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Abstract

We investigate how the neural processing in auditory cortex is shaped by the statistics of

natural sounds. Hypothesising that auditory cortex (A1) represents the structural primitives

out of which sounds are composed, we employ a statistical model to extract such compo-

nents. The input to the model are cochleagrams which approximate the non-linear transfor-

mations a sound undergoes from the outer ear, through the cochlea to the auditory nerve.

Cochleagram components do not superimpose linearly, but rather according to a rule which

can be approximated using the max function. This is a consequence of the compression

inherent in the cochleagram and the sparsity of natural sounds. Furthermore, cochleagrams

do not have negative values. Cochleagrams are therefore not matched well by the assump-

tions of standard linear approaches such as sparse coding or ICA. We therefore consider a

new encoding approach for natural sounds, which combines a model of early auditory pro-

cessing with maximal causes analysis (MCA), a sparse coding model which captures both

the non-linear combination rule and non-negativity of the data. An efficient truncated EM

algorithm is used to fit the MCA model to cochleagram data. We characterize the generative

fields (GFs) inferred by MCA with respect to in vivo neural responses in A1 by applying

reverse correlation to estimate spectro-temporal receptive fields (STRFs) implied by the

learned GFs. Despite the GFs being non-negative, the STRF estimates are found to contain

both positive and negative subfields, where the negative subfields can be attributed to

explaining away effects as captured by the applied inference method. A direct comparison

with ferret A1 shows many similar forms, and the spectral and temporal modulation tuning of

both ferret and model STRFs show similar ranges over the population. In summary, our

model represents an alternative to linear approaches for biological auditory encoding while it

captures salient data properties and links inhibitory subfields to explaining away effects.
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Author summary

The information carried by natural sounds enters the cortex of mammals in a specific for-

mat: the cochleagram. Instead of representing the original pressure waveforms, the inner

ear represents how the energy in a sound is distributed across frequency bands and how

the energy distribution evolves over time. The generation of cochleagrams is highly non-

linear resulting in the dominance of one sound source per time-frequency bin under natu-

ral conditions (masking). Auditory cortex is believed to decompose cochleagrams into

structural primitives, i.e., reappearing regular spectro-temporal subpatterns that make up

cochleagram patterns (similar to edges in images). However, such a decomposition has so

far only been modeled without considering masking and non-negativity. Here we apply a

novel non-linear sparse coding model that can capture masking non-linearities and non-

negativities. When trained on cochleagrams of natural sounds, the model gives rise to an

encoding primarily based-on spectro-temporally localized components. If stimulated by a

sound, the encoding units compete to explain its contents. The competition is a direct

consequence of the statistical sound model, and it results in neural responses being best

described by spectro-temporal receptive fields (STRFs) with positive and negative sub-

fields. The emerging STRFs show a higher similarity to experimentally measured STRFs

than a model without masking, which provides evidence for cortical encoding being con-

sistent with the masking based sound statistics of cochleagrams. Furthermore, and more

generally, our study suggests for the first time that negative subfields of STRFs may be

direct evidence for explaining away effects resulting from performing inference in an

underlying statistical model.

Introduction

The goal of this paper is to understand the computational principles which underpin neural

processing in auditory cortex. In particular, we investigate the hypothesis that neural process-

ing is shaped by the statistics of natural sounds, the physical rules governing how those sounds

combine, and the form of the initial processing performed by the ear.

It is well known that the outer, middle and inner ear transform an incoming sound pressure

waveform into a representation at the auditory nerve which can be approximately described

by a filtering stage (in which the sound is broken into subbands), followed by an envelope

extraction and compression stage. This approximation to the auditory nerve’s representation

of a sound is called a cochleagram and intuitively it can be thought of as revealing the spectro-

temporal variations in the energy of the input waveform. It is believed that subsequent stages

of auditory processing might decompose this representation into basic “structural primitives”,

i.e., components or building blocks from which natural sounds are composed. Such a repre-

sentation would provide a basis to support more complex computation at higher levels in the

system (compare, e.g., [1]). The idea of representations in terms of primitives is supported to

some extent by in vivo recordings in the primary auditory cortex of mammals which suggests

that neurons are most sensitive to structures that are localized in time and frequency [2–6],

but the hypothesis still lacks convincing evidence.

One way of investigating the hypothesis that auditory cortex is representing the compo-

nents of natural sounds is to learn their form from a corpus of natural sounds. A particularly

popular approach, which has been used for great success for visual data [7] and subsequently

for audio data [8, 9], is based on the idea that the stimulus is formed by a linear combination

of components which are sparsely activated. However, for auditory stimuli, this “sparse
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coding” approach is arguably not the most natural one to take for three main reasons. First, a

linear mixture of sound pressure waveforms (formed either from multiple sources in the envi-

ronment or from a single source comprising a linear mixture of primitive components) results

in a non-linear mixture at the level of the auditory nerve and it seems likely that downstream

processing would respect this fact. Second, the cochleagram is non-negative which is not

reflected by the standard form of the sparse coding model. Third, sparse coding (or ICA) oper-

ates most effectively on whitened data (although this might be due to current algorithmic limi-

tations, rather than a general feature of the approach).

In the visual system it has been argued that the lateral geniculate nucleus (LGN) performs

such a whitening step [10] but the initial transformations employed in the auditory system are

quite different, making this sort of preprocessing harder to justify. Whitening for cochlea-

grams would essentially mean that neural activities do not encode energies in frequency bands

but deviations from a mean energy relative to energy variances. Adaptation effects to mean

and variances over time are well known for regions upstream of the cortex such as the auditory

nerve and inferior colliculus [11–14]. However, this adaptation should not be equated with

whitening. If it was this would imply that the absence of any signal energy should lead to (on

average) equally strong responses as energies above the mean. If we do not assume a whitening

stage for cochleagrams or a similar preprocessing to obtain mean-free stimuli, then we are con-

fronted with the question: How do measured STRFs with their positive and negative subfields

emerge? In vision, after an assumed whitening stage, stimuli contain positive and negative

parts which directly result in components extracted by sparse coding to have negative and pos-

itive subfields. For the non-negative energy representation of cochleagrams it is so far unclear

how negative subfields can emerge without a whitening stage. Statistical data models not

requiring whitening suggest alternative mechanisms commonly referred to as “explaining

away effects” which have so far not been linked to negative subfields of neural response proper-

ties. As an example for “explaining away” consider the situation of sitting in a park. It is a nice

warm day, you have your eyes closed, and are just listening to the sounds around you. There is

a small orchestra somewhere with musicians practicing for a concert, and there are birds in

the trees. If you now perceive a very short melodic sequence, it may have been generated by a

bird or by a musician’s flute. As you are too far away from any of the sources, and as the per-

ceived sequence is too short and unspecific, it is not possible for you to say for sure which of

the potential sources may have generated the sound. But you do know that a high probability

for one source, e.g. the flute, would mean a low probability for the other. This dependency

between the probabilities for the two potential sources given a sound is called “explaining

away”. If you were more certain that it was the flute playing (e.g., by getting additional visual

input), the flute would “explain away” the alternative explanation of the sound having been

generated by a bird. The statistical models investigated here will have similar explaining away

effects but on a lower level of sound processing (Fig 6 will give a low level example later on).

The primary statistical model investigated here assumes the data to be non-negative (and not

whitened), and it assumes the structural primitives to combine non-linearly. More concretely,

we assume structural primitives to combine such that the maximal energy in each time-fre-

quency interval determines the superimposed signal (Fig 1 shows an illustration).

To summarize our goal, instead of using the dominating approach of standard sparse cod-

ing as statistical model to study neural representation in auditory cortex [8, 9], we investigate

for the first time a non-linear and non-negative alternative. Our approach is motivated by the

observation that alternatives to the assumptions of linear superposition and whitening may be

more natural for acoustic data, and it offers an alternative explanation for the inhibitory sub-

fields of STRFs which were previously closely linked to signal whitening.

STRFs emerge from masking-based sound statistics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006595 January 17, 2019 3 / 23

https://doi.org/10.1371/journal.pcbi.1006595


Methods

We will now describe how we change the previously used assumptions of statistical models as

discussed above. Engineers have known for a long time that representations such as the

cochleagrams result from a non-linear interaction of primitive auditory components. Such

non-linear interactions give rise to psychoacoustic masking effects, which have been success-

fully exploited in technical applications such as source separation (e.g., [15–17]). Underlying

such masking effects are that natural sound energies tend to be sparsely distributed across fre-

quencies and time, and that high energies dominate low energies in any spectro-temporal

interval of a cochleagram. In practice this property is exploited by assigning each time-fre-

quency interval to the one sound source or component that exhibits maximal energy [15–17],

a procedure sometimes referred to as log-max approximation. This assumption is widely used

in probabilistic models for auditory data processing [15, 16, 18] and finds application in

denoising and source separation problems. Here we will also assume a combination rule of

this form. Unfortunately, the audio-processing models mentioned above can only handle a

small number of components (typically fewer than 10, compare [16]). In contrast, we expect

the number of structural primitives required to explain natural sounds to be much larger (sim-

ilar to a large number of edge-like components required to explain natural images). Therefore,

we use instead the relatively novel model of Maximal Causes Analysis (MCA; [19]) that can be

Fig 1. Illustration of the log-max approximation. The figure shows the generation of cochleagrams according to the used

preprocessing model and the different combination models (sum and max). First the cochleagrams generated from two different

waveforms are shown (middle column, top and middle) as well as the cochleagram generated from the linear mixture of the two

waveforms (bottom). On the right at the top, a cochleagram resulting from a linear mixture of the two individual cochleagrams is

shown. On the right at the bottom, a cochleagram resulting from a point-wise maximum is shown. The non-linear maximum is

much more closely aligned with the cochleagram of the actual mixed waveforms (dotted arrow).

https://doi.org/10.1371/journal.pcbi.1006595.g001
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scaled to handle hundreds or up to a few thousands of components [20–22]. Not only does this

model incorporate the non-linear max combination rule, it also comprises non-negative com-

ponents much like a non-linear version of non-negative matrix factorization. Importantly, the

method performs effectively without need for whitening and so it can be applied directly to

non-negative cochleagrams as computed by auditory preprocessing models. The MCA

approach, hence, matches those salient features of natural sound statistics previously not cap-

tured, making it to a more sensible alternative model for auditory processing in mammals.

Ethics statement

Animal experiments were done at the Department of Physiology, Anatomy, and Genetics,

University of Oxford, performed under license from the United Kingdom Home Office and

were approved by the ethical review committee of the University of Oxford. The electrophysio-

logical recordings were made from an adult pigmented ferret under ketamine (5 mg/kg/h) and

medetomidine (0.022 mg/kg/h) anesthesia. After recording, the animal was killed with 1ml/kg

i.v. Pentoject.

Models of acoustic preprocessing in mammals

In the inner ear, sound pressure waves are considered to be broken-down into their frequency

components by the cochlea, which then also compresses the frequency response amplitudes to

form log-spectrograms resembling cochleagram representations of the input signal. The

cochleagrams are then further communicated via the auditory nerve for neural processing and

as they arrive in higher brain areas such as the primary auditory cortex, the cochleagrams are

believed to get decomposed into elementary components for higher-level processing.

Cochlear model and spectrogram generation. We model the cochlea of the inner ear as a

gammatone filterbank as proposed by Johannesma [23–25]. The time domain impulse func-

tion of a gammatone filter is defined as:

gðtÞ ¼ atn� 1 exp ð� 2pbtÞ cos ð2pfct þ �Þ; ð1Þ

where a is the amplitude, b is the duration of the response, fc a filter’s center frequency, ϕ is the

phase and n determines the order of the filter. The center frequencies for constructing filter-

banks are chosen according to the Equivalent Rectangular Bandwith (ERB) scale, which is pro-

posed by Glasberg [26] based on the physiology of the human ear.

To obtain auditory representations that resemble cochleagrams, we compute the root mean

square (RMS) gammatone responses (1) to sound waveforms over a sliding temporal window

with an overlapping shift. The RMS energies �xf ;t are then passed through a compressive func-

tion (i.e., 10 log 10ð1þ �x2
f ;tÞ) to generate the representations.

Log-max encoding of cochleagrams

We assume that a cochleagram representation~y 2 RD
can be composed as a combination of a

(small) number of primitive auditory components ~Wh 2 R
D, which form elements of a large

dictionary W ¼ ð~W 1; . . . ; ~WHÞ of H components. For such a multi-component encoding

scheme, classical modeling approaches such as standard sparse coding [7] or ICA [27, 28]

assume a linear interaction of the components to define a data generation process:

~y ¼
P

hsh ~Wh þ ~Z ;

where sh 2 R determines the mixing factors for components ~Wh and~Z denotes added noise in

the generative process (which usually is assumed to be zero for ICA). However, cochleagrams

STRFs emerge from masking-based sound statistics
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are a representation of a non-linear interaction between the auditory components, for which a

more accurate generative process can be derived from the log-max approximation [15–17].

The log-max approximation implies that the cochleagram of a linear mixture of sound waves

can be well approximated by taking the pointwise maximum of cochleagrams computed from

the individual waveforms. Fig 1 illustrates the approximation based on the cochleagram model

used in this study. The example shows a better match by the point-wise maximum than by a

linear combination. Hence, based on the approximation, we can define the following probabi-

listic generative model for cochleagrams:

pð~sjYÞ ¼
Y

h

psh ð1 � pÞ
1� sh ðBernoulliÞ ð2Þ

pð~yj~s;YÞ ¼ N ð~y; max
h
fsh ~Whg;s

2IÞ ; ð3Þ

where the max operation is applied element-wise, i.e., ðmaxhf~xhgÞd ¼ maxhfxdhg, and where I

denotes the identity matrix. Here we assume the factors sh 2 {0, 1} to be Bernoulli distributed,

whereas the observed noise is assumed to be Gaussian. Eqs 2 and 3 are a version of the MCA

generative model [19, 20]. Parameters of the model are: the frequency π with which a compo-

nent is activated, the variance of the observation noise σ2, and the generative components or

fields ~Wh, which we will later relate to STRFs. For notational convenience Θ = (π, σ, W)

denotes the set of all these parameters.

As a control for later numerical experiments with the MCA model, we will also consider a

model assuming a standard linear combination of structural primitives. More concretely, we

use a model that shares preprocessing, prior, and noise assumption with the MCA model but

uses a linear superposition model instead of the point-wise max:

pð~yj~s;YÞ ¼ N ð~y;
X

h

sh ~Wh; s
2IÞ : ð4Þ

Eq 4 has the standard form of linear sparse coding approaches [7], and is because of the

prior (2) a form of Binary Sparse Coding (BSC; [21, 29, 30]).

Efficient likelihood optimization

Given a set of N cochleagrams f~yðnÞgn¼1;...;N computed as in Section Cochlear model and spec-

trogram generation., we now seek parameters Θ� that optimally fit the MCA model to the data.

We use likelihood maximization to find the optimal parameters and apply an approximate ver-

sion of expectation maximization (EM; [31]) for their efficient estimation.

The application of standard maximum a-posteriori (MAP) based approximations is prohib-

itively suboptimal for the MCA model because the non-linear interaction of components typi-

cally results in multi-modal posteriors. An efficient approximate EM approach which can

capture multi-modal posterior structure is, however, provided by Expectation Truncation (ET;

[20]). ET can be regarded as a variational EM approach, and it has successfully been applied to

MCA [21, 22, 32] and many other generative models [33, 34]. ET approximates the computa-

tionally intractable full posterior pð~sj~y;YÞ by a truncated one [20]:

qðnÞð~s;YÞ � pð~sj~yðnÞ;YÞ dð~s 2 KnÞ; ð5Þ

where δ is an indicator function (i.e., dð~s 2 KnÞ ¼ 1 if~s 2 Kn and zero otherwise). If Kn is cho-

sen to be small but such that it contains the states with most posterior probability mass, the

computation of the expectations in Eq 5 becomes tractable while a high accuracy of the

STRFs emerge from masking-based sound statistics
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approximations can be maintained [20]. The set Kn is, therefore, chosen to consider the subset

of the H0 most relevant hidden units for a patch~yðnÞ. Furthermore, at most γ of these H0 units

are assumed to be active simultaneously j~sj � g. Please see Efficient Likelihood Optimization

in Supporting Information for a formal definition of Kn.

Parameter update equations for the MCA model have been derived earlier [19, 21, 32].

They are given by:

Wnew
dh ¼

X

n

hAr

dhð~s;WÞiqðnÞy
ðnÞ
d

X

n

hAr

dhð~s;WÞiqðnÞ
;

Ar

dhð~s;WÞ ¼
@

@Wdh
W r

dð~s;WÞ
� �

; ð6Þ

W r

dð~s;WÞ ¼
X

h

ðshWdhÞ
r

 !1
r

; ð7Þ

snew ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ND

X

n

��
�
�
�

�
�
�
�~y
ðnÞ � max

h
fsh ~Whg

�
�
�
�

�
�
�
�

2�

qðnÞ

s

; pnew ¼
1

HN

X

n

hj~s jiqðnÞ ; ð8Þ

where the parameter ρ in Eq 7 is set to a large value (we used ρ = 20) and k�k in Eq 8 denotes

the L2-norm. The learning algorithm for the MCA generative model is thus given by the equa-

tions above with expectation values computed w.r.t. the approximate posterior in Eq 5. The

linear BSC model, Eqs 2 and 4 is trained analogously to the MCA model with parameter

update equations as derived earlier (e.g., [30]). Please see “Efficient Likelihood Optimization”

in Supporting Information for more details.

Results

Encoding of artificial and natural sounds

We applied our method to male and female anechoic speeches in English, Japanese, Italian,

and German. The data also included recordings of natural sounds such as rustling leaves, clat-

tering stones and breaking twigs. More details about the data acquisition procedure are given

in Natural Sound Recordings in Supporting Information.

We cut the waveforms of the recordings sampled at 44.1 kHz into snippets of 160 ms with a

32 ms overlap. The snippets were then transformed to cochleagram representations following

section “Cochlear Model and Spectrogram Generation”. For the gammatone preprocessing we

used a 32−channel filterbank with center frequencies ranging between 1000 and 22050 Hz. In

this work we used Slaney’s implementation [35] to apply a 4th order gammatone filter. The

outputs of the filter were averaged over a 20 ms sliding window with a 10 ms step size. The

averaged energies were then compressed through the logarithm (as described earlier) to gener-

ate 32 × 15 cochleagrams, that is the energy at 32 center frequencies over 15 consecutive time

windows.

We applied the MCA learning algorithm using H = 1000 generative fields to a set of

N = 72800 cochleagrams. Individual cochleagrams were normalized by the L2-norm of their

energies. To find the maximum likelihood parameters Θ approximately, we performed 70 EM

iterations of the ET based learning algorithm described in “Efficient likelihood optimization”.

The truncation parameters H0 and γ were set to 10 and 6, respectively. We initialized each of

the components in the W matrix with the mean of the data perturbed by standard Gaussian

noise with zero mean and variance set to 1/4th of the variance of the data.

Parameter σ was initialized to the square root of the variance of the data and π was set to

30/H where H = 1000. To minimize the possibility of running into local optima, we applied

deterministic simulated annealing [36, 37] for the first half of the EM iterations with a linearly

STRFs emerge from masking-based sound statistics
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decreasing temperature from 10 to 1 (compare [20]). As a control, we also trained the linear

BSC model analogously to MCA, i.e., using the same data preprocessing and initialization

details as for MCA.

Fig 2C shows 100 of the 1000 learned generative fields after the 70 EM iterations. As can be

observed, most of the fields are very localized in time and frequency. The generative fields

resulting from applying the BSC model are provided in Supplementary S2 Fig.

Neuronal receptive fields and the encoding in the primary auditory cortex

In order to relate the MCA encoding of cochleagrams to neurons in the auditory cortex, we

estimate spectro-temporal receptive fields (STRFs) from the inference results of the trained

MCA model on the natural sound data. In physiological studies, an STRF is the numerically

computed estimation of the linear mapping from sound cochleagrams that best predicts a neu-

ron’s response. Similarly we compute STRFs that we consider to be tuned to individual latent

components that we learn. To estimate STRFs Ŵ � for the MCA model, we seek parameters

that minimize the following function:

f ðŴÞ ¼
1

N

XN

n¼1

X

~sðnÞ2Kn

pð~sðnÞ j~yðnÞ;YÞ kŴ~yðnÞ � ~sðnÞk2 þ lkŴ k2; ð9Þ

where~yðnÞ is the nth stimuli, Ŵ is the row-dominated matrix of predicted STRFs, and λ is the

coefficient for L2 regularization. Here we assume that the neural response to a stimulus will be

a sample from pð~sðnÞ j~yðnÞ;YÞ, in which case the experimentally measured STRFs will minimize

the squared error between Ŵ~yðnÞ and~sðnÞ. Our assumption is consistent with interpreting neu-

ral responses as posterior samples [38], and the regularization term corresponds to assuming a

zero-mean Gaussian hyperprior for the weights (compare ridge regression, e.g., as discussed in

[39]). The intractable posterior over the latent factors pð~sðnÞ j~yðnÞ;YÞ in Eq 9 is truncated to

only cover the subspace Kn, as defined by the variational approximation technique in Efficient

likelihood optimization. By setting the derivative of the cost function (9) to zero, Ŵ can be

estimated as:

Ŵ ¼
XN

n¼1

h~sðnÞiqnð~y
ðnÞÞ

T

 !

lNIþ
XN

n¼1

~yðnÞð~yðnÞÞT
 !� 1

ð10Þ

where I is the D × D identity matrix and where h�iqn denotes the expectation value w.r.t. the

approximation qnð~s;YÞ of the posterior pð~sðnÞ j~yðnÞ;YÞ of the MCA model. The additional

term λNI results from a L2-regularization for W in the cost function. Without regularization,

the eigenvalues of the data covariance matrix
P

n~y
ðnÞð~yðnÞÞT were frequently very close to zero

causing numerical instabilities. For the regularization parameter λ, we empirically found that a

value in the mid-range of the minimum and the maximum eigenvalues of the data covariance

matrix was sufficient to resolve the numerical instability.

Corresponding to the generative fields shown in Fig 2C, Fig 2D illustrates the STRF esti-

mates computed from (10). We will refer to these estimates as model STRFs from now on.

Observe first that many of the model STRFs are localized in time and frequency, a very com-

mon feature of receptive fields in the A1 [3, 40, 41]. Receptive fields produced by earlier sparse

coding models do not as extensively have this punctate character [9, 42, 43]. Observe also that

many of the model STRFs show flanking inhibition both spectrally and temporally, which is

likewise a common feature of A1 receptive fields. However, a difference is that receptive fields

STRFs emerge from masking-based sound statistics
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of auditory cortical neurons tend to show asymmetry in their temporally flanking inhibition,

most inhibition being found in the past relative to the excitatory region.

In Fig 3 (left) let us first consider 9 exemplary model STRFs, that illustrate various features

which are also seen in experimentally recorded A1 STRFs as illustrated on the right-hand-side

Fig 2. A-C: Generative fields learned from the spectrograms of the natural sound data. A-B: The vertical axis of the

fields are gammatone frequencies with lowest frequency band at the bottom and the horizontal axis spans over 160 ms

from left to right. Each generative field is displayed as a 32 × 15 matrix. Fields in panels A-B were randomly selected.

C: Every 5th of the 500 most-frequently used fields is shown (ordered w.r.t. their marginal posterior probability from

left to right and top to bottom). In total H = 1000 fields were learned. D: STRF estimates corresponding to the

generative fields shown in panel C. A larger number of most-frequently employed fields can be found in the

supplement, S1 Fig.

https://doi.org/10.1371/journal.pcbi.1006595.g002
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of Fig 3 (for how the STRFs were recorded from ferret cortex and estimated see the Supple-

ment). Reading the Fig 3 (left) from left to right, the first unit shows punctate high frequency

excitation, the second two units show punctate mid frequency excitation, and the next two

units show punctate low frequency excitation. This illustrates that the units’ spectral tuning are

spread over the frequency range, as found in physiology, as shown in Fig 3 (right). The sixth

unit illustrates an upward sweep in frequency, and the seventh a downward sweep. The eighth

and ninth units illustrate receptive fields that are spread out over frequency and time respec-

tively. Again these four types of STRF are found in A1, as show in Fig 3 (right).

To quantitatively compare the model STRFs and auditory cortical STRFs across the popula-

tion we took 244 experimentally recorded STRFs from Ferret A1 and AAF (taken from [45],

see Supporting Information: “Neural Recordings and Real STRFs”) and compared them to the

most frequently used model STRFs (i.e., to those fields which were the most probable to be acti-

vated across all stimuli). For the comparison, a 2D-Fourier transform was applied to each

model receptive field and STRF, this provided the modulation transfer function of each recep-

tive field and STRF (3 STRFs were excluded as all their values were zero, see Methods). Then,

for each of the 241 remaining real STRFs and model STRFs the frequency modulation and tem-

poral modulation at which the highest value occurred was taken (the best scale and best rate,

respectively). A histogram of distribution of best scale and rate is plotted for the real A1 STRFs

in Fig 4A and 4B (left), and for the MCA model STRFs in Fig 4A and 4B (middle). The histo-

gram for the BSC model STRFs is shown in Fig 4A and 4B (right). For Fig 4 we used (to match

the number of neurons we recorded from) the 241 most frequently used model fields, which

represent�80% of the overall posterior mass for the MCA model. For comparison, the same

histogram but using the 600 most frequently used model fields is shown in the Supplementary

S3 Fig (capturing 97% of the posterior mass for the MCA model). S3A Fig (middle) is similar to

Fig 4A (middle) but with more model fields at rate zero. The additional fields of Fig S3 which

make up the difference to Fig 4 are, however, four times less likely to be active, which makes Fig

4A (middle) more representative for a comparison, see Supplement “Generative Fields and

Estimated Model STRFs” for details. In contrast, the histograms for the 241 and the 600 most

frequently used BSC fields show comparable percentages of STRFs close to rate zero.

Considering Fig 4, observe that the real STRFs and the receptive fields of the MCA model

span a similar range of temporal modulations (rates) and a similar range of spectral modula-

tions (scales). Fields tuned to higher scales and fields with higher and lower magnitudes of rate

are a bit more frequent for the MCA model than for the experimental data. For the BSC

Fig 3. Example receptive fields from the model (left), and similar receptive fields as recorded in ferret A1 (right).

The times axis is the x-axis and is from -160 to 0 ms (left) and respectively -125 to 0 ms (right). The frequency axis is the

y-axis and is from 1000-22050 Hz (left) and respectively 381-35618 Hz (right), in both cases with lowest frequency at the

bottom.

https://doi.org/10.1371/journal.pcbi.1006595.g003
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model, the difference of the histogram to the measured data is larger. Significantly more fields

have the best rates around zero or at higher magnitudes than the experimental data. The better

match of histogram for the MCA model compared to the linear BSC model can be quantified

using a χ2 test (Fig 4C). In conclusion, the receptive fields of the MCA model and real

Fig 4. A: Histogram of best spectral and temporal modulation frequencies for 241 experimentally recorded STRFs (left) and 241 model receptive

fields for the MCA and BSC model (middle and right, respectively). 3/244 recorded STRFs were excluded (see Methods) as they had an L2 norm

of zero. Yellow—high density, blue—low density. Histograms are scaled individually to fill the color scale (max is 104 fields for the experimental

data, 67 fields for the MCA Model, and 46 fields for the BSC Model). B: Histogram shown for a wider range of scales and computed with a bin

size of 8 instead of 12 Hz (as used in A). Histograms are scaled individually to fill the color scale (max is 78 fields for the experimental data, 36

fields for the MCA Model, and 35 fields for the BSC Model). C: For the histograms in B a dissimilarity measurement between data and MCA as

well as between data and BSC was performed using χ2 statistics as described in [44].

https://doi.org/10.1371/journal.pcbi.1006595.g004
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STRFs span a similar range of temporal modulations (rates) and a similar range of spectral

modulations (scales). The model STRFs of the BSC model also span similar ranges of temporal

and spectral modulation but this similarity is less pronounced than for the masking-based

MCA model.

We also examined the tuning width, over frequency and over time, of the excitatory and

inhibitory fields of the real and model STRFs. We used the same most frequently active model

fields as for Fig 4, and a tuning width measurement method modified from [46]. For the mea-

surement of frequency tuning width of the excitatory fields, the negative values of the STRFs

were set to zero, then the STRF was squared in an element-wise manner and then the STRF was

summed over the time bins to give a weighting vector over frequency bands. The excitatory fre-

quency tuning width was then measured as span of frequencies (in octaves) whose weighting

was� 50% of the highest weighted frequency channel. For the measurement of temporal tuning

width of the excitatory fields, the negative values of the STRFs were set to zero, then the STRF

was squared in an element-wise manner, and then the STRF was summed over frequencies, to

give a weighting vector over time bins. The excitatory temporal tuning width was measured as

the number of time bins that were� 50% of the maximum value of the resulting vector, multi-

plied by the time bin size of 10 ms. The inhibitory frequency and temporal tuning widths were

measured similarly but instead the positive values of the STRF were set to zero, rather than the

negative values. For a visualization of how they are measured see Supplementary S4 Fig.

Observe that for frequency, for the inhibition and to a lesser extent the excitation, the tun-

ing widths of the MCA model STRFs match relatively well the tuning widths of the STRFs of

real neurons. For the temporal dimension we see more strongly diverging properties which

may have been expected by considering the statistical modeling approach: Like sparse coding

or ICA we do focus on the composition of the data points in terms of structural primitives.

Our model itself does not contain statistical dependencies in time unlike hidden Markov mod-

els or linear dynamical systems would do. As acoustic data does contain such dependencies on

multiple time scales, it is likely that neural processing reflects also these dependencies. The dis-

crepancy of temporal modulation in contrast to frequency modulation may therefore be taken

as evidence for the auditory cortex capturing the intricate statistical dependencies over time

which neither sparse coding, ICA nor the here studied MCA model addresses. The control

experiments using BSC support this interpretation. Also for BSC no asymmetry similar to the

one of the measured ferret STRFs is observed. Histograms for BSC computed analogously to

Fig 5 are given in the Supplementary S5 Fig. In contrast to the histograms of best modulation

frequencies, no notable differences between MCA and BSC histograms were observed.

Discussion

We have investigated a computational model of auditory processing of sound waveforms in

mammals that respects three key constraints. First, that a linear mixture of waveform compo-

nents results in a non-linear mixing of cochleagram components, which is well approximated

by the log-max non-linearity [15, 16]. Second, that the components in the model are positive

and sparse. Third, that the statistical model operates on a stimulus closely aligned with biologi-

cally processing (cochleagram representation). As such the here followed maximal causes anal-

ysis (MCA) approach is arguably a more sensible approach than that provided by linear sparse

coding methods that have previously been related to neural STRFs (e.g., [1, 9, 47]), and also of

non-negative matrix factorization (NMF; [48, 49]). Perhaps surprisingly, whilst frequently

used for sound processing tasks, to the best of our knowledge NMF has not been related to

STRF recordings. In fact a relatively recent contribution explicitly states that NMF “does not

allow for STRFs with inhibitory subfields” due to the positivity constraint [49].
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Results and predictions

We have shown that the MCA model exhibits a close correspondence to some of the STRF

properties of neurons in ferret primary auditory cortex. Like STRFs of the real neurons, the

MCA model STRFs show one or a few excitatory regions that are often punctate, being

restricted over frequency and often over time. The excitatory regions of the MCA model

STRFs are also often flanked by inhibition in frequency and/or time, consistent with real

STRFs. The real neurons of our dataset and another ferret cortical dataset [50] show diverse

STRFs, likewise the MCA model captures a similar diversity of STRFs with some model STRF

broadly tuned over frequency or time, some narrowly tuned, some complex with multiple

excitatory regions and some directional with diagonally oriented fields. However, the model

STRFs do not capture the fact that inhibitory regions that flank in time tend to occur predomi-

nately after excitatory regions, rather than on both sides. This is unsurprising as the MCA

model does not have the capacity to reflect causal statistical dependencies in time. MCA shares

this property with other ICA-like and sparse coding models (including BSC). It may be note-

worthy at this point that already in short-time STRFs, such as we use or are often measured in

Fig 5. A: Distribution over neurons of temporal tuning widths of excitatory fields of the real (pink) and MCA model

(grey) neurons. B: Distribution of temporal tuning widths of inhibitory fields. C: Distribution of frequency tuning

widths of excitatory fields. D: Distribution of frequency tuning widths of inhibitory fields. For an illustration on how

the tuning widths are computed see Supplementary S4 Fig.

https://doi.org/10.1371/journal.pcbi.1006595.g005
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physiology, the limits of approaches that do not explicitly model dependencies in time are

apparent. Measurements and analysis of neural responses in the auditory forebrain of birds

[51] suggest that short-time STRFs do represent regularities important for capturing sound

regularities over time. There, different types of STRFs have been linked to the processing of

different sound properties such as spectral-pitch, rhythm, timbre or periodicity-pitch. Notably,

specific functional roles of broad-band STRFs, and of STRFs with inhibition after excitation as

well as STRFs with excitation after inhibition have been discussed in this context [51]. Also,

the ‘noisy’ type STRFs of Carlin et al [50] with very disordered field structure are not notable

in the models here considered.

The control model (BSC) produces STRFs with many properties similar to the MCA

model, and most quantitative differences are relatively small. A main difference is that whereas

the MCA model reproduces fairly well the distribution of best spectral and temporal modula-

tion frequencies of real neurons, albeit somewhat overestimating the span of rates and scales,

the BSC model shows significantly greater overestimation. On other measures they are similar.

The MCA model captures fairly well the frequency tuning widths of real neurons, if underesti-

mating to a degree, however in this capacity it did not perform noticeably better than the BSC

model. Curiously, although in ferret data and our models the distribution of frequency tuning

widths appears unimodal, in bird auditory forebrain [51] the distribution of frequency tuning

widths is bimodal, we speculate as a consequence of the statistics of birdsong. Regarding tem-

poral tuning, birds [51], our ferret data, and our models all show apparent unimodal distribu-

tions of temporal tuning widths. Both the MCA model and the BSC model substantially

overestimate the temporal tuning widths of the STRFs of real neurons, which is again unsur-

prising as neither model has the capacity to reflect causal statistical dependencies in time.

Furthermore it should be noted that STRFs are far from a complete description of the tun-

ing properties of auditory cortical neurons. Firstly, auditory cortical neurons show many non-

linear properties [52] such as conjunctive AND-gate-like behavior [46], or amplitude modula-

tion phase invariance [53]. Secondly, neural tuning properties, including STRFs, can also

depend to an extent on stimuli used to gather them [45, 54–59]. Finally, STRFs can also show

rapid plasticity depending on the task performed by an awake animal [5].

More generally, it is important to acknowledge that comparing normative models such as

MCA to real data is difficult and depends on a number of factors including: details of the train-

ing corpus, details of different models of preprocessing and details of the STRF estimation.

Any of these factors has an influence on quantitative comparisons as those made in this study.

For instance, the data used to optimize a statistical model is unlikely to perfectly match the

acoustic statistics experienced by the animals used to obtain the experimental data. Or differ-

ent STRF estimation techniques applied to meet the requirements of experimental recordings

or of the used models will effect the quantitative properties of estimated STRFs. Likewise, dif-

ferent preprocessing models (which we have not explored) influence STRF properties (see [60]

for a discussion), and have also affected previous work on this topic [8, 9]. Any preprocessing

scheme will, however, agree on cochleagrams being representations of acoustic waveform

energies in time-frequency intervals. While such representations may be computed by very

complex functions, any energy representations will assume non-negative values. Also strong

masking non-linearities of the combination of structural primitives within cochleagram repre-

sentations are widely agreed on in the literature. Notably, although the generative model here

considered incorporates the positivity constraint (which we believe is biologically important),

the recognition model nevertheless exhibits inhibitory subfields that arise due to explaining

away effects among the components. This result indicates, perhaps counter intuitively, that

models with positive generative components can still show inhibitory subfields if STRFs for

these components’ generative fields are estimated—a finding which has implications beyond
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the specific model studied here and beyond the auditory system. More precisely, our study

shows that inhibitory subfields can be a direct consequence of the statistical model assumed

for explaining the data. Even if the data is non-negative and if the used model assumes non-

negative generative fields and non-negative latent activities, inhibitory subfields can emerge

directly from explaining away effects, without any additional assumptions. Similar to the intro-

ductory example, “explaining away” refers to a dependency between alternative explanations

for a given stimulus. For our statistical models, possible explanations of a given stimulus take

the form of combinations of generative fields (which are typically localized in time and/or fre-

quency). The co-activation of two similar fields is unlikely (because of sparsity) which means

that a high probability for one field results in a low probability for the other (and visa versa).

Fig 6 aims at providing an intuition why inhibitory subfields emerge because of “explaining

Fig 6. Illustration of the emergence of inhibitory subfields. A: Feedforward mapping from an input~y to two neural

units s1 and s2. The mapping is defined by two receptive fields with only positive entries. In this case, any strong

activation of unit s2 does not negatively effect unit s1. For overlapping positive subfields, a stronger activation of s2 will

even result in a stronger activation of s1 as well. B: Activations of neural units s1 and s2 according to a statistical model

with non-negative generative fields (GFs). Both units compete to explain a presented input~y. A high probability for s2
decreases the probability of s1 and vica versa. This effect is known as “explaining away”, and it depends on the assumed

model including the model for the combination of primitives, noise model, and prior. C: Illustration of an optimal

feedforward mapping to approximate neural responses according to the statistical model in B. The stronger mutual

suppression caused by explaining away is approximated by the introduction of inhibitory subfields. If the input is, e.g.,

now made stronger or less diffuse, then unit s2 can increase while unit s1 can simultaneously decrease, which is in

accordance with probabilistic inference for a statistical model. D: Example of STRFs estimated from artificial data. The

top row shows non-negative GFs. If the corresponding STRFs are now estimated using Eq 10, then negative subfields

emerge (bottom row). For fields which do compete little with other fields (e.g., field three) the effect is the weakest. The

strongest effects are observed for fields with large overlap (e.g. fields four and six). In general, explaining away effects

increase with overcompleteness, i.e., with the number of GFs compared to input size. Color scales for all subfigures as

in Fig 2A.

https://doi.org/10.1371/journal.pcbi.1006595.g006
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away”. Note that the fact that inhibitory subfields do emerge is independent, e.g., of the combi-

nation rule assumed by the statistical model, i.e., inhibitory subfields can be obtained for non-

linear models of generative field combinations (MCA but also, e.g., noisy-OR models [61]) as

well as for linear models. For the linear BSC model, we verified such an emergence of negative

subfields also for non-negative weights by running additional experiments. While the BSC

model we used for controls showed essentially positive weights, negative entries close to zero

of the W matrix could be obtained and were obtained in our experiments. To ensure that nega-

tive subfields of STRFs also emerge for non-negative weights, we artificially enforced all W
entries for BSC to be non-negative in our additional numerical experiments. Also in that case

STRF estimation by Eq 10 resulted in negative subfields (see Supplement “Efficient Likelihood

Optimization” for details).

If measured inhibitory subfields are a consequence of explaining away, then their shapes

and the predicted dependencies among hidden neurons change depending on the assumed

statistical model. By providing strong evidence for inhibitory subfields to be solely obtainable

as a consequence of explaining away, our study offers novel ways of neuro-physiologically eval-

uating statistical models of neural processing.

Here we have compared spectral and temporal modulation as well as temporal and fre-

quency tuning in order to compare different statistical models with data. Comparison of mod-

els is made difficult due to the above discussed factors. Significant differences of predicted

STRFs can, nevertheless, be obtained if directly comparing statistical models with and without

masking non-linearity (e.g., Fig 4) while all other model properties, training, and preprocess-

ing remained fixed. A step further in the direction of neural evaluation would be represented

by a direct in vivo comparison of neural responses to specifically designed stimuli. Given a set

of neurons with previously measured STRFs, their responses could be predicted based on dif-

ferent statistical models. These different models will predict different response distributions,

and artificial stimuli could be designed to be maximally discriminative between any two statis-

tical models. Based on the results of this study, we predict responses for neurons in A1 which

compete to explain an acoustic stimulus to not show a linear anti-correlation (as predicted by

linear models). Explaining away resulting from a masking-based model (such as MCA), in

contrast, would predict that neurons explaining the same stimulus compete rather in a k-win-

ner-take-all manner, i.e., small sets of neurons suppress activity in the other neurons with only

the maximally active neuron being relevant. For a comparison of explaining away effects

between linear models and MCA see e.g. [62], for k-winner-take-all neural circuits see e.g. [63,

64]. In this context, let us, furthermore, remark that any neural activity distribution predicated

by a model will not only depend on the model for generative field combinations but also on

assumed priors, noise model and on the applied approximate inference approach. Further-

more, it will be important which variables of the model are assumed to match any measured

neural activity best. Progress in neural recordings, simultaneous recording and stimulus gener-

ation, and refined neural modeling may make a direct comparison of statistical models feasible

in the intermediate future.

Comparison to other normative models

A number of normative approaches have been taken to understand auditory spectro-temporal

receptive fields as a consequence of stimulus statistics (e.g. [1, 9, 42, 43, 47, 49, 50, 65, 66]).

Before discussing similarities and differences in relation to the models used here, let us stress

that the capturing of stimulus statistics is not the only constraint of importance governing the

structure of the nervous system. Biophysical constraints such as energy costs or wiring length

STRFs emerge from masking-based sound statistics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006595 January 17, 2019 16 / 23

https://doi.org/10.1371/journal.pcbi.1006595


are also important, as well as other functional constraints such as the role of particular sounds

in an animal’s behavior.

Among the stimulus-statistics-based models, the most common approach has been the

encoding of spectrogram-like representations of natural sounds subject to a sparsity constraint

on the activity of the encoding units. Some sparse normative models balance a constraint for

sparsity (or temporal slowness, [50]) while forcing dispersal [43] or decorrelation [42, 50]

between the unit responses, and then learn the encoding receptive fields. More relevant for our

study are those models which demand sparsity of unit responses while also generatively esti-

mating the spectrograms from the unit activity via learned generative fields [1, 9, 47, 49, 65].

All the above sparsity and slowness models show some capacity to capture certain characteris-

tics of STRFs. We have made explicit comparison of our model to a linear sparse model in the

results (Fig 4), as it is the standard leading normative model of sensory coding, and we indicate

the particular strengths of our model. The model of Carlin et al. [50] is less directly comparable

to our model as it does not involve an explicit generative model. While it does in some ways

better explain auditory cortical STRFs than a sparse coding model, it is clear that the MCA

model captures certain aspects of the neural data that the slowness model of Carlin et al. does

not address. Notably, the Carlin et al. model shows a near uniform distribution of best scales

up to 2.5 cycles/octave, this is in contrast to our neural data (and that of Carlin et al.) and the

MCA model where the density decays as scale increases (Fig 4).

In general, masking-based non-linearities, i.e., the dominance of one source in any time-fre-

quency bin, is a property of acoustic data that has frequently been used for acoustic data process-

ing (e.g. [16, 67]). In contrast, however, for the task of generatively explaining acoustic data by

statistically learned structural primitives, almost all contributions in the literature rely on stan-

dard linear models. This applies for studies with functional focus (e.g., NMF-like [68, 69]) as

well as for studies explaining neural response properties [1, 9, 49, 65]. The main reason for this

strong focus on linear models is presumably related to the challenge of scaling strongly non-lin-

ear models to the large sizes required for sensory data. While linear models, e.g. for visual data,

are routinely used with hundreds of generative fields / basis functions since about two decades

[27, 70–72], non-linear models have been trained at large scales only relatively recently [21, 22,

62]. Earlier non-linear models, e.g., based on a noisy-OR non-linearity [61] or the maximum

[19], have not been sufficiently efficient for learning with large numbers of generative fields.

While the approach used here does model masking, we do (as discussed above) not employ

a statistical model that captures regularities in time. Other approaches do consider this impor-

tant aspect of neural processing [66, 73, 74] e.g., to model longer term amplitude modulation

structure of acoustic signals [73, 74]. Moreover, incorporating additional temporal statistical

regularities is clearly important for acoustic synthesis [75] and might therefore be expected to

have a strong effect on the neural representation of sound.

Among the approaches using assumptions formulated in terms of a statistical model, recent

work by Yildiz et al. [47] is closely related to the linear models used in our study. That study,

like our approach, seeks to explain acoustic stimuli by combinations of structural primitives.

The focus by Yildiz et al. is a specific neural circuit implementation for probabilistic inference

and learning. The derivation of the neural circuit relies on a mean field approximation for effi-

cient inference, an adaptive Markovian dynamics, and a divisive inhibitory interaction among

neurons representing structural primitives. The interaction of these mechanisms are shown to

result in a stimulus representation with the underlying goal of providing a Bayes optimal

explanation using combinations of learned generative fields. While this goal is shared with our

approach, the assumed linear combination of primitives is the crucial difference of Yildiz et al.

2016 to our non-linear approach, i.e., they do not model masking. The generative data model
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underlying Yildiz et al. consequently more closely corresponds to the Binary Sparse Coding

(BSC) model which we used as a control (Eqs 2 and 4). However, while Yildiz et al. infer

STRFs from the circuit approximation of probabilistic inference, the results of S2 Fig of our

study are based on directly inferring model STRFs from the linear BSC model itself. This

makes the emergence of inhibitory subfields a direct consequence of the used generative data

model, while Yildiz et al. first motivate a divisive form of inhibition to implement approximate

probabilistic inference by their suggested circuit. On the other hand, both the here presented

study and the study by Yildiz et al., 2016, provide evidence for auditory STRFs emerging from

probabilistic inference and learning. Also both studies may be regarded as providing evidence

for inhibitory subfields being a consequence of explaining away effects, as first hypothesizes by

preliminary results obtained for our study [76]. In terms of concrete neural circuits that may

realize such inference and learning, the study by Yildiz et al. 2016 goes very significantly

beyond the research questions addressed here. On the other hand, in terms of showing that

inhibitory subfields are a direct consequence of probabilistic inference, and in terms of using

such fields to discriminate between different statistical models, our study significantly goes

beyond the work by Yildiz et al. 2016.

Finally, note further technical but potentially import differences of approximate probabilis-

tic inference applied to our and related approaches. The dominating approach for learning

representations in terms of structural primitives are maximum a posteriori (MAP) approxima-

tions [7], i.e., the stimulus is represented by the latent state (i.e., by the neuron activities) with

the highest posterior probability (highest pð~sj~y;YÞ in our case). MAP approximations are both

scalable and relatively straight-forward to apply, which makes them being very frequently used

also for statistical models of acoustic data (e.g., [1, 9]). However, with only maintaining the

most probable hidden state for inference, no rich posterior structure is represented: neither

correlations, multiple-modes nor any other type of the here very important explaining away

effects is captured. In contrast, for our study and for other recent approaches (e.g., [47]) richer

posterior representations play an important role. The observation that no previous study using

MAP approximations has related inhibitory subfields of STRFs to explaining away effects,

indicates that richer posterior representations seem to be required. However, while Yildiz et al.

[47] as well as the BSC model used here maintain non-trivial posterior structures, the types

of approximations used are different. Yildiz et al. 2016 employ a fully factored variational

approximation (i.e., mean field). Such an approximation essentially assumes a posteriori inde-

pendence of neural units, which has (given a stimulus) a direct impact on the activity depen-

dencies among the stimulus encoding neurons. In contrast, the BSC model (as well as the

MCA model) uses a truncated EM approximation which does not assume a posteriori indepen-

dence [20]. The a posteriori independence of mean field has been criticized for introducing

biases during learning [77, 78] while approaches that use truncated EM instead have been

favorably compared with mean field [34].

Conclusion

To summarize, we have here shown that statistical models reflecting challenging data proper-

ties such as masking-based combinations of structural primitives and non-negativity are

applicable to complex sensory data such as cochleagrams. Furthermore, we have found that

inhibitory subfields of estimated model STRFs can directly emerge from explaining away

effects of the assumed statistical model. This observation may lead to novel tools for the inves-

tigation of assumptions underlying probabilistic inference in the auditory cortex, in other sen-

sory areas, and beyond.
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S4 Fig. Measuring tuning width. Measuring tuning width for Fig 5. A: To measure frequency
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S5 Fig. Distribution over experimentally recorded and BSC model neurons of temporal

and frequency tuning widths. A: Distribution over neurons of temporal tuning widths of

excitatory fields of the real (pink) and BSC model (grey) neurons. B: Distribution of temporal
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