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Zusammenfassung

Die vorliegende Dissertation ist der Entwicklung von Methoden zur Approximation von
Kovarianzfunktionen von elliptischen partiellen Differentialgleichungen gewidmet, wenn
diese Unsicherheiten unterworfen sind. Wir beginnen mit einer kurzen Fixierung der nöti-
gen Notation, des funktionalanalytischen Rahmens für die Analysis und einer rudimen-
tären Einführung in die Ideen von Finite Element Methoden und des adaptiven Prozesses.

Um Kovarianzfunktionen zu approximieren, entwickeln wir adaptive Fehlerkontrolle
für die deterministischen zweiten Momentengleichungen eines elliptischen Modellproblems
im eindimensionalen Setting mithilfe von a posteriori Fehlerschätzern, die dazu genutzt
werden die adaptive Gitterverfeinerung zu steuern. In diesem Setting untersuchen wir
einen a posteriori Fehlerschätzer basierend auf einer L2-Representation des Residuums
und einen hierarchischen a posteriori Fehlerschätzer mittels sogenannter Element-Bubble
und Kanten-Bubble Funktionen. Diese werden hergeleitet und von ihnen wird gezeigt,
dass sie zuverlässig (eng.: reliable) sind. Da im Gegensatz zu Fehlerschätzern des zugrun-
deliegenden Modellproblems für diese a posteriori Fehlerschätzer für das zweite Moment-
problem allerdings nur schwache Effizienz nachgewiesen werden kann, liefern diese keine
asymptotisch exakten Fehlerschätzer. Um dennoch einen Fehlerschätzer ohne dieses De-
fizit anzugeben, analysieren wir einen Schätzer, der auf einer Mittelungsprozedur beruht
und zeigen, dass dieser asymptotisch exakt ist, d.h. zuverlässig und effizient (eng.: reliable
and efficient).

Darüberhinaus wird dann ein zweidimensionales Modellproblem analysiert und zuge-
hörige residuale und hierarchische Fehlerschätzer für das zweite Moment der Lösung in
diesem Setting entwickelt. Hier gilt wieder lediglich Zuverlässigkeit und schwache Ef-
fizienz für die residualen und hierarchischen Fehlerschätzer, weshalb wir abermals auf
einen Fehlerschätzer basierend auf einer Mittelungsprozedur zurückgreifen, von welchem
ebenfalls in der vierdimensionalen Situation gezeigt werden kann, dass er asymptotisch
exakt ist.

Am Ende des Kapitels untersuchen wir dann den Effekt der schwachen Effizienz der
residualen und hierarchischen Fehlerschätzer auf die Konvergenz des adaptiven Prozesses.
Wir bemerken, dass aufgrund der abgeschwächten unteren Abschätzung dieser Schätzer
der Fehlerreduktionsfaktor sehr nahe bei 1 liegen mag and als solches eine Art Konvergenz-
abflachung verursachen kann. Dieses Verhalten ist hiernach ebenfalls bei den numerischen
Experimenten für die Modellprobleme für eine gewisse Klasse von Kovarianzfunktionen
zu beobachten und wird kurz diskutiert. Es ist auch zu sehen, dass die adaptive Methode
durchaus eine bessere Approximation an das zweite Moment liefern kann als die Finite
Element Methode auf uniform verfeinerten Gittern. Dies ist in typischen Fällen wie im
Falle einer Lösung, die starke Anstiege oder im Allgemeinen abrupte Änderungen im
Verhalten aufweist, zu beobachten.

Danach schreiten wir voran zur Approximation von Kovarianzfunktionen mithilfe von
Monte Carlo (MC) und multilevel Monte Carlo (MLMC) Methoden. Zuerst präsen-
tieren wir einen theoretischen Standpunkt der Approximation in Tensorprodukten von
Hilberträumen und führen den Begriff der Voll-Tensorprodukt- und Dünn-Tensorprodukt-
Gitter-Approximation ein. Die präsentierten Ideen haben Ähnlichkeiten mit der soge-
nannten Kombinationstechnik (cf. [34]). Danach wird die Fehleranalysis für die Voll-
Tensorprodukt- und Dünn-Tensorprodukt-Approximation durchgeführt. Darüberhinaus
zeigen wir asymptotische Schranken für die Kosten- und Speicheranforderungen der zuge-
hörigen MC und MLMC Methoden. Da die analysierten Methoden ein unterschiedliches
Verhalten unter unterschiedlichen Rahmenbedingungen zeigen, welche von der Qual-
ität und der Effizienz des benutzten Lösers abhängen, wird ein Vergleich für die unter-
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schiedlichen Rahmenbedingungen gegeben und ein kurzes zusammenfassendes Ranking
präsentiert, welches eine kurze Entscheidungshilfe bereitstellen soll.

Da beide Methodentypen, das heißt die adpative Approximation von Kovarianzfunk-
tionen mithilfe deterministischer Momentengleichungen und der Approximation mithilfe
von Voll-Tensorprodukt- und Dünn-Tensorprodukt-Gitter MLMC Methoden, dazu ver-
wendet werden können, um Kovarianzfunktionen zu approximieren, bietet das letzte Kapi-
tel einen Vergleich beider Methodentypen, der die unterschiedlichen Voraussetzungen,
Vorteile und Nachteile, z.B. im Blick auf das Abklingverhalten der Eigenwerte und der Ko-
rrelationslänge des zugrundeliegenden Kovarianzoperators des angenommenen stochastis-
chen Modells, beleuchtet.
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Abstract

The present dissertation is dedicated to the development of methods for the approximation
of covariance functions of elliptic partial differential equations when these are subject to
uncertainty. We start out by briefly fixing the necessary notation, the functional analytic
framework for the analysis and a rudimentary introduction into Finite Elements and the
adaptive process.

In order to approximate covariance functions, we develop adaptive error control for
the deterministic second moment equations of an elliptic model problem in the one-
dimensional setting by means of a posteriori error estimators that are used to guide the
adaptive refinement of the mesh. In this setting we investigate an a posteriori error
estimator based on an L2-representation of the residual and a hierarchical a posteriori
error estimator using element bubble and edge bubble functions. These estimators are
derived and proven to be reliable. However, since these a posteriori error estimators for the
deterministic second moment problem are shown to be only weakly efficient, in contrast to
the estimators of the underlying model problem, those do not provide asymptotically exact
estimators. In order to provide an error estimator without this drawback, an estimator
by means of an averaging procedure is analyzed and shown to be asymptotically exact,
i.e. reliable and efficient.

Moreover, a two-dimensional model problem is then analyzed and corresponding resid-
ual and hierarchical error estimators for the second moment of the solution are developed
in this setting. Again only reliability holds for the residual and hierarchical estimators
and as such we again resort to an error estimator based on averaging, which is proven to
be an asymptotically exact estimator in the four dimensional situation.

At the end of the chapter we look into the effect of the weak efficiency of the residual
and hierarchical error estimators on the convergence of the adaptive process. We note
that due to the weakened lower bound of these estimators the error reduction factors
may become very close to 1 and as such may create a type of convergence shelf. This
behavior is thereafter also observed in the numerical experiments for the model problems
for a certain class of covariance functions and briefly discussed. It is also seen that
the adaptive method may yield a better approximation to the second moment than the
corresponding Finite Element Method on uniformly refined meshes in typical cases, i.e.
for instance when the solution features steep gradients or, in general, abrupt changes of
behavior.

We then move on with the approximation of covariance functions by means of the
Monte Carlo (MC) and multilevel Monte Carlo (MLMC) methods. First we present a
theoretical point of view of the approximation in tensor products of Hilbert spaces and
introduce the notion of full tensor product and sparse tensor product approximation.
The presented ideas have similarities to the so-called combination technique (cf. [34]).
Error analysis is then conducted with respect to full tensor product and sparse tensor
product approximations. Moreover, we show asymptotic bounds for the cost and memory
requirements of the corresponding MC and MLMC methods. As the analyzed methods
exhibit different asymptotic behavior in different regimes which depend on the quality
and efficiency of the used solver, a comparison in the different regimes is given and a
short summarizing ranking is presented, which aims to give a quick guideline on which
method to use.

As both methods, i.e. the adaptive approximation of covariance functions by means
of deterministic moment equations and the approximation by means of full and sparse
tensor product MLMC methods, can be used to approximate the covariance function, the
last chapter offers a comparison of both methods considering the different requirements,
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advantages and disadvantages, e.g. in lieu of the rate of decay of eigenvalues and the
correlation length of the underlying covariance operator of the assumed stochastic model.
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Introduction

The field of Uncertainty Quantification (UQ) is a relatively young field of research, which
has reached a certain degree of maturity in the last two decades, which is due to the rapid
development of methods to assess random behavior in systems of all kind. Typically in
problems related to natural phenomena we are not equipped with complete information,
but have some random fluctuation imbedded into the model itself, e.g. it is impossible
to know the temperature at each point in space or the velocity of each particle of air in
space for a given volume and/or all times.

With the advent of more and more computing power made available through techno-
logical advancements the possibility of numerical analysis of this kind of uncertain systems
has grown enormously in recent decades. In general we are interested in finding a solution
u to a model that is subject to some uncertain behavior which is modeled by a forward
solution operator S in combination with some given data, such as boundary conditions
or source terms, which themselves might depend on uncertain parameters as well, such
that one can codify the problem for some data f via

u(ω) = S(f, ω)

in the sense that S realizes the forward propagation of the uncertain parameters to the
solution u for a given ω which is an instance of the set of all plausible events. In this
thesis we will understand S as the solution operator of an elliptic partial differential
equation which has either a random diffusion coefficient or a source term that is subject
to uncertain behavior. In this way the uncertainty of the data propagates to the solution
u which is now also a stochastic quantity and is called a random variable if it has values
in a field (e.g. R) or a random field if it has values in other general spaces, e.g. Banach
spaces.

Usually the events ω are modeled by means of a complete probability space (Ω,Σ,P),
where Ω is the set of events, Σ the σ-algebra of subsets of Ω and P a probability measure.
As the underlying probability space is usually also infinitely dimensional the question
arises of how to accurately assess the validity of a model or its solution. Because of this
fact the problems under consideration are intrinsically high dimensional in nature and
special methods have to be employed to make approximation and assessment feasible
and quantifiable. In order to make sense of the random behavior of a solution of such
a system one is typically interested in solving for the so-called moments of u, for e.g.
the expectation E[u], the variance V[u] of u or its (auto)covariance function Cov [u, u].
Moreover, the covariance or covariance function of u is an important tool in the assessment
of the random behavior of u as it gives a measure of the variability and mutual dependence
with respect to the expectation of u. Since one usually wants to assess the quality of
a model with respect to reality or the spread of variability in a certain system, the
expectation and variance of the system are key quantities to observe and analyze.

Since usually the exact evaluation of probabilistic models is either impractical or
intractable, one has to deal with certain discretizations of the underlying model as well
as of its stochastic behavior. This can be done in many different ways, which usually also
depend on the problem structure or the quantity of interest one wishes to approximate. In
particular, considering stochastic processes one has to deal with discretizations in space
or time and additionally with discretizations of the stochastic aspects.

For the approximation of the moments of stochastic solutions to uncertain PDEs
different approaches have been applied. The stochastic Galerkin method, which can be
thought of as a Galerkin discretization of the underlying space and probability space as
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well, leads to a high dimensional deterministic problem (cf. e.g. [25] and the references
therein).

Another important tool is the Karhunen-Loéve expansion, which by truncation after
a reasonable number of terms of its series allows to approximate a second order process of
a random field. This expansion can be used in conjunction with a large class of methods
that deal with the quantification of random behavior of solutions to uncertain PDEs, the
so-called Monte Carlo-type (MC-type) methods. Here we mention only a few references,
e.g. [5, 20, 7, 9] and the references therein. Monte Carlo (MC) and multilevel Monte Carlo
(MLMC) methods are extensively used in UQ. This is due to the simplicity, generality
and accessability of Monte Carlo methods for a vast number of problems as one typically
only has to make sense of the sampling procedure in the context in question to be in
business. Another great flexibility of these methods is that one has complete freedom of
the underlying solver for the PDE which does not change the overall algorithm and is
thus relatively easy implemented. The great flexibility and quick applicability, however,
is counterweighted by the necessity of having to solve the underlying uncertain PDE for
a certain number M of samples to achieve a certain error tolerance ε. In the case of MC
methods this is usually a very expensive procedure which is the reason for the development
of the MLMCmethod. The MLMCmethod balances the work needed against the required
accuracy by sampling less on finer discretization levels and introducing the notion of level
corrections. Moreover, for the MLMC method on each level of discretization ` a different
amount of samples M` is chosen to achieve the aforementioned balancing.

Under certain assumptions on the underlying operator of the elliptic PDE another
approach to find the moments of u leads to a formulation where the moments of u fulfill a
deterministic variational equation, the so-called deterministic moment equations (DME)
(cf. e.g. [55]). In this thesis the concern is the deterministic second moment equation for
e.g. the model problem

−∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω), in D,

where D ⊂ Rd, d = 1, 2 is an open bounded polygonal domain and the diffusion coeffi-
cient κ as well as the source term f may depend randomly on ω. In general, the k-fold
tensorization of this equation and subsequently integrating with respect to the stochastic
variable, i.e. taking expectation of both sides of the tensorized equation, leads to a fully
deterministic variational formulation after we mulitply by a deterministic test function
on Dk and perform the usual integration by parts to arrive at a weak formulation. The
advantage of this formulation lies in the fact that one does not have to know the ex-
act probability densities of f and of the probability measure P to recover the k-th order
statistics of u.

As the solution of the second moment equation may feature singularities (cf. [43])
on the diagonal of the domain and/or on the boundary at certain orders of weak deriva-
tives, it is desireable to have a solution procedure which adapts the underlying mesh, i.e.
the spatial discretization, in the best way possible to the given data. As the computa-
tional domain for the k-th deterministic moment equation is given by Dk and a naïve
uniform FEM thus has a number of degrees of freedom which is proportional to Nk

L on
discretization level L, when all elements are refined uniformly from one discretization level
to the next. For this reason we have chosen to develop adaptive Finite Element Meth-
ods (AFEM) with a posteriori error estimators to guide the discretization procedure and
thereby speed up the solution process and profit from the efficiency of the so generated
meshes. Another way of accelerating the convergence is to employ higher order methods
in this setting (cf. [43]) or even more sophisticated ideas in the line of spectral hyperbolic
cross approximation as in [18].
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In contrast to this approach the class of Monte Carlo methods as mentioned above is
another important tool in the field for the approximation of higher order moments of a
random field u (cf. e.g. [9]). Here, in order to estimate the moments of u, samples have to
be drawn with respect to a number of events ωi ∈ Ω, i = 1, . . . ,M , which only give sample
solutions ui ≡ u(·, ωi) which are averaged to quantify the quantity of interest. This usually
involves the discretization of the underlying spatial geometry and as such one has not
only to deal with the usual discretization error but also with the error that is committed
by means of the sampling procedure itself, i.e. the sampling error. The popularity of
these methods has soared in accordance with the available computational power and has
sparked improvements and specialization such as the multilevel Monte Carlo method. In
order to approximate second order moments by the MC and MLMC methods we choose to
optimize the dimension of the underlying tensor product discretization spaces by virtue of
sparse tensor product approximation techniques which facilitate the solution procedure.

This thesis is structured as follows. In Chapter 1 we fix the necessary notation,
vocabulary and give a necessary frame that is used in the subsequent chapters, such
as function spaces, Hilbert space valued random fields and a brief outline of the Finite
Element Method and the corresponding self-adaptive process guided by a posteriori error
estimators.

In Chapter 2 we are then concerned with deriving adaptive methods for the determin-
istic second moment equation of the model problems in one and two space dimensions,
which lead to adaptive methods in two and four dimensions, respectively. In particular, we
develop residual and hierarchical a posteriori error estimators and show their reliability.
Weak efficiency of these error estimators is also defined and established. Due to that fact
these estimators are not asymptotically exact and in order to provide an asymptotically
exact error estimator we adapt an error indicator based on a popular averaging procedure
to our situation. At the end of the chapter we shall then have a look at numerical exper-
iments which validate the theoretical findings and exhibit the strengths and weaknesses
of the methods.

In Chapter 3 we take another perspective on the second moment problem to approxi-
mate covariance functions by help of Monte Carlo methods. Here we are concerned with
the approximation of covariance functions in tensor products of Hilbert spaces. After
investigating how to approximate elementary algebraic tensor products by means of full
and sparse tensor products we analyze full and sparse tensor product Monte Carlo (MC)
and multilevel Monte Carlo (MLMC) methods for the approximation of covariance func-
tions in the context of tensor products of Hilbert spaces. We show convergence and give
asymptotic bounds for the cost and memory requirements of these methods. The chapter
is then concluded by numerical experiments verifying the theoretical analysis.

Since the methods in Chapter 2 and Chapter 3 are competing in the approximation
of covariance functions, it is natural to ask the question whether one should prefer one
over the other and if so in what situation that may be advantageous. For this purpose
Chapter 4 conducts a comparison in this direction of the two approaches which we have
chosen for approximation.
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Chapter 1

Preliminaries

Before we go at the heart of the matter we shall in this chapter prepare the necessary
theoretical background that enables us to present the research conducted in a concise and
efficient manner. In order to do so, we introduce the necessary function spaces, functional
analytic framework and fix most of the commonly used notation of this thesis.

1.1 Function spaces

In this section we briefly give definitions and properties of the most used spaces and
objects used in this work.

1.1.1 Sobolev spaces

A more in depth introduction of the spaces presented here can be found in [1]. We also
refer to [29] and [13] for further details.

Let D ⊂ Rd with d = 1, 2, 3, 4 an open and bounded domain with boundary Γ = ∂D.
Denote by C(D) the space of continous functions on D. The partial derivative asso-

ciated with a multi-index s ∈ Nd0 is denoted by

∂s :=
∂|s|

∂s1x1 · · · ∂
sd
xd

,

where |s| =
∑

i |si| is the order of the derivative. Also we introduce a shorthand notation
for the sum of partial derivatives of the same order k by

Dk :=
∑
|s|=k

∂|s|

∂s1x1 · · · ∂
sd
xd

.

The space Ck(D) of k-times continously differentiable functions on D equipped with the
usual supremum norm, i.e.

‖v‖Ck(D) :=
∑
|s|≤k

sup
x∈D
|∂sv(x)|,

is defined in the usual manner via

Ck(D) := {v ∈ C(D) : ∂sv ∈ C(D), |s| ≤ k}.

Moreover, instead of C0(D) we shall usually write C(D).

1



Chapter 1. Preliminaries

For any p ∈ [1,∞] we denote by Lp(D) the space of p-Lebesgue integrable functions
on a domain D equipped with the norm

‖f‖Lp(D) =


(∫

D
|f(x)|p dx

)1/p

, p <∞,

ess sup
x∈D

|f(x)|, p =∞.

Functions are considered equal as long as they differ only on a set of measure zero and
also the essential supremum has to be understood in this way.

The weak derivative of order k associated with a multiindex s with |s| = k of a function
v ∈ Lp(D) is defined as a function w ∈ Lp(D), such that for all infinitely differentiable
functions ϕ with compact support in D, i.e. ϕ ∈ C∞0 (D), there holds∫

D
∂sv ϕ dx = (−1)|s|

∫
D
w ∂sϕdx,

or in symbols ∂(s)v = w, if we want to emphasize that w is only a weak derivative of v.
Then we say w is a weak derivative of v of order k = |s|.

As usual, we denote by Wm,p(D) the space of functions in Lp(D), such that all weak
derivatives of order up to m ∈ N0 are again contained in Lp(D), namely

Wm,p(D) := {v ∈ Lp(D) : ∂sv ∈ Lp(D), |s| ≤ m},

equipped with the norm

‖f‖Wm,p(D) =


(

m∑
k=1

∫
D
|Dkf(x)|p dx

)1/p

, p <∞,

max
|s|≤m

ess sup
x∈D

|∂sf(x)|, p =∞.

We shall also frequently make use of the corresponding seminorms given by the follwing
expressions

|f |Wm,p(D) =


(∫

D
|Dmf(x)|p dx

)1/p

, p <∞,

max
|s|=m

ess sup
x∈D

|∂sf(x)|, p =∞.

Moreover, we adopt the convention to denote Hm(D) := Wm,2(D) and note that for
m ≥ 0 the spaces Hm(D) are Hilbert spaces with associated inner product

〈u, v〉Hm(D) =
m∑
k=0

∫
D
Dku Dkv dx.

The dual spaceW−s,p(D) ofW s,q
0 , where 1 ≤ p, q ≤ ∞ with 1

p+ 1
q = 1, with the convention

that 1
∞ = 0, we define for any s > 0

‖u‖W−s,p(D) := sup
v∈W s,q

0 (D):v 6=0

〈u, v〉D
‖v‖W s,q

0 (D)

,

where we have denoted the duality pairing between W−s,p(D) and W s,q
0 (D) by

〈u, v〉D =

∫
D
uv dx

and
W s,q

0 (D) := {v ∈ Lq(D) : ∂sv ∈ Lq(D), v|Γ = 0, |s| ≤ s}.

2



1.1. Function spaces

1.1.2 Tensor product spaces

More details on the presentation of this section can be found in [47]. For further details
and topics we also refer to [40] for approximation in tensor product spaces as well as [35]
for more details on tensor calculus in the context of numerical analysis. For the functional
analysis aspects we refer to [60] and [58].

Let H and H̃ denote two separable Hilbert spaces over R with their associated inner
products 〈·, ·〉H and 〈·, ·〉H̃ , respectively. We note that the space of algebraic tensor
products H ⊗ H̃ of all formal finite sums of the form

M∑
k=1

hk ⊗ h̃k, ∀hk ∈ H,∀h̃k ∈ H̃,

endowed with the usual algebraic operations is a vector space. Defining a norm on this
vector space there are several options which are briefly presented in the following. The
completion of the tensor product with respect to any of these norms gives rise to different
spaces (cf. [47, Chapter 2–4]). For our purposes it is sufficient to present the three most
prominent choices. These are the projective tensor product, the injective tensor product
and the Hilbert tensor product space, which is given through the canonical tensor product
Hilbert space norm as we will see later on.

The projective tensor product space H ⊗π H̃ is defined as the closure of the algebraic
tensor product space H ⊗ H̃ where the norm is defined by

‖U‖H⊗πH̃ := inf

{
M∑
k=1

‖uk‖H‖ũk‖H̃ : U =

M∑
k=1

uk ⊗ ũk

}
.

As a second choice the injective tensor product space H ⊗ε H̃ is obtained when taking
the closure of the algebraic tensor product space with respect to the norm

‖U‖H⊗εH̃ := sup

{∣∣∣∣∣
M∑
k=1

φ(uk)ψ(ũk)

∣∣∣∣∣ : φ ∈ H ′, ψ ∈ H̃ ′, ‖φ‖H′ = ‖ψ‖H̃′ = 1

}
,

where H ′ and H̃ ′ denote the dual spaces of H and H̃, respectively. We will mostly work
with the following choice of completion of H ⊗ H̃. We define an inner product on H ⊗ H̃
via

(U, V )H⊗H̃ :=

M ′∑
k′=1

M∑
k=1

〈uk, ũk′〉H 〈vk, ṽk′〉H̃ (1.1)

and then consider the closure of H⊗ H̃ by the norm induced by the aforementioned inner
product and denote it by H ⊗2 H̃. As we will mostly be concerned with tensor products
of Hilbert spaces, we shall also frequently abuse notation and write H ⊗ H̃ for H ⊗2 H̃.

For ease of notation we denote the k-fold tensor product of a Hilbert space H by

H(k) :=
k⊗
i=1

H

and understand it as the completion with respect to the canonical Hilbert tensor product
norm ‖ · ‖H(k) , which is induced by the inner product on H(k). For any U = u1⊗ · · · ⊗ uk
the inner product on H(k) is defined by

‖U‖2
H(k) := 〈U,U〉H(k) := 〈u1, u1〉H · · · 〈uk, uk〉H .

3
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In particular, we note that by definition there holds the so-called crossnorm property

‖U‖H(k) = ‖u1 ⊗ · · · ⊗ uk‖H(k) = ‖u1‖H · · · ‖uk‖H .

We will finish this section with some theoretical remarks about tensor product spaces.
For the three constructions of tensor product spaces we have the following chain of em-
beddings, e.g. cf. [47],

H ⊗π H̃ ↪→ H ⊗2 H̃ ↪→ H ⊗ε H̃,

where the constants of the associated embeddings are equal to one (are of unit norm).
Moreover, when dealing with operators on tensor product spaces, the following fact is
useful. Letting S ∈ L(H,X) and T ∈ L(H̃, X̃) and defining

(S ⊗ T )(h⊗ h̃) := (Sh)⊗ (T h̃), h ∈ H, h̃ ∈ H̃ (1.2)

yields a well-defined linear operator S ⊗ T : H ⊗ H̃ → X ⊗ X̃, when one extends this
definition by linearity to all elements of H ⊗ H̃. The space L(H,X) denotes the space
of all continuous and bounded linear operators from H to X, which endowed with the
operator norm

‖S‖ := sup
h∈H

‖Sh‖X
‖h‖H

is a Banach space. Furthermore, there exists a unique extension to a continuous linear
operator S ⊗2 T : H ⊗ H̃ → X ⊗ X̃ and its operator norm is given by

‖S ⊗ T‖L(H⊗H̃,X⊗X̃) = ‖S‖L(H,X)‖T‖L(H̃,X̃).

Moreover, let us note that the projective tensor product in general does not respect
subspaces, i.e. if W is a subspace of H then the completion of W ⊗π H̃ need not be
a subspace of the completion H ⊗π H̃ (cf. [47, Chapter 2, p.21]). Also refer to [47,
Proposition 2.11,Corollary 2.12] for the requirements when W ⊗π Z with W ⊂ H and
Z ⊂ H̃ is a subspace of H ⊗π H̃. Although, interestingly enough, the projective tensor
product space does not respect subspaces, it does respect quotients.

In contrast to that we see (cf. [47, Chapter 3]) that the injective tensor product
respects subspaces in the sense that if W is a closed subspace of H and Z is a closed
subspace of H̃ then the completion of W ⊗ε Z is a closed subspace in the completion of
H ⊗ε H̃. But now the injective tensor product does not respect quotients, i.e. if W is a
quotient space of H then the completion of W ⊗ε H̃ does not need to be a quotient of
the completion of H ⊗ε H̃.

Let us introduce tensor products of Sobolev spaces which will be used extensively
throughout this thesis. To this end let us denote by

Hs(Dk) := Hs1(D)⊗Hs2(D)⊗ · · · ⊗Hsk(D)

the anisotropic Sobolev space of order |s|, where s ∈ Nk0 is a multiindex. Since the spaces
Hs(D) are also Hilbert spaces, their canonical inner product for any u, v ∈ Hs(Dk) with
u = u1 ⊗ · · · ⊗ uk and v = v1 ⊗ · · · ⊗ vk is given by

〈u, v〉Hs(Dk) =〈u1, v1〉Hs1 (D)〈u2, v2〉Hs2 (D) · · · 〈uk, vk〉Hsk (D)

=

 s1∑
`1=0

∫
D
D`1
x1u1D

`1
x1v1 dx1

 · · ·
 sk∑
`k=0

∫
D
D`k
xk
ukD

`k
xk
vk dxk


=
∑

0≤t≤s

∫
Dk
DtuDtv dx,

4



1.2. Random fields and their statistics

where Dt = Dt1 ⊗ · · · ⊗Dtk , t, s ∈ Nk0 and with the convention that

t ≤ s :⇔ ti ≤ si, ∀i = 1, . . . , k.

The corresponding seminorm of order |s| for any u ∈ Hs(Dk) can be written as follows

|u|2Hs(Dk) := ‖Dsu‖2L2(Dk)

and finally the norm in Hs(Dk) is then given as

‖u‖Hs(Dk) :=

 ∑
0≤t≤s

|u|2Ht(Dk)

1/2

.

In particular, since we will be dealing with second moment problems in order to
approximate covariance functions, we encounter the space H1,1(D × D), where D is a
one or two dimensional bounded domain. Moreover, the spaces Ht,s(D × D) for t 6= s
will also be of importance. For example consider the anisotropic spaces H1,0(D ×D) '
H1(D)⊗ L2(D) and H0,1(D ×D) ' L2(D)⊗H1(D) with the norms

‖u‖2H1,0(D×D) := ‖u‖2L2(D×D) + ‖(∇⊗ id)u‖2L2(D×D),

‖u‖2H0,1(D×D) := ‖u‖2L2(D×D) + ‖(id⊗∇)u‖2L2(D×D).

Here the map id is the identity operator and the maps (∇ ⊗ id) and (id ⊗ ∇) can be
interpreted using (1.2).

1.2 Random fields and their statistics

Here we keep the presentation to a minimum and refer the reader to the extensive litera-
ture for more details. For topics on probability we refer the reader to the book [38] which
gives a thorough and comprehensive introduction. For more information about Bochner
spaces and moments of random fields we refer the reader to [52]. For applications in this
context we refer to [9, 30, 50, 49, 53, 44, 45] to name only a very few.

Let (Ω,Σ,P) a complete probability space, where P is a probability measure on a
measurable space (Ω,Σ) with underlying σ-algebra Σ. We note the following definitions.

Definition 1.1. A strongly P-measurable function X defined on a probability space (Ω,Σ,P)
with values in H, i.e. X : Ω→ H, is called an H-valued random field. If H = R, then X
is often called a random variable.

Definition 1.2. The distribution of an H-valued random field X is the Borel probability
measure µX on H defined by

µX(B) := P{X ∈ B}, B ∈ B(H),

where B(H) denotes the Borel σ-algebra of H which is induced by the set of all open sets
in H. Random fields that have the same distribution are said to be identically distributed.

In order to make sense of random fields we encounter during this thesis we introduce
the notion of Bochner spaces.

5
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Definition 1.3 (Bochner spaces). Let k ∈ N∪{∞} and H a separable Hilbert space. Then
we define the Bochner space Lk(Ω,P;H) of Hilbert space valued mappings u : Ω→ H for
which the following norm is finite

‖u‖Lk(Ω,H) :=

(∫
Ω
‖u(ω)‖kH dP(ω)

)1/k

,

with the obvious modification if k =∞.

We shall frequently suppress the probability measure from the notation and write
Lk(Ω;H) instead of Lk(Ω,P;H). Moreover, if f ∈ Lk(Ω;H) then f can be approximated
by simple functions, namely by H-valued step functions. Similar to the Lebesgue spaces
Lp we have the following

Theorem 1.4 (Bochner). A function f belongs to Lk(Ω;H) if and only if there exists
a sequence of H-valued step functions (fj)j∈N with fj → f P-a.e. on Ω and for j → ∞
there holds ∫

Ω
‖fj − f‖kH dP(ω)→ 0.

Definition 1.5 (Statistical moments). For k ∈ N, we introduce the k-th order statistical
moment for u ∈ Lk(Ω;H) as defined by

Mku :=

∫
Ω

k⊗
i=1

u(ω) dP(ω) =

∫
Ω
u(ω)(k) dP(ω) ∈ H(k),

where we abbreviate u(ω)(k) :=
⊗k

i=1 u(ω), where no notational confusion should occur
with the otherwise usual notation of derivatives in the one-dimensional setting.

In the following we abbreviate by E[u] :=M1u the first moment (the expectation) and
the second moment Coru :=M2u (the two-point correlation). By the previous definition
it is easy to see that with H(k) = Hs(Dk) there holds the following representation for the
k-th moment, i.e. the k-point correlation function, of u

Mku(x1, . . . , xk) :=

∫
Ω
u(x1, ω)⊗ · · · ⊗ u(xk, ω) dP(ω)

for any (x1, . . . , xk) ∈ Dk. Since for the covariance function there holds the representation

Cov [u, u] (x, x′) =E[(u(x, ω)− E[u(x, ω)])⊗ (u(x′, ω)− E[u(x′, ω)])]

=M2u(x, x′)− E[u](x)⊗ E[u](x′),

and one is usually able to assume without loss of generality that E[u] = 0, approximating
the second moment offers a possibility to approximate the covariance function.

1.3 Operator equations and abstract Galerkin methods

In this section we briefly present some selected results from functional analysis, introduce
the notion of operator equations and describe the Galerkin method in an abstract setting,
e.g. cf. [51].

Let H be a Hilbert space with inner product (· , ·)H endowed with the induced norm
‖ · ‖H =

√
(· , ·)H and let H ′ denote the dual space of H. Moreover, by H′〈· , ·〉H we

denote the duality pairing between H and H ′. Note that subscripts of spaces in duality
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pairings will usually be omitted if no misunderstanding can occur. Then for all f ∈ H ′
there holds

‖f‖H′ := sup
06=v∈H

|H′〈f , v〉H |
‖v‖H

, ∀f ∈ H ′.

Let A : H → H ′ be a bounded linear and self adjoint operator with

‖Av‖H′ ≤ cA2 ‖v‖H , ∀v ∈ H.

First we consider the deterministic operator equation

Au = f, for any given f ∈ H ′, (1.3)

that we would like to solve for u ∈ H. Alternatively, we may consider the equivalent
variational problem: Find u ∈ H, such that

H′〈Au , v〉H = H′〈f , v〉H ∀v ∈ H. (1.4)

It can be shown that the solution u of the operator equation also satisfies the variational
problem and vice versa. In particular, the operator A induces a bilinear form via duality
pairing

a(u , v) := H′〈Au , v〉H ∀u, v ∈ H. (1.5)

Conversely, any bilinear form (1.5) defines an operator A : H → H ′. In order to ensure
unique solvability of the operator equation (1.3) and the variational formulation (1.4), we
introduce another property of the operator A and its associated bilinear form a(· , ·).

Definition 1.6 (H-ellipticity). An operator A : H → H ′ is called H-elliptic, if there
holds

〈Av , v〉 ≥ cAell‖v‖2H , ∀v ∈ H

with the ellipticity constant cAell > 0.

For later and further reference let us state the Lax-Milgram Lemma.

Theorem 1.7 (Lax-Milgram Lemma). Let A : H → H ′ be bounded and H-elliptic. Then,
for any f ∈ H ′, there exists a unique solution u ∈ H of the operator equation (1.3) with

‖u‖H ≤
1

cAell
‖f‖H′ .

In the setting of tensor product spaces we consider the operator A(k) :=
⊗k

i=1A from
the space H(k) :=

⊗k
i=1H to (H(k))′ :=

⊗k
i=1H

′. We can formulate a tensorized version
of (1.3) via

A(k)U = F in (H(k))′, (1.6)

where we have set U :=
⊗k

i=1 u and F :=
⊗k

i=1 f .
Since the tensor product of Hilbert spaces, when taking the completion with respect

to the canonical Hilbert norm, is again a Hilbert space, the Lax-Milgram Lemma follows
immediately for Hilbert tensor product spaces by the properties of the induced norm, i.e.

‖U‖H(k) ≤
(

1

cAell

)k
‖F‖(H(k))′ .

We proceed by giving a description of the Galerkin method in an abstract setting.
From now on we assume that the operator A is bounded and H-elliptic. Considering the

7
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variational problem (1.4) there exists a unique solution u ∈ H of the variational problem
by virtue of the Lax-Milgram Lemma. For M ∈ N let

HM := span{φk}Mk=1

be a sequence of conforming trial spaces, i.e. HM ⊂ H for some φk ∈ H and for all
M . By means of the spaces HM we have constructed a discretisation, i.e. a finite di-
mensional approximation, of the (possibly) infinite dimensional variational problem. The
approximate solution

uM :=

M∑
k=1

ukφk ∈ HM ,

where the components of u ∈ RM denote the coefficients of the basis functions φk, is then
defined as the solution of the variational problem

〈AuM , vM 〉 = 〈f , vM 〉 ∀vM ∈ HM . (1.7)

The functions φk, which yield a representation for uM are called trial functions and
the functions vM :=

∑
k vkψk and their constituents ψk are called test functions. Note

that in the previous presentation the same trial and test functions have been used, i.e.
φk = ψk. It remains to investigate the unique solvability of (1.7), the stability of solutions
uM and the convergence to the unique solution u ∈ H as M → ∞. Since HM ⊂ H, we
can select v = vM ∈ HM in (1.4). Subtracting (1.7) from the continuous variational
formulation (1.4) we obtain the so-called Galerkin orthogonality

〈A(u− uM ) , vM 〉 = 0, ∀vM ∈ HM . (1.8)

Upon inserting the approximate solution into the Galerkin formulation (1.7) we obtain
the following finite dimensional problem due to the linearity of A

M∑
k=1

uk〈Aφk , φ`〉 = 〈f , φ`〉 for k = 1, . . . ,M.

Redefining the left- and right-hand sides more compactly as a matrix AM and a load
vector f we write

AM [`, k] := 〈Aφk , φ`〉 , f` := 〈f , φ`〉

for k, ` = 1, . . . ,M . Thus, we obtain the following system of linear equations

AMu = f ,

where we have to find the coefficient vector u ∈ RM . Note that we have a one-to-one
correspondence of a vector v ∈ RM with the function

vM =
M∑
k=1

vkφk ∈ HM .

We also note for arbitrary vectors u,v ∈ RM that

(AMu , v)H =

M∑
k=1

M∑
`=1

AM [`, k]ukv` =

M∑
k=1

M∑
`=1

〈Aφk , φ`〉ukvl

=

〈
A

M∑
k=1

ukφk ,

M∑
`=1

v`φ`

〉
H

= 〈AuM , vM 〉.
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By construction all properties of the operator A are inherited by the stiffness matrix
AM ∈ RM×M , i.e. AM is symmetric and positive definite, since A is self-adjoint and
H-elliptic. Truely,

(AMv , v) = (AvM , vM ) ≥ cAell‖vM‖2H
for all v ∈ RM and the corresponding function vM ∈ HM implies that AM is positive
definite.

Theorem 1.8 (Cea’s Lemma). Let A : H → H ′ be a bounded and H-elliptic linear
operator. For the unique solution uM ∈ HM of the variational problem (1.7) there holds

‖uM‖H ≤
1

cAell
‖f‖H′

as well as the error estimate

‖u− uM‖H ≤
cA2
cAell

inf
vM∈HM

‖u− vM‖H .

The convergence of uM → u asM →∞ then follows from the approximation property
of the trial space HM ,

lim
M→∞

inf
vM∈HM

‖v − vM‖H = 0 ∀v ∈ H.

This means that it is necessary to construct the sequence {HM}M∈N in such a way that
the approximation property can be ascertained.

In the case of tensor products of Hilbert spaces, as long as A(k) : H(k) → (H(k))′ is
boundedly invertible and H(k)-elliptic, the previous presentation still applies when we set
A := A(k) as well as H := H(k) and H ′ := (H(k))′. Hence, we also have the Lax-Milgram
lemma and Céa’s lemma in the case of tensor products of Hilbert spaces (cf. [55]).

1.4 The Finite Element method and the adaptive process

Here we shall give a brief discussion of the basic notions and definitions with respect
to the Finite Element Method. To give only a few references out of the vast literature
available on this topic we refer the reader to [12, 13, 46, 48, 56, 22, 23, 51, 27] for more
details.

As we will employ the Finite Element Method (FEM) as our method of choice for
solving partial differential equations (PDEs), we shall give here a brief presentation of it
in order to not overencumber the presentation in later chapters.

Let D ⊂ Rd, d = 1, 2, 3, 4 be a bounded, polygonal/polyhedral domain and denote by
Γ its boundary, i.e. Γ := ∂D. Furthermore, in general suppose the boundary Γ consists
of a nonempty Dirichlet boundary part ΓD and a Neumann boundary part ΓN, where
|ΓD| > 0 and | · | denotes the measure of the given set. Hence, Γ = ΓD ∪ ΓN, where
possibly ΓN = ∅.

A finite partition T of bounded open and non-overlapping sets K ⊂ D, subsequently
called elements, such that ⋃

K∈T
K = D

and T := {Ki}, i ∈ I, where I is an index set that realises an enumeration of all elements,
is called an FE mesh. In this thesis we shall consider meshes that are regular in the sense

9
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of Ciarlet (cf. [19]), i.e. the intersection of two elementsK andK ′ is either empty, a vertex
or an edge. Furthermore, we consider 1-irregular meshes, which allow one hanging node
per geometric entity of the mesh to be present. This notion will be made precise later.
Usually the elements K are thought to be intervals in one space dimension, simplices
or quadrilaterals in two dimensions, simplices, hexahedra, pyramids or prisms in three
dimensions and so on. In this thesis we will restrict the presentation to tensor products
of intervals and rectangles, i.e. we will be concerned with intervals (d = 1), quadrilaterals
(d = 2), cubes (d = 3) and hypercubes (d = 4). Moreover, let us denote by N , E ,F and
Q the sets of vertices, edges, faces and cubes in T , respectively.

In two dimensions the geometry of D, i.e. the collection of elements, is represented
using N and E , i.e. the set of vertices and the set of edges, by subdiving D into a finite set
of elements. In three dimensions the elements are represented via the set N of vertices,
the set of edges E and the set of faces F , and in four dimensions we additionally have
three dimensional boundary surfaces of hypercubes which are listed in Q. A subscript
K to N or E or Q indicates that only those vertices or edges or cubes, respectively, are
considered, which are contained in the corresponding set in the subscript. The union of
all edges in E is denoted by S and is called the skeleton of T .

Moreover, we shall consider in this thesis only affine meshes, i.e. any K ∈ T is
assumed to be an affine image of the reference d-cube

K̂d := (−1, 1)d,

with respect to the element map FK : K̂d → K as defined by

FK(x) = BKx + aK ,

where BK ∈ Rd×d and aK ∈ Rd. We will often drop the superscript d, if the dimension is
clear from the context. In this fashion we have that

K = FK(K̂).

Furthermore, with every element K we associate a polynomial degree vector pK =
(p1, . . . , pd)

>, where pi is the partial degree in the i-th coordinate direction, and collect
them in the set

pT := {pK : K ∈ T }.

For each element K ∈ T we denote the element diameter by

hK := diam(K)

and similarly collect them in the set hT = {hK : K ∈ T }. The diameter of the biggest
incircle of an element K is denoted by

ρK := sup{diam(B) : B = Br(x0) ⊂ K, r > 0, x0 ∈ K},

where Br(x) = {x ∈ Rd : ‖x − y‖2 < r} is an open ball with radius r ∈ R>0 and center
in x. The mesh width of a partition T is given as

h := sup
K∈T

hK .

In this thesis we will work with shape regular meshes T in the following sense.
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Definition 1.9 (Shape regularity). A family of meshes F = {Ti}i∈I is called shape
regular, if there exists a constant σ > 0, independent of i, such that for all i ∈ I there
holds

σ ≤ min
K∈Ti

hK
ρK
≤ max

K∈Ti

hK
ρK
≤ σ−1.

For any function v on D we introduce the interelemental jump on an edge E with
E = K+ ∩K− via

JvK := v+ − v− := v|K+ − v|K− , E = K+ ∩K−, E 6⊂ ∂D. (1.9)

For an edge E of K on Γ, we set JvK = v.
Note that expressions of the form J∇v · nK do not depend on the orientation of the

normal vector n on E.
In the four dimensional setting we use the same notation for jumps on boundary cubes

Q, i.e. Q = K ∩K ′ and Q 6⊂ ∂D. We will frequently make use of patches around certain
geometric entities. Let us start with the two dimensional setting. Denote by ωK the set
of all elements that share an edge with the element K, i.e.

ωK :=
⋃

K′:K′∩K=E∈E
K ′,

and by ω̃K the set of all elements that share at least one vertex with K, i.e.

ω̃K :=
⋃

K′:NK′∩NK 6=∅

K ′.

In four dimensions in the definition of ωK we replace E ∈ E with Q ∈ Q. Analogously we
understand the sets ωE , ω̃E , ωF , ω̃F , ωQ and ω̃Q for E ∈ E , F ∈ F and Q ∈ Q. We may
occasionally term these sets edge, face, cube or element patches.

For adaptive methods to come we still need to define the notion of a hanging node.

Definition 1.10 (Hanging node). Let T a mesh and a node x ∈ N . If x lies on the
boundary of an element K ∈ T , i.e. x ∈ ∂K, but is not a vertex of K, then x is called a
hanging node.

This definition is not complete on purpose. As in two space dimensions for our con-
struction there cannot be hanging nodes situated on the boundary of D×D, the situation
in three and four space dimensions is different. There hanging nodes on edges and faces
on the boundary of the domain D are possible. Hence, the aforementioned definition is
kept a little more open to encompass all cases considered in this thesis.

Our refinement procedure of choice will involve 1-irregular meshes. These meshes are
characterized by the fact that on each geometric entity, there is at most one hanging
node. We formalize this in the following definition.

Definition 1.11 (1-irregularity). If for all elements K of a mesh T , every edge E ∈ E,
every face F ∈ F , and every cube Q ∈ Q of K, respectively, has at most one associated
hanging node, then the mesh T is said to be 1-irregular.

1.4.1 General Finite Element spaces

Let us now define the Finite Element spaces which will be used in the subsequent analysis.
Since we will be operating in H1,1

0 (D) it is mandatory that the global shape functions on
the FE spaces are continuous across the whole mesh. Let I = [a, b].

11
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Definition 1.12 (1D finite element space). Let a = x0 < x1 < · · · < xn−1 < xn = b a
partition of I into subintervals Ki := Ii := [xi, xi+1], i = 0, . . . , n− 1 and T := {Ki : i =
1, . . . , n− 1} a mesh on I. For given degree vector p ≡ pT , we define the space

Sp,k(T ) := {v ∈ Ck(I) : v|K ∈ PpK (K),K ∈ T },

the space of k times continuously differentiable functions that restricted to an element
K ∈ T are polynomials of degree pK with

PpK (K) = span{xn : 0 ≤ n ≤ pK}.

Moreover, let
Sp,k0 (T ) := {v ∈ Sp,k(T ) : v(x0) = v(xn) = 0}.

Definition 1.13 (Tensor finite element spaces). Consider a partition of Id into d-
hypercubes of the form

Ki := Idi1,...,id := [x1,i1 , x1,i1+1]× · · · × [xd,id , xd,id+1], i = (i1, . . . , id) ∈ I,

where I is a suitable index set realizing an enumeration of the elements.
Thus, T := {Ki : i ∈ I} is a mesh on Id. We set

Sp,k(T ) := {v ∈ Ck(Id) : v|K ∈ PpK (K),K ∈ T }

with
PpK (K) = span{xn : 0 ≤ n ≤ pK}.

Analogously, we define as in the one dimensional case

Sp,k0 (T ) := {v ∈ Sp,k(T ) : v = 0 on ∂Id}.

Moreover, we denote by

Sp,−1(T ) := {v : v|K ∈ PpK (K),K ∈ T }

the discontinuous and broken Finite Element space. We shall at some points abuse
notation and denote by Pk(T ) ≡ Sk,−1(T ) the space of elementwise polynomials of partial
degree at most k on the mesh T .

1.4.2 Adaptive Finite Elements

The general idea of adaptive methods is to refine areas of the mesh where the error is
larger than its surrounding. Usually the true error is not available and so another way
of estimating the error has to be used. To this end, a posteriori error estimators are
developed and shown to fulfill certain properties that help guide the adaptive process
to guarantee convergence. In general the adaptive process consists of the following four
steps:

(1) Solve, (2) Estimate, (3) Mark, (4) Refine.
This procedure is formalized in Algorithm 1. We start with an initial triangulation T0

and solve a discrete problem on T0. The discrete solution uT0 is then used to compute an
error estimator or error indicator η which is an approximation of the true error ‖u−uT0‖
for a certain norm ‖ · ‖.

12



1.4. The Finite Element method and the adaptive process

Algorithm 1 Adaptive Finite Element Algorithm
Input: data f and tolerance ε
Output: A numerical solution uT with an error less than ε
1: Create an initial regular coarse mesh T0 and set k = 0.
2: repeat
3: Solve discrete problem on mesh Tk
4: Estimate error using estimator/indicator ηK for every element K ∈ T
5: Mark elements of T subject to a rule and the magnitude of ηK
6: Refine marked elements of Tk to construct Tk+1 and set k = k + 1
7: until (

∑
K ηK)1/2 < ε

Definition 1.14 (Error estimator η). An approximation η of ‖u − uT ‖ is called an a
posteriori error estimator, or just estimator for brevity, if it is a computable function of
known quantities such as the right-hand side f , the domain D, the boundary ∂D as well
as uT itself or certain derivatives of the numerical solution uT .

Now after the first and second step of the kth iteration of the algorithm we are
equipped with a numerical solution uTk and a corresponding elementwise error indicator
ηK with the global estimator given by η := (

∑
η2
K)1/2, which we suppose to be at least

reliable (see below). The next step, Mark, can be done in many ways and the reader
is referred to [54] the literature for all types of marking strategies. For example, Dörfler
marking consists of selecting a subset T̃k ⊂ Tk, such that with ϑ ∈ (0, 1) there holds∑

K∈T̃k

η2
K ≥ ϑ

∑
K∈Tk

η2
K .

In this thesis, for reasons of simplicity we have chosen to implement the so-calledmaximum
strategy. Here we determine the maximal error indicator ηmax := max

K∈Tk
ηK and mark every

element that fulfills the condition ηK ≥ ϑηmax. The so marked elements will then be
refined. The refinement procedure for the different settings will be discussed later.

Moreover, error indicators can be developed in many different ways, depending on
which aspect of the error has been put under scrutiny. For example, one could ask to
minimise the local residual with respect to the discrete solution or for a certain functional
that depends on the error to be minimal or maximal. After a certain indicator is computed
the information is then processed to find the elements with the biggest error and mark
those for refinement. The refinement process is then executed and the adaptive process
begins anew.

The above definition of an error estimator η is not useful per se, but only if η provides
computable upper and lower bounds of the true error.

Definition 1.15 (Reliability of η). Let η be an error estimator. Then η is called a reliable
a posteriori error estimator if there exists a constant Crel, such that there holds an upper
bound of the form

‖u− uT ‖ ≤ Crelη +Hrel,

for a certain norm of the error ‖ · ‖ and such that there holds Hrel = o(‖u− uT ‖), where
the function Hrel denotes a generic higher order error term.

Definition 1.16 (Efficiency of η). Let η be an error estimator. Then η is called an
efficient a posteriori error estimator if there exists a constant Ceff, such that there holds
a lower bound of the form

η ≤ Ceff‖u− uT ‖+Heff

13



Chapter 1. Preliminaries

for a certain norm of the error ‖ ·‖ and such that the generic higher order error term Heff
satisfies Heff = o(‖u− uT ‖).

Definition 1.17 (Asymptotic Exactness). If η is reliable and efficient, then η is called
asymptotically exact.

In this thesis we are concerned with the development of a posteriori error indication
techniques to guide the adaptive refinement and approximation for the deterministic
second moment problem in two and four space dimensions. To this end we have a look at
residual error estimation, a hierarchical error estimation approach with higher order basis
functions, and a so-called averaging error estimation approach. For each of these error
estimators reliability and efficiency are investigated and the corresponding error analysis
is performed.

14



Chapter 2

Deterministic Second Moment
Equations

This chapter is dedicated to the development of adaptive methods for the approximation
of second moments of elliptic partial differential equations under uncertainty by means of
deterministic moment equations.

We begin with the general definition of deterministic moment equations for a chosen
simple model problem, have a brief look at the regularity, and give a short summary of
the necessary ideas of already existing literature. In passing we also discuss the func-
tional analytic setting and the solution procedure briefly. Then we develop and analyze a
posteriori error estimators for selected one and two dimensional ellitpic model problems.
At the end of the chapter we investigate the convergence of the adaptive process when
guided by the developed error estimation techniques and look at numerical experiments
which validate our theoretical findings.

2.1 Model problem and moment equations

In the following we are concerned with the deterministic model problem as given by

−∇ · (a(x)∇u(x)) = f(x), in D,
u = 0, on ∂D,

(2.1)

as well as its stochastic counterpart for almost every ω ∈ Ω

−∇ · (a(x, ω)∇u(x, ω)) = f(x, ω), in D,
u = 0, on ∂D,

(2.2)

where (Ω,Σ,P) is a probability space, and D ⊂ Rd, d = 1, 2 is an open and bounded
Lipschitz domain. Note that either a or f or both may depend randomly on ω, where
this dependence is modeled by means of the probability space (Ω,Σ,P), and as such we
term the solution of the elliptic model problem u to be stochastic.

From now on we consider the diffusion coefficient a to be deterministic, i.e. it only
depends on the spatial variable x ∈ D. Furthermore, we assume a to fulfill the following
ellipticity condition

0 < a− ≤ a(x) ≤ a+ <∞, a.e. in D.

Let V := H1
0 (D), V ′ = H−1(D). Defining the operator A : V → V ′ by Av :=

−∇ · (a(x)∇v), we can write the deterministic model problem as an operator equation in
V ′

Au = f,
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Chapter 2. Deterministic Second Moment Equations

where we consider u ∈ V . Since the expectation commutes with the operator A, taking
the expectation of this equation we arrive at the deterministic first moment problem in
L1(Ω;V ′)

A(E[u]) = E[f ],

where u ∈ L1(Ω;V ).
In general considering the k-fold tensorization of the operator A, i.e.

A(k) := A⊗ · · · ⊗A︸ ︷︷ ︸
k times

,

which maps the space V (k) to (V ′)(k), taking the expectation of the tensorized operator
equation yields for u(k) ∈ L1(Ω;V (k)) and f (k) ∈ L1(Ω; (V ′)(k))

A(k)Mku =Mkf. (2.3)

As this equation provides a deterministic way for the computation of the statistical mo-
ments of u, it is called the deterministic k-th moment problem or the deterministic k-th
moment equation.

In [55, 50, 49, 30] it is shown that as long as A(k) is injective, continuous and strongly
elliptic, i.e. satisfies a Gårding inequality, as a map from V (k) to (V ′)(k), then (2.3) has a
unique solution for every f ∈ Lk(Ω; (V ′)(k)) which coincides with the k-th momentMku.

Moreover, by [55, Thm. 2.6], also cf. [18], there holds a shift theorem, if the corre-
sponding operator allows a shift theorem.

If Mkf ∈ Hs,...,s(Dk) for some s ≥ −1 then Mku ∈ Hs+2,...,s+2(Dk) ∩ H1,...,1(Dk)
and there holds the a priori estimate

‖Mku‖Hs+2,...,s+2(Dk) ≤ C‖Mkf‖Hs,...,s(Dk), s ≥ −1.

Our main interest is the deterministic 2nd moment equation, which is the foundation
for the adaptive algorithms we shall develop in this chapter.

2.2 1D model problem

2.2.1 Problem formulation

Letting a ≡ 1, we consider the 1D stochastic model problem, cf. (2.2), in D = [−1, 1] of
finding u ∈ H1

0 (D), such that

−∂2
xu(·, ω) = f(·, ω) in H−1(D),

u = 0 on ∂D,
(2.4)

for almost all ω ∈ Ω.
With V := H1

0 (D), V ′ = H−1(D), and A := −∂2
x we find that the variational problem

for the associated operator equation (cf. (1.3)) reads:

Problem 2.1. Given f(ω) ∈ H−1(D), find u(ω) ∈ H1
0 (D), such that∫

D
u′(x, ω)v′(x) dx =

∫
D
f(x, ω)v(x) dx, ∀v ∈ H1

0 (D), for P-a.a. ω ∈ Ω.

The corresponding deterministic k-th moment problem, cf. (2.3), for the one dimen-
sional model problem then takes the following form:
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2.2. 1D model problem

Problem 2.2. GivenMkf ∈ H−1,...,−1(Dk), findMku ∈ H1,...,1
0 (Dk), such that∫

Dk
∂1(Mku) ∂1v dx =

∫
Dk
Mkfv dx, ∀v ∈ H1,...,1

0 (Dk), (2.5)

where 1 = (1, 1, . . . , 1).

In the particular case k = 2 we set D = D × D and are concerned with solving the
deterministic second moment problem corresponding to (2.3):

Given Cf ∈ H−1,−1(D), find Cu ∈ H1,1
0 (D), such that∫

D
∂x∂yCu∂x∂yv dx dy =

∫
D
Cf v dx dy, ∀v ∈ H1,1

0 (D). (2.6)

The discrete version of (2.6) then takes the form:

Given Cf ∈ H−1,−1(D), find uT ∈ Sp,00 (T ), such that∫
D
∂x∂yuT ∂x∂yvT dx dy =

∫
D
CfvT dx dy, ∀vT ∈ Sp,00 (T ), (2.7)

where we write uT instead of Cu,T to shorten the notation and keep subscript indices
hopefully minimal. Note that, since Sp,00 (T ) ⊂ H1,1

0 (D), the approximation is conforming
and we have Galerkin orthogonality

B(u− uT , vT ) = 0, ∀vT ∈ Sp,00 (T )

with the associated bilinear form

B(u, v) =

∫
D
∂x∂yu∂x∂yv dx dy.

Also note that the energy norm of this problem is the | · |H1,1(D)-seminorm. The latter
is a norm on H1,1

0 (D) by the crossnorm property and corresponding one dimensional
Friedrichs inequalities. This, in combination with the symmetry of the bilinear form
yields not only the unique solvability of the problem by the Lax-Milgram Lemma, but
also the best approximation property by means of Céa’s Lemma.

2.2.2 Approximation and auxiliary results

In order to accomplish a concise presentation, we firstly define a suitable two dimensional
approximation operator Π1,1

pK by tensorization of one dimensional operators, present the
error analysis and collect various auxiliary results that are used in subsequent sections.

Regarding the presentation in this section see also [48, 43, 54].

Definition 2.3 (Legendre polynomials and their antiderivatives). The Legendre polyno-
mials Ln, n = 0, 1, 2, . . . are defined as solutions to the Legendre differential equation on
the interval [−1, 1]

((1− x2)L′n(x))′ + n(n+ 1)Ln(x) = 0

and may be expressed by Rodrigues’ formula

Ln(x) =
1

2nn!

dn

dxn
((1− x2)n).
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Chapter 2. Deterministic Second Moment Equations

The antiderivatives of the Legendre polynomials L̂n are then defined as follows

L̂n(ξ) :=

{
1, n = 0,∫ ξ
−1 Ln−1(t) dt, n ≥ 1.

Moreover, there holds

L̂n =
Ln+1 − Ln−1

2n+ 3

and L̂n(±1) = 0 for n ≥ 2.

Definition 2.4 (1D projection operators). If u ∈ L2([−1, 1]), then u can be expanded
into a Legendre series

u(ξ) =

∞∑
i=0

biLi(ξ),

where the Li are the Legendre polynomials with respect to [−1, 1]. Then the operator

π̂p : L2([−1, 1]) −→ Pp([−1, 1]),

termed the L2([−1, 1])-projection, is defined by truncation of the Legendre series after p+1
terms, i.e.

π̂pu(ξ) =

p∑
i=0

biLi(ξ).

For any u ∈ H1([−1, 1]) we can then define the following operator

πp : H1([−1, 1]) −→ Pp([−1, 1])

for any ξ ∈ [−1, 1] by

(πpu)(ξ) = u(−1) +

∫ ξ

−1
π̂p−1u′(t) dt

= u(−1) +

p−1∑
i=0

bi

∫ ξ

−1
Li(t) dt

= u(−1)L̂0 +

p∑
i=1

biL̂i,

where the coefficients bi are given by

bi =
2i+ 1

2

∫ 1

−1
u′(t)Li(t) dt.

It is easily seen that there holds πpu(±1) = u(±1) (cf. [48, Theorem 3.14]).

Definition 2.5. By tensorization of πp we can now define for any û ∈ H1,1(K̂) and
pK̂ = (p̂1, p̂2) the operator

Π̂1,1
pK̂

: H1,1(K̂)→ PpK̂ (K̂)

via
Π̂1,1
pK̂
û(ξ, η) := (πp̂1ξ ⊗ π

p̂2
η )û(ξ, η),
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2.2. 1D model problem

v̂1 = (−1,−1)

ê1

v̂2 = (1,−1)

ê2

v̂3 = (1, 1)
ê3

v̂4 = (−1, 1)

ê4 K̂

Figure 2.1: The reference element K̂ = [−1, 1]2

where the subscripts ξ and η indicate the coordinate direction, which the operators act
upon. By the properties of the one dimensional operator πp, we have the following prop-
erties for Π̂1,1

pK̂
(cf. [48, Lemma 4.67])

Π̂1,1
pK̂
û(±1,±1) = û(±1,±1),

(Π̂1,1
pK̂
û)|êi =

{
πp̂1ξ (û|êi), if i = 1, 3,

πp̂2η (û|êi), if i = 2, 4.

For an application on Maxwell’s equations involving this operator see also [21].

Definition 2.6 (Affine element map). We consider an affine map FK : K̂ → K that maps
the reference element K̂ to the element K ∈ T . For a rectangular and axially parallel
element K, using the notation from Figure 2.2, FK can be written explicitly as

FK(x̂) =
1

4
(v>1 + v>2 + v>3 + v>4 ) +

1

2

(
hx 0
0 hy

)(
x̂1

x̂2

)
,

where hx = x2 − x1 and hy = y2 − y1 denote the edge length in the x- and y-direction,
respectively. Note that for square elements K, this representation holds with hx = hy.

v1 = (x1, y1)
e1

v2 = (x2, y1)

e2

v3 = (x2, y2)
e3

v4 = (x1, y2)

e4 K

Figure 2.2: An element K = [x1, x2]× [y1, y2] ∈ T

In order to enable the error analysis in the two dimensional setting we shall now give
local and global approximation results that involve the operator Π̂1,1

pK .

Lemma 2.7 (Trace inequality). For any û ∈ H1,1(K̂) there holds

‖û− Π̂1,1
pK̂
û‖2L2(ê) ≤ C

1

p(p+ 1)

(
‖∂τ û‖2L2(K̂)

+ ‖∂ξ∂ηû‖2L2(K̂)

)
, (2.8)

where ê being any edge of the reference element K̂, p ∈ N with pK̂ = (p, p) and

∂τ =

{
∂ξ, if ê = ê1 or ê3,

∂η, if ê = ê2 or ê4.
(2.9)
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Proof. Without loss of generality, consider ê = ê1. The other cases are then obtained by
a rotation of coordinates. Considering u represented as an infinite series of antiderivatives
of the Legendre polynomials as û(ξ, η) =

∑∞
i,j=0 cijL̂i(ξ)L̂j(η) with (ξ, η)> ∈ K̂ and using

properties of the projector Π̂1,1
pK̂

in addition to [48, Theorem 3.14], we get

‖û− Π̂1,1
pK̂
û‖2L2(ê1) = ‖(û− Π̂1,1

pK̂
û)(·,−1)‖2L2([−1,1]) = ‖(û− πp̂1ξ û)(·,−1)‖2L2([−1,1])

≤

∥∥∥∥∥(û− πp̂1ξ û)(·,−1)√
1− ξ2

∥∥∥∥∥
2

L2([−1,1])

=
∞∑
i=p

2

i(i+ 1)(2i+ 1)
|ci0|2

≤ 1

p(p+ 1)
‖∂ξû(·,−1)‖2L2([−1,1])

≤ C 1

p(p+ 1)

(
‖∂ξû‖2L2(K̂)

+ ‖∂ξ∂ηû‖2L2(K̂)

)
where in the last step invoking a trace inequality on K̂ completes the proof.

Lemma 2.8 ([43, Lemma 5.24,5.25,5.26]). Let p ∈ N, v̂ ∈ Hk+1(K̂) and pK̂ = (p, p) with
p ∈ N. Then there holds

(i) ‖v̂ − Π̂1,1
pK̂
v̂‖2

L2(K̂)
≤ 1

p(p+ 1)

(
2

(p− s)!
(p+ s)!

‖∂s+1
ξ v̂‖2

L2(K̂)
+ 4

(p− s)!
(p+ s)!

‖∂s+1
η v̂‖2

L2(K̂)

+
4

p(p+ 1)

(p− s+ 1)!

(p+ s− 1)!
‖∂ξ∂sηv̂‖2L2(K̂)

)
for any integer 1 ≤ s ≤ min{p, k}.

(ii) ‖∂ξ
(
v̂ − Π̂1,1

pK̂
v̂
)
‖2
L2(K̂)

≤2
(p− s)!
(p+ s)!

‖∂s+1
ξ v̂‖2

L2(K̂)

+
2

p(p+ 1)

(p− s+ 1)!

(p+ s− 1)!
‖∂ξ∂sηv̂‖2L2(K̂)

for any integer 1 ≤ s ≤ min{p, k} and analagously for ‖∂η
(
v̂ − Π̂1,1

pK̂
v̂
)
‖2
L2(K̂)

.

(iii) ‖∂ξ∂η
(
v̂ − Π̂1,1

pK̂
v̂
)
‖2
L2(K̂)

≤2
(p− s)!
(p+ s)!

‖∂s+1
ξ ∂ηv̂‖2L2(K̂)

+ 2
(p− s+ 1)!

(p+ s− 1)!
‖∂ξ∂s+1

η v̂‖2
L2(K̂)

for any integer 0 ≤ s ≤ min{p, k − 1}.

In particular for a function u ∈ H1,1(K̂) we have the following result.

Lemma 2.9. Let û ∈ H1,1(K̂) and pK̂ = (p, p). Then the projector Π̂1,1
pK̂

satisfies the
bound

‖û− Π̂1,1
pK̂
û‖2

L2(K̂)
≤ 1

p(p+ 1)

(
2‖∂ξû‖2L2(K̂)

+ 4‖∂ηû‖2L2(K̂)
+

4

p(p+ 1)
‖∂ξ∂ηû‖2L2(K̂)

)
Proof. See [43, Lemma 5.24] for t1 = t2 = t3 = 0.
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2.2. 1D model problem

Remark 2.10. By the above estimate, we also have for u ∈ H1,1(K̂) and pK̂ = (p, p)
with p ∈ N the trivial estimate

‖û− Π̂1,1
p û‖2

L2(K̂)
≤ 4

p(p+ 1)
‖u‖2

H1,1(K̂)

as well as for u ∈ H1,1
0 (K̂) the estimate

‖û− Π̂1,1
p û‖2

L2(K̂)
≤ C

p(p+ 1)
|u|2

H1,1(K̂)
,

where the latter follows by corresponding one dimensional Friedrichs’ inequalities.

In the following analysis we will make extensive use of the shape regularity of the
mesh T . Let hx and hy denote the local mesh width in the x- or y-direction, respectively,
and let hE := diam(E). That means in particular that for some constants c, C > 0 we
have the following bounds

hxhy ≤ Ch2
K , chK ≤ hE ≤ ChK , hx ≤ ChE , hy ≤ ChE .

Investigating efficiency of the proposed a posteriori error estimators will involve poly-
nomial inverse inequalities on elements for which the following lemma is a crucial building
block. A proof can be found in [54, Lemma 3.42,Proposition 3.44], where we note the typo
in the second inequality, i.e. the missing square root with respect to the term (1− x2) in
[54, Lemma 3.42].

Lemma 2.11. Let q ∈ Pp([−1, 1]), p ∈ N0. Then there holds

‖(1− x2)1/2q′‖L2([−1,1]) ≤p(p+ 1)‖q‖L2([−1,1]),

‖q‖L2([−1,1]) ≤(p+ 2)‖(1− x2)1/2q‖L2([−1,1]),

‖
(

(1− x2)1/2q
)′
‖L2([−1,1]) ≤(4 + 2

√
p(p+ 1))‖q‖L2([−1,1]).

We are now ready to give local estimates and trace inequalities for elements K ∈ T
and edges E ∈ E . For this purpose, denoting the polynomial degree vector on K by pK ,
we define the projection on K in the usual way by

(Π1,1
pK
u)(x) = (Π̂1,1

pK
û)(F−1

K (x))

where û(x̂) = u(x) = u(FK(x̂)).

Lemma 2.12. For u ∈ H1,1(K) and a polynomial degree vector pK = (p, p) for the
element K with p ∈ N, there holds

‖u−Π1,1
pK
u‖2L2(E) ≤ C

hE
p(p+ 1)

‖∂τu‖2L2(K) +
h3
E

p(p+ 1)
‖∂x∂yu‖2L2(K),

‖u−Π1,1
pK
u‖2L2(K) ≤ C

h2
K

p(p+ 1)

(
‖∂xu‖2L2(K) + ‖∂yu‖2L2(K) + |u|2H1,1(K)

)
,

where the constant C only depends on the shape regularity of the element K.
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Proof. Let us denote by ~x = (x, y)> and x̂ = (ξ, η)> the coordinates in K and K̂,
respectively. We find that

‖u−Π1,1
pK
u‖2L2(E) =

∫
E

(u−Π1,1
pK
u)2 ds~x

=

∫
Ê

(
u(FK(x̂))−Π1,1

pK
u(FK(x̂))

)2 hE
2

dsx̂

=
hE
2

∫
Ê

(û(x̂)− Π̂1,1
pK
û(x̂))2 dsx̂

=
hE
2
‖û− Π̂1,1

pK
û‖2

L2(Ê)
.

Applying (2.8), we conclude with a scaling argument

‖u−Π1,1
pK
u‖2L2(E) ≤

1

p(p+ 1)

hE
2

(
‖∂τu‖2L2(K̂)

+ ‖∂ξ∂ηu‖2L2(K̂)

)
≤ C hE

p(p+ 1)
‖∂τu‖2L2(K) +

h3
E

p(p+ 1)
‖∂x∂yu‖2L2(K).

For the last estimate we proceed similarly, now using Lemma 2.9 and a scaling argu-
ment, to find

‖u−Π1,1
pK
u‖2L2(K) =

∫
K

(u−Π1,1
pK
u)2 d~x =

∫
K̂

(
u(FK(x̂))−Π1,1

pK
u(FK(x̂)))

)2 hxhy
4

dx̂

=
hxhy

4
‖û− Π̂1,1

pK
û‖2L2(K)

≤ C hxhy
p(p+ 1)

{
2‖∂ξû‖2L2(K̂)

+ 2‖∂ηû‖2L2(K̂)
+

4

p(p+ 1)
‖∂ξ∂ηû‖2L2(K̂)

}
≤ C

h2
K

p(p+ 1)

{
‖∂xu‖2L2(K) + ‖∂yu‖2L2(K) +

h2
K

p(p+ 1)
‖∂x∂yu‖2L2(K)

}
≤ C

h2
K

p(p+ 1)

{
‖∂xu‖2L2(K) + ‖∂yu‖2L2(K) + ‖∂x∂yu‖2L2(K)

}
where we have used that hxhy ≤ Ch2

K .
In the following we will often make use of the so-called edge and element bubbles ψE

and ψK , respectively, where ψK is the minimal polynomial, such that ψK vanishes on the
boundary of K and attains its unit maximum at the barycenter of K and ψE that has
support in the union of the two elements that share E = K ∩ K ′ and attains its unit
maximum on the edge E it is associated with.

On the reference element K̂ these functions are defined as

ψK̂ := (1− ξ2)(1− η2),

ψÊ :=



(1−ŷ)
2 (1− x̂2), Ê = ê1,

(1+x̂)
2 (1− ŷ2), Ê = ê2,

(1+ŷ)
2 (1− x̂2), Ê = ê3,

(1−x̂)
2 (1− ŷ2), Ê = ê4.

(2.10)

These are then transformed to elements K ∈ T by means of the element map FK , also
cf. (2.36) and (2.37) for a representation using integrated Legendre polynomials.
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2.2. 1D model problem

Lemma 2.13. Let w ∈ Pp(E) and v ∈ Pp(K) polynomials of degree p on E and K,
respectively. Moreover, let ψK and ψE denote the element and edge bubble functions from
above. Then there holds

‖wψE‖L2(K) ≤Ch
1/2
E ‖w‖L2(E), (2.11)

‖∂x∂y(wψE)‖L2(K) ≤C(4 + 2
√
p(p+ 1))h

−3/2
E ‖w‖L2(E), (2.12)

‖∂x∂y(vψK)‖L2(K) ≤C(32 + 8p(p+ 1))1/2(4 + 2
√
p(p+ 1))h−2

K ‖v‖L2(K), (2.13)

where C depends on the shape regularity of the mesh.

Proof. All inequalities are proved by transforming to the reference element, estimating
there and transforming back to the physical element. W.l.o.g. let Ê denote the edge of
the reference element with η = −1. The other cases follow by a rotation of coordinates.

Note that ŵ does not depend on η and ψÊ = (1− η)(1− ξ2)/2. Hence,

∂η(ψÊŵ) = −1

2
(1− ξ2)ŵ.

For the first inequality, transforming to K̂ and integrating with respect to η then
yields

‖wψE‖2L2(K) =
hxhy

4

∫
K̂

(ŵψÊ)2 dξ dη =
hxhy

6

∫
Ê

(
(1− ξ2)ŵ

)2
dξ ≤ ChE‖w‖2L2(E).

Further we observe that using Lemma 2.11 there holds

‖∂x∂y(wψE)‖2L2(K) =
4

hxhy

∫
K̂

(∂ξ∂η(ŵψÊ))2 dξ dη =
2

hxhy

∫
Ê

(
∂ξ((1− ξ2)ŵ)

)2
dŝ

≤C 2

hxhy
(4 + 2

√
p(p+ 1))2‖ŵ‖2

L2(Ê)

≤Ch−3
E (4 + 2

√
p(p+ 1))2‖w‖2L2(E),

where in the last step we have transformed back to the physical edge E and used shape
regularity to estimate hx ≤ ChE , hy ≤ ChE . Similarly, for the last inequality we obtain

‖∂x∂y(vψK)‖2L2(K) =
4

hxhy

∫
K̂

(∂ξ∂η(v̂ψK̂))2 dξ dη

=
4

hxhy

∫
K̂

{
∂ξ
[
(1− ξ2)∂η(v̂(1− η2))

]}2
dξ dη

≤ 8

hxhy

∫
K̂

{
∂ξ(1− ξ2)∂η(v̂(1− η2))

}2

+
{

(1− ξ2)∂η(∂ξ v̂(1− η2))
}2

dξ dη

≤ 32

hxhy
(4 + 2

√
p(p+ 1))2

∫
K̂
v̂2 dξ dη

+
8

hxhy
(4 + 2

√
p(p+ 1))2

∫
K̂

{
(1− ξ2)∂ξ v̂

}2
dξ dη

≤ 32

hxhy
(4 + 2

√
p(p+ 1))2‖v̂‖2

L2(K̂)
+

+
8

hxhy
(4 + 2

√
p(p+ 1))2(p(p+ 1))‖v̂‖2

L2(K̂)

≤C(32 + 8p(p+ 1))(4 + 2
√
p(p+ 1))2h−4

K ‖v‖
2
L2(K),
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where we have used Young’s inequality and transformed back to element K.
The following Lemma quantifies the local approximation quality of the operator Π1,1

pK

which is needed to show convergence of the associated Galerkin FEM. The proof uses
Lemma 2.14 and standard scaling arguments. The proof is therefore omitted for brevity.
For more details the reader may confer the given references.

Lemma 2.14 ([43, Lemma 5.37–5.40]). Let k ∈ N, v̂ ∈ Hk+1(K̂), and pK = (p, p). Then
there holds

(i) ‖v −Π1,1
pK
v‖2L2(K) ≤C

1

p(p+ 1)

(
2

(p− s)!
(p+ s)!

(
hK
2

)2s+2

‖∂s+1
x v‖2L2(K)

+ 4
(p− s)!
(p+ s)!

(
hK
2

)2s+2

‖∂s+1
y v‖2L2(K)

+
4

p(p+ 1)

(p− s+ 1)!

(p+ s− 1)!

(
hK
2

)2s+2

‖∂x∂syv‖2L2(K)

)
for any integer 1 ≤ s ≤ min{p, k}.

(ii) ‖∂x
(
v −Π1,1

pK
v
)
‖2L2(K) ≤C

(
(p− s)!
(p+ s)!

(
hK
2

)2s

‖∂s+1
x v‖2L2(K)

+
2

p(p+ 1)

(p− s+ 1)!

(p+ s− 1)!

(
hK
2

)2s

‖∂x∂syv‖2L2(K)

)

for any integer 1 ≤ s ≤ min{p, k} and analagously for ‖∂η
(
v −Π1,1

pKv
)
‖2L2(K).

(iii) ‖∂x∂y
(
v −Π1,1

pK
v
)
‖2L2(K) ≤C

(
2

(p− s)!
(p+ s)!

(
hK
2

)2s

‖∂s+1
x ∂yv‖2L2(K)

+ 2
(p− s+ 1)!

(p+ s− 1)!

(
hK
2

)2s

‖∂x∂s+1
y v‖2L2(K)

)
for any integer 0 ≤ s ≤ min{p, k − 1}.

(iv) ‖v −Π1,1
pK
v‖2H1,1(K) ≤C

(p− s)!
(p+ s)!

(
hK
2

)2s (
‖∂s+2

x v‖2L2(K) + ‖∂s+2
y v‖2L2(K)

+ ‖∂s+1
x ∂yv‖2L2(K) + ‖∂x∂s+1

y v‖2L2(K)

)
for any integer 0 ≤ s ≤ p− 1.

Remark 2.15. The previous lemma allows to give a bound of the H1,1-norm on an
element K where only derivatives of the same order are present. On the one hand unless
u ∈ Hk+1(K) with k ≥ 2 we are unable to recover a power of hK in the local error estimate
for pK = 1. If on the other hand however u ∈ H3(K), then letting s = 1 in Lemma 2.14
(iv) we find

‖v −Π1,1
pK
v‖H1,1(K) ≤ChK

(
‖∂3

xv‖2L2(K) + ‖∂3
yv‖2L2(K)

+ ‖∂2
x∂yv‖2L2(K) + ‖∂x∂2

yv‖2L2(K)

)1/2
.
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2.2. 1D model problem

Proceeding in the usual way by defining a global interpolation operator via

(Π1,1
pT u)

∣∣
K

:= (Π1,1
pK
u)
∣∣
K

we can show convergence of the FEM for u ∈ H3(D) ∩H1,1
0 (D).

Lemma 2.16. Let u ∈ H3(D) ∩H1,1
0 (D). Then there holds

‖u−Π1,1
pT u‖H1,1(D) ≤ Ch|u|H3(D),

where the polynomial degree vector pT is set to pK = 1 for every element K ∈ T .

Proof. By Lemma 2.14 we find

‖u−Π1,1
pT u‖

2
H1,1(D) =

∑
K∈T

‖u−Π1,1
pK
u‖2H1,1(K)

≤
∑
K∈T

Ch2
K |u|2H3(K)

≤Ch2|u|2H3(D),

where with h = supK∈T hK we have the assertion.

Remark 2.17. By the previous lemma we see that for u ∈ H3(D) ∩H1,1
0 (D), since the

associated bilinear form is symmetric, continuous and coercive that by Céa’s lemma we
have the best approximation property for the discrete Galerkin solution uT ∈ S1,0

0 (T ) and
therefore

|u− uT |H1,1(D) ≤c inf
vT ∈S1,00 (T )

|u− vT |H1,1(D)

≤c‖u−Π1,1
pT u‖H1,1(D)

≤Ch|u|H3(D).

For the hierarchical a posteriori error estimators we will need the following inequality,
which is interesting in its own right. A proof can be found in [26], also cf. [3, Thm. 3.1].

Lemma 2.18 (strengthened Cauchy-Buniakowski-Schwarz inequality). Suppose H is a
Hilbert space with inner product 〈·, ·〉H . Furthermore, let V ⊂ H a finite dimensional
subspace and U ⊂ H closed. If there holds U ∩ V = {0}, then there exists a constant
γ = γ(U, V ) ∈ [0, 1), such that for every v ∈ V and u ∈ U

|〈u, v〉H | ≤ γ‖u‖H‖v‖H . (2.14)

2.2.3 Discretization and constrained approximation in 2D

For our adaptive mesh refinement procedure we shall adopt the following rule:

An element K ∈ T may be refined if and only if all vertices of K are regular.

Otherwise, we have to refine certain irregular neighbors of K first, such that the rule
applies and we are subsequently allowed to refine the originally marked element K. To
make this precise we shall adopt the viewpoint that a hanging node is associated with an
irregular element that has the hanging node situated on its boundary.
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Chapter 2. Deterministic Second Moment Equations

Algorithm 2 1-irregular mesh refinement in 2D (REFINE)
Input: Mesh T , list M of marked elements K ∈ T
Output: Refined mesh T̃ which is 1-irregular
1: while M 6= ∅ do
2: Let K be the first element of M
3: if K has hanging nodes ei as vertex then
4: Find irregular neighbors K ′ w.r.t. ei
5: Append all elements K ′ and K to M
6: else
7: Refine K by subdivision into 4 smaller squares K̃s, s = 1, ...4
8: Remove K from M and T̃ , and add four children Ks to T̃
9: end if

10: end while

x

K1

K2

K

Figure 2.3: A hanging node x (•) in two dimensions. We say K is an irregular element
with respect to x and an irregular neighbor of K1 and K2.

Definition 2.19 (Irregular Elements and Neighbors (2D)). An element K is called ir-
regular (with respect to a node x) if there exists a hanging node x, such that x ∈ ∂K, but
x is not a vertex of K. Moreover, we shall call K an irregular neighbor to any element
K ′ (with respect to x), if K ′ has x as a vertex (see Figure 2.3).

The easiest treatment of hanging nodes consists in making no difference between
regular and hanging nodes in the assembly procedure of the system matrix. Then in a
second step, certain constraints for the hanging nodes are introduced. This is commonly
known as constrained approximation, cf. e.g. [54, 56, 22, 23] to name just a very few and
for the idea of system reduction after assembly see e.g. [31].

For the sake of completeness, we shall outline the procedure very briefly. Let us
assume that we arrive at the linear system of equations

Ac = b

by means of a Finite Element method on a given 1-irregular mesh after assembly, ignoring
at first that the global shape functions with respect to hanging nodes are non-conforming,
since they are still discontinuous at this stage. The missing continuity is then recovered
by enforcing constraints on the hanging nodes.

In two dimensions, for 1-irregular meshes with p = 1, we let the set of nodes of T be
given in the following splitting N = Nr ∪ Nh, where Nr is the set of unconstrained and
henceforth called regular nodes and Nh the set of all constrained or hanging nodes. Here
we only have to deal with hanging nodes on edges. For convenience, let us define the set
Oc for any hanging node in Nh, which consists of the constraining neighboring regular
nodes of c, i.e.

Oc := {v ∈ Nr : ∃e ∈ E with e = (v, c) ∨ e = (c, v)}.

In a 1-irregular mesh each hanging node c ∈ Nh is constrained by two regular vertices,
i.e. the coefficient uc of the global nodal function of the hanging node c is constrained by
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2.2. 1D model problem

the coefficients of its regular node neighbors i, j ∈ Oc, by the relation

uc =
1

2
ui +

1

2
uj .

In general we can define a global connectivity matrix P ∈ RN,N in the following way,
where N := |N | denotes the total number of nodes in the mesh. If i ∈ Nr, then the
corresponding column in P is zero except for a 1 at the i-th position. If, on the other
hand, c ∈ Nh, then the corresponding column is zero and features the value 1/2 at the
positions i, j ∈ Nr of its regular node neighbors. Note that proceeding in this way that
the rows corresponding to hanging nodes in P are zero. In order to reduce the system
and compute the coefficients of the regular nodes of the mesh we define Pr ∈ RNr,N as
the matrix which results by omitting all zero rows of P , where Nr = |Nr|. Then we can
reduce the original system of equations using Pr to

PrAP
>
r cr = Prb,

where we now only have to solve for the coefficients of regular vertices. The complete
solution is then obtained by another multiplication with P>r

c = P>r cr.

Remark 2.20. Usually in applications the matrices P and Pr are not assembled explicitly,
but rather local connectivity is exploited in the assembly process. However, this procedure
is convenient as it provides a simple way of system reduction and does not require the
restructuring of existing Finite Element codes that are readily available. This is at the
expense of more work when solving the global system in this manner.

Remark 2.21. For higher polynomial degrees p the procedure is similar and the reader
is confered to e.g. [56].

2.2.4 A residual a posteriori error estimator

With the necessary preparations in place we can embark on the development of a residual
a posteriori error estimator. Recall that D = D × D = [−1, 1]2. Deriving an a poste-
riori residual error estimator for the deterministic second moment problem of the one
dimensional model problem we consider for any v ∈ H1,1

0 (D) the equation∫
D
∂x∂y(u− uT )∂x∂yv dx dy =

∫
D
fv dx dy −

∫
D
∂x∂yuT ∂x∂yv dx dy, (2.15)

which implicitly defines the residual R with respect to uT as an element of the dual space
of H1,1

0 (D) via

〈R, v〉 =

∫
D
fv dx dy −

∫
D
∂x∂yuT ∂x∂yv dx dy, (2.16)

where 〈·, ·〉 denotes the duality pairing. The Cauchy-Schwarz inequality yields for a fixed
w ∈ H1,1

0 (D) and arbitrary v ∈ H1,1
0 (D) with ∂x∂yv 6= 0 that

‖∂x∂yw‖L2(D) = sup
v∈H1,1

0 (D)\{0}

〈w, v〉
‖∂x∂yv‖L2(D)

.

This further implies a similar identity for the error

‖∂x∂y(u− uT )‖L2(D) = sup
v∈H1,1

0 (D)\{0}

〈R, v〉
‖∂x∂yv‖L2(D)

.
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Starting from the representation of the residual

〈R, v〉 =

∫
D
fv dx dy −

∫
D
∂x∂yuT ∂x∂yv dx dy (2.17)

we consider a mesh T on D with elements K being rectangular and of the form K =
[x1, x2] × [y1, y2] ∈ T for certain values of xi ≡ xi(K), yi ≡ yi(K) ∈ [−1, 1], i = 1, 2.
Noting that the operators ∂x and ∂y commute, integrating by parts with respect to the
x-variable yields

〈R, v〉 =

∫
D
fv dx dy −

∫
D
∂x∂yuT ∂x∂yv dx dy

=
∑
K∈T


∫
K
fv −

y2∫
y1

x2∫
x1

∂x∂yuT ∂x∂yv dx dy


=
∑
K∈T


∫
K
fv dx dy −

y2∫
y1

[∂x∂yuT ∂yv]x2x1 −
x2∫
x1

∂2
x∂yuT ∂yv dx

 dy

 ,

where we have used the notation

[f(x)g(x)]ba = f(b)g(b)− f(a)g(a)

and the one dimensional integration by parts formula∫ b

a
f(x)g′(x) dx = [f(x)g(x)]ba −

∫ b

a
f ′(x)g(x) dx.

Using Fubini’s theorem to interchange the integrals and integrating by parts, now with
respect to the y-variable, we get

∑
K∈T

∫
K
fv dx dy −

∑
K∈T

 y2∫
y1

[∂x∂yuT ∂yv]x2x1 dy −
y2∫
y1

x2∫
x1

∂2
x∂yuT ∂yv dx dy



=
∑
K∈T


∫
K
fv −

y2∫
y1

[∂x∂yuT ∂yv]x2x1 dy +

x2∫
x1

[∂2
x∂yuT v

]y2
y1
−

y2∫
y1

∂2
x∂

2
yuT v dy

 dx


=
∑
K∈T


∫
K
fv −

y2∫
y1

∂x∂yuT (x2, y) ∂yv(x2, y)− ∂x∂yuT (x1, y) ∂yv(x1, y) dy

+

x2∫
x1

[
∂2
x∂yuT v

]y2
y1

dx−
x2∫
x1

y1∫
y1

∂2
x∂

2
yuT v dy dx

 .

Integrating by parts once more, since ∂yv need not have an L2-trace on the element
boundary, we find
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∑
K∈T


∫
K
fv dx dy −

 y2∫
y1

∂x∂yuT (x2, y) ∂yv(x2, y)− ∂x∂yuT (x1, y) ∂yv(x1, y) dy

−
x2∫
x1

[
∂2
x∂yuT v

]y2
y1

dx+

x2∫
x1

y1∫
y1

∂2
x∂

2
yuT v dx dy


=
∑
K∈T

{∫
K
fv dx dy −

(
[∂x∂yuT (x2, y)v(x2, y)]y2y1 − [∂x∂yuT (x1, y)v(x1, y)]y2y1

−
y2∫
y1

∂x∂
2
yuT (x2, y) v(x2, y) dy +

y2∫
y1

∂x∂
2
yuT (x1, y) v(x1, y) dy

−
x2∫
x1

∂2
x∂yuT (x, y2) v(x, y2) dx+

x2∫
x1

∂2
x∂yuT (x, y1) v(x, y1) dx

+

x2∫
x1

y1∫
y1

∂2
x∂

2
yuT v dx dy

 .

After combining suitable terms, we arrive at the representation

〈R, v〉 =
∑
K∈T

(∫
K

(f − ∂2
x∂

2
yuT )v dx dy

+ [∂x∂yuT (x1, y)v(x1, y)]y2y1 − [∂x∂yuT (x2, y)v(x2, y)]y2y1

+

y2∫
y1

∇(∂2
yuT (x2, y)) · ~n v(x2, y) dy +

y2∫
y1

∇(∂2
yuT (x1, y)) · ~n v(x1, y) dy

+

x2∫
x1

∇(∂2
xuT (x, y2)) · ~n v(x, y2) dx+

x2∫
x1

∇(∂2
xuT (x, y1)) · ~n v(x, y1) dx

 ,

(2.18)

where ~n denotes the outer normal vector to K on the current edge.
Using the notation for interelemental jumps (1.9) the representation of the residual

(2.18) can be rewritten in the form

〈R, v〉 =
∑
K∈T

∫
K
rv dx dy +

∑
E∈E

∫
E
jv ds

+
∑
K∈T

(
[∂x∂yuT (x1, y)v(x1, y)]y2y1 − [∂x∂yuT (x2, y)v(x2, y)]y2y1

)
,

(2.19)
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where

r|K = f − ∂2
x∂

2
yuT ,

j|E =


J∇(∂2

yuT ) · nK, for a vertical edge E ⊂ K ∈ T , E 6⊂ ∂D,
J∇(∂2

xuT ) · nK, for a horizontal edge E ⊂ K ∈ T , E 6⊂ ∂D,
0, E ⊂ ∂D.

In the following we show that the above representation of the residual does in fact allow
us to define an a posteriori error estimator.

An upper bound on the error

In this section we concern ourselves with proving that (2.19) guarantees an upper bound
on the error and thus a reliable residual a posteriori error estimator can be defined. From
(2.19) we draw motivation for the following definition.

Definition 2.22. For the deterministic second moment problem (2.6) we define the resid-
ual a posteriori error estimator ηR,K element-wise by

η2
R,K := h2

K‖r‖2L2(K) +
1

2

∑
E⊂∂K

hE‖j‖2L2(E). (2.20)

The global error estimator ηR is then given as

ηR :=

(∑
K∈T

η2
R,K

)1/2

. (2.21)

That this definition makes sense is shown in the following lemma.

Lemma 2.23 (Reliability of ηR). Let D = [−1, 1]2. Furthermore, u be the exact solution
of (2.6) and uT the solution of the corresponding discrete variational formulation (2.7).
Then there exists a positive constant c∗ which only depends on the shape regularity of the
mesh T , the polynomial degree pT , and D, such that

|u− uT |H1,1(D) ≤ c∗
{∑
K∈T

h2
K‖r‖2L2(K) +

∑
E∈E

hE‖j‖2L2(E)

}1/2

. (2.22)

Proof. In order to show that the error |u− uT |H1,1(D) is bounded from above globally
by ηR,K , we start out from the expression (2.19) and insert the function v−Π1,1

pT v instead
of v, where we assume pK = (p, p) for all K. Thus, by the properties of Π1,1

pK the point
evaluations in the representation (2.19) vanish, since Π1,1

pKv interpolates v at the nodes of
K. By use of the Cauchy-Schwarz inequality for sums and integrals in conjunction with
approximation results from the previous section and Galerkin orthogonality, we obtain
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2.2. 1D model problem

for any v ∈ H1,1
0 (D) that there holds

〈R, v〉 =〈R, v −Π1,1
pT v〉

=
∑
K∈T

∫
K
r(v −Π1,1

pK
v) dx dy +

∑
E∈E

∫
E
j(v −Π1,1

pK
v) ds

≤
∑
K∈T

‖r‖L2(K)‖v −Π1,1
pK
v‖L2(K) +

∑
E∈E
‖j‖L2(E)‖v −Π1,1

pK
v‖L2(E)

≤
∑
K∈T

‖r‖L2(K)C1
hK√
p(p+ 1)

(
‖∂xv‖2L2(K) + ‖∂yv‖2L2(K) + |v|2H1,1(K)

)1/2

+
∑
E∈E
‖j‖L2(E)

(
C2

hE
p(p+ 1)

‖∂τv‖2L2(K) +
h3
E

p(p+ 1)
‖∂ξ∂ηv‖2L2(K)

)1/2

≤max{C1, C2}

{∑
K∈T

h2
K

p(p+ 1)
‖r‖2L2(K) +

∑
E∈E

hE
p(p+ 1)

‖j‖2L2(E)

}1/2

×

{∑
K∈T

(
‖∂xv‖2L2(K) + ‖∂yv‖2L2(K) + |v|2H1,1(K)

)

+
∑
E∈E

∑
K⊂ωE

(
‖∂τv‖2L2(K) + |v|2H1,1(K)

)
1/2

,

where in the last step the Cauchy-Schwarz inequality for sums has been used and we recall
that ωE denotes the patch of elements K that have E as a common edge. Furthermore,
we have made use of (2.9) for ∂τ . Since the Lebesgue integral is additive we have∑

K∈T
‖∂xv‖2L2(K) = ‖∂xv‖2L2(D),

∑
K∈T

‖∂yv‖2L2(K) = ‖∂yv‖2L2(D),

from which we infer by applying Friedrichs’ inequality in the y- or x-direction, respectively,
that

‖∂xv‖2L2(D) ≤ CF,y‖∂x∂yv‖
2
L2(D), ‖∂yv‖2L2(D) ≤ CF,x‖∂x∂yv‖

2
L2(D).

Moreover, ∑
E∈E

∑
K⊂ωE

(
‖∂τv‖2L2(K) + |v|2H1,1(K)

)
≤ c|v|2H1,1(D),

by additivity of the Lebesgue integral, the fact that every element is counted only finitely
many times in the second sum on the left-hand side by shape regularity, and that as
earlier we can bound

∑
E∈E

∑
K⊂ωE ‖∂τv‖

2
L2(K) ≤ C‖∂x∂yv‖

2
L2(D). This implies

{∑
K∈T

(
‖∂xv‖2L2(K) + ‖∂yv‖2L2(K) + |v|2H1,1(K)

)

+
∑
E∈E

∑
K⊂ωE

(
‖∂τv‖2L2(K) + |v|2H1,1(K)

)
1/2

≤ c̃|v|H1,1(D),
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Chapter 2. Deterministic Second Moment Equations

where c̃ only depends on the shape regularity of the mesh T , takes into consideration that
elements are counted multiple times on the left-hand side and incorporates the constants
of Friedrichs’ inequality in the x- and y-direction. Thus,

〈R, v〉 ≤ C(p(p+ 1))−1|v|H1,1(D)

{∑
K∈T

h2
K‖r‖2L2(K) +

∑
E∈E

hE‖j‖2L2(E)

}1/2

with C = c̃max{C1, C2}. Since v ∈ H1,1
0 (D) was arbitrary, it follows that there exists a

constant c∗ > 0, such that we have

|u− uT |H1,1(D) ≤ c∗
{∑
K∈T

h2
K‖r‖2L2(K) +

∑
E∈E

hE‖j‖2L2(E)

}1/2

.

Remark 2.24. In general evaluating the integrals on the right-hand side of (2.22) for
arbitrary functions f might be prohibitively expensive. Therefore integrals are usually eval-
uated by suitable quadrature formulae. Alternatively, the function f may be approximated
by polynomials in an element-wise fashion, thus enabling exact evaluation.

As a corollary of the previous lemma we find the following, if we assume that f is
replaced by an approximation fT .

Corollary 2.25. Let u be the exact solution of (2.6) and uT the solution of the corre-
sponding discrete variational formulation (2.7). Then there exists a constant c∗ which
only depends on the shape regularity of the mesh T , the polynomial degree pT , and D,
such that

|u− uT |H1,1(D) ≤ c∗
(
η2
R + oscf

)1/2
. (2.23)

where oscf :=
∑

K∈T h
2
K‖f − fT ‖2L2(K)

Proof. Splitting the integral of the element residual into

∑
K∈T

∫
K
r(v −Π1,1

pK
v) dx dy

=
∑
K∈T

∫
K
r̃(v −Π1,1

pK
v) dx dy +

∑
K∈T

∫
K

(f − fT )(v −Π1,1
pK
v) dx dy

with r̃ = fT − ∂2
x∂

2
yuT and then repeating the steps of the proof of Lemma 2.23 gives the

assertion.

Remark 2.26. Note that the factor 1
2 in front of the edge residuals takes care of the fact

that each inner edge is counted twice when summing over all η2
R,K to get ηR.

Remark 2.27. By the definition of ηR,K we see that for p = 1 that ηR,K only depends
on the right-hand side f as the other terms vanish. Because of this fact we will consider
different extensions of the local Finite Element space, when we examine the numerical
experiments.
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2.2. 1D model problem

A lower bound on the error

We will now proceed to show a lower bound on the error, which is done in an element-wise
fashion. Our focus is on bounding the element and edge resduals. Let us start by fixing
an element K and write

fT |K = Pf |K
where P is a suitable projection of f into the finite element space Sp,−1(T ). For the sake
of simplicity let us define fT |K to be the L2-projection on P0(K).

Moreover, let wT be the function that restricted to K has the form

wT = (fT − ∂2
x∂

2
yuT )ψK ,

where ψK denotes the element bubble function, i.e. ψK is the minimal degree polynomial
that is zero on the boundary of K and attains its unit maximum in the barycenter of K
(cf. (2.10)).

Lemma 2.28 (Element residuals). Let fT ∈ Sp,−1(T ) any approximation of the right-
hand side f . Let u be the exact solution of (2.6) and uT the exact solution of the discrete
problem (2.7). Then for any element K ∈ T , there exist constants C1 and C2 such that
there holds the estimate

h2
K‖fT − ∂2

x∂
2
yuT ‖L2(K) ≤ C1‖∂x∂y(u− uT )‖L2(K) + C2h

2
K‖fT − f‖L2(K). (2.24)

Proof. With notations as above we have,∫
K

(fT − ∂2
x∂

2
yuT )2ψK dx dy =

∫
K

(fT − ∂2
x∂

2
yuT )wT dx dy

=

∫
K
rwT d~x+

∫
K

(fT − f)wT dx dy

=

∫
K
∂x∂y(u− uT )∂x∂ywT dx dy +

∫
K

(fT − f)wT dx dy,

(2.25)

where we note that, since ψK is zero on the boundary of K, the edge residuals as well as
the evaluation terms in (2.19) in the nodes of K vanish. There holds∫

K
(fT − ∂2

x∂
2
yuT )2ψK dx dy ≥ (p+ 2)−4‖fT − ∂2

x∂
2
yuT ‖2L2(K),

which is due to Lemma 2.11. Estimating the right hand side of (2.25) by means of
approximation results from section 2.2.2 yields∫

K
∂x∂y(u− uT )∂x∂ywT dx dy ≤ ‖∂x∂y(u− uT )‖L2(K)‖∂x∂ywT ‖L2(K)

≤ ‖∂x∂y(u− uT )‖L2(K)Ch
−2
K ‖fT − ∂

2
x∂

2
yuT ‖L2(K),∫

K
(fT − f)wT dx dy ≤ ‖fT − f‖L2(K)‖wT ‖L2(K)

≤ ‖fT − f‖L2(K)‖fT − ∂2
x∂

2
yuT ‖L2(K).

Combining these estimates we find the assertion

h2
K‖fT − ∂2

x∂
2
yuT ‖L2(K) ≤ C1‖∂x∂y(u− uT )‖L2(K) + C2h

2
K‖fT − f‖L2(K). (2.26)
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We now turn to estimating the edge residuals. Consider an edge E ∈ E and insert the
function

wE = jψE

into (2.19), where ψE is the minimal polynomial such that ψE attains its unit maximum
in the barycenter of E = K ∩ K ′ and is zero on all other edges E′ of K and K ′. The
support of ψE is ωE = K ∪K ′.

Lemma 2.29 (Edge residuals). With the notation as above and u the exact solution
of (2.6) and uT the solution of the corresponding discrete variational formulation (2.7).
Then there exist constants C1 and C2, such that

h
3/2
E ‖j‖L2(E) ≤ C1‖∂x∂y(u− uT )‖L2(ωE) + C2

∑
K⊂ωE

h2
K‖fT − f‖L2(K). (2.27)

Proof. Inserting wE into representation of the residual yields∫
E

(j2ψE) ds =

∫
E
jwE ds

=

∫
ωE

∂x∂y(u− uT )∂x∂ywE dx dy −
∫
ωE

r̃wE dx dy −
∫
ωE

(f − fT )wE dx dy.

Then by Lemma 2.11 there exists a constant such that the left-hand side is bounded
from below as ∫

E
jwE ds ≥ (p+ 2)−2‖j‖2L2(E).

Now we bound the terms on the right-hand side using estimates from section 2.2.2 and
find ∫

ωE

∂x∂y(u− uT )∂x∂ywE dx dy ≤‖∂x∂y(u− uT )‖L2(ωE)‖∂x∂ywE‖L2(ωE)

≤‖∂x∂y(u− uT )‖L2(ωE)Ch
−3/2
E ‖j‖L2(E),∑

K⊂ωE

∫
K
r̃wE dx dy ≤

∑
K⊂ωE

‖r̃‖L2(K)‖wE‖L2(K)

≤
∑
K⊂ωE

‖r̃‖L2(K)Ch
1/2
E ‖j‖L2(E),

∑
K⊂ωE

∫
K

(f − fT )wE dx dy ≤
∑
K⊂ωE

‖(f − fT )‖L2(K)‖wE‖L2(K)

≤
∑
K⊂ωE

‖(f − fT )‖L2(K)Ch
1/2
E ‖j‖L2(E).

Combining the aforementioned estimates we get

C‖j‖2L2(E) ≤‖∂x∂y(u− uT )‖L2(ωE)Ch
−3/2
E ‖j‖L2(E) +

∑
K⊂ωE

‖r̃‖L2(K)Ch
1/2
E ‖j‖L2(E)

+
∑
K⊂ωE

‖(f − fT )‖L2(K)Ch
1/2
E ‖j‖L2(E)
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2.2. 1D model problem

and further upon dividing the above inequality by ‖j‖L2(E)

C‖j‖L2(E) ≤ Ch
−3/2
E ‖∂x∂y(u− uT )‖L2(ωE)

+
∑
K⊂ωE

Ch
1/2
E ‖r̃‖L2(K) +

∑
K⊂ωE

Ch
1/2
E ‖(f − fT )‖L2(K).

Furthermore, inserting the bound for ‖r̃‖L2(K) from (2.26) yields

h
3/2
E ‖j‖L2(E) ≤ C‖∂x∂y(u− uT )‖L2(ωE)

+
∑
K⊂ωE

Ch2
E‖r̃‖L2(K) +

∑
K⊂ωE

Ch2
E‖(f − fT )‖L2(K)

≤ C‖∂x∂y(u− uT )‖L2(ωE) + C
∑
K⊂ωE

h2
K‖f − fT ‖L2(K).

This concludes the inspection of a lower bound of the residual error estimator ηR. In
total we have shown the

Theorem 2.30. Let u and uT denote the solutions of the variational problems (2.6) and
(2.7), respectively. Let the residual error estimator ηR,K be given as in Definition 2.22.
Moreover, let fT denote an approximation of f on the mesh T . There exists constants c∗

and c∗ that only depend on the shape regularity of the given mesh, the polynomial degree
pT , and the domain D, such that

|u− uT |H1,1(D) ≤ c∗
{∑
K∈T

η2
R,K +

∑
K∈T

h2
K‖f − fT ‖2L2(K)

}1/2

(2.28)

and for all K ∈ T there holds

hKηR,K ≤ c∗

|u− uT |2H1,1(ωK) +
∑

K′⊂ωK

h4
K‖f − fT ‖2L2(K′)


1/2

, (2.29)

where ωK denotes the union of all elements K ′ that share an edge with K, i.e. {K ′ ∈ T :
K ∩K ′ = E,E ∈ E}.

Proof. The upper bound is proven in Lemma 2.23 and Corollary 2.25. The lower bound
follows from the combination of Lemma 2.28 and Lemma 2.29 with the shape regularity
of the mesh T , which immediately yields

h2
Kη

2
R,K ≤c

h4
K‖fT − ∂2

x∂
2
yuT ‖2L2(K) +

∑
e∈EK

h3
E‖j‖2L2(E)


≤C

‖∂x∂y(u− uT )‖2L2(ωK) +
∑

K′⊂ωK

h4
K‖fT − f‖2L2(K′)


and upon taking the square root concludes the proof.
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Remark 2.31. Note that there is gap of h between the upper and lower bounds of the
error. This is due to the fact that the a posteriori estimator has to take care of the worst
case scenarios in the upper and lower bound of the approximation on D. Since on the
one hand it might happen, that u factors as g(x)h(y) on an element K, in which case
the error analysis yields an extra power of hK . If on the other hand u does not allow a
factorization on K, i.e. u 6= g(x)h(y) with appropriate functions g and h, then we only
recover a single power of hK in the error estimate.

Motivated by the preceding theorem and to have a short terminology we state the
following definition.

Definition 2.32 (Weak Efficiency). Let η be an error estimator. Then we call η a weakly
efficient estimator if there exists a constant Ceff and there holds an upper bound of the
form

hKη ≤ Cweff‖u− uT ‖+Hweff

for a certain norm of the error ‖ · ‖ and such that the generic higher order error term
Hweff satisfies Hweff = o(‖u− uT ‖).

Remark 2.33. The lower bound of ηR can lead to a deterioration of the convergence of
the adaptive process. This circumstance is investigated in a later section.

2.2.5 A hierarchical a posteriori error estimator

The presentation here follows the ideas of [54], also see [27]. Let YT = S1,0
0 (T ) and

consider a finite dimensional Finite Element space XT for which holds

YT ⊂ XT ⊂ H1,1
0 (D).

The space XT may be induced by a uniform refinement of the mesh T or consist of higher
order elements. We shall adopt the latter idea. Furthermore, let us denote by xT ∈ XT
the solution of ∫

D
∂x∂yxT ∂x∂yvT dx dy =

∫
D
fvT dx dy, ∀vT ∈ XT .

In order to compare the solution uT ∈ S1,0
0 (T ) of (2.7) with xT , we subtract∫

D
∂x∂yuT ∂x∂yvT dx dy

from both sides of the equation characterizing xT , yielding for all vT ∈ XT∫
D
∂x∂y(xT − uT )∂x∂yvT dx dy =

∫
D
fvT dx dy −

∫
D
∂x∂yuT ∂x∂yvT dx dy

=

∫
D
∂x∂y(u− uT )∂x∂yvT dx dy,

(2.30)

where u ∈ H1,1
0 (D) denotes the unique solution of the variational formulation (2.6). As

S1,0
0 (T ) ⊂ XT , we may write vT = xT − uT and thus, by the Cauchy-Schwarz inequality,

we have
‖∂x∂y(xT − uT )‖L2(D) ≤ ‖∂x∂y(u− uT )‖L2(D).

In order to prove the converse estimate, we introduce a condition on the space XT .
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2.2. 1D model problem

Definition 2.34 (Saturation Property). The space XT is said to satisfy a saturation
property (with respect to a subspace, here: YT = S1,0

0 (T )), if there exists β ∈ [0, 1) such
that

‖∂x∂y(u− xT )‖L2(D) ≤ β‖∂x∂y(u− uT )‖L2(D).

If the larger space XT provides approximations of higher order, it seems intuitive
that one could expect that uT 6= xT and that xT is a better approximation of u as long
as u is sufficiently regular. In [10, Prop. 2.6] the authors have shown that there are
non-trivial right-hand sides f , such that uT = xT for the Poisson problem. The proof is
also valid in our situation for the splitting XT = S1,0

0 (T ) ⊕ ZT . Although if the mesh
width is small enough and as in our situation we have a direct hierarchical extension, the
saturation assumption is clearly satisfied, if the solution is regular enough. Moreover, in
[15] the authors have shown that in most cases the saturation assumption holds except for
a few pathological examples where the starting partition T0 only has one internal degree
of freedom. For the hierarchical error estimator we will derive another proof, but the
saturation assumption will also play a role when we have a look at the a posteriori error
estimator that is built via an averaging procedure.

Now if XT satisfies a saturation property, we conclude with the triangle inequality
that

‖∂x∂y(u− uT )‖L2(D) ≤ ‖∂x∂y(u− xT )‖L2(D) + ‖∂x∂y(xT − uT )‖L2(D)

≤ β‖∂x∂y(u− uT )‖L2(D) + ‖∂x∂y(xT − uT )‖L2(D)

and hence
‖∂x∂y(u− uT )‖L2(D) ≤

1

1− β
‖∂x∂y(xT − uT )‖L2(D).

Overall we have the two-sided bound

‖∂x∂y(xT − uT )‖L2(D) ≤ ‖∂x∂y(u− uT )‖L2(D) ≤
1

1− β
‖∂x∂y(xT − uT )‖L2(D).

This shows that we may use ‖∂x∂y(xT − uT )‖L2(D) as an a posteriori error indicator.
However, since the computation of the solution xT is at least as costly as uT , this approach
is not at all cost-efficient.

In order to remedy the situation, we consider the space XT to admit a hierarchical
splitting in the form

XT = S1,0
0 (T )⊕ ZT .

If now the spaces S1,0
0 (T ) and ZT satisfy a strengthened Cauchy-Schwarz inequality (cf.

2.14), i.e. the spaces are in a sense (nearly) orthogonal, we can exploit this fact to
formulate a more efficient tool. In this context the aforementioned inequality takes the
form ∣∣∣∣∫

D
∂x∂yzT ∂x∂yuT dx dy

∣∣∣∣ ≤ γ‖∂x∂yzT ‖L2(D)‖∂x∂yuT ‖L2(D),

where zT ∈ ZT and uT ∈ S1,0
0 (T ). Hence, the idea is to replace ‖∂x∂y(xT − uT )‖L2(D)

by ‖∂x∂yzT ‖L2(D) with a suitable zT ∈ ZT , which is hopefully easier and foremost less
costly to compute than xT . To this end let zT be defined as the unique solution in ZT of
the defect problem∫

D
∂x∂yzT ∂x∂yζT dx dy =

∫
D
fζT dx dy −

∫
D
∂x∂yuT ∂x∂yζT dx dy (2.31)
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for all ζT ∈ ZT . By the preceding considerations (cf. (2.30),(2.15)) we note for all
ζT ∈ ZT the identity∫

D
∂x∂yzT ∂x∂yζT dx dy =

∫
D
∂x∂y(xT − uT )∂x∂yζT dx dy

=

∫
D
∂x∂y(u− uT )∂x∂yζT dx dy.

(2.32)

In particular, for xT we have∫
D
∂x∂y(xT − uT )∂x∂yvT dx dy = 0, ∀vT ∈ S1,0

0 (T ).

Upon inserting ζT = zT into (2.32) and applying the Cauchy-Schwarz inequality, we get

‖∂x∂yzT ‖L2(D) ≤ ‖∂x∂y(u− uT )‖L2(D).

Furthermore, writing xT − uT = ṽT + z̃T with ṽT ∈ Sp,00 (T ) and z̃T ∈ ZT , we have by
the strengthened Cauchy-Schwarz inequality and Young’s inequality ab ≤ 1

2(a2 + b2) that

‖∂x∂y(xT − uT )‖2L2(D) =‖∂x∂y(ṽT + z̃T )‖2L2(D)

≤‖∂x∂yṽT ‖2L2(D) + 2γ‖∂x∂yṽT ‖L2(D)‖∂x∂y z̃T ‖L2(D)

+ ‖∂x∂y z̃T ‖2L2(D)

≤(1 + γ)(‖∂x∂yṽT ‖2L2(D) + ‖∂x∂y z̃T ‖2L2(D))

and similarly

(1− γ)
(
‖∂x∂yṽT ‖2L2(D) + ‖∂x∂y z̃T ‖2L2(D)

)
≤ ‖∂x∂y(xT − uT )‖2L2(D).

This further implies that we also have

‖∂x∂y z̃T ‖L2(D) ≤
1

(1− γ)1/2
‖∂x∂y(xT − uT )‖L2(D).

Exploiting the Galerkin orthogonality in combination with (2.32), we conclude with ζT =
z̃T that

‖∂x∂y(xT − uT )‖2L2(D) =

∫
D
∂x∂y(xT − uT )∂x∂y(xT − uT ) dx dy

=

∫
D
∂x∂y(xT − uT )∂x∂y(ṽT + z̃T ) dx dy

=

∫
D
∂x∂y(xT − uT )∂x∂y z̃T dx dy

=

∫
D
∂x∂yzT ∂x∂y z̃T dx dy

≤‖∂x∂yzT ‖L2(D)‖∂x∂y z̃T ‖L2(D)

≤ 1

(1− γ)1/2
‖∂x∂yzT ‖L2(D)‖∂x∂y(xT − uT )‖L2(D)
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and thereby

‖∂x∂y(u−uT )‖L2(D) ≤
1

(1− β)
‖∂x∂y(xT −uT )‖L2(D) ≤

1

(1− β)(1− γ)1/2
‖∂x∂yzT ‖L2(D).

Combining these results we arrive at the following two-sided bound for the error

‖∂x∂yzT ‖L2(D) ≤ ‖∂x∂y(u− uT )‖L2(D) ≤
1

(1− β)(1− γ)1/2
‖∂x∂yzT ‖L2(D) (2.33)

and are thus able to use ‖∂x∂yzT ‖ as an a posteriori error indicator.

In the following we will be concerned with the efficient computation of zT . At first
sight it might seem cheaper to compute zT , because the dimension of ZT is smaller
than that of XT . Although that is the case, in order to compute zT we still have to
solve a global system of equations over D and hence the computation of zT might in
the worst case be as expensive as that of uT . In most applications in the literature, see
e.g. [10, 11], the functions in ZT are chosen such that they vanish at the nodes N of
the mesh as ZT is the hierarchical complement of S1,0

0 (T ) in XT . Moreover, this implies
that the stiffness matrix with respect to ZT is spectrally equivalent to a suitably lumped
mass matrix by means of usual inverse inequalities for piecewise polynomial functions in
ZT . Then we can replace zT by a certain z∗T which is computable by solving a diagonal
linear system of equations. This is equivalent to assuming that there exists a bilinear
form B∗ : ZT × ZT → R which exhibits a diagonal stiffness matrix and gives rise to an
equivalent norm to ‖∂x∂y · ‖L2(D) on ZT , i.e. there exist 0 < λ ≤ Λ such that

λ‖∂x∂yζT ‖2L2(D) ≤ B
∗(ζT , ζT ) ≤ Λ‖∂x∂yζT ‖2L2(D), ∀ζT ∈ ZT .

This in turn implies that we can find a unique z∗T ∈ ZT satisfying

B∗(z∗T , ζT ) =

∫
D
fζT dx dy −

∫
D
∂x∂yuT ∂x∂yζT dx dy, ∀ζT ∈ ZT . (2.34)

Similarly as before we conclude for all ζT ∈ ZT

B∗(z∗T , ζT ) =

∫
D
∂x∂y(u− uT )∂x∂yζT dx dy =

∫
D
∂x∂yzT ∂x∂yζT dx dy.

Using the equivalence of B∗ with the norm ‖∂x∂y · ‖L2(D) and inserting ζT = z∗T as well
as ζT = zT , we find

B∗(z∗T , z∗T ) =

∫
D
∂x∂y(u− uT )∂x∂yz

∗
T

≤ ‖∂x∂y(u− uT )‖L2(D)‖∂x∂yz∗T ‖L2(D)

≤ ‖∂x∂y(u− uT )‖L2(D)
1√
λ
B∗(z∗T , z∗T )1/2

and
‖∂x∂yzT ‖2L2(D) = B∗(z∗T , zT )

≤ B∗(z∗T , z∗T )1/2B∗(zT , zT )1/2

≤ B∗(z∗T , z∗T )1/2
√

Λ‖∂x∂yzT ‖L2(D).

39



Chapter 2. Deterministic Second Moment Equations

This proves the two-sided error bound

√
λB∗(z∗T , z∗T )1/2 ≤ ‖∂x∂y(u− uT )‖L2(D) ≤

√
Λ

(1− β)(1− γ)1/2
B∗(z∗T , z∗T )1/2. (2.35)

Our main obstacle to define a hierarchical a posteriori estimator now lies with the
specific choice of ZT and a suitable choice for B∗. Let us first consider T to be regular
and let

XT = S1,0
0 (T )⊕ ZT ,

which defines the hierarchical complement ZT = S2,0
0 (T )\S1,0

0 (T ) as the space of piecewise
continuous polynomials of degree 2 on T which vanish at the nodes N of T . We associate
with every edge E ∈ E and element K ∈ T the functions ψE and ψK , which are called
edge and element bubble functions, respectively, and split ZT as follows

ZT = ZET ⊕ ZKT ,

where now ZET = span{ψE : E ∈ E} is the space of edge bubbles and ZKT = span{ψK :
K ∈ T } the space of element bubbles.

Then ψK ∈ P2(K) and 0 ≤ ψK ≤ CK on K as well as ψK |∂K = 0. For an interior
edge E we have ψE ∈ P2(K ∪ K ′) with E = K ∩ K ′ in addition to 0 ≤ ψE ≤ CE
and ψE |∂(K∪K′) = 0. The constants depend on the specific definition of S2,0

0 (T ) in that
CK = maxx∈K |ψK(x)| and CE = maxx∈(K∪K′) |ψE(x)|. In particular, frequently ψE and
ψK are chosen such that CK = CE = 1. On K̂ we can explicitly define

ψK̂(x̂, ŷ) := CK̂(1− x̂2)(1− ŷ2),

ψÊ(x̂, ŷ) := CÊ ·



(1−ŷ)
2 (1− x̂2), Ê = [−1, 1]× {−1},

(1+x̂)
2 (1− ŷ2), Ê = {1} × [−1, 1],

(1+ŷ)
2 (1− x̂2), Ê = [−1, 1]× {1},

(1−x̂)
2 (1− ŷ2), Ê = {−1} × [−1, 1].

(2.36)

Choosing B∗ as the restriction of the H1,1(D) scalar product, namely

B∗
(∑

S

αSψS ,
∑
S′

αS′ψS′

)
=
∑
S,S′

αSαS′

∫
D
∂x∂yψS∂x∂yψS′ dx dy,

with S, S′ ∈ T ∪ E shows that the strengthened Cauchy-Schwarz inequality holds with
γ = 0. More precisely, since ψS , S ∈ T ∪ E can be written in terms of tensor products of
antiderivatives of the Legendre polynomials L̂0(ξ) ≡ 1, L̂1(ξ) = ξ + 1, L̂2(·) = 1

2(ξ2 − 1)
as

ψK̂(x̂, ŷ) =c̃L̂2(x̂)L̂2(ŷ),

ψÊ(x̂, ŷ) =c̃ ·



(L̂0(ŷ)− 1
2 L̂1(ŷ))L̂2(x̂), Ê = [−1, 1]× {−1},

1
2 L̂1(x̂)L̂2(ŷ), Ê = {1} × [−1, 1],

1
2 L̂1(ŷ)L̂2(x̂), Ê = [−1, 1]× {1},

(L̂0(x̂)− 1
2 L̂1(x̂))L̂2(ŷ), Ê = {−1} × [−1, 1],

(2.37)
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2.2. 1D model problem

where c̃ in each instance is a certain normalization constant. The aforementioned or-
thogonality of S1,0

0 (T ) and ZT is then seen as a result of orthogonality properties of the
Legendre polynomials. Moreover, we note that in this way the element and edge bubble
functions are also mutually orthogonal.

For convenience let us denote the inner product on H1,1(D) by

〈u, v〉H1,1(D) :=

∫
D
∂x∂yu∂x∂yv dx dy

and note that 〈u, u〉H1,1(D) = |u|2H1,1(D). Using the established orthogonality between
local shape functions in YT and ZT shows that (cf. (2.34)) we only have to solve the
simpler problem:

Problem 2.35. Find z∗T ∈ ZT , such that

B∗(z∗T , ζT ) =

∫
D
fζT dx dy, ∀ζT ∈ ZT .

Furthermore, note that for this choice of B∗, namely as the restriction of B to ZT , the
spectral equivalence with | · |H1,1(D) on ZT is trivial. Considering the functions ψS of ZKT
with S ∈ T a straightforward calculation to find the coefficients of z∗T =

∑
S αSψS where

S ∈ T ∪ E by testing with a certain ψS′ with S′ ∈ T then leads to

〈z∗T , ψS′〉H1,1(D) =

∫
D
∂x∂yz

∗
T ∂x∂yψS′ dx dy =

∑
S∈T

αS

∫
D
∂x∂yψS∂x∂yψS′ dx dy

= αS′‖∂x∂yψS′‖2L2(D)

=

∫
D
fψS′ dx dy,

where we have used the fact that the element bubbles do not have overlapping support.
This shows that for all K ∈ T

αK =
(f, ψK)L2(K)

‖∂x∂yψK‖2L2(K)

. (2.38)

To find the remaining coefficients of the edge bubble functions in ZET we note that
bubble functions for edges in x- and y-direction are orthogonal. Thus, for any vertical
edge E ∈ E

〈z∗T , ψE〉H1,1(D) =

∫
D
∂x∂yz

∗
T ∂x∂yψE dx dy

=
∑
S∈E

αS

∫
D
∂x∂yψS∂x∂yψE dx dy

=αE‖∂x∂yψE‖2L2(ωE) + αE−〈ψE , ψE−〉H1,1(ωE∩ωE− )

+ αE+〈ψE , ψE+〉H1,1(ωE∩ωE+ )

=

∫
D
fψE dx dy,

and an analogous argument for the horizontal edges leads to

αE =
(f, ψE)L2(supp(ψE)) − αE−〈ψE , ψE−〉H1,1(ωE∩ωE− ) − αE+〈ψE , ψE+〉H1,1(ωE∩ωE+ )

‖∂x∂yψE‖2L2(supp(ψE))

,

(2.39)
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Figure 2.4: Interaction of basis functions on ωK
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E+
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E−

Figure 2.5: Interaction of edge bubble functions across a horizontal/vertical patch of
elements

where the notation is as in Figure 2.5.
Taking the L2-norm of ∂x∂yz∗T on ωK , with notations as in Figure 2.4 and abbreviating

〈·, ·〉H1,1(·) to just 〈·, ·〉, we find the following explicit expression

‖∂x∂yz∗T ‖2L2(ωK) =
∑

K′⊂ωK

α2
K′ |ψK′ |2H1,1(K′) +

∑
E∈EωK

α2
E |ψE |2H1,1(ωE∩ωK)

+ αE1αE5〈ψE1 , ψE5〉+ αE1αE3〈ψE1 , ψE3〉
+ αE2αE6〈ψE2 , ψE6〉+ αE2αE4〈ψE2 , ψE4〉
+ αE3αE1〈ψE3 , ψE1〉+ αE3αE7〈ψE3 , ψE7〉
+ αE4αE8〈ψE4 , ψE8〉+ αE4αE2〈ψE4 , ψE2〉
+ αE16αE9〈ψE16 , ψE9〉+ αE10αE11〈ψE10 , ψE11〉
+ αE12αE13〈ψE12 , ψE13〉+ αE14αE15〈ψE14 , ψE15〉.

(2.40)
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The equations for the coefficients αK and αE constitute the part of the global stiffness
matrix with respect to the functions in ZT , which does not interact with the degrees of
freedom of the numerical solution uT ∈ S1,0

0 (T ). If we denote by NE the number of edges
in E and by NT the number of elements, then the linear system we have to solve in order
to compute our hierarchical error estimator has size NE + NT and is sparse. But as the
inverse of a sparse matrix may fail to be sparse, a direct solution of the linear system may
be as costly as the computation of uT . This and the fact that we are using 1-irregular
partitions is the departure point for the following considerations.

Remark 2.36. In the situation, when p = 2 and we are dealing with 1-irregular meshes
and perform a system reduction similiar to the procedure in section 2.2.3 many edge
bubbles will necessarily be coupled with nodal functions and hence the structure of system
is more complicated. Solving exactly would mean that we have to compute the global
system matrix for p = 2 although we only use the shape functions of order two for error
estimation. This is of course ineffective and undesireable.

Instead of solving the global system directly, we may resort to an approximation by a
single Jacobi iteration step or we may choose ZT ≡ ZKT , i.e. the extension of the bilinear
FE space on an element by its associated element bubble function ψK .

Before we have another look at these questions we shall define the hierarchical error
estimator ηH and show reliability and weak efficiency.

Definition 2.37. We define the local hierarchical error estimator by means of the sum
over the relevant basis functions in ZT that are associated with the element patch ωK , i.e.

η2
H,K := h−2

K ‖∂x∂yz
∗
T ‖2L2(ωK) (2.41)

and moreover set the global error estimator to

ηH :=

(∑
K∈T

η2
H,K

)1/2

. (2.42)

Theorem 2.38. Let u be the exact solution of (2.6) and uT the corresponding solution
of the discrete problem (2.7). Let ZT as above and let the hierarchical a posteriori error
estimator ηH be given as in (2.42). Then there exist constants c∗, c∗ > 0, such that ηH is
reliable

|u− uT |H1,1(D) ≤ c∗
{
η2
H +

∑
K∈T

h2
K‖fT − f‖2L2(K)

}1/2

(2.43)

and there holds the lower bound

hKηH,K ≤ c∗
∑

K′⊂ωK

|u− uT |2H1,1(ωK′ )
+

∑
K′′⊂ωK′

h4
K′′‖f − fT ‖2L2(K′′)

1/2

. (2.44)

Proof. We will firstly show the reliability. To this end we use arguments as for the
efficiency of the residual error estimator (cf. (2.29)). Note that there holds for all ζT ∈ ZT∫

D
∂x∂y(u− uT )∂x∂yζT =

∫
D
fζT −

∫
D
∂x∂yuT ∂x∂yζT =

∫
D
∂x∂yz

∗
T ∂x∂yζT .
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Then as in Lemma 2.28 with r̃ = fT − ∂2
x∂

2
yuT and wK = r̃ψK ∈ ZT we have

c‖r̃‖2L2(K) ≤
∫

(fT − ∂2
x∂

2
yuT )2ψK

=

∫
K
rwK +

∫
K

(fT − f)wK

=

∫
K
∂x∂y(u− uT )∂x∂ywK +

∫
K

(fT − f)wK

=

∫
K
∂x∂yz

∗
T ∂x∂ywK +

∫
K

(fT − f)wK

≤|z∗T |H1,1(K)|wK |H1,1(K) + ‖f − fT ‖L2(K)‖wK‖L2(K)

≤Ch−2
K |z

∗
T |H1,1(K)‖r̃‖L2(K) + ‖f − fT ‖L2(K)‖r̃‖L2(K)

and hence h2
K‖r̃‖K ≤ c|z∗T |H1,1(K) + h2

K‖f − fT ‖L2(K). Similarly, with wE = jψE ∈ ZT
as in Lemma 2.29 we find

c‖j‖2L2(E) ≤
∫
E
jwE =

∫
ωE

∂x∂y(u− uT )∂x∂ywE −
∫
ωE

rwE

=
∑
K⊂ωE

{∫
K
∂x∂y(u− uT )∂x∂ywE −

∫
K

(fT − ∂2
x∂

2
yuT )wE

−
∫
K

(f − fT )wE

}
=
∑
K⊂ωE

{∫
K
∂x∂yz

∗
T ∂x∂ywE −

∫
K

(fT − ∂2
x∂

2
yuT )wE

−
∫
K

(f − fT )wE

}
≤
∑
K⊂ωE

{
‖∂x∂yz∗T ‖L2(K)‖∂x∂ywE‖L2(K) + ‖r̃‖L2(K)‖wE‖L2(K)

+ ‖(f − fT )‖L2(K)‖wE‖L2(K)

}
≤
∑
K⊂ωE

{
C1‖∂x∂yz∗T ‖L2(K)h

−3/2
E ‖j‖L2(E) + C2‖r̃‖L2(K)h

1/2
E ‖j‖L2(E)

+ C3‖(f − fT )‖L2(K)h
1/2
E ‖j‖L2(E)

}
.

Hence, with the bound for h2
K‖r̃‖L2(K) we have

h
3/2
E ‖j‖ ≤ C

∑
K⊂ωE

(
‖∂x∂yz∗T ‖L2(K) + h2

K‖(f − fT )‖L2(K)

)
,

where we have used shape regularity to estimate h2
E ≤ ch2

K . Thus, since

‖r‖L2(K) ≤ ‖r̃‖L2(K) + ‖f − fT ‖L2(K)

we find

h4
K‖r̃‖2L2(K) +

∑
E∈EK

h3
E‖j‖2L2(E) ≤ C

∑
K′⊂ωK

(
‖∂x∂yz∗T ‖2L2(K′) + h4

K′‖f − fT ‖2L2(K′)

)
(2.45)
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which in turn with shape regularity implies that

η2
R,K ≤ Ch−2

K ‖∂x∂yz
∗
T ‖2L2(ωK) +

∑
K′⊂ωK

h2
K′‖f − fT ‖2L2(K′).

Summing over all K ∈ T and taking the square root shows the reliability of ηH , since
ηR is reliable by Theorem 2.30. Let us now show the weak efficiency. First we note that
there holds

‖∂x∂yz∗T ‖2L2(ωK) =
∑

K′⊂ωK

αK′〈z∗T , ψK′〉H1,1(K′) +
∑

E∈EωK

αE〈z∗T , ψE〉H1,1(ωE∩ωK).

Furthermore, by Lemma 2.13 for any K ⊂ ωK and the residual R expressed by (2.16) we
find the bound

〈z∗T , ψK〉H1,1(K) = 〈R, ψK〉

=

∫
K
fψK −

∫
K
∂x∂yuT ∂x∂yψK

≤‖f − ∂2
x∂

2
yuT ‖L2(K)‖ψK‖L2(K)

≤Ch2
K‖r‖L2(K)‖∂x∂yψK‖L2(K)

as well as for any E ∈ EωK there holds

〈z∗T , ψE〉H1,1(ωE∩ωK) = 〈R, ψE〉

=

∫
ωE∩ωK

(f − ∂2
x∂

2
yuT )ψE +

∫
E
J∇∂2

τuT · nKψE

≤Ch2
K‖r‖L2(ωE∩ωK)‖∂x∂yψE‖L2(ωE∩ωK)

+ Ch
3/2
E ‖j‖L2(E)‖∂x∂yψE‖L2(ωE∩ωK).

Combining these estimates yields

‖∂x∂yz∗T ‖2L2(ωK) =
∑

K′⊂ωK

αK′〈z∗T , ψK′〉H1,1(K′) +
∑

E∈EωK

αE〈z∗T , ψE〉H1,1(ωE∩ωK)

≤
∑

K′⊂ωK

αK′
(
Ch2

K′‖r‖L2(K)‖∂x∂yψK′‖L2(K′)

)
+

∑
E∈EωK

αE
(
Ch2

K‖r‖L2(ωE∩ωK)‖∂x∂yψE‖L2(ωE∩ωK)

+Ch
3/2
E ‖j‖L2(E)‖∂x∂yψE‖L2(ωE∩ωK)

)
≤ C

 ∑
K′⊂ωK

h4
K‖r‖2L2(K′) +

∑
E∈EωK

h3
E‖j‖2L2(E)

1/2

×

 ∑
K′⊂ωK

α2
K′‖∂x∂yψK′‖2L2(K′) +

∑
E∈EωK

α2
E‖∂x∂yψE‖2L2(ωE∩ωK)

1/2

≤ C

 ∑
K′⊂ωK

h4
K′‖r‖2L2(K′) +

∑
E∈EωK

h3
E‖j‖2L2(E)

1/2

×

 ∑
K′⊂ωK

αK′〈z∗T , ψK′〉H1,1(K′) +
∑

E∈EωK

αE〈z∗T , ψE〉H1,1(ωE∩ωK)

1/2
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and therefore with h2
K ≤ ch2

E

h−2
K ‖∂x∂yz

∗
T ‖2L2(ωK) ≤ C

 ∑
K′⊂ωK

h2
K′‖r‖2L2(K′) +

∑
E∈EωK

hE‖j‖2L2(E)

 = C
∑

K′⊂ωK

η2
R,K′ .

(2.46)
This implies that

hKηH,K ≤C
∑

K′⊂ωK

hK′ηR,K′

≤C
∑

K′⊂ωK

|u− uT |2H1,1(ωK′ )
+

∑
K′′⊂ωK′

h4
K′′‖f − fT ‖2L2(K′′)

1/2

from which we find the assertion.

Remark 2.39. Similar arguments show that we can also take

η̃2
H,K = h−2

K ‖∂x∂yz
∗
T ‖2K

as a more cost effective a posteriori error estimator. Then we also set

η̃H =

(∑
K∈T

η̃2
H,K

)1/2

.

A closer inspection of (2.40) shows that

|ψE |2H1,1(K) ≤ C|ψK |
2
H1,1(K),∀E ∈ EK

as well as
|〈ψE , ψE′〉H1,1(K)| ≤ C|ψK |2H1,1(K),∀E ∈ EK

and so there exists a finite constant C and a constant c̃ such that

α2
K‖∂x∂yψK‖2L2(K) ≤ ‖∂x∂yzT ‖

2
L2(K) ≤ C(α2

K + c̃)‖∂x∂yψK‖2L2(K), (2.47)

where

c̃ =
∑
E∈EK

α2
E + αE1αE3 + αE2αE4

Moreover, this implies that there exists a uniformly bounded constant C, such that

‖∂x∂yzT ‖2L2(ωK) ≤ Cα
2
K‖∂x∂yψK‖2L2(K),

Of course, the coefficients αE , E ∈ E depend on the right-hand side f , but since the
functions in ZT represent a hierarchical extension of S1,0(T ) we expect the coefficients
αE to become small as h → 0. This is a tempting device for error estimation, since
we only have to compute the coefficients with respect to the element bubbles which is
equivalent to solving a diagonal system of equations.

This suggests that using

η̂H,K = α2
Kh
−2
K ‖∂x∂yψK‖

2
L2(K) (2.48)

as an error estimator is a cost-effective solution.
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Remark 2.40. By the preceding heuristics we define

η̂2
H,K := α2

Kh
−2
K ‖∂x∂yψK‖

2
K

as a cost-effective alternative to ηH and η̃H and denote the global error estimator by

η̂H =

(∑
K∈T

η̂2
H,K

)1/2

.

2.2.6 An a posteriori estimator based on averaging

In the following we want to construct a variant of an a posteriori estimator based on a
popular averaging technique, which was first introduced by Zhu and Zienkiewicz in [61].
We follow the presentation of [54] and the ideas of [16, 17] to develop an asymptotically
exact a posteriori error estimator for our situation of the second moment problem.

To this end, suppose u solves the variational formulation∫
D
∂x∂yu∂x∂yv =

∫
D
fv, ∀v ∈ H1,1

0 (D)

and uT is the solution of the corresponding discrete formulation with p = 1. We are
interested in finding a higher order approximation q with respect to ∂x∂yuT of ∂x∂yu
which is easily computable and for which we can expect that

‖∂x∂yu− ∂x∂yuT ‖L2(D) ≤ ‖q − ∂x∂yuT ‖L2(D).

This motivates the following general definition.

Definition 2.41. The elementwise error indicator is given by

ηZ,K := min
q∈S1,0(T )

‖∂x∂yuT − q‖L2(K)

and the global error estimator as

ηZ =

(∑
K∈T

η2
Z,K

)1/2

.

Suppose that ηZ is reliable and that we have at our disposal an easily computable
function A(∂x∂yuT ) ∈ S1,0(T ) with an operator A : P1(T ) → S1,0(T ) which yields an
approximation to ∂x∂yu. Then the previous Definition shows reliability immediately by
setting q = A(∂x∂yuT ), since

ηZ,K ≤ ηA,K := ‖∂x∂yuT −A(∂x∂yuT )‖L2(D).

If A(∂x∂yuT ) is indeed a higher order approximation, one might expect that A(∂x∂yuT )
fulfills a saturation property with respect to S1,0(T ), i.e.

‖∂x∂yu−A(∂x∂yuT )‖L2(D) ≤ β‖∂x∂yu− ∂x∂yuT ‖L2(D) (2.49)

for some β ∈ [0, 1). Then, on the one hand by the triangle inequality we have that

‖A(∂x∂yuT )− ∂x∂yuT ‖L2(D) = ‖A(∂x∂yuT )− ∂x∂yu+ ∂x∂yu− ∂x∂yuT ‖L2(D)

≤ ‖A(∂x∂yuT )− ∂x∂yu‖L2(D) + ‖∂x∂y(u− uT )‖L2(D)

≤ (β + 1)‖∂x∂y(u− uT )‖L2(D)
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as well as on the other hand again by triangle inequality

‖∂x∂yu− ∂x∂yuT ‖L2(D) = ‖∂x∂yu−A(∂x∂yuT ) +A(∂x∂yuT )− ∂x∂yuT ‖L2(D)

≤ ‖∂x∂yu−A(∂x∂yuT )‖L2(D) + ‖A(∂x∂yuT )− ∂x∂yuT ‖L2(D)

≤ β‖∂x∂y(u− uT )‖L2(D) + ‖A(∂x∂yuT )− ∂x∂yuT )‖L2(D).

Therefore, in total we have

1

1 + β
‖A(∂x∂yuT )− ∂x∂yuT ‖L2(D) ≤‖∂x∂y(u− uT )‖L2(D)

≤ 1

1− β
‖A(∂x∂yuT )− ∂x∂yuT ‖L2(D).

Hence, the quantity ‖A(∂x∂yuT ) − ∂x∂yuT ‖L2(D) can be used as an a posteriori error
estimator. For p = 1 and T consisting of squares or rectangles, we observe that ∂x∂yuT
is piecewise constant on T . Our hope is now that L2-projecting ∂x∂yuT into the space of
piecewise continuous linear functions on T , i.e. defining A(∂x∂yuT ) via∫

D
A(∂x∂yuT )v =

∫
D
∂x∂yuT v, ∀v ∈ S1,0(T ),

satisfies (2.49) for some 0 ≤ β < 1. However, computing this projection is as costly as
computing the discrete solution itself and is thus not a viable option. To remedy the
situation we resort to an approximation of the L2(D)-inner product.

Denote by WT the space of all piecewise linear functions on T , i.e. WT = P1(T ) =
{v : v|K ∈ P1(K),K ∈ T }, and set VT = WT ∩ C(D). Note that ∂x∂yP1(T ) ⊂ WT and
VT = S1,0(T ). As the aforementioned approximation of the inner product, we define a
mesh-dependent inner product (·, ·)T on WT via

(v, w)T =
∑
K∈T

|K|
4

 ∑
z∈NK

v|K(z)w|K(z)

 ,

where |K| denotes the two dimensional Lebesgue measure of K. This inner product is
given by the tensorized version of the trapezoidal rule on an interval applied to each
element K ∈ T . Note, that for either v or w being a piecewise constant function we have

(v, w)T =

∫
D
vw dx.

With this in place, we let A(∂x∂yuT ) be the (·, ·)T -projection of ∂x∂yuT onto VT , i.e.

(A(∂x∂yuT ), vT )T = (∂x∂yuT , vT )T , ∀vT ∈ VT (2.50)

and define the elementwise error indicator and the global error estimator as follows.

Definition 2.42. We define the elementwise error indicator as

ηA,K := ‖∂x∂yuT −A(∂x∂yuT )‖L2(K)

and the global error estimator as

ηA =

(∑
K∈T

η2
A,K

)1/2

.
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Note that for all v, w ∈ VT there holds

(v, w)T =
1

4

∑
z∈N
|ωz|v(z)w(z) (2.51)

and in lieu of (2.50), by inserting the nodal function for z in place of vT we readily find
for all z ∈ N the representation

A(∂x∂yuT )(z) =
∑
K⊂ωz

|K|
|ωz|

∂x∂yuT |K , (2.52)

which is the coefficient of the nodal basis function λz that is associated with the node z.
For any q ∈ S1,0(T ) that constitutes an approximation of ∂x∂yuT the triangle in-

equality readily shows efficiency of ηZ by

ηZ ≤ ‖∂x∂yu− ∂x∂yuT ‖L2(D) + ‖∂x∂yu− q‖L2(D) (2.53)

and since q was arbitrary and S1,0(T ) is a finite dimensional subspace of H1,1(D) there
even holds

ηZ ≤ ‖∂x∂yu− ∂x∂yuT ‖L2(D) + min
q∈S1,0(T )

‖∂x∂yu− q‖L2(D). (2.54)

If one can now prove that indeed ‖∂x∂yu−q‖L2(D) is of higher order, the efficiency follows
immediately. First we concentrate on proving the reliability. As we are emplyoing an
averaging technique to ∂x∂yuT and compute the upper bound ‖∂x∂yuT −A(∂x∂yuT )‖L2(D)

of ηZ we want to show that there holds

‖∂x∂yu− ∂x∂yuT ‖L2(D) ≤ CηZ + H ≤ C‖∂x∂yuT −A(∂x∂yuT )‖L2(D) + H, (2.55)

where H denotes a generic higher order error term.

Lemma 2.43. Let u, q ∈ H2,2(D) ∩H1,1
0 (D) =: V (D) and ∂x∂yuT ∈ P0(T ) the solution

of the discrete problem (2.7) with∫
D
∂x∂y(u− uT )∂x∂ywT dx = 0, ∀wT ∈ S1,0(T ).

Furthermore, denote by fT an elementwise approximation of f . Then there holds

|u− uT |H1,1(D) ≤C inf
q∈V (D)

‖∂x∂y(uT − q)‖L2(D) +

(∑
K∈T

h2
K‖f − ∂2

x∂
2
yq‖2L2(K)

)1/2


+ C

(∑
K∈T

h2
K‖f − fT ‖2L2(K)

)1/2

.

(2.56)

Proof. Let 0 6= w ∈ H1,1
0 (D) arbitrary. By Galerkin orthogonality, an application of inte-

gration by parts, the Cauchy-Schwarz inequality and approximation results from section
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2.2.2 we find the assertion

∫
D
∂x∂y(u− uT )∂x∂yw dx =

∫
D
∂x∂y(u− uT )∂x∂y(w −Π1,1w) dx

=

∫
D
∂x∂y(u− q)∂x∂y(w −Π1,1w) dx+

∫
D
∂x∂y(q − uT )∂x∂y(w −Π1,1w) dx

=
∑
K∈T

∫
K

(∂2
x∂

2
yu− fT − f + fT + f − ∂2

x∂
2
yq)(w −Π1,1w) dx

+

∫
D
∂x∂y(q − uT )∂x∂y(w −Π1,1w) dx

≤2
∑
K∈T

‖f − fT ‖L2(K)‖w −Π1,1
pK
w‖L2(K) +

∑
K∈T

‖f − ∂2
x∂

2
yq‖L2(K)‖w −Π1,1

pK
w‖L2(K)

+ ‖∂x∂y(uT − q)‖L2(D)‖∂x∂y(w −Π1,1w)‖L2(D)

≤C‖∂x∂y(uT − q)‖L2(D)‖∂x∂yw‖L2(D)

+

C
(∑
K∈T

h2
K‖f − fT ‖2L2(K)

)1/2

+ C

(∑
K∈T

h2
K‖f − ∂2

x∂
2
yq‖2L2(K)

)1/2


×

(∑
K∈T

(
‖∂xw‖2L2(K) + ‖∂yw‖2L2(K) + |w|2H1,1(K)

))1/2

︸ ︷︷ ︸
=
(
‖∂xw‖2

L2(D)
+‖∂xw‖2

L2(D)
+‖∂x∂yw‖2

L2(D)

)1/2
≤c‖∂x∂yw‖L2(D)

≤C inf
q∈V (D)

‖∂x∂y(uT − q)‖L2(D) +

(∑
K∈T

h2
K‖f − ∂2

x∂
2
yq‖2L2(K)

)1/2
 ‖∂x∂yw‖L2(D)

+ C

(∑
K∈T

h2
K‖f − fT ‖2L2(D)

)1/2

‖∂x∂yw‖L2(D).

Theorem 2.44. Let A(∂x∂yuT ) ∈ S1,0(T ) be the average of ∂x∂yuT defined by (2.50)–
(2.52). Furthermore, let u denote the solution of (2.6) and uT the solution of (2.7). Then
the error estimator ηA defined above is reliable, i.e. there holds

|u− uT |H1,1(D) ≤CηA + C

(∑
K∈T

h2
K‖f − ∂x∂y(A(∂x∂yuT ))‖2L2(K)

)1/2

+ C

(∑
K∈T

h2
K‖f − fT ‖2L2(K)

)1/2

.

(2.57)

Proof. Considering that q is a polynomial of higher order than uT which fulfills the
Dirichlet boundary conditions and whose first mixed derivative is globally continuous by
setting ∂x∂yq := A(∂x∂yuT ), we note that q ∈ H1,1

0 (D) ∩ H2,2(D) and so we infer by
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Lemma 2.43 that there holds

|u− uT |H1,1(D) ≤C‖∂x∂yuT −A(∂x∂yuT )‖L2(D)

+ C

(∑
K∈T

h2
K‖f − ∂x∂y(A(∂x∂yuT ))‖2L2(K)

)1/2

+ C

(∑
K∈T

h2
K‖f − fT ‖2L2(K)

)1/2

=CηA + C

(∑
K∈T

h2
K‖f − ∂x∂y(A(∂x∂yuT ))‖2L2(K)

)1/2

+ C

(∑
K∈T

h2
K‖f − fT ‖2L2(K)

)1/2

which yields the claim.

Remark 2.45. Note that the polynomial q is a purely theoretical tool and does not have
to be determined explicitly.

Remark 2.46. Note that the term

h2
K‖f − ∂x∂y(A(∂x∂yuT ))‖2L2(K)

is akin to the data oscillation terms h2
K‖f − fT ‖2L2(K) as A(∂x∂yuT ) is an approximation

of ∂x∂yu, which means that in some sense ∂x∂y(A(∂x∂yuT )) is an approximation of f .
Of course, the magnitude of this error is closely related to the averaging procedure used
by the operator A. Averaging operators of this type and of higher order are considered in
[28].

Let us now turn our focus to the efficiency of ηA, which we achieve by proving equiv-
alence of ηA with ηZ .

Lemma 2.47. There exists a uniform constant b > 0 such that

ηZ ≤ ηA ≤
(

1 +
4

3
b

)
ηZ .

Proof. Since A(∂x∂yuT ) ∈ S1,0(T ), it clearly holds that

ηZ = min
q∈S1,0(T )

‖∂x∂yuT − q‖L2(D) ≤ ‖∂x∂yuT −A(∂x∂yuT )‖L2(D) = ηA.

In order to prove the upper bound we have a look at the L2-stability of the averaging
operator. First we note that by Cauchy-Schwarz for sums there holds

‖A(∂x∂yuT )‖2L2(D) =

∫
D

∣∣∣∣∣∑
z∈N
A(∂x∂yuT )(z)λz

∣∣∣∣∣
2

dx ≤ 4

∫
D

∑
z∈N
|A(∂x∂yuT )(z)|2|λz|2 dx.

If we now denote byM the element mass-matrix on K and by M̃ the element mass-matrix
on K scaled by |K|−1, i.e.

M̃ = (m̃ij)
n
i,j=1 with m̃ij = |K|−1

∫
K
λziλzj dx,
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where n = |NK | is the number of nodes of an element K and the indices realize a certain
fixed enumeration of the nodes of K. Noting that for any p =

∑
z∈NK pzλz ∈ P1(K),

where pz = p|K(z), there holds

‖p‖2L2(K) =

∫
K

 ∑
z∈NK

pzλz

2

dx =

n∑
i,j=1

pzi ·
∫
K
λziλzj dx · pzj = p> ·Mp,

where by p we denote the vector of coefficients of p on K, i.e. p = (pz1 , pz2 , ..., pzn)>.
Hence, by a Rayleigh quotient argument we find by letting λ̃1 to be the smallest positive
eigenvalue of M̃ that

λ̃1|pz|2 ≤ λ̃1

∑
z∈NK

|pz|2 = λ̃1p
> · p ≤ p> · M̃p = |K|−1‖p‖2L2(K).

In the two dimensional situation for parallelograms (cf. also [14]) we have that λ̃1 = 1
36

and hence, for any v ∈ P1(K) there holds

|v|K(z)|2 ≤ 36

|K|
‖v‖2L2(K) (2.58)

and furthermore we have the existance of a uniform constant b > 0, such that

|v|K(z)| ≤ b

|ωz|1/2
‖v‖L2(ωz).

Thus, we find

‖A(∂x∂yuT )‖2L2(D) ≤4

∫
D

∑
z∈N
|A(∂x∂yuT )(z)|2|λz|2 dx

≤4
∑
z∈N

b2‖∂x∂yuT ‖2L2(ωz)

|ωz|

∫
ωz

|λz|2 dx

=4
∑
z∈N

b2‖∂x∂yuT ‖2L2(ωz)

|ωz|
|ωz|

9

=
16b2

9
‖∂x∂yuT ‖2L2(D),

(2.59)

since ‖λz‖2L2(ωz) = |ωz|/9 and every element K appears four times.
Let ∂x∂yuT ∈ P0(T ). Then there is a unique decomposition ∂x∂yuT = uc +ud with a

continuous component uc ∈ S1,0(T ) and a component ud of the orthogonal complement of
S1,0(T ) in L2(D). Note that for any p ∈ S1,0(T ) that A(p)(z) = p(z) and thus averaging
is the identity on S1,0(T ). Hence,

‖∂x∂yuT −A(∂x∂yuT )‖L2(D) =‖(uc + ud)−A(uc + ud)‖L2(D)

=‖ud −A(ud)‖L2(D)

≤‖ud‖L2(D) + ‖A(ud)‖L2(D)

=

(
1 +

4

3
b

)
‖ud‖L2(D)

=

(
1 +

4

3
b

)
min

q∈S1,0(T )
‖∂x∂yuT − q‖L2(D)

=

(
1 +

4

3
b

)
ηZ ,
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since uc ∈ S1,0(T ).

Remark 2.48 (Concerning b). For all v ∈ P1(Tz), where Tz := {K : K ⊂ ωz}, by (2.58)
there holds

|ωz|1/2|A(∂x∂yuT )(z)| ≤6
∑
K∈Tz

|ωz|1/2

|K|1/2
|K|
|ωz|
‖∂x∂yuT ‖L2(K)

≤6

(∑
K∈Tz

|ωz|
|K|
|K|2

|ωz|2

)1/2

‖∂x∂yuT ‖L2(ωz)

and thusly the constant b > 0 in (2.59) is

b = max
z∈N

6

(∑
K∈Tz

|K|
|ωz|

)1/2

= 6.

Theorem 2.49. Let A(∂x∂yuT ) ∈ S1,0(T ) be the average of ∂x∂yuT defined by (2.50)–
(2.52), where uT is the solution of (2.7). Then the error estimator from Definition 2.42,
i.e.

ηA = ‖∂x∂yuT −A(∂x∂yuT )‖L2(K),

is asymptotically exact.

Proof. A combination of Lemma 2.43 and Lemma 2.47 readily implies that ηA is asymp-
totically exact.

2.3 2D model problem

We now turn our attention to a two dimensional stochastic elliptic model problem and
develop adaptive Finite Element methods for the second moment in the four dimensional
setting.

2.3.1 Problem formulation

Letting again a ≡ 1, we consider now the 2D stochastic elliptic model problem, cf. (2.2),
in D = [−1, 1]2 of finding u ∈ H1

0 (D), such that

−∆xu(x, ω) = f(x, ω) in H−1(D),

u = 0 on ∂D,
(2.60)

for almost all ω ∈ Ω and where ∆x denotes the Laplace operator ∆x = ∂2
x1 + ∂2

x2 .
With V := H1

0 (D), V ′ = H−1(D), as well as A := −∆x we find that the corresponding
variational problem (cf.(1.4)) reads:

Problem 2.50. Given f(x, ω) ∈ H−1(D), find u(x, ω) ∈ H1
0 (D), such that∫

D
∇xu(x, ω)∇xv(x) dx =

∫
D
f(x, ω)v(x) dx, ∀v ∈ H1

0 (D), for P-a.a. ω ∈ Ω.

The corresponding deterministic k-th moment problem, cf. (2.3), for the two dimen-
sional model problem then takes the following form:
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Problem 2.51. GivenMkf ∈ H−1,...,−1(Dk), findMku ∈ H1,...,1
0 (Dk), such that∫

Dk
∇(k)(Mku)∇(k)v dx =

∫
Dk
Mkfv dx, ∀v ∈ H1,...,1

0 (Dk), (2.61)

where x = (x1, . . . , xk) and

∇(k) := ∇x1 ⊗∇x2 ⊗ · · · ⊗ ∇xk

and by xi denote the two dimensional coordinates of the i-th copy of D.

As before, for k = 2 we set D = D×D and are interested in solving the deterministic
second moment problem corresponding to (2.3):

Given Cf ∈ H−1,−1(D), find Cu ∈ H1,1
0 (D), such that∫

D
(∇x ⊗∇y)Cu(∇x ⊗∇y)v dx dy =

∫
D
Cfv dx dy, ∀v ∈ H1,1

0 (D). (2.62)

The discrete version of (2.62) takes the form:

Given Cf ∈ H−1,−1(D), find uT ∈ Sp,00 (T ), such that∫
D

(∇x ⊗∇y)uT (∇x ⊗∇y)vT dx dy =

∫
D
CfvT dx dy, ∀vT ∈ Sp,00 (T ). (2.63)

We shall again write uT instead of Cu,T to alleviate the notation. Note for p ∈ N,
since Sp,00 (T ) ⊂ H1,1

0 (D), that the approximation is conforming and we have Galerkin
orthogonality

B(u− uT , vT ) = 0, ∀vT ∈ Sp,00 (T )

with the associated bilinear form

B(u, v) =

∫
D

(∇x ⊗∇y)u(∇x ⊗∇y)v dx dy.

We also note that the energy norm of this problem is as for the one dimensional model
problem the | · |H1,1(D)-seminorm. The latter is a norm on H1,1

0 (D) by the crossnorm
property and corresponding two dimensional Friedrichs’ inequalities.

2.3.2 Approximation and auxiliary results

In the four dimensional setting, since for D ⊂ R2 there holds

H1(D) 6⊂ C(D),

we have to use another operator to analyze our adaptive Finite Element procedure. We
make use of the following tensorized quasi-interpolation operator IT : L1(D) → S1,0

0 (T )
for any v ∈ L1(D) defined by

IT := Ix ⊗ Iy, (2.64)

where the two dimensional quasi-interpolation operators Ix and Iy are given by the ex-
pression

Iνv :=
∑
zν∈Nν

vωzνλzν , (2.65)

54



2.3. 2D model problem

where ν ∈ {x, y}, λzν denotes the nodal shape function with respect to the node zν , and
ωzν is the node patch around zν in the mesh restricted to the ν-coordinates. Furthermore,
Nν denotes the set of nodes in the ν-coordinates and Nν,∂D denotes the nodes on the
boundary of the copy of D in the ν-coordinates.

Here we choose vωzν in the following way (cf. also [54, Section 3.5] or [16])

vωzν =


∫
ωzν

λzνv dν∫
ωzν

λzν dν
, zν ∈ Nν ,

0, zν ∈ Nν,∂D.

Let us check that IT as such is well defined. Let v ∈ L1(D), then

IT v =(Ix ⊗ Iy)v = (Ix ⊗ id)((id⊗ Iy)v)

=(Ix ⊗ id)

 ∑
zy∈Ny

(∫
ωzy

λzyv(x, y) dy∫
ωzy

λzy dy

)
· λzy


=
∑
zy∈Ny


∫
ωzy

λzy

(∑
zx∈Nx

[∫
ωzx

λzxv(x,y) dx∫
ωzx

λzx dx

]
· λzx

)
dy∫

ωzy
λzy dy

 · λzy
=
∑
zx∈Nx

∑
zy∈Ny

(∫
ωzx

∫
ωzy

(λzx ⊗ λzy)v(x, y) dy dx∫
ωzx

∫
ωzy

λzx ⊗ λzy dy dx

)
· λzx ⊗ λzy

=
∑
z∈N

vωzλz,

where now z = (zx, zy), ωz = ωzx × ωzy and λz = λzx ⊗ λzy . The previous considerations
show that IT is well defined and that the neighborhood of a node z is the product of the
respective neighborhoods of nodes of the tensor factors.

The next lemma gives local estimates for the two dimensional quasi-interpolation
operators Ix and Iy for which a proof can be found in [54, Section 3.5].

Lemma 2.52 (Two dimensional quasi-interpolation). Let p ∈ [1,∞]. Denote by IT the
quasi-interpolation operator according to (2.65) on the two dimensional domain D. For
any element K ∈ T , edge E ∈ EK , and v ∈W 1,p

0 (D) there hold the estimates

‖v − IT v‖Lp(K) ≤C‖v‖Lp(ω̃K),

‖v − IT v‖Lp(K) ≤ChK‖∇v‖Lp(ω̃K),

‖∇(v − IT v)‖Lp(K) ≤C‖∇v‖Lp(ω̃K),

‖v − IT v‖Lp(E) ≤Ch
1−1/p
E ‖∇v‖Lp(ω̃E).

Equipped with these estimates we derive corresponding estimates for the tensorized
quasi-interpolation operator IT .

Lemma 2.53 (Quasi-Interpolation Error Estimates). Let K an element in T and v ∈
H1,1

0 (K). Then there holds

‖v − IT v‖L2(K) ≤ChK
(
‖(∇x ⊗ id)v‖L2(ω̃K) + ‖(id⊗∇y)v‖L2(ω̃K) + |v|H1,1(ω̃K)

)
,

‖v − IT v‖L2(Q) ≤Ch
1/2
Q

(
‖(∇x ⊗ id)v‖L2(ω̃K) + ‖(id⊗∇y)v‖L2(ω̃K) + |v|H1,1(ω̃K)

)
,

‖v − IT v‖L2(F ) ≤Ch
1/2
F

(
‖(∇x ⊗ id)v‖L2(ω̃K) + ‖(id⊗∇y)v‖L2(ω̃K) + |v|H1,1(ω̃K)

)
.
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Proof. First we note that K = Kx × Ky. By letting w := v − (id ⊗ Iy)v and w′ :=
v − (Ix ⊗ id)v we find the expressions

v − IT v =v − (Ix ⊗ id)v + (Ix ⊗ id)(v − (id⊗ Iy)v)

=v − (Ix ⊗ id)v − w + w − (Ix ⊗ id)w

=v − (id⊗ Iy)v − w′ + w′ − (id⊗ Iy)w′.

Thus, we have

‖v − IT v‖L2(K) ≤‖v − (Ix ⊗ id)v‖L2(K) + ‖v − (id⊗ Iy)v‖L2(K) + ‖w − (Ix ⊗ id)w‖L2(K)

≤ChK‖(∇x ⊗ id)v‖L2(ω̃Kx×Ky) + ChK‖(id⊗∇y)v‖L2(Kx×ω̃Ky )

+ ChK‖(∇x ⊗ id)v − (id⊗ Iy)((∇x ⊗ id)v)‖L2(ω̃Kx×Ky)

≤ChK‖(∇x ⊗ id)v‖L2(ω̃K) + ChK‖(id⊗∇y)v‖L2(ω̃K)

+ Ch2
K‖(∇x ⊗∇y)v‖L2(ω̃K),

where we have invoked the triangle inequality twice and made use of the properties of
the two dimensional operators Ix and Iy from Lemma 2.52. Without loss of generality
let Q = Kx × Ey, where Ey is supposed to be an edge of Ky (cf. 2.2), w as above, and
by applying the triangle inequality and Lemma 2.52, we arrive at

‖v − IT v‖L2(Q) ≤‖v − (Ix ⊗ id)v‖L2(Q) + ‖v − (id⊗ Iy)v‖L2(Q) + ‖w − (Ix ⊗ id)w‖L2(Q)

≤ChKx‖(∇x ⊗ id)v‖L2(ω̃Kx×Ey) + Ch
1/2
Ey
‖(id⊗∇y)v‖L2(Kx×ω̃Ey )

+ ChKx‖(∇x ⊗ id)w‖L2(ω̃Kx×Ey).

Applying the two dimensional trace inequality

‖u‖L2(E) ≤ C
(
h
−1/2
K ‖u‖L2(K) + h

1/2
K ‖∇u‖L2(K)

)
in the y-direction, which is valid for any u ∈W 1,2(K), we find by invoking shape regularity
hKy ≤ chQ, hKx ≤ chQ and hEy ≤ chQ

‖v − IT v‖L2(Q) ≤ChKx
{
ch
−1/2
Ky
‖(∇x ⊗ id)v‖L2(ω̃Kx×Ky) + h

1/2
Ky
‖(∇x ⊗∇y)v‖L2(ω̃Kx×Ky)

}
+ Ch

1/2
Q ‖(id⊗∇y)v‖L2(Kx×ω̃Ey ) + ChKx‖(∇x ⊗ id)w‖L2(ω̃Kx×Ey)

≤Ch1/2
Q

{
‖(∇x ⊗ id)v‖L2(ω̃K) + ‖(id⊗∇y)v‖L2(ω̃K)

}
+ Ch

3/2
Q ‖(∇x ⊗∇y)v‖L2(ω̃K),

where we have used Lemma 2.52 again in the last step. Finally, we note for F = Ex×Ey
by the same arguments as above that

‖v − IT v‖L2(F ) ≤Ch
1/2
Ex
‖(∇x ⊗ id)v‖L2(ω̃Ex×Ey) + Ch

1/2
Ey
‖(id⊗∇y)v‖L2(Ex×ω̃Ey )

+ Ch
1/2
Ex
h

1/2
Ey
‖(∇x ⊗∇y)v‖L2(ω̃K)

≤Ch1/2
F

{
‖(∇x ⊗ id)v‖L2(ω̃K) + ‖(∇x ⊗∇y)v‖L2(ω̃K)

}
+ Ch

1/2
F

{
‖(id⊗∇y)v‖L2(ω̃K) + ‖(∇x ⊗∇y)v‖L2(ω̃K)

}
+ ChF ‖(∇x ⊗∇y)v‖L2(ω̃K),

where we have used again shape regularity and the trace inequality ‖v‖L2(∂K) ≤ C‖v‖H1(K),
where C only depends on the shape of the element but not on its size, in the x- and y-
direction, respectively. This concludes the proof.
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Remark 2.54. As the operators Iν , ν ∈ {x, y} do only allow to bound the H1-seminorm
by a constant times the H2-seminorm without a factor of hK , and thus we cannot prove
convergence of the FEM with the operator IT directly. We therefore resort to the operator

IT := Iav
h0 ⊗ Iav

h0

with Iav
h0 from [28, Chapter 6]. This operator respects the homogeneous Dirichlet boundary

conditions, satisfies bounds in the form of those of Lemma 2.52 and additionally admits
the following bound for v ∈ H2(ω̃K) and polynomial degree p = 1 (cf. [28, Thm. 6.4])

|v − Iav
h0v|H1(K) ≤ chK |v|H2(ω̃K)

as well as
|v − Iav

h0v|H1(K) ≤ c|v|H1(ω̃K).

In short words, this operator is constructed as the concatenation of a quasi-interpolation
operator on L1(K) and an averaging operator, for more details see [28].

Lemma 2.55. Let u ∈ H3(D) ∩H1,1
0 (D)

‖(∇x ⊗∇y)(u− IT u)‖L2(D) ≤ ch|u|H3(D).

Proof. Abusing the notation let us denote for brevity

IT := Iav
x ⊗ Iav

y := Iav
h0 ⊗ Iav

h0.

Then with w := u− (id⊗ Iav
y )u we see that there holds

‖(∇x ⊗∇y)(u− IT u)‖L2(K)

=‖(∇x ⊗∇y)(u− (Iav
x ⊗ id)u− w + w − (Iav

x ⊗ id)w)‖L2(K)

≤‖(∇x ⊗∇y)(u− (Iav
x ⊗ id)u)‖L2(K) + ‖(∇x ⊗∇y)(u− (id⊗ Iav

y )u)‖L2(K)

+ ‖(∇x ⊗∇y)(w − (Iav
x ⊗ id)w)‖L2(K)

=‖(∇x ⊗ id) ((id⊗∇y)u− (Iav
x ⊗ id)(id⊗∇y)u) ‖L2(K)

+ ‖(id⊗∇y)((∇x ⊗ id)u− (id⊗ Iav
y )(∇x ⊗ id)u)‖L2(K)

+ ‖(∇x ⊗ id)((id⊗∇y)w − (Iav
x ⊗ id)(id⊗∇y)w)‖L2(K).

By means of Remark 2.54 we are allowed to bound the H1-seminorms of the last equality,
where we set for brevity ux := (∇x ⊗ id)u and analogously uy := (id⊗∇y)u,

‖(∇x ⊗ id) (uy − (Iav
x ⊗ id)uy) ‖L2(K) ≤ chKx |uy|H2,0(ω̃Kx×Ky)

and similarly for the remaining terms

‖(id⊗∇y)
(
ux − (id⊗ Iav

y )ux
)
‖L2(K) ≤chKy |ux|H0,2(Kx×ω̃Ky ),

‖(∇x ⊗ id) (wy − (Iav
x ⊗ id)wy) ‖L2(K) ≤chKy |wy|H2,0(ω̃Kx×Ky).

Using the second inequality of Remark 2.54 for the last term gives

|wy|H2,0(ω̃Kx×Ky) ≤ C‖u‖H2,1(ω̃Kx×ω̃Ky )
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whence we have by shape regularity

‖(∇x ⊗∇y)(u− IT u)‖L2(K) ≤chKx |u|H2,1(ω̃Kx×Ky) + chKy |u|H1,2(Kx×ω̃Ky )

+ chKy |u|H2,1(ω̃Kx×ω̃Ky )

≤chK |u|H3(ω̃K).

Thus, we find that

‖(∇x ⊗∇y)(u− IT u)‖2L2(D) =
∑
K∈T

‖(∇x ⊗∇y)(u− IT u)‖2L2(K)

≤
∑
K∈T

ch2
K |u|2H3(ω̃K)

≤ch2
∑
K∈T

|u|2H3(ω̃K) = ch2|u|2H3(D)

which with h := supK∈T hK upon taking square roots yields the claim.

Combining the previous remark and lemma we find the following

Lemma 2.56. Let u ∈ H1,1
0 (D)∩H3(D) be the unique solution of the deterministic second

moment problem (2.62) and denote by uT the corresponding discrete solution of (2.63).
Then there holds

|u− uT |H1,1(D) ≤ ch|u|H3(D),

where h := supK∈T hK .

Proof. As the bilinear form of the deterministic second moment problem is symmetric,
continuous and coercive, we have by the Lax-Milgram lemma the unique solvability of
the problem and Céa’s lemma guarantees that our solution fulfills the best approximation
property

|u− uT |H1,1(D) ≤ c inf
vT ∈S1,00 (T )

|u− vT |H1,1(D).

Making the particular choice vT := IT u and using Lemma 2.55 shows that

|u− uT |H1,1(D) ≤c inf
vT ∈S1,00 (T )

|u− vT |H1,1(D)

≤c|u− IT u|H1,1(D)

≤ch|u|H3(D)

which is the claim.

For the analysis of the a posteriori error estimators to come we need, as in the two
dimensional situation, certain norm equivalences over spaces of polynomials on the geo-
metric entities present in the mesh. To this end the next lemma is necessary.

Lemma 2.57 (Polynomial inverse inequalities). Let u ∈ Pp(F ), w ∈ Pp(Q) and v ∈
Pp(K) be polynomials of order p, where F,Q are a boundary face and cube, respectively,
of the element K. Denote by ψF , ψQ, and ψK the face-, cube- or element bubble functions,
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respectively. Then there holds

‖uψF ‖2L2(Q) ≤ChF ‖u‖
2
L2(F ),

‖uψF ‖2L2(K) ≤Ch
2
F ‖u‖2L2(F ),

‖wψQ‖2L2(K) ≤ChQ‖w‖
2
L2(Q),

‖vψK‖2L2(K) ≤C‖v‖
2
L2(K),

‖(∇x ⊗∇y)(uψF )‖2L2(K) ≤Ch
−2
F ‖u‖

2
L2(F ),

‖(∇x ⊗∇y)(wψQ)‖2L2(K) ≤Ch
−3
Q ‖w‖

2
L2(Q),

‖(∇x ⊗∇y)(vψK)‖2L2(K) ≤Ch
−4
K ‖v‖

2
L2(K).

Proof. Let us denote x̂ = (x̂1, x̂2)>, ŷ = (ŷ1, ŷ2)> and ξ̂ = (x̂, ŷ)> as well as ξ = (x, y)> =
(x1, x2, y1, y2)>. Without loss of generality let F be the image under FK of the face
F̂ = [−1, 1]× [−1, 1]× {−1} × {−1}. The result follows for the other faces F of K by a
rotation of coordinates. Since for such F̂ we have ψF̂ = (1−ŷ1)

2
(1−ŷ2)

2 (1− x̂2
1)(1− x̂2

2) and
noting that u ∈ Pk(F ), we have for any Q ⊂ ∂K with F ⊂ Q that

‖uψF ‖2L2(Q) =
2

3

hxhyhz
8

∫
F̂

(ûψF̂ )2 dx̂ ≤ ChF ‖u‖2L2(F ).

as well as any F ⊂ Q ⊂ ∂K that

‖uψF ‖2L2(K) =
4

9

hxhyhzhw
16

∫
F̂

(ûψF̂ )2 dx̂ ≤ Ch2
F ‖u‖2L2(F ).

Similarly, we find

‖wψQ‖2L2(K) =
2

3

hxhyhzhw
16

∫
Q̂

(ŵψQ̂)2 dx̂ ≤ ChQ‖w‖2L2(Q)

and since ‖ψ2
K̂
‖L∞(K̂) = 1,

‖vψK‖2L2(K) ≤ ‖v‖
2
L2(K).

For the remaining estimates we note that for any u ∈ H1,1(K) there holds

‖(∇x ⊗∇y)u‖2L2(K) =
hxhyhzhw

16

∫
K̂

((∇x ⊗∇y)u(FK(ξ̂))2 dξ̂

=

2∑
i,j=1

hxhyhzhw
16

∫
K̂

(
2

hxi

2

hyj
∂x̂i∂ŷj û

)2

dξ̂.

Then abbreviating ci,jK =
hxhyhzhw

16
4
h2xi

4
h2yj

and considering v ∈ Pp(K) we find

‖(∇x ⊗∇y)(vψK)‖2L2(K) =
2∑

i,j=1

ci,jK

∫
K̂

(
∂x̂i∂ŷj (v̂ψK̂)

)2
dx̂ dŷ

=

2∑
i,j=1

ci,jK

∫
K̂

[
∂x̂i((1− x̂

2
1)(1− x̂2

2))∂ŷj (v̂(1− ŷ2
1)(1− ŷ2

2))

+ (1− x̂2
1)(1− x̂2

2)∂x̂i∂ŷj (v̂(1− ŷ2
1)(1− ŷ2

2))
]2

dx̂ dŷ
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≤2

2∑
i,j=1

ci,jK

{∫
K̂

[
∂x̂i((1− x̂

2
1)(1− x̂2

2))∂ŷj (v̂(1− ŷ2
1)(1− ŷ2

2))
]2

dx̂ dŷ

+

∫
K̂

[
(1− x̂2

1)(1− x̂2
2)∂x̂i∂ŷj (v̂(1− ŷ2

1)(1− ŷ2
2))
]2

dx̂ dŷ

}
=2

2∑
i,j=1

ci,jK (J1
i,j + J2

i,j).

We proceed by bounding the terms J `i,j , ` = 1, 2 on the right-hand side. Using the one
dimensional inequality involving ψ[−1,1] from Lemma 2.11 we find for i = 1, 2 and s the
complementary index, i.e. letting s = 1 if i = 2 and s = 2 if i = 1,

J1
i,j =

∫
K̂

(
∂x̂i((1− x̂

2
i )(1− x̂2

s))
)2 (

∂ŷj (v̂(1− ŷ2
1)(1− ŷ2

2))
)2

=

∫ 1

x̂s=−1
(1− x̂2

s)
2

∫ 1

x̂i=−1
(∂x̂i(1− x̂

2
i ))

2

∫ 1

ŷ1=−1

∫ 1

ŷ2=−1

(
∂ŷj (v̂(1− ŷ2

1)(1− ŷ2
2))
)2

︸ ︷︷ ︸
≤C(4+2

√
p(p+1))2‖v̂(x̂1,x̂2,·,·)‖2

L2([−1,1]2)

≤C
(

4 + 2
√
p(p+ 1)

)2
‖v̂‖2

L2(K̂)

and using arguments similar to Lemma 2.13 and letting s now denote the complementary
index to j

J2
i,j =

∫
K̂

(1− x̂2
1)2(1− x̂2

2)2
(
∂ŷj
[
(∂x̂i v̂)(1− ŷ2

1)(1− ŷ2
2)
])2

dx̂ dŷ

≤
(

4 + 2
√
p(p+ 1)

)2
∫
K̂

(1− x̂2
1)2(1− x̂2

2)2(1− ŷ2
s)

2(∂x̂i v̂)2 dx̂ dŷ

≤
(

4 + 2
√
p(p+ 1)

)2
p(p+ 1)‖v̂‖2

L2(K̂)
.

Transforming back to the element K and adding up the estimates for J1
i,j and J

2
i,j yields

the claim
‖(∇x ⊗∇y)(vψK)‖2L2(K) ≤ Ch

−4
K ‖v‖

2
L2(K).

For the remaining inequalities we proceed analogously. Letting Q̂ = [−1, 1]3×{−1} there
holds

‖(∇x ⊗∇y)(wψQ)‖2L2(K) =
2∑

i,j=1

ci,jK

∫
K̂

(
∂x̂i∂ŷj (ŵψQ̂)

)2
dx̂ dŷ

=

2∑
i,j=1

ci,jK

∫
K̂

[
∂x̂i((1− x̂

2
1)(1− x̂2

2))∂ŷj

(
ŵ(1− ŷ2

1)
(1− ŷ2)

2

)

+ (1− x̂2
1)(1− x̂2

2)∂x̂i∂ŷj

(
v̂(1− ŷ2

1)
(1− ŷ2)

2

)]2

dx̂ dŷ

≤2

2∑
i,j=1

ci,jK

{∫
K̂

[
∂x̂i((1− x̂

2
1)(1− x̂2

2))∂ŷj

(
ŵ(1− ŷ2

1)
(1− ŷ2)

2

)]2

dx̂ dŷ

+

∫
K̂

[
(1− x̂2

1)(1− x̂2
2)∂x̂i∂ŷj

(
v̂(1− ŷ2

1)
(1− ŷ2)

2

)]2

dx̂ dŷ

}
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=2

2∑
i,j=1

ci,jK (J1
i,j + J2

i,j).

Noting that ŵ is independent of ŷ2 we find for j = 1, 2 in the first term on the right-hand
side

J1
i,1 =

∫
K̂

[
∂x̂i((1− x̂

2
1)(1− x̂2

2))
(1− ŷ2)

2
∂ŷ1(ŵ(1− ŷ2

1))

]2

≤C
(

4 + 2
√
p(p+ 1)

)2
h−3
Q ‖w‖

2
L2(Q),

J1
i,2 =

∫
K̂

[
∂x̂i((1− x̂

2
1)(1− x̂2

2))
−1

2
ŵ(1− ŷ2

1)

]2

≤Ch−3
Q ‖w‖

2
L2(Q),

where we have used the one dimensional estimate of Lemma 2.11 and have integrated out
ŷ2 before transforming back to the physical element. For the second term we find

J2
i,1 =

∫
K̂

[
(1− x̂2

1)(1− x̂2
2)

(1− ŷ2)

2
∂ŷ1
(
(∂x̂iŵ)(1− ŷ2

1)
)]2

≤C(4 + 2
√
p(p+ 1))2p(p+ 1)h−3

Q ‖w‖
2
L2(Q),

J2
i,2 =

∫
K̂

[
(1− x̂2

1)(1− x̂2
2)
−1

2
(∂x̂iŵ)(1− ŷ2

1)

]2

≤Cp(p+ 1)h−3
Q ‖w‖

2
L2(Q).

Hence, there holds

‖(∇x ⊗∇y)(wψQ)‖2L2(K) ≤ Ch
−3
Q ‖w‖

2
L2(Q). (2.66)

For the last estimate we proceed analogously. Since, letting F̂ = [−1, 1]×{−1}× [−1, 1]×
{−1}, using arguments as above and the fact that û is constant in the x̂2- and ŷ2-direction,
we find

‖(∇x ⊗∇y)(uψF )‖2L2(K) =
2∑

i,j=1

ci,jK

∫
K̂

(
∂x̂i∂ŷj (ûψF̂ )

)2
dx̂ dŷ

=

2∑
i,j=1

ci,jK

∫
K̂

[
∂x̂i

(
(1− x̂2

1)
(1− x̂2)

2
∂ŷj

(
û(1− ŷ2

1)
(1− ŷ2)

2

))]2

dx̂ dŷ

≤C(4 + 2
√
p(p+ 1))2p(p+ 1)‖û‖2

L2(F̂ )
.

Transforming back to the physical element shows that

‖(∇x ⊗∇y)(uψF )‖2L2(K) ≤ Ch
−2
F ‖u‖

2
L2(F ), (2.67)

which concludes the proof.

2.3.3 Discretization and constrained approximation in 4D

In the following we shall describe the discretization and lay out the procedure which is used
to provide the necessary 1-irregular mesh refinement for our adaptive process in four space
dimensions. To make the presentation of the algorithm more palpable, let us denote by
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ei ∈ Nh,E hanging nodes on edges, by fj ∈ Nh,F hanging nodes on faces, and by qk ∈ Nh,Q
hanging nodes on cubes, where the subscripts i, j, k realize an enumeration of the hanging
nodes of Nh,E ,Nh,F , and Nh,Q, respectively. Hence, as in the two dimensional setting we
have a splitting of the nodes of the mesh T as N = Nr ∪Nh,E ∪Nh,F ∪Nh,Q = Nr ∪Nh
with Nr the set of regular nodes in T .
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Figure 2.6: The reference 4D cube K̂ = [−1, 1]4.

The reference four dimensional cube K̂ := [−1, 1]4 is depicted in Figure 2.6. As a
means for orientation we have prescribed an a priori ordering of the nodes. By pulling the
three dimensional cube Q with the nodes {1, 2, 3, 4, 5, 6, 7, 8} into the fourth dimension
and connecting all vertices of Q with the vertices of its “duplicate” Q′. For simplicity
the vertices of the “duplicate” Q′ are enumerated as {9, 10, 11, 12, 13, 14, 15, 16}. In this
sense the “original” cube Q = [−1, 1]3 × {−1} is located at w = −1 and the “duplicate”
Q′ = [−1, 1]3×{1} at w = 1. Note that Q and Q′ lie opposite to each other in K̂ and do
not share any vertices, edges nor faces.

x

y
z

w

Table 2.1: Top left: x-cubes; top right: y-cubes; botom left: z-cubes; bottom right:
w-cubes. The gray dashed line symbolizes the constant direction.

For this reason when visualizing the boundary of the four dimensional cube, it is
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helpful to depict the three dimensional boundary cube pairs, which lie opposite to each
other, such that one coordinate is kept fixed at −1 or 1. This situation is shown in the
four pictures of Table 2.1. Note that all of these boundary cube pairs do not share any
faces, edges nor vertices.

The situation of two four dimensional cubes sharing a three dimensional boundary
cube, where one 4-cube is one level more refined than the other is depicted in Figure
2.7. With any of these types of hanging nodes we associate their corresponding irregular
elements that have the hanging node situated on an edge, face, or cube, respectively,
according to the following definition, which is similar to the situation in two space dimen-
sions.

Figure 2.7: Hanging nodes on a three dimensional boundary cube that is shared by two
four dimensional hypercubes K and K ′. K is one level less refined than K ′. The cube
with the nodes marked by circles is a boundary cube of K and by the dashed lines we
have indicated the refined boundary cube of K ′. All nodes marked by a circle are regular
nodes whereas the hanging nodes on edges are marked as gray triangles, hanging nodes
on faces as gray squares and the hanging node on the boundary cube depicted is marked
as a gray pentagon.

Definition 2.58 (Irregular Elements and Neighbors (4D)). An element K is called irreg-
ular (with respect to a node x) if there exists a hanging node x, such that x ∈ ∂K and x is
either a hanging node on an edge E, on a face F , or on a cube Q of K, respectively, but
x is not a vertex of K. Moreover, we shall call K an irregular neighbor to any element
K ′ (with respect to x), if K ′ has x as a vertex.

Note that the situation in the four dimensional setting is much more involved than in
two dimensions as hanging nodes on edges and faces can be associated with more than
one irregular element. In the case of a hanging node on an edge, there can be up to seven
irregular neighbors and for hanging nodes on a face, there can be up to three irregular
neighbors. The situation for hanging nodes on cubes mirrors the case of edges in the two
dimensional constrained approximation. Moreover, note that there can be hanging nodes
on faces and edges on the boundary ∂D, which makes dealing with all types of hanging
nodes a non-trivial endeavor.

For the adaptive mesh refinement procedure we shall adopt again the rule, that

an element K ∈ T may be refined if and only if all vertices of K are regular.

If any vertex of K is a hanging node of any type, we have to refine all irregular neighbors
of K with respect to that hanging node first, such that the rule applies and we are
subsequently allowed to refine the originally marked element K. This is formalized in
Algorithm 3.

Another reason for adopting the aforementioned simplified refinement rule is that there
is already a plethora of possible refinements in three space dimensions (cf. [23]) pertaining
to different anisotropic refinements. The situation in four space dimensions is then even
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more involved and the reason for restricting the refinement to the rule above. Note that in
this we are somewhat neglecting the otherwise valuable anisotropic refinement information
that an error estimator may carry and also give up the freedoms that different anisotropic
refinements may deliver.

Algorithm 3 1-irregular mesh refinement in 4D (REFINE)
Input: Mesh T , list M of marked elements K ∈ T
Output: Refined mesh T̃ which is 1-irregular
1: while M 6= ∅ do
2: Let K be the first element of M
3: if K has any hanging nodes ei or fi or qi as vertex then
4: Find all irregular neighbors K ′ w.r.t. ei, fi and qi
5: Append all elements K ′ and K to M
6: else
7: Refine K by subdivision into 16 smaller 4-cubes Ks, s = 1, ..., 16
8: Remove K from M and T̃ , and add 16 children Ks to T̃
9: end if

10: end while

Let us now discuss the refinement of the four dimensional cube. In Table 2.2 we have
depicted the isotropic refinement of the reference cubes in their respective dimension for
d = 1, 2, 3. This is to be seen as a preparation for the refinement for d = 4. We note
that the two dimensional refined square can be viewd as having three refined copies of
the refined interval at the slices y = −1, y = 0, and y = 1 which are connected to each
other. For the refined cube the situation is analogous as each slice at z = −1, z = 0,
and z = 1 contains a refined square which are then connected to each other. We use this
observation to give a depiction of the refined hypercube in four dimensions. Now we have
three copies of the refined cube at the three 3D slices w = −1, w = 0 and w = 1, which
cover all vertices of the refined hypercube and is shown in Figure 2.8. We note that the
refined 4-cube is given by 16 smaller 4-cubes which are represented using a total of 81
vertices.

Table 2.2: Isotropic refinement of the one, two, and three dimensional cubes.

As in two dimensions we shall now briefly describe the treatment of hanging nodes in
the four dimensional setting. We assume again that by a standard assembly process we
arrive at the linear system of equations

Ac = b.

In the four dimensional setting we have to be more careful with the presentation. Here,
we have to distinguish between the different types of hanging nodes. On edges, each
hanging node e ∈ Nh,E is constrained by its two regular neighbor vertices i, j ∈ Nr and
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i, j ∈ Oe by the relation

ue =
1

2
ui +

1

2
uj ,

as in two space dimensions.

Figure 2.8: Isotropic refinement of the four dimensional cube (a simplified view).

On faces, each hanging node f ∈ Nh,F is constrained by its four regular neighbor
vertices i, j, k, ` ∈ Nr via

uf =
1

4
(ui + uj + uk + u`) . (2.68)

And on cubes, each hanging node q ∈ Nh,Q is constrained by its eight regular neighbor
vertices v1, . . . , v8 by the expression

uq =
1

8

8∑
i=1

uvi . (2.69)

The global connectivity matrix P ∈ RN,N , where N := |N |, then takes the following
form. Columns of regular vertices are as in the two dimensional situation. If, on the other
hand, c ∈ Nh, then the corresponding column is filled with values according to the type
of the hanging node c.

If c ∈ Nh,E , then as in the two dimensional setting the corresponding column in P
is zero and features the value 1/2 at positions i, j ∈ Nr of its regular vertex neighbors.
If c ∈ Nh,F , then the corresponding column in P is populated with values according to
(2.68), i.e. denoting the column of c by pc we have

pc = (0 . . . 0 1/4︸︷︷︸
i

0 . . . 0 1/4︸︷︷︸
j

0 . . . 0 1/4︸︷︷︸
k

0 . . . 0 1/4︸︷︷︸
`

0 . . . 0)>.

Finally, if c ∈ Nh,Q, the corresponding column pc is given similarly as for face hanging
nodes, but now at positions that correspond to the vertices vi, i = 1, . . . , 8 of the regular
vertex neighbors the value 1/8 is inserted.
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With this in hand we can reduce the system as in two space dimensions, by letting Pr
the matrix that arises when cutting all zero rows from P ,

PrAP
>
r cr = Prb,

where only the coefficients of regular vertices are computed and subsequently all coeffi-
cients are recovered via

c = P>r cr.

2.3.4 A residual a posteriori error estimator

In order to derive a residual a posteriori error estimator in this situation, we proceed
similarly as in the case of the one dimensional model problem. In the following denote by
∂n,νu = ∇νu · nν for ν ∈ {x, y} the normal derivative with respect to a certain variable.
Firstly, we recall that D = Dx ×Dy and that the weak formulation for the deterministic
second moment problem for (2.62) is given by∫

D
(∇x ⊗∇y)Cu(∇x ⊗∇y)v dy dx =

∫
D
Cfv dy dx.

Considering the residual R which is implicitly defined as an element of the dual space of
H1,1

0 (D) by the left-hand side of the expression

〈R, v〉 =

∫
Dx

∫
Dy

(∇x ⊗∇y)(Cu − uT )(∇x ⊗∇y)v dy dx

=

∫
Dx

∫
Dy

Cfv dy dx−
∫
Dx

∫
Dy

(∇x ⊗∇y)uT (∇x ⊗∇y)v dy dx,

we localize the integrals to elements K = Kx ×Ky ∈ T and proceed with integration by
parts to arrive at

〈R, v〉 =
∑
K∈T

∫
Kx

∫
Ky

Cfv dy dx−
∑
K∈T

∫
Kx

∫
Ky

(∇x ⊗∇y)uT (∇x ⊗∇y)v dy dx

=
∑
K∈T

∫
K
Cfv dy dx−

∑
K∈T

∫
Kx

{∫
Ky

−(∇x ⊗∆y)uT (∇x ⊗ id)v dy

+

∫
∂Ky

(∇x ⊗ ∂n,y)uT (∇x ⊗ id)v dsy

}
dx.

Rearranging the terms and applying integration by parts twice more, we end up with the
following expression of the residual:

〈R, v〉 =
∑
K∈T

∫
K
Cfv dy dx−

∑
K∈T

{∫
Kx

∫
Ky

−(∇x ⊗∆y)uT (∇x ⊗ id)v dy dx

+

∫
Kx

∫
∂Ky

(∇x ⊗ ∂n,y)uT (∇x ⊗ id)v dsy dx

}

=
∑
K∈T

∫
K
Cfv dy dx−

∑
K∈T

{∫
Ky

{∫
Kx

(∆x ⊗∆y)uT v dx

+

∫
∂Kx

−(∂n,x ⊗∆y)uT v dsx

}
dy
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+

∫
Kx

∫
∂Ky

(∇x ⊗ ∂n,y)uT (∇x ⊗ id)v dsy dx

}

=
∑
K∈T

∫
K
Cfv dy dx−

∑
K∈T

{∫
Ky

∫
Kx

(∆x ⊗∆y)uT v dx dy

+

∫
Ky

∫
∂Kx

−(∂n,x ⊗∆y)uT v dsx dy

+

∫
Kx

∫
∂Ky

(∇x ⊗ ∂n,y)uT (∇x ⊗ id)v dsy dx

}

=
∑
K∈T

{∫
K

(Cf − (∆x ⊗∆y)uT )v dy dx+

∫
Ky

∫
∂Kx

(∂n,x ⊗∆y)uT v dsx dy

+

∫
Kx

∫
∂Ky

(∆x ⊗ ∂n,y)uT v dsy dx−
∫
∂Kx

∫
∂Ky

(∂n,x ⊗ ∂n,y)uT v dsx dsy

}
.

A closer inspection of the last term reveals that x1x2- and y1y2-faces do not contribute
to the residual. In other words, only the “mixed” faces, i.e. that are given as F = ex× ey
with an edge in x-coordinates and an edge in y-coordinates, yield contributions to the
error estimator. In order to simplify the notation we shall denote these faces by Fxy ⊂ Q.
Hence, we can represent the residual by the following expression

〈R, v〉 =
∑
K∈T


∫
K
rv dx+

∑
Q⊂∂K

∫
Q
j1v ds+

∑
Fxy⊂Q⊂∂K

∫
Fxy

j2v ds

 , (2.70)

where for later reference and brevity of notation we set

r := Cf − (∆x ⊗∆y)uT , on every K ∈ T ,

j1 :=

{
J(∂n,x ⊗∆y)uT K, Q is a x1-y1-y2 or x2-y1-y2 cube,
J(∆x ⊗ ∂n,y)uT K, Q is a x1-x2-y1 or x1-x2-y2 cube,

j2 :=

{
−{{(∂n,x ⊗ ∂n,y)uT }}, on every face Fxy ⊂ Q ⊂ ∂K,
0, otherwise.

For the generalized jump over faces, i.e. for the term j2, we introduce the following
notation

{{(∂n,x ⊗ ∂n,y)uT }} :=
∑

K∈T :Fxy⊂∂K
((∂n,x ⊗ ∂n,y)uT )|K . (2.71)

The previous representation of the residual motivates the following definition.

Definition 2.59. For the deterministic second moment problem (2.62) we define the
residual a posteriori error estimator ηR,K element-wise by the expression

η2
R,K := h2

K‖r‖2L2(K) +
1

2

∑
Q⊂∂K

hQ‖j1‖2L2(Q) +
1

4

∑
Fxy⊂Q:
Q⊂∂K

hFxy‖j2‖2L2(Fxy). (2.72)

The global error estimator ηR is then given as

ηR :=

(∑
K∈T

η2
R,K

)1/2

. (2.73)
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The appearing tensorized differential operators ∆x⊗∆y, ∂n,x⊗∆y, and ∆x⊗∂n,y can
be interpreted straighforwardly as ∆x∆y, ∂n,x∆y, and ∆x∂n,y, respectively, as the factors
act on different variables, whence they commute and their composition is unambiguous.
The operator ∂n,x ⊗ ∂n,y can be understood in the following way for computations. By
definition of the tensor product we have

(∂n,x ⊗ ∂n,y)uT = ∇x(∇yuT · ny) · nx = ∇y(∇xuT · nx) · ny

= n>x ·
(
∂x1∂y1uT ∂x1∂y2uT
∂x2∂y1uT ∂x2∂y2uT

)
· ny

=
2∑

i,j=1

∂xi∂yju · nixnjy.

Furthermore, let us state that by definition of the canonical tensor product Hilbert space
norm we have with u = u1 ⊗ u2 ∈ H1,1(D) the following representation

‖(∇x ⊗∇y)u‖2L2(D) =〈(∇x ⊗∇y)u, (∇x ⊗∇y)u〉L2(D)

=〈∇xu1,∇xu1〉L2(Dx)〈∇yu2,∇yu2〉L2(Dy)

=

∫
Dx

(∇xu1)2 dx

∫
Dy

(∇yu2)2 dy

=

2∑
i,j=1

∫
D

(∂xi∂yju)2 dy dx

and with v = v1 ⊗ v2 ∈ H1,1(D)

〈(∇x ⊗∇y)u, (∇x ⊗∇y)v〉L2(D) =〈∇xu1,∇xv1〉(L2(Dx)〈∇yu2,∇yv2〉(L2(Dy)

=

∫
Dx

(∇xu1)(∇xv1) dx

∫
Dy

(∇yu2)(∇yv2) dy

=
2∑

i,j=1

∫
D

(
∂xi∂yju

) (
∂xi∂yjv

)
dy dx.

An upper bound on the error

As for the deterministic second moment problem of the one dimensional model problem
we proceed by proving the reliability of the derived residual a posteriori error estimator
ηR.

Lemma 2.60 (Reliability). Let D = Dx × Dy = [−1, 1]4. Furthermore, u be the exact
solution of (2.62) and uT the solution of the corresponding discrete variational formu-
lation (2.63). Then there exists a positive constant c∗ which only depends on the shape
regularity of the mesh T , the polynomial degree pT , and D, such that

|u− uT |2H1,1(D) ≤ c
∗
∑
K∈T

h2
K‖r‖2L2(K) +

∑
Q⊂∂K

hQ‖j1‖2L2(Q) +
∑

Fxy⊂Q:
Q⊂∂K

hFxy‖j2‖2L2(Fxy)

 .

(2.74)

Proof. Let v ∈ H1,1
0 (D) be arbitrary. In order to show that the error |u − uT |H1,1(D)

is bounded from above globally, we start out from the expression (2.70) and insert the
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function v − IT v instead of v. Using the Cauchy-Schwarz inequality for sums and inte-
grals in conjunction with approximation results from the previous section and Galerkin
orthogonality, we obtain

〈R, v〉 =〈R, v − IT v〉

=
∑
K∈T


∫
K
r(v − IT v) dx dy +

∑
Q⊂∂K

∫
Q
j1(v − IT v) ds

+
∑

Fxy⊂Q:
Q⊂∂K

∫
Fxy

j2(v − IT v) ds


≤
∑
K∈T

‖r‖L2(K)‖v − IT v‖L2(K) +
∑
Q⊂∂K

‖j1‖L2(Q)‖v − IT v‖L2(Q)

+
∑

Fxy⊂Q:
Q⊂∂K

‖j2‖L2(Fxy)‖v − IT v‖L2(Fxy)


≤
∑
K∈T

{
‖r‖L2(K)C1hK

(
‖∇xv‖L2(ω̃K) + ‖∇yv‖L2(ω̃K) + |v|H1,1(ω̃K)

)
+
∑
Q⊂∂K

‖j1‖L2(Q)C2h
1/2
Q

(
‖∇xv‖L2(ω̃K) + ‖∇yv‖L2(ω̃K) + |v|H1,1(ω̃K)

)

+
∑

Fxy⊂Q:
Q⊂∂K

‖j2‖L2(Fxy)C3h
1/2
Fxy

(
‖∇xv‖L2(ω̃K) + ‖∇yv‖L2(ω̃K) + |v|H1,1(ω̃K)

)
≤max{C1, C2, C3}×

∑
K∈T

h2
K‖r‖2L2(K) +

∑
Q⊂K

hQ‖j1‖2L2(Q) +
∑

Fxy⊂Q:
Q⊂∂K

hFxy‖j2‖2L2(Fxy)




1/2

×

{∑
K∈T

[
‖∇xv‖2L2(ω̃K) + ‖∇yv‖2L2(ω̃K) + |v|2H1,1(ω̃K)

+
∑
Q⊂K

(
‖∇xv‖2L2(ω̃K) + ‖∇yv‖2L2(ω̃K) + |v|2H1,1(ω̃K)

)

+
∑

Fxy⊂Q:
Q⊂∂K

(
‖∇xv‖2L2(ω̃K) + ‖∇yv‖2L2(ω̃K) + |v|2H1,1(ω̃K)

)


1/2

,

where we have abbreviated (∇x ⊗ id) to ∇x as well as (id ⊗∇y) to ∇y and ω̃K denotes
the patch of elements K ′ that have at least one vertex in common with K and in the last
step the Cauchy-Schwarz inequality for sums has been used. Now, by additivity of the
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Lebesgue integral and Friedrichs’ inequalities in x- and y-direction, respectively, we have{∑
K∈T

(
‖∇xv‖2L2(ω̃K) + ‖∇yv‖2L2(ω̃K) + |v|2H1,1(ω̃K)

)
+
∑
K∈T

∑
Q⊂K

(
‖∇xv‖2L2(ω̃K) + ‖∇yv‖2L2(ω̃K) + |v|2H1,1(ω̃K)

)

+
∑
K∈T

∑
Fxy⊂Q:
Q⊂∂K

(
‖∇xv‖2L2(ω̃K) + ‖∇yv‖2L2(ω̃K) + |v|2H1,1(ω̃K)

)
1/2

≤ cT |v|H1,1(D),

where cT depends on the shape regularity of the mesh T , takes into consideration that
elements are counted multiple times on the left-hand side and incorporates the constants
of Friedrichs’ inequality in x- and y-direction, respectively. Thus,

〈R, v〉
|v|H1,1(D)

≤ C


∑
K∈T

h2
K‖r‖2L2(K) +

∑
Q⊂∂K

hQ‖j1‖2L2(Q) +
∑

Fxy⊂Q:
Q⊂∂K

hFxy‖j2‖2L2(Fxy)




1/2

with C = cT max{C1, C2, C3} and taking the supremum over all v ∈ H1,1
0 (D) shows that

there exists a constant c∗ > 0, such that

|u− uT |2H1,1(D) ≤ c
∗
∑
K∈T

h2
K‖r‖2L2(K) +

∑
E∈E

hQ‖j1‖2L2(Q) +
∑

Fxy⊂Q:
Q⊂∂K

hFxy‖j2‖2L2(Fxy)

 .

Assuming that f is replaced by an approximation fT we have the following result.

Corollary 2.61. Let u be the exact solution of (2.62) and uT the solution of the corre-
sponding discrete variational formulation (2.63). Then there exists a constant c∗ which
only depends on the shape regularity of the mesh T , the polynomial degree pT , and D,
such that there holds

|u− uT |H1,1(Q) ≤ c∗
(
η2
R + oscf

)1/2
. (2.75)

where oscf :=
∑

K∈T h
2
K‖f − fT ‖2L2(K)

Proof. The proof is completely analogous to Corollary 2.25 and is therefore omitted.

Remark 2.62. Note that the factors 1/4 and 1/2 in front of the cube and face residuals
in the definition of ηR merely take care of the fact that inner cubes are counted twice and
inner faces up to four times when summing over all element contributions η2

R,K to get
ηR.

A lower bound on the error

We will now proceed to attempt to show a lower bound on the error. This is done in
an element-wise fashion. We start by bounding the element residuals involving r. Then
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we turn to the cube and face residuals. To this end fix an element K and let wT be the
function that restricted to K is of the form

wT = (fT − (∆x ⊗∆y)uT )ψK ,

where ψK again denotes the element bubble function and fT is a suitable approximation
of f .

Lemma 2.63 (Element residuals). Let fT any suitable approximation of the right-hand
side f . Let u be the exact solution of (2.62) and uT the exact solution of the discrete
problem (2.63). Then for any element K ∈ T , there exist positive constants c1 and c2,
such that there holds

h2
K‖fT −(∆x⊗∆y)uT ‖L2(K) ≤ c1‖(∇x⊗∇y)(u−uT )‖L2(K) +c2h

2
K‖fT −f‖L2(K). (2.76)

Proof. With notations as above we have,∫
K

(fT − (∆x ⊗∆y)uT )2ψK dx dy =

∫
K

(fT −∆x ⊗∆yuT )wT dx dy

=

∫
K
rwT dx dy +

∫
K

(fT − f)wT dx dy

=

∫
K

(∇x ⊗∇y)(u− uT )(∇x ⊗∇y)wT dx dy

+

∫
K

(fT − f)wT dx dy.

(2.77)

Using properties of the element bubble functions (cf. Lemma 2.11) in each coordinate
direction we conclude that∫

K
(fT − (∆x ⊗∆y)uT )2ψK dx dy ≥ (p+ 2)−8‖fT − (∆x ⊗∆y)uT ‖2L2(K).

Estimating the right hand side of (2.77) yields∫
K

(∇x ⊗∇y)(u− uT )(∇x ⊗∇y)wT ≤|u− uT |H1,1(K)|wT |H1,1(K)

≤|u− uT |H1,1(K)Ch
−2
K ‖fT − (∆x ⊗∆y)uT ‖L2(K),∫

K
(fT − f)wT ≤‖fT − f‖L2(K)‖wT ‖L2(K)

≤‖fT − f‖L2(K)‖fT − (∆x ⊗∆y)uT ‖L2(K).

Combining these estimates we find

h2
K‖fT −∆x⊗∆yuT ‖L2(K) ≤ c1‖(∇x⊗∇y)(u−uT )‖L2(K) + c2h

2
K‖fT −f‖L2(K). (2.78)

We now turn to estimating the element boundary residuals. First we consider a
boundary cube Q ⊂ ∂K and insert the function

wQ = j1ψQ

into (2.70), where ψQ denotes the minimal polynomial such that ψQ attains its unit
maximum in the barycenter of Q = K ∩K ′ and is zero on all other boundary cubes Q′

of K and K ′. The support of ψQ evidently is given by ωQ = K ∪K ′.
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Lemma 2.64 (Boundary Cube Residual Estimate). With the notation as above and u
the exact solution of (2.62) and uT the solution of the corresponding discrete variational
formulation (2.63). Then there exist positive constants c1 and c2, such that

h3/2‖j1‖L2(Q) ≤ c1‖(∇x ⊗∇y)(u− uT )‖L2(ωQ) + c2

∑
K⊂ωQ

h2
K‖fT − f‖L2(K).

Proof. Inserting wQ into the representation of the residual yields∫
Q
j2
1ψQ ds =

∫
Q
j1wQ ds

=

∫
ωQ

(∇x ⊗∇y)(u− uT )(∇x ⊗∇y)wQ dx dy −
∫
ωQ

rwQ dx dy

−
∫
ωQ

(f − fT )wQ dx dy.

We note that by construction wQ vanishes in all vertices of K, on all remaining boundary
cubes and on all two dimensional faces F of K. Then similarly to the element residual
by Lemma 2.11 we have ∫

Q
j1wQ ds ≥ (p+ 2)−6‖j1‖2L2(Q).

Now we bound the terms on the right-hand side using estimates from section 2.3.2 and
find∫

ωQ

(∇x ⊗∇y)(u− uT )(∇x ⊗∇y)wQ dx dy ≤|u− uT |H1,1(ωQ)|wQ|H1,1(ωQ)

≤|u− uT |H1,1(ωQ)Ch
−3/2
Q ‖j1‖L2(Q),

∑
K⊂ωQ

∫
K
rwQ dx dy ≤

∑
K⊂ωQ

‖r‖L2(K)‖wQ‖L2(K)

≤
∑
K⊂ωQ

‖r‖L2(K)Ch
1/2
Q ‖j1‖L2(Q),

∑
K⊂ωQ

∫
K

(f − fT )wQ dx dy ≤
∑
K⊂ωQ

‖(f − fT )‖L2(K)‖wQ‖L2(K)

≤
∑
K⊂ωQ

‖(f − fT )‖L2(K)Ch
1/2
Q ‖j1‖L2(Q).

Combining the aforementioned estimates and dividing by h−3/2
Q ‖j1‖L2(E), we get

h
3/2
Q ‖j1‖L2(Q) ≤ C‖(∇x ⊗∇y)(u− uT )‖L2(ωQ)

+
∑
K⊂ωQ

Ch2
Q‖r‖L2(K) +

∑
K⊂ωQ

Ch2
Q‖(f − fT )‖L2(K)

≤ c1‖(∇x ⊗∇y)(u− uT )‖L2(ωQ) + c2

∑
K⊂ωQ

h2
K‖f − fT ‖L2(K),

where in the last step we have used shape regularity and the estimate for the element
residual (2.78).
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We still need to investigate the influence of face residuals. As before we set

wF = j2ψF .

Moreover, we recall that only “mixed” faces Fxy are of importance to us.

Lemma 2.65 (Boundary Face Residual Estimate). With the notation as above and u
the exact solution of (2.62) and uT the solution of the corresponding discrete variational
formulation (2.63). Then there exist positive constants c1 and c2, such that

hF ‖j2‖L2(F ) ≤ c1‖(∇x ⊗∇y)(u− uT )‖L2(ωF ) + c2

∑
K⊂ωF

h2
K‖fT − f‖L2(K).

Proof. Inserting wF into the representation of the residual yields∫
F

(j2
2ψF ) ds =

∫
F
j2wF ds

=

∫
ω̃F

(∇x ⊗∇y)(u− uT )(∇x ⊗∇y)wF dx dy −
∫
ω̃F

rwF dx dy

−
∫
ω̃F

(f − fT )wF dx dy −
∫
ω̂F

j1wF ds,

where ω̃F = {K ∈ T : NK ∩ NF 6= ∅} and ω̂F = {Q : K ∈ T , Q ⊂ ∂K,F ⊂ Q}. Now,
analogous to previous results, we find∫

F
j2wF ≥ (p+ 2)−4‖j2‖2L2(F )

and for the right-hand side∑
K∈ω̃F

∫
K

(∇x ⊗∇y)(u− uT )(∇x ⊗∇y)wF dx dy ≤
∑
K∈ω̃F

|u− uT |H1,1(K)|wF |H1,1(K)

≤
∑
K∈ω̃F

|u− uT |H1,1(K)Ch
−1
F ‖j2‖L2(F ),

∑
K∈ω̃F

∫
K
rwF dx dy ≤

∑
K∈ω̃F

‖r‖L2(K)‖wF ‖L2(K)

≤
∑
K∈ω̃F

‖r‖L2(K)ChF ‖j2‖L2(F ),

∑
K∈ω̃F

∫
K

(f − fT )wF dx dy ≤
∑
K∈ω̃F

‖f − fT ‖L2(K)‖wF ‖L2(K)

≤
∑
K∈ω̃F

‖f − fT ‖L2(K)ChF ‖j2‖L2(F ),

∑
Q∈ω̂F

∫
Q
j1wF dx dy ≤

∑
Q∈ω̂F

‖j1‖L2(Q)‖wF ‖L2(Q)

≤
∑
Q∈ω̂F

‖j1‖L2(Q)Ch
1/2
F ‖j2‖L2(F ).

This shows that

C‖j2‖2L2(F ) ≤
∑
K∈ω̃F

|u− uT |H1,1(K)Ch
−1
F ‖j2‖L2(F ) +

∑
K∈ω̃F

‖r‖L2(K)ChF ‖j2‖L2(F )

+
∑
K∈ω̃F

‖f − fT ‖L2(K)ChF ‖j2‖L2(F ) +
∑
Q∈ω̂F

‖j1‖L2(Q)Ch
1/2
F ‖j2‖L2(F )
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and thus, by shape regularity, Lemma 2.63 and Lemma 2.64, we conclude

hF ‖j2‖L2(F ) ≤C1

∑
K∈ω̃F

|u− uT |H1,1(K) +
∑
K∈ω̃F

Ch2
K‖r‖L2(K)

+
∑
K∈ω̃F

Ch2
K‖f − fT ‖L2(K) +

∑
Q∈ω̂F

Ch
3/2
Q ‖j1‖L2(Q)

≤c1

∑
K∈ω̃F

|u− uT |H1,1(K) + c2

∑
K∈ω̃F

h2
K‖f − fT ‖L2(K).

This concludes the inspection of a lower bound for the residual error estimator ηR. In
total we have shown the

Theorem 2.66. Let u and uT denote the solutions of the variational problems (2.62) and
(2.63), respectively. Let the residual error estimator ηR,K be given as in Definition 2.59.
Moreover, let fT denote an approximation of f on the mesh T . There exists constants c∗

and c∗ that only depend on the shape regularity of the given mesh, the polynomial degree
pT , and D, such that

|u− uT |H1,1(Q) ≤ c∗
{∑
K∈T

η2
R,K +

∑
K∈T

h2
K‖f − fT ‖2L2(K)

}1/2

and for all K ∈ T there holds

hKηR,K ≤ c∗

|u− uT |2H1,1(ω̃K) +
∑

K′⊂ω̃K

h4
K′‖f − fT ‖2L2(K′)


1/2

,

where ω̃K again denotes the union of all elements K ′ that share at least one vertex with
K.

Proof. The upper bound is proven in Lemma 2.60 and Corollary 2.61. The lower bound
follows from the combination of Lemma 2.63, Lemma 2.64, and Lemma 2.65 which yields
with shape regularity that

h2
Kη

2
R,K ≤c

h4
K‖r‖2L2(K) +

1

2

∑
Q⊂∂K

h3
Q‖j1‖2L2(Q) +

1

4

∑
Fxy⊂Q:
Q⊂∂K

h3
Fxy‖j2‖

2
L2(Fxy)



≤c

h4
K‖r‖2L2(K) +

1

2

∑
Q⊂∂K

h3
Q‖j1‖2L2(Q) +

1

4

∑
Fxy⊂Q:
Q⊂∂K

h2
Fxy‖j2‖

2
L2(Fxy)


≤c

‖(∇x ⊗∇y)(u− uT )‖2L2(ω̃K) +
∑

K′⊂ω̃K

h4
K′‖fT − f‖2L2(K′)


and so we conclude the proof.

74



2.3. 2D model problem

2.3.5 A hierarchical error estimator

As for the two dimensional situation we consider a conforming finite dimensional Finite
Element space XT that contains S1,0

0 (T ), p ∈ N, i.e.

Sp,00 (T ) ⊂ XT ⊂ H1,1
0 (D).

As earlier (cf. section 2.2.5) let the space XT be induced by either a uniform refinement
of the whole mesh T or be of higher order. Furthermore, let us denote by xT ∈ XT the
solution of∫

D
(∇x ⊗∇y)xT (∇x ⊗∇y)vT dx dy =

∫
D
fvT dx dy, ∀vT ∈ XT . (2.79)

In order to compare the solution uT ∈ S1,0
0 (T ) of (2.63) with xT , we subtract∫

D
(∇x ⊗∇y)uT (∇x ⊗∇y)vT dx dy

from both sides of equation (2.79). This yields for all vT ∈ XT∫
D

(∇x ⊗∇y)(xT − uT )(∇x ⊗∇y)vT dx dy

=

∫
D
fvT dx dy −

∫
D

(∇x ⊗∇y)uT (∇x ⊗∇y)vT dx dy

=

∫
D

(∇x ⊗∇y)(u− uT )(∇x ⊗∇y)vT dx dy,

where u ∈ H1,1
0 (D) denotes the unique solution of the variational formulation (2.62).

Arguing as in the two dimensional setting assuming a saturation property for XT we
have the two sided bound

|xT − uT |H1,1(D) ≤ |u− uT |H1,1(D) ≤
1

1− β
|xT − uT )|H1,1(D).

This shows that we may use |xT −uT |H1,1(D) as an a posteriori error indicator. As for the
one dimensional model problem we thusly consider the space XT to admit a hierarchical
splitting in the form

XT = S1,0
0 (T )⊕ ZT .

As long as the spaces S1,0
0 (T ) and ZT satisfy a strengthened Cauchy-Schwarz inequality

(cf. Lemma 2.18), we can build a more efficient device. For the sake of completenes we
shall proceed as in section 2.2.5 and let zT be defined as the unique solution in ZT of the
variational defect problem∫

D
(∇x ⊗∇y)zT (∇x ⊗∇y)ζT =

∫
D
fζh −

∫
D

(∇x ⊗∇y)uT (∇x ⊗∇y)ζT

for all ζT ∈ ZT . Under the given assumptions, repeating the arguments of Section 2.2.5
we arrive at the following two-sided bound for the error

|zT |H1,1(D) ≤ |u− uT |H1,1(D) ≤
1

(1− β)(1− γ)1/2
|zT |H1,1(D)

and want to use |zT |H1,1
0 (D)

as an a posteriori error estimator.
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We shall assume again the existence of a bilinear form B∗ : ZT × ZT → R which
exhibits a diagonal stiffness matrix and additionally defines an equivalent norm on ZT
to | · |H1,1(D). This leads to an analogous two-sided error bound in the four dimensional
setting

√
λB∗(z∗T , z∗T )1/2 ≤ |u− uT |H1,1(D) ≤

√
Λ

(1− β)(1− γ)1/2
B∗(z∗T , z∗T )1/2.

Let us now give an explicit choice for ZT and B∗. Setting

XT = S1,0
0 (T )⊕ (S2,0

0 (T )\S1,0
0 (T )),

which defines the hierarchical complement ZT = S2,0
0 (T )\S1,0

0 (T ) as the space of piecewise
quadratic continuous polynomials in each component on T which vanish at the nodes N
of T .

To make this precise, we associate with every edge E ∈ E , face F ∈ F , cube Q ∈
Q, and element K ∈ T the functions ψE , ψF , ψQ and ψK , respectively. These are the
associated edge, face, cube and element bubbles, respectively. For the sake of completeness
we shall state them shortly on the reference element K̂. For simplicity of notation let us
denote the coordinates on K̂ by x̂ = (x̂1, . . . , x̂4). Then letting Ê any edge, F̂ any face,
Q̂ any cube of the reference element K̂, we have the following representations:

ψ̂Ê(x̂) := C · (1− x̂2
i )
∏
i 6=j

1±x̂j
2 , i = 1, . . . , 4,

ψ̂F̂ (x̂) := C · (1− x̂2
i )(1− x̂2

j )
∏

k 6=i∧k 6=j

1±x̂k
2 , i, j = 1, . . . , 4, i 6= j,

ψ̂Q̂(x̂) := C · 1±x̂i
2

∏
i 6=j

(1− x̂2
j ), i = 1, . . . , 4,

ψ̂K̂(x̂) := C
4∏
i=1

(1− x̂2
i ),

where C denotes a certain constant, which is usually used to normalize the function value
of ψ̂S , S ∈ {Ê, F̂ , Q̂, K̂}, at the barycenter of S. These functions represent all basis
functions in ZT on K̂.

When defining S1,0
0 (T ) with the help of tensor products of antiderivatives of the

Legendre polynomials, we make a particular choice for B∗, namely

B∗(zT , ζT ) = B∗
(∑

S

αSψS ,
∑
S′

αS′ψS′

)
=
∑
S,S′

αSαS′

∫
D

(∇x ⊗∇y)ψS(∇x ⊗∇y)ψS′ ,

where S, S′ ∈ E ∪ F ∪ Q ∪ T . For our choice of spaces Lemma 2.18 guarantees that the
strengthened Cauchy-Schwarz inequality holds for a γ ∈ [0, 1). Furthermore, γ 6= 0, since
there holds for any z ∈ NK that∫

K
(∇x ⊗∇y)λz

 ∑
E∈EK

(∇x ⊗∇y)ψE

 6= 0.

This is seen by a careful and rather tedious but straightforward computation. Moreover,
this shows that in general we have to solve the defect problem:

Problem 2.67. Find z∗T ∈ ZT , such that

B∗(z∗T , ζT ) =

∫
D
fζT −

∫
D

(∇x ⊗∇y)uT (∇x ⊗∇y)ζT , ∀ζT ∈ ZT .
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As there are 81 shape functions on an element for p = 2, the computation of the hier-
archical error estimator is more costly than that of the presented residual error estimator
for p = 1, since there are only 16 shape functions per element contributing to the error
estimator. For this reason we are inclined to look for a more easily computable device.

If we make again the simplification of only enriching the Finite Element space with
element bubble functions ψK , then the strengthened Cauchy-Schwarz inequality again
holds with γ = 0. This again follows by a simple calculation using the orthogonality
properties of tensorized Legendre polynomials. Since ψK ’s do not have overlapping sup-
port this leads to solving a diagonal system of equations which is of O(N) complexity,
where N now briefly denotes the number of elements in T .

A straightforward calculation to find the coefficients for z∗T =
∑

S αSψS by testing
with a certain ψS′ yields for all ζT ∈ ZT∫

D
(∇x ⊗∇y)z∗T (∇x ⊗∇y)ψS′ dx =

∑
S

αS

∫
D

(∇x ⊗∇y)ψS(∇x ⊗∇y)ψS′ dx

=αS′‖(∇x ⊗∇y)ψS′‖2L2(D)

=

∫
D
fψS′ dx,

which shows that

αS =

∫
D fψS d~x

‖(∇x ⊗∇y)ψS‖2L2(D)

.

Hence,

B∗(z∗T , z∗T ) =
∑
S

α2
S‖(∇x ⊗∇y)ψS‖2L2(D)

=
∑
S

( ∫
D fψS d~x

‖(∇x ⊗∇y)ψS‖2L2(D)

)2

‖(∇x ⊗∇y)ψS‖2L2(D)

=
∑
S

(
〈f, ψS〉L2(D)

)2
‖(∇x ⊗∇y)ψS‖2L2(D)

.

For completeness’ sake we procede as in the two dimensional setting. We define and state
reliability as well as weak efficiency for the full hierarchical error estimator ηH . Since the
proof is analogous to the two dimensional situation only bulkier, we omit most of it.

Definition 2.68. We define the local hierarchical error estimator by means of the sum
over the relevant basis functions in ZT that are associated with the element patch ωK , i.e.

η2
H,K := h−2

K ‖(∇x ⊗∇y)z
∗
T ‖2L2(ωK) (2.80)

and moreover set the global error estimator to

ηH :=

(∑
K∈T

η2
H,K

)1/2

. (2.81)

Theorem 2.69. Let u be the exact solution of (2.62) and uT the corresponding solution
of the discrete problem (2.63). Let ZT as above and let the hierarchical a posteriori error
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estimator ηH be given as in 2.81. Then there exist constants c∗, c∗ > 0, such that ηH is
reliable

|u− uT |H1,1(D) ≤ c∗
{
η2
H +

∑
K∈T

h2
K‖fT − f‖2L2(K)

}1/2

(2.82)

and weakly efficient

hKηH,K ≤ c∗
∑

K′⊂ωK

|u− uT |2H1,1(ωK′ )
+

∑
K′′⊂ωK′

h4
K′′‖f − fT ‖2L2(K′′)

1/2

. (2.83)

Proof. As we have a similar representation as in the two dimensional situation, i.e.

‖(∇x ⊗∇y)z∗T ‖2L2(ωK) =
∑

K′⊂ωK

αK′〈z∗T , ψK′〉H1,1(K′) +
∑

Q∈QωK

αQ〈z∗T , ψQ〉H1,1(ωQ∩ωK)

+
∑

F∈FωK

αF 〈z∗T , ψF 〉H1,1(ωF∩ωK) +
∑

E∈EωK

αE〈z∗T , ψE〉H1,1(ωE∩ωK),

using approximation results from previous sections and with analogous arguments as in
the proof for the two dimensional hierarchical estimator the assertion follows.

Remark 2.70. As we shall not implement the full hierarchical error estimator, we define
the local hierarchical “bubble” indicator as in the two dimensional setting by

η̂2
H,K := α2

Kh
−2
K ‖(∇x ⊗∇y)ψK‖

2
K

and denote the global error estimator by

η̂H =

(∑
K∈T

η̂2
H,K

)1/2

.

2.3.6 An a posteriori estimator based on averaging

In the following we want to construct an averaging technique in the four dimensional
setting. As a lot of the arguments and the approach are very similar to the situation in
two dimensions we keep the presentation as short as possible.

To this end, suppose u solves the variational formulation∫
D

(∇x ⊗∇y)u(∇x ⊗∇y)v =

∫
D
fv, ∀v ∈ H1,1

0 (D)

and uT denotes the solution of the corresponding discrete formulation with p = 1. Simi-
larly to the two dimensional situation we state the following definition of ηZ .

Definition 2.71. The elementwise error indicator ηZ is given by

ηZ,K := min
q∈(S1,0(T ))2×2

‖(∇x ⊗∇y)uT − q‖L2(K)

and the global error estimator as

ηZ =

(∑
K∈T

η2
Z,K

)1/2

.
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Suppose that ηZ is reliable. Note that (∇x ⊗∇y)uT ∈ (P1(T ))2×2 is a matrix valued
function with in general discontinuous components in P1(T ). Furthermore, assume that
we have at our disposal an easily computable function A((∇x ⊗ ∇y)uT ) ∈ (S1,0(T ))2×2

with an operator A : (P1(T ))2×2 →
(
(S1,0(T )

)2×2, where we fix the notation

A((∇x ⊗∇y)uT ) :=

(
A1,1(∂x1∂y1uT ) A1,2(∂x1∂y2uT )
A2,1(∂x2∂y1uT ) A2,2(∂x2∂y2uT )

)
with operators Ai,j : P1(T ) → S1,0(T ), i, j = 1, 2, which yields an approximation to
(∇x ⊗∇y)u. Reliability immediately follows by setting q = A(∂x∂yuT ), since

ηZ,K ≤ ηA,K := ‖(∇x ⊗∇y)u−A((∇x ⊗∇y)uT )‖L2(K).

In this situation we opt for L2-projecting the components of (∇x⊗∇y)uT into the space
of piecewise continuous four-linear functions on T , i.e.∫

D
Ai,j((∂xi ⊗ ∂yj )uT )vT =

∫
D

(∂xi ⊗ ∂yj )uT vT , ∀vT ∈ S1,0(T ), i, j = 1, 2.

However, computing these projections is as costly as computing the discrete solution itself
and is thus not a viable option. We resort again to an approximation of the L2(D)-inner
product.

Denote by WT the space of all piecewise quad-linear functions on T , i.e. WT =
P1(T ) = {v : v|K ∈ P1(K),K ∈ T }, and set VT = WT ∩ C(D). Note that (∂xi ⊗
∂yj )P1(T ) ⊂ WT , i, j = 1, 2 and VT = S1,0(T ). As approximation of the inner prod-
uct, we define a mesh-dependent inner product (·, ·)T on WT via tensorization of the
trapezoidal rule in every coordinate direction, which leads to

(v, w)T :=
∑
K∈T

|K|
16

 ∑
z∈NK

v|K(z)w|K(z)

 ,

where |K| denotes the four dimensional Lebesgue measure of K. Note, that for either v
or w being a piecewise constant function we have

(v, w)T =

∫
D
vw dx.

With this in place, we define Ai,j((∂xi⊗∂yj )uT ) to be the (·, ·)T -projection of (∂xi⊗∂yj )uT
onto VT for i, j = 1, 2, i.e.

(Ai,j((∂xi ⊗ ∂yj )uT ), vT )T = ((∂xi ⊗ ∂yj )uT , vT )T , ∀vT ∈ VT (2.84)

and define the associated elementwise error indicator and the global error estimator as
follows.

Definition 2.72. We define the elementwise error indicator as

ηA,K := ‖(∇x ⊗∇y)uT −A((∇x ⊗∇y)uT )‖L2(K)

and the global error estimator as

ηA =

(∑
K∈T

η2
A,K

)1/2

.
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Note that for all v, w ∈ VT there holds

(v, w)T =
1

16

∑
z∈N
|ωz|v(z)w(z) (2.85)

and by inserting the nodal function for z instead of vT into (2.84) we find for all z ∈ N
and i, j = 1, 2 that

Ai,j(∂xi∂yjuT )(z) =
∑
K⊂ωz

|K|
|ωz|

(
∂xi∂yjuT

∣∣
K

)
(z). (2.86)

Thus, for x ∈ D we have the representation

Ai,j(∂xi∂yjuT )(x) =
∑
z∈N
Ai,j(∂xi∂yjuT )(z)λz(x) =

∑
z∈N

αi,jz λz(x) ∈ S1,0(T ),

where for ease of notation we have set

αi,jz := Ai,j(∂xi∂yjuT )(z).

We shall now procede to show reliability as we have done in the two dimensional situation.
Here we note, since

‖(∇x ⊗∇y)uT −A((∇x ⊗∇y)uT )‖2L2(K) =
2∑

i,j=1

‖(∂xi∂yj )uT −Ai,j((∂xi∂yj )uT )‖2L2(K),

that it suffices to adapt Lemma 2.43 to the four dimensional situation.

Lemma 2.73. Let u, q ∈ H2,2(D) ∩ H1,1
0 (D) and uT denote the solution of the corre-

sponding discrete problem (2.63) with∫
D

(∇x ⊗∇y)(u− uT )(∇x ⊗∇y)wT dx = 0, ∀wT ∈ S1,0(T ).

Furthermore, denote by fT an elementwise approximation of f . Then there holds

|u− uT |H1,1(D) ≤C inf
q∈H2,2(D)

{
‖(∇x ⊗∇y)(uT − q)‖L2(D)

+

(∑
K∈T

h2
K‖f − (∆x ⊗∆y)q‖2L2(K)

)1/2


+ C

(∑
K∈T

h2
K‖f − fT ‖2L2(K)

)1/2

.

Proof. The proof carries over verbatim when using the quasi-interpolation operator IT
instead of Π1,1 and is therefore omitted for brevity.

Theorem 2.74. Let A((∇x ⊗ ∇y)uT ) ∈ (S1,0(T ))2×2 be the average of (∇x ⊗ ∇y)uT
defined via (2.84)–(2.86). Furthermore, let u denote the solution of (2.62) and uT the
solution of (2.63). Then the error estimator ηA defined above is reliable, i.e. there holds

|u− uT |H1,1(D) ≤CηA + C

(∑
K∈T

h2
K‖f − (∇x ⊗∇y) · (A((∇x ⊗∇y)uT ))‖2L2(K)

)1/2

+ C

(∑
K∈T

h2
K‖f − fT ‖2L2(K)

)1/2

.
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Let us now turn our focus to the efficiency of ηA, which we achieve by proving equiva-
lence of ηA with ηZ . The following lemma is analogous to the two dimensional situation,
but for the sake of clarity and completeness the proof is not omitted.

Lemma 2.75. There exists a uniform constant b > 0 such that

ηZ ≤ ηA ≤
(

1 +
16

9
b

)
ηZ .

Proof. Since A(∇x ⊗∇yuT ) ∈ (S1,0(T ))2×2, it clearly holds that

ηZ = min
q∈(S1,0(T ))2×2

‖(∇x ⊗∇y)(uT − q)‖L2(D)

≤‖(∇x ⊗∇y)uT −A((∇x ⊗∇y)uT )‖L2(D) = ηA.

In order to prove the upper bound we have a look at the L2-stability of the averaging
operator. First we note that by a Cauchy-Schwarz for sums there holds

‖A((∇x ⊗∇y)uT )‖2L2(D) =
2∑

i,j=1

‖Ai,j((∂xi∂yj )uT )‖2L2(D)

=

2∑
i,j=1

∫
D

∣∣∣∣∣∑
z∈N

αi,jz λz

∣∣∣∣∣
2

dx

≤16
2∑

i,j=1

∫
D

∑
z∈N
|αi,jz |2|λz|2 dx.

We proceed as in the two dimensional situation. If we denote by M the element mass-
matrix on K and by M̃ the element mass-matrix on K scaled by |K|−1, i.e.

M̃ = (m̃ij)
n
i,j=1 with m̃ij = |K|−1

∫
K
λziλzj dx,

where n = |NK | is the number of nodes of an element K and the indices realize a certain
fixed enumeration of the nodes of K. Noting that for any p =

∑
z∈NK pzλz ∈ P1(K),

where pz = p|K(z), there holds

‖p‖2L2(K) =

∫
K

 ∑
z∈NK

pzλz

2

dx =

n∑
i,j=1

pzi ·
∫
K
λziλzj dx · pzj = p> ·Mp,

where by p we denote the vector of coefficients of p on K, i.e. p = (pz1 , pz2 , ..., pzn)>.
Hence, by a Rayleigh quotient argument we find by letting λ̃1 to be the smallest positive
eigenvalue of M̃ that

λ̃1|pz|2 ≤ λ̃1

∑
z∈NK

|pz|2 = λ̃1p
> · p ≤ p> · M̃p = |K|−1‖p‖2L2(K).

In the four dimensional situation for hypercubes K, a computation of the mass on K̂
and multiplying the eigenvalues by |K̂|−1 = 1

16 , we find that λ̃1 = 1
1296 and so, for any

v ∈ P1(K) there holds

|v|K(z)|2 ≤ 1296

|K|
‖v‖2L2(K), (2.87)
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which furthermore implies that there exists a uniform constant b > 0 such that

|v|K(z)| ≤ b

|ωz|1/2
‖v‖L2(ωz).

we have

‖A((∇x ⊗∇y)uT )‖2L2(D) ≤16

2∑
i,j=1

∫
D

∑
z∈N
|αi,jz |2|λz|2 dx

≤16
2∑

i,j=1

∫
D

∑
z∈N
|αi,jz |2|λz|2 dx

≤16
2∑

i,j=1

∑
z∈N

b2‖∂xi∂yjuT ‖2L2(ωz)

|ωz|

∫
ωz

|λz|2 dx

=16
2∑

i,j=1

∑
z∈N

b2‖∂xi∂yjuT ‖2L2(ωz)

|ωz|
|ωz|
81

=
256

81
b2

2∑
i,j=1

‖∂xi∂yjuT ‖2L2(D)

=
256

81
b2‖(∇x ⊗∇y)uT ‖2L2(D),

(2.88)

since ‖λz‖2L2(ωz) = |ωz |
81 and each element K is counted sixteen times.

Let (∇x⊗∇y)uT ∈ (P1(T ))2×2. Then there is a unique decomposition (∇x⊗∇y)uT =
uc + ud with a continuous component uc ∈ (S1,0(T ))2×2 and a component ud of the
orthogonal complement of (S1,0(T ))2×2 in (L2(D))2×2. Note that for any p ∈ (S1,0(T ))2×2

that A(p)(z) = p(z) and thus A is the identity on (S1,0(T ))2×2. Hence,

‖(∇x ⊗∇y)uT −A((∇x ⊗∇y)uT )‖L2(D)

=‖(uc + ud)−A(uc + ud)‖L2(D)

=‖ud −A(ud)‖L2(D)

≤‖ud‖L2(D) + ‖A(ud)‖L2(D)

=

(
1 +

16

9
b

)
‖ud‖L2(D)

=

(
1 +

16

9
b

)
min

q∈(S1,0(T ))2×2
‖(∇x ⊗∇y)uT − q‖L2(D)

=

(
1 +

16

9
b

)
ηZ ,

since uc ∈ (S1,0(T ))2×2.

Remark 2.76 (Concerning b). For all v ∈ P1(Tz), where Tz := {K : K ⊂ ωz}, by (2.87)
there holds

|ωz|1/2|A((∇x ⊗∇y)uT )(z)| ≤36
∑
K∈Tz

|ωz|1/2

|K|1/2
|K|
|ωz|
‖(∇x ⊗∇y)uT ‖L2(K)

≤36

(∑
K∈Tz

|ωz|
|K|
|K|2

|ωz|2

)1/2

‖(∇x ⊗∇y)uT ‖L2(ωz)
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and thusly the constant b > 0 in (2.88) is

b = max
z∈N

36

(∑
K∈Tz

|K|
|ωz|

)1/2

= 36.

Theorem 2.77. Let A((∇x ⊗ ∇y)uT ) ∈ (S1,0(T ))2×2 be the average of (∇x ⊗ ∇y)uT
defined in a componentwise fashion via (2.84)–(2.86). Furthermore, let u denote the
solution of (2.62) and uT the solution of (2.63). Then the error estimator ηA defined
above is asymptotically exact.

Proof. A combination of Lemma 2.73 and Lemma 2.75 readily implies that ηA is asymp-
totically exact.

2.4 On the convergence of the adaptive process

In order to understand the effect that weak efficiency, i.e. the effect of the lower bound
of the residual a posteriori error estimator ηR and the hierarchical error estimator ηH ,
has on the convergence of the adaptive process, we shall investigate the convergence of
the adaptive process for these cases. As the structure of the lower bounds is the same for
ηR and ηH in the two and four dimensional situation, we carry out the following analysis
only for the residual error estimator ηR in two dimensions. The arguments for the other
cases are completely analogous. The presentation closely follows [54].

Consider T1 to be a mesh on D and T2 be a refinement of T1, such that the associated
Finite Element spaces are nested, i.e.

S1,0
0 (T1) ⊂ S1,0

0 (T2).

Moreover, let u denote the exact solution to the exact variational problem and let u1 as
well as u2 denote solutions to the discrete problems on the meshes T1 and T2, respectively.
Then by Galerkin orthogonality we have the relation

‖∂x∂y(u− u2)‖2L2(D) = ‖∂x∂y(u− u1)‖2L2(D) − ‖∂x∂y(u1 − u2)‖2L2(D). (2.89)

Let us first consider the case in which the right-hand side f is piecewise constant on T1,
i.e. for example we might exchange it with its L2-projection on the piecewise constant
functions on T1. We will remove this restriction later on. Then by reliability of the
residual error estimator we have

‖∂x∂y(u− u1)‖2L2(D) ≤ c
∗2
∑
K∈T1

η2
R,K , (2.90)

because the data oscillation term vanishes in this case. Now, let ϑ ∈ (0, 1) and find
T̃1 ⊂ T1 with the property that ∑

K∈T̃1

η2
R,K ≥ ϑ

∑
K∈T1

η2
R,K . (2.91)

Then by (2.90) and (2.91) there holds

‖∂x∂y(u− u1)‖2 ≤ c∗2

ϑ

∑
K∈T̃1

η2
R,K . (2.92)

Since we want to make use of the same arguments as in the proofs on reliability and
(weak) efficiency, we make the following assumption.
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Assumption 2.78. Let T2 be a refined partition of T̃1 that satisfies the following condi-
tions:

(i) the midpoint of every edge in T̃1 is a vertex of an element in T2;

(ii) there exists a point x in the interior of every element in T̃1, such that x is a vertex
of an element in T2.

The foregoing assumption can be fulfilled by isotropically subdividing every element
in T̃1, i.e. into 4 smaller squares/rectangles. Then the assumption implies that we are
allowed exchange the edge and face bubble functions in the proofs of reliability and
efficiency with certain global nodal functions and hence the functions wK and wE do
belong to the space S1,0

0 (T2). This allows us to replace u with u2 in the estimates for the
efficiency of η2

R,K . Thus,∑
K∈T̃1

h2
Kη

2
R,K ≤ c2

∗‖∂x∂y(u2 − u1)‖2L2(D). (2.93)

Moreover, a combination of (2.92) and (2.93) reveals that there holds

−‖∂x∂y(u2 − u1)‖2L2(D) ≤−
1

c2
∗

∑
K∈T̃1

h2
Kη

2
R,K

≤− 1

c2
∗

min
K∈T̃1

h2
K

∑
K∈T̃1

η2
R,K

≤− ϑ

c2
∗c
∗2 min

K∈T̃1
h2
K‖∂x∂y(u− u1)‖2L2(D).

In lieu of (2.89) we thus find

‖∂x∂y(u− u2)‖2L2(D) = ‖∂x∂y(u− u1)‖2L2(D) − ‖∂x∂y(u1 − u2)‖2L2(D)

≤
(

1− min
K∈T̃1

h2
K

ϑ

c2
∗c
∗2

)
‖∂x∂y(u− u1)‖2L2(D).

From this we immediately see that the error reduction factor is given by

γ :=

(
1− min

K∈T̃1
h2
K

ϑ
c2∗c
∗2

)
.

Since the minimum element diameter of the marked elements enters γ for ηR and ηH ,
this implies that γ might be very close to one if the minimal element diameter of T̃1 is
small and is then responsible for a deterioration of the convergence. This can lead to
a convergence shelf behavior for the residual and hierarchical error estimators, since in
many steps the error reduction may become very small. The adaptive process will still
converge, but is obviously seriously hampered by the element diameter of the smallest
marked element. This is a structural drawback of the estimates for the residual and
hierarchical error estimators, which cannot be overcome as such.

Remark 2.79. Note that since ηA is asymptotically exact this drawback does not affect
the a posteriori error estimator based on averaging, because the meshwidth of T̃1 does not
enter the error reduction factor γ, which then reads

γ =
(

1− ϑ
c2∗c
∗2

)
.
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Remark 2.80. One idea to alleviate the convergence ηR and ηH under these circum-
stances, when the adaptive method hits a convergence shelf, is to monitor the convergence
rate between adaptive steps and to force a mandatory uniform refinement when the con-
vergence drops below a given threshold and then to proceed with the adaptive process.

In order to overcome the restriction that f be piecewise constant we consider f ∈
L2(D) and T an arbitrary mesh on which the piecewise constant function fT is defined
by means of the weighted integral average of f on an element K ∈ T , i.e.

fT :=
1

|K|

∫
K
f.

Let u the exact solution with right-hand side f and denote by ũ and ũT the exact and
discrete solution with right-hand side fT , respectively. Moreover, denote by uT the
solution of the discrete problem on T with right-hand side f . Because uT is the best
approximation of u in S1,0

0 (T ) with respect to the energy norm ‖∂x∂y(·)‖L2(D) there
holds

‖∂x∂y(u− uT )‖L2(D) ≤ ‖∂x∂y(u− ũT )‖L2(D)

and furthermore the triangle inequality provides

‖∂x∂y(u− uT )‖L2(D) ≤ ‖∂x∂y(u− ũ)‖L2(D) + ‖∂x∂y(ũ− ũT )‖L2(D).

The second term of the previous inequality can be dealt with as above. We proceed with
inspection of the first term.

Since u and ũ solve the variational problem with right-hand side f and fT , respectively,
we find that for all w ∈ H1,1

0 (D) there holds∫
D
∂x∂y(u− ũ)∂x∂yw =

∫
D

(f − fT )w.

When we consider fT to be the piecewise constant L2-projection on T , we see by Galerkin
orthogonality that∫

D
(f − fT )w =

∫
D

(f − fT )(w − wT ) =
∑
K∈T

∫
K

(f − fK)(w − wK),

where fT |K = fK and wT |K = wK with

fK =
1

|K|

∫
K
f, wK =

1

|K|

∫
K
w.

Then the Cauchy-Schwarz inequality implies that∫
D
∂x∂y(u− ũ)∂x∂yw ≤

∑
K∈T

‖f − fK‖L2(K)‖w − wK‖L2(K)

and since every element is convex, a Poincaré inequality and the equivalence of the energy
norm with the H1,1-norm yield

‖w − wK‖L2(K) ≤
hK
π
‖∇w‖L2(K) ≤ c

hK
π
‖∂x∂yw‖L2(K).

Summing over all K ∈ T we find with the Cauchy-Schwarz inequality for sums

‖∂x∂y(u− ũ)‖2L2(D) ≤
C

π

∑
K∈T

h2
K‖f − fK‖2L2(K).
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This shows that for general right-hand sides with f ∈ L2(D) we have to control the data
oscillation to obtain overall convergence. This can be achieved as follows.

Consider again a mesh T2 which is a refinement of T1. Given parameters ϑ ∈ (0, 1),
we apply the four steps of the adaptive algorithm, i.e. (1) Solve, (2) Estimate, (3) Mark,
(4) Refine, with the following modifications. Step (1) is omitted and in (2) the generic
error estimator η2

K is replaced by the data oscillation term h2
K‖f−fK‖2L2(K) to determine

a subset T̃1 of T1 with the property∑
K∈T̃1

h2
K‖f − fK‖2L2(K) ≥ ϑ

∑
K∈T1

h2
K‖f − fK‖2L2(K).

We make another assumption on T2.

Assumption 2.81. Each element K ∈ T̃1 is the union of elements in T2 of which all
have an element diameter of at most hK/2.

This assumption again can be ascertained by applying one step of isotropic refinement
to every element in T̃1. Now, we split the mesh T2 into two disjoint subsets T2,R and T2,U

with ∪K∈T2,RK = ∪K∈T̃1K. So, there holds∑
K∈T2,U

h2
K‖f − fK‖2L2(K) ≤

∑
K∈T1\T̃1

h2
K‖f − fK‖2L2(K)

=
∑
K∈T1

h2
K‖f − fK‖2L2(K) −

∑
K∈T̃1

h2
K‖f − fK‖2L2(K)

as well as ∑
K∈T2,R

h2
K‖f − fK‖2L2(K) ≤

1

4

∑
K∈T̃1

h2
K‖f − fK‖2L2(K).

This leads to∑
K∈T2

h2
K‖f − fK‖2L2(K) =

∑
K∈T2,R

h2
K‖f − fK‖2L2(K) +

∑
K∈T2,U

h2
K‖f − fK‖2L2(K)

≤
∑
K∈T1

h2
K‖f − fK‖2L2(K) −

3

4

∑
K∈T̃1

h2
K‖f − fK‖2L2(K)

≤
(

1− ϑ3

4

) ∑
K∈T1

h2
K‖f − fK‖2L2(K).

Given any fixed error tolerance ε the adaptive algorithm finds a mesh T such that
‖∂x∂y(u−ũ)‖L2(D) ≤ ε/2 after finitely many steps of the algorithm. This partition is used
as starting point for the adaptive algorithm for the term ‖∂x∂y(ũ− ũT )‖L2(D), which also
after finitely many steps will provide a mesh T ′ that guarantees ‖∂x∂y(ũ− ũT ′)‖L2(D) ≤
ε/2. Therefore we find ‖∂x∂y(u− uT ′)‖L2(D) ≤ ε.

2.5 Numerical experiments for the deterministic moment
equations

The numerical experiments have been implemented in MATLAB and have been run on a
laptop with an Intel i7-4720HQ with 16GB of RAM.
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2.5. Numerical experiments for the deterministic moment equations

2.5.1 Experiments for the 1D model problem

A smooth right-hand side We start our presentation of the numerical experiments
by showing results for each of the proposed error estimators with a smooth right-hand
side, which is given by

f =
π4

16
cos
(π

2
x
)

cos
(π

2
y
)
.

The tests have been performed with ϑ = 0.5 and a stopping criterion of 200’000 elements.
The meshes shown are picked from a selected iteration to ensure comparability of around
10’000 elements. We begin with the residual error estimator. Since for p = 1 the error
estimator ηR does not relate to the numerical solution at all, we enrich the Finite Element
space by only a bubble function and then have a look at using the full set of shape functions
with p = 2 for the residual error estimator. The corresponding error curves can be seen
in Figure 2.9.
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Figure 2.9: Numerical results for ηR with bubble function (top) and ηR with the full set
of shape functions p = 2 (bottom).

We see that the meshes are qualitatively similar for both of the variants. We observe
in both experiments that the error estimator ηR, converges in the H1,1-seminorm at rate
1
2 for the FE space enriched with a bubble and at rate 1 for the full set of shape functions
with p = 2. As the solution does not feature any abrupt changes the adaptive algorithm
has a hard time against the uniform refinement, which is clearly seen from the convergence
graphs. It can further be seen that the estimator clearly overestimates the error in both
instances.
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We now turn our attention to the numerical results for the variants of the hierarchical
error estimator ηH . Here we take a look at the hierarchical error estimator η̃H , which uses
the full set of bubble functions, and η̂H , which only uses the element bubble functions.
Meshes and corresponding error curves can be found in Figure 2.10. We observe that
the meshes are qualitatively very similar and that the error estimators η̃H and η̂H both
converge at a rate of 1

2 as the error in the H1,1-seminorm. Futhermore, it can be seen
from the convergence graphs that the constant in the reliability estimate behaves more
favorably for η̃H , which is on the one hand due to the fact that information for edge
jumps is incorporated in η̃H . On the other hand we expect η̂H to be worse, since we are
omitting the information of the edge bubble functions of the error estimator, and we pay
for this by a larger constant in the reliability estimate for η̂H . Moreover, we see that η̂H
significantly underestimates the true error as well as does η̃H , albeit by not that much.
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Figure 2.10: Numerical results for η̂H (top) and η̃H (bottom).

At last we have a look at the numerical results for the a posteriori error estimator
based on averaging. Here we do not have to resort to an enrichment of the Finite Element
space and present the results for p = 1. It is clearly seen from the convergence graph
in Figure 2.11 that the error estimator ηA converges at a rate of 1

2 as the error in the
H1,1-seminorm.
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Figure 2.11: Numerical results for ηA.

Analytic solution with large gradients We now have a look at the adaptive process
with exact solution chosen as

u(x, y) = exp

(
−|x− y|

2

λ

)
(1− x2)(1− y2),

with λ = 1
100 . Albeit rather artificial, u has been chosen in a way to illustrate the

advantages of the adaptive methods in a situation like this. The tests have been performed
with ϑ = 0.5 with a stopping criterion of 200’000 elements.
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Figure 2.12: Numerical results for ηR with a bubble per element (top row) and ηR for
p = 2 (bottom row) .

89



Chapter 2. Deterministic Second Moment Equations

This solution features large gradients in the vicinity of the diagonal which is a typical
feature of covariance functions. We begin the discussion with the numerical results for
the residual error estimators and the corresponding error curves in Figure 2.12. We again
observe that error estimator ηR converges at rate 1

2 and 1 in correspondence with the
error in the H1,1-seminorm, respectively. Moreover, we observe that the adaptive method
is able to outperform the uniform FEM in the sense that it needs a significant amount of
degrees of freedom less to achieve a comparable accuracy.
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Figure 2.13: Numerical results for η̂H(top) and η̃H (bottom).

Let us now turn our attention to the numerical results for the hierarchical error esti-
mators η̃H and η̂H . Corresponding meshes and error curves can be found in Figure 2.13.
We observe that the adaptive method is again able to beat the uniform FEM and that the
errors converge at rate 1

2 in the H1,1-seminorm which is expected from the theory. The
produced meshes are very similar and we see that using η̃H is not necessarily more ad-
vantageous than the error estimator η̂H , although η̂H incorporates less information than
η̃H .
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Figure 2.14: Numerical results for ηA.
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At last we have a look at the numerical results for the a posteriori error estimator
based on averaging ηA for this problem. We observe that ηA is competetive against the
uniform FEM for this problem. Moreover, as can be seen from the convergence graph the
error estimator ηA slightly overestimates the exact error.

Exponential covariance As another experiment we have chosen the right-hand side

f(x, y) = exp

(
−|x− y|

ρ

)
with ρ = 1

10 . This covariance function is a representant of the family of so-called Matérn
covariance functions of the form

Mν(x, y) = σ2 21−ν

Γ(ν)

(√
2ν

ρ
d

)ν
Kν

(√
2ν

ρ
d

)
,

for ν = 1/2 and σ = 1. σ denotes the variance and ν is referred to as the smoothness
parameter of the family, whereas d = |x− y|.

In order to provide convergence graphs we have computed the analytical solution u (cf.
Section 4.1) and then computed the H1,1-seminorm by numerically integrating (∂x∂yu)2

with u = Cu from (4.3) for 5 · 104 terms with a high order Gauß-Legendre quadrature
rule. This yielded

|u|2H1,1(D) ≈ 0.006711721115088.
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Figure 2.15: Convergence comparison for the exponential covariance.

In Figure 2.15 we have depicted the convergence history for the three types of a
posteriori error estimators ηR, η̂H and ηA as well as the corresponding convergence graph
of the uniform FEM for comparison. First and foremost, we observe that the residual
and hierarchical error estimators hit a proverbial wall in terms of convergence due to the
effect of the weak efficiency. They are still converging as can be seen from the graph, but
at a seriously reduced rate. As the averaging estimator ηA is asymptotically exact it can
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Chapter 2. Deterministic Second Moment Equations

be seen to not having to suffer from this deficiency and converges at the expected rate.
Moreover, we can infer from the graphs that the solution Cu is rather tame and thus not
even the averaging estimator can beat the uniform approximation.

Sinusoidal covariance We have chosen the right-hand side

f(x, y) =
ρ

|x− y|
sin

(
|x− y|
ρ

)
with ρ = 1

10 . In order to provide convergence graphs we have computed H1,1-seminorm
via a substitute reference solution uref which was chosen in this case as the solution of
the uniform FEM on level 10.
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Figure 2.16: Convergence comparison for the sinusoidal covariance.

For this experiment we again noticeably experience the effect of the weak efficiency
of ηR and η̂H (cf. Figure 2.16). Here however the shelf is not as pronounced as for
the exponential covariance and it seems that the error estimators start to recover at a
threshold of roughly 105 degrees of freedom and converge at the expected and desired
rate. For this experiment it can also be observed that ηA behaves quite competetively
against the uniform FEM, but still loses out as the solution is again very tame.
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2.5. Numerical experiments for the deterministic moment equations

2.5.2 Experiments for the 2D model problem

Smooth solution We start out again with a validation experiment where we take a
look at the adaptive algorithm for the tensorizable right-hand side

f(x, y, z, w) =
π4

4
cos
(π

2
x
)

cos
(π

2
y
)

cos
(π

2
z
)

cos
(π

2
w
)
.

As the solution is a product of cosine functions with zero boundary conditions and does not
feature any significant abrupt changes we expect the adaptive process not to outperform
the uniform FEM in this case, but rather still be competetive. One has to keep in mind
that in four space dimensions going from one uniform refinement level to the next is
effectively mulitplying the number of elements by 16. Thus, even though the adaptive
procedure might not be able to outperform the uniform FEM, it enables the possibility
of aborting the computation earlier for a reasonable approximation when the next step
of uniform refinement would be too computationally expensive, days say.
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Figure 2.17: Top row: Mesh slices for the numerical solution at iteration 12 of the adaptive
process. From left to right the slices are as follows: xy-slice (left) is identical to the yw-
slice, and the xw-slice (right) is identical the yz-slice,xw-slice and zw-slice. Bottom row:
Convergence history (left) for the uniform FEM for 5 levels and the adaptive method with
ηR for 12 levels. Diagonal slice (right)

Moreover, depicted mesh slices are generated as follows. For example, consider the
shown xw-mesh slice of the xw-plane of T in Figure 2.17 (top right). By setting z = 0
and y = 0 and sieving through the nodes of the mesh we obtain the depicted slice. For
the other slices we procede analogously. We have opted to show only relevant slices
and omit otherwise superfluous repetition. Diagonal slices are evaluated on a uniformly
distributed grid of 104 points in [−1, 1]2 = {(x, y) = (z, w)}. Furthermore, all numerical
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experiments shown have been run with ϑ = 0.5 and a maximal element number limit of
100’000 elements.

In Figure 2.17 the reader may find selected mesh slices of the four dimensional mesh
T , a convergence history for the residual error estimator ηR, which does not need to
be amended with a bubble function in this case, and the diagonal slice of the finest
refinement level, which is an approximation of the variance. Note that the diagonal is
supposed to be an approximation to cos2(πx/2) cos2(πy/2). The shown depiction is in
close agreement with this albeit the mesh size is still very large considering we are in
four space dimensions. Further, we see from the convergence graph that the optimal rate
of convergence 1

4 is attained and in particular that it is quite competetive against the
uniform FEM. Note also that the estimator significantly overestimates the error.

101
10-4

10-3

10-2

10-1

100

101

102

Figure 2.18: Top row: Mesh slices for the numerical solution at iteration 10 of the adaptive
process. All slices are identical in this instance. Bottom row: Convergence history (left)
for the uniform FEM for 5 levels and the adaptive method with ηR with element bubble
function for 10 levels.

In Figure 2.18 we have now depicted selected mesh slices, a convergence history and
the diagonal slice for the residual error estimator ηR with added element bubble function.
This test was conducted in order to have the full residual error estimator contribute to the
estimation. The meshes and the convergence are almost identical to the estimator without
added bubble function and thus, the additional work does not seem to be justified. From
the convergence graph we find however that the optimal rate of convergence is attained
and is nonetheless quite competetive against the uniform FEM. Furthermore, this variant
also quite overestimates the true error.
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Figure 2.19: Top row: Mesh slices for the numerical solution at iteration 11. xy-slice
(left), yw-slice(right). Bottom row: Convergence graph for η̂H(left) and approximate
variance (right).

For the hierarchical error estimator we have depicted in Figure 2.19 another display of
selected mesh slices, a convergence history and the diagonal slice. From the convergence
graph we infer again that the optimal rate of convergence is attained and is also quite
competetive against the uniform FEM.

Figure 2.20: Top row: Mesh slices for the numerical solution at iteration 8. xy-slice (left),
xz-slice(right). Bottom row: Convergence graph for ηA (left) and approximate variance
on the diagonal slice (right)

95



Chapter 2. Deterministic Second Moment Equations

101
10-4

10-3

10-2

10-1

100

101

Figure 2.21: Top row: Mesh slices for the numerical solution at iteration 8. xy-slice (left),
xz-slice(right). Bottom row: Convergence graph for ηA (left) and approximate variance
on the diagonal slice (right)

Furthermore, it can be seen that η̂H underestimates the true error by a significant
amount which was already observed for the two dimensional counterpart, since we are
only incorporating information via the element bubble and omit the rest.

At last we have a look at the averaging a posteriori error estimator ηA. In Figure
2.20 we show plots of mesh slices and in Figure 2.21 a convergence history and the
approximate variance is shown which is in good agreement with the exact solution. From
the convergence graph we can see that ηA is in fact very competetive against the uniform
FEM in the four dimensional setting.
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Figure 2.22: Mesh slices for the numerical solution at iteration 13 of the adaptive process.
xy-slice(left), xz-slice(right). Convergence history for ηR and diagonal slice.
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Solution with large gradients Here we have a look at the adaptive process for the
exact solution

u(x, y, z, w) = exp

(
−(x− z)2 + (y − w)2

λ

)
(1− x2)(1− y2)(1− z2)(1− w2),

where λ = 1
10 . Here the right-hand side was computed as f = (∆x⊗∆y)u using Wolfram

Mathematica. As the resulting terms are rather bulky we omit the explicit representation
of f . Since the right-hand side exhibits steep gradients in a neighborhood of the diagonal
of [−1, 1]4 we can see that all of the derived a posteriori error indicators are able to
outperform uniform FEM as the solution is very smooth, too. Corresponding mesh slices,
convergence histories and diagonal slices for ηR with and without element bubble,η̂H and
ηA can be found in Figures 2.22, 2.23, 2.24 and 2.25, respectively. Moreover, it is not
sure if the residual or hierarchical error estimators might hit a convergence shelf at some
point.

As a last numerical experiment for the four dimensional adaptive process we show
the numerical results for tensorized exponential covariance function to demonstrate the
different behaviour of the estimators in the next paragraph. The results are in line with
the discussion in the two dimensional situation and are therefore left to the reader to
observe.
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Figure 2.23: Mesh slices for the numerical solution at iteration 11 of the adaptive process.
From left to right the slices are as follows: xy-slice, xz-slice. Convergence history for ηR
with added element bubble and corresponding diagonal slice.
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Figure 2.24: Mesh slices for the numerical solution at iteration 11 of the adaptive pro-
cess. From left to right from top to bottom the slices are as follows: xy-slice, xz-slice.
Convergence history for η̂H and corresponding diagonal slice
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Figure 2.25: Mesh slices for the numerical solution at iteration 8 of the adaptive pro-
cess. From left to right from top to bottom the slices are as follows: xy-slice, xz-slice.
Convergence history for ηA and corresponding diagonal slice.
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Product of exponential covariances Here we have a look at the adaptive process
for the right-hand side

f(x, y, z, w) = exp

(
−
(
|x− z|
ρ1

+
|y − w|
ρ2

))
with λ1 = 1

10 and λ2 = 1
2 .
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Figure 2.26: Mesh slices for the numerical solution at the last iteration of the adaptive
process with ηR, η̂H and ηA. xy-slices(left), xz-slices(right). Convergence history of
uniform and adaptive FEM and the diagonal slice of the last iteration the adaptive process
with ηA.
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Chapter 3

Monte Carlo Methods for the
Approximation of Covariance
Functions

3.1 Problem setting

Let us recall that the domain D ⊂ Rd, d = 1, 2 is an open bounded polyhedral domain
with Lipschitz boundary, that we set for abbreviation D = D×D, and that by (Ω,Σ,P) we
denote a complete probability space with associated σ-algebra Σ and probability measure
P. We again consider for all ω ∈ Ω the stochastic elliptic boundary value problem −∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω), in D,

u(x, ω) = 0, on ∂D,
(3.1)

where f(x, ω) is a given stochastic source term and κ(x, ω) is the stochastic diffusion
coefficent.

Again we are interested in solving for the second moment of u. More precisely, we
want to solve the associated second moment problem (cf. also (2.3)):

Problem 3.1. Find u ∈ Lp(Ω;H), such that for all v ∈ H there holds

E
[∫
D

(κ(x, ω)⊗ κ(y, ω))(∇x ⊗∇y)(u(x, ω)⊗ u(y, ω))(∇x ⊗∇y)v(x, y) dx dy

]
= E

[∫
D

(f(x, ω)⊗ f(y, ω))v(x, y) dx dy

]
.

(3.2)

If it was possible to solve the previous problem exactly, we would have access to the
exact solution Cu(x, y) := E[u(x, ω) ⊗ u(y, ω)]. There are multiple difficulties with this
approach. First of all, solving an infinite dimensional problem is usually out of question,
except in cases where an explicit solution is available. Another thorn in our sight is that
usually we also do not have access to the exact solution u(x, ω), which is a random field.
This means that we will have to be content with certain approximations u` of u, where
u` → u in some sense is required. Moreover, most often taking the exact expectation is
also neither practical nor applicable, for which reason we resort to computing solutions
with respect to certain events and try to quantify the error we commit by computing
certain sample averages.
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More specifically, to find an approximation to the two-point correlation function or
the covariance function of u, we compute first a set of solutions with respect to certain
events ωi ∈ Ω, i = 1, . . . ,M of the following variational equation∫

D
κ(x, ωi)∇xu(x, ωi)∇xv(x) dx =

∫
D
f(x, ωi)v(x) dx.

Suppose we have access to the exact solution of the previous variational problem, then
we are able to compute the sample average to approximate the expectation of u by

EM [u](x) :=
1

M

M∑
i=1

u(x, ωi),

the two point correlation function of u by

EM [u⊗ u](x, y) :=
1

M

M∑
i=1

(u(x, ωi)⊗ u(y, ωi)),

as well as the corresponding covariance function using the sample covariance via

CovM [u, u] (x, y) :=
1

M − 1

M∑
i=1

(u(x, ωi)− EM [u](x))⊗ (u(y, ωi)− EM [u](y)),

where now a solution u(x, ωi) is called a sample.
The two point correlation of a function is closely related to the variance and covariance

of u via the equation

Cov [u, u] (x, y) = Cov [u] (x, y) =E[(u(x, ω)− E[u](x))⊗ (u(y, ω)− E[u](y))]

=E[u(x, ω)⊗ u(y, ω)]− E[u](x)⊗ E[u](y),

Var[u](x) =Cov [u, u] (x, x).

From this we see that the two point correlation function for a centered random field
u coincides with its covariance function. With this in mind we will now set out to
approximate covariance functions in a more general context. We want to study under
which circumstances we can construct approximations to general covariance functions of
the form

Cov [X,Y ] := E[X ⊗ Y ] = E[(X − E[X])⊗ (Y − E[Y ])]

whereX and Y are now considered to be random fields in the Bochner space Lp(Ω;H), p ∈
[1,∞] (cf. section 1.2) with a given Hilbert space H and X := X−E[X]. In the following,
H shall always denote a separable Hilbert space, unless specified otherwise.

In order to present the theory in a succinct manner, we shall start by explaining
and constructing full tensor product approximations of elementary tensor products in the
deterministic setting. We then shall additionally derive results for the approximation in
the stochastic setting. This will serve as a basis for the more advanced topics to follow,
when we discuss the principles of a sparse approximation of covariance functions.

We shall look at convergence in the case of sampling in exact and discrete circum-
stances and describe the amount of work needed to find approximations that fulfill a
certain error tolerance requirement ε.
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3.2 Approximation in tensor product spaces

In this section we shall take a look at the approximation of elementary tensor productsX⊗
Y ∈ H ⊗H as well as briefly describe the so-called sparse tensor product approximation
in the deterministic setting. The reason for this approach is to keep the presentation as
simple as possible and to make it more accessible. Moreover, a clear understanding of the
convergence of the approximations is needed for a sensible comparison at the end. These
results can then be interpreted in a stochastic context under certain assumptions on the
random fields.

3.2.1 Full tensor product approximation and convergence

Since we would like to understand how an economical and accurate approximation of
covariance functions of the form Cov [X] = E[(X −E[X])⊗ (X −E[X])] can be achieved,
we study in this section different approaches of approximation of elementary deterministic
tensor products of the form X ⊗ Y . For this, let H be a Hilbert space and let X,Y ∈ H
be two arbitrary but fixed elements with associated sequences X = {X`} ⊂ H and
Y = {Y`} ⊂ H converging to X and Y , respectively. Moreover, we consider that the
convergence takes place at a given rate δ > 0 with respect to a possibly smaller space
W ⊂ H. More precisely, if X,Y ∈W ⊂ H, then we assume that there holds

∃c > 0 : ‖X −X`‖H ≤ c ·N−δ` ‖X‖W , ‖Y − Y`‖H ≤ c ·N−δ` ‖Y ‖W . (3.3)

Typically, X` and Y` are elements of finite dimensional subspaces V` of H and N` :=
dim(V`) stands for its dimension. As we see later, X and Y will play roles of two inde-
pendent realizations of the same random field. Hence, on the one hand, the possibility
of having X 6= Y will be necessary; on the other hand, this justifies assumption (3.3) for
two sequences X` and Y` having identical asymptotic convergence rates.

Moreover, we shall from now on require that {N`} is an approximately exponentially
increasing sequence, i.e. we assume that for some a > 1 there exists a constant R ≥ 1,
such that

R−1 ≤ Nk

akN0
≤ R, ∀k ∈ N. (3.4)

Concerning (3.3), W is a subspace of H having a stronger norm, i.e.

∃ν > 0 : ‖Z‖H ≤ ν‖Z‖W ∀Z ∈W. (3.5)

Lemma 3.2. Let X,Y ∈ H with associated sequences X and Y, respectively, such that
(3.3) and (3.5) hold. Then there holds

‖X ⊗ Y −XL ⊗ YL‖H⊗H ≤ CN−δL ‖X‖W ‖Y ‖W (3.6)

where the constant C is independent of L and NL.

Proof. Note the identity

X ⊗ Y −XL ⊗ YL = X ⊗ (Y − YL) + (X −XL)⊗ Y − (X −XL)⊗ (Y − YL).

Then the triangle inequality in H ⊗H, the crossnorm property of the canonical norm on
H ⊗H, (3.3) and (3.5) imply

‖X ⊗ Y −XL ⊗ YL‖H⊗H ≤ ‖X ⊗ (Y − YL)‖H⊗H + ‖(X −XL)⊗ Y ‖H⊗H
+ ‖(X −XL)⊗ (Y − YL)‖H⊗H
≤ (2νcN−δL + c2N−2δ

L )‖X‖W ‖Y ‖W ,

which finishes the proof.
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Corollary 3.3. Let q ∈ [1,∞] and X,Y ∈ L2q(Ω;H) with associated sequences X and
Y, respectively, such that (3.3) and (3.5) hold. Then there holds

‖X ⊗ Y −XL ⊗ YL‖Lq(Ω;H⊗H) ≤ CN−δL ‖X‖L2q(Ω;W )‖Y ‖L2q(Ω;W ) (3.7)

where the constant C is independent of L and NL.

Proof. The proof is completely analogous to that of the previous lemma. Using the trian-
gle inequality for the Lq(Ω;H ⊗H)-norm in combination with the crossnorm property of
the H ⊗H-norm, the result follows by an application of the Cauchy-Schwarz inequality
and the requirements on X and Y .

3.2.2 Sparse tensor product approximation and convergence

Let us proceed by introducing the sparse tensor product approximation to a product
X ⊗ Y . First, for a sequence X = {X`} we define increments by virtue of the difference
operator ∆` by

∆`X :=

{
X` −X`−1, ` ≥ 1,

X0, ` = 0,
(3.8)

which acts on suitable sequences X and analogously on Y. This yields

Xn −Xk =
n∑

`=k+1

∆`X

and moreover we note the following expressions for later use

Xn =
n∑
`=0

∆`X , X −Xk =
∞∑

`=k+1

∆`X , X =
∞∑
`=0

∆`X . (3.9)

These summation rules immediately imply the following observation. For a tensor
product of the form XL ⊗XL there holds

XL ⊗XL =

(
L∑
k=0

∆kX

)
⊗

(
L∑
`=0

∆`X

)
=

L∑
k,`=0

(∆kX ⊗∆`X ) . (3.10)

In the following we show that it makes sense to consider∑
k+`≤L

(∆kX ⊗∆`X ) ≈ XL ⊗XL

as an approximation and quantify the error we make by restricting the summation range.
This is a simple and fast but crude way of describing the notion of sparse tensor approxi-
mation techniques. For a proper introduction and more details we refer the reader to the
excellent articles [33, 34].

Following this idea we define the sparse tensor product approximation operator P̂L(X ,Y),
which we define to act on sequences X and Y according to the following definition.

Definition 3.4. Let X = {X`} and Y = {Y`} be sequences that converge to X and
Y at a certain rate (cf. 3.3), respectively. Then we define the sparse tensor product
approximation operator by

P̂L(X ,Y) :=
∑

k+j≤L
∆kX ⊗∆jY, (3.11)

where here and in what follows the summation is understood over nonnegative indices
k, j ≥ 0.
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We now show the approximation property of P̂L(·, ·), which plays a key role in the
sparse approximation methods we will propose and analyze. To this end we note that
assumption (3.4) particularly implies that

loga(Nk)− loga(RN0) ≤ k ≤ loga(Nk) + loga(R/N0) ∀k ∈ N (3.12)

and
R−3N0Nk+j ≤ NkNj ≤ R3N0Nk+j ∀k, j ∈ N. (3.13)

The uniform bounds (3.12) and (3.13) will be central in the forthcoming analysis.

Lemma 3.5. Let X,Y ∈ H and X ,Y denote sequences that converge to X and Y ,
respectively, at a given rate specified by (3.3) with respect to a subspace W of H with a
stronger norm (cf. (3.5)). Moreover, assume that (3.4) holds. Then

‖X ⊗ Y − P̂L(X ,Y)‖H⊗H ≤ (C1 + C2 logNL) ·N−δL · ‖X‖W ‖Y ‖W (3.14)

where the constants C1 and C2 are independent of L and N0, . . . , NL. Moreover, if N0 is
sufficiently large, the constant C2 may be forced to satisfy C2 ≤ ε for any fixed ε > 0.

Proof. The summation properties (3.9) imply X ⊗ Y =
∑

k,j ∆kX ⊗ ∆jY. Hence, by
(3.11) and the bilinearity of the tensor product we obtain

X ⊗ Y − P̂L(X ,Y) =
∑

k+j>L

∆kX ⊗∆jY

=

L∑
k=0

∆kX ⊗
∞∑

j=L+1−k
∆jY

+

∞∑
k=L+1

∆kX ⊗
∞∑
j=0

∆jY


= X0 ⊗ (Y − YL) +

L∑
k=1

∆kX ⊗ (Y − YL−k) + (X −XL)⊗ Y,

where (3.9) has been used in the last step. Regrouping the terms we arrive at a symmetric
representation

X ⊗ Y − P̂L(X ,Y) =X ⊗ (Y − YL) + (X −XL)⊗ Y

+
∑

k+j=L−1

(X −Xk)⊗ (Y − Yj)−
∑

k+j=L

(X −Xk)⊗ (Y − Yj).

The triangle inequality, (3.3) and the crossnorm property of the ‖ · ‖H⊗H -norm imply

‖X ⊗ Y − P̂L(X ,Y)‖H⊗H ≤ ‖X ⊗ (Y − YL)‖H⊗H + ‖(X −XL)⊗ Y ‖H⊗H

+
∑

k+j=L−1

‖(X −Xk)⊗ (Y − Yj)‖H⊗H +
∑

k+j=L

‖(X −Xk)⊗ (Y − Yj)‖H⊗H

≤ c2‖X‖W ‖Y ‖W

2γ

c
N−δL +

∑
k+j=L−1

(NkNj)
−δ +

∑
k+j=L

(NkNj)
−δ


From (3.4) and (3.13) we find

∑
k+j=L

(
N0NL

NkNj

)δ
≤ R3δ(L+ 1),

NL

NL−1
≤ aR2
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3.3. Monte Carlo and multilevel Monte Carlo methods

and therefore

‖X ⊗ Y − P̂L(X ,Y)‖H⊗H

≤ c2N−δL ‖X‖W ‖Y ‖W

(
2γ

c
+ 2

(
aR5

N0

)δ
(L+ 1)

)
.

(3.15)

The assertion now follows by the upper bound in (3.12).

Corollary 3.6. Let q ∈ [1,∞], X,Y ∈ L2q(Ω;H) and X ,Y denote sequences that con-
verge to X and Y , respectively, at a given rate specified by (3.3) with respect to a subspace
W of H with a stronger norm (cf. (3.5)). Moreover, assume that (3.4) holds. Then

‖X⊗Y −P̂L(X ,Y)‖Lq(Ω;H⊗H) ≤ (C1 +C2 logNL) ·N−δL ·‖X‖L2q(Ω;W )‖Y ‖L2q(Ω;W ) (3.16)

where the constants C1 and C2 are independent of L and N0, . . . , NL. Moreover, if N0 is
sufficiently large, the constant C2 may be forced to satisfy C2 ≤ ε for any fixed ε > 0.

Proof. Now using the triangle inequality for the Lq(Ω;H ⊗H)-norm in combination with
the crossnorm property of the norm on H⊗H, the result follows by an application of the
Cauchy-Schwarz inequality and the requirements on X and Y .

3.3 Monte Carlo and multilevel Monte Carlo methods

In order to construct Monte Carlo methods for Problem 3.1, we will first recall well-known
results from the literature and lay the necessary groundwork for the more advanced topics.
We start by recalling the approximation of the mean by Monte Carlo (MC) and multilevel
Monte Carlo (MLMC) methods in a general context, i.e. in the context of Hilbert space
valued random fields. In a similar fashion, approximation of covariance functions in
the single level and multilevel context will then be presented. For more details on the
presentation we refer the reader to [7, 9, 8, 20] and the references therein.

3.3.1 Monte Carlo approximation of the mean

In preparation for the subsequent analysis we suppose that X ∈ L2(Ω;H) and recall some
standard notations and results of Monte Carlo (MC) methods for the approximation of
the mean of a Hilbert space valued random field X.

It is a well-known result that the expectation of a Hilbert space valued random field
X ∈ L2(Ω;H) can be approximated by its sample mean. Assuming {Xi}Mi=1 are indepen-
dent identically distributed (iid) samples of X, the sample mean is given by

EM [X] =
1

M

M∑
i=1

Xi,

where M ∈ N is the size of the underlying sample ensemble. Moreover, there holds the
following representation of the mean square error (cf. [7])

MSE = ‖E[X]− EM [X]‖2L2(Ω;H) =
1

M
‖X − E[X]‖2L2(Ω;H). (3.17)

Since the exact random field X is commonly not available for sampling, a suitable
approximation X` of X is chosen for sampling instead. Here we consider X` as an element
of a sequence X = {X`} converging to X, where the convergence is now understood to
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take place in the space L2(Ω;H). Hence, the exactness of the sample will also depend
on the convergence rate of the sequence and we denote the set of samples of X on level
` of the discretisation by {Xi

`}Mi=1. Since for iid samples Xi
` there holds the identity

E[EM [X`]] = E[X`], i.e. the sample mean is an unbiased estimator, and by the linearity
of the inner product in L2(Ω;H) in the first argument, we have the following convenient
splitting of the mean square error (cf. also [7])

‖E[X]− EM [X`]‖2L2(Ω;H) = ‖E[X −X`]‖2H +
1

M
‖X` − E[X`]‖2L2(Ω;H). (3.18)

The first term in this splitting characterises the discretisation error, which we shall sub-
sequently call the bias, whereas the second term provides information on the sampling
error and resembles a variance-like operator that we shall frequently abbreviate by the
expression

V(X) ≡ V(X,H) = ‖X − E[X]‖2L2(Ω;H), (3.19)

where the Hilbert spaceH will be omitted from the notation, if it is clear from the context.
In order to quantify the work needed to compute the sample mean we proceed as

follows. Let ` be fixed and suppose the cost C` to obtain a single sample Xi
` is bounded

as C` . Nγ
` , where here and in the following . shall denote ≤ C with a certain but

unspecified constant C, i.e. smaller up to a constant factor C. Then for a given error
tolerance ε` and

‖E[X]− EM [X`]‖L2(Ω;H) ≤ ε`
the ensued total work is given as Work(EM [X`]) = MC`. In light of (3.17) we infer that
the optimal sample size M` is proportional to ε−2

` . By Jensen’s inequality and (3.3) we
find

‖E[X −X`]‖H . N−α` , α ≥ δ,

which in turn implies that the cost of evaluation of a single sample scales as C` ∼ ε
−γ/α
` .

This tells us that in the worst case we are restricted by the deterministic convergence
rate δ and α is considered to be the weak convergence rate, which might exceed δ. This
yields a total work estimate of

Work(EM`
[X`]) . ε−2− γα .

This shows that the MC method behaves rather unfavourably as one does not only have
to reduce the discretisation error but also has to enlarge the size of the sample ensemble.
These results are summarized in the following Theorem for which a proof can be found
in [5], also confer [20].

Theorem 3.7. Suppose C` is the cost of evaluation of one sample Xi
` and {N`}∞`=0 is a

sequence satisfying N`
N`−1

≥ a for some fixed a > 1. Assume there exist α, γ > 0, such that
there holds

‖E[X −X`]‖H . N−α` , C` . Nγ
` .

Then for any mean square error (MSE) tolerance ε2
` , i.e. ‖E[X]− EM [X`]‖2L2(Ω;H) < ε2

` ,
there exists M = M(ε), such that the cost of evaluation of EM [X`] satisfies the asymptotic
bound

Cost(EM [X`]) . ε−2−γ/α.

The mulitplicative cost estimate for the single level Monte Carlo method can be over-
come by means of the so-called multilevel Monte Carlo method with which we will concern
ourselves next.
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3.3.2 Multilevel Monte Carlo approximation of the mean

The main idea of the multilevel Monte Carlo (MLMC) method is that for given L we can
write XL by means of a telescoping sum according to (3.9) as

XL =

L∑
`=0

Υ`, with Υ` = ∆`X and X−1 := 0,

where the terms Υ` are commonly referred to as level corrections. The expectation E[X]
can then be approximated by the multilevel sample mean

EML[X] :=
L∑
`=0

EM`
[Υ`]. (3.20)

It can be immediately seen from the definition of the multilevel sample mean, that now
for different values of ` the sample mean is taken with respect to a (possibly) varying size
of samples M`.

In order to have an optimal cost to accuracy relation, the size of the sample ensembles
on each level, i.e. for each level correction Υ`, is chosen in such a way that level corrections
composed of coarser approximations are sampled more in comparison to level corrections
of finer approximations.

We quote the following results from [7] which give the splitting of the mean square
error and the entailed total cost for the MLMC approximation of the mean.

Theorem 3.8. Suppose H is a separable Hilbert space and let X, {X`}L`=1 ∈ L2(Ω;H) be
random fields. Then

MSE = ‖E[X]− EML[X]‖2L2(Ω;H) = ‖E[X −XL‖2H +

L∑
`=1

1

M`
V(X` −X`−1). (3.21)

Theorem 3.9. Let C` := Cost(Y i
` ) denote the cost of the evaluation of a single sample of

the level correction Y i
` = Xi

`−Xi
`−1, and {N`}∞`=1 be an exponentially increasing sequence

with the property N`/N`−1 ≥ a for some fixed a > 1. Moreover, let α, β, γ > 0 assume
that the following asymptotic bounds are valid

1) ‖E[X −X`]‖H . N−α` , 2) V(Y`) . N−β` , 3) C` . Nγ
` . (3.22)

Then for any error tolerance ε > 0 and ‖E[X] − EML[X]‖L2(Ω;H) < ε there exists L ∈ N
and a sequenceM1, . . . ,ML ∈ N, such that the total cost of the multilevel estimator admits
the asymptotic bound

Cost(EML[X]) . ε−γ/α +


ε−2, β > γ,

ε−2| log(ε)|2, β = γ,

ε−2− γ−β
α , β < γ.

(3.23)

Remark 3.10. For convenience of our analysis we start counting the levels in the mul-
tilevel Monte Carlo Method from zero to be more in tune with the summation rules of
(3.9). Note that this index shift is merely a matter of convenience.
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3.3.3 Monte Carlo approximation of covariance functions

Let us recall the covariance function of two elements X,Y of the space L2(Ω;H), which
takes the form

Cov [X,Y ] = E [(X − E[X])⊗ (Y − E[Y ])] . (3.24)

With this in hand we adopt the covariance estimator from [42] and adapt it to the situation
of tensor products of Hilbert spaces.

Definition 3.11. Let X,Y ∈ L2(Ω;H) and M ∈ N a number of samples, then we define
the sample covariance estimator by the expression

CovM [X,Y ] :=
1

M − 1

M∑
i=1

(Xi − EM [X])⊗ (Y i − EM [Y ])

=
M

M − 1
(EM [X ⊗ Y ]− EM [X]⊗ EM [Y ]) .

(3.25)

We note that, since there holds

E[CovM [X,Y ]] =
M

M − 1

E[X ⊗ Y ]− 1

M2

∑
i,j

E[Xi ⊗ Y j ]

 = Cov [X,Y ] (3.26)

that CovM [·, ·] is an unbiased estimator. Moreover, note that if X and Y are centered,
i.e. E[X] = E[Y ] = 0, that there holds Cov [X,Y ] = Cov

[
X,Y

]
.

Remark 3.12. In order to compute the covariance estimator we will use the following
update formula (cf. [42, Remark 3.1]). Denote by

C =

M∑
i=1

(Xi − EM [X])⊗ (Y i − EM [Y ])

and draw one new sample of X and Y w.r.t. ωj. Then C can be updated according to

C = C +
M − 1

M
(Xj − EM [X])⊗ (Y j − EM [Y ]). (3.27)

Dividing C afterwards by (M̃ −1), where M̃ = M +1 is the total amount of samples after
updating, then C constitutes an unbiased covariance estimator (cf. (3.26)).

In the forthcoming analysis we study the convergence of the mean square error, which
here takes the form

MSE [CovM [X,Y ]] := E
[
‖CovM [X,Y ]− Cov [X,Y ] ‖2H⊗H

]
. (3.28)

There are multiple reasons for this approach. In particular, MSE is a standard risk
measure and the associated space L2(Ω;H ⊗H) is also a Hilbert space. This enables the
use of the Hilbertian structure in the forthcoming analysis which results in simple and
sharp estimates.

Before we prepare the analysis of the Monte Carlo methods, let us define a covariance-
like operator for the sake of simplicity of notation by

C[A,B] := E [〈A− E[A], B − E[B]〉H ] , (3.29)

where A,B ∈ L2(Ω;H).
The following technical lemma will enable the analysis of the proposed single level

and multilevel Monte Carlo methods.
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Lemma 3.13. Let H be a Hilbert space and A,B, S, T : Ω→ H centered random fields,
i.e. E[A] = E[B] = E[S] = E[T ] = 0. Then the following identity holds

E[〈CovM [A,B] ,CovM [S, T ]〉H⊗H ]− 〈Cov [A,B] ,Cov [S, T ]〉H⊗H

=
1

M
C [A⊗B,S ⊗ T ] +

1

M(M − 1)
F (A,B, S, T ),

(3.30)

where the higher order terms are expressed by

F (A,B, S, T ) = C[A,S] · C[B, T ] + 〈Cov [A, T ] ,Cov [S,B]〉. (3.31)

Proof. In view of (3.25) the left-hand side of (3.30) can be written as

e2 :=
M2

(M − 1)2
E
[
〈EM [A⊗B], EM [S ⊗ T ]〉− 〈EM [A⊗B], EM [S]⊗ EM [T ]〉

− 〈EM [A]⊗ EM [B], EM [S ⊗ T ]〉+ 〈EM [A]⊗ EM [B], EM [S]⊗ EM [T ]〉
]

−〈E[A⊗B],E[S ⊗ T ]〉 .
(3.32)

For the first term we obtain

f := E 〈EM [A⊗B], EM [S ⊗ T ]〉 =
1

M2

∑
ij

E
〈
Ai ⊗Bi, Sj ⊗ T j

〉
.

Splitting the sum into two parts—with i = j and i 6= j—we observe that

f =
1

M

(
E 〈A⊗B,S ⊗ T 〉+ (M − 1) 〈E[A⊗B],E[S ⊗ T ]〉

)
=

1

M
C[A⊗B,S ⊗ T ] + 〈E[A⊗B],E[S ⊗ T ]〉 .

(3.33)

For the second term there holds

E 〈EM [A⊗B], EM [S]⊗ EM [T ]〉 =
1

M3

∑
ijk

E〈Ak ⊗Bk, Si ⊗ T j〉

=
1

M3

∑
ik

E〈Ak ⊗Bk, Si ⊗ T i〉 =
1

M
f,

where the second identity holds, because the summands with i 6= j are zero. Indeed, in
this case either i or j are different from k. Assume w.l.o.g. that j 6= k, then

E〈Ak ⊗Bk, Si ⊗ T j〉 = E〈〈Ak, Si〉Bk, T j〉 = 〈E[〈Ak, Si〉Bk],E[T j ]〉 = 0,

since T is centered, i.e. E[T ] = 0. By symmetry, the same representation holds for the
third term in (3.32). The fourth term takes the form

E 〈EM [A]⊗ EM [B], EM [S]⊗ EM [T ]〉 =
1

M4

∑
ijk`

E〈Ai ⊗Bj , Sk ⊗ T `〉.
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We split the sum into three parts: 1) i = j∧k = `, 2) i = k 6= j = ` and 3) i = ` 6= j = k.
The first sum is proportional to f and the remaining part to F (A,B, S, T ):

1

M4

∑
ik

E〈Ai ⊗Bi, Sk ⊗ T k〉 =
1

M2
f,

1

M4

∑
i 6=j

E〈Ai ⊗Bj , Si ⊗ T j〉 =
1

M4

∑
i 6=j

E[〈Ai, Si〉] · E[〈Bj , T j〉]

=
M − 1

M3
C[A,S] · C[B, T ],

(3.34)

1

M4

∑
i 6=j

E〈Ai ⊗Bj , Sj ⊗ T i〉 =
1

M4

∑
i 6=j

E〈Ai ⊗ T i, Sj ⊗Bj〉

=
M − 1

M3
〈Cov [A, T ] ,Cov [S,B]〉.

(3.35)

Hence,

〈EM [A]⊗ EM [B], EM [S]⊗ EM [T ]〉 =
1

M2
f +

M − 1

M3
F (A,B, S, T ).

Collecting above representations for the terms in (3.32) we obtain

e2 =
M2

(M − 1)2

(
f

(
1− 2

M
+

1

M2

)
+
M − 1

M3
F (A,B, S, T )

)
− 〈Cov [A,B] ,Cov [S, T ]〉

=
1

M
C[A⊗B,S ⊗ T ] +

1

M(M − 1)
F (A,B, S, T ).

This finishes the proof.

Remark 3.14. When setting A = S and B = T , it is readily seen that the aforementioned
lemma characterises the MSE with respect to the covariance estimator of Definition 3.11.

The following lemma characterises the sampling error with respect to the covariance
estimator from Definition 3.11, when the exact random fields X and Y are available for
sampling.

Lemma 3.15. Suppose X,Y ∈ L4(Ω;H) and recall definitions (3.24) and (3.25). Then
for C := Cov [X,Y ] and CM := CovM [X,Y ] there holds

‖CM − C‖2L2(Ω;H⊗H) ≤
M + 1

M(M − 1)
‖X − E[X]‖2L4(Ω;H)‖Y − E[Y ]‖2L4(Ω;H). (3.36)

Proof. Assume without loss of generality that E[X] = 0 = E[Y ], which readily implies

‖CM − C‖2L2(Ω;H⊗H) = ‖CM‖2L2(Ω;H⊗H) − 2E
[
〈CM ,C〉H⊗H

]
+ ‖C‖2L2(Ω;H⊗H)

= ‖CM‖2L2(Ω;H⊗H) − ‖C‖
2
L2(Ω;H⊗H).

(3.37)

Then by Lemma 3.13 we find the splitting

‖CM − C‖2L2(Ω;H⊗H) =
1

M
C[X ⊗ Y,X ⊗ Y ]

+
1

M(M − 1)

(
C[X,X] · C[Y, Y ] + ‖C‖2H⊗H

)
.
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Now, since

C[X ⊗ Y,X ⊗ Y ] = ‖X ⊗ Y ‖2L2(Ω;H⊗H) ≤ ‖X‖
2
L4(Ω;H)‖Y ‖

2
L4(Ω;H)

by virtue of the Cauchy-Schwarz inequality as well as

C[X,X] · C[Y, Y ] = ‖X‖2L2(Ω;H)‖Y ‖
2
L2(Ω;H),

we find by another application of the Cauchy-Schwarz and Jensen’s inequality that

‖C‖2H⊗H ≤ (E [‖X‖H‖Y ‖H ])2 ≤ ‖X‖2L2(Ω;H)‖Y ‖
2
L2(Ω;H),

which leads us to verify the assertion with the bound ‖X‖L2(Ω;H) ≤ ‖X‖L4(Ω;H).

Since the exact random fields X and Y are in general not available, we have to make
due with certain approximations to the exact random fields. The error this entails is
quantified by means of the following

Lemma 3.16. Suppose X,Y ∈ L4(Ω;H) and let XL, YL satisfy

‖XL − E[XL]‖L4(Ω;H) ≤ η‖X‖L4(Ω;W ), ‖YL − E[YL]‖L4(Ω;H) ≤ η‖Y ‖L4(Ω;W ). (3.38)

Then for C := Cov [X,Y ] and CL;M := CovM [XL, YL] there holds

‖CL;M − C‖2L2(Ω;H⊗H) ≤
(
c2 ·N−2δ

L + η2 M + 1

M(M − 1)

)
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ). (3.39)

Proof. Without loss of generality we assume that X and Y are centered, i.e. E[X] =
0 = E[Y ], and we abbreviate CL := E[CL;M ]. Then by the unbiasedness of the estimator
CL;M we have that

‖CL;M − C‖2L2(Ω;H⊗H) = ‖CL − C‖2H⊗H + ‖CL;M − CL‖2L2(Ω;H⊗H). (3.40)

By Jensen’s inequality in combination with (3.6) we have that

‖C− CL‖H⊗H ≤ cN−δL ‖X‖L2(Ω;W )‖Y ‖L2(Ω;W ) ≤ cN−δL ‖X‖L4(Ω;W )‖Y ‖L4(Ω;W ). (3.41)

Moreover, by Lemma 3.15 with X replaced by XL and Y by YL, respectively, there holds

‖CL;M − CL‖2L2(Ω;H⊗H) ≤
M + 1

M(M − 1)
‖XL‖2L4(Ω;H)‖YL‖

2
L4(Ω;H).

We arrive at the claim by means of stability expressed by(3.38).

We are now in a position to state the following result about the cost and accuracy of
the full tensor product covariance single level Monte Carlo estimator .

Theorem 3.17. Suppose that the evaluation cost of a sample of XL (and likewise for YL)
satisfies the bound

Cost(XL) . Nγ
L.

Then under assumptions of Lemma 3.16 the accuracy

‖CL;M − C‖L2(Ω,H⊗H) < ε

can be achieved for any ε > 0 at the computational cost and memory requirements

Cost(CL;M ) . ε−2−max{γ,2}
δ (3.42)

and memory
Memory(CL;M ) ∼ N2

L. (3.43)
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Proof. By Lemma 3.16 the mean square error of the full tensor product Monte Carlo
approximation of the covariance function admits the asymptotic bound

‖CL;M − C‖2L2(Ω,H⊗H) . N−2δ
L +M−1.

This implies N−2δ
L ∼ ε2 ∼ M−1 for an optimal balancing of cost versus accuracy. Since

we have to compute M samples, where each sample is of cost Nγ
L and per sample we

have to compute a tensor product to update the covariance estimator, which takes N2
L

operations, the preceding observations and assumptions imply that

Cost(CL;M ) .M · (Nγ
L +N2

L) = ε−2 · (ε−γ/δ + ε−2/δ) . ε−2−max{γ,2}
δ .

The definition of CL;M readily shows that on a given level L there are N2
L coefficients to

represent the approximate covariance function, which we update according to (3.27). To
evaluate the computed approximation of the covariance function all N2

L coefficients are
necessary whence the assertion follows.

Remark 3.18. Note that due to the maximum in the exponent of ε in (3.42) there is no
benefit of using any solver of sub-quadratic complexity, i.e. for γ ∈ [1, 2), as the update
of the coefficients of the covariance will dominate the overall costs anyway.

As a remedy for the unfavorable growth of cost and memory requirements we propose
a sparse tensor single level covariance estimator as follows.

Definition 3.19. Let X,Y ∈ L2(Ω;H) and X ,Y sequences converging to X and Y in
H, respectively. The sparse tensor covariance estimator ĈovM [XL, YL] at level L for the
approximation of Cov [X,Y ] is then defined as

ĈovM [XL, YL] :=
∑

k+j≤L
CovM [∆kX ,∆jY]

=
1

M − 1

M∑
i=1

∑
k+j≤L

(∆kX i − EM [∆kX ])⊗ (∆jY i − EM [∆jY]).

(3.44)

Theorem 3.20. Let {N`} be an approximately exponentially increasing sequence with
respect to some a > 1, such that (3.4),(3.12) and (3.13) hold. Furthermore, assume there
exist γ, δ > 0, such that

‖X −XL‖H . N−δL ‖X‖W ,

‖Y − YL‖H . N−δL ‖Y ‖W ,

Cost(XL) . Nγ
L and Cost(YL) . Nγ

L,

where X,Y ∈ L4(Ω;H) with sequences X = {X`} and Y = {Y`} converging to X and Y ,
respectively. Then for all ε > 0 and

‖Cov [X,Y ]− ĈovM [XL, YL] ‖L2(Ω;H⊗H) < ε,

there holds

Cost(ĈovM [XL, YL]) . ε−2−γ/δ ·

{
| log(ε)|1+1/δ, γ = 1,

| log(ε)|γ/δ, γ > 1,

and we require
Memory(ĈovM [XL, YL]) ∼ NL log(NL).
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Proof. Without loss of generality let us assume that X and Y are centered. For µ :=
Cov [X,Y ] ,mL := ĈovM [XL, YL] and µL := E[mL] we note

MSE = ‖Cov [X,Y ]− ĈovM [XL, YL] ‖2L2(Ω;H⊗H)

= ‖µ− µL‖2L2(Ω;H⊗H) + ‖µL −mL‖2L2(Ω;H⊗H) ≡ I1 + I2.

Considering I1, we observe by means of Jensen’s inequality and Lemma 3.5 that

√
I1 ≤

∥∥∥∥∑k+j>L
∆kX ⊗∆jY

∥∥∥∥
L1(Ω;H⊗H)

. N−δL log(NL)‖X‖L2(Ω;W )‖Y ‖L2(Ω;W ).

Clearly, by (3.29), Definition 3.11 and Lemma 3.13

I2 =
∑

k1+j1≤L

∑
k2+j2≤L

{
E[〈CovM

[
∆k1X ,∆j1Y

]
,CovM

[
∆k2X ,∆j2Y

]
〉H⊗H ]

− 〈Cov
[
∆k1X ,∆j1Y

]
,Cov

[
∆k2X ,∆j2Y

]
〉H⊗H

}
=

∑
k1+j1≤L

∑
k2+j2≤L

{
1

M
C[∆k1X ⊗∆j1Y,∆k2X ⊗∆j2Y]

+
1

M(M − 1)
F (∆k1X ,∆j1Y,∆k2X ,∆j2Y)

}
≡ J1 + J2.

Rearranging J1, we find by virtue of the triangle inequality, Corollary 3.6 and the stronger
norm on W that

J1 =
1

M
C[P̂L(X ,Y), P̂L(X ,Y)] =

1

M
V(P̂L(X ,Y))

≤ 2

M

(
‖X ⊗ Y ‖2L2(Ω;H⊗H) + ‖X ⊗ Y − P̂L(X ,Y)‖2L2(Ω;H⊗H)

)
≤ 2

M

(
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ) + cN−2δ

L log(NL)2‖X‖2L4(Ω;W )‖Y ‖
2
L4(Ω;W )

)
.

1

M
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ).

Proceeding, we note that by (3.31) the higher order term J2 splits into two summands,
i.e. J2 = Ja2 + Jb2 . Assuming independence of the sequences X and Ỹ, rearranging and
taking the sums into the inner product we find that

Ja2 =
1

M(M − 1)

∑
k1+j1≤L

∑
k2+j2≤L

C[∆k1X ,∆k2X ] · C[∆j1Ỹ,∆j2Ỹ]

=
1

M(M − 1)
E[‖P̂L(X , Ỹ)‖2H⊗H ] =

1

M(M − 1)
V(P̂L(X , Ỹ))

.
1

M(M − 1)
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W )

(3.45)

in analogy to J1, where we have used again Lemma 3.5, Jensen’s inequality and the
triangle inequality. Similarly, assuming mutual independence of the sequences X , X̃ ,Y
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and Ỹ, we arrive at

Jb2 =
1

M(M − 1)
E[〈P̂L(X̃ ,Y), P̂L(X , Ỹ)〉H⊗H ]

≤ 1

M(M − 1)
(E[‖P̂L(X , Ỹ)‖2H⊗H ])1/2(E[‖P̂L(X̃ ,Y)‖2H⊗H ])1/2 (3.46)

.
1

M(M − 1)
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ),

where after rearranging and taking the sums into the inner product we have used sym-
metry of the scalar product on H and the Cauchy-Schwarz inequality.

By collecting the previous estimates we deduce the following asymptotic bound for
the mean square error

MSE . N−2δ
L (log(NL))2‖X‖2L2(Ω;W )‖Y ‖

2
L2(Ω;W ) +

M + 1

M(M − 1)
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ).

For the optimal balancing of the MSE we note, since (M + 1)/(M − 1)↘ 1, that asymp-
totically

MSE ∼ N−2δ
L (log(NL))2 +

1

M
∼ ε2,

whence M ∼ ε−2. Further, since for L large enough N−δL log(NL) ∼ ε implies log(NL) ∼
| log(ε)|, we findN−δL ∼ ε/| log(ε)|. Since we needO(NL log(NL)) coefficients, our memory
requirements are also bounded by a constant factor times NL log(NL). For the total cost,
considering that it takes O(NL log(NL)) work to build the sparse tensor approximant and
O(Nγ

L) work to compute the samples, we conclude

Cost(ĈovM [X,Y ]) . M(Nγ
L +NL log(NL)) ∼ ε−2 ·

{
εN δ+1

L , γ = 1,

Nγ
L, γ > 1,

∼ ε−2

ε
(

ε
| log(ε)|

)− δ+1
δ
, γ = 1,(

ε
| log(ε)|

)− γ
δ
, γ > 1,

∼ ε−2−γ/δ ·

{
| log(ε)|1+1/δ, γ = 1,

| log(ε)|
γ
δ , γ > 1.

Remark 3.21. To see that the construction of the sparse tensor product covariance esti-
mator ĈovM [·, ·] on discretisation level L takes O(NL log(NL)) work, we consider (3.44)
and (3.9) and write

ĈovM [XL, YL] :=
∑

k+j≤L
CovM [∆kX ,∆jY] =

L∑
k=0

CovM

∆kX ,
L−k∑
j=0

∆jY


=

L∑
k=0

CovM [∆kX , YL−k]

=
L∑
k=0

CovM [Xk, YL−k]−
L−1∑
k=0

CovM [Xk, YL−k−1] .
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Then by (3.13) we find the asserted bound for the work of constructing the sparse tensor
product covariance estimator. This representation is similar to that of the combination
technique of sparse tensor product approximation (cf. [34, 36]).

3.3.4 Multilevel Monte Carlo approximation of covariance functions

Another approach of improving the full tensor product approximation of covariance func-
tions is realized by the multilevel variant of the full tensor product single level approxi-
mation Monte Carlo method.

As before we shall firstly consider full tensor product approximations and then turn
to sparse tensor product approximations.

Definition 3.22. Let X,Y ∈ L2(Ω;H) and X ,Y sequences converging to X and Y ,
respectively. The full tensor product covariance estimator CovML [X ,Y] at level L for the
approximation of Cov [X,Y ] is then defined as

CovML [X ,Y] :=
L∑
`=0

CovM`
[X`, Y`]− CovM`

[X`−1, Y`−1]

=

L∑
`=0

C`;M`
− C`−1;M`

.

(3.47)

Theorem 3.23. Let {N`} be an approximately exponentially increasing sequence with
respect to some a > 1, such that (3.4),(3.12) and (3.13) hold. Furthermore, assume there
exist γ, δ > 0, such that

‖X −XL‖H . N−δL ‖X‖W ,

‖Y − YL‖H . N−δL ‖Y ‖W ,

Cost(XL) . Nγ
L and Cost(YL) . Nγ

L.

Suppose that the evaluation of a sample of the level correction Υ` = C`;M`
− C`−1;M`

satisfies C` := Cost(Υ`) . N
max{γ,2}
` . Under assumptions of Lemma 3.16 and letting for

brevity
CML := CovML[X ,Y],

then for any accuracy ε > 0

‖CML − C‖L2(Ω,H⊗H) < ε

can be achieved at the computational cost

Cost(CML) .


ε−2, 2δ > max{γ, 2},
ε−2| log(ε)|2, 2δ = max{γ, 2},
ε−

max{γ,2}
δ , 2δ < max{γ, 2},

and memory requirements
Memory(CML) ∼ N2

L.

Proof. Using notation as in the full tensor single level case, analogously to (3.40), we note

‖CML − C‖2L2(Ω;H⊗H) = ‖CL − C‖2H⊗H + ‖CML − CL‖2L2(Ω;H⊗H) (3.48)
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and ‖CL − C‖2H⊗H . N−2δ
L . For the second summand there holds

‖CML − CL‖2L2(Ω;H⊗H) = ‖CML‖2L2(Ω;H⊗H) − ‖CL‖
2
H⊗H .

Moreover, we observe for k 6= ` that Ck;Mk
and C`;M`

are built using independent se-
quences of realizations {Xk}, {Yk}, {X`} and {Y`}. Let us denote for brevity

C`;M`
− C`−1;M`

=
∑
k∨j=`

CovM`
[∆kX ,∆jY] =:

∑
k,j

′CovM`
[∆kX ,∆jY] .

Hence, rearranging the terms, taking advantage of indepedence and Lemma 3.13 we get

‖CML‖2L2(Ω;H⊗H) − ‖CL‖
2
H⊗H

=

L∑
`=0

∑
k,j

′
∑
k′,j′

′

{
E[〈CovM`

[
∆kX ,∆jY

]
,CovM`

[
∆k′X ,∆j′Y

]
〉H⊗H ]

− 〈Cov
[
∆kX ,∆jY

]
,Cov

[
∆k′X ,∆j′Y

]
〉H⊗H

}

=
L∑
`=0

∑
k,j

′
∑
k′,j′

′
{

1

M`
C[∆kX ⊗∆jY,∆k′X ⊗∆j′Y]

+
1

M`(M` − 1)
F (∆kX ,∆jY,∆k′X ,∆j′Y)

}
=

L∑
`=0

(J1,` + J2,`) ≡ J1 + J2.

Let Q` = X` ⊗ Y ` −X`−1 ⊗ Y `−1. Then with Q−1 ≡ 0

J1 =
L∑
`=0

J1,` =
L∑
`=0

1

M`
C[Q`, Q`] =

L∑
`=0

1

M`
V(Q`).

Now, since V(Q`) = E
[
‖Q` − E[Q`]‖2H⊗H

]
≤ ‖Q`‖2L2(Ω;H⊗H), and so for ` ≥ 1 there holds

‖Q`‖L2(Ω;H⊗H) ≤ ‖X` ⊗ Y ` −X ⊗ Y ‖L2(Ω;H⊗H) + ‖X ⊗ Y −X`−1 ⊗ Y `−1‖L2(Ω;H⊗H)

≤ cN−δ` (1 + (aR2)δ)‖X‖L4(Ω;W )‖Y ‖L4(Ω;W ).

Obviously, for ` = 0 there holds

‖Q0‖L2(Ω;H⊗H) ≤ ‖X ⊗ Y ‖L2(Ω;H⊗H) + ‖X0 ⊗ Y0 −X ⊗ Y ‖L2(Ω;H⊗H)

≤ C(1 +N−δ0 )‖X‖L4(Ω;W )‖Y ‖L4(Ω;W )

and hence,

J1 ≤ C
1

M0
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ) + C̃

L∑
`=0

1

M`
N−2δ
` ‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ).

For the higher order terms we proceed as follows. Let J2 = Ja2 + Jb2 and estimate both
terms separately. Then for Ja2 by (3.34) we find by assuming independence of the se-
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quences X and Ỹ

Ja2 =
L∑
`=0

∑
k,j

′
∑
k′,j′

′ 1

M`(M` − 1)
C[∆kX ,∆k′X ] · C[∆jỸ,∆j′Ỹ]

=

L∑
`=0

∑
k,j

′
∑
k′,j′

′ 1

M`(M` − 1)
C[∆kX ⊗∆jỸ,∆k′X ⊗∆j′Ỹ]

.
1

M0(M0 − 1)
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ) +

L∑
`=0

N−2δ
`

M`(M` − 1)
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ).

Similarly, for Jb2 by (3.35), by assuming independence of the sequences X , X̃ ,Y and Ỹ in
addition to the Cauchy-Schwarz inequality and the symmetry of the inner product on H
there holds

Jb2 =

L∑
`=0

∑
k,j

′
∑
k′,j′

′ 1

M`(M` − 1)
〈Cov

[
∆kX ,∆j′Y

]
,Cov

[
∆k′X̃ ,∆jỸ

]
〉H⊗H

=
L∑
`=0

∑
k,j

′
∑
k′,j′

′ 1

M`(M` − 1)
E
[
〈∆kX ⊗∆jỸ,∆k′X̃ ⊗∆j′Y〉H⊗H

]

.
1

M0(M0 − 1)
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ) +

L∑
`=0

N−2δ
`

M`(M` − 1)
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ).

Collecting the estimates for J1, J
a
2 and Jb2 , and noting that (M` + 1)/(M` − 1)→ 1 from

above shows that the mean square error admits the asymptotic bound

MSE . N−2δ
L +M−1

0 +
L∑
`=0

M−1
` N−2δ

` .

Here, we have ε ∼ N−δL and so the optimal choice of samples for balancing cost versus accu-
racy, which we compute using a Lagrange multiplier method with respect to the cost func-
tional F (M0,M1, . . . ,ML) =

∑L
`=0C`M` with a fixed variance at ε2 !

=
∑L

`=0M
−1
` N−2δ

` ,
is given by

Mk ∼ N−δk (Nγ
k +N2

k )−1/2 ·


N2δ
L , 2δ > max{γ, 2},

LN2δ
L , 2δ = max{γ, 2},

(Nγ
L +N2

L)N δ
L, 2δ < max{γ, 2}.

(3.49)

Since on each level we approximate the covariance using N2
` coefficients, the memory
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requirements are bounded by O(N2
L). For the total cost we find

Cost(CML) ∼
L∑
`=0

C`M` .
L∑
`=0

C`dM`e .
L∑
`=0

C`M` +
L∑
`=0

C`

.
L∑
`=0

(Nγ
` +N2

` ) ·

(
N2δ
L N

−δ
` (Nγ

` +N2
` )−1/2

(
L∑
k=0

(Nγ
k +N2

k )1/2N−δk

))
+N

max{γ,2}
L

∼N2δ
L

(
L∑
`=0

(Nγ
` +N2

` )1/2N−δ`

)2

+N
max{γ,2}
L

.


N2δ
L , 2δ > max{γ, 2}

L2N2δ
L , 2δ = max{γ, 2}

N
max{γ,2}
L , 2δ < max{γ, 2}

+N
max{γ,2}
L

.


ε−2, 2δ > max{γ, 2}
ε−2| log(ε)|2, 2δ = max{γ, 2}
ε−

max{γ,2}
δ , 2δ < max{γ, 2}

+ ε−
max{γ,2}

δ ,

which upon noting the cases yields the claim.

Definition 3.24. Let X,Y ∈ L2(Ω;H) and X ,Y sequences converging to X and Y ,
respectively. The sparse tensor product covariance estimator ĈovML [X ,Y] at level L for
the approximation of Cov [X,Y ] is then defined as

ĈovML [X ,Y] :=

L∑
`=0

ĈovM`
[X`, Y`]− ĈovM`

[X`−1, Y`−1]

=
L∑
`=0

Ĉ`;M`
− Ĉ`−1;M`

.

(3.50)

We now turn our attention to the analysis of the sparse tensor product multilevel
covariance estimator ĈovML [X ,Y].

Theorem 3.25. Let {N`} be an approximately exponentially increasing sequence with
respect to some a > 1, such that (3.4), (3.12) and (3.13) hold. Let C` := Cost(Υ`) denote
the cost of one level correction on level `, where the level corrections are given by

Υ` = ĈovM`
[X`, Y`]− ĈovM`

[X`−1, Y`−1] =: Ĉ`;M`
− Ĉ`−1;M`

.

Assume there exist δ > 0 and γ ≥ 1, such that
‖X −X`‖H . N−δ` ‖X‖W ,

‖Y − Y`‖H . N−δ` ‖Y ‖W ,

C` . Nγ
` +N` log(N`),

where X,Y ∈ L4(Ω;H). Then for any ε > 0 and

‖Cov [X,Y ]− ĈovML [X ,Y] ‖L2(Ω;H⊗H) < ε,
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there exist L ∈ N and a sequence M0, . . . ,ML ∈ N, such that for γ = 1

Cost(ĈovML [X ,Y]) .


ε−2, δ > 1/2,

ε−2| log(ε)|5, δ = 1/2,

ε−1/δ| log(ε)|1+1/δ, δ < 1/2,

(3.51)

and for γ > 1

Cost(ĈovML [X ,Y]) .


ε−2, δ > γ/2,

ε−2| log(ε)|4, δ = γ/2,

ε−γ/δ| log(ε)|γ/δ, δ < γ/2,

(3.52)

and memory
Memory(ĈovML [X ,Y]) ∼ NL log(NL).

Proof. W.l.o.g. let E[X] = 0 = E[Y ]. With notation similar to the single level case,
namely µ = Cov [X,Y ] ,mL = ĈovML [X ,Y] and µL = E[mL], we have

MSE = ‖µ− µL‖2L2(Ω;H⊗H) + ‖µL −mL‖2L2(Ω;H⊗H) ≡ I1 + I2.

As in the single level case we note, since E[ĈovML [X ,Y]] = E[P̂L(X ,Y)], that

√
I1 ≤

∥∥∥∥∑k+j>L
∆kX ⊗∆jY

∥∥∥∥
L1(Ω;H⊗H)

. N−δL log(NL)‖X‖L2(Ω;W )‖Y ‖L2(Ω;W ).

Moreover, we observe for k 6= ` that P̂k(X ,Y), P̂k−1(X ,Y), P̂`(X ,Y), P̂`−1(X ,Y) are
built using independent sequences of realizations of sequences {Xk}, {Yk}, {X`} and {Y`}.
Hence, rearranging the terms in I2, taking advantage of indepedence and Lemma 3.13
there holds

I2 =
L∑
`=0

∑
m1+n1=`

∑
m2+n2=`

{
E[〈CovM`

[
∆m1X ,∆n1Y

]
,CovM`

[
∆m2X ,∆n2Y

]
〉H⊗H ]

− 〈Cov
[
∆m1X ,∆n1Y

]
,Cov

[
∆m2X ,∆n2Y

]
〉H⊗H

}

=
L∑
`=0

∑
m1+n1=`

∑
m2+n2=`

{
1

M`
C[∆m1X ⊗∆n1Y,∆m2X ⊗∆n2Y]

+
1

M`(M` − 1)
F (∆m1X ,∆n1Y,∆m2X ,∆n2Y)

}
=

L∑
`=0

(J1,` + J2,`) ≡ J1 + J2.

Letting ζ` = P̂`(X ,Y) − P̂`−1(X ,Y), ` ≥ 0, with P̂−1 ≡ 0 we obtain by taking the sums
inside

J1 =

L∑
`=0

J1,` =

L∑
`=0

1

M`
C[ζ`, ζ`] =

L∑
`=0

1

M`
V(ζ`).
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Now, since V(ζ`)
1/2 = (E[‖ζ`−E[ζ`]‖2H⊗H ])1/2 ≤ ‖ζ`‖L2(Ω;H⊗H), for ` > 1 we have by the

triangle inequality and Corollary 3.6

‖ζ`‖L2(Ω;H⊗H) ≤ ‖X ⊗ Y − P̂`(X ,Y)‖L2(Ω;H⊗H) + ‖X ⊗ Y − P̂`−1(X ,Y)‖L2(Ω;H⊗H)

≤ (cN−δ` log(N`) + cN−δ`−1 log(N`−1))‖X‖L4(Ω;W )‖Y ‖L4(Ω;W )

≤ cN−δ`

(
1 +

(
N`

N`−1

)δ)
log(N`)‖X‖L4(Ω;W )‖Y ‖L4(Ω;W )

≤ c̃N−δ` log(N`)‖X‖L4(Ω;W )‖Y ‖L4(Ω;W )

as well as ‖ζ0‖L2(Ω;H⊗H) ≤ c̃(1 +N−δ0 log(N0))‖X‖L4(Ω;W )‖Y ‖L4(Ω;W ). Thus, we obtain

J1 .

(
1

M0
+

L∑
`=0

1

M`
N−2δ
` log(N`)

2

)
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W )

where the hidden constant depends only on δ, a and N0. Dealing with J2, firstly we note
that analogously to the single level case that the higher order term J2 splits into two
parts, i.e. J2 = Ja2 + Jb2 . By assuming independence of the sequences of realisations X
and Ỹ, we observe for each summand in Ja2 and ` ≥ 1 as in the single level case, cf. (3.45),
that

Ja2,` =
1

M`(M` − 1)

 ∑
m1+n1=`

∑
m2+n2=`

C[∆m1X ,∆m2X ] · C[∆n1Ỹ,∆n2Ỹ]


.

1

M`(M` − 1)
N−2δ
` log(N`)

2‖X‖2L4(Ω;W )‖Y ‖
2
L4(Ω;W )

Similarly, for Jb2,` we conclude by virtue of mutual independence of the sequences X , X̃ ,Y
and Ỹ, the Cauchy-Schwarz inequality and the symmetry of the inner product on H that,
cf. (3.46),

Jb2,` =
1

M`(M` − 1)

 ∑
m1+n1=`

∑
m2+n2=`

〈Cov
[
∆m1X ,∆n2Y

]
,Cov

[
∆m2X̃ ,∆n1Ỹ

]
〉H⊗H


.

1

M`(M` − 1)
N−2δ
` log(N`)

2‖X‖2L4(Ω;W )‖Y ‖
2
L4(Ω;W )

Thus, noting that Ja2,0 . (M0 +1)/(M0(M0 +1)) as well as Jb2,0 . (M0 +1)/(M0(M0 +1)),
summing over the estimates for J1, J

a
2,` and J

b
2,` yields

MSE . N−2δ
L log(NL)2‖X‖2L2(Ω;W )‖Y ‖

2
L2(Ω;W )

+

(
M0 + 1

M0(M0 − 1)
+

L∑
`=0

M` + 1

M`(M` − 1)
N−2δ
` log(N`)

2

)
‖X‖2L4(Ω;W )‖Y ‖

2
L4(Ω;W ).

Now, for any ε > 0 and ‖µ−µL‖H⊗H . ε there exists L large enough with N−δL log(NL) ∼
ε. The cost C` on each level ` is proportional to Nγ

` +N` log(N`), since we have to compute
samples Xi

0, . . . , X
i
` and Y i

0 , . . . , Y
i
` , respectively, which accounts for O(Nγ

` ) work and
assembling the sparse tensor approximant requires O(N` log(N`)) work. We distinguish
the two cases γ = 1 and γ > 1, but we choose the number of samples on the coarsest level
as M0 = L−2N2δ

L in either case. Moreover, since the fraction (M` + 1)/(M` − 1) ≤ 3 for
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3.3. Monte Carlo and multilevel Monte Carlo methods

M` ≥ 2 and converges to 1 from above, the factor can be neglected asymptotically. Then
for γ = 1 selecting M` for ` = 1, . . . , L as

M` ∼ N
−(δ+ 1

2
)

` log(N`)
1/2 ·


L−2N2δ

L , δ > 1/2,

L1/2N2δ
L , δ = 1/2,

L−1/2N
δ+ 1

2
L , δ < 1/2,

(3.53)

we find by a straightforward computation for the MSE that

L∑
`=1

1

M`
N−2δ
` log(N`)

2 ∼
(

L∑̀
=1

`3/2N
−δ+1/2
`

)
·


L2N−2δ

L , δ > 1/2

L1/2N−2δ
L , δ = 1/2

L−1/2N
−(δ+1/2)
L , δ < 1/2


.


1, δ > 1/2

L5/2, δ = 1/2

L3/2N
−(δ−1/2)
L , δ < 1/2

 ·

L2N−2δ

L , δ > 1/2

L−1/2N−2δ
L , δ = 1/2

L1/2N
−(δ+1/2)
L , δ < 1/2


∼


L2N−2δ

L , δ > 1/2

L2N−2δ
L , δ = 1/2

L2N−2δ
L , δ < 1/2

 ∼ ε2

In the case of a non-optimal solver, i.e. γ > 1, selecting M` for ` = 1, . . . , L as

M` ∼ N
−( 2δ+γ

2
)

` log(N`) ·


L−2N2δ

L , δ > γ/2,

N2δ
L , δ = γ/2,

L−1N
2δ+γ

2
L , δ < γ/2,

(3.54)

leads to the desired balancing, since

L∑
`=1

1

M`
N−2δ
` log(N`)

2 ∼
(

L∑̀
=1

`N
γ−2δ

2
`

)
·


L2N−2δ

L , δ > γ/2

N−2δ
L , δ = γ/2

N
− γ+2δ

2
L , δ < γ/2


.


1, δ > γ/2
L2, δ = γ/2

LN
γ−2δ

2
L , δ < γ/2

 ·

L2N−2δ

L , δ > γ/2

N−2δ
L , δ = γ/2

LN
− γ+2δ

2
L , δ < γ/2


∼


L2N−2δ

L , δ > γ/2

L2N−2δ
L , δ = γ/2

L2N−2δ
L , δ < γ/2

 ∼ ε2.

Finally, we consider the work ensued in both cases. First off we note that the cost of
a sample on the coarsest grid is constant, i.e. C0 ∼ Nγ

0 + N0 log(N0), and so C0M0 .
L−2N2δ

L in any case. We start with the case γ = 1 selecting M` as above to find by
assumption on the cost C` that

L∑
`=0

C`M` .
L∑
`=0

N` log(N`) ·
(
N
−(δ+ 1

2)
` log(N`)

1/2 · {·}L
)

+NL log(NL)

.


L−2N2δ

L , δ > 1/2,
L3N2δ

L , δ = 1/2,
LNL, δ < 1/2.

+NL log(NL)
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Thus, considering that NL ∼ ε−1/δ| log(ε)|1/δ and L ∼ log(NL) ∼ | log(ε)| the cost for
γ = 1 is given by

Cost(ĈovML [X ,Y]) .


ε−2, δ > 1/2,

ε−2| log(ε)|5, δ = 1/2,

ε−1/δ| log(ε)|1+1/δ, δ < 1/2.

+ ε−
1
δ | log(ε)|1+ 1

δ .

In the case that γ > 1, we find

L∑
`=0

C`M` .


L−2N2δ

L , δ > γ/2,
L2N2δ

L , δ = γ/2,
Nγ
L, δ < γ/2.

+Nγ
L

and hence

Cost(ĈovML [X ,Y]) .


ε−2, δ > γ/2,

ε−2| log(ε)|4, δ = γ/2,

ε−γ/δ| log(ε)|γ/δ, δ < γ/2.

+ ε−
γ
δ | log(ε)|

γ
δ

By noticing that the cost on the coarsest level is dominated in every case by the cost on
the finer levels, we arrive at the assertion.

3.4 Theoretical comparison of the proposed methods

In this section we shall give a theoretical comparison of the proposed methods and discuss
the parameters that lead us to choose one method over the other.

Let us first collect the results for cost and memory requirements of the analyzed
methods into the following tables. We shall abbreviate the methods as follows. The
single level full tensor product Monte Carlo method will be termed FTP-MC and the
single level sparse tensor product Monte Carlo method by STP-MC. For the multilevel
variants we choose the abbreviations FTP-MLMC and STP-MLMC for the full tensor
and sparse tensor product MLMC, respectively.

FTP-MC ε−2−max{γ,2}
δ

STP-MC ε−2− γ
δ ·

{
| log(ε)|1+1/δ, γ = 1

| log(ε)|γ/δ, γ > 1

Table 3.1: Cost of the proposed Monte Carlo methods

Let us consider the case of γ ≥ 2 first. Then we see from Table 3.1 that the cost of
FTP-MC is ε−2−γ/δ and is thus better than that of the STP-MC, since the sparse tensor
product approximation features another factor of | log(ε)|γ/δ, which is not present for the
FTP-MC. Comparing the FTP-MC with the multilevel variants shows that both methods
are better than the FTP-MC, but that the STP-MLMC loses against the FTP-MLMC,
because of the additional log factors. This gives the following ranking in terms of cost

STP-MC & FTP-MC & STP-MLMC & FTP-MLMC, (3.55)

when the solver has the complexity γ ≥ 2.
In the case of better solvers, i.e. γ ∈ [1, 2), for e.g. multigrid methods, the situation

is different. Here, since the full tensor product Monte Carlo method does not benefit
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FTP-MLMC


ε−2, 2δ > max{γ, 2}
ε−2| log(ε)|2, 2δ = max{γ, 2}
ε−

max{γ,2}
δ , 2δ < max{γ, 2}

+ ε−max{γ,2}/δ

STP-MLMC γ = 1 :


ε−2, 2δ > 1

ε−2| log(ε)|5, 2δ = 1

ε−1/δ| log(ε)|1+1/δ, 2δ < 1

+ ε−1/δ| log(ε)|1/δ

γ > 1 :


ε−2, 2δ > γ

ε−2| log(ε)|4, 2δ = γ

ε−γ/δ| log(ε)|γ/δ, 2δ < γ

+ ε−γ/δ| log(ε)|γ/δ

Table 3.2: Cost of the proposed multilevel Monte Carlo methods

at all from a better solver, we see that the sparse methods will win in any case. Since
for the multilevel variant we experience a multilevel acceleration, which is due to not
having to sample too much on the finer levels, it is obvious that STP-MC is more costly
than the STP-MLMC. The question is now where the FTP-MLMC fits into the picture.
Comparing the different estimates we see that the FTP-MLMC behaves worse than the
STP-MLMC, since γ ∈ [1, 2) and we are stuck with a 2 in the maximum of the exponent.
If there holds

ε−2| log(ε)|2 + ε−2/δ ≤ ε−2| log(ε)|4 + ε−γ/δ| log(ε)|γ/δ

then the FTP-MLMC has a better cost effectiveness. This happens when the solver
becomes worse, i.e. if γ ≈ 2. Then it can happen, that in the computationally attractive
range the FTP MLMC method might be more cost effective. This effect can e.g. be due
to the work that has to be put in for highly resolving a source term f naïvely for the
computation of the right-hand side of the linear system. Nevertheless, the STP-MLMC
method will win in the long run, i.e. will have a better asymptotical cost to accuracy ratio,
anyway. From this perspective it is the outright best choice of the methods presented.
Finally, we note that in the case that γ ∈ [1, 2) we have the following ranking of the
proposed methods with respect to computational cost:

FTP-MC & STP-MC & FTP-MLMC & STP-MLMC. (3.56)

FTP-MC N2
L

STP-MC NL log(NL)

FTP-MLMC N2
L

STP-MLMC NL log(NL)

Table 3.3: Memory requirements for the proposed methods

With respect to the memory requirements we see in any case that the sparse tensor
product methods are much better as they grow with an essentially linear rate, i.e. up to
logarithmic factors. This means that in situations where the data of the solution needs
to be archived the sparse tensor product methods are the obvious choice.
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3.5 Numerical experiments

In order to illustrate the theoretical construction and convergence of the proposed meth-
ods, we recall in the following the stochastic elliptic model problem in a Lipschitz domain
D ⊂ Rd with d = 1, 2, which is used in the numerical experiments: −∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω), in D,

u(x, ω) = 0, on Γ = ∂D.
(3.57)

for all ω ∈ Ω. Furthermore, we will make the following assumption on the data f and
the random diffusion coefficient κ.

Assumption 3.26. For 2 ≤ k ≤ ∞, assume that f ∈ Lk(Ω;L2(D)) and that for every
ω ∈ Ω we have κ(·, ω) ∈W 1,∞(D), such that there exist two finite and positive constants
κ−, κ+ ∈ R with

0 < κ− ≤ ess infx∈Dκ(x, ω) ≤ ‖κ(x, ω)‖L∞(D) ≤ κ+ <∞, ∀ω ∈ Ω,

and hence that the random diffusion coefficient κ(x, ω) is uniformly bounded for all ω ∈ Ω
on D. Additionally, assume that κ and f are independent and strongly measurable as
mappings taking values in W 1,∞(D) and L2(D), respectively.

In the following discussion let k = 2 and setH = H1
0 (D), whence the weak formulation

of (3.57) reads: Find u ∈ L2(Ω;H), such that for all v ∈ H there holds

a(u, v) := E
[∫

D
κ(x, ω)∇u(x, ω)∇v(x) dx

]
= E

[∫
D
f(x, ω)v(x) dx

]
=: L(v). (3.58)

Under Assumption 3.26 it is easy to show that the stochastic elliptic boundary value
problem (3.57) admits a unique solution u ∈ L2(Ω;H) for every given f ∈ L2(Ω;L2(D)).
Moreover, Assumption 3.26 guarantees that the solution u ∈ H2

loc(D) P-almost surely.
More precisely, u ∈ Lk(Ω;W ) for W := {w ∈ H : ∆w ∈ L2(D), w = 0 on Γ} endowed
with the norm ‖w‖W = ‖∆w‖L2(D) + ‖w‖L2(D) and for 2 ≤ k ≤ ∞ there holds the a
priori estimate

‖u‖Lk(Ω;W ) ≤ C(κ)‖f‖Lk(Ω;L2(D)).

For more details we refer the reader to [5].

3.5.1 Discretization

We will employ the Finite Element Method (FEM) to discretise the model problem.
Therefore, let {T }∞`=1 denote a sequence of regular meshes on the polygonal domain D of
quasi-uniform intervals for d = 1 and triangles for d = 2, respectively. As usual a mesh T
is called regular, if the intersection of two elements K and K ′ is either empty, a vertex,
or an entire edge. Moreover, denote the meshwidth of T` by h` = maxK∈T` diam(K) and
assume that T` is σ-shape regular for all `, i.e. there exists a finite positive constant σ, such
that σ = sup` maxK∈T`

hK
ρK

, where ρK denotes the maximal radius of the element incircle.
Uniform mesh refinement is achieved by regular subdivision of the elements of T`. Thus,
T`+1 is obtained by uniform refinement of T`. We will use the spaces V` = S1,0

0 (T`), ` ≥ 1.
Since

V1 ⊂ V2 ⊂ · · · ⊂ V` ⊂ · · · ⊂ H
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the corresponding Galerkin formulation is conforming and the discrete problem reads:
Find u` ∈ L2(Ω;V`), such that

a(u`, v`) = L(v`), ∀v` ∈ L2(Ω;V`).

By the assumption on the random diffusion coefficient κ and the conformity of the method
there exists a unique FE solution u` ∈ L2(Ω;V`). Moreover, it is well-known that the
solution u` admits the following quasi-optimality property

‖u− u`‖L2(Ω;H) ≤ C inf
v`∈V`

‖u− v`‖L2(Ω;H).

Moreover, standard FEM theory yields that

inf
v`∈V`

‖u− v`‖V ≤ CN
−1/d
` ‖u‖W ,

where N` = dim(V`) and N` ∼ h−d` . We recall the unbiased covariance estimator
CovM [X,Y ] from Definition 3.11 which is given by

CovM [X,Y ] :=
1

M − 1

M∑
i=1

(Xi − EM [X])⊗ (Y i − EM [Y ]).

For the approximation of the covariance function of u we introduce more convenient
representatitons for the implementation of the covariance estimators ĈovM [uL, uL] and
ĈovML [U ,U ], respectively, where U = {u`}L`=0 is the sequence of FE solutions. Then we
can write

ĈovM [uL, uL] =
1

M − 1

M∑
i=1

∑
k+j≤L

(∆kU i − EM [∆kU ])⊗ (∆jU i − EM [∆jU ])

=
L∑
k=0

CovM [uk, uL−k]−
L−1∑
k=0

CovM [uk, uL−k−1] , (3.59)

ĈovML [U ,U ] =

L∑
`=0

{
ĈovM`

[u`, u`]− ĈovM`
[u`−1, u`−1]

}
=

L∑
`=0

{∑̀
k=0

CovM`
[uk, u`−k]− 2

`−1∑
k=0

CovM`
[uk, u`−k−1]

+

`−2∑
k=0

CovM`
[uk, u`−k−2]

}
. (3.60)

Remark 3.27. By symmetry not all blocks CovM [uk, uL−k] have to be stored as their
transposed coefficient matrices represent those of CovM [uL−k, uk]. The same holds for the
level corrections in the multilevel variant, there not all CovM`

[uk, u`−k] ,CovM`
[uk, u`−k−1]

nor all CovM`
[uk, u`−k−2] have to be stored for same reason. This saving in mem-

ory requirements is on top of the already favourable scaling of memory requirements as
O(NL log(NL)).

3.5.2 Computation of H1,1(D ×D) norms and errors

In this section we present how to compute norms of errors and norms of discrete func-
tions in H1,1(D × D). For example, consider a covariance function CovM [Xk, X`] ∈

125



Chapter 3. Monte Carlo Methods for the Approximation of Covariance Functions

L2(Ω;Vk ⊗ V`) ⊂ L2(Ω;H ⊗H) for certain finite dimensional subspaces Vk, V` ⊂ H sub-
ject to a number M of samples of Xk, X`. Let us denote the dimension of any finite
dimensional space Vj by Nj , i.e. dim(Vj) = Nj , and the corresponding bases of Vk and
V` by {φks}

Nk
s=1 and {φ`t}

N`
t=1, respectively. There holds the universal representation

CovM [Xk, X`] (x1, x2) =

Nk∑
s=1

N∑̀
t=1

ck,`s,tφ
k
s(x1)φ`t(x2),

where we have suppressed the random dependence of the coefficients ck,`s,t on ω ∈ Ω. This
representation is universal in the sense that the specific basis chosen for the spaces Vk
and V` is a priori arbitrary. Let η, ψ ∈ H ⊗H, more precisely, let η ∈ Vk1 ⊗ Vk2 =: Vk1,k2
and ψ ∈ V`1 ⊗ V`2 =: V`1,`2 with the following representations

η(x1, x2) =

Nk1∑
i1=1

Nk2∑
i2=1

ck1,k2i1,i2
φk1i1 (x1)φk2i2 (x2),

ψ(x1, x2) =

N`1∑
j1=1

N`2∑
j2=1

d`1,`2j1,j2
φ`1j1(x1)φ`2j2(x2).

Then

(η, ψ)H1,1(D×D) =

∫
D

∫
D

(∇x1 ⊗∇x2)

Nk1∑
i1=1

Nk2∑
i2=1

ck1,k2i1,i2
φk1i1 (x1)φk2i2 (x2)


· (∇x1 ⊗∇x2)

N`1∑
j1=1

N`2∑
j2=1

d`1,`2j1,j2
φ`1j1(x1)φ`2j2(x2)

 dx1 dx2

=

Nk1∑
i1=1

Nk2∑
i2=1

N`1∑
j1=1

N`2∑
j2=1

(
ck1,k2i1,i2

d`1,`2j1,j2

∫
D
∇φk1i1 (x1)∇φ`1j1(x1) dx1

×
∫
D
∇φk2i2 (x2)∇φ`2j2(x2) dx2

)

=

Nk1∑
i1=1

Nk2∑
i2=1

N`1∑
j1=1

N`2∑
j2=1

ck1,k2i1,i2
d`1,`2j1,j2

ak1,`1i1,j1
ak2,`2i2,j2

.

Now, since the coefficient matrices Ck1,k2 = (ck1,k2i1,i2
) ∈ RNk1 ,Nk2 , D`1,`2 = (d`1,`2j1,j2

) ∈
RNj1 ,Nj2 and the “mixed” stiffness matrices Akr,`r = (akr,`rir,jr

) ∈ RNkr ,N`r , r = 1, 2, upon
contracting indices by suitable matrix multiplications we arrive at

(η, ψ)H1,1(D×D) =

Nk1∑
i1=1

Nk2∑
i2=1

N`1∑
j1=1

N`2∑
j2=1

ck1,k2i1,i2
d`1,`2j1,j2

ak1,`1i1,j1
ak2,`2i2,j2

=

Nk1∑
i1=1

N`2∑
j2=1


Nk2∑
i2=1

ck1,k2i1,i2
ak2,`2i2,j2

︸ ︷︷ ︸
=:fi1,j2

·


N`1∑
j1=1

ak1,`1i1,j1
d`1,`2j1,j2

︸ ︷︷ ︸
=:gi1,j2

=

Nk1∑
i1=1

N`2∑
j2=1

fi1,j2gi1,j2 = 〈F,G〉Frob = 〈Ck1,k2Ak2,`2 , Ak1,`1D`1,`2〉Frob.
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Hence the exact computation of the inner product can be realised by computing certain
Frobenius norms of matrix products of stiffness matrices and corresponding coefficient
matrices. The mixed stiffness matrices Akr,`r , r = 1, 2, can be computed once in the
postprocessing step, such that the Frobenius inner product can then be readily computed.

Computation of norms of errors using a reference solution

When computing the errors for the presented full tensor product and sparse tensor product
Monte Carlo or multilevel Monte Carlo methods, the question arises in which way a
comparison is most suitable. As the MLMC method is usually superior in its cost to
accuracy relation, we propose taking as reference solution uref the sparse tensor MLMC
approximation computed on the finest discretisation level available.

By the previous observation and universal representation of approximations involving
tensor products, we can characterise the error simply by the H1,1(D×D) inner product,
namely

|uref − η|2H1,1(D×D) = |uref|2H1,1(D×D) − 2(uref, η)H1,1(D×D) + |η|2H1,1(D×D).

Obviously, |uref|2H1,1(D×D) has to be computed only once and is analagous to Section 3.5.2.
Hence, the subsequent discussion deals mostly with the computation of the two remaining
terms in this expression.

Here we have denoted by η any solution obtained by either full tensor MC, sparse
tensor MC or sparse tensor MLMC.

Remark 3.28. Note that we have not listed how to proceed for the full tensor product
MLMC solution. This is due to the fact that the computation in that case is analogous to
the computations needed for the full tensor product MC case.

In what follows we briefly describe how to compute the errors for the three methods
involved. In order to keep the presentation simple, we state the format of solutions for
each of the cases explicitly. As a shorthand notation let us also define ηk,` ∈ Vk,` in terms
of the basis functions in Vk,` by

ηk,`(x1, x2) =

Nk∑
i1=1

N∑̀
i2=1

ck,`i1,i2φ
k
i1(x1)φ`i2(x2).

Using this expression we can write solutions of the three methods in question symbolically
as follows:

(1) full tensor MC on level L: ηL,L(x1, x2),

(2) sparse tensor MC on level L: ηL(x1, x2) =
L∑
i=0

ηi,L−i(x1, x2)−
L−1∑
i=0

ηi,L−1−i(x1, x2),

(3) sparse tensor MLMC on level L:

ηL(x1, x2) =
L∑
λ=0

{
λ∑
i=0

ηi,λ−i(x1, x2)− 2
λ−1∑
i=0

ηi,λ−1−i(x1, x2) +
λ−2∑
i=0

ηi,λ−2−i(x1, x2)

}
.

It is noteworthy that, while the explicit expressions for single level and multilevel MC look
rather bulky, we will by symmetry only have to store roughly half of the corresponding
diagonals of (small) full tensor products, cf. also Remark 3.21.

The subsequent formulae are presented as a quick look-up reference for the computa-
tion.
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η as full tensor product MC solution

We are concerned with the computation of |ηL,L|2H1,1(D×D) and (uref, ηL,L)H1,1(D×D).
There holds

|ηL,L|2H1,1(D×D) =

∫
D

∫
D

((∇x1 ⊗∇x2)ηL,L(x1, x2))2 dx1 dx2

=

NL∑
i1=1

NL∑
i2=1

NL∑
j1=1

NL∑
j2=1

(
dL,Li1,i2d

L,L
j1,j2

∫
D
∇φLi1(x1)∇φLj1(x1) dx1∫

D
∇φLi2(x2)∇φLj2(x2) dx2

)
=

NL∑
i1=1

NL∑
i2=1

NL∑
j1=1

NL∑
j2=1

dL,Li1,i2d
L,L
j1,j2

aL,Li1,j1a
L,L
i2,j2

= 〈DL,LAL,L, AL,LDL,L〉Frob.

Concerning (uref, ηL,L)H1,1(D×D), we proceed with uref given by

uref =

Lref∑
λ=0

{
λ∑
i=0

ui,λ−i − 2

λ−1∑
i=0

ui,λ−1−i +

λ−2∑
i=0

ui,λ−2−i

}

as follows

(uref, ηL,L) =

∫
D

∫
D

((∇x1 ⊗∇x2)uref(x1, x2))((∇x1 ⊗∇x2)ηL,L(x1, x2)) dx1 dx2

=

∫
D

∫
D

(∇x1 ⊗∇x2)

(
Lref∑
λ=0

{
λ∑
i=0

ui,λ−i − 2

λ−1∑
i=0

ui,λ−1−i +

λ−2∑
i=0

ui,λ−2−i

})
× (∇x1 ⊗∇x2)ηL,L(x1, x2) dx1 dx2

=

∫
D

∫
D

(∇x1 ⊗∇x2)

(
Lref∑
λ=0

λ∑
i=0

ui,λ−i(x1, x2)

)
(∇x1 ⊗∇x2)ηL,L(x1, x2) dx1 dx2

− 2

∫
D

∫
D

(∇x1 ⊗∇x2)

(
Lref∑
λ=0

λ−1∑
i=0

ui,λ−1−i(x1, x2)

)
(∇x1 ⊗∇x2)ηL,L(x1, x2) dx1 dx2

+

∫
D

∫
D

(∇x1 ⊗∇x2)

(
Lref∑
λ=0

λ−2∑
i=0

ui,λ−2−i(x1, x2)

)
(∇x1 ⊗∇x2)ηL,L(x1, x2) dx1 dx2

=

Lref∑
λ=0

λ∑
i=0

∫
D

∫
D

((∇x1 ⊗∇x2)ui,λ−i(x1, x2)) ((∇x1 ⊗∇x2)ηL,L(x1, x2)) dx1 dx2

− 2

Lref∑
λ=0

λ−1∑
i=0

∫
D

∫
D

((∇x1 ⊗∇x2)ui,λ−1−i(x1, x2)) ((∇x1 ⊗∇x2)ηL,L(x1, x2)) dx1 dx2

+

Lref∑
λ=0

λ−2∑
i=0

∫
D

∫
D

((∇x1 ⊗∇x2)ui,λ−2−i(x1, x2)) ((∇x1 ⊗∇x2)ηL,L(x1, x2)) dx1 dx2

=

Lref∑
λ=0

λ∑
i=0

 Ni∑
i1=1

NL∑
j2=1


Nλ−i∑
i2=1

ci,λ−ii1,i2
aλ−i,Li2,j2

 ·


NL∑
j1=1

ai,Li1,j1d
L,L
j1,j2



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− 2

Lref∑
λ=0

λ−1∑
i=0

 Ni∑
i1=1

NL∑
j2=1


Nλ−1−i∑
i2=1

ci,λ−1−i
i1,i2

aλ−1−i,L
i2,j2

 ·


NL∑
j1=1

ai,Li1,j1d
L,L
j1,j2




+

Lref∑
λ=0

λ−2∑
i=0

 Ni∑
i1=1

NL∑
j2=1


Nλ−2−i∑
i2=1

ci,λ−2−i
i1,i2

aλ−2−i,L
i2,j2

 ·


NL∑
j1=1

ai,Li1,j1d
L,L
j1,j2




=

Lref∑
λ=0

λ∑
i=0

〈Ci,λ−iAλ−i,L, Ai,LDL,L〉Frob − 2

Lref∑
λ=0

λ−1∑
i=0

〈Ci,λ−1−iAλ−1−i,L, Ai,LDL,L〉Frob

+

Lref∑
λ=0

λ−2∑
i=0

〈Ci,λ−2−iAλ−2−i,L, Ai,LDL,L〉Frob.

η as sparse tensor product MC solution

We are concerned with the computation of |ηL|2H1,1(D×D) and (uref, ηL)H1,1(D×D). There
holds

|ηL|2H1,1(D×D) =

∫
D

∫
D

((∇x1 ⊗∇x2)ηL(x1, x2))2 dx1 dx2

=

∫
D

∫
D

(
(∇x1 ⊗∇x2)

(
L∑
i=0

ηi,L−i(x1, x2)−
L−1∑
i=0

ηi,L−1−i(x1, x2)

))2

dx1 dx2

=

∫
D

∫
D

(
(∇x1 ⊗∇x2)

(
L∑
i=0

ηi,L−i(x1, x2)

))2

dx1 dx2

− 2

∫
D

∫
D

(∇x1 ⊗∇x2)

(
L∑
i=0

ηi,L−i(x1, x2)

)
(∇x1 ⊗∇x2)

(
L−1∑
i=0

ηi,L−1−i(x1, x2)

)
dx1 dx2

+

∫
D

∫
D

(
(∇x1 ⊗∇x2)

(
L−1∑
i=0

ηi,L−1−i(x1, x2)

))2

dx1 dx2

=
L∑
s=0

L∑
t=0

∫
D

∫
D

(∇x1 ⊗∇x2)ηs,L−s(x1, x2)(∇x1 ⊗∇x2)ηt,L−t(x1, x2) dx1 dx2

− 2

L∑
s=0

L−1∑
t=0

∫
D

∫
D

(∇x1 ⊗∇x2)ηs,L−s(x1, x2)(∇x1 ⊗∇x2)ηt,L−1−t(x1, x2) dx1 dx2

+

L−1∑
s=0

L−1∑
t=0

∫
D

∫
D

(∇x1 ⊗∇x2)ηs,L−1−s(x1, x2)(∇x1 ⊗∇x2)ηt,L−1−t(x1, x2) dx1 dx2

=

L∑
s=0

L∑
t=0

 Ns∑
i1=1

NL−t∑
j2=1


NL−s∑
i2=1

cs,L−si1,i2
aL−s,L−ti2,j2

 ·


Nt∑
j1=1

as,ti1,j1c
t,L−t
j1,j2




− 2
L∑
s=0

L−1∑
t=0

 Ns∑
i1=1

NL−1−t∑
j2=1


NL−s∑
i2=1

cs,L−si1,i2
aL−s,L−1−t
i2,j2

 ·


Nt∑
j1=1

as,ti1,j1c
t,L−1−t
j1,j2




+
L−1∑
s=0

L−1∑
t=0

 Ns∑
i1=1

NL−1−t∑
j2=1


NL−1−s∑
i2=1

cs,L−1−s
i1,i2

aL−1−s,L−1−t
i2,j2

 ·


Nt∑
j1=1

as,ti1,j1c
t,L−1−t
j1,j2



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=

L∑
s=0

L∑
t=0

〈Cs,L−sAL−s,L−t, As,tCt,L−t〉Frob − 2

L∑
s=0

L−1∑
t=0

〈Cs,L−sAL−s,L−1−t, As,tCt,L−1−t〉Frob

+

L−1∑
s=0

L−1∑
t=0

〈Cs,L−1−sAL−1−s,L−1−t, As,tCt,L−1−t〉Frob.

Concerning (uref, ηL)H1,1(D×D), we proceed with uref given as before and find

(uref, ηL) =

∫
D

∫
D

((∇x1 ⊗∇x2)uref(x1, x2))((∇x1 ⊗∇x2)ηL(x1, x2)) dx1 dx2

=

∫
D

∫
D

(∇x1 ⊗∇x2)

(
Lref∑
λ=0

{
λ∑
i=0

ui,λ−i − 2

λ−1∑
i=0

ui,λ−1−i +

λ−2∑
i=0

ui,λ−2−i

})

× (∇x1 ⊗∇x2)

(
L∑
i=0

ηi,L−i(x1, x2)−
L−1∑
i=0

ηi,L−1−i(x1, x2)

)
dx1 dx2

=

Lref∑
λ=0

λ∑
i=0

L∑
s=0

∫
D

∫
D

(∇x1 ⊗∇x2)ui,λ−i(∇x1 ⊗∇x2)ηs,L−s dx1 dx2

− 2

Lref∑
λ=0

λ−1∑
i=0

L∑
s=0

∫
D

∫
D

(∇x1 ⊗∇x2)ui,λ−1−i(∇x1 ⊗∇x2)ηs,L−s dx1 dx2

+

Lref∑
λ=0

λ−2∑
i=0

L∑
s=0

∫
D

∫
D

(∇x1 ⊗∇x2)ui,λ−2−i(∇x1 ⊗∇x2)ηs,L−s dx1 dx2

−
Lref∑
λ=0

λ∑
i=0

L−1∑
s=0

∫
D

∫
D

(∇x1 ⊗∇x2)ui,λ−i(∇x1 ⊗∇x2)ηs,L−1−s dx1 dx2

+ 2

Lref∑
λ=0

λ−1∑
i=0

L−1∑
s=0

∫
D

∫
D

(∇x1 ⊗∇x2)ui,λ−1−i(∇x1 ⊗∇x2)ηs,L−1−s dx1 dx2

−
Lref∑
λ=0

λ−2∑
i=0

L−1∑
s=0

∫
D

∫
D

(∇x1 ⊗∇x2)ui,λ−2−i(∇x1 ⊗∇x2)ηs,L−1−s dx1 dx2

=

Lref∑
λ=0

L∑
s=0

{
λ∑
i=0

〈Di,λ−iAλ−i,L−s, Ai,sCs,L−s〉Frob

− 2

λ−1∑
i=0

〈Di,λ−1−iAλ−1−i,L−s, Ai,sCs,L−s〉Frob

+

λ−2∑
i=0

〈Di,λ−2−iAλ−2−i,L−s, Ai,sCs,L−s〉Frob

}

−
Lref∑
λ=0

L−1∑
s=0

{
λ∑
i=0

〈Di,λ−iAλ−i,L−1−s, Ai,sCs,L−1−s〉Frob

− 2

λ−1∑
i=0

〈Di,λ−1−iAλ−1−i,L−1−s, Ai,sCs,L−1−s〉Frob

+
λ−2∑
i=0

〈Di,λ−2−iAλ−2−i,L−1−s, Ai,sCs,L−1−s〉Frob

}
.
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η as sparse tensor product MLMC solution

In this situation the reference solution is of the same form as the solution ηL on level L.
We are concerned with the computation of |ηL|2H1,1(D×D) and (uref, η

L)H1,1(D×D). There
holds

|ηL|2H1,1(D×D) =

∫
D

∫
D

((∇x1 ⊗∇x2)ηL(x1, x2))2 dx1 dx2

=
L∑

λ1=0

L∑
λ2=0

∫
D

∫
D

(∇x1 ⊗∇x2)

{
λ1∑
i=0

ηi,λ1−i − 2

λ1−1∑
i=0

ηi,λ1−1−i +

λ1−2∑
i=0

ηi,λ1−2−i

}

× (∇x1 ⊗∇x2)

{
λ2∑
i=0

ηi,λ2−i − 2

λ2−1∑
i=0

ηi,λ2−1−i +

λ2−2∑
i=0

ηi,λ2−2−i

}
dx1 dx2

=
L∑

λ1=0

L∑
λ2=0

∫
D

∫
D

{(
λ1∑
i1=0

(∇x1 ⊗∇x2)ηi1,λ1−i1

)(
λ2∑
i2=0

(∇x1 ⊗∇x2)ηi2,λ2−i2

)}

+ 4

{(
λ1−1∑
i1=0

(∇x1 ⊗∇x2)ηi1,λ1−1−i1

)(
λ2−1∑
i2=0

(∇x1 ⊗∇x2)ηi2,λ2−1−i2

)}

+

{(
λ1−2∑
i1=0

(∇x1 ⊗∇x2)ηi1,λ1−2−i1

)(
λ2−2∑
i2=0

(∇x1 ⊗∇x2)ηi2,λ2−2−i2

)}

+ 2

{(
λ1∑
i1=0

(∇x1 ⊗∇x2)ηi1,λ1−i1

)(
λ2−2∑
i2=0

((∇x1 ⊗∇x2)ηi2,λ2−2−i2

)}

− 4

{(
λ1∑
i1=0

(∇x1 ⊗∇x2)ηi1,λ1−i1

)(
λ2−1∑
i2=0

((∇x1 ⊗∇x2)ηi2,λ2−1−i2

)}

− 4

{(
λ1−1∑
i1=0

(∇x1 ⊗∇x2)ηi1,λ1−1−i1

)(
λ2−2∑
i2=0

(∇x1 ⊗∇x2)ηi2,λ2−2−i2

)}
dx1 dx2

=
L∑

λ1=0

L∑
λ2=0

{
λ1∑
i1=0

λ2∑
i2=0

〈Ci1,λ1−i1Aλ1−i1,λ2−i2 , Ai1,i2Ci2,λ2−i2〉Frob

+ 4

λ1−1∑
i1=0

λ2−1∑
i2=0

〈Ci1,λ1−1−i1Aλ1−1−i1,λ2−1−i2 , Ai1,i2Ci2,λ2−1−i2〉Frob

+

λ1−2∑
i1=0

λ2−2∑
i2=0

〈Ci1,λ1−2−i1Aλ1−2−i1,λ2−2−i2 , Ai1,i2Ci2,λ2−2−i2〉Frob

+ 2

λ1∑
i1=0

λ2−2∑
i2=0

〈Ci1,λ1−i1Aλ1−i1,λ2−2−i2 , Ai1,i2Ci2,λ2−2−i2〉Frob

− 4

λ1∑
i1=0

λ2−1∑
i2=0

〈Ci1,λ1−i1Aλ1−i1,λ2−1−i2 , Ai1,i2Ci2,λ2−1−i2〉Frob

−4

λ1−1∑
i1=0

λ2−2∑
i2=0

〈Ci1,λ1−1−i1Aλ1−1−i1,λ2−2−i2 , Ai1,i2Ci2,λ2−2−i2〉Frob

}
.
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Analogously for (uref, η
L)H1,1(D×D), we obtain

(uref, η
L) =

Lref∑
λ1=0

L∑
λ2=0

{
λ1∑
i1=0

λ2∑
i2=0

〈Ci1,λ1−i1Aλ1−i1,λ2−i2 , Ai1,i2Ci2,λ2−i2〉Frob

+ 4

λ1−1∑
i1=0

λ2−1∑
i2=0

〈Ci1,λ1−1−i1Aλ1−1−i1,λ2−1−i2 , Ai1,i2Ci2,λ2−1−i2〉Frob

+

λ1−2∑
i1=0

λ2−2∑
i2=0

〈Ci1,λ1−2−i1Aλ1−2−i1,λ2−2−i2 , Ai1,i2Ci2,λ2−2−i2〉Frob

+

λ1∑
i1=0

λ2−2∑
i2=0

〈Ci1,λ1−i1Aλ1−i1,λ2−2−i2 , Ai1,i2Ci2,λ2−2−i2〉Frob

+

λ1−2∑
i1=0

λ2∑
i2=0

〈Ci1,λ1−2−i1Aλ1−2−i1,λ2−i2 , Ai1,i2Ci2,λ2−i2〉Frob

− 2

λ1−1∑
i1=0

λ2∑
i2=0

〈Ci1,λ1−1−i1Aλ1−1−i1,λ2−i2 , Ai1,i2Ci2,λ2−i2〉Frob

− 2

λ1∑
i1=0

λ2−1∑
i2=0

〈Ci1,λ1−i1Aλ1−i1,λ2−1−i2 , Ai1,i2Ci2,λ2−1−i2〉Frob

− 2

λ1−1∑
i1=0

λ2−2∑
i2=0

〈Ci1,λ1−1−i1Aλ1−1−i1,λ2−2−i2 , Ai1,i2Ci2,λ2−2−i2〉Frob

−2

λ1−2∑
i1=0

λ2−1∑
i2=0

〈Ci1,λ1−2−i1Aλ1−2−i1,λ2−1−i2 , Ai1,i2Ci2,λ2−1−i2〉Frob

}
.

3.5.3 Implementation and numerical experiments

In the following we give a description of the implementation and present numerical ex-
periments that complement the foregoing analysis and verify the theoretical results. We
start by discussing the approximation of the random diffusion coefficient κ for ω ∈ Ω. In
order to be able to conduct the numerical experiments, the random field κ(x, ω) has to
be represented parametrically.

Karhunen-Loève expansion of κ

To this end, we suppose the random field

κ(x, ω) ∈ L2(Ω;W 1,∞(D))

admits a Karhunen-Loève expansion in terms of eigenpairs (λk, ϕk)
∞
k=1 with respect to the

underlying covariance operator. The covariance operator is a self-adjoint and compact
integral operator with kernel Cκ given by

Cκ := E[(κ− E[κ])⊗ (κ− E[κ])]

or formally represented pointwise as

Cκ(x, x′) := E[(κ(x, ω)− E[κ](x))⊗ (κ(x′, ω)− E[κ](x′))].
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We assume that the eigenfunctions ϕk are normalized in L2(D) and that the λk are ordered
by decreasing magnitude. Then the Karhunen-Loève expansion of κ can be written as

κ(x, ω) = E[κ(x, ω)] +
∞∑
i=1

√
λiYi(ω)ϕi(x),

where the random coefficients Yi(ω), i = 1, 2, . . . are defined by the expression

Yi(ω) =


1√
λi

∫
D

(κ(x, ω)− E[κ](x))ϕi(x) dx, λi > 0,

0, otherwise.

The given expansion converges in L2(Ω;L2(D)) and emphasis is put on the fact, that
in order to determine the Karhunen-Loève expansion of κ, explicit knowledge of the
covariance kernel Cκ is mandatory.

The numerical experiments have been implemented in MATLAB and have been run
on a laptop with an Intel i7-4720HQ at 2.6GHz with 16GB of RAM.

Numerical experiment for d = 1 on D = [−1, 1]

In this case the family of meshes T` consists of intervals of the form

[−1 + (i− 1)2−`,−1 + i2−`]

for i = 1, . . . , 2`+1. The meshwidth is thus given by h` = 2−`h0 = 2−` with a total number
of 2`+1 elements on level `. Consequently, we have a nested family of meshes {T`}∞`=0 and
the meshes are 1-shape regular. Since we only consider Dirichlet boundary conditions,
there are no degrees of freedom on the boundary and we use the FE spaces V` = S1,0

0 (T`)
as specified earlier. For every ` the space V` is spanned by the usual basis of hat functions
φ`i , i = 1, . . . , 2`+1− 1 and dim(V`) = 2`+1− 1. The basis (φ`i)

2`+1−1
i=1 is explicitly given by

φ`i(x) :=
1

h`


x− (−1 + (i− 1)h`), x ∈ [−1 + (i− 1)h`,−1 + ih`],

(−1 + (i+ 1)h`)− x, x ∈ [−1 + ih`,−1 + (i+ 1)h`],

0, otherwise.

We adopt the following numerical example from [6, Example 5.1] and refer the reader to
this article and references therein for more details. We set f ≡ 1 and specify the random
diffusion coefficient κ as follows. Let E[κ](x) = 5 + x and the corresponding covariance
kernel Cκ is chosen as

Cκ(x, y) =
min{x, y}+ 1

2
∈ H1(D)⊗H1(D).

It can be shown that the eigenpairs in the Karhunen-Loève expansion are given by

λk =
8

π2(2k − 1)2
, ϕk(x) = sin

(
x+ 1√

2λk

)
, k ≥ 1. (3.61)

We truncate the Karhunen-Loève series for the random diffusion coefficient κ after the first
term and redefine this truncated representation as the exact random diffusion coefficient
κ1. This is done to avoid an additional error in the simulation. Then with Υ1 ∼ N (0, 1),
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i.e. Υ1 is normally distributed with expectation zero and unit variance, we can get
realizations of the stochastic diffusion coefficient by the following expression

κ1(x, ω) := 5 + x+
2
√

2

π
Υ1(ω) sin

(
π(x+ 1)

4

)
.
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Figure 3.1: Plots of the relative error with respect to the reference solution on level L = 14
for the sparse tensor MLMC and the reference solution on level L = 11 for the full tensor
MLMC against the elapsed time (left) and degrees of freedom (right), where ÑL denotes
the amount of DOFs that are needed to represent the covariance function in the different
cases.

To compute the covariance function with respect to u we proceed as follows. We
compute solutions ui`, ` = 1, . . . , L, i = 1, . . . ,M for given realizations κ(·, ωi) of the
random diffusion coefficient at level ` for the Monte Carlo methods and compute M`, ` =
1, . . . , L samples of the level corrections for the MLMC methods. For each method we
have chosen the optimal number of samples, i.e. for the Monte Carlo variants we have
chosen M ∼ ε−2 and for the multilevel Monte Carlo methods we chosen the number of
samples in a way to balance the computational cost against the accuracy of the method
(cf. (3.49), (3.53) and (3.54)). As a solver we have used the MATLAB built-in backslash
operator and we assume that since the resulting system matrix is tridiagonal that the
complexity of the solver is given by γ = 1. In Figure 3.1 we have given two graphs,
where one is showing the relative error against the runtime of the computation and the
other shows the convergence rate of the methods by plotting the relative error against
the number of degrees of freedom.

From the convergence graph it can be seen that the full tensor product methods clearly
show a convergence rate of N−1

L , which is expected from the theory as the FEM in 1D
yields a convergence rate of one. In tune with the theory are also the error curves of
the sparse tensor product MC and MLMC methods, which show the theoretically found
convergence rate of N−1

L log(NL). For the full tensor product methods as well as the
sparse tensor product methods we have chosen as a reference solution the solution of the
FTP MLMC and STP MLMC, respectively. This means that the FTP MC is compared
against the reference solution of the FTP MLMC method and the STP MC solutions are
compared against the reference solution of the finest refinement level of the STP MLMC
method.

For the parameters of the asymptotic cost bounds we note that δ = 1 and as such we
can see in the other graph of Figure 3.1 that the full tensor product MC is in accordance
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3.5. Numerical experiments

with the theory. Here the predicted asymptotic cost is ε−2−max{γ,2}/δ, which amounts to
a ε−4 in this context and can be seen from the graph as the error curve becomes parallel
to the t−1/4 curve. The sparse tensor product MC method has a predicted asymptotic
cost of ε−2−γ/δ · | log(ε)|1+1/δ which amounts to ε−3| log(ε)|2 in this situation. This rate is
better than that of the FTP-MC and can be seen from the figure. Note that the methods
have only been run once and as such the MC methods exhibit a fair amount of fluctuation.
But this is no hindrance to show the expected convergence, also cf. [5]. Considering the
full tensor product MLMC method as there holds 2δ = max{γ, 2} we have an expected
asymptotic cost of ε−2| log ε|2 + ε−2 which is also seen in the graph. More precisely, we
see that up to a logarithmic factor that the full tensor product MLMC method becomes
parallel to the curve for t−1/2. The last data point is a little bit misleading and can be
explained by the use of a reference solution to compute the errors. For the sparse tensor
product MLMC method we have an expected asymptotic cost of ε−2 + ε−1| log(ε)| which
is clearly visible as the blue curve becomes parallel with the curve for t−1/2 before it shows
even better behavior for the last two datapoints. This may still be an artefact of the fact
that we have only performed one run as well as the use of a reference solution for the
convergence history. As seen from the graph as well as from the ranking of section 3.4 is
the fact that the sparse tensor product MLMC method outperforms the other methods
clearly in terms of cost. Moreover, keep in mind that the sparse tensor product MLMC
also has a more adavantageous asymptotic memory requirement as it is essentially linear
and still achieves comparable accuracy.

Numerical experiment for d = 2 on D = [−1, 1]2

Here, we consider the unit square and define the mesh on level ` = 0 to be the set of trian-
gles specified as P1P2P4 and P2P3P4 with the vertices P1 = (−1,−1), P2 = (1,−1), P3 =
(1, 1), P4 = (−1, 1).
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Figure 3.2: Plots of the relative error with respect to the reference solution on level L = 10
for the sparse tensor MLMC and the reference solution on level L = 7 for the full tensor
MLMC against the elapsed time (left) and degrees of freedom (right), where ÑL denotes
the amount of DOFs that are needed to represent the covariance function in the different
cases.

Then we build T1 by uniform refinement of the two triangles in T0, such that T1 has
one internal degree of freedom and consists of eight triangles. Solving on the mesh T0

is rendered superfluous by the homogeneous Dirichlet boundary conditions. The meshes
T` for ` > 1 are constructed in the same way, such that T`+1 is obtained by uniform
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Chapter 3. Monte Carlo Methods for the Approximation of Covariance Functions

refinement of all triangles in T`. Furthermore, we define the random diffusion coefficient
κ by tensorization of the one dimensional random diffusion coefficient κ1 of the previous
section

κ(x, y, ω) = κ1(x, ω)κ1(y, ω).

For the computation of the covariance function in this setting we proceed as for the one
dimensional experiment, i.e. we compute the optimal amount of samples for each method
in question. We have again used the solution on the finest grind of the FTP MLMC
method as a reference soution for the full tensor product methods and the solution of
the STP MLMC method on finest refinement level as a reference solution for the sparse
tensor product methods.

The convergence graph (cf. Figure 3.2) shows that the theoretically predicted conver-
gence rates of the methods are verified. In particular, since we have δ = 1/2 and assume
γ = 1, although the backslash operator might exhibit slightly non-optimal behaviour, the
convergence rate of the full tensor product MC and MLMC method on level L is given by
N
−1/2
L , whereas the sparse tensor product methods show a convergence of N−1/2

L log(NL).
Regarding the asymptotic costs of the method we find according to Figure 3.2 and

theoretical prediction that the full tensor product MC method has an asymptotic cost
of ε−6. For the full tensor product MLMC method, since 2δ < max{γ, 2}, we find that
the theoretical asymptotic cost is given by ε−4. This can also be seen from the graph as
the curve becomes almost parallel with t−1/4 curve. For the sparse tensor product MC
the theory predicts an asymptotic cost of ε−4| log(ε)|3, when assuming γ = 1, which is
also visible from the graph. In case of the sparse tensor product MLMC method, because
2δ = 1, we expect an asymptotic cost of ε−2| log(ε)|5 + ε−2| log(ε)| ∼ ε−2| log(ε)|5, which
is clearly seen from Figure 3.2 as well as the logarithmic factor.

In the two dimensional situation we see that again the sparse tensor product MLMC
method noticeably outperforms the other methods, which is already apparent from the
asymptotic costs, but is much more pronounced than for the one dimensional model
problem.
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Chapter 4

Comparison of DME and MLMC
approximation

4.1 1D model problem

We are interested in solving the deterministic moment equation (DME)

∂2
x∂

2
yCu =Cf , in D,
Cu =0, on ∂D,

on D = D × D with D = [−1, 1], where Cu(x, y) = E[u(x, ω) ⊗ u(y, ω)] and Cf (x, y) =
E[f(x, ω)⊗f(y, ω)]. This problem follows from the tensorization of the following stochastic
elliptic model problem: Find u(x, ω) ∈ L2(Ω;H1(D)), such that for a.e. ω ∈ Ω

−∂2
xu(x, ω) = f(x, ω), in D,

u = 0, on ∂D.

Suppose that f is given as a Karhunen-Loève expansion

f(x, ω) = f(x) +
∞∑
i=1

√
λiΥi(ω)ϕi(x)

where f(x) = E[f(x, ω)], E[Υi] = 0, E[Υ2
i ] = 1,∀i, and (λi, ϕi(x)) are the eigenpairs of

the associated covariance kernel Cf , i.e.∫
D
Cf (x, y)ϕi(x) dx = λiϕi(y),

where it is assumed that
∫
D ϕiϕj = δij , i.e. the ϕi are mutually orthonormal.

In order to compare the methods we have analyzed in this thesis, we would like to find
a representation of the exact solution Cu(x, y). To this end we suppose that the random
field u(x, ω) has a representation of the form

u(x, ω) = u(x) +

∞∑
i=1

Υi(ω)ψi(x)

with certain functions ψi and random variables Υi. To this end, we see that there must
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Chapter 4. Comparison of DME and MLMC approximation

hold

−∂2
xu(x, ω) =− ∂2

xu−
∞∑
i=1

Υi(ω)∂2
xψi(x)

!
=f(x) +

∞∑
i=1

√
λiΥi(ω)ϕi(x)

=f(x, ω)

and therefore that
−∂2

xu(x) = f(x), in D,
u = 0, on ∂D,

and for all i the ψi’s have to statisfy the following boundary value problem

−∂2
xψi(x) =

√
λiϕi(x), in D,

ψi = 0, on ∂D. (4.1)

If moreover f = 0, then we find that u = 0 and therefore the covariance functions Cu and
Cf can be written as follows:

Cu(x, y) =

∞∑
i=1

ψi(x)ψi(y),

Cf (x, y) =

∞∑
i=1

λiϕi(x)ϕi(y).

Figure 4.1: Exponential covariance function for diferent values of ρ.
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4.1. 1D model problem

In order to illustrate the advantages and disadvantages of the methods investigated
in this thesis, we choose a representative example. Let us suppose that Cf is given as the
exponential covariance function expressed by

Cf = exp(−|x− y|/ρ),

where ρ again denotes the correlation length. A plot of this covariance function for
ρ ∈ {1, 0.1} can be found in Figure 4.1. It can be easily seen that this covariance is
strongly concentrated towards the diagonal of the domain for small values of ρ. For this
case of Cf with D = [−a, a] the eigenpairs (λi, ϕi) are given by (cf. [32])

λi =
2ρ

1 + ρ2ω2
i

, λ∗i =
2ρ

1 + ρ2(ω∗i )
2
,

ϕi(x) =
cos(ωix)√
a+ sin(2ωia)

2ωi

, ϕ∗i (x) =
sin(ω∗i x)√
a− sin(2ω∗i a)

2ω∗i

.
(4.2)

In Figure 4.2 we have depicted the decay of eigenvalues for different values of ρ. For this
example the eigenvalues decay quadratically after a possible "shelf" of eigenvalues of the
same magnitude. This is especially clear for the smaller values of ρ.
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Figure 4.2: Eigenvalue decay for different values of ρ

The associated eigenfunctions multiplied by their respective eigenvalues have been
plotted in Figure 4.3 for ρ = 1. We see that the ϕi’s are even and that the ϕ∗i ’s are odd
functions. Equipped with these eigenpairs we can write

Cf (x, y) =

∞∑
i=1

2ρ

1 + ρ2ω2
i

cos(ωix)√
a+ sin(2ωia)

2ωi

+

∞∑
i=1

2ρ

1 + ρ2(ω∗i )
2

sin(ω∗i x)√
a− sin(2ω∗i a)

2ω∗i

,

where the ωi and ω∗i are given by the two following transcendental equations for ω and
ω∗, respectively:

1

ρ
− ω tan(ωa) = 0, ω∗ +

1

ρ
tan(ω∗a) = 0.

139



Chapter 4. Comparison of DME and MLMC approximation

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 4.3: Eigenfunctions of the exponential covariance for ρ = 1 multiplied with their
respective eigenvalues.

Solving the ordinary differential equation (4.1) for the ψi’s and ψ∗i ’s, respectively,
leads to the following representations

ψi =

√
λi

ω2
n

√
a+ sin(2ωna)

2ωn

(cos(ωnx)− cos(ωna)) ,

ψ∗i =

√
λi

(ω∗n)2
√
a− sin(2ω∗na)

2ω∗n

(
sin(ω∗nx)− sin(ω∗na))

a
x

)
.

One readily verfies that the ψi’s fulfill the boundary value problem (4.1) in D and have
zero boundary values on ∂D. This implies the following representation of Cu as

Cu(x, y) =
∞∑
i=1

(ψi(x)ψi(y) + ψ∗i (x)ψ∗i (y)) . (4.3)
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Figure 4.4: Modes of Cu

So far we only have one parameter to manipulate the behavior of the covariance
function Cf , which is through the correlation length ρ. Moreover, we can control the decay
of the eigenvalues in the Karhunen-Loève expansion by replacing λn and λ∗n, respectively,
with

λ̃n = λγn, λ̃∗n = (λ∗n)γ , ∀n = 1, 2, . . .
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4.1. 1D model problem

Figure 4.5: Plots of the exact solution Cu of the DME for different values of ρ.

By defintion of the λn and λ∗n (cf. (4.2)) this then leads to an algebraic decay of the
eigenvalues as O(n−2γ).

Test suite 1 (γ = 1, ρ ∈ {1, 0.1}) As the title suggests here we let γ = 1, such that the
decay of the eigenvalues for the covariance function of f is equal to two. Furthermore,
we choose ρ = 1 and ρ = 0.1 and run all methods for the problem with exponential
covariance function and the given parameters. We expect the error of the adaptive Finite
Element Methods (AFEM) to exhibit a convergence rate of Ñ−1/2

L , where ÑL denotes the
dimension of the global FE space, which is used to represent the approximate covariance
function. For the full and sparse tensor product methods we expect a convergence rate of
the error as N−1

L and N−1
L log(NL), respectively, where NL denotes the dimension of the

approximation space for the samples of XL and YL. The degrees of freedom to represent
the covariance function for the FTP and STP MC and MLMC methods is also denoted as
ÑL and is of O(N2

L) and O(NL log(NL)) magnitude, respectively. The amount of samples
taken for the MC and MLMC methods has not been adjusted to the correlation length of
the covariance kernels of the given experiments. Moreover, insofar the given comparison
is meant to be more of an ”out of the box“-investigation of the competetiveness of the
presented methods.

For the MC and MLMC method we have chosen to truncate the Karhunen-Loève
expansion (KLE) after a hundred terms (i.e. MKL = 100) as this is sufficient for the range
in which we are comparing the methods. Also this has been done to avoid unnecessary
errors introduced due to the high oscillatory nature of the eigenfunctions in the KLE with
respect to the mesh width. If one wants to take more terms, one has to adjust for better
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Chapter 4. Comparison of DME and MLMC approximation

quadrature in the solver. This leads to a longer runtime proportional to the amount of
work added, either via an additional amount of quadrature or the need to compute more
terms in the KLE. For the comparison we have chosen for the STP MC and MLMC as
reference solution the solution on the finest grid of STP MLMC method, which is not
shown in the graphs, and analogously taken the solution on the finest refinement level of
the FTP MLMC method as reference solution for the FTP MC and MLMC methods.

In Figure 4.6 we find the convergence history of the numerical experiments for ρ ∈
{0.1, 1}. For ρ = 1 we can clearly see that the H1,1-seminrom error for the FTP and STP
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Figure 4.6: Convergence history for all methods and varying ρ. top: ρ = 1. bottom:
ρ = 0.1.
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4.1. 1D model problem

MC andMLMCmethods converge at the expected rate ofO(N−1
L ) andO(N−1

L log(NL)),
respectively. This clearly outperforms the AFEM for any configuration and even the uni-
form FEM as their rate is clearly seen to converge at O(Ñ

−1/2
L ). This shows that Monte

Carlo methods are very well suited to problems where the underlying random process
features a high degree of correlation.

For ρ = 0.1 we observe the convergence shelf of the AFEM for the residual and
hierarchical estimator, such that these cannot attain a convergence rate of the error of
O(Ñ

−1/2
L ). The AFEM guided by ηA performs at the optimal rate, albeit it cannot

beat the uniform FEM here. Furthermore, it can be observed that the error in the
H1,1-seminorm fails to converge at the expected rate for the FTP and STP MC and
MLMC methods. This behavior is observed with excessively high quadrature, or even
adaptive Gauß-Kronrod type quadrature and is also not alleviated by taking more terms
in the KLE. This effect of the correlation length versus decay of eigenvalue decay for the
effectiveness of the methods can also be observed in the next test suite.
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Figure 4.7: Convergence history for all methods and γ = 3/2.

Test suite 2 (γ ∈ {3/2, 5/2}, ρ = 0.1) In order to find out if the effect of the correlation
is connected to the decay of the eigenvalue we choose γ ∈ {3/2, 5/2} for ρ = 0.1.

For the MC and MLMCmethod we have again chosen to truncate the Karhunen-Loève
expansions after a hundred terms (i.e.MKL = 100).

For γ = 3/2 and as such for a rate of decay of 3 of the eigenvalues, we see in Figure
4.7 that the full tensor and sparse tensor MC and MLMC methods cannot attain their
theoretically predicted convergence rates in the range of comparison. Here it is again seen
that the AFEM and FTP and STP MC and MLMC methods are very competetive. The
AFEM seems to perform better for problems with a low degree of correlation.

In the graph of Figure 4.8 we see that for γ = 5/2 the FTP and STP MC and MLMC
are able to beat the AFEM again in the range of comparison and attain their theoretically
predicted error convergence rate of O(N−1

L ) and O(N−1
L log(NL)), respectively. Here the

rate of decay of the eigenvalues is 5 which indicates a highly correlated process. Moreover,
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Chapter 4. Comparison of DME and MLMC approximation

we observe that the AFEM behaves almost identically in both cases for all types of error
estimators for both choices of γ. Furthermore, it seems in both tests that the correlation
length has more influence on the MC methods than on the MLMC methods.
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Figure 4.8: Convergence history for all methods and γ = 5/2.

4.2 2D model problem

Here we are interested in solving the DME

(∆x ⊗∆y)Cu = Cf , in D,
Cu = 0, on ∂D,

on D = D × D with D = [−1, 1]2 to compare the analyzed methods. Let us first make
the following observation. Let us assume that

Cf (x, y) := Cf1(x1, y1)Cf2(x2, y2)

is given as a tensorized covariance kernel, where x = (x1, x2) and y = (y1, y2). If we
consider

Cfk(xk, yk) := exp(−|xk − yk|/ρk), k = 1, 2

then

Cfk(xk, yk) =
∞∑
i=1

{
λk,iϕk,i(xk)ϕk,i(yk) + λ∗k,iϕ

∗
k,i(xk)ϕ

∗
k,i(yk)

}
.
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4.2. 2D model problem

This leads to the following representation of Cf as a double sum via

Cf (~x, ~y) = Cf1(x1, y1)Cf2(x2, y2)

=
∞∑

i,j=1

{
λ1,iλ2,jϕ1,i(x1)ϕ1,i(y1)ϕ2,j(x2)ϕ2,j(y2) + λ1,iλ

∗
2,jϕ1,i(x1)ϕ1,i(y1)ϕ∗2,j(x2)ϕ∗2,j(y2)

+ λ∗1,iλ2,jϕ
∗
1,i(x1)ϕ∗1,i(y1)ϕ2,j(x2)ϕ2,j(y2) + λ∗1,iλ

∗
2,jϕ

∗
1,i(x1)ϕ∗1,i(y1)ϕ∗2,j(x2)ϕ∗2,j(y2)

}
=
∞∑

i,j=1

{
λ1,iλ2,jϕ1,i(x1)ϕ2,j(x2)ϕ1,i(y1)ϕ2,j(y2) + λ1,iλ

∗
2,jϕ1,i(x1)ϕ∗2,j(x2)ϕ1,i(y1)ϕ∗2,j(y2)

+ λ∗1,iλ2,jϕ
∗
1,i(x1)ϕ2,j(x2)ϕ∗1,i(y1)ϕ2,j(y2) + λ∗1,iλ

∗
2,jϕ

∗
1,i(x1)ϕ∗2,j(x2)ϕ∗1,i(y1)ϕ∗2,j(y2)

}
.

(4.4)

If we assume, without loss of generality, that E[f(x1, x2, ω)] = 0, then f can be written
as

f(x1, x2, ω) =

( ∞∑
i=1

√
λ1,iΥ1,i(ω)ϕ1,i(x1) +

√
λ∗1,iΥ

∗
1,i(ω)ϕ∗1,i(x1)

)

×

 ∞∑
j=1

√
λ2,jΥ2,j(ω)ϕ2,j(x2) +

√
λ∗2,jΥ

∗
2,j(ω)ϕ∗2,j(x2)


=

∞∑
i,j=1

{√
λ1,iλ2,jΥ1,i(ω)Υ2,j(ω)ϕ1,i(x1)ϕ2,j(x2)

+
√
λ1,iλ∗2,jΥ1,i(ω)Υ∗2,j(ω)ϕ1,i(x1)ϕ∗2,j(x2)

+
√
λ∗1,iλ2,jΥ

∗
1,i(ω)Υ2,j(ω)ϕ∗1,i(x1)ϕ2,j(x2)

+
√
λ∗1,iλ

∗
2,jΥ

∗
1,i(ω)Υ∗2,j(ω)ϕ∗1,i(x1)ϕ∗2,j(x2)

}

where the Υ1,i,Υ
∗
1,i,Υ2,j ,Υ

∗
2,j ,∀i, j are assumed to be independent identically distributed

random variables with zero mean and unit variance. Comparing E[f(x1, x2, ω)⊗f(y1, y2, ω)]
with (4.4) shows that f has Cf (x, y) as covariance function. This enables us to draw sam-
ples from the previous representation by assuming, exempla gratia

Υ1,i,Υ
∗
1,i,Υ2,j ,Υ

∗
2,j ∼ N (0, 1)

or by setting
Υk,i =

√
3Θ∗k,i,Υ

∗
k,i =

√
3Θ∗k,i, k = 1, 2, ∀i

where Θk,` ∼ U([−1, 1]) and Θ∗k,` ∼ U([−1, 1]), k = 1, 2, ∀i are uniformly distributed on
the interval [−1, 1] and thus the Υk,`’s and Υ∗k,`’s have mean zero and unit variance.

As Cf has been constructed as the tensor product of two exponential covariance func-
tions one might feel the urge to presume that maybe Cu can be written as a tensor product
as well. Assuming Cu(x, y) = Cu1(x1, y1)Cu2(x2, y2) leads to

(∆x ⊗∆y)Cu(x, y) = ∂2
x1∂

2
y1Cu1(x1, y1)Cu2(x2, y2) + ∂2

x1Cu1(x1, y1)∂2
y2Cu2(x2, y2)

+ ∂2
y1Cu1(x1, y1)∂2

x2Cu2(x2, y2) + Cu1(x1, y1)∂2
x2∂

2
y2Cu2(x2, y2)

6= Cf1(x1, y1)Cf2(x2, y2)
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and assuming Cu(x, y) = Cu1(x1, x2)Cu2(y1, y2) yields

(∆x ⊗∆y)Cu(x, y) = ∆xCu1(x1, x2)∆yCu2(y1, y2)

= ∂2
x1Cu1(x1, x2)∂2

y1Cu2(y1, y2) + ∂2
x1Cu1(x1, x2)∂2

y2Cu2(y1, y2)

+ ∂2
x2Cu1(x1, x2)∂2

y1Cu2(y1, y2) + ∂2
x2Cu1(x1, x2)∂2

y2Cu2(y1, y2)

6= Cf1(x1, y1)Cf2(x2, y2)

where Cu1 and Cu2 are defined by (4.3) for given Cf1 and Cf2 . Thus, even for this simple ex-
ample in two dimensions of a tensorized covariance function Cf leads to a non-tensorizable
covariance function Cu for u.

Here by construction we have a rate of decay of the eigenvalues of the corresponding
covariance operator as 4 and as such a quite highly correlated process. We expect the
FTP and STP MC and MLMC methods to perform at their theoretical convergence rates.
This is why we have again chosen to investigate the effect of the correlation length on the
behaviour of all methods. For this we choose the values for ρ1 and ρ2 independently.

For the MC and MLMC method we have again chosen to truncate the Karhunen-
Loève expansion after a hundred terms (i.e. MKL = 100) as it is sufficient for the range
in which we want to compare the methods in question. Also this has been done to avoid
unnecessary errors introduced due to the high oscillatory nature of the eigenfunctions
in the KLE with respect to the mesh width. These are now two dimensional and the
problems of quadrature can also otherwise dominate the overall runtime. We have chosen
4096 quadrature points on each element for the AFEM and the uniform FEM in four
dimensions as otherwise the method was not stable(!). If one wants to take more terms,
one must adjust for better quadrature in the solver.

For the comparison we have chosen for the STP MC and MLMC as reference solution
the solution on the finest grid of STP MLMC method, which is not shown in the graphs,
and analogously taken the solution on the finest refinement level of the FTP MLMC
method as reference solution for the FTP MC and MLMC methods. As such only the
error level may be compared. The accuracy is better of course for the deterministic
methods as the MC and MLMC methods can only deliver more accurate results when the
results are averaged for a growing number of runs.

The AFEM has been run with ϑ = 0.5 and the maximum strategy for marking the
elements has been used. Moreover, we have implemented a stopping criterion of 50’000
elements, because of the high amount of quadrature points per element (4096 points),
which are the result of a tensorized Gauß-Legendre qudrature rule with 8 points in each
direction. As a reference solution for the AFEM and the uniform FEM we used the
uniform FEM solution on a grid of 165 four dimensional cubes in all cases.

Test 1(γ = 1, ρ1 = 1, ρ2 = 1) For this experiment we see the same situation as for
the 1D model problem. The FTP and STP MLMC are able to outperform the adaptive
methods in the range of comparison, which can be seen in Figure 4.9. The STP and
FTP MC suffer from fluctuation and are in general more susceptible to outliers and
thus the convergence in this early range may rather be chaotic. The FTP MC shows a
rather preasymptotic behavior at first whereas the STP MC may just have had some ”bad
samples”. Ignoring the last two data points of the STP MC curve the predicted behavior
is visible. These fluctuations of course would be flattened if one would only do enough
runs for this comparison. But since for this comparison one run of the MC and MLMC
methods for the tests 1,2 and 3 takes a total of roughly 12 and a half hours, we have not
pursued this as the tests are indicative as they are already. The AFEM then still has to
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be run for the comparison, but in comparison is negligible although it also takes in total
roughly 4 hours to run.
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Figure 4.9: Convergence history for tensorized exponential covariance with ρ1 = 1 and
ρ2 = 1.
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Figure 4.10: Convergence history for tensorized exponential covariance with ρ1 = 1 and
ρ2 = 0.1.

Test 2(γ = 1, ρ1 = 1, ρ2 = 0.1) In this experiment (cf. Figure 4.10) we again find
that lowering the correlation length, this time just in one of the factors, results in a
deterioration of the convergence rate of the MC and MLMC methods. Here the AFEM
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and uniform FEM for the deterministic moment equations (DME) are very competetive
and beat the MC/MLMC mehtods outright. As observed before the AFEM behaves more
favorably if covariance kernels with a low degree of correlation are involved.

Test 3(γ = 1, ρ1 = 0.1, ρ2 = 0.1) As a last experiment in this direction we have lowered
both correlation lengths. From Figure 4.11 we infer that the convergence in the range
of comparison is further deteriorated for the MC and MLMC methods. The AFEM and
uniform FEM for the DME converge nonetheless, although it seems that the AFEM guided
by the error indicators η̂H and ηR are experiencing a convergence shelf phenomenon.
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Figure 4.11: Convergence history for tensorized exponential covariance with ρ1 = 0.1 and
ρ2 = 0.1.
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Figure 4.12: Convergence history for a non-tensorizable exponential type covariance with
ρ1 = 10 and ρ2 = 0.1.
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Test 4 (ρ1 = 10, ρ2 = 0.1) Here we have chosen Cf as

Cf (x, y) = exp

(
−
√

(x1−y1)2

10 + (x2−y2)2

0.1

)
to illustrate that we are not bound by a Karhunen-Loève expansion to find the covariance
function Cu to such a hand-picked covariance function. The convergence history for this
experiment can be seen in Figure 4.12.

The numerical experiments have been implemented in MATLAB and have been run
on a laptop with an Intel i7-4720HQ with 16GB of RAM.

Remark 4.1. Another possibility of approximating Cu can be employed if an expansion
like (4.4) is known. Since then there holds

Cu(x, y) =
∞∑

i,j=1

Ψi,j(x, y)

where for all pairs of indices i, j = 1, . . . ,∞ the Ψi,j’s satisfy the PDE

(∆x ⊗∆y)Ψi,j = Φi,j , in D,
Ψi,j = 0, on ∂D,

with

Φi,j(x, y) := (λ1,iλ2,j)
1/2ϕ1,i(x1)ϕ1,i(y1)ϕ2,j(x2)ϕ2,j(y2)

+ (λ1,iλ
∗
2,j)

1/2ϕ1,i(x1)ϕ1,i(y1)ϕ∗2,j(x2)ϕ∗2,j(y2)

+ (λ∗1,iλ2,j)
1/2ϕ∗1,i(x1)ϕ∗1,i(y1)ϕ2,j(x2)ϕ2,j(y2)

+ (λ∗1,iλ
∗
2,j)

1/2ϕ∗1,i(x1)ϕ∗1,i(y1)ϕ∗2,j(x2)ϕ∗2,j(y2).

Thus, instead of solving for Cu "in total" one might resort to approximating the most
contributing Ψi,j’s and build a solution by adding up the partial solutions. In particular,
this can be an attractive idea in terms of parallelization.
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Conclusion

In this thesis we have developed adaptive FEM for the approximation of covariance func-
tions and second moments of elliptic partial differential equations. We could show that
the developed residual and hierarchical error estimators, ηR and ηH , are reliable but only
weakly efficient. As a remedy for this deficiency we have additionally developed an er-
ror estimator based on averaging and shown it to be asymptotically exact, i.e. reliable
and efficient. It is seen that in typical situations, such as solutions with steep gradients,
that the adaptive Finite Element Method (AFEM) for the approximation of covariance
functions is very competetive. Since the polynomial degree is kept fixed at p = 1, the
quality of approximation is of a low order, which is a drawback of the presented approach,
if the data are of high regularity. By adopting existing hp-error estimators (cf. [41]) to
the situation of deterministic moment equations the presented methods may be extended
to (potentially) yield higher if not exponential convergence rates (cf. e.g. [44, 45] for a
related problem) and alleviate the difficulties when approximating singular derivatives of
solutions.

Moreover, the 1-irregularity might be viewed as an inflexible restriction on the adap-
tive procedure. The 1-irregularity condition on the mesh T is not well suited to the four
dimensional situation, as there can be a large magnitude of “unnecessary” refinements.
These could be avoided if one considers the extension of the given theory to the situation
of k-irregular meshes (cf. [24, 57, 39]), which can give a better handle on the refinement
procedure in four space dimensions as well as decrease the need for too many implied re-
finements because of hanging nodes. This idea also fits well together with hp-refinement
ideas.

We have also presented in this thesis the error analysis of Monte Carlo and multi-
level Monte Carlo approximations for covariance functions by way of the second moment
problem. We have shown that we can improve upon a full tensor product approximation
by virtue of sparse tensor approximation techniques and have shown that in all regimes,
which are given by the quality of the solver used, the analyzed sparse tensor product
multilevel Monte Carlo method is the best method in terms of cost versus accuracy and
in terms of asymptotic memory requirements. These methods might further be improved
by considering different approximating sequences X and Y that are used in combination
with the sparse tensor product operator P̂L(X ,Y). For example, if the sequences X and
Y are based on an adaptive solution procedure, the dimensions of the corresponding finite
dimensional spaces may be optimized to yield an overall better asymptotic cost require-
ment as well as a potentially better convergence rate in the presence of singularities may
be experienced.

Finally, we have presented numerical experiments comparing the Monte Carlo and
multilevel Monte Carlo methods with the AFEM as well as its uniform variant. It can
be seen that in the case of a highly correlated random process and in the presence of a
Karhunen-Loève expansion that the Monte Carlo and multilevel Monte Carlo methods
are the preferrable methods, when one wants to approximate the covariance function. If
on the other hand the underlying process has a short correlation length, then it is also
shown in the experiments that the adaptive and uniform Finite Element Method are the
preferrable methods.
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