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Abstract: This paper presents a method for reconstructing the wake wind field of a wind turbine 
based on planar light detection and ranging (LiDAR) scans crossing the wake transversally in the 
vertical and horizontal directions. Volumetric measurements enable the study of wake 
characteristics in these two directions. Due to a lack of highly resolved wind speed measurements 
as reference data, we evaluate the reconstruction in a synthetic environment and determine the 
reconstruction errors. The wake flow of a multi-megawatt wind turbine is calculated within a 10-
min large-eddy simulation (LES) for high-thrust loading conditions. We apply a numerical LiDAR 
simulator to this wake wind field to achieve realistic one-dimensional velocity data. We perform a 
nacelle-based set-up with combined plan position indicator and range height indicator scans with 
eight scanning velocities each. We temporally up-sample the synthetic LiDAR data with a weighted 
combination of forward- and backward-oriented space–time conversion to retrospectively extract 
high-resolution wake characteristic dynamics. These dynamics are used to create a dynamic 
volumetric wake deficit. Finally, we reconstruct the dynamic wake wind field in three spatial 
dimensions by superposing an ambient wind field with the dynamic volumetric wake deficit. These 
results demonstrate the feasibility of wake field reconstruction using long-range LiDAR 
measurements. 

Keywords: LiDAR simulator; wind-field propagation; measurement synchronization; space–time 
conversion; wake model; error analysis 

 

1. Introduction 

The ongoing trend toward increased rotor diameters and decreased relative spacing of turbines 
in wind farms indicates that wind turbine manufacturers, wind farm operators, and researchers need 
a better understanding of wake-induced load generation. Increased fatigue loads and reduced power 
output are direct consequences of wake-shading of wind turbines [1,2]. Uneven load variations from 
full or partial wake-shading of the swept rotor area can result in increased wear, or even structural 
damage, of turbines [3,4]. Thus, when designing turbines and wind farms, wake models are needed 
to estimate the flow conditions for calculating loads and estimating yields. The interaction of a wind 
turbine with the atmospheric boundary layer (ABL) causes a highly dynamic wake behavior, 
resulting in vertical and horizontal meandering of the wake position and non-symmetric, non-
constant velocity-deficit shapes. There is considerable demand for models that can reproduce these 
dynamics. Because of the limited ability to identify and resolve spatial wake structures with 
conventional or ultrasonic anemometers, traditional wake models [5–7] can only be validated using 
long-term temporally averaged data corresponding to a simplified steady-flow state over 10-min 
periods. Such models are based on the correlation of statistical analysis of wind turbine operational 
data, better known as supervisory control and data acquisition (SCADA) data, load measurements, 
and time-averaged wind speed point measurements, such as those taken at meteorological towers or 
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the turbine nacelle itself. Through temporal averaging, the wake behavior’s dynamic effects are 
smoothed out, thus forming a source of inaccuracy that makes it harder to comprehend the occurring 
loads. Actually, the turbine does not interact with the wider and smoother wake deficit, as known in 
a stationary reference frame, but rather with a narrower deficit, with a high shear velocity, in the so-
called meandering frame of reference (MFoR) [8]. Steady wake models describe the wake as 
stationary and in a fixed reference frame (FFoR), which does not explicitly resolve the dynamic effects 
[5,6]. 

In contrast to steady wake models, dynamic models were developed that aim to reproduce the 
meandering behavior based on a time series of inflow wind speed, wind direction, and wind turbine 
operational performance. The dynamic wake meandering (DWM) model developed by Larsen et al. 
[9] and the extended disc particle model (EDPm) developed by Trujillo [8] can dynamically compute 
a wake’s horizontal and vertical positions at a prescribed downstream distance. Both models describe 
the horizontal and vertical movements of a constant planar deficit, which is subsequently 
superimposed on an ambient wind field with both shear and atmospheric turbulence. To address 
wake-induced turbulence, these models assume a turbulence scaling based on the deficit shape and 
intensity. A significant difference between the models proposed by Larsen et al. [9] and Trujillo [8] is 
the assumed advection speed of the wake velocity deficit in the form of air parcels emitted by the 
rotor. Although the air parcels within the DWM stream with an average velocity of the time series, 
the parcel velocities in the EDPm are position-dependent and interactively use a stochastic 
Lagrangian particle model. 

An alternative method for coping with realistic dynamic wake conditions is synthesizing high-
fidelity wind fields using a computational fluid dynamics (CFD) simulation that can spatially and 
temporally resolve flow conditions suitably. Large-eddy simulations (LESs) are used to gain a deeper 
understanding of wakes within the ABL [10,11]. The coupling of aero-elastic simulations by LESs 
provides a highly detailed but laborious computation of the interactions between turbines and wakes 
[12–15]. Although such approaches are promising, calculating CFD-generated wind fields is still 
numerically expensive. In addition, the representation of specific atmospheric conditions and the 
simulation in a complex terrain require expert knowledge and a significant time commitment. 

The interaction between modeled wake wind fields and numerical turbine models represents a 
source of uncertainty, as flow and turbine behavior are in turn derived from a limited number of 
measurements and theoretical considerations. In general, the use of models is accompanied by 
reducing the complexity of circumstances being served. Thus, model results can only depict a model’s 
assumptions and not reality. One indication of a limited modeling accuracy can be found in the 
verification of turbine loads. Calculating loads with a dynamic wake model is challenging and may 
lead to load deviations when attempting to match specific inflow conditions [16,17]. Because the 
interaction of a turbulent flow field with a turbine is a non-linear process, the representativeness of 
an extrapolation of coupled model–model calculations should be investigated in comparison to real 
loads and actual inflow measurements. The resulting challenge involves evaluating and comparing 
real and modeled effects to quantify the impact of model assumption limitations and overcome them. 
We find it reasonable to try to avoid modeling inaccuracies as much as possible. Here, we replace the 
model assumptions with real wake behavior in the process chain. Concerning the statistically 
required number of situations, this would require a considerable variety of measurements under 
different atmospheric conditions. 

The requirement for full-field measured dynamic wake behaviors, as well as accurate inflow 
models that can reconstruct them, is associated with the need for a holistic validation. A promising 
instrument for full-field wake measurements is a wind-speed Doppler light detection and ranging 
(LiDAR), hereinafter referred to merely as LiDAR, which was recently established in the wind energy 
and resource assessment fields as a versatile measurement instrument for research purposes. 
Investigating wakes mainly uses pulsed scanning long-range devices that can capture many 
simultaneous measurements along the laser beam. Käsler et al. [18] first published ground-based 
sectorial scans of a wake along the inflow direction in the full field by alternately fixing and changing 
the azimuth and elevation angles during the measurements. Aitken et al. [19] conducted planar 
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horizontal scans from a wind turbine nacelle, which represented a significant achievement 
accompanied by pertinent measurement experience. Their study focused on wake characterization 
without interference from variable wind direction and measurement inclinations due to ground-
based measurement positions. Bromm et al. [20] performed nacelle-based measurements with two 
long-range LiDARs to investigate the mean wake deflection far downstream with a targeted yaw 
misalignment. Aubrun et al. [21] investigated the statistical relationship between atmospheric 
stability and wake characteristics, such as the recovery rate and the lateral meandering, using long-
term LiDAR measurements behind two turbines. 

Regarding LiDAR measurements, we are confronted with the dilemma of finding a set-up 
configuration that aims for a compromise between data quality and temporal and spatial resolutions. 
This dilemma refers to hardware and software settings. Among others, the accumulation time, the 
angular velocities, and the pulse length, as well as the spectral processing of the backscattering in the 
form of the pulse repetition frequency, the number of fast Fourier transform (FFT) sampling points, 
and the peak finder algorithm, influence how spatial and temporal structures of the flow can be 
resolved and with what quality. Depending on the combinations of measurement settings and flow 
situations, a mapping error is likely to behave between the extremes of a temporal nature for angular 
velocities that are too slow and those of a spatial nature when a sector is scanned too quickly [22]. 

Fuertes and Porté-Agel [23] studied the reconstruction error of measurements with a focus on 
LiDAR limitations in terms of volume averaging and measurement repetition frequency in the wake 
region, within a 10-min time interval. Additionally, Beck and Kühn [22] investigated the influence of 
the planar scanning velocities on the mean value and standard deviation mapping error. To this end, 
Fuertes and Porté-Agel [23] and Beck and Kühn [22] used numerical LiDAR simulators in an LES 
wake wind field to achieve a verifiability not yet available with full-field measurements. 

The possibility of reconstructing flow situations using LiDAR data was demonstrated in recent 
years. There is no clear definition of a wind-field reconstruction; thus, reconstructions are performed 
on varying scales of temporal and spatial detail. Borraccino et al. [24] presented a turbine inflow 
reconstruction based on temporally averaged short-range LiDAR data that had high accuracy 
compared to a mast-top-mounted cup anemometer. Kapp and Kühn [25] derived turbine inflow 
conditions by fitting a five-parameter wind-field model. Towers and Jones [26] used a dynamic wind 
model to obtain a state estimation based on velocity data from a two-beam nacelle LiDAR system. 
Other studies used pulsed long-range LiDAR measurements, which mainly differ due to their lower 
temporal resolutions and extended measurement ranges compared to continuous-wave short-range 
LiDARs. Iungo and Porté-Agel [27] reconstructed wake flow fields by joining multiple temporally 
averaged elevated planar scans. Van Dooren et al. [28] used data from two distant LiDARs to 
reconstruct a planar two-dimensional time-averaged single-wake flow field. 

To avoid the inherent misunderstanding of spatial and flow dimensions, we use an 
unambiguous notation that includes spatial dimensionality and the number of flow components. 
However, to the best of our knowledge, we are not aware of a temporally resolved 3D1C wake wind-
field reconstruction (three spatial dimensions, one flow component) based on volumetric long-range 
LiDAR measurements previously proposed. By reconstruction, we can understand the conversion of 
temporally and spatially unsynchronized discrete LiDAR wind fields into continuous wind fields 
with limitations caused by the new temporal resolution. 

To achieve reconstructed temporally resolved 3D1C wake wind fields for later use in wake 
model evaluation or load calculations, we present a comprehensive volumetric nacelle-based LiDAR 
data processing method in Section 3. Firstly, we apply a space–time conversion to retrospectively 
improve the temporal resolution to a sub-measurement scale to correct the scan containing time shift 
and mutually synchronize two sets of LiDAR data. Secondly, we reconstruct a temporally resolved 
3D1C wake wind field by recreating the dynamic wake behavior based on the tracked wind speed 
deficit shapes, deficit intensities, and deficit positions with robust single Gaussian wake tracking. We 
then evaluate the reconstruction quality using synthetically generated data by using a numerical 
LiDAR simulator scanning a LES wake wind field, in Section 4. For this purpose, we analyze the 
mean value and standard deviation error for the wake reconstruction, focusing on horizontal and 



Remote Sens. 2019, 11, 2665 4 of 30 

 

vertical LiDAR scan parameter variations. In Section 5, we discuss the introduced reconstruction 
method with respect to its limitations and further evaluate the possibilities, and we provide 
conclusions to this research in Section 6. 

2. Nacelle-Based LiDAR Dataset 

The starting point for this research was an actual measurement campaign [20]. Based on these 
LiDAR measurements, we reconstructed a temporally resolved 3D1C wake wind field. The 
measurement set-up used for providing insight into the capabilities of commercially available 
scanning long-range LiDARs is presented in Section 2.1. Because no reference data from alternative 
measurement devices, such as met masts with several anemometers or additional scanning LiDARs, 
were available, we do not present further details on this campaign’s results. The limited and 
insufficient evaluation possibilities forced us to use synthetic LiDAR data for the systematic 
methodological development presented in Section 3. Therefore, we were restricted to analyzing the 
results of a numerical LiDAR simulator applied on a wake wind field generated by LES, as described 
in Section 2.2. 

2.1. Onshore LiDAR Measurement Campaign 

Two Leosphere Windcube WLS-200s scanning Doppler long-range LiDARs were installed on 
the nacelle of a 3.5-MW ENO 114 turbine with 114.9 m rotor diameter (𝐷ୣ୬୭) and 92 m hub height 
(ℎୌୌ). These instruments performed temporally and spatially resolved long-range measurements 
within the time interval of 4:10–4:20 a.m. on 14 May 2015. The mean wind speed was 8.1 m/s, with an 
average wind direction of 284° at the hub height and a yaw offset of 0°. The determination of the yaw 
offset, and a detailed description of this measurement campaign are beyond the focus of this paper, 
but can be found in Bromm et al.’s paper [20]. 

To obtain volumetric information from these measurements, we chose one of the most 
straightforward volumetric scan patterns. We programmed a volumetric measurement scenario 
consisting of horizontal measurements, known as plan position indicator (PPI) scans, for one device 
and vertical slices, known as range height indicator (RHI) scans, for the other. These measurements 
were unsynchronized and repeated in a loop. Combining PPI and RHI scans from two perpendicular 
measurement planes in the downstream direction, slicing the wake in the horizontal and vertical 
directions, is illustrated in Figure 1. Planar trajectories were determined by either fixing the scanner’s 
elevation angle (𝜃) and changing its azimuth angle (𝜙) continuously (PPI), or by fixing the scanner’s 
azimuthal orientation while varying the elevation angle (RHI). 

Because of the line-of-sight (LOS) measuring principle of single devices, the data showed 
inherent one-dimensionality and were recorded by the hemispheric scanner head in a spherical 
coordinate system, in which the point density decreased with increasing measurement distance. The 
measurement grid was determined by radial measurement points along the laser beam and the 
accumulation time due to the angular velocity in relation to the total opening angles, ∆𝜙 and ∆𝜃. 
Here, the measurement trajectories and the total opening angles can be expressed as ∆𝜙 = |𝜙ଶ − 𝜙ଵ|, (1)

and ∆𝜃 = |𝜃ଶ − 𝜃ଵ|. (2)

The measurement points in the free field [20] were set in the radial direction within a 50–1150-m 
range every 7 m. The resulting 7-m radial resolution was achieved using overlapping pulses. Because 
of the probe volume length, two measurement points were independent when their radial distance 
was greater than ~60 m. Each LiDAR, performing either PPI or RHI scans, measured only one 
repeating trajectory. As shown in Figure 1, PPI scans were measured with a 0° elevation, and RHI 
scans mere measured with a 0° azimuth and an accumulation time (𝜗acc) of 200 ms, an angular speed 
(𝜔𝜙,𝜔𝜃) of 2°/s, and a total opening angle (∆𝜙, ∆𝜃) of 40° symmetrical to the horizontal axis at the 
hub height, resulting in an angular resolution (ℛథ, ℛఏ) of 0.4°. 
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Figure 1. Illustration of cross-measurement trajectories, coordinate system, and velocity components. 
Measurement trajectories comprise one repeating horizontal plan position indicator (PPI) scan (dark 
blue) and one repeating vertical range height indicator (RHI) scan (shown in pink). The wake volume 
is indicated in light blue. 

2.2. Synthetic LiDAR Data 

We synthesized numerical wind field data offering the possibility of a calculable error for each 
process step. An LES based on the Parallelized LES Model (PALM) code [29] version 3.10 (r1352) with 
an actuator line approach (ACL) [30] was used to calculate the wake wind field of an NREL 5-MW 
wind turbine model [31] with 126 m rotor diameter 𝐷୒ୖ୉୐. To cope with the sub-grid turbulence 
effects within PALM, a 1.5th-order closure model based on Deardorff [32] was used. A detailed 
description of the specific configuration of PALM and an explanation of the flow and wind turbine 
interactions can be found in Bromm et al.’s paper [12]. 

We aimed to reproduce the actual atmospheric conditions, resulting in a mean wind speed 
(𝑢௢) of 8 m/s at a hub height (ℎୌୌ) of 92 m with an ambient turbulence intensity (𝐼଴) of 5.8 % for 
neutral stability. Here, we used a 10-min time interval for the entire simulation, which had a temporal 
resolution of 1 Hz and a spatial resolution of 10 m per grid cell in all three dimensions. 

Because the angular resolutions (ℛథ  and ℛఏ ) were the main influencing variables for the 
measurement grid, as they determine point density, we carried out a study to determine the optimum 
scanning parameters for the later reconstruction [22]. The variation parameters were the angular 
velocities (𝜔థ  and 𝜔ఏ ), which significantly influenced the trajectory measurement grid’s spatial 
resolution and the temporal capability of the capturing local flow dynamics. We selected eight 
angular velocities, resulting in a combination with an accumulation time (𝜗𝑎𝑐𝑐 ) of 200 ms and a 
sampling frequency of 0.024–0.417 Hz. For a better overview, we summarize the effects of different 
angular velocities on the following variables in Table 1: the number of scans for each scan type within 
a 10-min interval (𝛮థ  and 𝛮ఏ), the number of measurement points (𝑛௣௡௧) for each scan type, the 
number of angular measurements per scan (𝑛థ and 𝑛ఏ), the angular resolution (ℛథ and ℛఏ), the 
scan duration (𝛵థ and 𝛵ఏ), the measuring frequency (𝑓௦), and the measurement time efficiency (𝜂௠), 
which can be expressed as a percentage of the total net measurement time within a 10-min interval. 𝜂௠ =  𝛵థ,ఏ𝛵థ,ఏ + 𝑡௥  , (3)

where 𝑡௥ is time the scanner head needs to return to the restart position. Here, 𝑡௥ was 1.2 s for a total 
scan angle of 40°. 

The trajectories described in Table 1 were used to generate synthetic LiDAR data with the 
numerical simulator LiXIM developed at ForWind by Trabucchi [33]. A detailed description of LiXIM 
can be found in van Dooren et al. [28] and Beck and Kühn [22]. In the implementation of the simulator 
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used here, we covered the effect of volume averaging in the beam direction within an assumed 
cylindrical probe volume, and we did not represent volume averaging in the scanning direction. 

In total, 1964 synthetic scans representing eight different angular velocities were simulated 
within the same 10-min time interval of the LES. 

Table 1. Simulated light detection and ranging (LiDAR) trajectories of cross-measurements for a 
time interval of 600 s and 180 radial measurement points in the range of 0–1260 m. 𝝎𝝓, 𝝎𝜽 

∆𝝓, ∆𝜽 
𝚴𝝓, 𝚴𝜽 

𝒏𝒑𝒏𝒕  𝒏𝝓, 𝒏𝜽 
𝓡𝝓 , 𝓡𝜽 

𝚻𝝓 𝚻𝜽 𝒇𝒔 𝜼𝒎 

1°/s 40° 15 36000 200 0.2° 40.0 s 0.024 Hz 97.2 % 
2°/s 40° 29 18000 100 0.4° 20.0 s 0.047 Hz 94.2 % 
4°/s 40° 54 9000 50 0.8° 10.0 s 0.089 Hz 89.2 % 
8°/s 40° 97 4500 25 1.6° 5.0 s 0.161 Hz 80.6 % 

12°/s 40° 133 2880 16 2.5° 3.3 s 0.221 Hz 73.4 % 
19.11°/s 40° 183 1800 10 4.0° 2.1 s 0.303 Hz 63.4 % 
26.22°/s 40° 221 1260 7 5.7° 1.5 s 0.370 Hz 55.8 % 
33.33°/s 40° 250 1080 6 6.7° 1.2 s 0.417 Hz 50.0 % 

3. Method for Wind-Field Reconstruction 

Our reconstruction method’s starting point and reference was the DWM from Larsen et al. [5]. 
Below, we present the underlying assumptions on which we based the design of the reconstruction 
method. These statements do not claim to be absolute, but are rather a logical extension of the 
parameterization of wake effects in the context of dynamic wake characterization and modeling. 
• If we consider a cross-section of a wake wind field in the γ − ζ plane at a certain downstream 

distance 𝜒, the resulting flow behavior of the longitudinal wind speed component 𝑢 of the 
wake can be described as a superposition of the free flow with a planar (two-dimensional (2D)) 
longitudinal wind speed deficit, which shows specific transversal dynamics. 

• We define these dynamics as temporal changes in the horizontal and vertical positions, the 
horizontal and vertical velocity deficit shapes, and the velocity deficit intensity, which 
represents the ratio of the tracked wake velocity at the wake center to the instantaneous ambient 
wind speed profile. These dynamics will be described below as the wake center position, wake 
width, and wake velocity intensity in 2D and later 3D. 

• The wake velocity deficit causes a scaling of the ambient turbulence intensity, which depends 
on the 2D deficit shape at the downstream position 𝜒 . Other than the ambient turbulence 
intensity scaling, no additional turbulence is added as the meandering of the deficit shape 
induces turbulence. 

• If we apply these considerations continuously in the downstream direction, we can consider the 
wake region a continuous symmetrical wake volume centered around a spline in space that 
alters depending on the previously described dynamics. 

• The wake velocity deficit intensity is variable in time and space. 
To gain a better understanding, we visualized the reconstruction assumptions in Figure 2 for 

one point in time. The wake is shown as a continuous tube that tapers and widens along the wake 
center line in the horizontal and vertical directions, respectively. The template for modifying and 
scaling this tube was a volumetric velocity deficit, which we created from the LiDAR measurements. 
Different colors within the wake region in Figure 2 represent the variable instantaneous intensities of 
planar deficits at the corresponding downstream positions. 

Below, we present the processing steps applied to obtain the wind speed deficit, the shape 
dynamics, the intensity dynamics, and the position dynamics from LiDAR data for use in wind-field 
reconstruction. 
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Figure 2. Schematic representation of the model assumptions within the reconstruction. Different half 
axes of the ellipses indicate different scaling of the wake velocity deficit in the horizontal and vertical 
directions, whereas the colors correspond to scaled wake velocity deficit intensities for one point in 
time: (a) side view; (b) top view; (c) perspective view. 

3.1. LiDAR Data Pre-Processing 

Because this study represents a further development of Beck and Kühn [22], we used the same 
data handling in the sense of pre-processing, up-sampling, and synchronization, as well as the same 
numerical dataset. Therefore, we directly quote the formal description of the dataset and use the 
essential parts. The complete data processing method can be read in Reference [22]. 

To deduce the instantaneous longitudinal wind speed component (𝑢଴ ) from LiDAR radial 
velocity data (𝜐ො௅ைௌ ), we assumed that within the 10-min interval, the average lateral velocity 
component (𝑣̅଴)  and average vertical velocity component (𝑤ഥ଴) were zero. Recognizing that this 
assumption did not apply near the rotor (χ𝐷ିଵ ≤ 3), we calculated 𝑢 as follows: 𝑢଴= జෝಽೀೄୡ୭ୱሺథᇲ)ୡ୭ୱ (ఏᇲ), (4)

where 𝜙ᇱ is the difference between the horizontal wind direction (Φ) and azimuth angle (𝜙), and 𝜃ᇱ 
is that between the vertical wind direction (Θ) and elevation angle (𝜃). 

The projection of LOS velocities was made scanwise and, thus, individual scans were 
interpolated to a Cartesian (χ-γ, γ-ζ) coordinate grid using the natural neighbor interpolation [34]. 

Like Beck and Kühn [22], the standard deviation was calculated using the previously calculated 
LOS velocity projection to the longitudinal wind speed component (𝑢଴). This pragmatic approach 
had the consequence that not the longitudinal wind speed component’s original turbulence intensity 
(𝐼଴), but only the statistics of the projected LOS velocities (𝜐ො௅ைௌ), could be constructed. 

3.2. Temporal Correction and Lidar Data Synchronization 

Because of the scanning measurements of PPI and RHI scans, it was not possible to capture the 
entire measurement area at one point in time. This restriction resulted in a representation of the wind 
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field over a time interval of the scan, as shown Table 1. Therefore, we did not directly use the 
measured and projected LiDAR data for further processing. Slower scan speeds resulted in more 
significant temporal shifts within a scan (Figure 3). Furthermore, the temporal resolution of the 
tracked wake dynamics (Section 3.3) became insufficient. 

We used Beck and Kühn’s [22] temporal up-sampling method to interpolate the synthetic LiDAR 
data to the LES reference time step. This method uses a simplified 2D Navier–Stokes equation that 
contains only the advection term implemented using an affine semi-Lagrange interpolation 
approach. A sinusoidally weighted combination of forward- and backward-oriented space–time 
conversions resulted in the closure of each LES grid point of the flow field between two consecutive 
scans. 

 
Figure 3. Illustration of the time series of the PPI scan azimuth angle, including a visualization of the 
temporal alignment at time 𝑡 . Dark-blue lines indicate light detection and ranging (LiDAR) 
measurements, light-blue lines indicate propagated scans, green lines indicate the measurement reset 
trajectory during the reset time (𝑡௥), and the red line represents temporal interpolation at time 𝑡. The 
example shows 11 interpolation steps between two consecutive scans [22]. 

Figure 3 shows how the wind-field propagation minimizes the time shift within one scan (dark 
blue), where the horizontal axis represents time and the vertical axis indicates the LiDAR 
measurement’s current scan angle. The scanning from 𝜙ଵ to 𝜙ଶ is drawn over the scanning period 𝑇థ in dark blue. For the return run during the reset time (𝑡௥), the scanner head must start a new 
trajectory without measuring. The return run is illustrated in green, and the propagated scans are 
shown in light blue. Applying the wind-field propagation [22] allowed an increase in the number of 
intermediate steps (light blue) between two consecutive scans by an arbitrary number. To correct the 
time shift and represent the flow at one point in time (𝑡) and not over the entire time interval (𝑇థ+𝑡௥), 
we interpolated along the red line using the natural neighbor interpolation [34]. Here, it became 
apparent that a shorter propagation time step yielded more accurate temporal mapping of a scan. 

We up-sampled the LiDAR data based on the scanning velocity and improved the amount of 
data by factors of 2.4–40, to achieve a resolution of 1 Hz. The wind-field propagation result was a 10-
min dataset of 600 planar PPI and RHI scans, which were synchronized mutually and with the LES 
reference. These data constituted the initial basis for the temporally resolved wake dynamic 
determination. 

3.3. Determination of Wake Deficit Dynamics 
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Two sets of information were needed for wind-field reconstruction: the wind speed deficit and 
its dynamics. The significant issue here was the characterization of the wake dynamics, namely, the 
wake position, the wake width, and the velocity deficit intensity over time, as these data were also 
used for calculating the velocity deficit shape in the MFoR [8,9,35] in Section 3.4 and the standard 
deviation of longitudinal wind speed component 𝑢  in the MFoR in Section 3.5. This led to the 
reconstruction quality having a direct dependency on the tracked values, with their precision and 
their expressiveness concerning real flow situations. Like other studies [19,20,35], we applied a robust 
Gaussian curve fitting based on Brent’s [36] optimization approach on the temporally aligned and 
synchronized wind speed dataset. Therefore, we firstly normalized the dataset with the 10-min 
averaged vertical wind speed profile (𝑢ത଴(𝜁)) to obtain 𝑢(χ, γ, 𝜁, 𝑡) as the normalized longitudinal 
wind speed. 𝑢(χ, γ, 𝜁, 𝑡) = 𝑢଴(χ, γ, 𝜁, 𝑡)𝑢ത଴(𝜁) . (5) 

In our study, we obtained this wind speed profile by averaging the LES wind field far upstream of 
the simulated turbine. In actual LiDAR measurements, one can use downstream measurements well 
outside of the wake-affected region. 

We applied the following functions as the wake-tracking approach: 𝑢௙௜௧,௉௉ூ൫χ, 𝑟ஓ, 𝑡൯ =  𝛽ஓ(χ, 𝑡)  −  𝛼ஓ(χ, 𝑡)𝜎ஓ(χ, 𝑡) √2𝜋 𝑒ିଵଶቆ௥ಋିఓಋ(஧,௧)ఙಋ(஧,௧) ቇమ , (6)

for horizontal scans and 𝑢௙௜௧,ோுூ൫χ, 𝑟఍ , 𝑡൯ =  𝛽఍(χ, 𝑡)  −  𝛼఍(χ, 𝑡)𝜎఍(χ, 𝑡) √2𝜋 𝑒ିଵଶቆ௥അିఓഅ(஧,௧)ఙഅ(஧,௧) ቇమ , (7)

for vertical scans, with 𝑟ஓ  and 𝑟఍  as coordinates in the respective transversal in-plane directions 
relative to the downstream direction χ. For a better understanding of the relationship between the 
fitting variables and wake velocity, we present a general application of Equations (6) and (7) for the 
RHI and PPI scans in Figure 4, respectively. 𝜇ஓ and 𝜇఍ depict the wake center position (light blue), 𝜎ஓ and 𝜎఍ indicate the characteristic wake width (turquoise), 𝛼ஓ and 𝛼఍ denote the deficit intensity 
(yellow), and 𝛽ஓ and 𝛽఍ indicate the ambient longitudinal wind speeds (green). In contrast to Aitken 
et al. [19] and Bromm et al. [20], who employed a double Gaussian function for the near-wake region 
(χ𝐷ିଵ < 2) to represent the characteristic deficit form, we used a threshold that does not consider data 
below a normalized velocity of 0.55. As a result, tracking was robust and numerically faster to 
calculate, compared to double Gaussian fitting. By omitting velocities up to the threshold, the 
algorithm mainly fit the high shear flanks of the wake deficit. The subsequent application of 
Equations (6) and (7) to the propagated horizontal and vertical data from Section 3.2 resulted in a 
temporal dependency of the tracked values. 

 

Figure 4. Application of Gaussian fitting to a LiDAR measurement of a wake in a downstream 
distance of five dimensions (5D). 𝜇 indicates the wake center position (light blue), 𝜎 represents the 
Gaussian wake width (turquoise), 𝛼 denotes the intensity of the deficit (yellow), and 𝛽 labels the 
ambient longitudinal wind speed levels (green). 
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3.4. Calculation of the Volumetric Wind Speed Deficit 

Section 3.3 showed how wake tracking was used to determine wake dynamics from temporally 
up-sampled and synchronized RHI and PPI scans. In this section, we describe how the reconstructed 
wake deficit is calculated. 

To correctly depict the averaged wake deficit at downstream distance χ in the reconstructed 
wind field, a change in perspective was required to understand why the measured velocities from 
the RHI and PPI scans could not be directly used within the reconstructed wind field. The averaged 
wake deficit in the fixed frame of reference (δிி௢ோതതതതതതത) was the convolution of temporally resolved deficits 
(δெி௢ோ). Within the DWM model, these temporally resolved deficits are considered constant and 
observed in the MFoR that moves with the wake center. In contrast, we regarded temporally resolved 
deficits (δெி௢ோ) as variable, with an average deficit (δெி௢ோതതതതതതതത) that resulted in an averaged wake deficit 
in the FFoR (δிி௢ோതതതതതതത) when convoluted according to the wake dynamics. We obtained these wake 
dynamics in Section 3.3. The synchronized RHI and PPI scans constituted the dataset for the average 
deficit in the MFoR (δெி௢ோതതതതതതതത), which in turn was a convolution of the variable temporally resolved 
deficits in the MFoR (δெி௢ோ). 

In the test case presented here, flow information was available only on the cross-shaped 
measurement planes. Because the LiDAR-measuring planes were fixed in the FFoR, the wake moved 
dynamically through them. Therefore, the variable temporally resolved deficits in the MFoR (δெி௢ோ) 
were measured at different radial positions in the FFoR, depending on the wake center position. If 
we look at a γ-ζ plane at downstream distance χ, only two lines of information are available. To 
obtain a planar deficit in the γ-ζ plane, we assumed a conditional point symmetry for the wake 
deficit by rotating the vertical and horizontal LiDAR scans from −90° to 90° (Figure 5b). If we 
extended the consideration of the wake deficit in a γ-ζ plane with a spatial dimension in downstream 
direction χ, the lines of information became planes of information and the planar deficit became a 
volumetric deficit (VD). 

We used propagated RHI and PPI wind speed data (𝑢), which were combined in a Cartesian 
( χ, γ, ζ ) coordinate system. To obtain volumetric information from planar horizontal data 𝑢୔୔୍(χ, γ,ℎୌୌ, 𝑡)  and planar vertical data 𝑢ୖୌ୍(χ, 0, ζ, 𝑡) , we assumed a conditional rotational 
symmetry to create a closed volumetric deficit over downstream distance χ. Thus, we firstly defined 
the volumetric wind speed average in the MFoR (𝑢୚ୈ୑୊୭ୖതതതതതതതത) . The change from the turbine-based 
coordinate system to the MFoR can be expressed as γᇱ(χ, γ, 𝑡) = γ − 𝜇ஓ(χ, 𝑡), (8)

and ζᇱ(χ, ζ, 𝑡) = ζ − 𝜇஖(χ, 𝑡). (9)

To improve the formula’s readability, we did not refer further to the dependence of initial variables 
(γ and ζ), but rather a reference system based on the new variables (γᇱ and ζᇱ) as a new coordinate 
system. 

The definition of the volumetric wind speed average in the MFoR (𝑢୚ୈ୑୊୭ୖതതതതതതതത) in Equation (10) aims 
to describe the average wake wind from the rotor without meandering effects. 𝑢୚ୈ୑୊୭ୖ(χ, γᇱ, ζᇱ)തതതതതതതതതതതതതതതതതതത  =  1|T| ෍𝑢௥௢௧(χ, γᇱ, ζᇱ, 𝑡)௧ ∈ ் . (10)

Although this is clearly visible on the left side, the right side implies the reference frame change by 
subtracting the wake center (𝜇ஓ  and 𝜇஖ ) from the γ  and ζ  coordinates within the wind field 
(Equations (8) and (9)). From the conditional rotational symmetry (±90°), we defined the wind speed 
calculation for a corresponding point within the resulting four quadrants. 
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𝑢௥௢௧(χ, γᇱ, ζᇱ, 𝑡) =
⎩⎪⎪⎨
⎪⎪⎧൫1 − 𝜆(χ, γᇱ, ζᇱ, t)൯ ∙ 𝑢୔୔୍(χ, sign(γᇱ) ∙ 𝜏,ℎୌୌ, 𝑡) +                                        𝜆(χ, γᇱ, ζᇱ, t) ∙ 𝑢ୖୌ୍(χ, 0, sign(ζᇱ) ∙ 𝜏, 𝑡)                                | γ′ ≠ 0, ζ′ ≠ 0𝑢ୖୌ୍(χ, 0, ζᇱ, 𝑡)                                                                          | γ′ = 0, ζ′ ≠ 0𝑢୔୔୍(χ, γᇱ, 0, 𝑡)                                                                          | γ′ ≠ 0, ζ′ = 0 12 ൫𝑢୔୔୍(χ, 0,ℎୌୌ, 𝑡) + 𝑢ୖୌ୍(χ, 0,0, 𝑡)൯                              | γ′ = 0, ζ′ = 0

, (11)

and 

𝜆(χ, γᇱ, ζᇱ, 𝑡) = ተ2tanିଵ ൬ζᇱ(χ, 𝑡)γᇱ(χ, 𝑡)൰𝜋 ተ, (12)

as the rotational weighting function and 𝜏 = ටγᇱଶ + ζᇱଶ,మ
 (13)

as the radius within the MFoR. Here, T represents a set with 𝑡 ∈  T containing all wind speed 
information at a discrete time point 𝑡 within the studied 10-min time interval. The use of dashes in 
Equation (10) indicates the cardinality of set T. Equation (10) implies that the wake center’s position 
was displaced in the γ-direction and ζ-direction with respect to the hub height center line before the 
corresponding velocities were rotated and weighted (Equation (11)) to calculate the mean value 
(𝑢௏஽ெிோതതതതതതത). This was the turbine-emitted wake average without any horizontal and vertical meandering 
effect. 

Figure 5 visualizes the conditional rotational symmetry introduced in Equation (11). Figure 5a 
shows how the velocity of any point in the MFoR—not only on the measuring axes—was calculated 
by the weighting factors 𝜆 and 1 –  𝜆 from the RHI and PPI data, respectively, depending on the 
point’s position. In Figure 5b, we visualize the rotational weighting factor (𝜆 and 1 − 𝜆) as a function 
of the rotation angle depending on the position in the MFoR. 

3.5. Calculation of the Volumetric Turbulence Intensity Scaling 

Analogous to generating the three-dimensional wake velocity field (𝑢୚ୈ୑୊୭ୖതതതതതതതത), we calculated the 
standard deviation of the velocities (𝜎୚ୈ୑୊୭ୖ) in the MFoR as 𝜎୚ୈ୑୊୭ୖ(χ, γᇱ, ζᇱ) = ට ଵ|୘|∑ ൫𝑢(χ, γᇱ, ζᇱ, 𝑡) − 𝑢୚ୈ୑୊୭ୖ(χ, γᇱ, ζᇱ)തതതതതതതതതതതതതതതതതതത൯ଶ ௧ ∈ ୘ , (14)

where 𝜎୚ୈ୑୊୭ୖ indicates the variability within the meander-free wake velocity field 𝑢୚ୈ୑୊୭ୖതതതതതതതത, and is used 
to scale ambient turbulence to represent the turbulence induced by the wake itself without 
meandering-induced turbulence. To generate the turbulence intensity scaling factor (𝑠୍బ୑୊୭ୖ) from 𝜎୚ୈ୑୊୭ୖ, we firstly normalized it with 𝑢୚ୈ୑୊୭ୖതതതതതതതത to obtain the turbulence intensity within the MFoR, and 
then divided the result by the atmospheric turbulence intensity profile 𝐼଴(ζ). 𝐼୚ୈ୑୊୭ୖ(χ, γ′, ζ′) = 𝜎୚ୈ୑୊୭ୖ(χ, γ′, ζ′)𝑢୚ୈ୑୊୭ୖതതതതതതതത(χ, γ′, ζ′), (15)

 𝑠୍బ୑୊୭ୖ(χ, γᇱ, ζᇱ) = 𝐼୚ୈ୑୊୭ୖ(χ, γᇱ, ζᇱ)𝐼଴(ζᇱ) . (16)
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(a) (b) 

 

 

Figure 5. Illustration of the rotational assumption of the wake wind field calculation in the 
meandering frame of reference (MFoR). (a) Geometric relationship of PPI (blue) and RHI scans (red) 
in the MFoR, and (b) weighting of PPI (blue) and RHI (red) wind speed data dependent on positions γᇱ and ζᇱ. 

3.6. Four-Dimensional Wake Wind-Field Reconstruction 

In this section, we explain how the wake dynamics determined in Section 3.3, the volumetric 
wake field (𝑢୚ୈ୑୊୭ୖതതതതതതതത) determined in Section 3.4, and the turbulence scaling factor (𝑠୍బ୑୊୭ୖ) determined 
in Section 3.5 were combined to reconstruct a 3D1C wake wind field. 

The reconstruction’s starting point was a 3D1C ambient flow wind field created by a wind field 
generator with freely selectable dimensions matching the atmospheric parameters from Section 2. We 
decomposed the generated wind field’s longitudinal velocity component (u௔) into constant (𝑢௔തതത) and 
fluctuating (𝑢௧) parts. u௔(χ, γ, 𝜁, 𝑡) = u௔(χ, γ, 𝜁)തതതതതതതതതതതതത + u௧(χ, γ, 𝜁, 𝑡). (17)

Here, we defined the mean wake deficit in the MFoR as the difference between the wake velocity 
field and the normalized ambient flow. δ୚ୈ୑୊୭ୖ(χ, γ, 𝜁)തതതതതതതതതതതതതതതതത =  1 − 𝑢୚ୈ୑୊୭ୖ(χ, γ, 𝜁)തതതതതതതതതതതതതതതതത. (18)

The average volumetric deficit in the MFoR (δ୚ୈ୑୊୭ୖതതതതതതതത) served as a template in the form of a flexible tube 
that was displaced and scaled by the dynamics (𝜇ஓ(χ, 𝑡), 𝜇఍(χ, 𝑡), 𝜎ஓ(χ, 𝑡), 𝜎఍(χ, 𝑡), 𝛼ஓ(χ, 𝑡), 𝛼఍(χ, 𝑡), 𝛽ஓ(χ, 𝑡), and 𝛽఍(χ, 𝑡)). 

To recreate the original dynamic wake behavior as a volumetric deficit, we defined three time- 
and space-dependent scaling factors as follows: 𝑠ఊ(χ, 𝑡) = 𝜎γ(χ,𝑡)𝜎γ𝑢VDMFoRതതതതതതതതതതതതത(χ), (19)

which represents the horizontal spatial deficit shape scaling factor; 𝑠఍(χ, 𝑡) = 𝜎𝜁(χ,𝑡)𝜎𝜁𝑢VDMFoRതതതതതതതതതതതതത(χ), (20)

which represents the vertical spatial deficit shape scaling factor; and 

𝑠ఋ(χ, 𝑡) = 12 1ඥ2𝜋ቆ𝛼γ(χ,𝑡)𝜎γ(χ,𝑡)+𝛼𝜁(χ,𝑡)𝜎𝜁(χ,𝑡)ቇ+𝛽γ(χ,𝑡)+𝛽𝜁(χ,𝑡)
1ඥ2𝜋⎝⎜

⎛𝛼γ𝑢VDMFoRതതതതതതതതതതതതത(χ)𝜎γ𝑢VDMFoRതതതതതതതതതതതതത(χ)+𝛼𝜁𝑢VDMFoRതതതതതതതതതതതതത(χ)𝜎𝜁𝑢VDMFoRതതതതതതതതതതതതത(χ)⎠⎟
⎞+𝛽γ(χ)+𝛽𝜁(χ), (21)

which represents the velocity deficit intensity scaling factor. Here, 𝜇ஓೠ౒౉ీూ౥౎തതതതതതതതതതത(χ) , 𝜇఍ೠ౒౉ీూ౥౎തതതതതതതതതതത(χ) , 𝜎ஓೠ౒౉ీూ౥౎തതതതതതതതതതത(χ) , 𝜎఍ೠ౒౉ీూ౥౎തതതതതതതതതതത(χ),  𝛼ஓೠ౒౉ీూ౥౎തതതതതതതതതതത(χ) , 𝛼఍ೠ౒౉ీూ౥౎തതതതതതതതതതത(χ) , 𝛽ஓೠ౒౉ీూ౥౎തതതതതതതതതതത(χ) , and 𝛽఍ೠ౒౉ీూ౥౎തതതതതതതതതതത(χ)  were determined by 

applying Equations (6) and (7) to the vertical and horizontal slices through the hub height center line 
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of the 3D 𝑢௏஽ெி௢ோതതതതതതതത. Thus, it became apparent that 𝑢௏஽ெி௢ோ  was only scaled by the three previously 
defined factors because of its descriptive properties. 

This led to the resulting formula for generating the time-dependent 3D1C velocity deficit (δ௏஽). 
Here, we applied retransformations from the MFoR on the right sides of Equation (22) and Equation 
(23) to the FFoR on the left side of these equations, by adding the wake center position (𝜇ஓ and 𝜇஖). δ௏஽(χ, γ, 𝜁, 𝑡) = δ୚ୈ୑୊୭ୖ ቀχ, γᇱ ∙ 𝑠ஓ(χ, 𝑡) + 𝜇ஓ(χ, 𝑡), 𝜁′ ∙ 𝑠஖(χ, t) + 𝜇஖(χ, 𝑡)ቁതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത ∙ 𝑠ఋ(χ, t). (22)

Analogously, the resulting formula for the four-dimensional (3D1C) turbulence scaling could be 
expressed as 𝑠୍బ(χ, γ, 𝜁, 𝑡) = 𝑠୍బ୑୊୭ୖ ቀχ, γ′ ∙ 𝑠ఊ(χ, 𝑡) + 𝜇ஓ(χ, 𝑡), 𝜁′ ∙ 𝑠஖(χ, t) + 𝜇஖(χ, 𝑡)ቁ ∙ 𝑠ఋ(χ, t). (23)

To describe the reconstructed wake field (𝑢ୖେ), we assumed a superposition approach similar to 
Equation (17). The constant part of the ambient wind field (u௔തതത) was overlaid with the dynamic wake 
deficit (δ௏஽), and the fluctuating part of the ambient wind field (𝑢௧) was multiplied by the dynamic 
turbulent intensity factor (𝑠୍బ). This defined the reconstructed wake field (𝑢ୖେ). 𝑢ோେ(χ, γ, 𝜁, 𝑡) = ቀ𝑢௔(χ, γ, 𝜁)തതതതതതതതതതതതത − δ௏஽(χ, γ, 𝜁, 𝑡)ቁ + ቀ𝑢௧(χ, γ, 𝜁, 𝑡) ∙ 𝑠୍బ(χ, γ, 𝜁, 𝑡)ቁ. (24)

4. Results 

In this section, we present results of the reconstruction method introduced in Section 3 to work 
with the synthetic LiDAR data described in Section 2. To the extent possible, we varied the angular 
velocities 𝜔థ  and 𝜔ఏ  to determine their influences on reconstruction quality, thereby finding an 
optimal parameter set for the test case. 

4.1. Determination of Wake Dynamics 

We determined the wake dynamics by applying the Gaussian wake tracking method from 
Section 3.3 on the propagated LiDAR and LES wind speed data. The determined wake dynamics 
appeared to be the most influencing factors for reconstruction as the corresponding results were also 
used to calculate the deficit shape. To evaluate the wake tracking quality from the propagated LiDAR 
scan data, we referred to the LES wind field. Thus, we applied Equations (6) and (7) to the LES data 
and estimated the wake center position dynamics, which we used as a reference in our analysis. 

Figure 6 shows a visualization of the tracked wake center depending on time and the 
dimensionless downstream position χ𝐷ିଵ. Figure 6i shows a consistent mapping of the wake path 
and depicts lateral meandering effects over the downstream direction χ and time 𝑡 . Unphysical 
jumps or fractures, which indicate that the chosen method cannot be representative or that the chosen 
spatial and temporal resolutions are insufficient, were not visible. Individual flow structures tracked 
in the downstream direction over time, which we refer to as meander events, are shown as curved 
stripes in Figure 6. As expected, meander events were characterized by increasing lateral deflections 
and advection speeds with increased downstream distance. 

Noisy behavior can be recognized for all angular velocities up to a distance of χ𝐷ିଵ ≈ 3 for the 
wake center data 𝜇ஓ𝐷ିଵ in Figures 6a–h. This noise occurred due to the insufficient data availability 
in the 𝛾-direction outside of the scanned area, which was determined by the scanning opening angle ∆𝜙. 
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Figure 6. Visualization of tracked horizontal wake center 𝜇ஓ in the fixed reference frame (For) for 
time t and downstream distance χ. (a–h) Effects of different angular velocities on tracking; (i) 𝜇ஓ 
based on large-eddy simulation (LES) data. 

Because of the influences of the wind-field propagation boundary condition, the wind speed 
was reduced at a downstream distance of χ𝐷ିଵ ≈ 10. This influence was attributed to the space–time 
conversion boundary conditions and could also be seen in the wake dynamics determination. 
Compared to the LES, a significant periodic deviation of the tracked wake center was visible at the 
rear edge of the measuring area around χ𝐷ିଵ ≈ 10, which distracted the Gaussian fitting function 
from the real wake deficit. The frequency and size of this distraction depended on the number of 
propagation steps and decreased as the number of steps decreased. Gaps in Figure 6 show that the 
Gaussian fitting could not always determine a clear parameterization. The corresponding illustration 
of the RHI scan-tracked wake center positions can be found in Appendix A. 

Although the influence of the wind-field propagation on the wake dynamic tracking could not 
be bypassed here, the fitting algorithm’s performance in situations with insufficient data, i.e., for χ𝐷ିଵ ≤ 3, could be significantly improved by artificially adding data from the corresponding scan. 
For this purpose, unavailable data in Figure 7a, outside of the red circular arc-shaped area visible in 
Figure 7b, were added within the χ-direction averaged wind speed values for the corresponding 𝛾-
positions from the corresponding scan. For averaging, we considered wind speed 0.25 D from the 
first available data in the χ-direction for the corresponding 𝛾-positions. Figure 7b shows how the 
artificial data extension (ADE) added spatially averaged data to complement unavailable data due to 
the opening angle of the measurement. 
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 (a)  (b) 

Figure 7. Illustration of the artificial data extension: (a) wind speed-normalized PPI scan; (b) results 
of the method. The scan trajectory outline is marked in red. 

Figures 8 and 9 demonstrate the effects of ADE (Figures 8b,d and Figures 9b,d) on horizontal 
tracking results compared to the original data (Figures 8a,c and Figures 9a,c) and provide an 
overview of the tracked value statistics. 

Figures 8a,b show the mean value (solid lines) 𝜇ఊതതത of the tracked horizontal wake center 𝜇ఊ and 
its standard deviation (dashed lines) 𝜎ఓം for different angular speeds, and Figures 8c,d display the 
averaged tracked horizontal wake width (solid lines) 𝜎ఊതതത of 𝜎ఊ and its standard deviation (dashed 
lines) 𝜎ఙം. An almost linear lateral displacement of the wake center of approximately 0.17 D could be 
seen over a downstream distance of 10 D, which corresponded to an approximately 1° deflection 
angle. Here, the effects of insufficient data and the influence of boundary conditions could be seen in 
the strong deviations. By applying ADE, we inferred from Figure 8b that the wake center position of 
the propagated wind speed data could be determined more precisely, not only up to χ𝐷ିଵ ≤ 3 but 
over the entire flow field. This was evident for all angular velocities and could be seen in the mean 
value 𝜇ఊതതത  and in the wake center’s standard deviation 𝜎ఓം . The wake dynamics determination 
improvements are particularly noticeable in the tracked horizontal wake width in Figure 8d. 
Although the mean wake width 𝜎ఊതതത was accurately represented for downstream distances χ𝐷ିଵ > 3, 
the most significant improvement was noted in the wake width’s standard deviation (dashed lines) 𝜎ఙം, which was better tracked over all downstream positions. 

Videos S1 and S2 (Supplementary Materials) for the horizontal and vertical data, respectively, 
show not only propagated wind speed data but also the wake tracking results. The black line 
indicates the wake center’s position based on the propagated data, whereas the white line was based 
on ADE results. It is clearly visible that the accuracy and variability of the position tracking could be 
improved with the above presented approach up to χ𝐷ିଵ ≤ 3. 

We identified, mainly through visual comparison, two factors in tracking vertical wake 
movements that we found to be more susceptible to interference than in horizontal tracking. Firstly, 
because vertical velocity data were measured on the center line, only this wake deficit was displayed 
on the vertical plane for the horizontal wake profile. It was, thus, not ensured that the tracking 
algorithm would identify the wake deficit in the case of pronounced horizontal meandering. The 
effects of limited representativeness of the intersection of the measurement planes and the current 
wake volume were more evident for vertical measurements than horizontal measurements as the 
horizontal wake displacement was characterized by greater amplitudes than vertical wake 
displacement. This different behavior shows the necessity of wake tracking methods that do not 
quantify instantaneous wake profile integrally, but rather use a separate method optimized for 
vertical wake measurements. The amplitude difference cannot be seen in the statistics in Figures 8 
and 9, as they already include effects of limited representativeness of the measured intersection; 
however, they can be observed in Videos S1 and S2 (Supplementary Materials). 
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Figure 8. Mean value and standard deviation of wake tracking results for propagated PPI data: (a) 
horizontal wake center of original data; (b) horizontal wake center based on artificial data extension; 
(c) horizontal wake width of original data; (d) horizontal wake width based on artificial data 
extension. 

The second influencing factor was the LiDAR simulator’s operating principle. When laser pulses 
hit the ground, a hard target is simulated, which results in corrupted velocity data. These data gaps 
result in a reduced amount of data that affect the fitting quality. 

As in Figure 8, we illustrate vertical wake-tracking statistics in Figures 9a,b, which show the 
mean value (solid lines) 𝜇఍തതത and its standard deviation (dashed lines) 𝜎ఓഅ. We can see that the wake 
gradually sank to −0.2 D over the entire downstream distance. This can be clearly observed at a 
distance of χ𝐷ିଵ > 3, after which the corresponding standard deviation increased almost linearly. At 
a distance of χ𝐷ିଵ > 8, the accuracy of 𝜇఍തതത of 𝜔ఏ ≥ 19.11°/𝑠  decreased due to ADE. A possible 
explanation for this was the reduced data availability near the ground, which was amplified by the 
lesser number of angular measurements (Table 1). 

In Figures 9c,d, we present the average vertical wake width 𝜎ఊ఍തതതത and the standard deviation 𝜎ఙഅ. 
Here, the difficulties of tracking the vertical wake profile become apparent. If we regard the original 
(Figure 9c) and ADE (Figure 9d) vertical wake width results, we can find that 𝜎ఊ఍തതതത does not reflect a 
smooth trend, as expected from the horizontal tracking. The ADE data showed a better representation 
of the wake expansion at χ𝐷ିଵ ≈ 1 , which could also be found in the LES reference data. 
Furthermore, the standard deviation of the wake width 𝜎ఙഅ  could be improved, especially in the 
near-wake region of χ𝐷ିଵ < 3. 
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Within the subsequent reconstruction process steps, we used ADE to represent the wake 
dynamics. 

 

      

  

(a) (b) 

      

  
(c) (d) 

Figure 9. Mean value and standard deviation of wake tracking results for propagated RHI data: (a) 
vertical wake center of original data; (b) vertical wake center based on artificial data extension; (c) 
vertical wake width of original data; (d) vertical wake width based on artificial data extension. 

4.2. Four-Dimensional Wake Wind-Field Reconstruction 

In this section, we present the 3D1C wake wind-field reconstruction results. Because the 
comparison of time-dependent wind fields can be quantified using different approaches, we firstly 
discuss the reconstruction quality’s dependence on horizontal and vertical angular velocities as the 
main influencing factors for spatial and temporal discretization of the wake region. Then, we show 
the most accurate reconstructed wake wind field. To this end, we differentiated the reconstruction 
quality into steady and dynamic approaches. 

4.2.1. Steady Error Quantification 

Various methods can be used to quantify the comparability of time series in time-series analysis. 
One assumption is the consideration of signals as discrete stochastic processes. Central moments can 
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be compared using a finite amount of sample data. Here, we considered the first moment in the form 
of mean value differences, expressed as 𝜀௨ഥ = 𝑢𝑅𝐶 − 𝑢𝐿𝐸𝑆, (25)

with index RC representing the reconstructed wake wind field and index LES representing the LES 
reference wind field. Similarly, we analyzed the second moment in the form of standard deviation 
errors expressed as 𝜀ఙೠ = 𝜎𝑅𝐶 − 𝜎𝐿𝐸𝑆. (26)

Below, we limit the discussion of the results to an averaged evaluation for 4 ≤ χ𝐷ିଵ ≤  9 to 
exclude the propagation errors at the flow field outlet and near-rotor area because of the assumed 
homogeneity. This choice gives a stronger focus on commonly used turbine spacing. 

   
(a) (b) (c) 

Figure 10. Error visualization of the reconstructed wind field based on the LES wake wind field: (a) 
average wind speed error; (b) standard deviation error; (c) a combination of average and standard 
deviation error. All three errors are related to combinations of the vertical and horizontal scanning 
angular velocities 𝜔ఏ and 𝜔థ. 

Figure 10a shows the average error of the 3D1C reconstructed wake wind field of corresponding 
angular velocity combinations with respect to the original LES wake wind field. A clear minimum of 𝜀௨ഥ = 2.3 %  can be seen for the combination of 𝜔థ  =  12°/𝑠  and 𝜔ఏ  =  19.11°/𝑠 . From this 
minimum, an exponential increase in error can be detected on both axes, where a greater error 
increase for 𝜔ఏ  than 𝜔థ  indicates a greater dependency on vertical scanning than horizontal 
scanning. The standard deviation error distribution in Figure 10b indicates that, for 𝜔థ  =  12°/𝑠 and 𝜔ఏ  =  8°/𝑠, it was possible to reconstruct the standard deviation with 𝜀ఙೠ = 0.16 %. Furthermore, a 
clear trend can be observed in the error. Combinations showing a small error formed an exponential 
behavior for angular velocities of up to 𝜔థ  ≤  12°/𝑠, after which they mainly depended on 𝜔ఏ. This 
means that reconstructing a wake fluctuation with a low horizontal temporal resolution could be 
compensated for by using a high vertical temporal resolution. From this behavior, we deduced a 
greater dependence of the reconstruction on vertical measurements than horizontal measurements. 
Figures 10a,b show that the reconstruction could be parameterized to minimize either the average 
wind speed error or standard deviation error. Because of the wake reconstruction method’s 
complexity, we could not provide a detailed justification in this respect and could only evaluate the 
results as a whole. However, because a major part of the method is based on wake dynamics, we 
could assume that a wake tracking method that is more representative of the real wake dynamics also 
provides more precise reconstruction results. 

Because we assumed that both the average and the standard deviation should be accurately 
reflected in the reconstruction, Figure 10c presents the combined error behavior of 𝜀େ୑୆ = ට𝜀௨ഥଶ + 𝜀ఙೠଶ , (27)

to determine a trade-off representing a resulting minimum at 𝜔థ  =  4°/𝑠 and 𝜔ఏ  =  19.11°/𝑠. 
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We used this angular velocity combination as a compromise to show differences between the 
reconstructed wind field and original LES wind field. Therefore, we present 𝛾 − 𝜁 -planes for 
different downstream distances in Figures 11 and 12, to depict the distribution of the wind speed 
average, the standard deviation, and the related errors 𝜀௨ഥ and 𝜀ఙೠ. 

The reconstructed wake wind field in Figure 11b can represent the expansion and relaxation of 
the velocity deficit in the downstream direction corresponding to the LES reference in Figure 11a. 
The wind speed error in Figure 11c demonstrates an underestimation of the deficit that could be 
observed for all distances within a structure and was more imposed in the vertical direction. We 
assumed that this was based on the weaker representation of wake dynamics by the wake tracking 
method for vertical measurements than horizontal measurements. The importance of this on the 
overall reconstruction could be seen here. 

 
Figure 11. Normalized wind speed component u of (a) the LES wake wind field, (b) reconstructed 
wind field with 𝜔థ  =  4°/𝑠  and 𝜔ఏ  =  19.11°/𝑠 , and (c) the differences between the LES and 
reconstructed wind fields. 

Because of the conditional rotational symmetry and the limited data availability due to the 
horizontal and vertical scan opening angles, increased errors were to be expected in the mean wind 
speed and standard deviation up to χ𝐷ିଵ ≤ 3. We first noted this in the velocity deficit of the turbine 
tower, which could be detected in the first downstream slice at χ𝐷ିଵ = 1 in Figures 11a and 12c, but 
could not be mapped in the reconstruction in Figure 11b. Furthermore, it was found in the 
reconstructed deficit profile in a radial direction up to χ𝐷ିଵ ≤ 2. Additionally, it was evident that the 
distribution of the standard deviation up to χ𝐷ିଵ ≤ 3 was strongly underestimated in the wake 
region (Figure 12c). Moreover, the standard deviation in Figure 12a and 12b showed that the areas of 
increased fluctuation were more strongly affected by errors than the initial horizontal and vertical 
plane positions because of the rotational symmetry. Figure 12c shows this effect in the downstream 
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planes 2 ≤  χ𝐷ିଵ ≤ 6 . We surmised that this effect was due to spherical-to-Gaussian sub-grid 
interpolations. 

A further assumption-induced error could be seen up to χ𝐷ିଵ ≤ 6 due to the absence of a wake-
soil model. The apparent velocity increase near the ground could not be reproduced in the 
reconstruction. This error could also be seen in the standard deviation differences in Figure 12c. 

To give an overall impression of the reconstructed wind field behavior, we present vertical slices 
at different downstream distances in Video S3 (Supplementary Materials), which shows the wind 
speed compared to the LES. The reconstructed wind field in Video S3 was calculated using the 
parameterization of 𝜔థ  =  4°/𝑠 and 𝜔ఏ  =  19.11°/𝑠. 

 

Figure 12. Standard deviation of the normalized wind speed component u of (a) the LES wake wind 
field, (b) the reconstructed wind field with 𝜔థ  =  4°/𝑠  and 𝜔ఏ  =  19.11°/𝑠 , and (c) differences 
between the LES and reconstructed wind fields. 

4.2.2. Dynamic Error Quantification 

After examining the reconstruction errors in Section 4.2.1, we considered how far time-series 
dynamics could be mapped within the reconstructed wind field. We firstly used known methods to 
represent the time-series dynamics reconstruction quality and then presented an approach to 
quantify the dynamic errors. 

To this end, we firstly considered cross-correlations of the original LES time series and 
reconstructed wind field for each point in space in Figure 13a. The correlation of different time series 
in the wake region was lower than that in the free flow surrounding it. Although the reconstructed 
wind field reached a nearly perfect correlation in the free stream, a minimum of 0.39 could be found 
in the wake at χ𝐷ିଵ  ≅ 3 . For downstream distances of 4 ≤  χ𝐷ିଵ  ≤ 9 , where the previously 
mentioned propagation errors were lower, we saw correlations greater than 0.65. Apparently, the 
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linear correlation decrease relied on the wake velocity distribution (Figure 11b). This effect could be 
attributed to the decreased average velocity in the wake. Thus, fluctuation differences due to time-
delayed meander events had a greater reducing effect on cross-correlation calculations than time-
series data within free stream situations. 

 

Figure 13. Correlation of the LES wake wind field time series with reconstructed wind field time 
series: (a) correlation result based on the time series; (b) correlation result based on average-adjusted 
time series. 

It was assumed that flow fluctuations, especially in the wake, were primarily responsible for 
fatigue loads; therefore, we conducted cross-correlations referring to mean value-adjusted 
fluctuations (subtraction of local velocity average) of the wind field in Figure 13b. The mean-adjusted 
free flow was only characterized by turbulence; thus, these areas showed a low correlation, as 
expected. In Figure 13b, we further detected that high correlation areas changed with increased 
downstream distance. Although a round wake shape could be clearly identified up to χ𝐷ିଵ  ≤ 3, 
collimated high-correlation areas were visible on the hub height center line for χ𝐷ିଵ  > 3. For both 
Figure 13a and Figure 13b, the boundary condition problem’s influence by propagation could be 
recognized at χ𝐷ିଵ  ≈ 10, as indicated by the lower correlation values. 

To further evaluate the similarity of the reconstructed wind field and LES, we used an approach 
commonly known in the field of speech recognition. Because the cross-correlation considered 
dynamics of the largest possible time scale of the time series, small-scale signal shifts could not be 
individually considered. Figure 14 shows time-dependent velocity curves at different downstream 
distances along the center line of the reconstructed wind field and corresponding LES data (red). As 
shown in Figures 14d–i, the original and reconstructed time series showed similar behaviors in which 
individual peaks shifted in intensity and time. To describe the reconstruction quality of these 
individual peak events, we applied dynamic time warping (DTW), which dynamically stretches and 
compresses signals to minimize the Euclidean distance. Two information groups were generated 
using DTW. One part of the result was the mutual assignment of each data point of the reconstructed 
time series to a data point of the original time series. Figure 15a illustrates the allocation of velocity 
data for different downstream distances to the corresponding time index of the original time series. 
The graph could, thus, be interpreted as an assignment path for both signals. The dashed red diagonal 
line corresponds to the mapping of two identical signals. As the corresponding allocation paths 
shifted further from the diagonal, the displacements of single peak events became more pronounced 
within the time series. We calculated the average mutual time deviation 𝜀୼௧ of both time series by 
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determining the average of the deviations of the time index of the allocated data points Δ𝑡 in Figure 
15b. 

 
Figure 14. Direct comparison of wind speed time series of the LES wake wind field (red) and the reconstructed 

wind field for different downstream distances along the hub height center line. Different colors refer to 
corresponding downstream distances. 

We used the average time error 𝜀୼௧തതതത magnitude as a measure of the dynamic reconstruction 
quality, which we illustrate for all points of the reconstructed wind field in vertical slices in Figure 
16c. A smaller deviation indicated a more accurate temporal representation of peak events. 

Because wind turbine load calculations showed a greater dependence on inflow variability and 
spectral representation than on a wind speed offset, we saw the mean temporal error 𝜀୼௧തതതത  as a 
pragmatic measure to represent the effects of different dynamics within the time series. The 
instantaneous temporal error of the reconstructed time series led to a different dynamic of the time 
series, thus leading to a spectral change in the wind speed. Further studies comparing load 
calculations of the reconstructed wind fields with those of the LES reference must first evaluate to 
what extent the mean temporal error can represent differences in time-series dynamics, and then 
determine to what extent which scalar is suitable for representing the allocation path. 

As seen in the results above, the distribution of 𝜀୼௧തതതത indicated an increased error in the near-
wake area up to χ𝐷ିଵ ≤ 3. From this distance on, the reconstruction quality improved along the 
center line, representing an average time error of 𝜀୼௧തതതത ≈ 25 𝑠 for the total duration of 600 s within the 
wake region. 

The second result of the DTW was the time-series Euclidean distance based on the allocated 
data. The distance of the unadjusted time series in Figure 16a is shown in contrast to that of the 
adjusted time series in Figure 16b. At 4 ≤  χ𝐷ିଵ  ≤ 9, improvements in velocity error correlated with 
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regions with small average temporal errors. The considerably reduced Euclidean distance seen in the 
comparison showed the remaining error of the differences in the amplitudes of the new allocated 
peak events. The average wind speed error in Figure 11c could, thus, be divided into its constituent 
components. One part was an offset and the other was due to different dynamics. With the DTW, we 
could quantify both components and evaluate the reconstruction. Therefore, we saw this method as 
a good indicator for evaluating the quality of peak event reconstructions. A smaller average time 
error (Figure 16c) indicated more precise representation of the wake dynamics by wake tracking. 
Additionally, smaller remaining Euclidean distances (Figure 16b) demonstrated a more accurately 
determined wake deficit in the MFoR, which in turn depended on wake dynamics determination. 

 

 

  
(a) (b) 

Figure 15. Results of dynamic time warping application on the LES wake wind field time series and 
reconstructed time series: (a) allocation paths of time series, and (b) the resulting temporal errors of 
peak events along the hub height center line for different downstream distances. 
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Figure 16. (a) Visualization of the Euclidian distance between the time series of the LES and 
reconstructed wind field; (b) Euclidian distance of the new allocated time series of the LES and the 
reconstructed wind field after applying dynamic time warping; (c) resulting average time error of the 
LES and reconstructed time series by application of dynamic time warping. 

5. Discussion 

In this section, we discuss the introduced method for reconstructing 3D1C wake wind fields 
from LiDAR measurements and its results. 

One significant difficulty with designing a wake reconstruction method is the limited possibility 
of verification due to a lack of measurement methods needed for a holistic validation. A limited 
validation of the proposed reconstruction method could still be conducted in full-field 
measurements. If the corresponding reference data from one or more anemometers in the wake 
region are available, an evaluation can be performed based on the comparison of statistics or 
application of DTW, which is a comparison of time series. Nevertheless, the gap of the 3D1C wind 
speed wake measurements leads to an assumption that simplifications considered in the LiDAR 
simulation can represent significant full-field LiDAR measurement characteristics. With the way the 
LiDAR simulator is used here, only step-and-stare LiDAR measurements have direct comparability; 
however, in application, most scanning measurements are conducted on the fly. Backscattering 
accumulates during scanning, which leads to additional volume averaging in the scanning direction. 
Because we cannot reproduce non-linear signal processing within the real LiDAR data, we 
accommodate this effect using the posterior averaging of wind speed data within the volumetric 
deficit calculation in the MFoR. 

When using physical or simulated long-range LiDAR data, one-dimensional measurements 
assume vertical and lateral velocity component homogeneity to process them without requiring an 
additional flow solver for the main wind velocity component. In the near-wake range, the rotor 
causes complex flows that cannot be mapped using this assumption. As shown in Figure 11c, this 
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inaccuracy does not necessarily lead to significant mean wind speed errors; however, it contributes 
to the mapping of the standard deviation error, as can be seen in Figure 12c for χ𝐷ିଵ  ≤ 3. 

We accept a further significant assumption when calculating the volumetric wind velocity deficit 
in the MFoR. Because of the limited scanning speeds of long-range LiDARs, it is not feasible to 
volumetrically measure wakes on appropriate time scales. So far, only center line cross-trajectories 
were analyzed; thus, we introduce the conditional rotational wake symmetry assumption. Although 
the conditional rotation presented here, which is based on four different quadrants, exceeds a simple 
axial/point symmetry, deficit shape changes in the diagonal direction must be modeled in further 
applications. The influence of wind veer on the wake deficit’s horizontal distortion in the vertical 
direction was marginal in this study, and it was compensated for by using a linear displacement 
approach similar to the advection assumption of the DWM. Because the differences only became 
apparent in the third decimal place, it is only stated here in the discussion. We find it reasonable to 
conduct further studies in which X-shaped measurement trajectories are used as a measurement 
pattern to better capture the potential veer. Studies with corresponding LES wind fields show the 
extent to which this effect can be achieved with significant height-dependent wind direction 
differences. 

The last assumptions we consider are those of reconstruction. The method shown here can be 
interpreted as an adaptation of the DWM model based on LiDAR measurements. Air parcel advection 
speed and tracking position are not calculated using a point time series, but rather recreated based 
on the tracked dynamics from LiDAR scans. Even if the introduced shape and intensity dynamics 
may represent a more realistic deficit dynamics behavior, the assumption that the velocity deficit can 
be seen as a homogeneous structure on small time scales can only be justified to certain downstream 
distances. 

Despite the many simplifications used, we are encouraged in our assumptions to derive and 
determine wake dynamics using long-range LiDAR data, because of the good representativeness of 
the reconstructed wind field shown. The extent to which the reconstructed wake wind fields can 
produce realistic turbine loads and how turbulence characteristics on time scales smaller than the 
temporal resolution of the measurements are satisfied by this approach will be discussed in the 
future. 

6. Conclusions 

This paper presented a method for reconstructing spatially and temporally high-resolution 
3D1C wind-turbine wake wind fields from volumetric long-range LiDAR data. The method’s 
evaluation used a numerical LiDAR simulator that calculates 1D LOS velocities from an LES wake 
wind field. The scan parameters used were taken from a real nacelle-based measurement campaign 
using two LiDARs, and extended by a parameter study of how far different scan speeds influence 
wake dynamics representation. Eight different scanning speeds were evaluated for each planar 
horizontal and vertical measurement. To determine the wake dynamics, the temporal shift within 
each LiDAR scan was firstly corrected and then mutually synchronized. For this purpose, we 
propagated LiDAR measurements using a space–time conversion approach to retrospectively 
improve the temporal resolution to a sub-measurement scale. From this high-resolution temporal 
data, we derived the wake dynamics for position, shape, and intensity by using a Gaussian curve 
fitting. We calculated the volumetric wake deficit in the MFoR, which we displaced and scaled with 
the tracked dynamics to reconstruct the dynamic wake behavior. Finally, we superimposed a 
synthetic turbulent wind field that was scaled based on the tracked wake dynamics. 

In the comparison of the reconstructed and original LES wind fields, multiple results could be 
observed for horizontal and vertical scanning velocity combinations. Although an apparent 
minimum of 2.3% of the ambient wind speed could be found for the average wind speed 
reconstruction, the standard deviation followed an exponential trend of horizontal and vertical 
angular velocity combinations. The maximum accuracy of the standard deviation reconstruction was 
0.18–0.3%. We showed that either the averaged wind speeds or their standard deviations could be 
accurately mapped. 
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In particular, the good results of dynamic wake behavior reconstruction indicate that wake 
characterization and modeling using long-range LiDAR measurements that are not optimally 
resolved in time are possible if the space–time conversion used here is applied. 

With ongoing research in wind-field propagation, a more precise determination of the wake 
behavior is possible. Furthermore, increased wake tracking accuracy will directly improve the 
reconstruction quality and the understanding of wake behavior. 

Supplementary Materials: The following are available online at www.mdpi.com/link: Video S1: Propagation 
and wake tracking results of horizontal wind speed data for variable angular velocities; Video S2: Propagation 
and wake tracking results of vertical wind speed data for variable angular velocities; Video S3: Comparison of 
the reconstructed wake wind field with the LES reference wake wind field. 
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the Ministry for Science and Culture of Lower Saxony. 

Acknowledgments: We are also grateful to Juan José Trujillo for valuable discussion. We thank Davide 
Trabucchi for the implementation of the LiDAR simulator LiXIM. We thank Andreas Rott for the idea and the 
closure of the wind-field propagation. We thank Mehdi Vali for performing the LES simulation of the wake wind 
field. All colleagues are/were affiliated to the research group Wind Energy Systems at the University of 
Oldenburg. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Abbreviations 

The following abbreviations are used in this manuscript: 
ABL  Atmospheric boundary layer 
ACL  Actuator line approach 
ADE  Artificial data extension 
CFD  Computational fluid dynamics 
DTW Dynamic time warping 
DWM Dynamic wake meandering 
EDPm Extended disk particle model 
FFoR  Fixed frame of reference 
LES  Large-eddy simulation 
LiDAR Light detection and ranging 
LOS  Line-of-sight 
MFoR Meandering frame of reference 
PALM Parallelized large-eddy simulation model 
PPI  Plan position indicator 
RHI  Range height indicator 
SCADA Supervisory control and data acquisition 
VD  Volumetric deficit 

Formula Symbols 𝛼ஓ,𝛼఍  Wake deficit intensity within the Gaussian fitting 𝛽ஓ,𝛽఍   Ambient longitudinal wind speed level within the Gaussian fitting δிி௢ோ, δ௏஽ிி௢ோ Instantaneous wake velocity deficit in the fixed frame of reference δிி௢ோതതതതതതത  Averaged wake velocity deficit in the fixed frame of reference δெி௢ோ   Instantaneous wake velocity deficit in the meandering frame of reference δெி௢ோതതതതതതതത, δ୚ୈ୑୊୭ୖതതതതതതതത  Averaged wake velocity deficit in the meandering frame of reference ∆𝜙, ∆𝜃  Total opening angle of PPI and RHI scans 
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𝜀௨ഥ   Mean wind speed reconstruction error 𝜀ఙೠ    Standard deviation reconstruction error 𝜂௠   Measurement time efficiency 𝜃    Elevation angle 𝜃ᇱ   Difference angle of the vertical wind direction (Θ) and elevation angle (𝜃) Θ   Vertical wind direction 𝜗௔௖௖   Measurement accumulation time 𝜆    Rotational weighting function 𝜇ஓ,𝜇఍   Wake center position within the Gaussian fitting 𝜐ො௅ைௌ   Radial LiDAR velocity 𝜎ஓ,𝜎఍    Wake width within the Gaussian fitting 𝜎୚ୈ୑୊୭ୖ   Standard deviation of the wind speed in the wake in the meandering frame of reference 𝜏   Radial distance within the γᇱ − 𝜁′ coordinate system 𝜙    Azimuth angle Φ   Horizontal wind direction 𝜙ᇱ   Difference angle of the horizontal wind direction (Φ) and azimuth angle (𝜙) 𝜔థ ,𝜔ఏ  Angular scan velocity 𝜒, γ, ζ   Fixed reference frame coordinate system in the turbine ground point 𝜒, γ′, ζ′  Meandering reference frame coordinate system 𝐷   Rotor diameter 𝑓௦   Measurement frequency ℎୌୌ    Wind turbine hub height 𝐼଴   Ambient turbulence intensity in the fixed frame of reference 𝐼୚ୈ୑୊୭ୖ  Turbulence intensity in the meandering frame of reference 𝑛௣௡௧   Number of measurement points within a scan 𝑛థ, 𝑛ఏ  Number of angular measurements per scan 𝛮థ, 𝛮ఏ  Number of scans per time interval 𝑟ஓ, 𝑟఍   Radial position in transversal in-plane direction within the Gaussian fitting ℛథ, ℛఏ  Angular resolution of PPI and RHI scans 𝑠୍బ୑୊୭ୖ  Turbulence intensity scaling factor in the meandering frame of reference 𝑠ఊ   Horizontal spatial deficit shape scaling factor 𝑠఍    Horizontal spatial deficit shape scaling factor 𝑠ఋ   Velocity deficit intensity scaling factor 
t   Point in time 𝑡௥   Reset time 
T   Set of all discrete measurement points in time 𝑡 𝛵థ, 𝛵ఏ  Scan duration 𝑢௢   Instantaneous ambient longitudinal wind speed 𝑢௢തതത   Average ambient longitudinal wind speed u௔   Instantaneous ambient longitudinal wind speed of synthetic wind field 𝑢௔തതത   Average ambient longitudinal wind speed of synthetic wind field 𝑢୤୧୲,୔୔୍  Gaussian-shaped wake wind speed profile within a PPI scan 𝑢୤୧୲,ୖୌ୍  Gaussian-shaped wake wind speed profile within a PPI scan 𝑢୐୉ୗ   LES wind speed 𝑢୚ୈ୑୊୭ୖതതതതതതതത  Averaged wind speed of wake in the meandering frame of reference 𝑢୔୔୍   PPI wind speed u௉௉ூ   PPI wind speed uோுூ   RHI wind speed 𝑢ୖେ   Instantaneous ambient longitudinal wind speed of reconstructed wind field u௥௢௧   Rotated and weighted wind speed combination of RHI and PPI in the MFoR 𝑢௧   Turbulent component of u௔ 𝑣଴തതത   Average ambient lateral wind speed 𝑤଴തതതത   Average ambient vertical wind speed 
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Appendix A 

 

Figure A1. Visualization of the tracked vertical wake center 𝜇஖ in the FFoR as a function of time t and 
downstream distance χ: (a–h) the effect of different angular velocities on tracking; (i) 𝜇஖ based on 
LES data. 
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