
Carl von Ossietzky Universität Oldenburg
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Monitoring of Traffic Manoeuvres
with Imprecise Information

Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften

vorgelegt von

Heinrich Ody

Gutachter: Prof. Dr. Ernst-Rüdiger Olderog
Prof. Dr. Michael Reichhardt Hansen

Datum der Einreichung: 4. November 2019
Datum der Verteidigung: 27. März 2020

Abstract

There is a trend in developing more and more autonomous driver assistance
systems. For these systems it is difficult to be certain that they behave as
desired because of their wide range of responsibilities. Here, automation of
formal spatio-temporal reasoning about traffic manoeuvres can help to analyse
highly autonomous driver assistance systems.
Multi-Lane Spatial Logic is a logic tailored towards formal reasoning about

spatial aspects of motorways. For this logic we investigate means of automation,
while paying special attention to the nature of imprecise information when
working with sensor readings. We show the infeasibility of using the full power
of this logic in automated reasoning, even when we restrict the power of the
logic by assuming imprecise information. To achieve automation, we define an
extension of this logic for which automation of a relevant fragment is feasible.
We connect our extension to timed words and show how we can use our extension
to reason automatically about single traffic manoeuvres under consideration of
imprecise information. That is, we show how we can use Multi-Lane Spatial
Logic to perform monitoring of traffic manoeuvres with imprecise information.
However, often a Boolean yes/no analysis of systems is not sufficient. To

tackle this, we define an extension of the temporal logic Duration Calculus that
facilitates a quantification of how well a temporal property holds, i.e. it allows
for “beyond yes/no” analysis of real-time systems. We connect this to our work
on traffic manoeuvres by using the temporal logic to analyse a hazard warning
protocol for motorways.

i

Zusammenfassung

Fahrerassistenzsysteme werden immer autonomer und damit auch immer kom-
plexer. Dementsprechend wird es schwieriger sicher zu sein, dass ein autonomes
Fahrerassistenzsystem wie erwartet funktioniert. Hier kann automatisiertes
logisches Schließen für Verkehrsmanöver helfen, um hochautomatisierte Fah-
rerassistenzsysteme zu analysieren.

Multi-Lane Spatial Logic ist eine räumliche Logik, welche auf die Analyse von
Verkehrsmanövern spezialisiert ist. Für diese Logik untersuchen wir Möglichkei-
ten der Automatisierung unter Berücksichtigung von ungenauen Sensordaten.
Wir zeigen, dass im Allgemeinen automatisiertes logisches Schließen mit dieser
Logik nicht möglich ist. Dies gilt, selbst wenn wir die Ausdrucksfähigkeit der
Logik einschränken, indem wir annehmen, dass Sensordaten ungenau sind. Um
Automatisierung zu ermöglichen, definieren wir eine Erweiterung der Logik
und zeigen, dass für ein relevantes Fragment unserer Erweiterung Automati-
sierung möglich ist. Wir verbinden unsere Erweiterung mit Realzeitwörtern
und verwenden die entstehende Logik, um einzelne Verkehrsmanöver, unter
Berücksichtigung ungenauer Sensordaten, automatisiert zu analysieren.
Jedoch reichen boolesche ja/nein-Aussagen zur Systemanalyse häufig nicht

aus. Deshalb definieren wir eine Erweiterung der temporalen Logik Duration
Calculus, mit der man ausdrücken kann, zu welchem Grad eine temporale Eigen-
schaft erfüllt ist. Wir verbinden dies mit unserer Arbeit an Verkehrsmanövern,
indem wir unsere Erweiterung verwenden, um ein Gefahrenwarnprotokoll für
Autobahnen zu analysieren.

iii

Acknowledgements

First of all, I thank my advisor Ernst-Rüdiger Olderog for trusting me to let
me work on my thesis independently, for giving me guidance when I needed it
and for taking the time for in-depth discussions. Your careful and deliberate
approach at work has been an example to me.
Further, I thank Martin Fränzle, Michael Reichhardt Hansen and Astrid

Rakow for being members of my board of examiners and for seeing my disputation
through despite the corona chaos in Spring 2020. I am especially grateful to
you Martin: Without your efforts on clarifying the legal aspects of a virtual
disputation my defence could not have taken place. I also thank you for inviting
me to work with you and Michael on the paper for Ernst-Rüdiger Olderogs
Festschrift. I fondly remember our presentation, where Michael hid behind the
speaker’s desk. Furthermore, thanks to this collaboration I could visit Michael
in Denmark for an extended research visit, for which I am very grateful to you
Michael.
I thank you Annegret Habel for having me as your teaching assistant for

Theoretische Informatik II. I learned a lot from being your teaching assistant.
I thank Manuel Gieseking, Martin Hilscher, Sven Linker and Maike Schwamm-

berger for the many discussions and the proof reading. For the discussions I
especially want to thank you Manuel. I always had the feeling that I could
discuss every topic with you and that I learned a lot from our discussions.

For the time spend together and the interesting discussions I thank Christopher
Bischopink, Evgeny Erofeev, Nils Erik Flick, Thomas Hujsa, Christoph Peuser,
Mani Swaminathan and Nick Würdemann. I like to remember Columbia,
Dagstuhl, the poker rounds and the shared evenings.
I am grateful to Marion Bramkamp, Nicolai Degen, Andrea Göken, Mark

Kettner, Patrick Uven and Ira Wempe for their help with administrative and
technical issues. I am especially grateful to you Ira, for the support with business
trips. For example, I remember when I made a mistake with the bills for the
reimbursement and you smoothly resolved the problem.
In general, I thank all associates of the theoretical computer science depart-

ment for the nice and open lunch breaks.

v

Furthermore, I thank Bayram Kiran and Krishna Narasimhan for our many
trips together. I love that I can discuss everything with you.
I thank Sören Dierkes, Renke Grunwald and Vincent Hamann for our many

board game evenings.
Lastly, and most importantly I thank my long time girlfriend Ludmila

Tsesarska. You have always believed in me, even when I had doubts about the
feasibility of my work. Without you I could not have completed this dissertation.

vi

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Basic Concepts . 5
2.2 Timed Automata . 14
2.3 Multi-Lane Spatial Logic . 19
2.4 First-Order Theories . 28

3 Satisfiability of Spatial Properties with Precise Information 33
3.1 Undecidability of Satisfiability of MLSL 34
3.2 Multi-Lane Spatial Logic with Scope 52
3.3 Satisfiability of MLSLS . 73
3.4 Decidability of Model Problem for MLSLS 112
3.5 Related Work . 117

4 Satisfiability of Spatial Properties with Imprecise Information 119
4.1 Undecidability of Robust Satisfiability 120
4.2 Proving Undecidability of Robust Satisfiability of MLSL 126
4.3 Decidability of Robust Model Problem for MLSLS 140
4.4 Related Work . 145

5 Monitoring of Spatio-Temporal Properties with Precise Information 149
5.1 Timed Words and MLSLS . 150
5.2 Monitoring Global Properties 161
5.3 Correctness of our Encoding . 170
5.4 Related Work . 177

vii

Contents

6 Monitoring of Spatio-Temporal Properties with
Imprecise Information 179
6.1 Monitoring Global Properties with Imprecise Information . . . 179
6.2 Discussion . 195
6.3 Related Work . 196

7 Model Checking Temporal Properties with a
Multi-Valued Semantics 199
7.1 Discounted Duration Calculus 200
7.2 Approximate Model Checking 204
7.3 Examples . 222
7.4 Related Work . 237

8 Conclusion 241
8.1 Summary . 241
8.2 Future Work . 242

Bibliography 245

Index of Symbols 257

Index of Subjects 261

viii

1 Introduction
Recently many companies started to test their autonomously driving cars on the
road [GAA+12]. So far, a human always has to be ready to intercept, should
problems arise [WHL+15]. One stimulus that caused this surge of interest in
autonomously driving cars was the DARPA Urban Challenge in 2007. One goal
of developing autonomously driving cars is to make the roads safer and reduce
the number of traffic deaths, which was 1.35 million people in 2018 [WHO18].
Other goals include increasing road efficiency, increasing passenger comfort and
cost reduction [MGL+15].

However, to be usable the safety of the driving system, consisting of hardware
and software, needs to be certified. An autonomously driving car needs to
perceive its environment, identify the relevant traffic participants and their
intentions, decide a course of action that leads to the achievement of its mission
while obeying local traffic laws and ensuring its own safety and the safety of
other traffic participants [WHL+15]. Adding to that, autonomously driving
cars combine digital computation and control with physical movement, which
makes them cyber-physical systems [Pla18]. Furthermore, the environment of
the car consists of other traffic participants, which are constantly leaving and
entering the vicinity of our car. Thus, we have a dynamically changing system
of systems. As controllers of autonomously driving cars evidently are highly
complex and need to satisfy a wide range of constraints, some of which are
safety critical, formal methods should be used to analyse autonomously driving
cars.

Multi-Lane Spatial Logic (MLSL) is a logic tailored towards spatio-temporal
reasoning of autonomously driving cars in an abstract manner [HLO+11; LH15;
Lin15]. At first, the logic was restricted to reason about cars on a motorway.
However, this has been extended to reasoning about cars on streets with bidirec-
tional traffic [HLO13] and to urban traffic [Sch18a]. A typical spatio-temporal
property easily expressible with MLSL is

“there are never two cars occupying overlapping space” . (1.1)

MLSL has been used to manually prove the safety of controllers given as

1

1 Introduction

automata [HLO+11; Sch18a], or as MLSL formulas [Lin15].
However, often it is not sufficient to simply check if a system, such as an

autonomously driving car, satisfies a property. Instead, we want to quantitatively
compare systems. For temporal properties there has been a lot of work on
quantifying how robustly a system satisfies a property [DM10; FH05; SFK08;
FP09]. A system satisfies a property robustly if small perturbations do not
affect the satisfaction. This robust satisfaction of properties allows us to transfer
properties shown in the formalism to properties of the physical world. But this
does not give the means to quantitatively analyse how early a desired event
occurs. This has been termed as temporal quality [ABK14; dHM03; dFH+05].
For an example consider the property

“soon all cars are informed of the hazard on the motorway” . (1.2)

In economics, discounting represents that money earned earlier is worth more
than money earned later. To formalise reasoning about the temporal quality
of systems, discounting has been introduced into discrete time temporal logics
[ABK14; dHM03; dFH+05]. The idea is to let formulas evaluate to a real-valued
truth value from the interval [0, 1]. Then, the longer we have to wait for a
desired event, the closer the resulting truth value will be to 0.

Contributions

In this thesis we are mainly interested in whether automation of specific problems
is possible for our formalism of interest and how we can tweak the problem to
make it possible. We outline the contributions of this thesis. We

1. show that a variation of the classical satisfiability problem for MLSL
properties is undecidable. For this we reduce the language emptiness
problem of the intersection of two context-free languages to the adapted
satisfiability problem of MLSL.

2. then extend the previous result to show that the undecidability of MLSL
is not an artefact of infinite precision. That is, we show that even with
imprecise information the variation of the satisfiability problem remains
undecidable.

3. define an extension of MLSL and find a fragment where the original
satisfiability problem and our modified satisfiability problem are decidable.
We define an algorithm to check if a given model satisfies a given formula

2

1 Introduction

of our extension of MLSL. To prove this algorithm correct we define
operations on MLSL models to combine and restrict models.

4. extend MLSL to be able to express spatio-temporal properties about single
traffic manoeuvres, rather than all behaviours of a controller. For temporal
logics this is called monitoring [MN04]. Considering single behaviours
instead of the complete behaviour of a controller is useful, e.g. to reduce
the complexity of the problem to facilitate automation. We develop an
algorithm to automate monitoring for MLSL. To prove correctness of this
algorithm we extend our aforementioned operations on MLSL models to
this case.

5. extend the algorithm of Item 4 to consider imprecise spatio-temporal
information in traffic manoeuvres. That is, we formalise what it means
for the Equation (1.1) to hold robustly.

6. extend the kind of temporal properties expressible for autonomously
driving cars. We introduce discounting into a variation of the dense time
temporal logic Duration Calculus [ZHR91]. In our logic we can formalise
properties such as the one in Equation (1.2) for dense time systems. While
model checking for Duration Calculus usually is undecidable [ZHS93], it
becomes decidable for a relevant fragment of our logic, where we use timed
automata [AD94] as models.

Structure of this Thesis

In Table 1.1 we show the structure of this thesis. The table shows the general
setting of each chapter and on which of our peer-reviewed publications the
chapter is based on. Note that we present the preliminaries in Chapter 2 and
the conclusion in Chapter 8. Further, we provide related work at the end of
each chapter.

3

1 Introduction

Table 1.1: Overview over the assumptions on data, the properties considered
in each chapter, and where the basis of the chapters is published.
With a Boolean semantics properties are either satisfied, or not. A
multi-valued semantics quantifies how strongly a property is satisfied.

chapter data property semantics based on

3 precise spatial Boolean [Ody15b; FHO15]
4 imprecise spatial Boolean [Ody15b]
5 precise spatio-temporal Boolean [Ody17]
6 imprecise spatio-temporal Boolean [Ody17]
7 precise temporal multi-valued [OFH16]

4

2 Preliminaries

In this chapter we introduce the concepts this thesis is based on. In Section 2.1
we introduce some mathematical notation and structures, in Section 2.2 we
define a variation of timed automata, in Section 2.3 we introduce Multi-Lane
Spatial Logic and in Section 2.4 we present some arithmetic first-order theories.

2.1 Basic Concepts
We use ≡ to denote syntactic equality. Commonly we use ≡ to define syntactic
abbreviations of formulas, i.e. in propositional logic for atomic propositions
Q,P we write ψ ≡ P ∧Q to define an abbreviation for P ∧Q. In contrast to
this we use = to express semantic equality, i.e. in arithmetic 3 = 2 + 1 holds as
2 + 1 evaluates to 3, while 3 ≡ 2 + 1 does not hold as the term 3 and the term
2 + 1 are syntactically different.

Often we use multi-letter names to abbreviate formulas, e.g. the formula
step. We write these abbreviations in sans serif font, to make clear that they
are mathematical symbols. Variables are written in slanted italics, e.g. x and i.
Also we always write numbers in roman upright font and annotations that are
themselves not variables or numbers in sans serif, for example D.
For a set S we denote the powerset of S with P(S). For a finite set S we

denote its size, or the number of elements S contains, with |S|. Further, for
two sets S, S′ we use common operations on sets such as the union (S ∪ S′),
intersection (S ∩ S′), difference (S \ S′) and complementation (S) with their
usual meaning.

With N we denote the set of natural numbers including 0. With R we denote
the real numbers and with Q the rational numbers. With N≥1 we denote the
natural numbers greater or equal than 1, and similarly for other notations like
R>0.
For a tuple (x1, . . . , xn) ∈ X1 × · · · ×Xn we use set(x1, . . . , xn) to refer to

the set {x1, . . . , xn}.

5

2 Preliminaries

2.1.1 Z Notation
We use several operators as defined in Z Notation [Spi92]. For a tuple (x, y)
with arbitrary x, y let first (x, y) = x and second (x, y) = y. For the following
definitions let X,Y, S be arbitrary sets and R ⊆ X × Y . Then the domain of R
(denoted domR) is the subset of X that is related through R to Y , i.e. domR =
{x | x ∈ X ∧ ∃y ∈ Y. (x, y) ∈ R} or equivalently domR = {first (x, y) | (x, y) ∈
R}. Similarly, the range of R (denoted ranR) is the set of all elements from Y
that are related to X through R, i.e. ranR = {y | y ∈ Y ∧ ∃x ∈ X. (x, y) ∈ R}
or equivalently ranR = {second (x, y) | (x, y) ∈ R}.
We define domain restriction and range restriction of a relation, together

with the corresponding anti-restriction, as

S CR = {(x, y) | (x, y) ∈ R ∧ x ∈ S} ,
RB S = {(x, y) | (x, y) ∈ R ∧ y ∈ S} ,
S −CR = (X \ S)CR ,

R−B S = RB (Y \ S) .

The inverse of a relation R (denoted with R∼) is defined as R∼ = {(y, x) |
(x, y) ∈ R}. We use the relational image RLSM = ran(S C R). For relations Q
and R we use the override operation Q⊕R = ((domR)−CQ) ∪R. That means,
Q⊕R relates like R and additionally, relates everything not in the domain of R
like Q. For two relations R ⊆ X × Y,Q ⊆ Y × Z we define the composition of
R and Q (denoted Q ◦R) as Q ◦R = {(x, z) | x ∈ X ∧ z ∈ Z ∧ ∃y ∈ Y. ((x, y) ∈
R ∧ (y, z) ∈ Q)}.
For two sets S1, S2 we write S1] S2 to consider the union of the two sets

while stating at the same time that S1 ∩ S2 = ∅ holds. For tuples of relations
t = (R1, . . . , Rn) and t′ = R′1, . . . , R

′
n we define t] t′ = (R1]R′1, . . . , Rn]R′n).

Further, we define t C S = (R1 C S, . . . , Rn C S). Similarly, we use −C,∩ on
tuples of relations.
We shall use operations on relations, e.g. domain restriction and disjoint

union, also on functions.
A sequence is a partial function s : N≥1 → S for some set S. The domain

of a sequence is a list of consecutive natural numbers starting with 1, i.e.
dom s = {1, . . . , k} for some k ∈ N. We denote for example the sequence of
numbers from 1 to 10 with 〈1, 2, 3, . . . , 10〉 and we denote the empty sequence
with 〈〉. Let s be a sequence. With #s we denote the length of the sequence, i.e.
#s = | dom s|. Furthermore, for sequences s1, s2 and an element x we define

6

2.1 Basic Concepts

prepending and appending of elements, and concatenation of sequences as

x :: s1 = {1 7→ x}] {i+ 1 7→ s1(i) | i ∈ dom s1} ,
s1 :: x = s1] {1 + #s1 7→ x} ,
s1 · s2 = s1] {i+ #s1 7→ s2(i) | i ∈ dom s2} .

Let s be a nonempty sequence. We define the first and last element of s with
head s = s(1) and last s = s(#s). The sequences without its first (resp. last)
element are defined as front s = {#s} −C s and tail s = {i 7→ s(i + 1) | i ∈
{1, . . . ,#s− 1}}. Additionally, for i ∈ N and a sequence s let s[..i] be the prefix
of s of length min(i,#s) and for j ∈ N\{0} let s[j..] be the suffix of s starting at
j, i.e. the suffix of length max(0,#s− i+ 1). We point out that for all sequences
s we have s[1..] = s, s[#s + 1..] = 〈〉, s[..0] = 〈〉 and s[..#s + 1] = s. For two
sequences s, s′ we say that s is a subsequence of s′ iff we can generate s from
s′ by removing elements from s′. Formally, s is a subsequence of s′ iff there is
a set N ⊆ N such that N −C s′ = s. For some set S we denote with SeqS the
set of all sequences over S and with Seq≥1 S the set of all nonempty sequences
over S. Finally, we lift the operations on sequences to operations on tuples of
sequences, where we assume that the sequences in such a tuple all have equal
length.

2.1.2 Words and Languages
For an alphabet Σ we call a set L ⊆ Σ∗ a language, where ∗ is the Kleene
star. Let L1, L2 be languages. We use operations common in formal languages
like concatenation (denoted L1 · L2), union (denoted L1 ∪ L2), intersection
(denoted L1 ∩ L2) and complementation (denoted L1). We call an element of a
language a word. Words and sequences are very similar in that we join objects
from a set in a specific order. Hence, we sometimes use notations defined for
sequences also with words. As an example, as in Z notation we denote the
length of a word w with #w. For u,w ∈ Σ∗ we define the prefix relation as
u v v = ∃w ∈ Σ∗. uw = v. Then u @ v iff u v v and u 6= v. For an alphabet Σ
equipped with a total order ≺ the lexicographic order ≺l is defined as

u ≺l v iff (u @ v or (u[..i− 1] = v[..i− 1] and u(i) ≺ v(i)) ,

for some i ∈ {1, . . . ,min(#u,#v)} .
This means that u is lexicographically smaller than v iff u is a proper prefix of
v, or at the first position where u and v differ u is smaller than v.

7

2 Preliminaries

In this thesis we consider timed words, where multiple events can occur
simultaneously. Hence, we consider a timed word to be a time-stamped sequence
of sets of events. Throughout this work we shall use dense time. We introduce
T as the temporal domain, which is equal to the nonnegative real numbers.

Definition 2.1.1 (Timed Words). Let Σ be an alphabet. Then a timed word is
a structure % ∈ Seq≥1(P(Σ)×T).1 Often we write % = (w, τ) where w ∈ P(Σ)+

and τ is a strictly monotonically increasing sequence of time stamps over T. Also
we write % = 〈(A1, t1), . . . , (An, tn)〉 with A1, . . . , An ∈ P(Σ) and t1, . . . , tn ∈ T.
The span of a timed word is defined as span = [0, last τ]. We use the abbreviation
(P(Σ)× T)+ to denote Seq≥1(P(Σ)× T). 4

Note that we sometimes use Seq≥1(P(Σ) × T) and the usual (P(Σ) × T)+

interchangeably. It is clear that these two definitions are equivalent. Further,
note that we disallow the empty timed word because it complicates some
definitions.
We define concatenation of timed words. Note that concatenation of timed

words is only defined if all time stamps of the trailing timed word are greater
than all time stamps of the leading timed word. In effect this is ensured if the
first time stamp of the trailing timed word is greater than the last time stamp
of the leading timed word. In general we do not consider the empty timed word.
However, sometimes it is beneficial to allow the concatenation of a timed word
with the empty timed word, which we define yields the timed word.

Definition 2.1.2 (Concatenation for Timed Words). Let %, %′ be two timed
words with last τ < τ ′(1). Then we define the concatenation % · %′ as the
concatenation of their sequences. We extend this to allow the empty sequence
by defining % · 〈〉 = 〈〉 · % = %. 4

2.1.3 Trees
Here we like to consider trees as sets of words. A binary tree is a nonempty
prefix closed set Υ ⊆ {0, 1}∗. A node is defined as the path to the node, which
is a word over {0, 1}. A labelled tree is a tuple (Υ, f), where f : {0, 1}∗ → Σ is
the labelling function and Σ is some set of labels. We lift the labelling function
f to sequences of nodes.

1The symbol % is a variant of ρ (rho). We use the variant to set it apart from the Latin
letter p.

8

2.1 Basic Concepts

For x ∈ {0, 1}∗ let x.children be the sequence of children of x such that
x.children(v) = xv with v ∈ {0, 1}. For a tree Υ the depth of a node x ∈ Υ is
its distance from the root, i.e. depth(Υ) = #x. Usually the height of a node
is defined as the length of the longest downward path from that node and the
height of the tree is the height of its root. As we do not need the height of a
node we simplify this to the following: the height of a tree is the maximal depth
of all its nodes, i.e. height(Υ) = maxx∈Υ(depth(x)). Additionally, let xy, xz be
nodes, then dis(xy, xz) = #y + #z, i.e. the distance of two nodes is the length
of the shortest path from one node to the other. For x ∈ Υ we call x an internal
node if x has a child. Furthermore, for two nodes x, y with x v y we say that x
is an ancestor of y and that y is a descendant of x. If two different nodes have
the same parent we call them siblings. We use T(Σ) for the set of all Σ-labelled
trees. See Figure 2.1 for an example of (labelled) binary trees.

2.1.4 Context-Free Languages
A context-free grammar consists of nonterminals, terminals and rewrite rules.
The rewrite rules define how we can replace single nonterminals by words
containing nonterminals and terminals.

Definition 2.1.3 (Context-Free Grammar). A context-free grammar (CFG) is a
tuple G = (N , T ,R, S), where N is the set of nonterminals, T with T ∩N = ∅ is
the set of terminals, S ∈ N is the starting nonterminal and R ⊆ N × (T ∪N)∗

is the set of rewrite rules. A rewrite rule (N,w) ∈ R is usually written as
N → w. We extend → as follows. Let RN = {w | (N,w) ∈ R}, i.e. the set of
words that may replace N . Let u, v, w ∈ (T ∪ N)∗, N ∈ N then uNv → uwv
with (N,w) ∈ R is a rewrite step. A sequence of rewrite steps is a derivation.
The language L(G) of a CFG G is the set of terminal words reachable with a
derivation that starts with S. We refer to σ ∈ N ∪ T as letter. 4
All grammars we consider are in Chomsky normal form. This means that a

nonterminal always is replaced by either two nonterminals or a terminal or the
empty word.

Definition 2.1.4 (Chomsky Normal Form). A CFG G = (N , T ,R, S) is in
Chomsky normal form (CNF) iff all rewrite rules have the form N0 → τ , N0 → ε
or N0 → N1N2, where N0, N1, N2 ∈ N , τ ∈ T . 4

We call a rewrite rule an ε-rule if it replaces the nonterminal by the empty word.
We make the additional restriction that our grammars are in Chomsky normal

9

2 Preliminaries

form without ε-rules (abbreviated CNF−ε). We point out that the emptiness
problem of the intersection of such grammars in CNF−ε is undecidable. This
follows from the undecidability of the emptiness of the intersection of context-free
grammars and the decidability of the word problem of context-free grammars.

Lemma 2.1.5. The emptiness problem of the intersection of context-free gram-
mars in CNF−ε is undecidable.

Example 2.1.6. Let GD = (ND, T ,RD, SD) and GU = (NU, T ,RU, SU) be two
grammars in CNF−ε, where ND = {AD, BD, SD}, T = {a, b}, NU = {CU, SU}
and RD,RU are given in BNF-like notation:

SD → ADBD SU → CUCU

AD → ADAD | a CU → CUCU | a | b
BD → BDBD | b

Two derivations of GD and GU are SD → ADBD → ADADBD → ADADb →
aADb→ aab and SU → CUCU → aCU → aCUCU → aaCU → aab. 4

A derivation tree represents a derivation starting from a single letter and
ending in a word consisting only of terminals, i.e. σ →∗ w with σ ∈ T ∪N , w ∈ T .
Note that if σ ∈ T , then the derivation performs zero rewrite steps.

Definition 2.1.7 (Derivation Tree). For a grammar G = (N , T ,R, S) in
CNF−ε a derivation tree is a binary N ∪ T -labelled tree (Υ, f), where the
following conditions hold.

• All internal nodes are labelled by nonterminals,

• all leafs are labelled by terminals and

• for any internal node labelled by a nonterminal N let w = σ0σ1 . . . σk−1

be the word formed by its k children. Then (N,w) ∈ R.

If the root of a derivation tree is labelled by the starting nonterminal, then the
word formed by concatenating the labels of the leafs in lexicographic order is in
the language of G. 4

Note that any subtree of a derivation tree again is a derivation tree. The
derivations from Example 2.1.6 are shown in Figure 2.1 as derivation trees.

10

2.1 Basic Concepts

SD

AD

AD

a

AD

a

BD

b

0

0

0

1

0

1

0

SU

CU

a

CU

CU

a

CU

b

0

0

1

0

0

1

0

Figure 2.1: Derivation trees for the derivations from Example 2.1.6. The set of
nodes for the left tree is {ε, 0, 1, 00, 01, 10, 000, 010} and for the right
tree it is {ε, 0, 1, 00, 10, 11, 100, 110}. Let the labelling function (f for
the left tree) be given by the labels of the nodes. For 0 ≺ 1 we have
000 ≺l 010 ≺l 10. Hence the word 〈f(000), f(010), f(10)〉 = 〈a, a, b〉
is in L(GD)

2.1.5 Decision Problems
In our definition of decision problems and reduction of problems we follow
[HU79]. A decision problem is a question to which the answer is either yes or
no. An example is:

Is the language of a given context-free grammar empty?

Let A be the set of all context-free grammars with a nonempty language. Then
the previous decision problem can be restated as whether for a given grammar
G we have G ∈ A. Note that we abstract from how a grammar is represented.

To show that one decision problem A is at least as difficult as another problem
B (B ≤ A) we reduce B to A. Formally, we define a function f : B → A such
that

b ∈ B iff f(b) ∈ A ,

where the requirements on f depend on the particular reduction we use. In this
work we only use reduction to show undecidability. Hence, we require f to be
computable.

11

2 Preliminaries

2.1.6 Other
For two values x, x′ ∈ R let x ± x′ denote the set {x + x′′ | x′′ ∈ [−x′, x′]}.
Further, for x ∈ R we denote the absolute value of x as |x|, which is equal to x
if x is nonnegative and −x otherwise.
For coordinates (x1, y1), (x2, y2) ∈ R × R with x1 ≤ x2 we can create a

function f : R→ R that for x ∈ [x1, x2] linearly interpolates y as

f(x) = y1 +
y2 − y1

x2 − x1
∗ (x− x1) .

Intuitively, we set a ruler going through (x1, y1) at a gradient of y2−y1

x2−x1
. Then

we go (x− x1) units along the ruler to find the value of f(x).

Metric Spaces

A set X together with a function d : X ×X → R forms a metric space iff the
following conditions hold:

M1 : d(x, x) = 0 ,

M2 : d(x, z) ≤ d(x, y) + d(y, z) ,

M3 : d(x, y) = d(y, x) ,

M4 : if x 6= y then d(x, y) > 0 .

Intuitively, d assigns to an two elements in X a distance. If the domain X is
known we simply call d a metric. If we have a function d : X ×X → R that
only satisfies M1,M2,M3 then we call (X, d) a pseudo metric space [SS78].

Upper and Lower Bounds

For a set X ⊆ R we call x an upper (resp. lower bound) of X iff x is greater
(resp. less) or equal than all elements in X. We call x the least upper bound, or
in other words the supremum of X, if x is less or equal than all other upper
bounds of X. Similarly, if x is greater or equal all lower bounds of X, then x is
the greatest lower bound, or the infimum of X. We denote this with inf(X) and
sup(X). If the set X is given by the range of a function f we also write sup f
for supy∈dom f (f(y)) and similarly for the infimum.
Let s be an infinite sequence with elements from X. Then s converges to

x ∈ R (denoted limn→∞ s(n) = x) iff the elements in the sequence get arbitrary

12

2.1 Basic Concepts

close to the limit y. Formally,

lim
n→∞

s(n) = x iff ∀ε ∈ R>0.∃nε ∈ N.∀n ∈ N. n ≥ nε =⇒ |s(n)− x| < ε .

We can relate limits of sequences with suprema and infima of sets. If a set
X has a supremum, then there is a sequence s of elements from X such that
limn→∞ s(n) = supX. This works analogously for the infimum.

Intervals

We call an interval [r, t] an proper interval if r < t, and a point-interval if
r = t. Let IR be the set of all closed, proper intervals over the nonnegative real
numbers, i.e. IR = {[r, t] | r, t ∈ R ∧ r < t}. For intervals [r, t], [r′, t′] ∈ IR we
define

[r′, t′] ⊂ [r, t] iff r < r′ ∧ t > t′ ,

[r, t] = r ,

[r, t] = t .

For any natural numbers l, l′ ∈ N we define that [l, l′] is a discrete interval. Note
that we allow l > l′ and treat the resulting interval as being equal to ∅, i.e. we
treat an interval as the set of numbers lying within the intervals borders. For a
real-valued interval [r, t] ∈ IR we define the length of [r, t] as

‖[r, t]‖ = max(0, t− r) .

Note that we use the maximum to avoid negative sizes, if r > t. Similarly, for a
discrete interval [l, l′] with l, l′ ∈ N we define the length of [l, l′] as

‖[l, l′]‖ = |{l, . . . , l′}| .

Properties of Relations

We define some properties of relations following [Sch11]. For two sets X,Y let
R ⊆ X×Y be a relation. Then, R is univalent (or deterministic) if every x ∈ X
is related to at most one y ∈ Y . Further, R is total if every x ∈ X is related to
some y ∈ Y . Formally,

R is univalent if ∀x ∈ X.∀y1, y2 ∈ Y. ((x, y1) ∈ R ∧ (x, y2) ∈ R) =⇒ y1 = y2 ,

R is total if ∀x ∈ X.∃y ∈ Y. (x, y) ∈ R .

13

2 Preliminaries

For the following definitions we remind that R∼ is the inverse relation of R (cf.
Page 6). We define that

• R is injective if R∼ is univalent,

• R is surjective if R∼ is total and

• R is bijective if it is injective and surjective.

2.2 Timed Automata
We introduce a version of timed automata [AD94] that we use to accept trajec-
tories, rather than timed words. These timed automata are similar to Kripke
structures, in that in each location a number of state variables take a value.
Different from Kripke structures the allowed values in a state of our timed
automata are defined by invariants over state variables, similar to invariants
over clocks in classical timed automata. Our definition of timed automata
mostly is taken from [OD08] with some inspiration from [Hoe06] on how to
include state variables.
Before we introduce timed automata we define trajectories. We shall use

V as our set of state variables. A trajectory is a function that assigns to a
variable and every point in time a value. While a trajectory usually is defined
over unbounded time, here we consider finite and infinite time. Thus, for some
interval T ⊆ T, where we allow T to be infinite, and a set V a trajectory τ is a
function

τ : V → T → {0, 1} .
Note that we represent the truth value ⊥ as 0 and > as 1 because later we
take the integral of a trajectory. Further, we point out that the symbol τ is a
variation of the Greek letter τ (tau).

We lift trajectories to Boolean formulas over V by a point-wise extension in
a straightforward manner, for example, τ(S0 ∨ S1)(t) = max(τ(S0)(t), τ(S1)(t)).
We use the abbreviation Sτ for τ(S). We require that for every state variable
P ∈ V , every finite part of Pτ has a finite number of discontinuity points, i.e.
Pτ is of finite variability. Similar to timed words we use span(τ) to denote the
interval on which τ is defined.
First we define the constraints we may use in locations and edges of timed

automata. For a set of Boolean variables V let B(V) be the set of Boolean
formulas over the variables in V using the classical Boolean operators and

14

2.2 Timed Automata

equality. Further, for a set of variables X ranging over the real numbers let
B(X) be constraints of the form x− y ./ c or x ./ c with x, y ∈ X, c ∈ Q, ./∈
{<,>,≥,≤}.
For a set of variables S with data domain D let Val(S) be the set of all

valuations f : S → D that assign each variable a value.
Timed automata may synchronise their transitions via so called channels. For

a set of channels Chan let

Lab = {a! | a ∈ Chan} ∪ {a? | a ∈ Chan} ∪ {τ}

be the corresponding set of actions. We refer to this set as Lab as these actions
are used as labels on edges and to avoid confusion with an unrelated set of
actions that we define later. Here, a! and a? form complementary actions that
may synchronise with each other and τ is an internal action. Note that we use
τ for internal actions, while we use τ for trajectories.

Definition 2.2.1 (Timed Automata). Let X be a finite set of variables ranging
over the nonnegative real numbers. Further, let V be a finite set of state
variables. A timed automaton is a tuple A = (L,→, Init, I, Lab, V,Λ,X), where
L is the set of locations, →⊆ L × Lab × B(X) × 2X × L is the set of edges,
Init ⊆ (L× Val(V)× Val(X)) is the set of initial configurations, I : L→ B(X)
and Λ : L → B(V) are the clock- and state variable invariants per location.
A configuration of a timed automaton is a tuple (l, β, ν) ∈ (L × Val(V) ×
Val(X)). 4

Note that commonly Init simply is a set of locations L′ and that initially all
clocks have the value 0. In our setting this would be

Init = {(l, β,0) | l ∈ L′, β ∈ Val(V), β |= Λ(l)} ,

where 0 is the clock valuation where all clocks have value 0. Depending on the
set Init, analysing timed automata can be arbitrary complex. An example would
be an automaton with the set of initial configurations containing arbitrary
locations and arbitrary state variable valuations and those clock valuations
where all clocks evaluate to irrational numbers. However, we restrict ourselves
to sets of configurations representable with linear real arithmetic (cf. Page 31).
In Figure 2.2 we show a timed automaton modelling a torch. The example is
originally due to K. G. Larsen.
We define the parallel composition of timed automata, where different au-

tomata can synchronise via channels. Such a parallel composition results in a so

15

2 Preliminaries

1
L = dark

2
L = light

3
L = bright

x > 3
press?

press?

press?
x := 0

x ≤ 3
press?

Figure 2.2: A timed automaton modelling a torch due to K. G. Larsen. The
automaton contains the three locations 1, 2 and 3, a channel press
to synchronise with another automaton, a clock x to measure how
quickly press-signals arrive and the state variable L (for luminosity)
with the domain {dark, light, bright}. When the torch is off,
one press-signal turns the torch on, another press-signal quickly
afterwards turns the torch bright and a third signal turns it off
again.

called network of timed automata. We define the operational semantics of these
networks as a labelled transition system. The only change in the semantics as
we define it here to the classical semantics as it is defined for example in [OD08],
is that here we also consider state variables. The addition of state variables is
taken from [Hoe06].

Definition 2.2.2 (Operational Semantics of Networks). Consider timed au-
tomata Ai = (Li,→i, Initi, Ii, Labi, Vi,Λi,Xi) with i ∈ {1, . . . , n} with mutually
disjoint sets Li, Vi and Xi. Then a network of timed automata is denoted
by A1‖ · · · ‖An. Its semantics is given by a transition system with the set of
configurations

(L1 × · · · × Ln)× (Val(X1 ∪ · · · ∪ Xn))× (Val(V1 ∪ · · · ∪ Vn)) .

The transition system has a

• delay transition (~l, ν, β)
t−−→ (~l, ν + t, β) if ν + t′ |= ∧n

i=1 Ii(li) for all
t′ ∈ [0, t],

16

2.2 Timed Automata

• local transition (~l, ν, β)
τ−−→ (~l′, ν′, β′) if for some i ∈ {1, . . . , n} there is

an edge (li, τ, g, R, l
′
i) ∈→i such that ν |= g, ~l′ = ~l[li := l′i], ν′ = ν[R := 0],

and ν′ |= Ii(l
′
i), β′ |= Λi(l

′
i) and Vi −C β = Vi −C β′ and

• a synchronising transition (~l, ν, β)
τ−−→ (~l′, ν, β) if for two different natural

numbers i, j ∈ {1, . . . , n} and some channel b there are two transitions
(li, b!, gi, Ri, l

′
i) ∈→i and (lj , b?, gj , Rj , l

′
j) ∈→j such that ν |= gi ∧ gj ,

~l′ = ~l[li := l′i][lj := l′j], ν′ = ν[Ri := 0][Rj := 0], ν′ |= Ii(l
′
i) ∧ Ij(l′j),

β |= Λi(l
′
i) ∧ Λj(l

′
j) and (Vi ∪ Vj)−C β = (Vi ∪ Vj)−C β′. 4

We point out that with Vi −C β = Vi −C β′ and (Vi ∪ Vj)−C β = (Vi ∪ Vj)−C β′
in the discrete transitions we ensure that only automata participating in a
transition may change the values of their state variables.

If a network of timed automata does not allow multiple value changes of the
same state variable without delay in between we call such a network delaying. A
sufficient syntactic constraint for a delaying network is that for every automaton
in the network, either the set of state variables of that automaton is empty or
for every location of that automaton there is a clock x that is reset along all
incoming transitions and the guards of all outgoing transitions require x > 0.
Note that incoming and outgoing transitions here includes loops. We consider a
single timed automaton as a special case of a network of timed automata. Thus,
henceforth we shall always consider networks of timed automata and abbreviate
them simply as timed automata. Note that in the definition above only delay
transitions and τ -transitions are defined.
Consider the automaton from Figure 2.2. If we put it in parallel with

an automaton that allows zero time to pass between two press-signals, then
the resulting network is not delaying. However, if we build a network with
an automaton that has no state variables and requires nonzero time to pass
between two press-signals, then the resulting network is delaying.
A run of a timed automaton is a possibly infinite time-stamped sequence of

configurations

π = 〈((l0, β0, ν0), t0) . . . ((li, βi, νi), ti) . . . 〉

such that there are transitions

(l0, β0, ν0)
λ1−−→ · · · λi−1−−−→ (li, βi, νi) · · ·

with λi ∈ R ∪ {τ} and i ∈ N , where N = N if π is infinite and otherwise
N = {0, . . . ,#π}.

17

2 Preliminaries

We define how to get trajectories, which are signals over time, from runs of a
timed automaton.

Definition 2.2.3. For a (possibly infinite) run

〈((l0, β0, ν0), t0) . . . ((li, βi, νi), ti) . . . 〉

with βi ∈ Val(V) for some V such that for all i, j ∈ N and all P ∈ V if
βi(P) 6= βj(P) then ti 6= tj . Then our run matches a trajectory τ iff for
all i, i + 1 ∈ N , all variables P ∈ V and almost all t ∈ [ti, ti + 1) we have
τ(P)(t) = βi(P). 4

With T (A) we denote the set of all trajectories for which there exists a run
on A.

In the definition above the condition “if βi(P) 6= βj(P) then ti 6= tj” ensures
that at every point in time we assign exactly one value to τ(P)(t).
To connect the slightly adapted timed automata to trajectories we use the

following lemma.

Lemma 2.2.4. Let A1‖ · · · ‖An be a delaying network of timed automata. Then
for any run of the network there is a matching a trajectory.

Proof. Proof by contradiction. Assume the lemma does not hold and let
Ak = (Lk,→k, Initk, Ik, Labk, Vk,Λk,Xk) with k ∈ {1, . . . , n}. Further, let
〈((l0, β0, ν0), t0) . . . 〉 be our violating run for which there is no matching trajec-
tory. Then there are i, j ∈ N , k ∈ {1, . . . , n} and P ∈ Vk with βi(P) 6= βj(P)
and ti = tj . However, then Ak is not a delaying timed automaton and also
Vk 6= ∅, which violates our assumptions. We have a contradiction, which means
that the lemma holds.

In this thesis we always connect timed automata to trajectories. Hence, we
only consider delaying timed automata, and usually do not explicitly mention
that they are delaying.

Discussion of our Definition of Timed Automata In [Hoe06], the semantics
of the real-time automata (there called Phase Event Automata) is defined by
giving properties of a run. Here, we define the semantics of timed automata via
a transition system. Then a run is a sequence of configurations in the transition
system. In our definition via a transition system it is very difficulty to define that
the transition system ensures that nonzero time passes between value changes

18

2.3 Multi-Lane Spatial Logic

of state variables. Hence, we added this requirement as a semantic constraint
and termed automata satisfying it as delaying. In [Hoe06] this constraint can
easily be ensured in the definition of a legal run.

Timed Automata in Uppaal

Uppaal is a popular tool to analyse timed automata. As we use Uppaal in one
of our longer examples we briefly explain it here. For a more detailed exposition
we refer to [BDL]. The timed automata Uppaal uses have some differences to
the timed automata we introduced.

Data variables One difference is that Uppaal has data variables. These data
variables are similar to the state variables of our timed automata. One
difference is that between two value changes of a data variable zero time
may pass, while we require nonzero time to pass between value changes of
state variables.

Priority of locations In Uppaal we can designate locations as committed. If
one or more automata in a network is in a committed location, then the
next transition must involve one of the currently committed locations. If
this is not possible a deadlock occurs.

Synchronisation Uppaal supports broadcast synchronisation. A broadcast
channel is a channel a where the transition labelled with the sending
action a! is not blocked if no complementing receiving action a? is enabled.
Furthermore, multiple actions a? may synchronise with a single sending
a! action. However, if possible synchronisation must occur. That is, all
a?-labelled enabled transitions must synchronise with an !a action.

Note that all data variables, clocks and channels in a network of timed automata
may be local to a single a automaton, shared between multiple, or even all
automata of a network. Finally, in Figure 2.3 we provide an example of a
Uppaal timed automaton. We point out that in Uppaal variable assignments and
checking equality are done with = and ==, while in our graphical representation
we use := for variable assignments and = for checking equality.

2.3 Multi-Lane Spatial Logic
In this section we describe Multi-Lane Spatial Logic (MLSL), as it has been
defined in [HLO+11; LH15]. The logic uses an abstract formal model for

19

2 Preliminaries

Torch-automaton User-automaton

Figure 2.3: On the left we show a Uppaal representation of the automaton from
Figure 2.2 that models a torch. On the right we show a user of a
torch. Both automata have a local clock x. With the guard x > 0
in the User automaton we ensure that the parallel composition of
the two automata is delaying. We modelled the state variable as a
data variable that is updated whenever a transition is taken.

motorway traffic [HLO+11], where the traffic configuration at a specific point
in time is given by a traffic snapshot. In a traffic snapshot the motorway is
represented by two dimensions; the vertical discrete dimension represents the
different lanes and the horizontal dense dimension represents the extension
of the lanes. Then a reservation of a car represents space the car physically
occupies plus some safety margin, which we assume to be the braking distance.
When a car changes lanes it may have multiple adjacent reservations. A claim
of a car represents that the car would like to reserve the claimed space. With
claims we model the turn-signal of a real car. Additionally, a traffic snapshot
has information about the speed and acceleration of each car. The evolution of
traffic over time is modelled as a labelled transition system, where each state
is a traffic snapshot. We give an example traffic snapshot and some MLSL
formulas to develop some intuition for the formalism.

Example 2.3.1. MLSL Formulas are evaluated on a restricted area of a traffic
snapshot called view. We show an example traffic snapshot and view in Figure 2.4.
In the traffic snapshot, with the given view, the formula

〈free a re(c2) a free〉
holds. Here, 〈·〉 is an abbreviation and means that the subformula holds
somewhere in the view, a is used to separate adjacent segments within the lane,

20

2.3 Multi-Lane Spatial Logic

1

2

3

E

E

C1

C1

C2

C2

Figure 2.4: Visualisation of a traffic snapshot, where car C2 has a reservation
(solid line) and a claim (dashed line), car E has two reservations
and car C1 also has a reservation and a claim. The claim of car C2

and a reservation of car E overlap. Additionally, we show a view
(big rectangle). Note that one reservation of car E and the claim of
car C1 are outside of the view.

free indicates that the lane segment is free of claims and reservations and re(c2)
means that the segment has a reservation from car c2. Note that in formulas
we use lower case letters to refer to cars. The formula

〈free a cl(c2) a re(ego) a free a re(c1) a free〉

is also satisfied by the traffic snapshot and the view in Figure 2.4. With cl(c2)
we indicate that the lane segment has a claim of car c2. Note that cl(c2) and
re(ego) are not exclusive, i.e. in the lane segment where the claim of C2 and the
reservation of E overlap, both, cl(c2) and re(ego) are satisfied. We can stack
formulas to express that on the lower lane the lower formula holds, and that on
the upper lane the upper formula holds. That is, the formula

free a cl(c2) a re(ego) a free a re(c1) a free

free a re(c2) a free

is satisfied with the complete view, not just somewhere within the view.
When describing locations within a traffic snapshot relative to each other we

often take the bird’s eye view. That is, in Figure 2.4 car E is left of car C1 and
the reservation of C1 is below the claim of C1. 4

21

2 Preliminaries

2.3.1 The Model
In this thesis we consider only motorway traffic. We assume a countably infinite
set of car identifiers I and an arbitrary but fixed set of lanes L = {0, . . . , k},
for some k ∈ N≥1 to be given. Let P(L) denote the powerset of L. Often we
denote elements from I with C.

Definition 2.3.2 (Traffic Snapshot [HLO+11; LH15]). A traffic snapshot TS
is a structure TS = (res, clm, pos, spd, acc), where

• res : I→ P(L) maps cars to their reserved lanes,

• clm : I→ P(L) maps cars to their claimed lanes,

• pos : I→ R maps cars to the position of their rear along the lanes,

• spd : I→ R maps cars to their speed and

• acc : I→ R maps cars to their acceleration.

We denote the set of all traffic snapshots by TS. 4
Furthermore, we require the following sanity conditions to hold for all cars.

Definition 2.3.3 (Sanity Conditions on Traffic Snapshots). We call a traffic
snapshot TS = (res, clm, pos, spd, acc) sane if for all C ∈ I the following holds:

1. Car C cannot both reserve and claim the same lane: res(C) ∩ clm(C) = ∅.

2. Car C can reserve at most two lanes: 1 ≤ |res(C)| ≤ 2.

3. Reserved lanes must be next to each other:

|res(c)| = 2 implies ∃n ∈ L. res(C) = {n, n+ 1} .

4. Car C can claim at most one lane: 0 ≤ |clm(C)| ≤ 1.

5. Car C can reserve or claim at most two lanes: 1 ≤ |res(C)|+ |clm(C)| ≤ 2.

6. A claimed lane must be next to a reserved lane for car C:

clm(C) 6= ∅ implies ∃n ∈ L. res(C) ∪ clm(C) = {n, n+ 1} .

22

2.3 Multi-Lane Spatial Logic

7. Only finitely many cars participate or initiate in lane changing manoeuvres:

|res(C)| = 2 or |clm(C)| = 1 holds only for finitely many C ∈ I .

4

We model the evolution of traffic snapshots as labelled transitions, where we
use discrete and continuous transitions. The discrete transitions for a car C are
to change the acceleration (a(C, a) with a ∈ R), set a claim for a lane (c(C, n)
with n ∈ L), change an existing claim into a reservation r(C)), withdraw an
existing claim (wd c(C)) and withdraw a reservation from a lane (wd r(C, n)
with n ∈ L). The continuous transitions are similar to delay transitions in timed
automata, i.e. we update the data affected by time (here position, speed and
the derived braking distance). To define the transitions we use substitution
and function overriding, i.e. let TS [f/f ⊕ {C 7→ x}] be TS , except that the
function f is replaced by f ⊕{C 7→ x}, which maps C to the value x and agrees
on everything else with f .

Definition 2.3.4 (Transitions between Traffic Snapshots). Given a traffic
snapshot TS = (res, clm, pos, spd, acc), a car C ∈ I and values n ∈ L, a ∈ R, z ∈
T we define

TS
c(C,n)−−−−→ TS ′ ⇔

TS ′ = (res, clm′, pos, spd, acc)
∧ |clm(C)| = 0 ∧ |res(C)| = 1
∧ res(C) ∩ {n+ 1, n− 1} 6= ∅
∧ clm′ = clm⊕ {C 7→ {n}}

TS
wd c(C)−−−−−→ TS ′ ⇔ TS ′ = (res, clm′, pos, spd, acc)

∧ clm′ = clm⊕ {C 7→ ∅}

TS
r(C)−−−→ TS ′ ⇔

TS ′ = (res′, clm′, pos, spd, acc)
∧ clm′ = clm⊕ {C 7→ ∅}
∧ res′ = res⊕ {C 7→ res(C) ∪ clm(C)}

TS
wd r(C,n)−−−−−−→ TS ′ ⇔

TS ′ = (res′, clm, pos, spd, acc)
∧ res′ = res⊕ {C 7→ {n}}
∧ n ∈ res(C) ∧ |res(C)| = 2

TS
z−→ TS ′ ⇔

TS ′ = (res, clm, pos′, spd′, acc)
∧ ∀C ∈ I. pos′(C) =

pos(C) + spd(C) ∗ z +
1

2
acc(C) ∗ z2

23

2 Preliminaries

TS
a(C,a)−−−−→ TS ′ ⇔ TS ′ = (res, clm, pos, spd, acc′)

∧ acc′ = acc⊕ {C 7→ a}

We denote the set of all discrete actions with Act. 4

We wish to restrict our attention within a traffic snapshot to an area localised
around some car. To this end we introduce a view.

Definition 2.3.5 (View). A view V is defined as a structure V = (L,X,E),
where

• L = [l, l′] ⊆ L is an interval of lanes that are visible in V ,

• X = [r, r′] ⊆ R is an interval representing the extension of the lanes visible
in V and

• E ∈ I is the owner of V (or sometimes ego car).

We denote the set of all views with V. A subview of V is obtained by restricting
the lanes and extension we observe. Let L′, X ′ be subintervals of L and X, then
we define

V L
′

= (L′, X,E) and VX′ = (L,X ′, E) . 4

We define chopping operations on discrete and one dense intervals.

Definition 2.3.6 (Chopping of Intervals). Let Vi = (Li, Xi) be views with
i ∈ {0, 1, 2} and Xi = [ri, ti]. Then we define vertical chopping (denoted by)
and horizontal chopping (denoted by :) of V0 into V1 and V2 as

V0 = V1 	 V2 iff L0 = L1 ∪ L2 and L1 ∩ L2 = ∅ and X0 = X1 = X2 and

(L1 = ∅ or L2 = ∅ or max(L1) + 1 = min(L2)) ,

V0 = V1 : V2 iff t1 = r2 and r0 = r1 and t0 = t2 and L0 = L1 = L2 .

4

We use the chopping operations to define relations on views.

Definition 2.3.7 (Relation of Views). Let V, V1, V2 be three views with V =
(L,X,E). Then we define V = V1 	 V2 iff L = L1 	 L2, V1 = V L1 and
V2 = V L2 . Similarly, we define V = V1 : V2 iff X = X1 :X2, V1 = VX1

and
V2 = VX2 . 4

24

2.3 Multi-Lane Spatial Logic

For views V, V1, V2 with V = V1 	 V2 we say that V1 is below V2. Similarly, if
V = V1 : V2, then V1 is left of V2.
The empty set of lanes takes a special role for the vertical composition of

views.

Remark 2.3.8. For all views V the following holds:

V = V ∅ 	 V ,

V = V 	 V ∅ ,
V ∅ = V ∅ 	 V ∅ . 4

Our definition of horizontal chopping only works for nonempty intervals, i.e.
intervals that contain at least a single point. We define the following sanity
condition on views to make this assumption explicit.

Definition 2.3.9 (Sanity Condition for Views). For all views V = (L,X,E)
with X = [r, r′] we have r ≤ r′. 4

In [Lin15] an abstract sensor function Ω : I × TS → R>0 is used with the
intuition that it returns the physical size of a car plus its braking distance. In
this work we deviate from the classical papers where MLSL was defined and
take the sensor function into the model. This seemed to give more clarity in
some proofs and constructions.

Let CVar be a set of variables ranging over car identifiers. In the logic we use
a special constant ego to refer to the owner of the current view. A valuation
maps variables and the special symbol ego to car identifiers, i.e., a valuation is
a function ν : CVar ∪ {ego} → I.

Now we have all the ingredients to define what an MLSL model is. Note that
different from the original definition we include the set of car identifiers and the
sensor function in the model. We do this to make some proofs later on clearer.

Definition 2.3.10 (MLSL Model). Given a set of car identifiers I, a traffic
snapshot TS , a sensor function Ω, a view V and a valuation ν a model is a
structure M = (TS ,Ω, V, ν). We call a model sane if the view and the traffic
snapshot satisfy their sanity conditions. We denote the set of all MLSL models
with M. 4

In this work we only consider sane MLSL models.

25

2 Preliminaries

To define the semantics of the logic we introduce the following abbreviating
functions. Let TS = (res, clm, pos, spd, acc) be a traffic snapshot, V = (L,X,E)
a view and Ω a sensor function. Then

resV : I→ P(L) with res(C) ∩ L,
clmV : I→ P(L) with clm(C) ∩ L,
lenV : I→ P(X) with [pos(C), pos(C) + Ω(C,TS)] ∩X .

The function resV and clmV restrict the reservations and claims to the current
view and lenV restricts the space occupied by a car to the view. Additionally,
we use the following abbreviation to denote the set of cars in the current view
V :

IV = {C ∈ I : ‖lenV (C)‖ > 0 and resV (C) ∪ clmV (C) 6= ∅} .
If the model is not clear from the context we use IMV .
Given a sensor function Ω and a traffic snapshot TS the safety envelope of

the car C for the traffic snapshot TS is given as

se(C,TS ,Ω) = [pos(C), pos(C) + Ω(C,TS)] .

The safety envelope represents the horizontal space used by a car as perceived
by another.

We define transitions between MLSL models. For this we first define a function
mv that moves the extension of a view according to the movement of the owner
of the view.

Definition 2.3.11 (Transitions between MLSL Models). For i ∈ {1, 2} letMi =
(TS i,Ω, Vi, ν) with TS i = (resi, clmi, posi, spdi, acci) and Vi = (L, [ri, r

′
i], E) be

two MLSL models. Then the result of moving V1 from TS 1 to TS 2 gives a new
view

mvTS1

TS2
(V1) = (L, [r1 + x, r′1 + x], E) ,

where x = pos2(E)− pos1(E). For λ ∈ Act ∪ R≥0 we define

M1
λ−−→M2 iff TS 1

λ−−→ TS 2 and V2 = mvTS1

TS2
(V1) .

4

26

2.3 Multi-Lane Spatial Logic

2.3.2 The Logic
The atoms of MLSL are used to express that some part of a lane is filled by a
reservation or completely free of reservations. The chop operators in the logic
are defined using the chop operators on views. The horizontal chop formula
φ0 a φ1 expresses that on the left subview φ0 and on the right subview φ1 holds.

With the vertical chop formula
(φ0

φ1

)
we require that the lower subview satisfies

φ0 and that the upper subview satisfies φ1. Note that for both chop formulas the
satisfying subviews might be empty. Additionally, the logic is closed under first
order operators. Note that we introduce is a blend of MLSL as it is defined in
[HLO+11] and [LH15; Lin15]. That means, we take the semantics from [LH15;
Lin15] as it is the most mature semantics. However, of the operators we only
take the length measurement and we leave the branching temporal operators
quantification over distances out. From [HLO+11] we take the atom free.

Let RVar and LVar sets of variables ranging over the reals, and over the set of
lanes. Then, let Var be the union of RVar, LVar and CVar.

Definition 2.3.12 (Syntax). Given γ, γ′ ∈ CVar ∪ {ego}, c ∈ CVar, k ∈ R≥0

the syntax of MLSL is given by

φ ::= γ = γ | ` = k | free | re(γ) | cl(γ) | φ ∧ φ | ¬φ | ∃c. φ | φ a φ | φ
φ
. 4

Now we can define the semantics of MLSL. The formula free is true for one-
lane views containing no cars, re(c) and cl(c) are true for one-lane views that
are fully covered by the safety envelope of a reservation or claim, respectively,

by c. Furthermore, φ1 a φ2 denotes horizontal and
(φ2

φ1

)
vertical partitioning

of a view.

Definition 2.3.13 (Semantics). Let γ, γ′ ∈ CVar ∪ {ego}, c ∈ CVar, k ∈ R.
Then, given a traffic snapshot TS , a view V = (L,X,E), with X = [r, r′], a
sensor function Ω and a valuation ν we define the satisfaction of a formula by a
model M = (TS ,Ω, V, ν) as

M |= γ = γ′ iff ν(γ) = ν(γ′),

M |= ` = k iff ‖X‖ = k,

M |= free iff |L| = 1 and ‖X‖ > 0 and

27

2 Preliminaries

(∀C ∈ I. L 6= resV (C) ∪ clmV (C) or lenV (C) ∩ (r, r′) = ∅),
M |= re(γ) iff |L| = 1 and ‖X‖ > 0 and

resV (ν(γ)) = L and X = lenV (ν(γ)),

M |= cl(γ) iff |L| = 1 and ‖X‖ > 0 and

clmV (ν(γ)) = L and X = lenV (ν(γ)),

M |= φ1 ∧ φ2 iff M |= φ1 and M |= φ2,

M |= ¬φ1 iff M 6|= φ1,

M |= ∃c. φ iff ∃C ∈ I.TS ,Ω, V, ν ⊕ {c 7→ C} |= φ,

M |= φ1 a φ2 iff ∃V1, V1. V = V1 : V2 and

TS ,Ω, V1, ν |= φ1 and TS ,Ω, V2, ν |= φ1,

M |= φ2

φ1

iff ∃V1, V2. V = V1 	 V2 and

TS ,Ω, V1, ν |= φ1 and TS ,Ω, V2, ν |= φ2 . 4

In addition we make use of the standard abbreviations such as true,∨,∀. Also,
we use a derived modality to express that somewhere on the motorway φ holds.
It is defined by using both chop operators as

〈φ〉 = true a

 true
φ

true

 a true .

2.4 First-Order Theories
The general idea of first-order theories is taken from [BM07]. A first-order theory
consists of a signature that defines the syntactically allowed formulas in this
theory and a set of axioms that define the meaning of the constants, functions
and predicates in the signature. In this thesis, when we introduce a first-order
theory, we provide the signature and additionally a grammar describing the
syntax. For the axioms we refer to [BM07]. A formula of a first-order theory is
satisfiable if there is an interpretation that satisfies the formula and the axioms.
Otherwise the formula is unsatisfiable. A formula is valid if every interpretation
that satisfies the axioms also satisfies the formula. If a formula is valid, then
its negation is unsatisfiable. To determine whether an interpretation satisfies
a formula is the model problem. Note that we denote the satisfaction relation

28

2.4 First-Order Theories

with |=. Furthermore, we often use variable assignment or simply assignment
instead of interpretation.

We consider formulas from the first-order theory of real-closed fields (FORCF),
also known as elementary algebra, with the signature {0, 1,+,−, ∗,≤} and
standard axioms, where ∗ denotes multiplication.2 For a formal account of the
axioms we refer to [Tar51] or [BM07] for a more modern exposition. We denote
the set of real-valued variables as RVar. This logic shares symbols with MLSL,
such as =, ¬ and ∧. However, from the context it will be clear to which logic
symbols belong.

Definition 2.4.1 (FORCF Syntax). The set of FORCF formulas has the
following syntax:

ψ ::= ∃x. ψ | θ ≤ θ | ¬ψ | ψ ∧ ψ ,

θ ::= 0 | 1 | x | θ ∗ θ | θ + θ | −θ ,

where x ∈ RVar. 4
A variable assignment for a FORCF formula is given by h. The satisfiability

problem of this logic is decidable [Tar51] with a complexity that is double-
exponential in the length of the formula [BM07].

Lemma 2.4.2 (Complexity of FORCF ([BM07])). The time complexity of
deciding the satisfiability of a FORCF formula is double-exponential in the
length of the formula.

In the first-order theory of mixed linear arithmetic (FOMLA), with the
signature {0, 1,+,−,≤, bc} we use variables ranging over the real numbers, as
well as the operations of linear arithmetic and rounding to the next smaller
integer. For the axioms of this theory we refer the reader to [BM07].

Definition 2.4.3 (FOMLA Syntax). The set of FOMLA formulas is generated
by the following grammar:

ψ ::= ∃x. ψ | θ ≤ θ | ¬ψ | ψ ∧ ψ ,

θ ::= 0 | 1 | x | bθc | θ + θ | −θ ,

where x ∈ RVar. We denote the set of FOMLA formulas with Ψ. 4
2We use ∗ (asterisk) for multiplication instead of · (centered dot). The reason for this is that
we use multiplication together with . (dot) to multiply a value a associated with an object
O with another value b, i.e O.a ∗ b.

29

2 Preliminaries

The interpretation of the symbols is the standard one. For bθc we point
out that this term rounds the value of θ down to the next integer. We use
the remaining propositional connectives and =, <,≥ and > as abbreviations.
Furthermore, ∃i ∈ N. ψ is an abbreviation for ∃i ∈ R. i = bic ∧ 0 ≤ i ∧ ψ. When
the constraint i = bic ∧ 0 ≤ i is associated with a variable i, then i ranges over
natural numbers and we say that i ∈ NVar, that is, NVar is a set of variables
ranging over natural numbers. A variable assignment for a FOMLA formula is
given by κ.
In [Wei99] Weisspfennig proves that the satisfiability problem of FOMLA is

decidable. For this, he first brings the formula into a form that separates the
reasoning about integers and the reals. Then he applies quantifier elimination
for linear integer arithmetic formulas (Pressburger arithmetic) and for linear
real arithmetic to the separate formulas. For the following lemma the lower
bound is shown in [FR74], and the upper bound is shown in [Wei99]. Note that
[FR74] shows that Pressburger arithmetic, which is a fragment of FOMLA, is
at least double-exponential.

Lemma 2.4.4 (Complexity of FOMLA ([FR74] and [Wei99])). The time com-
plexity of deciding the satisfiability of a FOMLA formula is at best double-
exponential and at worst triple-exponential in the length of the formula.

We introduce the first-order theory of linear real arithmetic (FOLRA), for
which the signature is {0, 1,+,−,≤}. The axioms of this theory are presented
in [BM07].

Definition 2.4.5 (FOLRA Syntax). The set of FOLRA formulas is generated
by the following grammar:

ψ ::= ∃x. ψ | θ ≤ θ | ¬ψ | ψ ∧ ψ ,

θ ::= 0 | 1 | x | θ + θ | −θ ,

where x ∈ RVar. 4

The interpretation is standard and thus equal to the interpretation of FORCF
or FOMLA. In FOLRA we can only use operators that appear in both FOMLA
and FORCF. Thus, any FOLRA formula also is a formula of the other two
arithmetic logics. For the lemma below the lower bound is due to [FR74] and
the upper bound is due to [FR75].

30

2.4 First-Order Theories

Lemma 2.4.6 (Complexity of FOLRA ([FR74] and [FR75])). The time complex-
ity of deciding the satisfiability of a FOLRA formula is at best single-exponential
and at worst double-exponential in the length of the formula.

We call the set of quantifier free FOLRA formulas linear real arithmetic. For
linear real arithmetic checking satisfiability takes nondeterministic polynomial
time. This complexity is due to the Boolean structure. For the conjunctive
fragment of linear real arithmetic (without disjunctions) checking satisfiability
is possible in deterministic polynomial time [Kha79].
For all of the arithmetic logics we defined, we introduce some abbreviations.

For terms θ0, θ1, θ2, θ3 and θ′0, . . . , θ′k with k ∈ N≥1 we define

[θ0, θ1] ⊆ [θ2, θ3] ≡ θ0 > θ1 ∨ (θ2 ≤ θ0 ∧ θ1 ≤ θ3) ,

θ0 ∈ {θ′1, . . . , θ′k} ≡
∨

θ′∈{θ′1,...,θ′k}
θ0 = θ′ ,

[θ0, θ1] ∩ (θ2, θ3) = ∅ ≡ θ1 < θ0 ∨ θ3 ≤ θ2 ∨ θ1 ≤ θ2 ∨ θ3 ≤ θ0 .

With θ0 > θ1 in the first line we check if the interval is empty. If it is, then it
has to be a subset of any other interval. Note that both intervals in the subset
definition are closed, but for the intersection definition the interval (θ2, θ3) is
open. Thus, their intersection is empty if either interval is empty, or if the end
of one interval is less or equal than the start of the other interval.

Further, we use an abbreviation to ensure the equality of finite sets. For finite
sets Z,Z ′ we can ensure the equality of the sets with the formula

Z = Z ′ ≡ (
∧
z∈Z

∨
z′∈Z′

z = z′) ∧ (
∧
z′∈Z′

∨
z∈Z

z′ = z) .

We denote the set of all real-valued terms as RTerm and the set of terms
ranging over N as NTerm. Note that these sets of terms overlap and that
we do not distinguish if they originate from FOMLA, FORCF or FOLRA, as
this will be clear from the context. Also, whether the real terms may contain
multiplication or not will be clear from the context. Furthermore, in the next
chapters we use θ specifically for terms from RTerm.

31

3 Satisfiability of
Spatial Properties with
Precise Information

We are interested in automating spatial reasoning with MLSL. To this end, we
investigate whether the satisfiability problem of MLSL is decidable under two
restrictions. First, we trade length measurement (` = k) for an unbounded
number of lanes. This is interesting because the known undecidability result for
MLSL heavily relies on length measurement [LH15]. We give a novel construction
showing that the resulting satisfiability problem is undecidable. Second, we
extend MLSL with a scope operator. With the scope operator we can restrict
our reasoning to specific cars. For the resulting logic we study the satisfiability
problem with a bounded number of cars and we show that this problem is
decidable.
In this chapter we assume that information, such as the position of cars, is

exact. By this we mean that we do not perturb the model or the formula before
evaluating the satisfaction relation.
The idea of the undecidability of MLSL without length measurement is

introduced in [Ody15b; Ody15a]. The definition of MLSL with scopes together
with the decision procedure for a fragment of this extension of MLSL is taken
from [FHO15]. However, in [FHO15] we do not provide a proof of correctness.
To be able to prove the correctness with the desired rigour, in this thesis we
introduce new concepts such as operations and a weak form of equality for
MLSL models with scope and its representation in arithmetic logic.
In Section 3.1 we show that MLSL remains undecidable if we do not use

length measurement but allow for an unbounded number of lanes. In Section 3.2
we extend MLSL with the scope operator. Then, in Section 3.3 we use the scope
operator to define a fragment for which the satisfiability problem is decidable.
Afterwards, in Section 3.4 we use the construction of the previous section to
algorithmically solve the model problem. At the end of the chapter we consider

33

3 Spatial Properties with Precise Information

related work and discuss our findings.

3.1 Undecidability of Satisfiability of MLSL
Undecidability of satisfiability of Duration Calculus was proven by a reduction
of the halting problem of two counter machines to the satisfiability of Duration
Calculus (2CM-Halting ≤ DC-SAT) [ZHS93]. This construction has been
adapted to prove undecidability of MLSL with length measurement, where
length measurement allows to compare the size of the current view to a constant
[LH15]. The authors define that the representation of a configuration of a two
counter machine is of length 5k, where k is a natural number. The value m of a
counter is represented in an interval of length k and consists of m reservations
and the remaining space of a configuration is used for markers to separate the
counters. To increase the value of a counter they require that for all reservations
which are part of the representation of the counter, there is a reservation 5k space
units later (in the next representation of the counter’s value) and additionally,
there is exactly one reservation in the later representation for which there is no
reservation 5k space units earlier. For this construction it is important to be
able to specify the distance between reservations.
Ultimately, we want to understand the border of undecidability for MLSL.

We believe that even without length measurement the satisfiability problem of
MLSL is undecidable. As a step to better understand the decidability problem of
MLSL, in this chapter we trade length measurement for an unbounded number
of lanes. We prove that the resulting variation of the satisfiability problem
remains undecidable. To show this, we reduce the emptiness problem of the
intersection of two context-free languages, which is undecidable [HU79], to the
satisfiability problem of MLSL with unbounded lanes.
First of all, we formalise our two notions of satisfiability. In [LH15] the

authors used the following notion of satisfiability.

Definition 3.1.1. Given a finite set of lanes L and an MLSL formula φ we
say that φ is lane-boundedly satisfiable iff there exists a model M such that
M |= φ. 4

Here we investigate a variation of this form of satisfiability in that we consider
an infinite set of lanes. The purpose of this is to see how decidability is
affected if we increase expressiveness in one way (infinite lanes) and decrease
the expressiveness in another way (removing length measurement).

34

3.1 Undecidability of Satisfiability of MLSL

Definition 3.1.2. Given an infinite set of lanes L and an MLSL formula φ we
say that φ is lane-unboundedly satisfiable iff there exists a model M such that
M |= φ. 4

Note that with the definition of lane-unbounded satisfiability any model has
an finite but unbounded amount of lanes. That is, only the set from which a
model chooses its lanes is infinite. In this work, when we speak of satisfiability
of MLSL formulas we always mean lane-unbounded satisfiability.

3.1.1 Construction
We encode two context-free grammars (CFG) in Chomsky normal form without
ε-rules (CNF−ε) GD and GU in one formula F (GD, GU) such that a satisfying
model represents two derivation trees, one from each grammar. The resulting
formula is satisfiable iff both CFGs can produce the same terminal word.
We give an intuitive explanation of how a model satisfying the formula we

construct in this section looks like. The representation of a derivation tree
for GD has its root on the top lane and grows downward, whereas the tree for
GU has its root on the bottom lane and grows upward. In a satisfying model
every letter is represented as a number of successive reservations without space
in between. Representations of adjacent letters are separated by free space
and different letters are represented by a different number of reservations. If a
nonterminal from the downwards growing grammar is replaced by a word, the
word is represented on the lane below the nonterminal such that the horizontal
space used to represent the word is strictly contained in the space used for
the nonterminal. Equality of the derived words is represented as horizontal
alignment of terminals that differ only in their subscripts (e.g. aU and aD in
Figure 3.1). In Figure 3.1 we depict an MLSL model representing the derivation
trees of the derivations from Example 2.1.6 (see Page 10).
Given two CFGs GD = (ND, T ,RD, SD) and GU = (NU, T ,RU, SU), we

assume two sets TD, TU and bijective functions πD : T → TD and πU : T → TU
such that TD, ND, TU and NU are all disjoint. The idea behind the two functions
is that we want to differentiate between the MLSL encoding of terminals from
GU and from GD.

Letter

Let λ : TD∪ND∪TU∪NU → N>0 be an injective function. In MLSL we represent
every letter σ ∈ TD∪ND∪TU∪NU as λ(σ) successive reservations from different

35

3 Spatial Properties with Precise Information

SU

CU CU

CU CU
aU

aU bU

SD

AD BD

AD AD bD

aD aD

Figure 3.1: Visualisation of an MLSL model representing two derivation trees
of derivations taken from Example 2.1.6. The boxes correspond to
letters. Reservations inside the letters and the view are not shown.

36

3.1 Undecidability of Satisfiability of MLSL

cars, without free space in between. We formalise this as

letter(σ, c1) ≡ re(c1) a ∃c2, . . . , cλ(σ). (re(c2) a . . . a re(cλ(σ)) ∧
i6=j∧

i,j∈{1,...,λ(σ)}
ci 6= cj) ,

where c1 ∈ CVar is a car variable. We use c1 as an identifier to uniquely
differentiate letters within a formula.
Assume that the letter aD is represented by one reservation, and that the

letter bD is represented by two reservations. We have to distinguish between
two occurrences of aD and one occurrence of bD. To be able to recognise letters
we demand that before and after every letter there is some free space. For this
we define

letterfree(σ, c) ≡ free a letter(σ, c) a free .

The formulas letter and letterfree are used in other formulas, which will always
bind the car variable, here c, with quantifiers.

Start

To ensure that there is a starting letter we express that the topmost lane contains
the starting nonterminal SD as

startD ≡ ∃c.
(letterfree(SD, c)

true

)
.

Step

Now we encode the rewrite relation as a formula. Recall that we consider
grammars in Chomsky normal form without ε-rules, so any right-hand side of a
rewrite rule has one or two letters. We represent concatenation of letters and
words in grammars with the chop operator of MLSL. For a word w we define

word(w) ≡
{
∃c0. letterfree(σ0, c0) if #w = 1 ,

∃c0, c1. (c0 6= c1 ∧ letterfree(σ0, c0) a letterfree(σ1, c1)) if #w = 2 ,

where σj is the j-th letter of w.
To define that a nonterminal N is replaced by a word w, according to the

rewrite rule RD, we define

stepD(N, c) ≡
(free

free

)
a
(letter(N, c)∨

w∈RND word(w)

)
a
(free

free

)
.

37

3 Spatial Properties with Precise Information

This means that we replace a nonterminal on the lane below it with any of the
words from the rewrite relation. As we use letterfree in the definition of word,
we ensure that the replaced letter is horizontally larger than its replacement.
Note that we subscripted the formula with D, because we only use it to encode
derivation trees growing downward.
As all nonterminals should be replaced on the next lane we define

stepAllD ≡ ∀c.
∧

N∈ND

(〈letterfree(N, c)〉 =⇒ 〈stepD(N, c)〉) .

In the premise we test whether somewhere the car variable c is used as identifier
for an occurrence of the nonterminal N . Intuitively, we bind the variable c to
the occurrence matched in the premise. For this to work as intended we have to
assume that c is used as identifier only for this one occurrence. We formalise
this later. In the conclusion we use this c, bound to one specific occurrence of
a nonterminal, to state that below this occurrence there should be a word as
defined by the rewrite relation.

Side conditions

We do forbid overlapping reservations, cars with claims or two reservations. To
exclude these we define

mutex ≡ ¬∃c, c′. (c 6= c′ ∧ 〈re(c) ∧ re(c′)〉) ,

noTwoRes ≡ ¬∃c.
(〈re(c)〉
〈re(c)〉

)
,

noClaims ≡ ¬∃c. 〈cl(c)〉 ,
asm ≡ mutex ∧ noTwoRes ∧ noClaims .

As we want to encode derivations, all reservations should be part of the
representation of the derivation. Thus, all reservations should belong to the
representation of some letter, as ensured by

allResInLetter ≡ ∀c. (〈re(c)〉 =⇒
∃c′.

∨
σ∈ND∪NU∪
TD∪TU

〈letterfree(σ, c
′) ∧ (true a re(c) a true)〉) ,

38

3.1 Undecidability of Satisfiability of MLSL

under the assumption that the formula noTwoRes holds (see also the complete
formula F (GD, GU) on Page 41). We point out that re(c) in the premise and
re(c) in the conclusion refer to the same reservation, as every car has only
one reservation. Further, letterfree(σ, c

′) is evaluated on the same view as
(true a re(c) a true). Thus, this formula ensures that every reservation is inside
the representation of a letter.

We want to ensure that all representations of letters are part of a derivation,
i.e. we want to forbid orphaned letters. For this we demand that for all letters
not on the topmost lane, there is a nonterminal above them. The formula

letterNextToLetterD ≡ ∀c.
∧

σ∈ND∪TD

(〈〈∃c′. free ∨ re(c′)〉
letterfree(σ, c)

〉
=⇒

∃c′′.
∨

N∈ND

(
〈letterfree(N, c

′′)〉 ∧
〈 letter(N, c′′)

true a letterfree(σ, c) a true

〉))
ensures this, where we use 〈∃c′. free∨ re(c′)〉 to match at least one lane, without
regard for what is on the lane. Similar as in stepAllD we bind a car variable
c to the occurrence of a letter σ in the premise of the implication. However,
in the premise we additionally require that the letter is not located on the
topmost lane. This is necessary because we do not want to demand that there
is another nonterminal above the starting nonterminal. In the conclusion we
bind a new variable c′′ to the occurrence of a nonterminal N and require that
the representation of N is above and strictly larger than the representation of σ.
Note that we surround letterfree(σ, c) with true to allow for other letters next to
this one. Intuitively, letterNextToLetterD ensures that from any representation
of a letter there is a sequence of vertically adjacent representations leading to
SD on the top lane. As stepAllD requires that all of these sequences obey the
rewrite rules, a satisfying model represents a derivation.

Second grammar

The formulas so far can be used to ensure that the MLSL representation of a
derivation from the grammar GD starts at the top lane and grows downwards.
Now we add formulas that demand that a derivation from GU starts at the
bottom and grows upwards.

For all formulas φD defined so far we create a formula φU by replacing indices
D with U in φD and swapping the order of formulas in vertical chop operators.

39

3 Spatial Properties with Precise Information

For example we define

startU ≡ ∃c.
(true

letterfree(SU, c)

)
,

stepU(N, c) ≡
(free

free

)
a
(∨

w∈RNU word(w)

letter(N, c)

)
a
(free

free

)
,

and the other formulas are defined similarly.
The formula

freeLane ≡
true

free

true

requires that there is at least one lane without any reservations. This, together
with letterNextToLetterD, ensures that below this free lane there are no repre-
sentations of letters from GD. If there was such a letter, then from that letter
the sequence of vertically adjacent representations would be interrupted by a
free lane. Symmetrically, there is no letter from GU above this free lane.

We say for two words w,w′ that w is a subsequence of w′ iff we can create w
from w′ by only removing letters from w′. We now define that the derived word
of one grammar is a subsequence of the derived word of the other grammar. For
i ∈ {D,U} and τ ∈ T we remind that we use πi to map terminals to disjoint
sets (cf. Page 35). Let c, c′ be car variables, then we define

φ(τ, c, c′) ≡
〈(free

true

free

)
a

(letter(πD(τ), c)

true

letter(πU(τ), c′)

)
a

(free

true

free

)〉
,

which requires that the representations of the terminal τ using the variables
c, c′ are horizontally aligned. The horizontal alignment is enforced by ensuring
that the formulas letter(πD(τ), c) and letter(πU(τ), c′) are evaluated on the same
extension. This is done by evaluating the horizontal chops before the vertical

40

3.1 Undecidability of Satisfiability of MLSL

chops. We define the subsequence relation in MLSL as

subseqD ≡
∧
τ∈T
∀c. (〈letterfree(πD(τ), c)〉 =⇒

∃c′. (〈letterfree(πU(τ), c′)〉 ∧ φ(τ, c, c′))) ,

subseqU ≡
∧
τ∈T
∀c′. (〈letterfree(πU(τ), c′)〉 =⇒

∃c. (〈letterfree(πD(τ), c)〉 ∧ φ(τ, c, c′))) .

Note that in subseqD and subseqU the subformula φ(τ, c, c′) is the same. However,
the car variable names and the subscripts D and U outside φ(τ, c, c′) are swapped.
The formula subseqD ensures that for every terminal τ , when the downward
derivation contains the downward encoding πD(τ) of τ , then the upwards
derivation contains the upward encoding πU(τ) of τ , horizontally aligned. In
other words, subseqD requires that each terminal from the downwards derivation
has a horizontally aligned corresponding terminal from the upwards derivation.
The horizontal alignment prevents that two downwards terminals share the same
corresponding upwards terminal. The explanation for subseqU is symmetric.
Because one word is a subsequence of the other word and vice versa, the two
derived words are equal.

For the final formula we conjoin the downward and the upward formulas. The
following formula has the property that it is lane-unboundedly satisfiable iff the
intersection of the languages of GD and GU is empty. We prove this claim in
the next section. We define

F (GD, GU) ≡
∧

i∈{D,U}
stepAlli ∧ starti ∧ letterNextToLetteri ∧ subseqi

∧ freeLane ∧ allResInLetter ∧ asm .

3.1.2 Proving Undecidability
In this section we proof that for two context-free grammars GD and GU the
MLSL formula F (GD, GU) is lane-unboundedly satisfiable iff the intersection of
the languages of GD and GU is empty. For this proof we use interval-labelled
trees. For these trees we have the condition that the interval labelling should
represent (or respect) the structure of the tree. That means that all interval
labels are proper (Equation (3.1)), that the interval of a child should be strictly

41

3 Spatial Properties with Precise Information

contained in the interval of its parent (Equation (3.2)) and that the interval
of a right child is greater than the interval of a left child (Equation (3.3)). For
this section we remind that IR is the set of closed real-valued intervals, I and
I with I ∈ IR define the left and right border of the interval I and for two
intervals I, I ′ ∈ IR we define with I ⊂ I ′ that I is strictly in I ′ on both ends of
the interval (cf. Page 13).

Definition 3.1.3. Let (Υ, g) with g : {0, 1}∗ → IR be an interval-labelled
binary tree. Then we say that the interval-labelling function respects the
structure of the tree Υ iff the following conditions are satisfied:

g(x) < g(x) , (3.1)

g(y) ⊂ g(front y) , (3.2)

if x0, x1 ∈ Υ then g(x0) < g(x1) , (3.3)

where x ∈ Υ and y ∈ Υ \ {ε}. 4

We get the following lemma for nodes that are not in a descendant/ascendant
relationship: the first property states that the order induced by interval labelling
is equal to the lexicographic order on nodes. The second property states that
the interval labels of such nodes do not overlap.

Lemma 3.1.4. Let (Υ, g) with g : Υ→ IR be an interval-labelled binary tree
such that g respects the tree structure. Then for all x, x′ ∈ Υ we have

x ≺l x
′ and x 6v x′ implies g(x) < g(x′) ,

(x 6v x′ and x′ 6v x) implies g(x) ∩ g(x′) = ∅ ,

where ≺l is the lexicographic order and v is the prefix relation (cf. Page 7).

Proof. We start with the first property. Assume x ≺l x
′ and x 6v x′. Then

there is a unique node x′′ ∈ Υ that is the closest common ancestor of x and
x′, i.e. the node where the paths to x and x′ diverge. For this node there are
words y, z ∈ {0, 1}∗ such that x = x′′0y and x′ = x′′1z. From Equation (3.3)
we know that the interval label of x′′0 is smaller than the interval label of x′′1,
i.e. g(x′′0) < g(x′′1). From Equation (3.2) we know that the interval labels of
x and x′ are strictly contained in the intervals of x′′0 and x′′1, which implies
g(x) < g(x′).
The second property follows from the first.

42

3.1 Undecidability of Satisfiability of MLSL

For our proof we first need a lemma for binary trees. The lemma states that
for two binary trees with the same number of leafs, the parent/child and sibling
relationship can be encoded in an interval labelling function such that the j-th
leaf in one tree has the same interval assigned as the j-th leaf in the other tree.
Note that the following lemma also holds when we only consider intervals

formed by rational or natural numbers. However, we do not make use of this.

Lemma 3.1.5. Let (ΥD, fD) and (ΥU, fU) be two binary trees with both trees
having the same number k ∈ N≥1 of leafs. We can create two labelling functions
gD : ΥD → IR and gU : ΥU → IR such that

gi respects the structure of the tree (cf. Def. 3.1.3) and (3.4)
gD(yj) = gU(zj) , (3.5)

where i ∈ {D,U} and yj ∈ ΥD (resp. zj ∈ ΥU) is the j-th leaf of its tree
according to the lexicographic ordering.

Proof. To construct the functions gD, gU, we start to define them for the leafs.
For this, let r0, . . . , rk−1, t0, . . . , tk−1 ∈ R be values such that

r0 < t0 < r1 < t1 < · · · < rk−1 < tk−1 and (3.6)
rj+1 − tj = 2 ∗max(|ΥD|, |ΥU|) + 1 and (3.7)
gD(yj′) = gU(zj′) = [rj′ , tj′] , (3.8)

with j ∈ [0, k − 2] and j′ ∈ [0, k − 1]. This means that the distance of the
rightmost point of gi(xj) to the leftmost point of gi(xj+1) is defined by the
number of nodes in the trees.
Let x ∈ Υi be a node with children. Then we define

gi(x) =

{
[r − 1, t+ 1] if #(x.children) = 1 with gi(x0) = [r, t]

[r − 1, t′ + 1] else with gi(x0) = [r, t] and gi(x1) = [r′, t′] .
(3.9)

Essentially, the interval of a parent is the interval of the children increased
by one in each direction. This ensures that the parent of a node x is a strict
superset of x and a possible sibling of x. In Figure 3.2 a visualisation of gD and
gU for the derivations from Example 2.1.6 on Page 10 is depicted.
Thus, so far it is clear that our construction satisfies Equations (3.1), (3.2)

and (3.5). To prove that gi respects the structure for the tree it remains to
show that gi satisfies Equation (3.3). We say that x0 is the left child of x and

43

3 Spatial Properties with Precise Information

SD, [1, 43]

AD, [2, 25]

AD, [3, 6]

aD, [4, 5]

AD, [21, 24]

aD, [22, 23]

BD, [39, 42]

bD, [40, 41]

0

0

0

1

0

1

0

SU, [2, 44]

CU, [3, 6]

aU, [4, 5]

CU, [20, 43]

CU, [21, 24]

aU, [22, 23]

CU, [39, 42]

bU, [40, 41]

0

0

1

0

0

1

0

Figure 3.2: Two binary (in fact derivation) trees from Figure 2.1 on Page 11
extended with interval labelling as defined in Lemma 3.1.5.

that x1 is the right child of x. We define the leftmost (resp. rightmost) leaf of a
node x ∈ Υi as

lfL(x) = xj ∈ Υi such that x v xj and ∀j′ < j. xj′ 6v x ,

lfR(x) = xj ∈ Υi such that x v xj and ∀j′ > j. xj′ 6v x

where v is the prefix relation for words (cf. Page 7) and xj (resp. xj′) is the
j-th (resp. j′-th) leaf by the lexicographic order. We reformulate Equation (3.9)
to show that Equation (3.3) holds. For any node x ∈ Υi the interval labelling is
given by

gi(x) = [gi(lfL(x))− dis(x, lfL(x)), gi(lfR(x)) + dis(x, lfR(x))] . (3.10)

This formalises that for a node x the left border of its interval label is given by
the left border of the leftmost leaf that is a descendant of x and the distance
from that leftmost leaf to x, and similarly for the right border.
We make a small detour and show that Equation (3.10) holds. For this we

argue inductively, starting with the leafs. For a leaf x we have lfL(x) = lfR(x) = x,
which means

[gi(lfL(x))− dis(x, lfL(x)), gi(lfR(x)) + dis(x, lfR(x))]

= [gi(x)− 0, gi(x) + 0] = gi(x) .

The equality holds for the base case. Now, let x be a node with children, and
let us first consider the case that x has two children. We use the fact that

44

3.1 Undecidability of Satisfiability of MLSL

lfL(x0) = lfL(x) and lfR(x1) = lfR(x). Then

gi(x)
def
= [gi(x0)− 1, gi(x1) + 1]

IH
= [gi(lfL(x0))− dis(x0, lfL(x0))− 1, gi(lfR(x1)) + dis(x1, lfR(x1)) + 1]

= [gi(lfL(x))− dis(x0, lfL(x))− 1, gi(lfR(x)) + dis(x1, lfR(x)) + 1]

= [gi(lfL(x))− dis(x, lfL(x)), gi(lfR(x)) + dis(x, lfR(x))] .

Thus, the equality holds for nodes with two children. For nodes with a single
child similar reasoning applies.
We return from our detour. For the following equations we point out that

the distance of a child from its parent is less or equal the number of nodes in
the tree, i.e.

∀x, x′ ∈ Υ. x v x′ =⇒ dis(x, x′) ≤ |Υ| . (3.11)

Further, note that if x has two children and lfR(x0) = xj then lfL(x1) = xj+1,
i.e. for a node x the rightmost leaf of the left child of x is adjacent to the leftmost
leaf of the right child of x. Given

gi(x0) < gi(x1) ⇐⇒ gi(x1)− gi(x0) > 0

we show that our construction satisfies Equation (3.3):

gi(x1)− gi(x0) with (3.10)

= gi(lfL(x1))− dis(x1, lfL(x1))− (gi(lfR(x0)) + dis(x0, lfR(x0)))

= gi(lfL(x1))− gi(lfR(x0))− dis(x1, lfL(x1))− dis(x0, lfR(x0)) for some j

= gi(xj+1)− gi(xj)− dis(x1, lfL(x1))− dis(x0, lfR(x0)) with (3.7)

= 2 ∗max(|ΥD|, |ΥU|) + 1− dis(x1, lfL(x1))− dis(x0, lfR(x0)) with (3.11)
≥ 2 ∗max(|ΥD|, |ΥU|) + 1− 2 ∗max(|ΥD|, |ΥU|)
> 0

Now we can proceed to the actual reduction of the lane-unbounded satisfiability
problem of MLSL to the emptiness problem of the intersection of two context-
free languages. First we give a definition used in both directions of the proof. We
remind that we used πi : T → Ti with i ∈ {D,U} to distinguish terminals from

45

3 Spatial Properties with Precise Information

the downward and the upward derivation (see Page 35). Let π′i : Ni∪T → Ti∪Ni
be an extension of πi that maps nonterminals to their identity. We define π′i as

π′i(σ) =

{
πi(σ) if σ ∈ T ,

σ otherwise .

Lemma 3.1.6. Let GD, GU be two context-free grammars in Chomsky normal
form without ε-rules such that L(GD) ∩ L(GU) 6= ∅. Then F (GD, GU) from
Page 41 is lane-unboundedly satisfiable.

Proof. Note that whenever we talk of derivation trees in this proof, we assume
that the root is labelled by the starting nonterminal of the grammar.
Let Gi = (Ni, T ,Ri, Si) with i ∈ {D,U} and let us assume w.l.o.g. that ND

and NU are disjoint. As L(GD)∩L(GU) 6= ∅ there is a word w ∈ L(GD)∩L(GU)
and let (Υi, fi) be a derivation tree of w from Gi. Let gi with i ∈ {D,U} be the
two interval labelling functions we can create for Υi according to Lemma 3.1.5.
We show that F (GD, GU) is satisfiable by constructing an MLSL model Mall

such that Mall |= F (GD, GU) (for F (GD, GU) see Page 41).
We can define the interval of lanes as Lall = [0, lall] with lall = height(ΥD) +

height(ΥU) + 2. The +2 is necessary because the root of a tree does not count
towards its height but still is represented on its own lane. We define the extension
of the view as Xall = [r − δ, r′ + δ′], where r = min(gD(ε) ∪ gU(ε)), δ, δ′ ∈ R>0

and r′ = max(gD(ε) ∪ gU(ε)). Now we assign to all nodes x ∈ Υi an MLSL
representation using reservations. Let k = λ(π′i(fi(x))) be the number of cars
needed to represent the label of x in MLSL, where λ assigns the number of cars
used to represent a letter (cf. Page 35). Further, let Ci,x0 , . . . , Ci,xk−1 be different
cars for which we did not assign resall, posall and Ωall yet and let s0, . . . , sk ∈ R
be real values such that gi(x) = si,x0 < si,x1 < · · · < si,xk = gi(x). Then we define

resall(C
i,x
j) =

{
{lall −#x} if x ∈ ΥD

{#x} if x ∈ ΥU ,

posall(C
i,x
j) = si,xj ,

Ωall(C
i,x
j ,TS all) = si,xj+1 − si,xj ,

for j ∈ [0, k− 1]. This fills the interval gi(x) with k nonoverlapping reservations
without free space in between. As an example, CD,ε

1 is the second car in the
representation of the letter πD(fD(ε)) of the node ε in the tree ΥD. All cars

46

3.1 Undecidability of Satisfiability of MLSL

which we do not use to represent nodes in the trees have reservations outside
the view. The idea behind the definition of res is that ΥD is represented in the
upper part of the view growing downward, and ΥU is represented in the lower
part of the view growing upward. The number of lanes is chosen large enough
so the representations do not interfere with each other. If we create Mall for
the derivations from Figure 3.2 the resulting model looks like the model shown
in Figure 3.1.

By construction of our interval labels, for any two nodes with equal depth
their interval labels are disjoint. Here we assume that in between the interval
labels of two nodes of the same level there is at least a distance of one. This can
be easily ensured by the interval labelling functions. Formally, for i ∈ {D,U}
and all nodes x, x′ ∈ Υi such that x 6= x′ we assume

#x = #x′ =⇒ ‖[min(gi(x)∪gi(x′)),max(gi(x)∪gi(x′))]\(gi(x)∪gi(x′))‖ ≥ 1 ,

where ‖ · ‖ is the measure on intervals. The above implies for all x ∈ Υi we have

M |= letterfree(gi(x), c) ,

where M = (TS all,Ωall, V, ν), V = ([l, l], X,E), l = lall −#x for i = D (resp.
l = #x for i = U), X = [gi(x)− 1, gi(x) + 1] and ν = νall ⊕ {c 7→ Ci,x0 }.
We show that Mall |= F (GD, GU). The model Mall satisfies startD (see

Page 37) because for M = (TS all,Ωall, V, ν) with V = ([lall, lall], Xall, E) and
ν = νall ⊕ {c 7→ CD,ε

0 } we have M |= letterfree(SD, C).
Furthermore, freeLane is satisfied because the lane height(ΥU) + 1 (or equiva-

lently lall − height(ΥD)− 1) does not contain any reservations.
First we consider the formula asm and its subformulas mutex, noTwoRes and

noClaims (see Page 38). The formula mutex holds because the properties of
the interval labelling functions gi ensure that intervals of the same depth do
not overlap. As we placed reservations only within these intervals and as we
represent labels of nodes of different depth on different lanes we do not have
overlapping reservations. The formula noTwoRes is satisfied because we placed
for all cars at most one reservation in the view. Similarly, we did not place any
claims, which means that noClaims is satisfied.

For the formula allResInLetter (see Page 38) consider a subview V of Vall that
satisfies the premise of the implication, which means that a view is filled by a
reservation of some car C and that the valuation ν maps c to C. That is, for

47

3 Spatial Properties with Precise Information

V = ([l, l′], X,E) and C = ν(c) we have X ⊆ se(C,TS all,Ωall), l ∈ resall(C) and
l = l′. As we only placed cars representing nodes we know that for i ∈ {D,U}
there is x ∈ Υi and j ∈ {0, . . . , λ(π′i(fi(x))) − 1} such that C = Ci,xj . First,
let us consider the case i = D. Then l = lall − #x and X ⊆ gD(x). Let
M = (TS all,Ωall, V

′, ν′) with ν′ = ν⊕{c′ 7→ CD,x
0 }, where CD,x

0 and CD,x
j might

be the same car, V ′ = ([lall −#x, lall −#x], X,E), X = ([gD(x)− 1, gD(x) + 1].
Then we have M ′ |= letterfree(π

′
D(fD(x)), c′). As l = lall−#x and X ⊆ gD(x) we

know that the same view also satisfies true a re(c) a true. For the case i = U
the argument is symmetric. Thus, in the rest of the proof we shall only talk
about representations of letters.
We proceed to letterNextToLetterD from Page 39. Let us assume that the

premise of letterNextToLetterD is satisfied. That means we have a subview
V = ([l, l′], X,E), a valuation ν and a letter σ ∈ TD ∪ ND such that for

M = (TS all,Ωall, V, ν) we have M |=
(〈∃c′. free ∨ re(c′)〉

letterfree(σ, c)

)
. This implies that V

contains at least two lanes. Further, we point out that l < lall. By construction
we know that ν(c) = CD,x

0 for some x ∈ ΥD. As l < lall it follows that x is not the
root of ΥD, i.e. y = front(x) is defined and y ∈ ΥD. As (ΥD, fD) is a derivation
tree all internal nodes are labelled by nonterminals. Thus, fD(y) ∈ ND.
We show that the conclusion of letterNextToLetterD, which consists of two

parts, is satisfied. For the first part of we create M ′ = (TS all,Ωall, V
′, ν′) with

ν′ = ν ⊕ {c′′ 7→ CD,y
0 }, V ′ = ([l′′, l′′], X ′, E), X ′ = [gD(y) − 1, gD(y) + 1] and

l′′ = lall − #y and conclude M ′ |= letterfree(π
′
D(fD(y)), c′′). For the second

part we create M ′′ = (TS all,Ωall, V
′′, ν′) with V ′′ = ([l, l′′], gD(y), E). Now,

from gD(x) ⊂ gD(y) we conclude M ′′ |=
(letter(N, c′′)

true a letterfree(σ, c) a true

)
. The

argumentation for letterNextToLetterU is symmetric.
We continue with stepAllD from Page 38. Assume that the premise of stepAllD

is satisfied, i.e. we have a subview V = (L,X,E) of Vall, a valuation ν and
a nonterminal N s.t. for M = (TS all,Ωall, V, ν) we have M |= letterfree(N, c).
This means that V contains a single lane; let this lane be l. By construction
of Mall we know that there is x ∈ ΥD such that ν(c) = CD,x

0 and gD(x) ⊂ X.
Further, as (ΥD, fD) is a derivation tree and as only internal nodes are labelled
by nonterminals, we know that x is not a leaf.
We show that the conclusion of stepAllD is satisfied. We first consider the

case that x has two children x0, x1. For j ∈ {0, 1} let Mj = (TS all,Ωall, Vj , νj)

48

3.1 Undecidability of Satisfiability of MLSL

with V0 = ([l− 1, l− 1], [X, r], E), V1 = ([l− 1, l− 1], [r,X], E), r = gD(x0) + 1
2 ∗

(gD(x1)− gD(x0)) and νj = ν ⊕ {cj 7→ CD,xj
0 }. This means that the extensions

of V0 and V1 meet at their endpoints. Furthermore, the extension of both
views is slightly larger than the interval labelling because gD(xj) ⊂ gD(x).
By construction we know Mj |= letterfree(π

′
D(fD(xj)), cj). This implies that

the view V ′ = V 	 (V0 : V1) satisfies the formula stepD(N, c), i.e. for M ′ =
(TS all,Ωall, V

′, ν) we have M ′ |= stepD(N, c). The case that x has one child
is analogous, albeit easier. We have shown that Mall satisfies stepAllD. For
stepAllU the reasoning is symmetric.

We remind that we relabelled the terminals T of both grammars to disjoint sets
TD, TU to treat them independently in the logic. As we now relate representations
of terminals from TD with representations from TU we use the renaming functions
πi and their inverses π−1

i , instead of the primed versions.
Assume that the premise of subseqD (see Page 41) is satisfied, i.e. we have

a terminal τ ∈ T and a valuation ν such that for M = (TS all,Ωall, V, ν)

with V = ([l, l], X,E) and ν = νall ⊕ {c 7→ CD,x
0 } for some x ∈ ΥD we have

M |= letterfree(πD(τ), c). As x is labelled by a terminal we know that x is a leaf.
Let x be the j-th leaf of ΥD as defined by the lexicographic order on nodes.
As both derivation trees derive the same word we know that for the j-th leaf
y of ΥU we have π−1

U (fU(y)) = τ . From Lemma 3.1.5 we know gD(x) = gU(y).
Thus, by construction, for M ′ = (TS all,Ωall, V

′, ν′) with V ′ = ([l′, l′], X ′, E),
l′ = #y, X ′ = [gD(y) − 1, gD(y) + 1] and ν′ = ν ⊕ {c′ 7→ CU,y

0 } we have
M ′ |= letterfree(πU(τ), c′), i.e. the first part of the conclusion of subseqD is
satisfied.
For the second part we know gD(x) = gU(y). Thus, for the model M ′′ |=

(TS all,Ωall, V
′′, ν′) with V ′′ = ([l′, l], X ′, E) we have

M ′′ |=
(free

true

free

)
a

(letter(τD, c)

true

letter(τU, c
′)

)
a

(free

true

free

)
.

Hence, the second part of subseqD also is satisfied, which means that Mall

satisfies subseqD.
The reasoning is symmetric for subseqU.
We have shown that Mall satisfies all subformulas of F (GD, GU). Thus

F (GD, GU) is lane-unboundedly satisfiable.

49

3 Spatial Properties with Precise Information

We show the other direction of the reduction. That is, we show that if for
two context-free grammars GD, GU the MLSL formula F (GD, GU) from Page 41
is lane-unboundedly satisfiable, then the intersection of the languages of the
grammars is nonempty.

Lemma 3.1.7. Let GD, GU be two context-free grammars in Chomsky normal
form without ε-rules and let F (GD, GU) (see Page 41) be lane-unboundedly
satisfiable. Then L(GD) ∩ L(GU) 6= ∅.
Proof. In this direction we first reason about the structure of a satisfying model.
Then we show that we can create a derivation tree of GD from the model and a
derivation tree of GU, which works symmetrical to the case for GD. At the end
we show that both trees represent the same word.

For i ∈ {D,U} let Gi = (Ni, T ,Ri, Si), where we assume w.l.o.g. that ND and
NU are disjoint. We remind that we renamed the terminals T to disjoint sets
TD and TU using π′D and π′U (see Page 46). As the formula F (GD, GU) is lane-
unboundedly satisfiable, there is an MLSL model Mall = (TS all,Ωall, Vall, νall)
with Vall = ([lall, l

′
all], [rall, r

′
all], E) andMall |= F (GD, GU). Note that as all refer-

ences to car variables are quantified νall does not contain any useful information.
Further, as we do not use ego, the view owner E also is not helpful.

For the formulas mutex, noTwoRes, noClaims, allResInLetter we refer to Page 38
The formula mutex ensures that Vall contains no overlapping reservations,
noTwoRes ensures that every car has at most one reservation inside the view and
noClaims ensures that there are no claims. The formula allResInLetter ensures
that all reservations are part of the representation of a letter, and thus we reason
about representations of letters. For an MLSL model M = (TS ,Ω, V, ν) with
V = (L,X,E), a letter σ ∈ TD ∪ND ∪TU ∪NU and a view V ′ = (L′, X ′, E) with
L′ = [l, l], l ∈ L, X ′ = [r, r′], X ′ ⊂ X and ‖X ′‖ > 0 we define

repr(M,σ, V ′) iff (TS ,Ω, ([l, l], [r, r′], E), ν) |= ∃c. letter(σ, c) and

∃δ ∈ R>0. (TS ,Ω, ([l, l], [r − δ, r], E), ν) |= free and

∃δ ∈ R>0. (TS ,Ω, ([l, l], [r
′, r′ + δ], E), ν) |= free,

which means that on lane l the extension X ′ contains λ(σ) (see Page 35 for λ)
successive reservations and some free space to the left and to the right.

In the following we argue for formulas subscripted with D, however symmetric
arguments apply for formulas subscripted with U. The formula startD (see
Page 37) ensures that SD is the only letter with a representation on the topmost
lane. Let this representation be given by the view V0.

50

3.1 Undecidability of Satisfiability of MLSL

We show how to construct the derivations, and later we show that they derive
the same word. Let Vall be the set of all subviews V of Vall, which satisfy
repr(Mall, σ, V) for some σ. We define a function hD : Vall → {0, 1}∗ recursively
that assigns every view representing a letter a path over {0, 1}∗. Then ΥD is
the image of hD. We start with

hD(V0) = ε .

Let σ ∈ TD ∪ ND, l ∈ [lall, l
′
all − 1], X ∈ IR such that repr(Mall, σ, ([l, l], X,E))

holds. Then from letterNextToLetterD (see Page 39) we know that there is a non-
terminal N ∈ ND and an interval X1 with X ⊂ X1 such that repr(Mall, N, ([l +
1, l + 1], X1, E)) holds. For V = ([l, l], X,E) and V1 = ([l + 1, l + 1], X1, E) we
define

hD(V) = hD(V1) · v ,

where · is the operator for string concatenation and

v =

1 if ∃σ′ ∈ TD ∪ND and ∃X ′ ⊂ X1 such that X ′ < X

and repr(Mall, σ
′, ([l, l], X ′, E)) holds ,

0 otherwise .

This means that if there is another representation on the same lane left of V
and that other representation also is enclosed by the same representation on the
lane above, then V becomes child one, otherwise child zero. Note that stepAllD
from Page 38 ensures that there is at most one such other representation.
Let the image of hD be ΥD, i.e. ΥD = ranhD. Additionally, we define the

labelling functions fD : ΥD → T ∪ND, which assigns to every node a letter and
gD : ΥD → IR, which assigns to every node an interval. Note that we defined hD
for all views that represent some letter. Let V = (L,X,E) and σ ∈ TD ∪ND be
arbitrary such that repr(Mall, σ, V) holds. Then we define fD(hD(V)) = π̃′D(σ)
and gD(hD(V)) = X, where π̃′D : TD ∪ ND → T ∪ND is the inverse of π′D from
Page 46.
Let x ∈ ΥD and assume that fD(x) ∈ ND. Then stepAllD, together with the

fact that GD and GU are in CNF−ε, ensure either

• there is a node x0 ∈ ΥD such that (fD(x), fD(x0)) ∈ RD and fD(x0) ∈ T ,
or

• there are two nodes x0, x1 ∈ ΥD such that (fD(x), 〈fD(x0), fD(x1)〉) ∈ RD

and fD(x0), fD(x1) ∈ ND.

51

3 Spatial Properties with Precise Information

Further, if fD(x) ∈ T , then the formula letterNextToLetterD ensures that x
has no children in ΥD because letterNextToLetterD requires that above the
MLSL representation of a letter there is the representation of a nonterminal.
Thus, (ΥD, fD) is a derivation tree of GD with a root labelled by the starting
nonterminal. In a symmetric manner we can build functions hU, fU, gU and a
tree ΥU.

Let i ∈ {D,U} and let ī ∈ {D,U} \ {i}. From letterNextToLetteri and stepAlli
we know that gi respects the tree structure of Υi (cf. Page 42). Thus, gi
defines a total order on the leafs of Υi. Let τ ∈ T , then from subseqi we know
that for every node x ∈ Υi with fi(x) = τ and gi(x) = X there is a node
x′ ∈ Υī such that fī(x′) = τ and gī(x′) = X. Hence, subseqi ensures that the
word derived by (Υi, fi) is a subsequence of the word derived by (Υī, fī), and
vice versa for ī. Thus, the two derived words are equal, which implies that
L(GD) ∩ L(GU) 6= ∅.

As the language emptiness of the intersection two context-free grammars
without ε-rules is undecidable (see Lemma 2.1.5), we can use the previous two
lemmas to obtain our first theorem.

Theorem 3.1.8. The lane-unbounded satisfiability problem of MLSL is unde-
cidable.

We point out that if we restrict the horizontal domain to be discrete, then
the lane-unbounded satisfiability problem remains undecidable. To see this, we
point out that in Lemma 3.1.6 we can restrict the interval labels of the leafs to
discrete intervals of the size greater equal maxσ∈ND∪NU∪TD∪TU(λ(σ)) + 1. Then,
to represent the letter σ of a node we can use λ(σ) reservations, each with a
discrete size of at least 1.

3.2 Multi-Lane Spatial Logic with Scope
In the previous sections we have shown that the original MLSL is undecidable
even without length measurement, if we allow an arbitrary number of lanes. In
this section we define an extension of MLSL called Multi-Lane Spatial Logic
with Scope (MLSLS). In this extension it is possible to confine the scope for
the cars considered in a given traffic situation. We then show that for the
fragment where all quantifiers are restricted to a finite and bounded domain,
the satisfiability problem is decidable.

52

3.2 Multi-Lane Spatial Logic with Scope

3.2.1 The Model
Just like in MLSL in our extension the model has a traffic snapshot, a sensor
function, a view and a variable valuation. Additionally, we introduce the notion
of a scope to the model to be able to narrow down the cars under consideration
in a given situation. This leads to the following definition of a model. Note that
as usual, we use I as the set of car identifiers.

Definition 3.2.1 (Model with Scope). Let CS ⊆ I be a subset of identi-
fiers, TS a traffic snapshot, V a view and ν a valuation. Then we call
M = (CS ,TS ,Ω, V, ν) a model of MLSLS with scope CS . We explicitly al-
low for Ω and the functions in TS to be defined only for a subset of I. 4

We allow for MLSLS models without a view and for models that only contain
information about some cars. This is useful to define composition of models
representing disjoint sets of cars and restriction of models to sets of cars. To
this end, we define a simplified version of MLSLS models that does not have a
view and no ego constant.

Definition 3.2.2 (Simple MLSLS Models). Let M = (CS ,TS ,Ω, ν) where
ν : CVar→ I. Then we say that M is a simple MLSLS model. 4

Note that in the definition above the variable valuation does not map the ego
constant, as ego 6∈ CVar. We call a model with view proper. If an MLSLS model
might be simple, and we leave it open on purpose, we say that an MLSLS model
is possibly simple. Additionally, we use M to denote the set of all (possibly
simple) MLSLS models. Note that we also use M for the set of all MLSL models.
However, it will be clear from the context to which models M refers to. Further,
let M∅ = (∅, ∅, ∅, ∅) be the empty MLSLS model.

Definition 3.2.3 (Car Domain). For an MLSLS model M , a traffic snapshot
TS = (res, clm, pos, spd, acc) and a sensor function Ω : I× TS→ R>0 we define
the car domain as carsTS = dom pos, cars Ω = dom(dom Ω) and carsM =
carsTS , where TS is the traffic snapshot in M . 4
We call a model finite if it represents a finite number of cars, i.e. if carsM

is finite. For an MLSLS model M we define its size, denoted with |M |, as
|M | = | carsM |.
For our models we have requirements, as to what constitutes a sane model.

First, we define a requirement for sensor functions, and then for MLSLS models.
We require that the sensor function for each car is independent of other cars.

53

3 Spatial Properties with Precise Information

As an example, we do not want a sensor function with Ω(C,TS 1) = 5 and
Ω(C,TS 2) = 6, where TS 1 and TS 2 contain equal values for the car C. We
formalise this below.

Definition 3.2.4 (Sanity Condition for Sensor Functions). Let Ω : I× TS→
R>0 be a sensor function. Then, Ω is sane if for all (C,TS), (C,TS ′) ∈ dom Ω
we have

{C}C TS = {C}C TS ′ implies Ω(C,TS) = Ω(C,TS ′) . 4

We require that in an MLSLS model the traffic snapshot and the sensor
function is defined for all cars in the scope and for all cars in the range of the
variable valuation. Furthermore, we require that the traffic snapshot is defined
for the same cars as the sensor function and that all functions in the traffic
snapshot have the same domain. Finally, we require that the traffic snapshot,
the sensor function and the view are sane.

Definition 3.2.5 (Sanity conditions for MLSLS Models). We call an MLSLS
model sane if it satisfies the following conditions. We require that in a possibly
simple model M = (CS ,TS ,Ω, V, ν) (resp. M = (CS ,TS ,Ω, ν))

• carsTS is a superset of the scope and of the range of the variable valuation,

• carsTS = cars Ω,

• all functions in the traffic snapshot have the same domain,

• the sensor function satisfies Definition 3.2.4,

• the traffic snapshot satisfies the classical sanity conditions (cf. Defini-
tion 2.3.3) and

• if the model is proper, then the view satisfies Definition 2.3.9. 4

We assume that all MLSLS models we consider satisfy the sanity conditions
above.

Assumption 3.2.6. All possibly simple MLSLS models we consider are sane,
i.e. satisfy Definition 3.2.5. 4

We can transform a proper MLSLS model into a simple model by removing
information about the view owner.

54

3.2 Multi-Lane Spatial Logic with Scope

Definition 3.2.7. For a proper MLSLS model M = (CS ,TS ,Ω, V, ν) let the
simple model M ′ = (CS ,TS ,Ω, {ego} −C ν) be the simple version of M . 4
We define that two simple MLSLS models are composable if they do not

overlap in their car domains and their car variables. We then extend this
definition to define when a proper and a simple model are composable.

Definition 3.2.8 (Composable Models). For i ∈ {1, 2} we say that two simple
MLSLS models Mi = (CS i,TS i,Ωi, νi) are composable iff CS 1 ∩ CS 2 = ∅,
carsTS 1 ∩ carsTS 2 = ∅, cars Ω1 ∩ cars Ω2 = ∅ and dom ν1 ∩ dom ν2 = ∅. We
define that a proper MLSLS model M and a simple MLSLS model M ′ are
composable if the simple version of M and M ′ are composable. 4

Note that M∅ is composable with every MLSLS model, including itself and
that two proper models are never composable.

We define three operations on simple MLSLS models. The first is the disjoint
union of two MLSLS models, denoted by . The second is the restriction of
an MLSLS model to a set of cars, denoted by . The last operation is the
anti-restriction of an MLSLS model to a set of cars, denoted by .

Definition 3.2.9 (Operations on Simple Models). Let Mi = (CS i,TS i,Ωi, νi)
with i ∈ {1, 2} be two composable MLSLS models and let CS ⊆ I be a set of car
identifiers. Then we define three functions: the disjoint union : M×M→M,
the restriction : M×P(I)→M and the anti-restriction : M×P(I)→M as

M1 M2 = (CS 1] CS 2,TS 1] TS 2,Ω1] Ω2, ν1] ν2) ,

M1 CS = (CS 1 ∩ CS ,CS C TS 1, (CS × TS)C Ω1, ν1 B CS) ,

M1 CS = M1 (I \ CS) . 4

We extend the operations above to proper MLSLS models by allowing for
M1 M2 one model to be a proper MLSLS model, while the other remains a
simple model. The result also is a proper MLSLS model. For a proper MLSLS
model M1 the operation M1 CS results in a simple model if the view owner is
not in CS . In this case we remove the ego variable from the valuation. For a
proper MLSLS model M1 the operation M1 CS results in a simple model if
the view owner is in CS . We point out that Definition 3.2.4 is helpful to have
usable definitions of operations on MLSLS models.

Definition 3.2.10 (Operations on Proper Models). For two composable models
M1 = (CS 1,TS 1,Ω1, ν1) and M2 = (CS 2,TS 2,Ω2, V2, ν2) with V2 = (L,X,E)

55

3 Spatial Properties with Precise Information

1

2 C1

C2
E

C3

C3

C4

E

C3

C3

C4C1

C2

Figure 3.3: We depict a simple MLSLS model (M1 on the left) and two proper
MLSLS models (M2 in the middle and M3 on the right). Cars not
in the scope are shaded.

and a set of car identifiers CS ⊆ I we define

M1 M2 = M2 M1 = (CS 1] CS 2,TS 1] TS 2,Ω1] Ω2, V2, ν1] ν2) ,

M2 CS =

{
(CS 2 ∩ CS ,TS ′,Ω′, V2, ν2 B CS) if E ∈ CS ,

(CS 2 ∩ CS ,TS ′,Ω′,CVar C (ν2 B CS)) otherwise ,

where TS ′ = CS C TS 2 and Ω′ = (CS × TS)C Ω2 ,

M2 CS = M2 (I \ CS) .

4

Example 3.2.11. In Figure 3.3 we show three MLSLS models: one simple
model M1 and two proper models M2,M3. The models M1 and M2 are com-
posable because they contain data for different cars, their variable valuations
do not overlap and only M2 is a proper model. The model M3 is equal to the
composition of M1 and M2 and contains all information from these models.
Further, we have M1 = M3 {C3, C4, E, C5} even though C5 is not represented
in M3. 4

Algebraic Properties

We observe the following helpful algebraic properties. Note that these properties
only hold for composable models and not for all possible models as one might
hope. This requirement stems from the fact that each value (car) represents a
distinct physical entity. The proofs are a little cumbersome with their distinctions
on whether the original and the resulting models of the operations are proper
or simple.

56

3.2 Multi-Lane Spatial Logic with Scope

Lemma 3.2.12 (Model Composition is Associative and Commutative). Let
M1,M2 and M3 be three composable and possibly simple models. Then

M1 M2 = M2 M1 and

(M1 M2) M3 = M1 (M2 M3) .

Proof. The operator is defined via the union of sets and (tuples of) functions.
There, union is associative and commutative. Hence, is associative and
commutative.

Lemma 3.2.13 ((Anti-)Restriction can be Joined). Let M1 be a possibly simple
MLSLS model and let CS ,CS ′ ⊆ I be sets of car identifiers. Then

(M1 CS) CS ′ = M1 (CS ∩ CS ′) and (3.12)
(M1 CS) CS ′ = M1 (CS ∪ CS ′) . (3.13)

Proof. We consider Equation (3.12). We first make a case distinction on whether
M1 is proper.
Case 1 (M1 is proper). Let M1 = (CS 1,TS 1,Ω1, V1, ν1) with V1 = (L,X,E).
We make a case distinction on whether E ∈ CS and E ∈ CS ′.

Subcase 1.1 (E ∈ CS , E ∈ CS ′). Then

(M1 CS) CS ′

= (CS 1 ∩ CS ,CS C TS 1, (CS × TS)C Ω1, V1, ν1 B CS) CS ′

= (CS 1 ∩ CS ∩ CS ′,CS ′ C (CS C TS 1),

(CS ′ × TS)C ((CS × TS)C Ω1), V1, (ν1 B CS)B CS ′)

= (CS 1 ∩ CS ∩ CS ′, (CS ′ ∩ CS)C TS 1,

((CS ′ ∩ CS)× TS)C Ω1, V1, ν1 B (CS ∩ CS ′))

= M1 (CS ∩ CS ′) .

Subcase 1.2 (E 6∈ CS). Mostly analogous to the previous case, with the
difference that (M1 CS) and thus also (M1 CS) CS ′ does not have a

57

3 Spatial Properties with Precise Information

view. Note that it does not matter whether E ∈ CS ′. We have

(M1 CS) CS ′

= (CS 1 ∩ CS ,CS C TS 1, (CS × TS)C Ω1,CVar C (ν1 B CS)) CS ′

= (CS 1 ∩ CS ∩ CS ′,CS ′ C (CS C TS 1),

(CS ′ × TS)C ((CS × TS)C Ω1), (CVar C (ν1 B CS))B CS ′)

= (CS 1 ∩ CS ∩ CS ′, (CS ′ ∩ CS)C TS 1,

((CS ′ ∩ CS)× TS)C Ω1,CVar C (ν1 B (CS ∩ CS ′))

= M1 (CS ∩ CS ′) .

For the third step we point out that (CVarC(ν1BCS))BCS ′ by associativity
of the relation restriction operators is equal to CVar C ((ν1 B CS)B CS ′).
Subcase 1.3 (E ∈ CS , E 6∈ CS ′). Mostly analogous to the previous case.

Case 2 (M1 is simple). Analogous to the previous case with the difference that
there is no view and that the case distinction on whether E ∈ CS or E ∈ CS′
is not necessary.
Now we consider Equation (3.13). We have

(M1 CS) CS ′ = (M1 (I \ CS)) (I \ CS ′) with Equation (3.12)
= (M1 ((I \ CS) ∩ (I \ CS ′))
= M1 (I \ (CS ∪ CS ′))

= M1 (CS ∪ CS ′) .

Lemma 3.2.14 (Neutral Elements). Let M1 be a possibly simple MLSLS model
and CS ⊆ I. Then

M1 M∅ = M1 ,

M∅ CS = M∅ , M∅ CS = M∅ ,

M1 ∅ = M1 , M1 ∅ = M∅ ,

M1 I = M∅ , M1 I = M1 .

Proof. Follows immediately from the definitions.

Next, we show that restriction and anti-restriction distribute over disjoint
union.

58

3.2 Multi-Lane Spatial Logic with Scope

Lemma 3.2.15 (Distributivity). LetM1 andM2 be two composable and possibly
simple MLSLS models and let CS ⊆ I. Then

(M1 CS) (M2 CS) = (M1 M2) CS and (3.14)
(M1 CS) (M2 CS) = (M1 M2) CS . (3.15)

Proof. We first consider Equation (3.14) and the case that M1 is proper and
that M2 is simple.
Case 1 (M1 is proper and M2 is simple). Let M1 = (CS 1,TS 1,Ω1, V1, ν1)
with V1 = (L,X,E) and M2 = (CS 2,TS 2,Ω2, ν2). We make a case distinction
on whether E ∈ CS .

Subcase 1.1 (E ∈ CS). For the third step we point out that M1 and M2

are composable. Then

(M1 CS) (M2 CS)

= (CS 1 ∩ CS ,CS C TS 1, (CS × TS)C Ω1, V1, ν1 B CS)

(CS 2 ∩ CS ,CS C TS 2, (CS × TS)C Ω2, ν2 B CS)

= ((CS 1 ∩ CS)] (CS 2 ∩ CS), (CS C TS 1)] (CS C TS 2),

((CS × TS)C Ω1))] ((CS × TS)C Ω2), V1,

(ν1 B CS)] (ν2 B CS))

= ((CS 1] CS 2) ∩ CS ,CS C (TS 1] TS 2),

(CS × TS)C (Ω1] Ω2), V1, (ν1] ν2)B CS)

= (CS 1] CS 2,TS 1] TS 2,Ω1] Ω2, V1, ν1] ν2) CS

= (M1 M2) CS .

Subcase 1.2 (E 6∈ CS). For this case we point out that

(CVar C (ν1 B CS))] (ν2 B CS) = CVar C ((ν1 B CS)] (ν2 B CS)) ,

which is true because M2 is simple and hence dom ν2 ⊆ CVar. Additionally,
as in the previous case we point out that M1 and M2 are composable. We
use both properties in the last step in the equations below. Then

(M1 CS) (M2 CS)

= (CS 1 ∩ CS ,CS C TS 1, (CS × TS)C Ω1,CVar C (ν1 B CS))

(CS 2 ∩ CS ,CS C TS 2, (CS × TS)C Ω2, ν2 B CS)

59

3 Spatial Properties with Precise Information

= ((CS 1 ∩ CS)] (CS 2 ∩ CS), (CS C TS 1)] (CS C TS 2),

((CS × TS)C Ω1))] ((CS × TS)C Ω2),

(CVar C (ν1 B CS))] (ν2 B CS))

= ((CS 1] CS 2) ∩ CS ,CS C (TS 1] TS 2),

(CS × TS)C (Ω1] Ω2),CVar C ((ν1] ν2)B CS)) .

We point out that because E 6∈ CS the view is removed by the restriction
operator. Hence, continuing the equations above we can simply introduce a
view. We get

= (CS 1] CS 2,TS 1] TS 2,Ω1] Ω2, V1, ν1] ν2) CS

= (M1 M2) CS .

Case 2 (M1 is simple and M2 is proper). By commutativity of this case is
analogous to the previous case.
Case 3 (M1 is simple and M2 is simple). Similar to before, only that the case
distinctions on whether E ∈ CS are not needed.

Next, we show that the order in which we apply restriction and anti-restriction
does not affect the result.

Lemma 3.2.16. Let M1 be a possibly simple MLSLS model and let CS ,CS ′ ⊆ I
be sets of car identifiers. Then

(M1 CS) CS ′ = (M1 (CS \ CS ′)) = (M1 CS ′) CS .

Proof. We use Lemma 3.2.13 to combine and split the restriction operator. We
show the first equation. Then

(M1 CS) CS ′ def.
= (M1 CS) (I \ CS ′) Lemma 3.2.13
= M1 (CS ∩ (I \ CS ′))
= (M1 CS \ CS ′) .

60

3.2 Multi-Lane Spatial Logic with Scope

We continue with the second equation. Then

M1 (CS ∩ (I \ CS ′)) Lemma 3.2.13
= (M1 (I \ CS ′)) CS def.
= (M1 CS ′) CS .

Discussion of Operations on MLSLS Models

We briefly discuss our choice of operations on MLSLS. Our reasoning is that
if a car is represented in a model it is represented completely therein. This
idea is contained in our definition of composition, where we require composable
models to be completely disjoint, and in restriction (resp. anti-restriction),
where all data about the cars are removed (resp. kept). The choice that a
car is completely represented in the model stems from our decision procedure
for MLSLS (Section 3.3). There, a tuple of arithmetic variables contains all
information about the cars the tuple represents. For the same reason, i.e.
because a model has all information about a car, the restriction operators take
a set of car identifiers as second parameter, instead of another MLSLS model.
We choose to introduce simple MLSLS models for two reasons: one reason

is that it allows for easier definitions of the operations. At first we defined
composition of proper MLSLS models, and required that all information regard-
ing the view and its owner is equal. As MLSLS models are complicated, this
requirement also becomes complicated. The other reason is that with simple
MLSLS models we can define MLSLS transitions for each car independently
because there is no view to move along as time passes.

The following proposition holds for the sanity conditions on traffic snapshots
because we do not change the values of a car and similarly for the view, if the
resulting model has a view.

Proposition 3.2.17 (Sanity Preservation). For all composable models M1,M2

and sets CS ⊆ I the models M1 M2, M1 CS and M1 CS are sane (cf.
Definitions 3.2.4, 3.2.5 and 2.3.10).

Notice that a model M with scope I is a model of MLSL in the sense of
[HLO+11; LH15].

61

3 Spatial Properties with Precise Information

3.2.2 The Logic
MLSLS extends MLSL with scope formulas of the form cs : φ (read φ under
variable scope cs) for finite sets of car variables cs ⊆ CVar. The idea is that φ
is evaluated considering only cars denoted by variables in cs.

Definition 3.2.18 (MLSLS Syntax). The syntax of an MLSLS formula φ is
given as

φ ::= γ = γ′ | free | re(γ) | cl(γ) | ` = k | ¬φ | φ ∧ φ | ∃c. φ | φ a φ | φ
φ
| cs : φ ,

where c ∈ CVar, k ∈ R, γ, γ′ ∈ CVar ∪ {ego}, cs ⊆ CVar and ` is a special
symbol denoting the length of the lanes’ extension. With Φ we denote the set
of MLSLS formulas. 4
We define the set of free variables in an MLSLS formula. The definition is

similar to the definition of free variables in first-order logic. The idea is that a
variable c is free if it occurs outside a formula ∃c. φ. Note that ego is a constant,
and thus not a (free) variable.

Definition 3.2.19 (Free Variables). Let c ∈ CVar, k ∈ R, γ, γ′ ∈ CVar ∪ {ego}
and CS ⊆ I. Then we define the free variables in an MLSLS formula inductively
as

freeVar(γ = γ′) = {γ, γ′} \ {ego} ,
freeVar(re(γ)) = freeVar(cl(γ)) = {γ} \ {ego} ,

freeVar(free) = freeVar(` = k) = ∅ ,
freeVar(¬φ1) = freeVar(φ1) ,

freeVar(cs : φ1) = cs ∪ freeVar(φ1) ,

freeVar(φ1 a φ2) = freeVar(
φ2

φ1

) = freeVar(φ1 ∧ φ2)

= freeVar(φ1) ∪ freeVar(φ2) ,

freeVar(∃c. φ1) = freeVar(φ1) \ {c} .

4
We give the semantics of MLSLS and point out that we choose a semantics

that is less abstract than the original one [HLO+11]. This is to make it easier

62

3.2 Multi-Lane Spatial Logic with Scope

to see the similarity of our semantics for MLSLS and of our decision procedure
that we define later for it.

Definition 3.2.20 (Semantics). Let c ∈ CVar, k ∈ R≥0 and γ, γ′ ∈ CVar∪{ego}.
Further, let CS ⊆ I be a scope, TS a traffic snapshot, V = (L, [r, r′], E) with
L = [l, l′] a view, Ω a sensor function and ν with ν(ego) = E a valuation. We
define the satisfaction of a formula by a proper model M = (CS ,TS ,Ω, V, ν)
as follows:

M |= γ = γ′ iff ν(γ) = ν(γ′)

M |= free iff (l 6∈ res(C) ∪ clm(C) or se(C,TS ,Ω) ∩ (r, r′) = ∅)
for every C ∈ CS , and l = l′ and r < r′

M |= re(γ) iff l ∈ res(ν(γ)) and [r, r′] ⊆ se(ν(γ),TS ,Ω) and
l = l′ and r < r′

M |= cl(γ) iff l ∈ clm(ν(γ)) and [r, r′] ⊆ se(ν(γ),TS ,Ω) and
l = l′ and r < r′

M |= ` = k iff r′ − r = k

M |= cs : φ iff ({ν(c) | c ∈ cs},TS ,Ω, V, ν) |= φ

M |= ¬φ iff M 6|= φ

M |= φ1 ∧ φ2 iff M |= φ1 and M |= φ2

M |= ∃c. φ iff (CS ,TS ,Ω, V, ν ⊕ {c 7→ C}) |= φ, for some C in CS

M |= φ1 a φ2 iff (CS ,TS ,Ω, V1, ν) |= φ1 and (CS ,TS ,Ω, V2, ν) |= φ2

with V1 = V[r,r′′] and V2 = V[r′′,r′], for some r′′ ∈ [r, r′]

M |= φ2

φ1

iff L 6= ∅ implies

(CS ,TS ,Ω, V1, ν) |= φ1 and (CS ,TS ,Ω, V2, ν) |= φ2

with V1 = V [l,l′′] and V2 = V [l′′+1,l′],

for some l′′ ∈ [l − 1, l′], and
L = ∅ implies M |= φ1 and M |= φ2 4

In the definition of the semantics of the vertical chop operator
(φ2

φ1

)
, we

deviate from the classical semantics and distinguish two cases. If the current
view contains at least one lane we split the view into a lower and an upper
subview and evaluate φ1 on the lower subview and φ2 on the upper subview.

63

3 Spatial Properties with Precise Information

1

2

E C1

C3C2

Figure 3.4: Visualisation of a model satisfying the formula from Example 3.2.21.
The scope and the valuation are not shown.

Otherwise, when the view is empty, we do not chop the view and instead evaluate
both formulas on the same view. The intuition here is that all subviews of an
empty view are empty and we cannot distinguish different empty views with
MLSLS. This special handling is necessary, because if we chop along a lane into
a lower and an upper subview the lanes of the two subviews should be disjoint.
However, for horizontal chops the endpoint of the left subview and the start
point of the right subview are shared.
The scope CS of a model (CS ,TS ,Ω, V, ν) is used in the semantics for the

formulas free and ∃c. φ. The formula free holds if no car from the scope CS
occupies a part of the lane under consideration, and ∃c. φ holds if φ holds for
some car C in the scope CS .

Example 3.2.21. Consider the example formula

φ ≡ {c1, c2} :
(〈 free

re(ego)

〉
a ∃c. 〈re(c)〉

)
.

The formula states that horizontally right of ego there is the reservation of
either c1 or c2 and that vertically above ego there is neither a reservation from
c1 nor from c2. A model satisfying φ is shown in Figure 3.4. The valuation is
ν = {ego 7→ E, c1 7→ C1, c2 7→ C2}. Note that the scope (which is not shown in
the figure) does not affect whether the formula is satisfied, because the scope
operator overrides the scope. 4

As for the original logic we define two forms of satisfiability for our extension.

Definition 3.2.22. Given a infinite set of lanes L and an MLSL formula φ we
say that φ is lane-unboundedly satisfiable iff there exists a model M such that
M |= φ. 4

64

3.2 Multi-Lane Spatial Logic with Scope

Definition 3.2.23. Given a finite set of lanes L and an MLSL formula φ we
say that φ is lane-boundedly satisfiable iff there exists a model M such that
M |= φ. 4

As for the original logic MLSL, we point out that in this work we only consider
the unbounded version of MLSLS satisfiability.

Basic Properties of MLSLS

We prove some basic properties of our extension of MLSL. We introduced a
satisfaction relation for MLSLS that is less abstract than the one given for MLSL
in Chapter 2. The goal of defining a less abstract satisfaction relation is to make
our semantics for MLSLS and our decision procedure that we define later for it
more similar. In the following lemma we prove that we could have extended the
abstract semantics from Definition 2.3.13 and added a scope component, and
that both satisfaction relations would be equivalent. For an example consider

the formula φ ≡ φ2

φ1

, an MLSLS model M = (CS ,TS ,Ω, V, ν) and let |=c be the

satisfaction relation of MLSLS. In the semantics of MLSLS we defined that to
check M |=c φ, we make a case distinction on whether the view V is empty. If
V is empty, we check φ1 and φ2 on V . Otherwise, we chop V into a lower and
an upper subview and check φ1 and φ2 on these subviews. Instead, we could
have defined a satisfaction relation |=a for MLSLS that essentially takes the
definition from Definition 2.3.13 and adds the scope, i.e.

M |=a φ

iff

∃V1, V2. V = V1 	 V2 and (CS ,TS ,Ω, Vi, ν) |=a φi with i ∈ {1, 2} .

Then M |=a φ iff M |=c φ.

Lemma 3.2.24. Let |=c be the concrete semantics of MLSLS from Defini-
tion 3.2.20 and let |=a be the abstract semantics from above. Then, for all
MLSLS models M and formulas φ we have

M |=c φ iff M |=a φ .

Proof. We proceed by induction on the structure of the formula φ.
Induction base.

65

3 Spatial Properties with Precise Information

For the base cases this is fairly clear.
Induction hypothesis.
For all Mi and φi with i ∈ {1, 2} we have M |=c φ iff M |=a φ.
Induction step.

We consider the case φ ≡ φ2

φ1

. Let M = (CS ,TS ,Ω, V, ν) with V = (L,X,E).

Case 1 (if). Assume M |=a

φ2

φ1

. Then there are views V1, V2 with V =

V1 	 V2 such that (CS ,TS ,Ω, Vi, ν) |=a φi. From the IH it follows that
(CS ,TS ,Ω, Vi, ν) |=c φi.

We make a case distinction on whether L = ∅. If L = ∅, then the definition
of 	 implies that V1 = V2 = V , which means M |=c φ.
Assume L 6= ∅ and let L = [l, l′]. We have to show that we can choose a

chop point l′′ ∈ [l − 1, l′] that produces from V the lane intervals L1 and L2.
We choose l′′ = l + |L1| − 1. Then, independent of whether L1 = ∅, L2 = ∅ or
neither interval is empty we have L1 = [l, l′′] and L2 = [l′′ + 1, l′]. Thus, we can

always choose an appropriate chop point and conclude M |=c

φ2

φ1

.

Case 2 (only if). Assume M |=c

φ2

φ1

. Then (CS ,TS ,Ω, Vi, ν) |=c φi and the

views can have two forms, depending on whether L = ∅: if L = ∅, then we can
see in the definition of |=c that V1 = V2 = V . As then we have V = V1 	 V2

we can use the IH to conclude M |=a

φ2

φ1

. If however, we have L 6= ∅, then

there is l′′ ∈ [l − 1, l′] such that (CS ,TS ,Ω, Vi, ν) |=c φi with V1 = V [l,l′′] and
V2 = V [l′′+1,l′] and i ∈ {1, 2}. Again, we have V = V1 	 V2, which implies with

the IH that M |=a

φ2

φ1

.

From the previous lemma it follows that if we disregard formulas of the form
cs : φ and use I as scope in models, then MLSLS is a conservative extension of
MLSL.
We prove that the scope operator is distributive with the binary operators

and commutes with negation. Note that we use the original semantics from

66

3.2 Multi-Lane Spatial Logic with Scope

[LH15] (cf. |=a on Page 65) as it is more concise, especially for the vertical chop.

Lemma 3.2.25. For all M = (CS ,TS ,Ω, V, ν), MLSLS formulas φ, φ1, φ2,
sets of car variables cs, cs1, cs2 and binary operators � ∈ {∧, a , ` }, where `
represents the vertical chop operator, we have

M |= cs : ¬φ iff M |= ¬(cs : φ) , (3.16)
M |= cs : (φ1 ∧ φ2) iff M |= (cs : φ1) ∧ (cs : φ2) , (3.17)
M |= cs : (φ1 a φ2) iff M |= (cs : φ1) a (cs : φ2) , (3.18)

M |= cs :
(φ2

φ1

)
iff M |= cs : φ2

cs : φ1

, (3.19)

M |= cs1 : (cs2 : φ1) iff M |= cs2 : φ1 (3.20)
M |= cs2 : ((cs1 : φ1)� φ2) iff M |= (cs1 : φ1)� (cs2 : φ2) , (3.21)
M |= (cs1 : φ1)� (cs2 : φ2) iff M |= cs1 : (φ1 � (cs2 : φ2)) . (3.22)

Proof. The idea of the proof is to unfold the semantics, introduce first the
scope operator and then the other operator and then fold the semantics again.
Let CS ′ = {ν(c) | c ∈ cs} and M ′ = (CS ′,TS ,Ω, V, ν). We first prove
Equation (3.16). We have

M |= cs : ¬φ iff M ′ |= ¬φ
iff M ′ 6|= φ

iff M 6|= cs : φ

iff M |= ¬cs : φ .

We proceed to Equation (3.17) and get

M |= cs : φ1 ∧ φ2 iff M ′ |= φ1 ∧ φ2

iff M ′ |= φ1 and M ′ |= φ2

iff M |= cs : φ1 and M |= cs : φ2

iff M |= cs : φ1 ∧ cs : φ2 .

For Equation (3.18) let M ′i = (CS ′,TS ,Ω, Vi, ν) and Mi = (CS ,TS ,Ω, Vi, ν)

67

3 Spatial Properties with Precise Information

with i ∈ {1, 2}. Then

M |= cs : φ1 a φ2 iff M ′ |= φ1 a φ2

iff ∃V1, V2. V1 : V2 = V and M ′1 |= φ1 and M ′2 |= φ2

iff ∃V1, V2. V1 : V2 = V and M1 |= cs : φ1 and

M2 |= cs : φ2

iff M |= cs : φ1 a cs : φ2 .

For Equation (3.19) we have

M |= cs :
(φ2

φ1

)
iff M ′ |= φ2

φ1

iff ∃V1, V2. V1 	 V2 = V and M ′1 |= φ1 and M ′2 |= φ2

iff ∃V1, V2. V1 	 V2 = V and M1 |= cs : φ1 and M2 |= cs : φ2

iff M |= cs : φ2

cs : φ1

,

where M ′i = (CS ′,TS ,Ω, Vi, ν) and Mi = (CS ,TS ,Ω, Vi, ν) with i ∈ {1, 2}.
For the remaining cases letMi = ({ν(c) | c ∈ csi},TS ,Ω, V, ν) with i ∈ {1, 2}.

We come to Equation (3.20) and show that for directly nested scope operators
only the innermost scope affects the satisfaction. We have

M |= cs1 : (cs2 : φ1) iff M1 |= cs2 : φ1 iff M2 |= φ1 iff M |= cs2 : φ1 .

We use the previous cases to prove Equations (3.21) to (3.22). We have

M |= cs2 : ((cs1 : φ1)� φ2) Equations (3.17) to (3.19)
iff M |= (cs2 : (cs1 : φ1))� (cs2 : φ2) Equation (3.20)
iff M |= (cs1 : φ1)� (cs2 : φ2) Equation (3.20)
iff M |= (cs1 : φ1)� (cs1 : (cs2 : φ2)) Equations (3.17) to (3.19)
iff M |= cs1 : (φ1 � (cs2 : φ2)) .

For the rest of this section we investigate which models MLSLS can distin-
guish. The intuition is that MLSLS can distinguish spatial differences, but not
differences in the dynamics. We define that two models are weakly equal iff
for a certain set of cars the traffic snapshot is equal and the sensor function

68

3.2 Multi-Lane Spatial Logic with Scope

1

2

E

C3

C3

C4

Figure 3.5: Model from Figure 3.3. The scope contains the cars E and C3.

for that traffic snapshot and that set of cars are equal. The reasoning is that
we consider only a single data point of the sensor function and not a function
assigning for each traffic snapshot a value.

Definition 3.2.26 (Weak Equality of MLSLS Models). LetM = (CS ,TS ,Ω, ν),
M ′ = (CS ′,TS ′,Ω′, ν′) be two simple MLSLS models. Then we define that M
and M ′ are weakly equal (denoted M hm M ′) as

M hm M ′ iff

CS = CS ′ ∧ ν = ν′

∧ ((CS ∪ ran ν)C TS) = ((CS ′ ∪ ran ν′)C TS ′)
∧ (((CS ∪ ran ν)× {TS}))C Ω = (((CS ′ ∪ ran ν′)× {TS ′}))C Ω′ .

We lift this to proper models by additionally requiring that their views are
equal. 4
Note that a simple MLSLS model and a proper one are never weakly equal.

Example 3.2.27. Consider the MLSLS model M = (CS ,TS ,Ω, V, ν) from
Figure 3.3 shown again in Figure 3.5. Further, let the speed of E in M be 80
and let the sensor function Ω for E be as shown in Figure 3.6 on the left. We
assume that C4 6∈ ran ν, i.e. that there is no variable mapping to C4.

We introduce M ′ = (CS ,TS ′,Ω′, V, ν) which we define to be quite similar to
M . That is, TS ′ = {C4} −C TS , for C3 the sensor function Ω′ is equal to Ω, for
E we show Ω′ in Figure 3.6 on the right and Ω′ does not assign values for C4.
We see that Ω′ for E is a sampled version of Ω for E.

Now, M ′ does not contain any information about C4 and Ω′ in M ′ has less
information than Ω in M . Nevertheless, we have M hm M ′ because weak
equality only considers the spatial aspects of the given situation models and
ignores irrelevant cars. 4

It can be easily seen that hm is an equivalence relation, i.e. that it is reflexive,
symmetric and transitive.

69

3 Spatial Properties with Precise Information

20 40 60 80 100 120

20

40

60

80

100

Ω(E)

km/h

braking distance in metres

20 40 60 80 100 120

20

40

60

80

100

Ω′(E)

km/h

braking distance in metres

Figure 3.6: On the left we show a sensor function Ω for E. On the right we
show a sampled version Ω′ of the sensor function for E on the left.

Proposition 3.2.28. hm is an equivalence relation.

The following lemma states that weak equality of MLSLS models is preserved
by model composition.

Lemma 3.2.29. For all composable possibly simple MLSLS models M1,M
′
1

and M2,M
′
2 we have

(M1 hm M ′1 and M2 hm M ′2) implies M1 M2 hm M ′1 M ′2 .

Proof. We first consider the case that M1 M2 and M ′1 M ′2 are proper models.
Let M1 = (CS 1,TS 1,Ω1, V1, ν1) and M ′1 = (CS ′1,TS

′
1,Ω

′
1, V

′
1 , ν
′
1) be proper

models and let M2 = (CS 2,TS 2,Ω2, V2, ν2) and M ′2 = (CS ′2,TS
′
2,Ω

′
2, V

′
2 , ν
′
2)

be simple models such that M1 and M2 (resp. M ′1 and M ′2) are compos-
able. Further, let M = M1 M2 = (CS ,TS ,Ω, V, ν) and M ′ = M ′1 M ′2 =
(CS ′,TS ′,Ω′, V ′, ν′). We consider the requirements of weak equality separately.

Case 1 (CS = CS ′). From Mi hm M ′i we know CS i = CS ′i, which together
with the compositionality of the models implies CS 1] CS 2 = CS ′1] CS ′2.
Case 2 (ν = ν′). From Mi hm M ′i we know νi = ν′i. With compositionality of
the models this implies ν1] ν1 = ν′2] ν′2.

70

3.2 Multi-Lane Spatial Logic with Scope

Case 3 ((((CS ∪ ran ν)×{TS}))CΩ = (((CS ′ ∪ ran ν′)×{TS ′}))CΩ′). From
the definition of M we get

((CS ∪ ran ν)× {TS})C Ω

= (((CS 1] CS 2) ∪ (ran ν1] ran ν2))× {TS 1] TS 2})C (Ω1] Ω2) .

Now, TS 1]TS 2 is a single traffic snapshot and not a set of snapshots. Because
M1 and M2 are composable we can restrict Ω1 and Ω2 to smaller domains
separately and then join them. Additionally, from Assumption 3.2.6 we know
that cars not in cars Ωi with i ∈ {1, 2} do not affect the function. Thus,
continuing the equations above we have

= (((CS 1 ∪ ran ν1)× {TS 1})C Ω1) ∪ (((CS 2 ∪ ran ν2)× {TS 2})C Ω2)

MihmM
′
i= (((CS ′1 ∪ ran ν′1)× {TS ′1})C Ω′1) ∪ (((CS ′2 ∪ ran ν′2)× {TS ′2})C Ω′2) .

Using the same arguments as before we can undo the previous steps for M ′1 and
M ′2 and conclude

= (((CS ′ ∪ ran ν′)× {TS ′}))C Ω′ .

Case 4 ((CS ∪ ran ν) C TS = (CS ′ ∪ ran ν′) C TS ′). We apply a similar
reasoning as in the previous case: because of composability we can separate and
combine the restricted traffic snapshots (second and fourth step). We have

(CS ∪ ran ν)C TS def. of M
= ((CS 1] CS 2) ∪ (ran ν1] ran ν2))C (TS 1] TS 2)) M1,M2 are composable
= ((CS 1 ∪ ran ν1)C TS 1)] ((CS 2 ∪ ran ν2)C TS 2) Mi hm M ′i
= ((CS ′1 ∪ ran ν1)C TS 1)] ((CS ′2 ∪ ran ν′2)C TS ′2) M ′1,M

′
2 are composable

= ((CS ′1] CS ′2) ∪ (ran ν′1] ran ν′2))C (TS ′1] TS ′2)) def. of M ′

= (CS ′ ∪ ran ν′)C TS ′

Case 5 (V = V ′). W.l.o.g. we assume that M1 and M ′1 are proper MLSLS
models. From M1 hm M ′1 we know V1 = V ′1 , which implies V = V ′.
We proofed the case that M1 M2 and M ′1 M ′2 are proper models. The case
that both are simple models is analogous.

The following lemma states that weak equality of MLSLS models is a sufficient
condition for being indistinguishable with MLSLS formulas.

71

3 Spatial Properties with Precise Information

Lemma 3.2.30. Let M = (CS ,TS ,Ω, V, ν), M ′ = (CS ′,TS ′,Ω′, V ′, ν′) be two
proper MLSLS models with M hm M ′. Then for all MLSLS formulas φ the
following holds:

M |= φ iff M ′ |= φ .

Proof. The lemma holds because the parts of the model the semantics of the
logic checks are equal. We proceed by induction on the structure of φ. Note
that we only show one direction of the equivalence. The other direction follows
because hm is symmetric. In the following let k ∈ R, γ, γ′ ∈ CVar ∪ {ego}.
Additionally, we assume M |= φ and M hm M ′.
Induction base.
Case 1 (φ ≡ re(γ)). From M hm M ′ we know ν = ν′, which means ν(γ) =
ν′(γ). Further, we know that for C = ν(γ) the spatial properties of C in M
and M ′ and the respective views are equal. That is, we know se(C,TS ,Ω) =
se(C,TS ′,Ω′) and {C} C res = {C} C res′. It follows that M |= re(γ) implies
M ′ |= re(γ).
Case 2 (φ ≡ cl(γ)). Analogously to φ ≡ re(γ).
Case 3 (φ ≡ free). We have CS = CS ′. Thus, as M |= free, V = V ′,
CS C TS = CS ′ C TS ′ and (CS × {TS})C Ω = (CS ′ × {TS ′})C Ω′ it follows
that M ′ |= free. That is, for the cars in CS the spatial aspects in M and M ′
are equal.
Case 4 (φ ≡ ` = k). From V = V ′ and M |= ` = k it follows that M ′ |= ` = k.
Case 5 (φ ≡ γ = γ′). From ν = ν′ and M |= γ = γ′ it follows that
M ′ |= γ = γ′.
As we pointed out before, the other direction follows because hm is symmetric.
Induction hypothesis.
For the MLSLS formulas φi with i ∈ {1, 2} and all MLSLS models Mi,M

′
i with

Mi hm M ′i we have
Mi |= φi iff M ′i |= φi .

Induction step.
Case 1 (φ ≡ cs : φ1). As M |= cs : φ1 we have M1 |= φ1 with M1 =
(CS 1,TS ,Ω, V, ν) and CS 1 = {ν(c) | c ∈ cs}. As ν = ν′ and M hm M ′ we
have M1 hm M ′1 with M ′1 = (CS 1,TS

′,Ω′, V ′, ν′). From the IH we conclude
M ′1 |= φ1, which implies M ′ |= cs : φ1.
Case 2 (φ ≡ ¬φ1). M |= ¬φ1 implies M 6|= φ1. From the IH we conclude
M ′ 6|= φ1, which implies M ′ |= ¬φ1.

72

3.3 Satisfiability of MLSLS

Case 3 (φ ≡ φ1 ∧ φ2). M |= φ1 ∧ φ2 implies M |= φ1 and M |= φ2. From the
IH it follows that M ′ |= φ1 and M ′ |= φ2, which implies M ′ |= φ1 ∧ φ2.
Case 4 (φ ≡ ∃c. φ1). As M |= ∃c. φ1, there is a car C ∈ CS such that for
M1 = (CS ,TS ,Ω, V, ν ⊕ {c 7→ C}) we have M1 |= φ1. As M hm M ′ we have
for M ′1 = (CS ′,TS ′,Ω′, V ′, ν′ ⊕ {c 7→ C}) that M1 hm M ′1. We conclude from
the IH that M ′1 |= φ1, which implies M ′ |= ∃c. φ1.
Case 5 (φ ≡ φ1 a φ2). As M |= φ1 a φ2, there exists a value r1 ∈ [r, r′] with
M1 = (CS ,TS ,Ω, V[r,r1], ν) and M1 |= φ1 and M2 = (CS ,TS ,Ω, V[r1,r′], ν) |=
φ2. We can mimic the chop in M ′ such that for M ′1 = (CS ′,TS ′,Ω′, V ′[r,r1], ν

′)

and M ′2 = (CS ′,TS ′,Ω′, V ′[r1,r′], ν
′) we have M1 hm M ′1 and M2 hm M ′2. From

the IH it follows thatM ′1 |= φ1 andM ′2 |= φ2. As the start point of the extension
of M ′2 is the endpoint of the extension of M ′1 it follows that M ′ |= φ1 a φ2.

Case 6 (φ ≡ φ2

φ1

). Assume M |= φ2

φ1

. We use the semantics from [LH15],

which is equivalent to ours. Then there are views V1, V2 with V = V1 	 V2 and
Mi |= φi, where Mi = (CS ,TS ,Ω, Vi, ν). Now, for M ′i = (CS ′,TS ′,Ω′, Vi, ν′)
we have Mi hm M ′i . From the IH we conclude M ′i |= φi, which implies that we

can join the views again and get M ′ |= φ2

φ1

.

As in the base cases, the other direction follows because hm is symmetric.

3.3 Satisfiability of MLSLS
In this section, we give a decision procedure for lane-unbounded satisfiability for
a subset of MLSLS. To do so, we transform formulas to constraints belonging
to the first-order theory of mixed linear arithmetic (FOMLA), for which the
satisfiability problem is decidable [Wei99; Mon08]. Note that “mixed” indicates
that the theory allows for mixing constraints involving real-valued and integer-
valued variables. In the considered fragment, scoped formulas are used to enforce
that there is a fixed bound on the number of cars that need consideration. In
particular, it is required that the formulas free and ∃c. φ occur only inside a
scoped formula. Such formulas are called well-scoped formulas.

Definition 3.3.1 (Well-scoped MLSLS). The set of well-scoped MLSLS formu-

73

3 Spatial Properties with Precise Information

las is generated by the following grammar:

φ ::= A | ¬φ | φ ∧ φ | φ a φ | φ
φ
| cs :φ′ ,

A ::= ` = k | γ = γ′ | re(γ) | cl(γ)

φ′ ::= free | ∃c. φ′ | A | ¬φ′ | φ′ ∧ φ′ | φ′ a φ′ | φ
′

φ′
| cs :φ′ ,

where c ∈ CVar, cs ⊆ CVar is finite, k ∈ R≥0 and γ, γ′ ∈ CVar ∪ {ego}. 4

We prove that the scope of a model does not affect whether a model satisfies
a well-scoped MLSLS formula.

Lemma 3.3.2. For all CS ,CS ′, all well-scoped formulas φ, traffic snapshots
TS , sensor functions Ω, views V and valuations ν we have

(CS ,TS ,Ω, V, ν) |= φ iff (CS ′,TS ,Ω, V, ν) |= φ

Proof. As we can see in the EBNF of well-scoped formulas, before the scope
of a model is applied in the semantics of MLSLS (free,∃c), a scope operator is
encountered. Such a scope operator is evaluated independently of the current
scope of the model and replaces the current scope. Hence, the initial scope is
never used.

As an example for a well-scoped MLSLS formula consider the MLSLS formula

{c1, c2} :
(〈 free

re(ego)

〉
a ∃c. 〈re(c)〉

)
from Example 3.2.21. The formula first restricts the scope to at most two cars.
Then it states that ego has a reservation and above of ego there is some space
where neither of those two cars has a reservation and in front of ego one of those
cars has a reservation. Note that it is possible that c1 or c2 and ego may point
to the same car.

3.3.1 Transforming MLSLS to Arithmetic Constraints
Now we reduce the satisfiability problem for well-scoped formulas φ to the
satisfiability of FOMLA formulas. To this end, we introduce FOMLA variables

74

3.3 Satisfiability of MLSLS

representing the various components of a model. Then the translation function
“mimics” the definition of the semantics relation |= in Definition 3.2.20. Note
that we use a special type of variables DVar ranging over the set of car identifiers,
which we call car identifier variables. The set DVar can be represented, for
example by variables ranging over the natural numbers. However, we present
them as a different type to have a clearer presentation.
The decision procedure in this section is taken from [FHO15]. However, we

added a proof of correctness and we adapted the presentation. Here, we collect
the variables representing data of a car in a new structure. With this we avoid
the global variable naming scheme used in [FHO15]. This, we believe, helps to
be more precise and clear.

We collect the car identifier variables under consideration in a set D ⊆ DVar.
The information for each of these variables D ∈ D is represented by four real-
valued FOMLA variables vp, vΩ, vs and va and three natural number-valued
FOMLA variables vr1, vr2 and vc. We call these variables data variables. We
collect these data variables in a tuple s ∈ RVar4×NVar3, where RVar (resp. NVar)
is the set of variables ranging over the real numbers (resp. natural numbers).
For the tuple s and its primed version s′ we refer to the variables therein with
vr1 and v′r1 and so on. For a set of car identifier variables D we collect the
data variables for all cars in a structure S : DVar → RVar4 × NVar3. For the
variables vr1, vr2 and vc we assume an additional special value • to indicate that
the variable is unassigned. If S is clear from the context, we shall abbreviate
S(D)(vp) as D.vp and similar for the other data variables, where D ∈ D.

We define a data type such that elements of this type contain the information
necessary to represent MLSLS models in FOMLA.

Definition 3.3.3 (Proper FOMLA (Data) Tuples). Let

Tmla
p = P(DVar)× NTerm2 × RTerm2 × ((CVar ∪ {ego})→ DVar)×

P(DVar)× (DVar→ RVar4 × NVar3)× DVar ,

where NTerm (resp. RTerm) is the set of natural number-valued (resp. real-
valued) FOMLA terms. We call Υ ∈ Tmla

p with Υ = (DS , α, α′, β, β′, f,D,S, DE)
a proper FOMLA data tuple, where

• DS ⊆ DVar represents the scope of an MLSLS model,

• α, α′ ∈ NTerm are natural number-valued terms representing the lanes of
the view,

75

3 Spatial Properties with Precise Information

• β, β′ ∈ RTerm are real-valued terms representing the extension of the view,

• f : (CVar ∪ {ego}) → DVar represents the MLSLS variable valuation
(usually ν),

• D ⊆ DVar is the set of all car identifier variables in the model,

• S : DVar→ RVar4 × NVar3 contains the set of data variables,

• DE ∈ DVar represents the owner of the view and

• we assume DS , ran f ⊆ D, domS = D, DE ∈ D and f(ego) = DE .

For a proper FOMLA data tuple Υ and an assignment κ assigning values to the
variables in Υ we refer to (κ,Υ) as a proper FOMLA tuple. 4

We wish to establish a connection between FOMLA tuples and MLSLS models.
To achieve this, we define FOMLA formulas representing the sanity conditions
for MLSLS models (cf. Assumption 3.2.6). We start to give FOMLA formulas
imposing the sanity conditions on traffic snapshots and the sensor function.
Note that the upper bound on the number of reservations imposed by the
sanity conditions is satisfied because we use two variables to represent the set
of reservations, and similarly for the restriction of having at most one claim.
Further, the condition that only a finite number of cars have a claim or multiple
reservations set is satisfied because of our assumption that we only consider
finitely many different cars.

Definition 3.3.4 (FOMLA Sanity Conditions). Let s be the data variables of
a car and let S be the data variables of multiple cars. Then we define

sanitymla
D (S) ≡

∧
D∈D

sanitymla(S(D)) ,

sanitymla(s) ≡
∧

j∈{1,...,6}
sanitymla

j (s) ,

sanitymla
1 (s) ≡ vc 6= • =⇒ vr1 6= vc ∧ vr2 6= vc ,

sanitymla
2 (s) ≡ vr1 6= • ∨ vr2 6= • ,

sanitymla
3 (s) ≡ vr1 6= • ∧ vr2 6= • =⇒ (vr1 = vr2 + 1 ∨ vr1 = vr2 − 1) ,

sanitymla
4 (s) ≡ vc 6= • =⇒

(
vc = vr1 + 1 ∨ vc = vr1 − 1

∨ vc = vr2 + 1 ∨ vc = vr2 − 1

)
,

76

3.3 Satisfiability of MLSLS

sanitymla
5 (s) ≡ vr1 = • ∨ vr2 = • ∨ vc = • ,

sanitymla
6 (s) ≡ vΩ > 0 . 4

We briefly explain the numbered formulas above. The first requires that
claims and reservations are disjoint. The second that at least one reservation is
set. The third ensures that if two reservations are set, then they are adjacent.
The fourth ensures the same for claims, i.e. if a claim is set, then it is adjacent
to a reservation. The fifth requires that a car does not have a claim and two
reservations. And the last ensures that the sensor function is strictly positive.
We see that • should be represented by a value that is not adjacent to any
possible lane to ensure that, e.g. vc = vr1 + 1 is never true when vc or vr1 is set
to •.
Additionally, if two distinct variables D,D′ ∈ D point to the same car, then

the data variables for D and D′ must agree. Such properties can be formulated
in FOMLA, for example as

id-eq(S) ≡
∧

D,D′∈D
D = D′ =⇒ id-eq(S(D),S(D′)) ,

id-eq(s, s′) ≡
(

vp = v′p ∧ vΩ = v′Ω ∧ vs = v′s ∧ va = v′a
∧ {vr1, vr2} = {v′r1, v′r2} ∧ vc = v′c

)
.

Now, given a FOMLA data tuple Υ = (DS , α, α′, β, β′, f,D,S, DE) we can
define a formula that ensures that any satisfying assignment represents a sane
MLSLS model. For this we point out that in MLSLS we allow empty sets of
lanes, but not an empty extension. Hence, we require β ≤ β′ to ensure that the
extension is at least a point interval. We define

sane(Υ) ≡ sanity(S) ∧ id-eq(S) ∧ β ≤ β′ .
We call a FOMLA tuple (κ,Υ) sane if κ |= sane(Υ) holds.

For a data tuple Υ = (DS , α, α′, β, β′, f,D,S, DE) and D ∈ D we use the
abbreviation D.se ≡ [S(D)(vp),S(D)(vp) + S(D)(vΩ)]. Now we can define our
transformation, which works inductively over the structure of MLSLS formulas.
In the following we define a function. Still, we use ≡ to define the function to
clearly demarcate input and output of the function.

Definition 3.3.5 (Transformation). The transformation is given by a function

trmla
f : Tmla

p × Φ→ Ψ ,

77

3 Spatial Properties with Precise Information

where Φ is the set of MLSLS formulas and Ψ is the set of FOMLA formulas. Let
Υ = (DS , α, α′, β, β′, f,D,S, DE) ∈ T, k ∈ R≥0, γ, γ′ ∈ CVar ∪ {ego}, c ∈ CVar
and cs ⊆ CVar. Then the transformation is given as:

trmla
f (Υ, re(γ)) ≡ β′ > β ∧ [β, β′] ⊆ f(γ).se ∧

α = α′ ∧ (α = f(γ).vr1 ∨ α = f(γ).vr2)

trmla
f (Υ, cl(γ)) ≡ β′ > β ∧ [β, β′] ⊆ f(γ).se ∧ α = α′ ∧ α = f(γ).vc

trmla
f (Υ, free) ≡ α = α′ ∧ β′ > β ∧

∧
D∈DS

 α 6∈ {D.vr1, D.vr2, D.vc}
∨
(β, β′) ∩D.se = ∅

trmla

f (Υ, ` = k) ≡ β′ − β = k

trmla
f (Υ, γ = γ′) ≡ f(γ) = f(γ′)

trmla
f (Υ, cs : φ) ≡ trmla

f (({f(c) | c ∈ cs}, α, α′, β, β′, f,D,S, DE), φ)

trmla
f (Υ, φ1 ∧ φ2) ≡ trmla

f (Υ, φ1) ∧ trmla
f (Υ, φ2)

trmla
f (Υ,¬φ) ≡ ¬trmla

f (Υ, φ)

trmla
f (Υ,∃c. φ) ≡

∨
D∈DS

trmla
f ((DS , α, α′, β, β′, f ⊕ {c 7→ D},D,S, DE), φ)

trmla
f (Υ, φ1 a φ2) ≡ ∃x′′ ∈ R. β ≤ x′′ ≤ β′∧

trmla
f ((DS , α, α′, β, x′′, f,D,S, DE), φ1) ∧

trmla
f ((DS , α, α′, x′′, β′, f,D,S, DE), φ2)

where x′′ is a fresh FOMLA variable

trmla
f (Υ,

φ2

φ1

) ≡ α ≤ α′ =⇒ ∃y′′ ∈ N.

(α− 1 ≤ y′′ ≤ α′ ∧ trmla
f (Υ1, φ1) ∧ trmla

f (Υ2, φ2))

∧
α > α′ =⇒ (trmla

f (Υ, φ1) ∧ trmla
f (Υ, φ2))

where Υ1 = (DS , α, y′′, β, β′, f,D,S, DE),

Υ2 = (DS , y′′ + 1, α′, β, β′, f,D,S, DE) and

y′′ is a fresh FOMLA variable 4

Notice that the transformation is a direct reflection of the definition of the
semantic relation |=. On Page 79 we show an example of the transformation.

78

3.3 Satisfiability of MLSLS

1 y > y′ =⇒
2 trmla

f ((DS1, y, y
′, x, x′, f,D,S, DE), true)

3 ∧
4 ∃x1 ∈ [x, x′].

/* trmla
f ((DS1, y, y

′, x, x1, f,D,S, DE), re(ego)) */
5 x1 > x ∧ [x, x1] ⊆ DE .se ∧ y = y′ ∧ y ∈ {DE .vr1, DE .vr2}
6 ∧
7 trmla

f ((DS1, y, y
′, x1, x

′, f,D,S, DE), free a ∃c. re(c))
8 ∨
9 y ≤ y′ =⇒

10 ∃y1 ∈ [y − 1, y′].

11 trmla
f ((DS1, y1 + 1, y′, x, x′, f,D,S, DE), true)

12 ∧
13 ∃x3 ∈ [x, x′].

/* trmla
f ((DS1, y, y1, x, x3, f,D,S, DE), re(ego)) */

14 x3 > x ∧ [x, x3] ⊆ DE .se ∧ y = y1 ∧ y ∈ {DE .vr1, DE .vr2})
15 ∧
16 ∃x4 ∈ [x3, x

′].

/* trmla
f ((DS1, y, y1, x3, x4, f,D,S, DE), free) */

17
∧
D∈DS (y 6∈ {D.vr1, D.vr2, D.vc} ∨ (x3, x4) ∩D.se = ∅) ∧ y =
y1 ∧ x4 > x3

18 ∧
/* trmla

f ((DS1, y, y1, x4, x
′, f,D,S, DE), ∃c. re(c)) */

19 (x′ > x4 ∧ [x4, x
′] ⊆ D1.se ∧ y = y1 ∧ y ∈ {D1.vr1, D1.vr2}

20 ∨
21 x′ > x4 ∧ [x4, x

′] ⊆ D2.se ∧ y = y1 ∧ y ∈ {D2.vr1, D2.vr2})

Figure 3.7: Transformation of φ ≡ {c1, c2} :
(

true
re(ego) a free a ∃c. re(c)

)
from Ex-

ample 3.2.21 to FOMLA constraints. For the set of car identifier
variables D = {D1, D2, DE} and f = {c1 7→ D1, c2 7→ D2, ego 7→ DE}
let Υ = (∅, y, y′, x, x′, f,D,S, DE). We want to use our trans-
formation to check if φ is lane-unboundedly satisfiable and thus
check ψ ≡ trmla

f (Υ, φ) ∧ sane(Υ) for satisfiability. As the scope
operator does not result in actual constraints, but instead alters

the data tuple we pass along, we have trmla
f (Υ, φ) = trmla

f (Υ1,
true
φ1

)

with Υ1 = (DS1, y, y
′, x, x′, f,D,S, DE), DS1 = {f(c1), f(c2)} and

φ1 ≡ re(ego) a free a ∃c. re(c). We continue the explanation on the
next page.

79

3 Spatial Properties with Precise Information

Figure 3.7: The vertical chop makes a disjunction over whether y > y′ holds. We
explore the case y > y′. In this case the subformulas are checked on the
same data tuple. In Lines 4 to 7 we have the constraints for φ1. For each
horizontal chop a new quantified variable is introduced. However, here we
only expand the left operator with the variable x1. In Line 5 we see the
constraints for re(ego). We see that y > y′ contradicts y = y′. Hence, this
branch is unsatisfiable.

We explore y ≤ y′. In Line 10 we search for a vertical chop point,
represented by the variable y1. From Lines 14 and 17 and Lines 19 to 21
we see that we should choose y1 equal to y. Next we introduce a variable
x3 for the first horizontal chop operator. Note that we introduced two
variables x1 and x3 to represent this chop point. The complete formula
ψ is satisfiable, which implies that φ is lane-unboundedly satisfiable. In
a satisfying assignment we represent at least two cars. We may assign
values such that DE and D1 both have a reservation on the lane given by
the value of y. Furthermore, the right end of the safety envelope of DE
has to be smaller than the position of D1, i.e. DE .vp + DE .vΩ < D1.vp
has to hold. To D2 and the accompanying data variables we may assign
the same values as to the variables of DE or D1 or we might use it to
represent a third car on some lane above the lane of DE and D1. Further,
the interval of lanes contains at least one lane (y ≤ y′) and the extension
has to overlap with the reservations of DE and D1.

Let us consider what happens if we assign D1, D2, DE the same value.
In this case sane(Υ) requires that these variables represent the same car.
Then the constraints in Line 17 contradict the combined constraints in
Line 14 and Lines 19 to 21. More specifically, in Line 17 we require for
D ∈ {D1, D2} that y 6∈ {D.vr1, D.vr2, D.vc} or (x3, x4)∩D.se = ∅. The first
option is prevented by the constraint y ∈ {DE .vr1, DE .vr2}. The second
option is prevented by the combination of [x, x3] ⊆ DE .se, [x4, x

′] ⊆ D.se,
x < x3 < x4 < x′ and D.se being an interval.

80

3.3 Satisfiability of MLSLS

3.3.2 Correctness of the Transformation
In this section we prove the correctness of our construction, by which we mean
that properties of our construction translate to MLSLS properties and vice
versa. On the intuitive side it seems clear that our construction is correct
because we simply imitate the semantics of MLSLS within FOMLA. However,
there are some subtleties. For example, on FOMLA side we represent cars as
intermediate variables D, which take as values car identifiers C ∈ I. Hence,
we operate on these intermediate variables rather than on car identifiers. For
this reason we may have cars that are both in and not in a scope, i.e. for
(κ,Υ) with Υ = (DS , y, y′, x, x′, f,D,S, DE) we may have κ(D) = κ(D′) and
D ∈ DS , D′ 6∈ DS . This seems undesirable, but we show that nevertheless our
construction is correct.

For a well-scoped MLSLS formula φ we formalise correctness of the transfor-
mation as

trmla
f (Υ, φ) ∧ sane(Υ) is satisfiable iff φ is lane-unboundedly satisfiable .

(3.23)

To prove this statement an induction over the structure of φ seems natural.
However, to prove both directions of the bi-implication we have to provide a
satisfying MLSLS model in one direction and a satisfying assignment in the
other direction; but neither is provided by the induction hypothesis. Hence, we
have to strengthen the lemma and use concrete models and assignments. Thus,
we need methods to transform models into FOMLA assignments and vice versa.
We first define these transformations, then we prove some helpful properties
and then we prove the strengthened version of Equation (3.23), which we use to
prove Equation (3.23).
Before we define the transformations between MLSLS models and FOMLA

assignments we prove some basic properties of our arithmetic representation of
MLSLS. We point out that our arithmetic representation consists of variables
to which we assign values via a variable assignment. This will complicate things
somewhat.

Similar to MLSLS we define simple FOMLA tuples where information about
the view and ego-car is not present.

Definition 3.3.6 (Simple FOMLA Tuple). A simple FOMLA data tuple Υ =
(DS , f,D,S) has the type

Tmla
s = P(DVar)× (CVar→ DVar)× P(DVar)× (DVar→ RVar4 × NVar3) ,

81

3 Spatial Properties with Precise Information

where NVar and RVar are the set of natural number-valued and real-valued
variables. We assume DS , ran f ⊆ D and domS = D. For a simple FOMLA
data tuple Υ and a FOMLA assignment κ that assigns values to the variables
in Υ we refer to (κ,Υ) as a simple FOMLA tuple. 4
We denote the empty simple FOMLA tuple with (κ∅,Υ∅) = (∅, ∅, ∅, ∅). We

define a conversion of a proper FOMLA tuple to a simple one. The definition
is more involved than for MLSLS because we work with variables rather than
values.

Definition 3.3.7. Let (κ,Υ) with Υ = (DS , α, α′, β, β′, f,D,S, DE) be a proper
FOMLA tuple. Then we define

simple(κ,Υ) = (κ′,Υ′) with
Υ′ = (DS , {ego} −C f,D,S) and

κ′ = (D ∪
⋃
D∈D

set(S(D)))C κ ,

where set transforms a tuple to a set (cf. Page 5). 4
In the definition above we use (D∪⋃D∈D set(S(D))Cκ to remove all variables

from the assignment not representing a car or data of a car from D. This is
necessary because in general a data tuple has terms representing the view, rather
than variables. We extend this definition such that simple(κ,Υ) = (κ,Υ) if κ,Υ
are simple.

Similar to MLSLS models we define weak equality for simple FOMLA assign-
ments and data tuples. However, for FOMLA the definition of weak equality is
more involved than for MLSLS. We specify that two FOMLA tuples are weakly
equal if their only difference is that some of the car identifier variables are “split”.
We formalise this below. First we introduce

eq(κ(s), κ′(s′)) ≡ {κ(vr1), κ(vr2)} = {κ′(vr1), κ′(v′r2)} ∧ κ(vc) = κ′(v′c) ∧
κ(vp) = κ′(v′p) ∧ κ(vΩ) = κ′(v′Ω) ∧ κ(vs) = κ′(v′s) ∧ κ(va) = κ′(v′a)

as an abbreviation for comparing the values assigned two sets of data variables
by their assignments. Note that here we relate two different assignments. Hence,
the formula id-eq from Page 77, which does something similar, does not apply.
Further, note that we require the set of represented reservations to be equal,
rather than comparing the reservation variables directly.

82

3.3 Satisfiability of MLSLS

Definition 3.3.8 (FOMLA Weak Equality). Let Υi = (DS i, fi,Di,Si) for
i ∈ {1, 2} be two simple FOMLA data tuples and let κ1 and κ2 be two assign-
ments. Then we define that (κ1,Υ1) and (κ2,Υ2) are weakly equal (denoted
(κ1,Υ1) hmla (κ2,Υ2)) as

(κ1,Υ1) hmla (κ2,Υ2) iff ((ran f1)C κ1) ◦ f1 = ((ran f2)C κ2) ◦ f2 ∧ κ1LDS 1M = κ2LDS 2M
∧ ∀D1 ∈ D1.∀D2 ∈ D2.

κ1(D1) = κ2(D2) implies eq(κ1(S1(D1)), κ2(S2(D2)))

We lift this to proper FOMLA tuples Υi = (DS i, αi, α

′
i, βi, β

′
i, fi,Di,Si, DEi)

with i ∈ {1, 2}. Then

(κ1,Υ1) hmla (κ2,Υ2) iff

simple(κ1,Υ1) hmla simple(κ1,Υ1)

∧ κ1(DE1) = κ2(DE2)
∧ κ1(α1) = κ2(α2) ∧ κ1(α′1) = κ2(α′2)
∧ κ1(β1) = κ2(β2) ∧ κ1(β′1) = κ2(β′2)

4

For simple FOMLA tuples we ensure with ((ran f1)Cκ1)◦f1 = ((ran f2)Cκ2)◦
f2 that the same car variables map through fi and κi to the same car identifier,
even if the intermediate car identifier variable D is different. Note that the type
of the function is (ran fi C κi) ◦ fi : CVar→ I with i ∈ {1, 2}, i.e. the domain of
κ and the range of f which both are DVar, is hidden within the function. With
κ1LDS 1M = κ2LDS 2M we ensure that the FOMLA representation of the scope is
equal, i.e. that DS 1 and DS 2 represent the same set of car identifiers. Note that
we only ensure equality of the values assigned and ignore the variable names
used. And with the last line we ensure that if two car identifier variables point
to the same car identifier, then their data variables should have equal values.
For proper FOMLA tuples we additionally ensure that the view is equal, i.e.
that the owner of the view, the extension and lanes in the view are equal.

We state a lemma that the FOMLA constraints for an MLSLS formula cannot
distinguish weakly equal FOMLA assignments and data tuples.

Lemma 3.3.9. For proper FOMLA tuples (κ1,Υ1), (κ2,Υ2) with (Υ1, κ1) hmla

(Υ2, κ2) and all MLSLS formulas φ we have

κ1 |= trmla
f (Υ1, φ) iff κ2 |= trmla

f (Υ2, φ) .

83

3 Spatial Properties with Precise Information

Proof. We perform an induction over the structure of the MLSLS formula φ.
Let Υi = (DS i, αi, α

′
i, βi, β

′
i, fi,Di,Si, DEi) with i ∈ {1, 2}.

Induction base.
Case 1 (φ ≡ free). Assume κ1 |= trmla

f (Υ1, free). We know κ1LDS 1M = κ2LDS 2M.
As the views represented in the assignments are equal and all cars represented
in DS i with i ∈ {1, 2} have equal values assigned because (Υ1, κ1) hmla (Υ2, κ2)
holds, it follows that κ2 |= trmla

f (Υ2, free).
Case 2 (φ ≡ ` = k). Assume κ1 |= trmla

f (Υ1, ` = k). As (Υ1, κ1) hmla (Υ2, κ2)
ensures that the views represented in both assignments are equal we conclude
κ2 |= trmla

f (Υ2, ` = k).
Case 3 (φ ≡ re(γ)). Assume κ1 |= trmla

f (Υ1, re(γ)). Because (Υ1, κ1) hmla

(Υ2, κ2) holds, we know κ1(f1(γ)) = κ2(f2(γ)). As the views represented in
both assignments are equal and as the values assigned to the data variables are
equal, we conclude κ2 |= trmla

f (Υ2, re(γ)).
Case 4 (φ ≡ cl(γ)). Analogous to the case φ ≡ re(γ).
Case 5 (φ ≡ γ = γ′). Assume κ1 |= trmla

f (Υ1, γ = γ′). From ((ran f1)C κ1) ◦
f1 = ((ran f2)C κ2) ◦ f2 we conclude that γ and γ′ are mapped through κi and
fi with i ∈ {1, 2} to the same value, i.e. κ1(f1(γ)) = κ2(f2(γ′)). This implies
κ2 |= trmla

f (Υ2, γ = γ′).
We have proven the lemma for one direction of the base cases. The other
direction follows because the property is symmetric.
Induction hypothesis.
We have the following induction hypothesis: for φi and all FOMLA tuples (κi,Υi)
with Υi = (DS i, αi, α

′
i, βi, β

′
i, fi,Di,Si, DEi), i ∈ {1, 2} and (Υ1, κ1) hmla

(Υ2, κ2) we have

κ1 |= trmla
f (Υ1, φi) iff κ2 |= trmla

f (Υ2, φi) .

Induction step.
Case 1 (φ ≡ cs :φ1). Assume κ1 |= trmla

f (Υ1, cs :φ1). Evaluating the scope oper-
ator we get κ1 |= trmla

f (Υ′1, φ1), where Υ′1 = (DS ′1, α1, α
′
1, β1, β

′
1, f1,D1,S1, DE1)

and DS ′1 = {f1(c) | c ∈ cs}. From (Υ1, κ1) hmla (Υ2, κ2) we know that the car
variables are mapped to the same car identifiers through κi, fi, i.e. for DS ′2 =
{f2(c) | c ∈ cs} we have κ1LDS ′1M = κ2LDS ′2M. Hence, (Υ′1, κ1) hmla (Υ′2, κ2)
and we can use the IH to conclude κ2 |= trmla

f (Υ′2, φ1). At last, we can pull the
scope variables out and get κ2 |= trmla

f (Υ2, cs : φ1).

84

3.3 Satisfiability of MLSLS

Case 2 (φ ≡ φ1 ∧φ2). We assume κ1 |= trmla
f (Υ1, φ1 ∧φ2), which implies κ1 |=

trmla
f (Υ1, φi) with i ∈ {1, 2}. We apply the IH to conclude κ2 |= trmla

f (Υ2, φi),
which in turn implies κ2 |= trmla

f (Υ2, φ1 ∧ φ2).
Case 3 (φ ≡ ¬φ1). Assume κ1 |= trmla

f (Υ1,¬φ1), which implies κ1 6|=
trmla

f (Υ1, φ1). We apply the IH to conclude κ2 6|= trmla
f (Υ2, φ1), which implies

κ2 |= trmla
f (Υ2,¬φ1).

Case 4 (φ ≡ ∃c. φ1). Assume κ1 |= trmla
f (Υ1,∃c. φ1). Then κ1 |= trmla

f (Υ′1, φ1)
with Υ′1 = (DS 1, α1, α

′
1, β1, β

′
1, f
′
1,D1,S1, DE1) and f ′1 = f1 ⊕ {c 7→ D1}

for some D1 ∈ D1. From (Υ1, κ1) hmla (Υ2, κ2) we know that there is
D2 ∈ D2 with κ1(D1) = κ2(D2). Hence, for f ′2 = f2 ⊕ {c 7→ D2} and
Υ′2 = (DS 2, α2, α

′
2, β2, β

′
2, f
′
2,D2,S2, DE2) we have (Υ′1, κ1) hmla (Υ′2, κ2). Thus,

we can apply the IH to conclude κ2 |= trmla
f (Υ′2, φ1), which implies that we can

put c below a car quantifier again, i.e. κ2 |= trmla
f (Υ2,∃c. φ1).

Case 5 (φ ≡ φ1 a φ2). Assume κ1 |= trmla
f (Υ1, φ1 a φ2). By evaluat-

ing the horizontal chop operator we can conclude that there is a value r ∈
[κ1(β1), κ1(β′1)] where we can chop the view into a left subview (resp. right
subview) such that in this view φ1 (resp. φ2) holds. Thus, for an assign-
ment κ′1 that extends κ1 by mapping a fresh real-valued variable x′′1 to r,
and two data tuples Υ′1 = (DS 1, α1, α

′
1, β1, x

′′
1 , f1,D1,S1, DE1) and Υ′′1 =

(DS 1, α1, α
′
1, x
′′
1 , β
′
1, f1,D1,S1, DE1) the new assignment κ′1 satisfies trmla

f (Υ′1, φ1)
and trmla

f (Υ′′1 , φ2). We mirror the introduction of the new variable x′′1 for
Υ2. W.l.o.g. we assume that x′′1 does not occur in Υ2. Then, for Υ′2 =
(DS 2, α2, α

′
2, β2, x

′′
2 , f2,D2,S2, DE2), Υ′′2 = (DS 2, α2, α

′
2, x
′′
2 , β
′
2, f2,D2,S2, DE2),

and κ′2 = κ2 ⊕ {x′′2 7→ r} we have (Υ′1, κ
′
1) hmla (Υ′2, κ

′
2) and (Υ′′1 , κ

′
1) hmla

(Υ′′2 , κ
′
2) because we introduced on both sides of the weak equalities a new

variable representing a chop point and assigned it the same value in both
assignments. Now we can apply the IH to conclude κ′2 |= trmla

f (Υ′2, φ1) and
κ′2 |= trmla

f (Υ′′2 , φ2). We reintroduce the quantifier over the chop point and
get κ2 |= ∃x′′2 . β2 ≤ x′′2 ≤ β′2 ∧ trmla

f (Υ′2, φ1) ∧ trmla
f (Υ′′2 , φ2), which implies

κ2 |= trmla
f (Υ2, φ1 a φ2).

Case 6 (φ ≡ φ2

φ1

). Assume κ1 |= trmla
f (Υ1,

φ2

φ1

). We make a case distinction on

whether κ1(α1) > κ1(α′1).
If κ1(α1) > κ1(α′1), then κ1 |= trmla

f (Υ1, φ1) ∧ trmla
f (Υ1, φ2). This case is

analogues to the case φ ≡ φ1 ∧ φ2.
If κ1(α1) ≤ κ1(α′1), then this case is analogous to the case φ ≡ φ1 a φ2.

85

3 Spatial Properties with Precise Information

We finished one direction of the induction step. Again, the other direction
follows because the property is symmetric.

For a possibly simple FOMLA tuple (κ,Υ) we denote the set of cars repre-
sented in it by cars(κ,Υ) = κLDM and the size as |(κ,Υ)| = | cars(κ,Υ)|.
We define that two simple FOMLA tuples are composable if the MLSLS

models they represent are composable.

Definition 3.3.10 (Composable FOMLA Tuples). Let (κi,Υi) with i ∈ {1, 2}
and Υi = (DS i, fi,Di,Si) be two simple FOMLA tuples. Then we say that
(κi,Υi) are composable iff κ1LD1M ∩ κ2LD2M = ∅ and dom f1 ∩ dom f2 = ∅.

We extend this to define that a simple FOMLA tuple (κ1,Υ1) and a proper
one (κ2,Υ2) are composable if simple(κ2,Υ2) and (κ1,Υ1) are composable. 4

For simple FOMLA tuples we have simple sanity conditions. Let

sanes(Υ) ≡ sanity(S) ∧ id-eq(S)

We call a simple FOMLA tuple (κ,Υ) sane if κ |= sanes(Υ) holds.
For the following definition we assume that common FOMLA variables are

simply renamed so that the assignments use disjoint variables. The definition
states that we combine two variable assignments and data tuples by combining
all variables. As for MLSLS we allow at most one operand to be proper.

Definition 3.3.11 (Joining FOMLA Tuples). For i ∈ {1, 2} let (κi,Υi) with
Υi = (DS i, fi,Di,Si) be two composable simple FOMLA tuples. Then we define
the disjoint union of (κ1,Υ1) and (κ2,Υ2) (denoted (κ1,Υ1) (κ2,Υ2)) as

(κ1,Υ1) (κ2,Υ2) = (κ, (DS , f,D,S))

with κ = κ1] κ2 DS = DS 1]DS 2, f = f1] f2, D = D1]D2 and S = S1] S2.
We extend this to the case that in (κ1,Υ1) (κ2,Υ2) at most one tuple is a

proper FOMLA tuple. Then the result also is proper and takes the view and
DE from the proper tuple. 4

As for MLSLS we define the restriction and anti-restriction of FOMLA tuples,
denoted by and .

Definition 3.3.12. Let (κ,Υ) with Υ = (DS , f,D,S) be a simple FOMLA
tuple, let CS ⊆ I and let DS ′ = dom(κB CS) be those variables from D that

86

3.3 Satisfiability of MLSLS

are mapped to identifiers in CS . Then we define

(κ,Υ) CS = (κ′, (DS ∩DS ′, f BDS ′,D ∩DS ′,DS ′ C S)) with

κ′ = (DS ′ ∪
⋃

D∈DS ′

set(S(D)))C κ ,

(κ,Υ) CS = (κ,Υ) (I \ CS) .

We extend both definitions to the case that (κ,Υ) is proper. For (κ,Υ) CS
the result is proper if κ(DE) ∈ CS and otherwise it is simple. If the result is
proper, then κ′ also needs to retain the variables from the terms representing
the view. 4
The following proposition holds for the sanity conditions on FOMLA tuples

because we do not change the values of a car and similarly for the view, if the
resulting model has a view.

Proposition 3.3.13 (FOMLA Operations Preserve Sanity). For all sane,
composable and possibly simple FOMLA tuples (κ1,Υ1), (κ2,Υ2) and sets CS ⊆ I
the FOMLA tuples (κ1,Υ1) (κ2,Υ2), (κ1,Υ1) CS and (κ1,Υ1) CS satisfy
the proper or simple sanity conditions, depending on whether the resulting
FOMLA tuple is proper or simple.

Just like for MLSLS, for our operations on FOMLA representations of MLSLS
models properties like associativity are desirable. However, on FOMLA side
we represent data as values assigned to variables and we do not constrain
the naming of these variables. Hence, the algebraic properties involving two
nonempty FOMLA tuples only hold up to renaming of FOMLA variable names.
We denote this equality up to renaming with =r.

Example 3.3.14. Consider for i ∈ {1, 2} the simple FOMLA tuples (κi,Υi),
where Υi = ({Di}, {c 7→ Di}, {Di}, {Di 7→ s}), Di ∈ DVar, c ∈ CVar, D1 6= D2,
s is a tuple of data variables and κi = {Di 7→ C}] κ with C ∈ I and κ assigns
values to the variables in s. Then, (κ1,Υ1) is not equal to (κ2,Υ2) because of
D1 6= D2. However, the two FOMLA tuples are equal up to FOMLA variable
names (denoted (κ1,Υ1) =r(κ2,Υ2)), as the values assigned to the FOMLA
variables is equal. Note that we do require equality w.r.t. the names of car
variables (here c). 4

For the following lemmas let (κi,Υi) with i ∈ {1, 2, 3} be possibly simple
composable FOMLA tuples and let CS ,CS ′ ⊆ I. The properties can be proven

87

3 Spatial Properties with Precise Information

similarly to the corresponding properties on MLSLS side because the operations
have very similar definitions. However, in FOMLA we have to go through
variables, which makes the proofs more cumbersome. Thus, we do not provide
the proofs here. Let us proceed to the properties. The operation is associative
and commutative, i.e.

(κ1,Υ1) (κ2,Υ2) =r(κ2,Υ2) (κ1,Υ1) (3.24)
((κ1,Υ1) (κ2,Υ2)) (κ3,Υ3) =r(κ1,Υ1) ((κ2,Υ2) (κ3,Υ3)) (3.25)

Additionally, multiple and operations can be joined by combining the set
of car identifiers. That is,

((κ1,Υ1) CS) CS ′ = (κ1,Υ1) (CS ∩ CS ′) , (3.26)
((κ1,Υ1) CS) CS ′ = (κ1,Υ1) (CS ∪ CS ′) . (3.27)

The empty FOMLA tuple is composable with every FOMLA tuple (including
itself) and is neutral under all operations. That is,

(κ1,Υ1) (κ∅,Υ∅) = (κ1,Υ1) , (3.28)
(κ∅,Υ∅) CS = (κ∅,Υ∅) , (3.29)
(κ∅,Υ∅) CS = (κ∅,Υ∅) . (3.30)

Furthermore, and distribute over . However, this is not the classical
distributive property, as and operate on different domains than . Formally,

((κ1,Υ1) CS) ((κ2,Υ2) CS) =r((κ1,Υ1) (κ2,Υ2)) CS , (3.31)
((κ1,Υ1) CS) ((κ2,Υ2) CS) =r((κ1,Υ1) (κ2,Υ2)) CS . (3.32)

At last, and are associative with each other, i.e.

((κ1,Υ1) CS) CS ′ = ((κ1,Υ1) CS \ CS ′) = ((κ1,Υ1) CS ′) CS .

We first define how an MLSLS model can be extracted from a FOMLA tuple
representing a model with a single car. Note that this definition is defined only
for sane FOMLA tuples. Hence, we require that the assignment satisfies sane(S)
(resp. sanes(S) if it is simple) from Pages 77 and 86. Further, note that our
sensor function ignores its second input, the traffic snapshot. This is because
we care only about static traffic configurations here. Note that we use the index
E to denote an elementary (or base) version of a function that we extend later.

88

3.3 Satisfiability of MLSLS

Definition 3.3.15 (FOMLA to MLSLS). Let (κ,Υ) be a simple FOMLA tuple
with Υ = (DS , f,D,S) and κ |= sanes(S) and |(κ,Υ)| = 1 with sanes as defined
on Page 86. Then we define mla2mE(κ,Υ) = (CS ,TS ,Ω, ν), where

CS = {κ(D) | D ∈ DS} ,
TS = (res, clm, pos, spd, acc) where

res = {κ(D) 7→ {κ(D.vr1), κ(D.vr2)} \ {•} | D ∈ D} ,
clm = {κ(D) 7→ {κ(T.vc)} \ {•} | D ∈ D} ,
pos = {κ(D) 7→ κ(D.vp) | D ∈ D} ,
spd = {κ(D) 7→ κ(D.vs) | D ∈ D} ,
acc = {κ(D) 7→ κ(D.va) | D ∈ D} ,

Ω = {(κ(D),TS) 7→ κ(D.vΩ) | D ∈ D} ,
ν = {c 7→ κ(f(c)) | c ∈ dom f} .

We lift this definition to proper FOMLA tuples. Let (κ,Υ) be a proper
FOMLA tuple with Υ = (DS , α, α′, β, β′, f,D,S, DE) and κ |= sane(S) and
|(κ,Υ)| = 1. Then we define mla2mE(κ,Υ) = (CS ,TS ,Ω, V, ν), where CS ,TS ,Ω
are defined as above and V = ([κ(α), κ(α′)], [κ(β), κ(β′)], κ(DE)) and ν = {γ 7→
κ(f(γ)) | γ ∈ dom f} 4

We lift the previous definition to FOMLA tuples representing multiple cars.

Definition 3.3.16 (FOMLA to MLSLS). Let (κ,Υ) be a simple or a proper
FOMLA tuple. Then we define

mla2m(κ,Υ) =

M∅ if |(κ,Υ)| = 0

(mla2mE((κ,Υ) {C}) if |(κ,Υ)| ≥ 1

mla2m((κ,Υ) {C}) where C ∈ κLDM)

4
In the definition of mla2m we use the function , which has requirements

on its inputs, i.e. it is only defined when both MLSLS models are composable.
However, it is not difficult to see that (κ,Υ) CS and (κ,Υ) CS are composable
FOMLA tuples and that being composable carries over from FOMLA tuples
through mla2m to MLSLS models.

To define the transformation of MLSLS models to FOMLA tuples we use the
following assumption. The assumptions serves to simplify the presentation.

89

3 Spatial Properties with Precise Information

Assumption 3.3.17. Given a model M = (CS ,TS ,Ω, V, ν), we assume for all
cars C ∈ I that res(C) = {l1, l2} or res(C) = {l1, •} with l1, l2 ∈ L and • 6∈ L
and clm(C) = {l3} or clm(C) = {•}. 4

We define how to transform an MLSLS model to a FOMLA tuple. The
intuition of the definition is that we represent each variable in dom ν with a
distinct car identifier variable D. This means that even if for two different
variables we have ν(c) = ν(c′), we represent them with different car identifier
variables. Furthermore, we represent cars in the scope that have no variable
mapping to it with additional car identifier variables. We first define the
transformation for a simple MLSLS model with a single car.

Definition 3.3.18 (Simple Models MLSLS to FOMLA). Given a simple MLSLS
model M = (CS ,TS ,Ω, ν) with carsM = {C}, TS = (res, clm, pos, spd, acc),
res(C) = {l̃1, l̃2}, clm(C) = {l̃3} and l̃1, l̃2, l̃3 ∈ L ∪ {•} let D be a set of car
identifier variables such that |D| = max(| dom ν|, |CS |). Further, if dom ν 6= ∅,
we assume a bijective mapping between D ∈ D and c ∈ dom ν indicated by Dc.
Then we define

m2mlaE(M) = (κ1] κ2, (DS , f,D,S)) where
DS = D if CS = carsM and ∅ otherwise ,

f = {c 7→ Dc | c ∈ dom ν} ,
κ1 = {D 7→ C | D ∈ D} ,
κ2 = {D.vp 7→ pos(κ1(D)), D.vΩ 7→ Ω(κ1(D),TS),

D.vs 7→ spd(κ1(D)), D.va 7→ acc(κ1(D)),

D.vc 7→ l̃3, D.vr1 7→ l̃1, D.vr2 7→ l̃2 | D ∈ D} . 4

The definition states that we have a unique car identifier variable D for each
variable c ∈ dom ν or a single car identifier variable if | dom ν| = 0 and |CS | = 1.

We can easily extend the definition above to proper MLSLS models where
the domain only includes the view owner. We point out that for proper MLSLS
models the domain of the valuation contains at least one element. Hence, the
requirements from Definition 3.3.18 can be simplified as shown below.

Definition 3.3.19 (Proper Models MLSLS to FOMLA). For a proper MLSLS
model M with M = (CS ,TS ,Ω, V, ν), V = (L,X,E), carsM = {E}, TS =
(res, clm, pos, spd, acc), res(E) = {l̃1, l̃2}, clm(E) = {l̃3} and l̃1, l̃2, l̃3 ∈ L ∪ {•}

90

3.3 Satisfiability of MLSLS

let |D| = | dom ν|. Further, we assume a bijective mapping between D ∈ D and
γ ∈ dom ν indicated by Dγ . Then we define

m2mlaE(M) = (κ1] κ2] κ3, (DS , y, y′, x, x′, f,D,S, Dego)) where
DS = D if CS = carsM and ∅ otherwise ,

f = {γ 7→ Dγ | γ ∈ dom ν} ,
κ1 = {y 7→ l, y′ 7→ l′, x 7→ r, x′ 7→ r′} ,
κ2 = {D 7→ C | D ∈ D} ,
κ3 = {D.vp 7→ pos(κ1(D)), D.vΩ 7→ Ω(κ1(D),TS),

D.vs 7→ spd(κ1(D)), D.va 7→ acc(κ1(D)),

D.vc 7→ l̃3, D.vr1 7→ l̃1, D.vr2 7→ l̃2 | D ∈ D}} . 4

We give a recursive transformation of MLSLS models to FOMLA tuples. Note
that by splitting the model into smaller parts we work with simple MLSLS
models and FOMLA tuples and with proper ones.

Definition 3.3.20 (MLSLS to FOMLA). Given a finite simple or proper
MLSLS model M we define

m2mla(M) =

(m2mlaE(M {C}) m2mla(M {C})) if | carsM | ≥ 1

for some C ∈ carsM

(κ∅,Υ∅) otherwise .

4

Note that always at most one input to is a proper assignment and data
tuple. We use the function , which has requirements on its inputs, i.e. it
is only defined when both input FOMLA tuples are composable. However, it
is clear that these requirements are satisfied, i.e. that for composable MLSLS
models their FOMLA representation also is composable.
We defined operations on MLSLS models and FOMLA representations of

MLSLS models along with operations to transform one into the other. We
proceed to show properties relating these operations. The following six lemmas
(Lemmas 3.3.21 to 3.3.26) relate the domain of FOMLA tuples and the domain
of MLSLS models. We show that we can perform an operation and transform
the result into the other domain, or equivalently transform first into the other
domain and then perform the operation in the other domain.

91

3 Spatial Properties with Precise Information

Lemma 3.3.21. For all composable finite and possibly simple MLSLS models
M1,M2 we have

m2mla(M1) m2mla(M2) =r m2mla(M1 M2) .

Proof. We proceed by induction on n = |M1 M2|.
Induction base.
The models M1 and M2 may both be simple, or one of the models may be
proper. Hence, we have the following three base cases: both models are simple,
M1 is proper or M2 is proper.
Case 1 (M1 andM2 are simple). In this case we have n = 0, which means that
both models are in fact the empty MLSLS model M∅. Taking the disjoint union
of the empty model with itself gives the empty model. Further, transforming the
empty model with m2mla gives the empty FOMLA tuple (κ∅,Υ∅). Finally, the
disjoint union of two times the empty FOMLA tuple yields the empty FOMLA
tuple. Hence, the lemma simplifies to (κ∅,Υ∅) (κ∅,Υ∅) =r(κ∅,Υ∅), which is
true.
Case 2 (M1 is proper and M2 is simple). In this case we have n = 1. As M1

is proper, it contains at least one car. Hence, M2 has no cars and is equal to
the empty MLSLS model M∅. With similar arguments as in the earlier case the
lemma simplifies to m2mla(M1) (κ∅,Υ∅) =r m2mla(M1). Again, this equality
up to renaming of FOMLA variables is true.
Case 3 (M1 is simple and M2 is proper). Because of commutativity of and

reducible to the previous case.
Induction hypothesis.
For all composable finite MLSLS models M1,M2 with |M1 M2| ≤ n we have

m2mla(M1) m2mla(M2) =r m2mla(M1 M2) .

Induction step.
Let |M1 M2| = n + 1, which means that at least one of the models is not
empty. As and are commutative assume w.l.o.g. | carsM1| ≥ 1. In the
following three steps we transform M1 to reduce the size of |M1 M2| to apply
the IH. In the first step we apply the definition of m2mla, in the second step we

92

3.3 Satisfiability of MLSLS

use the associativity of and in the third step we apply the IH:

m2mla(M1) m2mla(M2)

= (m2mlaE(M1 {C}) m2mla(M1 {C})) m2mla(M2)

=r m2mlaE(M1 {C}) (m2mla(M1 {C}) m2mla(M2))

=r m2mlaE(M1 {C}) m2mla((M1 {C}) M2) .

As M1,M2 are composable and as C is from M1 it follows that C is not
represented in M2. Hence, we can pull the anti-restriction operator out and
continue the steps from above:

m2mlaE(M1 {C}) m2mla((M1 {C}) M2)

=r m2mlaE(M1 {C}) m2mla((M1 M2) {C}) def. of m2mla

= m2mla(M1 M2) .

We prove a similar lemma for the other direction. Note that the proof is very
similar to the proof of the previous lemma.

Lemma 3.3.22. For all composable and sane FOMLA tuples (κ1,Υ1), (κ2,Υ2)
we have

mla2m((κ1,Υ1) (κ2,Υ2)) = mla2m(κ1,Υ1) mla2m(κ2,Υ2) .

Proof. For i ∈ {1, 2} let Mi = mla2m(κi,Υi) and M = mla2m((κ1,Υ1)
(κ2,Υ2)). We proceed by induction on n = |(κ1,Υ1)| (κ2,Υ2)|.
Induction base.
We have the following three base cases: both tuples are simple, (κ1,Υ1) is
proper or (κ2,Υ2) is proper.
Case 1 ((κ1,Υ1) and (κ2,Υ2) are simple). In this case we have n = 0, which
means that both FOMLA tuples are equal to the empty FOMLA tuple (κ∅,Υ∅).
Now, taking the disjoint union of the empty FOMLA tuple (κ∅,Υ∅) with itself
gives the empty FOMLA tuple. Further, transforming the empty FOMLA
tuple with mla2m to MLSLS returns the empty MLSLS model M∅. Finally, the
disjoint union of the empty MLSLS model and itself yields the empty MLSLS
model. Hence, the lemma simplifies to M∅ = M∅ M∅. This equality is true.
Case 2 ((κ1,Υ1) is proper and (κ2,Υ2) is simple). In this case we have n = 1.
As (κ1,Υ1) is proper it contains at least one car. Hence, as the two tuples
are composable, (κ2,Υ2) has no cars and is equal to the empty FOMLA tuple
(κ∅,Υ∅). With similar arguments as in the earlier case the lemma simplifies to
mla2m(κ1,Υ1) = mla2m(κ1,Υ1) M∅. Again, this equality is true.

93

3 Spatial Properties with Precise Information

Case 3 ((κ1,Υ1) is simple and (κ2,Υ2) is proper). Because of commutativity
of and reducible to the previous case.
Induction hypothesis.
For all composable sane FOMLA tuples (κ1,Υ1), (κ2,Υ2) with |(κ1,Υ1)
(κ2,Υ2)| ≤ n we have

mla2m((κ1,Υ1) (κ2,Υ2)) = mla2m(κ1,Υ1) mla2m(κ2,Υ2) .

Induction step.
Let |(κ1,Υ1) (κ2,Υ2)| = n+ 1. Thus, at least one of the FOMLA tuples is not
empty. As and are commutative assume w.l.o.g. |(κ1,Υ1)| ≥ 1. Then, for
some C ∈ κ1LDM first we apply the definition of mla2m, then we use associativity
of and finally we apply the IH:

mla2m(κ1,Υ1) mla2m(κ2,Υ2)

=(mla2mE((κ1,Υ1) {C}) mla2m((κ1,Υ1) {C})) mla2m(κ2,Υ2)

= mla2mE((κ1,Υ1) {C}) (mla2m((κ1,Υ1) {C}) mla2m(κ2,Υ2))

= mla2mE((κ1,Υ1) {C}) mla2m(((κ1,Υ1) {C}) (κ2,Υ2)) .

As in the proof of Lemma 3.3.21, because (κ1,Υ1), (κ2,Υ2) are composable
and C ∈ cars(κ1,Υ1) we conclude C 6∈ cars(κ2,Υ2). Hence, we can pull the
anti-restriction operator out and continue the steps from above:

mla2mE((κ1,Υ1) {C}) mla2m(((κ1,Υ1) {C}) (κ2,Υ2))

= mla2mE((κ1,Υ1) {C}) mla2m(((κ1,Υ1) (κ2,Υ2)) {C}) def. mla2m

= mla2m((κ1,Υ1) (κ2,Υ2)) .

We prove a similar lemma for anti-restriction.

Lemma 3.3.23. For all finite and possibly simple MLSLS models M and sets
CS ⊆ I we have

m2mla(M CS) =r m2mla(M) CS .

Proof. We proceed by induction on n = |M |.
Induction base.
We need to make a case distinction on whether M is simple or not.
Case 1 (M is simple). Let |M | = 0. Then M = M∅ and M∅ CS = M∅.
Further, m2mla(M∅) = (κ∅,Υ∅) and (κ∅,Υ∅) CS = (κ∅,Υ∅).

94

3.3 Satisfiability of MLSLS

Case 2 (M is proper). We make a case distinction on whether carsM∩CS = ∅.

Subcase 2.1 (carsM ∩ CS 6= ∅). We point out that m2mla preservers the
car domain, i.e. for all MLSLS modelsM ′ we have carsM ′ = cars m2mla(M ′).
Here that means that both M CS and m2mla(M) CS have an empty
car domain, which implies that the lemma holds.
Subcase 2.2 (carsM ∩CS = ∅). As in the previous case we point out that
m2mla preservers the car domain. Hence, as carsM ∩ CS = ∅ we conclude
m2mla(M CS) = m2mla(M) = m2mla(M) CS .

Induction hypothesis.
For all finite, possibly simple MLSLS models M with |M | ≤ n and all CS ⊆ I
we have m2mla(M CS) =r m2mla(M) CS .
Induction step.
Let |M | = n+ 1. Then for some C ∈ carsM we have

m2mla(M) CS def. of m2mla

=(m2mlaE(M {C}) m2mla(M {C})) CS distr. of ,

=r(m2mlaE(M {C}) CS) (m2mla(M {C}) CS) IH
=r(m2mlaE(M {C}) CS) (m2mla((M {C}) CS)) Lemma 3.2.13

=r(m2mlaE(M {C}) CS) (m2mla(M ({C} ∪ CS)))

Now we make a case distinction on whether C ∈ CS . Note that in both cases
we ensure that the constraints from m2mlaE (that the model contains exactly
one car) are satisfied.
Case 1 (C ∈ CS). As C ∈ carsM we know that M {C} contains a single
car. Then, the FOMLA representation m2mlaE(M {C}) also contains data
of a single car C. Thus, if we remove this single car, we arrive at the empty
FOMLA tuple, i.e. m2mlaE(M {C}) CS = (κ∅,Υ∅). We use this and that
(κ∅,Υ∅) is neutral in to continue the steps from earlier and finish this case:

(m2mlaE(M {C}) CS) m2mla(M ({C} ∪ CS))

=(κ∅,Υ∅) m2mla(M ({C} ∪ CS))

= m2mla(M ({C} ∪ CS))

= m2mla(M CS) .

95

3 Spatial Properties with Precise Information

Case 2 (C 6∈ CS). We start as in the other case: we know C ∈ carsM and
thus m2mlaE(M {C}) represents a single car C. The first equality follows
because if C 6∈ CS we do not change anything by leaving the removal of CS out.
The second equality follows because we can perform the restriction to C in two
steps: first we remove some cars CS , and then we remove all cars except C, i.e.

m2mlaE(M {C}) CS = m2mlaE(M {C}) =r m2mlaE((M CS) {C}) .
(3.33)

We use this and continue the steps from before the case distinction:

(m2mlaE(M {C}) CS) m2mla(M ({C} ∪ CS)) Equation (3.33)
= m2mlaE((M CS) {C}) m2mla(M ({C} ∪ CS)) Lemma 3.2.13

= m2mlaE((M CS) {C}) m2mla((M CS) {C}) def. of m2mla

= m2mla(M CS)

We proceed to show a similar lemma for the restriction operator.

Lemma 3.3.24. For all finite and possibly simple MLSLS models M and sets
CS ⊆ I we have

m2mla(M CS) =r m2mla(M) CS .

Proof. We have

m2mla(M CS) def. of
= m2mla(M (I \ CS)) Lemma 3.3.23

=r m2mla(M) (I \ CS) def. of
= m2mla(M) (I \ (I \ CS)) as CS ⊆ I
= m2mla(M) CS

We prove the reverse direction of Lemma 3.3.23.

Lemma 3.3.25. For all sane and possibly simple FOMLA tuples (κ,Υ) and
sets CS ⊆ I we have

mla2m((κ,Υ) CS) = mla2m(κ,Υ) CS .

96

3.3 Satisfiability of MLSLS

Proof. Note that we require (κ,Υ) to be sane to ensure that mla2m is defined
for (κ,Υ). We proceed by induction on n = |(κ,Υ)|.
Induction base.
If (κ,Υ) is simple then |(κ,Υ)| = 0, and if (κ,Υ) is proper then |(κ,Υ)| = 1.
However, we consider both cases together and make a case distinction on whether
the intersection of cars(κ,Υ) and CS is empty or not.
Case 1 (cars(κ,Υ)∩CS = ∅). This case is possible when (κ,Υ) is proper and
when (κ,Υ) is simple. However, in both cases the operations and have
no effect, i.e. the result of both operations is their respective first argument.
Hence, the claim of the lemma holds.
Case 2 (cars(κ,Υ)∩CS 6= ∅). This case is only possible when (κ,Υ) is proper.
If the intersection is not empty, then both sides of the equality in the lemma,
that is mla2m((κ,Υ) CS) and mla2m(κ,Υ) CS , have an empty car domain.
Hence, both sides in the claim are equal to M∅ and the claim holds.
Induction hypothesis.
For all sane and possibly simple FOMLA tuples (κ,Υ) with |(κ,Υ)| ≤ n we
have mla2m((κ,Υ) CS) = mla2m(κ,Υ) CS .
Induction step.
Let |(κ,Υ)| = n+ 1 and C ∈ cars(κ,Υ). We perform some steps to be able to
apply the IH to move the removal of the cars in CS from the MLSLS domain
to the FOMLA domain. That is, we apply the definition of mla2m, then we use
distributivity of over and finally we apply the IH:

mla2m(κ,Υ) CS

=
(
mla2mE((κ,Υ) {C}) mla2m((κ,Υ) {C})

)
CS

=(mla2mE((κ,Υ) {C}) CS) (mla2m((κ,Υ) {C}) CS)

=(mla2mE((κ,Υ) {C}) CS) mla2m(((κ,Υ) {C}) CS) .

Using Equation (3.27) this is equal to

(mla2mE((κ,Υ) {C}) CS) mla2m((κ,Υ) ({C} ∪ CS)) .

For the equations above we point out that we may apply the IH because
preserves sane(Υ) (resp. sanes(Υ)) from Pages 77 and 86.

Now we make a case distinction on whether C ∈ CS . Note that in both cases
we ensure that the constraints from mla2m (that the model contains exactly
one car) are satisfied.

97

3 Spatial Properties with Precise Information

Case 1 (C ∈ CS). As C ∈ cars(κ,Υ) we know that (κ,Υ) {C} contains a
single car. Then, the MLSLS model mla2mE((κ,Υ) {C}) also contains data
of a single car C. Thus, if we remove this single car, we arrive at the empty
MLSLS model, i.e. mla2mE((κ,Υ) {C}) CS = M∅. We use this in the first
step. In the second step we use that M∅ is neutral in . And in the third step
we use C ∈ CS , which finishes this case:

(mla2mE((κ,Υ) {C}) CS) mla2m((κ,Υ) ({C} ∪ CS))

=M∅ mla2m((κ,Υ) ({C} ∪ CS))

= mla2m((κ,Υ) ({C} ∪ CS))

= mla2m((κ,Υ) CS) .

Case 2 (C 6∈ CS). We start this case with some preparation. The first equality
follows because if C 6∈ CS , then we do not change anything by leaving the
removal of CS out. The second equality follows because we can perform the
restriction to C in two steps. First we remove some cars CS , and then we
remove all cars except C. Thus,

mla2mE((κ,Υ) {C}) CS

= mla2mE((κ,Υ) {C})
= mla2mE(((κ,Υ) CS) {C}) .

(3.34)

We continue the steps from before the case distinction. The first step follows
from Equation (3.34), the second step from Equation (3.27) and in the third
step we apply the definition of mla2m:

(mla2mE((κ,Υ) {C}) CS) mla2m((κ,Υ) ({C} ∪ CS))

= mla2mE(((κ,Υ) CS) {C}) mla2m((κ,Υ) ({C} ∪ CS))

= mla2mE(((κ,Υ) CS) {C}) mla2m(((κ,Υ) CS) {C})
= mla2m((κ,Υ) CS) .

We proceed to show a similar lemma for the restriction operator.

Lemma 3.3.26. For all sane and possibly simple FOMLA tuples (κ,Υ) and
all sets CS ⊆ I we have

mla2m((κ,Υ) CS) = mla2m(κ,Υ) CS .

98

3.3 Satisfiability of MLSLS

Proof. We have

mla2m((κ,Υ) CS) def. of
= mla2m((κ,Υ) (I \ CS)) Lemma 3.3.25

= mla2m(κ,Υ) (I \ CS) def. of
= mla2m(κ,Υ) (I \ (I \ CS))

= mla2m(κ,Υ) CS

The following proposition follows from Definition 3.3.20 and because MLSLS
models are sane.

Proposition 3.3.27. Let M1 and M2 be two finite MLSLS models, where M1

is proper and M2 is simple. Then for (κ1,Υ1) = m2mla(M1) and (κ2,Υ2) =
m2mla(M2) we have

κ1 |= sane(Υ1) ,

κ2 |= sanes(Υ2) ,

where sane and sanes are defined on Pages 77 and 86.

The following lemma formalises that mla2m is something similar of an inverse
operation to m2mla. Note that it is not a real inverse operation because m2mla
loses information. That is, the sensor function is represented on FOMLA side
with a single variable. The information about the evolution of the sensor value
as the traffic changes is not represented on the FOMLA side. Hence, when
recovering the MLSLS model from the FOMLA tuple the new MLSLS model
only is weakly equal to the original model.

Lemma 3.3.28 (Inversion Lemma). For all finite possibly simple MLSLS
models M we have

M hm mla2m(m2mla(M)) .

Proof. We point out that according to Proposition 3.3.27 the FOMLA tu-
ple m2mla(M) is sane. Hence, mla2m is defined for this tuple. Let M ′ =
mla2m(m2mla(M)). Then, we proceed by induction on n = |M |.
Induction base.
Similar to the earlier proofs we distinguish to base cases: that M is proper and
that M is simple.

99

3 Spatial Properties with Precise Information

Case 1 (M is simple). Let |M | = 0. Then we know that M = M∅. Hence,
for (κ,Υ) = m2mla(M) we have (κ,Υ) = (κ∅,Υ∅), which implies that for
M ′ = mla2m(κ,Υ) we have M ′ = M∅. As M = M ′, we conclude M hm M ′.
Case 2 (M is proper). Now, M contains a single car. The requirements for
two MLSLS models to be weakly equal (cf. Page 69) are that

• their scopes are equal,

• their variable valuations are equal,

• the traffic snapshots restricted to the cars in the scopes and in the variable
valuations are equal, and

• the sensor function restricted to the same cars and traffic snapshots are
equal.

For each of these points it is clear from the definitions of m2mla and mla2m
that the equality holds.
Induction hypothesis.
For all finite possibly simple MLSLS models M with |M | ≤ n we have

M hm mla2m(m2mla(M)) .

Induction step.
Let |M | = n+ 1. For i ∈ {1, 2} there are MLSLS models Mi with |Mi| ≤ n such
that M1 M2 = M . From the IH we conclude for M ′i = mla2m(m2mla(Mi))
that Mi hm M ′i . We have

M ′
def
= mla2m(m2mla(M1 M2)) Lemma 3.3.21

=r mla2m(m2mla(M1) m2mla(M2)) Lemma 3.3.22

= mla2m(m2mla(M1)) mla2m(m2mla(M2)) .

Note that for the equalities above it causes no problem that Lemma 3.3.21 only
ensures equality up to renaming because the FOMLA variable names used are
ignored by mla2m. Hence, M ′ = M ′1 M ′2. From Lemma 3.2.29 and Mi hm M ′i
we conclude M1 M2 hm M ′1 M ′2. This is equivalent to M hm M ′.

The following corollary follows from the previous lemma together with
Lemma 3.2.30.

100

3.3 Satisfiability of MLSLS

Corollary 3.3.29. For all finite MLSLS models and all MLSLS formulas φ we
have

M |= φ iff mla2m(m2mla(M)) |= φ .

We showed that mla2m is something similar to an inverse operation of m2mla.
Next, we prove an analogous result for the other direction. That is, we show that
m2mla is something like an inverse operation of mla2m. As for the other direction,
we do not have a real inverse operation. On FOMLA side the valuation can be
represented in multiple ways. That is, we could have two variables D,D′ such
that they represent the same car. When we go from FOMLA to MLSLS we lose
this information because on MLSLS side, each car has an unique representation.
Note that we use sane(Υ1) (resp. sanes(Υ1)) from Pages 77 and 86 to ensure
that mla2m(κ1,Υ1) is defined. Further, we point out that the conditions for
weak equality of FOMLA tuples are more involved than for weak equality of
MLSLS models. Hence, here we consider each condition individually.

Lemma 3.3.30 (Inversion Lemma). For all sane and possibly simple FOMLA
tuples (κ1,Υ1) we have

(κ1,Υ1) hmla (κ2,Υ2) ,

where (κ2,Υ2) = m2mla(mla2m(κ1,Υ1)) .

Proof. We first consider the case that both FOMLA tuples are proper. The
case that both tuples are simple works analogous, albeit simpler.

LetM = (CS ,TS ,Ω, V, ν) = mla2m(κ1,Υ1) with TS = (res, clm, pos, spd, acc)
and Υi = (DS i, αi, α

′
i, βi, β

′
i, fi,Di,Si, DEi). We make a case distinction over

the conditions of (κ1,Υ1) hmla (κ2,Υ2) and show that they are satisfied.
Case 1 (((ran f1) C κ1) ◦ f1 = ((ran f2) C κ2) ◦ f2). We show equality of
the functions by proving equality of their underlying relations. Let R1, R2 ⊆
(CVar ∪ {ego})× I be these relations, i.e. (γ,C) ∈ Ri ⇐⇒ κi(fi(γ)) = C for
i ∈ {1, 2}.
We start by showing R1 ⊆ R2. Let (γ,C) ∈ R1. Then f1(γ) = D for some

D ∈ D1 and κ1(D) = C. From the definition of mla2m we know ν = {γ 7→
κ1(f1(γ)) | γ ∈ dom f1}. This means that we have ν(γ) = C. From the definition
of m2mla we know that in κ2 and Υ2 we have for every γ′ ∈ dom ν a variable
Dγ′ with κ2(Dγ′) = ν(γ′) and further f2(γ′) = Dγ′ . Hence, κ2(f2(γ)) = C,
which implies (γ,C) ∈ R2.

101

3 Spatial Properties with Precise Information

We show R2 ⊆ R1. Let (γ,C) ∈ R2. Then f(γ) = Dγ for some Dγ ∈ D2,
κ2(Dγ) = C and from the definition of m2mla we know ν(γ) = κ2(f2(γ)). From
definition of mla2m we know that κ1(f1(γ)) = ν(γ), which implies (γ,C) ∈ R1.

Note that we have f1(γ) = D for some D ∈ D1, but f2(γ) = Dγ . That is, f1

might not be injective, while f2 is injective. This is the main reason why the
two assignments and data tuples are not equal in the usual sense.
Case 2 (κ1LDS 1M = κ2LDS 2M). From the definition of mla2m we know that
κ1LDS 1M = CS . Next, in the definition of m2mla we see that DS 2 contains all
variables from D2 that κ2 maps to CS and no other variables. Also, we can see
that CS ⊆ κ2LD2M. From these two observations we conclude CS = κ2LDS 2M.
It follows that κ1LDS 1M = κ2LDS 2M.
Case 3 (κ1(DE1) = κ2(DE2)). Follows from the definitions of mla2m and
m2mla.
Case 4 (κ1(α1) = κ2(y2)∧κ1(α′1) = κ2(y′2)∧κ1(β1) = κ2(x2)∧κ1(β′1) = κ2(x′2)).
Follows from the definitions of mla2m and m2mla.
Case 5 (∀D1 ∈ D1.∀D2 ∈ D2. κ1(D1) = κ2(D2) =⇒ κ1(S1(D1)) = κ2(S2(D2))).
Let D1 ∈ D1, D2 ∈ D2 with κ1(D1) = κ2(D2). We first consider reserva-
tions. That means, we show {κ(vr1), κ(vr2)} = {κ′(vr1), κ′(v′r2)}. In M we have
res(κ1(D1)) = {κ(D1.vr1), κ(D1.vr2)}. Note that the set might contain • if a
car has only one reservation. From the definition of m2mla it follows that κ2

assigns to D2.vr1 and D2.vr2 the two values in res(κ1(D1)). As we know that
κ1(D1) = κ2(D2) equality of the two sets follows. For the other data variables
this works analogously.

The following lemma follows from the previous lemma and from Lemma 3.3.9.

Lemma 3.3.31. For all MLSLS formulas φ and all proper FOMLA tuples
(κ,Υ) we have

κ |= trmla
f (Υ, φ) ∧ sane(Υ) implies κ′ |= trmla

f (Υ′, φ) ∧ sane(Υ′) where
(κ′,Υ′) = m2mla(mla2m(κ,Υ)) .

Proof. From Lemmas 3.3.9 and 3.3.30 we can see that κ |= trmla
f (Υ, φ) implies

κ′ |= trmla
f (Υ′, φ). Next, as κ |= sane(Υ) we know that mla2m(κ,Υ) is defined, i.e.

for some proper MLSLS model M we have M = mla2m(κ,Υ). We can see from
Proposition 3.3.27 that for (κ′,Υ′) = m2mla(M) we have κ′ |= sane(Υ′).

102

3.3 Satisfiability of MLSLS

Now we can prove that our FOMLA encoding is correct, which we mentioned
in the explanation surrounding Equation (3.23) on Page 81. More specifically, we
show that satisfaction of an MLSLS formula by a model translates to satisfaction
of the FOMLA constraints of that formula by the FOMLA representation of
that model and similarly for the other direction. We split this statement into
two statements expressing that satisfaction of an MLSLS formula corresponds
to satisfaction of our FOMLA constraints and vice versa. For this we do not
only consider well-scoped formulas, but MLSLS formulas in general. We prove
both statements simultaneously via structural induction to use the induction
hypothesis of the other statement during the proof. Note that we require that
the FOMLA tuple we extract from the MLSLS model is weakly equal to the
tuple we get through m2mla because we are not interested in the particular
variable names used.

Lemma 3.3.32. For all MLSLS formulas φ and all finite proper MLSLS models
M = (CS ,TS ,Ω, V, ν) with freeVar(φ) ⊆ dom ν we have

M |= φ implies
(
for all (κ,Υ) with (κ,Υ) hmla m2mla(M). κ |= trmla

f (Υ, φ)
)
.

(3.35)
For all proper FOMLA tuples (κ,Υ) with Υ = (DS , α, α′, β, β′, f,D,S, DE),

all MLSLS formulas φ such that freeVar(φ) ⊆ dom(f) and M = mla2m(κ,Υ)
we have

κ |= trmla
f (Υ, φ) ∧ sane(Υ) implies M |= φ . (3.36)

Proof. We prove the lemma by induction on the structure of φ. We start with
the base cases. Note that we group the cases first by statement to have a nicer
exposition. We point out that for the cases of Equation (3.35) we often have to
worry about the names of variables or the number of variables introduced by
our construction. This complicates some cases.
Induction base.
Case 1 (Equation (3.35)). For this case let M = (CS ,TS ,Ω, V, ν) with V =
([l, l′], [r, r′], E) and (κ,Υ) = m2mla(M) with Υ = (DS , x, x′, y, y′, f,D,S, DE).
We first show that for (κ,Υ) we have κ |= trmla

f (Υ, φ). Afterwards, we conclude
from Lemma 3.3.9 that for all FOMLA tuples (κ′,Υ′) with (κ,Υ) hmla (κ′,Υ′)
we have κ′ |= trmla

f (Υ′, φ).
Subcase 1.1 (φ ≡ ` = k). Assume that M |= ` = k holds, which implies
r′ − r = k. As κ(x) = r, κ(x′) = r′, it follows that κ |= x′ − x = k, which
implies κ |= trmla

f (Υ, ` = k).

103

3 Spatial Properties with Precise Information

Subcase 1.2 (φ ≡ free). Assume M |= free. We know r < r′ and l = l′,
which implies κ(x′) > κ(x) and κ(y) = κ(y′). Further, we have for all
C ∈ CS that either l 6∈ res(C)∪ clm(C) or (r, r′)∩ se(C,TS ,Ω) = ∅. Let κ∼
be the inverse of κ (see also Page 6) and note that κ∼ may be a relation
instead of a function. Then, as DS =

⋃
C∈CS κ

∼(C) and as m2mla simply
takes the values of the cars and assigns them to data variables of a car
it, follows that for all D ∈ DS the assignment κ assigns values such that
y 6∈ {D.vr1, D.vr2, D.vc} or (x, x′) ∩D.se = ∅ is satisfied. This implies that
κ |= trmla

f (Υ, free).
Subcase 1.3 (φ ≡ re(γ)). Assume M |= re(γ). We know r < r′, l = l′,
l ∈ res(ν(γ)) and X ⊆ se(ν(γ),TS ,Ω). This implies that similar properties
hold for κ. We have κ(x′) > κ(x), κ(y) = κ(y′), [κ(x), κ(x′)] ⊆ κ(f(γ).se)
and either κ(f(γ).vr1) = κ(y) or κ(f(γ).vr2) = κ(y). These are exactly the
constraints imposed by trmla

f (Υ, re(γ)), hence we have κ |= trmla
f (Υ, re(γ)).

Subcase 1.4 (φ ≡ cl(γ)). Analogous to the previous case.
Subcase 1.5 (φ ≡ γ = γ′). Assume M |= γ = γ′, which implies ν(γ) =
ν(γ′). From the definition of m2mla we know that for each γ′′ ∈ dom ν
we have κ(f(γ′′)) = ν(γ′′), which implies κ(f(γ)) = κ(f(γ′)). Hence, we
conclude κ |= trmla

f (Υ, γ = γ′).

Case 2 (Equation (3.36)). For this case let M = mla2m(κ,Υ) be an MLSLS
model with M = (CS ,TS ,Ω, V, ν) and V = ([l, l′], [r, r′], E). Note that in the
proof sane(Υ) is only needed to ensure that mla2m(κ,Υ) is defined.

Subcase 2.1 (φ ≡ ` = k). Assume κ |= trmla
f (Υ, ` = k) ∧ sane(Υ), which

implies κ(β′)− κ(β) = k. As X = [κ(β), κ(β′)] we have M |= ` = k.
Subcase 2.2 (φ ≡ free). Assume κ |= trmla

f (Υ, free) ∧ sane(Υ). Then
κ(β′) > κ(β), κ(α) = κ(α′) and for all D ∈ DS it holds that κ assigns values
to the FOMLA variables such that α 6∈ {D.vr1, D.vr2, D.vc} orD.se∩(β, β′) =
∅ holds. This implies that similar properties hold for M , which means
M |= free.
Subcase 2.3 (φ ≡ re(γ)). Assume κ |= trmla

f (Υ, re(γ))∧ sane(Υ). Then, the
assignment κ ensures κ(β′) > κ(β), κ(α) = κ(α′), [κ(β), κ(β′)] ⊆ κ(f(γ).se)
and either κ(f(γ).vr1) = κ(α) or κ(f(γ).vr2) = κ(α). This implies that
similar properties hold for M , which means M |= re(γ).
Subcase 2.4 (φ ≡ cl(γ)). Analogous to the previous case.

104

3.3 Satisfiability of MLSLS

Subcase 2.5 (φ ≡ γ = γ′). Assume κ |= trmla
f (Υ, γ = γ′) ∧ sane(Υ), which

implies κ(f(γ)) = κ(f(γ′)). As ν = {γ 7→ κ(f(γ)) | γ ∈ dom f}, i.e. ν(·)
assigns the same car identifiers as κ(f(·)), we have ν(γ) = ν(γ′). This implies
M |= γ = γ′.

Induction hypothesis.
We have finished proving the lemmas for the base cases and have the following
two induction hypotheses.
Case 1 (Equation (3.35)). For an MLSLS formula φ and all finite proper
MLSLS models M = (CS ,TS ,Ω, V, ν) with freeVar(φ) ⊆ dom ν we have

M |= φ implies
(
for all (κ,Υ) with (κ,Υ) hmla m2mla(M). κ |= trmla

f (Υ, φ)
)
.

(3.37)
Case 2 (Equation (3.36)). For an MLSLS formula φ and all proper FOMLA
tuples (κ,Υ) with Υ = (DS , α, α′, β, β′, f,D,S, DE) and freeVar(φ) ⊆ dom(f)
we have

κ |= trmla
f (Υ, φ) ∧ sane(Υ) implies M |= φ , (3.38)

where M = mla2m(κ,Υ).
Induction step.
We continue with the induction step.
Case 1 (Equation (3.35)). For i ∈ {1, 2} let (κi,Υi) = m2mla(Mi) with
Υi = (DS i, yi, y

′
i, xi, x

′
i, fi,Di,Si, DEi).

Subcase 1.1 (φ ≡ φ1 ∧ φ2). Assume M |= φ1 ∧ φ2, which implies M |= φ1

and M |= φ2. As freeVar(φi) ⊆ freeVar(φ) and freeVar(φ) ⊆ dom ν we can
apply the IH to conclude that κi |= trmla

f (Υi, φi) with i ∈ {1, 2}. As we do
not change the model M we have (κ1,Υ1) = (κ2,Υ2) = (κ,Υ). Thus, we
conclude κ |= trmla

f (Υ, φ1 ∧ φ2).

Subcase 1.2 (φ ≡ φ2

φ1

). Assume M |= φ2

φ1

. We do a case distinction on

whether l ≤ l′.
Subsubcase 1.2.1 (Case l ≤ l′). There is an l′′ ∈ [l − 1, l′] such that
for i ∈ {1, 2} we have Mi |= φi where M1 = (CS ,TS ,Ω, V [l,l′′], ν) and
M2 = (CS ,TS ,Ω, V [l′′+1,l′], ν). We choose l′′ such that the previous
property holds. As freeVar(φi) ⊆ dom ν we can apply the IH and get
κi |= trmla

f (Υi, φi). We can see that {y1, y
′
1} −C κ1 and {y2, y

′
2} −C κ2 are

equal up to variable renaming. Further, we know κ1(y1) = l, κ1(y′1) = l′′

and κ2(y2) = l′′ + 1, κ2(y′2) = l′.

105

3 Spatial Properties with Precise Information

For the assignment κ′ = κ1] ({y2, y
′
2} C κ2) and the data tuple

Υ′2 = (DS 1, y2, y
′
2, x1, x

′
1, f1,D1,S1, DE1) we have κ′ |= trmla

f (Υ1, φ1) and
κ′ |= trmla

f (Υ′2, φ2), i.e. we can use mostly the variables from κ1 and Υ1.
This implies κ′ |= trmla

f (Υ1, φ1) ∧ trmla
f (Υ′2, φ2).

To be able to apply the FOMLA semantics of the vertical chop we have
to combine κ1 and κ2 into a single assignment. Additionally, we have
to combine y′1 and y2 into a single chop point. As κ′(y2) = κ′(y′1) + 1
we can replace y2, i.e. for Υ′′2 = (DS 1, y

′
1 + 1, y′2, x1, x

′
1, f1,D1,S1, DE1)

and κ′′ = κ1] ({y′2}Cκ2) we have κ′′ |= trmla
f (Υ1, φ1)∧ trmla

f (Υ′′2 , φ2). As
κ′′(y′1) = l′′ and l′′ ∈ [l − 1, l′] we can bind y′1 by a quantifier, i.e. let
κ′′′ = (κ1 −C {y′1})] (κ2 C {y′2}) be an assignment that takes everything
except y′1 from κ1 and only y′2 from κ2. Then

κ′′ |= trmla
f (Υ1, φ1) ∧ trmla

f (Υ′′2 , φ2)

iff κ′′′ |= ∃y′1. y1 − 1 ≤ y′1 ≤ y′2 ∧ trmla
f (Υ1, φ1) ∧ κ′ |= trmla

f (Υ′′2 , φ2)

iff κ′′′ |= trmla
f (Υ′,

φ2

φ1

) ,

where Υ′ = (DS 1, y1, y
′
2, x1, x

′
1, f1,S1,D1, DE). At last, (κ′′′,Υ′) is equal

to (κ,Υ) up to variable renaming, which implies κ |= trmla
f (Υ,

φ2

φ1

).

Subsubcase 1.2.2 (l > l′). We haveM |= φ2

φ1

, which means thatM |= φ1

and M |= φ2 holds. The proof is then analogous to the case φ ≡ φ1 ∧ φ2.

Subcase 1.3 (φ ≡ ¬φ1). We first reformulate the IH of 3.36, which states
that for all FOMLA tuples (Υ′, κ′) with freeVar(φ1) ⊆ dom f ′ we have

κ′ |= trmla
f (Υ′, φ1) ∧ sane(Υ′) implies mla2m(κ′,Υ′) |= φ1 .

Using contraposition we can reformulate this equivalently as

mla2m(κ′,Υ′) 6|= φ1 implies κ′ 6|= trmla
f (Υ′, φ1) ∧ sane(Υ′) . (3.39)

AssumeM |= ¬φ1, which meansM 6|= φ1. Let (κ,Υ) = m2mla(M) andM ′ =
mla2m(m2mla(M)) = mla2m(κ,Υ). FromM 6|= φ1 and from Corollary 3.3.29
we can conclude that M ′ 6|= φ1. Using Equation (3.39) we conclude κ 6|=
trmla

f (Υ, φ1)∧sane(Υ). As we know from Proposition 3.3.27 that the FOMLA

106

3.3 Satisfiability of MLSLS

tuple we get with m2mla is sane, i.e. κ |= sane(Υ), it follows that κ |=
trmla

f (Υ,¬φ1) ∧ sane(Υ).
Subcase 1.4 (φ ≡ cs : φ1). For this case we point out that when applying
m2mla the resulting FOMLA tuple has | dom ν| + |CS \ ran ν| variables in
D. Thus, M and M ′ = ({ν(c) | c ∈ cs},TS ,Ω, V, ν) may have a different
number of variables in their FOMLA representation. We circumvent this by
separating M into two models: an essential part and an optional part that
does not affect the satisfaction of the formula, but may affect the number of
variables.

Assume M |= cs : φ1 and let M1 = M ran ν and M ′1 = M ran ν with
M1 = (CS 1,TS 1,Ω1, V, ν) and M ′1 = (CS ′1,TS

′
1,Ω

′
1, ∅). Note that M1 is

a proper model, as E ∈ ran ν and that M = M1 M ′1. As M |= cs : φ1

we know M1 |= cs : φ1 because of the semantics of the scope operator.
This implies for M11 = (CS 11,TS 1,Ω1, V1, ν1) with CS 11 = {ν(c) | c ∈ cs}
that M11 |= φ1. As we did not change the valuation, i.e. ν1 = ν we
still have dom ν1 ⊆ freeVar(φ1). Thus we may apply the IH to conclude
for (κ11,Υ11) = m2mla(M11) that κ11 |= trmla

f (Υ11, φ1), where Υ11 =
(DS 11, y11, y

′
11, x11, x

′
11, f11,D11,S11, DE11).

We undo the scope evaluation. Let Υ12 be equal to Υ11 except that we
replace DS 11 with an arbitrary DS 12 ⊆ D11. We have κ11 |= trmla

f (Υ12, cs :φ1)
because DS 12 is overwritten by the scope operator. We choose DS 12 =
dom(κ11BCS 1) and have (κ12,Υ12) =r(κ1,Υ1) with (κ1,Υ1) = m2mla(M1),
which implies κ1 |= trmla

f (Υ1, cs : φ1).
For (κ′1,Υ

′
1) = m2mla(M ′1) we know that (κ1,Υ1) and (κ′1,Υ

′
1) are compos-

able. Let (κ′,Υ′) = (κ1,Υ1) (κ′1,Υ
′
1). Then we have κ′ |= trmla

f (Υ′, cs :φ1)
because κ1 |= trmla

f (Υ1, cs : φ1) and the variables from Υ′1 are not con-
strained in trmla

f (Υ1, cs : φ1). By applying Lemma 3.3.21 we conclude
(κ1,Υ1) (κ′1,Υ

′
1) =r m2mla(M1 M ′1). As m2mla(M1 M ′1) = m2mla(M),

we conclude κ |= trmla
f (Υ, cs : φ1).

Subcase 1.5 (φ ≡ ∃c. φ1). Assume M |= ∃c. φ1, which implies that
there is C ∈ CS such that for M1 = (CS ,TS ,Ω, V, ν1) with ν1 = ν ⊕
{c 7→ C} we have M1 |= φ1. Note that we assume w.l.o.g. c 6∈ dom ν.
From freeVar(∃c. φ1) ⊆ dom ν we know that freeVar(φ1) ⊆ dom ν1 and thus
we can apply the IH to conclude κ1 |= trmla

f (Υ1, φ1). We introduce the
quantifier again and have κ11 |= trmla

f (Υ11,∃c. φ1), where κ11 = κ1, Υ11 =
(DS 1, y1, y

′
1, x1, x

′
1, f11,D1,S1, DE) and f11 = {c} −C f1. We would like to

point out that m2mla introduces for each variable c ∈ dom ν a unique variable

107

3 Spatial Properties with Precise Information

D ∈ DVar into D and for each car identifier C ∈ CS \ ran ν another unique
variable, i.e. |D| = | dom ν| + |CS \ ran ν|. Thus, if C ∈ ran ν we have
|D1| = |D| + 1 and if C ∈ CS \ ran ν then |D1| = |D|. Nevertheless, in
both cases we have (κ,Υ) hmla (κ11,Υ11) because dom f = dom f11 and
∀γ ∈ dom f we have κ(f(γ)) = κ11(f11(γ)) and we did not change other
parts. Thus, with Lemma 3.3.9 we conclude κ |= trmla

f (Υ,∃c. φ1).
Subcase 1.6 (φ ≡ φ1 a φ2). Let M |= φ1 a φ2. Then there is r′′ ∈
[r, r′] such that Mi |= φi with Mi = (CS ,TS ,Ω, Vi, ν) for i ∈ {1, 2},
V1 = (L, [r, r′′], E), V2 = (L, [r′′, r′], E). As freeVar(φi) ⊆ dom νi we can
apply the IH to conclude κi |= trmla

f (Υi, φi). Note that {x1, x
′
1} −C κ1 and

{x2, x
′
2} −C κ2 are equal up to renaming and that κ1(x′1) = κ2(x2) = r′′.

Thus, we can mostly use variables from (κ1,Υ1) in (κ2,Υ2), i.e. for
Υ12 = (DS 1, y1, y

′
1, x
′
1, x
′
2, f1,D1,S1, DE1) and κ12 = κ1 ⊕ {x′2 7→ κ2(x′2)}

we have κ12 |= trmla
f (Υ1, φ1) and κ12 |= trmla

f (Υ12, φ2), which implies κ12 |=
trmla

f (Υ1, φ1)∧ trmla
f (Υ12, φ2). We can put x′2 below a quantifier and have for

κ′ = {x′1} −C κ12 that κ′ |= ∃x′1. x1 ≤ x′1 ≤ x′2 ∧ trmla
f (Υ1, φ1) ∧ trmla

f (Υ12, φ2).
This is the semantics of our FOMLA representation of horizontal chop. Thus,
for Υ′ = (DS 1, y1, y

′
1, x1, x

′
2, f1,D1,S1, DE1) we have κ′ |= trmla

f (Υ′, φ1 a φ2).
As (κ,Υ) and (κ′,Υ′) are equivalent up to renaming we conclude κ |=
trmla

f (Υ, φ1 a φ2).

Case 2 (Equation (3.36)). Our general approach (except for the case with
negation) is that we assume κ |= trmla

f (Υ, φ)∧ sane(Υ), where φ has a subformula
φ1 (or perhaps two subformulas φ1, φ2). We then simplify (κ,Υ) to (κ1,Υ1)
such that κ1 |= trmla

f (Υ1, φ1) ∧ sane(Υ), argue that κ1 |= sane(Υ1) holds and
thus have all conditions satisfied to be able to apply the IH to conclude for
M1 = mla2m(κ1,Υ1) that M1 |= φ1. Note that we need sane(Υ) to ensure that
mla2m(κ1,Υ1) is defined. We then reintroduce the formerly removed operator,
i.e. we create M ′ with M ′ |= φ. At the end we show that M ′ = M , because we
have to show for M = mla2m(κ,Υ) that M |= φ.

During the proof let M = (CS ,TS ,Ω, V, ν) = mla2m(κ,Υ). We proceed with
the induction step.

Subcase 2.1 (φ ≡ φ1 ∧ φ2). Assume κ |= trmla
f (Υ, φ1 ∧ φ2)∧ sane(Υ) which

implies κ |= trmla
f (Υ, φ1) ∧ sane(Υ) and κ |= trmla

f (Υ, φ2) ∧ sane(Υ). As
freeVar(φi) ⊆ dom f we can apply the IH and get M |= φ1 and M |= φ2,
which implies M |= φ1 ∧ φ2.

Subcase 2.2 (φ ≡ φ2

φ1

). Assume κ |= trmla
f (Υ,

φ2

φ1

) ∧ sane(Υ). We do a case

108

3.3 Satisfiability of MLSLS

distinction on whether κ(α) ≤ κ(α′).
Subsubcase 2.2.1 (κ(α) ≤ κ(α′)). In this case we know that for
Υ1 = (DS , α, y, β, β′, f,D,S, DE), Υ2 = (DS , y + 1, α′, β, β′, f,D,S, DE)
and a fresh integer variable y the assignment κ satisfies the FOMLA
formula ∃y ∈ [α − 1, α′]. trmla

f (Υ1, φ1) ∧ trmla
f (Υ2, φ2) ∧ sane(Υ). We

extend κ to κ′ by choosing a value for y that satisfies the formula. We
have κ′ |= trmla

f (Υ1, φ1) ∧ trmla
f (Υ2, φ2) ∧ sane(Υ), which implies κ′ |=

trmla
f (Υ1, φ1) ∧ sane(Υ) and κ′ |= trmla

f (Υ2, φ2) ∧ sane(Υ). As the formula
sane(Υ) ignores the terms representing lanes we conclude κ′ |= sane(Υ1)
and κ′ |= sane(Υ2).

For i ∈ {1, 2} we have freeVar(φi) ⊆ dom f . Hence, we satisfy the con-
ditions of the IH and apply it to get M1 |= φ1 and M2 |= φ2, where Mi =
(CS i,TS i,Ωi, Vi, νi) = mla2m(κ′,Υi) with V1 = ([κ′(α), κ′(y)], X1, E1)
and V2 = ([κ′(y) + 1, κ′(α′)], X2, E2).
All elements of M1,M2 except the lanes are equal. We can combine

the two views: let L′ = [κ′(α), κ′(y)]	 [κ′(y) + 1, κ′(α′)]. Then we have

for M ′ = (CS 1,TS 1,Ω1, (L
′, X1, E1), ν1) that M ′ |= φ2

φ1

. As κ′(y) ∈

[κ′(α), κ′(α′)] and L = [κ′(α), κ′(α′)] it follows that L = L1 	 L2. As we
did not change anything except the terms representing the extension it

follows that M ′ = M , which implies M |= φ2

φ1

.

Subsubcase 2.2.2 (κ(α) > κ(α′)). In this case trmla
f (Υ,

φ2

φ1

) ∧ sane(Υ)

evaluates to trmla
f (Υ, φ1) ∧ trmla

f (Υ, φ2) ∧ sane(Υ). The proof then is
analogous to the case φ ≡ φ1 ∧ φ2.

Subcase 2.3 (φ ≡ ¬φ1). Assume κ |= trmla
f (Υ,¬φ1) ∧ sane(Υ). As

freeVar(φ1) ⊆ dom f we may apply the IH of 3.35 and conclude that for all
finite MLSLS models M ′ we have

M ′ |= φ1 implies κ′ |= trmla
f (Υ′, φ1) , where (Υ′, κ′) = m2mla(M ′) .

By contraposition this is equivalent to

κ′ 6|= trmla
f (Υ′, φ1) implies M ′ 6|= φ1 , where (Υ′, κ′) = m2mla(M ′) .

(3.40)

109

3 Spatial Properties with Precise Information

We choose M ′ = M = mla2m(κ,Υ) and get (Υ′, κ′) = m2mla(mla2m(κ,Υ)).
From Lemma 3.3.31 and κ |= trmla

f (Υ,¬φ1) ∧ sane(Υ) we know κ′ |=
trmla

f (Υ′,¬φ1), which implies κ′ 6|= trmla
f (Υ′, φ1). Thus, from Equation (3.40)

we conclude M ′ 6|= φ1. As M = M ′, it follows that M |= ¬φ1.
Subcase 2.4 (φ ≡ cs : φ1). Assume κ |= trmla

f (Υ, cs : φ1) ∧ sane(Υ). Then
κ |= trmla

f (Υ1, φ1) ∧ sane(Υ) with Υ1 = (DS 1, α, α
′, β, β′, f,D,S, DE) and

DS 1 = {f(c) | c ∈ cs}. As sane(Υ) ignores the scope, which we changed, we
conclude κ |= sane(Υ1). As freeVar(φ1) ⊆ dom f we can use the IH to get
M1 |= φ1, where M1 = (CS 1,TS 1,Ω1, V1, ν1) = mla2m(κ,Υ1). Note that all
elements of M1 are equal to M except for CS 1.
We are left to show that evaluating the scope operator on MLSLS side

results in CS 1, i.e. CS 1 = {ν(c) | c ∈ cs}. We see

CS 1 scope operator in FOMLA
= {κ(f(c)) | c ∈ cs} def. of mla2m

= {ν1(c) | c ∈ cs}
This is the semantics of the scope operator. This means that for all sets
CS ′ ⊆ I we have (CS ′,TS ,Ω, V, ν) |= cs : φ1 because the car identifier scope
is replaced by the scope operator. This implies M |= cs : φ1.
Subcase 2.5 (φ ≡ ∃c. φ1). Assume κ |= trmla

f (Υ,∃c. φ1)∧sane(Υ), where we
assume w.l.o.g. c 6∈ dom f . Then κ |= ∨D∈DS trmla

f (Υ1, φ1) ∧ sane(Υ), where
Υ1 = (DS , α, α′, β, β′, f1,D,S, DE) and f1 = f ⊕ {c 7→ D}. We choose
D ∈ DS such that κ |= trmla

f (Υ1, φ1) ∧ sane(Υ). As in the other cases, the
formula sane(Υ) ignores our FOMLA representation of the valuation and
thus κ |= sane(Υ1) holds. As freeVar(φ1) ⊆ dom f we can apply the IH and
we have M1 |= φ1, where M1 = (CS 1,TS 1,Ω1, V1, ν1) = mla2m(κ,Υ1).

By the definition of mla2m we have ν(c) = C with C ∈ CS 1. Thus, we
can reintroduce the quantifier and get M ′ |= ∃c. φ1, where M ′ is equal to
M1 except that ν′ = {c} −C ν1. We are left to show that M ′ = M . It is clear
that CS = CS ′, TS = TS ′, Ω = Ω′ and V = V ′ because we only changed f ,
which only affects the valuation ν. Further, we know from the definition of
mla2m that

ν1 = {γ 7→ κ(f1(γ)) | γ ∈ dom f1} and

ν = {γ 7→ κ(f(γ)) | γ ∈ dom f} .
As c 6∈ dom f and f1 = f ⊕ {c 7→ D} it follows that ν = {c} −C ν1, which
implies ν = ν′. Thus, M = M ′ and M |= ∃c. φ1.

110

3.3 Satisfiability of MLSLS

Subcase 2.6 (φ ≡ φ1 a φ2). We assume κ |= trmla
f (Υ, φ1 a φ2) ∧ sane(Υ).

Then κ |= ∃x ∈ [β, β′]. trmla
f (Υ1, φ1) ∧ trmla

f (Υ2, φ2) ∧ sane(Υ) follows, where
Υ1 = (DS , α, α′, β, x, f,D,S, DE), Υ2 = (DS , α, α′, x, β′, f,D,S, DE). This
means that we can define κ1 = κ⊕ {x 7→ r} for some suitable real number
r ∈ [κ(β), κ(β′)] such that κ1 |= trmla

f (Υ1, φ1)∧ trmla
f (Υ2, φ2)∧sane(Υ), which

implies κ1 |= trmla
f (Υ1, φ1) ∧ sane(Υ) and κ1 |= trmla

f (Υ2, φ2) ∧ sane(Υ). As
κ1 |= β ≤ x ≤ β′ we further know κ1 |= sane(Υ1) and κ1 |= sane(Υ2).
As for i ∈ {1, 2} we have freeVar(φi) ∈ dom fi, we can apply the IH

and get Mi |= φi, where Mi = (CS i,TS i,Ωi, Vi, νi) = mla2m(κi,Υi) with
Vi = (Li, Xi, Ei), X1 = [κ′(β), κ′(x)] and X2 = [κ′(x), κ′(β′)]. Note that
all elements in M1,M2 except the extensions are equal. Thus for M ′ =
(CS 1,TS 1,Ω1, (L1, X1 : X2, E), ν1) we have M ′ |= φ1 a φ2. At last, as
X = [κ′(β), κ′(β′)] we see that X = X1 :X2. Further, all other elements
in M are equal to their corresponding counter parts in M ′, which implies
M |= φ1 a φ2.

We finished the structural induction for both cases of the lemma. Thus, the
lemma is proven.

Now we can prove that we can decide lane-unbounded satisfiability of well-
scoped MLSLS by checking our FOMLA constraints for satisfiability. For
this proof we use the previous lemma. The difficulty now lies in choosing an
appropriate FOMLA data tuple. We point out that while the previous lemma
holds for arbitrary MLSLS formulas, the following lemma only holds for well-
scoped formulas. The reason for this is that in the previous lemma we worked
with finite models. That is, if a well-scoped MLSLS formula is satisfiable, then
there is a finite model satisfying the formula.

Lemma 3.3.33. Given a well-scoped MLSLS formula φ we have that

φ is satisfiable iff trmla
f (Υ, φ) ∧ sane(Υ) is satisfiable ,

where Υ = (∅, y, y′, x, x′, f] {ego 7→ DE},D,S, DE) with |D| = | freeVar(φ)|+ 1
and f maps each variable from freeVar(φ) to a distinct element from D \ {DE}.

Proof.
Case 1 (if). Assume trmla

f (Υ, φ) ∧ sane(Υ) is satisfiable. Then there is an
assignment κ such that κ |= trmla

f (Υ, φ) ∧ sane(Υ). Then by Lemma 3.3.32 we
know for the MLSLS model M = mla2m(κ,Υ) that M |= φ.

111

3 Spatial Properties with Precise Information

Case 2 (only if). Assume that φ is satisfiable. Then there is a proper model
M = (CS ,TS ,Ω, V, ν) such that M |= φ. From Lemma 3.3.2 we conclude for
M ′ = (∅,TS ,Ω, V, ν) that M ′ |= φ. Furthermore, we can remove all mapped
variables c ∈ CVar from ν that are not in freeVar(φ) without affecting the
satisfaction. Let ν′ = (freeVar(φ) ∪ {ego})C ν be this reduced valuation. Then
for M ′′ = (∅,TS ,Ω, V, ν′) we have M ′′ |= φ. Further, note that | dom ν′| =
| freeVar(φ)|+ 1.
Let (κ1,Υ1) = m2mla(M ′′). Then, from Lemma 3.3.32 it follows that for

Υ1 = (DS 1, y1, y
′
1, x1, x

′
1, f1,D1,S1, DE1) we have κ1 |= trmla

f (Υ1, φ). Note that
DS 1 = ∅ and |D1| = | dom ν′| = | freeVar(φ)| + 1 and f1 maps each element
(including ego) from dom ν′ to a distinct variable from D1. Further, from
Proposition 3.3.27 we know κ1 |= sane(Υ1) Thus, as (κ1,Υ1) and (κ,Υ) are
equal up to renaming it follows that they are equisatisfiable, which implies that
trmla

f (Υ, φ) ∧ sane(Υ) is satisfiable.

As satisfiability of FOMLA is decidable [Wei99], the following theorem holds.
Note that we did not investigate the complexity of our procedure. However, for
the complexity of FOMLA we refer to Lemma 2.4.4.

Theorem 3.3.34 (Decidability of well-scoped MLSLS). Satisfiability and va-
lidity of well-scoped MLSLS are decidable.

3.4 Decidability of Model Problem for MLSLS
In the previous section we gave an algorithm to determine if a well-scoped
MLSLS formula is satisfiable. In this section we extend this algorithm to check
if a given finite model satisfies an MLSLS formula. We point out that we do
not restrict ourselves to well-scoped formulas.

However, for this we can restrict ourselves to the first-order logic of linear real
arithmetic (FOLRA), which is a fragment of FOMLA. First we define FOLRA
data tuples, which are a modification of FOMLA data tuples. In FOLRA data
tuples we replace natural number-valued variables by natural numbers and
real-valued variables. Then we adapt our transformation of MLSLS formulas
to arithmetic constraints to not use integer quantification any more. And at
last we bring it all together and show correctness of our approach to solving the
model problem.

As for FOMLA we represent the data of a car in so called data variables. Here
however, we have no integer variables for claims and reservations. Instead we

112

3.4 Decidability of Model Problem for MLSLS

use only variables ranging over the real numbers. Let vp, vΩ, vs, va, vr1, vr2 and
vc from RVar be our data variables. As for FOMLA we collect these variables
in a set s, and for a set of car identifier variables we collect the sets of data
variables in a structure S : DVar → RVar7 and for a given S we sometimes
abbreviate S(D)(vp) with D.vp for D ∈ D.
Additionally, we introduce data tuples. Note that as in FOLRA we do not

have natural number-valued variables, we represent the lanes of a view with
natural numbers, i.e. values, rather than variables. The reason why we represent
lanes of the view with values and claims and reservations as variables will
become clear in Chapter 5. The set of all proper FOLRA data tuples is defined
as

Tlra
p = P(DVar)× N2 × RTerm2 × (CVar ∪ {ego} → DVar)×

P(DVar)× (DVar→ RVar7)× DVar .

We denote a FOLRA data tuple together with a FOLRA assignment as a
FOLRA tuple. We reuse the notions of proper and simple FOMLA data tuples (cf.
Pages 75 and 81), the notion of composable FOMLA tuples (cf. Page 86) and the
operations disjoint union, restriction and anti-restriction for FOMLA tuples (cf.
Page 86) for FOLRA. As for FOMLA data tuples, we require for a FOLRA data
tuple p = (DS , l, l′, β, β′, f,D,S, DE) that DS , ran f ⊆ D, domS = D, DE ∈ D
and f(ego) = DE and similarly for simple FOLRA data tuples (see also Page 75).

We give the transformation of MLSLS formulas to FOLRA. Note that in the
FOMLA transformation the only concepts not available in FOLRA is integer
quantification, used to represent vertical chop. Thus, for the other MLSLS
operators we reuse the FOMLA definition.

Definition 3.4.1. The transformation is given by a function

trlraf : Tlra
p × Φ→ FOLRAFormulas .

Let p = (DS , l, l′, β, β′, f,D,S, DE) ∈ Tlra
p . Then the transformation is given as:

trlraf (p, φ) ≡

l ≤ l′ =⇒
∨

l′′ ∈ [l− 1, l′]

(
trlraf ((DS , l, l′′, β, β′, f,D,S, DE), φ1)

∧ trlraf ((DS , l′′ + 1, l′, β, β′, f,D,S, DE), φ2)

)
∧
l > l′ =⇒

(
trlraf ((DS , l, l′, β, β′, f,D,S, DE), φ1)

∧ trlraf ((DS , l, l′, β, β′, f,D,S, DE), φ2)

)

113

3 Spatial Properties with Precise Information

if φ ≡
(φ2

φ1

)
and trmla

f (p, φ) otherwise, where trmla
f is the transformation from

Definition 3.3.5. 4

We define a transformation of MLSLS models to arithmetic constraints. Note
that the difference to m2mla (Definition 3.3.20) is that here we do not create
an assignment. To simplify things we use for a given MLSLS model M a
precomputed car identifier variable assignment g : DVar→ I. Often we use for
D ⊆ DVar the type g : D → I. Essentially, g is the restriction of a FOMLA
assignment representing an MLSLS model to the car identifier variables. We
define constraints on good choices for p and g for a given finite M by relating
the three. Intuitively, p, g,M are well-chosen, which we shall call sane, if g can
be extended with some assignment h such that (g] h, p) represents M .

Definition 3.4.2. For a simple MLSLS model M = (CS ,TS ,Ω, ν), a simple
FOLRA data tuple p = (DS , f,D,S) and a car identifier variable assignment
g : D→ I we call (p, g,M) sane if

gLDS M = CS ,

ran g = carsM ,

g ◦ f = ν .

We lift this definition to proper models and data tuples: For a proper MLSLS
model M = (CS ,TS ,Ω, V, ν) with V = ([l, l′], [r, r′], E) and a proper FOLRA
data tuple p1 = (DS 1, l1, l

′
1, β1, β

′
1, f1,D1,S1, DE1) we additionally require

g(DE1) = E, l = l1, l
′ = l′1 and the FOLRA constraints β1 = r ∧ β′1 = r′

being satisfiable. 4

In the definition above we require that β1 = r is satisfiable because β1 is a
term, i.e. it may or may not contain variables. If β1 does not contain variables
then β1 = r is is only satisfiable, if β1 evaluates to r. Similar reasoning applies
for β′1. Note that even if β1 and β′1 both contain variables, β1 = r ∧ β′1 = r′

still may not be satisfiable. This may be the case when β1 and β′1 are not
independent of each other because β1 and β′1 share their variables.
We state that our operations preserve sanity.

Proposition 3.4.3. For i ∈ {1, 2} let Mi be finite and composable MLSLS
models and (pi, gi) composable FOLRA tuples such that (pi, gi,Mi) is sane.

114

3.4 Decidability of Model Problem for MLSLS

Then, for a finite set of car identifiers CS ⊆ I we have

(p, g,M1 M2) is sane, where (p, g) = (p1, g1) (p2, g2) ,

(p, g,M1 CS) is sane, where (p, g) = (p1, g1) CS ,

(p, g,M1 CS) is sane, where (p, g) = (p1, g1) CS .

We first define the constraints for a model consisting of a single car. As for
the functions transforming FOMLA tuples to MLSLS models and vice versa, we
use E to denote an elementary (or base) version of a function that we extend
later.

Definition 3.4.4. Let M = (CS ,TS ,Ω, ν) with TS = (res, clm, pos, spd, acc)
be a simple MLSLS model with carsM = {C} and p = (DS , f,D,S) a simple
FOLRA data tuple. Then we define

trlram,E(p,M) ≡
∧
D∈D

(
D.vp = pos(C) ∧ {D.vr1, D.vr2} = res(C) ∧

{D.vc} = clm(C) ∧D.vs = spd(C) ∧D.va = acc(C) ∧D.vΩ = Ω(C,TS)
)
.

We extend this to proper models. For an MLSLS model M with a view
V = (L, [r, r′], E) and | carsM | = 1 and a proper FOLRA data tuple p =
(DS , l, l′, β, β′, f,D,S, DE) we additionally require β = r ∧ β′ = r′. 4

Note that in the definition above we do not represent the lane, the valuation
or the scope. Later we constrain these by requiring that the FOMLA tuple and
the model together are sane.

We extend the previous definition to models with more cars. Note that from
Proposition 3.4.3 it follows that we use the formula only for inputs where the
result is defined, i.e. only for sane inputs.

Definition 3.4.5. Let M be a possibly simple MLSLS model, p a possibly
simple FOLRA data tuple and g a car identifier variable assignment such that
all of them together are sane. Then we define

trlram (p, g,M) ≡

trlram,E(p1,M {C}) ∧ trlram (p2, g2,M {C}) , if carsM 6= ∅
where (p1, g1) = (p, g) {C},

(p2, g2) = (p, g) {C} and C ∈ carsM

true otherwise .

4

115

3 Spatial Properties with Precise Information

The following lemma states how we can derive a FOLRA assignment that
satisfies the arithmetic constraints representing an MLSLS model.

Lemma 3.4.6. LetM be a finite and possibly simple MLSLS model, p a possibly
simple FOLRA data tuple and g : DVar→ I a car identifier variable assignment
such that (p, g,M) is sane. Then there is an FOLRA assignment h such that

g ⊆ h and h |= trlram (p, g,M) .

Proof. First we consider the case that M is simple. For all C ∈ carsM we can
simply assign the values in M {C} to the data variables in (g, p) {C}. The
resulting assignment satisfies trlram (p, g,M).

IfM is proper let p = (DS 1, l1, l
′
1, β1, β

′
1, f1,D1,S1, DE1). As before, we assign

values to the data variables in p to get an assignment h. This assignment does
not yet consider β1 and β′1. As p, g andM are sane we know that β1 = r∧β′1 = r′

is satisfiable. Let h′ be such a satisfying assignment, where h′ might be the
empty function if β1 and β′1 do not contain free variables. Note that the terms
representing the extension do not share any variables with D1 or S1. Hence, we
can use] on the two assignments. Thus, h] h′ |= trlram (p, g,M).

Now we can prove that our encoding of the model problem for MLSLS formulas
is correct. With correct we mean here that the FOLRA constraints are valid iff
the MLSLS model satisfies the MLSLS formula.

Lemma 3.4.7. Let M be a finite and proper MLSLS model, p ∈ Tlra
p a FOLRA

data tuple and g : DVar → I a car identifier variable assignment such that
(p, g,M) is sane. Then, for all MLSLS formulas φ with freeVar(φ) ⊆ dom ν we
have

trlram (p, g,M) =⇒ trlraf (p, φ) is valid iff M |= φ

Proof. For this proof let p = (DS , l, l′, β, β′, f,D,S, DE).
Case 1 (only if). Assume trlram (p, g,M) =⇒ trlraf (p, φ) is valid. With
Lemma 3.4.6 we can extend g to a FOLRA assignment h such that h |=
trlram (p, g,M). Because of the validity, it follows that the assignment satisfies the
transformed MLSLS formula, i.e. h |= trlraf (p, φ).
The assignment assigns all reservation and claim variables in p nonnega-

tive integer values (ensured by h |= trlram (p, g,M)). Hence, we can create a
FOMLA tuple (κ,Υ) from h and p by replacing for all D ∈ D the variables
S(D)(vc),S(D)(vr1) and S(D)(vr2) by natural number-valued variables, while
keeping the assigned value.

116

3.5 Related Work

Because the MLSLS model M is sane, the assignment h essentially is a copy
of values in M and κ is a copy of h, we know that (κ,Υ) is also sane, i.e.
κ |= sane(Υ). Further, from h |= trlraf (p, φ) we know κ |= trmla

f (Υ, φ).
From Lemma 3.3.32 we know that for M ′ = mla2m(κ,Υ) we have M ′ |= φ.

At last, we conclude M = M ′ because we did not change any values when going
from FOLRA to FOMLA, which implies M |= φ.
Case 2 (if). We proceed by contraposition. Assume trlram (p, g,M) =⇒
trlraf (p, φ) is not valid. Then there is an assignment h that satisfies the premise
but not the conclusion of the implication. That is, we have h |= trlram (p, g,M) ∧
¬trlraf (p, φ), which is equivalent to h |= trlram (p, g,M) ∧ trlraf (p,¬φ).

We apply the same steps as in the previous case to create (κ,Υ) from h and
p. As before, we conclude for M ′ = mla2m(κ,Υ) that we have M ′ |= ¬φ, which
implies M ′ 6|= φ. As we did not change any values when going from FOLRA to
FOMLA we conclude M = M ′, which implies M 6|= φ.

As FOLRA is a fragment of FOMLA, for which satisfiability is decidable
[Wei99], the following theorem holds. We did not investigate the complexity of
our procedure, but for the complexity of FOLRA we refer to Lemma 2.4.6.

Theorem 3.4.8 (Decidability of Model Problem for MLSLS). The model
problem for MLSLS is decidable.

3.5 Related Work
Interval Logics

One of the first interval logics used in computer science is Interval Temporal
Logic (ITL) [Mos85]. It is used to specify and verify hardware circuits. To
the best of our knowledge ITL is the first temporal logic featuring the chop
operator.
Halpern-Shoham-logic (HS) [HS91] is an interval-based modal logic, where

for each of Allen’s interval relations [All83] (such as before or overlaps) there
is a modal operator capturing the semantics of this relation. For HS and its
fragments there are plenty of results for properties such as (un)decidability (cf.
[BMG+08] for a survey). One insight is that interval logics quickly become
undecidable.
Another well known interval logic is Duration Calculus (DC) [ZHR91]. The

main feature of DC is the chop operator and the integral operator. With the

117

3 Spatial Properties with Precise Information

integral operator we can express such as “in any interval of length ≥ 60, gas
is leaking for at most 5 % of the time” [SRR90; RRH93]. Duration Calculus
is decidable if we disallow the integral operator and instead allow the almost
everywhere operator (d·e) [ZH04], or if we only allow the chop operator to occur
below an even number of negations [FH07].
Shape Calculus [Sch06] is an extension of DC to multiple dimensions. The

author shows that the fragment SCfin, which restricts models to one dense infinite
dimension and multiple finite discrete dimensions, is decidable. These models
are similar to the model of MLSL, which consists of one dense and one discrete
dimension. However, unlike MLSL, SCfin does not allow for quantitative length
measurements. If the infinite dimension in SCfin instead is discrete, quantitative
measurements are possible. In our case we allow for quantitative statements
and have a dense dimension.

Guarded First-Order Theory

For our decidability result we introduced the scope operator to restrict quantifiers
over car variables to bounded domains. This is similar to guarded first-order
logic of [ANB98], where the authors show that the fragment of first-order logic
consisting of formulas of the type ∃y. α(x, y) ∧ φ(x, y) and ∀y. α(x, y) =⇒
φ(x, y), where α is an atom serving as a guard to restrict the quantified variables
and φ is a formula of first-order logic. Their guard seems quite similar to our
restriction of the quantifier over car variables. However, MLSL is a modal
logic extended with first-order quantifiers. Thus, their approach is not directly
applicable.

Spatial Logics

There exist other spatial logics. One of the most popular ones is the Region
Connection Calculus (RCC) [RCC92]. It can be used to formalise and reason
about topological properties of regions. For example, we can express that two
regions are connected via a third region. However, RCC does not allow for
quantitative properties and it is not suited to reason about traffic configurations
because of the special significance of the road separated into adjacent and
disjoint lanes.

118

4 Satisfiability of
Spatial Properties with
Imprecise Information

In this chapter we investigate whether satisfiability is decidable if we assume that
spatial information is known only approximately. This is interesting because
often it is unlimited precision that leads to undecidability [LH15; AFH96;
Frä99]. Note that even though we did not use length measurement in the
previous chapter, we still were able to express that one reservation starts exactly
where another reservation ends. This is not possible in this chapter. Additionally,
we adapt our encoding of the model problem from the previous chapter to the
setting that information contains small errors.
The undecidability result is mostly taken from [Ody15b; Ody15a]. In this

work we slightly adapt the construction from [Ody15b; Ody15a] such that the set
of satisfying models for the complete formula forms an open set.1 Furthermore,
we adapt the proof of undecidability by connecting it to the undecidability proof
of the previous chapter and we make the arguments from [Ody15a] clearer.

The idea for the procedure to decide the static model problem with imprecise
information is taken from [Ody17]. However, there we jump straight to the
dynamic case. In this thesis we explicitly state the easier static case and
separately prove its correctness.
In Section 4.1 we adapt our undecidable construction from the previous

chapter to the setting of imprecise information, which we prove undecidable
in Section 4.2. In Section 4.3 we encode the model problem with imprecise
information and in Section 4.4 we discuss related work.

1Intuitively, a set is open if it does not have a clear boundary. For example, the closed
interval [1, 2] is not an open set, while the open interval (1, 2) forms an open set.

119

4 Spatial Properties with Imprecise Information

4.1 Undecidability of Robust Satisfiability
The undecidability result for MLSL by Hilscher and Linker relies on length
measurement [LH15] and in their construction the authors rely on exact values.
In the previous chapter we investigated whether the satisfiability problem of
MLSL becomes decidable if we trade length measurement for an unbounded
number of lanes. We extend this and investigate if satisfiability remains un-
decidable for an unbounded number of lanes, even if we perturb positional
data. That is, even though in Chapter 3 we do not use length measurement
for the undecidability result, we still rely on correct positional information.
For example, we represented letters as nonoverlapping, successive reservations
without free space in between, i.e. when the position of a single car is shifted by
a small amount the resulting model does not satisfy the formula anymore.

Here we show that the lane-unbounded satisfiability problem of MLSL remains
undecidable, even when the position of cars along the lanes are perturbed. We
say that a model M robustly satisfies a formula iff there is some δ > 0 such
that all models differing by at most δ (w.r.t. to a certain metric) from M also
satisfy the formula. A formula is robustly satisfiable iff there is a model that
robustly satisfies the formula. In the following we adapt our construction from
Section 3.1 to this definition of robust satisfiability.
Our definition of robust satisfiability is similar to the definition of tube

acceptance from [GHJ97], where a robust timed automaton accepts a trajectory
iff the automaton also accepts all similar trajectories.

4.1.1 Robust Satisfiability of MLSL
To formalise similarity usually metrics are introduced to define distances between
elements. Here we need a metric to assign a distance to every two models.
Then, similarity can be quantified with these metrics. To capture positional
similarity of two models we assign a distance of ∞ if any other data than
position, extension or sensor function differ. Otherwise, we assign the maximal
difference of these values. For a car C, a sensor function Ω and a traffic snapshot
TS = (res, clm, pos, spd, acc) we remind that se(C,TS ,Ω) is an abbreviation for
the safety envelope of C. Further, se(C,TS ,Ω) is the right end of this safety
envelope, and se(C,TS ,Ω), which is equal to pos(C), is the left end of the safety
envelope. The following definition is adapted from [Ody15b].

Definition 4.1.1 (Metric on MLSL Models). For i ∈ {1, 2} let there be two
MLSL models Mi = (TS i,Ωi, Vi, νi) with TS i = (resi, clmi, posi, spdi, acci) and

120

4.1 Undecidability of Robust Satisfiability

Vi = (L, [ri, r
′
i], Ei). We define

dm(M1,M2) =

∞ if (res1, clm1, ν1, L1, E1)
6= (res2, clm2, ν2, L2, E2)

max
(
|r1 − r2|, |r′1 − r′2|,

supC∈I(|pos1(C)− pos2(C)|,
|se(C,TS 1,Ω1)− se(C,TS 2,Ω2)|)

)
otherwise .

4

Since we only use absolute values, the distance between two models is always
positive. Further, it is not difficult to show that the triangle inequality is
satisfied. Thus, dm is indeed a metric. This means that the distance of two
models is infinite, if they disagree on discrete values. Otherwise the distance is
the greatest difference of any dense value. For δ ∈ R>0 we say that two models
M,M ′ are δ-similar, if dm(M,M ′) ≤ δ.
We define that a model δ-robustly satisfies a formula if all δ-similar models

also satisfy the formula.

Definition 4.1.2 (Robust Satisfaction of MLSL Formulas). Given a model M ,
a desired error allowance δ ∈ R>0 and a formula φ, we define that M satisfies
φ with robustness δ as

M |=δ φ iff ∀M ′. (dm(M,M ′) ≤ δ =⇒ M ′ |= φ) . 4

We say that M robustly satisfies φ iff there is δ ∈ R>0 such that M |=δ φ.
An MLSL formula φ is robustly lane-unboundedly satisfiable (resp. robustly
lane-boundedly satisfiable) iff there is an infinite (resp. finite) set of lanes L and
an MLSL model M such that M robustly satisfies φ.

Example 4.1.3. Consider the following formulas:

φ0 ≡ c0 6= c1 ∧ 〈re(c0) a re(c1)〉 ,
φ1 ≡ φ0 ∧ ¬∃c2, c3. (c2 6= c3 ∧ 〈re(c2) ∧ re(c3)〉) .

The formula φ0 requires that there are two successive reservations from different
cars without free space in between. The model M0, depicted in Figure 4.1a,
robustly satisfies φ0 because the positions of the cars can be perturbed by a

121

4 Spatial Properties with Imprecise Information

C0 C1

(a) The model M0, which contains two
overlapping reservations.

C0 C1

(b) The model M1, which contains two
reservations. The second reserva-
tion starts exactly where the first
ends.

Figure 4.1: Depiction of two MLSL models to visualise the difference of classical
and robust satisfaction.

small amount without affecting satisfaction by the model. Hence, φ0 is robustly
satisfiable. The model, M1 (Figure 4.1b) does not robustly satisfy φ0 because if
the position of c1 is increased (moved to the right) by an arbitrary small amount
there is free space between the reservations, which violates φ0.

The formula φ1 additionally requires that there are no overlapping reservations.
Thus, M0 does not satisfy the formula. While M1 satisfies φ1, moving a single
car in any direction either creates overlapping reservations or free space, both
of which violate the formula. In general φ1 requires that the reservation of c0
ends exactly where the reservation of c1 starts. Naturally, this is not robustly
satisfiable. 4

4.1.2 Construction
We need to replace those parts of our construction that are affected by small
perturbations of positions. For this we adapt our representation of letters,
because they are represented as successive reservations starting exactly where
another reservation ends. Additionally, we have to adapt the subseq-formulas,
because they ensured perfect alignment of letters, which is not possible in
a setting with perturbations. To distinguish the robust from the nonrobust
formulas we mark formulas from our robust construction that occur with the
same name in the nonrobust construction with r.

Letter

To represent letters we remove the assumption that there are no overlapping
reservations. However, we still do not consider cars with multiple reservations.

122

4.1 Undecidability of Robust Satisfiability

C0 C1 C2

only({c0, c1}) onlyfree({c2})

letterrfree(a, c0)

C3 C4

startmarker(c3) λ(a)
reservations

endmarker(c4)

letterrfree(a, c3)

Figure 4.2: Visualisation of a model satisfying letterrfree(a, c0) a letterrfree(a, c3)
with λ(a) = 2, where each variable cj is mapped to Cj with j ∈
{0, . . . , 4}. The view is not depicted and different heights of the
reservations are used for better visualisation.

For a finite set C ⊆ CVar of car variables we define

only(C) ≡
∧
c∈C

re(c) ∧ (∀c′. (true a re(c′) a true) =⇒
∨
c′′∈C

c′′ = c′) ,

onlyfree(C) ≡ free a only(C) a free ,

to ensure that the current view is filled by reservations from all car variables in
C, but does not contain reservations from any other cars. See Figure 4.2 for a
visualisation. Now we can define our representation of letters as

letterr(σ, c) ≡ startmarker(c) a ∃c0, . . . , cλ(σ)−1. (

i 6=j∧
i,j∈{0,...,λ(σ)−1}

ci 6= cj ∧

onlyfree({c0}) a . . . a onlyfree(cλ(σ)−1)) a ∃c′. endmarker(c′) ,

startmarker(c) ≡ only({c}) a ∃c′. c 6= c′ ∧ only({c, c′}) a only({c′}) ,

endmarker(c) ≡ ∃c′. c 6= c′ ∧ only({c′}) a only({c, c′}) a only({c}) ,

where σ is either a terminal or a nonterminal and c is a car variable. Our
representation of letters begins and ends with two different markers. In between
these markers the representation contains λ(σ) reservations (see Page 35 for
λ(σ)). This representation of letters does not depend on exact positions of cars.
In Figure 4.2 we depict two adjacent letters with free space in between them.

123

4 Spatial Properties with Imprecise Information

Subsequence

Before coming to our subsequence formula we point out that we use a renaming
function for terminals, as in Section 3.1. That is, given two context-free
grammars Gi = (Ni, T ,Ri, Si) with i ∈ {D,U}, we assume two sets TD, TU and
two bijective functions πD : T → TD and πU : T → TU such that TD, ND, TU and
NU are all disjoint. Further, for i ∈ {D,U} and τ ∈ T we use τi as abbreviation
for πi(τ).

In Section 3.1 we ensured that terminals at the same position in the derived
words are horizontally aligned. With imprecise positions we cannot ensure
such an alignment. We define the new subsequence formulas similar to their
definition in Section 3.1. For the following formula we point out that letterrfree
is defined as letterfree on Page 37, with the difference that letterrfree uses letterr

instead of letter. That is, letterrfree(σ, c) ≡ free a letterr(σ, c) a free. Let c, c′ be
car variables, then we define

φ(τ, c, c′) ≡
〈(free

true

free

)
a

((letterrfree(τD, c)

true

letterr(τU, c
′)

)
∨
(letterr(τD, c)

true

letterrfree(τU, c
′)

))
a

(free

true

free

)〉
,

which requires that one representation of τ is horizontally strictly contained
within the other representation. Horizontal containment is ensured by aligning
letterr with letterrfree. The disjunction represents that it does not matter which
representation is the larger one. Further, we define

subseqr
D ≡

∧
τ∈T
∀c. (〈letterrfree(τD, c)〉 =⇒ ∃c′. (〈letterrfree(τU, c

′)〉 ∧ φ(τ, c, c′))) ,

subseqr
U ≡

∧
τ∈T
∀c′. (〈letterrfree(τU, c

′)〉 =⇒ ∃c. (〈letterrfree(τD, c)〉 ∧ φ(τ, c, c′))) .

As in Section 3.1, the subformula φ(τ, c, c′) is the same in subseqr
D and subseqr

U

and we swapped the car variable names and the subscripts D and U outside
φ(τ, c, c′).

Final Formula

To make our new letter formula work we have to allow overlapping reservations.
Hence, we remove mutex from our construction. For i ∈ {D,U} the formulas
stepAllri, startri, letterNextToLetterri, subseqr

i, allResInLetterr mostly remain as in

124

4.1 Undecidability of Robust Satisfiability

Figure 4.3: Visualisation of an
MLSL model satisfying
Frobust(GD, GU) for
the grammars from
Example 2.1.6. We
can see that the
size of terminals in
the two derivations
may differ and that
always one terminal
is strictly contained
in its counterpart of
the other derivation
or vice versa. The
boxes corresponding to
letters and reservations
are not shown. The
shaded area is the part
where true holds, i.e.
where we impose no
restrictions.

SU

CU CU

CU CUaU

aU bU

SD

AD BD

AD AD bD

aD aD

Section 3.1 (cf. Pages 37 to 40). The only difference is that they use the
new letter-formulas letterr and letterrfree. In the final formula we surround our
formulas encoding the trees with true to handle perturbation of the view. We
define

asmr ≡ noClaims ∧ noTwoRes ,

F1 ≡
∧

i∈{U,D}
stepAllri ∧ startri ∧ letterNextToLetterri ∧ subseqr

i ∧

freeLane ∧ allResInLetterr ∧ asmr ,

Frobust(GD, GU) ≡ true a F1 a true .

For a visualisation of a model satisfying Frobust(GD, GU) for the grammars from
Example 2.1.6 we refer to Figure 4.3.

125

4 Spatial Properties with Imprecise Information

4.2 Proving Undecidability of Robust
Satisfiability of MLSL

In this section we prove for two context-free grammars GD, GU in Chomsky nor-
mal form without ε-rules (CNF−ε) that our MLSL formula Frobust(GD, GU) from
the previous section is robustly lane-unboundedly satisfiable iff the intersection
of the two grammars is not empty. For this we first prove the robust formula
and the nonrobust formula to be lane-unboundedly equisatisfiable. Then we
show that the set of models satisfying Frobust(GD, GU) forms an open set with
our metric on MLSL models. This means that we can perturb models satisfying
Frobust(GD, GU) without affecting satisfaction.
We start by proving that for two context-free grammars GD, GU in CNF−ε

the formulas Frobust(GD, GU) and F (GD, GU) (see Pages 41 and 125) are equi-
satisfiable. To prove this, we need methods to transform robust representations
of letters to nonrobust representations and vice versa. First, we define two
functions that put nonoverlapping reservations from a given set of cars into
a given view: the first function does not leave any free space between the
reservations, and the second function surrounds each reservation with free space.
Both functions ignore previous reservations. We remind that M is the set of all
MLSL models and that V is the set of all views.

Definition 4.2.1. Let C = {C1, . . . , Cn} ⊆ I be a nonempty set of car identifiers,
M = (TS ,Ω, V, ν) an MLSL model with TS = (res, clm, pos, spd, acc) and V ′ =
([l′, l′], X ′, E) a view with one lane. Further, let res′ = res⊕{C 7→ {l′} | C ∈ C},
clm′ = clm ⊕ {C 7→ ∅ | C ∈ C}, jC ∈ {1, . . . n} such that C = Cj and let TS ′′

be an arbitrary traffic snapshot. We define the function f : M×P(I)× V→M
to fill the given view completely with reservations of the given car identifiers as

f(M, C, V ′) = ((res′, clm′, pos′, spd, acc),Ω′, V, ν) with

pos′(C) =

{
X ′ + ‖X′‖∗(jC−1)

|C| if C ∈ C ,

pos(C) otherwise ,

Ω′(C,TS ′′) =

{‖X′‖∗jC
|C| if C ∈ C ,

Ω(C,TS ′′) otherwise .

Further, we define g : M×P(I)×V→M to fill the given view with reservations

126

4.2 Proving Undecidability of Robust Satisfiability of MLSL

padded with free space as

g(M, C, V ′) = ((res′, clm′, pos′, spd, acc),Ω′, V, ν) with

pos′(C) =

{
X ′ + ‖X′‖∗(2jC−1)

2|C|+1 if C ∈ C ,

pos(C) otherwise ,

Ω′(C,TS ′′) =

{‖X′‖∗2jC
2|C|+1 if C ∈ C ,

Ω(C,TS ′′) otherwise .

4
In the definition above res′ is equal to res, except that all reservations from

cars in C are moved to lane l′. Similarly, clm′ is equal to clm, except that the
cars in C have their claims removed. Further, for f we split the extension into
|C| parts of equal size and let each car in C have one part of the extension. In g
we split the extension into 2|C|+ 1 parts to ensure that their safety envelopes
do not touch. Also we point out that the sensor function Ω′ is defined for all
traffic snapshots TS ′′ equally. We stress that we do not change the view of the
model. Instead, we move the cars in C into the view V ′.

Throughout this section we use for i ∈ {D,U} and two context-free grammars
Gi = (Ni, T ,Ri, Si) two bijective functions πi : T → Ti such that Ni, T , Ti are
all disjoint. Similar to Chapter 3 we define for an MLSL modelM = (TS ,Ω, V, ν)
with V = (L,X,E), a letter σ ∈ TD ∪TU ∪ND ∪NU and a view V ′ = (L′, X ′, E)
with L′ = [l, l], l ∈ L, X ′ ⊂ X and ‖X ′‖ > 0 that (σ, V) represents a robust
letter as

reprr(M,σ, V ′) iff (TS ,Ω, (L′, X ′, E), ν) |= ∃c. letterr(σ, c) and

∃δ ∈ R>0. (TS ,Ω, (L
′, [X ′ − δ,X ′], E), ν) |= free and

∃δ ∈ R>0. (TS ,Ω, (L
′, [X ′, X ′ + δ], E), ν) |= free .

An MLSL representation of a letter inside a model M is given by a letter and a
view (σ, V) ∈ (TD∪ND∪TU∪NU)×V, where V is the set of all views, such that
reprr(M,σ, V) is satisfied. When the distinction of terminals and nonterminals
is not important we use Σ for some arbitrary finite alphabet.

Now we can define functions that transform nonrobust letters to robust letters
and vice versa (cf. Figure 4.4 on Page 129 for an example).

Definition 4.2.2 (Transforming Nonrobust Letters to Robust Letters). For
some alphabet Σ let M = (TS ,Ω, V, ν) with TS = (res, clm, pos, spd, acc) be an

127

4 Spatial Properties with Imprecise Information

MLSL model, S ⊂ Σ× V a set of representations of letters and (σ, V ′) ∈ Σ× V
with V ′ = ([l′, l′], X ′, E) a single representation. We define

h1(M, ∅) = M ,

h1(M, {(σ, V ′)} ∪ S) = h1(g(M ′, IMV ′ , V
′
2), S \ {(σ, V ′)})

with M ′ = ((res′, clm′, pos′, spd, acc),Ω′, V, ν) and

pos′ = pos⊕ {C1 7→ X ′1, C2 7→ X ′1 +
‖X ′1‖

3
, C3 7→ X ′3, C4 7→ X ′3 +

‖X ′3‖
3
} ,

Ω′ = Ω⊕ {(C1,TS
′′) 7→ 2‖X ′1‖

3
, (C2,TS

′′) 7→ ‖X ′1‖,

(C3,TS
′′) 7→ 2‖X ′3‖

3
, (C4,TS

′′) 7→ ‖X ′3‖ | TS ′′ ∈ TS} ,

where C = {C1, C2, C3, C4} ⊆ I \ IMV is a set of cars outside of V , res′ =
res ⊕ {C 7→ {l′} | C ∈ C}, clm′ = clm ⊕ {C 7→ ∅ | C ∈ C} and for i ∈
{1, 2, 3} V ′i = (L′, X ′i, E) is a view with a proper interval as extension s.t.
V ′ = V ′1 : V ′2 : V ′3 . 4

The function h1 splits for each representation of a letter the view V ′ of that
representation into three subviews V ′1 , V ′2 , V ′3 such that V ′ = V ′1 : V ′2 : V ′3 and
each subview has a proper interval as extension. Then we place two cars from
somewhere outside the model in V ′1 such that they overlap and another two
cars in V ′3 . These views are the start marker and the end marker of the letter.
Next, the cars of the nonrobust representation are placed in V ′2 , such that their
reservations are a nonzero distance apart. We briefly explain some formulas of
the previous definition. In M ′ we moved the cars C1, C2 into the view V ′1 and
the cars C3, C4 into the view V ′3 . We chose the positions and the value of the
sensor function in a way that ensures that in V ′1 the first third of the extension
is only covered by C1, the second third by C1 and C2 and the last third by only
C2 and similarly for V ′3 . All of these cars were outside the view of M before
moving them. With g(M ′, IMV ′ , V

′
2) we move the cars in IMV ′ (see Page 26 for

IMV ′), i.e. the cars that nonrobustly represented the letter σ in the view V ′ in
the model M , into the view V ′2 with free space in between the reservations. In
Figure 4.4 we provide an example.
With the function f from Definition 4.2.1 we can define a function that

transforms every robust representation of a letter in a model to its nonrobust
representation, without changing the extension or the lanes of the representation.

128

4.2 Proving Undecidability of Robust Satisfiability of MLSL

C′
1 C′

2

X1

C′
1 C′

2C1 C2 C4C3

X1

X ′
1 X ′

2 X ′
3

create M ′

C1 C2 C′
1 C′

2 C3 C4

X1

g(M ′, {C′
1, C

′
2}, V ′

2)

Figure 4.4: Transformation of a nonrobust MLSL representation of a letter σ
to a robust MLSL representation of that letter. The representation
uses two cars, i.e. λ(σ) = 2. We see the nonrobust representation in
the model M = (TS ,Ω, V, ν) on the left, an intermediate model M ′
in the middle and the transformed robust representation on the right.
We only depict the models cropped to the subview V1 = (L1, X1, E)
of V , where the representation is located. When we transform a
nonrobust representation to a robust one, we first chop the view V1

into three subviews V ′j = (L1, X
′
j , E) with j ∈ {1, 2, 3} and fill V ′1

and V ′3 each with two overlapping reservations of fresh cars. Let
this model be M ′. Then, we spread the cars IMV1

= {C ′1, C ′2} that
initially represented σ with g(M ′, {C ′1, C ′2}, V ′2) in the view V ′2 .

129

4 Spatial Properties with Imprecise Information

Definition 4.2.3 (Transforming Robust Letters to Nonrobust Letters). Let
M1 = (TS 1,Ω1, V1, ν1) be an MLSL model, S ⊂ Σ× V a set of representations
of letters, (σ, V) ∈ Σ × V a single representation, C ⊆ I the set of cars with
overlapping reservations in V and let V ′ = ([l′, l′], X ′, E′) be a view with a
single lane and a proper interval as extension such that V ′ and V1 do not overlap.
We define

h2(M1, ∅) = M1 ,

h2(M1, {(σ, V)} ∪ S) = h2(f(f(M1, C, V ′), IM1

V \ C, V), S \ {(σ, V)}) . 4

In the definition above for any robust representation of a letter we first move
with f(M1, C, V ′) the overlapping cars of the start marker and the end marker
to V ′, where the reservations have no effect. Then we take the resulting model
M ′ = f(M1, C, V ′) and spread the remaining λ(σ) reservations out in V with
f(M ′, IM1

V \ C, V), where we refer to Page 35 for λ(σ). In Figure 4.5 we provide
an example.

Now we have the nice property that we can use h2 to change robust represen-
tations of letters to nonrobust representations without changing the view of the
representations. Similarly, with h1 we can transform nonrobust representations
of letters to their robust counterparts without changing their views. This follows
from the definitions.
We make the first step of showing that Frobust(GD, GU) and F (GD, GU) are

lane-unboundedly equisatisfiable. For this, we first consider those subformulas
that are quite similar in Frobust(GD, GU) and F (GD, GU). The formulas we con-
sider now only differ in whether they use the robust or nonrobust representations
of letters. Additionally, for the nonrobust letters we also consider the formula
mutex, as the nonrobust representation of letters does not work otherwise.

Lemma 4.2.4. For two context-free grammars GD, GU in CNF−ε let

φ ≡
∧

i∈{D,U}
stepAlli ∧ starti ∧ letterNextToLetteri ∧

freeLane ∧ allResInLetter ∧ asm ,

(4.1)

φr ≡
∧

i∈{U,D}
stepAllri ∧ startri ∧ letterNextToLetterri ∧

freeLaner ∧ allResInLetterr ∧ asmr .

(4.2)

Then, for all MLSL models M ,

(i) if M |= φr then h2(M,S) |= φ and

130

4.2 Proving Undecidability of Robust Satisfiability of MLSL

C1 C2 C′
1 C′

2 C3 C4

X1

C′
1 C′

2

X1

f(M, C, Vout)

C′
1 C′

2

X1

f(M ′, {C′
1, C

′
2}, V1)

Figure 4.5: Transformation of a robust MLSL representation of a letter σ to a
nonrobust MLSL representation of that letter, where λ(σ) = 2. We
see the initial representation in the model M = (TS ,Ω, V, ν) on the
left, the intermediate model M ′ = f(M, C, V ′) in the middle and
the transformed representation on the right. We only depict the
models cropped to the subview V1 = (L1, X1, E) of V , where the
representation is located. To transform a robust representation to a
nonrobust one, we first remove the cars representing the start marker
and the end marker with f(M, C, V ′), where C = {C1, C2, C3, C4}
and V ′ is a view outside of V . Then, we fill V1 with the remaining
cars in V1, given as IMV1

\ C = {C ′1, C ′2}, with f(M ′, {C ′1, C ′2}, V1).

131

4 Spatial Properties with Imprecise Information

(ii) if M |= φ then h1(M,S) |= φr,

where S is the set of all (non)robust MLSL representations of letters in M .

Proof. For both parts of the lemma it is important that the functions h2 and
h1 do not change the views of any of the MLSL representations of letters in
M . For the definitions of the subformulas of φ and φr we refer to Pages 37
to 40 and Page 124. Further, for i ∈ {D,U} let Gi = (Ni, T ,Ri, Si) and let
πi : T → Ti be a bijective terminal renaming function for some set Ti such that
TD, TU,NU,ND are disjoint (see also Page 35).
We start with Part (i). Let M = (TS ,Ω, V, ν) and M ′ = h2(M,S). As

M satisfies allResInLetterr we know that there are no reservations outside of
robust representations of letters in M . With the function h2 we transform all
representations in M into nonrobust representations in M ′ without changing
the view of the representation. That is, for all σ ∈ TD ∪ TU ∪NU ∪ND and all
subviews V1 of V :

if reprr(M,σ, V1) holds, then also repr(M ′, σ, V1) holds, (4.3)

where repr and reprr are defined on Pages 50 and 127. This follows from the
definition of h2. As we did not place any reservations outside representations of
nonrobust letters in M ′, it follows that M ′ satisfies allResInLetter.

We show that M ′ |= stepAllD. To show this we consider M for which we know
that it satisfies stepAllrD. Hence, any view V1 where letterrfree(N, c) holds for some
N ∈ ND and some variable c mapped to some car C, there is a view V2 where
stepr

D(N, c) holds. Because we did not change the extensions or lanes of the
representations of letters we know that in M ′ the view V1 satisfies the nonrobust
formula letterfree(N, c), where c is mapped to some car C ′ with C 6= C ′. Note
that we have C 6= C ′ because for letterrfree(N, c) the variable c is mapped to the
first car of the start marker, while for letterfree(N, c) it is mapped to the first of
λ(N) cars representing N (see Page 35 for λ). Again, as we did not change the
views of the representations in V2 the formula stepD(N, c) is satisfied. Hence,
M ′ satisfies stepAllD.

With similar reasoning we conclude that stepU and for i ∈ {U,D} also starti,
letterNextToLetteri, freeLane, noClaims and noTwoRes are satisfied by M ′.

For mutex we remind the reader that in M each robust representation (σ, V1)
consists of exactly λ(σ) + 4 cars. The +4 is used for the start marker and the
end marker. With the function h2 we move the four cars from the start marker
and the end marker somewhere outside the view of M ′, where they are not

132

4.2 Proving Undecidability of Robust Satisfiability of MLSL

considered for evaluating mutex. The remaining λ(σ) cars are placed without
overlappings and without free space in between the reservations in V1. Thus,
M ′ satisfies the formula mutex.
We have shown that for M ′ = h2(M,S) we have M ′ |= φ.
The argument is similar for Part (ii). It relies on the reverse direction of

Equation (4.3).

With h1 we can transform nonrobust representations of letters into robust
representations without changing their views. However, we require another
function to change the size of a nonrobust representation of a letter. We define a
function to move and resize the extension of a nonrobust representation of a letter
to the extension of another nonrobust representation of a letter. For a nonempty
set of tuples of representations of letters T ⊆ (Σ × V) × (Σ × V), a tuple of
representations of letters ((σ1, V1), (σ2, V2)) ∈ T with V1 = (L1, X1, E) and V2 =
(L2, X2, E) and an MLSL modelM we define mv : M×P((Σ×V)×(Σ×V))→M
inductively as

mv(M, ∅) = M

mv(M,T) = mv(f(M, IMV1
, (L1, X2, E)), T \ {((σ1, V1), (σ2, V2))}) .

This means that we move the extension of the representation (σ1, V1) to the
extension of the representation (σ2, V2). The lanes remain unchanged. More
specifically, with f(M, IMV1

, (L1, X2, E)) we move the cars in the set IMV1
repre-

senting σ1 in the model M to the extension X2. We ignore σ2 and what might
have been in the extension X2 before. Afterwards, we continue recursively.

Using the previous definitions we prove the first direction of the equisatisfia-
bility of our two big undecidable formulas.

Lemma 4.2.5. Let GD, GU be two context-free grammars in CNF−ε. If the
formula F (GD, GU) is satisfiable, then Frobust(GD, GU) also is lane-unboundedly
satisfiable.

Proof. In F (GD, GU) we encode two derivations of the same word from two
different context-free grammars. The formula ensures that if two MLSL repre-
sentations of terminals represent the same occurrence of that terminal in the
derived word, then the extensions of these representations are equal. However,
in Frobust(GD, GU) such representations of terminals do not have an equal ex-
tension. Instead, one extension is strictly contained in the other. Thus, when
we transform a model satisfying F (GD, GU) into one satisfying Frobust(GD, GU)

133

4 Spatial Properties with Imprecise Information

we first make in each pair of corresponding terminals one smaller, such that it
is strictly contained in the other. Then, we transform every nonrobust letter to
a robust letter.

For i ∈ {D,U} let Gi = (Ni, T ,Ri, Si). Further, we remind that πi : T → Ti
is a bijective terminal renaming function for some set Ti such that TD, TU,NU,ND

are disjoint (see also Page 35). Assume that M satisfies F (GD, GU) and let S
be the set of all nonrobust MLSL representations of letters in M . For the set
S1 = {(τ1, V1), . . . , (τn, Vn)} of all representations of terminals from TD in M let
S′1 = {(τ1, V ′1), . . . , (τn, V

′
n)} be the set of representations where all extensions are

shrunk by δ ∈ R with 0 < δ < 1. Further, let T ⊆ ((TU∪TD)×V)×((TU∪TD)×V)
be the set of tuples of representations such that the first element in each tuple
is the original representation and the second element is its shrunk version. That
is, let

S′1 = {(τj , (Lj , [Xj +
δ‖Xj‖

2
, Xj −

δ‖Xj‖
2

], E)) | (τj , (Lj , Xj , E)) ∈ S1} ,
T = {((τ1, V1), (τ1, V

′
1)), . . . , ((τn, Vn), (τn, V

′
n))} .

Further, let S′ = (S \ S1) ∪ S′1 be the set of representations of letters where
the terminals from TD are replaced by their downsized versions and

M1 = mv(M,T) ,

M2 = h1(M1, S
′) .

InM1 all representations of letters from TD have been made horizontally smaller.
Then, in M2 we transform the smaller representations and all unchanged repre-
sentations into robust representations of letters without further changing the
views.

We show M2 |= Frobust(GD, GU). Let φ and φr be the formulas of the same
name in Lemma 4.2.4. We point out that M1 |= φ because the representations
of terminals have no lower bound on the size of their extensions, except of
being proper intervals. Furthermore, with Lemma 4.2.4 we can conclude that
M2 |= φr.
We show that M2 |= subseqr

i, with i ∈ {D,U}. First, we consider the
case i = D. Assume that the premise of subseqr

D is satisfied, i.e. for some
terminal τ ∈ T and some view the formula letterrfree(πD(τ), c) is satisfied for
some variable c. This means that this view has a subview V ′D = ([lD, lD], X ′D, E)
such that (πD(τ), V ′D) ∈ S′1. Let VD = ([lD, lD], XD, E) be the original view

134

4.2 Proving Undecidability of Robust Satisfiability of MLSL

of this representation in S. Then, (πD(τ), VD) ∈ S and X ′D ⊂ XD. Further,
both reprr(M2, πD(τ), V ′D) and repr(M,πD(τ), VD) hold (see Page 127 for reprr).
As M |= subseqD, there is a representation of πU(τ) on a lower lane that is
horizontally aligned with the representation (πD(τ), VD), i.e. there is a view
VU = ([lU, lU], XU, E) with lU < lD and XU = XD such that repr(M,πU(τ), VU)
holds. Because, when changing the nonrobust representations in M into robust
representations in M2 we did not change the extension of any letter from TD, for
this view also reprr(M2, πU(τ), VU) holds. We can slightly increase the extensions
of VU and VD such that for V = ([lU, lD], X,E) with XD ⊂ X the conclusion of
subseqr

D is satisfied, i.e. in the view V the formula

(free

true

free

)
a

((letterrfree(τD, c)

true

letterr(τU, c
′)

))
a

(free

true

free

)

is satisfied for some variable c′. Hence, M2 |= subseqr
D. The reasoning is

symmetric for i = U.
Note that we evaluate the outermost true-subformulas of Frobust(GD, GU)

on point intervals, i.e. we evaluate the subformula in between the outermost
horizontal chops on the full extension.

We proceed with the other direction.

Lemma 4.2.6. For two context-free grammars GD, GU in CNF−ε, if the MLSL
formula Frobust(GD, GU) is lane-unboundedly satisfiable, then F (GD, GU) also
is lane-unboundedly satisfiable.

Proof. Let φ and φr be the formulas of the same name in Lemma 4.2.4 and
assume Frobust(GD, GU) is satisfied by a model M1 = (TS 1,Ω1, V1, ν1) with
V1 = (L1, X1, E). Then there is a subview V ′1 = (L1, X

′, E) of V1 where φr is
satisfied, i.e. for M ′1 = (TS 1,Ω1, V

′
1 , ν1) we have M ′1 |= φr.

We constructM ′2 fromM ′1 such thatM ′2 |= F (GD, GU). For this we first trans-
form every robust MLSL representation of a letter to a nonrobust representation.
Afterwards, we resize the nonrobust representations of terminals such that every
terminal of one MLSL representation of a derivation has a counterpart with an
equal extension in the other MLSL representation of a derivation.
For i ∈ {D,U} let our grammars be Gi = (Ni, T ,Ri, Si) and let πi : T → Ti

be our bijective renaming function such that TD, TU,NU,ND are disjoint (see
also Page 35). Let S1 ⊆ (TD ∪ TU ∪ NU ∪ ND) × V be the set of all robust

135

4 Spatial Properties with Imprecise Information

MLSL representations of letters in M ′1. Then we create M2 = h2(M ′1, S1). From
Lemma 4.2.4 we can conclude that M2 |= φ.
Let T ⊆ S1 × S1 be the set of all representations of terminals in M ′1

such that one terminal is from TD and the other from TU, the terminals
are equal modulo the inverses π−1

D and π−1
U , the second extension of ev-

ery tuple is a strict subset of the first extension in the tuple and the rep-
resentation of the terminal of TU is on a lower lane than the representa-
tion from TD. If we do this for the model from Figure 4.3 we get the set
{((aU, Ṽ1), (aD, Ṽ2)), ((aU, Ṽ3), (aD, Ṽ4)), ((bD, Ṽ5), (bU, Ṽ6))} for suitable views
Ṽj with j ∈ {1, . . . , 6}. Because M ′1 satisfies φr we know that despite the restric-
tions mentioned above, T contains every robust representation of a terminal in
M ′1.
Now, let M ′2 = mv(M2, T), i.e. we resize the extension of every larger repre-

sentation in S1 to the extension of its smaller partner. For M ′2 we still know
M ′2 |= φ because the views of the new representations are subviews of the old
representations and we only changed the representations of terminals. For those,
there is no lower bound on the size of its extension, except that the extension
must be a proper interval.

We define the set of tuples T ′ to be the set we get by first replacing in every
tuple ((τ1, Ṽ1), (τ2, Ṽ2)) ∈ T the extension of Ṽ1 with the extension of Ṽ2 and
then sorting each tuple such that the first terminal is from TD and the second
terminal is from TU.

We show M ′2 |= subseqi with i ∈ {D,U}. First we consider the case i = D. As-
sume we have a view and a terminal τ ∈ T satisfying the premise letterfree(c, τD)
of subseqD, where τD = πD(τ). Then there is a view VD = ([lD, lD], XD, E) such
that repr(M ′2, τD, VD) holds. As T ′ contains every representation of a terminal
in M ′2 there is ((τD, VD), (τU, VU)) ∈ T ′ with VU = ([lU, lU], XU, E). Further-
more, we know XD = XU, lD > lU and π−1

D (τD) = π−1
U (τU). Hence, the view

Ṽ ′ = ([lU, lD], XD, E), which subsumes VU and VD and every lane in between,
satisfies (letter(τU, c2)

true

letter(τD, c1)

)
,

for some variables c1, c2. As we know that repr(M ′2, τi, Vi) with i ∈ {D,U} holds,
we know that we can extend the extension around the representations slightly
such that the letters are surrounded by free space. That means with a view that
has the same lanes as Ṽ ′ and an extension that is in both directions slightly

136

4.2 Proving Undecidability of Robust Satisfiability of MLSL

larger than the extension of Ṽ ′ the formula(free

true

free

)
a

((letter(τU, c2)

true

letter(τD, c1)

))
a

(free

true

free

)

is satisfied. We conclude M ′2 |= subseqD. For i = U the reasoning is symmetric.
As F (GD, GU) is equivalent to φ∧∧i∈{D,U} subseqi, this finishes the proof.

LetM be a set and let d be a metric onM. Then (M, d) is a metric space.

Definition 4.2.7 (Open Set). Given a metric space (M, d) and a set S ⊆M,
then S is open if and only if

∀x ∈ S.∃δ ∈ R>0.∀y ∈M. (d(x, y) ≤ δ implies y ∈ S) . 4

This means that a set is open iff for every element in the set, the set also
contains the elements neighbourhood, where the metric is used to determine
the elements in the neighbourhood.
For an MLSL formula φ let sat(φ) be the set of MLSL models satisfying φ.

We prove that the set of models satisfying Frobust(GD, GU) is open, i.e. that
we can perturb any satisfying model such that satisfaction of the formula is
retained. We point out that for this to hold the outermost chop operators in
Frobust(GD, GU) are needed because otherwise a reservation just outside the
view could be perturbed to protrude into the view and then the formula would
not be satisfied as it requires that all reservations are inside representations of
letters. With the outermost chop operators the view where the representations
of derivations are located is flexible.

Lemma 4.2.8. For the metric dm from Definition 4.1.1 and two context-free
grammars GD, GU in CNF−ε the set sat(Frobust(GD, GU)) is open.

Proof. If sat(Frobust(GD, GU)) is empty, i.e. if Frobust(GD, GU) is not satisfiable,
then the set trivially is open. Hence, we assume that sat(Frobust(GD, GU)) is
not empty and let M1 ∈ sat(Frobust(GD, GU)) with M1 = (TS 1,Ω1, V1, ν1) and
V1 = (L1, X1, E1). Now we have to choose δ ∈ R>0 such that for anyM2 that has
a distance to M1 of at most δ, the model M2 is in the set sat(Frobust(GD, GU)).
For i ∈ {D,U} let our grammars be Gi = (Ni, T ,Ri, Si) and let πi : T →
Ti our renaming function for some set Ti such that TD, TU,NU,ND are all
mutually disjoint (see also Page 35). Let M ′1 = (TS 1,Ω1, V

′
1 , ν1) with V ′1 =

137

4 Spatial Properties with Imprecise Information

(L1, X
′
1, E) be the model for which the subformula between the outermost

chops of Frobust(GD, GU) is satisfied, i.e. where F1 from Page 125 holds. For
i ∈ {D,U} let Si ⊆ (Ti ∪Ni)× V be the set of all robust MLSL representations
of letters in M ′1 and let S = SD ∪ SU. Further, let S′i ⊆ Si be the set of all
representations of terminals from Ti in M ′1. Now we can measure the distances
between representations of letters and between reservations in M ′1. For this
we define a function to measure the distance between the endpoints of two
nonempty intervals [rj , r

′
j] with rj , r′j ∈ R, rj ≤ r′j and j ∈ {1, 2} as

dis([r1, r
′
1], [r2, r

′
2]) = min(|r1 − r2|, |r′1 − r2|, |r1 − r′2|, |r′1 − r′2|) .

For the rest of the proof, for the formulas stepAllri, subseqr
i, letterNextToLetterri,

startri and allResInLetterr with i ∈ {D,U} we refer to Page 124. In the following
we use ∆1 to measure the distance of a representation related with stepAllri
or letterNextToLetterri, ∆2 for the distance of representations related through
subseqr

i, ∆3 for distances within a representation and ∆4 for the distance from
the part of the model where we encode our derivations to the outer part that
we do not restrict. We define

∆1 = min
i∈{D,U}

(min
(σ1,(L1,X1,E)),(σ2,(L2,X2,E))∈Si

(dis(X1, X2))) ,

∆2 =
(τD,(LD,XD,E)) 6=(τU,(LU,XU,E))

min
(τD,(LD,XD,E))∈SD,(τU,(LU,XU,E))∈SU

(dis(XD, XU)) ,

∆3 = min
(σ,V)∈S

(
C 6=C′
min

C,C′∈IM
′
1

V

(dis(se(C,TS 1,Ω1), se(C ′,TS 1,Ω1))) ,

∆4 = min
(σ1,(L1,X1,E))∈S

(dis(X1, X
′
1)) .

Each of these values is greater 0. For ∆1 this holds because M ′1 satisfies
stepAllri and letterNextToLetterri. For ∆2 this follows from subseqr

i. For ∆3 from
the formula allResInLetterr and for ∆4 from startri and letterNextToLetterri. We
choose

δ =
min(∆1,∆2,∆3,∆4)

3

and show that for an arbitrary MLSL model M2 with dm(M1,M2) ≤ δ we
have M2 ∈ sat(Frobust(GD, GU)). The reasoning for our choice of δ is that
we want to be able to perturb all representations of letters by δ and still
have a distance of δ in between them. Let M2 = (TS 2,Ω2, V2, ν2) with

138

4.2 Proving Undecidability of Robust Satisfiability of MLSL

TS 2 = (res2, clm2, pos2, spd2, acc2) and V2 = (L2, X2, E2) be arbitrary such
that dm(M1,M2) ≤ δ. Then we choose X ′2 = [X ′1 + δ,X ′1 − δ] and argue that
with the subview V ′2 = (L2, X

′
2, E2) of V2 the model M ′2 = (TS 2,Ω2, V

′
2 , ν2)

satisfies F1. The reasoning for our choice of X ′2 is that any car that had a
reservation in V ′1 still has its reservation in V ′2 after the perturbation and with
space to the borders of X ′2. Similarly, any car with a reservation not in V ′1 still
has its reservation not in V ′2 after perturbing the model.
Consider an arbitrary robust MLSL representation (σ, V) ∈ S in M ′1 with

V = (L,X,E) such that reprr(M ′1, σ, V) from Page 127 holds. Then the view
V ′ = (L, [X − 2δ,X + 2δ], E) satisfies letterrfree(σ, c) in M ′ = (TS 2,Ω2, V

′, ν′2)
for some c mapped to some car C. Note that this is the same car in M ′1 and
M ′. This holds because in M ′1 we need to perturb reservations of cars by at
least ∆3 to change the topological structure of reservations. Furthermore, the
closest other representation of a letter is at least ∆1 away.
We show that M ′2 satisfies allResInLetterr. Consider for M ′2 some arbitrary

view Ṽ2 = (L̃2, X̃2, E) that is filled by the reservation of some car C, i.e.
which satisfies re(c) and c is mapped to C. Now, consider in M ′1 some view
Ṽ1 = (L̃1, X̃1, E) that is filled by the reservation of that same C. Note that Ṽ1

and Ṽ2 both contain the same single lane. The extensions of these views may or
may not be overlapping, but the safety envelope of C in M ′1 and M ′2 differs by
at most δ. As M ′1 satisfies allResInLetterr, there is some view Ṽ ′1 = (L̃1, X̃

′
1, E)

with X̃1 ⊂ X̃ ′1 and a letter σ ∈ TD ∪ TU ∪ ND ∪ NU such that reprr(M ′1, σ, Ṽ
′
1)

holds. This means that we can extend the extension of Ṽ ′1 in both directions
such that M ′1 restricted to this extended view satisfies the formula letterrfree(σ, c

′)
for some c′. As argued in the previous paragraph, in the view Ṽ ′′2 , where the
extension of Ṽ ′1 is extended by 2δ in both directions, the formula letterrfree(σ, c

′)
is satisfied by M ′2 restricted to Ṽ ′′2 . Note that Ṽ2 is a subview of Ṽ ′′2 . Thus, M ′2
satisfies allResInLetterr.

With a similar argumentation we conclude that the other formulas in F1 are
satisfied. Finally, as M ′2 satisfies F1 it follows that M2 satisfies Frobust(GD, GU).

Now we can reduce the intersection problem for context-free grammars to the
robust lane-unbounded satisfiability problem of MLSL.

Lemma 4.2.9. For two context-free grammars GD, GU in CNF−ε the MLSL
formula Frobust(GD, GU) is robustly lane-unboundedly satisfiable iff L(GD) ∩
L(GU) 6= ∅.

139

4 Spatial Properties with Imprecise Information

Proof. We start with the “only if”-direction. Assume Frobust(GD, GU) is robustly
lane-unboundedly satisfiable, which implies that the formula also is (nonrobustly)
lane-unboundedly satisfiable. From Lemma 4.2.6 we know that F (GD, GU) is
lane-unboundedly satisfiable. Then we can conclude from Lemma 3.1.7 that
L(GD) ∩ L(GU) 6= ∅.
We continue with the “if”-direction. Assume L(GD) ∩ L(GU) 6= ∅. Then

Lemma 3.1.6 implies that F (GD, GU) is lane-unboundedly satisfiable. Further,
Lemma 4.2.5 implies that Frobust(GD, GU) is lane-unboundedly satisfiable. Let
M be such a satisfying model. As by Lemma 4.2.8 the set sat(Frobust(GD, GU))
is open for the metric dm, we conclude there is δ ∈ R>0 such that

∀M ′. (dm(M,M ′) ≤ δ implies M ′ ∈ sat(Frobust(GD, GU))) .

This implies M |=δ Frobust(GD, GU), which in turn implies that Frobust(GD, GU)
is robustly lane-unboundedly satisfiable.

We get the following theorem.

Theorem 4.2.10. The robust lane-unbounded satisfiability problem of MLSL
is undecidable.

As we do not restrict the size of reservations in any way, the robust lane-
unbounded satisfiability problem of MLSL remains undecidable, even if we
impose an upper or a lower bound on the size of reservations or the view.

4.3 Decidability of Robust Model Problem for
MLSLS

In this section we extend the approach to check the precise model problem
from the previous chapter to solve the robust model problem for MLSLS. So
far, for a FOLRA data tuple p that contains the FOLRA variables, an MLSLS
model M and an MLSLS formula φ we introduced constraints to ensure that
p represents M . Then we check if the FOLRA representation of M stored in
p satisfies the FOLRA representation of φ by checking if the FOLRA formula
trlraf (p, φ) is satisfied. Here, we introduce a second data tuple p′, let p represent
M and require that p′ is similar to p. Then we check if trlraf (p′, φ) is satisfied.

We extend our definition of a metric on MLSL models to a metric on models
with a scope. The difference to the metric on MLSL models is that here we

140

4.3 Decidability of Robust Model Problem for MLSLS

allow models without a view, and that the domain of the supremum is the car
domain of the models.

Definition 4.3.1 (Metric on MLSLS Models). Given two simple MLSLS models
Mi with Mi = (CS i,TS i,Ωi, νi), TS i = (resi, clmi, posi, spdi, acci) and i ∈
{1, 2} we define

d′m(M1,M2) =
∞ if (res1, clm1, ν1,CS 1)

6= (res2, clm2, ν2,CS 2)

max
(
supC∈carsM1

(|pos1(C)− pos2(C)|,
|se(C,TS 1,Ω1)− se(C,TS 2,Ω2)|)

)
otherwise .

We extend this to proper models. For i ∈ {1, 2} let Mi = (CS i,TS i,Ωi, Vi, νi)
with TS i as above, Vi = (Li, [ri, r

′
i], Ei) and let M ′i be the simple version of Mi

(cf. Definition 3.2.7 on Page 55 for simple versions of models). We define

dm(M1,M2) =

∞ if (L1, E1)

6= (L2, E2)

max(d′m(M ′1,M
′
2), |r1 − r2|, |r′1 − r′2|) otherwise .

Further, for a simple and a proper MLSLS model the distance is ∞. 4

For the definition above we point out that if res1 = res2, then the car domain
of M1 and M2 is equal.
We relate our operations on MLSLS models with our metric on MLSLS

models.

Lemma 4.3.2. Given two possibly simple MLSLS models M1 and M2 and a
set of car identifiers CS ⊆ I we have

dm(M1,M2) = max(dm(M1 CS ,M2 CS), dm(M1 CS ,M2 CS)) .

Proof. The proof follows from the definition. First we need a case distinction
on whether dm(M1,M2) is infinite. If it is infinite it is clear that the right hand
side also is infinite.

We continue with the case that the distance is finite. Starting from the right
hand side, after unfolding the definitions we have two suprema with the domains

141

4 Spatial Properties with Imprecise Information

carsM1 ∩ CS and carsM1 \ CS . Note that the car domains of M1 and M2 are
equal because the distance is finite. Taking the largest of these two suprema
then is equivalent to taking the supremum of the combined domain carsM1,
which is equivalent to dm(M1,M2).

We define a formula to represent the shaking of data in a MLSLS model. The
formula takes two possibly simple FOLRA data tuples, the desired perturbation
and a relation between the car identifier variables of the two data tuples. We
express this relation by requiring that there is an MLSLS model that is sane
with both data tuples and car identifier variable assignments. We start with
models and data tuples representing a single car. Similar to the case with precise
information, we use E to denote an Elementary (or base) version of a function
that we extend later.

Definition 4.3.3 (Shaking Data Variables). For an MLSLS model M with
|M | = 1, two proper FOLRA data tuples pi = (DS i, li, l

′
i, βi, β

′
i, fi,Di,Si, DEi)

with i ∈ {1, 2}, a car identifier variable assignment gi such that (gi, pi,M) is
sane and a perturbation δ ∈ R≥0 we define

simm,E((p1, g1), (p2, g2), δ) ≡
∃x, x′. x, x′ ∈ [−δ, δ] ∧ β1 + x = β2 ∧ β′1 + x′ = β′2

∧ ∃v′p, v′Ω. v′p ∈ [−δ, δ] ∧ v′p + v′Ω ∈ [−δ, δ]

∧
∧

D1∈D1,D2∈D2

({D1.vr1, D1.vr2} = {D2.vr1, D2.vr2}
∧ D1.vp + v′p = D2.vp ∧D1.vc = D2.vc
∧ D1.vp +D1.vΩ + v′p + v′Ω = D2.vp +D2.vΩ

)

where Di.v is an abbreviation for Si(Di)(v). For a simple MLSLS model and
simple data tuples the constraints in the first line are left out. 4
The idea behind using v′p, v′Ω is that if there are multiple D representing

the same car we have to ensure that each car is perturbed by the same value.
Otherwise, the resulting assignment would not represent an MLSLS model.
Further, note that we use M only to ensure that the FOLRA tuples are sane
with the same MLSLS model. This ensures that parts we do not constrain with
simm,E agree, such as the arithmetic representation of the scope DS i or the lanes
of the view and so on.
We extend the previous definition to multiple cars. This definition looks

similar to previous definitions in that we define it recursively over car identifiers.

142

4.3 Decidability of Robust Model Problem for MLSLS

Definition 4.3.4. For a finite possibly simple MLSLS model M , i ∈ {1, 2}, a
possibly simple FOLRA data tuple pi, a car identifier variable assignments gi
such that (pi, gi,M) is sane and a perturbation δ ∈ R≥0 we define

simm((p1, g1), (p2, g2), δ) ≡
simm,E((p1, g1) {C}, (p2, g2) {C}, δ)

∧ simm((p1, g1) {C}, (p2, g2) {C}, δ)
where C ∈ ran g1

if ran g1 6= ∅

true otherwise

4
We connect our MLSLS notion of similarity and our FOLRA approach to

model this similarity with the following lemma. We point out that the part
about “sanity of all combinations” in the following lemma is necessary to be
able to use the similarity-formula from the previous definition.

Lemma 4.3.5. For i, j ∈ {1, 2}, a finite possibly simple MLSLS model Mj, a
possibly simple FOLRA data tuple pi, a car identifier variable assignment gi
and δ ∈ R≥0 such that all combinations of (gi, pi,Mj) are sane and p1 and p2

contain no common FOLRA variables we have

trlram (p1, g1,M1) ∧ trlram (p2, g2,M2) ∧ simm((p1, g1), (p2, g2), δ) is satisfiable
iff

dm(M1,M2) ≤ δ .

Proof. As all combinations of (pi, gi,Mj) are sane we know that M1 and M2

have the same car domain. For the same reason we know that g1 and g2 have
the same range. Hence, we can restrict the models to a single arbitrary common
car, make a case distinction on whether the resulting model is simple or proper
and then prove that the lemma holds for this car.

For a proper FOLRA data tuple p = (DS , l, l′, β, β′, f,D,S, DE) we use the
formula

saner(p) ≡ β ≤ β′ ∧
∧
D∈D
S(D)(vΩ) > 0

to express that the terms representing the extension of a view should form a
nonempty interval and that the variable representing the value of the sensor

143

4 Spatial Properties with Imprecise Information

function should be greater 0 for every car. We need this formula to ensure that
with simm we only consider assignments that correspond to MLSLS models.
We point out that saner alone is not sufficient to ensure that an assignment
represents an MLSLS model.

We introduce some notational sugar. We denote the universal quantification
over all data variables in S with ∀S. Now, we can state that our FOLRA
encoding of the robust model problem is correct.

Lemma 4.3.6. Let M be a finite proper MLSLS model, p, p′ two FOLRA data
tuples with p′ = (DS ′, l′1, l

′
2, x
′
1, x
′
2, f
′,D′,S ′, D′E) and g, g′ two car identifier

variable assignments such that (p, g,M) and (p′, g′,M) are sane. Then, for all
MLSLS formulas φ and all values δ ∈ R>0 we have

ψφ,δ is valid iff M |=δ φ ,

where the FOLRA formula ψφ,δ is defined as

ψφ,δ ≡ ∀S ′, x′1, x′2. (trlram (p, g,M) ∧ simm((p, g), (p′, g′), δ)

∧ saner(p′)) =⇒ trlraf (p′, φ) .

Proof. We start with the “if”-direction and proceed by contraposition. Assume
the formula on the left side of the equivalence is not valid, i.e. there is an assign-
ment h with h |= trlram (p, g,M) ∧ simm((p, g), (p′, g′), δ) ∧ saner(p′) ∧ ¬trlraf (p′, φ).
From the definition of the formulas simm and saner we see that the assignment
h and the data tuple p′ together represent some MLSLS model M ′. We can
create this model by first restricting h to the variables in p′ and converting the
restricted assignment and p′ to a FOMLA tuple. This is possible because the
formulas simm and trlram ensure that values representing lanes in h and p′ are
integers. Next, we transform the resulting FOMLA tuple with mla2m to an
MLSLS model. For the resulting MLSLS modelM ′ we know h |= trlram (p′, g′,M ′).
Thus,

h |= trlram (p, g,M) ∧ simm((p, g), (p′, g′), δ) ∧ trlram (p′, g′,M ′)

∧ saner(p′) ∧ ¬trlraf (p′, φ) . (4.4)

From Lemma 4.3.5 we conclude dm(M,M ′) ≤ δ. Next, from Equation (4.4)
and Lemma 3.4.7 we conclude M ′ 6|= φ. Finally, dm(M,M ′) ≤ δ and M ′ 6|= φ
together imply M 6|=δ φ.

144

4.4 Related Work

We continue with the “only if”-direction and again proceed by contraposition.
Assume M 6|=δ φ. Then there is M ′ with dm(M,M ′) ≤ δ and M ′ 6|= φ, which
implies M ′ |= ¬φ. As (p, g,M) and (p′, g′,M) are sane and as the distance of
M and M ′ is finite we know that also (p, g,M ′) and (p′, g′,M ′) are sane. Now
we can use Lemma 4.3.5. Thus, from dm(M,M ′) ≤ δ we know that

trlram (p, g,M) ∧ trlram (p′, g′,M ′) ∧ simm((p, g), (p′, g′), δ)

is satisfiable and let h be a satisfying assignment. As h satisfies trlram (p′, g′,M ′)
it is easy to see that it also satisfies saner(p′). From M ′ |= ¬φ and Lemma 3.4.7
we know that the formula trlram (p′, g′,M ′) =⇒ trlraf (p′,¬φ) is valid. Hence, h
also satisfies trlraf (p′,¬φ). We can pull the negation out and conclude that

trlram (p, g,M) ∧ simm((p, g), (p′, g′), δ) ∧ saner(p′) ∧ ¬trlraf (p′, φ)

is satisfiable. We see that after binding the variables in S ′, x′1 and x′2 with
existential quantifiers, the formula above is equal to the negation of ψφ,δ from
this lemma. We see that the negation of ψφ,δ is satisfiable and finally conclude
that ψφ,δ is not valid.

Now, using the previous lemma we conclude decidability of the robust model
problem for MLSLS. While we did not investigate the complexity of our proce-
dure, we refer to Lemma 2.4.6 for the complexity of FOLRA .

Theorem 4.3.7. For δ ∈ R>0 it is decidable whether a model satisfies an
MLSLS formula δ-robustly.

4.4 Related Work
Robustness of spatial logics received little attention so far because most spatial
logics consider qualitative properties. However, as MLSL is inspired by temporal
logics, robustness of timed systems is related.
In [GHJ97] the authors define and study robust timed automata. These

automata accept tubes of trajectories. Such a tube is a set of similar trajectories,
where similarity is defined with a metric on trajectories The authors show that
these robust timed automata behave mostly like classical timed automata. That
is, checking language emptiness is reducible to checking emptiness of classical
timed automata. Furthermore, robust timed automata are not determinisable,
like classical timed automata. The approach from [GHJ97] has been generalised

145

4 Spatial Properties with Imprecise Information

to rectangular automata (which are a restricted form of hybrid automata). In
[HR00] the authors show that also for this weakened form of robust rectangular
automata, the reachability problem remains undecidable.

In [Frä99] the author considers hybrid automata, which are subject to noise.
That is, for a given hybrid automaton A the actual behaviour (after adding
noise) is given by a perturbed hybrid automaton A′, where all state invariants,
transition guards and flow constraints are perturbed. The author shows that
for this model of robust hybrid automata the reachability problem is decidable,
while it is undecidable for classical hybrid automata. The difference to [HR00]
is that in [Frä99] the behaviour of the system is perturbed, while in [HR00] the
set of trajectories of the original automaton are perturbed.

In [Pur00] the author considers reachability for timed automata with skewed
(or drifting) clocks. This means that clocks may rise with different speed and
that errors can accumulate. This work is similar to [Frä99] in that the behaviour
of timed automata is affected by the perturbation. The author shows that the
reachability problem remains decidable for timed automata with drifting clocks.
In [FH05] the authors define a robust interpretation for Duration Calculus

(DC). To this end, the authors develop a real-valued semantics. A truth value
greater zero means that the formula is satisfied and a truth value smaller than
zero means that the formula is not satisfied. As an example we might have a
formula φ that says

the state expression P holds for a duration of least four time units .

If in a trajectory the state expression P holds for a duration of six time units,
then evaluating φ on this trajectory yields a truth value of 6− 4 = 2. We can
create a robust version of the original formula by “shaking the constants of the
formula”. That is, a robust version of the formula above might require that P
holds for at least five time units. The resulting truth value would be 6− 5 = 1.
At first we tried to find such a real-valued semantics for MLSL. However, we did
not manage to find such an interpretation because the semantics of the atoms
of MLSL is complex. That is, for the formula re(c) the current view should be
contained in the safety envelope of c and the view should be nonempty. We
did not find a way to measure strength of (dis)satisfaction for these atoms, and
thus did not continue in this direction.

In [Koy90] Metric Temporal Logic (MTL) has been introduced. This logic has
been shown to be undecidable [AFH96]. The proof heavily relies on formulas
of the form � (P =⇒ ♦[1,1]Q), which specifies that whenever P holds, then

146

4.4 Related Work

exactly one time unit later Q will hold. These formulas cannot be checked by
timed automata because every occurrence of P would require its own clock.
As the number of these occurrences within a bounded interval is unbounded,
the resulting automaton would need infinitely many clocks. The authors also
show that by forbidding point intervals the resulting fragment, called Metric
Interval Temporal Logic (MITL), becomes decidable. They follow a similar
approach as the tableau based method for LTL, where eventuality formulas
introduce obligations to satisfy subformulas. Consider the MITL formula
� (P =⇒ ♦[0,1]Q), which allows Q to occur in a proper interval and the run
〈(0.1, P), (0.2, P), . . . , (1, Q)〉, where many P occur before Q occurs. Then only
the first obligation for the first P needs to be tracked. The obligations of the
later P are satisfied if the first is satisfied. Building on this the authors reduce
the satisfiability problem of MITL to the emptiness problem of timed automata.

In [FP09] the authors define for a given signal, continuous in time and space,
and an MTL formula the spatial robustness degree. That is, for a signal s
and a formula φ they define the maximal spatial perturbation δ, such that
perturbing s by δ does not affect satisfaction of φ. Additionally, they develop a
real-valued semantics for MTL that allows to under-approximate the robustness
degree. That means, if the truth value of s on φ is 1, then we can perturb s
by 1 and be sure that the resulting signal still satisfies φ. We might be able
to perturb by more than 1 without affecting satisfaction. Hence, this is an
under-approximation.

147

5 Monitoring of
Spatio-Temporal Properties
with Precise Information

We extend our approach to check whether a given static traffic configuration
satisfies a given MLSLS formula to also consider time. That is, we give a
procedure to check if an MLSLS transition sequence satisfies a spatio-temporal
property. We view such a sequence as a behaviour. For other temporal logics,
such as metric temporal logic (MTL), checking whether a single behaviour
satisfies as temporal property is called monitoring.1

In monitoring for MTL the original signal to monitor is sampled to produce
a time-stamped sequence of measurements. The values at times in between
measurements are linearly interpolated to obtain a usable (and finitely repre-
sentable) approximation of the original signal. In original MLSL the evolution
of traffic is defined with a labelled transition system [HLO+11]. In our approach
to monitoring we attempt to stay close to the original definition of evolution
of traffic in [HLO+11]. Hence, we do not take a sequence of measurements as
input, but rather a sequence of actions and then (mostly) follow the definition
of the original labelled transition system to derive the behaviour.

In our procedure we use the first-order theory of real closed fields (FORCF),
which is decidable [Tar51] (there called elementary algebra). We point out that
FORCF is more powerful that FOLRA, which we used in Chapters 3 and 4
to solve the static model problem. Furthermore, the expressible properties of
FORCF and FOMLA (used in Chapter 3 to solve the satisfiability problem) are
incomparable, i.e. in both directions there are properties that can be expressed
in one logic but not in the other.

The ideas of this chapter are taken from [Ody17]. In this thesis we additionally
give proofs of correctness and we substantiate the underlying theory.

1If we perform this check for a potentially infinite set of behaviours, given for example as a
transition system, it is called model checking.

149

5 Spatio-Temporal Properties with Precise Information

In Section 5.1 we introduce timed words as the basis of MLSLS transition
sequences. In Section 5.2 we define the spatio-temporal properties we consider,
i.e. we define what it means in our context for a spatial property to hold globally
in the temporal sense. Additionally, we give an algorithm to check whether
a transition sequence satisfies such a property. In Section 5.3 we prove our
algorithm to be correct and in Section 5.4 we discuss related work.

5.1 Timed Words and MLSLS
In this section we define timed words as basis for MLSLS transition sequences.
For this, we first define the semantics of MLSLS transitions, then we define
some operations on timed words and then we define timed words as the basis of
MLSLS transition sequences.
In Chapter 3 (cf. Page 54) we introduced the assumption that for each car

the value of the sensor function Ω is independent of the other cars. In this
chapter we use FORCF to reason about MLSLS transition sequences. To this
end, we introduce the assumption that the change of position, speed and the
sensor function can be represented in FORCF. Simplifying, we assume that
the position, the speed and the sensor function behave according to classical
mechanics. For the change of position and speed this already is encoded in the
transitions of classical MLSL. For the current speed v and deceleration a the
braking distance d is given as

d =
v2

2a
.

For our sensor function we thus get the following assumption.

Assumption 5.1.1. Let M = (CS ,TS ′,Ω, V, ν) be an arbitrary MLSLS
model. Then we assume that the sensor function Ω is computed accord-
ing to classical mechanics. That is, for all C ∈ carsM , all TS ∈ TS with
TS = (res, clm, pos, spd, acc), the maximal deceleration decmax(C) and the car
length length(C) we have

Ω(C,TS) =
spd(C) ∗ spd(C)

2 ∗ decmax(C)
+ length(C) ,

which is the braking distance plus the physical size of the car. 4
Note that for position and speed this assumption already is made in the

definition of MLSL transitions.

150

5.1 Timed Words and MLSLS

So far we considered only the static aspects of MLSLS. We now define the
dynamics of MLSLS, i.e. how actions of the cars may change the model. In
Chapter 2 on Page 23 we introduced MLSL transitions based on [HLO+11;
LH15; Lin15]. We defined Act to be the set of all discrete actions cars may
execute. Here, we partition this set by cars performing the actions. We
collect the actions a car may perform in a set. For a car C ∈ I let ActC =
{c(C, n), r(C),wd c(C),wd r(C, n), a(C, a) | n ∈ L, a ∈ R} be the actions of C.
Then for a set of car identifiers CS ⊆ I we define ActCS =

⋃
C∈CS ActC .

We define the semantics of transitions for MLSLS in terms of the classical
transitions for MLSL. For this we first extend the classical transitions to also
allow simple MLSL models. We call an MLSL model simple if it does not
have a view and the valuation function does not map the special ego constant
(and otherwise proper). That means, M = (TS ,Ω, ν) with ego 6∈ dom ν is
simple. Then for a simple MLSL model we only update the traffic snapshot (cf.
Definition 2.3.4). Let be the resulting transition relation. Note that we use a
different arrow than in Definition 2.3.4 because we use → in this chapter for
MLSLS transitions (cf. Definition 5.1.2).
For MLSLS we define that the transitions are labelled by sets of actions, or

delays. Thus, if two actions occur at the same time the transition is labelled by
a set containing these two actions. This has the advantage that our semantics
easily can model truly concurrent behaviour, rather than interleaving behaviour.
For a discussion of true concurrency and interleaving semantics within MLSL
see [BHL+17]. We use the standard semantics for transitions with single actions
and lift this to sets of actions. To avoid problems with dependent actions, that
is, sets of actions where the model reached depends on the evaluation order
we forbid such sets of actions. That is, we disallow sets of actions such as
{wd c(C, n), r(C)}. While we could allow for example {wd c(C, n), a(C, a)}, as
the model reached is independent of the order in which the actions are resolved,
we take the easy route and simply disallow sets of actions containing multiple
actions from a single car. The semantics of transitions is defined using the
original semantics of MLSL transitions.

Definition 5.1.2 (MLSLS Transitions). For a (possibly simple) MLSLS model
M let f(M) be the classical MLSL model that is equal to M , except that
f(M) does not have a scope. That means, for M = (CS ,TS ,Ω, V, ν) (resp.
M = (CS ,TS ,Ω, ν) if M is simple) we define f(M) = (TS ,Ω, V, ν) (resp.
f(M) = (TS ,Ω, ν) if M is simple). Let M1,M2,M3 be three MLSLS models
such that all are either simple or proper and have equal scopes. For a finite set

151

5 Spatio-Temporal Properties with Precise Information

of actions A ⊆ Act such that for all C ∈ I we have |A ∩ ActC | ≤ 1 and a delay
t ∈ T we define

M1
A−−→M2 iff

M1 = M2 if A = ∅ ,
f(M1)

a
f(M3) and M3

A\{a}−−−−→M2

for some M3 with a ∈ A otherwise ,

M1
t−−→M2 iff f(M1)

t
f(M2) ,

where is the transition relation for original MLSL defined above (cf. Page 151).
4

We proceed to define operations on timed words and point out that here
the operations may change the elements occurring in a timed word. For timed
words we define a composition operator. The idea behind the definition is that
for two timed words we compare the time stamps of the last sets of actions in
both timed words. Then we either append the actions with the later time stamp
or join the sets if their time stamps are equal. Then we continue recursively.
We point out that while we do not consider the empty timed word in general,
in this definition we consider the empty timed word to ease the exposition. We
indicate this by the data type (P(Σ)× T)∗.

Definition 5.1.3. For i ∈ {1, 2} let %′i ∈ (P(Σ)× T)+ be a timed word and let
%′i = %i :: (Ai, ti), which means %i ∈ (P(Σ)×T)∗ and (Ai, ti) ∈ (P(Σ)×T). We
define the parallel composition of %′1 and %′2 (denoted %′2 ‖ %′1) as

%1 ‖ 〈〉 = 〈〉 ‖ %1 = %1 ,

(%1 :: (A1, t1)) ‖ (%2 :: (A2, t2)) =

(%1 ‖ (%2 :: (A2, t2))) :: (A1, t1) if t1 > t2 ,

((%1 :: (A1, t1)) ‖ %2) :: (A2, t2) if t1 < t2 ,

(%1 ‖ %2) :: (A1 ∪A2, t1) if t1 = t2 .

4
Note that the definition above can easily be reversed to instead prepend at

the start, rather than append at the end. As for static MLSLS models we define
(anti-) restriction operators for timed words. Note that these operators leave
the span of the timed word unchanged. In Example 5.1.10 on Page 155 we give
an example of the parallel composition defined above, and the (anti-)restriction
defined below.

152

5.1 Timed Words and MLSLS

Definition 5.1.4. Let % ∈ (P(Σ)× T)+ with last % = (A, t). For a set Σ′ ⊆ Σ
we define the restriction to Σ′ (denoted by % � Σ′) as

〈〉 � Σ′ = 〈〉 ,
% � Σ′ = ((front %) � Σ′) :: (A ∩ Σ′, t) .

We define the anti-restriction of % to Σ′ (denoted % \ Σ′) as

% \ Σ′ = % � (Σ \ Σ′) . 4

To restrict a timed word to the action alphabet of a set of cars CS ⊆ I, we
use the abbreviations % � CS = % � ActCS and % \ CS = % � ActCS .
Note that for our operations like restriction to work intuitively it seems

important to work with absolute time stamps. This is because with absolute
time stamps we can leave the time stamps as they are in our operations.

We state some basic properties of concatenation of timed words and the newly
defined operators. The following equality directly follows fro the definitions.
For all timed words % and all sets Σ we have

% = (% � Σ) ‖ (% \ Σ) .

The following observation also follows from the definition of ‖.

Lemma 5.1.5 (Algebraic Properties of Parallel Composition of Timed Words).
The operation ‖ is commutative, associative and idempotent.

That taking the parallel composition of two timed words is commutative and
associative clearly is desirable. As for idempotence, this is not clearly desirable.
However, in the setting of MLSLS this is not a problem because all MLSLS
actions are idempotent. Consider some arbitrary model M , a car C ∈ I and the
transition sequence

M
{r(C)}−−−−→M ′

{r(C)}−−−−→M ′′ .

Then M ′ = M ′′ because a possibly existing claim is turned into a reservation,
and if C does not have a claim, then the action is without effect. This works
similarly for the other actions. Note that this does not hold for delays.
For two timed words %i = (wi, τi) with i ∈ {1, 2} we say that %1 is earlier

than %2 if last τ1 ≤ τ2(1). Similarly, we say that %2 is later than %1 if %1 is earlier
than %2.

153

5 Spatio-Temporal Properties with Precise Information

Let % = (w, τ) be a timed word of length n. We allow appending sets of
actions occurring at the same time as the last set of actions in %. Then we
consider % · 〈(A, tail τ〉 to be equal to ((w[..n− 1]) :: (w(n)∪A), τ). That is, if a
timed word has two sets of actions with equal time stamps, we silently merge
those sets of actions.
There are more basic properties. For timed words where concatenation is

defined, it commutes with parallel composition.

Lemma 5.1.6. For all timed words %i = (wi, τi) with i ∈ {1, 2, 3, 4} such that
%1, %2 are earlier than %3, %4 we have

%1 ‖ (%2 · %3) = (%1 ‖ %2) · %3 = (%1 · %3) ‖ %2 ,

%1 ‖ %3 = %1 · %3 ,

(%1 ‖ %2) · (%3 ‖ %4) = (%1 · %3) ‖ (%2 · %4) .

Proof. The first property can be shown via induction on %3 and the second
follows from the definition the parallel composition of timed words. The last
property follows from the first two.

The properties of the previous lemma look similar to properties between layer
composition, which introduces causal dependency, and parallel composition
[Jan94, p. 46]. There, these operators are part of a language to define processes.
We consider two timed words %, %′ to be equal up to interior empty sets of

actions (denoted by % ≈ %′) iff they have an equal time span and both have the
same actions at the same point in time. That means, % ≈ %′ iff span % = span %′

and for all (A, t) in % with a ∈ A there is (A′, t) in %′ such that a ∈ A′ and
analogously for all (A, t) in %′. Now, the operations ‖, \, � and · respect ≈.
Lemma 5.1.7. Let %i, %′i with i ∈ {1, 2} be four timed words with %i ≈ %′i and
%1 before %2 and %′1 before %′2. Further, let % be an arbitrary timed word and let
Σ be an arbitrary set. Then we have

% ‖ %1 ≈ % ‖ %′1
%1 · %2 ≈ %′1 · %′2
%1 \ Σ ≈ %′1 \ Σ

%1 � Σ ≈ %′1 � Σ

Proof. The proof follows quickly by first assuming that the property does not
hold. Then the contradiction is immediate.

154

5.1 Timed Words and MLSLS

We define the time-bounded prefix of a timed word.

Definition 5.1.8 (Time-Bounded Prefix of Timed Words). For a timed word
% = (w, τ) and t ∈ T let i ∈ {0, . . . n} be the largest index such that τ(i) ≤ t
where τ(0) = 0. We define the time-bounded prefix pre(%, t) as

pre(%, t) = 〈(w(1), τ(1)), . . . , (w(i), τ(i)), (∅,min(t, span %))〉 ,

where span % is the right (larger) border of the interval span %. 4

We refer to Example 5.1.10 on Page 155 for an example. We proceed to show
some basic properties of the timed prefix operator.

Lemma 5.1.9. Let %1, %2 be two timed words, let Σ be an arbitrary set and
t ∈ T. Further, let % be a timed word such that % ≈ %1. Then

pre(%1, t) ‖ pre(%2, t) = pre(%1 ‖ %2, t)

pre(%1, t) � Σ = pre(%1 � Σ, t)

pre(%1, t) \ Σ = pre(%1 \ Σ, t)

pre(%1, t) ≈ pre(%′1, t)

Proof. For i ∈ {1, 2} let %′i be the suffix of %i that happens after time t and
note that %′i might be the empty sequence 〈〉. Then pre(%i, t) · %′i = %i. While 〈〉
is not a timed word, appending 〈〉 to a timed word leaves it unchanged.
For the first property we have

pre(%1, t) ‖ pre(%2, t) = pre(pre(%1, t) ‖ pre(%2, t), t)

= pre((pre(%1, t) · %′1) ‖ (pre(%2, t) · %′2), t)

= pre(%1 ‖ %2, t) .

In the first step we add the prefix operator. Taking the prefix until time t
is equal to taking that prefix multiple times. Then we add the suffix, which
the outermost prefix operator cuts away again. Hence, adding the suffix does
not change anything. At last, we use the equality mentioned initially. For the
second and third property a similar approach works.
The last property follows by assuming an counter example and deriving a

contradiction.

155

5 Spatio-Temporal Properties with Precise Information

Example 5.1.10. Consider the timed words %1, %2, %3 and their parallel com-
positions:

%1 = 〈({b}, 6.1)〉 , %1 ‖ %3 = 〈({c}, 1), ({c}, 5.1), ({b}, 6.1)〉 ,
%2 = 〈({a}, 1), ({b}, 6.1)〉 , %1 ‖ %2 = 〈({a}, 1), ({b}, 6.1)〉 ,
%3 = 〈({c}, 1), ({c}, 5.1)〉 , %2 ‖ %3 = 〈({a, c}, 1), ({c}, 5.1), ({b}, 6.1)〉 .

As an example for the properties in Lemma 5.1.7 we see that %3 ·%1 = %3 ‖%1, i.e.
because the event in %1 happens after all events in %3 their parallel composition
is equal to appending the later to the earlier. We define the two timed words

% = (%2 ‖ %3) � {a, b} = 〈({a}, 1), (∅, 5.1), ({b}, 6.1)〉 ,
%′ = 〈({a}, 1), ({b}, 6.1)〉

These timed words are equal up to interior empty sets of actions, i.e. we have
% ≈ %′. If we now consider the timed words % \ {b} = 〈({a}, 1), (∅, 5.1), (∅, 6.1)〉
and %′ \ {b} = 〈({a}, 1), (∅, 6.1)〉 we see that they also are equal up to interior
empty sets of actions. Note that % \ {b} and 〈({a}, 1)〉 are not equal up to
interior empty sets of actions because the span of both timed words is different.
Next, we consider the time-bounded prefix. In the definition we see that an

empty set of actions is inserted either at the time-bound of the prefix operation,
or at the end of the time span. As an example we have

pre(%1, 7) = pre(%1, 6.1) = 〈({b}, 6.1), (∅, 6.1)〉 ,
pre(%1, 6) = 〈(∅, 6)〉 .

Further, it makes no difference, whether we first take the time-bounded prefix
and then the parallel composition, or the other way around. Thus,

pre(%2, 6) = 〈({a}, 1), (∅, 6)〉 ,
pre(%3, 6) = 〈({c}, 1), ({c}, 5.1), (∅, 6)〉 ,

pre(%2 ‖ %3, 6) = pre(%2, 6) ‖ pre(%3, 6) = 〈({a, c}, 1), ({c}, 5.1), (∅, 6)〉 . 4
Now we define timed words as the basis of MLSLS transition sequences. We

define that the application of a timed word to a possibly simple MLSLS model
gives an MLSLS transition sequence. The idea is that we first let time advance
to the i-th time stamp and then perform the i-th set of actions. This definition
is similar to how we get run for a timed automaton from an initial configuration
and a timed word. Note that we require that the timed word only contains
actions of cars that are represented in the MLSLS model.

156

5.1 Timed Words and MLSLS

Definition 5.1.11 (From Timed Words to Transition Sequences). For a possibly
simple model M0 and a timed word % = (w, τ) ∈ (P(ActcarsM0)×T)+ we define
the transition sequence of % from M0 as

I(M0, %) = M0
τ(1)−−→M1

w(1)−−−→M2
τ(2)−τ(1)−−−−−−→ . . .

τ(n−1)−τ(n−2)−−−−−−−−−−→M2n−3

w(n−1)−−−−−→ TS 2n−2
τ(n)−τ(n−1)−−−−−−−−→M2n−1

w(n)−−−→M2n .

We use the letter $ to refer to transition sequences and we refer to the last
model in $ with last$.2 For t ∈ T we define the time-bounded transition
sequence until t as I(M0, pre(%, t)). For a transition sequence $ = I(M0, %) we
define $@t = last I(M0, pre(%, t)), i.e. $@t is the model at time t in $. 4

In this thesis we only consider transition sequences resulting from timed words
and MLSLS models. Hence, we often write %(M) instead of $.
We lift the time span for timed words (cf. Page 8) to transition sequences,

which we denote as span$. Furthermore, we lift the equality of timed words
up to interior empty sets of actions to equality of transition sequences up to
interior empty sets of actions, which we denote with $ ≈ $′. As interior empty
sets of actions do not change the state we make the following observation. Let
$,$′ be two transition sequences with $ ≈ $′. Then, at all points in time the
models at that time in the two transition sequences are equal, i.e. we have

∀t. ($@t = $′@t) .

For an easier exposition we make the following assumption.

Assumption 5.1.12. For a given (possibly simple) MLSLS modelM we assume
that all timed words we consider result in transition sequences with only legal
transitions and that all transitions with r(C),wd c(C),wd r(C, n) change the
state. That is, a car only makes a reservation if it has a claim, it only withdraws
a claim when it has a claim and it only withdraws a reservation if it has two
reservations. 4

We give an example of a timed word and how we create a transition sequence
from it. Note that we do not give units in our examples. However, we assume
all units to match.

2Note that $ is a variant of ω (omega) that we use to set it apart from the Latin letter w.

157

5 Spatio-Temporal Properties with Precise Information

Example 5.1.13. Let us assume that the global, maximal deceleration constant
is given as decmax = 12 and that each car has a physical length of 3. Consider
the timed word

% = 〈({wd r(E, 3)}, 1), ({r(C2)}, 1.1), ({wd r(C2, 2), c(E, 2)}, 5.1), (∅, 6.1)〉

and a traffic snapshot TS 0 = (res, clm, pos, spd, acc) defined as

res = {C1 7→ {2}, E 7→ {2, 3}, C2 7→ {1}} spd = {C1 7→ 6, E 7→ 18, C2 7→ 12}
clm = {C1 7→ {3}, E 7→ ∅, C2 7→ {2}} acc = {C1 7→ 0, E 7→ 0, E 7→ 0}
pos = {C1 7→ 60, E 7→ 16, C2 7→ 12}

We assume for all cars C that decmax(C) = 12 and length(C) = 3. According to
Assumption 5.1.1 the sensor function gives the values

Ω = {(C1,TS) 7→ 4.5, (E,TS) 7→ 16.5, (C2,TS) 7→ 9} .

Note that TS is a formalisation of the traffic snapshot from Figure 2.4 on Page 21
(however, we use a different view here). Let M0 = ({C1, C2, E},TS ,Ω, V, ν)
with V = ([1, 3], [0, 90], E) and ν = {ego 7→ E}. By applying % to M0, we get
the transition sequence

%(M0) = M0
1−−→M1

{wd r(E,3)}−−−−−−−−→M2
0.1−−→M3

{r(C2)}−−−−−→

M4
4−−→M5

{wd r(C2,2),
c(E,2)}−−−−−−−−→M6

1−−→M7
∅−−→M7

depicted in Figure 5.1. The model within this sequence at time 5.1 is defined
as %(M0)@5.1 = last I(M0, pre(%, 5.1)) = M6. We can also look at models for
which there is no explicit time stamp in our timed word. For example, %(M0)@4

is temporally in between M4 and M5, i.e. we have M4
2.9−−→ %(M0)@4. 4

Now we can define operations on transition sequences. Note that our opera-
tions on transition sequences translate to operations on the underlying timed
words and starting model.

Definition 5.1.14. Let M be a possibly simple MLSLS model, CS ⊆ I and
% ∈ (P(ActcarsM)× T)+. We define the restriction and anti-restriction as

%(M) � CS = (% � ActCS)(M CS) ,

%(M) \ CS = %(M) � (I \ CS) . 4

158

5.1 Timed Words and MLSLS

1

2

3

E

E

C1

C1

C2

C2

M0

E

E

C1

C1

C2

C2

M1

E

C1

C1

C2

C2

M2

1

2

3 E

C1

C1

C2

C2

M3

E

C1

C1

C2

C2

M4

EC1

C1C2

C2

M5

1

2

3 E

E

C1

C1C2

M6

E

E

C1

C1C2

M7

E

E

C1

C1C2

M7

1 {wd r(E, 3)} 0.1

{r(C2)} 4
{wd r(C2,2),

c(E,2)}

1 ∅

Figure 5.1: Visualisation of the transition sequence in Example 5.1.13. Claims
are shown with dashed and reservations with solid lines. The view
is not explicitly indicated, but contains the extension and the lanes
shown.

159

5 Spatio-Temporal Properties with Precise Information

We define the parallel composition of MLSLS transition sequences using the
parallel composition of timed words and the disjoint union of MLSLS models.

Definition 5.1.15. LetM1,M2 be possibly simple, composable MLSLS models
and let %i ∈ (P(ActcarsMi

)×T)+ for i ∈ {1, 2}. We define the parallel composition
of %1(M1) and %2(M2) as

%1(M1) %2(M2) = %1 ‖ %2(M1 M2) . 4
We call two transition sequences composable if their underlying starting

models are composable.
Now, there is the question of what properties our operators on transition

sequences have. However, it seems that our requirement for the disjoint union
of MLSLS models, that the participating models need to represent disjoint
sets of cars, limits interesting properties. For example, we might be tempted
to relate (% ‖ %′)(M) to %(M) %′(M). However, M is not composable with
itself (unless M = M∅). Thus, %(M) %′(M) is not defined. Similarly, for
%(M M ′). We might be tempted to relate this to %(M) %(M ′). But again,
this is (in most cases) not defined as we require % ∈ (P(ActcarsM∪carsM ′)× T)+

and carsM ∩ carsM ′ = ∅. Thus, we can relate %(M M ′) and %(M) %(M ′)
only if % ∈ (P(Act∅)× T)+.
What we can relate is %(M) and (%(M) � CS) (%(M) \ CS). We will use

the following proposition in our arithmetic encoding of transition sequences as
it allows to break a transition sequence for multiple cars down into multiple
sequences for a single car.

Proposition 5.1.16. For all possibly simple MLSLS models M and all timed
words % ∈ (P(ActcarsM)× T)+ we know

%(M) = (%(M) � CS) (%(M) \ CS) .

We introduce more properties relating transition sequences and our operators.
Note that these properties relate operators on transition sequences with operators
on static MLSLS models.

Lemma 5.1.17. Let $1, $2 be two composable transition sequences with equal
span and let CS ⊆ I be a set of car identifiers. Then

last($1 � CS) = (last$1) CS ,

last($1 \ CS) = (last$1) CS ,

last($1 $2) = (last$1) (last$2) .

160

5.2 Monitoring Global Properties

Proof. Let $1 = M0
t1−−→ M1

A1−−→ . . .
tn−−→ M2n−1

An−−→ M2n. For the first
property let $1 � CS = M ′0

t1−−→ M ′1
A1∩ActCS−−−−−−→ . . .

tn−−→ M2n−1
An∩ActCS−−−−−−→ M ′2n.

Then we have M ′2n = M2n CS because the state of the cars in CS is not
affected by the cars not in CS . A similar argumentation works for the second
property.
For the last property let CS ′ ⊆ I be such that $′1 = ($1 $2) � CS ′ and

$′2 = ($1 $2) \ CS ′ with $′1 ≈ $1 and $′2 ≈ $2. Such a set CS exists
because $1 and $2 are composable and because their time span is equal. Now

last($1 $2) = ((last($1 $2)) CS ′) ((last($1 $2)) CS ′)

= (last(($1 $2) � CS ′)) ((last($1 $2)) \ CS ′)
= (last$′1) (last$′2)

= (last$1) (last$2) .

The first step holds by definition of the operations on static MLSLS models.
The second step uses the two first properties of this lemma. The third step
substitutes the transition sequences we defined earlier. The last step holds
because $′1 and $′2 merely differ from $1 and $2 by empty sets of actions.

5.2 Monitoring Global Properties
In [Lin15] the author extends MLSL with temporal modalities. However, the
globally operator G defined there requires that all possible successor models
satisfy the subformula. Hence, G is a branching time temporal operator. As
branching time modalities are not suited for monitoring, we define a linear time
globally modality, which is satisfied if the subformula is satisfied at every point
in time. In this section we first formalise for an MLSLS model M , a timed
word % and an MLSLS formula φ what the statement “φ holds globally in %(M)”
means. The intuition is that we check for every point in time t, whether the
model in the transition sequence %(M) at time t satisfies φ, which in symbols is
%(M)@t |= φ. Afterwards, we define a transformation that takes as inputs %,
M and φ, and creates a formula from the first-order theory of real-closed fields
[Tar51]. This formula is valid iff the MLSLS formula φ holds throughout %(M).

Definition 5.2.1 (Global Satisfaction). A transition sequence %(M) globally
satisfies a spatial property φ (denoted as %(M) |=seq �φ) iff at every point in

161

5 Spatio-Temporal Properties with Precise Information

time t the formula φ is satisfied. Formally,

%(M) |=seq �φ iff ∀t. %(M)@t |= φ . 4

5.2.1 Encoding Global Properties in FORCF
In the previous chapters we used FOLRA data tuples to encode the model
problem of MLSLS. In this chapter we use FORCF data tuples, which are very
similar to FOLRA data tuples. The only difference is that here terms may
contain multiplication, whereas in FOLRA data tuple they contained addition
but not multiplication. The set of all proper (resp. simple) FORCF data tuples
is defined as

Trcf
p = P(DVar)× N2 × RTerm2 × (CVar ∪ {ego} → DVar)×

P(DVar)× (DVar→ RVar7)× DVar ,

Trcf
s = P(DVar)× CVar→ DVar)× P(DVar)× (DVar→ RVar7) .

Note that this is the same type as the set of all FOLRA data tuples. The
reason for this is that in our real-valued terms we do not distinguish whether
the terms use multiplication or not. As for FOMLA and FOLRA data tuples
we require for a FORCF data tuple p = (DS , l1, l2, β1, β2, f,D,S, DE) that
DS , ran f ⊆ D, domS = D, DE ∈ D and f(ego) = DE and similarly for simple
FORCF data tuples (see also Page 75). Further, we denote the set of all possibly
simple FORCF data tuples as Trcf .

To simplify our encoding we generally assume that the car identifier variable
assignment is bijective. That is, for an MLSLS model M we assume a set of
car identifier variables D ⊆ DVar and a function g : D → carsM such that
|D| = | carsM |. In the following definition, transforming MLSLS actions to
arithmetic constraints, this bijectivity allows us to consider a single car identifier
variable. Note that in the previous chapters g : D→ carsM only was constrained
to be surjective.

We assume that a single car will not perform multiple actions simultaneously
(cf. Section 5.1). Additionally, we assume that all actions have an effect and
actually are enabled, when they are performed (cf. Assumption 5.1.12). The goal
of this assumption is to simplify our encoding but can likely lifted. We point
out that the disjunction for the reservations are needed because we have not
fixed a rule which reservation variable should take which lane, or which variable
should be set to •. Similarly, we use {v′r1, v′r2} = {vr1, vr2} instead of simply

162

5.2 Monitoring Global Properties

id(vr1, vr2) because we want {vr1, vr2} to stay the same. This will be helpful in
proving correctness later. Our formula takes into account that we do not know
which of the variables v′r1 and v′r2 had • assigned and which had a lane assigned.
Further, for two sets of variables S = {v1, . . . , vn}, S′ = {v′1, . . . , v′n} we use
the abbreviation id(S) ≡ ∧i∈{1,...,n} vi = v′i. Note that the set S′ is implicitly
known in the context. We point out that for real-valued terms β1, β2, β3 we can
express the equality β1 = β2

β3
in FORCF as ∃x. β1 = β2 ∗ x ∧ β3 ∗ x = 1.

Definition 5.2.2 (Transforming Actions). Let p = (DS , f,D,S) and p′ =
(DS ′, f ′,D′,S ′) be two simple FORCF data tuples with DS = DS ′, f = f ′,
D = D′ and D = {D} for some D ∈ DVar. For some car C ∈ I, a car identifier
variable assignment g mapping D to C, a set of actions A ⊆ ActC with |A| ≤ 1,
a lane l ∈ L, an acceleration α ∈ R and a FORCF term θ indicating a delay we
encode performing an action and letting time pass as

tr′a(A, p, p
′, g) ≡

v′c = l ∧ {v′r1, v′r2} = {vr1, vr2} ∧ id(va) if A = {c(C, l)}
id(va) ∧ v′c = • ∧
{v′r1, v′r2} = {vr1, vr2, vc} \ {•} if A = {r(C)}

{v′r1, v′r2} = {l, •} ∧ id(vc, va) if A = {wd r(C, l)}
v′c = • ∧ {v′r1, v′r2} = {vr1, vr2} ∧ id(va) if A = {wd c(C)}
v′a = α ∧ {v′r1, v′r2} = {vr1, vr2} ∧ id(vc) if A = {a(C,α)}
{v′r1, v′r2} = {vr1, vr2} ∧ id(vc, va) if A = ∅

tr′′a (θ, p, p′, g) ≡ v′p = vp + vs ∗ θ +
1

2
va ∗ θ2 ∧

v′s = va ∗ θ + vs ∧ v′Ω =
(vs + va ∗ θ)2

2 ∗ decmax(C)
+ length(C)

For two proper FORCF data tuples p = (DS , l1, l2, β1, β2, f,D,S, DE) and
p′ = (DS ′, l′1, l

′
2, β
′
1, β
′
2, f
′,D′,S ′, D′E) with DS = DS ′, f = f ′, D = D′ and

DE = D′E the formula tr′a(A, p, p
′, g) remains unchanged and tr′a(θ, p, p

′, g) is
extended with

β′1 = β1 + ∆E ∧ β′2 = β2 + ∆E

where ∆E is an abbreviation for (S ′(D′E)(v′p)− S(DE)(vp)). Now, performing
an action after a delay is defined as

tra(θ,A, p, p
′, g) ≡ tr′a(A, p, p

′, g) ∧ tr′′a (θ, p, p′, g) . 4

163

5 Spatio-Temporal Properties with Precise Information

We represent MLSLS transition sequences with FORCF variables. To this
end, we introduce sequences of data tuples.

Definition 5.2.3 (Sequences of FORCF Data Tuples). We call a sequence
π = 〈p1, . . . , pn〉 with pi = (DS i, li, l

′
i, βi, β

′
i, fi,Di,Si, DE,i) and i ∈ {1, . . . , n}

a sequence of proper FORCF data tuples. For such sequences we require for
j ∈ {1, . . . , n− 1} that DS i = DS i+1, li = li+1, l′i = l′i+1, fi = fi+1, Di = Di+1

and DE,i = DE,i+1, i.e. that the car identifier variables and the lane values in
the sequence are equal. Further, for simplicity we require |Di| = 1. Similarly,
a sequence of simple FORCF data tuples is a sequence π = 〈p1, . . . , pn〉 with
pi = (DS i, fi,Di,Si) and i ∈ {1, . . . , n} such that for j ∈ {1, . . . , n− 1} we have
DS i = DS i+1 fi = fi+1 and Di = Di+1. 4

We extend our notion of sanity from static representations of MLSLS models
to sequences of MLSLS transitions for a single car. Let π be a sequence of
FORCF data tuples representing a single car, M an MLSLS model, g : DVar→ I
a car identifier variable assignment, and % a timed word. Then we call the tuple
(π, g,M, %) sane if for all i ∈ domπ the tuple (π(i),M, g) satisfies the static
sanity condition (cf. Definition 3.4.2), #π = #%+1 and % ∈ (P(ActcarsM)×T)+.
Below we define a formula that represents an MLSLS transition sequence

%(M) of a single car. For this we use sequences of FORCF data tuples π and
sequences of real FORCF terms ζ. Then, ζ(i) represents the point in time when
D performs the i-th action and π(i) represents the state after performing that
action and moving according to the speed and acceleration of the car until that
time. We introduce constraints for the terms in ζ later. In general we do not
allow the empty sequence as timed word. However, here it is convenient to
let % be either a normal timed word or the empty sequence. Note that we use
the FOLRA representation of an MLSLS model. As FOLRA is a fragment of
FORCF this is no problem. Note that we keep the real-valued terms containing
multiplication outside of the FOLRA formula.

Definition 5.2.4 (Transforming Transition Sequences). Let M be an MLSLS
model, % = (w, τ) a timed word or the empty sequence, g a car identifier variable
assignment, π a sequence of FORCF data tuples such that (π, g,M, %) is sane
and ζ ∈ Seq RTerm a sequence of real terms with #ζ = #π. We define

trw(%,M, ζ, π, g) ≡ trlram,E(π(1),M) ∧∧
i∈dom %

tra(ζ(i+ 1)− ζ(i), w(i), π(i), π(i+ 1), g) . 4

164

5.2 Monitoring Global Properties

Now we define a transformation for a transition sequence until θ, where θ is
a FORCF term. To achieve this we ignore all changes after time θ, and let the
variables just keep their values. For this we perform a case distinction on the
value of θ: if θ is greater equal than the latest time stamp we simply encode
the complete word. Otherwise, we encode the timed word until the latest time
stamp smaller than θ and then let time pass without executing actions until θ.
Further, for a sequence of FORCF data tuples π and a car identifier variable
assignment g we define an abbreviation that freezes the state of the car as

F (π, g) ≡
∧

i∈{1,...,#π−1}
tra(0, ∅, π(i), π(i+ 1), g) .

As for the static case, we use E to denote an Elementary (or base) version of a
function that we extend later.

Definition 5.2.5 (Transforming Timed-Bounded Transition Prefixes). Let M
be an MLSLS model, % = (w, τ) a timed word, g a car identifier variable
assignment and π a sequence of FORCF data tuples such that (π, g,M, %) is
sane. Further, let ζ ∈ Seq RTerm be a sequence of real terms with #ζ = #π
and let θ be a FORCF term. Then we define

trEU(%,M, θ, ζ, π, g) ≡ (θ ≥ ζ(n) =⇒ trw(%,M, ζ, π, g)) ∧∧
i∈{1,...,#%}

(
ζ(i) ≤ θ < ζ(i+ 1) =⇒ trw(%[..i− 1],M, ζ[..i], π[..i], g) ∧

tra(θ − ζ(i), ∅, π(i), π(i+ 1), g) ∧ F (π[i+ 1..], g)
)
. 4

For the definition above we point out that %[..i − 1] may be a timed word
or the empty sequence. In the left-hand side of each implication we check the
value of θ. In the right-hand side we transform all actions until θ. Then we let
the traffic evolve from ζ(i) until θ and discard all actions after θ. Note that in
the definition above always exactly one of the implications is satisfied.
So far we always considered a single car. We extend the definition above to

multiple cars. We use sequences of FORCF data tuples to encode sequences
of MLSLS transitions for multiple cars. That is, for the set of all possibly
simple FORCF data tuples Trcf we use the functions Π : DVar → Seq Trcf ,
Z : DVar → Seq RTerm that give us for a car identifier variable a sequence
of FORCF data tuples, respectively a sequence of terms. We will call Π an
assignment of sequences of data tuples and Z an assignment of sequences of

165

5 Spatio-Temporal Properties with Precise Information

real-valued terms. Then, Z(D)(i) represents the point in time when D performs
the i-th action and Π(D)(i) represents the state after performing that action
and moving according to the speed and acceleration of the car until that time.
For simplicity, we assume that the set D in each data tuple in the sequence
Π(D) contains the single element D. Similar to FORCF sequences for single
cars we need conditions for these extended variable structures, which we again
call sanity conditions.

Definition 5.2.6 (Sanity of FORCF Sequences). Let M be a possibly simple
MLSLS model, g a car identifier variable assignment, % ∈ (P(ActcarsM)× T)+

a timed word, an assignment of sequences of real-valued terms Z : DVar →
Seq RTerm and an assignment of sequences of data tuples Π : DVar→ Seq Trcf .
Then we call (Π, g,M, %) sane if

• dom g = domZ = dom Π,

• ran g = carsM ,

• for all different D,D′ ∈ dom g the sequences Π(D) and Π(D′) do not share
any variables and

• for all D ∈ dom g the tuple (Π(D), g B {D},M {g(D)}, %g(D)) is sane,
where %g(D) ≈ (% � Actg(D)) and %g(D) contains no interior empty sets of
action. 4

We instantiate the data structures for a small example and show sanity of
our instantiation.

Example 5.2.7. Consider the timed word % and the model M with

% = %0 � {E,C1} = 〈({wd r(E, 3)}, 1s), (∅, 1.1s), ({c(E, 2)}, 5.1s), (∅, 6.1s)〉
(5.1)

M = M0 {E,C1} (5.2)

where %0 and M0 are taken from Example 5.1.13. Let D = {DE , D1} and
g = {DE 7→ E,D1 7→ C1}. Further, let

%E = 〈({wd r(E, 3)}, 1s), ({c(E, 2)}, 5.1s), (∅, 6.1s)〉 ,
%C1 = 〈(∅, 6.1s)〉 .

166

5.2 Monitoring Global Properties

Then %E ≈ % � {E} and %C1
≈ % � {C1}, i.e. the timed words are equal to

their counterparts defined with the restriction operator, except that they do
not contain any interior empty sets of actions. Next, we choose Π(DE) =
〈pDE1 , pDE2 , pDE3 , pDE4 〉, where for i ∈ {1, . . . , 4} the data tuples are pDEi =

({DE}, 1, 3, xi, x′i, {ego 7→ DE}, {DE},SDEi , DE) and each SDEi contains seven
unique variables DE .v

i
c, DE .v

i
r1, DE .v

i
r2, DE .v

i
s , DE .v

i
a, DE .v

i
p and DE .v

i
Ω. Sim-

ilarly, we define Π(D1) = 〈pD1
1 , pD1

2 〉 with pD1
j = ({D1}, {c1 7→ D1}, {D1},SD1

j),
where j ∈ {1, 2} and each SD1

j again has seven unique variables.
We see that the tuple (M, g,Π, %) is sane because the domains of g and Π are

equal, ran g and carsM are equal, Π(DE) and Π(D1) do not share any variables
and for D ∈ {DE , D1} the length of Π(D) is equal to #%g(D) + 1. 4

Now we define how to encode sequences of MLSLS transitions for multiple
cars. As a preparation for the next chapter we restrict a timed word for multiple
cars first to a single car. Then we remove all internal empty sets of actions and
only then we use trEU from our earlier definition.

Definition 5.2.8. LetM be an MLSLS model, % a timed word, g a car identifier
variable assignment and Π : DVar→ Seq Trcf an assignment of sequences of data
tuples such that (Π, g,M, %) is sane. Further, let Z : dom g → Seq RTerm be an
assignment of sequences of real-valued terms with #Z(D) = #Π(D) and let θ
be a FORCF term. Then we define

trU(%,M, θ, Z,Π, g) ≡
trEU(%g(D),M g(D), θ, Z(D),Π(D)) ∧

trU(% \ g(D),M g(D), θ, {D} −C Z, {D} −CΠ, {D} −C g) if dom g 6= ∅
true otherwise

where D ∈ dom g and %g(D) ≈ (% � Actg(D)) and %g(D) contains no interior
empty sets of action. 4

Now we can define our transformation to check global properties. However,
before we present our transformation, we show for reasons of formatting an
example of our transformation on the next two pages. The definition of the
transformation is on Page 170.

167

5 Spatio-Temporal Properties with Precise Information
E
xa

m
p
le

5.
2.

9.
W
e
co
ns
id
er

th
e
M
L
SL

S
fo
rm

ul
a
�
n
p
c
≡
�
∀c
,c
′ .

(c
6=
c′

=
⇒
¬〈

(r
e(
c)
∨
cl

(c
))
∧
cl

(c
′)
〉)
,

ex
pr
es
si
ng

“a
lw
ay

s
no

po
te
nt
ia
l
co
lli
si
on

”.
T
hi
s
fo
rm

ul
a
st
at
es

th
at

al
l
ca
rs

ne
ve
r
ha

ve
a
cl
ai
m

th
at

ov
er
la
ps

w
it
h
th
e
cl
ai
m

or
re
se
rv
at
io
n
of

an
ot
he

r
ca
r.

T
he

F
O
R
C
F
fo
rm

ul
a
tr

�
(%
,M

,n
p
c)

ch
ec
ks

if
th
is

pr
op

er
ty

ho
ld
s

th
ro
ug

ho
ut

th
e
tr
an

si
ti
on

se
qu

en
ce
%
(M

),
w
he

re
M

an
d
%
ar
e
as

de
fin

ed
in

E
xa

m
pl
e
5.
2.
7.

W
e
sh
ow

tr
�

(%
,M

,n
p
c)

in
ex
pa

nd
ed

fo
rm

on
th
e
ne

xt
pa

ge
.
W
e
re
us
e
th
e
da

ta
st
ru
ct
ur
es

an
d
va
ri
ab

le
na

m
es

fr
om

E
xa

m
pl
e
5.
2.
7.

Fo
r
si
m
pl
ic
it
y
w
e
as
su
m
e
fo
r
al
lc

ar
s
C
∈
I
th
at

d
ec

m
a
x
(C

)
=

1
2
an

d
le
n
g
th

(C
)

=
3
.
Fu

rt
he

r,

p
f

=
({
D
E
,D

C
1
},

1
,3
,x

4 l
,x

4 r
,{
eg
o
7→
D
E
},
{D

E
,D

C
1
},
SD

E
4
]
SD

C
1

2
,D

E
)
,

Π
(D

E
)(

4
)

=
({
D
E
},

1
,3
,x

4 l
,x

4 r
,{
eg
o
7→
D
E
},
{D

E
},
SD

E
4

,D
E

))
,

Π
(D

C
1
)(

2
)

=
({
D
C

1
},
f ∅
,{
D
C

1
},
SD

C
1

2
))
,

w
he

re
f ∅

de
no

te
s
th
e
em

pt
y
fu
nc
ti
on

.
Le

t
us

de
no

te
ex
po

ne
nt
ia
ti
on

w
it
h
∗∗

.
T
he

n
w
e
us
e
fo
r
D
∈
{D

E
,D

C
1
}
th
e

ab
br
ev
ia
ti
on

s
ξD Ω

(i
,θ

)
≡

(D
.v
i s
+
D
.v
i a
∗θ

)∗
∗2

2
∗1

2
+

3
,
w
hi
ch

re
pr
es
en
ts

th
e
va
lu
e
of

th
e
se
ns
or

fu
nc

ti
on

af
te
r
w
ai
ti
ng

θ
ti
m
e
af
te
r
th
e
i-
th

st
ep

,a
nd

ξD p
o
s
(i
,θ

)
≡
D
.v
i p

+
D
.v
i s
∗θ

+
1 2
∗D

.v
i a
∗(
θ
∗∗

2
)
to

re
pr
es
en
t
th
e
po

si
ti
on

af
te
r
w
ai
ti
ng

θ
ti
m
e
af
te
r
th
e
i-
th

st
ep

.
A
dd

it
io
na

lly
,w

e
us
e

∆
i
≡
D
E
.v
i p
−
D
E
.v
i−

1
p

fo
r
th
e
di
st
an

ce
co
ve
re
d
by

th
e
eg
o-
ca
r.

In
L
in
es

2
to

11
w
e
se
e
th
e
co
ns
tr
ai
nt
s
fo
r
th
e
ca
r
E
.
In

L
in
es

3
to

7
w
e
sh
ow

th
e
un

fo
ld
ed

co
ns
tr
ai
nt
s
fo
r
th
e

ca
se

th
at

th
e
va
ri
ab

le
z
ta
ke
s
a
va
lu
e
fr
om

th
e
in
te
rv
al

[1
,5
.1

).
T
he

ot
he

r
ca
se
s
fo
r
E

ar
e
no

t
un

fo
ld
ed

.
L
in
e
2

en
co
de

s
th
e
ca
se

th
at

th
e
fr
ee
ze

ti
m
e
is

be
fo
re
E

ex
ec
ut
es

it
s
fir
st

ac
ti
on

an
d
L
in
es

8
to

9
(r
es
p.

L
in
es

10
to

11
)

en
co
de

th
e
ca
se

th
at

th
e
fr
ee
ze

ti
m
e
is
af
te
r
th
e
se
co
nd

ac
ti
on

bu
t
be

fo
re

th
e
en

d
of

th
e
ti
m
ed

w
or
d
(r
es
p.

af
te
r
th
e

en
d
of

th
e
ti
m
ed

w
or
d)
.
Si
m
ila

rl
y,

w
e
sh
ow

th
e
un

fo
ld
ed

co
ns
tr
ai
nt
s
fo
r
ca
r
C

1
fo
r
th
e
ca
se

w
he

re
z
ta
ke
s
a
va
lu
e

sm
al
le
r
(r
es
p.

gr
ea
te
r
eq
ua

l)
th
an

th
e
po

in
t
in

ti
m
e
w
he

re
th
e
ti
m
ed

w
or
d
en

ds
in

L
in
es

12
to

14
(r
es
p.

L
in
e
15
).

W
e
sh
ow

th
at

tr
�

(%
,M

,n
p
c)

is
no

t
va
lid

.
Fo

r
th
is

co
ns
id
er

an
as
si
gn

m
en
t
h
w
it
h
h

(z
)

=
4
.
Fo

r
th
e
re
le
va
nt

va
ri
ab

le
s
w
e
sh
ow

th
ei
r
re
su
lt
in
g
va
lu
es

as
si
gn

ed
by

h
:

D
E
.v

4 p
,D

E
.v

4 Ω
,D

E
.v

4 c
,{
D
E
.v

4 r1
,D

E
.v

4 r2
}
7→

8
8
,1

6
.5
,•
,{

3
,•
}

D
C

1
.v

2 p
,D

C
1
.v

2 Ω
,D

C
1
.v

2 c
,{
D
C

1
.v

2 r1
,D

C
1
.v

2 r2
}
7→

8
4
,4
.5
,3
,{

2
,•
}

W
e
po

in
t
ou

t
th
at

th
e
se
ns
or

fu
nc
ti
on

,
sp
ee
d
an

d
ac
ce
le
ra
ti
on

re
m
ai
n
un

ch
an

ge
d
in

th
is

ex
am

pl
e.

Fu
rt
he

rm
or
e,

h
(x

4 l
)

=
7
2
,h

(x
4 r
)

=
1
6
2
.
W
e
se
e
th
at

tr
lr
a

f
(p

f,
n
p
c)

ev
al
ua

te
s
to

fa
ls
e
fo
r
th
is

va
lu
at
io
n.

T
o
se
e
th
is

w
e
ca
n
ch
oo

se
D
E

fo
r
th
e
ca
r
va
ri
ab

le
c
an

d
D
C

1
fo
r
th
e
va
ri
ab

le
c′
.
T
he

n
th
e
cl
ai
m

of
c′

ov
er
la
ps

w
it
h
th
e
re
se
rv
at
io
n
of
c
on

la
ne

3
on

th
e
in
te
rv
al

[8
8
,8

8
.5

],
w
hi
ch

is
in
si
de

th
e
vi
ew

.
4

168

5.2 Monitoring Global Properties
1
∀z
.
(/*

Co
ns

tr
ai

nt
s

fo
r

ca
r
E

*/
2

((0
≤
z
<

1
=
⇒

tr
w
(〈
〉,
M
E
,
〈0
〉,
〈p
E 1
〉,
g
E

)
∧

tr
a
(z
−

0
,
∅,
p
E 1
,
p
E 2
,
g
E

)
∧
F

(〈
p
E 2
,
p
E 3
,
p
E 4
〉,
g
E

))

3
∧

1
≤
z
<

5
.1

=
⇒

/*
tr

lr
a

m
,E

(p
E 1
,
M
E

)
wi

th
in

tr
w
(〈

({
w

d
r(
E
,
3
)}
,
1
)〉
,
M
E
,
〈0
,
1
〉,
〈p
E 1
,
p
E 2
〉,
g
E

)
*/

4
D
E
.v

1 c
=
•∧
{D

E
.v

1 r1
,
D
E
.v

1 r2
}

=
{2
,
3
}∧

D
E
.v

1 p
=

1
6
∧
D
E
.v

1 Ω
=

3
0
∧
D
E
.v

1 s
=

1
8
∧
D
E
.v

1 a
=

0
∧
x

1 l
=

0
∧
x

1 r
=

9
0

/*
tr

a
(1
−

0
,
{w

d
r(
E
,
3
)}
,
p
E 1
,
p
E 2
,
g
E

)
wi

th
in

tr
w
(〈

({
w

d
r(
E
,
3
)}
,
1
)〉
,
M
E
,
〈0
,
1
〉,
〈p
E 1
,
p
E 2
〉,
g
E

)
*/

5
∧{
D
E
.v

2 r1
,
D
E
.v

2 r2
}

=
{•
,
3
}
∧

id
(D

E
.v

1 c
,
D
E
.v

1 a
)
∧
D
E
.v

2 p
=
ξ
D
E

p
o
s

(1
,
1
−

0
)
∧
D
E
.v

2 s
=

D
E
.v

1 s
+
D
E
.v

1 a
∗

1
∧
D
E
.v

2 Ω
=
ξ
D
E

Ω
(1
,
1
−

0
)
∧
x

2 l
=
x

1 l
+

∆
E 1
∧
x

2 r
=
x

1 r
+

∆
E 1

/*
tr

a
(z
−

1
,
∅,
p
E 2
,
p
E 3
,
g
E

)
*/

6
∧{
D
E
.v

3 r1
,
D
E
.v

3 r2
}

=
{D

E
.v

2 r1
,
D
E
.v

2 r2
}
∧

id
(D

E
.v

2 c
,
D
E
.v

2 a
)
∧
D
E
.v

3 p
=
ξ
D
E

p
o
s

(2
,
z
−

1
)
∧
D
E
.v

3 s
=

D
E
.v

2 s
+
D
E
.v

2 a
∗

(z
−

1
)
∧
D
E
.v

3 Ω
=
ξ
D
E

Ω
(2
,
z
−

1
)
∧
x

3 l
=
x

2 l
+

∆
E 2
∧
x

3 r
=
x

2 r
+

∆
E 2

/*
F

(〈
p
E 3
,
p
E 4
〉,
g
E

)
*/

7
∧{
D
E
.v

4 r1
,
D
E
.v

4 r2
}

=
{D

E
.v

3 r1
,
D
E
.v

3 r2
}
∧

id
(D

E
.v

3 c
,
D
E
.v

3 a
)
∧
D
E
.v

4 p
=
ξ
D
E

p
o
s

(3
,
0
)
∧
D
E
.v

4 s
=

D
E
.v

3 s
+
D
E
.v

3 a
∗

0
∧
D
E
.v

4 Ω
=
ξ
D
E

Ω
(3
,
0
)
∧
x

4 l
=
x

3 l
+

∆
E 3
∧
x

4 r
=
x

3 r
+

∆
E 3

8
∧

5
.1
≤
z
<

6
.1

=
⇒

9
tr

w
(〈

({
w

d
r(
E
,
3
)}
,
1
),

({
c
(E
,
2
)}
,
5
.1

)〉
,
M
E
,
〈0
,
1
,
5
.1
〉,
〈p
E 1
,
p
E 2
,
p
E 3
〉,
g
E

)
∧

tr
a
(z
−

5
.1
,
∅,
p
E 3
,
p
E 4
,
g
E

)
∧

F
(〈
p
E 4
〉,
g
E

))
1
0

∧
(6
.1
≤
z

=
⇒

1
1

tr
w
(%
E
,
M
E
,
0

::
τ
E
,
π
E
,
g
E

)
∧

tr
a
(z
−

0
,
∅,
p
E 1
,
p
E 2
,
g
E

)
∧
F

(〈
p
E 2
,
p
E 3
,
p
E 4
〉,
g
E

))
/*

Co
ns

tr
ai

nt
s

fo
r

ca
r
C

1
*/

1
2

∧
0
≤
z
<

6
.1

=
⇒

/*
tr

lr
a

m
,E

(p
C

1
1
,
M
C

1
)
wi

th
in

tr
w
(〈
〉,
M
C

1
,
〈0
〉,
〈p
C

1
1
〉,
g
C

1
)

*/
1
3

D
C

1
.v

1 c
=

3
∧
{D

C
1
.v

1 r1
,
D
C

1
.v

1 r2
}

=
{2
,
•}
∧
D
C

1
.v

1 p
=

6
0
∧
D
C

1
.v

1 Ω
=

6
∧
D
C

1
.v

1 s
=

6
∧
D
C

1
.v

1 a
=

0

/*
tr

a
(z
−

0
,
∅,
p
C

1
1
,
p
C

1
2
,
g
C

1
)

*/

1
4

∧
{D

C
1
.v

1 r1
,
D
C

1
.v

1 r2
}

=
{D

C
1
.v

2 r1
,
D
C

1
.v

2 r2
}
∧

id
(D

C
1
.v

1 c
,
D
C

1
.v

1 a
)
∧
D
C

1
.v

2 p
=
ξ
D
E

p
o
s

(1
,
z
−

0
)
∧
D
C

1
.v

2 s
=

D
C

1
.v

1 s
+
D
C

1
.v

1 a
∗

(z
−

0
)
∧
D
C

1
.v

2 Ω
=
ξ
D
E

Ω
(1
,
z
−

0
)

1
5

∧
(6
.1
≤
z

=
⇒

tr
w
(%
C

1
,
M
C

1
,
0

::
τ
C

1
,
π
C

1
,
g
C

1
))
)

1
6

=
⇒

tr
lr
a

f
(p

f
,
n
p

c
))

F
ig
ur
e
5.
2:

U
nf
ol
di
ng

of
tr

�
(%
,M

,n
p

c)
fo
r
E
xa

m
pl
e
5.
2.
9.

169

5 Spatio-Temporal Properties with Precise Information

The intuition of the transformation is that it checks if we can stop the
evolution of %(M) at all points in time such that the transformed MLSLS
formula is satisfied.

Definition 5.2.10 (Transforming Global Properties). Given a proper finite
model M and a timed word % ∈ (P(ActcarsM) × T)+ let D and g be a car
identifier variable assignment such that |D| = | carsM | and g : D → carsM
is bijective. Further, let Z : D → Seq RTerm be such that for all D ∈ D we
have Z(D) = 〈0〉 · τg(D), where %g(D) ≈ (% � Actg(D)) and %g(D) = (wg(D), τg(D))
contains no interior empty sets of actions. Then we can easily create an
assignment of sequences of data tuples Π : D→ Seq Trcf such that (Π, g,M, %)
is sane and let pf be the combination of all data tuples last Π(D) with D ∈ D.
Then for an MLSLS formula φ we define

tr� (%,M, φ) ≡ ∀z. (trU(%,M, z, Z,Π, g) =⇒ trlraf (pf , φ)) . 4

5.3 Correctness of our Encoding
In this section we show that our construction to check if an MLSLS formula
holds globally in a transition sequence is correct. We first prove several lemmas
which state that for known values (rather than terms involving variables) our
formulas are equivalent to a formula that directly encodes the behaviour as
a conjunction of equality constraints. From such a conjunction of equality
constraints it is then clear that it is satisfiable and we can extract a unique
satisfying assignment.

Lemma 5.3.1. Let C be a car identifier, t ∈ T, A ∈ P(ActC) with |A| ≤ 1
and M1,M,M2 be possibly simple MLSLS models with car domain {C} and
M1

t−−→ M
A−−→ M2. Further, let p1, p2 be two data tuples and let g be a car

identifier variable assignment such that (〈p1, p2〉, g,M1, 〈(A, t〉) is sane. Then
the FORCF formula

trlram,E(p1,M1) ∧ tra(A, t, p1, p2, g) ⇐⇒ trlram,E(p1,M1) ∧ trlram,E(p2,M2)

is valid.

Proof. We start with the case that the MLSLS models are proper. For the index
i ∈ {1, 2} let Mi = (CS i,TS i,Ωi, Vi, νi) with TS i = (resi, clmi, posi, spdi, acci)
and pi = (DS i, li, l

′
i, βi, β

′
i, fi,Di,Si, DE,i).

170

5.3 Correctness of our Encoding

The formula tra(A, t, p1, p2, g) constraints the variables in p2 relative to the
variables in p1. We point out that tra and trlram,E both result in conjunctions of
disjunctions (the disjunctions are hidden in the set equalities). Let us consider
the position first. The formula tra(A, t, p1, p2, g) has the subformula v2

p =

v1
p + v1

s ∗ t+ 1
2v

1
a ∗ t ∗ t and trlram,E(p2,M2) has the subformula v2

p = pos2(C). Both
formulas have no other constraints on the variable v2

p . Thus, we have to show
equality of these two constraints. From trlram,E(p1,M1) we know that the variables
in p1 are constrained to take the values in M1. We know from the definition of
MLSLS transitions that pos2(C) = pos1(C)+spd1(C)∗t+ 1

2 acc1(C)∗t∗t. Hence,
by substituting the variables with the values we conclude that one direction of
the equality holds and for the other direction we substitute values by variables.
For the other variables the reasoning works analogously.

Next we consider the parts of the model affected by discrete actions. For this
we do a case distinction on the action in A. We start with A = {r(C)}. As
we assume that all actions change the state (cf. Assumption 5.1.12), we know
that C has a claim that can be turned into a reservation, i.e. clm(C) 6= {•}.
Now, tra({r(C)}, t, p1, p2, g) becomes {v2

r1, v
2
r2} = {v1

r1, v
1
r2, v

1
c } ∧ v2

r1 6= • ∧ v2
r2 6=

• ∧ id(v1
a) ∧ v2

c = •. This formula ensures that the variables v2
r1, v

2
r2 take their

old lane value (which may be in v1
r1 or in v1

r2) and the lane value in v1
c but

not •. In trlram,E(p2,M2) we have for claims and reservations the constraint
{v2

r1, v
2
r2} = res2(C) ∧ v2

c = clm2(C), where we know from the transition taken
that clm2(C) = {•}. The other cases work similarly.
The case of simple models is analogously.

We lift the previous lemma to timed words.

Lemma 5.3.2. Let C be a car identifier, M0 be a possibly simple MLSLS
model with carsM0 = {C}, % = (w, τ) ∈ (P(ActC) × T)+ with #% = n, and

%(M0) = M0
τ(1)−−→ M1

w(1)−−−→ M2 . . .
τ(n)−τ(n−1)−−−−−−−−→ M2n−1

w(n)−−−→ M2n. Further,
let π = 〈p0, . . . , pn〉 be a sequence of data tuples such that (π, g,M, %) is sane.
Then the FORCF formula

trw(%,M0, π, 0 :: τ, g) ⇐⇒
∧

i∈{0,...,n}
trlram,E(pi,Mi)

is valid

Proof. By induction on the length of the timed word with the help of Lemma 5.3.1.

171

5 Spatio-Temporal Properties with Precise Information

With trEU we defined a transformation that represents an MLSLS transition
sequence until a time θ, where θ is a FOLRA term. We prove that for all possible
values t for θ, our encoding of until is correct. To achieve this, we show the
equivalence of two different encodings of until; an incremental encoding using
trEU that is not dependent on the value of t, and an nonincremental encoding
which depends on the value of t.

Lemma 5.3.3. Let C be a car identifier, M0 be a possibly simple MLSLS
model with carsM0 = {C}, % = (w, τ) ∈ (P(ActC)× T)+ with #% = n, %(M) =

M0
τ(1)−−→ M1

w(1)−−−→ M2 . . .
τ(n)−τ(n−1)−−−−−−−−→ M2n−1

w(n)−−−→ M2n and π a sequence of
data tuples such that (π, g,M, %) is sane. Then for all t ∈ T we have

trEU(%,M, t, 0 :: τ, π, g)

⇐⇒∧
i∈{0,...,k}

trlram,E(π(i+ 1),M2i) ∧
∧

j∈{k+1,...,n}
trlram,E(π(j + 1), %(M)@t)

is valid, where either k ∈ {0, . . . , n − 1} is the largest index such that τ(k) ≤
t < τ(k + 1) with τ(0) = 0 or k = n and t ≥ τ(n).

Proof. Let τ ′ = 0 :: τ . We do a case distinction on whether t = tn and start
by assuming t ≥ τ(n). Now, the second big conjunction of the right side of
the equivalence is empty. From Lemma 5.3.2 we know that the remaining
conjunction is equivalent to trw(%,M, π, τ ′, g). Finally, with t ≥ τ(n) it is easy
to see that trw(%,M, π, τ ′, g) is equivalent to trEU(%,M, t, τ ′, π, g) because only the
first premise of the implications in trEU(%,M, t, τ ′, π, g) is satisfied with t ≥ τ(n).

We proceed to consider t < τ(n). We see that in the second big conjunction
the model within trlram,E remains unchanged, which means that the constraints
on the variables also are equal. We can ensure that the variables retain their
values with the formula F (cf. Page 165). Thus, the right side of the equivalence
in the lemma is equivalent to∧
i∈{0,...,k}

trlram,E(π(i+1),M2i)∧trlram,E(π(k+2), %(M)@t)∧F (π[k+2..], g) . (5.3)

As %(M)@t is equal to the model we get after letting t−τ ′(k+1) time pass from

M2k−2 (i.e. M2k−2
t−τ ′(k+1)−−−−−−−→ %(M)@t, where +1 is need due to the leading 0

172

5.3 Correctness of our Encoding

in τ ′) Equation (5.3) is equivalent to∧
i∈{0,...,k}

trlram,E(π(i+ 1),M2i) ∧

tra(t− τ ′(k + 1), ∅, π(k + 1), π(k + 2), g) ∧ F (π[k + 2..], g) . (5.4)

From Lemma 5.3.2 we know that instead of constraining the variables in π[..k+1]
by absolute values we can constrain them incrementally. Thus, Equation (5.4)
is equivalent to

trw(%[..k],M, τ ′[..k + 1], π[..k + 1], g)

∧ tra(t− τ ′(k + 1), ∅, π(k + 1), π(k + 2), g) ∧ F (π[k + 2..], g) , (5.5)

where %[..k] might be the empty sequence. We point out that the premise
of exactly one implication is satisfied in trEU(%,M, t, τ ′, π, g) (the one with
the premise τ ′(k) ≤ t < τ ′(k + 1)). Thus, equivalence of Equation (5.5)
to trEU(%,M, t, 0 :: τ, π, g) follows.

Let M be an MLSLS model, % a timed word, θ a real-valued term, Z an
assignment of sequences of real-valued terms and Π an assignment of sequences of
data tuples. Then, with trU(%,M, θ, Z,Π, g) we represent the transition sequence
%(M) (or alternatively I(M,%)) and freeze it at the value of θ. If θ is given as
a constant t we can create equivalent constraints by transforming for each car
each model in I(M, pre(%, t)) individually. To state this equivalence as a lemma
we introduce an abbreviation. For sane (Π, g,M, %) and D ∈ dom g let Z(D) =
0 :: τg(D), where %g(D) = (wg(D), τg(D)) ≈ % � {g(D)} and %g(D) has no interior

empty sets of actions. Further, for C ∈ carsM let %C(MC) = MC,0
τC(1)−−−→

MC,1
wC(1)−−−−→ MC,2 . . .

τC(n)−τC(n−1)−−−−−−−−−−→ MC,2n−1
wC(n)−−−−→ MC,2n, where n = #%C .

Then we use the abbreviation

ψ(%,M, t,Π, g) ≡
∧

D∈dom g

(∧
i∈{0,...,kg(D)}

trlram,E(Π(D)(i+ 1),Mg(D),2i)

∧
∧

j∈{kg(D)+1,...,ng(D)}
trlram,E(Π(D)(j + 1), %g(D)(Mg(D))@t) ,

)
(5.6)

where kg(D) ∈ {0, . . . , ng(D) − 1} is the largest index such that t is in between
the corresponding time stamps of g(D), i.e. τg(D)(kg(D)) ≤ t < τg(D)(kg(D) + 1)
or kg(D) = ng(D) and last τg(D) ≤ t.

173

5 Spatio-Temporal Properties with Precise Information

We lift the previous lemma to multiple cars. For this we point out that we
do not consider interior empty sets of actions. Furthermore, note that our
assumption that for each car we have exactly one car identifier variable D is
ensured by g being bijective.

Lemma 5.3.4. Let M be a possibly simple MLSLS model, % = (w, τ) ∈
(P(ActcarsM) × T)+, Π an assignment of sequences of data tuples and g a
car identifier variable assignment such that (Π, g,M, %) is sane. Further, for
C ∈ carsM let %C = (wC , τC) such that %C is equal to % � {C} except that
%C has no interior empty sets of actions, and Z : dom g → Seq RTerm with
Z(D) = 0 :: τg(D). Then for all t ∈ T the formula

trU(%,M, t, Z,Π, g) ⇐⇒ ψ(%,M, t,Π, g)

is valid (cf. Equation (5.6) for ψ).

Proof. Proof by induction on n = | dom g| using Lemma 5.3.3.

In ψ(%,M, t,Π, g) we have for each car and each action of a car constraints to
represent the state of that car after performing its action. In tr� (%,M, φ) we use
trlraf (pf , φ) to check the arithmetic representation of φ on the state represented
in pf . We show that the global state of all cars represented in pf and the
representation of each car individually in ψ(%,M, t,Π, g) are equivalent. To this
end we only consider the constraints ψ(%,M, t,Π, g) constraining the variables
in pf . We show that constraining the data tuple of each car independently to
represent the model at time t using a timed word that only has actions of this
car (and no interior empty sets of actions) is equivalent to constraining the
data tuples of all cars simultaneously to represent the model at time t using the
combined timed words of all cars.

Lemma 5.3.5. Let (Π, g,M, %) be sane. Then for t ∈ T the FORCF formula∧
D∈dom g

trlram,E(last Π(D), %g(D)(Mg(D))@t) ⇐⇒ trlram (pf , g, %(M)@t)

is valid, where pf is the combination of all last data tuples in Π and %{g(D)} ≈
% � {g(D)} and %{g(D)} has no interior empty sets of actions.

174

5.3 Correctness of our Encoding

Proof. The following five formulas are equivalent:∧
D∈D

trlram,E(last Π(D), %g(D)(Mg(D))@t)

⇐⇒
∧
D∈D

trlram,E(last Π(D), last I(Mg(D), pre(%g(D), t)))

⇐⇒
∧
D∈D

trlram,E(last Π(D), last I(Mg(D), pre(% � {g(D)}, t)))

⇐⇒
∧
D∈D

trlram,E(last Π(D), (last I(M, pre(%, t))) {g(D)})

⇐⇒ trlram (pf , g, %(M)@t)

In the first step we remove our abbreviations and insert the definition of the
@-operator. In the second step we replace %g(D) with % � {g(D)}. This does
not change the model for which we generate constraints because the two timed
words are equal up to empty sets of actions, which do not change the MLSLS
model. In the third step we pull the restriction operator out. For this we use
Lemma 5.1.9 and Lemma 5.1.17. In the last step we use the definition of trlram ,
which is a conjunction over all cars in the domain of g. Note that (pf , g, %(M)@t)
is sane because (π, g,M, %) is sane.

Lemma 5.3.6. For all finite proper MLSLS models M = (CS ,TS ,Ω, V, ν), all
timed words % ∈ (P(ActcarsM)×T)+ and all MLSLS formulas φ with freeVar(φ) ⊆
dom ν we have

tr� (%,M, φ) is valid iff %(M) |=seq �φ .

Proof. For C ∈ carsM let %C = (wC , τC) be the timed words such that %C ≈ % �
{C} and %C has no interior empty sets of actions. Further, let Z,Π, g be defined
as in the definition of tr� , i.e. for some set D ⊆ DVar with |D| = | carsM |,
g : D → carsM is bijective, (Π, g,M, %) is sane and Z : D → Seq RTerm is a
function mapping car identifier variables to sequences of real FORCF terms
with Z(D) = 0 :: τg(D).

We start with the “if”-direction and proceed by contraposition. This means
that we assume that tr� (%,M, φ) is not valid and derive an argument why
%(M) 6|=seq �φ holds. The overall idea is that we transform the incremental
(or relative) constraints on the variables in pf into absolute constraints of the

175

5 Spatio-Temporal Properties with Precise Information

form trlram (pf , g, %(M)@t). Then we conclude that at time t the formula φ is not
satisfied, which proofs this direction.

As tr� (%,M, φ) is not valid the negated formula is satisfiable. Hence, we can
choose a value t such that there is a satisfying assignment for

trU(%,M, t, Z,Π, g) ∧ ¬trlraf (pf , φ)) .

From Lemma 5.3.4 it follows that the equation above is equivalent to the formula
ψ(%,M, t,Π, g) ∧ ¬trlraf (pf , φ). As

∧
D∈D trlram,E(last Π(D), %g(D)(Mg(D))@t) is a

subformula of ψ(%,M, t,Π, g) we conclude from Lemma 5.3.5 that the formula
above implies

trlram (pf , g, %(M)@t) ∧ ¬trlraf (pf , φ) .

As trlram (pf , g, %(M)@t)∧¬trlraf (pf , φ) is satisfiable we conclude from Lemma 3.4.7
that %(M)@t 6|= φ holds. This implies ∃t. %(M)@t |= ¬φ, which implies
%(M) 6|=seq �φ.

We continue with the “only if”-direction. We proceed by contraposition and
assume that %(M) |=seq �φ does not hold, i.e. that there is a value t such
that %(M)@t 6|= φ, which is equivalent to %(M)@t |= ¬φ. Next, we know from
Lemma 3.4.6 that the constraints we get by transforming an MLSLS model
are satisfiable. Furthermore, by restricting different variables we know that
conjunctions of such constraints are satisfiable. Thus, the formula ψ(%,M, t,Π, g)
is satisfiable.

As
∧
D∈D trlram,E(last Π(D), %g(D)(Mg(D))@t) is a subformula of ψ(%,M, t,Π, g)

we know from Lemma 5.3.5 that ψ(%,M, t,Π, g) ∧ trlram (pf , g, %(M)@t) is sat-
isfiable. From %(M)@t |= ¬φ, together with Lemma 3.4.7, it follows that
trlram (pf , g, %(M)@t) =⇒ trlraf (pf ,¬φ) is valid. That is, any assignment sat-
isfying trlram (pf , g, %(M)@t) also satisfies trlraf (pf ,¬φ). Hence, ψ(%,M, t,Π, g) ∧
trlram (pf , g, %(M)@t) ∧ trlraf (pf ,¬φ) is satisfiable. As the formula ψ(%,M, t,Π, g)
is equivalent to trU(%,M, t, Z,Π, g) (cf. Lemma 5.3.4) we conclude that the
conjunction trU(%,M, t, Z,Π, g) ∧ trlraf (pf ,¬φ) is satisfiable. Finally, this means
that ∀z. trU(%,M, z, Z,Π, g) =⇒ trlraf (pf , φ) is not valid.

With the previous lemma and from decidability of FORCF [Tar51], we get
the following theorem. For the complexity of FORCF we refer to Lemma 2.4.2.

Theorem 5.3.7. It is decidable whether an MLSLS formula holds globally in
an MLSLS transition sequence.

176

5.4 Related Work

5.4 Related Work
In [LPR+95] the authors investigate distributed transition systems, where
transitions are labelled by sets of actions, rather than single actions. Further,
they develop a modal logic for this model and investigate questions such as
satisfiability. Additionally, they show that distributed transition systems are
a generalisation of other concurrent models, like event structures [Win86] and
Petri nets. In our work we also allow simultaneous actions, as opposed to the
interleaving semantics considered in original MLSL [HLO+11]. Our reasoning
is that otherwise some of the concepts, for example claims, seem superfluous
without simultaneous actions. This has been discussed in [BHL+17]. The
labelled transition system we use to define the semantics of these sets of actions
is a distributed labelled transition system, as defined in [LPR+95]. However,
we only became aware of this towards the end of our work. The reason we
define the semantics of simultaneous actions as it is, and not for example using
event structures, is that we wanted to stay as close as possible to the original
semantics of MLSL. However, we did not investigate the effects of allowing
simultaneous actions. This has been considered in [BHL+17].
In [Lin15; LH15] the authors define a spatio-temporal semantics for MLSL,

together with a labelled deduction system to reason about formulas of their
extension of MLSL. In [Lin15] the author defines constraints for a distance
controller and a lane change controller in his logic. The author then proves
with this labelled deduction system that if all cars are equipped with controllers
satisfying these constraints there will be no collisions.
In [LPN11] the authors prove safety of a controller for cars using a logic

called quantified differential dynamic logic (QdL), designed to model and reason
about hybrid systems. Differential dynamic logic (dL) [Pla10a] is an extension
of dynamic logic [HKT01] and features hybrid actions and differential equations.
Using these hybrid actions one can create a hybrid program α and require that
every execution of α should satisfy a formula φ. This can be formalised as
“[α]φ is valid”. Quantified differential dynamic logic [Pla10b] is an extension
of dL using quantifiers over typed variables to model a evolving system, i.e. a
system where participants can dynamically leave and join. However, QdL is
not tailored towards modelling and reasoning about cars. Thus, it is difficult
to validate the model and the property, i.e. to be sure that the model and the
property are appropriate.
A traffic sequence chart (TSC) is a formalism to graphically specify formal

properties for sets of test scenarios of highly autonomous traffic manoeuvres

177

5 Spatio-Temporal Properties with Precise Information

[DMP+18]. The test scenarios are given as hybrid input/output automata, and
the semantics of a TSC is defined in terms of a multi-sorted real-time logic,
similar to metric temporal logic (MTL) [Koy90]. As in QdL, the different sorts
allow for expressing the existence of an object such as a car. In terms of intended
use, TSC is very similar to how we use MLSLS in this chapter. However, for
TSC questions of decidability or robustness (cf. next chapter) have not been
investigated (yet).

In [MN04] the authors develop an offline monitoring algorithm for a fragment
of MTL. In their approach they combine Boolean signals of atomic formulas
to Boolean signals of complex formulas. For this they propagate future values
from the end of the recorded signal backward in time. Additionally, they
implement their approach and showed feasibility. An example formula of MTL
is � (water > 3), which specifies that the water level should always be higher
than 3 metres. We see that the atomic predicate water > 3 is a state expression,
i.e. it defines properties about the current state of the system. This is the
approach we have taken in our work. For an MLSLS formula φ, the spatio-
temporal formula �φ evaluates φ at all points in time. In [BLS11] the authors
define an online monitoring algorithm for a timed linear temporal logic, which
is a real-time extension of LTL. However, this logic is used to measure temporal
distances between events, while our focus of interest are spatial properties of
the current traffic configuration.
There are few spatio-temporal logics allowing quantitative statements. The

closest is Shape Calculus (SC) [Sch04]. With SC we can represent MLSLS
models as long as we restrict ourselves to a bounded number of cars. Then we
require two spatial dimensions (one discrete and one dense) and another dense
dimension for time.

178

6 Monitoring of
Spatio-Temporal Properties
with Imprecise Information

In the previous chapter we defined what it means for an MLSL formula to
hold globally (in the temporal sense) in a transition sequence. However, in the
previous chapter we assumed spatio-temporal data to be known precisely. In
this chapter first we weaken this assumption and allow small errors in spatial
and temporal information. Then we extend our procedure from Chapter 5 which
checks whether an MLSLS formula holds throughout an MLSLS transition
sequence, to also consider imprecise information. This chapter is based on the
work published in [Ody17].

6.1 Monitoring Global Properties with Imprecise
Information

In this section we extend our transformation to check whether an MLSLS
formula holds globally in a transition sequence with a temporal robustness of ε
and a spatial robustness of δ. This allows us to check if, e.g., a behaviour given
as a transition sequence is barely safe or if it is robustly safe.

Here, we consider errors in positional data and imprecisions of when reserva-
tions and claims are set and withdrawn. Similarity on timed words has originally
been defined in [GHJ97]. However, usually the requirement is imposed that
the order of events is equal in similar words. For distributed systems this
requirement seems too strong. Here, we weaken this requirement and allow the
order of independent actions to change in similar words.

Definition 6.1.1 (Independence Relation, [Maz86]). An independence relation
on an alphabet Σ is a symmetric and irreflexive relation I ⊆ Σ× Σ. 4

179

6 Spatio-Temporal Properties with Imprecise Information

We allow for multiple simultaneous actions, i.e. at a given point in time a set
of actions may be executed. As we consider sets of actions there may be a set
containing dependent actions. An example would be that a car simultaneously
removes a claim and sets a reservation. In this work we do not consider such
sets.

Assumption 6.1.2 (Independent Sets of Actions). For an alphabet Σ and an
independence relation I ⊆ Σ×Σ we assume for all words w ∈ P(Σ)∗, all indices
i ∈ {1, . . . ,#w} and all actions a, a′ ∈ w(i) with a 6= a′ that (a, a′) ∈ I. 4

We define that two timed words are causally congruent iff their untimed words
are in the same equivalence class. These are strongly inspired by Mazurkiewicz
traces [Maz86]. However, there the author considers words with letters, while
here we consider words with sets of actions. The difference is that in [Maz86]
two words belong to the same equivalence class iff we can create one word from
the other by repeatedly swapping adjacent independent letters. Here, two words
are in the same equivalence class iff we can create one word from the other by
splitting and joining sets of actions that are adjacent.

Definition 6.1.3 (Causal Congruence). Let I ⊆ Σ × Σ be an independence
relation. For two words w,w′ ∈ P(Σ)∗ with w = 〈A1 . . . An〉 we define that w
and w′ are causally congruent (denoted by w � w′) recursively as

w � w′ iff w = w′ or

(
∃w′′ ∈ Σ∗, i ∈ {1, . . . , n} : w′′ � w′ and(

(〈A1, . . . , Ai−1, Ai ∪Ai+1, Ai+2, . . . , An〉 = w′′ and (Ai ×Ai+1) ⊆ I) or

(〈A1, . . . , Ai−1, Ai \A′, A′, Ai+1, . . . , An〉 = w′′ and A′ ⊆ Ai)
))

.

Two timed words are causally congruent iff their untimed words are causally
congruent. 4

We point out that for a word w satisfying Assumption 6.1.2 all words causally
congruent to w also satisfy Assumption 6.1.2.

In order to better understand our new relation we show some basic properties.
We start by showing that it is an equivalence relation. Then we relate our
congruence relation to the classical congruence relation by Mazurkiewicz. And
finally we relate the relation to our operators on timed words from Chapter 5.

180

6.1 Monitoring Global Properties with Imprecise Information

Lemma 6.1.4. Our causal congruence relation (cf. Definition 6.1.3) is an
equivalence relation.

Proof. An equivalence relation is reflexive, symmetric and transitive. Reflex-
ivity and transitivity can be easily seen in the definition of the relation (cf.
Definition 6.1.3).

For symmetry we argue that we can undo a joining step by splitting and vice
versa. This assumes that in the original word each set of actions respectively only
contains actions that are independent of each other (cf. Assumption 6.1.2).

Our definition of causal congruence is a generalisation of the classical causal
congruence from [Maz86]. We show this by proving that our definition can
simulate the original definition.

Lemma 6.1.5. For an alphabet Σ consider two words w = 〈{σ1}, . . . , {σn}〉 and
w′ = 〈{σ1}′, . . . , {σ′n}〉 with σi, σ′i ∈ Σ for i ∈ {1, . . . , n}, where each letter in the
word is in a singleton set. Further, let w̃ = 〈σ1, . . . , σn〉 and w̃′ = 〈σ′1, . . . , σ′n〉
be two words, where the sets of w and w′ are replaced by their contents. Then

w � w′ iff w̃ �̃ w̃′

for some independence relation I ⊆ Σ × Σ, where �̃ denotes classical causal
congruence from [Maz86].

Proof. We point out that all words w,w′, w̃, w̃′ have equal length. The general
idea is that for the words consisting of singleton sets we consider in this lemma
both causal congruences, our causal congruence and the causal congruence from
[Maz86], can simulate each other. Note that to simulate one step from ∈̃ we
need two steps from our definition.

For the “only if”-direction we argue that for every swapped letters σi and σi+1

we have (σi, σi+1) ∈ I, which implies ({σi} × {σi+1}) ⊆ I. Hence, we can first
join the adjacent letters and then split them apart in swapped order.
For the “if”-direction the reasoning is symmetric.

In this thesis we consider independence of MLSLS actions. As our criterion
what constitutes independent actions we take the view that two actions are
independent if we can execute them in any order and arrive at the same result.
For our purposes this is sufficient. To further simplify things, we only consider
actions from different cars as independent.

181

6 Spatio-Temporal Properties with Imprecise Information

Definition 6.1.6 (Independence Relation for MLSLS Actions). Let ActC be
the actions of car C. We define the independence relation for MLSLS actions as

IAct =

C 6=C′⋃
C,C′∈I

(ActC × ActC′) ∪ (ActC′ × ActC) . 4

Note that Assumption 6.1.2 is ensured by our assumption that each car only
performs at most one action at a time (cf. Page 151).

From now on we consider congruence w.r.t. the congruence relation IAct from
Definition 6.1.6.

Example 6.1.7. Consider w from Example 5.1.13 and w1, w2, w3 shown below:

w = 〈{wd r(E, 3)}, {r(C2)}, {wd r(C2, 2), c(E, 2)}, ∅〉 ,
w1 = 〈{wd r(E, 3)}, {wd r(C2, 2)}, {r(C2)}, {c(E, 2)}, ∅〉 ,
w2 = 〈{r(C2),wd r(E, 3)}, {wd r(C2, 2), c(E, 2)}, ∅〉 ,
w3 = 〈{r(C2)}, {wd r(E, 3)}, {wd r(C2, 2)}, {c(E, 2)}〉 .

For the independence relation IAct we have w1 6� w because we cannot switch
the order of dependent actions, i.e. actions of the same car. We have w2 � w
because we joined actions from different cars. Further, w3 � w2 because we can
always split sets of actions up into any order. At last, from w2 � w, w3 � w2

and transitivity (see the next lemma) we conclude w3 � w. Also note that the
empty set of actions is ignored for the purposes of causal congruence. That is,
we can arbitrarily introduce and remove empty sets of actions. 4

With the following two lemmas we relate our congruence relation to our
operators on timed words.

Lemma 6.1.8. For all timed words %, %′ and sets of car identifiers CS ⊆ I we
have

%� %′ implies (% � CS)� %′ � CS ,

%� %′ implies (% \ CS)� %′ \ CS .

Proof. The properties hold because our operators do not affect the order of the
remaining actions (see also [Maz86, Eq. 8]). In other words, if any two words w
and w′ are causally congruent, then also for each car C the projection to ActC
are equal up to empty sets of actions.

182

6.1 Monitoring Global Properties with Imprecise Information

Lemma 6.1.9. For i ∈ {1, 2}, sets of car identifiers CS ,CS ′ ⊆ I with CS ∩
CS ′ = ∅ and all timed words %i ∈ (P(ActCS)× T)+ and %′i ∈ (P(ActCS ′)× T)+

we have
%1 � %2 and %′1 � %′2 implies (%1 ‖ %′1)� (%2 ‖ %′2) .

Proof. Any actions occurring in %1, %2 are independent of all actions occurring in
%′1, %

′
2 and vice versa. Hence, the parallel composition is causally congruent.

We define a metric on timed words to quantify temporal similarity. We
assume that between two similar timed words the time stamps of all acceleration
actions are equal. The reason for this restriction is that if we allow acceleration
time stamps to differ, perturbations may accumulate. In this thesis we do not
consider such issues. The intuition is that two timed words are ε-similar if any
two corresponding actions are at most ε time units apart. More specifically,
for all actions a ∈ Act we measure the maximal temporal distance of the i-th
a-action in both timed words. Note that a is a single action, and not a set
of actions. For the following definition we remind that ≈ denotes equality up
to interior empty sets of actions and � denotes restriction for timed words (cf.
Pages 153 and 154).

Definition 6.1.10 (Metric on Timed Words). Let Σacc = {a(C, x) | C ∈ I, x ∈
R}. Given two timed words %, %′ with span % = [0, r], span′ % = [0, r′] and
r, r′ ∈ T, we define dt(%, %′) = ∞ if they are not causally congruent, or if
% � Σacc 6≈ %′ � Σacc holds. Otherwise, we have

dt(%, %
′) = max(|r − r′|, sup

a∈Act
(max
i∈{1,...,#τa}

(|τa(i)− τ ′a(i)|))) ,

where τa (resp. τ ′a) is the sequence of the time points when in % (resp. %′) an
action a occurs. That is, t ∈ τa iff ∃j ∈ domw. a ∈ w(j) and τ(j) = t (and
similarly for %′). 4

For the definition above we point out that causal congruence ensures that %
and %′ contain for each a ∈ Act the same number of occurrences of a. In other
words, τa and τ ′a have the same length.

For two timed words %, %′ we say that % and %′ are ε-similar if dt(%, %′) ≤ ε
and we call two timed words similar if there is ε ∈ R>0 such that they are
ε-similar. We make the following observation: For all similar timed words the
order of actions for each car individually is equal. Formally, let %, %′ be two
similar timed words, (wC , τ

′
C) = % � {C} and (w′C , τ

′
C) = %′ � {C}. Then, the

183

6 Spatio-Temporal Properties with Imprecise Information

untimed words wC and w′C are equal up to empty sets of actions. This holds
because similar words are causally congruent.
We show that our function measuring distances of timed words is a pseudo

metric.

Lemma 6.1.11. The tuple ((P(Act)× T)+, dt) is a pseudo metric space.

Proof. We recapitulate the properties that ((P(Act) × T)+, dt) has to satisfy.
For all timed words %, %′, %′′ ∈ (P(Act)× T)+ we have

dt(%, %) = 0 ,

dt(%, %
′) = dt(%

′, %) ,

dt(%, %
′′) ≤ dt(%, %′) + dt(%

′, %′′) .

It is clear that dt(%, %) = 0 and dt(%, %′) = dt(%
′, %).

For the last property we make a case distinction on whether dt(%, %′′) =∞.
If dt(%, %′′) = ∞, then either the time stamps of acceleration actions differ
(% � Σacc 6≈ %′′ � Σacc), or the two timed words are not causally congruent. For
both reasons, the same applies for % and %′ or for %′ and %′′. If this was not the
case, then by transitivity of ≈ and causal congruence that reason would also
apply for % and %′′, which contradicts our assumption.
If dt(%, %′′) 6=∞, it is easy to see that the supremum of absolute differences

satisfies the triangle inequality.

We point out that dt is not a metric on our timed words. If dt was a metric,
then it would also satisfy:

if % 6= %′ then dt(%, %′) > 0 . (6.1)

This does not hold. As a counter example we can use the timed words % =
〈(∅, 1), (∅, 2)〉 and %′ = 〈(∅, 2)〉, for which we have dt(%, %′) = 0 even though they
are different. The idea of Equation (6.1) is to ensure that indiscriminability
of elements is reflected in the metric. If we accept that equality up to interior
empty sets of actions represents indiscriminability of timed words, then dt is a
metric on timed words. That is, we have

if % 6≈ %′ then dt(%, %′) > 0 .

The property holds because if % 6≈ %′ then either their span is different, which
means dt(%, %′) > 0, or one of the timed words has an action at a time t and
the other does not. In this case we again have dt(%, %′) > 0.

184

6.1 Monitoring Global Properties with Imprecise Information

We use our metric on timed words and our notion of robust static satisfaction
to define what it means for a transition sequence to robustly satisfy globally φ.

Definition 6.1.12 (Robust Global Satisfaction). Let M be a proper finite
MLSLS model, % ∈ (P(ActcarsM) × T)+ a timed word, φ an MLSLS formula
and δ ∈ R>0 an allowed spatial error. Then we define that φ holds globally in
%(M) with spatial robustness δ (denoted %(M) |=δ

seq �φ) as

%(M) |=δ
seq �φ iff ∀t. %(M)@t |=δ φ ,

where |=δ is our robust static satisfaction relation (Page 121). Further, for the
aforementioned parameters and an allowed temporal error ε ∈ R>0 we define
that φ holds globally in the transition sequence %(M) with spatial robustness δ
and temporal robustness ε (denoted %(M) |=ε,δ

seq �φ) as

%(M) |=ε,δ
seq �φ iff ∀%′. (dt(%, %′) ≤ ε =⇒ %′(M) |=δ

seq �φ) . 4

We extend our construction to check �φ, where φ is a well-scoped MLSLS
formula, to also check if all similar behaviours also satisfy �φ. To this end, we
define a formula simt that we use to generate for a given timed word an ε-similar
timed word. We split this formula into an elementary version considering timed
words from a single car, and an extended version considering timed words from
multiple cars.
For technical reasons we require that on the FORCF side words and also

timed words contain an empty set as their last set of actions. We call such
(timed) words ∅-terminated. If a timed word % = (w, τ) is not ∅-terminated, we
can create an ∅-terminated version of it as %′ = (w · ∅, τ · (last τ)). Note that %′
is not a timed word as the time stamps are not strictly increasing. However, we
can easily extract the original timed word. Nevertheless, for ease of presentation
we shall refer to such a structure as a timed word.

Definition 6.1.13 (Shaking Temporal Variables for a Single Car). For some car
identifier C ∈ I let w ∈ P(ActC)+ be a ∅-terminated word and ζ, ζ ′ ∈ Seq RTerm
two sequences of real FORCF terms with #ζ = #ζ ′ = #w+1. Then, for ε ∈ R>0

185

6 Spatio-Temporal Properties with Imprecise Information

and n = #ζ we define

simt,E(w, ζ, ζ ′, ε) ≡ ψ(ζ) ∧ ψ(ζ ′) ∧∧
j∈domw

 w(j) ⊆ Σacc =⇒ ∃zj ∈ [−ε, ε]. ζ(j + 1) = ζ ′(j + 1) + zj
∧
w(j) 6⊆ Σacc =⇒ ζ(j + 1) = ζ ′(j + 1)

ψ(ζ) ≡ ζ(1) ≤ ζ(2) ∧ ζ(1) = 0 ∧ ζ(n− 1) ≤ ζ(n) ∧

∧
j∈{2,...,n−2}

ζ(j) < ζ(j + 1)

4
The intuition of the definition above is that the i-th entry of ζ (resp. ζ ′)

is the time stamp of the i-th set of actions in w. For a single car two timed
words are similar iff their untimed words are equal up to empty sets of actions.
Hence, in ψ(ζ) we use ζ(j) < ζ(j + 1) (resp. ζ ′(j) < ζ ′(j + 1)) to ensure that
the order of time stamps are equal. Here, we take special care of the first and
the last time stamp, which both have special meaning. The first time stamp
is fixed to be 0 and does not represent a set of actions. The last time stamp
represents an empty set of actions and is required to be at the end. With the
convention that the i-th time stamp represents the i-th set of actions it follows
that both untimed words are equal. The two ε-similar timed words we get from
a satisfying assignment h are

% = (w, τ) with τ = 〈h(ζ(2)), . . . , h(last ζ)〉 and

%′ = (w, τ ′) with τ ′ = 〈h(ζ ′(2)), . . . , h(last ζ ′)〉 .

Additionally, we distinguish the cases w(j) ⊆ Σacc and w(j) 6⊆ Σacc to ensure
that for the element lastw, which is equal to ∅, the first case holds.

We briefly explain how the restriction to ∅-terminated timed words is helpful.
For an action a ∈ Act consider the timed words % = 〈({a}, 1)〉 and %′ =
〈({a}, 0.9), (∅, 1.1)〉. We want to use the formula simt,E to recognise that % and
%′ are 0.1-similar. If we instantiate the sequences of terms ζ and ζ ′ with the
sequences of time stamps of % and %′, then ζ and ζ ′ have different length and
we do not know which elements to compare. Hence, we ensure that ζ and ζ ′
have equal length. To achieve this, we restrict ourselves to ∅-terminated timed
words. That is, we change % to %′′ = 〈({a}, 1), (∅, 1)〉 and then instantiate simt,E.
Note that this change does not affect temporal similarity.

186

6.1 Monitoring Global Properties with Imprecise Information

We lift our formula to check similarity of timed words to multiple cars.
Similar to Chapter 5 we represent timed words on the FORCF side for each
car individually without interior empty sets of actions (for an example see
Example 5.2.7 on Page 166).

Definition 6.1.14 (Shaking Temporal Variables). For a finite set of car iden-
tifiers CS ⊆ I, two sets of car identifier variables Di ⊆ DVar with i ∈ {1, 2}
and |Di| = |CS | let w ∈ P(ActCS)+ be a ∅-terminated word, gi : Di → CS
two bijective car identifier assignments and Zi : Di → Seq RTerm two functions
assigning sequences of real terms to car identifier variables such that for all
Di ∈ Di we have #Zi(Di) = #wC + 1, where wC with C ∈ CS is the word
that is equal to w � ActC , except that wC has no interior empty sets of actions.
Then, for ε ∈ R>0 we define

simt(w, (Z1, g1), (Z2, g2), ε) ≡
∧

i∈{1,2}
span-eq(Zi) ∧ f(w, (Z1, g1), (Z2, g2), ε) ,

f(w, (Z1, g1), (Z2, g2), ε) ≡
simt,E(wC , Z1(D1), Z2(D2), ε) ∧
f(w \ {C}, {D1} −C (Z1, g1), {D2} −C (Z2, g2), ε)

where Di = g−1
i (C), C ∈ CS if CS 6= ∅ ,

true otherwise ,

span-eq(Z) ≡
∧

D,D′∈domZ
last(Z(D)) = last(Z(D′)) . 4

We prove that our encoding of temporal similarity is appropriate. We split
this proof into two properties: That we can use simt to recognise ε-similarity of
timed words and to generate ε-similar timed words.

Lemma 6.1.15. For all finite nonempty sets of car identifiers CS , i ∈ {1, 2},
timed words %i = (wi, τi) ∈ (P(ActCS)× T)+ and ε ∈ R>0 the following holds:

dt(%1, %2) ≤ ε implies simt(w, (Z1, g1), (Z2, g2), ε) is satisfiable,

where either w = w1 or w = w2, the car identifier variable assignment gi : Di →
CS for some set Di ⊆ DVar is bijective and Zi = {Di 7→ 0 :: τ igi(Di) | Di ∈ Di}
and the timed word (wiC , τ

i
C) with (wiC , τ

i
C) ≈ (%i � {C}) contains no interior

empty sets of actions and is ∅-terminated.

187

6 Spatio-Temporal Properties with Imprecise Information

Proof. The formula simt(w, (Z1, g1), (Z2, g2), ε) unfolds to a conjunction of the
form

span-eq(Z1) ∧ span-eq(Z2) ∧
∧

C∈CS

simt,E(wC , Z1(D1), Z2(D2), ε) ,

where Di is the inverse of gi for C, i.e. for i ∈ {1, 2} we have Di = g(C)−1
i

which is defined as gi is bijective.
As the last entry of Zi is equal for all car identifier variables Di ∈ dom gi, it

is clear that span-eq(Zi) is satisfied.
Next, consider the formula simt,E(wC , Z1(D1), Z2(D2), ε). To create wC we

removed all internal empty sets of actions and ensured that the word is ∅-
terminated. Thus, because of causal congruence of %1 and %2 we know that wC
is not affected by creating it from w1 instead of w2, or vice versa. Hence, the
j-th entry in Z1(D1) and Z2(D2) both are the time stamps of the same action.
If we look at the definition of simt,E we see that ψ(Zi(Di)) is satisfied. At

last, consider the big conjunction in simt,E. For j ∈ domwC , if wC(j) is a
set containing a single acceleration action (wC(j) 6⊆ Σacc), then dt(%1, %2) ≤ ε
ensures that the time stamps of acceleration actions are equal. This means
that Z1(D1)(j + 1) = Z2(D2)(j + 1) is satisfied. Note that the +1 is necessary
because the first entry in Zi(Di) is fixed to be 0 and that we argued earlier that
Z1(D1)(j + 1) and Z2(D2)(j + 1) represents time stamps of the same action
in different timed words. On the other hand, if wC(j) does not represent a
set containing a single acceleration action (wC(j) ⊆ Σacc), then ε-similarity of
%1 and %2 ensures that ∃zj ∈ [−ε, ε]. Z1(D1)(j + 1) = Z2(D2)(j + 1) + zj is
satisfiable.

Next, we show that we can use simt to generate ε-similar timed words. We
briefly explain the intuition of the lemma. We have a timed word % = (w, τ) ∈
(P(ActCS)×T)+ and represent it in a FORCF structure. This structure consists
of a bijective car identifier variable assignment from a subset of DVar to CS
and a function that assigns for each car a sequence such that the j-th entry
in the sequence is the time stamp of the j-th action of that car. For some
i ∈ {1, 2} let this structure be (Zi, gi). Further, we have another FORCF
structure that is structurally equal to the first structure but only contains
independent free variables instead of time stamps. Let this structure be (Zi, gi)
with i ∈ {1, 2} \ {i}. Then, from a satisfying assignment for the formula
simt(w, (Z1, g1), (Z2, g2), ε) we can extract a timed word that is ε-similar to %.
Now, also in Zi for each car the j-th entry is the time stamp of the j-th action

188

6.1 Monitoring Global Properties with Imprecise Information

of that car. That means that for each car individually the time stamps are
perturbed but the order of actions is unchanged. We can create this ε-similar
timed word by creating the parallel composition of the perturbed timed words
for each car.

Lemma 6.1.16. For a finite nonempty set of car identifiers CS and a timed
word % = (w, τ) ∈ (P(ActCS)× T)+ let the car identifier variable assignments
g1 : D1 → CS and g2 : D2 → CS for sets D1,D2 ⊆ DVar be bijective. For
i ∈ {1, 2} let Zi = {D 7→ 0 :: τgi(D) | D ∈ Di}, where the timed word (wC , τC)
with (wC , τC) ≈ % � {C} contains no interior empty sets of actions and is ∅-
terminated. Further, for i ∈ {1, 2} with i 6= i let Zi = {D 7→ ζD | D ∈ Di, ζD ∈
Seq RVar,#ζD = #wgi(D) + 1} with each variable in ranZi being unique. Then,
for ε ∈ R>0 and all assignments h the following holds:

h |= simt(w, (Z1, g1), (Z2, g2), ε) implies dt(%, %
′) ≤ ε ,

where %′ = ‖
D∈dom gi

(wg(D), τ
′
D) and τ ′D = 〈h(Zi(D)(2)), . . . , hi(last(Zi(D)))〉 .

Proof. Let g−1

i
be the inverse of gi, which is defined as gi is bijective. For

C ∈ CS let %C = (wC , τC) and %′C = (wC , %
′
D) with D = g−1

i (C) as defined in
the lemma. Looking at the definition of simt,E we see that ψ(Zi(D)) ensures
that tail τ ′D is a strictly increasing sequence of time stamps, except for the last
time stamp, which is only greater equal than the one before. Thus, it is clear
that %′C is a timed word in the broader sense of this chapter (see the paragraph
on ∅-terminated timed words on Page 185). Further, we see that %C and %′C are
ε-similar.

Next, let us make a brief observation. For this let CS 1,CS 2 be disjoint sets of
car identifiers and let %1, %

′
1 ∈ (P(ActCS1

)× T)+, %2, %
′
2 ∈ (P(ActCS2

)× T)+ be
timed words, where all four timed words have an equal span. Then we observe

max(dt(%1, %
′
1), dt(%2, %

′
2)) = dt(%1 ‖ %2, %

′
1 ‖ %′2) . (6.2)

This holds because the metric considers actions independently, i.e. for two
different actions a, a′ our metric considers all occurrences of a independent of
the occurrences of a′. Note that this property does not hold if the span may
differ because then the parallel composition can hide this difference.
For the timed word %′ = ‖

D∈dom gi
(wg(D), τ

′
D) the formula simt ensures with

span-eq(Zi) that the individual timed words have equal span. And for %′′ =

189

6 Spatio-Temporal Properties with Imprecise Information

‖
C∈CS

%C by construction the individual timed words have equal span. Thus,
using Equation (6.2) and that the corresponding individual timed words are ε-
similar, we conclude that the timed words %′ and %′′ are ε-similar, i.e. dt(%′, %′′) ≤
ε. As %′′ is equal to % up to empty sets of actions, their distance is 0, i.e.
dt(%

′′, %) = 0. From the triangle inequality (cf. Lemma 6.1.11) we conclude
dt(%

′, %) ≤ ε, which means that the lemma holds.

For a structure of variables S (resp. Z) we denote with ∀S (resp. ∀Z)
universal quantification for all data variables in S (resp. temporal variables in
Z).
For the definition below we remind that Π : D → Seq with D ⊆ DVar is

a function that assigns for each car identifier variable D ∈ D a sequence of
FORCF data tuples. Let g : D→ I be a car identifier variable assignment, M
an MLSLS model and % a timed word. Then, by requiring that (Π, g,M, %)
is sane we essentially require that there is a FORCF assignment assigning
values to the variables in Π such that these sequences of values represent
the transition sequence %(M) (cf. Definition 5.2.6 on Page 166). This works
similarly for a FOLRA data tuple p′. Then (p′, g,M) is sane if there is a FOLRA
assignment such that the values assigned to the variables in p′ represent M
(cf. Definition 3.4.2 on Page 114). Further, note that FOLRA is a fragment of
FORCF, which means that it is fine to mingle both formalisms, as we do here.

Definition 6.1.17 (Transforming Global Properties). For a finite proper model
M = (CS ,TS ,Ω, V, ν) and an ∅-terminated timed word % ∈ (P(ActcarsM)×T)+

let D ⊆ DVar and g be such that |D| = | carsM | and g : D → carsM is
bijective. Further, let Z : D → Seq RTerm be an assignment of sequences of
real-valued terms such that for all D ∈ D we have Z(D) = 〈0〉 · τg(D), where
%g(D) ≈ (% � Actg(D)) and %g(D) = (wg(D), τg(D)) contains no interior empty sets
of actions and let Z ′ : D→ Seq RVar be an assignment of sequences of unused
FORCF variables such that for all D ∈ D we have #Z(D) = #Z ′(D). Then we
can easily create an assignment of sequences of data tuples Π : D → Seq Trcf

such that (Π, g,M, %) is sane. Let pf be the combination of all data tuples
last Π(D) with D ∈ D and let p′ = (DS , l1, l2, x

′
1, x
′
2, f,D,S ′, DE) be a FOLRA

data tuple such that (p′, g,M) is sane. Then for an MLSLS formula φ with
freeVar(φ) ⊆ dom ν and ε, δ ∈ R>0 we define

trε,δ� (%,M, φ) ≡ ∀z, Z ′,S ′, x′1, x′2. (((trU(%,M, z, Z ′,Π, g) ∧ saner(p′) ∧
simm((pf , g), (p′, g), δ) ∧ simt(w, (Z, g), (Z ′, g), ε)) =⇒ trlraf (p′, φ)) .

190

6.1 Monitoring Global Properties with Imprecise Information

4
The intuition is that we create an ε-similar timed word and store it in

the variables in Z ′ with simt(w, (Z, g), (Z
′, g), ε). Then we encode the tran-

sition sequence with the perturbed timed word until the freeze time with
trU(%,M, z, Z ′,Π, g). Note that in the previous formula we use % only to encode
the discrete actions, for which for each car individually order is equivalent in
the original timed word and the perturbed one. We store the model Mt at the
freeze time in the variables pf . Then we use simm((pf , g), (p′, g), δ)∧ saner(p′) to
create a model that is δ-similar to Mt and store it in the variables in p′. At last,
we check if this model satisfies the MLSLS formula with trlraf (p′, φ).

We consider a small example.

Example 6.1.18. Consider the transition sequence %0(M0) = %(M) � {C2, E},
where % and M are taken from Example 5.1.13 and the formula

safe ≡ ∀c, c′. (c 6= c′ =⇒ ¬〈re(c) ∧ re(c′)〉)
from [HLO+11], which states that there do not exist two different cars with
overlapping reservations. In the following let the desired temporal robustness
be ε = 0.1 and the desired spatial robustness δ = 1. To determine that � safe
does not hold ε-δ-robustly in %0(M0), we give a satisfying assignment for the
formula ¬tr0.1,1

� (%0,M0, safe). This formula evaluates to

∃z, Z̃, S̃, x̃1, x̃2. (trU(%,M, z, Z̃,Π, g) ∧ simt(w, (Z, g), (Z̃, g), ε)

∧ simm((pf , g), (p̃, g), δ) ∧ saner(p̃) ∧ ¬trlraf (p̃, φ)) , (6.3)

where D = {D,DE}, g = {D 7→ C2, DE 7→ E}, pf = (D, 1, 3, x, x′, f,D,S, DE),
p̃ = (D, 1, 3, x̃, x̃′, f,D, S̃, DE), S = {D 7→ (vDp , . . .), DE 7→ (vDEp , . . .)}, S̃ =

{D 7→ (ṽDp , . . .), DE 7→ (ṽDEp , . . .)} and the functions assigning sequences of
real-valued terms are given as Z = {D 7→ 〈0, 1.1, 5.1, 6.1〉, DE 7→ 〈0, 1, 5.1, 6.1〉}
and Z̃ = {D 7→ 〈z̃D1 , z̃D2 , z̃D3 , z̃D4 〉, DE 7→ 〈z̃DE1 , z̃DE2 , z̃DE3 , z̃DE4 〉}. .
We show a part of trU(%,M, z, Z̃,Π, g) to make clear that here the formula

uses temporal variables, where the value is subject to perturbation, instead of
constants:

(z̃DE1 ≤ z < z̃DE2 =⇒ (trw(〈〉,ME , 〈z̃DE1 〉, 〈pE1 〉, gE) ∧
tra(z − z̃DE1 , ∅, pE1 , pE2 , gE) ∧ F (〈pE2 , pE3 , pE4 〉, gE)))

∧(z̃DE2 ≤ z < z̃DE3 =⇒ . . .)

191

6 Spatio-Temporal Properties with Imprecise Information

where ME = M0 {E}. We saw in Example 5.2.9 that with constant speed the
position in the final data tuple pf is the initial position plus the speed times
the freeze time. Thus, for a freeze time of z = 1 the positions are DE .v

4
p = 34

and D.v4
p = 24. Further, the value of the sensor function is D.v4

Ω = 9 and
DE .v

4
Ω = 16.5.

We choose values for the perturbed temporal variables z̃DE2 and z̃D2 (i.e.
the perturbed time stamps of the first action of both cars) such that at the
freeze time the car C2 has set its reservation and E has not yet withdrawn
its reservation. That is, we choose z̃DE2 = 1.1 and z̃D2 = 1. For the spatial
perturbations we choose to perturb the sensor function of D and the position of
DE by 1, i.e. ṽΩ

D
= 10 and ṽpDE = 33. We do not perturb the other variables.

Now, the perturbed safety envelopes of DE and D have an overlap of length
of 1 and their reservations both contain lane 2. Hence, the formula safe is
not satisfied by the perturbed model, which means that safe does not hold
globally (in the temporal sense) with a temporal robustness of 0.1 and a spatial
robustness of 1. That is, %0(M0) 6|=0.1,1

seq � safe. 4

We prove that our construction is correct.

Lemma 6.1.19. Given proper finite MLSLS model M = (CS ,TS ,Ω, V, ν)
and formula φ with freeVar(φ) ⊆ dom ν, an ∅-terminated timed word % ∈
(P(ActcarsM)× T)+ and ε, δ ∈ R>0 we have

%(M) |=ε,δ
seq �φ iff trε,δ� (%,M, φ) is valid .

Proof. Let Z,Z ′,Π, g, p′, pf be as defined in the definition of trε,δ� . That means,
Z contains the time stamps in %, Z ′ is a structure of fresh temporal variables, g
is a bijective mapping between some set D ⊆ DVar and carsM , Π is a structure
assigning to each D ∈ D a sequence of data tuples such that (Π, g,M, %) is sane
and p′ is a data tuple such that (p′, g,M) is sane.
Case 1 (only if). We start with the “only if”-direction and proceed by
contraposition. The general idea is that we extract values from a satisfying
assignment that represent a point in time t, a timed word %′ and an MLSLS
model M ′ such that %′ is ε-similar to %, M ′ is δ-similar to %′(M)@t and M ′

does not satisfy φ.
Assume that the negation of the right hand side is satisfiable. That is, assume

192

6.1 Monitoring Global Properties with Imprecise Information

that

∃z, Z ′,S ′, x′1, x′2. (trU(%,M, z, Z ′,Π, g) ∧ simt(w, (Z, g), (Z ′, g), ε)

∧ simm((pf , g), (p′, g), δ) ∧ saner(p′) ∧ ¬trlraf (p′, φ)) (6.4)

is satisfiable, where p′ = (DS , l1, l2, x
′
1, x
′
2, f,D,S ′, DE).

Let h be a satisfying assignment that assigns to the existentially quantified
variables suitable values and let %′ be the timed word we get by replacing for
each car the time stamp of each action by the value as assigned to the variables
in Z ′ as defined in Lemma 6.1.16. Then dt(%, %′) ≤ ε.

Note that we can replace % in trU by %′ because the delays are taken from the
real terms in Z ′. From % we only use the discrete actions, the order of which for
each car individually, is equal in % and %′ (ensured by dt(%, %′) ≤ ε). Let Z ′′ be
the structure we get by replacing the variables in Z ′ by the values assigned by
h. Then we can replace z and Z ′ in trU(%′,M, z, Z ′,Π, g) by t and Z ′′ without
affecting satisfaction.

From Lemma 5.3.4 and because pf is the composition of the last data tuples
in Π, we know that satisfaction of trU(%′,M, t, Z ′′,Π, g) implies satisfaction
of trlram (pf , g,Mt). This means that the values assigned to the variables in pf
represent the model Mt. Next, the formulas simm((pf , g), (p′, g), δ) and saner(p′)
ensure that p′ contains a representation of an MLSLS modelM ′ that is δ-similar
to Mt. From Lemma 3.4.7 and h |= trlram (p′, g,M ′) ∧ trlraf (p′, φ) we conclude
M ′ 6|= φ. As dt(%, %′) ≤ ε and dm(Mt,M

′) ≤ δ it follows that %(M) 6|=ε,δ
seq �φ.

Case 2 (if). We continue with the “if”-case and proceed by contraposition.
The general idea is to find FORCF formulas describing the different aspects
of the transition sequence and the static MLSLS formula and show that they
are satisfiable for themselves. Then we argue that their conjunction also is
satisfiable.
Assume %(M) 6|=ε,δ

seq �φ, which means that there is a point in time t, a
timed word %′ = (w′, τ ′) and an MLSLS model M ′ such that %′ is ε-similar
to %, M ′ is δ-similar to %′(M)@t and M ′ does not satisfy φ. For C ∈ carsM
let %′C = (w′C , τ

′
C) be such that %′C is equal to %′ � {C} except that %′C has

no interior empty sets of actions and is ∅-terminated. Let %C = (wC , τC)
be defined similarly. Further, let MC = M {C}, nC = #%′C , %′C(MC) =

MC,0
τ ′C(1)−−−→ MC,1

w′C(1)−−−−→ MC,2 . . .
τ ′C(n)−τ ′C(n−1)−−−−−−−−−−→ MC,2n−1

w′C(n)−−−−→ MC,2n and
let kC ∈ {0, . . . , nC} be the largest index such that τ ′C(kC) ≤ t < τ ′C(kC + 1) or

193

6 Spatio-Temporal Properties with Imprecise Information

kC = n if last τ ′C ≤ t. Then we use the abbreviations

F1 ≡ trlram (pf , g, %
′(M)@t) ,

ψ1 ≡
∧

D∈dom g

(∧
i∈{0,...,kg(D)}

trlram,E(pDi+1,Mg(D),i)
∧

j∈{kg(D)+1,...,ng(D)}
trlram,E(pDj+1, %

′
g(D)(Mg(D))@t)

)
,

ψ2 ≡ trlram (pf , g,Mt) ∧ trlram (p′, g,M ′) ∧ simm((pf , g), (p′, g), δ) ,

ψ3 ≡ simt(w, (Z, g), (Z ′, g), ε) ,

where pDk is an abbreviation for Π(D)(k). Now, ψ1 essentially represents for
every car C ∈ carsM the MLSLS models encountered in %′C(MC) until time t.
The formula ψ1 is satisfiable because it is a conjunction of many formulas of the
form trlram,E(p,M ′′) for some MLSLS model M ′′ and some data tuple p and each
single of these formulas is satisfiable and constrains disjoint sets of variables.
For ψ2, a satisfying assignment simply assigns the values in M ′ and Mt. For
ψ3, a satisfying assignment assigns the time stamps in τ ′ to the variables in Z ′
(cf. Lemma 6.1.15).

Next, we argue that the conjunction of the four formulas above also is
satisfiable. As

∧
D∈D trlram,E(last Π(D), %′g(D)(Mg(D))@t) is a subformula of ψ1, it

follows from Lemma 5.3.5 that ψ1 ⇐⇒ ψ1 ∧ F1. Even though ψ1 ∧ F1 and ψ2

share the variables in pf it is not too difficult to see that their conjunction also
is satisfiable. The reason is that the constraints on their common variables are
on both sides equivalent to F1. As ψ3 shares no variables with ψ1 or ψ2 we can
also add ψ3 such that ψ1 ∧ ψ2 ∧ ψ3 ∧ F1 is satisfiable and let h be a satisfying
assignment.

Next, from Lemma 5.3.4 we know that ψ1 is equivalent to trU(%′,M, t, Z ′′,Π, g),
where Z ′′ : D→ SeqR is a structure containing the time points of %′. Similar
to the “only if”-direction, as dt(%, %) ≤ ε holds we can replace %′ by %, while
preserving equivalence. Additionally, we can replace t and Z ′′ by z and Z ′. To
get a satisfying assignment we can extend h to assign z and the variables in Z ′
the value t and the values in Z ′′.
We remind that Lemma 3.4.7 states that satisfaction of a given MLSLS

formula by a given MLSLS model can be recognised with FOLRA (which
is a fragment of FORCF). Further, Lemma 3.4.6 states that the constraints
representing an MLSLS model with FOLRA formulas are satisfiable. From
these two lemmas and M ′ 6|= φ we deduce that trlram (p′, g,M ′) =⇒ trlraf (p′,¬φ)
is valid and that trlram (p′, g,M ′) is satisfiable. Again we argue that we can add
trlram (p′, g,M ′) ∧ trlraf (p′,¬φ) to the conjunction such that the formula remains

194

6.2 Discussion

satisfiable. That is, we find that

trU(%,M, z, Z ′,Π, g) ∧ trlram (pf , g, %
′(M)@t) ∧ trlram (p′, g,M ′)

∧ simm((pf , g), (p′, g), δ) ∧ simt(w, (Z, g), (Z ′, g), ε) ∧ trlraf (p′,¬φ)

is satisfiable, which means that trε,δ� (%,M, φ) is not valid.

From the previous lemma it follows that %(M) |=ε,δ
seq �φ holds iff trε,δ� (%,M, φ)

is valid. As satisfiability of the first-order theory of real-closed fields [Tar51] is
decidable, we get the following theorem. As we are mainly interested in general
decidability, we did not investigate the complexity of our procedure. We refer
to Lemma 2.4.2 for the complexity of FORCF.

Theorem 6.1.20. For two values ε, δ ∈ R>0 it is decidable whether an MLSLS
formula holds globally in an MLSLS transition sequence with spatial robustness
δ and temporal robustness ε.

6.2 Discussion
Spatio-temporal robustness has been studied before for more abstract formalisms
[DM10; Que13]. However, here the data for which we want to achieve robustness
have a specific meaning because the underlying model of MLSLS is dedicated to
modelling motorway traffic. To this end, we study spatio-temporal robustness,
taking the meaning of data into account.
In real-time systems we distinguish between time-driven and event-driven

real-time systems [Kop91]. In MLSLS we have two kinds of data values: the
event-driven values are claims, reservations and the acceleration. The time-
driven values are position, speed and the braking distance (given by the sensor
function). We study temporal robustness only for claims and reservations. For
this we use the methodology from timed languages, where time stamps are
perturbed [GHJ97]. Additionally, we study spatial robustness for the time-driven
values position and braking distance in a static “timeless” manner at the level
of traffic snapshots. In [FP09] such a “timeless” approach to spatial robustness
has been done for Metric Temporal Logic.

One of the goals in the definition of original MLSL was to reduce complexity
of spatial reasoning by separating the spatial aspects from the car dynamics

195

6 Spatio-Temporal Properties with Imprecise Information

[HLO+11]. In this sense, the introduction of temporal robustness by perturbing
time stamps seems well suited for MLSL because we separate temporal robustness
from spatial robustness, which simplifies reasoning.
A disadvantage of our approach is that at the linking of time-driven and

event-driven values (here acceleration, which is event-driven and affects future
evolution of time-driven values) we do not achieve temporal robustness, as it
affects spatial robustness. In other words, we do not allow perturbation of
actions that change the acceleration of a car.
For our approach to temporal robustness we consider similarity of timed

words. A definition how to quantify similarity of timed words is defined in
[GHJ97]. However, there the requirement is made that timed words have an
infinite distance if they do not agree on the order of events. In [AFS04] the
authors define a quantitative notion of (bi)similarity. However, they define that
the i-th position in one sequence is compared to the i-th position in another
sequence, i.e. they do not consider that the order of events may not always
be relevant. Since in our thesis the timed words originate from a distributed
system, which makes it unreasonable to always consider the order of events as
relevant. Hence, we define an independence relation in the sense of [Maz86] and
in our definition of similarity allow for independent events to change their order.
To the best of our knowledge, a quantitative comparison of timed words under
consideration of causality has not been used before.

6.3 Related Work
There exists a lot of work on monitoring temporal properties in dense time
formalisms. This was then extended to checking how robustly (in the spatial
sense) a signal satisfies a Metric Temporal Logic formula [FP09]. In [DM10] the
authors extend this to consider spatio-temporal robustness of Signal Temporal
Logic (STL), a temporal logic that works with dense time and dense data defined
in [MN04]. In [DM10] the authors compute a spatio-temporal robustness degree
for a given real-time signal and an STL formula. The signal is given as a sequence
of time-stamped measurements and the value of the signal in between these
measurements is linearly interpolated. The authors propose a new real-valued
valuation function for STL. Using this new semantics they provide algorithms
to compute for a given signal and formula the spatial robustness degree δ, and
the temporal robustness degree ε for a given desired spatial robustness δ. That
means, if a signal s and a formula φ have a robustness degree of (ε, δ), then we

196

6.3 Related Work

can perturb the signal temporally by ε and spatially by δ and the resulting signal
still satisfies φ. Formally, to define temporal robustness they use a retiming
function α : T → T that temporally distorts a signal s to a new signal s′ by
defining s′(t) = s(α(t)).

In [Que13; QFD11] the authors define a notion of spatio-temporal similarity
for traces of hybrid systems. They use this to define ε-δ-refinement of hybrid
systems. A hybrid system α ε-δ-refines a hybrid system β iff for every trace σα
of α, there is a trace σβ of β such that σα and σβ are ε-δ-similar. Their notion
of spatio-temporal similarity is close to the notion of spatio-temporal robustness
used in [DM10]. The authors define a variation of MTL. Then they show for a
formula φ, if β satisfies φ and α ε-δ-refines β, then α satisfies φε,δ, where φε,δ is
created by shaking the constants in φ.
In [AD14] the authors perform online monitoring of spatial properties for

a driving car. In contrast to our work, they take a very low level view (little
abstraction) and they cannot easily check arbitrary spatial properties.

197

7 Model Checking
Temporal Properties with a
Multi-Valued Semantics

In Chapters 5 and 6 we considered temporal properties requiring that something
holds globally. We used a Boolean semantics for these properties. That is,
they either could be satisfied or not. Another typical temporal property is
that something happens eventually. In this chapter we consider properties of
the form that something happens soon. To formalise such properties we use
discounting in temporal logics using a multi-valued semantics.
In economics, discounting represents that money earned sooner can be rein-

vested earlier and hence yields more revenue than money earned later. Dis-
counting has been introduced into temporal logics to represent that something
good happening earlier is more important than similar events happening later
[dHM03]. A typical example is a rail-road crossing. Consider the property
“eventually the gates are open”. While a controller leaving the gates closed an
hour after the train has passed is safe and alive, it is not useful. We can use
discounting to express that the controller should not wait unnecessarily long
before opening the gates. The discount here is a scalar defining the slope of
an exponential function assigning weights to events based on their (relative)
time of occurrence. In [dFH+05; dHM03; ABK14] such weighted evaluation of
temporal properties has been described as quantifying the temporal quality of a
system.

So far discounting in logics only has been studied for discrete-time temporal
logics (LTL, CTL*, µ-calculus) [dFH+05; ABK14; MR14; Man12; dHM03].
Here, we study discounting in the dense-time logic Duration Calculus (DC)
[ZHR91]. Our interest in DC arises from its expressiveness, being able to express
properties of accumulated durations and its closeness to MLSL.
We define Discounted Duration Calculus (DDC), where the truth value is

real-valued in the interval [0, 1], instead of Boolean. A truth value closer to

199

7 Temporal Properties with a Multi-Valued Semantics

1 means higher temporal quality. With DDC we can express properties such
as ♦ dφ (meaning “soon with discount d ∈ [0, 1] the system satisfies φ”), where
φ is a DDC formula and ♦ is the right neighbourhood modality from [ZH97].
To evaluate the truth value of ♦ dφ on the interval [t0, t1] we search for a
neighbouring interval [t1, t2] such that the discounting factor dt2−t1 multiplied
with the truth value of φ on [t1, t2] is maximal. We point out that we use
exponential discounting because this is the most common from of discounting.
However, other discounting mechanisms are possible.
This chapter is based on the work published in [OFH16]. In this thesis we

added proofs left out in the publication. Additionally, we slightly generalised
the notion of “whenever E happens, then φ holds”. Finally, we do not connect
DDC through timed words with timed automata. Instead, we directly connect
runs of timed automata with trajectories, which we use to define the semantics
of DDC.

7.1 Discounted Duration Calculus
To introduce discounting into a temporal logic we found it helpful to have a
notion of “now” and discount as we go into the future. Hence, we use an adapted
version of DC, where the chop operator is replaced by the right neighbourhood
modality. As atomic formulas, we allow comparison of linear combinations of
durations with constants. For the following definition we recall that B(V) is the
set of propositional logic formulas using the set of state variables V as variables
(cf. Page 14). Further, for S ∈ B(V) we say that S is a state expression.

Definition 7.1.1 (Syntax of DDC). For n ∈ N, i ∈ {0, . . . , n} and a set of state
variables V let d, ki, c ∈ Q, where d ∈ [0, 1], &∈ {≥, >} and Si ∈ B(V). Then
the formulas φ of Discounted Duration Calculus (abbreviated DDC) are defined
by the grammar

φ ::= Σni=0ki ∗
∫
Si & c | ¬φ | φ ∨ φ | ♦ dφ .

Let DDC<1 denote the fragment of DDC where all discounts d are strictly less
than 1. 4

In [OFH16] we defined the semantics of DDC on trajectories, which we derived
from timed words. The timed words then were generated or accepted by timed
automata. Here, we do not use timed words to connect timed automata to

200

7.1 Discounted Duration Calculus

DDC. This has two reasons. The first reason is that the use of timed words
in [OFH16] is inconsistent with our use of timed words in previous chapters
of this thesis. In the previous chapters we use timed words as a time-stamped
sequences of events, where each event affects the current state. In [OFH16] we
use timed words as a time-stamped sequence of states. The other reason is that
[OFH16] is not clear in how timed words are generated. Thus, in this thesis
we decided to connect runs of timed automata directly to trajectories. Our
approach to connect timed automata to DDC closely follows [Hoe06]. There the
author connects Duration Calculus to so-called Phase Event Automata, which
are similar to timed automata.

The semantics of a DDC formula φ on the basis of a trajectory τ is a function

τ(φ) : Intv → [0, 1] ,

where Intv = {[t, t′] ⊆ span(τ) | t ≤ t′} denotes the set of bounded and
closed real intervals contained in span(τ). The function τ(φ) assigns to [t, t′] a
satisfaction value in the real interval [0, 1], where closer to 1 means better.

Discounts d occur only in connection with the right neighbourhood modality
♦ dφ, which expresses that an adjacent interval to the right of the current
interval satisfies φ. The discount d is used to decrease the satisfaction value as
the length of the adjacent interval necessary to satisfy φ. The modal formula
♦ dφ can be understood as “soon φ holds”.

Definition 7.1.2 (Semantics of DDC). For n ∈ N, i ∈ {0, . . . , n} let d, ki, c ∈ Q,
where d ∈ [0, 1], &∈ {≥, >} and Si ∈ B(V). The semantics of a formula φ,
given a trajectory τ and an interval [t0, t1], yields a value τ(φ) [t0, t1] ∈ [0, 1]
defined inductively as follows:

τ(Σni=0ki
∫
Si & c) [t0, t1] =

{
1 if Σni=0ki

∫ t1
t=t0

τ(Si)(t) dt & c ,

0 otherwise ,

τ(¬φ) [t0, t1] = 1− τ(φ) [t0, t1] ,

τ(φ0 ∨ φ1) [t0, t1] = max(τ(φ0) [t0, t1], τ(φ1) [t0, t1]) ,

τ(♦ dφ) [t0, t1] = sup
t2∈span(τ),
t2≥t1

(dt2−t1 ∗ τ(φ) [t1, t2]) . 4

We use common abbreviations, such as true, false, ∧, < and ≤. If we have a
discount of 1 we usually do not write it explicitly. That is, for a DDC formula

201

7 Temporal Properties with a Multi-Valued Semantics

φ we define ♦φ ≡ ♦ 1φ. We define as abbreviation a modality

� dφ ≡ ¬♦ d¬φ ,

which can be understood as “φ holds for a long time”. For some interval [t0, t1]
the semantics is

τ(� dφ) [t0, t1] = 1− sup
t2∈span(τ),
t2≥t1

(dt2−t1 ∗ (1− τ(φ) [t1, t2])) .

We point out that in the formula above the supremum searches for a small
t2 ≥ t1 that makes the truth value of τ(φ) on [t1, t2] small. Further, the greater
the interval [t1, t2] is chosen, the greater the truth value of � dφ becomes. Note
that the truth value of � dφ increases with the decrease of d, while the truth
value of ♦ dφ decreases with the decrease of d.

To express that a state expression S holds throughout an interval, we use the
abbreviation

dSe ≡
∫
¬S = 0 ∧ ` > 0 ,

where ` is an abbreviation of
∫

true for an arbitrary state expression S′.
From [Hoe06; ZH04] we take the idea to encode events, which we represent as

value changes of state variables. That means that at time t the event S occurs
if there is t0, t1 with t0 < t < t1 such that the truth value of S on the interval
[t0, t) is different from the truth value of S on [t, t1). We formalise this as

lS ≡ d¬Se ∧ ♦ dSe ∨ dSe ∧ ♦ d¬Se .

Note that here lS requires proper intervals, while in [Hoe06] point-intervals are
required. The difference stems from the fact that here S “happens” at the right
end of the current interval, while in [Hoe06] S “happens” during the current
interval.

With ♦♦φ we express that on some right interval, which may or may not be
adjacent to the current interval, φ holds. We shall use the abbreviation FlS φ
to denote that there is some future point in time t, where S “happens” and φ
holds. That is, φ holds on [t, t] and S changes its value at t. We formalise this
as

FlS φ ≡ ♦♦ (lS ∧ ♦ (` = 0 ∧ φ)) .

Further, we define
GlS φ ≡ ¬FlS ¬φ .

202

7.1 Discounted Duration Calculus

τ P
1

0
0 2 3 5 6 8 9 11 12 141 4 7 10 13

τ′

P
1

0
2 4 5 6 7 8 11 12 13 140 1 3 9 10

Q 1

0

Figure 7.1: Graphical representation of two trajectories. We assume that the
variables do not change their values after time point 14.

To understand the intuition of this formula we point out that GlS φ is equivalent
to �� (lS =⇒ � (` = 0 =⇒ φ)). Thus, the formula GlS φ means that
whenever S happens, then also φ holds.

Example 7.1.3. Consider the three formulas φ0, φ1 and φ2 shown below:

• φ0 ≡ ♦ 0.8(
∫
P ≥ 3), which means “soon P holds for at least 3 time units”,

• φ1 ≡ ♦ 0.9 � 0.8(
∫
P −

∫
¬P ≤ 3), which means “soon P should hold no

more than 3 time units more than ¬P , for a long time”, and

• φ2 ≡ GlQ ♦ 0.8(
∫
P ≥ 2), which means “every time Q changes its value,

then soon P holds for at least 2 time units”.

We evaluate these formulas on the trajectories depicted in Figure 7.1. In our
examples we use h to denote equality after rounding to two positions behind
decimal point.

Evaluate φ0 on τ: The earliest point when
∫
P ≥ 3 is satisfied is at t = 4. We

calculate:
τ(♦ 0.8(

∫
P ≥ 3)) [0, 0]

= supt∈span(τ)(0.8
t ∗ τ(

∫
P ≥ 3) [0, t])

= 0.84 h 0.41

203

7 Temporal Properties with a Multi-Valued Semantics

Evaluate φ1 on τ: In φ1 the inner modality is given t0 and chooses the smallest
t1 such that

∫
P −

∫
¬P ≤ 3 is violated. The outer modality chooses t0 such that

the product of its discount 0.9t0 multiplied with the truth value archived by the
inner modality becomes maximal. We calculate (assuming that t0, t1 ∈ span(τ)):

τ(♦ 0.9 � 0.8(
∫
P −

∫
¬P ≤ 3)) [0, 0]

= supt0≥0(0.9t0 ∗ (1− supt1≥t0(0.8t1−t0 ∗ (1− τ(
∫
P −

∫
¬P ≤ 3) [t0, t1]))))

= 0.92 ∗ (1− 0.812−2 ∗ (1− τ(
∫
P −

∫
¬P ≤ 3) [t0, t1])

= 0.92 ∗ (1− 0.812−2 ∗ (1− 0)) h 0.72

Evaluate φ2 on τ′: We evaluate φ′ ≡ ♦ 0.8(
∫
P ≥ 2) on all point inter-

vals [t, t], where Q changes its value. For τ′ these points are 1, 4 and 9.
The truth value is min(τ′(φ′) [1, 1], τ′(φ′) [4, 4], τ′(φ′) [9, 9]), which evaluates to
min(0.84−1, 0.88−4, 0.814−9) h 0.33. 4

Comparison of Duration Calculus and Discounted Duration Calculus

Our logic Discounted Duration Calculus (DDC) is strongly inspired by Duration
Calculus (DC). We briefly consider the common features and the differences of
these two logics. The main differences of DC and DDC are that

• DC features the contracting chop modality, while DDC uses the expanding
right neighbourhood modality, and

• DC has a Boolean semantics, while DDC has a real-valued semantics.

The main commonalities of DC and DDC are that

• both are interval-based real-time temporal logics and

• DDC uses the integral operator first defined and used in temporal logics
in DC.

7.2 Approximate Model Checking
In this section we prove that for a relevant fragment of DDC it is approximable
how well a model satisfies a formula, where the model is given as a timed
automaton [AD94].

As model we use timed automata that have state variables that hold in states.
Additionally, our timed automata have a set of allowed initial clock valuations,

204

7.2 Approximate Model Checking

where the initial value of a clock may be different from 0. Further, we assume
that our timed automata are strongly non-Zeno [AMP+98]. This is the case iff
there is a nonzero constant c ∈ R>0 such that in every control cycle at least c
units of time passes. Formally, for every path l0

e0−→ . . .
en−1−−−→ ln with l0 = ln

there is an edge that resets some clock x and an edge or a location with a
constraint x ≥ c. For ease of exposition we assume this constant to be a natural
number greater than 0. We assume strong non-Zenoness because we reduce
general approximative model checking to approximative time-bounded model
checking. Then, if the timed automaton is strongly non-Zeno, we can reduce
approximative time-bounded model checking to approximative step bounded
model checking. Additionally, we assume that our timed automata contain no
deadlocks, which is standard.
Classically, in language based model checking we check if all behaviours of

a model (here a timed automaton A) satisfy a property φ. That is, we check
L(A) ⊆ L(φ). This is equivalent to L(A) ∩ L(φ) = ∅. In model checking we
search the complete state space and either find a witness in L(A)∩L(φ), which
proves that A does not satisfy φ. Or there is no such witness. In this case
A satisfies the property φ. Thus, we arrive at the following definition of a
model checking function. As we work with real-valued truth values, here model
checking gives a value in the interval [0, 1]. Further, here we consider trajectories
instead of words.

Definition 7.2.1 (Model Checking Timed Automata). Let A be a timed
automaton and φ a DDC formula. We define model checking as computing

mc(A, φ) =

{
infτ∈T (A)(τ(φ) [0, 0]) if T (A) 6= ∅ ,
1 otherwise .

Note that mc(A, φ) ∈ [0, 1]. 4
We give our definition of approximate model checking.

Definition 7.2.2 (Approximate Model Checking). Let A be a timed automaton,
φ be a DDC<1 formula and let ε ∈ (0, 1] be the desired precision. Then
approximate model checking is the task to compute a truth value v ∈ R with
0 ≤ v ≤ 1 such that

v ∈ mc(A, φ)± ε ,
where mc(A, φ)± ε is the set of all real values that are ε-close to mc(A, φ) (cf.
Page 12). 4

205

7 Temporal Properties with a Multi-Valued Semantics

Next we define the time-bounded prefix for trajectories similar to how we
defined it for timed words.

Definition 7.2.3 (Time-Bounded Prefix). Let V be a set of state variables
and an interval T ⊆ T, where we allow T to be infinite. For a trajectory
τ : V → T → {0, 1} and δ ∈ T we define the time-bounded prefix of τ until δ as

pre(τ, δ) = {P 7→ ([0, δ]C τ(P)) | P ∈ V } .

We abbreviate pre(τ, δ) with τδ. 4
The intuition of the definition above is that we cut off everything after δ.

If δ 6∈ span τ, then the domain restriction ensures that the trajectory remains
unchanged.
We want to compute v ∈ supτ∈T (A)(τ(φ) [0, 0]) ± ε. However, before that

we introduce the following lemma, which states that we can bound the error
when computing the satisfaction of a formula by a trajectory on a shortened
trajectory. The error done depends on the length of the span of the shorter
trajectory and on the maximal discount occurring in the formula.

Example 7.2.4. Consider the formula φ0 ≡ ♦ 0.8
∫
P ≥ 3 and the trajectory

τ from Example 7.1.3. Then τ3(♦ 0.8
∫
P ≥ 3) [0, 0] = 0 and τ4(♦ 0.8

∫
P ≥

3) [0, 0] = 0.84. The difference between τ3(φ0) [0, 0] and τ4(φ0) [0, 0] is less than
the discount to the power of the length of the shorter trajectory, i.e. less than
0.83. 4
We proceed to the lemma mentioned earlier.

Lemma 7.2.5. Given a DDC<1 formula φ, a trajectory τ, two bounds δ, δ′ ∈
R>0 ∪ {∞} with δ ≤ δ′ we have

|τδ(φ) [0, 0]− τδ′(φ) [0, 0]| ≤ dδ ,

where d is the maximal discount occurring in φ and d = 1 if there is none.

Proof. We first prove a slightly different claim and show later that this claim
implies the lemma. The claim is that for all ε ∈ R>0 there is ε′ ∈ (0, ε] such that

|τδ(φ) [0, 0]− τδ′(φ) [0, 0]| ≤ dδ + ε′ .

The idea behind ε and ε′ is that we can show that the difference does not
exceed dδ by “much”. In other words, the amount the difference exceeds dδ is

206

7.2 Approximate Model Checking

arbitrary small. We use both values near the end of the proof. We generalise
the inequality above to an arbitrary current interval to have a usable induction
hypothesis. For all intervals I = [t0, t1] with t0 ≤ t1 ≤ δ and t0, t1 ∈ R≥0 and
all ε ∈ R>0 there is ε′ ∈ (0, ε] such that

|τδ(φ) I − τδ′(φ) I| ≤ dδ−t1 + ε′ ,

where I = [t0, t1], t0 ≤ t1 ≤ δ and t0, t1 ∈ R≥0. We proceed by induction on the
structure of φ.
Induction base.
Let φ ≡∑n

i=0 ki
∫
Si & c. Then τδ(φ) I and τδ′(φ) I ignore everything outside

I, which means that both values are equal.
Induction hypothesis.
For all φ1 and φ2, δ, δ′ ∈ R>0 ∪{∞} with δ ≤ δ′, all intervals [t0, t1] = I ⊆ [0, δ]
and all ε ∈ R>0 there is ε′ ∈ (0, ε] such that

|τδ(φ1) I − τδ′(φ1) I| ≤ dδ−t11 + ε′ , IH1

|τδ(φ2) I − τδ′(φ2) I| ≤ dδ−t12 + ε′ . IH2

where di is the maximal discount occurring in φi.
Induction step.
Case 1 (φ ≡ ¬φ1). Now, |τδ(¬φ1) I − τδ′(¬φ1) I| evaluates to |τδ′(φ1) I −
τδ(φ1) I|. The claim follows from the IH.
Case 2 (φ ≡ φ1 ∨ φ2). The absolute difference |τδ(φ) I − τδ′(φ) I| evaluates
to |max(τδ(φ1) I, τδ(φ2) I)−max(τδ′(φ1) I, τδ′(φ2))|. We do a case distinction
on what the two maxima evaluate to, i.e. whether both sides of the difference
evaluate the same subformula.

Subcase 2.1 (τδ(φ1) I ≥ τδ(φ2) I and τδ′(φ1) I ≥ τδ′(φ2)). In this case
|τδ(φ) I − τδ′(φ) I| is equal to |τδ(φ1) I − τδ′(φ1) I|. Using the IH it follows
that |τδ(φ1) I − τδ′(φ1) I| ≤ dδ−t11 + ε′. As d1 ≤ d we conclude dδ−t11 + ε′ ≤
dδ−t1 + ε′, which finishes this case.
Subcase 2.2 (τδ(φ1) I < τδ(φ2) I and τδ′(φ1) I < τδ′(φ2)). This case is
symmetric to the previous one.
Subcase 2.3 (τδ(φ1) I ≥ τδ(φ2) I and τδ′(φ1) I < τδ′(φ2)). In this case the
difference evaluates to |τδ(φ1) I − τδ′(φ2) I|. We collect the assumptions of
this case in the following equations:

τδ(φ1) I ≥ τδ(φ2) I , (7.1)
τδ′(φ1) I < τδ′(φ2) I . (7.2)

207

7 Temporal Properties with a Multi-Valued Semantics

Using the induction hypothesis and the assumptions of this case we get the
following two chains of inequalities, which bound τδ(φ1) I from below and
from above:

τδ(φ1) I
(7.1)
≥ τδ(φ2) I

IH2
≥ τδ′(φ2) I − dδ−t12 − ε′ ,

τδ(φ1) I
IH1
≤ τδ′(φ1) I + dδ−t11 + ε′

(7.2)
< τδ′(φ2) I + dδ−t11 + ε′ .

The two inequalities above mean that the absolute difference of τδ(φ1) I and
τδ′(φ2) I is at most max(dδ−t11 , dδ−t12) + ε′. As max(d1, d2) = d, the lemma
follows.
Subcase 2.4 (τδ(φ1) I < τδ(φ2) I and τδ′(φ1) I ≥ τδ′(φ2)). This case is
symmetric to the previous case.

We conclude that the lemma holds for φ ≡ φ1 ∨ φ2.
Case 3 (φ ≡ ♦ d0φ1). We proceed to the last case φ ≡ ♦ d0φ1 with d0 ≤ d
and d0 ∈ [0, 1]. We define two functions f : X → [0, 1], f ′ : X ′ → [0, 1] with
X = {x ∈ R | t1 ≤ x ≤ δ} and X ′ = {x ∈ R | t1 ≤ x ≤ δ′} as

f(t) = dt−t10 ∗ τδ(φ1) [t1, t] ,

f ′(t) = dt−t10 ∗ τδ′(φ1) [t1, t] .

Then we have to show

| sup f − sup f ′| ≤ dδ−t1 + ε′ ,

which is equivalent to

sup f ≤ sup f ′ + dδ−t1 + ε′ and (7.3)

sup f ′ ≤ sup f + dδ−t1 + ε′ . (7.4)

Subcase Equation (7.3). We start by showing sup f ≤ sup f ′ + dδ−t1 + ε′.
Let s ∈ Seq∞X be an infinite sequence with limi→∞ f(s(i)) = sup f and
note that X ⊆ X ′, which means that we can use s together with f ′. As
f(s(i)) with growing i converges towards sup f , there is n ∈ N such that the
sequence from n onwards is ε′

2 -close to sup f . Let t = s(n). In the steps
below we use the IH with the precision set to ε0 = ε′

2 . Also, note that d0 ≤ d.

208

7.2 Approximate Model Checking

We get

|f(t)− f ′(t)| = |dt−t10 ∗ τδ(φ1) [t1, t]− dt−t10 ∗ τδ′(φ1) [t1, t]|
= dt−t10 ∗ |τδ(φ1) [t1, t]− τδ′(φ1) [t1, t]|
IH
≤ dt−t10 ∗ dδ−t + ε′0 ≤ dt−t1 ∗ dδ−t + ε′0 ≤ dt−t1+(δ−t) + ε′0

≤ dδ−t1 + ε′0 ,

(7.5)

where ε′0 ∈ (0, ε
′

2].
As f(t) and sup f are ε′

2 -close, we know | sup f −f ′(t)| ≤ |f(t)−f ′(t)|+ ε′

2 .
Combining this with Equation (7.5) we get

| sup f − f ′(t)|
ε′
2 -close
≤ |f(t)− f ′(t)|+ ε′

2

(7.5)
≤ dδ−t1 + ε′0 +

ε′

2
≤ dδ−t1 + ε′ ,

which implies sup f ≤ f ′(t) + dδ−t1 + ε′. As f ′(t) ≤ sup f ′ we can weaken
the upper bound to sup f ≤ sup f ′ + dδ−t1 + ε′.
Subcase Equation (7.4). We continue by showing sup f ′ ≤ sup f+dδ−t1 +ε′.
This direction mostly works as the other one. However, we have to watch out
as the domain of f ′ may be larger than the domain of f . Let s′ ∈ Seq∞X ′

be an infinite sequence converging to the supremum of f ′. Then there is
n such that t = s′(n) is ε′

2 -close to sup f ′. We make a case distinction on
whether t > δ.

If t > δ, then f ′(t) and f(δ) both are less or equal dδ−t1 , which implies
the desired property. Formally, as all formulas evaluate on all trajectories to
some value ≤ 1, we know f ′(t) ≤ dt−t10 . Next, we conclude dt−t10 ≤ dδ−t1 ,
which implies sup f ′ ≤ dδ−t1 + ε′

2 . Similarly, we know f(δ) ≤ dδ−t1 , which
means |f(δ)− sup f ′| ≤ dδ−t1 + ε′

2 . This difference gives us an upper bound
for sup f ′, i.e. sup f ′ ≤ f(δ) + dδ−t1 + ε′

2 . As f(δ) ≤ sup f , we can weaken
this upper bound to conclude sup f ′ ≤ sup f + dδ−t1 + ε′.

If t ≤ δ we can proceed as in the case of Equation (7.3) from Equation (7.5)
onwards.

This finishes the case φ ≡ ♦ d0φ1.
Now, if for all ε ∈ R>0 there is ε′ ∈ (0, ε] such that |τδ(φ) I−τδ′(φ) I| ≤ dδ−t1 +ε′,
then we also know |τδ(φ) I − τδ′(φ) I| ≤ dδ−t1 . Otherwise, we would have an ε

209

7 Temporal Properties with a Multi-Valued Semantics

for which the property does not hold. By choosing I = [0, 0] and t1 = 0 we see
that the lemma holds.

With the previous lemma we can approximate the satisfaction of a DDC<1

formula by an infinite trajectory. For this we compute the point in time
δ = logd ε such that the value of v is almost not affected by any suffix of the
trajectory starting at time δ. This is possible because all modalities in DDC<1

are discounted by less than 1 and hence the effect of a trajectory on the truth
value becomes less and less as time advances. Note that for other discounting
functions, e.g. 1

1+d∗(t−t′) , other computations are necessary. However, for any
computable strictly monotonic discounting function with limit 0 such a point,
after which the effect on the truth value is ≤ ε, is computable. From the previous
lemma we get the following corollary.

Corollary 7.2.6. Given a DDC<1 formula φ and an allowed error ε, let d be
the largest discount constant occurring in φ such that for all other discounts d′
in φ we have d′ ≤ d and let δ = logd ε. Then for any trajectory τ we have

|τ(φ) [0, 0]− τδ(φ) [0, 0]| ≤ ε .

To check to what extent a timed automaton satisfies a formula we use a
bounded unfolding of the transition relation. The following lemma specifies
which variables we use in the unfolding. The construction can be found, e.g., in
[TMM02; BL11; KJN12].

Lemma 7.2.7 (Bounded Unfolding, [TMM02; BL11; KJN12]). Given a timed
automaton A = (L,→, Init, I, Lab, V,Λ,X), a step bound m and a time-bound δ
let t = 〈t0, . . . , tm〉, P = 〈P0, . . . , Pm〉 with P ∈ V be sequences of LRA variables
and let V = {P | P ∈ V } be a set of such sequences. We can create a LRA
formula FA(t, V ,m, δ) such that

• if A has a run π = 〈(l0, β0, ν0), t0), . . . , (lm, βm, νm), tm), . . . 〉 with tm = δ,
then

{ti 7→ ti | i ∈ {0, . . . ,m}}
] {Pj 7→ βj(P) | P ∈ V, j ∈ {0, . . . ,m}} |= FA(t, P ,m, δ) and

• for any assignment h |= FA(t, V ,m, δ) the trajectory τ with τ(P)(t) =
h(Pi), where P ∈ V , h(ti) ≤ t < h(ti+1) and t ≤ δ is the δ-prefix of some
trajectory τ′ ∈ T (A), i.e. pre(τ′, δ) = τ.

210

7.2 Approximate Model Checking

The intuition of the lemma above is that the prefix until δ of a trajectory is
described using variables ti, Pi, for 0 ≤ i ≤ m. If in the interval [ti, ti+1) the
propositional variable P holds, then Pi is assigned the value true, and otherwise
the value false. Note that as we assume that the timed automaton contains no
deadlocks, any prefix of a run can be extended to an infinite run.

7.2.1 Encoding of the Semantics for Formulas
We encode the semantics of DDC in FOLRA. As the semantics of DDC uses
exponentials, we cannot encode the exact semantics. However, we can approx-
imate the truth value with finite but arbitrary high precision. We use this
encoding to prove that approximative model checking of DDC<1 for strongly
non-Zeno timed automata is computable.
The general idea is to introduce for each subformula a fresh variable. Then

we constrain this variable to take the truth value of the formula on the given
interval and the given trajectory. In more detail, for a DDC<1 formula φ and a
current interval given as FOLRA terms θ0 and θ1 we define a FOLRA formula
x isSemOfm φ θ0 θ1 expressing that the free variable x approximates the truth
value of φ on [θ0, θ1]. This formula is defined by induction over the structure
of φ. We connect this to the bounded unfolding of the transition relation via
conjunction. That is, for FA(t, V ,m, δ) ∧ (x isSemOfm φ 0 0) and a satisfying
assignment h the value h(x) approximates the truth value of φ on a trajectory
τ with a matching run π of A, where t, V represents the first δ time units of
this trajectory and m is the number of transitions taken in the run π during
the first δ time units.

We use the following FOLRA abbreviations to express that the free variable
x is equal to the greater (resp. smaller) term of θ1 and θ2:

MAX(x, θ1, θ2) ≡ (θ1 < θ2 =⇒ x = θ2) ∧ (θ1 ≥ θ2 =⇒ x = θ1) ,

MIN(x, θ1, θ2) ≡ (θ1 < θ2 =⇒ x = θ1) ∧ (θ1 ≥ θ2 =⇒ x = θ2) .

Encoding of τ(Σnj=0kj
∫
Sj & c) [θ0, θ1]

We show the encoding of k
∫
S & c. The generalisation to linear combinations

of durations is easily done in FOLRA. First, we need some abbreviations as

211

7 Temporal Properties with a Multi-Valued Semantics

preparation. We use

x isOverlapi θ0 θ1 ≡ ∃y0, y1.MAX(y0, ti, θ0) ∧
MIN(y1, ti+1, θ1) ∧MAX(x, 0, y1 − y2)

with i ∈ {0, . . . ,m− 1} to specify that the variable free x measures the overlap
of the intervals [θ0, θ1] and [ti, ti+1]. For a state expression S let Si be the
FOLRA formula we get by replacing every occurrence of P ∈ V by Pi. Then
we define

x isDuri S θ0 θ1 ≡ (Si =⇒ (x isOverlapi θ0 θ1)) ∧ (¬Si =⇒ x = 0)

to specify that the fresh variable x measures how long S holds in the interval
[θ0, θ1] ∩ [ti, ti+1]. We lift the previous formula to measure how long S holds in
the interval [θ0, θ1] (without restricting the interval further). We define

x isDurm S θ0 θ1 ≡
(
(∃y0, . . . , ym−1. x =

m−1∑
i=0

yi ∧
m−1∧
i=0

(yi isDuri S θ0 θ1)) .

Now we can define that in x isSemOfm k
∫
S & c θ0 θ1 the free variable x is 1 if

the comparison is satisfied and 0 otherwise. We define

x isSemOfm k
∫
S & c θ0 θ1 ≡

(
(∃y. (y isDurm S θ0 θ1)∧k∗y & c) =⇒ x = 1

)
∧
(
¬(∃y. (y isDurm S θ0 θ1) ∧ k ∗ y & c) =⇒ x = 0

)
.

It is not difficult to generalise this to cover linear combinations of accumulated
durations.

Encoding of τ(¬φ) [θ0, θ1]

For negation we compute the truth value of the subformula and subtract the
result from one. We define

x isSemOfm (¬φ) θ0 θ1 ≡ ∃y. (y isSemOfm φ θ0 θ1) ∧ x = 1− y .

Encoding of τ(φ0 ∨ φ1) [θ0, θ1]

For disjunction we use two quantified formulas to compute the truth value of
the subformulas and take the larger value as result. That is,

x isSemOfm (φ0 ∨ φ1) θ0 θ1 ≡
∃y0, y1. (y0 isSemOfm φ0 θ0 θ1)∧ (y1 isSemOfm φ1 θ0 θ1)∧MAX(x, y0, y1) .

212

7.2 Approximate Model Checking

Encoding of τ(♦ dφ) [θ0, θ1]

To compute the truth value of ♦ dφ we first introduce an abbreviation to compute
the least upper bound.
For the following two abbreviations let F (ȳ) be a FOLRA formula having ȳ

(and possibly others) as free variables and let θ(ȳ) be a FOLRA term. Then,
for some fresh variable x we define the abbreviations

UB(x, θ(ȳ), F (ȳ)) ≡ ∀ȳ.F (ȳ) =⇒ x ≥ θ(ȳ) ,

LUB(x, θ(ȳ), F (ȳ)) ≡ UB(x, θ(ȳ), F (ȳ)) ∧ ∀z. (UB(z, θ(ȳ), F (ȳ)) =⇒ z ≥ x) .

This means that UB(x, θ(ȳ), F (ȳ)) restricts x to be an upper bound of θ(ȳ) for
all values for ȳ that make F (ȳ) true. Similarly, LUB(x, θ(ȳ), F (ȳ)) means that
x is the least upper bound of θ(ȳ) for any values for ȳ that satisfy F (ȳ).

Example 7.2.8. For an example consider the functions fi : R>0 → R with
i ∈ {1, 2} and f1(x) = −x and f2(x) = x. It is easy to see that the least upper
bound of f1 is 0, and that f2 has no upper bound. We compute the least upper
bound of f1 with the formula

LUB(x,−y, y > 0) ,

where y > 0 is used to restrict the allowed inputs, −y computes the result which
is assigned to x. Note that y is quantified inside the formula. The upper formula
unfolds to

UB(x,−y, y > 0) ∧ ∀z. (UB(z,−y, y > 0) =⇒ z ≥ x) ,

which unfolds to

∀y1. (y1 > 0 =⇒ x ≥ −y1) ∧ ∀z. ((∀y2. y2 > 0 =⇒ z ≥ −y2) =⇒ z ≥ x) .

Now, a satisfying assignment assigns x the value of the least upper bound of f1.
To satisfy the first conjunct we can assign any positive number. The second
conjunct restricts the result to x = 0.
For f2 we create the formula

LUB(x, y, y > 0) ,

which unfolds to

(∀y1. (y1 > 0 =⇒ x ≥ y1)) ∧ ∀z. ((∀y2. y2 > 0 =⇒ z ≥ y2) =⇒ z ≥ x) .

213

7 Temporal Properties with a Multi-Valued Semantics

That is, we remove the minus sign. We see that the first conjunct is not
satisfiable. Thus, there is no upper bound for f2. 4

When r, t, d range over a bounded domain we can approximate an exponential
function r∗dt with an arbitrary precision using linear approximations. Below we
will use the abbreviation y isApproxOf r d t to denote that y is an approximation
of r ∗ dt.
We compute the truth value of τ(♦ dφ) [θ0, θ1] with the following formula:

x isSemOfm (♦ dφ) θ0 θ1 ≡ ∃t, r. LUB(x, y, F (t, y, r)) with
F (t, y, r) ≡ (r isSemOfm φ θ1 t) ∧ (y isApproxOf r d (t− θ1)) ∧ θ1 ≤ t ≤ tl .

With F (t, y, r) we ensure that r takes the truth value of φ on the interval [θ1, t]
and y approximates r ∗ dt−θ1 such that t ∈ [θ1, tl]. Note that r, t and d are all
bounded. That is, r represents the truth value of a subformula and thus is from
[0, 1], t is from [0, δ] and d is a constant.

We prove correctness of our encoding. In the next lemma we show that our
encoding can be used to approximate the satisfaction of a DDC<1 formula by
some trajectory of a timed automaton. In the lemma after the next lemma,
we show how to approximate the greatest lower bound of the satisfaction of a
DDC<1 formula by all trajectories of a timed automaton.
For the first lemma consider some automaton A with state variables V and

a run π = 〈(l0, β0, ν0), t0), . . . , (lm, βm, νm), tm), . . . 〉 with tm = δ. Note that if
a run does not contain a configuration with time stamp δ, we can simply add
such a configuration by splitting the appropriate delay step into two delay steps.
Thus, the trajectory τδ matching the prefix of π until δ can be represented by a
satisfying assignment to FA(t, V ,m, δ), where t and the sequences in V have
length m + 1. The following lemma states that our FOLRA encoding of the
semantics of DDC serves to approximate the satisfaction of a DDC<1 formula
φ by the δ-bounded prefix τδ of some trajectory τ of A with a matching run π
with m steps before δ time units. Note that we relate the satisfaction values of
φ by τδ and τ with Corollary 7.2.6.

Lemma 7.2.9. Let m ∈ N, δ, ε ∈ R>0 and let t, V be sequences of LRA variables
of length m+ 1. Further, let A be a timed automaton with a run that has exactly
m steps before δ time and let φ be a DDC<1 formula. Then,

FA(t, V ,m, δ) ∧ (x isSemOfm φ 0 0)

214

7.2 Approximate Model Checking

is satisfiable and for any satisfying assignment h we have

h(x) ∈ [τ(φ) [0, 0]− ε, τ(φ) [0, 0] + ε] ∩ [0, 1] ,

where τ, is defined as τ(P)(t) = h(Pi) with i such that h(ti) ≤ t < h(ti+1), t ≤ δ
and P ∈ V , is the δ-bounded prefix of some trajectory in T (A).

Proof. First of all, we point out that by constructing τ as described in the
lemma the formula FA(t, V ,m, δ) ensures that for some trajectory τ′ ∈ T (A)
we have τ = pre(τ′, δ).

We proceed by induction on the structure of φ. To have a usable induction
hypothesis we generalise the lemma to an arbitrary current interval given by
terms instead of values. Additionally, we concretise how the error ε is used. We
prove for all LRA terms θ0, θ1 that

0 ≤ θ0 ≤ θ1 ≤ δ =⇒ FA(t, V ,m, δ) ∧ (x isSemOfm φ θ0 θ1)

is satisfiable and for all satisfying assignments h with 0 ≤ t0 ≤ t1 ≤ δ we have

h(x) ∈ [τ(φ) [t0, t1]− (δ − t1) ∗ ε
δ

, τ(φ) [t0, t1] +
(δ − t1) ∗ ε

δ
] ∩ [0, 1] ,

where t0 = h(θ0), t1 = h(θ1). The intuition here is that the allowed error ε is a
resource that we spend with every linear approximation. It has to last until the
current interval reaches δ. Thus, until time t1 we are allowed to use t1ε

δ of the
error, and from t1 onwards we may use (δ−t1)ε

δ .
Induction base.
Let φ ≡∑n

j=0 kj
∫
Sj & c. For the start, let us assume that θ0 and θ1 are given

as the values t0 and t1. The formula (x isSemOfm φ θ0 θ1) unfolds to

(
(∃y0, . . . , yn.

n∧
j=0

(yj isDurm Sj t0 t1) ∧
n∑
j=0

kj ∗ yj & c) =⇒ x = 1
)

∧
(
¬(∃y0, . . . , yn.

n∧
j=0

(yj isDurm Sj t0 t1) ∧
n∑
j=0

kj ∗ yj & c) =⇒ x = 0
)
.

We make a case distinction on whether the inequality holds in τ. Assume
it holds in τ with the current interval [t0, t1]. Then we can choose values
for yj , yji with j ∈ {0, . . . , n} and i ∈ {0, . . . ,m − 1} such that h(yj) =

215

7 Temporal Properties with a Multi-Valued Semantics

∑m−1
i=0 h(yji), h(yji) =

∫ min(ti+1,t1)

max(ti,t0) S dt and
∑n
i=0 kj ∗ h(yj) & c. The intu-

ition is that yji measures how much Sj holds in the interval [t0, t1] ∩ [ti, ti+1].
Then (yj isDurm Sj t0 t1) and (yji isDuri Sj t0 t1) are satisfied. By assigning x
the value 1 the formula (x isSemOfm

∑n
j=0 kj

∫
Sj & c t0 t1) is satisfied. Then,

for any satisfying assignment h we have h(x) = τ(φ) [t0, t1].
Now for the other direction. Assume that

∑n
j=0 kj

∫
Sj & c is not satisfied

by τ and [t0, t1]. Then we cannot assign values to the variables yj , yji with
j ∈ {0, . . . , n} and i ∈ {0, . . . ,m− 1} such that (yj isDurm Sj t0 t1) is satisfied.
This means that in (x isSemOfm

∑n
j=0 kj

∫
Sj & c t0 t1) the positive case is

not satisfiable. Further, the negative case is satisfied by assigning x the value 0,
which implies h(x) = τ(φ) [t0, t1].

If θ0 and θ1 contain variables, we can assign arbitrary values. If 0 ≤ h(θ0) ≤
h(θ1) ≤ δ, then we can reuse the previous argumentation. Otherwise, if the
inequalities are not satisfied, the lemma is vacuously true.
Induction hypothesis.
We get the induction hypothesis that for all LRA terms θ0, θ1, all m ∈ N, ε, δ ∈
R>0, all DDC<1 formulas φ and all timed automata A, if A has a run that has
at least m steps before δ time, then

0 ≤ θ0 ≤ θ1 ≤ δ =⇒ FA(t, V ,m, δ) ∧ (x isSemOfm φ θ0 θ1)

is satisfiable and for all satisfying assignments h with 0 ≤ t0 ≤ t1 ≤ δ we have

h(x) ∈ [τ(φ) [t0, t1]− (δ − t1) ∗ ε
δ

, τ(φ) [t0, t1] +
(δ − t1) ∗ ε

δ
] ∩ [0, 1] ,

where h(θ0) = t0, h(θ1) = t1.
Induction step.

Case 1 (φ ≡ ¬φ1). The formula (x isSemOfm ¬φ1 θ0 θ1) unfolds to

∃y. ((y isSemOfn φ1 θ0 θ1) ∧ x = 1− y) .

From the IH it follows that the inner formula is satisfiable and that for any
satisfying assignment h we have h(y) ∈ τ(φ1) [t0, t1]± (δ−t1)∗ε

δ restricted to [0, 1],
where h(θ0) = t0, h(θ1) = t1. This implies

h(x) = 1− h(y) ∈ 1− τ(φ1) [t0, t1]± (δ − t1) ∗ ε
δ

.

216

7.2 Approximate Model Checking

Case 2 (φ ≡ φ0 ∨ φ1). Now, (x isSemOfm φ0 ∨ φ1 θ0 θ1) unfolds to

∃y0, y1. (y0 isSemOfn φ0 θ0 θ1) ∧ (y1 isSemOfn φ1 θ0 θ1) ∧MAX(x, y0, y1) .

By IH the first two subformulas are satisfiable for all terms θ0, θ1. Let h0, h1 be
two satisfying assignments. As these subformulas do not share any variables,
except those in θ0, θ1, their conjunction, and also the complete formula, is
satisfiable. A satisfying assignment assigns x the value max(h0(y0), h1(y1)).
As τ(φi) [t0, t1] ∈ hi(yi) ± (δ−t1)∗ε

δ with i ∈ {0, 1} we conclude h(x) ∈ τ(φ0 ∨
φ1) [t0, t1]± (δ−t1)∗ε

δ , where h is any satisfying assignment and h(θ0) = t0, h(θ1) =
t1.
Case 3 (φ ≡ ♦ dφ1). The formula (x isSemOfn ♦ dφ1 θ0 θ1) is equivalent to

∃z, r. LUB
(
x, y, (r isSemOfm φ1 θ1 z)∧(y isApproxOf r d (z−θ1))∧θ1 ≤ z ≤ δ

)
.

From the IH we know that for all values for z in between θ1 and δ the formula
(r isSemOfm φ1 θ1 z) is satisfiable and that all satisfying assignments h ensure
h(r) ∈ τ(φ1) [t1, t2]± (δ−t2)∗ε

δ , where t1 = h(θ1), t2 = h(z).
Next, whatever value is chosen for r, we know that (y isApproxOf r d (θ1−z))

is satisfiable and that all satisfying assignments h ensure h(y) ∈ h(r) ∗ dt2−t1 ±
(t2−t1)∗ε

δ . We show that the nested linear approximations do not cause problems.
Formally, we show for any satisfying assignment h that h(y) ∈ τ(φ1) [t1, t2] ∗
dt2−t1 ± (δ−t2)∗ε

δ . In the first step we replace r by the value it computes, while
adding the uncertainty of this computation to the error interval (right of ±). In
the second step we drop dt2−t1 , which is less or equal 1. This might increase
the error interval. We have

h(y) ∈ h(r) ∗ dt2−t1 ± (t2 − t1) ∗ ε
δ

iff h(y) ∈ τ(φ1) [t1, t2] ∗ dt2−t1 ±
(

(t2 − t1) ∗ ε
δ

+ dt2−t1 ∗ (δ − t2) ∗ ε
δ

)
implies h(y) ∈ τ(φ1) [t1, t2] ∗ dt2−t1 ±

(
(t2 − t1) ∗ ε

δ
+

(δ − t2) ∗ ε
δ

)
iff h(y) ∈ τ(φ1) [t1, t2] ∗ dt2−t1 ± (t2 − t1 + δ − t2) ∗ ε

δ

iff h(y) ∈ τ(φ1) [t1, t2] ∗ dt2−t1 ± (δ − t1) ∗ ε
δ

.

217

7 Temporal Properties with a Multi-Valued Semantics

Now, (x isSemOfm ♦ dφ1 θ0 θ1) searches for the least upper bound for y using
r and t2 and assigns it to x. That is,

h(x) ∈ sup
t2∈[t1,δ]

(dt2−t1 ∗ τ(φ1) [t1, t2])± (δ − t1) ∗ ε
δ

iff h(x) ∈ τ(♦ dφ1) [t0, t1]± (δ − t1) ∗ ε
δ

.

We use our approximation of the semantics in FOLRA and the bounded
unfolding to prove that approximative model checking is computable. For this,
we first need another abbreviation. Similar as for the least upper bound we
define a formula to compute the largest lower bound. Let F (ȳ) be a FOLRA
formula containing ȳ as free variables and let θ(ȳ) be a FOLRA term. Then,
for some fresh variable x we define

LB(x, θ(ȳ), F (ȳ)) ≡ ∀ȳ.F (ȳ) =⇒ x ≤ θ(ȳ) ,

GLB(x, θ(ȳ), F (ȳ)) ≡ LB(x, θ(ȳ), F (ȳ)) ∧ ∀z. (LB(z, θ(ȳ), F (ȳ)) =⇒ z ≤ x) .

Note that we did not investigate the complexity of our reduction. For the
complexity of FOLRA we refer to Lemma 2.4.6.

Theorem 7.2.10 (Approximate Model Checking is Computable). Given a
strongly non-Zeno timed automaton A and a DDC<1 formula φ and a de-
sired precision ε ∈ R>0, the approximate model checking problem is effectively
computable: there is a procedure computing v ∈ [0, 1] such that

v ∈ mc(A, φ)± ε .

Proof. We split the allowed error ε into two parts. Let ε1, ε2 > 0 be such that
ε1 + ε2 = ε. We use ε1 to only consider trajectories of time-bounded length, and
ε2 to approximate the semantics of DDC.

We know from Corollary 7.2.6 that we can limit the time horizon of interest
to δ = logd ε1, where d is the largest discount occurring in φ. As A is strongly
non-Zeno we know that in any cycle at least one time unit passes. Let l be the
length of the longest cycle in the transition graph of A. Then, in any run of A
within δ time units at most m = dlδe (where d·e denotes rounding to the next
larger integer) can occur.

218

7.2 Approximate Model Checking

Consider the formula

ψ ≡ GLB(x, y,

m∨
i=0

FA(ti, V i, i, δ) ∧ (y isSemOfm φ 0 0))

where ti = 〈t0, . . . , ti〉, V i = {〈P 0, . . . , P i〉 | P ∈ V } and we allow an error of ε2
in y isSemOfm φ 0 0.
If ψ is not satisfiable we know that for all i ∈ {0, . . . ,m} the automaton A

does not have a run that has i steps until δ time passes. As we have chosen m
large enough to include all cycles, this means that A does not have any runs.
Hence, T (A) = ∅, which implies mc(A, φ) = 1. We choose v = 1 and the lemma
holds.
Now, assume that ψ is satisfiable by some assignment h. Then, from

Lemma 7.2.7, Lemma 7.2.9 and because GLB computes the greatest lower
bound it follows that

h(x) ∈ inf
τ∈T (A)

(τδ(φ) [0, 0])± ε2 . (7.6)

Next, from Corollary 7.2.6 we know that by bounding ourselves to the δ prefix
we perform at most an error of ε1. Hence,

| inf
τ∈T (A)

(τδ(φ) [0, 0])− inf
τ∈T (A)

(τ(φ) [0, 0])| ≤ ε1 . (7.7)

Combining Equations 7.6 and 7.7 we conclude h(x) ∈ infτ∈T (A)(τ(φ) [0, 0])± ε,
which by definition is equivalent to h(x) ∈ mc(A, φ)± ε. We conclude that by
choosing v = h(x) the lemma holds.

7.2.2 Extending the Model Checkable Fragment
So far we can only approximate the satisfaction value for DDC<1. However,
with this fragment we can only reason about time-bounded prefixes of infinite
behaviours. This severely restricts the usefulness of this fragment. In this
section we extend the fragment for which we can perform model checking to
include formulas of the form GlS φ, where S is a state expression and φ is a
DDC<1 formula. With these kind of formulas we can reason about infinite
behaviours. However, this requires additional mild restrictions on the model.
When the timed automaton has upper bounds for the values of all clocks in

all locations the set of reachable states is computable with a finite represen-
tation. The goal of this constraint is to avoid over-approximation introduced

219

7 Temporal Properties with a Multi-Valued Semantics

l0
x ≤ 1

x = 1
x := 0

Figure 7.2: A timed automaton with two clocks x and y and no state variables.
The clock x is reset every second, while y is never used.

by the normalisation step of reachability algorithms [BY03]. For an example
consider the timed automaton in Figure 7.2 with two clocks x, y. The reachable
configurations are {(l0, f∅, (u, v)) | u ∈ [0, 1], v = u + k, k ∈ N}, where f∅ is
the valuation for the (empty) set of state variables and (u, v) are the values
of the clocks x and y. We see that the fractional part of x and y are always
equal. With normalisation we abstract from the concrete value of the clock y
and merely remember y > 1. However, this is an over-approximation. To avoid
this over-approximation we require that all locations have an upper bound for
every clock. We call a timed automaton that has in every location for every
clock an upper bound strongly bounded .
We concretise the earlier ideas. For a state expression S and a timed au-

tomaton A = (L,→, Init, I, Lab, V,Λ,X) we denote the set of configurations
where the state expression S just changed its value with f(S,A). We define this
formally as

f(S,A) = {(l, β, ν) |
∃(l0, β0, ν0) ∈ Init, (l, β, ν), (l′, β′, ν′) ∈ (L× Val(V)× Val(X)).

(l0, β0, ν0)→∗ (l′, β′, ν′)→ (l, β, ν) and β |= S 6⇐⇒ β′ |= S} .

For a strongly bounded timed automaton A the set f(S,A) is computable.

Lemma 7.2.11 ([BY03; BLP+99]). For a strongly bounded timed automaton A
and a state expression S the set f(S,A) is computable and has a finite symbolic
representation in linear real arithmetic.

Proof. Since, the automaton is strongly bounded, we can use common ap-
proaches to symbolically explore the reachable states of the timed automaton
without using normalisation [BY03; BLP+99]. These approaches use difference
bound matrices, which are formulas of linear real arithmetic represented as
matrices with efficient operations on them.

220

7.2 Approximate Model Checking

We reduce computing the satisfaction of GS φ by A to computing the satis-
faction of φ by a transformed automaton A′.

Lemma 7.2.12. Let φ be a DDC<1 formula, A = (L,→, Init, I, Lab, V,Λ,X)
a strongly bounded timed automaton and S a state expression. Then, for the
timed automaton A′ = (L,→, f(S,A), I, Lab, V,Λ,X) we have

mc(A,GlS φ) = mc(A′, φ) .

Proof. First, let us see what τ(GlS φ) [0, 0] evaluates to, for some τ ∈ T (A).
We have

τ(GlS φ) [0, 0]

= τ(¬FlS ¬φ) [0, 0]

= 1− sup
t1≥0

(sup
t2≥t1

(min(τ(lS) [t0, t1], 1− τ(φ) [t1, t1])) .

Now, if T (A) = ∅, then also T (A′) = ∅ and the lemma holds.
If T (A′) = ∅, then we know that on all trajectories of A the formula lS never

is satisfied. Thus, mc(A,GlS φ) and mc(A′, φ) both evaluate to 1. This finishes
the special cases.

Next we assume that both automata accept some trajectories. Then we can
reformulate the lemma as

inf
τ∈T (A)

(τ(GlS φ) [0, 0]) ≥ inf
τ′∈T (A′)

(τ′(φ) [0, 0]) , (7.8)

inf
τ′∈T (A′)

(τ′(φ) [0, 0]) ≥ inf
τ∈T (A)

(τ(GlS φ) [0, 0]) . (7.9)

We show that for any trajectory τ ∈ T (A) there is τ′ ∈ T (A′) such that
τ(GlS φ) [0, 0] ≥ τ′(φ) [0, 0]. This implies that Equation (7.8) holds. Further,
we show a similar property for the other direction.

For any trajectory τ ∈ T (A) and a corresponding run π of A and for arbitrary
t0, t1, where τ(lS) [t0, t1] = 1, there is a run π′ of A′ such that from time t1
onwards π and π′ are equal. Thus, there is a trajectory τ′ ∈ T (A′) corresponding
to π′ such that τ(GlS φ) [0, 0] = τ′(φ) [0, 0]. Hence, Equation (7.8) holds.
For the other direction consider some trajectory τ′ ∈ T (A′) and a corre-

sponding run π′ = 〈((l′1, β′1, ν′1), 0), . . . 〉. There is a run π = 〈((l1, β1, ν1), 0),
. . . , ((li, βi, νi), ti), ((l

′
1, β
′
1, ν
′
1), ti+1), . . . 〉 such that βi |= S 6⇐⇒ β′1 |= S, i.e.

from index i + 1 onwards π is equal to π′ (except for the time stamps). It

221

7 Temporal Properties with a Multi-Valued Semantics

follows that τ(lS) [ti, ti+1] = 1 and τ(φ) [ti+1, ti+1] = τ′(φ) [0, 0]. Next, as
τ(GlS φ) [0, 0] tries to find the lowest possible truth value of φ we know that
τ(GlS φ) [0, 0] ≤ τ′(φ) [0, 0]. Thus, Equation (7.9) holds. Note that the prefix
of π leading to ((l′1, β

′
1, ν
′
1), ti+1) may even yield a truth value smaller than

τ′(φ) [0, 0].

We conclude that for our globally properties approximate model checking is
computable. As for Theorem 7.2.10 we did not investigate the complexity of
our procedure. For the complexity of FOLRA we refer to Lemma 2.4.6.

Theorem 7.2.13. The approximate model checking problem is computable for
GlS φ and A, where S is a state expression, φ is a DDC<1 formula and A is a
strongly non-Zeno strongly bounded timed automaton.

Proof. Follows from Theorem 7.2.10 and Lemma 7.2.12.

7.3 Examples
To support our claims that we can reason about interesting problems with DDC
we provide two examples in this section.

7.3.1 Production Cell
We consider two drilling machines that generate heat while drilling. These
machines independently of each other process work pieces of different sizes, and
the drilling time needed to finish a work piece depends on the size of the piece.
If a machine drills for a long time without interruption the machine becomes too
hot. If the machine is too hot, it will gradually take damage. It is undesirable
to always avoid that the machine becomes too hot, because then production
will be too low. The desired property is that the machine soon cools down, after
it became too hot.
Let i ∈ {0, 1}. We represent that machine i became too hot by changing

the value of the propositional variable Hi, that the machine is drilling by Di

and the durability of the machine by the discount (here 0.9, where closer to 1
means more durable). Further, there are coefficients (here 1, 2) representing
how quickly the temperature changes over time in the respective locations and
here 5 is the desired cooldown to achieve after the machine has become too hot.

222

7.3 Examples

We formalise the desired property as

φ ≡ G lH0
(♦ 0.9(

∫
¬D0 − 2

∫
D0 ≥ 5)) ∧G lH1

(♦ 0.9(
∫
¬D1 − 2

∫
D1 ≥ 5)) .

Let the conjuncts of φ be φ0 and φ1. We show the controllers of the drilling
machines and some helper automata in Figure 7.3 on Page 224. Note that the
resulting network of timed automata is delaying, strongly non-Zeno and strongly
bounded (cf. Pages 17, 205 and 220).

Computing the Satisfaction Value

Here we focus on the satisfaction value of the subformula G lH0
(♦ 0.9(

∫
¬D0 −

2
∫
D0 ≥ 5)). However, the satisfaction value for the other subformula is the

same.
Let A = (A0 ‖ A1 ‖ B0 ‖ B1 ‖ C) = (L,→, Init, I, Lab, V,Λ,X) be the

parallel composition of our automata. To approximate the satisfaction value
of G lH0

(♦ 0.9(
∫
¬D0 − 2

∫
D0 ≥ 5)) by A we apply Lemma 7.2.12 for the first

subformula and create A′ = (L,→, f(H0, A), I, Lab, V,Λ,X), where f(H0, A) is
the set of initial configurations in which the state variable H0 has just changed
its value, i.e. where the edge from db0 to hot0 just has been taken (cf. Page 220
for the definition of f(H0, A)). Below we show the set f(H0, A). Note that we
do not include the location of B0 and B1 and also the valuation of the state
variables as both hold little useful information here. The set f(H0, A) is given
as

f(H0, A) = {((hot0, free1, init), ν) | ν ∈
(
7 ≤ xb ≤ 8∧ x0 = 0∧ xs ≤ 100∧

((x1 + 2 ≤ xs) ∨ (xb + 2 < xs ∧ x1 ≤ 100 ∧ xb ≤ x1))
)
} ∪

{((hot0, ds1, init), ν) | ν ∈ (7 ≤ xb ≤ 8 ∧ x1 = xs ∧ xs ≤ 3 ∧ x0 = 0)} .

Note that we computed the initial configurations with Uppaal Tiga [CDF+05] by
computing a winning strategy for the property control : A[] true with the options
-c -w 2 -n 2. Here, ((hot0, ds1, init), ν) are the possible configurations where
H0 has just changed its value and A1 currently is drilling a small working piece.
For the configurations ((hot0, free1, init), ν), where A1 is not drilling, there
are two kinds of configurations possible. The first kind (x1 + 2 ≤ xs), represents
that so far no small piece has been drilled, or that the last small piece was
drilled by A1. The second kind (xb + 2 < xs ∧ x1 ≤ 100 ∧ xb ≤ x1), represents
that the last small piece was drilled by A0 before it started on the current big
piece.

223

7 Temporal Properties with a Multi-Valued Semantics

freei
xi ≤ 100
¬Di

dsi
xi ≤ 3
Di

dbi
xi ≤ 8
Di

hoti
xi ≤ 1
Di

xi > 0
loadSi?
xi := 0

xi > 0
loadBi?
xi := 0 xi ≥ 6

xi := 0

xi ≥ 7
toHoti?
xi := 0

xi > 0
xi := 0

xi ≥ 2
xi := 0

xi := 0

(a) Drilling machine controller Ai.

init

xs ≤ 100 ∧
xb ≤ 100

xs ≥ 20
loadS1!
xs := 0

xs ≥ 20
loadS0!
xs := 0

xb ≥ 30
loadB0!
xb := 0

xb ≥ 30
loadB1!
xb := 0

(b) Work piece spawner C.

¬Hi Hi

toHoti!

toHoti!

(c) Helper automaton Bi.

Figure 7.3: In the top left-hand side we see the controller Ai for i ∈ {0, 1} of a
drilling machine. It takes 6 to 8 time units to drill a big piece and
2 to 3 time units to drill a small piece. The upper bounds of 100,
serve to make Lemma 7.2.12 applicable, the other upper bounds
restrict the maximal drilling time needed for small and big working
pieces. The self loop in freei serves to make the parallel composition
A0 ‖ A1 ‖ B0 ‖ B1 ‖ C deadlock free. In the top right-hand side we
see C, which controls how quickly work pieces may appear and that
assigns the working pieces nondeterministically to the machines. In
the bottom we show the helper automaton Bi controlling the state
variable Hi.

224

7.3 Examples

Let the desired precision be ε = 0.1. As δ = log0.9 ε is less than 21.86 we
can choose δ = 22 according to Corollary 7.2.6. The approximation of the
satisfaction value is

inf
τ∈T (A′)

(sup(0.9t ∗ τ22(
∫
¬D0 − 2

∫
D0 ≥ 5) [0, t] | 0 ≤ t ≤ 22))± ε .

As the method of the previous section is not implemented we calculate the
satisfaction of φ0 by hand. Hence, we do not add further imprecision caused
by linear approximation. We are looking for a run π of A′, such that in the
trajectory induced by π the smallest t for which τ22(

∫
¬D0 − 2

∫
D0 ≥ 5) [0, t]

holds, is large.
A run that maximises the time t needed to satisfy

∫
¬D0−2

∫
D0 ≥ 5 is depicted

below. The intuition of the run is that after the machine finished a big working
piece, it is assigned a small working piece. The location of C always is init.
Hence, the configurations in the run have the form ((l, ν(x0), ν(xs), ν(xb)), t)
where l is a location from A0, ν(y) is the value of the clock y under the clock
valuation ν and t is a time stamp. Note that again, we do not include the
locations of A1, B0, B1, C, the clocks of A1 and the state variable valuation.
The run is

π =〈((hot0, 0, 19, 7), 0), ((hot0, 1, 20, 8), 1), ((free0, 0, 20, 8), 1),

((free0, 1, 21, 9), 2), ((ds0, 0, 0, 9), 2), (ds0, 3, 3, 12), 5),

(free0, 0, 3, 12), 5), (free0, 17, 20, 29), 22)〉 .

It is clear that (hot0, 0, 19, 7) is in f(H0, A). The run spends 4 time units in
locations where D0 holds (hot0, ds0). Thus, it takes 13 time units in locations
where ¬D0 holds (free0) until

∫
¬D0− 2

∫
D0 ≥ 5 is satisfied, which means that

altogether we need 17 time units. We have

inf
τ∈T (A′)

(τ(♦ 0.9(
∫
¬D0 − 2

∫
D0 ≥ 5))) ∈ 0.917 ± 0.1 .

After rounding to two positions behind decimal point this is close to 0.17± 0.1.
In general, by considering only bounded prefixes of all runs we introduce an
error. However, in our example the result 0.917 is exact, because A′ does not
have a run that results in a lower truth value.
We see that the controllers of the drilling machines satisfy our cooldown

property poorly, i.e. that the machines often overheat. To fix this we could
introduce a scheduler in between the controllers A0, A1 and the spawner of

225

7 Temporal Properties with a Multi-Valued Semantics

the working pieces C. This scheduler would then assign the working pieces
to machines in a way that avoids assigning two successive working pieces to
the same machine. As the model then would be quite big, we would need
automation to compute the satisfaction value for the larger example.

7.3.2 Hazard Warning
As another example we consider a variation of the hazard warning protocol from
[OS17]. There, a car on a motorway detects a hazard and intends to warn other
cars farther away of the hazard via limited range broadcast communication.
For this the car first computes a communication chain containing the IDs of
the cars that should in turn forward the warning. Afterwards, the car sends
a warning together with the chain it computed to the next car in the chain
(cf. Figure 7.4). The authors verify that their protocol ensures delivery of the
warning within a certain time-bound.

We extend their approach by partitioning the road into three sectors near,
middle and far according to their distance to the hazard. Then we define DDC
formulas expressing that

“for all cars C after a hazard has been detected
soon with urgency ds car C is informed of the hazard” ,

where ds is given by the sector the car C is in.
Here we assume that the cars forwarding the warning are precomputed.

However, we can use MLSL to determine the next car to forward the warning.
For this we could use the view to serve as communication range and create an
MLSL formula that describes the location of a suitable car.

The Property

We formalise the property described above. We introduce the three sectors: far,
middle and close. A car is

• in the near sector, if it is less than 300 m away from the hazard,

• in the middle sector, if it is between 300 m and 1000 m away from the
hazard and

• in the far sector, if it is more than 1000 m away from the hazard.

226

7.3 Examples

1

2

3

ha
za

rd

A

I

ML

FE

H

G

D

K

B

nearmiddlefar

Figure 7.4: Overview of the hazard warning protocol. Car A learns of the
hazard on the lanes 2 and 3, computes a communication chain
〈A,L,H,G,B〉. We partition the road by the distance to the hazard
into the three sectors far, middle and near.

We assume a maximum speed of 130 km h−1, which is almost equivalent to
36.2 m s−1 and a maximum deceleration of 12 m s−2. Following classical mechan-
ics a car travels −v

2

2d spatial units after braking until it stops, where d is the
deceleration and v is the current speed. Thus, a car with a speed of 130 km h−1

travels about 54.6 metres after initiating emergency braking.
Within the definition of DDC we always assumed an exponential discounting

function. However, any strictly decreasing function with a range within [0, 1]
can be used. For cars in the near sector we consider a delay of 0.5 s until a
car is informed as very good (as the car can clearly avoid entering the hazard),
which we represent by a truth value of 0.9. To delays of 1 s and 3 s we assign
satisfaction values of 0.6 and 0.1. By linear interpolation, we form a function

f(t) =

1 + (t− 0) ∗ 0.9−1

0.5−0 if 0 ≤ t < 0.5

0.9 + (t− 0.5) ∗ 0.6−0.9
1−0.5 if 0.5 ≤ t < 1

0.6 + (t− 1) ∗ 0.1−0.6
3−1 if 1 ≤ t < 3

We extend f to a discounting function by letting it asymptotically approach 0.
Thus, after simplification we get the discounting function ηn for the sector near

227

7 Temporal Properties with a Multi-Valued Semantics

as defined below (visualised in Figure 7.5 on Page 229, top right):

ηn(t) =

1− 0.2t if 0 ≤ t < 0.5 ,

1.2− 0.6t if 0.5 ≤ t < 1 ,

0.85− 0.25t if 1 ≤ t < 3 ,

0.1 ∗ 0.9t−3 otherwise .

For the sectors middle and far we provide the pairs of delay until a car is
informed and truth value in Figure 7.5 on Page 229.
Now, to formalise the property we use two signals representing events: H

represents that a hazard has been detected and IC represents that car C has
been informed of the hazard. Thus, the formulas lH and l IC are satisfied at
the point in time when the respective event has happened. Let s be one of the
sectors near, middle or far and let CS s be the set of cars in the sector s. We
define

φs ≡
∧

C∈CSs

GlH (♦ηs l IC) ,

φ ≡
∧

s∈{n,m,f}
φs .

The DDC formula φs formalises that for each car in sector s, after a hazard is
detected, soon this car is informed.

The Protocol

At first, some car C learns of a hazard, which causes lH to be satisfied. It then
sends a broadcast signal to inform other cars within its communication range
of the hazard, and picks a specific car to forward the warning. If the other car
does not forward the warning within a given time, C again sends the broadcast
signal. The other cars behave similarly, until all cars are informed.
We model the protocol as the parallel composition of the automata AHaz,

AiFwd, A
i
Det and ACh, where i ∈ {0, . . . n − 1} and n is the number of cars in

the communication chain. Here, AHaz controls the hazard, AiFwd (resp. AiDet)
is the hazard forwarding (resp. hazard detection) controller of the i-th car in
the communication chain and ACh is the channel controller. In the following
we explain these controllers. Note that we use Uppaal data variables to model
state variables of DDC. An example is the data variable H, which is the Uppaal
representation of the state variable H.

228

7.3 Examples

sector near :

ηn(t) =

1− 0.2t if 0 ≤ t < 0.5

1.2− 0.6t if 0.5 ≤ t < 1

0.85− 0.25t if 1 ≤ t < 3

0.1 ∗ 0.9t−3 otherwise

delay truth value

0 s 1
0.5 s 0.9
1 s 0.6
3 s 0.1

2 4 6 8 10

0.2

0.4

0.6

0.8

1

sector middle:

ηm(t) =

1− 0.05t if 0 ≤ t < 2
7
6
− −2

15
t if 2 ≤ t < 5

1− 0.1t if 5 ≤ t < 8

0.2 ∗ 0.95t−8 otherwise

delay truth value

0 s 1
2 s 0.9
5 s 0.5
8 s 0.2

5 10 15 20

0.2

0.4

0.6

0.8

1

sector far :

ηf(t) =

1− 0.01t if 0 ≤ t < 10

1.1− 0.02t if 10 ≤ t < 20

1.2− 0.25t if 20 ≤ t < 40

0.2 ∗ 0.95t−40 otherwise

delay truth value

0 s 1
10 s 0.9
20 s 0.7
40 s 0.2

20 40 60

0.2

0.4

0.6

0.8

1

Figure 7.5: The rows represent the discounting functions for the sectors near,
middle and far (top to bottom). In the left column we show for each
sector a table relating the delay until a car is informed of a hazard
and our respective satisfaction with the delay. In the middle column
we show the discounting function resulting from linear interpolation,
with an asymptotic finish towards 0. In the right column we show
the discounting function as a graph, where the x-axis is the value of
t, i.e. the delay, and the y-axis is the truth value.

229

7 Temporal Properties with a Multi-Valued Semantics

Figure 7.6: Visualisation of the value passing pattern in Uppaal. The value of
a local variable l from an automaton A1 (left) is asynchronously
sent through a shared variable s and an intermediate automaton
(middle) serving as channel to a local variable l of an automaton
A2 (right). The pattern uses a design decision of Uppaal that in
synchronous transitions updates of sending transitions (marked with
!) are performed before updates of receiving transitions (marked
with ?).

Figure 7.7: The hazard controller AHaz informs the cars of the hazard with
hazard!. The update H = not H ensures that when this transition is
taken, the formula lH is satisfied.

To model the exchange of data between different cars, our controllers use the
value passing pattern from Uppaal [BDL, Section 7]. As an example consider
the transitions depicted in Figure 7.6.

We explain AHaz. The hazard is controlled by a timed automaton, where the
change of the value of the data variable H causes the DDC formula lH to be
satisfied. We require that nonzero time passes before the hazard is detected.
See also Figure 7.7.

We proceed to explain AiFwd and AiDet. We model the communication chain in
Uppaal by assigning to the i-th car in the chain the ID i and let iC be the ID of
car C. Then the first car in the chain is the closest to the hazard. We assume
that with its communication range a car can reach the cars that are adjacent in
the chain. We model the sending of the chain by sending its own position in it.
For each car we have two controllers. A hazard detection controller that

initiates the protocol when the controller is informed of a hazard. The other
controller is a hazard forwarding controller that forwards a warning it received
from another car. When the detection controller of a car C is made aware

230

7.3 Examples

of the hazard it changes the value of the data variable I for this car (with
set_is_informed()). When this happens the formula l IC is satisfied. If there
are no other cars to inform the controller returns to its initial location and is
done. Otherwise the controller starts to forward the warning to nearby cars.
If the controller does not receive a confirmation that the warning has been
received it resends the warning after some delay. For car C receiving the value
iC + 1 serves as confirmation. The forwarding controller behaves almost the
same as the detector, with the difference that it is informed by another car and
not by the environment. Further, the forwarding controller also sends a signal
when it is the last car in the chain, to let the previous car know that it has been
informed successfully.
The forwarding and detection controllers have two phases. A waiting phase,

where the controller either waits to be warned of a hazard, or has been warned
and performed its obligation to inform the next car. The other phase is a
communication phase, where the controller tries to inform the next car of the
hazard. This happens in transitions with h_e! and the variable update s = id

as explained for the value sending pattern. When a controller receives a value
(transitions with h_r?) it always checks if it was supposed to receive this value
with the guards not near(l) and near(l), i.e. it checks whether the car sending
the value is nearby. If it was not supposed to receive the value, it deletes the
value it received (l = nil).

Finally, we explain ACh. We model limited range broadcast communication
as a separate automaton; the channel controller. First, we explain the variables
of the controller and then the behaviour. The controller has an array clocks to
keep track of how long ago a communication started. We assume that it takes
t_c time units to finish a communication. Additionally, the controller has a list
of cars currently communicating, sorted descending by the values in the array
clocks. We query and update this list with the functions is_empty, push,
head and tail. The first car in the list is the next car whose communication
finishes. We store this car in the variable n.
We describe the behaviour. The automaton has two main control states,

indicating whether the list of ongoing communications is empty or not. If
the list is empty and a car starts emitting a signal (indicated by h_e?), the
controller stores the value to be send (which we assume is the ID of the sending
car) in a local variable l, resets the corresponding clock, and adds the ID to
the internal list. Afterwards, the controller waits in not_empty for the next
communication to finish. If, while waiting, another car starts to communicate

231

7 Temporal Properties with a Multi-Valued Semantics

Figure 7.8: The hazard detection controller AiDet (top) and hazard forwarding
controller AiFwd (bottom). The only difference between the detection
and forwarding controller lies in the transitions leaving the locations
wait0 and wait1.

232

7.3 Examples

Figure 7.9: The channel controller ACh.

we perform the same actions for this car as for the earlier one. When the next
communication has finished we set the global variable s to the ID of the sender,
inform all cars that a communication has finished and update the internal list
by removing the in first entry. The cars themselves will sort out if they are in
the communication range of the sender. Afterwards, if the list is not empty, we
set the variable n to the ID of the car whose communication is due next.
We point out that h_e is a normal channel (between two participants) and

that h_r is a broadcast channel to inform multiple cars simultaneously. In
general, as we have multiple automata with transitions labelled with h_e! which,
at a given time, they may be forced to take, and only a single automaton with
transitions labelled with h_e?, such a setting may lead to deadlocks. We avoid
this by ensuring that all transitions with h_e! lead to noncommitted locations,
while all transitions with h_e? lead (through committed locations) to locations
from where another transition labelled with h_e? starts. We can easily verify
deadlock freedom with Uppaal.

Computing the Satisfaction Value

In Chapter 7 we introduced an algorithm to perform approximate model checking
for a fragment of DDC. However, the algorithm is not implemented. Thus, we
use an alternative approach to approximate how well our protocol satisfies φ for
a particular distribution of cars.

Before we compute the satisfaction value we make a small detour. We argued
that this example showcases that the fragment of DDC for which approxima-
tive model checking automatically is possible, is useful. For automation our

233

7 Temporal Properties with a Multi-Valued Semantics

constraints on timed automata are that they are delaying, strongly non-Zeno
and strongly bounded (cf. Pages 17, 205 and 220). An automaton is delaying
if between any value change of its state variables nonzero time passes. It is
strongly non-Zeno if there is a strictly positive constant c such that in any
control cycle at least c time units pass. And it is strongly bounded if every
clock has in every location an upper bound for the maximal value the clock can
reach.

For the ease of exposition we presented the hazard warning protocol in a way
where these constraints are not satisfied. However, we briefly outline that we
can slightly adapt the automata to satisfy these constraints. These adaptations
do not alter the behaviour in any way.

Our protocol is delaying. To see this we point out that we only have the state
variables H and IC for all cars C under consideration. The state variable H is
represented by the data variable H and IC is represented by AiCDet.I for the first
car in the communication chain and by AiCFwd.I for the other cars. All of these
data variables are changed at most once some nonzero time after initialisation,
which means that the protocol indeed is delaying.

Next, to see that our protocol is strongly non-Zeno we have to look at the
complete network, and not at the individual automata.
At last, we can make our protocol strongly bounded without affecting the

behaviour. Note that except ACh all automata have exactly one local clock, and
that we do not have global clocks. To make our protocol strongly bounded we
can for all automata except ACh and all noncommitted locations without an
upper bound add an nonzero upper bound and let the clock be reset whenever
the bound is reached. In ACh we have inactive clocks and active clocks that
currently track an ongoing communication. Inactive clocks are currently not
used and we can arbitrarily reset them and place upper bounds on them. For
active clocks, as all communications take tc time units, we can add this as an
upper bound. We can reset an active clock when the communication is finished
and the clock becomes inactive.

We come back from the detour and compute how well our hazard warning
protocol satisfies φ for the distribution of cars depicted in Figure 7.4. In this
distribution we have two cars in sector near, two cars in sector middle and one
car in sector far. Additionally, we choose a desired precision of ε = 0.05. The
approach we use here is to discretize the interval of truth values [0, 1] by a value
that is smaller than the desired precision ε to have some tolerance in the values
we actually chose. This results in finer discretization than necessary. Let this

234

7.3 Examples

Figure 7.10: Observer AObs of when car C is informed. If C is either later than
some upper bound, stored in the constant UB, or never informed of
the hazard, then the automaton enters the bad location late.

set of discretised truth values be V . Then we check for each sector s, each truth
value v ∈ V and for each car C in sector s, if C is always either never informed
or η−1

s (v) or more time units informed after the hazard has been detected. Note
that the inverse of ηs is defined on the range (0, 1] as discounting functions are
strongly decreasing and asymptotically converge to 0. Finally, the result is the
smallest truth value for which we found a run. Let the set of relevant points
in time for our set of truth values be Ts = {η−1

s (v) | v ∈ V }. For t ∈ Ts we
check whether on all paths the car C is informed t or more time units after the
hazard has been detected. If this holds, the overall truth value is less or equal
ηs(t). To formalise this we add the automaton in Figure 7.10 to the protocol to
create the network ACt , where the Uppaal constants UB and C are set to t and
iC . Then we check with Uppaal if ACt satisfies the property

ψ ≡ AHaz.hazard_detected AObs.late ,

where is the leads-to operator of Uppaal. Our approximation then is

min
s∈{n,m,f},
C∈CSs

(ηs(t) | t ∈ Ts, ACt |= ψ) .

As each communication attempt succeeds and takes 1 time unit it is not
surprising that we find that the i-th car in the communication chain is not
informed later than i time units. Using our set of points in time Ts to discretize
the possible truth values for each discounting function independently we get
the results summarised in Table 7.1. Note that we mentioned earlier that we
discretize with a smaller value than ε = 0.05. In fact, we used a varying step

235

7 Temporal Properties with a Multi-Valued Semantics

Table 7.1: For each sector we show for the car informed last in this sector two
choices of delays from Ts. In a column we use 3 to indicate ACt |= ψ
and 7 to indicate ACt 6|= ψ. This means for example that it always
takes at least 2.83 and never 3.06 or more time units to inform car 3.
Similarly, it takes at least 1.01 and never 4.01 or more time units to
inform car 4. Note that the indices refer to the communication chain
〈L,H,G,B〉 shown in Figure 7.4, from which we removed car A as it
detected the hazard. Thus, car 1 is L.

car 1 in
sector near

car 3 in
sector middle

car 4 in
sector far

reachable 3 7 3 7 3 7
time-bound UB 1 1.06 2.83 3.06 1.01 4.01
discounting value ηs(UB) 0.6 0.585 0.789 0.759 0.990 0.960

size of 0.025 ± 0.01 to only have values in Ts with at most two digits behind
the decimal point. This seems helpful as Uppaal only allows integer values in
transition guards. In Table 7.1 it may seem odd that we have an earlier time
for car B than for car G, even though in the communication chain car G occurs
before car B. But this is due to our choice of time points Ts. The overall
satisfaction of φ by our protocol is 0.6, which is ok, but not good.

7.3.3 Hazard Warning with Communication Failures
We introduce communication failures (e.g. by hardware glitches or simultaneous
communication attempts of nearby cars). We express the quality of communica-
tion as a DDC property and check our earlier property “after a hazard every
car soon is informed of the hazard” under the assumption of this quality. Note
that we only sketch this example, and that we did not actually model it.
With the formula

GlF (� ηf dF e ∨ d¬F e ∨ ` = 0)

we express that after a communication failure, for a long time (with discount
ηf) communication is free of failures. Let s be one of the sectors near, middle

236

7.4 Related Work

and far and let CS s be the set of cars in the sector s. Then the final formula is

φs ≡
∧

C∈CSs

(
GlF (� ηf dF e ∨ d¬F e ∨ ` = 0) =⇒ GlH (♦ηs l IC)

)
.

For the discounting function measuring the communication quality we intro-
duce another set of relevant time points Tf that discretises the interval of truth
values [0, 1] according to ηf . To compute how strongly the protocol with com-
munication failures A satisfies the formula φs we create for each car C ∈ CS s,
each t0 ∈ Ts and t1 ∈ Tf a model ACt0,t1 . Now, ACt0,t1 requires at least t1 time
units to pass between two failures and the location AObs.late only is reached,
when either C is never informed, or C is informed t0 or more time units after
the hazard has occurred. If this manipulated model satisfies the TCTL formula

ψ ≡ AHaz.hazard_detected AObs.late .

the truth value of φs for car C on the original model is less or equal

max(1− ηf(t1), ηs(t0)) .

Our approximated overall satisfaction is

min
s∈{n,m,f},
C∈CSs

(max(1− ηf(t1), ηs(t0)) | t0 ∈ Ts, t1 ∈ Tf , ACt0,t1 |= ψ) .

7.4 Related Work
Robustness of Temporal Logics

In most approaches to formalise a robust temporal logic we also have a real-
valued interpretation [FH05; FP09]. However, there we want to know how much
we can perturb a behaviour such that the property still holds. In other words,
given that there usually is a difference between how a behaviour is perceived
with sensors and how it actually occurs in the physical world, we want to
quantify the maximal difference between these two behaviours, such that the
result on the first behaviour is transferable to the second behaviour.
With discounting we consider different properties. We consider properties

where the maxim “the sooner the better” holds, and we check “how good is
it”. This rating favouring earlier satisfaction is not considered with temporal
robustness.

237

7 Temporal Properties with a Multi-Valued Semantics

Model Checking DC

In [ZH04] the authors define model checking of linear duration invariants, which
is a fragment of DC of the form

c0 ≤ ` ≤ c1 =⇒
n∑
i=1

ki ∗
∫
Si ≤ c2 ,

where c0, c1, c2, ki ∈ R, Si is a state expression and ` is the length of the current
interval. They do this via a reduction to linear programming, which essentially
is the quantifier and disjunction free fragment of FOLRA. The linear duration
invariants they consider subsume for example the property

G (` ≥ 60 =⇒ 20 ∗
∫
Leak ≤ `)

of the gas burner case study [RRH93], where G means globally. The property
requires that in any interval of length ≥ 60, gas should leak for at most 5% of
the time. As model the authors consider a restricted form of timed automata
featuring a single clock that is reset on every transition.

In [FH07] the authors devise an algorithm for model checking formulas without
negation and where all comparisons only feature upper bounds, i.e. the fragment
given by the following EBNF:

φ ::=

n∑
i=1

ki ∗
∫
Si . c | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 a φ2 ,

where . ∈ {<,≤}, c ∈ R and a is the chop operator as in MLSL. As model
the authors consider timed automata. They reduce the model checking problem
to optimal reachability for multi priced timed automata.

In [MFH+08] the authors define model checking for a fragment of DC allowing
infinite data types. As model the authors use phase event automata, which are
similar to timed automata. The fragment of DC the authors consider features
the atoms ` ∼ k, dSe and disallows the integral operator. Note that their state
expressions are quite powerful, as they allow arbitrary quantifier free first-order
logic expressions over timed variables. An example is dpos1 < pos2e, where pos1

and pos2 are timed variables with range R. For model checking they follow the
automata theoretic approach [VW86] and use the symbolic constraint solver
ARMC [PR07] as backend. Because of the infinite domains their procedure may
not terminate.

238

7.4 Related Work

Discounting

In [dFH+05] the authors define a version of computation tree logic (CTL) with
discounting, for which they define algorithms to perform model checking on
Markov chains and transition systems. They propose two different semantics,
which they call path semantics and fixpoint semantics. The path semantics is a
natural introduction of discounting into CTL. Let c ∈ [0, 1] be a discount. Then,
to get the truth value of ∃♦ cφ, in a state s they first take the supremum of all
paths starting in s, and then they take the supremum of when we check φ on
the path, where each step into the future is discounted by c. This is similar
to our approach. The fixpoint semantics is a restriction of a semantics for
µ-calculus with discounting, defined in [dHM03], to CTL. The authors compare
and investigate the two semantics and show that on transition systems the
semantics are equivalent, but not on Markov chains.
In [ABK16] the authors define LTL[D], which extends linear temporal logic

(LTL) with discounting. They approach the model checking problem by solving
the threshold problem. That is, for a given real-valued truth value v ∈ [0, 1],
Kripke structure K and LTL[D] formula φ they check whether evaluating φ on
K results in a truth value greater equal v. Their approach is similar to the
classical automata based model checking approach for LTL. They combine the
recursive unfolding of the until operator with an unfolding of the discounting
function. Eventually, when the truth value becomes smaller than v they stop
the unfolding. Further, the authors show that with exponential discounting the
complexity of their algorithm is in PSPACE, just like the classical approach.

239

8 Conclusion

8.1 Summary
We proved the satisfiability problem of Multi-Lane Spatial Logic (MLSL) with
an unbounded number of lanes to be undecidable. To show this, we reduced
the language emptiness problem of the intersection of context-free languages to
the lane-unbounded satisfiability problem of MLSL. This reduction holds even
if we assume that spatial information is imperfect.
Furthermore, we defined an extension of MLSL called Multi-Lane Spatial

Logic with Scopes (MLSLS). We used this extension to show that with a bounded
number of cars, the lane-unbounded satisfiability problem is decidable. To prove
the correctness of our algorithm we introduced operations on MLSLS models.
We extended this approach to also solve the model problem of MLSLS, i.e.

deciding whether a given model satisfies a given formula. For the model problem
we again consider precise and imprecise spatial information separately.

We then extended on this to show that also for MLSLS transition sequences
the monitoring problem (as the model problem for a given behaviour of a
dynamic system and a temporal formula is called) is decidable. For this we
related MLSLS transition sequences to timed words. Similar to the static case
we defined operations on these transition sequences to allow for a compositional
analysis. For these dynamic systems we also consider the case of imprecise
information; here robustness has a spatial and a temporal dimension.
Finally, we formalised properties favouring early satisfaction by introducing

discounting into a variant of Duration Calculus. With this extension we express
properties such as “always after a hazard as occurred, all relevant cars are soon
informed of it”. We showed that for a relevant fragment of our extension the
model checking problem is approximable, where the model is given as a timed
automaton.

241

8 Conclusion

8.2 Future Work

8.2.1 Multi-Lane Spatial Logic
Decidability It is desirable to develop a better understanding of the border of
decidability of the satisfiability problem of MLSL. To this end, other fragments
of MLSL should be investigated. Interesting fragments may be defined, for
example by restricting the nesting depth of chop operators or the number
of different car variables (similar to two-variable first-order logic [GKV97]).
Further, it may be interesting to see if the satisfiability problem with a bounded
number of lanes is decidable. In this thesis, we called this the lane-bounded
satisfiability problem.

Stochastic MLSL In this thesis we considered only small spatio-temporal
perturbations. Additionally, we assumed that we know for certain whether there
is a car or not. However, usually this assumption will not be satisfied, i.e. there
are objects where there is uncertainty about whether the sensors perceive an
obstacle, such as a car, or an object that is not an obstacle, such as a plastic
bag. Or, we know that there is a car, but we are uncertain about the lane the
car occupies. It is desirable to incorporate this uncertainty into MLSL and
define a stochastic spatio-temporal logic.

Monitoring So far we can only use MLSLS to monitor properties only using
the temporal globally operator. It is desirable to extend the kind of properties
for which we can use MLSL to perform monitoring. To this end, a fully fledged
linear time version of MLSL should be defined. This version could be created by
adapting our temporal globally operator to a timed version of until, similar to
Metric Temporal Logic [Koy90]. Furthermore, an online monitoring algorithm
is desirable that can check the property as the behaviour is observed.

Bounded Model Checking of Controllers There are approaches to extend
timed automata [AD94] with MLSL to define controllers of traffic manoeuvres
[HLO13; Sch18a]. While there exist first steps towards model checking such
controllers [Sch18b; BS19], these approaches impose strong restrictions on the
controllers. We have shown how to check MLSLS formulas with arithmetic
logics and how to extend this to transition sequences. Further, as we have seen
in Chapter 7, there are approaches to unfold the transition relation of timed
automata with these arithmetic logics [TMM02; BL11; KJN12]. It is worthwhile

242

8.2 Future Work

to connect both approaches, i.e. to perform bounded model checking for timed
automata extended with MLSLS, as this would impose less restrictions than the
existing approaches in [Sch18b; BS19]. For a logic suitable to define desirable
properties of these extended timed automata see the previous paragraph.

Traffic Sequence Charts As we have briefly pointed out in the related work
section of Chapter 5, traffic sequence charts were defined to formally specify
properties for sets of traffic manoeuvres [DMP+18]. This is very similar to how
we used MLSLS in Chapters 5 and 6. Hence, a thorough comparison of the two
formalisms is desirable.

8.2.2 Discounted Duration Calculus
Complexity In this thesis we show for a fragment of Discounted Duration
Calculus that approximate model checking is possible. We did not consider
efficiency at all. Thus, our reduction to first-order logic of linear real arithmetic
is not suited for implementation because the resulting formula becomes huge.
An algorithm that is suitable for implementation, together with a complexity
analysis, is desirable.

Weaken Restrictions To show that model checking for a fragment of Dis-
counted Duration Calculus is approximable we had to impose restrictions on the
timed automata. That is, our algorithm only works when the timed automata
are strongly non-Zeno, and if the globally operator is used, the timed automata
also need to be strongly bounded. Weakening these restrictions certainly is
desirable.

243

Bibliography

[ABK14] S. Almagor, U. Boker, and O. Kupferman. “Discounting in LTL”.
In: Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). Ed. by E. Ábrahám and K. Havelund. Vol. 8413.
LNCS. Springer, 2014, pp. 424–439. doi: 10.1007/978-3-642-
54862-8_37.

[ABK16] S. Almagor, U. Boker, and O. Kupferman. “Formally Reasoning
About Quality”. In: J. ACM 63.3 (2016), 24:1–24:56. doi: 10.
1145/2875421.

[AD14] M. Althoff and J. M. Dolan. “Online Verification of Automated
Road Vehicles Using Reachability Analysis”. In: IEEE Transactions
on Robotics 30.4 (2014), pp. 903–918. doi: 10.1109/TRO.2014.
2312453.

[AD94] R. Alur and D. L. Dill. “A Theory of Timed Automata”. In: Theo-
retical Computer Science 126.2 (1994), pp. 183–235. doi: 10.1016/
0304-3975(94)90010-8.

[AFH96] R. Alur, T. Feder, and T. A. Henzinger. “The benefits of relaxing
punctuality”. In: J. ACM 43.1 (1996), pp. 116–146. doi: 10.1145/
227595.227602.

[AFS04] L. de Alfaro, M. Faella, and M. Stoelinga. “Linear and Branching
Metrics for Quantitative Transition Systems”. In: International Col-
loquium on Automata, Languages and Programming (ICALP). Ed.
by J. Díaz, J. Karhumäki, A. Lepistö, and D. Sannella. Vol. 3142.
LNCS. Springer, 2004, pp. 97–109. doi: 10.1007/978-3-540-
27836-8_11.

[All83] J. F. Allen. “Maintaining knowledge about temporal intervals”.
In: Communications of the ACM 26.11 (1983), pp. 832–843. doi:
10.1145/182.358434.

245

https://doi.org/10.1007/978-3-642-54862-8_37
https://doi.org/10.1007/978-3-642-54862-8_37
https://doi.org/10.1145/2875421
https://doi.org/10.1145/2875421
https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/227595.227602
https://doi.org/10.1145/227595.227602
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1007/978-3-540-27836-8_11
https://doi.org/10.1145/182.358434

Bibliography

[AMP+98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. “Controller Synthesis
for Timed Automata”. In: IFAC Proceedings Volumes 31.18 (1998).
IFAC Conference on System Structure and Control, pp. 447–452.
doi: 10.1016/S1474-6670(17)42032-5.

[ANB98] H. Andréka, I. Németi, and J. van Benthem. “Modal Languages
and Bounded Fragments of Predicate Logic”. In: J. Philosophical
Logic 27.3 (1998), pp. 217–274. doi: 10.1023/A:1004275029985.

[BDL] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on Uppaal.
Updated version of [BDL04]. url: http : / / www . it . uu . se /
research/group/darts/papers/texts/new-tutorial.pdf.

[BDL04] G. Behrmann, A. David, and K. G. Larsen. “A Tutorial on Uppaal”.
In: Formal Methods for the Design of Real-Time Systems. Ed. by
M. Bernardo and F. Corradini. LNCS 3185. Springer–Verlag, 2004,
pp. 200–236. doi: 10.1007/978-3-540-30080-9_7.

[BHL+17] G. v. Bochmann, M. Hilscher, S. Linker, and E.-R. Olderog. “Syn-
thesizing and verifying controllers for multi-lane traffic maneuvers”.
In: Formal Aspects of Computing 29.4 (2017), pp. 583–600. doi:
10.1007/s00165-017-0424-4.

[BL11] B. Badban and M. Lange. “Exact Incremental Analysis of Timed
Automata with an SMT-Solver”. In: Formal Modeling and Analysis
of Timed Systems. Ed. by U. Fahrenberg and S. Tripakis. Vol. 6919.
LNCS. Springer, 2011, pp. 177–192. doi: 10.1007/978-3-642-
24310-3_13.

[BLP+99] G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi.
“Efficient Timed Reachability Analysis Using Clock Difference
Diagrams”. In: Computer Aided Verification (CAV). Ed. by N.
Halbwachs and D. A. Peled. Vol. 1633. LNCS. Springer, 1999,
pp. 341–353. doi: 10.1007/3-540-48683-6_30.

[BLS11] A. Bauer, M. Leucker, and C. Schallhart. “Runtime Verification for
LTL and TLTL”. In: ACM Transactions on Software Engineering
and Methodology (TOSEM) 20.4 (2011), 14:1–14:64. doi: 10.1145/
2000799.2000800.

[BM07] A. R. Bradley and Z. Manna. The calculus of computation - decision
procedures with applications to verification. Springer, 2007. doi:
10.1007/978-3-540-74113-8.

246

https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1023/A:1004275029985
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/s00165-017-0424-4
https://doi.org/10.1007/978-3-642-24310-3_13
https://doi.org/10.1007/978-3-642-24310-3_13
https://doi.org/10.1007/3-540-48683-6_30
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-540-74113-8

Bibliography

[BMG+08] D. Bresolin, D. D. Monica, V. Goranko, A. Montanari, and G.
Sciavicco. “Decidable and Undecidable Fragments of Halpern and
Shoham’s Interval Temporal Logic: Towards a Complete Classi-
fication”. In: Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR). Ed. by I. Cervesato, H. Veith, and A. Voronkov.
Vol. 5330. LNCS. Springer, 2008, pp. 590–604. doi: 10.1007/978-
3-540-89439-1_41.

[BS19] C. Bischopink and M. Schwammberger. “Verification of Fair Con-
trollers for Urban Traffic Manoeuvres at Intersections”. publication
pending. 2019.

[BY03] J. Bengtsson and W. Yi. “On Clock Difference Constraints and
Termination in Reachability Analysis of Timed Automata”. In: In-
ternational Conference on Formal Engineering Methods (ICFEM).
Ed. by J. S. Dong and J. Woodcock. Vol. 2885. LNCS. Springer,
2003, pp. 491–503. doi: 10.1007/978-3-540-39893-6_28.

[CDF+05] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. “Effi-
cient On-the-Fly Algorithms for the Analysis of Timed Games”. In:
Concurrency Theory. Ed. by M. Abadi and L. de Alfaro. Vol. 3653.
LNCS. Springer, 2005, pp. 66–80. doi: 10.1007/11539452_9.

[dFH+05] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and
M. Stoelinga. “Model checking discounted temporal properties”.
In: Theoretical Computer Science 345.1 (2005), pp. 139–170. doi:
10.1016/j.tcs.2005.07.033.

[dHM03] L. de Alfaro, T. A. Henzinger, and R. Majumdar. “Discounting
the Future in Systems Theory”. In: Automata, Languages and
Programming. Ed. by J. C. M. Baeten, J. K. Lenstra, J. Parrow,
and G. J. Woeginger. Vol. 2719. LNCS. Springer, 2003, pp. 1022–
1037. doi: 10.1007/3-540-45061-0_79.

[DM10] A. Donzé and O. Maler. “Robust Satisfaction of Temporal Logic
over Real-Valued Signals”. In: Formal Modeling and Analysis of
Timed Systems (FORMATS). Ed. by K. Chatterjee and T. A.
Henzinger. Vol. 6246. LNCS. Springer, 2010, pp. 92–106. doi:
10.1007/978-3-642-15297-9_9.

247

https://doi.org/10.1007/978-3-540-89439-1_41
https://doi.org/10.1007/978-3-540-89439-1_41
https://doi.org/10.1007/978-3-540-39893-6_28
https://doi.org/10.1007/11539452_9
https://doi.org/10.1016/j.tcs.2005.07.033
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/978-3-642-15297-9_9

Bibliography

[DMP+18] W. Damm, E. Möhlmann, T. Peikenkamp, and A. Rakow. “A
Formal Semantics for Traffic Sequence Charts”. In: Principles of
Modeling. Ed. by M. Lohstroh, P. Derler, and M. Sirjani. Vol. 10760.
LNCS. Springer, 2018, pp. 182–205. doi: 10.1007/978-3-319-
95246-8_11.

[FH05] M. Fränzle and M. R. Hansen. “A robust interpretation of duration
calculus”. In: International Colloquium on Theoretical Aspects of
Computing (ICTAC). Ed. by Dang Van Hung and Martin Wirsing.
Vol. 3722. LNCS. Springer, 2005, pp. 257–271. doi: 10.1007/
11560647_17.

[FH07] M. Fränzle and M. R. Hansen. “Deciding an Interval Logic with
Accumulated Durations”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). Ed. by O. Grumberg
and M. Huth. Vol. 4424. LNCS. Springer, 2007, pp. 201–215. doi:
10.1007/978-3-540-71209-1_17.

[FHO15] M. Fränzle, M. R. Hansen, and H. Ody. “No Need Knowing Numer-
ous Neighbours - Towards a Realizable Interpretation of MLSL”.
In: Correct System Design. Ed. by R. Meyer, A. Platzer, and H.
Wehrheim. Vol. 9360. LNCS. Springer, 2015, pp. 152–171. doi:
10.1007/978-3-319-23506-6_11.

[FP09] G. E. Fainekos and G. J. Pappas. “Robustness of Temporal Logic
Specifications for Continuous-Time Signals”. In: Theoretical Com-
puter Science 410.42 (2009), pp. 4262–4291. doi: 10.1016/j.tcs.
2009.06.021.

[FR74] M. J. Fischer and M. O. Rabin. “Super-Exponential Complexity
of Presburger Arithmetic”. In: Complexity of Computation. Ed. by
R. M. Karp. SIAM-AMS Proceedings 7. See [FR98] for reprint.
AMS, 1974, pp. 27–41.

[FR75] J. Ferrante and C. Rackoff. “A Decision Procedure for the First
Order Theory of Real Addition with Order”. In: SIAM Journal on
Computing 4.1 (1975), pp. 69–76. doi: 10.1137/0204006.

[FR98] M. J. Fischer and M. O. Rabin. “Super-Exponential Complexity of
Presburger Arithmetic”. In: Quantifier Elimination and Cylindrical
Algebraic Decomposition. Ed. by B. F. Caviness and J. R. Johnson.
Reprint of [FR74]. Springer, 1998, pp. 122–135. doi: 10.1007/978-
3-7091-9459-1_5.

248

https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/978-3-319-95246-8_11
https://doi.org/10.1007/11560647_17
https://doi.org/10.1007/11560647_17
https://doi.org/10.1007/978-3-540-71209-1_17
https://doi.org/10.1007/978-3-319-23506-6_11
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1137/0204006
https://doi.org/10.1007/978-3-7091-9459-1_5
https://doi.org/10.1007/978-3-7091-9459-1_5

Bibliography

[Frä99] M. Fränzle. “Analysis of Hybrid Systems: An Ounce of Realism
Can Save an Infinity of States”. In: Computer Science Logic (CSL).
Ed. by J. Flum and M. Rodríguez-Artalejo. Vol. 1683. LNCS.
Springer, 1999, pp. 126–140. doi: 10.1007/3-540-48168-0_10.

[GAA+12] T. M. Gasser, C. Arzt, M. Ayoubi, A. Bartels, J. Eier, F. Flemisch,
D. Häcker, T. Hesse, W. Huber, C. Lotz, M. Maurer, S. Ruth-
Schumacher, J. Schwarz, and W. Vogt. Rechtsfolgen zunehmender
Fahrzeugautomatisierung. Tech. rep. Heft F 83. Bundesanstalt für
Straßenwesen, 2012. url: https://www.bast.de/BASt_2017/DE/
Publikationen/Foko/2013-2012/2012-11.html.

[GHJ97] V. Gupta, T. A. Henzinger, and R. Jagadeesan. “Robust Timed
Automata”. In: Hybrid and Real-Time Systems. Ed. by O. Maler.
Vol. 1201. LNCS. Springer, 1997, pp. 331–345. doi: 10.1007/
BFb0014736.

[GKV97] E. Grädel, P. G. Kolaitis, and M. Y. Vardi. “On the decision
problem for two-variable first-order logic”. In: Bulletin of Symbolic
Logic 3.1 (1997), pp. 53–69. doi: 10.2307/421196.

[HKT01] D. Harel, D. Kozen, and J. Tiuryn. “Dynamic logic”. In: SIGACT
News 32.1 (2001), pp. 66–69. doi: 10.1145/568438.568456.

[HLO+11] M. Hilscher, S. Linker, E.-R. Olderog, and A. P. Ravn. “An Ab-
stract Model for Proving Safety of Multi-Lane Traffic Manoeu-
vres”. In: International Conference on Formal Engineering Methods
(ICFEM). Ed. by S. Qin and Z. Qiu. Vol. 6991. LNCS. Springer,
2011, pp. 404–419. doi: 10.1007/978-3-642-24559-6_28.

[HLO13] M. Hilscher, S. Linker, and E.-R. Olderog. “Proving Safety of Traffic
Manoeuvres on Country Roads”. In: Theories of Programming and
Formal Methods. Ed. by Z. Liu, J. Woodcock, and H. Zhu. Vol. 8051.
LNCS. Springer, 2013, pp. 196–212. doi: 10.1007/978-3-642-
39698-4_12.

[Hoe06] J. Hoenicke. “Combination of processes, data, and time”. PhD
thesis. Carl von Ossietzky University of Oldenburg, 2006.

[HR00] T. A. Henzinger and J. Raskin. “Robust Undecidability of Timed
and Hybrid Systems”. In: Hybrid Systems: Computation and Con-
trol (HSCC). Ed. by N. A. Lynch and B. H. Krogh. Vol. 1790. LNCS.
Springer, 2000, pp. 145–159. doi: 10.1007/3-540-46430-1_15.

249

https://doi.org/10.1007/3-540-48168-0_10
https://www.bast.de/BASt_2017/DE/Publikationen/Foko/2013-2012/2012-11.html
https://www.bast.de/BASt_2017/DE/Publikationen/Foko/2013-2012/2012-11.html
https://doi.org/10.1007/BFb0014736
https://doi.org/10.1007/BFb0014736
https://doi.org/10.2307/421196
https://doi.org/10.1145/568438.568456
https://doi.org/10.1007/978-3-642-24559-6_28
https://doi.org/10.1007/978-3-642-39698-4_12
https://doi.org/10.1007/978-3-642-39698-4_12
https://doi.org/10.1007/3-540-46430-1_15

Bibliography

[HS91] J. Y. Halpern and Y. Shoham. “A propositional modal logic of
time intervals”. In: J. ACM 38.4 (1991), pp. 935–962. doi: 10.
1145/115234.115351.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 1979. isbn: 0-201-
02988-X.

[Jan94] W. Janssen. Layered design of parallel systems. CIP-Gegevens
Koninklijke Bibliotheek, 1994. isbn: 978-90-9007399-6.

[Kha79] L. G. Khachiyan. “A polynomial algorithm in linear programming”.
In: Doklady Academii Nauk SSSR. Vol. 244. 1979, pp. 1093–1096.

[KJN12] R. Kindermann, T. A. Junttila, and I. Niemelä. “Beyond Las-
sos: Complete SMT-Based Bounded Model Checking for Timed
Automata”. In: Joint Proceedings of the IFIP WG 6.1 confer-
ences Formal Methods for Open Object-Based Distributed Systems
(FMOODS) and Formal Techniques for Networked and Distributed
Systems (FORTE). Ed. by H. Giese and G. Rosu. Vol. 7273. LNCS.
Springer, 2012, pp. 84–100. doi: 10.1007/978-3-642-30793-5_6.

[Kop91] H. Kopetz. “Event-Triggered Versus Time-Triggered Real-Time
Systems”. In: Operating Systems of the 90s and Beyond. Ed. by
A. I. Karshmer and J. Nehmer. Vol. 563. LNCS. Springer, 1991,
pp. 87–101. doi: 10.1007/BFb0024530.

[Koy90] R. Koymans. “Specifying Real-Time Properties with Metric Tem-
poral Logic”. In: Real-Time Systems 2.4 (1990), pp. 255–299. doi:
10.1007/BF01995674.

[LH15] S. Linker and M. Hilscher. “Proof Theory of a Multi-Lane Spatial
Logic”. In: Logical Methods in Computer Science 11.3 (2015). doi:
10.2168/LMCS-11(3:4)2015.

[Lin15] S. Linker. “Proofs for traffic safety : combining diagrams and logic”.
PhD thesis. Carl von Ossietzky University of Oldenburg, 2015.
url: http://oops.uni-oldenburg.de/2337/.

[LPN11] S. M. Loos, A. Platzer, and L. Nistor. “Adaptive Cruise Control:
Hybrid, Distributed, and Now Formally Verified”. In: Formal Meth-
ods (FM). Ed. by M. J. Butler and W. Schulte. Vol. 6664. LNCS.
Springer, 2011, pp. 42–56. doi: 10.1007/978-3-642-21437-0_6.

250

https://doi.org/10.1145/115234.115351
https://doi.org/10.1145/115234.115351
https://doi.org/10.1007/978-3-642-30793-5_6
https://doi.org/10.1007/BFb0024530
https://doi.org/10.1007/BF01995674
https://doi.org/10.2168/LMCS-11(3:4)2015
http://oops.uni-oldenburg.de/2337/
https://doi.org/10.1007/978-3-642-21437-0_6

Bibliography

[LPR+95] K. Lodaya, R. Parikh, R. Ramanujam, and P. S. Thiagarajan. “A
Logical Study of Distributed Transition Systems”. In: Information
and Computation 119.1 (1995), pp. 91–118. doi: 10.1006/inco.
1995.1078.

[Man12] E. Mandrali. “Weighted LTL with Discounting”. In: Implementation
and Application of Automata. Ed. by N. Moreira and R. Reis.
Vol. 7381. LNCS. Springer, 2012, pp. 353–360. doi: 10.1007/978-
3-642-31606-7_32.

[Maz86] A. W. Mazurkiewicz. “Trace Theory”. In: Advances in Petri Nets.
Ed. by W. Brauer, W. Reisig, and G. Rozenberg. Vol. 255. LNCS.
Springer, 1986, pp. 279–324. doi: 10.1007/3-540-17906-2_30.

[MFH+08] R. Meyer, J. Faber, J. Hoenicke, and A. Rybalchenko. “Model
checking Duration Calculus: a practical approach”. In: Formal
Aspects of Computing 20.4-5 (2008), pp. 481–505. doi: 10.1007/
s00165-008-0082-7.

[MGL+15] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner. Autonomes
Fahren - Technische, rechtliche und gesellschaftliche Aspekte.
Springer, 2015. doi: 10.1007/978-3-662-45854-9.

[MN04] O. Maler and D. Nickovic. “Monitoring Temporal Properties of
Continuous Signals”. In: Proceedings of the joint conference on
Formal Modelling and Analysis of Timed Systems (FORMATS)
and Formal Techniques in Real-Time and Fault Tolerant Systems
(FTRTFT). Ed. by Y. Lakhnech and S. Yovine. Vol. 3253. LNCS.
Springer, 2004, pp. 152–166. doi: 10.1007/978-3-540-30206-
3_12.

[Mon08] D. Monniaux. “A Quantifier Elimination Algorithm for Linear Real
Arithmetic”. In: Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR). Ed. by I. Cervesato, H. Veith, and A. Voronkov.
Vol. 5330. LNCS. Springer, 2008, pp. 243–257. doi: 10.1007/978-
3-540-89439-1_18.

[Mos85] B. C. Moszkowski. “A Temporal Logic for Multilevel Reasoning
about Hardware”. In: IEEE Computer 18.2 (1985), pp. 10–19. doi:
10.1109/MC.1985.1662795.

[MR14] E. Mandrali and G. Rahonis. “On weighted first-order logics with
discounting”. In: Acta Informatica 51.2 (2014), pp. 61–106. doi:
10.1007/s00236-013-0193-3.

251

https://doi.org/10.1006/inco.1995.1078
https://doi.org/10.1006/inco.1995.1078
https://doi.org/10.1007/978-3-642-31606-7_32
https://doi.org/10.1007/978-3-642-31606-7_32
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/s00165-008-0082-7
https://doi.org/10.1007/s00165-008-0082-7
https://doi.org/10.1007/978-3-662-45854-9
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1007/978-3-540-89439-1_18
https://doi.org/10.1109/MC.1985.1662795
https://doi.org/10.1007/s00236-013-0193-3

Bibliography

[OD08] E. Olderog and H. Dierks. Real-time systems - formal specification
and automatic verification. Cambridge University Press, 2008. doi:
10.1017/CBO9780511619953.

[Ody15a] H. Ody. Undecidability Results for Multi-Lane Spatial Logic. Re-
ports of SFB/TR 14 AVACS 112. 2015. url: http://www.avacs.
org / fileadmin / Publikationen / Open / avacs _ technical _
report_112.pdf.

[Ody15b] H. Ody. “Undecidability Results for Multi-Lane Spatial Logic”.
In: International Colloquium on Aspects of Computing (ICTAC).
Ed. by M. Leucker, C. Rueda, and F. D. Valencia. Vol. 9399. LNCS.
Springer, 2015, pp. 404–421. doi: 10.1007/978-3-319-25150-
9_24.

[Ody17] H. Ody. “Monitoring of Traffic Manoeuvres with Imprecise In-
formation”. In: Workshop on Formal Verification of Autonomous
Vehicles. Ed. by L. Bulwahn, M. Kamali, and S. Linker. Vol. 257.
Electronic Proceedings in Theoretical Computer Science (EPTCS).
2017, pp. 43–58. doi: 10.4204/EPTCS.257.6.

[OFH16] H. Ody, M. Fränzle, and M. R. Hansen. “Discounted Duration
Calculus”. In: Formal Methods (FM). Ed. by J. S. Fitzgerald, C. L.
Heitmeyer, S. Gnesi, and A. Philippou. Vol. 9995. LNCS. Springer,
2016, pp. 577–592. doi: 10.1007/978-3-319-48989-6_35.

[OS17] E.-R. Olderog and M. Schwammberger. “Formalising a Hazard
Warning Communication Protocol with Timed Automata”. In:
Models, Algorithms, Logics and Tools. Ed. by L. Aceto, G. Bacci,
G. Bacci, A. Ingólfsdóttir, A. Legay, and R. Mardare. Vol. 10460.
LNCS. Springer, 2017, pp. 640–660. doi: 10.1007/978-3-319-
63121-9_32.

[Pla10a] A. Platzer. Logical Analysis of Hybrid Systems - Proving Theorems
for Complex Dynamics. Springer, 2010. doi: 10.1007/978-3-642-
14509-4.

[Pla10b] A. Platzer. “Quantified Differential Dynamic Logic for Distributed
Hybrid Systems”. In: Computer Science Logic (CSL). Ed. by A.
Dawar and H. Veith. Vol. 6247. LNCS. Springer, 2010, pp. 469–483.
doi: 10.1007/978-3-642-15205-4_36.

[Pla18] A. Platzer. Logical Foundations of Cyber-Physical Systems.
Springer, 2018. doi: 10.1007/978-3-319-63588-0.

252

https://doi.org/10.1017/CBO9780511619953
http://www.avacs.org/fileadmin/Publikationen/Open/avacs_technical_report_112.pdf
http://www.avacs.org/fileadmin/Publikationen/Open/avacs_technical_report_112.pdf
http://www.avacs.org/fileadmin/Publikationen/Open/avacs_technical_report_112.pdf
https://doi.org/10.1007/978-3-319-25150-9_24
https://doi.org/10.1007/978-3-319-25150-9_24
https://doi.org/10.4204/EPTCS.257.6
https://doi.org/10.1007/978-3-319-48989-6_35
https://doi.org/10.1007/978-3-319-63121-9_32
https://doi.org/10.1007/978-3-319-63121-9_32
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-15205-4_36
https://doi.org/10.1007/978-3-319-63588-0

Bibliography

[PR07] A. Podelski and A. Rybalchenko. “ARMC: The Logical Choice
for Software Model Checking with Abstraction Refinement”. In:
Practical Aspects of Declarative Languages (PADL). Ed. by M.
Hanus. Vol. 4354. LNCS. Springer, 2007, pp. 245–259. doi: 10.
1007/978-3-540-69611-7_16.

[Pur00] A. Puri. “Dynamical Properties of Timed Automata”. In: Discrete
Event Dynamic Systems 10.1-2 (2000), pp. 87–113. doi: 10.1023/A:
1008387132377.

[QFD11] J.-D. Quesel, M. Fränzle, and W. Damm. “Crossing the Bridge
between Similar Games”. In: Formal Modeling and Analysis of
Timed Systems (FORMATS). Ed. by U. Fahrenberg and S. Tripakis.
Vol. 6919. LNCS. Springer, 2011, pp. 160–176. doi: 10.1007/978-
3-642-24310-3_12.

[Que13] J.-D. Quesel. “Similarity, Logic, and Games - Bridging Model-
ing Layers of Hybrid Systems”. PhD thesis. Carl von Ossietzky
University of Oldenburg, 2013.

[RCC92] D. A. Randell, Z. Cui, and A. G. Cohn. “A Spatial Logic based
on Regions and Connection”. In: Principles of Knowledge Rep-
resentation and Reasoning (KR). Ed. by B. Nebel, C. Rich, and
W. R. Swartout. Morgan Kaufmann, 1992, pp. 165–176.

[RRH93] A. P. Ravn, H. Rischel, and K. M. Hansen. “Specifying and Verify-
ing Requirements of Real-Time Systems”. In: IEEE Transactions
on Software Engineering 19.1 (1993), pp. 41–55. doi: 10.1109/32.
210306.

[Sch04] A. Schäfer. “A Calculus for Shapes in Time and Space”. In: Interna-
tional Colloquium on Theoretical Aspects of Computing (ICTAC).
Ed. by Z. Liu and K. Araki. Vol. 3407. LNCS. Springer, 2004,
pp. 463–477. doi: 10.1007/978-3-540-31862-0_33.

[Sch06] A. Schäfer. “Specification and verification of mobile real-time sys-
tems”. PhD thesis. Carl von Ossietzky University of Oldenburg,
2006.

[Sch11] G. Schmidt. Relational Mathematics. Vol. 132. Encyclopedia of
Mathematics and its Applications. Cambridge University Press,
2011. doi: 10.1017/CBO9780511778810.

253

https://doi.org/10.1007/978-3-540-69611-7_16
https://doi.org/10.1007/978-3-540-69611-7_16
https://doi.org/10.1023/A:1008387132377
https://doi.org/10.1023/A:1008387132377
https://doi.org/10.1007/978-3-642-24310-3_12
https://doi.org/10.1007/978-3-642-24310-3_12
https://doi.org/10.1109/32.210306
https://doi.org/10.1109/32.210306
https://doi.org/10.1007/978-3-540-31862-0_33
https://doi.org/10.1017/CBO9780511778810

Bibliography

[Sch18a] M. Schwammberger. “An abstract model for proving safety of
autonomous urban traffic”. In: Theoretical Computer Science 744
(2018), pp. 143–169. doi: 10.1016/j.tcs.2018.05.028.

[Sch18b] M. Schwammberger. “Introducing Liveness into Multi-lane Spatial
Logic lane change controllers using UPPAAL”. In: International
Workshop on Safe Control of Autonomous Vehicles. Ed. by M.
Gleirscher, S. Kugele, and S. Linker. Vol. 269. EPTCS. 2018,
pp. 17–31. doi: 10.4204/EPTCS.269.3.

[SFK08] M. Swaminathan, M. Fränzle, and J. Katoen. “The Surprising
Robustness of (Closed) Timed Automata against Clock-Drift”. In:
IFIP International Conference On Theoretical Computer Science.
Ed. by G. Ausiello, J. Karhumäki, G. Mauri, and C. L. Ong.
Vol. 273. IFIP Advances in Information and Communication Tech-
nology. Springer, 2008, pp. 537–553. doi: 10.1007/978-0-387-
09680-3_36.

[Spi92] J. M. Spivey. Z Notation - a reference manual (2. ed.) Prentice
Hall International Series in Computer Science. Prentice Hall, 1992.
isbn: 978-0-13-978529-0.

[SRR90] E. V. Sørensen, A. P. Ravn, and H. Rischel. Control Program for a
Gas Burner: Part 1: Informal Requirements, PrCoS Case Study 1.
Tech. rep. Report No. ID/DTH EVS2. Department of Computer
Science, Technical University of Denmark, 1990.

[SS78] L. A. Steen and J. A. Seebach Jr. Counterexamples in Topology.
eng. Second Edition. Topological spaces. Springer, 1978. doi: 10.
1007/978-1-4612-6290-9.

[Tar51] A. Tarski. A Decision Method for Elementary Algebra and Ge-
ometry. Tech. rep. Prepared for Publication with the Assistance
of J.C.C. McKinsey. 1951. url: https://www.rand.org/pubs/
reports/R109.html.

[TMM02] S. L. Torre, S. Mukhopadhyay, and A. Murano. “Optimal-
Reachability and Control for Acyclic Weighted Timed Automata”.
In: IFIP International Conference on Theoretical Computer Sci-
ence. Ed. by R. A. Baeza-Yates, U. Montanari, and N. Santoro.
Vol. 223. IFIP Conference Proceedings. Kluwer, 2002, pp. 485–497.
doi: 10.1007/978-0-387-35608-2_40.

254

https://doi.org/10.1016/j.tcs.2018.05.028
https://doi.org/10.4204/EPTCS.269.3
https://doi.org/10.1007/978-0-387-09680-3_36
https://doi.org/10.1007/978-0-387-09680-3_36
https://doi.org/10.1007/978-1-4612-6290-9
https://doi.org/10.1007/978-1-4612-6290-9
https://www.rand.org/pubs/reports/R109.html
https://www.rand.org/pubs/reports/R109.html
https://doi.org/10.1007/978-0-387-35608-2_40

Bibliography

[VW86] M. Y. Vardi and P. Wolper. “An Automata-Theoretic Approach to
Automatic Program Verification (Preliminary Report)”. In: Logic in
Computer Science (LICS). IEEE Computer Society, 1986, pp. 332–
344.

[Wei99] V. Weispfenning. “Mixed Real-Integer Linear Quantifier Elimi-
nation”. In: International Symposium on Symbolic and Algebraic
Computation (ISSAC). Ed. by K. O. Geddes, B. Salvy, and S. S.
Dooley. ACM, 1999, pp. 129–136. doi: 10.1145/309831.309888.

[WHL+15] H. Winner, S. Hakuli, F. Lotz, and C. Singer, eds. Handbuch
Fahrerassistenzsysteme, Grundlagen, Komponenten und Systeme
für aktive Sicherheit und Komfort. Springer, 2015. doi: 10.1007/
978-3-658-05734-3.

[WHO18] World Health Organization. Global status report on road safety
2018: summary. 2018. url: https://www.who.int/violence_
injury_prevention/road_safety_status/2018.

[Win86] G. Winskel. “Event Structures”. In: Petri Nets: Central Models and
Their Properties. Ed. by W. Brauer, W. Reisig, and G. Rozenberg.
Vol. 255. LNCS. Springer, 1986, pp. 325–392. doi: 10.1007/3-
540-17906-2_31.

[ZH04] C. Zhou and M. R. Hansen. Duration Calculus - A Formal Approach
to Real-Time Systems. Monographs in Theoretical Computer Sci-
ence. An EATCS Series. Springer, 2004. doi: 10.1007/978-3-
662-06784-0.

[ZH97] C. Zhou and M. R. Hansen. “An Adequate First Order Interval
Logic”. In: Compositionality: The Significant Difference. Ed. by
W. P. de Roever, H. Langmaack, and A. Pnueli. Vol. 1536. LNCS.
Springer, 1997, pp. 584–608. doi: 10.1007/3-540-49213-5_23.

[ZHR91] C. Zhou, C. A. R. Hoare, and A. P. Ravn. “A Calculus of Durations”.
In: Information processing letters 40.5 (1991), pp. 269–276. doi:
10.1016/0020-0190(91)90122-X.

[ZHS93] C. Zhou, M. R. Hansen, and P. Sestoft. “Decidability and undecid-
ability results for duration calculus”. English. In: Symposium on
Theoretical Aspects of Computer Science. Ed. by P. Enjalbert, A.
Finkel, and K. W. Wagner. Vol. 665. LNCS. Springer, 1993, pp. 58–
68. isbn: 978-3-540-56503-1. doi: 10.1007/3-540-56503-5_8.

255

https://doi.org/10.1145/309831.309888
https://doi.org/10.1007/978-3-658-05734-3
https://doi.org/10.1007/978-3-658-05734-3
https://www.who.int/violence_injury_prevention/road_safety_status/2018
https://www.who.int/violence_injury_prevention/road_safety_status/2018
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/978-3-662-06784-0
https://doi.org/10.1007/978-3-662-06784-0
https://doi.org/10.1007/3-540-49213-5_23
https://doi.org/10.1016/0020-0190(91)90122-X
https://doi.org/10.1007/3-540-56503-5_8

Index of Symbols

MLSL(S)
Chapters 2, 3, 4, 5 and 6
acc(C) acceleration of car C 22

anti-restriction of model 55
cars · car domain of · 53
C car identifier 22
I set of all car identifiers 22, 53
CVar set of all car variables 25
cl(·) claim formula 28, 63
clm(C) set of claims of car C 22

disjoint union of models 55
D annotation for downwards 35
ego ego constant 25
E view owner/ego car 24
M∅ empty MLSLS model 53
X extension of a view 24
free formula for free space 27, 63
freeVar(φ)

set of free car variables in φ 62
a horizontal chop operator 28, 63
L lanes of a view 24
L set of all lanes 22
letter MLSL encoding of a letter 37
letterfree as letter but surrounded by free

space 37
letterrfree like letterr but surrounded by free

space 124
letterr robust MLSL encoding of a letter

123
dm metric on MLSL(S) models

121, 141
Act set of all actions 24
a(·, ·) set acceleration action 24
wd c(·) remove claim action 23
wd r(·, ·) remove reservation action 23
c(·, ·) set claim action 23
r(·) set reservation action 23
M MLSL(S) model 25, 53
M set of all MLSL(S) models 25, 53
Φ set of all MLSLS formulas 62
pos(C) position of car C 22
re(·) reservation formula 28, 63
res(C) set of reservations of car C 22

restriction of model 55

se safety envelope 26
|= MLSL(S) satisfaction relation

27, 63
|=δ robust satisfaction relation 121
sat(φ) set of models satisfying φ 137
CS scope of MLSLS model 53
: scope operator 62
cs set of car variables 62
Ω sensor function 25
|M | size of car domain of M 53
〈·〉 somewhere abbreviation 28
spd(C) speed of car C 22
TS set of all traffic snapshots 22
TS traffic snapshot 22
true formula that is always satisfied 28
F (GD, GU)

undecidable MLSL formula 41
Frobust(GD, GU)

robust version of F (GD, GU) 125
U annotation for upwards 35
ν car variable valuation 25
IMV set of cars in view V in model M

26
V view of MLSL(S) model 24
V set of views 24
: horizontal view composition 24
	 vertical view composition 24
hm weak equality of models 69

Timed Words & Transition Sequences
Chapters 2, 5 and 6
\ timed anti-restriction 153, 158
$@t in $ model at time t 157
� causal congruence 180
· concatenation of timed words 8
≈ equality up to empty sets of actions

154, 157
last last model in transition sequence

157
dt metric on timed words 183
|=seq spatio-temporal MLSLS

satisfaction relation 161
disjoint parallel composition of
transition sequences 160

257

INDEX OF SYMBOLS

‖ parallel composition of timed words
152

pre(·, ·) timed word prefix 155
� timed restriction 153, 158
span time span 8, 157
τ sequence of time stamps 8
% timed word 8
(P(Σ)× T)+

set of all timed words over Σ 8
$ MLSLS transition sequence 157
w word 8

Arithmetic Logics – All chapters
anti-restriction of FOMLA tuples

87
NTerm set of all terms ranging over N 31
RTerm set of all real-valued terms 31
κ FOMLA variable assignment 30
cars car domain of FOMLA tuple 86
g car identifier variable assignment

114
DS car identifier variable scope 75
D arithmetic car identifier variable 75
vp, vΩ, vr1, vr2, vc, vs, va

data variables 75, 113
S(D) data variables of D 75

disjoint union of FOMLA tuples 86
(κ∅,Υ∅) empty FOMLA tuple 82
=r equality up to renaming 87
mla2m transformation of FOMLA tuples

to MLSLS models 89
Υ FOMLA data tuple 75
Z(D) sequence of real-valued terms of D

165
Trcf set of possibly simple FORCF data

tuples 162
Π(D) sequence of data tuples of D 165
π sequence of data tuples 164
m2mla transformation of MLSLS models

to FOMLA tuples 91
|= satisfaction relation 29
∗ multiplication 29
NVar natural number-valued variables 30
• value for unassigned variables 75
RVar set of all real-valued variables 29

restriction of FOMLA tuples 87
D.se abbreviation for safety envelope 77

sane(Υ) sanity formula 77
· sequence of variables in bounded

unfolding 210, 212
DVar set of car identifier variables 75
simm arithmetic formula for similarity of

models 142, 143
simt arithmetic formula for similarity of

timed words 186, 187
simple transformation of proper to simple

FOMLA tuple 82
|(κ,Υ)| size of car domain of (κ,Υ) 86
α natural number-valued term

representing a view 75
β real-valued term representing a

view 76
θ real-valued term representing a

point in time 31
tra transforms a single action-delay

pair to FORCF constraints 163
trlraf transforms MLSLS formula to

FOLRA constraints 113
trmla

f transforms MLSLS formulas to
FOMLA constraints 77

trlram transforms MLSLS models to
FOLRA constraints 115

trU encodes “transition sequence until
time t” 165, 167

trw encodes transition sequence for one
car 164

h FORCF variable assignment 29
hmla weak equality of FOMLA tuples 83

Timed Automata and DDC
Chapters 2 and 7
B set of Boolean constraints 14
I clock invariants per location 15
X set of clocks 15
DDC<1 set of all DDC formulas with

discount less than 1 200
→ set of edges 15
l DDC encoding of event 202
dSe DDC formula for “S holds in

current interval” 202
FlS φ DDC formula for “eventually S

happens and φ holds” 202
GlS φ DDC formula for “whenever S

happens φ holds” 202

258

INDEX OF SYMBOLS

Init set of initial configurations 15
τ internal action 15
Lab set of labels for synchronisation 15
l location 15
L set of locations 15
mc(·, ·) model checking function 205
pre(·, ·) timed prefix for trajectories 206
τδ prefix of τ until δ 206
♦ some right neighbourhood modality

200, 201
� every right neighbourhood

modality 202
Λ invariant for state variables 15
V set of state variables 15
T (A) set of trajectories of A 18
τ trajectory 14
β valuation of state variables 15
Val(·) set of valuations 15
ν valuation of clocks 15

Other – All chapters
|·| set cardinality and also

absolute value 5, 12
CNF−ε grammars in CNF without ε-rules

10
· complementation of sets and right

end of interval 5, 13
◦ relational composition 6
s1 · s2 sequence concatenation 7
G context-free grammar 9
\ difference of sets 5
] disjoint union of sets 6
dom domain of relation 6
−C domain anti-restriction 6
C domain restriction 6
〈〉 empty sequence 6
front front of a sequence 7

head first element of sequence 7
inf infimum 12
∩ intersection of sets 5
· left end of interval 13
‖ · ‖ length of interval 13
last last element of sequence 7
#· length of sequences/words 6, 7
≺l lexicographic order relation 7
∗ multiplication 29
N set of all natural numbers 5
N set of nonterminals 9
± plus/minus 12
P(·) powerset 5
v prefix relation 7
s[..i] prefix of s until s(i) 7
:: sequence prepending and also

appending 7
ran range of relation 6
−B range anti-restriction 6
B range restriction 6
Q set of all rational numbers 5
R set of all real numbers 5
R>0 set of strictly positive reals 5
L·M relational image 6
R context-free rewrite rules 9
Seq · set of sequences over · 7
S starting nonterminal 9
s[i..] suffix of s starting at s(i) 7
sup supremum 12
≡ syntactic equivalence 5
tail(·) tail of a sequence 7
T set of terminals 9
Υ tree 8
T(Σ) set of Σ-labelled trees 9
∪ union of sets 5
w word 8

259

Index of Subjects

actions 24
ancestor 9
anti-restriction 6

FOLRA tuple 113
FOMLA tuple 86
MLSLS model 55
MLSLS transition sequence 158
timed word 153

approximate model checking 205
assignment 29

bijective 14
binary tree 8
braking distance 150

car identifier variable 75
assignment 114

car identifiers 22
causal congruence 180
CFG 9
channel 15
Chomsky normal form 9
claim 20
CNF 9
CNF−ε 10
complexity 29, 30
composable

FOLRA tuples 113
FOMLA tuples 86
MLSLS models 55
MLSLS transition sequences 160

concatenation
sequences 7
timed words 8

configuration 15
context-free grammar 9

data tuple
FOLRA 113
FOMLA 75
FORCF 162

data variables
FOLRA 113
FOMLA 75

DDC 200
DDC<1 200
decision problem 11
delay transition 16
delaying network 17
δ-similar 121
depth 9
descendant 9
Discounted Duration Calculus 200
discrete action 24
disjoint union

FOLRA tuples 113
FOMLA tuples 86
MLSLS models 55
sets 6

ego car 24
elementary algebra 29
empty

FOMLA tuple 82
MLSLS model 53

∅-terminated 185
ε-rule 9
ε-similar 183
equality

up to interior empty sets of actions
154, 157

weak see weak equality
extension 24

finite MLSLS model 53
finite variability 14
first-order theory

linear real arithmetic 30
mixed linear arithmetic 29
real-closed fields 29

FOLRA 30
FOMLA 29
FORCF 29
free variables 62

greatest lower bound 12

height 9

261

INDEX OF SUBJECTS

horizontal chopping 24

independence relation 179
infimum 12
initial configuration 15
injective 14
internal node 9
interpretation 28
interval 13

labelling function 42
inverse 6

Kleene star 7

labelled tree 8
lane 22
lane-bounded satisfiability

MLSL 34
MLSLS 65

lane-unbounded satisfiability
MLSL 35
MLSLS 64

language 7
least upper bound 12
lexicographic order 7
linear interpolation 12
linear real arithmetic 31
local transition 16
locations 15

metric 12
MLSL models 120
MLSLS models 141
timed words 183

MLSL 19
MLSL representation of a letter 127
MLSLS 52
model

MLSL 25
MLSLS 53

model checking 205
model problem 28

neighbourhood modality 200
network 16

parallel composition

MLSLS transition sequences 160
timed automata 16
timed words 152

point-interval 13
powerset 5
prefix 7
proper

FOLRA data tuple 113
FOMLA

data tuple 75
tuple 76

interval 13
MLSLS model 53

pseudo metric space 12

reduction 11
representation of a letter 127
reservation 20
restriction 6

FOLRA tuple 113
FOMLA tuple 86
MLSLS model 55
MLSLS transition sequence 158
timed word 153

right neighbourhood modality 200
robust

satisfaction 121
satisfiability 121

run 17

safety envelope 26
sanity

FOLRA 114
FOMLA tuple 77, 86
FORCF 164, 166
MLSL model 25
MLSLS model 54
sensor function 54
traffic snapshot 22
view 25

satisfaction value 201
satisfiability

first-order theory 28
MLSL 34, 35
MLSLS 64, 65

scope 53
operator 62

262

INDEX OF SUBJECTS

variables 62
semantics

DDC 201
MLSL 27
MLSLS 63
timed automata 16

sensor function 25
sequence 6
sibling 9
similarity

MLSL models 121
timed words 183

simple
FOLRA data tuple 113
FOMLA

data tuple 81
tuple 82

MLSLS model 53
span

timed word 8
trajectory 14
transition sequence 157

state
expression 200
variables 14

strong non-Zenoness 205
strongly bounded 220
subsequence 7
supremum 12
surjective 14
synchronising transition 17
syntax

FOLRA 30
FOMLA 29
FORCF 29
DDC 200
MLSL 27
MLSLS 62

well-scoped MLSLS 73

temporal quality 199
time complexity 29, 30
time-bounded prefix

timed word 155
trajectory 206
transition sequence 157

timed automaton 15
timed word 8
traffic snapshot 22
trajectory 14
transition

MLSL 23
MLSLS 151
timed automata 16

tree 8
tuple

FOLRA 113
FOMLA 75

unsatisfiable 28

valid 28
valuation 25
variable assignment 29
vertical chopping 24
view 24

owner 24

weak equality
FOMLA 83
MLSLS 69

well-scoped 73
word 7

Z notation 6

263

	Titelseite
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Preliminaries
	Basic Concepts
	Timed Automata
	Multi-Lane Spatial Logic
	First-Order Theories

	Satisfiability of Spatial Properties with Precise Information
	Undecidability of Satisfiability of MLSL
	Multi-Lane Spatial Logic with Scope
	Satisfiability of MLSLS
	Decidability of Model Problem for MLSLS
	Related Work

	Satisfiability of Spatial Properties with Imprecise Information
	Undecidability of Robust Satisfiability
	Proving Undecidability of Robust Satisfiability of MLSL
	Decidability of Robust Model Problem for MLSLS
	Related Work

	Monitoring of Spatio-Temporal Properties with Precise Information
	Timed Words and MLSLS
	Monitoring Global Properties
	Correctness of our Encoding
	Related Work

	Monitoring of Spatio-Temporal Properties with Imprecise Information
	Monitoring Global Properties with Imprecise Information
	Discussion
	Related Work

	Model Checking Temporal Properties with a Multi-Valued Semantics
	Discounted Duration Calculus
	Approximate Model Checking
	Examples
	Related Work

	Conclusion
	Summary
	Future Work

	Bibliography
	Index of Symbols
	Index of Subjects

