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Abstract: This paper reports the mechanical design, waveform investigation and experimental
validation of an flexible-structure-based inertia-drive linear motor. The flexible structure is designed
and verified with finite element analysis to meet the bandwidth requirement for high-frequency
actuation. In order to improve the output velocity, non-resonance low-harmonic driving waveform
is implemented and evaluated. Experimental results show that the motor is capable of an output
velocity of 2.41 mm/s with the waveform, compared to 0.73 mm/s with the classic saw-tooth
waveform actuation. The improvement of the non-resonance low-harmonic waveform for the
flexible-structure-based motor is confirmed.
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1. Introduction

Currently, the rapidly growing demand for micro/nano-manipulation is becoming more and more
important to optical engineering, biomedical, micro/ nano-manufacturing and other areas. In order to
meet the requirements including but not limited to miniaturization, high velocity, high precision and
long travel range for micro/nano-manipulation tasks, numerous micro-motion piezoelectric motors
have been developed and can be found extensively in different applications. The driving principles of
piezoelectric motors can be classified into direct-drive, displacement-amplified-drive, ultrasonic-drive,
inchworm-drive, inertia-drive, etc. Inertia-drive motors, also known as “stick-slip” motors, have the
prominent merits of compact size and simple driving signal, attract many research attentions [1–3].

Pohl developed one of the first inertia-drive motors in 1987 [4]. Focusing on improving the
output performance (mainly the output velocity) of the motors, waveform optimizations have been
studied intensively. Parabolic, cycloid and exponential waveforms in addition to the classic saw-tooth
waveform (STW) have been investigated and developed. Bergander proposed the implement of
the input shaping method to reduce the residual vibration [5]. Nguyen presented an optimized
waveform based on the method of dimensionality reduction to reduce the backlash [6]. Hunstig
theoretically investigated the performance of frequency-limited waveforms [7]. Cheng proposed a
resonant/off-resonant hybrid excitation waveform [8]. Zhong presented an combined waveform to
increase the velocity [9].

From the perspective of structural optimization, simple forms of piezoelectric actuators such as
bulk, stack, tube, bimorph structure were generally used for inertia-drive motors in the early stage
development. Soon after, the concept of monolithic piezoelectric flexible structures, and the use of
extra flexible structures were investigated, where the steps are generated through the deformation of
the structures [10–12]. Motor designs that introduce flexible structures have the advantages of design
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flexibility, capability of easy replacement and integration of sensors, protection to the piezoelectric
actuators, etc. However, flexible structures with relatively low stiffness were concluded as complex
designs, which have low driving frequencies and lead to poor output velocities. Since then, researchers
aimed at compact and simple designs in order to push the driving frequency limit. For example,
the so-called “push-pull” actuator and similar concepts were proposed [13–15], which enables high
frequency actuation for motors or microrobots. Their common characteristic is the small stroke or step,
usually less than few hundreds nanometers. Until recent years, inertia-drive motors based on flexible
structure designs have started to be proposed again [16–18]. Yet the focus is mostly on the novelty
of structure design or driving principle. The issue of the limitation on the driving frequency and the
output performance using flexible structures is not widely in discussion.

In a recent study [7], theoretical analysis has shown that except for a high driving frequency,
a large stroke is also a key factor to achieve a high output velocity of an inertia-drive motor. That is to
say, with the advantage of a large stroke, flexible-structure-based inertia-drive motors could possibly
have high output velocities, if they have acceptable driving frequencies. The compromise between
the stroke and the driving frequency plays a key role. Results from another field have proved the
feasibility of utilizing flexible structures in high frequency actuations [19,20].

To achieve a high driving frequency, a narrow frequency-spectrum driving signal is as well a
possible solution. For inertia-drive, a related reported signal is the low-harmonic waveform (LHW).
It is composed of only two harmonic components, the second of which has twice the frequency of
the first. Compared to the STW, the LHW has a narrow frequency-spectrum. Nevertheless, it is
mostly implemented and studied in resonance actuation at ultrahigh-frequencies (usually higher
than 10 kHz) [21–24]. Such driving frequency is too high for general flexible structure design and
the actuation intrinsic is different. A non-resonance actuation with a maximum driving frequency
below few thousand Hz is more reasonable for flexible-structure-based inertia-drive motor. However,
the study of non-resonance LHW actuation, especially its implementation on flexible structures is few.
Its performance in this frequency region remains to be investigated.

In the scope of this paper, the main contribution is to verify the feasibility of the non-resonance
LHW actuation in an inertia-drive motor that based on a high-bandwidth flexible structure.
The performance of the non-resonance LHW actuation will be validated in compare with the STW
actuation, investigating its potential to improve the driving frequency and output velocity of the motor.

2. Driving Principle

An inertia-drive motor in general is composed of two parts, the pusher part that generates
displacement corresponding to the driving signal, and the slider part that represents the final output
displacement of the complete motor. Figure 1 illustrates the driving principle of such a linear motor.
Applying the STW signal as the driving signal, a net output step (∆Y) can be generated in one period.
This process contains two phases, the stick phase and the slip phase. In the stick phase, the pusher
expands slowly, generating the driving step (∆X). The slider moves together with the pusher due to the
static friction force. Followed by the slip phase, the pusher then contracts rapidly to its original position,
while the slider fails to stick together because the maximum static friction force does not exceed the
inertia force. Consequently the net output step is created. By executing this period continuously,
the macro output displacement of the motor is generated.

However, such a driving signal has a shortcoming. The residual vibration appearing after each
slip phase hinders the output performance of the inertia-drive motor, especially when driven with
high frequency signals. As known, an arbitrary periodic signal can be described as a Fourier series
with infinite harmonic terms. Specifically, for a STW with an amplitude A and period T, its function
during one period (start at the origin) can be represented as

f (t) =
At
T

, 0 ≤ t ≤ T (1)
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The Fourier series of Equation (1) on the interval [0, T] is therefore given by

f (t) =
A
2
− A

π

∞

∑
n=1

sin(nωt)
n

, n = 1, 2, 3 . . . (2)

It is expected that some of the high frequency components mechanically excite the resonances of
the pusher part and creates residual vibrations. Thus, it is advantageous to adopt fewer frequency
components only. Taking the first two harmonics in Equation (2) and rewriting the equation, the 2-term
LHW is

fLHW(t) = −AL

π
[sin(ωt) +

1
Rl

sin(2ωt − θ)] (3)

where AL is the amplitude for the LHW, Rl is the ratio coefficient of the second harmonic, and θ is the
phase shift of the second harmonic. A 2-term low-harmonic LHW is theoretically capable of driving
the pusher up to half its first resonance frequency before exciting the resonance. The best parameters
for driving inertia-drive motor are 4 to 1 of the amplitude ratio for the two harmonics, and no phase
shift of the second harmonic [21]. Thus in this paper, a LHW with a ratio coefficient of 4 and a phase
shift of 0 is in focus.

Slider

Pusher ΔX ΔY

①

②

①à②

②à③

③

Figure 1. Driving principle of a linear inertia-drive motor. The transition from 1© to 2© represents
the stick phase, while 2© to 3© represents the slip phase. The curve graph on the right represents the
displacement of the pusher part vs. time.

It should be noted that, driven with LHWs, the intrinsic nature of the driving becomes different,
which no longer contains only the two “stick” and ”slip” phases. Few of research has cover this issue
so far, one can be seen in [7].

3. Mechanical Design

3.1. Design Consideration

As shown in Figure 2a, the motor setup is composed of a pusher part, a slider part and an extra
preload adjustment mechanism. For the pusher part, a simple flexible structure has been designed,
as illustrated in Figure 2b. Piezoelectric stacks are widely used to drive flexible structures, as they not
only provide large driving force, but also generate precise displacements with a high acceleration over
a high mechanical bandwidth. Thus, a commercial piezoelectric stack (Piezomechanik GmbH, Pst-150,
München, Germany) is selected, whose technique parameters can be found in Table 1. The stack is
nested in the slot and pressed against a small block at one end. A screw providing pre-tightening
force at the other end of the piezoelectric stack. With a contact tip attached to the top face, the block
functions as the driving end of the pusher, i.e., generates the input displacement. A pair of leaf flexible
hinges are applied between the block and the support frame which provides protection and guidance
to the piezoelectric stack. Please note that the flexible structure as a study case in this paper, can be
designed with other types of hinges or replaced by more complex structure in actual applications.
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Figure 2. Schematic illustration of the motor setup. (a) Mechanical structure illustration of the motor;
(b) Compositions of the pusher part.

Table 1. Data sheet of the piezoelectric stack used in the motor.

Dimension (mm) Stroke (µm) Stiffness (N/µm) Resonance Frequency (kHz)

5 × 5 × 7 9 120 100

To achieve a high driving frequency, the flexible structure needs to be stiffness enough to provide a
high mechanical bandwidth, meanwhile not hindering too much the effective stroke of the piezoelectric
stack. The parameters of the leaf flexible hinges affect greatly the dynamic behavior of the flexible
structure, i.e., the pusher and subsequently the output performance of the motor. As the thickness and
length been fixed for the purpose of compact design, the width of the hinges is selected as the variable
for the first resonance frequency determination.

Aiming at a possible maximum driving frequency in an interval between 1 kHz and 3 kHz, the first
resonance frequency of the flexible structure should be at minimum ten times larger in value [19].
Based on the knowledge of mechanics of materials, if the pair of hinges is simplified as a fixed-fixed
beam with distributed mass, and let its first resonance frequency f in an interval between 10 kHz and
30 kHz, a theoretical estimation of the width for the leaf flexible hinges is calculated using the equation
given by [25]

f =
K1

2π

√
EI

ρSL4 (4)

where K1 = 22.4 is a constant for the first resonance frequency, ρ is the density of the beam material,
S is the sectional area of the beam, L is the length of the beam and EI is the flexural rigidity of the
beam. The interval of the width of the hinges, i.e., the height of the 12 mm long beam with modulus of
elasticity 72 Gpa and density 2.7 g/cm3 can be calculated as from 0.28 mm to 0.83 mm. Any width
value in this interval satisfies the bandwidth requirement. We choose the value 0.5 mm for the hinges
width, with which the first resonance frequency is 18091 Hz by calculation.

Next, to check if the stiffness of the hinges hinders the effective stroke of the piezoelectric stack,
it is calculated to compare with the stiffness of the latter. In this case, the value is Kh = (2× 48EI)/L3 ≈
15.8 N/µm, which is an acceptable result that is much less than the value of the piezoelectric stack,
120 N/µm.

3.2. Finite Element Analysis

For the purpose of confirming the design validity, the finite element analysis (FEA) simulation is
conducted. The material utilized in the simulation is Aluminum Alloy, whose parameters are set to be
the same as above. Finite element Solid 187 is used. The mounting holes are set as fixed boundary
faces. The static analysis shows the deformation of the flexible structure in the same direction of the
piezoelectric stack elongation. Undesired motions in other direction are not observed. The equivalent
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stress and safety factor are checked to avoid material failure of the structure. As shown in Figure 3,
the threshold deformation of 9 µm (stroke of the piezoelectric stack) for the flexible structure is
investigated. The results indicate that the maximum equivalent stress is 48.6 Mpa, which is smaller
than the allowable tensile stress (0.28 Gpa) of the material. A minimum safety factor of 5.8 is obtained.
In order to ensure a high bandwidth, the modal analysis is carried out to obtain the dynamic behaviors
of the flexible structure, which reveal its first three modals. The results are presented in Figure 4,
as the resonance frequency values are 17,425 Hz, 21,057 Hz and 46,866 Hz separately, indicating a
high-bandwidth design of the flexible structure. It can be seen that the first modal is in-plane vibration,
whose frequency is close to the value calculated by Equation (4). Yet the value is slightly smaller, as the
equation neglects the center mass, i.e., the block mass.

(a) (b) (c)

Figure 3. Static analysis results of the flexible structure. (a) Deformation of the hinges in the actuating
direction; (b) Distribution of the equivalent stress; (c) Distribution of the safety factor.

Figure 4. The first three dynamic modals of the flexible structure.

4. Experiments and Discussion

4.1. Identification and Modelling of the Pusher

For the pusher part, the first resonance frequency is our main concern. A model of the pusher
in the mechanical aspect helps to understand and further to compensate the driving displacement,
especially in the high frequency region approaching the first resonance frequency. Based on previous
research, the dynamic characteristic of the piezoelectric stack is equivalent to a mass-spring-damping
system, if the hysteresis and creep are neglected. The same also applied to the flexible structure under
small deformation assumption. Thus, the pusher can be represented as a system that the two connected
in series and further simplified as a general mass-spring-damping system.

A frequency response measurement of the experimental setup (see Section 4.2) was carried out to
characterize the dynamics of the pusher part. Due to the sample rate limitation of the measurement
equipment, data with a driving frequency above 50 kHz cannot be examined. Figure 5 shows the Bode
plot of the experimental data, which shows the first resonance frequency at 17,646.3 Hz and confirms
the validity of the simulation results.
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Figure 5. Frequency response of the pusher in the experimental setup.

Given the assumed condition, a transfer function model G(s) is estimated for the pusher using
system identification toolbox in Matlab, as

G(s) =
7.5 × 109

s2 + 2000s + 1.24 × 1010 (5)

4.2. Experimental Setup

As shown in Figure 6a, the experimental setup is consisted of the motor prototype, a function
generator (AFG3102, Tektronix, Beaverton, OR, USA), a customized voltage amplifier with an
amplification ratio of 18.65, a vibration isolation table (Micro40, Halcyonics GmbH, Göttingen,
Germany), a vibrometer system (SP120, SIOS Metechnik GmbH, Ilmenau, Germany) and a PC with a
data acquisition board (PCI-6229, NI, Austin, TX, USA) which is not shown. The schematic control
graph of the experimental setup is shown in Figure 7.

Vibrometer

Signal ProcessorFunction 

Generator

Voltage 

Amplifier

Motor 

Setup

Vibrometer

Vibration 

Isolation Table

(a)

Vibrometer

Slider

Contact Surface

Pusher

Mirror

Stacked Piezoelectric Unit

Contact Tip

Flexible Hinge

Pusher

(b)

Figure 6. Experimental setup including the motor prototype. (a) Overall view of the experimental
setup system; (b) Detail view of the motor prototype including the pusher.

Presented in Figure 6b, the motor prototype includes the driving component, i.e., the pusher and
the motion component, i.e., the slider. They are fixed on the vibration isolation table separately via
two positioning stage. The flexible structure is manufactured with a wire electrical discharge machine
(A280, Sodick GmbH, Düsseldorf, Germany) using aluminum alloy material. The slider is constrained
by a linear bearing and an aluminum alloy plate attached on top functions as the contact surface.
An extra linear bearing provides single degree-of-freedom movement normal to the contacting surface,
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so that a pulley and a weight block can be utilized to provide adjustable preload against the contact tip
of the driving component. Unless specifically mentioned, the preload used below is 1.2 N.

Laser 

Vibrometer

Function 

Generator

Vibrometer

Signal Processor

PC

Voltage

Amplifier

Data Acquisition 

Board 

Motor

Figure 7. Schematic control graph of the experimental setup.

4.3. Results and Discussion

4.3.1. Input Displacement

Before measuring the output performance of the motor prototype, the characteristics of the input
displacement is investigated. For the measurement of the input displacement, a mirror is mounted
perpendicular to the displacement direction at a side of the block. The vibrometer then measures the
data with laser reflected from the mirror. The sample rate in the measurement is 20 kHz. Starting with
a voltage amplitude of 0.5 V, two waveforms of driving signals in a wide range of frequency bandwidth
from 0 Hz to half the first resonance frequency of the structure are tested. Figure 8 demonstrates the
input displacements utilizing the STW signals at different frequencies. As shown, residual vibration
can be obviously observed. The proportion of the residual vibration damp-out time to the stick phase
duration increases as the driving frequency rises. When the frequency value is beyond 400 Hz, the time
needed to damp the residual vibration exceeds the duration of the stick phase. With higher frequency,
the vibration further distorts the displacement and undermines the stick condition of the contact tip
and surface in the stick phase, leading to a weakened output performance.

Time (ms)

0 5 10 15 20 25 30 35 40

D
is

p
. 

 (
µ

m
)

0

0.2

0.4

0.6

0.8

(a)
Time (ms)

0 1 2 3 4 5 6 7 8

D
is

p
. 

 (
µ

m
)

0

0.2

0.4

0.6

0.8

(b)

Time (ms)

0 0.5 1 1.5 2 2.5 3 3.5 4

D
is

p
. 

 (
µ

m
)

0

0.2

0.4

0.6

0.8

(c)
Time (ms)

0 0.5 1 1.5 2 2.5

D
is

p
. 

 (
µ

m
)

0

0.2

0.4

0.6

0.8

(d)

Figure 8. Input displacements with STW signals in different driving frequencies. The grey curves
represent the actual input displacement of the pusher, and the red curves represent the ideal input
displacement driven by STW signals. Due to the residual vibration, the displacement is flipped for
better visualization. The frequencies of the signals are: (a) 100 Hz; (b) 500 Hz; (c) 1000 Hz; (d) 1500 Hz.

As a comparison, Figure 9 demonstrates the input displacement with the LHW signals applied in
a wide range of frequency bandwidth from 0 Hz to half the first resonance frequency. Thanks to the



Micromachines 2019, 10, 771 8 of 13

sharp frequency spectrum, input displacement at a driving frequency of more than 8000 Hz is achieved,
which is closed to half the first resonance frequency of the pusher part. No unpredicted displacement
distortion nor residual vibration is observed except the noise induced by the measurement equipment
and the environment. The actual input displacements are in good accordance with the ideal input
displacements in a wide frequency range.
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Figure 9. Input displacements with the LHW signals in different driving frequencies. The grey curves
represent the actual input displacements of the pusher part, and the red curves represent the ideal
input displacements driven by STW signals. The frequencies of the signals are: (a) 500 Hz; (b) 1000 Hz;
(c) 5000 Hz; (d) 8000 Hz.

It should be noted that, in the frequency range closed to half the first resonance frequency,
i.e., when the frequency of the second harmonic component is close to excite the resonance,
the amplitude of the second-term displacement of the input displacement corresponded to the second
harmonic component of the waveform is rapidly magnified to far beyond the first-term displacement.
Thus the actual amplitude ratio of the two harmonic terms in the input displacement is changed
and causes waveform distortion, as shown in Figure 9d. This distortion can be predicted utilizing
the model of the pusher. The curve in blue is the simulated input displacement calculated with the
model in Section 4.1. It shows better prediction of the displacement amplitude and indicates the
distortion tendency. However, the curve does not fit perfectly. The reason is that the second-order
model identified in this case cannot fully capture the dynamics of the pusher. The frequency
response magnitude of the model in the near-nature-frequency range is higher than that in the actual
experimental setup, thus leads to a result with smaller ratio coefficient.

In the following step, the voltage amplitude of the signal is increased to check the consistency.
For STWs, the results show great consistency. The residual vibrations impact greatly the shapes
of the input displacements, leading to worse distortions as the frequency increase. On the other
hand, for LHWs, when a certain frequency threshold is reached, unexpected distortions of the input
displacement along with abrupt grown sound noise are observed. The distortions happen at the
bottom of the curves, presenting a saturation feature. As the voltage rises in amplitude, the frequency
threshold for undistorted displacements drops. For example, with a voltage amplitude of 1.5 V,
the frequency threshold for distortion is around 2100–2300 Hz. With a voltage amplitude of 2.3 V, it is
around 1200–1400 Hz. To be more specific, at around 1200 Hz the displacement amplitude starts to
decrease. At around 1300 Hz the distortion appears occasionally and at above 1400 Hz the distortion
happens regularly and becomes greater as the frequency increases. Input displacements with frequency
higher than the threshold are not implemented in the later driving tests, since they are distorted and
cannot represent correctly the output performance of LHWs. Figure 10 illustrates the distortions of the
input displacements at frequencies near the frequency threshold.
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Figure 10. Distortion of the input displacements with the LHW signals at different driving frequencies.
The voltage amplitude is 2.3 V. All the time vectors of the displacements at different frequencies have
been remapped to a same frequency ( f * = 50 Hz) for better distortion comparison.

4.3.2. Output Displacement

The output performance of the motor prototype is tested using the two types of waveforms.
Voltage amplitudes of 0.5 V and 2.3 V are investigated. For the voltage amplitude of 0.5 V, the minimum
output displacement can be observed clearly using STW signals at the frequency less than 1100 Hz.
Higher frequencies cannot produce output displacements but vibrations. Meanwhile using LHW signals,
no obvious output displacement is obtained, whatsoever the driving frequency is. The measured data
show only vibrations whose frequencies are mostly the same as the ones of the driving signals.

Next, the voltage amplitude of 2.3 V is tested. Output displacements can be observed using
both types of waveforms. Figure 11 shows the relationship between the output displacement and
the time at different frequencies for the two types of waveforms. For the output displacements using
STW signals, the typical two-phase movement “stick and slip” can be identified clearly at frequencies
below 100 Hz. The residual vibration has minor effect on the output displacement. As frequency goes
higher, the effect of the residual vibration appears: the net output step becomes smaller, the two-phase
movement can no longer be recognized and the out displacement curve becomes more “smooth” and
more unstable. In comparison with STW, output displacements using LHW signals do not contains the
typical stick and slip phases. At their workable frequency range, the curves always appear as smooth
stair-like movements, but their net output steps become smaller and smaller beyond 1100 Hz.
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Figure 11. The output displacements at different frequencies driven by waveform: (a) STW; (b) LHW.

Figure 12 depicts the overall relationship between the average output velocity and the driving
frequency of the two types of waveforms. For the STW, the figure indicates that the average output
velocity grows as the frequency increases. However, the linearity is not ideal due to the disturbances of
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the residual vibration, as it hinders the “stick phase” and causes unstable output steps and consequently
the output velocity. The peak value of 0.73 mm/s is reached at 800 Hz. Beyond this frequency, the effect
of the residual vibration gradually overwhelms the effect of the driving signal and leads to a drop of
the velocity. Beyond 1100 Hz, the velocity declines to 0 mm/s which can be regard as total failures
of the STW due to distortions. For the LHW, the workable frequency range starts at 900 Hz. Below
this frequency no output velocity is observed. The average output velocity increases linearly with the
frequency until 1100 Hz, where the maximum value of the curve is 2.41 mm/s. After that, the curve
decreases. The results in the authors’ opinion, is relevant to the unexpected distortion of the input
displacement investigated in Section 4.3.1. The distortion appears at 1200 Hz, which is in agreement
with the frequency when the curve starts to decline. It changes the shape of the waveform and thus
the driving principle, undermining the driving efficiency. Without the distortion, a further increment
of the velocity curve is expected according to the theoretical analysis. Additionally, another LHW
signal with a ratio coefficient Rl = 2 and a phase shift θ = 0 is also implemented in the experiments for
comparison. The results show similar trends and also prove the conclusion of former research that its
performance is inferior to the one in the experiment before. Overall, the LHW has better performance
than the STW with a voltage amplitude of 2.3 V.
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Figure 12. The average output velocity vs. the driving frequency in two types of waveforms. Each
value of every average output velocity point is calculated from 3–5 sets of displacement data.

4.3.3. Discussion

As shown in the former subsections, the results demonstrate that the LHW is superior to the STW
under certain conditions and it has great potentials to achieve better performance. According to the
experimental results, two questions need to be discussed.

• Why the setup does not have any output displacement utilizing 0.5 V LHW driving signals?
The same question goes for the 2.3 V signals at frequencies lower than 900 Hz.

• Is it possible that the decline of the velocity, which represents the performance of LHWs in
Figure 12, comes from residual vibrations excited by the waveform signals (rather than the
unexpected distortion that is but one special example in this case)? Therefore, it may prove the
mistake of the theory? If not, where does the distortion of the input displacement come from?

For the first question, the reason likely comes from the intrinsic nature of the driving principle.
As mentioned earlier, a motor driven by LHW signals may no longer contains the typical ‘stick’
and ‘slip’ phases. The complex phenomenon involves many different factors including the frequency,
the voltage, the preload force, etc., and it has not yet been clearly investigated. According to the analysis
in [7], it is summarized as “slip-slip actuation”. Below certain frequencies or voltages, the acceleration
provided may not meet the requirement to achieve the duo-slipping condition to produce a net step.
Input displacements utilizing LHW signals in most related research have amplitudes of more than
several micrometers, i.e., in micro-scale, especially those who take advantage of resonance vibrations.
With a 0.5 V waveform signal, the amplitude of the input displacement is in nano-scale, which may not
have an acceleration large enough to overcome the maximum static force to generate a slip. In addition,
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the contact surface in nano-scale could lead to interesting and sophisticated friction phenomena.
Pre-sliding zone may appear due to the elastic deformation of the surface, or the surface asperities
could cause deviations of the contact. Besides, the mechanical structure of the experimental setup
is composed of many parts including the bearing, which inevitably has clearances. Other nonlinear
factors such as the creep and hysteresis of the piezoelectric material may as well play a role. Therefore,
it is hard to draw a conclusion what the specific reason is. Future research is required.

For the second question, the experimental result of the 0.5 V LHWs has shown the capability
of the frequency limitation this waveform can achieve. The result demonstrates well the theoretical
prediction and no residual vibration occurs. A LHW in general contains the first two harmonics of a
STW. This fact determines that it only produces resonance vibration (if counted as residual vibration)
when the frequency of its second harmonics is high enough to excite the first resonance of the system,
while the nth harmonics of the STW inevitably excite multiple resonances. This shows the superiority
of utilizing the LHW over the STW at the aspect of high frequency actuation. The reason why the
unexpected distortion happens, probably comes from the mounting method of the piezoelectric stack.
It is clamped tightly through pre-tightening force. With a relatively high voltage, the acceleration
during the elongation or contraction process of the piezoelectric stack may exceed the maximum
force that the pre-tightening force can provide, thus produces a possible gap and impacts the results
consequently. A more reliable mounting method will be implemented in the future.

Overall, the results show that compared to the STW, the LHW can improve the output performance
when the input displacement is reasonably large. It eliminates the residual vibration that excited in the
STW and therefore covers higher driving frequency ranges. This is meaningful for actuators designed
with flexible structures as it broadens the scope of applications. In fact, similar effects can also be
achieved utilizing low-pass filters from the perspective of control theory. Yet, the LHW provides a
more direct and easy-access method and promotes the area of driving principle for inertia-drive motors
or usage in microrobotics. In the future, the design of the setup system will be improved, so that a
more systematic and coherent investigation for LHW can be presented.

5. Conclusions

In this paper, the mechanical design, driving waveform investigation, experimental validation and
discussion of a piezoelectric inertia-drive motor have been presented. Through analytical calculation
and FEA, a decent dynamic performance of the pusher is ensured. A mass-spring-damping system
model has been established, meant to predict the input displacement of the pusher part in the near
region of the first resonance frequency. In order to improve the output velocity, the non-resonance
low-harmonic driving waveform is adopted and compared with the classic saw-tooth driving
waveform. Experimental results show that with the STW, the motor is capable of achieving a maximum
output velocity of 0.73 mm/s at 800 Hz and a maximum driving frequency with valid output of 1100 Hz.
While utilizing the LHW the values are 2.41 mm/s at 1100 Hz and 1700 Hz, respectively. It is discussed
and confirmed that the non-resonance LHW can improve the output performance and broaden the
workable frequency range of the flexible-structure-based inertia-drive motor. The results show more
application possibilities for flexible-structure-based designs working at dynamic conditions.

In future work, the overall experimental setup system especially the mechanical structure will be
improved to solve the issues including the unexpected distortions of the input displacements when
using high voltage LHW signals at high frequencies, and likely the unobserved output displacement
issue using low voltage LHW signals. A deeper and more systematic investigation for the intrinsic
nature of the driving utilizing LHW signals, is required to explain the unclarified phenomenon
in the experiments. With a more in-depth study the potential of this type of waveform can be
exploited further.
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