
Finding Markovian Models
for Insurance Processes

by Expanding State Spaces

Von der Fakultät für Mathematik und Naturwissenschaften
der Carl von Ossietzky Universität Oldenburg
zur Erlangung des Grades und Titels eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation

von Herrn Marius Pluhar
geboren am 03.07.1993 in Bremen.

Betreuender Gutachter: Prof. Dr. Marcus C. Christiansen
Zweitgutachter: Prof. Dr. Peter Ruckdeschel
Tag der Disputation: 01.10.2020

“Make no little plans; they have no magic to stir men’s
blood and probably themselves will not be realized. Make
big plans; aim high in hope and work, remembering that
a noble, logical diagram once recorded will never die, but
long after we are gone be a living thing, asserting itself
with ever-growing insistency. Remember that our sons and
our grandsons are going to do things that would stagger
us. Let your watchword be order and your beacon beauty.”

— Daniel H. Burnham

iii

Acknowledgements
Pursuing my doctoral degree has been a life-changing experience for me. Since the
start of my PhD studies I have not only been able to deepen my existing math-
ematical knowledge and to obtain new mathematical insights, but constantly
pushing myself to new limits has also made me grow as a person. Without the
support I received from many people and parties this would not have been pos-
sible.
First I would like to express my very great appreciation to the SIGNAL IDUNA
insurance. They generously provided the data set that enabled me to illustrate
the theoretical results of my research. Without their contribution this thesis could
not have been completed. In particular I want to thank Dr. Christian Scholz and
Dr. Karsten Dietrich. Their thoughtful questions and remarks have led to en-
hancements of this work.
Next I am very grateful for the continuous assistance and the helpful feed-
back given by my main supervisor Professor Marcus C. Christiansen and my
co-supervisor Professor Peter Ruckdeschel. Both of them supported me and my
research in an exemplary manner. They contributed countless ideas that clearly
increased the quality of my thesis and our talks enriched my work.
In addition to my supervisors, my appreciation also extends to the participants
of the “Joint PhD Seminar in Statistics, Actuarial and Financial Mathematics”,
the “Joint PhD Seminar in Statistics and Stochastics” and the “Oldenburger
Nachwuchsworkshop für Versicherungs- und Finanzmathematik” for helpful dis-
cussions and suggestions.
Furthermore I would like to thank my fellow PhD students and friends for their
stimulating remarks, their steady encouragement and the fun we had together in
the last years.
Last but not least, I feel immense gratitude towards my parents and my brother
as they have always unconditionally supported me in every possible way.

iv

Abstract

(English)

In insurance mathematics time-discrete stochastic processes are often as-
sumed to be first-order Markovian. While the actual data does most likely
not harmonize with the Markov assumption, ignoring this yields models
that are easy to handle and easy to communicate to customers. By switch-
ing over to Markov processes of higher order this discrepancy can be re-
duced, but the complexity of higher-order models increases exponentially
and the major advantages of a first-order model are lost.
Variable Length Markov Chains (VLMC) are a subclass of Markov pro-
cesses. They are able to fully display dependencies in time-homogeneous
data while being less complex than a Markov process of sufficiently large
order. But VLMC fail to meet requirements of insurance applications, e.g.
they cannot display time-dependencies in a natural way.
In order to meet those requirements, we extend the concept of VLMC
and introduce a new class of models: time-inhomogeneous Variable Length
Markov Chains (tiVLMC). We propose and implement a fitting algorithm
for tiVLMC within an uncensored and a censored data setting. The calcu-
lation of prospective reserves is discussed and we train and tune tiVLMC-
models on two real life data sets. The first data set documents long-term
care insurances and the second data set documents joint life insurances.
We also develop smoothing procedures for tiVLMC-models that ensure
their interpretability and make them easy to communicate to potential
customers.

v

Abstract

(German)

Zeitdiskrete stochastische Prozesse werden in der Versicherungsmathematik
oft mittels Markov-Prozessen erster Ordnung modelliert. Obwohl die Daten-
lage und die Markov-Annahme in den meisten Fällen nicht zusammen-
passen, können so schlanke und einfach kommunizierbare Modelle gewon-
nen werden. Die Diskrepanz zwischen Modell und Wirklichkeit kann zwar
durch die Wahl von Markov-Prozessen höherer Ordnung reduziert werden,
aber der Preis dafür ist eine exponentiell wachsende Modellkomplexität.
So gehen die Vorteile eines Markov-Prozesses erster Ordnung verloren.
Variable Length Markov Chains (VLMC) sind eine Unterklasse von Markov-
Prozessen. Diese Modelle können eine zeithomogene Abhängigkeitsstruktur
in Daten erkennen und vollständig wiedergeben, ohne dass simultan ihre
Komplexität explodiert. Leider basiert das VLMC-Kalkül aber auf An-
nahmen, welche im Versicherungskontext klar verletzt sind. Zum Beispiel
können VLMC zeitliche Abhängigkeiten nicht auf natürliche Art und Weise
modellieren.
Mit dem Ziel diese Konflikte zu beheben, verallgemeinern wir das VLMC-
Kalkül und entwickeln eine neue Modellklasse: time-inhomogeneous Vari-
able Length Markov Chains (tiVLMC). Wir konstruieren und implemen-
tieren einen Algorithmus zur Modellanpassung von tiVLMC an unzen-
sierte als auch an zensierte Daten. Wir diskutieren die Berechnung von
Deckungsrückstellungen und stellen konkrete tiVLMC-Modelle für zwei
verschiedene Datensätze vor. Der erste Datensatz enthält echte Beobach-
tungen aus dem Kontext der Pflegeversicherung, der zweite enthält echte
Beobachtungen aus dem Kontext einer Versicherung verbundener Leben.
Außerdem entwickeln wir Verfahren zur Glättung von tiVLMC-Modellen
und stellen so die Erklärbarkeit der Modelle und den reibungslosen Vertrieb
des daraus abgeleiteten Versicherungsvertrags sicher.

Contents vi

Contents
List of Figures viii

List of Tables ix

List of R-Codes x

1 Introduction 1
1.1 The problem . 1
1.2 The concept of Variable Length Markov Chains 6
1.3 Special requirements for insurance processes 12
1.4 An approach . 14

2 Theoretical framework 16

3 Time-inhomogeneous Variable Length Markov Chains 24

4 Inferring tiVLMC 37
4.1 Pruning with the Kullback-Leibler divergence 37
4.2 Pruning with the L1-norm . 58
4.3 Pruning with an arbitrary norm 61

5 Inferring tiVLMC from censored data 63
5.1 The censoring variables . 63
5.2 Pruning with the Kullback-Leibler divergence 67
5.3 Pruning with an arbitrary norm 72
5.4 Model limitations . 73

6 Tuning the algorithm 79
6.1 The log-likelihood function . 80
6.2 The model complexity . 80
6.3 Two information criteria . 81

7 Implementation of the algorithm 83
7.1 The estimateTau-function . 83
7.2 The buildTauMax-function . 87
7.3 The pruneTauMax-function . 92
7.4 The tuneC-function . 95

Contents vii

8 Examples 102
8.1 Applying the algorithm . 102
8.2 Tuning the algorithm . 115

9 The prospective reserve 120
9.1 A computation formula . 120
9.2 The calculateProspectiveReserve-function 127
9.3 The net premium . 136

10 The German long-term care insurance 140
10.1 A brief data description . 140
10.2 Data preparation . 141
10.3 The tiVLMC-models . 144
10.4 A comparison . 154

11 Interpreting a tiVLMC-model 173
11.1 Break-point-tiVLMC . 173
11.2 Moving-average-tiVLMC . 179
11.3 LASSO-tiVLMC . 191
11.4 Cutoff paths . 194

12 The joint life insurance 196
12.1 Data preparation . 196
12.2 The LASSO-tiVLMC-model . 200
12.3 The moving-average-tiVLMC-models 203

13 Reflection and directions for future research 207

References 210

Appendices A
A Mathematical tools . A
B Context tree estimates (data.signal) E
C Context tree estimates (data.female) P

List of Figures viii

List of Figures
3.1 Illustration of the context trees τ1, τ2 and τt 30
8.1 τmax at t = 1 and τ̃1 . 104
8.2 τmax at t = 2 and τ̃2 . 105
8.3 τmax at t = 3 and τ̃3 (data) . 105
8.4 τmax at t = 3 and τ̃3 (data.dependent) 110
8.5 Tuning the algorithm with AIC (data) 116
8.6 AIC-tuned context tree estimates 117
8.7 Tuning the algorithm with BIC (data) 117
8.8 Tuning the algorithm with AIC (data.independent) 118
8.9 Tuning the algorithm with BIC (data.independent) 119
9.1 Visualizing payments as a tree . 133
10.1 Tuning the algorithm with AIC and BIC 145
10.2 Tree heights . 146
10.3 Node counts . 147
10.4 Movement of the estimated context tree (data.signal) 148
10.5 Tuning the algorithm using the L1-norm 150
10.6 Tree heights using the L1-norm 150
10.7 Node counts using the L1-norm 151
10.8 Prospective reserves in MC1 . 166
10.9 Relative differences in the prospective reserves in a and 1 167
10.10 Relative differences in the prospective reserves in 2 and 3 168
10.11 Relative differences in the prospective reserves in 3h and d 169
10.12 Influence of the age at contract closure 171
11.1 Supertree of the AIC-tuned tiVLMC 174
12.1 Movement of the estimated context tree (data.female) 202
12.2 Movement of the smoothed estimated context tree 205

List of Tables ix

List of Tables
3.1 Model complexity of Markov processes 34
3.2 Model complexity of the tiVLMC and its embedding 36
10.1 Abbreviations of the state names 143
10.2 Overview of the tiVLMC-model fitting 152
10.3 Contexts of the fitted tiLVMC-models 153
10.4 Required minimal length of the health history 157
10.5 Net premiums of the different models 160
10.6 Prospective reserves in the first three models 163
10.7 Prospective reserves in the last four models 164

List of R-Codes x

List of R-Codes
7.1 estimateTau . 85
7.2 buildTauMax . 88
7.3 initializeRootNode . 89
7.4 addBranch . 90
7.5 initializeNode . 91
7.6 updateNode . 91
7.7 pruneTauMax . 92
7.8 calculatePruningMeasure . 93
7.9 KLD . 94
7.10 L1 . 94
7.11 tuneC . 98
7.12 calculateLogLikelihood . 99
7.13 getTransitionProbability . 100
7.14 calculateModelComplexity . 101
8.1 Six out of 100,000 observations 102
8.2 Inferring context trees from uncensored data 103
8.3 plotTree . 103
8.4 recursiveColoring . 104
8.5 Six out of 100,000 totally random censored observations 106
8.6 Inferring context trees from totally random censored data 107
8.7 Six out of 100,000 indep. left and right censored observations . . . 108
8.8 Inferring context trees from indep. left and right censored data . . 108
8.9 Inferring context trees from dependently censored data 109
8.10 transitions- and counter-attribute 112
8.11 Solving the minimization problem 113
8.12 Tuning the algorithm with tuneC 115
9.1 calculateProspectiveReserve . 131
9.2 Defining the payment tree in R 134
9.3 calculateDiscountingFactor . 135
9.4 getPayment . 135
9.5 Calculating the prospective reserve and the net premium 139
10.1 Most frequent observation . 144
10.2 Calculating the net premium in the KLD/AIC-model 159
10.3 Calculating the prospective reserve 161
11.1 estimateMovingAverageTau . 188
11.2 treeChanges . 193

List of R-Codes xi

11.3 identicalNodes . 193
12.1 Six out of 14,889 observations . 197
12.2 Six out of 14,889 reformatted observations 197
12.3 Data preparation of canlifins . 200
12.4 Discretized observation of data.female 200
12.5 Fitting moving-average-tiVLMC 206

1 Introduction 1

1 Introduction

1.1 The problem

Many of the manifold tasks of an insurance mathematician, the so-called actuary,
consist primarily or at least partly of finding good models to explain relation-
ships between an unknown response and known, observable covariates. To do so,
the actuary trains a model of choice on historical data, i.e. past realizations of
the response and of the covariates. Then the model allows the prediction of the
unknown response for new combinations of covariates, i.e. for new observations.
Whole books have been published dealing with this modelling process in general,
e.g. Rotar (2014) and De Jong et al. (2008), or covering specific subsectors of
insurance, e.g. Haberman and Pitacco (1998) and Lemaire (2013).
As a more concrete example, the pricing of insurance contracts is one major task
of an actuary. In order to evaluate the best pricing methods it has attracted a lot
of attention within the academic community, cf. e.g. Levikson and Mizrahi (1994),
Wang (2002), Embrechts et al. (1996) and many others. In its most basic form
an insurance contract can be understood as a legal agreement between two par-
ties: the insured and the insurance company. As part of this legal agreement the
insurance company agrees to pay for future expenses S caused by defined events
in exchange for a premium π paid by the insured. Usually either the amount S of
the future expenses is random and/or it is random whether the defined events oc-
cur/how often they occur. On the other hand the paid premium π is non-random,
its amount and due date are known by both the insured and the insurance com-
pany. By closing an insurance contract the insured therefore trades randomness
against certainty, cf. Longley-Cook (1961). This of course comes at a price: The
premium π usually is higher than the expected future expenses E[S], i.e.

π > E[S].

If we disregard the existence of other costs of the insurance company, like rent,
utilities, dividends, interest payments, salaries etc., we can decompose the pre-
mium π into a so-called net premium πnet and a so-called risk or safety loading
πrisk, i.e.

π = πnet + πrisk.

1 Introduction 2

To diversify risks, the net premium πnet is in theory determined by the equivalence
principle, cf. Norberg (2014): It shall hold that the expected amount E [S] of the
future expenses S equals the net premium πnet, i.e.

πnet = E[S].

At first glance using the net premium πnet as the premium π could be considered
“fair”, because the expenses of the insurance company and the premium the
insured pays are in balance:

π = πnet = E[S].

But, and this in fact is a well-known result that can be obtained by applying the
law of the iterated logarithm, cf. Theorem 9.5 in Billingsley (1995) or Theorem A.8
in the appendix, the insurance company will face bankruptcy with a probability
of 100% as time goes by if it only charges the net premium as the premium,
i.e. chooses πrisk = 0. As a direct consequence the insurance company has to
make an effort on how to choose πrisk. Commonly a so-called premium principle
is used to determine πrisk, the most basic one being the “premium with safety
loading”-principle, where

πrisk := δE[S]

is chosen with a safety factor δ > 0. Other premium principles, e.g. the “variance”-
principle

πrisk := δVar[S],

also make use of higher moments like E[S2] of S. For more details on premium
principles cf. e.g. Chapter 10.1 in Schmidt (2006) or Heilmann and Schröter
(2013). In general the insurance company is mathematically pretty free on how to
choose πrisk. Supply and demand and/or sales policies often influence the choice
of πrisk the most. Since the distribution of the future expenses S is unknown, in
general one cannot simply calculate E[S] or higher moments of S and hence the
real work is to obtain reliable approximations of them in order to calculate πnet

and πrisk. To do so, the actuary tries to find a fitting mathematical model that
explains the relationship between S and observable covariates best. In the con-
text of life insurance commonly used covariates are the age of the insured, her or
his health condition at conclusion of the contract, whether she or he is a smoker
or a non-smoker etc., in the context of car insurance common covariates are the
value of the car, the area the insured lives in etc., cf. e.g. Kwon and Jones (2006),

1 Introduction 3

Verbelen et al. (2018) and Wüthrich (2017). The model of choice first gets fitted
to historical data and then inputting the covariates of a new customer is used
to approximate the expected future expenses E[S] caused by the new customer,
the variance Var[S] or other values of interest. Therefore the model enables us to
compute an approximation of πnet, πrisk and thus the premium π.
Calculating the premium of an insurance contract is just one example where the
described modelling procedure plays a major role. More examples are the calcula-
tion of prospective reserves in life insurance, cf. e.g. Norberg (1991) and Milbrodt
and Stracke (1997), the prediction of claim frequencies and of claim severities in
non-life insurance, cf. e.g. Garrido et al. (2016) and Frangos and Vrontos (2001),
the highly topical prediction of cyber-attacks in cyber-insurance, cf. e.g. Böhme
et al. (2010) and Herath and Herath (2011), and many more.
While there are countless applications with different purposes outside of the insur-
ance world, quite a large proportion of the insurance applications share a common
overall goal: directly or indirectly predicting the amount of future claims the in-
surance company will have to cover. In practice, as well as in theory, so-called
time-discrete Markov processes with finite state spaces are often the prevalent
models of choice, cf. e.g. Hoem (1969) or Lin et al. (2008). The reason for this is
quite simple: Markov processes are easy to handle. In practice their usage makes
computations easy and in theory they provide a strong basis of well-known math-
ematical results. A Markov process is a stochastic process that fulfills the so-called
Markov property. The name “Markov” hereby derives from the Russian mathe-
matician Andrey Markov, who published his first paper on the topic in 1906, cf.
Markov (1906) (English translation). More on the historical aspects of Markov
processes can be found in the first chapter of Gagniuc (2017). Informally spoken
the Markov assumption says that only the present and not the past is carrying
relevant information when predicting the future, i.e.

P (future | present, past) = P (future | present),

or, expressed differently, a Markov process has no memory. Translated into math-
ematical language this intuition forms the following definition:

Definition 1.1. A time-discrete stochastic process X = (Xt)t∈{1,...,T}, T ∈ N,
T ≥ 1, that lives on a probability space

(
MT ,P

(
MT

)
,P
)
with values Xt in a

1 Introduction 4

finite set M is called a time-discrete Markov process of first order if it fulfills the
Markov assumption

P (Xt+1 = xt+1 |Xt = xt, ..., X1 = x1) = P (Xt+1 = xt+1 |Xt = xt)

for all combinations of x1, ..., xt+1 ∈M for which the left-hand side is well-defined,
1 ≤ t ≤ T − 1.

MT is the set of all M -valued T -tuples, P
(
MT

)
the power set of MT . We call

M the state space of X and its elements x ∈M states.
In the real world the Markov assumption is often violated. To demonstrate the
reason why, let us look at an example:
As an insurance company we sell third-party vehicle insurance contracts to cus-
tomers. In order to calculate the premium π, a new customer has to pay for the
insurance, as a first step we use a claim frequency model to predict how many ac-
cidents this new customer will cause based on the number of accidents he caused
in the past. Then we might combine this prediction with the average claim size
to obtain πnet and then π. In our model Xt mathematically denotes the number
of car accidents the insurance holder causes in year t and we want to use the
model to predict the number of accidents Xt+1 caused in the coming year t + 1
based on the accident history (X1, ..., Xt). If we decided to use a time-discrete
Markov process of first order, as defined in above Definition 1.1, the Markov as-
sumption would state that the number of accidents Xt caused in the current year
t includes all the information needed to predict the number of future accidents
Xt+1 in the coming year, i.e. her or his further accident history (X1, ..., Xt−1) is
totally irrelevant to make this prediction: E.g. it does not matter whether the
insurance holder caused eight or zero accidents in year t − 1. As one intuitively
understands, this assumption is not true. It is reasonable to say that one needs
to consider an accident history consisting of more than just the most recent year
in order to obtain accurate predictions.
For many applications time-discrete Markov processes of first order are therefore
too simple to display the dependency between the covariates and the response
variable. But, as the declaration “first order” already suggests, we can fix this
problem by using time-discrete Markov processes of higher order:

1 Introduction 5

Definition 1.2. A time-discrete stochastic process X = (Xt)t∈{1,...,T}, T ∈ N,
T ≥ 1, that lives on a probability space

(
MT ,P

(
MT

)
,P
)
with values Xt in a

finite set M is called a time-discrete Markov process of k-th order if it fulfills

P (Xt+1 = xt+1 |Xt = xt, ..., Xt−k+1 = xt−k+1, ..., X1 = x1)
=P (Xt+1 = xt+1 |Xt = xt, ..., Xt−k+1 = xt−k+1)

for all combinations of x1, ..., xt+1 ∈ M for which the upper probability is well-
defined, 1 ≤ k ≤ t ≤ T − 1.

For k = 1 both Definitions 1.1 and 1.2 coincide.
Continuing above example, we could use a higher-order time-discrete Markov pro-
cess as our model now. E.g. we could assume that considering an accident history
of five years is sufficient to make precise predictions and thus use a time-discrete
Markov process of order k = 5. Now not only the most recent number of accidents
Xt, but the accident history (Xt−4, Xt−3, Xt−2, Xt−1, Xt) of the five most recent
years is considered to predict the number Xt+1 of future accidents.
However, using higher-order time-discrete Markov processes also comes at a cost:
With an increasing order k, higher-order time-discrete Markov processes become
exponentially more and more complex. Mathematically more precise: The num-
ber of parameters needed to fully characterize the model, i.e. the “degrees of
freedom”, increases exponentially with the model order k. In the mathematical
literature this is known as the “curse of dimensionality”, an expression that was
coined by and in Bellman (1966). Since the simplicity of a first-order time-discrete
Markov process is one of its biggest advantages, using higher-order time-discrete
Markov processes and just increasing the model order k is often no acceptable
alternative. This problem is also confirmed e.g. in Mächler and Bühlmann (2004,
page 436-437).
Therefore it is our goal to find a type of model that somehow lies “in between” a
first-order and higher-order time-discrete Markov process. We wish to preserve the
advantage of simplicity/interpretability while simultaneously keeping the model
complexity limited. To do so, we will transform a higher-order model into a first-
order one by coding the information contained in the past that is needed to be
known in order to make accurate predictions into the present.
The following well-known Theorem 1.3, cf. e.g. Cox and Miller (1977, page 132),
states a simple way on how to transform a higher-order time-discrete Markov pro-
cess into a first-order time-discrete Markov process. The essence of the theorem is

1 Introduction 6

that the information encoding can be done via an expansion of the state spaceM .

Theorem 1.3. A time-discrete Markov process of k-th order X = (Xt)t∈{1,...,T}
with finite state space M can be transformed to a time-discrete Markov process of
first order Xk =

(
Xk
t

)
t∈{k,...,T}

by setting

Xk
t := (Xt, Xt−1, ..., Xt−k+1)

for t ≥ k. The state space of Xk is Mk.

More precisely, by applying Theorem 1.3, we convert a higher-order time-discrete
Markov process into a time-discrete Markov process of first order, by coding all
the information from the past into the present. Since the original process was of
order k, the k most recent time steps contained all the information. In the trans-
formed setting all the information is contained in the most recent time step, but
the state space is nowMk instead ofM , if m := |M |, its cardinality is |Mk| = mk

now. Therefore this reduction of order does not reduce the complexity of the
model, in fact the model complexity remains unchanged: Due to the order de-
crease from k to one we only need to look at the most recent time point to make
our prediction instead of the k most recent time points, but now the most recent
time point can take mk different values while, before the transformation, each of
the k most recent time points only could take m different values.
Thus encoding all the information from the past into the present yields no reduc-
tion in model complexity and therefore it is not achieving our formulated goal.
We rather need to develop tools that enable us to separate the information con-
tained in the past into two groups: the part of information actually benefiting our
predictive power and the part that does not improve our prediction, i.e. the “rel-
evant” and “non-relevant” information contained in the past. If one continues by
only coding all the relevant information from the past into the present, then it is
intuitive that firstly we achieve the same optimal prediction accuracy as when we
encode all the information and secondly the model complexity decreases since we
do not encode all the information. Hence we get the best from both perspectives.

1.2 The concept of Variable Length Markov Chains

“Variable Length Markov Chain”-models usually abbreviated by “VLMC” are
a model class exactly doing this. VLMC were firstly introduced by and in Ris-

1 Introduction 7

sanen (1983), who mainly worked in the discipline of information theory. They
have been subject to extensive further research, major theoretical contributions
have been added by Weinberger et al. (1995), Ron et al. (1996), Bühlmann et al.
(1999), Ferrari and Wyner (2003), Duarte et al. (2006), Csiszár and Talata (2006),
Galves et al. (2008), Xiong et al. (2016) and many more. In their present state of
development VLMC-models are great choices for many applications. Research has
confirmed their suitability e.g. in click prediction, cf. Borges and Levene (2007)
and Gopalakrishnan et al. (2018), protein classification, cf. Bejerano and Yona
(2001) or Busch et al. (2009), music classification, cf. Pachet (2002) or Dubnov
et al. (2003), linguistic pattern recognition, cf. Galves et al. (2012) or García et al.
(2017), just to name a few of many applications from manifold disciplines. But,
when it comes to insurance, the assumptions required for VLMC-models to work
are violated in the majority of applications. We will point out reasons for this
statement in the following Chapter 1.3.
Nevertheless VLMC-models seem to possess big potential when it comes to prob-
lem solving in the context of insurance. Especially they are a great tool for data
analysis as they expose dependencies in the data in a distinctly clear way. This
thesis is devoted to opening up and exploiting this potential. Firstly we are going
to end this chapter by giving a compact but sufficient overview of the current
VLMC-setup. As a second step we are going to identify the weaknesses of this
current VLMC-setup from the viewpoint of insurance in the subsequent Chapter
1.3. In the last introductory Chapter 1.4 we are going to discuss our approach on
how to generalize the current VLMC-setup in a way that eliminates the identified
weaknesses and thus give a short overview of the thesis.
To present the part of the current VLMC-setup that is relevant for this work,
we mainly follow Bühlmann et al. (1999) due to their compact way of writ-
ing. While there are many more results available and while one could give many
more interpretations and background explanations of the following definitions and
statements, we focus on the bare necessities needed to be known to understand
the weaknesses of the current VLMC-setup in the following Chapter 1.3. We are
going to catch up on the backgrounds and go into deep detail when we generalize
the current setup to an insurance setting.
Let X = (Xt)t∈Z be a stationary, time-discrete stochastic process with values Xt

in an unordered state space M of finite cardinality. We emphasize that X here is
assumed to be stationary, i.e. it is assumed that

P (Xt1+t = xt1 , ..., Xtn+t = xtn) = P (Xt1 = xt1 , ..., Xtn = xtn) (1.1)

1 Introduction 8

holds for all t1, ..., tn ∈ Z, n ∈ N and t ∈ N.
Within the VLMC-community it has proven useful to use a reversed notation
where the most recent time point is notated on the left.

Definition 1.4. For −∞ ≤ k ≤ l ≤ ∞ we write

Xk:l := (Xl, Xl−1, ..., Xk+1, Xk)

and
xk:l := (xl, xl−1, ..., xk+1, xk) ∈M l−k+1.

By
|xk:l| := l − k + 1

we denote the length of the sequence xk:l. e is the unique sequence of length zero.
For w ∈ M |w| and u ∈ M |u| with 0 ≤ |w| + |u| ≤ T , we define the concatenation
of the two sequences as

wu := w · u := (w|w|, ..., w1, u|u|, ..., u1) ∈M |w|+|u| = M |wu|.

Definition 1.5. For 0 ≤ k ≤ l ≤ ∞ let

Mk:l :=
{
w ∈M |w| : k ≤ |w| ≤ l

}
denote the set of all sequences of length k to l.

The most important object in the VLMC-framework are the so-called “context
functions” as they are the tool that differentiates the relevant information con-
tained in the past from the non-relevant information.

Definition 1.6. We call

c : M∞ →M∞, x−∞:0 7→ x−l+1:0

the context function of X, where

l = l(x−∞:0) := min
{
k : P (X1 = x1 |X−∞:0 = x−∞:0)

=P (X1 = x1 |X−k+1:0 = x−k+1:0) for all x1 ∈M
}
.

1 Introduction 9

Recall that the stationarity assumption (1.1) implies that it is sufficient to only
look at X−∞:1 in the way that

P (X1 = x1 |X−k+1:0 = x−k+1:0) = P (Xt+1 = x1 |Xt−k+1:t = x−k+1:0) (1.2)

for all t ∈ N. A time-discrete Markov process that fulfills this property is called
“time-homogeneous” and otherwise “time-inhomogeneous”.
We cite Ferrari and Wyner (2003, page 461): “[...] The elements of the set

{c (x−∞:0) : x−∞:0 ∈M∞}

are called contexts of the process X. The name context derives from the fact, that
now the random variable X1 does no more depend on the full history x−k+1:0, as in
the case of a [time-discrete] Markov [process] of order k, but only on some pieces
of variable length l from the infinite past x−∞:0.” In other words, the context is
exactly what we called the relevant information from the past.

Definition 1.7. LetX = (Xt)t∈Z be a stationary, time-discrete stochastic process
with values Xt in a finite state space M and corresponding context function c as
given in Definition 1.6. If 0 ≤ k ≤ ∞ denotes the smallest integer such that

max {|c (x−∞:0)| : x−∞:0 ∈M∞} ≤ k

is fulfilled we call X a Variable Length Markov Chain (VLMC) of order k.

“A VLMC of order k can be embedded in a [time-discrete] Markov [process] of
order k, however with a memory of variable length l(·) ≤ d. The case l(·) ≡ 0
coincides with an independent, stationary process. If c (x−∞:0) = x−d+1:0 [for all]
x−∞:0 ∈ M∞, then X is a full [time-discrete] Markov [process] of order k. Since
there is a large variety of context functions [...] with different structures (partic-
ularly of sparse type), VLMC of order k build a more flexible class of processes
than full [time-discrete] Markov [processes] of order k, and they better face the
curse of dimensionality.”, cf. Ferrari and Wyner (2003, page 461-462). Therefore
VLMC are a perfect match when it comes to the fulfilment of our formulated
goal.
Additionally, they are a great tool to explore dependency structures within data.
While we are going to look into the details of this later, the main reason is that
context functions can be illustrated as trees. This is due to their hierarchical

1 Introduction 10

nature.

Definition 1.8. Let c be a context function of a VLMC X. The context tree τ
of X is defined as

τ := image(c) = {c (x−∞:0) : x−∞:0 ∈M∞}

and the terminal node context tree τ t of X as

τ t := {w ∈ τ : wu /∈ τ for all u ∈M}.

Definition 1.9. For x ∈M1:T let

N+(x) :=
T−|x|+1∑
t=1

1(Xt−|x|+1:t = x)

denote the number of occurrences of the state change sequence x in X1:T and

N(x) :=
T−|x|∑
t=1

1(Xt−|x|+1:t = x)

the number of occurrences in X1:T−1.

Definition 1.10. For x ∈M and w ∈M1:∞ with N(w) > 0 define the empirical
transition probability as

P̌ (x | w) := N+(xw)
N(w) .

The empirical transition probabilities defined as in Definition 1.10 constitute the
maximum likelihood estimate for the true transition probabilities, cf. Chapter 2.2
in Anderson and Goodman (1957).
Rissanen (1983) proposed an algorithm to infer VLMC from data. Since then this
algorithm is known in literature under the name “Context”. Context is based on
the idea of tree pruning and therefore shares similarities with the CART algo-
rithm developed by and in Breiman et al. (1984). Garivier and Leonardi (2011,
page 2489) express the underlying idea as follows: “A measure of discrepancy
between a node’s children determines whether they have to be removed from the
tree or not.” The measure of discrepancy chosen originally by Rissanen (1983) is

1 Introduction 11

the Kullback-Leibler divergence, cf. Kullback and Leibler (1951), but other mea-
sures, e.g. the L1- or L∞-norm have been considered as well in Bühlmann et al.
(1999) or Galves et al. (2008) respectively.

Algorithm 1.11.
Input: X1

1:T = x1
1:T , a cutoff C > 2|M |+ 2

Step 1: Tree growing
Construct the maximal terminal node context tree τ t

max such that

w ∈ τ t
max ⇒ N(w) ≥ 2

and

∀τ t with w ∈ τ t ⇒ N(w) ≥ 2 :
(
∀w ∈ τ t ∃u ∈M0:∞ : wu ∈ τ t

max

)
.

Set τ t
(0) = τ t

max.

Step 2: Leaf pruning
Examine every element wu ∈ τ t

(0), u ∈M , as follows:
Prune wu down to w if

N(wu)
∑
x∈M

P̌ (x | wu) log
(
P̌ (x | wu)
P̌ (x | w)

)
< C log T,

else do nothing.
This yields a tree τ(1).

Step 3: Stopping criterion
Repeat Step 2 with τ t

(i) instead of τ t
(i−1) until no more pruning can be

done. Call this maximally pruned tree τ̌ .

Output: τ̌

It has been shown that this estimator τ̌ is consistent in the sense of Theorem
1.12, for proof cf. the proof of Theorem 1 in Weinberger et al. (1995, page 648)
or Theorem 3.2 in Bühlmann et al. (1999, page 493), which is formulated in a
slightly more general setting.

1 Introduction 12

Theorem 1.12. Let X = (Xt)1≤t≤T be a VLMC with finite state space M and
(unknown) context tree τ . If

min
x1∈M,w∈τ

P
(
X1 = x1

∣∣∣X−|w|+1:0 = w
)
> 0

holds and τ̌ is the output of Algorithm 1.11,

lim
T→∞

P(τ̌ = τ) = 1

holds.

1.3 Special requirements for insurance processes

In Chapter 1.2 we pointed out that, at least at first glance, the current VLMC-
setup seems to be capable of achieving the goal formulated at the end of Chapter
1.1. Consistent estimators as well as algorithms that allow us to fit VLMC-models
to actual data have already been proposed, cf. Algorithm 1.11 and Theorem 1.12.
This brings up the question why and how a second, more detailed look at the
current VLMC-setup reveals that it is actually not suited to achieve the set goal
and therefore constitutes the reason why more work is needed to generalize this
setup. The answer to this question mainly lies in the assumptions needed to make
the current VLMC-setup work. More precisely, we needed to assume from the very
beginning that

(A.1) X is stationary.

To obtain a consistent VLMC-estimator, we also needed to assume that the min-
imal transition probability of the process is non-negative, i.e.

(A.2) min
x1∈M,w∈τ

P
(
X1 = x1

∣∣∣X−|w|+1:0 = w
)
> 0.

Both assumptions, (A.1) as well as (A.2), are highly incompatible with many
applications from the context of insurance.
The stationarity assumption (A.1) implies that X is time-homogeneous. If an in-
surance agent models e.g. the development of the health status of an insured, the
probabilities of moving from one category to another in general highly depend
on the age t of the insured and therefore this constitutes a time-inhomogeneous
application. As an even more precise example, the probability of dying, which
would correspond to a transition from the health status “alive” to “deceased”

1 Introduction 13

trivially depends on the age t, as on average a healthy 80-year-old is more likely
to die within the next period of time compared to an otherwise similar 20-year-
old. Hence, even the less strict assumption of time-homogeneity causes a conflict
with the viewpoint of insurance. Mathematically, none of the Definitions 1.6-1.10
would make sense anymore. The context function of X would vary at every time
t, since the transition probabilities of X would vary with t and equation (1.2)
would be invalid. Varying transition probabilities prohibit the summation of the
counting frequencies over different time points in Definition 1.9. The empirical
transition probabilities, cf. Definition 1.10, would require a reformulation that
allows them to vary with the time t as well. Obviously the fitting algorithm Con-
text and his current formulation Algorithm 1.11 are not capable to work in a
time-inhomogeneous setting.
The requirement (A.2) of transition probabilities that are truly bound away from
zero especially implies that X is ergodic. Informally spoken a stochastic process
is called ergodic, if its statistical properties can be fully deduced from a single
observation of sufficient length. Ergodicity is a terminus first introduced by and in
Boltzmann (1884). (A.2) clearly implies the non-existence of “absorbing states”,
since the probability to leave the current state always has to be truly positive.
Hereby we call a state “absorbing”, if the probability to remain in this state is
one. This non-existence is also implied by the less strict assumption of ergodicity,
since we do not learn anything about the statistical properties of a process after
it hit an absorbing state. Many insurance applications require models that factor
in absorbing states. E.g., continuing our modelling of health statuses, “deceased”
would be an absorbing state, since a deceased insured will never recover and will
remain in this state forever. If the insured cancels her or his coverage, “lapse”
might be another absorbing state. Hence, even if one only went with the less strict
assumption of ergodicity, one would already get into conflict with the viewpoint
of insurance. If we do not assume ergodicity, we cannot work with only one ob-
servation of the process. Instead we have to recover the power to learn everything
about the dependency structure of the process by looking at many observations.
In insurance terms this is quite intuitive: We do not only look at one insured to
calibrate our model, but rather consider our complete portfolio of eligible cus-
tomers. Mathematically, the proof of Theorem 1.12 does not only rely heavily
on assumption (A.2) (and hence especially on ergodicity), but furthermore the
considered asymptotics of T →∞ do not make any sense.
Lastly, the current VLMC-setup does not allow the process X to be censored. In
insurance data is often subject to censoring, i.e. it is unknown in what state X

1 Introduction 14

is at certain times t. A main reason for this is that not all insured enter their
contracts at the same age, but also profane causes like documentation errors or
data loss lead to censored data.

1.4 An approach

We have pointed out the incapabilities of the current VLMC-setup in an insurance
context in the previous Chapter 1.3. The allocation of tasks on how to fix these
weaknesses now is straightforward: Within the scope of this thesis we are going
to generalize the VLMC-setup, the fitting Algorithm 1.11 and propose important
tools required within an insurance context.
In the subsequent Chapters 2 and 3, we are going to generalize all components to
be time-dependent and eliminate the need of the stationarity assumption (A.1)
and even time-homogeneity. We are going to transform the single-observation
setup to a setup that works with n independent observations of X. This will
allow us to eliminate the requirement of truly positive transition probabilities or
ergodicity, i.e. it will make assumption (A.2) obsolete. This change in perspective
will allow us to include absorbing states in our generalized setup.
We are also going to take steps to include censoring into the generalized setup.
Within this generalized setup we are going to construct an algorithm based on
Context to fit the generalized models to (now possibly censored) data. We are
going to state and prove that this algorithm is consistent in the same way as
Context is in the current VLMC-setup, i.e. we are going to prove the equivalent
of Theorem 1.12 for our algorithm in our setup. This is done in Chapters 4 and
5 and this represents the major theoretical part of this thesis.
Next we are going to answer the question of how to tune the generalized algorithm
in Chapter 6. To be of actual use to a practitioner, the generalized algorithm and
the tuning procedure need to be implemented in a programming environment: We
are going to develop, document and explain an implementation in the statistical
programming language R, cf. R Core Team (2018), in Chapter 7 and then demon-
strate the application of the generalized algorithm and the tuning procedure on
different generated data sets in Chapter 8.
In Chapter 9 we are going to introduce prospective reserves to our environment
and we are going to learn how to use these quantities in order to calculate the
net premium πnet of an insurance contract.
As we will see, moving to a time-dependent viewpoint increases the effort needed
to interpret fitted models. To counteract this, we are going to develop smoothing

1 Introduction 15

techniques that reduce the complexity of the model fits in Chapter 11 and there-
fore make them easier to communicate.
Last we are going to apply all the developed techniques by fitting tiVLMC-models
to real insurance data, in this case from the context of long-term care insurance
and joint life insurance, cf. Chapters 10 and 12.

2 Theoretical framework 16

2 Theoretical framework
We start to build up the generalized framework.
Let X = (Xt)t∈{1,...,T}, T ∈ N, T ≥ 1, be a time-discrete stochastic process on the
probability space

(
MT ,P

(
MT

)
,P
)
with values Xt in an unordered state space

M of finite cardinality m ∈ N with m ≥ 2.

Definition 2.1. By P we denote the probability distribution of X on P
(
MT

)
,

i.e.
P (B) := P(X ∈ B)

for B ∈P
(
MT

)
.

From now on let X1, ..., Xn denote n ∈ N independent copies of X.

Definition 2.2. By P̂ we denote the empirical probability distribution of X on
P
(
MT

)
, i.e.

P̂ (B) := 1
n

n∑
i=1
1

(
X i ∈ B

)
for B ∈P

(
MT

)
.

Here

1

(
X i ∈ B

)
:=

1, X i ∈ B

0, X i /∈ B.

Proposition 2.3. For every B ∈P
(
MT

)
P̂ (B) n→∞−−−→

P−a.s.
P (B).

Proof of Proposition 2.3. Since X1, ..., Xn are independent copies of X, they are
independent and identically distributed. In consequence the indicators

1

(
X1 ∈ B

)
, ...,1 (Xn ∈ B)

2 Theoretical framework 17

are also independent and identically distributed. The expectation of an indicator
is the probability of the indicated event and hence is always in [0, 1] and in
particular upper bounded by one:

E [1 (X ∈ B)] = 1 · P (B) + 0 · (1− P (B)) = 1 · P (B) = P(X ∈ B) ≤ 1.

Hence we can apply the strong law of large numbers A.1 and obtain the claimed
convergence

P̂ (B) = 1
n

n∑
i=1
1

(
X i ∈ B

)
n→∞−−−→
P−a.s.

E [1(X ∈ B)] = P (B).

Proposition 2.3 states the pointwise strong consistency of P̂ . It is trivial that the
empirical probability P̂ (B) of an event B ∈P

(
MT

)
is an unbiased estimator of

the true probability P (B).

Proposition 2.4. For every B ∈P
(
MT

)
E
[
P̂ (B)

]
= P (B)

holds.

Proof of Proposition 2.4.

E
[
P̂ (B)

]
= E

[
1
n

n∑
i=1
1

(
X i ∈ B

)]
= E [1 (X ∈ B)] = P (B)

Proposition 2.5. It holds that

max
{∣∣∣P̂ (B)− P (B)

∣∣∣ : B ∈P
(
MT

)}
n→∞−−−→
P−a.s.

0.

Proof of Proposition 2.5. Fix B ∈P
(
MT

)
. Using Proposition 2.3 we know that

for all ε > 0 there exists a nB ∈ N such that for all n ≥ nB

∣∣∣P̂ (B)− P (B)
∣∣∣ < ε

2 Theoretical framework 18

holds P-a.s. Since M is of finite cardinality m, the cardinality of MT is mT and
the power set P

(
MT

)
consists of 2mT

<∞ elements, cf. Proposition A.3.
Hence, for all n ≥ max

{
nB : B ∈P

(
MT

)}
, we have that for all B ∈P

(
MT

)
∣∣∣P̂ (B)− P (B)

∣∣∣ < ε

P-a.s. and in particular it holds P-a.s. that

max
{∣∣∣P̂ (B)− P (B)

∣∣∣ : B ∈P
(
MT

)}
< ε.

Proposition 2.5 states the uniform strong consistency of P̂ and hence is a stronger
version of Proposition 2.3.

Definition 2.6. For 1 ≤ t ≤ T−1, x ∈M , w ∈M1:t with P
(
Xt−|w|+1:t = w

)
> 0

we write
Pt(x | w) := P

(
Xt+1 = x

∣∣∣Xt−|w|+1:t = w
)
.

Pt(x | w) is the probability that the next state change is into x coming from w

at times t− |w|+ 1 to t.

Definition 2.7. For 1 ≤ t ≤ T , w ∈M1:t with P
(
Xt−|w|+1:t = w

)
> 0 let

Ct, w :=
{
x1:T ∈MT : xt−|w|+1:t = w

}
∈P

(
MT

)
denote the set of all sequences in MT that move through w from t− |w|+ 1 to t.

It clearly holds that

Pt(x | w) =
P
(
Xt+1:t−|w|+1 = xw

)
P
(
Xt−|w|+1:t = w

) = P (Ct+1, xw)
P (Ct, w) .

In an analogue way we define the empirical transition probabilities of X.

Definition 2.8. For 1 ≤ t ≤ T − 1, x ∈M , w ∈M1:t with P̂ (Ct, w) > 0 we call

P̂t(x | w) := P̂ (Ct+1, xw)
P̂ (Ct, w)

2 Theoretical framework 19

the empirical transition probability of moving to x from w at t.

It is well-known (e.g. cf. Anderson and Goodman (1957, page 92) and take a look
at the following Proposition 2.11 for a better comparability) that the empirical
transition probabilities defined as in Definition 2.8 constitute the maximum like-
lihood estimates of the true transition probabilities defined in Definition 2.6. This
is the reason why we use exactly this definition. It shall also be mentioned that
there are alternative estimators available for the transition probabilities with dif-
ferent advantages and disadvantages, e.g. cf. Galves et al. (2008, page 261). For
simplicity, we only work with one, namely above estimator here.
Now we prove that the empirical transition probabilities of X preserve the uni-
form strong consistency stated in Proposition 2.5.

Theorem 2.9. It holds that

max
∣∣∣P̂t(x | w)− Pt(x | w)

∣∣∣ n→∞−−−→
P−a.s.

0,

where the maximum runs over all well-defined transition probabilities, i.e. over
1 ≤ t ≤ T − 1, x ∈M , w ∈M1:t with P

(
Xt−|w|+1:t = w

)
> 0.

Proof of Theorem 2.9. We formalize

a := P̂ (Ct+1, xw)
b := P̂ (Ct, w)
c := P (Ct+1, xw)
d := P (Ct, w).

Then

max
∣∣∣∣ab − c

d

∣∣∣∣ = max
∣∣∣∣∣ad− bcbd

∣∣∣∣∣ = max
∣∣∣∣∣(ad− ab) + (ab− bc)

bd

∣∣∣∣∣
≤ max

∣∣∣∣∣a(d− b)
bd

∣∣∣∣∣+ max
∣∣∣∣∣b(a− c)bd

∣∣∣∣∣
≤ max |a(d− b)|

min |bd| + max |b(a− c)|
min |bd| ,

where the ranges of the minimums and the maximums are the range specified in
the theorem.

2 Theoretical framework 20

a and b are upper bounded by one. Proposition 2.3 and P
(
Xt−|w|+1:t = w

)
> 0

imply
b

n→∞−−−→
P−a.s.

d > 0,

Proposition 2.5 and P
(
Xt−|w|+1:t = w

)
> 0 imply that

1 ≥ min |bd| > ε > 0

P-a.s. for n large enough. Using that

max |d− b| n→∞−−−→
P−a.s.

0

and
max |a− c| n→∞−−−→

P−a.s.
0

by Proposition 2.5, implies

max
∣∣∣∣ab − c

d

∣∣∣∣ ≤ 1
ε

max |1 · (d− b)|+ 1
ε

max |1 · (a− c)| n→∞−−−→
P−a.s.

0.

Definition 2.10. For w ∈M1:t and |w| ≤ t ≤ T let

N i
t (w) := 1

(
X i
t−|w|+1:t = w

)
indicate whether X i has moved through w till t, i = 1, ..., n. Summarizing over
i = 1, ..., n,

Nt(w) :=
n∑
i=1

N i
t (w)

denotes the number of observations that have moved through w till t.

Using these counting quantities we can rewrite the empirical transition probabil-
ities:

Proposition 2.11. For 1 ≤ t ≤ T −1, x ∈M , w ∈M1:t with Nt(w) > 0 it holds
that

P̂t(x | w) = Nt+1(xw)
Nt(w) .

2 Theoretical framework 21

Proof of Proposition 2.11. For arbitrary z ∈M1:t

P̂ (Ct, z) = 1
n

n∑
i=1
1

(
X i ∈ Ct, z

)
= 1
n

n∑
i=1

N i
t (z) = 1

n
Nt(z).

Thus
P̂t(x | w) = P̂ (Ct+1, xw)

P̂ (Ct, w)
=

1
n
Nt+1(xw)
1
n
Nt(w) = Nt+1(xw)

Nt(w) .

While the unbiasedness of the empirical probability is trivial, cf. Proposition 2.4,
it is not clear whether the empirical transition probabilities are bias-free estima-
tors. The reason for this is that the expectation of a product of dependent random
variables does in general not split up.

Theorem 2.12. For 1 ≤ t ≤ T − 1, x ∈ M , w ∈ M1:t with Nt(w) > 0 it holds
that

E
[
P̂t(x | w)

]
= Pt(x | w).

Proof of Theorem 2.12. We start by expressing the empirical transition probabil-
ities as relative frequencies:

E
[
P̂t(x | w)

]
= E

[
Nt+1(xw)
Nt(w)

]
= E


n∑
i=1

N i
t+1(xw)

Nt(w)

.
Now note that

N i
t+1(xw) = 1

(
X i
t−|xw|+2:t+1 = xw

)
= 1

(
X i
t+1 = x

)
· 1
(
X i
t−|w|+1:t = w

)
= 1

(
X i
t+1 = x

)
· 1
(
X i
t−|w|+1:t = w

)2

= N i
t+1(xw) ·N i

t (w).

Because X1, ..., Xn are identically distributed, the same is true for

N1
t+1(xw) ·N1

t (w), ..., Nn
t+1(xw) ·Nn

t (w)

and thus

E
[
P̂t(x | w)

]
= nE

[
N1
t+1(xw) ·N1

t (w)
Nt(w)

]
.

2 Theoretical framework 22

Now we factorize the expectation:

E
[
P̂t(x | w)

]
=

n∑
j=1

nE
[

1 ·N1
t+1(xw)
j

∣∣∣∣∣Nt(w) = j, N1
t (w) = 1

]

· P
(
N1
t (w) = 1

∣∣∣Nt(w) = j
)
P(Nt(w) = j)

=
n∑
j=1

n

j
E
[
N1
t+1(xw)

∣∣∣N1
t (w) = 1

]
· P
(
N1
t (w) = 1

∣∣∣Nt(w) = j
)
P(Nt(w) = j)

=
n∑
j=1

n

j
P
(
Xt+1 = x

∣∣∣Xt−|w|+1:t = w
)

· P
(
N1
t (w) = 1

∣∣∣Nt(w) = j
)
P(Nt(w) = j)

=
n∑
j=1

n

j
Pt(x | w)P

(
N1
t (w) = 1

∣∣∣Nt(w) = j
)
P(Nt(w) = j)

=Pt(x | w)
n∑
j=1

n

j
P
(
N1
t (w) = 1

∣∣∣Nt(w) = j
)
P(Nt(w) = j)

Now
N1
t (w) ∼ Bin

(
1,P

(
Xt−|w|+1:t = w

))
and

Nt(w)−N1
t (w) ∼ Bin

(
n− 1,P

(
Xt−|w|+1:t = w

))
.

Thus

P
(
N1
t (w) = 1

∣∣∣Nt(w) = j
)

=P (N1
t (w) = 1, Nt(w) = j)
P (Nt(w) = j)

=P (N1
t (w) = 1)P (Nt(w)−N1

t (w) = j − 1)
P (Nt(w) = j)

=
P (N1

t (w) = 1)
(
n−1
j−1

)
P (N1

t (w) = 1)j−1 (1− P (N1
t (w) = 1))n−j(

n
j

)
P (N1

t (w) = 1)j (1− P (N1
t (w) = 1))n−j

=(n− 1)!
n!

j!
(j − 1)!

= j

n
.

To obtain the second equality, we used that N1
t (w) and

Nt(w)−N1
t (w) =

n∑
i=2

N i
t (w)

2 Theoretical framework 23

are independent, sinceX1, ..., Xn are. The unbiasedness of the empirical transition
probabilities follows:

E
[
P̂t(x | w)

]
= Pt(x | w)

n∑
j=1

n

j

j

n
P(Nt(w) = j) = Pt(x | w) · 1 = Pt(x | w).

Being strongly consistent and unbiased, the empirical transition probabilities de-
fined in Definition 2.8 are reasonable estimators of the true transition probabili-
ties.

3 Time-inhomogeneous Variable Length Markov Chains 24

3 Time-inhomogeneous Variable Length Markov
Chains

Now we continue by generalizing the current setup of VLMC as presented in
Chapter 1.2. The major extension is the switch from the time-homogeneous en-
vironment, recall the special requirements for insurance processes discussed in
Chapter 1.3 and more precisely (A.1), to a time-inhomogeneous environment.
Therefore we call the generalized models “time-inhomogeneous Variable Length
Markov Chains”, abbreviated by “tiVLMC”.
Since we do not assume that all transition probabilities are truly positive, i.e. we
do not assume (A.2), there are state change sequences that cannot occur in our
generalization. Therefore we will have to be cautious when it comes to the choice
of the domain of a generalized, time-dependent context function.

Definition 3.1. For 1 ≤ t ≤ T − 1 let

tpsuppt(X) :=
{
x ∈M t : P (X1:t = x) > 0

}
denote the transition probability support of X at t.

Example 3.2. Let M = {a, i, i+, d}, where a stands for active, i for invalid, i+
for heavily invalid and d for deceased. Assume that the initial distribution of X
is PX1 = δa, i.e. X starts in a with probability one. Then

tpsupp1(X) = {a}.

Next assume that the following rules apply for the first transition: Moving from
a to i and moving from a to i+ (“becoming (heavily) invalid”), moving from a to
d (“dying”) and moving from a to a (“staying active”) has a positive probabil-
ity. Moving from d to a, i or i+ (“resurrection”) has probability zero, therefore
staying in d (“staying dead”) has probability one. Moving from i or i+ back to a
(“reactivation”) has a positive probability. Then

tpsupp2(X) = {(a, a), (i, a), (i+, a), (d, a)}.

Remember that we use a reversed notation.

3 Time-inhomogeneous Variable Length Markov Chains 25

We can now formulate a time-dependent generalization of Definition 1.6 and then
continue by formally introducing tiVLMC.

Definition 3.3. For 1 ≤ t ≤ T − 1 we call

ct : tpsuppt(X)→M0:t, x1:t 7→ xt−lt+1:t

the context function of X at t, where

lt = lt(x1:t) := min
{

0 ≤ k ≤ t : Pt(x | x1:t) = Pt(x | xt−k+1:t) for all x ∈M
}
.

We further call
|ct| := max

x∈tpsuppt(X)
lt(x)

the order of the context function at t and

c := (ct)1≤t≤T−1

is simply called the context function of X.

Note that l := (lt)1≤t≤T−1 determines c and vice versa. The case lt ≡ 0 corre-
sponds to independence, i.e. to Pt(x | w) = P(Xt+1 = x) for all w ∈ tpsuppt(X).

Example 3.4. We choose T ≥ 4 here. Obeying the transition rules of Example
3.2, we have

P (X1 = a) = 1,

for the first transition let

P1(a | a) = 0.7,
P1(i | a) = 0.2,
P1(i+ | a) = 0.05,
P1(d | a) = 0.05.

Then the context function at t = 1 is

c1 : {a} →M0:1, a 7→ e.

3 Time-inhomogeneous Variable Length Markov Chains 26

Because X1 equals a with probability one, this information is useless when it
comes to predicting X2. For the second transition let the transition probabilities
be

P2(a | (a, a)) = P2(a | a) = 0.7,
P2(i | (a, a)) = P2(i | a) = 0.2,
P2(i+ | (a, a)) = P2(i+ | a) = 0.05,
P2(d | (a, a)) = P2(d | a) = 0.05

P2(a | (i, a)) = P2(a | i) = 0.05,
P2(i | (i, a)) = P2(i | i) = 0.7,
P2(i+ | (i, a)) = P2(i+ | i) = 0.2,
P2(d | (i, a)) = P2(d | i) = 0.05,

P2(a | (i+, a)) = P2(a | i+) = 0.05,
P2(i | (i+, a)) = P2(i | i+) = 0.2,
P2(i+ | (i+, a)) = P2(i+ | i+) = 0.05,
P2(d | (i+, a)) = P2(d | i+) = 0.7,

P2(a | (d, a)) = P2(a | d) = 0,
P2(i | (d, a)) = P2(i | d) = 0,
P2(i+ | (d, a)) = P2(i+ | d) = 0,
P2(d | (d, a)) = P2(d | d) = 1.

Then the context function at t = 2 is

c2 : {(a, a), (i, a), (i+, a), (d, a)} →M0:2, x1:2 7→



a, x2 = a

i, x2 = i

i+, x2 = i+

d, x2 = d.

For t ≥ 3, we set the transition probabilities as following:

3 Time-inhomogeneous Variable Length Markov Chains 27

Pt(a | a · x1:t−1) = Pt(a | a) = 0.7,
Pt(i | a · x1:t−1) = Pt(a | a) = 0.2,
Pt(i+ | a · x1:t−1) = Pt(a | a) = 0.05,
Pt(d | a · x1:t−1) = Pt(a | a) = 0.05,

for a · x1:t−1 ∈ tpsuppt(X),

Pt(a | i · x1:t−1) = Pt(a | i) = 0.05,
Pt(i | i · x1:t−1) = Pt(i | i) = 0.7,
Pt(i+ | i · x1:t−1) = Pt(i+ | i) = 0.2,
Pt(d | i · x1:t−1) = Pt(d | i) = 0.05,

for i · x1:t−1 ∈ tpsuppt(X),

Pt(a | d · x1:t−1) = Pt(a | d) = 0,
Pt(i | d · x1:t−1) = Pt(i | d) = 0,
Pt(i+ | d · x1:t−1) = Pt(i+ | d) = 0,
Pt(d | d · x1:t−1) = Pt(d | d) = 1,

for d · x1:t−1 ∈ tpsuppt(X) and

Pt(a | (i+, i+) · x1:t−2) = Pt(a | (i+, i+)) = 0.25,
Pt(i | (i+, i+) · x1:t−2) = Pt(i | (i+, i+)) = 0.05,
Pt(i+ | (i+, i+) · x1:t−2) = Pt(i+ | (i+, i+)) = 0.4,
Pt(d | (i+, i+) · x1:t−2) = Pt(d | (i+, i+)) = 0.4,

for (i+, i+) · x1:t−2 ∈ tpsuppt(X) and, last

Pt(a | (i+, w) · x1:t−2) = Pt(a | i+) = 0.05,
Pt(i | (i+, w) · x1:t−2) = Pt(i | i+) = 0.2,
Pt(i+ | (i+, w) · x1:t−2) = Pt(i+ | i+) = 0.05,
Pt(d | (i+, w) · x1:t−2) = Pt(d | i+) = 0.7,

3 Time-inhomogeneous Variable Length Markov Chains 28

for (i+, w) · x1:t−2 ∈ tpsuppt(X) with w 6= i+. Then the context function at t ≥ 3
is

ct : tpsuppt(X)→M0:t, ct(x1:t) =



a, xt = a,

i, xt = i,

i+, xt = i+, xt−1 6= i+,

(i+, i+), xt = i+, xt−1 = i+,

d, xt = d.

I.e. the information whether Xt = a, Xt = i, Xt−1:t = (i+, w) with w 6= i+,
Xt−1:t = (i+, i+) or Xt = d is sufficient to predict Xt+1. Further knowledge of the
past gives no information benefit.

Definition 3.5. Let 0 ≤ k ≤ T − 1 be the smallest integer such that

max
1≤t≤T−1

|ct| ≤ k.

Then we call X a time-inhomogeneous Variable Length Markov Chain (tiVLMC)
of order k.

Example 3.6. The process X described in Example 3.4 is a tiVLMC of order
two.

As it is true for VLMC and time-discrete Markov processes, cf. Chapter 2.1 in
Bühlmann et al. (1999) and Frigessi and Heidergott (2011, page 773) respectively,
tiVLMC can also be fully described via their transition probabilities and marginal
distribution. We state and prove this after the following two definitions.

Definition 3.7. Define the set of all tiVLMC of order k to l, 0 ≤ k ≤ l ≤ T − 1,
as

Pk:l :=
l⋃

j=k
Pj :=

l⋃
j=k
{X : X is a tiVLMC of order j}.

Definition 3.8. The set of transition probabilities of a tiVLMC X ∈ P0:T−1 with
context function c is

Pc := {Pt (x | ct(w)) : x ∈M, 1 ≤ t ≤ T − 1, w ∈ tpsuppt(X)}.

3 Time-inhomogeneous Variable Length Markov Chains 29

Proposition 3.9. Every tiVLMC X ∈ P0:T−1 is uniquely determined by its
marginal distribution PX1 and its set of transition probabilities Pc.

Proof of Proposition 3.9. For every x1:T ∈ tpsuppT (X) it holds that

P (X1:T = x1:T) = P (XT |X1:T−1 = x1:T−1) · P (X1:T−1 = x1:T−1)
= . . .

= P(X1 = x1) ·
T−1∏
t=1

P (Xt+1 = xt+1 |X1:t = x1:t)

= P(X1 = x1) ·
T−1∏
t=1

Pt (xt+1 |x1:t)

= P(X1 = x1) ·
T−1∏
t=1

Pt (xt+1 | ct(x1:t)). (3.1)

The sequences ct(x1:t) determining the transition probabilities of a tiVLMC at t
are the values of the context function ct at t and hence the values of ct can be
interpreted as the minimal state space of the tiVLMC at t. Due to the hierarchical
structure of a context function at time t, we can illustrate its image as a tree.

Definition 3.10. For a tiVLMC X ∈ P0:T−1 with context function c and for
1 ≤ t ≤ T − 1 we define the context tree τt at t by

τt := image(ct) = {ct(w) : w ∈ tpsuppt(X)}

and the terminal node context tree τ t
t at t by

τ t
t := {w ∈ τt : wu /∈ τt for all u ∈M}.

We call τ := (τt)1≤t≤T−1 the context tree of X and τ t := (τ t
t)1≤t≤T−1 the terminal

node context tree of X.

A (terminal) context tree at t can be illustrated as a hierarchic tree, where the
empty string e is the root node and the terminal contexts, i.e. the elements of the
terminal context tree, are the branches.

3 Time-inhomogeneous Variable Length Markov Chains 30

Example 3.11. Continuing with Example 3.6, we get that

τ1 = {e}, τ2 = {a, i, i+, d}, τt = {a, i, i+, (i+, i+), d}

for t ≥ 3. The terminal context tree for t ≥ 3 is

τ t
t = {a, i, (i+, i+), d}.

We can illustrate τ as shown in the following Figure 3.1.

Figure 3.1: Illustration of the context trees τ1, τ2 and τt for t ≥ 3
(from left to right)

Note that a context function ct at t can be reconstructed from the context tree
τt at t and vice versa. Thus we can also interpret the context tree τt at t of a
tiVLMC as its minimal state space at t. τt can be reconstructed from the terminal
node context tree τ t

t at t by just adding the internal nodes to τ t
t . Hence τ t

t and ct
can also be reconstructed from each other.
Shortening a terminal context leads to unequal transition probabilities. This be-
haviour is asymptotically preserved by the empirical transition probabilities:

Lemma 3.12. Let X ∈ P0:T−1 be a tiVLMC with context tree τ and 2 ≤ t ≤ T−1.
For every wu ∈ τ t

t with u ∈M there exist a state xwu ∈M with

εwu := Pt(xwu | wu)− Pt(xwu | w) > 0

and a threshold nwu ∈ N such that xwu ∈ A for all n ≥ nwu, where

A :=
{
x ∈M : P̂t(x | wu) > P̂t(x | w)

}
.

3 Time-inhomogeneous Variable Length Markov Chains 31

Proof of Lemma 3.12. Let wu ∈ τ t
t . Then there must exist a state xwu ∈M with

εwu > 0. Otherwise
Pt(x | wu) = Pt(x | w)

holds for all x ∈ M and this contradicts wu ∈ τ t
t . We can write, by adding zero

two times,

εwu =Pt(xwu | wu)− Pt(xwu | w)
=
(
Pt(xwu | wu)− P̂t(xwu | wu)

)
+
(
P̂t(xwu | wu)− P̂t(xwu | w)

)
+
(
P̂t(xwu | w)− Pt(xwu | w)

)
.

Now, using Theorem 2.9, we get

εwu = 0 + lim
n→∞

(
P̂t(xwu | wu)− P̂t(xwu | w)

)
+ 0.

Thus there exists a threshold integer nwu such that for all n ≥ nwu we have

P̂t(xwu | wu) > P̂t(xwu | w)

and thus xwu ∈ A. This completes the proof.

If the true transition probabilities in Lemma 3.12 are unequal and at the same
time the empirical transition probabilities are close to each other, it must be that
at least one empirical probability is way off its true value:

Lemma 3.13. Let X ∈ P0:T−1 be a tiVLMC with context tree τ and 2 ≤ t ≤ T−1.
Let wu ∈ τ t

t and xwu ∈M with εwu > 0. If

P̂t(xwu | wu)− P̂t(xwu | w) < γ

holds for all γ < εwu

2 , it must be that either

∣∣∣P̂t(xwu | wu)− Pt(xwu | wu)
∣∣∣ > √

ξ

or ∣∣∣P̂t(xwu | w)− Pt(xwu | w)
∣∣∣ > √

ξ,

where
ξ :=

(
εwu
2 − γ

)2
.

3 Time-inhomogeneous Variable Length Markov Chains 32

We add to the sketch proof of this Lemma by Bühlmann et al. (1999, page 502-
503):

Proof of Lemma 3.13. Let wu ∈ τ t
t and xwu ∈M with εwu > 0. We formalize the

claim by defining

a := P̂t(xwu | wu)
b := P̂t(xwu | w)
r := Pt(xwu | wu)
s := Pt(xwu | w).

Then the claim translates to the following:
If |a− b| < γ it must be that either |a− r| >

√
ξ or |b− s| >

√
ξ.

We have that r − s = εwu > 0. Assume that |a− b| < γ.
1. case: b < s

Applying the reversed triangle inequality and using r > s > b yields

|a− r| = |r − a| = |r − b+ b− a| ≥ |r − b| − |b− a|

= r − b− |a− b|

> r − s− |a− b|

> εwu − γ

>
√
ξ.

2. case: b < r

It holds that
|b− s| = b− s > r − s = εwu >

√
ξ.

3. case: s ≤ b ≤ r

3.1 case: s ≤ b ≤ s+ r−s
2 , i.e. b is closer (or equally far away) to s than to r

Again applying the reversed triangle inequality yields

|a− r| = |r − b+ b− a| ≥ |r − b| − |b− a|

= r − b− |a− b|

≥ r −
(
s+ r − s

2

)
− |a− b|

= r − s
2 − |a− b|

3 Time-inhomogeneous Variable Length Markov Chains 33

>
εwu
2 − γ

=
√
ξ.

3.2 case: r − r−s
2 ≤ b ≤ r, i.e. b is closer (or equally far away) to r than to s

It holds that

|b− s| = b− s > r − r − s
2 − s = r − s

2 = εwu
2 >

√
ξ.

This completes the proof.

Proposition 3.14. Every tiVLMC X ∈ Pk of order k ∈ N0 is a time-discrete
Markov process of order k.

Proof of Proposition 3.14. We can embed a tiVLMC of order k into a k-th-order
time-discrete Markov process: For t ≥ k it holds that

Pt (xt+1 |x1:t) = Pt (xt+1 | ct(x1:t)) = Pt(xt+1 | xt−k+1:t),

because k = max {|ct(w)| : 1 ≤ t ≤ T − 1, w ∈ tpsuppt(X)}. By construction there
exist at least one t and one w ∈ tpsuppt(X) with |ct(w)| = k, thus the order of
the time-discrete Markov process is not smaller than k. Hence the order is k. The
transition probabilities are given by

Pt (xt+1 |xt−k+1:t) = Pt (xt+1 | ct(x1:t))

and the initial distribution is PX1:k .

The embedding time-discrete Markov process and the tiVLMC of order k coin-
cide if, for every t ≥ k, the context function at t is the “full” projection, i.e. it
maps x1:t 7→ xt−k+1:t. If this is not the case, the tiVLMC is able to describe the
same dependency structure as the time-discrete embedding Markov process while
having less model parameters. This is one of two big advantages tiVLMC pos-
sess over their embedding. A time-inhomogeneous, time-discrete Markov process
X = (Xt)1≤t≤T of order k on M with |M | = m has

γ(k,m, T) = (mk − 1) + (m− 1)mk(T − k) (3.2)

3 Time-inhomogeneous Variable Length Markov Chains 34

model parameters. This formula can be derived as follows: (mk − 1) parameters
are needed to describe the initial distribution PX1:k . For each of the (T − k) tran-
sitions, there are mk possible pasts of length k. For each of those pasts we have
to define (m− 1) transition probabilities in order to fully determine the process.

k m T γ(k,m, T)
0 2 10 10
0 3 10 20
0 4 10 30
0 4 100 300
0 10 100 900
1 2 10 19
1 3 10 56
1 4 10 111
1 4 100 1,191
1 10 100 8,919
2 2 10 35
2 3 10 152
2 4 10 399
2 4 100 4,719
2 10 100 88,299
5 2 10 191
5 3 10 2,672
5 4 10 16,383
5 4 100 292,863
5 10 100 85,599,999

Table 3.1: The model complexity γ(k,m, T) of time-inhomogeneous, time-discrete
Markov processes of different orders k, different lengths T and state
spaces of different cardinality m

Bühlmann et al. (1999) stated, within a time-homogeneous setting, that “[t]here
are no models in between [...]”. This remains true in the current, time-inhomogeneous
setting. For example, it is impossible to fit a time-inhomogeneous, time-discrete
Markov process with 50 model parameters to data on a state space of cardinality
m = 3 and length T = 10. In fact we can only fit a model with 30 parame-
ters or with 111 parameters and nothing in between: “The class of all [...] full
[time-discrete] Markov [processes] is not structurally rich [...]”, cf. Mächler and
Bühlmann (2004). On the contrary the class of all tiVLMC is rich, there are

3 Time-inhomogeneous Variable Length Markov Chains 35

endless possibilities to calibrate the number of model parameters by alternating
the context tree.
The second big advantage is that tiVLMC, as we have already discussed shortly
in Chapter 1.1, avoid the curse of dimensionality: As seen in Table 3.1, the model
complexity of a time-inhomogeneous, time-discrete Markov process increases ex-
ponentially with the order k. Thus fitting such processes of higher order leads
to highly variable estimates and insane amounts of training data are required
to calibrate higher-order models. On the other hand a tiVLMC can describe the
same dependency structure as its embedding while usually having drastically less
model parameters and thus being a more robust model.

Example 3.15. The tiVLMC of Example 3.11 has

3 + 3 + 4 · 3 + (5 · 3)(T − 3)

model parameters. 3 parameters are needed to describe the initial distribution
PX1 of X: the probabilities to start in a, i or i+. The probability to start in d is
the complementary event and we do not need to estimate it. Since τ1 = {e}, X2

is not depending on X1 and we again need 3 parameters to describe PX2 . Since
|τ2| = 4, we have 4 states (a, i, i+ and d) relevant for the second transition and
thus need 4 · 3 more model parameters. For each of the (T − 3) transitions after
the first two, we need 5 · 3 parameters, since we have |τt| = 5 states (a, i, (i+, w)
with w 6= i+, (i+, i+) and d), t ≥ 3.
The embedding time-inhomogeneous, time-discrete Markov process of order 2
needs

15 + 3 · 42 · (T − 2)

model parameters. For T = 50 this amounts to more than three times more pa-
rameters than the tiVLMC has itself, cf. the following Table 3.2.

3 Time-inhomogeneous Variable Length Markov Chains 36

T tiVLMC embedding ratio
5 48 159 3.31
10 123 399 3.24
25 348 1,119 3.22
50 723 2,319 3.21
100 1,473 4,719 3.20
500 7,473 23,919 3.20

Table 3.2: The model complexity of the tiVLMC from Example 3.11 and its
embedding time-inhomogeneous, time-discrete Markov process of order
two and their ratio for varying lengths T

The ratios in Table 3.2 are the parameters of the embedding time-inhomogeneous,
time-discrete Markov process divided by the parameters of the tiVLMC, rounded
to two decimal digits.
The more the lengths of the different contexts of a tiVLMC vary, the bigger the
ratio is when model complexity is compared to their embedding.

4 Inferring tiVLMC 37

4 Inferring tiVLMC
This chapter is devoted to the model fitting procedure in a data setting where
censoring is absent. The more general setting with censored data is considered in
the following Chapter 5.
First we are going to present tools needed to generalize the fitting algorithm
Context, cf. Algorithm 1.11. We are going to continue by constructing the above
mentioned generalization. A tiVLMC-version of Theorem 1.12 will be proven,
stating that the context tree estimator output by the generalized algorithm is
consistent. The major step of the Context algorithm is the pruning decision per-
formed in the second algorithmic step. Here a measure is required that evaluates
whether a leaf that is under consideration for pruning in fact should or should
not be pruned. Conventionally the Kullback-Leibler divergence is chosen as the
measure and this is how we presented Context in the introductory Chapter 1.2.
Reasons for this convention are going to be explained within the following. How-
ever we are also going to consider other possible measure choices like the L1-norm.

4.1 Pruning with the Kullback-Leibler divergence

First we formally introduce the Kullback-Leibler divergence as a measure of the
distance between two distributions.

Definition 4.1. Let P and Q be two discrete probability distributions on Ω. The
Kullback-Leibler divergence between P and Q is defined as

D [P ||Q] :=
∑
x∈Ω

P (x) log P (x)
Q(x) ,

where P (x) log P (x)
Q(x) := 0 for P (x) = 0 and P (x) log P (x)

0 :=∞ for P (x) > 0.

The Kullback-Leibler divergence was introduced by and in Kullback and Leibler
(1951). For a function f : Ω→ R, where Ω is a set of finite cardinality, we denote
the L1-norm of f by

‖f‖1 :=
∑
x∈Ω
|f(x)|.

The L1-distance between two discrete distributions can be rewritten:

4 Inferring tiVLMC 38

Proposition 4.2 (Cover and Thomas, 1991). Let P and Q be two discrete prob-
ability distributions on Ω, where Ω is of finite cardinality. For

A := {x ∈ Ω : P (x) > Q(x)}

it holds that
‖P −Q‖1 = 2 (P (A)−Q(A)).

This proposition is proven in Cover and Thomas (1991, page 299). Using Propo-
sition 4.2 one can obtain the following lower bound for the Kullback-Leibler di-
vergence.

Proposition 4.3 (Cover and Thomas, 1991). Let P and Q be two discrete prob-
ability distributions on Ω, where Ω is of finite cardinality. Then

D [P ||Q] ≥ 1
2 log 2 ‖P −Q‖

2
1 .

This is Lemma 12.6.1 in Cover and Thomas (1991, page 300). By replacing the
nominator 2 log 2 by 2 one obtains a less strict inequality which is known as
Pinsker’s inequality, cf. Pinsker (1973). Combining Propositions 4.2 and 4.3 yields:

Corollary 4.4. Let P and Q be two discrete probability distributions on Ω, where
Ω is of finite cardinality. For

A := {x ∈ Ω : P (x) > Q(x)}

it holds that
D [P ||Q] ≥ (P (A)−Q(A))2.

Using above statements we can introduce the time-sensitive pendant of the origi-
nal pruning measure used by Rissanen (1983). This tool plays the most important
role in the pruning decision of the (to-be constructed) fitting Algorithm 4.7.

Definition 4.5. For 1 ≤ t ≤ T , wu ∈M1:t with u ∈M and Nt(w) > 0, we define
the time-sensitive pruning measure

∆t(wu) := Nt(wu)D
[
P̂t(· | wu)||P̂t(· | w)

]
.

4 Inferring tiVLMC 39

We next establish a relation to compare the size of two (terminal node context
or context) trees. This formalization is useful to propose a stopping criterion of
Algorithm 4.7 that we present afterwards.

Definition 4.6. A set τ ⊂ M0:∞ is said to be smaller or equally sized than
another set T ⊂M0:∞, written τ 4 T , if

w ∈ τ ⇒
(
∃u ∈M0:∞ : wu ∈ T

)
.

We call τ and T equally sized, if τ 4 T and T 4 τ hold simultaneously.

Note that ⊆ is not equivalent to 4. While {1} 6⊆ {(1, 1)}, it clearly holds that
{1} 4 {(1, 1)}.
Now we present the algorithm to estimate the context function c of a tiVLMC
X ∈ P0:T−1. As mentioned before this algorithm is a modified version of Con-
text, cf. Algorithm 1.11. In contrast to the original algorithm it is able to meet
the special requirements that come up in insurance applications (for uncensored
data) and were discussed in Chapter 1.3. The case of censored data is dealt with
separately in Chapter 5.

Algorithm 4.7.
Input: X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T , a cutoff C > 0 and an integer nmin ∈ N

For t = 1, ..., T − 1 do:
Step 1: Tree growing
Construct the maximal terminal node context tree τ t

max such that

w ∈ τ t
max ⇒ Nt(w) ≥ nmin

and

∀τ t
t with w ∈ τ t

t ⇒ Nt(w) ≥ nmin it holds that τ t
t 4 τ t

max.

Set τ t
(0) := τ t

max.

4 Inferring tiVLMC 40

Step 2: Leaf pruning
Examine every element wu ∈ τ t

(0), u ∈M , as follows:
Prune wu down to w if

∆t(wu) < C
√
n log n,

else do nothing.
This yields a smaller or equally sized tree τ(1) 4 τ t

(0).

Step 3: Stopping criterion
Repeat Step 2 with τ t

(i) instead of τ t
(i−1) until τ(i+1) and τ t

(i) are equally
sized. Denote this maximally pruned context tree τ̂t.

Output: τ̂ := (τ̂t)1≤t≤T−1

The basic idea of Algorithm 4.7 is the following: During every pruning decision we
compare two possible context functions ĉ and ĉ′, where ĉ′ is obtained by pruning
the terminal node wu of ĉt down to w. Thus ĉ and ĉ′ only differ at time t and only
at the terminal node wu of ĉt, where ĉ′t takes the value w. Now ∆t(wu) measures
whether the additional information contained in the longer context wu is worth
keeping (so ĉ is the better fitting context function) or should be dropped (ĉ′ is
the better fitting context function). In (3.1) we have seen that the likelihood of
observing x1:T is

P (X1:T = x1:T) = P(X1 = x1) ·
T−1∏
t=1

Pt (xt+1 | ct(x1:t)),

if c is the true context function of the tiVLMC. Thus the estimated likelihood
(conditioned on the first state) for observing x1

1:T , ..., x
n
1:T using the context func-

tion ĉ is

L (ĉ) =
n∏
i=1

T−1∏
t=1

P̂t
(
xit+1

∣∣∣ ĉt (xi1:t

))
; (4.1)

here we used that X1, ..., Xn are independent. Since ĉk = ĉ′k for every k 6= t, it
holds that the log-ratio between the two likelihoods is

log L (ĉ)
L (ĉ′) = log


n∏
i=1

P̂t
(
xit+1

∣∣∣ ĉt (xi1:t)
)

n∏
i=1

P̂t (xit+1 | ĉ′t (xi1:t))

.

4 Inferring tiVLMC 41

Now if ĉt (xi1:T) = wu, it holds that ĉ′t (xi1:T) = w. If ĉt (xi1:T) 6= wu, both contexts
are equal, i.e. ĉt (xi1:T) = ĉ′t (xi1:T) in that case. Thus the only factors that remain
in the fraction are those with xit−|wu|+1:t = wu and hence we get

log


n∏
i=1

P̂t
(
xit+1

∣∣∣ ĉt (xi1:t)
)

n∏
i=1

P̂t (xit+1 | ĉ′t (xi1:t))

 = log


∏
x∈M

P̂t (x | wu)Nt+1(xwu)

∏
x∈M

P̂t (x | w)Nt+1(xwu)


=
∑
x∈M

Nt+1(xwu) log
(
P̂t (x | wu)
P̂t (x | w)

)

= Nt(wu)
∑
x∈M

P̂t(x | wu) log
(
P̂t (x | wu)
P̂t (x | w)

)

= Nt(wu)D
[
P̂t(· | wu)||P̂t(· | w)

]
= ∆t(wu).

Therefore the time-sensitive pruning measure is nothing else than a likelihood
ratio test statistic. The null hypothesis is H0 : c = ĉ (no pruning), the alternative
H1 : c = ĉ′ (pruning). This gives statistical reasoning for the choice of the time-
sensitive pruning measure ∆t and in particular for the choice of the Kullback-
Leibler divergence D as its most important component.
As stated in Cover and Thomas (1991, page 18), the Kullback-Leibler divergence
also plays a main role in information theory: The Kullback-Leibler divergence
“[...] is a measure of the distance between two distributions. In statistics, it arises
as an expected logarithm of the likelihood ratio. [...] D [P ||Q] is a measure of the
inefficiency of assuming that the distribution is Q when the true distribution is
P . For example, if we knew the true distribution of the random variable, then
we could construct a code with average description length H(P). If, instead, we
used the code for a distribution Q, we would need H(P) + D [P ||Q] bits on the
average to describe the random variable.” Here

H(P) := −
∑
x∈Ω

P (x) logP (x)

denotes the entropy of the discrete probability distribution P on Ω.
This gives another reasoning for the construction of the time-sensitive pruning
measure, also cf. Begleiter et al. (2004, page 388) or Ron et al. (1996, page 118):
By using the Kullback-Leibler divergence we measure the additional memory
needed if we prune wu down to w, i.e. if we use the measure P̂t(· | w) with the
shorter context instead of P̂t(· | wu).

4 Inferring tiVLMC 42

In the second step of Algorithm 4.7 the informational benefit inherited by using
wu instead of only w is compared to the threshold C

√
n log n. Via the so-called

cutoff value C the harshness of pruning, i.e. the harshness of the second step, can
be calibrated: Larger values of C lead to more pruning. C is used as a tuning
parameter and more details regarding the choice of C will be discussed in the
later Chapter 6. The

√
n log n-term arises as a needed technical growing factor in

the proof of Theorem 4.14, i.e. it ensures the consistency of Algorithm 4.7.
The integer nmin lets the user control the growth of the maximal terminal node
context tree τ t

max in the first step of Algorithm 4.7. Low values for nmin generate
really large trees τ t

max and thus large amounts of memory (and also CPU pro-
cessing power) are required to calculate the model fit. nmin lets the user limit the
numerical effort and should be chosen as low as possible with the constraint that
computations can be carried out on the given environment within the desired
time frame.
The following theorem states that the estimator output by Algorithm 4.7 includes
the true context tree with probability one if the number of observations diverges
to infinity.

Theorem 4.8. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC with
state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X and τ̂ is the

output of Algorithm 4.7,
lim
n→∞

P(τt 4 τ̂t) = 1

holds for all 1 ≤ t ≤ T − 1.

Proof of Theorem 4.8. Fix t. The underestimation event is

Un := {τt 4 τ̂t}C =
{
∃w ∈ τ̂t ∃u ∈M1:t−|w| : wu ∈ τt, wu /∈ τ̂t

}
.

Define
Dn := {∀w ∈ τ t

t : Nt(w) ≥ ρn},

where
ρn := bn

2
with

b := min
w∈τ t

t

P
(
Xt−|w|+1:t = w

)
.

4 Inferring tiVLMC 43

Then
Un ⊆ (Un ∩Dn) ∪DC

n

and the σ-subadditivity of P implies

P(Un) ≤ P(Un ∩Dn) + P
(
DC
n

)
.

Since probabilities are non-negative this yields

0 ≤ lim
n→∞

P(Un) ≤ lim
n→∞

P(Un ∩Dn) + lim
n→∞

P
(
DC
n

)
and hence the claim can be further split into two lemmas.

Lemma 4.9. With above notations it holds that

lim
n→∞

P
(
DC
n

)
= 0.

Lemma 4.10. With above notations it holds that

lim
n→∞

P(Un ∩Dn) = 0.

Using Lemma 4.9 and 4.10 we have

0 ≤ lim
n→∞

P(Un) ≤ 0 + 0,

and
lim
n→∞

P(Un) = 0

follows by the sandwich theorem A.4.

Proof of Lemma 4.9. The complement of Dn is

DC
n = {∃w ∈ τ t

t : Nt(w) < ρn}.

Using the σ-subadditivity of P and moving over to the largest summand we can
bound the probability of the complement by

4 Inferring tiVLMC 44

P
(
DC
n

)
= P (∃w ∈ τ t

t : Nt(w) < ρn)

≤
∑
w∈τ t

t

P (Nt(w) < ρn)

≤ |τ t
t |max

w∈τ t
t

P (Nt(w) < ρn)

≤ mt max
w∈τ t

t

P (Nt(w) < ρn), (4.2)

where we have used that the cardinality |τ t
t | of the terminal node context tree τ t

t

at t is (loosely) upper bounded by the number of possible distinct sequences of
values in M of length t, i.e.

|τ t
t | ≤ mt.

Recall Definitions 3.1 and 3.3 and then note that

domain(ct) = tpsuppt(X) =
{
x ∈M t : P(X1:t = x) > 0

}
.

Thus we have
∀w ∈ τt ∃x ∈ tpsuppt(X) : w = ct(x)

and therefore
0 < P(X1:t = x) ≤ P(Xt−|w|+1:t = w)

for every w ∈ τ t
t ⊆ τt. Hence b > 0.

Nt(w) is Bin(n,P(Xt−|w|+1:t = w))-distributed. This yields

E [Nt(w)] = nE
[
1

(
X1
t−|w|+1:t = w

)]
= nP(Xt−|w|+1:t = w) ≥ nb > 0.

With our choice of
ρn = bn

2 > 0

we can continue to bind the probability in (4.2):

P(Nt(w) < ρn) = P (Nt(w)− E [Nt(w)] < ρn − E [Nt(w)])
≤ P (Nt(w)− E [Nt(w)] < ρn − nb)

= P
(
Nt(w)− E [Nt(w)] < −bn2

)
.

4 Inferring tiVLMC 45

The indicators (N i
t (w))i=1,...,n are independent, since X1, ..., Xn are, and bounded

by the interval [0, 1]. Since − bn
2 < 0, we can apply Hoeffding’s inequality A.7 and

obtain

P(Nt(w) < ρn) ≤ P
(
Nt(w)− E [Nt(w)] < −bn2

)

≤ exp

−2

(
− bn

2

)2

n


= exp

(
−b

2

2 n
)
.

Combining this with (4.2) we finally obtain

0 ≤ lim
n→∞

P
(
DC
n

)
≤ mt lim

n→∞
max
w∈τ t

t

P (Nt(w) < ρn)

≤ mt lim
n→∞

exp
(
−b

2

2 n
)

(4.3)

= mt · 0
= 0

and thus
lim
n→∞

P
(
DC
n

)
= 0

by the sandwich theorem A.4. This completes the proof.

Proof of Lemma 4.10. Without loss of generality underestimation can be restricted
to the terminal nodes of τt: If an (internal) node of τt is missing, it must be that
a terminal node of τt is also missing. Thus we can simplify the underestimation
event:

Un = {∃w ∈ τ t
t : w /∈ τ̂t} = {∃wu ∈ τ t

t , u ∈M : wu /∈ τ̂t}.

For a terminal node wu ∈ τ t
t two distinct reasons can cause underestimation:

1. wu was not even included in τ t
max; this happens if and only if Nt(wu) < nmin.

2. wu was included in τ t
max but falsely pruned down to w; this happens if and

only if Nt(wu) ≥ nmin and ∆t(wu) < C
√
n log n.

Recall that we have chosen
ρn = bn

2

4 Inferring tiVLMC 46

and that b > 0. Therefore
ρn

n→∞−−−→∞

strictly monotonically. Thus there exists a threshold integer nρ ∈ N such that

ρn ≥ nmin

holds for all n ≥ nρ. And hence for n ≥ nρ

Un ∩Dn =
{
∃wu ∈ τ t

t , u ∈M : ∆t(wu) < C
√
n log n, Nt(wu) ≥ ρn

}

holds, i.e. by cutting Un with Dn we can restrict ourselves to the second reason for
underestimation if n is large. By using the σ-subadditivity of P and plugging in
Definition 4.5 of the time-sensitive pruning measure, we obtain the upper bound

P(Un ∩Dn)

≤
∑
wu∈τ t

t
u∈M

P
(

∆t(wu) < C
√
n log n, Nt(wu) ≥ ρn

)

=
∑
wu∈τ t

t
u∈M

P
(

D
[
P̂t(· | wu)||P̂t(· | w)

]
<
C
√
n log n

Nt(wu) , Nt(wu) ≥ ρn

)

≤
∑
wu∈τ t

t
u∈M

n∑
k=dρne

P
(

D
[
P̂t(· | wu)||P̂t(· | w)

]
<
C
√
n log n
k

, Nt(wu) = k

)

≤
∑
wu∈τ t

t
u∈M

n∑
k=dρne

n∑
j=k

P
(

D
[
P̂t(· | wu)||P̂t(· | w)

]
<
C
√
n log n
k

, Nt(wu) = k, Nt(w) = j

)

(4.4)

for n ≥ nρ. The range of the inner sum is due to

Nt(wu) = k ⇒ Nt(w) =
∑
u∈M

Nt(wu) ≥ k.

Since M is finite, we can apply Corollary 4.4 and lower bound the Kullback-
Leibler divergence

D
[
P̂t(· | wu)||P̂t(· | w)

]
≥
(
P̂t(A | wu)− P̂t(A | w)

)2

for
A :=

{
x ∈M : P̂t(x | wu) > P̂t(x | w)

}
.

4 Inferring tiVLMC 47

Therefore

P
(

D
[
P̂t(· | wu)||P̂t(· | w)

]
<
C
√
n log n
k

, Nt(wu) = k, Nt(w) = j

)

≤P

P̂t(A | wu)− P̂t(A | w) <
√
C
√
n log n
k

, Nt(wu) = k, Nt(w) = j

. (4.5)

Now fix wu ∈ τ t
t . Applying Lemma 3.12, there exist a state xwu ∈M with εwu > 0

and a threshold integer nwu, so that xwu ∈ A for n ≥ nwu. Using Lemma 3.13
with

γ =
√
C
√
n log n
k

and ξ =
(
εwu
2 − γ

)2

we can continue to bound (4.5):

P

P̂t(A | wu)− P̂t(A | w) <
√
C
√
n log n
k

, Nt(wu) = k,Nt(w) = j


=P

∑
x∈A

(
P̂t(x | wu)− P̂t(x | w)

)
<

√
C
√
n log n
k

, Nt(wu) = k, Nt(w) = j


≤P

P̂t(xwu | wu)− P̂t(xwu | w) <
√
C
√
n log n
k

, Nt(wu) = k, Nt(w) = j


≤P

(∣∣∣P̂t(xwu | wu)− Pt(xwu | wu)
∣∣∣ > √

ξ, Nt(wu) = k
)

+ P
(∣∣∣P̂t(xwu | w)− Pt(xwu | w)

∣∣∣ > √
ξ, Nt(w) = j

)
(4.6)

for n ≥ nwu. Next let Ij denote the index of the j-th 1 in the 0-1-valued sequence
(N i

t (wu))i=1,...,n and define Yj := 1

(
N
Ij

t+1(xwuwu) = 1
)
. Yj indicates whether an

observation that moved through wu transits into xwu at t+ 1. Then

P
(∣∣∣P̂t(xwu | wu)− Pt(xwu | wu)

∣∣∣ > √
ξ, Nt(wu) = k

)

=P

∣∣∣∣∣∣ 1
Nt(wu)

Nt(wu)∑
j=1

Yj − Pt(xwu | wu)
∣∣∣∣∣∣ >

√
ξ, Nt(wu) = k


≤P

∣∣∣∣∣∣1k
k∑
j=1

Yj − Pt(xwu | wu)
∣∣∣∣∣∣ >

√
ξ

.

4 Inferring tiVLMC 48

We want to apply Hoeffding’s inequality A.6. The (Yj)j=1,...,k, being indicators,
are all bounded by the interval [0, 1]. They are independent, since X1, ..., Xn are,
and Bin (1, Pt(xwu | wu))-distributed. Therefore

E

1
k

k∑
j=1

Yj

 = E [Y1] = Pt(xwu | wu).

Thus

P
(∣∣∣P̂t(xwu | wu)− Pt(xwu | wu)

∣∣∣ > √
ξ, Nt(wu) = k

)

≤P

∣∣∣∣∣∣1k
k∑
j=1

Yj − Pt(xwu | wu)
∣∣∣∣∣∣ >

√
ξ


≤2e−2kξ (4.7)

and analogously

P
(∣∣∣P̂t(xwu | w)− Pt(xwu | w)

∣∣∣ > √
ξ, Nt(w) = j

)
≤ 2e−2jξ

by Hoeffding’s inequality A.6. Since k ranges from dρne ≥ bn
2 to n we have

0 ≤ γ =
√
C
√
n log n
k

≤

√
2C
√
n log n
bn

n→∞−−−→ 0

and thus γ → 0 by the sandwich theorem A.4. In consequence

ξ =
(
εwu
2 − γ

)2
n→∞−−−→ ε2

wu

4 > 0.

Since |τ t
t | ≤ mt <∞ there exists a threshold integer nξ so that for all wu ∈ τ t

t

ξ ≥ ε := 1
5 min
wu∈τ t

t

ε2
wu > 0

for all n ≥ nξ. Thus for all wu ∈ τ t
t we have

P
(∣∣∣P̂t(xwu | wu)− Pt(xwu | wu)

∣∣∣ > √
ξ, Nt(wu) = k

)
≤ 2e−2kε

and
P
(∣∣∣P̂t(xwu | w)− Pt(xwu | w)

∣∣∣ > √
ξ, Nt(w) = j

)
≤ 2e−2jε

4 Inferring tiVLMC 49

if n ≥ nξ. Since j ranges from k to n, it also behaves asymptotically like n. By
combining everything we finally obtain

0 ≤ P(Un ∩Dn) ≤
∑
wu∈τ t

t
u∈M

n∑
k=dρne

n∑
j=k

(
2e−2kε + 2e−2jε

)

≤ |τ t
t | · n · n · 4 · e−2ρnε

≤ 4mtn2e−bnε (4.8)

for n ≥ max
{
nρ, nξ, max

wu∈τ t
t

nwu

}
. Thus

0 ≤ lim
n→∞

P(Un ∩Dn) = 0

and the claim is once again implied by the sandwich theorem A.4. This completes
the proof.

Within above proof an upper probability bound for the event of underestimation
at a fixed time t has been developed to prove that the probability eventually con-
verges to zero. Evaluating this bound empirically, i.e. replacing the probability
measures by their empirical estimates, can give guidance on the risk of underes-
timation.

Corollary 4.11. It holds that

P (Un) ≤ mt exp
(
−b

2

n

)
+ 4mtn2 exp (−bnε)

for large n, where
b := min

w∈τ t
t

P
(
Xt−|w|+1:t = w

)
and

ε := 1
5 min
wu∈τ t

t
x∈M

{Pt (x | wu)− Pt (x | w) : Pt (x | wu)− Pt (x | w) > 0}.

Proof of Corollary 4.11. As proven in (4.3) it holds that

P
(
DC
n

)
≤ mt exp

(
−b

2

n

)

4 Inferring tiVLMC 50

for large n. As proven in (4.8) we have that

P (Un ∩Dn) ≤ 4mtn2 exp (−bnε′)

for
ε′ := 1

5 min
wu∈τ t

t

ε2
wu

and n large. And since

0 < ε = 1
5 min
wu∈τ t

t
x∈M

{Pt (x | wu)− Pt (x | w) : Pt (x | wu)− Pt (x | w) > 0}

≤ 1
5 (Pt (xwu | wu)− Pt (xwu | w))

≤ 1
5 min
wu∈τ t

t

ε2
wu

= ε′,

the claim

P(Un) ≤ P
(
DC
n

)
+ P (Un ∩Dn) ≤ mt exp

(
−b

2

n

)
+ 4mtn2 exp (−bnε)

is implied for large n.

The next theorem states that the estimator output by Algorithm 4.7 is included
in the true context tree with probability one if the number of observations di-
verges to infinity.

Theorem 4.12. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC with
state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X and τ̂ is the

output of Algorithm 4.7,
lim
n→∞

P(τ̂t 4 τt) = 1

holds for all 1 ≤ t ≤ T − 1.

In the proof of Theorem 4.12 we will apply an upper bound for the Kullback-
Leibler divergence D. The bound is a generalization of Lemma A.5 by Dragomir
et al. (2000).

4 Inferring tiVLMC 51

Lemma 4.13. Let P and Q be two discrete probability distributions on Ω with
Q(x) = 0⇒ P (x) = 0 for all x ∈ Ω. Then

D [P ||Q] ≤
∑
x∈Ω

P 2(x)
Q(x)

− 1,

where we set 0
0 := 0.

Proof of Lemma 4.13. It is well-known that for every real-valued differentiable
function f that is defined on an interval I ⊂ R and that is strictly convex,

f(b)− f(a) ≥ f ′(a)(b− a)

holds for all a, b ∈ I. Choose f(x) = − log(x) and I = (0,∞). Then

log a− log b ≥ 1
a

(a− b)

for all a, b > 0. Multiplying with −b yields

b log b− b log a ≤ b

a
(b− a)

and this simplifies to
b log b

a
≤ b2

a
− b.

Since Q(x) = 0⇒ P (x) = 0 implies

P (x) > 0⇒ Q(x) > 0

by contraposition, we therefore get

P (x) log P (x)
Q(x) ≤

P (x)2

Q(x) − P (x) (4.9)

for all x ∈ Ω with P (x) > 0. Now compute

D [P ||Q] =
∑
x∈Ω

P (x) log P (x)
Q(x)

=
∑
x∈Ω:
P (x)>0

P (x) log P (x)
Q(x) +

∑
x∈Ω:
P (x)=0

P (x) log P (x)
Q(x)

4 Inferring tiVLMC 52

=
∑
x∈Ω:
P (x)>0

P (x) log P (x)
Q(x) +

∑
x∈Ω:
P (x)=0

0 log 0
Q(x)

=
∑
x∈Ω:
P (x)>0

P (x) log P (x)
Q(x) .

Using (4.9) yields

D [P ||Q] =
∑
x∈Ω:
P (x)>0

P (x) log P (x)
Q(x)

≤
∑
x∈Ω:
P (x)>0

(
P (x)2

Q(x) − P (x)
)

=
∑
x∈Ω:
P (x)>0

P (x)2

Q(x) −
∑
x∈Ω:
P (x)>0

P (x)

=

 ∑
x∈Ω:
P (x)>0

P (x)2

Q(x)

− 1.

Now we can just add the summands that are zero without changing anything and
obtain

D [P ||Q] ≤
∑
x∈Ω

P 2(x)
Q(x)

− 1.

Proof of Theorem 4.12. Fix t. The overestimation event is

On :=
{
∃w ∈ τt ∃u ∈M1:t−|w| : wu /∈ τt, wu ∈ τ̂t

}
.

This simplifies to
On = {∃w ∈ τ t

t ∃u ∈M : wu ∈ τ̂t}.

By expressing the event in terms of the time-sensitive pruning measure we get

P(On) ≤
∑
w∈τ t

t

∑
u∈M

P
(

∆t(wu) ≥ C
√
n log n, Nt(wu) ≥ nmin

)
, (4.10)

4 Inferring tiVLMC 53

since Nt(wu) ≥ nmin has to hold for wu to be added to the initial tree and
∆t(wu) ≥ C

√
n log n has to hold so that wu does not get pruned down to w. M

is finite and it holds that

P̂t(x | w) = 0⇒ P̂t(x | wu) = 0.

Thus we can apply Lemma 4.13 to obtain

∆t(wu) = D
[
P̂t(· | wu)||P̂t(· | w)

]
Nt(wu)

≤
((∑

x∈M

P̂t(x | wu)2

P̂t(x | w)

)
− 1

)
Nt(wu)

=
(∑
x∈M

P̂t(x | wu)2

P̂t(x | w)
Nt(wu)

)
−Nt(wu)

=
(∑
x∈M

P̂t(x | wu)
P̂t(x | w)

Nt+1(xwu)
)
−Nt(wu). (4.11)

Here we used that by Proposition 2.11

P̂t(x | wu)Nt(wu) = Nt+1(xwu)
Nt(wu) Nt(wu) = Nt+1(xwu).

Note that
Nt(wu) =

∑
x∈M

Nt+1(xwu)

and thereby

∆t(wu) ≤
(∑
x∈M

P̂t(x | wu)
P̂t(x | w)

Nt+1(xwu)
)
−Nt(wu)

=
(∑
x∈M

P̂t(x | wu)
P̂t(x | w)

Nt+1(xwu)
)
−
∑
x∈M

Nt+1(xwu)

=
∑
x∈M

(
P̂t(x | wu)
P̂t(x | w)

− 1
)
Nt+1(xwu). (4.12)

For arbitrary 1 ≤ v ≤ T and arbitrary z ∈M1:v the indicators

(
N i
v(z)

)
i=1,...,n

4 Inferring tiVLMC 54

are Bin(1, Pv(z))-distributed, where Pv(z) := P
(
Xv−|z|+1:v = z

)
, and indepen-

dent, since X1, ..., Xn are independent. Therefore N i
v(z)− Pv(z)√

Pv(z) (1− Pv(z))


i=1,...,n

are also independent random variables with

E

 N i
v(z)− Pv(z)√

Pv(z) (1− Pv(z))

 = 0

and

Var
 N i

v(z)− Pv(z)√
Pv(z) (1− Pv(z))

 = 1.

Thus the law of the iterated logarithm A.8 implies

lim sup
n→∞

n∑
i=1

N i
v(z)−Pv(z)√

Pv(z)(1−Pv(z))√
2n log log n = lim sup

n→∞

Nv(z)− nPv(z)√
Pv(z) (1− Pv(z))

√
2n log log n

= 1 (4.13)

P-a.s. We are interested in the asymptotic behaviour of a summand of (4.12).
The basic idea is that, if those summands grow slower than C

√
n log n, the prob-

abilities (4.10) of overestimation converge to zero as n diverges to infinity. Let
r := O

(√
n log log n

)
. We here use the Bachmann-Landau notation, cf. Definition

A.9. By (4.13) we can write

Nt+1(xwu) = nPt+1(xwu) + r,

Nt+1(xw) = nPt+1(xw) + r,

Nt(wu) = nPt(wu) + r,

Nt(w) = nPt(w) + r

and start to compute:

P̂t(x | wu)
P̂t(x | w)

− 1 =Nt+1(xwu)Nt(w)
Nt(wu)Nt+1(xw) − 1

=(nPt+1(xwu) + r)(nPt(w) + r)
(nPt(wu) + r)(nPt+1(xw) + r) − 1

=n
2Pt+1(xwu)Pt(w) + nr(Pt+1(xwu) + Pt(w)) + r2

n2Pt(wu)Pt+1(xw) + nr(Pt(wu) + Pt+1(xw)) + r2 − 1.

4 Inferring tiVLMC 55

Next we expand the one and then join the two fractions. This yields

P̂t(x | wu)
P̂t(x | w)

− 1 = nr(Pt+1(xwu) + Pt(w)− Pt+1(xw)− Pt(wu)) + r2

n2Pt(wu)Pt+1(xw) + nr(Pt(wu) + Pt+1(xw)) + r2 . (4.14)

Note that we have left out the quadratic term

n2(Pt+1(xwu)Pt(w)− Pt+1(xw)Pt(wu))

in the nominator: Since w ∈ τ t
t , it holds that

Pt(x | wu) = Pt+1(xwu)
Pt(wu) = Pt+1(xw)

Pt(w) = Pt(x | w)

and therefore
Pt+1(xwu)Pt(w) = Pt+1(xw)Pt(wu).

Thus the left out term is equal to zero. Here the information that we are dealing
with an overestimation event comes to play. Next
(
P̂t(x | wu)
P̂t(x | w)

− 1
)
Nt+1(xwu)

=nr(Pt+1(xwu) + Pt(w)− Pt+1(xw)− Pt(wu)) + r2

n2Pt(wu)Pt+1(xw) + nr(Pt(wu) + Pt+1(xw)) + r2 (nPt+1(xwu) + r)

=n
2r(Pt+1(xwu)2 + Pt(w)Pt+1(xwu)− Pt+1(xw)Pt+1(xwu)− Pt(wu)Pt+1(xwu))

n2Pt(wu)Pt+1(xw) + nr(Pt(wu) + Pt+1(xw)) + r2

+ nr2(2Pt+1(xwu) + Pt(w)− Pt+1(xw)− Pt(wu)) + r3

n2Pt(wu)Pt+1(xw) + nr(Pt(wu) + Pt+1(xw)) + r2

+ r3

n2Pt(wu)Pt+1(xw) + nr(Pt(wu) + Pt+1(xw)) + r2 .

Reducing the first fraction by n2 and the second by n yields
(
P̂t(x | wu)
P̂t(x | w)

− 1
)
Nt+1(xwu)

=r(Pt+1(xwu)2 + Pt(w)Pt+1(xwu)− Pt+1(xw)Pt+1(xwu)− Pt(wu)Pt+1(xwu))
Pt(wu)Pt+1(xw) + r

n
(Pt(wu) + Pt+1(xw)) + r2

n2

+
r2(2Pt+1(xwu) + Pt(w)− Pt+1(xw)− Pt(wu)) + r3

n

nPt(wu)Pt+1(xw) + r(Pt(wu) + Pt+1(xw)) + r2

n

+ r3

n2Pt(wu)Pt+1(xw) + nr(Pt(wu) + Pt+1(xw)) + r2

4 Inferring tiVLMC 56

and thus (
P̂t(x | wu)
P̂t(x | w)

− 1
)
Nt+1(xwu)

=O
(√

n log log n
)

+O
(
n log log n

n

)
+O

(n log log n)
3
2

n2


=O

(√
n log log n

)
.

Therefore

∆t(wu) =
∑
x∈M
O
(√

n log log n
)

= O
(
m
√
n log log n

)
= O

(√
n log log n

)

by (4.12), i.e.

lim sup
n→∞

∆t(wu)√
n log log n = const.

P-a.s. Since the Kullback-Leibler divergence is non-negative, the time-sensitive
pruning measure is non-negative and thus

lim sup
n→∞

∣∣∣∣∣ ∆t(wu)√
n log log n

∣∣∣∣∣ = const.

P-a.s. Now

0 ≤ lim sup
n→∞

∣∣∣∣∣ ∆t(wu)√
n log n

∣∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣∣ ∆t(wu)√
n log log n

∣∣∣∣∣ · lim sup
n→∞

∣∣∣∣∣
√
n log log n
n log n

∣∣∣∣∣
= const · 0
= 0

P-a.s. In consequence
∆t(wu)√
n log n

n→∞−−−→
P-a.s.

0

by the sandwich theorem A.4. Since almost sure convergence implies convergence
in probability, for all ε > 0

P
(

∆t(wu) > ε
√
n log n

)
n→∞−−−→ 0

holds, in particular for ε = C
2 > 0. Thus

0 ≤ lim
n→∞

P
(

∆t(wu) ≥ C
√
n log n

)
≤ lim

n→∞
P
(

∆t(wu) > C

2
√
n log n

)
= 0

4 Inferring tiVLMC 57

and hence
lim
n→∞

P
(

∆t(wu) ≥ C
√
n log n ,Nt(wu) ≥ 2

)
= 0

is again implied by the sandwich theorem A.4. Combining this with the fact that
the number |τ t

t ||M | ≤ mt+1 <∞ of summands in (4.10) is finite, implies

lim
n→∞

P(On) = 0.

This completes the proof.

Theorem 4.8 says that the probability of underestimating the true context tree
converges to zero. Theorem 4.12 says that the probability of overestimating the
true context tree also converges to zero. This implies that the estimator output
by Algorithm 4.7 is consistent. It allows us to estimate unknown context trees
of data generating tiVLMC and therefore it is a strong instrument for analysing
dependency structures of time-discrete stochastic processes with finite, unordered
state spaces.
Note that it is common practice in statistics (and its subcategory of machine
learning) to split up a consistency claim into two subclaims, e.g. cf. Leonardi
et al. (2010, pages 326-330) or Bühlmann et al. (1999, pages 500-508): Asymp-
totically neither overestimation nor underestimation can occur.

Corollary 4.14. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC with
state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X and τ̂ is the

output of Algorithm 4.7,
lim
n→∞

P(τ̂t = τt) = 1

holds for all 1 ≤ t ≤ T − 1.

Proof of Corollary 4.14. Fix t. Define the error event

En := {τt 6= τ̂t}.

Then the claim is equivalent to

lim
n→∞

P(En) = 0.

4 Inferring tiVLMC 58

The error event En can be decomposed into the two possible types of estimation
errors, over- and underestimation:

En ⊆ Un ∪On.

Thus, by using the σ-subadditivity of P,

P(En) ≤ P(Un) + P(On).

Since probabilities are non-negative, this implies

0 ≤ lim
n→∞

P(En) ≤ lim
n→∞

P(Un) + lim
n→∞

P(On).

Using Theorem 4.8 and Theorem 4.12 we have

0 ≤ lim
n→∞

P(En) ≤ 0 + 0 = 0,

and
lim
n→∞

P(En) = 0

follows as a direct implication of the sandwich theorem A.4.

Since the proof of the consistency of Algorithm 4.7, i.e. the proof of Corollary
4.14, has a pointwise structure in the time t, 1 ≤ t ≤ T−1, it immediately follows
that we could also allow for time-varying cutoff values C1, ..., CT−1 > 0 instead
of one cutoff C > 0 that is constant. The value of C determines the harshness
of the pruning procedure performed in step two of the algorithm and therefore
allowing the cutoff to depend on the time offers a possibility to equip the times
with different weights. We will look at another possibility on how to do this in
Chapter 11.2. But, since C is handled as a tuning parameter (the actual tuning
procedure is discussed in Chapter 6) time-varying cutoff values would require to
tune over a (T −1)-dimensional grid rather than a one-dimensional one. For large
values of T this is computationally infeasible.

4.2 Pruning with the L1-norm

The time-sensitive pruning measure defined in Definition 4.5 and used in Al-
gorithm 4.7 does not need to be based on the Kullback-Leibler divergence. A

4 Inferring tiVLMC 59

possible alternative is the L1-norm.

Definition 4.15. For 1 ≤ t ≤ T , wu ∈ M1:t, with u ∈ M and Nt(w) > 0, we
define the L1-norm based time-sensitive pruning measure

∆L1

t (wu) := Nt(wu)‖P̂t(· | wu)− P̂t(· | w)‖2
1.

Proposition 4.3 proposed a relation between the Kullback-Leibler divergence and
the L1-norm. By this relation it holds that

∆t(wu) = D
[
P̂t(· | wu)||P̂t(· | w)

]
Nt(wu) ≥ 1

2‖P̂t(· | wu)− P̂t(· | w)‖2
1Nt(wu)

= 1
2∆L1

t (wu).

Therefore

2∆t(wu) ≥ ∆L1

t (wu). (4.15)

As a direct implication we obtain that the probability of overestimation also con-
verges to zero, if one uses the L1-norm based time-sensitive pruning measure ∆L1

t

instead of ∆t:

Theorem 4.16. Theorem 4.12 remains true if ∆t in Algorithm 4.7 is replaced
by ∆L1

t , i.e. the probability to overestimate the true context tree still vanishes.

Proof of Theorem 4.16. Analogously to the proof of Theorem 4.12 we get

P(On) ≤
∑
w∈τ t

t

∑
u∈M

P
(

∆L1

t (wu) ≥ C
√
n log n, Nt(wu) ≥ nmin

)
.

Using the inequality (4.15) one obtains

P
(

∆L1

t (wu) ≥ C
√
n log n, Nt(wu) ≥ nmin

)
≤P

(
∆t(wu) ≥ C

2
√
n log n, Nt(wu) ≥ nmin

)
.

Since C
2 > 0 if C > 0,

lim
n→∞

P(On) = 0

4 Inferring tiVLMC 60

follows as in the proof of Theorem 4.12.

In addition, as Theorem 4.8 states for the time-sensitive pruning measure, the
event of underestimation also converges to zero if the L1-norm based time-sensitive
pruning measure is used:

Theorem 4.17. Theorem 4.8 remains true if ∆t in Algorithm 4.7 is replaced by
∆L1
t , i.e. the probability to underestimate the true context tree still vanishes.

Proof of Theorem 4.17. Theorem 4.8 was split into two Lemmas. Lemma 4.9 does
not depend on the choice of the time-sensitive pruning measure. Hence, to prove
the claimed convergence, it is sufficient to show that Lemma 4.10 remains true if
∆t is replaced by ∆L1

t . Because of the replacement the probability in (4.4) of the
proof of Lemma 4.10 changes to

P
(
‖P̂t(· | wu)− P̂t(· | w)‖2

1 <
C
√
n log n
k

, Nt(wu) = k, Nt(w) = j

)
.

Now note that

‖P̂t(· | wu)− P̂t(· | w)‖1 =
∑
x∈M

∣∣∣P̂t(x | wu)− P̂t(x | w)
∣∣∣

≥
∑
x∈B

∣∣∣P̂t(x | wu)− P̂t(x | w)
∣∣∣

for all subsets B ⊆M . Thus, for

A :=
{
x ∈M : P̂t(x | wu) > P̂t(x | w)

}
,

we get

P
(
‖P̂t(· | wu)− P̂t(· | w)‖2

1 <
C
√
n log n
k

, Nt(wu) = k, Nt(w) = j

)

≤P

P̂t(A | wu)− P̂t(A | w) <
√
C
√
n log n
k

, Nt(wu) = k, Nt(w) = j

.
This expression is the same as (4.5) in the proof of Lemma 4.10 and thus Lemma
4.10 remains true if we exchange the time-sensitive pruning measure with ∆L1

t .
This completes the proof.

4 Inferring tiVLMC 61

Combining the two Theorems 4.16 and 4.17 (as in the proof of Corollary 4.14) im-
plies the consistency of the estimator output by Algorithm 4.7, when ∆L1

t is used.

Corollary 4.18. Corollary 4.14 remains true if ∆t in Algorithm 4.7 is replaced
by ∆L1

t , i.e. the output estimator is still consistent.

4.3 Pruning with an arbitrary norm

SinceM is of finite cardinalitym, the space of all real-valued functions f : M → R
defined on M is an m-dimensional vector space over the field R, cf. e.g. Liesen
and Mehrmann (2015, page 116). It is well-known that all norms defined on a
vector space of finite dimension are equivalent, cf. Theorem A.10. Thus Corollary
4.18 implies the following general result.

Theorem 4.19. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC with
state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X and τ̂ is the

output of Algorithm 4.7, where ∆t(wu) is replaced by

∆‖·‖t (wu) := Nt(wu)
∥∥∥P̂t(· | wu)− P̂t(· | w)

∥∥∥2

and ‖·‖ is an arbitrary norm defined on the space of all functions f : M → R,

lim
n→∞

P(τ̂t = τt) = 1

holds for all 1 ≤ t ≤ T − 1.

Proof of Theorem 4.19. Since the space of all functions f : M → R is of finite
dimension, Theorem A.10 states that the norm ‖·‖ is equivalent to ‖·‖1. Thus
there exist constants b > 0 and B > 0 such that

b
∥∥∥P̂t(· | wu)− P̂t(· | w)

∥∥∥
1
≤
∥∥∥P̂t(· | wu)− P̂t(· | w)

∥∥∥ ≤ B
∥∥∥P̂t(· | wu)− P̂t(· | w)

∥∥∥
1

holds for every possible sequence wu.
Analogously as in the proof of Theorem 4.16 we get that

4 Inferring tiVLMC 62

P(On) ≤
∑
w∈τ t

t

∑
u∈M

P
(

∆‖·‖t (wu) ≥ C
√
n log n, Nt(wu) ≥ nmin

)

≤
∑
w∈τ t

t

∑
u∈M

P
(
B2∆L1

t (wu) ≥ C
√
n log n, Nt(wu) ≥ nmin

)

≤
∑
w∈τ t

t

∑
u∈M

P
(

∆L1

t (wu) ≥ C

B2

√
n log n, Nt(wu) ≥ nmin

)

holds and since C
B2 > 0 for B > 0 and C > 0, this converges to zero.

Moreover it holds that

P
(
‖P̂t(· | wu)− P̂t(· | w)‖2 <

C
√
n log n
k

, Nt(wu) = k, Nt(w) = j

)

≤P
(
b2‖P̂t(· | wu)− P̂t(· | w)‖2

1 <
C
√
n log n
k

, Nt(wu) = k, Nt(w) = j

)

=P
(
‖P̂t(· | wu)− P̂t(· | w)‖2

1 <
C
√
n log n
b2k

, Nt(wu) = k, Nt(w) = j

)
.

Since C
b2 > 0 for C > 0 and b > 0, it follows, as it did in the proof of Theorem

4.17, that the probability of underestimation converges to zero as n→∞.

Before ending this chapter we want to raise the reader’s awareness to the fact
that Theorem 4.19 is an uncommon result. Here the finite dimensionality of the
vector space implies its trueness. If one works in an infinite dimensional environ-
ment, there are many examples, e.g. from the mathematical discipline of robust
statistics, where statements that are true for the L1-norm are false for a different
measure choice. The interested reader is referred to e.g. Rieder (2012) or Ruck-
deschel and Rieder (2004).

5 Inferring tiVLMC from censored data 63

5 Inferring tiVLMC from censored data
The data available to be used as input data for Algorithm 4.7 is often subject to
censoring.
As a simple example assume that we observe a group of n policy holders who
all bought the same contract. Each month we document the health status X i

t at
age t of policy holder number i for all policy holders i = 1, ..., n. The observation
period starts at a fixed calendar time and ends at a later fixed calendar time.
Since the policy holders do most likely not all sign the contract at exactly the
same age, there will most likely exist ages t where X i

t is only observed for certain,
but not all i. As it is customary, we call the processes X i, for which X i

t is not
observed, censored at t.
Censoring forces us to move away from the rectangular data setting, where n
observations of length T are observed at the same t and therefore form a rectan-
gular data matrix of size n × T . We have to extend the theory of Chapter 4 to
an environment where observations are allowed to be of different length and/or
are observed at different t.

5.1 The censoring variables

Here we choose the modelling approach introduced by and in Phelan (1988): Cen-
soring is represented by so-called “censoring processes” J1, ..., Jn. Every J i is a
binary, discrete stochastic process, which indicates whether the i-th observation
X i is observable or whether it is not: If J it = 1, the value of X i

t is known, if J it = 0,
it is censored and thus unknown.
To generalize the fitting Algorithm 4.7 for tiVLMC developed in the uncensored
setup, cf. the previous Chapter 4, we first need to update some definitions in
order to integrate the censoring processes.

Definition 5.1. For i = 1, ..., n, w ∈M1:t and |w| ≤ t ≤ T let

Ñ i
t (w) := N i

t (w) · 1
(
J it−|w|+1:t = (1, ..., 1)

)
(5.1)

indicate whether X i has moved through w till t and was observable, i.e. not
censored. For |w| ≤ t ≤ T − 1 let

Ñ i
t+(w) := Ñ i

t (w) · J it+1 (5.2)

5 Inferring tiVLMC from censored data 64

denote whetherX i has moved through w till t and was observable and additionally
stays observable at t+ 1. Again, we denote the aggregations over i by

Ñt(w) :=
n∑
i=1

Ñ i
t (w)

and
Ñt+(w) :=

n∑
i=1

Ñ i
t+(w).

Definition 5.2. For 1 ≤ t ≤ T − 1, x ∈ M and w ∈ M1:t with Ñt+(w) > 0 we
estimate the transition probability Pt(x | w) by

P̃t(x | w) := Ñt+1(xw)
Ñt+(w)

.

To obtain the following statements, we will apply some assumptions on the cen-
soring variables J1, ..., Jn and their dependence on the observations X1, ..., Xn.

(H.1) The censoring variables J1, ..., Jn are identically distributed.

(H.2) The censoring variables J1, ..., Jn are independent.

(H.3) For i = 1, ..., n the observation X i and its censoring variable J i are inde-
pendent.

(H.4) For i, j = 1, ..., n with i 6= j the observation X i and the censoring variable
J j are independent.

(H.5) For every 1 ≤ t ≤ T − 1 and every w ∈ tpsuppt(X)

jt(w) := P
(
J it−|w|+1:t+1 = (1, ..., 1)

)
> 0,

i = 1, ..., n, holds. Note that jt(w) really only depends on |w|.

First note that this censored setting includes the less general uncensored setting
discussed in Chapter 4: If jt(w) = 1 for all combinations of t and w, the uncen-
sored case is re-established.
Next note that one could summarize the assumptions (H.1), (H.2), (H.3) and
(H.4). We choose not to do so since this enables us to give more precise references

5 Inferring tiVLMC from censored data 65

in the following.
Lastly note that in the statistical literature such a censoring environment classi-
fies as “missing completely at random”, cf. e.g. Little and Rubin (2019) or Heitjan
and Basu (1996).
If the number Nt(w) of observations going through w till t is positive, it is implied
that P(Xt−|w|+1:t = w) > 0, i.e. w ∈ tpsuppt(X). If there is no censoring, we can
estimate the transition probability Pt(x | w) for every x ∈ M , cf. Proposition
2.11, if n is large enough. If Ñt+(w) = 0 and Nt(w) > 0 hold simultaneously,
jt(w) = 0 has to hold and (H.5) is violated. In this case every observation is
censored and naturally we cannot estimate a transition probability. Thus it is a
natural restriction to assume (H.5), i.e. censoring is not allowed to be too heavy.
This assumption guarantees, if the observation size n is large, that we get bias-free
estimates of all non-zero transition probabilities and as will be shown afterwards
these estimates also remain consistent.

Proposition 5.3. Assume (H.1), (H.3) and (H.4). For 1 ≤ t ≤ T − 1, x ∈ M
and w ∈M1:t with Ñt+(w) > 0

E
[
P̃t(x | w)

]
= Pt(x | w),

i.e. P̃ (x | w) is an unbiased estimator for Pt(x | w).

Proof of Proposition 5.3. Since Ñt+(w) > 0, it has to hold that jt(w) > 0. Thus
assuming Ñt+(w) > 0 is even stronger than (H.5). Using (H.3) and (H.1) we can
calculate the expectation of Ñ i

t+1(xw):

E
[
Ñ i
t+1(xw)

]
= E

[
N i
t+1(xw) · 1

(
J it−|xw|+2:t+1 = (1, ..., 1)

)]
= E

[
N i
t+1(xw)

]
· E

[
1

(
J it−|w|+1:t+1 = (1, ..., 1)

)]
= P(Xt−|xw|+2:t+1 = xw) · jt(w). (5.3)

Analogously

E
[
Ñ i
t+(w)

]
= P(Xt−|w|+1:t = w) · jt(w). (5.4)

Thus

E
[
Ñ i
t+1(xw)

∣∣∣ Ñ i
t+(w) = 1

]
= Pt+1(x | w) (5.5)

5 Inferring tiVLMC from censored data 66

and the claim
E
[
P̃t(x | w)

]
= Pt(x | w)

follows by copying the proof of Theorem 2.12.

Proposition 5.4. Assume (H.1)-(H.5). It holds that

max
∣∣∣P̃t(x | w)− Pt(x | w)

∣∣∣ n→∞−−−→
P−a.s.

0,

where the maximum runs over all well defined transition probabilities, i.e. over
1 ≤ t ≤ T − 1, x ∈M and w ∈M1:t with P(Xt−|w|+1:t = w) > 0.

Proof of Proposition 5.4. (H.1), (H.2) and (H.4) and the fact that the observa-
tions X1, ..., Xn are independent and identically distributed imply that the same
is true for (

Ñ i
t+1(xw)

)
1≤i≤n

.

Thus by (H.3), (5.3) and the fact that indicators have bounded first absolute
moments

Ñt+1(xw)
n

n→∞−−−→
P−a.s.

P(Xt−|xw|+2:t+1 = xw) · jt(w)

is implied by the strong law of large numbers A.1. Analogously

Ñt+(w)
n

n→∞−−−→
P−a.s.

P(Xt−|w|+1:t = w) · jt(w).

Next the continuous mapping theorem A.11 implies

n

Ñt+(w)
n→∞−−−→
P−a.s.

1
P(Xt−|w|+1:t = w) · jt(w) .

Note that jt(w) > 0 by (H.5) and P(Xt−|w|+1:t = w) > 0 by assumption. Therefore

P̃t(x | w) = Ñt+1(xw)
n

n

Ñt+(w)
n→∞−−−→
P−a.s.

P(Xt−|xw|+2:t+1 = xw) · jt(w)
P(Xt−|w|+1:t = w) · jt(w) = Pt(x | w).

Since P
(
MT

)
consists of 2mT

< ∞ elements, cf. Proposition A.3, the range of
the maximum is finite. This completes the proof.

Hence we get counterparts to Theorem 2.9 and Theorem 2.12 in the presence of
censoring and thus the defined estimator is a reasonable choice.

5 Inferring tiVLMC from censored data 67

5.2 Pruning with the Kullback-Leibler divergence

By replacing the non-censored frequency counter Nt, cf. Definition 2.10, by its
censored versions Ñt and Ñt+, cf. Definition 5.1, we can define the censored time-
sensitive pruning measure and elevate Algorithm 4.7 to the censored data setting.

Definition 5.5. For 1 ≤ t ≤ T , wu ∈ M1:t, where u ∈ M and Ñt+(w) > 0, we
define the censored time-sensitive pruning measure

∆̃t(wu) := Ñt+(wu)D
[
P̃t(· | wu)||P̃t(· | w)

]
.

Algorithm 5.6.
Input: X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T , J1

1:T = j1
1:T , ..., J

n
1:T = jn1:T , a cutoff C > 0 and

an integer nmin ∈ N

For t = 1, ..., T − 1 do:
Step 1: Tree growing
Construct the maximal terminal node context tree τ t

max such that

w ∈ τ t
max ⇒ Ñt+(w) ≥ nmin

and

∀τ t
t with w ∈ τ t

t ⇒ Ñt+(w) ≥ nmin it holds that τ t
t 4 τ t

max.

Set τ t
(0) := τ t

max.

Step 2: Leaf pruning
Examine every element wu ∈ τ t

(0), u ∈M , as follows:
Prune wu down to w if

∆̃t(wu) < C
√
n log n,

else do nothing.
This yields a smaller or equally sized tree τ(1) 4 τ t

(0).

Step 3: Stopping criterion
Repeat Step 2 with τ t

(i) instead of τ t
(i−1) until τ(i+1) and τ t

(i) are equally

5 Inferring tiVLMC from censored data 68

sized. Denote this maximally pruned context tree τ̃t.

Output: τ̃ := (τ̃t)1≤t≤T−1

The probability to underestimate the true context tree still vanishes under cen-
soring. We state and prove this in the next theorem.

Theorem 5.7. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC with
state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X, censored by

censoring variables J1
1:T = j1

1:T , ..., J
n
1:T = jn1:T that satisfy (H.1)-(H.5), and τ̃ is

the output of Algorithm 5.6,

lim
n→∞

P(τt 4 τ̃t) = 1

holds for all 1 ≤ t ≤ T − 1.

Proof of Theorem 5.7. The claim is equivalent to

lim
n→∞

P
(
Ũn
)

= 0,

where the underestimation event is

Ũn := {τt 4 τ̃t}C .

As in the proof of Theorem 4.8, we prove that Lemmas 4.9 and 4.10 still hold in
the presence of censoring. For this we first prove that

lim
n→∞

P
(
D̃C
n

)
= 0,

where
D̃n :=

{
∀w ∈ τ t

t : Ñt+(w) ≥ ρ̃n
}

with
ρ̃n := b̃n

2
for

b̃ := min
w∈τ t

t

P
(
Xt−|w|+1:t = w, J1

t−|w|+1:t+1 = (1, ..., 1)
)
.

5 Inferring tiVLMC from censored data 69

Because of (H.3) and (H.4), we can split the condition on X and J1 into two
conditions and obtain

b̃ = min
w∈τ t

t

(
P
(
Xt−|w|+1:t = w

)
· jt(w)

)
> 0,

where the positivity is given since w ∈ τ t
t implies P

(
Xt−|w|+1:t = w

)
> 0 and

(H.5) gives jt(w) > 0. As in (5.3) we have

E
[
Ñt+(w)

]
= njt(w)P

(
Xt−|w|+1:t = w

)
≥ nb̃.

Note that (
Ñ i
t+(w)

)
1≤i≤n

are independent and identically distributed, since X1, ..., Xn are and (H.1), (H.2)
and (H.4) hold. Now it follows analogously to the proof of Lemma 4.9 that

0 ≤ P
(
D̃C
n

)
≤ mt exp

(
− b̃

2

2 n
)

and thus
lim
n→∞

P
(
D̃C
n

)
= 0.

Secondly we have to prove that

lim
n→∞

P(Ũn ∩ D̃n) = 0

holds. By replacing Nt by Ñt+, Nt+1 by Ñt+1, P̂ (· | wu) by P̃ (· | wu), ρn by ρ̃n, b
by b̃, it follows completely analogously to the proof of Lemma 4.10 that

0 ≤ P(Ũn ∩ D̃n) ≤ 4mtn2e−b̃nε

holds. The only argument that needs to be added to the already existing proof is
that (H.1)-(H.4) hold. This ensures the independence needed to apply Hoeffding’s
inequality A.6 in (4.7). Thus

lim
n→∞

P
(
Ũn
)

= 0

and the proof is complete, cf. the proof of Theorem 4.8.

5 Inferring tiVLMC from censored data 70

The probability of overestimating the true context tree also still vanishes under
censoring.

Theorem 5.8. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC with
state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X, censored by

censoring variables J1
1:T = j1

1:T , ..., J
n
1:T = jn1:T that satisfy (H.1)-(H.5), and τ̃ is

the output of Algorithm 5.6,

lim
n→∞

P(τ̃t 4 τt) = 1

holds for all 1 ≤ t ≤ T − 1.

Proof of Theorem 5.8. We verify that the arguments used in the proof of Theorem
4.12 are still valid. The simplified overestimation event is

Õn = {∃w ∈ τ t
t ∃u ∈M : wu ∈ τ̃t}.

As in (4.10) we get

P(Õn) ≤
∑
w∈τ t

t

∑
u∈M

P
(

∆̃t(wu) ≥ C
√
n log n, Ñt+(wu) ≥ nmin

)
.

M is finite and it holds that

P̃t(x | w) = 0⇒ P̃t(x | wu) = 0,

thus we can apply Lemma 4.13 to obtain

∆t(wu) = D
[
P̃t(· | wu)||P̃t(· | w)

]
Ñt+(wu)

≤
∑
x∈M

(
P̃t(x | wu)
P̃t(x | w)

− 1
)
Ñt+1(xwu)

as in (4.11) and (4.12). Note that

Ñt+(wu) =
∑
x∈M

Ñt+1(xwu).

5 Inferring tiVLMC from censored data 71

For arbitrary z ∈M1:t−1 and arbitrary x ∈M the indicators

(
Ñ i
t+(z)

)
1≤i≤n

(5.6)

are Bin (1, Pt(z)jt(z))-distributed, where Pt(z) := P
(
Xt−|z|+1:t = z

)
, cf. (H.1) and

(5.4). They are independent, sinceX1, ..., Xn are independent and (H.2) and (H.4)
hold. The same is true for the Bin (1, Pt+1(xz)jt(z))-distributed

(
Ñ i
t+1(xz)

)
1≤i≤n

and thus  Ñ i
t+(z)− Pt(z)jt(z)√

Pt(z)jt(z) (1− Pt(z)jt(z))


1≤i≤n

and  Ñ i
t+1(xz)− Pt+1(xz)jt(z)√

Pt+1(xz)jt(z) (1− Pt+1(xz)jt(z))


1≤i≤n

are also independent random variables with zero mean and unit variance. The
law of the iterated logarithm A.8 implies

lim sup
n→∞

Ñt+(z)− nPt(z)jt(z)√
Pt(z)jt(z) (1− Pt(z)jt(z))

√
2n log log n

= 1

and

lim sup
n→∞

Ñt+1(xz)− nPt+1(xz)jt(z)√
Pt+1(xz)jt(z) (1− Pt+1(xz)jt(z))

√
2n log log n

= 1

P-a.s. as in (4.13). Again, let r := O
(√

n log log n
)
. Recall the Bachmann-Landau

notation, cf. Definition A.9. We write

Ñt+1(xwu) = nPt+1(xwu)jt(wu) + r,

Ñt+1(xw) = nPt+1(xw)jt(w) + r,

Ñt+(wu) = nPt(wu)jt(wu) + r,

Ñt+(w) = nPt(w)jt(w) + r.

Now repeat the same computations as in the proof of Theorem 4.12. The quadratic
term in (4.14) is now

5 Inferring tiVLMC from censored data 72

n2 (Pt+1(xwu)jt(wu)Pt(w)jt(w)− Pt+1(xw)jt(w)Pt(wu)jt(wu))
=n2jt(wu)jt(w) (Pt+1(xwu)Pt(w)− Pt+1(xw)Pt(wu))︸ ︷︷ ︸

=0

and hence still vanishes, even in the presence of censoring. In consequence it
immediately follows that

lim
n→∞

P(Õn) = 0

by copying the arguments in the proof of Theorem 4.12. This completes the
proof.

We again obtain the correctness of Algorithm 5.6 by combining the Theorems 5.7
and 5.8, for the precise argumentation cf. the proof of Corollary 4.14.

Corollary 5.9. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC with
state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X, censored by

censoring variables J1
1:T = j1

1:T , ..., J
n
1:T = jn1:T that satisfy (H.1)-(H.5), and τ̃ is

the output of Algorithm 5.6,

lim
n→∞

P(τt = τ̃t) = 1

holds for all 1 ≤ t ≤ T − 1.

5.3 Pruning with an arbitrary norm

For
∆̃L1

t (wu) := Ñt+(wu)‖P̃t(· | wu)− P̃t(· | w)‖2
1

the censored version

2∆̃t(wu) ≥ ∆̃L1

t (wu)

of (4.15) still holds by Proposition 4.3. Thus it immediately follows that Algo-
rithm 5.6 remains correct if one replaces ∆̃t by ∆̃L1

t , i.e. if one prunes with the
L1-norm instead of the Kullback-Leibler divergence, cf. the proofs of Theorem
4.16 and Theorem 4.17 and the resulting Corollary 4.18. Following the arguments

5 Inferring tiVLMC from censored data 73

of Chapter 4.3, it is trivial that we can again use any norm and thus the following
corollary holds.

Corollary 5.10. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC with
state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X, censored by

censoring variables J1
1:T = j1

1:T , ..., J
n
1:T = jn1:T that satisfy (H.1)-(H.5), and τ̃ is

the output of Algorithm 5.6, where ∆̃t(wu) is replaced by

∆̃‖·‖t (wu) := Ñt+(wu)
∥∥∥P̃t(· | wu)− P̃t(· | w)

∥∥∥2

and ‖·‖ is an arbitrary norm defined on the space of all functions f : M → R,

lim
n→∞

P(τ̃t = τt) = 1

holds for all 1 ≤ t ≤ T − 1.

Corollary 5.10 says that Algorithm 5.6 outputs a consistent estimate of the true
context tree, regardless of which norm is used for the censored time-sensitive
pruning measure. This is the analogue to Theorem 4.19.

5.4 Model limitations

While (H.1), (H.2) and (H.5) are natural assumptions, (H.3) and (H.4) are not
always justified. As a matter of fact, insurance holders often decide to surrender
their contract (and exit the observation) because of their past experience or they
decide to surrender their contract together, e.g. if they are in a relationship.
An invalid insurance holder who receives a disability pension will most likely not
cancel his or her long-term care insurance. On the contrary, a person with a perfect
health history might feel that the long-term care insurance is not economically
beneficial and thus terminates the contract.
Lapsing contracts due to one’s own experience can be modelled by allowing the
censoring variable J i to depend on the observation X i, i = 1, ..., n, i.e. by not
assuming (H.3). This comes at a price: w ∈ τ t

t implies that

P(Xt−|w|+1:t = w) > 0

5 Inferring tiVLMC from censored data 74

holds and (H.5) says that

jt(w) = P
(
J it−|w|+1:t+1 = (1, ..., 1)

)
> 0

holds. Together with the independence (H.3) of J i and X i, (H.4) of J j and X i

for i 6= j and the fact that X1, ..., Xn are distributed as X this implies that

P
(
Xt−|w|+1:t = w, J it−|w|+1:t+1 = (1, ..., 1)

)
> 0, (5.7)

i.e. that there is a positive possibility to observe everything relevant. Thus under
(H.3) and (H.4), (H.5) is sufficient to guarantee (5.7). If we do not assume (H.3)
and (H.4), we have to directly assume the stronger version (5.7) of (H.5):

(H.6) For every 1 ≤ t ≤ T − 1 and every w ∈ tpsuppt(X)

P
(
Xt−|w|+1:t = w, J it−|w|+1:t+1 = (1, ..., 1)

)
> 0,

i = 1, ..., n, holds.

However, in the following we will see that in general the results of the Chapters
5.1-5.3 cannot be obtained if one only assumes (H.1), (H.2), (H.4) and (H.6) in-
stead of (H.1)-(H.5). Hence the proposed model heavily relies on independence
between the censoring variable and its observation, i.e. on assumption (H.3). This
problem is illustrated by an explicit example in the later Chapter 8.1.4.
First we disprove Proposition 5.3, i.e. we prove that the estimator for the transi-
tion probabilities is not necessarily unbiased any more. Note that, while assump-
tion (H.3) is sufficient to prove that the estimator is unbiased, cf. Proposition
5.3, (H.3) being violated is not sufficient to prove that the estimator is biased.
We answer the question whether X i is censored or uncensored in a time frame
of interest by aggregating information carried by J i: Are all coordinates in the
time frame one (uncensored) or are some of them zero (censored)? Even if X i and
J i are dependent, it is possible (but should be expected to be rare in real world
applications) that the dependency is lost in the aggregation process. Hence in the
following Proposition 5.11 we assume that the dependency survives the aggrega-
tion in order to prove that, then inevitably, our estimated transition probabilities
are biased. The message of Proposition 5.11 to the reader is that if (H.3) is vio-
lated, one has to expect a biased estimation.

5 Inferring tiVLMC from censored data 75

Proposition 5.11. Assume (H.1) and (H.4). Assume that (H.3) is violated in
the sense that there exist a 1 ≤ t ≤ T − 1, x ∈M and w ∈M1:t with Ñt+(w) > 0
such that

P
(
X i
t−|w|+1:t+1 = xw

∣∣∣X i
t−|w|+1:t = w, 1

(
J it−|w|+1:t+1 = (1, ..., 1)

)
= 1

)
6= Pt(x | w).

Then
E
[
P̃t(x | w)

]
6= Pt(x | w),

i.e. P̃t(x | w) is biased.

Proof of Proposition 5.11. If

Ñ i
t+(w) = N i

t (w) · 1
(
J it−|w|+1:t+1 = (1, ..., 1)

)
= 1

holds, it is implied that

1

(
J it−|w|+1:t+1 = (1, ..., 1)

)
= 1,

since both factors are binary. Thus

E
[
Ñ i
t+1(xw)

∣∣∣ Ñ i
t+(w) = 1

]
=E

[
N i
t+1(xw) · 1

(
J it−|w|+1:t+1 = (1, ..., 1)

) ∣∣∣ Ñ i
t+(w) = 1

]
=E

[
N i
t+1(xw) · 1

∣∣∣ Ñ i
t+(w) = 1

]
=P

(
X i
t−|w|+1:t+1 = xw

∣∣∣X i
t−|w|+1:t = w, 1

(
J it−|w|+1:t+1 = (1, ..., 1)

)
= 1

)
6=Pt(x | w).

Repeating the calculations within the proof of Theorem 2.12, we thus get that

E
[
P̃t(x | w)

]
= P

(
X i
t−|w|+1:t+1 = xw

∣∣∣X i
t−|w|+1:t = w, J it−|w|+1:t+1 = (1, ..., 1)

)
6= Pt(x | w)

holds.

In general the estimator does also not preserve the consistency stated in Propo-
sition 5.4 if (H.3) is false, as will be shown next.

5 Inferring tiVLMC from censored data 76

Proposition 5.12. Assume (H.1), (H.2), (H.4) and (H.6). Assume that (H.3)
is violated in the sense that there exist a 1 ≤ t ≤ T − 1, x ∈ M and w ∈ M1:t

with Ñt+(w) > 0 such that

P
(
X i
t−|w|+1:t+1 = xw

∣∣∣X i
t−|w|+1:t = w, 1

(
J it−|w|+1:t+1 = (1, ..., 1)

)
= 1

)
6= Pt(x | w).

Then
max

∣∣∣P̃t(x | w)− Pt(x | w)
∣∣∣ n→∞−−−→

P−a.s.
c > 0,

where the maximum runs over all well defined transition probabilities, i.e. over
1 ≤ t ≤ T − 1, x ∈ M and w ∈ M1:t with P(Xt−|w|+1:t = w) > 0. Thus in
particular

max
∣∣∣P̃t(x | w)− Pt(x | w)

∣∣∣ n→∞6−→
P−a.s.

0

holds.

Proof of Proposition 5.12. As in (5.6) the indicators

(
Ñ i
t+1(xw)

)
1≤i≤n

are Bin
(
1,P

(
Xt−|w|+1:t+1 = xw, J it−|w|+1:t+1 = (1, ..., 1)

))
-distributed and indepen-

dent. Thus the strong law of large numbers A.1 again implies

Ñt+1(xw)
n

n→∞−−−→
P−a.s.

P
(
Xt−|w|+1:t+1 = xw, J it−|w|+1:t+1 = (1, ..., 1)

)
=: a

and analogously

Ñt+(w)
n

n→∞−−−→
P−a.s.

P
(
Xt−|w|+1:t = w, J it−|w|+1:t+1 = (1, ..., 1)

)
=: b.

Assumption (H.6) guarantees that both limits, a and b, are positive, therefore

P̃t(x | w) = Ñt+1(xw)
n

n

Ñt+(w)
n→∞−−−→
P−a.s.

a

b
> 0.

Since P-a.s. limits are unique, the proof is complete if

a

b
6= Pt(x | w).

5 Inferring tiVLMC from censored data 77

By Bayes’ theorem A.12, for

H :=
{
Xt−|w|+1:t = w, J it−|w|+1:t+1 = (1, ..., 1)

}
,

we get

a

b
=
P
(
Xt−|w|+1:t+1 = xw, J it−|w|+1:t+1 = (1, ..., 1)

)
b

=
P
(
Xt−|w|+1:t+1 = xw, J it−|w|+1:t+1 = (1, ..., 1)

∣∣∣H)
b

· b

+
P
(
Xt−|w|+1:t+1 = xw, J it−|w|+1:t+1 = (1, ..., 1)

∣∣∣HC
)

b
· (1− b).

Now note that the second fraction vanishes completely, since

{
Xt−|w|+1:t+1 = xw

}
∩
{
Xt−|w|+1:t 6= w

}
= ∅

and {
J it−|w|+1:t+1 = (1, ..., 1)

}
∩
{
J it−|w|+1:t+1 6= (1, ..., 1)

}
= ∅

and thus its nominator is zero by De Morgan’s laws A.13. Hence

a

b
= P

(
Xt−|w|+1:t+1 = xw, J it−|w|+1:t+1 = (1, ..., 1)

∣∣∣H)
=

P
({
Xt−|w|+1:t+1 = xw

}
∩H

)
P(H)

=
P
(
Xt−|w|+1:t+1 = xw ,Xt−|w|+1:t = w, J it−|w|+1:t+1 = (1, ..., 1)

)
P
(
Xt−|w|+1:t = w, J it−|w|+1:t+1 = (1, ..., 1)

)
= P

(
Xt−|w|+1:t+1 = xw

∣∣∣Xt−|w|+1:t = w, J it−|w|+1:t+1 = (1, ..., 1)
)

= P
(
Xt−|w|+1:t+1 = xw

∣∣∣Xt−|w|+1:t = w, 1
(
J it−|w|+1:t+1 = (1, ..., 1)

)
= 1

)
6= Pt(x | w).

As seen in the proof of Proposition 5.12, we asymptotically base our decision on
whether to keep the leaf wu or prune it down to w on the distance measured
between

P
(
X i
t+1 = x

∣∣∣X i
t−|wu|+1:t = wu, J it−|wu|+1:t+1 = (1, ..., 1)

)

5 Inferring tiVLMC from censored data 78

and
P
(
X i
t+1 = x

∣∣∣X i
t−|w|+1:t = w, J it−|w|+1:t+1 = (1, ..., 1)

)
.

If assumption (H.3) is true the conditioning on the censoring variable J i be-
comes redundant and both probabilities become transition probabilities: Now we
asymptotically compare

Pt (x | wu) = P
(
X i
t+1 = x

∣∣∣X i
t−|wu|+1:t = wu

)
and

Pt (x | w) = P
(
X i
t+1 = x

∣∣∣X i
t−|w|+1:t = w

)
as it was our initial intention. Here we know that we infer the true context tree,
cf. Corollary 5.9. In the Propositions 5.11 and 5.12 we have learned that this is
not necessarily the case if (H.3) is violated.
If we calculate our estimate on the base of the second comparison, we infer a
context tree that displays the behaviour of our collective of insured explained by
the information carried by X i up to time t. If e.g. X i documents the health status
of the insured, we infer their behaviour due to changes in their previous health
development. However, when we have to base our decision on the first compari-
son, we lose the ability to credit their behaviour to their health: Now we cannot
differentiate whether the reason for the behaviour of the collective is encoded in
X i or J i up to time t or (most likely) a mixture of both information sources.
The advantage here is that in insurance practice censoring mostly displays “not
being insured”, e.g. when a contract has ended, has not yet started or is cancelled.
If our main goal is to calculate net premiums or prospective reserves, cf. Chapter
9, we need to analyse how our collective of insured behaves: It is this behaviour
that triggers payments between the insurance company and the insurance hold-
ers and thus determines e.g. the net premium. To perform the calculations, the
knowledge about how the collective behaves is essential, the reasons why it be-
haves in that particular way are not essential. I.e. mathematically it is not of
great harm that we cannot differentiate whether the reason for the behaviour is
encoded in X i, J i or a mixture of both up to time t. An estimated context tree
calculated under a violated assumption (H.3) still contains sufficient information.
The described censoring procedure can also be interpreted as the introduction of
a new state c that indicates being censored. When estimating transition proba-
bilities we then only consider transitions between the original states in M and
not in M ∪ {c}.

6 Tuning the algorithm 79

6 Tuning the algorithm
Algorithm 4.7 and its censored generalization Algorithm 5.6 both require one
tuning parameter as an input: the cutoff value C. The consistency result Corol-
lary 5.9 states that for every possible value C > 0 of the cutoff parameter, the
estimated context tree τ̃ in probability converges to the true context tree τ of
the tiVLMC as the number of observations n increases. Since in practice one is
usually not able to simply increase the amount of available data, it remains an
open question which choice of C yields the best fitting model for a fixed n.
Gladly, since C is a one-dimensional, positive parameter, tuning the algorithm for
C is a straightforward procedure: Within the classical VLMC setting presented
in the introductory Chapter 1.2 the authors of Mächler and Bühlmann (2004,
page 443) state that “[...] optimization with respect to the cutoff is relatively
easy” while “optimizing among all subtrees from a large tree is prohibitive”. This
statement does not only remain true in the tiVLMC-setting, it is of even higher
significance, since one would not only have to optimize among all subtrees from
one large tree, but from T − 1 large trees due to the time-inhomogeneity.
The larger C, the smaller are the context tree estimates output by the algorithm.
I.e.

τ̃t 4 τ̃ ′t (6.1)

holds for all t = 1, ..., T − 1 if C > C ′ and τ̃ was obtained by applying Algorithm
5.6 with the cutoff C and τ̃ ′ with the cutoff C ′. Thus running the algorithm mul-
tiple times with increasing cutoff values leads to a candidate set of decreasing
models. Then one can solve the model selection problem with the use of infor-
mation criteria, cross-validation (cf. Larson (1931) and Jones (1987) for the early
origins of cross-validation) or other model selection techniques known in statis-
tics.
Within this chapter we are going to take a close look at the two most com-
monly used information criteria: Akaike’s information criteria (abbreviated by
“AIC”), cf. Akaike (1998), and the Bayesian information criteria (abbreviated
by “BIC”), cf. Schwarz et al. (1978). And we will see what they explicitly look
like for tiVLMC. Choosing the model with the lowest AIC-value from a set of
candidate models is well-known to minimize the Kullback-Leibler divergence D,
cf. Definition 4.1, between the selected and the true model, e.g. cf. Claeskens
et al. (2008). Therefore the AIC is a natural choice to tune Algorithm 5.6: The
pruning measure in the original Algorithm 1.11 from Rissanen (1983) is based on

6 Tuning the algorithm 80

the Kullback-Leibler divergence. Both, AIC and BIC, consist of two main com-
ponents: the log-likelihood function and the model complexity.

6.1 The log-likelihood function

As we have already seen in (4.1), the estimated log-likelihood function of observ-
ing x1

1:T , ..., x
n
1:T (conditioned on the first state) based on the estimated context

function c̃ is

logL (c̃) = log
(

n∏
i=1

T−1∏
t=1

P̃t
(
xit+1

∣∣∣ c̃t(xi1:t)
))

=
n∑
i=1

T−1∑
t=1

log P̃t
(
xit+1

∣∣∣ c̃t(xi1:t)
)
.

(6.2)

Since we can always compute τ̃ from c̃ and vice versa, one can also talk about
the estimated log-likelihood function based on the estimated context tree,

logL (τ̃) := logL (c̃).

In certain scenarios this notation is more convenient. We can even perceive the
estimated log-likelihood function as a function of the cutoff C by setting

logL (C) := logL (c̃)

with c̃ being the estimated context function obtained by running Algorithm 5.6
with the cutoff C.

6.2 The model complexity

As stated in Proposition 3.9, every tiVLMC X ∈ P0:T−1 with context function c
is uniquely determined by the marginal distribution PX1 and its set of transition
probabilities

Pc = {Pt (x | ct(w)) : x ∈M, 1 ≤ t ≤ T − 1, w ∈ tpsuppt(X)},

cf. Definition 3.8. The initial distribution PX1 does not depend on the context
function c and hence is totally irrelevant for model selection, i.e. the question
how to choose c. Thus the model complexity of a tiVLMC, i.e. the number of free

6 Tuning the algorithm 81

model parameters, equals the minimal number of parameters sufficient to fully
describe Pc. It holds that

|Pc| =
T−1∑
t=1

∑
x∈M
|{Pt (x | ct(w)) : w ∈ tpsuppt(X)}|

= m
T−1∑
t=1
|{Pt (x | ct(w)) : w ∈ tpsuppt(X)}|

= m
T−1∑
t=1
|image(ct)|

= m
T−1∑
t=1
|τt|.

If we fit a tiVLMC, we do not need to estimate the transition probabilities
Pt (x | ct(w)) for all x ∈ M . It is sufficient to estimate Pt (x | ct(w)) for all but
one x0 ∈M . These estimates then determine

Pt (x0 | ct(w)) = 1−
∑
x∈M
x 6=x0

Pt (x | ct(w)).

Thus the minimal number of parameters sufficient to uniquely describe Pc, i.e.
the model complexity of the tiVLMC, amounts to

(m− 1)
T−1∑
t=1
|τt|.

This is in line with Mächler and Bühlmann (2004, page 442-443).

6.3 Two information criteria

Varying the tuning parameter C leads to different estimates of the context tree τ̃
(and thus to different estimates c̃ of the true context function c). Thus AIC and
BIC, viewed as functions of the cutoff C, take the form

AIC(C) = −2 logL (τ̃) + 2(m− 1)
T−1∑
t=1
|τ̃t|,

BIC(C) = −2 logL (τ̃) + log n · (m− 1)
T−1∑
t=1
|τ̃t|.

(6.3)

6 Tuning the algorithm 82

Then we tune the model fitting for C by choosing

CAIC = arg min
C>0

AIC(C),

CBIC = arg min
C>0

BIC(C)
(6.4)

as the cutoff value C depending on whether AIC or BIC is preferred. Since R>0 is
a set of infinite cardinality (it even is uncountable), it is numerically impossible
to calculate AIC(C) or BIC(C) for all C > 0 in finite time. Therefore the user
who performs the tuning has to specify a finite subset C ⊂ R>0 and use

CAIC = arg min
C∈C

AIC(C)

or
CBIC = arg min

C∈C
BIC(C)

instead of (6.4). Typically it makes sense to choose C as a lattice of the interval
[ε, E] with ε close to zero and E big enough so that the model fitted using E as
the cutoff is the total independence model (i.e. τ̃t = {e} for every t = 1, ..., T −1).
Tuning with cutoffs C > E comes with no benefit.
Two artificial examples of the tuning procedure are given in Chapter 8.2, the
first subchapter working in an uncensored data environment, whereas censoring
is present in the second subchapter.

7 Implementation of the algorithm 83

7 Implementation of the algorithm
We implement Algorithm 5.6 and the tuning procedure described in Chapter 6
in R (version 3.5.2), cf. R Core Team (2018).
We use the data.tree-package, which offers some general tools for working with
hierarchical data, cf. Glur (2018). We make use of the knitr-package to visu-
ally display R code, cf. Xie (2013). The tictoc-package offers functions for time
measurements, cf. Izrailev (2014). To speed up computations, the doMPI- and
foreach-package, cf. Weston (2013) respectively Analytics and Weston (2015), are
used to parallelize code.

7.1 The estimateTau-function

estimateTau <- function(data, ties=NULL, from=NULL, to=NULL,
nmin=2, max.length=NULL, cutoff, measure,
log.like=F, tau.max=NULL,
calculate.tau=T) {

#extracts the state space from the data, NA aka censoring is

#not counted

alphabet <- na.omit(unique(c(data)))
#throw an error if one state is labeled "e"

if ("e" %in% alphabet) {
stop("e is not an allowed state name as it denotes the empty

string! Rename e within the data.")
}
#ties is an optional argument with default value NULL

#throw an error if the frequencies of the observations do not

#match the number of the observations

if ((length(ties) != dim(data)[1]) & (!is.null(ties))) {
stop("length(ties) and dim(data)[1] have to be equal!")

}
#from is an optional argument with default value 1

if (is.null(from)) from <- 1
#to is an optional argument with the latest time possible as

#default

if (is.null(to)) to <- dim(data)[2]-1

7 Implementation of the algorithm 84

#the following boolean saves whether tau.max was input

tau.max.input <- ifelse(is.null(tau.max), F, T)
#if tau.max was input, it has to be of correct length

if (tau.max.input & (length(from:to) != length(tau.max))) {
stop("tau.max has incorrect length.")

}
#if tau.max was not input, we initialize it

if (!tau.max.input) tau.max <- list()
#in this list the tau at t will be saved

tau <- list()
#number of observations

nobs <- dim(data)[1]
#calculating tau.max and tau for all t

for (time in from:to) {
#we measure the time needed for each iteration and

#update the user about the progress

msg <- paste(time-from+1, "out of", to-from+1,
"context trees estimated")

tic(msg=msg)
#calculate tau.max for the current t if it was not input

if (!tau.max.input) {
tau.max[[time]] <- buildTauMax(data=data, ties=ties,

time=time, nmin=nmin,
max.length=max.length,
alphabet=alphabet)

}
#if calculate.tau=T, we calculate tau by pruning tau.max

#down to tau at the current t, if tau=F, only tau.max is

#output

if (isTRUE(calculate.tau)) {
tau[[time]] <- pruneTauMax(tau.max[[time]], cutoff=cutoff,

measure=measure,
alphabet=alphabet,
nobs=nobs)

}
toc()

}

7 Implementation of the algorithm 85

if (isTRUE(calculate.tau)) {
#if log.like is true, we perform the calculation of

#the loglikelihood function

log.like <- ifelse(isTRUE(log.like),
calculateLogLikelihood(data=data, ties=ties,

tau=tau), NA)
#we calculate the model complexity of the fitted tiVLMC

model.complexity <- calculateModelComplexity(alphabet=alphabet,
tau=tau)

} else {
log.like <- NA
model.complexity <- NA

}
#we save the estimated tau, the tau.max, the call, the

#model complexity and the value of the log-likelihood function

estimate <- list(call=match.call(), tau=tau, tau.max=tau.max,
model.complexity=model.complexity,
log.like=log.like)

return(estimate)
}

R-Code 7.1: The estimateTau-function

The estimateTau-function shown in R-Code 7.1 wraps up the whole algorithm.
It takes the training data data as its first input. data has to be of class matrix
with entries of type character. Censoring can be represented by filling the censored
values with NAs.
The optional ties argument lets the user input an integer vector of the frequencies
of the observations. If there are ties in the data, i.e. the same observation is made
multiple times, it is more efficient to list that observation only once in the data
and handover its frequency by inputting ties. The i-th element of ties denotes
the frequency of the i-th observation (i.e. the i-th row in data). The length of
ties needs to equal the number of observations, i.e. its length needs to equal
n = dim(data)[1]. If ties is not input, it is defaulted to NULL and all calculations
will assume that each observation, i.e. each row in data, was observed once.
The third and fourth input, from and to, let the user specify the time points of
interest, i.e. the range of t for which τ̃t shall be computed. Both values have to be

7 Implementation of the algorithm 86

integers and naturally from ≤ to has to hold. The timespan of maximal possible
length is taken as the default.
Via nmin the user can specify the lower bound nmin. If the number of occurrences
Ñt+(w) of a sequence w falls below nmin, it is not included in τ t

max in the first
step of Algorithm 5.6. The default value of nmin is two. This is in accordance
with Bühlmann et al. (1999, page 490), who state in their Remark 3.5 that “[t]he
number two is a low enough value in practice which guarantees a sufficiently
large initial tree and at least two observations to estimate transition probabilities
associated with the terminal nodes [...]” and also with Weinberger et al. (1995,
page 646).
By setting the max.length input, one can limit the depth of the trees τ̃t, i.e.
limit the modelled length of dependency into the past. max.length needs to be an
integer with max.length ≥ 1. If max.length is not chosen, the default value used is
the full range possible. Limiting the maximal context length reduces the needed
computation time by a large extent. The downside is that, if

max.length < max
1≤t≤T−1

|ct|

is chosen, i.e. the maximal allowed length of estimated contexts is smaller than
the order of the data generating tiVLMC, the output of the estimateTau-function
cannot be consistent any more, Corollary 5.9 is violated. If

max.length ≥ max
1≤t≤T−1

|ct|,

there is no conflict with Corollary 5.9.
cutoff lets one choose the cutoff constant C > 0 and via measure one can choose
whether the Kullback-Leibler divergence ("KLD") or the L1-norm ("L1") is used
for pruning τ t

max down to τ̃t.
If the user inputs log.like as TRUE, the value of the estimated log-likelihood func-
tion of the fit is computed and stored in the output. This input is optional, not
specifying it or defining it as FALSE decreases the needed computation time.
As explained in Chapter 6, one often fits tiVLMC-models for different values of
the cutoff parameter in order to tune the model. Step one of the performed Algo-
rithm 5.6 is not depending on the cutoff, i.e. τ t

max is not depending on the cutoff.
Thus it is efficient to only compute τ t

max once and repeat only step two of Algo-
rithm 5.6 multiple times, i.e. the pruning procedure. To enable such behaviour,
estimateTau lets the user input (the already computed) τ t

max via the tau.max-
argument. If tau.max is not specified, it defaults to NULL and both algorithmic

7 Implementation of the algorithm 87

steps one and two are performed as usual.
The estimateTau-function outputs the model fit, i.e. the estimated context trees
in the list tau. Additionally the unpruned trees are stored in the list tau.max and
the number of model parameters model.complexity is also saved. If log.like was set
to TRUE, it stores the value of the estimated log-likelihood function, otherwise it
is NA.

7.2 The buildTauMax-function

buildTauMax <- function(data, ties, time, nmin, max.length,
alphabet) {

#defining the default-value of max.length

if (is.null(max.length)) max.length <- time
#time period relevant for the following calculations

earlier.time <- max(time-max.length+1, 1)
later.time <- time+1
#the data that is relevant to built tau.max

relevant.data <- data[, earlier.time:later.time]
#initialize the root node

tau.max <- initializeRootNode(futures=data[,later.time],
ties=ties, alphabet=alphabet)

#we run through every observation and separate it...

for (i in 1:dim(relevant.data)[1]) {
#... into the past of maximal length...

past <- relevant.data[i, 1:(dim(relevant.data)[2]-1)]
#... and the (t+1)-th state, i.e. the future

future <- relevant.data[i, dim(relevant.data)[2]]
#we save the frequency of the observation if the ties argument

#was input, otherwise the frequency is one

freq <- ifelse(!is.null(ties), ties[i], 1)
#we add the branch to the tree

#here we take the frequency of the observation into regard

tau.max <- addBranch(tree=tau.max, past=past, future=future,
freq=freq, alphabet=alphabet)

}
#prune every node with an occurrence counter smaller than nmin

7 Implementation of the algorithm 88

Prune(tau.max, function(node) node$counter>=nmin)
return(tau.max)

}

R-Code 7.2: The buildTauMax-function

The buildTauMax-function shown in R-Code 7.2 carries out step one of Algorithm
5.6 for a fixed time = t.
The root node is initialized by calling the initializeRootNode-function. Then we
iterate through every observation and add the sequence to the tree tau.max by
calling the addBranch-function. For every sequence w, addBranch also keeps track
of its frequency Ñt+(w). Doing this, we get a tree that contains all sequences of
specified length. Finally, we iteratively prune the leaves of tau.max, so that all
remaining sequences w fulfil the inequality Ñt+(w) ≥ nmin.
Then the pruned tree is exactly τmax.

7.2.1 The initializeRootNode-function

initializeRootNode <- function(futures, ties, alphabet) {
#we initialize the tree and call the root node "e"

root.node <- Node$new("e")
#we initialize the counter of the empty string "e" to be all

#observations but those censored at t+1

#the frequencies of the observations are taken into account

root.node$counter <- ifelse(is.null(ties),
length(na.omit(futures)),
sum(ties[which(!is.na(futures))]))

#initialize and name the transition counter

transitions <- rep(0, times=length(alphabet))
names(transitions) <- alphabet
#count how often each state is a future

for (state in alphabet) {
transitions[state] <- ifelse(is.null(ties),

sum(na.omit(futures)==state),
sum(ties[which(na.omit(futures)

==state)]))

7 Implementation of the algorithm 89

}
#save the transition counts

root.node$transitions <- transitions
return(root.node)

}

R-Code 7.3: The initializeRootNode-function

The initializeRootNode-function, cf. R-Code 7.3, creates the root node of the tree,
which is always the empty string e.
We assign two attributes to every node in a tree (i.e. to every sequence w):
The counter-attribute which saves the value Ñt+(w) and the transitions-attribute,
which saves the values Ñt+1(xw) for all x ∈ M . Thus every node w carries suffi-
cient information to calculate the transition probabilities P̃t(x | w).
For the root node e we have that counter = Ñt+(e) equals the number of un-
censored observations at t+ 1 and transitions["x"] = Ñt+1(xe) equals the number
of observations which are in x at time t + 1. This information is retrieved from
the input futures, which contains the observations X1

t+1, ..., X
n
t+1 and ties, which

contains the frequencies of the observations.

7.2.2 The addBranch-function

addBranch <- function(tree, past, future, freq, alphabet) {
#if the future is censored, the observation does not contribute

#and we return the input tree

if(is.na(future)) return(tree)
#we start running down the tree at the root

node <- tree
#this loop navigates us down the tree

for (i in length(past):1) {
state <- past[i]
#if the first NA is encountered, longer pasts are not

#considered and we exit

if(is.na(state)) return(tree)
#we move one step deeper in the tree

child <- node[[state]]

7 Implementation of the algorithm 90

#if the child is not already existing...

if(is.null(child)) {
#... we initialize it with the correct counts

node <- initializeNode(node=node, state=state,
future=future, freq=freq,
alphabet=alphabet)

#if the child is already existing...

} else {
#... we update its counts

node <- updateNode(node=node, state=state,
future=future, freq=freq)

#both, initializeNode and updateNode, update node <- child

#for the next iteration of the loop

}
}
return(tree)

}

R-Code 7.4: The addBranch-function

Via calling the addBranch-function, shown in R-Code 7.4, we add branches, i.e.
sequences, to the tree.
Within every iteration of the for-loop in the buildTauMax-function, cf. R-Code
7.2, we take a look at one sequence w that needs to be added to the tree. The
addBranch-function first checks whether the current observation is censored at
t + 1. If so, this observation is not considered because it does not contribute to
Ñt+(w) nor to Ñt+1(w). We run through the sequence, i.e. run down the tree,
and increase the counter-attribute of every visited node by the frequency of this
sequence and update the transitions-attribute by calling the updateNode-function.
If the complete sequence is not already existing in the tree, the missing nodes are
added and their attributes are initialized by calling initializeNode.

7 Implementation of the algorithm 91

7.2.3 The initializeNode-function

initializeNode <- function(node, state, future, freq, alphabet) {
#initialize the missing node/the new child

node$AddChild(state)
#switch over to the new child

node <- node[[state]]
#initialize its counter to be freq

node$counter <- freq
#initialize the transition counter

transitions <- rep(0, times=length(alphabet))
names(transitions) <- alphabet
#initialize the transition counter of the current future to freq

transitions[future] <- freq
node$transitions <- transitions
return(node)

}

R-Code 7.5: The initializeNode-function

7.2.4 The updateNode-function

updateNode <- function(node, state, future, freq) {
#switch over to the child

node <- node[[state]]
#increase its counter by freq

node$counter <- node$counter+freq
#increase its transition counter of the current future by freq

node$transitions[future] <- node$transitions[future]+freq
return(node)

}

R-Code 7.6: The updateNode-function

7 Implementation of the algorithm 92

7.3 The pruneTauMax-function

The buildTauMax-function explained in the previous Chapter 7.2 outputs τmax

and hence executes the first step of Algorithm 5.6. What is left to do, is prun-
ing the tree τmax down to τ̃t, i.e. performing the second step of Algorithm 5.6.
The data.tree-package, again cf. Glur (2018), offers the handy function Prune for
pruning R-objects of type Node. We already used Prune in R-Code 7.2.

pruneTauMax <- function(tau.max, cutoff, measure, alphabet, nobs) {
#we calculate the pruning measure divided by sqrt(nlogn) for

#every node of tau.max, i.e. we calculate the maximal cutoff

#value so that the node is not pruned

tau.max$Do(function(node) {node$criticalCutoff <-
calculatePruningMeasure(node, measure)})

#we now clone tau.max, because we want to save tau.max and

#the pruned tree

tau <- Clone(tau.max)
#the threshold for the pruning decision is calculated

K <- cutoff*sqrt(nobs*log(nobs))
#every leaf with delta<K=cutoff*sqrt(nlogn) is pruned

Prune(tau, function(child) child$criticalCutoff>=K)
return(tau)

}

R-Code 7.7: The pruneTauMax-function

pruneTauMax uses the offered Prune-function to prune τmax. Since we want to save
both, τmax and τ̃t, we first duplicate the tree. One needs to use Clone to do this:
Initializing tau <- tau.max is not sufficient, doing so, both variable pointers still
aim at the same tree object in the memory and after pruning tau and tau.max
would both equal τ̃t. Next the threshold K = C

√
n log n is calculated and the tree

is pruned by calling Prune. Prune takes a tree and a pruning function as input. A
pruning function must be a function of a node outputting a boolean value. If the
output is FALSE, the node is pruned. If it is TRUE, it is not. The pruning func-
tion used here calculates the censored time-sensitive pruning measure by calling
calculatePruningMeasure and outputs FALSE, if the value is below the threshold
K, TRUE otherwise.

7 Implementation of the algorithm 93

7.3.1 The calculatePruningMeasure-function

calculatePruningMeasure <- function(child, measure) {
#check if the chosen measure is the Kullback-Leibler divergence

if (measure=="KLD") {
#if the node checked is the root node, we return infinity:

#the root node is the empty string "e", and "e" is never

#pruned

if(child$isRoot) {
return(Inf)

#if the node checked is not the root node...

} else {
#we calculate and return the pruning measure delta

parent <- child$parent
delta <- parent$counter*KLD(child$transitions,

parent$transitions)
return(delta)

}
#check if the chosen measure is the L1-norm

} else if (measure=="L1") {
if(child$isRoot) {

return(Inf)
} else {

parent <- child$parent
delta <- parent$counter*L1(child$transitions,

parent$transitions)^2
return(delta)

}
#if measure is not "KLD" or "L1" we throw an error

} else {
stop("measure must be KLD or L1.")

}
}

R-Code 7.8: The calculatePruningMeasure-function

calculatePruningMeasure, cf. R-Code 7.8, basically is self-explaining. The censored
time-sensitive pruning measure defined in Definition 5.5 is calculated if the cho-

7 Implementation of the algorithm 94

sen measure is the Kullback-Leibler divergence, cf. Definition 4.1. The censored
time-sensitive pruning measure defined in Corollary 5.10 is calculated if the L1-
norm was chosen. To calculate the Kullback-Leibler divergence and the L1-norm,
two auxiliary functions, KLD and L1, are used.

7.3.2 The KLD-function

KLD <- function(transitions.child, transitions.parent) {
#initialize the result to be zero

res <- 0
sum.child <- sum(transitions.child)
sum.parent <- sum(transitions.parent)
#calculate and add up all summands

for (i in 1:length(transitions.child)) {
summand <- ifelse(transitions.child[i]/sum.child==0, 0,

(transitions.child[i]/sum.child)
*log(transitions.child[i]/sum.child
*sum.parent/transitions.parent[i]))

res <- res + summand
}
return(unname(res))

}

R-Code 7.9: The KLD-function

7.3.3 The L1-function

L1 <- function(transitions.child, transitions.parent) {
sum.child <- sum(transitions.child)
sum.parent <- sum(transitions.parent)
res <- sum(abs(transitions.child/sum.child-transitions.parent

/sum.parent))
return(unname(res))

}

R-Code 7.10: The L1-function

7 Implementation of the algorithm 95

7.4 The tuneC-function

The tuneC-function, cf. R-Code 7.11, implements the tuning procedure described
in Chapter 6, i.e. it offers the tools to run Algorithm 5.6 multiple times for dif-
ferent cutoff values comfortably.
For each fit the values of the estimated log-likelihood function, cf. Chapter 6.1,
and the model complexity, cf. Chapter 6.2, are calculated. The function outputs
a table that contains these characteristics for each cutoff. This way AIC and BIC
(as well as other information criteria based on these characteristics) can be easily
computed. Via the optional tree.changes-argument, the user can specify whether
the number of time steps where the shape of the estimated context tree changes
should be computed additionally. Internally this number is computed by calling
the treeChanges-function. The number of tree changes will play an important role
in the later Chapter 11, where we are going to develop smoothing techniques for
tiVLMC-models. Hence we postpone the discussion of the treeChanges-function
and its dependencies to Chapter 11.
If the user has access to multiple CPUs, tuneC should be handed the input argu-
ment parallel=T. Then tuneC distributes the computational effort over all available
CPU cores.

tuneC <- function(data, cutoffs, ties=NULL, from=NULL, to=NULL,
nmin=2, max.length=NULL, measure,
tree.changes=F, parallel=F) {

#sort the cutoff values and omit duplicates

cutoffs <- unique(sort(cutoffs))
#fetch the smallest cutoff value

C.min <- min(cutoffs)
#if the smallest cutoff value is non-positive, throw an error

if (C.min <= 0) {
stop("The cutoff-vector contains non-positive elements.")

}
#the largest model is the one using C.min

estimate1 <- estimateTau(data=data, ties=ties, from=from,
to=to, nmin=nmin,
max.length=max.length, cutoff=C.min,
measure=measure, log.like=T)

#the tuning results will be saved here

7 Implementation of the algorithm 96

#if tree.changes is true, the number of tree changes is

#computed for each fit

if (tree.changes) {
result <- c(C=C.min,

model.complexity=estimate1$model.complexity,
log.like=estimate1$log.like,
tree.changes=treeChanges(estimate1$tau))

} else {
result <- c(C=C.min,

model.complexity=estimate1$model.complexity,
log.like=estimate1$log.like)

}
#now the models are fitted for the other values in cutoffs

#if parallel is false, a normal for-loop is used, else

#we use a foreach-loop and each of the available k cores

#computes (length(cutoffs)-1)/k iterations

tau1 <- estimate1$tau
if (isTRUE(parallel)) {

result.temp <- foreach(C=cutoffs[2:length(cutoffs)],
.errorhandling="remove",
.packages=c("tictoc", "data.tree"),
.export=c("estimateTau", "buildTauMax",

"initializeRootNode",
"addBranch", "initializeNode",
"updateNode", "pruneTauMax",
"calculatePruningMeasure",
"KLD", "L1",
"getTransitionProbability",
"calculateLogLikelihood",
"calculateModelComplexity",
"treeChanges",
"identicalNodes"),

.combine=rbind) %dopar% {
estimate <- estimateTau(data=data, ties=ties, from=from,

to=to, nmin=nmin,
max.length=max.length, cutoff=C,
measure=measure, log.like=T,

7 Implementation of the algorithm 97

tau.max=tau1)
if (tree.changes) {
result.loop <- c(C=C,

model.complexity=estimate$model.complexity,
log.like=estimate$log.like,
tree.changes=treeChanges(estimate$tau))

} else {
result.loop <- c(C=C,

model.complexity=estimate$model.complexity,
log.like=estimate$log.like)

}
result.loop

}
result <- rbind(result, result.temp)

} else {
for (C in cutoffs[2:length(cutoffs)]) {

#tau.max is not depending on C, we only calculate it once

#for a bigger C tau is included in the tau of a smaller C

#thus we can replace tau.max by the tau of the smaller C

estimate <- estimateTau(data=data, ties=ties, from=from,
to=to, nmin=nmin,
max.length=max.length, cutoff=C,
measure=measure, log.like=T,
tau.max=tau1)

if (tree.changes) {
result <- rbind(result, c(C=C,

model.complexity=estimate$model.complexity,
log.like=estimate$log.like,
tree.changes=treeChanges(estimate$tau)))

} else {
result <- rbind(result, c(C=C,

model.complexity=estimate$model.complexity,
log.like=estimate$log.like))

}
}

}
rownames(result) <- NULL

7 Implementation of the algorithm 98

return(result)
}

R-Code 7.11: The tuneC-function

Internally, the tuneC-function makes use of the fact that the tiVLMC-models are
nested for decreasing values of the cutoff, recall (6.1) for this. Therefore it makes
sense to compute the model fit using the smallest cutoff value first. This yields
the largest model. Then we can continue by running the fitting algorithm again
for the second largest cutoff and so on, but instead of calculating τmax again in
step one of the algorithm and pruning it, we directly start with step two and
prune the estimated context tree of the fit with the larger cutoff.

7.4.1 The calculateLogLikelihood-function

calculateLogLikelihood <- function(data, ties, tau) {
#time consumption is measured and printed to the console

tic(msg="likelihood computation finished")
#we initialize the return

LL <- 0
#we run through every observation and...

for (row in 1:dim(data)[1]) {
#... fetch the frequency count of the observation

freq <- ifelse(!is.null(ties), ties[row], 1)
#at every time point...

for (t in 1:(dim(data)[2]-1)) {
#... we fetch the past states and the future state

past <- data[row, 1:t]
future <- data[row, t+1]
#if the future is NA, this observation does not impact the

#likelihood calculation

if (!is.na(future)) {
#we calculate the transition probability and...

prob <- getTransitionProbability(past, future, tau[[t]])
#... add the summand to the sum, while taking into respect

#that this observation appeared freq times

7 Implementation of the algorithm 99

LL <- LL+freq*log(prob)
}

}
}
toc()
return(LL)

}

R-Code 7.12: The calculateLogLikelihood-function

The calculateLogLikelihood-function, cf. R-Code 7.12, computes the estimated log-
likelihood (6.2), also cf. Chapter 6.1, of the model fit.
It takes the training data data, the frequencies ties and the fitted context trees
τ̃t stored in the list tau as inputs. Then for each observation the likelihood of
observing this observation in the fitted model is computed. These values are
next logarithmized and added up which yields the estimated log-likelihood of the
model fit. Within the computation the auxiliary function getTransitionProbability
is used. This function extracts the transition probability of a given past w and
future x, i.e. it extracts the context ct(w) and the transitions-attribute from the
context tree τ̃t = tau[[t]] and computes and outputs P̃t (x | ct(w)).

7.4.2 The getTransitionProbability-function

getTransitionProbability <- function(past, future, tree) {
#in the following we switch between child and parent nodes

parent <- tree
#if the most recent past is censored, the transition

#probabilities are those of the empty string

if (is.na(past[length(past)])) {
#thus we fetch those transition counts...

transitions <- parent$transitions
#... and use them to calculate the transition probability

trans.prob <- unname(transitions[future]/sum(transitions))
return(trans.prob)
#if the most recent past is not censored,

#we still need to account for NAs in the past, i.e.

7 Implementation of the algorithm 100

#we need to extract the maximal possible past

} else if (anyNA(past)) {
past <- past[(max(which(is.na(past)))+1):length(past)]

}
transitions <- NULL
for (i in length(past):1) {

#we navigate down the branch of the tree given by past

state <- past[i]
child <- parent[[state]]
#if not the whole past is contained as a branch, we will

#encounter a missing child

if (is.null(child)) {
#then the context is the path from the root to the parent

#of the missing child

transitions <- parent$transitions
break

}
parent <- child

}
#if we do not encounter a missing child, the whole past is

#contained in a branch of the tree

#in this case the context is the whole past

if (is.null(transitions)) transitions <- child$transitions
#we calculate the transition probability

trans.prob <- unname(transitions[future]/sum(transitions))
return(trans.prob)

}

R-Code 7.13: The getTransitionProbability-function

7.4.3 The calculateModelComplexity-function

calculateModelComplexity <- function(alphabet, tau) {
#we calculate the size of the alphabet

m <- length(alphabet)
#we initialize the model complexity

7 Implementation of the algorithm 101

gamma <- 0
#we run through all estimated trees and count the nodes

for (i in 1:length(tau)) {
#if the empty string has m children, e is not an element of

#tau.i, else it is

complete.root <- length(tau[[i]]$children) == m
card <- ifelse(complete.root, tau[[i]]$totalCount-1,

tau[[i]]$totalCount)
gamma <- gamma+card

}
gamma <- (m-1)*gamma
return(gamma)

}

R-Code 7.14: The calculateModelComplexity-function

The calculateModelComplexity-function, cf. R-Code 7.14, computes and outputs
the number of model parameters of the fitted tiVLMC.
It straightforwardly carries out the computations explained in Chapter 6.2. First
the cardinality of the state space M is computed and then the nodes of the con-
text trees τ̃t stored in the list tau are counted.

8 Examples 102

8 Examples

8.1 Applying the algorithm

We are going to apply the programmed Algorithm 5.6 to different data sets: In
the first data set the observations are uncensored. The second data set is subject
to totally random, unstructured censoring. In the third data set an entry and an
exit time are generated for each observation independently and independent from
the observations, i.e. the observations are subject to independent left and right
censoring. Last we are going to take a look at what will happen if the censoring
depends on the observations, i.e. if the assumptions that imply the consistency
of Algorithm 5.6, cf. Corollary 5.9, are violated.
We choose T = 4 and generate n = 100,000 observations from the tiVLMC X

proposed in Example 3.11. The observations are saved in the data set data.
The first six observations are displayed in the following R-Code 8.1.

head(data)

[,1] [,2] [,3] [,4]
[1,] "a" "i" "i+" "i"
[2,] "a" "a" "a" "i"
[3,] "a" "a" "a" "a"
[4,] "a" "i" "i" "i"
[5,] "a" "a" "i+" "i"
[6,] "a" "a" "a" "d"

R-Code 8.1: The first six out of 100,000 observations of the tiVLMC X proposed
in Example 3.11

8.1.1 No censoring

We infer the context trees τ1, τ2 and τ3 by calling the estimateTau-function ex-
plained in Chapter 7.1. We use a cutoff value of cutoff=1, require a minimum
occurrence counter of nmin=2 and prune the trees with the Kullback-Leibler di-
vergence, i.e. measure="KLD".

8 Examples 103

#run the algorithm

estimate <- estimateTau(data=data, nmin=2, cutoff=1, measure="KLD")
#plot the estimates of tau.1, tau.2 and tau.3 and their

#non-pruned versions

plotTree(estimate$tau[[1]])
plotTree(estimate$tau.max[[1]])
plotTree(estimate$tau[[2]])
plotTree(estimate$tau.max[[2]])
plotTree(estimate$tau[[3]])
plotTree(estimate$tau.max[[3]])

R-Code 8.2: Inferring the context trees τ̃1, τ̃2 and τ̃3 from uncensored data

The last six lines of R-Code 8.2 call the plotTree-function (which itself depends
on the recursiveColoring-function), cf. Codes 8.3 and 8.4, which specifies some cos-
metic options and outputs the plots of τ̃1, τ̃2, τ̃3 and their non-pruned versions
τmax at t = 1, 2, 3 respectively.

plotTree <- function(tree) {
#finds the height of the input tree

height <- tree$height
#for each level of the tree we need a different grey

colors <- grey.colors(n=height, start=1, end=0.6)
#global settings that are applied to all levels of the tree

SetGraphStyle(tree, rankdir="TB")
SetEdgeStyle(tree, arrowhead="normal", penwidth=1, dir="back")
SetNodeStyle(tree, style="filled", shape="box",

fillcolor=colors[1], fontcolor="black",
fontname="Time-Roman")

#level-wise settings (coloring)

children <- tree$children
#recursive coloring of all children of a node

recursiveColoring(children=children, colors=colors)
plot(tree)

}

R-Code 8.3: The plotTree-function

8 Examples 104

recursiveColoring <- function(children, colors) {
#for every node in children specify the color depending on

#the level of the node, then move over to the children of

#the node and recursively call this function again

for (child in children) {
SetNodeStyle(child, style="filled", shape="box",

fillcolor=colors[child$level],
fontcolor="black", fontname="Time-Roman")

children <- child$children
recursiveColoring(children=children, colors=colors)

}
}

R-Code 8.4: The recursiveColoring-function

The plots are displayed in the following three Figures 8.1, 8.2 and 8.3.

Figure 8.1: τmax at t = 1 (top) and its pruned version τ̃1 (bottom)

8 Examples 105

Figure 8.2: τmax at t = 2 (top) and its pruned version τ̃2 (bottom)

Figure 8.3: τmax at t = 3 (top) and its pruned version τ̃3 (bottom)

8 Examples 106

Comparing the inferred context trees with the true context trees, cf. Figure 3.1,
one sees that here

τ̃ = τ

holds and thus the algorithm found the true context tree.
Pruning with the L1-norm, i.e. moving over to measure="L1", instead of the
Kullback-Leibler divergence yields the same result.

8.1.2 Totally random censoring

Now we censor the data data with totally random censoring. By this we mean
that every X i

t , with t = 1, 2, 3, 4 and i = 1,, 100,000, is censored independently
from each other with probability p ∈ (0, 1). p = 0 gives the uncensored setting
described in Chapter 8.1.1, if p = 1, there is nothing observable and assumption
(H.5) would be violated. Here we choose p = 10%. Thus the explicit distribution
of the censoring variable J i, i = 1, ..., 100,000, is

P
(
J i1:4 = (j4, j3, j2, j1)

)
=

4∏
t=1

P
(
J it = jt

)
=

4∏
t=1

(0.1(1− jt) + 0.9jt)

with (j4, j3, j2, j1) ∈ {0, 1}4. The assumptions (H.1)-(H.5) are fulfilled and, addi-
tionally, J i1, ..., J i4 are independent for every fixed i.
As explained in Chapter 7.1, the function estimateTau interprets NAs as censor-
ing, i.e. we replace every X i

t for which J it = 0 holds by NA. The modified data
set is called data.random.
The first six observations are displayed in R-Code 8.5.

head(data.random)

[,1] [,2] [,3] [,4]
[1,] "a" "i" "i+" "i"
[2,] "a" "a" "a" "i"
[3,] "a" "a" "a" "a"
[4,] NA "i" "i" "i"
[5,] NA "a" "i+" "i"
[6,] "a" "a" "a" "d"

R-Code 8.5: The first six out of 100,000 totally random censored observations of
the tiVLMC X proposed in Example 3.11

8 Examples 107

With the same input options as in the uncensored setting, cf. Chapter 8.1.1, we
calculate τ̃1, τ̃2 and τ̃3 by calling estimateTau.

#run the algorithm

estimate <- estimateTau(data=data.random, nmin=2, cutoff=1,
measure="KLD")

R-Code 8.6: Inferring the context trees τ̃1, τ̃2 and τ̃3 from totally random censored
data

The output plots (by calling plotTree six times as in R-Code 8.2) are identical
to the Figures 8.1, 8.2 and 8.3 and we can omit them here. Hence, as in the
uncensored setting, the algorithm finds the correct context trees in the presence
of totally random censoring, i.e.

τ̃ = τ

holds.
This result again remains unchanged if the L1-norm is used for pruning instead
of the Kullback-Leibler divergence.

8.1.3 Independent left and right censoring

For each observation X i an entry time ti and an exit time T i with 1 ≤ ti ≤ T i ≤ 4
are generated, i = 1, ..., 100,000. For the entry time ti we choose the discrete
distribution

P
(
ti = 1

)
= 0.7, P

(
ti = 2

)
= 0.25, P

(
ti = 3

)
= 0.05.

The exit time T i depends on the entry time and is defined by

T i := max{4, ti +R− 1},

where R ∼ Bin
(
4, 4
√

0.4
)
. Then we set

(J i4, J i3,J i2, J i1) :=(
1

(
ti ≤ 4 ≤ T i

)
,1
(
ti ≤ 3 ≤ T i

)
,1
(
ti ≤ 2 ≤ T i

)
,1
(
ti ≤ 1 ≤ T i

))
.

If, for example, the entry time ti is two and the exit time T i is three, one will
have (J i4, J i3, J i2, J i1) = (0, 1, 1, 0).

8 Examples 108

Note that all the assumptions (H.1)-(H.5) are fulfilled, but contrary to the total
random censoring setting in Chapter 8.1.2, J i1, ..., J i4 are not independent for each
fixed i.
The modified data set is called data.independent.
The first six observations of this data set are displayed in R-Code 8.7.

head(data.independent)

[,1] [,2] [,3] [,4]
[1,] "a" "i" "i+" "i"
[2,] "a" "a" "a" "i"
[3,] "a" "a" "a" "a"
[4,] "a" NA NA NA
[5,] "a" "a" "i+" NA
[6,] "a" "a" "a" "d"
R-Code 8.7: The first six out of 100,000 independent left and right censored

observations of the tiVLMC X proposed in Example 3.11

Using the same input options as in the two earlier scenarios, cf. Chapters 8.1.1
and 8.1.2, we calculate τ̃1, τ̃2 and τ̃3 with estimateTau:

#run the algorithm

estimate <- estimateTau(data=data.independent, nmin=2, cutoff=1,
measure="KLD")

R-Code 8.8: Inferring the context trees τ̃1, τ̃2 and τ̃3 from independent left and
right censored data

We obtain the same result as before: The algorithm finds the correct context trees
in the presence of independent left and right censoring, i.e.

τ̃ = τ

holds under this type of censoring as well and hence we can skip the visual dis-
playing of the estimators and instead refer to Figures 8.1, 8.2 and 8.3.
This result, as seen earlier, remains unchanged if the Kullback-Leibler divergence
is exchanged with the L1-norm.

8 Examples 109

8.1.4 Dependent censoring

Let J i1, ..., J i4 be independent with

PJi
1 = PJi

2 = PJi
3 = δ1

and

P
(
J i4 = 1

)
=



1, X2:3 6= (i+, i+)

0.4840, X2:4 = (a, i+, i+)

0.4909, X2:4 = (i, i+, i+)

0.0330, X2:4 = (i+, i+, i+)

0.4818, X2:4 = (d, i+, i+)

(8.1)

for i = 1, ..., 100,000. I.e. at the times t = 1, 2, 3 all observations are uncen-
sored. Every observation that has been in state i+ at t = 2 and t = 3 has a
95.15%, 40.91%, 96.70% or 31.82% chance of being censored at t = 4 depending
on whether it is in state a, i, i+ or d at t = 4 respectively.
Here assumption (H.3) is clearly violated: J i4 depends on X i

4 for each fixed i.
(H.1), (H.2), (H.4) and (H.5) hold.
The joint distribution of J i1:4 is the product distribution of J i1, ..., J i4.
Censoring the data set data in this way yields the new data set data.dependent.
The first six observations of data.dependent happen to be uncensored and hence
can be looked at in R-Code 8.1.
Handing over the same input arguments as in the earlier examples, we estimate
τ1, τ2 and τ3 by running Algorithm 5.6.

#run the algorithm

estimate <- estimateTau(data=data.dependent, nmin=2, cutoff=1,
measure="KLD")

R-Code 8.9: Inferring the context trees τ̃1, τ̃2 and τ̃3 from dependently censored
data

While the estimates τ̃1 and τ̃2 still equal the true context trees τ1 at t = 1 and τ2

at t = 2 respectively, the estimate τ̃3 differs from its true value τ3. The following
Figure 8.4 visualizes the pruning done by the algorithm.

8 Examples 110

Figure 8.4: τmax at t = 3 (top) and its pruned version τ̃3 (bottom) in the presence
of dependent censoring

The estimated context tree τ̃3 at t = 3 is missing the (i+, i+)-branch and thus
indicates that

P3 (· | (i+, i+)) = P3(· | i+)

holds, which is false. The reason for this is the violation of assumption (H.3).
In fact, the distribution of J i4, cf. (8.1), was precisely chosen to trigger this false
pruning decision and thus illustrate the importance of the independence between
the observation and its censoring variable stated in assumption (H.3). The limi-
tations of the model explained in Chapter 5.4 are confirmed by this showcase.
To calculate PJi

4 in a way that maximizes the chance of pruning the (i+, i+)-branch
down to i+, the censored time-sensitive pruning measure

∆̃3((i+, i+)) = Ñ3+((i+, i+))D
[
P̃3 (· | (i+, i+)) ||P̃3 (· | i+)

]
must be minimized. To do so, we make the ansatz that we can express the censored
counting variables at t = 4 by their uncensored versions minus the number

Cx ∈ {0, ..., Nt+1((x, i+, i+))}

of observations censored at t = 4, i.e.

Ñ4((x, i+, i+)) = N4((x, i+, i+))− Cx,

8 Examples 111

x ∈M . This implies that

Ñ3+((i+, i+)) =
∑
x∈M

Ñ4((x, i+, i+))

=
∑
x∈M

(N4((x, i+, i+))− Cx)

= N3((i+, i+))−
∑
x∈M

Cx,

Ñ4((x, i+)) = N4((x, i+))− Cx

and

Ñ3+(i+) =
∑
x∈M

Ñ4((x, i+))

=
∑
x∈M

(N4((x, i+))− Cx)

= N4(i+)−
∑
x∈M

Cx.

Thus the censored empirical measures are given by

P̃3 (x | (i+, i+)) = Ñ4((x, i+, i+))
Ñ3+((i+, i+))

= N4((x, i+, i+))− Cx
N3((i+, i+))− ∑

x∈M
Cx

and
P̃3 (x | i+) = Ñ4((x, i+))

Ñ3+(i+)
= N4((x, i+))− Cx
N3(i+)− ∑

x∈M
Cx
,

x ∈M . In this explicit case we have

N4((a, i+, i+)) = 62,
N4((i, i+, i+)) = 22,
N4((i+, i+, i+)) = 91,
N4((d, i+, i+)) = 66,

N4((a, i+)) = 423,
N4((i, i+)) = 1,525,
N4((i+, i+)) = 423,
N4((d, i+)) = 5,253,

8 Examples 112

and thus

N3((i+, i+)) = 241,
N3(i+) = 7,624,

cf. the following R-Code 8.10.

estimate <- estimateTau(data=data, nmin=2, cutoff=1, measure="KLD")
print(estimate$tau.max[[3]]$"i+"$"i+"$transitions)

a i i+ d
62 22 91 66

print(estimate$tau.max[[3]]$"i+"$transitions)

a i i+ d
423 1525 423 5253

print(estimate$tau.max[[3]]$"i+"$"i+"$counter)

[1] 241

print(estimate$tau.max[[3]]$"i+"$counter)

[1] 7624

R-Code 8.10: Accessing the transitions- and counter-attribute of the node

Then we explicitly solve

(
C∗a , C

∗
i , C

∗
i+, C

∗
d

)
= arg min

Ca, Ci, Ci+, Cd

∆̃3((i+, i+)) (8.2)

subject to the |M | = m constraints that 0 ≤ Cx ≤ Nt+1((x, i+, i+)) has to hold
for x ∈M by running through each of the

(62 + 1)(22 + 1)(91 + 1)(66 + 1) = 8,931,636

combinations of vectors (Ca, Ci, Ci+, Cd).
This computation is performed within 14 minutes of time on the CARL High-
Performance Computing cluster of the University of Oldenburg, cf. Harfst (2020),

8 Examples 113

using 63 cores clocked at 2.2GHz of Intel Xeon (E5-2650 v4) CPUs. For paral-
lelized code execution the doMPI-, cf. Weston (2013), and the foreach-package, cf.
Analytics and Weston (2015), are used.

#initialize the CPU cluster

library(doMPI)
library(foreach)
cluster <- startMPIcluster()
registerDoMPI(cluster)
#read in the values of the counting variables

trans.child <- c(62, 22, 91, 66)
trans.parent <- c(423, 1525, 423, 5253)
#calculate the censored time sensitive pruning measure for each

#combination

result <- foreach(C.a=0:trans.child[1], .combine=rbind) %dopar% {
result.core <- NULL
for (C.i in 0:trans.child[2]) {

for (C.iplus in 0:trans.child[3]) {
for (C.d in 0:trans.child[4]) {

C <- c(C.a, C.i, C.iplus, C.d)
kld <- KLD(trans.child-C, trans.parent-C)
result.core <- rbind(result.core, c(C, kld,

241-sum(C), (241-sum(C))*kld))
}

}
}
result.core

}
colnames(result) <- c("C.a", "C.i", "C.iplus", "C.d", "D", "N",

"Delta")
#shut down the CPU cluster

closeCluster(cluster)
mpi.quit()
#printing the row which contains the minimal value

result[which.min(result[,5]),]

R-Code 8.11: Solving the minimization problem stated in equation (8.2)

8 Examples 114

The last line of R-Code 8.11 prints the solution

(
C∗a , C

∗
i , C

∗
i+, C

∗
d

)
= (59, 9, 88, 21)

to the console. For this combination the censored time-sensitive pruning measure
∆̃3((i+, i+)) is minimal, taking a value of only 0.0052 (rounded to four decimal
digits). In comparison, the cutoff that ∆̃3((i+, i+)) has to fall below for pruning,
is

C
√
n log n = 1

√
100,000 log(100,000) ≈ 1,072.98

(rounded to two decimal digits). If we now censor
(

C∗x
N4((x, i+, i+)) · 100

)
%

of the observations that are in state i+ at t = 2 and t = 3 and in state x at t = 4,
we get that the empirical measures P̃3 (x | (i+, i+)) and P̃3 (x | i+) are as close to
each other as possible, where closeness is measured by the censored time-sensitive
pruning measure. Since

C∗a
N4((a, i+, i+)) = 59

62 = 95.16%,

C∗i
N4((i, i+, i+)) = 9

22 = 40.91%,

C∗i+
N4((i+, i+, i+)) = 88

91 = 96.70%,

C∗d
N4((d, i+, i+)) = 21

66 = 31.82%,

the optimality of the choice of PJi
4 is explained.

As stated earlier, this chapter highlights the fact that it is not possible to infer
the true context tree if there are any unknown “bad” dependencies between the
observations X i and their censoring variables J i, i.e. this chapter shows the im-
portance of assumption (H.3) for the consistency of Algorithm 5.6, cf. Corollary
5.9. But, as stated at the end of Chapter 5.4, in practice only knowing the context
tree under censoring should be sufficient for many purposes.

8 Examples 115

8.2 Tuning the algorithm

We will exemplarily demonstrate the tuning procedure explained in Chapter 6
by tuning Algorithm 5.6 applied to the data sets data and data.independent, cf.
Chapters 8.1.1 and 8.1.3 respectively.

8.2.1 No censoring

We run Algorithm 5.6 on the uncensored data set data generated in Chapter 8.1.
As earlier we use nmin = nmin = 2 and choose the Kullback-Leiber divergence as
the measure, i.e. measure=KLD. For 22,300 values of the cutoff

C = cutoff ∈ C = {0.0001, 0.0002, ..., 2, 2.01, 2.02, ..., 25}

tiVLMC-models are fitted. Here we use the tuneC-function displayed and ex-
plained in Chapter 7.4 and R-Code 7.11. For each fitted model tuneC calculates
the estimated log-likelihood, cf. Chapter 6.1, and the model complexity, cf. Chap-
ter 6.2. We use these values to calculate and save AIC and BIC. The following
R-Code 8.12 shows the implementation.

#defining the cutoff lattice

C <- c(seq(from=0.0001, to=2, by=0.0001), seq(from=2.01, to=25,
by=0.01))

#tune the model

tuning <- tuneC(data=data, cutoffs=C, measure="KLD", parallel=T)
#calculate AIC and BIC

tuning <- cbind(tuning, 0, 0)
colnames(tuning)[4:6] <- c("AIC", "BIC")
tuning[, "AIC"] <- -2*tuning[, "log.like"]

+2*tuning[, "model.complexity"]
tuning[, "BIC"] <- -2*tuning[, "log.like"]

+log(100000)*tuning[, "model.complexity"]
#find the cutoffs that minimize AIC or BIC

C.AIC <- tuning[which.min(tuning[, "AIC"]), "C"]
C.BIC <- tuning[which.min(tuning[, "BIC"]), "C"]

R-Code 8.12: Tuning Algorithm 5.6 with the tuneC-function

8 Examples 116

The computations are carried out within six minutes on the CARL High-Performance
Computing cluster, cf. Harfst (2020), using 250 2.2GHz cores of Intel Xeon (E5-
2650 v4) CPUs.
The AIC and BIC values are plotted in Figure 8.5 and 8.7 respectively. Both
figures consist of two plots: While the range of the first plot is [0, 25] and thus
includes the whole set C , the bottom plot zooms into the interesting interval
[0, 1]. The values of the information criterion are plotted as a continuous blue
line. The vertical grey bars indicate the sampling rate: Within each segment the
information criterion was computed for 1,000 equidistant values of C.
The scales-package, cf. Wickham (2016), was used for generating the figures.

Figure 8.5: Tuning Algorithm 5.6 on the data data set with AIC

AIC is minimal for C ∈ [0.0015, 0.0117]. For all those cutoff values the same model
estimate is output by the algorithm and here we arbitrarily choose CAIC = 0.0015.
The complexity of the corresponding model is 42 and the estimated log-likelihood
is -245,878.00, which gives the minimal AIC of 491,840.00. The context tree esti-
mates are displayed in the following Figure 8.6.

8 Examples 117

Figure 8.6: The AIC-tuned estimates τ̃1, τ̃2, τ̃3 (left to right)

The AIC-tuned model correctly estimates the first two context trees, i.e. τ1 = τ̃1

and τ2 = τ̃2 hold. However, it overfits the third context tree: τ3 4 τ̃3, τ3 6= τ̃3.

Figure 8.7: Tuning Algorithm 5.6 on the data data set with BIC

BIC on the other hand is minimal for C ∈ [0.1004, 5.64]. Again, all those cutoff
values lead to the same model estimate and we choose CBIC = 1. The correspond-
ing model was already fitted and discussed in Chapter 8.1.1 and is known to
be the true model. It has a complexity of 30 and the estimated log-likelihood is
-245,892.40, yielding a minimal BIC-value of 495,284.70. For a plot of the context
tree estimates go back to Figures 8.1-8.3. Contrary to the AIC, here BIC detects
the correct tiVLMC-model.

8 Examples 118

8.2.2 Independent left and right censoring

Next we tune Algorithm 5.6 on the data set data.independent, which is subject to
left and right censoring. The data was generated and the censoring distribution
was given in Chapter 8.1.3. We continue with the same options and fit tiVLMC-
models for the same 22,300 values of the cutoff

C = cutoff ∈ C = {0.0001, 0.0002, ..., 2, 2.01, 2.02, ..., 25}.

Again we calculate AIC and BIC. This is analogous to R-Code 8.12, only now
data.independent instead of data is used.
We kept the computational environment unchanged and the computation again
took six minutes.

Figure 8.8: Tuning Algorithm 5.6 on the data.independent data set with AIC

In this setting with censoring present AIC is minimized if C ∈ [0.4332, 2.32].
Since this interval contains C = 1, the estimated context trees were already dis-
cussed in Chapter 8.1.3 and are known to be the true context trees. The model
complexity (obviously) remains at 30 and the estimated log-likelihood decreases
to -194,607.60, which gives a minimal AIC-value of 389,275.20.
Here it is interesting that the censoring seems to mask the dip in the AIC which

8 Examples 119

leads to the overfitting model in the uncensored case.

Figure 8.9: Tuning Algorithm 5.6 on the data.independent data set with BIC

On the other hand BIC is minimal for C ∈ [0.4332, 2.32] and the results do
not change in comparison to the uncensored setting in Chapter 8.2.1. The tuned
model has a complexity of 30 and the estimated log-likelihood is -194,607.60,
yielding a minimal BIC-value of 389,560.40.

9 The prospective reserve 120

9 The prospective reserve
Within this chapter we are going to discuss one of the most important quantities
in insurance: the prospective reserve. The prospective reserve, also called “math-
ematical reserve”, e.g. cf. Koller (2012), or “benefit reserve”, e.g. cf. Bowers et al.
(1997), is the monetary amount the insurance company has to hold onto in or-
der to meet the expected monetary future liabilities it has towards the insurance
holders. We develop a computation formula and implement the calculation in R.

9.1 A computation formula

Conventionally, payments between the insurance holder and the insurance com-
pany are distinguished for their direction: A payment initiated by the insurance
holder, e.g. an annual premium, can be identified by its negative sign. On the
contrary a payment flowing from the insurance company to the customer, e.g.
a disability pension, is marked by a positive sign. Furthermore one can verbally
label payments by their major characteristic: The payments that get triggered be-
cause the insured remains in his current state, e.g. she or he remains disabled, are
called “sojourn payments”. On the other hand payments that are triggered when
the insured changes her or his current state are called “transition payments”.
We give a mathematical definition and continue by looking at some examples:

Definition 9.1. Let 1 ≤ t ≤ T and x1:t ∈ M1:t. We denote the payment that
gets triggered when the insured moves through x1:t up to t, i.e. the payment gets
triggered if X1:t = x1:t holds, by

bt (x1:t).

Payments flowing from the insurance holder to the insurance company are marked
with a negative sign. Payments flowing from the insurance company to the insur-
ance holder are marked with a positive sign.

For the ease of writing we also introduce a shorter notation that has similarities
to the concept of context functions:

9 The prospective reserve 121

Definition 9.2. Let 1 ≤ t ≤ T and x1:t ∈M1:t. Define

lbt := min
{

1 ≤ k ≤ t : bt (xt−k+1:t · x1:t−k) = bt
(
xt−k+1:t · x′1:t−k

)
for all x′1:t−k ∈M t−k

}
.

We also use the shorter notation

bt
(
xt−lpt +1:t

)
:= bt (x1:t)

and call

|bt| := max
w∈M1:t

lpt (w)

the order of the payments at t.

By definition the order |bt| of the payments at t is the minimal number of most
recent states we need to know in order to check all payments for their triggering
event. Similar to a transition probability that only needs the context and not the
full past as its condition, the payments bt(x1:t) viewed as a function of the full
past x1:t really only depend on xt−|bt|+1:t.
In the following let ts denote the age of the insured at contract closing and te the
age of the insured at maturity, 1 ≤ ts < te ≤ T . We assume that for t > te and
for t < ts

bt(x1:t) = 0 (9.1)

holds for every x1:t ∈M t, i.e. no (non-zero) payments are made after the contract
has matured or before the contract has started.

Example 9.3. Let M = {a, i, d} where, as in the earlier Example 3.2, a again
stands for active, i for invalid and d for deceased.

(a) The insurance company pays the bereaved of the insurance holder a death
cover D > 0 if the insured dies before the maturity te (transition payment):

bt ((d, a)) = bt ((d, i)) = D

for ts + 1 ≤ t ≤ te.

9 The prospective reserve 122

(b) After a waiting period of five time periods, the insurance pays out a dis-
ability annuity of size A > 0 at every time period to every invalid insurance
holder under contract (sojourn payment):

bt (i) = A

for ts + 5 ≤ t ≤ te.

(c) The insurance holder and the insurance agree on an initial premium P > 0
that has to be paid for every time period in which the insurance holder is
active and that increases at an annual rate of 10% (sojourn payment). The
only exception to this is (d), i.e. when the insurance holder has been active
for the last five consecutive years. I.e.

bt(a · w) = −P · 1.1t−1

for w 6= (a, a, a, a) and ts ≤ t ≤ te.

(d) Insurance holders that have been active for the last five consecutive years
get paid out a health dividend H > 0. Since they are active they still have
to pay the premium specified in (c). I.e.

bt ((a, a, a, a, a)) = H − P · 1.1t−1

for ts + 4 ≤ t ≤ te.

In a world with non-zero interest, payments of the same monetary size made at
different time points are of different value. Intuitively, if the risk-free interest rate
is positive, receiving one monetary unit now is more valuable to the recipient than
receiving one monetary unit at a later point in time. The earlier the money is
received, the earlier it earns the recipient interest. The present value of the earlier
payment is higher than the present value of the later payment. Mathematically
we can formalize this by introducing the discounting factor:

Definition 9.4. For 1 ≤ t ≤ k ≤ T let

vt, k

be the present value at time t of a payment of one monetary unit at time k. We
call vt, k the discounting factor.

9 The prospective reserve 123

Via the relation

rt = 1
vt−1, t

− 1. (9.2)

the one-step discounting factor vt−1, t can be used to compute the risk-free interest
rate rt at t and vice versa.

Example 9.5. Assume that the risk-free interest rate is r1 = 0% and rt = 2%
for all 2 ≤ t ≤ T . Then we have v1, 1 = 1 and vt−1, t = 0.980392 for 2 ≤ t ≤ T .
The present value of receiving a payment of one monetary unit at t at time t− 1
is

1 · vt−1, t = 1 · 0.980392 = 0.980392.

On the other hand, if one deposits 0.980392 at time t− 1 at the risk-free interest
rate of rt = 2%, one ends up with exactly

0.980392 · (1 + rt) = 0.980392 · 1.02 = 1

monetary units at t.

Making use of the Definitions 9.1 and 9.4, we can continue:

Definition 9.6. Let 1 ≤ t ≤ te and x1:te ∈M te . The discounted future payments
at time t of an insured that moved through x1:te are

Bt (x1:te) :=
te∑
k=t

vt, k bk (x1:k).

Note that by (9.1)

Bt (x1:T) = Bt (xte+1:T · x1:te) = Bt (x1:te)

holds for all xte+1:T ∈MT−te .
Bt (x1:te) is the monetary amount that the insurance company needs at the begin-
ning of time period t (i.e. before the payment bt (x1:t) is made) to exactly meet all
the future liabilities it has towards a customer that moves through x1:te . In gen-
eral Bt (x1:te) is unknown at time t since it depends on the future development of
the insurance holder, i.e. on xt+1:te . Thus the insurance company has to estimate

9 The prospective reserve 124

Bt (x1:te) somehow. As usual this is done by moving over to the expected value
which one conditions on all information available up to the present time point t.
If the insurance company sells the contract to a large number of customers, the
strong law of large numbers A.1 will justify this estimation.

Definition 9.7. Let 1 ≤ t ≤ te and x1:t ∈ tpsuppt(X). We call

Vt (x1:t) := E [Bt (X1:te) |X1:t = x1:t]

the pathwise prospective reserve of an insured that moved through x1:t.

The pathwise prospective reserve of an insured that moved through x1:t can be
calculated as stated in the following Proposition 9.8.

Proposition 9.8. Let 1 ≤ t ≤ te and x1:t ∈ tpsuppt(X). It holds that

Vt (x1:t) =
∑

xt+1:te∈Mte−t

P (Xt+1:te = xt+1:te |X1:t = x1:t)
te∑
k=t

vt, k bk (x1:k).

Recall that |M0| = |{e}| = 1. We establish the convention that Xl:k := e for
l > k. In this way Vte(x1:te) is well-defined. In the following we will also use that
products ranging over empty sets are defined as one.

Proof of Proposition 9.8. First we write out the expectation:

Vt (x1:t) = E [Bt (X1:te) |X1:t = x1:t]
=

∑
x′1:te

∈Mte

P
(
X1:te = x′1:te

∣∣∣X1:t = x1:t
)
Bt

(
x′1:te

)
.

Now if x′1:t 6= x1:t, we have

P
(
X1:te = x′1:te

∣∣∣X1:t = x1:t
)

= 0

and thus we obtain:

9 The prospective reserve 125

Vt (x1:t) =
∑

xt+1:te∈Mte−t

P (Xt+1:te = xt+1:te |X1:t = x1:t)Bt (x1:te)

=
∑

xt+1:te∈Mte−t

P (Xt+1:te = xt+1:te |X1:t = x1:t)
te∑
k=t

vt, k bk (x1:k).

In the classical Markov-setup the Markov assumption implies that the discounted
future payments and the prospective reserve only depend on the present and not
on the past. Therefore one only needs to consider solo-state prospective reserves
Vt(x) with x ∈ M instead of the pathwise prospective reserves defined in Defini-
tion 9.7. Additionally, in the Markovian case the Chapman-Kolmogorov equations
A.2 can be applied. These strong tools allow us to decompose every occurring
probability into (sums and products of) one-step transition probabilities. This
is how the famous Thiele equation follows. The Thiele equation allows for an
efficient calculation of the prospective reserve in a recursive way. It was discov-
ered by the Danish mathematician Thorvald Nicolai Thiele and first published
in Gram (1910). Within the environment of continuous stochastic processes the
Thiele equation takes the form of a differential equation.
Since we can neither apply the Markov assumption nor the Chapman-Kolmogorov
equation A.2, we cannot copy the explained strategy. However, the probability in
Proposition 9.8 can still be further decomposed, as we have already done multiple
times:

P (Xt+1:te = xt+1:te |X1:t = x1:t) =
te−1∏
l=t

Pl (xl+1 |x1:l). (9.3)

Now, as we have learned earlier on in Chapter 3, if X is a tiVLMC with context
function c, the set of transition probabilities Pc and the marginal distribution
uniquely determine the tiVLMC, recall Definition 3.8 and Proposition 3.9. We
have also learned that, as a direct consequence, one never needs to consider the
complete past x1:l at time l. Instead it is sufficient to focus on the context cl (x1:l).
Thus the following Corollary 9.9 is immediately implied.

9 The prospective reserve 126

Corollary 9.9. Let 1 ≤ t ≤ te and x1:t ∈ tpsuppt(X). It holds that

Vt (x1:t) =
∑

xt+1:te∈Mte−t

te−1∏
l=t

Pl (xl+1 | cl (x1:l))
te∑
k=t

vt, k bk (x1:k).

In general cl (x1:l) can be expected to be of much shorter length than x1:l itself.
Therefore the calculation of Vt (x1:t) can be highly accelerated by using above
computation formula instead of the formula stated in Proposition 9.8 combined
with (9.3).
To summarize, in general neither the transition probabilities at t nor the payments
at t depend on the complete past x1:t. Recall Definition 3.3 of the order |ct| of
a context function at t and the Definition 9.2 of the order |bt| of the payments
at t: The transition probabilities at t viewed as functions of x1:t only depend
on xt−|ct|+1:t and the payments at t viewed as functions of x1:t only depend on
xt−|bt|+1:t. Thus

lmin
t := max {|bt| , |ct|}

is the minimal length such that

bt (x1:t) = bt
(
xt−lmin

t +1:t

)
(9.4)

and

Pt (xt+1 | ct (x1:t)) = Pt
(
xt+1

∣∣∣ ct (xt−lmin
t +1:t

))
(9.5)

hold simultaneously for all x1:t ∈ tpsuppt(X). Let

lmin := max
{

max
t≤k≤te−1

{
lmin
t + t− k

}
, |bte|+ t− te

}
.

Then in general Vt(x1:t) viewed as a function of x1:t does not really depend on the
complete past x1:t but only on xt−lmin+1:t, since lmin is chosen such that (9.4) and
(9.5) are true for all the appearing context and payment functions in Corollary
9.9:

bk
(
xt−|x|+1:k

)
= bk (x1:k)

holds for k = t, ..., te if and only if
∣∣∣xt−|x|+1:k

∣∣∣ =
∣∣∣xt−|x|+1:t

∣∣∣+ |xt+1:k| = |x|+ t− k ≥ |bk|

9 The prospective reserve 127

for k = t, ...te. And
ck
(
xt−|x|+1:k

)
= ck (x1:k)

holds for k = t, ..., te − 1 if and only if
∣∣∣xt−|x|+1:k

∣∣∣ = |x|+ t− k ≥ |ck|

for k = t, ...te.
At first glance the choice of lmin might seem complex, but it is really just the
minimal length of the past such that the length of the state change sequences
input into the payment and context functions are greater than or equal to the
height of the payment and context trees. If one prefers a simpler, less sharp but
still sufficient condition: Any past with a length greater than or equal to the
maximum tree height occurring will work.
Therefore we can generalize Definition 9.7:

Definition 9.10. Let ts ≤ t ≤ te and xt−|x|+1:t ∈ M |x| be a state sequence of
length

t ≥ |x| ≥ lmin

with P
(
Xt−|x|+1:t = xt−|x|+1:t

)
> 0. We call

Vt
(
xt−|x|+1:t

)
:=

∑
xt+1:te∈Mte−t

te−1∏
l=t

Pl
(
xl+1

∣∣∣ cl (xt−|x|+1:l
)) te∑

k=t
vt, k bk

(
xt−|x|+1:k

)

the pathwise prospective reserve of an insured that moved through xt−|x|+1:t.

By Corollary 9.9 and the definition of lmin it holds that

Vt(xt−|x|+1:t) = Vt(xt−|x|+1:t · x1:t−|x|) = Vt(x1:t)

for all x1:t−|x| ∈ tpsuppt−|x|(X).

9.2 The calculateProspectiveReserve-function

The following R-Code 9.1 shows the calculateProspectiveReserve-function that cal-
culates Vt (x) according to the formula of Definition 9.10.

9 The prospective reserve 128

calculateProspectiveReserve <- function(past, tau, payments,
interests, parallel=F,
track.progress=F) {

#calculate t.e

maturity <- length(tau)+1
#check whether length(past) >= l.min

for (time in 1:maturity) {
if ((length(past)+time-1) < (payments[[time]]$height-1)) {

str <- paste("past is too short to check the payments at",
time)

stop(str)
}

}
if (maturity > 1) {

for (time in 1:(maturity-1)) {
if ((length(past)+time-1) < (tau[[time]]$height-1)) {

str <- paste("past is too short to cover the height of
the context tree at", time)

stop(str)
}

}
}
#check whether length(interests) is correct

#we need an interest rate for every future time point, i.e.

#for t_s+1, ..., t_e

if (length(interests) != length(tau)) {
stop("length(interests) not equal to length(tau)")

}
#extract the alphabet from tau

if (length(tau)>0) {
alphabet <- names(tau[[1]]$transitions)

#if t=t_e tau has length zero and the alphabet does not matter

#in that case we set the alphabet to NULL

} else {
alphabet <- NULL

}
#initialize the prospective reserve

9 The prospective reserve 129

V <- 0
#we first deal with the case t=t_e separately

if (maturity==1) {
return(getPayment(past=past, tree=payments[[1]]))

}
#if track.progress=T we measure and print computation times

if (track.progress) {
print.at <- floor(quantile(x=1:length(alphabet)^(maturity-1),

probs=seq(from=0.01, to=1, by=0.01)))
print(paste(length(alphabet)^(maturity-1),

"iterations to calculate"))
tic()

}
#we calculate each summand of the outer sum of the computation

#formula

#if parallel=F the computation is not parallelized

if (!parallel) {
for (path.index in 1:(length(alphabet)^(maturity-1))) {

#we combine the input past and the future to obtain the full

#path

path <- c(past, permutations(k=maturity-1, alphabet,
replace=T, index=path.index))

#initialize the inner sum of the computation formula

sum <- 0
#calculate the summands

for (time in 1:maturity) {
#calculate the discounting factor

v <- calculateDiscountingFactor(interests=interests,
time=time)

#calculate the payment

b <- getPayment(past=path[1:(time+length(past)-1)],
tree=payments[[time]])

#add the summand to the inner sum

sum <- sum+v*b
}
#initialize the product of the computation formula

product <- 1

9 The prospective reserve 130

#calculate the factors

for (time in 1:(maturity-1)) {
#calculate the transition probability

prob <- getTransitionProbability(
past=path[1:(time+length(past)-1)],
future=path[time+length(past)], tree=tau[[time]])

#multiply the factor by the product

product <- product*prob
}
#add the summand to the outer sum

V <- V+product*sum
#measure and print computation time

if (track.progress) {
if (path.index %in% print.at) {

print(paste(names(print.at)[path.index==print.at],
"done"))

timer <- toc()
print(paste("time remaining:",

round((100-which(path.index==print.at))
*unname(timer$toc-timer$tic), digits=2), "sec"))

tic()
}

}
}
#if parallel=T the iterations are evenly distributed over the

#user initiated CPU cluster

} else {
V <- foreach(path.index=1:(length(alphabet)^(maturity-1)),

.combine="+", .packages="arrangements",

.export=c("calculateDiscountingFactor",
"getPayment",
"getTransitionProbability")) %dopar% {

#we combine the input past and the future to obtain the full

#path

path <- c(past, permutations(k=maturity-1, alphabet,
replace=T, index=path.index))

#initialize the inner sum of the computation formula

9 The prospective reserve 131

sum <- 0
#calculate the summands

for (time in 1:maturity) {
#calculate the discounting factor

v <- calculateDiscountingFactor(interests=interests,
time=time)

#calculate the payment

b <- getPayment(past=path[1:(time+length(past)-1)],
tree=payments[[time]])

#add the summand to the inner sum

sum <- sum+v*b
}
#initialize the product of the computation formula

product <- 1
#calculate the factors

for (time in 1:(maturity-1)) {
#calculate the transition probability

prob <- getTransitionProbability(
past=path[1:(time+length(past)-1)],
future=path[time+length(past)], tree=tau[[time]])

#multiply the factor by the product

product <- product*prob
}
#add the summand to the outer sum

product*sum
}

}
#return the prospective reserve

return(V)
}

R-Code 9.1: The calculateProspectiveReserve-function

Via past the user has to input a state change sequence x as a vector of state
names. Remember that x has to be of sufficient length, i.e. |x| must be greater
than or equal to lmin.
tau has to be a list of length (te − ts) that contains the estimated context trees
at times ts, ..., te − 1 of the underlying model fit in the given order.

9 The prospective reserve 132

Using interests the user has to input a (te− ts)-dimensional vector of the risk-free
interest rates rts+1, ... , rte in the given order.
While parallel defaults to false, the user can switch to a parallelized computation
by handing over parallel=T. Each summand of the outer sum of the computation
formula given in Definition 9.10 can be calculated independently. Therefore their
calculation can be distributed (and is distributed) evenly over the available CPU
cores. In R the user can initiate the CPU-cluster using e.g. the doParallel-package,
cf. Microsoft Corporation and Weston (2019), or the doMPI-package, cf. Weston
(2013).
By setting track.progress to T the estimated remaining computation time and the
progress (measured in percent) are printed to the console.
Recall the short notation of payments, cf. Definition 9.2. This notation implies a
hierarchical structure, as it was the case for the context functions too. Thus it is
convenient to specify the (non-zero) payments at t as a hierarchical tree.

Example 9.11. Assume a contract would unify all payments presented in Ex-
ample 9.3. The non-zero payments at a time ts + 5 ≤ t ≤ te can be visualized
as shown in the following Figure 9.1. The nodes of the tree specify the sequences
triggering payments and the amount of the actual payment is specified via the
payment-attribute of the node.

9 The prospective reserve 133

Figure 9.1: Visualizing the payments of Example 9.3 as a tree. In addition to the
node itself its payment-attribute is printed in brackets.

In R the payment tree (here called tree) would be initialized as in the following
R-Code 9.2. The data.tree-package is used, cf. Glur (2018).

#initialize the root node

tree <- Node$new("e")
tree$payment <- 0
#add the sequences and payments of (a)

tree$AddChild("d")
tree$"d"$payment <- 0
tree$"d"$AddChild("a")
tree$"d"$"a"$payment <- D
tree$"d"$AddChild("i")
tree$"d"$"i"$payment <- D
#add the sequences and payments of (b)

9 The prospective reserve 134

tree$AddChild("i")
tree$"i"$payment <- A
#add the sequences and payments of (c)

tree$AddChild("a")
tree$"a"$payment <- -P*1.1^(t+1)
tree$"a"$AddChild("a")
tree$"a"$"a"$payment <- -P*1.1^(t+1)
tree$"a"$"a"$AddChild("a")
tree$"a"$"a"$"a"$payment <- -P*1.1^(t+1)
tree$"a"$"a"$"a"$AddChild("a")
tree$"a"$"a"$"a"$"a"$payment <- -P*1.1^(t+1)
#add the sequences and payments of (d)

tree$"a"$"a"$"a"$"a"$AddChild("a")
tree$"a"$"a"$"a"$"a"$"a"$payment <- H-P*1.1^(t+1)

R-Code 9.2: Defining the payment tree at ts + 5 ≤ t ≤ te of the payments of
Example 9.3 in R

Via the payments-input the user has to handover a list of length (te − ts + 1)
containing the payment trees at times ts, ..., te in the given order. Each payment
tree has to be defined as shown in Example 9.11.
The calculateProspectiveReserve-function depends on the calculateDiscountingFac-
tor- and getPayment-function, cf. R-Codes 9.3 and 9.4.
calculateDiscountingFactor uses the input interests to compute the discounting fac-
tors appearing in the computation formula of Definition 9.10. The relationship
(9.2) between the discounting factor and the risk-free interest rate is used.

calculateDiscountingFactor <- function(interests, time) {
if (time==1) return(1)
#initialize the discounting factor

v <- 1
#calculate the one-step discounting factors

for (t in 2:time) {
interest <- interests[t-1]
#calculate the multiple-step discounting factor

v <- v*(1/(1+interest))

9 The prospective reserve 135

}
#return the discounting factor

return(v)
}

R-Code 9.3: The calculateDiscountingFactor-function

getPayment <- function(past, tree) {
#in the following we switch between child and parent nodes

parent <- tree
#initialize the payment

payment <- NULL
#we navigate down the branch of the tree given by past

for (i in length(past):1) {
state <- past[i]
child <- parent[[state]]
#if the whole past is not contained as a branch, we will

#encounter a missing child

if (is.null(child)) {
#then the relevant past is the path from the root to the

#parent of the missing child

payment <- parent$payment
break

}
parent <- child

}
#if we do not encounter a missing child, the whole past is

#contained in a branch of the tree

#in this case the relevant past is the whole past

if (is.null(payment)) payment <- child$payment
#return the payment

return(payment)
}

R-Code 9.4: The getPayment-function

getPayment gets handed a payment tree and a state change sequence. It identifies
the node corresponding to the input sequence and outputs the payment-attribute

9 The prospective reserve 136

of the identified node. Most of getPayment is completely analogous to getTran-
sitionProbability, cf. R-Code 7.13, but instead of the transition probability we
extract the payment.

9.3 The net premium

One of the reasons why the prospective reserve is such a key quantity in insur-
ance mathematics is that it constitutes an elegant possibility of calculating the
net premium πnet (recall Chapter 1.1): Insurance contracts usually only get sold
to individuals that are and have been healthy, and it is highly uncommon that a
complementary disability insurance is sold to an already disabled individual. Since
the disabled would instantly be eligible for the disability annuity, such a business
deal would most likely be economically disastrous for the insurance. While there
might be a small chance that the disabled will recover and start paying premi-
ums, the insurance is clearly better off only accepting healthy new customers (or
excluding any pre-existing conditions from the coverage as it is usually done in
practice). The premium is paid to the insurance company by the insurance holder,
so it is part of one of the payment functions introduced in Definition 9.1. In most
realistic cases the premium gets paid as long as the insurance holder is healthy
and not eligible for the insurance benefit, therefore the premium is usually part
of a sojourn payment. Now recall that the net premium πnet is the premium de-
termined by the equivalence principle, as it was established in the introductory
Chapter 1.1. Therefore one can calculate (and define) the net premium as follows:

Definition 9.12. Let x ∈M |x| be a state sequence of length

ts ≥ |x| ≥ lmin

with P
(
Xts−|x|+1:ts = xts−|x|+1:ts

)
> 0 that is accepted by the insurance company

to purchase the coverage. For a premium π0 that satisfies

Vts (x) = 0 (9.6)

we call πnet := −π0 net premium.

The defining equation (9.6) ensures that the expected discounted future payments
of the contract are zero at the beginning of the time period ts in which the con-
tract starts. This is exactly the equivalence principle: The expected costs for the

9 The prospective reserve 137

insurance and the premiums paid by the insured balance out to zero.
Although we do not indicate this in our notation, πnet is in fact allowed to depend
on t. It is not required to be constant in t.

Example 9.13. In Chapter 8.1.1 we fitted and tuned tiVLMC-models to the
data set data consisting of n = 100,000 observations of length T = 4 with values
in M = {a, i, i+, d}. For the BIC-tuned model (that corresponded to the cutoff
CBIC = 1), let us consider the following contract:

• The coverage is sold to active insurance holders at ts = 1 and matures at
te = 4.

• The risk-free interest rates are r2 = 2.00%, r3 = 1.00% and r4 = 0.50%.

• As long as the insurance holder is active, she or he has to pay a premium.
At t = 1 the premium is πinit monetary units and it increases at a rate of
10%, i.e.

bt(a) = 1.1t−1πinit

for 1 ≤ t ≤ 4.

• Insurance holders transitioning from active to being invalid or heavily in-
valid receive a payment of two monetary units in order to cover the one-time
expenses for e.g. house modifications. I.e.

bt((i, a)) = bt((i+, a)) = 2

for 2 ≤ t ≤ 4.

• Insurance holders that have already been impaired at the last time point
receive a disability annuity of one monetary unit if they are invalid and one
and a half monetary units if they are heavily invalid. I.e.

bt((i, i)) = bt((i, i+)) = 1

and
bt((i+, i)) = bt((i+, i+)) = 1.5

for 2 ≤ t ≤ 4.

9 The prospective reserve 138

Running R-Code 9.5 we now calculate the initial premium πinit so that

−1.1t−1πinit

is a net premium.

#calculate the estimated context tree

estimate <- estimateTau(data=data, measure="KLD", cutoff=1)
#the prospective reserve as a function of the initial premium

V.pi.init <- function(pi.init) {
#define the payment trees

payments <- list()
for (t in 1:4) {

#initialize the root node

payments[[t]] <- Node$new("e")
payments[[t]]$payment <- 0
#premium

payments[[t]]$AddChild("a")
payments[[t]]$"a"$payment <- 1.1^(t-1)*pi.init
if (t >= 2) {

#disability annuity for i->i and i+->i

payments[[t]]$AddChild("i")
payments[[t]]$"i"$payment <- 0
payments[[t]]$"i"$AddChild("i")
payments[[t]]$"i"$"i"$payment <- 1
payments[[t]]$"i"$AddChild("i+")
payments[[t]]$"i"$"i+"$payment <- 1
#disability annuity for i->i+ and i+->i+

payments[[t]]$AddChild("i+")
payments[[t]]$"i+"$payment <- 0
payments[[t]]$"i+"$AddChild("i+")
payments[[t]]$"i+"$"i+"$payment <- 1.5
payments[[t]]$"i+"$AddChild("i")
payments[[t]]$"i+"$"i"$payment <- 1.5
#payment for a->i and a->i+

payments[[t]]$"i"$AddChild("a")
payments[[t]]$"i"$"a"$payment <- 2

9 The prospective reserve 139

payments[[t]]$"i+"$AddChild("a")
payments[[t]]$"i+"$"a"$payment <- 2

}
}
#calculate the prospective reserve depending on the initial

#premium

V <- calculateProspectiveReserve(past="a", tau=estimate$tau,
payments=payments,
interests=c(0.02, 0.01, 0.005))

return(V)
}
#calculating the zeros of above function on [-10,0],

#i.e. the initial premium that yields a prospective reserve of

#zero

pi.init <- uniroot(f=V.pi.init, interval=c(-10, 0))$root

R-Code 9.5: Calculating the prospective reserve V1(a) and the net premium πnet

To do so, we use the native R-function uniroot that here outputs the roots of V1(a)
viewed as a function of πinit. We limit the numerical root search to the interval
[−10, 0].
We obtain πinit = pi.init = −0.56 (rounded to two decimal digits). Therefore the
net premium is given by

πnet = −1.1t−1 · (−0.56) =



0.56, t = 1

0.62, t = 2

0.68, t = 3

0.75, t = 4.

10 The German long-term care insurance 140

10 The German long-term care insurance
In the following we are going to apply the developed tiVLMC fitting techniques to
real life data. First we are going to briefly describe the data set and prepare it for
the estimation of tiVLMC-models. After that we are going to perform the actual
model fitting. We are going to end this chapter by calculating net premiums and
some prospective reserves for an insurance contract using the tiVLMC-models.

10.1 A brief data description

The data set is provided in an anonymized form by the German insurance corpo-
ration SIGNAL IDUNA, cf. SIGNAL IDUNA (2020). It contains the documen-
tation of the nursing care level of 684,384 private disability insurance holders on
a monthly basis within the time frame from January 2005 to July 2014.
Under German law a person is called disabled if impairments of his or her self-
reliance or abilities in general caused by health issues make the help of others
necessary. It is also required that the person is not able to countervail the physi-
cal, cognitive or psychological impairment on his or her own. Lastly, the impair-
ment must be of a non-temporary nature and its severity has to exceed a defined
lower bound. This is regulated by § 14 SGB XI, cf. Bundesamt für Justiz (2020).
The severity of the disability is categorized into several levels. The level deter-
mines the amount of the payment the disabled insurance holder receives from
the insurance company. At the start of the observation there were four levels of
disability named “Pflegestufe 1”, “Pflegestufe 2”, “Pflegestufe 3” and “Pflegestufe
3 mit Härtefall”, where the degree of disability increases from Pflegestufe 1 (low-
est) to Pflegestufe 3 mit Härtefall (highest). During the observation period the
“Pflegestufe 0” was introduced in 2013 as a part of the “Gesetz zur Neuausrich-
tung der Pflegeversicherung” reform, cf. Bundestag (2012). The Pflegestufe 0 was
positioned in-between not being disabled and the Pflegestufe 1. It was intended to
offer financial support for dementia patients that did not qualify for Pflegestufe 1
or higher. Then this categorization was completely revised and replaced in 2017
via the “Zweites Pflegestärkungsgesetz” reform, cf. Bundestag (2015). Since this
replacement the severity of disability is categorized in so-called “Pflegegrade”, cf.
Bundesamt für Justiz (2017). Thus the state space of the data set, settled in the
Pflegestufen-setting, consists of seven states: active (i.e. not disabled), Pflegestufe
0, Pflegestufe 1, Pflegestufe 2, Pflegestufe 3, Pflegestufe 3 mit Härtefall and de-
ceased.

10 The German long-term care insurance 141

Furthermore the data is subject to censoring: Not all individuals under study are
insured over the complete observation period, some terminate the contract early
or exit the study for other, unknown reasons.
Additionally to their health status, an identification number, their gender, their
year of birth and the year the insurance contract began are recorded for each
insurance holder.
Since our main focus lies on demonstrating the developed tiVLMC-techniques,
we here limit ourselves to this short description. However, we refer the reader to
chapter 3 of Hess (2015) for a more detailed description of the data set. Ana-
lyzing the data set Hess (2015, pages 17-19) was able to uncover four different
inconsistencies. After consultation with the SIGNAL IDUNA Hess (2015) was
able to remove each one of them and re-establish the consistency of the data. As
part of this data processing the last three months of the observation period, May
2014, June 2014 and July 2014, had to be removed from the data set, thus the
observation period of the processed data consists of 112 months (January 2005
to April 2014). Our further data processing steps are based on this pre-processed
data of Hess (2015).

10.2 Data preparation

Our modelling goal is to predict the future health status Xt+1 of an insured of
age t + 1 based on his health development (X1, ..., Xt) up to his present age t.
To achieve this goal we are going to train a tiVLMC-model X on the data. We
are looking for the health status sequences that are of high significance when it
comes to predicting the future health development. I.e. we are interested in the
contexts of this tiVLMC.
The birth years of the insurance holders vary from 1899 to 2014 whereas the
observation period is the same for every insurance holder. Thus one data column
contains the health statuses of insurance holders of different ages. To function as
training data for our model, it is therefore necessary to rearrange the data so that
all insurance holders are of the same age in each column. The major problem we
are facing is that the health statuses are recorded monthly, while only the year
of birth and not the birth month is known. Hence a straightforward shifting of
the data is not possible and assumptions concerning the birth month of every
individual have to be made. We choose to enrich the data by assuming that all
insurance holders are born in July. We count the age in months starting at one
(and not at zero), e.g. we assume that an insured born in 1950 is of age one in

10 The German long-term care insurance 142

July 1950, of age two in August 1950 etc. By making this assumption we are able
to shift the observations, so that every column contains insurance holders of the
same age.
This time shift from calendar time to age is inevitable to achieve our modelling
goal. Without this change the data is not of the correct format to serve as training
data. However the time change also implies two new inconsistencies:
First, the intensity at which the observations within one data column are affected
by calendar time trends now differs. The data is already subject to calendar time
trends before the shift, but there each column is affected at the same intensity.
We reduce this effect by limiting ourself to the more homogeneous sub data set of
38,236 insured born from 1940 to 1944. A person born in July 1940 is 775 months
(64 years) old at the start of the observation in January 2005 and 886 months
(73 years) old at the end of the observation in April 2014. A person born in July
1944 is 727 months (60 years) old at the start of the observation in January 2005
and 838 months (69 years) old at the end of the observation in April 2014. Thus
our data now documents the monthly health statuses of insured aged from 727
to 886 months and it is of dimension 38,236× 160. It is reasonable to assume for
this five-year cohort that the extent to which observations are affected by calen-
dar time trends is similar: The life expectancy, the available medical treatment
methods etc. should be similar.
However, the political environment is not the same for all observations of one
data column and this is the second inconsistency. Since the Pflegestufe 0 was in-
troduced during the observation, it is possible that an insured aged t is assigned
Pflegestufe 0 while another earlier born insured aged t with the exact same health
condition was classified as healthy since the Pflegestufe 0 was not yet introduced
at the calendar time that the second insured hit age t. We eliminate this inconsis-
tency by removing the Pflegestufe 0 and replacing its occurrences with active. I.e.
we standardise the categorization of disability to the laws in force at the start of
the observation in January 2004. We want to note that we expect the information
lost due to this processing step to be minimal: The Pflegestufe 0 only occurred
at 629 out of the total 38,236 · 160 = 6,117,760 data points.
Restricting ourselves to the sub data set obviously also reduces the computational
effort needed to perform our model fitting and follow-up calculations.
The restriction is practicable: One can fit a tiVLMC for every five-year cohort.
Then, when dealing with a new customer, we use the model that corresponds to
her or his birth year to make the predictions about her or his future health
development. Here we have exemplarily chosen the birth years 1940 to 1944

10 The German long-term care insurance 143

because the insured born in this time frame are of an interesting age accord-
ing to changes in health at the time of the observation. They are neither in the
high ages where getting disabled becomes an almost sure event nor are they so
young that getting disabled is completely rare. For reference, in 2017 six percent
of the 70- to 74-year-old Germans were eligible for disability benefits, cf. Statis-
tisches Bundesamt (2018).
To summarize, this data preparation yields a data set data.signal of 38,236 ob-
servations of length 160. Each observation documents the 160 monthly health
statuses of an insured at the ages 727 to 886. Possible values for the health status
are active, Pflegestufe 1, Pflegestufe 2, Pflegestufe 3, Pflegestufe 3 mit Härtefall
and deceased. As usual censored data points are assigned NA. Using data.signal
as training data, the state space of our model thus consists of six states. We ab-
breviate them as displayed in the following Table 10.1.

state abbreviation
active a

Pflegestufe 1 1
Pflegestufe 2 2
Pflegestufe 3 3

Pflegestufe 3 mit Härtefall 3h
deceased d

Table 10.1: The abbreviations of the state names in data.signal

Note that we have not split the data into male and female insurance holders. Pric-
ing insurance contracts differently depending on gender is forbidden in Germany
by the “Equal Treatment in Goods and Services Directive 2004” EU directive, cf.
European Court of Justice (2004).
The following R-Code 10.1 shows the most frequently observed health path. Since
most of the insured in data.signal are born in 1941 (7,740 in 1940, 8,033 in 1941,
6,908 in 1942, 7,744 in 1943 and 7,811 in 1944) and since we expect being active
to be more likely than being disabled, it is no big surprise that this health path
is an insured born in 1941 that is active during all of the 112 months of the
observation period, where he is aged 763 to 874. 4,331 insurance holders move
through this exact path.

10 The German long-term care insurance 144

data.signal[1627,]

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
NA NA NA NA "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
"a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
"a" "a" "a" "a" NA NA NA NA NA NA NA NA NA NA NA NA

R-Code 10.1: The most frequent observation in the data.signal data set

10.3 The tiVLMC-models

Now we tune and fit the tiVLMC-model using the tuneC-function explained in
Chapter 7.4 and R-Code 7.11 and exemplarily applied in R-Code 8.12. We com-
pute AIC and BIC on the lattice

C = {0.001, 0.002, ..., 0.999, 1.000}

of 1,000 equidistant knots. The input options we choose here are data=data.signal,
cutoffs=C , measure="KLD" and parallel=T.
The fitting was performed using 500 CPU cores of the CARL High-Performance
Computing cluster. The cluster nodes we requested consist of Intel Xeons (E5-
2650 v4), each CPU possessing 12 cores clocked at 2.2GHz, cf. Harfst (2020).

10 The German long-term care insurance 145

The computation took 4 hours and 27 minutes to be completed. Since tuneC first
considers the smallest cutoff value and then distributes the other cutoffs evenly
over the available CPU cores, one can estimate the computation of a single model
fit to require about

4 · 60minutes + 27minutes
3 = 89minutes.

The result of the tuning process is graphically displayed in the following Figure
10.1. The continuous plotted blue line is the information criterion, i.e. AIC or
BIC respectively. The vertical grey bars indicate the sampling rate: Within each
segment the information criterion was computed for 50 equidistant values of C.
The vertical red bar indicates the cutoffs CAIC or CBIC that minimize AIC or BIC
respectively, cf. (6.4), on C .

Figure 10.1: Tuning Algorithm 5.6 on the data.signal data set with AIC and BIC

In numbers, the tuning process yields the results

CAIC = 0.501,
CBIC = 0.547

and we will now take a closer look at the AIC- and BIC-tuned models.
Figure 10.2 plots the tree heights, i.e. the order |c̃t| of the estimated context

10 The German long-term care insurance 146

function c̃t at t ∈ {727, ..., 885}. In both models this maximal tree height varies
between one and two. Hence the order of both tiVLMC-models is two and they
could both be embedded into full second-order time-discrete Markov processes.
The tree heights of the AIC-tuned model are 104 times two and 55 times one.
In the BIC-tuned model 102 trees are of height two and the remaining 57 are of
height one. At this point one can already anticipate that a first-order time-discrete
Markov process might be an inappropriate model: Both estimated context trees
are of height two at the majority of time.
At every time point where the tree height of the BIC-tuned model is two, this is
also the case in the AIC-tuned model. As in the example in Chapter 8.2.1, the
BIC-tuned model is less complex than the AIC-tuned model. This is backed up
by theory: A sequence of increasing cutoffs leads to nested models that decrease
in complexity.

Figure 10.2: The tree heights |c̃t| of the estimated context trees τ̃t at t of the
AIC- and the BIC-tuned tiVLMC-model

The AIC-tuned model’s complexity amounts to 5,580 compared to the lower value
of 5,535 for the BIC-tuned model. For comparison: The embedding full second-
order time-discrete Markov process would have 28,475 model parameters, cf. (3.2).
The number of nodes within each estimated context tree is higher in the AIC-
tuned model than in the BIC-tuned model, cf. Figure 10.3. The log-likelihood of
the AIC-tuned model is -60,344.41, the BIC-tuned model’s is -60,468.86 (numbers

10 The German long-term care insurance 147

rounded to two decimal digits). This yields the minimum of 173,030.27 of BIC
and 131,848.82 of AIC in the corresponding models.

Figure 10.3: The node counts of the estimated context trees τ̃t at t of the
AIC- and the BIC-tuned tiVLMC-model

Now we visualize the fitted models. In the AIC-tuned fit 41 different trees appear
as context tree estimates. In the BIC-tuned fit 39 different trees are estimated.
Both models have 37 trees in common, hence the total number of occurring trees
amounts to 43. We label these 43 trees with the numbers from one to 43. The
following Figure 10.4 displays the movement of each model from context tree es-
timate to context tree estimate as the age t increases.

10 The German long-term care insurance 148

Figure 10.4: The movement of the estimated context tree τ̃ between the 43
occurring trees as the time t passes

10 The German long-term care insurance 149

The visualization of the fitted models is completed by listing all 43 occurring
context tree estimates in the Figures B.1-B.43. Since this list takes up a lot
of space, we postpone printing it to the Appendix B. Via a three dimensional
visualization the context tree movement can be illustrated in a much clearer way:
At

https://cloud.uol.de/s/yZCGEQzriK5bJDD

we provide a short mp4-video clip that shows the development of the context
tree of the AIC-tuned model as the age t increases in the cloud storage of the
University of Oldenburg. Accessing this file requires the password MzxEbjnrKfi4.
If we fit the model using the L1-norm, cf. Chapter 5.3, i.e. if we switch to using
measure="L1" instead ofmeasure="KLD" while keeping the other input arguments
and the cutoff-lattice unchanged, the tuning process yields

CAIC = 0.033,
CBIC = 0.346,

cf. Figure 10.5. We kept the computational environment unchanged. The com-
putation time was 13 minutes longer (4 hours and 40 minutes) compared to the
time needed in the Kullback-Leibler case.
The tree heights |c̃t| are again plotted in Figure 10.6 and the node counts in
Figure 10.7.

https://cloud.uol.de/s/yZCGEQzriK5bJDD

10 The German long-term care insurance 150

Figure 10.5: Tuning Algorithm 5.6 on the data.signal data set with AIC and BIC
and using the L1-norm instead of the Kullback-Leibler divergence

Figure 10.6: The tree heights |c̃t| of the estimated context trees τ̃t at t of the
AIC- and the BIC-tuned tiVLMC-model calculated using the L1-
norm

10 The German long-term care insurance 151

Figure 10.7: The node counts of the estimated context trees τ̃t at t of the
AIC- and the BIC-tuned tiVLMC-model calculated using the L1-
norm

As in the measure="KLD" scenario, the tree heights of the BIC-tuned model have
two as their upper limit. This means that the BIC-tuned tiVLMC-model as well
as its embedding full time-discrete Markov process are of order two. However,
the tree heights of the AIC-tuned model hit three at three different ages, namely
at 818, 829 and 861. While the context tree at those times takes three different
forms, the sequence responsible for the tree height exceeding two is (1, a, 1) at all
three ages. The order of the BIC-tuned tiVLMC is three.
The AIC-tuned model has a model complexity of 6,270 and a log-likelihood of
-60,059.17. The BIC-tuned model has a model complexity of 5,460 and a log-
likelihood of -62,689.80. The embedding full third-order time-discrete Markov
process of the AIC-tuned tiVLMC would have 169,775 model parameters, cf.
(3.2). The minimal AIC is 132,658.34 and the minimal BIC 176,766.31 respec-
tively.
As one already might expect by looking at the higher model complexity, the num-
ber of different context tree shapes is higher than when we used the Kullback-
Leibler divergence: Now a total of 93 different trees occurs, more than double the
amount in the Kullback-Leibler setting.
We summarize the characteristics of the four fitted tiVLMC-models in the fol-

10 The German long-term care insurance 152

lowing Table 10.2.

measure="KLD" measure="L1"
AIC BIC AIC BIC

model complexity 5,580 5,535 6,270 5,460
number of different trees 41 39 77 45
order of the tiVLMC 2 2 3 2

model complexity of the embedding 28,475 28,475 169,775 28,475
complexity reduction 80.40% 80.56% 96.31% 80.83%

number of different contexts 16 16 16 16

Table 10.2: An overview of the tiVLMC-model fitting

In the fifth row of Table 10.2 we calculate the percentage of less model parameters
of the tiVLMC-model compared to its embedding time-discrete full Markov pro-
cess. By using a tiVLMC as our model of choice instead of a classical time-discrete
Markov process of sufficient order the number of model parameters decreases by
at least 80%. Despite being less complex, Corollary 5.9 states that the tiVLMC-
model asymptotically still catches all dependencies in the data as the number of
observations diverges.
In the last row we print the total number of different contexts

∣∣∣{c̃t(w) : w ∈M t, 727 ≤ t ≤ 885
}∣∣∣

that appear in the tiVLMC-model. As a coincidence this number is 16 in all four
cases. Thus, when one tries to predict the future health status Xt+1 of an insured
at age t, it is sufficient to consider 16 different pasts and not all possible pasts of
length t are needed. We list these 16 contexts in Table 10.3. Remember that we
use a reversed notation, i.e. the most recent state of a state change sequence is
positioned on the left.

10 The German long-term care insurance 153

contexts of length l
measure="KLD" measure="L1"

l AIC BIC AIC BIC
1 (a) (a) (a) (a)

(1) (1) (1) (1)

(2) (2) (2) (2)

(3) (3) (3) (3)

(3h) (3h) (3h) (3h)

(d) (d) (d) (d)
2 (a, 1) (a, 1) (a, 1) (a, 1)

(a, 2) (a, 2) (a, 2) (a, 2)
(a, 3) (a, 3) (a, 3) (a, 3)

(1, a) (1, a) (1, a) (1, a)
(1, 2) (1, 2) (1, 2) (1, 2)

(2, a) (2, a) (2, a) (2, a)
(2, 1) (2, 1) (2, 1) (2, 1)

(3, a) (3, a) (3, a) (3, a)
(3, 1) (3, 1) (3, 2) (3, 1)
(3, 2) (3, 2) (3, 2)

3 (1, a, 1)

Table 10.3: The contexts ct(w) of the fitted models, w ∈M t, 727 ≤ t ≤ 885

By looking at the contexts we can see e.g. that a, 1, 2 and 3 are subject to dura-
tion effects. For better understanding let us consider an insurance holder who is
in a at age t, i.e. Xt = a. Then the following is true for all four tiVLMC-models:
To predict her or his next health status Xt+1, it is relevant whether she or he
was in Pflegestufe 1, Pflegestufe 2 or Pflegestufe 3 at t − 1, i.e. we have to dif-
ferentiate whether Xt−1:t = (a, 1), Xt−1:t = (a, 2) or Xt−1:t = (a, 3). If she or he
was not in Pflegestufe 1, Pflegestufe 2 or Pflegestufe 3 at t − 1, we do not have
to differentiate between the three left over cases Xt−1:t = (a, a), Xt−1:t = (a, 3h)
and Xt−1:t = (a, d). Rather we only have to consider that Xt = a. This can be
justified as follows: A transition from d to a (resurrection) cannot occur. A re-
covery from 3h back to a is so unlikely that it is not considered as a context.
Therefore out of the three cases, Xt−1:t = (a, a) is so dominant that we need no
further differentiation. The actual data does indeed confirm this: There is a total

10 The German long-term care insurance 154

of 38,236 · (160 − 1) = 6,079,524 transitions recorded in data.signal. 4,116,334 of
them are uncensored (67.71%). No transitions from d into a are observed. Exactly
one single transition from 3h to a can be found in the data compared to 3,878,641
transitions from a to a (94.23% of the uncensored transitions). Thus (a, 3h) is
not even relevant enough to be considered for pruning if nmin=2 is used when
running Algorithm 5.6.

10.4 A comparison

As we have seen in the preceding Chapter 10.3, we obtain models that are of a
much lower model complexity and simultaneously reflect all data dependencies by
choosing tiVLMC as a replacement of classical higher-order time-discrete Markov
processes. Within this Chapter we are going to evaluate how the prospective re-
serve, cf. Chapter 9, in a tiVLMC-model numerically differs from the prospective
reserve in classical time-discrete Markov processes of different orders.

10.4.1 The contract

In our comparison we consider the following contract:

• The target group of the coverage are insurance holders that are

ts = 792

months (66 years) old.

• To be eligible for the purchase, the potential buyer is required to be healthy
at contract closure and in the five previous months.

• The coverage runs for 12 months and thus matures at

te = 803.

• The risk-free interest rate is a constant two percent, i.e.

rt = 2%

for t = 792, ..., 803.

10 The German long-term care insurance 155

• At contract closure the insurance holder pays a one-time premium π, i.e.

b792(a) = π.

• If an insured is disabled, a disability benefit will be paid out. The amount
of the benefit depends on the level of disability:

bt(1) = 468,
bt(2) = 1,144,
bt(3) = 1,612,
bt(3h) = 1,995

for t = 793, ..., 803.

The benefits paid if an insured is disabled are denoted in Euro. They are in
accordance with the real regulations in force in January 2005.
The length of the required health history (a, a, a, a, a, a) = a6 is chosen so that
it is as small as possible but still works with all models that are part of the
comparison. We get back to this after explicitly proposing the candidate models
in the following section.
This contract is convenient for us in two ways:
Firstly, it is a short-term contract. We choose a small duration period since it
speeds up our numerical calculations while it does not impair the lesson to be
learned in this chapter. We comment on the computation of long-term contracts
in the conclusion, cf. Chapter 13.
Secondly, the premium π is a one-time payment at contract start. Mathematically
this allows us to separate π in the calculation formula as follows:

V792
(
a6
)

=
∑

x793:803∈M11

802∏
l=792

Pl
(
xl+1

∣∣∣ cl (x793:l · a6
)) 803∑

k=792
v792, k bk

(
x793:k · a6

)

=
∑

x793:803∈M11

802∏
l=792

Pl
(
xl+1

∣∣∣ cl (x793:l · a6
))(

π +
803∑

k=793
v792, k bk

(
x793:k · a6

))

=π +
∑

x793:803∈M11

802∏
l=792

Pl
(
xl+1

∣∣∣ cl (x793:l · a6
)) 803∑

k=793
v792, k bk

(
x793:k · a6

)
. (10.1)

10 The German long-term care insurance 156

This separation enables us to obtain the net premium πnet by evaluating V792 (a6)
(viewed as a function of π) only one single time: Calculate V792 (a6) with π := 0
and let V0 denote the result. Then the net premium is given by

πnet = V0. (10.2)

For different premium schemes we might have to solve V792 (a6) = 0 for π numer-
ically, e.g. by using the uniroot-function as we did in Example 9.13. Calculating
the roots of V792 (a6) numerically in general requires evaluating V792 (a6) for many
different values of π. Thus going with the one-time premium the computation
time can be reduced substantially.

10.4.2 The models

We consider seven different models trained on data.signal.
The first three models are tiVLMC-fits calculated in Chapter 10.3: the AIC-tuned
tiVLMC using the Kullback-Leibler divergence for the tree pruning (KLD/AIC),
the AIC-tuned tiVLMC (L1/AIC) and the BIC-tuned tiVLMC (L1/BIC) using the
L1-norm for the tree pruning. We do not consider the BIC-tuned tiVLMC using
the Kullback-Leibler divergence for the tree pruning: it is identical to KLD/AIC
during the contract duration.
Additionally we consider their embeddings, i.e. time-discrete Markov processes of
orders two (M2) and three (M3).
For reference we include the industry standard into the comparison: a time-
discrete Markov process of first order (M1). This is the most simple model.
Lastly, to cover the other end of the spectrum, we consider a time-discrete Markov
process of sixth order (M6).
We require a potential buyer to be healthy at contract closure and in the five pre-
vious months, i.e. we require past = (a, a, a, a, a, a) = a6. As one can see in Table
10.4 this is the minimal length that guarantees |past| ≥ lmin at the age ts = 792
at contract closure for all seven different models, where MC6 is the decisive factor.

10 The German long-term care insurance 157

t

792 793 794 795 796 797 798 799 800 801 802 803
KL

D
/A

IC |ct| 1 1 2 2 2 2 2 2 2 1 2
|bt| 1 1 1 1 1 1 1 1 1 1 1 1
lmin 1

L1
/A

IC |ct| 2 1 2 2 2 2 2 2 2 1 2
|bt| 1 1 1 1 1 1 1 1 1 1 1 1
lmin 2

L1
/B

IC |ct| 1 1 2 2 2 2 2 2 2 1 2
|bt| 1 1 1 1 1 1 1 1 1 1 1 1
lmin 1

M
C1

|ct| 1 1 1 1 1 1 1 1 1 1 1
|bt| 1 1 1 1 1 1 1 1 1 1 1 1
lmin 1

M
C2

|ct| 2 2 2 2 2 2 2 2 2 2 2
|bt| 1 1 1 1 1 1 1 1 1 1 1 1
lmin 2

M
C3

|ct| 3 3 3 3 3 3 3 3 3 3 3
|bt| 1 1 1 1 1 1 1 1 1 1 1 1
lmin 3

M
C6

|ct| 6 6 6 6 6 6 6 6 6 6 6
|bt| 1 1 1 1 1 1 1 1 1 1 1 1
lmin 6

Table 10.4: The required minimal length lmin of the health history past at contract
closure at ts = 792 for the different models

Note that e.g. for the KLD/AIC-model

V792
(
a6
)

= V792(a)

holds, since lmin = 1 at this age in this model. Thus including the most strin-
gent requirement in the contract ensures the comparability between the different
models and at the same time only affects each model to the necessary degree.

10 The German long-term care insurance 158

10.4.3 Net premiums

For each model we now calculate the net premium πnet of the contract. As we have
already explained we obtain πnet by calculating V0, recall (10.1) and (10.2). The
following R-Code 10.2 exemplarily shows how πnet is calculated for the KLD/AIC-
model. The calculation procedure is exactly the same for all seven models, the
only difference is the context tree estimate handed over to the calculateProspec-
tiveReserve-function as tau.

#age in months at the start of the contract

t.s <- 792
#contract duration

duration <- 12
#age in months at the end of the contract

t.e <- t.s+duration-1
#the contract runs from t.s, ..., t.e

#the interest rates at t.s+1, ..., t.e

interests <- rep(0.02, times=duration-1)
#we sell the contract to a person who was active at

#t.s-5, ..., t.s

past <- rep("a", times=6)
#the context trees at t.s, ..., t.e-1

tau <- estimate$tau[(t.s-727+1):(t.e-727)]
#the payment trees at t.s, ..., t.e as a function of the premium

paymentTree <- function(premium) {
payments <- list()
for (t in 1:duration) {

#initialize the root node

payments[[t]] <- Node$new("e")
payments[[t]]$payment <- 0
#the one-time premium has to be paid at the start of

#the contract

if (t==1) {
payments[[t]]$AddChild("a")
payments[[t]]$"a"$payment <- premium

}
#disability annuity in 1

10 The German long-term care insurance 159

payments[[t]]$AddChild("1")
payments[[t]]$"1"$payment <- 468
#disability annuity in 2

payments[[t]]$AddChild("2")
payments[[t]]$"2"$payment <- 1144
#disability annuity in 3

payments[[t]]$AddChild("3")
payments[[t]]$"3"$payment <- 1612
#disability annuity in 3h

payments[[t]]$AddChild("3h")
payments[[t]]$"3h"$payment <- 1995

}
return(payments)

}
#the prospective reserve as a function of the premium

prospectiveReserve <- function(premium) {
payments <- paymentTree(premium)
V <- calculateProspectiveReserve(past=past, tau=tau,

payments=payments,
interests=interests)

return(V)
}
#the prospective reserve for premium=0

V.0 <- prospectiveReserve(0)
#the net premium

pi.net <- V.0

R-Code 10.2: Calculating the net premium πnet in the KLD/AIC-model

The computation yields a net premium of

πnet = pi.net = 23.46

(rounded to two decimal digits). We used a single core clocked at 2.2GHz of an
Intel Xeon (E5-2650 v4). The computation took 36 hours and 20 minutes to com-
plete. We ran this computation seven times simultaneously, once for each model.
The computation time was about the same for all models.

10 The German long-term care insurance 160

The following Table 10.5 lists the results. The third column of the table contains
the relative differences (rounded to two decimal digits) when comparing the net
premium of the model to the net premium of the reference model MC1, the fourth
column lists the additional model complexity compared to MC1 and the fifth col-
umn is the premium difference divided by the additional complexity.

model πnet premium difference additional complexity ratio
KLD/AIC 23.46 -3.89% 16.86% -0.23
L1/AIC 22.50 -7.82% 31.31% -0.25
L1/BIC 23.37 -4.26% 14.35% -0.30
MC1 24.41 0.00% 0.00%
MC2 20.69 -15.24% 496.34% -0.03
MC3 18.36 -24.78% 3,455.50% -0.01
MC6 17.55 -28.10% 753,235.60% 0.00

Table 10.5: The net premiums πnet in Euro of the seven different models

As we see, the net premiums differ significantly. We can detect a trend: As the
model complexity increases, the amount the customer has to pay decreases, i.e.
πnet decreases. Here it is not the complexity of the complete model that is crucial,
but rather the complexity during the contract duration, i.e. at t = 792, ..., 803. In
the most complex model MC6 the insurance company would price the contract at
17.55 Euro, 28.10% cheaper than in the most expensive MC1-model, where a cus-
tomer would have to pay 24.41 Euro. At the ages 792, ..., 802 the tree heights of the
three tiVLMC-models KLD/AIC, L1/AIC and L1/BIC vary between one and two.
This harmonizes with their net premiums arranging themselves in between the
net premiums of the MC1- and MC2-model. If we choose e.g. the L1/AIC-model,
the higher model precision allows us to price the contract 7.82% cheaper com-
pared to the less precise MC1-model. The embedding full time-discrete Markov
process (over the complete time axis) MC3 of L1/AIC would yield a price decrease
of 24.78%, but L1/AIC is 96.31% less complex, cf. Table 10.2.
If we take a closer look at the fifth column of Table 10.5, we can see that it is
reasonable to accept the additional complexity of the tiVLMC-models because
this complexity increase significantly leads to the change in the premium. Adding
even more complexity by moving over to MC2, MC3 or even MC6, this effect
vanishes. This backs up the fact that a tiVLMC is complex where it is needed to
describe the dependency structure, while a full time-discrete Markov process is

10 The German long-term care insurance 161

just complex everywhere.
The contract we consider has a duration of one year, thus even a percentage dif-
ference in the single digit range is of practical relevance. As the contract duration
is increased to multiple decades, we expect the differences to grow as they pro-
create themselves.

10.4.4 Some prospective reserves

In each model we calculate the prospective reserves in each state x ∈ M , i.e. we
calculate

V792
(
x6
)
, V781

(
x7
)
, ..., V803

(
x17
)
. (10.3)

R-Code 10.3 is a continuation of R-Code 10.2 and shows how the calculations are
carried out for x = a in KLD/AIC.

#choose the net premium as the premium

payments <- paymentTree(pi.net)
#the prospective reserves for t.s, ..., t.e-1

V <- NULL
for (t in t.s:(t.e-1)) {

V <- rbind(V, calculateProspectiveReserve(past=past,
tau=tau, payments=payments,
interests=interests))

past <- c(past, "a")
tau <- tau[2:length(tau)]
payments <- payments[2:length(payments)]
interests <- interests[2:length(interests)]

}
#the prospective reserve for t.e

V <- rbind(V, calculateProspectiveReserve(past=past,
tau=NULL, payments=payments[2],
interests=NULL))

R-Code 10.3: Calculating the prospective reserve for an active insurance holder

10 The German long-term care insurance 162

We perform this calculation 6 · 7 = 42 times, once for each combination of one
of the six states and the seven models. As there are no payments in state d, it is
not necessary to calculate the prospective reserves for deceased insurance holders.
We still do, since it means no additional effort for us. Keeping the computational
environment unchanged, all the (simultaneously performed) runs took about 44
hours each. The following two Tables 10.6 and 10.7 list the calculated prospective
reserves (10.3) rounded to two decimal digits at the different ages for all models.

10 The German long-term care insurance 163

t

79
2

79
3

79
4

79
5

79
6

79
7

79
8

79
9

80
0

80
1

80
2

80
3

KLD/AIC

a
0.
00

20
.5
0

17
.3
9

13
.9
2

11
.6
0

8.
16

6.
24

4.
34

2.
08

1.
03

0.
31

0.
00

1
5,
01
9.
86

4,
64
6.
81

4,
28
7.
85

3,
93
9.
22

3,
57
5.
03

3,
18
8.
66

2,
77
0.
16

2,
25
9.
31

1,
81
7.
89

1,
38
6.
05

92
8.
50

46
8.
00

2
10
,8
32
.2
4

10
,0
80
.7
8

9,
40
0.
36

8,
73
9.
02

7,
81
3.
60

6,
94
2.
68

5,
96
3.
66

5,
17
2.
27

4,
21
9.
52

3,
22
7.
64

2,
21
7.
89

1,
14
4.
00

3
14
,3
85
.3
5

13
,2
32
.3
9

12
,2
17
.5
0

10
,9
76
.6
9

10
,3
13
.5
0

9,
15
6.
73

7,
80
2.
51

6,
74
0.
90

5,
58
4.
93

4,
56
6.
05

3,
10
9.
21

1,
61
2.
00

3h
20
,5
63
.4
9

18
,9
39
.8
6

17
,2
83
.7
6

15
,5
94
.5
4

13
,8
71
.5
3

12
,1
14
.0
6

10
,3
21
.4
4

8,
49
2.
97

6,
62
7.
93

4,
72
5.
58

2,
78
5.
20

1,
99
5.
00

d
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

L1/AIC

a
0.
00

19
.5
3

16
.4
1

13
.1
2

11
.0
1

7.
61

5.
70

3.
89

2.
05

0.
99

0.
31

0.
00

1
5,
00
1.
49

4,
62
7.
75

4,
26
7.
78

3,
91
8.
53

3,
55
5.
34

3,
17
4.
05

2,
75
4.
97

2,
25
9.
31

1,
81
7.
89

1,
38
6.
05

92
8.
50

46
8.
00

2
10
,8
22
.0
3

10
,0
70
.0
8

9,
39
3.
78

8,
73
1.
97

7,
80
6.
13

6,
93
4.
97

5,
95
5.
62

5,
17
2.
27

4,
21
9.
52

3,
22
7.
64

2,
21
7.
89

1,
14
4.
00

3
14
,3
85
.1
7

13
,2
32
.2
1

12
,2
17
.3
1

10
,9
76
.4
9

10
,3
13
.3
9

9,
15
6.
72

7,
80
2.
50

6,
74
0.
90

5,
58
4.
93

4,
56
6.
05

3,
10
9.
21

1,
61
2.
00

3h
20
,5
63
.4
9

18
,9
39
.8
6

17
,2
83
.7
6

15
,5
94
.5
4

13
,8
71
.5
3

12
,1
14
.0
6

10
,3
21
.4
4

8,
49
2.
97

6,
62
7.
93

4,
72
5.
58

2,
78
5.
20

1,
99
5.
00

d
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

L1/BIC

a
0.
00

20
.4
0

17
.2
9

13
.8
2

11
.5
0

8.
06

6.
13

4.
34

2.
08

1.
03

0.
31

0.
00

1
5,
01
7.
16

4,
64
4.
00

4,
28
4.
89

3,
93
6.
17

3,
57
1.
82

3,
18
5.
25

2,
77
0.
16

2,
25
9.
31

1,
81
7.
89

1,
38
6.
05

92
8.
50

46
8.
00

2
10
,8
32
.2
0

10
,0
80
.7
4

9,
40
0.
31

8,
73
8.
97

7,
81
3.
56

6,
94
2.
68

5,
96
3.
66

5,
17
2.
27

4,
21
9.
52

3,
22
7.
64

2,
21
7.
89

1,
14
4.
00

3
14
,3
85
.3
5

13
,2
32
.3
9

12
,2
17
.5
0

10
,9
76
.6
9

10
,3
13
.5
0

9,
15
6.
73

7,
80
2.
51

6,
74
0.
90

5,
58
4.
93

4,
56
6.
05

3,
10
9.
21

1,
61
2.
00

3h
20
,5
63
.4
9

18
,9
39
.8
6

17
,2
83
.7
6

15
,5
94
.5
4

13
,8
71
.5
3

12
,1
14
.0
6

10
,3
21
.4
4

8,
49
2.
97

6,
62
7.
93

4,
72
5.
58

2,
78
5.
20

1,
99
5.
00

d
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

Ta
bl
e
10
.6
:T

he
pr
os
pe

ct
iv
e
re
se
rv
es

of
an

in
su
re
d
re
m
ai
ni
ng

in
st
at
e
x
∈
M

ov
er

th
e
co
m
pl
et
e
co
nt
ra
ct

du
ra
tio

n
in

th
e
m
od

el
s

KL
D
/A

IC
,L

1/
AI
C
an

d
L1

/B
IC

10 The German long-term care insurance 164

t

79
2

79
3

79
4

79
5

79
6

79
7

79
8

79
9

80
0

80
1

80
2

80
3

MC1

a
0.
00

21
.5
0

17
.6
2

14
.1
9

11
.5
4

8.
11

6.
19

4.
40

2.
14

1.
08

0.
31

0.
00

1
4,
92
9.
31

4,
55
2.
84

4,
21
0.
96

3,
85
9.
92

3,
52
4.
36

3,
17
4.
42

2,
77
0.
19

2,
25
9.
35

1,
81
7.
89

1,
38
6.
05

92
8.
50

46
8.
00

2
10
,7
40
.7
3

9,
98
4.
88

9,
34
4.
96

8,
70
3.
83

7,
77
6.
01

6,
90
3.
22

5,
92
2.
14

5,
17
2.
28

4,
21
9.
52

3,
22
7.
64

2,
21
7.
89

1,
14
4.
00

3
14
,3
84
.4
7

13
,2
31
.4
8

12
,2
16
.5
4

10
,9
75
.7
0

10
,3
12
.9
7

9,
15
6.
73

7,
80
2.
51

6,
74
0.
90

5,
58
4.
93

4,
56
6.
05

3,
10
9.
21

1,
61
2.
00

3h
20
,5
63
.4
9

18
,9
39
.8
6

17
,2
83
.7
6

15
,5
94
.5
4

13
,8
71
.5
3

12
,1
14
.0
6

10
,3
21
.4
4

8,
49
2.
97

6,
62
7.
93

4,
72
5.
58

2,
78
5.
20

1,
99
5.
00

d
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

MC2

a
0.
00

18
.0
3

15
.0
4

12
.0
1

10
.1
0

7.
14

5.
37

3.
58

1.
91

0.
89

0.
30

0.
00

1
4,
95
4.
97

4,
63
1.
08

4,
26
8.
57

3,
89
9.
45

3,
53
5.
10

3,
15
6.
99

2,
72
3.
65

2,
24
5.
35

1,
82
0.
94

1,
38
8.
63

93
0.
90

46
8.
00

2
11
,2
11
.3
9

10
,4
81
.2
3

9,
78
8.
38

8,
96
8.
39

8,
00
3.
92

7,
06
7.
70

6,
05
6.
55

5,
28
9.
45

4,
29
5.
86

3,
24
3.
24

2,
22
8.
11

1,
14
4.
00

3
15
,0
38
.8
5

13
,6
95
.3
9

12
,5
20
.6
9

11
,3
00
.7
2

10
,5
40
.9
1

9,
28
4.
89

7,
93
9.
78

6,
83
3.
94

5,
71
2.
32

4,
61
9.
28

3,
17
0.
13

1,
61
2.
00

3h
20
,5
65
.4
3

18
,9
40
.8
2

17
,2
90
.6
1

15
,5
99
.2
0

13
,8
78
.1
2

12
,1
20
.0
9

10
,3
31
.3
2

8,
50
1.
90

6,
63
1.
82

4,
72
7.
56

2,
78
7.
27

1,
99
5.
00

d
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

MC3

a
0.
00

16
.4
1

13
.7
8

10
.7
7

9.
27

6.
33

4.
73

3.
26

1.
74

0.
82

0.
27

0.
00

1
4,
96
5.
03

4,
64
2.
80

4,
24
5.
82

3,
87
6.
66

3,
53
9.
06

3,
17
8.
50

2,
74
0.
75

2,
26
4.
92

1,
83
6.
00

1,
38
9.
15

93
1.
05

46
8.
00

2
11
,3
78
.8
3

10
,6
59
.9
1

9,
88
9.
20

8,
98
2.
05

8,
05
1.
23

7,
11
8.
39

6,
13
3.
64

5,
32
8.
55

4,
33
7.
59

3,
27
6.
66

2,
23
2.
13

1,
14
4.
00

3
15
,7
93
.8
1

14
,4
65
.4
5

13
,3
25
.4
4

12
,1
40
.4
2

10
,9
56
.6
5

9,
72
8.
38

8,
27
8.
71

7,
21
8.
45

5,
89
1.
87

4,
63
4.
11

3,
19
2.
39

1,
61
2.
00

3h
20
,6
12
.8
6

18
,9
73
.1
3

17
,3
21
.8
6

15
,6
21
.5
4

13
,9
65
.8
2

12
,1
70
.0
1

10
,3
50
.4
0

8,
52
1.
51

6,
63
9.
93

4,
73
9.
28

2,
79
0.
21

1,
99
5.
00

d
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

MC6

a
0.
00

13
.5
3

11
.2
5

9.
13

7.
69

5.
98

4.
81

2.
89

1.
84

0.
87

0.
22

0.
00

1
4,
97
6.
67

4,
63
0.
23

4,
22
2.
95

3,
85
5.
68

3,
52
4.
82

3,
14
7.
67

2,
74
3.
20

2,
26
7.
22

1,
83
7.
08

1,
38
9.
31

93
0.
34

46
8.
00

2
11
,6
97
.9
2

10
,8
78
.4
6

10
,0
12
.6
8

9,
15
1.
03

8,
18
1.
81

7,
22
3.
81

6,
22
1.
74

5,
33
0.
51

4,
34
8.
54

3,
29
0.
78

2,
24
8.
90

1,
14
4.
00

3
16
,4
05
.0
9

15
,0
88
.9
5

13
,9
91
.9
6

12
,6
27
.5
6

11
,2
93
.9
3

10
,0
97
.8
9

8,
65
5.
61

7,
43
2.
16

5,
93
6.
57

4,
72
6.
13

3,
19
2.
39

1,
61
2.
00

3h
20
,6
60
.1
6

19
,0
23
.8
6

17
,4
00
.6
0

15
,6
76
.0
4

14
,0
30
.9
2

12
,2
23
.1
8

10
,3
84
.3
8

8,
53
0.
39

6,
65
0.
01

4,
75
1.
23

2,
79
9.
63

1,
99
5.
00

d
0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

Ta
bl
e
10
.7
:T

he
pr
os
pe

ct
iv
e
re
se
rv
es

of
an

in
su
re
d
re
m
ai
ni
ng

in
st
at
e
x
∈
M

ov
er

th
e
co
m
pl
et
e
co
nt
ra
ct

du
ra
tio

n
in

th
e
m
od

el
s

M
C1

,M
C2

,M
C3

an
d
M
C6

10 The German long-term care insurance 165

It is hard to detect visual differences in the graphs of the prospective reserves
of the different models. Therefore we continue as follows: Figure 10.8 shows the
prospective reserves (10.3) for each state x ∈ M for the reference model MC1.
Since the basic shapes of the reserves are the same in all seven models, this gives
the reader a good first impression. Then we plot the relative differences in percent
of the prospective reserve in that state compared to the prospective reserve in
the reference model MC1 in the Figures 10.9-10.11. As it makes detecting trends
more easy, we connect two consecutive points with a straight line.

10 The German long-term care insurance 166

Figure 10.8: The prospective reserves in the MC1-model

10 The German long-term care insurance 167

Figure 10.9: The relative differences in the prospective reserves in a and 1
compared to the MC1-model

10 The German long-term care insurance 168

Figure 10.10: The relative differences in the prospective reserves in 2 and 3
compared to the MC1-model

10 The German long-term care insurance 169

Figure 10.11: The relative differences in the prospective reserves in 3h and d
compared to the MC1-model

10 The German long-term care insurance 170

The prospective reserve in state a of the L1/AIC-model at t = 799 is 11.59%
smaller compared to the MC1-model. This is the largest difference for any of the
three tiVLMC-models KLD/AIC, L1/AIC and L1/BIC. The largest difference be-
tween all seven models can also be found at t = 799: TheMC6-model’s prospective
reserve is 28.41% smaller than the prospective reserve in MC1.
In state 1 the largest difference of a tiVLMC-model is 2.06% and this is also the
largest difference among all seven models.
In state 2 the tiVLMC-models maximally differ 0.96%, while the largest overall
difference is much larger at 8.94%.
In state 3 or 3h there are no differences between the tiVLMC-models and MC1.
This is the case because in all of these four models 3 as well as 3h are leaves of
the context tree of the model. 3 is an internal node of the context tree of the
MC6-model and the prospective reserve of the MC6-model in 3 deviates an aston-
ishing 15.05% at t = 795 compared to MC1.
The maximal overall difference in state 3h is 1.15% for MC6 at t = 796.
Obviously there are no differences in state d.
As prospective reserves build the basis for the calculation of a net premium, cf.
Definition 9.12, the remark we made after the calculation of the net premiums
also applies here: If the contract duration is increased, the differences are expected
to grow since they will reproduce themselves over time.
Additionally, if we consider e.g. a contract running for multiple decades, aging will
play a more and more important role: The bandwidth of a transition probability
P̃t(x | w) increases as we increase the contract duration, i.e.

[
min
t∈T

P̃t (x | w) ,max
t∈T

P̃t (x | w)
]
⊆
[
min
t∈T ′

P̃t (x | w) ,max
t∈T ′

P̃t (x | w)
]

holds for T ⊆ T ′. Thus e.g. changes in morbidity due to getting older are of
greater impact in long-term contracts.
When we keep the contract duration constant, age still affects the prospective
reserves. In order to show how the prospective reserves behave as we change our
target group to older customers, assume that we now sell exactly the same con-
tract as before to customers that are ts = 864 months (72 years) old at contract
closure and that are thus six years older than our initial target group. Since the
following observation is the same for all models, we exemplarily focus on the
KLD/AIC-model here.

10 The German long-term care insurance 171

Figure 10.12: The influence of the age ts at contract closure in KLD/AIC

10 The German long-term care insurance 172

We calculate

V864
(
x6
)
, V865

(
x7
)
, ..., V875

(
x17
)

for all states x ∈ M . Figure 10.12 shows how the higher age at contract closure
affects the prospective reserves in each state. The prospective reserves are plotted
for both contract start times ts = 792 (black) and ts = 864 (blue).
The insurance holder who is six years older has to pay a net premium of 50.36
Euro at contract closure. This is more than double the net premium that an in-
surance holder who is 792 months old at contract start has to pay (23.46 Euro).
While the prospective reserves basically remain unchanged in the states where
the insurance pays out disability benefits, we can see that the prospective reserve
in state a is much larger. This fits our intuition: If an insured gets disabled, i.e.
transits into 1, 2, 3 or 3h, the increased age of six years has no significant effect
on the future health development. E.g. we do not expect a 72-year-old person to
have drastically different chances of e.g. recovering or dying compared to a 66-
year-old insurance holder. Thus the corresponding prospective reserves are very
similar. But in fact we do expect that an active 72-year-old insurance holder has
a much higher probability of getting disabled in the first place compared to an
active 66-year-old one. Thus the reserve in state a is larger for the older insurance
holder and this causes the increase of the net premium.

11 Interpreting a tiVLMC-model 173

11 Interpreting a tiVLMC-model
Because of their high flexibility, tiVLMC can represent complex dependency struc-
tures. If we fix a certain time t, visualizing the dependency structure at that time
by looking at a context tree is a nice and clear way to interpret the tiVLMC-model.
But, when varying the time t, one ends up with an extensive list of context trees,
cf. Figures B.1-B.43, and in many cases keeping track of the development of the
dependency structure gets quite hard. Here methods which allow an easier inter-
pretation of the dependency structure are needed.
A tiVLMC-model gets easier to interpret and easier to explain to a potential cus-
tomer if the movement of the estimated context trees over time is reduced, i.e. if
the context trees at time points t change less often or change in a more “contin-
uous” fashion. Graphically this translates to smoothing the vertical context tree
movement plots, cf. e.g. Figure 10.4.
Within this chapter we will therefore develop different techniques that allow us to
smoothen trained tiVLMC-models. In the first subchapter Chapter 11.1 we intro-
duce “break-point-tiVLMC”-models and the concept of supertrees. Using these
tools we continue by motivating and constructing “moving-average-tiVLMC”-
and “LASSO-tiVLMC”-models, two different smoothing approaches.

11.1 Break-point-tiVLMC

An important concept for the simplification of tiVLMC-models is what we call
the supertree:

Definition 11.1. For a set of times T ⊆ {1, ..., T − 1} and trees {τr : r ∈ T }
let τ super

T be the unique tree for which

τr 4 τ super
T

holds for all r ∈ T and for any other T with τr 4 T for all r ∈ T it is implied
that

τ super
T 4 T .

If T = {l, ..., k} for two times 1 ≤ l ≤ k ≤ T − 1, we also write τ super
l:k := τ super

T .

11 Interpreting a tiVLMC-model 174

In words, τ super
l:k is the smallest tree including (w.r.t. the relation 4 defined in

Definition 4.6) all context trees τl, ..., τk.

Example 11.2. The supertree τ̃ super
727:885 of the AIC-tuned tiVLMC fitted using the

Kullback-Leibler divergence in Chapter 10.3, i.e. the smallest tree that includes
all context tree estimates τ̃727, ..., τ̃885, is plotted in the following Figure 11.1.

Figure 11.1: The supertree of the AIC-tuned tiVLMC-model trained on the
data.signal data set using measure="KLD"

It happens that this is also the supertree of the BIC-tuned tiVLMC using the
Kullback-Leibler divergence or using the L1-norm.

Since the supertree τ super
1:T−1 includes every context tree at time t = 1, ..., T − 1, it

is a good visualization of the overall dependency structure of a data-generating
tiVLMC. However, at a fixed t, the supertree might be considerably larger than
the true context tree at that time and thus it might be a harsh simplification.
What one can observe in practice is that in some cases the context trees do not
vary with every step from time t to time t + 1 but rather only vary at some
“break points”. If the context trees vary, they often preserve certain properties,
e.g. the height of the context tree might stay the same or they only differ at
certain branches. In such cases there is a good chance that trading a part of the
model precision for a better interpretability of the model fit is beneficial to the
practitioner.
We can trade model precision for interpretability by limiting the number of con-
text tree changes to a chosen integer 0 ≤ k ≤ T − 2. Between the break points
we use the supertree of the estimated context trees as a replacement for the esti-
mated context tree itself, since it is the smallest tree capable of representing the
complete dependency structures of the tiVLMC on the time segments defined by
the break points. For k = 0 one ends up with only one context tree, the supertree

11 Interpreting a tiVLMC-model 175

τ̃ super
1:T−1 for the complete time axis. For k = T − 2 one ends up with the originally
estimated context tree τ̃ , since τ̃ super

l:l = τ̃l, 1 ≤ l ≤ T − 1. For 1 ≤ k ≤ T − 3, e.g.
we can calculate the break points

1 ≤ bAIC
1 < ... < bAIC

k ≤ T − 2

or
1 ≤ bBIC

1 < ... < bBIC
k ≤ T − 2

by solving

(
bAIC

1 , ..., bAIC
k

)
= arg min

(b1,...,bk):
1≤b1<...<bk≤T−2

AIC (CAIC; b1, ..., bk) (11.1)

or

(
bBIC

1 , ..., bBIC
k

)
= arg min

(b1,...,bk):
1≤b1<...<bk≤T−2

BIC (CBIC; b1, ..., bk) (11.2)

respectively. Recall that

AIC (CAIC; b1, ..., bk) =− 2 logL (τ̃ super(b1, ..., bk))

+ 2(m− 1)
T−1∑
t=1
|τ̃ super(b1, ..., bk)t|,

BIC (CBIC; b1, ..., bk) =− 2 logL (τ̃ super(b1, ..., bk))

+ log n · (m− 1)
T−1∑
t=1
|τ̃ super(b1, ..., bk)t|

as proposed in Chapter 6.3. Instead of evaluating the information criteria using
the usual estimated context tree

τ̃ = (τ̃1, ..., τ̃T−1)

output by Algorithm 5.6, the segment-wise supertree τ̃ super(b1, ..., bk) is used:

Definition 11.3. For 1 ≤ k ≤ T − 3, break points 1 ≤ b1 < ... < bk ≤ T − 2 and
a context tree τ = (τt)1≤t≤T−1 we define the segment-wise supertree by

11 Interpreting a tiVLMC-model 176

τ super(b1, ..., bk) :=
(
τ super

1:b1 , ..., τ super
1:b1︸ ︷︷ ︸

b1-times

, τ super
b1+1:b2 , ..., τ

super
b1+1:b2︸ ︷︷ ︸

(b2−b1)-times

, ...,

τ super
bk−1+1:bk

, ..., τ super
bk−1+1:bk︸ ︷︷ ︸

(bk−bk−1)-times

, τ super
bk+1:T−1, ..., τ

super
bk+1:T−1︸ ︷︷ ︸

(T−1−bk)-times

)
.

Switching over to the sequence τ̃ super
(
bAIC

1 , ..., bAIC
k

)
or τ̃ super

(
bBIC

1 , ..., bBIC
k

)
of

supertrees, which coordinate-wise always include the estimated context tree, the
likelihood of the model increases. Since the supertrees are larger than the esti-
mated context trees, the model complexity also increases.
The relation 4 implies a partial order onto the set of tree sequences of the same
length:

Definition 11.4. For T ⊆ {1, ..., T − 1} we call the sequence τ = (τt)t∈T of sets
smaller than or equal to the sequence T = (Tt)t∈T of sets, written τ 4 T , if

τt 4 Tt

holds for all t ∈ T .

Note that we do not introduce a new symbol for the relation between two tree
sequences, since it is always clear from the context whether single trees at a fixed
time or complete sequences are compared.
Using the segment-wise supertree instead of the estimated context tree τ̃ output
by Algorithm 5.6 obviously always yields a tree sequence that includes the true
data-generating context tree.

Theorem 11.5. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC with
state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X, censored by

censoring variables J1
1:T = j1

1:T , ..., J
n
1:T = jn1:T that satisfy (H.1)-(H.5), and τ̃ is

the output of Algorithm 5.6,

lim
n→∞

P (τt 4 τ̃ super(b1, ..., bk)t) = 1

11 Interpreting a tiVLMC-model 177

holds for all 1 ≤ t ≤ T−1 and for arbitrary break points 1 ≤ b1 < ... < bk ≤ T−2,
0 ≤ k ≤ T − 2.

Proof of Theorem 11.5. Choose arbitrary break points 1 ≤ b1 < ... < bk ≤ T − 2,
0 ≤ k ≤ T −2. Fix a time t, 1 ≤ t ≤ T −1. Since the break points b1, ..., bk induce
the partition

{1, ..., b1}, {b1 + 1, ..., b2}, ..., {bk−1 + 1, ..., bk}, {bk, ..., T − 1}

of {1, ..., T − 1}, there exists a unique index 0 ≤ k0 ≤ T − 2 such that

bk0 + 1 ≤ t ≤ bk0+1,

where we define b0 := 0 and bT−1 := T − 1. Then it holds per definition that

τ̃t 4 τ̃ super
bk0+1:bk0+1

.

Therefore, by applying Corollary 5.9,

lim
n→∞

P
(
τt = τ̃t 4 τ̃ super

bk0+1:bk0+1

)
= lim

n→∞
P (τt 4 τ̃ super(b1, ..., bk)t) = 1.

Since t was arbitrary, this holds for all t.

For fixed break points 1 ≤ b1 < ... < bk ≤ T − 2, 0 ≤ k ≤ T − 2, the estimated
segment-wise supertree τ̃ super(b1, ..., bk) is the smallest tree sequence asymptoti-
cally including the true context tree. I.e. any other estimator T is either under-
estimating or unnecessarily large. We put this on record:

Proposition 11.6. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC
with state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X, censored by

censoring variables J1
1:T = j1

1:T , ..., J
n
1:T = jn1:T that satisfy (H.1)-(H.5), and τ̃ is

the output of Algorithm 5.6,

lim
n→∞

P (τt 4 Tt) = 1

11 Interpreting a tiVLMC-model 178

holds for all 1 ≤ t ≤ T − 1 and for break points 1 ≤ b1 < ... < bk ≤ T − 2,
0 ≤ k ≤ T − 2 if and only if

τ̃ super(b1, ..., bk) 4 T .

Proof of Proposition 11.6.
“⇐”:
By Theorem 11.5 it is implied that

lim
n→∞

P (τt 4 τ̃ super(b1, ..., bk)t) = 1

holds. If τ̃ super(b1, ..., bk) 4 T , we therefore have

1 ≥ lim
n→∞

P (τt 4 τ̃ super(b1, ..., bk)t 4 Tt) = 1

and thus
lim
n→∞

P (τt 4 Tt) = 1.

“⇒”:
We prove this claim by contraposition. If τ̃ super(b1, ..., bk) 4 T does not hold, per
definition there has to exist at least one time 1 ≤ t0 ≤ T − 2 such that

τ̃ super(b1, ..., bk)t0 4 Tt0

is violated. Since the break points b1, ..., bk induce the partition

{1, ..., b1}, {b1 + 1, ..., b2}, ..., {bk−1 + 1, ..., bk}, {bk, ..., T − 1}

of {1, ..., T − 1}, there exists a unique index 0 ≤ k0 ≤ T − 2 such that

bk0 + 1 ≤ t0 ≤ bk0+1,

where we again define b0 := 0 and bT−1 := T − 1. Since τ̃ super(b1, ..., bk) does not
change within the time interval from bk0 + 1 to bk0+1 and since the estimated
supertree τ̃ super

bk0+1:bk0+1
is the smallest tree including the estimated context trees

τ̃bk0+1, ..., τ̃bk0+1 , there must exist a time bk0 + 1 ≤ t1 ≤ bk0+1 for which

τ̃t1 4 Tt1

11 Interpreting a tiVLMC-model 179

is violated, i.e. particularly τ̃t1 6= Tt1 holds. Corollary 5.9 implies

lim
n→∞

P (τ̃t1 = τt1) = 1

and thus
lim
n→∞

P (τ̃t1 4 Tt1) = 0

which completes the proof.

Summarized, Theorem 11.5 and Proposition 11.6 prove that the segment-wise
supertree is the smallest tree sequence among all tree sequences which only
changes its tree k times at the given break points while being capable of display-
ing the complete dependency structure of the underlying tiVLMC. This justifies
the choice of the segment-wise supertree for simplification purposes.
Note that, since Algorithm 5.6 outputs a consistent estimator for every cutoff
value C > 0, Corollary 11.5 and Proposition 11.6 do also not require any further
restrictions on the cutoff. In particular

lim
n→∞

P
(
τt 4 τ̃ super

(
bAIC

1 , ..., bAIC
k

)
t

)
= 1

and
lim
n→∞

P
(
τt 4 τ̃ super

(
bBIC

1 , ..., bBIC
k

)
t

)
= 1

hold for 1 ≤ t ≤ T − 1 and this justifies the approach presented in (11.1) and
(11.2) respectively.

11.2 Moving-average-tiVLMC

Instead of calculating the k optimal (with regards to e.g. AIC or BIC as pro-
posed in above Chapter 11.1) time points for a given k where the tiVLMC-fit
is allowed to change its context tree, one can also consider different approaches
on how to limit the movement of the estimated context tree in order to simplify
interpretation. In this chapter we are going to construct the concept of ”moving-
average-tiVLMC“ as an alternative to break-point-tiVLMC.
The idea of moving-average-tiVLMC is to modify Algorithm 5.6 in order to step
away from the “pointwise” setup only considering one time point t within the
pruning decision at step two of the algorithm and rather include more than one
time point into the decision process. This can be done via a generalization of the

11 Interpreting a tiVLMC-model 180

censored time-sensitive pruning measure, cf. Definition 5.5.

Definition 11.7. For 1 ≤ t ≤ T , wu ∈ M1:t, where u ∈ M and Ñr+(w) > 0 for
r ∈ Tt, we define the weighted time-sensitive pruning measure

∆̇t(wu) :=
∑
r∈Tt

gr∆̃r(wu),

where Tt ⊆ {1, ..., t} is a set of time points with t ∈ Tt and (gr)r∈Tt
∈ R|Tt|

>0 are
positive weights.

For Tt = {t} and gt = 1 the weighted time-sensitive pruning measure ∆̇t(wu)
equals the censored time-sensitive pruning measure ∆̃t(wu).
Definition 11.7 enables us to include more than only the current time t into the
pruning decision. Thus we can account for the intuitive idea that not only the
information at time t, but also the information at other (recent) times is bene-
ficial knowledge for the pruning decision. By the choice of weights e.g. one can
calibrate the model fitting in a way that time points farther away in the past are
less emphasised than more recent times. This concept has some characteristics
in common with the statistical principle known under “borrowing strength“ that
was originated by John W. Tukey, cf. Wilder (2002, page 196). If one tries to
estimate the parameters of a distribution, an example of borrowing strength is
the following: Prior knowledge of one parameter will be beneficial to the purpose
of estimating the others. The borrowing strength principle is most common in
the mathematical discipline of empirical Bayes estimation, e.g. cf. Morris (1983)
and Consonni and Veronese (1995).
Another very important motivation for Definition 11.7 and for moving-average-
tiVLMC in general is that they allow us to include external information. E.g.
assume that a legislator issues a new regulation on data privacy that requires
local companies not to consider and/or delete any information about their cus-
tomers older than a fixed threshold. Now we could account for such regulations by
only considering times up to this threshold in our weighted-time-sensitive prun-
ing measure. In the presence of the General Data Protection Regulation (GDPR)
issued by the European Parliament in 2016, cf. European Parliament (2016), such
considerations are of high relevance. E.g. researchers have just recently started to
commit themselves to the question of which challenges the life insurance industry
will have to face in an environment of (deliberately) non-complete information,
cf. Christiansen and Furrer (2020).

11 Interpreting a tiVLMC-model 181

Now we present the fitting algorithm for moving-average-tiVLMC that is based
on Definition 11.7:

Algorithm 11.8.
Input: X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T , J1

1:T = j1
1:T , ..., J

n
1:T = jn1:T , a cutoff C > 0,

an integer nmin ∈ N, a time point set Tt ⊆ {1, ..., t} with t ∈ Tt and a vector of
weights (gr)r∈Tt

for every 1 ≤ t ≤ T − 1

For t = 1, ..., T − 1 do:
Step 1: Tree growing
Construct the maximal terminal node context tree τ t

max such that

w ∈ τ t
max ⇒ Ñt+(w) ≥ nmin

and

∀τ t
t with w ∈ τ t

t ⇒ Ñt+(w) ≥ nmin it holds that τ t
t 4 τ t

max.

Set τ t
(0) := τ t

max.

Step 2: Leaf pruning
Examine every element wu ∈ τ t

(0), u ∈M , as follows:
Prune wu down to w if

∆̇t(wu) < C
√
n log n,

else do nothing.
This yields a smaller or equally sized tree τ(1) 4 τ t

(0).

Step 3: Stopping criterion
Repeat Step 2 with τ t

(i) instead of τ t
(i−1) until τ(i+1) and τ t

(i) are equally
sized. Denote this maximally pruned context tree τ̇t.

Output: τ̇ := (τ̇t)1≤t≤T−1

Mathematically, the set Tt and the weights {gr}r∈Tt
in combination form a

smoothing kernel at a given time point t. Then the shape of the kernel is taken
into account by calculating the weighted time-sensitive pruning measure as an

11 Interpreting a tiVLMC-model 182

average of the censored time-sensitive pruning measure. As the time passes by,
this averaging procedure/the kernel “moves”. This is where the name moving-
average-tiVLMC has its origin. E.g. one could use a triangle as the kernel and
choose Tt = {t − 2, t − 1, t} and gt−2 = 1

3 , gt−1 = 2
3 , gt = 1 as the weights.

One can also include future time points into the smoothing and use a discretized
Gaussian-bell-shape as the kernel. We are going to apply different combinations
of weights and time point sets to real life data in the following Chapter 12.
We also want to mention that the time point sets and corresponding weights im-
ply a pointwise nesting property: When using the same time point set, smaller
weights yield a smaller weighted time-sensitive pruning measure and therefore
yield to more pruning in step two of above Algorithm 11.8. Thus the estimated
context tree calculated with smaller weights will be included in the larger esti-
mated context tree that was obtained by using bigger weights.

Corollary 11.9. For a fixed time t, 1 ≤ t ≤ T −1, let τ̇t be the estimated context
tree at t output by Algorithm 11.8 using the time point set Tt and weights (gr)r∈Tt

and let τ̇ ′t be the estimated context tree at t output using the same time point set
but different weights (g′r)r∈Tt

.
If gr ≤ g′r for all r ∈ Tt, it holds that τ̇t 4 τ̇ ′t.

A moving-average-tiVLMC-fit always asymptotically contains the true model.
But, as we will see in the following and as it is also the case for break-point-
tiVLMC, moving-average-tiVLMC overestimate the true context trees in certain
situations.

Theorem 11.10. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC with
state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X, censored by

censoring variables J1
1:T = j1

1:T , ..., J
n
1:T = jn1:T that satisfy (H.1)-(H.5), and τ̇ is

the output of Algorithm 11.8,

lim
n→∞

P (τt 4 τ̇t) = 1

holds for all 1 ≤ t ≤ T − 1.

11 Interpreting a tiVLMC-model 183

Proof of Theorem 11.10. Fix t. To prove the claim, we have to show that the
probability of underestimating the true context tree τt at t vanishes as the ob-
servation size n diverges to infinity. Underestimation takes place if and only if
there exists a leaf wu ∈ τt, u ∈ M , of the true context tree which is not part of
the estimated context tree, i.e. w ∈ τ̇ t

t . As we have already proven, the pointwise
probability in t of underestimation goes to zero as n → ∞, cf. Corollary 5.9.
Hence there exists a threshold integer n0 ∈ N such that

∆̃t(wu) ≥ C
√
n log n

holds for all n ≥ n0. Then there must also exist a threshold integer n1 ∈ N0 such
that

gt∆̃t(wu) ≥ C
√
n log n (11.3)

for all n ≥ n1. Additionally, the frequency counter Ñr+(wu) as well as the
Kullback-Leibler divergence D

[
P̃r(·|wu)||P̃r(·|w)

]
and the weight gr are non-

negative for arbitrary 1 ≤ r ≤ T − 1 and thus

gr∆̃r(wu) ≥ 0

holds. Combining this yields

∆̇t(wu) = gt∆̃t(wu) +
∑

r∈Tt\{t}
gr∆̃r(wu) ≥ gt∆̃t(wu) ≥ C

√
n log n (11.4)

for all n ≥ n1 and therefore the probability of underestimation converges to zero
with increasing observation size.

However, as it is the case for break-point-tiVLMC-models, cf. Theorem 11.5, one
cannot generally ensure that a moving-average-tiVLMC-model does not overfit.
More precisely: We will see that the context tree estimator output by Algorithm
11.8 overfits at the time t if and only if the true context tree τt at t is not the
supertree τ super

Tt
of the trees {τr : r ∈ Tt}.

Theorem 11.11. Let X = (Xt)1≤t≤T ∈ P0:T−1 with T ≥ 2 be a tiVLMC with
state space M of cardinality 2 ≤ m < ∞ and (unknown) context tree τ . If
X1

1:T = x1
1:T , ..., X

n
1:T = xn1:T are n independent observations of X, censored by

11 Interpreting a tiVLMC-model 184

censoring variables J1
1:T = j1

1:T , ..., J
n
1:T = jn1:T that satisfy (H.1)-(H.5), and τ̇ is

the output of Algorithm 11.8,

lim
n→∞

P (τ̇r 4 τr) = 1

holds for t, 1 ≤ t ≤ T − 1, if and only if

τ super
Tt

= τt.

Proof of Theorem 11.11.
“⇒”:
Fix t. We prove the claim via contraposition. Let τ super

Tt
6= τt. Since t ∈ Tt, it

holds by Definition 11.1 that
τt 4 τ super

Tt
.

Thus there exists (at least) one tree τt0 with t0 ∈ Tt\{t} that possesses (at least)
one leaf wu ∈ τ t

t0 , u ∈M1:t that is not a leaf of τt:

w ∈ τ t
t .

Now the consistency result Corollary 5.9 implies that eventually

∆̇t(wu) ≥ gt0∆̃t0(wu) ≥ C
√
n log n

as n→∞ (as in (11.4)), thus wu ∈ τ̇t. Hence

lim
n→∞

P (τ̇t 4 τt) = 0.

“⇐”:
Fix t. Let w ∈ τ t

t be a leaf of τt and u ∈M . Then wu /∈ τ t
t and thus especially

wu /∈ τ super
Tt

.

Therefore it follows that
wu /∈ τ t

r

for all r ∈ Tt. Hence the consistency result Corollary 5.9 states that

∆̃r(wu) = O
(√

n log log n
)

11 Interpreting a tiVLMC-model 185

for all r ∈ Tt and therefore

∆̇t(wu) = O
(
|Tt|

√
n log log n

)
= O

(√
n log log n

)
.

It immediately follows that the probability of wu ∈ τ̇ t
t in fact does vanish as

n→∞ by copying the arguments of the proof of Theorem 5.8.
This completes the proof.

In R we can fit moving-average-tiVLMC-models using the estimateMovingAver-
ageTau-function displayed in R-Code 11.1.
This function is very similar to the estimateTau-function presented in R-Code
7.1 in Chapter 7.1. The only key difference is that instead of the censored time-
sensitive pruning measure the weighted time-sensitive pruning measure has to be
calculated, cf. Definitions 5.5 and 11.7. To do so, at a fixed time t, we aggregate
the criticalCutoff-attributes of each node while taking the time point set Tt and
the corresponding vector of weights (gr)r∈Tt

into account.
The user inputs the time point sets as a list of vectors via the time.sets-input and
the weights as a list of vectors via the weight.sets-input. We exemplarily demon-
strate the handling of estimateMovingAverageTau in Chapter 12.3, where we fit
different moving-average-tiVLMC-models to a real life data set documenting joint
life insurance contracts.

estimateMovingAverageTau <- function(data, ties=NULL, time.sets,
weight.sets, from=NULL, to=NULL,
nmin=2, max.length=NULL,
cutoff, measure, log.like=F) {

#extracts the state space from the data, NA aka censoring is

#not considered a state

alphabet <- na.omit(unique(c(data)))
#throw an error if one state is labled "e"

if ("e" %in% alphabet) {
stop("e is not an allowed state name as it denotes the empty

string! Rename e within the data.")
}
#ties is an optional argument with default value NULL

11 Interpreting a tiVLMC-model 186

#throw an error if the frequencies of the observations do not

#match the number of the observations

if ((length(ties) != dim(data)[1]) & (!is.null(ties))) {
stop("length(ties) and dim(data)[1] have to be equal!")

}
#from is an optional argument with default value one

if (is.null(from)) from <- 1
#to is an optional argument with the latest time possible as

#default

if (is.null(to)) to <- dim(data)[2]-1
#in this list the tau at t will be saved

tau <- list()
#number of observations

nobs <- dim(data)[1]
#calculates tau.max at all time points by calling the

#estimateTau-function with calculate.tau=F

tau.max <- estimateTau(data=data, ties=ties, from=from, to=to,
nmin=nmin, max.length=max.length,
cutoff=cutoff, measure=measure,
log.like=log.like,
calculate.tau=F)$tau.max

#we calculate the criticalCutoff-attribute for each node of

#each tau.max at t

for (time in from:to) {
tau.max[[time]]$Do(function(node) {node$criticalCutoff <-

calculatePruningMeasure(node, measure)})
}
#we aggregate the criticalCutoff-attribute with regards to the

#time point sets and weights

for (time in from:to) {
#fetch the time points considered

times <- time.sets[[time]]
#fetch the corresponding weights

weights <- weight.sets[[time]]
#renew the criticalCutoff of every node by aggregating the

#weighed criticalCutoffs of the node at all time points

tau.max[[time]]$Do(function(node) {

11 Interpreting a tiVLMC-model 187

D <- 0
for (i in 1:length(times)) {

t <- times[i]
w <- weights[i]
d <- Navigate(tau.max[[t]],

path=node$path[2:length(node$path)])$criticalCutoff
d <- ifelse(is.null(d), 0 , d)
D <- D + d*w

}
node$aggregatedCriticalCutoff <- D

})
}
for (time in from:to) {

tau.max[[time]]$Do(function(node) {
node$criticalCutoff <- node$aggregatedCriticalCutoff
node$RemoveAttribute("aggregatedCriticalCutoff")

})
}
#obtain the estimator by pruning tau.max using the aggregated

#critical cutoffs

K <- cutoff*sqrt(nobs*log(nobs))
for (time in from:to) {

tau[[time]] <- Clone(tau.max[[time]])
Prune(tau[[time]], function(child) child$criticalCutoff>=K)

}
#if log.like is true, we perform the calculation of the

#loglikelihood function

log.like <- ifelse(isTRUE(log.like),
calculateLogLikelihood(data=data, ties=ties,

tau=tau), NA)
#we calculate the model complexity of the fitted tiVLMC

model.complexity <- calculateModelComplexity(alphabet=alphabet,
tau=tau)

#we save the estimated tau, the tau.max, the call, the

#model complexity and the value of the loglikelihood function

estimate <- list(call=match.call(), tau=tau, tau.max=tau.max,
model.complexity=model.complexity,

11 Interpreting a tiVLMC-model 188

log.like=log.like)
return(estimate)

}

R-Code 11.1: The estimateMovingAverageTau-function

In the formulation of Theorem 11.10 and Theorem 11.11, each vector (gr)r∈Tt
of

weights at a time 1 ≤ t ≤ T − 1 has to be a deterministic element of R|Tt|
>0 . But,

if certain conditions are met, we cannot only allow the weights to be random
variables but they can even be allowed to vary with the different nodes that are
under consideration for pruning (and not only vary with the time t). E.g. this
allows for weights that, at every time point t, take the observation size Ñt+(wu)
into respect, when evaluating whether the leaf wu, u ∈ M , should be pruned
down to w or whether it should not. We state and prove this within the scope of
the following Theorem 11.12.

Theorem 11.12. If one sets

gr :=
√
n log n√

Ñr+(wu) log Ñr+(wu)

as the input of Algorithm 11.8, Theorem 11.10 and Theorem 11.11 remain true.

Proof of Theorem 11.12. We start by proving that underestimation does not oc-
cur, i.e. by confirming Theorem 11.10. Fix t. Let wu ∈ τ t

t , u ∈M , be a leaf of the
true context tree. With the same arguments as in the proof of Theorem 11.10 we
get the existence of a threshold integer n0 ∈ N such that

∆̃t(wu) ≥ C
√
n log n

holds for all n ≥ n0. Since naturally

Ñt+(wu) ≤ n

and therefore
C
√
Ñt+(wu) log Ñt+(wu) ≤ C

√
n log n,

11 Interpreting a tiVLMC-model 189

it immediately follows that

gt∆̃t(wu) ≥ C
√
n log n

for an even smaller threshold integer n1 ∈ N0. The claim that we do not under-
estimate now follows directly by reusing the remaining arguments of the original
proof of Theorem 11.10.
To finish the proof of this theorem we need to show that Theorem 11.11 stays
true.
“⇒”:
Since Ñt0+(wu) ≤ n, we have

C
√
Ñt0+(wu) log Ñt0+(wu) ≤ C

√
n log n.

Thus it follows that if
∆̃t0(wu) ≥ C

√
n log n

holds,

∆̃t0(wu) ≥ C
√
Ñt0+(wu) log Ñt0+(wu) (11.5)

is also true and, by rearranging, hence

gt0∆̃t0(wu) ≥ C
√
n log n.

Thus it follows analogously to the proof of Theorem 11.11 that we will eventually
overestimate as n→∞, i.e. that

wu ∈ τ̇ t
t .

“⇐”:
Fix t. Let w ∈ τ t

t be a leaf of τt and u ∈ M . As argumented in the proof of
Theorem 5.8, we can write

Ñr+(wu) = nPr(wu)jr(w) + r

with r = O(
√
n log log n). Therefore

11 Interpreting a tiVLMC-model 190

√
Ñr+(wu) log Ñr+(wu)

=
√

(nPr(wu)jr(w) + r) log (nPr(wu)jr(w) + r)

=
√
nPr(wu)jr(w) log (nPr(wu)jr(w) + r) + r log (nPr(wu)jr(w) + r)

=O (n log n).

Since
gr∆̃r(wu) < C

√
n log n

is equivalent to

∆̃r(wu) < C
√
Ñr+(wu) log Ñr+(wu), (11.6)

it follows analogously to the proof of Theorem 11.11 that the probability that
wu ∈ τ̇ t

t vanishes as n→∞.

The rationale behind the weights specified in above Theorem 11.12 is as follows:
Assume wu and vx with u, x ∈ M are two leaves that are under consideration
for pruning at the time r. Further assume that both, wu as well as vx, carry
the same amount of information when measured with the censored time-sensitive
pruning measure, i.e.

∆̃r(wu) = ∆̃r(vw).

At the same time one leaf, w.l.o.g. let it be wu, is observed more frequently than
the other in the sense that

Ñr+(wu) > Ñr+(vx) (11.7)

holds. This difference is not reflected in the pruning decision, since for both leaves
we base our pruning decision on exactly the same inequality

∆̃r(wu) = ∆̃r(vx) < C
√
n log log n.

By using the weights defined in Theorem 11.12 we now base our pruning decision
on whether

∆̃r(wu) < C
√
Ñr+(wu) log Ñr+(wu)

and
∆̃r(vx) < C

√
Ñr+(vx) log Ñr+(vx)

11 Interpreting a tiVLMC-model 191

are true or not for wu and vx respectively, cf. the two equations (11.5) and (11.6).
Now the different frequency counts are taken into consideration: Since (11.7)

C
√
Ñr+(vx) log Ñr+(vx) < C

√
Ñr+(wu) log Ñr+(wu)

also holds and thus we require less information from the less observed leaf vx
compared to wu in order to keep it in our estimate. Since wu was observed more
frequently, we expect our measurement of information to be more significant/ro-
bust: The probability of underestimating the information gained by keeping wu
instead of only w is expected to be decreasing. This allows us to tighten up the
threshold in our pruning decision.

11.3 LASSO-tiVLMC

Instead of directly including a smoothing step into Algorithm 5.6, as we did in
Algorithm 11.8 in Chapter 11.2, one can also perform smoothing as an addi-
tional post-processing procedure, e.g. within the tuning process of the algorithm.
Transferring the principle idea of the LASSO to the setting of tiVLMC seems like
a promising approach. LASSO stands for “Least Angle Shrinkage and Selection
Operator” and is a feature selection technique mainly developed by and in Tib-
shirani (1996): Simply said, the LASSO chooses the most relevant predictors to
explain a dependent variable from a set of potential predictors, yielding a model
fit. Mathematically, the LASSO chooses the vector βLASSO of model coefficients
as the solution of the minimization problem

min
β

MSE(β) + λ‖β‖L1,

where λ > 0 is a tuning parameter and MSE denotes the mean squared error.
Due to the angularity of L1-level sets, using the LASSO-penalty

‖β‖L1

favours model coefficients valued zero, therefore excluding the corresponding pre-
dictor from the model fit and hence performing feature selection.
We utilize the idea of the LASSO by transferring it to the concept of break-point-
tiVLMC, cf. Chapter 11.1. Instead of letting the LASSO decide on whether to
keep or exclude a predictor variable in the model fit, we let it decide at which
of all the potential time points the context tree of the tiVLMC-fit is allowed

11 Interpreting a tiVLMC-model 192

to change. In this way a break-point-tiVLMC-fit is obtained, but in contrast to
the original break-point-tiVLMC-concept, there is no need to pre-determine the
number k of allowed context tree changes any more. To do so, we introduce an
(T − 1)-dimensional binary index vector

b = (b1, ..., bT−1).

The t-th coordinate
bt := 1(τ̃t 6= τ̃t+1)

indicates whether the estimated context tree changes from t to t + 1 or whether
it does not. Then we tune Algorithm 5.6 by choosing the cutoff CLASSO given by

CLASSO = arg min
C>0

Loss(C) + f(C)‖b‖L1 ,

thereby balancing the goodness of fit and the movement in the context tree. Small
values of the cutoff C yield more complex tiVLMC-fits. Therefore, not necessarily
but most likely, the number of tree changes ‖b‖L1 increases as C decreases. Thus
the function f should be monotonically decreasing in C to penalize an increasing
number of tree changes. Possible choices for the loss function Loss are the negative
estimated log-likelihood function − logL, cf. (6.2), or the mean squared error
MSE.
Note that every possible cutoff value corresponds to one tiVLMC-fit, i.e. the
candidate set of models is the same in this LASSO-approach as it is in the original
one. We just choose the cutoff differently. Hence models that are not part of this
candidate set cannot be the result of this post-processing procedure. This is a
difference compared to the moving-average-tiVLMC presented in Chapter 11.2:
As a direct consequence of the short remark after Definition 11.7 the candidate
set of all moving-average-tiVLMC is (arbitrarily) larger.
The output of this approach is a break-point-tiVLMC-model where the break
points are implicitly given by the binary index vector bLASSO corresponding to
the model fitted with the cutoff CLASSO. E.g. the indicator vector

bLASSO = (0, 0, 1, 0, 0, 1)

would imply two break points at times 3 and 6, the fitted model therefore having

(τ̃ super
1:3 , τ̃ super

1:3 , τ̃ super
1:3 , τ̃ super

4:6 , τ̃ super
4:6 , τ̃ super

4:6 , τ̃7)

11 Interpreting a tiVLMC-model 193

as its context tree.
Numerically we evaluate ‖b‖L1 by calling the treeChanges-function in R, cf. the fol-
lowing R-Code 11.2. The function relies on the identicalNodes-function displayed
in R-Code 11.3.

treeChanges <- function(trees) {
#initialize the output

penalty <- 0
#iterate through the input list of trees

#for each successive pair of list elements

#we check whether they are unequal

for (t in 1:(length(trees)-1)) {
if (!identicalNodes(trees[[t]], trees[[t+1]])) {

#if they are unequal, we increase the output by one

penalty <- penalty+1
}

}
return(penalty)

}

R-Code 11.2: The treeChanges-function

identicalNodes <- function(tree.1, tree.2) {
#test whether the node structure of two input

#trees is identical or whether it is not

#to do so, check all node-paths for equality

tree.1.paths <- sort(ToDataFrameTable(tree.1, "pathString"))
tree.2.paths <- sort(ToDataFrameTable(tree.2, "pathString"))
return(identical(tree.1.paths, tree.2.paths))

}

R-Code 11.3: The identicalNodes-function

Now, since the described technique just automates the procedure of first choos-
ing the number k of break points and secondly optimizing their position in time
via the choice of the cutoff parameter C, Corollary 5.9 directly implies that this

11 Interpreting a tiVLMC-model 194

LASSO-alike approach outputs a consistent context tree estimator, that is, it
equals the true context tree of the data-generating tiVLMC with probability one
as the observation size diverges to infinity.

11.4 Cutoff paths

The second step of Algorithm 5.6 prunes the maximal tree τmax consisting of
all sequences observed at least nmin times down to the estimated context tree
τ̃t at time t. To do so, for each leaf of τmax a pruning decision is made based
on the censored time-sensitive pruning measure ∆̃t, cf. Definition 5.5, and the
cutoff value C. This is iteratively repeated until no more leaves can be pruned.
The resulting tree is the context tree estimator τ̃t at time t. While the value of
the censored time-sensitive pruning measure is data-driven, the cutoff value C is
a tuning parameter input by the user. Since the pruning decision is binary and
based on a continuous inequality in C, we can always calculate the maximal C
such that a leaf is not pruned. Recall that smaller cutoff values yield larger trees,
cf. (6.1). A leaf wu, u ∈M , is pruned down to w if and only if

∆̃t(wu) < C
√
n log n, (11.8)

thus the maximal cutoff value Ccrit
t (wu) such that wu is not pruned down to w

is given by

Ccrit
t (wu) := ∆̃t(wu)√

n log n. (11.9)

Here we assume that there are at least two observations under study, i.e. n ≥ 2.
This assumption implies

√
n log n > 0 and is necessary here. The assumption

is natural anyway, since inference from a single observation is pointless within
this framework. If the empirical transition probability measures P̃t(· | wu) and
P̃t(· | w) are equal, Ccrit

t (wu) = 0 holds, which translates to pruning wu down
to w regardless of the value of the cutoff C > 0. This is implied by Definition
5.5 and the fact that the Kullback-Leibler divergence D between two probability
measures, cf. Definition 4.1, is zero if and only if the two measures are equal.
Since the right-hand side of equation (11.9) must be evaluated to decide whether
(11.8) holds, i.e. whether to prune or not to prune, it comes with no extra compu-
tational effort to compute Ccrit

t (wu). For every node wu ∈ τmax the maximal cutoff
value Ccrit

t (wu) is stored in an attribute of tau.max[[t]]. E.g. if w = u = a, we

11 Interpreting a tiVLMC-model 195

can access Ccrit
t (aa)

√
n log n via tau.max[[t]]$"a"$"a"$criticalCutoff thus obtaining

Ccrit
t (aa) by dividing by

√
n log n.

This gives paths of maximal cutoff values Ccrit
t (wu) in t. By looking at such a

path the user is able to detect the maximal cutoff value that ensures that a leaf
wu is not pruned and instead is kept in the model. Of course there are time
points t where wu may not be under consideration for pruning, because e.g. the
sequence was not observed nmin-times, i.e. Ñt+(wu) < nmin. At those time points
the choice of the cutoff has no impact on the inclusion of wu in the model.
A real life application of the maximal cutoff paths is when the practitioner has
to guarantee that certain state change sequences are part of the model, i.e. part
of the context trees. A reason for this can be for example that those sequences
trigger payments between the insured and the insurance company by contract
and thus have to be included within the model. If this sequence is denoted by w,
one can look at the path

{
Ccrit
t (w) : 1 ≤ t ≤ T − 1

}
and then tune the model only with cutoff values smaller than

min
{
Ccrit
t (w) : 1 ≤ t ≤ T − 1

}
,

i.e. construct the set C , cf. Chapter 6.3, such that

max C ≤ min
{
Ccrit
t (w) : 1 ≤ t ≤ T − 1

}
.

This described procedure is similar to the paths of coefficients within the context
of the LASSO, or more generally the elastic net, cf. Tibshirani (1996) or Fried-
man et al. (2010). The second reference is for the corresponding R-package called
glmnet.

12 The joint life insurance 196

12 The joint life insurance
The canlifins data set “contains information of 14,889 contracts in force with a
large Canadian insurer over the period December 29, 1988 through December 31,
1993. These contracts are joint and last-survivor annuities [...].”, cf. Dutang and
Charpentier (2019, page 26). The exact source of the data set, i.e. the name of
the Canadian insurance company, is unknown. canlifins is part of the well-known
CASdatasets R-package, a collection of actuarial data sets originally put together
for the book “Computational Actuarial Science with R”, cf. Charpentier (2014).
CASdatasets (and therefore also canlifins) is publicly available for download, it is
licensed under a GNU General Public Licence.
For each of the 14,889 contracts five features are documented: The age EntryAgeM
of the male part of the insured couple at the start of the contract, the age En-
tryAgeF of the female part of the insured couple at the start of the contract, the
time DeathTimeM of death of the male measured from the start of the observa-
tion period and the time DeathTimeF of death of the female measured from the
start of the observation period. If the male or the female do not die within the
observation period, DeathTimeM or DeathTimeF are assigned the value zero. If
an annuity guarantee was part of the contract, the fifth feature AnnuityExpiredM
documents the date the guarantee expired.
In the following our main goal is to obtain insights into the dependency struc-
ture between the male and the female part of the joint life insurance by fitting
tiVLMC-models and applying the developed smoothing techniques of Chapter 11.

12.1 Data preparation

Six observations contained in the data set are displayed in the following R-Code
12.1.

12 The joint life insurance 197

EntryAgeM EntryAgeF DeathTimeM DeathTimeF AnnuityExpiredM
1 60.6749 62.1217 0.0000 0.0000 5.0055
2 69.1463 68.4249 0.0000 0.0000 5.0055
3 66.1612 64.9973 0.0000 0.0000 1.6655
4 58.0751 60.0039 0.0000 0.0000 1.6655
14 77.0575 75.3744 0.0000 2.5450 5.0055
16 92.9550 91.6600 2.5696 1.2144 5.0055

R-Code 12.1: Six out of 14,889 observations of the canlifins data set

E.g. the male part of the first contract is 60.67 years old when the contract was
closed and the corresponding female part is 62.12 years old at that time (both
numbers rounded to two decimal digits). Neither the male nor the female die
within the observation period, therefore DeathTimeM=DeathTimeF=0.
First we reformat the data set: Since at this point we are not interested in annu-
ities, we drop AnnuityExpiredM from the data. Next we introduce ExitAgeM and
ExitAgeF, the ages of the (possibly dead) male and female at the end of the ob-
servation period. Lastly we replace DeathTimeM and DeathTimeF with the actual
ages at death, DeathAgeM and DeathAgeF. If the observation period is survived
by the male or female, we assign DeathAgeM=NA or DeathAgeF=NA respectively.
After the reformatting the observations displayed in R-Code 12.1 look as follows:

EntryAgeM EntryAgeF DeathAgeM DeathAgeF ExitAgeM ExitAgeF
1 60.6749 62.1217 NA NA 65.6804 67.1272
2 69.1463 68.4249 NA NA 74.1518 73.4304
3 66.1612 64.9973 NA NA 71.1667 70.0028
4 58.0751 60.0039 NA NA 63.0806 65.0094
14 77.0575 75.3744 NA 77.9194 82.0630 80.3799
16 92.9550 91.6600 95.5246 92.8744 97.9605 96.6655

R-Code 12.2: Six out of 14,889 reformatted observations of the canlifins data set

Since the data is documented in a continuous fashion, we have to discretize it
in order to apply the tiVLMC-techniques that require discrete data as input.
We note that in practice applying methods designed to handle continuous data
should most likely be favoured here, but the discretization is done in order to
obtain a second, publicly available and more computational-friendly (compared

12 The joint life insurance 198

to the more complex SIGNAL IDUNA data set data.signal used in Chapter 10)
data set to experiment with the developed tiVLMC-techniques.
We work on a state space M consisting of four states: aa, ad, da and dd. a in-
dicates that the insured is alive and d indicates that the insured is dead. The
first character corresponds to the male part of the joint life insurance, the second
character to the female part. E.g. da indicates a dead male and an alive female.
To generate an easy to handle, slim data set, we choose a discretization period of
one year. Here we exemplarily generate the data set data.female, where t denotes
the age of the female and therefore we take the female perspective.
We describe the advanced data preparation. Since not all females close (and
therefore exit) the contract at the same age, the data is subject to left and right
censoring. An observation is censored at age t if t /∈ [EntryAgeF,ExitAgeF) holds
for this observation. If it is not censored at t, it is assigned the state aa if the
female is alive at age t and her male partner (which in general is not of age t
at this time) is alive. We assign da if the female is alive at age t and her male
partner is dead and ad if it is the other way round. Lastly the state dd is assigned
at t if both partners are dead when the female is aged t.
The whole data preparation is displayed in R-Code 12.3.

#first we add a column with the age of death

#if the individual did not die within the observation period we

#fill in NA

canlifins[canlifins[, "DeathTimeM"]==0, "DeathTimeM"] <- NA
canlifins[, 6] <- canlifins[, "EntryAgeM"]+

canlifins[, "DeathTimeM"]
colnames(canlifins)[6] <- "DeathAgeM"
canlifins[canlifins[, "DeathTimeF"]==0, "DeathTimeF"] <- NA
canlifins[, 7] <- canlifins[, "EntryAgeF"]+

canlifins[, "DeathTimeF"]
colnames(canlifins)[7] <- "DeathAgeF"
#second we add a column containing the age at observation end

canlifins[, 8] <- canlifins[, "EntryAgeM"]+5.0055
colnames(canlifins)[8] <- "ExitAgeM"
canlifins[, 9] <- canlifins[, "EntryAgeF"]+5.0055
colnames(canlifins)[9] <- "ExitAgeF"
#third we drop the non-relevant columns from the data set

canlifins <- canlifins[, c("EntryAgeM", "EntryAgeF", "DeathAgeM",

12 The joint life insurance 199

"DeathAgeF", "ExitAgeM", "ExitAgeF")]
#we reformat the data

#first the dimensions of the new data set are calculated

#the maximal exit age in years

max.age <- ceiling(max(canlifins[, c("ExitAgeM", "ExitAgeF")]))
#the number of observations

nobs <- dim(canlifins)[1]
#we now construct the dataset data.female

#in data.female t denotes the age of the female

#we initialize data.female with the correct dimensions

data.female <- matrix(rep(0, times=max.age*nobs), ncol=max.age)
colnames(data.female) <- 1:max.age
#we iterate through each observation and each age t and

#assign the correct state

for (obs in 1:nobs) {
#grab the observation

observation <- canlifins[obs,]
for (t in 1:max.age) {

#check whether the observation is censored

entered <- (observation["EntryAgeF"] <= t) &&
(t < observation["ExitAgeF"])

#if it is not censored, assign the correct state

if (entered) {
age.female <- t
age.difference <- observation["EntryAgeF"] -

observation["EntryAgeM"]
age.male <- age.female-age.difference
death.female <- observation["DeathAgeF"]
death.male <- observation["DeathAgeM"]
if (is.na(death.female)) {

status.female <- "a"
} else if (age.female < death.female) {

status.female <- "a"
} else {

status.female <- "d"
}
if (is.na(death.male)) {

12 The joint life insurance 200

status.male <- "a"
} else if (age.male < death.male) {

status.male <- "a"
} else {

status.male <- "d"
}
state <- paste(status.male, status.female, sep="")

#if it is censored, indicate so by assigning NA

} else {
state <- NA

}
data.female[obs, t] <- state

}
}
#we rename the rows

rownames(data.female) <- 1:dim(data.female)[1]

R-Code 12.3: The data preparation steps performed on the canlifins data set

After the discretization the 14th observation, which was already printed in the
Codes 12.1 and 12.2, looks as displayed in R-Code 12.4. At the ages t where the
status is not printed the observation is censored.

print(data.female[14, 75:81])

75 76 77 78 79 80 81
NA "aa" "aa" "ad" "ad" "ad" NA

R-Code 12.4: The 14-th observation of data.female after the discretization

12.2 The LASSO-tiVLMC-model

Now we fit a LASSO-tiVLMC-model, cf. Chapter 11.3, to data.female. To measure
model precision we choose the negative estimated log-likelihood function, i.e.

Loss(C) = − logL (C),

12 The joint life insurance 201

cf. Chapter 6.1, and to measure model complexity we choose

f : R>0 → R>0, C 7→
1
C
.

We tune the LASSO-fit on the cutoff grid

C = {0.0000001, 0.0000002, ..., 0.0000099,
0.00001, 0.00002, ..., 0.00099,
0.001, 0.002, ..., 0.099
0.1, 0.2, ..., 1}

that consists of 307 cutoff values that are sampled more and more finely as they
approach zero. For comparison we also fit the AIC- and the BIC-tuned tiVLMC-
models. Tuning via AIC leads to a cutoff of CAIC = 0.016, using BIC we get
CBIC = 0.034 and the LASSO-tuning gives the largest cutoff of CLASSO = 0.075
and therefore the smallest model. While in total 14 different trees appear as esti-
mated context trees within the three model fits, the AIC-tuned model contributes
11, the BIC-tuned model nine and the LASSO-tuned model seven. The LASSO-
model changes its context tree only 10 times, while the AIC-model, as well as the
BIC-model, change their context trees 15 times.
The following Figure 12.1 displays the movement of the context trees as time
passes by.

12 The joint life insurance 202

Fi
gu

re
12
.1
:T

he
m
ov
em

en
t
of

th
e
di
ffe

re
nt
ly

es
tim

at
ed

co
nt
ex
t
tr
ee
s
of

th
e
A
IC

-t
un

ed
tiV

LM
C
-m

od
el

(le
ft)

,
th
e
BI

C
-t
un

ed
tiV

LM
C
-m

od
el

(m
id
dl
e)

an
d
LA

SS
O
-t
un

ed
tiV

LM
C
-m

od
el

(r
ig
ht
)
be

tw
ee
n
al
lo

cc
ur
rin

g
tr
ee
s
as

th
e
tim

e
t
pa

ss
es

12 The joint life insurance 203

As the numbers already suggest, one can clearly see the smoothing effect in above
figure. Thus, if one chooses f and Loss in a way that is reasonable, a LASSO-
tiVLMC-model that is easier to interpret and communicate when compared to
the classical tiVLMC-model can be obtained.
Since the focus of this chapter is on the smoothing effect, we skip plotting all 14
occurring context tree estimates at this point. But, to ensure the overall conclu-
siveness, the trees are printed in the Appendix C, cf. Figures C.1-C.14.

12.3 The moving-average-tiVLMC-models

As an alternative to the LASSO-tiVLMC proposed in the previous Chapter 12.2
we now consider different moving-average-tiVLMC on data.female. In order to
simplify the original AIC-tuned tiVLMC-model, we smoothen the context tree
movement by using different smoothing kernels, i.e. using different combinations
of time point sets and weight vectors as input in Algorithm 11.8. Then the cutoff
is chosen in order to minimize AIC, i.e. C = CAIC.
We consider the following combinations of time point sets and weight vectors:

1. A “flat line” kernel always weighing with the same weight of one at all time
points , i.e. Tt = {1, ..., T − 1} and gt = 1 for all t = 1, ..., T − 1.

2. A “pyramid” kernel that puts the highest weight at the current time point
and decreasing weights at the closest two time points in the past and the fu-
ture, i.e. Tt = {t−2, t−1, t, t+1, t+2} and weights (0.55, 1.11, 1.67, 1.11, 0.55)
for 3 ≤ t ≤ T − 3.

3. A “downwards stairs” kernel that puts the highest weight at the current
time point and decreasing weights at the closest two time points in the
future, i.e. Tt = {t, t+ 1, t+ 2} and weights (1.5, 1, 0.5) for 1 ≤ t ≤ T − 3.

4. An “upwards stairs” kernel that puts the highest weight at the current time
point and decreasing weights at the closest two time points in the past, i.e.
Tt = {t− 2, t− 1, t} and weights (0.5, 1, 1.5) for 3 ≤ t ≤ T − 1.

In all cases the kernels fade in at the left margin and fade out at the right mar-
gin, i.e. they are always centred at the present time point t. This is usual prac-
tice for kernel smoothing techniques, e.g. cf. Ghosh (2018, page 25). We have not
explicitly stated this in above listing. In case 2 e.g. this translates to T1 = {1, 2, 3}
with weights (1.67, 1.11, 0.55), T2 = {1, 2, 3, 4} with weights (1.11, 1.67, 1.11, 0.55)

12 The joint life insurance 204

at the left margin. On the right side we have TT−2 = {T − 4, T − 3, T − 2, T − 1}
with weights (0.55, 1.11, 1.67, 1.11) and TT−1 = {T −3, T −2, T −1} with weights
(0.55, 1.11, 1.67).
As already mentioned in the previous Chapter 12.2, the AIC-tuned, original model
changes its context tree 15 times. For the “flat line”-moving-average-tiVLMC de-
scribed in case 1 the number of context tree changes merely reduces to 14. The
“pyramid” kernel, case 2, leads to a model fit that alters its context tree 11 times.
For the kernel shaped like an “upwards stairs”, i.e. case 3, this number is 13 and
for the “downwards stairs” it is 10.
Figure 12.2 shows the context tree movements of the differently smoothened mod-
els. R-Code 12.5 exemplarily shows how to calculate the moving-average-tiVLMC
using the “pyramid” kernel, i.e. case 2, in R using the estimateMovingAverageTau-
function.
Note that we considered four combinations of time sets and weight vectors here.
Obviously there are infinitely many more one could try. It is also not required
that the kernel keeps its shape over time: Theorem 11.10 remains true even if the
kernel morphs its shape as time passes by.

12 The joint life insurance 205

Fi
gu

re
12
.2
:T

he
m
ov
em

en
to

ft
he

es
tim

at
ed

co
nt
ex
tt

re
eo

ft
he

m
ov

in
g-
av
er
ag
e-
tiV

LM
C
-m

od
el
ss

m
oo

th
ed

by
th
ek

er
ne
ls
1-
4
be

tw
ee
n

al
lo

cc
ur
rin

g
tr
ee
s
as

th
e
tim

e
t
pa

ss
es

12 The joint life insurance 206

#initialize the list of weight vectors

ws <- list()
#define the weight vectors for every time t

ws[[1]] <- c(1.67, 1.11, 0.55)
ws[[2]] <- c(1.11, 1.67, 1.11, 0.55)
for (t in 3:(dim(data.female)[2]-3)) {

ws[[t]] <- c(0.55, 1.11, 1.67, 1.11, 0.55)
}
ws[[dim(data.female)[2]-2]] <- c(0.55, 1.11, 1.67, 1.11)
ws[[dim(data.female)[2]-1]] <- c(0.55, 1.11, 1.67)
#initialize the list of time point sets

ts <- list()
#define the time point set for each time t

ts[[1]] <- c(1, 2, 3)
ts[[2]] <- c(1, 2, 3, 4)
for (t in 3:(dim(data.female)[2]-3)) {
ts[[t]] <- c(t-2, t-1, t, t+1, t+2)
}
ts[[dim(data.female)[2]-2]] <- c(dim(data.female)[2]-4,

dim(data.female)[2]-3,
dim(data.female)[2]-2,
dim(data.female)[2]-1)

ts[[dim(data.female)[2]-1]] <- c(dim(data.female)[2]-3,
dim(data.female)[2]-2,
dim(data.female)[2]-1)

#fit the moving-average-tiVLMC-model

tau <- estimateMovingAverageTau(data=data.female, time.sets=ts,
weight.sets=ws, cutoff=0.061,
measure="KLD")

R-Code 12.5: Fitting the moving-average-tiVLMC on the data.female data set
using the “pyramid” kernel

The cutoff used in above R-Code 12.5 is the result of a preceding tuning performed
to minimize AIC. Here we do not display this procedure since it is completely
analogous to the two examples in Chapter 8.2 (or R-Code 8.12).

13 Reflection and directions for future research 207

13 Reflection and directions for future research
In this thesis we have developed the model class of tiVLMC, cf. Chapter 3. We
have discussed how tiVLMC meet the special requirements of insurance modelling
listed in Chapter 1.3. tiVLMC are e.g. capable of displaying time-inhomogeneous
dependencies in data. To be of practical use, a fitting algorithm for tiVLMC-
models has been established and proven to be consistent, cf. Chapter 4, even in
the presence of censoring, cf. Chapter 5. We have extended known model selec-
tion techniques to the tiVLMC-setup, cf. Chapter 6, we have evaluated different
smoothing approaches for tiVLMC-fits, cf. Chapter 11. We have discussed how
an insurance contract can be priced by using a tiVLMC-model, cf. Chapter 9.
The fitting procedure, the tuning procedure and the pricing procedure as well
have all been implemented in R, cf. Chapter 7, and the implementations have
been documented. We have applied the techniques on differently generated data
sets, cf. Chapter 8, and real life data sets, cf. Chapters 10.3 and 12 and we have
discussed the results.
Summarizing we can say that this thesis offers everything a potential user of
tiVLMC-models needs, if her or his working environment fits our theoretical
framework. The various examples can be adapted and/or generalized to the
reader’s own data setup and are not limited to insurance applications.
Nevertheless there is always room for further research. Here we list possible ad-
vancements by chapters:

Chapter 2:
As our theoretical framework we chose an environment where the data consists
of time-discrete, independent and identically distributed observations.
A follow-up question to this thesis is whether the developed tiVLMC-models can
be generalized in a way so that they also work in a time-continuous framework.
Such a generalization would make discretizing continuous data (as we did e.g. in
Chapter 12.1) unnecessary. Time-continuous tiVLMC would include semi-Markov
processes.
One could also investigate whether the obtained results, or at least part of them,
will still hold if we allow the observations to be dependent on each other. Since
tools like the strong law of large numbers A.1 cannot be applied in that case,
one would have to find different proving techniques. If observations were allowed
to depend on each other, we could account for more behavioural effects like the
following example: Two insured living in the same household are more likely to
lapse their insurance contract at the same time compared to two insured living in

13 Reflection and directions for future research 208

separate households. Assuming that the observations are independent we cannot
model such traits.

Chapter 5:
If we stick with the time-discrete, independent and identically distributed obser-
vations, one could investigate e.g. whether the censoring assumptions (H.1)-(H.5)
could be partly eliminated or replaced by weaker versions. Using statistical word-
ing, it would be desirable to be able to extend the theoretical results from the
current “missing completely at random” environment to a “missing at random”
one.

Chapter 6:
When we discussed model selection we focused on information criteria, cf. Chapter
6.3. One could also introduce different tuning techniques. E.g. a cross-validation
procedure for choosing the cutoff could be implemented.

Chapter 7:
The implementation estimateTau of Algorithm 5.9 supports the Kullback-Leibler
divergence and the L1-norm as possible inputs for measure. However, as we have
learned in Chapter 5.3, other norms also lead to consistent context tree estimates.
Thus one could generalize estimateTau to allow arbitrary norms as input of mea-
sure.
To maximize the usability of the developed techniques the computational effort
needed to run the implementations should be as small as possible. The user’s
experience handling the R-implementations should also be as good as possible.
However the focus of this thesis is on the mathematical theory. It would be
beneficial if someone proficient in coding re-evaluated the most efficient options
for implementing the algorithms. As it is good practice, the various R-scripts
could also be combined into one package.
Lastly, one could consider e.g. using the shiny-package, cf. Chang et al. (2020), in
order to develop a graphical user interface which would improve the usability of
the developed techniques for the majority of practitioners.

Chapter 9:
We derived a calculation formula for the prospective reserve in a tiVLMC-model,
cf. Definition 9.10. Evaluating this formula for coverages with long contract du-
rations is numerically infeasible: The outer sum runs over |M te−t| = mte−t sum-

13 Reflection and directions for future research 209

mands. If the state space contains e.g. m = 6 states and the contract runs from
ts = 18 to te = 67,

667−18 = 1.34713546244127 · 1038

summands would have to be calculated. Even with access to High-Performance
Computing facilities finishing such calculations in an acceptable amount of time
is impossible. Here more research is required to derive a computation formula
that can be evaluated faster. In the classical setup the Markov assumption pre-
vents this problem. In a similar manner one should evaluate ways of including the
dependency structure of the tiVLMC even more into the computation formula.
Additionally it is also an important question whether a recursive Thiele-alike
computation formula can be derived.
Since we obtain consistent context tree estimates for any norm, the follow-up
question arises which norm is suited best to achieve precise approximations of
the prospective reserves.

References 210

References
Akaike, H.
1998. Information theory and an extension of the maximum likelihood principle.
In Selected Papers of Hirotugu Akaike, Pp. 199–213. Springer.

Analytics, R. and S. Weston
2015. foreach: Provides foreach looping construct for R. R package version
1.5.0, 1(3):1.

Anderson, T. W. and L. A. Goodman
1957. Statistical inference about Markov chains. The Annals of Mathematical
Statistics, Pp. 89–110.

Bachmann, P.
1904. Analytische Zahlentheorie. In Encyklopädie der Mathematischen Wis-
senschaften mit Einschluss ihrer Anwendungen, Pp. 636–674. Springer.

Begleiter, R., R. El-Yaniv, and G. Yona
2004. On prediction using variable order Markov models. Journal of Artificial
Intelligence Research, 22:385–421.

Bejerano, G. and G. Yona
2001. Variations on probabilistic suffix trees: statistical modeling and prediction
of protein families. Bioinformatics, 17(1):23–43.

Bellman, R.
1966. Dynamic programming. Science, 153(3731):34–37.

Bercu, B., B. Delyon, and E. Rio
2015. Concentration inequalities for sums and martingales. Springer.

Billingsley, P.
1995. Probability and Measure, Wiley Series in Probability and Statistics. Wi-
ley.

Böhme, R., G. Schwartz, et al.
2010. Modeling Cyber-Insurance: Towards a Unifying Framework. In WEIS.

Boltzmann, L.
1884. Über die Eigenschaften monozyklischer und anderer damit verwandter
Systeme. FP Hasenhörl, 3.

Borges, J. and M. Levene
2007. Evaluating variable-length Markov chain models for analysis of user web
navigation sessions. IEEE Transactions on Knowledge and Data Engineering,
19(4):441–452.

Bowers, N., H. Gerber, J. Hickman, D. Jones, and C. Nesbitt
1997. Actuarial Mathematics. Society of Actuaries.

References 211

Breiman, L., J. Friedman, C. Stone, and R. Olshen
1984. Classification and Regression Trees, The Wadsworth and Brooks-Cole
statistics-probability series. Taylor & Francis.

Bühlmann, P., A. J. Wyner, et al.
1999. Variable length Markov chains. The Annals of Statistics, 27(2):480–513.

Bundesamt für Justiz
2017. Sozialgesetzbuch (SGB) - Elftes Buch (XI) - § 15 Ermittlung des Grades
der Pflegebedürftigkeit. https://www.gesetze-im-internet.de/sgb_11/__
15.html, Webpage accessed: 2020-07-17.

Bundesamt für Justiz
2020. Sozialgesetzbuch (SGB) - Elftes Buch (XI) - § 14 Begriff der
Pflegebedürftigkeit. https://www.gesetze-im-internet.de/sgb_11/__14.
html, Webpage accessed: 2020-07-17.

Bundestag
2012. Gesetz zur Neuausrichtung der Pflegeversicherung (Pflege-
Neuausrichtungs-Gesetz - PNG). http://dip21.bundestag.de/dip21/
btd/17/093/1709369.pdf, Webpage accessed: 2020-07-15.

Bundestag
2015. Zweites Gesetz zur Stärkung der pflegerischen Versorgung
und zur Änderung weiterer Vorschriften (Zweites Pflegestärkungsge-
setz - PSGII). https://www.bgbl.de/xaver/bgbl/start.xav?startbk=
Bundesanzeiger_BGBl&jumpTo=bgbl115s2424.pdf, Webpage accessed: 2020-
07-15.

Busch, J. R., P. A. Ferrari, et al.
2009. Testing statistical hypothesis on random trees and applications to the
protein classification problem. The Annals of Applied Statistics, 3(2):542–563.

Chang, W., J. Cheng, J. Allaire, Y. Xie, and J. McPherson
2020. shiny: Web Application Framework for R. R package version 1.5.0.

Charpentier, A.
2014. Computational actuarial science with R. CRC Press.

Christiansen, M. C. and C. Furrer
2020. Dynamics of state-wise prospective reserves in the presence of non-
monotone information. arXiv preprint arXiv:2003.02173.

Claeskens, G., N. L. Hjort, et al.
2008. Model selection and model averaging. Cambridge Books.

Consonni, G. and P. Veronese
1995. A Bayesian method for combining results from several binomial experi-
ments. Journal of the American Statistical Association, 90(431):935–944.

https://www.gesetze-im-internet.de/sgb_11/__15.html
https://www.gesetze-im-internet.de/sgb_11/__15.html
https://www.gesetze-im-internet.de/sgb_11/__14.html
https://www.gesetze-im-internet.de/sgb_11/__14.html
http://dip21.bundestag.de/dip21/btd/17/093/1709369.pdf
http://dip21.bundestag.de/dip21/btd/17/093/1709369.pdf
https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl115s2424.pdf
https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl115s2424.pdf

References 212

Cover, T. M. and J. A. Thomas
1991. Elements of information theory. Wiley Series in Telecommunications.

Cox, D. R. and H. D. Miller
1977. The theory of stochastic processes, volume 134. CRC Press.

Csiszár, I. and Z. Talata
2006. Context tree estimation for not necessarily finite memory processes, via
BIC and MDL. IEEE Transactions on Information Theory, 52(3):1007–1016.

De Jong, P., G. Z. Heller, et al.
2008. Generalized linear models for insurance data. Cambridge Books.

Dragomir, S. S., M. Scholz, and J. Sunde
2000. Some upper bounds for relative entropy and applications. Computers &
Mathematics with Applications, 39(9-10):91–100.

Duarte, D., A. Galves, and N. L. Garcia
2006. Markov approximation and consistent estimation of unbounded proba-
bilistic suffix trees. Bulletin of the Brazilian Mathematical Society, 37(4):581–
592.

Dubnov, S., G. Assayag, O. Lartillot, and G. Bejerano
2003. Using machine-learning methods for musical style modeling. Computer,
36(10):73–80.

Dutang, C. and A. Charpentier
2019. CASdatasets: Insurance datasets. R package version 1.0-10.

Embrechts, P. et al.
1996. Actuarial versus financial pricing of insurance. PhD thesis.

Etemadi, N.
1981. An elementary proof of the strong law of large numbers. Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete, 55(1):119–122.

European Court of Justice
2004. COUNCIL DIRECTIVE 2004/113/EC of 13 December 2004.
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:
32004L0113:EN:HTML, Webpage accessed: 2020-07-17.

European Parliament
2016. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL. https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=CELEX%3A32016R0679, Webpage accessed: 2020-06-19.

Ferrari, F. and A. Wyner
2003. Estimation of general stationary processes by variable length Markov
chains. Scandinavian Journal of Statistics, 30(3):459–480.

https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32004L0113:EN:HTML
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32004L0113:EN:HTML
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679

References 213

Frangos, N. E. and S. D. Vrontos
2001. Design of optimal bonus-malus systems with a frequency and a severity
component on an individual basis in automobile insurance. ASTIN Bulletin:
The Journal of the IAA, 31(1):1–22.

Friedman, J., T. Hastie, and R. Tibshirani
2010. Regularization paths for generalized linear models via coordinate descent.
Journal of Statistical Software, 33(1):1.

Frigessi, A. and B. Heidergott
2011. Markov Chains. In International Encyclopedia of Statistical Science,
Pp. 772–775. Springer Berlin Heidelberg.

Gagniuc, P. A.
2017. Markov chains: from theory to implementation and experimentation.
John Wiley & Sons.

Galves, A., C. Galves, J. E. Garcia, N. L. Garcia, F. Leonardi, et al.
2012. Context tree selection and linguistic rhythm retrieval from written texts.
The Annals of Applied Statistics, 6(1):186–209.

Galves, A., V. Maume-Deschamps, and B. Schmitt
2008. Exponential inequalities for VLMC empirical trees. ESAIM: Probability
and Statistics, 12:219–229.

García, J. E., R. Gholizadeh, and V. A. González-López
2017. Linguistic compositions highly volatile in Portuguese. Cadernos de Es-
tudos Lingüísticos, 59(3):617–630.

Garivier, A. and F. Leonardi
2011. Context tree selection: A unifying view. Stochastic Processes and their
Applications, 121(11):2488–2506.

Garrido, J., C. Genest, and J. Schulz
2016. Generalized linear models for dependent frequency and severity of insur-
ance claims. Insurance: Mathematics and Economics, 70:205–215.

Ghosh, S.
2018. Kernel smoothing: Principles, methods and applications. John Wiley &
Sons.

Glur, C.
2018. data.tree: General Purpose Hierarchical Data Structure. R package
version 0.7.8.

Gopalakrishnan, T., P. Sengottuvelan, A. Bharathi, and R. Lokeshkumar
2018. An approach to webpage prediction method using variable order Markov
model in recommendation systems. Journal of Internet Technology, 19(2):415–
424.

References 214

Gram, J.
1910. Professor Thiele som aktuar. Dansk Forsikrings Arbog, 1910:26–37.

Haberman, S. and E. Pitacco
1998. Actuarial models for disability insurance. CRC Press.

Halmos, P. R.
2017. Naive set theory. Courier Dover Publications.

Harfst, S.
2020. HPC Facilities of the University of Oldenburg. https://uol.de/fk5/wr/
hochleistungsrechnen/hpc-facilities/carl/, Webpage accessed: 2020-07-
17.

Heilmann, W.-R. and K. J. Schröter
2013. Grundbegriffe der Risikotheorie. VVW GmbH.

Heitjan, D. F. and S. Basu
1996. Distinguishing “missing at random” and “missing completely at random”.
The American Statistician, 50(3):207–213.

Herath, H. and T. Herath
2011. Copula-based actuarial model for pricing cyber-insurance policies. Insur-
ance Markets and Companies: Analyses and Actuarial Computations, 2(1):7–
20.

Hess, E. C.
2015. Auswertung eines Datensatzes einer privaten Krankenversicherung.

Hoeffding, W.
1963. Probability Inequalities for Sums of Bounded Random Variables. Journal
of the American Statistical Association, 58(301):13–30.

Hoem, J. M.
1969. Markov chain models in life insurance. Blätter der DGVFM, 9(2):91–107.

Izrailev, S.
2014. tictoc: Functions for timing R scripts, as well as implementations of
Stack and List structures. R package version 1.0.

Jones, L.
1987. The Collected Works of John W. Tukey: Philosophy and Principles of
Data Analysis 1965-1986, volume 4. CRC Press.

Kendall, M. G. et al.
1948. The advanced theory of statistics. Vols. 1. The Advanced Theory of
Statistics. Vols. 1., 1(Ed. 4).

Khintchine, A.
1924. Über einen Satz der Wahrscheinlichkeitsrechnung. Fundamenta Mathe-
maticae, 6(1):9–20.

https://uol.de/fk5/wr/hochleistungsrechnen/hpc-facilities/carl/
https://uol.de/fk5/wr/hochleistungsrechnen/hpc-facilities/carl/

References 215

Koller, M.
2012. Stochastic models in life insurance. Springer Science & Business Media.

Kolmogorov, A.
1931. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung.
Mathematische Annalen, 104(1):415–458.

Kullback, S. and R. A. Leibler
1951. On information and sufficiency. The Annals of Mathematical Statistics,
22(1):79–86.

Kwon, H.-S. and B. L. Jones
2006. The impact of the determinants of mortality on life insurance and annu-
ities. Insurance: Mathematics and Economics, 38(2):271–288.

Larson, S. C.
1931. The shrinkage of the coefficient of multiple correlation. Journal of Edu-
cational Psychology, 22(1):45.

Lemaire, J.
2013. Automobile insurance: actuarial models, volume 4. Springer Science &
Business Media.

Leonardi, F. et al.
2010. Some upper bounds for the rate of convergence of penalized likeli-
hood context tree estimators. Brazilian Journal of Probability and Statistics,
24(2):321–336.

Levikson, B. and G. Mizrahi
1994. Pricing long term care insurance contracts. Insurance: Mathematics and
Economics, 14(1):1–18.

Liesen, J. and V. Mehrmann
2015. Vector Spaces. In Linear Algebra, Pp. 115–133. Springer.

Lin, S.-K. et al.
2008. Pricing catastrophe insurance products in Markov jump diffusion models.
Journal of Financial Studies, (16).

Little, R. J. and D. B. Rubin
2019. Statistical analysis with missing data, volume 793. John Wiley & Sons.

Longley-Cook, L. H.
1961. Insurance: Its Theory and Practice in the United States. Journal of the
Institute of Actuaries, 87(3):403–405.

Mächler, M. and P. Bühlmann
2004. Variable length Markov chains: methodology, computing, and software.
Journal of Computational and Graphical Statistics, 13(2):435–455.

References 216

Mann, H. B. and A. Wald
1943. On stochastic limit and order relationships. The Annals of Mathematical
Statistics, 14(3):217–226.

Markov, A. A.
1906. Extension of the law of large numbers to dependent quantities. Izv.
Fiz.-Matem. Obsch. Kazan Univ.(2nd Ser), 15:135–156.

Metzler, R.
2000. Generalized Chapman-Kolmogorov equation: A unifying approach to
the description of anomalous transport in external fields. Physical Review E,
62(5):6233.

Microsoft Corporation and S. Weston
2019. doParallel: Foreach Parallel Adaptor for the ’parallel’ package. R package
version 1.0.15.

Milbrodt, H. and A. Stracke
1997. Markov models and Thiele’s integral equations for the prospective re-
serve. Insurance: Mathematics and Economics, 19(3):187–235.

Morris, C. N.
1983. Parametric empirical Bayes inference: theory and applications. Journal
of the American Statistical Association, 78(381):47–55.

Norberg, R.
1991. Reserves in life and pension insurance. Scandinavian Actuarial Journal,
1991(1):3–24.

Norberg, R.
2014. Life insurance mathematics. Wiley StatsRef: Statistics Reference Online,
Pp. 1–19.

Pachet, F.
2002. Playing with virtual musicians: The continuator in practice. IEEE Mul-
tiMedia, 9(3):77–82.

Papoulis, A. and S. U. Pillai
2002. Probability, random variables, and stochastic processes. Tata McGraw-
Hill Education.

Phelan, M. J.
1988. Inference from censored Markov chains with applications to multiwave
panel data. Stochastic Processes and their Applications, 29(1):85–102.

Pinsker, M. S.
1973. On the complexity of a concentrator. In 7th International Telegraffic
Conference, volume 4, Pp. 1–318. Citeseer.

R Core Team
2018. R: A language and environment for statistical computing.

References 217

Rieder, H.
2012. Robust asymptotic statistics, volume 1. Springer Science & Business
Media.

Rissanen, J.
1983. A universal data compression system. IEEE Transactions on Information
Theory, 29(5):656–664.

Ron, D., Y. Singer, and N. Tishby
1996. The power of amnesia: Learning probabilistic automata with variable
memory length. Machine Learning, 25(2-3):117–149.

Rotar, V. I.
2014. Actuarial models: the mathematics of insurance. CRC Press.

Ruckdeschel, P. and H. Rieder
2004. Optimal influence curves for general loss functions. Statistics & Deci-
sions/International mathematical journal for stochastic methods and models,
22(3/2004):201–223.

Schmidt, K. D.
2006. Versicherungsmathematik. Springer-Verlag.

Schwarz, G. et al.
1978. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–
464.

SIGNAL IDUNA
2020. SIGNAL IDUNA. https://www.signal-iduna.de/, Webpage accessed:
2020-07-17.

Sohrab, H. H.
2003. Basic real analysis, volume 231. Springer.

Statistisches Bundesamt
2018. Pflegestatistik. https://www.destatis.de/DE/Themen/
Gesellschaft-Umwelt/Gesundheit/Pflege/Publikationen/
Downloads-Pflege/pflege-deutschlandergebnisse-5224001179004.pdf,
Webpage accessed: 2020-07-15.

Tappe, S.
2013. Einführung in die Wahrscheinlichkeitstheorie. Springer.

Tibshirani, R.
1996. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288.

Van der Vaart, A. W.
2000. Asymptotic statistics, volume 3. Cambridge University Press.

https://www.signal-iduna.de/
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Pflege/Publikationen/Downloads-Pflege/pflege-deutschlandergebnisse-5224001179004.pdf
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Pflege/Publikationen/Downloads-Pflege/pflege-deutschlandergebnisse-5224001179004.pdf
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Pflege/Publikationen/Downloads-Pflege/pflege-deutschlandergebnisse-5224001179004.pdf

References 218

Verbelen, R., K. Antonio, and G. Claeskens
2018. Unravelling the predictive power of telematics data in car insurance
pricing. Journal of the Royal Statistical Society: Series C (Applied Statistics),
67(5):1275–1304.

Wang, S. S.
2002. A universal framework for pricing financial and insurance risks. ASTIN
Bulletin: The Journal of the IAA, 32(2):213–234.

Weinberger, M. J., J. J. Rissanen, and M. Feder
1995. A universal finite memory source. IEEE Transactions on Information
Theory, 41(3):643–652.

Werner, D.
2006. Funktionalanalysis. Springer.

Weston, S.
2013. doMPI: Foreach parallel adaptor for the Rmpi package. R package
version 0.2, 16.

Wickham, H.
2016. Scales: scale functions for visualization. R package version 0.4.

Wilder, J.
2002. John Wilder Tukey. NOTICES OF THE AMS, 49(2).

Wüthrich, M. V.
2017. Covariate selection from telematics car driving data. European Actuarial
Journal, 7(1):89–108.

Xie, Y.
2013. knitr: A general-purpose Tool for dynamic report generation in R. R
package version 1.21, 1(1).

Xiong, J., V. Jääskinen, J. Corander, et al.
2016. Recursive learning for sparse Markov models. Bayesian analysis,
11(1):247–263.

Appendix A

Appendices

A Mathematical tools

Some mathematical tools used within this thesis are commonly known. To in-
crease the readability of the actual thesis we did not explicitly write them down
earlier. For an easy access for the reader we now catch up on this. Additionally
we give references for the statements and/or their proofs.

Theorem A.1 (Strong law of large numbers, Etemadi, 1981). Let (Xn)n∈N be a
sequence of pairwise independent, identically distributed random variables. Let

Sn :=
n∑
i=1

Xi.

Then, if E[|X1|] <∞,
1
n
Sn

n→∞−−−→
P−a.s.

E[X1].

A proof of Theorem A.1 is given in the original paper Etemadi (1981, pages 119-
120).

Theorem A.2 (Chapman-Kolmogorov equation, Kolmogorov, 1931). Let (Xt)t∈N
be a time-discrete Markov process of first order on the finite state space M , let
1 ≤ s ≤ k ≤ t and x,w ∈M with P (Xs = w) > 0. It holds that

P (Xt = x |Xs = w) =
∑
u∈M

P (Xt = x |Xk = u)P (Xk = u |Xs = w).

The Chapman-Kolmogorov equation “dates back to Bachelier’s treatises of stock
market speculation, Smoluchowski’s work on colloidal particles, Chapman’s stud-
ies of the diffusion of grains in a nonuniform fluid and Kolmogorov’s probability
theoretical investigation.”, cf. Metzler (2000, page 6233). For a derivation we refer
to Papoulis and Pillai (2002, page 705).

Proposition A.3. Let M be a set of finite cardinality m ∈ N. Then the power
set P(M) of M is of cardinality 2m.

Cf. e.g. Halmos (2017, page 20).

Appendix B

Proposition A.4 (Sandwich theorem). Let (an)n∈N ⊆ R and (cn)n∈N ⊆ R be two
sequences with an n→∞−−−→ b and cn n→∞−−−→ b. If (bn)n∈N ⊆ R is a third sequence with

an ≤ bn ≤ cn

for all n larger than a threshold n0 ∈ N, it must be that bn n→∞−−−→ b.

Proposition A.4 is often also called “squeeze theorem” or “pinching theorem” and
e.g. can be found under Theorem 3.3.6 in Sohrab (2003, page 104).

Lemma A.5 (Dragomir et al., 2000). Let P and Q be two discrete probability
distributions on Ω with P (x) > 0 and Q(x) > 0 for all x ∈ Ω. Then

D [P ||Q] ≤
∑
x∈Ω

P 2(x)
Q(x)

− 1.

Lemma A.5 can be found under Theorem 1 in Dragomir et al. (2000, page 94).
A proof is also given in aforesaid reference.

Theorem A.6 (Hoeffding’s inequality, Hoeffding, 1963). Let (Xn)n∈N be inde-
pendent random variables bounded almost surely by the interval [0, 1]. Then

P
(∣∣∣∣∣ 1n

n∑
i=1

Xi − E
[

1
n

n∑
i=1

Xi

]∣∣∣∣∣ ≥ t

)
≤ 2e−2nt2

holds for t ≥ 0.

For a proof cf. the proof of Theorem 1 in Hoeffding (1963, pages 20-22).

Corollary A.7 (Hoeffding’s inequality). Let (Xn)n∈N be independent random
variables bounded almost surely by the interval [0, 1]. Then

P
(

n∑
i=1

Xi − E
[
n∑
i=1

Xi

]
≥ t

)
≤ e−2 t2

n

and
P
(

n∑
i=1

Xi − E
[
n∑
i=1

Xi

]
≤ −t

)
≤ e−2 t2

n

holds for t ≥ 0.

Appendix C

This is Theorem 2.16 in Bercu et al. (2015, pages 21-23). A proof can also be
found there. In particular pay attention to the equations (2.35) and (2.36).

Theorem A.8 (Law of the iterated logarithm, Khintchine, 1924). Let (Xn)n∈N
be independent and identically distributed random variables with E[X1] = 0 and
Var[X1] = 1. Let

Sn :=
n∑
i=1

Xi.

Then
lim sup
n→∞

Sn√
2n log log n = 1

holds P-a.s.

Theorem A.8 is proven e.g. in the original paper Khintchine (1924, pages 10-19)
or (written in a more modern fashion) in the proof of Theorem 9.5 in Billingsley
(1995, pages 154-155).

Definition A.9 (Bachmann-Landau notation). Let (Xn)n∈N and (Yn)n∈N be two
sequences of random variables. We write Xn = O(Yn) if

lim sup
n→∞

∣∣∣∣Xn

Yn

∣∣∣∣ <∞
holds P-a.s.

The Bachmann-Landau notation is also often referred to as “big O notation”. It
was invented by Paul Bachmann, one of its first appearances being Bachmann
(1904).

Theorem A.10 (Norm equivalence, Werner, 2006). If ‖·‖ and ‖·‖∗ are two norms
on a vector space V , the following two statements are equivalent:

(a) ‖·‖ and ‖·‖∗ are equivalent.

(b) A sequence converges with regards to ‖·‖ if and only if it converges with
regards to ‖·‖∗ and both limits are the same.

Furthermore, if V is of finite dimension, all norms on V are equivalent.

Appendix D

For a proof of Theorem A.10 e.g. cf. Werner (2006, pages 24-26).

Theorem A.11 (Continuous mapping theorem, Mann and Wald, 1943). Let
(Xn)n∈N and X be random variables defined on the same probability space. Let g
be continuous at every point of a set C such that P(X ∈ C) = 1, then

Xn
n→∞−−−→
P−a.s.

X ⇒ g(Xn) n→∞−−−→
P−a.s.

g(X).

A proof is given in the original paper Mann and Wald (1943), but a more com-
pressed and modern source is Van der Vaart (2000, page 8), Theorem 2.3.

Proposition A.12 (Bayes’ theorem). Let (Ω,F ,P) be a probability space and
(Bi)i∈I a partition of Ω. Then

P(A) =
∑
i∈I

P(A | Bi)P(Bi)

holds for all A ∈ F .

The famous Bayes’ theorem A.12 is part of every undergraduate course in stochas-
tic. A proof can be found e.g. in Tappe (2013, page 26) or in Chapter 8.7 in Kendall
et al. (1948).

Proposition A.13 (De Morgan’s laws). Let (Bi)i∈I be a family of subsets of Ω.
Then (⋃

Bi

)C
=
⋂
BC
i

and (⋂
Bi

)C
=
⋃
BC
i

hold.

For a proof cf. the proof of Lemma 2.2 in Tappe (2013, page 8).

Appendix E

B Context tree estimates (data.signal)

Figure B.1: Context tree number 1 of the 43 occurring trees (data.signal)

Figure B.2: Context tree number 2 of the 43 occurring trees (data.signal)

Figure B.3: Context tree number 3 of the 43 occurring trees (data.signal)

Figure B.4: Context tree number 4 of the 43 occurring trees (data.signal)

Figure B.5: Context tree number 5 of the 43 occurring trees (data.signal)

Appendix F

Figure B.6: Context tree number 6 of the 43 occurring trees (data.signal)

Figure B.7: Context tree number 7 of the 43 occurring trees (data.signal)

Figure B.8: Context tree number 8 of the 43 occurring trees (data.signal)

Figure B.9: Context tree number 9 of the 43 occurring trees (data.signal)

Appendix G

Figure B.10: Context tree number 10 of the 43 occurring trees (data.signal)

Figure B.11: Context tree number 11 of the 43 occurring trees (data.signal)

Figure B.12: Context tree number 12 of the 43 occurring trees (data.signal)

Figure B.13: Context tree number 13 of the 43 occurring trees (data.signal)

Appendix H

Figure B.14: Context tree number 14 of the 43 occurring trees (data.signal)

Figure B.15: Context tree number 15 of the 43 occurring trees (data.signal)

Figure B.16: Context tree number 16 of the 43 occurring trees (data.signal)

Figure B.17: Context tree number 17 of the 43 occurring trees (data.signal)

Appendix I

Figure B.18: Context tree number 18 of the 43 occurring trees (data.signal)

Figure B.19: Context tree number 19 of the 43 occurring trees (data.signal)

Figure B.20: Context tree number 20 of the 43 occurring trees (data.signal)

Figure B.21: Context tree number 21 of the 43 occurring trees (data.signal)

Appendix J

Figure B.22: Context tree number 22 of the 43 occurring trees (data.signal)

Figure B.23: Context tree number 23 of the 43 occurring trees (data.signal)

Figure B.24: Context tree number 24 of the 43 occurring trees (data.signal)

Figure B.25: Context tree number 25 of the 43 occurring trees (data.signal)

Appendix K

Figure B.26: Context tree number 26 of the 43 occurring trees (data.signal)

Figure B.27: Context tree number 27 of the 43 occurring trees (data.signal)

Figure B.28: Context tree number 28 of the 43 occurring trees (data.signal)

Figure B.29: Context tree number 29 of the 43 occurring trees (data.signal)

Appendix L

Figure B.30: Context tree number 30 of the 43 occurring trees (data.signal)

Figure B.31: Context tree number 31 of the 43 occurring trees (data.signal)

Figure B.32: Context tree number 32 of the 43 occurring trees (data.signal)

Figure B.33: Context tree number 33 of the 43 occurring trees (data.signal)

Appendix M

Figure B.34: Context tree number 34 of the 43 occurring trees (data.signal)

Figure B.35: Context tree number 35 of the 43 occurring trees (data.signal)

Figure B.36: Context tree number 36 of the 43 occurring trees (data.signal)

Figure B.37: Context tree number 37 of the 43 occurring trees (data.signal)

Appendix N

Figure B.38: Context tree number 38 of the 43 occurring trees (data.signal)

Figure B.39: Context tree number 39 of the 43 occurring trees (data.signal)

Figure B.40: Context tree number 40 of the 43 occurring trees (data.signal)

Figure B.41: Context tree number 41 of the 43 occurring trees (data.signal)

Appendix O

Figure B.42: Context tree number 42 of the 43 occurring trees (data.signal)

Figure B.43: Context tree number 43 of the 43 occurring trees (data.signal)

Appendix P

C Context tree estimates (data.female)

Figure C.1: Context tree number 1 of the 14 occurring trees (data.female)

Figure C.2: Context tree number 2 of the 14 occurring trees (data.female)

Figure C.3: Context tree number 3 of the 14 occurring trees (data.female)

Figure C.4: Context tree number 4 of the 14 occurring trees (data.female)

Figure C.5: Context tree number 5 of the 14 occurring trees (data.female)

Figure C.6: Context tree number 6 of the 14 occurring trees (data.female)

Appendix Q

Figure C.7: Context tree number 7 of the 14 occurring trees (data.female)

Figure C.8: Context tree number 8 of the 14 occurring trees (data.female)

Figure C.9: Context tree number 9 of the 14 occurring trees (data.female)

Figure C.10: Context tree number 10 of the 14 occurring trees (data.female)

Figure C.11: Context tree number 11 of the 14 occurring trees (data.female)

Appendix R

Figure C.12: Context tree number 12 of the 14 occurring trees (data.female)

Figure C.13: Context tree number 13 of the 14 occurring trees (data.female)

Figure C.14: Context tree number 14 of the 14 occurring trees (data.female)

Curriculum Vitae

3rd July 1993 born in Bremen, Germany

August 2004 High school student
- July 2012 Max-Planck-Gymnasium, Delmenhorst, Germany

graduated with Abitur (secondary school diploma)

October 2012 Undergraduate studies in mathematics
- July 2015 University of Oldenburg, Oldenburg, Germany

graduated with a BSc in mathematics

October 2014 Student assistant at the Institute of Mathematics
- March 2015 University of Oldenburg, Oldenburg, Germany

October 2015 Postgraduate studies in mathematics
- September 2017 University of Oldenburg, Oldenburg, Germany

graduated with a MSc in mathematics

October 2015 Scholarship “Deutschlandstipendium”
- September 2016 awarded by the University of Oldenburg to honour

outstanding academical performance

August 2016 Intern
- September 2016 KROSE GmbH & Co. KG, Bremen, Germany

October 2016 Scholarship “Deutschlandstipendium”
- September 2017 awarded by the University of Oldenburg to honour

outstanding academical performance

October 2017 Research assistant at the Institute of Mathematics
- present University of Oldenburg, Oldenburg, Germany

October 2017 Doctoral studies in mathematics
- present University of Oldenburg, Oldenburg, Germany

February 2018 Award “Preis des Instituts für Mathematik”
awarded by the University of Oldenburg for an outstanding
master’s thesis

Affidavit
I hereby declare that the submitted thesis entitled “Finding Markovian Models
for Insurance Processes by Expanding State Spaces” is my own work. I have only
used the sources indicated and have not made unauthorised use of services of a
third party. Where the work of others has been quoted or reproduced, the source
is always given.
I further declare that the submitted thesis or parts thereof have not been pre-
sented as part of an examination degree to any other university.

	Title: Finding Markovian models for insurance processes by expanding state spaces
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of R-Codes
	1 Introduction
	1.1 The problem
	1.2 The concept of Variable Length Markov Chains
	1.3 Special requirements for insurance processes
	1.4 An approach

	2 Theoretical framework
	3 Time-inhomogeneous Variable Length Markov Chains
	4 Inferring tiVLMC
	4.1 Pruning with the Kullback-Leibler divergence
	4.2 Pruning with the L1-norm
	4.3 Pruning with an arbitrary norm

	5 Inferring tiVLMC from censored data
	5.1 The censoring variables
	5.2 Pruning with the Kullback-Leibler divergence
	5.3 Pruning with an arbitrary norm
	5.4 Model limitations

	6 Tuning the algorithm
	6.1 The log-likelihood function
	6.2 The model complexity
	6.3 Two information criteria

	7 Implementation of the algorithm
	7.1 The estimateTau-function
	7.2 The buildTauMax-function
	7.3 The pruneTauMax-function
	7.4 The tuneC-function

	8 Examples
	8.1 Applying the algorithm
	8.2 Tuning the algorithm

	9 The prospective reserve
	9.1 A computation formula
	9.2 The calculateProspectiveReserve-function
	9.3 The net premium

	10 The German long-term care insurance
	10.1 A brief data description
	10.2 Data preparation
	10.3 The tiVLMC-models
	10.4 A comparison

	11 Interpreting a tiVLMC-model
	11.1 Break-point-tiVLMC
	11.2 Moving-average-tiVLMC
	11.3 LASSO-tiVLMC
	11.4 Cutoff paths

	12 The joint life insurance
	12.1 Data preparation
	12.2 The LASSO-tiVLMC-model
	12.3 The moving-average-tiVLMC-models

	13 Reflection and directions for future research
	References
	Appendices
	A Mathematical tools
	B Context tree estimates (data.signal)
	C Context tree estimates (data.female)

	Curriculum Vitae
	Affidavit

