

Carl von Ossietzky Universität Oldenburg

Facult II – Computer Science, Business and Law

Department of Computer Science

Federal University of Uberlândia

Faculty of Computing

Posgraduate Program in Computer Science

Multi-formalism in Different Levels of Abstraction for

Requirements Engineering and Architectural Design of Real-

Time Embedded Systems

From the faculty of Computer Science, Business and Law at the Carl von

Ossietzky University Oldenburg and Federal University of Uberlândia to

obtain the degree and title of

Doctor in Natural Sciences (Dr. rer. nat.)

Accepted dissertation from

M.Sc. Fabíola Gonçalves Coelho Ribeiro

born on 25.09.1985 in Catalão, Goiás (Brazil)

Evaluators:

Prof. Dr. Achim Rettberg

Prof. Dr. Martin Fränzle

Prof. Dr. Michel Soares dos Santos

Prof. Dr. Carlos E. Pereira

Day of Disputation: 03.09.2019

I dedicate this research to Luzia Gonçalves, my mother, and to Maria Fernanda, my
daughter.

Acknowledgements

The initial desire for accomplishing this research grew from a family dream. A dream
that was not mine, but one that came to sculpture and be the sculptor of the person
I would become. In all certainty, looking back over my expectations some four years
ago, I never imagined that study and qualification would fuse into my persona in such a
dignifying manner. The student, professor, researcher and the very human being of four
years ago are no longer the same.

The contributions presented in this thesis are the result of four years of dedication,
resilience and love for research. Indeed, it also comes from the help, support, compre-
hension, dedication and fidelity of the innumerous individuals involved. To my almighty
Lord, thank you for giving me health and strength to continue and for supporting me
throughout.

I was fortunate to have the privilege of counting on the contribution of three su-
pervisors who supported me at different and specific moments over my research, while
delivering excellent tuition in our meetings and lectures; they also provided life based ex-
amples. Therefore, I would like to thank in advance the Professors Dr. Achim Rettberg,
Dr. Carlos Pereira and Dr. Michel Soares for their immeasurable and constant support.
My personal development, without doubt, was greatly incremented through such support
and experiences. I profoundly hope that someday, I too may pass onto my students a
little of what you were to me.

Prof. Achim Rettberg, you received me in your research group gave me support
advised and guided me through my double PhD. Prof. Achim, you are an example of
a skilled, qualified and caring person that provides personalized attention to students.
Thank you so much for your comprehension, contribution to my research topic, the help
provided in achieving the attained results, and especially to your immense dedication
while making the final corrections to my thesis. I would like also to express gratitude
for the several developmental and learning capacity opportunities that exceed those of a
doctoral student’s curriculum.

Prof. Carlos Pereira, I still remember well our first personal contact. You have shown
me that despite the numerous commitments and responsibilities, you have always been
sensitive to the demands of your students. Professor Carlos, you have an incredible
subtlety and intelligence in each assessment, evaluation and supervision. Furthermore,
it is admirable the manner in which you share your knowledge and experiences. All of
these factors were primordial to my personal and professional development. Therefore, I
sincerely wish to thank you for all the support and many life enhancing lessons I received.

Prof. Michel Soares, we have worked together since my master studies, from that
time until now nine years have passed! Michel, what you have done and still do for your
students is much more that provide technical and professional supervision: you have
established a teaching based on examples. I will never be able to compensate the time
you spent with me. We can recount several weekends working together, tight deadlines
and many papers/thesis analyses. Moreover, there were, I recall “tellings-off” and even in
situations where I was agitated and felt anxious, you would always tell me: “calm down,
everything will be all right!” Thank you Michel for your belief in my ability and always
guiding me on to the better path.

I wish also to thank my Family. Each and every member, close or distant, has helped
me in distinct ways: encouraged, cared, prayed, wept and laughed with me. I will always
be thankful. You cannot imagine how much you are important to me! I would like to
give special thanks to Geovanna Gonçalves and Maria Rita Bernardes, my dear sisters,
to my dear cousins Gleyce Kelle Bernardes and Américo Gonçalves, to my aunts Amélia
Gonçalves, Nívea Rodrigues and Juvenília Gonçalves and to my uncles João Batista
Gonçalves and Carlos Gonçalves.

I would like to thank, with all my heart, my friends Dayse de Oliveira, Kênia Santos,
Clénia Rios, and Renata de Oliveira. Thank you for always being here for me, for rejoicing
in my achievements and encouraging me to do better every day.

Marcos Bhering, you have been “walking by me” for so much longer! You have been
benevolent, friendly, kind and supportive at all times over the completion of my thesis.
Thank you so much for your comforting words and care, for the many hours dedicated to
improving the text and specially, for the love and affection with which you always helped
me.

My thanks also go to IF-Goiano for having allowed for my exclusive dedication to
Ph.D. research. I am grateful to the institution, my colleagues and the management
team for their support and encouragement.

Thanks to CAPES for the financial support during my sandwich Ph.D. studies in
Germany.

I would like to thank the Carl von Ossietzky University Oldenburg and the Univer-
sity of Applied Sciences Hamm/Lippstadt for the support provided that aided in the
accomplishment of my Ph.D. studies.

Considering the period I lived in Germany, all the enriching experiences I have had and
the lessons learned, I would like to express my gratitude to André Faria, Charles Stein-
metz, Cíntia Faria, Edenilda Brachtendorf, Filiz Polat, Renata Lutkehaus and Vincent
Marnier. Thank you for dedicating your time, care, friendship and words of encourage-
ment and support over the points of this journey.

Finally, I want to thank my mother, Luzia de Fátima Gonçalves, and my daughter,
Maria Fernanda Gonçalves. You are the ones who deserve all the honors and are to whom
I dedicate all the results and jubilation that come from this research. I know how hard
this period was for you both: many absences, relinquishment, days without dialogue and
several “rainy days”. Thanks for the true friendship, your support and unconditional love.
My dearest of friends, you have lived and supported my dream. I could never have done
all this without you, I love you infinitely.

“Porque não há nada mais belo que o amor.”
(Marcos Jungmann Bhering)

Resumo

Os Sistemas de Tempo Real e Embarcados (STRE) têm se tornado cada vez mais
onipresentes nas atividades humanas. O grau de confiabilidade e de corretude com que
estes sistemas são desenvolvidos têm um decisivo impacto em sua futura operação. Sendo
assim, o sucesso no desenvolvimento destes sistemas está relacionado não apenas com
a sua correta execução computacional, mas também com a confiabilidade em que as
restrições de tempo real e embarcadas são atendidas. A engenharia de requisitos e o
projeto arquitetural constituem importantes atividades do desenvolvimento dos STRE,
pois lidam com domínios complexos e diversificados como software, hardware, mecânico,
eletrônico e o ambiente físico. Dentro do domínio dos STRE, a engenharia de requisitos e
o projeto arquitetural devem atender aos requisitos funcionais e embarcados e aos respec-
tivos requisitos não funcionais. Além disto, o design destes sistemas deve considerar as
propriedades de custo, qualidade, confiabilidade e segurança. Este estudo relaciona-se ao
desenvolvimento e análise de uma metodologia que abrange diferentes fases de projeto de
STRE. A presente pesquisa propõe distintas estratégias para analisar restrições temporais
possibilitando avaliá-las em diferentes níveis de abstração, tais como em modelos iniciais
de requisitos e a partir da avaliação empírica de anotações dos modelos arquiteturais.
Inicialmente, construtores, estereótipos e enumerações do profile MARTE são rastreadas
para descrever requisitos não-funcionais dos STRE. Com base na semântica e sintaxe
do profile MARTE, no uso combinado da SysML, do formalismo do Timed Automata
e das diretrizes propostas na SPES, a metodologia MARTeSys𝑅𝑒𝑞𝐷 foi desenvolvida e a-
presentada nesta tese. A metodologia MARTeSys𝑅𝑒𝑞𝐷 emprega conceitos de Model-Driven
Systems Engineering e propõe orientações para o design de STRE baseando-se em view-
points, níveis de granularidade, anotações e verificações de importantes características
de tempo real. Além disto, MARTeSys𝑅𝑒𝑞𝐷 define novas estratégias para formalizar as
atividades de modelagem arquitetural, para medir a complexidade do design dos STRE
e para validar restrições temporais desde os modelos iniciais do viewpoint de Requisitos.
A metodologia desenvolvida é validada de maneira quantitativa e qualitativa de modo a

atestar suas contribuições e expressividade para o desenvolvimento dos SRTE.

Palavras-chave: Sistemas de Tempo Real e Embarcados, Engenharia de Requisitos, Ar-
quitetura de Sistemas, SysML, MARTE, SPES, Restrições não-funcionais, Complexidade
do Design.

Abstract

Real-time embedded systems (RTES) are increasingly omnipresent in human activi-
ties. The reliability and accuracy with which these systems are developed have a predo-
minant impact when dealing with system operation. Thus, the success in the develop-
ment of these systems relates not only to the accurate computational execution itself,
but also how reliably real-time embedded constraints are developed. Requirements Engi-
neering (RE) and architectural design of RTES are challenging activities, since they deal
with complex and diversified domains such as software, hardware, mechanical, electronics,
electrical and the physical environment. Requirements specification and architectural de-
sign, associated with the RTES domain, must attend to embedded and functional system
requirements and their related non-functional concerns, while considering cost, quality,
reliability and safety properties. This thesis relates to the development and analysis of
a methodology that covers different phases of RTES design. Different strategies for ana-
lyzing timing constraints are proposed in such a way that they are evaluated at different
abstraction levels, such as early analysis of requirement models and empirical evaluation
of architectural models assumptions. Initially, constructors, stereotypes and enumera-
tions of the MARTE profile are traced and linked to specific and non-functional concerns
of the RTES domain. Through the collected data and the combined use of the SysML pro-
file, Timed Automata and SPES guidelines the MARTeSys𝑅𝑒𝑞𝐷 methodology is proposed.
The proposed methodology employs Model-Driven Systems Engineering approaches and
presents distinctive guidelines to design RTES based on viewpoints, refinements, granu-
larity levels, annotation and verification of real-time embedded concerns. Furthermore,
the proposed methodology provides new strategies to formally describe architectural de-
sign decisions, to measure the design complexity of RTES, as well as to validate timing
constraints from the early model requirement viewpoint. The methodology proposed in
this study is both quantitatively and qualitatively validated, which aims at demonstrating
the expressiveness and contributions made toward RTES development.

Keywords: Real-Time Embedded System, Requirement Engineering, System Architec-
ture, SysML, MARTE, SPES, Non-Functional Constraints, Design Complexity.

Abstrakt

Eingebettete Echtzeitsysteme (RTES) sind bei menschlichen Aktivitäten zunehmend
allgegenwärtig. Die Zuverlässigkeit und Genauigkeit, mit der diese Systeme entwick-
elt werden, haben einen überwiegenden Einfluss auf den Systembetrieb. Daher hängt
der Erfolg bei der Entwicklung dieser Systeme nicht nur von der genauen Ausführung
selbst ab, sondern auch davon, wie zuverlässig die Anforderungen an die Echtzeit mit
entwickelt wurden. Anforderungs-Engineering (RE) und Architekturentwürfe von RTES
sind herausfordernde Aktivitäten, da sie sich mit komplexen und diversifizierten Bere-
ichen wie Software, Hardware, Mechanik, Elektronik, Elektrik und der physischen Umge-
bung befassen. Anforderungsspezifikation und Architekturentwürfe, die mit der RTES-
Domäne verbunden sind, müssen die eingebetteten und funktionalen Anforderungen des
Systems berücksichtigen und die damit verbundenen nicht funktionalen Anforderun-
gen unter Berücksichtigung von Kosten, Qualität, Zuverlässigkeit und Sicherheitseigen-
schaften. Diese Arbeit befasst sich mit der Entwicklung und Analyse einer Methodik,
die verschiedene Phasen der RTES-Entwürfe abdeckt. Verschiedene Strategien zur Anal-
yse von Zeitbeschränkungen werden so vorgeschlagen, dass sie auf verschiedenen Ab-
straktionsebenen bewertet werden, wie beispielsweise die frühzeitige Analyse von An-
forderungsmodellen und die empirische Bewertung von Annahmen zu Architekturmod-
ellen. Zunächst werden Konstruktoren, Stereotypen und Aufzählungen des MARTE-
Profils verfolgt und mit spezifischen und nicht funktionalen Anforderungen der RTES-
Domäne verknüpft. Durch die gesammelten Daten und die kombinierte Verwendung
des SysML-Profils, der Richtlinien für zeitgesteuerte Automaten und SPES wird die
MARTeSys𝑅𝑒𝑞𝐷-Methodik vorgeschlagen. Die vorgeschlagene Methodik verwendet mod-
ellgetriebene Systemtechnik-Ansätze und enthält eindeutige Richtlinien für den Entwurf
von RTES, die auf Gesichtspunkten, Verfeinerungen, Granularitäts-Ebenen, Anmerkun-
gen und Verifizierungen eingebetteter Echtzeitanforderungen basieren. Darüber hinaus
bietet die vorgeschlagene Methodik neue Strategien zur formalen Beschreibung von Ar-
chitekturentwurfsentscheidungen, zur Messung der Entwurfskomplexität von RTES sowie

zur Validierung von Zeitbeschränkungen unter dem Gesichtspunkt der frühen Modellan-
forderungen. Die in dieser Studie vorgeschlagene Methodik ist sowohl quantitativ als auch
qualitativ validiert, um die Aussagefähigkeit und die Beiträge zur RTES-Entwicklung zu
demonstrieren.

Schlüsselwörter: Eingebettetes Echtzeitsystem, Anforderungs-Engineering, Systemar-
chitektur, SysML, MARTE, SPES, nicht funktionale Anforderungen, Entwurfskomple-
xität.

List of Figures

Figure 1 – Research Methodology Applied in the MARTeSys𝑅𝑒𝑞𝐷 Methodology. . 39
Figure 2 – Diagrams of SysML Profile, adapted of [1]. 55
Figure 3 – SysML Requirements Model, adapted of [1]. 56
Figure 4 – SysML Blocks Diagram Model, adapted of [1]. 57
Figure 5 – Viewpoints and Granularly Views of SPES Methodology. 59
Figure 6 – MARTE Profile Architecture, adapted from [2]. 61
Figure 7 – Global View of the MARTeSys𝑅𝑒𝑞𝐷 Methodology. 79
Figure 8 – General Flow of the MARTeSys𝑅𝑒𝑞𝐷 Methodology. 83
Figure 9 – The MARTeSys𝑅𝑒𝑞𝐷 Methodology. 85
Figure 10 – Correlation between Requirements Engineering Process and Require-

ments Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology. 87
Figure 11 – Example of Requirements Refinement within the Activity of High-Level

Description of Requirements. 90
Figure 12 – Formalization of Concerns in Requirements Models by VSL. 91
Figure 13 – Example of Application: Requirements Pre-Analysis. 95
Figure 14 – Example of Application: High-Level Description of Requirements. . . 96
Figure 15 – Example of Application: Composition of Models using the MARTE

Profile. 96
Figure 16 – Example of Application: Stereotyped annotations by VSL Formalism. 97
Figure 17 – Example of Application: Analysis of Requirements. 97
Figure 18 – Example of Application: Functional Viewpoint. 99
Figure 19 – Mapping between the Functional viewpoint and Logical viewpoint. . 100
Figure 20 – Mapping between Functional and Logical viewpoints. 102
Figure 21 – General Framework of the MARTeSys𝑅𝑒𝑞𝐷 Methodology. 104
Figure 22 – Trace of ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ from Functional Viewpoint to Logical

Viewpoint. 105
Figure 23 – Contributions of the Proposed Formalization. 107

Figure 24 – Viewpoints of Real-Time and Embedded Design and their Complexity
Function. 121

Figure 25 – Domains in Automotive System Development. 128
Figure 26 – Structure of the Body Control Module. 129
Figure 27 – Features of the Turn Indicator System. 130
Figure 28 – An Example Scenario of Turn Indicator System. 132
Figure 29 – Artefact of High-Level Description of Requirements - Use Case Dia-

gram. 139
Figure 30 – Artefact of the Composition of Models using the MARTE Profile and

VSL Formalism - SysML Requirements Diagram. 141
Figure 31 – Artefact of the Analysis of Requirements - The Timed Automata

diagram of the Turn Indicator System. 142
Figure 32 – Artefact of the Analysis of Requirements - The Trigger Timed Au-

tomata diagram. 142
Figure 33 – First Refinement of Functional Viewpoint - SysML Block Diagram. 144
Figure 34 – Second Refinement of Functional Viewpoint - SysML Internal Block

Diagram. 144
Figure 35 – Third Refinement of Functional Viewpoint - SysML Block Diagram

with MARTE annotations. 145
Figure 36 – First Refinement of the Logical Viewpoint: Turn Indicator Model -

SysML Activity Diagram. 146
Figure 37 – Second Refinement of the Logical Viewpoint: Input Signal Handler -

SysML Activity Diagram. 147
Figure 38 – Second Refinement of the Logical Viewpoint: Turn Indicator Features

- SysML Activity Diagram. 148
Figure 39 – Second Refinement of the Logical Viewpoint: Output Signal Handler

- SysML Activity Diagram. 149
Figure 40 – Technical Viewpoint: Input Signal Handler. 150
Figure 41 – Technical Viewpoint: Output Signal Handler. 150
Figure 43 – Global System Architecture of Turn Indicator. 151
Figure 42 – Technical Viewpoint: Turn Indicator Features. 152
Figure 44 – Class Diagram of Turn Indicator with MARTE Constraints. 153
Figure 45 – Tasks of Turn Indicator System. 154
Figure 46 – Tracing Non-Functional Constraints to System Implementation. . . . 155
Figure 47 – Rate Monotonic Scheduling of the Tasks of the Turn Indicator Example.161
Figure 48 – Execution Time Simulation of Tasks. 162
Figure 49 – Period of Input Signal Handler Task. 164
Figure 50 – Period of Output Signal Handler Task. 165
Figure 51 – Period of Turn Flashing Task. 165

Figure 52 – Period of Hazard Flashing Task. 166
Figure 53 – Period of Breaking Task. 166
Figure 54 – The Proposed TCTL Specifications and the Validation Results. . . . 168
Figure 55 – Main Steps to Perform the Qualitative Evaluation. 171
Figure 56 – Prototype of Turn Indicator System. 215
Figure 57 – Example of MARTE Constraints to the System Realization. 217

List of Tables

Table 1 – Real-Time Embedded Concerns. 50
Table 2 – Analysis of the State of the Art. 74
Table 3 – Framework for the Requirements Pre-Analysis. 88
Table 4 – Requirements Categorization Table - Requirements viewpoint. . . 89
Table 5 – Modelling Concepts and Strategies adopted in the Refinements of the

Requirements Viewpoint. 98
Table 6 – The Concepts adopted in the Refinements of the Functional viewpoint. 98
Table 7 – Algorithms and their Cost Functions 117
Table 8 – Artefacts of the Requirements Pre-Analysis - Requirements Specifi-

cation. 135
Table 9 – Artefacts of the High-Level Description of Requirements- Require-

ments Categorization. 139
Table 10 – MARTE Constraints Simulation. 160
Table 11 – Tasks and their Expected Scheduling Policy. 161
Table 12 – Attendees of the First Qualitative Evaluation. 174
Table 13 – Attendees of the Second Qualitative Evaluation. 176
Table 14 – Adoption of MARTE Packages Stereotypes to represent RTES Concerns.211
Table 15 – Results of the First Qualitative Evaluation. 220
Table 16 – Results of the Second Qualitative Evaluation. 224

Acronyms List

AMF Architecture Modeling Framework

AOSD Aspect-Oriented Software Development

AMoDE-RT Aspect-oriented Model Driven Engineering for Real-Time systems

ACS Automotive Control Systems

ADC Automotive Doors Control

BCM Body Control Module

BDD Blocks Definition Diagram

CPU Central Process Unit

DRM Detailed Resouce Modeling

DSMLs Domain-Specific Modelling Languages

DERAF Distributed Embedded Real-time Aspects Framework

DERCS Distributed Embedded Real-time Compact Specification

ECU Electronic Control Unit

GenERTiCA Generation of Embedded Real Time Code based on Aspects

GRM Generic Resource Modeling

GCM Generic Component Model

GQAM Generic Quantitative Analysis Modeling

HRM Hardware Resource Modeling

IBD Internal Block diagram

IL Interaction Level

IS Interface Size

IPS Industrial Packing System

MARTE Modeling and Analysis of Real-Time Embedded Systems

MDSE Model-Driven Systems Engineering

NFP Non-Functional Properties Modeling

NL Natural Language

NL-TA Natural Language to Timed Automata

OO Objected-Oriented

OAC Operation Argument Complexity

PC Product Complexity

PWM Pulse-width Modulation

STRE Sistemas de Tempo Real e Embarcados

RTS Real-Time Systems

RTES Real-Time Embedded Systems

RE Requirements Engineering

RCM Rubus Component Model

RTMS Road Traffic Management Systems

SRM Software Resource Modeling

SysML Systems Modeling Language

SPES Software Platform Embedded Systems

SoCs Systems-on-Chip

TA Timed Automata

TIS Turn Indicator System

UML Unified Modeling Language

UML-RT Unified Modeling Language - Real Time

Contents

1 INTRODUCTION . 33
1.1 Motivation . 37
1.2 Research Methodology . 38
1.2.1 Goals and Scope Delimitation . 40
1.2.2 Assumptions and Research Questions 42
1.3 Contributions of the Thesis . 44
1.4 Organization of the Thesis . 45

2 THEORETICAL FOUNDATION 47
2.1 Real-time Embedded Systems and their Properties 47
2.2 Real-Time Embedded Constraints in Architectural Models . . 49
2.3 Model-Driven Systems Engineering 49
2.4 Specification and Design of Real-Time Embedded Systems . . 51
2.5 Characterization of UML . 52
2.6 Characterization of Timed Automata 53
2.7 Characterization of SysML . 54
2.7.1 Use Case Diagram . 55
2.7.2 SysML Requirements Diagram . 56
2.7.3 SysML Block Definition Diagram . 57
2.7.4 SysML Internal Block Diagram . 58
2.7.5 SysML Activity Diagram . 58
2.8 Software Platform Embedded Systems 59
2.9 Characterization of the MARTE Profile 61
2.9.1 MARTE Foundations Model . 62
2.9.2 MARTE Design Model . 63
2.10 Contributions of this Chapter . 65

3 STATE OF THE ART ANALYSIS 67
3.1 Methodologies to Design Real-Time Embedded Systems . . . 67
3.2 Formalization of Architectural Viewpoints 74
3.3 Contributions . 77

4 MARTESYS𝑅𝑒𝑞𝐷 METHODOLOGY 79
4.1 MARTeSys𝑅𝑒𝑞𝐷 Scope . 79
4.2 General Flow of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 82
4.3 Requirements Specification and Architectural Viewpoints within

the MARTeSys𝑅𝑒𝑞𝐷 Methodology 85
4.4 Requirements Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 86
4.4.1 Requirements Pre-Analysis . 86
4.4.2 High-Level Description of Requirements 88
4.4.3 Composition of Models using the MARTE Profile 90
4.4.4 Formal Specification with VSL . 91
4.4.5 Requirements Analysis . 92
4.4.6 Application of the Requirements Viewpoint 95
4.4.7 Summary of Requirements viewpoint 97
4.5 Functional Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology . . 98
4.5.1 Application of the Functional Viewpoint 99
4.6 Logical Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 100
4.6.1 Application of the Logical Viewpoint 101
4.7 Technical Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology . . . 102
4.7.1 Application of the Technical Viewpoint 103
4.8 From Architectural Viewpoints to Global System Architecture 103
4.9 An Strategy to Trace Real-Time Embedded Systems Con-

straints in Architectural Viewpoints 105
4.10 Contributions . 106

5 FORMALIZATION OF MARTESYS𝑅𝑒𝑞𝐷 107
5.1 Formalization of the Design Decision of Architectural View-

points . 107
5.2 Algorithms to Describe the Architectural Viewpoint 109
5.2.1 Formalization of Requirements Viewpoint Decisions 110
5.2.2 Formalization of Functional Viewpoint Decisions 111
5.2.3 Formalization of Logical Viewpoint Decisions 114
5.2.4 Formalization of the Technical Viewpoint Decisions 115
5.3 A Strategy to Analyze the Architectural Viewpoints in RTES

Development . 117

5.3.1 Partial Asymptotic Analysis of the MARTeSys𝑅𝑒𝑞𝐷 Design Decisions . 117
5.3.2 System Complexity Prediction of Architectural Viewpoint Design . . . 121
5.4 Contributions of the Proposed Formalization 124

6 APPLICATION OF THE MARTESYS𝑅𝑒𝑞𝐷 METHODOLOGY 127
6.1 An Overview of Automotive Control Systems 127
6.1.1 Body Control Module . 128
6.1.2 A Motivating Case: The Turn Indicator System 130
6.1.3 Scenario of the Turn Indicator System 131
6.2 Design of Architectural Viewpoints of the Turn Indicator System132
6.2.1 Requirements Viewpoint with the MARTeSys𝑅𝑒𝑞𝐷 Methodology 133
6.2.2 Functional Viewpoint with the MARTeSys𝑅𝑒𝑞𝐷 Methodology 143
6.2.3 Logical Viewpoint with the MARTeSys𝑅𝑒𝑞𝐷 Methodology 146
6.2.4 Technical Viewpoint with the MARTeSys𝑅𝑒𝑞𝐷 Methodology 149
6.3 Model and Unit Design Models 151
6.4 Tracing Real-Time Embedded Systems Constraints to Imple-

mentation Models . 154
6.5 Contributions . 156

7 EVALUATION OF THE MARTESYS𝑅𝑒𝑞𝐷 METHODOLOGY 157
7.1 Quantitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Metodology . . 157
7.1.1 Empirical Evaluation of MARTE Constraints 158
7.2 Early Evaluation of MARTE Constraints of Architectural View-

point . 168
7.3 Qualitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology . . 170
7.3.1 Data Gathering . 171
7.3.2 First Qualitative Evaluation . 174
7.3.3 Second Qualitative Evaluation . 175
7.4 Contributions . 178

8 CONCLUSION . 179
8.1 Main Results . 179
8.2 Research Challenges and Limitations 181
8.3 Future Research . 182
8.4 Bibliographic Production . 183

ANNEX A DESCRIPTION OF THE VALUE SPECIFICATION
LANGUAGE . 187

A.1 Introduction . 187
A.2 Time Expression . 189

ANNEX B ALGORITHMS FORMALIZATION TO MARTESYS𝑅𝑒𝑞𝐷

METHODOLOGY . 193
B.1 Requirements Viewpoint . 193
B.2 Functional Viewpoint . 197
B.3 Mapping between Functional Viewpoint to Logical Viewpoint

Models . 198
B.4 Logical Viewpoint . 200

ANNEX C RELATING MARTE PROFILE CONSTRUCTORS
AND CONCERNS OF RTES 207

C.1 Introduction . 207
C.2 Mapping MARTE Stereotypes to Specify RTES Constraints . 208

ANNEX D SYSTEM REALIZATION 213
D.0.1 Toolbox for Modeling, Simulation and Verification of MARTeSys𝑅𝑒𝑞𝐷

Methodology . 213
D.0.2 System Implementation . 214

ANNEX E RESULTS OF THE FIRST QUALITATIVE EVAL-
UATION . 219

ANNEX F RESULTS OF THE SECOND QUALITATIVE EVAL-
UATION . 221

F.1 Personal Questions about the Interviewees 224

BIBLIOGRAPHY . 225

I hereby certify that I have obtained all legal permissions from the owner(s) of each
third-party copyrighted matter included in my thesis, and that their permissions allow

availability such as being deposited in public digital libraries.

Fabíola Gonçalves Coelho Ribeiro

33

Chapter1
Introduction

Software systems have been increasingly present in human activities, and many of
these have a high level of complexity and automation. These systems are composed
of critical, non-functional, temporal, embedded and frequently real-time requirements
[3], [4]. The development of these systems is a complex activity, since qualitative and
quantitative aspects, such as efficiency, reliability, safety and real-time behavior must be
considered [5], [6].

Real-Time Systems (RTS) can be defined as “a computer system whose correctness
depends not only on the output, but also the time at which the output is produced” [7],
[8]. The term “real-time” is used for systems that react to external inputs given strict
time requirements. These systems must analyze in a correct manner, as well as answer
their external stimuli in a finite and pre-defined period [9]. RTS are complex systems
that involve multiple perspectives of analysis, domain application and increasingly de-
pend on the interaction between various disciplines, such as Mechanics, Electronics and
Software Engineering [10], [11], [12]. Moreover, these systems are frequently developed
for embedding in physical devices and, consequently, are named as Real-Time Embedded
Systems (RTES) [8].

Embedded software holds a substantial relationship with one or more computers/pro-
cessors, which have an imperative functionality in the system [13]. This kind of system
faces several constraints such as non-functional and real-time requirements, resource li-
mitations and hardware dependencies [3]. As of this point, in this thesis, non-functional
requirements with a real-time (as detailed on Table 1) specification are simply called
“constraint”. Generally, RTS “include many embedded and safety-critical systems that
are subcomponents of a larger complex system operating in a safety-critical environ-
ment” [14]. The class of RTES is composed of electronic, mechanical, electrical, some-
times hydraulic components in which they are encapsulated. Besides, these systems must
coordinate in a temporal manner their software, hardware and mechanical elements [15].

The design, development, implementation and maintenance of RTES has always been

34 Chapter 1. Introduction

considered difficult and challenging [16], [17], [8], [18], [19]. RTES must accomplish their
functional requirements, also meet cost, quality, reliability and safety requirements [20].
In this sense, Software Engineering proposes a variety of activities, processes, methods
and tools that assist in the analysis, description, development and maintenance of RTES
[10], [13], [21].

A variety of standards, formalisms, languages and approaches have been proposed in
recent years to assist developers in managing software development activities and help
them to deal with the inherent complexity of RTES [22], [23], [13], [24]. Model-Driven
Systems Engineering (MDSE) approaches can contribute and facilitate RTES develop-
ment, since it encompasses design strategies in order to develop, evolve, verify, formalize,
configure and maintain embedded, real-time and distributed software [25], [26]. MDSE
approaches are based on models that direct system development, perform refinements
of different abstraction levels and provide several types of stakeholder interaction [27].
Thus, MDSE approaches must be able to support specification and design of embed-
ded hardware and software components, which includes functional and non-functional
requirements, as well as to ensure the correct translation of specifications into executable
embedded systems [6].

In RTES development, Software Engineering activities are characterized as being diffi-
cult and complex, since since they must address functional and non-functional properties
in a correct and consistent manner, while performing analysis and description of distinc-
tive domains [28], [29]. Thus, such activities require, increasingly, high levels of knowledge
in order to specify and formalize RTES concerns along architectural design [30]. RE de-
fines a set of well-established practices that are able to describe and detail the properties
of an RTES [3]. Requirements viewpoint [18] of RTES aims at ensuring that the complete
set of needs, requirements and restrictions of a system will be captured and, posteriorly,
transformed into a valid set of requirements for all activities of the software life cycle [31],
[26], [21], [32]. Furthermore, the Requirements viewpoint provides the basis for further
Functional, Logical and Technical viewpoints of architectural system design [33], [18].

Among the other software development activities, Architectural Design, mapped here
in the Functional, Logical and Technical viewpoints, is defined as the set of activities
that involves analyses, refinements and development of system requirements at different
abstraction levels. The architectural design represents a fundamental activity during the
development of the RTES [34], [35], [36], [20], [18]. Architectural design artefacts aims
to describe software structure (detailing its components), to capture initial decisions of
the project, to present the behavioral overview of the system, to specify system technical
artifacts and, also, to contribute to the general reliability of the system [37], [29]. It also
allows one to describe software architectural characteristics in which associations/com-
munications between components and connectors are made explicit [38], [34], [35].

Architectural design and the artefacts that are derived from this process are vulnerable

35

to erroneous choices in the early stages of RTES development [24]. Such choices may
impact negatively on the development and deployment phases of RTES [38], [39], [37],
[36]. Therefore, it can be inferred that, for most RTES projects, it is of great importance
to understand, analyze, specify and validate the artefacts which arise from the design
since it can minimize complexity in its description and correct development [40], [39].

The development of RTES must specify structure and behavior of software, along
with its physical and logical resources, its infrastructure and temporal constraints [10],
[41], [42], [26], [43]. Therefore, using a single modelling language/method may not be
sufficiently suitable to cover all the multidisciplinary aspects that describes the RTES
domain [44], [45], [46], [47]. The combination of modelling techniques, languages and
methodologies can contribute to the full RTES description [48], [49], [5].

In a general sense, RTES engineers tend to use different approaches (formal, graphical
models or object-oriented) for modelling, analysis and specification of RTES [50], [51],
[47]. Furthermore, the specification language must be robust enough to represent the
system requirements at different abstraction levels in order to avoid omissions in the
specification and enable elicitation of physical, logical and temporal requirements, as well
as other aspects that describe these systems [20]. Thus, adoption of approaches based on
perspectives, multiple granularity levels and refinements, together with formal and semi-
formal languages, contributes to the system design, development of their components and
complex relationships [52], [11], [44], [53], [54].

Several Domain-Specific Modelling Languages (DSMLs) [45] have been proposed in the
form of extensions to the Unified Modeling Language (UML) metamodel and are named
as profiles [55], [56], [2], [57], [1]. UML is designed to be customizable and extensible
and it has been applied to several domains [44], [58], [59]. The UML metamodel includes
many semantic variables and provides special constructors in the language for refinement.
Such constructs, stereotypes, tagged values, and tags are used to define DSMLs based
on UML [60]. As these capture domain-specific concepts, profiles are typically used
together with other specific stereotypes of the same domain. Profiles are usually based
on only one subset of the UML metamodel (as opposed to the complete metamodel),
resulting in simpler and more compact DSMLs, commonly contributing to representation
of requirements that are intrinsic to RTES [12].

In this thesis, UML, MARTE and SysML profiles, SPES methodology and Timed Au-
tomata language are combined in order to provide an overall methodology to specify and
design RTES. The combined adoption of these languages/profiles encompasses functional
and non-functional concerns in model elements along the architectural viewpoint design
of RTES. The proposed methodology aims at defining a general and appropriate archi-
tectural viewpoint definition to design RTES. Thus, it adopts viewpoints and refinements
of architectural viewpoints with focus on RTES design. In the Requirements, Functional,
Logical and Technical viewpoints, these refinements consider specific diagrams and non-

36 Chapter 1. Introduction

functional annotations from the early steps of design, while fortifying the description of
important aspects concerning these systems.

The Software Platform Embedded Systems (SPES) methodology provides a frame-
work toward RTES development, while providing guidelines to software and system de-
sign. The adoption of SPES viewpoints and their perspectives contributes to minimizing
the complexity of RTES development, as it performs separation of non-functional con-
cerns and functional system services [33]. The proposed decomposition of system services
can favor one‘s understanding and development of such services [61], [62]. Modeling and
Analysis of Real-Time Embedded Systems (MARTE) extend the UML with constructors
to analyze, modelling and design RTES [2]. Systems Modeling Language (SysML) is also
a UML extension that supports system modelling allowing either high or low-level des-
cription of RTES [1]. MARTE constructors can be annotated directly in SysML models
without any extension as MARTE is a UML profile [59]. Therefore, SysML and MARTE
can be combined in MDSE approaches to express RTES properties.

In this thesis, MARTE profile and SPES methodology are employed in modelling
strategies, from SysML and Timed Automata (TA) [63], in order to specify, design
and validate the requirements, services and systems components. The combination of
these strategies culminates in the development of the MARTeSys𝑅𝑒𝑞𝐷 methodology. The
MARTeSys𝑅𝑒𝑞𝐷 methodology depicts how to design structured and dynamic models of
RTES, while highlighting hardware and software requirements of these systems. The pro-
posed methodology, which incorporates described models and guidelines to design RTES
considering distinctive and complementary perspectives, is able to represent RTES cha-
racteristics such as functional and non-functional features.

The MARTeSys𝑅𝑒𝑞𝐷 methodology also proposes a formal definition of RTES design
activities and viewpoints. The proposed formalization allows for different measurements
regarding complexity of system design, from the initial design activities, as well as the defi-
nition of a formalized manner in order to analyze RTES complexity without interference of
user external knowledge. In addition, it presents two novel strategies for managing RTES
timing constraints: (1o) it traces RTES constraints along the architectural design to the
system realization so, that it can be formally analyzed, (2o) it provides a formal grammar
to transform timing specifications, written in natural language, to timed-automata. This
last aspect allows for the verification of timing constraints such as period and deadlines
from requirements specification documents in an unambiguous manner.

The MARTeSys𝑅𝑒𝑞𝐷 methodology has been applied in different case studies such
as Road Traffic Management Systems (RTMS), Automotive Control Systems (ACS),
Automotive Doors Control (ADC), Industrial Packing System (IPS) and Turn Indicator
System (TIS)). In this thesis, the full example of MARTeSys𝑅𝑒𝑞𝐷 methodology is applied
in particular to the TIS in order to show the use of the proposed methodology, guidelines
for the design of complex system features, and to direct RTES development.

1.1. Motivation 37

1.1 Motivation

The development of RTES must cover different development phases, such as require-
ments specification and architectural design [64]. Other phases, such as source code
development, testing and integration, are direct consequences of modelling activities [13].
RTES operate in domains in which UML extensions can be used to provide greater
expressiveness, such as mutual exclusion mechanisms, temporal features, concurrency,
specification of deadlines, among others [59], [65], [47]. Moreover, formal and semi-formal
languages, combined with MDSE principles, can contribute to RTES specification and
design [66].

In this thesis, the author adopts MDSE concepts to support development of RTES
considering analysis, modelling, evaluation and validation of timing critical constraints.
The thesis scope can be subdivided into the following motivations:

1. Development of strategies to cover the design of RTES. This means, speci-
fically, that the thesis concentrates on formal and semi-formal methods to model
RTES along the requirements and design activities.

2. Enabling of annotation of RTES concerns at different abstraction le-
vels. This thesis culminates in the MARTeSys𝑅𝑒𝑞𝐷 methodology and it presents
a wide analysis and guidelines to represent real-time and embedded concerns into
architectural models.

3. Analysis, verification and validation of timing concerns from multiple
architectural models. MARTeSys𝑅𝑒𝑞𝐷 methodology presents guidelines to anno-
tate models describing non-functional concerns of RTES design. Furthermore, it
provides a strategy to analysis, validate and verify specific timing concerns along
of RTES development.

RTES are complex, composed by functional and non-functional properties and their
development must accomplish critical concerns [67]. However, this thesis is restricted
to the analysis, validation and verification of designed timing concerns based on three
reasons.

First, time is an essential variable to RTES [68]. Representing time is a crucial activity
in RTES modelling and the mapping of temporal characteristics is of fundamental impor-
tance to RTES design activities [16], [69]. Thus, the development of RTES with a high
correctness level and reliability depends on the correct specification and design of system
functionalities [64], which includes analysis and specification of their time constraints
[11], [15]. Therefore, design of these systems requires a complete and effective support
in order to define and express temporal parameters that are related to the application
under development [49].

38 Chapter 1. Introduction

Secondly, it is important to trace and validate timing constraints from the early design
steps of RTES development. The correct description and evaluation of these complex data
along the RTES design are directly related to their reliability, safety and quality [22]. It
is possible to create formal and semi-formal strategies to provide guarantees regarding
the time bounds of the architectural models. Here, these constraints are attached in
the models, at different abstraction levels, and can be verified and validated by model-
checking and simulation strategies.

Finally, the investigation of MDSE strategies to RTES design can benefit their deve-
lopment [70]. The RTES projects involve multiple domain-specific languages to cover
different characteristics of these systems [47]. Given the heterogeneous and complex
nature of these systems, and the several different categories of stakeholders with different
concerns and interests, it is necessary to use multiple languages [71], [12]. These languages
should have compatible models in order to represent the various aspects of a system [44].
It is expected that the chosen design strategies for the MARTeSys𝑅𝑒𝑞𝐷 methodology
provide expressiveness of RTES design, while expressing the models of Requirements,
Functional, Logical and Technical viewpoints.

This thesis has been motivated by the need to manage the complexity of RTES de-
velopment, while focusing on the design of critical properties and their analyses. This
is performed by the development of specific criteria for specification, modelling and the
architectural design of these systems.

1.2 Research Methodology

As emphasized in [72], a method is a set of organizing principles around which empi-
rical data is collected and analyzed. A variety of methods can be applied to any research
problem and, oftentimes, it becomes necessary to use a combination of methods to fully
understand the problem and to conduct relevant and non-refutable issues in relation to
the research criteria. Figure 1 depicts the Activity diagram followed by the adopted
research methodology. This research method encloses the overall research methods and
techniques to develop and evaluate the proposed study of this thesis.

Research methods are applied in the context of a scientific research study. Therefore,
they relate to goals, objectives, bibliographic reviews and validations [73], [74]. Research
strategies, in Software Engineering, are applied in a specific context/strategy of investi-
gation and seek to provide new knowledge that is expressed in the form of theoretical and
practical results [75]. In the top part of Figure 1, the research methods that provide the
main insights to the proposed study are presented. Regarding the data collection tech-
nique, this thesis applies mixed approaches and methods, with greater detail provided in
[72] and [76]. As it can be noticed in Figure 1, the framework to develop MARTeSys𝑅𝑒𝑞𝐷

is based on data collection techniques, from field research (for example case studies), in-

1.2. Research Methodology 39

Figure 1 – Research Methodology Applied in the MARTeSys𝑅𝑒𝑞𝐷 Methodology.

terviews and bibliographic reviews. These techniques help to define the scope, guidelines
and design decisions of the proposed methodology.

Results of a research study can be expressed as procedures or techniques, as quali-
tative, descriptive, empirical or analytic models, also as tools and notations, as specific
solutions, as evaluations/comparison, or, yet still, as reports with observations or rules.
In the bottom part of Figure 1, the methods to perform the thesis evaluations are shown.
Empirical Techniques, Formal Techniques, Qualitative and Quantitative Evaluations are
considered to check the expressiveness, significance and adequacy level of the research
results to RTES development. In this thesis, simulation, testing, measurements (in spe-
cific case studies) and formal validations of the design artifacts are considered in order
to analyze the proposed methodology.

Qualitative and Quantitative measurements perform significant evaluation of the pro-
posed strategy. The qualitative approach, used in this research, aims to construct a
theoretical framework that emerges from the analysis of collected data during research
and that explains the research results in a coherent manner [77]. The Quantitative
Evaluation focus on assumptions evaluation and aims to measure their reliability when
faced with design decisions. The quantitative research is based on the measurement of
objective variables, on the comparison of results and/or on the intensive use of statisti-
cal techniques. As stated previously, the numerical values from the simulation activities
aims to check if there is consistency between the architectural constrained models and
the dynamics results.

Qualitative and quantitative techniques are applied in order to evaluate the results
of this thesis regarding the artefacts generated from the application of the proposed
methodology in an industrial case study. The case study technique stands out among
the main tools for exploratory studies, and in this thesis, it will be used to support the
research proposal, to understand the scope of the problem and to answer the research
questions. Case studies are appropriate for various research objectives and they can be

40 Chapter 1. Introduction

used in contexts of description (with the objective of answering questions of type “what”,
“where” and “how”), of explaning questions (with the objective of clarifying questions of
the type “why”), of predictions (it includes state predictions of the short-term/long-term,
behaviors, events) and of control process (it attempts to influence attitudes, cognitions
and behaviors for a particular case) [78], [79], [80].

An analysis of usability and expressiveness, of the proposed methodology, will be
performed regarding an industrial case study. For this, a team that is constituted of
professionals, researchers and students who work and do research on RTES, are invited
to evaluate the proposed methodology. In this way, as detailed in Chapter 7, interviews
and questionnaires are applied to analyze the MARTeSys𝑅𝑒𝑞𝐷 methodology and its con-
tributions to requirements specification and architectural design of RTES.

Each subject receives in advance a manual and basic guidelines about the MARTe-
Sys𝑅𝑒𝑞𝐷 methodology. Posteriorly, the experts analyze the artefacts coming from the
application of the proposed methodology, in an industrial case study. Then, interviews
and questionnaires are performed. Thus, the experts may qualify and quantify their
experiences. The proposed questionnaires are based on known standards of the RE pro-
cess and Architectural Design such as ISO/IEC/IEEE 29148:2011 [81], ISO/IEC/IEEE
42010:2011 [37] and ISO/IEC/IEEE 29148:2011 [81]. Finally, different qualitative analy-
ses are performed, by the author, from the collected data regarding the answers from the
expert.

Regarding the data collection technique, as noted in Figure 1, the background to
develop MARTeSys𝑅𝑒𝑞𝐷 is based on data collection techniques through research in the
field, specification techniques and RTES design. Therefore, the research proposed in this
thesis uses mixed approaches and methods, which is given greater detail in [72], such as
bibliographic analyses, literature review and case studies.

1.2.1 Goals and Scope Delimitation

Different approaches to the Requirements Specification process have been proposed.
Many of these approaches focus on the specification, analysis, elicitation and requirements
management processes of RTES. In [82], [83] and [84] extensions to the SysML Require-
ments diagram were presented in order to allow for definition of a modelling methodology
with relevant criteria for documentation, requirements analysis, classification, traceability
and design of systems at different abstraction levels.

The author’s publications, which were mentioned previously, had their focus on ex-
tensions of attributes and relationships of the SysML Requirements diagram. These
extensions were applied fundamentally to activities of requirements specifications. Fur-
thermore, it did not focus on RTES constraints annotation and traceability between
artefacts from different development stages. Following the studies of [82], [83], [84], [85],

1.2. Research Methodology 41

and with the goal of portraying the gaps not covered in these works or in findings from
the literature, this section provides details of the principle and specific objectives.

The main objective of this thesis is to provide a methodology for RTES design that
covers functional and non-functional properties, while allowing timing analyses at diffe-
rent abstraction levels. With this in mind, it is initially intended to use the MARTE
profile in combination with SysML diagrams and SPES guidelines in order to develop a
methodology that can be applied to the structural and dynamic design of RTES. Fur-
thermore, this methodology provides a manner to represent the characteristics that are
inherent to RTES at separate abstraction levels. The overall design phases proposed in
this thesis have been formalized to allow its application for different RTES examples.
Hence, it is estimated to significantly promote the specification, description, validation
and verification of RTES concerns for physical and logical system components. The
specific objectives of this thesis are:

o To develop a methodology, based on viewpoint refinements and different abstraction
levels, to the Requirements Specification and Architectural Design of RTES;

o To trace stereotypes and constructors of MARTE to express specific RTES concerns;

o To apply VSL to standardize RTES descriptions within design artefacts;

o To propose, in the developed methodology, a strategy to trace timing constraints
between artefacts coming from the different design viewpoints and along the RTES
development;

o To qualitatively evaluate the combined adoption of the SysML diagrams and MARTE
stereotypes, together with SPES, to describe Requirements, Functional, Logical and
Technical Viewpoints;

o To propose a formalization of the proposed methodology, through the specification
of the algorithms, and its design activities;

o To perform complexity analyses related to the adopting of the proposed methodo-
logy;

o To provide a strategy to predict the global system complexity when it adopts the
proposed methodology;

o To create a grammar to transform timing constraints descriptions, written in natural
language, from Requirements viewpoints models, to formal syntax representation;

o To formally validate timing constraints from the early design phases and over the ar-
chitectural design; To formally validate timing constraints since early design phases
and over architectural design;

42 Chapter 1. Introduction

o To apply the proposed methodology for specification and design of RTES in order
to qualitatively and quantitatively validate the proposed methodology.

The MARTE profile provides a wide and robust framework of definitions, constructors
and formalisms to define, describe and analyze RTES [59]. However, this profile still
lacks the dissemination and consolidation of its model [86], as well as applications that
present, qualitatively and quantitatively, its suitability, expressiveness and usability in
modelling/specification processes [87], [88], [89], [90], [91].

In light of these aforementioned challenges, this thesis aims to show how MARTE
stereotypes and constructors can be effectively applied to detail essential concerns of
RTES. The MARTeSys𝑅𝑒𝑞𝐷 methodology also provides the trace between RTES concerns
and specific constructors from MARTE (see Chapter 4). In addition, this thesis provides
several guidelines to combine UML profiles to design architectural models of RTES. Fi-
nally, this thesis defines how to link the MARTE stereotypes in different RTES views,
at each viewpoint, of the system. It contributes to meaningful refinements of the system
design and their RTES concerns, to favor the reproducibility of design decisions and to
develop architectural design. Thus, non-functional concerns can be analyzed, as of the
early design phases, through the development of RTES, until the system realization.

Considering the prior discussion, one can narrow the scope of this thesis as follows:
(1o) To provide a global reasoning for challenges and different components that may be
evolved in the development of RTES. It directs the author to propose a framework with
concepts and guidelines to design the intrinsic properties to these systems while they
may contribute to decreasing the complexity in their design and development. (2o) To
highlight how MARTE and SysML profiles, SPES methodology and TA can be combined
in Requirements, Functional, Logical and Technical viewpoints of the proposed metho-
dology to handle, during early design descriptions, several functional and non-functional
properties of RTES. (3o) To formalize design activities to provide a standard manner to
adopt a MDSE approach. It allows the application of the methodology, its guidelines
and concepts for different developers and in distinctive domains. Moreover, the proposed
formalization contributes to quantitative measurements and a new complexity analysis of
design activities. (4o) To perform the management of RTES constraints from distinctive
perspectives in order to favor to their seamless description and analysis. It means that
this thesis aims to annotate, design, trace and realize formal and simulation analysis of
these constraints in order to accomplish their meaning.

1.2.2 Assumptions and Research Questions

This work is based on the assumption that “The combined use of MARTE stereotypes,
structural and behavioral diagrams of SysML together with TA formalism contribute to
RTES design, favoring the analysis and comprehension of its inherent properties and,

1.2. Research Methodology 43

therefore, its development”. To validate this assumption, the following research questions
are proposed:

Q1: What is an expressive manner to combine SysML diagrams with stereotyped mar-
kings of the MARTE profile, handling non-functional constraints, in order to per-
form requirements specification and architectural design of RTES?

This question is answered in Chapter 4 through the definition of MARTeSys𝑅𝑒𝑞𝐷

methodology. Together with the definition of the proposed methodology, it provides
a group of well-formed strategies for high and low level modelling, viewpoints re-
finement, documentation and specification of requirements and architectural arte-
facts. Furthermore, Chapter 4 presents theoretical foundations regarding timing
constraints annotations through the MARTE profile packages. The analyses car-
ried out in this research question provide a methodology able to handle timing
constraints from Requirements viewpoint artefacts, by transformation rules and
TA models, and from Model and Unit Design artefacts.

Q2: How to formalize the design activities within an RTES methodology?

The answer to this research question is provided in Chapter 5. This formaliza-
tion is performed in pseudo-code and shows formal instructions for applying the
MARTeSys𝑅𝑒𝑞𝐷 methodology in order to develop RTES. In general, this question
is important for establishing a manner in which the proposed methodology can be
adopted, while supporting the development of system architectural models. It also
provides quantitative criteria to measure and standardize a MDSE methodology.
Based on this, distinctive measurements can be performed in order to quantita-
tively analyze the complexity, regarding to time and number of components, of the
proposed methodology.

Q3: How to effectively apply the proposed methodology to the Requirements Specifica-
tion and Architectural design?

The third research question is discussed in Chapter 6, which depicts the application
of the MARTeSys𝑅𝑒𝑞𝐷 methodology, its design activities and specified viewpoints
in an industrial case study. In addition, Chapter 6 shows a concrete specification
and design of RTES constraints along with Requirements, Functional, Logical and
Technical viewpoints.

Q4: How to provide traceability patterns between artefacts of the Requirements Speci-
fication and Architectural design?

Chapter 7 performs the evaluation of the proposed methodology while detailing a
concrete strategy to trace RTEs constraints along architectural viewpoints. The

44 Chapter 1. Introduction

proposed strategy traces constraints, from different abstraction levels, in archi-
tectural models in order to follow their evolution and refinements. Moreover, it
performs automatic translations of annotated constraints, from Model and Unit
Design model, to implemented code. The main goal of this topic is to propose a
strategy to comprehend, express and trace RTES constraints along of requirements
specifications and architectural design artefacts. Moreover, it may facilitate the
processes of development and management of changes in these systems.

1.3 Contributions of the Thesis

The research study proposed in this thesis intends to contribute, through the spread
of its results to the academic community, knowledge and the adoption of semantics and
syntax of the MARTE profile and of its real-time embedded constructors in the RTES
development processes. Guidelines to RTES requirements specification and architectural
design are proposed. Further, it provides in the same methodology ways for integrating
software and system design.

The proposed methodology is named as MARTeSys𝑅𝑒𝑞𝐷 and combines MDSE ap-
proaches, MARTE profile, SysML diagrams, SPES guidelines, TA concepts into a single
methodology. The MARTeSys𝑅𝑒𝑞𝐷 methodology contributes to manage the complexity
of RTES development, while supporting their viewpoints refinement, granularity levels
definition, annotation and verification of real-time embedded constraints.

Another important contribution of this thesis is to formally analyze requirements using
Requirements viewpoint models. The MARTeSys𝑅𝑒𝑞𝐷 methodology produces different
formal rules to represent timing constraints from natural language to formal specification.
Therefore, it defines a strategy to formally analyze and verify timing constraints while
proving the correctness of these constraints. A formal grammar is developed in order
to generate TA models from the specification in natural language. This can contribute
toward minimizing the ambiguity of requirements views and specifications. Hence, it
allows the application of model checking strategies at the early design levels.

The MARTeSys𝑅𝑒𝑞𝐷 is a well-described methodology for RTES development. It pro-
vides a group of formalized guidelines to be applied into the design phases and, it offers
a complete set of constructors and combined diagrams to structure RTES artefacts. This
strategy provides a manner to trace the system constraints from different views and view-
points, as well as to trace back these constraints, from a higher to a lower abstraction
level. Therefore, it may contribute to the analysis, modelling and comprehension of the
interdependencies between design elements.

Software and system components are treated as integrated components. Software in
RTES performs specific functions within the system. In this way, it is possible to link
these domains, into a single methodology, to favor their design. MARTeSys𝑅𝑒𝑞𝐷 performs

1.4. Organization of the Thesis 45

it by adopting specific and integrated diagrams to model these domains and tracing
artefacts and their constrained values along software and system architectural models.
Thus, the proposed methodology addresses software models and system qualities such as
real-time constraints and also provides combined strategies to verify and validate these
constraints.

1.4 Organization of the Thesis

This thesis is structured through 8 chapters, and organized as follows:
Chapter 2, Theoretical Foundation, contemplates RTES theoretical concepts, des-

cribes MDSE and the specific needs of RTES design. Moreover, this chapter performs an
introduction of the UML profiles adopted in this thesis and their contribution to RTES
requirements specification and architectural design.

Chapter 3, entitled State of the Art Analysis, provides an analysis of correlated
scientific studies from the last five years regarding the scope of this thesis. This chapter
aims to analyze, and contextualize the research performed and the contributions of this
thesis. In addition, Chapter 3 provides the literature review, regarding the MDSE to
RTES development and the formalization of design steps, and it is based on the author’s
papers [92] and [93].

Chapter 4, entitled The MARTeSys𝑅𝑒𝑞𝐷 Methodology, presents a methodology
to specify, design and architect RTES. This chapter provides a complete explanation
of the four viewpoints of MARTeSys𝑅𝑒𝑞𝐷 methodology, its refinements and adequate
SysML diagrams, along with a formal grammar to design requirements and their timing
constraints through TA. The contributions of this Chapter are mainly presented in [94],
[95], [96] and [97].

Chapter 5, entitled The Formalization of MARTeSys𝑅𝑒𝑞𝐷, follows the contribu-
tions of this thesis and defines a strategy in order to formalize all the design decisions for
the MARTeSys𝑅𝑒𝑞𝐷 methodology. The formalization proposed in this Chapter is based
on papers [98] and [99].

Chapter 6, entitled Adoption of the MARTeSys𝑅𝑒𝑞𝐷 Methodology, MARTe-
Sys𝑅𝑒𝑞𝐷 depicts an application of the proposed methodology in a case study. The chosen
case studies are not necessarily defined to combine with the MARTeSys𝑅𝑒𝑞𝐷 methodol-
ogy specification or to fit exactly with it. It means that the designed methodology is
independent of any application domain. Thus, their design processes can be adopted to
develop RTES. This Chapter is based on the author’s papers [100] and [101].

Chapter 7, entitled Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology, presents
a qualitative evaluation of the MARTeSys𝑅𝑒𝑞𝐷 methodology regarding the review and
assessment of experts of the RTES domain. Moreover, this chapter provides the trace
and analysis of timing constraints from architectural to the implementation models. Thus,

46 Chapter 1. Introduction

it develops a strategy to simulate these constraints and verify design assumptions, from
dynamic executions, while quantifying these. This Chapter is based on papers [102], [103]
and [104].

Chapter 8, Conclusion, summarizes the main contributions of this thesis and high-
lights the scientific resulting publications. This chapter also lists future extensions that
may be considered regarding the scope of this thesis.

47

Chapter2
Theoretical Foundation

This chapter provides an overview of the theoretical concepts that are related to and
deliver the necessary background to the proposed study. It aims at describing the RTES
and their characteristics, while introducing concepts, methodologies and principles that
contribute to RTES development.

2.1 Real-time Embedded Systems and their Proper-
ties

The term RTES is usually related to those systems with strict non-functional cons-
traints [53]. These constraints are related to timing, security and/or performance concerns
and these can be imposed on the overall system services/functions or their subsystems
[105].

The class of RTS can be characterized by time-aware, reactive (time-triggered or
event-triggered) and/or concurrent controllers. It means they must readily react to each
environmental stimuli, while also operating in parallel [13]. Therefore, in RTS design, the
acceptance of a system requirement must consider timing satisfaction, in a concurrent
environment, in which asynchronous events can be triggered at any time [11], [14], [106].

RTS can be classified in three primary classes [16], [22]: “Hard” real-time systems,
“Soft” real-time systems and “Firm” real-time systems. Soft real-time systems are those
in which the response time is important, but they still operate well enough even if some
temporal restrictions are, occasionally, lost. Thus, missing of deadlines may diminish sys-
tem performance, but it will not result in significant losses due to failure to meet response
time constraints [14]. As examples of Soft real-time systems, multimedia applications,
interactive or process control systems are put forward as examples [22].

Hard real-time systems are classified by their strict observance and attendance to
constrained deadlines [7]. Therefore, failures to meet timing constraints can lead to into-
lerable degradation of system and, in some cases, result in catastrophic losses and other

48 Chapter 2. Theoretical Foundation

undesirable consequences. Hard real-time systems are all those of which it can be affirmed
that “although functionally correct, the results produced after a certain predefined dead-
line are incorrect and, thus, useless” [15]. According to [14], Hard real-time systems must
always react when requested, contrary to Soft real-time systems, which eventually, may
not fulfill necessary time needs. Aircraft, nuclear power plants and traffic controls, among
others, can be cited as examples of hard RTS [22], [17], [69].

According to [13], Firm real-time systems can behave as Hard or Soft RTS. As in a
Soft real-time system, small delays do not lead to total failure of the system, however,
huge delays can result in global and dangerous failures. As examples of these systems,
ATM and online transaction controls are noted.

In general, embedded systems are characterized as computational systems, with a
specific purpose, able to control and support the operation of technical systems (also
named as embedded systems). These systems are composed of mechanical components
for which specific and pre-defined tasks are controlled through an encapsulated system.
As well as RTS, embedded systems must operate in accordance with their temporal
constraints and multi-task activities respecting different scheduling, synchronization and
resource management policies [15].

An RTS is named RTES if developed to be embedded within some larger system [53].
In the RTES domain, software is the logical component, it is usually embedded, and it is
developed under performance, security and reliability criteria. RTES covers a wide range
of systems such as automobile, industrial telecommunications, air traffic, rail and traffic
controllers [107]. Other examples are medical, nuclear and process control systems [10],
[108]. RTES encompass different embedded and real-time properties/requirements and,
as RTS, the temporal behavior of their physical and logical subsystems is as important
as their functional behavior [52]. These systems define, in addition to their functional
properties, control of several peripheral components, of their constraints, communication
interfaces and temporal and non-functional requirements [109].

According to the presented definitions, one can state that the predictability of tem-
poral behavior is a very important property of RTES [15]. An RTES must describe and
prove, at design conception, that in all cases all requests will be served within predefined
within predefined [110]. In this case, the temporal behavior of the system and subsystem
(Hard, Soft and Firm) must be fully represented in their development.

The development of RTES consider a complete and effective support of their functional
and non-functional concerns. As presented in standard ISO/IEC/IEEE 42010:2011 [37],
a concern can relate to the needs, objectives, goals, restrictions of requirements spe-
cification, design constraints, system attributes, architectural decisions, quality features
and other questions which can influence the functional and non-functional behavior of the
system. An analysis of these concerns is important to clarify their design and description
along the RTES development. The following sections provide an overview regarding

2.2. Real-Time Embedded Constraints in Architectural Models 49

concerns found with RTES and their design along architectural descriptions.

2.2 Real-Time Embedded Constraints in Architec-
tural Models

High quality in RTES development depends on its correct requirements specification,
which includes analyses and representation of its different constraints [16]. In addition,
it is necessary to provide appropriate support for embedded devices when representing
their characteristics, communication interfaces (often distributed), energy management,
operation protocols and offered services. Therefore, RTES requirements specification
demands a complete and effective support of RTES constraints in order to define, express
and validate non-functional and timing constraints, which are related to the application
under development [68].

RTES constraints describe a particular real-time behavior/condition of the external
system or its interaction [111]. Moreover, these constraints can restrict reactive controllers
of RTES actions/events. In the last case, these constraints can detail response time, from
the system to the environment or to any other component, as for example, execution time
and system deadlines.

Development activities of RTES must consider different constraints/concerns of these
systems as, for example, desired performance and reliability under different viewpoints
[31], [2], [26], [21], [32]. RTES must deal with correct interaction between embedded
components, along with critical and complex real-time components. According to many
authors [112], [113], [8], [51], non-functional requirements of an RTES, and their concerns,
may be contained within different categories. Table 14 depicts non-functional concerns
and their subtypes.

The consideration given to these concerns/constraints and their correct description
and design contributes to a trustworthy definition of the system under development.
Understanding these concerns and how they can be detailed can favor activities for the
specification, analysis and architectural design of RTES.

2.3 Model-Driven Systems Engineering

Model-Driven System Engineering (MDSE) based on models, transformations, such
as Model-to-Text and Model-to-Model, and modelling tools to support the management
of systems [114]. MDSE intends to increase the level of abstraction, through the use of
models and DSMLs, in system development activities [115].

MDSE activities, such as specification, modelling architectural design and system evo-
lution, start at the beginning of the software development process and continue through-

50 Chapter 2. Theoretical Foundation

Non-Functional Require-
ment

Non-Functional Requirement Subtypes

Reliability Accuracy, Maturity, Fault Tolerance, Recoverability, Compliance,
Threshold.

Time Timing: deadline, period, cost, release time, activation latency, start
time, end time, event duration, clock, instants. Precision: jitter, toler-
ated delay, freshness, resolution, drift.

Performance Accuracy, Response Time, Operation Capacity, Throughput, Recovery
Time.

Safety Tolerance to Failures, Risk Level, Risk Prevention, Access Levels, Re-
dundancy, Integrity, Privacy, Minimum Metric Access Level, Maximum
Metric Access Level.

Distribution Tasks Allocation, Hosts Definition, Communication, Concurrency, Dis-
tributed Log, Parallelism, Synchronous Process.

Interoperability Bus Structure, Inter-Process Communication, Communication Proto-
cols.

Embedded Layout of Devices (area, size, amount of hardware), Input Interruption
Control, Outputs Interruption Control, Energy consumption, Communi-
cation Channels, Memory Size, Memory Organization, Power Consump-
tion, Heat Control, Bandwidth.

Resource Utilization Deadlock, Policies of Access, Resource Features.
Security Subsystem Integration, Privacy, Control Access, Distributed Log, In-

tegrity, Privacy.
Concurrency Correctness, Performance, Parallelism, Robustness, Control Access, Syn-

chronization.
Flexibility Transportability, Interchangeability, Expansion, Capability, Contrac-

tion, Effectiveness.
Maintainability Modifiability, Evolvability, Modularity, Mean Time to Repair, Maximum

Time to Repair, Mean Time between Maintenance Actions, Maintenance
Time, Maintenance Staff Hours, Skill Levels of Staff, Frequency of main-
tenance, Complexity Level, Evolvability, Repairability.

Usability Capabilities of Usage, Measures of Performance, Measure of Safety, Mea-
sures of Reliability, Measures of Availability.

Inter-process Commu-
nication

Effectiveness, Policies of Access, Policies of Control.

Deadlock Policies of Access, Correctness of Outputs, Deadline Satisfaction.

Table 1 – Real-Time Embedded Concerns.

out the software life-cycle. MDSE principles favor the RTES, since these allow it “to cope
with the complexity of software development by raising the abstraction level and intro-
ducing more automation into the process” [116]. Adoption of MDSE in RTES develop-
ment can contribute to reducing risks in the design, toward control costs and chronogram
achievements from the early phases of the software lifecycle [117]. Moreover, MDSE may
increase the level of productivity during software development, while also improving the
impact analysis of changes to the requirement processes and design [65].

MDSE is practiced widely [115] and it has been adopted by distinct areas of RTES
industries such as automotive, banking, printing and so on. As described in [27], the
adoption of MDSE principles allows for a concise software documentation and a structured
software architecture. These principles can influence productivity gain due to automatic
code generation support [65]. However, even though MDA is conceptually simple to

2.4. Specification and Design of Real-Time Embedded Systems 51

understand, it is complex to implement into RTES development [118]. The successful
adoption of MDSE may relate to the knowledge of DSMLs, through the compression on
model-centric approaches and adoption of coherent tools [119].

The MDSE approach differs from traditional approaches of software development,
which often follow a pure or extensions of Waterfall model [120]. “Traditional models
are treated as reference artefacts for subsequent design and coding whereas in MDSE,
models are treated as code” [118]. MDSE approaches can be employed under different
perspectives and interests in RTES design [70]. As stated in [121], approaches that con-
sider MDSE guidelines should provide three primary goals: portability, interoperability
and reusability through the architectural separation of concerns.

2.4 Specification and Design of Real-Time Embed-
ded Systems

RTES design is not a trivial process [13], [114]. Development of RTES must consider
the system specifications and the interactions between software, hardware and mechanical
components. Software plays an important role in RTES conception, as it has become more
intensive and complex [122].

Modelling is fundamental for designing RTES since it allows for a detailed applica-
tion structure, behavior, and requirements within particular domains [34], [123]. Several
approaches have been proposed over recent years to the goal of RTES development. Basi-
cally, these approaches are classified as graphical representations, textual representations
or the combination of both [39], [124], [120]. RTES development embraces different views
and representations of the system, and it can apply formal and/or semi-formal methods
to realize the requirements specification and the architectural design.

There is a consensus that these approaches should consider the system design, from
requirements and along architectural description, and provide correct and consistent ar-
tifacts to direct the implementation of the system [18]. In accordance with [125], [126],
[18], regardless of the approach or methodology, RTES modelling must incorporate the
following practices:

o To design the system features, along with Requirements specification and architec-
tural design, under dynamic and structural views;

o To provide relationships, such as refinements, of models at different abstraction
levels;

o To refine and map concepts in different views;

52 Chapter 2. Theoretical Foundation

o To adopt the principle of separation of concerns regarding each view and its pur-
poses;

o To use consistent design methods and techniques throughout the specification,
for example, top-down decomposition, structured approaches, formal approaches
and/or Object-Oriented approaches;

o To use consistent abstraction levels within models and in conformity between re-
finement levels of the models;

o To model and check non-functional concerns, as well as real-time properties, across
different granularity levels;

o To omit hardware and software attributions in early requirements specifications;

o To represent the RTES context and the interactions between them.

UML and domain-specific modelling languages have been applied to RTES develop-
ment [127], [128], [129].These languages allows for the customization of specific domain
needs and are refined through distinctive diagrams, constructors and stereotypes. UML
and its profiles are employed in the proposed study and due to their importance; they are
detailed in the sections that follow. Furthermore, the proposed methodology combines
concepts of TA formalism to prior requirements analyses. Therefore, brief introduction
to TA is also described next.

2.5 Characterization of UML

UML [124] is a standardized general-purpose modeling language for visualizing, speci-
fying, constructing, and documenting software artifacts [130]. The word unified indicates
that the language can be used in software systems as well as in a large number of software
development domains, including business processes and software products [131]. UML
provides a manner to design different views of one system through its diagrams. These
views can be described by different UML diagrams such as Use Case, Classes, Objects,
Sequence, Communication, States and so on [57].

UML, despite the existence of several models for modeling RTES, cannot completely
deal with specification of this software by itself. There is a lack of semantic and syntactic
models to properly specify, design and validate non-functional properties/constraints of
RTES [132], [133], [134]. According to [135], UML represents the system structure and
its behavior in several abstraction levels. However, time is rarely part of behavioral
modelling, since it has essentially undetermined duration. Either in dynamic evaluation
mechanisms or in structural aspects of the project, time is not modelled.

2.6. Characterization of Timed Automata 53

UML was designed to be customizable, as a potential family of languages [57]. Its
definition includes several semantic variables and provides special constructors, in the
language, for refinement. Such constructors, stereotypes, labeled values and tags are
used to define DSMLs based on UML. This fact contributes to a conception of UML
profiles, which contains a set of related stereotypes. Modern RTES have certain charac-
teristics that demand new approaches for their specification, design and implementation.
The modelling of such systems requires a set of heterogeneous notations, which reflect:
continuous time, concurrency, control flow, embedded requirements and discrete and/or
reactive events. In this context, several proposals for dealing with UML problems regar-
ding real-time software modelling were created. Several profiles that extend UML and
add elements that model requirements of time, system and non-functional properties were
created. The profiles SPT [55], SysML [1], QoS [56] and MARTE [2] can be mentioned.

SysML and MARTE profiles, adopted in this thesis, are detailed throughout next
sections in order to elucidate its fundamental concepts. The proposed study combines
the UML diagrams, such the Class diagram, and UML profiles in order to develop a
methodology to requirements specification and architectural design of RTES. Therefore,
in the following sections, some of the adopted diagrams/profiles are summarized.

2.6 Characterization of Timed Automata

A Timed Automata is composed of a finite automaton-based structure extended with
a finite set of clocks [63]. The behavior of the system is defined by the overall automata
locations, the clock values and the values of discrete variables [136]. The group of au-
tomata clocks increases in the same temporal quantitative order [137]. These clocks can
be used to represent timing constraints, and they are subject to reset and comparison
operations. According to [136], a TA is defined by a tuple (𝐿, 𝑙0, 𝐶, 𝐴, 𝐸, 𝐼), where:

o 𝐿 is a set of locations,

o 𝑙0 ∈ 𝐿 is the initial location,

o 𝐶 is the set of clocks,

o 𝐵(𝐶) is the set of conjunctions over simple conditions of the form 𝑥 ◇ 𝑐 or 𝑥 − 𝑦 ◇
𝑐, where 𝑥, 𝑦 ∈ 𝐶, 𝑐 ∈ N and ◇ ∈ <, ≤, >, ≥,

o 𝐴 is a set of actions, co-actions and the internal 𝜏 -action,

o 𝐸 ⊆ 𝐿 𝑋 𝐴 𝑋 𝐵(𝐶) 𝑋 2𝐶 𝑋 𝐿 is a set of edges, called transitions, between
locations with an action, a guard and a set of clocks to be reset,

o 𝐼 : 𝐿 → 𝐵(𝐶) assigns invariants to locations.

54 Chapter 2. Theoretical Foundation

Constraints on the clock variables, that is, guards on the edges, allow for the restricting
of automaton behavior [137]. Non-negative N, Q or R numbers can represent the clock
domain. A transition represented by an edge may be taken if the different clocks values
satisfy the guard labeled on the edge and/or the invariant is satisfied. Invariants can
be applied to define constraints of the automata locations. These invariants restrict the
possible values of the clocks for being in the state, which can then enforce a transition
to be taken. Details concerning the semantics of the labelled transition system and the
semantics of a network of TA can be found in [63], [137].

TA models have been used to model and analyze temporal system behavior and non-
functional properties of RTES [137]. TA formalism allows to verify important aspects of
RTES, such as qualitative and qualitative requirements. Therefore, liveness, deadlocks
and non-determinism properties can be qualitatively analyzed, as these allow for verifi-
cation of quantitatively periodicity, deadlines and timing delays of the system [63]. The
UPPAAL tool [138], which will be given detail later, can be adopted to automatically
verify the mentioned properties.

2.7 Characterization of SysML

SysML profile supports the specification, analysis, design, verification, and validation
of complex systems [1]. SysML is a UML profile and reuses some of its constructions. The
basic difference is that SysML was proposed to support systems engineering, which means
that some specific constructions from UML, not necessarily for system modelling, were
avoided. SysML is effective “in specifying requirements, structure, behavior, allocations,
and constraints on system properties to support engineering analysis” [1].

As depicted in Figure 2, SysML inherits some of the diagrams of the UML metamodel
and proposes additional diagrams. Some diagrams were inherited and new concepts were
added for modelling.

In general, the following aspects can be cited as general contributions of the SysML
when compared to UML:

o Architecture Organization: These include modelling concepts for organizing
the system architecture descriptions as defined in ISO/IEC/IEEE 42010:2011 [37].
Among these, logic, visualization and viewpoints concepts are the most important.

o Blocks and Flow: Blocks diagram and SysML Internal Block diagram allow for
the specifying of system decomposition and its interconnections. It provides a wide
back- ground to represent system properties, along with the means to design the
interaction of blocks and parts and how the items flow across connectors.

2.7. Characterization of SysML 55

Figure 2 – Diagrams of SysML Profile, adapted of [1].

o Behavior: Although the majority of the SysML behavior constructions are similar
to UML (interactions, state machines, use case and activities), SysML refines some
of these for continuous systems modelling and for description of probabilities in the
Activity diagram.

o Requirements Modelling: SysML Requirements diagram provide support for
modeling individual requirements and their relationships. This diagram provides
graphical, tabular or tree structure format for requirements specification. It in-
creases spectrum of understanding and expressiveness of real-time system require-
ments.

o Parametric: The Parametric diagram is a restricted form of Internal Block dia-
gram that shows only the use of constraint blocks along with the properties cons-
trained within a context [1]. It allows for analytical and mathematical analysis of
the system in design models.

SysML diagrams are used in the proposed methodology for RTES requirements spe-
cification and architectural design. The following subsections provide a brief explanation
of SysML diagrams adopted in this thesis. This explanation describes the Use Case
diagram, Requirements diagram, Blocks diagram, Block Definition diagram and Activity
diagram in order to clarify their main concepts and adoption into RTES specification and
design.

2.7.1 Use Case Diagram

The Use Case diagram shows scenarios of the system and their interaction/usage by
the system actors. This diagram represents a system view based on its functionalities,
capabilities and associated communications [1].

56 Chapter 2. Theoretical Foundation

Actors, use cases and associations are the basic components of the Use Case diagram.
Figure 29 provides an example of this diagram. Actors represent the system stakeholders
and these can be related to users, systems or other environmental entities. Use cases allow
for describing the system functions and show relevant system artifacts. These artifacts
can be refined, along with requirements specification and architectural design, by other
diagrams such as Activities diagrams, Sequence diagrams and so on.

There are four types of interactions or communication between the actors and use
cases. They are named as communication, include, extend and generalization. These
represent possible relationships that occur between the actors and system use cases, in
order to provide the expected system behavior. Further details on relationships of the
Use Case diagram can be found in [1].

2.7.2 SysML Requirements Diagram

SysML provides a new diagram, named as Requirements diagram, to model require-
ments and their relationships with other elements of the model. In SysML specification
[1], a requirement is defined according to Figure 3.

Figure 3 – SysML Requirements Model, adapted of [1].

A requirement is represented by the ≪ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 ≫ class stereotype, that is, a
requirement is a stereotyped class. This mean that a requirement has the semantic of a
class, which is extended by a specific semantic and by the properties/attributes of the
stereotype.

SysML Requirements diagram allows for different ways of representing the possible
relationships between requirements. The SysML Requirements diagram has seven types of

2.7. Characterization of SysML 57

relationships. These relationships are named DeriveReqt, Hierarchy, Verify, Refine, Trace,
Copy and Satisfy [1]. The focus of these relationships is to describe how requirements
relate to one another and the relationships between different elements of the model, such
as Use Cases diagrams. These are of great importance for the requirements specification,
as besides describing contracts between software requirements and model elements; these
also promote the management of changes, evolution and the traceability management of
the specified requirements.

2.7.3 SysML Block Definition Diagram

Blocks represent a modular description of the system units. Each block can define
a set of characteristics of a system component or of other elements of interest. Block
design can include both structural and behavioral characteristics, such as properties and
operations for representing the system state and its expected behavior [1].

SysML Blocks Definition Diagram (BDD) allows for the representing of properties and
operations of one component and their relationships, such as associations, generalizations
and dependencies. Figure 4 represents the SysML Blocks diagram model, which extends
the UML Class diagram, with elements and restrictions, and expands its capabilities and
connectors by reusable restriction forms and several properties to their connectors [1].

Figure 4 – SysML Blocks Diagram Model, adapted of [1].

As depicted in Figure 4, a block has an isEncapsulated attribute of Boolean type
and, if it is true, the block is treated as a black box. A typed “part” component can be
only connected by its ports or directly by its exterior limit. If it is false or if a value is
not present, then connections may be established for elements of its external structure
through the extremities of connectors [139]. A block can include properties for specifying
values, parts and references to other blocks. Ports are a special class of properties used
to specify permissible types of interactions between blocks.

58 Chapter 2. Theoretical Foundation

2.7.4 SysML Internal Block Diagram

The Internal Block diagram (IBD) is an extension of the UML Composite Structure
diagram [1]. The Internal Block diagram aims at modeling the internal structure of a
block concerning properties and the connectors between properties. An Internal Block
diagram represents a block and details, additional elements by adoption of shapes, notes
and comments. Thus, a block, from a Block diagram, is refined and detailed by the
mentioned properties and connectors.

IBD is composed of four general categories of properties: parts, references, value
properties and constraints properties. The IBD parts show the decomposition of one
block; the IDB references provide a manner to model services or information changes
of one internal block; the IDB value properties are used to define the system property
types by values and units to measure these; the IDB constraints properties can be
added in constraint block compartment and support the description of different system
properties in the IBD [140], [1].

Figure 34, Chapter 6, depicts one example of an Internal Block diagram. This diagram
is composed of parts and connectors. The proposed models can describe the internal
components of the block and its interconnections, through connectors, ports and item
flows. Moreover, this diagram can represent the type of interface between the internal
parts. An internal block can design either a required or provided interface.

2.7.5 SysML Activity Diagram

The SysML Activity diagram specifies the control and coordination of the system
actions. Thus, input and output flow, sequential and conditional actions can be used to
model the system behavior. Figure 37, Chapter 6, provides one example of the SysML
Activity diagram. The Activity diagram is composed of the following elements: initial and
final node, activity, flow, fork, join, condition, decision, merge, partition or swimlanes,
sub-activity, final flow and notes. For further and detailed definitions see [1].

An activity is defined as an action or one step of a process. Therefore, it designs how
actions are performed as, for example, calculation, data manipulation, information search,
data sending/receiving. A transition represents the end of one activity and indicates
which activity is next or which process ends.

SysML extends the UML Activity diagram and provides new extensions to: disable
actions that are executing, model discrete and continuous flows, detail probability values
of edges and output parameters. Moreover, the Activity diagram adds new semantic rules
to model composition association between activities [1]. Furthermore, it is possible to
specify, by annotations, timing constraints on the properties of the inputs, outputs, and
other system properties.

2.8. Software Platform Embedded Systems 59

2.8 Software Platform Embedded Systems

SPES [18] provides a framework for software development of RTES. SPES describes
fundamental guidelines for requirements specification and architectural design and is
based on two concepts: viewpoints and different granularity level. These viewpoints
organize and control how the system views should be described. A system view shows
individual concerns of system stakeholders and can detail, for example, user requirements,
functional components, architectural solutions, subsystems and so on.

SPES does not define the languages, tools or techniques that should be employed, but
it focuses on providing the main foundations for the engineering processes of RTES [18].
Thus, SPES depicts a manner for decomposing the system into fine-grained granularity
subsystems. Both concepts generate structured and manageable design artifacts in RTES
development.

SPES methodology consists of a group of guidelines for RTES design, divided into
four categories/system viewpoints. These viewpoints are named Requirements view-
point, Functional viewpoint, Logical viewpoint and Technical viewpoint [18].
By adoption of SPES methodology, software designers are able to translate requirements
specification into physical and technical models. Designed models describe concepts for
hardware and subsystem development processes [141]. Figure 5 depicts the viewpoints
that are related to this thesis studies, as well as their interactions.

Figure 5 – Viewpoints and Granularly Views of SPES Methodology.

Requirements viewpoint is composed of the activities related to system RE. This
viewpoint explores the requirements that are related to system context and it covers the
requirement analysis and elicitation until the requirements validation and verification
[126]. In this stage, four different types of models can be developed in order to describe
distinct classes of requirements.

60 Chapter 2. Theoretical Foundation

o Context model consists of the overall documents able to describe the system
context. These documents should provide the system foundation and the elementary
features for the requirements elicitation.

o Goal model shows the stakeholders goals that are related to the system under
development. In this stage, the analyses on the communication between users and
system services is performed in order to figure out more concrete requirements.

o Scenario model is responsible for representing interaction of the system under
development and its context.

o Solution-oriented model is able to describe technical system requirements. This
specification should be precise and it provides the foundations for system develop-
ment.

Functional viewpoint [33] aims at representing the system requirements as cor-
related and structured components. This viewpoint provides different views of system
functions, details of system services and the user functions interaction. Moreover, it
presents how user functions are linked to their respective fine-granular system functions.
The proposed refinements of Functional viewpoint can depict structural and behavioral
perspectives of RTES.

Logical viewpoint describes the decomposition of the system functions, from the
Functional viewpoint, into an architecture of logical components. The components design
does not focus on domain features, physical or technological constraints. This viewpoint
provides a group of refinements to detail what the system must perform in terms of
services. Furthermore, logical views show the user functions for each logical component
and behavioral models are defined as an output [142].

In the Technical viewpoint, a concrete technical solution can be designed and it
highlights the technical system elements, their relationships and attributes [18]. It can be
highlighted as contributions of the technical viewpoint, the study of interactions between
software and hardware, the details of hardware that is coupled into system (as an example,
ECUs, memory, communication channels and peripheral devices), the refinement of the
logical subsystems and so on. It is important to mention that these viewpoints are not
strictly top-down. For example, some activities that which are considered subsequent to
the Logical viewpoint may require modification, updating or removal of an artefact from
the Functional viewpoint. This should be performed interactively and before starting the
Technical viewpoint design.

2.9. Characterization of the MARTE Profile 61

2.9 Characterization of the MARTE Profile

MARTE is a UML profile for modelling and analyzing RTES that provides a wide
support for specification, design, verification and validation of complex systems [2]. Large
parts of the MARTE concepts are refined for both modelling and analyzing concerns [44].
MARTE profile has, as advantages, the possibility of offering a common way for hardware
and software modelling, improvement of communication between developers, standar-
dization and interoperability between tools developers and the supply of constructors that
allows for creation of models, which may describe quantitative, temporal and restrictive
aspects of systems [59], [143].

MARTE metamodel extends UML [57] and adds capabilities for model-driven de-
velopment of RTES. Figure 6 shows the general architecture of MARTE profile and its
sub-packages. MARTE profile is structured into three packages named MARTE Foun-
dations Package, which has as its objective to define fundamental concepts for RTES,
MARTE Design Model, which provides the necessary support to make a detailed
specification of a RTES design, and the MARTE Analysis Model that intends to
support accurate and trustworthy evaluations using formal quantitative analyses based
on mathematical models. The MARTE Analysis Model also presents several domains
in which the analysis is performed, based on several software behaviors, such as perfor-
mance, schedulability, energy consumption, memory, reliability, availability and security
[2].

Figure 6 – MARTE Profile Architecture, adapted from [2].

Figure 6 highlights (red lines) the MARTE Foundations and MARTE Design Mo-

62 Chapter 2. Theoretical Foundation

dels, as their internal packages are adopted in this thesis. Packages Core, NPF, Time,
GRM, GCM, SRM and HRM are considered in the proposed methodology and provide
meaningful semantics to model non-functional concepts in architectural models.

The constructors, stereotypes and constraints of these packages are classified and de-
tailed in the following sections. Furthermore, a brief semantic description and application
contexts/suggestions of each of these packages are presented as follows.

2.9.1 MARTE Foundations Model

MARTE Foundations package details the basic concepts for the use and comprehen-
sion of the other elements of the MARTE profile [2]. It presents, through specification
of its subpackages, concepts that are useful for providing details of further components
that are used for building the other MARTE packages. Packages Core Elements, Non-
Functional Properties, Temporal Aspects and Generic Resource Modelling compose the
MARTE Foundations Model and these are briefly elucidated in this section.

Core Elements Package

Core Elements package presents a number of important concepts on the elements of
MARTE specification. These concepts provide background for the remaining packages of
this specification. This package is subdivided into two packages named as Foundations
and Causality packages.

Foundations package allows for representing design-time classifiers, such as the classes
and the runtime instance elements that are created from these classifiers. It provides a
consistent group of modelling elements and describes a wide metamodel to cover non-
functional aspects necessary for RTES specification, design and analyses. Causality pack-
age describes the basic elements that are necessary for behavioral modeling and their run-
time semantics. Furthermore, this package shows a high-level view of run-time semantics
for modelling elements.

Non-Functional Properties Package

Non-Functional Properties Modeling (NFP) package provides a wide background for
RTS specification and non-functional properties description, such as memory and energy
consumption. It also shows how NFPs can be linked to the model elements, providing
the capacity to encapsulate rich annotations inside non-functional models.

NFP provides the capacity to describe several types of values that are related to
physical quantities, such as time, mass and energy. These values are used to describe the
architecture, the behavior and the properties of computing system through the modelling
elements.

2.9. Characterization of the MARTE Profile 63

Analysis and comprehension of NFP domain model and its constructors/stereotypes
are fundamental for the proposed research. This model allows for representing and an-
notating NFP concerns in model elements, along with the definition of different types of
relationships between modelled elements.

Temporal Aspects Package

Time package describes a general framework for timing modeling. Besides, it details
structures, concepts and mechanisms that are appropriate when specifying, design and
representing temporal aspects of RTES. Thus, it allows for the describing of several
characteristics of these systems, such as delays, duration, clock time, chronometrical and
logic time models.

When modelling RTES, time cannot be considered an external model, since time and
behavior are frequently coupled. Development phases as, for example, modeling, design,
implementation, performance and schedulability analysis can describe needs to take care
of timing constraints. Thus, the Time package identifies concepts that relate to time and
behavior, enriching the Causality package specification with explicit references to time.

This model also allows for the capturing of the influence of time on the behavior of
objects, the behavior executions and the occurrence of events that may explicitly refer
to clocks. In MARTE, a clock is used to measure, in the model, physical or logical time
progress being elements able to access the time structure.

Generic Resource Modelling Package

Generic Resource Modeling (GRM) package provides stereotypes and marked values
to represent resources as media, computing resources and storage resources of RTES.
Moreover, this package includes resources that are necessary to model execution platforms
at different abstraction and modelling levels.

GRM package, together with the Time modelling package, can be applied to specify
time constraints and, when it is used with the NFP package, can be adopted to spec-
ify quality of services. This package is able to represent different characteristics of an
execution platform. It includes constructors for the representation of software and hard-
ware elements in a platform. Moreover, it provides constructors that are fundamental for
refining elements of MARTE Design Model.

2.9.2 MARTE Design Model

MARTE Design Model performs refinements of Core Elements package in order to
contribute for modelling of applications and to detail hardware and software platforms.
The Generic Component Model (GCM) and Detailed Resource Modeling (DRM) packages

64 Chapter 2. Theoretical Foundation

details semantic concepts of this package. Thus, in order to support its adoption, in this
thesis, they are explained below.

Generic Component Model Package

The Generic Component Model (GCM) package describes important concepts for
modelling artifacts in the context of RTES and of component-based approaches. This
package has a dependency relationship with the Core Elements package and with each
one of its subpackages. The domain description of GCM supports modelling of several
communication criteria of embedded, real-time and/or distributed components allowing
for the design, in the domain model, of many types of interactions for a structured
component.

The GCM package provides constructors to model the properties of a communication
port, the characteristics of the operation (reception/operation) of servers, the types of
flows for an interface, signals sent to provide/request operations, storage policies of a
port, invocation actions for a FlowPort or for a ClientServerPort.

Detailed Resource Modeling Package

The Detailed Resouce Modeling (DRM) package provides a detailed set of resources
for modelling software and hardware platforms. It specializes many concepts that were
defined, previously, by the GRM package. In order to facilitate the representation of
the domain model this package is divided into two other subclauses/subpackages named
Hardware Resource Modeling (HRM) and Software Resource Modeling (SRM).

SRM allows for the description of several characteristics of multitasking applications
through sequential and multitasking approaches. Therefore, the SRM package is able to
describe the software resources and services that are described in multi-task platforms
(API) and to specify a set of modelling artefacts. HRM allows for the description of
different views and details of a hardware element. The HRM package is made of two
complementary visions: the logical, which classifies a hardware resource dependent on
their functional properties, and the physical, which concentrates on the physical pro-
perties. Stereotypes introduced in this package are organized under a set of successive
heritages from more generic to more specific stereotypes.

The Detailed Resource Modelling package, presented in this section, finalizes the se-
mantic and syntactic contributions of the MARTE Design Model. The DRM package
allows for the representing of characteristics of multitask platforms and provides guide-
lines to model software resources, concurrent execution contexts, memory management,
synchronization and communication interactions. Furthermore, it contributes to specify-
ing and designing characteristics of the hardware platforms, while describing constructors

2.10. Contributions of this Chapter 65

for both physical and logical platforms, in the classifying of hardware entities and physical
components of an application.

2.10 Contributions of this Chapter

RTES and their features are characterized here in order to detail the main non-
functional concerns which are pertinent in this domain. This chapter provides an analysis
of the specification and design of RTES and their inherent real-time embedded constraints.
Moreover, MDSE, SPES and UML were described in order to contextualize their further
adoption in the proposed study.

Another contribution of this chapter is the study of the semantic and syntax of the
MARTE profile. This chapter provides a wide mapping of MARTE concepts which can
support the modelling specification and design of RTES. The SysML profile and some of
its diagrams are depicted throughout this chapter. The chapter ends with a mapping of
important concepts of SysML and MARTE for the system specification and design.

66 Chapter 2. Theoretical Foundation

67

Chapter3
State of the Art Analysis

This chapter initially presents an analysis of the state of the art regarding the metho-
dologies for the design of RTES, focusing on the studies related to Model-Driven Systems
Engineering methodologies, approaches or techniques applied to requirements specifica-
tion and/or architectural design.

3.1 Methodologies to Design Real-Time Embedded
Systems

RTES development must follow strategies that guarantee specific and stringent non-
functional requirements [144]. In the past, several methodologies were proposed for deve-
loping RTES, while considering their inherent functional and non-functional properties.

The research presented in [44] discusses the different strategies for combining MARTE
and SysML profiles in a single modelling framework, which presents an initial debate re-
garding the expressiveness of the MARTE profile and its contributions toward designing
RTES. Moreover, the authors detail inconsistencies in the combined use of multiple pro-
files in distinctive, complementary and several other perspectives. The study proposed in
[44] allows for an in depth theoretical analysis of the alignment of MARTE and SysML
profiles in architectural frameworks, in RE, in system level design and in quantitative
analyses. The fundamental contribution of [44] is to provide guidelines regarding prac-
tices for combining MARTE and SysML for RTES design.

The MeMVaTEx methodology is presented in [145]. MeMVaTEx provides a frame-
work to express and trace requirements in the automobile applications domain. For such,
the authors integrate EAST-ADL2 [146], AUTOSAR [147], MARTE and SysML in order
to define three modelling perspectives that are named as requirements model, solution
model and V&V model. From the MARTE profile, the authors apply the concepts of
the Time package for each proposed abstraction level. However, the MARTE profile
has foundations for the Generic Quantitative Analysis Modeling (GQAM) which has not

68 Chapter 3. State of the Art Analysis

been considered in this methodology. The authors do not explore the constructors for
constraints specification or model verification. Besides, traceability criteria is presented
only through the relationship between requirements that are defined in SysML without
any adequation/enhancement.

The UMLsec profile is developed in [148] and presents a new proposal to combine
MARTE and SysML profiles. UMLsec involves the specification and management of re-
quirements. Requirements table and SysML Requirements diagram are employed in the
description of requirements and their relationships. Stereotypes of the MARTE profile
were used to model non-functional and temporal concepts. UMLsec profile is applied in
a case study for modelling security requirements in telecommunication systems. How-
ever, despite the proposed case study in the scope of 3G telecommunication networks, it
was not evidenced how traceability, power consumption and energy characteristics were
represented through the MARTE profile.

GASPARD is a framework based on MARTE for the design of parallel embedded sys-
tems [149]. It provides a modelling support based on UML and MARTE, and prescribes
a group of refinements activities at higher and lower granularity level. The proposed
study performs code generation to verify and simulate performance constraints of mas-
sively parallel embedded systems. In a more specific manner, GASPARD focuses on
design issues concerning Systems-on-Chip (SoCs), while considering the repetitive Model
of Computation and MARTE profile. However, the GASPAR framework does not present
the trace of non-functional requirements along with the architectural models and their
performed refinements.

The work presented in [150] combines SysML and MARTE into one multi-views
approach for modelling energy consumption requirements and their relationships with
other functional/non-functional and structural/behavioral aspects. In this approach,
each domain can be treated separately through different views, keeping the connec-
tion of elements of the model with other views. MARTE stereotypes are applied in
five system views to specify power-consumption properties such as voltage values (≪
𝑁𝑓𝑝_𝑉 𝑜𝑙𝑡𝑎𝑔𝑒 ≫ stereotype), discrete time (≪ 𝐶𝑙𝑜𝑐𝑘𝑠𝑡𝑒𝑟𝑒𝑜𝑡𝑦𝑝𝑒 ≫) and frequency de-
scription (≪ 𝑁𝑓𝑝_𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑠𝑡𝑒𝑟𝑒𝑜𝑡𝑦𝑝𝑒 ≫). The authors perform a group of transfor-
mations to analyze power consumption concerns. As stand by the authors, the proposed
study lacks of strategies to trace the developed views in order to provide analyses and
simulation of constrained models elements. Furthermore, the study proposed in [150]
mainly presents structural models of the system.

The Aspect-oriented Model Driven Engineering for Real-Time systems (AMoDE-RT)
approach, detailed in [41], combines UML, Platform-based design, RT-FRIDA approach
and Aspect-Oriented Software Development (AOSD) to RTES design. It adopts different
tools, code generation scripts and modelling concepts over to RTES development, from
the initial design phases. Distributed Embedded Real-time Aspects Framework (DERAF)

3.1. Methodologies to Design Real-Time Embedded Systems 69

was developed in order to support the design of functional and non-functional require-
ments at different development phases. This approach applies MARTE profile stereotypes
to annotate non-functional concerns in structural and behavioral models. Thus, UML
diagrams and MARTE stereotypes are used to show different system viewpoints and re-
finements until system realization. Furthermore, in [41] AOSD foundations provide sep-
aration of concerns and modular management of crosscutting requirements. Generation
of Embedded Real Time Code based on Aspects (GenERTiCA) tool automatically gene-
rates code, from UML models, which consider mapping rules to create the correspondent
code for elements of Distributed Embedded Real-time Compact Specification (DERCS).
Qualitative evaluation is performed, through qualitative factor measurements, to check
system attributes. This evaluation considers code generated from the AMoDE-RT ap-
proach against that produced by the OO application.

A design methodology based an existing code-centric real-time system, through MARTE
constructors, is defined in [151]. It provides semi-automated support for the synchronous
evolution of the code base and model. Initially, existent code is re-engineered in order
to obtain the initial UML reverse model. Then, manual modelling is performed in the
reverse model providing the refined reverse model. MARTE constructors enrich the non-
functional data which could not be retrieved automatically by real-time experts. Finally,
the methodology purposes distinctive analyses, such as schedulability, on the resultant
models, while defining three refinements of the architectural models. The methodo-
logy proposed in [151] adopts MARTE constructors, specially, to annotate resources and
schedulability constraints.

Another approach proposed in [152] develops an Actor-oriented modelling and design
methodology for RTES. The role-oriented design approach is applied to model the system
subsystems. Then, these subsystems are integrated into a whole model allowing further
simulations and analysis of the design. Finally, it can automatically generate software
code and hardware description code from debugger models. In [152], a group of design
viewpoints for RTES is defined and it provides hardware and application models at dif-
ferent abstraction levels. However, the authors do not specify any empirical simulation
strategies neither a non-functional properties analysis.

The MADES methodology, proposed in [153] as an extension of [154] and [87], com-
bines a subset of diagrams and elements of SysML and MARTE profiles into a single
methodology. The proposed methodology defines specific contributions for designing in
the avionics and surveillance embedded systems industries. MADES provides different
system viewpoints such as system requirements, Use Case scenarios, high-level speci-
fication and refined high-level specification. Considering these viewpoints, a group of
extended diagrams as for example, the MADES Requirements diagram and the Blocks
Functional Specification diagram, are developed. The MADES Requirements diagram
integrates SysML requirements concepts to model system requirements. MADES Blocks

70 Chapter 3. State of the Art Analysis

Functional Specification is an extension of the SysML Block diagram concepts to perform
functional specification and refinements. In addition, MADES also applies MARTE cons-
tructors to provide details of the SysML Block components and other SysML/MARTE
concepts to specify non-functional properties. In this case, the MARTE constructors are
adopted in low granularity abstraction levels/refinements. Regarding code generation,
MADES methodology performs model transformations as, for example, model-to-model
and model-to-text transformations.

The research study presented in [88] is an extension of [155] and gives detail to the
MDEReq methodology (Model Driven Engineering for Requirement Management). The
proposed methodology is able to describe the processes of Requirements Engineering
through the combination of UML Use Cases diagram, UML Class diagram, UML Se-
quence diagram and SysML Requirements diagram with MARTE profile constructors. In
this thesis, the VSL language was employed to represent conditional temporal expressions
related to elements of the domain. Traceability relations were described through trace
relationship, of SysML Requirements diagram, and SysML matrixes.

The methodology COMPLEX UML/MARTE DSE is presented in [89]. This research
combines concepts of Model Driven Engineering, Electronic System Level and design ex-
ploration technologies to create design solutions. UML is adopted to design abstract and
graphical models. The MARTE profile concepts are applied along six design viewpoints
and its constructors allow for the differentiation of functional and non-functional con-
cerns. In this methodology, the user input is a system model following component-based
modelling and separation of concerns. Simulation-based performance models are auto-
matically generated from the input model. Thus, COMPLEX can provide executable
system models allowing for functional validations and fast simulations.

In [156], the authors narrows down the application of MARTE into three distinct
industrial problems: architectural modelling and large scale configuration of highly confi-
gurable integrated control systems (Submarine Production Systems), strength tests based
modelling of intensive communication systems (Cisco Systems Conference System) and
environment simulators-based modelling for the generation, on a large scale, of RTES for
testing the WesternGEco Seismic Acquisition Marine System. The authors aim to report
on the experiences for solving problems by the application of the MARTE profile. The
research study, proposed in [156], provides a relevant contribution when systematizing a
set of considerations/guides on how to apply MARTE in industrial contexts, thus helping
to reduce the gap between modelling standards and market needs. Moreover, a detailed
analysis of three domains is performed that describes which MARTE package can be
used to distinguish different concepts of the domain. Differently to [156], MARTeSys𝑅𝑒𝑞𝐷

methodology shows how to combine the MARTE profile and MDSE approaches, into a
single methodology, for RTES development.

In [157], a semantic and syntactic extension of UML/MARTE is proposed for design

3.1. Methodologies to Design Real-Time Embedded Systems 71

space exploration in distributed embedded systems. This extension is named Network
Profile and it defines a set of stereotypes, as an extension of the MARTE profile, to
represent distributed embedded systems with UML metaclass elements. In the Network
Profile, UML and MARTE profile are used to model the simulation oriented communi-
cation environment. The MARTE profile is extended and a precise semantic is presented
to describe the specificities of system elements.

The Modeling Oriented Scheduling Analysis of Real-Time systems (MoSaRT) is a
methodology for modeling and analyzing critical real-time systems [158]. As stated in
[158], MoSaRT is an intermediate framework between real-time design languages and
temporal analysis tools. Therefore, it aims at listing important guidelines regarding the
most suitable temporal analyses to develop real-time systems. The MoSaRT methodology
presents the Front-End framework, which is based on a design language, and the Back-
End framework which relates to a meta-model of analysis repository. The authors for-
malize software operators and propose mathematical notations adopted in the Front-End
framework models. This formal semantic substantiates the model elaboration along the
hardware, software architecture, behavioral and functional viewpoints. Thus, the study
proposed in [158] shows non-functional constraints analysis, focusing on schedulability
tests, from the proposed set of rules.

An artefact-based approach for domain-independent Requirements Engineering (AM-
DiRE) is presented in [159]. The AMDiRE approach proposes the context specifica-
tion, requirements specification and system specification viewpoints. AMDiRE suggests
guidelines for the definition of project scope, context specification, description of the
system vision, requirements specification and high-level description of architectural mo-
dels. AMDiRE presents a group of principles for structural requirements engineering.
Regarding the architectural design, AMDiRE mainly designs external interfaces and the
system functions. Moreover, it provides a behavioral system view via state machines and
performs empirical evaluations in the designed models.

The study proposed in [19], presents an Architecture Modeling Framework (AMF)
semantical framework to design time on different development levels in the automotive
industry, and is known as MULTIC Design Paradigm. MULTIC is based on viewpoints,
a compositional semantic framework, timing specification, models of computations and
converter channels. Contract-based Design describes system constraints by the adoption
of assumptions-guarantee specification rules. It provides concepts to timing specifications
through refinements of components behavior and their ports (from MATLAB/Simulink
models). Therefore, it enables compositional schemes to detail components features/ser-
vices and the guaranteed behavior of these components. In the MULTIC approach,
SysML Requirements diagram and Block diagram are applied to design first models on
a functional level; these models are refined by timing specifications. In this refinement,
natural language patterns are used to express timing concerns. Thereafter, further refine-

72 Chapter 3. State of the Art Analysis

ments of the functional level defines the models of computation and converter channels.
To support the implementation phase SystemC and SystemC-AMS code were generated
from the models. Thus, timing contracts are transformed manually into SystemC ob-
servers and the timing analysis is performed on executable models.

The AutoModel methodology allows for the specifying of system requirements in terms
of its components, actions, goals and constraints [160]. This methodology is based on
the UML-RT profile and provides structural and behavioral models from the specified
requirements. Furthermore, it applies different tools to generate the system models, while
adopting the UML-RT language to model the system and Papyrus-RT for code gene-
ration.All the system constraints are defined by Boolean logic as refinements of textual
specifications. From this prior specification, the authors apply model transformation
techniques to generate a structural model of the system in UML-RT. By adopting the
AutoModel methodology, it is primordial to get a detailed and well-defined specification
of the system requirements as of the initial design steps. This early definition can be a
challenge in RTES development [120]. Moreover, the authors state that textual is a quite
simple textual language. However, for complex and potentially large systems this type
of specification can culminate into a more difficult requirement definition.

MoVES is a model-driven methodology for development of distributed vehicular RTES
on single and multi-core platforms [161]. MoVES automatically provides all the Rubus
Component Model (RCM) elements from the design models considering the initial EAST-
ADL design level. Furthermore, RCM models are analyzed through model transforma-
tions. This approach considers six distinctive model transformations. The methodology
starts with an automatic generation, through the FDA2RCM tool, of the software archi-
tecture and its timing properties, at the implementation level, for RCM models. More-
over, it passes by automatic generation of the RCM model, which represents the execution
platform at the implementation level. The final step of MoVES is the refinement of the
initial EAST-ADL models through timing analysis results. As stated in [161], MoVES
presents a powerful methodology for the design of non-functional constraints of vehicular
embedded systems. It is based on the interplay of domain-specific modelling languages,
such as EAST-ADL and RCM.

It is quite remarkable the importance of MDSE approaches for well-defined strategies,
in terms of integrated design and support for RTES development [162]. Considering the
knowledge of the author of this thesis and based on the previous state of the art analysis,
the definition of a methodology, with a consistent proposition of design activities
[153] to design RTES constraints [19] [161], supporting empirical analysis [159], providing
formal evaluations [158] and performing views and viewpoints refinements [126], [33],
[142], [163] into one single approach is not in the scope of studies found in this literature
review. Thus, Table 2 was created in order to summarize the contributions and
focus of research studies detailed in the literature review. Moreover, Table 2 depicts

3.1. Methodologies to Design Real-Time Embedded Systems 73

in each column the checking of these approaches facing the general and specific objectives
of this thesis. The proposed analysis is not exhaustive, regarding the state of the art, as
it does not aim to compete with other design approaches or evaluate them. Instead, it
focuses on contributing toward minimizing the gaps and challenges that exist in RTES
development.

The performed analysis, Table 2, from column 2 to column 8, is based exclusively on
the research objectives, already detailed in Chapter 1, and their enclosed strategies for
RTES design. This analysis contributes to forthcoming design strategies definition and
to the final comparison of the state of the art against the final results of this thesis study.
Thus, Table 2 covers, in its columns, the following criteria:

o C1: design of non-functional constraints

o C2: verification of non-functional constraints

o C3: definition of traceability strategies along the architectural design

o C4: description of different and complementary views/perspectives

o C5: description of viewpoints/abstraction levels

o C6: development of qualitative analysis of the proposed study

o C7: Is the research work a RTES methodology?

o C8: list of modelling languages.

As depicted in the literature review and complemented by the analysis on Table 2,
multiple studies have addressed the RTES design. However, there is still a gap in the
definition of strategies that contribute toward verifying RTES constraints (C2), to trace
RTES constraints along of architectural design (C3) and to evaluate the design metho-
dology and their contributions (C6). In addition, some approaches are developed in line
with requirements engineering processes, others to architectural design and these do not
define in their scope a methodology or a single approach in which requirements specifi-
cation, architectural design and non-functional constraints are considered, as evaluated
in (C7). Thus, it is expected that the proposed study can support RTES design while
presenting significant results and contributions regarding the selected criteria.

74 Chapter 3. State of the Art Analysis

Summarizing the Design Strategies of Literature Review
Papers/Criteria C1 C2 C3 C4 C5 C6 C7 C8
[44] x x No -
[145] x x x x x Yes SysML, MARTE,

EAST-ADL2
[148] x x x No SysML, MARTE
[149] x x x x No UML, MARTE
[150] x x x No SysML, MARTE
[151] x x x x Yes UML, MARTE
[152] x x x No UML
[41] x x x x No UML, MARTE
[153] x x x x Yes SysML, MARTE
[88] x x x Yes1 UML, SysML,

MARTE
[89] x x x x Yes UML, SysML,

MARTE
[156] x x No UML, MARTE
[157] x x No UML, MARTE
[158] x x x x Yes MoSaRT language
[159] x x x x No UML and others2

Concepts
[19] x x x x x No SysML, MAT-

LAB/Simulink,
SystemC

[160] x x x x Yes3 UML-RT4,
Boolean Logic
Specification

[161] x x x Yes EAST-ADL, RCM

Table 2 – Analysis of the State of the Art.

3.2 Formalization of Architectural Viewpoints

Architectural simplicity is an important factor to the success in the development of
RTES [164]. However, to quantify the difficulty, cost and complexity of one systematic
and creative activity is not sp easy [165]. In engineering, complexity commonly addresses
the coupling rate of code components, and in software development, complexity is mea-
sured by estimating the program algorithm/code and its complexity [166]. Estimating
the complexity of engineering design allows for a better definition and control of the de-
velopment process [167]. It contributes with early analysis of the system evolution and
1 MDEReq is Model Driven Engineering for Requirement Management methodology. The methodology

relates to the Requirements Engineering process.
2 Others means, on Table 2, the adoption of REM, REMsES and Bisa approaches and ARAMiS concepts

in the proposed methodology.
3 AutoModel methodology is a methodology specific to system Requirements Engineering process.
4 Unified Modeling Language - Real Time (UML-RT)

3.2. Formalization of Architectural Viewpoints 75

eventually provides details about on a number of design artefacts, from the development
cycle, and their risks.

Several research studies have been proposed to study the complexity that is related
to the RTES design in order to evaluate the development process, architectural artefacts
from design and/or to minimize the impact of a high complexity in the development of
these systems. In [168], a proposal to evaluate quality of the design process is presented
in order to provide quality measurements to design before the overall system implementa-
tion. A complexity measure is proposed by an analysis of inter-module and intra-module
attributes. Overall analysis is performed in a unique model of the software design process
and it aims to provide an estimation of the development error rate through a subjective
assessment of design quality. In [168], measurements do not account for the external I/O
in the functions definition.

The studies performed in [169] describe two sets of metrics to measure the complexity
of systems development techniques and methods. The proposed metrics provide different
guidelines for the designers regarding adoption of complexity metrics in their development
process. Therefore, the study proposed in [169] performs a survey on metrics for the
complexity of specification approaches to posteriorly contribute with the description of
the modelling approach features and the analysis of the complexity of a set of modelling
approaches. The complexity analysis is performed based on the measured complexity to
learn the techniques and in the estimated complexity of the architectural models.

In [165], a new metric to measure functional complexity is proposed for assessing
design complexity. The authors aim at evaluating the design and product complexity.
The prior evaluation considers the measurement of complexity as a design attribute,
and the latter provides the effort estimation in order to develop the system. Therefore,
this research study considers the system functionalities to measure design complexity.
These functionalities are based on user requirements, and the authors assume a direct
relationship between functionality and resource consumption. According to [165], “more
functionality that is required, the more complex a product is, and the more resources are
required to design it”. Thus, based on the tree of system sub-functions, and functional
decompositions, the studies, proposed in [165], creates the Product Complexity (PC)
metric. The PC is calculated by the number of functions, at level j, multiplied by the
number of levels. The proposed metric counts the number of functions at each level
and weights these to the number of the level. However, the complexity analysis can be
biased to different sub-system decompositions due to the involved subjective activities.
Moreover, the authors do not detail the relationship between product complexity and
design effort.

Metrics for evaluating Objected-Oriented (OO) design complexity are presented in
[170]. The authors explore empirically the validation of three existing OO design com-
plexity metrics to assess their ability to predict maintenance time. An empirical study and

76 Chapter 3. State of the Art Analysis

subjectively analysis of metrics: Interaction Level (IL), Interface Size (IS), and Operation
Argument Complexity (OAC) was performed in the proposed studyis that there exists
a relationship between the complexity of a system design and the maintenance time
required to make changes.

In [166], a broader theoretical definition of complexity and existing complexity mea-
surement methods is provided to create objective measurements properties and metrics
for system architecture models. In order to estimate the complexity, it defines equality
relationships among systems and models. Therefore, the authors assume that the com-
plexity of the model correlates with the cost and difficulty of implementing the system.
In order to perform such analysis, the research, proposed in [166], measures “the number
of distinct types of things (objects, processes, states), number of processes affecting an
object, number of objects being affected by a process, number of operands per process
and performs the sum of the number of things of each distinct type”.

The concept of design complexity is discussed in [171]. The authors address the
design complexity by the intrinsic complexity of the multi-disciplinary structure. Here,
the main emphasis is to figure out the main problems that can occur due to low interaction
between the multidisciplinary designs and qualitatively measure the level of difficultly to
manage it. According to [172], good software design practices should minimize coupling
and maximizing cohesiveness. In [172], design patterns and role-based component design
approaches are analyzed to present a theoretical study about how these design principles
can help the designer in complexity management.

The study proposed in [173] presents a complexity analysis for embedded systems
design considering qualitative measurements of design process from the user perspective.
In this case, it performs an evaluation of design models using a cognitive complexity
checking. The authors suggest a measure which describes the efforts to understand the
artifacts of design from the viewpoint of clients based on their experiences, know-how and
landscape. According to [173], the design complexity level is related to the relationship
between the efforts of users to understand and adopt models versus the concepts that are
used in models representation. As a result, a set of insights is provided to trace useful
basic-level concepts for modeling embedded systems at the system level.

A systematic mapping study was published in [174] in order to review software me-
trics for measuring the understandability of architectural structures. The metrics consider
measured artefacts, attributes, quality characteristics, and representation model used to
define software metrics. Thus, the measured concepts come from the general properties
such as size, complexity, coupling, cohesion and modularization of the architectural arte-
facts. The authors conclude that in general there is a gap in the architectural analysis
metrics regarding the evaluation of design artifacts and due to this, it is necessary to
create quality measurements of the high-level views of design. There is a lack of useful
metrics that can be adopted by practitioners and appropriate analysis to estimate the

3.3. Contributions 77

understandability level of a software system.
There is a lack of approaches to measure quality features of architectural models [174].

It is important to evaluate the level of satisfaction of architectural design, since in RTES
development, this process manages overall system functions and their critical aspects
[167]. The formalization of architectural design steps contributes to show how software
design models are better mapped to code.

Based on the fact that during development of RTES, it is not always possible to
wait until the final stages of design to estimate the overall system complexity [167], this
thesis aims to quantify the complexity of RTES design, in order to show complexity cost
measurements to adopt the developed methodology. Thus, formalization performed in
this thesis provides a novel and formal manner to analyze the complexity of RTES design
activities and the system cost function. Differently to other studies, here it is possible to
perform early estimation of system complexity based on cost function to design evolution
and the overall system complexity, taking in to account the number of system components.

The proposed measurements contribute with a quantitative and formal analysis, of
this unpredictive design process, by means of following a specific methodology. Once the
system design activities involves human activities and interactions, it could be hard to
predict them. The term unpredictive is adopted here, since the system design process
is a non-deterministic task. Therefore, final models, the workflow of the process and
artifacts from this process are impacted by human expertise and knowledge. Performed
analysis here contributes to a common and formalized manner to identify the design
costs. Noted here, as advantages of the complexity measurements are the development of
a cost function as inputs to estimate required resources, the non-subjective analysis of the
design complexity activities and the computation of the number of design components,
from the outset of architectural design activities.

3.3 Contributions

This chapter briefly presents different methodologies to requirements specification,
architectural design and complexity analysis of RTES design. In addition, a comparison
of the literature review against the proposed methodology can be performed in order to
provide insights concerning contributions and innovations of this thesis.

Although different papers present several contributions in the RTES development
there is still a lack of studies to define traceability criterion, distinctive and comple-
mentary architectural design of RTES viewpoints, consistent and early analyzes of non-
functional requirements, the combination of graphical, textual and formal approaches into
a single methodology for RTES design, while furnishing complexity analyzes of RTES de-
sign activities.

78 Chapter 3. State of the Art Analysis

79

Chapter4
The MARTeSys𝑅𝑒𝑞𝐷 Methodology

This chapter provides details of the MARTeSys𝑅𝑒𝑞𝐷 methodology and its main con-
cepts. The general framework and the group of activities covered by the proposed metho-
dology are defined and detailed here.

4.1 MARTeSys𝑅𝑒𝑞𝐷 Scope

The proposed methodology contributes to architectural design of RTES, while high-
lighting how real-time and embedded constraints can be modeled in different viewpoints.
As noted in Figure 7, MARTeSys𝑅𝑒𝑞𝐷 adopts the Software Platform Embedded Systems
(SPES) guidelines, SysML diagrams and MARTE stereotypes.

Figure 7 – Global View of the MARTeSys𝑅𝑒𝑞𝐷 Methodology.

80 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

MARTeSys𝑅𝑒𝑞𝐷 methodology is composed of four distinctive viewpoints. Thus, Re-
quirements, Functional, Logical and Technical viewpoints provide the basis for
arranging an architectural description of RTES focusing on description, modeling and
evaluation of non-functional concerns. Moreover, the SysML profile and its diagrams are
adopted in those viewpoints, within each refinement, to model behavioral and structural
design of systems. The MARTE profile and its sub-packages provide the main founda-
tions for engineering processes of RTES and for representing non-functional concerns of
these systems. As emphasized in Chapter 2, the adoption of the UML profiles are justified
by their adequacy level for the analysis, as well as the implementation, specification and
architectural design of RTES.

The MARTeSys𝑅𝑒𝑞𝐷 methodology proposes an approach to RTES development and it
is centered within the following topics:

o Adoption of well-recognized modelling languages. UML profiles, and their dia-
grams, have been extensively employed in this research, since they allow for the
representation of the system under different abstraction levels.

o Stereotypes, annotations and enumerations of the MARTE profile are traced to
model RTES concerns, as this profile was developed to contribute to design and
analysis of RTES properties.

o SPES methodology provides a background to architectural design resolutions. It
conducts a collection of suggestions for integration between software, systems, hard-
ware, mechanical and physical parts in architectural design. Besides, SPES provides
guidelines to RTES development, while considering essential strategies for the de-
sign these systems.

o Combination and Extension of SysML diagrams applying a standard nomencla-
ture through the VSL formalism. The proposed combination provides a formal
style to express constraints values, properties and stereotypes. VSL contributes
with a standard and unambiguous annotation of constraints in model elements,
while supporting the system implementation activities. In this thesis, VSL allows
for annotation of the non-functional constraints regarding the Value Specification
grammar.

o Adoption of tools for code generation, for constraints definition and for their re-
presentation, in a low granularity level, in the system implementation.

o Model checking: UPPAAL is used here to validate and verify models of Require-
ments viewpoints. In this thesis, the proposed studies create a strategy to describe,
in TA formalism, timing constraints from requirements specification documents and
analyze them since early design steps.

4.1. MARTeSys𝑅𝑒𝑞𝐷 Scope 81

o Strategies for empirical evaluation of non-functional constraints. Therefore, it is
possible to evaluate the MARTE annotations from the architectural models and
check the consistency between the graphical models and the execution models.

Figure 8 depicts the overall flow of the MARTeSys𝑅𝑒𝑞𝐷 methodology. The MARTe-
Sys𝑅𝑒𝑞𝐷 is a methodology based on MDSE concepts which provides a group of recommen-
dations for RTES development. The main characteristics of the proposed methodology
are highlighted as follow:

o C1 : A general methodology for RTES design based on refinements and viewpoints.
The refinements present different viewpoints of the system. In each abstraction
level, a SysML diagram or SysML table is extended with MARTE stereotypes.
Thus, there is expected a syntactic and semantic improvement in the definition of
architectural artefacts.

o C2 : MARTeSys𝑅𝑒𝑞𝐷 proposes a formalization to the RTES activities. In this for-
malization, a group of algorithms is defined to describe the general design decisions.
This formalization is performed in standardized pseudo-code and defines the set of
steps for adopting the proposed methodology in developing RTES.

o C3 : It provides a new strategy for analyzing the complexity of RTES design ac-
tivities. It contributes to quantitative measurements and to describe an analysis of
the design complexity, from the outset of the initial design activities.

o C4 : In RTES development, non-functional concerns, for example timing obser-
vations, must be concisely and correctly expressed in design artefacts. The thesis
studies focuses on description and tracing of different non-functional concerns along
the RTES development.

o C5 : Empirical and analytical techniques are applied to evaluate constraints at-
tached to design models. These techniques involve respectively empirical valida-
tions and model checking strategies. Moreover, these strategies substantiate the
description and analysis of constraints in two validation steps, respectively, from
functional models and executable code.

o C6 : Description of an independent representation of physical and logical compo-
nents in RTES architectural design. The proposed viewpoints and their refinements
allow for the specification of structural and behavioral views of RTES. Therefore, it
is possible to show how the design decisions can be separated from any architectural
implementation in requirements specification and system design.

o C7 : It provides an strategy to represent and trace RTES constraints along the
development process. It allows for the performing of early evaluations of critical

82 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

constraints before an initial implementation of the system. Moreover, it contributes
to the definition, representation, refinement and validation of RTES concerns in an
integrated way to the system services.

In general, a methodology is composed of one or more processes, methods and tools
[175] [120] [81]. A methodology must organize these components into systematic activities
in order to be applied in a well-defined context. MARTeSys𝑅𝑒𝑞𝐷 is a MDSE methodo-
logy that brings together modelling diagrams, SPES guidelines and stereotypes from the
MARTE profile. The proposed methodology carries out activities that are related to
specification, documentation, architectural design, validation and management of RTES
requirements.

4.2 General Flow of the MARTeSys𝑅𝑒𝑞𝐷 Methodo-
logy

The MARTeSys𝑅𝑒𝑞𝐷 methodology provides a sequence of steps for RTES development.
Figure 8 shows a general overview of the proposed methodology. In Figure 8, the orange
arrows between phases as, for example, the four initial viewpoints, indicate that all them,
at the different levels, can be (if necessary) iteratively updated. The blue arrows denote
sequential transitions of different development phases. For example, from architectural
viewpoints (Phase 1) to the formalization activities (Phase 2).

The left-down corner side, Figure 8, displays the main technologies that have been
adopted in this methodology. The MARTeSys𝑅𝑒𝑞𝐷 methodology is grounded on the con-
cepts, guidelines, libraries and definitions of the FreeRTOS, SysML profile, MARTE pro-
file, SPES methodology, Arduino Mega and UPPAAL. Moreover, the number of employed
methods are not restricted to those mentioned above, that is, they can be extended by
other technologies regarding the needs of the study domain.

The first activities, labeled in Figure 8 as 1, aim at providing architectural descriptions
for RTES in four design viewpoints. The Requirements, Functional, Logical and Technical
viewpoints already defined in Chapter 2 provide the basis to direct the design activities
of this thesis.

In the Requirements viewpoint, a group of activities for the analysis, specification,
elicitation, definition, validation and verification of system requirements is proposed.
Here, the expected output is the graphical, textual and/or tabular artefacts that represent
the system context.

Functional viewpoint combines a set of user functions into a model that describes
the system services/functionalities. Functional viewpoint transforms the integrated re-
quirements models, from the Requirements viewpoint, into rational system specifications.

4.2. General Flow of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 83

Figure 8 – General Flow of the MARTeSys𝑅𝑒𝑞𝐷 Methodology.

From this viewpoint, artefacts are generated to show the system behavior, the details of
the system services and the user functions interaction.

Logical viewpoint aims at performing the analysis of system components and de-
scribing their logical solution. Here, the logical architecture is gradually refined into
fined-grained logical elements in order to provide a structured design model of the sys-
tem.

In the Technical viewpoint, software and hardware components, which are related
to the system under development, are combined. Technical viewpoint artefacts are related
to final system implementation and should ensure that the design is in accordance with
logical viewpoint assumptions and with logical and physical system constraints. In this
viewpoint, artefacts describe the final system implementation while preserving Logical
viewpoint assumptions with logical and physical system constraints.

In Figure 8, the blue arrows represent the sequence flow for adopting the metho-
dology steps. This flow is also correlated to the labels 1 − 7. The orange arrows show
interactive steps. It means that from a step, it is possible to return to the previous one
and refine it. Phase 2 shows Formalization of the design activities. From each solution
of architectural design different algorithms are created to formalize the design decisions
of the MARTeSys𝑅𝑒𝑞𝐷 methodology. This formalization intends on collaborating toward
the understanding and adoption of the MARTeSys𝑅𝑒𝑞𝐷 design decisions. Furthermore, it
contributes to the complexity analysis of RTES development.

A Global Architecture is generated towards a RTES (Phase 3). The main objective

84 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

of this view is to describe the global system structure and its relationships. Within these
models, hardware and software components are modeled and their external communica-
tion is also defined. The Global Architecture model is able to show the system design in
a global perspective and to represent how each software/hardware component cooperates
with other components. From these models, the Model and Unit Design artefacts are
created (Phase 4).

The Model and Unit Design (MUD) phase provides models that describe system fea-
tures at a low abstraction level. Models represent the system in a viewpoint that is closer
to the implementation stage. It means that they should describe software details as well
as how smaller software components cooperate at the implementation level. Moreover,
these models show how software components interact and control physical and embedded
elements. Phase 5 relates to the Automated Code Generation from MUD models. Fi-
nally, Phases 6 and 7 shows the system realization and final system evaluations activities
of the MARTeSys𝑅𝑒𝑞𝐷 methodology.

In Phase 5, C++ Model is automatically generated by models transformation. Here,
the Papyrus [176] tool has been adopted to design activities and to source code generation.
It is important to highlight that the Papyrus tool performs a partial code generation
and due to this, manual code development is necessary. However, an automatic code
generation is performed while considering non-functional requirements and constraints of
RTES. Furthermore, it provides a simple way to guide RTES design, their non-functional
requirements development and maintenance activities regarding model constraints.

NFP Constraints Simulation adopts empirical/experimental techniques to eva-
luate the system services realization and the constraints that are imposed on these services
(Phase 6). The main objective of this phase is to describe a common means for simulating
timing, schedulability and precedence constraints of RTES, by considering the runtime
behavior of the tasks. Moreover, Comparison of Constraints (Phase 7) allows one to
check if the constraints, under the system services, are reached in the final development
stage.

Phases 4 , 6 and 7 allow for interactive improvement of RTES architectural models.
As it can be observed in Figure 8, from these phases there is a path to return and refine
the architectural viewpoints. It is possible to connect information from validating results
(Phases 6 and 7) with early design artefacts and improve them. This analysis shows that
the RTES constraints can be represented in early design viewpoints, fulfilled at different
abstraction levels and reached and simulated in the final development phase. Moreover,
it proves that there is consistency between the architectural constrained models and the
final model implementation regarding constraints estimation. Finally, it also indicates
that constrained parameters, which are related with real-time schedule/precedence, can
be satisfied and evaluated.

4.3. Requirements Specification and Architectural Viewpoints within the MARTeSys𝑅𝑒𝑞𝐷 Methodology85

4.3 Requirements Specification and Architectural View-
points within the MARTeSys𝑅𝑒𝑞𝐷 Methodology

As previously presented, when defining the methodology scope, one must consider
the set of logical activities to be followed in order to achieve a proposed goal, that is,
the process definition. A process describes “what” must be performed without detail-
ing “how” each activity has to be performed. Methods detail techniques that should be
employed, within a methodology, in order to fulfill an activity/process. Therefore, affir-
mations can be made that a method describes “how” an activity will be realized. Tools
and well-defined design strategies support the methodology definition, provide theoretical
background to its application and favor its analysis and development activities.

Figure 9 shows a detailed view of the MARTeSys𝑅𝑒𝑞𝐷 methodology and the co-
vered/specific activities for structuring an RTES architectural description, from require-
ments definition to system realization.

Figure 9 – The MARTeSys𝑅𝑒𝑞𝐷 Methodology.

Requirements viewpoint, in Figure 9, is placed on the upper level of the flowchart.
On the other hand, the Functional, Logical and Technical viewpoints are grouped in the
lower right-hand corner. This flowchart shows the four proposed viewpoints in a group
of interactive views. Many refinements can be performed inside each viewpoint. The
decision node represents the case where internal refinements, of one viewpoint, imply
the update of theprevious ones. Formalization of Architectural Viewpoints is the last
proposed activity and it is detailed in Chapter 5.

86 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

The following subsections provide detail of the internal activities of each MARTeSys𝑅𝑒𝑞𝐷

methodology viewpoint. These sections provide details for the specific activities of each
viewpoint. Moreover, it gives details on how the design decisions can be made and shows
how to incorporate RTES characteristics, such as functional, non-functional and embed-
ded features in a methodology.

4.4 Requirements Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷

Methodology

The Requirements viewpoint covers the definition and analysis of the overall system
functions considering non-functional requirements and RTES constraints. As presented
in Figure 10, it is possible to link this viewpoint with well-defined processes/stages of RE
[177], [178], [120]. Requirements Analysis, Requirements Specification, Verification and
Validation of Requirements and Requirements Management, from RE, are covered within
the Requirements viewpoint definition. Figure 10 shows the correlation between
internal activities of Requirements Viewpoint, of MARTeSys𝑅𝑒𝑞𝐷 methodology, and the
RE process.

The proposed methodology is not exhaustive, as it does not fully cover RE activities.
Specifically in the Requirements Verification, Requirements Validation and Requirements
Management, it partially contributes with guidelines and design methods.

Requirements viewpoint, within the MARTeSys𝑅𝑒𝑞𝐷 methodology, is composed of Re-
quirements Pre-Analysis, High-Level Description of Requirements, Composition of Mo-
dels using the MARTE Profile, Formal Specification with VSL and Analysis of Require-
ments. The following sub-sections discuss these views in detail. As noted in Figure
10, Requirements Gathering Artefacts and Requirements Elicitation are not covered by
the proposed methodology. MARTeSys𝑅𝑒𝑞𝐷 has, as input, an initial group of elicited
requirements. It is expected that this requirements document describes the scenario, pur-
pose and the global idea of the system. These requirements are posteriorly refined and
detailed in the Requirements viewpoint. The refinements, or internal stages, of the Re-
quirements viewpoint definition are detailed in the subsequent sections. Moreover, these
sections present a comprehensive explanation of the chosen design strategies, SysML
diagrams and MARTE packages that can contribute to RTES design.

4.4.1 Requirements Pre-Analysis

Requirement Pre-Analysis represents the first activity addressed in the MARTe-
Sys𝑅𝑒𝑞𝐷 methodology. This activity, from the Requirements viewpoint, receives as input a
group of previously elicited requirements. The requirements elicitation process performs
requirements elicitation, domain analyses and description of user needs. Thus, techniques

4.4. Requirements Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 87

Figure 10 – Correlation between Requirements Engineering Process and Requirements
Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology.

and guidelines of requirements elicitation should be applied in order to describe, as input
at this step, the requirements document. This document contains an overview of the
main system properties, as well as its scope and stakeholders.

Requirements Pre-Analysis analyzes each requirement in order (1o) to improve its
description, (2o) to define functional or non-functional criterium and (3o) to relate this
requirement to the MARTE profile. Here, a group of guidelines, which will be described
later in the text, is adopted to write and refine the requirements specification. Therefore,
previous elicited requirements must be analyzed in order to improve the understanding
of the critical properties of the system. Table 3 shows a template that should be adopted
as the first refinement of Requirements viewpoint.

The first column has a requirement identification (ID), that is a variable or acronym
which names the requirement. The second column is filled with a textual description
of requirements and depicts their definition. The third column performs requirements
classification. An initial requirements categorization is considered here, i.e., each re-
quirement is related with a different category, including functional, non-functional and

88 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

ID Requirement Descrip-
tion

Type RFN Type MARTE Package

R1: ID of Re-
quirement 1

Description of R1 Type of
R1

Non-Functional
Requirement of R1

Related MARTE
Package

R2: ID of Re-
quirement 2

Description of R2 Type of
R2

Non-Functional
Requirement of R2

Related MARTE
Package

. . . .

. . . .

. . . .
RN: ID of Re-
quirement N

Description of RN Type of
RN

Non-Functional
Requirement of RN

Related MARTE
Package

Table 3 – Framework for the Requirements Pre-Analysis.

domain-specific types. The third column allows for the identification of possible non-
functional properties related to that requirement. This prior analysis is important to the
initial activities of Requirements viewpoint, since it allows one to identify and derive the
main embedded and non-functional functionalities that are required by a system. This
analysis is performed according to RTES concerns, which are classified in Annex C.

Finally, the last column enables one to relate a requirement to the MARTE pro-
file packages. It contributes to refinement of the Requirements viewpoint or to further
viewpoints definition, while facilitating the trace of MARTE stereotypes/packages, which
contributes to requirements design throughout RTES development.

In the proposed methodology, the activity of Requirement Pre-Analysis is an interac-
tive process and provides artefacts to document the system. These artefacts are input to
the next activity that deals with a high-Level Description of Requirements; also, these
can be used in communications with stakeholders and to the development of test cases.

4.4.2 High-Level Description of Requirements

As shown in Figure 10, the activity of High-Level Description relates to the first ac-
tivity of Requirements Specification process. It employs an extension of SysML Table to
refine the RTES requirements. This viewpoint guides the classification of system require-
ments, in a tabular manner, considering cohesive criteria. From this classification, a group
of categories is created by respecting requirements correlations or similarity. Thus, each
category maintains requirements that are related to each other and can define a group of
correlated system services. Table 4 shows the template to categorize requirements at the
High-Level Description of Requirements activity.

The first column of Table 4 describes the category in which one or more requirements
are allocated (placed). The second column receives the ID of each requirement, where
𝑎1, 𝑎2 ∈ N, 𝑎2 > 𝑎1 + 1 and 𝑎2 + 1 < 𝑁 . Finally, in the third column, the guidelines for
naming a requirement, provided in [81], are adopted to refine the natural declaration of
these requirements.

4.4. Requirements Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 89

Related Context ID Requirement Declaration

Category Definition 1

Requirement R1 Description of Requirement 1
Requirement R2 Description of Requirement 2
. .
. .
. .
Requirement R(N-a1) Description of Requirement R(N-a1)

Category Definition ...

Requirement R(N-a1+1) Description of Requirement R(N-a1+1)
. .
. .
Requirement R(N-a2) Description of Requirement R(N-a2)

Category Definition M

Requirement R(N-a2+1) Description of Requirement R(N-a2+1)
. .
. .
. .
Requirement RN Description of Requirement RN

Table 4 – Requirements Categorization Table - Requirements viewpoint.

On Table 4, a requirement is described in natural language and must use, in its
declaration, the keywords Shall, Must, Are Applicable, Responsible and Will in order to
express priority criteria to its future development. Moreover, the refinements performed
here contribute to the requirements description and to minimizing ambiguities. The
definition of each keyword is presented as follows:

o Shall: it describes a fundamental system requirement. Requirements named through
shall are, in the majority of cases, fixed into a general development contract and
they must be implemented and verified.

o Must: it defines non-functional requirements or constraints, such as performance
and safety, which must be developed.

o Should: it describes non-obligatory requirements. In this type of declaration it
may be acceptable to provide reasons to ignore the specified requirement.

o Are applicable: it permits the addition, by reference, of extra information and
regulatory standards into a specification.

o Responsible: it defines imperative requirements for an architecture.

o Will: it describes information related to the operational or development environ-
ment in order to provide requirements capabilities.

From the proposed categorization a second refinement is performed. The SysML
Use Case diagram allows for the graphical representation of system requirements and
the generated artefacts, in this refinement, provide the link between the Requirements
viewpoint and Functional viewpoint models. Figure 11 depicts a generic example of a
possible refinement of the system categories by SysML Use Case diagram in the activity

90 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 11 – Example of Requirements Refinement within the Activity of High-Level De-
scription of Requirements.

of High-Level Description of Requirements. This level provides the definition of the
major system functions, describes an overview of these requirements at a high level of
abstraction and represents external entities that influence the scenario.

4.4.3 Composition of Models using the MARTE Profile

This activity strengthens previous requirements models with non-functional informa-
tion. It allows for the combining of requirements specification models with annotations,
stereotypes, constructors or enumerations of the MARTE profile. Annex C, presents ano-
ther contribution of this thesis, along with providing details of the specific purposes of a
stereotype. In Annex C, Table 14 traces the MARTE stereotypes able to map a specific
RTES constraint (concern). The proposed mapping provides guidelines to non-functional
annotations along the M viewpoints.

Adoption of annotations, stereotypes or enumerations in requirements models allows
for early description and analysis of RTES concerns. Therefore, this activity refines the
Requirements viewpoint models by modelling requirements in an atomic fashion, defi-
ning cooperation and relationships between these requirements and adding non-functional
annotations. In order to perform this, the SysML Requirements diagram is applied to
represent system requirements and to provide details of its main functions.

Initially, requirements and their relationships are graphically expressed. The SysML
Requirements diagram does not consider, in its original metamodel, the ability to re-
present non-functional requirements. Thus, as a refinement of this model, the constituting
process of SysML models and of the MARTE profile, when necessary, can enable the early
representation of RTES concerns.

The proposed composition contributes to specifying and describing non-functional
criteria, relating, for example, with non-functional properties, such as timing, accuracy,
performance, embedded and distribution requirements, as well as the description of phy-
sical and logical system resources.

4.4. Requirements Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 91

4.4.4 Formal Specification with VSL

VSL allows in a standard manner to declare annotations to be inserted into mo-
dels. This activity describes another refinement of previous models of the Requirements
viewpoint. Here, non-functional annotations are added to the models of the SysML
Requirements diagram using the VSL formalism. Adoption of VSL allows one to specify,
in a standard manner, different value specifications, timing expressions, constraint des-
criptions and stereotype features. Figure 12 describes the concrete syntax that can be
employed to express value specifications in model elements.

Figure 12 – Formalization of Concerns in Requirements Models by VSL.

The studies in this thesis adopt the Value Specification Language (VSL) to annotate
and detail non-functional constraints in requirements and architectural design. Adoption
of VSL to annotate constraints, abstractions, requirements specifications, which are most
often described in natural language, contributes to their definition and to strengthens
non-functional properties of RTES. The Annex B depicts the necessary background of
VSL to express Value Specifications. VSL allows for the describing of literal values, ma-
thematical expressions, collections and temporal value and others. Here, this formalism
has been adopted in order to standardize expressions and specifications values in the
model elements.

The refinements of requirements models and their constraints annotations, through
VSL, contributes to diminishing ambiguity in specifications [88]. VSL can be used to ex-
press marked values and to define constraints for any model element that is associated to
a value specification. Therefore, it possible to verify correctness and consistency of arte-
facts of the specification process, through automated techniques, from the initial stages
of the RTES development. Thus, specification errors may be found earlier throughout
the development cycle [2].

92 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

4.4.5 Requirements Analysis

Analysis of Requirements seeks to confirm, by examination, that requirements are
well-formed and able to describe the requested system. MARTeSys𝑅𝑒𝑞𝐷 methodology
defines a strategy to formally analyze and verify timing constraints of RTES requirements,
at the outset of the Requirements viewpoint specifications.

The analysis of requirements, in the Requirements viewpoint, starts with a simple
reading of the requirements document. Regarding the MARTeSys𝑅𝑒𝑞𝐷 methodology, this
document depicts the system requirements, already specified in natural language (NL),
in a tabular manner. Besides, it considers keywords to determine prioritization of re-
quirements and timing concerns such as deadline, period, events according to Table 1.
The proposed transformation considers three timing concerns: period, deadline and
event occurrences. To perform the proposed analysis from already specified require-
ments, from the High-Level Description of Requirements (Section 4.4.2), must be manu-
ally checked in order to discover:

o Period constraints defines a precise and predefined time interval in which a task
instance occurs (is activated) over time.

o Deadline constraints define a time in which a task must be finished.

o Events occurrence is a situation or stimuli that occurs during the system lifetime.
RTES behavior and the scheduling of its tasks can be triggered by internal or
external events. For example, a task can be triggered by clock interruptions that
occur periodically or through an external user action, as in the pressing of a button.

MARTeSys𝑅𝑒𝑞𝐷 methodology considers the analysis of period, deadline and event
constraints, from Requirements viewpoint specification, in order to check early timing
constraints. The proposed evaluation is important, in this study, since it allows for the
formal verification of important properties of RTES.

As presented in Chapter 2, TA is defined by a tuple (𝐿, 𝑙0, 𝐶, 𝐴, 𝐸, 𝐼). Thus, after the
identification of timing constraints, the correlation (C) to Timed Automata formalism is
performed as follows:

C:

⎧⎪⎨⎪⎩
Period ≡ clock (P) ∈ 𝐶, guard ∈ 𝐸, inv ∈ 𝐼, Reset Operation ∈ 𝐸

Deadline ≡ clock (D) ∈ 𝐶, guard ∈ 𝐸, inv ∈ 𝐼, Reset Operation ∈ 𝐸

Events ≡ channel ∈ 𝐴, Action ∈ 𝐴

⎫⎪⎬⎪⎭
Typically, in RTES specification, period is defined as the distance between two ins-

tants in time or duration [179]. Deadline is defined as an instant in time in which the
system must produce a result [179]. However, the proposed specification, in the Require-
ments Analysis, assumes that these time values are considered as clock specifications in

4.4. Requirements Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 93

order to describe/map these into the TA formalism. Requirements labeled with periodic
constraints must attend the following design guidelines in order to consistently create the
correspondent TA:

1. Define the initial location 𝑙0 of the automata.

2. Create for each solution path, where 𝑙 ∈ 𝐿 location, an ending state, in accordance
with Equation 2, as described below.

3. The must exist a loop from each ending location 𝑙𝑖 to 𝑙0, where 𝑙𝑖 ∈ set of ending
locations of intermediary design paths. Thus, ∃ 𝑒 ∈ 𝐸 between these two locations.

4. The ending state must have an invariant such that 𝑖𝑛𝑣 = 𝑖 ≤ period.

5. There must exist a guard function that labels 𝑒 such that: guard(e) must check if
clock (related to P) ≥ period

6. There must exist a guard function that labels 𝑒 such that: guard(e) must reset the
clock (related to P), which sets the expected period.

Based on the previous guidelines, it is possible to design TA while considering criteria
of interest as, for example, timing constraints. This strategy formalizes RTES constraints
from high-level assumptions and allows for their formal verification and validation, by
specialized tools as, for example UPPAAL, in the initial design steps.

∀𝑟𝑤 ∃ 𝑙𝑡 ∈ 𝐿 | 𝑙𝑡 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑠 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑟𝑒𝑙𝑎𝑡𝑒 𝑡𝑜 𝑟𝑤 (1)

∀𝑙𝑖 ∈ 𝑙𝑒𝑛𝑑𝑃 𝑎𝑡ℎ ∃ 𝑒𝑗 ∈ 𝐸 | 𝑒𝑗 ⇒ (𝑙𝑖, 𝑙0)

⎧⎪⎨⎪⎩
𝑙𝑖 ℎ𝑎𝑠 𝑎𝑛 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 ⇒ 𝑖𝑛𝑣 ≤ 𝑃

𝑒𝑗 ℎ𝑎𝑠 𝑎 𝑔𝑢𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ⇒ 𝑐𝑙𝑜𝑐𝑘(𝑃) ≥ |𝑃 |
𝑒𝑗 ℎ𝑎𝑠 𝑎 𝑟𝑒𝑠𝑒𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤ℎ𝑒𝑟𝑒 𝑐𝑙𝑜𝑐𝑘(𝑃) = 0.

(2)
Equation 1 defines that each atomic requirement (𝑟𝑤, where 𝑟𝑤 ∈ 𝑅 and 𝑤 ≤ |𝑅|

can be modeled by 𝑙𝑡 locations, where 𝑙𝑡 ∈ 𝐿. Thus, the “meaning” of one requirement
is designed by locations (including initial and final locations) and necessary invariant,
guard and reset components. In Equation 2, 𝑙𝑒𝑛𝑑𝑃 𝑎𝑡ℎ = {𝑙0, ..., 𝑙𝑖} is composed of the set
of ending locations, where, 𝑙𝑒𝑛𝑑𝑃 𝑎𝑡ℎ ⊃ 𝐿 and 1 ≤ 𝑖 ≤ |𝐿|. The edge set is represented by
𝑒𝑗 ∈ 𝐸, thus 1 ≤ 𝑗 ≤ |𝐸| and the periodic clock is labeled as 𝑃 . As previously suggested,
the path represented by the 𝑙𝑡 locations must have a final state 𝑙𝑖 ∈ 𝑙𝑒𝑛𝑑𝑃 𝑎𝑡ℎ, where for
the group 𝑟𝑤 𝑙𝑖 ∪ 𝑙𝑡 = 𝐿. This shows that an automata path fulfills the meaning of 𝑟𝑤, in
terms of periodic execution of a system requirement.

As presented in the correlations rules an event description, from the requirements
specification, can be designed by a channel between two TA and a guard condition. A

94 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

channel denote action–co-action and it defines synchronization links between the main and
secondary timed automata. Equation 3 shows the formalization of an event constraint.

∀𝑒𝑣𝑖 ∈ 𝐸𝑣𝑒𝑛𝑡𝑠

{︃
∃ 𝑎𝑗 ∈ 𝐴

∃ 𝑐𝑤 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (𝑒𝑚, 𝑒𝑛) ∈ 𝐸.
(3)

In Equation 3, Event ∈ 𝐴 denotes the set of system events. In this equation, A re-
presents the of actions, co-actions and the internal 𝜏 -actions of the automata. In this
case, for each event 𝑒𝑣𝑖 ∃ 𝑎𝑗𝑙𝑎𝑏𝑒𝑙 for denoting an action–co-action. Thus, there is a label
(𝑎𝑗𝑙𝑎𝑏𝑒𝑙) to stamp the channel synchronization. The Channel describes the synchroniza-
tion path between two automata. This path describes a consumed relationship 𝑒𝑚

and a produced relationship 𝑒𝑛. In the consumed relationship, the event 𝑒𝑣𝑖 triggers
𝑒𝑚 and produces 𝑒𝑛. The produced relationship generates 𝑒𝑣𝑖 to trigger 𝑒𝑚.

To express deadline constraints, from natural language descriptions to TA formalism,
it is necessary to design clocks, invariants and Reset Operations, under a set of 𝐿 ∪ 𝐸,
to symbolize the expected requirement behavior. Moreover, it assumes that deadline
defines a specific clock named as D. Equation 4 denotes how to design an automata path
respecting deadline constraints from requirement specifications in NL.

∀𝑙𝑖 ∈ 𝐿
′

{︃
1𝑠𝑡 : 𝑙𝑖 =inv ≤ D, guard ≥ 𝐷 and Reset 𝐷

2𝑛𝑑 : 𝐿
′ =

∑︀𝑛
𝑖 𝑡(𝑙𝑖)| 𝑖𝑛𝑣𝑖 ≤ 𝑡(𝑙𝑖) 𝑎𝑛𝑑 ∀𝑖𝑛𝑣𝑖 ∃ 𝑔𝑢𝑎𝑟𝑑 ≥ 𝑡(𝑙𝑖).

(4)

In Equation 4, 𝐿
′ maintains the set of locations constrained by deadline, where 1 ≤

𝑖 ≤ |𝐿′|. Adoption of an invariant (inv) forces the automata to exit of a current state.
The value of inv is equal to the period where “an action is into one state”. Thus, it is
possible to state that 𝑖𝑛𝑣𝑖 = 𝑐𝑖, where 𝑐𝑖 is the computation time of 𝑙𝑖 location with 𝑖𝑛𝑣𝑖.
As noted from Equation 4, there are two mutually exclusive design paths. The first rule
describes the case where one state is sufficient enough to design the correspondent TA
and, in this case, 𝐶 = 𝐷 and 𝑖 = 1. The second case, shows that there exist 𝑙𝑖 locations,
with 𝑖 > 1 and even that the clock is equal to 𝐷, the value of the 𝑖𝑛𝑣 of each state may
vary. Equation 5 denotes the timing function 𝑡; this function is responsible for setting
the invariant value of a place:

𝑡(𝑙1) = 𝑑𝑠1

𝑡(𝑙2) = 𝑑𝑠2

... = ...

𝑡(𝑙𝑖) = 𝑑𝑖 −
𝑛−2∑︁

𝑖

𝑡(𝑙𝑖)

(5)

Thus, the function 𝑡(𝑙𝑖) describes the time portion of 𝑙𝑖, where 𝑑 = 𝑑𝑠𝑖, 𝑑𝑠2 + ... + 𝑑𝑖.

4.4. Requirements Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 95

Annex B describes the formal grammar, proposed in the MARTeSys𝑅𝑒𝑞𝐷 methodology,
in order to transform requirements specification, written in natural language, to Timed
Automata. This formalism specifies formal rules which must be applied to generate
Natural Language to Timed Automata (NL-TA) transformation in the Analysis of Re-
quirements activity.

4.4.6 Application of the Requirements Viewpoint

Chapter 6 presents, in Section 6.2.1, artefacts from the activities of Requirements
Pre-Analysis, High-Level Description of Requirements, Composition of Models using the
MARTE Profile, Formal Specification with VSL and Analysis of Requirements. MARTe-
Sys𝑅𝑒𝑞𝐷 Methodology is applied in an industrial case study related to automotive systems.

The activity of Requirements Pre-Analysis is detailed in Section 6.2.1.1. As
detailed on Table 3, this activity provides as outputs a tabulated and classified group of
requirements by their description, type, non-functional features and MARTE packages.
Figure 13 shows, in part, an artefact from the Requirements Pre-Analysis focusing on
the turn and hazard features of the Turn Indicator (see Chapter 6, Section 6.1.2). In
sequence, slices of the proposed models are presented in order to clarify and contextualize
the MARTeSys𝑅𝑒𝑞𝐷 Methodology application.

Figure 13 – Example of Application: Requirements Pre-Analysis.

Section 6.2.1.2 gives details of the artifacts of High-Level Description of Require-
ments. This activity receives as input the artifacts from the requirement analysis, refines
and categorizes them. Figure 14 depicts a slice of the high-level description activity for
the Turn Indicator system.

Section 6.2.1.3 refines the Requirements viewpoint, in the activity of Composition of
Models using the MARTE Profile, through the SysML Requirement diagram. Here,
the system requirements are designed in graphical view and, as expressed in Figure 15, and
MARTE stereotypes RTES allow one to annotate concerns/non-functional requirements.

Stereotyped constraints of the Composition of Models activity can also be refined. The
activity of Formal Specification of Requirements with MARTE and VSL, of the

96 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 14 – Example of Application: High-Level Description of Requirements.

Figure 15 – Example of Application: Composition of Models using the MARTE Profile.

Requirements viewpoint, allow for the annotating of non-functional RTES requirements
and properties by a concrete syntax. Figure 16 describes an example of timing constraint
annotation through MARTE stereotype and VLS syntax.

4.4. Requirements Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 97

Figure 16 – Example of Application: Stereotyped annotations by VSL Formalism.

The Analysis of Requirements applies a formal grammar (see ANNEX B.1) to
design RTES constraints from requirements specification. Section 7.2 shows, in the pro-
posed case study, how to transform and verify timing, safety, deadlock and reachability
constraints, from early artefacts of the Requirements viewpoint, to the Automata models.

Figure 17 depicts, in a generic manner how deadline and periodic constraints can be
realized by an automata, from the requirements specification. It provides a group of
guidelines to design and verify timing constraints from early design phases.

Figure 17 – Example of Application: Analysis of Requirements.

4.4.7 Summary of Requirements viewpoint

RTES have specific needs that should be considered in their description, specification,
modelling and design. Requirements viewpoint of MARTeSys𝑅𝑒𝑞𝐷 methodology defines
a group of activities for RE in order to contemplate the specificities of RTES. Table 5
summarizes the main modelling concepts adopted in each refinement of the Requirements
viewpoint.

98 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

Requirements viewpoint Design Strategy
Requirements Pre-Analysis Extension of SysML Table
High-Level Description of Requirements Extension of SysML Table, Use Case Diagram
Composition of Models using the MARTE
Profile

SysML Requirement diagram

Formal Specification with VSL Enrichment of Requirement diagram with VSL
Analysis of Requirements Timed Automata

Table 5 – Modelling Concepts and Strategies adopted in the Refinements of the Require-
ments Viewpoint.

4.5 Functional Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Me-
thodology

Functional viewpoint specifies user needs and system requirements, already specified
in the Requirements viewpoint, in rational and consistent models. Thus, the input of
this viewpoint are artefacts from the Requirements viewpoints, and it provides as output
the system services components. Regarding MARTeSys𝑅𝑒𝑞𝐷 methodology, this viewpoint
employs different SysML diagrams in order to describe structure and general organization
of the system and its logical decomposition.

Functional viewpoint has three refinements of system functions and early descriptions
of timing concerns. Here, the first models focus on the detailing of system components
and their internal relationships. The second refinement aims at describing and detailing
their internal and external system functions. Finally, the last refinement of Functional
viewpoint aims to add non-functional annotations into functional components. Table 6
shows the main diagrams and concepts adopted in this viewpoint.

Functional viewpoint Design Strategy
First Refinement SysML Block Diagram
Second Refinement SysML Internal Block Diagram
Third Refinement Time Package of the MARTE Profile

Table 6 – The Concepts adopted in the Refinements of the Functional viewpoint.

In this activity of architectural design, it is important to map and transform models
from the last refinement of the Requirements viewpoint to the first refinement of the
Functional viewpoint models. This mapping provides the link between the artefacts of
both viewpoints and clarifies the relationship between functional and logical blocks. As
presented on Table 6, SysML Block diagram is adopted to design the system components
in the first refinement.

Thus, it is necessary to map artefacts, already modelled from the Requirements view-
point, to a SysML Block diagram, which corresponds to the first view of the Functional
viewpoint. Therefore, scenarios presented in Use Case diagram and on the Categoriza-
tion Table (Table 4), from the activity of High-Level Description of Requirements, are

4.5. Functional Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 99

employed to delimit the main system services. Each category of service will be refined
by a structural block. This refinement is responsible for showing software and data com-
ponents and, also, a subdivision of architectural subsystems and their relationships.

SysML Internal Block performs the second refinement of the Functional viewpoint.
This viewpoint models the system components, their internal characteristics, as well as
their communication interfaces. In the last refinement of the Functional viewpoint, ar-
chitectural models will be detailed with timing constraints information. CoreElements,
NFP, Time, GRM, HLAM, GCM, HRM and SRM packages can have their stereotypes
adopted here since they can contribute with logical/physical constructors and with con-
cepts to quantify characteristics of elements.

Model elements of Functional viewpoint are refined in the Logical viewpoint archi-
tecture. In a general sense, the Logical viewpoint should show, the logical components,
which are able to define the user’s functions. This viewpoint is described in the next
Section.

4.5.1 Application of the Functional Viewpoint

Chapter 6 presents, in Section 6.2.2, the architectural design models of the Turn
Indicator regarding to the Functional viewpoint. As previously mentioned, this view-
point applies the Block Definition diagram and Internal Block diagram, together with
MARTE stereotypes, in distinctive system views. Figure 18 shows some examples of the
Requirements viewpoint refined in distinctive models of the Functional viewpoint.

Figure 18 – Example of Application: Functional Viewpoint.

A complete view of the Functional viewpoint is presented in Section 6.2.2.

100 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

4.6 Logical Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Metho-
dology

The Logical viewpoint describes the decomposition of the system functions, from the
Functional viewpoint, into an architecture of logical components. These components
define a logical solution, which is independent of the domain and of any technological
constraints. In this viewpoint, the logical architecture is gradually refined into a high-
granularity level of logical components. Thus, the Logical viewpoint provides the “logical
structure and the distribution of responsibilities functionality of a system” [142]. The
views of the Logical viewpoint, and their respective models, must provide, as output, a
group of logical components that are responsible for a set of functions.

In accordance with [18], the correlation between an artefact of Functional viewpoint
(user function) and those from Logical viewpoint (logical component) is not clear. How-
ever, the MARTeSys𝑅𝑒𝑞𝐷 methodology provides a strategy, based on relationships between
artefacts, to map these viewpoints. Mapping between the Functional viewpoint and the
Logical viewpoint is a mandatory activity. Figure 19 graphically depicts a proposal to
transform and correlate models of Functional and Logical viewpoints. This mapping des-
cribes the first correlation of functional and logical components. The proposed mapping
is performed using the SysML Block diagram, and which is further refined through other
diagrams in the Logical viewpoint.

Figure 19 – Mapping between the Functional viewpoint and Logical viewpoint.

As noted from Figure 19, there is a relationship (N:M) which traces user functions
and logical functions, where 𝑁 represents the number of functional blocks and 𝑀 the

4.6. Logical Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 101

number of logical blocks. Functional blocks can generate 𝑁 logical Blocks, when 𝑁 = 𝑀 ,
see label 1 in Figure 19, or 𝑀 logical Blocks, with 𝑀 < 𝑁 , see label 2 in Figure 19. In
the latter case, for each user function, there is a group of logical components, from the
Logical viewpoint, which is able to realize this functional artefact. However, it is possible
to put together in one logical block one or more functional block(s), when 𝑀 < 𝑁 , when
these functional blocks may be logically structured into one single logical component.

In a general sense, this viewpoint is composed by two refinements and all the models
of the Logical viewpoint are designed with SysML Activity diagrams. Moreover, this
diagram is adopted here, as it allows for the description of the system under development
and the logical components, from the Functional viewpoint, from a behavioral perspective.
In this architectural level, it is important to design models that are able to represent the
functional system components as a rational group of logical components.

The first refinement of the Logical viewpoint aims at defining the internal behavior
for each logical block. Here, the Activity diagram is employed using its original definition
and the internal signals, fork, merge, decision nodes and atomic activities of the system
are modeled. In order to enrich logical activities and the input/output signals of these
activities the MARTE profile stereotypes were adopted in the second and third refinement
of the Logical viewpoint models.

In the second refinement, each activity was constrained with a specific timing stereo-
type of the MARTE profile. These stereotypes allow for enriching the diagram with
individually pre-fixed deadlines and the description of periodic behaviors. From these
annotations, based on specific features of the application domain, it is desirable that the
artefacts from the Logical viewpoint may be susceptible to different types of analysis,
such as checking non-functional constraints.

The MARTE profile can also be adopted into the elements of the Logical viewpoint to
detail the type of interaction from/to a logical component. In the third refinement, other
MARTE constructors, especially from HRM and SRM packages, are adopted to identify
the communication interfaces between the logical blocks. In this abstraction level, low
granularity information about one activity or its interfaces can be highlighted. It allows
for the description of physical and digital input/output and the detainment of different
non-functional criteria, such as concurrency, distribution and performance. Artefacts
from this viewpoint are further refined into Technical viewpoint models.

4.6.1 Application of the Logical Viewpoint

Chapter 6 presents, in Section 6.2.3, the architectural models of the Turn Indicator
designed in the Logical viewpoint. Before modelling logical views, it is necessary to
understand how the Functional viewpoint is refined by logical decisions.

Figure 20 shows one example of mapping between the mentioned viewpoints. The

102 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

mapping shows functional and logical blocks of the TIS. There exist an 𝑛 : 𝑚 relationship
that maps user functions and logical functions [18]. In this sense, for each user function
there is a group of logical components (from the logical viewpoint), which is able to
refine/realize this functional artefact.

Figure 20 – Mapping between Functional and Logical viewpoints.

The Logical viewpoint should describe the system under development and the logical
components, refined from the Functional viewpoint, in a behavioral perspective. Figure 20
allows one show graphically the design decisions between these two viewpoints. Moreover,
for larger numbers of functional blocks, it is important to show how functional blocks are
refined, since it rationally presents their compositions and refinements. The refinements
of each logical block (see Figure 20) are performed through Activity diagrams. Section
6.2.3 shows the internal behavior of these logical blocks.

4.7 Technical Viewpoint of the MARTeSys𝑅𝑒𝑞𝐷 Me-
thodology

In the Technical viewpoint, the software and the hardware components are combined
[18]. Technical models allow for the defining of diverse physical and deployed viewpoint
perspectives in accordance with previous design decisions. Therefore, overall models
of this viewpoint have to represent the resources that are able to produce the logical
components from the Logical viewpoint.

Contained within this viewpoint, the design decisions should represent the main in-
teractions between software and hardware and the necessary refinement of the logical
subsystems. Moreover, design decisions should show how hardware components as, for
example, ECUs, memory, communication channels and peripheral devices are coupled
into the system.

4.8. From Architectural Viewpoints to Global System Architecture 103

The artefacts from the Logical viewpoint, mainly models from the Activity diagram,
are refined here using swimlanes. The main objective of this refinement is the decompo-
sition and partition of the system into logical and physical components, which interact
to satisfy the general system requirements. In this methodology, in order to represent a
technical perspective of the system, a swimlane can represent either a software component
or a hardware/physical component. Thus, peripheral devices, for example, can define a
single swimlane and it allows for partitioning actions based on the involved participants.
Therefore, a group of activities can be grouped into the same swimlane if these activities
relate to the software or hardware component.

From this system partitioning, another refinement is performed to detail the main
types of signals that interact with a hardware/software component. It describes the design
decisions regarding digital and analog communications for one component. Furthermore,
this strategy allows one to highlight the physical devices that are part of the RTES.
In both cases mentioned, MARTE stereotypes can be adopted to identify the system
interfaces (analog or digital signals) and to describe physical resources that can be used
by the application. Moreover, the MARTE constructors can be used in new refinements
of timing/non-functional properties over technical models and the different architectural
decisions for the system development.

Artefacts from the Technical viewpoint presents a refined and closer view of system
realization. Thus, annotated constraints may contribute to guide developers toward de-
signing global models of system architecture. Furthermore, these low-level annotations
can also direct the definition of MUD models and create the code implementation.

4.7.1 Application of the Technical Viewpoint

Chapter 6 presents, in Section 6.2.4, the architectural models of the Turn Indicator
regarding to the Technical viewpoint. Figures 40, 41 and 42 show the technical design
decisions and TIS models.

4.8 From Architectural Viewpoints to Global Sys-
tem Architecture

The Global System Architecture depicts a structure of system components and their
relationships. The model of the Global System Architecture comes from the final mo-
dels of the Technical viewpoint. Figure 21, Phase 4, shows a software component, named
SW_TurnHazardIndicator, modeled using the SysML Block diagram. Within this model,
hardware and software components are separately modeled and their external communi-
cation are also defined. Definition of the system view is important to show the system
design in a complete perspective, as it defines how each software/hardware component

104 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 21 – General Framework of the MARTeSys𝑅𝑒𝑞𝐷 Methodology.

cooperates with each other. Chapter 6 provides a complete example of the Global System
Architecture.

Figure 21 shows a global view of the MARTeSys𝑅𝑒𝑞𝐷 methodology from the Architec-
tural viewpoints (Phase 2) to MUD view (Phase 5). MUD takes the software components
already defined in Global System Architecture (Phase 4) and refines these into viewpoints
closer to implementation models. Here, Class has been designed with focus on system
features. These system features were already described in the Requirements viewpoint.
Moreover, RTES constraints/stereotypes were also refined and kept, in order to guarantee
the non-functional properties of system services. Through the Class diagrams, and their
fixed constraints, Automated Code Generation (Phase 6) and final system evaluations
are performed.

Formalization of design steps (Phase 3) and Automated Code Generation (Phase 6) are
the respective subjects of the next chapters. As portrayed in Figure 21, the requirement
named as R10 is traced in all the design phases. MARTeSys𝑅𝑒𝑞𝐷 methodology presents a
strategy to trace non-functional concerns along with the architectural viewpoints. Thus,
the following section describes how RTES concerns can be annotated and traced in design
models.

4.9. An Strategy to Trace Real-Time Embedded Systems Constraints in Architectural Viewpoints 105

4.9 An Strategy to Trace Real-Time Embedded Sys-
tems Constraints in Architectural Viewpoints

Traceability of RTES constraints is performed in this thesis by the adoption of enu-
merated and standard labels. A strategy is developed to trace the constraints along the
system viewpoints. A specific constraint has different nomenclature in its ID at distinc-
tive abstraction levels. However, the integer number, which is part of the ID does not
change in each viewpoint.

In all the architectural models each constraints of the MARTE profile is labeled as a
specific “ID”. Figure 22 shows the trace of non-functional constraints at different view-
points. For example, a periodic constraint, of the Logical viewpoint, has the following
L_Nfp_T“x” identification where:

Figure 22 – Trace of ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ from Functional Viewpoint to Logical View-
point.

o The first parameter identifies the viewpoint. For example, L corresponds to the
Logical viewpoint.

o The second parameter relates to the type of the constraint. In the example, Nfp
recognizes a non-functional constraint.

o The third parameter defines an immutable number to identify the constraint. The
variable “x” is an integer variable. This number represents a value that traces and
distinguishes a constraint in different views and viewpoints.

– In the case where the constraint is labelled with ≪ 𝑁𝑝𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ stereo-
type, the label P or F is also applied to the third part of the ID. These
characters describe if ≪ 𝑁𝑝𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ relates to a periodic time (P) or

106 Chapter 4. MARTeSys𝑅𝑒𝑞𝐷 Methodology

timing duration (T). For example, T sets this constraint as the timing duration
value (for example, deadline);

Specification, verification and maintenance of RTES constraints over their develop-
ment is a challenge. Methodologies to support the analysis and verification of these
constraints have a great impact on their development. MARTeSys𝑅𝑒𝑞𝐷 methodology ap-
plies the proposed labels to trace non-functional and embedded constraints at different
viewpoints. This strategy guides the designers to annotate non-functional information,
from the initial specification models to the system implementation models, in a standard
manner.

An example of adoption of the proposed methodology is performed in Chapter 6 and it
contributes to clarifying the design decisions, while illustrating the proposed methodology.
Further, Chapter 6 provides an example of the traceability criteria from graphical models
to implementation code.

4.10 Contributions

RTES design must consider the different non-functional concerns, the cooperation cri-
teria between several system components and respect possible real-time communications.
This chapter introduces the MARTeSys𝑅𝑒𝑞𝐷 methodology and its guidelines to RTES
design. It presents MARTeSys𝑅𝑒𝑞𝐷 contributions regarding phase 2 of Figure 21.

The MARTeSys𝑅𝑒𝑞𝐷 methodology presents in detail a modelling methodology for
RTES applications. The proposed methodology employs the SysML and MARTE profiles
as the predominant languages and the SPES guidelines to support the viewpoints defini-
tion and their refinements. Thus, software designers and developers can consistently and
unambiguously capture, analyze and specify software components and, while generating
different views concerning the proposed system.

This chapter details the some contributions of this thesis already detailed in [94],
[95] and [96]. Therefore, it defines distinctive strategies for modelling RTES constraints,
which are imposed on different views, and describe how to annotate and refine these
constraints throughout the architectural definition. Moreover, this thesis contributes
with strategies to describe non-functional requirements, in order to analyze and make
these these comprehensible to the stakeholders involved, since these can check necessary
information by looking at different architectural viewpoints. In addition, as presented
in [97], a manageable and consistent representation of these requirements contribute to
their trace along the architectural design.

107

Chapter5
Formalization of MARTeSys𝑅𝑒𝑞𝐷

This chapter complements the overall descriptions and foundations of the MARTe-
Sys𝑅𝑒𝑞𝐷 methodology. It provides a formalization of the proposed methodology, through
algorithm specifications for design activities, and defines a group of guidelines to be
adopted into the RTES domain.

5.1 Formalization of the Design Decision of Archi-
tectural Viewpoints

MARTeSys𝑅𝑒𝑞𝐷 proposes a methodology for the designing of RTES considering dif-
ferent abstraction levels of architectural design and description, analysis and evaluation
of non-functional concerns. A group of algorithms is developed in order to describe the
general design decisions of the MARTeSys𝑅𝑒𝑞𝐷 methodology. These algorithms adopt
formal rules to employ MARTeSys𝑅𝑒𝑞𝐷 into RTES development.

The algorithmic formalism provides a consistent and restricted guide for the design
of RTES over different viewpoints. while considering the description of non-functional
properties. Figure 23 summarizes the proposed formalization and its contributions.

Figure 23 – Contributions of the Proposed Formalization.

108 Chapter 5. Formalization of MARTeSys𝑅𝑒𝑞𝐷

As depicted in Figure 23, formalization of the design decisions intends to contribute to:
Reachability of Models, Partial Asymptotic Analysis, and System Complexity Estima-
tion. Pseudo-code is adopted to write all activities of the MARTeSys𝑅𝑒𝑞𝐷 methodology.
It provides an unambiguous manner to follow a group of tasks/activities that must be
performed for each specific viewpoint. Therefore, this strategy plays a role in the De-
velopment of Architectural Viewpoints Artefacts and this is reached by following
the formalized design decisions. The formal instructions are mainly represented by se-
quential, parallel, conditional or repetitive actions. These algorithms aim at providinf a
consistent set of guidelines to design RTES regarding the proposed design decisions. This
strategy presents a systematic manner to apply, understand and adopt the methodology
in order to develop the system artefacts over architectural viewpoints.

Reachability of Models and its states can be achieved through analyzing the
adoption of formal algorithms. This formalization allows one to reach and design the
global system models, which are first presented in the Requirements viewpoint, and then
modeled further and refined in the Functional, Logical and Technical viewpoints. From
this, , it is expected that out of the formalized design decisions a full system specification
can be achieved. The models/state reachability may provide design artifacts from the
Requirements viewpoints towards the Technical Viewpoints models.

Different algorithms are proposed to formalize design strategies to the RTES design
of the MARTeSys𝑅𝑒𝑞𝐷 methodology. Within these algorithms, complexity analysis from
Big 𝑂 notation [180] is considered in order to express an effort measurement of the design
activities. Therefore, a Partial Asymptotic Analysis is performed in order to provide
an examination of design algorithms at each viewpoint. However, results of a complexity
analysis cannot estimate human interactions. As a matter of fact, only a “partial” analysis
is considered. Major details regarding user perspective, influence of human interactions
in the software development and engineering can be found in [173], [181], [182].

Finally, the global System Complexity Estimation aims at providing overall esti-
mations to the system development. Based on the proposed measurements, it is possible
to provide a global cost function when using the MARTeSys𝑅𝑒𝑞𝐷 methodology, in RTES
development, considering the worst-case scenario to the number of design artefacts.

The proposed formalism is helpful to RTES design, as it standardizes its architectural
descriptions and provides a formal manner to measure the activities of design. This
strategy can contribute with cost prediction measurements of system development (as
analyzed in Section 5.3.1), and to analysis and estimations of the maximal number of
artefacts of one viewpoint (as analyzed in Section 5.3.2). The algorithms proposed for the
Requirements, Functional, Logical and Technical viewpoint provide a formal background
for applying to MARTeSys𝑅𝑒𝑞𝐷 methodology in order to be manually followed and applied
by engineers in RTES design and development.

5.2. Algorithms to Describe the Architectural Viewpoint 109

5.2 Algorithms to Describe the Architectural View-
point

A set of elements is defined in order to allow formalization of architectural design
components. The input sets for the architectural formalization are:

o 𝑅 = set of system requirements; where 𝑟𝑖 ∈ 𝑅.

o 𝐶 = set of categories; where 𝑐𝑖 ∈ 𝐶.

o 𝑆𝑐 = set of system scenarios; where 𝑠𝑐𝑖 ∈ 𝑆𝑐.

o 𝐹𝑢𝑛𝑐𝐵𝑙𝑜𝑐𝑘 = set of functional blocks; where 𝑓𝑢𝑛𝑐𝐵𝑙𝑜𝑐𝑘𝑖 ∈ 𝐹𝑢𝑛𝑐𝐵𝑙𝑜𝑐𝑘.

o 𝑑𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠 = set of directed edges; where 𝑖𝑛𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠𝑖 ⊂ 𝑑𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠 and
𝑒𝑥𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠𝑖 ⊂ 𝑑𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠.

o 𝑚𝐵𝐷𝐷 = matrix of functional blocks (𝐹𝑢𝑛𝑐𝐵𝑙𝑜𝑐𝑘), from BDD, where each block
𝑚𝐵𝐷𝐷𝑖,𝑗 has an input/output edge with the 𝑖𝑛𝑡𝑑𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠𝑖.

o 𝑚𝐼𝐵𝐷 = matrix of internal blocks, from IBD, which models/refines the proposed
BDD. Thus, |𝑚𝐵𝐷𝐷| = |𝑚𝐼𝐵𝐷|, where each block 𝑚𝐼𝐵𝐷𝑖,𝑗 has an input/out-
put relationship with the 𝑑𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠. This relationship can be an internal edge
association or a flow port association.

o 𝑆 = set of signals (𝑖𝑛𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠 (internal signals) ∪ 𝑒𝑥𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠 (external
signals)) from the Functional viewpoint.

o 𝐿𝑜𝑔𝐵𝑙𝑜𝑐𝑘 = set of logical blocks from the Logical viewpoint mapping; where
𝑙𝑜𝑔𝐵𝑙𝑜𝑐𝑘𝑖 ∈ 𝐿𝑜𝑔𝐵𝑙𝑜𝑐𝑘.

o 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐿𝑖𝑠𝑡 = set of activities of the Activity diagram from the Logical viewpoint;
where 𝑎𝑐𝑖 ∈ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐿𝑖𝑠𝑡.

o 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑖𝑔𝐿𝑖𝑠𝑡 = set of internal associations/signals of the Activity diagram from
the Logical viewpoint.

o 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑙 = set of external associations/signals of the Activity diagram from
the Logical viewpoint.

o 𝑐𝑜𝑛𝑠𝑡𝐷𝑒𝑡𝑎𝑖𝑙𝑀𝑎𝑡𝑟𝑖𝑥 = it is a bi-dimensional matrix to store one activity, from the
Logical viewpoint, and its respective MARTE profile constraints.

o 𝐿𝑖𝑠𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠_𝐼𝑁_𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 = set of activities of the Technical viewpoint. This
is a container to store activities related to software components.

110 Chapter 5. Formalization of MARTeSys𝑅𝑒𝑞𝐷

o 𝐿𝑖𝑠𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠_𝐼𝑁_𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = set of activities of the Technical viewpoint. This
is a container to store activities related to hardware components.

This formalism allows a concrete manner to reference individual elements of the Re-
quirements, Functional, Logical and Technical viewpoints. Therefore, it enables to for-
mally model a graphical component of SysML/MARTE, as well as representing this
component in the proposed algorithms.

5.2.1 Formalization of Requirements Viewpoint Decisions

Requirements viewpoint is composed of the activities related to RE system. As pre-
sented in Chapter 4, the MARTeSys𝑅𝑒𝑞𝐷 methodology proposes five global activities to
describe, specify and analyze requirements of RTES. These activities are named as Re-
quirements Pre-Analysis, High-Level Description of Requirements, Composition of Mo-
dels using the MARTE Profile, Formal Specification with VSL and Analysis of Require-
ments. The artefacts from the Requirements viewpoint are structured at different abs-
traction levels and each level has its own formal description. This description provides a
high level of details, that is, for each design decision there is a standard instruction for
its adoption.

Initially the system requirements, which were already specified, are refined in the
Requirements Pre-Analysis activity. In this case, each 𝑟𝑖 ∈ 𝑅 must be checked in order
to improve its description and provide details related to its non-functional concerns.
Algorithm 5.1 describes a formalization to the Requirements Pre-Analysis stage.

Algorithm 5.1 Pre-Analysis - Algorithm to refine the Requirements Specification

1 {
2 1 numberOfRequirements = |R| ;
3 1 ReqTable = matrix [numberOfRequirements] [4] ;
4 𝑛 for (j= 0; j < numberOfRequirements ; j++){
5 𝑛 ReqTable[j] [0] = rewritten r [j] in accordance with pr ior i ty key−words
6 − }
7 𝑛 for (j= 0; i < numberofRequirements ; j++) {
8 𝑛 i f (ReqTable[j] [1] i s a Functional Requirement) {
9 𝐴≤𝑛 ReqTable[j] [1] = Functional ;

10 − }else{
11 𝑛 − 𝐴 ReqTable[j] [1] = Non−functional ;
12 − }
13
14 𝑛 switch (RFN−Type){
15 case Re l iab i l i ty : ReqTable[j][2]= Receive one of r e l i ab i l i t y subtypes ;
16 case Timing : ReqTable[j][2]= Receive one of subtypes of the timing (time) features ;
17 case Precision : ReqTable[j][2]= Receive one of subtypes of the precision (time)

features ; ;
18 case Performance : ReqTable[j][2]= Receive one of performance subtypes ;
19 case Safety : ReqTable[j][2]= Receive one of safety subtypes ;
20 case Distr ibution : ReqTable[j][2]= Receive one of distr ibut ion subtypes ;
21 case Interoperabi l i ty : ReqTable[j][2]= Receive one of interoperabi l i ty subtypes ;

5.2. Algorithms to Describe the Architectural Viewpoint 111

22 case Embedded: ReqTable[j][2]= Receive one of embedded subtypes ;
23 case Resource Ut i l i zat ion : ReqTable[j][2]= Receive one of resource ut i l i za t ion

subtypes ;
24 case Security : ReqTable[j][2]= Receive one of security subtypes ;
25 case Concurrency : ReqTable[j][2]= Receive one of concurrency subtypes ;
26 case F lex ib i l i t y : ReqTable[j][2]= Receive one of f l e x i b i l i t y subtypes ;
27 case Maintainabil ity : ReqTable[j][2]= Receive one of maintainability subtypes ;
28 case Usabil i ty : ReqTable[j][2]= Receive one of usabi l i ty subtypes ;
29 case Deadlock : ReqTable[j][2]= Receive one of deadlock subtypes ;
30 case default : ReqTable[j][2]= undefined ;
31 }
32 𝑛 switch (Package−Type){
33 case CoreElements : ReqTable[j][3]= CoreElements ;
34 case NFP: ReqTable[j][3]= NFP;
35 case Time: ReqTable[j] [3] = Time;
36 case GRM: ReqTable[j] [3] = GRM;
37 case GCM: ReqTable[j] [3] = GCM;
38 case HLAM: ReqTable[j] [3] = HLAM;
39 case HRM: ReqTable[j] [3] = HRM;
40 case SRM: ReqTable[j] [3] = SRM;
41 }
42 }
43 }

The first group of instructions for Algorithm 5.1 guides refinements of the requirements
specification document. Requirements already written in natural language are analyzed to
check possible ambiguities. These requirements can also be refined by standard and mea-
ningful keywords to improve their declaration. These keywords are explained in Chapter
4 along with the High-Level Description of Requirements view. Moreover, one notes that
the three last columns of 𝑅𝑒𝑞𝑇𝑎𝑏𝑙𝑒 are respectively related with the requirements type
(classified as functional/non-functional), the specific non-functional type (it follows
the guidelines of Chapter 3) and with the MARTE package of each 𝑟𝑖. This refine-
ment contributes to standardize the design decisions of the requirements specification. In
addition, it provides the background to future viewpoints definition.

As elucidated in Chapter 4, in addition of the Requirements Pre-Analysis activity
(formalized in Algorithm 5.1), the Requirements viewpoint has four other refinements.
Annex B, Section B.1, details the proposed formalization to the High-Level Description of
Requirements (Algorithms B.1, B.2 and B.3), Composition of Models using the MARTE
Profile and Formal Specification with VSL (Algorithm B.4) and Analysis of Requirements
(Proposed Grammar to the NL-TA Transformation).

5.2.2 Formalization of Functional Viewpoint Decisions

Functional viewpoint is responsible for refining the system requirements, in order to
describe structural and general organization of the system and its logical decomposi-
tion. In this viewpoint, the system behavior, the details of the system services and the
user functions interaction are explained. Furthermore, the Functional viewpoint aims to

112 Chapter 5. Formalization of MARTeSys𝑅𝑒𝑞𝐷

provide a rational representation of system services based on structural components.
The MARTeSys𝑅𝑒𝑞𝐷 methodology proposes three refinements to the Functional view-

point. The first refinement is represented by Algorithms 5.2 and 5.3, Algorithm B.5
describes the second refinement and, finally, Algorithm B.6 depicts the third refinement.
Algorithm B.6 details how to annotate MARTE constraints in functional models. These
algorithms provide standard guidelines to model/describe a system function at a specific
hierarchy level of abstraction. Therefore, the proposed algorithms are able to provide the
background and the overall steps to setup the Functional viewpoint.

On the first level of the Functional viewpoint (first refinement) a group of rational de-
cisions in the design is performed. These design decisions are important in this activity,
for the architectural viewpoint, as these are supposed to transform the models of Re-
quirements viewpoint into models of the Functional viewpoint. However, before starting
out with formalization of design decisions, one should consider rationalizing the mapping
between the Requirements viewpoint (last model) and the Functional viewpoint (first
model). Therefore, it applies the scenarios from the categorization process (Algorithm
B.1) and the Use Case diagram (Algorithm B.2), formalized in the activity of High-Level
Description of Requirements, to provide the main system services.

The following three steps show formalization for viewpoints mapping and the per-
formed design decisions:

o Step 1: From the Requirements viewpoint, models for an overall view of the sys-
tem services, in Functional viewpoint, are is created. It is possible to map, in a
1x1 relation, each use case component to blocks of services. Initially, the num-
ber of scenarios must be known in order to define the number of structural blocks
(𝑛𝑢𝑚𝑏𝑒𝑟𝐹𝑢𝑛𝑐𝐵𝑙𝑜𝑐). This number is represented by the set of system scenarios
(Sc).

o Step 2: Algorithm 5.2 presents the proposed formalism to trace the system sce-
narios (𝑠𝑐𝑖) to their respective functional blocks (𝑓𝑢𝑛𝑐𝐵𝑙𝑜𝑐𝑘𝑖).

Algorithm 5.2 First Refinement - Algorithm to create the system functional blocks from the
scenarios

1 {
2 1 numberOfScenarios = |Sc | ;
3 1 i f (numberOfScenarios > 0){
4 1 funcBlock [0] = functional input block ;
5 𝑠 − 2 for (i=1; i< numberOfScenarios ; i++){
6 𝑠 − 2 funcBlock [i] = sc [i] ;
7 − }
8 1 funcBlock [numberOfScenarios] = functional output block ;
9 − }

10
11 }

5.2. Algorithms to Describe the Architectural Viewpoint 113

Algorithm 5.2 defines three important steps to guide the design of the Block Diagram
from the scenarios of the Requirements viewpoint. Line 3 shows the creation of a prede-
fined input block, lines 4−6 create one functional block for each system scenario and line
7 produces a predefined output block. The two blocks defined in lines 3 and 7 must be
created to represent the I/O interface. These blocks represent the possible interactions
or communication of the system.

o Step 3: Algorithm 5.2 provides the structural components of the Block Definition
diagram. However, in this first refinement, it is necessary to consider the relation-
ships between functional blocks. Therefore, links between these blocks should be
modeled. Algorithm 5.3 formalizes relationships between blocks, and it shows how
exchanged signals can be represented in a high level of abstraction.

Algorithm 5.3 First Refinement - Algorithm to create the block associations of the Block
Definition diagram

1 {
2 1 internalS = | intDirectEdges | ;
3 1 numberFuncBloc = |FuncBlock | ;
4 1 mBDD = matrix [numberFuncBloc] [2] ;
5 1 intSig [internalS] = vetor with internal signals ;
6 𝑛𝑖 for (i=0; i <= internalS ; i++){
7 𝑛𝑖 *𝑛𝑏 for (j= 0; j <=numberFuncBloc; j++){
8 𝑛𝑖 *𝑛𝑏 i f (intSig [i] i s output of funcBlock [j]){
9 𝐴≤𝑛𝑖 *𝑛𝑏 mBDD[i][0] = funcBlock [j] ;

10 𝐴≤𝑛𝑖 *𝑛𝑏 break ;
11 − }
12 − }
13 𝑛𝑖 *𝑛𝑏 for (j= 0; j <=numberFuncBloc; j++) {
14 𝑛𝑖 *𝑛𝑏 i f (intSig [i] i s input of funcBlock [j]){
15 𝐵≤𝑛𝑖 *𝑛𝑏 mBDD[i][1] = f [j] ;
16 𝐵≤𝑛𝑖 *𝑛𝑏 break ;
17 − }
18 − }
19 𝑛𝑖 i f ((mBDD[i][0] <> empty) and (mBDD[i][1] <> empty)) {
20 𝐶≤𝑛𝑖 create an association from mBDD[i][0] to mBDD[i] [1] ;
21 − }
22 − }
23 }

Algorithm 5.3 checks correlated blocks and also shows how to create their internal
relationships. Two blocks are combined into a single block, if they have an association
between each other. The 𝑚𝐵𝐷𝐷 matrix stores, in the first column, the output block
for a signal 𝑖𝑛𝑡𝐷𝑖𝑟𝑒𝑐𝐸𝑑𝑔𝑒𝑠𝑖 and, in the second column, the input block for a signal
𝑖𝑛𝑡𝐷𝑖𝑟𝑒𝑐𝑡𝐸𝑑𝑔𝑒𝑠𝑖. Vector 𝑖𝑛𝑡𝑆𝑖𝑔[𝑖] contains the internal directed edges of Functional
blocks. Then, the main task of this algorithm is to associate the components of 𝑚𝐵𝐷𝐷

matrix to the 𝑖𝑛𝑡𝐷𝑖𝑟𝑒𝑐𝐸𝑑𝑔𝑒𝑠𝑖 elements. This formalization shows the design of the
functional blocks through MARTeSys𝑅𝑒𝑞𝐷.

114 Chapter 5. Formalization of MARTeSys𝑅𝑒𝑞𝐷

In Algorithm 5.3, for each directed edge or internal signal there is only one specific
label/representation. It means that if an 𝑖𝑛𝑡𝐷𝑖𝑟𝑒𝑐𝐸𝑑𝑔𝑒𝑠𝑖 is input or output of a block
it can not be related with another block. The instruction “Break”, lines 10 and 16,
indicates that a specific internal signal relates exclusively to one internal port or flow
port. In addition, each internal signal is interactively checked in order to find the output
and input blocks that are linked to 𝑖𝑛𝑡𝐷𝑖𝑟𝑒𝑐𝐸𝑑𝑔𝑒𝑠𝑖. Thus, lines 7 − 11 formalize the
discovery of the output blocks that are related to an internal signal. Lines 13 − 18
show the input block to an 𝑖𝑛𝑡𝐷𝑖𝑟𝑒𝑐𝐸𝑑𝑔𝑒𝑠𝑖. Finally, lines 19 − 21 represent the internal
communications between the functional blocks. Annex B, Section B.2, clarifies the second
and third refinements of the Functional viewpoint.

5.2.3 Formalization of Logical Viewpoint Decisions

The Logical viewpoint aims at decomposing into a high granularity architecture the
blocks of logical components in order to detail the system functions of the logical compo-
nents. Algorithm B.7, presented in Annex B, Section B.3, maps Functional and Logical
viewpoints. This formalization aim to show how a functional block should be replicated
without modification, in the Logical viewpoint. The first models of the Logical viewpoint
are designed based on the artifacts that result from this mapping.

The SysML Activity Diagram is applied to the three refinements of this viewpoint.
Although the Activity diagram has been widely adopted, in this viewpoint, it is important
to highlight that different views, with high and low granularity information, are described
here. Moreover, it allows for annotations of timing and communication criteria to the
system activities and their interactions. Therefore, the MARTE profile stereotypes have
been adopted in the second and third refinement of the Logical viewpoint models, in
order to describe non-functional properties in the behavioral models.

Algorithm 5.4 formalizes the first refinement of the Logical viewpoint. The proposed
refinements adopts the SysML Activity diagram at different abstraction levels in order
to provide a behavioral perspective for each logical block. Algorithm 5.4 guides the
proposal of a group of atomic activities to represent input of the logical block, output
logical block and features logical blocks. The last block is related to the main system
functions/services.

Algorithm 5.4 Logical viewpoint - This algorithm contains the steps to the design of the Logical
viewpoint models

1 {
2 1 externalSigList = l i s t of external signals ;
3 1 act iv i tyL is t = l i s t of act iv i t ies ;
4 1 internalSigList = l i s t of internal signals ;
5 1 numberLogBloc = | LogBlock | ;
6 1 actI = l i s t of elements from the Logical Input Block ;
7 1 actO = l i s t of elements from the Logical Output Block ;

5.2. Algorithms to Describe the Architectural Viewpoint 115

8 1 actGen = l i s t of elements from Feature Blocks ;
9 𝑛𝑏 for (i = 0; i < numberLogBlocks ; i ++) {

10 𝑛𝑏 i f (logBloc [i] == ’ input Logical Block ’){
11 𝐴≤𝑛𝑏 actI = LogicalViewpoint_Input ;
12 − }else{
13 𝑛𝑏−𝐴 i f (logBloc [i] == ’output Logical Block ’){
14 𝐵≤𝑛𝑏−𝐴 actO = LogicalViewpoint_Output ;
15 − }else
16 𝐶 − 𝑛𝑏−𝐴 actGen = LogicalViewpoint_FeatureBlocks ;
17 − }
18 − }
19 }

As it can be observed in Algorithm 5.4, there is a “call” to other algorithms from the
Logical viewpoint. The Annex B, Section B.4, explains the Algorithm B.8 (input logical
blocks), Algorithm B.9(output logical blocks) and Algorithm B.10 (feature blocks) which
formalizes the steps to design the Logical viewpoint.

5.2.4 Formalization of the Technical Viewpoint Decisions

Artefacts of the Technical viewpoint are related to the final system implementation
and these should ensure that the design decisions are in accordance with logical viewpoint
assumptions and with logical and physical system constraints. The Technical viewpoint
refines the logical viewpoint models and splits their elements into hardware and soft-
ware components. Besides, this viewpoint illustrates interactions between software and
hardware components.

This viewpoint refines previous Activity diagrams of the input logical block, features
logical blocks and the output logical block. Formalization of technical models aims to
describe, at a high level of granularity, how the software and the hardware components
should be developed. Algorithm 5.5 presents formalization of design decisions of the
Technical viewpoint.

Algorithm 5.5 Technical Viewpoint - Algorithm to define the Technical viewpoint of the system

1 {
2 𝑛𝑎 for (i = 0; i < | act iv i tyL is t | ; i++){
3 𝑛𝑎 i f (act iv i ty MUST be performed in a Software component){
4 𝐴≤𝑛𝑎 store act iv i ty in ListActivit ies_IN_Software ;
5 − }else{
6 𝑛𝑎−𝐴 store act iv i ty in ListActivities_IN_Hardware ;
7 − }
8 − }
9 𝐴 for (i = 0; i < | ListActivit ies_IN_Software | ; i++){

10 𝐴 create (restore) the associations of this act iv i ty ;
11 𝐴 i f (act iv i ty needs an internalSignal){
12 𝐵≤𝐴 create (restore) the internalSignal of this act iv i ty ;
13 − }
14 𝐴 i f (act iv i ty needs an externalSignal){
15 𝐵≤𝐴 create (restore) the externalSignal of this act iv i ty ;
16 − }

116 Chapter 5. Formalization of MARTeSys𝑅𝑒𝑞𝐷

17 − }
18 𝑛𝑎−𝐴 for (i=0; i < | ListActivities_IN_Hardware | ; i++){
19 𝑛𝑎−𝐴 create (restore) the associations of this act iv i ty ;
20 𝑛𝑎−𝐴 i f (act iv i ty needs an internalSignal){
21 𝐶≤𝑛𝑎−𝐴 create (restore) the internalSignal of this act iv i ty ;
22 − }
23 𝑛𝑎−𝐴 i f (act iv i ty needs an externalSignal){
24 𝐶≤𝑛𝑎−𝐴 create (restore) the externalSignal of this act iv i ty ;
25 − }
26 − }
27 }

The main objective of Algorithm 5.5 is to fulfill the list of activities that are per-
formed by software and by hardware. Thus, ListActivities_IN_Software is a container
to store the functions related to software components. On the other hand, ListActivi-
ties_IN_Hardware describes a container to store the functions pertaining to hardware
components.

Lines 1 − 16, of Algorithm 5.5, formalize the design steps to subdivide a group of
activities, which comes from the Logical viewpoint, into software and hardware groups.
Moreover, the clustered activities must keep their internal and external signals. These
signals are already defined in 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑖𝑔𝐿𝑖𝑠𝑡 and in 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑖𝑔𝐿𝑖𝑠𝑡 structures. It is
important to mention that associations between these software/hardware activities and
the signals were defined in the Logical viewpoint. Therefore, lines 8−16 formalize how to
restore the signals of the activities performed in the software. In addition, lines 17 − 25
formalize how to restore the signals of the activities performed in hardware.

The second refinement of the Technical viewpoint applies MARTE profile stereotypes
to refine the external signals of one hardware/software component. Thus, concepts of
SRM and HRM packages are applied to refine digital and analog inputs/signals of the
system. Since the logical reasoning to annotate these stereotypes is similar to Algorithm
B.4 the formalization of this refinement is not presented herein.

Technical viewpoint models are inputs to describe Global Architectural Model and
MUD. The Global Architectural Model provides a general view of the software compo-
nents of the system. In this case, each swimlane with ListActivities_IN_Software re-
presents one atomic software component/block. This global model presents the software
components of the Technical models in a system view and it highlights their interfaces.
Furthermore, the implementation view of the software components can be explored and
detailed in MUD. Both models are important to go from architectural design to sys-
tem realization. The case study proposed in Chapter 6 provides an example of Global
Architectural Model and MUD, in the context of the MARTeSys𝑅𝑒𝑞𝐷 methodology.

5.3. A Strategy to Analyze the Architectural Viewpoints in RTES Development 117

5.3 A Strategy to Analyze the Architectural View-
points in RTES Development

The MARTeSys𝑅𝑒𝑞𝐷 methodology shows a strategy for the designing of architectural
viewpoints and formalize these at different degrees of granularity. From the proposed
formalization, several algorithms were defined to standardize the design decisions, while
allowing for cost evaluation and complexity analyses of design steps/decisions of the
MARTeSys𝑅𝑒𝑞𝐷 methodology. In this section, a partial complexity analysis of the design
steps for RTES development is presented and, then, a global measurement of the system
development complexity is also defined.

5.3.1 Partial Asymptotic Analysis of the MARTeSys𝑅𝑒𝑞𝐷 Design
Decisions

Section 5.2 presented one specific formalism for each refinement of the architectural
viewpoints. Pseudocode and conventional algorithms are applied to write the design
decisions of the MARTeSys𝑅𝑒𝑞𝐷 methodology in a formal manner. In addition to the
design formalization, all algorithms describe, on their left side, the related complexity of
each design step. Table 7 presents the cost function, in the worst-case of design decisions,
for all the proposed algorithms. Some of these Algorithms are placed in Annex B.

Viewpoint Algorithm Cost Functions Complexity

Requirements

Algorithm 5.1 n+n+n+n+A+n-A+16n+n+7n+2 = 28n O(𝑛)
Algorithm B.1 n+n+n*m+n*m+2A+n+2B+2C+2=

3n+2n*m+2
O(𝑛 * 𝑚)

Algorithm B.2 m+m+A+1= 2m+A+1 O(𝑚)
Algorithm B.3 n+n+n+n*n+n*n+A= 2𝑛2+3n+A O(𝑛

2)
Algorithm B.4 n+n+A+n+A= 3n+2A O(𝑛)

Functional

Algorithm 5.2 s-2+s-2+1+1= 2s-2 O(𝑠)
Algorithm 5.3 4𝑛𝑖*𝑛𝑏+2𝑛𝑖+2A+2B+C+4 O(𝑛𝑖*𝑛𝑏)
Algorithm B.5 4(𝑛𝑠 * 𝑛𝑖𝑏)+4𝑛𝑠+2A+2B+3C+2D+2E+4 O(𝑛𝑠*𝑛𝑖𝑏)
Algorithm B.6 3𝑛𝑏+A+B+1 O(𝑛𝑏)
Algorithm B.7 2𝑛𝑏*(𝑛𝑏-1)+5𝑛𝑏+2𝑛𝑙+2A+2B+2C+2D+E+4 O(𝑛𝑏

2)

Logical

Algorithm 5.4 2𝑛𝑏-A+C+7 O(𝑛𝑏).
Algorithm B.8 13𝑛𝑒-3A+2B-3D+2E O(𝑛𝑒)
Algorithm B.9 7𝑛𝑒+6𝑛𝑎+3A O(𝑛𝑖+𝑛𝑎)
Algorithm B.10 6𝑛𝑖+6𝑛𝑎+2B-3C+2E+F O(𝑛𝑖+𝑛𝑎)

Technical Algorithm 5.5 7𝑛𝑎-2A+2B+2C O(𝑛𝑎)

Table 7 – Algorithms and their Cost Functions
.

The variables shown on Table 7 represent the following artifacts: 𝑛 is the number
of requirements; 𝑚 is the number of categories; 𝑠 is the number of scenarios; 𝑛𝑠 is the
number of signals in the system; 𝑛𝑖 is the number of internal signals; 𝑛𝑒 is the number

118 Chapter 5. Formalization of MARTeSys𝑅𝑒𝑞𝐷

of external system signals; 𝑛𝑏 is the number of functional blocks; 𝑛𝑖𝑏 is the number of
internal blocks; 𝑛𝑙 is the number of logical blocks; 𝑛𝑎 is the number of logical activities.

Algorithms B.1 and B.3 (from the Requirements viewpoint), Algorithms 5.3 and B.5,
Algorithm B.7 (from the mapping between Functional viewpoint to Logical viewpoint),
Algorithm B.9 (from the Logical viewpoint) and Algorithm 5.5 (from the Technical view-
point) have the highest cost function of each viewpoint. Evaluation and analyses of their
complexities allow for a better understanding of the effort to apply the MARTeSys𝑅𝑒𝑞𝐷

methodology in the RTES development.
The formalism proposed for the architectural design at different abstraction levels

considers a group of specific design steps to create a RTES model. MARTeSys𝑅𝑒𝑞𝐷 does
not measure human related activities, especially those that involve creativity and human
reasoning, in the proposed complexity analysis. This process is related to the know-how
of engineers, personal human decisions, and the effective understanding of the system
domain and system services. Due to all of the above-mentioned reasons, it is not possible
to present the overall complexity analysis to the architectural viewpoint design described
in this research. Herein, it is considered a partial asymptotic analysis.

Within these algorithms, the cost function aims to measure the effort needed to “ex-
ecute” each set of instructions. Equation 6 shows the time complexity function 𝑓(𝑛),
which defines the time measurement that is required for a function 𝑔(𝑛). In other words,
𝑓(𝑛) is a function that represents the costs to execute a problem with its size 𝑛. In this
case, the complexity grows linearly as input size increases.

𝑔(𝑛) = 𝑂(𝑓(𝑛)) (6)

A function 𝑔(𝑛) is 𝑂(𝑓(𝑛)) if there are two positive constants 𝑐 and 𝑚 in which 𝑔(𝑛)
≤ 𝑐𝑓(𝑛) for all 𝑛 ≥ 𝑚. The equation 𝑇 (𝑛) = 𝑂(𝑓(𝑛)) represents the complexity time
𝑂(𝑓(𝑛)) for the 𝑔(𝑛) considering 𝑛 as input.

In the Requirements viewpoint, Algorithms B.1 and B.3 have, respectively, a cost
function of 𝑂(𝑛 * 𝑚) and 𝑂(𝑛2). Within these algorithms, 𝑛 represents the number of
system requirements and 𝑚 the number of categories in which the requirements should be
classified. By analyzing the possible complexity cost of the design decisions, of Algorithm
B.1, there are three possibilities for the cost function:

𝑛 * 𝑚

⎧⎪⎨⎪⎩
𝑛 < 𝑚 → 𝑂(𝑛 * 𝑚)
𝑛 = 𝑚 → 𝑂(𝑛2)
𝑛 > 𝑚 → 𝑥|𝑥 < 𝑂(𝑛2)

Considering worst-case for the design activities in Algorithm B.1, it is expected that
each specified requirement of the Requirements viewpoint defines a single category. In
this case, 𝑛 = 𝑚 and the complexity function has a quadratic order. It can be
assumed that no optimized design decisions have been performed once it is expected,

5.3. A Strategy to Analyze the Architectural Viewpoints in RTES Development 119

from the Requirements viewpoint, the specification of a cohesive and correlated group of
requirements.

Considering the scenario where 𝑛 < 𝑚, the complexity function has a polynomial
order. From a design perspective, if 𝑛 < 𝑚 it ispossible that one atomic requirement
is creating more than one category. However, the fact that the number of requirements
is smaller than the number of categories is also inappropriate togood design decisions.
Each requirement should be atomic, establish no dependents or be contained in different
categories (therefore, this case is not considered).

Finally, when 𝑛 > 𝑚, the complexity function is 𝑥 ≤ 𝑂(𝑛2). In this case, the number
of requirements is larger than the number of categories. Otherwise, all of the other designs
will be affected and several blocks/components will be created. The complexity function
is strictly smaller than 𝑂(𝑛2). It means that the design steps, in Algorithm B.1, are
polynomial and these are feasible, since the requirements systems are classified in less
categories. In the case of small 𝑛, it is possible to reduce the design complexity.

Algorithm B.3 has the highest complexity for the Requirements viewpoint. In this
case, design efforts relate directly to the number of requirements 𝑛. It is assumed that
each requirement is checked with 𝑛−1 other requirements in order to model relationships
between these. In the worst-case of the design decision, Algorithm B.3 is 𝑂(𝑛2). This
means that the number of relationships is larger than the number of requirements and each
requirement has a relationship between them. However, due to the previous refinements
of this viewpoint and considering the human expertise, it is assumed that this activity
can be performed in an intelligible manner. This statement comes from the fact that
different types of relationships from the adopted SysML diagram are known and the
proposed algorithm describes the main design steps to model this refinement.

In the Functional viewpoint, Algorithms 5.3 and B.5 have higher complexity. Their
complexities are O(𝑛𝑖*𝑛𝑏) and O(𝑛𝑠*𝑛𝑖𝑏). Here, variable 𝑛𝑖 describes the number of
internal signals, variable 𝑛𝑏 relates with the number of functional blocks, variable 𝑛𝑠

shows the number of global system signals and variable 𝑛𝑖𝑏 corresponds to the number of
internal blocks.

The complexity analysis of the Functional viewpoint considers the Algorithm B.5, as
it has the highest complexity for this viewpoint. In this case, 𝑛𝑖 ⊂ 𝑛𝑠 and, as explained
in Section 5.2.2, the functional blocks generate the internal blocks thus 𝑛𝑖𝑏 = 𝑛𝑏. One
can therefore consider two cases for the analysis of O(𝑛𝑠*𝑛𝑖𝑏):

𝑛𝑠 * 𝑛𝑖𝑏

{︃
𝑛𝑠 = 𝑛𝑖𝑏 → 𝑂(𝑛2

𝑠)
𝑛𝑠 > 𝑛𝑖𝑏 → 𝑂(𝑛2

𝑠)

If 𝑛𝑠 = 𝑛𝑖𝑏, then the out-degree and in-degree associations (item flow) are equal. It
means that the blocks can have only one association between each other. However, this
assumption is not realistic, since the Internal Block diagram allows for several item flows

120 Chapter 5. Formalization of MARTeSys𝑅𝑒𝑞𝐷

between each block. In the IDD, the number of associations and the effort to design them
relates to the interaction specificities of each RTES. In the case where 𝑛𝑠 > 𝑛𝑖𝑏, there
are more associations than the number of internal blocks. Therefore, it is necessary to
consider the worst-case for the design activities, in order that these remain consistent
with the other viewpoint analyses. Here, the assumption is reached that one internal
block has, at least, one association with all the other blocks. From this assumption, it is
possible to measure the complexity effort of a complete graph: 𝑛𝑠 * (𝑛𝑠 − 1)/2. Then, the
Functional viewpoint has a 𝑂(𝑛2

𝑠) complexity.
Algorithm B.3 formalizes the design decisions to map the Functional and Logical

viewpoints and it has an O(𝑛𝑏
2) complexity. The analyses presented reflect the main

idea of the design step, as each functional block must be evaluated/compared against the
other functional blocks. This analysis aims at refining and mapping functional blocks
into logical blocks through a 𝐹 X 𝐿 relationship, where 𝐿 ≤ 𝐹 .

Logical viewpoint algorithms present a linear complexity order and Algorithm 5.4
has the highest complexity for this viewpoint. The complexity of Algorithm 5.4 is O(𝑛𝑖

+ 𝑛𝑎) and this value describes the linear sum of internal signals and logical activities.
Regarding the Technical viewpoint, Algorithm 5.5 has complexity 𝑇 (𝑛) = O(7𝑛𝑎-
2A+2B+2C). In this case, it should consider 𝑇 (𝑛) = O(𝑛𝑎), since 𝑛𝑎 represents the
number of activities from the activity list. In this context, 𝐴 describes the number of
activities which are related to a software component, where 𝑛𝑎−𝐴 shows the activities
that are related to a hardware component.

As analyzed in Algorithms of the Logical and Technical viewpoint (see Table 7), the
complexity function has a linear order. Here, the design cost is linearly proportional to
the input set. Algorithm B.8, for example, assumes that the maximal number of activities
(of 𝑛𝑎) for each external signal is equal to 𝑛𝑒.

The complexity analyses performed in this thesis is not a common asymptotic ana-
lysis. It derives from the fact that the proposed formalization cannot consider human
activities. These activities are strongly correlated with the creativity and knowledge
level of engineers in the application of engineering processes. However, even this partial
asymptotic analysis is helpful to RTES design, as it provides an initial cost and efforts
estimation in the adoption of the MARTeSys𝑅𝑒𝑞𝐷 methodology. Through considering
the worst-case scenario for this kind of complexity analysis means that the worst design
decisions for system design were considered, from the outset of the first requirements
engineering activity. As an example, it can be stated that each system requirement
(explained in Section 5.2.1) creates a single category (see Algorithm B.1) and from this
unusual design decision, the next viewpoints of the architectural design can be affected.
As another example, one can possible to consider that each requirement category is
composed of one single and atomic requirement. This non-usual design decision impacts
on the design of functional blocks, as each category setups an atomic functional block.

5.3. A Strategy to Analyze the Architectural Viewpoints in RTES Development 121

Consequently, each functional block generates one logical block, and so on. Thus, when
the worst-case scenario of design decisions occurs, as of the Requirements viewpoint, it
reflects across the overall architectural viewpoints.

It is understoo and expected that human interaction will to improve the design deci-
sions, as humans are able to think and use their expertise. Then, even in the worst-case to
adopt the proposed methodology, for architectural viewpoints, the complexity is strictly
smaller 𝑥|𝑥 < 𝑂(𝑛2), in the Requirements viewpoint, and 𝑂(𝑛2

𝑠) in the Functional view-
point. The author concludes that with the human adoption of the formalized architectural
steps the execution of the worst-case can be avoided.

5.3.2 System Complexity Prediction of Architectural Viewpoint
Design

Analysis of system complexity aims at providing a cost prediction for every viewpoint
of the RTES design. This analysis seeks to measure how difficult it is to specify, design
and reach the system services from the Requirements viewpoint, passing through the
Functional and the Logical viewpoints, to the Technical viewpoint.

Figure 24 shows the functions 𝑟(𝑛), 𝑓(𝑛), 𝑙(𝑛) and 𝑡(𝑛), which are related to the
architectural viewpoints defined in this research. These functions express through their
values the maximum cost function for the number of design artefacts, in the worst-analysis
case for each architectural viewpoint.

Figure 24 – Viewpoints of Real-Time and Embedded Design and their Complexity Func-
tion.

Requirements viewpoint is dealing with the global systems requirements description.
Function 7 formalizes the maximum number of elements for this viewpoint.

𝑟(𝑛) =
𝑛∑︁

𝑖=1

𝑟𝑖 (7)

Function 7 describes that 𝑟(𝑛) is a set of requirements where 𝑛 = |𝑅| and 𝑖 ∈ N. From
the set of system requirements 𝑟(𝑛), the requirements categories are defined. Thereby, the
overall requirements should be clustered in 𝑚 categories. Definition of these categories

122 Chapter 5. Formalization of MARTeSys𝑅𝑒𝑞𝐷

is pertinent, in the proposed methodology, since they influence in the definition of the
Use Case and of the forthcoming Functional viewpoint. Function 8 defines formally a
category of requirements and Function 9 the group of system scenarios. Function 9 is
adopted to perform the cost measurements of subsequent viewpoints.

𝑐(𝑚) = {𝑟𝑖|∀𝑟𝑖 ∈ 𝑅 : ∃𝑐𝑗 where 𝑟𝑖 is cohesive with 𝑐𝑗} (8)

In the worst-case, every requirement 𝑟𝑖 is a unique and an atomic category (𝑐𝑗), where
𝑖, 𝑗 ∈ N and |𝐶| = |𝑅|. Consequently, the number of scenarios must also be |𝑆𝑐| = |𝑅|,
since the scenarios, in this methodology, are derived from the system categories.

𝑠𝑐(𝑚) = {𝑠𝑐𝑖|∀𝑐𝑖 ∈ 𝐶 : ∃𝑠𝑐𝑗 ∈ 𝑆𝐶} (9)

The Functional viewpoint provides the functional blocks of the system. In this design,
for the worst-case analysis, the number of blocks is equal to the number of requirements.
Moreover, in this viewpoint, it is necessary to model the possible relationships/associa-
tions between these blocks. Function 10 shows that each functional block 𝑓𝑢𝑛𝑐𝐵𝑙𝑜𝑐𝑘𝑖 is
(refines) an element 𝑐𝑖 of 𝐶. In this function, 𝑛𝑏 corresponds to the number of functional
blocks and 𝑖, 𝑗 ∈ N. In addition, this function measures the number of internal signals
(ports) and the number of external signals (flowports). In the worst-case scenario, these
communication ports are designed by the channel of a block 𝑓𝑢𝑛𝑐𝐵𝑙𝑜𝑐𝑘𝑗 with all other
blocks. Moreover, this analysis assumes that all blocks are communicating with each
other. Then, it is abstracted that a complete graph with 𝑛𝑏 vertices can describe the
associations of the block. In this case, each vertex is a functional block.

As previously introduced, the edges between a functional block are channels of com-
munication. It is assumed that 𝑛𝑖 edges (𝑛𝑖 > 0) can be internally modeled in a channel
(𝑐ℎ). These internal edges define input/output signals (associations) of the system (Block
Definition diagram).

𝑓(𝑛) =
𝐶∑︁

𝑗=1

𝑐𝑗 + 𝑐ℎ𝑗 + 𝑒𝑆 =
𝐶∑︁

𝑗=1

𝑐𝑗 + 𝑛𝑏(𝑛𝑏 − 1)/2 + 𝑒𝑆 (10)

Function 10 presumes the worst-case scenario related to the number of functional
components. In this analysis, 𝑐𝑗 defines the number of blocks which are, in the worst-
case, equal to the number of categories, where 0 < 𝑗 ≤ |𝐶|. Keeping in mind Functions 7
and 8, in the worst-case, |𝐶| = maximum number of requirements. Here, each 𝑟𝑖 defines
one atomic category. Therefore, |𝐶| = |𝑅|.

Moreover, the maximum number of associations or internal signals is measured by
the complete graph function. The amount of associations between two blocks cannot be
predicted, since it relates to human design decisions. Consideration has been given to the
possibility that functional blocks are fully connected with each other. Therefore, there

5.3. A Strategy to Analyze the Architectural Viewpoints in RTES Development 123

is at least one association, known here as internal signals, between each block. On the
other hand, the internal signals (𝑛𝑖) between each block are abstracted by the channel 𝑐ℎ,
which defines an abstraction of multiple connections. Finally, 𝑒𝑆 formalizes the external
communications of functional blocks.

Function 11 formalizes the maximal number of artefacts to the Logical viewpoint,
where 𝑛𝑙 = |𝐿𝑜𝑔𝐵𝑙𝑜𝑐𝑘| and 𝑖 ∈ N. These artefacts represent the logical blocks of the
system. It is important to highlight that the internal design of a logical block is not
measured in Function 11. In this Logical viewpoint description, the internal design of
each artefact (logical block) is performed by humans, which means that behavioral system
design, for each logical block, and its interactions and sub-activities are not considered
in Function 11. The proposed function shows that the Logical viewpoint is composed of
the sum of each logical block 𝑙𝑖.

𝑙(𝑛) =
𝑛𝑙∑︁

𝑖=1

𝑙𝑖 (11)

The Technical viewpoint refines artefacts from the Logical viewpoint. In the MARTe-
Sys𝑅𝑒𝑞𝐷, each logical block is divided into 𝑆 swimlanes. Besides, activities modeled by
engineers are split into groups that represent the swimlanes. Function 12 formalizes the
set of technical blocks of the Technical viewpoint in order to count its artefacts. In this
function, 𝑠𝑖 describes each hardware or software block of the Technical viewpoint. In this
case, they are represented in different 𝑠𝑖 lanes, where 𝑖 ∈ N. It means that each technical
block is composed of a number 𝑆 ≤ 𝑎 swimlanes. Moreover, the Function 12 shows that
for each 𝑙𝑖 element there is one 𝑠𝑗 swimlane, where these elements must be linked.

|𝑇𝐵| = {𝑙𝑖|∀𝑙𝑖 ∈ 𝑛𝑙 : ∃𝑠𝑗 ∈ 𝑆 where 0 < 𝑗 ≤ 𝑎} (12)

Finally, Function 13 represents the 𝑡(𝑛) cost function for the Technical viewpoint.

𝑡(𝑛) =
𝑛𝑙∑︁

𝑖=1

𝑆∑︁
𝑗=1

𝑠𝑗,𝑖 =
𝑛𝑙∑︁

𝑖=1

𝑇𝐵𝑖
(13)

In Function 13, for each 𝑛𝑙 logical block a set of 𝑠𝑖 swimlanes can be created in the
Technical viewpoint in order to represent different hardware and software components
where the activities can be allocated. Variables 𝑖 and 𝑗 ∈ N describe the number of
logical blocks and the possible number of swimlanes.

Finally, from the composition/union of measurements performed in the viewpoint,
it is possible to propose a global function to system complexity prediction. Therefore,
Function 14 defines a global function to measure the overall amount of design artefacts
based on the system requirements, functional and structural blocks of the system, logical
system components and hardware and software components. This number provides a

124 Chapter 5. Formalization of MARTeSys𝑅𝑒𝑞𝐷

formal prediction of the maximal number of artefacts that are involved in architectural
description of RTES when it considers adoption of the MARTeSys𝑅𝑒𝑞𝐷 methodology.

𝐺(𝑛) = 𝑟(𝑛) + 𝑓(𝑛) + 𝑙(𝑛) + 𝑡(𝑛) (14)

Approaches to measure the complexity of design activities and to predict the system
complexity can contribute to minimize the difficultly level of RTES development. This
section shows a strategy for measuring the possible number of design artefacts from
the Requirements, Functional, Logical and Technical viewpoints. The analysis of the
proposed methodology are based on the worst-case scenarios to the maximal number
of viewpoint components. It aims to numerically predict the difficulty level and the
impact of the MARTeSys𝑅𝑒𝑞𝐷 methodology adoption to RTES development. Moreover,
the skills and expertise level of the developers and engineers plays an important role.
However, the proposed notation for measuring the complexity level of one design approach
can substantiate its application, while providing complexity analysis/predictions for its
adoption. These algorithms detail the primitive and specific modelling activities for each
viewpoint. Therefore, the cost analysis is supposed to describe the effort to adopt and
apply each design instruction in a computational manner.

5.4 Contributions of the Proposed Formalization

The previous chapter presented a specific methodology for RTES development based
on design viewpoints. The subsequent chapters how the proposed methodology works
and its different viewpoint refinements. In this chapter, the focus is to formalize the
proposed methodology, its architectural design and its refinements decisions. Some of the
contributions explained in this chapter are given greater detail [98] and [99]. A new and
formal description for RTES design was presented considering a group of algorithms. This
strategy adopts pseudo-code to guide the design decisions and to formalize the proposed
methodology. The setting of algorithms was explained and it collaborates with the global
view of the design steps in a systematic manner.

As a general overview, one highlights a proposal for formalizing the RTES design
activities (viewpoints), a measurement of the system design complexity from the ini-
tial design activities, as well as the definition of a formalized manner for analyzing the
complexity of RTES development without interference of user external knowledge. The
proposed analysis is mainly based on the proposed design framework/decisions of the
MARTeSys𝑅𝑒𝑞𝐷.

Another important contribution is the early estimation of system complexity regar-
ding the developed artefacts. During development of RTES, it is not always possible to
wait until the final phases of design to estimate the overall system complexity. However,

5.4. Contributions of the Proposed Formalization 125

from these algorithms a cost function for design is proposed and it considers the efforts
involved in creating the the overall system models. This analysis can contribute to RTES
development once it performs an impact analysis of their algorithms. Finally, this chapter
also provides a strategy to measure the global system complexity, as of the initial design
steps through to the modelling of technical artefacts. A general equation for system
complexity is defined in this thesis to estimate the measure for the expected number of
design components/artefacts.

126 Chapter 5. Formalization of MARTeSys𝑅𝑒𝑞𝐷

127

Chapter6
Application of the MARTeSys𝑅𝑒𝑞𝐷

Methodology

This Chapter describes the application of the MARTeSys𝑅𝑒𝑞𝐷 methodology in an
industrial case study in order to specify and design functions, services and constraints of
the system under various and intelligible descriptions.

6.1 An Overview of Automotive Control Systems

ACS are composed of sensors, actuators, components, controllers, supervisory control
and distributed data, which use electrical, electronic, mechanical and computer resources
[29]. The heterogeneous nature of ACS makes their conception, design and development
particularly difficult [4].

According to the authors of paper [183], there are five different major domains, which
are described below,that need to be explored in the development of automotive systems.
As depicted in Figure 25, these modules are named as power train domain, chassis domain,
body domain, HMI domain and telematics domain.

The Power Train Domain deals with systems of vehicle motorization, including
the engine, data transmission between brakes, accelerator and gear, speeding up, among
others. The Chassis Domain is composed of systems that aim at controlling the inte-
raction of the vehicle with the road (wheel, suspension). Chassis subsystems ensure the
comfort of drivers and passengers, as well as their safety.

The Body Control Module (BCM) is composed of entities that offer support to
activities, comfort and safety related to users. In this domain, the embedded systems are
mainly related to door controllers, seat controllers, airbag controllers, windshield wiper
controllers, air conditioning controllers, window controllers, light controllers and so on.

The HMI Domain consists of equipment that allows for information exchange be-
tween electronic systems and the driver. In this domain, the embedded systems represent

128 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 25 – Domains in Automotive System Development.

information concerning the status of the car as, for example, vehicle speed, oil level,
status of a door, status of lights, status of multimedia devices (e.g., current frequency
for a radio device), or the result of a request (e.g., visualization of a map provided by a
navigation system). The Telematics Domain is related to components that allow for
information exchange between the vehicle and the external environment such as radio,
navigation system and Internet access.

In order to exemplify adoption of the MARTeSys𝑅𝑒𝑞𝐷 methodology, this thesis depicts
the analysis of functional and non-functional system services, which are related to the
Body Control Module.

6.1.1 Body Control Module

BCM [183] contains the embedded functions of a vehicle that are not directly related
to its dynamics, but strongly relates to essential components, which provides greater
comfort and safety to drivers. Nowadays, different functions coupled in vehicles, such as
windshields, lights, windows, seat controls and mirrors are controlled by software-based
systems. Figure 26 shows graphically the main components of a Body Control Module.

The Door Control corresponds to locking and unlocking control systems, according
to internal users requests, to the control signs (sensors and actuators). This system
can also provide automatic responses after vehicle inactivity. The Windshield Wiper
represents management systems for back and front wipers. The Control Seat systems

6.1. An Overview of Automotive Control Systems 129

Figure 26 – Structure of the Body Control Module.

describes the embedded systems responsible for configuring height, backboard and other
automatic functions related to seat controls.

The Air Conditioning Control system refers to functionalities able to manage se-
veral temperature conditions of the vehicle and to provide different states according to the
environment conditions or the user preferences. The Window Control commands the
window lifters of front and back doors. Airbag Control is composed by subsystems to
diagnose collisions, through internal sensors, which can occur in the drivers and passengers
compartments. The airbag control has external sensors and physical devices, which allows
for manual activation/deactivation. This module is also composed of the diagnostic
module, which is able to evaluate the operation of the airbag system, when the vehicle is
turned on.

The Turn Indicator Control presents the functional modules that operate front
lights, rear lights, brake lights and emergency/hazard lights. It represents different sub-
functions to flash the system lights and to control their parallel and priority requirements.
The case study, described in this Chapter, is related to the TIS.

130 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

6.1.2 A Motivating Case: The Turn Indicator System

The MARTeSys𝑅𝑒𝑞𝐷 methodology has been applied to design the functions of TIS
under different abstraction levels. It aims at presenting the requirements specification
and architectural design activities with focus on functional system services and non-
functional constraints. This study provides strategies for model checking early in terms
of the early design of requirements, as well as to provide empirical simulation of RTES
constraints.

Figure 27 depicts, through a graph representation, the main components of the TSI
and its perspectives. It highlights, by blue color, the Turn Indicator module and its link
with BCM. The Electronic Control Unit (ECU), depicted in Figure 27, is responsible for
controlling all subsystems and manages BCM functions.

Figure 27 – Features of the Turn Indicator System.

The TIS, from a functional perspective, is responsible for controlling front and rear
lights, brake lights, emergency brake lights, indicator lights, hazard indication lights and
all the management and diagnostic functions of a vehicle. In addition, from a physical
perspective, the turn indicator consists of one or more signal actuators. These compo-
nents are responsible for controlling the signal lamps of the car, which must cause the
signal lights to flash in a configurable frequency. Actuators can be allocated internally or

6.1. An Overview of Automotive Control Systems 131

externally in the cars. From an external view, actuators correspond to the signal lights
of the car. On the other hand, internally these can be arranged as visual and acoustic
actuators. The latter are, in general, instrument cluster/dashboard feedback lights and
feedback tones.

Noteworthy here is that the TIS was chosen in this study for three main reasons.
Initially, this research has received the support of experts from automotive development
domain. This fact allowed the tailoring of realistic system scenarios and provided a
similar representation of one real TIS. Second, the author has found sufficient literature
and manuals concerning the domain of study in real contexts. Finally, there were different
models already defined in the industrial domain, and these were made available to the
author. This fact contributes to a comparative assessment of the proposed models and
methodology with similar approaches in use by industry.

6.1.3 Scenario of the Turn Indicator System

Drivers use the lights system to signalize the intention to change the direction of the
car. In the right or left directions, it is possible to flash the lights in a hard or soft manner.
For safety reasons, these situations must be visually displayed. When drivers want to
turn the car in a hard manner, it is necessary to press/activate the flashing system. The
car lights continue on until a driver deactivation or until a full car conversion. However, if
the driver needs to signalize his changing position by shorter flashing cycle, the car lights
are activated in a soft manner. In this latter case, the TIS should control the flashing
conditions with a pre-defined time and stop after a given period.

Drivers can also use the car lights to signalize dangerous or abnormal situations.
When it is necessary to represent these conditions, the front and rear lights must flash
at different frequencies. It means that the driver must be able to activate the hazard
function in order to visually indicate hazardous situations. Moreover, every time that
the driver needs to use the brake system, to lock/unlock the doors or to trigger the anti-
theft protection the light system must flash. Therefore, the car lights must signal each
situation. These functions represent different car features, which are independent and
controlled by BCM. However, they communicate and generate signals with/to the TIS.

Turn Indicator features operate the following legal and regulatory rules, which are
controlled by governmental regulations of each country. This fact forces automotive
companies to respect specific regulations, while developing their products. Besides, the
Turn Indicator functions also need to follow specific legislation of Original Equipment
Manufacturer (OEM).

Figure 28 shows a usage scenario of the Turn Indicator. In this example, features
which are related either with the turn indicator function or hazard controllers are shown.

132 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 28 – An Example Scenario of Turn Indicator System.

In Figure 28, the labels 1 to 5 represent distinctive positions of the car based on driver
actions as follows:

1. Driver identifies an accident and turns on the hazard lights;

2. Driver needs to change lane and turns the flashing indicator lights in hard manner
to the left;

3. Driver turns off the flashing indicator lights;

4. Driver needs to change lane and turns the flashing indicator lights in soft manner
to the right;

5. Driver overpasses the anomaly and turns off the hazard lights.

Based on the automotive literature analysis, a set of requirements and constraints
related to the Turn Indicator are detailed in order to structure the case study. The
subsequent sections are based on general and specific features of TIS and on RTES system
concerns. These sections present a detailed overview of the MARTeSys𝑅𝑒𝑞𝐷 methodology
adoption.

6.2 Design of Architectural Viewpoints of the Turn
Indicator System

Architectural design should represent a general comprehension of the system regarding
the system requirements. This section outlines how to apply MARTeSys𝑅𝑒𝑞𝐷 methodology
to design RTES and provides, as results, architectural artefacts of the system under
different and complementary perspectives. This contributes to define RTES in a physical
and logical perspective, in order to decompose requirements into functional modules,
to represent and analyze subsystems iteration, to refine system functions, to verify and
validate these systems and so on.

6.2. Design of Architectural Viewpoints of the Turn Indicator System 133

An industrial example of the TIS is modelled in order to apply the proposed study
in the description of four architectural viewpoints. Sections 6.2.1, 6.2.2, 6.2.3 and 6.2.4
present the artefacts resulting from the application of the MARTeSys𝑅𝑒𝑞𝐷 methodology.

6.2.1 Requirements Viewpoint with the MARTeSys𝑅𝑒𝑞𝐷 Metho-
dology

Requirements viewpoint is composed of Requirements Pre-Analysis, High-Level De-
scription of Requirements, Composition of Models using the MARTE Profile, Formal
Specification with VSL and Analysis of Requirements. The ollowing sections show the
adoption of the proposed methodology along all views of the Requirements viewpoint.

6.2.1.1 Requirements Pre-Analysis

The requirements of the proposed case study are based on the scenario of the TIS pre-
sented in Section 6.1.2. The providing of details for these requirements, their functional
and non-functional constraints takes into account industrial development processes, of
German automotive companies, and also automotive literature analyses. The specifica-
tion of Turn Indicator requirements is provided as an input to Requirements Pre-Analysis
stage. An initial refinement of these requirements is presented on Table 8.

Requirement Description Type RFN Type
/Concern

MARTE
Package

The turn indicator controllers operate in accordance
with specific automotive rules. Legality and regula-
tory criteria are related to the target market(s).

D - -

The Turn Indicator system controls its lights with a
cyclic time of 1600 ms per full bright-dark cycle.

F Timing Time

The final version of the Turn Indicator controllers
have to be tested. It is expected at least 175,000 cycles
for each unit of multipurpose passenger vehicles.

D - -

The turn indicator services can be related to embed-
ded, distributed and real-time constraints.

- - -

The turn indicator system performs coherently the
prioritization of the different indicator functionalities.

F - -

The turn indicator system coordinates the turn situ-
ations even when the hazard lights are operational.

F Distribu-
tion

GRM

The turn indicator system parameterizes bright-dark
times and flashing frequencies of lights.

F - -

134 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

The turn indicator system has to identify when the
indicator lever1 is pressed (activated) in a hard/soft
manner. The system signals the direction changes of
the vehicle when the driver wants to turn the car.

F - -

The turn indicator functions have an overall response
time of 540 ms.

NF Timing NFP/-
Time

The turn indicator system needs to check if there is
power in the system before starting any system func-
tion.

F - -

The turn indicator system indicates, internally and
externally, all vehicle turns to the drivers.

F - -

The system considers a parameterizable time span to
turn on, to the right or left side, the indicator lights.
Therefore, if this parameterizable interval is not reach-
able the outputs turn indicator left or right will be
switched based on another parameter.

NF Time NFP/
Time -

The turn indicator system has to identify when the
indicator lever is pressed (activated) in a soft man-
ner. After this, it controls the right or left lights of
the vehicle with a predefined number of flashing light
cycles. The flashing lights indicate lane changes of the
car with a fast turn flashing.

F - -

The turn indicator system configures the soft flashing
lights for three consecutive cycles. The same configu-
ration is performed when the driver touches the lever
for less than 1000ms.

F - -

The turn indicator system turns and keeps the indi-
cator lights on until their cancelation by the driver.
This will always happen when the indicator lever is
pressed for a longer time (not in a soft way).

F - -

The turn indicator system turns the turn indicator
lights off automatically after a full right or left con-
version.

F - -

The turn indicator system can indicate anomalies and
hazardous situations related to the vehicle. Hazardous
occurrences activate hazard lights and can turn on a
sonorous warning to the driver.

F - -

6.2. Design of Architectural Viewpoints of the Turn Indicator System 135

The hazard functions have an overall response time of
540 ms - response time of turn indicator system.

NF Timing NFP/-
Time

The Body Control Module (BCM) is responsible for
activating the hazard control lamps. BCM communi-
cates with the hazard switch when the function Haz-
ard Indication is active.

F - -

The function Hazard Indication must be available af-
ter processor failure.

NF Safety NFP

The turn indicator system receives signals from BCM.
These signals are related to the anti-theft protection
function. In this case, the turn indicator system con-
figures the car lights to indicate the arm/disarm state
with one flashing cycle.

F - -

The turn indicator system sets the lights to indicate
the triggered alarm of the anti-theft protection. When
an external threat occurs all lights are activated and
flashing.

F - -

The turn indicator system receives signals, from BCM,
which are related to the lock/unlock function. The
turn indicator system flashes all lights if the central
lock is activated/deactivate

F - -

The turn indicator system receives signals, from BCM,
which are related to the brake function. When a break
action occurs, the turn indicator system activates the
brake lights. The lights continue flashing as long as
the braking event occurs (is valid) plus 5 sec.

F - NFP

The turn indicator system can manage different failure
events of integrated components on vehicle level.

F - -

The turn indicator system detects internal failure
events.

F - -

The turn indicator system gathers internal failure
events.

F - -

The turn indicator system stores failure events. F - -
The turn indicator system sends internal failure events
to the diagnostic function OBD2-interface on vehicle
level.

F - -

Table 8 – Artefacts of the Requirements Pre-Analysis - Requirements Specification.

136 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Table 8 describes the first analysis of the Turn Indicator requirements. The column
Type presents a prior classification of the system requirements. It allows one to describe if
a specific requirement has functional, non-functional or domain type. In Type column, the
acronyms D, F and NF, respectively, relate to the domain, functional and non-functional
requirements. It is also possible to identify if one specific requirement has a non-functional
concern. The main non-functional concerns of RTES are extensively discussed in Chapter
2 and they can be related to timing, reliability, safety, performance, security, embedded,
among other features. The third column shows this classification. Finally, the last column
can specify or suggest the MARTE packages, which are able to contribute to the design
of one requirement.

These previous analyses contribute toward understanding the Turn Indicator require-
ments. Moreover, they allow for the separation of real-time and embedded concerns of
the systems while classifying the group of requirements.

6.2.1.2 High-Level Description of Requirements

The activity of High-Level Description of Requirements refines the system require-
ments specified in a tabular way. Table 9 shows a high-level description of the require-
ments while it performs their categorization. The proposed categorization considers the
similarity criteria of these requirements.

On Table 9, the declaration of each requirement is improved in order to identify
possible ambiguities. The strategy to refine these requirements adopts some key-words
as, for example, Shall, Must, Are applicable, Responsible and Will to refine their definition.
Furthermore, it can express priority criteria as part of its future development.

The first column of Table 9 describes the context of one requirement and correlates it
in a similar group of system features. For this case study, the six contexts are named as
Regulatory Requirements (RR), Vehicle Functions (VF), Turn Indicator (TI), Hazard
Indicator (HI), BCM Events (BCM) or Diagnostic Functions (DI).

Con-
text

ID Requirement Declaration

RR
R1 The feature2 turn indicator will respect the legal automotive regula-

tory standard of the target market(s).
R2 The feature turn indicator must be operated with a cycle time of 1600

ms per full bright-dark cycle.

1 Lever Indicator is also so-called comfort flashing, one-touch flashing or highway flashing.

6.2. Design of Architectural Viewpoints of the Turn Indicator System 137

R3 The turn indicator controllers shall be tested with at least 175,000
cycles for each unit that is installed on a multipurpose passenger ve-
hicle.

VF

R4 The feature turn indicator must coordinate embedded and real-time
functions of indicator controller.

R5 The feature turn indicator shall perform the prioritization of differ-
ent indicator functionalities, even when other indicator functionalities
have not been deactivated.

R6 The feature turn indicator shall precisely and correctly prioritize the
turn indicator functions. This requirement relates to the given prece-
dence to turning event, even when the hazard lights are operational.

R7 The feature turn indicator shall be able to parameterize, in an indi-
vidual way, the bright-dark times.

R8 The feature turn indicator shall be able to parameterize, in an indi-
vidual way, the flashing frequencies of lights.

TI

R9 The turn indicator shall recognize the different lever events in order
to provide the right turn direction.

R10 The feature turn indicator shall visually indicate the direction changes
of the vehicle when the indicator lever is pressed in a hard/soft manner.

R11 The turn indicator feature must process itself with a maximal re-
sponse time of 540 ms.

R12 The turn indicator feature must process its features in a maximal
period of 560 ms.

R13 The feature turn indicator shall check the ignition signal before any
turn indicator function. This requirement checks if an ignition signal,
via clamp 15, is available.

R14 The system shall consider a parameterizable time span to turn on the
flashing lights. Therefore, if this parameterizable interval is not reach-
able the outputs of turn indicator, to left or right side, are switched
based on another parameter.

R15 The feature turn indicator shall enter into operation when the indi-
cator lever is pressed (activated) in a soft manner.

R16 The feature turn indicator shall enter into operation when the indi-
cator lever is pressed (activated) in a hard manner.

R17 The feature turn indicator, when activated in a soft manner, shall
be defined by a predefined number of flashing light cycles in order to
indicate lane changes of the car.

138 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

R18 The feature turn indicator shall flash the turn indicator lights for three
consecutive cycles when the indicator lever is pressed (activated) in a
soft manner or for less than 1000 ms.

R19 The feature turn indicator, when activated in a hard manner, shall
continue to flash the turn indicator lights on until a cancelation by
counter-activation of the indicator lever.

R20 The feature turn indicator, when activated in a hard manner, shall
turn off the turn indicator lights after a full right or left conversion.

HI

R21 The feature turn indicator shall visually indicate hazardous situations
from the vehicle lights.

R22 The hazard feature shall activate the hazard lights.
R23 The hazard feature shall activate sonorous warning to the driver.
R24 The hazard feature must process fully with a maximal response time

of 540 ms - response time of the turn indicator feature.
R25 The hazard feature must process its features in a maximal period of

540 ms - response time of the turn indicator feature.
R26 The BCM shall activate the hazard control lamp in the hazard switch

when the function hazard indication is active.
R27 The hazard feature must be available after processor failure.

BCM

R28 The feature turn indicator shall configure the indication lights with
one flashing cycle in order to show the arm state of the anti-theft
protection function.

R29 The feature turn indicator shall configure the indication lights in order
to show the disarm state of the anti-theft protection function with one
flashing cycle.

R30 The feature turn indicator shall set the lights indicator in order to
indicate the triggered alarm of the anti-theft protection in case of a
vehicle external threat with all flashing light signals activated.

R31 The feature turn indicator shall indicate the central locking status
with all flashing light signals activated.

R32 The feature turn indicator shall indicate an emergency braking situ-
ation by turning on the red flashing lights as long as the emergency
braking event is valid plus 5 seconds.

DF

R33 The feature turn indicator must manage different failure events of the
integrated components on vehicle level.

R34 The feature turn indicator shall detect internal failure events.
R35 The feature turn indicator shall gather internal failure events.
R36 The feature turn indicator shall store internal failure events.

6.2. Design of Architectural Viewpoints of the Turn Indicator System 139

R37 The feature turn indicator shall send internal failure events to the
diagnostic function OBD2-interface on vehicle level.

Table 9 – Artefacts of the High-Level Description of Requirements- Requirements Ca-
tegorization.

As elucidated in Chapter 4, this activity aims to improve and standardize the re-
quirements specification. The proposed categorization is helpful for creating clusters of
correlated requirements. This contributes toward the discovering of system services and
scenarios linked to RTES. Moreover, the adopted keywords clarify the description of
atomic requirements and these can highlight priority and relevance criteria in the RTES
specification. This study considers the atomic requirements of Table 9. The refinements
performed in the Requirements viewpoint is essential in the proposed study, since it
provides the background for the following design activities. Architectural design, with
MARTeSys𝑅𝑒𝑞𝐷 methodology, considers the requirements of Vehicle Functions, Turn Indi-
cator and Hazard Indicator scenarios. Moreover, the feature described by the requirement
R31, of the BCM Event scenario, is also considered.

Figure 29 depicts the Use Case diagram of the TIS. This architectural model presents,
in principal, the system scenarios as a group of functions (use cases), and allows for the
representation of external entities that influence each scenario. Thus, this view defines
relationships between use cases, the system actors and their connections.

Figure 29 – Artefact of High-Level Description of Requirements - Use Case Diagram.

2 Feature means, in this context, a specific module of the system that is responsible and able to perform
a specific functionality.

140 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Scenarios of the TIS are mainly based on the main categories of Table 9. The use
cases are related to the changes in direction control (Turn Indicator category), to the
hazard alert management (Hazard Indicator category) and to the failure management
(Diagnostic Function category). The categories ,from Table 9, which are not designed as
an atomic use case are necessarily included and combined into previous ones. It can be
highlighted, as for example, the category of Regulatory Requirements does not define a
single use case. However, Regulatory Requirements constrains the scenarios of Manage
the Turn Indicator Alert and Manage Hazard Alert.

In Figure 29, the Driver, Maintenance and Repair , Environment and Traffic are the
main stakeholders of this scenario. The driver can interact with the system and its turn
and hazard functions. The environment actor influences the turn and hazard alerts and its
conditions provide insights into the system operation. The traffic actor receives different
sonorous and visual interactions of the TIS. Finally, the Maintenance and Repair actor
manages the improvement and support to the system failures/changes.

6.2.1.3 Composition of Models using the MARTE Profile

The SysML Requirements diagram is designed, in this activity, to represent system
requirements and to detail its main functions. Initially, requirements are atomically and
graphically expressed.

The SysML Requirements diagram has been extended, with MARTE annotations,
in order that relevant real-time concerns can be attached to the system requirements.
The refinement of this model provides the input to the activity of Formal Specification of
Requirements with MARTE and VSL. Therefore, Figure 30 combines the design decisions
of both views.

Figure 30 has the system constraints formalized by the concrete syntax of VSL. This
formalism is followed and adopted to refine existing constraints, as well as to annotate the
new ones. VSL provides standard bases to express value specifications in model elements.

6.2.1.4 Analysis of Requirements

The transformation rules proposed in Chapter 4 are adopted to formally analyze
timing constraints, safety, deadlock, reachability and critical regions controller of the
models, from the outset of the requirements specification. Table 9 tabulates the Turn
Indicator requirements, in natural language, using key-words and correlated categories.
These requirements are inputs for the formal specification of the system requirements
by Timed Automata formalism. Through the Timed Automata model, implemented in
UPPAAL, an early analysis of requirements is performed. This analysis applies TCTL
to verify and validate properties of interest.

6.2. Design of Architectural Viewpoints of the Turn Indicator System 141

Figure 30 – Artefact of the Composition of Models using the MARTE Profile and VSL
Formalism - SysML Requirements Diagram.

The MARTeSys𝑅𝑒𝑞𝐷 methodology focuses on specific timing RTES concerns and the
proposed analysis handles deadline, period and events concerns. Thus, designers could
initially (1o) search for these RTES concerns in the requirements specification, (2o) fol-
low the proposed correlation of natural keywords to Timed Automata formalism and
(3o) adopt the proposed MARTeSys𝑅𝑒𝑞𝐷 Grammar for the NL-TA Transformation (see
the proposed Grammar in Chapter 4). Figure 31 depicts the final model, considering
the Analysis of Requirements view, focusing on the formalization of specific timing con-
straints.

As noted from Figure 31, timing constraints already specified, on Natural Language
(NL), in Table 9, are formally designed. The overall design model follows the MARTe-
Sys𝑅𝑒𝑞𝐷 guidelines for the activity of Analysis of Requirements described in Chapter
4. In accordance with the proposed methodology, periodic constraints, for example,
are modeled by the following components of the Timed Automata tuple: Clock (P),
Guard, Invariant and Reset Operation. This activity considers that the deadline is shorter
than the period. Thus, designed models respect the non-functional requirements and
constraints specified in the Requirements viewpoint. It considers, in particular, the timing

142 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 31 – Artefact of the Analysis of Requirements - The Timed Automata diagram
of the Turn Indicator System.

constraints specified in the Requirements Pre-Analysis activity and refined in the High-
Level Description of Requirements activity.

Figure 32 – Artefact of the Analysis of Requirements - The Trigger Timed Automata
diagram.

6.2. Design of Architectural Viewpoints of the Turn Indicator System 143

The Turn Indicator feature has a periodic constraint value of 560 units of time. Thus,
the initial location of the automata (named as “Off”) is activated periodically after each
560 units of time. Therefore, all the automata locations, regarding the turn indicator
functions (turning the lights on, turning the lights off and hazard flashing), must be able
to be periodically activated each 560 units of time.

Actions “turn_on?” and “hazard_on?” represent the trigger events of this model.
Figure 32 shows the system events. From the state Off, if the “turn_on?” event is true,
the state TurnIndicatorFeature runs. As depicted in the Figure 31, the invariant “d ≤
540” and the guard “d ≥ 540” forces the activation of the turn indicator. Thus, the state
OnTurn is activated from 𝑑, 𝑝 ≤ 540 to 𝑝 ≤ 560, that is, 540 ≤ 𝑝 ≤ 560 units of time.
After this and by adopting exclusively Guard, Invariant and the Reset Operation
components, as stated in MARTeSys𝑅𝑒𝑞𝐷 methodology, it is possible to accomplish the
periodic controllers of the Turn Indicator. After this, action “off?” becomes true, (once
the state ActiveTurn, from Figure 32, sets “off!” action as true), the state Off, in Figure
31, is reached again. Figure 32 depicts the trigger automata for the Turn Indicator
feature (ActiveTurn state) and the Hazard (ActiveHazard state). In UPPAAL, these two
automata are synchronized by channels synchronization that allows the interaction via the
actions within the channels. Chapter 7 depicts the model checking validation of artefacts
from the Analysis of Requirements. In order to accomplish this, it applies Uppaal tool and
TCTL equations to verify safety, reachability, deadlock and timing constraints, especially
the period and deadline, of designed models.

From the Requirements viewpoint the first models of Functional viewpoint are de-
signed. In this research, the scenarios of the Use Case diagram and the system ca-
tegorization provide the main system services. Therefore, each group of services, into
one specific use case, is related to one structural block (in the first level of Functional
viewpoint).

6.2.2 Functional Viewpoint with the MARTeSys𝑅𝑒𝑞𝐷 Methodolo-
gy

Functional viewpoint aims to provide another view of the TIS that focuses on struc-
tural modelling of the system services. Figure 33 shows the adoption of SysML Block
Diagram and provides a complete structural perspective of the system components.

These early views of the Functional viewpoints are responsible for documenting the
system structural context with focus on system services. Another refinement of the
Functional viewpoint is necessary to contemplate and detail the block relationships as,
for example, hierarchic and dependence relationships. Therefore, Figure 34 provides
refinement of the Functional view through the Internal Block diagram.

Figure 34 shows structural design of categories specified in Table 9. However, some

144 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 33 – First Refinement of Functional Viewpoint - SysML Block Diagram.

Figure 34 – Second Refinement of Functional Viewpoint - SysML Internal Block Di-
agram.

categories are not considered in this refinement. As an example, it is noteworthy that
BCM’s communication for the turn indicator features and BCM diagnostic failures are
not described. Thus, from this point, the design activities detail essential services of
the Turn Indicator along architectural viewpoints and system implementation. The cho-

6.2. Design of Architectural Viewpoints of the Turn Indicator System 145

sen categories as, for example, the Hazard Feature and Turn Indicator Feature,
constitute the fundamental features of the studied system.

The focus of this second view, of Functional viewpoint, is to define the system com-
ponents and their communication interfaces. These models are refined again, in the
Functional viewpoint, in order to annotate or refine non-functional information of archi-
tectural models. Figure 35 shows the application of the MARTE profile in order to refine
Functional Models.

Figure 35 – Third Refinement of Functional Viewpoint - SysML Block Diagram with
MARTE annotations.

Figure 35 describes another refinement of Figure 33. This first model is enriched by a
≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ stereotype. Each functional block has a period and deadline. The
specified time refers to the partitioning of the TIS in components with their own timing
constraints. These constraints were specified on Table 9. This stereotype aims to apply
a condition or restriction to modeled elements. In functional models, these constraints
are applied to each structural block in order to provide early timing estimations. The
premature annotation and analysis of timing constraints can contribute to the correct
development of the turn indicator features. From a previous project analysis, in the
automotive domain, an estimation was delivered for the worst-case-execution (execution
time/deadline) of the turn indicator features. As noted from Figure 35, blocks InputSig-
nalHandler, TurnIndicatorFeature, HazardFeature, BreakFeature, OutputSig-
nalHandler and DiagnosticFunction must respect, in total, the deadline of 21 ms to

146 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

complete their execution. These annotations respect the requirements specification, per-
formed in Sections 6.2.1.1 and 6.2.1.2 , and constrain future deadlines of the implemented
system.

Additionally, these blocks are constrained by periodic timing information. These
constraints represent the activation period of turn indicator features and how often their
trigger could be activated. These timing constraints are also refined in the following
viewpoints. Moreover, the timing annotations are input to the quantitative evaluation of
Chapter 7. The scheduler adopts the period of 20 ms to check whether there is an input
signal from the feature turn indicator.

6.2.3 Logical Viewpoint with the MARTeSys𝑅𝑒𝑞𝐷 Methodology

As described in Chapter 4 and 5, it is important to define how artefacts of the Func-
tional viewpoint are designed in the Logical viewpoint. Section 4.6.1 depicts the proposed
mapping to the functional as well as to logical models of TIS.

Figure 20 represents the mapping between functional and logical blocks of the TIS. As
seen from Figure 20, the TurnIndicatorFeature and HazardFeature functional blocks are
combined into one single Logical block. This initial design decision affects how Logical
viewpoint components are hereafter designed.

Figure 36 depicts a logical overview of the TIS and its respective logical components
for each functional block. Thus, the Functional blocks InputSignalHandler, TurnIndi-
catorFeature, HazardFeature and OutputSignalHandler are refined in Figure 36.

Figure 36 – First Refinement of the Logical Viewpoint: Turn Indicator Model - SysML
Activity Diagram.

The activities Input Signal Handler, Turn Indicator Feature and Output Signal Han-
dler, modelled in Figure 36, are composite activities. These global activities specify

6.2. Design of Architectural Viewpoints of the Turn Indicator System 147

broader activities being subdivided into distinctive actions. Therefore, Figures 37, 38
and 39 show another refinement of the Logical viewpoint and detailed behavior and ac-
tions of these composite activities. The models are individually designed in order to
increase the legibility and detail level in their definition.

Figure 37 – Second Refinement of the Logical Viewpoint: Input Signal Handler - SysML
Activity Diagram.

Figure 37 presents the internal activities of InputSignalHandler activity. It describes
the actions related to hazard and turn requests from the driver, diagnostic receiving and
power evaluation (from the clamp signal). Furthermore, this diagram describes external
system signals (events), which trigger the initial system states. Moreover, it models the
internal signals, which trigger the states of TurnIndicatorFeature diagram (Figure 38).

Figure 38 highlights the sub-activities of TurnIndicatorFeature activity (from Figure
36). This model shows the internal actions of turn and hazard controllers in a rational
and interconnected group of actions. Thus, it details all possible states for signaling
the turn directions and the hazard lights. Moreover, this diagram depicts the generated
internal events such as InternalDiagnosticInformation and OutputSignal, which are input
for the model in Figure 39 model. Figure 39 describes the actions of the output controllers
of the TIS. It highlights the signals generated for the instrument cluster and the light
control unit. These models also depict actions and internal signals for the BCM diagnostic
module.

MARTE stereotypes refine the activities of the proposed models with timing informa-
tion and constraint to trace these along the viewpoints. The artefacts from the Logical
viewpoint should pass by different types of verification and validation, such as simu-

148 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 38 – Second Refinement of the Logical Viewpoint: Turn Indicator Features -
SysML Activity Diagram.

6.2. Design of Architectural Viewpoints of the Turn Indicator System 149

Figure 39 – Second Refinement of the Logical Viewpoint: Output Signal Handler -
SysML Activity Diagram.

lations and formal checking of their critical constraints [142], [18]. Therefore, the ≪
𝑇𝑖𝑚𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ stereotype allows one to refine the functional blocks in a more spe-
cific manner. There exists the possibility, through the attributes of ≪ 𝑇𝑖𝑚𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫,
for example, to declare the timing type of one activity (duration or instant) and the value
of this attribute. From these annotations, distinctive analysis can be performed.

Adoption of these annotations describes non-functional characteristics, which con-
strain and trigger system behavior. This strategy contributes to the expressiveness of
RTES behavior models and also provides guidelines for future design activities. Artefacts
of this viewpoint will be further refined in the Technical viewpoint.

6.2.4 Technical Viewpoint with the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Based on all SysML Activity diagrams, from logical viewpoint artefacts, the Technical
viewpoint models are generated. Technical models describe the design decisions, at high
level of granularity, in order to show how software and hardware components should be
developed.

The Technical viewpoint should represent for each technical component their related
resources. In this case study, the technical models depict the main distribution of Turn
Indicator components between software or hardware elements.

Figures 40, 41 and 42 show the second refinement and the design decisions of the
Technical viewpoint. The design decisions regarding how the system implements tech-
nical components, are highlighted, in this view, by adopting swimlanes and MARTE
stereotypes.

The adoption of swimlanes and MARTE stereotypes allows for the description of the

150 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

design decisions proposed in MARTeSys𝑅𝑒𝑞𝐷 methodology. Here, MARTE stereotypes can
describe how system components, such as ClampSignal, are defined by hardware/software
components (it is considered as an analog input in the system). Moreover, the swimlanes
description produced design decisions, which split (cluster) the system activities into more
general software or hardware containers.

Figure 40 – Technical Viewpoint: Input Signal Handler.

Figure 41 – Technical Viewpoint: Output Signal Handler.

Figure 40 shows that the digital and analog signals, obtained from the sensors, are
mainly caught by a hardware element. An analog “ClampSignal”, for example, can have
a specific hardware/actuator device to check its conditions and transform it into a digital
signal. The ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ stereotype annotates information about the type of
each system signal.

Figure 41 depicts the design decisions for the output signal handler. As noted, here
activities can be implemented as logical components or as hardware embedded compo-

6.3. Model and Unit Design Models 151

nents such as Pulse-width Modulation (PWM) control. In the case of PWM, a swimlane
can also be used to represent a more specific software/hardware container of the tech-
nical solution. Figure 41 shows how the digital signals, described in Figure 39, can be
distributed among swimlanes and transformed into analog signals. The main interactions
of the TIS with lights, instrument cluster and the BCM are shown.

Figure 42 shows the main features of the turn indicator. In this model, the hazard
and the turn features are stored in a software swimlane. It shows that both system
features should be able to interpret the “InternalSignalState” in order to logically control
the hazard behavior or the turn indicator behavior. The internal and digital “output”
signals are input to the Output Signal Handler model.

From the Technical viewpoint models, the global system blocks can be designed. This
model allows one to describe how system components interact and show globally the main
architectural decisions for system development.

6.3 Model and Unit Design Models

Figure 43 defines the Global System Architecture of the TIS. Here, internal/external
interfaces of each component are described in a high abstraction level. In this view, black
boxes can represent software or hardware elements. MARTE stereotypes sre employed
to add a semantic to these components in order to highlight different resources, such as
processors and devices, and processing units.

Figure 43 – Global System Architecture of Turn Indicator.

152 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 42 – Technical Viewpoint: Turn Indicator Features.

6.3. Model and Unit Design Models 153

Different architectural levels are consistent with each other and the constraints im-
posed at different architectural levels have been maintained and refined throughout the
architectural definition. These real-time embedded concerns are traced from Require-
ments, Functional, Logical and Technical viewpoints and described, in an implementation
view, in Model and Unit Design (MUD) phases. Figure 44 describes the Classes diagram
of the case study in accordance with the system Functional viewpoint, along with the
expected software components (as described in Figure 43).

Figure 44 – Class Diagram of Turn Indicator with MARTE Constraints.

Figure 44 depicts the main system classes and their associations. These classes are
named as TurnHazardFeatures, Lamp, TurnIndicatorFeature, HazardFeature, Break and
Control as they are posteriorly elucidated. As noted in Figure 44, the ≪ 𝑇𝑖𝑚𝑒𝑑𝑉 𝑎𝑙𝑢𝑒𝑆𝑝𝑒-
𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ≫, ≪ 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ≫, ≪ 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑎𝑏𝑙𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫, ≪ 𝑡𝑖𝑚𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ≫
and ≪ 𝑁𝑝𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ constraints were added to the UML Class diagram. These
stereotypes allow for the defining of information regarding precedence, resource, timing
and processing constraints in low abstraction level.

The strategy to describe and refine the MARTE constraints, from high-level abstrac-
tion models, allows one to trace non-functional concerns at development models and
contributes to their further analyses. In this thesis, an automatic translation performs
the generation of graphical and textual constraints to code. Thus, from the architectural
viewpoint models through the MUD view it is possible to specify, model and analyze
different RTES concerns.

154 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 45 – Tasks of Turn Indicator System.

Figure 45 depicts the overall system tasks and describes how the classes of TIS are
defined in the code implementation. Annex D, defines the implementation of the proposed
case study based on MUD models. Section D.0.2 provides an explanation of concepts to
extract the TIS specification and to perform the implementation of timing requirements.
Section D.0.1 specifies the toolbox adopted by MARTeSys𝑅𝑒𝑞𝐷 Methodology.

6.4 Tracing Real-Time Embedded Systems Constraints
to Implementation Models

The elaborated strategy to trace RTES constraints, from MARTE profile annotations,
allows for their refinement over the Requirements, Functional, Logical and Technical view-
points. These constraints formally annotated by VSL are transferred from the models
and strategically positioned into the code in order to contribute to development activi-
ties. Moreover, after development of the system, it is possible to perform the empirical
evaluations.

Figure 46 shows slices of the architectural viewpoint models and of the source code
of the TIS case study.

Figure 46 represents, on the left-hand, the TurnHazardFeatures classes and their cons-
traints. These constraints, enumerated with labels 1 and 2, are automatically attached
in the code as recommendations to software developers. This scenario is presented on the
right-hand of Figure 46. These comments are generated and placed in the code. There-

6.4. Tracing Real-Time Embedded Systems Constraints to Implementation Models 155

Figure 46 – Tracing Non-Functional Constraints to System Implementation.

after, developers must implement the system and include these comments and guidelines
in the system realization (development). The studies developed in [184], [64], [122], can
be integrated into the proposed methodology in order to guarantee that these comments
and guidelines (proposed as VSL constraints recommendations) are implemented.

RTES are characterized by the correctness of their logical results and especially by
the capability to hold non-functional concerns along the development stages. The contri-
bution described in this section can guide developers in code implementation, minimize
possible human errors and accelerate development activities, since these constraints are
already closer to the final code. Therefore, it has the purpose of contributing to the
understanding, definition and consistent implementation of non-functional concerns of
RTES.

The elaborated strategy to trace RTES constraints, from MARTE profile annotations,
allow for their refinement over the Requirements, Functional, Logical and Technical view-
points. These constraints formally annotated by VSL are transferred from the models
and strategically positioned in the code in order to contribute to development activities.
Moreover, after the development of the system, it is possible to perform the empirical
evaluations.

Automatic translation performed here is able to generate graphical constraints, from
viewpoint models, as textual information in the code. This transformation allows high-
lighting RTES properties from the architectural models, to be used as formalized guide-
lines by developers directly from the generated code. As Figure 45 depicts, the system
is fully developed based on the generated code allowing measurements and the empirical

156 Chapter 6. Application of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

evaluation of non-functional properties of the system.

6.5 Contributions

This chapter presented the use of the MARTeSys𝑅𝑒𝑞𝐷 methodology for the develop-
ment of the TIS. The four viewpoints depict the design decisions and shows the main
architectural artefacts highlighting how RTES concerns were addressed. A systematic and
traceable representation of these concerns, in different views, can contribute to fulfilling
the general objective of a system (system requirements). The MARTE profile stereotypes
make explicit several embedded concerns and non-functional properties, and highlights
necessary information at different development views.

It is supposed that this strategy decreases the level of complexity in the real-time and
embedded development process. The main contributions of this chapter were previously
discussed in [100] and [101] and these are summarized as following:

1. Four different system viewpoints are presented in this research. Models at the
design level describe real-time and embedded requirements in early system deve-
lopment process. These models allow one to depict concerns of system stakeholders,
to validate properties that are important to the system under different perspectives
and description levels.

2. The presented methodology is able to represent the general architecture of the sys-
tem and its views, to highlight the interaction between design components, and to
describe communication interfaces through viewpoints of the system. This archi-
tectural description has to describe RTES in accordance with a functional, non-
functional and embedded perspective of the system.

3. A subset of MARTE constructors is applied to the system models in order to pro-
duce possible representation of the main functions and embedded concerns in design
models. The proposed strategy highlights how to annotate non-functional informa-
tion in RTES models at different abstraction levels.

4. This research study represents models that can be evaluated. Therefore, it is pos-
sible to develop analyses that are relevant to RTES as, for example, temporal and
performance analyses.

157

Chapter7
Evaluation of the MARTeSys𝑅𝑒𝑞𝐷

Methodology

This chapter describes the strategies applied to analyzing and evaluating non-functional
constraints of the architectural design. Furthermore, it presents the results of the MARTe-
Sys𝑅𝑒𝑞𝐷 qualitative evaluation. The main strategies employed to evaluate the proposed
study are empirical validation through simulation of specific system scenarios, model
checking and qualitative evaluations.

7.1 Quantitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Me-
todology

Quantitative Evaluation involves the analysis of traceability, verification and fulfil-
ment of RTES constraints along the development cycle. Therefore, it is necessary to
provide the system development, in this study, due to the fact that:

o It traces the RTES constraints to the final development stage: the pro-
posed methodology performs refinements of non-functional concerns along the four
viewpoints: Requirements, Functional, Logical and Technical. Moreover, it provides
an automatic generation of MARTE stereotypes, from graph models, to system de-
ployment models. The steps to this transformation are shown in Figure 8, and
these consider the Global Architectural design and MUD artefacts. The tracing of
these constraints allows one to connect information of design artefacts to system
developers along the system viewpoints.

o It presents the description of RTES concerns in a low granularity level:
adoption of VSL formalism in the architectural models allows one to formalize
the annotation of non-functional properties in architectural models as described in

158 Chapter 7. Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Chapter 2. A strategy to code generation, from MUD models, performs a repre-
sentation of these constraints by VSL formalism. Therefore, annotations of RTES
constraints is performed in a standard and formally defined syntax for to the de-
velopers.

o It allows for the measuring of timing concerns, from the architectural
models, from a dynamic perspective: strategies to check tasks constraints,
through runtime behavior of tasks, can contribute to estimate the execution time
values of non-functional constraints. As shown in Section 7.1.1, empirical mea-
surements are performed here by simulation of system scenarios and their timing
constraints. Other strategies for analyzing time were also present in Chapter 6 and
it shows a formal verification of temporal system constraints.

o It provides a strategy to verify the constraints in different perspectives:
it is possible to check the constraints from the architectural design models, as for
example, the Class diagram constraints, against the implemented/executed cons-
traints. In this case, it is possible to evaluate the real values of timing constraints,
which were previously annotated by MARTE stereotypes.

o It contributes to maintenance of timing constraints at different view-
points: it is possible to figure out possible discrepancies between the predefined
values of constraints and those that come from the automated verification activi-
ties. Refinements can be proposed when there are inconsistencies between the initial
values, which were modeled by designers, and the simulated values, after dynamic
execution, of constrained values. Besides, it is necessary to improve the models or
to evaluate the design decisions regarding the software or hardware platform.

Annex D provides an overview of the system development. The following section
defines the empirical evaluation of timing constraints and the simulation results.

7.1.1 Empirical Evaluation of MARTE Constraints

In this thesis, simulation and measurements of constraint values are performed in
order to check correctness, consistency and feasibility of initial timing annotations. The
empirical validation considers the runtime behavior of the tasks. It allows for timing
measurements in the design and development models. Moreover, it enables, through
simulation techniques, to validate the constrained runtime behavior. These measurements
are performed regarding execution time and scheduling policy of each task. Here, the
empirical evaluation of RTES constraints aims to answer two questions:

1. Do the system tasks maintain their deadline?

7.1. Quantitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Metodology 159

2. Does the periodic task set fulfil the requirements of the scheduling policy?

Simulation of RTES constraints can support correctness of design decisions, favor
quantitative analyses of non-functional concerns and contribute to refinements of these
constraints even after system implementation. Furthermore, it contributes to investiga-
tion of empirical evaluation questions.

System implementation respects and follows the traced constraints from the Class
diagram model of Figure 44. From these annotations, timing analysis of annotated cons-
traints are performed dynamically. Table 10 provides details of these constraints, for each
model element, and presents the results of timing and precondition simulations. The
empirical analyses consider the execution time of the system tasks and the simulation
results are based on 1500 execution samples. Figures 35 and 44 provides an overview of
the constraint annotations of MARTeSys𝑅𝑒𝑞𝐷 architectural models.

The FreeRTOS scheduler always executes the highest priority task first. In this imple-
mentation, it is assumed that the period of each task defines its priority. Here, tasks with
shorter periods have the higher priority. Therefore, for different values of period, the Rate
Monotonic (RM) scheduling is followed. However, tasks with the same priority (period)
are selected by the policy of Round-Robin (RR) scheduling. Table 11 shows the assign-
ment of tasks 𝜏1, 𝜏2, 𝜏3, 𝜏4 and 𝜏5 for the processor regarding the fixed-priority/period
constraints.

The Rate Monotonic scheduling has the following rules for scheduling a task set:
tasks creation is static and these have the same arrival time, tasks with shorter periods
are assigned higher priorities, no resources sharing between the tasks and it deals with
independent tasks. However, the task set of the proposed study case is not independent.
As an example of dependence relationship of the Turn Indicator tasks, one can state that:
𝜏2 depends on 𝜏1, 𝜏3 depends on 𝜏1 and so on.

In order to deal with precedence constraints, by RM scheduling, the dependent task
set was transformed into an independent one. This happens by an adequate modification
of timing parameters. The modification of release times and deadlines forces a situation
where any task cannot start before its predecessors and cannot preempt their predecessors.
Given the dependent tasks 𝜏2 and 𝜏1 , for example, with the respective release times 𝑟2 and
𝑟1; and computation times 𝐶2 and 𝐶1. The new release time for 𝜏2 is 𝑟*

2 = 𝑚𝑎𝑥(𝑟2, 𝑟1+𝐶1).
Besides, the new deadline of 𝜏1 is replaced by 𝑑*

1 = 𝑚𝑖𝑛(𝑑𝑎, 𝑑2 − 𝐶2). The scheduling of
Turn Indicator tasks considered in Figure 47 respects these modified parameters for all
task sets. It is supposed that the new deadline and release time of 𝜏 meet the system
constraints.

The case study proposed in Chapter 6 shows that the input and output tasks have
the shortest period due to the constant evaluation of the input signals and the slow
access of Turn Indicator actuators. Table 11 shows that the inputSignalHandler and

160 Chapter 7. Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Functional
Blocks

Blocks: Constraint
Type/ Attributes

Related Classes Related Task - Constraint
Type / Attributes of the
Class

Simulation

InputSignal-
Handler

≪
𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫:
period(20, ms); ex-
Time = 3 ms.

Control inputSignalHandler():
≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫:
period(20, ms).

Period =
17,66 ms;
exTime =
46,18 us

TurnIndicator-
Feature

≪
𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫:
period(40, ms); ex-
Time = 5 ms.

TurnIndicator-
Feature

taskTurnFlashing/
TurnIndicatorFeature():
≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫:
period(40, ms).
setFlashingHard(): ≪
𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ≫:
priority = 2.
setFlashingSoft():
≪ 𝑡𝑖𝑚𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ≫:
duration = 3*
(brightLenght + black-
Lenght); ≪ 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 ≫:
schedPolicy = 2.

Period =
35,33; ex-
Time = 3,79
us

HazardFeature ≪
𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫:
period(40, ms); ex-
Time = 5 ms.

HazardFeature taskHazardFlashing/
HazardFeature():
≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫:
period(40, ms)
flashing(): ≪
𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ≫:
priority = 1.

Period =
35,33; ex-
Time = 5,50
us

BreakFeature ≪
𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫:
period(70, ms); ex-
Time = 2 ms.

BreakSystem taskBreaking/
showBreakCar():
≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫:
period(70, ms).

Period =
70,66; ex-
Time = 4,08
us

OutputSignal-
Handler

≪
𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫:
period(20, ms); ex-
Time = 3 ms.

Control TurnHazardFeature():
≪ 𝑇𝑖𝑚𝑒𝑑𝑉 𝑎𝑙𝑢𝑒𝑆𝑝𝑒𝑐𝑖𝑓𝑖-
𝑐𝑎𝑡𝑖𝑜𝑛 ≫ brightLeght
= 1200 ms and black-
Leght = 400 ms; out-
putSignalHandler():
≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫:
period(20, ms).

Period =
17,66; ex-
Time =
94,09 us

Table 10 – MARTE Constraints Simulation.

outputSignalHandler tasks have priority 3, which guarantees these the highest priority
of the task set. Tasks taskTurnFlashing and taskHazardFlashing have priority 2 and
follow the Round-Robin scheduling, as these have equal values for their periods. Finally,
taskBreaking has the smallest priority. Figure 47 represents an initial scheduling of the
system tasks in accordance with the rules of the Rate Monotonic policy.

In Figure 47, tasks 𝜏1 and 𝜏2 represent the inputSignalHandler and outputSignal-
Handler and receive highest priority. Task 𝜏3 is the taskTurnFlashing and 𝜏4 is the
taskHazardFlashing and these have the same period/priority. Finally, task 𝜏5 represents
the taskBraking and due to its higher period, it has the lower priority. Tasks priority,
in accordance to their period, is depicted on Table 11. As presented in Figure 47, tasks

7.1. Quantitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Metodology 161

Task Period Priority Scheduling Policy
𝜏1 20 3 RM and RR between 𝜏1 and 𝜏5
𝜏2 40 2 RM and RR between 𝜏2 and 𝜏3
𝜏3 40 2 RM and RR between 𝜏3 and 𝜏2
𝜏4 70 1 RM
𝜏5 20 3 RM and RR between 𝜏5 and 𝜏1

Table 11 – Tasks and their Expected Scheduling Policy.

Figure 47 – Rate Monotonic Scheduling of the Tasks of the Turn Indicator Example.

run in accordance with their period and all the instances of tasks finished their execution
within the expected deadline.

For the simulation activities, different timing measurements for the execution time
were performed by timestamp function. Basically, the function 𝑚𝑖𝑐𝑟𝑜𝑠() of FreeRTOS
catches the initial and final time execution of each task and, from the difference of these
values, generates an automatic log of 1500 samples. Based on this log, the average over
the execution time is calculated. Figure 48 shows system tasks and the average for their
time execution values in microseconds. As it can be observed in Figures 44 and 48,
there are discrepancies between the annotated values and the simulated ones. However,
this strategy is useful for checking plausibility between design assumptions in different
abstraction levels (higher abstraction levels models versus development models.

The deadlines of each task (question 1), constrained as execution time, were overes-
timated in architectural and MUD models and these are not reached in the system rea-
lization. Simulation results show a discrepancy rate on a millisecond scale, constrained
in the models, to a microsecond scale in the execution phase. Table 10 described the va-
lues for assumptions, of architectural viewpoints artefacts, and their respective measured

162 Chapter 7. Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 48 – Execution Time Simulation of Tasks.

results.
The Arduino microcontroller and its functions/libraries allowed for the implementa-

tion of the system. The function digitalRead is adopted to read the signals that came
from the digital input ports and the interaction between physical and logical components
is pretty simple. These interactions and physical/logical signals, which are exchanged
between software and hardware components were described in the Technical viewpoint.
However, for the actual RTES, this function should be developed following the chosen
architecture. This may justify fewer discrepancies between the proposed constraints as-
sumptions, over the execution time values, and the respective simulation results in the
developed case study. However, even with lower simulation results in terms of tasks
deadlines, it was possible to show that the system tasks can hold their deadline.

As it can be noticed in Figure 48, from the executed code, tasks inputSignalHandler
and outputSignalHandler need a higher time of execution, since these are manipulating
external events and controlling physical components. On the other hand, the other tasks
can have shorter deadlines, since these perform logical actions to schedulability policies.
Although there were discrepancies in the measured scales, both in the results presented
in Figure 47 and those from Figure 48, the confirmation is reached that tasks deadlines,
of design constraints, are respected in the simulation stage.

Through the adoption of equations, it is possible to prove feasibility, by RM policy,
of one task set. Furthermore, these contribute toward proving the previous statements.
Equation 15 describes the utilization factor 𝑈 of 𝜏 . This value shows the fraction/quan-
tum of processor time necessary to execute the task set. In this study, 𝑈𝑚 refers to

7.1. Quantitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Metodology 163

the utilization factor of the simulated task set. Besides, 𝑈𝑎 corresponds to the same
utilization factor, but it describes the values of the architectural models assumptions.

𝑈 =
𝑛∑︁

𝑖=1

(𝐶𝑖/𝑇𝑖) (15)

The Rate Monotonic guarantees the feasibility of an arbitrary set of periodic tasks if
the total processor utilization 𝑈 does not exceed the Utilization least Upper-Bound [185].
Equation 16 shows the Least Upper Bound (𝑈𝑢𝑙𝑏) of 𝜏 . Here, 𝑈𝑢𝑙𝑏 describes the least
upper bound to the Central Process Unit (CPU) utilization, that is, maximum utilization
factor over all task sets.

𝑈𝑙𝑢𝑏 = 𝑛 * (21/𝑛 − 1) (16)

It is also important to highlight that RM guarantees that an arbitrary set of periodic
tasks is schedulable if the total processor utilization 𝑈 does not exceed the value of 0.69.
This value is adopted to compare and prove that 𝑈𝑎 and 𝑈𝑚 fulfil the (question 2)
regarding the empirical evaluation.

Function 17 shows that the utilization factor should be less or equal the 𝑈𝑙𝑢𝑏. At-
tendance to this inequality (𝑈 ≤ 𝑈𝑢𝑙𝑏) is sufficient, but not necessary to guarantee the
feasibility of a given task set.

𝑛∑︁
𝑖=1

(𝐶𝑖/𝑇𝑖) ≤ 𝑛 * (21/𝑛 − 1) (17)

In RTES development several periodic tasks can run concurrently, due to preemption
permission, and these tasks can have individual non-functional requirements. The pre-
emption permission allows tasks to execute concurrently by the scheduler, in one single
core processor. Tasks of the case study are periodic constrained in order to ensure that
the turn indicator behaves as hard real-time systems and provides deterministic guaran-
tees for the task set. Figures 49, 50, 51, 52 and 53 depict individually and graphically
the simulation results of the timing constrained tasks.

164 Chapter 7. Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 49 – Period of Input Signal Handler Task.

Figure 49 shows the simulation results of the inputSignalHandler. Table 10 shows
that initial period of 𝜏1 is equal 20 ms. However, from the simulation results the period
of 𝜏1 is on average equal to 17, 66 ms. For each value of the simulated execution time,
measured in microseconds, 1, 1𝑚𝑠 was added in order to adjust the simulation results to
the same/equivalent scale. This strategy simplifies the results evaluation and does not
bias the overall evaluation of the tasks assumptions. For 𝜏1, the processor utilization
𝑈𝑚

1 = 1, 14/17, 6 = 0, 064.
Similar to inputSignalHandler, the outSignalHandler has the highest priority from

among the other tasks. Figure 50 shows that the task 𝜏2 respects the constrained period
(see Figure 44) for all of the 1500 simulated and measured samples. For 𝜏2, the measured
processor utilization 𝑈𝑚

2 = 1, 19/17, 6 = 0, 067.
The tasks taskTurnFlashing and taskHazardFlashing have the same constrained period

of 40 ms. Figures 51 and 52 present the simulated results of these tasks and these show
that the real period occurs within of 35, 33 ms. In this case, 𝜏3 and 𝜏4 were executed
respecting their predefined deadlines. Moreover, as depicted in Figure 44 and Table
10, the 𝜏3 and 𝜏4 tasks have a scheduler constraint that shows a higher priority for 𝜏3.
Following the FreeRTOS scheduler, it is undestood that these tasks are executed by the
Round-Robin scheduler as these have the same period. In the proposed implementation,
the priority of 𝜏3 under 𝜏4 is implemented in a logical manner. In this case, a hazard
action can always be replaced by a turn indicator occurrence. The measurements of
processor utilization of 𝜏3 and 𝜏4 are, respectively, 𝑈𝑚

3 = 1, 1/35, 3 = 0, 031 and 𝑈𝑚
4 =

7.1. Quantitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Metodology 165

Figure 50 – Period of Output Signal Handler Task.

Figure 51 – Period of Turn Flashing Task.

1, 1/35, 3 = 0, 031.
Figure 53 represents on average the period of 70 ms of task 𝜏5. These results fit exactly

with the initial constraint values of taskBreaking. Moreover, 𝑈𝑚
5 = 1, 10/70 = 0, 01 and it

166 Chapter 7. Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Figure 52 – Period of Hazard Flashing Task.

also confirms the schedulability results of Figure 47 regarding to Rate Monotonic policy.

Figure 53 – Period of Breaking Task.

Measured values of 𝑈𝑚
1 , 𝑈𝑚

2 , 𝑈𝑚
3 , 𝑈𝑚

4 and 𝑈𝑚
5 are in accordance/respect the suffi-

cient 𝑈 ≤ 0.69, and it provides the feasibility guarantee of the task set. Based on the
measurements of the simulated tasks, 𝑈𝑚 ≤ 𝑈𝑙𝑢𝑏. It shows that all the real deadlines,

7.1. Quantitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Metodology 167

from the simulation results, are met. This fact confirms the previous results of the Rate
Monotonic scheduling in accordance with the tasks period, depicted in Figure 47, and
the execution time simulations.

𝑈𝑚 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑈𝑚

1 + 𝑈𝑚
2 + 𝑈𝑚

3 + 𝑈𝑚
4 + 𝑈𝑚

5 ≤ 5 * (21/5 − 1)
0, 064 + 0, 067 + 0, 031 + 0, 031 + 0, 01 ≤ 5 * (1, 14 − 1)
0, 203 ≤ 5 * 0, 14
0, 2 ≤ 0, 7

The same evaluation can be performed considering the models assumptions, defined
by MARTE constraints, regarding the processor utilization factor (𝑈𝑎). Based on the
model constraints, previously described on Table 10, thus the following calculation can
be made:

𝑈𝑎 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑈𝑎
1 + 𝑈𝑎

2 + 𝑈𝑎
3 + 𝑈𝑎

4 + 𝑈𝑎
5 ≤ 5 * (21/5 − 1)

2/20 + 4/20 + 5/40 + 5/40 + 3/70 ≤ 5 * (21/5 − 1)
0, 1 + 0, 2 + 0, 1 + 0, 1 + 0, 04 ≤ 5 * (1, 14 − 1)
0, 54 ≤ 5 * 0, 14
0, 5 ≤ 0, 7

Therefore, one notes 𝑈𝑙𝑢𝑏 ≥ 𝑈𝑎 ≥ 𝑈𝑚. Hence, the 𝑈𝑚 of the measured time (𝐶𝑚
𝑖)(by

simulation) are better than estimated ones (𝐶𝑎
𝑖). This proves that both timing constraints

and their respective execution measurements have optimal processor utilization among
all fixed priority assignment. Besides, it confirms that computation times of task sets
respect the guarantee level of processor utilization.

From the analysis of the results on Table 10, one notes that tasks meet the deadlines
specified in the architectural models. It can be said that the first and second questions,
which were proposed in this section answered adequately here. All the system tasks are
able to hold their deadline (question 1) and periodic task set can fulfil the requirements
of the scheduling policy of Rate Monotonic scheduler (question 2). However, in terms
of the execution time of each task the use of processor, can be optimized since on average
each task left the processor idle for few periods of time.

Noteworthy here is that, even with discrepancy simulation values, this methodology
adds value to RTES design. These quantitative measurements allow for the verification of
traced constraints and their plausibility regarding the design assumptions. In addition, it
also presents a manner by which one can check if architectural constraints in the design
model can be reached. The proposed simulation confirms that the RTES constraints
described in previous design viewpoints, and traced at different abstraction levels, can be
reached and simulated in the final development phase.

168 Chapter 7. Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

7.2 Early Evaluation of MARTE Constraints of Ar-
chitectural Viewpoint

This section applies model checking solutions and the UPPAAL tool to automatically
verify designed artefacts. Figures 31 and 32 provide the inputs to the proposed analysis.

Timed Computational Tree Logic (TCTL) formula allows for the evaluation of timing
constraints, which were mapped from requirements specification to Timed Automata
model. Moreover, one can also validate non-functional constraints, such as safety, rea-
chability, deadlock and insistence of critical regions. Figure 54 describes the overall TCTL
equations for validating and verifying the Turn Indicator model and its constraints.

Figure 54 – The Proposed TCTL Specifications and the Validation Results.

Figure 54 includes, in its upper section, all the proposed TCTL formulae. These for-
mulae use the branching time, through its quantifiers ∀ and ∃, and clock variables/cons-
traints to verify the MARTeSys𝑅𝑒𝑞𝐷 designed models. In Figure 54, the lower part de-
scribes the results of the TCTL verification.

The studies in this thesis propose five distinctive evaluations in order to perform the
initial verification of RTES properties. The verification is performed by model checking
the model against the TCTL formulae. Here, path formulae and state formulae are
checked in UPPAAL through the TCTL query language. According to [136], “state
formulae describe individual states, whereas path formulae quantify over paths or traces
of the model”. Therefore, a group of TCTL equations is proposed to verify (1o) if periodic
constraints are respected, (2o) if deadline constraints are respected, (3o) reachability

7.2. Early Evaluation of MARTE Constraints of Architectural Viewpoint 169

property, (4o) safety properties, and (5o) the absence of simultaneous participation in
critical regions.

1. Periodic constraints: This verification aims at showing that the system runs
periodically. In addition, it must prove that all periodic states always respect the
proposed period. The last TCTL formula, for example, is able to prove the states
OnTurn and OnHazard are active in the period 𝑝, where 540 ≤ 𝑝 ≤ 560. Moreover,
after 𝑝 ≥ 560 the state Off is reached and the system runs and all states are once
again ready for activation in the 0 ≤ 𝑝 ≤ 560 interval.

o A[] TurnHazardFeature.OnHazard imply 𝑝 ≤ 560

o A[] TurnHazardFeature.OnTurn imply 𝑝 ≤ 560

o A[] TurnHazardFeature.OnTurn or TurnHazardFeature.OnHazard imply 𝑝 ≤
560

o E<> TurnHazardFeature.Off imply 𝑝 ≥ 560

o E<> TurnHazardFeature.Off imply 𝑝 == 0

o A[] (TurnHazardFeature.OnTurn imply 𝑝 ≥ 540 and 𝑝 ≤ 560 p) and (Turn-
HazardFeature.OnHazard imply 𝑝 ≥ 540 and 𝑝 ≤ 560)

2. Deadline constraints: This verification aims at proving that the designed model
always hold the constrained deadline. The TCLT formula 𝐴[]𝑑 ≤ 𝑝 checks if all the
states constrained by the deadline respect the global period. As noted in Figure
54, this property is satisfied.

o E<> TurnHazardFeature.HazardFeature and 𝑑 ≤ 540

o E<> TurnHazardFeature.TurnIndicatorFeature and 𝑑 ≤ 540

o A[] TurnHazardFeature.TurnIndicatorFeature and TurnHazardFeature.Ha-
zardFeature imply 𝑑 ≤ 540

o A[] 𝑑 ≤ 𝑝

3. Reachability property: This verification aims at showing whether a given state
is always reachable from the initial automata state. This property is valid if there
exists a path, starting at the initial state, to each automata state.

o E<> TurnHazardFeature.OnHazard

o E<> TurnHazardFeature.OnTurn

o E<> TurnHazardFeature.HazardFeature

o E<> TurnHazardFeature.TurnIndicatorFeature

o E<> TurnHazardFeature.Off

170 Chapter 7. Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

4. Safety properties: This verification proves that an undesirable system state, or
blockade condition, will never happen. In this study, due to the importance of the
turn indicator controllers, it is important to guarantee that the system does not
run into a deadlock.

o A[] not deadlock

5. Absence of simultaneous participation in critical regions: This verification
proves that excludent states cannot be activated at the same time. This analysis
verifies that the priority state OnTurn never happens simultaneously to OnHazard
state.

o A[] not(TurnHazardFeature.OnTurn and TurnHazardFeature.OnHazard)

o A[] not(TurnHazardFeature.TurnIndicatorFeature and TurnHazardFeature.-
HazardFeature)

The proposed verification of the timing constraints and the validation of RTES pro-
perties closes the contributions of the MARTeSys𝑅𝑒𝑞𝐷 methodology to the early analysis
of RTES models. This thesis provides guidelines for the formal verification and validation
of artefacts in the Requirements viewpoints. It considers a formal grammar to transform
natural language specification to the Timed Automata formalism. From the designed
models, one can analyze the mentioned RTES constraints in order to increase the relia-
bility and correctness of the proposed methodology. The TCTL equations are useful to
check and prove the correctness of the models and the respective MARTeSys𝑅𝑒𝑞𝐷 formal
grammar.

7.3 Qualitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Me-
thodology

The MARTeSys𝑅𝑒𝑞𝐷 methodology was adopted in four case studies as in ADC, TIS,
RTMS and IPS. The Qualitative Evaluation performed here considers the MARTeSys𝑅𝑒𝑞𝐷

application in the TIS.The main objective of this qualitative evaluation, performed by
experts in automotive and RTES development, is to analyze the adequacy level of the
MARTeSys𝑅𝑒𝑞𝐷 methodology for specification, design and validation of non-functional
concerns in these systems.

In order to evaluate the decisions in the present research study, as well as provide
guidelines to improve the views, two interviews were performed with different experts.
These professionals are from different knowledge backgrounds and all are involved in auto-
motive systems development. The first interview was performed from September/2017 to

7.3. Qualitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 171

October/2017 with five interviewees and the second from August/2018 to January/2019
with eleven interviewees.

The first qualitative evaluation was performed in the initial stage of the methodology
development. In this first evaluation, the main objectives were to check if the guidelines
for design Requirements, Functional, Logical and Technical viewpoints in RTES domain
were appropriate and if the MARTE annotations are helpful in this domain. Even the
qualitative approach to evaluate the proposed methodology was refined, in line with the
research study level of advancement and maturity.

7.3.1 Data Gathering

The first and second qualitative evaluation are based on interviews, questionnaires
and measurement and qualitative analyses, from the perspective of the author, as well
as from the feedbacks from interviewees. Figure 55 depicts the main steps of the data
gathering process in the proposed evaluation.

Figure 55 – Main Steps to Perform the Qualitative Evaluation.

As described in Figure 55, the qualitative evaluation of the MARTeSys𝑅𝑒𝑞𝐷 methodo-
logy starts with an overall description (explanation) of the SysML and MARTE profiles.
Here, it was necessary to provide an overall explanation of the SysML profile and its
diagrams especially those adopted in this thesis. Furthermore, a brief definition of the
CoreElements, NFP, Time, GRM, HLAM, GCM, HRM and SRM packages is conducted,
which aids in comprehending of their adopted stereotypes.

Following this, in the 2𝑛𝑑 step, the MARTeSys𝑅𝑒𝑞𝐷 methodology is presented. It de-
picts the concept of viewpoints, views, architectural design and refinements and shows
how these define and contribute to the studies in this thesis. Moreover, a textual docu-
ment with the expected inputs and outputs of the Requirements, Functional, Logical and
Technical viewpoint is delivered to each reviewer.

In the 3𝑟𝑑 step, the questionnaire and its questions are presented to the interviewees.
Due to the fact that the qualitative questions are written in natural language, it is
important to describe the meaning of the question in order to avoid misunderstandings.
The proposed questionnaire is based on the IEEE 29148 [81] standard for the RE process,

172 Chapter 7. Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

on the ISO/IEC/IEEE 29148:2011 [81], ISO/IEC/IEEE 42010:2011 [37], ISO/IEC/IEEE
29148:2011 [81] and on the research papers [186], [76].

These IEEE standards contributed in defining the questions of the qualitative evalu-
ation. These provide, respectively, insights on the properties that should be supported
by the modeling languages and the main foundations, which need support through the
architecture description languages.

Two questionnaires are proposed and these are composed, respectively by 13 and 14
qualitative questions. These questions are mainly related with correctness, completeness,
consistency between design artefacts and the required system, ambiguity, conformity
between models, legibility, description of abstraction levels, description of multiple views,
expressiveness, relevance to the field of study, relevance of the architectural design to
RTES constraints, applicability or value of the methodology. An explanation of the
evaluated concepts of the qualitative questions is as follows:

o Correctness: MDSE approaches must provide architectural design artefacts, which
are able to describe the system services. Correctness of one design/development
artefact shows/presumes the right representation of system description in accor-
dance with the expected functionalities. Moreover, the correctness can also be
related to the correctness in the adoption of methods and tools. In the latter case,
correctness considers the right application of the semantic and syntax of each di-
agram/methodology element. Therefore, this concept has a great impact on the
project development, influencing the reliability and integrity of the developed sys-
tem.

o Completeness: An architectural description is complete whether or not the entire
system behavior has been reached in design activities [187]. Here, this concept
relates to the analysis of the artefacts from the viewpoints in order to confirm that
the system works as intended.

o Consistency between design artefacts and the expected system: The con-
ceptual models of an architecture description ,which are modelled in different view-
points, must be consistent with each other. Moreover, models on a high abstraction
level must be consonant with those in a low abstraction level. In this case, all the
artefacts from the system refinements are defining the same system requirements
through different viewpoints.

o Ambiguity: Architectural models should not express the same system (subsys-
tem), in one specific view, under double or ambiguous, understandable contexts. It
means that one specific artefact which is described, at different abstraction levels
and viewpoints, must not have a contradictory meaning in these viewpoints.

7.3. Qualitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 173

o Conformity between models: This concept describes how the models conform
with requirements of clients. In this case, artefacts from Requirements, Functional,
Logical and Technical viewpoints provides the expected inputs and outputs of the
system.

o Legibility: Architectural models must be understandable and intelligible to hu-
mans. It is assumed that model elements have a clear and comprehensible semantic
and syntax.

o Description of abstraction levels: This concept evaluates if the system is de-
signed under distinct perspectives. These perspectives/levels must be complemen-
tary and consistent with each other. It means that system services can be modelled
or defined under distinctive view through different refinements and levels.

o Description of multiple viewpoints: A viewpoint is specification of the con-
ventions for constructing and using a view. It formalizes a pattern or template
to develop individual views by establishing the purposes, details and techniques to
create a view. The viewpoint determines the languages to be used for describing the
view, and any associated modeling methods or analysis techniques to be applied to
these representations of the view [37]. Evaluation of this concept is noted through
the proposed methodology, by the adoption specifics and coherent viewpoints for
designing RTES.

o Expressiveness: An architectural description must communicate the overall and
complete idea of the system. Expressiveness shows a measure of effectively con-
veying meaning by a specific representation. An expressive methodology can ensure
that the design models are meaningful enough to represent the desired domain.

o Relevance to the field of study: This concept analyzes how much the viewpoint
descriptions, based on refinements of SysML and MARTE, are relevant and can
contribute to RTES development.

o Relevance of the architectural design to RTES constraints: The MARTE
constraints can contribute to the modelling and designing of non-functional concerns
of RTES. Evaluation of these constraints and their descriptions aims to check the
contributions of the proposed methodology to architectural viewpoints design.

o Applicability or value of the methodology: This evaluated concept aims at
analyzing the impact and importance of the proposed methodology, its guidelines
and its expressiveness, while suggesting design decisions for practical RTES deve-
lopment.

174 Chapter 7. Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

The mentioned questionnaire and its questions are based on the previous concepts. For
each question, an answer must be provided considering the follow interval: fully agree,
agree, partly agree, neutral, partly disagree, disagree and totally disagree.

In the 5 step, the results of the MARTeSys𝑅𝑒𝑞𝐷 methodology adoption are presented.
The artefacts of architectural design are explained in a high abstraction level and, then,
delivered to the interviewees.

Finally, the interviewees are given a period of two hours to analyze the architectural
models and to fill in the questionnaire while providing their impressions and criticism of
the proposed methodology. The steps concerning qualitative evaluation were performed
individually and it takes one hour and thirty minutes to execute the 1 − 5 steps and two
hours to the 6 step. In the end, the questionnaire complemented with the perception
of an expert is analyzed. The complete questionnaire and its analysis are presented in
Sections 7.3.2 and 7.3.3.

7.3.2 First Qualitative Evaluation

The initial qualitative evaluation was performed in September and October of 2017
and it received contributions from five experts in RTES development. Table 12 shows
the attendees of this first qualitative evaluation.

As noted from 12, the group of attendees is composed of experts from both academy
and industry. The first interview was performed while the MARTeSys𝑅𝑒𝑞𝐷 methodology
was being refined and architectural models were incomplete. However, the intention of
this initial analysis was to obtain different insights and contributions for the definition of
a representative and seamless architectural description of RTES.

The questionnaire takes into account the perception of experts relating to the appli-
cation of the MARTeSys𝑅𝑒𝑞𝐷 methodology and its fulfillment of significant concepts to
RTES development. Table 15, Annex F, represents a summary of the proposed question-
naire. The first column describes questions regarding RTES concepts, while the other
columns maintain the interviewees identification and their evaluation.

Expert
Identifica-
tion

Company Experience Knowhow Description

Expert 1 (E1) Oldenburg University 20 years Embedded system, design methods, RTOS
and HW/SW co-design.

Expert 2 (E2) Hella Company 8 years Embedded engineering and automotive de-
velopment.

Expert 3 (E3) Hella Company 6 years Real-time and embedded scheduling with
AUTOSAR standards.

Expert 4 (E4) University
Paderborn/C-LAB

5 years Embedded system researcher.

Expert 5 (E5) Hella Company 7 years Requirement engineering processes.

Table 12 – Attendees of the First Qualitative Evaluation.

7.3. Qualitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 175

The correctness criteria in the 2𝑛𝑑 question, Table 15 of Annex F, received one neutral
and one answer of partial disagreement. This fact relates to the level of difficulty to com-
prehend the stereotypes of the MARTE profile. Through interviewees 𝐸2 and 𝐸4 it is not
possible to evaluate the proposed semantic of one model element without an understan-
ding of the concepts that were adopted to define it. The author decided to improve the
definition of the MARTE stereotypes and elucidate, using a group of guidelines, on how
one specific real-time concern can be annotated by MARTE constructors/stereotypes.

The completeness criterion (3𝑟𝑑 question) was not well evaluated. This may be due to
the fact that the proposed methodology and its application were still under development
when this initial evaluation was performed. In this stage, only the models and partial
refinements from Requirements, Functional and Logical viewpoint were available.

The results of 5𝑡ℎ and 6𝑡ℎ questions present some problems regarding consistency and
conformity in adoption of this methodology. In the opinion of the author, this relates
directly to the fact that models or diagrams that represent the same system service were
described by a distinct name in different views/refinements. A standard nomenclature
and description of the models in different viewpoints can contribute to consistency and
conformity of the architectural models.

The qualitative evaluation carried out is important to evaluate the design decisions,
already taken in this research, since it provides different insights on their adequacy level
and relevance. In addition, results allows for improvements and adequacy of the research
to be made, since the first qualitative evaluation performs an initial evaluation of the
MARTeSys𝑅𝑒𝑞𝐷 methodology. In general, the results presented are positive and describe
the decisions previously made for the Requirements, Functional and Logical views, which
for the greater part of cases meet the recommendations of standards [81] and [37].

As checked through the 11𝑡ℎ and 12𝑡ℎ questions, adoption of the MARTE profile
in the model elements was evaluated as highly relevant to the domain of study. Here
it is important to highlight that the adoption of MARTE constraints, in the different
design levels, was well evaluated with the assumption that these will add value to RTES
design. The answers to the 12𝑡ℎ and 13𝑡ℎ questions shows the contribution of the proposed
methodology in terms of temporal aspects definition and to the early design of non-
functional properties.

7.3.3 Second Qualitative Evaluation

The second qualitative evaluation aims to evaluate the MARTeSys𝑅𝑒𝑞𝐷 methodology
and its adoption along the RTES design. It had considered design artefacts from four
architectural viewpoints. This evaluation follows the main steps described in Figure 55,
and this is performed by the same interviewees of the first evaluation plus six new ones
from the RTES area.

176 Chapter 7. Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

Table 13 describes the attendees of this evaluation and tabulated personal informa-
tion about interviewees. As this depicts Annex F, this information is declared in the
questionnaire by each interview within the topic “Personal Questions about the inter-
viewees”. These data can contribute, for example, to the analysis and understanding
of their evaluations of one criterion. Thus, the research interests, experience and the
knowledge level regarding methodologies and the profiles adopted in the MARTeSys𝑅𝑒𝑞𝐷

methodology were all checked. Table 13 uses the acronyms L1, L2 and L3 to indicate,
respectively, the knowledge level in the SysML profile, MARTE profile and SPES metho-
dology. Furthermore, L1, L2 and L3 can be classified as High (1), Medium (2) and
Low (3).

Expert Iden-
tification

Company Expe-
rience

Job Posi-
tion

Knowhow Description L1 L2 L3

Expert 1 (E1) Oldenburg
University

20 years Professor Embedded system, de-
sign methods, RTOS and
HW/SW co-design.

1 1 1

Expert 2 (E2) Hella
Company

8 years System En-
gineer

Embedded engineering
and automotive develop-
ment.

2 1 1

Expert 3 (E3) Hella
Company

6 years Functional
Safety
Engineer

Real-time and embed-
ded scheduling with
AUTOSAR standards.

1 2 2

Expert 4 (E4) University
Paderborn/-
C-LAB

5 years Researcher Embedded system re-
searcher.

2 1 2

Expert 5 (E5) Hella
Company

7 years Requirements
Engineer

Requirements engineering
processes.

1 2 2

Expert 6 (E6) HSHL3 3 years Researcher Embedded Systems and
Internet of Things (IoT).

1 1 1

Expert 7 (E7) HSHL 15 years Professor Model-based Engineering
of Embedded Systems.

1 1 1

Expert 8 (E8) INGenX
Technolo-
gies

25 year Start-up
Founder
and CEO

Start-up founder and
CEO/, System Engineer-
ing Coach, System Safety
Expert (TUV Sud).

2 1 3

Expert 9 (E9) UFU4 9 years Researcher Software and systems en-
gineer .

1 1 2

Expert 10(E10) FIB5 5 years Professor System Specification and
Formal Analysis.

1 2 3

Expert 11(E11) FIB5 5 years Product
Manager

System Specification and
Formal Analysis.

1 2 3

Table 13 – Attendees of the Second Qualitative Evaluation.

Second round of the qualitative analysis considers an improvement of the questionnaire
and its questions were explained or described with greater clarity. Moreover, it receives
two new qualitative questions. Annex F, Table 16, presents the refined questionnaire.
3 University of Applied Science Hamm-Lippstadt.
4 Federal University of Uberlândia.
5 Federal Institute of Brasilia

7.3. Qualitative Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology 177

Thus, the 14𝑡ℎ question aims at obtaining the opinion of the interviewees about the fea-
sible and realistic contribution of the proposed methodology in real environments/RTES
projects. The last question seeks to evaluate the effectiveness of the proposed strategy to
trace design artefacts at distinct abstraction levels. Even though the first analysis had
mostly favorable opinions, regarding MARTeSys𝑅𝑒𝑞𝐷 methodology, from the experts, it
is understood that this number of interviewees is not very high. Therefore, the decision
has been made to apply the proposed interview over a wider range of people.

In this evaluation, the interviewees also analyze the architectural models and com-
plete refinements of each viewpoint. A new interview and questionnaire application were
performed in order to get a global and definitive overview of the adequacy and usefulness
of the proposed study. Annex F presents a results overview of the second qualitative
evaluation regarding criticism from the interviewees.

The analyses of the questionnaire answers indicates a significant improvement in the
level of adequacy of MARTeSys𝑅𝑒𝑞𝐷 to RTES design. Thus, the conclusion is reached
that Relevance to the Field of Study, Relevance of MARTE constructors and
Practical Applicability is either better evaluated (when it considers the same inter-
viewees of the first and second evaluation) or “Fully Agree”/“Agree” as ranked by the
interviewees.

Noteworthy from the comparison between Table 15 (Annex F) and Table 16 (Annex
F), that interviewees that attended both evaluations either improved their evaluation or
maintained that attained in the first qualitative evaluation. It means, when considering
the final results of Table 16, there were no decreasing values for the qualitative question
assessments.

Highlighted also is an improvement in the analysis of some criteria, which were not
well evaluated in the first qualitative evaluation. The questions 5𝑡ℎ and 6𝑡ℎ, on Table 15,
for example, presented some problems regarding ambiguity and conformity in adoption
of this methodology. However, in the second qualitative evaluation both criteria have a
higher ranking regarding their contribution.

The correctness criteria expressed by the 2𝑛𝑑 question, Table 15 (Annex F), initially
received one neutral and one partial disagreement answer. However, correctness is eva-
luated once again as “fully agree” or “agree”, on Table 16 results, for the majority of
interviewees.

Considering exclusively the 1𝑠𝑡 and 3𝑟𝑑 interviewees, which performed the first and
second qualitative evaluation, emphasis can be placed on the noteworthy improvement
in their evaluation regarding: completeness, consistency, ambiguity, expressiveness and
relevance of the methodology. In both case, the raking increased by 2 or more levels of
acceptability.

Other important facts, in the second qualitative evaluation, are the proposition of the
personal questions to the interviewees and the 14𝑡ℎ and 15𝑡ℎ qualitative questions. The

178 Chapter 7. Evaluation of the MARTeSys𝑅𝑒𝑞𝐷 Methodology

evaluation of the knowledge level regarding the SysML profile, MARTE profile and SPES
methodology by the interviewees allow for a better evaluation, by the thesis author, of
the answers and criticism given by the interviewees.

The 14𝑡ℎ qualitative question provides some insights regarding the real applicability
of the proposed study. As illustrated on Table 16, the majority part of the intervie-
wees evaluate that MARTeSys𝑅𝑒𝑞𝐷 adds value to architectural design and development
of RTES.

Considering the 15𝑡ℎ qualitative question, ones that the proposed strategy for tra-
cing non-functional requirements/constraints along the architectural viewpoints needs
improvements. In this thesis, traceability is provided by identification labels placed on
each annotated constraint. It allows for a full trace of these constraints at different
abstraction levels. However, the automatic trace and support by an automatic tool can
improve track/link of these constraints.

7.4 Contributions

The contributions of this chapter are published in [102], [103] and [104] and these
manly relate to the quantitative and qualitative evaluation of the MARTeSys𝑅𝑒𝑞𝐷 metho-
dology adoption. As initial contributions, emphasis is placed on the tracing of constraints
along of the development phase and their dynamic evaluation. The empirical verification,
presented in this chapter, contributes to proving that (1) there is a consistency between
the architectural constrained models and the final model implementation regarding pe-
riodic tasks, and (2) to checking the need for refinements (in system or hardware level) of
the RTES constraints. Finally, it (3) also indicates that constrained parameters, which
are related to real-time schedule/precedence constraints can be satisfied and evaluated.

A qualitative evaluation is also performed here by industrial and academic experts of
RTES development. This evaluation allows for for quantifying, by means of expert ana-
lyses, the main contributions of the MARTeSys𝑅𝑒𝑞𝐷 methodology for RTES development.
Considering the final qualitative evaluation, one notes a positive evaluation by the RTES
experts regarding the completeness, consistency, ambiguity, expressiveness and marked
relevance and applicability of the MARTeSys𝑅𝑒𝑞𝐷 methodology in RTES development.
Moreover, this evaluation describes the criticism of these experts regarding its usefulness,
adequacy and relevance in this domain. In the first qualitative evaluation, criticism
regarding the correctness, completeness and conformity provided important feedback as
to the improvement of the proposed methodology. The second qualitative evaluation
highlights the need for improvements in the traceability criteria for RTES constraints. A
broader discussion about this topic is presented, as future research topic, in Chapter 8.

179

Chapter8
Conclusion and Future Work

This chapter discusses the contributions achieved through the proposed research, ad-
dresses future research topics and lists the research activities that lead to this thesis.

8.1 Main Results

The contributions and main results of this thesis are summarized below and these
consider the challenges in the developing of RTES, the proposed assumptions and research
questions of Chapter 1.

Proposition of a methodology to perform requirements specification and
architectural design of Real-Time Embedded Systems. The main contribution of
this thesis relates to the development and analysis of a methodology that covers diffe-
rent phases of RTES design. Initially, constructors, stereotypes and enumerations of the
MARTE profile were traced and linked with specific and non-functional concerns from
the RTES domain. From this collected data and the combined use of the SysML profile,
Timed Automata and SPES guidelines the MARTeSys𝑅𝑒𝑞𝐷 methodology is accomplished.
MARTeSys𝑅𝑒𝑞𝐷 methodology is based on viewpoints, refinements and granularity levels.
Based on author knowledge and the state of the art analyses, the understanding is reached
that MARTeSys𝑅𝑒𝑞𝐷 addresses expressive bases in RTES development, while considering
specificities of their specification and architectural design.

Definition of a standard and formal strategy to describe design decisions.
The MARTeSys𝑅𝑒𝑞𝐷 methodology adopts the concepts of architectural viewpoints and
refinements. The models can be enriched by MARTE constraints strengthening their ex-
pressiveness. However, more than found through only the MDSE approach, this research
study presents a group of formal guidelines to apply the proposed study into the distinc-
tive RTES domains. These guidelines allow (1o) to collaborate to the understanding of
the design steps, (2o) to estimate the time complexity function to system design and (3o)
to perform early estimation of system complexity. Formalization of the MARTeSys𝑅𝑒𝑞𝐷

180 Chapter 8. Conclusion

methodology considers formal input sets for the architectural formalization. Here diffe-
rent algorithms are applied to define the architectural viewpoints and their refinements.
This formalization helps RTES engineers to quantitatively measure the design processes.
Besides, it contributes toward predicting the design efforts and the scope of the project
based on the number of design artefacts.

Rational mapping of constructors to annotate concerns, at different abs-
traction levels, in a specific RTES methodology. This research study contributes to
map RTES concerns, which are important in RTES development. Moreover, the proposed
mapping allows one to link each outlined concern to an atomic MARTE stereotype.
The MARTE profile contains hundreds of different types of stereotypes. However, the
MARTE specification does not describe how to concretely correlate its stereotypes and
annotations with the global system requirements. MARTE constructors are specified in
generic fashion, which makes the applicability of the MARTE profile difficult in RTES
specification and design. The author of this thesis claims that the relationship between
atomic RTES concerns and the MARTE profile constructors contributes to architectural
design and viewpoints of these systems. In general, the presented leveling allows to
strengthen the specification, modelling, design, validation and maintenance of RTES,
since it addresses different concerns and properties of RTES in the initial development
stages.

Description of formal and standard strategies for handling timing cons-
traints since early and along architectural design. This study contributes with
two strategies to analyze, verify and validate timing constraints of RTES. The analysis of
these constraints is performed in (1o) early design steps using transformation rules and
Timed Automata formalism. Indeed, this study provides a formal grammar thatspecifies
formal rules to be applied in order to transform requirements specification, in natural
language, to Timed Automata. UPPAL is used here to validate and verify models of
Requirements viewpoint considering period, deadline and event occurrences of a RTES
specification. In addition, (2o) timing constraints are also verified in the final design
steps. In this case, a strategy to automatically trace the MARTE constraints from Model
and Unit Design models to the code is defined. Thus, it adopts the Papyrus tool for
code generation, definition and representation of RTES constraints at a low granularity
level. The tracing of these constraints, in the code, allows to connect design artefact
information to system developers. Moreover, as explained in Chapter 7, it allows one to
simulate timing concerns and their respective assumptions, from the architectural models,
in a dynamic perspective.

It provides traceability patterns between artefacts of the Requirements
Specification and Architectural design. This research defines a pattern for writing all
model constraints adopting the VSL formalism and labeled annotations. Thus, each cons-
traint annotation identifies the correlated viewpoint and its type regarding the MARTE

8.2. Research Challenges and Limitations 181

specification. The same standard is applied in different refinements and allows a model
checker to automatically verify if periodic and deadline constraints are consistent with
the architectural design assumptions.

8.2 Research Challenges and Limitations

The proposed thesis studies still present risk and limitations regarding the following
topics:

The time analysis performed here is based on estimations. The author applies
empirical methods to measure the accuracy of these estimations. Thus, the accuracy of
the approach is also dependent on the knowledge or experience of the engineer. Thus,
the value of these analyses is as good as the engineering predictions. However, the
MARTeSys𝑅𝑒𝑞𝐷 methodology allows to perform analyses and estimations from initial
requirements specification considering timing constraints. This study is able to contribute
to industrial projects, since it provides quick answers and verification of the system pro-
perties.

This study does not consider human interactions in the complexity ana-
lysis of architectural design. The design complexity analysis of the overall process
is performed from the formalized architectural viewpoints. This strategy allows one to
perform the analysis impact and timing estimation while designing the models and before
developing further components of the system. Therefore, it does not propose a strategy
to measure human activities that relate to the RTES design. Measurements concerning
creative solutions, engineer expertise, and time to learn and apply one specific solution
or method were not considered by the proposed study.

The number of refinements for each viewpoint are not defined in the pro-
posed methodology. The final low granularity levels of the are not defined, that means,
the “stop refinement level” is not specified in the MARTeSys𝑅𝑒𝑞𝐷 methodology. The main
reason behind this, it that this design decision is wholly dependent on the engineering
experience and the project type. Nevertheless, the proposed methodology and its detailed
specification supports functional and non-functional requirements specification and pro-
vides guidelines to RTES designers.

The MARTeSys𝑅𝑒𝑞𝐷 methodology applies VSL to specify the model anno-
tations. However, this formalism is not checked in relation to semantical correctness
of the developed application. The qualitative analysis performed in this study
considers a small scope of experts in the RTES development. The contribu-
tions of the methodology needs to pass through the evaluation and criticism of a more
representative number of stakeholders.

The design steps are not fully supported by tools or scripts. However, the
concepts and the MARTeSys𝑅𝑒𝑞𝐷 methodology guidelines are fully covered in the thesis

182 Chapter 8. Conclusion

scope and can be applied/followed in different RTES domain, techniques, design strategies
and tools.

8.3 Future Research

This section highlights future research. Thus, refinements and new directions that
may be considered regarding the scope of this thesis are considered as follows:

o MARTeSys𝑅𝑒𝑞𝐷 methodology provides MDSE background to specify and design
RTES. The design decisions were formalized in order to adopt the methodology in
a consistent and structured manner. However, a metamodel has not defined that
expresses the global syntax of the MARTeSys𝑅𝑒𝑞𝐷 methodology. Thus, metamodel
development may clarify the methodology description and depiction. In addition,
it allows to detail the methodology infrastructure and its correlate languages and
processes.

o Different techniques, languages and tools can be adopted to deal with the comple-
xity of RTES. This aims at supporting the design of both hardware, software and
mechanical elements, as well as provide more expressive and extensive descriptions
for the fundamental requirements of RTES. The languages and diagrams adopted
in MARTeSys𝑅𝑒𝑞𝐷 methodology do not cover all the RTES design. For example, the
values of the physical environment and mechanical parts are not designed or simu-
lated in this thesis. An extension of MARTeSys𝑅𝑒𝑞𝐷 methodology could contribute
to the entire system design and their refinements along the development cycle.

o The proposed study depicts software and hardware behavior of RTES. The con-
nection between the behavioral hardware descriptions to high-level synthesis is not
described in the thesis. The realization of this scenario approximates the design
artefacts to the final hardware components.

o In RTES development, the intrinsic properties to this type of application, such
as temporal requirements, performance, synchronization and parallelism must be
analyzed, understood, described, elicited and designed. This study considers the
design and validation of timing constraints along architectural viewpoints. Thus,
it is necessary to combine other strategies to address and validate other RTES
constraints.

o An extension of the MARTeSys𝑅𝑒𝑞𝐷 methodology to generate test cases to all view-
point artefacts is another open research topic. It allows for combining and inte-
grating into one single methodology of automatic test case generation. Thus, this
combination can further prove the correctness of the design by simulation.

8.4. Bibliographic Production 183

o MARTeSys𝑅𝑒𝑞𝐷 methodology depicts all conceptual correlations between viewpoints.
Nevertheless, there is a gap regarding the automatic linkage of the final models of
one viewpoint to another viewpoint. Fully automatic or partial transformations,
depending on manual design decisions made by engineers, between viewpoints can
be a further extension of this thesis.

o The architectural viewpoint artefacts are not fully transformed to the system im-
plementation view. Another extension of the thesis is to define mapping rules to
transform these artefacts to models of existent tools. It means that these tools
would generate the complete system code. Nevertheless, these tools probably re-
quire further refinement of the imported models.

o Many directions can be followed regarding the application of formal methods. An
important contribution to the early design analysis of Requirement models is auto-
matic TCTL generation. Considering the MARTeSys𝑅𝑒𝑞𝐷 methodology, the TCTL
can be automatically generated for the formal models, while describing period,
deadlines and events of RTES.

o Different types of formalism can be integrated in the MARTeSys𝑅𝑒𝑞𝐷 methodology.
As a direct result of this further extension, other timing constraints such as jitter
and offset can be verified by model checking approaches, as that performed for
deadline, period or events.

o Apply the proposed methodology in distinctive domains.

All these above described extensions show the impact of the thesis, since it has already
closed some gaps as described in Chapter 3 and opens further research topics.

8.4 Bibliographic Production

This thesis provided the following contributions in form of scientific publications:

1. “Model-Based Requirements Specification of Real-Time Systems with UML, SysML
and MARTE” published in the International Journal on Software and Systems
Modelling [92].

2. “Annotating SysML Models with MARTE Time Stereotypes for Requirements Speci-
fication and Design of Real-Time Systems” [94] published in the 7𝑡ℎ IEEE Workshop
on Self-Organizing Real-Time Systems.

3. “An Analysis of the Value Specification Language Applied to the Requirements En-
gineering Process of Cyber-Physical Systems” [98] presented in the 4𝑡ℎ IFAC Sym-
posium on Telematics Applications and published on Journal IFAC-PapersOnLine.

184 Chapter 8. Conclusion

4. “A Model-Based Engineering Methodology for Requirements and Formal Design of
Embedded and Real-Time Systems” published in the 50𝑡ℎ Hawaii International Con-
ference on System Sciences (HICSS) [95].

5. “Applying MARTE Profile for Optimal Automotive System Specifications and De-
sign” [93], published in the 50𝑡ℎ Hawaii International Conference on System Sci-
ences (HICSS).

6. “A Technique to Architect Real-time Embedded Systems with SysML and UML
through Multiple Views”, [96], published in the 19𝑡ℎ International Conference on
Enterprise Information Systems (ICEIS).

7. “Guidelines for using MARTE profile packages considering concerns of real-time
embedded systems”, [100] , published in the International Conference on Industrial
Informatics (INDIN).

8. “Multi-formalism in Different Levels of Abstraction for Requirements Engineering
and Design of Real-Time Systems”, [97], published in the PhD Forum at Design,
Automation and Test in Europe (DATE).

9. “SPES Methodology and MARTE Constraints in Architectural Design”, [101], pub-
lished in the IEEE International Symposium on Computers and Communications
(ISCC).

10. An Approach to Formalization of Architectural Viewpoints Design in Real-Time and
Embedded Domain, [99], published in the 21𝑡ℎ IEEE Computer Society Symposium
on Object/Service-Oriented Real-Time Distributed Computing (ISORC).

11. Model-Based Design Methodology for Early Evaluation of Real-time and Embedded
Constraints, [102], published in the International Conference on Industrial Infor-
matics (INDIN).

12. An Approach for Architectural Design of Automotive Systems using MARTE and
SysML, [103], published in 14𝑡ℎ International Conference on Automation Science
and Engineering.

13. Non-Functional Constraints Annotation to Real-Time and Embedded System De-
sign, [104], published in the VIII Brazilian Symposium on Computing Systems En-
gineering.

14. An Approach for Architectural Design of Automotive Systems using MARTE and
SysML [188], published in the 14th International Conference on Automation Science
and Engineering.

8.4. Bibliographic Production 185

15. Ein Modellierungsansatz für eine Systemarchitekturbeschreibung von Automotive-
Systemen mit MARTE und SysML, [189], published in Automatisierungstechnik
Journal.

16. A Methodology to Early Design and Evaluation of Real-Time Embedded Systems
considering Non-Functional Constraints, [190], published in the PhD Forum at PhD
Forum at 38th Design Automation Conference (DAC).

17. A Proposal to Trace and Maintain Real-time Embedded Constraints, [191], published
in the 6th International Embedded Systems Symposium.

186 Chapter 8. Conclusion

187

ANNEXA
Description of the Value
Specification Language

A.1 Introduction

Value Specification Language (VSL) is an extension of concepts of “Value Specifica-
tion” and “DataType” from UML. VSL was created to complement and customize the
UML metamodel with new marked values to value properties and stereotype attributes.
VSL standard provides definitions for the abstract syntax (MOF compatible meta-
model) and for concrete syntax (textual grammar) while adds new constructors to
specify and write MARTE expressions.

VSL is used for specifing values of constraints values, properties and attributes of
stereotypes. Generally, VSL specification is directly related to non-functional RTES
requirements and properties. Moreover, VSL can be used to express marked values and
to define constraints for any UML element which is associated to a value specification.

In VLS, Value Specifications express textual values of model elements. Expression 18
shows the possible value types which can be specified by VSL formalism.

< 𝑣𝑎𝑙𝑢𝑒 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 >:: =< 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 > | < 𝑒𝑛𝑢𝑚 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 > | < 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 > |

=< 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 > | < 𝑡𝑢𝑝𝑙𝑒 > | < 𝑐ℎ𝑜𝑖𝑐𝑒 > | < 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 > |

=< 𝑡𝑖𝑚𝑒 − 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 > | < 𝑜𝑏𝑠 − 𝑐𝑎𝑙𝑙 − 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 >

(18)

As depicted in Expression 18, a value specification can be simple literal, as a num-
ber, or can be a complex expression which involves variables and operations. A value
specification could be a literal value (LiteralSpecification), a composite value (Interval-
Specification, CollectionSpecification, TupleSpecification), an expression (Expression) or

188 ANNEX A. Description of the Value Specification Language

a time value/expression (TimeValueSpecification, TimeExpression). A short description
of each value specification is performed below:

o Literal: A literal is a fixed value in the code. It describes how to describe atomic
values as, for example, integer, real number, strings, boolean, data time and enu-
meration types. VSL presents strict production rule for each of these atomic values.

o Enumeration Specification: An enumeration specification describes a UML enu-
meration literal. VSL provides a formal notation to name an literal enumeration.

o Intervals: The interval values are able to describe ordered sets of value specifica-
tions. An interval is specified between two specific values: the minimum and the
maximum value.

o Collections: Collections presents a way to combine value specifications into items
collection. Collection is a set of individual value specifications separated by commas.

o Tuples: Tuple denotes structured values of different types. It allows to describe
values that are the same of tuple data type. The elements of a tuple are named
tuple items and consist of a pair of item name and their associated values separated
by an equal symbol.

o Choice values: Choice value specifications denotes the value of a choice data type.
It contains the name of one of the attribute members (chosen alternatively), which
determines the chosen data type and a value that conforms to the chosen data type.

o Expression: An expression is defined in VSL by a simple constant or variable (call
and declaration), or it can be a compound expression formed by the combination of
expressions through operator calls. VSL presents a strict production rule for each
of these atomic values. Additional details can be found in [2].

o Expression: An expression is defined in VSL by a simple constant or variable, or
it can be a compound expression formed by the combination of expressions through
operator calls. VSL presents a strict production rule for each of these atomic values.
Additional details can be found in [2].

o Time Expression: The VSL Time Expression model of VSL allows to formalize
different temporal and non-functional expressions on models and are important for
providing different and rigorous standards for representation of expressions. Section
A.2 provides an overview of the Time Expression model due to its importance to
the MARTeSys𝑅𝑒𝑞𝐷 methodology.

A.2. Time Expression 189

Understanding each value specification is important to define functional constraints
modeled elements. It allows to formally formulate more complex expressions which u-
sually groups one or more expressions of a value specification in architectural models.
Moreover, the adoption of Time Expression, in MARTeSys𝑅𝑒𝑞𝐷 methodology, allows a
specialized syntax for writing expressions and specifications of time values in the model
elements.

A.2 Time Expression

A Time Expression is described in Equation 19. In general, Time Expression e-
nables to formalize intervals (minimum and maximum) and event duration, as well as the
distance considered between consecutive events (see Expressions 26 and 27). Moreover,
Time Expression model allows to express events occurrence (see Expression 24), detail
specific event durations (observe Expression 20), describe conditional events occurrence
and, also, specify possible variations in events (Expression 25).

< 𝑡𝑖𝑚𝑒 − 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 >::= < 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑟 > | < 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑒𝑥𝑝𝑟 > |

< 𝑗𝑖𝑡𝑡𝑒𝑟 − 𝑒𝑥𝑝𝑟 >

(19)

A DurationExpression is a temporal expression to evaluate an event as a duration
value. Its syntax is defined by expression 20:

< 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑟 >::= (< 𝑟𝑒𝑎𝑙 − 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 > |𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 − 𝑐𝑎𝑙𝑙 − 𝑒𝑥𝑝𝑟𝑒𝑠𝑠 >)|

< 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑜𝑏𝑠 − 𝑒𝑥𝑝𝑟 > |(′(′< 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑜𝑏𝑠 − 𝑒𝑥𝑝𝑟 >

′−′ <′ 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑜𝑏𝑠 − 𝑒𝑥𝑝𝑟 >′)′)

(20)

A Duration Expression can also be decomposed into the following expressions 21, 22
and 23:

< 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 − 𝑐𝑎𝑙𝑙 − 𝑒𝑥𝑝𝑟𝑒𝑠𝑠 >::= < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 − 𝑛𝑎𝑚𝑒 > |

(21)

190 ANNEX A. Description of the Value Specification Language

< 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑜𝑏𝑠 − 𝑒𝑥𝑝𝑟 >::= < 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑜𝑏𝑠 − 𝑛𝑎𝑚𝑒 >

[′[′< 𝑜𝑐𝑐𝑢𝑟 − 𝑖𝑛𝑑𝑒𝑥 − 𝑒𝑥𝑝𝑟 >′]′][′𝑤ℎ𝑒𝑛′

< 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑟 >′]′]

(22)

< 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑜𝑏𝑠 − 𝑒𝑥𝑝𝑟 >::= < 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑜𝑏𝑠 − 𝑛𝑎𝑚𝑒 > [′[′< 𝑜𝑐𝑐𝑢𝑟 − 𝑖𝑛𝑑𝑒𝑥 − 𝑒𝑥𝑝𝑟 >′]′]

[′𝑤ℎ𝑒𝑛′ < 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑟 >]

(23)

Expressions 21, 22 and 23 need the definition of the following atomic values for an
expression:

< 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 − 𝑛𝑎𝑚𝑒 >::= [< 𝑛𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒 >′ .′] < 𝑏𝑜𝑑𝑦 − 𝑡𝑒𝑥𝑡 >

< 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑜𝑏𝑠 − 𝑛𝑎𝑚𝑒 >::= [< 𝑛𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒 >′ .′] < 𝑏𝑜𝑑𝑦 − 𝑡𝑒𝑥𝑡 >

< 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑜𝑏𝑠 − 𝑛𝑎𝑚𝑒 >::= [< 𝑛𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒 >′ .′] < 𝑏𝑜𝑑𝑦 − 𝑡𝑒𝑥𝑡 >

< 𝑜𝑐𝑐𝑢𝑟 − 𝑖𝑛𝑑𝑒𝑥 − 𝑒𝑥𝑝𝑟 >::= < 𝑣𝑎𝑙𝑢𝑒 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 >

An InstantExpression allows to describe temporal expressions to annotate instant
time values. Expression 24 depicts the syntax of the InstantExpression:

< 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑒𝑥𝑝𝑟 >::= (< 𝑑𝑎𝑡𝑎𝑡𝑖𝑚𝑒 − 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 > | < 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 − 𝑐𝑎𝑙𝑙 − 𝑒𝑥𝑝𝑟 >)

::= [′+′ < 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑜𝑏𝑠 − 𝑒𝑥𝑝𝑟 >)|

::= (< 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑜𝑏𝑠 − 𝑒𝑥𝑝𝑟 > [′+′ < 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑟 >])

(24)

One datetime-literal provides the following specifications:

< 𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 − 𝑙𝑖𝑡𝑒𝑟𝑎𝑙 >::= (< 𝑑𝑎𝑡𝑎 − 𝑠𝑡𝑟𝑖𝑛𝑔 > [𝑑𝑎𝑦𝑠𝑡𝑟𝑖𝑛𝑔])

::= |(< 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑟𝑖𝑛𝑔 > [𝑑𝑎𝑡𝑎 − 𝑠𝑡𝑟𝑖𝑛𝑔 >]

::= [𝑑𝑎𝑦 − 𝑠𝑡𝑟𝑖𝑛𝑔])|(< 𝑑𝑎𝑦𝑠𝑡𝑟𝑖𝑛𝑔 >])

A JitterExpression describes a variation (jitter) of events occurrences. These o-
ccurrences must be detailed to enable the control of possible variations or delays system
events/actions. Expression 25 describes different possibilities to describe a jitter.

A.2. Time Expression 191

< 𝑗𝑖𝑡𝑡𝑒𝑟 − 𝑒𝑥𝑝𝑟 >::= (′𝑗𝑖𝑡𝑡𝑒𝑟(′< 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑜𝑏𝑠 − 𝑒𝑥𝑝𝑟 >′)′)|

::= (′𝑗𝑖𝑡𝑡𝑒𝑟(′< 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑜𝑏𝑠 − 𝑒𝑥𝑝𝑟 >

::= ′−′ < 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑜𝑏𝑠 − 𝑒𝑥𝑝𝑟 >′)′)

(25)

Expressions to define temporal instants or event durations are respectively denoted
in Equations 26 and 27. Both expressions describe a special type of interval specification
and it marks temporal expressions with lower and upper limits:

< 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 >::= (′[′|′]′) < 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑒𝑥𝑝𝑟 >′ ..′

::= < 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 − 𝑒𝑥𝑝𝑟 > (′[′|′]′)

(26)

< 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 >::= (′[′|′]′) < 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑟 >′ ..′

::= < 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑟 > (′[′|′]′)

(27)

Often, when specifying real-time systems, one needs to represent time cardinality
such as delays, events duration, clock time, chronometric time and logical time in model
elements. Understanding the Time Expression model is primordial, in this study, once it
allows timing concerns of RTES following a standard formalism, proposed by the MARTE
profile, with completeness and less ambiguity.

192 ANNEX A. Description of the Value Specification Language

193

ANNEXB
Algorithms Formalization to
MARTeSys𝑅𝑒𝑞𝐷 Methodology

This Annex complements the contributions of Chapter 5. The following sections
details the proposed algorithms to formalize the MARTeSys𝑅𝑒𝑞𝐷 design decision to the
Requirements, Functional and Logical viewpoints.

B.1 Requirements Viewpoint

Algorithm B.1 High-Level Description - Algorithm to group requirements in cohesive ca-
tegories

1 {
2 1 numberOfRequirements = |R| ;
3 1 numberOfCategories = |C| ;
4 𝑛 for (j= 0; j < numberOfRequirements ; j++){
5 𝑛 aux = 0;
6 𝑛 *𝑚 for (i = 1; i < numberOfCategories ; i++){
7 𝑛 *𝑚 i f (ReqTable[j] [0] has high cohesion with c[i]){
8 𝐴≤𝑛 *𝑚 c[i] = c[i] + ReqTable[j] [0] + “𝑅” + j ;
9 𝐴≤𝑛 *𝑚 aux = 1;

10 − }
11 − }
12 𝑛 i f (aux == 0){
13 𝐵≤𝑛 *𝑚 for (i = 0; i < numberOfCategories ; i++){
14 𝐵≤𝑛 *𝑚 i f (c [i] == empty){
15 𝐶≤𝐵 c[i] = ReqTable[j] [0] + “𝑅” + j ;
16 𝐶≤𝐵 break ;
17 − }
18 − }
19 − }
20 − }
21 }

Algorithm B.1 adds one requirement 𝑟𝑖 in a category 𝑐𝑖 if there is similarity between
them. For each requirement, from 𝑅𝑒𝑞𝑇𝑎𝑏𝑙𝑒, an evaluation must be done in order to

194 ANNEX B. Algorithms Formalization to MARTeSys𝑅𝑒𝑞𝐷 Methodology

cluster this requirement in a category 𝑐𝑖. Cohesive criterium means that requirements
with common responsibilities must compose the same group. Therefore, requirements in
a single category describe and are correlated to the same system service. This design
decision is formalized, in Algorithm B.1, through evaluation if “𝑎𝑢𝑥 = 1” then 𝑟𝑖 must
be categorized in an already created category or if “𝑎𝑢𝑥 = 0” it must generate a new
category. Moreover, it is created a sequential label or ID reference to describe each
requirement of one category. This identification allows a simple manner to name each
requirement.

Algorithm B.2 is a second refinement of High-Level Description of Requirements.
This view employs the categorization performed in Algorithm B.1 to represent system
requirements in a graphical manner. It adopts the Use Case diagram to show the group
of related functions which is able to setup atomic use cases. Algorithm B.2 creates the
actors and relations between the use cases.

Algorithm B.2 High-Level Description - Algorithm to design the Use Case diagram from system
categories

1 {
2 1 numberOfCategories = |C| ;
3 1 create the actors ;
4 𝑚 for (i = 0; i < numberOfCategories ; i++) {
5 𝑚 create sc [i] ;
6 }
7 𝑚 for (i = 0; i < numberOfCategories ; i++) {
8 𝑚 create the associations to sc [i] ;
9 𝑚 i f (sc [i] has a relationship with an actor)

10 𝐴<𝑚 l ink sc [i] to the actor ;
11 − }
12 }

The last refinement to the High-Level Description of Requirements is presented in
Algorithm B.3 and it adopts the SysML Requirements diagram.

Algorithm B.3 High-Level Description - Algorithm to model requirements and their relation-
ships

1 {
2 1 numberOfRequirements = |R| ;
3 𝑛 for (j= 0; j < numberOfRequirements ; j++){
4 𝑛 ReqDiagram[j] = a graphical representation of ReqTable[j] [0] ;
5 − }
6 𝑛 for (j= 0; j < numberOfRequirements ; j++){
7 𝑛 * 𝑛 for (i= 0; i < numberOfRequirements ; i++){
8 𝑛 * 𝑛 i f (ReqDiagram[j] has a relationship ReqDiagram[i] and i <>j)
9 𝐴<(𝑛 * 𝑛) create the association from ReqDiagram[j] to ReqDiagram[i] ;

10 }
11 }
12 }

B.1. Requirements Viewpoint 195

Algorithm B.3 describes the design of the SysML Requirements diagram and the defi-
nition of requirements relationships. 𝑅𝑒𝑞𝐷𝑖𝑎𝑔𝑟𝑎𝑚 element shows one specific requirement
(from ReqTable). The modeled requirements can be related with each other by derive,
satisfy, copy, verify, refine and/or trace relationships. Models from Algorithm B.3 are
used, as an input, to the Composition of Models using the MARTE Profile (Algorithm
B.4) and to Formal Specification with VSL (Algorithm B.4).

Algorithm B.4 MARTE Composition and VSL Specification - Algorithm to apply in Require-
ment Models MARTE stereotypes and to formalize their description

1 {
2 1 numberOfRequirements = |R| ;
3 𝑛 for (j= 0; j < numberOfRequirements ; j++){
4 𝑛 i f (ReqDiagram[j] needs to be detailed through a non−functional information){
5 𝐴≤𝑛 ReqDiagram[j] i s labeled by a MARTE stereotype ;
6 }
7 𝑛 i f (ReqDiagram[j] has ≪ 𝑁𝑓 𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ label)
8 𝐴≤𝑛 Formalize the ≪ 𝑁𝑓 𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ of ReqDiagram in accordance with VSL syntax ;
9 }

10 }

Algorithm B.4 describes the last refinements of Requirements viewpoints. Each 𝑅𝑒𝑞-
𝐷𝑖𝑎𝑔𝑟𝑎𝑚𝑗 should be checked in order to discover and detail related non-functional and
real-time properties. In the cases where it is necessary to highlight these properties, in this
level of abstraction, a MARTE stereotype can be adopted. The ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫
stereotype allows to add textual information to model elements and it provides a manner
to annotate different RTES constraints. The last part of Algorithm B.4 shows a strategy
to formalize a ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ declaration by VSL standard.

The Analysis of Requirements activity is formalized, in MARTeSys𝑅𝑒𝑞𝐷 methodology,
by proposed Grammar to the NL-TA Transformation.

Proposed Grammar to the NL-TA Transformation

The following rules details the grammar for the NL-TA Transformation. This gram-
mar specifies formal rules which must be applied to transform requirements specification,
in natural language, to Timed Automata.

< root > ::< 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 >

| < 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 >< 𝑟𝑜𝑜𝑡 >
.

< construct > ::< 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 >

:: | < 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 >< 𝑒𝑑𝑔𝑒 >

:: | < 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 >< 𝑒𝑑𝑔𝑒 >< 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 >

.

196 ANNEX B. Algorithms Formalization to MARTeSys𝑅𝑒𝑞𝐷 Methodology

< location > ::< 𝑙𝑎𝑏𝑒𝑙 > | < 𝑐𝑙𝑜𝑐𝑘_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 >

:: | < 𝑙𝑎𝑏𝑒𝑙 >
.

< edge > ::< 𝑔𝑢𝑎𝑟𝑑 >

:: | < 𝑔𝑢𝑎𝑟𝑑 >< 𝑎𝑐𝑡𝑖𝑜𝑛 >

:: | < 𝑔𝑢𝑎𝑟𝑑 >< 𝑟𝑒𝑠𝑒𝑡 >

:: | < 𝑔𝑢𝑎𝑟𝑑 >< 𝑎𝑐𝑡𝑖𝑜𝑛 >< 𝑟𝑒𝑠𝑒𝑡 >

:: | < 𝑎𝑐𝑡𝑖𝑜𝑛 >

:: | < 𝑎𝑐𝑡𝑖𝑜𝑛 >< 𝑟𝑒𝑠𝑒𝑡 >

:: | < 𝑟𝑒𝑠𝑒𝑡 >

.

< label > ::< 𝑛𝑎𝑚𝑒 > .

< clock_constraint > ::< 𝑐𝑙𝑜𝑐𝑘 >< 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 >< 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 > .

< guard > ::< 𝑐𝑙𝑜𝑐𝑘_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 >

:: | < 𝑐𝑙𝑜𝑐𝑘_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 >< 𝑙𝑜𝑔𝑖𝑐_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 >< 𝑔𝑢𝑎𝑟𝑑 >
.

< action > ::< 𝑛𝑎𝑚𝑒 > “!”
| < 𝑛𝑎𝑚𝑒 > “?”

.

< reset > < 𝑐𝑙𝑜𝑐𝑘 > “ :=′′< 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 >

| < 𝑐𝑙𝑜𝑐𝑘 > “ := ” < 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 >< 𝑟𝑒𝑠𝑒𝑡 >
.

< logic_relation > :: “𝐴𝑁𝐷”|“𝑂𝑅”|“” .

< name > ::< 𝑆𝑇𝑅𝐼𝑁𝐺 > .

< clock > ::< 𝑛𝑎𝑚𝑒 > .

< relation > :: “ > ”
|“ ≥ ”
|“ = ”
|“ < ”
|“ ≤ ”

.

< constant > ::< 𝐼𝑁𝑇𝐸𝑅𝐺𝐸𝑅 > .

B.2. Functional Viewpoint 197

B.2 Functional Viewpoint

Algorithm B.5 describes the second refinement to the Functional viewpoint. It des-
cribes the refinement of the Block Definition diagram model through the Internal Block
diagram. In this view, the number of internal blocks is the same of functional blocks, how-
ever this refinement adds external interfaces or communications channels to the blocks. In
this algorithm, the variable 𝑛𝑢𝑚𝑏𝑒𝑟𝑆𝑖𝑔𝑛𝑎𝑙𝑠 defines the number of system signals. There-
fore, these signals represent the global directed edges of the model. In this viewpoint,
internal ports and flow ports are adopted in order to represent the communication and
types of relations between blocks. The 𝑚𝐼𝐵𝐷 matrix stores the internal blocks which
have any association with an input or output edge.

Algorithm B.5 Second Refinement - Algorithm to model the Internal Block Diagram with
internal and flow ports

1 {
2 1 numberSignals= |S | ;
3 1 signals [numberSignals] = vetor with the overall signals ;
4 1 numberInternalBloc = |FuncBlock | ;
5 1 mIBD = matrix [numberInternalBloc] [2] ;
6 𝑛𝑠 for (i=0; i <= numberSignals ; i++){
7 𝑛𝑠 * 𝑛𝑖𝑏 for (j= 0; j <= numberInternalBloc ; j++){
8 𝑛𝑠 * 𝑛𝑖𝑏 i f (signals [i] i s output of funcBlock [j]){
9 𝐴≤𝑛𝑠 * 𝑛𝑖𝑏 mIBD[i] [0] = funcBlock [j] ;

10 𝐴≤𝑛𝑠 * 𝑛𝑖𝑏 break ;
11 − }
12 − }
13 𝑛𝑠 * 𝑛𝑖𝑏 for (j= 0; j <= numberInternalBloc ; j++){
14 𝑛𝑠 * 𝑛𝑖𝑏 i f (signals [i] i s input of funcBlock [j]){
15 𝐵≤𝑛𝑠 * 𝑛𝑖𝑏 mIBD[i] [1] = funcBlock [j] ;
16 𝐵≤𝑛𝑠 * 𝑛𝑖𝑏 break ;
17 − }
18 − }
19 𝑛𝑠 i f ((mIBD[i][0] <> empty) and (mIBD[i] [1] <> empty)) {
20 𝐶≤𝑛𝑠 create a internal port to intExpBlock [i] [0] ;
21 𝐶≤𝑛𝑠 create a internal port to mIBD[i] [1] ;
22 𝐶≤𝑛𝑠 create an association from mIBD[i] [0] to mIBD[i] [1] ;
23 − }
24 𝑛𝑠 i f (mIBD[i][0] <> empty) {
25 𝐷≤𝑛𝑠 create a flowport to mIBD[i] [0] ;
26 𝐷≤𝑛𝑠 create an association from mIBD[i] [0] to flow port ;
27 − }
28 𝑛𝑠 i f (mIBD[i][1] <> empty){
29 𝐸≤𝑛𝑠 create a flowport to mIBD[i] [1] ;
30 𝐸≤𝑛𝑠 create an association from mIBD[i] [1] to flow port ;
31 }
32 }
33 }

It is worth to mention that during the modeling activities each functional block from
𝑚𝐼𝐵𝐷𝑖,𝑗 is modeled by syntax of Internal Block diagram. Similar to Algorithm 5.3, in
Algorithm B.5, lines 6−17 create a matrix of internal blocks (𝑚𝐼𝐵𝐷) from the functional

198 ANNEX B. Algorithms Formalization to MARTeSys𝑅𝑒𝑞𝐷 Methodology

blocks. However, this matrix has the specificities of internal blocks components, where
for each line the first column can store an internal output block to 𝑠𝑖𝑔𝑛𝑎𝑙𝑖 ∈ 𝑆. Moreover,
the second column can store an input internal block to 𝑠𝑖𝑔𝑛𝑎𝑙𝑖 ∈ 𝑆.

In Algorithm B.5, lines 18 − 30 show how to create relationships to 𝑚𝐼𝐵𝐷 elements.
Initially, internal ports and their respective associations can be defined for each block
(lines 18 − 22). Lines 23 − 26 show that flow ports and their associations can be created
from internal blocks of the 𝑚𝐼𝐵𝐷𝑖,0 elements. In this case, it creates a relationship to
the elements of first column. Finally, lines 27 − 30 present the design of flow ports and
their associations from the internal blocks of the 𝑚𝐼𝐵𝐷𝑖,1 elements.

The third and last abstraction level of Functional viewpoint is detailed in Algorithm
B.6. This refinement aims to qualify the RTES models with well formed descriptions of
non-functional properties. A group of guidelines to specify RTES concerns is detailed
in Annex B and it presents how to use constraints of the MARTE profile. Therefore,
CoreElements, NFP, Time, GRM, HLAM, GCM, HRM and SRM packages can have
their stereotypes adopted to refine the models.

Algorithm B.6 Third Refinement - Algorithm to annotate MARTE constraints in the functional
blocks

1 {
2 1 numberFuncBloc = |FuncBloc | ;
3 𝑛𝑏 for (i= 1; i <= numberFuncBloc; i++;){
4 𝑛𝑏 i f (funcBlock [i] needs to be detailed through a non−functional information){
5 𝐴≤𝑛𝑏 funcBlock [i] i s labeled by a MARTE stereotype ;
6 }
7 𝑛𝑏 i f (funcBlock [i] has ≪ 𝑁𝑓 𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ label)
8 𝐴≤𝑛𝑏 Formalize the ≪ 𝑁𝑓 𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ of funcBlock [i] in accordance with VSL syntax ;
9 }

10 }

As it can be observed in Algorithm B.6, a stereotype or ≪ 𝑁𝑓𝑝𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ cons-
traint, from the MARTE profile, can be annotated in a functional block while refining
their properties. This refinement allows to highlight timing properties in early stages of
the architectural design.

B.3 Mapping between Functional Viewpoint to Lo-
gical Viewpoint Models

Mapping between Functional Viewpoint and Logical Viewpoint is performed in order
to show how final models of Functional viewpoint can be refined in the initial models
of Logical viewpoint. This section shows how to link the design decisions of Functional
viewpoint to Logical viewpoint.

B.3. Mapping between Functional Viewpoint to Logical Viewpoint Models 199

Algorithm B.7 shows the mapping of functional models to logical models in a 𝑁 : 𝑀

relation. Here, 𝑀 ≤ 𝑁 , where 𝑁 describes the functional blocks and 𝑀 the logical
blocks. This algorithm formalizes the main design decisions and shows that functional
blocks, with common control features, can be mapped by one logical block.

Algorithm B.7 Mapping viewpoints - Algorithm to map Functional viewpoint to Logical view-
point

1 {
2 1 counter = 0;
3 𝑛𝑏 for (i= 0; i<=|FuncBlock | ; i++){
4 𝑛𝑏 hasSimilarity = false ;
5 𝑛𝑏*(𝑛𝑏−1) for (j= i+1; j<= numberFuncBloc; j++) {
6 𝑛𝑏*(𝑛𝑏−1) i f (FuncBlock[i] has similar control functions with FuncBlock[j] AND LogBlock

does NOT contains FuncBlock){
7 𝐴≤𝑛𝑏*(𝑛𝑏−1) LogBlock[counter] = LogBlock[counter] + FuncBlock[j] ;
8 𝐴≤𝑛𝑏*(𝑛𝑏−1) hasSimilarity = true ;
9 − }

10 − }
11 𝑛𝑏 i f (hasSimilarity == false){
12 𝐵≤𝑛𝑏*𝑘 for (k = 0; k <counter ; k++){
13 𝐵≤𝑛𝑏*𝑘 i f (FuncBlock[i] has similar control functions with LogBlock[k] AND LogBlock does

NOT contains FuncBlock){
14 𝐶≤𝐵 LogBlock[k] = LogBlock[k] + FuncBlock[j] ;
15 𝐶≤𝐵 hasSimilarity = true ;
16 − }
17 − }
18 − }
19 𝑛𝑏 i f (hasSimilarity == false) AND LogBlock does NOT contains FuncBlock{
20 𝐷≤𝑛𝑏 LogBlock[counter] = FuncBlock[i] ;
21 𝐷≤𝑛𝑏 hasSimilarity = true ;
22 − }
23 𝑛𝑏 i f (hasSimilarity){
24 𝐸≤𝑛𝑏 counter++;
25 − }
26 − }
27 𝑛𝑙 for (i= 1; i <=|LogBlocks | ; i++){
28 𝑛𝑙 check constraints compatibil ity ;
29 𝑛𝑙 update LogBlock[i] with MARTE constraints of FuncBlock[i] ;
30 − }
31 }

Algorithm B.7 aims to provide the group of logical blocks of RTES. These blocks are
the basis to the development of Logical viewpoint and here they are represented by the
𝐿𝑜𝑔𝐵𝑙𝑜𝑐𝑘 vector/element. The functional blocks (𝐹𝑢𝑛𝑐𝐵𝑙𝑜𝑐𝑘) are compared (lines 3−10
) to check if one block 𝑖 has any similarity with the others 𝑖 + 1, 𝑖 + 2, ...𝑖 < |𝐹𝑢𝑛𝑐𝐵𝑙𝑜𝑐𝑘|
blocks. This first design steps shows that if a functional block 𝑖 can be grouped with one
or more functional blocks they are clustered in logBlock[counter]. After this evaluation, if
block 𝑖 was not allocated as one logical block, two scenarios are still possible: (1) block
𝑖 is similar with one of the already composed logical block (lines 11 − 18) or (2) block
𝑖 has no similarity with the other blocks and it provides a singular logical block (lines

200 ANNEX B. Algorithms Formalization to MARTeSys𝑅𝑒𝑞𝐷 Methodology

29 − 22). The variable counter defines the final number of logical blocks to the Logical
viewpoint. Algorithm B.7 describes an initial reading and grouping of functional blocks
to logical blocks. However, it is possible, for example, to compare the logical blocks again
and refine the similarity criteria by using the lines 3 − 10 of Algorithm B.7.

In Algorithm B.7, a functional block should be replicated without modification, in the
Logical viewpoint, if this block has not similar control features or if it is an input/output
functional block. In addition, all the MARTE constraints from Functional viewpoint
are updated, for each logical block, in order to maintain the consistency between each
viewpoint.

B.4 Logical Viewpoint

In this section, the set of logical design steps are separately represented for input
logical blocks (Algorithm B.8), output logical blocks (Algorithm B.9) and feature blocks
(Algorithm B.10). This subdivision can contribute to compression of the design decisions.

Logical viewpoint is represented by different refinements of the Activity diagram.
In order to formalize the group of activities and their input/output associations, it is
necessary to adopt different data structures as, for example, list data types to describe
the models. Therefore, the algorithms to formalize the Logical viewpoint are described
in higher abstraction level than the previous one from the Requirement and Functional
viewpoints. This decision aims to facilitate the comprehension of the design decisions
regarding the Activity diagram and MARTE profile annotations. The proposed descrip-
tion is sufficient enough to specify the MARTeSys𝑅𝑒𝑞𝐷 methodology allowing its manual
adoption to model the Logical viewpoint.

In Algorithm 5.4, each Activity diagram is placed in one list of activities. Lines 8−17
describe the control/creation of three possible types of Activity diagrams: actI (Activity
diagram to one input logical block), actO (Activity diagram to one logical output block)
and actGen (Activity diagrams to features blocks). It is important to highlight that
every position 𝑎𝑐𝑡𝐺𝑒𝑛 list can contain one specific Activity diagram, from the features
blocks, which can be composed by different sub-activities.

Algorithm B.8 describes the group of steps to be performed in order to create the
Logical viewpoint to input blocks. These logical blocks comes from the mapping between
Functional and Logical viewpoints.

Algorithm B.8 Logical viewpoint:Input - Algorithm to describe the design of the Activity
diagram to the Input Logical blocks

1 {
2 𝑛𝑒 foreach (signal in externalSignal){
3 𝑛𝑒 i f (signal associates with one ACTIVITY) {
4 𝐴≤𝑛𝑒 i f (act iv i ty of this signal i s NOT created){

B.4. Logical Viewpoint 201

5 𝐵≤𝐴 create act iv i ty for signal ;
6 𝐵≤𝐴 store each new act iv i ty in act iv i tyL is t ;
7 − }
8 𝐴≤𝑛𝑒 create an association from signal to the act iv i ty ;
9 − }else{

10 𝑛𝑒−𝐴 create the new element for signal ;
11 𝑛𝑒−𝐴 l ink signal to the new element ;
12 𝑛𝑒−𝐴 create act iv i ty (ies) to the new element ;
13 𝑛𝑒−𝐴 create an association from this new element to the act iv i ty (ies) ;
14 𝑛𝑒−𝐴 store the act iv i ty (ies) in act iv i tyL is t ;
15 − }
16 − }
17 𝑛𝑎 foreach (act iv i ty in act iv i tyL is t){
18 𝑛𝑎 i f (act iv i ty is end node){
19 𝐷≤𝑛𝑎 i f (internalSignal of the act iv i ty is NOT created) {
20 𝐸≤𝐷 create internalSignal for act iv i ty ;
21 𝐸≤𝐷 store each new internal signal in internalSigList ;
22 − }
23 𝑛𝑎 create an association from act iv i ty to the internalSignal ;
24 − }else{
25 𝑛𝑎−𝐷 l ink act iv i ty to the new element ;
26 𝑛𝑎−𝐷 create act iv i ty (ies) to the new element ;
27 𝑛𝑎−𝐷 create an association from this new element to the act iv i ty (ies) ;
28 𝑛𝑎−𝐷 store the act iv i ty (ies) in act iv i tyL is t ;
29 − }
30 − }
31 }

Structure “foreach” is applied in the algorithms of Logical viewpoint and it presents,
at higher abstraction level, the incremental checking of all elements of a group/list. Al-
gorithm B.8 shows that external signals are considered as inputs or star point for this
diagram. It means that every external signal must have one specific activity to detail
its behavioral features. These signals are identified by MARTE stereotypes in Algorithm
B.6. The list of external signals (𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑖𝑔𝐿𝑖𝑠𝑡) is already initialized. On the other
hand, the list of internal signals (𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑖𝑔𝐿𝑖𝑠𝑡) is generated along the design of the
Activity diagram.

In Algorithm B.8, lines 1 − 7 formalize how external signals can create/generate
activities to the Input Activity diagram. In algorithms B.8, B.9 and B.10, a “new element”
can be modelled and replaced by an activity, a decision node, a join node, a fork node
or a final node. Modelling this “ new element” depends of design decisions of engineers.
However, the proposed algorithms provides strategies to formalize the design, from a
new element, to the other subsequent activities and their associations. Consequently,
lines 8 − 15 show how to create internal signals from the final/end activities/nodes of
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐿𝑖𝑠𝑡. Lines 15 − 20 describe the design of new activities and its associations.

Algorithm B.9 represents a group of instructions to model the feature blocks and its
internal behavior. In this algorithm, the setting of rational actions is defined in order to
design a general Activity diagram while considering internal signals, fork, merge, decision
nodes and atomic activities of the system.

202 ANNEX B. Algorithms Formalization to MARTeSys𝑅𝑒𝑞𝐷 Methodology

Algorithm B.9 Logical viewpoint: Feature Blocks - Algorithm to describe the design of the
Activity diagram to the Feature Logical blocks

1 {
2 𝑛𝑖 foreach (signal in internalSigList){
3 𝑛𝑖 i f (act iv i ty of this signal i s NOT created) and (signal i s NOT linked with a MERGE/

FORK/DECISION node){
4 𝐴≤𝑛𝑖 create act iv i ty to the signal ;
5 𝐴≤𝑛𝑖 store the new act iv i ty in act iv i tyL is t ;
6 𝐴≤𝑛𝑖 create an association from signal to the act iv i ty ;
7 }
8 𝑛𝑖 switch (signal){
9 𝑛𝑖 must be merged:{

10 i f (mergeNode does not exist){
11 create a mergeNode to the signal ;
12 }
13 create an association from signal to mergeNode;
14 i f (next element is ACTIVITY){
15 create act iv i ty (ies) to the mergeNode;
16 create an association from mergeNode to act iv i ty (ies) ;
17 store the act iv i ty (ies) in act iv i tyL is t ;
18 }else{
19 l ink mergeNode to the new element ;
20 create act iv i ty (ies) to the new element ;
21 create an association from this new element to the act iv i ty (ies) ;
22 store the act iv i ty (ies) in act iv i tyL is t ;
23 }
24 };
25 𝑛𝑖 must be decided : {
26 i f (decisionNode does not exist){
27 create decision element to the signal ;
28 }
29 create an association from signal to decisionNode ;
30 i f (next element is ACTIVITY) {
31 create act iv i t ies to the decisionNode ;
32 create an association from decisionNode to the act iv i t ies ;
33 store the act iv i t ies in act iv i tyL is t ;
34 }else {
35 l ink decisionNode to the new element ;
36 create act iv i ty (ies) to the new element ;
37 create an association from this new element to the act iv i ty (ies) ;
38 store the act iv i ty (ies) in act iv i tyL is t ;
39 }
40 };
41 𝑛𝑖 must be forked : {
42 i f (forkedNode does not exist){
43 create fork element to the signal ;
44 }
45 create an association from signal to forkNode ;
46 i f (next element is ACTIVITY){
47 create act iv i ty (ies) to the forkNode ;
48 create an association from forkNode to the act iv i ty (ies) ;
49 store the act iv i ty (ies) in act iv i tyL is t ;
50 }else {
51 l ink forkNode to the new element ;
52 create act iv i ty (ies) to the new element ;
53 create an association from this new element to the act iv i ty (ies) ;
54 store the act iv i ty (ies) in act iv i tyL is t ;

B.4. Logical Viewpoint 203

55 }
56 };
57 𝑛𝑖 default :
58 create an association from signal to the act iv i ty ;
59 }
60 }
61 𝑛𝑎 foreach (act iv i ty in act iv i tyL is t){
62 𝑛𝑎 switch (act iv i ty next step){
63 𝑛𝑎 decision node: {
64 create an association from the act iv i ty to the decisionNode ;
65 i f (next element is ACTIVITY) {
66 create act iv i ty (ies) to the decisionNode ;
67 l ink decisionNode to the act iv i ty (ies) ;
68 store act iv i ty (ies) in act iv i tyL is t ;
69 }else {
70 l ink decisionNode to the new element ;
71 create act iv i ty (ies) to the new element ;
72 create an association from this new element to the act iv i ty (ies) ;
73 store act iv i ty (ies) in act iv i tyL is t ;
74 }
75 }
76 𝑛𝑎 fork node: {
77 create an association from the act iv i ty to the forkNode ;
78 i f (next element is ACTIVITY) {
79 create act iv i ty (ies) to the forkNode ;
80 l ink forkNode to the act iv i ty (ies) ;
81 store act iv i ty (ies) in act iv i tyL is t ;
82 }else {
83 l ink forkNode to the new element ;
84 create act iv i ty (ies) to the new element ;
85 create an association from this new element to the act iv i ty (ies) ;
86 store act iv i ty (ies) in act iv i tyL is t ;
87 }
88 };
89 𝑛𝑎 merge node: {
90 create an association from the act iv i ty to the mergeNode;
91 i f (next element is ACTIVITY) {
92 create act iv i ty (ies) to the mergeNode;
93 l ink mergeNode to the act iv i ty (ies) ;
94 store act iv i ty (ies) in act iv i tyL is t ;
95 }else {
96 l ink mergeNode to the new element ;
97 create act iv i ty (ies) to the new element ;
98 create an association from this new element to the act iv i ty (ies) ;
99 store act iv i ty (ies) in act iv i tyL is t ;

100 }
101 };
102 𝑛𝑎 atomic act iv i ty :{
103 create new act iv i ty ;
104 create an association from act iv i ty to the other act iv i ty ;
105 store act iv i ty in act iv i tyL is t ;
106 };
107 f ina l act iv i ty :{
108 create internalSignal ;
109 create an association from act iv i ty to the internalSignal ;
110 store internalSignal in internalSigList ;
111 };
112 }
113 }

204 ANNEX B. Algorithms Formalization to MARTeSys𝑅𝑒𝑞𝐷 Methodology

114 }

As it can be observed in Algorithm B.9, all possibilities to design an internal signal
and a control node are considered.The formalization of Logical viewpoint follows a more
general reasoning to the behavioral system design. It considers the possible design steps,
named as “next element”, to each: activity, decision node, merge node and a fork node.
Thus, “next element” can be a decision node, a merge node or a fork node. Lines 3 and
8 depicts that from an internal signal a new activity or a “new element”/ association can
always be created for each internal signal.

Algorithm B.9, lines 2 − 6 formalizes how to create a new atomic activity for one
input 𝑠𝑖𝑔𝑛𝑎𝑙 and how to link these elements (see lines 3 and 5). However, there are some
cases where an internal signal can be associated with: merge nodes, decision nodes or
fork nodes. Lines 7−59 formalize these possible conditions through the switch structure.
Lines 8 − 23 depict the design steps to associate an internal signal to a merge node. In
this case, if the merge node does not exist it is necessary to create this model element
and link them (lines 9 − 12). Moreover, after designing the merge node it is necessary
to model the next model element and associate them. The mentioned next element can
be an activity, a fork or a decision node (lines 29 − 39 formalize these design steps).
The same group of instructions, with different models elements, to an internal signal are
formalized to create a decision node (lines 24 − 39) and a fork node (lines 40 − 55) for
an internal signal. Finally, the default case to this internal signal is described in line 56.
This default case defines an association between an internal signal and an already created
activity.

Algorithm B.9 also formalizes the decisions which must be considered for modelling an
atomic activity. For each activity on 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐿𝑖𝑠𝑡 is necessary to model the “next model
element”. It means that the different possibilities in the design of the Activity diagram
must be evaluated. In this case, the next model element can be: a decision node (lines
62 − 74), a fork node (lines 75 − 87), a merge node (lines 88 − 100), an atomic activity
(lines 101−105), a final activity (lines 106−110). In all the possible cases (1) it is created
an association between the activity and model element and (2) there is a checking of the
successor model element and its creation. For example, if the next design element to one
specific activity is a decision node, it is necessary to associate these elements. After this,
it is necessary to model the element which is related to the decision node. In this case,
it can be either a new atomic activity (lines 64 − 68) or a new element: decision, fork or
merge node (lines 68 - 73). In both cases, a new activity is modelled and it is stored in
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐿𝑖𝑠𝑡.

Evaluation of activities is performed in the overall 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐿𝑖𝑠𝑡, and it generates a list
of internal signals. These signals come from each final activity of the activity list, and
they are input to design the output blocks. In Algorithm B.9, the modelling activities are

B.4. Logical Viewpoint 205

performed until the storing of the activity (ies) in 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐿𝑖𝑠𝑡, that is, the next activity
level. This looping occurs until the modelling of final activity (ies).

Algorithm B.10 describes the steps to be performed in order to design the Logical
viewpoint to the output blocks. This algorithm considers a set of activities for each
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑙. Therefore, the list of 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑙 is the input of Algorithm B.10. It
is important to mention that this list is provided in Algorithm B.9. The overall activities
of the logical output models are analyzed in order to generate the list of external signals
(𝑒𝑥𝑡𝑒𝑛𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑙).

Algorithm B.10 Logical viewpoint: Output - Algorithm to describe the design of the Activity
diagram to the Output Logical blocks

1 {
2 𝑛𝑖 foreach (signal in internalSigList){
3 𝑛𝑖 i f (signal associates with one ACTIVITY) {
4 𝐴≤𝑛𝑖 i f (act iv i ty of this signal i s NOT created){
5 𝐵≤𝐴 create act iv i ty (ies) to the signal ;
6 𝐵≤𝐴 store each new act iv i ty in act iv i tyL is t ;
7 − }
8 𝐴≤𝑛𝑖 create an association from signal to the act iv i ty ;
9 − }else{

10 𝑛𝑖−𝐴 create the new element for signal ;
11 𝑛𝑖−𝐴 l ink signal to the new element ;
12 𝑛𝑖−𝐴 create act iv i ty (ies) to the new element ;
13 𝑛𝑖−𝐴 create an association from this new element to the act iv i ty (ies) ;
14 𝑛𝑖−𝐴 store the act iv i ty (ies) in act iv i tyL is t ;
15 − }
16 − }
17 𝑛𝑎 foreach (act iv i ty in act iv i tyL is t) {
18 𝑛𝑎 i f (act iv i ty is a end node){
19 𝐶≤𝑛𝑎 i f (externalSignal of this act iv i ty is NOT created){
20 𝐷≤𝐶 create externalSignal to this act iv i ty ;
21 𝐷≤𝐶 create an association from act iv i ty to the externalSignal ;
22 𝐷≤𝐶 store externalSignal in externalSigList ;
23 − }
24 𝐸≤𝑛𝑎 i f (act iv i ty is going to one already created externalSignal){
25 𝐹≤𝐸 merge association of these signals ;
26 𝐹≤𝐸 l ink merge relation from these act iv i t ies to the externalSignal ;
27 − }else{
28 𝐸 − 𝐹 create an association from act iv i ty to the externalSignal ;
29 − }
30 − }else{
31 𝑛𝑎−𝐶 l ink act iv i ty to the new element ;
32 𝑛𝑎−𝐶 create act iv i ty (ies) to the new element ;
33 𝑛𝑎−𝐶 create an association from this new element to the act iv i ty (ies) ;
34 𝑛𝑎−𝐶 store the act iv i ty (ies) in act iv i tyL is t ;
35 − }
36 − }
37 }

Algorithm B.10 starts its design decisions based on the signals of 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑖𝑔𝐿𝑖𝑠𝑡.
It means that each signal is checked and its next model element is created. This model
element can either be one activity (lines 3 − 9) or one new element (lines 9 - 16). In the

206 ANNEX B. Algorithms Formalization to MARTeSys𝑅𝑒𝑞𝐷 Methodology

last case, similarly to Algorithm B.9, the new element can be a decision, a merge or a
fork node. Moreover, here all the activities are incrementally checked (see lines 17 − 36)
in order to design the Activity diagram to a logical output block. Evaluation of these
activities generates an external signal that is stored in 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑖𝑔𝐿𝑖𝑠𝑡

MARTeSys𝑅𝑒𝑞𝐷 methodology also details the outputs of Algorithms B.8, B.9 and
B.10 in order to provide another refinement of the Technical viewpoint. Further design
decisions must consider the system components and their physical and logical interfaces.
In this study, these components are refined by MARTE stereotypes. Therefore, behavioral
design and the description of internal and external system signals influence and contribute
to definition of the global architecture of the system and its realization.

In this viewpoint, there are a second and a third refinement of the Activity diagram
models through constraints of the MARTE profile. Adoption of these constraints can
strengthen the expressiveness of models and also refine already annotated constraints.
These annotations can add new and refined timing, resources and non-functional infor-
mation to one element of the Activity diagram. The algorithms to formalize the MARTE
annotations, in this viewpoint, are similar to Algorithm B.4 and due to this fact they are
not presented here.

207

ANNEXC
Relating MARTE Profile

Constructors and Concerns of
RTES

C.1 Introduction

RTES design and specification must consider several types of non-functional require-
ments that influence the system and the concerns which direct and must be contained
within the architectural descriptions. According to [37], “a concern pertains to any in-
fluence on a system in its environment, including developmental, technological, business,
operational, organizational, political, economic, legal, regulatory, ecological and social
influences”. Concerns are important for directing architectural decisions of the system,
design choices, project management and system implementation.

ISO/IEC/IEEE 42010:2011 [37] is an international standard that addresses several as-
pects related to the design, analysis and sustainment of system’s architectures. Therefore,
it is possible to realize different types of requirements and concerns which are pertinent
to architecture description of a system. Thus, this specification does not describe how to
correlate them between themselves or how to relate them to system global requirements.

Semantic concepts, which are related to the MARTE Foundations package and MARTE
Design package, are presented in the MARTE metamodel through its syntax. An impor-
tant contribution of this section is the mapping of MARTE stereotypes/constructors to
real-time and embedded concerns. Thus, for each RTES concern, already detailed in
Chapter 2, one stereotype, from MARTE profile, is suggested to support its definition in
architectural models.

208 ANNEX C. Relating MARTE Profile Constructors and Concerns of RTES

C.2 Mapping MARTE Stereotypes to Specify RTES
Constraints

MARTE profile defines stereotypes, constructors and annotations in a generic way
and without linking them directly to real-time and embedded requirements or system
concerns. This fact can make it difficult to apply the MARTE profile, in an intelligible
way, in RTES specification and design. Table 14 maps how MARTE constructors can
represent and contribute for defining requirements/concerns in model elements. Besides,
it facilitates the discovery of MARTE stereotypes which contributes to representation of
the overall RTES concerns and clarifies their adoption to the specification and design of
RTES.

Non-
Functional
Requirement/-
Concerns

Appropriate
MARTE
Packages

MARTE Stereotypes Guidelines

Reliability NFP,
Time.

Accuracy: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Ma-
turity: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Thresh-
old: ≪ 𝑇𝑖𝑚𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡1 ≫, Fault Toler-
ance: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Recoverabil-
ity: ≪ 𝑇𝑖𝑚𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Compliance:
≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫

Time NFP,
Time.

Timing Concerns: deadline: ≪
𝑇𝑖𝑚𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ≫, cost: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫,
release time: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫, activation latency:
≪ 𝑇𝑖𝑚𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ≫, start time:
≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫, end time: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫,
event duration: ≪ 𝑇𝑖𝑚𝑒𝑑𝐸𝑣𝑒𝑛𝑡 ≫, in-
stants: ≪ 𝑇𝑖𝑚𝑒𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ≫, pe-
riod: ≪ 𝑇𝑖𝑚𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ≫, Clock:
≪ 𝐶𝑙𝑜𝑐𝑘𝑇𝑦𝑝𝑒 ≫.

Time NFP,
Time.

Precision Concerns 2: Jitter: ≪
𝑇𝑖𝑚𝑒𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ≫, Tolerated De-
lay: ≪ 𝑇𝑖𝑚𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ≫, Fresh-
ness: ≪ 𝑇𝑖𝑚𝑒𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ≫, Reso-
lution: ≪ 𝑇𝑖𝑚𝑒𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ≫, Drift:
≪ 𝑇𝑖𝑚𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 ≫.

C.2. Mapping MARTE Stereotypes to Specify RTES Constraints 209

Performance NFP,
Time,
GCM.

Response Time: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫, Accuracy:
≪ 𝑇𝑖𝑚𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Operation Capacity: ≪
𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Throughput: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫,
Recovery Time: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫.

Safety NFP. Privacy: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Minimum Met-
ric Access Level: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫, Maximum
Metric Access Level: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫, Toler-
ance to Failures: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Risk
Level: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Risk Prevention: ≪
𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Access Levels: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫,
Redundance: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Integrity: ≪
𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫.

Distribution NFP,
GRM,
GCM,
SRM.

Concurrency: ≪ 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫, Com-
munication: ≪ 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫,
Tasks Allocation: ≪ 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 ≫ or ≪
𝑀𝑢𝑡𝑢𝑎𝑙𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫, Host Definition: ≪
𝐶𝑙𝑖𝑒𝑛𝑡𝑆𝑒𝑟𝑣𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ≫, Distributed Log: ≪
𝑆𝑤𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫, Parallelism: ≪
𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Synchronous Process: ≪
𝑆𝑤𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫ .

Interoperabi-
lity

GRM,
HLAM,
HRM.

Comunication Protocols: ≪ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑛𝑎𝑔𝑒𝑟 ≫
or ≪ 𝑀𝑢𝑡𝑎𝑙𝐸𝑥𝑙𝑢𝑠𝑖𝑜𝑛𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ≫, Bus Structure: ≪
𝐻𝑊_𝐵𝑢𝑠 ≫, Inter-Process Communication: ≪
𝑅𝑡𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ≫.

Security GRM. Control Access: ≪ 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫, In-
tegrity: ≪ 𝑆𝑦𝑛𝑐ℎ𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫, Subsystem Inte-
gration: ≪ 𝑆𝑤𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫, Distributed
Log: ≪ 𝑆𝑤𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫, Privacy:
≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫.

Resource
Utilization

GRM,
HRM.

Resource Features: ≪ 𝐻𝑤𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑟𝑣𝑖𝑐𝑒 ≫,
Policies of Access: ≪ 𝑀𝑢𝑡𝑢𝑎𝑙𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ≫,
Deadlock: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫.

Deadlock NFP,
HRM,
SRM.

Policies of Access: Software level: ≪
𝐴𝑐𝑐𝑒𝑠𝑠𝑃𝑜𝑙𝑖𝑐𝑦𝐾𝑖𝑛𝑑 ≫, Policies of Access: Hardware
level: ≪ 𝑀𝑢𝑡𝑢𝑎𝑙𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 ≫, Correct-
ness of Outputs: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Deadline
Satisfaction: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫.

210 ANNEX C. Relating MARTE Profile Constructors and Concerns of RTES

Embedded HRM. Layout of the Devices: ≪
𝐻𝑤𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡3 ≫, Memory Organization:
≪ 𝐻𝑊_𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑎𝑦𝑜𝑢𝑡3 ≫, Input Interrup-
tion Control: ≪ 𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝐾𝑖𝑛𝑑 ≫, Outputs
Interruption Control: ≪ 𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝐾𝑖𝑛𝑑 ≫, En-
ergy Consumption: ≪ 𝐻𝑊_𝑃𝑜𝑤𝑒𝑟𝑆𝑢𝑝𝑝𝑙𝑦 ≫,
Communication Channels: ≪ 𝐻𝑊_𝑀𝑒𝑑𝑖𝑎3 ≫,
Bandwidth: ≪ 𝐻𝑊_𝐵𝑢𝑠 ≫, Connections:
≪ 𝐻𝑊_𝐸𝑛𝑑𝑃𝑜𝑖𝑛𝑡 ≫, Arbiter: ≪ 𝐻𝑊_𝐴𝑟𝑏𝑖𝑡𝑒 ≫,
Memory Size: ≪ 𝐻𝑊_𝑆𝑡𝑜𝑟𝑎𝑔𝑒 ≫, Power
Consumption: ≪ 𝐻𝑊_𝑃𝑜𝑤𝑒𝑟𝑆𝑢𝑝𝑝𝑙𝑦 ≫, Heat
Control: ≪ 𝐻𝑊_𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑆𝑢𝑝𝑝𝑙𝑦 ≫, Exe-
cution Nodes: ≪ 𝐻𝑊_𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 ≫ and
≪ 𝐻𝑊_𝐶𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫.

Concurrency NFP,
GRM,
SRM.

Parallelism: ≪ 𝑆𝑤𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫,
Correctness: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Perfor-
mance: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Robustness:
≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Control Access: ≪
𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫, Synchronization: ≪
𝑆𝑤𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫.

Flexibility NFP,
GRM.

Capability: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Trans-
portability: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫, Interchange-
ability: ≪ 𝑆ℎ𝑎𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝐶𝑜𝑚𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫, Ex-
pansion: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Contraction:
≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Effectiveness: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫.

Maintainabi-
lity

NFP,
Time.

Mean Time to Repair: ≪ 𝑇𝑖𝑚𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ and
≪ 𝑇𝑖𝑚𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ≫, Maximum Time to Repair:
≪, 𝑇 𝑖𝑚𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ and ≪ 𝑇𝑖𝑚𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ≫,
Maintenance Staff Hours: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫, Mod-
ifiability: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫, Evolvability: ≪
𝑁𝑓𝑝𝐶𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Modularity: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡 ≫,
Skill Levels of Staff : ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡 ≫, Fre-
quency of Maintenance: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫, Com-
plexity Level: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫.

C.2. Mapping MARTE Stereotypes to Specify RTES Constraints 211

Usability NFP,
Time.

Measures of Performance: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫
and ≪ 𝑁𝑝𝑓 ≫, Capabilities of Usage: ≪
𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ and ≪ 𝑁𝑝𝑓 ≫, Measure of
Safety: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ and ≪ 𝑁𝑝𝑓 ≫, Mea-
sures of Availability: ≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ and
≪ 𝑁𝑝𝑓 ≫.

Inter-process
Communica-
tion

GRM,
SRM.

Policies of Access: ≪
𝑆𝑤𝑀𝑢𝑡𝑢𝑎𝑙𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫, Effective-
ness: ≪ 𝑁𝑓𝑝𝑇𝑦𝑝𝑒 ≫, Policies of Con-
trol: ≪ 𝐶𝑎𝑙𝑙𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦𝐾𝑖𝑛𝑑4 ≫ and
≪ 𝑆𝑤𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ≫.

Table 14 – Adoption of MARTE Packages Stereotypes to represent RTES Concerns.

Table 14 represents the relation of atomic RTES concerns, in the left side, with
MARTE profile constructors, in the right side, in order to contribute for the represen-
tation of non-functional properties in architectural models. In general, the presented
leveling allows to strengthen the specification, modelling, design, validation and main-
tenance of RTES, once it makes possible to address different concerns and properties of
RTES at early stages of their development.

The proposed guidelines show relevant concepts to specification, design and develop-
ment of RTES. In this domain, these concepts can be related to qualitative, temporal and
constrained issues. Thus, it contributes to understand how to describe and refine non-
functional concerns in MBE approaches while it contributes to minimize the complexity
of their analysis and development.

Employing MARTE stereotypes to the specification, analysis and design of RTES al-
lows early and high level characterization of a concept. Besides, through these MARTE
concepts it is possible to set the nature, the semantic and several real-time and embed-
ded features in a model. Moreover, it allows to trace RTES concerns along of different
viewpoints.

212 ANNEX C. Relating MARTE Profile Constructors and Concerns of RTES

213

ANNEXD
System Realization

The implementation of the systems features performed, in this study, allows and
support the evaluation activities of the MARTeSys𝑅𝑒𝑞𝐷 methodology. Thus, a brief ex-
planation regarding the main adopted technologies is performed here. Moreover, this
section provides an explanation of concepts to abstract/implement, in the code, software,
systems, hardware, mechanical and physical components of the TIS.

D.0.1 Toolbox for Modeling, Simulation and Verification of MAR-
TeSys𝑅𝑒𝑞𝐷 Methodology

In this research, the Papyrus [176] tool has been adopted to design activities and to
generate source code. The developed code has been embedded in an Arduino microcon-
troller [192]. Moreover, the real-time controllers as, for example, tasks coordination, have
been executed in FreeRTOS environment [193].

Arduino is an open source platform to free electronic prototyping of circuits. The
Arduino microcontroller is programmable in C/C++ programming languages and it is
accessed by an Integrated Development Environment (IDE). C++ is a commercial and
open-source programming language that enables development of general purpose pro-
grams while it supports the Object Oriented Paradigm [194]. Moreover, C++ is often
used to develop RTES [13], [195].

Papyrus is an open source tool which allows to model UML and SysML diagrams,
as well as representing MARTE profile elements. In this study, Papyrus was used for
modeling activities because it can generate code in C, C++, Java and Ada languages, it
is open source, and also due to its customization capability.

FreeRTOS is an open-source Real-Time Operationg System (RTOS). It provides
facilities to manage tasks (creation, access, elimination), real-time scheduling and full
access to FreeRTOS capabilities within classic Arduino environment.

The integrated environment of the Uppaal [138] tool is adopted in this study to model
and verify artefacts of Functional viewpoint. The tool is designed to verify systems

214 ANNEX D. System Realization

that can be modelled as networks of timed automata extended with integer variables,
structured data types, user defined functions and channel synchronisation [136]. As it
is detailed in Section 7.2, the artefacts of Requirements viewpoint are transformed into
a correspondent timed automata, by the proposed transformation rules, and verified in
the Uppaal tool. The mentioned technologies are important in this study once they
contribute to design architectural models, to code generation and to empirical evaluation
activities.

D.0.2 System Implementation

The case study can be subdivided into two stages: embedded software development
and the configuration of hardware components to simulate the physical interface of the
system. For the foregoing stage, analog and digital ports are available to receive and send
signals to external devices like LEDs, sensors and actuators. In the presented case study,
LEDs, push buttons and beeps have been used to simulate the Turn Indicator features
(see Figure 56). In the development phase, an implementation of the architectural models
and their imposed MARTE constraints is performed in order to allow further empirical
evaluations (Chapter 7) of the proposed case study.

Figure 56 provides an overview of components which controls the input and output
interfaces of the case study. These components are combined to prototype the Turn
Indicator functions in the Arduino microcontroller. For all the features of the Turn
Indicator a set of buttons is available. The frontal and back turn/hazard lights are realized
by yellow and red LEDs represent brake lights. The system controllers are mainly related
with the coordination of the buttons: to Turn Right/Left in a hard manner, the buttons
to Turn Right/Left in a soft manner, the buttons to signalize Hazard and Break Actions,
the button to Activate/Deactivate the Clamp, all the correspondent System Lights and
Feedback (sonorous beep) to the driver.

Figure 44 presented in Chapter 6 shows the overall class of the system and its cons-
trained tasks. The Class diagram is composed by six classes and they are the bases to
the implementation stage. Within the Class diagram and the implementation models
these classes are named as TurnHazardFeatures, TurnIndicatorFeature, HazardFeature,
Lamp, Control and BreakSystem. During the design steps the functionalities of the TIS
are developed according to the architectural models. Here, an automated and partial
code generation, from graphical annotations of the Class diagrams to the source code,
is performed. Papyrus can generate the main structure of classes, which are already
specified by the Class diagram, together with the specified attributes and methods.

The Control class is responsible for management of the main system’s components.
It implements the decisions to control the input and output signals and their processing.
The TurnIndicatorFeature and HazardFeature classes are operated here through their

215

Figure 56 – Prototype of Turn Indicator System.

instances. These instances allow to access methods and properties of these classes.

As it was described above, the system has been developed to be embedded in an
Arduino microcontroller. Turn Indicator components have been coupled in the Arduino
board as buttons, bips and LEDs. Therefore, in this class the input and output com-
ponents are logically declared and defined to allow their manipulation in input/output
events. Control class manages the setup of pins to control the lights, allowing the fla-
shing functions of the case study, and defines the buttons to receive the users commands.
In addition, this class is responsible for creating the system’s tasks and to create their
logical functions. Once this case study is related to the RTES context, it is important
to allow parallelism, cooperation and scheduling between the different Turn Indicator
features. Figure 45 shows the overall system’s tasks. These tasks are related to data
reading (inputSignalHandler), data processing (taskTurnFlashing, taskHazardFlashing,
taskBreaking) and data output (outputSignalHandler).

The Turn Indicator features, and consequently its tasks, are triggered by events. For
example, when the driver wants to activate the car lights to flash to the left side, he/she
needs to produce a turn event. However, in this study, all system events are treated as
periodic and static occurrences in order to provide deterministic guarantees regarding
response time. This fact allows that non-deterministic system services can always be

216 ANNEX D. System Realization

treated and executed at specific time intervals. This strategy forces the fulfillment of the
constraints regarding the proposed deadlines and periodic executions.

The function 𝑣𝑇𝑎𝑠𝑘𝐷𝑒𝑙𝑎𝑦𝑈𝑛𝑡𝑖𝑙 performs the control and measurement of period
tasks. It has been adopted to record the next period of one task and to ensure a cons-
tant execution frequency. Function 𝑣𝑇𝑎𝑠𝑘𝐷𝑒𝑙𝑎𝑦𝑈𝑛𝑡𝑖𝑙 is based on two parameters: last
execution time and the period of repetition. Thus, it was possible to measure the tasks ac-
tivation, the manner which the schedule should control each task and follow the schedule
policy.

The inputSignalHandler task is responsible to control all the system’s inputs as, for
example, the power button, the lever buttons, the hazard button and the breaking button.
The turn buttons represent the turn indicator in a hard and in a soft manner, to the left
and right sides. As it can be observed in Figures 44 and 45, there is a periodic constraint
to this task (≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ stereotype, period = 20 ms) and it indicates that
it executes in pre-defined periods. These constraints and their assumed values comes
from the non-functional restriction of requirements specification. The Turn Indicator
functions can only run if the system is turned on and it is represented by a component
named as clamp. The clamp conditions are checked by a button called as butPower.
For all the input evaluations, the clamp condition must be checked to show if there is
power to execute the system functions. The inputSignalHandler task is responsible for
the periodic reading of hazard, turn indicator and break inputs.

The taskTurnFlashing task is responsible to execute the priority features of TIS.
An instance of TurnIndicatorFeature class, named as turnIndicator, manages all the turn
flashing controllers. The object turnIndicator can call the turnIndicatorLever method in
order to identify which signal type is sent from the physical part (buttons). There are
two parameters that define a user command/request:

1. pressType: defines the flashing type to the system which can be hard or soft;

2. direction: defines the turn flashing side which can be right or left. Another method,
called “loop”, was developed to execute the logic to flashing the lamps (LEDs) based
on the results of the turnIndicatorLever method. In the “loop” method all the Turn
Indicator functions are cyclically executed.

The taskTurnFlashing task is also responsible to access the Turn Indicator features
which have been defined in the TurnIndicatorFeature class. Therefore, prioritization of
functions as, for example, when the flash right (in a soft manner) is running and it should
be correctly replaced to the flash left (in a hard manner) is performed in this class. The
turn indicator features prioritization are performed between all flashing situations and
the overall conditions are described below:

217

o From soft right to soft right; from soft right to soft left; from soft right to hard
right and from soft right to hard left;

o From soft left to soft left; from soft left to soft right; from soft left to hard right
and from soft left to hard left;

o From hard right to hard right; from hard right to hard left; from hard right to soft
right and from hard right to soft left;

o From hard left to hard left; from hard left to hard right; from hard left to soft right
and from hard left to soft left.

The turnIndicator object operates methods of TurnIndicatorFeature class. Conse-
quently, this instance is also constrained by the MARTE constructors which were added
in the architectural design models. These constraints were automatically translated to
code annotations, from the Papyrus models, and can be visualized as guidelines in rea-
lization models. Figure 57 presents an example of non-functional constraint which was
attached in the setFlashingSoft method.

Figure 57 – Example of MARTE Constraints to the System Realization.

Functions of the Turn Indicator have higher priority than hazard functions. The
≪ 𝑁𝑝𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ stereotype declares the needs of preemption of this task concerning
Hazard’s tasks. In addition, a processing criteria to soft flashing execution is annotated
through the ≪ 𝑡𝑖𝑚𝑒𝑑𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ≫ stereotype. This constraint has been attached in the
related methods.

The taskHazardFlashing task executes features related to hazard controllers. This
is a periodic task and it executes an object of the class HazardFeature. Thus, hazard
flashing functions are controlled by this task. This object access the flashing method to
control the lights activation and deactivation in accordance with the turn settings de-
finition. As it can be observed in the Class diagram of the Turn Indicator, Figure 44,
the HazardFeature and TurnIndicatorFeature classes are a specialization of TurnHazard-
Features class. Thus, the methods to manage (activate and deactivate) the frontal right
lamp, the back right lamp, the frontal left lamp and the back left lamp are inherited and

218 ANNEX D. System Realization

specialized in this class. Moreover, outputs of the HazardFeature are specialized in this
class and they are also inherited from TurnHazardFeatures class.

The taskBreaking task shows the behavior of the TIS when an emergency breaking
situation occurs. The break events come from the alert breaking feature of Body Control
Model (BCM) and the lights signal should be controlled by the Turn Indicator module.
Here, breaking event is observed when the butBreak button is pressed and the breakSystem
object, from the BreakSystem class, performs the red lights signalization. In addition, a
≪ 𝑁𝑝𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫ stereotype to taskBreaking object was automatically represented in
this class and it constrains the visual behavior of the break lights. As it occurs with the
objects of HazardFeatures and TurnIndicatorFeature classes the object of BreakSystem
class, controlled in taskBreaking, also communicates with outputSignalHandler method
to send/generate output signals.

The outputSignalHandler task represents a periodic task (≪ 𝑁𝑓𝑝𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≫
stereotype, period = 20 ms) and it is responsible to control all the outputs to hazard,
turn indicator and break tasks. This task executes the method outputSignalHandler of all
objects. In a general way, this method creates a bridge between the logical part of the TIS
and their physical parts. This interaction is done by objects of the TurnIndicatorFeatures
and instances of the Lamp classes. The Lamp class is the one responsible to control
(activate and deactivate) the pins (lights) of the system.

A group of measurement are developed and considered the mentioned tasks, in the
following chapter, in to perform simulation and verification activities. The dynamic
behavior of these tasks is subsequently checked to allow the prediction and evaluation of
the constraints assumptions.

219

ANNEXE
Results of the First Qualitative

Evaluation

Table 15 represents a summary of the questionnaires applied in the First Qualitative
Evaluation.

Criteria/Interval Fully
Agree

Neu-
tral

Totally
Dis-
agree

1. Correctness: Is it possible to ob-
serve the right definition of system de-
scription (considering the functionalities
which must be reachable in the system
development)?

E3,
E4,
E5

E1 E2

2. Correctness: Is it possible to observe
the right definition of system description
(considering the right use of the semantic
and syntax of each diagram)

E1,
E3,
E5

E2 E4

3. Completeness: Is it possible to see
the fulfillment of the Requirements view-
point along of the Functional and Logical
viewpoints?

E1,
E5

E2,
E3

E4

4. Consistency: Are the views of
each system viewpoints consistent be-
tween each other?

E4,
E5,
E2

E1 E3

5. Ambiguity: Are the views and its re-
spective models non-ambiguous for each
viewpoints of the system?

E4,
E5

E2 E1,
E3

220 ANNEX E. Results of the First Qualitative Evaluation

6. Conformity: Is the Conformity be-
tween models observable in the Require-
ments, Functional and Logical viewpoints
of the system?

E5 E2 E1 E4 E3

7. Legibility: Are the models under-
standable/readable by humans?

E1,
E4,
E5

E2,
E3

8. Abstraction Levels: Is the design
elaborated under different and comple-
mentary abstraction levels?

E1,
E2,
E5

E3,
E4

9. Multiple Views: Is the architecture
described by using multiple viewpoints?

E1 E2,
E3,
E5

E4

10. Expressiveness: Are the view-
points of the system expressive?

E3 E4,
E5

E1 E2

11. Relevance to the Field of Study:
How do you describe the relevance of the
models to the automotive system design?

E1 E3,
E4,
E5

E2

12. Relevance of MARTE construc-
tors: Are the timing features presented
in the models, mainly through MARTE
elements, able to contribute to the non-
functions constraints descriptions?

E2,
E4

E5 E1 E3

13. Relevance of MARTE construc-
tors: The MARTE constraints make
clearly the temporal aspects of the sys-
tem under analysis. Does the early defi-
nition of these temporal aspects help the
architectural level description?

E2 E3,
E4,
E5

E1

Table 15 – Results of the First Qualitative Evaluation.

221

ANNEXF
Results of the Second
Qualitative Evaluation

Table 16 represents a summary of the questionnaires applied in the Second Qualitative
Evaluation.

Criteria/Interval Fully
Agree

Neu-
tral

Totally
Disa-
gree

1. Correctness: Can you observe the cor-
rectness of models in the presented architec-
tural viewpoints? This means, is it possible
to observe that the models are able to de-
scribe and consider the system functionali-
ties.

E1,
E5,
E6,
E8,
E11

E2,
E3,
E4,
E9,
E10

E7

2. Correctness: Are the models, elabo-
rated in the architectural viewpoints, cor-
rect? This question wants to evaluate if the
authors (in your opinion) are adopting the
right semantic and syntax to the diagrams
design.

E1,
E6,
E9

E3,
E5,
E7,
E8,
E11

E2,
E10

E4

3. Completeness: Can you contemplate
the completeness of models along of the ar-
chitectural viewpoints? This means, it is
possible to see the fulfillment of the require-
ment views throughout functional, logical,
logical and technical design.

E6 E1,
E8,
E9

E2,
E3,
E5,
E10,
E11

E7 E4

222 ANNEX F. Results of the Second Qualitative Evaluation

4. Consistency: In your opinion, are the
system viewpoints consistent between each
other? This means, that the system refine-
ments in each abstraction level are defining
the same system requirements (through dif-
ferent viewpoints).

E1,
E2,
E5,
E6,
E8

E3,
E4,
E9,
E10,
E11

E7

5. Ambiguity: Are the models non-
ambiguous for each viewpoints of the sys-
tem? This means that the presented models
do not express the system design under two
or more possible understandable context.

E4,
E6,
E8

E1,
E5,
E7,
E9,
E10

E2,
E3,
E11

6. Conformity: Can you see the con-
formity between models of the Require-
ments, Functional, Logical and Technical
viewpoints? In this case, it is possible to
highlight that the models are conforming
to inputs and outputs necessary (longed/ex-
pected) to Requirements, Functional, Logi-
cal and Technical viewpoints.

E1,
E5,
E6,
E8

E2,
E3,
E9,
E11

E4,
E10

E7

7. Legibility: Were you able to under-
stand the models and their diagrams? This
questions seeks to know if the models intel-
ligible/readable by humans. This means, it
is possible to understand the semantic and
syntax of the viewpoints which are described
in the models.

E1,
E4,
E5,
E8,
E9

E2,
E6,
E7

E10 E3,
E11

8. Abstraction Levels: Is the architec-
tural description elaborated under different
and complementary abstraction levels?

E1,
E2,
E4,
E5,
E6,
E7,
E9,
E10,
E11

E3,
E8

223

9. Multiple Views: Is the concept of
viewpoints and refinements of their views
adopted in the architectural description?
This means, that architectural models are
described through distinct perspectives and
they can be used by different proposes and
stakeholders.

E1,
E5,
E6,
E7,
E8,
E9

E2,
E10,
E11

E3,
E4

10. Expressiveness: Are the viewpoints
of the system expressive? That is, can they
ensure that the design models are enough
expressive and valuable to represent the sys-
tem requirements?

E3,
E8

E1,
E4,
E5,
E6,
E9

E2,
E7,
E11

E10

11. Relevance to the Field of Study:
How do you describe the relevance of the
models to the automotive system design?
That is, can the models contribute to the
automotive system design?

E1,
E3,
E5,
E6,
E8,
E11

E2,
E4,
E9

E7 E10

12. Relevance of MARTE construc-
tors: Are the timing features annotated in
the models, mainly through MARTE ele-
ments, able to represent early non-functions
constraints descriptions?

E2,
E4,
E6,
E9,
E11

E1,
E3,
E5,
E7,
E8,
E10

13. Relevance of MARTE construc-
tors: The MARTE constraints make clearly
the temporal aspects of the system under
analysis. Can the definition of temporal as-
pects and RTES concerns, performed in the
models, improve/support the architectural
viewpoints description?

E1,
E2,
E6,
E8,
E9,
E11

E3,
E4,
E5,
E7

E10

224 ANNEX F. Results of the Second Qualitative Evaluation

14. Practical Applicability of the
MARTeSys𝑅𝑒𝑞𝐷 Methodology: In your
opinion, the proposed methodology adds
value to Real-Time Embedded System
(RTES) design? This question, aims to an-
alyze the impact and importance of this
methodology and their functional and non-
functional guidelines to the practical RTES
development.

E1,
E2,
E6,
E5,
E8,
E9

E3,
E4,
E7

E10,
E11

15. Traceability Criteria: Are the trace-
ability strategies effective to track/link de-
sign elements in different architectural view-
points?

E1,
E6,
E8,
E10

E2,
E4,
E9,
E11

E3,
E5,
E7

Table 16 – Results of the Second Qualitative Evaluation.

F.1 Personal Questions about the Interviewees

The interviewees are requested to answer the following questions:

1. Field of work/research:

2. Time of carrier:

3. Job position:

4. Level of knowledge of SysML profile (High/Medium/Low):

5. Level of knowledge of MARTE profile (High/Medium/Low):

6. Level of knowledge of SPES methodology (High/Medium/Low):

225

Bibliography

1 SysML, OMG. OMG - OMG Systems Modeling Language - version 1.4. [S.l.:
s.n.], 2017. Technical Report Formal/2015.06.03.

2 MARTE. Modeling and Analysis of Real-Time and Embedded Systems
(MARTE)- version 1.1., OMG. [S.l.: s.n.], 2011. Technical Report Formal/2011.06.02.

3 GOMAA, H. Real-Time Software Design for Embedded Systems. 1st. ed.
New York, NY, USA: Cambridge University Press, 2016.

4 YAN, X.; LI, Y. Real-time simulation of automotive systems based on UPPAAL.
In: 2017 8th IEEE International Conference on Software Engineering and
Service Science (ICSESS). [S.l.: s.n.], 2017. p. 173–176.

5 WAN, B. et al. A Time-Aware Programming Framework for Constructing Predictable
Real-Time Systems. In: 19th International Conference on High Performance
Computing and Communications. [S.l.: s.n.], 2017. p. 578–585.

6 BRAU, G.; HUGUES, J.; NAVET, N. Towards the Systematic Analysis of
Non-Functional Properties in Model-based Engineering for Real-Time Embedded
Systems. Science of Computer Programming, v. 156, p. 1 – 20, 2018.

7 STANKOVIC, J. A.; RAMAMRITHAM, K. (Ed.). Tutorial: Hard Real-time
Systems. Los Alamitos, CA, USA: IEEE Computer Society Press, 1989.

8 BUTTAZZO, G. C. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. 3rd. ed. [S.l.]: Springer Publishing
Company, Incorporated, 2011.

9 PANUNZIO, M.; VARDANEGA, T. An Architectural Approach with Separation of
Concerns to Address Extra-Functional Requirements in the Development of Embedded
Real-time Software Systems. Journal of Systems Architecture, v. 60, n. 9, p. 770 –
781, 2014.

10 LIU, J. W. S. W. Real-Time Systems. 1st. ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2000.

11 DARSCHT, P.; PEREIRA, C. E. Modeling Computer-based Real-Time Systems:
Which Views do We Need? Control Engineering Practice, v. 5, p. 993–998, 1997.

226 Bibliography

12 SELIC, B. The Theory and Practice of Modeling Language Design for Model-based
Software Engineering-A Personal Perspective. In: SPRINGER. Lecture Notes in
Computer Science (LNCS) Series. [S.l.]: Springer, 2010.

13 LAPLANTE, P. A.; OVASKA, S. J. Real-Time Systems Design and Analysis:
Tools for the Practitioner. 4th. ed. [S.l.]: Wiley-IEEE Press, 2012.

14 PETTERSSON, P. Modelling and Verification of Real-Time Systems Using
Timed Automata: Theory and Practice. Tese (PhD Thesis) — Department of
Computer Systems Uppsala University, Uppsala, Sweden, 1999.

15 COLNARIC, M.; VERBER, D.; HALANG, W. A. Distributed Embedded
Control Systems: Improving Dependability with Coherent Design. 1st. ed.
[S.l.]: Springer Publishing Company, Incorporated, 2008.

16 KIRNER, T. G.; DAVIS, A. M. Requirements Specification of Real-Time Systems:
Temporal Parameters and Timing-Constraints. Information & Software Technology,
v. 38, n. 12, p. 735 – 741, 1996.

17 COLNARIC, M.; VERBER, D.; A., H. W. Real-Time Characteristics and Safety of
Embedded Systems. In: . London: Springer London, 2008. p. 3–28.

18 POHL, K. et al. Model-based Engineering of Embedded Systems: The
SPES 2020 Methodology. 1st. ed. [S.l.]: Springer Publishing Company, Incorporated,
2016.

19 BöDE, E. et al. Design Paradigms for Multi-Layer Time Coherency in ADAS
and Automated Driving (MULTIC). In: FAT-Schriftenreihe 302. 302. ed. [S.l.]:
Forschungsvereinigung Automobiltechnik e.V. (FAT), 2011, (FAT-Schriftenreihe).

20 VISHNYAKOV, A.; ORLOV, S. Software Architecture and Detailed Design
Evaluation. Procedia Computer Science, v. 43, p. 41 – 52, 2015.

21 MARTINS, L. E. G.; GORSCHEK, T. Requirements Engineering for Safety-critical
Systems. Inf. Softw. Technol., v. 75, n. C, p. 71–89, 2016.

22 LAPLANTE, P. Real-time Systems Design & Analysis. 3th. ed. [S.l.]: Wiley
India Pvt. Limited, 2006.

23 VANVLIET, H. Software Engineering: Principles and Practice. 3th. ed. Free
University, Amsterdam, The Netherlands: John Wiley & Sons, 2008.

24 NOYER, A. et al. A Model-based Framework Encompassing a Complete Workflow
from Specification until Validation of Timing Requirements in Embedded Software
Systems. Software Quality Journal, v. 25, 2016.

25 GIESE, H. et al. Model-based Engineering of Embedded Real-time Systems.
[S.l.]: Springer, 2011. v. 6100.

26 SANDUKA, I.; OBERMAISSER, R. Model-based Development of Systems-of-
Systems with Real-Time Requirements. In: 12th IEEE International Conference
on Industrial Informatics (INDIN). [S.l.]: IEEE, 2014. p. 188–194.

Bibliography 227

27 INCOSE, T. O. I. C. on S. E. INCOSE Systems Engineering Vision 2020.
[S.l.], 2010.

28 SERNA, E. M.; BACHILLER, O. S.; SERNA, A. A. Knowledge Meaning and
Management in Requirements Engineering. International Journal of Information
Management, v. 37, n. 3, p. 155–161, 2017.

29 WALTER, S.; RETTBERG, A.; KREUTZ, M. Towards Formalized Model-based
Requirements for a Seamless Design Approach in Safety-Critical Systems Development.
In: Int. Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORC). [S.l.: s.n.], 2015. p. 111–115.

30 KELLNER, A. et al. Challenges in Integrating Requirements in Model Based
Development Processes in the Machinery and Plant Building Industry. In: 2016 IEEE
International Symposium on Systems Engineering (ISSE). [S.l.: s.n.], 2016.
p. 1–6.

31 CARRILLO, J.; NICOLAS, J. Requirements Engineering Tools. IEEE Software,
v. 28, n. 4, p. 86–91, 2011.

32 MAALEM, S.; ZAROUR, N. Challenge of Validation in Requirements Engineering.
Journal of Innovation in Digital Ecosystems, v. 3, n. 1, p. 15–21, 2016.

33 VOGELSANG, A. et al. Functional Viewpoint. In: . Model-based
Engineering of Embedded Systems: The SPES 2020 Methodology. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012. p. 69–83.

34 OQUENDO, F.; WARBOYS, B.; MORRISON, R. (Ed.). Software Architecture:
The Next Step., v. 3047 de Lecture Notes in Computer Science, (Lecture Notes
in Computer Science, v. 3047). Berlin, Heidelberg: Springer, 2004. 194-199 p.

35 BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice.
3rd. ed. Boston, MA, USA: Addison-Wesley Professional, 2012.

36 MALAVOLTA, I. et al. What Industry Needs from Architectural Languages: A
Survey. IEEE Trans. Software Eng., v. 39, n. 6, p. 869–891, 2013.

37 ISO/IEC/IEEE Systems and Software Engineering - Architecture Description.
ISO/IEC/IEEE 42010:2011(E) - (Revision of ISO/IEC 42010:2007 and IEEE
Std 1471-2000), p. 1–46, Dec 2011.

38 SHAW, M.; GARLAN, D. Software Architecture: Perspectives on an
Emerging Discipline. 1th. ed. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1996.

39 SHAW, M. The Coming-of-Age of Software Architecture Research. In: 23rd
International Conference on Software Engineering ICSE. Toronto, Ontario,
Canada: [s.n.], 2001. p. 656–664.

40 MEDVIDOVIC, N.; TAYLOR, R. N. A Classification and Comparison Framework
for Software Architecture Description Languages. IEEE Trans. Softw. Eng., IEEE
Press, Piscataway, NJ, USA, v. 26, n. 1, p. 70–93, 2000.

228 Bibliography

41 WEHRMEISTER, M. A.; BERKENBROCK, G. R. AMoDE-RT: Advancing Model-
driven Engineering for Embedded Real-Time Systems. In: 16th Int. Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing.
[S.l.: s.n.], 2013. p. 1–7.

42 GÓNGORA, H. G. C.; GAUDRÉ, T.; TUCCI-PIERGIOVANNI, S. Complex
Systems Design & Management: Proceedings of the Third International Conference on
Complex Systems Design & Management. In: . Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013. cap. Towards an Architectural Design Framework for Automotive
Systems Development, p. 241–258.

43 LI, M. et al. Model-based Systems Engineering with Requirements Variability
for Embedded Real-Time Systems. In: IEEE International Model-driven
Requirements Engineering Workshop (MoDRE). Ottawa, ON, Canada: IEEE,
2015. p. 1–10.

44 ESPINOZA, H. et al. Challenges in Combining SysML and MARTE for Model-based
Design of Embedded Systems. In: 5th European Conference (ECMDA-FA).
Enschede, The Netherlands: Springer, 2009. (Lecture Notes in Computer Science,
v. 5562), p. 98 – 113.

45 CANCILA, D.; ESPINOZA, H.; PAIGE, R. F. Special Issue on Model Based
Engineering for Embedded Systems Design. Journal of Systems Architecture -
Embedded Systems Design, v. 58, n. 5, p. 177, 2012.

46 WOZNIAK, E. et al. Assigning Time Budgets to Component Functions in the
Design of Time-critical Automotive Systems. In: Proc. of the 29th ACM/IEEE
International Conference on Automated Software Engineering. [S.l.: s.n.], 2014.
p. 235–246.

47 SELIC, B. Beyond Mere Logic - A Vision of Modeling Languages for the 21st
Century. In: Proceedings of the 5th International Conference on Pervasive
and Embedded Computing and Communication Systems (PECCS). Angers,
Loire Valley, France: SciTePress, 2015. p. 1 – 9.

48 FEILER, P. H.; GLUCH, D. P. Model-based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language. 1st. ed.
[S.l.]: Addison-Wesley Professional, 2012.

49 HU, F. et al. Robust Cyber-Physical Systems: Concept, Models and Implementation.
Future Generation Computer Systems, v. 56, p. 449 – 475, 2016.

50 REINKEMEIER, P. et al. A Pattern-based Requirement Specification Language:
Mapping Automotive Specific Timing Requirements. In: Workshopband Software
Engineering. [S.l.]: Köllen Druck + Verlag GmbH, 2011. (Lecture Notes in Informatics
(LNI)), p. 99–108.

51 WEHRMEISTER, M. A. et al. Combining Aspects and Object-Orientation
in Model-driven Engineering for Distributed Industrial Mechatronics Systems.
Mechatronics, v. 24, n. 7, p. 844–865, 2014.

Bibliography 229

52 GIESE, H. et al. (Ed.). Modeling Languages for Real-Time and Embedded
Systems: Requirements and Standards-based Solutions., v. 6100 de Lecture
Notes in Computer Science, (Lecture Notes in Computer Science, v. 6100). Berlin,
Heidelberg: Springer-Verlag, 2007. 129 - 154 p.

53 FAN, X. Real-Time Embedded Systems. 1st. ed. [S.l.]: Elsevier, 2015.

54 WAN, J.; CANEDO, A.; FARUQUE, M. A. A. Functional Model-based Design
Methodology for Automotive Cyber-Physical Systems. IEEE Systems Journal, v. 11,
n. 4, p. 2028–2039, 2017.

55 SPT, O. UML Profile for Schedulability, Performance and Time (SPT) -
version 1.1. [S.l.: s.n.], 2005. Technical Report Formal/2005.07.05.

56 QOS, O. UML Profile for Modeling QoS and Fault Tolerance Char-
acteristics and Mechanisms - version 1.1. [S.l.: s.n.], 2008. Technical Report
Formal/2008.04.08.

57 UML, O. OMG Unified Modeling Language - version 2.5. [S.l.: s.n.], 2015.
Technical Report Formal/2015.03.01.

58 SILVESTRE, E. A.; SOARES, M. S. Multiple View Architecture Model for
Distributed Real-Time Systems Using MARTE. In: 20th Information Systems
Development, Reflections, Challenges and New Directions (ISD 2011).
Heriot-Watt University, Edinburgh, Scotland, UK: [s.n.], 2011. p. 195 – 203.

59 SELIC, B.; GERARD, S. Modeling and Analysis of Real-Time and Embedded
Systems with UML and MARTE. In: Modeling and Analysis of Real-Time and
Embedded Systems with UML and MARTE. 1. ed. Boston: Morgan Kaufmann,
2014.

60 NI, S. et al. Modeling Dependability Features for Real-Time Embedded Systems.
IEEE Transactions on Dependable and Secure Computing., v. 12, n. 2, p. 190 –
203, 2015.

61 SIKORA, E.; TENBERGEN, B.; POHL, K. Requirements Engineering for
Embedded Systems: An Investigation of Industry Needs. In: Proc. of Requirements
Engineering: Foundation for Software Quality - 17th International Working
Conference REFSQ. [S.l.: s.n.], 2011. p. 151–165.

62 MORI, M. et al. Systems-of-Systems Modeling using a Comprehensive Viewpoint-
based SysML profile. Journal of Software: Evolution and Process, v. 30, n. 3,
2018.

63 ALUR, R.; DILL, D. L. A Theory of Timed Automata. Theoretical Computer
Science, v. 126, p. 183–235, 1994.

64 BECKER, L. B.; PEREIRA, C. E. From Design to Implementation: Tool
Support for the Development of Object-Oriented Distributed Real-Time Systems. In:
Proceedings 12th Euromicro Conference on Real-Time Systems. [S.l.: s.n.],
2000. p. 109–116.

230 Bibliography

65 BARBIERI, G.; FANTUZZI, C.; BORSARI, R. A Model-based Design Methodology
for the Development of Mechatronic Systems. Mechatronics, v. 24, p. 833–843, 2014.

66 ASSAR, S. Model Driven Requirements Engineering: Mapping the Field and
Beyond. In: IEEE 4th International Model-driven Requirements Engineering
Workshop (MoDRE). Karlskrona, Sweden: [s.n.], 2014. p. 1–6.

67 EBERT, C.; PEREIRA, C. E. Measuring the Impact of Real Time Design
Techniques. In: Innovationen bei Rechen- und Kommunikationssystemen, Eine
Herausforderung für die Informatik. [S.l.: s.n.], 1994. p. 348–355.

68 PEREIRA C. E.AND FRIGERI, A.; DARSCHT, P.; HALANG, W. Object-Oriented
Development of Real-Time Industrial Automation Systems. Volume O: Power Plants
and Systems, Computer Control, v. 29, p. 321–326, 1996.

69 FURIA, C. A. et al. Modeling Time in Computing. 1st. ed. [S.l.]: Monographs
in Theoretical Computer Science., 2012.

70 SCHEEREN, I.; PEREIRA, C. E. Combining Model-based Systems Engineering,
Simulation and Domain Engineering in the Development of Industrial Automation
Systems: Industrial Case Study. In: 17th International Symposium on
Object/Component-Oriented Real-Time Distributed Computing. [S.l.: s.n.],
2014. p. 40–47.

71 NOYRIT, F. et al. Consistent Modeling Using Multiple UML Profiles. In: PETRIU,
D.; ROUQUETTE, N.; HAUGEN, y. (Ed.). Model Driven Engineering Languages
and Systems. Oslo, Norway: Springer Berlin Heidelberg, 2010. (Lecture Notes in
Computer Science, v. 6394), p. 392 – 406.

72 EASTERBROOK, S. et al. Selecting Empirical Methods for Software Engineering
Research. Guide to Advanced Empirical Software Engineering Springer,
Springer, v. 16, p. 285–311, 2007.

73 SHAW, M. Writing Good Software Engineering Research Papers: Minitutorial. In:
Proceedings of the 25th International Conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2003. (ICSE 03), p. 726 – 736.

74 BOOTH, W. C.; COLOMB, G. G.; WILLIAMS, J. M. The Craft of Research.
3rd. ed. Chicago: University of Chicago Press, 2008. 1 - 336 p. (Chicago Guides to
Writing, Editing, and Publishing).

75 SHAW, M. What Makes Good Research in Software Engineering? International
Journal on Software Tools for Technology Transfer, v. 4, n. 1, p. 1 – 7, 2002.

76 DYBÅ, T. et al. Qualitative Research in Software Engineering. Empirical Softw.
Engg., Kluwer Academic Publishers, Hingham, MA, USA, v. 16, n. 4, p. 425–429, 2011.

77 DAVY, D.; VALECILLOS, C. Summary of a Literature Review of Qualitative
Research in Technical Communication from 2003 to 2007. International Professional
Communication Conference, IEEE Computer Society, Los Alamitos, CA, USA, v. 0,
p. 1–7, 2009.

Bibliography 231

78 WOODSIDE, A. G.; WILSON, E. J. Case Study Research Methods for Theory
Building. Journal of Business & Industrial Marketing., v. 18, n. 6/7, p. 493 – 508,
2003.

79 RUNESON, P.; HöST, M. Guidelines for Conducting and Reporting Case
Study Research in Software Engineering. Empirical Software Engineering: An
International Journal, Kluwer Academic Publishers Hingham, MA, USA, Hingham,
MA, USA, v. 14, n. 2, p. 131–164, 2009.

80 YIN, R. K. Case Study Research: Design and Methods (Applied Social
Research Methods). 5th. ed. [S.l.]: Sage Publications, 2015. 1 - 312 p.

81 ISO/IEC/IEEE International Standard - Systems and Software Engineering – Life
Cycle Processes – Requirements Engineering. ISO/IEC/IEEE 29148:2011(E), p.
1–94, 2011.

82 RIBEIRO, F. G. C.; SOARES, M. S. An Approach for Modeling Real-Time
Requirements with SysML and MARTE Stereotypes. In: 15th International
Conference on Enterprise Information Systems (ICEIS). [S.l.: s.n.], 2013.

83 . A Metamodel for Tracing Requirements of Real-Time Systems. In: 16th
IEEE Computer Society Symposium on Object/Service-Oriented RealTime
Distributed Computing (ISORC). [S.l.: s.n.], 2013.

84 RIBEIRO, F. G. C.; MISRA, S.; SOARES, M. S. Application of an Extended
SysML Requirements Diagram to Model Real-Time Control Systems. In: . 13th
International Conference in Computational Science and Its Applications
(ICCSA). Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. p. 70 – 81.

85 RIBEIRO, F. G. C. Modelagem de requisitos de software de tempo-real
usando SysML e MARTE. Dissertação (Master Thesis) — Universidade Federal de
Uberlândia, Uberlândia, 2013.

86 HERRERA, F.; MEDINA, J.; VILLAR, E. Modeling Hardware/Software Embedded
Systems with UML/MARTE: A Single-Source Design Approach. In: . Handbook
of Hardware/Software Codesign. [S.l.]: Springer Netherlands, 2017. p. 141–185.

87 QUADRI, I. R. et al. MADES: A SysML/MARTE High Level Methodology for
Real-Time and Embedded Systems. In: Proceedings of the 10th Embedded
Realtime Software and Systems Conference. [S.l.: s.n.], 2012. p. 1 – 10.

88 MARQUES, M. R. S.; SIEGERT, E.; BRISOLARA, L. Integrating UML, MARTE
and SysML to Improve Requirements Specification and Traceability in the Embedded
Domain. In: 12th IEEE International Conference on Industrial Informatics
(INDIN). Porto Alegre, RS, Brazil: IEEE, 2014. p. 176 – 181.

89 HERRERA, F. et al. The COMPLEX Methodology for UML/MARTE Modeling and
Design Space Exploration of Embedded Systems. Journal of Systems Architecture
- Embedded Systems Design, Elsevier North-Holland, Inc., New York, NY, USA,
v. 60, n. 1, p. 55 – 78, 2014.

232 Bibliography

90 KHAN, A.; MALLET, F.; RASHID, M. A framework to specify system requirements
using natural interpretation of UML/MARTE diagrams. Software & Systems
Modeling, Springer Verlag, 2017.

91 CHEN, B.; X., L.; ZHOU, X. Model Checking of MARTE/CCSL Time Behaviors
using Timed I/O Automata. Journal of Systems Architecture, v. 88, p. 120 – 125,
2018.

92 RIBEIRO, F. G. C. et al. Model-based requirements Specification of Real-Time
Systems with UML, SysML and MARTE. Software & Systems Modeling, p. 1 – 19,
2016.

93 . Applying MARTE Profile for Optimal Automotive System Specifications
and Design. In: 50th Hawaii International Conference on System Sciences
(HICSS). Waikiloa Village, Hawaii: [s.n.], 2017.

94 . Annotating SysML Models with MARTE Time Stereotypes for Requirements
Specification and Design of Real-Time Systems. In: 7th IEEE Workshop on
Self-Organizing Real-Time Systems. York, UK.: [s.n.], 2016.

95 . A Model-based Engineering Methodology for Requirements and Formal
Design of Embedded and Real-Time Systems. In: 50th Hawaii International
Conference on System Sciences (HICSS). Waikiloa Village, Hawaii: [s.n.], 2017.

96 RIBEIRO, Q. A. D.; RIBEIRO, F. G. C.; SOARES, M. S. A Technique to Architect
Real-time Embedded Systems with SysML and UML through Multiple Views. In:
INSTICC. Proceedings of the 19th International Conference on Enterprise
Information Systems - Volume 2: ICEIS. [S.l.]: ScitePress, 2017. p. 287–294.

97 RIBEIRO, F. G. C. Multi-Formalism in Different Levels of Abstraction for
Requirements Engineering and Design of Real-Time Systems. In: PhD Forum at
Design, Automation and Test in Europe (DATE). [S.l.: s.n.], 2018.

98 RIBEIRO, F. G. C. et al. An Analysis of the Value Specification Language
Applied to the Requirements Engineering Process of Cyber-Physical Systems.
IFAC-PapersOnLine, v. 49, n. 30, p. 42 – 47, 2016. 4th {IFAC} Symposium on
Telematics Applications {TA}.

99 . An Approach to Formalization of Architectural Viewpoints Design in
Real-Time and Embedded Domain. In: 21th IEEE Computer Society Symposium
on Object/Service-Oriented Real-Time Distributed Computing (ISORC).
[S.l.: s.n.], 2018.

100 . Guidelines for Using MARTE Profile Packages Considering Concerns
of Real-Time Embedded Systems. In: 15th IEEE International Conference on
Industrial Informatics, INDIN. [S.l.: s.n.], 2017. p. 917–922.

101 . SPES methodology and MARTE constraints in architectural design. In:
ISCC. [S.l.]: IEEE, 2018. p. 377–383.

102 . Model-based Design Methodology for Early Evaluation of Real-time and
Embedded Constraints. In: INDIN. [S.l.]: IEEE, 2018. p. 875–881.

Bibliography 233

103 . An Approach for Architectural Design of Automotive Systems using
MARTE and SysML. In: CASE. [S.l.]: IEEE, 2018. p. 1574–1580.

104 . Non-Functional Constraints Annotation to Real-Time and Embedded
System Design. In: SBESC. [S.l.]: IEEE, 2018.

105 KOPETZ, H. Real-Time Systems: Design Principles for Distributed
Embedded Applications. 2nd. ed. [S.l.]: Springer Publishing Company, Incorporated,
2011.

106 BURNS, A.; WELLINGS, A. Real-Time Systems and Programming
Languages: Ada, Real-Time Java and C/Real-Time POSIX. 4th. ed. USA:
Addison-Wesley, 2009.

107 WELCH, L. et al. Specification and modeling of dynamic, distributed real-time
systems. In: 19th IEEE Real-Time Systems Symposium. [S.l.: s.n.], 1998. p.
72–81.

108 LEE, D. T. Evaluating Real-Time Software Specification Languages. Computer
Standards & Interfaces, v. 24, n. 5, p. 395–409, 2002.

109 PEREIRA, T. et al. Towards a Metamodel for a Requirements Engineering Process
of Embedded Systems. 2016 VI Brazilian Symposium on Computing Systems
Engineering, p. 93–100, 2016.

110 GAMBIER, A. Real-time Control Systems: A Tutorial. In: 5th Asian Control
Conference (IEEE Cat. No.04EX904). [S.l.: s.n.], 2004. v. 2, p. 1024–1031.

111 PEREIRA, C. E. On Describing Timing Requirements within a Real Time Object
Oriented Requirements Engineering Phase. In: Proceedings of the Workshop 4:
Object Oriented RealTime Systems Analysis and Design Issues. [S.l.: s.n.],
1993. p. 993–998.

112 BURNS, A.; WELLINGS, A. J. Real-Time Systems and their Programming
Languages: ADA 95, Real-Time Java, ad Real-Time POSIX. 3th. ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., 2001. I-XVI, 1-611 p.

113 FREITAS, E. P. et al. DERAF: A High-Level Aspects Framework for Distributed
Embedded Real-Time Systems Design. In: Proc. of the 10th International
Workshop on Early Aspects. [S.l.]: Springer, 2007. (Lecture Notes in Computer
Science, v. 4765/2), p. 55–74.

114 BRAMBILLA, M.; CABOT, J.; WIMMER, M. Model-driven Software
Engineering in Practice: Second Edition. 2nd. ed. [S.l.]: Morgan & Claypool
Publishers, 2017.

115 WHITTLE, J.; HUTCHINSON, J.; ROUNCEFIELD, M. The State of Practice in
Model-driven Engineering. IEEE Software, v. 31, n. 3, p. 79–85, 2014.

116 STRAETEN, R. V. D.; MENS, T.; BAELEN, S. Challenges in Model-driven
Software Engineering. In: CHAUDRON, M. R. V. (Ed.). Models in Software
Engineering. [S.l.]: Springer Berlin Heidelberg, 2009. p. 35–47.

234 Bibliography

117 ESTEFAN, J. Survey of Candidate Model-based Systems Engineering
(MBSE) Methodologies. [S.l.], 2008.

118 FOUAD, A. et al. Embedding requirements within Model-driven Architecture.
Software Quality Journal, v. 19, n. 2, p. 411–430, 2011.

119 AGNER, L. T. W. et al. A Brazilian Survey on UML and Model-driven Practices
for Embedded Software Development. J. Syst. Softw., Elsevier Science Inc., v. 86, n. 4,
p. 997–1005, 2013.

120 SOMMERVILLE, I. Engenharia de Software. 8th. ed. São Paulo: Pearson,
2011.

121 MILLER, J.; MUKERJI, J. MDA Guide Version 1.0.1. [S.l.], 2003.

122 WEHRMEISTER, M. A. An Aspect-Oriented Model-driven Engineering
Approach for Distributed Embedded Real-Time Systems. Tese (Thesis) —
Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 2009.

123 IYENGHAR, P.; NOYER, A.; PULVERMUELLER, E. Early Model-driven Timing
Validation of IoT-compliant Use Cases. In: IEEE 15th International Conference
on Industrial Informatics (INDIN). [S.l.: s.n.], 2017. p. 19–25.

124 BOOCH, G. et al. Object-Oriented Analysis and Design with Applications.
3th. ed. Redwood City, CA, USA: Addison - Wesley Professional, 2007.

125 WEILKIENS, T. Systems Engineering with SysML/UML: Modeling,
Analysis, Design. 1th. ed. San Francisco, USA: Morgan Kaufmann, 2008.

126 DAUN, M.; TENBERGEN, B.; WEYER, T. Requirements Viewpoint. In:
. Model-based Engineering of Embedded Systems: The SPES 2020

Methodology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. p. 51–68.

127 HOLTMANN, J. et al. Integrated Systems Engineering and Software Requirements
Engineering for Technical Systems. In: Proceedings of the 2015 International
Conference on Software and System Process. [S.l.: s.n.], 2015. (ICSSP 2015), p.
57–66.

128 PETERS, J. et al. A Generic Representation of CCSL Time Constraints for
UML/MARTE Models. In: 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC). [S.l.: s.n.], 2015. p. 1–6.

129 AMYOT, D. et al. Towards Improved Requirements Engineering with SysML and
the User Requirements Notation. 2016 IEEE 24th International Requirements
Engineering Conference (RE), p. 329–334, 2016.

130 WAYKAR, Y. Importance of UML Diagrams in Software Development. In:
Managelization. [S.l.: s.n.], 2013.

131 BRIAND, L. C.; LABICHE, Y.; SULLIVAN, Y. O. Impact Analysis and Change
Management of UML Models. Proceedings of the International Conference on
Software Maintenance (ICSM), p. 256–265, 2003.

Bibliography 235

132 SELIC, B. A Systematic Approach to Domain-Specific Language Design Using
UML. In: 10th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC 07). [S.l.: s.n.], 2007. p. 2
– 9.

133 CHOI, J.; BAE, D. H. An Approach to Constructing Timing Diagrams from
UML/MARTE Behavioral Models for Guidance and Control Unit Software. In:
Computer Applications for Database, Education, and Ubiquitous Computing
- International Conferences. [S.l.: s.n.], 2012. p. 107 – 110.

134 CHOI, J.; JEE, E.; BAE, D. H. Timing Consistency Checking for UML/MARTE
Behavioral Models. Software Quality Journal, v. 24, n. 3, p. 835 – 876, 2016.

135 BENNETT, A. J.; FIELD, A. J. Performance Engineering with the UML Profile for
Schedulability, Performance and Time: a Case Study. In: 12th Annual International
Symposium on the IEEE Computer Society’s. Los Alamitos, CA, USA: IEEE
Computer Society, 2004. p. 67 – 75.

136 BEHRMANN, G.; DAVID, A.; LARSEN, K. G. A Tutorial on Uppaal 4.0.
2006.

137 BENGTSSON, J.; YI, W. Timed Automata: Semantics, Algorithms and Tools. In:
. [S.l.]: Springer-Verlag, 2004. p. 87–124.

138 UPPAAL, T. Uppaal: http://www.uppaal.org/. Acess em 23.11.2018. 2018.

139 OLIVEIRA, K. S. Aspectos Iniciais Modelados com uma Extensão
da SysML. Dissertação (Master Thesis) — Universidade Federal de Uberlândia,
Uberlândia, 2013.

140 DELLIGATTI, L. SysML Distilled: A Brief Guide to the Systems
Modeling Language. 1st. ed. [S.l.]: Addison Wesley Professional, 2013.

141 KRUCHTEN, P.; OBBINK, H.; STAFFORD, J. The Past, Present, and Future
for Software Architecture. IEEE Softw., IEEE Computer Society Press, Los Alamitos,
CA, USA, v. 23, n. 2, p. 22–30, 2006.

142 EDER, S.; MUND, J.; VOGELSANG, A. Logical Viewpoint. In: . Model-
based Engineering of Embedded Systems: The SPES 2020 Methodology.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. p. 85–93.

143 MALLET, F.; SIMONE, R. Correctness Issues on MARTE/CCSL Constraints.
Science of Computer Programming, Elsevier, v. 106, p. 78 – 92, 2015.

144 GRASSET, A. Design of Critical Embedded Systems: from Early Specifications
to Prototypes. In: International Symposium on Rapid System Prototyping
(RSP). [S.l.: s.n.], 2015. p. 38–38.

145 ALBINET, A. et al. The MeMVaTEx Methodology: From Requirements to Models
in Automotive Application Design. In: 5th European Congress ERTS Embedded
Real Time Software. [S.l.: s.n.], 2010. p. 1–10.

236 Bibliography

146 ITEA, E. The EAST-ADL Architecture Description Language. [S.l.: s.n.],
2013. Version M2.1.12.

147 AUTOSAR. AUTOSAR AUTomotive Open System Architecture. [S.l.:
s.n.], 2015. Release R4.2.

148 SAADATMAND, M.; CICCHETTI, A.; SJÖDIN, M. UML-based Modeling
of Non-Functional Requirements in Telecommunication Systems. In: The Sixth
International Conference on Software Engineering Advances (ICSEA 2011).
Barcelona, Spain: [s.n.], 2011. p. 213 – 220.

149 GAMATIÉ, A. et al. A Model-driven Design Framework for Massively Parallel
Embedded Systems. ACM Trans. Embedded Comput. Syst., v. 10, 2011.

150 GOMEZ, C.; DEANTONI, J.; MALLET, F. Multi-View Power Modeling Based on
UML, MARTE and SysML. In: EUROMICRO-SEAA. Cesme, Izmir, Turkey: IEEE
Computer Society, 2012. p. 17 – 20.

151 ULBRICH, P. et al. Using MARTE in Code-centric Real-time Projects Providing
Evolution Support. In: Proceedings of the First Workshop on Model Based
Engineering for Embedded Systems Design (M-BED 2010). [S.l.: s.n.], 2014. p.
25–29.

152 YUNCHENG, S. Research on Modeling and Design of Real-Time Embedded
Systems. In: 7th International Conference on Intelligent Computation
Technology and Automation. [S.l.: s.n.], 2014. p. 547–550.

153 QUADRI, I. R.; BAGNATO, A.; SADOVYKH, A. MADES EU FP7 Project:
Model-driven Methodology for Real Time Embedded Systems. In: . Embedded
and Real Time System Development: A Software Engineering Perspective:
Concepts, Methods and Principles. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014. p. 57–89.

154 QUADRI, I. R.; BAGNATO, A.; A., S. MADES FP7 EU Project: Effective High
Level SysML/MARTE Methodology for Real-Time and Embedded Avionics Systems.
In: 7th International Workshop on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC). [S.l.: s.n.], 2012. p. 1 – 8.

155 MARQUES, M. R. S.; SIEGERT, E.; BRISOLARA, L. B. Uma Abordagem para
Engenharia de Requisitos Baseada em Modelos no Domínio de Software Embarcado. In:
Workshop em Engenharia de Requisitos, Montevideo, Uruguay, April 8-10,
2013. [S.l.: s.n.], 2013.

156 IQBAL, M. Z. et al. Applying UML/MARTE on Industrial Projects: Challenges,
Experiences, and Guidelines. Software & Systems Modeling, v. 14, n. 4, p.
1367–1385, 2015.

157 EBEID, E. et al. Extensions to the UML Profile for MARTE for Distributed
Embedded Systems. In: Forum on Specification and Design Languages (FDL).
[S.l.: s.n.], 2015. p. 1–8.

Bibliography 237

158 OUHAMMOU, Y.; GROLLEAU, E.; RICHARD, P. Extension and Utilization of a
Design Framework to Model Integrated Modular Avionic Architecture. In: . [S.l.:
s.n.], 2015. p. 16–27.

159 FERNáNDEZ, D. M.; PENZENSTADLER, B. Artefact-based Requirements
Engineering: The AMDiRE Approach. Requirements Engineering., Springer-Verlag
New York, Inc., v. 20, n. 4, p. 405–434, 2015.

160 KAHANI, N. AutoModel: a Domain-specific Language for Automatic Modeling
of Real-time Embedded Systems. In: Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings. [S.l.: s.n.],
2018. p. 515–517.

161 BUCAIONI, A. et al. MoVES: A Model-driven Methodology for Vehicular
Embedded Systems. IEEE Access, v. 6, p. 6424–6445, 2018.

162 OUHAMMOU, Y.; GROLLEAU, E.; RICHARD, P. From Model-based Design to
Real-time Analysis. p. 45–50, 2012.

163 WEBER, R. et al. Technical Viewpoint. In: . Model-based Engineering
of Embedded Systems: The SPES 2020 Methodology. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012. p. 95–106.

164 KAZMAN, R.; BURTH, M. Assessing Architectural Complexity. In: CSMR. [S.l.:
s.n.], 1998.

165 BASHIR, H.; THOMSON, V. Estimating Design Complexity. Journal of
Engineering Design, v. 10, p. 247–257, 1999.

166 KINNUNEN, M. J. Complexity Measures for System Architecture Models.
Dissertação (Mestrado), 2006.

167 KREIMEYER, M.; LINDEMANN, U. Complexity Metrics in Engineering
Design. [S.l.]: Springer-Verlag Berlin Heidelberg, 2011.

168 CARD, D. N.; AGRESTI, W. W. Measuring Software Design Complexity. Journal
of Systems and Software, v. 8, n. 3, p. 185 – 197, 1988.

169 ROSSI, M.; BRINKKEMPER, S. Complexity Metrics for Systems Development
Methods and Techniques. Information Systems, v. 21, n. 2, p. 209 – 227, 1996.

170 BANDI, R. K.; VAISHNAVI, V. K.; TURK, D. E. Predicting Maintenance
Performance using Object-Oriented Design Complexity Metrics. IEEE Transactions
on Software Engineering, v. 29, n. 1, p. 77–87, 2003.

171 TOMIYAMA, T. et al. Complexity of Multi-Disciplinary Design. Annals of the
CIRP, v. 56, n. 1, 2007.

172 PANDEY, R. K. Managing software design complexity. ACM SIGSOFT
Software Engineering Notes, v. 34, n. 1, p. 1, 2009.

173 KOPETZ, H. The Complexity Challenge in Embedded System Design. In:
IEEE. 11th IEEE International Symposium on Object Oriented Real-Time
Distributed Computing (ISORC). [S.l.], 2008. p. 3–12.

238 Bibliography

174 STEVANETIC, S.; ZDUN, U. Software Metrics for Measuring the Understandability
of Architectural Structures: A Systematic Mapping Study. In: Proceedings of the
19th International Conference on Evaluation and Assessment in Software
Engineering. [S.l.]: ACM, 2015.

175 LOUCOPOULOS, P.; KARAKOSTAS, V. System Requirements Engineering.
New York, NY, USA: McGraw-Hill, Inc., 1995.

176 PAPYRUS, T. Papyrus: www.eclipse.org/papyrus/. Acess em 27.11.2018. 2018.

177 PARVIAINEN, P.; TIHINEN, M.; VANSOLINGEN, R. Requirements Engineering:
Dealing with the Complexity of Sociotechnical Systems Development. In: MATE, J. L.;
SILVA, A. (Ed.). Requirements Engineering for Sociotechnical Systems. [S.l.]:
IdeaGroup Inc., 2004. Chapter 1.

178 MATE, J. L.; SILVA, A. Requirements Engineering for Sociotechnical
Systems. 1rd. ed. [S.l.]: IdeaGroup Inc., 2005. 1 - 375 p.

179 HATLEY, D. J.; PIRBHAI, I. A. Strategies for Real-time System
Specification. [S.l.]: Dorset House Publishing Co., Inc., 1987.

180 KNUTH, D. E. The Art of Computer Programming: Fundamental
Algorithms. Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc.,
1997.

181 BARROSO, A. S. et al. An Evaluation of Influence of Human Personality in
Software Development: An Experience Report. In: 8th Euro American Conference
on Telematics and Information Systems. [S.l.: s.n.], 2016. p. 1–6.

182 . Influence of Human Personality in Software Engineering - A Systematic
Literature Review. In: ICEIS 2017 - Proceedings of the 19th International
Conference on Enterprise Information Systems. [S.l.: s.n.], 2017. p. 53–62.

183 NAVET, N.; SIMONOT-LION, F. Automotive Embedded Systems
Handbook. 1st. ed. Boca Raton, FL, USA: CRC Press, Inc., 2008.

184 BECKER, L. B. et al. MOSYS A Methodology for Automatic Object Identification
from System Specification. In: 3rd International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC. [S.l.: s.n.], 2000. p. 198–201.

185 LIU, C. L.; LAYLAND, J. W. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, ACM, v. 20, n. 1, p. 46–61, jan. 1973. ISSN
0004-5411.

186 HAZZAN, O.; DUBINSKY, Y. Qualitative Research in Software Engineering.
System Desig Frontier, v. 4, p. 6–17, 2007.

187 DRECHSLER, R. et al. Completeness-driven Development. In: Graph
Transformations. [S.l.]: Springer Berlin Heidelberg, 2012. p. 38–50.

188 Ribeiro, F. G. C. and Pereira, C. E. and Rettberg, A. and Soares, M. S. An
Approach for Architectural Design of Automotive Systems using MARTE and SysML.
In: 14th International Conference on Automation Science and Engineering
(CASE). [S.l.: s.n.], 2018. p. 1574–1580.

Bibliography 239

189 RIBEIRO, F. G. C. et al. Ein Modellierungsansatz für eine Systemar-
chitekturbeschreibung von Automotive-Systemen mit MARTE und SysML.
Automatisierungstechnik, v. 67, p. 490–501, 2019.

190 RIBEIRO, F. G. C. A Methodology to Early Design and Evaluation of Real-Time
Embedded Systems considering Non-Functional Constraints. In: PhD Forum at 38th
Design Automation Conference (DAC). [S.l.: s.n.], 2019.

191 RIBEIRO, F. G. C. et al. A Proposal to Trace and Maintain Real-time Embedded
Constraints. In: 6th International Embedded Systems Symposium. [S.l.]:
Springer, 2019.

192 ARDUINO. Platform arduino, www.arduino.cc/. Acess em 27.08.2018. 2018.

193 FREERTOS. www.freertos.org/. Acess em 27.08.2018. 2018.

194 C++. http://www.cplusplus.com/doc/tutorial/. Acesso em 20.09.2018. 2018.

195 HARBOUR, M. Programming Real-Time Systems with C/C++ and POSIX. 2018.

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	Abstrakt
	List of Figures
	List of Tables
	Acronyms List
	Contents
	Introduction
	Motivation
	Research Methodology
	Goals and Scope Delimitation
	Assumptions and Research Questions

	Contributions of the Thesis
	Organization of the Thesis

	Theoretical Foundation
	Real-time Embedded Systems and their Properties
	Real-Time Embedded Constraints in Architectural Models
	Model-Driven Systems Engineering
	Specification and Design of Real-Time Embedded Systems
	Characterization of UML
	Characterization of Timed Automata
	Characterization of SysML
	Use Case Diagram
	SysML Requirements Diagram
	SysML Block Definition Diagram
	SysML Internal Block Diagram
	SysML Activity Diagram

	Software Platform Embedded Systems
	Characterization of the MARTE Profile
	MARTE Foundations Model
	Core Elements Package
	Non-Functional Properties Package
	Temporal Aspects Package
	Generic Resource Modelling Package

	MARTE Design Model
	Generic Component Model Package
	Detailed Resource Modeling Package

	Contributions of this Chapter

	State of the Art Analysis
	Methodologies to Design Real-Time Embedded Systems
	Formalization of Architectural Viewpoints
	Contributions

	MARTeSysReqD Methodology
	MARTeSysReqD Scope
	General Flow of the MARTeSysReqD Methodology
	Requirements Specification and Architectural Viewpoints within the MARTeSysReqD Methodology
	Requirements Viewpoint of the MARTeSysReqD Methodology
	Requirements Pre-Analysis
	High-Level Description of Requirements
	Composition of Models using the MARTE Profile
	Formal Specification with VSL
	Requirements Analysis
	Application of the Requirements Viewpoint
	Summary of Requirements viewpoint

	Functional Viewpoint of the MARTeSysReqD Methodology
	Application of the Functional Viewpoint

	Logical Viewpoint of the MARTeSysReqD Methodology
	Application of the Logical Viewpoint

	Technical Viewpoint of the MARTeSysReqD Methodology
	Application of the Technical Viewpoint

	From Architectural Viewpoints to Global System Architecture
	An Strategy to Trace Real-Time Embedded Systems Constraints in Architectural Viewpoints
	Contributions

	Formalization of MARTeSysReqD
	Formalization of the Design Decision of Architectural Viewpoints
	Algorithms to Describe the Architectural Viewpoint
	Formalization of Requirements Viewpoint Decisions
	Formalization of Functional Viewpoint Decisions
	Formalization of Logical Viewpoint Decisions
	Formalization of the Technical Viewpoint Decisions

	A Strategy to Analyze the Architectural Viewpoints in RTES Development
	Partial Asymptotic Analysis of the MARTeSysReqD Design Decisions
	System Complexity Prediction of Architectural Viewpoint Design

	Contributions of the Proposed Formalization

	Application of the MARTeSysReqD Methodology
	An Overview of Automotive Control Systems
	Body Control Module
	A Motivating Case: The Turn Indicator System
	Scenario of the Turn Indicator System

	Design of Architectural Viewpoints of the Turn Indicator System
	Requirements Viewpoint with the MARTeSysReqD Methodology
	Requirements Pre-Analysis
	High-Level Description of Requirements
	Composition of Models using the MARTE Profile
	Analysis of Requirements

	Functional Viewpoint with the MARTeSysReqD Methodology
	Logical Viewpoint with the MARTeSysReqD Methodology
	Technical Viewpoint with the MARTeSysReqD Methodology

	Model and Unit Design Models
	Tracing Real-Time Embedded Systems Constraints to Implementation Models
	Contributions

	Evaluation of the MARTeSysReqD Methodology
	Quantitative Evaluation of the MARTeSysReqD Metodology
	Empirical Evaluation of MARTE Constraints

	Early Evaluation of MARTE Constraints of Architectural Viewpoint
	Qualitative Evaluation of the MARTeSysReqD Methodology
	Data Gathering
	First Qualitative Evaluation
	Second Qualitative Evaluation

	Contributions

	Conclusion
	Main Results
	Research Challenges and Limitations
	Future Research
	Bibliographic Production

	Description of the Value Specification Language
	Introduction
	Time Expression

	Algorithms Formalization to MARTeSysReqD Methodology
	Requirements Viewpoint
	Proposed Grammar to the NL-TA Transformation

	Functional Viewpoint
	Mapping between Functional Viewpoint to Logical Viewpoint Models
	Logical Viewpoint

	Relating MARTE Profile Constructors and Concerns of RTES
	Introduction
	Mapping MARTE Stereotypes to Specify RTES Constraints

	System Realization
	Toolbox for Modeling, Simulation and Verification of MARTeSysReqD Methodology
	System Implementation

	Results of the First Qualitative Evaluation
	Results of the Second Qualitative Evaluation
	Personal Questions about the Interviewees

	Bibliography

