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III Abstract 

Investigating the abundance, distribution and diversity of plankton organisms holds a key element 

in understanding complex, marine food web structures, nutrient cycling, climate change effects 

and anthropological influences on the world’s largest habitat. Over the past years, plankton 

research has developed from discrete, integrating net samples to fine-scale, in situ, optical 

detection of organisms. Camera systems like the Lightframe On-Sight Keyspecies Investigation 

(LOKI) system allow a high resolution in capturing organisms below the size of 60 µm, while 

connecting the image data with environmental measurements.  

In this thesis the processing of LOKI plankton images, recorded 2014 in the Sognefjord, Norway, 

is investigated and improved from edge detection over feature selection to the classification of 

morphological groups with multivariate and machine learning classifiers. For the classifications, a 

subset of calculated image features is determined individually for each method by evaluating a 

decreasing number of image feature ranked by their Gini Index significance. Transfer learning is 

used to implement a fine-tuned AlexNet convolutional neural network (CNN) as a first approach 

towards deep learning classification of LOKI images.  

The improvement of the image processing and edge detection was successful, as the 

implementation of a Canny edge detection algorithm detects the edges much closer to the 

organism. With the selected features the highest classification accuracy of 88.72 % is achieved 

with a random Forest classification while the transfer learning CNN results achieve a classification 

accuracy of 87.75 %. 

This thesis has laid out new approaches for LOKI plankton image classification, which will help to 

progress providing a complete processing chain from image capturing towards autonomous 

classification and presorting of major morphological groups.
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IV Zusammenfassung 

Die Untersuchung der Abundanz, Verteilung und Diversität von Planktonorganismen ist ein 

Schlüsselelement für das Verständnis komplexer, mariner Nahrungsnetzstrukturen, 

Nährstoffkreisläufe, Auswirkungen des Klimawandels und anthropologischer Einflüsse auf den 

größten Lebensraum der Welt. In den letzten Jahren hat sich die Planktonforschung von der 

diskreten, integrierenden Netzprobe bis hin zur feinskaligen, in situ optischen Detektion von 

Organismen entwickelt. Kamerasysteme wie das Lightframe On-Sight Keyspecies Investigation 

(LOKI)-System ermöglichen die hochauflösende Erfassung von Organismen unterhalb einer Größe 

von 60 µm und verbinden die Bilddaten mit gemessenen Umweltparametern.  

In dieser Studie wird die Verarbeitung von LOKI-Planktonbildern, die 2014 im Sognefjord, 

Norwegen, aufgenommen wurden, untersucht und von der Kantendetektion über die 

Merkmalsauswahl bis zur Klassifizierung morphologischer Gruppen mit multivariaten und 

maschinell lernenden Klassifikatoren verbessert. Für die Klassifikationen wird eine Untermenge 

von berechneten Bildmerkmalen individuell für jede Methode bestimmt, indem eine 

abnehmende Anzahl von Bildmerkmalen ausgewertet wird, die nach ihrer Gini-Index-Signifikanz 

gereiht werden. Transfer-Lernen wird verwendet, um ein fein abgestimmtes AlexNet (faltendes 

neuronales Netz) als ersten Ansatz für eine „Deep-Learning“ Klassifikation von LOKI-Bildern zu 

implementieren.  

Die Verbesserung der Bildverarbeitung und Kantenerkennung war erfolgreich, da die 

Implementierung eines Canny-Kantenerkennungsalgorithmus die Kanten viel näher am 

Organismus erkennt. Mit den ausgewählten Merkmalen wird bei einer „random Forest“ 

Klassifikation die höchste Klassifikationsgenauigkeit von 88,72 % erreicht, während die Ergebnisse 

des Transfer Lernens eine Klassifikationsgenauigkeit von 87,75 % erreichen. 

In dieser Arbeit wurden neue Techniken für die LOKI-Planktonbildklassifikation vorgestellt, die 

dazu beitragen werden, eine vollständige Verarbeitungskette von der Bilderfassung bis zur 

autonomen Klassifikation und Vorsortierung der morphologischen Hauptgruppen 

voranzubringen.  
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1 Introduction 

1.1 Plankton Biology and Sampling 

The marine environment is under constant change. It is influenced by geological processes, 

climatic impact or living organisms, especially human beings (Rockström et al., 2009). This impact 

is reflected by the biological response to the environmental influences. In marine environments, 

planktonic organisms are a key within bio-geochemical cycles (Mitra et al., 2014), food web 

structures (Steele, 1974), ecosystem health (Beaugrand et al., 2002), and the biological response 

to climate change effects (Roemmich & McGowan, 1995; Hays et al., 2005).  

The term plankton originates in the Greek adjective πλαγκτός (planktos) and means “to wander”. 

It was introduced by Hensen in 1887 (Hensen, 1887) and is used to summarize aquatic organisms, 

which mostly float passively in the horizontal direction, being entrained in ocean currents (Tait & 

Dipper, 1998). Multiple plankton species can move vertically between water masses, for feeding 

purposes. The size of plankters ranges from microns to meters and includes representatives in all 

domains of life and trophic levels (Lombard et al., 2019).  

Phytoplankton are autotrophic pro- and eukaryotic algae and responsible for most of the primary 

production in the aquatic environment. Zooplankton, the faunistic component, include 

protozoans and metazoans that primarily feed on phytoplankton and maintain the main food 

source for higher trophic taxa (Tait & Dipper, 1998).  

Within aquatic food webs, climate-driven changes or fluctuations in environmental parameters 

can affect the plankton community and cause nutritional effects cascading through the food web 

up to the trophic levels of commercially exploited fish stocks (Frederiksen et al., 2006). The 

distribution of plankton in the water column depends on small scale hydrographical conditions 

(Banse, 1964; Yamazaki et al., 2002; Schulz et al., 2007 & 2012) and is sensitive to changes. Since 

plankton organisms have short life spans, and only a few species are commercially exploited, 

several observed long-term changes can be linked to both climate change and anthropogenic 

influences (Hays et al., 2005) and their derived successive consequences.  

Understanding the distribution, biodiversity and abundance of plankton organisms will provide 

valuable information of the overall ecosystem health. Plankton is deeply involved in crucial 

marine processes ranging from primary production over nutrient cycling to large scale marine 

food web structures even influencing commercial fisheries. Plankton is a biological proxy for the 

effects of climate change and overall global environmental changes (Beaugrand et al., 2002; 

Lombard et al., 2019). 



Introduction 

2 
 

Historically, information about plankton distribution, diversity and abundance have been 

collected with net samples since the time of Hensen (1887). Sample processing needs large 

amounts of time as well as taxonomists manpower to be evaluated. Over the years a multitude 

of standard nets have been developed from simple WP2 or Bongo-Net to multi-opening/closing 

nets or pumping systems, to multi-net systems and finally to multi-sensor systems being deployed 

on towed devices or remotely operated vehicles (ROV). A good overview of the variety of net and 

other plankton sampling systems is given by Wiebe & Benfield (2003).  

Net sampling systems integrate over the sampled depth. Contact with strong turbulences can be 

destructive to fragile plankton organisms. Thus, precise in situ information of plankton 

distribution and morphology is diminished. To tackle this shortcoming, new possibilities arose 

during the past decades as plankton research started using optical imaging technologies to 

capture and identify plankton images in a non-invasive approach within their natural 

environment. Imaging systems face many challenges like an even illumination, a fitting depth of 

field (DOF) - distance of sharp focus in front of a lens -, and the quality of the image (Schulz et al., 

2010; Schulz, 2013; Pollio et al., 1979; Mustard et al., 2003). The organism of interest itself and 

its aquatic habitat provide even more challenges. Plankton specimens not only vary greatly in size, 

some taxa also undergo strong morphological changes during ontogenesis. Orientation within the 

photographed volume - abundance of also entrained marine snow, sediment particles, air 

bubbles or other organisms - further complicate identification (Benfield et al., 2007). Facing these 

challenges, multiple approaches in plankton imaging investigation where contrived, designed and 

implemented by different institutions worldwide (see reviews in Benfield et al., 2007 and 

Lombard et al., 2019). Nevertheless, the optical systems often operate at the borders given by 

the laws of physics (Schulz, 2013). 

Plankton images are envisaged to replace the hands-on taxonomic classification by making it 

possible to classify the images on the level of morphological groups further down to the species 

level. The images can then be linked to simultaneously recorded fine-scale environmental data 

and deliver high resolution information about biodiversity, distribution, state, and behavior of 

planktonic organisms in relation to the ambient hydrography (Culverhouse et al., 2006). 

Some developed imaging devices can be deployed from research vessels in hauled or towed 

systems and deliver in situ images (e.g. VPR (Davis et al., 2004), ISIIS (Cowen & Guigand, 2008), 

LOKI (Schulz et al., 2009, 2010), GUARD 1 (Corgnati et al., 2016), etc.). Other devices rely on a 

prior taken net or water sample and image the specimens in the laboratory (e.g. ZooScan 

(Grosjean et al., 2004)). The different approaches need to find tradeoffs in sampled volume and 

depth of field and therefore the size range of organisms, which can be detected. Further reviews 
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and summaries about the existing visual plankton systems can be found in Benfield et al. (2007), 

Lombard et al. (2019) and Lumini & Nanni (2019).  

 

1.2 Lightframe On-sight Keyspecies Investigation – LOKI 

This thesis uses images captured by the Lightframe On-sight Keyspecies Investigation (LOKI) 

system developed by Schulz et al. (2009 and 2010) (Figure 1). LOKI consists of multiple modular 

parts and can be deployed in hauled systems as well as on moorings. LOKI was deployed on a 

COSYNA Underwater-Node System in the North Sea to deliver valuable information on the spatio-

temporal zooplankton community assemblage (Baschek et al., 2017). LOKI can also serve as a 

benchtop device with a Flow-cell (FLOKI, Schulz et al., 2008). The benchtop device has the 

advantage that illumination conditions can be adjusted to capture brighter images, allowing a 

more accurate classification, but it lacks the additional environmental information an in situ 

device is able to record. 

During deployment, a standard LOKI haul uses the up-cast to concentrate plankton with a tailored 

net to least harm fragile plankton specimens entrained in the water column and guides them into 

a flow-through imaging chamber. A specific optical design of the flow-through chamber a 

relatively high DOF at a small sample volume (1.6 - 3.5 ml) with high magnification is realized. The 

developed flash module consists of 96 XML_T6_6000K LEDs, which provide a white light with a 

spectral composition of 6000K (Hagemann, 2016). “The system is based on an illumination 

technique that either projects a light frame of high luminous flux into the water or constrains the 

volume physically with transparent boundaries. Particles within this area are illuminated. Only 

directly illuminated objects are visible for the camera, while those outside the focus range are 

nearly invisible” (Schulz et al., 2010). The used camera is an Allied Vision Technologies Prosilica 

with GigE interface and allows imaging of plankton and particles of sizes below 60 µm at a high 

resolution with shutter times below 50 µs. To adjust the optimal depth of field, the camera must 

be able to change the distance to the object. To achieve this inside the sealed LOKI housing the 

camera is mounted on a piezo-motorized linear stage to adjust the distance between camera and 

object (Hagemann, 2016) (Figure 2). Further technical details can be found in Schulz et al. (2009 

and 2010). 

The images used in this thesis have been taken by deploying LOKI as a hauled system from a 

research vessel. Figure 1 shows such a deployment. The device is lowered into the water by the 

research vessels winch. It is lowered (down-cast) to maximum depth and heaved (up-cast) again. 

During the up-cast the upstream plankton net collects organisms and directs them through the 
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flow-through chamber were the camera images them. Figure 3 shows a collage of sample 

plankton images collected during different cruises with the LOKI system. Next to the LOKI system 

a CTD (device measuring Conductivity, Temperature and Depth) is attached to the frame, 

delivering essential information about the environmental factors of the plankton’s habitat.  

 

 

Figure 1: Lightframe On-sight Keyspecies Investigation (LOKI) system being deployed on board R/V 
Heincke in November of 2019. This image was taken on the R/V Heincke cruise HE545 and 
visualizes the plankton net with the camera underneath. Attached to the sides of the LOKI frame 
are the computing and the battery units and a CTD. Image captured by C. Thölen. 
 

 

Figure 2: Cross section and overview of Lightframe On-Sight Keyspecies Investigation (LOKI) 
system. Attached to the cuvette module are the in- and outflow tubes. The LED and camera 
module are separated from the cuvette module by an optical window. The camera module is 
mounted on a piezo-motorized linear stage to adjust the distance between camera and object. 
The image was created with the CAD-Software by Hagemann (2016) for a student report on the 
LOKI system.  
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Figure 3: Images of multiple plankton specimen captured with the Lightframe On-sight Keyspecies 
Investigation (LOKI) system. This image was created as a collage out of multiple images; therefore, 
the imaged organisms are not to scale. 

 

1.3 Image Processing, Features, and Classification Methods 

The classification of plankton images is a requirement to precisely match species appearance in 

relation to environmental parameters and to gain a deeper understanding about biodiversity, 

spatio-temporal distribution, community structure, and behavior of plankton organisms.  

Optical plankton detection systems are aiming towards an unsupervised, automated recognition 

and classification of plankton images (Benfield et al., 2007; Bi et al., 2015; Corgnati et al., 2016; 

Leow et al., 2015; Luo et al., 2018; Schröder et al., 2020; Sieracki et al., 1998; Sosik & Olson, 2007; 

Tian et al., 2019; Wang et al., 2016; Zheng et al., 2017). Different approaches exist for the 

classification process, ranging from multivariate statistics and machine learning algorithms (e.g., 

Hu & Davis, 2005; Schulz et al., 2016; Sosik & Olson, 2007) to deep learning algorithms (e.g., Leow 

et al., 2015; Lumini et al., 2019; Luo et al., 2018). In the following it is explained how an image 

with mere pixel intensities can be transformed into a classified result which can help to answer 

relevant biological questions. 

 

1.3.1 Object Detection 

Before an organism can be classified, it must be recognized within an image. This is achieved by 

detecting the edges of this organism. Edges are pixel intensity changes within an image distinctly 

along a particular orientation. If the intensity change is high, the evidence for an edge at that 
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position is provided (Burger & Burge, 2016). This gradient in intensity can be detected and 

enhanced with edge detection operators, respectively filters or kernels. Some simple edge 

detection operators have been defined by Kirsch (1971), Prewitt (1970) and Sobel in 1968 (Davis, 

1975; Sobel & Feldman, 2015). Edge detection is used in multiple fields of research. Kekre & 

Gharge (2010) state, that for mammographic images an extended Sobel filter (5x5 matrix) delivers 

the best results compared to extended Kirsch (1971) or Prewitt (1970) filters. Simple edge 

detection filters consider the first derivative of an image to find strong gradients, respectively 

edges. Other methods use the second derivative of an image, in which edges can be found at zero 

points or zero crossings and can be localized more precisely (Burger & Burge, 2016). The Canny-

Operator (Canny, 1986) is considered state of the art in edge detection and uses the second 

derivative. It minimizes the number of false edge points (pixel, which do not represent the 

maximum gradient of an edge), while achieving good localization of edges. Within the Canny edge 

detection algorithm, the width of an edge is reduced to a single pixel (Burger & Burge, 2016). 

Bature et al. (2015) compare the simple edge detection filters (Sobel, Prewitt, etc.) to the 

Laplacian of Gaussian (Marr & Hildreth, 1980) and the Canny operator. In their results Gaussian 

methods like Canny deliver the most robust solution localizing the edge points even in noisy 

images. 

 

1.3.2 Feature Extraction and Selection 

The input for standard multivariate and machine learning classification algorithms are calculated 

images features. To extract such feature information, objects on the images need to be 

segmented and pixel - that belong to the respective object - need to be identified and localized, 

as it was explained in the previous section. For common geometric features of plankton images 

and a review of recent feature extraction methods used see Cheng et al. (2018). Features that 

have been extracted from an image manually will be referred to as “manual” features in this thesis 

to distinguish them from the deep features created by neural networks, which will be explained 

in the following chapter. For the LOKI plankton images recurrence features have been used in a 

previous study by Schulz et al. (2016), which, in the combination with standard manual features 

and a classification using the linear discriminant analysis (LDA), produced a discrimination success 

of 62.8 %. 

Wang et al. (2016) used multi feature combinations and achieved good classification results 

combining different types of image features. For classification purposes, it is important to find 

useful feature combinations. Redundant or unimportant feature information might compromise 

the performance of the classifier (Sosik & Olson, 2007). Feature selection methods aim to find a 
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subset of features that would either improve the classifiers performance or at least maintain the 

same level like with more features, while saving operational time (Dash & Liu, 1997). There are a 

multitude of approaches for feature selection based on the dataset type and size, the number of 

classes and for weather or not a dataset contains imbalanced class sizes. Leow et al. (2015) used 

forward stepwise discriminant analysis (FSDA) and Zheng et al. (2017) implemented a wrapper 

method by Kohavi & John (1997) for their feature selection. There are different strategies based 

on multivariate statistics allowing to exclude redundant features. Linear discriminant analyses 

(LDA) can be used on a pre-classified dataset to detect the variables or features that account for 

the most variance within the dataset (Schlittgen, 2009). With the random Forest method, 

developed by Breiman (2001), the Gini Index (Gini, 1912) can be calculated, providing information 

about the separating importance (inequality) of different features. The dataset used within this 

thesis contains continuous features, all representing the same number of classes. These 

characteristics make the datasets features eligible to using the Gini Index for the importance 

measures (Strobl et al., 2007). 

 

1.3.3 Image Classification from Standard Multivariate Statistics over Machine Learning 

to Convolutional Neural Networks 

The selected features of a dataset span a multidimensional room containing every data element. 

Most multivariate methods aim to reduce the dimensions of a dataset to describe the 

relationships between the given features (Zelterman, 2015). Multivariate statistics can be used in 

a variety of different technological, sociological, and scientific fields, allowing structuring, 

simplifying, and classifying the elements that belong to the same class in a dataset. Within chapter 

2.3 and 2.4 the multivariate statistical linear discriminant analysis (LDA) and the random Forest 

method are described. Both are used for the feature selection and classification of the plankton 

images. Multivariate statistical methods work with a predefined set of rules, which distinguishes 

them to machine learning methods. 

Machine learning means, that - instead of calling an algorithm with passed data of extracted 

features and predefined rules - the extracted features are passed along with the associated 

classes for the data and the algorithm produces the rules for classification (Chollet, 2018). A 

feedback mechanism is used to optimize the algorithm calculations to produce rules that are 

more suitable for the data to be sorted into the correct classes (Chollet, 2018). A “traditional” 

classification approach of machine learning are support vector machines (SVM). SVMs have the 

key idea of maximizing margins between data classes by finding applicable kernel functions 
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(Bennett & Campbell, 2000). They will briefly be explained in chapter 2. For more detailed 

information see Christianini & Shawe-Taylor (2000) or Vapnik (1995). 

The learning process gets “deeper” and more versatile with the supply of multiple neuronal 

calculation layers between input and output, hence deep learning. A representation of deep 

learning models are convolutional neural networks (CNN), which are increasingly used for image 

classification or speech recognition (Gu et al., 2018). CNNs are able to process a raw image 

directly, without prior feature extraction, as the calculation of discriminating deep features is a 

built-in part within their multi-layered network (Luo et al., 2018).  

The architecture of a CNN is to some extent similar to the human visual system as they use 

restricted receptive fields, and a hierarchy of layers, which progressively extract more and more 

abstracted features (Lumini et al., 2019). A CNN consists of a series of stages, where the first few 

stages contain convolutional and pooling layers. Figure 4 shows an example of a simple pre-

trained CNN with its architectural layers. This particular CNN is called AlexNet and was developed 

by Krizhevsky et al. in 2012. In the following, the single layers of a CNN will be explained briefly. 

The function of the convolutional layer is the detection of local feature combinations from the 

input or previous pooling layer (Khan et al., 2020). The convolution layer contains a set of 

convolutional kernels which work with the same basic principle like the edge detection kernels 

convolution mentioned in chapter 1.3.1 and chapter 2.2.2. These kernels process the image by 

dividing it into smaller pieces helping for the extraction of image features and create feature maps 

(Khan et al., 2020). This deep feature extraction can be similar to the manual feature extraction 

mentioned in the previous chapter. But through the depth of a CNN convolutional layers become 

more and more abstract to the human eye. These layers have a specific set of weights adjusting 

their behavior when data is passed through them. The weights are influenced by the feedback 

mechanism of the CNN, called backpropagation (Aggarwal, 2018). For neural networks, learning 

means to adjust the values for the weights of all layers in a network by backpropagation, until the 

network assigns the right classes to testing samples (Chollet, 2018). This process is called training 

and is conducted with a dataset of labeled images. For a deep neural network millions of weights 

need to be trained, hence the training dataset needs to be large and training might take up a long 

time. 

A layer not shown in Figure 4 is the activation layer, which is also an important part of CNNs. The 

output of a convolutional layer is assigned an activation function. One of the most popular ones 

is called ReLU (rectified linear unit). It adds non-linearity to the output and transforms it, taking 

away the negative values and setting them to zero (Khan et al., 2020). 

Convolutional layers are followed by pooling layers. The role of the pooling layer is to merge 

semantically similar features into one by summing up the information of the input feature map 
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and returning the dominant response for a local region (Khan et al., 2020; LeCun et al., 2015). If 

the pooling operation delivers the maximum of a certain input the approach is referred to as 

max-pooling (Aggarwal, 2018). Pooling reduces the spatial resolution and the number of deep 

features required for classification, which saves computational time.  

The last few layers visible in Figure 4 are fully connected layers. Fully connected layers create a 

non-linear combination of selected deep features (Khan et al., 2020) and lead the information to 

a softmax layer which then creates possibilities rates for classification of the input data. 

 

 

Figure 4: Example of a simple pretrained convolutional neural net (CNN) architecture with 12 
layers. This particular CNN is called AlexNet and was developed by Krizhevsky et al. in 2012. 
Modified according to Khan et al. (2020). 

 

CNNs need minimal preprocessing of the images and require no prior knowledge in designing 

manual features for classification. This represents a significant advance compared to “traditional” 

machine learning methods such as artificial neural networks (ANN) and support vector machines 

(SVM) (LeCun et al., 2015; Luo et al., 2018). Furthermore, it was indicated by Lumini et al. (2019) 

that ensembles of more CNNs gain a higher performance than a single CNN. For further details 

and comprehensive reading about CNNs the textbook “Neural Networks and Deep Learning” by 

Aggarwal (2018) is recommended. 

When a new CNN is created the weights of the layers are created randomly. It takes a large 

amount of training to adjust the weights of the CNN layers for an accurate classification result. 

Many CNNs for image classification have been developed over the past years and they are able 

to distinguish between thousands of categories. So instead of building a completely new CNN 

from scratch, transfer learning can be used to transfer the previously compiled knowledge of a 

pre-trained CNN like AlexNet to an adapted CNN for plankton classification (Pan & Yang, 2009). 

The adapted CNN has the right weight settings to classify images of everyday items like vacuum 

cleaners, cats, or cars. It can be fine-tuned by using a labeled training dataset of plankton images 

to allow classification of planktonic morphotypes.  
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Lumini et al. (2019) state that research on plankton image classification has started to replace 

“traditional” classifying methods, based on manual feature extraction, such as support vector 

machines or random Forests, in favor of deep learning approaches. In their publications, Bi et al. 

(2015) and Verikas et al. (2015) provide reputable summaries of recent approaches in plankton 

image classification, that are noticeably developing towards deep learning solutions. Transfer 

learning has also been used in the plankton classification implementations of González et al. 

(2019) who determined that deep features calculated by pre-trained networks achieve better 

classification results than manual features. For further information and a survey on transfer 

learning see Pan & Yang (2009).  
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1.4 Objectives  

Some time has passed since the last innovations for the LOKI system were implemented. While 

the technological side still provides state of the art plankton images, the software and 

classification system need to catch up to modern standards of plankton recognition. Within this 

thesis, the edge detection within the provided LOKI-Complete-data-primer script will be reviewed 

and improved, and first attempts towards an automatic classification of LOKI plankton images and 

feature tables using CNN and SVM will be taken and compared to multivariate classifiers. 

Therefore, a selection of the most important manually extracted image features will be 

implemented. This results in the following objectives for this thesis: 

 

Objective 1: Evaluation of the adapted edge detection operation. 

 

Objective 2: Evaluation of the implemented feature selection. 

 

Objective 3: Evaluation of the reduced feature table regarding the discriminability of labeled 

morphotype groups, based on numerical features using LDA, random Forest and SVM.  

 

Objective 4: Approach of direct image discrimination with convolutional neural networks. 
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2 Material & Methods 

2.1 Sampling and Data Availability 

Data was collected in 2014 during R/V Heincke cruise HE434 (Badewien, 2014) in the North Sea 

and in the Sognefjord (Norway) by Dr. Jan Schulz and Nicole Hildebrandt (Figure 5). On 17 stations 

the LOKI system was deployed with one haul each, except for the first LOKI station, where two 

separate hauls were conducted. Every haul included one cast (down- and up-cast), except for the 

last LOKI station, where the device was deployed for three hauls down to 450 m and then left at 

a depth of about 175 m for 10 minutes.  

 

 

Figure 5: Sognefjord map of the Lightframe On-Sight Keyspecies Investigation (LOKI) system 
stations during R/V Heincke cruise HE434 in 2014. 

 

The raw data used in this thesis includes 53.4 GB of images and telemetry data (481,455 files) 

containing both down- and up-cast of the LOKI system. The downcast data is not usable for 

further calculations since the camera only captures organisms and particles that find their way 

into the field of view through the narrow outflow at the cod-end of the LOKI. The captured 

organisms would come from a much smaller sample volume than intended for the recordings. At 

its deepest point, the LOKI system is stopped for the few seconds it takes to start hauling it back 

up to the vessel. During this short period of time, the organisms and particles that might be in 

front of the camera are captured multiple times which would falsify the results. In order to extract 

only valid images at a steady flow during the up-cast, it was necessary to discard data prior to a 
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continuous heaving speed of 0.3 m s-1 during up-cast. This was achieved by using the telemetry 

data and first smoothing the depth information with a running mean of 5 s to suppress the 

influence of the ship’s movement. The deepest point of the cast was identified and the velocity 

of the device during the cast was calculated. The timestamp was identified for the moment when 

the device reached a speed of 0.3 m·s-1. Thereupon the beginning of the image data was cut to 

this timestamp. At the end of each cast the LOKI system was heaved through more turbid surface 

waters, which are influenced by the research vessel. This resulted in air bubbles in the field of 

view (FOV). Also, the heaving speed decreased as the crew was waiting for further instructions 

before heaving the device back on deck. As the LOKI systems velocity reaches values under 0.05 

m·s-1 the timestamp is saved and used as the ending point of the up-cast. Figure 6 visualizes the 

cropping of the up-cast to the valid timestamps.  

 

 

Figure 6: Recorded pressure in decibar versus the time in seconds during the cast of the Lightframe 
On-Sight Keyspecies Investigation (LOKI) system at station 67 on R/V Heincke cruise HE434 in 
2014. The red lines indicate the moments of the device reaching a mean heaving speed of 0.3 m·s-

1 and the end of the cast when the speed falls below a heaving speed of 0.05 m·s-1. 

 

Considering only the Sognefjord images during the cut-out timeframe, 113,551 images were left 

for further processing and classification (Appendix 1). Out of this large dataset a total of 37,057 

images were manually classified by Dr. Jan Schulz into morphological groups of different 

taxonomical ranks from phylum down to species and genus level. This dataset (Sognefjord 

classed) was used for classification approaches during this thesis. The dataset was originally 

partitioned into 64 classes. For a first trail, the 64 classed were summarized into 26 morphological 

groups (Sognefjord 26 groups) most of them containing organisms taxonomically determined to 

a family level. For the following classification approaches the dataset was then summarized into 

the most dominant morphological groups in 14 classes (Sognefjord 14 groups). Figure 7 provides 
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an overview over the plankton classes within the Sognefjord 26 groups dataset used for 

classification. The ten classes colored in gray are complemented by four classes for bubbles, 

detritus, eggs and faeces.  

A third LOKI dataset with a total of 1023 images pre-classified into 21 morphological groups was 

used for feature selection and testing of the classifying algorithms. This dataset was collected off 

the coast of Peru in 2009 during Meteor expedition M77/4 by Hans-Jürgen Hirche and Kristina 

Barz (Schulz et al., 2016; Stramma, 2009) (Appendix 1). 

 

 

Figure 7: Overview over the taxonomic ranks of the morphological plankton groups (gray) included 
in the dataset used for plankton image classification. This graph does not show the complete 
taxonomic classification, just an extract of the most important plankton affiliations for this thesis. 

 

2.2 Image Processing 

After extracting the Sognefjord up-cast dataset, the processing of images takes place in multiple 

steps. The first step is preparing and priming the images using the LOKI-Complete-data-primer 

script in R (R-Core-Team, 2020). The script, in its original form, was internally provided by Dr. Jan 

Schulz and further changed and optimized as one of the main objectives of this thesis. The main 

scripts used within this thesis can be found in Appendix 7 and under https://gitlab.uni-

oldenburg.de/gorm2097/loki-image-processing-and-classification/. 

 

2.2.1 Documentation of the Original LOKI-Complete-data-primer Script 

The LOKI-Complete-data-primer script compiles all available image and telemetry information 

collected during a LOKI cast and prepares and summarizes these information in two output tables 
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linked to the images over the image timestamp. The output of this script can further be used for 

discrimination and classification purposes.  

The script can be subdivided into three sections:  

- (i) the set up and update section,  

- (ii) the telemetry processing section  

- (iii) the image processing section.  

Changes and improvements within this thesis are mainly associated with the image processing 

section. The first two sections are explained briefly in their use for the script itself and the 

generated output.  

 

 

Figure 8: Example of the folder structure used by the LOKI-Complete-data-primer script , in which 
the Lightframe On-sight Keyspecies Investigation (LOKI) images are saved. 

 

Set-up and update section (i). Within the set-up and update section the working directory and 

data paths for the in- and outputs are defined. The input path points to a folder that contains 

image and telemetry data in the lowest instance of its structure. The folder structure has a 

predefined order and needs to be accurate for a correct output. Therefore, the right option for 

the input path is the folder for the cruise number. The folder structure should be as following: 

Cruise ID > Station > Haul > Device Name (Figure 8). Under Device Name there are three folders: 

Log, Pictures, and Telemetry. The Log folder contains .log files with header information for the 

output. This file is created once per haul. The Telemetry folder contains secondly averaged 

telemetry data from the CTD (attached to the LOKI frame) and GPS information. Finally, the 

Pictures folder contains minutely separated folders with the image data in lossless bitmap (.bmp) 

or portable network graphics (.png) format. In this context an image is a part of the original 

photographed picture by the LOKI camera. A closed code algorithm (provided by Medea-AV-

GmbH) is preselecting objects within the full camera frame that possess pixel intensities over a 

certain threshold and crops them into smaller images by surrounding the object of interest with 

a bounding box. The created images have a file name that contains the date, time, millisecond 

(Format string: yyyyMMdd HHmmss SSSS) number of the image cropped from one full camera 

frame within the respective millisecond range (one frame can hold multiple organisms) and the 
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x- and y-coordinates of the upper left corner of the image within the original camera frame (Figure 

8).  

After the definition of the input and output path the state of several switches and sub switches 

can be adjusted. This means, that entire sections or single operations can be activated or 

deactivated by the user, depending on the kind of information needed. The entire processing 

sections of the telemetry and the image data can be switched on or off. The ability of the script 

to update itself and the necessary R toolboxes can also be switched on or off. The set-up section 

further defines several variables which are used within calculations throughout the script. An 

important variable defined at this point is the filter kernel for the edge detection within the image 

processing section. These filters or image processing operators are explained in detail in chapter 

2.2.2.2. If required, some installations of tools and packages are also performed in this section. A 

fundamental package which must be installed and linked to the script here, is the BiocManager 

package as it provides many of the image processing functions. Other necessary packages are: 

magick, readr, data.table, IM, Momocs and tools. Appendix 6 contains an overview over the used 

packages and their references. 

Telemetry processing section (ii). The telemetry data priming section is not a main object to 

modifications and was just changed minimally. The changes being implemented were for reasons 

of saving computation time and are further explained in chapter 2.2.2.4. This section’s output is 

a table called Data.primedTMDdata which summarizes all the available telemetry data in 31 

columns for each measured second of the haul (Appendix 5). The telemetry data is extracted from 

the TMD files in the same folder structure. A single TMD file contains the sensor identification 

numbers (ID) and corresponding measurements for one second of the haul. The TMD files are 

listed and an additional file containing the sensor IDs as well as the associated column headers is 

loaded into the script. The sensor IDs, the column headers and the iterative number of 

observations are associated in a data frame to be able to assign the correct sensor names to the 

TMD file information. Next, an empty matrix is created serving as the basis for the output table. 

The number of columns is set to the number of sensor information plus seven slots for the date 

and time information, which can be derived from the TMD file name, as well as information about 

the cruise, station and haul which can be derived from the file path. The predefined column 

names are then copied to the empty matrix. Then the result table is defined, and a temporary 

matrix is set up to be filled by iterating recursively through all the available TMD files. Each 

iteration reads a new TMD file from the TMD file list and extracts the data into the temporary 

matrix. The file path is split up and the information about cruise, station and haul are also included 

in the temporary matrix. If any of the superordinate folder structures is unavailable, it is marked 

as unavailable in the matrix. The file name is extracted and parsed for the time value which is also 
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included in the temporary matrix. At the end of each iteration, the temporary matrix is 

concatenated to the result table. The last step in the telemetry priming section is saving the final 

table as Data.primedTMDdata in the result folder.  

Image processing section (iii). The image processing section starts with preparing the final output 

table by defining the table headers for the 15 columns for metadata information and 77 image 

features (Appendix 3 and Appendix 4) plus 20 Taxonomical columns for future taxonomic 

information after the classification. Next, a list is created that contains all the .png or .bmp image 

file names that are found recursively within the defined data path. This operation is equivalent to 

the creation of the TMD file list in the telemetry processing section. In the following, a large for-

loop processes each image individually and multiple computations are conducted. The calculated 

information will be added to the output table. Within this loop the data path and file information 

are read and checked weather superordinate folders are available. If so, their name information 

will be added to the table in the previously mentioned order (Cruise Number > Station > Haul > 

Device Name). To search at the right folder in the path the number of superordinate folders is 

previously counted and if the information is unavailable, it will also be marked as unavailable in 

the table. As the image file names contain all the necessary meta information regarding the date 

and time and the position of the image within the original camera frame, the file name itself is 

used to extract this information per image and later add it to the output table. The timestamp 

within the file name can be used to link the image processing information to the TMD data 

measured in the same second. The R package magick is used to get some of the internal file 

information such as the format, color space and size. All the extracted information concerning 

each image file is added as characters to the output table. 

Thereafter starts the process of on extracting fundamental inherent image information. As a 

security precaution, and to avoid the script from crashing, a small 7x7 fake matrix, with 3x3 white 

pixel in the middle, is created to be processed in case the actual image fails to load. This fake 

matrix could easily be spotted and ruled out within the results. Two different loading commands 

are implemented for either .png or .bmp images. The source images are then converted to 

grayscale images using the EBImage::channel() function. The EBImage::filter2() function is used 

to apply the modified Sobel kernel filters (Equation 1), which were defined in the first section of 

the script, vertically and horizontally to the grayscale image for edge detection. The 

EBImage::filter2() function uses the setting replicate for how the filter behaves at image 

boundaries. With this setting, the pixel outside of the image boundaries are assumed to have the 

same value as the nearest border pixel value.  
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Modified Sobel operator 
 

2 1 0 -1 -2 

2 1 0 -1 -2 

3 2 0 -2 -3 

2 1 0 -1 -2 

2 1 0 -1 -2 

 

2 2 3 2 2 

1 1 2 1 1 

0 0 0 0 0 

-1 -1 -2 -1 -1 

-2 -2 -3 -2 -2 

Equation 1 
 
 
 
 

 

Dilator 

0 1 1 1 0 

1 1 2 1 1 

1 2 4 2 1 

1 1 2 1 1 

0 1 1 1 0 

 

 

x 28-1 

Equation 2 

 

A horizontal and a vertical edge detection matrix is created. The individual results are squared to 

remove possible negative values and then added to each other. Next, a binarized image is 

produced by setting all values within the image over a predefined threshold to 1 and all 

underneath this threshold to 0. It is possible that certain image attributes belong together even 

if their connecting pixel had a low intensity on the image so that they were set to 0 by the 

binarization. To reconnect those attributes a 5x5 dilator (Equation 2) is used with the 

EBImage::dilate() function. The dilation reconnects prominent image attributes which are located 

close together. This step creates the image mask (IMGmask) which is then applied to the 

EBImage::bwlabel() function, which labels all connected pixel in the image above a value of 0, 

according to their pixel-cluster membership. Each cluster is assigned a unique increasing integer. 

The contour length of the clusters within the image is calculated with the EBImage::ocontour() 

function and the object with the longest contour is set to be the object of interest and therefore 

chosen for the final IMGmask. This means that all other clusters within the image are ignored and 

only the mask is retrieved for further calculations. The pixel within the IMGmask are set to 1 with 

the EBImage::fillHull() function. This completes the image processing step. Next, and if switched 

on, multiple calculations are being conducted on the IMGmask matrix for feature extraction to 

gain more information about the object of interest within the image. 

 

The manual extracted image features contain size, distance, intensity, and shape information, 

Haralick parameters (texture features), contour line statistics, and recurrence analysis features. 

For the size values, the image height and width are retrieved and then used to calculate the mass 

center and elliptical fits. Then the distance values to the nearest border are calculated for each 

pixel of the IMGmask using the Manhattan metric. In the next step the image pixel statistics are 

Kx = Ky = 

D = 



Materials & Methods 

19 
 

calculated with the EBImage::computeFeatures.basic() function. These information include the 

pixel intensity mean, standard deviation and quantiles. With the 

EBImage::computeFeatures.shape() function shape information like the radius and area of the 

IMGmask are calculated. Haralick features are textural features based on gray tone spatial 

dependencies (Haralick et al., 1973) and can also be calculated with the 

EBImage::computeFeatures() function. The MOMOCS package is used to calculate contour line 

and shape statistics like area, fractionality and convexity of the shape and many more. Last, basic 

recurrences features are extracted from the contour outline. Recurrence features give 

information about the contour line’s curve progression by using an embedding of contour line 

pixel distances from the mass center and can be used for discrimination purposes (Schulz et al., 

2016). 

The calculated features are combined in a data table, which is saved as Image 

data.primedIMGdata and accounts for the second and most important output of the LOKI-

Complete-data-primer script.  

The third output is an image sheet with four plots containing different aspects of each image 

processed. If the CreatePlots sub switch is activated, a folder is created on the same folder level 

as the TMD and IMG output tables to save all the result plots. Then, an empty result .png-image 

is created, named after the currently processed image file, and depicts four to six results plots for 

inspecting image and success of the processing steps. 

The first plot displays the grayscale image together with the contour line of the IMGmask. The 

second plot shows an image intensity bar plot with lines for the mean, standard deviation, and 

median absolute deviation value. The third plot displays the recurrence plot and the fourth a 

border pixel distance map. After the creation of the result plots, the image processing for-loop is 

finished and restarts with the next image. After all images are processed a final report is printed 

containing the processing time and number of processed files.  

 

2.2.2 Changes and Improvements for the Script 

This chapter will explain the changes and improvements implemented to the original LOKI-

Complete-data-primer script in detail. The changes that were implemented into the (iii) image 

processing and edge detection of the original script, are aiming at the optimization of the 

detection of the region of interest (ROI) and creating an edge contour as close to the real 

structure as possible. Additionally, it was an objective to increase general processing speed and 

to minimize possible errors from corrupted or overexposed images and image structures.  
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The resulting changes can be divided in four main topics. Change A, B and D are implemented 

into the final script with switches for de-/activation. Change C was implemented without a switch 

as it saves the script from crashing when processing inappropriate images. If the switches for 

these changes are deactivated the complementary parts of the original script will be used for the 

image processing parts instead. The changes are not named in an order within the script but after 

the implementation order during the improvement progress within the thesis. 

 

2.2.2.1 Neutralize Image Artefacts (Change A) 

The original script sometimes produces reoccurring misidentifications of the ROI. These 

misidentifications occur when there are multiple objects or organisms in the image, often 

associated with some overexposed areas in the background (Figure 9). Next to the occurrence of 

multiple organisms, bubbles or detritus, some images have artefacts of incoming light from the 

LOKIs LEDs at the margins of the camera frame. When an object is cropped out right at the margin 

of the original camera frame by the Medea-AV-GmbH code, the resulting image can have a bright 

artefact on its margins as well. This artifact can be recognized as an object since its pixel intensity 

values are high. It also often has a larger contour than the actual ROI containing the organism. 

Change A was implemented to prevent the script from choosing the light artefacts as the ROI.  

As described in chapter 2.2.1 the detected objects on the original image are turned into integer 

clusters with the same integer for every pixel of one object (Figure 9). The contour length is than 

calculated from this cluster. To improve the cluster selection, the ROI should not only be 

determined by the longest contour line but also by the vertical and horizontal expansion of the 

object in the image. This will ignore the light artefacts, which are just a few pixel high and only 

stretch usually horizontally over the margin of the image (Figure 10). In addition, it will improve 

the detection of organisms over false image attributes since most organisms are more bulky 

objects.  
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Figure 9: Source image with multiple organisms (left) and an example of the integer clusters of 
detected, unconnected objects within the image on the image mask (right). The different shades 
of gray imply different clusters, which each have an identifying integer number. 

  

 

Figure 10: Source image (left) and calculated image mask (right) showing the detected region of 
interest (ROI), which is a light attribute of the LOKIs LEDs at the upper margin of the image 
(purple). 

 

This change is implemented at the point in the script after the first IMGmask is created through 

dilating the image with the detected edges. The previous method of determining the ROI is 

expanded in the following way:  

If there are multiple objects recognizable on the image, the three objects with the longest contour 

lines are extracted and their integers are saved in a new vector. In addition, a matrix called 

SizeOfCluster is created to serve as a summery for the following calculated lengths. In the next 

step, a loop iterates through this vector and for every integer cluster it searches for the first and 

last row and column of its appearance. Beforehand, the first appearance variable is set to the 

maximum number of rows or columns, the last appearance variable to 1. Two separate loops then 

iterate through the rows and columns of the IMGmask. The code searches for the first match of 

the selected integer in the row or column and if it appears, as well as, if it is smaller than the 

predefined number, it is set as the first or last row or column of the cluster. Through these 
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parameters the length of vertical and horizontal expansion is calculated. The expansions are 

weighted and then summed. As the horizonal expansion is supposed to have less influence it is 

weighted with 0.1, while the vertical expansion is weighted with 1.  

Within the SizeOfCluster matrix, the cluster with the largest weighted sum of expansions is picked 

to identify as the ROI. In the following the IMGmask is reduced to the pixel that are equal to the 

chosen cluster. This IMGmask will now serve as the final mask for the feature calculations.  

To evaluate how well Change A improved the detection of the actual ROI, a random subfolder of 

the LOKI dataset is chosen which contains a total of 1264 images. These images are processed 

with the LOKI-Complete-data-primer script in two cases, once with the Change A switch on and 

once with the Change A switch off. In the results, the source image is displayed together with a 

contour line around the ROI. Within the 1264 result images it is manually counted how many 

times the light attributes were chosen as the ROI for each case.  

 

2.2.2.2 Operator and Edge Detection Improvement (Change B) 

Change B aims to improve the edge detection itself. To calculate exact features from the 

IMGmask, it is important, that the edges are detected as close to the ROI as possible and allow 

the IMGmask to represent the organism as good as possible. Edges in an image can be detected 

by using filter kernels in the form of ZxZ-matrices. Filtering is carried out by convolving the original 

image I with the appropriate filter kernel h, producing the filtered image I’ (Equation 3, (Burger 

& Burge, 2016)). Figure 11 shows an example of a linear convolution with a Sobel kernel on a 

matrix that clearly shows an intensity gradient and therefore an edge. In the resulting matrix on 

the right, the area of the edge is detected and enhanced, while regions of no gradient or intensity 

changes are 0. 

 

 
𝐼′[𝑎, 𝑏] =  ∑ ∑ ℎ[𝑖, 𝑗] ∗ 

𝑁−1

𝑗=0

𝑁−1

𝑖=0

𝐼[𝑎 − 𝑖, 𝑏 − 𝑗] 
Equation 3 
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Figure 11: Example of a linear convolution operation with a vertical 3x3 Sobel filter kernel (in red 
on the left side) on a matrix with a clear intensity change (5x5 matrix on the left). The middle 
shows the calculation steps for one cell (red number 50). The matrix on the right is the resulting 
matrix if the kernel was applied to all cells. In this case, in order to calculate the cells on the margin 
the matrix had to be replicated. The result shows a clear enhancement of the edge pixel cells while 
the surrounding pixel are 0. 

 

  

Figure 12: Two examples of source images together with the contour line (red dashed) using the 
edge detection operation of the original LOKI-Complete-data-primer script. The green numbers 
count the contour points. A gap between the contour and the organism is visible. 

 

The original script uses a modified Sobel operator (Equation 1) on the LOKI images. It detects the 

edges of the ROI by emphasizing the region of the edge gradients (Figure 11). This leads to the 

edge contour line appearing to have some distance to the actual ROI in some images, as can be 

seen in Figure 12. During manual inspection of the resulting images, it was seen that the modified 
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Sobel operator is generally working well for finding the ROI. Therefore, the improvement of the 

kernel itself is not a concern for narrowing the gap between the edge contour and the ROI. During 

the work on an improvement of the narrow contouring of the ROI different methods were tested. 

One of the first implementations was the Canny edge detection (Canny, 1986) as it was 

implemented for MATLAB by Liang in 2017 and published on Github (Liang, 2017). The motivation 

to try this method for this thesis was found in Kekre & Gharge (2010) and Bature et al. (2015). 

Using this method alone helped narrowing the gap between the contour line and the ROI but also 

provided new problems as significant features of the organisms like the antennas of copepods 

were cut off in the edge detection process. Different methods were tried for a better overall 

image enhancement. But even if the LOKI has a relatively large depth of field (DOF) the imaged 

organisms may be unevenly illuminated. Rotation of body and uneven illumination inhibit 

enhancement strategies, e.g. contrast limited adaptive histogram equalization (CLAHE). Single 

body features like antennas are not as enhanced as the main body. The following, final chosen 

method turned out to be the most successful in narrowing the contour line while detecting the 

organism with all its body-features. A successful edge detection was achieved by applying a 

combination of different methods on the source image. Figure 14 shows a function graph, which 

contains graphical elements that were inspired by figures in Burger & Burge, 2016. This graph is 

divided into three sections (i-iii) showing every image processing step:  

First section (i): A gaussian 5x5 filter G (Equation 7) is used to slightly blur the source image I in 

order to remove unwanted noise in the background. Next, a 5x5 Sobel filter S (Equation 8), which 

is very similar to the modified Sobel filter K (Equation 1), is used to detect the edges on the blurred 

image. This filter has a slightly higher value in the middle which emphasizes this layer. Both, the 

Sobel, and the modified Sobel filter kernel have a horizontal Sx and a vertical Sy component. The 

horizontal is equal to the vertical, turned by 90° and vice versa. The horizontal Ix and vertical Iy 

components of the filtered image are further processed in three different procedures. The first 

equation uses the original edge detection implementation with the sum of the squared 

components (Equation 4). The resulting image M2 does not have strong visible edges and will be 

further processed in the next section. The second equation calculates the gradients magnitude 

(Equation 5, Burger & Burge, 2016) with the two components. This equation pronounces the body 

edges well, but also does not show very strong edges at the antennas. The third calculation on 

the horizontal and vertical components produces a matrix with information about the local edge 

orientation angle φ (Equation 6, Burger & Burge (2016)), which will later be used in the following 

image processing steps.  

Second section (ii): During manual revision of the individual image processing results, it was clear, 

that neither of these first two edge detections (Equation 4, Equation 5) alone delivers good results 
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for the overall edge detection. Keeping in mind the goal for Change B of finding edge contours 

that are close to the organism and not to cut off important features like antennas on copepods. 

To achieve this goal the detected edges had to be further enhanced. M and M2 are therefore 

summed in the next step. At first, a threshold method is used on M2 to produce a binarized image 

with thick edges Mb
2. This image will be used to further enhance the edges detected in M. Mb

2 is 

multiplied with 3 to enhance its effect on the sum. With M enhancing the finer edge structures 

and Mb
2 giving more weight to the broader contours of the ROI the resulting summed image Ms 

can be used successfully in the following Canny edge detection.  

 

 𝑀2 =  𝐼𝑥
2 + 𝐼𝑦

2 Equation 4 

 

 
𝑀 =  √𝐼𝑥

2 + 𝐼𝑦
2 

Equation 5 

 

 
𝑎 = tan−1 (

𝐼𝑦
2

𝐼𝑥
2) 

Equation 6 

 

Third section (iii): The Canny edge detection implementation from Liang (2017) was translated to 

R and slightly adapted do deliver the best results. The first steps of this edge detection 

implementation have already been carried out with the grayscale conversion and the Gaussian 

blur G (first two sections of the function graph, Figure 14). Equation 4 and Equation 5 determine 

the magnitudes of the edges. Here the implementation was adapted by summing the calculated 

magnitudes to solve the previously mentioned problem of the detection of thinner body features 

like antennas. Next, the local edge orientation angle φ of the detected edges was determined 

with Equation 6. The detected edges of the resulting summed-up image Ms are still thick. 

Therefore, a non-maximum suppression (NMS) is used on the image Ms to find the pixel with the 

maximum value along the edge gradient. The NMS implementation works by going through each 

pixel of the image and if there is an edge, by checking the local edge orientation angle φ, and then 

performing an interpolation between the pixel according to the angle φ. For example, all angles 

with a value between 0° and 45° or between -135° and -180° are treated equally. Angle categories 

and corresponding pixel are shown in Figure 13. The chosen neighboring pixel correspond to the 

direction of the edge gradient. The interpolation between the pixel is used to improve the 

accuracy of the NMS. If the intensity value of the image is greater than the interpolated values 

the intensity value is kept for the output. If the neighboring interpolated value is higher, the 
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regarded intensity pixel is set to 0. Only the pixel with the maximum will be left to build the output 

N of the NMS. After the NMS, the output is normalized and taken to the next processing step.  

Double thresholding is performed on the image N to differ between strong and weak edges. The 

threshold values (thigh, tlow) are calculated for every image depending on their maximum pixel 

intensity, by multiplying a threshold ratio to the maximum value of the image N. If the image N 

pixel values lie over the high threshold thigh they are categorized as strong edges and set to 1. If 

they lie under the low threshold tlow, they are set to 0. Between these thresholds, pixel are 

interpreted as weak edges and not changed in their values. While the edges are evaluated, four 

vectors are filled with the indices of the row and column of the strong or weak edges. They are 

used in the following step to find connected weak edges.  

A loop iterates through the number of strong edge pixel and the Find-connected-weak-edges() 

function scans through a +/-5 pixel neighborhood for weak edges. If a weak edge pixel is found, 

it is set to 1 and the function is recalled for that pixel to scan its +/-5 pixel neighborhood for more 

connected weak edges. Here a small adaptation was made to the code as this recursive function 

would recall itself so many times it would crash the script. Therefore, a maximum number of 

iterations was included into the function call. The last step of the Canny edge detection 

implementation is the deleting of remaining weak edges. This step was given a sub switch in the 

set-up section of the LOKI-Complete-data-primer script, as it turns out that deleting all the 

remaining weak edges often deletes the antenna parts of the copepods or other thin or smaller 

plankton body features. Therefore, deleting of weak edges was again disabled within the final 

script and is not part of the function graph (Figure 14). 

Since the Canny edge detection algorithm produces many intermediate result images a new 

output was defined for the script where all image processing steps are displayed. In the final 

implantation of the script only every nth-image has an output for the processing steps since it 

takes up a high calculation time to produce the image plots. An example for the image processing 

steps can be seen in the Results chapter 3.2 or in the function graph (Figure 14).  

To evaluate Change A, 1264 images were processed with the LOKI-Complete-data-primer script 

for two cases with Change A switched on for the first case and Change A switched off for the 

second. For both cases Change B was switched off. To evaluate Change B, the script was run again 

with Change B switched on. 100 out of the 1264 images were then randomly chosen and their 

contour line features were extracted from the Image data.primedIMGdata output table. The 

contour line length and area results of the case of Change B switched on were compared to the 

results of Change B being switched off (Change A on). It was made sure, that those 100 images 

did not contain cropped body features, that both results contain the entire organism and that the 

contour line is not connected to light attributes or other organisms. 
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For a second evaluation of the improvement through Change B the resulting feature tables were 

classified using linear discriminant analysis (LDA) on the Peru dataset, which was also primed 

twice (Change B switched on, Change B switched off). Since the Peru dataset contains a relatively 

small number of images (1023) the splitting and the testing were conducted fifty times to 

calculate the mean classification accuracy and its standard deviation. 

 

Gaussian blur filter 
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Figure 13: Within the Canny edge detection algorithm, a process called non-maximum suppression 
selects only the one pixel of an edge gradient that has the highest value. Within the applied non-
maximum suppression, the spaces between the pixel were interpolated for a more accurate 
decision. To interpolate the correct pixel for each edge-point the direction of the edges angle - as 
calculated in Equation 6 - is used to define which neighboring pixel are to be utilized for the 
interpolation. All angles between 0 to 45 and -135 to -180 are treated in the same way. Here the 
green color within the angle circle (left, first matrix) corresponds with the green colored matrix of 
neighboring pixel (right). The same applies for different angles as can be followed by the color 
code. 

G = 

Sx = Sy = 
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Figure 14: Function Graph in three sections, some of the graphic elements were inspired by Burger 
& Burge (2016). The first and second section correspond to the image processing steps before the 
Canny edge detection and the last section displays the Canny edge detection algorithm. First 
section: The raw plankton image I is filtered with a Gaussian blur filter G and then further filtered 
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with the horizontal Sx and vertical Sy Sobel filter. The horizontal and vertical component are then 
used in three different equations (Equation 4 and Equation 5 to combine the detected edges M2 
and M and Equation 6 for the angle of the direction of the edge φ). Second section: M2 is used in 
a thresholding procedure, where the edges of the region of interest are enhanced. This result Mb

2 
is then tripled and added to M. Third section: The Canny edge detection algorithm consists of the 
non-maximum suppression NMS. A double thresholding DT and the finding of connected weak 
edges SE. Finally the discovered edges are dilated again to connect disconnected features that 
belong together and then a binary image mask is created which is further processed in Change A 
(3.1). 

 

2.2.2.3 Detection of Large or Corrupt Images (Change C) 

Some of the images that were provided by the Medea-AV-GmbH’s algorithm are corrupted. They 

lead to errors in the original script, which is why Change C was implemented with the tryCatch() 

function to find the corrupted images before the image processing procedure starts. If a 

corrupted image is found image processing is skipped and instead of image features the entry for 

the image data table is “Image is corrupted”. 

When the LOKI is heaved with less speed during the last meters of the up-cast, it may occur that 

large masses of plankton are accumulated close together and the ROI detection algorithm of the 

Medea-AV-GmbH creates large images with multiple organisms and/or air bubbles (Figure 15). 

When these images are processed in the image processing chain in the original script, as well as 

in the so far improved script, they cause errors within the feature detection. To prevent these 

images from getting processed two measurements are performed.  

First, the up-casts were generally cut at the second mark when the telemetry data showed a 

speed of less than 0.05 m·s-1 (chapter 2.1). Second, a security step was taken within the script to 

exclude all images with a horizonal or vertical pixel length of over 1,500 pixel or a contour length 

of over 20,000 pixel. For these cases, the feature extraction is also skipped and the entry in the 

image data table is either “IMG too large” or “Contour too long”. When the image has the right 

size but the organism is so large, that it has a very long contour line (over 20,000 pixel) the 

calculation is slowed down and eventually the feature extraction will produce errors, and these 

images are therefore not processed. 
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Figure 15: LOKI image of large accumulation of plankton, mostly diatoms (filling some parts of the 
picture, examples in red circles) and air bubbles (examples in blue circles). This image has a height 
of 696 pixel and a width of 2336 pixel and is therefore discarded from the image processing since 
with all its detail it would slow down the image processing dramatically.  

 

2.2.2.4 Parallelization (Change D) 

By default, R uses only one of the central processing unit (CPU) cores of the computer to run an 

R script. When a loop needs to be repeated several times to process an image, each time, each 

of these iterations is carried out successively. There are packages in R that allow the script to be 

parallelized, to use multiple cores and to speed up computation time. For a Windows operating 

system the required packages are parallel and doSNOW, which provides a parallel backend for 

the %dopar% function, and foreach(), which provides a foreach looping construct. This looping 

construct is similar to the for-loop but is able to occupy multiple CPUs at the same time. The input 

for a foreach-loop is an iteration variable and several different options plus the required 

expression. For this part it was necessary to concatenate the output rows via rbind, include the 

image processing packages and get an in-order output. Additionally, a progress information is 

printed into the console and errors that come up within the expression are passed to keep the 

entire script running. To achieve a parallel process, the entire telemetry and image priming 

sections of the script were captured within a function for each process which were then called in 

the foreach-loops. These loops are implemented at the end of each section. For them to run and 

use multiple cores, first the number of available cores needs to be detected and are clustered. 

This cluster is then given to a function to register the SNOW parallel backend with the foreach 

package, which provides the mechanism to run the loop in parallel. After the foreach-loop is done 

the cluster needs to be stopped again. As an evaluation measure the script was implemented with 

and without switching on Change D on the same dataset and the processing time was determined 

and compared for both runs.  
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2.3 Identification of Discriminating Features - Feature Selection 

In the following an image feature is considered as a numerical value representing a specific 

characteristic extracted from the image. The performance of a classifier can be compromised if 

redundant or irrelevant features are included in the classification process (Sosik & Olson, 2007). 

Thus, feature selection is an important task to reduce the dimensions of a dataset before 

classification methods are applied. For the selection of image features, which - when combined - 

make it possible to discriminate and classify plankton images, it is necessary to work with a pre-

classified dataset, in order to confirm the separating power of the selected features. 

For this task, the Peru dataset is used. It contains 1,023 images in 21 classes (Appendix 1). The 

LOKI-Complete-data-primer script produces an output vector with 92 parameters for each image. 

Seventeen of these parameters represent meta-data information and 75 are the manually 

calculated image features (Appendix 4). To find final features of high importance for the 

discrimination of the plankton images, redundant information is excluded from the feature pool.  

At first, the 75 features are examined for their linear dependencies. A pairs plot displays the linear 

correlation coefficients of all features tested against each other. The R-script ‚R-Basic‘ from Schulz 

(2017) for the lecture ‚Multivariate statistics‘ in the study course Marine Sensorik, University 

Oldenburg, produces a pairs plot (Figure 16) showing the linear correlation coefficient on the 

upper triangular sub-matrix and data elements plotted against each other on the lower side. 

Figure 16 shows an example of a pairs plot with a few image features. The pairs plot is used to 

gain an overview over the feature dependencies. To sort out features with high correlation 

coefficients the cor() function is used in R to access the linear correlation coefficients. All features 

which have linear correlation coefficients of >= 0.98 are listed and excluded from the feature 

pool. During the exclusion process a linear discriminant analysis (LDA) is computed. If there are 

strongly collinear features still present within the dataset, the lda() function from the R package 

MASS will display a warning message. After excluding features with correlation coefficients 

>= 0.98 this warning was not displayed anymore.  

Subsequently a random Forest model is computed to provide the importance of the given 

features in the form of the Gini Index. Since random Forests provide results based on a 

randomized selection of features, a sufficiently large number of trees needs to be occupied to 

provide a stable Gini Index. Strobl et al. (2007) imply that if the feature values in the dataset are 

continuous and only features representing the same number of classes are considered in the 

sample, feature selection with random Forest feature importance measures is applicable. 

A random Forest is a classifier consisting of a collection of single tree-structured classifiers. Each 

classifier is an independent decision tree, which casts a vote for a target class from a randomly 
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selected vector out of a dataset (Breiman, 2001). Due to a large number of trees, single 

misclassifications do not weight heavily into the overall classification result. A decision tree 

consists of a root, containing all data and all features, nodes, where decisions about separating 

the data based on the given features are made, and branches, representing the classified data 

after each node. For the creation of a decision tree it is also necessary to use a pre-classified 

dataset, which was previously divided into a training and a testing dataset. At each node, a 

predefined number of features is randomly drawn from the training dataset. If multiple features 

are drawn, the feature that best separates the data is chosen to work as the decision rule within 

this node. The data is then separated by this rule into different branches each leading to a new 

node. If a branch with separated data only contains data elements from one class, it is turned into 

a leaf and not further processed, to save computational time. If the testing dataset is now 

processed with this tree the data elements are led through to branches of the tree into their 

predicted class. Within a random Forest, which contains dozens to thousands of decision trees, 

each tree casts a vote for the class of each data element. In a final majority vote the class for each 

element is determined. The importance measure of the features is the previously mentioned Gini 

Index. 

The Peru dataset is used to run a random Forest model and to obtain the Gini Index information 

on the features. Although each random Forest model is independent and randomly created, a 

pooled analysis was performed to identify the importance of the individual features in the 

analysis. A random Forest model with 1000 trees was performed 100 times, the Gini Index was 

recorded for each iteration and the mean value of all iterations as well as the standard deviation 

were calculated. 

At this point it is not known how many features are needed for the best classification. Therefore, 

the mean Gini indices were sorted decreasingly and turned into an exclusion vector within a for-

loop that excludes the features stepwise; based on their Gini Index, unimportant ones first. Within 

this loop the accuracies of a LDA, a SVM and a random Forest classification are calculated. It is 

noted that each classification method has their accuracy maximum at a different number of 

features within the feature subset. The accuracy was calculated from the sum of the diagonal 

proportion of the confusion matrix of each method. These accuracies were then plotted against 

the number of features still included in the model to define the optimal feature subset size.  
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Figure 16: Example of a pairs plot of 5 image features. The diagonal cells show the names of the 
features and a histogram of point distribution of all the cells underneath each diagonal cell. On 
the upper triangular matrix, the linear correlation coefficient can be found, printed in a font size 
corresponding to the value. On the lower triangular matrix, the elements of each feature are 
plotted against the elements of the other features. 

 

2.4 Classification Approaches with Multivariate Statistics, Machine Learning & 

Convolutional Neural Networks 

The classification of plankton images can be attempted with a multitude of possible methods. The 

methods chosen within this thesis try to cover different types of classification tools. The 

“traditional” classification uses multivariate statistics and machine learning algorithms. These 

methods require a table of image features, which were extracted from the images as invariant 

values such as contour line metrics, grayscale distribution, pattern characteristics and others. The 

computation of a respective table for each classification method was introduced in section 2.3.  

A more recent approach to plankton image classification is deep learning, respectively 

convolutional neural networks (CNN). Their basic structure and architecture have been described 

in chapter 1.3.3. CNNs need a large training dataset to produce reasonable image classification. 

In contrast to machine learning methods, they do not require a previous manually extracted 

feature table since they operate directly on the images, calculating all necessary deep features 

during their own computation. For this thesis, the use of CNNs was an outlook to further 
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improvements to the LOKI software. Therefore, classifying the LOKI dataset was tested by using 

transfer learning with the AlexNet (Krizhevsky et al., 2012) in MATLAB (The MathWorks, 2019), 

and within the Object Detection application programming interface (API) (Roboflow, 2020) from 

TensorFlow 2 (TensorFlow).  

As a first approach the Sognefjord 26 groups (Appendix 1) dataset was classified with a random 

Forest analysis. The respective results are displayed in 3.5. It was then decided to summarize a 

few classes to their next higher rank in order to achieve better classification accuracies. The 

motivation for this step will be discussed in chapter 4.3. 

All following classification methods use the pre-classified dataset Sognefjord 14 groups or 

Sognefjord augmented (Appendix 1) in order to train, validate and test their models. This dataset 

contains 14 morphological classes (Figure 7 and Appendix 2). CNNs work best when a large 

training set is available, therefore, the classes that contain less than 250 images are 

supplemented with augmented images. For the image augmentation the function 

Augmentation() within the R package OpenImageR was used. The images were shifted, rotated, 

or flipped to produce a larger dataset for the smaller classes. For the classification approaches 

with the LDA, random Forest and SVM the manually calculated feature tables are needed. The 

feature tables were created on the original dataset without the augmented images due to a high 

sensitivity of the image processing to edges that are created during the augmentation process. 

As previously described, the result from the LOKI-Complete-data-primer script comes in form of 

a table with 17 metadata parameters and 75 image features. For the pre-classified datasets, the 

result tables are supplemented with a column for the folder name, respectively the class name. 

The R script 20200909_CreateTrainAndTestDataset_FromClassedTable.R (Appendix 7) is used to 

split the result table into two separate tables, one for training and one for testing. The size 

percentages for each subset are 80 % for training and 20 % for testing. These split datasets are 

used for the “traditional” classification methods. In the CNN approach the training and testing 

datasets are produced within the MATLAB implementation. All classification approaches will be 

visualized with a confusion matrix. Confusion matrices are used to quantify the accuracy of a 

classifier (Hu & Davis, 2005; Luo et al., 2018). To create a confusion matrix, the actual class 

affiliation or each data element needs to be known next to a class prediction for each element by 

a classifying method. In a matrix or table, the number of true positive elements, the number of 

true negatives, the number of false positives and the number of false negatives for each class are 

derived from the actual classes and the predictions (Lumini & Nanni, 2019). 
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2.4.1 Multivariate Statistics - Linear Discriminant Analysis & random Forest 

The linear discriminant analysis (LDA) searches for linear combinations of features allowing the 

best possible discrimination of the given classes (Schlittgen, 2009). The LDA model is set up by 

using a dataset with previous known classes. Building the model works by searching for the largest 

distance between the mean feature values µ of the predefined classes with the smallest feature 

variance s within the class (Equation 9). The LDA attempts to reduce the dimensions of a dataset 

by condensing many explanatory features to a few derived gradients with the least possible loss 

of information (Leyer & Wesche, 2007). A linear plane - called the discriminant - is searched, that 

best separates between the classes. A discriminant can always just separate two classes, so when 

multiple classes are present linear discriminants are calculated for every combination of classes. 

A goal of the LDA is to determine which features of the dataset are most important in the 

discrimination of the different classes (Schlittgen, 2009). The lda() function delivers the 

coefficients of linear discriminants which weigh the features in terms of the ability to distinguish 

between the classes. Higher values indicate a higher separating power of the features (Leyer & 

Wesche, 2007).  

The coefficients of linear discriminants wcs can be used to calculate the discriminant score DSc 

(Equation 10; Schulz, 2017). The discriminant score shows the probability of an element with 

properties for the given features to belong to a predefined class. The class constant kc is added 

to the sum of the product of the discriminant coefficients wcs and the variables xs for the number 

of features n in a dataset. The results of the LDA can be summarized and displayed in a 

classification matrix, where the number of elements that have been sorted into a class is 

displayed in comparison to the predefined classes (Schulz, 2017). When the LDA model is set up 

with a training dataset, a testing dataset can be used to verify the ability of the model to 

discriminate between the different classes. The lda() function in R (MASS package) can perform a 

leave-one-out-cross-validation. This means that subsets of the original data are left out during 

the creation of the model and the model is later validated by those subsets. 

Next to using a LDA to classify the images with the feature table, a random Forest classification is 

performed as well. The methods of a random Forest analysis have previously been described in 

chapter 2.3.  

 

 (µ1  −  µ2)2

𝑠1
2+𝑠2

2  Equation 9 
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𝐷𝑆𝑐 =  𝑘𝑐 +  ∑ 𝑤𝑐𝑠 ∗ 𝑥𝑠

𝑛

𝑖 = 1

 
Equation 10 

 

2.4.2 Support Vector Machines (SVM) 

When searching for the best separation of data element clusters in a two-dimensional dataset 

with two classes, the best separator would be a line that lies in the middle of the outermost data 

elements of each class (Figure 17, left). This line is called the support vector classifier. The space 

on both sides of the separating line up to the first data elements of each cluster is called the 

margin. These elements are called support vectors (circled in green in Figure 17, left) (Bennett & 

Campbell, 2000). The example in Figure 17 (left) is simple since the data is linearly separable in a 

two-dimensional space. If this does not apply, like for a one-dimensional dataset with two classes, 

which has one class lying in-between the elements of the other one (Figure 17, right - empty 

circles), the dataset can be squared (Figure 17, right - filled circles), to separate the classes by a 

line (the support vector classifier).  

 

 

 

 

 

Figure 17: Left: The figure was adapted from Bennett & Campbell (2000). Two datasets (blue 
circles and red squares) are visualized in a two-dimensional plane. The solid line is a good 
separator between the data clusters since it has maximally large margins (space until the dashed 
line) towards the datapoints. The green circled data points represent the support vectors. Right: A 
one dimensional dataset with two classes has one class lying in between values of the other and 
cannot be separated by a line (empty circles). If the dataset is squared (filled circles), the classes 
can be separated by a line. This is an example of a support vector machine. 

 

This method is called support vector machine (SVM). Basically, the method starts with data in a 

relatively low dimension and moves it to a higher dimension to find a support vector classifier 

that separates the higher dimensional data. The SVM converts a dataset from a lower to a higher 
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dimensional space, by applying a fitting kernel function to systematically find support vector 

classifiers in the higher dimension. The kernel function calculates the relationships between the 

data elements, which are then used to find the support vector classifier. This calculation is 

conducted by applying the “kernel trick”, which allows the calculation of the relationships 

between the data elements to take place in the same dimension using the dot product, instead 

of converting every element to the higher dimension making the calculation more complex.  

Generally, the margin of the support vector classifier is sought to be maximized while the error is 

minimized (Bennett & Campbell, 2000). This sometimes means that there will be a tradeoff 

between the bias of a classifier to sort a point into the right class and the variance a single class 

may have.  

To implement a SVM model in R, the R package e1071 is used. Within the SVM-script 

20200909_SVM_14classes_37057_26features.R (Appendix 7) the pre-classified training table - 

with the selected features for the SVM - is called to create a fitting SVM model. After the first 

SVM model has been set up, it is tuned with the tune() function to find the best values for the 

required input variables gamma and cost. The gamma variable defines how much influence every 

training element has towards finding the support vector classifier. When gamma is low even the 

elements further away from the support vector classifier influence its layout and when gamma is 

high, just the elements close to the support vector classifier impact its layout. The cost variable 

defines a tradeoff between the training accuracy and the margin space for the prediction 

function. This means that high cost values create a complex support vector classifier which 

misclassifies the least possible amount of training data, while a lower cost value will lead to a 

simpler prediction function (Krizhevsky et al., 2012). The tune() function returns the best values 

for these variables, which are included into the improved SVM model, which is then used to 

predict the classes for the test set. 

 

2.4.3 Convolutional Neural Networks 

The general architecture of a convolutional neural network (CNN) has been outlined in the 

introduction (see chapter 1.3.3). Within this chapter the learning process of a deep neural 

network is further explained and first approaches with transfer learning using a 12-layer AlexNet 

(Krizhevsky et al., 2012) as well as training a larger CNN for object detection with TensorFlow2 

(TensorFlow) will be introduced.  

Figure 18, was adapted from (Chollet, 2018) and shows the learning structure of a deep neural 

network. The input is processed by convolutional, pooling, and fully connected layers until 

resulting in a prediction of a class affiliation. These results are compared with the true target class 
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and the loss function computes a score of how well the prediction fit to the true target. This loss 

score is used as a feedback signal, which is send to an optimizer adjusting the layer weights in the 

deep neural networks’ architecture. This feedback mechanism is called backpropagation and is 

the central algorithm in deep learning (Chollet, 2018). If a new CNN is created, the layer weights 

are first set randomly and are then adjusted during the training process, with transfer learning 

the weights have predefined values from previous learning processes (Pan & Yang, 2009). The 

weights are further adjusted and tuned with the new dataset during the transfer learning training 

process.  

 

 

Figure 18: Scheme of the learning process within deep neural networks architecture. The 
prediction result of the layers is compared to the true targets creating a loss score. This loss score 
is used to optimize the weights on the layers as a feedback and learning mechanism over a 
destinated number of iterations. The figure was adapted from Chollet (2018) 

 

To approach the classification of LOKI plankton images using CNNs transfer learning was used 

with the Deep Learning Toolbox Model for AlexNet Network (Appendix 6) in MATLAB. Additionally 

to this toolbox, the Deep Learning Toolbox (Appendix 6) was also installed to provide the needed 

framework. AlexNet was trained on 1.2 million images for 1,000 classes by Krizhevsky et al. in 

2012. The pre-trained architecture has learned how to classify images and can be fine-tuned with 

the LOKI plankton images to serve as a classifier for this custom cause. In MATLAB AlexNet can be 

loaded into the workspace as a network structure. Its layers can be alternated and supplemented, 

and the network options can be modified. The two layers of a CNN which are modified for a 

transfer learning implementation are the fully connected layer and the output layer. The required 

numbers of classes to be detected within the dataset are provided to these layers.  

Within the MATLAB implementation, the LOKI images are stored in an image datastore with the 

imageDatastore() function. This function allows access to the images without having to load them 

into the MATLAB workspace. Furthermore, they can be stored using their folder names as a label. 
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This is useful when the images are split into training, validation, and testing dataset in the next 

step. The validation dataset has not been mentioned for the “traditional” methods. It is used 

within the training of a CNN to validate the classifying accuracy right away and provide feedback 

information within the training process before using the created CNN on the testing dataset. With 

the function splitEachLabel() all three data subsets can be created randomized in the required 

dataset sizes. The size of the training dataset should be equal for all classes to avoid an overfitting 

of the network for the classes with the largest amount of data. An established partition of the 

dataset is to use 70 % of the images for training, 20 % for validation and 10% for testing. If the 

dataset is imbalanced a fixed number of images can be set for each set. AlexNet requires the 

images to have a format dimension of 227 x 227 x 3 pixel. Therefrom, 227 pixel are for width and 

height and 3 pixel in the third dimension for color images (red, green and blue channels). The 

LOKI images have various sizes and are all grayscale images, thus having only two dimensions. The 

image datastore can be augmented to fit the LOKI images to the required format.  

The most important CNN options - that can be modified and experimented with - are the learning 

rate and the momentum. The learning rate represents the step size approaching the optimal 

weights for the CNN in the learning process. After each iteration, the feedback mechanism 

changes the step direction to get closer to the best weights. The momentum is the proportion of 

the angle of the step taken for the next iteration. If the momentum were set to 1, the next step 

would turn 100 % into the new direction, calculated by the adjusted weights. If the momentum 

were set to values < 1, only this proportion of the angle would be used for the next step (Chollet, 

2018). 

After the neuronal network is fine-tuned with the LOKI training and validation images, it is used 

on the test dataset. To acquire an overview over the CNNs results, a confusion matrix is created, 

and the percentage of the overall accurate classification is calculated. The important variables to 

consider for judging the overall success of the CNN classification are the accuracy and the loss 

score.  

 

A second approach uses a TensorFlow2 environment. TensorFlow is an end-to-end open source 

platform for machine learning (TensorFlow). For custom object detection, it provides an 

application programming interface (API) in the form of a Google colab (Roboflow, 2020) notebook 

with an established deep learning algorithm. This API uses the YOLOv4 (Bochkovskiy et al., 2020) 

CNN architecture. 

To implement custom data into their setup, a tutorial (Solawetz, 2020) is provided. For a faster 

computation speed an online connection to a GPU is provided. It was possible to run this 

algorithm with the provided example images. In a next step the LOKI images are provided to the 
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network. To use the LOKI images for this cause, they need to be annotated by a labeling tool 

beforehand. Roboflow is a website and online tool (Roboflow Inc., 2020) for data augmentation, 

labeling and creating datasets split into training, validation, and texting sets. It was used to 

annotate a small dataset containing 180 images in four classes (Peru small, Appendix 1) which 

could be implemented within the TensorFlow environment afterwards. Training this 

implementation of a CNN takes up a long time and requires a lot of computational power. Due to 

technical limitations the approach for this implementation was left at this state and no results are 

available. When a GPU is locally available, it will be tested again in the future.  
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3 Results 

The results chapter is organized into the Changes A-D to improve the original script and into the 

outcome of the feature selection, and image classification approaches.  

 

3.1 Change A 

Change A aimed to improve the selection of the ROI within the image when light attributes were 

present, which have longer contour lines than the actual organism. Therefore, the vertical and 

horizontal expansions of the object clusters were considered. Figure 19 displays the before and 

after results for two sample organisms for Change A. On the left side, before Change A, the 

resulting contour line encloses an object on the top of the image (Figure 19, left). All images with 

these light attributes in the top margin have the y-coordinate 0 within the original camera frame. 

This means the images are taken from the outer margin of the frame and might be influenced by 

the LEDs illumination. On the right side, after Change A, the contours are now enclosing the ROI 

instead of the light attribute (Figure 19, right). To evaluate Change A a set of 1264 images was 

primed with the LOKI-Complete-data-primer script twice. Once with Change A switched off and 

once with Change A switched on. Within both result folders the number of images with a contour 

line surrounding the light attribute instead of the organism was manually counted. With Change 

A switched off 46 out of 1264 falsely identified images were counted, while with Change A 

switched on no images had a light attribute identified as the ROI. Change A improves finding the 

ROI in cases like the light attribute influence (Figure 19). But it has a weakness if there is an 

background object visible within the image that has a longer contour and also greater vertical and 

horizontal expansion (Figure 20). For these cases, no further improvements are implemented yet, 

but ideas are mentioned in chapter 5. 
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Before implementing Change A After implementing Change A 

  

  

Figure 19: Two example organisms in their source image together with the edge detection contour 
result from before (left) and after (right) implementing Change A. Before Change A the light 
attribute on the upper image margin was detected for both source images and after implementing 
Change A the organism was detected correctly. 

 



Results 

43 
 

  

Figure 20: Two example plankton source images with the contour lines of the edge detection in 
misidentified regions of interest (ROI). The images show the actual ROI in the center, but each 
image also contains another organism which appears cropped at the margins of the image. In 
these cases, the cropped organism has a longer contour and a larger vertical expansion, which is 
an important part of the decision process in Change A to choose the correct ROI. Therefore, these 
ROI are misidentified before and after Change A. If the contour line of the cropped organism in the 
right image was to be shorter than the contour of the center organism, this would be an example 
of Change A worsen the output, just because the cropped organism has a large vertical expansion.  

 

3.2 Change B 

To goal of implementing Change B, was to improve the edge detection through narrowing down 

the contour line and finding the entire expanse of an organism without cropping body features 

like antennas. Figure 21 shows the before and after images for Change B. For these example 

images it is clearly visible that the contour line lies much closer to the organism after 

implementing Change B. The last pair of images (Figure 21, third row) shows a polychaeta 

organism with lots of fine bristles, their structure is harder to detect than the clearer lines of the 

copepod (Figure 21, second row) or the Bacillariophyceae (Figure 21, first row). 

To evaluate the improvement through Change B a test was conducted using 100 random images 

out of a set of 1264 which were primed with the LOKI-Complete-data-primer script twice, once 

with Change B switched off and once with Change B switched on. For all selected images it was 

manually revised, that the contour line contains only one organism, without connections to other 

organisms or light attributes and without cropped body features. Two of the contour line image 

feature that were calculated within the feature extraction process are used here to compare the 

success of the contour line in each test to enclose the organism the tightest. The first feature is 

the Contour Line Area, basically the area of the IMGmask. This value is expected to decline as the 
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contour moves closer to the organism and reduces the occupied space. Still it is possible that 

after Change B some finer organism structures are enclosed within the contour, which might 

increase the area slightly. The second feature, which is compared, is the Center to Contour Points 

Median. This feature describes the distance of each contour pixel to the center int of the 

IMGmask. As the contour closes is this feature is also expected to decrease in its value. Table 1 

shows the results of this test. For the difference value of the features the after result was 

subtracted from the before result. After implementing Change B, the Contour Line Area, as well 

as the Center to Contour Points Median are smaller in their values. This result suggests an 

improvement success for the edge detection implementation in Change B. 

 

Table 1: Evaluation of the improvement in edge detection through Change B. Two contour image 
features, which are expected to decrease in their value with a closer contour line are compared 
for 100 random images primed with (after Change B) and without (before Change B) switching on 
Change B. The difference columns show the subtraction of before-after. 

 Contour Line Area 

(mean) 

Contour Line Area 

(difference) 

Center to Contour 

Points Median 

(mean) 

Center to Contour 

Points Median 

(difference) 

Before 

Change B 
12123.11 

2126.79 

73.90 

4.17 
After 

Change B 
9996.32 69.73 

 

Figure 22 displays one of the new outputs of the image processing, showing every processing step 

especially during the Canny edge detection process. On this particular example image it can be 

seen, that the image enhancement through adding the results of the binarized Smag
2 

(IMGedges_SumSqrt_T on Figure 22) to Smag (IMGsobelMag on Figure 22) facilitates the detection 

of the antennas which would have otherwise had to small intensities to be detected. The 

IMGdoubleThresh and IMGstrongEdge show that through the function 

FindConnectedWeakEdges() the weak edges of the antenna are reconnected with the strong edge 

of the body of the copepod. 
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Before implementing Change B After implementing Change B 

  

  

 

 

Figure 21: Three examples LOKI plankton images of the edge detection from before (left) and after 
(right) implementing Change B. The produced contour line lays much closer at the organism itself 
when Change B is implemented.  
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Figure 22: Example of the new output produced by the LOKI-Complete-data-primer script 
visualizing the single image processing steps. The order of the steps is left to right and top to 
bottom and will be numbered from 1-12 for better comprehension. The image processing starts 
with the source image (1) which is then blurred to cancel out unwanted noise (2). The edge 
detection images, produced through Equation 4 (3) and Equation 5 (4) and the threshold image 
(5) are displayed. (6) consist of the sum of (3) and (5) and visualizes the enhanced detected edges 
that will be further processed with the Canny edge detection algorithm. Non-maximum 
suppression (7), double thresholding (8) and the finding of connected weak edges (9) is conducted. 
For this image processing the deletion of the weak edges is disabled, to produce more accurate 
results with the current state of the LOKI-Complete-data-primer script, therefore, (9) and (10) are 
the same result. Finally, the binarized image mask is produced (11) and the contour can be applied 
to the source image (12) for visual confirmation of the edge detection process. 
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As a second evaluation of the image processing improvement through Change B, a LDA was used 

to classify the Peru dataset, which was pre-classified and primed twice, once with Change B 

switched off and once with Change B switched on. Both results tables were split randomly into 

training sets with 80 % of the image data, and testing sets with 20 % of the image data. Since the 

Peru dataset contains a relatively small number of images (1023) the splitting and the testing 

were conducted a hundred times to calculate the mean success value and standard deviation. 

Every iteration uses the same indices of randomly selected testing and training data for before 

and after Change B. Table 2 shows the results of this test. Before implementing Change B the 

classification accuracy is 69.59 with a standard deviation of 0.028 and after Change B was 

implemented the classification accuracy is 68.74 with a standard deviation of 0.029 . 

 

Table 2: Mean accuracy and standard deviation of support vector machine classification of Peru 
data set before and after Change B was implemented in order to evaluate the impact of the 
improved edge detection on the classification accuracy. 

 Before Change B After Change B 

Mean accuracy of SVM / % 69.59 68.74 

Standard deviation 0.028 0.029 

 

3.3 Change C and D 

After implementing Change C and therefore skipping images that are either corrupted, too large 

or have a too long contour line, possible errors have been prevented and the script runs smoothly. 

  

In a test, the LOKI-Complete-data-primer script was executed with Change D switched on and the 

processing time of the TMD and IMG processing sections were compared to a run of the script 

when Change D was switched off. Both tests were performed on the same computer. The 

parallelization used 11 instead of 1 CPU cores. The results can be seen in Table 3. Without 

parallelizing the process, the script takes 153 min to finish. When it is parallelized, it only takes a 

total of 25 min. Implementing Change D saved a lot of processing time (Table 3). For this test and 

amount of data, the parallel version runs more than six times faster than the normal version.  

 

 

 



Results 

48 
 

Table 3: Processing times of the LOKI-Complete-data-primer script on 1524 telemetry and 1936 
image files before and after implementing the parallelization in Change D. 

 Time Before Change D/min Time After Change D/min 

TMD processing time  
(1524 TMD files) 

1.28 0.23 

IMG processing time 
(1936 IMG files) 

152.16 24.82 

Total processing time 153.44 25.05 

 

3.4 Feature Selection 

The image processing of the LOKI plankton images results in a table with 92 features calculated 

for each image. The feature selection process goes through two separate steps to find features, 

which allow the best classification of plankton images. The first step is an exclusion of features 

having redundant information and linear correlation coefficients of R2 >= 0.98. Therefore, a pairs 

plot and the cor() function are used in R. Within the pairs plot four features are visible which are 

constant for every image. Those are excluded before further analysis. Data points are also 

excluded for the feature selection when they show large outliers for many of the features. 

Outliers make it harder to detect visible dependencies in the pairs plot. After the exclusion of all 

features with a linear correlation coefficient of R2 >= 0.98, the dataset was shortened to 49 

features. The 49 features left are then ranked in the order of their Gini Index in the second step 

of the feature selection process. Table 4 lists the features in order of their mean Gini indices 

together with their standard deviation. The Gini Index was calculated by running a random Forest 

model with a thousand trees for a hundred times and then calculating the mean Gini Index and 

its standard deviation for each feature out of the hundred executions.  

To find the best subset of features for the classification of the LOKI plankton images, it was noted 

that each method has their accuracy maximum at different numbers of features. Therefore, each 

method as assigned an own feature subset to create the highest classification accuracies. The 

results of the feature exclusion can be found in the corresponding classifier result chapter in 3.5. 

The optimal number of features for each method will include all features ranked by the Gini Index 

up to the optimal number.  
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Table 4: Image features sorted after the value of the mean Gini Index together with the Gini Index 
standard deviation (SD) after a hundred execution of a random Forest model with a thousand trees 
and the standard deviation of the Gini index. 

 Image Feature Mean 
Gini 
Index 

SD 
Gini 
Index 

 Image Feature Mean 
Gini 
Index 

SD 
Gini 
Index 

1 COO: Solidity 40.63 0.55 26 Size: Mass center Y 18.12 0.40 

2 COO: Centre to contour 
points variance 

34.61 0.65 
27 

Intensity: Quantile 0.80 
17.63 0.42 

3 
Pixel border distances: SD 31.71 0.48 

28 Haralick: Homogeneity 
[ASM] 

17.59 0.35 

4 
COO: Haralicks circularity 31.48 0.50 

29 Pixel-border distances: 
median 

17.57 0.38 

5 Size: Elliptical fit major 
axis 

30.41 0.61 
30 

COO: Convexity 
16.82 0.29 

6 
Haralick: Image 
correlation [COR] 

29.77 0.53 
31 Haralick: Image 

information measure 
correlation [f13] 

16.74 0.29 

7 Pixel-border distances: 
sum 

28.34 0.55 
32 Recurrence: Laminarity 

[LAM] 
16.61 0.32 

8 Size: Elliptical eccentricity 26.79 0.49 33 Intensity: Quantile 0.40 16.35 0.37 

9 Haralick: Sum of squares 
[VAR] 

24.40 0.49 
34 Recurrence: Ratio 

[DET/RR] 
16.06 0.30 

10 
COO: Convex hull points 24.27 0.37 

35 Haralick: Image difference 
entropy [DEN] 

14.80 0.30 

11 
COO: Centre to contour 
points sum 

24.22 0.60 
36 Haralick: Image 

information measure 
correlation [f12] 

14.70 0.26 

12 COO: Eccentricity 24.21 0.48 37 Intensity: Quantile 0.30 14.52 0.32 

13 Intensity: Quantile 0.60 23.89 0.47 38 Size: Mass center X 14.44 0.30 

14 
COO: Elongation 

23.84 0.42 
39 Haralick: Image entropy 

[ENT] 
14.23 0.30 

15 Intensity: Quantile 0.70 23.29 0.48 40 Intensity: Abs. deviation 14.09 0.28 

16 Intensity: SD 23.14 0.48 41 Intensity: Quantile 0.90 13.61 0.37 

17 Recurrence: Total 
recurrence 

22.33 0.50 
42 Haralick: Image sum of 

entropy [SEN] 
13.35 0.27 

18 Shape: Radius minimum 22.07 0.41 43 Intensity: Quantile 0.20 12.91 0.27 

19 Recurrence: Trapping 
Time [TT] 

21.05 0.44 
44 

Intensity: Quantile 0.95 
12.66 0.32 

20 Intensity: Quantile 0.50 20.21 0.38 45 Intensity: Quantile 0.10 9.62 0.21 

21 Recurrence: Determinism 
[DET] 

19.64 0.42 
46 Size: Elliptical major axis 

angle 
9.58 0.16 

22 COO: Contour line height 19.41 0.40 47 Intensity: Quantile 0.05 8.03 0.19 

23 Recurrence: Recurrence 
rate [RR] 

19.32 0.40 
48 

Intensity: Quantile 0.01 
6.79 0.15 

24 Haralick: Inverse 
difference moment [IDM] 

18.73 0.35 
49 

Intensity: Quantile 0.99 
6.27 0.24 

25 Haralick: Image summed 
variance [SVA] 

18.60 0.35 
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3.5 Classification using Multivariate Statistics, Support Vector Machines and 

Convolutional Neural Networks 

To classify the LOKI plankton images four different methods were applied ranging from 

multivariate statistics with a LDA and a random Forest over “traditional” machine learning with 

SVM to a modern approach using CNNs. The results of the methods are addressed in the following 

chapters. Every chapter also contains the feature selection result of the respective method. The 

rows of the confusion matrices (Figure 23, Figure 25, Figure 27, Figure 29, Figure 30) displayed in 

this chapter contain the actual class affiliation while the columns contain the predicted class. The 

two extra rows on the bottom display the percentage of the prediction success per column, while 

the two extra columns on the right display the absolute number of data elements in a class which 

were predicted correctly, respectively incorrectly. To calculate the accuracy of a classification the 

sum of the diagonal proportion of the confusion matrix is calculated. The prop.table() function 

shows the proportion of the data sorted into each class, the diagonal contains all entries that 

where sorted into the correct class. Therefore, their sum accounts for the overall classifying 

accuracy. The classification accuracy of all methods on a testing dataset with will be discussed 

subsequently in chapter 4.4. 

In a first approach the random Forest classification was used on the dataset Sognefjord 26 groups. 

The number of images features used was 40, which will be explained in detail in the respective 

random Forest chapter 3.5.2. The resulting confusion matrix is displayed in Figure 23. A red box 

was drawn around the Copepoda classes where a higher misclassification of images can be 

observed. This was taken as a reason to further summarize these classes for a better classification. 

The classification result of this random Forest analysis was 76.56 %. 

The datasets used for the following classification are the Sognefjord augmented dataset for the 

CNNs and the Sognefjord 14 groups dataset for all other methods. During image processing with 

the LOKI-Complete-data-primer script 182 images of the Sognefjord 14 groups dataset were 

marked as too large or as having a too long contour line around the objects on the image. 

Therefore, they were excluded from the dataset processed with the classifying methods. 

Appendix 1 and Appendix 2 give an overview over the available datasets and their number of 

image files. 
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Figure 23: Confusion matrix of the random Forest classification of the Sognefjord 26 groups dataset in 26 classes. The true classes are displayed in the rows and the 
predicted classes in the columns. On the right two extra columns are displayed showing the absolute number of images that have been correctly or incorrectly 
classified. The sum per row is the number of images per class. The two extra rows on the bottom show the percentage of correct and incorrect predictions per class. 
The red box outlines the higher misclassification within all Copepoda classes. 
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3.5.1 Linear Discriminant Analysis Classification 

The linear discriminant analysis (LDA) uses 43 out of the 49 image features to reach its highest 

classification accuracy. Figure 24 shows the process of excluding the features stepwise in the 

order of their increasing Gini Index - unimportant features first - for the LDA. The accuracy 

declines slowly with a decreasing number of features. When only about 10 features are left in the 

dataset the accuracy declines a lot faster. 

 

 

Figure 24: After the exclusion of highly correlating image features, a random Forest model was 
used to calculate the importance (Gini Index) of the remaining features. This graph shows the 
classification accuracy of a linear discriminant analysis (LDA) over a decreasing number of features 
ranked after the Gini Index. The LDA reaches its highest accuracy using 43 image features (vertical 
line).  

 

The LDA classification was computed with the lda() function in the R package MASS. Two LDA 

models were created with the training dataset. For the first model the cross validation (CV) option 

within the lda() function was activated. If the CV is activated the model’s return contains a list 

with the calculated components classes as a self-prediction. The classification accuracy of the 

model training data is 81.11 %. In the next step the LDA model without CV is used to predict the 

classes for the testing dataset. The classification accuracy of the prediction is 80.94 %. 
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The confusion matrix for the LDA classification is displayed in Figure 25. When it is described in 

this section the single classified elements will be addressed as images, it just needs to be noted, 

that all classifications, except the CNN approach, work with the image feature table for the 

classifications. 

The true classes are displayed in the rows, while the predicted classes are displayed in the 

columns (Figure 25). The last two columns show the absolute true (blue) and false (red) 

classifications of each class. Their sum is the number of images that went into the testing dataset. 

On Figure 25 it is visible, that the dataset is strongly imbalanced. After using 80 % of the images 

for the training dataset the class Amphipoda only had three images left for the testing dataset. 

On the bottom, the two extra rows display the percentage of images that were predicted into the 

correct class within this column (blue) and that were predicted wrongfully (red). The Copepoda 

class contains most of the images and is also the class that has been predicted to belong to most 

of the other classes, while still having one of the highest accurate classification results. The 

highest accurate classification can be found within the bubble images and the lowest for the 

Amphipoda and Polychaeta images which have been classified to belong to the Copepoda class. 

 

 

Figure 25: Confusion matrix of linear discriminant analysis of the Sognefjord 14 groups dataset in 
14 classes. The true classes are displayed in the rows and the predicted classes in the columns. On 
the right two extra columns are displayed showing the absolute number of images that have been 
correctly or incorrectly classified. The sum per row is the number of images per class. The two 
extra rows on the bottom show the percentage of correct and incorrect predictions per class.  
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3.5.2 Random Forest Classification 

To classify LOKI plankton images with a random Forest the optimal number of features for the 

image feature subset is 40. This can be derived from Figure 26, identically to the feature selection 

for the LDA displayed in Figure 24, a random Forest model was calculated for every subset of 

features for a decreasing number of features. The features were ranked after their Gini Index. 

The accuracy of the random Forest models is quite stable in between 49 to about 15 features. 

After containing less than 15 features the accuracy declines rapidly. Since the random Forest are 

based on randomized computations, the exact number of features to deliver to highest 

classification accuracy might vary slightly if this test would be repeated multiple times. 

 

 

Figure 26: After the exclusion of highly correlating image features a random Forest model was 
used to calculate the importance (Gini Index) of the remaining features. This graph shows the 
classification accuracy of a random Forest model over a decreasing number of features ranked 
after the Gini Index. The random Forest reaches its highest accuracy using 40 image features 
(vertical line). 

 

To calculate the classifiers accuracy on a training and testing dataset a 1,000 tree random Forest 

model was built with the randomForest() function in the equally named R package. One of the 

return values of a random Forest model is the confusion matrix. If the model is trained on the 

entire Sognefjord 14 groups dataset, the computation time takes 6.87 min and has a classification 
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accuracy of 88.91 %. When a random Forest model is being trained on a training dataset, 

containing 80 % of randomly picked image data from each class and then tested on the remaining 

20 % the computation time takes up 4.85 min and has a classification accuracy of 88.72 %. 

Figure 27 displays the random Forest classifications confusion matrix, which is equivalent in its 

structure to the LDA confusion matrix. The random Forest classification has an overall higher 

classification accuracy, which is mirrored in the confusion matrix. Similar like in the LDA confusion 

matrix, it can be seen, that classes with a smaller number of images generally classify worse than 

classes with a high number of training and testing images. 

 

 

Figure 27: Confusion matrix of the random Forest classification of the Sognefjord 14 groups 
dataset in 14 classes. The true classes are displayed in the rows and the predicted classes in the 
columns. On the right two extra columns are displayed showing the absolute number of images 
that have been correctly or incorrectly classified. The sum per row is the number of images per 
class. The two extra rows on the bottom show the percentage of correct and incorrect predictions 
per class. 

 

3.5.3 Support Vector Machine Classification 

Same like for LDA and random Forest the feature selection for SVM classification was conducted 

using the decreasing number of Gini Index ranked image features and a classifier loop testing its 

performance for every feature subset. Within the first feature selection tests it was noted that 

the SVM accuracy over a deceasing number of features had a clear maximum when it was used 

with constant gamma and cost variables for each iteration. Therefore, the final SVM feature 

selection loop also included a SVM tuning for each iteration. This loop was computational 

expensive and took over 10 h to finish. But by including the tuning, the variables can be set 

optimal for each new subset of features. The feature selection graph (Figure 28) shows an overall 
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stable accuracy, which is slightly meandering until the number of features drops under 15. Next 

to the accuracy maximum at 26 features, a SVM with 16 features also show a similar high 

classification accuracy.  

 

 

Figure 28: After the exclusion of highly correlating image features a random Forest model was 
used to calculate the importance (Gini Index) of the remaining features. This graph shows the 
classification accuracy of a support vector machine (SVM) over a decreasing number of features 
ranked after the Gini Index. The SVM reaches its maximum accuracy using 26 image features 
(vertical line). 

 

The R package e1071 is used to create a SVM model with a training dataset containing 80 % of 

the Sognefjord 14 groups dataset. The SVM model can be improved by using the tune() function. 

The tuned model is then used to predict the classes for a testing dataset containing 20 % of the 

Sognefjord 14 groups dataset. The tuning variables chosen by the tune() function are 0.05 for 

gamma and 30 for the cost variable. The SVM classification accuracy is 92.22 % for the training 

dataset and 88.08 % for the testing dataset. The elapsed time for tuning and training was 10.6 h 

and it took 18 s for the prediction of the testing dataset.  

Figure 29 displays the confusion matrix for the SVM. The structure is again equivalent to the 

confusion matrices seen before. When the three confusion matrices of the “traditional” methods 

are viewed side by side, the higher classification accuracy of the random Forest and SVM methods 
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are visible. In between these two, random Forest has less accurate classifications for 9 out of 14 

classes but higher classification accuracies in the larger classes. 

 

 

Figure 29: Confusion matrix of the support vector machines on the Sognefjord 14 groups dataset 
in 14 classes. The true classes are displayed in the rows and the predicted classes in the columns. 
On the right two extra columns are displayed showing the absolute number of images that have 
been correctly or incorrectly classified. The sum per row is the number of images per class. The 
two extra rows on the bottom show the percentage of correct and incorrect predictions per class. 

 

3.5.4 Convolutional Neural Network Classification 

The MATLAB AlexNet transfer learning implementation was used to train an adaptation of the 

AlexNet neural network for LOKI plankton image classification. Since the dataset Sognefjord 14 

groups is strongly imbalanced, the images in the smaller classes were augmented to create a 

larger basis for the training and testing dataset. The smallest number of images in one class after 

augmentation was 250. 190 random images per class were used for the training dataset, 30 for 

the validation dataset and all images left were used for the testing dataset. For the larger classes, 

this leads to having a testing dataset that is a lot larger than the training dataset, which is not the 

optimal setting. AlexNet was adapted to the number of classes available and then trained with 

the plankton images. The adapted network was named LOKInet and will be referred by this name. 

Within the experimental range (Table 5) the best learning rate for the LOKInet was 0.001 and the 

best momentum was 0.9. Each training and testing of the LOKInet takes about 3,5 h on one of the 

computers CPUs. Table 5 shows that the classification accuracy does not necessarily improve with 

a higher validation frequency (comparing trial 1, 11 & 13). When the momentum is smaller the 

learning rate needs to be higher to get a better accuracy (comparing trial 3 through 6). When 
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keeping the learning rate constant but rising the momentum, the accuracy shows that the 

momentum has its optimal value at 0.9 (comparing trail 10 through 12). Trails 7, 8 and 11 indicate 

an optimal value for the learning rate of 0.001. With these values LOKInet achieves a classification 

accuracy of 87.75 %. 

 

Table 5: Variation of learning rate, momentum, and validation frequency to improve the 
classification accuracy of the LOKInet approach. 

No. of trail Learning rate Momentum Validation frequency 
(every nth iteration) 

Classification 
accuracy / % 

1 0.0010 0.90 3 84.00 

2 0.0050 0.95 3 77.89 

3 0.0010 0.60 3 84.20 

4 0.0005 0.60 3 80.31 

5 0.0010 0.60 2 83.26 

6 0.0100 0.60 2 83.44 

7 0.0100 0.90 2 78.61 

8 0.0005 0.90 2 81.94 

9 0.0005 0.95 2 83.66 

10 0.0010 0.80 2 82.35 

11 0.0010 0.90 2 87.75 

12 0.0010 0.95 2 77.47 

13 0.0010 0.90 1 79.38 

 

Figure 30 displays the LOKInet confusion matrix. It differs to the previously seen confusion 

matrices by having a much larger testing dataset for the classes since the images were augmented 

for this dataset. The highest misclassification appears within the Copepoda class, for images being 

mistaken as Mysidae or Acantharia. Since the Copepoda class has so many images, the majority 

is still classified correctly. Classes that have been filled up with augmented images are for example 

Amphipoda or Polychaeta. They have been classified correctly almost entirely by LOKInet. 
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Figure 30: Confusion matrix of the convolutional neural net classification of the Sognefjord 14 
groups dataset in 14 classes. The true classes are displayed in the rows and the predicted classes 
in the columns. On the right two extra columns are displayed showing the absolute number of 
images that have been correctly or incorrectly classified. The sum per row is the number of images 
per class. The two extra rows on the bottom show the percentage of correct and incorrect 
predictions per class. 
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4 Discussion 

4.1 Objective 1: Evaluation of the adapted edge detection operation 

Improving the edge detection was the first objective of this thesis. The “traditional” image 

classification is based on the manual image features, which can be derived from the image mask 

or contour line, which again is extracted from detected edges. As the edge detection is improved 

the derived image features and classification should be more accurate. Within this thesis four 

major changes were implemented into the original LOKI-Complete-data-primer script. Two of 

them aimed at receiving a more accurate image mask. Change A helped in the detection of the 

actual region of interest (ROI) in images with multiple organisms or objects. Despite being 

successful for the reviewed set of images, the object selection, based heavily on the mere 

expansion of the object within the image, has some remaining flaws. Organisms with a slim 

appearance might be discarded when being compared to imaging artefacts within the image 

having a larger horizontal expansion. Usually, the object of interest is the most illuminated and 

centered object within the image. In the Conclusion & Recommendation chapter 5 a suggestion 

is made for how to improve the selection of the object of interest in images with multiple 

detected objects in further studies.  

Change B includes established edge detection methods and combines them in a new way to 

enhance the ROI and deliver tightly cut edges that include even fine-scale body-features and 

appendages of the organisms or object. 

Viewing the result images of the original script, the edge detection was working, but it still had 

some room for improvement. Therefore, the original approach using a Sobel operator was not 

banned from the process. Within the pool of simple edge detectors, the extended (5x5) Sobel 

operator works fairly well (Kekre & Gharge, 2010). It was also used by Corgnati et al. (2016) on 

their imaging system for monitoring gelatinous zooplankton. The Canny edge detection is a well-

established method (Bature et al., 2015; Oskoei & Hu, 2010) and is successfully used for different 

fields of visual research, e.g. mammography (Rampun et al., 2017). The Canny edge detection 

implementation by Liang (2017) worked well in R and produced reasonable results.  

 

The simple process of adding two different multiplication results of the vertical and horizontal 

Sobel edge detection delivered satisfying image masks. This was evaluated by classifying the 

images by their feature table with a LDA before Change B was applied to the image processing 

chain. The result was then compared to the classification results from the same feature table 
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after Change B was applied. The classification accuracy was similar for both cases with a slightly 

higher accuracy of the image feature table produced before Change B was implemented. This 

result slightly contradicts the expected outcome of the improved edge detection. But it also shows 

that important discrimination features are not necessarily derived from a more accurate contour 

line. As Change B also still has objectives for improvement, the development of this classification 

accuracy should be observed in further experiments. 

Other developers of plankton imaging systems report difficulties applying the Canny edge 

detector. Sosik & Olson (2007) indicate that the Canny algorithm could not be optimized to avoid 

artifacts from noise and illumination variations while reliably detecting challenging cell features. 

Their images display the organism with higher pixel intensities on a light gray background which 

varies in brightness. LOKI’s advantage for this issue is, that it provides images with a high signal 

to noise ratio and high contrast to the background.  

It needs to be noted that the Canny edge detection requires a lot of computational time. Akiba & 

Kakui (1998) even state that edge detection in general is a computational expensive operation. 

Nevertheless, it is necessary to manually produce image features for “traditional” classification 

methods. 

In their publication Dai et al. (2017) used different approaches to extract information from their 

plankton images. Their overall approach using a combination of calculating texture features and 

a CNN classification is discussed in detail in chapter 4.4. One of their image processing steps 

leading to the feature extraction includes operations similar to the ones in this thesis as they also 

use the Sobel operator and Canny edge detection. Their overall classification accuracy was 

improved by adding information of global and local feature extraction - which were produced by 

prior edge detection - to their model. This shows that even if there are more modern approaches 

to image classification, the manual feature extraction and a previous well working edge detection 

are still crucial to producing highly accurate results. 

 

Change C was successful in discarding errors from too large or corrupt images and will further be 

employed in the script. Change D helped to save computational time but can further be improve 

by measures explained in the Recommendations 5. 

 

4.2 Objective 2: Evaluation of the implemented feature selection. 

Each plankton image contains information about the size, shape, roundness, etc. of the captured 

organism. To extract these information, the image is processed with the LOKI-Complete-data-
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primer script, detecting the edges of the organism, and producing a final image mask outlining 

the exact position of the organism within the image. From the image mask a variety of features 

describing the organism can be obtained. Cheng et al. (2018) review feature extraction 

techniques for plankton images and their publication includes a few features that have not yet 

been calculated for the LOKI images. For example, the Fourier Boundary Descriptor is a common 

geometric feature used by Sosik & Olson (2007), Tang et al. (1998) and Verikas et al. (2015). Wang 

et al. (2016) propose a method where local binary patterns, inner-distance shape context and 

geometric and grayscale features are extracted separately and used in different classifiers before 

the results are merged in a final classification. They state that they achieve better performance 

by combining these different types of features processed in separate classifiers. The LOKI-

Complete-data-primer script also uses different types of features but separated classification was 

not yet attempted within this thesis. The different types of features calculated with the LOKI-

Complete-data-primer deliver similar information about certain image characteristics. If 

processed separately, the information could be kept and would not be sorted out during feature 

selection. This should be a point considered for further research with the LOKI plankton images. 

The LOKI-Complete-data-primer script produces an output with 75 manual image features from 

which some include similar information. Classification methods work best with a set of features 

without redundant information and collinearity (Dash & Liu, 1997). The feature selection process 

implemented in this thesis investigates different phases to find the best subset of features for 

each method. Highly (>= 0.98) correlating features are sorted out manually by using a pairs plot 

and the cor() function. The Gini Index is computed for the remaining features. Using the 

corresponding classification method, its classification accuracy is computed for each feature 

subset in a loop with step-wise excluded features, based on their Gini Index significance. The 

usage of the Gini Index was validated with the conclusion from Strobl et al. (2007), who imply, 

that if a dataset has continuous values for its features and if the features do not account for 

different numbers of classes - as it is common in gene expression studies - the feature selection 

with random Forest importance measures is not affected by their findings. Their findings imply 

that the Gini Index method would be very biased and not reliable if applied to datasets that do 

not meet the mentioned criteria. The Sognefjord dataset meets the criteria as the features have 

continuous values and account for the same number of plankton classes for each image. 

The process implemented within this thesis can be assigned to the wrapper feature selection 

methods. Feature selection methods can generally be subdivided into filter and wrapper methods 

(Dash & Liu, 1997). While filter methods are not dependent on a classification algorithm, wrapper 

methods use such an algorithm for the evaluation of the selected features. This makes wrapper 

methods more accurate but also very time intensive.  
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Within the publications for plankton classification only a few make it transparent which method 

was used for their feature selection. Verikas et al. (2015) also conducted a separate feature 

selection for their different classifiers, being a random Forest and a SVM. They have used a 

classification-accuracy-based floating search for both methods where the classification accuracy 

of the method is determined within a loop similar to the used method within this thesis. The 

difference is that their method starts with a best pair of features, then decides which one presents 

the most decrease in classification accuracy when excluded, discard this one, and adds two more 

features to repeat this process. This process leaves more room for variation within the feature 

selection than the applied method. For future implementations, method like classification-

accuracy-based floating search can be accessed within R, over the packages FSinR and caret. They 

could be included in further experimentation with the LOKI image features.  

 

4.3 Objective 3: Evaluation of the reduced feature table regarding the 

discriminability of labeled morphotype groups, based on numerical 

parameters using LDA, random Forest and SVM.  

Since early versions of the LOKI system and software the authors are aiming at providing a 

complete processing chain from image capturing towards autonomous classification and 

presorting of major morphological groups. First adaptations of SVMs have been implemented on 

morphological features in 2009 (Barz et al., 2009). Latest approaches further combined time 

series analyses methods, like recurrence features (Schulz et al., 2016) with a LDA approach to 

classify morphological groups achieving a classification accuracy of 62.8 %.  

Within this thesis further classification possibilities are applied to the reduced LOKI image 

features table. A LDA , a random Forest analysis and a SVM were conducted on a dataset with 

37,057 labeled LOKI images. Table 6 summarizes the classification results of the different 

multivariate and machine learning methods. For the Sognefjord 14 groups dataset the LDA was 

the fastest but least accurate classifier with 80.94 % accuracy. The SVM took a long time for tuning 

the function parameters but was then trained a little faster than the random Forest. Both 

methods have similar high classification results of 88.08 % (SVM) and 88.7 % (random Forest). 

The random Forest reached 76.56 % classification accuracy on the Sognefjord 26 groups dataset. 

Each method had a distinct set of features, chosen to achieve the best possible classification 

accuracy. 
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Table 6: Summary of classification accuracies of different classifying methods. The dataset name, 
number of classes, number of features, training and testing time and the accuracy are listed. 

Classification 

method 

random 

Forest 

LDA random 

Forest 

SVM CNN 

Dataset Sognefjord 

26 groups 

Sognefjord 

14 groups 

Sognefjord 

14 groups 

Sognefjord 14 

group 

Sognefjord 

augmented 

Classes 26 14 14 14 14 

Features 40 43 40 26 - 

Training time / 

min 

4.39 0.05 4.97  Tuning: 631.63 

Training: 4.65 

192.00 

Prediction 

time / min 

0.04 0.01 0.10 0.29 13.33 

Classification 

accuracy of a 

testing set / % 

76.56 80.94 88.72 88.08 87.75 

 

The intragroup specific misclassification of Copepoda organisms (Figure 23) show that the basic 

morphotype recognition of Copepoda-Like organisms has worked well and has led to the 

reduction of the dataset by summarizing the Copepoda organisms to achieve higher classification 

accuracy. Further and more detailed approaches should try to optimize the classification accuracy 

of the Sognefjord 26 groups dataset to reach lower taxonomic levels that can be discriminated by 

image feature extraction and classification.  

For the Sognefjord 14 groups dataset the highest classification accuracy of the random Forest can 

be compared to the results of similar approaches in research on plankton image recognition from 

the past. Verikas et al. (2015) list the accuracy of some different techniques for automated 

plankton classification of phytoplankton species from 1989 until 2007 which lie between the 

values of 70 % and 89 %. Bi et al. (2015) classify their images for Jelly-Like, Arrow-Like and 

Copepod-Like morphotypes which can also be found within the Sognefjord 14 groups dataset. 

They can also account for classification accuracies of > 80 %. It needs to be noted that most of 

the different plankton classification approaches are working on different sets of images captured 

by differently working devices. While LOKI or ZooScan (Grosjean et al., 2004) images have a very 

high signal to noise ratio, since the background noise is prevented by having a narrow flow-

through chamber or a plankton scanner, other devices like the GUARD1 (Corgnati et al., 2016) 

take images in the open water column and also account for classification accuracies of ~ 85 %. 
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LOKI images have a very high resolution and therefore a high potential to achieve even higher 

classification rates.  

Gorsky et al. (2010) compare six different classification algorithms including random Forest and 

SVM for the question which one performs best on zooplankton classification. Their results also 

find the highest classification accuracy with the random Forest application. The SVM classification 

performs almost equally well and is a classifying tool used by several researchers of the plankton 

image classification community (Bi et al., 2015; Corgnati et al., 2016; Hu & Davis, 2005; Sosik & 

Olson, 2007; Wang et al., 2016; Zheng et al., 2017) and beyond (Guyon et al., 2002). In R tuning 

a SVM is a timely procedure but delivers better overall classification.  

 

All confusion matrices (Figure 23, Figure 25, Figure 27, Figure 29 and Figure 30) show the highest 

misclassification among the Copepoda class, mostly for other classes being falsely classified as 

Copepoda. For LDA, random Forest and SVM the dataset was split 80/20 % for training and 

testing. Since the Copepoda class contains a much larger number of images compared to the 

other classes, the classification rates are likely biased while eventually disregarding the 

information the smaller classes provide. It is believed that the classification accuracy for equally 

large datasets would be higher. Many images were also classified as Detritus which is also a very 

large class compared to others. There is an approach for addressing imbalanced datasets by Lee 

et al. (2016) for CNN based classification where they constructed class-normalized data by data 

thresholding for large-sized classes. Another approach which also applies for the “traditional” 

methods is data augmentation. In order to produce larger training and testing datasets the 

original images are flipped, rotated, shifted, distorted, etc.  

The R package OpenImageR provides an Augmentation() function to apply such changes to the 

images. The issue that came up while trying to augment the LOKI plankton image data was, that 

the newly created background by rotating or shifting an image creates an intensity gradient to 

the original image background which is then detected by the LOKI-Complete-data-primer script. 

Therefore, different methods need to be applied in order to augment the dataset for 

classifications on the feature tables. Of course, manual labeling and sorting of new datasets is 

also a possibility. Especially after the classification with random Forests has reached a fairly high 

accuracy which can help to classify new datasets and create larger training datasets for future 

classification approaches. 

Figure 31 shows example organisms of all 14 classes used for the classification. For the human 

eye most of them probably seem easy to differentiate. Except for maybe image k (Mysidae) and 

l (Amphipoda) which to the untrained eye appear fairly similar. The few Amphipoda images have 

been classified as Mysidae - and the other way around - only with the LDA classification.  
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Figure 31: Example organisms of all 14 classes from the Sognefjord 14 groups or Sognefjord 
augmented dataset captured with the Lightframe On-Sight Keyspecies Investigation (LOKI) 
system. a – Bubble, b – Chaetognatha, c – Cnidaria, d – Polychaeta, e – Ostracoda, f – Copepoda, 
g – Detritus, h – Ctenophora, i – Egg, j – Faeces, k – Mysidae, l – Amphipoda, m – Acantharia, 
n – Euphausiidae 

 

 

4.4 Objective 4: Approach of direct image discrimination with convolutional 

neural networks. 

The last objective of this thesis was the approach to classify LOKI plankton images with a CNN. 

The multivariate and machine learning methods applied in this thesis achieved a good image 
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feature classification of up to 88.72 %. Nevertheless, Lumini et al. (2019) state that deeper 

learning approaches are increasingly replacing the manual feature extraction and classification 

by “traditional” methods. CNNs have become an important tool for visual and speech recognition 

and natural language processing over the past years (Gu et al., 2018). There are many variants of 

CNN architectures, but their basic components are similar, consisting of convolutional, pooling 

and fully connected layers (Gu et al., 2018). To successively train a CNN for image recognition, 

large amounts of training data need to be available and even then, it might take weeks, even on 

high-performing systems, to adjust all weights for the CNN layers (Aggarwal, 2018). There have 

been multiple constructions of shallow and deep CNNs for image recognition. An online contest 

for image recognition (ImageNet, 2016) has been running over the past years challenging 

researchers to constantly build better CNNs classifying the large ImageNet database. For 

example, AlexNet was built by Krizhevsky et al. (2012), winning the ImageNet challenge of 2010.  

Instead of constructing a whole new CNN for the LOKI image recognition, the architecture, and 

trained weights of AlexNet can be used to classify LOKI images. This process is called transfer 

learning (Pan & Yang, 2009; Shao et al., 2015). Transfer learning is particularly useful when the 

existent resources, like labeled dataset size or computational power, are not meeting the 

requirements to build an individual CNN. MATLAB offers a toolbox for deep and transfer learning 

applications with AlexNet (Appendix 6).  

The Sognefjord augmented dataset was used to fine-tune the AlexNet network. The architecture 

was slightly adapted to fit the number of classes in the Sognefjord augmented dataset. The 

adapted network was trained on the plankton images and called LOKInet. LOKInet was then used 

to classify the remaining testing dataset and achieved a classification accuracy of 87.75 %. 

AlexNet and other pre-trained CNNs were also used for multiple plankton classification 

publications (Dai et al., 2016; Dunker et al., 2018; Lumini & Nanni, 2019). Dai et al. (2016) use a 

dataset with 9460 images in 13 classes and achieve a classification accuracy of 93.6 %. Lumini & 

Nanni (2019) worked with three different datasets and 17 different pre-trained CNN architectures 

and achieved classification accuracies reaching from 80.4 % – 95.1 %. Dunker et al. (2018) use a 

hybrid method of CNNs, which will be explained in the next section, with 46,797 phytoplankton 

images in 9 classes in 3 three different life cycle stages and achieve a classification accuracy of 

97 %. 

Deep learning approaches for plankton classification have repeatedly been superior to 

multivariate and machine learning classification of manual features (González et al., 2019; Lumini 

et al., 2019; Moniruzzaman et al., 2017). Dunker et al. (2018) provide a summarizing table of the 

accuracies for phytoplankton classification. They also include a few references with SVM, decision 

trees and LDA classification. It is obvious, that CNN classification reaches much higher accuracies.  
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After comparing the classification results of the “traditional” and multivariate methods to the 

deep learning approaches of other publications, one might ask why even spend more time on the 

development of the manual features for “traditional” plankton classification. The reason may be 

seen in classification approaches like the one from Dai et al. (2017) who use a combination of 

CNNs and “traditional” manual feature extraction to classify plankton images and achieve a better 

classification rate using their hybrid method than only using CNNs. Lumini et al. (2019) use an 

ensemble of CNNs, which are each fine-tuned differently to classify multiple plankton and coral 

image datasets and show that they achieve higher classification accuracies with their ensemble 

than with single CNNs. Dunker et al. (2018) work exclusively with phytoplankton images and 

present a similar approach to Dai et al. (2017), by using multiple CNN classifications on separate 

but complementary image channels assessing characteristic information. Dunker et al. (2018) 

even go a step further and classify the life cycle stage of the respective phytoplankton organisms.  

Reviewing the Sognefjord datasets it is noted that the majority of classes are zooplankton 

organisms instead of phytoplankton. A lot of the recent plankton classification research has been 

conducted on phytoplankton images (Dunker et al., 2018; Sosik & Olson, 2007; Verikas et al., 

2015). Morphologically, the major difference of phyto- and zooplankton lies within their cell 

structure (Tait & Dipper, 1998). While plants have solid cell walls and usually make for a more 

static appearance of the organism from different viewing angles, animal cells do not have cell 

walls, which leads to a higher variability of the organism’s morphology. By taking this into 

consideration, it was expected that classifying methods might have a higher accuracy for 

phytoplankton images than for zooplankton images. This can be ruled out since Dai et al. (2016, 

2017) have made advances in specifically training their ZooplanktonNet on zooplankton. Their 

hybrid approach was previously mentioned and achieved a high classification rate of up to 96.3 %. 

Since the LOKI dataset contains large groups of zooplankton Dai et al.'s (2017) approach could 

also be a future perspective for the LOKI image classification. 

Another interesting software that has been developed for the classification of plankton images is 

MorphoCluster by Schröder et al. (2020). Their clustering method is based on assigning 

annotations to clusters of similar images. A user can then decide if those clusters are annotated 

correctly, which leads to a growing of the original cluster to enclose more similar images.  

Deep features are the features calculated by a neural network. They can also be extracted from 

the network and used with “traditional” classifying methods. González et al. (2019) also employ 

CNNs to obtain deep features, rather than use the CNN as a classifier. They extract deep features 

from plankton images and feed them in their machine learning based quantification algorithms.  
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As previously mentioned in chapter 2.4.3 the TensorFlow approach was not pursued further for 

this thesis but it is noted as a potential approach for further studies. 
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5 Conclusion & Recommendations 

Plankton image classification has come a long way in the past years and has advanced from time 

consuming manual classification to automated classification approaches with deep neural 

networks, and fine-scale information retrieval on planktonic organisms. On this road, image 

processing has improved for edge detection and feature extraction to feed multivariate and 

machine learning algorithms as a predecessor in classifying. This thesis has specifically worked 

with labeled LOKI plankton images from in R/V Heincke cruise HE434 in the Sognefjord, Norway 

on their path from edge detection through feature selection and classification. New approaches 

have been developed in all parts of the thesis helping to progress the entire LOKI software in the 

future.  

The LOKI image edge detection algorithm has been progressed using the Canny edge detection 

for more narrow contour lines leading to more exact image masks. LOKI image features have been 

selected using the Gini Index and individual stepwise feature selection for the “traditional” 

classifiers LDA, random Forest and SVM. The classification accuracies of these methods has reach 

up to 88.72 %, which can be considered a successful but still improvable classification for the 

37,057 images in 14 classes. 

Self-implemented neutral networks need large amounts of labeled training data and 

computational power and time. Therefore, transfer learning is an accessible and reasonable tool 

for plankton image classification. Studies have shown that the use and combination of traditional 

image classification by manual image features can successfully be combined with newer 

approaches of deep learning to further improve the classification accuracy. Pre-trained networks 

can be adapted and fine-tuned in order to serve as plankton image classifiers. 

Therefore, the development of the LOKI plankton classification system should further consider 

working with deep features, deep learning classifier and maybe even hybrid models. 

 

For further work and development on the edge detection algorithm within the LOKI-Complete-

data-primer script a few objectives will be suggested for additional improvements. For choosing 

the object of interest within an image with multiple organisms, particles, or light attributes a 

further manual experimentation is needed on whether the object is always the one in the center 

of the image. If so, there could be a higher importance set on the center pixel. This could be 

implemented in a form of an image partition, like a chessboard, and if the object of interest covers 

more of the center cells it is more likely to be chosen for the final image mask. Another idea could 

be to investigate the illumination and intensity of the cluster of pixel of multiple organisms since 

the organism in the center of the image tend to be illuminated better.  
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The computational time of the LOKI-Complete-data-primer script should also be object of further 

research and improvement as the parallelized approach has some vulnerabilities. Since a large 

(e.g. 113,551 x 92) result matrix is created by the parallel foreach() operation and the 

concatenation of new result rows takes up much computing time, an empty matrix of that size 

should be created prior to the image processing and feature extraction.  

Within the most recent version of the LOKI-Complete-data-primer script there are some functions 

within the implementation of Change B that can be further improved, e.g., the deleting of weak 

edges within the Canny edge detection algorithm. As of now, this function is ignored within the 

script since it worsens the results. However, with the conducting of further experiments with the 

double thresholding and the retrieval of connected weak edges this function might help to further 

detail the edge detection. 

For the feature extraction there are additional image features, used by other authors (as 

discussed in chapter 4.2), that could also be implemented into the script. It should also be 

examined if certain feature combinations describe the differences of certain classes better than 

others. Following the lead of Wang et al. (2016) or Dai et al. (2017), there is a large scope for 

experiments for feature extraction, selection and classification.  

As data augmentation was also critical for LOKI plankton images due to newly created edges by 

rotation or shifting, an approach for this issue might be the following idea: An image primer 

similar to the LOKI-Complete-data-primer script could be applied, using the image mask as a 

cutout to create a new source images with all pixel intensities of the non-image mask set to 0. 

This would create a completely black background which would leave all kind of possibilities for 

image augmentation. 

 

There is more room for experimentation and further improvement in all aspects of the LOKI 

plankton image classification, starting at some hardware traits up to fine tuning of various 

classification parameters. Edge detection as well as feature extraction, selection and classification 

should be reconsidered on the basis of the results of this thesis, which has revealed new 

approaches and further possibilities towards state of the art plankton recognition. 
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Appendix 1: Datasets used within the thesis with their number of images and classes, if they were 
sorted into classes. 

Dataset Images Number of classes 
(if classified) 

Sognefjord total 113,551 - 

Sognefjord classed 37,057 64 

Sognefjord 14 groups 37,057 14 

Sognefjord 26 groups 37,108 26 

Sognefjord augmented 36,406 14 

Peru 1,023 21 

Peru small 180 4 

 

 

Appendix 2: The 14 classes of the Sognefjord 14 groups and augmented dataset. Their original 
number of image files and the number of files after image processing and augmentation are listed.  

Class Files original Files after image 
processing 

Files after image 
augmentation (CNN) 

Acantharia 850 848 799 

Amphipoda 17 14 306 

Bubble 2,872 2,872 2,872 

Chaetognatha 979 890 979 

Cnidaria 221 199 442 

Copepoda 23,766 23,727 21,844 

Ctenophora 52 51 260 

Detritus 5,757 5,757 5,757 

Egg 587 587 587 

Euphausiidae 70 63 280 

Faeces 193 193 386 

Mysidae 350 335 350 

Ostracoda 1,293 1,289 1,293 

Polychaeta 50 50 250 
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Appendix 3: Metadata information extracted from the file path of each plankton image. 

Metainformation Format Metainformation Format 

File: GMT Date-Time File: Bounding box Y-offset Pixel 

File: Cruise String File: Base directory String 

File: Station String File: Relative path String 

File: Haul String File: Name String 

File: LOKI Device ID String File: Image format String 

File: Millisecond Frac-Second File: Colourspace Integer 

File: Millisec index Integer File: Filesize (Bytes) Integer 

File: Bounding box X-offset Pixel   

 

 

Appendix 4: Image feature information extracted from each plankton image. 

Feature Format Feature Format 

Size: Image width Pixel Haralick: Image summed variance [SVA] Scalar 

Size: Image height Pixel Haralick: Image sum of entropy [SEN] Scalar 

Size: Mass centre X Pixel Haralick: Image entropy [ENT] Scalar 

Size: Mass centre Y Pixel Haralick: Image difference variance 

[DVA] 

Scalar 

Size: Elliptical fit major axis Pixel Haralick: Image difference entropy 

[DEN] 

Scalar 

Size: Elliptical eccentricity Scalar Haralick: Image information measure 

correlation [f12] 

Scalar 

Size: Elliptical major axis angle Radians Haralick: Image information measure 

correlation [f13] 

Scalar 

Pixel-border distances: sum Scalar COO: Contour line points Scalar 

Pixel-border distances: median Scalar COO: Contour line length Scalar 

Pixel-border distances: mean Scalar COO: Contour line height Scalar 

Pixel-border distances: SD Scalar COO: Contour line area Scalar 

Intensity: Mean Scalar COO: Calliper length [Ferret's diameter Scalar 

Intensity: SD Scalar COO: Centroid size Scalar 

Intensity: Abs. deviation Scalar COO: Centre to contour points sum Scalar 

Intensity: Quantile 0.01 Scalar COO: Centre to contour points mean Scalar 

Intensity: Quantile 0.05 Scalar COO: Centre to contour points median Scalar 

Intensity: Quantile 0.10 Scalar COO: Centre to contour points variance Scalar 

Intensity: Quantile 0.20 Scalar COO: Centre to contour points SD Scalar 

Intensity: Quantile 0.30 Scalar COO: Convex hull points Scalar 
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Intensity: Quantile 0.40 Scalar COO: Circularity Scalar 

Intensity: Quantile 0.50 Scalar COO: Circularity normalized Scalar 

Intensity: Quantile 0.60 Scalar COO: Haralick's circularity Scalar 

Intensity: Quantile 0.70 Scalar COO: Convexity Scalar 

Intensity: Quantile 0.80 Scalar COO: Eccentricity Scalar 

Intensity: Quantile 0.90 Scalar COO: Elongation Scalar 

Intensity: Quantile 0.95 Scalar COO: Perimeter Scalar 

Intensity: Quantile 0.99 Scalar COO: Solidity Scalar 

Shape: Area Pixel Recurrence: Embedding dimension Scalar 

Shape: Perimeter Pixel Recurrence: Embedding point distance 

(tau) 

Scalar 

Shape: Radius mean Pixel Recurrence: Threshold Scalar 

Shape: Radius SD Scalar Recurrence: Minkowski order Scalar 

Shape: Radius minimum Scalar Recurrence: Total recurrence Scalar 

Shape: Radius maximum Scalar Recurrence: Recurrence rate [RR] Scalar 

Haralick: Homogeneity [ASM] Scalar Recurrence: Determinism [DET] Scalar 

Haralick: Contrast Scalar Recurrence: Laminarity [LAM] Scalar 

Haralick: Image correlation [COR] Scalar Recurrence: Ratio [DET/RR] Scalar 

Haralick: Sum of squares [VAR] Scalar Recurrence: Averaged diagonal length 

[L] 

Scalar 

Haralick: Inverse difference moment 

[IDM] 

Scalar Recurrence: Trapping Time [TT] Scalar 

Haralick: Image summed average [SAV] Scalar   

 

 

Appendix 5: Elements of telemetry data measured by the CTD and on bord GPS to complement the 
Lightframe On-Sight Keyspecies Investigation image data. 

Device Oxy Saturation Cond Speed Loki Frame 

GPS Longitude Oxy Temperature Flour 1 Cam Stat 

GPS Latitude Cond Conductivity Roll House Stat 

Press Cond Temperature Pitch House T1 

Temp Cond Salinity Loki Record House T2 

Oxy Conductivity Cond Density Loki Picture House Voltage 
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Appendix 6: Links and refences for used R packages and MATLAB toolboxes 

Package / 

Toolbox Name 

Software Reference / Link 

BiocManager R https://cran.r-project.org/web/packages/BiocManager/index.html 

EBImage R https://bioconductor.org/packages/release/bioc/html/EBImage.html 

magick,  R https://cran.r-project.org/web/packages/magick/magick.pdf 

readr,  R https://cran.r-project.org/web/packages/readr/readr.pdf 

data.table R https://cran.r-project.org/web/packages/data.table/data.table.pdf 

IM R https://cran.r-project.org/web/packages/IM/index.html 

Momocs R https://cran.r-project.org/web/packages/Momocs/Momocs.pdf 

tools R https://www.rdocumentation.org/packages/tools/versions/3.6.2 

png R https://cran.r-project.org/web/packages/png/png.pdf 

bmp R https://cran.r-project.org/web/packages/bmp/bmp.pdf 

parallel R https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf 

doSNOW R https://cran.r-project.org/web/packages/doSNOW/doSNOW.pdf 

foreach R https://cran.r-project.org/web/packages/foreach/foreach.pdf 

MASS R https://cran.r-project.org/web/packages/MASS/MASS.pdf 

OpenImageR R https://cran.r-

project.org/web/packages/OpenImageR/OpenImageR.pdf 

e1071 R  https://cran.r-project.org/web/packages/e1071/e1071.pdf 

randomForest R https://cran.r-

project.org/web/packages/randomForest/randomForest.pdf 

FSinR R https://cran.r-project.org/web/packages/FSinR/FSinR.pdf 

caret R https://cran.r-project.org/web/packages/caret/caret.pdf 

Deep Learning 

Toolbox Model 

for AlexNet 

Network 

MATLAB https://de.mathworks.com/matlabcentral/fileexchange/59133-deep-

learning-toolbox-model-for-alexnet-network 

Deep Learning 

Toolbox 

MATLAB https://de.mathworks.com/products/deep-

learning.html?requestedDomain= 
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Appendix 7: R and MATLAB code for image priming, data preparation, feature selection and 
classification the code can be accessed at https://gitlab.uni-oldenburg.de/gorm2097/loki-image-
processing-and-classification/. 

Software Script 

Image priming 

R 2020-09-09-LOKI-Complete data primer.R 

Dataset preparation 

R 20200909_AddClassColumn2DataTable.R 

R 20200909_CreateTrainAndTestDataset_FromClassedTable.R 

R 20200909_ImageAugmentation.R 

Feature selection 

R 20200909_ExcludeHighCorrelation.R 

R 20200909_GiniRanked_AccuracyTest_LDA_rF.R 

Classification 

R 20200909_rF_14classes_37057_40features.R 

R 20200909_LDA_14classes_37057_43features.R 

R 20200909_SVM_14classes_37057_26features.R 

MATLAB LOKInet_20200905.m 
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