageDatastore() function. This function allows access to the images without having to load them

into the MATLAB workspace. Furthermore, they can be stored using their folder names as a label.

Materials & Methods

39

This is useful when the images are split into training, validation, and testing dataset in the next

step. The validation dataset has not been mentioned for the “traditional” methods. It is used

within the training of a CNN to validate the classifying accuracy right away and provide feedback

information within the training process before using the created CNN on the testing dataset. With

the function splitEachLabel() all three data subsets can be created randomized in the required

dataset sizes. The size of the training dataset should be equal for all classes to avoid an overfitting

of the network for the classes with the largest amount of data. An established partition of the

dataset is to use 70 % of the images for training, 20 % for validation and 10% for testing. If the

dataset is imbalanced a fixed number of images can be set for each set. AlexNet requires the

images to have a format dimension of 227 x 227 x 3 pixel. Therefrom, 227 pixel are for width and

height and 3 pixel in the third dimension for color images (red, green and blue channels). The

LOKI images have various sizes and are all grayscale images, thus having only two dimensions. The

image datastore can be augmented to fit the LOKI images to the required format.

The most important CNN options - that can be modified and experimented with - are the learning

rate and the momentum. The learning rate represents the step size approaching the optimal

weights for the CNN in the learning process. After each iteration, the feedback mechanism

changes the step direction to get closer to the best weights. The momentum is the proportion of

the angle of the step taken for the next iteration. If the momentum were set to 1, the next step

would turn 100 % into the new direction, calculated by the adjusted weights. If the momentum

were set to values < 1, only this proportion of the angle would be used for the next step (Chollet,

2018).

After the neuronal network is fine-tuned with the LOKI training and validation images, it is used

on the test dataset. To acquire an overview over the CNNs results, a confusion matrix is created,

and the percentage of the overall accurate classification is calculated. The important variables to

consider for judging the overall success of the CNN classification are the accuracy and the loss

score.

A second approach uses a TensorFlow2 environment. TensorFlow is an end-to-end open source

platform for machine learning (TensorFlow). For custom object detection, it provides an

application programming interface (API) in the form of a Google colab (Roboflow, 2020) notebook

with an established deep learning algorithm. This API uses the YOLOv4 (Bochkovskiy et al., 2020)

CNN architecture.

To implement custom data into their setup, a tutorial (Solawetz, 2020) is provided. For a faster

computation speed an online connection to a GPU is provided. It was possible to run this

algorithm with the provided example images. In a next step the LOKI images are provided to the

Materials & Methods

40

network. To use the LOKI images for this cause, they need to be annotated by a labeling tool

beforehand. Roboflow is a website and online tool (Roboflow Inc., 2020) for data augmentation,

labeling and creating datasets split into training, validation, and texting sets. It was used to

annotate a small dataset containing 180 images in four classes (Peru small, Appendix 1) which

could be implemented within the TensorFlow environment afterwards. Training this

implementation of a CNN takes up a long time and requires a lot of computational power. Due to

technical limitations the approach for this implementation was left at this state and no results are

available. When a GPU is locally available, it will be tested again in the future.

Results

41

3 Results

The results chapter is organized into the Changes A-D to improve the original script and into the

outcome of the feature selection, and image classification approaches.

3.1 Change A

Change A aimed to improve the selection of the ROI within the image when light attributes were

present, which have longer contour lines than the actual organism. Therefore, the vertical and

horizontal expansions of the object clusters were considered. Figure 19 displays the before and

after results for two sample organisms for Change A. On the left side, before Change A, the

resulting contour line encloses an object on the top of the image (Figure 19, left). All images with

these light attributes in the top margin have the y-coordinate 0 within the original camera frame.

This means the images are taken from the outer margin of the frame and might be influenced by

the LEDs illumination. On the right side, after Change A, the contours are now enclosing the ROI

instead of the light attribute (Figure 19, right). To evaluate Change A a set of 1264 images was

primed with the LOKI-Complete-data-primer script twice. Once with Change A switched off and

once with Change A switched on. Within both result folders the number of images with a contour

line surrounding the light attribute instead of the organism was manually counted. With Change

A switched off 46 out of 1264 falsely identified images were counted, while with Change A

switched on no images had a light attribute identified as the ROI. Change A improves finding the

ROI in cases like the light attribute influence (Figure 19). But it has a weakness if there is an

background object visible within the image that has a longer contour and also greater vertical and

horizontal expansion (Figure 20). For these cases, no further improvements are implemented yet,

but ideas are mentioned in chapter 5.

Results

42

Before implementing Change A After implementing Change A

Figure 19: Two example organisms in their source image together with the edge detection contour
result from before (left) and after (right) implementing Change A. Before Change A the light
attribute on the upper image margin was detected for both source images and after implementing
Change A the organism was detected correctly.

Results

43

Figure 20: Two example plankton source images with the contour lines of the edge detection in
misidentified regions of interest (ROI). The images show the actual ROI in the center, but each
image also contains another organism which appears cropped at the margins of the image. In
these cases, the cropped organism has a longer contour and a larger vertical expansion, which is
an important part of the decision process in Change A to choose the correct ROI. Therefore, these
ROI are misidentified before and after Change A. If the contour line of the cropped organism in the
right image was to be shorter than the contour of the center organism, this would be an example
of Change A worsen the output, just because the cropped organism has a large vertical expansion.

3.2 Change B

To goal of implementing Change B, was to improve the edge detection through narrowing down

the contour line and finding the entire expanse of an organism without cropping body features

like antennas. Figure 21 shows the before and after images for Change B. For these example

images it is clearly visible that the contour line lies much closer to the organism after

implementing Change B. The last pair of images (Figure 21, third row) shows a polychaeta

organism with lots of fine bristles, their structure is harder to detect than the clearer lines of the

copepod (Figure 21, second row) or the Bacillariophyceae (Figure 21, first row).

To evaluate the improvement through Change B a test was conducted using 100 random images

out of a set of 1264 which were primed with the LOKI-Complete-data-primer script twice, once

with Change B switched off and once with Change B switched on. For all selected images it was

manually revised, that the contour line contains only one organism, without connections to other

organisms or light attributes and without cropped body features. Two of the contour line image

feature that were calculated within the feature extraction process are used here to compare the

success of the contour line in each test to enclose the organism the tightest. The first feature is

the Contour Line Area, basically the area of the IMGmask. This value is expected to decline as the

Results

44

contour moves closer to the organism and reduces the occupied space. Still it is possible that

after Change B some finer organism structures are enclosed within the contour, which might

increase the area slightly. The second feature, which is compared, is the Center to Contour Points

Median. This feature describes the distance of each contour pixel to the center int of the

IMGmask. As the contour closes is this feature is also expected to decrease in its value. Table 1

shows the results of this test. For the difference value of the features the after result was

subtracted from the before result. After implementing Change B, the Contour Line Area, as well

as the Center to Contour Points Median are smaller in their values. This result suggests an

improvement success for the edge detection implementation in Change B.

Table 1: Evaluation of the improvement in edge detection through Change B. Two contour image
features, which are expected to decrease in their value with a closer contour line are compared
for 100 random images primed with (after Change B) and without (before Change B) switching on
Change B. The difference columns show the subtraction of before-after.

 Contour Line Area

(mean)

Contour Line Area

(difference)

Center to Contour

Points Median

(mean)

Center to Contour

Points Median

(difference)

Before

Change B
12123.11

2126.79

73.90

4.17
After

Change B
9996.32 69.73

Figure 22 displays one of the new outputs of the image processing, showing every processing step

especially during the Canny edge detection process. On this particular example image it can be

seen, that the image enhancement through adding the results of the binarized Smag
2

(IMGedges_SumSqrt_T on Figure 22) to Smag (IMGsobelMag on Figure 22) facilitates the detection

of the antennas which would have otherwise had to small intensities to be detected. The

IMGdoubleThresh and IMGstrongEdge show that through the function

FindConnectedWeakEdges() the weak edges of the antenna are reconnected with the strong edge

of the body of the copepod.

Results

45

Before implementing Change B After implementing Change B

Figure 21: Three examples LOKI plankton images of the edge detection from before (left) and after
(right) implementing Change B. The produced contour line lays much closer at the organism itself
when Change B is implemented.

Results

46

Figure 22: Example of the new output produced by the LOKI-Complete-data-primer script
visualizing the single image processing steps. The order of the steps is left to right and top to
bottom and will be numbered from 1-12 for better comprehension. The image processing starts
with the source image (1) which is then blurred to cancel out unwanted noise (2). The edge
detection images, produced through Equation 4 (3) and Equation 5 (4) and the threshold image
(5) are displayed. (6) consist of the sum of (3) and (5) and visualizes the enhanced detected edges
that will be further processed with the Canny edge detection algorithm. Non-maximum
suppression (7), double thresholding (8) and the finding of connected weak edges (9) is conducted.
For this image processing the deletion of the weak edges is disabled, to produce more accurate
results with the current state of the LOKI-Complete-data-primer script, therefore, (9) and (10) are
the same result. Finally, the binarized image mask is produced (11) and the contour can be applied
to the source image (12) for visual confirmation of the edge detection process.

Results

47

As a second evaluation of the image processing improvement through Change B, a LDA was used

to classify the Peru dataset, which was pre-classified and primed twice, once with Change B

switched off and once with Change B switched on. Both results tables were split randomly into

training sets with 80 % of the image data, and testing sets with 20 % of the image data. Since the

Peru dataset contains a relatively small number of images (1023) the splitting and the testing

were conducted a hundred times to calculate the mean success value and standard deviation.

Every iteration uses the same indices of randomly selected testing and training data for before

and after Change B. Table 2 shows the results of this test. Before implementing Change B the

classification accuracy is 69.59 with a standard deviation of 0.028 and after Change B was

implemented the classification accuracy is 68.74 with a standard deviation of 0.029 .

Table 2: Mean accuracy and standard deviation of support vector machine classification of Peru
data set before and after Change B was implemented in order to evaluate the impact of the
improved edge detection on the classification accuracy.

 Before Change B After Change B

Mean accuracy of SVM / % 69.59 68.74

Standard deviation 0.028 0.029

3.3 Change C and D

After implementing Change C and therefore skipping images that are either corrupted, too large

or have a too long contour line, possible errors have been prevented and the script runs smoothly.

In a test, the LOKI-Complete-data-primer script was executed with Change D switched on and the

processing time of the TMD and IMG processing sections were compared to a run of the script

when Change D was switched off. Both tests were performed on the same computer. The

parallelization used 11 instead of 1 CPU cores. The results can be seen in Table 3. Without

parallelizing the process, the script takes 153 min to finish. When it is parallelized, it only takes a

total of 25 min. Implementing Change D saved a lot of processing time (Table 3). For this test and

amount of data, the parallel version runs more than six times faster than the normal version.

Results

48

Table 3: Processing times of the LOKI-Complete-data-primer script on 1524 telemetry and 1936
image files before and after implementing the parallelization in Change D.

 Time Before Change D/min Time After Change D/min

TMD processing time
(1524 TMD files)

1.28 0.23

IMG processing time
(1936 IMG files)

152.16 24.82

Total processing time 153.44 25.05

3.4 Feature Selection

The image processing of the LOKI plankton images results in a table with 92 features calculated

for each image. The feature selection process goes through two separate steps to find features,

which allow the best classification of plankton images. The first step is an exclusion of features

having redundant information and linear correlation coefficients of R2 >= 0.98. Therefore, a pairs

plot and the cor() function are used in R. Within the pairs plot four features are visible which are

constant for every image. Those are excluded before further analysis. Data points are also

excluded for the feature selection when they show large outliers for many of the features.

Outliers make it harder to detect visible dependencies in the pairs plot. After the exclusion of all

features with a linear correlation coefficient of R2 >= 0.98, the dataset was shortened to 49

features. The 49 features left are then ranked in the order of their Gini Index in the second step

of the feature selection process. Table 4 lists the features in order of their mean Gini indices

together with their standard deviation. The Gini Index was calculated by running a random Forest

model with a thousand trees for a hundred times and then calculating the mean Gini Index and

its standard deviation for each feature out of the hundred executions.

To find the best subset of features for the classification of the LOKI plankton images, it was noted

that each method has their accuracy maximum at different numbers of features. Therefore, each

method as assigned an own feature subset to create the highest classification accuracies. The

results of the feature exclusion can be found in the corresponding classifier result chapter in 3.5.

The optimal number of features for each method will include all features ranked by the Gini Index

up to the optimal number.

Results

49

Table 4: Image features sorted after the value of the mean Gini Index together with the Gini Index
standard deviation (SD) after a hundred execution of a random Forest model with a thousand trees
and the standard deviation of the Gini index.

 Image Feature Mean
Gini
Index

SD
Gini
Index

 Image Feature Mean
Gini
Index

SD
Gini
Index

1 COO: Solidity 40.63 0.55 26 Size: Mass center Y 18.12 0.40

2 COO: Centre to contour
points variance

34.61 0.65
27

Intensity: Quantile 0.80
17.63 0.42

3
Pixel border distances: SD 31.71 0.48

28 Haralick: Homogeneity
[ASM]

17.59 0.35

4
COO: Haralicks circularity 31.48 0.50

29 Pixel-border distances:
median

17.57 0.38

5 Size: Elliptical fit major
axis

30.41 0.61
30

COO: Convexity
16.82 0.29

6
Haralick: Image
correlation [COR]

29.77 0.53
31 Haralick: Image

information measure
correlation [f13]

16.74 0.29

7 Pixel-border distances:
sum

28.34 0.55
32 Recurrence: Laminarity

[LAM]
16.61 0.32

8 Size: Elliptical eccentricity 26.79 0.49 33 Intensity: Quantile 0.40 16.35 0.37

9 Haralick: Sum of squares
[VAR]

24.40 0.49
34 Recurrence: Ratio

[DET/RR]
16.06 0.30

10
COO: Convex hull points 24.27 0.37

35 Haralick: Image difference
entropy [DEN]

14.80 0.30

11
COO: Centre to contour
points sum

24.22 0.60
36 Haralick: Image

information measure
correlation [f12]

14.70 0.26

12 COO: Eccentricity 24.21 0.48 37 Intensity: Quantile 0.30 14.52 0.32

13 Intensity: Quantile 0.60 23.89 0.47 38 Size: Mass center X 14.44 0.30

14
COO: Elongation

23.84 0.42
39 Haralick: Image entropy

[ENT]
14.23 0.30

15 Intensity: Quantile 0.70 23.29 0.48 40 Intensity: Abs. deviation 14.09 0.28

16 Intensity: SD 23.14 0.48 41 Intensity: Quantile 0.90 13.61 0.37

17 Recurrence: Total
recurrence

22.33 0.50
42 Haralick: Image sum of

entropy [SEN]
13.35 0.27

18 Shape: Radius minimum 22.07 0.41 43 Intensity: Quantile 0.20 12.91 0.27

19 Recurrence: Trapping
Time [TT]

21.05 0.44
44

Intensity: Quantile 0.95
12.66 0.32

20 Intensity: Quantile 0.50 20.21 0.38 45 Intensity: Quantile 0.10 9.62 0.21

21 Recurrence: Determinism
[DET]

19.64 0.42
46 Size: Elliptical major axis

angle
9.58 0.16

22 COO: Contour line height 19.41 0.40 47 Intensity: Quantile 0.05 8.03 0.19

23 Recurrence: Recurrence
rate [RR]

19.32 0.40
48

Intensity: Quantile 0.01
6.79 0.15

24 Haralick: Inverse
difference moment [IDM]

18.73 0.35
49

Intensity: Quantile 0.99
6.27 0.24

25 Haralick: Image summed
variance [SVA]

18.60 0.35

Results

50

3.5 Classification using Multivariate Statistics, Support Vector Machines and

Convolutional Neural Networks

To classify the LOKI plankton images four different methods were applied ranging from

multivariate statistics with a LDA and a random Forest over “traditional” machine learning with

SVM to a modern approach using CNNs. The results of the methods are addressed in the following

chapters. Every chapter also contains the feature selection result of the respective method. The

rows of the confusion matrices (Figure 23, Figure 25, Figure 27, Figure 29, Figure 30) displayed in

this chapter contain the actual class affiliation while the columns contain the predicted class. The

two extra rows on the bottom display the percentage of the prediction success per column, while

the two extra columns on the right display the absolute number of data elements in a class which

were predicted correctly, respectively incorrectly. To calculate the accuracy of a classification the

sum of the diagonal proportion of the confusion matrix is calculated. The prop.table() function

shows the proportion of the data sorted into each class, the diagonal contains all entries that

where sorted into the correct class. Therefore, their sum accounts for the overall classifying

accuracy. The classification accuracy of all methods on a testing dataset with will be discussed

subsequently in chapter 4.4.

In a first approach the random Forest classification was used on the dataset Sognefjord 26 groups.

The number of images features used was 40, which will be explained in detail in the respective

random Forest chapter 3.5.2. The resulting confusion matrix is displayed in Figure 23. A red box

was drawn around the Copepoda classes where a higher misclassification of images can be

observed. This was taken as a reason to further summarize these classes for a better classification.

The classification result of this random Forest analysis was 76.56 %.

The datasets used for the following classification are the Sognefjord augmented dataset for the

CNNs and the Sognefjord 14 groups dataset for all other methods. During image processing with

the LOKI-Complete-data-primer script 182 images of the Sognefjord 14 groups dataset were

marked as too large or as having a too long contour line around the objects on the image.

Therefore, they were excluded from the dataset processed with the classifying methods.

Appendix 1 and Appendix 2 give an overview over the available datasets and their number of

image files.

Results

51

Figure 23: Confusion matrix of the random Forest classification of the Sognefjord 26 groups dataset in 26 classes. The true classes are displayed in the rows and the
predicted classes in the columns. On the right two extra columns are displayed showing the absolute number of images that have been correctly or incorrectly
classified. The sum per row is the number of images per class. The two extra rows on the bottom show the percentage of correct and incorrect predictions per class.
The red box outlines the higher misclassification within all Copepoda classes.

Results

52

3.5.1 Linear Discriminant Analysis Classification

The linear discriminant analysis (LDA) uses 43 out of the 49 image features to reach its highest

classification accuracy. Figure 24 shows the process of excluding the features stepwise in the

order of their increasing Gini Index - unimportant features first - for the LDA. The accuracy

declines slowly with a decreasing number of features. When only about 10 features are left in the

dataset the accuracy declines a lot faster.

Figure 24: After the exclusion of highly correlating image features, a random Forest model was
used to calculate the importance (Gini Index) of the remaining features. This graph shows the
classification accuracy of a linear discriminant analysis (LDA) over a decreasing number of features
ranked after the Gini Index. The LDA reaches its highest accuracy using 43 image features (vertical
line).

The LDA classification was computed with the lda() function in the R package MASS. Two LDA

models were created with the training dataset. For the first model the cross validation (CV) option

within the lda() function was activated. If the CV is activated the model’s return contains a list

with the calculated components classes as a self-prediction. The classification accuracy of the

model training data is 81.11 %. In the next step the LDA model without CV is used to predict the

classes for the testing dataset. The classification accuracy of the prediction is 80.94 %.

Results

53

The confusion matrix for the LDA classification is displayed in Figure 25. When it is described in

this section the single classified elements will be addressed as images, it just needs to be noted,

that all classifications, except the CNN approach, work with the image feature table for the

classifications.

The true classes are displayed in the rows, while the predicted classes are displayed in the

columns (Figure 25). The last two columns show the absolute true (blue) and false (red)

classifications of each class. Their sum is the number of images that went into the testing dataset.

On Figure 25 it is visible, that the dataset is strongly imbalanced. After using 80 % of the images

for the training dataset the class Amphipoda only had three images left for the testing dataset.

On the bottom, the two extra rows display the percentage of images that were predicted into the

correct class within this column (blue) and that were predicted wrongfully (red). The Copepoda

class contains most of the images and is also the class that has been predicted to belong to most

of the other classes, while still having one of the highest accurate classification results. The

highest accurate classification can be found within the bubble images and the lowest for the

Amphipoda and Polychaeta images which have been classified to belong to the Copepoda class.

Figure 25: Confusion matrix of linear discriminant analysis of the Sognefjord 14 groups dataset in
14 classes. The true classes are displayed in the rows and the predicted classes in the columns. On
the right two extra columns are displayed showing the absolute number of images that have been
correctly or incorrectly classified. The sum per row is the number of images per class. The two
extra rows on the bottom show the percentage of correct and incorrect predictions per class.

Results

54

3.5.2 Random Forest Classification

To classify LOKI plankton images with a random Forest the optimal number of features for the

image feature subset is 40. This can be derived from Figure 26, identically to the feature selection

for the LDA displayed in Figure 24, a random Forest model was calculated for every subset of

features for a decreasing number of features. The features were ranked after their Gini Index.

The accuracy of the random Forest models is quite stable in between 49 to about 15 features.

After containing less than 15 features the accuracy declines rapidly. Since the random Forest are

based on randomized computations, the exact number of features to deliver to highest

classification accuracy might vary slightly if this test would be repeated multiple times.

Figure 26: After the exclusion of highly correlating image features a random Forest model was
used to calculate the importance (Gini Index) of the remaining features. This graph shows the
classification accuracy of a random Forest model over a decreasing number of features ranked
after the Gini Index. The random Forest reaches its highest accuracy using 40 image features
(vertical line).

To calculate the classifiers accuracy on a training and testing dataset a 1,000 tree random Forest

model was built with the randomForest() function in the equally named R package. One of the

return values of a random Forest model is the confusion matrix. If the model is trained on the

entire Sognefjord 14 groups dataset, the computation time takes 6.87 min and has a classification

Results

55

accuracy of 88.91 %. When a random Forest model is being trained on a training dataset,

containing 80 % of randomly picked image data from each class and then tested on the remaining

20 % the computation time takes up 4.85 min and has a classification accuracy of 88.72 %.

Figure 27 displays the random Forest classifications confusion matrix, which is equivalent in its

structure to the LDA confusion matrix. The random Forest classification has an overall higher

classification accuracy, which is mirrored in the confusion matrix. Similar like in the LDA confusion

matrix, it can be seen, that classes with a smaller number of images generally classify worse than

classes with a high number of training and testing images.

Figure 27: Confusion matrix of the random Forest classification of the Sognefjord 14 groups
dataset in 14 classes. The true classes are displayed in the rows and the predicted classes in the
columns. On the right two extra columns are displayed showing the absolute number of images
that have been correctly or incorrectly classified. The sum per row is the number of images per
class. The two extra rows on the bottom show the percentage of correct and incorrect predictions
per class.

3.5.3 Support Vector Machine Classification

Same like for LDA and random Forest the feature selection for SVM classification was conducted

using the decreasing number of Gini Index ranked image features and a classifier loop testing its

performance for every feature subset. Within the first feature selection tests it was noted that

the SVM accuracy over a deceasing number of features had a clear maximum when it was used

with constant gamma and cost variables for each iteration. Therefore, the final SVM feature

selection loop also included a SVM tuning for each iteration. This loop was computational

expensive and took over 10 h to finish. But by including the tuning, the variables can be set

optimal for each new subset of features. The feature selection graph (Figure 28) shows an overall

Results

56

stable accuracy, which is slightly meandering until the number of features drops under 15. Next

to the accuracy maximum at 26 features, a SVM with 16 features also show a similar high

classification accuracy.

Figure 28: After the exclusion of highly correlating image features a random Forest model was
used to calculate the importance (Gini Index) of the remaining features. This graph shows the
classification accuracy of a support vector machine (SVM) over a decreasing number of features
ranked after the Gini Index. The SVM reaches its maximum accuracy using 26 image features
(vertical line).

The R package e1071 is used to create a SVM model with a training dataset containing 80 % of

the Sognefjord 14 groups dataset. The SVM model can be improved by using the tune() function.

The tuned model is then used to predict the classes for a testing dataset containing 20 % of the

Sognefjord 14 groups dataset. The tuning variables chosen by the tune() function are 0.05 for

gamma and 30 for the cost variable. The SVM classification accuracy is 92.22 % for the training

dataset and 88.08 % for the testing dataset. The elapsed time for tuning and training was 10.6 h

and it took 18 s for the prediction of the testing dataset.

Figure 29 displays the confusion matrix for the SVM. The structure is again equivalent to the

confusion matrices seen before. When the three confusion matrices of the “traditional” methods

are viewed side by side, the higher classification accuracy of the random Forest and SVM methods

Results

57

are visible. In between these two, random Forest has less accurate classifications for 9 out of 14

classes but higher classification accuracies in the larger classes.

Figure 29: Confusion matrix of the support vector machines on the Sognefjord 14 groups dataset
in 14 classes. The true classes are displayed in the rows and the predicted classes in the columns.
On the right two extra columns are displayed showing the absolute number of images that have
been correctly or incorrectly classified. The sum per row is the number of images per class. The
two extra rows on the bottom show the percentage of correct and incorrect predictions per class.

3.5.4 Convolutional Neural Network Classification

The MATLAB AlexNet transfer learning implementation was used to train an adaptation of the

AlexNet neural network for LOKI plankton image classification. Since the dataset Sognefjord 14

groups is strongly imbalanced, the images in the smaller classes were augmented to create a

larger basis for the training and testing dataset. The smallest number of images in one class after

augmentation was 250. 190 random images per class were used for the training dataset, 30 for

the validation dataset and all images left were used for the testing dataset. For the larger classes,

this leads to having a testing dataset that is a lot larger than the training dataset, which is not the

optimal setting. AlexNet was adapted to the number of classes available and then trained with

the plankton images. The adapted network was named LOKInet and will be referred by this name.

Within the experimental range (Table 5) the best learning rate for the LOKInet was 0.001 and the

best momentum was 0.9. Each training and testing of the LOKInet takes about 3,5 h on one of the

computers CPUs. Table 5 shows that the classification accuracy does not necessarily improve with

a higher validation frequency (comparing trial 1, 11 & 13). When the momentum is smaller the

learning rate needs to be higher to get a better accuracy (comparing trial 3 through 6). When

Results

58

keeping the learning rate constant but rising the momentum, the accuracy shows that the

momentum has its optimal value at 0.9 (comparing trail 10 through 12). Trails 7, 8 and 11 indicate

an optimal value for the learning rate of 0.001. With these values LOKInet achieves a classification

accuracy of 87.75 %.

Table 5: Variation of learning rate, momentum, and validation frequency to improve the
classification accuracy of the LOKInet approach.

No. of trail Learning rate Momentum Validation frequency
(every nth iteration)

Classification
accuracy / %

1 0.0010 0.90 3 84.00

2 0.0050 0.95 3 77.89

3 0.0010 0.60 3 84.20

4 0.0005 0.60 3 80.31

5 0.0010 0.60 2 83.26

6 0.0100 0.60 2 83.44

7 0.0100 0.90 2 78.61

8 0.0005 0.90 2 81.94

9 0.0005 0.95 2 83.66

10 0.0010 0.80 2 82.35

11 0.0010 0.90 2 87.75

12 0.0010 0.95 2 77.47

13 0.0010 0.90 1 79.38

Figure 30 displays the LOKInet confusion matrix. It differs to the previously seen confusion

matrices by having a much larger testing dataset for the classes since the images were augmented

for this dataset. The highest misclassification appears within the Copepoda class, for images being

mistaken as Mysidae or Acantharia. Since the Copepoda class has so many images, the majority

is still classified correctly. Classes that have been filled up with augmented images are for example

Amphipoda or Polychaeta. They have been classified correctly almost entirely by LOKInet.

Results

59

Figure 30: Confusion matrix of the convolutional neural net classification of the Sognefjord 14
groups dataset in 14 classes. The true classes are displayed in the rows and the predicted classes
in the columns. On the right two extra columns are displayed showing the absolute number of
images that have been correctly or incorrectly classified. The sum per row is the number of images
per class. The two extra rows on the bottom show the percentage of correct and incorrect
predictions per class.

Discussion

60

4 Discussion

4.1 Objective 1: Evaluation of the adapted edge detection operation

Improving the edge detection was the first objective of this thesis. The “traditional” image

classification is based on the manual image features, which can be derived from the image mask

or contour line, which again is extracted from detected edges. As the edge detection is improved

the derived image features and classification should be more accurate. Within this thesis four

major changes were implemented into the original LOKI-Complete-data-primer script. Two of

them aimed at receiving a more accurate image mask. Change A helped in the detection of the

actual region of interest (ROI) in images with multiple organisms or objects. Despite being

successful for the reviewed set of images, the object selection, based heavily on the mere

expansion of the object within the image, has some remaining flaws. Organisms with a slim

appearance might be discarded when being compared to imaging artefacts within the image

having a larger horizontal expansion. Usually, the object of interest is the most illuminated and

centered object within the image. In the Conclusion & Recommendation chapter 5 a suggestion

is made for how to improve the selection of the object of interest in images with multiple

detected objects in further studies.

Change B includes established edge detection methods and combines them in a new way to

enhance the ROI and deliver tightly cut edges that include even fine-scale body-features and

appendages of the organisms or object.

Viewing the result images of the original script, the edge detection was working, but it still had

some room for improvement. Therefore, the original approach using a Sobel operator was not

banned from the process. Within the pool of simple edge detectors, the extended (5x5) Sobel

operator works fairly well (Kekre & Gharge, 2010). It was also used by Corgnati et al. (2016) on

their imaging system for monitoring gelatinous zooplankton. The Canny edge detection is a well-

established method (Bature et al., 2015; Oskoei & Hu, 2010) and is successfully used for different

fields of visual research, e.g. mammography (Rampun et al., 2017). The Canny edge detection

implementation by Liang (2017) worked well in R and produced reasonable results.

The simple process of adding two different multiplication results of the vertical and horizontal

Sobel edge detection delivered satisfying image masks. This was evaluated by classifying the

images by their feature table with a LDA before Change B was applied to the image processing

chain. The result was then compared to the classification results from the same feature table

Discussion

61

after Change B was applied. The classification accuracy was similar for both cases with a slightly

higher accuracy of the image feature table produced before Change B was implemented. This

result slightly contradicts the expected outcome of the improved edge detection. But it also shows

that important discrimination features are not necessarily derived from a more accurate contour

line. As Change B also still has objectives for improvement, the development of this classification

accuracy should be observed in further experiments.

Other developers of plankton imaging systems report difficulties applying the Canny edge

detector. Sosik & Olson (2007) indicate that the Canny algorithm could not be optimized to avoid

artifacts from noise and illumination variations while reliably detecting challenging cell features.

Their images display the organism with higher pixel intensities on a light gray background which

varies in brightness. LOKI’s advantage for this issue is, that it provides images with a high signal

to noise ratio and high contrast to the background.

It needs to be noted that the Canny edge detection requires a lot of computational time. Akiba &

Kakui (1998) even state that edge detection in general is a computational expensive operation.

Nevertheless, it is necessary to manually produce image features for “traditional” classification

methods.

In their publication Dai et al. (2017) used different approaches to extract information from their

plankton images. Their overall approach using a combination of calculating texture features and

a CNN classification is discussed in detail in chapter 4.4. One of their image processing steps

leading to the feature extraction includes operations similar to the ones in this thesis as they also

use the Sobel operator and Canny edge detection. Their overall classification accuracy was

improved by adding information of global and local feature extraction - which were produced by

prior edge detection - to their model. This shows that even if there are more modern approaches

to image classification, the manual feature extraction and a previous well working edge detection

are still crucial to producing highly accurate results.

Change C was successful in discarding errors from too large or corrupt images and will further be

employed in the script. Change D helped to save computational time but can further be improve

by measures explained in the Recommendations 5.

4.2 Objective 2: Evaluation of the implemented feature selection.

Each plankton image contains information about the size, shape, roundness, etc. of the captured

organism. To extract these information, the image is processed with the LOKI-Complete-data-

Discussion

62

primer script, detecting the edges of the organism, and producing a final image mask outlining

the exact position of the organism within the image. From the image mask a variety of features

describing the organism can be obtained. Cheng et al. (2018) review feature extraction

techniques for plankton images and their publication includes a few features that have not yet

been calculated for the LOKI images. For example, the Fourier Boundary Descriptor is a common

geometric feature used by Sosik & Olson (2007), Tang et al. (1998) and Verikas et al. (2015). Wang

et al. (2016) propose a method where local binary patterns, inner-distance shape context and

geometric and grayscale features are extracted separately and used in different classifiers before

the results are merged in a final classification. They state that they achieve better performance

by combining these different types of features processed in separate classifiers. The LOKI-

Complete-data-primer script also uses different types of features but separated classification was

not yet attempted within this thesis. The different types of features calculated with the LOKI-

Complete-data-primer deliver similar information about certain image characteristics. If

processed separately, the information could be kept and would not be sorted out during feature

selection. This should be a point considered for further research with the LOKI plankton images.

The LOKI-Complete-data-primer script produces an output with 75 manual image features from

which some include similar information. Classification methods work best with a set of features

without redundant information and collinearity (Dash & Liu, 1997). The feature selection process

implemented in this thesis investigates different phases to find the best subset of features for

each method. Highly (>= 0.98) correlating features are sorted out manually by using a pairs plot

and the cor() function. The Gini Index is computed for the remaining features. Using the

corresponding classification method, its classification accuracy is computed for each feature

subset in a loop with step-wise excluded features, based on their Gini Index significance. The

usage of the Gini Index was validated with the conclusion from Strobl et al. (2007), who imply,

that if a dataset has continuous values for its features and if the features do not account for

different numbers of classes - as it is common in gene expression studies - the feature selection

with random Forest importance measures is not affected by their findings. Their findings imply

that the Gini Index method would be very biased and not reliable if applied to datasets that do

not meet the mentioned criteria. The Sognefjord dataset meets the criteria as the features have

continuous values and account for the same number of plankton classes for each image.

The process implemented within this thesis can be assigned to the wrapper feature selection

methods. Feature selection methods can generally be subdivided into filter and wrapper methods

(Dash & Liu, 1997). While filter methods are not dependent on a classification algorithm, wrapper

methods use such an algorithm for the evaluation of the selected features. This makes wrapper

methods more accurate but also very time intensive.

Discussion

63

Within the publications for plankton classification only a few make it transparent which method

was used for their feature selection. Verikas et al. (2015) also conducted a separate feature

selection for their different classifiers, being a random Forest and a SVM. They have used a

classification-accuracy-based floating search for both methods where the classification accuracy

of the method is determined within a loop similar to the used method within this thesis. The

difference is that their method starts with a best pair of features, then decides which one presents

the most decrease in classification accuracy when excluded, discard this one, and adds two more

features to repeat this process. This process leaves more room for variation within the feature

selection than the applied method. For future implementations, method like classification-

accuracy-based floating search can be accessed within R, over the packages FSinR and caret. They

could be included in further experimentation with the LOKI image features.

4.3 Objective 3: Evaluation of the reduced feature table regarding the

discriminability of labeled morphotype groups, based on numerical

parameters using LDA, random Forest and SVM.

Since early versions of the LOKI system and software the authors are aiming at providing a

complete processing chain from image capturing towards autonomous classification and

presorting of major morphological groups. First adaptations of SVMs have been implemented on

morphological features in 2009 (Barz et al., 2009). Latest approaches further combined time

series analyses methods, like recurrence features (Schulz et al., 2016) with a LDA approach to

classify morphological groups achieving a classification accuracy of 62.8 %.

Within this thesis further classification possibilities are applied to the reduced LOKI image

features table. A LDA , a random Forest analysis and a SVM were conducted on a dataset with

37,057 labeled LOKI images. Table 6 summarizes the classification results of the different

multivariate and machine learning methods. For the Sognefjord 14 groups dataset the LDA was

the fastest but least accurate classifier with 80.94 % accuracy. The SVM took a long time for tuning

the function parameters but was then trained a little faster than the random Forest. Both

methods have similar high classification results of 88.08 % (SVM) and 88.7 % (random Forest).

The random Forest reached 76.56 % classification accuracy on the Sognefjord 26 groups dataset.

Each method had a distinct set of features, chosen to achieve the best possible classification

accuracy.

Discussion

64

Table 6: Summary of classification accuracies of different classifying methods. The dataset name,
number of classes, number of features, training and testing time and the accuracy are listed.

Classification

method

random

Forest

LDA random

Forest

SVM CNN

Dataset Sognefjord

26 groups

Sognefjord

14 groups

Sognefjord

14 groups

Sognefjord 14

group

Sognefjord

augmented

Classes 26 14 14 14 14

Features 40 43 40 26 -

Training time /

min

4.39 0.05 4.97 Tuning: 631.63

Training: 4.65

192.00

Prediction

time / min

0.04 0.01 0.10 0.29 13.33

Classification

accuracy of a

testing set / %

76.56 80.94 88.72 88.08 87.75

The intragroup specific misclassification of Copepoda organisms (Figure 23) show that the basic

morphotype recognition of Copepoda-Like organisms has worked well and has led to the

reduction of the dataset by summarizing the Copepoda organisms to achieve higher classification

accuracy. Further and more detailed approaches should try to optimize the classification accuracy

of the Sognefjord 26 groups dataset to reach lower taxonomic levels that can be discriminated by

image feature extraction and classification.

For the Sognefjord 14 groups dataset the highest classification accuracy of the random Forest can

be compared to the results of similar approaches in research on plankton image recognition from

the past. Verikas et al. (2015) list the accuracy of some different techniques for automated

plankton classification of phytoplankton species from 1989 until 2007 which lie between the

values of 70 % and 89 %. Bi et al. (2015) classify their images for Jelly-Like, Arrow-Like and

Copepod-Like morphotypes which can also be found within the Sognefjord 14 groups dataset.

They can also account for classification accuracies of > 80 %. It needs to be noted that most of

the different plankton classification approaches are working on different sets of images captured

by differently working devices. While LOKI or ZooScan (Grosjean et al., 2004) images have a very

high signal to noise ratio, since the background noise is prevented by having a narrow flow-

through chamber or a plankton scanner, other devices like the GUARD1 (Corgnati et al., 2016)

take images in the open water column and also account for classification accuracies of ~ 85 %.

Discussion

65

LOKI images have a very high resolution and therefore a high potential to achieve even higher

classification rates.

Gorsky et al. (2010) compare six different classification algorithms including random Forest and

SVM for the question which one performs best on zooplankton classification. Their results also

find the highest classification accuracy with the random Forest application. The SVM classification

performs almost equally well and is a classifying tool used by several researchers of the plankton

image classification community (Bi et al., 2015; Corgnati et al., 2016; Hu & Davis, 2005; Sosik &

Olson, 2007; Wang et al., 2016; Zheng et al., 2017) and beyond (Guyon et al., 2002). In R tuning

a SVM is a timely procedure but delivers better overall classification.

All confusion matrices (Figure 23, Figure 25, Figure 27, Figure 29 and Figure 30) show the highest

misclassification among the Copepoda class, mostly for other classes being falsely classified as

Copepoda. For LDA, random Forest and SVM the dataset was split 80/20 % for training and

testing. Since the Copepoda class contains a much larger number of images compared to the

other classes, the classification rates are likely biased while eventually disregarding the

information the smaller classes provide. It is believed that the classification accuracy for equally

large datasets would be higher. Many images were also classified as Detritus which is also a very

large class compared to others. There is an approach for addressing imbalanced datasets by Lee

et al. (2016) for CNN based classification where they constructed class-normalized data by data

thresholding for large-sized classes. Another approach which also applies for the “traditional”

methods is data augmentation. In order to produce larger training and testing datasets the

original images are flipped, rotated, shifted, distorted, etc.

The R package OpenImageR provides an Augmentation() function to apply such changes to the

images. The issue that came up while trying to augment the LOKI plankton image data was, that

the newly created background by rotating or shifting an image creates an intensity gradient to

the original image background which is then detected by the LOKI-Complete-data-primer script.

Therefore, different methods need to be applied in order to augment the dataset for

classifications on the feature tables. Of course, manual labeling and sorting of new datasets is

also a possibility. Especially after the classification with random Forests has reached a fairly high

accuracy which can help to classify new datasets and create larger training datasets for future

classification approaches.

Figure 31 shows example organisms of all 14 classes used for the classification. For the human

eye most of them probably seem easy to differentiate. Except for maybe image k (Mysidae) and

l (Amphipoda) which to the untrained eye appear fairly similar. The few Amphipoda images have

been classified as Mysidae - and the other way around - only with the LDA classification.

Discussion

66

Figure 31: Example organisms of all 14 classes from the Sognefjord 14 groups or Sognefjord
augmented dataset captured with the Lightframe On-Sight Keyspecies Investigation (LOKI)
system. a – Bubble, b – Chaetognatha, c – Cnidaria, d – Polychaeta, e – Ostracoda, f – Copepoda,
g – Detritus, h – Ctenophora, i – Egg, j – Faeces, k – Mysidae, l – Amphipoda, m – Acantharia,
n – Euphausiidae

4.4 Objective 4: Approach of direct image discrimination with convolutional

neural networks.

The last objective of this thesis was the approach to classify LOKI plankton images with a CNN.

The multivariate and machine learning methods applied in this thesis achieved a good image

Discussion

67

feature classification of up to 88.72 %. Nevertheless, Lumini et al. (2019) state that deeper

learning approaches are increasingly replacing the manual feature extraction and classification

by “traditional” methods. CNNs have become an important tool for visual and speech recognition

and natural language processing over the past years (Gu et al., 2018). There are many variants of

CNN architectures, but their basic components are similar, consisting of convolutional, pooling

and fully connected layers (Gu et al., 2018). To successively train a CNN for image recognition,

large amounts of training data need to be available and even then, it might take weeks, even on

high-performing systems, to adjust all weights for the CNN layers (Aggarwal, 2018). There have

been multiple constructions of shallow and deep CNNs for image recognition. An online contest

for image recognition (ImageNet, 2016) has been running over the past years challenging

researchers to constantly build better CNNs classifying the large ImageNet database. For

example, AlexNet was built by Krizhevsky et al. (2012), winning the ImageNet challenge of 2010.

Instead of constructing a whole new CNN for the LOKI image recognition, the architecture, and

trained weights of AlexNet can be used to classify LOKI images. This process is called transfer

learning (Pan & Yang, 2009; Shao et al., 2015). Transfer learning is particularly useful when the

existent resources, like labeled dataset size or computational power, are not meeting the

requirements to build an individual CNN. MATLAB offers a toolbox for deep and transfer learning

applications with AlexNet (Appendix 6).

The Sognefjord augmented dataset was used to fine-tune the AlexNet network. The architecture

was slightly adapted to fit the number of classes in the Sognefjord augmented dataset. The

adapted network was trained on the plankton images and called LOKInet. LOKInet was then used

to classify the remaining testing dataset and achieved a classification accuracy of 87.75 %.

AlexNet and other pre-trained CNNs were also used for multiple plankton classification

publications (Dai et al., 2016; Dunker et al., 2018; Lumini & Nanni, 2019). Dai et al. (2016) use a

dataset with 9460 images in 13 classes and achieve a classification accuracy of 93.6 %. Lumini &

Nanni (2019) worked with three different datasets and 17 different pre-trained CNN architectures

and achieved classification accuracies reaching from 80.4 % – 95.1 %. Dunker et al. (2018) use a

hybrid method of CNNs, which will be explained in the next section, with 46,797 phytoplankton

images in 9 classes in 3 three different life cycle stages and achieve a classification accuracy of

97 %.

Deep learning approaches for plankton classification have repeatedly been superior to

multivariate and machine learning classification of manual features (González et al., 2019; Lumini

et al., 2019; Moniruzzaman et al., 2017). Dunker et al. (2018) provide a summarizing table of the

accuracies for phytoplankton classification. They also include a few references with SVM, decision

trees and LDA classification. It is obvious, that CNN classification reaches much higher accuracies.

Discussion

68

After comparing the classification results of the “traditional” and multivariate methods to the

deep learning approaches of other publications, one might ask why even spend more time on the

development of the manual features for “traditional” plankton classification. The reason may be

seen in classification approaches like the one from Dai et al. (2017) who use a combination of

CNNs and “traditional” manual feature extraction to classify plankton images and achieve a better

classification rate using their hybrid method than only using CNNs. Lumini et al. (2019) use an

ensemble of CNNs, which are each fine-tuned differently to classify multiple plankton and coral

image datasets and show that they achieve higher classification accuracies with their ensemble

than with single CNNs. Dunker et al. (2018) work exclusively with phytoplankton images and

present a similar approach to Dai et al. (2017), by using multiple CNN classifications on separate

but complementary image channels assessing characteristic information. Dunker et al. (2018)

even go a step further and classify the life cycle stage of the respective phytoplankton organisms.

Reviewing the Sognefjord datasets it is noted that the majority of classes are zooplankton

organisms instead of phytoplankton. A lot of the recent plankton classification research has been

conducted on phytoplankton images (Dunker et al., 2018; Sosik & Olson, 2007; Verikas et al.,

2015). Morphologically, the major difference of phyto- and zooplankton lies within their cell

structure (Tait & Dipper, 1998). While plants have solid cell walls and usually make for a more

static appearance of the organism from different viewing angles, animal cells do not have cell

walls, which leads to a higher variability of the organism’s morphology. By taking this into

consideration, it was expected that classifying methods might have a higher accuracy for

phytoplankton images than for zooplankton images. This can be ruled out since Dai et al. (2016,

2017) have made advances in specifically training their ZooplanktonNet on zooplankton. Their

hybrid approach was previously mentioned and achieved a high classification rate of up to 96.3 %.

Since the LOKI dataset contains large groups of zooplankton Dai et al.'s (2017) approach could

also be a future perspective for the LOKI image classification.

Another interesting software that has been developed for the classification of plankton images is

MorphoCluster by Schröder et al. (2020). Their clustering method is based on assigning

annotations to clusters of similar images. A user can then decide if those clusters are annotated

correctly, which leads to a growing of the original cluster to enclose more similar images.

Deep features are the features calculated by a neural network. They can also be extracted from

the network and used with “traditional” classifying methods. González et al. (2019) also employ

CNNs to obtain deep features, rather than use the CNN as a classifier. They extract deep features

from plankton images and feed them in their machine learning based quantification algorithms.

Discussion

69

As previously mentioned in chapter 2.4.3 the TensorFlow approach was not pursued further for

this thesis but it is noted as a potential approach for further studies.

Conclusion & Recommendations

70

5 Conclusion & Recommendations

Plankton image classification has come a long way in the past years and has advanced from time

consuming manual classification to automated classification approaches with deep neural

networks, and fine-scale information retrieval on planktonic organisms. On this road, image

processing has improved for edge detection and feature extraction to feed multivariate and

machine learning algorithms as a predecessor in classifying. This thesis has specifically worked

with labeled LOKI plankton images from in R/V Heincke cruise HE434 in the Sognefjord, Norway

on their path from edge detection through feature selection and classification. New approaches

have been developed in all parts of the thesis helping to progress the entire LOKI software in the

future.

The LOKI image edge detection algorithm has been progressed using the Canny edge detection

for more narrow contour lines leading to more exact image masks. LOKI image features have been

selected using the Gini Index and individual stepwise feature selection for the “traditional”

classifiers LDA, random Forest and SVM. The classification accuracies of these methods has reach

up to 88.72 %, which can be considered a successful but still improvable classification for the

37,057 images in 14 classes.

Self-implemented neutral networks need large amounts of labeled training data and

computational power and time. Therefore, transfer learning is an accessible and reasonable tool

for plankton image classification. Studies have shown that the use and combination of traditional

image classification by manual image features can successfully be combined with newer

approaches of deep learning to further improve the classification accuracy. Pre-trained networks

can be adapted and fine-tuned in order to serve as plankton image classifiers.

Therefore, the development of the LOKI plankton classification system should further consider

working with deep features, deep learning classifier and maybe even hybrid models.

For further work and development on the edge detection algorithm within the LOKI-Complete-

data-primer script a few objectives will be suggested for additional improvements. For choosing

the object of interest within an image with multiple organisms, particles, or light attributes a

further manual experimentation is needed on whether the object is always the one in the center

of the image. If so, there could be a higher importance set on the center pixel. This could be

implemented in a form of an image partition, like a chessboard, and if the object of interest covers

more of the center cells it is more likely to be chosen for the final image mask. Another idea could

be to investigate the illumination and intensity of the cluster of pixel of multiple organisms since

the organism in the center of the image tend to be illuminated better.

Conclusion & Recommendations

71

The computational time of the LOKI-Complete-data-primer script should also be object of further

research and improvement as the parallelized approach has some vulnerabilities. Since a large

(e.g. 113,551 x 92) result matrix is created by the parallel foreach() operation and the

concatenation of new result rows takes up much computing time, an empty matrix of that size

should be created prior to the image processing and feature extraction.

Within the most recent version of the LOKI-Complete-data-primer script there are some functions

within the implementation of Change B that can be further improved, e.g., the deleting of weak

edges within the Canny edge detection algorithm. As of now, this function is ignored within the

script since it worsens the results. However, with the conducting of further experiments with the

double thresholding and the retrieval of connected weak edges this function might help to further

detail the edge detection.

For the feature extraction there are additional image features, used by other authors (as

discussed in chapter 4.2), that could also be implemented into the script. It should also be

examined if certain feature combinations describe the differences of certain classes better than

others. Following the lead of Wang et al. (2016) or Dai et al. (2017), there is a large scope for

experiments for feature extraction, selection and classification.

As data augmentation was also critical for LOKI plankton images due to newly created edges by

rotation or shifting, an approach for this issue might be the following idea: An image primer

similar to the LOKI-Complete-data-primer script could be applied, using the image mask as a

cutout to create a new source images with all pixel intensities of the non-image mask set to 0.

This would create a completely black background which would leave all kind of possibilities for

image augmentation.

There is more room for experimentation and further improvement in all aspects of the LOKI

plankton image classification, starting at some hardware traits up to fine tuning of various

classification parameters. Edge detection as well as feature extraction, selection and classification

should be reconsidered on the basis of the results of this thesis, which has revealed new

approaches and further possibilities towards state of the art plankton recognition.

References

i

References

Aggarwal, C. C. (2018). Neural Networks and Deep Learning. Springer International Publishing.

https://doi.org/10.1201/b22400-15

Akiba, T., & Kakui, Y. (1998). Design and testing of an underwater microscopy for the study of

zooplankton distribution. UT 1998 - Proceedings of the 1998 International Symposium on

Underwater Technology, 25(1), 17–20. https://doi.org/10.1109/UT.1998.670051

Badewien, T. (2014). Cruise Report HE434.

Banse, K. (1964). On the vertical distribution of Zooplankton in the sea. Progress in Oceanography,

2(C). https://doi.org/10.1016/0079-6611(64)90003-5

Barz, K., Schulz, J., & Hirche, H.-J. (2009). LOKI, a new optical system for high-resolution plankton

investigations. ICES ASC I:17.

Baschek, B., Schroeder, F., Brix, H., Riethmüller, R., Badewien, T. H., Breitbach, G., Brügge, B.,

Colijn, F., Doerffer, R., Eschenbach, C., Friedrich, J., Fischer, P., Garthe, S., Horstmann, J.,

Krasemann, H., Metfies, K., Merckelbach, L., Ohle, N., Petersen, W., … Ziemer, F. (2017). The

Coastal Observing System for Northern and Arctic Seas (COSYNA). Ocean Science, 13(3),

379–410. https://doi.org/10.5194/os-13-379-2017

Bature, U. I., Murtala, M. B., & Nasir, A. Y. (2015). Evaluation Of Image Detection Techniques.

Journal of Multidisciplinary Engineering Science and Technology (JMEST), 2(12).

Beaugrand, G., Reid, P. C., Ibanez, F., Lindley, J. A., & Edwards, M. (2002). Reorganization of North

Atlantic marine copepod biodiversity and climate. Science, 292(1–3), 1692–1694.

https://doi.org/10.1029/134GM10

Benfield, M. C., Grosjean, P., Culverhouse, P. F., Irigoien, X., Sieracki, M. E., Lopez-Urrutia, A., Dam,

H. G., Hu, Q., Davis, C. S., Hanson, A., Pilskaln, C. H., Riseman, E. M., Schultz, H., Utgoff, P. E.,

& Gorsky, G. (2007). RAPID: Research on Automated Plankton Identification. Oceanography,

20(SPL.ISS. 2), 172–218. https://doi.org/10.5670/oceanog.2007.63

Bennett, K. P., & Campbell, C. (2000). Support vector machines: hype or hallelujah? SIGKDD

Explor. Newsl., 2(2), 1–13. https://doi.org/10.1145/380995.380999

Bi, H., Guo, Z., Benfield, M. C., Fan, C., Ford, M., Shahrestani, S., & Sieracki, J. M. (2015). A semi-

automated image analysis procedure for in Situ plankton imaging systems. PLoS ONE, 10(5),

1–17. https://doi.org/10.1371/journal.pone.0127121

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of

Object Detection. http://arxiv.org/abs/2004.10934

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.

References

ii

Burger, W., & Burge, M. J. (2016). Working with Discrete Signals. In Digital Image Processing.

https://doi.org/10.1080/03043799408928319

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-8(6), 679–698.

Cheng, K., Cheng, X., & Hao, Q. (2018). A review of feature extraction technologies for plankton

images. ACM International Conference Proceeding Series, 48–56.

https://doi.org/10.1145/3292425.3293462

Chollet, F. (2018). Deep Learning with Phyton. In Manning.

http://faculty.neu.edu.cn/yury/AAI/Textbook/Deep Learning with Python.pdf

Christianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other

Kernel-based Learning Methods. Cambridge University Press.

Corgnati, L., Marini, S., Mazzei, L., Ottaviani, E., Aliani, S., Conversi, A., & Griffa, A. (2016). Looking

inside the ocean: Toward an autonomous imaging system for monitoring gelatinous

zooplankton. Sensors (Switzerland), 16(12), 1–28. https://doi.org/10.3390/s16122124

Cowen, R. K., & Guigand, C. M. (2008). In situ ichthyoplankton imaging system (ISIIS): System

design and preliminary results. Limnology and Oceanography: Methods, 6(2), 126–132.

https://doi.org/10.4319/lom.2008.6.126

Culverhouse, P. F., Williams, R., Benfield, M., Flood, P. R., Sell, A. F., Mazzocchi, M. G., Buttino, I.,

& Sieracki, M. (2006). Automatic image analysis of plankton: Future perspectives. Marine

Ecology Progress Series, 312(April), 297–309. https://doi.org/10.3354/meps312297

Dai, J., Wang, R., Zheng, H., Ji, G., & Qiao, X. (2016). ZooplanktoNet: Deep convolutional network

for zooplankton classification. OCEANS 2016 - Shanghai.

https://doi.org/10.1109/OCEANSAP.2016.7485680

Dai, J., Yu, Z., Zheng, H., Zheng, B., & Wang, N. (2017). A Hybrid Convolutional Neural Network for

Plankton Classification. Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes

in Computer Science, 10118, 102–114. https://doi.org/https://doi.org/10.1007/978-3-319-

54526-4_8

Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1(3), 131–

156. https://doi.org/10.3233/IDA-1997-1302

Davis, C. S., Hu, Q., Gallager, S. M., Tang, X., & Ashjian, C. J. (2004). Real-time observation of taxa-

specific plankton distributions: An optical sampling method. Marine Ecology Progress Series,

284, 77–96. https://doi.org/10.3354/meps284077

Davis, L. S. (1975). A survey of edge detection techniques. Computer Graphics and Image

Processing, 4(3), 248–270. https://doi.org/10.1016/0146-664x(75)90012-x

References

iii

Dunker, S., Boho, D., Wäldchen, J., & Mäder, P. (2018). Combining high-throughput imaging flow

cytometry and deep learning for efficient species and life-cycle stage identification of

phytoplankton. BMC Ecology, 18(1), 1–15. https://doi.org/10.1186/s12898-018-0209-5

Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C., & Wanless, S. (2006). From

plankton to top predators: Bottom-up control of a marine food web across four trophic

levels. Journal of Animal Ecology, 75(6), 1259–1268. https://doi.org/10.1111/j.1365-

2656.2006.01148.x

Gini, C. (1912). Variabilità e mutabilità. In Reprinted in Memorie di metodologica statistica (Ed.

Pizetti E). https://ui.adsabs.harvard.edu/abs/1912vamu.book.....G

González, P., Castaño, A., Peacock, E. E., Díez, J., del Coz, J. J., & Sosik, H. M. (2019). Automatic

plankton quantification using deep features. Journal of Plankton Research, 41(4), 449–463.

https://doi.org/10.1093/plankt/fbz023

Gorsky, G., Ohman, M. D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J. B., Cawood, A.,

Pesant, S., García-Comas, C., & Prejger, F. (2010). Digital zooplankton image analysis using

the ZooScan integrated system. Journal of Plankton Research, 32(3), 285–303.

https://doi.org/10.1093/plankt/fbp124

Grosjean, P., Picheral, M., Warembourg, C., & Gorsky, G. (2004). Enumeration, measurement, and

identification of net zooplankton samples using the ZOOSCAN digital imaging system. ICES

Journal of Marine Science, 61(4), 518–525. https://doi.org/10.1016/j.icesjms.2004.03.012

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuaib, B., Liu, T., Wang, X., Wang, L., Wang, G.,

Caic, J., & Chenc, T. (2018). Recent Advances in Convolutional Neural Networks. Elsevier

Pattern Recognition, 77, 354–377. https://doi.org/10.1016/j.patcog.2017.10.013

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. N. (2002). Gene Selection for Cancer Classification

using Support Vector Machines. Machine Learning, 46, 389–422.

https://doi.org/10.1007/978-3-540-88192-6-8

Hagemann, J. (2016). Umweltwissenschaftliches Forschungsprojekt - LOKI.

Haralick, R. M., Dinstein, I., & Shanmugam, K. (1973). Textural Features for Image Classification.

IEEE Transactions on Systems, Man and Cybernetics, SMC-3(6), 610–621.

https://doi.org/10.1109/TSMC.1973.4309314

Hays, G. C., Richardson, A. J., & Robinson, C. (2005). Climate change and marine plankton. Trends

in Ecology and Evolution, 20(6 SPEC. ISS.), 337–344.

https://doi.org/10.1016/j.tree.2005.03.004

Hensen, V. (1887). Ueber die Bestimmung des Planktons oder des im Meere treibenden Materials

an Pflanzen und Thieren (Jahrgang 1). V. Bericht der Commission zur Wissenschaftlichen

Untersuchung der Deutschen Meere.

References

iv

Hu, Q., & Davis, C. (2005). Automatic plankton image recognition with co-occurrence matrices

and Support Vector Machine. Marine Ecology Progress Series, 295, 21–31.

https://doi.org/10.3354/meps295021

ImageNet. (2016). Stanford Vision Lab, Stanford University, Princeton University.

http://www.image-net.org/

Kekre, H. B., & Gharge, S. (2010). Image segmentation using extended edge operator for

mammographic images. International Journal on Computer Science and Engineering, June

2014.

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of

deep convolutional neural networks. Artificial Intelligence Review, 1–70.

https://doi.org/10.1007/s10462-020-09825-6

Kirsch, R. A. (1971). Computer Determination Biological of the Constituent Images. Computers

and Biomedical Research 4, 328, 315–328.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence,

97(1–2), 273–324. https://doi.org/10.1016/s0004-3702(97)00043-x

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep

Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25(2).

https://doi.org/10.1145/3065386

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

https://doi.org/10.1038/nature14539

Lee, H., Park, M., & Kim, J. (2016). Plankton Classification On Imbalanced Large Scale Database

Via Convolutional Neural Networks With Transfer Learning. IEEE International Conference

on Image Processing (ICIP), 3713–3717. https://doi.org/10.1109/ICIP.2016.7533053

Leow, L. K., Chew, L. L., Chong, V. C., & Dhillon, S. K. (2015). Automated identification of copepods

using digital image processing and artificial neural network. BMC Bioinformatics, 16(18), 1–

12. https://doi.org/10.1186/1471-2105-16-S18-S4

Leyer, I., & Wesche, K. (2007). Multivariate Statistik in der Ökologie. Springer Lehrbuch.

https://doi.org/10.1007/b137219

Liang, J. (2017). CannyEdgeDetector.m. http://justin-liang.com/tutorials/canny/

Lombard, F., Boss, E., Waite, A. M., Uitz, J., Stemmann, L., Sosik, H. M., Schulz, J., Romagnan, J. B.,

Picheral, M., Pearlman, J., Ohman, M. D., Niehoff, B., Möller, K. O., Miloslavich, P., Lara-

Lopez, A., Kudela, R. M., Lopes, R. M., Karp-Boss, L., Kiko, R., … Appeltans, W. (2019). Globally

consistent quantitative observations of planktonic ecosystems. Frontiers in Marine Science,

6(MAR). https://doi.org/10.3389/fmars.2019.00196

References

v

Lumini, A., & Nanni, L. (2019). Ocean Ecosystems Plankton Classification. In M. Hassaballah & K.

M. Hosny (Eds.), Recent Advances in Computer Vision, Studies in Computational Intelligence.

Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-03000-1_11

Lumini, A., Nanni, L., & Maguolo, G. (2019). Deep learning for plankton and coral classification.

Applied Computing and Informatics, 1–15. https://doi.org/10.1016/j.aci.2019.11.004

Luo, J. Y., Irisson, J. O., Graham, B., Guigand, C., Sarafraz, A., Mader, C., & Cowen, R. K. (2018).

Automated plankton image analysis using convolutional neural networks. Limnology and

Oceanography: Methods, 16(12), 814–827. https://doi.org/10.1002/lom3.10285

Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of

London - Biological Sciences, 207(1167), 187–217. https://doi.org/10.1098/rspb.1980.0020

MATLAB (No. 2019b). (2019). The MathWorks, Inc. https://de.mathworks.com/

Medea-AV-GmbH. (n.d.). medeaLAB Imaging System. Retrieved September 9, 2020, from

http://www.medealab.de/

Mitra, A., Castellani, C., Gentleman, W. C., Jónasdóttir, S. H., Flynn, K. J., Bode, A., Halsband, C.,

Kuhn, P., Licandro, P., Agersted, M. D., Calbet, A., Lindeque, P. K., Koppelmann, R., Møller,

E. F., Gislason, A., Nielsen, T. G., & st. John, M. (2014). Bridging the gap between marine

biogeochemical and fisheries sciences; configuring the zooplankton link. Progress in

Oceanography, 129(PB), 176–199. https://doi.org/10.1016/j.pocean.2014.04.025

Moniruzzaman, M., Islam, S. M. S., Bennamoun, M., & Lavery, P. (2017). Deep Learning on

Underwater Marine Object Detection: A Survey. Advanced Concepts for Intelligent Vision

Systems. ACIVS 2017. Lecture Notes in Computer Science, 10617.

https://doi.org/https://doi.org/10.1007/978-3-319-70353-4_13

Mustard, A. T., Conquer, M. D., & Allen, J. T. (2003). Laboratory evaluation of a high specification

digital CMOS camera for imaging zooplankton at high towing speeds. Southampton

Oceanography Centre, Internal Document, 89(17).

Oskoei, M. A., & Hu, H. (2010). A Survey on Edge Detection Methods. Evaluation, February, 1–36.

http://dces.essex.ac.uk/staff/hhu/Papers/CES-506.pdf

Pan, S. J., & Yang, Q. (2009). A Survey on Transfer Learning. IEEE Transactions on Knowledge and

Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191

Pollio, J., Meyer, R., & Sivak, L. D. (1979). Model analysis of underwater photographic and visibility

systems from observed data. Proceedings of the Society Photo-Optical Instrumental

Engineering: Ocean Optics, 208(VI), 239 p.

Prewitt, J. M. S. (1970). Object enhancement and extraction. In B. Lipkin & A. Rosenfeld (Eds.),

Picture Processing and Psychopictorics (pp. 415–431). Academic Press.

References

vi

Rampun, A., Morrow, P. J., Scotney, B. W., & Winder, J. (2017). Fully automated breast boundary

and pectoral muscle segmentation in mammograms. Artificial Intelligence in Medicine, 79,

28–41. https://doi.org/10.1016/j.artmed.2017.06.001

R-Core-Team. (2020). R (4.0.2). R: A language and environment for statistical computing. R

Foundation for Statistical Computing. https://www.r-project.org/

Roboflow. (2020). Roboflow-TensorFlow2-Object-Detection.ipynb.

https://colab.research.google.com/drive/1sLqFKVV94wm-

lglFq_0kGo2ciM0kecWD#scrollTo=fF8ysCfYKgTP&uniqifier=1

Roboflow Inc. (2020). roboflow. https://roboflow.com/

Rockström, J., W. Steffen, K. Noone, Å. Persson, F. S. Chapin, E. F. Lambin, T. M. Lenton, M.

Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist, C. A. de Wit, T. Hughes, S. van der Leeuw,

H. Rodhe, S. Sörlin, P. K. Snyder, R. Costanza, U. Svedin, … J. A. Foley. (2009). A safe operation

space for humanity. Nature, 461(September), 472–475.

Roemmich, D., & McGowan, J. (1995). Climatic warming and the decline of zooplankton in the

California current. Science, 267(5202), 1324–1326.

https://doi.org/10.1126/science.267.5202.1324

Schlittgen, R. (2009). Multivariate Statistik. Gruyter, Walter de GmbH.

Schröder, S. M., Kiko, R., & Koch, R. (2020). Morphocluster: Efficient annotation of Plankton

images by clustering. Sensors (Switzerland), 20(11), 1–29.

https://doi.org/10.3390/s20113060

Schulz, J. (2013). Geometric optics and strategies for subsea imaging. In Subsea Optics and

Imaging. Woodhead Publishing Limited. https://doi.org/10.1533/9780857093523.3.243

Schulz, Jan. (2017). R - Basics & statistics.

Schulz, Jan, Barz, K., Ayon, P., Lüdtke, A., Zielinski, O., Mengedoht, D., & Hirche, H. J. (2010).

Imaging of plankton specimens with the lightframe on-sight keyspecies investigation (LOKI)

system. Journal of the European Optical Society, 5(April).

https://doi.org/10.2971/jeos.2010.10017s

Schulz, Jan, Barz, K., Mengedoht, D., Hanken, T., Lilienthal, H., Rieper, N., Hoops, J., Vogel, K., &

Hirche, H. J. (2009). Lightframe on-sight key species investigation (LOKI): The art of imaging

minute plankton species on-the-fly. OCEANS ’09 IEEE Bremen: Balancing Technology with

Future Needs, 0–4. https://doi.org/10.1109/OCEANSE.2009.5278252

Schulz, Jan, Mengedoht, D., Barz, K., Basilico, A., Henrich, M., & Hirche, H.-J. (2008). Remote

sensing of zooplankton. Observing the Coastal Sea - an Atlas of Advanced Monitoring

Techniques, LOICZ Repo, 10–13.

References

vii

Schulz, Jan, Mentges, A., & Zielinski, O. (2016). Deriving image features for autonomous

classification from time-series recurrence plots. Journal of the European Optical Society,

12(1). https://doi.org/10.1186/s41476-016-0003-y

Schulz, Jan, Möllmann, C., & Hirche, H. J. (2007). Vertical zonation of the zooplankton community

in the Central Baltic Sea in relation to hydrographic stratification as revealed by multivariate

discriminant function and canonical analysis. Journal of Marine Systems, 67(1–2), 47–58.

https://doi.org/10.1016/j.jmarsys.2006.09.004

Schulz, Jan, Peck, M. A., Barz, K., Schmidt, J. O., Hansen, F. C., Peters, J., Renz, J., Dickmann, M.,

Mohrholz, V., Dutz, J., & Hirche, H. J. (2012). Spatial and temporal habitat partitioning by

zooplankton in the Bornholm Basin (central Baltic Sea). Progress in Oceanography, 107(June

2018), 3–30. https://doi.org/10.1016/j.pocean.2012.07.002

Shao, L., Zhu, F., & Li, X. (2015). Transfer learning for visual categorization: A survey. IEEE

Transactions on Neural Networks and Learning Systems, 26(5), 1019–1034.

https://doi.org/10.1109/TNNLS.2014.2330900

Sieracki, C. K., Sieracki, M. E., & Yentsch, C. S. (1998). An imaging-in-flow system for automated

analysis of marine microplankton. Marine Ecology Progress Series, 168, 285–296.

https://doi.org/10.3354/meps168285

Sobel, I., & Feldman, G. (2015). An Isotropic 3x3 Image Gradient Operator. Stanford Artificial

Intelligence Project (SAIL), June, 271–272.

Solawetz, J. (2020). How to Train a TensorFlow 2 Object Detection Model.

https://towardsdatascience.com/how-to-train-a-tensorflow-2-object-detection-model-

25d4da64b817

Sosik, H. M., & Olson, R. J. (2007). Automated taxonomic classification of phytoplankton sampled

with imaging-in-flow cytometry. Limnology and Oceanography: Methods, 5(6), 204–216.

https://doi.org/10.4319/lom.2007.5.204

Steele, J. H. (1974). Marine food webs and overfishing (President and Fellows of Harvard College,

Ed.; 3rd ed.). Harvard University Press.

Stramma. (2009). Short cruise report METEOR cruise leg M77 / 4 Climate-biogeochemistry

interactions in the tropical ocean of the SE-American oxygen minimum zone.

Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in variable importance measures:

Illustrations, sources and a solution. BMC Bioinformatics, 8. https://doi.org/10.1186/1471-

2105-8-25

Tait, R., & Dipper, F. (1998). Elements of marine ecology. Oxford: Butterworth Heinemann.

Tang, X., Stewart, W. K., Vincent, L., Huang, H., Marra, M., Gallager, S. M., & Davis, C. S. (1998).

Automatic Plankton Image Recognition. Artificial Intelligence Review, 12, 177–199.

References

viii

TensorFlow. (n.d.). Retrieved September 9, 2020, from https://www.tensorflow.org/

Tian, Y., Wu, Q., Engineering, I., & Han, Z. (2019). Automatic Recognition Method of Zooplankton

Image in Dark Field. XXIX, 1894–1903.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer Science + Business Media,

LLC.

Verikas, A., Gelzinis, A., Bacauskiene, M., Olenina, I., & Vaiciukynas, E. (2015). An Integrated

Approach to Analysis of Phytoplankton Images. IEEE Journal of Oceanic Engineering, 40(2),

315–326. https://doi.org/10.1109/JOE.2014.2317955

Wang, R., Dai, J., Zheng, H., Ji, G., & Qiao, X. (2016). Multi features combination for automated

zooplankton classification. OCEANS 2016 - Shanghai, 8–12.

https://doi.org/10.1109/OCEANSAP.2016.7485675

Wiebe, P. H., & Benfield, M. C. (2003). From the Hensen net toward four-dimensional biological

oceanography. Progress in Oceanography, 56(1), 7–136. https://doi.org/10.1016/S0079-

6611(02)00140-4

Yamazaki, H., Mackas, D., & Denman, K. (2002). Coupling small-scale physical processes with

biology. In The sea (Vol. 12).

Zelterman, D. (2015). Applied Multivariate Statistics with R. In Applied Multivariate Statistics with

R. https://doi.org/10.1007/978-3-319-14093-3

Zheng, H., Wang, R., Yu, Z., Wang, N., Gu, Z., & Zheng, B. (2017). Automatic plankton image

classification combining multiple view features via multiple kernel learning. BMC

Bioinformatics, 18(238), 1–18. https://doi.org/10.1186/s12859-017-1954-8

Appendix

ix

Appendix

Appendix 1: Datasets used within the thesis with their number of images and classes, if they were

sorted into classes. ... x

Appendix 2: The 14 classes of the Sognefjord 14 groups and augmented dataset. Their original

number of image files and the number of files after image processing and augmentation are

listed. .. x

Appendix 3: Metadata information extracted from the file path of each plankton image. xi

Appendix 4: Image feature information extracted from each plankton image. xi

Appendix 5: Elements of telemetry data measured by the CTD and on bord GPS to complement

the Lightframe On-Sight Keyspecies Investigation image data. .. xii

Appendix 6: Links and refences for used R packages and MATLAB toolboxes xiii

Appendix 7: R and MATLAB code for image priming, data preparation, feature selection and

classification the code can be accessed at https://gitlab.uni-oldenburg.de/gorm2097/loki-image-

processing-and-classification/. .. xiv

Appendix

x

Appendix 1: Datasets used within the thesis with their number of images and classes, if they were
sorted into classes.

Dataset Images Number of classes
(if classified)

Sognefjord total 113,551 -

Sognefjord classed 37,057 64

Sognefjord 14 groups 37,057 14

Sognefjord 26 groups 37,108 26

Sognefjord augmented 36,406 14

Peru 1,023 21

Peru small 180 4

Appendix 2: The 14 classes of the Sognefjord 14 groups and augmented dataset. Their original
number of image files and the number of files after image processing and augmentation are listed.

Class Files original Files after image
processing

Files after image
augmentation (CNN)

Acantharia 850 848 799

Amphipoda 17 14 306

Bubble 2,872 2,872 2,872

Chaetognatha 979 890 979

Cnidaria 221 199 442

Copepoda 23,766 23,727 21,844

Ctenophora 52 51 260

Detritus 5,757 5,757 5,757

Egg 587 587 587

Euphausiidae 70 63 280

Faeces 193 193 386

Mysidae 350 335 350

Ostracoda 1,293 1,289 1,293

Polychaeta 50 50 250

Appendix

xi

Appendix 3: Metadata information extracted from the file path of each plankton image.

Metainformation Format Metainformation Format

File: GMT Date-Time File: Bounding box Y-offset Pixel

File: Cruise String File: Base directory String

File: Station String File: Relative path String

File: Haul String File: Name String

File: LOKI Device ID String File: Image format String

File: Millisecond Frac-Second File: Colourspace Integer

File: Millisec index Integer File: Filesize (Bytes) Integer

File: Bounding box X-offset Pixel

Appendix 4: Image feature information extracted from each plankton image.

Feature Format Feature Format

Size: Image width Pixel Haralick: Image summed variance [SVA] Scalar

Size: Image height Pixel Haralick: Image sum of entropy [SEN] Scalar

Size: Mass centre X Pixel Haralick: Image entropy [ENT] Scalar

Size: Mass centre Y Pixel Haralick: Image difference variance

[DVA]

Scalar

Size: Elliptical fit major axis Pixel Haralick: Image difference entropy

[DEN]

Scalar

Size: Elliptical eccentricity Scalar Haralick: Image information measure

correlation [f12]

Scalar

Size: Elliptical major axis angle Radians Haralick: Image information measure

correlation [f13]

Scalar

Pixel-border distances: sum Scalar COO: Contour line points Scalar

Pixel-border distances: median Scalar COO: Contour line length Scalar

Pixel-border distances: mean Scalar COO: Contour line height Scalar

Pixel-border distances: SD Scalar COO: Contour line area Scalar

Intensity: Mean Scalar COO: Calliper length [Ferret's diameter Scalar

Intensity: SD Scalar COO: Centroid size Scalar

Intensity: Abs. deviation Scalar COO: Centre to contour points sum Scalar

Intensity: Quantile 0.01 Scalar COO: Centre to contour points mean Scalar

Intensity: Quantile 0.05 Scalar COO: Centre to contour points median Scalar

Intensity: Quantile 0.10 Scalar COO: Centre to contour points variance Scalar

Intensity: Quantile 0.20 Scalar COO: Centre to contour points SD Scalar

Intensity: Quantile 0.30 Scalar COO: Convex hull points Scalar

Appendix

xii

Intensity: Quantile 0.40 Scalar COO: Circularity Scalar

Intensity: Quantile 0.50 Scalar COO: Circularity normalized Scalar

Intensity: Quantile 0.60 Scalar COO: Haralick's circularity Scalar

Intensity: Quantile 0.70 Scalar COO: Convexity Scalar

Intensity: Quantile 0.80 Scalar COO: Eccentricity Scalar

Intensity: Quantile 0.90 Scalar COO: Elongation Scalar

Intensity: Quantile 0.95 Scalar COO: Perimeter Scalar

Intensity: Quantile 0.99 Scalar COO: Solidity Scalar

Shape: Area Pixel Recurrence: Embedding dimension Scalar

Shape: Perimeter Pixel Recurrence: Embedding point distance

(tau)

Scalar

Shape: Radius mean Pixel Recurrence: Threshold Scalar

Shape: Radius SD Scalar Recurrence: Minkowski order Scalar

Shape: Radius minimum Scalar Recurrence: Total recurrence Scalar

Shape: Radius maximum Scalar Recurrence: Recurrence rate [RR] Scalar

Haralick: Homogeneity [ASM] Scalar Recurrence: Determinism [DET] Scalar

Haralick: Contrast Scalar Recurrence: Laminarity [LAM] Scalar

Haralick: Image correlation [COR] Scalar Recurrence: Ratio [DET/RR] Scalar

Haralick: Sum of squares [VAR] Scalar Recurrence: Averaged diagonal length

[L]

Scalar

Haralick: Inverse difference moment

[IDM]

Scalar Recurrence: Trapping Time [TT] Scalar

Haralick: Image summed average [SAV] Scalar

Appendix 5: Elements of telemetry data measured by the CTD and on bord GPS to complement the
Lightframe On-Sight Keyspecies Investigation image data.

Device Oxy Saturation Cond Speed Loki Frame

GPS Longitude Oxy Temperature Flour 1 Cam Stat

GPS Latitude Cond Conductivity Roll House Stat

Press Cond Temperature Pitch House T1

Temp Cond Salinity Loki Record House T2

Oxy Conductivity Cond Density Loki Picture House Voltage

Appendix

xiii

Appendix 6: Links and refences for used R packages and MATLAB toolboxes

Package /

Toolbox Name

Software Reference / Link

BiocManager R https://cran.r-project.org/web/packages/BiocManager/index.html

EBImage R https://bioconductor.org/packages/release/bioc/html/EBImage.html

magick, R https://cran.r-project.org/web/packages/magick/magick.pdf

readr, R https://cran.r-project.org/web/packages/readr/readr.pdf

data.table R https://cran.r-project.org/web/packages/data.table/data.table.pdf

IM R https://cran.r-project.org/web/packages/IM/index.html

Momocs R https://cran.r-project.org/web/packages/Momocs/Momocs.pdf

tools R https://www.rdocumentation.org/packages/tools/versions/3.6.2

png R https://cran.r-project.org/web/packages/png/png.pdf

bmp R https://cran.r-project.org/web/packages/bmp/bmp.pdf

parallel R https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

doSNOW R https://cran.r-project.org/web/packages/doSNOW/doSNOW.pdf

foreach R https://cran.r-project.org/web/packages/foreach/foreach.pdf

MASS R https://cran.r-project.org/web/packages/MASS/MASS.pdf

OpenImageR R https://cran.r-

project.org/web/packages/OpenImageR/OpenImageR.pdf

e1071 R https://cran.r-project.org/web/packages/e1071/e1071.pdf

randomForest R https://cran.r-

project.org/web/packages/randomForest/randomForest.pdf

FSinR R https://cran.r-project.org/web/packages/FSinR/FSinR.pdf

caret R https://cran.r-project.org/web/packages/caret/caret.pdf

Deep Learning

Toolbox Model

for AlexNet

Network

MATLAB https://de.mathworks.com/matlabcentral/fileexchange/59133-deep-

learning-toolbox-model-for-alexnet-network

Deep Learning

Toolbox

MATLAB https://de.mathworks.com/products/deep-

learning.html?requestedDomain=

Appendix

xiv

Appendix 7: R and MATLAB code for image priming, data preparation, feature selection and
classification the code can be accessed at https://gitlab.uni-oldenburg.de/gorm2097/loki-image-
processing-and-classification/.

Software Script

Image priming

R 2020-09-09-LOKI-Complete data primer.R

Dataset preparation

R 20200909_AddClassColumn2DataTable.R

R 20200909_CreateTrainAndTestDataset_FromClassedTable.R

R 20200909_ImageAugmentation.R

Feature selection

R 20200909_ExcludeHighCorrelation.R

R 20200909_GiniRanked_AccuracyTest_LDA_rF.R

Classification

R 20200909_rF_14classes_37057_40features.R

R 20200909_LDA_14classes_37057_43features.R

R 20200909_SVM_14classes_37057_26features.R

MATLAB LOKInet_20200905.m

Eidesstattliche Erklärung

xv

Eidesstattliche Erklärung

Hiermit versichere ich Eides statt, dass ich diese Arbeit selbstständig verfasst und keine anderen

als die angegebenen Quellen und Hilfsmittel benutzt habe. Außerdem versichere ich, dass ich die

allgemeinen Prinzipien wissenschaftlicher Arbeit und Veröffentlichung, wie sie in den Leitlinien

guter wissenschaftlicher Praxis der Carl von Ossietzky Universität Oldenburg festgelegt sind,

befolgt habe.

