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Kurzfassung

In dieser Arbeit wird ein optisches Rasternahfeldmikroskop vorgestellt, welches durch eine

schnelle Zeilenkamera und einen Monochromator erweitert wurde, um lokale Spektroskopie

auf der Nanoskala mit Hilfe üblicher Demodulationstechniken zu ermöglichen.

Insbesondere für monochromatische SNOM Messungen werden bereits seit vielen Jahren

Modulations- und Demodulationstechniken eingesetzt, um das schwache optische Nahfeldsig-

nal von einem unerwünscht starken optischen Untergrundsignal zu trennen. Mit der hier

präsentierten Methode können solche Modulationstechniken erstmals auch auf lokale SNOM

Spektroskopie angewandt werden, um so Nahfeldspektren in einem direkten Ansatz zu ex-

trahieren. Um die Trennung bzw. Abschwächung des optischen Untergrunds effizienter und

über einen spektral breiten Bereich zu ermöglichen, stelle ich in dieser Arbeit ein intrinsisch

stabiles in-line Interferometer vor, welches als Glas-Gold-Glas Mehrfachschicht kostengünstig

hergestellt werden kann und übliche Glas Substrate ersetzen kann.

Da die Nahfeldspektren an sich jedoch nicht nur die Probeninformation, sondern auch Informa-

tion über die gesamte Spitze-Probe Wechselwirkung enthalten, wurde in dieser Arbeit zusätzlich

zu den experimentellen Ergebnissen eine theoretische Beschreibung erarbeitet, welche im Fol-

genden dazu genutzt wird, die Wechselwirkung und damit die lokalen Spektren verschiedener

Proben zu simulieren und die Messergebnisse genauer zu verstehen.

Der Einfluss der Spitze auf die spektralen Eigenschaften wird hierbei in einem ersten Schritt

an spektral flachen Proben mit bekannter dielektrischer Funktion untersucht, u.a. auf einem

30nm dicken Goldfilm.

Die neue Spektroskopiemethode wird schließlich auf zwei Proben von wissenschaftlichem

Interesse angewendet. Die erste ist ein neuartiger, anisotroper organischer Farbstoff, welcher für

organische Photodioden oder organische Solarzellen eingesetzt werden könnte. Es wird gezeigt,

dass lokale Absorption auf der Nanoskala gemessen werden kann und die Nahfeldspektren mit

strukturellen Eigenschaften der Probe in Zusammenhang gebracht werden können, welche wir

mit Hilfe eines quantenmechanischen Modells vorausgesagt haben.

Als zweite Probe untersuchen wir eine plasmonische Nanostruktur, die aus zwei gekoppelten

Nanoantennen besteht. Hier nutzen wir die spektrale Auflösung, um die elektrischen Feldkom-
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ponenten um die Nanostruktur in der Ebene und aus der Ebene heraus unterscheiden zu können.

Schlagwörter: SNOM, Spektroskopie, Squaraine Farbstoff, Nanostrukturen, lokale Absorption,

lokale Spektroskopie



Abstract

In this thesis I present a scanning near-field optical microscope (SNOM) that was extended

by a fast line camera and a monochromator to enable local spectrsocopy on the nanoscale

using common demodulation techniques. Particularly for monochromatic SNOM measurements,

modulation and demodulation techniques were used for many years to separate the desired

weak near-field signal from an undesired large optical background signal. With the SNOM setup

presented in this work the same techniques can for the first time be applied to local SNOM

spectroscopy and allow to extract near-field spectra in a direct approach.

In order to separate or suppress the optical background more efficiently and over a spectrally

broad range, in this thesis I present an intrinsically stable in-line interferometer, which consists

of a glass-gold-glass multilayer that is cheap to produce and is used as a replacement for typical

glass substrates.

As the measured near-field spectra however not only contain information about the sample, but

are influenced by the complete tip-sample interaction, a theoretical description was worked

out in addition to the experimental results. It is used throughout this work to simulate the

tip-sample interaction and hence the local spectra for multiple samples and understand the

measured spectra in more detail.

The influence of the tip on the spectral properties is hereby firstly investigated for spectrally flat

samples with a known dielectric function, such as for a 30 nm gold-coated glass substrate.

Finally, this newly introduced spectroscopy method is applied to two samples of interest. The

first is a promising new organic squaraine dye, that may find application in organic photodiodes

or solar cells. It is shown that we are able to measure local absorption of the dye on a nanometer

scale and connect the findings with the structural properties of the sample, which was postulated

with a quantum mechanical model. For the second sample, a plasmonic nanoentenna dimer, we

demonstrate that we can use spectral discrimination for vectorial field mapping of the near field

around a plasmonic nanoantenna.

Keywords: SNOM, spectroscopy, squaraine dye, polymer, nanostructures, local absorption, local

spectroscopy
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Introduction 1
Nanotechnology is of rapidly increasing technological relevance nowadays because plasmonic

nano elements as well as processes on the nanoscale show a great potential to drive innovation

in research and development of future technologies. Like Richard Feynman already said in

1957, "‘there is plenty of room at the bottom"’[1, 2], and today nano structures are found in

the various fields of science, like medicine[3, 4], surface science, organic chemistry, energy

storage[5] and many more.

In particular the interaction of light and matter on the nanoscale is of high scientific importance

as it is the key to study new physical phenomena arising from structures on the size of small

molecules. The computer industry is one example that demonstrates our day to day use of

nanotechnology. Tremendous progress has been made over the last years in increasing the

processor speed of modern computers, which was mainly achieved by placing more transistors

on the small size of a CPU chip. However, at some point this comes to a limit. One cannot make

the transistors smaller or pack them more compact, because quantum effects like the tunneling

effect come into play and make the control of the current flow in the thin channels challenging.

Already today, Intels 10 nm technology shows a minmum metal pitch between the transistors of

36 nm and a transistor density of 100.8 mega transistors per mm2 [6, 7]

Hence, with electronic transistors a very high increase in CPU speed cannot be expected anymore.

However, electrons are much slower than photons, which means replacing electronic transistors

by photonic transistors could increase the speed dramatically. This would also be a big step

towards new super-computers. The development of such optical transistors, capable of ultrafast,

sub-picosecond switching by using plasmonic nanostructures is already started [8].

Research on printed transistors by using organic polymer thin films is another field of research

that relies on the principles of nanoscale light matter interaction and could be on a new leap

towards foldable electronic devices, e.g. foldable smarthphones [9].

More examples that demonstrate the importance of understanding nanoscale light matter

interactions are amongst others the light-to-current conversions in artificial photovoltaic devices

or the conversion of light into chemical energy in biological light harvesting systems.

5



6 CHAPTER 1. INTRODUCTION

Figure 1.1: Visualiztaion of a SNOM tip probing the fields of a bowtie nanoantenna

However, probing the optical properties of such nano systems is a challenging task. One way to

investigate nanostrcutures is the use of microscopy and spectroscopy techniques.

On the one hand, tools like scanning electron microscopy (SEM) can resolve structures with a

spatial resolution of less than 1nm, but lack optical or chemical informations and often need

a special sample preparation. On the other hand, standard optical far field microscopy is

limited by the diffraction limit of light to a spatial resolution of a few hundreds of nanometers.

Hence, the study of e.g. biological or chemical systems, such as the functions of proteins or new

organic polymer solar cells, can become a difficult task. In most cases one cannot just extract

the interesting nano-meter sized parts and investigate them in a macroscopic environment.

Especially proteins often only function in their native environment, for example membrane

proteins, involved in the energy transfer between light-harvesting complexes in photosynthetic

membranes, depend on the presence of other neighboring proteins [10].

As we can see from these examples the challenge is to have a tool to probe topography and

optical signals of the light-matter interaction within a spatial resolution in the sub-10 nm regime

without altering the sample itself. Scanning near-field optical microscopy (SNOM) has proven

to be such a tool. In SNOM the diffraction limit of light is bypassed by making advantage

of evanescent fields of a nanometer sized probe which is brought in close proximity to the

sample. Especially apertureless designs using a sharp metallic tip have shown big advantages

in terms of optical resolution over aperture based designs using etched fiber tips as a probe.

In a backscattering type apertureless SNOM used throughout this work an etched gold tip is

used as a scatterer that transforms the evanescent near-fields between tip and sample into

propagating far-fields, which can be measured by standard far field detection, e.g. a photodiode.

Although scanning near-field microscopy with monochromatic laser light can be already a very

powerful tool in revealing the physics behind such nano systems, probing chemical informations
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or resonance condtions of plasmonic structures often requires measurements at many different

wavelengths, or in other words optical spectroscopy. In addtion, when using a broad-band

and short pulsed laser beam with pulse durations in the low fs-regime, investigation of time

dynamics by the use of pump probe setups becomes possible. This technique already revealed

the importance of coherent vibronic coupling between electronic and nuclear motion after

electronic excitation for charge separation and transfer in a model organic photovoltaic material

[11], but has not been used on a local nanometer spot size.

Thus, combing optical spectroscopy with the high spatial optical resolution of SNOM has a high

potential of revealing new insights in nano materials such as organic substrates (dyes, proteins,

polymers) or plasmonic stuctures (nano antennas, nano lenses, plasmonic devices, etc) and

could even shed some light on the dynamics of primary light-induced processes such as light

harvesting reactions, specific plasmonic structures or other organic materials.

In order to combine SNOM with broad band spectroscopy some experimental hurdles have to

be overcome. The main conflict that arises is the way optical signals are recorded by the SNOM.

Optical near-fields that are scattered by the SNOM tip into the far field are typically of very

low intensities compared to the intensity of the input beam and background signals arising

from scattering and reflection at the tip shaft and other optical elements. Hence, the signal to

background ratio is very low which makes the direct interpretation of SNOM images nearly

impossible. To increase this ratio, a common way is to modulate the tip with a high frequency

of some tens of kilohertz and demodulate the optical signals. Since the near-fields arising at

the tip show high non-linear components, the scattered near-field signal typically contains

modulated signals at a higher orders of the modulation frequency. The background signal has a

linear dependence to the input power and vanishes at the higher orders of the tip modulation

frequency. Thus, demodulation at a frequency multiple times of the modulation frequency can

help to suppress the background contribution.

Such higher order demodulation can easily be applied for one wavelength with existing devices,

but becomes challenging when measuring spectra. In the past, various attempts have been

made to mix spectral information with SNOM images, e.g. by tuning the wavelength of the laser

and measuring an area of the sample for each wavelength again, or indirectly measuring spectra

by Fourier Transform Interferometry for each point on the sample [12–14]. Disadvantages like

mechanical drift of the sample during the repeated scans or a long recording time for each

spectrum in FT interferometry however demand for a new method.

In this PhD thesis a self-built SNOM is presented that can overcome these downsides. I present

a way to increase the near-field to background ratio for any given sample by homodyne detec-

tion with an inherently stable in-line interferometer using a modified sample substrate. This

technique can easily be applied to broad-band nanoscale spectroscopy as well. Further, I will

introduce a new direct way of recording SNOM spectra by using a very fast line camera attached
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to a monochromator. In this way one is able to record spectra with a very high line rate and is

capable of measuring spectra demodulated up to the 4th order of the modulation frequency. Such

high spectra recording speeds only became possible during the last years with the increasing

readout speed of modern computers. To my knowledge this is the first approach so far which

demonstrates a direct measurement of local spectra with commonly known back-scattering-type

SNOM setups that involve modulation techniques. Also, it could easily be added to a lot of

existing SNOM setups and it is much faster than previous methods. Furthermore, I provide

a theoretical description to model such signals and investigate the influence of the tip on the

spectra in the visible spectral range. Finally, SNOM nanoscale spectroscopy is used to understand

the connection between function and structure of promising new organic solar cell materials

and to map the near-field around a plasmonic nanoantenna.

The thesis is divided in 7 chapters:

Chapter 2 gives an overview of SNOM microscopy and spectroscopy in general and sets the

work of this thesis into perspective to previous studies.

Chapter 3 presents the SNOM setup that is used throughout this thesis in order to measure

near-field signals both monochromatically as well as spectrally resolved. For this purpose,

also the demodulation process for both cases is explained in detail and a first investigation of

background signals in SNOM measurements is presented.

Chapter 4 introduces a theoretical description of SNOM signals, which is divided in two sections:

Chapter 4.1 introduces models to describe the medium. In particular a quantum mechanical

model is established that is later used to describe the dielectric function of a dye based on its

optical transmission properties. Furthermore, a transfer matrix model is described that is used

at various steps throughout this thesis to calculate the transmission of light through a system

of multiple layers with various refractive indices. Finally, the chapter presents a description

for anisotropic samples such as the dye investigated in chapter 6. Anisotropic samples have a

different dielectric function for different directions within the sample. A way to calculate the

transmission spectra of such a medium with a modified transfer matrix method is given.

Chapter 4.2 takes a closer look at the simulation of the tip-sample interaction. At first, the

well-established image dipole coupling model previously introduced by Keilmann & Knoll [15]

is presented. A more detailed description of our SNOM signals is then given by a more complete

characterization in a Green’s function approach that additionally considers the focus fields and

can easily be expanded to more specific setups, e.g. with a tilted tip. I will show that under

certain circumstances and approximations both models will converge to the same result.

Chapter 5 presents a way to extract a low near-field signal out of a large background signal
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by using an inherently stable in-line interferometer for homodyne mixing of the near field and

a reference field. Approach curve measurements and a detailed near-field and background

analysis will show the benefit of this newly introduced in-line interferometer for SNOM mea-

surements in general, but also especially as an important step towards SNOM spectroscopy.

Chapter 6 finally presents our efforts in measuring and modeling local SNOM spectra. Here, I

first show spectra measured with the SNOM on a flat gold film evaluated by a simple interference

model in chapter 6.1.

In the next step, chapter 6.2 discusses various measurements on flat films by taking into account

the complete vectorial tip-sample coupling. The influence of the focus fields and the reference

field is discussed here as well. Also, this section exemplarily shows a typical evaluation of the

measured, demodulated optical signals and introduces a way to recreate spectrally resolved

approach data from the recorded raw data.

Chapter 6.3 then applies this method to local spectra measured on a more complex sample: an

anisotropic squaraine dye spincoated on top of a substrate. To understand this relatively new

dye, firstly transmission spectra are presented from which we obtain the dielectric function of

the dye by modeling it as a 2-level system in a quantum mechanical model. Secondly, the local

SNOM spectra recorded on that sample are analyzed and compared to simulations that take

into account the previously found dielectric function. We could demonstrate chemically specific

SNOM maps by recording local spectra around a gold nanoparticle placed on top of the dye

layer.

Chapter 6.4 concludes this chapter by discussing SNOM spectra measured around a nanorod

antenna. In contrast to the squaraine dye, we are able to show not only coupling to one of

the tip’s polarization tensor component, but a coupling to both the in-plane and out-of-plane

components can be observed spectrally separated in the same measurement and hence allows

for a disentangling of in-plane and out-of-plane electric field vector components.

Chapter 7 summarizes the main results of this thesis.

All in all the thesis provides an analysis of measuring and modeling SNOM signals and demon-

strates a way to measure local SNOM spectra with modern techniques that may in the future

find application in other setups as well and will help in understanding new physical phenomena.





Optical Near-field Microscopy

and Spectroscopy 2
Apertureless scanning near-field microscopy has proven to be a very useful tool used in many

research areas that can reveal chemical as well as structural contrast in different wavelength

regions ranging from optical frequencies up to mid-infrared or even microwave frequencies

[16] with a spatial resolution of up to a few nanometers. However, from early on, one of the

main challenges in SNOM is the suppression or separation of a background field scattered from

the tip shaft. The background field does not contain any relevant information and originates

from a rather large area compared to the tip apex radius. The existence of this background

field makes qualitative statements of the sample properties difficult as it is interfering with the

desired spatially localized near-field. Hence, a proper extraction of the near-field is of high

importance to avoid SNOM artifacts and misinterpreted measurements.

To fulfill this task different light detection and analyzing procedures have been developed over

the last decade.

This chapter gives an overview over existing microscopy and spectroscopy methods that are

available and in particular focuses on the advantages and also difficulties using a scanning

near-field microscope. In the second part different detection schemes are presented that point

out ways to deal with background suppression in SNOM.
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2.1 Introduction - The Status Quo

Optically investigating materials with a high spatial resolution has been of high interest for

centuries to study biological, chemical and physical samples. However, due to diffraction effects

the spatial resolution in classical microscopy is limited roughly to 0.61/(λ ·NA) (Abbé criterion

[17]) which depends on the wavelength λ and the numerical aperture NA. For conventional

wide-field microscopy the limit for small wavelengths is around 250 nm. This wavelength

dependency in the Abbé criterion also shows the practical importance of electron microscopy,

like transmission electron microscopy (TEM) or scanning electron microscopy (SEM). Hereby,

the wavelength of the electron is given by the de Broglie relation λ = h/p with the Planck’s

constant h and p the momentum of the electron. Depending on the acceleration voltage this

wavelength can become very small and resolutions of 1Å can be achieved. However, for electron

microscopy the samples often need special preparation, are placed in a vacuum and have to

be conductive. This makes imaging e.g. of living cells impossible. Furthermore, the high

energies needed in TEM can destroy the sample and in all cases a lack of optical information

corresponds to a lack of chemical contrast, i.e. different chemical materials on the sample

cannot be identified.

For optical frequencies the spatial resolution of conventional confocal microscopy setups could

be reduced to around 180 nm [18–20] by using oil immersion [21] to increase the refractive

index and thus the NA.

Still, many samples like cell membranes, dye substrates, computer transistors or fabricated

nanostructures show features much smaller. To study such small systems different optical

techniques have been developed.

For biological samples the versatile use of fluorescent probes, that could be attached for example

to proteins, sped up the development of new microscopy devices that could improve the optical

resolution by taking advantage of fluorescence properties [22–25]. Recently, E.Betzig, S.Hell

and W.Moerner were rewarded with the Nobel Price in Chemistry for surpassing the limitations

of light microscopy by the invention of stimulated emission depletion (STED) microscopy and

single-molecule microscopy [26]. Both techniques rely on the fact that fluorescence of single

molecules can be turned on and off. In STED one laser beam stimulates fluorescent molecules,

whereas a second beam with a donut-shaped laser profile is forcing a relaxation of the excited

electron by stimulated emission leading to a red-shift of the emitted photon that can be filtered

out. This process is called stimulated emission depletion and is happening over the whole beam

except for a small volume in the middle. The resolution is defined by the small volume that can

be as small as 6 nm, which was demonstrated by probing a diamond center vacancy [27]. Even

nanoscale dynamics in a living cell could be demonstrated [28]. Other fluorescent techniques

have arisen in favor of the flexibility of labeling different parts of a cell with fluophores, like

Stochastic Optical Reconstruction Microscopy (STORM) [29] or Photo-Activated Localization
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Microscopy (PALM) [30]. All in all, these techniques are mainly used for biological samples as

for example specific parts of a protein can easily be linked with a fluorescent dye. Nevertheless,

the high power used for example in STED that can lead to the destruction of the fluorescent

molecules by photochemical effects and the limited photostability due to bleaching and blinking

effects often demand the use of other techniques.

Scanning near-field optical microscopy (SNOM) is a class of instruments that is not limited

by fluorescence effects, is not destroying the sample and does not require a special sample

preparation, but still allows to measure optical signals at the surface with a spatial resolution

much below the diffraction limit. In SNOM a nanometer-sized probe is brought very close to

the surface and the evanescent near-fields between probe and sample are utilized to obtain

high-resolution optical images by raster scanning the probe over the sample. Over the years

many different methods have been developed to make use of the near-field interaction. These

can be separated in aperture based SNOM (a-SNOM), using for example an etched fiber with

a small aperture as light source, or scattering-type SNOM (s-SNOM) for which the scattered

near-fields from a sharp metallic tip are detected in the far-field [10, 31, 32].

Figure 2.1: Different optical measurement methods and their resolution. (A) Confocal microscopy, (B)
aperture-SNOM, (C) apertureless scattering-type SNOM.

Historically, a-SNOM was invented first and the idea of using a tiny aperture as a local probe can

be dated back to the first concepts of E.H. Synge in 1928 [33]. He suggested that irradiating

a perfectly reflecting screen with a tiny aperture of size d would lead to spatially confined

fields of the size of the aperture. A scatterer will only interact with this confined field if it is

within a distance d. Due to the lack of nanofabrication his idea was forgotten at that time,

but it was reinvented several times in later years. The first experimental demonstration for

optical frequencies was given by Pohl et al. at the IBM research institute in Switzerland [34]

and by Lewis et al. at Cornell university [35]. In most a-SNOM devices an aluminum coated

fiber tip with a small, uncoated aperture at its end is used to either guide the light to locally



14 CHAPTER 2. OPTICAL NEAR-FIELD MICROSCOPY AND SPECTROSCOPY

illuminate the sample (compare figure 2.1B) or collect near-fields from an already irradiated

sample. The resolution for this type of SNOM is mainly given by the size of the aperture, but

there is a trade-off between light throughput and lateral resolution [36–38]. Practically, this

trade-off is limiting the resolution to about 50 nm-100nm and an improvement is most likely

not achievable with the current a-SNOM techniques [10, 39].

In apertureless s-SNOM a solid metal or dielectric probe is brought close to the sample and is

scattering the local fields into the far field. The resolution is mainly given by the size of the

probe that can be smaller than 10nm [40, 41]. By making use of nonlinear effects with high

field strengths or light localization by means of gap plasmons the resolution can be even smaller

[42–45]. SNOM with pointed probes can be seen from two perspectives. In the first case, a

sharp metallic tip is scattering the near-fields induced by irradiating the sample itself, thus the

tip is locally perturbing the fields of the sample. In the second case the tip itself can be used as

a local light source, making use of enhanced fields at the tip apex. Both these scenarios are

in principle dependent on each other as a strong field enhancement is a condition for efficient

scattering and the other way around [10]. Depending on the sample and the used tip however,

one of these effects can predominate as we will outline in 4.2.

A typical sSNOM setup is shown in figure 2.1C. Here, a diffraction limited laser focus illumi-

nates both sample and probe. The illumination can be either from the side or from the bottom

(backscattering-s-SNOM). The probe is mostly a sharp metallic or dielectric tip, preferably metal

tips are used as they have a better scattering efficiency [46]. The scattered near-field signal

is collected in the far field by a detector. To keep the tip-sample distance constant usually an

atomic force microscope in tapping mode is used, i.e., the tip is modulated with a frequency Ω

at some tens of kilohertz normal to the surface and the amplitude of this oscillation is recorded.

Short-ranged forces acting on the tip decrease the amplitude that can thus be used as a measure

of tip-sample distance and can be kept constant using an electronic feedback acting on the tip

or the positioning stage of the sample.

The conceptional idea of using a light-irradiated particle for achieving subwavelength light local-

ization was already outlined by Synge in a prophetic letter to Einstein in 1928. Considering the

particle as a structure that efficiently converts energy from the incident radiation into localized

energy, this letter can also be seen as the historical root of concept for optical nanoantennas

[47, 48] . His idea, however, was not published because of concerns about the large reflected

light from the sample that would overshadow the local interaction between particle and sam-

ple. In fact, separating the desired near-fields in today’s setups from disturbing background

fields is still one of the main challenges in s-SNOM. Figure 2.2 illustrates the situation for a

backscattering type s-SNOM setup. Here, not only the near-field ~ENF is scattered from the tip

apex, but a background field ~EB from the taper shaft and a field ~ER, directly reflected from the

sample, propagate to the detector as well. These three fields are interfering and a high ratio
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Figure 2.2: Visualization of the three fields that interfere on the detector: The near-field ~ENF, a
background field from the tip shaft ~EB and the reflected field from the sample ~ER

of background-field to near-field often makes a direct extraction of ~ENF impossible. Hence,

nowadays modulation and demodulation techniques can be found in many SNOM setups with

the goal of suppressing the background field. Hereby, the tip, modulated by a tapping mode

AFM with a frequency Ω in the 10 kHz-range [49], generates a modulated optical signal that is

demodulated at the modulation frequency or higher harmonics n · Ω with n > 1. Mostly the

scattered near-field signals show a high nonlinear dependence on the tip-sample distance and

generate higher harmonics, whereas the background field ~EB is largely linear and contributes

less to the higher harmonics [50]. This leads to an improved image contrast. Nevertheless, a

complete suppression of the background-field is still challenging as the interference of the fields

cannot easily be disentangled in the measured intensity signal [51–54]. Hence, over the last

decade many interferometric detection techniques have been developed to either enhance the

near-field or suppress the background signal. This often involves mixing the weak SNOM signal

with a known reference wave in a Michelson interferometer geometry. A detailed discussion of

these techniques is given in section 2.2 and 5.3.

Since s-SNOM is not limited to specific wavelengths this further opens up the possibility to apply

optical spectroscopy methods to improve the value of information that can be discovered for the

sample under investigation. In general optical spectroscopy is a powerful tool as most electronic

and vibrational processes have energies in the range of the visible to near-infrared light and

therefore can be probed with a broad-band spectrum. In combination with ultrafast pump-

probe schemes [55–57], it also allows to probe excited state dynamics or potential coupling

mechanisms [58], which for example helped to discover quantum effects in photosynthetic

systems [11, 59–61]. Hence, near-field spectroscopy could enable locally confined spectroscopic

measurements and thus provide a chemical contrast to many samples or even shed light on

the dynamics of primary light-induced processes such as light harvesting and photo-catalytic

surface reactions.
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Even though combining spectroscopy and SNOM is a challenging task, many research groups

have already used the wealth of new local spectroscopic information to expand their knowledge

and understanding of materials and nanostructures. Early measurements with aperture-SNOM

could for example demonstrate structural phase-selective imaging of organic materials by mea-

suring local absorption spectra with a broad-band laser source coupled into the fiber tip [62,

63]. Furthermore the investigation of chemical contrast in various samples with SNOM in the

IR range using a tunable free electron laser [64, 65] became possible and even surface-plasmon

resonances in single metallic nanoparticles could be studied [66]. Such a-SNOM measurements

were however limited to a resolution around 50nm-100nm as outlined before.

Applying broad-band spectroscopy methods to aperture-less s-SNOM setups is more challenging

due to the higher order demodulation and advanced detection schemes typically required to

suppress the scattered background light. Nevertheless, many approaches have been made. Most

of these can be classified into two different groups.

One common approach is to use a tunable laser and repeatedly measure monochromatic SNOM

scans at different wavelengths, often around a resonance of the material [7, 12, 40, 67–

77]. Amongst others, this method has provided insight into the characterization of individual

nanobeads and viruses, secondary structure identification of proteins [14], the phononic en-

hanced near-field response of SiC samples [76], the local infrared response of semiconductor

nanowires [73] or spectroscopic mapping of nano transistors [7]. On the one hand even two

measurements, resonant with the sample and off-resonant with the sample, can be used to

identify chemical compounds due to a wavelength dependent vibrational contrast[69]. On the

other hand, if more than one spectral feature or more resonances occur, then a complete spectral

representation is required. With this method however, the overall spectroscopic information is

limited by the number of SNOM scans. In addition, systematic errors can occur over the time of

the measurement as the sample can drift during repeated scans and the tip can be contaminated

or damaged. Consequently, this would result in a different apex radius. Moreover, the optical

alignment can vary with each new wavelength setting. In order to interpret the results from

the limited amount of spectral information the data points are mostly compared to theoretical

models that describe the tip-sample interaction. A requirement to apply these models to the

measurement often is the prior knowledge of the sample’s dielectric function that has to be

obtained either by a separate measurement or a simulation.

The second approach to s-SNOM spectroscopy is to measure full spectra at specific positions or

for the full SNOM image by Fourier Transform interferometry (FT-interferometry) [13, 78–82].

Fourier Transform interferometry is a time-domain measurement [83], i.e. two beams from a

spectrally broad-band laser are time delayed and interfere e.g. in a Michelson interferometer.

The time delay can be varied by a movable delay stage in one of the interferometer arms and

for the detection a common photodiode can be used. With the movement of the delay line the

time domain is converted into spatial coordinates. By applying Fourier Transformation to the
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resulting correlation function the spectrum can be retrieved.

A first combination of FTIR interferometry with SNOMwas shown in 2006 [14] using a technique

called comb-FTIR [84–87]. Comb-FTIR is based on two Ti:sapphire lasers emitting femtosecond

pulse trains with slightly different repetition frequencies. The two beams are each used to

generate broad spectra in the mid-infrared by the use of a GaSe source. The interference of both

beams on the detector then yields the time-domain interferogram from which the spectrum can

be recovered. Thus, comb-FTIR employs time-domain retardation without any mechanically

moving stages. Technically, it was therefore more a multiheterodyning technique than a common

FTIR interferometer. The spectroscopic information in this case was limited to a set of discrete

frequencies and integration times of up to a minute per pixel due to the weak broad-band laser

source [14] did not allow for a routine operation of spectroscopic SNOM.

In later years the employment of a single broad-band laser source and a delay stage enabled the

measurement of continuous spectra as well [79]. Supported by the development of high-power

broad-band laser this technique, also often referred to as nano-FTIR, has provided a new way to

measure absorption spectra of molecular fingerprints with 20 nm resolution [13], demonstrated

for example on a single tobacco mosaic virus [81]. Unlike conventional FTIR spectrometer,

nano-FTIR provides both amplitude and phase information by placing the sample and SNOM tip

in one of the interferometer arms and using common SNOM detection schemes. The nano-FTIR

measurement itself, however, can still take up to a few seconds per position on the sample, as

the delay stage has to be scanned over a range of a few millimeters and needs to be stable over

this time. This procedure makes this technique very slow compared to monochromatic SNOM

imaging.

As an additional note, phase-stable pulse pairs for optical frequencies may be achieved with a

novel interferometry method based on a birefringent delay line. This system is often referred

to as Translating-Wedge-Based Identical Pulses eNcoding System (TWINS) [88, 89] and has

already been applied for 2D pump probe spectroscopy measurements [90] and may in the future

also be used in SNOM for FTIR purposes.

From this scientific horizon it becomes clear that mostly indirect measurement of spectra have

been performed so far. Apart from early a-SNOM measurements with limited spatial resolution

a direct approach using a spectrometer is rare.

In particular, direct spectra measurements with s-SNOM have only been reported for setups that

do not use the common modulation and demodulation techniques. To still achieve background-

free measurements different ways have been used e.g. by measuring signals at a different

wavelength than the excitation wavelength in local photoluminescence [91] or fluorescence

measurements [92]. In the latter case the enhanced near-fields at the apex from a gold tip

could be used as a two-photon excitation source for molecular fluorescence, which is related
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to a quadratic intensity dependency. Hereby the strong optical background can be decoupled

from the desired near-fields by detecting at a different wavelength. Another example of a direct

spectra measurement with a resolution of only a few nanometers was recently performed in

our own group by the use of an adiabatic nano-focusing SNOM [93, 94]. Hereby, the light

scattering from the apex of a gold tip is separated from the excitation by the use of a grating

coupler launching surface plasmon polaritons (SPPs) in a large distance from the apex. Due

to this separation of excitation and nano-focused light spot nearly no optical background con-

tributes to the measured signal. Thus, no demodulation techniques are required and direct

spectra measurement can be carried out. Even though the results are very promising, adiabatic

focusing SNOM is a rather new technique that is still under active development. Producing

such gold tips with a grating can for example still be a challenging task that requires a focused

ion beam milling setup and careful treatment of the tips. In addition, the grating bandwidth is

limiting the overall spectral range of the SPP coupling. With the presented adiabatic SNOM

setup, employing a gold tip, measurements in the visible to UV region are not possible at

all, as the SPPs are limited to phonon energies below the interband absorption of gold and

would be absorbed very fast and would not reach the tip apex. In order to retain maximal

flexibility regarding wavelength range and also polarization we decided to pursue the devel-

opment of a sSNOM in back-reflection geometry. The extended homodyne detection with a

sSNOM by using an in-line interferometer (cf. chapter 5) as presented in this thesis is restricted

in spectral range only by the tip material and allows for broad-band spectroscopic measurements.

Finally, mainly two experimental challenges have to be mastered in order to record local

broad-band spectra with common, well-understood s-SNOM setups in a direct spectrometer

approach: First, the background signal has to be suppressed efficiently over a broad spectral

range. Secondly, spectra have to be recorded with a high sample rate to allow for higher order

demodulation of the tip frequency n ·Ω at multiple wavelengths at once, e.g. using a fast camera

or spectrometer. The use of a camera or spectrometer instead of a photodiode also means

that lock-in amplifiers cannot be used for the demodulation process anymore, but modulated

spectra have to be processed using filtering in the frequency domain by performing a Fourier

transform e.g. in a post-processing step with a computer. This sets high demands for processing

the 4D data array (2D position plus time and wavelength). With the progress in technology,

in particular in modern line cameras, and the high CPU and data transfer speed of modern

PCs this task becomes manageable, though. Within this thesis I present to my knowledge the

first direct approach using a fast line camera that can record spectra up to the 4th harmonic

of the tip frequency, or in other words with a line rate of up to 210 kHz. In order to fulfill

also the second requirement, the spectrally broad-band discrimination of the near-field from

the background field, I implemented a detection scheme that amplifies the near-field signal

by mixing the scattered signal from the tip with a well-controlled reference wave from an
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inherently stable in-line interferometer [52]. This concept will be explained in more detail in

chapter 5. In the next section the previous development of detection schemes, that were used

in SNOM setups to suppress background fields, is presented and their often limited usage for

spectroscopic measurements is evaluated.

2.2 Detection Schemes in Scanning Near-Field Microscopy

A scanning near-field optical microscope is sensitive to material changes on the nanoscale, since

the evanescent near-fields contain informations about the samples properties. However, the

near-fields are arising from a very small scattering cross section that is mainly given by the tip

apex radius which is much smaller than the focused laser beam exciting the tip dipole. This

situation sets particular demands to the detection of these signals, as also a background field is

scattered from the tip shaft and a constant reference field is reflected from the substrate. To

measure weak near-fields out of a large background it is not sufficient to place a photodiode

into the detection path and perform a linear measurement, but due to the interference of these

fields more advanced detection techniques have to be applied. The goal of these techniques is

to either increase the near-field signal or suppress the background field. Ideally, both is done at

the same time.

Apart from the previously mentioned two-photon absorption and fluorescence measurement that

depend on the high near-field strength [92] and the recent demonstration of background-free

measurement with an adiabatic focusing SNOM [95–98], in general sophisticated detection

techniques have to be applied to get rid of the optical background. Many of these detection

techniques evolved over the last decade and depend on interferometric measurements and

higher order demodulation of the tip-sample distance. In total this allows to measure arbitrary

samples without being restricted for example to fluorescent effects. The key feature of most

of these techniques is the amplification of the near-field with a strong reference field. This

principle is also used in the in-line interferometer presented in chapter 5. In this section an

overview of the most common techniques that could be applied to a sSNOM in back-reflection

geometry is given. Each of these have some requirements e.g. are restricted to monochromatic

measurements, lack information about the optical phase or need special measurement conditions

or sophisticated analysis tools.

2.2.1 Homodyne detecion

A rather simple detection method is called homodyne detection. In interferometry this means the

sample and reference beam are from the same source, but only the sample beam is modulated

at a given frequency. In the demodulation process only the modulation frequency is involved.

Transfered to SNOM this means the tip-sample distance is modulated at a given frequency
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Figure 2.3: Visualization of different detection schemes for a sSNOM in back-reflection geometry. (A)
Homodyne detection, (B) Heterodyne detection, (C) Pseudo-heterodyne/synthetic optical holographic
detection

and the scattered, modulated optical signal is converted to a modulated current signal by a

photodiode, which is fed into a lock-in amplifier. The signal used to excite the tip motion can

be used as the reference signal and amplitude and phase of the optical signal can be extracted.

Homodyne detection has the advantage that it is easy to set up and does not require any

additional tools. However, for SNOM the situation is more complex. As visualized in figure 2.3A

we do not only have the modulated optical near-field ~ENF from the tip mixing with a stable

reference signal ~ER reflected from the substrate, but an additional, modulated background field
~EB scattered from the tip shaft is mixing with both fields as well. We can write the interference

of the three fields as

I ∝ | ~ER + ~ENF + ~EB|2

∝ | ~ER|2 + | ~ENF|2 + | ~EB|2 + 2| ~ER|| ~EB| cos(φB − φR) + 2| ~ENF|| ~EB| cos(φB − φNF)

+ 2| ~ER|| ~ENF| cos(φNF − φR) (2.1)

with φB, φNF and φR denoting the phases of the three involved fields. Both ~EB and ~ENF are

modulated by the tip-distance modulation frequency and thus only the term | ~ER|2 is suppressed

after demodulation. Furthermore, the optical background field ~EB in the measurement is in

general much larger than the desired near-field ~ENF. This makes extracting the near-field

amplitude and phase difficult. A common trick to suppress the large background is to apply

higher order demodulation as the near-field is an evanescent field with exponentially decreasing

amplitude for larger tip-sample distances, but the background field scales over distances larger

than the wavelength of light. Thus, modulation of the tip with a modulation amplitude on the

length scale of the exponential decay leads to a rapid change of the near-field interaction which

generates scattered fields at higher harmonics. In contrast, the amplitude of the background
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field is decreasing much faster for higher harmonic demodulation.

However, even at higher order demodulation an interference term of the near-field with the

lowest order background term remains. That means interference between near-field and

background is distorting the measurement even at higher order demodulation. Hence, as a more

detailed evaluation in section 5.3 will unveil, the ratio between ER and EB has to be high to be

able to extract almost background free near-field contrast. In most cases, these circumstances

make an increased reference field indispensable. This could for example be realized by placing

a mirror in the unused path of the beam splitter in figure 2.3A. In that way the reference field

would be defined by the reflection from the external mirror rather than by the reflection from

the substrate. Such an interferometer on the other hand needs to be stable over the period of

the measurement time. This needs precise alignment and very good measurement conditions

which are not easy to achieve. A way around this is by using a modified sample substrate and

using the substrate as a second mirror of an inherently stable inline interferometer[52]. This

method was developed during this thesis and is demonstrated in chapter 5. It further provides

the basis for local spectroscopy with a spectrally broad-band laser input.

2.2.2 Heterodyne detection

Another way of reducing the signal to background ratio and to extract amplitude and phase

information of the optical near-field is by using heterodyne detection visualized in figure 2.3B.

In general, heterodyne detections means that two signals are mixed, but the reference signal

has a different frequency than the sample signal. Typically one or two crossed acousto optical

modulators (AOMs) are used at the very beginning of the setup to produce two beams of the

used laser with laser frequencies ω1 and ω2 = ω1 + ∆ω with ∆ω typically in the kilo Hertz

regime [54, 99]. Again, after measuring the intensities with a photodiode a lock-in amplifier

is used to extract amplitude and phase. In this case however, the signal is demodulated at

n · Ω + ∆ω, with n · Ω a multiple of the tip modulation frequency and ∆ω the difference

frequency between ω1 and ω2.

In detail we have one signal beam with frequency ω1 interacting with the tip and one reference

beam with frequency ω2 = ω1 + ∆ω not interacting with the tip. After interaction a near-field

and background field from the tip is scattered into the far-field and all three fields interfere

[99]:

I =
(
| ~ENF|ei(ω1t+φNF) + | ~EB|ei(ω1t+φB) + | ~ER|ei((ω1+∆ω)t+φR)|

)2

= | ~ENF|2 + | ~EB|2 + | ~ER|2

+ 2| ~ER|| ~ENF| cos(∆ω + φR − φNF)

+ 2| ~ER|| ~EB| cos(∆ω + φR − φB)

+ 2| ~EB|| ~ENF| cos(φB − φNF) (2.2)
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After demodulation at n ·Ω + ∆ω only the interference of the near-field with the reference field

and the background-field with the reference field remain. The former is the desired signal, from

which the amplitude and phase of ~ENF can be determined, assuming a spatially independent

and constant reference field ~ER. Using the same argument as for the homodyne detection, the

background field can be suppressed by higher order demodulation of the tip frequency n ·Ω with

n > 2 since the amplitude of the background field is decaying much faster at higher harmonics

of the tip frequency [50, 54].

The downside of this method is that the acousto optical modulator not only generates a second

laser beam with a different frequency but also with a different output direction than the input

laser beam. Therefore both beams have to be carefully aligned. Also AOMs are typically designed

for a specific laser frequency which makes this method unusable for broad-band spectroscopic

measurements.

2.2.3 Pseudoheterodyne detection and phase-shifting interferometry

To overcome the disadvantages of using an acousto optical modulator the so called "pseudo-

heterodyne detection" is replacing the frequency shift of the heterodyne detection with a

sinusoidal phase modulation of a reference beam [100]. As visualized in figure 2.3C this

is accomplished by mounting a piezo-electric mirror in the reference arm of the Michelson

interferometer, which is modulated with a frequency around some hundred Hertz up to a few

kilo-Hertz limited by the resonance frequency of the mirror.

In contrast to homodyne detection, the reference beam is not constant anymore, but is now

modulated and can thus be written as

~ER = | ~ER|eiγ sin(νt)+iΨR , (2.3)

with the phase modulation frequency ν, the phase modulation depth γ and the phase offset ΨR

that accounts for the optical path difference between the tip scattered signal and the reference

signal. The phase modulation γ = ∆l4π/λ is further related to the vibration amplitude of the

mirror ∆l and the wavelength λ.

In general the modulation frequency ν is much lower than the tip modulation frequency which

means the interference of both signals is similar to an AM modulated signal, resulting in

sidebands with frequencies fn,m = nΩ +mν in the spectral representation as shown in figure

2.4.

At the frequencies with m = 0 the signal again contains a mixture of background field and

near-field, but at the sidebands with m > 0 this mixed term is not contained. Similar to

heterodyne and homodyne detection we can again demodulate at higher harmonics of the tip

frequency to suppress the additional interference of the reference with the background field.

As shown by Ocelic et al. [100] a complete recovery of amplitude and phase of the optical
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Figure 2.4: Spectral components in a pseudoheterodyne sSNOM setup with tip modulation frequency Ω
and reference mirror modulation frequency ω, adapted from [100]

near-field signal is possible by demodulating at two neighboring sidebands, for example with

n = 2,m = 1 and m = 2:

ENF = k · [Sn,2/J2(γ) + iSn,1/J1(γ)] (2.4)

Here Sn,j denotes the demodulated detector signal at the nth harmonic of the tip frequency

and the jth sideband. Further, Jm is the Bessel function of first kind and mth order and k is a

complex constant that depends on the phase ΨR between near-field and reference field. As we

can see from this equation the amplitude of the oscillating mirror is of importance as it is the

argument of the Bessel functions. For a modulation of depth γ = 2.63 the two Bessel function

cross each other and equation (2.4) can be further simplified to

ENF = 2.16k · [Sn,2 + iSn,1], (2.5)

making the retrieval of phase and amplitude very easy.

Overall, using pseudo-heterodyne detection simplifies the extraction of near-field phase and

amplitude very much. However, this also requires a long-time stable interferometer, which is

not always easy to achieve and to add to existing sSNOM setups and may even requires active

stabilization[101]. Furthermore, the simplification of equation (2.4) to equation (2.5) cannot

be done for multicolor measurements as the modulation depth γ = ∆l4π/λ depends on the

vibration amplitude ∆l of the mirror and the wavelength λ. Furthermore, also the parameter

k is depending on the phase ΨR between near-field and reference field that can change with

λ. For relative contrast measurements with monochromatic light the parameter k might be be

neglected, but analyzing measurements with a spectrally broad input spectrum would require a

more detailed evaluation.

Two similar methods which also fit into this category are two-step homodyning [40] and

phase-shifting interferometry[102, 103]. In both cases the reference mirror is moved to specific
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positions for each pixel on the scan image and the near-field amplitude and phase is recovered

after post-processing the different measurements.

In the case of two-step homodyning interferometry, the higher order demodulated signal from

the sSNOM is recorded for two positions of the reference mirror at every pixel of the scan image.

In particular the first position of the mirror is set to a maximum demodulated detector signal

which corresponds to a signal proportional to Sn cos(φn). Then the mirror is moved by λ/8

or a phase shift of 90° corresponding to Sn sin(φn) and the pixel or the scan line is recorded

again[40]. From both the two homodyned interferometric measurements the amplitude and

phase can be recovered. Following the same considerations as before this gives access to the

amplitude and phase of the near-field using higher order demodulation.

Again, the necessity of having a phase-stable interferometer is a crucial precondition. If the

phase of the interferometer fluctuates or the step size of the mirror cannot be controlled pre-

cisely, then the condition of having two measurements with 90° phase shift to each other is not

fulfilled anymore. Hence, this method introduces an uncertainty related to the stability of the

interferometer. Furthermore the need to quickly move the mirror between two positions, for

example with a square wave generator, makes this method slow compared to other methods.

Detection with phase-shifting interferometry tries to improve the flaws of previous methods by

moving the reference mirror through at least three phase steps and applying a more advanced

algorithm to solve for near-field amplitude and phase[102]. Phase shifting interferometry can

therefore be seen as a specific data collection and analysis method with different options depend-

ing on how the data is recorded and what type of algorithm is chosen for the evaluation. This

can range from "‘Three-Steps Algorithms"’ to "‘Least-Square Algorithms"’ , "‘Carre Algorithm"’,

"‘N-bin Algorithm"’ or others to just name a few [104]. In comparison to pseudo-heterodyne

detection as an analysis in the frequency domain, phase-shifting interferometry is analyzing the

data in the time-domain.

Phase shifting interferometry used as a detection scheme with a sSNOM setup has been demon-

strated by B.Deutsch et al. [102] using a sinusoidal signal to drive the reference mirror in a way

that it is moving through a 2π phase shift for each pixel and a number of N equally distributed

phase steps is recorded for each pixel, with N = 200 in the mentioned work.

Consequently, each mirror position corresponds to a specific difference phase between the signal

field from the tip and the reference field, which can be written in a simplified way as

Ii = A+B cos(φ+ δn), δn =
2πn

N
. (2.6)

Here φ is the phase change on scattering and δn is the phase introduced by the reference mirror.

To solve for the unknown A,B and φ and thus to retrieve amplitude and phase of the near-field

an N-Bin algorithm was used to evaluate the optical measurements.
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In comparison to pseudo-heterodyne detection it can easily be seen that this method has the

same setup requirements, in both methods a reference mirror is oscillating at a specific frequency.

The difference is that the frequency of the mirror movement in the phase-shifting detection is

only some tens of Hertz and therefore much slower as in the pseudo-heterodyne detection. In

the frequency domain this also generates sidebands around the different harmonics of the tip

frequency (compare figure 2.4). However, since the difference frequency is only a few tens of

Hertz, the spacing between the sidebands is very small and typically all sidebands fall into the

bandwidth of the lock-in demodulation around the harmonics of the tip resonance frequency

[103]. This means pseudo-heterodyne interferometry makes the minimum number of measure-

ments to determine amplitude and phase, while in the case of phase-shifting interferometry

many redundant measurements are analyzed.

Overall this detection method is more robust against errors like misaligned piezo movement by

making use of the flexibility of the phase-recovery algorithms.

By using a spectrally broad-band input this method would be similar to a Fourier Transform

interferometry method, superimposing the phase shifts of many wavelengths [105].

2.2.4 Synthetic optical holography

Recently, a new method was introduced in connection with sSNOM near-field detection, which is

called synthetic optical holography [106–108]. Hereby, the mirror of the reference arm in figure

2.3C is not modulated for each pixel but rather moved constantly while one line is scanned.

That means the phase is varied over a complete scan line in contrast to each pixel in the previous

methods.

Probing the sample at position ~r and moving the mirror with a constant speed vR the phase

φR(~r) =
2π2d(~r)

λ
(2.7)

that depends on the position d of the mirror can also be written in a time dependent manner

with

φR(t) = ωRHt+ φ0 (2.8)

with ωRH = 2π2vR/λ and initial phase φ0. It can be shown that this creates a synthetically

reference wave analogous to a plane reference wave in off-axis wide field holography [106]:

UR = ARe
iφR = ARe

i ~k‖~r (2.9)

with ~k‖ = (kx, ky) = (ωRH/vx, ωRH/vy) and vx and vy are the scan velocities in x and y

direction.
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Now, by mixing this field with the scattered field Es,n coming from the tip (including both

background and near-field), demodulating at the nth order and subsequent Fourier transforming

3 distinct terms are obtained [106]:

Ĩn(~q) = Cn(~q) +ARẼ
∗
s,n( ~k‖ − ~q) + Ã∗REs,n( ~k‖ + ~q). (2.10)

Here all variables x̃ denote the Fourier transform of x. Furthermore Cn is the nth order

demodulated autocorrelation that contains all the mixed terms of the interference of EB and

ENF. Moreover, it is clear that multiplication of the signal field with a reference field with

k-vector ~k‖ corresponds to a shift of ± ~k‖ in the k-space. Now one can perform the same trick as

in spectral interferometry: filtering out the part with the desired information and perform an

inverse Fourier transform yielding a filtered signal. In this case Ã∗REs,n( ~k‖ + ~q) contains the

signal from the tip enhanced by the reference wave. Again, with demodulation at higher order

of the tip frequency (n > 2) any additional background field interference with the reference

field can be suppressed.

Hence, even though the phase is quasi constant for each point of the scan, the interference of

near-field and background field can still be eliminated by applying a holographic method and

cutting out only the near-field relevant term in the frequency domain, separated from the other

terms. From the filtered signal the near-field amplitude and phase can easily be retrieved. This

makes this method much faster than any of the other interferometric methods discussed before,

because the mirror movement is running in parallel and is not directly affecting the scan speed.

Compared to pseudo-heterodyne detection Schnell et al. could demonstrate an increase in scan

speed by a factor of around 30, maintaining the same resolution as in the pseudo-heterodyne

measurement [106].

For this method to work properly a stable external interferometer and long travel range, closed-

loop piezo devices must be used. Further, the mirror position has to be reset occasionally

which can lead to positioning or timing errors. There are works accounting for this by using a

sinusoidally varying phase instead of a linearly changed phase and using an advanced inversion

algorithm [107]. Another aspect to keep in mind is that a separation of the three terms in (2.10)

has to be achieved in order to filter out the the desired part. Consequently, synthetic optical

holography might not work for imaging objects with low resolution spanning a few pixels in the

scan image. In that case the increased bandwidth can lead to an overlap of the terms.

Combining this method with broad-band spectroscopy techniques still remains a challenging

task, requiring a lot of post-processing work, but might be used in future sSNOM setups.
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The following chapter gives an overview over the experimental setup and the way signals are

recorded, and I evaluate the possibility of discriminating between signal and background.

Hereby, section 3.1 describes the mechanical and optical parts of the SNOM setup, which is used

throughout this thesis to record SNOM signals either in a monochromatic or a spectrally resolved

configuration. For the latter case, a fast line camera in combination with a monochromator is

used to record spectra with a rate that is fast enough to apply higher-order demodulation in a

post-processing step. This allows us to analyze spectrally resolved near-field spectra.

The section concludes with two exemplary SNOM scans, one of a bull’s eye structure and

one of a gold nanoparticle. The first demonstrates a reduction of optical background with

higher demodulation order, the latter can be interpreted as a visualization of the local density

of sates (LDOS) and demonstrates an upper limit for the lateral optical resolution of about 20 nm.

As demodulation plays an important role for the setup and the discussion of SNOM signals, the

following section 3.2 explains the lock-in principle and the demodulation of noisy signals in

more detail. Here, especially the method to obtain demodulated spectra from the consecutively

recorded spectra in a post processing step is documented.

The section 3.3 further analyzes the optical background in SNOM measurements and demon-

strates the influence of the tip shape on the optical signals. Hereby, the SNOM tip is retracted

from a gold surface and as a consequence no near-field is apparent and thus the separation of

background field and reference field can be analyzed. Backed up by simulations the influence

of scatterers on the tip shaft on the spectrally resolved background field is demonstrated.

The last section 3.4 then presents a way to separate reference and background field more

efficiently and as a consequence to directly gather information about the two fields and as

well as about the tip shape. For this, a side-illumination setup with an additional Michelson

27
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interferometer that provides a tunable reference signal is presented. This setup was built by my

coworkers at the end of my PhD time and is shown here as an outlook.
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3.1 AFM and optical setup

Figure 3.1: Back-scattering type SNOM setup. The optical setup on the left shows the beam path: A laser
source is focused through the sample onto the tip apex by a high NA objective. The back-scattered light
is collected by the microscope objective and a part is reflected by a 50:50 beam splitter and detected
on either a photodiode (APD) or a fast line camera mounted at the exit slit of a monochromator. To
optimize the focus position onto the tip, a controllable steering mirror in a 4f geometry is implemented.
The right image shows the electronic setup: The tip is glued on a quartz tuning fork that is modulated
with a frequency Ω. The measured current of the tuning fork is amplified and converted to a voltage
and is used as an error signal. When the measured current drops, a PI controller is retracting or
approaching the sample mounted on a 3D piezo stage to maintain a set tip-sample distance.

Design and realization of the s-SNOM setup was an integral part of this thesis. It is based on a

sharply etched gold tip that acts as a near-field scatterer in an optical focus on a sample and

that is held in close distance to a surface by a tapping-mode atomic force microscope (AFM).

Figure 3.1 shows on the left side the optical setup and on the right side a schematic of the

near-field probe on its tuning fork with the electronic distance control feedback loop. The

near-field microscope is operating at ambient conditions inside a foam-covered box for vibration

isolation. The setup basically enables SNOM measurements in two different configurations,

one for monochromatic measurements and one for spectrally resolved near-field measurements.

Both are explained in the following.

For quasi monochromatic measurements light from a Titanium:sapphire laser (Spectra Physics,

Tsumani) supplying pulses with a relatively narrow spectral bandwidth of around 20nm centered

at a wavelength of 780 nm is used to illuminate tip and sample. For broad-band, spectrally

resolved measurements we change the light source to a different Titanium:Sapphire laser
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(Femtolasers Rainbow) that provides a broad spectrum with a spectral bandwidth exceeding

100nm as is exemplary shown in figure 3.2. The maximum output of the broad-band laser is

around 300mW, but only around 10mW is guided to the SNOM setup. The light of the laser is

linearly polarized and the angle of the electric field vector can be changed by a λ/2 plate in

a rotation holder. The light passes a 50:50 beam splitter and is focused onto the gold tip by

a microscope objective with an NA of 0.95 and a working distance of around 300µm. After

passing beam-splitter, lenses and the microscope objective, the power at the tip apex is around

700-1000µW. In our setup, the tip is fixed and the position of the laser focus as well as of the

sample are adjusted with respect to the tip apex. Firstly, to match the focal plane with the

tip apex, the microscope objective is mounted on a 1D-piezo translation stage (Piezosystem

MIPOS 100 PL) that moves in z-direction (along the tip axis). Secondly, to precisely align the

focus position in the focus plane a piezo steering mirror is used in a 4f imaging geometry. The

two lenses, with each f = 50 mm focal length, image the plane of the steering mirror onto

the back-focal plane of the microscope objective. This 4f geometry ensures that the tilt of the

beam induced by the steering mirror results in a displacement of the focus in the focal plane of

the microscope objective without distorting the focus. The voltage to drive the steering mirror

is delivered by a DA/AD card (Data Translation DT9836) connected to a computer. Typically,

before a measurement, a 2D scan of the focus is performed, and the signal that is to be measured

later is recorded. The focus position, where the wanted signal is maximum, is determined from

this scan and is adjusted for the measurement.

700 750 800 850 900
Wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
. p

ow
er

 s
pe

ct
ra

l d
en

si
ty

Figure 3.2: Laser input spectrum for

broad-bandwidth SNOM measure-

ments.

The single-crystalline gold nanotips are produced

from polycrystalline, 99.99%-gold wire with a di-

ameter of 125 µm. The gold wire is annealed

and electrochemically etched as described in [98].

The process typically results in mono-crystalline ta-

pers with a very smooth surface, with an open-

ing angle of around 30°, and with a sharp apex

with a radius of curvature of about 10 nm. Figure

3.3 shows typical SEM images of such a gold nan-

otip.

In our setup the gold tip is glued on top of one prong

of a quartz tuning fork (Auris TC26, UV curing glue

Cyberbond U3200) oscillating in resonance at around

26 kHz. To maintain a high Q-factor we glue a piece of the gold wire with similar weight on the

other prong of the tuning fork (cmp. right side of figure 3.1). The tuning fork is connected to a

home-built transimpedance amplifier with a gain of 1.5E8V/A, and the AC voltage excitation

signal is delivered by a function generator included in a lock-in amplifier (Zürich Instruments
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25 m 2 m 50 nm

Figure 3.3: Typical SEM images of a gold tip with tip diameter <20nm shown on different scales.

HF2LI). The amplitude of the AC excitation voltage is set to a value around 1V such that the

tip is oscillating with a peak-to-peak amplitude of 30 nm. The current flow at constant voltage

is measured, amplified, and converted to a voltage by the pre-amplifier. This voltage can then

directly be used as an error signal to control the distance of a sample to the tip. This is in

contrast to cantilever-based systems that require an additional laser detection to determine

changes in the oscillation amplitude or phase. Hence, connected to a lock-in amplifier (FEMTO

LIA-MVD-200H) the amplitude of the tuning forks oscillation can be continuously read out. A

resonance curve recorded by this method is shown in figure 3.4.
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Figure 3.4: Typical resonance curve of the tun-

ing fork with attached gold tip as recorded

by the Lock-in amplifier. In this example, the

resonance is centered around 26.10 kHz with

a width of∆f ≈ 7 Hz, resulting in a Q-factor

fmax/∆f ≈ 7100.

For precise positioning of the sample relative to the

tip, the sample is mounted on a combination of two

translation stages: a motorized translation stage

for coarse alignment, and on top of that a piezo-

stage for fine adjustment. The stage for coarse

alignment is a long-travel-range 5-axis stage (New-

focus 9081 Five-Axis Aligner). It is used to tilt the

sample, such that the surface normal is parallel

to the tip axis, to coarsely select the area on the

sample that shall be investigated, and to approach

the sample to within 5-10µm distance to the tip.

Side-illumination with a white-light LED and ob-

servation with a microscope objective (10X EO M

Plan Apo, NA=0.28, working distance=33.5mm)

providing a magnified image of the tip and its its

mirror image facilitates this process. Fine posi-

tioning of the sample is achieved by a 3-axis piezo

stage (PI P-733-3dd with E-7XX Controller card, 15x15x10µm travel range). With this stage,

the sample is approached towards the tip (traveling in z-direction) with the before described PID
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control activated. The approach is stopped and the distance held constant, when the current

flow through the tuning fork is decreased to typically 92-95% of the undamped value. This

corresponds to a tip-sample distance of a few nanometers. The distance control with this PID is

similar to the tapping-mode AFM used in the first demonstration of a super-resolution aperture

microscope by Ash and Nicholls [49]. The other two axes of the piezo stage (x and y direction)

are used to raster-scan the sample when recording 2D SNOM images, while the tip-sample

distance is held constant. By recording the sample’s z-position during a scan, a topographical

image is created simultaneously with the optical images.

The scanning mode and with this also the speed, with which 2D images can be acquired, differ

for monochromatic and spectrally resolved measurements: in the former case, each line is

scanned continuously using the internal wave function generator of the piezo stage. As the stage

moves, it generates trigger pulses at defined positions, which are used to correlate the position

with the optical signals measured with an APD and the lock-in detector. The time required for

scanning two lines in a back-and-forth movement and for recording optical SNOM signals at

256 positions per line is about 8 s. For a typical SNOM image with 128 lines this results in an

acquisition time of up to 17 minutes. Scan areas were typically around 2x2µm or 3x3µm. For

rough samples either the PID settings or the scan area was adapted to prevent damaging the

tip. When recording complete spectra with the fast line camera, however, the spectra cannot be

recorded while continuously scanning a line. Instead, the image is raster-scanned pixel-wise.

This means the piezo stage approaches and stops at each position, such that a number of

consecutive spectra (typically 60.000) can be recorded for each pixel. The measurement time is

then around 276ms per position and hence often smaller scan areas were evaluated in order to

achieve reasonable measurement times before significant sample drift sets in.

The whole scan and data acquisition procedure was programmed by myself using object-oriented

programming with Matlab and Python. More detailed information on the program can be found

in the appendix A.1.

We detect the light that is backscattered from the tip-sample interaction volume. This light

passes through the sample again and is finally reflected off the beam splitter and captured by

the detector. For monochromatic measurements we use a fast APD (Hamamatsu C10508-01) as

the detector. The signal from the APD is processed by a lock-in amplifier (Zürich Instruments

HF2LI) using the tip modulation frequency as the reference signal. For this work we typically

demodulate the signal at the fundamental tip modulation frequency (1f = 26 kHz) as well

as at its second (2f), third (3f) and fourth (4f) harmonic, resulting in the signals S1f , S2f ,

S3f and S4f . Higher than fourth order harmonic signals are usually obscured by noise. For

spectrally resolved measurements, where the APD and lock-in detector are replaced by the

monochromator and fast line camera, demodulated spectra S1f to typically also the fourth order
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S4ff , are obtained from the consecutively recorded spectra in post processing. This is explained

in more detail in the next section 3.2.

In both cases, the signal strengths of S1f to S4f crucially depend on the alignment of the laser

focus on the nanotip. Therefore, in order to achieve a high signal strength, a 2D scan of the laser

focus was performed when the tip was approached to the sample. For this I used the steering

mirror in the 4f setup, as explained above, and the 1f to 4f signals were recorded. Figure 3.5

exemplary shows the demodulated signals S1f , S3f and S4f for two different beam scans. The

two beam scans selected for this figure have different general shapes: The three upper images

belong to a beam scan where the focus displays one single maximum, while the lower three

images show two distinct maxima of roughly equal maximum intensity. This highlights the

fact that the nanotip can be excited by either fields parallel or perpendicular to the tip axis.

The upper three images correspond to the spatial distribution of |Ex|2, i.e., field components

perpendicular to the tip axis, and the lower three images to the spatial distribution of |Ez|2, i.e.,
field components along the tip axis. The precise focus fields formed at the tip-facing side of a

mulit-layered sample are calculated later, in Ch. 4.1.4 and are shown in Fig. 4.10. Which of

the fields excite the tip predominantly depends on the shape of the particular tip used in the

experiment.

Despite these obvious differences, however, both measurements show that the near-field contrast

increases with increasing demodulation order: For lower demodulation orders (Fig. 3.5A and

D) a background contribution is always apparent. This is particularly visible in Fig. 3.5A, were

a substructure surrounds one main maximum. For fourth order demodulation the background

contribution has been strongly suppressed and the beam can be precisely adjusted to yield the

highest scattering signal from the tip.

In order to demonstrate the improvement of the signal-to-noise ratio with increasing demodula-

tion order, I show two more exemplary SNOM scans, namely of a bull’s-eye structure in Fig.

3.6, and of a gold nanoparticle in Fig. 3.7. Figure 3.6 shows an exemplary SNOM scan of a

bull’s-eye structure. This structure consists of a sub-wavelength central aperture surrounded

by several concentric grooves [109–111]. The grooves act as an antenna, coupling incident

light into surface plasmons and supporting a strongly enhanced localized plasmonic field at the

center. The structure shown here (Fig. 3.6A), however, is resonant for a wavelength outside the

spectrum of the incident laser light, such that the enhanced field at the central aperture should

not be visible. Instead, I would like to draw the reader’s attention to hotspots, localized surface

plasmons with highly enhanced field strengths. These hotspots can already be slightly observed

in the optical signal demodulated at the first harmonic of the tip modulation frequency (Fig.

3.6B), but are shadowed by a very large optical background. On the image demodulated at

the third harmonic (Fig. 3.6C) the hotspots can be observed clearly with a strongly suppressed

background. Thus, the measurement nicely demonstrates the predicted improved signal to

background contrast for demodulation at higher orders of the tip modulation frequency. When
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Figure 3.5: Beam scans for different order demodulation measured on two different samples. A-C: Typical
Beam Scan for first, third and fourth order demodulation respectively measured on a J-aggregate
film on top of a glass-gold-glass multilayer structure, D-F: the same measurement for a different tip
on a gold-coated quartz substrate. The beam scan is in good approximation a measurement of the
focal plane fields. Depending on the tip field enhancement and the sample’s properties either the
in-plane component or the z-component of the focus fields is dominant and shows a similar pattern as
previously shown by the focus calculations.

comparing Fig. 3.6C to 3.6B, the hotspots appear much smaller in diameter. In our case, this is

a result of suppressing the background signal. However, a recent numerical study of the spatial

distribution of electromagnetic fields between tip and sample in tip-modulated SNOM revealed

that in addition to raising the signal-to-background ratio, also the lateral confinement of the

fields is enhanced. Thus, the spatial resolution increases with increasing demodulation order

[112].

To show the spatial resolution typically achieved with our SNOM, a second example of a SNOM

scan, this time of a gold nano-particle on top of a glass substrate is presented in figure 3.7. The

optical signal demodulated at the third order of the modulation frequency has a maximum at the

edges and in the middle of the long particle. This image should be interpreted as a visualization of

the local density of states (LDOS), i.e., the square of the resonant surface plasmon wavefunction

[113]. In this case, the imaged SNOM map is reminiscent of a wavefunction with two nodes

along the long axis of the nanoparticle, similar to the images shown in [114], but it also seems

to be sheared and enhanced at the left side. This may be a superposition of several fundamental

resonances, but the asymmetry may also be caused by the specific shape of the nanoparticle,

causing the projected LDOS to change when scanning the tip over its surface. Here we use

a cross section through the optical signal, indicated by the red line in figure 3.7B to give an
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Figure 3.6: Exemplary SNOM scan of a bull’s eye nanoresonator produced by focused ion-beam milling
of a gold film. The AFM image shows irregularities, like holes and small particles on the gold as well
as on the glass, which is exposed in the grooves, where the gold has been milled away. Localized fields
around the holes of the gold structures are observed in the optical image as well as an improved signal
to background contrast for higher order demodulation.

Figure 3.7: Exemplary SNOM scan of a gold nanoparticle. (A) shows the AFM image. In (B) the
corresponding optical signal demodulated at the third order of the modulation frequency is plotted
and in (C) a cross section along the red line in (B) is presented. The spatial optical resolution ∆x is
defined by the position difference at the intensity maximum from 10% to 90% of the maximum value,
indicated by the blue area.

upper limit for the spatial optical resolution. The position difference from 10% to 90% of the

maximum intensity value is around 20nm. This value is given by the convolution of the edge

of the projected LDOS and the lateral resolution of our SNOM and is therefore an upper limit

for the lateral resolution. In our experiments, the spatial resolution depends mainly on the tip

radius that is achieved after the etching process and can be even smaller than 10nm.

3.2 Demodulated near-field signals and spectra

As previously shown, higher order demodulation plays a crucial role in detecting the scattered

near-field signals. To understand how the measured signals are evaluated for both the monochro-

matic and the broad-band spectra measurements, a closer look at the respective evaluation is
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given in this section.

For monochromatic measurements it is common to use a lock-in amplifier to extract small

periodic signals within a large noisy background. Hereby the optical signal I(t) impinging on

a photodiode is generating an analogous voltage signal Uin(t) that is connected to the input

channel of the lock-in device. To fulfill the task of extracting the desired amplitude and phase

information from the noisy signal a second, reference, input signal is needed. The reference

signal is a periodic function, typically sinusoidal, with the same frequency fref = fmod as the

signal to be detected and can either be generated by an internal function generator inside

the lock-in amplifier itself or fed in via an external connection. The lock-in amplifier then

performs a multiplication of the input signal with the reference signal and applies a low-pass

filter afterwards. This can be written as:

Uout(t) =
1

T

∫ t

t−T
sin
[
Ω · t′ + ϕ

]
Uin(t′) dt′, (3.1)

with Ω = 2πfmod. This process is already the demodulation at the fundamental frequency fmod.

To obtain signals demodulated at higher demodulation order n, multiplication is performed

with a multiple of the modulation frequency fmod, i. e.,

Uout,nf (t) = Snf =
1

T

∫ t

t−T
sin
[
n · Ω · t′ + ϕ

]
Uin(t′) dt′. (3.2)

When recording spectra with the high speed camera, we record a dataset that contains both

wavelength and time information, i e., I(λ, t). A typical visualization can be seen in figure

3.8. The time signal is modulated by the tip modulation frequency fmod. The modulation

however is on a very small scale so it cannot be seen directly in figure 3.8A. However, we can

analyze the time series of each camera pixel individually. We label such a time series by Iλ(t),

where the index λ denotes the pixel number, corresponding to a wavelength value. We now

can perform a Fourier transform along the time axis for each pixel. A typical result is shown in

figure 3.8B. In this case the image shows the absolute value of the complex frequency spectrum

of the time signal summed over all pixels (
∑

λF(I(λ, t))) for a better signal-to-noise ratio and

a more obvious result. Clearly, distinct peaks at the modulation frequency of the tip and higher

harmonics of this frequency can be observed. The maximum frequency we can resolve from the

time signal depends on the line readout frequency of the camera. In our case we use 214 kHz,

the maximum readout rate available. This corresponds to a time interval δt = 4.67 µs. The

maximum frequency in the Fourier spectrum is given as fmax = 1
2∆t = 107 kHz. Higher order

harmonic frequencies than fmax are detected at lower frequencies, 2fmax − n · fmod because of

the Nyquist theorem and can in principle be detected just as well as orders with nf < 107 kHz.
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However, with increasing demodulation order the signal amplitude decreases. This means that

while the background suppression improves with increasing demodulation order, the signal-to-

noise ratio disimproves. In essence, for orders higher than some maximum nmax, the signal is

obscured by noise. In the example shown in Fig. 3.8B, the fifth order demodulated signal is still

distinguishable, and sometimes also the 6th order signal is found. Typically, however, in the

measurements presented throughout this thesis, we found the fourth order demodulated signal

to offer the best balance between signal-to-noise ratio and background suppression.
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Figure 3.8: (A) 3D visualization of a typical SNOM dataset (B) Fourier spectrum summed over all pixel
values

Each time series Iλ(t), recorded for each pixel, constitutes a time series equivalent to the lock-in

input voltage Uin in Eqs. (3.1) and (3.2), and hence an output signal Sλ,nf can be calculated in

an equivalent way, as well. The camera has 512 pixels, and we record typically 60.000 spectra

per measurement, making Iλ,t a data cube of 512 × 60.000 values. For an easier notation, in

the following we use complex Fourier components to describe the higher harmonic demodulated

signals. Then, the time series Iλ(t) for each pixel can be approximated by a Fourier series:[115]

Iλ(t) ≈ IFλ (t) =
∞∑

n=−∞
cn,λ · einΩt (3.3)

with the complex Fourier coefficients

cn,λ =
1

T0

∫ T0
2

−T0
2

Iλ(t) · e−inΩtdt (3.4)

In practice, we can extract five complex valued signals cn,λ with n = 0, 1, 2, 3, 4 for each pixel,

and c−n = c∗n.
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The phase of the complex Fourier components contains information about the starting time of

the measurement: If we imagine an ideal measurement, it would start at a time t = 0, where

the tip is closest to the sample. Here we describe the tip-sample distance by

d(t) = d0 +A · cos(Ωt+ π) (3.5)

with the modulation amplitude A = 30 nm and d0 ≈ 33 nm, enabling a minimum tip-sample

distance of 3 nm. To account for the measurement to start at a different phase in the cycle, it is

practical to define an offset time tx:

d′(t) = d (t+ tx) = d0 +A · cos
(
Ω (t+ tx) + π

)
(3.6)

We would then get different complex Fourier components:

c′n,λ =
1

T0

∫ T0
2

−T0
2

I ′λ · e−inΩ(t)dt =
1

T0

∫ T0
2

−T0
2

Iλ (t+ tx) · e−inΩ(t)dt (3.7)

These coefficients can be written as the original Fourier components, multiplied with a phase:

c′n,λ =
1

T0

∫ T0
2

−T0
2

Iλ (t+ tx) ·e−inΩ(t)dt =
1

T0

∫ T0
2

−T0
2

Iλ(t) ·e−inΩ(t−tx)dt = cn,λ ·einΩtx (3.8)

So, c1 should be rotated in the complex plane by the angle ϕ1 = Ω · tx, c2 by twice that amount,

ϕ2 = 2 · ϕ1, etc. Once the phase is known, it can easily be corrected by multiplying with e−iϕn .

In effect, this means setting the starting time of the measurement to t = 0. After correcting the

phase, the resulting real-valued Fourier coefficients constitute what we understand to be the

higher-order demodulated near-field SNOM spectra:

Sλ,nf = c′n,λ + c.c. = 2Re(c′n,λ) (3.9)

The extraction of the Fourier coefficients as described above is an easy and fast procedure

to execute in post-processing, when the complete 60.000 spectra per measurement position

have been stored and when the tip modulation frequency fmod is known precisely. During

a measurement session and in order to save the time required for storing and reading large

amounts of data, it can be of advantage to perform a pixel-wise fast Fourier transform (FFT)

and to save only a small number of spectra around the multiples of the modulation frequency.

The resolution in the Fourier spectrum is given by ∆f = fs/N with the sampling frequency fs
and the number of points N . With a typical recording of 60.000 spectra this corresponds to

∆f = 3.5 Hz. From the measured resonance curve of the tuning fork the width of the resonance

is known to be <5Hz, and, correspondingly, only one or two frequency positions of the FFT
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show a nonzero value. To be on the safe side we then save 11 frequency positions of the FFT

around the maximum peak position for each harmonic.

3.3 Background signal in SNOM measurements

In the previous sections it was shown, how meaningful data can be obtained by demodulation of

the distance-modulated intensity signals that are recorded by the SNOM setup. The near-field,

background field and reference field were introduced in Ch. 2, and Sec. 2.2 described the

situation in our experiment, where the near field and an unwanted background signal are

mixed with a strong reference field to form a homodyne detecion scheme. Then the intensity

measured at the detector is composed of three fields, I ∝ |ER + ENF + EB|2, (comp. Eq.

(2.1)). In this section and the next I want to investigate the influence of the background signal

in low demodulation orders. For this, I performed measurements with the tip retracted from

the surface, i.e., deliberately setting ENF = 0. Eq.(2.1) then simplifies to

I ∝ |ER + EB|2 = E2
R + E2

B + 2EREB cos(ϕ). (3.10)

For this section 3.3 I first selected one example where the background field is particularly

strong and also complex, in order to show how such a complex background signal can make a

measurement unfit for evaluation, even if we understand the origin of the measured signals. In

the next section I will then show a measurement that is typical for sharp and smooth nanotips

as near-field probes, and where the unwanted background signal can easily be removed.

In particular, we evaluate the time series of spectra recorded on a 30nm thick gold-coated

glass substrate with the SNOM tip not in contact with the sample. As the measurement and

following analysis will show, the particular nanotip used for this measurement was not as clean

and smooth as the ones we usually select for SNOM. Most likely, small gold precipitates of few

100 nm diameter were formed during the etching process and remained in the laser-illuminated

area near the taper apex, where they act as efficient scatterers for the incident light [116]. My

measurements will reveal the interferences between a reference field and a background field

scattered from these unintentionally left scatterers and will yield information on their number

and distance from the apex.

In the following a measurement spanning 276ms and comprising 60.000 single spectra recorded

with a rate of 210 kHz was evaluated. The measurement took place with the tip not in contact

with the sample, i.e. the tip-sample distance was around hundred of nanometers and was

realized by moving the sample away from the tip. The laser focus was still positioned on the tip

apex. By moving the sample out of the focus plane, the intensity reflected back from the sample

was reduced, and as a consequence, the maximum signal on the camera dropped from 3484

counts to 1799. The spectra recorded during the first 450µs are plotted in Fig. 3.9A, where the
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color code gives the counts per pixel on the camera.
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Figure 3.9: (A) The recorded dataset Iλ,t of the out-of-contact spectra for the first 450µs. (B) The
spectra from (A) in a shorter time interval with the average spectrum subtracted. One can see a
distinct modulation in time. (C) The calculated S1f spectrum (blue) together with a cut through the
(B) (magenta), which is shown (B) as the magenta broken line. (D) The same as (B) after fitting a
sinusoidal function to each of the recordings Iλ(t).

In a next step, we want to analyze this out-of-contact data in more detail and give an estimation

for how many scatterers are on the tip and at which distance from the tip apex they are located.

Even though no direct modulation is visible in the raw data, we expect the background field

reflected from the tip to still carry a phase shift of the modulation of the tip, and hence by

interference with the reference field a temporal intensity modulation should be superimposed

on the spectra. In order to verify this, Fig. 3.9B shows the same spectra, where the temporal

average spectrum has been subtracted. One can see that after subtraction there are fluctuations

of about ± 8 counts left. From the modulation depth of ± 8 counts, compared to the maximum

of 1799 counts and the fact that the reflected field strengthER,out has reduced to around 75% of

it’s value from the tip-in-contact measurement, we can determine the reference-to-background

ratio, ER : EB ≈ 300 : 1.

Furthermore, there is a clear temporal periodicity visible. For clarity, here only a short time span

of 180µs comprising 41 consecutive spectra is shown. This time span contains five oscillation
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periods of the tip, clearly visible as alternating red and blue areas.

In order to further investigate these oscillations, I first extract the Fourier coefficients (Eq.

(3.4)) from the measured spectra, as described in Sec. 3.2. Specifically, as we are interested in

the cross term of reference and background spectrum, the first order demodulated spectrum

S1f = c′λ,1f + c.c. is of the highest relevance in this case. The 1f-spectrum, S1f is shown as a

function of wavelength as the blue curve in Fig. 3.9C. The phase of the complex coefficient

has already been corrected, such that Im(c1f ) = 0 and S1f = 2Re(c1f ). A cut through the

measured modulation (magenta broken line in Fig. 3.9B) is plotted as the magenta curve

together with S1f in Fig. 3.9C, showing that the two curves overlap well, taking into account

that each single measured spectrum is obviously carrying noise.

As an additional demonstration of the strict temporal periodicity, I have fitted sine curves to

each time series Iλ(t), recorded by each pixel. The fit parameters for these sine curves are their

frequency, offset phase and amplitude. The fitted sine curves are plotted as columns over the

wavelength assigned to each pixel, resulting in the plot in Fig. 3.9D. Here the color code is

the amplitude of the sine curves as a function of time and wavelength. This plot also closely

recreates the measured spectro-temporal modulation.

Next, let us turn to the spectral modulation, i.e., the spectral shape of S1f . This spectral

modulation contains information on the properties of the tip. In this case, where there was no

near-field contribution to the signal, the information only concerns the scattering of background

field. For a smooth and clean tip, we expect the modulation EREB cos(2kd) to show exactly one

spatial frequency, corresponding to one scatterer located at distance d from the position where

the reference field ER is reflected. However, looking at the spectral shape of S1f indicates that

there is more than one frequency required to create such a complex pattern. In order to identify

the spatial modulation frequencies, I transfer the spectrum S1f (λ) to the k-vector axis S1f (k)

and perform a Fourier transform. The result is shown in Fig. 3.10A, as the normalized Fourier

amplitude as a function of optical path difference between reference field and background field.

Seven peaks can be identified in Fig. 3.10A and are labeled by their optical path difference

between reference and background field. Looking closer at the numbers, they can be fitted to

multiple scattering events between three scatterers and the gold film, as sketched in Fig. 3.10B:

the smallest optical path difference must correspond to the light traveling from the gold film to

the closest scatterer and back to the gold film, where it overlaps again with the reference field.

The second peak is at nearly twice this optical path difference and could hence correspond to

the background light performing one additional reflection off the gold film and the first scatterer.

The third peak labeled in Fig. 3.10A, however, does not correspond to another multiple of this

distance and thus indicates a second scatterer, located at a distance of ∼8µm from the first
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Figure 3.10: (A) Fourier transform of Re(S1f (k)), with the peak positions labeled. (B) Visualization of
the different scattering events.

scatterer. This assumption is supported by the fourth peak, which corresponds to a reflection off

the first scatterer and gold film, followed by scattering from the second. Likewise, the fifth and

sixth peak can also be understood as multiple scattering events between these two scatterers.

Finally, we find one very large peak at a large optical path length difference. This may indicate a

single, but very efficient scattering of a very large scatterer like a grain of dust or a grain boundary.

To test our interpretation of the S1f spectrum as the interference of the reference field and the

background field stemming from multiple scattering events, I manually implement the resulting

spectral interference pattern. For this, I assume the incident field Einc, to be the square root of

the laser spectrum, and the reference field ER(λ) = r0Einc(λ), with the reflection coefficient

of the gold surface. Here I assume r0 to be spectrally flat, and correspondingly the transmission

coefficient t to be spectrally flat, as well.

The field that is transmitted through the gold film and is scattered by the gold tip (apex or

shaft) creates the background field. In the simplest case, i.e., one scatterer p at distance dp
from the gold film, this field could be written as

EB(λ) = trptEinc(λ)e2ikdp+φp (3.11)

Here, t is the transmission coefficient through the gold film, and rp is the reflection coefficient for

the scatterer p. The exponent describes a phase shift between reference and background field due

to the displacement, which results in a wavelength-dependent phase φ = 2kd, with k = 2π/λ,

plus a wavelength-independent phase φp. In order to recreate the complete modulation, I

assume three scatterers, and denominate them p = 1, 2, 3. Taking into account up to three
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Figure 3.11: (A) Modulation of the out-of-contact spectra after subtracting the average laser field.
(B) Extracted S1f from the measurement data. (C) Calculated field 2Re(EREB) where EB(λ) was
calculated by taking into account various scatterer on the tip shaft. (D) A cut through (C) showing a
very good agreement with the S1f spectrum in (B).

scattering events, the background field can be written in this way:

EB(λ) =
∑
p

trptEinc(λ)ei2kdp+φp +
∑
p,p′

trpr0rp′tEinc(λ)ei2k(dp+dp′ )+φp,p′ +

∑
p,p′,p′′

trpr0rp′r0rp′′tEinc(λ)ei2k(dp+dp′+dp′′ )+φp,p′,p′′ (3.12)

We furthermore need to take into account the tip modulation. This creates an additional,

temporally varying phase difference between reference and background field, which is described

by multiplying the background field with ei2kA cos(Ωt). Finally, in order to compare this simple

model to the measurement, the reference field is added to the background field and the absolute

square is calculated. The result is shown in Fig. 3.11. As a reminder, Fig. 3.11A again shows the

measured modulation and 3.11B the S1f spectrum extracted from the measurement. Fig. 3.11C

shows the calculated equivalent, namely the modulation 2Re(EREB), which is modulated as a

function of wavelength and of time. The simulated modulation recreates most features of the

measurement remarkably well. This is even more evident from Fig. 3.11D, which shows the
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modulation for a fixed time, i.e., a cut through 3.11C, and which reproduces the S1f spectrum

very well.

In conclusion, I have shown in this section that extracting the Fourier coefficients gives us

valuable insight and understanding of the measured SNOM spectra. In this particular case, I

could identify three distinct scatterers on the tip and have recreated the complex measured

intensity modulation, which is a result of this. Of course, such a tip producing such a strong

and complex background field would complicate near-field measurements considerably. Thus

we usually take great care to select clean and smooth tips as near-field probes, in order to

minimize background contribution. On the other hand, however, a strong scattered field from

one, well-defined scatterer, can also be used to create a reference field for spectral interferometry.

This has recently been demonstrated within a different project of our group [116].

3.4 Improved separation of background and reference fields in a

side-illumination setup

In the previous section it was shown that different scatterers on the tip could be reconstructed

from the out-of-contact spectra on a gold film. For a very smooth tip, we would expect the

background field to be scattered from only one location, very close to the apex. In the previous

example, this would correspond to the modulation with the smallest optical path length differ-

ence, which was around 7µm. When the tip was in contact with the sample, this distance would

be even smaller and would result in a modulation period comparable to the spectral bandwidth

of our experiment. This was in fact the case for most measurements performed throughout this

thesis. Typically the effect can be seen in the lower order demodulated signals but is of little

significance in S3f or S4f spectra (see, e.g., Ch.5). However, it poses a problem for a reliable

evaluation of measurements with low near-field signal strength.

During the last few months of my PhD project, the SNOM setup was modified to further improve

discrimination between background and near field signal. This involved illuminating the tip from

the side and installing a Michelson interferometer with one arm providing the reference signal.

In comparison to the first, back-illumination setup, the new setup offers the advantage that the

path length difference between reference field and background and near-field could be adjusted

independently. Its disadvantage is that the reference arm of the Michelson interferometer is not

intrinsically stable any more.

In the following I will show that the same process as before, using a Fourier transform on the

spectra, can be used to extract the background spectrum information from an out-of-contact

measurement.

The side-illumination setup has been described in [117], and a simple sketch of the setup is

shown in Fig. 3.12. The light from the Titanium:Sapphire laser is incident on a beam splitter
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Figure 3.12: SNOM side illumination setup with a Michselon interferometer with one arm providing
the reference signal. With this setup the path length difference between reference field, background
and near-field can be adjusted independently.

(BS), where 20% is reflected and is focused onto the tip from the side, using a reflective MO

(Beck Optronics Solutions, model 5003-000) with NA 0.4. 80% of the incident light passes the

BS and serves as the reference field ER. The reference arm length is adjusted to be shorter than

the sample arm by ∼100µm in order to enable spectral interference with a convenient fringe

spacing. The reference beam and the light that is scattered from the near-field region and that

is collected by the MO in backwards direction are overlapped and can be recorded by either a

photodiode (APD) or by the the fast line camera after passing a monochromator.
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Figure 3.13: The dielectric function of Sb2S3.

Here I show spectra recorded with the fast cam-

era with the tip above a flat Sb2S3 film. The

measurements were performed by my colleague

Jinxin Zhan for her PhD thesis and are used here

to demonstrate the wide applicability of my evalu-

ation using Fourier coefficients. Again, the tip was

removed from the sample, setting ENF = 0 and

allowing us to record the interference of reference

and background field. Similarly to the gold film,

Sb2S3 also shows a very flat spectral response over

the spectral range covered in our experiment and

is shown in Fig. 3.13.

A typical spectral measurement with the fast line

camera is shown in Figure 3.14. Like in the previous section, 60.000 spectra were recorded over

a time period of around 270ms. We can observe interference fringes from the interference of the
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Figure 3.14: Spectra as a function of time recorded with a fast line camera and the SNOM tip far away
from the sample.

reference beam with the backscattered light from the sample and the tip. A closer look reveals

that the interference lines are not straight, but that they shift over the wavelength axis with

time. The reason for this shift of the interference pattern is a mechanical drift of the reference

mirror.

Figure 3.15A shows the shift of the interference pattern more clearly in a smaller region of Fig.

3.14. Since we measure a spectral interference pattern, however, this drift of the reference

mirror can be corrected in post-processing. For this, we apply a Fourier Transformation on each

of the 60000 spectra, after they have been converted from the wavelength to the corresponding

k-vector axis. The Fourier transform shows a peak corresponding to the fringe spacing of the

observed interference pattern, and the phase of the Fourier amplitude at this peak value, φR,

corresponds to the phase of the interference pattern. After low-pass filtering, to remove a fast

oscillation of small amplitude, which is due to the modulation of the tip, this phase shows the

relative change of the reference arm length with respect to laser wavelength. The so retrieved

phase as a function of time is shown in figure 3.15B. This low-pass filtered phase information

is used to correct each spectrum by multiplying its Fourier transform of each spectrum with

a factor exp
(
iφR,low−pass

)
. Afterwards, the inverse Fourier transform is applied to retrieve

the filtered spectra. The result is shown in figure 3.15C which clearly demonstrates the phase

correction.

The temporal average spectrum is now shown in Fig. 3.16A. It clearly shows a spectral interfer-

ence pattern. Since the tip was removed from the surface and ENF = 0, the spectrum can be
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Figure 3.15: A:Spectra as a function of time for a zoomed in wavelength range. B:The extracted phase
as a function of time. C: The corrected spectra.

described by the interference of reference and background field:

I ∝ |ER + EB|2 = |ER|2 + |EB|2 + 2Re(EREB) cos(k∆L). (3.13)

Here, ∆L is the constant path length difference between sample and reference arm. Performing

a Fourier transform of the spectrum shown in Fig. 3.16A along the k-axis allows disentangling

the constant part, E2
R+E2

B , and the modulated part, ER ·EB . The Fourier transform is shown in

Fig. 3.16B. Extracting and performing the inverse Fourier transform of the center peak and one

of the side peaks (green line in Fig. 3.16B), the constant part and the modulation are retrieved,

respectively. We now have two spectra for the two unknowns, ER and EB, and can thus

completely disentangle the two fields. The result is shown in Fig. 3.16C and D. As expected, the

reference spectrum closely resembles the laser spectrum. The background spectrum, however,

differs, especially in the short-wavelength range, where the spectrum seems suppressed. This

is most probably due to a different coupling of light from the two interferometer arms to the

monochromator.

In total, these results clearly demonstrate that reference and background spectra are always

mixed together, but can indeed be separated. We have now determined the reference and

background spectra using the temporally averaged spectrum, i.e., the S0f spectrum. In a SNOM

measurement with the tip in contact, the higher-order spectra will be dominated by the cross
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Figure 3.16: A: The S0f spectrum. B: Fourier transform of the S0f spectrum. From filtering once the DC
peak and once the side peak and applying an inverse Fourier transform both the reference spectrum
(C) and the background spectrum (D) can be extracted.

term ER · ENF , giving access to the near field in an analogous way via the Snf spectra. In

the next chapters I will outline that the separation of near-field and background can also be

achieved with less effort, using an in-line interferometer and directly demodulating the recorded

spectra at a higher order harmonics of the tip modulation frequency.



Theoretical Background 4
The retrieval or verification of material properties is the most challenging goal in analyzing

sSNOM measurements, since the optical near-fields are measured only indirectly through the

interaction of a probe and sample. Hence, applying a model to explain or predict the near-field

scattered by the tip is of high importance. The model is the key to relate monochromatic

as well as spectroscopic sSNOM measurements to material properties. Furthermore, explicit

knowledge of the complex dielectric function, describing the response of the material to light

interaction, prior to the sSNOM measurement, can help to identify the specific material in the

post-processing step. It may even reveal new insights into the nanoscale material properties

such as alignment properties of dye materials.

Thus, this chapter is divided in two parts. The first part deals with focusing light through

layered systems including isotropic and anisotropic thin films. A quantum mechanical model is

presented to relate far-field absorption spectra to the characteristically microscopic material

properties, such as the refractive index. Together with a transfer matrix method, describing the

transmission and reflection of light through a multilayer system, the electric fields after being

focused through such systems are derived.

In a second part, these focus fields interact with the tip. Two different models are presented to

simulate the near-field through the interaction of sample and tip that can be used to describe

and simulate local sSNOM spectra.

49
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4.1 Focusing through layered systems with anisotropic thin films

4.1.1 Microscopic model of the refractive index

The goal for this section is to introduce quantum mechanical tools to accurately describe and un-

derstand the optical properties of atoms and molecules and to achieve a general understanding

of the light-matter interaction. In particular a deeper understanding of the origin of absorption

spectra is determined.

4.1.1.1 Electronic states

We start with the most simple case of an atom which is considered to be a two niveau system of a

ground state |1〉 and an excited state |2〉. In this case the Hamiltonian has only two eigenvalues

E1 and E2 and the equations describing our system reads

Ĥ0 |n〉 = En |n〉 , n ∈ {1, 2} (4.1)

and we can also write Ĥ in matrix notation

Ĥ0 =

E0 0

0 E1

 (4.2)

If we prepare the system to be in state |n〉 it will remain in this state forever. This is different

for the case of a perturbed system. For that case we can write

Ĥ = Ĥ0 + Ŵ =

E1 +W11 W12

W ∗12 E2 +W22

 =

 Ẽ1 W12

W ∗12 Ẽ2

 (4.3)

and |1〉 , |2〉 are no eigenstates anymore. The energies E+,− of the new states can be calculated

by zeroing the determinant det(Ĥ − E+,− · I) = 0 which leads to

E+− =
Ẽ1 + Ẽ2

2
±

√√√√(Ẽ1 − Ẽ2

2

)
+W 2

12 (4.4)

Up to now light-matter interaction was not considered. With an additional optical field we

introduce a coupling to the dipole moment of the atom and thus have a time-dependent change

of the wave function. The dynamics of such a closed quantum system is governed by the
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time-dependent Schrödinger equation acting on the wavefunction Ψ

i~
∂

∂t
Ψ = [Ĥ0 + ĤI(t)]Ψ (4.5)

with the Hamiltonian

ĤI(t) = −exE(t) = −µE(t) (4.6)

describing the light interaction. Here we assume a homogeneous electromagnetic field E(t)

polarized in x-direction. µ is the operator for the electric dipole moment [118].

The solution of equation (4.5) can be written as

ψ(r, t) =
∑
m

am(t)e−iεmtψm(r). (4.7)

This gives us a differential equation for the coefficients an as well:

i~
∂

∂t
an = −E(t)

∑
m

e−i(εm−εn)t 〈n|µ|m〉 am (4.8)

We can now consider the field as a perturbation and write

an = a(0)
n + ∆a(1)

n + ... (4.9)

and

E(t)→ ∆E(t). (4.10)

For first oder perturbation one can easily show [118] that a(1)
n yields

a(1)
n (t) = − 1

i~

∫ t

−∞
dt′E(t′) 〈n|µ|l〉 e−i(εl−εn)t′ (4.11)

assuming the electron was initially (time t→ −∞) in the state |l〉. The integral can be solved

by expressing the field E(t) through its Fourier Transform

E(t) = lim
γ→0

∫
dω

2π
e−iωteγt. (4.12)

Here the damping factor γ ensures that the electric field is 0 at times t→ −∞ and is physically

related to a dephasing time τ = 1/γ.
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With equation (4.12) we find

a(1)
n (t) = − 〈n|µ|l〉

2π~

∫
dωE(ω)

e−i(ω+εl−εn)

ω + εl − εn + iγ
, (4.13)

which describes the first linear term for the amplitude of the wavefunction from equation (4.7).

In case of weak electromagnetic fields we can limit ourselves to the linear response. It should be

noted however that for strong fields one can use the result from equation (4.13) and solve the

time depending Schrödinger equation for higher order perturbation as well. Solutions for higher

order perturbation theory will not be covered here, but can be found in many textbooks[119].

Since we now have derived a solution for the wavefunction Ψ(r, t) with

Ψ(r, t) = e−iεlt

Ψl(r)−
∑
m 6=l

µlm
2π~

Ψm(r)

∫
dωE(ω)

e−iωt

ω + εl − εm + iγ

 (4.14)

we can relate our results to linear optical properties of a material system, in particular we can

calculate the polarization induced by the external field, which is given by the expectation value

of the electric dipole moment

P (t) = 〈Ψ|µ|Ψ〉 = n0

∫
d3rΨ∗(r, t)µΨ(r, t). (4.15)

Hereby, n0 denotes the density of atoms .

After inserting the wavefunction we can finally write the result by introducing the linear

susceptibility χ(ω) through the relation P (ω) = ε0χ(ω) · E(ω) and find [119]

χ(ω) =
n0

~ε0

∑
n

|µln|2 ·
[

1

ω − ωln − iγ
+

1

ω + ωln + iγ

]
, (4.16)

with µln := 〈l|µ|n〉 and ωln := εl − εn.
From this equation it follows that the dielectric susceptibility and thus the absorption spectrum

is related to the input Hamiltonian only by the discrete energy levels ωln and the dipole moment

µln.

Furthermore, χ(ω) is directly related to material properties like absorption that can be obtained

from optical measurements. Let’s assume we have a medium of thickness d with refractive index

n. The refractive index is linked to the dielectric susceptibility by n =
√
ε(ω) =

√
1 + χ(ω).

For sufficiently dilute media this can also be approximated as n ' 1 + 0.5χ(ω) [119]. With a

propagating plane wave through the medium described by

E(z, t) = E0e
i(kz−ωt) + cc. = E0e

i(n(w)ωz/c−ωt) + cc. (4.17)
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the intensity along the medium is given by Beers Law

I(z) = I0e
−αz. (4.18)

The absorption coefficient α is then finally given by

α = 2 · Im(n)ω/c = Im(χ(ω))ω/c. (4.19)

Consequently, we find that by defining the Hamiltonian for a given system and including light-

matter interaction, we can explain absorption spectra measured by propagation of optical plane

waves through a medium within a quantum mechanical description.

At this point it should be noted that even though the dielectric susceptibility already describes the

relation between the Hamiltonian and the real physical properties, a more complete description

of a system including an environment and therefore also relaxation and dephasing processes

can be derived by using the density matrix formalism. In that case the time evolution of the

quantum system is governed by the Liouville von Neumann equation

ρ̇(t) = − i
~

[H, ρ(t)], (4.20)

which is the equivalent of the time depending Schrödinger equation for the density matrix

formalism. The Hamiltonian now includes additional terms for the environment and the

interaction between system and environment. To get insight in the dynamics of the system one

can now perform a partial trace over the environmental degrees of freedom and thus obtain

a master equation for the motion of the original system density matrix. The Lindblad master

equation for the reduced density matrix ρ = Trenv[ρ] is the most general type of master equation

that preserves the laws of quantum mechanics and is given by

ρ̇(t) = − i
~

[H(t), ρ(t)] +
∑
n

1

2

[
2Cnρ(t)C+

n − ρ(t)C+
n Cn − C+

n Cnρ(t)
]

(4.21)

with Cn =
√
γnAn and An the operators with which the environment couples to the system

and γn are the corresponding rates, i.e. relaxation and dephasing rates.

Numerically the Lindblad equation can be solved by a Runge-Kutta algorithm and finally the

absorption spectrum can be obtained by Fourier transformation of Tr(Hiρ(t)) where Hi is

the light interaction Hamiltonian. For the description of our transmission spectra however, a

coupling to an environment is not needed and we can restrict ourselves to the simple relation

between the dielectric susceptibility and the Hamiltonian given by equation (4.16).
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Figure 4.1: Typical anharmonic potential

4.1.1.2 Vibrational modes in a two level system

Up to now only electronic states have been considered. For describing systems like molecules

also oscillation modes of the nuclei motion (phonon coupling) have to be taken into account.

An image of a typical anharmonic potential curve for a molecule is shown in figure 4.1.

For low energies the molecule is positioned at the minimum of this curve and therefore in first

approximation the nuclei will see a nearly harmonic potential.

The Hamiltonian for an harmonic oscillator is governed by

Ĥ =
P̂ 2

2m
+

1

2
mω2X̂2. (4.22)

With P̂ ′ := 1√
m~ω

P̂ and X̂ ′ :=
√

mω
~ X̂ this can also be written as [120]

Ĥ =
~ω
2

(
X̂ ′

2
+ P̂ ′

2
)

= ~ω ·
(
â†â+

1

2

)
= ~ω(n̂+

1

2
) (4.23)

Here â† and â are the creation and annihilation operators and n̂ = â†â is the number oper-

ator that counts the number of states. The solutions Ψn of the wavefunctions following the

Schrödinger equation ĤΨ = EΨ can be found analytically and are expressed in terms of

Hermite polynomials Hn as

Ψn(x) = 〈x|n〉 =

(
mω

π~

) 1
4 1√

2nn!
·Hn

(
mω

~
· x
)
· e−

1
2
mω
~ x2

(4.24)

with energy eigenvalues

En = ~ω
(
n+

1

2

)
. (4.25)
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Figure 4.2: Wavefunctions for the harmonic oscillator

The solutions for the wavefunctions of an harmonic oscillator are plotted in figure 4.2. For the

vibrational modes we define the energy as En = ~ωvib(n+ 1
2).

Now, to describe a two level system including vibrational modes we can express our two elec-

tronic states as two displaced harmonic oscillators whose 0-0 energy splitting is given as E1−E0

with E0 the energy of the ground state and E1 the energy of the 0th order vibrational mode of

the excited state.

The existence of a displacement for the potential energy surface (PES) between ground and

excited states corresponds to different equilibrium states of the molecule, which is a result of a

change in electronic configuration and therefore results in a change of bonding between ions or

atoms [121].

Consequently, the total Hamiltonian includes both electronic as well as vibrational terms:

Ĥ0 = ~ω0 |0〉〈0|+~ω1 |1〉〈1|+
∑
n

~ωvib(n̂n+
1

2
)+~ωvib ·

(
λ · (â† + â) + λ2

)
|1〉〈1| . (4.26)

The first two terms in this equation describe the electronic states, the third term is the Hamilto-

nian of the non-shifted harmonic oscillator describing the vibrational modes and the last term

describes an additional shift of the oscillator along the x-direction. For the last term the relation

X̂ =
1√
2

(â† + â) (4.27)

between the coordinate operator X̂ and the creation and annihilation operators was used.
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Additionally,

λ = −
√
ωvib
2~

(4.28)

was introduced and represents a dimensionless shift of the potential energy surface of the

electronic state |e〉. λ is also known as Huang Rhys factor[121, 122].

With equation (4.26) the Hamiltonian of our system is fully described. However, as before,

light matter interaction is not yet included and we cannot just use the result for the dielectric

susceptibility from equation (4.16), because now also transitions from different vibrational

modes have to be considered.

As we have already seen, the intensity for optical transition in the electronic system from one

state into another is related directly to the absolute squared value of the transition dipole

moment

Mlm = 〈m|µ|l〉 =

∫
Ψ∗mµΨldτ. (4.29)

In the present case the wavefunction includes both a nuclear and an electronic part. However,

using the Born-Oppenheimer approximation [123] the wavefunctions can be separated into

two parts

Ψ(R, r) = ξ(R) · Φ(r), (4.30)

with nuclear coordinates R and electronic coordinates r. Hence, also the transition dipole

moment can be separated inMrR = Mr +MR which can be written in Dirac form as [124]

M =
〈
ξ
′′
(R)
∣∣∣ξ′(R)

〉〈
Φ
′′
(r,R)

∣∣∣µ ∣∣∣Φ′(r,R)
〉

+
〈

Φ
′′
(r,R)

∣∣∣Φ′(r,R)
〉〈

ξ
′′
(r,R)

∣∣∣µ ∣∣∣ξ′(R)
〉

(4.31)

where ’ denotes the initial state and ” the end state. The electronic wavefunctions have to be

orthogonal such that the second term is zero and the equations simplifies to

M =
〈
ξ
′′
(R)
∣∣∣ξ′(R)

〉〈
Φ
′′
(r,R)

∣∣∣µ ∣∣∣Φ′(r,R)
〉
. (4.32)

The second factor of this equation is the electronic dipole moment. Since the nuclei are much

heavier than the electrons, they are staying at a nearly fixed position R0 during the electronic

transition. This is called the Franck Condon approximation and as a result the electronic dipole
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moment can be written as

Mel =
〈

Φ
′′
(r,R0)

∣∣∣µ ∣∣∣Φ′(r,R)
〉

(4.33)

and is now independent of the nuclear coordinates.
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Figure 4.3: Franck Condon factors (changed

from [121])

The term〈
ξ
′′
(R)
∣∣∣ξ′(R)

〉
(4.34)

is the so called Franck Condon integral. The abso-

lute squared value of this integral are the Franck-

Condon factors. They define the intensity of a

transition from a vibrational state of the electronic

ground state into a vibrational state of the elec-

tronic excited state. Thatmeans the intensity of the

transition from one state into another is described

by the overlap integral of the nuclear wavefunc-

tions

Iν′,ν′′ ∝
〈
ξ
′′
(R)
∣∣∣ξ′(R)

〉2
. (4.35)

From figure 4.2 we can already conclude that the

intensity of the transition is defined by the displace-

ment of the potential surface of the ground state

and the excited state. In the case of no displacement the integral for the 0-0 transition is 1 and

it is 0 for all other 0-n transitions, because the wavefunctions for higher orders are asymmetric.

For a larger displacement the overlap with the higher order wavefunctions is nonzero and the

intensity of this transitions gets higher.

More precisely, the integral from equation (4.34) can be solved analytically since we have al-

ready derived the wavefunctions of an harmonic oscillator in equation (4.24). After performing

some mathematical operations[125] we can find the Franck Condon integral for the transition

from the vibrational state M of the ground state |g〉 into vibrational state N of the excited state

|e〉 as

〈
ξg,M

∣∣ξe,N〉 = e−λ
2/2

M∑
m=0

N∑
n=0

(−1)nλn+m

m!n!
×

√
M !N !

(M −m)!(N − n)!
δM−m,N−n (4.36)

The factor λ is again the dimensionless Huang Rhys factor [121, 122] and describes the

displacement of the harmonic oscillator potentials of ground state and excited state and hence



58 CHAPTER 4. THEORETICAL BACKGROUND

also represents the strength of coupling to the nuclear degree of freedoms. In this way the Huang

Rhys factor is also related to the Stokes Shift that can be observed in fluorescence measurements

[121]. For a Huang Rhys factor λ < 1 the dependency on the vibrational energy ωvib is weak

and the main peak in the absorption spectra is centered at the 0-0 transition with the amplitude

for the vibronic progression decaying exponentially. For λ >> 1 the strong coupling regime

is reached and the maximum intensity is found for a transition to the vibrational level ν ∝ λ
[122].

Figure 4.3 shows a visual representation of the Franck Condon principle with the intensities for

different transitions of a displaced PES given by the Franck Condon factors.

4.1.2 Transfer Matrix Method

The transfer matrix model is used to simulate transmission and reflection through a multi-layer

system consisting of multiple materials with different optical refractive indices.

The advantage of using a transfer matrix model is that one can treat all multiple reflections

occurring in such a multilayer system which can change the outcome e.g. for a simple transmis-

sion spectrum.

A typical situation of multiple reflections in just a single medium is illustrated in figure 4.4.

We are considering one incoming monochromatic laser beam with wavelength λ propagating

towards a medium under an angle.

A1

θ

d

A2 A3 A4

A0

B1 B2 B3 B4

Figure 4.4: Multiple reflections in a single medium (adapted from [126])

Each ray is phase-shifted from the others by multiples of the same factor. The intensity of each

ray can be deduced as long as the transmission and reflection coefficients for the interfaces are
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known. Taking all reflections into account one can calculate the overall transmitted or reflected

light. In general, following the beam like this can be done for a sample consisting of several

layers with different refractive indices as well. However, with increasing number of layers this

process will get cumbersome.

An easier way is to use a more general approach. Here, I follow the notation of M. Klein and T.

Furtak [127] and write the electric field in each layer as a sum of two components Er,i and El,i,

one propagating to the right and one propagating to the left in the medium i with refractive

index ni, as illustrated in figure 4.5.

n1 ni nj nN

Incident 

medium

Final 

medium

Layer i Layer j

l,i

r,i

E'i Ej

r,j

l,j

A B

Figure 4.5: Visualization of the transfer matrix method. A: the multilayer structure, B: Incoming and
outgoing fields at interface the between layer i and j.

When propagating along an interface from medium i to medium j the transmission coefficient

tij and reflection coefficient rij have to be applied. These can be obtained from the Fresnel

equations as

tij =
2 · ni · cos (θi)

ni cos (θi) + nj cos
(
θj
) =

2 sin
(
θj
)

cos (θi)

sin
(
θi + θj

) (4.37)

rij =
ni cos (θi)− nj cos

(
θj
)

ni cos (θi) + nj cos
(
θj
) (4.38)

for s-polarized light (E perpendicular to the plane of incidence) and

tij =
2 · ni · cos (θi)

nj cos (θi) + ni cos
(
θj
) =

2 sin
(
θj
)

cos (θi)

sin
(
θi + θj

)
cos(θi − θj)

(4.39)

rij =
nj cos (θi)− ni cos

(
θj
)

nj cos (θi) + ni cos
(
θj
) =

tan
(
θi − θj

)
tan

(
θi + θj

) (4.40)

for p-polarized light (E in the plane of incidence).
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The angles θi can be obtained from snells law, ni sin (θi) = nj sin
(
θj
)
. As long as the incident

angle to the first layer is given, the angles for all other layers can be calculated. Also, ni and nj
can be imaginary, which leads to imaginary angles.

The electric fields at the right side of the interface of layer i to layer j can be written as a sum of

transmitted and reflected fields

Er,j = E
′
r,itij + El,jrji (4.41)

E
′
l,i = El,jtji + E

′
r,irij (4.42)

The unprimed fields are fields from the left side of one layer and the primed fields are from the

right side of one layer, e.g. Er,j is the field from the left side of the layer j propagating to the

right side of layer j.

By using the symmetry relationship of the Fresnel equations tijtji +
(
rij
)2

= 1 and rij = −rji as
derived in [127], equations (4.41) and (4.42) can be written as

E
′
r,i =

(
rij
tij

)
El,j +

(
1

tij

)
Er,j (4.43)

E
′
l,i =

(
1

tij

)
El,j +

(
rij
tij

)
Er,j (4.44)

or in matrix form:E′l,i
E
′
r,i

 =
1

ti,j

 1 ri,j

ri,j 1

 El,j
Er,j

 (4.45)

Thus, we have two coupled equations connecting the fields on the left side of the interface with

the fields on the right side.

Additionally, when passing through a layer we accumulate a phase which is dependent on the

thickness of the layer, the angle of incidence and the wavelength:

δj ≡ kzdj =
2π

λ0
njdj cos

(
θj
)

(4.46)
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Here θj is the incident angle in layer j. Again, the refractive index can be complex, with Im(n)>0

describing absorption, with Im(n)<0 describing stimulated emission. Since we are only consid-

ering monochromatic waves, the refractive index and the angle are just (complex) numbers. To

simulate spectra at a later point we just have to reevaluate all equations for different wavelengths.

The phase is changing the electric field on the right side (when propagating from left to right)

or the left side (propagating from right to left) respectively:

E
′
r,i = Er,je

iδj , El,j = E
′
l,je

iδj (4.47)

This effect can also be written in matrix notation and we can define a matrix describing the

propagation in layer j 1

Mj ≡

eiδj 0

0 e−iδj

  1 rj,j+1

rj,j+1 1

 1

tj,j+1
(4.48)

In total the complete multilayer can be expressed by multiplying the matrices for each layer

interface:

M =
1

t1,2

 1 r1,2

r1,2 1

M2M3 . . .MN−1 (4.49)

The matrix M contains the information about the whole layer system including multiple reflec-

tions.

Finally, we getE′l,1
E
′
r,1

 =

M11 M12

M21 M22

 El,N
Er,N

 . (4.50)

Now, for simplicity, we start with a field amplitude of E
′
r,1 = 1. The amplitude at the first

interface in backward direction is then equal to the reflection coefficient r ≡ E
′
l,1/E

′
r,1 and

the amplitude at the last interface in forward direction is the overall transmission coefficient

through the layers t. We don’t consider any fields propagating in backwards direction after the

1We used here a different notation than in [127], the sign in the exponential in equation (4.47) and (4.48) are
changed. This way it is consistent with other literature. The reason for a different notation in [127] is a different
definition of the propagating wave. We follow the convention of describing a propagating wave by exp(ikz).
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last layer, therefore El,N = 0. In total we get:r
1

 = M

0

t

 =

M12 t

M22 t

 (4.51)

From the two coupled equations the reflection coefficient r and the transmission coefficient t

can be derived as

t =
1

M22
r =

M12

M22
(4.52)

The transmitted and reflected intensity can now be calculated by:

T = |t|2 nN cos (θN )

n1 cos (θ1)
R = |r|2 (4.53)

nN and n1 are the refractive indices of the last and first medium and θN and θ0 are the angles

of the beam propagating in the last medium and first medium respectively. The origin of the

intensity equations stems from calculations of the pointing vector, the net power flowing forward

through the structure, and considering energy conservation as shown in [127]. One should note

that equation (4.53) is only valid when the refractive indices of the first and last layer are not

complex. This is usually the case, since the incident and final media are mostly non-absorbing,

e.g. air. For absorbing end layers the angles in equation (4.53) can become complex and we

have to use the real part and complex conjugates of the complex angles. A more detailed

derivation for these special cases can be found in [128].

Another thing to consider are thick layers, i.e. layers thicker than the wavelength of light.

Let us have a look at a typical sample. Figure 4.6A shows a 30 nm gold layer on top of a 180µm

thick glass substrate. To simulate the gold layer we use n =
√
ε, whereas ε is taken from known

data measured by Olmon et al. [129]. For the refractive index of glass we use the Sellmeier

equation for a BK7 glass substrate.

The result of the simulated transmission spectrum is shown as the green curve in figure 4.6B.

For thick films, layers that are much larger than the wavelength, we will see fringes in the

simulated spectrum, because of interference of the waves from the frontside and the backside

of that layer. These narrow Fabrit-Perot oscillations are normally not seen in measurements

(blue curve in figure 4.6B), because different effects destroy the interference. These effects can

be nonparallel surfaces of the thick film, rough surfaces, or the fact that the light propagation

through the layer is slightly focused or divergent. In all cases the phases of the multiple reflected
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Figure 4.6: (A) Visulaization of a sample of gold on a glass substrate in air, (B) Transmission through
a glass-gold layer. Blue curve: TMM simulation with air-glass-gold-air, red curve: modified TMM as
explained below, green: measurement for a 30nm gold film.

light waves in the thick layer are incoherent.

To account for these effects and suppress the fringes Katsidis et al. [130] proposed a modified

incoherent transfer matrix method. Hereby, we assume to have a set of N layers with one

of them being a thick “incoherent” layer at layer position m. All thin layers before and after

this incoherent layer are treated the same way using the transfer matrix method as explained

above. So we divide the layer system in two “coherent” multilayer connected by the incoherent

layer. The final complex transmission coefficients t0,m and tm,N+1 (and reflection coefficients

r0,m and rm,N+1 ) of each of the two multilayer systems are then given by equation (4.52).

Now these coefficients are replaced with their square amplitudes to get intensities instead of

amplitudes. Following a similar approach one can formulate modified intensity matrices. These

intensity matrices are then multiplied with a propagation matrix (Pm) of the incoherent layer

to get the overall transmission through all layers:

M inc = M0/mPmMm / N+1 =
1∣∣t0,m∣∣2

(∣∣t0,mtm,0∣∣2 − ∣∣r0,mrm,0
∣∣2) ∣∣r0,m

∣∣2
−
∣∣rm,0∣∣2 1

×

∣∣∣e−iδm∣∣∣2 0

0
∣∣∣eiδm∣∣∣2


× 1∣∣tm,N+1

∣∣2
(∣∣tm,N+1tN+1,m

∣∣2 − ∣∣rm,N+1rN+1,m

∣∣2) ∣∣∣rm,N+1

∣∣∣2
−
∣∣rN+1,m

∣∣2 1


(4.54)
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Similar to equation 4.52 the transmission and reflection are given by 2:

T =
1

M inc
22

, R =
M inc

12

M inc
22

n1

(air)

Final 

medium

(air)

n3 n4 nNn2

Thick layer

(d2>>λ)

tlayersrlayers

Figure 4.7: Visualization of the modified TMM including a thick layer. rlayers and tlayers are the reflection
and transmission amplitudes for layer 3 to N.

In our case the thick layer, the glass substrate, is always the second layer if the incident medium

(air) is labeled as layer one. We now use a similar approach as introduced by Kwatsidis et al.

[130], i.e. we split our multilayer system in two parts. The first part consists of the incident

medium (air) and the thick glass layer (denoted as the 2nd layer). The second part starts from

the interface of the glass to layer 3 as illustrated in figure 4.1.2. In order to suppress the narrow

oscillations, we only consider the first two reflections at the interfaces of the 2nd layer. In

detail, we start at the interface air–glass. There, a fraction is transmitted and reflected. The

transmission and reflection amplitude tair,glass and rair,glass for a glass interface is given by the

Fresnel equations (eq. (4.37) - (4.40)). To take into account the propagation through glass we

add a phase term eiδwith δ = 2π
λ0
nglassdglass. At the interface to layer 3 once more a part of the

light is reflected and a part is transmitted. The transmission amplitude tlayers for the remaining

layers 3 to N can be calculated as before by using the transfer matrix method. The reflected

part at layer 3 (given by the reflection amplitude rlayers) propagates through the glass layer

again, which is accounted for by adding another phase term e−iδ. Now at the first interface

from glass to air only transmission takes place and the reflection is suppressed.

Hence we can write the transmission coefficient for layers 1 to N by:

tglass+layers = tlayers · tair,glass · eiδ = tlayers · tair,glass · e
i 2π
λ0
nglassdglass (4.55)

2We changed the indices in the matrix compared to the equation given by Katsidis et al. [130] so the formulation
is consistent with our notation of the coherent transfer matrix model.
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Analogous we have for the reflection amplitude:

rglass+layers = tair,glasse
iδ

field amplitude after glass
· rlayers · tglass,air · e−iδ + rair,glass (4.56)

The resulting transmission T =
∣∣tglass+layers∣∣2 nN cos(θN )

n1 cos(θ1) for the glass-gold layer system is

included in figure 4.6 as the red curve. As expected we can clearly see, that the transmission

spectrum calculated by this method is like an average over the interference fringes shown in the

green curve of figure 4.6. The transfer matrix method can now be used to simulate transmission

spectrum though all kinds of isotropic layered media. To also include anisotropic media, the

transfer matrix method has to be slightly adapted, as will be outlined in the next section.

4.1.3 Anisotropic Media

In isotropic media molecules are oriented along totally random directions or are isotropic them-

selves, like in gases, liquids or amorphous solids. If the measurable optical properties depend

on the direction of the medium, the medium is called to be anisotropic. In this case either the

molecules are anisotropic or are not oriented randomly anymore, but follow specific directions,

for example of a crystal lattice [131]. Well-known anisotropic materials are calcite crystals or

β-Barium Borate (BBO-) crystals. The latter is one of the most versatile nonlinear optical crystals

widely used in second or third harmonic generation for high power laser sources. Also squaraine

dye molecules used throughout this work show anisotropic behavior. To be able to describe

the beam propagation in such media [132] an extended description is necessary. In particu-

lar we have to derive new transmission and reflection coefficients at the interface of these media.

To understand the physics behind anisotropic media we start with the Maxwell’s equations in

the absence of charges and currents:

~∇ · ~D = 0 (4.57)

~∇ · ~B = 0 (4.58)

~∇× ~E = −∂
~B

∂t
(4.59)

~∇× ~H =
∂ ~D

∂t
(4.60)

From (4.57) it follows with ~D = ~D0 exp
(
i(~k~r − ωt)

)
that ~D · ~k = 0 and therefore that the

k-vector is perpendicular to the displacement vector at all times.

For isotropic media this consequently means that the wave vector is also perpendicular to the

electric field ~E as the displacement vector is parallel to the electric field vector and

~D = ε ~E = ε0 ~E + ~P , (4.61)
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with the polarization ~P = ε0(ε−1) ~E and the dielectric constant of the medium ε. For anisotropic

media the relation ~E ‖ ~k does not hold anymore as the dielectric constant ε is a tensor that can

have different values for different directions. In particular in the principle coordinate system

we can write

←→
ε =

εx 0 0

0 εy 0

0 0 εz

 . (4.62)

Assuming non-magnetic media with constant magnetic constant µ and ~H ‖ ~B the remaining

three Maxwell equations reveal that ~H ⊥ ~k, ~H ⊥ ~D and ~H ⊥ ~E and thus show that also the

pointing vector ~S ∝ ~E × ~H is in general not pointing in the direction of the k-vector anymore.

The results are visually summarized in figure 4.8A.

In order to calculate the transmission or reflection coefficients for an interface between isotropic

and anisotropic media we have to formulate the Fresnel equations for anisotropic media.

Combining equations (4.59) and (4.60) leads to an expression for ~D [127]:

~D = ε0n
2[ ~E − ~̂s(~̂s · ~E)] (4.63)

Here, ~̂s is the unit vector in the direction of ~k and n is the refractive index associated with the

direction of ~̂s. From these 3 equations for 3 unknown Ei we can eliminate ~E assuming that
~E 6= ~0 and we are left with the Fresnel equation

1

n2
=

s2
x

n2 − n2
x

+
s2
y

n2 − n2
y

+
s2
z

n2 − n2
z

. (4.64)

nx,ny,nz are the refractive indices in the direction of the x,y,z axis respectively and ni =
√
εi. In

general all three refractive indices can be different nx 6= ny 6= nz. In this case the the medium

is called a biaxial anisotropic medium. Equation (4.64) can now also be written in a slightly

different notation (cf. appendix B.1) as

s2
xn

2
x(n2−n2

y)(n
2−n2

z) + s2
yn

2
y(n

2−n2
x)(n2−n2

z) + s2
zn

2
z(n

2−n2
y)(n

2−n2
x) = 0 (4.65)

In this work we are considering only uniaxial media for which two refractive indices are the

same: nx = ny 6= nz. It is common terminology to define a ordinary index of refraction no
and an extraordinary index of refraction ne. Hence, a ray of light going through a uniaxial

material is typically split into two rays. The ordinary ray is passing the medium without any

deviation, whereas the extraordinary ray is deviated at the interface to another isotropic medium.

Within this description we define the refractive index in the xy plane as the ordinary index

nx = ny = no and the refractive index in the z-plane as the extraordinary index nz = ne.
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Equation (4.65) then simplifies to

(n2 − n2
o)[n

2
o(s

2
x + s2

y)(n
2 − n2

e) + s2
zn

2
e(n

2 − n2
o)] = 0 (4.66)

This equation has two solutions for the two orthogonally polarized waves in the s-plane with

n = no and the p-plane with

1

n2
=
s2
x + s2

y

n2
e

+
s2
z

n2
o

. (4.67)

The last equation can also be written in spherical coordinates with sx = sin(θ) cos(φ), sy =

sin(θ) sin(φ) and sz = cos(θ), with θ denoting the angle between the wave vector and the

optical axis and φ is the azimuth angle around the optical axis. In the case of uniaxial media

we easily find that the azimuth angle does not even need to be considered:

1

n2
=

cos2(θ)

n2
o

+
sin2(θ)

n2
e

(4.68)

This finally leads to

n(θ) =
none√

n2
o sin2(θ) + n2

e cos2(θ)
. (4.69)

As a result we find that the refractive index of a p-polarized wave in a spatially homogeneous

uniaxial anisotropic material with its optical axis oriented along the z coordinate strongly

depends on the angle θ between the wave vector and the optical axis and is a mixture of both

refractive indices no and ne. For an angle θ = 0 we get n(0) = no, the electric field is oscillating

perpendicular to the z-plane and only experiences the ordinary index of refraction, whereas for

an angle θ = 90° the field only experiences the extraordinary index of refraction.

Now we want to derive the transmission and reflection coefficients at an interface of an isotropic

to an anisotropic medium. The propagation as well as the extraordinary axis is in z-direction.

We now treat the situation separately for s-and p-polarization. In the case of s-polarization the

electric field is only oscillating in the xy-plane with

~E ∝

sin(φ)

cos(φ)

0

 ei(
~k·~r−ωt) (4.70)

Thus, no z-component has to be considered and the expression for the refractive index simplifies

to n(θ) = no. That means the transmission and reflection for an s-polarized wave can be treated

the same way as transmission and reflection at an isotropic medium with refractive index no of
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Figure 4.8: A: Visualization for different vectors for the case of an isotropic and anisotropic medium.
For anisotropic media the wave vector ~k does not point in the same direction as the Pointing vector
~S. The same is true for the electric field ~E and the displacement ~D. ~E and ~S as well as ~D and ~k are
perpendicular to each other. The magnetic field vector ~H is perpendicular to all other vectors. B: A
wave at the interface of an uniaxial anisotropic medium. The dotted curves indicate the k-surface of a
sphere for an isotropic medium and an ellipse for the anisotropic medium. The optical axis is assumed
chosen to be perpendicular to the interface and the refractive index is assumed to be nx = ny = no,
the ordinary refractive index in the xy plane and nz = ne, the extraordinary index along the z-axis as
indicated in the lower right.

the uniaxial medium.

For p-polarizedwaves the situation is more challenging as for the wave vector~k = (k sin(θ), 0, k cos(θ))

and the electric field a z-component has to be considered and the refractive index is now not

constant anymore, but is a function of the incident angle as shown before. The situation for

p-polarized waves is sketched in figure 4.8B.

From the continuity equation E‖ = const at the interface with z = 0 we then find the condition

Eixe
ikixx = Exe

ikxx. (4.71)

It follows directly that kix = kx with the upper index i denoting the medium of the incident

wave. From kix = kx we directly get Snell’s law

ni sin(θi) = n(θ) sin(θ) (4.72)

Because the refractive index is not constant, the relationship between the incident angle θi and

the angle in the medium is more complicated than for Snell’s law of isotropic media. Note that

n(θ) is only defined for angles θ to the optical axis and the relation from equation (4.72) only

holds if the optical axis is normal to the interface. For any arbitrary angle of the optical axis

the angle of the refracted beam has to be related with the angle to the optical axis first. For

the treatment of arbitrary angled biaxial layers the reader is referred to calculations in a 4x4
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Transfer matrix method shown for example by Yeh [133, 134], Berreman [135] and others

[136–138].

In the case of the optical axis perpendicular to the interface a relation between the incident

angle and the angle θ can be found by replacing n(θ) in equation (4.72) with equation (4.69)

(cf. appendix B.2):

θ = arcsin

(
a√

1− a2(b− 1)

)
(4.73)

with a = ni/no sin(θi) and b := n2
o/n

2
e.

By applying the boundary conditions

~Ei‖ = ~E‖ (4.74)

~Di
⊥ = ~D⊥ (4.75)

we find the equations to relate the electric fields at the interface

Ei cos(θi)− Er cos(θi) = E cos(γ) (4.76)

n2
iEi sin(θi) + n2

iEr sin(θi) = n2
eE sin(γ) (4.77)

For the last equation we used Dz = εzEz = n2
zEz. Furthermore the angle γ of the electric field

with respect to the normal of the k-vector is different from the angle θ, because the electric

field in the anisotropic medium is not perpendicular to ~k. The relation between γ and θ can be

obtained geometrically from figure 4.8:

tan(θ) = −Dz

Dx
= − εzEz

εxEx
=
n2
e

n2
o

tan(γ). (4.78)

Finally, equations (4.76) and (4.77) can easily be solved to obtain the transmission and reflection

coefficient

tp =
E

Ei
=

2n2
i cos(θi) sin(θi)

n2
i sin(θi) cos(γ) + n2

e sin(γ) cos(θi)
(4.79)

rp =
Er
Ei

=
n2
e sin(γ) cos(θi)− n2

i sin(θi) cos(γ)

n2
e sin(γ) cos(θi) + n2

i sin(θi) cos(γ)
(4.80)

These last two equations in combination with the definition of the angle θ (eq. (4.73)) and γ (eq.

(4.78)) are everything we need to calculate the transmission and reflection of an anisotropic

layer. The equations can be used in the transfer matrix model as well. For that the calculation

of the transmission and reflection coefficient is replaced by the above equations and the angle θ

in the additional phase term β = kzd = k cos(θ)d = 2π/λn(θ) cos(θ)d of the anisotropic layer

is replaced by the angle calculated from equation (4.73).
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As a last remark, an analogous representation of equations (4.79) and (4.80) combining the

previous findings and expressing the transmission and reflection coefficient only with respect to

the input angle θi can be found in [139] and reads

tp =
E

Ei
=

2ni cos(θi)
√
n2
i sin(θi)

2(n2
o − n2

e) + n4
e

ne(none cos(θi) + ni

√
n2
e − n2

i sin(θi)
2)

(4.81)

rp =
Er
Ei

=
none cos(θi)− ni

√
n2
e − n2

i sin(θi)
2

none cos(θi) + ni

√
n2
e − n2

i sin(θi)
2

(4.82)

Either equations (4.79)-(4.80) or (4.81)-(4.82) can now be used to describe transmission and

reflection through anisotropic media, which is extensively used throughout this work to explain

SNOM intensity measurements of a squaraine dye layer sample.

4.1.4 Focal Plane Fields

In the previous sections I outlined how the refractive index is determined by the microscopic

sample properties and how optical transmission and reflection measurements are directly

connected to the refractive index of the material. A transfer matrix then was introduced to

calculate the overall transmission and reflection trough a stack of layers with different material

properties. Lastly, an extension of this formalism to anisotropic media was given. In the last part

of this section, the description of the electromagnetic fields after being focused through such

multilayer systems is derived. To complete the theoretical description of SNOM measurements,

section 4.2 outlines the interaction of these focus fields with the SNOM tip following the notation

of Novotny and Hecht (cmp. [140]).

In general, focusing of an incoming laser beam is crucial to SNOM, because the tip has a very

small scattering cross section and by focusing we artificially generate also a z-component in

the focus, whereas the incoming field is in general polarized along x or y-direction and has no

z-component.

To calculate the electric fields in the focus of a lens or microscope objective we consider a

situation as illustrated in figure 4.9A.

A plane wave is propagating towards a lens and the direction of the incoming wave vectors is

changed after refraction, i.e. the k-spectrum ~̂E
(
kx, ky

)
is no longer constant. In particular the

lens generates concentric rings of light rays that propagate in the direction given by the angles

θ and φ as visualized in figure 4.9A. Thus, the refracted field can be composed of a s-polarized

component and a p-polarized component. We call this field ~E∞ with the subscript indicating

that this field is evaluated at a large distance from the focus that is defined for x=y=z=0. With
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Figure 4.9: (A) Sketch of the focusing process. A linear polarized field ~Einc expressed in polar coordinates
by the unity vectors ~nρ and ~nθ is transformed into spherical coordinates. (B) Visualization of the
infinitesimal beam element that is transformed at the lens interface. To conserve energy an additional
term cos(θ) has to be considered. (Adapted from [140])

the unity vectors

~nρ = cos(φ)~nx + sin(φ) cos(φ)~ny (4.83)

~nφ = − sin(φ)~nx + cos(φ) cos(φ)~ny (4.84)

~nθ = cos(θ) cos(φ)~nx + cos(θ) sin(φ)~ny − sin(θ)~nz (4.85)

it follows

~E∞ =

[
ts
[
~Einc · ~nφ

]
~nφ + tp

[
~Einc · ~nρ

]
~nθ

]√
n1

n2
cos (θ)

1
2 (4.86)

The refraction at the lens hereby transforms the cylindrical coordinates ~nρ,~nφ to spherical

coordinates ~nφ,~nθ. Furthermore, the term cos (θ)
1
2 is a consequence of energy conservation

and is accounting for the change in cross section area of the incoming and refracted beam as

illustrated in figure 4.9B. tsand tp denote the Fresnel transmission coefficients for the interface

of the lens and n1 and n2 are the refractive indices of the medium before and after the lens. In

our work we do not use oil immersion and only have a microscope objective in air. Thus, we

can set n1 = n2 = 1 and also the transmission coefficients can be set to 1 for simplicity. Hence,

equation (4.86) can be written as

~E∞ = ( ~E∞s + ~E∞p )cos (θ)
1
2 (4.87)

When the unity vectors ~nφ, ~nρ and ~nθ are expressed in terms of Cartesian coordinate unit
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500 nm
x 7x 127

x 3x 313

A B C

D F G

Figure 4.10: (A-C) Focal plane fields |E|2x, |E|2y and |E|2z respectively, calculated for a Gaussian beam,
a NA of 0.95 and a wavelength of 800nm. Images (D-G) outline the same calculation, this time
including a substrate and sample modeled by an anisotropic media (cmp text).

vectors the fields ~Es and ~Ep are given by

~E∞s (θ, φ) =

 ~Einc (θ, φ) ·

− sin (φ)

cos (φ)

0



− sin (φ)

cos (φ)

0

 (4.88)

~E∞p (θ, φ) =

 ~Einc (θ, φ) ·

cos(φ)

sin(φ)

0



cos(φ) cos(θ)

sin (φ) cos(θ)

− sin(θ)

 (4.89)

This equation clearly shows that only for p-polarized light a z-component is generated that

depends on the angle θ limited by the angle θmax that is defined by the numerical aperture

(NA) of the microscope objective.

In the case of an incident wave polarized along the x direction with ~Einc = Einc~nx the expression
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for ~E∞s and ~E∞p simplifies to

~E∞s (θ, φ) = Einc (θ, φ) ·

 sin (φ)2

− cos (φ) sin (φ)

0

 (4.90)

~E∞p (θ, φ) = Einc (θ, φ) ·

 cos(φ)2 cos(θ)

cos(φ) sin(φ) cos(θ)

− cos(θ) sin(θ)

 (4.91)

The fields ~E∞s and ~E∞p can either be written as a function of the angles θ and φ, or as a function

of spatial frequencies kx,ky. Using the substitutions kx = k sin(θ) cos(φ), ky = k sin(θ) sin(φ),

kz = k cos(θ) and k = ω/c = 2πn/λ, we find for the simplified case of a x-polarized incident

wave, that the fields can be described by

~E∞s
(
kx, ky

)
= Einc

(
kx, ky

)
· 1

k2
x + k2

y

·

 k2
y

−kxky
0

 (4.92)

~E∞p
(
kx, ky

)
= Einc

(
kx, ky

)
· 1

k2
x + k2

y

·

 k2
xkz/k

kxkykz/k

−(k2
x + k2

y)kx/k

 (4.93)

Now we want to find the field at the focus position with z=0. In general the propagation of

an electric field along the z-axis from a plane z=0 to a plane z = z0 in the k-space notation is

given by

~̂E
(
kx, ky, z

)
= ~̂E

(
kx, ky

)
· e±ikzz, kz(kx, ky, ω) =

√(
ω

c

)2

−
(
k2
x + k2

y

)
. (4.94)

The electric field in real coordinates is then obtained by the angular spectrum representation:

~E (x, y, z) =

∞x

−∞

~̂E
(
kx, ky

)
ei[kxx+kyy]e±ikzz

1

kz
dkxdky (4.95)

In the case that near-fields can be neglected, it can be shown that the Fourier spectrum ~̂E can

be expressed in terms of the far-field ~E∞ as [140]

~̂E
(
kx, ky

)
=

ire−ikr

2πkz
~E∞
(
kx, ky

)
(4.96)

with r =
√
x2 + y2 + z2 the distance from the origin point located in the plane z=0 and thus
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equation (4.95) reads

~E (x, y, z) =
ire−ikr

2π

∞x

−∞

~E∞
(
kx, ky

)
ei[kxx+kyy]e±ikzz

1

kz
dkxdky. (4.97)

Hence, the field at any position in space is described by the Fourier transform of its far-field

representation.

For our case the field at a large distance from the focus is governed by equation (4.87) with

r = f the focal length of the microscope objective equation. Eq. (4.97) in coordinates of the

angles (θ, φ) transforms to

~E (ρ, ϕ, z) =
ikfe−ikf

2π

∫ θmax

0

∫ 2π

0

~E∞ (θ, φ) eikz cos(θ)eikρ sin(θ) cos(φ−ϕ) sin (θ) dφdθ. (4.98)

Here ρ and ϕ are related to the x and y coordinate in the plane of z=const, or in other words

x = ρ cos (ϕ) and y = ρ sin (ϕ).

To calculate the field in the focus, equation (4.98) has to be evaluated for z = 0. In addition,

we can account for a Gaussian beam spot and the aperture size of the lens, by expanding the

incident electric field ~Einc. For an incoming field polarized in x- direction and a beam waist of

w the field may be written for the (0,0) Hermite Gaussian mode as

~Einc = E0e
(−x2+y2)/w2

~nx, (4.99)

which can be expressed in terms of angles θ using the substitution sin(θ) = r/f = (x2 + y2)/f

as

~Einc = E0e
−f2 sin(θ)2 1

w2 ~nx. (4.100)

The factor fw (θ) = exp

(
−f2sin(θ)2

w2

)
is called the apodization function and can be expressed

in terms of the filling factor f0 = w
f sin(θmax) . as

fw (θ) = e
− sin(θ)2

f2
0 sin(θmax)2 (4.101)

For an overfilled microscope objective a filling factor f0 of 2 is reasonable.

A typical simulation result of the focus field components |Ex|2, |Ey|2 and |Ez|2 is shown in

figure 4.10A-C. In that simulation equation (4.98) was evaluated for a filling factor of 2, a

numerical aperture NA=0.95 and a wavelength of 800 nm. Hereby, the x-component of the

electric field has the highest amplitude and shows a single diffraction limited spot at the center

position x=y=0. The y-component of the electric field shows a quadrupolar intensity pattern,
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but the maximum intensity value is reduced by a factor 127 compared to the x-component

and is almost negligible. The z-component of the field shows two spots, but no intensity at

the x=y=0 position. The maximum intensity of the two spots is a factor 7 smaller than that

of the x-component. Depending on the field enhancement of the SNOM tip and the position

of the tip within the focal plane, the z-component of the field can have a strong influence on

the tip-sample interaction and therefore the detected SNOM signals. This influence will be

discussed in more detail in chapter 6.

Up to now the fields have been calculated only for focusing through air. In SNOM measurements

however, the beam is focused through a substrate and sample before the interaction with the tip

can occur. Hence, transmission through the layers for each angle θ has to be taken into account.

Typically, the transmission coefficients ts and tp for either s- or p-polarization can be calculated

for each incident angle θ by a transfer matrix model. Consequently, these coefficients replace

the transmission coefficients from equation (4.86).

As the transmission coefficients depend on the angle θ we have in total:

~E (ρ, ϕ, z) =
ikfe−ikf

2π

∫ θmax

0

∫ 2π

0
[(ts(θ) ~Es + tp(θ) ~Ep)]

√
cos(θ)eikz cos(θ)

×eikρ sin(θ) cos(φ−ϕ) sin (θ) dφdθ (4.102)

or

~E (x, y, z) =
ife−ikr

2π

∞x

−∞
[ts(kx, ky) ~E

∞
s (kx, ky) + tp(kx, ky) ~E

∞
p (kx, ky)]

×
√
kz/k e

i[kxx+kyy]eikzz
1

kz
dkxdky (4.103)

The resulting fields after being focused through a multilayer system with an anisotropic media

are shown in figure 4.10D-G. The x-component of the focus field now shows a reduced maximum

intensity value such that diffraction rings around the center spot become visible. Additionally,

the ratio of maximum intensity of the x-component to the z-component is reduced, such that

now the z-component is only a factor 3 smaller.

To complete the description of focal fields, we can calculate the focal fields e.g. at a glass

interface. Let the interface be at a position z = z0 as indicated in figure 4.11. In this case the

total field for distances z < z0 is given as the sum of the field before the interface Ef and the

field reflected from the interface Er. For distances z > z0 the field is given by the transmitted

field Et. The reflected field can be easily calculated by a wave propagating in the opposite

direction with kz,r = −kz and an additional phase factor exp(2ikzz0) is accumulated. The wave

in the medium propagates with the new wavenumber kz2 = (2π/λ)n2 cos(θ2) = k2 cos(θ2).

The kx and ky components at the interface are constant. Furthermore we have to account for

an additional phase exp
(
i(kz − kz2)z0

)
for the transmitted wave in the medium and energy
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Figure 4.11: Visualization of the focus near an interface (from [140])

conservations demands an extra factor kz2kz = n2 cos(θ2)
cos(θ) . In total this yields:

~Ef =
ife−ik1f

2π

∫ ∫
~E∞(kx, ky, kz1)

1

kz1
ei(kxx+kyy+kz1z)dkxdky (4.104)

~Er =
ife−ik1f

2π

∫ ∫
~Er∞(kx, ky,−kz1)

1

kz1
ei(kxx+kyy−kz1z)e2ikz1z0dkxdky (4.105)

~Et =
ife−ik1f

2π

∫ ∫
~Et∞(kx, ky, kz2)

1

kz2
ei(kxx+kyy+kz2z)ei(kz1−kz2 )z0 kz2

kz1
dkxdky (4.106)

Hereby Er∞(kx, ky,−kz1) and Et∞(kx, ky, kz2) are used as a short notation for the sum of the

p-polarized part and the s-polarized part multiplied by the reflection or transmission coefficient

respectively. Figure 4.12 shows a contour plot of constant intensity | ~E|2 for the interface between
air and glass. The interface is located in the focal plane z0 = 0 of the microscope objective

and a numerical aperture of 0.95 and a wavelength of 800nm was used for the simulation. A

standing wave pattern is forming because of the interference of incoming and reflected wave

at the air/glass interface. Additionally, figure 4.12 nicely outlines the energy flow of the wave

inside and outside the medium. As the refractive index changes this causes a variation in angles

of the adjacent contour lines.
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Figure 4.12: Contour plot of the intensity | ~E|2 = |E2
x+E2

y+E2
z | near a glass(top)/air(bottom) interface

in a logarithmic scale for the interface with z0 = 0 in the yz-plane with x = 0 (A) and the xz-plane
with y = 0 (B)

4.2 Tip-Sample Interaction in Apertureless SNOM Spectroscopy

When using sSNOM to measure the optical properties of a sample, typically a nanometer-sized

probe, such as for example a sharply etched metal tip, is raster-scanned over the sample surface.

Here the tip acts as a scatterer that transforms near fields into far-field radiation that is finally

measured by a detector. The near field of a sample varies on much shorter length scales than the

far field. Because of that, the near field can on the one hand be used to extract information on

the optical sample properties on a nanometer-length scale; on the other hand, however, this also

makes the near fieldmore complicated to interpret: it is measured only by the indirect interaction

of a probe and the sample, and in addition, it is usually obscured by the slowly-varying far

fields.

In order to interpret the measured signal and to relate them to the optical properties of the

sample, a number of different models of the probe-sample interaction have been employed

in the recent years. Besides varying degrees of numerical effort and whether the models take

into account retardation effects, the different approaches can be classified by the number of

consecutive scattering processes they consider. Let us write the scattered field as a superposition

of fields originating from different scattering events in a simplified form [141, 142]:

~Escat =

∞∑
n=1

(T + S)n ~Einc (4.107)

Here, T and S represent single scattering events of the tip and the sample, respectively, acting on

the incident field ~Einc, and n denotes the scattering order (see Fig. 4.13). The exact formulation

of the scattering events will be performed in the following subsections, for several specific cases

chosen for illustration.

The first-order scattering events, T and S, do not contain any tip-sample interaction. They
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Figure 4.13: Scattering events after illuminating the tip. For simplicity side illumination is visualized,
the concept is analogous for illumination from the bottom.

represent a slowly varying contribution that is normally regarded as background. The same

holds for terms of the kind Tn, Sn that arise when considering scattering orders n > 1.

The first combination of scattering event giving rise to near-field contributions occurs, when

truncating the series in Eq. (4.107) after n = 2: TS and ST . For tip-sample distance much

smaller than the distance of either to the detector, these two sequences of scattering events yield

the same contribution [142]. This is one limiting case of the classification by the numbering of

scattering events, termed the weak tip regime [141, 142] or also the weak coupling regime

[143]. In this limit, evaluation of the measured signal is straight-forward, and the tip can simply

be used to image the sample near field. A typical example of the weak-tip limit case would

be the mapping of the near-field around a plasmonic nanoantenna by a weakly interacting

probe, i.e., a nanometer-sized dielectric probe, such as, for example, a single carbon nanotube

mounted on an AFM cantilever [143].

In most cases, however, the probe polarizability is of the same order or even larger than that of

the sample, and higher order interactions than n = 2 have to be considered. In the limit case of

a strong tip, or rather, in the strong interaction regime, the two dipoles interact very effectively.

The induced tip dipole then alters the field distribution of the sample, such that direct mapping

becomes impossible. The fields must be deduced from the measured signals. To achieve this,

often a priori knowledge of probe and sample is employed to reduce the complexity, or sophisti-

cated experimental setups are designed that, for example, limit the polarization directions of

incident and scattered light, thereby eliminating several elements of the polarizability tensors

[73, 142, 144].

In the cases investigated in this thesis, the probe was a sharply-etched metal taper with a

considerable polarizability. The samples ranged from layers of dye molecules, where delocalized

electrons in conjugated π-bonds give rise to a finite polarizability, to plasmonic antennae formed

by metal nanoparticles. In most of these cases, with the exception of nanostructures with a
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strong near field localization, the limit case of a weakly interacting tip is fulfilled, such that

interpretation of the measured signals makes a more detailed description of the tip-sample inter-

action necessary. In the following sections, some relevant models for the tip-sample interaction

are presented, in increasing order scattering events. I give some examples, where these models

were applied within this thesis. The first of these sections, 4.2.1, investigates the polarizability

of the gold nanotips that are used as the near-field probes. This section also introduces the

Green’s tensor, which allows calculating the field scattered by such a single dipole. Expanding

the model to a superposition of the fields originating from several, accordingly chosen dipoles

enables the representation of somewhat more complex nanostructures. In section 4.2.2 this is

employed to simulate near fields of a plasmonic nanoantenna and to compare them to FEM

simulations as well as to SNOM measurements of an antenna structure.

When such a tip is in close proximity to the surface of a planar, isotropic sample, the scattered

fields can be described efficiently by considering the excitation of an image dipole in the sample,

which is shown in section 4.2.3. In section 4.2.4, this model is expanded to also include

anisotropic samples. Finally, to be able to simulate the strong interaction of a metal nanotip

with an inhomogeneous and anisotropic sample, in section 4.2.4.1 a self-consistent solution of

the scattered field is derived.

εsample

2R

d

Einc

2R

d

εsample

A B C

Einc Einc

Figure 4.14: Visualization of different models to describe the tip. A:The tip dipole is described by a
single sphere of radiusR. B: An extension of the sphere model by using an elongated ellipse to describe
the tip dipole. C: A scattering model involving nanostructures.

4.2.1 Tip dipole and Green’s function

In a very simple picture, the sharply etched gold tip is sometimes modelled as a gold sphere

with the radius given by the apex radius of curvature of the actual taper (cmp Fig. 4.14).

When an electric field ~Einc is incident on a small metal sphere, the free electrons of the metal

respond to the force exerted by the field. If the size of the sphere is small compared to the
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wavelength of the incident light and also compared to the skin depth of the electromagnetic

field, the force experienced by the free electrons is homogeneous over the whole sphere. The

electrons are collectively displaced from their equilibrium position around the positively charged

lattice. This in turn creates a restoring force, which is proportional and in opposite direction to

the displacement. Hence the free electrons of the metal sphere perform a collective oscillation

termed a localized surface plasmon (LSP) [145–149]. Due to the electron oscillation, the metal

sphere attains a dipole moment as response to the incident electric field:

~psphere =
←→
α sphere ~Einc (4.108)

The polarizability
←→
α sphere of a homogeneous metal sphere has to be isotropic and can hence be

written as a scalar multiplied with the unit dyad
←→
I ,

←→
α sphere = αsphere

←→
I (4.109)

The spectral function of the amplitude of the polarizability is given by the dielectric function

of the sphere material, which is the tip material, εtip, and that of the surrounding material ε2.

Furthermore, the polarizability scales with the volume of the sphere, as long as the radius R

is much smaller than the wavelength of the exciting electromagnetic wave and the quasistatic

approximation holds:

αsphere = 4πε0ε2R
3 εtip − ε2
εtip + 2ε2

(4.110)

Fig. 4.15 shows as an example the polarizability of a gold sphere with RadiusR = 10 nm, which

corresponds to the radius of curvature typically achieved in our etching process, embedded in air

for which we set ε2 = 1. Such a tip should exhibit an LSP resonance when excited with light with

a wavelength around 500nm. In the near-infrared spectral range around 700nm-800nm that

is used for nano-spectroscopy within this thesis, the spectral function of the sphere polarizability

is rather flat, which makes such a small gold sphere a good near field probe.

The dipole formed by such a sphere was used to describe near-field optical measurements

successfully in several cases [151], but it was not able to quantitatively reproduce measurements

of coupling-induced frequency shifts of polariton resonances [76, 152], or of LSPs forming in

small particles [153]. Moreover, the model is also not applicable when the tip-sample distance

is below the tip diameter, as in this region an additional field confinement into gap-plasmons

takes place[154].

In fact, the real SNOM tip in the experiments is etched from a gold wire and is elongated

along z-direction. Hence, modeling the tip geometry by an ellipse rather than by a sphere is an

intuitive next step to address the mismatch in measurement and simulation (cmp. Fig. 4.14B).
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Figure 4.15: (A) Dielectric function of gold from measurements by Olmon et al. [150]. (B) Polarizability
of a sphere with R=10nm radius.

Following Mie scattering theory the polarizability of a an ellipse is expressed by [155–157]

αtip,z =
4

3
πRxRyRz

εtip − 1

1 +Dz(εAu − 1)
. (4.111)

Hereby, Rx,Ry and Rz describe the lengths of the half axes of the ellipsoid and Dj is the

depolarization factor that is given by

Dj =
1

2
RxRyRz

∫ ∞
0

ds

(s+R2
j )
√

(s+R2
x)(s+R2

y)(s+R2
z)

(4.112)

and is satisfying the condition Dx +Dy +Dz = 1.

When the tip is described by an ellipse we can further set Rx = Ry < Rz. Depending on the

ratio of Rz/Rx = Rz/Ry, the depolarization factor and hence the resonance condition in the

denominator of equation (4.111) will change. If Rx = Ry = Rz it follows Dx = Dy = Dz =

1/3 and the polarizability of a sphere is recovered. For larger ratios the factor Rz decreases and

the plasmon resonance will shift towards longer wavelength as is shown in figure 4.16A and B.

Depending on the tip shape the resonance can strongly influence spectral SNOM measurements

in the visible frequency range.

At the same time, the decreasing depolarization factor also indicates a considerably longer

lifetime of the plasmon, which leads to a narrowing that accompanies the red-shift of the

resonance. The longer lifetime of elliptical nanoparticles as compared to spheres is indeed a

very strong effect that was demonstrated experimentally in 2002 by Sönnichsen et al. [158].

Using such a modified resonance was a successful approach to calculate approach curves

that showed an improved agreement with experimental results [159]. However, an improved
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Figure 4.16: (A) Depolarization factor for different aspect ratios Rz/Rx that describe the elongation of
a spheroidal particle. (B) Corresponding resonances of the polarizability calculated by Mie theory.

agreement with this model was mostly tested for monochromatic measurements or for spectra

measurements in the infrared region. In contrast, our own spectrally resolved measurements in

the visible spectral range, which are presented throughout this thesis (e.g. Fig. 6.2), show a

much more spectrally flat response of sharply etched gold tapers as near-field probes, even in

the near-infrared spectral region. This does not match the narrow resonance expected from an

ellipse (Fig. 4.16B).

Furthermore, the broad spectral bandwidth of sharply etched gold tapers like the ones that

were used in this work is by now well established by a number of different experiments: In

recent years, these gold nanotips have received much attention as broad-bandwidth plasmonic

nanoantennae [98, 160, 161], and as emitters of ultra-short bunches of photoelectrons using

few-cycle laser pulses [162–165]. In the frame of this high interest in the broad-bandwidth

capability of gold nanotapers, their resonances have recently been investigated using electron

energy loss spectroscopy (EELS) [166–168]. EELS simulations indicate that the localized

plasmon at the taper apex supports a very wide bandwidth, ranging approximately from 620nm

nm to >1500nm, and has a very short lifetime of ≈ 1 fs [160]. With view on these recent

experiments and calculations, it seems much more reasonable to model the tip resonance onto

the EELS measurements rather than assuming an isolated ellipse.

The tip polarizability along the x and y direction is then still modelled by the polarizability of a

sphere with 10 nm radius: αtip,xx = αtip,yy = αsphere, but for the polarizability along the taper

axis we found that assuming a Lorentz oscillator, centered at about 800 nm and with a wide

bandwidth exceeding 200nm is a good match to experimental observations. This is similar to

the ansatz used successfully to explain similar earlier experiments performed in our group [93].
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Following the results from Esmann et al.[93], the tip z-polarizability reads:

αtip,zz = αtip,zz (ω, ω0, γ) = −|µtip|2
1

~

(
1

ω − ω0 + iγ
− 1

ω + ω0 + iγ

)
(4.113)

with the dipole moment µtip, and the center frequency and damping of the resonance ω0 , and

γ, respectively. Roughly following the EELS measurements we use ~ω0 = 1.55 eV for the center

frequency and we estimate the damping from the fast decay of the resonance of these tapers:

with the decay time T2 = 1 fs we obtain ~γ = ~/2T2 = 0.33 eV. The dipole moment is deter-

mined by calculating the field at the surface of the taper apex and then setting |µtip|2 to a value

such that the field enhancement at the surface reaches a value of f = | ~Esurf,x=y=0|/| ~Einc| = 7.

After we have introduced the polarizabiltiy of the sphere, we can now calculate the electric field

around a dipole that is excited by an incident field ~Einc.

In the following we will introduce the Green’s function formalism to perform such a calculation.

The Green’s function formalism will later enable us to explain coupling to structured samples

as well. Additionally, in 4.2.4 we will extend the description to anisotropic samples that are

part of this thesis.

In general, in electromagnetic theory the Green’s function acts as a propagator, i.e. the Green’s

function describes the field ~E at a position ~r due to a point-like dipole excitation with dipole

moment ~p at position ~r0 [140]:

~E(~r) = µ0ω
2
←→
G(~r, ~r0, ω)~p (4.114)

For electric fields the Greens function that solves the Helmholtz equation is already well known.

A derivation can be found in many optics textbooks [140] and reads

←→
G(~r, ~r0) =

[
←→
I +

1

k2
0

∇∇

]
G0(~r, ~r0) (4.115)

with the scalar Greens function

G0(~r, ~r0) =
ek0|~r−~r0|

4π|~r − ~r0|
. (4.116)

G0(~r, ~r0) represents a spherical wave propagating out of dipole position ~r0. In cartesian coordi-

nates Eq. (4.116) can be written as [169, 170]

←→
G(~r, ~r0)ij = −

(
←→
I ij +

←→
I ij

ik0|~R| − 1

k2
0|~R|2

+ ~Ri ~Rj
3− 3ik0|~R| − k2

0|~R|2

k2
0|~R|4

)
G0(~r, ~r0) (4.117)
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with ~R = ~r − ~r0.

Hence, knowledge of the Green’s function allows us to calculate the electric field ~E of a dipole

for every position in space following equation (4.114). As an example figure 4.17 shows the

electromagnetic field around the gold tip after applying equation (4.117). Hereby only one

dipole is used and is placed at a distance of around 13.3 nm away from apex surface along

the z-axis into the tip material. This way the spatial mode distribution is reproduced very

well compared to previous FEM simulations of such tip fields [96, 154]. Additionally, we

find that for the gold nanotip the amplitude of αtip,zz is around 10 times the amplitude of

αtip,xx = αtip,yy. Hence, the polarizability of the tip along z-direction is the dominant factor

of the tip polarizability tensor. Thus, for isotropic samples the coupling to the xy-component

can often be neglected as it is much weaker. However, for samples with a high coupling to

the xy-component, like anisotropic dyes, the interaction in all three components has to be

considered.
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Figure 4.17: (A) Absolute of the field |E| around the tip for a wavelength of 800 nm. (B) The corre-
sponding tip polarizability with a tip resonance centered around 800nm.

4.2.2 A nanorod-antenna: a nanostrcuture modelled as chains of dipoles

As the Green’s function is a linear operator the calculation for one dipole can easily be extended

to also describe the field from more complex structures. Such structures can be modelled by

assuming more than one dipole. As an example, in this section I show the reconstruction of

fields around a nanorod antenna.

In this way, we describe the nanostructure as a number of individual dipoles i = 1, 2, ..N , for

example arranged in a chain. The i-th dipole at position ~ri shall be described by the polarizability

tensor
←→
α i. The field that excites the i-th dipole is a superposition of the incident field at the
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dipole position, ~Einc(~ri) and the secondary fields of all the other dipoles:

~Eexc,i = ~Einc(~ri) + µ0ω
2
0

∑
j 6=i

←→
G(~ri, ~rj)

←→
α j ~Einc,j(~rj) (4.118)

Here,
←→
α j is the polarizability tensor of dipole j. Equation (4.118) is an implicit equation, but

it is also possible to express the excitation field ~Eexc,i at each dipole in terms of the incident

field. In order to do so, we can, in a first step, rewrite equation (4.118) to obtain

~Einc(~ri) =
∑
j

←→
Qi,j

~Einc,j(~rj) (4.119)

with

←→
Qi,j = δi,j − µ0ω

2(1− δi,j)
←→
G i,j

←→
α j (4.120)

←→
Q is a block-matrix, where each element

←→
Qi,j contains a 3x3 matrix. As long as the matrix

←→
Q

is known the resulting electromagnetic near- and far- fields can be calculated at any position ~r

in space by inverting this block matrix
←→
Q. Consequently, we find the expression of the field at

the ith dipole

~Eexc,i =
∑
j

(
←→
Q
−1

)i,j ~Einc(~rj) (4.121)

This ansatz can be used for any kind of nanostructures. In this thesis however, we are mostly

dealing with nanorods and nanorod antennas. Here, the spectral response of the system is

dominated by only one fundamental mode along the rod axis. In the case of a rod that is a

few tens of nanometer long, already the first higher excited longitudinal mode falls into the

UV spectral range. Moreover, an optical mode excited perpendicular to the rod axis, is much

weaker than the mode excited along the rod axis. Hence, in the case of the nanorod that is

modelled by a line of dipoles pointing along the rod x-axis, the polarzability tensor
←→
α i can be

reduced to only contain one nonzero component αi,xx.

In addition, for nanorods the above mentioned procedure can be further simplified, because the

nanorod can be modelled as a metallic wire of a length 2L capped by two half spheres with

radius R. The current density for the dipolar resonance inside such a metallic wire is known

analytically and reads [171]

j(x) ∝ cos

(
πx

2L+ 4R

)
for |x| 6 L+R, 0 otherwise. (4.122)
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Here, x is the coordinate along the rod axis, with x = 0 describing the center of the rod (cmp.

figure 4.18).
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Figure 4.18: Left: Visualization of a nanorod antenna and the specific dimension of each rod. Right:
The mode profile as expressed by the weight factor for one nanorod for 11 dipoles and L = 45 nm
and R = 5 nm.

As the currents are the source of dipolar fields we can relate the current density to a line density

of the polarizability j(ω, x) ∝ ρ(ω, x) = ρ0(ω) cos
(

πx
2L+4R

)
, which in fact relates to a dipole

moment ~p oriented along the rod axis [95].

This gives the spatial distribution of the polarizability. For the spectral function ρ0(ω) we use

that of an ellipse. As it was shown in the previous section the polarizability of an ellipse can be

obtained from Mie theory and the result was given in equation (4.111).

With a mixture of both approaches the nanorod can be fully described: the first ansatz is used

to calculate the fields around the nanorod, whereas the polarizability of an ellipse can be used

to define the spectral properties.

Finally, instead of defining the tensor
←→
Qi,j , we can directly imprint a phase relation between

the dipoles and define a weight factor for each dipole by

wi =
αi,xx(ω)

αxx,total(ω)
=

cos
(
(πxi)/(2L+ 4R)

)∑
i cos

(
(πxi)/(2L+ 4R)

) (4.123)

with
∑
wi = 1. Here, αxx,total(ω) is the totally integrated polarizability over the complete

structure along the rod axis. An example of the weight factor is given in figure 4.18 for a

nanorod of half length L = 45 nm and capped by a half sphere withR = 5 nm. The polarization

as a response to an electromagnetic field then results in

~pi(ω) =
←→
α (ω)

∑
j

wiwj ~Einc(~rj) =
←̃→
α ~Einc(~ri) (4.124)

←̃→
α is a non-local polarizability for the given mode of the nanorod structure. Conclusively, the
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field around the nanorod can be calculated by

~E(~r) = µ0ω
2
0

∑
i

←→
G(~r, ~ri)~pi (4.125)

100 0 100
x (nm)

100

0

100

y 
(n

m
)

|Ex|

100 0 100
x (nm)

100

0

100
y 

(n
m

)

|Ez|

100 0 100
x (nm)

100

0

100

y 
(n

m
)

|E|

100 0 100
x (nm)

100

0

100

y 
(n

m
)

|Ex|

100 0 100
x (nm)

100

0

100

y 
(n

m
)

|Ez|

100 0 100
x (nm)

100

0

100

y 
(n

m
)

A B C

D E F
|E|

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

Figure 4.19: Electric fields |Ex|, |Ez| and |E| of a nanorod antenna with nanorod dimensions of
90x60x30 nm in the xz plane with y = 0 calculated once by the Green’s function formalism (A-C) and
once by FEM calculations using the program Lumerical (D-F). The FEM calculations were performed
by V. Smirnov.

As a demonstration a 2D simulation of a nanorod antenna using 11 dipoles for each rod, a

Lorentzian resonance for the nanorod with ~ω = 1.55 eV, a linewidth of ~γ = 0.04 eV and

nanorod dimensions of L′ = 2 · 45 nm + 4 · 5 nm is shown in figure 4.19 together with FEM

calculations on the same structure. Hereby we used the same phase relation for each nanorod,

i.e. the weight factors wi for the two nanorods with each 11 dipoles are the same. The FEM

simulations were performed with the program Lumerical using a plane wave polarized along

the rod axis as an excitation field. Both calculations yield the same spatial field components

around the antenna structure and demonstrate how a relatively simple approach using the

Green’s function operator yields realistic results of the fields around a nano structure.

4.2.3 Tip above a planar, isotropic dielectric material

Up to now the tip polarizability
←→
α tip was introduced and the calculation of fields around

nanostructures within the Green’s formalism was shown. For nanostructures that have a much

larger polarizability than the tip, these calculations already resemble the result of a SNOM

measurement, because the tip just images the field of the structure. An example of such a

measurement can be found in chapter 5.1.

Now we want to analyze the situation where both the tip as well as the sample are polarizable,

but this time the tip polarization is comparable to or exceeding that of the sample. This will

result in an interaction between tip and sample and the term TST in equation (4.107) with
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n = 3 becomes dominant. The description that follows is well known as the image dipole model

[15], which was commonly used in the nano-imaging research area over the recent years.

In the image dipole model, the tip is assumed as a sphere with isotropic polarizability. It is

positioned above a planar, isotropic dielectric material. As both, the tip and sample are isotropic,

it is sufficient to take into account one component of the electric field and the corresponding

element of the polarizability tensor. In the next section of this chapter, I will present the

extension towards anisotropic materials, where the full vectorial fields will be considered.

The idea of the image dipole model is sketched in figure 4.20.
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Figure 4.20: Visualization of the image dipole

model.

Hereby, only the apex of the tip is considered

to play a role in the scattering process. The

tip apex is modelled as a polarizable metallic

sphere with radius R in some distance d to

the sample surface. The sample in this model

is modelled as a half-space with constant ma-

terial contrast expressed by the dielectric func-

tion εsample.

Let’s assume an incident field polarized along

the taper axis in the z-direction: ~Einc =

Eincẑ. This incident field now induces a

dipole in the tip along the z-direction:

~ptip = αtip,zzEincẑ = ptipẑ (4.126)

The electric field emitted by the tip dipole is

now inducing an image dipole, oriented along

ẑ, and located at a distance D = d+ z0 below the interface, or at a distance 2D from the tip

dipole. Here, d is the tip-sample distance, z0 is the distance between the tip dipole and the tip

surface at the apex (see Fig. 4.20). The dipole moment of the image dipole is given by

pID = βptip =
εsample − 1

εsample + 1
ptip. (4.127)

In the case of an electric field polarized along the tip axis and by using the approximation that

the phase delay between the two dipoles can be neglected (electrostatic limit) we can write the

field of the image dipole at the position of the tip as

EID(~rtip) =
pID

2πε0(2D)3
(4.128)

This image dipole is now furthermore enhancing the field at the tip which means the local

electric field at the tip dipole is a superposition of the incident field Einc and the field from the
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Figure 4.21: (A) The factor β = (εAu−1)/(εAu+1) for a gold surface. (B) The tip polarizability αtip,xx
modeled by a gold sphere with 10 nm diameter. (C) The effective polarizability for polarization parallel
to the surface. (D) The tip polarizability αtip,zz modelled by a spectrally broad Lorentzian centered
around 800nm for a field enhancement at the tip apex of around 7. (E) The effective polarizability
αeff,zz for polarization parallel to the tip axis.

image dipole EID. In total we can write the dipole moment of the tip as

p = αtip

(
Einc +

pID
16πε0D3

)
=

αtip

1− αtipβ
16πε0D3

Einc. (4.129)

The total fields scattered to the detector is a superposition of the tip dipole and the image dipole

fields. This allows us to define an effective polarizability of the tip-sample system by [15]

αeff =
αtip

1− αtipβ
16πε0D3

. (4.130)

Analogous we find for an incident field polarized perpendicular to the taper axis (e.g. ~Einc =

Eincx̂) the condition

αeff,xy =
αtip

1− αtipβ
32πε0D3

. (4.131)

Exemplary calculations of β, αtip and αeff for a gold tip over a gold surface are shown in Fig.

4.21 for both polarization parallel and perpendicular to the tip axis. Hereby, the factor β in
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Figure 4.22: αeff,zz for a gold tip approached to a gold surface, whereas the tip polarizability is
modelled by a Lorentzian oscillator. Shown are calculations as a function of tip-sample-distance d and
wavelength λ for different field enhancement (FE) factors.

Fig.4.21A shows a resonance around 500 nm. For longer wavelengths within our measurement

range, the real part is slightly monotonous decreasing and the imaginary part is almost 0. β

is only dependent on the dielectric function of gold and as the considerations using a Green’s

formalism in the next section will show, β can be understood as a reflection coefficient for the

evanescent waves reflected at the surface.

Following the previous analysis of the tip dipole, the tip polarizability for the in-plane component

αtip,xx is modeled here again by a gold sphere with 10 nm radius shown in Fig. 4.21B. We again

observe the typical resonance for a small sphere around 500nm that was already found in Fig.

4.16. For longer wavelengths the polarizability for the sphere does not show any resonances

and for a typical spectral range between 700nm and 900nm, that is supported by our laser

system, the polarizability can be approximated as a constant with almost negligible imaginary

part.

Fig. 4.21C shows the effective polarizability for the tip polarizability αtip,xx for two tip-sample

distances of 3 nm and 30 nm. As was expected in this case the effective polarizability shares the

spectral shape of the tip polarizability and is decreasing in amplitude with larger tip-sample

distances. Thus, in this case and in our wavelength range, we expect the effective polarizability

to carry the spectral information of the sample if we only have a coupling to the x-component



4.2. TIP-SAMPLE INTERACTION IN APERTURELESS SNOM SPECTROSCOPY 91

of the tip.

This is different in the case of the polarizability assumed for the the z-component αtip,zz that

is shown in Fig. 4.21D. Here, we introduced a broad Lorentzian-shaped resonance centered

around 800nm. The amplitude of the polarizability was set such that the field amplitude

at the tip apex position is enhanced by a factor of around 7. The field at the tip apex was

calculated with the Greens function formalism and the tip was modeled by one dipole positioned

around z0 =13.3 nm away from the apex (cmp. Fig. 4.20), because this matches experimental

observations from our own group [172]. The effective polarizability considering only coupling

to the z-component of the field and hence a polarizability parallel to the tip axis is shown in

Fig. 4.21E for the same two tip-sample distances of 3 nm and 30 nm. Clearly, we can observe a

spectral shift towards longer wavelengths as well as an increase in amplitude with decreasing

tip-sample distance.

This spectral shift highly depends on the field enhancement at the tip apex, the tip sample

distance and the value of β. This is demonstrated in Figure 4.22 by plotting the real, imaginary

and absolute value of the same effective polarizability from Fig. 4.21E, but this time for 3

different field enhancement factors FE=3, FeE=7 and FE=15 depending on the wavelength as

well as on the tip-sample distance.

Depending on the etching process and the geometrical shape of the tip apex, the field enhance-

ment factor can vary in tip production. Clearly, we can observe a strong shift towards longer

wavelengths and a broadening of the resonance only for small tip-sample distances, whereas for

larger distances the effective polarizability reflects that of the tip polarizability. This effect is

increased for higher field enhancement factors. In fact, in these cases the factor αtip,zzβ
16πε0R3 is close

to one and hence the denominator of αeff is close to 0. For small field enhancement factors or

large tip sample distances we can approximate αeff by a Taylor series around αtip,zz:

αeff,zz ≈ αtip,zz +
α2
tip,zzβ

16πε0D3
+

α3
tip,zzβ

2

(16πε0D3)2
+ ... (4.132)

Here, the first term describes the polarizability of the tip alone. The second term describes one

reflection, where the field from the tip is reflected at the surface and is acting back on the tip.

Higher order terms then account for multiple reflections.

This mirrors the findings of using the Green’s function formalism that will be shown in the next

section. There, I demonstrate that the effective polarizability can be derived by the Greens

function formalism in a self-consistent solutions by taking into account multiple reflections

between tip and sample. A similar view on the vectorial near-field coupling was recently shown

for a SNOM measurement on a nanorod where the interaction was described by a perturbation

series of multiple tip–sample scattering orders[93]. Also note, that in equation (4.132) the

tip-sample distance term in the denominator is increasing for multiple reflections. Already for

two reflections the distance dependency is proportional to 1/D6. Hence, for large tip-sample



92 CHAPTER 4. THEORETICAL BACKGROUND

distances multiple reflections are negligible and don’t affect the effecitve polarizability. Only

for small distances multiple reflections can have a noticeable effect. As Fig. 4.22 shows, in this

case it highly depends on the field enhancement factor (and on the sample properties entering

in β) if we can observe the spectral shifts of the resonances.
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Figure 4.23: (A) Amplitude of the Lorentzian tip resonance as a function of field enhancement factor.
(B) The factor αtip,zzβ

16π(rtip+d)3
as a function of field enhancement factor. The tip radius rtip was assumed

to be 10 nm.

An estimation about how critical this spectral response depends on the tip-sample distance and

the field enhancement factor is done by plotting the factor αtip,zzβ
16πz3

0
in figure 4.23. Obviously, only

for small field enhancement factors (1-5) and large tip-sample distances (at least d > 5 nm) the

factor in the denominator is small and no strong spectral shifts are expected. Otherwise, spectral

shifts with decreasing tip-sample distance are expected and must be taken into considerations.

If the factor αtipβ = 16πε0D
3 is close to 1 in the denominator of eq. (4.129), this can also

considered as a localized surface exciton polariton [173] that will be excited. The existence of

such surface exciton polaritons has been shown experimentally e.g. by Schneider et al. [174]

and Kehr et al. [175] in the mid-infrared region for wavelengths around 10-25µm.

Consequently, the spectral response of the tip-sample system highly depends on the tip polar-

izability amplitude (defined by the tip shape and the field enhancement), as well as on the

sample dielectric function β and the tip-sample distance and has to be considered in the data

evaluation. In the case of a gold tip with 10nm radius a field enhancement factor of up to

FE=7 is feasible [15, 151, 157, 176]. In our experiments however, we never observed a shift

of a resonance for small distances. Thus, most of the SNOM tips used in this work probably

have either a lower field enhancement, or the tip size was bigger than 10 nm, or the tip-sample

distance was larger than assumed.
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4.2.4 SNOM tip above an anisotropic dielectric material

Figure 4.24: Visualization of the tip dipole over a sample surface. The dipole of the tip is located at ~r0,
whereas the field from this dipole can be calcuated at every postion ~r.

In a last step, we want to expand the description of the fields from SNOM tip above a isotropic

material to also be applicable to anisotropic samples. In this case, the image dipole model does

not hold anymore, because the sample’s dielectric function cannot be modelled by a single

constant β, but rather has a different dielectric constant for each direction x,y,z. Consequently,

we will use the Green’s function method to calculate the scattered field of the tip-sample system

in all directions and for arbitrary samples with different dielectric functions. As an outcome we

will learn, that the previously introduced coupling dipole model for isotropic dielectric materials

can be reproduced by the more complete Green’s function approach using specific assumptions

and simplifications. Moreover, in the end of this section we will provide an analytically derived

pendant to the measured intensity signal of the SNOM, such that measured SNOM signals can

directly be compared with a simulation.

From now on, the fundamental equation we are going to use for modeling the tip sample

interaction is eq. (4.114), ~E(~r) = µ0ω
2
←→
G(~r, ~r0, ω)~p, which connects the Green’s function with

the dipole moment and hence the electric field. The coordinate system and the geometry we are

going to use for the following description is visualized in in figure 4.24. In the simplest case we

can now describe our tip as a dipole near a planar interface. For a dipole with dipole moment ~p

at position ~r0 = (x0, y0, z0) near a planar interface the solution for the Greens function can be

written in terms of an s-polarized and a p-polarized part as [140]

←→
G0(~r, ~r0) =

i

8π2

∞x

−∞
[
←→
M

s

+
←→
M

p

] ei[kx(x−x0)+ky(y−y0)+kz |z−z0|]dkxdky (4.133)
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with

←→
M

s

=
1

kz(k2
x + k2

y)

 k2
y −kxky 0

−kxky k2
x 0

0 0 0

 (4.134)

and

←→
M

p

=
1

k2(k2
x + k2

y)

 k2
xkz kxkykz ∓kx(k2

x + k2
y)

kxkykz k2
ykz ∓ky(k2

x + k2
y)

∓kx(k2
x + k2

y) ∓ky(k2
x + k2

y) (k2
x + k2

y)
2/kz

 . (4.135)

Here, the inhomogeneous Helmholtz equation and the representation of the dipole’s vector

potential with an integration in k-space were used. The latter is also known as the Weyl decom-

position or Weyl identity [140]. These equations define the angular spectrum representation of

the Greens function for a dipole located at position ~r0 in space. The ∓ sign either denotes a

solution for z > z0 (-) or z < z0 (+) with z0 the z-distance of the dipole from the surface. In

the next step the fields emitted from the tip dipole are reflected at the interface. The effective

field at the tip dipole can be described as the superposition of the field at the tip and the field

emitted by the tip dipole which is reflected at the surface and propagates back to the tip dipole.

This process can also happen multiple times resulting in multiple reflections between tip and

sample. In first approximation considering just one reflection, we can write this as

~E = ω2µ0µ1[
←→
G0(~r, ~r0) +

←→
GR(~r, ~r0)]~p (4.136)

with the Greens function of the reflected field
←→
GR(~r, ~r0). As we want to evaluate the field at

the tip position we do not have any change in x and y direction so that we can set ~r = ~r0. The

reflected Greens function is then described by [140]:

←→
GR(~r0, ~r0) =

i

8π2

∞x

−∞
[rs(kx, ky)

←→
M

s

r − rp(kx, ky)
←→
M

p

r ] e
i2kzz0dkxdky (4.137)

with
←→
M

s

r =
←→
M

s

and

←→
M

p

r =
1

k2(k2
x + k2

y)

 k2
xkz kxkykz kx(k2

x + k2
y)

kxkykz k2
ykz ky(k

2
x + k2

y)

−kx(k2
x + k2

y) −ky(k2
x + k2

y) −(k2
x + k2

y)
2/kz

 . (4.138)

It is important to note thatwe have an integration over all k-vectors. This also includes evanescent

waves with kx, ky > kmax = k ·NA. As a consequence the sample properties enter mainly in
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Figure 4.25: Simulated reflection coefficients rp and rs for a gold layer (A) as well as for an anisotropic
medium (B) and (C) as a function of kx/(kNA). In (B) and (C) simulations on both a multilayer
structure as well as on a single interface are plotted.

the complex reflection coefficients rp and rs. These are defined by the Fresnel coefficients for

anisotropic or isotropic media that are calculated from the dielectric functions of both materials

at the air/medium interface. For a multilayer system rp and rs can be calculated by transfer

matrix calculations.

Figure 4.25 shows an exemplary calculation of the reflection coefficients, once for a gold-coated

glass substrate and once for an anisotropic thin dye film on top of a multilayer system of 180µm

glass, 20 nm gold and 107nm glass, used in later chapters (cmp. figure 4.26 for a visulaization).

The exact dielectric function of the in-plane component εo and the z component εz = εe used

for this simulation is of no particular interest for the following discussion, but can be found in

chapter 6.3 that deals with the local SNOM spectra of an anisotropic squaraine dye material.

As the simulation results plotted in figure 4.25 clearly point out, both reflection coefficients rp
and rs are constant for large kx values. Comparison of the multilayer structure with a single

air/medium interface further shows a difference only in the part around kx = −10kmax to

kx = +10kmax, which means the multilayer structure contributes mainly to the propagating

k-vectors resulting in different phase changes. For high values of kx only the last layer plays a

role. This is plausible as the amplitude of evanescent waves is decaying exponentially at the

interface.

Further, we can infer from figure 4.25 that the s-polarized reflection coefficient is going to zero

for large k values. Moreover, when considering a tip with its axis positioned parallel to the

surface normal, we consider mainly a contribution from the dipole in z-direction. As only the

p-polarized component contributes to the z-component of the electric field, we can conclude a

contribution of the tip-sample interaction signal from the p-polarized reflection coefficient only.

The reflection coefficient rp can further be expressed as a function of kx and ky that can be

found in many textbooks. For an interface between two isotropic media with refractive index
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n1 and n2 this reads

rp(k‖) =

1− (n1/n2)2

√
(n2k0)2−k2

‖
(n1k0)2−k2

‖

1 + (n1/n2)2

√
(n2k0)2−k‖
(n1k0)2−k2

‖

(4.139)

with k‖ =
√
k2
x + k2

y the in-plane k-component. Evaluating this for large values k‖ � kmax the

kz component becomes the imaginary part of the in-plane k component, kz =
√

(n2k0)2 − k2
‖ ≈

ik‖, and the reflection coefficient simplifies to

rp(k‖ →∞) =
n2

2 − n2
1

n2
2 + n2

1

=
ε2 − ε1
ε2 + ε1

. (4.140)

This is the same sample dependent factor β as defined in equation (4.127) in the image dipole

coupling model from Keilmann and Knoll [15] discussed in the previous section. Conclusively,

this derivation shows that the factor β in the image dipole model describes the reflection of the

evanescent waves at the sample surface. For anisotropic samples the factor β = rp(k‖ →∞)

will be different, because the refractive indices n1 and n2 then also depend on k‖. A solution to

this problem will be covered in the following section.

4.2.4.1 Tip-sample interaction in a self-consistent solution

To calculate the electric fields from the tip-sample interaction ~E = ω2µ0µ1[
←→
G0(~r, ~r0) +

←→
GR(~r, ~r0)]~p, the dipole moment ~p has to be defined as well. We already know the dipole

moment vector is proportional to the polarizability tensor
←→
α given as ~p =

←→
α ~E. For the SNOM

tip this tensor is characterized by

←→
α =

αxy 0 0

0 αxy 0

0 0 αz

 (4.141)

whereas αxy is typically small compared to αz for a tip with its axis normal to the sample surface.

Further, for a tilted tip with respect to the sample surface, also the off-diagonal elements of the

tensor have to be considered. As mentioned before, the electric field at the dipole position is

now given by the superposition of the field incident on the dipole ~Einc and the field generated

by the dipole and reflected off the sample, ~ER. Hence, in total we have

~p =
←→
α ~E (4.142)

=
←→
α ( ~Einc + ~ER) (4.143)
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Figure 4.26: Visualization of a SNOM tip over the layered system with an anisotorpic medium as the
last layer and for a gold-coated glass substrate.

=
←→
α ( ~Einc + ω2µ0µ1

←→
GR~p) (4.144)

Solving for ~p gives us a self-consistent solution for the dipole moment that includes all multiple

reflections between tip and sample:

~p =

←→
α

←→
I − ω2µ0µ1

←→
α
←→
GR

~Einc =

←→
α

←→
I − (k2/ε0)

←→
α
←→
GR

~Einc (4.145)

This result looks very familiar to the dipole moment defined in the coupling dipole model in

equation (4.129). In fact we can now directly derive the previous model.

Under the assumption that the propagating k-vectors do not contribute to the overall signal

the coefficient rp = β is independent of kx and ky and can be taken out of the integral of the

Greens function
←→
GR so that we have

~p =

←→
α

←→
I − (k2/ε0)β

←→
α
←→
G′R

~Einc (4.146)

The coupling dipole model further assumes a field in z-direction so that only the z-component

of the dipole moment pz is considered. This is equivalent of evaluating (
←→
G′R)zz:

(
←→
G′R)zz =

i

8π2

∞x

−∞

(k2
x + k2

y)
2

k2kz(k2
x + k2

y)
ei2kzz0dkxdky (4.147)

Using the definition for the in-plane component k‖ =
√
k2
x + k2

y the double integration simplifies
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to an integration over ring segments with radius k‖:

(
←→
G′R)zz =

i

8π2k2

∫ ∞
0

k4
‖

kzk2
‖
ei2kzz02πk‖dk‖ (4.148)

Since we are neglecting the k-vectors of the propagating waves we can again set kz = ik‖ and

we get

(
←→
G′R)zz =

1

4πk2

∞x

0

k2
‖e
−2k‖z0dk‖ =

1

4πk2

2!

(2z0)2
=

1

16πz3
0k

2
(4.149)

The factor k2 cancels out and we are left with the exact same equation (4.129) previously used

in the coupled image dipole model

pz =
αtip,zz

1− αtip,zzβ

16πε0z3
0

Einc,z (4.150)

This is an important result and directly shows how powerful the Green’s function formalism can

be. We can infer that the coupled image dipole model is the simplified result of the complete

description, when a few approximations and assumptions are made, such as only considering

the field in z direction (or separately only x direction) and neglecting the propagating waves.

In contrast to the simple model, the Green’s function approach can be widely adjusted and can

simulate a more complete system. For instance, in the coupled dipole model either a field in

z direction excites the tip dipole oriented along z-direction or a field polarized in x-direction

excites the dipole in the xy-plane. For our model the polarizability of the tip dipole is clearly

defined by a tensor, such that we can simulate directly the total response to a given input field.

Also a tilted tip could easily be accounted for by using a polarizability tensor with nonzero

components on the non-diagonal entries.

Additionally, it is now straightforward to include anisotropic materials into our model. As β

defines the reflection coefficient rp for evanescent waves we can define the incident angle θi by

θi = arcsin


√
k2
x + k2

y

k2
0

 (4.151)

which will become imaginary for large kx,ky values. The angle could then be used in our previ-

ously derived equation for the reflection coefficient for anisotropic media (compare equations

(4.79)). Another way is to express the reflection coefficient in terms of (kx, ky) values and solve

the electrostatic image method for an anisotropic half space. An extensive derivation for such a

model was published by Lindell et al [177] and applied to sSNOM by Schneider et al. [178]. It
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could be shown that the factor β can be written as

β =

√
εeεo − 1
√
εeεo + 1

. (4.152)

Hence, by using anisotropic media, the SNOM tip is probing the geometrical mean of the

ordinary and extraordinary refractive index. This is also intuitively clear as for large k-values

the z component of the k-vector kz is equal to the imaginary part of the in-plane component k‖,

thus they have the same amplitude.

4.2.4.2 The measured intensity signal

In the previous section we have derived the vectorial electric fields after being focused through a

layered system including anisotropic thin films. These fields then excite the SNOM tip dipole and

the interaction between tip and sample was deduced in a complete Greens function approach.

To understand or predict measurement results, we are interested in a simulation of the intensity

signal that is measured by the sSNOM in back-reflection geometry. This means, in a last step,

the fields from the tip-sample interaction propagate through the sample once more and interfere

with the field ~ER, reflected from the sample side pointing towards the microscope objective. To

keep it simple, we further assume higher order demodulation is applied and contributions from

a background field are negligible.

The field ~E directly after going through the sample of thickness d is then given by

~E = ω2µ0µ1

←→
Gt(x0n̂x + y0n̂y + dn̂z, ~r0)~p (4.153)

with the Greens function for transmission

←→
Gt(x0n̂x + y0n̂y + dn̂z, ~r0) =

i

8π2

x

k2
x+k2

y<k
2

[ts(kx, ky)
←→
M

s

t + tp(kx, ky)
←→
M

p

t ] e
ikzz0dkxdky

(4.154)

and
←→
M

s

t =
←→
M

s

and
←→
M

p

t =
←→
M

p

using + sign for the lower half-space. The integration is in this

case limited to only propagating wave vectors that are seen by the microscope objective. tp and

ts are the complex transmission coefficients that are in general calculated by transfer matrix

method and were already used to calculate the focus fields.

The field after propagation through the layers for each k-vector is given by equation (4.153):

~Et(kx, ky) = k2
←→
Gt(~r, ~r0)~p (4.155)

Finally, the measured SNOM intensity signal of the near-field can lastly be expressed as the
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interference of the scattered and transmitted field ~Et and the reflected field from the sample

surface ~ER

I ∝

∣∣∣∣∣∣∣∣Re

 x

k2
x+k2

y≤k2

ER(kx, ky)
∗Et(kx, ky)dkxdky


∣∣∣∣∣∣∣∣ (4.156)

Hereby, we again assume higher order demodulation, in which case terms like E2
R or E2

t do

not contribute to the measurement signal. Equation (4.156) concludes the full simulation of

measured SNOM signals. Moreover, all equations derived so far are dependent on the wavelength,

such that a spectral representation of the focus field at a given position is straightforward. An

extensive discussion of the wavelength dependent focus fields can be found in chapter 6.



In-line interferometer 5
In this section we will introduce a new way of spectrally broad-band enhancing of the near-field

signals by the use of an in-line interferometer. The interferometer consists of a glass substrate

with a thin layer of gold coated on top and finally another layer of evaporated SiO2 (cmp.

Fig. 5.1). By measuring and evaluating SNOM approach curves for three different substrates,

demodulated at multiple harmonics of the tip oscillation frequency, we show that the in-line

interferometer indeed is needed as a replacement of a normal glass substrate in order to make

meaningful conclusions from SNOM measurements. 1

Figure 5.1: Visualization of a SNOM tip over the in-line interferometer, consisting of a glass-gold-glass
layer system.

1Parts of this chapter are taken from the peer-reviewed publication "‘Brauer, J., Zhan, J., Chimeh, A., Korte, A.,
Lienau, C., & Gross, P. (2017). In-line interferometer for broadband near-field scanning optical spectroscopy. Optics
Express, 25(13), 15504"’. My part was the planning of the experiment, measurement of the data, literature research,
setting up the equations as well as simulating and plotting of the results. The paper is attached in appendix D.
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5.1 Introduction: Spatial near-fields of a single bowtie antenna

The near-field signal that is scattered by the SNOM tip has in general a very small power

compared to any background-fields and has to be enhanced by a suitable detection scheme

as outlined in chapter 2.2. The amount of the scattered near-field signal and the signal to

background ratio however also highly depends on the near-field generated by the sample itself.

To demonstrate this, firstly I explore plasmonic structures resonant with the exciting laser

wavelength, that themselves already generate a high near-field.
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Figure 5.2: (A)Bowtie SEM image, (B) Bowtie AFM image (C) bowtie optical image for both parallel
(top) and vertical (bottom) polarization, (D) approach curve inside and outside the gap including
simulation results

As one example for such a structure I investigate nano antennas that are composed of a metal

material like silver or gold placed on top of a glass or dielectric substrate. In the simplest case

nano antennas consist of two parts that are brought close together spanning a gap of only a few

nanometers. The antenna dimensions and the gap size define the resonance frequency and the

near-field enhancement factor. The shape of these two parts can be different: Commonly studied
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antennas are rod antennas consisting of two nano wires and bowtie antennas with two triangles

facing each other. More complex antennas, like Yagi-Uda nano antennas, can be constructed as

well and have been used because of their very good directivity [179], recently demonstrated by

measuring the unidirectional emission of a single emitter coupled to a nanofabricated Yagi-Uda

antenna [180]. The resulting quantum dot luminescence in that experiment was strongly

polarized and highly directed into a narrow forward angular cone which could be tuned by the

dimension of the antenna.

The general function of these nano antennas is similar to that of normal FM/AM antennas that

we can find in our everyday life. In both cases an incoming wave interacts with the antenna

and an outgoing field is emitted by the antenna. In the simplest case this is a Hertz dipole.

Depending on the antenna shape this emission can be in a specified direction and an antenna

gain can be achieved.

For optical antennas however there is one fundamental difference to wire antennas in the radio

frequency (RF) range. In contrast to almost perfectly conducting wires in the RF range for

infrared or optical frequencies the dielectric function of metals has a negative real part and

a nonzero imaginary part. As a consequence localized plasmons form at the metal-dielectric

interface with little penetration into the metal or the embedding dielectric media [181]. Due to

the finite electron density this results in a delay between the driving field and the electronic

response and consequently the electrons in the metal do not respond to the wavelength λ but

to an effectively shorter wavelength λeff [182].

Finite Difference Time Domain (FDTD) simulations on nano antennas [179] as well as mea-

surements [8] demonstrated very high near-field enhancement factors of up to a few hundreds

of the amplitude of the emitted field with respect to the incoming field.

In the following we will have a look at the SNOM approach curve on a gold nano bowtie antenna

of around 30 nm height. The antennas were produced by H. Kollmann by cutting the structure

out of a gold film with a focused gallium ion beam. Then, a focused helium ion beam was used

to produce the few-nanometer gap between the two antenna elements. Helium ions have a

much smaller mass than gallium ions and have a smaller interaction volume [183], thus allowing

for a considerable reduction of gap size and therefore increased near-field enhancement and

polarization contrast [8].

Figure 5.2 shows a scanning electron microscopy (SEM) image and the AFM topography of

the used bowtie antenna. A SNOM scan was recorded with p- and s-polarized light, indicated

as the electric field direction by the white arrows in figure 5.2C. It can be seen that only with

p-polarized light we excite the antenna resonant with a field enhancement inside the gap. With

s-polarized light we excite another mode of the antenna, enhancing the intensity at the edges

of the antenna. The enhancement of this mode is much weaker than that of the gap mode by

using p-polarized light. This was expected as we have a high spatial confinement of the local

plasmons in the gap in the sharp tip geometry and an electrodynamic coupling between the
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two antenna parts [184].

Finally, figure 5.2D presents the approach curves in the antenna gap. Hereby, the blue curve

shows the approach curve of the intensity signal demodulated at the modulation frequency

(S1f ), whereas the green curve shows the same measurement for a demodulation frequency

of twice the modulation frequency (S2f ). The red curve is a measurement of the S1f signal

outside the gap, but still on the antenna.

Clearly, outside the gap the S1f signal is mainly determined by a distance-dependent sinusoidal

interference pattern that can be attributed to the interference of the background field with the

reference field. Inside the gap however, we can observe a strongly enhanced near-field for small

distances in the S1f signal, manifesting in a significant exponential increase. The short range

exponential increase at small tip-sample distances can be attributed to the evanescent behavior

of the near-field. At the same time we can still observe long-ranging background interference

pattern. Demodulation at the second harmonic of the tip frequency already shows a nearly

background-free approach curve in the gap. Outside the gap such an exponential decay with

increasing distance is not clearly distinguishable at all, indicating a much lower near-field signal

to background-field ratio.

The results nicely demonstrate the strong near-field enhancement properties of the antenna

which make them very interesting for studying strong coupling behavior of coupled systems.

In the scope of this thesis however, the goal is to investigate and understand local spectra on

a new dye material and to study these spectra on an area much larger than the gap size of

the antenna. Hence, we have a sample on top of a non resonant substrate material. As we

can easily conclude already from the measurement outside the antenna gap, for these kind of

non resonant materials the near-field to background-field ratio has to be increased in order to

extract useful near-field information. This could be done e.g. by higher harmonic demodulation

and by enhancing the reflected field of the sample substrate.

As we will show in the following, an in-line interferometer is able to fulfill this task and will allow

to measure near-field signals on various samples without being restricted to a high near-field

from the sample itself.

5.2 Approach curve measurements

In the following we record signals S0f to S4f with the setup as described in chapter 3.1 as

a function of the distance between tip and sample. To control the tip-sample distance the

z-position of the sample is adjusted by the piezo stage. The approach is stopped when the

tuning fork oscillation amplitude is reduced by 5%, which we take as the point of contact or

zero distance. We record such approach curves for the three mentioned substrates, namely for a

quartz surface covered with a semitransparent (20 nm thick) gold film, for an uncoated quartz
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Figure 5.3: Visualization of the three substrates that were investigated: A quartz glass substrate, a gold
coated quartz substrate and the in-line interferometer consisting of an additional glass layer on top of
the gold coated quartz substrate.

surface, and for a quartz surface covered with a 200nm thick SiO2 film on top of the 20 nm

thick semitransparent gold film (cmp. figure 5.3).

Figures 5.4A and 5.4B show the optical signals when the sample with the semi-transparent gold

film is approached to the tip. Upon approach, the unmodulated signal S0f , which is measured

using a standard silicon photodiode and without lock-in detection, displays a weak modulation

with a period of ~390 nm, corresponding to half the wavelength of the excitation laser (see

the red fit curve of a sinusoidal function on top of a linear function, plotted together with

the experimentally measured black curves in Fig. 5.4A). This modulation is a result of the

interference of the light reflected from the tip shaft, ~EB , and from the gold-coated surface of the

substrate facing the tip, ~ER. This modulation is weak, because the electric field strength of ~EB
is only a small fraction of that of ~ER. Furthermore, ~ER decreases steadily as the reflecting gold

surface is moved out of the laser focus, causing the constant slope underneath the modulation.

As expected, a near-field contribution cannot be discerned in the DC optical signal.

The experiment is repeated with the APD and lock-in detector, and the demodulated signals

S1f to S4f are recorded as a function of tip-sample distance. Figure 5.4B shows the amplitude

of the lock-in-detector signal during the approach at the respective demodulation frequency, for

the gold-coated sample. The optical signal demodulated at the fundamental tip modulation

frequency, S1f (blue curve in Fig. 5.4B), still shows a strong modulation for both samples, now

at a period of a quarter wavelength due to plotting the amplitude of the lock-in signal. The

optical signal demodulated at the second harmonic, S2f (not shown in Fig. 5.4 for the sake

of clarity), shows a similar behavior and has an amplitude comparable to that of S1f . When

demodulating at the third harmonic, however, S3f (green curve) still shows some modulation,

but the amplitude is reduced by roughly a factor 4. Finally, demodulating at the fourth harmonic

(red curve), the amplitude of S4f is not above noise level.

In close vicinity to the gold surface (compare the steep decrease of the tuning fork amplitude,

i. e., the black curve in the inset in Fig. 5.4B), a weak deviation from the sinusoidal curve by less

than 15% is discernible on the first-harmonic optical signal S1f , and there is a clear near-field
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the left hand graphs) and S1f , S3f , and S4f (blue, green and red curves, respectively, in the right hand
graphs) recorded during the approach of the three different substrates towards the gold nanotip. A, B:
Approach of a gold-coated quartz microscope slide to the nanotip. A, The DC signal S0f is weakly
modulated and B, there is a strong near-field signal when the gold surface is in close proximity to the
tip. The inset shows the tuning fork amplitude; the point of contact is defined as the position when
the tuning fork amplitude is decreased by 5%. C, D: Approach of an uncoated quartz substrate to the
nanotip. C, The DC signal is strongly modulated, and D, the near-field signal is very weak on the glass
surface. E, F: Approach of the in-line interferometer to the gold tip, i. e., a quartz surface covered
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signal is moderately modulated, and F, when bringing the glass surface in close proximity to the tip, a
near-field contribution is clearly visible. The in-line interferometer enables homodyne measurement of
a weak near-field signal, such as on a glass surface in vicinity to a gold nanotip.
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contribution apparent of both S3f andS4f . The near-field signal resembles a strong exponential

signal increase with a 1/e-decay length of 8 nm. On the fourth-harmonic optical signal, S4f ,

this near-field signal strength is more than 20 times above the noise level. Such a near-field

enhancement is similar to what has been observed in earlier work and what is expected from

the interaction of a gold tip and a gold surface [50, 151]

For comparison, the measurements of the optical signals S0f and S1f − S4f are repeated with

the uncoated quartz substrate and are shown in Figs. 5.4C and 5.4D, respectively. The DC

signal S0f for the uncoated quartz microscope slide is much stronger modulated than in the

case of the gold-coated sample (Fig. 5.4C), showing that the interfering fields reflected from the

tip shaft and from the quartz surface are well balanced. There is no near-field contribution to

S0f discernible in Fig. 5.4C. Even when demodulating the photodiode signal, the effect when

approaching the uncoated sample to the gold tip is weak: S1f does not display any deviation

from the behavior far from contact (blue curve in Fig. 5.4D). The signal S3f shows a small

roll-off near contact, of less than one third of its maximum amplitude, and S4f simultaneously

displays an increase of slightly less than its signal amplitude out of contact (green and red

curves in Fig. 5.4D). Thus, there is evidence of a near-field signal when demodulating at the

third or fourth harmonic, but it seems still overrun by background signal
(
S3f

)
or is on the

order of the background signal
(
S4f

)
.

Finally, we turn to the optical signals measured when approaching the in-line interferometer,

i. e., a quartz substrate coated with a 20 nm thick gold film and a 200nm thick SiO2 film on top

of the gold film, to the gold nanotip. The modulation depth of the DC signal S0f is in between

that of the gold-coated and the uncoated sample (Fig. 5.4E), indicating a lower reflectivity

of the in-line interferometer gold film than that of the gold-coated substrate. However, the

modulation is clearly sufficiently strong to facilitate using ~ER as a reference field in our in-line

interferometer homodyne scheme. This can be seen more clearly in the approach curves shown

in Fig. 5.4F: There is a near-field contribution discernible in all three signals S1f , S3f , and S4f .

The near-field increase is less pronounced than in the case that the tip is directly in contact

with the gold film; the fourth-harmonic signal S4f shows an increase of 7 times the noise level

(compared to 20 times observed for the gold film). Considering that the near field signal that is

measured when the gold tip is in contact with a glass surface (Fig. 5.4D) is just on the order of

the noise level, we conclude that the enhancement by a factor 7 is due to interference of the

near field ~ENF and the field reflected from the semi-transparent gold film, ~ER.

Thus, on the one hand the multi-layer structure of the in-line interferometer indeed seems to

enable the measurement of rather small near-field contributions, which can hardly be detected

otherwise. On the other hand, the measured signals are a result of mixing on the field level,

and knowledge of the electric field strengths of ~ER and ~EB is required in order to determine

the actual near-field strength.

In the next section we derive expressions that allow disentangling the contributions of the fields



108 CHAPTER 5. IN-LINE INTERFEROMETER

to each of the measured signals S0f to S4f .

5.3 Near-field and Background Analysis

In the following we want to derive an analytical derivation of the optical signals measured after

lock-in demodulation up to the 4th order of the tip frequency for a sSNOM setup using homodyne

detection as used in later experiments. The goal is to provide a tool to disentangle the measured

signals and allow for a separate analysis of near-field and background field contribution. For that

task we consider the interference of three fields that are present in each SNOM measurement.

These fields are labeled the near-field ~ENF, the background field ~EB and the reference field ~ER.

Figure 5.5 shows a graphical depiction of the sample, the tip and the origin of the three interfering

fields. Here, a gold tip is positioned close to the surface of a sample that can consist of multiple

layers. The plane wave incident field ~Ein is focused and propagates in a direction parallel to the

tip axis. The reference field ~ER is the part of the incident field that is reflected before it reaches

the tip. The background field is considered as a field that is reflected at the tip shaft at some

distance d from the apex since the diameter of the focused incident light is much bigger than

the tip apex diameter. The near-field originates at the apex of the nanotip at small distances

and is in most cases very weak compared to the other fields.

In all our following analysis we can restrict our considerations to temporal variations of the order

of the tip modulation period since the integration time for the optical signals is much longer

than the inverse of the light carrier frequency and the pulse repetition frequency. Furthermore

the detector is placed at a distance of several tens of cm from the light-sample-interaction region.

This allows us to restrict the electric fields to quasi-monochromatic and quasi-static plane waves.

Lateral variations of the electric field strength are neglected. Also, in this field analysis we focus

on monochromatic waves, an extension to simulate a broad-band spectrum is done later, simply

by evaluating the equations for each wavelength.

We begin with the expression for the reference field ~ER. As this field does not depend on the

tip-sample distance z we can chose the reference phase φR = 0 and ~ER becomes a constant:

~ER(z) = ~ER = const. (5.1)

In contrast to ~ER, the background field ~EB is dependent on the tip-sample distance. ~EB

originates from the large focus diameter in comparison to the few nanometer sized tip apex.

The field is scattered from the tip shaft at a distance d′ to the tip apex. Consequently the pathway

of ~EB is longer by twice the tip-sample distance plus a constant distance d which includes both

the distance d′ to the scattering region and the thickness of an (optional) glass layer on top of

the high reflective layer that reflects ~ER (compare chapter ). Thus, ~EB acquires a phase shift
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Figure 5.5: Graphical depiction of the sample, the origin of the interacting fields, and the tip-sample
interaction region. The incident light field ~Ein illuminates sample and tip in a diffraction-limited
spot. A part ~ER is reflected off the semitransparent gold film, and a part ~EB is scattered back from
the shaft of the gold tip, possibly after multiple reflections ( ~E′

B). The inset on the right depicts the
enhancement of the tip dipole with polarizability

↔
αtip by its image dipole. The electric field radiated

from the tip dipole and propagating back towards the illuminating microscope objective is the origin
of the near-field contribution ~ENF.

with respect to the reference field and can be written as

~EB(z) = ~EB,0 · e2ik(z+d)+φB (5.2)

with an additional phase shift φB due to the reflection.

Moreover, multiple reflections between the layer and the tip can occur. The number of reflections

that alter the resulting optical signal depends on the reflectivity of the most reflective layer in

the multilayer system close to the tip. By comparison with experimental data we found that

even for a gold layer with 30-50% reflectivity one additional reflection is sufficient to describe

the measurement. Equation (5.2) therefore has to be modified to

~E′B,0(z) = ~EB,0 ·
(
e2ik(z+d)+φB1 + r · e4ik(z+d)+φB2

)
(5.3)

with a parameter r that combines the reflection coefficient of the tip shaft and the reflective

layer. An addtional factor two in the exponent of the second term accounts for the doubled

path difference between the reflective layer and the origin of the background scattering.

However, for simplicity we will use equation (5.2) in the following notation. The additional

reflection will be included at a later point.
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Finally, the near-field ~ENF holds the desired information about the sample properties and is

therefore the desired quantity, however its amplitude is mostly the smallest of all the three

considered fields. As already discussed in chapter 4.2.3 we use a description of the near-field

in a framework of the coupled tip dipole with a sample image dipole. This means the electric

fields at the tip apex are enhanced because of the image dipole induced in the sample that is

acting back on the tip:

~ptip =
←→
α tip

(
~Ein + ~EID

)
(5.4)

The electric field by the enhanced tip dipole radiated out into the far field is described by the

dyadic Green’s function
←→
Gout:

~Eout (~r) =
←→
Gout

(
~r, ~r′

)
~ptip =

←→
Gout

(
~r, ~r′

)←→
α tip

(
~Ein + ~EID

)
(5.5)

In the case of strong coupling of the incident field and the excited dipoles, potentially more

than two consecutive scattering events have to be considered in a similar fashion as described

above. Here, a self-consistent model can be applied to yield an effective polarizability [15]. In

our experimental scheme, however, the tip dipole moment is dominant over the image dipole in

the sample, and the main contribution to fields radiated out of the tip-sample interaction region

stems from the tip dipole enhanced by the image dipole. We treat the conical tip as a small

metal sphere with radius R and with the polarizability αtip = 4πR3
(
εtip − 1

) (
εtip + 2

)−1,

where εtip is the complex dielectric constant of the tip material [15]. In this case, Eq. (5.5) is

sufficient to describe the radiated field. This radiated field ~Eout (~r) consists of two terms; the

first,
←→
Gout

(
~r, ~r′

)←→
α tip

~Ein results in a constant field contribution due to the tip dipole alone. As

the tip-sample distance is changed, the amplitude of this first term does not change, but the

phase changes with respect to the background field in the same fashion as was found before

for the background field ~EB (z). Hence this first term can simply be considered a contribution

to the background field. The second term
←→
Gout

(
~r, ~r′

)←→
α tip

~EID, in contrast, depends strongly

on the tip-sample distance and approaches zero for large z. If Eq. (5.5) was evaluated for the

position ~rDet given by the cross section of beam path and detector plane, and the constant first

term was subtracted, the resulting field would yield the near-field contribution to the measured

signal, i. e.,

~ENF = ~Eout (~rDet)−
←→
Gout

(
~rDet, ~r

′)←→α tip
~Ein. (5.6)

Due to the strong distance-dependence of the dipole-dipole coupling, the near field intensity

measured in the detector plane decreases exponentially with increasing tip-sample distance,
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and a phase shift ϕNF due to the dipole-dipole coupling is taken into account:

~ENF (z) = ~ENF,0 · e
− z
z0 · eiϕNF (5.7)

Here z0 is the near-field decay length, which depends on the tip radius of curvature and lies

typically in the range of 5 to 10 nm.

The latter two fields, ~EB and ~ENF are varying as a function of the tip-sample distance z, which

itself is a periodic function with period T : z = z (t) = z (t+ T ), where T = f−1 = 2πΩ−1is

the inverse of the tip modulation frequency. The distance can be written as a sinusoidal function

with the modulation amplitudeM , centered at the average tip-sample distance z:

z (t) = z +M · cos (Ωt) . (5.8)

Thus also ~EB and ~ENF are temporally periodic functions with the same period T :

~EB (z) = ~EB (z, t) = ~EB,0 · ei2k(z+d)+iϕB · ei2kM cos(Ωt) (5.9)

~ENF (z) = ~ENF (z, t) = ~ENF,0 · eiϕNF · e
−z
z0 · e

−M
z0

cos(Ωt) (5.10)

To simplify the comparison with the experimental signals, which are measured at different

harmonics of f , we approximate the explicitly time-dependent factors of these two fields by

Fourier sums, following the idea of previous works [15]:

~EB (z, t) ≈ ~EB,0 · ei2k(z+d)+iϕB ·
∞∑

n=−∞
b(n) · einΩt (5.11)

~ENF (z, t) ≈ ~ENF,0 · eiϕNF · e
−z
z0 ·

∞∑
n=−∞

c(n) · einΩt (5.12)

Here we have introduced the complex Fourier coefficients b(n) and c(n) of the background field
~EB and the near field ~ENF, respectively, where n is the harmonic order of the tip modulation

frequency. The Fourier coefficients can be easily calculated:

b(n) =
1

T

∫ T

0
ei2kM cos(Ωt) · e−inΩtdt = (i)n · Jn (2kM) (5.13)

c(n) =
1

T

∫ T

0
e
−M
z0

cos(Ωt) · e−inΩtdt = (−1)n · In
(
M

z0

)
(5.14)

The Fourier coefficients for the background field are given by Bessel functions of the first kind

and of order n, Jn. The Fourier coefficients b(n) of even order are real values, while those

of odd orders are imaginary. This means that the phase of the background field shifts with

each modulation order, which causes the distance dependent interference pattern to alternate
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between cosine and sine functions. The Fourier coefficients of the near field are modified Bessel

functions of the first kind and of order n, In, and are all real.
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Figure 5.6: Relative amplitude of the Fourier coefficients b(0)to b(4) (red bars) and c(0)to c(4) (blue bars)
normalized to b(0) and c(0), respectively, as a function of demodulation order n. The amplitude of
both decreases with demodulation order, but the background-field coefficients b(n) decreases much
more rapidly than the near-field coefficients c(n).

Figure 5.6 shows the absolute of the Fourier coefficients for our experimental parameters as

a function of demodulation order n in a bar diagram. The red bars are the background-field

coefficients normalized to the zeroth order coefficient, i. e.,
∣∣∣b(n)/b(0)

∣∣∣, and the blue bars the

according near-field coefficients
∣∣∣c(n)/c(0)

∣∣∣. It is noteworthy that not only do both coefficients

decrease with demodulation order, but that the relative strength of the background decreases

much more rapidly than that of the near field. This is in agreement with the measurements

presented in Fig. 5.4, where the near-field contribution becomes more clearly visible as the

demodulation order increases, as well as with observations in earlier works. The increase of

the near-field-to-background-ratio with demodulation order forms the basis for higher-order

demodulation SNOM [50, 151].

Any signal that is measured in the detector plane is proportional to the absolute square of the

total field ~Etotal (z, t) = ~ER + ~EB (z, t) + ~ENF (z, t). Inserting Eqs. (5.1), (5.11) and (5.12)

and executing the absolute square gives

∣∣∣ ~Etotal (z, t)
∣∣∣2 =

∣∣∣ ~ER + ~EB (z, t) + ~ENF (z, t)
∣∣∣2

=
∣∣∣ ~ER + ~EB,0e

i2k(z+d)+iϕB ·
∞∑

n=−∞
b(n)einΩt + ~ENF,0e

iϕNFe
−z
z0 ·

∞∑
n=−∞

c(n)einΩt
∣∣∣2 (5.15)
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∣∣∣ ~Etotal (z)
∣∣∣2 =

∣∣∣ ~ER∣∣∣2 +

 ~E∗R ~EB,0e
i2k(z+d)+iϕB ·

∞∑
n=−∞

b(n)einΩt + c.c.


+

 ~E∗R ~ENF,0e
iϕNFe

−z
z0 ·

∞∑
n=−∞

c(n)einΩt + c.c.


+
∣∣∣ ~EB,0∣∣∣2 ∞∑

n=−∞

∞∑
m=−∞

b(n)b(m)∗ei(n−m)Ωt

+
∣∣∣ ~ENF,0

∣∣∣2 e−2z
z0

∞∑
n=−∞

∞∑
m=−∞

c(n)c(m)∗ei(n−m)Ωt

+

 ~EB,0 ~E
∗
NF,0e

i(2k(z+d)+ϕB−ϕNF)e
−z
z0

∞∑
n=−∞

∞∑
m=−∞

b(n)c(m)∗ei(n−m)Ωt + c.c.


(5.16)

where c.c. denotes the complex conjugate.

The power impinging on the photodiode is

P (z, t) =
1

2
ε0cA ·

∣∣∣ ~Etotal

∣∣∣2 (5.17)

where ε0 is the electric field constant of the vacuum, c is the velocity of light, and A is the

area of the detector. Multiplication with the detector efficiency η yields the output voltage

U (z, t) = η · P (z, t). The unmodulated signal S0f , which is measured using the photodiode

without lock-in detection, is in fact the lowest order Fourier component of this voltage, which is

a function only of the tip-sample distance and not of time:

S0f (z) = U (0) (z) = η · P (0) (z) (5.18)

In other words, S0f is the mean value over the measurement. For the first and higher-order

demodulated signals, the lock-in output signal can be written as:

Snf (z) = γ
1

T

∫ t′

t′−T
cos [nΩt+ θ] · U (z, t) dt, |n| ≥ 1 (5.19)

Here, the index nf denotes the demodulation frequency, γ is the gain parameter of the lock-

in detector, and θ is the phase between modulation waveform and detected signal. When

measuring Snf (z) with the lock-in detector, the influence of this phase is eliminated by actually

recording the amplitude, i. e., the geometrical average of Snf (z, θ1) measured for one phase

setting θ1 and Snf (z, θ2) measured for a second phase setting θ2 = θ1 + π
2 . In our calculations

the same effect is achieved easily by evaluating the integral of Eq. (5.19) for θ = 0. The integral,
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performed over time intervals T >> 2πΩ−1, is zero unless the demodulation frequency matches

the angular frequency nΩ of the Fourier component under consideration.

0 200 400 600 800
Tip-Sample Distance (nm)

0.0

0.1

0.2

0.3

0.4

0.5

N
or

m
. I

nt
en

si
ty

 S
/E

2 R
 (1

0
2 )

S1f S3f (x30) S4f (x60)

0 200 400 600 800
Tip-Sample Distance (nm)

0

1

2

3

4

5

N
or

m
. I

nt
en

si
ty

 S
/E

2 R
 (1

0
2 )

S1f S3f (x30) S4f (x60)
A B

Figure 5.7: Simulated approach curve detector signal at 1st, 3rd and 4th harmonic (S1f ,S3f ,S4f )
following equation (5.22)-(5.25) for (A) a ratio ER:EB=50 and (B) a ratio ER:EB=5. The remaining
variables are the same for both figures, namely the ratio ER:ENF=1000, the wavelength λ = 780 nm,
the near-field decay length z0 = 8 nm, a modulation amplitude M = 30 nm and the phase terms
φB = −0.3 and φNF = 1.5.

The respective combinations of ~ER, ~EB,0b(n), and ~ENF,0c
(n) that contribute to the measured

signals Snf can easily be extracted from the expression for
∣∣∣ ~Etotal

∣∣∣2 given in Eq. (5.15). Because

the highest order demodulation that can be measured with our 210 kHz line camera is the

fourth order, we consider only Fourier coefficients up to this order, i. e., we restrict the sums in

Eq. (5.17) to −4 ≤ n,m ≤ 4. The unmodulated signal then becomes:

S0f (z) ≈ 1
4ηε0cA ·

[∣∣∣ ~ER∣∣∣2 +
∣∣∣ ~EB,0∣∣∣2∑4

n=−4 b
(n)b(n)∗ +

∣∣∣ ~ENF,0

∣∣∣2 e−2z
z0
∑4

n=−4 c
(n)c(n)∗

+2Re
{
~ER ~EB,0b

(0)
}

cos
(
2k (z + d) + ϕB

)
+ 2Re

{
~ER ~ENF,0c

(0)
}
e
−z
z0 cos (ϕNF)

+

(
~EB,0 ~E

∗
NF,0e

i(2k(z+d)+ϕB−ϕNF)e
−z
z0
∑4

n=−4 b
(n)c(n)∗ + c.c.

)]
(5.20)

In the DC signal S0f the directly reflected fields ~ER and ~EB have field strengths several orders

of magnitude higher than the near field contribution:
∣∣∣ ~ENF,0,j

∣∣∣ � ∣∣∣ ~ER,j∣∣∣ , ∣∣∣ ~EB,0,j∣∣∣ for all n
and for each vector component j = x, y, z individually. Furthermore, the calculation of the

Fourier coefficients showed that the background contribution decreases rapidly with increasing

demodulation order, such that
∣∣∣ ~EB,0,jb(n)

∣∣∣ << ∣∣∣ ~ER,j∣∣∣ , ∣∣∣ ~EB,0,jb(0)
∣∣∣ for |n| > 0. With these
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assumptions Eq. (5.20) can be simplified:

S0f (z) ≈ 1

4
ηε0cA ·

[∣∣∣ ~ER∣∣∣2 +
∣∣∣ ~EB,0b(0)

∣∣∣2 + 2 ~ER ~EB,0b
(0) cos

(
2k (z + d) + ϕB

)]
(5.21)

Eq. (5.21) describe the interference of two fields with a phase varying as the distance between tip

and sample increases, and with a contrast given by the respective field strengths of background

and reference field.

Similarly, the signals measured at the first and higher harmonic demodulation frequencies,

S1f to S4f , can be extracted from Eq. (5.15). After applying the same approximations as

enumerated above for the example of S0f , the less dominant terms are neglected, and we obtain

the following four approximated expressions for S1f to S4f :

S1f (z) ≈ γνε0cA ·
∣∣∣−Re{ ~ER ~EB,0} ∣∣∣b(1)

∣∣∣ sin (2k (z + d) + ϕB
)

−Re
{
~ER ~ENF,0

} ∣∣∣c(1)
∣∣∣ e−zz0 cosϕNF

−Re
{
~EB,0 ~ENF,0

} ∣∣∣b(0)
∣∣∣ ∣∣∣c(1)

∣∣∣ · e−zz0 cos
(
2k (z + d) + ϕB − ϕNF

)∣∣∣
(5.22)

S2f (z) ≈ γνε0cA ·
∣∣∣−Re{ ~ER ~EB,0} ∣∣∣b(2)

∣∣∣ cos
(
2k (z + d) + ϕB

)
+Re

{
~ER ~ENF,0

} ∣∣∣c(2)
∣∣∣ e−zz0 cosϕNF −

∣∣∣ ~EB,0∣∣∣2 ∣∣∣b(0)
∣∣∣ ∣∣∣b(2)

∣∣∣
+Re

{
~EB,0 ~ENF,0

} ∣∣∣b(0)
∣∣∣ ∣∣∣c(2)

∣∣∣ · e−zz0 cos
(
2k (z + d) + ϕB − ϕNF

)∣∣∣
(5.23)

S3f (z) ≈ γνε0cA ·
∣∣∣Re

{
~ER ~EB,0

} ∣∣∣b(3)
∣∣∣ sin (2k (z + d) + ϕB

)
−Re

{
~ER ~ENF,0

} ∣∣∣c(3)
∣∣∣ e−zz0 cosϕNF

−Re
{
~EB,0 ~ENF,0

} ∣∣∣b(0)
∣∣∣ ∣∣∣c(3)

∣∣∣ · e−zz0 cos
(
2k (z + d) + ϕB − ϕNF

)∣∣∣
(5.24)

S4f (z) ≈ γνε0cA ·
∣∣∣Re

{
~ER ~EB,0

} ∣∣∣b(4)
∣∣∣ cos

(
2k (z + d) + ϕB

)
+Re

{
~ER ~ENF,0

} ∣∣∣c(4)
∣∣∣ e−zz0 cosϕNF +

∣∣∣ ~EB,0∣∣∣2 ∣∣∣b(2)
∣∣∣2

+Re
{
~EB,0 ~ENF,0

} ∣∣∣b(0)
∣∣∣ ∣∣∣c(4)

∣∣∣ · e−zz0 cos
(
2k (z + d) + ϕB − ϕNF

)∣∣∣
(5.25)

The relevant Eqs. (5.21)-(5.25) describe the signal detection after the interference of vectorial

fields. They are simplified to terms of products of two fields each, with only the three field

amplitudes and phases and the near-field decay length as input parameters. Typically, not

all three vector components contribute with comparable strengths, such that a full vectorial
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treatment is not required. In our experiment, the incident light is linearly polarized in the plane

parallel to the table, corresponding to the y-direction given in Fig. 3.1. The reference field ~ER

consists of light directly reflected from the semi-transparent gold film or from the uncoated

surface of the substrate, which in both cases results in a purely y-polarized reference field. The

background field ~EB , which is reflected off the cone-shaped surface of the gold tip, is expected to

be mainly polarized along the y-direction, but to carry also a weak x-component. The near field
~ENFis constituted of light that is scattered out of the near-field interaction region of sample and

tip into the detected far field, as described above (Eqs. (5.4) and (5.5)). Earlier measurements

have shown that this light is radially polarized with a high degree of polarization [94]. In the

in-line homodyne detection scheme that is employed here, however, the near field contribution

is only detected by mixing with the y-polarized reference field or with the mainly y-polarized

background field, which restricts the near-field detection to its y-component. For this reason,

a scalar description of the interference is sufficient. This is achieved by substituting ~ER with

ER = ~ER · ŷ, ~EB,0 with EB,0 = ~EB,0 · ŷ, and by substituting ~ENF,0 with ENF,0 = ~ENF,0 · ŷ in

Eqs. (5.21)-(5.25).

Figure 5.7 shows an exemplary calculation of the S0f to S4f signals using a ratio of near-field

to background of once 50 and once 5 that clearly demonstrates the importance of the ratio. In

the next section we will use the derived equations to fit them to our measurement data and

disentangle the real near-field and background contributions.

5.4 Near-Field Contributions in the Measurements

The reference field strength ER is measured directly as the unmodulated signal S0f with the

tip removed from the setup, setting EB,0 = 0 in Eq. (5.21). For the gold-coated quartz sample,

the power measured with the photodiode is P = 2.8 µW, which, assuming a beam cross section

of A = 1 mm2, corresponds to the reference field strength ER = 46 V/m. The background

field strength EB,0 ·
∣∣∣b(0)

∣∣∣ can be estimated rather precisely from the modulation depth on the

signal S0f in Fig. 5.4A, which originates from the cosine-term in Eq. (5.21), with the result

EB,0 ·
∣∣∣b(0)

∣∣∣ = 1.1 V/m and the ratio ER : EB,0 ·
∣∣∣b(0)

∣∣∣ = 43 : 1. It should be noted that it is not

possible to directly obtain a value for ENF,0 ·
∣∣∣c(0)

∣∣∣ from the unmodulated signal since it is by

far dominated by the background and reference fields. No near-field contribution is discernible

in the measurement shown in Fig. 5.4A. This is the case for all three substrates.

The derived expressions (5.22)-(5.25) for the optical signals S1f to S4f are compared to the

measured approach curves, using the valuesER = 46 V/m andEB,0 ·
∣∣∣b(0)

∣∣∣ = 1.1 V/m obtained

from the measured signal S0f in Fig. 5.4A, and using the phase for the near field, ϕNF, and the

phase for the background field, ϕB1, to manually adapt the shape of the calculated curves to

the measured signal. Furthermore, for the gold-coated quartz substrate the effect of multiple
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Figure 5.8: Disentangled background and near-field signals. The left hand side graphs show the measured
optical signalsS2f (blue curves) andS3f (green curves) as a function of the tip-sample distance together
with calculated approach curves (dashed red curves) for A, the gold-coated quartz substrate, C, the
uncoated quartz substrate, and E, the quartz substrate coated with a semitransparent gold film and
∼200 nm quartz on top of the gold film. Adapting the theoretically derived expressions for S0f to S4f

allows determination of the electric field strengths ER, EB,0, and ENF, and, together with the Fourier
coefficients b(n) and c(n) disentangling background and near-field contributions to the measured
signals. The right hand side graphs show the ratio of background and near-field contribution to the
measured signals as red and blue bars, respectively, as function of the demodulation order for B, the
gold-coated quartz substrate, D, the uncoated quartz substrate, and F, the quartz substrate coated
with a semitransparent gold film and∼200 nm quartz on top of the gold film. The bars are normalized

to Re
{
EREB,0

} ∣∣∣b(0)∣∣∣ = 100% on the gold-coated quartz substrate. For the substrates with a gold

film (B and F), the background signal decays much faster with increasing demodulation frequency
than the near-field signal, such that when demodulating at fdemod = 4 · fmod, basically only the
near-field signal is measured. For the uncoated quartz substrate, even at fourth-order demodulation,
the background signal surmounts the near-field signal.
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reflections can be seen clearly from the deviation of especially S1f from a single-sinusoidal

behavior (Fig. 5.4B). This is taken into account by using Eq. (5.3) to describe the background

field, adding the reflection coefficient r and the second phase ϕB2 as adaptation parameters.

For the gold-coated quartz substrate, the reflection coefficient is between r = 0.15 and 0.45.

As an example, Fig. 5.4A shows the calculated curves S2f and S3f (dashed red curves) together

with the experimentally measured approach curves (S2f : blue curve, S3f : green curve). With the

above mentioned adjustable parameters, the derived expressions reproduce the measured curves

quite closely. As a result of comparing the measurement to the derived expressions, we obtain

on the one hand Re
{
ERENF,0

}
·
∣∣∣c(n)

∣∣∣ for n = 1, 2, 3, 4, which represents a direct measure for

the near-field contributions to the measured signals, and on the other hand the contributions

that arise due to the background light scattered from the tip shaft, i. e., Re
{
EREB,0

}
·
∣∣∣b(n)

∣∣∣,∣∣EB,0∣∣2 · ∣∣∣b(n)
∣∣∣ ∣∣∣b(m)

∣∣∣, and Re
{
EB,0ENF,0

}
·
∣∣∣b(n)

∣∣∣ · ∣∣∣c(m)
∣∣∣. In Fig. 5.4B, these values are plotted

as bar diagrams as a function of demodulation order, normalized to Re
{
EREB,0

} ∣∣∣b(0)
∣∣∣ = 100%.

Both signal contributions decrease exponentially with increasing demodulation order, and as

expected for a gold surface, the background signal decreases much faster than the near-field

signal, such that for S3f the near-field contribution already surmounts the background, and

that for S4f the background contribution amounts to only ∼2.5%.

With a similar measurement of the pure reference power, we find for the uncoated quartz

substrate the much smaller reference field strength ER = 12 V/m and the background field

strengthEB,0·
∣∣∣b(0)

∣∣∣ = 2.3 V/m, i. e.,ER : EB,0·
∣∣∣b(0)

∣∣∣ = 5 : 1. The absence of a semitransparent

gold film results in more light reaching the tip and hence increased scattering from the tip

shaft, while the reference field is created only by a relatively weak reflection from the glass

surface. As before, there is no near-field contribution ENF,0 ·
∣∣∣c(0)

∣∣∣ discernible. Again, the

derived expressions Eq. (5.22)-(5.25) are adapted to the measurements by manually varying the

phases of background and near-field light, ϕB1, ϕB2, and ϕNF. The reflectivity of the uncoated

quartz is reduced to about half that of the gold-coated quartz samples, but due to the high

background-to-reference ratio multiple reflections between tip and sample again have a high

influence on the over-all signal (Fig. 5.4C). Compared to the gold-coated quartz substrate, the

high background-to-reference ratio of the uncoated quartz substrate results in a much stronger

influence of the background-related signal components even at high demodulation orders: up

to the fourth order near-field- and background-related signal components are of comparable

strength (see Fig. 5.4D). From this measurement it is clear that the reference signal needs to be

increased in order to measure predominantly the near-field signal at demodulation frequencies

that are experimentally easily accessible.

As the last substrate, we evaluate the approach curves for the in-line homodyne interferometer,

i. e., for the gold- and glass-coated quartz substrate. Here the reference is again increased

due to the semitransparent gold film, with ER = 66 V/m and EB,0 ·
∣∣∣b(0)

∣∣∣ = 1.9 V/m, i. e.,
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ER : EB,0 ·
∣∣∣b(0)

∣∣∣ = 36 : 1. The derived expressions Eqs. (5.22)-(5.25) are adapted to the

measurements like described before, and as examples, S2f and S3f are plotted in Fig. 5.4E.

In this case, there is still a small deviation between the measured and the calculated curves

for S2f apparent, and the curvature of S3f at small tip-sample distances of < 50 nm could

also not be entirely reproduced. This observation points towards somewhat more complicated

multiple reflections than accounted for by our simple model, e. g., reflections not only between

the tip and gold film but also between tip and substrate surface. The near-field and background

contributions to the measured optical signals are plotted as a function of the demodulation

order in the bar diagram in Fig. 5.4F, where one can see that both signal contributions decrease

exponentially with increasing demodulation order. Similar to the gold-coated substrate, also

for our in-line interferometer, the background signal decreases faster than the near-field signal.

For S3f the near-field contribution surmounts the background, and at S4f the background

contribution amounts to only ∼7%.

In conclusion, for the uncoated quartz substrate the reference and the background field are

of comparable strength. Hence, for this case, cross terms not only between any higher order

near-field terms and the reference field contribute to the measured signals, but also between

higher order near-field terms and the background term EB,0 ·
∣∣∣b(0)

∣∣∣ have considerable influence.
For uncoated glass substrates, a measurement exploiting near-field contrast will be possible only

for higher demodulation orders than accessible to us in this work. For both metal-coated quartz

substrates, in contrast, EB,0 ·
∣∣∣b(0)

∣∣∣ � ER, such that the cross terms between higher-order

coefficients EB,0 ·
∣∣∣b(n)

∣∣∣ andENF,0 ·
∣∣∣c(n)

∣∣∣, n 6= 0 and the reference field dominate. The faster

decay of EB,0 ·
∣∣∣b(n)

∣∣∣ with increasing demodulation order then nearly completely removes

the dependence on the unknown background field. The dominance of the near-field signal

Re
{
ERENF,0

}
·
∣∣∣c(n)

∣∣∣ is a result of mixing the near field with a strong reference field, i. e. of

the in-line homodyne interferometer formed by the buried gold film.

5.5 Summary

In this work, we have analyzed the signal in scattering-type scanning near-field optical mi-

croscopy on the field level, and we have identified and designed a layered structure that allows

disentangling near-field and background-related signal contributions by mixing the near field

with a strong reference field. The layered structure was realized by depositing a thin gold film

on the sample substrate and covering it with a thin dielectric layer and forms an inherently

phase-stable in-line interferometer. We have shown that this efficiently amplifies the near field

and suppresses the background light, such that when demodulating the signal with the third or

fourth harmonic of the tip modulation frequency mainly the near field is detected.

Our measured and calculated optical signals verify and demonstrate the challenging effect
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of background signals in scattering-type SNOM. Interference between light that is reflected

from the sample and light that is scattered from the tip shaft dominates the measured signal,

in the case of an uncoated sample even if the signal is demodulated at the fourth harmonic

of the tip modulation frequency. For broad-bandwidth spectroscopy, this results in spectral

interference that basically determines the shape of the measured spectra. In this work, we have

shown that a reference field of sufficient amplitude, namely of roughly 50-fold amplitude of

the background field, can achieve efficient background suppression. The reference field then

amplifies the near field such that at demodulation at the third or fourth harmonic of the tip

modulation frequency results in the very precise detection of the near field. Specifically, we have

created the reference field within the substrate of the sample, thereby realizing an inherently

stable in-line interferometer. In this work, a reference field with suitable amplitude is provided

by 30-50% reflection of the incident laser field off a ∼20nm thick gold film. Alternatively, one

may use a substrate made of a dielectric material with high refractive index. A somewhat lower

reflectivity between 10 and 20% could be realized in a trade-off between ease of substrate

production and near-field amplification.

While we have concentrated on overriding the background-related signal contributions with

an amplified near-field related signal, it would be even more advantageous to reduce the

detrimental effect of the background field. Reduction of light scattered from the tip shaft

would greatly improve the potential of s-SNOM. Such a reduction of background light would

require changing the dielectric function of the tip material, i. e., making the tip in essence

transparent to the incident laser light. Creating a near-field signal, however, requires a strong

tip dipole. Both requirements could be combined, for example, by placing a metal sphere on

a transparent mount such as a dielectric taper [185]. A metal sphere offers a large dipole

moment, but has a narrow resonance. Thus, while such a tip on the one hand could hold great

potential to improve the signal-to-background ratio in s-SNOM, it would, on the other hand,

considerably reduce the bandwidth for spectroscopy. There is a trade-off between background

reduction, tip dipole moment, and spectral bandwidth. In our experience, the gold nanotapers

that were used in this work optimize dipole moment and spectral bandwidth, but introduce a

relatively large background signal that requires additional measures for background suppression.

In summary we have realized an inherently phase-stable in-line interferometer for mixing the

near field with a strong reference field by depositing a thin gold film on the sample substrate

and covering it with a thin dielectric layer. We have shown that this efficiently amplifies the

near field and suppresses the background light. Moreover, the in-line interferometer is not only

limited to monochromatic measurements but can be used for broad-band s-SNOM spectroscopy

as well. This will be shown in the following chapters.
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In the previous chapter I’ve demonstrated the in-line interferometer to record near-field signals

for one specific wavelength.

However, a complete spectral evaluation is crucial to better understand the sample’s material

response to light-matter interaction.

Hence, first, in chapter 6.1, I demonstrate a simple extension of the monochromatic measure-

ments by substituting the monochromatic laser source with a broad-band Ti:Sa laser source

and the detection photodiode with a monochromator and a fast line camera. Using a similar

evaluation as for the monochromatic measurements, this approach already reveals a lot of

spectral information, but lacks a complete description of the recorded data. 1

For SNOM spectra not only the sample properties, but also the interaction with the tip plays

an important role. In fact, a resonance of the tip can alter the spectral features of the sample

under investigation in the SNOM spectra. A tip influence was for example demonstrated by

García-Etxarri et al. [143] by mapping the near-fields of a gold-nanodisk at a single wavelength

of 633 nm for both a metallic and a dielectric SNOM tip. It was found that for the dielectric tip

and thus weak coupling between tip and sample, the plasmonic mode of this antenna structure

could be mapped. In contrast, with the metallic nanotip, the mode profile could not be mapped,

but was highly distorted due to the strong coupling between the antenna mode and the nanotip

mode and a resulting spectral shift of the antenna resonance. The experiments from García-

Etxarri et al. emphasize the importance of understanding the tip influence and especially the

tip-sample interaction on SNOM spectra.

In the literature, mainly infrared SNOM spectra measurements are presented. In this wavelength

range, the spectral influence of a tip resonance is mostly negligible as was shown by Aizupura

et al. [70], Novotny et al., Romanov et al. [186] and others [187]. This is because the tip

resonance always lies in the visible or UV range and thus the spectral response of the tip is

1Parts of section 6.1 are taken from the peer-reviewed publication "‘Brauer, J., Zhan, J., Chimeh, A., Korte, A.,
Lienau, C., & Gross, P. (2017). In-line interferometer for broadband near-field scanning optical spectroscopy. Optics
Express, 25(13), 15504"’. My part was the planning of the experiment, measurement of the data, literature research,
setting up the equations as well as simulating and plotting of the results. The paper is attached in appendix D.
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Figure 6.1: 3D visualization of the measurement geometry that shows the SNOM gold tip over the
gold-coated quartz substrate. A microscope objective is focusing the light onto the taper apex. Due to
small tip-sample distances, the interaction of tip and sample can be complex and it is important to
understand the influence of the tip in the spectral domain.

nearly constant for longer wavelengths. Here, we are however interested in measurements

in the visible to near-infrared wavelength range and the actual spectral response of the tip

can have a significant influence on the SNOM spectra and the interaction needs to be determined.

Hence, in chapter 6.2, I use a new evaluation of the data, taking into a account the full vectorial

properties of tip and sample, i.e., considering tip and sample polarizability tensors, as well as

the polarization of the excitation light. This chapter is structured in 4 parts: first the influence

of the polarization of the excitation light on the distance and wavelength dependent effective

polarizability is shown for a flat gold film. Next, the influence of the focus fields as well as the

impact of the tip position within the focus area is investigated. Then a new method to extract

distance dependent near-field spectra from the measurement via Fourier-composition of near

field spectra is presented. Using this it is not necessary to record distance-dependent spectra by

slowly retracting the tip, but due to the large modulation amplitude of the tip, approach spectra

can be reconstructed directly and are basically recorded "‘on the fly"’. In the last part of that

chapter, different measured spectra on flat films, here on a gold film and on a Sb2S3 film, are

discussed.

The following two sections, 6.3 and 6.4, then present measurements on an anisotropic squaraine

dye material, as well as spectroscopic imaging of strong coupling of the SNOM tip with nano-rod

antennas.
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6.1 Simple expansion of quasi-monochromatic model to

broad-bandwidth measurements

As a first approach to broadband near-field spectroscopy we investigate the same gold sample

as in the monochromatic measurements described before, i. e., an evaporated gold film on

top of the BK-7 glass substrate with a thickness of about 20 nm. Such a thin semi-transparent

gold layer with a transmission of around 50% is needed in order to be able to still detect the

weak near-field signals scattered from the gold tip of the SNOM. In contrast to chapter 5,

the quasi-monochromatic light source is substituted by a spectrally broad Ti:Sa laser and for

detection we use a monochromator and a fast line camera.

Specifically, SNOM spectra on the gold film are recorded with a Ti:Sa laser with a bandwidth

exceeding 100nm and centered at 780 nm (figure 6.2A). Figure 6.2B shows the tuning fork

amplitude as a function of the tip-sample distance z0. The tuning fork amplitude acts as a

control parameter and a decreasing amplitude indicates a damped oscillation caused by short

ranging Van-der-Waals forces. Colored circles mark the positions at which spectra are recorded.

For a fixed tip-sample distance we recorded 60000 spectra with a rate of 210 kHz. The recorded

spectra are then post-processed to extract the resulting spectra demodulated at the nth order

of the tip modulation frequency Ω. This means we apply a Fourier transform for each pixel

of the line camera and extract the value at the nth order (compare chapter 3.1). This results

in demodulated spectra Snf (λ) which are exemplary shown for n = 1,n = 2 and n = 4 in

figure 6.2C, E and G. The color of each curve corresponds to the color of the dots in figure

6.2B. Hereby, the darkest blue indicates a very small tip-sample distance, whereas the light

blue colored spectra are measured further away. The red line corresponds to a measurement at

a large tip-sample distance, where the near-field contribution is vanishingly small.

By comparison of the demodulated spectra with the laser spectrum we find a very different

spectral shape of the first and second order demodulated spectra. The spectral shape additionally

varies with tip-sample distance, which is most apparent for the spectrum measured at large

distances (red curve) but is also observed for tip-sample distance variations on a small scale of

< 20 nm. To understand these results we expanded the derived equations (eq. (5.22)-(5.25))

for the demodulated signals S1f to S4f to also include the wavelength dependency, i.e. S1f ,

S2f , S3f and S4f are now a function of λ:

S1f (z, λ) ≈ γνε0cA ·
∣∣∣−Re{ ~ER(λ) ~EB,0(λ)

} ∣∣∣b(1)(λ)
∣∣∣ sin (2k(λ) (z + d) + ϕB

)
−Re

{
~ER(λ) ~ENF,0(λ)

} ∣∣∣c(1)
∣∣∣ e−zz0 cosϕNF

−Re
{
~EB,0(λ) ~ENF,0(λ)

} ∣∣∣b(0)(λ)
∣∣∣ ∣∣∣c(1)

∣∣∣ · e−zz0 cos
(
2k(λ) (z + d) + ϕB − ϕNF

)∣∣∣
(6.1)
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Figure 6.2: Broad-bandwidth near-field spectroscopy. A, Input laser spectrum. B, Tuning fork amplitude
as a function of tip-sample distance. The positions where spectra are measured are marked by colored
circles. C, The measured spectra S1f (λ) , demodulated at the fundamental tip modulation frequency,
do not resemble the input spectrum, but are prominently modulated by interference between reference
and background fields. D, The calculated spectra S1f (λ) model the main characteristics of the
measured spectra very well. E, The measured as well as F, the calculated spectra S2f also differ from
the input laser, and due to different field components interfering they also strongly differ from S1f . G,
In contrast, the measured spectra S4f (λ), demodulated at the fourth harmonic, mainly resemble the
input laser spectrum and strongly decrease with increasing tip-sample distance. H, The calculated
spectra S4f show the same behavior.
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S2f (z, λ) ≈ γνε0cA ·
∣∣∣−Re{ ~ER(λ) ~EB,0(λ)

} ∣∣∣b(2)(λ)
∣∣∣ cos

(
2k(λ) (z + d) + ϕB

)
+Re

{
~ER(λ) ~ENF,0(λ)

} ∣∣∣c(2)
∣∣∣ e−zz0 cosϕNF −

∣∣∣ ~EB,0(λ)
∣∣∣2 ∣∣∣b(0)(λ)

∣∣∣ ∣∣∣b(2)(λ)
∣∣∣

+Re
{
~EB,0(λ) ~ENF,0(λ)

} ∣∣∣b(0)(λ)
∣∣∣ ∣∣∣c(2)

∣∣∣ · e−zz0 cos
(
2k(λ) (z + d) + ϕB − ϕNF

)∣∣∣
(6.2)

S3f (z, λ) ≈ γνε0cA ·
∣∣∣Re

{
~ER(λ) ~EB,0(λ)

} ∣∣∣b(3)(λ)
∣∣∣ sin (2k(λ) (z + d) + ϕB

)
−Re

{
~ER(λ) ~ENF,0(λ)

} ∣∣∣c(3)
∣∣∣ e−zz0 cosϕNF

−Re
{
~EB,0(λ) ~ENF,0(λ)

} ∣∣∣b(0)(λ)
∣∣∣ ∣∣∣c(3)

∣∣∣ · e−zz0 cos
(
2k(λ) (z + d) + ϕB − ϕNF

)∣∣∣
(6.3)

S4f (z, λ) ≈ γνε0cA ·
∣∣∣Re

{
~ER(λ) ~EB,0(λ)

} ∣∣∣b(4)(λ)
∣∣∣ cos

(
2k(λ) (z + d) + ϕB

)
+Re

{
~ER(λ) ~ENF,0(λ)

} ∣∣∣c(4)
∣∣∣ e−zz0 cosϕNF +

∣∣∣ ~EB,0(λ)
∣∣∣2 ∣∣∣b(2)

∣∣∣2
+Re

{
~EB,0(λ) ~ENF,0(λ)

} ∣∣∣b(0)(λ)
∣∣∣ ∣∣∣c(4)

∣∣∣ · e−zz0 cos
(
2k(λ) (z + d) + ϕB − ϕNF

)∣∣∣
(6.4)

Hereby, ~ER, ~EB,0, ~ENF,0, k and the Bessel coefficients b(n) are wavelength dependent. As the

spectral response of both the gold film and the glass substrate is rather flat in the spectral region

investigated here (cmp. chapter 4.2.3), we assume it to be constant. The reference field ~ER

then takes the spectral shape of the laser input field, and the spectral phase is flat and can be

set to ϕR = 0.

The background field has the same spectral shape of the laster spectrum, i.e., the same amplitude,

but its phase takes a more complex form. In particular the background field is governed by

two phase terms, one is from the light scattered back from the tip that acquires the phase

2k(z + d) + ϕB = 4π(z + d)λ−1 + ϕB with respect to the reference field. This phase is due

to the extra distance (2(z + d)) traveled by the background field and further depends on the

wavelength via k ∝ λ−1. The offset phase ϕB is taken to be constant. Furthermore, in the

monochromatic experiments (section 5.3) we had shown that we need to take into account one

more reflection between substrate and tip to describe the curves. Hence the background field is

expanded by a factor r cos
(
4k(z + d) + ϕB,2

)
, also depending on the wavelength.

Finally the near-field ~ENF,0 is given by the product of the reference field and an effective

tip-sample polarizability, which is proportional to the tip polarizability. For this first test we

assume a tip polarizability described by a gold sphere with 10nm radius, which results in a

non-resonant characteristic of the tip in this spectral region, with changes of ~6% of the real

part and negligible imaginary part of the polarizability (cmp. also Fig. 4.21B). Thus, the tip

polarizability can also be estimated to be spectrally flat.
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The simulated spectra are plotted at the right side next to the measurements (panel D,F and G

in figure 6.2). For signals with a high background contribution, such as the S1f and S2f signals,

we find that the wavelength dependent phase shifts between reference and background field

lead to spectral interferences. Compared to the phase terms, the bessel coefficients have a much

weaker influence on the spectra. Overall, this simple wavelength expansion to the previous quasi

monochromatic model can explain the spectra already quite well. In the S1f simulation, the

distance dependency and especially the spectral interference, that are most prominent for large

distances, could very well be reproduced. Also we found that the shape of the spectra depends

sensitively on the wavelength independent phase offsets, ϕB1 and ϕB2. By adjusting these

phases, some spectral components can even vanish completely from the calculated spectra. This

demonstrates clearly that spectral interference is the dominant effect that shapes the spectra and

quantitative statements about the sample response are difficult to make from the S1f signal.

The signal S2f from figure 6.2E and F exposes this effect even more. Here the spectrum in

contact is much narrower than the input spectrum and is changing its shape with each new

tip-sample distance. Additionally, the spectral shape is very different from the S1f spectrum as

well. However, knowing that the signal S2f is composed of different terms of interfering fields

than S1f (compare the equations above), it becomes clear that spectral interference between

the fields should lead to quite different measured and calculated spectra and shows once more

that spectral interference can easily obscure true near-field spectral information.

On the contrary to these results, the spectrum demodulated at the 4th order (S4f ) from figure

6.2G and H does not show any spectral interferences. In fact, the simulated curves follow the

shape of the laser input spectrum, because the dominant part in the S4f signal is the cross term

of reference field and near-field. Due to the flat spectral response of sample and tip the cross

term is proportional to the input spectrum.

In total, the overall shape in the S4f signal is maintained for larger tip-sample distances and

the amplitude of the spectrum is decreasing to nearly 0 within less than 20 nm from the closest

point, indicating once more a main contribution from the short-ranging near-field. Similar to

the quasi monochromatic measurements presented earlier, we can conclude that a background

contribution and thus spectral interferences are suppressed at this demodulation order, verified

by the simulated results. Hence, meaningful statements about the sample properties can be

made.

However, a closer comparison of the simulated spectrum with the measured spectrum shown in

figure 6.3 reveals a discrepancy, manifesting specifically in the lower wavelength region up to

740nm and the higher wavelength region from around 800-830nm. Deviations larger than

5% are marked as either a grey area in the low wavelength region and a green area for the

longer wavelengths. These two increased shoulders of both the S1f and S4f spectra are further

analyzed in the next sections by analyzing the tip-sample interaction with the tip polarizability

described by a tensor.
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Figure 6.3: Simulated S4f spectra (red) plotted together with the measured S4f spectra (blue )and
the laser input spectrum (dotted black curve). The simulated spectrum has the same shape as the
input spectrum, whereas the measured spectrum shows a significant difference. Deviations to the
simulation by more than 5% are marked as a filled area. Two distinct areas (green and grey area) can
be distinguished.

6.2 Tip-sample interaction

The spectral discrepancies observed in 6.1 may arise from dipole-dipole coupling between tip

and sample. For small distances, one expects to observe changes in the center wavelength,

line width and phase of the measured spectra. The simple model used in 6.1 cannot describe

such changes. Instead, this requires taking into account the complete vectorial tip and sample

dipoles. Depending on their relative orientation and on their distance, the coupling of different

components becomes dominant. Hence, it is important to consider tip and sample polarizability

tensors, as well as the polarization of the excitation light.

In the following, I will lay out these couplings and demonstrate some resulting experimental

observations with sample dipoles whose dipole moments vary in strength as well as spectral

shape. In order to rapidly record distance-dependent near-field spectra, I have developed a

novel experimental scheme, namely broadband near-field spectroscopy followed by Fourier-

composition of near field spectra.

In my experimental geometry, it is not necessary to record distance-dependent spectra by

slowly retracting the tip. Instead, by modulating the tip-sample distance at ∼25 kHz frequency
with a peak-to-peak modulation amplitude 2A of around 30nm, and by recording spectra

with the monochromator and fast line camera with a line-readout rate of roughly 8 times

that frequency, spectra are continuously recorded at different distances spanning twice the

modulation amplitude. Thus, approach-curves are practically recorded "‘on the fly"’. The
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measured spectra are sorted to their respective tip-sample distance in post-processing.

6.2.1 Tip polarizability and effective polarizability

In Ch. 4.2, I have already given an overview over different tip polarizability models. In our

experiments, it has proven realistic to describe the tip polarizability as a tensor

α =

αtip,xx 0 0

0 αtip,yy 0

0 0 αtip,zz

 (6.5)

where αtip,xx is described well by the polarizability of a sphere with the radius of the tip, and

where αtip,zz is matched better by a Lorentzian oscillator with a center energy of ~ω=1.55 eV

and a damping energy of 0.33 eV [93]. In the following, I want to point out the consequence of

these tip polarizabilities on the effective polarizability especially for the spectral range that is

used in the following sections. Also I show the resulting relative effective polarizability that

can be compared to our demodulation measurements. The overall consequence of the field

enhancement of the tip on the spectra is already demonstrated in Ch. 4.2.3.
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Figure 6.4: A: Calculated αeff for a gold surface and the electric field polarized perpendicular to the
surface. In this case the tip dipole was modeled by a by a Lorentzian resonance. Real and imaginary
part of αeff are shown for two tip sample distances of 3 nm and 33nm respectively. B: The same
calculation, but for an electric field polarized parallel to the surface. For this case, the polarizability of
the tip dipole was modeled by a gold sphere with 10 nm radius.

Figure 6.4 shows a replot of the effective polarizability that was already shown in chapter

4.2. Note that the effecitve polarizability reflects the tip-sample interaction where both the tip

polarizability as well as the sample dependent factor β = (εAu−1)/(εAu+1) enter the equation.
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Both, the tip polarizability for a gold sphere as well as for a broad Lorentzian resonance and

the sample dependent factor β are shown in Fig. 4.21.

For Fig. 6.4 I’ve calculated the effective polarizability for a gold film once for excitation of the

tip x (and y-) dipole, i.e., for the incident electric field polarized parallel to the surface, and

once for excitation of the tip z-dipole (electric field polarized perpendicular to the surface).

The data for the dielectric function was taken from Olmon et al. [129]. For comparison, each

figure shows two calculations for a tip dipole in a distance of 3 nm and 33nm from the sample

surface. A large spectral range was taken so that all possible resonances can be observed. The

area not superimposed with a semi-transparent gray area is what we can reasonably well cover

with the spectral bandwidth of the experiment.

Clearly, we can observe a very broad resonance in αeff for the excitation of the z-dipole, i.e.

the tip polarizability modeled by a Lorentzian resonance in Fig. 6.4A. This resonance is within

our spectral range and the amplitude strongly increases as the tip-sample distance decreases.

Furthermore, a resonance shift towards longer wavelengths and a spectral broadening of the

resonance can be observed. The resonance is much broader than our detection region, such

that our measurements will always reflect only a part of it.

For excitation of the x-dipole in Fig. 6.4B a resonance far below our spectral detection range

is excited. As a recap from chapter 4.2 the resonance is reached when the denominator of

the sphere resonance for the tip polarizability is zero, i.e. εtip + 2εair = 0, or when the real

part of the dielectric function of the tip material equals -2. This results in a sharp resonance of

αeff at 532 nm. In the spectral range covered by the laser in this experiment, however, αeff is

rather flat, a little higher at shorter wavelengths, and increases evenly and only slightly as the

tip-sample distance decreases.

For better comparison with the experiment, I have plotted the real part of αeff as a function of

tip-sample distance in the accessible spectral range from 700nm to 860 nm in figure 6.5. Here,

the values are color-coded and the distance decreases from bottom to top. As we measure only

the demodulated signal, we probe only the difference of the effective polarizability with respect

to the tip distance to the sample, because at one time the tip is closer to the sample than half a

modulation period later. Thus, for this figure the effective polarizability at distance 50 nm has

been subtracted from each of the linewise calculated αeff (d, λ).

In this comparison we can see that the amplitude of Re(αeff ) is steadily increasing as the

distance decreases. For the excitation of the x-dipole (Fig. 6.5B) only a weak wavelength

dependency can be observed, i.e. slightly larger values of the polarizability for shorterwavelength

can be observed, which are basically flat otherwise. For the excitation of the z-dipole the spectral

shift and especially the strong increase with decreasing distance can clearly be seen and the
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Figure 6.5: A: Calculated αeff for a gold surface and the electric field polarized perpendicular to the
surface as a function of tip-sample-distance. B: The same calculation, but for an electric field polarized
parallel to the surface.

part of the Lorentzian resonance can be recognized.

Hereby, I would like to note that we never clearly observe a spectral shift in the measurements

that are presented in the following sections. Hence, in our case probably the tip-sample distance

is always larger than we previously assumed, or the tip was not always as sharp as the assumed

10nm tip radius, or the field enhancement of the tip was smaller than the factor of 7 used

in the simulation. In either way, we can abstract that we measure always in the regime of a

weak coupling where spectral shifts do not play a big a role. Still, the presented coupling to the

different components of the tip polarizability tensor will affect the spectra measurement and

has to be considered in the data evaluation.

6.2.2 Illumination of tip and sample: electric field distribution in the laser

focus

The field in the focus region needs to be calculated as the full vectorial field: first, the response

of the tip to an electric field will be different for coupling to the z-component of the field rather

than to the in-plane components, and second, some samples may show an anisotropic response.

In this first example, we only consider a gold film, which we describe with a scalar dielectric

function and thus assume the sample to be isotropic. Later (in Ch. 6.3), however, we will

investigate a film of strongly ordered organic molecules, which show a significant difference

between the in-plane and out-of-plane dielectric function.

For propagation of the focused field through the sample, the field is therefore decomposed in

an s- and a p-polarized component. Both field components propagate through the sample, but

only the p-polarized beam generates a component Ez of the electric field in the focus. However,

both s-and p-polarized waves contribute to the x-component of the focus field. The equation for
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Figure 6.6: Visualization of the simulation geometry (A) and the complex transmission coefficients
through the sample for different wavelengths and at a fixed angle of 0° (B), and for different incident
angles θ at a fixed wavelength of 800 nm (C).

the focus field as a function of spatial coordinates (x,y,z) is then given by (cmp. chapter 4.2)

~E (x, y, z) =
ife−ikf

2π

x

k2
x+k2

y<k
2

[ts(kx, ky) ~E
∞
s (kx, ky) + tp(kx, ky) ~E

∞
p (kx, ky)]

×
√
kz/ke

i[kxx+kyy]eikzz
1

kz
dkxdky (6.6)

Here ~E∞p,s(kx, ky) is the electric field after the lens, but before entering the sample,as described

in chapter 4.2, k is the modulus of the wavevector, f the focal length of the microscope objective

and ts and tp are the complex transmission coefficients for the 20nm gold film on top of a

glass substrate calculated by the transfer matrix method. Hereby the gold layer of thickness d

introduces a phase shift exp(ikzd) that is included in the transfer matrix calculation. However,

in the focus field expression only the phase difference to propagation in air has to be considered.

Consequently, the transfer matrix calculation has been changed to only include the phase

exp(iδ) with δ = (kz − kz,0)d = (kz − 2π
λ cos(θi))d for an incident angle θi . The calculated

transmission coefficients are shown in figure 6.6B and C, once as a function of wavelength for a

fixed angle, and once as a function of angle of incidence for a fixed wavelength. Hereby the

dielectric function of gold was taken from measurements by Olmon et al.[150]. A decreasing

amplitude of real and imaginary part of both s-and p-polarized transmission coefficients with

larger wavelengths can be observed. On the other hand increasing the incident angle leads to

an increase in the real value of the p-polarized transmission amplitude, but a decrease in the

real valued s-polarized transmission amplitude. This will slightly change the spectrum in the
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focus with respect to the incident laser spectrum, as we will see later in this section.
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Figure 6.7: 2D focal field components |Ex| in (A) and |Ez| in (B) after transmission through a gold film
of 20 nm thickness. The fields are plotted in the xz plane, at y=0. The simulation was carried out for
a numerical aperture of 0.95.

The result of the 2D calculation using equation (6.6) is shown in Fig. 6.7 for a numerical

aperture of 0.95, thus kx, ky ≤ kmax = k · 0.95. Plotted are the field components |Ex| and |Ez|
in the x-z plane at y=0 for a wavelength of 780 nm. One can see that the Ex-field has a single

maximum with a FWHM in the focus plane of 680nm. The z-field has zero field strength on

the z-axis with x=y=0 and two maxima in the xz-plane, one on each side. The Ey component

is nearly zero for the plane with y = 0, but is considered in the simulation as well. In the

experiment we align the tip position within this focus region by maximizing a higher order

signal (S3f or S4f ), with the tip in close proximity (around 3nm) to the sample. Coupling

of the Ez component to the tip dominates if the point of high intensity is found in one of the

two maxima of the Ez field. If only one maximum is measured this indicates a strong coupling

to the x-component. In general however, both z-fields and x-fields can mix in the measured

tip-scattered intensity signal. Even if only one maximum is measured in a beam scan, the point

of maximum intensity could still be ascribed to a coupling of both the x- and z-component. This

is due to a mixing of both components that results in a shift of the point of maximum intensity,

as is visualized in figure 6.8. Hence, only when placing the tip at x=0 the field Ez is close to

zero and solely coupling to the x-component has to be considered. When the two lobes of the

Ez field are strong enough to alter the total measured intensity, the point of maximum intensity

can shift away from the x=0 position and the focus field contains both x-and z- components. In

that case the ratio of the two field components highly depend on the exact position of the tip

and is typically hard to establish. For the following simulation we choose the right maximum of

|Ez| (at x=320nm, z=0, y=0), because here both components contribute and the influence of
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Figure 6.8: Sketch of the tip inside the focus field. Depending on the exact tip position the tip can couple
to either the x component of the focus field centered in the middle, the z-component of the focus field
shown as the two lobes with different sign or a combination of both field components.

them can be analyzed.

Furthermore, introducing a sample into the beam path will shift the focus in z-direction. In

the experiment the focus is always aligned on the tip apex. For small tip-sample distances this

is equivalent to placing the focus on the last interface between sample and air, facing the tip.

Therefore, we denote the xy-plane with z = 0. To accomplish this in the simulation one way is

to consider the phase shift due to the curved wavefront that is introduced by the lens or focusing

unit. In the parabolic approximation, assuming the radius of curvature of the lens is much larger

than the beam size near the sample interface, the additional phase can be expressed by

φcomp = −2π

λ

x2 + y2

2fwf
= −2π

λ

fwf tan(θi)
2

2
(6.7)

with fwf the focal length of the wavefront that can be chosen to compensate the z-shift. In

figure 6.7 the factor exp
(
iφcomp

)
is already considered and the focus is shifted to z = 0 by

suitable choice of fwf .

The transmission function for the focal fields |Ex| and |Ez| evaluated in the single spot at

x=320nm, z=0 and y=0 is shown in figure 6.9C. The curves shown in Fig. 6.9C correspond to

the spectrum that would be seen by the tip at this position if the input spectrum was completely

flat. The large decrease of the field amplitude towards longer wavelength is the result of three

effects. One is that the focus is aligned on the gold-sample interface for a wavelength of 780 nm

which was displayed in figure 6.7. For other wavelengths the focus will slightly shift out of the

evaluated focal plane. Furthermore, only a single pixel out of the focus area is considered. As

the focus spot diameter scales with wavelength λ, the focus area scales with λ2. Evaluating
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Figure 6.9: (A) and (B) show cuts through the focus area (fig. 6.7) along the x-axis for y=z=0, showing
A, the |Ex| and B, the |Ez| component of the field, for three different wavelengths. (C) Field strength
in one pixel (x=320nm,y=0,z=0) given as a function of wavelength. |Ey| is 0 in this particular point.

only a single pixel thus results in a decrease proportional to λ−2. This is illustrated in figure

6.9A and B by plotting a cross section through the 2D image of figure 6.7 for z=0 and for

three different wavelengths. With increasing wavelength the focus spot gets broader and the

amplitude decreases. Finally, we already found that the transmission coefficients show the same

decrease with wavelength and play a significant role in this calculation as well (compare figure

6.6C).

As I have shown before, in our measurements the S4f signal is in good approximation propor-

tional to the product of near field and reference field, while a background contribution can be

neglected. To simulate the S4f signal, we thus need to know the near field and the reference

field. In the following, we will first derive the reference field ~ER, before turning to the near-field

scattered by the tip interaction.

The reference field

The reference field is simply constituted by light that is reflected off the gold layer in the focus

area and collimated by the focusing lens. As we evaluate the reference field ~ER far away from

the focus region we can treat the field within the laws of geometrical ray optics. Each ray is

characterized by a particular plane wave of the angular spectrum representation. The signal that

we are measuring on the photodiode is then an integral over all ray vectors with corresponding

angles from θ = 0° to θmax and φ=0 to 360°. We first calculate the light field that is focused

by the lens and is incident on the glass-gold interface. As before, the action of the lens can be

seen as a transformation from the x-y coordinate system to the spherical system. We express
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the field by

~Es = [ ~Einc~nφ]~nφ, ~Ep = [ ~Einc~nρ]~nθ. (6.8)

with the normal vectors given in chapter 4.2. The reference field can now be written as a

function of the k-vector as

~ER(kx, ky) = [rs(kx, ky) · ~Es + rp(kx, ky) ~E
p]
√
kz/k, (6.9)

with rs and rp denoting the complex reflection coefficients of the gold layer as calculated by

the transfer matrix method shown in chapter 4.1.2. We can see from these equations that even

if our incident field is polarized only along x-direction ( ~Einc = Einc~nx) focusing the fields will

generate a y-component also in the back-reflected collimated beam. With the normal vectors

~nφ = − sin(φ)~nx + cos(φ)~ny and ~nρ = cos(φ)~nx + sin(φ)~ny we get for the s-polarized field

~Es = Einc

(
sin(φ)2~nx − sin(φ) cos(φ)~ny

)
(6.10)

and thus, larger azimuthal angles will increase the y-component of the s-polarized field. For the

p-polarized field we get

~Ep = Einc

(
cos(φ)2 cos(θ)~nx + cos(φ) sin(φ) cos(θ)~ny − cos(φ) sin(θ)~nz

)
. (6.11)

The p-polarized field furthermore depends on the angle θ. Hence, both the s-and p-polarized

field components, as well as the reflection coefficients are different and the ratio of s-and

p-polarized components can change for the reflected fields. This is included in the simulation.

In oder to determine ER, we have measured the spectrum reflected off the sample in our setup

in the absence of the tip. This signal is given by

Sw/o tip ∝
x

(k2
x+k2

y≤k2)

| ~ER|2dkxdky (6.12)

In the case that the reference field is much stronger than the background field we can also

neglect the background influence in the measured, non-demodulated spectra (previously labeled

as S0f ) and write Sw/o tip ≈ S0f . Figure 6.10A shows the simulated Sw/o tip signal for a flat

input spectrum (Einc(λ) = 1). We can observe a slight decrease of the intensity for larger

wavelengths. For the case that the incident laser beam is polarized along the x-direction and the

spectrum has some arbitrary wavelength dependency, the incident spectrum can be factored out

and the Sw/otip ≈ S0f signal is directly proportional to the input spectrum E2
inc. Since we have

measured the S0f signal, we can also calculate the intensity spectrum of the incoming laser

beam by |Einc|2 = S0f,meas/S0f,sim, dividing the measured signal with the simulated response
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Figure 6.10: Simulated S0f response for a flat incident spectrum (red), measured S0f signal (blue) and
retrieved |Einc|2 (green)

due to the reflection off the gold film. The result is shown in figure 6.10B as the green curve.

Clearly, the difference of the input spectrum to the S0f spectrum is very small, such that in good

approximation the S0f spectrum could also be used as the input spectrum.

6.2.3 Extraction of distance-dependent near field spectra from measurements

The spectra that are recorded by the fast camera are, in first approximation, periodic with the

tip modulation period and can be approximated by a Fourier series IFλ (t) =
∑∞

n=−∞ cn,λ · einΩt,

where we in practice extract the complex Fourier coefficients cn,λ = c∗n,λ up to order n = 4

from the measurements (compare 3.2).

The index λ designates the pixels of the camera.

In the following I present approach curves that are extracted from the spectra measured with

the fast line camera. The steps are documented for one measurement exemplary in Figs. 6.11

to 6.12.

The recorded dataset consists of 60.000 consecutively recorded spectra. The integration time

was 4.6 µs, and the line readout rate was slightly slower, at fcam = 1
4.6 µs = 210 kHz. With a tip

modulation frequency of fmod = 4.6 kHz, this means that approximately 8 spectra are recorded

per tip modulation period.

Fig. 6.11A shows the spectral region from 740 to 800 nm of the first 100 spectra, recorded during

the first 480µs. The spectra are plotted linewise, as the time increases from top to bottom. The

color code gives the count on each camera pixel. In these spectra the signal increase at the

times the tip is approaching the gold film is already visible as a stripe pattern in this image,

even without any further signal processing. This is, however, very rare and can be seen only in

this particular example of a sharp gold tip with large near-field enhancement above a gold film
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as the sample.

Averaging over the spectra results in the DC spectrum or the unmodulated spectrum, which we

call the S0f (λ) spectrum (Fig. 6.11B). The Fourier coefficients cn with n = 1..4 are extracted

by evaluating equation (3.4), resulting in the higher-order demodulated spectra

Snf (λ) = cn,λ =
1

Tmod

∫ Tmod/2

−Tmod/2
Iλ(t)einΩtdt. (6.13)

With N=60.000 measured spectra and the time span between measurements Tcam = f−1
cam =

4.8 µs the integral transfers into a sum over k, where k indicates the kth measurement:

Snf (λ) =
1

N

N∑
k=1

Iλ,ke
inΩkTcamdt. (6.14)
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Figure 6.11: A:Color coded raw data of the first 100 recorded spectra on a gold surface over time. At
specific times the tip is closer to the sample resulting in an increased intensity signal. The modulation
of the tip is here already clearly visible as dark stripes in the intensity signal. B: The S0f signal, which
is defined as the sum over all 60.000 recorded spectra. C-F: The demodulated S1f to S4f spectra
respectively. The blue curves shows the real part, the red curves the real part of the Snf signals

The demodulated spectra S1f to S4f for a tip in close contact to a 30 nm gold surface are shown

in Figs. 6.11C to 6.11F, respectively. The four spectra are complex, with the real part plotted as

the blue curve and the imaginary part plotted as the red curve. As explained in Ch. 3.2, the

angle φ in the complex plane (tan
(
φn,λ

)
=

Im(Snf (λ))
Re(Snf (λ)) ) is determined by the starting condition,
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i.e. the phase of the tip modulation cycle at the first camera recording. This implies the relation

φn,λ = n · φ1,λ (6.15)

In the current example one finds an angle φ = −62.3°, which is independent of wavelength. In

order to reconstruct the approach curve, we set the angle to zero by rotating the demodulated

spectra in the complex plane

Snf (λ)→ Snf (λ) · e−inφ1 (6.16)

Furthermore, one can see that there is a strong modulation apparent on the S1f signal, which

can be found to much lesser extent also on the S2f signal, but which is almost absent from

the S3f and S3f signal. This modulation has its origin in the background signal. As the

monochromatic measurements on a gold film have shown, for first order demodulation, the

signal S1f is dominated by the interference of reference and background signal. For second

order demodulation, S2f , we expect about equal contribution of background field and near field,

and only for orders n > 2 the near field significantly dominates the background field (compare

Fig. 5.4F).

This is clearly reflected in Fig. 6.11. We have applied a low-pass filter to reduce the interference

(by a Fourier transform on the k-axis, then applying a filter and transforming back to the

wavelength axis). The result can be seen in Fig. 6.12. All four spectra are now rotated in the

complex plane such that the resulting spectra are predominantly real with negligible imaginary

part. Due to filtering, the spectra are now smooth. However, in Fig. 6.12A the modulation has

not been completely removed. This is because the modulation frequency is so low that after

Fourier transformation its signature overlaps with that of the spectral shape on the spatial axis.

The approach curve can now be assembled by adding the Fourier components, i.e., the demodu-

lated spectra:

Iλ(d) =
4∑

n=−4

cn,λe
inΩt(d), (6.17)

with c−n = c∗n, and where the time and distance are connected by equation (3.5).

Since we always measure the relative spectral change Iλ(d)−Iλ(2A)
S0f

with the modulation ampli-

tude A, we here introduce the near-field signal

N(λ, d) =
Iλ(d)− Iλ(2A)

S0f
(6.18)

that is used in the following sections.

Fig. 6.12E shows the assembled approach curve N(λ, d) for the measurement on the gold film.
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Figure 6.12: A-D: The reconstructed S1f to S4f spectra from the measurements close to the 30 nm gold
film after phase correction and filtering in the Fourier domain. E: Calculated approach N(λ, d) from
the reconstructed data. F: Simulated approach with an incident field polarized perpendicular to the
sample and modeling the tip polarizability by an ellipse to mimic a blunt tip that was probably used
in the measurement.

One can see a strong increase for small tip sample distances in a roughly 40 nm broad spectral

band centered at 780 nm. The plotted signal is expected to resemble the real part of the effective

polarizability αeff that was shown in Fig. 6.5(cmp. Ch. 6.2.1). In agreement with the previous

simulation, the calculated effective polarizability from the measurement in this case also shows

a signal increase in a limited spectral range. There are, however two major discrepancies: firstly,

the measured increase is over a much narrower spectral range (roughly one fourth), and it is at

a slightly different center wavelength (about 60 nm shorter). Secondly, the measured approach

shows a much weaker distance dependence than the calculated one. It’s decay length is about

15 nm, whereas the near field decay length of very sharp gold tips has been shown to be <5nm

[154]. This indicates that the tip I used was rather blunt when this measurement was recorded.

It seems that for a blunt tip, the tip polarizability is better described by an ellipse (cmp. Ch.

4, especially equation (4.111)). As was shown already in Fig. 4.16, the polarizability of an

ellipse reflects that of a resonance with a rather small spectral width and the center position

depends on the parameters of the ellipse. A higher aspect ratio of the radius Rz to the radius

Rx of the ellipse shifts the resonance more towards longer wavelengths. The sphere was in

this case just a special case with Rx = Ry = Rz and showed the resonance around 500nm.

To test if an elliptical tip can explain the measurement, I have calculated the approach curve

for a blunt tip with radius of Rx = Ry =20nm and an aspect ratio Rz/Rx of 5.3, shown in
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Fig. 6.12F. As we can see, in this case this simulated approach fits the approach data from the

measurement much better, as now the decay length matches and the resonance is located at the

right wavelength. Overall, only the bandwidth of the resonance seems to be a factor 2 narrower,

which could be caused by a non-uniformly damaged tip with respect to the simulation. This also

demonstrates how the tip shape can highly affect the measured spectrum. In next section I will

show additional measurements on a gold surface, but this time with a tip that is not that blunt.

In that case, the previously shown simulations for the tip-sample interaction can be reproduced.

6.2.4 Near-field spectra on flat films

Here we show the previously simulated and discussed approach spectra reproduced from mea-

surements recorded over a flat gold film. Each of the measurements was recorded with the

same tip and the same gold film, but with the tip placed at a different position within the focus.

Unfortunately, we do not know where in the focus the tip was placed, the focus alignment was

simply changed between two measurements.

Figs. 6.13 A,B,D, and E show four such approach spectra N(λ, d) retrieved over the gold film
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Figure 6.13: A, B, D, E: 4 measured approaches on the gold film. For each measurement the approach
spectrumwas reconstructed from themeasurement data. A and B show a different spectral characteristic
as D and E. For A and B probably coupling to the z-component of the tip (αtip,zz) was predominant
and is comparable to the simulated Re(αeff ) for coupling to the z-component shown in C. For D and
E the spectral approach is rather flat and resembles the result of coupling to the in-plane component
of the tip shown in the simulated result of F.

(cmp. Eq. (6.18)). From their appearance, they can be grouped in two pairs: The approach

spectra shown in Figs. 6.13 A and B display for small tip-sample distances a signal increase
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at longer wavelengths, from λ > 780 nm to the long-wavelength end of the measurement

interval. This resembles the real part of αeff assuming that mainly the z-polarizability of the

tip was excited (simulation shown for comparison in Fig. 6.13C). The other two approach

spectra, in Figs. 6.13 D and E, in contrast, show a rather spectrally flat increase, over the whole

spectral range of the measurement. The signal increase with decreasing tip-sample distance

appears stronger at shorter wavelengths. This resembles the expected behavior for the case that

predominantly the x-polarizability αtip,xx was excited during this measurement.

In conclusion, I have shown that with our measurement geometry, depending on the position of

the tip in the focus, either the z-oriented tip dipole or the x-oriented tip dipole can be excited,

or a superposition of the two. For both cases the near-field signal is completely different to

that of a blunt tip shown in the previous section that was better modelled by an ellipse. Thus

great care has to be taken when aligning this setup to excite tip and sample in the desired way.

Otherwise evaluation of the data can become quite challenging.
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Figure 6.14: (A) Dielectric function εSb2S3
for our wavelength range. (B) Sample dependent factor

β = (εSb2S3
− 1)/(εSb2S3

+ 1). Both the dielectric function as well as the factor β used for the
calculation of an effective polarizability are spectrally flat in the wavelength region supported by our
laser source.

This difficulty is lessened in the second side-illumination setup (which was introduced in Sec.

3.4). In that case, where the tip and sample are illuminated from the side (in the xz-plane, under

20° from the x axis), the polarization of the light field at the tip can be controlled to a much

higher degree. Here, for comparison, we show a measurement of local spectra recorded above a

flat Sb2S3 film, where the electric field vector was aligned along the y-axis, i.e., perpendicular to

the tip axis and within the sample plane. The laser beam was focused with an 0.4 NA reflective

microscope objective. This means that also in the focus the light was predominantly polarized

along the y axis. We can therefore safely assume that excitation of αtip,zz was negligible in

comparison with αtip,yy. Furthermore, the illuminating laser beam does not travel through the

sample, such that unwanted reflections from substrate and sample surfaces are suppressed.
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Instead of using a strong reflection off the sample surface as a reference, a reference beam is

generated in a reference arm with adjustable delay and reference field strength. The general

working principle for evaluation of the so recorded spectral interferograms was described in

Sec. 3.4. The sample was a flat Sb2S3 film (the same as in Sec. 3.4.). Sb2S3 is a semiconductor

with a band gap of 1.7 eV, such that our laser light excitation is well below the band gap. This

means that, in the spectral range accessible in our experiment, it behaves like a dielectric with

a quite flat dielectric function that is shown in Fig. 6.14A.
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Figure 6.15: (A) The first 276ms of the recorded SNOM intensity dataset Iλ,t on the Sb2S3 film. (B)
The squared reference spectrum |ER|2 (red) and the average signal of the measurement (blue). (C-F)
Real, imaginary and absolute value of the calculated S1f to S4f spectra.

Figure 6.15 shows an example of recorded local spectra above Sb2S3 with the side-illumination

setup. The data shown in Fig. 6.15 are from the same measurement series as those shown in

Fig.5B of ref. [117]. The recorded spectra are shown in Fig. 6.15A as a function of time and

wavelength, with the count on each CCD pixel denoted by the color-code. Fig 6.15B shows the

average spectrum in blue, and the reference spectrum extracted the same way as described in

Sec. 3.3 in red.

Then the S1f to S4f spectra are extracted by (i) demodulating the original data pixel-wise with

1f, 2f, 3f, 4f; (ii) converting from the wavelength to the k-axis, (iii) Fourier transform to the

spatial axis, (iv) filtering with the reference arm length, (v) transforming back to the k-axis

and (vi) back to wavelength axis, and finally (vii) correcting the phase. The result is shown

in Fig. 6.15C-F. One can see that the correction of the phase was not fully successful in this

case either: the resulting S1f to S4f spectra are not purely real. This means that the phase

was not constant over the spectral region. This is probably due to a non-ideal tip shape, since
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the sample was an unstructured film with a flat spectral response. Here we correct for the

tip-shape-caused deviation by simply setting the S1f to S1f spectra to real values (or by using a

wavelength-dependent rotation angle in the complex plane to correct the phase to ϕ = 0).
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Figure 6.16: (A) Reconstructed spectral near-field approach data N(λ, d) from the SNOM measurement
on the Sb2S3 film. (B) Simulated real part of the effective polarizability for a Sb2S3 film and excitation
of the tip along the y-axis.

The approach curve assembled from the S1f to S4f spectra is shown in Fig. 6.16A (cmp. Eq.

(6.18)) together with the Re(αeff ) calculated for a tip excited along the y direction as a function

of tip-sample distance in Fig. 6.16B. For the simulation the dielectric function enters in the

sample dependent coefficient β = (εSb2S3 − 1)/(εSb2S3 + 1) that is used for the calculation of

the effective polarizability. β is also spectrally flat, as is demonstrated in Fig. 6.14B. The tip

polarizability αtip,yy that enters the simulation is again modelled by a gold sphere with 10 nm

radius.

Overall, the results show a signal increase over a rather wide spectral range, in good agreement

to what is expected for this illumination geometry. However, where the calculated Re(αeff )

steadily increases towards short wavelengths, the measured curve decreases to both spectral

sides, the long- as well as the short-wavelength side resulting in a broad maximum (or rather a

dip around 720nm in Fig. 6.16A). Even though the measured approach curve shown in Fig.

6.16A has been normalized by the reference spectrum |Eref |2, this decrease towards both sides

may by caused by the finite bandwidth of the laser spectrum. Altogether, the approach curve

measured with the side-illumination setup shows strongly reduced noise and a much improved

image quality, and its spectral shape is in better agreement with the theoretical behavior. The

former is probably due to the increased reference field strength, while the latter may be due to

the improved control of the vectorial field composition in the laser focus in the side-illumination

setup.
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6.3 Local spectra on Squaraine dye molecules

In previous sections local spectroscopy on flat surfaces was discussed. In the following I want

to apply the understanding of SNOM signals that we have achieved there to a more complex

sample, an anisotropic dye material named ProSQ-C16. The anisotropic dielectric function

of this dye has a drastic impact on the interaction between tip and sample. In particular, the

orientation of the dye molecules in space will influence the amount of tip-sample interaction for

a given field polarization.

The measurements presented in this chapter contribute to the understanding of the still relatively

new dye material on a nanoscale level and may help in future experiments, e.g. regarding the

use of the dye as a promising new organic solar cell material.

In the first subsection, 6.3.1, a short introduction to the dye material is given.

To be able to compare measured local SNOM spectra to simulated results the dielectric function

of the dye must be known. In subsection 6.3.2 therefore angle dependent transmission mea-

surements are presented from which the dielectric function can be extracted by modeling the

dye monomers as two-level systems in a quantum mechanical model.

The last subsection presents local SNOM spectra on the dye material. Supported by beam scans

and near-field simulations these results demonstrate the ability to record and understand SNOM

signals even for highly anisotropic samples. Finally, measurements on a non-uniform sample

demonstrate chemical specificity on a sub-diffraction-limited length scale.
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6.3.1 Introduction to squaraine dyes

Squaraine dyes are a class of dye molecules that show strong fluorescence in the red or infrared

region and could be used as molecular thin film material for energy generation (e.g. as a

thin-film solar cell) or energy storage (thin-film batteries). A four-membered ring is the central

core of the squaraines that is derived from squaric acid [188]. This ring behaves as a strong

electron-acceptor group. The four-membered ring is further linked to two electron-donating side

groups either in a symmetric (same side groups) or asymmetric (different side groups) manner

[188]. Thus, squaraines can be described as small molecular quadrupolar donor-acceptor-donor

(D-A-D) chromophores. They can be synthesized through environmentally friendly reactions

and thus are a promising material for organic solar cells or semiconductors or find use as NIR

probes [189–192].
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Figure 6.17: ProSQ-C16 molecular structure with R = C16H33

We investigate the dye ProSQ-C16 recently used for organic photodiodes by Schulz et al.[193].

Figure 6.17 shows the molecular structure.

To understand the optical properties of the relatively unknown dye, we employ transmission

spectroscopy and finally local nanoscale SNOM spectroscopy. These methods will help us to get

insight into material properties. Essentially, the different methods combined help us to gain a

better understanding of the measured sSNOM spectra and the tip-sample coupling process. The

new findings may be applied to all kinds of samples in future works.

6.3.2 The Dielectric function of sqaraine dyes

In all light-induced coupling processes the dielectric function of the sample plays a crucial role,

as it describes the extent to which the medium concentrates the electric flux. Having access to

this material property is a prerequisite to predicting and simulating spectra e.g. for the sSNOM

tip-sample interaction process.

The sample we measure is spincoated on either a glass substrate or the in-line interferometer

substrate used for SNOM measurements and is annealed at a temperature of 300 ◦C. The

annealing process leads to an (self-) aggregation of adjacent monomers resulting in an excitonic

coupling of two (or more) chromophores [193, 194]. As a consequence of the coupling, the

two excited states of the two dipoles split into two levels separated by an energy 2V , which is
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Figure 6.18: A: Energy levels for two two-level systems coupling to each other. B: Measured transmission
spectrum at 0° incidence (blue curve), together with the first quantum mechanical simulation (red
curve). C: Energy levels like in A, but taking into account a splitting in different energy levels, e.g. by
taking into account a variation of the alignment of the dye molecules to their neighbors.

also known as Davydov splitting [194, 195] (compare figure 6.18A). Hereby, the red shifted

band is called the J-Band or the J-aggregate, named after Edwin Jelly, whereas the blue shifted

(hypsochromic shifted) band is called the H-Band or H-Aggregate [196–201]. ProSQ-C16

has two branched side-chains that reportedly lead to Davydov splitting [191]. In comparison,

squaraines with linear alkyl side that show triclinic crystal structures do not support Davydov

splitting but are instead described by charge transfer interactions along the chain [202, 203].

The measured spectrum recorded at an incident angle of 0° shown as the blue curve in Fig-

ure 6.18B supports these findings: we observe two absorption peaks located at 769nm (or

1.61 eV) and 555nm (or 2.23 eV), resulting in a splitting energy 2V slightly above 600meV.

The monomer energy of 1.9 eV, probed by a photon with a wavelength of 652nm, can be di-

rectly deduced from the transmission spectra as arithmetic mean of the J- andH-band resonances.

From the structure of the molecule we can furthermore already see that the molecule is not

rotationally symmetric and hence it is expected to result in a packing that supports optical

anisotropy, i.e. a different dielectric response to light polarized perpendicular to the sample plane

(out-of-plane component) and light polarized parallel to the sample plane (in-plane component).

We now simulate the dielectric function by modeling the dye molecules as a 2-level system in a

quantum mechanical model. This model is then compared to measured transmission spectra.

Here, we firstly start with the already mentioned spectrally resolved transmission measurement

at an incident angle of 0° shown in figure 6.18B. In this case we allow only an interaction with

the in-plane component of the dielectric function of the dye. In a second step we will analyze

spectra recorded under higher incident angles.

Within a quantummechanical model as outlined in chapter 4.1.1 we now describe eachmonomer

molecule as a dipole.
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Thus, for the ProSQ-C16 dye, we describe the coupling of the two dipoles with the same energy

E1 = ~ω1 = E2 = ~ω2 = 1.9 eV in a quantum mechanical model governed by the Hamilton

operator

Ĥ0 = ~ω0 |0〉〈0|+ ~ω1 |1〉〈1|+ ~ω2 |2〉〈2|

+
2∑

n=0

~ωvib(n̂n +
1

2
)

+
2∑

n=1

~ωvib
[
·λ · (â†n + ân) + λ2

]
|n >< n|

+V (|1 >< 2|+ |2 >< 1|)

(6.19)

Here â†n and ân are the phonon creation and annihilation operators and n̂n = â†nân is the

number operator that counts the number of vibronic states (cmp. chapter 4.1.1.2). The first

three terms in equation (6.19) then describe energies of the electronic states, the fourth term

is the Hamiltonian of the non-shifted harmonic oscillator describing the vibrational modes

and the last two terms describe an additional shift of the oscillator along the nuclear coor-

dinate and an electronic coupling of the two states. Here the shift of the potential energy

surface (PES) is determined by the Huang Rhys factor λ. The last term describes a coupling

between the two dipoles with a coupling energy V = ~ωc. From the already estimated maxi-

mum coupling energy we found V = ~ωc = 325meV to give the best match to the measurement.

For the vibrational energy, a typical coupling energy of the ring breathing mode found in

molecules is around 1000-1400 cm−1 or 130-160meV [203, 204]. We found that a vibrational

energy of Evib = ~ωvib = 130meV fits very well to our experimental measurements.

The Huang-Rhys factor λ is a measure for the shift of the potential energy surface and hence

a magnitude of the vibronic coupling [203]. With increasing λ more sidepeaks around each

eigenfrequency ωn will appear in the spectra. We do not see any obvious sidepeaks in our

spectra and hence only allow for a weak vibronic coupling with a value of λ = 0.2. A weak

vibronic coupling might by justified, if we assume a fast energy transfer along the aggregate

length of the squaraine dyes with a relatively long coherent length, as was reported by Higgins

et al. for a pseudoisocyanine J-aggregate with a coherent length of around 50nm [92, 205].

In that case the energy cloud around the nuclei would not be affected much at the time of the

excitation, resulting in only weak coupling to the nuclear degree of freedoms and therefore a

small Huang Rhys factor.

The response of the sample to light excitation can then be expressed by a typical Lorentzian
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line shape by

χ(ω) =
n0

~ε0

∑
n

|µn|2 ·
[

1

ω − ωn − iγ
+

1

ω + ωn + iγ

]
, (6.20)

with ωn the energy states that solve the Schrödinger equation Ĥ0ψ = ~ωψ and µn the magni-

tudes of the dipole moments. n0 = 2.9× 1027 m−3 is the fixed dipole density that we estimated

from the crystal structure of similar squaraines from Balzer etl al. [191]. The damping factor γ

defines the linewidth of the Lorentzian. Here, we used a value for γ of 4× 1013 s−1 (or t = 25 fs)

for the J-aggregate and 10× 1013 s−1 (or t = 10 fs) for the H-aggregate peak. In the simulation

we left the dipole density fixed and used an effective dipole moments usedwhichwere found to be

around 4.2D for the monomer and 5.6D for the J-aggregate as well as 3.7D for the H-Aggregate.

To finally simulate the transmission spectrum we use a transfer matrix formalism as described

in chapter 4.1.2 and the dielectric susceptibility is used to calculate the refractive index by

n(ω) =
√

1 + χ (ω). (6.21)

The resulting simulated transmission spectrum is shown as the red line in Fig. 6.18B. Hereby

the lower energy side of the J-aggreate resonance and the higher energy side of the H-aggregate

resonance can be well reproduced. The small peak at around 705 nm originates from the weak

phonon coupling and could be removed by decreasing the Huang-Rhys factor to 0. However,

in general a weak coupling to phonon modes is more meaningful and is used in the next sim-

ulations as well, therefore we kept it in this simulation. In total however, the parameters for

this model can never be chosen so that the calculated spectrum describes the measurement

sufficiently well. In particular, we can observe that the two resonances are broader than in the

simulation, but only to one side: the H-aggregate band is broader on the low energy side and

the J-aggregate band is broader on the high energy side. This is not surprising, because the

spincoating process will hardly lead to smoothly aligned monomers, but will distribute them

over the sample resulting in defined angles between two coupling dipoles. A different alignment

will alter the coupling energy. Hence, a specific distribution of aggregate alignment and thus of

different energy splittings must be taken into account. This is illustrated by the energy scheme

in figure 6.18C.

Following this discussion, we take into account the orientation of the dipoles describing each

monomer and thus allow for an additional degree of freedom. Figure 6.19 illustrates two dipoles

with dipole moment ~µ1 and ~µ2 spanning an angle θ to each other.
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The potential energy of such a coupled two dipole system can be classically described as

V =
1

4πε0

~µ1 · ~µ2 − 3( ~µ1 · ~n)( ~µ2 · ~n)

r3
(6.22)

with r the distance between two dipoles and ~n = ~r/r.

Consequently, it follows that the coupling energy is given by the angle between the two dipoles

with a potential maximum

Vmax =
µ1 · µ2

4πε0r3
(6.23)

for an angle of θ = 0° or dipoles aligned in a head-to-head configuration. From this equation,

we can further approximate the distance r between two dipoles by the previously found dipole

moment and maximum coupling energy to a value of around 1-2 nm. Hence, for the squaraine

dye the distance between the two dipoles is on the same order as the dipole lengths. In this case

the direction of the dipoles must be distinguished. In the following we consider the potential

energy of both a head-to-head and head-to-tail orientation separately. Hereby we assume that

the angle to the z-axis is the same for both dipole moments so that each of them spans an angle

θ/2 to the z-axis as illustrated in figure 6.19.
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Figure 6.19: Head to tail and head to head orientation of the two dipoles

For a head-to-tail configuration the dipole of both monomers share the same x-direction (along

the dipoles or parallel to the vector ~r), but have an opposite z-direction. In this case we can

write

~µ1,ht = µ1

 − sin θ
2

0

cos θ2

 , ~µ2,ht = µ2

 − sin θ
2

0

− cos θ
′

2

 (6.24)

When we further define the direction of the distance vector ~r to be positioned along the positive
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x-axis (~r = (1, 0, 0)) this leads to a potential energy

Vht =
1

4πε0

~µ1 · ~µ2 − 3( ~µ1 · ~n)( ~µ2 · ~n)

r3

= 1
1

4πε0r3
µ1µ2

(
− cos

(
θ/2
)2 − 2 sin

(
θ/2
)2)

= 1
1

4πε0r3
µ1µ2

(
−1

2
(cos(θ)− 3)

)
(6.25)

For the case of a head-to-head configuration the vectors share the same z-direction but are

opposite in x-direction. Hence, we can deduce

~µ1,hh = µ1

 − sin θ′

2

0

cos θ
′

2

 , ~µ2,hh = µ2

 sin θ′

2

0

cos θ
′

2

 (6.26)

and

Vhh = 1
1

4πε0r3
µ1µ2

(
cos
(
θ/2
)2

+ 2 sin
(
θ/2
)2)

= 1
1

4πε0r3
µ1µ2

(
−1

2
(3− cos(θ))

)
(6.27)
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Figure 6.20: Potential energy V of the head to head and head to tail model for different angles θ

Figure 6.20A shows the potential energy for both the head-to-head and head-to-tail configuration.

Within this description the absorption bands of the squaraine dye can be understood as a strong

coupling of aggregated monomers that split the energy level in two new energy levels |EH〉 and
|EJ〉 which leads to the J-band with a negative potential energy and the H-Band with a positive

potential energy. Hence, both bands correspond to two kinds of oscillatory motion in either a

head to tail (J-band) or head to head (H-band) dipole configuration. With increasing angle θ

the potential energy of the of J-Band decreases, whereas the energy of the H-Band increases

(compare figure 6.20B). Further we can infer that the head-to-tail orientation results in an
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increased dipole moment along the x-direction whereas the z-component of the dipole vectors

cancels out. For a head-to-head orientation the dipole moment in z-direction is increased and

the component along x-direction cancels out.
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Figure 6.21: A: Distribution P (θ) of in-plane angles used for the simulation. B: 0deg incident spectrum
and simulated spectrum using the distribution P (θ).

When illuminating the sample with a diffraction-limited laser spot a large number of molecules

is excited, which means in total we have an angular distribution of dipoles at the laser spot. In

our model this can be included by calculating the electric susceptibility χ(ω) by averaging over

molecular dimer oscillators with different coupling energies. Or in other words, we consider an

angle dependent probability distribution of the dipoles in our sample and accordingly change

the density n0 to

n0(θ) = n0 · P (θ) ,
∑
θ>0

P (θ) = 1 (6.28)

A light beam incident on the sample at 0° incidence angle has only electric field components

parallel to the surface. Hence, a transmission measurement at 0° incidence is only sensitive to

in-plane dipole moments. That means the dipole moment probed by such a measurement is

that of the projection onto the xy plane:

µxy (θ) = 2µ0 cos
(
θ/2
)

(6.29)

In terms of coupling energies with ~ωc = ~ωc,max cos (θ) we can write

µxy (θ) =
µ0 P (θ) ωc(θ)

ωc,max
(6.30)

Also, as the right side of the J-agg resonance and the left side of the H-agg resonance can already

be well described by two coupled dipoles without an angular distribution, we can infer that

higher coupling energies (or small angles) are more likely to be found than smaller coupling
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energies. To match the simulation with the experimental results we used a Gaussian distribution

centered around 0° given by

P (θ) = e−
θ2

2σ2 · 2√
2πσ

(6.31)

with σ = 22.6, which is shown in Fig. 6.21A. The distribution is symmetric in θ around θ = 0,

i.e. negative angles have the same probability as their positive counterpart. Hence, we only

considered positive angles to normalize the sum in eq. 6.28.

With this angle distribution we then simulated the transmission spectrum. This is shown in Fig.

6.21B as the red line together with the measurement shown as the blue line. Hereby, we used

an effective dipole moment for the low energy side (J-agg) of µ0,1 = 7.6D and the high energy

side (H-agg) of µ0,2 = 3.9D. To get a better match with the measurement we additionally

increased the factor γ for the case of no coupling by a factor of 3 compared to the H-aggregate

band, which is related to a part of non-aggregated monomers and results in a broader line width

for the monomer peak. As we can observe from Fig. 6.21B the simulated result matches the

measurement very well. Thus, the angular distribution of dipole angles solves the discrepancy

of the simulation using only one fixed coupling energy and gives us a good intuitive picture of

the microscopical distribution of the dye molecules.

The dielectric function used to produce the transmission spectrum in Fig.6.21A as the red line

is shown in Fig. 6.22A as the red line.

Figure 6.22: Dielectric function (left) and refractive index (right) of the anisotropic sample.

Now we want to analyze angular dependent spectra. Here, the sample surface with the dye

material is not perpendicular to the laser beam anymore, but is tilted by an angle. Hence, a

p-polarized light beam incident on the sample under a non-zero angle contains both electric field

components parallel and perpendicular to the surface. The measurement was performed with

an s- and p-polarized input beam under 4 different angles 0°, 30°, 60° and 75°. The recorded
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Figure 6.23: Angular dependent measurements for p-pol light (A) and s-polarized light (B). The blue
curves show the measurement, the green curve the simulated transmission.

spectra are shown as the blue lines in Fig. 6.23A for the p-polarized input light and in 6.23B for

the s-polarized input light.

From the measurement using the p-polarized light we can see that the ratio of the two resonances

changes for higher angles: For 0° incidence, the absorption of the H-band is very low with

respect to the absorption of the J-Band, whereas for 75° incidence and the absorption for the

H-band drastically increases and is now nearly on a comparable level to that of the J-band.

For transmission spectra measured with s-polarized light, the ratio of the J-band and H-band

does not change noticeably as can be seen in Fig. 6.23B.

These findings in the spectra cannot be reproduced with an isotropic refractive index and are

a proof for anisotropic behavior of the squaraine dye. Hence, the full tensor of the dielectric

function must be considered. To account for this, we used an uniaxial anisotropic model of the

Fresnel coefficients as derived in chapter 4.1.3 and exploit a different refractive index for the in-

plane (nx = ny = no) and the z component nz = ne. The difference between p-polarized and

s-polarized light is expected as well, because only the p-polarized light produces a z-component

and here the effective refractive index of the medium is a superposition of both the ordinary

and extraordinary refractive index. On the contrary, for s-polarized light the effective refractive
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index of the medium is the same as the ordinary refractive index.

From geometrical considerations, the dipole moment for the z-components is then given by

µz (θ) = µ0 · (sin (θ) + ν cos (θ)) · c The term ν cos (θ) accounts for the rotation of the two

coupled dipoles in space. That means the dipoles can span an angle θ to each other, but can

still be rotated in space. Hence, the z-component can be higher, for example when one of

the molecules is aligned along the xy plane and the other molecule points out of the plane.

The maximum allowed contribution to the z direction is thus (sin (θ) + ν cos (θ)). The actual

projection to the z-plane has to be equal or smaller than the maximum allowed values. This is

regulated by the factor c with c<1.

We found that for c=0.074 and ν = 2.46 our simulation shows a goodmatch to the measurement

as is shown in Fig. 6.23A as the green line. The complete resulting dielectric function is shown

in figure 6.22. Hereby the new component for the z-direction is plotted as the blue line. In total

the transmission spectra calculated with this dielectric function match both the measurement

for s- and p-polarized input light for all measured angles to a large extent.

From these results, it becomes clear that for larger angles and p-polarized light stronger coupling

to the z-component of the electric field takes place. As we can see from εz, in this case the H-

Band is increased with respect to the J-Band: The in-plane component of the dielectric function

εxy shows a ratio of around 8 between the J-Band and the H-band, whereas the out-of plane com-

ponent εz shows a ratio of nearly 1. At the same time we observe that the maximum value of the

dielectric function for the H-aggregate is decreasing by a factor of 2.6 with respect to the in-plane

component, whereas the J-aggregate peak is decreased by a factor of around 20. Hence, the

J-aggregated dipoles are mainly aligned within the xy plane and only show a weak z-component.

These findings and the acquired dielectric function are used in the following section to simulate

and understand SNOM near-field spectra measured on the sample.

6.3.3 Nanoscale spectrsocopy

For local spectra measurements we use the same SNOM setup as outlined in previous chapters.

We are using the in-line interferometer that was described in chapter 5 as a substrate to enhance

the near-field contrast by homodyne mixing, and the squaraine dye is spincoated on top of it.

Additionally, gold particles are placed on top of the dye to demonstrate spectral contrast, i.e. we

are able to compare the local near-field on the dye with the near-field on a gold nanoparticle.

The squaraine dye itself was prepared by M. Schieck of the energy and semiconductor research

group of the university of Oldenburg. The exact procedure is documented in [193]. In total

the sample then consists of 4 layers that are visualized in figure 6.24: a 180 µm-thick glass

substrate (BK7), a 20 nm-thick gold film, a 107 nm-thick SiO2 glass layer and the spincoated
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layer of the squaraine dye with about 17 nm thickness. Finally, we spincoated the gold-particles

on top of the squaraine layer. The solution originally contained monodispers particles with

nominally 30 nm diameter, but after spincoating we typically found larger clusters of particles

with sizes of around 200nm diameter. These bigger particles are far off-resonant with respect

to the spectral range of our laser system and thus the local measurement on top of such a par-

ticle is comparable with a measurement on a flat gold film that was analyzed in previous sections.

Figure 6.24: Left: Visualization of the layered sample used in the SNOM: a BK7 glass substrate, a thin
17nm gold layer, a SiO2 glass layer (107nm), the spincoated squaraine dye (17nm) and around
100nm gold particles on top. Right: Illustration of the fields that propagate through the layered
system.

In a first step we now analyze the spectra measured on the squaraine material far away from

any gold particle. In a second step we compare the spectra measured on the dye material with

one measured on the gold particle.

To analyze the the SNOM spectra measured on the dye material we need knowledge of the

reference field as well as the focus field. The reference field is already known as the laser

spectrum reflected at the gold layer (cmp. the right image in Fig. 6.24). The focus field however

is the field after transmitting through the complete 4 layer system for different angles, which

then interacts with the tip. After interaction the field is then propagating through the sample

a second time. To calculate the focus field we thus need the TMM model to calculate angle

dependent transmission coefficients and the refractive index of the dye material which was the

result of the previous subsection.

The focus fields can then be calculated as outlined in chapter 4.1.4. Fig. 6.25A shows the

result of such a calculation: the spectrally resolved focus field components |Ex| and |Ez| after
passing all layers, and assuming a spectrally flat input spectrum of Ein(λ) = 1 V/m. Hereby

all allowed k-vectors for a microscope objective with an NA=0.95 are considered. The electric

field magnitudes are shown for two positions inside the focus field, namely at x = 0, where

the x-component has its single maximum, and x=320nm, at one of the two maxima of the z-

component (at ± 320 nm). The resulting figure 6.25A shows that the x-component of the focus
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field has a larger electric field strength than the z-component. This is true even for the case that

the tip is placed on the right-hand spot at x = 320nm for a maximum of the |Ez| component.

Furthermore, the z-component is almost 0 when the tip is placed in the focus area at x = 0.

This coincides with the findings from the previous transmission measurements, that the dielectric

function for the in-plane component of the J-aggregate resonance is increased by a factor of

around 20 in comparison to the out-of-plane component and suggests that even with a high field

enhancement factor of the tip, coupling to the xy component of the tip polarizability matrix

will probably outweigh the coupling to the z-component.
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Figure 6.25: A: Focus fields |Ex| and |Ez| through the in-line interferometer with squaraine dye for
either placing the tip on the maximum spot of |Ex| (x=0nm) or |Ez| (x=320nm). The dielectric
function used to describe the squaraine dye layer is the same that was found previously and is plotted
in Fig. 6.22. B: Typical measured beam scan demodulated at the 4th harmonic around the tip apex
shows just one maximum, indicating a higher coupling to the in-plane component of the tip than to
the z-component.

Additionally, Fig. 6.25B shows a measured beam scan with the tip in close contact, i.e. the tip

is on a fixed position close to the sample surface and the piezo mirror in front of the 4f lens

system is moved such that the beam scans an area around the tip. Here, the signal from the APD

demodulated at the 4th harmonic of the tip frequency is shown. The beam scan can be seen as a

measure for the focus field that interacts with the tip dipole. From this measurement we can see

that the scan reveals just a single maximum and not the two maxima expected for the Ez focus

field component. As pointed out in earlier chapters this does not necessarily mean that there is

no z-component at all, as they could still be mixed together, but a single maximum is neverthe-

less a strong indication that coupling to the in-plane component plays an important role for this

tip-sample system. Together with the focus field simulations we conclude that in-plane coupling

is the dominant factor. In the following we therefore focus our attention on the in-plane coupling.

It should be noted though, that for other 2D materials the coupling could be even manipulated



6.3. LOCAL SPECTRA ON SQUARAINE DYE MOLECULES 157

by the tilt angle of the tip. K.D. Park and M. Raschke for example recently showed that a tilted

tip can be used to break the axial symmetry in tip enhanced near-field microscopy. A tilted

tip can then systematically be used to probe 2D materials as it leads to a localized plasmonic

antenna effect. This means the optical field vectors are enhanced and the amount of in-plane

and out-of-plane components can be controlled by the tilt-angle [206].
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Figure 6.26: (A-D) Signals S1f to S4f respectively. The blue curve always shows the real part, whereas
the red curve shows the imaginary part. The black dotted line in A additionally shows the S0f spectrum.
The applied phase correction led to an almost negligible imaginary part. (E) The reconstructed near-
field approach N(λ, d) from the measured data. (F) Simulated effective polarizability for the material
and the incoming field polarized along the x-direction
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Figure 6.27: A:Dielectric function for the J-aggregate of the squaraine dye (cmp. Fig. 6.22).B: The sample
dependent factor β = (εJagg − 1)/(εJagg + 1) that enters calculation of the effective polarizability.
C:Effective polarizability αeff,xx with the tip polarizability modeled by a sphere with 10nm radius
for two distances d=3nm and d=33nm.
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Figure 6.26 now shows a typical SNOM spectrum recorded on the dye material with the tip in

close contact. Here, Fig. 6.26A-D show the complex S1f to S4f signals. The blue curve shows

the real part and the red curve the imaginary part of the signals. Analogous to the previous

chapters the initial phase was corrected in a post-processing step, which leads to an almost

negligible imaginary part. The spectra look very similar in all Snf signals. Especially the fact

that the shape of the S1f signal is not different from the other ones indicates a small background

field contribution. As expected from previous measurements, the overall signal strength is

decreasing for higher harmonics of the tip frequency.

Using these signals we can now recreate the spectral approach. To account for the transmission

through themultiple layer system in both the excitation and back-scattered signal, we normalized

the calculated near-field by (Eref t)
2 instead of only E2

ref . Hereby we define t = |Ex|/Ein with

the simulated electric field in the focus Ex at x = 0 shown in Fig. 6.25A and Ein the constant,

wavelength independent field along x-direction.

The recreated approach curve data N(λ, d) (cmp. Eq. (6.18)) is shown in Fig. 6.26E. Here,

an obvious difference to the results on spectrally flat surfaces of the previous chapters is visi-

ble. In fact, we can observe a maximum signal around 760nm and almost no signal at larger

wavelength. This maximum is located around the wavelength of the J-aggregate absorption

maximum, slightly shifted towards shorter wavelengths due to the coupling with the tip. This

means we presumably probe the local interaction of the tip with the J-aggregate. An interac-

tion with the H-aggregate can’t be seen, because the expected peak is outside our laser spectrum.

Fig. 6.25F shows a comparable simulation of the effective polarizability for the squaraine dye

material. Following the results on the focus field simulations, we hereby used an incident

field polarized along the x-direction and the tip polarizability was modeled by a sphere with

10 nm radius. The parameters entering this simulation, such as the factor β and the dielectric

function of the J-aggregate in the wavelength range between 600nm and 860nm are plotted

in Fig. 6.27A and B. The dielectric function was hereby taken from the previous transmission

spectra calculations. By comparing the simulated effective polarizability with the reconstructed

approach spectra from the measurement, we can find that both the measurement and simulation

show a resonance of around the same width in the spectral range. For the simulation however,

the maximum intensity of this resonance is shifted towards shorter wavelengths, which can

also be observed in the factor β(λ) in Fig. 6.27B and in αeff,xx(λ) at a distance of d=3nm

in Fig. 6.27C. The shape of the near-field approach N(λ, d) hence differs considerably from

the calculated effective polarizability. This could be due to an erroneous assumption for the

absorption of the electric field in the substrate, e.g., due to a locally varying film thickness.

Furthermore, the decay length is much shorter in the simulation. This difference in decay length

is typically caused by a larger tip radius than we assumed for the simulation.

Hence, we believe both the resonance in the simulation as well as in the reconstructed near-field
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from the measurement represent the same influence of the J-aggregate resonance.
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Figure 6.28: A: AFM scan of gold particles on top of the spincoated squaraine dye, B: Line scan over the

gold particle and dye as indicated by the green line in A. The blue curve shows the topography change
from AFM, the red curve shows the discrimination factor which is defined as the division of the mean
values of the spectrum from 781nm to 866nm to the mean values of the spectrum from 662nm to
753nm. The dotted lines show the values taken to measure a optical resolution of around 14nm in
the 10-90% interval. C & D: Graphical 2D representation of the reconstructed near-field approach
signal N(λ, d) with the tip positioned at x ≈ 5nm and x ≈ 400nm of the linescan in B, i.e. once on
the dye material and once on the nanoparticle as indicated by the magenta and cyan dot in (A).

To demonstrate that the observed spectral shape of the near-field measurement indeed is a first

indication of spectrally resolved near-field measurements with chemical specificity, we recorded

AFM and optical near-field maps for a region with both the squaraine dye material and a gold

particle on top.

Figure 6.28A shows the AFM scan of such an area. The spincoated dye exhibits a rather flat

surface topography with a surface roughness of less than 10 nm. We can identify a larger cluster

of gold particles in the lower right-hand quadrant of around 200nm diameter and 100nm

height. We measured spectra in a 2D area marked by the red box and a linescan as indicated by
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the green line.

We know already that the SNOM spectra on the dye material show a pronounced resonance,

whereas spectra on flat films show a rather flat spectral response. To quantify this spectral

behavior for a complete linescan we introduce a discrimination factor, which is defined by

the ratio of the mean value of the reconstructed, normalized near-field signal at a tip-sample

distance of around 3nm between 781nm to 866nm to the mean value between 662nm to

753nm. This discrimination factor is closer to unity for relatively flat near-field spectra and

deviates more from unity, the stronger the spectral variation between these two spectral ranges

is.

Figure 6.28B shows the AFM topography for the linescan as the blue curve together with a plot

of the discrimination factor as the red curve. On the AFM topography we can clearly identify the

nanoparticle starting from position x ≈ 300nm to x ≈ 500nm and reaching a height of 80 nm.

The discrimination factor roughly follows the topography curve and has its maximum, closest to

unity, on top of the gold particle. The discrimination factor is much smaller, ∼0.35, to the sides

of the nanoparticle, where the tip was above the J-aggregate film. The height profile further

shows that the particle has a rather sharp edge. The height decreases from 80nm to nearly

0 nm over a distance of around 20nm in the 10-90% interval. The discrimination parameter

follows this trend, but decreases even faster. Here, the factor decreases from 0.62 to around the

baseline of 0.35. In the 10-90% interval marked by the dotted lines this happens on a scale of

around ∆X ≈ 13nm. This gives an upper limit for our optical resolution and shows that the

tip was quite sharp at the time of this measurement.
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Figure 6.29: Near-field signal at a wavelength of 854nm in (A) and 754nm in (B). The area of this
scan is illustrated by the red box in Fig. 6.28A.

To emphasize the importance of the discrimination between measuring near-fields on the gold

particle and on the dye material, Figure 6.28C and D now show two reconstructed near-field

approach curves from the measured data. Fig. 6.28C shows the near-field for a position on the

dye material as indicated by the magenta point on the AFM image (at x ≈ 5nm) and Fig. 6.28D

for a position on top of the nanoparticle (at x ≈ 400nm) as indicated by the black point on
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the AFM image. The colorbar of both figures is scaled to the overall maximum of both datasets.

In comparison we find a well pronounced resonance on the dye material, similar to the one

we observed before in Fig. 6.26E, On the gold particle however, the near-field signal is almost

flat and much weaker. The gold particle shields the tip from the dye material resulting in a flat

spectral response. This is also the reason for the steep increase of the discrimination factor in

Fig.6.28B and means the spectrum measured on the gold particle has a shape similar to the

input spectrum, whereas on the dye material a clear deviation from the input spectrum can be

observed.

Finally, we have used the spectral contrast to create two maps that show the chemical specificity

for the areas indicated by the red box in Fig. 6.28, which is demonstrated in Fig. 6.29 for

two wavelengths. Here, the optical near-field signal is shown in a 2D plot for a wavelength

of λ = 854nm in Fig. 6.29A and for λ = 754nm in Fig. 6.29B. The map at 845nm shows a

high near-field signal on the gold particle and a lower near-field signal on the dye, whereas

the map at 754nm shows a strongly increased near-field signal on the dye material. In fact,

the near-field signal on the dye in this case is increased by a factor of around 1.3 against the

highest near-field signal on the gold particle at 854 nm. Hence, the image looks like the inverted

version of the near-field signal for 845 nm.

The difference here can be ascribed again to the dielectric function: the gold particle is far

off-resonant for both wavelengths and hence the dielectric function is very small and so is the

interaction with the tip. At the wavelength of 854nm also the dielectric function of the dye is

very small, as this wavelength is far away from the J-aggregate resonance at around 760nm.

Here, the dye is nearly transparent for the wavelength of 854 nm and the interaction with the

tip is less pronounced than for the off-resonant gold particle. The measurement on the dye is

then comparable to a glass substrate which typically has a smaller near-field than a gold surface.

The wavelength around 754 nm is near the J-aggregate of the dye and the dielectric function is

much higher than that of gold and hence the tip-sample interaction is pronounced, resulting in

a higher effective polarizability.

Overall these measurements demonstrate the possibility to measure near-field signals even on a

highly anisotropic material where mainly coupling to in-plane component can occur. In the

next section we demonstrate exemplary for a nanorod antenna that we can even observe and

decouple an interaction to both in-plane and out-of-plane component in the same measurement.
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6.4 Spectroscopic imaging of nanorod antenna modes

Figure 6.30: Visualization of a SNOM tip over a nanorod dimer antenna

As a final example, we show how the non-trivial polarizability of a nanotip can be used for

vectorial near-field studies. In this example, we study a nanorod dimer antenna as visualized in

Fig. 6.30.

Optical nano antennas can be seen as the counterpart to microwave and radio frequency

antennas that find use in our everyday life. Nano antennas however show some interesting new

physical phenomena, one of them is to provide a highly localized and enhanced field inside

the gap between the two antenna structures. The strong fields can be explained by a lightning

rod effect resulting in a large electric field near the sharpest end of the structure. This happens

both in the gap and at the ends of the rods. The ability to provide an interface between highly

localized informations, due to the excitation of surface plasmon polaritons, and free space

wireless information in the form of electromagnetic waves [179, 182], makes nano antennas an

extremely important tool in the research area of plasmonics. So far optical nano antennas have

been used for higher harmonic generation [207, 208], optical imaging, biological and chemical

sensing of single molecules [209, 210] and other applications that use light in the visible or

near-infrared region [211, 212]. Overall, the remarkable advance in nanotechnology led to a

high interest in nano antennas to manipulate optical properties on the nanoscale by changing

antenna parameters, such as gap size, structure size and antenna material.

In order to design and optimize such plasmonic resonators, a detailed knowledge of the

nanoscopic light field becomes essential. For the case of investigating strongly scattering

plasmonic structures, SNOM is arguably the method that comes close to the ideal of measuring

electric and magnetic fields on a sub-wavelength scale, without perturbing the fields [213].



6.4. SPECTROSCOPIC IMAGING OF NANOROD ANTENNA MODES 163

As we have seen in previous chapters this is of course not the case for samples without strong

scattering properties, where the SNOM tip highly perturbs the system. Even though a full

vectorial field characterization at the nanoscale remains challenging, some successful attempts

can be found. For example, using two-channel detection, two of the field components (usually

both in-plane components) of both electric and magnetic fields can be unraveled and the re-

maining components (usually the out-of plane component) can be subsequently derived from

Maxwell’s equations. Such approaches have been demonstrated for both collection-mode [214]

and scattering-type SNOM [215]. Using a bent near-field probe, the scheme can be altered

such as to measure directly one in-plane and the out-of-plane component [216]. Here, we

demonstrate a different solution to this long-standing problem, where we measure the in-plane

and out-of-plane electric field component simultaneously and by employing our near-field spec-

troscopy technique. This is possible because one component is spectrally shifted with respect to

the other due to a different tip-sample coupling.

Fig. 6.31 shows a typical simulation of the fields around such nanorod antennas. Considering

the strong coupling behavior of the antenna structure each nanorod is hereby modeled as a chain

of individual dipoles. The electric field ~Ei at the position of the dipole is then a superposition of

the excited fields of all other dipoles (compare chapter 4.2.2).

|Ex| |Ey| |Ez|

|Ex| |Ez| |E|

|Ex| |Ez|

A B C

D E F

G H I
|E|

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

Figure 6.31: Rod antenna mode. A-C: FEM simulations for a wavelength of 707 nm of the fields Ex,Ey
and Ez in the xy plane with z=30nm evaluated at the top of the antenna structure. D-F: FEM
simulations of the fields Ex,Ez and |E| in the xy plane with z=0. At the bottom of the antenna, a
glass substrate was assumed. G-I: Simulations of the fields Ex,Ey and Ez in the xy plane with z=0 by
the Green’s function approach that show a comparable result..

Since for a nanorod essentially the component along the rod-axis plays a role, the polarizability

tensor of each of the rod dipoles can be reduced to only one nonzero component, the x-component

αxx. Compare chapter 4.2.2 for the phase relation and calculation of the fields around the

nanorod.
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The polarizability (as derived in chapter 4.2.2) is now multiplied with a spectral lineshape

S(ω, ωr, γr) that describes the nanorod antenna mode by a Lorentzian with a resonance energy

of ~ωr = 1.74 eV and a linewidth of ~γr = 0.05 eV. The nanorod itself is modeled by a cylinder

of length 2L = 30nm and the ends are closed by a hemisphere of radius R = 5 nm. Similar

parameters were recently used to describe the vectorial near-field coupling of a SNOM tip to a

nanorod as shown in [93, 95].

The field around the nanorod calculated by ~E(~r) = µ0ω
2
0

∑
i

←→
G(~r, ~ri)~pi with ~pi =

←→
α (~r, ~ri, ω) ~Eexc

(cmp. equation (4.125)) is then shown in Fig. 6.31G-I for a wavelength of 707nm. The exci-

tation field ~Eexc was set to ~Eexc=(1,0,0), hence an excitation field polarized along the long

antenna axis. This is in analogy with the experimental scheme, which is described below.

Figures 6.31A-F show the fields calculated for the the xz and xy plane with a FEM simulation.

For the FEM simulation, the nanoantenna was placed on a glass substrate and excitation is from

the bottom with an excitation wavelength of 707 nm and the input field is polarized parallel to

the long axis of the antenna, as well. Clearly, both the Greens function approach as well as the

FEM simulation show comparable results. Both show the strong fields in the antenna gap and a

weaker field around the nanorod edges.

Next, I want to focus on the SNOM measurement. Also hereby, the nanorod dimer antenna is

illuminated by broad-bandwidth laser pulses from below, i.e., through the glass substrate, with

the polarization set parallel to the nanorod’s long axis (along the x-direction in our geometry).

This way, the fundamental mode is excited globally, and since the nanorod is a much stronger

scatterer than the near-field probe, we can, in this experiment, view the tip simply as a local

probe brought into the near field of the nanorod. The tip is then polarized by the local electric

field around the nanorod dimer and emits dipole radiation to the detector. In order to disentangle

the in-plane and out-of-plane components of the electric field, we chose a relatively blunt tip,

which should show the polarizability of an elliptical tip. We expect the in-plane- (x and y)

components of the tip polarizability to be flat, corresponding to the polarizability of a sphere,

such that the detected near field in-plane components should spectrally closely resemble the

resonance of the nanorod dimer.

The z-component of the tip polarizability, however, should correspond to the polarizability of

an ellipse and should display a resonance in the spectral region of our experiment. Hence we

expect out-of-plane (z-polarized) near field components to be spectrally shifted to the ellipse’s

resonance. As a result, we should be able to distinguish between the in-plane and the out-of-

plane electric field components of the near field in spectrally resolved measurements.

Figures 6.32A-C show 3 randomly chosen SEM images of nanorod antenna structures. They

were produced out of a 30 nm thick, flat gold film on a BK7 glass substrate. A gallium ion beam

was then used to remove the gold layer in a box around the desired gold nanorod structure,
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Figure 6.32: (A)-(C) SEM images of different nanorod antenna structures produced by foscussed ion
beam milling. Both the gap size and the rod dimensions differ for each structure, thus the exact
resonance frequency of the antennas may change as well. (D) AFM height image scanned with a blunt
tip.

i.e. only the glass substrate is left around the structure. The gap in the middle was finally

produced by focused Helium ion beam milling. The antennas were designed to have a resonance

around 780nm. The SEM images however clearly indicate a change in both gap size and rod

dimensions for different structures. Thus, the actual resonance frequency will differ for different

antennas and can only be estimated, e.g. by FEM simulations and comparison to previous works

of similar shapes.

In other works we found that resonances of nanorod dimer antennas are redshifted with respect

to the resonance of a single nanorod and typically antenna resonances of around 800 nm or even

longer wavelengths are reported. For example Biagioni et al. [179] showed that the resonance

for a 100 nm long single nanorod is around 770nm which shifts to 830 nm when going from a

single-wire structure to a 10-nm-gap two-wire structure. Gittinger el al. measured darkfield

and scattering spectra for nanorod antennas with sizes of 90×35×30nm that are only slightly

longer than the ones we used. They observed a resonance around 750nm for gap sizes larger

than 20nm and also a red-shift up to 900nm for very small gap sizes of less than 5 nm [212].

All these works however use longer and more asymmetrical nanorods in comparison to our

structures.

In general a single rod already has its own two surface plasmon resonances for polarization along

the nanorod and perpendicular to it. Muskens et al. showed, that for nanorods with increasing

lengths, the longitudinal mode shifts to longer wavelengths, but the transverse resonance is

unaffected and is located around 600 nm for nanorods of 60 nm width and 20nm height[217].

When two nanorods are brought in close proximity, there is a coupling of the longitudinally

polarized surface plasmon resonance resulting in a red-shifted, delocalized bonding mode [212].

In our case, the ratio of width versus length of the single nanorods is close to 1, a few of the

produced nanorods are even more square than elongated. In this case, the two resonances for

a single nanorod are very similar and the longitudinal mode is more blue-shifted than in the

previous mentioned works for more elongated rod-structures. Here, Muskens et al. predict

a resonance below 700nm for a nearly quadratic nanorod with sizes of around 70x60nm
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positioned in each antenna arm. For slightly longer nanorods of 80 nm length the resonance of

the dimer antenna shifts to a wavelength of around 700nm. Following these results, we think

the resonance of our nanorod dimer antenna structure could be located in the lower 700nm

region, between 700nm and 750nm, as well.

The nanorod antenna that we measured with the SNOM has dimensions of around 85x60x30 nm

and a gap size of around 10-15 nm. An AFM image of this structure is shown in Fig. 6.32D. In

this scan the edges of the nanorod are not very clear and the structure looks slightly larger than

in the SEM images. Also, in contrast to the SEM image, the height in the gap barely reaches 0.

This discrepancy is due to the larger size of our tip, that was most probably exceeding the gap

size, i.e. our tip was relatively blunt which now results in a convolution of the tip shape with

the rod structure. From the edge steepness we estimate the tip radius to be around 25-30 nm.

0 10 20 30

0

2

4

6

8

50 nm
0 10 20 30

0

2

4

6

8

A B

50 nm
0

10

20

30

40

50

60

70

H
ei

gh
t (

nm
)

3

4

5

6

7

N
ea

r-
Fi

el
d 

in
te

gr
at

ed
 o

ve
r a

ll 
w

av
el

en
gt

hs
 (a

.u
.)

Figure 6.33: (A) AFM image of the coarse scan with fewer points. (B) Corresponding optical near-field
signal integrated over all wavelengths.

The spectrally resolved SNOM scan was then carried out with fewer points on a smaller area

around the same nanorod to avoid too much mechanical drift during the measurement. The

coarse AFM image together with an optical near-field signal is shown in Fig. 6.33. The optical

signal in this case is the calculated near-field from the measurement integrated over the complete

wavelength range. Already here we can see that mainly the edges and the gap of the nanorod

antenna have a reasonable high near-field signal. In the following we want to investigate the

spectrally resolved near-field at 4 points of interest as indicated by the 4 points in Fig. 6.33A:

in the antenna gap, on the edge of one nanorod, in the center of one nanorod and outside the

nanostructure on the glass substrate.

Fig. 6.34 shows the near-field spectra N(λ, d) (cmp. eq. (6.18)) as a function of tip-sample

distance for these 4 points indicated in the AFM image.

The results clearly demonstrate that we have a very strong near-field enhancement in the gap
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Figure 6.34: Local near-field spectra recorded inside the gap (A), at the edge of the nanorod (B) in
the middle of one rod (C) and outside the nanostructure (D) as visualized by the colored dots in Fig.
6.33A.

in Fig. 6.34A. Only there we observe a resonance around 710nm and a total near-field at

least twice as high compared to any other position on the scan area. Here, we believe, the

x-component of the electric field is dominant, which couples to the x-component of the tip

polarizability. A more accurate determination of the tip-induced shift would require an analysis

of the eigenmodes of the nanorod antenna dimer, e.g. using FTDT simulations, and a comparison

with spectrally resolved near-field maps at different wavelengths. This was, however, not possible

within the timeframe of this thesis and is left for future works.

The near-field on the edge of the nanorod in Fig. 6.34B mainly shows a second resonance around

760nm, whereas the strong near-field we observed at 710nm is almost completely vanished.

We believe that this reflects the resonance of an elliptic tip for polarization in z-direction. This

is in agreement with the measurement position on the edge, where a strong z-component of

the electric field is expected. A similar resonance could be demonstrated for a blunt tip over a

gold sruface as well (cmp. Ch. 6.2.3).

The measurement on the nanorod middle position in Fig. 6.34C is comparable to a measurement
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outside the antenna structure in Fig. 6.34D: here we see almost no resonances anymore and

the overall spectral response is rather flat and the near-field strength is comparable to that of a

near-field measurement on a glass substrate.
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Figure 6.35: Simulation of the near-field around the nanorod antenna. (A) shows the assumed spectral
lineshape of the nanorod antenna resonance. (B) is the assumed tip polarizability αtip,xx. (C) show the
simulated near-field spectra as a function of wavelength and tip-sample distance for the tip polarizability
shown in (B). (D) is the assumed tip polarizability αtip,zz and (E) shows the corresponding near-field
signal for this tip resonance.

In order to verify our intuitive understanding of the SNOM data, we now simulate the four

presented spectrally resolved approach curves, which were measured at the four selected tip

positions. Here we consider a simple second-order scattering event that should reflect the

experimental situation quite well: We take the nanorod to have a strong dipole moment,

induced by the laser illumination from the back, and the gold nanotip to act as a much weaker

dipole that is excited by the nanorod’s near field and emits dipole radiation towards the detector.

For this simple simulation, we model the rod antenna as a chain of 2 × 11 dipoles ~pi, with

i = 1..22 andwith polarizabilitiesαi,xx(ω) = wiαrod,xx(ω) of the rod polarizability, as described

in Ch. 4.2.2. The polarizabilities of the dipole chain elements all have only one non-zero

component, αi,xx, with identical spectral shape Srod(ω) = αrod,xx(ω) of the nanorod resonance.

This spectral shape is taken as a Lorentzian function centered at 1.75 eV (710nm) and with a

width γ = 0.08 eV. The real part and the imaginary part of this spectral function are plotted in

Fig. 6.35A as the green and the blue curve, respectively. We here assume global excitation with
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a spectrally flat electric field strength polarized along the rod axis, ~E(ω) = E0x̂, resulting in a

dipole moment oriented along x-direction. The spatial distribution of the vectorial electric field

around the nanorod, ~Erod(~r) is then calculated applying the Green’s function formalism to the

chain of 22 dipoles, as described in Ch.4. The spatial function of the three vector components

around the nanorod antenna dimer was shown in Fig. 6.31G-I. The complete electric field at

position ~r is then ~Erod(~r, ω) = ~Erod(~r) · Srod(ω).

Now let’s consider the polarization of the tip due to the electric field ~Erod(~r, ω). Here we used

an elliptical tip, which is well described by

←→
α tip =

αtip,xx 0 0

0 αtip,yy 0

0 0 αtip,zz

 . (6.32)

αtip,jj with j = x, y, z are approximated as the polarizabilities for an ellipse (following Eqs.

(4.111) and (4.112)) with Rx = Ry = 20 nm and Rz = 100 nm.

The spectral difference between the x, y and the z-polarizability is very strong, as is shown in

Figs. 6.35B and D. The x and y polarizability are relatively flat in the spectral region covered

by our experiment, while the z-polarizability shows a clear resonance centered at 770 nm.

The vector dipole moment induced in the tip placed at position ~rtip is given by

~ptip(rtip, ω) = αtip ~Erod(~r, ω) (6.33)

and the electric field at the detector placed at position ~Rdet on the negative z-axis by

~E(~Rdet) =
←→
G(~Rdet, ~rtip, ω)~ptip(~rtip, ω). (6.34)

Figures 6.35 C and E show, for demonstration purposes, two spectrally resolved approach curves

measured at the detector for two artificial cases: one, where only the x-component of the electric

field is allowed and the y and z-components are set to zero, and one where the z-component

of the electric field is allowed and the x and y-components are set to zero. In both cases, the

maximum electric field strength at the resonance frequency and at a distance of 3 nm to the

surface was set to 1 V/nm. The two approach curves show two spectrally well-separated maxima,

clearly demonstrating that our choice of a strongly elliptic tip allows spectral separation of x/y

and z-polarized electric field components.

Similar, we can now evaluate the near-field for the 4 tip positions. The result is shown in Fig.

6.36A-D.

It is important to note that in this simulation we consider the tip as a weak scatterer that scatters

the already very strong near-field of the antenna. As we can see, the simulated near-field

approach curves in Fig. 6.36 then match our measurement with good accuracy: We find a
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Figure 6.36: Simulation of the near-field around the nanorod antenna as a function of wavelength and
tip-sample distance for tip positions: in the antenna gap, at the nanorod edge, at the nanorod middle
and outside the structure. Note the factor x10 and x100 in (C) and (D) showing that the near-field
signal strength is much weaker in the nanorod middle and outside the structure.

strong resonance in the gap centered around 710nm that is stronger than all other near-field

signals, a resonance around 760nm mainly at the nanorod edges and a very small near-field

signal at the nanorod middle and even less at the outside of the structure.

Finally, I present the optical near-field signal from our measurement in a 2D plot at the two

wavelengths of 710nm and 760nm that were previously found to show a resonance. Due to

the reduced amount of only 40x10 scan points a bilinear interpolation filter was used to better

visualize the near-fields around the structure. Similar to the previous analysis we observe

a high near-field signal in the gap at the wavelength of 710nm and only a small near-field

signal near the middle or the edge of the nanorods. With the larger wavelength of 760nm

the near-field signal in the gap is highly reduced and now the edges of the nanorod show the

highest near-field signal at this wavelength. In these results we also observe a strong near-field

on the right nanorod for both wavelengths. We believe this is caused by an undesired strong

scatterer on top of the nanorod. In total, the results are in agreement with our expectations: the

tip scatters both x- and z-field components, whereas the z-component can be mostly observed

around the nanorod edges at around 760nm and the x-component is mostly scattered from

the nano antenna gap at 710nm. Thus, not only the local spectra evaluated at a few picked
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positions indicate a wavelength dependent coupling to the tip polarizability tensor, but we

can see this directly in a 2D SNOM scan around the antenna structure. This is an important

result as it shows that we are able to easily measure and interpret vectorial near-field around

nanostructures by demodulated SNOM spectra measurements and knowledge about the tip

polarizability. This opens up the possibility optimize the design of these structures with respect

to their desired optical properties.

Figure 6.37: (A) and (B) show the optical near-field signal for a wavelength of 710nm and 760nm
respectively. For better visualization the results were interpolated with a bilinear interpolation filter.

In our group, it is for example important for future studies to have antennas with a good field

enhancement. SNOM measurements could be a very to characterize the actual near-fields and

to optimize antenna designs.

Additionally, the analysis shown in this section emphasizes the high importance of nano antennas.

The enhanced fields between tip and antenna in the gap or at the rim of the nano rod are

ideal to probe strong coupling of individual nano materials. For example one could spincoat

the squaraine dye on top of the antenna and should observe an energy splitting of the two

single resonance from both the antenna and the dye. Similarly, one could probe the strong

coupling characteristics of a single quantum dot by position the quantum dot in the gap of such

an antenna structure. This could for example be done by following and moving the quantum dot

with a atomic force microscope. Such experiments are already worked on and will be analyzed

in future works.





Summary & Outlook 7
In this thesis I addressed nanoscale local spectroscopy with a scanning near-field microscope

with an experimental approach supported by theoretical considerations for the evaluation of

the acquired SNOM spectra. A SNOM setup in back-reflection geometry was realized in such

way, that it could be easily extended by new devices, e.g. a fast line camera. Throughout the

thesis the setup was applied to a new way of performing direct local spectroscopy. Additionally,

the tip-sample interaction for both isotropic and anisotropic media as well as for nanostructures

was investigated.

To my knowledge for the first time an aperture-less SNOM setup was used with a monochromator

and a fast line camera. This opens up many opportunities as it allows for a direct approach

to measure locally resolved SNOM spectra, by combining the tip modulation technique with

the acqusition of complete spectra. Nanoscale spectroscopy with SNOM was up to now mostly

performed indirectly by Fourier Transform interferometry or a selective wavelength tuning of the

laser source. These options both have their drawbacks, as the measurements are typically very

slow, resulting in a long recording time for a SNOM map or in a very limited spectral resolution

with only very few spectral positions probed. Other direct SNOM spectra measurements have

only be obtained by more complex setups, e.g. by using the effect of adiabatic nanofocussing,

which offers a low background signal but also a very limited near field strength.

The presented approach of direct spectra measurement with a fast line camera and a monochro-

mator opens up the possibility to perform spectroscopic measurements as an extension to already

existing aperture less setups, as well.

To finally be able to measure meaningful and understandable spectra various steps had to be

solved beforehand. Two main issues were addressed in this thesis: the possibility to eliminate

or weaken an always present optical background field for monochromatically as well as for

spectrally resolved measurements and the data evaluation considering the tip-sample interaction

that influences the measured spectra.

173
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Hence, one chapter in this thesis addresses the problem of field interferences between a back-

ground field, a reference field and the desired near-fields from the nanotip used in SNOM

measurements. Typically, higher order demodulation of the tip-to-sample distance modulation

frequency is used to suppress the background interferences. However, we found for samples on a

glass substrate, the ratio of the background field amplitude to the reference field is on the same

order. Even with higher order demodulation the background field plays a significant role and

cannot be neglected in the data discussion. Hence, in this thesis an in-line interferometer was

presented that can be used to replace the standard glass substrate. The in-line interferometer

consists of a gold-coated glass substrate, which is again coated with a 100-300nm SiO2 glass

layer. This way the near-field is enhanced by a reference field reflected from a gold film and

the near-field to background ratio increases. As there are no moving parts, the interference

is intrinsically stable. Furthermore, the last layer is glass, which is often desired for various

samples that may arrange differently or have changed properties on a bare gold film.

Finally, this new local spectroscopy technique involving higher order demodulation was applied

to several different samples. Here, in a first step spectra measurements on less complex, flat sam-

ples that show no resonance in the investigated spectral region were used in order to study the

tip-sample interaction in more detail and demonstrate the data evaluation, such as a 30 nm-thick

gold film. The overall interpretation of the measured SNOM spectra revealed the complexity

of the tip-sample interaction and showed that the tip influence can drastically alter the SNOM

spectra. The field enhancement of the individual tip as well as the sample properties dictate

the final outcome and even a blunt or deformed tip can result in a new spectral resonance. An

extensive simulation model has been worked out to gain a better understanding of the effects

that take place. By analyzing multiple measurements we found that both a coupling to the

in-plane component as well as to the z-component of the tip polarizability tensor can occur.

Their relative coupling strength depends on the tip position in the focus field as well as on the

sample properties and the tip shape. By measuring spectrally resolved spectra around a nanorod

antenna we could even demonstrate a coupling to both components in a single measurement

by placing the tip inside the gap of the antenna structure where coupling to the x-component

exceeds and placing the tip at the edge of nanorod where coupling to the z-component exceeds.

With the gained understanding, a local absorption spectrum measurement of a squaraine dye

material was performed. The squraine dye is currently a promising candidate to be used as or-

ganic photodiode or solar cell material. Since only little was known about this new dye material,

we firstly used far field transmission spectroscopy to investigate the light-matter interaction.

For this purpose a quantum mechanical description by modeling the dye as a 2-level system was

developed. Far-field transmission spectra could then be explained by an angular distribution
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of coupling squaraine monomor dipoles. Using nanoscale spectroscopy an actual difference

in spectra on the nanoscale could be reported and supported this model. Our measurements

further indicate that the squaraine dyes were mostly oriented in the sample plane and hence

a coupling to the tip’s xy-component of the polarizability tensor highly outweighs coupling

to the z-component. Thus, these measurements also demonstrated the possibility to measure

near-field signals even on a strongly anisotropic materials.

The presented SNOM setup with a fast line camera could easily be extended to enable measuring

polarization resolved SNOM spectra, more specifically, spectra as a function of the laser input

polarization. This could be used for investigating the orientation of nanostructures as well as

of organic materials with long molecules that are capable of forming aggregates. Polarization-

resolved measurements with nanometer-spatial resolution could shed light on the orientation

and nanometer-range order of such samples and could thus be of great importance for developing

fabrication methods supporting specific structure-function relations.

Some early results of measurements on a polymer sample are presented in appendix C as an

outlook. Long polymer chains show higher absorption for light polarized parallel to the polymer

chain direction than for light polarized perpendicular to it and are the ideal candidate for such

measurements. Local SNOM absorption measurements for different laser input polarizations

presented in the appendix already indicate that spincoating of the polymers onto a glass sub-

strate results in multiple domains of ordered polymer chain directions with sizes on the order

of <1µm whereas a blade-coating method can produce polymer films with a far longer-ranged

alignment. In total, polarization dependency adds another layer of complexity to the already

non-trivial tip-sample interaction. For a quantitative statement more measurements and a more

in-depth analysis is needed, which is left to future works.

All in all, this thesis presents various experiments that were carried out to measure local

spectra on a nanometer scale and to study the tip-sample interaction for nanostrcutures as

well as for (anisotropic) organic sample materials in the visible to near-infrared spectral region.

Together with the simulations presented in this thesis, this serves as a first attempt of a near-field

spectroscopy overview by using a direct demodulation-based approach and can be used as the

groundwork for understanding and interpreting local spectroscopy data in future works.





Matlab/Python Programming

of SNOM controls A
A.1 Program Interface

The interface to control the SNOM and all attached devices was written from scratch. For that

task mainly MatLab and Python were used.

This appendix section gives an overview of how the controls were written and provides details

about the hardware and software to help future researcher maintaining and extending the

SNOM setup used throughout this thesis.

The following main components had to be controlled:

• PI XYZ Stage / Rotation Stages / Linear Actuators / 5-AXis Coarse Stage

• Zürich Instruments Lockin Amplifier / IO device

• Data Translation AI/AO Converter Card

• Aviiva 210kHz LineCamera (over Framegrabber card)

The connection of these devices was either over USB/ parallel connection, serial connection or

in the case of the LineCamera with an addtinal FrameGrabber Card inbetween.

The software was written using object oriented programming. Each device has it’s own Matlab

class that can connect with other classes as well.

We made use of the package folders created by a plus sign as the first character of the folder

name 1.

1Compare the MathWorks help: https://de.mathworks.com/help/matlab/matlab_oop/scoping-classes-with-
packages.html
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The folder structure then divides into sub-package-folders with:

+devices

... +stage

... Axis.m

... E7XX_Stage.m

... Rotation_Stage.m

... Stage.m (Super Class)

... APT_Stage.m

... MO_actuator.m

... +spectrometer

... Spectrometer.m (Super Class)

... Ocean_Optics_Spectrometer.m

... +io

... IOBoard.m

... DTOL.m

... +some subclasses

... FunctionGeneratorZi.m

... e2VCamera.m

+fcns

... ApproachCurve.m

... ResonanceCurve.m

... BeamScan.m

+tools

... Tools to saving as gsf files or send push messages for finished measurements

The main control is done via a spearate file "‘SNMOM.m"’ and control of the complete SNOM

can then easily be done with simple commands like

NSOM = SNOM( ) ;

NSOM. se tS tage ( ’ E7XX_x64 ’ ) ;

r e t = NSOM. i n i t _ a l l ( ) ;

NSOM. Stage . s e tSe rvoS ta tu s ( z , t rue ) ;

. . .

data_tmp = NSOM. scan (NSOM. Stage . xAxis , . . .

NSOM. Stage . yAxis , . . .

[ s t a r t x , s t a r t y ] , [ endx , endy ] , [ numstepsx numstepsy ] , . . .

t imeper l ine , s c and i r e c t i on ) ;
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An addtional GUI was available as well.

As we can see each device is individually controllable by it’s own class functions and can easily

be extended. A git version control software was used on top to track changes, allow multi-user

collaboration and ensure safe operation at any time.

Most of these classes were simultaneously written in Python and a few rare used programs like

the coarse control of a 5-Axis stage where decoupled from the main Matlab/Python interface

and have been compiled into a standalone application with a GUI for an easy controllability

using PyInstaller.





Refractive index and Snell’s

law for anisotropic materials B
This appendix supplements chapter 4.1.3 and shows the derivations for the refractive index

as well as the Snell’s law for anisotropic media to obtain an equation for the angle θ in the

anisotropic medium as a function of the incident angle θi.

B.1 Derivation 1: The refractive index

Starting from equation (4.64)

1

n2
=

s2
x

n2 − n2
x

+
s2
y

n2 − n2
y

+
s2
z

n2 − n2
z

(B.1)

we can multiply both sides by (n2 − n2
x)(n2 − n2

y)(n
2 − n2

z):

1

n2
·(n2−n2

x)(n2−n2
y)(n

2−n2
z) = s2

x(n2−n2
y)(n

2−n2
z)+s

2
y(n

2−n2
x)(n2−n2

z)+s
2
z(n

2−n2
x)(n2−n2

y)

(B.2)

Since ~s = ~k/k is the unit vector in the direction of ~k we also have 1 = s2
x+s2

y +s2
z. By replacing

the nominator of 1/n2 with that expression and multiplying both sides by n2 we get
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As the equation gets very long, we will focus only on one term for the sake of simplicity.

Expanding the s2
x term on the left side reads:
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Subtracting all terms from the left hand side of the equation yields
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The same procedure can be done for the other two terms which are multiplied by either sy or

sz. So in total we get equation (4.65):
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Now for uniaxial media with nx = ny = no and nz = ne the term (n2 − n2
o) can be found

multiple times in the above equation and can be factored out:
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Factoring out then gives
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and can be written as
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Like before s2
x + s2

y + s2
z is the squared value of the length of the unit vector ~s an can be set to

1. Addition of n2
en
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Finally by dividing by (n2
o(s

2
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y)+n2
es

2
z) and taking the reciprocal value of the whole equation

we get equation (4.67):

1

n2
=
s2
x + s2

y

n2
e

+
s2
z

n2
o

. (B.13)



B.2. DERIVATION 2: THE ANGLE IN THE MEDIUM 183

B.2 Derivation 2: The angle in the medium

We start from Snell’s law in anisotropic media for p-polarized light:

ni sin(θi) = n(θ) sin(θ) (B.14)

Substituting n(θ) yields:

ni sin(θi) =
none√

n2
o sin2(θ) + n2

e cos2(θ)
sin(θ) (B.15)

By dividing by no and introducing a = ni/n0 sin(θ) and b = n2
o/n

2
e we get

a =
sin(θ)√

b sin2(θ) + cos2(θ)
(B.16)

With cos2(θ) = 1− sin2(θ) and squaring the equation we then get

a2 =
sin2(θ)

b sin2(θ) + 1− sin2(θ)
(B.17)

a2 =
sin2(θ)

(b− 1) sin2(θ) + 1
(B.18)

(B.19)

Multiplying by the denominator (b− 1) sin2(θ) + 1

a2(b− 1) sin2(θ) + a2 = sin2(θ) (B.20)

and factoring out sin2(θ)

sin2(θ)(a2(b− 1)− 1) = −a2 (B.21)

gives us finally the relationship between the angle θ in the medium and the angle of the incident

medium θi:
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Outlook: Local orientations

of polymers by polarization

resolved SNOM C
We have already outlined the importance of local spectroscopy to understand the relationship

between structure and functionality of a squaraine dye spincoated on top of a glass substrate.

From these measurements we learned about the local change of coupling energies that are

contributed to a variation in relative dipole-dipole orientation. Another way of studying local

orientations by SNOM is presented here as an outlook by making use of the polarization depen-

dent absorption of long polymer chains attached on a substrate. In particular, the presented

polymer chains show a higher absorption when light is polarized along the chains, rather to

light that is polarized perpendicular to the chains.

We investigated the polymer P(NDI2OD-T2) synthesized in the group of Prof. Dr. S.Ludwigs from

the institute of polymer chemistry of the university of Stuttgart [218]. The structure formula is

shown in Fig. C.1A. These kind of conjugated polymers have gathered a lot of interest in many

research areas as they show very promising semiconducting properties which make them ideal

for flexible electronic devices or organic solar cells. In particular also their light weight and

corrosion resistance make them a very appealing alternative to inorganic semiconductors [219].

The spectral absorption of the polymer has been previously measured by Trefz et.al. for po-

larization parallel (denoted I‖) and perpendicular (denoted I⊥) to the chain axis for a bulk

sample [220] and is shown in figure C.1C. Two absorption maxima are directly visible, one

spectrally very broad absorption maximum around 700 nm spanning nearly 200 nm and another

one with a smaller spectral width of around 40 nm centered at around 400 nm. Our laser system

can only operate in the wavelength range covering the broad resonance. Here, the absorption

for light polarized parallel and perpendicular to the polymer chains differs drastically and we

can read out a reduction in absorption by a factor of at least 10 for a wavelength of 700nm.
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Figure C.1: (A) Structure formula (B) Illustration of the blade coating process (cmp. [220]), (C)
Absorption spectra measured for two orthogonal polarizations (taken from [220])

For smaller or larger wavelength the difference decreases. Thus, for a sample with differently

aligned polymers we expect to see a wavelength dependent change in contrast in a local SNOM

scan.

At first, we investigate the polarization dependency by using a linearly polarized Titanium:Sapphire

laser operated at a fixed wavelength of 740 nm in cw-mode with the previously described SNOM

setup. This means the laser is focused through the sample onto a sharp gold tip and scattered

near-field signal from the tip is collected by an avalanche photodiode in a backscattering geom-

etry. The signal is demodulated at the first harmonic frequency, thus a large background field

contribution is included. Still, some early conclusions can be drawn already. In order to measure

SNOM signals dependent on the input polarization of the linearly polarized laser source, a zero

order half-wave-plate was mounted in a motorized rotation holder after the laser source and in

front of the actual SNOM setup. Changing the direction of the linearly polarized laser source

now enables us to measure polarization dependent absorption on a local, nanometer scale and

may help us to determine polymer orientation differences. The motorized rotation holder is

furthermore connected to a computer, such that it can be rotated automatically. This way it

does not generate disturbing vibrations and can even be used when the SNOM tip is in close

contact to the sample.

In the following we evaluate two different samples that were produced with the same polymer

material, but with two different techniques: For one sample the polymer was spincoated on

top of a BK7 glass substrate, in the other case a blade-coating technique was used to attach

the polymer to the substrate. The blade-coating technique is visualized in figure C.1B: while

heating the substrate at a degree of 220 to 320deg a shearing blade is held at an angle of

around 40° over the substrate with the polymer solution beneath it. This process is meant to

produce highly aligned polymers on the substrate. Control over the alignment is one important

goal of current organic semiconductor film fabrication, since the structure and alignment on an
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nm- to µm length scale is decisive for charge transport in these materials [221]. The spincoated

sample is expected to be less ordered and may even produce groups of clustered polymer chains,

with the polymer molecules inside these groups having a preferred alignment direction. These

groups are in the following denoted as domains.

A typical AFM and two SNOM images for two polarizations of the incoming laser beam (visualized

by the white arrows) are shown in Fig. C.2A-C for the spincoated polymer sample and in

Fig.C.2D-F for the blade-coated sample.

The AFM image of the spincoated polymer film shows large domains with sizes of 100nm

and height changes of up to 70nm. On a closer look, one can even recognize a filament-like

structure inside these domains. These filaments may be attributed to clustered polymer strings.

Each domain seems to have slightly different directions of these strings, the majority however is

pointing mostly from south to north direction.

Depending on the polarization of the incoming beam, the SNOM scans in Fig. C.2B and C differ

in intensity at specific positions. Analogous to the different areas in the AFM image, also in the

optical image different domains of high intensity can be recognized. They have similar domain

sizes of around 100nm. Furthermore one can see areas that have a particular high optical

signal in one image often have a low signal strength in the other, obtained with perpendicular

polarization. These differences between the two images with different polarizations suggest

that the method is sensitive to the alignment of the polymers and means the optical images

probably carry new information.
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Figure C.2: AFM scan and optical signals of a spincoated (A-C) and blade-coated (D-F) thin film of the
polymer P(NDI2OD-T2). The white arrows in the optical images denote the polarization direction of
the linearly polarized laser source.

For the case of the blade-coated sample shown in Fig. C.2D-F, already the AFM scan shows
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Figure C.3: (A) shows again the optical signal from spincoated sample presented in Fig. C.2 together
with 3 points. At these points the laser input polarization dependent scans were carried out, which
are shown in (B). The line colors match the colors of the points in (A). (C) shows the optical signal of
the blade-coated sample together with 3 points of polarization dependent scans shown in (D).

a much smoother polymer thin film. Height changes of less than 12nm are observed and

no obvious large domains are forming anymore. The optical signal still shows differences in

intensity between the two polarizations, but shows otherwise a nearly constant signal over the

given area of 2x2µm. This is a clear difference to the optical signal of the spincoated sample

and is already a promising indication for better aligned polymers.

For a more detailed analysis, we now recorded a laser input polarization dependent SNOM

signal for different spots on both the unordered and the ordered sample. These polarization

dependent scans are presented in figure C.3. Hereby, the scan positions are visualized by the

colored dots in the optical images in Fig. C.3A for the spincoated sample and in C.3C for the

blade-coated sample.

On the sample with the spincoated polymers Fig.C.3B clearly indicates a change of the direction

with maximum intensity: the yellow and red curve were recorded at a low intensity point in

Fig.C.3A and show the highest signals at a polarization direction of about 0 and 180 deg. They

both show a signal proportional to cos2(θ) with θ describing the angle of input polarization

direction. The blue curve was recorded at a point of high optical signal and the polar plot shows

a cloverleaf structure. The smaller lobes of this structure have a maximum for a direction of a
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few degrees, but are of much lower intensity than the measurements on the other two points.

The larger lobes have a maximum in the optical signal at around 120deg. This maximum is

around 4/3 stronger than the maximum for the other two measurements.

In contrast, we can observe almost no change in direction for different points in the polarization

dependent scans of the optical signals for the blade-coated sample shown in Fig. C.3D . The

polarization scans are nearly the same for each measurements and all show a typical cos2(θ)

curve.

The measured SNOM signal depends on the relative orientation of electric field and molecular

dipole moment, and hence can indicate the molecule alignment. We believe that the variation

of the polar plots for the spin-coated sample is due to differently aligned domains, while for the

shear-blade fabricated sample the spatial unaltered polar plot indicates a much more uniform

alignment. Moreover, we propose that the applied polarization-resolved near-field microscopy

does contain information on the actual polymer orientation within the tip-sample interaction

area of ∼10nm diameter.

Extracting the real polymer orientation from the polarization measurements and explaining

the observed polar plot shapes however is non-trivial and requires a more quantitative analysis,

for example by using the Green’s function approach, applying a biaxial anisotropic model and

pre-characterizing the spectral response of the tip. In general, many factors are entering in the

polarization description. Besides the interference and the tip-sample distance also focusing

of the fields and the angle of the tip with respect to the sample and thus the coupling to the

in-plane and z-component of the tip plays a role. Hence, for now only conclusions about the

relative change of the measured polar plot for different points across the sample can be made.

A quantitative analysis is left for future works.

Finally, we want to solidify our assumption that the observed polarization-dependent patterns

are indeed due to a polarization-dependent absorption of the polymer. For this we expand our

study by spectrally resolved measurements around the absorption maximum determined in

the far-field measurements (Fig. C.1C). From the measured absorption spectrum in Fig. C.1

we already know that the difference in absorption is highest at a wavelength of 700nm and

decreases for larger wavelengths. Thus, if our setup is sensitive to the polymer orientation

we would expect a spectrally dependent contrast in SNOM maps recorded in the same way as

Fig. C.3A for a spincoated sample. For a wavelength of 800nm the difference in absorption

is already decreased by a factor of around 5 in comparison to the factor of at least 10 for the

wavelength of 700 nm and should lead to a blurry SNOM image.

Figure C.4 shows the results of recording the optical signal S1f in an area on this sample with

five different wavelengths by tuning the narrow-band wavelength of a Titanium:Sapphire laser

in cw-mode. We measured scans at wavelengths of 740nm, 775nm, 810nm, 840nm and

860nm.
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Figure C.4: Recorded S1f signal on the spincoated polymer sample for different wavelengths by tuning
the wavelength of a Ti:Sa laser in cw mode. Due to drift of the sample during the scan time, the area
may not be the same in all scans.

As the output beam from the laser slightly changed with each new wavelength, the setup was

optimized for a maximum signal each time. This means a new beam scan was performed for

each wavelength to ensure the focus is always on the tip apex. During that time the sample may

have experienced drift and thus it is not ensured that the area in all images is completely the

same. This shows at the same time the major drawback of such a method and one important

motivation to perform direct local spectroscopy as presented in previous chapters. Yet, the

measurements nicely reveal the expected reduction in contrast for higher wavelengths: for a

wavelength of 740 nm, near the absorption maximum, we can observe various domains which

are clearly separated. For longer wavelengths the absorption at both polarizations becomes

less distinguishable and the measurement results in the expected blurry optical image. At a

wavelength 860 nm only very little contrast between what presumably are different domains is

visible anymore.

In total, the presented results already show that we indeed can measure polarization resolved

local absorption by SNOM. For a quantitative discussion however, a more in-depth analysis is

needed. In particular for an ordered polymer string, the dielectric function will be different

in all three dimensions x,y and z and thus the sample is called a biaxial anisotropic medium.

Furthermore, a pre-characterization of the polarization dependency of the tip response is needed.

Also, one could consider to tilt the tip under an angle. As recently shown by Park & Raschke

[206] a tilted tip with respect to the sample can help to vary the ratio of in-plane to out-of

plane coupling and hence increase the coupling efficiency of the tip and the mostly in-plane

aligned polymers. These measurements and simulations are not covered here but are suggested

for future works. The analytical models presented in this thesis can be used as a good starting

point.



Paper attachment: In-line

interferometer for

broadband near-field

scanning optical

spectroscopy D
The following pages contain the original paper with the title "‘In-line interferometer for broad-

band near-field scanning optical spectroscopy"’, from Jens Brauer, Jinxin Zhan, Abbas Chimeh,

Anke Korte, Christoph Lienau, and Petra Gross, published in Opt. Express 25, 15504-15525

(2017).

Parts of this paper were used in chapter 5 and 6.1 of this thesis.
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In-line interferometer for broadband near-field 
scanning optical spectroscopy 
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Abstract: We present and investigate a novel approach towards broad-bandwidth near-field 
scanning optical spectroscopy based on an in-line interferometer for homodyne mixing of the 
near field and a reference field. In scattering-type scanning near-field optical spectroscopy, 
the near-field signal is usually obscured by a large amount of unwanted background scattering 
from the probe shaft and the sample. Here we increase the light reflected from the sample by a 
semi-transparent gold layer and use it as a broad-bandwidth, phase-stable reference field to 
amplify the near-field signal in the visible and near-infrared spectral range. We 
experimentally demonstrate that this efficiently suppresses the unwanted background signal in 
monochromatic near-field measurements. For rapid acquisition of complete broad-bandwidth 
spectra we employ a monochromator and a fast line camera. Using this fast acquisition of 
spectra and the in-line interferometer we demonstrate the measurement of pure near-field 
spectra. The experimental observations are quantitatively explained by analytical expressions 
for the measured optical signals, based on Fourier decomposition of background and near 
field. The theoretical model and in-line interferometer together form an important step 
towards broad-bandwidth near-field scanning optical spectroscopy. 
© 2017 Optical Society of America 

OCIS codes: (180.4243) Near-field microscopy; (240.6490) Spectroscopy, surface; (240.6380) Spectroscopy, 
modulation; (240.6680) Surface plasmons; (350.4238) Nanophotonics and photonic crystals. 
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1. Introduction 

One of the aims of optical near-field spectroscopy is to study the optical properties of 
nanostructures by resonant light scattering, localized to a nanometric volume far below the 
diffraction limit [1–4]. Ideally, near-field spectroscopy should enable broadband 
spectroscopic investigation at the single emitter level and may, in combination with ultrafast 
pump-probe measurement schemes [5–7], shed light on the dynamics of primary light-
induced processes such as light harvesting and photo-catalytic surface reactions. 

Such sub-diffraction-limit spectroscopy can be accomplished by focusing light into a 
diffraction-limited spot on the sample and by scattering light from the near field around a 
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quantum emitter into the far field, either using an aperture-based probe or an aperture-less, 
pointed probe [8–10]. While light-guiding probes require a trade-off between throughput and 
lateral resolution [1,11], a principally smaller resolution is achieved when a solid metal or 
dielectric probe is brought near the emitter. In this aperture-less or scattering-type SNOM (s-
SNOM), light from the near field is scattered into the far field, where it can be collected by a 
detector. The lateral resolution of tip-enhanced near-field spectroscopy is determined by the 
size of the probe apex of down to 10 nm [12,13], and can be even smaller, if the processes 
under observation depend on the field strength in a nonlinear fashion or when light 
localization by means of gap modes is used [3,14–16]. 

Typically in s-SNOM, a diffraction-limited laser focus simultaneously illuminates both the 
sample and the probe, a sharp metal or dielectric tip. Light is scattered from the near field of 
emitters in the vicinity of the tip, but also directly from the tip shaft as well as the sample. 
This directly scattered light usually causes a large background signal, obscuring the orders of 
magnitude smaller near-field signal. In principle, the background signal can be largely 
avoided by employing adiabatic nanofocusing to SNOM [17,18]. This technique is an active 
topic of current research and first applications in broadband light scattering and time-resolved 
spectroscopy are currently pursued in different laboratories [19,20]. Regular s-SNOM is 
already much better understood. Specifically, some effort has been devoted in the past to 
distinguishing the near-field signal from the background in s-SNOM [21–26]. In a very 
common approach, the tip-sample distance is modulated with a frequency typically in the 10-
kHz-range [27]. Due to the highly nonlinear dependence of the scattered near-field signal on 
the tip-sample distance, higher harmonics of the modulation frequency are found in the signal. 
Demodulating at higher harmonics improves the near-field to background ratio and leads to 
improved contrast [23]. 

However, even with demodulation at higher harmonic frequencies, a complete suppression 
of the unwanted background is challenging. Generally, the light field components that are 
scattered from the near field, from the diffraction-limited spot on the sample and from the tip 
shaft interfere and lead to the detection of a mixed intensity signal that cannot be 
disentangled, because mixing occurs at the electric field level [22,25,28]. In order to enable 
such discrimination of the different contributions to the signal and to eliminate the 
background signal, amplification of the near-field signal by mixing of the scattered signal 
with a well-controlled reference wave was introduced. In principle, the simplest way to 
achieve such amplification is by homodyne mixing via a Michelson interferometer [23]. This 
interference, however, requires a highly stable interferometer. In particular at visible 
wavelengths, active stabilization is generally unavoidable, while in the infrared wavelength 
region high mechanical stability may be sufficient. A more robust approach is heterodyne 
mixing with a reference wave that was frequency-shifted with an acousto-optic modulator 
(AOM) [25,28]. The same principle can be realized without the need for an AOM in a 
pseudo-heterodyne mixing scheme, where a reference light wave is supplied with a sinusoidal 
phase modulation via a vibrating mirror in a Michelson interferometer [24]. 

This poses two considerable experimental challenges to broadband s-SNOM spectroscopy 
in the visible spectral range. Firstly, the background signal has to be suppressed efficiently 
and over a broad spectral range by mixing with a broad-bandwidth reference field. Secondly, 
this reference field is required to remain phase-stable with respect to the optical field scattered 
from the tip apex over a sufficiently long time to scan a sample. 

Here we propose and experimentally demonstrate an efficient and easy-to-implement 
solution to both challenges. We deposit the sample under investigation on a homogeneous, 
semitransparent gold layer covered with a thin dielectric sheet. When illuminating the tip-
sample region with a broadband light source transmitted through the gold film, this creates an 
inherently phase-stable in-line interferometer. The reflection from the gold film provides a 
reference field with an amplitude that largely exceeds that of spurious background fields. 
Near-field spectra recorded at higher modulation orders of the periodic modulation of the tip-
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sample distance thus predominantly probe the spectrum of the local near-field scattered from 
the tip-sample interaction region. In contrast, spectra recorded at lower modulation orders are 
governed by background fields scattered from the tip shaft. These spectra reveal a highly 
complex spectral modulation resulting from multiple-field interferences. Our results open up a 
new approach towards quantitative, ultrahigh resolution, broadband near-field scattering 
spectroscopy. 

2. Experimental setup and measurement principle 

 

Fig. 1. Experimental setup (left) and the fields that contribute to the measured signal (right). 
Left: Light from a Titanium:Sapphire laser is focused on a sample. The polarization is 
controlled by a half-wave plate (HWP), and the position of the focus is corrected by a steering 
mirror followed by a 4f-system (lenses L1 and L2), which image the beam tilt to the back focal 
plane (BFP) of the microscope objective (MO). A sharply etched gold tip is brought closely to 
the sample to scatter light from the near-field region to the far field. The scattered light is split 
off the incident beam path by a 50:50 beam splitter (BS), collected by a lens (L3) and detected 
by an avalanche photodiode (APD). Right: The sample is coated onto a thin glass-covered gold 
layer on top of a glass substrate. The signal detected by the APD comprises contributions of 

electric fields from the near field ( )NFE


, of the field scattered from the tip shaft ( )BE


, as 

well as the reference field that is reflected off the semi-transparent gold film ( )RE


. 

Our experimental setup is in principle a back-scattering type SNOM, depicted schematically 
in Fig. 1. In order to study the near-field optical properties of our in-line interferometer, we 
first performed quasi-monochromatic measurements using a narrow-bandwidth laser, and 
later equipped the setup with a broad-bandwidth laser source and a spectrally resolving 
detector. 

First, for quasi-monochromatic measurements, light from a Titanium:Sapphire laser 
(Spectra Physics, Tsumani) supplying pulses with a relatively narrow spectral bandwidth of 
around 20 nm centered at a wavelength of 780 nm is used to illuminate the sample. The light 
is linearly polarized, and the direction of the electric field vector is controlled by a half-wave 
plate (HWP) in a motorized rotation holder. To adjust the position of the focus precisely, a 
steering mirror equipped with two piezo actuators is employed in a 4f imaging system, 
consisting of two lenses with the same focal length of 50 mm. The tilt of the beam induced by 
the steering mirror is imaged onto the back focal plane of the microscope objective (MO) with 
a numerical aperture (NA) of 0.95. This results in a displacement of the beam in the MO focal 
plane, without distorting the focus. The light passes a 50:50 beam splitter (BS) and is then 
focused onto the far side of the sample, i.e., through a 150-µm thick quartz microscope slide 
onto the exit side of the slide. In this study we compare three different samples, for which the 
far side of the sample is either an uncoated quartz surface, the quartz surface covered with a 
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semitransparent (~20-nm thick) gold film, or a semitransparent gold film covered with a 
~200-nm thick SiO2 film. Positioning the focus position along the z-axis, perpendicular to the 
sample surface, is achieved by piezo-controlling the MO position. 

A sharply etched gold taper is brought in close proximity to the sample surface in order to 
interact with and scatter light out of the near-field region. The laser focus is adjusted on the 
taper apex by maximizing the back-scattered light. Note that when scanning or when varying 
the tip-sample distance, the focus position remains on the apex of the gold nanotaper, while 
the sample is moved towards or away from the tip. The light that is scattered from the focus 
region is collected in backwards direction by the same MO, and the part reflected by the BS is 
collected by a lens (L3) and detected using an avalanche photodiode (APD, Hamamatsu 
C5331-02). 

The single-crystalline gold nanotips are produced from polycrystalline, 99.99%-gold wire 
with a diameter of 125 µm. The gold wire is annealed and electrochemically etched as 
described in [20]. The process typically results in tapers with a very smooth surface, with an 
opening angle of around 30°, and in a sharp apex with a radius of curvature of about 10 nm. 
Such a sharp gold tip is glued onto a tuning fork, which is driven by an AC voltage at its 
resonance frequency 26f ≈  kHz. The tuning fork amplitude is set such that the tip moves 

back and forth along the taper axis over a distance of about 30 nm. The tip is then brought in 
close proximity to the sample, such that the tip is aligned with its axis perpendicular to the 
sample surface. The tip-sample distance is controlled by adjusting the sample z-position using 
the tuning fork oscillation amplitude as the feedback signal in a tapping-mode atomic force 
microscope. The signal detected in back reflection by the APD is processed using a lock-in 
amplifier (Zurich Instruments HFLI) and using the tip modulation frequency as the reference 
signal. In this work, typically the signal demodulated at the fundamental tip modulation 
frequency 1( , 1 26 kHz)fS f  ≈  , as well as the signals demodulated at its second, third, and 

fourth harmonic 2 3 4( , , )f f fS S S  are recorded. To determine the DC field strength, the APD is 

substituted by a silicon photodiode (SiPD, Thorlabs PDA36A) and its signal is recorded 
without lock-in detection, which basically yields the unmodulated signal 0( )fS . 

Finally, for broad-bandwidth spectroscopic measurements the narrow-bandwidth laser is 
substituted with a titanium:sapphire laser (Femtolasers Rainbow) with a spectral bandwidth 
exceeding 100 nm. Instead of measuring with the APD and lock-in detector the light is 
spectrally dispersed using a monochromator (Princeton Instruments, Acton SP2150i with 300-
lines/mm grating) equipped with a fast line camera (e2V Aviiva EM4 with 512 pixels). This 
line camera enables acquisition of spectra with a rate of 210 kHz, such that by post-processing 
the data pixel-wise we can extract complete spectra demodulated up to the fourth harmonic. 

In the following sections describing the measurements and the analysis of the signals 0 fS  

to 4 fS  we assume the detected signal to consist of the following electric field components 

(see the right-hand side of Fig. 1): First, light is directly reflected off the far side surface of 
the microscope slide. This direct reflection is rather weak in the case of the uncoated quartz 
sample and up to ~50% of the incident light in the case that the quartz substrate is coated with 

a semitransparent gold film, and is used as our reference field RE


. The light that is 

transmitted through the substrate is partly scattered from the tip shaft, causing a background 

light contribution BE


. If the tip is in close proximity to the sample surface, it interacts with 

the sample’s near field region, scattering light to the far field. This interaction contributes the 

near-field component NFE


 to the detected signal. 
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3. Quasi-monochromatic measurements 

 

Fig. 2. The measured optical signals 0 fS  plotted together with a sinusoidal fit (black and 

curves in the left hand graphs) and 1 fS , 3 fS , and 4 fS  (blue, green and red curves, 

respectively, in the right hand graphs) recorded during the approach of the three different 
substrates towards the gold nanotip. A, B: Approach of a gold-coated quartz microscope slide 

to the nanotip. A, The DC signal 0 fS  is weakly modulated and B, there is a strong near-field 

signal when the gold surface is in close proximity to the tip. The inset shows the tuning fork 
amplitude; the point of contact is defined as the position when the tuning fork amplitude is 
decreased by 5%. C, D: Approach of an uncoated quartz substrate to the nanotip. C, The DC 
signal is strongly modulated, and D, the near-field signal is very weak on the glass surface. E, 
F: Approach of the in-line interferometer to the gold tip, i. e., a quartz surface covered with a 
~200-nm thick SiO2 film on top of the ~20-nm thick semitransparent gold film. E, The DC 
signal is moderately modulated, and F, when bringing the glass surface in close proximity to 
the tip, a near-field contribution is clearly visible. The in-line interferometer enables homodyne 
measurement of a weak near-field signal, such as on a glass surface in vicinity to a gold 
nanotip. 

We record the signals 0 fS  to 4 fS  with the setup as described above as a function of the 

distance between tip and sample. The tip-sample distance is controlled by adjusting the 
sample z-position. The approach is stopped when the tuning fork oscillation amplitude is 
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reduced by 5%, which we take as the point of contact or zero distance. We record such 
approach curves for three different samples, namely for a quartz surface covered with a 
semitransparent (~20-nm thick) gold film, for an uncoated quartz surface, and for a quartz 
surface covered with a ~200-nm thick SiO2 film on top of the ~20-nm thick semitransparent 
gold film. 

Figures 2(a) and 2(b) show the optical signals when the sample with the semi-transparent 
gold film is approached to the tip. The unmodulated signal 0 fS , which is measured using the 

SiPD and without lock-in detection, displays a weak modulation with a period of ~390 nm, 
corresponding to half the wavelength of the excitation laser [see the red fit curve of a 
sinusoidal function on top of a linear function, plotted together with the experimentally 
measured black curves in Fig. 2(a)]. This modulation is a result of the interference of the light 

reflected from the tip shaft, BE


, and from the gold-coated surface of the substrate facing the 

tip, RE


. This modulation is weak, because the electric field strength of BE


 is only a small 

fraction of that of RE


. Furthermore, RE


 decreases steadily as the reflecting gold surface is 

moved out of the laser focus, causing the constant slope underneath the modulation. As 
expected, a near-field contribution cannot be discerned in the DC optical signal. 

The experiment is repeated with the APD and lock-in detector, and the demodulated 
signals 1 fS  to 4 fS  are recorded as a function of tip-sample distance. Figure 2(b) shows the 

amplitude of the lock-in-detector signal during the approach at the respective demodulation 
frequency, for the gold-coated sample. The optical signal demodulated at the fundamental tip 
modulation frequency, 1 fS  [blue curve in Fig. 2(b)], still shows a strong modulation for both 

samples, now at a period of a quarter wavelength due to plotting the amplitude of the lock-in 
signal. The optical signal demodulated at the second harmonic, 2 fS  (not shown in Fig. 2 for 

the sake of clarity), shows a similar behavior and has an amplitude comparable to that of 1 fS . 

When demodulating at the third harmonic, however, 3 fS  (green curve) still shows some 

modulation, but the amplitude is reduced by roughly a factor 4. Finally, demodulating at the 
fourth harmonic (red curve), the amplitude of 4 fS  is not above noise level. 

In close vicinity to the gold surface [compare the steep decrease of the tuning fork 
amplitude, i. e., the black curve in the inset in Fig. 2(b)], a weak deviation from the sinusoidal 
curve by less than 15% is discernible on the first-harmonic optical signal 1 fS , and there is a 

clear near-field contribution apparent of both 3 fS  and 4 fS . The near-field signal resembles a 

strong exponential signal increase with a 1/ e -decay length of 8 nm. On the fourth-harmonic 
optical signal, 4 fS , this near-field signal strength is more than 20 times above the noise level. 

Such a near-field enhancement is similar to what has been observed in earlier work and what 
is expected from the interaction of a gold tip and a gold surface [23,29]. 

For comparison, the measurements of the optical signals 0 fS  and 1 4f fS S−  are repeated 

with the uncoated quartz substrate and are shown in Figs. 2(c) and 2(d), respectively. The DC 
signal 0 fS  for the uncoated quartz microscope slide is much stronger modulated than in the 

case of the gold-coated sample [Fig. 2(c)], showing that the interfering fields reflected from 
the tip shaft and from the quartz surface are well balanced. There is no near-field contribution 
to 0 fS  discernible in Fig. 2C. Even when demodulating the photodiode signal, the effect 

when approaching the uncoated sample to the gold tip is weak: 1 fS  does not display any 

deviation from the behavior far from contact [blue curve in Fig. 2(d)]. The signal 3 fS  shows a 

small roll-off near contact, of less than one third of its maximum amplitude, and 4 fS  
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simultaneously displays an increase of slightly less than its signal amplitude out of contact 
[green and red curves in Fig. 2(d)]. Thus, there is evidence of a near-field signal when 
demodulating at the third or fourth harmonic, but it seems still overrun by background signal 

( )3 fS  or is on the order of the background signal ( )4 fS . 

Finally, we turn to the optical signals measured when approaching the in-line 
interferometer, i. e., a quartz substrate coated with a ~20-nm thick gold film and a ~200-nm 
thick SiO2 film on top of the gold film, to the gold nanotip. The modulation depth of the DC 
signal 0 fS  is in between that of the gold-coated and the uncoated sample [Fig. 2(e)], 

indicating a lower reflectivity of the in-line interferometer gold film than that of the gold-

coated substrate. However, the modulation is clearly sufficiently strong to facilitate using RE


 

as a reference field in our in-line interferometer homodyne scheme. This can be seen more 
clearly in the approach curves shown in Fig. 2(f): There is a near-field contribution 
discernible in all three signals 1 fS , 3 fS , and 4 fS . The near-field increase is less pronounced 

than in the case that the tip is directly in contact with the gold film; the fourth-harmonic signal 

4 fS  shows an increase of 7 times the noise level (compared to 20 times observed for the gold 

film). Considering that the near field signal that is measured when the gold tip is in contact 
with a glass surface [Fig. 2(d)] is just on the order of the noise level, we conclude that the 

enhancement by a factor 7 is due to interference of the near field NFE


 and the field reflected 

from the semi-transparent gold film, RE


. 

Thus, on the one hand the multi-layer structure of the in-line interferometer indeed seems 
to enable the measurement of rather small near-field contributions, which can hardly be 
detected otherwise. On the other hand, the measured signals are a result of mixing on the field 

level, and knowledge of the electric field strengths of RE


 and BE


 is required in order to 

determine the actual near-field strength. In the next section we derive expressions that allow 
disentangling the contributions of the fields to each of the measured signals 0 fS  to 4 fS . 

4. Analysis of the interfering fields 

In all cases investigated experimentally in Sec. 3, we consider the measured signal as the 

result of interference of the three electric fields NFE


, BE


, and RE


, as already briefly 

mentioned above. This section aims at disentangling the experimentally measured signals in 
order to discriminate the near field signal from the background contribution. For this, we first 
derive an analytic expression for the measured signals up to the fourth order of the tip 

modulation frequency, based on approximating the individual electric field strengths BE


 and 

NFE


 by Fourier sums. 

After the expressions are derived in Sec. 4.1, in the following Sec. 4.2 we compare them 
to the measured signals. Together, they will allow us to estimate the experimental conditions 
necessary for an “artefact-free” measurement of the near-field signal, i.e., the optimum 
sample properties and the demodulation order that enable to obtain a pure near-field signal 
with negligible influence of the background field. 

4.1 Analytical expressions for the measured signals 

The signals are measured with integration times much longer than the inverse of the light 
carrier frequency and even of the pulse repetition frequency; hence we can restrict the 
following considerations to temporal variations on the order of the tip modulation period. The 
measurement takes place at the detector, which is placed at a distance of several tens of cm 
from the light-sample-interaction region. At this position, we can describe the light as plane 
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waves and neglect any lateral variation of the electric field strength. The considered electric 
fields are quasi-monochromatic and quasi-static plane waves, the only dependencies 
considered in this section are the tip-sample distance z, and the three different samples we 
investigated. This translates into changes of the field amplitudes or the relative phases of the 
three interfering fields, which manifest as variations of the measured signal. 

 

Fig. 3. Graphical depiction of the sample, the origin of the interacting fields, and the tip-sample 

interaction region. The incident light field inE


 illuminates sample and tip in a diffraction-

limited spot. A part RE


 is reflected off the semitransparent gold film, and a part BE


 is 

scattered back from the shaft of the gold tip, possibly after multiple reflections ( 'BE


). The 

inset on the right depicts the enhancement of the tip dipole with polarizability tipα  by its 

image dipole. The electric field radiated from the tip dipole and propagating back towards the 

illuminating microscope objective is the origin of the near-field contribution NFE


. 

The sample and the origin of the interfering fields are depicted in Fig. 3. The reference 

field RE


 is the part of the incident light that is reflected before reaching the nanotip and the 

tip-sample-interaction region and does not depend on the tip-sample distance. Furthermore, 

we chose RE


 to carry the reference phase, 0Rϕ = , such that RE


 becomes a constant in our 

frame of reference: 

 ( ) const.R RE z E= =
 

 (1) 

The background signal BE


 is scattered back from the gold nanotip. Hence it acquires a 

phase shift with respect to the reference field, according to the pathway difference of the two. 
The pathway of BE  is longer by twice the tip-sample distance z  plus a constant distance d, 

which combines the distance from the apex, at which the backscattering from the shaft occurs, 
and the thickness of the glass layer in the case of the in-line interferometer. The pathway 

multiplied with the wave vector 2k π
λ=  determines the phase of BE


, together with a phase 

shift Bϕ  that can occur due to the reflection: 
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 ( ) ( )2
,0

Bik z d i
B BE z E e ϕ+ += ⋅
 

 (2) 

Depending on the reflectivity of the sample, i. e., of the semitransparent gold layer, 
multiple reflections between this layer and the tip can alter the distance dependence of the 
background field. For the samples investigated here, we found that one additional reflection is 
sufficient to describe the measured curves: 

 ( ) ( ) ( )( )1 22 4
,0' B Bik z d i ik z d i

B BE z E e r eϕ ϕ+ + + += ⋅ + ⋅
 

 (3) 

Here, r is the combined reflection coefficient of the tip shaft and gold layer and is typically 
between 0.1 and 0.4, and the path difference of the back-and-forth reflected light is doubled 
with respect to the main part of the background light. Equation (3) is used later to disentangle 
background and near-field contributions to the measured signals. Furthermore, for the 
monochromatic measurements that are analyzed first, it is sufficient to treat the phase shift 
due to the fixed distance d as a constant and to combine it with the phase Bϕ . This distance 

becomes important, however, for the spectral measurements presented in Sec. 5. For broad 
spectra the wavelength dependence of k results in a spectral phase and hence the interference 
of the three fields must show spectral modulation. In the following derivation of an expression 
for the measured signals, for the sake of simplicity, we use the Eq. (2) to describe the 
background field and will expand the derived expressions to include an additional reflection 
later. 

Finally, as the near field we denote light that is scattered from the tip-sample-interaction 
region into the far field, after at least one interaction with the tip dipole and a dipole in the 
sample (see inset on the right of Fig. 3). The process can be described in the framework of 
dipole-dipole-coupling between sample and tip as introduced by B. Knoll and F. Keilmann 
[23] and propagation of the point-dipole-like excitation via the dyadic Green’s function [30]. 

The incident electric field inE


 excites the z-oriented tip dipole and creates a polarization 

1 tip inp Eα=


 with the tip polarizability tensor tipα . The polarization is the source of a point-

dipole-like excitation at the tip position and emits a secondary field, which in turn induces an 
image dipole in the sample, if the tip-sample-distance is roughly equal to or smaller than the 
apex radius of curvature. This image dipole, whose dipole moment is determined by the 

complex dielectric function of the sample material, emits an electric field IDE


, which 

enhances the incident field at the tip position, such that the tip dipole moment becomes: 

 ( )tip tip in IDp E Eα= +
 

 (4) 

The so enhanced tip dipole leads to the radiation of an electric field outE


, which is 

described by the dyadic Green’s function outG


: 

 ( ) ( ) ( ) ( ), ' , 'out out tip out tip in IDE r G r r p G r r E Eα= = +
        

 (5) 

In the case of strong coupling of the incident field and the excited dipoles, potentially 
more than two consecutive scattering events have to be considered in a similar fashion as 
described above. Here, a self-consistent model can be applied to yield an effective 
polarizability [23]. In our experimental scheme, however, the tip dipole moment is dominant 
over the image dipole in the sample, and the main contribution to fields radiated out of the tip-
sample interaction region stems from the tip dipole enhanced by the image dipole. We treat 
the conical tip as a small metal sphere with radius R and with the polarizability 

( )( ) 134 1 2tip tip tipRα π ε ε
−

= − + , where tipε  is the complex dielectric constant of the tip 

material [23]. In this case, Eq. (5) is sufficient to describe the radiated field. This radiated 
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field ( )outE r
 

 consists of two terms; the first, ( ), 'out tip inG r r Eα
  

 results in a constant field 

contribution due to the tip dipole alone. As the tip-sample distance is changed, the amplitude 
of this first term does not change, but the phase changes with respect to the background field 

in the same fashion as was found before for the background field ( )BE z


. Hence this first term 

can simply be considered a contribution to the background field. The second term 

( ), 'out tip IDG r r Eα
  

, in contrast, depends strongly on the tip-sample distance and approaches 

zero for large z. If Eq. (5) was evaluated for the position Detr


 given by the cross section of 

beam path and detector plane, and the constant first term was subtracted, the resulting field 
would yield the near-field contribution to the measured signal, i. e., 

 ( ) ( ), 'NF out Det out Det tip inE E r G r r Eα= −
    

 (6) 

Due to the strong distance-dependence of the dipole-dipole coupling, the near field 
intensity measured in the detector plane decreases exponentially with increasing tip-sample 
distance, and a phase shift NFϕ  due to the dipole-dipole coupling is taken into account: 

 ( ) 0
,0

NF

z
z i

NF NFE z E e e ϕ−
= ⋅ ⋅

 
 (7) 

Here 0z  is the near-field decay length, which depends on the tip radius of curvature and lies 

typically in the range of 5 to 10 nm. For the tip used in the experiment described here, Figs. 
2(b), 2(d), and 2(f) yield a near-field decay length of 8 nm. 

The latter two fields, BE


 and NFE


 are varying as a function of the tip-sample distance z , 

which itself is a periodic function with period T: ( ) ( )z z t z t T= = + , where 
1 12T f π− −= = Ω is the inverse of the tip modulation frequency. The distance can be written as 

a sinusoidal function with the modulation amplitude M, centered at the average tip-sample 
distance z : 

 ( ) ( )cosz t z M t= + ⋅ Ω  (8) 

Thus also BE


 and NFE


are temporally periodic functions with the same period T: 

 ( ) ( ) ( ) ( )2 2 cos
,0, Bi k z d i i kM t

B B BE z E z t E e eϕ+ + Ω= = ⋅ ⋅
  

 (9) 

 ( ) ( ) ( )
0 0

cos

,0, NF

z M ti z z
NF NF NFE z E z t E e e eϕ

− − Ω
= = ⋅ ⋅ ⋅

  
 (10) 

To simplify the comparison with the experimental signals, which are measured at different 
harmonics of f , we approximate the explicitly time-dependent factors of these two fields by 

Fourier sums, following the idea of previous works [23]: 

 ( ) ( )2 ( )
,0, Bi k z d i n in t

B B
n

E z t E e b eϕ
∞

+ + Ω

=−∞

≈ ⋅ ⋅ ⋅
 

 (11) 

 ( ) 0 ( )
,0, NF

z
i z n in t

NF NF
n

E z t E e e c eϕ
∞−

Ω

=−∞

≈ ⋅ ⋅ ⋅ ⋅
 

 (12) 

Here we have introduced the complex Fourier coefficients ( )nb  and ( )nc  of the background 

field BE


 and the near field NFE


, respectively, where n is the harmonic order of the tip 

modulation frequency. The Fourier coefficients can be easily calculated: 
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 ( ) ( ) ( )2 cos( )

0

1
2

T
ni kM tn in t

nb e e dt i J kM
T

Ω − Ω= ⋅ = ⋅  (13) 

 
( ) ( )0

cos( )

00

1
1

T M t nzn in t
n

Mc e e dt I zT

− Ω − Ω  = ⋅ = − ⋅  
   (14) 

The Fourier coefficients for the background field are given by Bessel functions of the first 
kind and of order n, nJ . The Fourier coefficients of even order are real values, while those of 

odd orders are imaginary. This means that the phase of the background field shifts with each 
modulation order, which causes the interference pattern we observed in the approach curves 

to alternate between cosine ( )0 2 4, ,f f fS S S   and sine ( )1 3,f fS S  functions. The Fourier 

coefficients of the near field are modified Bessel functions of the first kind and of order n, nI , 

and are all real. 

 

Fig. 4. Relative amplitude of the Fourier coefficients 
(0)b to 

(4)b  (red bars) and 
(0)c to 

(4)c  

(blue bars) normalized to 
(0)b  and 

(0)c , respectively, as a function of demodulation order n. 
The amplitude of both decreases with demodulation order, but the background-field 

coefficients 
( )nb  decreases much more rapidly than the near-field coefficients 

( )nc . 

Figure 4 shows the absolute of the Fourier coefficients for our experimental parameters, 
specifically for a wavelength 780 nmλ =   and the tuning fork modulation amplitude 

30 nmM =  , as a function of demodulation order n in a bar diagram. The red bars are the 

background-field coefficients normalized to the zeroth order coefficient, i. e., ( ) (0)/nb b , and 

the blue bars the according near-field coefficients ( ) (0)/nc c . It is noteworthy that not only do 

both coefficients decrease with demodulation order, but that the relative strength of the 
background decreases much more rapidly than that of the near field. This is in agreement with 
the measurements presented in Fig. 2, where the near-field contribution becomes more clearly 
visible as the demodulation order increases, as well as with observations in earlier works. The 
increase of the near-field-to-background-ratio with demodulation order forms the basis for 
higher-order demodulation SNOM [23,29]. 
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Any signal that is measured in the detector plane is proportional to the absolute square of 

the total field ( ) ( ) ( ), , ,total R B NFE z t E E z t E z t= + +
   

. Inserting Eqs. (1), (11) and (12) and 

executing the absolute square gives 

 ( ) ( ) 0

2
2 2 ( ) ( )

,0 ,0, B NF

z
i k z d i i zn in t n in t

total R B NF
n n

E z t E E e b e E e e c eϕ ϕ
∞ ∞−

+ + Ω Ω

=−∞ =−∞

= + ⋅ + ⋅ 
   

(15) 

 

( ) ( ) 0

0

2 2 2* ( ) * ( )
,0 ,0

22 2( ) ( )* ( ) ( ) ( )* ( )
,0 ,0

,0

. . . .B NF

z
i k z d i i zn in t n in t

total R R B R NF
n n

z
zn m i n m t n m i n m t

B NF
n m n m

B

E z E E E e b e c c E E e e c e c c

E b b e E e c c e

E E

ϕ ϕ
∞ ∞−

+ + Ω Ω

=−∞ =−∞

∞ ∞ ∞ ∞−
− Ω − Ω

=−∞ =−∞ =−∞ =−∞

   = + ⋅ + + ⋅ +   
   

+  +

+

 

   

     

 

  ( )( ) ( )02* ( ) ( )*
,0 . .B NF

z
i k z d i n m tz n m

NF
n m

e e b c e c cϕ ϕ
∞ ∞−+ + − − Ω

=−∞ =−∞

 + 
 

 

(16) 

where c.c. denotes the complex conjugate. 
The power impinging on the photodiode is 

 ( ) 2

0

1
,

2 totalP z t cA Eε= ⋅


 (17) 

where 0ε  is the electric field constant of the vacuum, c  is the velocity of light, and A  is the 

area of the detector. Multiplication with the detector efficiency η  yields the output voltage 

( ) ( ), ,U z t P z tη= ⋅ . The unmodulated signal 0 fS , which is measured using the SiPD and 

without lock-in detection, is in fact the lowest order Fourier component of this voltage, which 
is a function only of the tip-sample distance and not of time: 

 ( ) ( ) ( )(0) (0)
0 fS z U z P zη= = ⋅  (18) 

For the first and higher-order demodulated signals, the lock-in output signal can be written as: 

 ( ) [ ] ( )
'

2

'

1
cos , , 1 4

t

nf

t T

S z n t U z t dt n b ac
T

γ θ
−

= Ω + ⋅      ≥ −  (19) 

Here, the index nf denotes the demodulation frequency, γ  is the gain parameter of the 

lock-in detector, and θ  is the phase between modulation waveform and detected signal. When 

measuring ( )nfS z  with the lock-in detector, the influence of this phase is eliminated by 

actually recording the amplitude, i. e., the geometrical average of ( )1,nfS z θ  measured for one 

phase setting 1θ  and ( )2,nfS z θ  measured for a second phase setting 2 1 2

πθ θ= + . In our 

calculations the same effect is achieved easily by evaluating the integral of Eq. (19) for 
0θ = . The integral, performed over time intervals 12T π −>>  Ω , is zero unless the 

demodulation frequency matches the angular frequency nΩ  of the Fourier component under 
consideration. 

The respective combinations of RE


, ( )
,0

n
BE b


, and ( )
,0

n
NFE c


 that contribute to the 

measured signals nfS  can easily be extracted from the expression for 
2

totalE


 given in Eq. 

(16). Because the highest order demodulation that can be measured with our 210-kHz line 
camera is the fourth order, we consider only Fourier coefficients up to this order, i. e., we 
restrict the sums in Eq. (17) to 4 , 4n m− ≤ ≤ . The unmodulated signal then becomes: 
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( )

{ } ( )( ) { } ( )
( )( )

0

0

0

4 422 2 2( ) ( )* ( ) ( )*
0 0 ,0 ,0

4 4

(0) (0)
,0 ,0

4
2* ( ) ( )*

,0 ,0
4

1

4

2 Re cos 2 2Re cos

. .B NF

z
zn n n n

f R B NF
n n

z
z

R B B R NF NF

z
i k z d z n n

B NF
n

S z cA E E b b E e c c

E E b k z d E E c e

E E e e b c c cϕ ϕ

ηε

ϕ ϕ

−

=− =−

−

−+ + −

=−

≈ ⋅ +  +

+ + + +

 + +  
 

 



  

   

 

 (20) 

In the DC signal 0 fS  the directly reflected fields RE


 and BE


 have field strengths several 

orders of magnitude higher than the near field contribution: ,0, , ,0,,NF j R j B jE E E<<
  

 for all n, 

and for each vector component , ,j x y z=  individually. Furthermore, the calculation of the 

Fourier coefficients showed that the background contribution decreases rapidly with 

increasing demodulation order, such that ( ) (0)
,0, , ,0,,n

B j R j B jE b E E b<<
  

 for 0n > . With 

these assumptions Eq. (20) can be simplified: 

 ( ) ( )( )2 2(0) (0)
0 0 ,0 ,0

1
2 cos 2

4f R B R B BS z cA E E b E E b k z dηε ϕ ≈ ⋅ + + + +  

   
 (21) 

It is easy to see that Eq. (21) replicates the measured curves 0 fS  in Figs. 2(a), 2(c), and 2(e) 

quite well: they describe the interference of two fields with a phase varying as the distance 
between tip and sample increases, and with a contrast given by the respective field strengths 
of background and reference field. 

Similarly, the signals measured at the first and higher harmonic demodulation frequencies, 

1 fS  to 4 fS , can be extracted from Eq. (16). After applying the same approximations as 

enumerated above for the example of 0 fS , the less dominant terms are neglected, and we 

obtain the following four approximated expressions for 1 fS  to 4 fS : 

 
( ) { } ( )( ) { }

{ } ( )( )

0

0

(1) (1)
1 0 ,0 ,0

(0) (1)
,0 ,0

Re sin 2 Re cos

Re cos 2

z
z

f R B B R NF NF

z
z

B NF B NF

S z cA E E b k z d E E c e

E E b c e k z d

γηε ϕ ϕ

ϕ ϕ

−

−

≈ ⋅ − + + −

− ⋅ + + −

   

 
(22) 

 
( ) { } ( )( ) { }

{ } ( )( )

0

0

(2) (2)
2 0 ,0 ,0

2 (0) (2) (0) (2)
,0 ,0 ,0

Re cos 2 Re cos

Re cos 2

z
z

f R B B R NF NF

z
z

B B NF B NF

S z cA E E b k z d E E c e

E b b E E b c e k z d

γηε ϕ ϕ

ϕ ϕ

−

−

≈ ⋅ − + + +

− + ⋅ + + −

   

  
 (23) 

 
( ) { } ( )( ) { }

{ } ( )( )

0

0

(3) (3)
3 0 ,0 ,0

(0) (3)
,0 ,0

Re sin 2 Re cos

Re cos 2

z
z

f R B B R NF NF

z
z

B NF B NF

S z cA E E b k z d E E c e

E E b c e k z d

γηε ϕ ϕ

ϕ ϕ

−

−

≈ ⋅ + + −

− ⋅ + + −

   

 
(24) 

 
( ) { } ( )( ) { }

{ } ( )( )

0

0

(4) (4)
4 0 ,0 ,0

2 2(2) (0) (4)
,0 ,0 ,0

Re cos 2 Re cos

Re cos 2

z
z

f R B B R NF NF

z
z

B B NF B NF

S z cA E E b k z d E E c e

E b E E b c e k z d

γηε ϕ ϕ

ϕ ϕ

−

−

≈ ⋅ + + +

+ + ⋅ + + −

   

  
 (25) 

The relevant Eqs. (21)-(25) describe signal detection after the interference of vectorial 
fields. They are simplified to terms of products of two fields each, with only the three field 
amplitudes and phases and the near-field decay length as input parameters. Typically, not all 
three vector components contribute with comparable strengths, such that a full vectorial 
treatment is not required. In our experiment, the incident light is linearly polarized in the 
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plane parallel to the table, corresponding to the y-direction given in Fig. 1. The reference field 

RE


 consists of light directly reflected from the semi-transparent gold film or from the 

uncoated surface of the substrate, which in both cases results in a purely y-polarized reference 

field. The background field BE


, which is reflected off the cone-shaped surface of the gold tip, 

is expected to be mainly polarized along the y-direction, but to carry also a weak x-

component. The near field NFE


is constituted of light that is scattered out of the near-field 

interaction region of sample and tip into the detected far field, as described above [Eqs. (4) 
and (5)]. The emission pattern of the coupled system of tip dipole and its image dipole in the 
sample is transformed by the high-NA objective into a radiation pattern that propagates back 
along the illumination path. Earlier measurements have shown that this light is radially 
polarized with a high degree of polarization [30]. In the in-line homodyne detection scheme 
that is employed here, however, the near field contribution is only detected by mixing with the 
y-polarized reference field or with the mainly y-polarized background field. This restricts the 
near-field detection to approximately half the signal, namely the near field’s y-component. 
For this reason, a scalar description of the interference is sufficient. This is achieved by 

substituting RE


 with ˆR RE E y= ⋅


, ,0BE


 with ,0 ,0 ˆB BE E y= ⋅


, and by substituting ,0NFE


 with 

,0 ,0 ˆNF NFE E y= ⋅


 in Eqs. (21)-(25). 

4.2 Near-field contribution in the measurements 

The reference field strength RE  is measured directly as the unmodulated signal 0 fS  with the 

tip removed from the setup, setting ,0 0BE =  in Eq. (21). For the gold-coated quartz sample, 

the power measured with the SiPD is 2,8μWP =  , which, assuming a beam cross section of 
21mmA =  , corresponds to the reference field strength 146 VmRE −=  . The background field 

strength (0)
,0BE b⋅  can be estimated rather precisely from the modulation depth on the signal 

0 fS  in Fig. 2(a), which originates from the cosine-term in Eq. (21), with the result 
(0) 1

,0 1,1VmBE b −⋅ =   and the ratio (0)
,0: 43 :1R BE E b⋅ = . It should be noted that it is not 

possible to directly obtain a value for (0)
,0NFE c⋅  from the unmodulated signal since it is by 

far dominated by the background and reference fields. No near-field contribution is 
discernible in the measurement shown in Fig. 2(a). This is the case for all three substrates. 
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Fig. 5. Disentangled background and near-field signals. The left hand side graphs show the 

measured optical signals 2 fS  (blue curves) and 3 fS  (green curves) as a function of the tip-

sample distance together with calculated approach curves (dashed red curves) for A, the gold-
coated quartz substrate, C, the uncoated quartz substrate, and E, the quartz substrate coated 
with a semitransparent gold film and ~200 nm quartz on top of the gold film. Adapting the 

theoretically derived expressions for 0 fS  to 4 fS  allows determination of the electric field 

strengths RE , ,0BE , and NFE , and, together with the Fourier coefficients 
( )nb  and 

( )nc  

disentangling background and near-field contributions to the measured signals. Τhe right hand 
side graphs show the ratio of background and near-field contribution to the measured signals as 
red and blue bars, respectively, as function of the demodulation order for B, the gold-coated 
quartz substrate, D, the uncoated quartz substrate, and F, the quartz substrate coated with a 
semitransparent gold film and ~200 nm quartz on top of the gold film. The bars are normalized 

to { } (0)
,0Re 100%R BE E b =  on the gold-coated quartz substrate. For the substrates with 

a gold film (B and F), the background signal decays much faster with increasing demodulation 

frequency than the near-field signal, such that when demodulating at dem od mod4f f= ⋅ , 

basically only the near-field signal is measured. For the uncoated quartz substrate, even at 
fourth-order demodulation, the background signal surmounts the near-field signal. 
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The derived expressions 22-25 for the optical signals 1 fS  to 4 fS  are compared to the 

measured approach curves, using the values 146 VmRE −=   and (0) 1
,0 1,1VmBE b −⋅ =   

obtained from the measured signal 0 fS  in Fig. 2(a), and using the phase for the near field, 

NFϕ , and the phase for the background field, 1Bϕ , to manually adapt the shape of the 

calculated curves to the measured signal. Furthermore, for the gold-coated quartz substrate the 
effect of multiple reflections can be seen clearly from the deviation of especially 1 fS  from a 

single-sinusoidal behavior [Fig. 2(b)]. This is taken into account by using Eq. (3) to describe 
the background field, adding the reflection coefficient r and the second phase 2Bϕ  as 

adaptation parameters. For the gold-coated quartz substrate, the reflection coefficient is 
between 0.15r =  and 0.45. 

As an example, Fig. 5(a) shows the calculated curves 2 fS  and 3 fS  (dashed red curves) 

together with the experimentally measured approach curves ( 2 fS : blue curve, 3 fS : green 

curve). With the above mentioned adjustable parameters, the derived expressions reproduce 
the measured curves quite closely. As a result of comparing the measurement to the derived 

expressions, we obtain on the one hand { } ( )
,0Re n

R NFE E c⋅  for 1, 2,3, 4n = , which represents 

a direct measure for the near-field contributions to the measured signals, and on the other 
hand the contributions that arise due to the background light scattered from the tip shaft, i. e., 

{ } ( )
,0Re n

R BE E b⋅ , 
2 ( ) ( )

,0
n m

BE b b⋅ , and { } ( ) ( )
,0 ,0Re n m

B NFE E b c⋅ ⋅ . In Fig. 5(b), these 

values are plotted as bar diagrams as a function of demodulation order, normalized to 

{ } (0)
,0Re 100%R BE E b = . Both signal contributions decrease exponentially with increasing 

demodulation order, and as expected for a gold surface, the background signal decreases 
much faster than the near-field signal, such that for 3 fS  the near-field contribution already 

surmounts the background, and that for 4 fS  the background contribution amounts to only 

~2.5%. 
With a similar measurement of the pure reference power, we find for the uncoated quartz 

substrate the much smaller reference field strength 112 VmRE −=   and the background field 

strength (0) 1
,0 2,3 VmBE b −⋅ =  , i. e., (0)

,0: 5 :1R BE E b⋅ = . The absence of a semitransparent 

gold film results in more light reaching the tip and hence increased scattering from the tip 
shaft, while the reference field is created only by a relatively weak reflection from the glass 

surface. As before, there is no near-field contribution (0)
,0NFE c⋅  discernible. Again, the 

derived expressions Eq. (22)-(25) are adapted to the measurements by manually varying the 
phases of background and near-field light, 1Bϕ , 2Bϕ , and NFϕ . The reflectivity of the 

uncoated quartz is reduced to about half that of the gold-coated quartz samples, but due to the 
high background-to-reference ratio multiple reflections between tip and sample again have a 
high influence on the over-all signal [Fig. 5(c)]. Compared to the gold-coated quartz substrate, 
the high background-to-reference ratio of the uncoated quartz substrate results in a much 
stronger influence of the background-related signal components even at high demodulation 
orders: up to the fourth order near-field- and background-related signal components are of 
comparable strength [see Fig. 5(d)]. From this measurement it is clear that the reference signal 
needs to be increased in order to measure predominantly the near-field signal at demodulation 
frequencies that are experimentally easily accessible. 

As the last substrate, we evaluate the approach curves for the in-line homodyne 
interferometer, i. e., for the gold- and glass-coated quartz substrate. Here the reference is 
again increased due to the semitransparent gold film, with 166 VmRE −=   and 
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(0) 1
,0 1,9 VmBE b −⋅ =  , i. e., (0)

,0: 36 :1R BE E b⋅ = . The derived expressions Eqs. (22)-(25) are 

adapted to the measurements like described before, and as examples, 2 fS  and 3 fS  are plotted 

in Fig. 5(e). In this case, there is still a small deviation between the measured and the 
calculated curves for 2 fS  apparent, and the curvature of 3 fS  at small tip-sample distances of 

50 nm<   could also not be entirely reproduced. This observation points towards somewhat 
more complicated multiple reflections than accounted for by our simple model, e. g., 
reflections not only between the tip and gold film but also between tip and substrate surface. 
The near-field and background contributions to the measured optical signals are plotted as a 
function of the demodulation order in the bar diagram in Fig. 5(f), where one can see that both 
signal contributions decrease exponentially with increasing demodulation order. Similar to the 
gold-coated substrate, also for our in-line interferometer, the background signal decreases 
faster than the near-field signal. For 3 fS  the near-field contribution surmounts the 

background, and at 4 fS  the background contribution amounts to only ~7%. 

In conclusion, for the uncoated quartz substrate the reference and the background field are 
of comparable strength. Hence, for this case, cross terms not only between any higher order 
near-field terms and the reference field contribute to the measured signals, but also between 

higher order near-field terms and the background term (0)
,0BE b⋅  have considerable 

influence. For uncoated glass substrates, a measurement exploiting near-field contrast will be 
possible only for higher demodulation orders than accessible to us in this work. For both 

metal-coated quartz substrates, in contrast, (0)
,0B RE b E⋅ << , such that the cross terms 

between higher-order coefficients ( )
,0

n
BE b⋅  and ( )

,0
n

NFE c⋅ , 0n ≠  and the reference field 

dominate. The faster decay of ( )
,0

n
BE b⋅  with increasing demodulation order then nearly 

completely removes the dependence on the unknown background field. The dominance of the 

near-field signal { } ( )
,0Re n

R NFE E c⋅  is a result of mixing the near field with a strong reference 

field, i. e. of the in-line homodyne interferometer formed by the buried gold film. 

5. Broadband near-field spectroscopy 

For broadband near-field spectroscopy we use a titanium:sapphire laser with a spectral 
bandwidth exceeding 100 nm as a broad-bandwidth excitation laser source [see laser input 
spectrum in Fig. 6(a)]. The APD and lock-in detector are replaced with a monochromator 
equipped with a fast line camera. Complete spectra are recorded at a rate of 210 kHz at fixed 
tip-sample distances. Figure 6(b) shows the tuning-fork amplitude that is used as the control 
parameter, as a function of tip-sample distance. Colored circles mark the positions at which 
spectra are recorded. For a first demonstration of spectrally resolved near-field measurements, 
we insert our in-line homodyne interferometer as the sample, i. e., a quartz substrate coated 
with a ~20-nm thick gold film and a ~200-nm thick SiO2 film on top of the gold film. As we 
have shown in Sec. 4.2, the reflection off the semitransparent gold film creates a reference 
field strong enough to amplify the near-field contributions above the background-related 
signal contributions. The near field, however, is created at the quartz surface, which in itself 
gives a weaker signal compared to a gold surface and is thus a more realistic test case for 
near-field spectroscopy of future samples. Furthermore, the spectral response of both a gold 
film and a quartz substrate is rather flat in the spectral range investigated here. The recorded 
spectra are post-processed to extract spectra demodulated at the n-th order of the modulation 
frequency Ω : the signal recorded by each pixel as a function of time is multiplied by a factor 

( )cos n tΩ  and integrated over time [emulating the effect of the lock-in detector, see Eq. (19)]. 
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Fig. 6. Broad-bandwidth near-field spectroscopy. A, Input laser spectrum. B, Tuning fork 
amplitude as a function of tip-sample distance. The positions where spectra are measured are 
marked by colored circles. C, The measured spectra ( )1 fS λ , demodulated at the fundamental 

tip modulation frequency, do not resemble the input spectrum, but are prominently modulated 
by interference between reference and background fields. D, The calculated spectra ( )1 fS λ  

model the main characteristics of the measured spectra very well. E, The measured as well as 

F, the calculated spectra 2 fS  also differ from the input laser, and due to different field 

components interfering they also strongly differ from 1 fS . G, In contrast, the measured 

spectra ( )4 fS λ , demodulated at the fourth harmonic, mainly resemble the input laser spectrum 

and strongly decrease with increasing tip-sample distance. H, The calculated spectra 
4 fS  show 

the same behavior. 
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This results in demodulated spectra ( )nfS λ , which are shown exemplary for the first- and 

the fourth-order demodulation in Figs. 6(c) and 6(d), respectively. The green-to-blue curves 
are measured in close proximity to the surface, with the darkest blue being the closest, and the 
red curve represents a spectrum that is recorded at a larger tip-sample distance, where the 
near-field contribution is vanishingly small. 

The measured first-order demodulated spectra ( )1 fS λ  displayed in Fig. 6(c) have a 

spectral shape that generally differs from the input laser spectrum. Furthermore, this spectral 
shape varies with tip-sample distance, which is most apparent in the spectrum recorded at a 
large distance (red curve), but can also be seen in the other curves, where the tip-sample 
distance is varied only on a small scale of 20 nm<  . 

In order to explain the measured spectra we have expanded the theory developed for 
quasi-monochromatic fields in Sec. 4.1 to include the wavelength dependence of the 
interfering electric fields. Since the dielectric functions of both gold and quartz are nearly 
constant in the investigated wavelength region between 700 and 860 nm, we have assumed a 
flat spectral response of the sample. The tip polarizability of the tip can be estimated 
assuming a spherical dipole as described above, which results in a non-resonant characteristic 
of the tip in this spectral region, with changes of ~6% of the real part and negligible imaginary 
part of the polarizability. In good approximation, ( )RE λ , ( ),0BE λ  and ( ),0NFE λ  have the 

spectral shape of the square root of the laser intensity spectrum and a flat spectral phase. 
The phase shift between reference and background field, 

( ) ( ) 1
1 12 4B Bk z d z dϕ π λ ϕ−+ + = + +  now depends on the tip-sample distance and on the 

wavelength, leading to spectral interference in signals with sufficiently strong background 
contribution. The same is true for the background field that is reflected between the gold film 
and the tip a second time and carries the phase ( ) ( ) 1

2 24 8B Bk z d z dϕ π λ ϕ−+ + = + + . The 

Fourier coefficients ( )nb  of the background field are also a function of the wavelength, but 
this has a much weaker influence on the observed spectra. With this simple expansion of the 
theory, the general behavior observed in the measured spectra ( )1 fS λ  is nicely reproduced: 

the calculated spectra ( )1 fS λ  shown in Fig. 6(d) show strong spectral modulation that varies 

considerably when the tip-sample distance is changed. We have observed that the shape of the 
spectra depends sensitively on the phase offset, 1Bϕ  and 2Bϕ , such that some spectral 

components can vanish completely from the calculated spectra by adjusting these phases. 
Thus, spectral interference is the dominant effect that shapes the spectra. This makes it 
difficult to extract quantitative information on the sample response when ignoring those 
interferences. 

This observation is emphasized, when comparing the measured and calculated spectra 

( )2 fS λ  shown in Figs. 6(e) and 6(f), respectively. The second-order demodulated measured 

spectra also differ from the laser input spectrum, but they are also markedly different from the 
spectra ( )1 fS λ  in Figs. 6(c) and 6(d). Also within the spectra ( )2 fS λ , each individual 

spectrum differs from those recorded at other tip-sample distance, which is most clearly 
visible for the spectrum recorded at the largest tip-sample distance (red curve). Knowing that 
the signal 2 fS  is composed of different terms of interfering fields than 1 fS  [compare Eqs. 

(22) and (23)], it is clear that spectral interference between the fields should lead to quite 
different measured and calculated spectra. From this, it is clear that such interference can 
easily obscure true near-field spectral information. 

In contrast, the fourth-order demodulated spectra ( )4 fS λ  shown in Fig. 6(g) closely 

resemble the laser input spectrum, as expected for the sample with a flat spectral response, 
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and they retain their over-all shape when the tip-sample distance is changed. As observed in 
the quasi-monochromatic measurements, the background-related signal contribution and 
hence also spectral interference are mostly suppressed when demodulating at the fourth order. 
The amplitude of the spectra decreases strongly with increasing tip-sample distance, 
indicating that these spectra are mainly governed by the near field. This is verified by the 
calculated spectra shown in Fig. 6(h), which are governed by the cross term of near field and 
reference field, and which are in very good agreement with the measured spectra. 

Note that, in near-field spectroscopy with this in-line homodyne interferometer, the 
amplitude and phase of the near field are easily obtained: Dividing the envelope of ( )4 fS λ
by the square root of the separately measured reference spectrum would yield the near field 
amplitude, and the phase difference NFϕ  would show as spectral modulation, as known from 

spectral interferometry [31]. The amplitude and phase of the near field will be determined by 
the complex dielectric function of the sample material via the effective polarizability of the 
probe (see Eqs. (5) and (6), and [23]). 

6. Summary, discussion and outlook

In this work, we have analyzed the signal in scattering-type scanning near-field optical 
microscopy on the field level, and we have identified and designed a layered structure that 
allows disentangling near-field and background-related signal contributions by mixing the 
near field with a strong reference field. The layered structure was realized by depositing a thin 
gold film on the sample substrate and covering it with a thin dielectric layer and forms an 
inherently phase-stable in-line interferometer for. We have shown that this efficiently 
amplifies the near field and suppresses the background light, such that when demodulating the 
signal with the third or fourth harmonic of the tip modulation frequency mainly the near field 
is detected. 

Both the interferometer and the gold nanotaper used as a near-field probe support broad-
bandwidth spectroscopy over the visible and near-infrared wavelength range. Complete 
spectra were recorded in tip-modulated s-SNOM using a fast line camera that enables post-
measurement extraction of spectra demodulated with up to the fourth-order harmonic 
frequency. With the developed multi-layer structure and with the fast line camera, we have 
measured pure near-field spectra over a broad bandwidth in the visible spectral region. 

Our measured and calculated optical signals verify and demonstrate the challenging effect 
of background signals in scattering-type SNOM. Interference between light that is reflected 
from the sample and light that is scattered from the tip shaft dominates the measured signal, in 
the case of an uncoated sample even if the signal is demodulated at the fourth harmonic of the 
tip modulation frequency. For broad-bandwidth spectroscopy, this results in spectral 
interference that basically determines the shape of the measured spectra. In this work, we 
have shown that a reference field of sufficient amplitude, namely of roughly 50-fold 
amplitude of the background field, can achieve efficient background suppression. The 
reference field then amplifies the near field such that at demodulation at the third or fourth 
harmonic of the tip modulation frequency results in the very precise detection of the near 
field. Specifically, we have created the reference field within the substrate of the sample, 
thereby realizing an inherently stable in-line interferometer. 

In this work, a reference field with suitable amplitude is provided by 30-50% reflection of 
the incident laser field off a ~20-nm thick gold film. This semitransparent gold film transmits 
sufficient light to create a near field, while at the same time supplying a reference field for 
amplification of the near field above the background contributions. Note that the optimum 
reflectivity of the gold layer of a few tens of percent is dictated not by the sample to be 
investigated but by the amount of background field that needs to be suppressed. A gold-
dielectric interface however, supports surface plasmons, which could interact with the tip and 
with a sample applied to the gold surface. This could affect near-field spectra measured of the 
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sample. To avoid such disturbance, we have covered the gold film with a quartz layer of a 
200-nm thickness. This is longer than the plasmon decay length, but also sufficiently thin to
not result in spectral modulation of the measured 4 fS  spectra. Alternatively, one may use a

substrate made of a transparent dielectric material with high refractive index. A somewhat 
lower reflectivity between 10 and 20% could be realized in a trade-off between ease of 
substrate production and near-field amplification. 

While we have concentrated on overriding the background-related signal contributions 
with an amplified near-field related signal, it would be even more advantageous to reduce the 
detrimental effect of the background field. Reduction of light scattered from the tip shaft 
would greatly improve the potential of s-SNOM. Such a reduction of background light would 
require changing the dielectric function of the tip material, i. e., making the tip in essence 
transparent to the incident laser light. Creating a near-field signal, however, requires a strong 
tip dipole. Both requirements could be combined, for example, by placing a metal sphere on a 
transparent mount such as a dielectric taper [32]. A metal sphere offers a large dipole 
moment, but has a narrow resonance. Thus, while such a tip on the one hand could hold great 
potential to improve the signal-to-background ratio in s-SNOM, it would, on the other hand, 
considerably reduce the bandwidth for spectroscopy. There is a trade-off between background 
reduction, tip dipole moment, and spectral bandwidth. In our experience, the gold nanotapers 
that were used in this work optimize dipole moment and spectral bandwidth, but introduce a 
relatively large background signal that requires additional measures for background 
suppression. 

In summary, we have made considerable progress towards broadband s-SNOM 
spectroscopy in the visible spectral range. We have realized an inherently phase-stable in-line 
interferometer for mixing the near field with a strong reference field by depositing a thin gold 
film on the sample substrate and covering it with a thin dielectric layer. We have shown that 
this efficiently amplifies the near field and suppresses the background light. Using a fast line 
camera we have recorded complete spectra in tip-modulated s-SNOM. By post-measurement 
extraction of spectra demodulated with the fourth-order harmonic frequency we have acquired 
pure near-field spectra in over a broad bandwidth of the visible spectral region. 

Our results open up a new approach towards quantitative, ultrahigh resolution, broadband 
near-field scattering spectroscopy. Currently we are applying this new interferometric 
broadband near-field spectroscopy to observing the coupling in organic-metallic hybrid 
nanostructures. 
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