Akbarzadeh, Siamak and Kassem, Hassan and Buhr, Renko and Steinfeld, Gerald and Stoevesandt, Bernhard (2019) Adjoint-based calibration of inlet boundary condition for atmospheric computational fluid dynamics solvers. Wind Energy Science, 4 (4). pp. 619-632. ISSN 2366-7451

- Published Version

Volltext (2919Kb)


A continuous adjoint solver is developed for calibration of the inlet velocity profile boundary condition (BC) for computational fluid dynamics (CFD) simulations of the neutral atmospheric boundary layer (ABL). The adjoint solver uses interior domain wind speed observations to compute the gradient of a calibration function with respect to inlet velocity speed and wind direction. The solver has been implemented in the open-source CFD package OpenFOAM coupled with the local gradient-based “CONMIN-frcg” solver of the DAKOTA optimization package. The feasibility of the optimizer output is continuously monitored during the calibration process. The inlet flow profile is considered acceptable only if it can be fitted to a logarithmic or power law function with a tolerance of 3 %. Otherwise, the optimization takes the last fitted profile and asks for a new gradient evaluation. The newly developed framework has been applied in two cases, namely the Ishihara case and Kassel domain. By using the measurements over the hill in the Ishihara case, the method was able to predict the velocity profiles upstream and downstream of the hill accurately. For the Kassel domain, despite the complexity of the site, the method managed to achieve the targeted profile within a reasonable number of the solver calls.

Item Type: Article
Additional Information: Publiziert mit Hilfe des DFG-geförderten Open Access-Publikationsfonds der Carl von Ossietzky Universität Oldenburg.
Subjects: Science and mathematics > Physics
Divisions: Faculty of Mathematics and Science > Institute of Physics (IfP)
Date Deposited: 20 Mar 2020 12:06
Last Modified: 20 Mar 2020 12:06
URI: https://oops.uni-oldenburg.de/id/eprint/4551
URN: urn:nbn:de:gbv:715-oops-46325
DOI: 10.5194/wes-4-619-2019

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...