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tigung und Unterstützung und dein lösungsorientiertes Denken. Und danke, dass

du tapfer ertragen hast, wenn die Antwort auf die Frage ”Wann kommst du heute

nach Hause?” mal wieder ”Nach der Uni.” war.

ii



Zusammenfassung

In den Photorezeptorzellen in der Netzhaut, den Zapfen und Stäbchen, findet der

erste Schritt im Sehprozess statt. Eine biochemische Signalkaskade detektiert und

verstärkt das Lichtsignal. Das Signal wird daraufhin durch Neuronen in der Netz-

haut und im optischen Nerv an das Gehirn weitergeleitet.

Die biochemische Signalkaskade nennt sich Phototransduktionskaskade. Da die ihr

zugrunde liegenden Wechselwirkungen gut untersucht sind, eignet sie sich beson-

ders gut für mathematische Modellierung. Ich habe, aufbauend auf Modellen der

Phototransduktionskaskade in Amphibien und Mäusen, aktualisierte Modelle ent-

wickelt und diese zur Simulation von Lichtantworten unter verschiedenen Bedin-

gungen verwendet.

In dieser Arbeit gebe ich zunächst eine Einführung in das Thema. Dann erläutere

ich die methodischen Grundlagen der Modellierung und präsentiere schließlich die

Ergebnisse der Modellentwicklung und der Simulationen, aufgeteilt in determinis-

tische und stochastische Modellierung.

Um sicherzustellen, dass das aktualisierte Model Lichtantworten richtig wiedergibt,

habe ich die Antworten unter verschiedenen Lichtbedingungen überprüft und die

Vorhersagen des Modells mit neuen elektrophysiologischen Messungen verglichen.

Außerdem habe ich Lichtantworten unter verschiedenen Bedingungen untersucht.

Zum Beispiel konnte ich zeigen, dass ein Feedback-Mechanismus von Kalzium via

Recoverin und der Rhodopsinkinase essentiell für die Adaption an einen konstan-

ten Lichthintergrund ist.

Ich habe des Weiteren Lichtantworten in verschiedenen Modellen simuliert, die

den Effekt von zwei Krankheiten nachbilden, die die Phototransduktionskaskade

betreffen: Retinitis Pigmentosa und Kongenitale Stationäre Nachtblindheit.

Außerdem habe ich eine Hypothese überprüft, nach der ein zusätzlicher Feedback-

Mechanismus von Kalzium auf den Effektor der Kaskade notwendig sei, zum

Beispiel durch Recoverin oder die Rhodopsinkinase. Meine Untersuchung zeigt,

dass der zusätzliche Mechanismus im Modell nicht notwendig ist, um die experi-

mentellen Beobachtungen zu reproduzieren.

Stäbchen haben reproduzierbare Lichtantworten auf einzelne Photonen, und ar-

beiten damit an der Grenze des physikalisch Messbaren. Antworten auf einzelne
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Photonen wurden seit ihrer Entdeckung mit viel Interesse untersucht.

Um Antworten auf einzelne Photonen und ihre Eigenschaften zu untersuchen, habe

ich stochastische Modelle der Phototransduktionskaskade entwickelt. Ich habe ein

neues reduziertes stochastisches Modell erstellt, welches neue Ergebnisse bezüglich

des Effektors berücksichtigt.

Indem ich Antworten auf einzelne Photonen in modifizierten Modellen simuliert

habe, konnte ich die Relevanz der Phosphorylierungen von Rhodopsin sowie die

Auswirkungen von genetischen Knockouts untersuchen.

Außerdem habe ich die Ergebnisse des Modells mit neuen elektrophysiologischen

Messungen verglichen, nachdem ich die Messergebnisse in Antworten auf einzelne

und mehrere Photonen sowie nicht absorbierte Photonen aufgeteilt habe. Ich

konnte zeigen, dass diese Aufteilung zu einer Unterschätzung der Variabilität der

Antworten auf einzelne Photonen führt, indem ich Simulationen mit zufälligen An-

fangsbedingungen durchgeführt habe.

Schließlich habe ich die Auswirkungen einer dynamischen Bindung von Rhodopsin

und Transduzin im Dunkeln untersucht und festgestellt, dass dieser Effekt zu einer

reduzierten Variabilität der Antworten auf einzelne Photonen führen kann.
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Abstract

The first step in vision takes place in the photoreceptor cells in the retina, the

rods and cones. Within the photoreceptor cells, a biochemical signalling cascade

detects and amplifies the light signal, which is then transferred to the brain via

neurons in the retina and the optic nerve.

This biochemical signalling cascade is called the phototransduction cascade. The

interactions that constitute the phototransduction cascade in rods are extremely

well-studied, which makes the system suited for computational modelling. Build-

ing on the modelling of phototransduction in amphibians and mice, I updated the

models to new insights on the phototransduction cascade and used them to simu-

late light responses in different conditions.

In this thesis, I first give an introduction into the topic. I subsequently explain

the methodological basis of the modelling and finally present the results of the

model development and the simulations, separated into deterministic and stochas-

tic modelling.

To make sure that the updated model reproduces light responses correctly, I ver-

ified responses in different light conditions and compared the model’s predictions

to novel electrophysiological recordings.

I further studied light responses in different conditions. For example, I showed

the relevance of the calcium feedback mechanism via recoverin and the rhodopsin

kinase for light adaptation.

I also simulated light responses in models approximating the effect of mutations

that cause retinitis pigmentosa or congenital stationary night blindness, two re-

lated phototransduction diseases.

Furthermore, I examined a hypothesis about a potential missing mechanism in the

cascade: an additional calcium feedback, possibly via recoverin or the rhodopsin

kinase, on the effector. My investigation showed that this mechanism is not re-

quired to explain the experimental results.

Rod cells exhibit reproducible responses to stimuli consisting of single photons,

and thus operate at the physical measurement limit. Single photon responses in

rods have been the subject of intense study for a few decades since their discovery.

In order to investigate single photon responses and their different characteristics,
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I developed stochastic models of the phototransduction cascade. I created a new

reduced stochastic model, which includes novel insights on the effector.

I examined light responses in different modified models to study the significance

of multiple phosphorylation sites of rhodopsin, as well as single photon responses

in different genetic knockout conditions.

Furthermore, I compared the model’s results to novel experimental dim flash

recordings, after having categorized them into single photon responses, multiple

photon responses and failures. I showed that this categorization may lead to an

underestimation of the variability of single photon responses by performing simu-

lations with random initial conditions.

I further investigated the role of a dynamic preassembly of rhodopsin and trans-

ducin in the dark and found that it may decrease the variability of single photon

responses.
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Abbreviations

ADP Adenosine diphosphate
Arr Arrestin
ATP Adenosine triphosphate
Ca2+ Calcium ion
cGMP Cyclic guanosine monophosphate
CNGC Cyclic nucleotide gated channel
CSM Completely substituted mutant of rhodopsin (no phosphorylation sites)
CSNB Congential stationary night blindness
CV Coefficient of variation
E Effector of the phototransduction cascade (activated PDE)
EF hand Calcium binding site consisting of α-helixes E and F
Gα α-subunit of the G-protein
Gβγ β- and γ-subunits of the G-protein
GC Guanylyl cyclase
GCAP Guanylyl cyclase activating protein
GDP Guanosine diphosphate
GMP Guanosine monophosphate
GPCR G-protein coupled receptor
Gt G-protein / transducin
GTP Guanosine triphosphate
MPR Multiple photon response
Ops Opsin
PDE Phosphodiesterase 6
R Rhodopsin
Rec Recoverin
RGS Regulator of G-protein signalling
RK Rhodopsin kinase
RP Retinitis pigmentosa
SPR Single photon response
WT Wild type
∆J Photocurrent
∆U Photovoltage
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1 | Introduction

This thesis is about the first step in vision: the phototransduction cascade. It is

an extremely well-studied signalling cascade and a model for G-protein coupled

receptor cascades. A specific feature of the phototransduction cascade in rods is

the single photon response. These quantal responses are surprisingly reproducible

and have been the subject of intense scientific scrutiny for a long time.

In this thesis, I aim to create a model of the phototransduction cascade that is

able to reproduce its dynamic behaviour in different light regimes. Specifically, I

am interested in light adaptation behaviour and the reproducibility of the single

photon response. Furthermore, I use the model to investigate light responses in

rods with genetic alterations to reproduce the experimental results from knock-out

animals, and to predict the effect of diseases such as retinitis pigmentosa on light

responses and the equilibrium in the dark state.

In this chapter, the phototransduction cascade is explained as well as the further

signal transduction toward the brain. Furthermore, previous modelling approaches

are summarized.

In the Methods chapter 2, I explain the necessary mathematical and computa-

tional background as well as the details of the two models that form the basis for

the model development carried out in this thesis.

The new modelling approaches and their results are shown in chapters 3 and 4.

Chapter 3 focusses on deterministic modelling: the model is modified to better

reflect new experimental results and the effect of light adaptation is investigated.

The results of the model are compared to novel electrophysiological results on light

adaptation. Furthermore, the effect of congenital stationary night blindness and

retinitis pigmentosa on phototransduction is studied.

Chapter 4 shows the new stochastic modelling approach and the results for the

modelling of dim flash responses. Stochastic versions of the models investigated

earlier are developed and different factors influencing the reproducibility of their

single photon responses are investigated. A new stochastic model is created, which

reproduces novel experimental results concerning the amount of activated effector

molecules and their dimeric nature. This model is then used to simulate single
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CHAPTER 1. INTRODUCTION

photon responses in different conditions.

Finally, in chapter 5, the results and their significance for phototransduction re-

search are discussed.

1.1 The phototransduction cascade

Vision is one of the most important senses informing us about our environment.

In this thesis, I focus on the biochemical signal transduction cascade called photo-

transduction, which takes place in light sensitive cells in the eye and converts the

light stimulus into an electrical signal. This section focuses on the biological and

chemical background of the phototransduction cascade and its role in the visual

system.

Figure 1.1: The location of the retina in the eye and its structure. Copyright
c©2000-2020 Designua, from (Dreamstime).

1.1.1 The retina

The first step in vision takes place in the retina at the back of the eye, which can

be seen in figure 1.1. The light first passes through the pupil, which regulates the

amount of light to enter the eye, and through the lens, which focuses the light. It

then goes through the vitreous body and finally reaches the retina. The retina is

built up of different layers of neurons, with the photosensitive cells - the rods and

cones - in the very back of the retina.
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1.1. THE PHOTOTRANSDUCTION CASCADE

After the photosensitive cells have received a light signal, they transmit it to other

neurons of the retina, which process the signal and finally transmit it to the brain

via the optic nerve.

Of the two types of photosensitive cells, cones mediate vision in bright light con-

ditions and color vision. Humans have three types of cones with different regimes

of sensitivity - for red, green, and blue light. Other animals have cones that cover

different wavelengths of light, for example the UV spectrum.

The other type of photosensitive cells, the rods, mediate vision in dim light condi-

tions. We only have one type of rods, which is why we cannot distinguish colors in

dim light. Rods are exceedingly good at processing dim light stimuli: they show a

reproducible response to single photons and thus operate up to the physical mea-

surement limit. The phototransduction cascade in rods is well-studied and is thus

well suited to modelling approaches. It is explained in more detail in the next

section.

Figure 1.2: Cell types in the retina. Reprinted by permission from Springer Nature,
from (Cepko, 2014).

Rods and cones in the retina form a mosaic: they are intermingled with one an-

other to enable us to see all colours throughout our field of vision. However, they

are not completely equally distributed: in the fovea, which is where the incoming
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light from directly ahead is focused, there are only cones. These cones are espe-

cially slim to allow for an exceptionally high resolution, and they become bigger

towards the edges of the retina, where less light ends up. Due to the fact that only

cones are located in the fovea, this becomes a blind spot in dim light conditions,

which can be noticed when looking at stars in a dark night.

After the rods and cones have translated the light stimulus into a neurotransmitter

signal, this signal is picked up by downstream neurons within the retina. These

neurons are the first step in processing the raw stimulus before the signal even

arrives at the brain. In figure 1.2, an overview of the different cell types can be

seen.

The retinal neurons are bipolar cells, horizontal cells, amacrine cells, and retinal

ganglion cells. Their joint task is the compression and combination of the signals

of all separate rods and cones - they encode e.g. motion or contrast (Wässle,

2004). After the signal has been processed by these neurons, it is passed on to

the brain through the optic nerve. The spot where the optic nerve originates

in the eye contains no photoreceptors and is therefore known as the blind spot -

it can be found in the visual field when covering one eye and focusing on one point.

In the following, we are focusing on the precise mechanism of vision in the pho-

tosensitive cells, specifically the rods. This is the phototransduction cascade: the

process that translates a light stimulus into an electrical signal.

In figure 1.3, a cross-section of the rod is shown on the left. The upper part of

the rod is called the outer segment. This is where the phototransduction cascade

takes place. The disc-shaped objects in the outer segment are the so-called disc

membranes : they are discs of membrane within the cell. Many of the phototrans-

duction proteins interact with these disc membranes. The different stages of the

phototransduction cascade in rods are illustrated on the right in figure 1.3 and

described in the following sections. For the basic mechanisms of the phototrans-

duction cascade, please refer to (Pugh Jr and Lamb, 2000).
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1.1. THE PHOTOTRANSDUCTION CASCADE

Figure 1.3: The phototransduction cascade in rods. On the left, a cross-section
of a rod cell is shown. The phototransduction cascade takes place in the outer
segment, which is the upper part of the rod cell containing the disc membranes,
shown in a darker color. In the insets on the right, the different stages of the
phototransduction cascade are illustrated. Inset A shows the activation, while B
illustrates the deactivation of the activated rhodopsin (R∗). Inset C shows the
recovery of the dark state via PDE∗ deactivation and cGMP synthesis. Reprinted
by permission from Elsevier, from (Chen and Sampath, 2013).

1.1.2 The activation of the cascade

The first step in the phototransduction cascade is the activation of the receptor

molecule rhodopsin. Rhodopsin belongs to the family of G-protein coupled recep-

tors (GPCRs). This type of receptors plays a role in many signal transduction

cascades in cells across different species, e.g. in olfaction and taste. After their

activation, they transmit the signal using a G-protein. In the case of the photo-
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transduction cascade, this is the G-protein transducin. We will in the following

use the names transducin and G-protein interchangeably for this protein.

In the dark state, rhodopsin is covalently bound to 11-cis-retinal, which keeps

it in the inactive state. Upon activation by light, the 11-cis-retinal is trans-

formed to all-trans-retinal, which triggers a conformational change of rhodopsin to

metarhodopsin II - the active state.

As can be seen in figure 1.3A, rhodopsin is a transmembrane protein: it is located

in the disc membrane and has regions both inside and outside the membrane on

both sides. Transducin has a membrane anchor and can diffuse towards rhodopsin

along the disc membrane. Rhodopsin in the active state can then activate the

transducin. After some intermediate steps, in which the guanosine diphosphate

(GDP) bound to the G-protein is exchanged for guanosine triphosphate (GTP), the

activated G-protein separates into its α and the β- and γ-subunits. The α-subunit

is the active form of the G-protein and transmits the signal further downstream.

The α-subunit of the G-protein (Gα) binds to the enzyme phosphodiesterase 6

(PDE), thereby activating it. The PDE has two inhibitory subunits with one

binding sites for Gα each. The precise consequences when one or two Gα bind

to the inhibitory subunits of PDE are currently a matter of debate (Lamb et al.,

2018), (Qureshi et al., 2018). The gain of the activation of the G-protein and the

PDE molecules is equally disputed (Yue et al., 2019), (Heck et al., 2019), (Yau

et al., 2019). This is further elaborated in section 3.1. The activated PDE is also

referred to as the effector of the phototransduction cascade.

In the dark state, there is a constant flux of ions through the cell, constituting the

circulating current. It is carried by sodium ions (90 %) and calcium ions (10 %).

The ions flow in through so-called cyclic nucleotide gated channels: channels in

the cell membrane that are kept open by a constant concentration of the cyclic

nucleotide cGMP (cyclic guanosine monophosphate) in the cell. The channels are

schematically shown on the right in figure 1.3A. At the same time, calcium is ex-

truded from the cell by ion exchangers in the cell membrane. When there is no

light stimulus, there is an equal influx and efflux of calcium, resulting in a balanced

constant calcium concentration. The sodium concentration is also constant due to

a balanced influx and efflux.

As soon as the PDE is activated as a consequence of the activation of rhodopsin,

it hydrolyzes cGMP, turning it into GMP (guanosine monophosphate). This de-

creases the overall level of cGMP in the cell. This decrease leads to the closing of

the cyclic nucleotide gated channels, as the cGMP dissociates from them.
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The closure of the channels interrupts the influx of ions into the cell. Since ions

are still leaving the cell, the sodium and calcium ion concentrations decrease. The

decrease in calcium concentration has important physiological consequences, as

we shall see in the next sections. The overall decrease in ion concentration results

in a change of the circulating current in the cell. The membrane hyperpolarizes,

which triggers a change in the release of neurotransmitters at the synaptic terminal

of the photoreceptor. This signal is then picked up by downstream neurons and

transmitted further. Please note that, while the rod is a neuron, it does not spike

as on output signal. Instead, it has a continuous, analog output signal.

In this dissertation, we quantify the light response of the cell in terms of change

of circulating current ∆J and change in membrane potential ∆U .

1.1.3 The shut-off of rhodopsin

After the phototransduction cascade has been activated by light, it needs to be

deactivated. Only this can make the cell capable of sensing new stimuli.

In order to shut off the response, first the source of the signal has to be turned

off, which is the activated rhodopsin. This is done by three different proteins:

recoverin, rhodopsin kinase, and arrestin.

Recoverin is a calcium-binding protein with four EF-hands. It undergoes a confor-

mational change, more precisely a myristoyl switch, upon calcium binding: when

calcium ions are bound, a covalently bound myristoyl group is extruded from its

binding pocket within the protein. This allows recoverin to anchor to the disc

membrane in the rod cell, as shown in figure 1.3B on the left. (Ames et al., 1997)

In the dark, recoverin is bound to calcium ions and interacts with the disc mem-

brane and another phototransduction protein: the rhodopsin kinase (RK). The

rhodopsin kinase is able to phosphorylate activated rhodopsin, but in the dark

state, a large fraction of the rhodopsin kinase is kept inactive by the recoverin,

since it prevents the interaction between rhodopsin and the rhodopsin kinase.

After the light stimulus, the calcium level decreases due to the closure of cyclic

nucleotide gated channels. This in turn triggers recoverin’s conformational change,

leading to the retraction of the myristoyl group into its pocket within the molecule.

Due to this, the recoverin detaches from the disc membrane and releases the

rhodopsin kinase (shown in figure 1.3B on the left). The rhodopsin kinase is

now free to diffuse along the disc membrane to the activated rhodopsin molecules

and phosphorylate them. One rhodopsin molecule can be phosphorylated up to at
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least six times. (Chen et al., 1995), (Klenchin et al., 1995)

The phosphorylation of rhodopsin leads to a gradual shut-off. First of all, the

affinity for transducin decreases as a function of the number of phosphorylations -

therefore phosphorylated rhodopsin is less active. At the same time, the affinity for

another phototransduction protein called arrestin increases (Gibson et al., 2000).

Arrestin can bind to rhodopsin after it has been phosphorylated at least once and it

terminates rhodopsin’s activity immediately. Thus, both the rhodopsin kinase and

arrestin are necessary for a normal shut-off of the cascade: the phosphorylation

by the rhodopsin kinase is necessary to enable the binding of arrestin, which is in

turn required for a complete shut-off.

After rhodopsin has bound to arrestin, it cannot activate any further G-proteins.

The rhodopsin then loses the retinal and is turned into opsin. In a recycling

process, the retinal is restored to the rhodopsin, enabling it to be photoactivated

again.

1.1.4 The recovery of the dark state

To recover the dark state of the cell, the cell needs to return to its dark levels

of cGMP and calcium. The active complex of the active α subunit of the G-

protein GαGTP and the PDE is deactivated by the intrinsic GTPase activity of

the Gα-subunit. GTP is thus turned into GDP and the active complex separates

into PDE and GαGDP. The rate of the deactivation is higher when the complex

binds to a protein called RGS (regulator of G-protein signalling). The GαGDP is

no longer active and recombines with its β- and γ-subunits. After this, it can

again be activated by rhodopsin. The PDE also returns to its inactive state with-

out the transducin. This step of the deactivation is shown in figure 1.3C on the left.

The cGMP-concentration is restored by the GC-GCAP system, as shown in figure

1.3C on the right. The enzyme GC (guanylate cyclase) is activated by the GCAPs

(guanylate cyclase activating proteins) in a calcium-dependant manner (Koch and

Stryer, 1988), (Olshevskaya et al., 1997), (Palczewski et al., 1994).

When the calcium concentration is high in the dark, the GC is suppressed. When

the calcium level drops as a consequence of illumination, the GCAPs activate the

GC and it synthesizes cGMP to restore its concentration. As a consequence of this,

the cyclic nucleotide gated channels are re-opened and the calcium concentration

is restored as well.
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In the dark state, there is a dynamic equilibrium for the cGMP concentration. The

PDE has a small spontaneous activity in the dark, which consumes small amounts

of cGMP. This is compensated by the basal activity of the GC, which produces a

small amount of cGMP without activation by the GCAPs. The consumption and

production of cGMP are in equilibrium, leading to a constant, slightly fluctuating

concentration.

1.1.5 Supramolecular organization and the dynamic scaf-

folding mechanism

In recent years, more and more evidence has accumulated which shows that rhodop-

sin is not homogeneously distributed in the disc membranes. Instead, several stud-

ies have shown that rhodopsin appears to organize itself in larger supramolecular

complexes: since 2000, several studies using methods such as atomic force mi-

croscopy have shown that rhodopsin arranges in ordered rows of dimers (Fotiadis

et al., 2003), (Liang et al., 2003), (Fotiadis et al., 2004). In 2015, a study using

cryoelectron microscopy showed that rhodopsin is arranged in dimers, which ar-

range as rows, which then join to form tracks of two pairs of dimer rows (Gunkel

et al., 2015).

The results of the studies were a topic of intense discussions, including previous

assumptions of heterogeneous rhodopsin distribution. This also led to a contro-

versial debate about the implications of the supramolecular organization on the

kinetics of the phototransduction cascade and especially the interaction with - and

activation of - the G-protein (Dell’Orco and Schmidt, 2008), (Chabre et al., 2003),

(Chabre and le Maire, 2005).

In 2011 Daniele Dell’Orco and Karl-Wilhelm Koch suggested that rhodopsin and

transducin could dynamically and rapidly associate and dissociate in the dark in

the so-called dynamic scaffolding mechanism (Dell’Orco and Koch, 2011), illus-

trated in figure 1.4.

In this model, the G-proteins rapidly hop from one rhodopsin molecule (red) to the

next. As soon as they associate with an activated rhodopsin molecule (yellow),

they are in turn activated. A proportion of 10-30% of all G-protein molecules

are dynamically associated with rhodopsin at any time, but they are not stati-

cally bound to the rhodopsin. Their rapid association and dissociation from the
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rhodopsin molecules enables an effective start of the signalling cascade.

This is possible because the dissociation rate of transducin from dark-adapted

rhodopsin is about 300-fold faster than from light-activated rhodopsin, enabling

the transducin to quickly hop to the next rhodopsin molecule if it meets an inactive

rhodopsin (1 in figure 1.4), but to get activated when it meets a light-activated

rhodopsin (2 in the figure) (Koch and Dell’Orco, 2015).

Koch and Dell’Orco Signaling in photoreceptor cells

(Dell’Orco and Schmidt, 2008). Moreover, recent surface
plasmon resonance studies (Dell’Orco and Koch, 2011)
performed with detergent solubilized native rhodopsin
demonstrated the existence of a protein-protein interaction
between dark-adapted rhodopsin and transducin, which was
postulated earlier based on the analysis of their structural
complementarity (Fanelli and Dell’Orco, 2005; Dell’Orco
et al., 2007). Dark rhodopsin-transducin binding occurs with
submicromolar affinity and is characterized by very fast
association and dissociation rates in a ‘‘dynamic scaffolding’’
frame, where concerted diffusion/binding phenomena give
rise to a dynamic hopping of transducin on rhodopsin
supramolecular assemblies (Dell’Orco and Koch, 2011). The
transient precoupling step was integrated into the framework
of phototransduction models of both amphibian and murine
rods, and was found to be compatible with the overall cascade
kinetics (Invergo et al., 2014; Dell’Orco, 2015). The physiological
presence of rhodopsin-transducin transient complexes has been
somewhat questioned and debated (Schöneberg et al., 2014,
2015; Dell’Orco and Koch, 2015), however it appears now quite
clear that it may have deep implications for the capability of
rods to detect single photons (Cangiano and Dell’Orco, 2013;
Dell’Orco, 2013), and seems to be an essential mechanistic step
in the recently emerged picture of rhodopsin tracks observed
by cryoelectron tomography, in order to create the ‘‘kinetic
traps’’: owing to the frequent, rapid formation and breakup of
precomplexes, transducin molecules could scan a rhodopsin
track by discrete hopping events, resulting in an activation
rate that, in the single-photon regime, would be determined
by the number of the preassembled transducin molecules per
track rather than the photoactivated rhodopsin lifetime. The
number of transducin molecules activated per photoactivated
rhodopsin would be therefore of the same order as the number of
preassembled transducin molecules per unit track (Gunkel et al.,
2015). The concepts developed in the last years in opposition to
the ‘‘fluid mosaic’’ classical organization of the disc membrane
have built up a novel structural picture of the early mechanisms
triggering phototransduction, whose supramolecular features
are summarized in Figure 2.

Proteomic profiling and protein network analysis of outer
segments led to the prediction of signaling and/or trafficking
pathways in addition to the activation and deactivation pathways
that govern photoreceptor excitation and recovery. An important
level of regulation of such alternative pathways seems to be
played by small GTPases (Kiel et al., 2011). The monomeric
G-protein Rac1 is among the putative binding partners of
rhodopsin (Balasubramanian and Slepak, 2003), but its lower
cellular concentration (⇠100-fold excess of rhodopsin) and
its medium affinity for rhodopsin (apparent KD = 1.3 µM)
would not allow a significant competition with the binding
of transducin (Köster et al., 2014). However, under strong
illumination, when transducin is depleted from the outer
segment by transport to the inner segment (Pulvermüller
et al., 2002; Sokolov et al., 2002; Lobanova et al., 2007),
only about 10% of all rhodopsin molecules could form a
complex with Rac1. Therefore, it is more likely that Rac1
binds to rhodopsin during transport after protein biosynthesis.

FIGURE 2 | Supramolecular organization of rhodopsin and interaction
with transducin. Rhodopsin is present in tracks of dimers in the disc
membrane. In the dark rhodopsin-transducin complexes form with
submicromolar affinity that is characterized by very fast association and
dissociation rates. Movements of transducin can be described as dynamic
hopping on rhodopsin supramolecular assemblies thus constituting “dynamic
scaffolding”. Apparent dissociation rates of transducin from dark-adapted
rhodopsin are >300-fold faster than corresponding rates from light-activated
rhodopsin.

Intracellular trafficking, in particular under conditions of
changing illumination has attained increasing interest in the
photoreceptor research community. In order to keep this
review focused we will not discuss this field in depth, but
will refer to some reviews on this topic (Calvert et al., 2006;
Karan et al., 2010; Pearring et al., 2013; Wang and Deretic,
2014).

DEACTIVATION OF RHODOPSIN

The efficient shut-off of the phototransduction cascade requires
as initial step the deactivation of photoactivated rhodopsin. This
crucial step is performed by the interplay of several proteins and
binding events: GRK-1 phosphorylates illuminated rhodopsin at
its C-terminus (Maeda et al., 2003), which allows subsequent
binding of arrestin (p48) or the arrestin splice variant p44
(Granzin et al., 2012; Kim et al., 2013). Binding of arrestin
to phosphorylated rhodopsin prevents further activation of
transducin (Pulvermüller et al., 1993).

Serine and threonine residues present in the C-terminus
of rhodopsin within the amino acid positions 324–348 are
potential sites for phosphorylation by GRK1. Like othermembers
of the GRK family, GRK1 phosphorylates only the light-
stimulated (bleached) form of the receptor and does not act
upon the unbleached receptor (for reviews, see Senin et al.,
2002b; Maeda et al., 2003; Premont and Gainetdinov, 2007).
Activity of GRK1 is under control of a Ca2+-dependent
negative feedback loop, but GRK1 itself is not sensitive
to Ca2+. Changes in intracellular [Ca2+] are sensed by
retina specific neuronal Ca2+-sensor proteins including the

Frontiers in Molecular Neuroscience | www.frontiersin.org 4 November 2015 | Volume 8 | Article 67

Figure 1.4: The dynamic scaffolding mechanism illustrated on a disc membrane
surface. Rhodopsin dimers (red) form tracks, with which transducin (blue-green)
can rapidly associate and dissociate. As soon as transducin associates with an
activated rhodopsin molecule (yellow) it will be activated. Copyright c©2015 Koch
and Dell’Orco, from (Koch and Dell’Orco, 2015).

The dynamic scaffolding mechanism has been studied computationally (Dell’Orco,

2013), (Schöneberg et al., 2014) and may in part explain the observed ratio between

failures to respond to light and single photon responses (Cangiano and Dell’Orco,

2012). The hypothesis of dynamic scaffolding is supported by recent experimental

results using single-molecule tracking of rhodopsin (Hayashi et al., 2019).

1.1.6 The single photon response

The phototransduction cascade in rods is functional in different light regimes and

uses different mechanisms to escape saturation and remain functional and reac-

tive. In conditions of a steady background illumination, light adaptation plays a

significant role in decreasing the change in circulating current ∆J and in increasing

the speed at which the system can recover from additional stimuli. We will later

discuss a mechanism of light adaptation in section 3.2.

An effect that is arguably even more interesting is the dim light dynamics of the
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phototransduction cascade in rods. It is so sensitive to dim stimuli that it has a

reproducible response to single photons - that is, to one single photon and thus

one photoisomerization of rhodopsin per outer segment (Baylor et al., 1979). This

could be determined from the relative frequencies of failures to respond to single

photon responses and multiple photon responses, which are given according to the

Poisson distribution.

There is experimental evidence that already few photons are detected by the hu-

man retina (Hecht et al., 1942), (Sakitt, 1972). However, the reliable detection

and transmission of single photon signals is a challenge to the whole visual system:

There is a convergence of about 1000 rods to one ganglion cell, which are the last

neuronal cell type before the optic nerve. If only a few of those 1000 rods detect a

photon, there needs to be a selection mechanism for those responses in the retina,

to prevent the responses from getting lost in the noise.

Specifically, the signal from about 20 rods converges to one single rod bipolar cell.

These cells do not simply average over the signals - this would lead to single pho-

ton responses from few rods being drowned in the dark noise from the remaining

rods that did not produce a signal. Instead, there seems to be an amplitude thres-

holding that is applied to the signals, which filters out the responses of rods that

actually received a photon (Field and Rieke, 2002). This enables the rod bipolar

cells to increase the signal to noise ratio even when receiving few single photon

responses.

Further downstream, the signal from rods is transmitted through amacrine cells to

the cone bipolar cells, piggybacking on the cone signal transduction pathway. At

the synapse between the cone bipolar cells and the ganglion cells, there is again

a nonlinear transmission mechanism to reject noise and to selectively transmit

the signals arising from single photon detection upstream (Ala-Laurila and Rieke,

2014).

Thus, it is obviously important for the visual sense that single photon responses

have a low variability: they need to be reliably selected for a signal detection

downstream. This is in fact the case: single photon responses are less variable

than other signalling events arising from single molecule activations (Rieke and

Baylor, 1998). There is a need for a reproducible activation of the cascade and

a reproducible shut-off. For the activation, this means that the G-protein has to

reliably and quickly associate to rhodopsin in order to start the cascade. For the

shut-off, it is required that the variability of the lifetime of the activated rhodopsin

11



CHAPTER 1. INTRODUCTION

is low, and that the other activated molecular species are quickly deactivated. Since

the variability of the single photon response is lower than one would expect for

a single-step shut-off process, there must be a multi-step shut-off process (Hamer

et al., 2003). Thus, not only arrestin is responsible for the shut-off. As explained

before, the phosphorylation of rhodopsin by the rhodopsin kinase plays a significant

role in the shut-off as well.

How can the single photon response have such a low variability? This question

can be approached using computational modelling: in a computational model,

we are able to modify every component of the signalling cascade and investigate

the resulting changes on e.g. the single photon response. Furthermore, since the

phototransduction cascade is an exceptionally well-studied system, it lends itself

well to quantitative modelling since many of the necessary parameters are known

or can be estimated from experiments. In the next section, we will explain the

basis of this type of modelling and previous work done in the field.

1.2 Modelling phototransduction

Phototransduction modelling has a long history, with models becoming more and

more detailed and refined as more information and computational power has be-

come available.

The first models of phototransduction were developed in the 1990s and only de-

scribed the activation steps of the cascade up to the G-protein or the effector

(Kahlert and Hofmann, 1991), (Lamb and Pugh Jr, 1992). Those models are

based on mass-action kinetics in the well-stirred approximation and the resulting

differential equations (cf. chapter 2). Since they only involve few reactions, it is

possible to treat them analytically as well as numerically. The models describe

phototransduction in amphibian species, since most data were available for am-

phibian rods - this has now changed and the best studied model organism is the

mouse.

Not much later, the first stochastic modelling approaches, again of the activation

of the cascade, were carried out. Two main alternatives for the stochastic simula-

tions were explored: firstly, the simulation of the chemical master equation, which

is based on the same equations as the differential equations, but deals with integer

numbers of the involved molecular species instead of continuous concentrations as

before (cf. chapter 2). Secondly, space-resolved simulations were performed, where

the involved molecules can diffuse in space, constrained to a lattice geometry. Of-
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ten, the dimensionality of the rod is reduced to two dimensions (for the reactions

occuring on, or close to, the disc membranes) or one dimension (for the species

diffusing through the entire cytosol in the outer segment). (Lamb, 1994), (Felber

et al., 1996)

The models were constantly expanded, most notably to also include species down-

stream of the effector and shut-off reactions (e.g. (Hamer et al., 2003) and (Dell’Orco

et al., 2009)). This also allowed for very detailed studies of the dynamics and the

variability of the different activation and deactivation steps, e.g. focussing on the

PDE (Reingruber and Holcman, 2008) or the diffusion of the second messengers

(Bisegna et al., 2008).

Increasingly, models were also adapted to fit to the much faster kinetics in mam-

malian species, due to an increase of experimental data for these species (e.g.

(Invergo et al., 2014) and (Reingruber et al., 2013)). Furthermore, they became

more and more complex to account for light responses in all intensity regimes,

from the single photon response up to the bright light regime, as e.g. (Dell’Orco

et al., 2009), (Hamer et al., 2005), (Invergo et al., 2014) and (Tikidji-Hamburyan

et al., 2017).

Most recently, models have been improved to include novel experimental results on

the dimeric activation of the PDE (Lamb et al., 2018), and include more detailed

space-resolved modelling for the activation steps of the cascade (Lamb and Kraft,

2020).

The guiding principle of the phototransduction modelling presented in

this thesis is the following: The reactions of the phototransduction cascade are

represented as accurately as possible in the model. Of the necessary parameters,

such as reaction rates, as many as possible are acquired from literature. The aim

is to produce a comprehensive model of the phototransduction cascade, which in-

cludes all the necessary species with mass-action kinetics wherever possible.

This model can then be used - without retuning any of the parameters - to simu-

late light responses in different light conditions. This fulfills three purposes. First,

to verify that the model reproduces well-known experimental results. Second,

to make predictions of the phototransduction cascade in settings that have not

yet been experimentally verified or that would be difficult or impossible to check

experimentally. This also means that we can explore the consequences of point

mutations in proteins, for which experimental in vitro data are available, on the

photoresponse. And third, to find gaps in our current knowledge about the pho-
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totransduction cascade, by identifying phenomena that cannot be explained with

the model yet.

Compared to other work, we want to create a model that is comprehensive, thus,

it should include all the necessary mechanisms to account for light responses in

different light conditions explicitly. While space-resolved modelling has the ad-

vantage of accurately resolving diffusion on the two-dimensional disc membrane

and its specific effects on the cascade, it also involves many parameters that need

to be estimated, and is very intensive concerning the computational effort. Thus,

our model is based on the well-stirred assumption and is not space-resolved, which

allows for much faster simulations.

Furthermore, our model should account for the dynamic behaviour of the entire

phototransduction cascade in all light regimes. We want to stochastically simu-

late single photon responses and deterministically simulate bright light responses,

ideally with the same model.

The models I have implemented are based on two previous models: the amphibian

model implemented by Dell’Orco et al. (Dell’Orco et al., 2009) and the mouse

model by Invergo et al. (Invergo et al., 2014), which is based on the amphibian

model. Both models build on a previous study by Hamer et al. (Hamer et al.,

2003) and refine and expand the model.

The amphibian model describes phototransduction in amphibian rods and is valid

for a broad range of light regimes and genetic knockouts. The mouse model’s

parameters are adapted to the faster kinetics in mammalian species and a few

mechanisms were refined compared to the previous model. The mouse model also

reproduces the salient features of rod phototransduction in dim to bright light

regimes and in animals with genetic modifications. The two models are described

in more detail in section 2.3.

I have created stochastic versions of these models and adapted them to include

novel experimental results, as well as simulated bright light responses in different

conditions. Furthermore, I have created a novel stochastic model based on the

mouse model. This is described in chapters 3 and 4.
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The aim of the research in this thesis is to model the phototransduction cascade in

rods, both improving the pre-existing deterministic models and creating stochastic

models. In this chapter, the basics for the modelling are explained. First, the

modelling framework will be established, and it will be explained how to create a

mathematical model of a biochemical signalling cascade. Then, it will be shown

how to use this model to predict the system’s behaviour in given conditions by

performing deterministic and stochastic simulations.

2.1 Modelling framework

Mathematical modelling is a powerful tool to describe any sort of systems and pre-

dict their behaviour in different settings. A mathematical model of a given system

describes the state and interactions of this system in a mathematical language.

Therefore, it is an abstraction of the real system and usually contains simplifica-

tions.

Typically, we can define the spatial and temporal scale of a model and ignore the

effect of much smaller scale interactions. For example, when we want to model the

motion of planets in a solar system, we can ignore the effect of the motion of, e.g.,

tectonic plates or animals on the single planets - the dynamics on that scale are

too small to affect the planetary motion.

Similarly, we can ignore effects that can be considered to be constant on the tem-

poral and spatial scale of the model. For example, when describing the motion of

an electron in the Earth’s magnetic field for a few minutes, we can ignore the slow

change of the magnetic poles on the Earth (which occurs on the scale of hundreds

of years) as well as the change of the magnetic field inclination with the position

- we can assume the field to be constant.

Mathematical models can describe any kind of system, from subatomic particles

to the entire universe. They can describe physical and astronomical systems, like

in the examples given above, chemical interactions such as the time-dependent
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amount of reactants when synthesizing a product, or biological phenomena like

population dynamics in a predator-prey system. They are also applied to social

sciences, for instance in economy when describing the stock exchange, or political

sciences when modelling voter behaviour in an election.

The most promising fields for modelling approaches at this moment are arguably

the biological and medical fields. We are at a point in time where large amounts

of data become readily available, such as large scale genome analyses or gene ex-

pression data. This type of data is of such size and complexity that humans are

incapable of easily interpreting them: we are in need of algorithms to make sense

of the data, to detect correlations and to create underlying models.

Signalling cascades are good examples of these complex systems. Organisms use

them to integrate information from inside or outside their own cells to adapt

their behaviour. For example, bacteria may use a signalling cascade which detects

available nutrients around them to adapt their metabolism by changing the gene

expression. These signalling cascades are typically quite complex due to the large

number of interacting species and due to feedback mechanisms. Therefore, models

are needed to understand the interactions and to make quantitative predictions of

the system in question.

Another example of a signalling cascade is the phototransduction cascade: it relays

the information from a visual stimulus to downstream neurons. Though it is

quite complex, it is well-studied and thus well suited to modelling approaches.

The appropriate modelling framework for such signalling cascades are biochemical

reaction networks, which will be explained in the following section.

2.1.1 Biochemical reaction networks

Biochemical reaction networks describe the interaction of chemical species in a

biological setting, for example different proteins or ions in a cell. The ingredients

for the modelling are the molecular species and their interactions. Furthermore,

if an external stimulus such as light stimulation plays a role, we need to define it

and its interaction with the species of the model. For further reading on the basics

explaining in this section, please refer to (Ingalls, 2012).

We describe the time-dependent concentration of each molecular species as a vari-

able and their interaction by reaction equations, which can be formulated as dif-

ferential equations. This is best understood using an example, so let us consider

the following reactions:
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→ A (2.1)

A+B → C

C → D + E

D ↔ F

E →

E → B.

The reaction network described by these reactions is shown in figure 2.1. It consists

of six species labelled A to F , which can interact with each other. The possible

reactions are characterized by their interaction partners, reactants which react to

produce products, as well as the reaction rate constants k0 to k5.

k0
A

B

k1
C

k2

D

E

k3f

k3b
F

k4

k5

Figure 2.1: An exemplary chemical reaction network. The letters A, B, C, D,
E and F stand for the interacting species, while k1 to k5 are the reaction rate
constants.

Let us investigate some of the possible reactions in this scheme. The reaction

characterized by the rate k0 produces A, seemingly out of thin air. This is the

case when a species of the model is produced by some process whose exact details

are outside the scope of the model. The result will be an influx of species A.

Next, let us look at the reaction characterized by k1. It consumes A and B in

equal parts and produces C. The reaction rate constant is k1, but the reaction

rate vf itself is proportional to the amounts of A and B, since they have to be

available for the reaction to occur:

vf = k1 · A ·B. (2.2)

This is called the law of mass action: the reaction rate is proportional to the re-

action rate constant and the amount of the reactant species.
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Species C can then go on to produce D and E with the rate constant k2. The

rate of this reaction is proportional to the concentration of C. D can react to F

with the rate constant k3f , and F can react back to D with the rate constant k3b.

This is a reversible reaction: it can occur in both directions.

E can react to nothing with the rate constant k4. For the purpose of our model,

it is destroyed. More realistically, it would react to some reactant that is not in-

cluded in the model, and can therefore be ignored.

Finally, the reaction with the rate constant k5 converts E to B. This introduces a

feedback into our model. Without this reaction, a clear up- and downstream could

be defined: The species go from A and B through C to D, E and F . Now, we

have introduced a cycle in our model.

Without the reactions characterized by k0 and k4, our model would be considered

closed : there would be no reactants or products outside the network. The conse-

quence of this is that we could define conservation laws for the species involved.

The steady state of a closed reaction network is the thermal equilibrium, where all

reaction rates have gone to zero.

However, since we have included these reactions, the reaction network is open. In

this type of reaction networks, we can also achieve a steady state, the dynamic

equilibrium: in this state, all reaction rates are constant but not necessarily zero,

resulting in a steady state for the species and a constant flux through the network..

In this reaction network, there is no reaction that requires more than two reactants.

This is typically the case, and it is due to the fact that the reactant species need

to meet at the same time and same place and at the correct spatial configuration

in order for the reaction to occur. If three or more reactants were involved in a re-

action, this would be prohibitively improbable. If a reaction requires three species

to occur, typically two of the species would form a precomplex, which would then

react with the third species.

We can also write down the differential equations describing the above chemical

reaction network. We will use the assumption of mass-action kinetics : that the

reaction rate is proportional to the reaction rate constant and the amount of the

reactant species. Furthermore, we will assume that the reaction volume is well-

stirred, meaning that there is no spatial dependency of the species’ concentrations

and that changes in the concentrations are instantaneous. The differential equa-
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tions for the time-dependent species’ concentrations then read:

d

dt
A = −k1 · A ·B + k0 (2.3)

d

dt
B = −k1 · A ·B + k5 · E

d

dt
C = k1 · A ·B − k2 · C

d

dt
D = k2 · C − k3f ·D + k3b · F

d

dt
E = −k4 · E − k5 · E

d

dt
F = k3f ·D − k3b · F.

The equations directly follow from the reaction equations in equation (2.1) com-

bined with mass-action kinetics, as we can see e.g. in the example of the third

reaction in equation (2.3): The change of the concentration C, d
dt
C, is character-

ized by an influx and an outflux. The influx comes from the reaction A+B → C

and is proportional to the reaction rate k1 as well as the reactant concentrations

A and B. The outflux comes from the reaction C → D+E. It is negative because

it consumes C, and it is proportional to the reaction rate k2 as well as the reac-

tant concentration C. Please note that, in mass-action kinetics, the concentration

of the product itself does not influence the reaction rate, unless the product is a

reactant at the same time.

The other differential equations are constructed in the same manner. We now have

a system of differential equations, which are coupled : the change of one species de-

pends on the other species. These equations contain all the information we have

about the model and are equivalent to figure 2.1.

If we are interested in determining how the system would evolve in a given situa-

tion, we need to further specify the initial conditions for all species, A(0) to F (0).

When we then solve the differential equations with the given initial conditions , we

arrive at the time series A(t) to F (t) for all the species. In principle, we now know

everything there is to know about the model with the given initial conditions. We

can input any desired time point into the time series A(t) to F (t) and determine

the individual species concentrations in that moment, or look at the entire time

series. In subsection 2.1.3, we will discuss how to solve the differential equations.
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2.1.2 Reaction rate constants and affinities

The reaction rates are an important ingredient for the modelling. In this section I

will give more background on their biochemical significance and how to determine

them.

A

B

kon

koff
AB

Figure 2.2: An example of a small reaction network. A and B can associate with
the rate constant kon to form AB, which can in turn dissociate to A and B with
the rate constant koff .

Let us consider a very simple reaction network, as shown in figure 2.2. It consists of

three molecular species: A, B and the complex AB which is formed when A and B

associate. The association occurs with the rate constant kon, while the dissociation

occurs with koff . According to mass-action kinetics, the on- and off-rates vf and vr

are then:

vf = kon · A ·B (2.4)

vr = koff · AB.

In equilibrium, the rates balance, leading to constant concentrations:

kon · Aeq ·Beq = koff · ABeq. (2.5)

We can then define the association constant Ka as

Ka =
kon

koff

=
ABeq

AeqBeq

(2.6)

and the dissociation constant Kd as

Kd =
koff

kon

=
AeqBeq

ABeq

. (2.7)

When measuring the concentrations Aeq, Beq and ABeq in an experiment, we can

determine the association and dissociation constants and thus the ratio of the
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on- and off-rate constants kon and koff . Measuring the rate constants directly is

much more involved and requires more intricate biophysical methods like surface

plasmon resonance, where one of the interacting partners is immobilized close to a

metal layer and the other interacting partner flows over the surface. By a change

of the refractive index in the vicinity of the surface resulting from association and

dissociation of the interacting biomolecules, the reaction rate constants can be

determined.

2.1.3 Steady state and dynamics

Having constructed our model from the species and their interactions, we now want

to use it to extract some information on the system and its (dynamic) behaviour.

The first point of interest may be the steady state of the system. It is reached when

the concentrations of the species are no longer changing, and thus all derivatives
d
dt
x(t) for the states x(t) become zero. We can therefore set d

dt
x(t) = 0 in the

system of coupled differential equations and solve it to get the steady state.

Finding the general solution for the system’s dynamic behaviour is a little bit more

involved. There are procedures for solving coupled differential equations, and in

the case of chemical reaction networks one would typically choose an Ansatz, insert

it into the differential equations, and solve them.

However, for larger systems, this quickly becomes very difficult or impossible. Iden-

tifying conserved quantities and steady states and making simplifying assumptions

can help, but at some point it becomes impossible to find analytical solutions. At

this point we turn to computers for help.

2.2 Simulations

When it becomes impossible to find an analytical solution to the model, we can use

computers. We can to solve the differential equations by performing a simulation

of the model: we basically proceed in small steps, starting at the initial conditions,

and calculate how our variables x(t) have changed in each step. This is only an

approximation of the true solution, and it will only give us the variable values at

discrete time points. But if we choose sufficiently small time steps, it will be a very

good approximation. In the following subsections, I will present the basic theory

underlying this type of simulations. For further reading and example code, please

refer to (Press et al., 2007).
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2.2.1 Euler method

The most basic method to numerically solve a system of coupled ordinary differ-

ential equations with initial conditions is the Euler method. We start out with a

number of variables xi(t) that we can group into a vector ~x(t), the initial conditions

~x(0), and the system of differential equations in the form

d

dt
~x(t) = ~H(~x(t), t). (2.8)

In our example in equation (2.3), the vectors ~x(t) and ~H(~x(t), t) would look like

this:

~x(t) =



A(t)

B(t)

C(t)

D(t)

E(t)

F (t)


~H(t) =



k1 · A ·B + k0

−k1 · A ·B + k5 · E
k1 · A ·B − k2 · C

k2 · C − k3f ·D + k3b · F
−k4 · E − k5 · E
k3f ·D − k3b · F


. (2.9)

The vector ~H(~x(t), t) contains the derivatives of the variables xi(t). If we insert

the variables at a time point t, we get the local slope of each of the variables. So

if we know all variable values at a given time point t, we can insert them into
~H(~x(t), t) and approximate the variables at a time point t+ τ :

~x(t+ τ) = ~x(t) + τ · ~H(~x(t), t) +O(τ 2). (2.10)

This is called an Euler step. It is a direct consequence from the fact that ~H(~x(t), t) =
d
dt
~x(t) and the approximation of the derivative:

~x(t+ τ)− ~x(t)

τ
+O(τ) =

d

dt
~x(t). (2.11)

O(τ) is an error which does not grow significantly faster than τ . When we divide

by τ to arrive at equation (2.10), we get an error of order O(τ 2), which does not

grow significantly faster than τ 2. For a small step size τ , this is a stricter bound.

Thus, the smaller we choose the step size τ , the smaller (quadratically!) the esti-

mation error.

Coming back to our problem of determining a concrete solution for the variables
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~x(t), we do know the variables at a given time point, namely from the initial

conditions ~x(0). Thus, we can start at t = 0 and determine the slopes ~x(t) at

t = 0 by inserting the initial conditions ~x(0) into ~H(~x(t), t). This will give us the

variables at time point τ .

We can iterate the procedure to get from ~x(τ) to ~x(2τ), so that we finally arrive at

a time series of n values ~x(n · τ). This procedure is called the Euler method. From

this basic Euler method, many more complex procedures have been established to

decrease the size of the error and to overcome instabilities which would only allow

good solutions for very small time steps.

2.2.2 4th order Runge-Kutta

This method is an extension of the Euler method, and decreases the size of the

error to O(τ 4) (which is why it is called 4th order). It is usually simply referred to

the Runge-Kutta method, since it is the standard Runge-Kutta method to solve a

system of coupled differential equations. (Runge, 1895), (Kutta, 1901)

The basic idea of the method is to perform three Euler steps, two with step size

τ/2 and one with step size τ . We consecutively calculate the slopes:

~H1 = ~H(~x(t), t) (2.12)

~H2 = ~H(~x(t) + 1/2 · τ · ~H1, t+ 1/2τ)

~H3 = ~H(~x(t) + 1/2 · τ · ~H2, t+ 1/2τ)

~H4 = ~H(~x(t) + τ · ~H3, t+ τ).

~H1 is the slope at the beginning of the interval. ~H2 is the slope at the midpoint τ/2

of the interval, using variables ~x(t+ τ/2) determined from the slope ~H1. ~H3 is again

the slope at the midpoint, but this time using variable values calculated with ~H2.
~H4 is the slope at the endpoint of the interval, calculated with the slope ~H3. We

can then calculate the variables at time point t+ τ in the following fashion:

~x(t+ τ) = ~x(t) + τ · (1/6 · ~H1 + 1/3 · ~H2 + 1/3 · ~H3 + 1/6 · ~H4) +O(τ 4). (2.13)

Note the the error is now O(τ 4), which is significantly smaller than O(τ 2) for small

τ .
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2.2.3 Generalized and implicit Runge-Kutta

While the 4th order Runge-Kutta method is the most commonly used method

due to its trade-off between speed and accuracy, it is only one of many possible

Runge-Kutta schemes. The general equation is formulated as follows:

~x(t+ τ) = ~x(t) + τ

s∑
i=1

bi · ~ki, (2.14)

where s is the number of stages, the bi are coefficients (numbers like 1/3 and 1/6 in

equation (2.13)) and the ki can be calculated iteratively as follows:

~ki = ~H

(
~x(t) + τ ·

(
i−1∑
j=1

aij~kj

)
, t+ ciτ

)
. (2.15)

The ci and aij are again coefficients. The ~ki are the slopes calculated at different

extrapolation points, which are averaged in equation (2.14) to give an estimate of

the next time point ~x(t+ τ). Please note that the ~ki can be calculated iteratively:

each ~ki may depend on the ~kj before it with smaller index j < i, but not those

after it.

Unfortunately, these general Runge-Kutta methods, called explicit Runge-Kutta

methods, are unstable for certain types of differential equations. When they are

applied to the simple Kepler problem of a planet orbiting a sun, the solution

becomes unstable and spirals outwards instead of forming a stable orbit as it

should. The solution’s region of stability is highly dependent on the step size in

this method.

This problem is improved upon by the implicit Runge-Kutta method. It works as

follows:

~x(t+ τ) = ~x(t) + τ
s∑
i=1

bi · ~ki, (2.16)

with

~ki = ~H

(
~x(t) + τ ·

(
s∑
j=1

aij~kj

)
, t+ ciτ

)
. (2.17)

The main difference to the explicit Runge-Kutta method is the range of the sum

in equation (2.17): it now extends to the full number of stages s for each sum.

This means that we cannot calculate the ~ki iteratively anymore. Instead, equation

(2.17) will produce a system of linear equations for the ~ki that has to be solved
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algebraically. This increases the numerical cost, but leads to a greater stability of

the solutions.

Typically, this procedure is combined with an adaptive Runge-Kutta method: this

is a combination of two Runge-Kutta algorithms running in parallel, one of order n

and one of order n−1. The two algorithms’ results can be compared at intermediate

steps and can be used to calculate an error. The step size of the two methods can

then be adjusted according to the error, so that the error stays beneath a user-

defined threshold. This saves computational cost: the algorithm allows for larger

steps when the error is low, but uses small steps as required to keep the error

small.

2.2.4 The Gillespie algorithm

So far, we have investigated how to solve the differential equations describing the

model while treating the molecular species’ concentrations as continuous numbers.

But what if the number of the molecular species we are describing cannot be

treated as a continuous number? This is the case when we are considering small

numbers of molecules, say below 100. This brings with it two different issues.

Firstly, the number of molecules is so small that it becomes coarse-grained and we

cannot approximate it well using a continuous number. Doing calculations which

involve 0.1 molecules makes no sense: either there are 0 or 1 molecules.

Secondly, randomness starts to play a role. If the deterministic simulation gives

us a result of 0.1 molecules for a given time step, this means that there would be

0.1 molecules on average. In reality, this could be 0, or 1, or 2, or ... molecules.

It is intuitively clear that this would make a big difference to the outcome of the

simulations. With deterministic simulations, we can still make statements for the

average behaviour of the model system, but in reality, each realization of the sys-

tem would yield a different results simply due to pure chance. If we are interested

in the statistical characteristics of those realizations, such as the variability, we

have to perform stochastic simulations.

A very current example of this is the statistics of cases of an infectious disease:

deterministic simulations can inform us about the average behaviour, but to cor-

rectly reflect the highly stochastic and localized nature of disease outbreaks, we

need stochastic simulations.

To perform stochastic simulations, we use the same reaction equations from equa-
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tion (2.1), however we need to treat them differently. We cannot translate the

reaction equations to the differential equations from equation (2.3) anymore, since

this assumes that the species are continuous quantities. Instead of treating the dif-

ferent molecular species as continuous quantities and the reactions as continuous

fluxes, we now treat the species as integer numbers and the reactions as separate

events. To perform simulations, we consider the separate reactions one by one.

This is called the Gillespie Algorithm (Gillespie, 1977).

Initialization
of reactants

Choose next
reaction and
time

Update
reactants’
numbers

Iteration if
time < end
time

Figure 2.3: Schematic of the Gillespie algorithm.

The basic mechanism of the algorithm is schematically shown in figure 2.3. First,

the initial conditions are used to initialize all reactant numbers. Then, we need to

pick a reaction as well as the waiting time until it occurs randomly. How this is

done will be explained in detail below. When a reaction has been chosen, the next

step is to carry out the changes of this reaction on the reactant concentrations:

they are updated to reflect the decrease in reactant species and the increase in

product species. The simulation time is advanced by the wait time.

In the next step, it is checked whether the total time exceeds the specified simula-

tion time - if this is not the case, the simulation continues, and the main simulation

step is iterated: the next reaction will be chosen and carried out.

In the reaction step, we need to ensure that the reactions occur with the correct

statistics. We want to pick reactions at random, but each of them should happen

with the correct relative frequency and with correct statistics of the waiting time

in between reactions. The Gillespie algorithm has an elegant solution to ensure

this.

Imagine a reaction with reactants A and B and product C, occurring with a rate

constant k1. Then the total rate of the reaction will equal to r1 = A ·B · k1. This

is the instantaneous rate, its unit is molecules/s since it denotes the change of C.

The mean time between reactions will be 1/r1. When we consider all the reactions

in a given reaction network, we can define a total rate of all reactions that can
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occur:

rtot =
n−1∑
i=0

ri, (2.18)

where the sum extends over all n rates in the reaction network. The mean time

until any reaction occurs in this network is 1/rtot.

To perform the simulations, we also need to know the probability distribution of

times between reactions to choose reaction times that not only give the correct

mean reaction time, but also the correct statistics. It can be shown that the

times between reactions are exponentially distributed, since the reactions are in-

dependent of each other (except for the change of the reactant). Processes with

this characteristic are called Markov processes, and another example is radioactive

decay: the time in between independent decay events is also exponentially dis-

tributed.

We can assign a waiting time between reactions by drawing exponentially dis-

tributed random numbers, which is typically done by computing

τ =
1

rtot log
(

1
U1

) , (2.19)

where U1 is a random number drawn from a uniform distribution between 0 and

1. Consequently, log (1/U1) is an exponentially distributed number between 0 and

∞. This ensures that we will on average wait a time of 1/rtot between reactions,

and that the waiting times are exponentially distributed.

Next, it needs to be decided which reaction occurs at the newly determined time

point. For each of the reactions, the probability to occur is ri/rtot. We can therefore

create a new random number U2, uniformly distributed between 0 and 1, and find

the smallest k for which
k∑
i=0

ri > rtot · U2. (2.20)

Using this procedure, each reaction is chosen proportionally to the width of the

interval that they contribute to the sum representing rtot, and thus proportionally

to ri/rtot.

After the reaction and its waiting time have been determined, the reaction is car-

ried out, which means that the total simulation time is advanced by the waiting

time and the molecule numbers are updated according to the reaction that has

occurred. Then, if the total simulation time has not been exceeded, another step

can be carried out: first, the reaction rates have to be updated according to the
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new reactant numbers. Then, the random procedure is again used to pick the next

reaction and waiting time.

Using the Gillespie algorithm, a stochastic simulation of a system of reaction equa-

tions can be carried out. We now have all the tools needed to build a model and

to carry out both stochastic and deterministic simulations.

2.3 Basis of the modelling

The models I present in the results chapters 3 and 4 are based on two previ-

ously published modelling approaches: the amphibian model by Dell’Orco et al.

(Dell’Orco et al., 2009) and the mouse model by Invergo et al. (Invergo et al.,

2014). More information on how to build a model and use it for simulations can

also be found in (Dell’Orco, 2015). The models have also been used to investigate

different phenomena in slightly modified versions (Invergo et al., 2014), (Dell’Orco

and Koch, 2010). In this section, I will describe the two models by describing their

structure and the interactions of their species.

2.3.1 The Dell’Orco 2009 model

The Dell’Orco 2009 model was developed to comprehensively model the photo-

transduction cascade in amphibians in different light regimes. Figure 2.4 shows

the biochemical network structure of the model. The Invergo 2014 model mainly

shares the same structure. The model consists of the reactions occuring in the

phototransduction cascade as described in section 1.1. The outer box represents

the outer segment, where the reactions take place. The coloured boxes represent

the different molecular species. Connections represent reactions, with arrows indi-

cating irreversible reactions and their direction. The colors of the boxes indicate

active species in yellow and other species involved in signalling and shut-off in

shades of grey and blue.
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overexpressing RGS;28 (b) a reaction for reconstitution of
GaGDP-bg heterotrimer (Gt) from the a and bg-subunits;
(c) a reaction for R reformation from opsin (Ops) and
11-cis-retinal; (d) reactions for slow activation of the cascade
by Ops, the bleached chromophore-free form of the pigment
that shows a 106–107-fold lower catalytic activity with respect
to R*.29,30 The explicit inclusion of Ops as a molecular species
in the network acquires particular relevance in the light of its
key role in diverse phenomena, such as bleaching, desensitization
and retinal degeneration induced by continuous light, consti-
tutively activating mutations, or vitamin A deprivation.31–33

In particular, the present model could successfully reproduce
the dynamics characterizing the Rpe65!/! cell, a well
established model of Leber congenital amaurosis.34–36

Results and discussion

The network structure: novel features

The structure of the extended phototransduction model is
shown in Fig. 1. Table S1 and S2 in the ESIw show the details

of the chemical and kinetic features of the model network. In
particular, Table S1 includes a numbered list of the reactions
that constitute the network and their associated kinetic rate
laws, while Table S2 lists the model parameters, their values,
and the relative sources.
For the part of the network that is shared with the template

model of Hamer et al.,16 which is able to reproduce the
features of both SPR and the response to bright light-stimuli,
we attempted to retain the original parameters as much as
possible, even if SPR and the associated statistics are beyond
the scope of this paper. This was impossible for the many parts
of the model in which we introduced substantial modifications
in the network structure (the corresponding reactions have
been highlighted by red numbers in Fig. 1).
In order to simulate more realistically the experiments that

were largely done on mice cells, i.e. mammalians rods, while
starting from a model structure originally developed for
amphibian rods,16,17 we changed the maximum number of
phosphorylation sites in the R* molecule from 7 to 6, hence
allowing up to 6 RK-mediated phosphorylations. Indeed, the
phosphorylation sites in the C-terminus of R are known to be

Fig. 1 The network structure of the present model of phototransduction in a rod cell. Reactions are numbered and listed accordingly in Table S1w
(in the same table the reactions are explicitly written in a chemical form, each abbreviation is explained and the kinetics of each reaction are

elucidated). Irreversible reactions are marked with an arrow indicating the direction of each reaction. Colours are used to distinguish between

active molecules (i.e. in different yellow tones: molecules that carry on the amplification cascade in the following reaction), and those molecular

species that are necessary for signalling, but are either inactive intermediates or species devoted to shut-off or regulatory mechanisms (in different

blue and gray tones). A bold border marks the activated species involved in the amplification. The diamonds positioned at the bottom right of

some of the molecular species indicate the number of phosphates that can be bound upon phosphorylation, ranging from 0 to 6 (orange diamonds)

or from 1 to 6 (purple diamonds).

1234 | Mol. BioSyst., 2009, 5, 1232–1246 This journal is "c The Royal Society of Chemistry 2009

Pu
bl

ish
ed

 o
n 

07
 Ju

ly
 2

00
9.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

tsb
ib

lio
th

ek
 O

ld
en

bu
rg

 o
n 

26
/1

0/
20

16
 1

6:
41

:5
0.

 

View Article Online

Figure 2.4: The complete biochemical network of the Dell’Orco 2009 model. The
large box represents the outer segment. The boxes represent the different inter-
acting molecular species, with active species in yellow, and other species involved
in the signalling or shut-off in shades of grey and blue. The species involved in
the amplification of the response have a bold box. Diamonds at the bottom indi-
cate the phosphorylation state of rhodopsin species, ranging from 0 to 6 (orange)
and 1 to 6 (pink). Connecting lines represent reactions, with arrows indicating
irreversible reactions. The reactions are numbered and can be found in the sup-
plementary information of (Dell’Orco et al., 2009) as reaction equations. Reprinted
by permission from the Royal Society of Chemistry, from (Dell’Orco et al., 2009).

Let us follow the path of the signal through the model scheme. Please note that we

will follow the reaction numbers, which are not necessarily in the order in which

the reactions will occur. In the cases where the rates are not given by mass-action

kinetics, they are given as formulas. The complete list of reaction equations and

parameters can be found in the appendix.

The first step in phototransduction is the activation of rhodopsin. This is reaction

1 in the scheme. Rhodopsin in the inactive state R (Ri in the figure) is converted

to R0, active rhodopsin that is phosphorylated 0 times. This is an active signalling

molecule and thus marked yellow in the scheme. The rate of the reaction is pro-

portional to the light stimulus S and to the fraction R of the total rhodopsin Rtot

that is free to be activated:

vf = S · R

Rtot

. (2.21)
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The stimulus S is expressed as follows:

S = background + preflash + testflash + otherstimulus (2.22)

background = flashBG

preflash =

flash0Mag/flash0Dur if t ≤ flash0Dur

0 else

testflash =

flashmag/flashDur if flashDel ≤ t ≤ flashDel + flashDur

0 else.

The total stimulus is defined as a sum of four different stimuli: a background,

a preflash, a test flash and an extra stimulus (otherstimulus). The background

is defined as a constant illumination of the intensity flashBG, which is given as a

parameter in photons/µm2s. The preflash starts at time t = 0 and lasts for the du-

ration flash0Dur. Its intensity is defined as flash0Mag/flash0Dur, with flash0Mag

given as a parameter in photons/µm2. The test flash starts at time t=flashDel

and lasts for flashDur. Its intensity is given as flashMag/flashDur, with flashMag

again in photons/µm2. The extra stimulus is a free parameter and can be defined

as required.

The reactions 2 to 4 describe the phosphorylation of rhodopsin by the rhodopsin

kinase (RK). It can bind to rhodopsin, forming the complex R · RKpre with phos-

phorylation state n − 1 indicated in the small pink diamond in figure 2.4. In the

pink diamonds, the phosphorylation state n goes from 1 to 6 (and thus n − 1 is

between 0 and 5), while it goes from 0 to 6 in the orange diamonds. The phospho-

rylation reaction 3 consumes one ATP molecule and produces one ADP molecule,

which is integrated in the reaction rate of this step. The result is the complex

R ·RKpost with phosphorylation state n increased by one (thus between 1 and 6).

The complex can next dissociate to rhodopsin Rn and rhodopsin kinase.

The affinity of rhodopsin for the rhodopsin kinase depends on the phosphorylation

state n of rhodopsin in this model. The rate constant kRK1,n decreases exponen-

tially with n:

kRK1,n =

kRK1,0 · e−ω·n n < 6

0 n = 6,
(2.23)

with the parameters kRK1,0 describing the rate constant for n = 0 and ω describ-

ing the exponential increase of the rate constant with the phosphorylation state.
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The affinity becomes zero for rhodopsin that has already been phosphorylated six

times, since this is the maximum number of phosphorylations in the model.

Reactions 5 and 6 describe the shut-off of rhodopsin by arrestin. Rhodopsin and

arrestin (Arr) can bind to create the complex R ·Arr, which can then dissociate to

arrestin and opsin (Ops), the inactivated form of rhodopsin. Activated rhodopsin

can also spontaneously shut off by decaying directly to opsin (reaction 7).

The affinity of rhodopsin for arrestin also depends on the phosphorylation state of

rhodopsin in the model. Specifically, the rate constant kA1,n of the binding reaction

exponentially increases with the phosphorylation state n as follows:

kA1,n = kArr · eωArr·n, (2.24)

with parameters kArr and ωArr. This reaction is only defined for n ≥ 1, because it

can only occur when rhodopsin has been phosphorylated at least once.

Reactions 8 to 11 describe the activation of the G-protein by opsin. Opsin has a

very low activity, leading to some spontaneous activation events in the dark after

the creation of opsin by, e.g., a bleach. This is equivalent to the activation of the

G-protein by rhodopsin, which will be described in the next paragraph.

Reaction 12 is the recycling of opsin to rhodopsin. This reaction requires a fresh

11-cis-retinal, which is included implicitly in the reaction rate.

The next signalling step involving the active rhodopsin is the activation of the

G-protein (Gt) in reactions 13 to 16. In the first step, rhodopsin and transducin

bind to form R · Gt. Next, GDP is exchanged for GTP in two steps, leading to

Rn · G and Rn · GGTP. The GDP and GTP are implicitly included in the reac-

tion rates, respectively. Finally, the rhodopsin and G-protein dissociate to Rn and

GGTP. For the case of the G-protein being activated by opsin, the steps are the

same, but with opsin instead of rhodopsin.

The affinity of rhodopsin for transducin decreases exponentially with the phospho-

rylation state n of rhodopsin in the model. The rate constant kG1,n depends on n

as follows:

kG1,n = kG1,0 · e−ω·n, (2.25)

with the parameters kG1,0, which is the rate constant for unphosphorylated rhodop-

sin, and ω, which is also used to describe the change in affinity for the rhodopsin

31



CHAPTER 2. METHODS

kinase.

Next, the G-protein dissociates into its α-subunit and β- and γ-subunits in reac-

tion 17. The products are GαGTP, the active α-subunit of the G-protein, and Gβγ.

Reactions 18 to 21 constitute the activation of the phosphodiesterase PDE by

the G-protein. The first step is the binding of PDE and the G-protein to form

PDE · GαGTP in reaction 18. This complex is not yet active, since a conforma-

tional change needs to occur first. This is the next step in reaction 19, yielding

PDE∗ ·GαGTP. This active form of PDE contributes to the effector (as defined in

equation (2.31)) with half the full activity, since the PDE has two subunits that

can both be activated by the G-protein. This is exactly what happens in reactions

20 and 21: another G-protein is bound to form GαGTP ·PDE∗ ·GαGTP, which then

reacts to GαGTP · ∗PDE∗ ·GαGTP, the fully active form.

The deactivation of the PDE mediated by the regulator of G-protein signalling

(RGS) is described in reactions 22 to 25. First, the PDE-G-complex binds RGS

to form RGS ·PDE∗ ·GαGTP or RGS ·GαGTP · ∗PDE∗ ·GαGTP, respectively, in reac-

tions 22 and 24. The first form dissociates to RGS, GαGDP and PDE in reaction

25, while the second form dissociates to RGS, GαGDP and PDE∗ ·GαGTP in reaction

23, still retaining half the full activity. Please note that the G-protein now is not

active anymore, since it is bound to GDP instead of GTP.

The active PDE-G complex can be shut off by the intrinsic GTPase activity of

the G-protein without binding to RGS. This is described by reactions 26 and 27:

PDE∗ · GαGTP and GαGTP · ∗PDE∗ · GαGTP decay to GαGDP as well as PDE or

PDE∗ ·GαGTP, respectively.

The active α-subunit GαGTP of the G-protein can also be shut off by the intrisic

GTPase activity: in reaction 28, it decays to GαGDP. The inactive GαGDP can

recombine with the β- and γ-subunits Gβγ in reaction 29 to produce transducin,

which can then be activated by rhodopsin again.

Reaction 30 implements the recoverin-rhodopsin kinase regulation. The rhodopsin

kinase can associate and dissociate with the recoverin (Rec) to form Rec·Ca2+ ·RK.

In the recoverin-bound state, it cannot phosphorylate the rhodopsin. In the model,

the calcium-bound recoverin Rec · Ca2+ is not explicitly treated as a molecular

species, but included in the reaction rate as a variable. It is calculated using Hill

kinetics (Hill, 1910) from the total recoverin concentration Rectot and the free
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Calcium concentration as follows:

Rec · Ca2+ =
Rectot − Rec · Ca2+ ∗ nCF

1 +
(

KP

Ca2+
free

)w , (2.26)

with the following parameters: nCF, the conversion factor from molecule numbers

to concentrations, KP, the Ca2+ concentration causing half-maximal inhibition of

recoverin, and w, the Hill coefficient for the action of Ca2+ on recoverin.

Reactions 31 to 33 describe the calcium dynamics in the model. In reaction 31,

the exchange of calcium between the free form Ca2+
free and the intracellular buffers

Ca2+
buff is described with the following forward and backward rates vf and vr:

vf = k1 ·
(
eT − Ca2+

buff

)
· Ca2+

free (2.27)

vr = k2 · Ca2+
buff ,

with rate constants k1 and k2 and the total buffer capacity eT. This deviation

from mass-action kinetics reflects the finite capacity of the buffers.

Reaction 32 represents the efflux of calcium via the ion exchangers. It is imple-

mented with the rate:

vf = γCa ·
(
Ca2+

free − Ca2+
0

)
, (2.28)

with the rate constant γCa and the minimum intracellular calcium concentration

Ca2+
0 . Using this formula for the rate, Ca2+

free cannot become lower than Ca2+
0 .

The influx of calcium via cyclic nucleotide gated channels is described in reaction

33. The reaction rate is

vf =
106 · fCa · Jdark

(2 + fCa) · F · Vcyto

·
(

cGMP

cGMPdark

)nCG

, (2.29)

with the following parameters: the fraction fCa of the circulating current carried

by calcium, the dark current Jdark, the Faraday constant F , the cytoplasmic vol-

ume Vcyto, the dark cGMP concentration cGMPdark and the Hill coefficient nCG

for the opening of the cyclic nucleotide-gated channels. The reaction rate models

the influence of the cGMP concentration on the influx of calcium ions into the cell.

Reactions 34 and 35 describe the synthesis and hydrolysis of cGMP, respectively.

Reaction 34 implicitly contains the effect of the guanylate cyclase and its calcium-
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dependent regulation by the guanylate cyclase activating proteins. Its rate is:

vf =
αmax

1 +
(Ca2+

free

KC

)m , (2.30)

where αmax is the maximal rate of cGMP synthesis by the GCs, KC is the calcium

concentration at which cGMP synthesis is half-maximal andm is the Hill coefficient

for the action of calcium on the cGMP synthesis rate.

cGMP is hydrolysed by activated PDE. The different light-activated forms of PDE

are summarized in the effector E:

E = PDE∗ ·GαGTP + GαGTP · PDE∗ ·GαGTP + 2 ·GαGTP · ∗PDE∗ ·GαGTP. (2.31)

The last term in the equation is multiplied by two because the PDE is active in

both subunits and thus has the double activity. Then, the rate of cGMP hydrolysis

is:

vf = (βdark + βsub · E) · cGMP, (2.32)

where βdark is the dark rate of cGMP hydrolysis by spontaneously activated PDE

and βsub is the rate constant for cGMP hydrolysis by the effector, which represents

the light-activated PDE.

The dark rate of cGMP hydrolysis and synthesis are connected, since they ensure

that the cGMP concentration is in equilibrium in the dark. This is expressed by

the formulation of the maximal cGMP hydrolysis rate:

αmax = βdark · cGMPdark ·
(

1 +

(
Ca2+

dark

KC

)m)
. (2.33)

When inserting this into the cGMP synthesis rate in equation (2.30) and setting

Ca2+
free to Ca2+

dark, as would be the case in the dark state, we arrive at vf,dark =

βdark · cGMPdark, which is equal to the dark rate of cGMP hydrolysis. This is

necessary for a stable equilibrium in the dark.

Finally, the output variable of the model is ∆J , the change in circulating current

J with respect to the dark current Jdark. It is computed as follows:

J =
2

2 + fCa

·
(

cGMP

cGMPdark

)nCG

· Jdark +
fCa

fCa + 2
· Ca2+

free − Ca2+
0

Ca2+
dark − Ca2+

0

· Jdark

∆J = Jdark − J. (2.34)
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In the equation for J , it can be recognized that the change in circulating current

is due to two factors. The first term describes the change in cGMP concentration,

closing the cyclic nucleotide gated channels. The second term describes the change

in calcium concentration in the cell.

2.3.2 The Invergo 2014 model

The Invergo 2014 model (Invergo et al., 2014) is an update of the Dell’Orco 2009

model, transforming it from an amphibian to a mouse model. This is beneficial,

because most of the new experimental results are available for mice and other

mammalian species. The kinetic parameters of the model have been adapted to

account for the faster kinetics in mammalians compared to amphibians. The model

mainly follows the structure of the Dell’Orco 2009 model, but a few reactions have

been added or modified. These will be listed in the following. A full list of the

parameters and reaction equations of the model can be found in the supplementary

information of (Invergo et al., 2014).

First of all, the dependence of rhodopsin’s affinity for the rhodopsin kinase, arrestin

and the G-protein is changed. For the G-protein and the rhodopsin kinase, the

affinity still decreases exponentially with the number of phosphorylations, but with

different coefficients ω and ωG:

kRK1,n =

kRK1,0 · e−ω·n n < 6

0 n = 6
(2.35)

kG1,n = kG1,0 · e−ωG·n. (2.36)

For the arrestin, a different dependence has proven to yield a better fit to experi-

mental data in this model:

kA1,n =

kArr + (n− 1) ·mArr n ≤ 4

kArr + 3 ·mArr n > 4,
(2.37)

with parameters kArr and mArr. Rhodopsin’s affinity for arrestin now increases

linearly until four phosphorylations, after which it stays constant.

The treatment of recoverin is different in the Invergo 2014 model: it is treated

explicitly as a molecular species and one reaction has been added to account for
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a more detailed description of the equilibrium between free and bound recoverin

and the rhodopsin kinase.

RecT + Ca2+
free ↔ RecR · Ca2+ (2.38)

RecR · Ca2+ + RK ↔ RecR · Ca2+ · RK,

with the calcium-bound and calcium-free forms of recoverin, RecR · Ca2+ and

RecT. Only the calcium-bound form of recoverin can bind the rhodopsin kinase.

With these reactions, the equilibrium between free and bound rhodopsin kinase is

calcium-dependent.

The formulation of the action of the GC-GCAP-system is also different. The

rate for the production of cGMP is now split into the contributions from the two

GCAPs influencing the GC. The two GCAPs have different effects on the GC and

are active during slightly different calcium concentrations. This is resolved better

using the following reaction rate:

vf =
αmax

1 +
(

Ca2+
free

KC1

)m1
+

αmax

1 +
(

Ca2+
free

KC2

)m2
, (2.39)

where αmax is again the maximal rate of cGMP synthesis by the GCs achieved

by the two GCAPs, KC1 and KC2 are the calcium concentrations at which cGMP

synthesis is half-maximal resulting from the activation by the two GCAPs, and m1

and m2 are the Hill coefficient for the action of calcium on the cGMP synthesis rate.

There are two new effects included in the model: the formation of arrestin tetramers

and precoupling. The formation of arrestin dimers and tetramers has a buffer-like

function for arrestin. In the dark, some of the arrestin is bound in dimers and

tetramers. As soon as the arrestin is required to shut off the response, the free

arrestin gets bound to rhodopsin and more arrestin is released from the dimers

and tetramers. This equilibrium is described using two new reactions:

Arr + Arr ↔ Arrdi (2.40)

Arrdi + Arrdi ↔ Arrtetra,

with the arrestin dimer Arrdi and tetramer Arrtetra.
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The precoupling or dynamic scaffolding mechanism is described in section 1.1.5.

It is included in the Invergo model with the following reactions:

R + Gt ↔ R ·Gt (2.41)

R ·Gt → R0 ·Gt.

The first reaction describes the precoupling of rhodopsin and transducin in the

dark. In the dark, there is an equilibrium of association and dissociation resulting

in 18% of the transducin being precoupled to rhodopsin. The second reaction

describes the activation of the precoupled form of rhodopsin by a light stimulus

with the rate

vf = S · R ·Gt

Rtot

, (2.42)

analogous to the activation of the non-precoupled rhodopsin.

2.4 Implementation in IQMtools

The modelling framework I used for the phototransduction modelling is a toolbox

called IQMtools in MATLAB (IQMtoolbox Website). MATLAB stands for Matrix

Laboratory and is a programme that can be used for various kinds of numerical

calculations and data analysis. For the analyses in this thesis, I used MATLAB

version R2017b unless otherwise specified. Simulations were run on a desktop

computer or on the CARL high performance computing cluster1 of the university

of Oldenburg.

IQMtools is a toolbox specifically developed for modelling of biochemical and

biomedical systems, which offers a vast treasure of methods ready for use. I used

IQMtools version 1.2.2.2 for the analyses presented in the following.

The original Dell’Orco 2009 and Invergo 2014 models were implemented in the

predecessor of IQMtools called SBTOOLBOX2 (Schmidt and Jirstrand, 2005). I

converted these models as well as the simulation scripts to reproduce the figures

from (Dell’Orco et al., 2009) and (Invergo et al., 2014) to the newer IQMtools

syntax.

I then used the IQMmodel structure to develop the different models presented in

this thesis. In the IQMmodel structure, a model is defined using either differen-

1See https://uol.de/en/school5/sc/high-perfomance-computing/hpc-facilities/

carl for the cluster’s specifications.
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tial equations or reaction equations. The initial conditions, parameter values and

additional variables are also stored in the model. Models of this structure can be

combined with IQMexperiments, where parameter or state values can be altered

at defined points in time.

This is an excerpt from the Dell’Orco 2009 model in the IQMtools syntax:

********** MODEL STATE INFORMATION

R(0) = 3.6e9

PDE(0) = 1.335e7

Gt(0) = 3.6e8

...

********** MODEL PARAMETERS

Rtot = 3.6e9

PDEtot = 1.335e7

Gtot = 3.6e8

...

********** MODEL VARIABLES

E = PDE a Ga GTP + 2 * Ga GTP a PDE a Ga GTP

J = 2/(2 + fCa)*power((cGMP/cGMPdark),ncg)*Jdark + fCa/(fCa + 2)*...

(Ca2 free-Ca2 0)/(Ca2dark-Ca2 0)*Jdark

deltaJ = Jdark - J

...

********** MODEL REACTIONS

R => R0 : v r1

vf = stimulus * R/Rtot

R0 + RK <=> R0 RKpre : v r2 0

vf = kRK1 0 * RK * R0

vr = kRK2 * R0 RKpre

R1 + RK <=> R1 RKpre : v r2 1

vf = kRK1 1 * RK * R1

vr = kRK2 * R1 RKpre

First, the initial conditions for all states (i.e. explicitly simulated molecular

species) are defined under Model State Information. The initial conditions only

need to be explicitly written down when they are not zero - otherwise, zero is the

default. Next, parameters are declared in Model Parameters. Those can be, for

example, total molecule numbers for given species or the reaction rate constants.

In Model Variables, the variables of the model are given as formulas - here for

example the effector and the circulating current, or the reaction rate constants that
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depend on the phosphorylation state of rhodopsin. Finally, in Model Reactions,

the reactions are defined in terms of their reactants and products as well as the

forward and backward rates. All the parameters and variables that play into the

rates need to be defined in the appropriate sections above.

After defining the model, simulations can be performed. The necessary functions

for this are also supplied by the IQMtools package.

For the deterministic simulations, I used IQMsimulate and IQMPsimulate, which

carry out a simulation of the given model for a specified time vector. They are

based on MATLAB’s own differential equation solver ode23s, which uses an im-

plicit Runge-Kutta approach with adaptive step sizes. For an explanation of this

method, please refer to section 2.2.3.

The difference between the two functions lies in the speed: while IQMsimulate

carries out the simulation within MATLAB, IQMPsimulate first automatically

converts the simulation to C, which executes more rapidly, and then translates the

result back into the MATLAB environment.

For stochastic simulations, I used IQMstochsim, which uses a similar approach to

the Gillespie algorithm as explained in section 2.2.4 by simulating the chemical

Master equation.

The models can be combined with experiments to simulate specific conditions, for

example stimulus paradigms or genetic modification. Below is one example for an

experiment:

********** EXPERIMENT INITIAL PARAMETER AND STATE SETTINGS

flashBG = 100

flashMag = 900

flashDur = 0.01

flashDel = 10

This experiment defines a stimulus. It consists of a background of 100 (flashBG),

which translates to 233 photons/µm2s using the collecting area of 0.43µm2, as well

as a flash. The flash starts at t = 10 s (flashDel), lasts for 0.01 s, and has a mag-

nitude of 2093 photons/µm2 (again dividing by the collecting area).

This is another possible experiment:

********** EXPERIMENT INITIAL PARAMETER AND STATE SETTINGS
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RK(0) = 2e5

RecR Ca RK(0) = 0

RecR Ca(0) = 0

RecT(0) = 0

********** EXPERIMENT PARAMETER CHANGES

********** EXPERIMENT STATE CHANGES

This experiment implements a knockout of recoverin. In a genetic knockout, the

corresponding species is not produced by the animal and therefore also needs to

be removed completely in the model to imitate the condition. Thus, all possible

species containing recoverin are set to zero as an initial condition: the two differ-

ent recoverin states with and without calcium RecT and RecR ·Ca2+ as well as the

calcium-bound form that also binds the rhodopsin kinase RecR ·Ca2+ ·RK. Since

this removes some of the rhodopsin kinase from the model, the initial condition

for the rhodopsin kinase has to be adapted accordingly.

Please note that it is possible to define different initial settings for parameters,

variables and states using the experiment, but also parameter or state changes

that occur during the simulation time, as can be seen in the lower example.

After defining the experiment, model and experiment can be combined for simu-

lation using the command

model exp = IQMmergemodexp(model, experiment);

An alternative way to define changed initial conditions is by using the func-

tion IQMinitialconditions or indeed by directly changing the initial conditions

within the model, with the following alternative syntaxes:

model = IQMinitialconditions(model, ’R0’, 1);

model.states(stateindexIQM(model, ’R0’)).initialCondition = 1;

In both cases, model is modified so that the initial condition for R0 - unphospho-

rylated activated rhodopsin - is one molecule. This is one option to set the initial

conditions for the single photon response.

Using the models as specified earlier and the tools described here, we have all the

necessary tools to perform deterministic and stochastic simulations of the photo-

transduction cascade in different conditions.
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In this chapter, I am explaining the new developments of the deterministic models

that I carried out during my PhD. I show results from the new modelling, which

are compared to current and novel experimental data.

The main deterministic model builds up on the mammalian phototransduction

model from Invergo et al. (Invergo et al., 2014), which in turn builds on the

amphibian phototransduction model developed by Dell’Orco et al. (Dell’Orco

et al., 2009).

3.1 Rhodopsin-effector coupling

While early studies assumed that the activation of one rhodopsin molecule leads

to the activation of about 100 effector molecules downstream, this has in recent

years been revised to much lower effector numbers, as low as 12-14 (Yue et al.,

2019).

Furthermore, the effector PDE consists of two active subunits which can each be

activated by one activated α-subunit of transducin. Earlier, it was assumed that

both subunits are activated independently and can each contribute half of the full

activation, leading to the following formulation of the effector E:

E =
1

2
PDE∗ + ∗PDE∗, (3.1)

where PDE∗ is the single-activated and ∗PDE∗ the double-activated PDE. This is

also how the effector was implemented in the Invergo 2014 model. However, new

results have demonstrated that the two subunits may have a different contribution

to the effector (Qureshi et al., 2018), (Lamb et al., 2018). The new results point

toward a much smaller contribution of the single-activated PDE∗: it has less than

2.5% of the catalytic activity of the double-activated ∗PDE∗. We thus arrive at a

new formulation of the effector:

E = 0.025 · PDE∗ + ∗PDE∗. (3.2)
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There are two possible models that could explain this difference in catalytic ac-

tivity. The first assumes that the two subunits of the PDE are identical, but not

in fact independent: the first transducin that binds to the PDE can only unlock

a fraction of the catalytic activity, while the second transducin can fully activate

it. The second model assumes that the two binding sites for transducin are inde-

pendent, but not identical. They have different catalytic activities and different

affinities for transducin. The first binding site in this model has a high affinity for

transducin and would typically associate to it first, but only a low catalytic activ-

ity. The second binding site has a lower affinity for transducin and would therefore

usually bind to transducin later, but has a much higher catalytic activity. These

two models would produce equivalent results on the level of photocurrent and could

only be distinguished with a more detailed biochemical or biophysical analysis. For

the purpose of our modelling, we can follow the first model.

3.1.1 Fewer activated effector molecules

First of all, I wanted to modify the model to arrive at a lower number of activated

PDE molecules. My plan was to retune the parameters of the model which had

been determined by parameter adaptation. In the next step, I also wanted to

incorporate the new insight that the double-activated ∗PDE∗ carries most of the

activity.

In the interest of keeping the model as close to experimental results as possible,

my modifications to the model should obey two criteria. First, they should leave

the output of the model as close to the original model as possible, in different light

regimes (dim and bright flash responses, responses to prolonged stimuli and back-

ground plus flashes). Second, they should leave all parameters untouched that are

sourced from experimental results. Therefore, I wanted to modify only parameters

that had previously been manually tuned.

The parameters of interest are those governing the activation of the G-protein by

rhodopsin and the activation of the PDE by the G-protein. In the Invergo 2014

model, all parameters describing the interaction of the G-protein and PDE were

known from experimental results. However, there are a few parameter governing

the activation of the G-protein by rhodopsin that had been determined by param-

eter tuning. These parameters are listed in table 3.1. The underlying reaction

network is illustrated in figure 3.1 with all the reaction rate constants.
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Please note that the reaction rate constant kG1,n for n = 0 to 6 phosphorylation

states is calculated from the reaction rate constant kG1,0 as follows:

kG1,n = kG1,0 · e−ωG·n, (3.3)

with ωG = 0.6 from (Gibson et al., 2000). Thus, when we change kG1,0, all other

kG1,n are changed as well.

Table 3.1: A list of all manually tuned parameters in the activation of the G-protein
by rhodopsin.

Parameter Significance Value
kG1,0 Rate constant of binding of R0 and Gt 1 · 10−3/s
kG2 Rate constant of the dissociation of R0 ·Gt (without activation) 2200/s
kG3 Rate constant of the dissociation of GDP from R0 ·Gt 8500/s
kG4,GDP Rate constant of the association of GDP to R0 ·Gt 400/s
kG5,GTP Rate constant of the association of GTP to R0 ·Gt 3500/s
kG6 Rate constant of the dissociation of R0 ·GGTP 8500/s

Rn·Gt Rn·G Rn·GGTP GGTP

GDP GTP

Rn

Rn

Gt

kG1n

kG2

kG3

kG4GDP

kG5GTP kG6

Figure 3.1: Reaction network illustrating the activation of the G-protein by
rhodopsin and the reaction rate constants.

I used the parameter tuning interface of the IQM toolbox IQMparamestGUI, and

investigated the influence of changing these parameters. The interface for manual

tuning is shown in figure 3.2. In the interface, one can choose between different

models to compare to experimental data. The experimental data I used for com-

parison was simply a simulation of the Invergo 2014 model, since this was the

benchmark that I did not want to deviate from. Parameters can be changed using

the sliders at the bottom of the window. The result from the simulation with the

new parameters is shown as a solid line, compared with the experimental data as

a dotted line.

I initially selected a dim flash response for comparison and was looking for param-

eter changes that would decrease the overall amount of activated G-protein, and
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thus PDE, without changing the kinetics of the response in term of the change

in circulating current, the photocurrent ∆J , which is the output variable of the

model.

I found that in kG3: this parameter is the rate constant of the dissociation of GDP

from R0 · Gt and thus a crucial step in the phototransduction cascade. When

decreasing kG3, the amount of activated G-protein and PDE (and thus also ∆J)

was decreased, but the kinetics were unchanged. When scaling the responses of

the modified and old model to the same amplitude, they overlapped. The same

held for different types of light stimuli.

Figure 3.2: The IQMparamestGUI manual tuning interface. After loading a project,
different models and experimental data can be selected for comparison. Parameters
can be changed by moving the sliders in the lower part of the interface. After the
parameters have been changed, a new simulation of the model is performed and
plotted as a line along with the experimental data as a dotted line. In this case, a
dim flash response is compared after the parameter kG3 has been changed.

When scaling kG3 from its original value of 8500/s down to 250/s, the peak effector

during the single photon response was reduced to 13 instead of 110, as can be seen

in figure 3.3 on the left: the effector resulting from a deterministic simulation of

the single photon response of the Invergo 2014 (black line) and the new, modified

model (red dashed line) are compared. The effector was still calculated according

to the old definition here, where the total number of activated subunits are counted
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regardless of whether the PDE is single- or double-activated. The new number of

activated PDE subunits is now in agreement with (Yue et al., 2019).

Next, I had to make sure that enough cGMP gets hydrolyzed by this smaller

amount of activated PDE, to arrive at a comparable light response in term of ∆J .

For this, I increased the catalytic activity of the effector. This is the parameter

βsub in the model. Increasing it from its previous value of 2.183 · 10−3/s to 0.019/s

resulted in the normal decrease in cGMP due to the hydrolytic activity of the PDE

and thus in the previous amplitude of ∆J . This did not change the kinetics of the

response.

In figure 3.3 on the right, the ∆J resulting from deterministic simulations of the

single photon response of the Invergo 2014 model (black solid line) and the new

modified model (red dashed line) are compared. While the effector (left in the

figure) is now at a much smaller level, the overall light response in terms of ∆J is

hardly altered.

Figure 3.3: Comparison of the single photon response in the Invergo 2014 model
(black solid lines) and the new deterministic model (red dashed lines). On the
left, the effector is shown, and on the right, the photocurrent ∆J is compared.
The effector is calculated according to the old definition as the total number of
activated subunits of the PDE.

To work with this new deterministic model, I obviously had to check that it also

works well in other light regimes. To make sure of that, I compared the light

responses of the Invergo 2014 model (black lines) to those of the new modified

model (red lines) in figures 3.4 and 3.5. The figures shows the light responses

to different stimulus paradigms: flashes of different brightness and combinations

of flashes and prolonged background stimuli, for a wild type (WT) model and a

simulated knockout of the GCAPs. This tests the new model’s ability to produce
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varied features of the light responses. The different paradigms follow (Invergo

et al., 2014).

Figure 3.4: Responses of a dark adapted rod to flashes of increasing brightness
compared between the Invergo 2014 model (black) and the new deterministic model
(red). The flashes lasted for 0.02 s and the intensities were 1.7, 4.8, 15.2, 39.4, 125,
444, 1406 and 4630 photons/µm2.

In figure 3.4, responses in terms of photocurrent ∆J to brief flashes with increas-

ing brightness are shown, without any background stimulus. The flashes lasted

for 0.02 s and the intensities were 1.7, 4.8, 15.2, 39.4, 125, 444, 1406 and 4630

photons/µm2, respectively. The new model reproduces the kinetics of the light

response in this stimulus paradigm well, as the curves almost overlap.

In the three brightest flashes, we can see the phenomenon of saturation: the flashes

are so bright that the circulating current is maximally suppressed. The higher the

intensity of the flash, the longer the rod stays in this state of saturation. This is

accurately reproduced in the new model.

Figure 3.5 contains the light responses in terms of ∆J for three different stimu-

lus paradigms, combined in one figure. The first stimulus consisted of a constant

dim background stimulus (dot-dashed line). The second stimulus combined the

constant background with a bright flash at t = 100 s (dashed line). Finally, the

third stimulus just consisted of a bright flash at t = 100 s (solid line). The in-

tensity of the background was 81 photons/µm2s and the intensity of the flash was

1590 photons/µm2.

In the left figure, we can see that the background leads to a higher ∆J in the wild
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type. The response to the flash is saturating, so its amplitude is not influenced

by the presence of the background. The shut-off of the response to the flash is

impacted, though. We can see that the modified model reproduces these effects

well, despite a very slightly increased response to the background and a slightly

slower recovery.

Figure 3.5: Responses to different light stimuli in a wild type model and a GCAPs
knockout model, compared between the Invergo 2014 model (black) and the new
deterministic model (red). In the left and right plot, the responses to three different
combinations of stimuli are combined in one plot, respectively. These were: 1. a
constant dim background stimulus (dot-dashed line), 2. a constant dim background
stimulus and a saturating flash at t = 100 s (dashed line), 3. no background and a
saturating flash at t = 100 s (solid line). In the left plot, these stimuli were applied
to the wild type (WT) model, while they were applied to a GCAPs knockout model
on the right.

The knockout of the GCAPs for the right plot of figure 3.5 was implemented using

an experiment and modifying the synthesis rate of cGMP, which normally reads:

vf =
αmax

1 +
(

Ca2+
free

KC1

)m1
+

αmax

1 +
(

Ca2+
free

KC2

)m2
, (3.4)

with the following parameters: the maximal activity of the GC αmax = 60µM/s

from (Koch and Stryer, 1988), the EC50 values KC1 = 171 nM and KC2 = 59 nM,

which specify the calcium concentration at which the GCAPs activate the GC to

half-maximum, and the Hill coefficients m1 = 3 and m2 = 1.5.

When the GCAPs are knocked out, there is no calcium-dependent regulation of

the GC anymore. However, this does not mean that the GC does not produce
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any cGMP whatsoever - it is still producing cGMP at its basal rate. This can

be determined by inserting the dark calcium concentration Ca2+
dark = 0.25µM into

equation (3.4), which results in a dark activity of αdark = 20.72µM/s.

In the simulation, we changed the following parameters using the IQMexperiment

syntax: set αmax to αdark = 20.72µM/s, and set m1 = m2 = 0 to prevent any

change of the activity with changing free calcium concentration.

Going back to figure 3.5, we can see that the knockout of the GCAPs has a sig-

nificant impact on the different light responses. The saturating response still has

the same amplitude of ∆J , but the response to the background is a much larger

change in ∆J . Furthermore, the shut-off of the bright flash response is slower

both with and without the background. These changes are due to the fact that

the synthesis of cGMP to return to the dark state is not regulated in a calcium-

dependent manner anymore, since the GCAPs are missing. Thus, it takes a longer

time to recover from a bright flash, which has reduced the cGMP concentration.

Furthermore, the adaptation to a background stimulus, which reduces the ∆J in a

prolonged stimulus, is not working anymore due to the missing calcium feedback.

These effects triggered by a knockout of the GCAPs are also well reproduced in

the new model.

These results demonstrate that the modified model combines the new result of a

smaller number of activated effector molecules while still producing reliable and

robust results in a number of different light stimulus conditions and even a knock-

out of the GCAPs. We can thus use it for simulations of different light conditions

and different genetic modifications, as long as the specific dimeric nature of the

effector does not have to be taken into account.

3.1.2 Dimeric activation of the effector

Next, I tried to include the result that the main effector is not the single-activated,

but the double-activated PDE. According to (Qureshi et al., 2018), the single-

activated PDE only has 2.5% of the hydrolytic activity compared to the double-

activated PDE. Before, it was assumed to have 50% of the activity in the Invergo

2014 model. We thus change the formulation of the effector from

E =
1

2
PDE∗ + ∗PDE∗ (3.5)
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to

E = 0.025 · PDE∗ + ∗PDE∗. (3.6)

In the model, this means that we change from

E = PDE∗ ·GαGTP + GαGTP · PDE∗ ·GαGTP + 2 ·GαGTP · ∗PDE∗ ·GαGTP (3.7)

to

E = 0.025 ·PDE∗ ·GαGTP + 0.025 ·GαGTP ·PDE∗ ·GαGTP + GαGTP · ∗PDE∗ ·GαGTP.

(3.8)

First of all, I checked how much double-activated PDE was produced in the model

in general. Since we want to combine both the result that 12-14 effector-transducin

complexes are activated during the single photon response and the result that the

main effector is the double-activated PDE, our aim is to have a number of 12-14

activated ∗PDE∗ during the single photon response.

In figure 3.6, the number of single- and double-activated PDE molecules during the

single photon response is shown for the Invergo 2014 model and the new modified

model. Obviously, the effector in these models is basically entirely made up of

single-activated PDE molecules instead of double-activated PDE molecules. In

the new model, the maximum number of ∗PDE∗ lies at 1.6 · 10−12 molecules, and

in the Invergo model, it is at 1.2 · 10−10 molecules.

Figure 3.6: Comparison of the amount of single-activated PDE∗ (solid lines) and
double activated ∗PDE∗ (dashed lines) for deterministically simulated single pho-
ton responses. On the left, the new modified model was used, and on the right,
the Invergo 2014 model.

This is a serious problem for the modelling. In the deterministic simulations, we

arrive at very low molecule numbers for the double-activated PDE - this means

that, once we get to the stochastic simulations, we will not see any double-activated
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PDE in the simulations at all, or only in 1 out of 1010 simulations, which is well

outside any computational feasibility. To change this, parameters would need to

be significantly changed in the model.

Thus, I used the parameter tuning interface and tried to achieve a higher number

of double-activated PDE molecules. However, it quickly became apparent that this

was impossible in the model framework as it was. Since the model simulates the

entire outer segment and uses the well-stirred approximation - that all molecule

concentrations are independent of space and are equal in the entire outer segment

- the activated molecules are essentially spread out and diluted, leading to a low

overall concentration. To get a double-activated PDE, an already activated PDE

molecule would have to bind with another activated transducin. But the overall

concentration of activated PDE is so low that this reaction has a very low rate,

since according to mass-action kinetics, the rate is proportional to the concentra-

tion of single-activated PDE and activated transducin.

How to fix this issue? The most obvious answer would be to switch from this

well-stirred model to a space-resolved model. However, this would require in-

putting many additional parameters about spatial diffusion of all the molecules

involved in phototransduction. Space-resolved models of phototransduction do ex-

ist (Schöneberg et al., 2014), (Dell’Orco and Schmidt, 2008), (Felber et al., 1996),

(Lamb and Kraft, 2020), but they usually only simulate the very first steps or a

reduced number of interactions of the phototransduction cascade due to a lack of

information about the remaining steps and due to limited computational power.

Thus, we decided not to go this route, but to go for a compromise that would

allow both the in-detail modelling that we are interested in, as well as a better

agreement with the new results about the dimeric activation of the PDE.

My idea was to scale down the model to a smaller volume, that would still con-

tain the number of proteins necessary for the cascade but that would be small

enough not to water down the concentration of the activated molecules, making

more double-activated PDE possible. However, this would only work for part of

the cascade, where the effects of the phototransduction cascade are constrained to,

say, one disc membrane - and thus not for the second messengers. Furthermore,

the brighter the stimuli, the higher the chance of getting a shortage of molecules

resulting from the smaller volume. Therefore, this type of modelling was applied

only for dim light stimuli and specifically for the stochastic modelling. More in-

formation on the resulting small model can be found in section 4.3. As explained
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there, I was successful in creating a model for dim light stimuli that reproduces

both the result that the main effector is the double-activated PDE, and that 12-14
∗PDE∗ are activated during the single photon response.

The final deterministic model I am working with for bright stimuli is thus the

modified model from earlier, where the effector had been scaled to a smaller num-

ber, but that does not contain the dimeric activation of the PDE. The effector

definition is E = PDE∗ + 2 · ∗PDE∗ and the main contribution comes from the

single-activated PDE. The model is also referred to as the Beelen 2020 model in

the following. The parameter changes in the model with respect to the Invergo

2014 model can be found in the appendix in table A.13.

3.2 Light adaptation

The phenomenon of light adaptation occurs after a prolonged background stimulus:

the light responses become different from those without any background. One of

the more prominent effects of light adaptation is that the time spent in saturation

after a saturating flash is reduced when the rod has previously been exposed to a

background stimulus. This can already be seen in figure 3.5. It is more obvious in

figure 3.7.

Figure 3.7: Responses to a stimulus consisting of a background lasting for
10 s and a saturating flash at t = 10 s. The brightness of the backgrounds
was: 0 photons/µm2s (solid black line), 698 photons/µm2s (dashed green line),
1860 photons/µm2s (dot-dashed red line), and 4651 photons/µm2s (dotted blue
line). The saturating flash had a brightness of 6968 photons/µm2.
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In the figure, the light response to a stimulus consisting of a background lasting

for 10 s and a saturating flash at t = 10 s is shown. The four different background

intensities lie between 0 photons/µm2s to 4651 photons/µm2s. After the saturat-

ing flash, the circulating current returns to the dark level, since the background

stimulus has ended. The larger the background intensity was before the saturating

flash, the shorter the time spent in saturation after the flash.

An important mechanism for light adaptation, next to the action of the GC-GCAPs

system, is the feedback of calcium on recoverin and the rhodopsin kinase, which

regulates the shut-off of the cascade. It is illustrated in figure 3.8. This mecha-

nism regulates the availability of the rhodopsin kinase to phosphorylate rhodopsin,

which is an essential part of the shut-off of the activated rhodopsin: the phosphory-

lation leads to a decreased affinity for the G-protein, and allows binding to arrestin,

which completely shuts off rhodopsin.

RK

RecT·Cafree·RK

RecT·Cafree

RecR

Cafree

kRec1

kRec2
kRec3

kRec4

RK
kRec3kRec4

Figure 3.8: The calcium-dependent regulation of the rhodopsin kinase by recoverin.
Recoverin can associate and dissociate to free calcium with rate constants kRec1 and
kRec2. The calcium-bound form can then associate and dissociate to the rhodopsin
kinase with rate constants kRec3 and kRec4.

In the dark state, most of the rhodopsin kinase is unable to interact with rhodopsin,

because it is bound to the calcium-bound form of recoverin. As a consequence of

the light response, the calcium concentration in the cell drops, which leads to

the recoverin losing its calcium ions. This triggers a conformational change in

the recoverin and releases the rhodopsin kinase, which can then phosphorylate

rhodopsin.

The role of the phosphorylation for the shut-off of rhodopsin is undisputed, but

the role of the calcium-dependent regulation in light adaptation is unclear. Using

the model, we can investigate the relevance of this mechanism for light adaptation
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in more detail.

To study the significance of the recoverin-rhodopsin kinase mediated calcium feed-

back for light adaptation, I removed the feedback from the Beelen 2020 model and

looked at light responses in the resulting modified model. The amounts of recov-

erin in the calcium-bound and calcium-free state were set to fixed values, which led

to the reaction scheme in figure 3.9. The rhodopsin kinase could now be consumed

and produced with the following rates:

vf = kRec3 ∗ RecR · Ca2+ ∗ RK (3.9)

vr = kRec4 ∗ RecR · Ca2+ · RK,

where the molecular species RecR·Ca2+ and RecR·Ca2+·RK were fixed to their dark

concentrations and are therefore not calcium-dependent anymore. The reaction

rates are therefore fixed (vf , the rate of the production of rhodopsin kinase) or

only dependent on the free concentration of rhodopsin kinase (vr, the rate of the

consumption of rhodopsin kinase).
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RecT·Cafree·RK

RecT·Cafree
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Figure 3.9: The calcium-independent regulation of the rhodopsin kinase. The
different forms of recoverin are set to constant values which are part of the reaction
rates.

I first checked whether there would be any effect of this change on flashes of

different intensities without any background. This comparison is shown in figure

3.10. The responses of the two models overlap exactly - thus, there is no effect of

the removal of the calcium feedback on recoverin and the rhodopsin kinase for dim

to saturating flashes without any background.
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Figure 3.10: Comparison of the normal model (solid black lines) to the model with
no calcium feedback on the regulation of the rhodopsin kinase (dashed red lines).
The stimulus consisted of flashes of increasing brightness (1.7, 4.8, 15.2, 39.4, 125,
444, 1406 and 4630 photons/µm2) without any background.

Figure 3.11: Responses in the model without calcium feedback on the rhodopsin
kinase to a stimulus consisting of a background lasting for 10 s and a saturating
flash at t = 10 s. The brightness of the backgrounds was: 0 photons/µm2s (solid
black line), 698 photons/µm2s (dashed green line), 1860 photons/µm2s (dot-dashed
red line), and 4651 photons/µm2s (dotted blue line). The saturating flash had a
brightness of 6968 photons/µm2.

However, when checking the effect on flashes with a background, it became obvious
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that there is an effect of the feedback. In figure 3.11, the same stimulus paradigm

from figure 3.7 was repeated for the model without calcium feedback. The accel-

eration of the recovery phase, a typical feature of light adaptation to background

illumination, is lost in the absence of a calcium feedback.

I also calculated the saturation time, which is the time spent over 90% of the

maximum amplitude, for saturating flashes after adaptation to backgrounds of

different intensities. The comparison of the saturation times can be found in

figure 3.12. In the model describing the wild type, there is a clear decrease of

saturation time with increasing background intensity. When the calcium feedback

is removed, the time spent in saturation even increases slightly with increasing

background intensity.

Figure 3.12: The time spent in saturation (over 90% of the maximum ∆J) after
adaptation to backgrounds of different intensities L and a saturating flash, plotted
over ln(L). Black plus signs are for the normal model, while red asterisks are for
the model where the calcium feedback on recoverin and the rhodopsin kinase was
removed.

To conclude, for the kind of light stimuli presented here, the calcium-mediated

feedback on recoverin and the rhodopsin kinase is essential for light adaptation in

the model. In the model describing the wild type, the recoverin releases rhodopsin

kinase as a response to the decrease in calcium concentration triggered by the

background stimulus. This free rhodopsin kinase is then ready to rapidly phos-
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phorylate rhodopsin activated by the saturating flash, shutting off the response

more quickly than without the background.

In the altered model without the feedback mechanism, production and consump-

tion of the rhodopsin kinase are in equilibrium in the dark. As a response to

a stimulus, the free rhodopsin kinase can associate to rhodopsin, decreasing the

amount of free rhodopsin kinase. This decreases the rate of consumption of the

free rhodopsin kinase in equation (3.9). However, there is no increased produc-

tion of free rhodopsin kinase due to a change in calcium concentration. Thus, the

additional release of rhodopsin kinase by this mechanism is not sufficient for any

decrease of the time spent in saturation.

3.3 Comparison to novel electrophysiological data

Together with our collaborators Sabrina Asteriti and Lorenzo Cangiano from the

university of Pisa, we came up with some stimulus paradigms to compare to our

simulation data as a test of our model. The results for dim light stimuli are shown

and evaluated in section 4.4. Here, I am presenting the stimulus paradigm for

bright light responses and light adaptation.

Since we wanted to test responses to flashes with and without backgrounds, we

combined a series of five flashes of increasing brightness with four different back-

grounds intensities, one of which was zero.

The responses were recorded using an electrophysiological method called loose

seal recording. The responses are measured in terms of the photovoltage ∆U ,

the change in membrane potential. In the loose seal method, an electrode is ap-

proached to a rod cell within a whole retina mount, but it does not pierce the cell

wall (this is in contrast to regular electrophysiological recordings).

As a consequence, there is no leakage of ions or electrons into the electrode and

recordings are stable for a much longer time than in traditional electrophysiology.

However, absolute values of the recorded membrane potential are meaningless,

since they depend on the contact made with the cell - only relative values can be

evaluated.

The response to the above mentioned stimulus paradigm is plotted in figure 3.13.

The recordings have been lowpass-filtered using MATLAB’s function lowpass1

with a passband frequency of 40 Hz and averaged with a sliding window of 20 ms

1Since the function lowpass was only introduced in MATLAB R2018a, this step was done in
a newer MATLAB version, R2019b. The rest of the evaluation was done in MATLAB R2017b.
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using the function movmean to remove a 50 Hz oscillation.

Figure 3.13: Electrophysiological recordings of the new stimulus paradigm con-
sisting of a fixed background and five flashes of increasing intensity. The
intensity of the backgrounds was 0 photons/µm2s (black), 8.5 photons/µm2s
(green), 252 photons/µm2s (red), and 695 photons/µm2s (blue). The intensi-
ties of the flashes was 9.5 photons/µm2, 32.1 photons/µm2, 96.4 photons/µm2,
299 photons/µm2, and 5104 photons/µm2. The responses were shifted to the same
resting membrane potential of zero and normalized to the saturating response.

To compare this electrophysiological recording to simulated light responses, we

first had to adapt the model to the respective backgrounds. To do this, I ap-

plied a steady background illumination by modifying flashBG using an experi-

ment. After simulating for 100 seconds, the model had reached a steady state. I

saved the current values for all molecular species as initial conditions for a new

model, modeladapt, by modifying modeladapt.initialCondition. This model

represents the normal Beelen 2020 model which has been adapted to the given

background illumination. I did this for each of the 4 background intensities.

Next, I applied the different flashes to the adapted models by modifying flashMag

and flashDur according to the stimulus paradigm. I simulated the responses to

the flashes one by one, for each combination of background and flash intensity.

When setting the intensity for the experiments in the simulations, we had to scale

the intensities with respect to the intensities given in the experiment: in the ex-

periment, there is a distance between the light source and the retina and there

is some retinal tissue the light has to traverse to reach the rods. By comparing

the light responses (especially the fact that the fifth flash is saturating, and the

fourth not yet), I arrived at a scaling factor of 0.4 for all intensities given in the

experimental description. The dimmest background (intensity 8.5 photons/µm2s)

was further scaled with a factor of 3. This is due to the fact that the LED used

for the experiments has a nonlinear behaviour at low light intensities, possibly

outputting larger intensities than desired at low intensities.
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We can then compare the result of the simulations with the electrophysiological

recordings. The flashes are shown side by side in figure 3.14: on the left, the

experimental flashes are shown in ∆U , and on the right, the simulated flashes

are shown in ∆J . The amplitude of the simulated responses was scaled to the

amplitudes of the electrophysiological amplitudes, and the resting photocurrent

was subtracted to baseline the simulated data like the experimental data.
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Figure 3.14: Responses to the bright flash + background paradigm separated
by flashes. The experimental data in photovoltage ∆U are on the left and the
simulated responses in ∆J are on the right. The simulated responses have been
normalized to the same amplitudes as the experimental recordings.

When comparing the responses side by side, it becomes noticeable that the simu-

lated responses are slower in terms of the shut-off - this is especially obvious for the

brighter flash responses. The responses are also slightly slower in the excitatory

phase. However, the general kinetics are reproduced: the brighter the flashes, the

longer the response, and the brighter the background, the faster the shut-off.

To compare the experimental data and the simulated responses more quantita-

tively, we calculated the time spent over half the maximal amplitude, Thalf , for

the simulated and experimental responses. This measure is more stable than the

saturation time, which is the time spent in more than 90% of the maximal am-

plitude, when we are treating non-saturating flashes. Specifically, we compared

the reduction of Thalf for each background, relative to the response without any

background. The comparison is shown in figure 3.15.

In this comparison, we can also see that the simulated flash responses are longer,
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and that the reduction resulting from the backgrounds is less than in the experi-

mental data. But the general trend of the reduction in Thalf by the adaptation to

the backgrounds is well reproduced.

Figure 3.15: Comparison of the reduction in the time spent over half the maximal
response amplitude, Thalf , for each background with respect to zero background, for
the experimental data (left) and the simulated data (right). The background inten-
sities were 0 photons/µm2s (black), 8.5 photons/µm2s (green), 252 photons/µm2s
(red), and 695 photons/µm2s (blue).

Where do the differences in response kinetics arise from? There are several possi-

bilities for this. They could arise because some shut-off mechanism responsible for

light adaptation is missing in the model. Furthermore, the discrepancy could be

because we are comparing the photovoltage ∆U to the photocurrent ∆J . In prin-

ciple it is possible to back-convert ∆U to ∆J by measuring and using the complex

impedance of the rod. We do this in section 4.4 for the dim light responses. How-

ever, this conversion is not as precise for brighter light responses and we therefore

decided against using it in this case. The reasons for the observed discrepancies

are further discussed in chapter 5.

In summary, the simulated light responses reproduce the general qualitative fea-

tures of the responses and the light adaptation. However, when comparing them

more quantitatively, we noticed that the simulated responses have a slower shut-off.
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3.4 Calcium feedback on the effector

In recent years, there have been an number of studies that investigated the shut-off

of light responses in rods in different knockout conditions, whose results appar-

ently could not be explained in the current mechanistic understanding of the pho-

totransduction cascade. The central hypothesis is that there must be an additional

regulation of the shut-off of the effector.

A major part of the results comes from light responses from rods with an overex-

pression of the rhodopsin kinase and a knockout of recoverin. It was observed that

an overexpression of the rhodopsin kinase leads to similar results to the knock-

out of recoverin, namely an increase in the phosphorylation of rhodopsin and a

subsequent decrease in the time constants τRec and τD. τRec is the time constant

of recovery, which is determined by fitting an exponential decay function to light

responses of a small amplitude - a decrease in τRec thus means that the recovery is

faster. The corresponding electrophysiological traces can be found in figure 3.16.

Figure 3.16: Electrophysiological recordings of light responses mouse rods com-
pared between the wild type (WT, panel A), an overexpression of the rhodopsin ki-
nase (RKS561L, panel B), and a knockout of recoverin (Rv-/-, panel C). Reprinted
according to guidelines of The Journal of Neuroscience from (Chen et al., 2012).

τD is the Pepperberg constant, which is determined from the time Tsat spent in

saturation after a saturating flash. The slope of Tsat over the logarithm of the

intensity of the flash is τD. The higher τD, the larger is the change of the time

spent in saturation with increasing flash intensity.

The authors concluded from these results that, since the rate-limiting step in the
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decay of the response is the shut-off of PDE, there must be a change in this step

resulting from the genetic modifications. Thus, the rhodopsin kinase and recoverin

are hypothesized to regulate the shut-off of PDE. This also connects the shut-off

of PDE to calcium in a feedback mechanism, since the recoverin regulates the

rhodopsin kinase in a calcium-dependent manner. (Chen et al., 2012)

Furthermore, recoverin knockout mice were investigated in light adaptation set-

tings. It was found that light adaptation - in this case the slow decrease of ∆J

with a steady background - is not present in recoverin knockout rods. Again, it was

concluded that the PDE must be somehow regulated by recoverin. (Morshedian

et al., 2018)

For further studies with similar conclusions, please see (Chen et al., 2015), (Tsang

et al., 2007) and (Woodruff et al., 2008).

In summary, there is some indirect evidence pointing towards a regulation of the

PDE by the rhodopsin kinase or by recoverin, introducing a calcium feedback on

the shut-off of the effector. To check the validity of the conclusions drawn by the

authors, I wanted to investigate the results using the model. The model does not

include any interaction of the PDE with recoverin or the rhodopsin kinase, or in-

deed any calcium feedback directly on the effector.

However, there is a calcium feedback on rhodopsin, mediated by recoverin on the

rhodopsin kinase. In section 3.2, we have already found that this feedback mech-

anism is responsible for light adaptation phenomena in the model, and that no

feedback on the level of the effector is necessary for light adaptation. Thus, the

results from (Morshedian et al., 2018) can be explained in our model without any

additional feedback on the effector: The knockout of the recoverin means that

the calcium feedback on rhodopsin is missing, and this explains the lack of light

adaptation.

I also investigated the consequences of a 12-fold overexpression of the rhodopsin

kinase and a knockout of recoverin as in (Chen et al., 2012). I implemented a

knockout of the recoverin and the overexpression of the rhodopsin kinase using

the IQMexperiment function. The model used for the simulations is the Invergo

2014 model. In figure 3.17, I show the results of simulations of flashes of different

intensities on a dark-adapted rod, for the normal model (WT) as well as a 12-

fold overexpression of the rhodopsin kinase (analogous to the publication) and a

knockout of recoverin.
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Figure 3.17: Responses to flashes of increasing brightness on a dark-adapted rod,
for the wild type model (upper left), a 12-fold overexpression of the rhodopsin
kinase (upper right), and a knockout of the recoverin (lower panel).

Comparing the responses to flashes of increasing amplitudes on a dark-adapted rod,

we can observe a speed-up of the recovery for the overexpression of the rhodopsin

kinase and the knockout of recoverin compared to the wild type model. This is

very similar to the observation in figure 3.16. It also means that τRec is reduced.

However, this is explained entirely by the regulation of rhodopsin by the rhodopsin

kinase and the recoverin in the model, since there is no additional feedback mech-

anism on the PDE present. Thus, we again observe that no additional mechanism

is required to explain the observations.

We can also recreate the observations concerning light adaptation by simulating

light responses to saturating flashes and measuring Tsat, the time spent in satura-

tion. The Pepperberg plot of Tsat, calculated here as the time spent over 90 % of

the maximal amplitude, over the logarithm of the intensity is shown in figure 3.18.

As shown in the figure, the time spent is saturation is lower for both the knockout

of recoverin and the overexpression of the rhodopsin kinase. This is due to the fact

that, in both cases, more rhodopsin kinase is available to phosphorylate rhodopsin

and shut-off the response more quickly: this is the case for the overexpression

of the rhodopsin kinase, and for the recoverin knockout as well, as none of the

rhodopsin kinase is bound in an inactive state by recoverin. Furthermore, we can

observe that τD is reduced from 0.24 for the wild type to 0.20 for both the recoverin

knockout and the rhodopsin kinase overexpression.
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Figure 3.18: Pepperberg plot showing the time Tsat spent in saturation (over 90 %
of the maximal amplitude) over the logarithm of the light intensity of the flash.
The intensity is measured in photons/µm2. The lines indicate a linear fit, whose
slope is τD. Asterisks correspond to wild type results, circles correspond to the
knockout of recoverin, and plus signs correspond to the 12-fold overexpression of
the rhodopsin kinase.

Compared to the results presented in (Chen et al., 2012), this is qualitatively quite

similar. The traces for the recoverin knockout and the rhodopsin kinase overex-

pression superimpose in the publication, but this is not reproduced in our model.

Still, we can reproduce the fact that τD is equally reduced for both mutations.

This indicates that a calcium feedback via recoverin and the rhodopsin kinase on

the PDE is not necessary for this effect. The calcium feedback via recoverin and

the rhodopsin kinase on the deactivation of rhodopsin is sufficient to qualitatively

reproduce the observations of (Chen et al., 2012).

For all the different observations presented here, we could reproduce the different

effects without the need for an additional feedback of calcium on the effector. Thus,

we conclude that the proposed feedback mechanism on the PDE is not necessary

and cannot be postulated from the results concerning the knockout of recoverin

and the overexpression of the rhodopsin kinase.
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3.5 Disease modelling

Using the model, we can also investigate the consequences of diseases which corre-

late with mutations in proteins of the phototransduction cascade. If we know the

consequences of a point mutation on the kinetics and the interactions of the species

involved in phototransduction, we can include this information into the modelling

and investigate the consequences on light responses. This has already been done

successfully for e.g. a model of the knockout of retinal pigment epithelium 65, a

model for Leber congenital amaurosis and vitamin A deprivation (Dell’Orco and

Koch, 2010), and a model of cone/rod dystrophies (Dell’Orco and Dal Cortivo,

2019).

Specifically, we wanted to investigate the molecular basis of retinitis pigmentosa

and congenital stationary night blindness. Both diseases are caused by mutations

in rhodopsin. Retinitis pigmentosa (RP) is a degenerative disease of the photore-

ceptors, leading to the dysfunction of rod cells. This causes cell death of the rods,

as well as dysfunction and subsequent death of the cone cells. In patients, the first

symptoms are impaired dark adaptation and night blindness, as rods degenerate.

Since the degeneration starts from the rod-rich periphery, leaving intact cone cells

in the fovea, patients then develop tunnel vision. However, with the progression

of the disease, cone cells degenerate as well leading to blindness. Since no cure is

known to date, the disease has a strong impact on patients’ physical and mental

wellbeing.

Congenital stationary night blindness (CSNB) is similar to retinitis pigmentosa,

but less severe. This disease is characterized by a loss of function of the rods alone

and is not progressive. The cones are not affected by this, so patients lose their

ability to see in dim light conditions, the so-called scotopic vision, but are still able

to see in bright light conditions.

In the review (Athanasiou et al., 2018), rhodopsin mutations causing retinitis

pigmentosa or congenital stationary night blindness are categorized into eight cat-

egories, which are listed in table 3.2. Please note that the categorization refers

to the autosomal dominant forms of RP and CSNB, which are more common and

better studied. These forms have a normal and a mutated copy of the rhodopsin

gene.
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Table 3.2: Categories for rhodopsin mutations causing RP or CSNB.

Category Features
1 Disrupted trafficking to OS
2 Misfolding
3 Disrupted vesicular trafficking
4 Altered post-translational modifications
5 Altered transducin activation
6 Constitutive activation
7 Dimerization deficiency

Unclassified Unknown biochemical or cellular mechanism

To understand the first four categories, let us focus on the synthesis of rhodopsin

in the rod cell. Rhodopsin is constantly produced to renew old proteins. This pro-

duction takes place in the endoplasmic reticulum, the protein factory of the cell.

First, translation takes place: the messenger RNA from the nucleus is translated

into a sequence of amino acids, forming the protein. Next, the protein is folded

correctly and posttranslational modifications take place. In this step, the folding

can go wrong due to a point mutation in the protein sequence. This leads to an

altered secondary and tertiary structure of the rhodopsin. Those mutations are

included in category 2. The consequences of misfolding can be, for example, that

the rhodopsin does not leave the endoplasmic reticulum to be transported to the

outer segment, due to the quality control of the cell. This causes stress in the

endoplasmis reticulum and can cause cell death.

Mutations can also disrupt the post-translational modifications, leading to an im-

paired stability or function of the rhodopsin. These mutations fall into category

4. The consequences can be protein aggregation of the mutant rhodopsin or a

decreased stability causing protein degeneration upon exposure to light.

After the synthesis of the rhodopsin, it is loaded into vesicles and transported to

the outer segment, where it can fulfill its task in the phototransduction cascade.

However, there are mutations that affect the formation of these vesicles or the

trafficking to the outer segment. These fall into categories 3 and 1. They lead to

an unwanted accumulation of rhodopsin in wrong places in the cell, for example

the inner segment. This can cause stress to the cell.

Categories 5 and 6 refer to the role of rhodopsin in the phototransduction cascade.

The mutations in category 5 lead to an altered transducin activation. This means

that the activation rate of transducin by light-activated rhodopsin is significantly

changed. In category 6, the interaction with transducin is also influenced: these

mutants are constitutively active, which means that the transducin is constantly

being activated regardless of whether rhodopsin is activated by light or not. Thus,
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also in the dark, the cascade is constantly started.

Mutations in category 7 are characterized by their inability to form dimers. As dis-

cussed in section 1.1.5, rhodopsin forms dimers, which arrange in ordered oligomers.

It is unclear whether the inability to form dimers is truly the cause of the disease

for the mutants in this category, as the mutations are not yet well-studied.

Finally, reported mutations which are known to cause RP or CSNB, but which

have not been studied in detail or where the precise disease mechanism is still

unclear, fall into the unclassified category.

For the modelling, we can only take into account mutations that have an effect

within the scope of the model. This means that we cannot model the influence of

any altered trafficking or folding which leads to e.g. accumulation of the mutant

rhodopsin or cell stress. However, we can model any change in the kinetics of the

phototransduction cascade. This means that the categories 5, altered transducin

activation, and 6, constitutive activation of the cascade, are within the scope of

the modelling. Furthermore, any mutation that leads to an impaired stability of

rhodopsin once it has reached the outer segment can be investigated.

After reviewing the references in (Athanasiou et al., 2018), I found that many mu-

tations do not just have one consequence, such as only altered G-protein signalling.

Instead, there is often a combination of different effects, e.g. a combination of al-

tered activation of transducin, an altered stability of rhodopsin, and a possible

mislocation in the retina. It is not clear whether the combination of all effects

leads to the disease phenotype, or whether - and which - one of them is the main

cause. Furthermore, it is not clear where the molecular distinction lies between

CSNB and the much more severe RP, since many mutations leading to RP or

CSNB share similar characteristics.

Therefore, I decided to not model the exact effect of individual mutations, but

to group the effects to be investigated into four categories: A higher activation

of transducin, a lower activation of transducin, a constitutive activation of trans-

ducin by opsin, and a faster thermal decay of activated rhodopsin. Like this, we

can investigate the abstract consequences of these individual effects on the light

response and see whether they could have a detrimental effect.

For investigations of separate mutations that have - among others - these conse-

quences on the phototransduction cascade, please refer to the following publica-
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tions: (Andrés et al., 2003), (Toledo et al., 2011), (Gross et al., 2003), (Budzynski

et al., 2010), (Garriga et al., 1996), (Senin et al., 2006), (Deupi et al., 2012), (Fritze

et al., 2003).

Thus, I created five mutant models based on the Invergo 2014 model, with gen-

eralized modifications as listed in table 3.3. The specific kinetic changes were

informed by the above named references, but the changes in parameters were not

exactly according to the mutations. To simulate a higher or lower activation of

transducin, I changed kG1,0 by a factor of 5 and 1/5, respectively. The rate con-

stant kG1,0 describes the first step of the activation of transducin: the binding

of activated unphosphorylated rhodopsin to transducin. The rate constants for

rhodopsin that has been phosphorylated n times are proportional to kG1,0. Thus,

if we change kG1,0, we also change the rates of the binding of all phosphorylated

forms of rhodopsin to transducin.

Table 3.3: Mutant models representing kinetic changes for RP or CSNB.

Model Characteristic Change in the model
M1 Higher transducin activation 5-fold increase of kG1,0

M2 Constitutive activation 800,000-fold increase of kOps

M3 Faster thermal decay of rhodopsin 800-fold increase of ktherm

M4 Lower transducin activation 5-fold decrease of kG1,0

To simulate a higher constitutive activation of the cascade, I increased the rate

constant of opsin binding to transducin. Opsin is the chromophore-free version

of rhodopsin, which is created during the shut-off of the light response. In the

normal model, it can bind to the G-protein to activate the cascade as well, but

with a very low rate constant kOps. To see an effect of the change in kOps, I had

to increase it quite significantly, by 800,000. This is an unrealistically high value,

but it is easier to see the general effect with such a high increase. Furthermore, we

are not investigating realistic mutations here, but rather abstracted and simplified

versions to recognize the general effects that are combined in realistic mutations.

Finally, I also included a mutant where the activated rhodopsin has a decreased

stability and shuts off spontaneously (thermally) with a higher rate ktherm. Again,

I had to increase ktherm by an unrealistically high value of 800 to make the general

effect more easily visible.
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With the modified models, I simulated light responses to two different light stimuli:

the first stimulus just consists of a saturating flash at t = 0 s, and the second

consists of a background and a saturating flash starting at t = 0 s. The resulting

photocurrent ∆J for all models is shown in figure 3.19.

Figure 3.19: Photocurrent ∆J for the four mutant models and the wild type model.
In the upper panel, the light stimulus just consists of a flash at t = 0 s. In the
lower panel, the light stimulus consists of a flash and a background starting at
t = 0 s. The different models are the wild type (WT, solid blue line), the mutant
with a higher activation of transducin (M1, solid orange line), the mutant with a
constitutive activation by opsin (M2, dashed yellow line), the mutant with a faster
thermal decay of activated rhodopsin (M3, dot-dashed purple line) and the mutant
with a lower activation of transducin (M4, dotted green line).
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In the upper panel, we see the response to just the saturating flash without any

background. For the two mutants influencing the activation of transducin (M1

and M4), we can see that the effect is equivalent to a brighter or dimmer flash,

respectively. This is due to the fact that either more or less transducin molecules

and thus effector molecules are activated, as can also be seen in figure 3.20 in the

upper panel. That figure shows the effector for the same stimuli as in figure 3.19.

For the mutant with a lower thermal stability of rhodopsin (M3), we can see that

the light response is shorter in figure 3.19 and that fewer effector molecules are

activated in figure 3.20. This is due to the fact that the activated rhodopsin is

unstable and decays very quickly compared to the wild type.

Finally, for the mutant with a constitutive activation by opsin, we can see that

the response to the initial flash is the same as for the wild type. However, af-

ter the flash has ended, there is an increased ∆J in the dark. This is due to

the fact that opsin is produced in the recycling of rhodopsin. This opsin continues

to activate transducin, since it takes a rather long time to be recycled to rhodopsin.

In the lower panel in figure 3.19 and 3.20, we can see the response to a saturating

flash with a background, starting at t = 0 s, in terms of the photocurrent and the

effector. For the mutants M1 and M4 with a higher and lower activation of the

transducin, we can again see that the response corresponds to one with a higher

and lower intensity of the flash and background, respectively.

For the mutant M3 with a decreased thermal stability of activated rhodopsin, we

can see that the response to the flash is shorter and that the response to the

background is lower. If the rhodopsin activated by the background decays more

quickly, then the level of activated rhodopsin from the background illumination is

generally lower.

Finally, for the mutant with a higher constitutive activity of opsin, we can see

that the response to the background is higher than for the wild type. The wild

type and all other mutants have a slowly decreasing response to the background in

terms of the photocurrent. This is due to light adaptation. However, the mutant

M2 has a slightly increasing response to the background - this is due to the fact

that more and more opsin is produced in the shut-off of rhodopsin, which activates

the cascade. This indicates that light adaptation is disturbed in the mutant with

a constitutive activation of the cascade by opsin.
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Figure 3.20: Effector for the four mutant models and the wild type model. In the
upper panel, the light stimulus just consists of a flash at t = 0 s. In the lower
panel, the light stimulus consists of a flash and a background starting at t = 0 s.
The different models are the wild type (solid blue line), the mutant with a higher
activation of transducin (M1, solid orange line), the mutant with a constitutive
activation by opsin (M2, dashed yellow line), the mutant with a faster thermal
decay of activated rhodopsin (M3, dot-dashed purple line) and the mutant with a
lower activation of transducin (M4, dotted green line).

We can also investigate the effect of the different mutants on the calcium level

in the cell. This is interesting because disturbed calcium levels can lead to cell

stress and death. The calcium levels for the same stimuli - flash and flash plus

background - can be seen in figure 3.21.
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Figure 3.21: Calcium level for the four mutant models and the wild type model. In
the upper panel, the light stimulus just consists of a flash at t = 0 s. In the lower
panel, the light stimulus consists of a flash and a background starting at t = 0 s.
The different models are the wild type (solid blue line), the mutant with a higher
activation of transducin (M1, solid orange line), the mutant with a constitutive
activation by opsin (M2, dashed yellow line), the mutant with a faster thermal
decay of activated rhodopsin (M3, dot-dashed purple line) and the mutant with a
lower activation of transducin (M4, dotted green line).

In the upper panel, we can see that, as a response to the flash, the calcium level

decreases and then recovers. For all mutants except for the constitutive activa-

tion mutant M2, the calcium level has returned to its dark level after about five

seconds. For M2 however, the calcium level stays at a lower value. This is again

due to the activity of the opsin, which is created as the rhodopsin activated by the

flash is shut off. We can see that the calcium level is disturbed for a long time.
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For the stimulus consisting of a flash and a background, we see the same effect

on the calcium level. After the flash, the calcium level stays lower than for the

wild type. Again, we can observe that all mutants except for M2 exhibit light

adaptation, as the calcium level slowly increases back towards its dark value even

with the background illumination. For M2 however, this is not the case, as the

opsin continues to activate the cascade.

Concluding from the results on disease modelling, we can use it to give us an

indication of disease mechanisms and to help us understand how exactly photo-

transduction diseases work at the level of the phototransduction cascade.
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4 | Stochastic modelling

In this chapter, I am presenting the development of the stochastic models as well as

the resulting simulations of single photon responses and other dim light responses.

Doing stochastic simulations is important for the investigation of single photon re-

sponses. In deterministic simulations, only the average behaviour of the responses

can be studied. However, due to the inherent randomness of the responses, each

single photon response is different from the average behaviour. To find out more

about the statistical properties of single photon responses, like the variability and

its dependence on different features of the phototransduction cascade, we need to

perform stochastic simulations of an ensemble of single photon responses.

4.1 Stochastic amphibian model

My first approach toward creating a stochastic model was to make versions of the

Dell’Orco 2009 and Invergo 2014 models that would be suited for stochastic sim-

ulations.

The basic approach I followed for all the stochastic models was to separate the

model into a frontend model - which is simulated stochastically - and a determin-

istic backend model. This idea was first implemented in (Hamer et al., 2005). The

frontend model simulates the effector and all species influencing it: rhodopsin,

transducin, recoverin, the rhodopsin kinase, arrestin, opsin, PDE and RGS. For

these molecular species, we are dealing with potentially low numbers of activated

or interacting molecules, and therefore it is essential that they are treated stochas-

tically (see section 2.2.4).

The backend contains the molecular species which lie downstream from the effec-

tor: cGMP, calcium, the GC-GCAP system and the ion channels. The molecular

species in the backend model are abundant, therefore it is not strictly necessary

to perform a stochastic simulation, and it would be very time-consuming due to

the large number of interactions.

The complete simulation is performed by first simulating the frontend to arrive at

a trace for the effector, which is then used as an input for the backend to com-

pute ∆J . Due to this subdivision of the model, all feedback mechanisms from
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the backend species to the frontend species need to be deleted, since the backend

simulation takes place after the frontend simulation.

The first stochastic model I worked with was the amphibian stochastic model de-

rived from the Dell’Orco 2009 model. Daniele Dell’Orco had already divided the

model into a frontend and a backend model, which I was able to use. The frontend

model is the normal model, where the molecular species of free calcium, calcium

in buffers and cGMP were deleted, as well as all reactions involving them. From

these deleted species and their reactions, the backend was built up. The frontend

and backend model are shown in figure 4.1 and all reactions and parameters can

be found in the appendix in section A.1.

Since the original Dell’Orco model does not contain any feedback from the backend

into the frontend, no reactions needed to be deleted. However, some simplifications

were carried out.

First of all, RGS is not treated as a variable molecular species in the model, since

its concentration hardly changes during dim light responses. Reducing the num-

ber of variable molecular species reduces the computational effort to simulate the

model, thus RGS was set to a constant value and included in the reaction rates.

Furthermore, the recoverin dynamics were deleted from the model. In the orig-

inal Dell’Orco 2009 model, recoverin in the rhodopsin kinase-binding form was

assumed to stay at its dark concentrations, which is known as a quasi-steady state

assumption. It is valid whenever the concentration does not deviate much from

the steady state (dark) concentration. Since the concentration of rhodopsin kinase

hardly changes during the single photon response, these dynamics were deleted in

the stochastic model.

Importantly, models are not allowed to contain variables for stochastic simulations

with IQMstochsim2. Therefore, all variables had to be replaced by parameters.

In the frontend, this concerned a few reaction rate constants that were expressed

as a function of the number of phosphorylations of rhodopsin, such as the rate

constants for the interaction of transducin or arrestin with rhodopsin. The rate

constants were calculated and replaced by parameters with their numerical values.

Moreover, the effector had been expressed as a variable before - it will be explained

in the next paragraph how the effector was now extracted from the simulation.

76



4.1. STOCHASTIC AMPHIBIAN MODEL

R Gt

Rn
Rn·Gt Rn·G

RK Rn·GGTP

Rn·RKpre

Rn·RKpost

Arr

Rn·Arr

G⍺GTP

GGTP

Gβγ

PDE

PDE·G⍺GTP

RGS·PDE*·G⍺GTP

G⍺GTP·PDE*·G⍺GTP

G⍺GTP·*PDE*·G⍺GTP

RGS·G⍺GTP·*PDE*·G⍺GTP

PDE*·G⍺GTP G⍺GDP

GDP

GTP

ATP

ADP
n=n+1

1

2
3

4

5
7

8

9

10

11

1213

14

15

16

17

18

19

20

21

22

23

init

Stochastic amphi frontend
Ops 6

Cabuff

Cafree

cGMP

GC-GCAP

Ion
exchanger

CNG
channel

GC

GCAP
24 25

26

27

28

Stochastic amphi backend

E

E

Figure 4.1: Stochastic frontend (top) and backend (bottom) of the amphibian
model. The species making up the effector in the frontend model are marked
red. Those are used as an input for the backend model. The numbered reaction
equations and all parameters can be found in the appendix in section A.1.
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The initial condition of R0 = 1 was set in the model: the simulation thus starts

with one activated rhodopsin molecule to simulate a single photon response. The

activation reaction R → R0 and the stimulus definition were removed from the

model, since we now set the activated rhodopsin as an initial condition.

Importantly, for the stochastic simulations, the molecular species amounts (i.e.

initial conditions) need to be specified in terms of molecule numbers, not concen-

trations, since the stochastic simulation takes into account single reactions and

thus single molecular events. This is already the case for the molecular species in

the frontend, thus no further modifications are necessary.

To carry out a simulation of a single photon response, first the frontend is simu-

lated for a desired time (e.g. 10 seconds). Next, we need to extract the trace for

the effector from the simulation results. Since the effector is no longer included as

a variable in the model, we instead extract the molecular species traces for PDE∗

and ∗PDE∗ by calling simulation.statevalues.

Then, the effector is input into the backend by using the interpolation function

interp0IQM for the trace of the activated PDE species and inputting the resulting

trace into the model as a variable using model.variables. We can then perform

a simulation for the resulting backend model.

In figure 4.2, ten traces for the effector, resulting from the stochastic frontend

simulation, and the photocurrent ∆J , resulting from the consecutive determinis-

tic backend simulation, are shown. They are compared to the result of the fully

deterministic simulation. The maximum effector numbers lie between 100 and 400

activated PDE subunits. The resulting ∆J has maximum amplitudes between 0.8

and 2.3 pA. There is obviously some variability between the separate runs of the

stochastic simulations, but the resulting traces for ∆J still show similar kinetics,

as we would expect.
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Figure 4.2: Stochastic and deterministic simulation results for single photon re-
sponses in the stochastic amphibian model. In the upper panel, the effector is
shown over the time in seconds. In the lower panel, the photocurrent ∆J in pA is
shown. Blue traces result from deterministic simulations, while red dashed traces
are the result of 10 runs of stochastic simulations.

4.1.1 Multiple phosphorylation sites

Using the stochastic model, I wanted to check the influence of multiple phos-

phorylation sites on the reproducibility of single photon responses like in (Doan
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et al., 2006). In this publication, phosphorylation sites of rhodopsin in mouse

rods were removed using mutagenesis and single photon responses were measured.

The experimental results show that multiple phosphorylation sites are essential for

reproducible single photon responses and that the SPR variability increases with

fewer available sites.

To recreate this experiment in my simulations, I created models with fewer avail-

able phosphorylation sites: from the normal 6 sites down to 0. The different

phosphorylation sites are treated as identical and interchangeable in the model:

we only keep track of the absolute number of phosphorylations of each rhodopsin

molecule, not of the specific phosphorylation site that was phosphorylated. This

simplifying assumption is due to two factors: firstly, we do not have sufficient

information to model different phosphorylation sites and it would increase the

computational demand. Secondly, the results in (Doan et al., 2006) show that it is

mainly the number of phosphorylation sites that matters, not so much the specific

site that was removed.

Usually, in deterministic simulations, the most elegant solution would be to create

an experiment for each amount of available phosphorylation sites and to merge

these with the same, unchanged model for the simulations using IQMmergemodexp.

However, models resulting from the function IQMmergemodexp are not suitable for

stochastic simulations, since the changes in parameters and/or states are incorpo-

rated as variables, and models for stochastic simulations are not allowed to contain

variables. Thus, it is necessary to create separate models for each number of phos-

phorylation sites. This has no consequences on the outcome of the simulations,

since the modifications to the model are identical.

After those modifications, I simulated single photon responses in these models.

The results can be found in figure 4.3. For each number of available phosphoryla-

tion sites, I performed 10 stochastic simulations.

As can be seen in the figure, the variability of the single photon responses increases

when fewer phosphorylation sites can be phosphorylated. Furthermore, the shut-

off takes longer, the more sites have been removed. For zero phosphorylation sites,

the responses take a longer time than the simulated 80 s to shut off.

This result is very similar to what was found experimentally using mutagenesis in

mouse rods in (Doan et al., 2006): all six phosphorylation sites are required for

reproducible single photon responses. The reason behind this is that the multiple

phosphorylations lead to a multi-step shut-off process: each separate phosphoryla-
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tion contributes to reducing the affinity for the G-protein, thus preventing further

activation of the cascade. At the same time, the affinity for arrestin increases,

and thus also the probability of a complete shut-off (Gibson et al., 2000). When

we decrease the number of possible phosphorylations, we decrease the number of

intermediate shut-off steps. This increases the variability and the duration of the

single photon response, on average.
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Figure 4.3: Single photon responses simulated with the stochastic amphibian model
with 6 to 0 available phosphorylation sites. Each plot contains 10 stochastic sim-
ulation runs.

In the simulations with zero phosphorylation sites, rhodopsin cannot be phospho-

rylated anymore. This also means that it cannot be shut off by arrestin, because

this requires at least one phosphorylation. The only shut-off option is the thermal

or spontaneous shut-off of rhodopsin, which has a comparatively low rate and thus

takes a longer time.

To summarize, we can reproduce the results concerning the importance of the

phosphorylation of rhodopsin from single-cell recordings in mouse rods from (Doan

et al., 2006) in our simulations. We will investigate this effect in more detail for
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the other models in the following.

4.2 Stochastic mouse model

Next, I created a stochastic mouse model from the Invergo 2014 model. I cre-

ated a frontend and backend model by separating the species and their reactions

as described before. In this case, I had to delete a feedback mechanism that fed

back from the backend into the frontend model, namely the calcium feedback on

recoverin and the rhodopsin kinase.

To make sure that this change did not disturb the kinetics, at least for dim light

responses, I investigated the consequences of the removal in deterministic simu-

lations in detail, as already described in section 3.2. I found out that there were

no consequences for the kinetics of the light response for brief flashes without any

background illumination. Since we want to simulate single photon responses with

the stochastic model, this is fine: we will not simulate stimulus paradigms where

the deletion of the feedback would have any consequences. Thus, I removed re-

coverin from the model and assumed the concentration of rhodopsin kinase to be

static (the so-called quasi-steady state assumption).

The frontend thus contains the species rhodopsin, rhodopsin kinase, opsin, ar-

restin, transducin, PDE, and RGS, and their interactions. The backend contains

all the species downstream from the effector: cGMP and calcium as well as their

regulation by the GC-GCAP system and the channels, implicitly in the reaction

rates.

I made a few modifications to the model in parallel to the amphibian model. All

reaction equations and parameters of the new model can be found in the appendix

in section A.2.

Obviously, I also needed to replace all variables by numerical parameters. Further-

more, I deleted the activation of rhodopsin and the stimulus description. Moreover,

I modified the model slightly by removing reactions that were not immediately im-

portant for the simulations I wanted to perform.

Those reactions are the recycling of opsin and the precoupling of rhodopsin and

transducin. The recycling of opsin to recreate rhodopsin does not matter for the

single photon response and other brief flashes, since the recycled rhodopsin will

not be activated within the short time frame of the photoresponse. Therefore, I

left it out to save computational power.

The precoupling of rhodopsin and transducin and its impact on the single photon
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response will be investigated in detail in section 4.5. For this model, I wanted to

simplify the initial condition and just consider non-precoupled activated rhodopsin.

Thus, I removed the precoupling reactions for this first investigation.

With the new stochastic frontend and deterministic backend, we were able perform

simulations in the same way as with the amphibian model. In figure 4.4, I show

the resulting effector and photocurrent ∆J .

Figure 4.4: Stochastic and deterministic simulation results for single photon re-
sponses in the stochastic mouse model. In the upper panel, the effector is shown. In
the lower panel, the photocurrent ∆J is shown. Black traces result from determin-
istic simulations, while red traces are the result of 5 runs of stochastic simulations.
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Again, we can see that the stochastic simulations show some variability, but a

common response shape. Compared to the amphibian single photon response in

figure 4.2, the single photon response in the mouse model is much faster in the

excitation and recovery phase. The average number of activated effector subunits

is slightly higher than 100 and therefore comparable to the simulation results in

the amphibian model. The amplitude of the photocurrent is lower, at 0.65 pA as

compared to 1.2 pA in the amphibian model.

4.2.1 Multiple phosphorylation sites

Like in the amphibian model, I wanted to check the influence of the availability of

multiple phosphorylation sites on the reproducibility of the single photon response

in the mouse model.

Thus, I did simulations in the stochastic mouse model for different numbers of

available phosphorylation sites of rhodopsin. The results can be found in figure

4.5.
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Figure 4.5: Single photon responses simulated with the stochastic mouse model
with two to zero available phosphorylation sites. The upper row shows stochastic
simulations. Each image contains five stochastic simulation runs. The lower row
shows deterministic simulations of the effector during the single photon response
with two to zero available phosphorylation sites (dashed red lines), compared to
the model with the full six phosphorylation sites (solid blue lines).

The upper row of the figure shows stochastic simulations for different numbers of

available phosphorylation sites like in figure 4.3. However, I only display the data

for two to zero available phosphorylation sites, since the simulations for larger
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numbers of available sites looked very similar: there was no noticeable increase in

variability or in the duration of the single photon responses.

In the lower row, I show deterministic simulations of the effector compared between

the model with 6 available phosphorylation sites (blue solid lines) and the model

with two to zero available phosphorylation sites. In the deterministic simulation,

we cannot examine the change in variability, but the increase in duration of the

response can be compared more easily, without any distractions by the noisiness

of the responses. In these simulations, we can see that the duration of the single

photon response only starts to increase when we have only one phosphorylation

site left.

To conclude, in the mouse model, we only need two to three phosphorylation sites

to reproduce the results of the normal model with the full six phosphorylation sites.

This is in contrast to the experimental results by (Doan et al., 2006) from mice,

and to the simulated results in the amphibian model, where all phosphorylation

sites are significant. Possible reasons for this difference are discussed in chapter 5.

4.2.2 Different knockout models

To further assess the suitability of the model for simulating single photon responses,

I simulated single photon responses in different knockout models. These results can

be compared to various experimentally recorded single photon responses, which are

shown in figure 4.6 on the left.

Before doing any of the simulations, I improved the model by re-introducing re-

coverin, using a quasi-steady state assumption that the calcium-free, the calcium-

bound and the rhodopsin kinase-bound states of recoverin are in their respective

steady-state dark concentrations throughout the entire simulation. As previously

discussed, this simplification is only valid for brief flashes of light without any

sustained background - this is the case for the single photon responses simulated

here.

Next, I created models for the different knockout conditions. As explained earlier,

we cannot use the experiment description with IQMmergemodexp with the stochas-

tic simulations and have to create separate models. To create the knockout models,

I only removed the knocked-out molecular species, and none of the kinetic param-

eters of the model were changed for the simulations. For the implementation of

the GCAPs knockout, see section 3.1.1: the activity of the GC is fixed at its dark

activity.
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I implemented models with a knockout of the rhodopsin kinase, a knockout of the

GCAPs, a knockout of arrestin, and a completely substituted mutant of rhodopsin

(CSM) where all the phosphorylation sites are substituted, i.e. knocked out. The

results of a first deterministic investigation can be found in figure 4.6.
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Figure 4.6: Single photon responses in different knockout models. Left: experimen-
tal data from mouse rods. Arrestin knockout (Arr -/-, red) from (Xu et al., 1997),
completely substituted mutant (CSM, green) from (Mendez et al., 2000), GCAPs
knockout (GCAPs -/-, yellow) from (Burns et al., 2002), rhodopsin kinase knock-
out (RK -/-, blue) from (Chen et al., 1999). The respective wild type responses
are plotted in matching colors with a thinner line, and all responses have been
normalized to a maximum wild type amplitude of 1 pA. The arrestin knockout
response has been scaled to the same amplitude as the wild type response. Right:
deterministically simulated single photon responses in models with the respective
knockouts: arrestin (Arr -/-, red), GCAPs (GCAPs -/-, yellow), rhodopsin kinase
(RK -/-, blue) and the completely substituted mutant (CSM, green) as well as the
wild type (WT, black).

We can see that the model is generally able to reproduce the changed kinetics of

the single photon response in the different knockout conditions.

In the GCAPs knockout (yellow line in the left and right panel), the amplitude of

the single photon response is increased about four-fold and the shut-off is much

slower. This is reproduced well in the simulated responses. The reason for the

changed kinetics is that the GC is not regulated in a calcium-dependent manner

anymore when the GCAPs are missing. As a consequence of the light response,

the cGMP and calcium concentrations drop. In the wild type, the GCAPs then

activate the GC to produce more cGMP than the dark rate because of the drop

in calcium concentration. This restores the cGMP concentration, which opens the
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cyclic nucleotide gated channels, in turn restoring the calcium concentration.

In the knockout, this is not the case: the GC stays at its dark production rate of

cGMP. The upstream part of the signalling cascade (rhodopsin, transducin, PDE)

is normally shut off, but the low GC activity in the absence of the GCAPs can-

not counterbalance the hydrolytic rate of cGMP. Thus, ∆J reaches a much higher

amplitude and takes a longer time to return to the dark state.

Knocking out the rhodopsin kinase (blue lines) and removing all of rhodopsin’s

phosphorylation sites (green lines) has the same effect on the light response. The

consequence of the modifications is the same: rhodopsin can no longer be phos-

phorylated. In the experimental and simulated data, we observe that the light

response rises to about the double amplitude of the wild type single photon re-

sponse and then stays at this amplitude, with no shut-off taking place. This is

because rhodopsin does not get phosphorylated and the activation of the photo-

transduction cascade is thus not terminated. The phosphorylation of rhodopsin is

an essential first step of the shut-off: not only does it decrease rhodopsin’s activ-

ity by reducing the affinity for transducin, but it also enables binding to arrestin,

which completely terminated rhodopsin’s activity.

When no phosphorylation can take place, because the rhodopsin kinase is missing

or because rhodopsin has no phosphorylation sites, rhodopsin cannot be shut off

and it cannot bind to arrestin. The only possibility for the shut-off is the thermal

decay of activated rhodopsin, which has a low rate and thus takes a long time to

spontaneously occur. Thus, the light response increases to a higher amplitude and

stays there, because the activity of rhodopsin is not terminated.

Finally, the arrestin knockout (red lines) also impacts the shut-off of the response.

Unfortunately, the experimental data from (Xu et al., 1997) only extend for 0.5 s.

Still, we can see that the response amplitude decreases after the maximum, but

less strongly than in the wild type. In the simulations, this looks slightly different.

We cannot compare the response amplitudes, since the experimental trace for the

knockout is normalized to the same amplitude as the wild type response. However,

the shut-off in the simulated data is weaker than in the experimental data: the

decrease in amplitude after the maximum is slower.

In summary, the model reproduces the experimental data well, except for the

shut-off for the arrestin knockout. This is further discussed in chapter 5.
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4.3 Small stochastic model

Before performing more quantitative comparisons and stochastic simulations of

single photon responses, I wanted to update the model in parallel to the deter-

ministic model in section 3.1.1. Furthermore, when doing stochastic simulations, I

noticed that many of the simulated species hardly change during the single photon

response. If their removal or a quasi-steady state assumption does not change the

kinetics of the single photon response, they do not need to be in the stochastic

model for simulating single photon responses, since including them only increases

the computational demand of the simulations.

With this in mind, I set out to update the model to the new insights into the ef-

fector, which are that fewer effector-transducin complexes are activated than was

assumed earlier (just 12-14) (Yue et al., 2019), and that the main effector is the

double-activated PDE, with the single-activated form only having a fraction of the

activity (2.5 % rather than 50 %, as assumed before) (Qureshi et al., 2018).

Please recall that, for the deterministic model, we were able to achieve a lower

number of effector-transducin complexes. However, it was not possible to arrive

at a sufficient number of double-activated PDE molecules.

However, for the stochastic model, I had an idea how to integrate this result as well.

The problem with the deterministic model had been that the activated species were

effectively diluted over the entire outer segment, resulting in a low concentration,

specifically of the activated transducin and PDE. Since those concentrations are

multiplied for the rate of the second activation of a single-activated PDE, this rate

was basically too low to reliably lead to even one double-activated PDE molecule

during the single photon response.

I realized that it was possible to scale down the model to smaller volumes, lead-

ing to less dilution of the activated species and higher effective rates, e.g. for the

second activation of the PDE. For a model that is essentially made to simulate

single photon responses, this does not lead to any problems with the depletion of,

for example, the G-protein. The frontend species interact with the disc membrane

anyways and do not typically diffuse very far during the time span of a single pho-

ton response. The backend species do, but the backend will not be scaled down -

only the frontend, to arrive at a more realistic description of the effector.
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I scaled down the stochastic mouse model to a volume of about two discs and

adapted some of the previously adapted parameters similarly to the procedure

described in section 3.1.1. I furthermore reduced the model by removing some re-

actions that were not relevant for the single photon response and thus only slowed

down the stochastic simulations. All reaction equations and parameters of the new

model can be found in the appendix in section A.4.

I removed opsin from the model: the recycling of opsin to rhodopsin does not con-

tribute to brief responses like the single photon response. Opsin can activate the

cascade, but this reaction has a very low rate and the probability of actually seeing

it in stochastic simulations is thus also low. Therefore, it was possible to remove

opsin from the model without disturbing the kinetics of the single photon response.

I also removed all phosphorylation sites of rhodopsin beyond three sites. As already

hinted at in section 4.2.1, only two of the phosphorylation sites of rhodopsin are

typically phosphorylated during the single photon response. To check this more

quantitatively, I performed a deterministic simulation of the single photon response

in the updated deterministic model and checked the numbers of rhodopsin in the

different phosphorylation states. The result can be found in figure 4.7.

Figure 4.7: Rhodopsin in the different phosphorylation states during the deter-
ministically single photon response. Left, with linear axes and right, with semilog-
arithmic axes. The line colors represent the amount of phosphorylations of the
activated rhodopsin: zero (red), one (yellow), two (green), three (light blue), four
(dark blue), five (pink) and six (black).

When interpreting the figure, we need to keep in mind that we are looking at the

result of a deterministic simulation. This means that, when the molecule number

of a particular species is lower than one, this is the average number of molecules
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that we would expect over a large number of realizations. When this number is

very small, the molecular species will rarely be found in stochastic simulations.

At time t = 0 s, we start with one activated rhodopsin with zero phosphoryla-

tions. The amount of rhodopsin with zero phosphorylations then quickly decays,

as rhodopsin gets phosphorylated. From the linear shape in the semilogarithmic

plot we can confirm that this is an exponential decay, as we would expect for a

single-step shut-off.

Both the rhodopsin with one and two phosphorylations are present in amounts

larger than 0.1 molecules, which means that we would definitely see them in

stochastic simulations. In the plot with the linear y-axis, it can be nicely seen

that the peak in molecule numbers for higher phosphorylations is shifted towards

larger times, since each phosphorylation step takes some time.

For three and more phosphorylations, we can see in the semilogarithmic plot that

they become less and less abundant and thus less and less probable to be found

during a simulation. For four phosphorylations, the peak lies around 10−5 - this

makes it so improbable to find this species in a simulation that we would probably

never see it in the amount of simulations we run. Thus, we can make a cut-off

after three phosphorylations without disturbing any kinetics.

I also left out the dimerization and tetramerization of arrestin. For the duration

and amplitude of the single photon response, there is hardly any change in these

species, so they can be left out without any problems. The same goes for recov-

erin, as before: the feedback of recoverin on the rhodopsin kinase only becomes

important for stimuli with a prolonged background, which is not the case when

simulating single photon responses. Therefore, it is also left out.

Another novelty of the small stochastic model is that the precoupling of rhodopsin

is added back into the model. We wanted to investigate the consequences of the

precoupling mechanism on the single photon response, which is why I added it back

into the model. In section 4.5, I will explain how I modified the initial conditions

to compare single photon responses triggered by precoupled and non-precoupled

rhodopsin molecules.

There was one issue with the precoupling reaction: in the dark state, many G-

proteins rapidly associate and dissociate with rhodopsin, which is responsible for

a lot of reaction events in the simulations. I realized that these reactions are
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basically irrelevant as long as two conditions are met: first, they do not involve

any activated rhodopsin - since we will treat this case separately in the initial

conditions, this condition is met. Secondly, the reactions need to be in equilibrium:

in that case, the amount of precoupled rhodopsin and G-protein will stay constant,

apart from small fluctuations. This is the case in the dark. For the situation after

an illumination, let us take a look at the reaction rates for the association (vf) and

dissociation (vr) of non-activated rhodopsin and G-protein between their separate

forms and the complex R ·Gt:

vf = kGpre1 ∗Gt ∗ R (4.1)

vr = kGpre2 ∗ R ·Gt.

In the dark state, this reaction is is equilibrium, thus vf = vr and vf − vr = 0.

After illumination, the concentration of free G-protein Gt decreases, since some of

the G-protein is associating to rhodopsin and PDE. Thus, the rate vf of formation

of the pre-complexes decreases, while the dissociation rate vr stays the same. The

effect is a slight decrease of formed pre-complex, freeing up some rhodopsin and

G-protein.

My idea was to substitute this reversible reaction by an irreversible reaction, in

the direction of the dissociation of the complexes, since this is the relevant reaction

direction for the single photon response. It saves the computational effort of a lot

of separate association events, while still allowing for the effect of some additional

G-protein being released from R ·Gt-precomplexes as a result of the light response.

This reaction then goes into the dissociation direction, with the rate

v = kGpre2 ∗ R ·Gt− kGpre1 ∗Gt ∗ R. (4.2)

In equilibrium, the rate is zero, leading to stable population of precoupled and

non-precoupled rhodopsin and transducin. There is no interconversion between

the two, but as established above, this does not matter as long as we define the

activation of the cascade as an initial condition. As a result of the light response,

kGpre1 ∗Gt∗R decreases and becomes smaller than kGpre2 ∗R ·Gt, leading to a non-

zero dissociation rate for the precomplexes. This results in the dynamics that we

are interested in, while reducing the computational effort of doing the simulations.
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Figure 4.8: Reaction network for the new, small stochastic model. The upper
network is the stochastic frontend model, which has been scaled down to a smaller
volume. The lower network is the deterministic backend, which is simulated for the
full outer segment volume. The numbered reaction equations and all parameters
can be found in the appendix in section A.4.
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In the backend, the only change was to adapt the parameter defining the catalytic

activity of the effector, βsub, to the new amount of effector molecules. The backend

is simulated deterministically for the full outer segment volume, using the effector

from the frontend model as an input.

The final reaction network for the small model can be found in figure 4.8.

4.3.1 Single photon responses in the new model

I performed simulations of single photon responses in the new small model. After

the model reduction as described previously, the simulations run rather quickly:

on a desktop computer or the computational cluster CARL, I was able to run 100

stochastic simulations of the single photon response within a matter of minutes.

Figure 4.9: Single photon responses in the new small model. On the left, ∆J
resulting from 200 stochastic simulations is shown (black lines), as well as the
average of the stochastic simulations (red line) and the result of the deterministic
simulation of the single photon response in the small model (dashed yellow line).
On the right, the effector is shown for the same simulations (black lines) along
with its average (red line).

In figure 4.9, the ∆J and the effector resulting from 200 stochastic simulations are

shown. In the left panel, ∆J of the stochastic simulations is shown in black lines,

along with the average from the stochastic simulations (red lines) and the result

from a deterministic simulation of the single photon response in the small model

(dashed yellow line). We can see that the average response shape almost com-

pletely overlaps with the deterministic result, which is a nice consistency check.

The stochastic runs shown some variability, but share a common shape, especially
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in the rising phase. However, there are also some responses which have a consid-

erably lower or higher amplitude than the average response. This is investigated

further in section 4.6.

The effector in this model now follows the new formulation:

E = 0.025 · PDE∗ + ∗PDE∗, (4.3)

according to the new insight that the single-activated form of the PDE only has

2.5 % of the hydrolytic activity on cGMP of the double-activated form. In figure

4.10, we can see how the resulting effector is split into the contributions of the

single- and double-activated PDE.

Figure 4.10: Single- and double-activated PDE during single photon responses in
the new small model, resulting from 200 stochastic simulations. Each stochastically
simulated trace is shown (black lines), as well as the average of the stochastic
simulations (red line). On the left is the double-activated PDE and on the right
is the single-activated PDE.

The average number of double-activated PDE molecules is now in line with the

result of 12-14 activated transducin-PDE complexes from (Yue et al., 2019). To

achieve this number of double-activated PDE molecules, a high number of single-

activated molecules are required in the model (ca. 400, on average). This results

in a total effector of about 24.
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4.3.2 Different knockout models

We can also do the same benchmark test with the new small stochastic model as

for the old stochastic mouse model: simulating single photon responses in different

knockout conditions. Thus, I created models with the different genetic modifica-

tions based on the small model: knockouts of arrestin, of the rhodopsin kinase, and

of the GCAPs, as well as the completely substituted mutant of rhodopsin (CSM),

where all phosphorylation sites are substituted. This time, I performed stochastic

simulations instead of deterministic simulations and averaged over 100 stochastic

simulation runs for each of the conditions. The results are shown in figure 4.11.

Figure 4.11: Single photon responses in different knockout models. Left: experi-
mental data from mouse rods. Arrestin knockout (Arr -/-, red) from (Xu et al.,
1997), completely substituted mutant (CSM, green) from (Mendez et al., 2000),
GCAPs knockout (GCAPs -/-, yellow) from (Burns et al., 2002), rhodopsin kinase
knockout (RK -/-, blue) from (Chen et al., 1999). The respective wild type re-
sponses are plotted in matching colors with a thinner line, and all responses have
been normalized to a maximum wild type amplitude of 1 pA. The arrestin knock-
out response has been scaled to the same amplitude as the wild type response.
Right: stochastically simulated single photon responses in models with the respec-
tive knockouts: arrestin (Arr -/-, red), GCAPs (GCAPs -/-, yellow), rhodopsin
kinase (RK -/-, blue) and the completely substituted mutant (CSM, green) as well
as the wild type (WT, black). Each trace corresponds to the average over 100
stochastically simulated single photon responses. All responses have been scaled
with the amplitude of the wild type response.

We can observe the same behaviour in the results from the new small model as in

the mouse model in figure 4.6. The general changes in kinetics are well reproduced,

but there is a discrepancy for the arrestin knockout. For a further discussion of
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the different knockout models, see the results for the mouse model in section 4.2.2.

The possible reasons for the discrepancy for the arrestin knockout are discussed in

chapter 5.

Since the behaviour of the model with the presented genetic modifications has not

changed, we can verify that the changes in the new small model have not disturbed

the general kinetics and the role of the different elements of the cascade.

4.4 Comparison to novel electrophysiological data

Our collaborators in Pisa, Sabrina Asteriti and Lorenzo Cangiano, performed elec-

trophysiological recordings of dim light responses in single mouse rods within whole

retina mounts. My aim was to compare these novel electrophysiological results to

my simulated data.

4.4.1 Categorization of the dim flash responses

First, I needed to categorize the recorded dim light responses into failures to re-

spond, single photon responses and multiple photon responses. Due to the quan-

tized, stochastic nature of the light when we approach single-photon intensities,

it is difficult to reliably deliver one photon to the rod for each recording. The

result of the measurements is thus a mixture of failures, where no photon was ab-

sorbed, single photon responses, and multiple photon responses, where more than

one photon was absorbed in the rod.

Figure 4.12: Three examples of the electrophysiologically recorded dim light re-
sponses. The responses are measured in terms of photovoltage, ∆U .

In figure 4.12, I show some examples of the dim light responses. They are mea-

sured in terms of the photovoltage, ∆U , like the bright light responses in section
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3.3. The stimulus is delivered at t = 0 s. The responses we see in the example

figure could be a failure to respond (left), a multiple photon response (middle),

and a single photon response (right) - but to make a less subjective and more

quantitative categorization, we cannot rely on our impression alone. Instead, we

use a more systematic method of categorizing the responses.

To categorize the responses, we sort them by their rising phases. The rising phase

of the single photon response is especially reproducible, much more so than the

shut-off. The procedure is explained, among others, in (Hamer et al., 2005) and

references therein. After briefly explaining the procedure, I will go through it step

by step with images. First, we compute the mean response from all recordings -

please note that this is not the mean single photon response, since the failures to

respond and multiple photon responses are still included. Then, we scale the mean

response to each recording separately, calculating the scaling factor that yields the

best fit during the rising phase. This gives us a scaling factor for each response.

We plot all scaling factors in a histogram, fit a sum of Gaussians to the histogram,

and compute the intersections - this will then give us the cut-off scaling factors

between which the single photon responses lie.

Figure 4.13: A few examples of dim flash responses (black lines) and the mean
(red line) of the entire dataset of recordings (which contains 173 recordings).
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The first step is to compute the mean response. This is shown in figure 4.13: the

mean of all 173 recordings in the dataset (cell200112) as well as a few example

recordings.

The next step is to scale the mean to each of the recordings. We can calculate the

optimal scaling factor S yielding the best fit over the rising phase of the response

as follows:

S =

∑b
i=am(i) · x(i)∑b
i=am(i) ·m(i)

, (4.4)

where m(i) is the mean response, x(i) is the individual recording, a is the start of

the stimulus, and b is the peak of the mean response, which is where the rising phase

ends. This gives us the scaling factor S calculated over the rising phase for each

of the individual recordings. Some example responses with their corresponding

scaled mean response can be found in figure 4.14. These are the same responses

as in figure 4.12.

Figure 4.14: Three individual electrophysiologically recorded dim light responses
(black lines), as well as the scaled mean (red lines) to each of them.

The next step in the procedure is to create a histogram of the scaling factors

produced by the fitting procedure. These scaling factors are a comparable measure

to the amplitude, but better: they are connected to the timing of the stimulus and

the response. We will next use the scaling factors to categorize the responses,

but first we need to find out where to set the cut-off scaling factors between

failures, single photon responses and multiple photon responses. For this we use

the histogram, shown in figure 4.15.
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Figure 4.15: Histogram of the scaling factors for the individual responses, deter-
mined by scaling the mean response to create the best fit to each response.

In the histogram, we can see that the scaling factors are not uniformly distributed,

but grouped into different peaks. One peak is centered around a scaling factor

of zero - these are the failures. The next peak centered around 0.7 are the single

photon responses. The peaks around larger values for the scaling factor correspond

to multiple photon responses.

To quantitatively determine where to place the borders between the different cat-

egories, we fit a sum of Gaussians function to the histogram:

f(S) =
∑
i

ci
σi
· e−

1
2

(
S−µi
σi

)2

, (4.5)

where i is the amount of Gaussians required for a good fit (corresponding to the

amount of peaks), ci is a normalization factor, µi the mean and σi the standard

deviation, respectively for the i-th Gaussian. By defining this function in MATLAB

and inputting starting guesses for the parameters ci, µi and σ, we can use the

function fitnlm to fit the function to the histogram. We can see the fit as well as

the histogram in figure 4.16.
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Figure 4.16: Histogram of the scaling factors for the individual responses with a
fit of a sum of Gaussians function.

The fit consists of five separate Gaussians, so that the peaks for higher scaling

factors are lumped in one peak. But this does not matter: we are interested in

the intersections between the first three Gaussians, which will give us the borders

for the scaling factors to differentiate between failures, single photon responses

and multiple photon responses. The intersection between the first and second

Gaussian yields the cut-off scaling factor for failures SF: responses with smaller

scaling factors are categorized as failures to respond. The intersection between the

second and third Gaussian yields the cut-off scaling factor SSPR for single photon

responses: responses with scaling factors between SF and SSPR are categorized as

single photon responses. All responses with larger scaling factors are categorized

as multiple photon responses.

This procedure is quite delicate for noisy recordings. The electrophysiologically

recorded responses had been boxcar-filtered, which is a quite strong filtering, when

I first received them and started the categorization procedure. By calculating the

scaling factor for the rising phase and making the histogram categorization, I

achieved categorization results for two out of the total 6 files with recordings.

Later, we revised the filtering once again and tried the same procedure with less

strongly filtered data (using a Gaussian filter). However, this was not successful

since the data was too noisy to clearly separate into groups in the histogram.

The method is often used to categorize dim flash responses, but it does have

one disadvantage: particularly small single photon responses may be categorized
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as failures, and particularly large single photon may be categorized as multiple

photon responses. This leads to an underestimation of the variability of the single

photon responses, as I show in section 4.6.

4.4.2 Conversion of photovoltage to photocurrent

After doing the categorization for the datasets cell200112 and cell200111, we

ended up with 91 single photon responses, 89 failures to respond, and 126 multiple

photon responses. In order to compare the experimental data to the simulated

single photon responses, we first converted the responses from the photovoltage,

∆U to photocurrent, ∆J .

For the conversion, I used the frequency-dependent complex impedance Z(f) of

the rod cells, as recorded by Sabrina Asteriti and Lorenzo Cangiano. Briefly ex-

plained, the time-domain signals of ∆U were Fourier transformed to the frequency

domain, where they were multiplied with 1/Z(f) to arrive at the frequency domain

representation of ∆J . This was Fourier transformed again to go back to the time

domain.

The complex resistance was measured by injecting a sinusoidal current stimulus

with exponentially varying amplitude into the cell and measuring the resulting ∆U

(Cangiano et al., 2007). The rod impedance was then fitted to a model impedance

of a neuron expressing a time-dependent negative feedback conductance with a

single time constant, given by

Z(f) =
1

gleak + 2πifcm + gneg (1 +H)
, (4.6)

with the membrane passive leakage conductance gleak, the membrane capacitance

cm, the steady state value gneg of the negative feedback conductance, and

H =
ĝ

1 + 2πifτ
, (4.7)

with the deviance ĝ from the Ohmic behaviour of the negative feedback conduc-

tance and the time constant τ of the negative feedback conductance.

Having fitted this model to the response, we arrived at a model of the frequency-

dependent complex impedance Z(f). I then used it to convert the photovoltage

to photocurrent by dividing by Z(f) in the frequency domain. To get to the fre-

quency domain, I Fourier transformed the signals. For this I used MATLAB’s fast
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Fourier transform function fft, which can be used to Fourier transform discrete

time signals to the frequency domain. In the frequency domain, I divided by the

complex impedance, making sure to properly deal with the real and imaginary

parts of the signal.

This yields the frequency-domain ∆J(f), which I subsequently transformed back

to the time domain. For this I used MATLAB’s inverse fast Fourier transform

ifft. The output was ∆J(t), the time domain photocurrent.

The entire conversion is carried out by the script conversionscript.m, which I

wrote: the input arguments are the time and photovoltage to be converted, and

the output is the converted photocurrent.

Since the fast Fourier transform leads to some signal artefacts at the beginning

and the end of the signal, I had to make sure to exclude these parts of the sig-

nal from any subsequent analyses. Also, the conversion amplifies high frequency

noise, which is why I lowpass-filtered the photocurrent after the conversion using

MATLAB’s function lowpass with a passband frequency of 40 Hz.

4.4.3 Results and comparison to simulations

The electrophysiologically recorded single photon responses, identified by catego-

rization with the histogram method and converted to photocurrent, are shown in

figure 4.17.

In the figure, I scaled the responses of both data sets separately to an average single

photon response of 1 and then pooled the responses from both data sets. We can

see that the average failure response is flat, which is a good proof of principle that

the categorization worked out well in terms of differentiating between responses

and failures to respond. The single photon responses are quite variable, but follow

a common shape.
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Figure 4.17: The categorized photocurrent responses: upper left, failures to re-
spond; upper right, single photon responses; and lower plot, multiple photon re-
sponses. The individual traces are shown in black, with their average in red.

As a first comparison between simulations and experiment, I compared the aver-

age single photon response from the electrophysiological recordings to the average

simulated single photon response from the stochastic simulations, see figure 4.18.

Comparing the average responses, they look quite similar in general shape, the

rising phase and the shut-off. When doing a more quantitative comparison, we

noticed that the simulated single photon responses are a little slower in the rising

phase: for the experimental responses, the time to peak is tTTP = 0.19 s, while for

the simulated responses, tTTP = 0.24 s.
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Figure 4.18: Side by side comparison of the average single photon response re-
sulting from the categorized experimental dim flash responses, left, and from the
stochastically simulated single photon responses, right. Both averages were scaled
to an amplitude of 1.

I investigated the origin of this delay more closely and found that it arises in

the activation of the PDE. Unfortunately, it was not easily fixed by adapting any

parameters. Specifically, it arises in the step of the activation of the PDE from

PDE ·GαGTP to PDE∗ ·GαGTP and the further steps towards the double activation

of the PDE, as can be seen in figure 4.19.

In the figure, I plotted the normalized molecule numbers of the different species

between the activated transducin and the double-activated PDE. We can see that

GαGTP and PDE ·GαGTP reach their peak rapidly, within 0.05 s after the activation

of rhodopsin. Thus, the G-protein is rapidly activated and rapidly associates with

the PDE. Next, the single-activated form PDE∗ ·GαGTP reaches its peak at 0.21 s.

Thus, it is the activation step of the PDE that introduces a delay.

The same counts for the double-activated form: the pre-complex reaches its peak

at 0.15 s, while the double-activated form only peaks at 0.26 s. Since the effector

is made up from both the single-activated and the double-activated form of the

PDE, its peak lies in between the single- and double-activated maxima, at 0.24 s.

I tried to change the rate of the activation step, but this did not decrease the delay.

To be clear, the delay in itself is not a problem, since the electrophysiological

response has its maximum at 0.19 s. Thus, it is fine that a delay is introduced in

the activation step, it is just slightly too large.
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Figure 4.19: Scaled species numbers for different steps in the activation of the PDE
during the single photon response, resulting from a a deterministic simulation.
In the order of activation, the species are GαGTP (red), PDE · GαGTP (yellow),
PDE∗ ·GαGTP (green), GαGTP ·PDE∗ ·GαGTP (light blue), GαGTP · ∗PDE∗ ·GαGTP

(blue), as well as the total effector E (magenta).

I also tried to remove the activation step altogether by assuming that the PDE

is immediately activated upon binding of the G-protein. However, this also did

not significantly decrease the delay: it was then between the single- and double-

activated form of the PDE.

The delay could be an artefact of the fact that we do not perform space-resolved

simulations, where the activation step would be much faster than the other rates,

since it does not require any diffusion. However, though this time-to-peak may

be at the upper limit of measured time-to-peaks, it is not completely unrealistic

(Cangiano et al., 2012).

Next, let us take a look at the statistical properties of the single photon responses.

Typically, the variability of the responses is quantified by computing the coefficient

of variation of their amplitudes and the areas:

CV =
σ

µ
, (4.8)
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with the mean µ and the standard deviation σ, which is the square root of the

variance: σ =
√
v. Both the mean and the standard deviation are computed for

all areas and amplitudes of the single photon responses, respectively.

Before computing the standard deviation from the variance, the variance of the

failures is subtracted. This is to quantify the variance arising from just the single

photon responses, and to subtract that resulting from dark noise and measurement

noise.

For the electrophysiological responses, I computed the coefficients of variability

over a duration of 1.5 s after the stimulus. This yielded CVarea = 0.37 and

CVamp = 0.23, which is in line with previously computed values (Hamer et al.,

2005).

For the simulated single photon responses, I calculated the coefficients of variability

over the same duration of 1.5 s after the stimulus. This resulted in CVarea = 0.87

and CVamp = 0.34. The CV of the amplitude is well reproduced by the simulations,

but the CV of the area is quite high in comparison.

This could be due to several reasons: the shut-off of rhodopsin could be responsi-

ble, or a missing shut-off mechanism on the effector, or it could be an effect of the

categorization of the responses, which will be investigated in section 4.6. A more

detailed discussion of the difference between the measured and simulated CV of

the area can be found in chapter 5.

I checked an effect that could have an influence on the calculated CV: the variance

of the amplitude and area of the dark noise, which is subtracted from the experi-

mental recordings. In the simulations, there is no dark noise or measurement noise,

which is why we do not need to subtract it. This could however lead to a larger

CV, since the subtraction of dark noise reduces the variance for the experimental

recordings. To test this last hypothesis, I tried adding dark noise from the exper-

imental traces to the simulated data. This did not lead to any conclusive results,

however: the CV was not significantly changed (data not shown).

4.5 Precoupling

In this section, we are investigating the effect of the precoupling on the single

photon response. The effect is described in detail in section 1.1.5.

To investigate the effect of precoupling, I changed the initial condition in the
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stochastic model from one activated (single) rhodopsin to one activated rhodopsin-

transducin complex. Then, I investigated the resulting single photon responses

from deterministic and stochastic simulations.

For a first investigation, I carried out a deterministic simulation of the single

photon response with the two different initial conditions. The result can be found

in figure 4.20.

Figure 4.20: Comparison of the photocurrent resulting from deterministic sim-
ulations of the single photon response with two different initial conditions: an
activated single rhodopsin (solid black line) or an activated precoupled rhodopsin-
transducin complex (dashed red line). The inset shows a zoom on the peak of the
response.

In the figure, we can see that the photocurrent appears to be almost equal for the

two different initial conditions. Only in the zoom in the inset do we recognize that

the trace resulting from the precoupled rhodopsin reaches a very slightly higher

amplitude.

Why is this the case? We could assume that the precoupling would result in a

higher amplitude or a lower time to peak - after all, the rhodopsin starts out already

associated to a G-protein, which accelerates the response. Without precoupling,

the first G-protein has to associate with rhodopsin before it can be activated.

However, when we take a look at the trace for the activated G-protein in figure

4.21, we realize that this does not have a large effect.
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Figure 4.21: Comparison of the total activated G-protein GαGTP resulting from
deterministic simulations of the single photon response with two different initial
conditions: an activated single rhodopsin (solid black line) or an activated pre-
coupled rhodopsin-transducin complex (dashed red line). The inset shows a zoom
on the peak. The total GαGTP consists of all free GαGTP as well as that bound to
PDE.

The total amount of activated G-protein peaks at around 458 G-proteins in this

model, so one single activated G-protein cannot make a large difference. Further-

more, the activation of the G-protein starts very rapidly, so the time advantage of

rhodopsin already being associated with a G-protein does not have a big impact.

We can also see this when we look at at the amount of rhodopsin bound to G-

protein in figure 4.22.

In the figure, the amount of unphosphorylated activated rhodopsin bound to trans-

ducin is plotted for the first 0.1 s of the single photon response. For the precoupled

initial condition, this is the molecular species that is activated as an initial condi-

tion, which is why it starts at 1 for t = 0 s. Without precoupling, R0 = 1 is the

initial condition and binding to Gt occurs next, as a the first step in the activation

of the G-protein. Thus, at t = 0 s the trace for the non-precoupled condition starts

at 0 and starts to rise.

From this state, the exchange of GDP to GTP is the next step - thus, the amount

of R0 ·Gt decreases. Since this is a deterministic simulation, we see molecule num-

bers smaller than one, since they represent the equivalent of an average molecule

number over many stochastic simulations.
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Figure 4.22: Comparison of the amount of activated, non-phosphorylated
rhodopsin associated to Gt resulting from deterministic simulations of the single
photon response with two different initial conditions: an activated single rhodopsin
(solid black line) or an activated precoupled rhodopsin-transducin complex (dashed
red line).

In figure 4.22, we can see that the traces for the precoupled and non-precoupled

initial condition start at different points, but within one simulation step of 1 ms,

they overlap and follow the same trace. This shows that the effect and the advan-

tage of the precoupling basically vanishes after one simulation step in the model.

Thus, the precoupling does not have a large effect in the deterministic simulations.

However, it could still have an effect on the reproducibility of the responses. To

investigate this, I performed stochastic simulations. As the stochastic simulations

introduce a lot of variability, it is important to be careful about making quick

conclusions from a small number of simulations when comparing the two initial

conditions.

In figure 4.23, the average single photon responses resulting from 1000 stochas-

tic simulations each are compared for precoupled- and non-precoupled activated

rhodopsin as the initial condition.
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Figure 4.23: Comparison of the average photocurrent each resulting from 1000
stochastic simulations of the single photon response with two different initial con-
ditions: an activated single rhodopsin (solid black line) or an activated precoupled
rhodopsin-transducin complex (red dashed line). The inset shows a zoom on the
peak of the response.

From the figure, we can see that, as we expected, there is not a large difference

between the average responses after averaging over sufficiently many stochastic

simulation runs. There is only a very small reduction of the time to peak. How-

ever, even though the average is almost the same, there might be a difference in

the distribution of areas and amplitudes within the ensemble of simulations for the

different initial conditions.

We can approximate these distributions by creating histograms of the areas and

amplitudes of all 1000 simulated single photon responses. These histograms are

shown in figure 4.24. The distributions allow for a better, more detailed compari-

son than just calculating the CV of the area or the amplitude.

In the figure, we can see that there is a difference between the histograms with

and without precoupling. Specifically, the histograms for the precoupled initial

condition appear to have a sharper peak. This hints at a higher reproducibility for

the single photon responses amplitude and area, since the data are less distributed.
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Figure 4.24: Histograms of the single photon response amplitudes (upper row) and
areas (lower row), resulting from 1000 stochastic simulations each for two different
initial conditions: the activated rhodopsin was precoupled (right) or not (left).

Especially concerning the amplitude, this could be beneficial: as explained in sec-

tion 1.1.6, single photon responses need to be reliably differentiated from noise by

neurons in order to produce a detectable stimulus in the retina. This is probably

done by amplitude thresholding (Field and Rieke, 2002). For this, it is important

that single photon response amplitudes are large enough to be clearly different

from noise.

In the amplitude distributions, we can see that the non-precoupled initial condi-

tion produces some single photon responses with amplitudes close to zero. For

the precoupled initial condition, there are fewer small responses. Thus, the pre-

coupling could improve the reproducibility and increase the chance of detection of

single photon events.

To conclude, we were not able to find a large difference in the average response

shape of the single photon response for the two different initial conditions of the
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initially activated rhodopsin being precoupled or not. However, with the stochastic

simulations we were able to see that there appears to be a difference concerning

the distribution of areas and amplitudes of the single photon responses resulting

from the different initial conditions. The single photon responses resulting from a

precoupled rhodopsin appear to be more reproducible. This result is independent

from the assumed ratio of precoupled vs. non-precoupled rhodopsin molecules,

since the two different initial conditions are directly compared.

4.6 Random initial conditions

In this section, we are investigating random initial conditions for the stochastic

simulations and their consequences on single photon response variability. We do

this to achieve results that are more comparable to the experimental situation: In

the electrophysiological recordings, we have a mixture of single photon responses,

failures, and multiple photon responses, with no direct way of knowing which re-

sponses arose from a single rhodopsin activation. Therefore, we categorize the

responses by their response shape. This may lead to an underestimation of the

variability of single photon response, since we could be categorizing particularly

small single photon responses as failures to respond and particularly large single

photon responses as multiple photon responses.

To check whether this is true, we recreated the initial conditions of the experiment

more realistically in the simulations. In reality, when dim flashes are delivered,

the amount of delivered photons follows a Poisson distribution:

Pλ(k) =
λk

k!
e−λ, (4.9)

where Pλ(k) gives the probability of drawing the integer number k from a Poisson

distribution with the expected value λ. In our case, k corresponds to the num-

ber of absorbed photons and thus activated rhodopsin molecules. The Poisson

distribution for λ = 1, 2 and 4 is shown in figure 4.25.
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Figure 4.25: The Poisson distribution Pλ(k) for λ = 1 (red symbols), 2 (green
symbols) and 4 (blue symbols).

As an initial condition of the simulations, we draw a random number from a Pois-

son distribution for the number of activated rhodopsin molecules. λ can be chosen

to set the ratio between failures, single photon responses and multiple photon re-

sponses, as it is also the expected value for the number of activated rhodopsin

molecules.

Furthermore, we wanted the activated rhodopsin to represent a mixture of precou-

pled and non-precoupled molecules, as would also be the case in an experiment. For

this I thought of an algorithm to choose the total number of activated rhodopsin

molecules and decide whether they are precoupled or not, which is shown as pseu-

docode below:

set λ = 1

set Pprec = 0.018

for i=1 to number of simulations

set R0 = 0

set R0 Gt = 0

num act = poissrnd(λ)

for j=1 to num act

rnd = rand

if rnd < Pprec

increase R0 Gt by 1
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else

increase R0 by 1

end

end

for k=1 to R0 Gt

do simulation with precoupled rhodopsin

end

for l=1 to R0

do simulation with non-precoupled rhodopsin

end

sum effector from all simulations in this step

end

In the first for-loop, the total number num act of activated rhodopsin molecules is

chosen as a random Poisson number using MATLAB’s function poissrnd. Then,

in the next for-loop, the algorithm loops through all activated rhodopsin molecules

and decides whether they are precoupled to transducin or not. These decisions are

independent of each other.

For each of the activated molecules, they are precoupled with a probability of Pprec,

which is set to 0.018. This is the ratio of precoupled rhodopsin molecules to the

total amount of rhodopsin in the dark in the model. It corresponds to about 18%

of the G-proteins being precoupled to rhodopsin, which is a lower limit. The factor

of 10 comes from the ratio of 1:10 of G-protein to rhodopsin molecules.

The decision whether the activated rhodopsin is precoupled is realized by creat-

ing a random number uniformly distributed between 0 and 1 using rand. If the

random number is smaller than Pprec, the rhodopsin is precoupled - this is exactly

the case with a probability of 0.018. Otherwise, the activated rhodopsin is not

precoupled.

The numbers of precoupled and non-precoupled rhodopsin in this simulation step,

R0 and R0 Gt, are kept track of. After having looped through all activated

molecules, we can now carry out the simulation.

Since the activated rhodopsin molecules are located in different discs with a very

high probability, we perform a separate simulation for each activated molecule,

using the small model. This is done in the last two for-loops: we loop through

the number of activated precoupled rhodopsin R0 Gt and the number of activated

non-precoupled rhodopsin R0 and do a simulation with the appropriate initial con-

dition R0 Gt=1 or R0=1.
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As a last step, the effector from all simulations of this iteration is added together.

Thus, we end up with the total effector resulting from a Poisson number of acti-

vated rhodopsins that are a mixture of precoupled and non-precoupled.

Of course, I also save the numbers of activated rhodopsin molecules - this means

that we can later recall which responses are true failures to respond, true single

photon responses with one activated rhodopsin, and true multiple photon responses

with more than one activated rhodopsin.

Finally, the summed effector for each of the simulations is converted to photocur-

rent ∆J by inputting it into the backend model.

In figure 4.26, I show the single and multiple photon responses resulting from

a simulation of 200 dim flash responses with randomized initial conditions with

λ = 1. The responses are categorized according to the true number of activated

rhodopsin molecules.

Figure 4.26: Single and multiple photon responses resulting from a simulation
with random initial conditions. Failures are not shown, since they are flat lines.
The simulation of 200 dim flashes resulted in 66 true failures, with no activated
rhodopsin, 71 true single photon responses with one activated rhodopsin, and 63
true multiple photon responses with more than one activated rhodopsin. The
individual responses are shown in black and their average in red.

The failures have not been plotted in the figure: they are just flat lines as we do not

simulate any dark noise. We can see that there are a few very small single photon

responses in the left plot of figure 4.26, and a few multiple photon responses that

are close to the typical single photon response amplitude in the right plot.
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Next, I investigated what happened when I categorized the responses without using

my prior knowledge of the initial conditions. I used the histogram method and

proceeded in exactly the same way as for the electrophysiological recordings. The

result of the categorization can be found in figure 4.27.

Figure 4.27: Categorized failures, single and multiple photon responses resulting
from a simulation with random initial conditions. The categorization of 200 dim
flash responses with the histogram method resulted in 71 categorized failures (up-
per left), 71 categorized single photon responses (upper right), and 58 categorized
multiple photon responses (lower plot). The individual responses are shown in
black and their average in red.

Interestingly, the categorization led to five true single photon responses being mis-

categorized as failures. Furthermore, five true multiple photon responses were mis-

categorized as single photon responses. The miscategorized responses are shown

in figure 4.28.

In the figure, the responses are shown on the same y-axis as the categorized re-

sponses to make a comparison easier. Obviously, the single photon responses that
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got miscategorized as failures were particularly small single photon responses. Sim-

ilarly, the multiple photon responses that got miscategorized as single photon re-

sponses were within the upper range of single photon amplitudes, with amplitudes

slightly below 1 pA.

The miscategorization has an effect on the variability of the categorized single pho-

ton responses. When we calculate the coefficients of variation for the true single

photon responses, we arrive at CVamp = 0.38 and CVarea = 0.93. However, when

we calculate them for the categorized single photon response, they become smaller:

CVamp = 0.29 and CVarea = 0.86.

Figure 4.28: Miscategorized single and multiple photon responses resulting from
a simulation with random initial conditions. The categorization of 200 dim flash
responses with the histogram method resulted in five true single photon responses
getting miscategorized as failures (left panel) and five true multiple photon re-
sponses getting miscategorized as single photon responses (right panel).

This shows that the method typically used to categorize single photon responses in

dim light recordings leads to an underestimation of the true coefficients of variation,

since aberrant single and multiple photon responses may be miscategorized. This

should be taken into account when comparing, e.g., electrophysiologically recorded

single photon responses and simulated single photon responses, and it also has some

implications for the mathematical interpretation of the single photon response with

its surprisingly low variability.
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5 | Discussion

In this chapter, I will discuss the significance of the changes of the models and the

new results presented in this thesis.

The type of modelling we chose for the phototransduction cascade was a compre-

hensive modelling approach based on the biochemical reactions of the cascade. We

used mass-action kinetics for the reaction equations, which also includes the well-

stirred assumption: the molecular species are equally distributed throughout the

reaction volume and there is no spatial dependence. Any change in concentrations

or molecule numbers is instantaneous.

The alternative would have been space-resolved simulations. Both approaches

have some distinct advantages and disadvantages: The mass-action approach has

the disadvantage that space-dependent phenomena, such as diffusion or organized

molecular structures, cannot be easily simulated. Furthermore, if we are simulat-

ing a local phenomenon in a larger reaction volume, the results will not be accurate

since the localized concentrations are spread out over the entire reaction volume,

as will be discussed later.

On the other hand, in space-resolved models, simplifications need to be made

because of a lack of information about the interacting species or to save computa-

tional effort, which is large compared to mass-action based modelling. We do not

need to make these simplifications in a mass-action based model and can therefore

perform fully explicit simulations of all the relevant interacting species.

This also means that we can perform simulations of conditions equivalent to ge-

netically modified animals by making the same changes in our model. It provides

a consistency check for our model: if we are able to reproduce the same results in

our experiment, it means that our model faithfully recreates the underlying mech-

anisms. Furthermore, it can also help to show a potential for improvement of the

model: if some effect is not correctly reproduced, this means that the underlying

mechanism in the model is not correctly implemented. This could be because the

simplifying assumptions of the modelling are incorrect, or because some (unknown)

mechanism is still missing in the model.
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5.1 Deterministic modelling

The new deterministic model is based on the Invergo 2014 mouse model, with an

update of the effector as described in chapter 3. Both the Invergo 2014 model and

the new model are able to reproduce many different salient effects of phototrans-

duction in rods: responses to brief flashes of varying intensities, light adaptation

phenomena, and altered responses in knockout animals. For the deterministic

investigations, I used the Invergo 2014 model and the new model.

5.1.1 Bright light stimuli: Comparison to experiment

First of all, let us discuss the comparison of the new model with the experimen-

tally recorded traces from our collaborators, Sabrina Asteriti and Lorenzo Can-

giano from the University of Pisa. The experimental light stimulus consisted of

a background with five superimposed flashes of increasing intensities. There were

four different background intensities, starting at zero. The flashes ranged from

dim to saturating. We developed this stimulus paradigm to investigate brief flash

responses, light adaptation and saturation.

As described in section 3.3, I simulated light responses with the same paradigm for

comparison to the experimental data. The experimental traces were recorded in

∆U , the change in membrane potential, while the simulated responses are in ∆J ,

the photocurrent. Our collaborators measured the complex impedance, but this

only allowed us to convert small signals, and the brighter flashes were too bright

to be accurately converted. Thus, we compared the experimental results in ∆U to

the simulated results in ∆J . For the dim flash responses discussed later, we did

use the conversion procedure.

When we compared the simulated and the experimental data, as shown in fig-

ure 3.14, we noticed that the dynamics were qualitatively reproduced: the back-

grounds led to a faster response decay for the flashes, which was more pronounced

the brighter the background was. However, the simulated responses took longer

to shut off. This was also visible when comparing the time spent above half the

maximum amplitude, Thalf : the qualitative reduction of Thalf by the backgrounds

was reproduced, but the Thalf were generally longer. This discrepancy could have

several explanations:

It could be that there are shut-off and light adaptation mechanisms that are not

included in the model, such as the action of calmodulin, which regulates the cGMP-

sensitivity of the cyclic nucleotide-gated channels. Another light adaptation mech-
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anism is the long-term migration of species such as arrestin between the outer

and inner segment. This is also not included in the model. Furthermore, there

is evidence suggesting that the current picture of phototransduction is lacking a

feedback on the level of the effector, as is discussed in section 3.4. This could also

be responsible for the observed differences.

Another reason for the difference could be that we are comparing ∆U , the photo-

voltage, with ∆J , the photocurrent. We would expect the traces for ∆J to have a

faster rising phase, but a slower shut-off than ∆U , because the rod behaves like a

band-pass filter. Thus, the difference between ∆U and ∆J would be a correction

that brings the experimental data closer to the simulated data.

Furthermore, the origin of the model is an amphibian model, which has slower

response kinetics. The slower kinetics compared to the experimental data could

be a remnant of the origin of the model, which means that more parameters would

have to be adapted for a better fit.

Finally, the Invergo 2014 model (on which this model is based) was adapted to

fit electrophysiological recordings of flashes in single cells from a chopped retina,

while the data presented here are from an intact retina, which could also have an

influence on the kinetics.

In summary, the model does reproduce the qualitative features of the responses

to the new bright flash paradigm. But there is a discrepancy in the timing of the

shut-off of the responses. By further adapting the mechanisms and parameters of

the model, it could be possible to bring the results closer together. Furthermore,

it is possible to extend the model to also include a simulation of the change in

membrane potential, like the modelling done in (Kamiyama et al., 2009). This

could help elucidate the differences between photovoltage and photocurrent.

5.1.2 Light adaptation

Because our model is comprehensive, we can study the consequences of the removal

of species or mechanisms quite easily. To investigate its significance, I removed

a mechanism that is important for light adaptation in section 3.2: the calcium

feedback on recoverin and the rhodopsin kinase. The recoverin can undergo a

calcium-dependent conformational change: in its calcium-bound form, it can bind

to the rhodopsin kinase and prevent it from phosphorylating rhodopsin. When

the calcium concentration is decreased as a consequence of the light response, the

recoverin releases the rhodopsin kinase, which then phosphorylates rhodopsin - an

important first step in the shut-off of the response.

In figures 3.7 and 3.11, we compared the response to a prolonged background and a
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saturating stimulus between two different models: the normal model, and a model

where this precise calcium feedback mechanism had been removed. In the normal

model, light adaptation was apparent: the brighter the background was before the

saturating flash, the shorter a time was spent in saturation after the flash. In the

model without the calcium feedback, the effect of light adaptation vanished: all

curves superimposed during the shut-off, regardless of the background intensity.

This means that the calcium feedback on recoverin and the rhodopsin kinase is

essential for light adaptation for the type of light stimuli presented here. The

reason is that, during the prolonged background, the feedback leads to the release

of more rhodopsin kinase, which is then ready to phosphorylate the rhodopsin

activated by the saturating flash and to start the shut-off of the response more

rapidly. When we remove the feedback, this mechanism is no longer active: all

saturating flashes are terminated with the same kinetics.

This is an example where the modelling helps to elucidate the specific role of a

mechanism in the phototransduction cascade. In animal models, it would not be

as easy to do the same experiment, but in the simulations we can simply change

the reaction equations and examine the consequences.

5.1.3 Hypothesized calcium feedback on the effector

As explained in section 3.4, there is some indirect evidence pointing towards the

regulation of the PDE by some additional mechanism in a calcium-dependent way.

The rhodopsin kinase and/or recoverin are hypothesized to be responsible for this

feedback. The evidence mainly comes from studies of light responses in geneti-

cally modified animals (Chen et al., 2012), (Morshedian et al., 2018). However,

there is no direct biochemical evidence for an interaction of the rhodopsin kinase

or recoverin with the PDE. Furthermore, the interpretation of the results is not

straightforward: the results are from rods with a single or double genetic modifi-

cation, influencing a complex signal transduction cascade with feedback loops. It

is not immediately clear that there needs to be a rhodopsin kinase- and recoverin-

mediated feedback on the level of the effector.

Therefore, I investigated the same knockout conditions and stimulus paradigms to

see if I could reproduce the results with my model. As it stands, the model does not

include any additional feedback mechanism of calcium on the PDE. However, we

were able to reproduce the light adaptation results by (Morshedian et al., 2018).

The main result was that light adaptation was disrupted in recoverin knockout

rods. When we knock out the recoverin, we disrupt the calcium feedback on the

rhodopsin kinase and thus on the shut-off of rhodopsin. This is sufficient to explain
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the observed behaviour.

I furthermore implemented models with a 12-fold overexpression of the rhodopsin

kinase and a knockout of the recoverin and compared light responses in these model

to the normal model. As shown in figures 3.17 and 3.18, I was able to find the

same qualitative effects as in (Chen et al., 2012), again without any additional

calcium feedback on the PDE: τRec and τD were decreased in the mutant models

compared to the wild type.

From this, I conclude that, at least in our model, the hypothesized additional

feedback mechanism is not required to reproduce the presented results. Even

though the shut-off of the effector is believed to be rate-limiting in the normal

light response, this is not necessarily the case in genetically altered versions of

the phototransduction cascade. When the shut-off of rhodopsin is impaired, as

is definitely the case when overexpressing the rhodopsin kinase or knocking out

recoverin, this can significantly impact the response kinetics even without an ad-

ditional feedback on the PDE.

A way to extend the modelling to further investigate these effects would be to

actually include a calcium-dependent feedback on the PDE and investigate light

responses in the resulting model. This could be done by making the rate of the

shut-off of PDE (either with or without RGS) dependent on the calcium concen-

tration, the rhodopsin kinase, or the recoverin.

5.1.4 Disease modelling

The model can be used to simulate light responses in disease conditions to find out

more about the disease mechanism, if enough biochemical information about the

disease is available. We decided to investigate the disease mechanism for retinitis

pigmentosa and congenital stationary night blindness. Both diseases originate in

the rod cells, but have drastically different consequences: Congenital stationary

night blindness is not progressive and only causes night blindness and impaired

scotopic vision. Retinitis pigmentosa leads to the successive degeneration of rods

and cone cells, and thus to complete blindness. The cause of both diseases are

mutations in the phototransduction genes. I studied mutations of rhodopsin that

had consequences on the phototransduction cascade to find out more about the

precise disease mechanisms in section 3.5.

After a literature review, I decided to study abstractions of the real mutations

causing the disease, because they often cause a combination of disturbances in
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the cascade. I investigated mutant models with a larger or smaller activation of

transducin by activated rhodopsin, with a constitutive activation of the cascade

by opsin, and with a lower thermal stability of the activated rhodopsin.

The results showed that light responses were impacted by the different mutations,

see figures 3.19 to 3.21. For the mutants with a changed activation of transducin

by activated rhodopsin, light responses were equivalent to a higher or lower light

level, respectively. Most severely, the mutant with a consecutive activation of the

cascade by opsin showed an impacted light response after a bright flash, as the

produced opsin continues to activate the cascade. This also leads to disturbed

calcium levels in the cell.

For RP patients, the disturbed calcium dynamics could be a significant factor in

the degeneration of the cells: since people are rarely in complete darkness, there

is always opsin in the rods. For some patients, it has been observed that avoid-

ing bright light conditions may help to slow down the progression of the disease.

This could be due to the fact that avoiding bright light also means avoiding the

creation of a large amount of opsin in the rod, which would indirectly deregulate

the calcium level.

In summary, the model is a useful tool to investigate the consequences of mutations

on light responses, if the biochemical consequences of the mutation are known and

fall within the scope of the model.

5.2 Stochastic modelling with the old mouse and

amphibian model

A main update of the models was the conversion to stochastic models, which can be

used to perform stochastic simulations of dim light responses. This is important,

because we are interested in single photon response kinetics beyond the average

response shape: with deterministic simulations, the only information we get are

average kinetics and average molecule numbers of the single photon response. If

we want to study, e.g., trial-by-trial variability or amplitude statistics, we need to

perform stochastic simulations, which take into account the inherently stochastic

and random nature of systems with few interacting molecules.

For the single photon response, the stochasticity is important: one single rhodopsin

is activated and randomly shut off by the rhodopsin kinase and arrestin after a ran-

dom time. During this time, it can thus activate a random amount of G-proteins,
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which in turn activate a random amount of PDE. This results in a slightly different

single photon response realization each time a photon is absorbed.

Because the activated molecular species that influence the kinetics of the effector

are not very abundant, we need to simulate them stochastically. For the species

downstream of the effector, stochasticity is not so important: calcium and cGMP

are relatively abundant. Therefore, we split the models into a stochastic frontend

and a deterministic backend. We only had to delete one feedback mechanism when

doing so, but this had no consequences on the dim light responses we were inves-

tigating.

Using the thus created models, we were able to perform stochastic simulations of

single photon responses in the amphibian Dell’Orco 2009 model (Dell’Orco et al.,

2009) and the mouse model (Invergo et al., 2014). The differences in kinetics

between amphibian and mouse were obvious: the single photon responses in the

amphibian model were longer and had a larger amplitude. After simulating the first

single photon responses, we could use the models for some further investigations.

5.2.1 The role of the phosphorylation sites

For both of the models, I investigated the effect of removing some or all of the

available phosphorylation sites on the single photon responses in sections 4.1.1 and

4.2.1. This was studied experimentally in mice in (Doan et al., 2006), and the con-

clusion was that all phosphorylation sites are important for single photon responses

with a low variability. For each removed phosphorylation site, an increase in the

variability could be observed. The basic mechanism is that the phosphorylation

of rhodopsin decreases its affinity for transducin while increasing the affinity for

arrestin, and thus constitutes a multi-step shut-off. This leads to a decrease in

variability with each step available for the shut-off.

In our simulations, we were able to see a similar behaviour as (Doan et al., 2006)

in the amphibian model, as shown in figure 4.3. The variability of the single pho-

ton responses depended on the amount of available phosphorylation sites. Only

models with five to six available phosphorylation sites had single photon responses

with a normal variability and response duration.

However, when doing the same simulations in the mouse model, we were not able

to see the same effect for all phosphorylation sites: only two to three sites are

required for a normal variability and response duration, see figure 4.5.
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Why is the behaviour of this model so different from the amphibian model? One

possibility is the changed dependence of some reaction rates on the phosphory-

lation state. As described in 2.3.2, rhodopsin’s affinity for transducin, for the

rhodopsin kinase, and for arrestin depend on its phosphorylation state, and this

dependence has been changed in the transition from the amphibian to the mouse

model.

Another factor is the duration of the single photon response. Since the rhodopsin

is consecutively phosphorylated several times before the final shut-off, the dura-

tion is relevant for the number of phosphorylation sites that are actually occupied

during the single photon response. In the amphibian model, I could find runs of

the stochastic simulations of single photon responses where rhodopsin was consec-

utively phosphorylated up to six times. However, in the mouse model, rhodopsin

was only very rarely phosphorylated more than two times. Obviously, if the phos-

phorylation sites are only very rarely used during the single photon response, they

cannot contribute much to its variability or kinetics. In the mouse model, the com-

plete shut-off of rhodopsin by arrestin occurs a lot faster than in the amphibian

model, and thus the phosphorylation sites have less importance for the shut-off.

This effect is investigated more closely in section 4.3, where I removed some of the

phosphorylation sites to reduce the model.

To investigate the dependence of the variability of the single photon responses

on the number of available phosphorylation sites more quantitatively, it would be

possible to perform larger numbers of stochastic simulations and to compute the

coefficients of variation. However, this would be quite time-consuming since the

models are not reduced yet, unlike the later small version of the mouse model.

5.3 Update of the models and creation of the

small model

I attempted to update the mouse model to incorporate two major new insights.

The first is that fewer PDE molecules are activated during the single photon re-

sponse than originally expected, namely 12-14 transducin-PDE complexes instead

of ca. 100 (Yue et al., 2019). The second is that the main effector is the double-

activated form of the PDE, as the single-activated form has less than 2.5 % of the

full activity (Qureshi et al., 2018), (Lamb et al., 2018).

In the deterministic model, I was able to successfully include the first result by
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changing one previously adapted parameter governing the activation of the G-

protein by rhodopsin, as explained in section 3.1.1. This led to a decrease of the

number of activated PDE subunits from 110 to 13 during the single photon re-

sponse. This change in the model did not significantly impact the kinetics in all

stimulus conditions we tested.

However, it was not possible to also include the result that the main effector is the

double-activated PDE in the deterministic model. When investigating the com-

position of the effector in the Invergo 2014 model and the modified model with

fewer effector molecules, it became apparent that the effector is basically only

made up of single-activated PDE in those models. In the Invergo model, math-

ematically, one in 1012 of the effector molecules is double-activated, and in the

modified model, it is one in 1013. However, this is orders of magnitude fewer than

one double-activated PDE molecule, and the double-activation would thus never

occur in stochastic simulations of the model.

This discrepancy could not be removed by tuning the parameters, as it is due to a

general problem with the modelling framework: because we assume a well-stirred

volume, the concentrations of all molecules are effectively spread out over the en-

tire reaction volume, which is the entire outer segment. As the concentrations of

the single-activated PDE and the activated transducin are multiplied for the rate

of the activation of the double-activated PDE, this rate is very low.

Thus, for the deterministic model, we stayed with the modified model with fewer

activated PDE models. This model is able to accurately reflect the kinetic be-

haviour of the phototransduction cascade in many different light conditions and

for animals with genetic modifications, it is only inaccurate in its depiction of the

exact composition of the effector.

We were able to solve the problem of the double-activated effector for the stochastic

simulations by scaling down the model to a smaller reaction volume, as explained

in section 4.3. The new small model has a reaction volume of about two discs

- this fits to the diffusional range of the molecular species in the frontend of the

model, especially those that are constrained to the discs. The backend of the

model was not scaled down. Since this model was made for stochastic simulations

of single photon responses, we additionally removed a few molecular species and

reactions that were not necessary for the single photon responses, such as long-

term dimerization and tetramerization of arrestin.

In the thus simplified model, we were able to reach realistic numbers of double-

activated PDE molecules after scaling some of the previously adapted parameters.
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During the single photon response, typically, 12-14 double-activated PDE and

about 450 single-activated PDE are produced. This is now in agreement with the

results of (Yue et al., 2019) and (Qureshi et al., 2018), if we assume that the main

effector species is the double-activated PDE.

To arrive at this amount of double-activated PDE molecules, a relatively high

number of single-activated PDE molecules is required. In the model, we assume

that they contribute to the total effector with 2.5 % of the activity of the double-

activated PDE, which is the upper bound of the estimate by (Qureshi et al., 2018).

We thus arrive at a total effector of ca. 24. This is not unrealistic, especially since

the activity of the single-activated PDE could well be lower. However, the high

number of single-activated PDE molecules could be an artefact of the modelling

framework. In more accurate space-resolved simulations, a comparable number of

double-activated PDE molecules is reached with a much lower number of single-

activated PDE molecules (Lamb and Kraft, 2020). Still, we decided to stick with

our mass-action approach because of its versatility and the fast simulations it

allows.

5.4 Results in the small stochastic model

5.4.1 Comparison to electrophysiologically recorded single

photon responses

The best test for the stochastic model is a comparison to experimental data. First,

however, the experimental recordings have to be categorized: the recordings are

a mixture of failures to respond to the stimulus, where no photon was absorbed,

single photon responses, and multiple photon responses. This is simply due to

the quantized nature of the light at low intensities, and the pure chance of the

rod absorbing a photon or not. Since we do not know which traces correspond to

which type of response, we need to categorize them first, before we can analyse

the single photon responses.

For this categorization, we used the histogram method as described in section

4.4.1. The average response was scaled to each of the individual traces. This scal-

ing factor was then plotted in a histogram, where different peaks could be seen for

failures, single photon responses, and multiple photon responses. We then deter-

mined the border scaling factors between the types of responses by fitting a sum

of Gaussians function to the histogram.
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After categorizing the experimental recordings, we can do two main types of com-

parisons. First, we can compare the properties of the average single photon re-

sponse. These are for example the response shape and quantitative measures like

the time to peak. When we compared the average electrophysiologically recorded

single photon response to the average of the simulations in figure 4.18, we were able

to reproduce the general response shape well. However, the time to peak is larger:

tTTP = 0.19 s for the experimental data, and tTTP = 0.24 s for the simulations. In

my investigation of the origin of this delay, I found that it came from the activa-

tion of the PDE and the binding of the second transducin. Therefore, this delay is

probably an artefact from our modelling framework: in space-resolved simulations,

the activation of the PDE and the binding of the second transducin would be faster.

The second type of comparison we can do between the experimental and simulated

single photon responses is to investigate the statistical properties of the ensemble

of responses. Typically, the coefficients of variation of the amplitude and the area

are considered. They typically lie around 0.3 for single photon responses in mouse

rods (Hamer et al., 2005). For the electrophysiologically recorded responses, we

arrive at values of CVarea = 0.37 and CVamp = 0.23. For the simulated single

photon responses, we get values of CVarea = 0.87 and CVamp = 0.34. Thus, the

variability of the amplitudes is comparable, but the variability of the areas is too

high for the simulated single photon responses.

Where does this discrepancy arise from? There are different possibilities. First

of all, it is possible that the shut-off is less variable in reality than in the model.

This could be due to a different effect of the phosphorylations of rhodopsin, for

example. This will be discussed further when we consider the different knockout

models.

Furthermore, it could be due to the lack of an additional feedback on the level of

the effector which has been proposed in recent years and is discussed in section 3.4.

This feedback mechanism could also be responsible for a decrease in variability of

single photon responses.

Another reason for the deviation could be the subtraction of the dark noise’s vari-

ance when calculating the CV of the electrophysiologically recorded single photon

responses. The simulations do not have any dark noise, and it is thus not sub-

tracted, which could lead to a higher CV of the simulations. I tried to add dark

noise from the experimental data to the simulations, but the results were incon-

clusive, as the CV was not changed significantly (data not shown).
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There were a few issues when trying this: the experimentally recorded responses

have a much higher sampling frequency than the simulated responses, so it was

necessary to resample the noise to a lower sampling interval. Furthermore, it is

not clear whether the noise during the responses is as high as the dark noise. For

example, one noise source is the spontaneous activation of PDE molecules. Since

many PDE molecules are activated by transducin during the single photon re-

sponse, fewer of them are available to be activated spontaneously. Thus, the noise

from this source is lower during the response than in the dark - this would lead to

an actual reduction of the response variance when subtracting the dark variance.

In the model, a way to investigate this further would be to include the noise sources

in the model, by explicitly modelling the spontaneously activated PDE in a spon-

taneous activation reaction, whose rate does not depend on transducin. Further

noise sources could be included, for example measurement noise, after an analysis

of the noise from the recordings.

Finally, there is an effect of the categorization on the variability of the single pho-

ton responses. The simulated responses that we used for the comparison were all

true single photon responses, where the initial condition was set to one activated

rhodopsin molecule. The experimental single photon responses are categorized

single photon responses, which were categorized according to their rising phases

in the histogram method.

By simulating single photon responses with random initial conditions in section 4.6,

we were able to compare the true single photon responses to the categorized single

photon responses. We noticed that a few small single photon responses had been

miscategorized as failures, and a few small multiple photon responses had been

miscategorized as single photon responses, as shown in figure 4.28. The miscate-

gorization led to an overall decrease in the coefficients of variation, demonstrating

that the categorization procedure leads to an underestimation of the variability of

the single photon response.

This is an interesting result: when we evaluate dim light recordings, it is impos-

sible to know for certain which of the responses are true single photon responses.

The only option to analyse single photon responses is by categorizing them first,

but this already introduces a bias. By performing simulations with random initial

conditions and doing the exact same procedure of categorization, we were able to

conclude that this procedure leads to an underestimation of the variability and

therefore needs to be taken with a grain of salt.
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5.4.2 Knockout models

Next, we can use the model to simulate different knockout conditions. This allows

us to check whether the model reproduces experimental results and is robust to

changes in the kinetics. We did this comparison for the stochastic mouse model

based on the Invergo 2014 model and for the new small model in sections 4.2.2

and 4.3.1.

When we compared the single photon responses in different knockout conditions,

we saw that the models are able to faithfully reproduce the salient features of the

rhodopsin kinase knockout, the completely substituted mutant of rhodopsin, and

the GCAPs knockout (see figures 4.6 and 4.11). This shows that the models are

robust in predicting the shut-off of the response when rhodopsin cannot be phos-

phorylated and when the guanylate cyclase is not regulated in a calcium-dependent

manner.

However, for the arrestin knockout, there was a discrepancy: the response did not

decrease as strongly as in the experiment after the maximum was reached. This

could be due to different mechanism that are not correctly implemented in the

model, or that are missing.

In the arrestin knockout, rhodopsin’s activity is only shut off by rhodopsin be-

ing phosphorylated. It is possible that the decrease in rhodopsin’s activity due

to phosphorylations is underestimated in the models, and the role of arrestin is

overestimated. Another possibility lies in a splice variant of arrestin that is also

present in mouse rods, named p44. P44 is identical to arrestin in sequence, except

for the last 35 amino acids. There is some evidence that it can also interact with

rhodopsin, see (Pulvermüller et al., 1997). If p44 is also involved in the shut-off

of the response, it would still be present and active in the experimental knockout.

However, in the simulations, there is no p44 in the models and all the activity

by any type of arrestin is deleted in the knockout model. This could explain the

difference in shut-off we observed.

In summary, the model is quite robust when simulating different knockout condi-

tions. We are able to reproduce most of the salient features of the knockout. The

only issue where a further development of the model is necessary is the knockout of

arrestin. Future perspectives could be a review of the effect of the phosphorylations

on the activity of rhodopsin, or the addition of p44 into the model.
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5.4.3 Precoupling

By changing the initial condition in the model, we were able to investigate the

effect of precoupling in section 4.5. We compared simulations of single photon

responses with two different initial conditions: one activated rhodopsin that is not

precoupled to transducin, or one that is already precoupled to transducin. In de-

terministic simulations, the difference between the two initial conditions was very

small, as shown in figure 4.20. The time to peak was slightly faster for the pre-

coupled initial condition, but there was no large effect on the amplitude or time

to peak.

This is surprising at a first glance, since the precoupled condition should give an

advantage: after all, the first transducin is already bound to rhodopsin and can

thus be activated faster than in the non-precoupled case. However, a large num-

ber of activated G-proteins is required to achieve a sufficiently high number of

double-activated PDE molecules in this model. Thus, the effect of one transducin

that is activated earlier is vanishingly small compared to the total of 458 activated

transducin molecules. Our investigation further showed that the effect from the

precoupling vanishes very quickly, after one simulation step of 1 ms.

To investigate this effect without the constraints of the modelling framework,

space-resolved simulations would be beneficial. These might yield the same amount

of double-activated PDE molecules without the need for such a large number of

activated G-proteins, and thus one more activated G-protein could have a much

larger effect.

In the stochastic simulations, we were however able to see that there is a difference

in the variability of the single photon responses resulting from the different initial

conditions: as shown in figure 4.24, the precoupling leads to slightly sharper dis-

tributions of the single photon response amplitudes and areas, which could have

a beneficial effect for phototransduction. In order to reliably detect single photon

response stimuli, when only few rods produce a signal, downstream neurons need

to sort out responses from noise. This is probably done by amplitude thresholding

(Field and Rieke, 2002), which is why reproducible amplitudes would be beneficial

for the detection of single photon stimuli. Again, this effect could be much larger

in a model where fewer transducin molecules are activated. Thus, for a further

investigation of these promising initial results, space-resolved simulations would

be necessary.

132



5.5. CONCLUSION

5.5 Conclusion

To conclude, the mass-action kinetics-based modelling performed here is a power-

ful tool to simulate light responses in many different conditions: light conditions

ranging from single photon responses to bright flashes and light adaptation, as

well as genetically altered conditions to mimic the effects in knockout animals or

in disease conditions.

In deterministic simulations, I compared the model to novel experimentally recorded

responses. I further investigated a relevant mechanism for light adaptation, namely

the calcium feedback on the rhodopsin kinase and recoverin, which regulates the

shut-off of rhodopsin. By investigating models with altered expression levels of the

rhodopsin kinase and recoverin, I was able to demonstrate that there is no need in

the model for an additional feedback on the shut-off of the effector to explain new

results which had pointed in that direction. By modelling different generalized

mutants of retinitis pigmentosa, I could show that calcium levels are impacted,

especially when opsin is constitutively active. This could help explain the disease

phenotype of cell death.

I updated the model to more accurately reflect new results concerning the precise

nature and number of the effector and created stochastic versions of two pre-

existing models and a new stochastic model. Using these models, I was able to

investigate different effects in dim light responses. First of all, I investigated the

role of the amount of phosphorylation sites of rhodopsin on the variability of single

photon responses. Surprisingly, the results were quite different in the amphibian

and the mouse model: in the amphibian model, all six phosphorylation sites were

required for a low variability, while in the mouse model, only two to three were

needed.

I also compared the simulated single photon responses in the new model to novel

electrophysiologically recorded responses. The response shape was very similar,

but the time to peak was a little slower in the simulated data. Furthermore,

the coefficient of variability of the amplitude is comparable, but the coefficient

of variability of the area is higher in the simulated data. I was however able

to show that the categorization typically used for experimentally recorded dim

light responses leads to an underestimation of the variability of the single photon

response. For this, I performed stochastic simulations with randomized initial
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conditions and categorized the responses in the same way as the experimental

data.

I also compared single photon responses in different knockout conditions in the

stochastic mouse model and the new stochastic model to experimental results. For

the knockout of the GCAPs and the rhodopsin kinase as well as the completely

substituted mutant of rhodopsin, the results were consistent with the experiments.

However, for the arrestin knockout, we observed a difference in the shut-off of the

response.

Finally, I also investigated the effect of precoupling and was able to show that

single photon responses arising from precoupled rhodopsin exhibit less variability,

which could be beneficial for downstream signalling in the retina.
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In this appendix, I am listing the reaction equations, parameters, and initial con-

ditions making up the modified models I have worked with in this thesis. For the

original amphibian and mouse model, which these reaction equations and param-

eters are based on, see the supplementary information of (Dell’Orco et al., 2009)

and (Invergo et al., 2014), respectively.

Please note that R refers to non-activated rhodopsin, while Rn stands for activated

rhodopsin that has been phosphorylated n (up to six) times.

A.1 Stochastic amphibian model

This is the stochastic amphibian model created from the original deterministic

amphibian model. The reaction equations and parameters listed here are based

on the model presented in (Dell’Orco et al., 2009).

Table A.1: Reaction equations in the stochastic amphibian frontend model.

Nr. Reaction equation Rate

1 Rn + RK↔ Rn RKpre vf = kRK1,n · RK · Rn

vr = kRK2 · Rn RKpre

2 Rn RKpre → Rn+1 RKpost vf = kRK3,ATP · Rn RKpre

3 Rn+1 RKpost → Rn+1 + RK vf = kRK4 · Rn+1 RKpost

4 Arr + Rn ↔ Rn Arr vf = kA1,n · Arr · Rn

vr = kA2 · Rn Arr
5 Rn Arr→ Ops + Arr vf = kA3 · Rn Arr
6 Rn → Ops vf = ktherm · Rn

7 Gt + Rn ↔ Rn Gt vf = kG1,n ·Gt · Rn

vr = kG2 · Rn Gt
8 Rn Gt↔ Rn G vf = kG3 · Rn Gt

vr = kG4,GDP · Rn G
9 Rn G→ Rn GGTP vf = kG5,GTP · Rn G
10 Rn GGTP → Rn + GGTP vf = kG6 · Rn GGTP

11 GGTP → GαGTP + Gβγ vf = kG7 ·GGTP

12 PDE + GαGTP ↔ PDE GαGTP vf = kP1 · PDE ·GαGTP

vr = kP1rev · PDE GαGTP
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13 PDE GαGTP → PDE∗ GαGTP vf = kP2 · PDE GαGTP

14 PDE∗ GαGTP + GαGTP → GαGTP PDE∗ GαGTP vf = kP3 · PDE∗ GαGTP ·GαGTP

15 GαGTP PDE∗ GαGTP → GαGTP
∗PDE∗ GαGTP vf = kP4 ·GαGTP PDE∗ GαGTP

16 GαGTP
∗PDE∗ GαGTP → RGS GαGTP

∗PDE∗ GαGTP vf = kRGS1,RGStot ·GαGTP
∗PDE∗ GαGTP

17 RGS GαGTP
∗PDE∗ GαGTP → PDE∗ GαGTP + GαGDP vf = kRGS2 · RGS GαGTP

∗PDE∗ GαGTP

18 PDE∗ GαGTP → RGS PDE∗ GαGTP vf = kRGS1,RGStot · PDE∗ GαGTP

19 RGS PDE∗ GαGTP → PDE + GαGDP vf = kRGS2 · RGS PDE∗ GαGTP

20 PDE∗ GαGTP → PDE + GαGDP vf = kPDEshutoff
· PDE∗ GαGTP

21 GαGTP
∗PDE∗ GαGTP → PDE∗ GαGTP + GαGDP vf = kPDEshutoff

·GαGTP
∗PDE∗ GαGTP

22 GαGTP → GαGDP vf = kGshutoff
·GαGTP

23 Gβγ + GαGDP → Gt vf = kGrecyc ·Gβγ ·GαGDP

Table A.2: Reaction equations in the stochastic amphibian backend model.

Nr. Reaction equation Rate

24 Ca2+
free ↔ Ca2+

buff vf = k1 ·
(
eT − Ca2+

buff

)
· Ca2+

free

vr = k2 · Ca2+
buff

25 Ca2+
free → vf = γCa ·

(
Ca2+

free − Ca2+
0

)
26 → Ca2+

free vf = 106·fCa·Jdark

(2+fCa)·F ·Vcyto
·
(

cGMP
cGMPdark

)nCG

27 → cGMP vf = αmax

1+
(

Ca2+
free
KC

)m
28 cGMP→ vf = (βdark + βsub · E) · cGMP

Table A.3: Parameters in the stochastic amphibian frontend model.

Name Value

kRK1,n

{
kRK1,0 · e−ω·n n < 6

0 n = 6,

kRK1,0 7.643 · 10−3/s
ω 0.70635
kRK2 250/s
kRK3,ATP 400/s
kRK4 20/s
kA1,n n · kArr

kArr 8.4558 · 10−9/s
kA2 2.3 · 10−3/s
kA3 3.5 · 10−3/s
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ktherm 0.0238/s
kG1,n kG1,0 · e−ω·n
kG1,0 2.6456 · 10−5/s
kG2 2000/s
kG3 2000/s
kG4 600/s
kG5,GTP 750/s
kG6 2000/s
kG7 200/s
kP1 4.9834 · 10−4/s
kP1rev 0/s
kP2 58.7798/s
kP3 1.4981 · 10−5/s
kP4 200/s
kRGS1,RGStot 0.4710/s
kRGS2 256.07/s
kPDEshutoff

0.033/s
kGshutoff

8.25 · 10−4/s
kGrecyc 0.033/s

Table A.4: Parameters and variables in the stochastic amphibian backend model.

Name Value

k1 0.5/sµM
eT 400µM
k2 2.5/s
γCa 47.554/s
Ca2+

0 0.01µM
fCa 0.2
Jdark 29.7778 pA
F 96485.3415/cm
Vcyto 1 pL
cGMPdark 4µM
nCG 3

αmax βdark · cGMPdark ·
(

1 +
(

Ca2+
dark

KC

)m)
βdark 1.2/s
Ca2+

dark 0.6µM
KC 0.17µM
m 2.5
βsub 4.3 · 10−4/s
E PDE∗ GαGTP + GαGTP PDE∗ GαGTP + 2 ·GαGTP

∗PDE∗ GαGTP

J 2
2+fCa

·
(

cGMP
cGMPdark

)nCG

· Jdark + fCa

fCa+2
· Ca2+

free−Ca2+
0

Ca2+
dark−Ca2+

0

· Jdark

∆J Jdark − J
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Table A.5: Nonzero initial conditions in the stochastic amphibian frontend model.

Species Molecules

R0(0) 1
Gt(0) 3.6 · 108

PDE(0) 1.335 · 107

Arr(0) 3.13 · 107

RK(0) 10838

Table A.6: Nonzero initial conditions in the stochastic amphibian backend model.

Species Concentration

Ca2+
free(0) 0.6µM

Ca2+
buff(0) 42.857µM

cGMP(0) 4µM

A.2 Stochastic mouse model

This is the stochastic mouse model created from the original deterministic mouse

model. The reaction equations and parameters listed here are based on the model

presented in (Invergo et al., 2014).

Table A.7: Reaction equations in the stochastic mouse frontend model.

Nr. Reaction equation Rate

1 Rn + RK↔ Rn RKpre vf = kRK1,n · RK · Rn

vr = kRK2 · Rn RKpre

2 Rn RKpre → Rn+1 RKpost vf = kRK3,ATP · Rn RKpre

3 Rn+1 RKpost → Rn+1 + RK vf = kRK4 · Rn+1 RKpost

4 Arr + Rn ↔ Rn Arr vf = kA1,n · Arr · Rn

vr = kA2 · Rn Arr
5 Rn Arr⇒ Ops + Arr vf = kA3 · Rn Arr
6 Rn → Ops vf = ktherm · Rn

7 Gt + Ops↔ Ops Gt vf = kOps ·Gt ·Ops
vr = kG2 ·Ops Gt

8 Ops Gt↔ Ops G vf = kG3 ·Ops Gt
vr = kG4,GDP ·Ops G

9 Ops G→ Ops GGTP vf = kG5,GTP ·Ops G
10 Ops GGTP → Ops + GGTP vf = kG6 ·Ops GGTP

11 Gt + Rn ↔ Rn Gt vf = kG1,n ·Gt · Rn

vr = kG2 · Rn Gt
12 Rn Gt↔ Rn G vf = kG3 · Rn Gt

vr = kG4,GDP · Rn G
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13 Rn G→ Rn GGTP vf = kG5,GTP · Rn G
14 Rn GGTP → Rn + GGTP vf = kG6 · Rn GGTP

15 GGTP → GαGTP + Gβγ vf = kG7 ·GGTP

16 PDE + GαGTP ↔ PDE GαGTP vf = kP1 · PDE ·GαGTP

vr = kP1rev · PDE GαGTP

17 PDE GαGTP → PDE∗ GαGTP vf = kP2 · PDE GαGTP

18 PDE∗ GαGTP + GαGTP → GαGTP PDE∗ GαGTP vf = kP3 · PDE∗ GαGTP ·GαGTP

19 GαGTP PDE∗ GαGTP → GαGTP
∗PDE∗ GαGTP vf = kP4 ·GαGTP PDE∗ GαGTP

20 GαGTP
∗PDE∗ GαGTP + RGS→ RGS GαGTP

∗PDE∗ GαGTP vf = kRGS1 · RGS ·GαGTP
∗PDE∗ GαGTP

21 RGS GαGTP
∗PDE∗ GαGTP → PDE∗ GαGTP + GαGDP + RGS vf = kRGS2 · RGS GαGTP

∗PDE∗ GαGTP

22 PDE∗ GαGTP + RGS→ RGS PDE∗ GαGTP vf = kRGS1 · RGS · PDE∗ GαGTP

23 RGS PDE∗ GαGTP → PDE + GαGDP + RGS vf = kRGS2 · RGS PDE∗ GαGTP

24 PDE∗ GαGTP → PDE + GαGDP vf = kPDEshutoff
· PDE∗ GαGTP

25 GαGTP
∗PDE∗ GαGTP → PDE∗ GαGTP + GαGDP vf = kPDEshutoff

·GαGTP
∗PDE∗ GαGTP

26 GαGTP → GαGDP vf = kGshutoff
·GαGTP

27 Gβγ + GαGDP → Gt vf = kGrecyc ·Gβγ ·GαGDP

28 Arr + Arr↔ Arrdi vf = kA4 · Arr · Arr
vr = kA5 · Arrdi

29 Arrdi + Arrdi ↔ Arrtetra vf = kA4 · Arrdi · Arrdi

vr = kA5 · Arrtetra

Table A.8: Reaction equations in the stochastic mouse backend model.

Nr. Reaction equation Rate

30 Ca2+
free ↔ Ca2+

buff vf = k1 ·
(
eT − Ca2+

buff

)
· Ca2+

free

vr = k2 · Ca2+
buff

31 Ca2+
free → vf = γCa ·

(
Ca2+

free − Ca2+
0

)
32 → Ca2+

free vf = 106·fCa·Jdark

(2+fCa)·F ·Vcyto
·
(

cGMP
cGMPdark

)nCG

33 → cGMP vf = αmax

1+
(

Ca2+
free

KC1

)m
1

+ αmax

1+
(

Ca2+
free

KC2

)m
2

34 cGMP→ vf = (βdark + βsub · E) · cGMP
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Table A.9: Parameters in the stochastic mouse frontend model.

Name Value

kRK1,n

{
kRK1,0 · e−ω·n n < 6

0 n = 6

kRK1,0 0.1724/s
ω 2.5
kRK2 250/s
kRK3,ATP 4000/s
kRK4 250/s

kA1,n

{
kArr + (n− 1)mArr n ≤ 4

kArr + 3mArr n > 4

kArr 9.9147 · 10−6/s
mArr 9.5475 · 10−6

kA2 0.026/s
kA3 1.1651/s
ktherm 0.0238/s
kOps 6.1172 · 10−13

kG2 2200/s
kG3 8500/s
kG4 400/s
kG5,GTP 3500/s
kG6 8500/s
kG1,n kG1,0 · e−ωG·n

kG1,0 1 · 10−3/s
ωG 0.6
kG7 200/s
kP1 0.05497/s
kP1rev 0/s
kP2 940.7/s
kP3 1.4983 · 10−9/s
kP4 21.088/s
kRGS1 4.8182 · 10−5/s
kRGS2 98/s
kPDEshutoff

0.1/s
kGshutoff

0.05/s
kGrecyc 2/s
kA4 2.9965 · 10−7/s
kA5 0.424/s
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Table A.10: Parameters and variables in the stochastic mouse backend model.

Name Value

k1 9.37059/sµM
eT 400µM
k2 46.412/s
γCa 981.356/s
Ca2+

0 0.023µM
fCa 0.12
Jdark 14.87 pA
F 96485.3/cm
Vcyto 0.03916 pL
cGMPdark 6.4944µM
nCG 3.8

αmax βdark · cGMPdark ·
(

1 +
(

Ca2+
dark

KC

)m)
βdark 3.19/s
Ca2+

dark 0.25µM
KC1 0.171µM
KC2 0.059µM
m1 3
m2 1.5
βsub 2.1826 · 10−3/s
E PDE∗ GαGTP + GαGTP PDE∗ GαGTP + 2 ·GαGTP

∗PDE∗ GαGTP

J 2
2+fCa

·
(

cGMP
cGMPdark

)nCG

· Jdark + fCa

fCa+2
· Ca2+

free−Ca2+
0

Ca2+
dark−Ca2+

0

· Jdark

∆J Jdark − J

Table A.11: Nonzero initial conditions in the stochastic mouse frontend model.

Species Molecules

R0(0) 1
Gt(0) 8.1525 · 106

PDE(0) 2 · 106

Arr(0) 1.26076 · 106

Arrdi(0) 1.1233 · 106

Arrtetra(0) 891810 · 106

RK(0) 580
RGS(0) 100000

Table A.12: Nonzero initial conditions in the stochastic mouse backend model.

Species Concentration

Ca2+
free(0) 0.25µM

Ca2+
buff(0) 19.2199µM

cGMP(0) 6.4944µM
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A.3 Updated deterministic mouse model

In the updated deterministic mouse model, most parameters were transferred di-

rectly from the mouse model from (Invergo et al., 2014), where a full list of param-

eters can be found in the supplementary information. Here is a list of the changed

parameters for the updated model.

Table A.13: Parameter changes in the updated deterministic mouse model.

Parameter Former Value New Value

kG3 8500/s 250/s
βsub 2.1826 · 10−3/s 0.019/s

A.4 Small stochastic model

The basis of the small stochastic model is the mouse model from (Invergo et al.,

2014). In the frontend, many reactions that were unnecessary for dim light re-

sponses were deleted or simplified, and some other reactions were modified. Fur-

thermore, the frontend model was scaled down by reducing molecule numbers and

scaling up the reaction rate constants accordingly. In the following tables, the new

reactions, initial conditions, and parameters as well as their scaling are listed.

The backend was directly transferred from the stochastic mouse model, as given

in tables A.8, A.10, and A.12, with one change: βsub was changed to 0.01/s.

Please note that the number of available phosphorylation sites was reduced to

three in this model, and therefore rhodopsin’s phosphorylation state n goes from

zero to three.
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Table A.14: Reaction equations in the small stochastic frontend model.

Nr. Reaction equation Rate

1 Rn + RK↔ Rn RKpre vf = kRK1,n · RK · Rn

vr = kRK2 · Rn RKpre

2 Rn RKpre → Rn+1 RKpost vf = kRK3,ATP · Rn RKpre

3 Rn+1 RKpost → Rn+1 + RK vf = kRK4 · Rn+1 RKpost

4 Arr + Rn ↔ Rn Arr vf = kA1,n · Arr · Rn

vr = kA2 · Rn Arr
5 Rn Arr→ Arr vf = kA3 · Rn Arr
6 R Gt→ Gt + R vf = kGpre2 · R Gt− kGpre1 · R ·Gt
7 Gt + Rn ↔ Rn Gt vf = kG1,n ·Gt · Rn

vr = kG2 · Rn Gt
8 Rn Gt↔ Rn G vf = kG3 · Rn Gt

vr = kG4,GDP · Rn G
9 Rn G→ Rn GGTP vf = kG5,GTP · Rn G
10 Rn GGTP → Rn + GGTP vf = kG6 · Rn GGTP

11 GGTP → GαGTP + Gβγ vf = kG7 ·GGTP

12 PDE + GαGTP ↔ PDE GαGTP vf = kP1 · PDE ·GαGTP

vr = kP1rev · PDE GαGTP

13 PDE GαGTP → PDE∗ GαGTP vf = kP2 · PDE GαGTP

14 PDE∗ GαGTP + GαGTP ↔ GαGTP PDE∗ GαGTP vf = kP3 · PDE∗ GαGTP ·GαGTP

vr = kP3rev ·GαGTP PDE∗ GαGTP

15 GαGTP PDE∗ GαGTP → GαGTP
∗PDE∗ GαGTP vf = kP4 ·GαGTP PDE∗ GαGTP

16 GαGTP
∗PDE∗ GαGTP + RGS→ RGS GαGTP

∗PDE∗ GαGTP vf = kRGS1 · RGS ·GαGTP
∗PDE∗ GαGTP

17 RGS GαGTP
∗PDE∗ GαGTP → PDE∗ GαGTP + GαGDP + RGS vf = kRGS2 · RGS GαGTP

∗PDE∗ GαGTP

18 PDE∗ GαGTP + RGS→ RGS PDE∗ GαGTP vf = kRGS1 · RGS · PDE∗ GαGTP

19 RGS PDE∗ GαGTP → PDE + GαGDP + RGS vf = kRGS2 · RGS PDE∗ GαGTP

20 PDE∗ GαGTP → PDE + GαGDP vf = kPDEshutoff
· PDE∗ GαGTP

21 GαGTP
∗PDE∗ GαGTP → PDE∗ GαGTP + GαGDP vf = kPDEshutoff

·GαGTP
∗PDE∗ GαGTP

22 GαGTP → GαGDP vf = kGshutoff
·GαGTP

23 Gβγ + GαGDP → Gt vf = kGrecyc ·Gβγ ·GαGDP
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In the following table, parameters that have been changed with respect to the

mouse model (and not only scaled) are marked in red.

Table A.15: Parameters in the small stochastic frontend model.

Name Unscaled value Scaling Scaled value

kRK1,n

{
kRK1,0 · e−ω·n n < 3

0 n = 3
/ /

kRK1,0 0.03103 ·580 18/s
ω 2.5 / 2.5
kRK2 250/s / 250/s
kRK3,ATP 4000/s / 4000/s
kRK4 250/s / 250/s
kA1,n kArr + (n− 1)mArr / /
kArr 9.9147 · 10−6/s ·580 5.751 · 10−3/s
mArr 9.5475 · 10−6 ·580 5.538 · 10−3/s
kA2 0.026/s / 0.026/s
kA3 1.1651/s / 1.1651/s
kGpre1 1.6 · 10−3 ·5802 538.4/s
kGpre2 6.93 · 105 ·580 4.019 · 108/s
kG1,n kG1,0 · e−ωG·n / /
kG1,0 2.5862 · 10−3 ·580 1.5/s
ωG 0.6 / 0.6
kG2 2600/s / 2600/s
kG3 85000/s / 85000/s
kG4 400/s / 400/s
kG5,GTP 12000/s / 12000/s
kG6 85000/s / 85000/s
kG7 200/s / 200/s
kP1 0.05497/s ·580 31.8826/s
kP1rev 100/s / 100/s
kP2 940.7/s / 940.7/s
kP3 0.05497/s ·580 31.8826/s
kP3rev 3000/s / 3000/s
kP4 940.7/s / 940.7/s
kRGS1 1.0344 · 10−4/s ·580 0.06/s
kRGS2 140/s / 140/s
kPDEshutoff

0.1/s / 0.1/s
kGshutoff

0.05/s / 0.05/s
kGrecyc 2/s / 2/s
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All initial conditions have been reduced by a scaling factor of 1/580, as given

below, except for the activated rhodopsin (R0(0) or the precoupled R0 Gt(0)).

Table A.16: Nonzero initial conditions in the small stochastic frontend model.

Species Molecules

R0(0) 0 or 1
R0 Gt(0) 0 or 1
R(0) 169228
Gt(0) 14056
R Gt(0) 3185
PDE(0) 3448
Arr(0) 2174
RK(0) 1
RGS(0) 172
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