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ABSTRACT
Astelia pumila (G.Forst.) Gaudich. (Asteliaceae, Asparagales) is a major element of
West Patagonian cushion peat bog vegetation. With the aim to identify appropriate
chloroplast markers for the use in a phylogeographic study, the complete chloroplast
genomes of five A. pumila accessions from almost the entire geographical range
of the species were assembled and screened for variable positions. The chloroplast
genome sequence was obtained via a mapping approach, using Eustrephus latifolius
(Asparagaceae) as a reference. The chloroplast genome of A. pumila varies in length
from 158,215 bp to 158,221 bp, containing a large single copy region of 85,981–85,983
bp, a small single copy region of 18,182–18,186 bp and two inverted repeats of 27,026
bp. Genome annotation predicted a total of 113 genes, including 30 tRNA and four
rRNA genes. Sequence comparisons revealed a very low degree of intraspecific genetic
variability, as only 37 variable sites (18 indels, 18 single nucleotide polymorphisms,
one 3-bp mutation)—most of them autapomorphies—were found among the five
assembled chloroplast genomes. A Maximum Likelihood analysis, based on whole
chloroplast genome sequences of several Asparagales accessions representing six of the
currently recognized 14 families (sensuAPG IV), confirmed the phylogenetic position of
A. pumila. The chloroplast genome of A. pumila is the first to be reported for a member
of the astelioid clade (14 genera with c. 215 species), a basally branching group within
Asparagales.

Subjects Biogeography, Plant Science
Keywords Genetic variability, Asteliaceae, Chloroplast, South America, Magellanic moorland,
Organellar genome, Plastome, Cushion plants

INTRODUCTION
Astelia pumila (G.Forst.) Gaudich. is a dioecious, cushion-forming perennial herb. It is
one of the main constituents of so-called Magellanic moorland (Godley, 1960), which
prevails in the hyperoceanic fjord and channel landscape of West and Fuegian Patagonia of
southwestern South America (Schmithüsen, 1956). The species occurs from 40◦S to Cape
Horn at 56◦S, and on the Falkland Islands (IslasMalvinas). In the northern part of its range,
it is found on the highest summits of the Chilean Cordillera de la Costa, which harbour
isolated cushion peat bog outposts. Similar moorland enclaves occur also in the Northwest
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Patagonian Andes (Heusser, Heusser & Hauser, 1992; Villagrán et al., 1998; Pfanzelt, García
& Marticorena, 2013). South of 47◦S, the zonal vegetation is composed of cool-temperate
Nothofagus rainforest and cushion peat bogs, where A. pumila is very abundant (Pisano,
1983; Gajardo, 1994). East of the Andes, in the arid Patagonian steppe, it is too dry for
cushion peat bog development. Astelia pumila is probably insect-pollinated, however,
flower visitors have never been observed during our own fieldwork. Its yellow berries
were assumed to be bird-dispersed (Skottsberg, 1905). The species is probably tetraploid
(2n= 64;Moore, 1983), with flow cytometric evidence that some individuals are hexaploid
(S Pfanzelt, 2013, unpublished data).

Astelia pumila belongs to Asteliaceae, a small-sized family with three genera and 36
species from the circum-Pacific region, with most species occurring in the Southern
Hemisphere (Birch, 2015). They grow in a variety of habitats, i.e., in forests, alpine fellfields
and wetlands (Bayer, Appel & Rudall, 1998). The infrafamilial phylogenetic relationships
were established by Birch, Keeley & Morden (2012), based on DNA sequence data from
chloroplast (trnL, psbA-trnH, rps16 and petL-psbE) and nuclear (NIA-i3) regions. Birch
(2015) revised the infrageneric classification ofAstelia, but the placement of sect.Micrastelia,
containing only A. pumila, remained unresolved (incertae sedis).

Together with other dominant cushion peat bog plant species, Astelia pumila is being
used as a study system for the reconstruction of the ice-age history of Magellanic moorland
with phylogeographic methods (Pfanzelt, Albach & von Hagen, 2017; Šarhanová et al.,
2018). Previous genomic resources of A. pumila did not exist and our preliminary search
for variable chloroplast markers did not produce satisfactory results. Consequently,
the chloroplast genomes of five A. pumila individuals, sampled from almost the entire
distribution range of the species, were assembled and compared, with the aim to identify
phylogeographically informative chloroplast regions.

Here, the complete chloroplast genome sequence of A. pumila is reported and its
intraspecific sequence variability assessed. Until now, there was no complete chloroplast
genome sequence available of lower Asparagales, neither of Asteliaceae, nor of further
astelioid genera (Boryaceae, Blanfordiaceae, Lanariaceae and Hypoxidaceae). Research
on chloroplast genome evolution in Asparagales has been primarily focused on orchids
(e.g., Kim & Chase, 2017; Lin et al., 2017; Roma et al., 2018) and Asparagaceae (e.g., Steele
et al., 2012;McKain et al., 2016; Floden & Schilling, 2018). Major structural rearrangements
have been documented in the chloroplast genome of parasitic and mycoheterotrophic
species (e.g., Barrett et al., 2014), but in photoautotrophic members of the order, deviations
from the typical land plant chloroplast genome structure are restricted to the loss of single
genes (Meerow, 2010; McKain et al., 2016) and slightly shifting single copy-inverted repeat
boundaries (Dong et al., 2018). Therefore, we did not expect the chloroplast genome of
A. pumila to show large structural changes. However, the sequence data presented here
may prove helpful to enhance our understanding of the evolutionary dynamics of the
monocot plastome, through narrowing the sampling gap between orchids on the one hand
and higher Asparagales on the other hand.
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Table 1 Information on the sequenced A. pumila specimens, respective DNA library types and collection localities.

Accession Library type Voucher Collection locality Geographic
coordinates

GenBank
accession
number

ACMO.8 whole gDNA Pfanzelt 756
(CONC 180089)

Chile, Los Lagos, Villa Santa Lucía,
Cuesta Moraga

43.326◦S, 72.390◦W MH752984

AEX.3 whole gDNA Pfanzelt 477 (OLD) Chile, Magallanes, Estero Excelsior 52.554◦S, 72.877◦W MH752983
AFLK.3 whole gDNA Stanworth & Davey s.n.

(OLD)
Falkland Islands, East Falkland 51.680◦S, 57.937◦W MH752980

ALM cp-enriched, cDNA Pfanzelt 903 (OLD) Chile, Los Lagos, Cordillera Sarao 40.954◦S, 73.731◦W MH752981
AQU8.1 whole gDNA Pfanzelt & García Lino 535

(OLD)
Chile, Aysén, Queulat 44.601◦S, 72.439◦W MH752982

MATERIALS & METHODS
Sampling
As a non-model organism, for which genomic resources did not exist previously, next-
generation sequencing was used to obtain DNA sequence data of five A. pumila individuals.
Accessions were obtained from almost the entire distribution range of the species, including
the Falkland Islands (Islas Malvinas), except for its northernmost occurrence at Cerro
Mirador (40◦S) of south-central Chile’s Los Ríos Region.

Illumina sequencing
Different library types were prepared: (1) a chloroplast-enriched library obtained via
sorting on a BD FACSAria IIu cell sorter (using fresh leaf material; cf. Wolf et al., 2005)
and subsequent whole genome amplification using the REPLI-g Mini Kit (Qiagen, Hilden,
Germany), (2) whole genomic DNA libraries for shotgun-sequencing (based on silica-dried
leaf material) and (3) a cDNA transcript library based on RNA extracted from fresh leaf
material, using the RNeasy Mini Kit (Qiagen, Hilden, Germany). Libraries were paired-end
sequenced on an Illumina HiSeq 2000 at the IPK Gatersleben (Germany), with an insert
size of 400−500 bp. Information on the five sequenced A. pumila specimens, respective
library types and collection localities is given in Table 1. Voucher specimens are deposited at
the herbaria of the Universidad de Concepción, Chile (CONC), and Carl-von-Ossietzky-
Universität, Oldenburg, Germany (OLD). The Chilean Corporación Nacional Forestal
(18/2009) and the Falkland Islands Government (R10/2012) issued collection permits.

Assembly of the chloroplast genomes
Removal of duplicate reads, adapter clipping and quality trimming was done in CLC
Genomics Workbench (versions 6.5.1–7.5.1), setting the quality threshold to a qlimit
of 0.001. To obtain a first chloroplast genome draft, the pooled quality-trimmed reads
of all A. pumila individuals were mapped against Eustrephus latifolius (Asparagaceae,
NCBI GenBank accession number KM233639.1) as a reference, using Geneious 8.0.5
(medium-low sensitivity and a five-time iteration; https://www.geneious.com). The
resulting mapping was curated manually. Chloroplast contigs from de novo assemblies,
performed in VelvetOptimizer 2.2.5. (Zerbino & Birney, 2008), were used to cross-check for
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eventual mapping errors, especially of reads containing homopolymer stretches, and to fill
missing regions. VelvetOptimizer hash lengths ranged from 19 to 63 and were optimized for
N50 (optFuncKmer ‘n50’). The chloroplast genome draft was then used itself as reference
against which the reads of the individualA. pumila accessions weremapped, usingGeneious
8.0.5 (five-time iteration, maximum 5% mismatches per read). The junctions between the
large single copy (LSC) and the small single copy (SSC) regions and the two inverted
repeats (IRs) were additionally validated through Sanger sequencing (LSC-IRB junction:
Ap-rps19F AGACATGCGAGAAACGATAA, Ap-rps3R TGTGCGAACCAAAAGGAA;
IRB-SSC junction: Ap-IRbSSC-F CGAGTGAATGGAAAGGAAAA, Ap-IRbSSC-R
TGGGGTTGGTGTTGTAAG; SSC-IRA junction: Ap-IRaSSC1F GGGGAGAAAGAAAG-
GAAG, Ap-IRaSSC1R CGGGAATCATTAGGAAGT; IRA-LSC junction: Ap-trnHF
ATTCACAATCCACTGCCT, Ap-psbAR TGCTCACAACTTCCCTCT).

Genome annotation
Chloroplast genome annotation was done using DOGMA (Wyman, Jansen & Boore, 2004;
for reference chloroplast genomes, see http://dogma.ccbb.utexas.edu/html/cp_taxa), and
cross-checked using GeSeq (Tillich et al., 2017) and the ‘‘Annotate from ...’’ function
in Geneious. Via that latter function, annotations can be transferred from a user-
specified reference set of chloroplast genomes to the A. pumila target. The chloroplast
genome of Asparagus officinalis (GenBank accession number NC_034777.1) was used
as reference when employing GeSeq and Geneious for genome annotations. Where
necessary, gene boundaries were corrected manually to match start and stop codons. The
annotated chloroplast genome sequences were submitted to GenBank (accession numbers
MH752980–MH752984). Chloroplast genome maps were drawn using OGDRAW.
Both OGDRAW and GeSeq are available at the MPI-MP CHLOROBOX website
(https://chlorobox.mpimp-golm.mpg.de/index.html).

Intraspecific sequence comparisons and phylogenetic reconstruction
The chloroplast genome sequences of the five A. pumila specimens (Table 1) were aligned
with MAFFT (Katoh et al., 2002) and screened for variable sites. Coverage cutoff was set to
100 in order to retrieve reliable markers. A NeighborNet was constructed using SplitsTree
4.14.6 (Huson & Bryant, 2006) based on HKY85 distances. To confirm the placement of
A. pumila within Asparagales, 22 chloroplast genome sequences, representing six of the
14 currently recognized families of the order (sensu APG IV, 2016), were downloaded
from NCBI GenBank and aligned using MAFFT (Katoh et al., 2002), together with the
chloroplast genome sequence of A. pumila individual AEX.3. There are no complete
chloroplast genome sequences available yet of the remaining families of Asparagales
(Boryaceae, Blandfordiaceae, Lanariaceae, Hypoxidaceae, Doryanthaceae, Ixioliriaceae,
Tecophilaeaceae and Xeronemataceae). A phylogenetic tree was constructed using a
Maximum Likelihood approach as implemented in RAxML 8.2.0 (Stamatakis, 2014). In a
single run, a rapid bootstrap analysis and a best-scoring ML tree search were carried out,
using the GTRGAMMA model of nucleotide substitution and 1,000 bootstrap replicates.
Alstroemeria aurea (Liliales) served as outgroup.
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RESULTS
The total lengths of the individual A. pumila chloroplast genome sequences vary from
158,215 bp to 158,221 bp due to indel variation (Fig. 1). The large and small single copy
regions have lengths of 85,981–85,983 bp and 18,182–18,186 bp, respectively. The inverted
repeat regions have a length of 27,026 bp. GC content is 37.8%. Genome annotation
predicted a total of 113 genes, including 30 protein-coding genes and four rRNA genes.

Intraspecific chloroplast sequence variation was very low in A. pumila. Over a length
of 158 kb, 37 variable sites were found, of which 18 were indels, 18 single nucleotide
polymorphisms (SNPs), and one a 3-bp mutation (Table 2). The latter occurred in an
imperfect repetitive region and was treated as a single mutation event. All the SNPs and
the 3-bp mutation were autapomorphies of which 10 occurred in non-coding regions,
i.e., introns or spacers. Of the eight SNPs occurring in coding regions, four represented
non-synonymous mutations. Read coverage at the SNP sites ranged from 139−2,484
(mean 468, s.d. 541). The 18 observed indels had lengths of 1−2 bp. Indel variation was
always associated with homopolymer runs of maximally 15 bp length. No differences
in homopolymer lengths were observed when cross-checking the Geneious mappings
with the contigs of the VelvetOptimizer de novo assemblies, so indel variation was not a
software-related artefact. The NeighborNet showed a star-like topology (not shown).

The phylogenetic reconstruction of Asparagales, based on whole chloroplast genome
sequences, recovers Orchidaceae as basally branching within the order (Fig. 2). The astelioid
clade, represented in this study by Asteliaceae, is then sister to the remaining Asparagales.

DISCUSSION
The chloroplast genome of A. pumila showed the typical quadripartite structure, i.e., a large
and a short single copy region and two inverted repeats (Fig. 1). No general differences in
gene order or inversions were detected when comparing the A. pumila chloroplast genome
to those of related Asparagales species. In general, major structural rearrangements like, for
example, the IR enlargement and inversions documented for geranium (Palmer, Nugent &
Herbon, 1987) or the 22-kbp inversion that marks an early evolutionary split in Asteraceae
(Jansen & Palmer, 1987), have not been detected yet in the chloroplast genome of any
Asparagales species. However, gene loss has been documented for some taxa throughout
higher Asparagales (Meerow, 2010; Steele et al., 2012; McKain et al., 2016). These missing
genes—clpP, ndhF, rpl32, rps16, and rps19—are all present in the chloroplast genome of
A. pumila. In orchids, basally branching within Asparagales, degradation of the ndh gene
complex has been frequently observed, especially among heterotrophic species (Neyland
& Urbatsch, 1996; Chang et al., 2006; Lin et al., 2017). By contrast, all eleven ndh genes are
maintained in A. pumila. McKain et al. (2016) identified the rps19 gene to be the most
dynamic in Agavoideae (Asparagaceae). There, it was either missing, pseudogenized, or
present at different positions, either within the LSC or the IR. In A. pumila, rps19 is found
within the IR, close to the LSC-IR boundaries. Located between the rps19 and the psbA
genes, there is a partial rpl22 gene, truncated at the LSC-IRA junction. This kind of gene
order was classified as Type IIIg by Wang et al. (2008), a configuration typically found
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Astelia pumila (AEX.3)

Figure 1 The chloroplast genomemap of Astelia pumila specimen AEX.3 (see Table 1). Genes shown on the outside of the outer circle are tran-
scribed clockwise, while genes shown on the inside are transcribed counterclockwise. The positions of the large (LSC) and small single copy (SSC)
regions, as well as of the inverted repeats (IRs), are indicated on the inner circle.

Full-size DOI: 10.7717/peerj.6244/fig-1
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Table 2 Variable positions among five compared whole chloroplast genome sequences of Astelia pumila. Indel variation was exclusively associ-
ated with homopolymer stretches, of which length and identity of the repeat unit are given.

Position Region Type ACMO.8 AEX.3 AFLK.3 ALM AQU8.1 SNP category

73432 clpP intron 1 3 bp AAA AAA AAA AAA TTT n. a.
9356 trnS-GCU-trnS-CGA spacer indel 13 A 15 A 13 A 13 A 13 A n. a.
14799 atpI-atpH spacer indel 12 T 11 T 12 T 12 T 12 T n. a.
23333 rpoC1 intron indel 10 T 11 T 10 T 10 T 10 T n. a.
29135 trnC-GCA-petN spacer indel 10 A 9 A 10 A 10 A 10 A n. a.
37554 psbZ-trnG-UCC spacer indel 11 A 11 A 11 A 10 A 11 A n. a.
46595 trnS-GGA-rps4 spacer indel 10 A 10 A 11 A 10 A 10 A n. a.
48875 trnL-UAA intron indel 8 A 8 A 9 A 8 A 8 A n. a.
49336 trnL-UAA-trnF-GAA spacer indel 12 T 12 T 12 T 12 T 13 T n. a.
57002 atpB-rbcL indel 13 T 13 T 13 T 13 T 14 T n. a.
72632 clpP intron 2 indel 12 T 13 T 12 T 12 T 12 T n. a.
73328 clpP intron 1 indel 12 T 12 T 10 T 13 T 13 T n. a.
73666 clpP intron 1 indel 13 T 11 T 12 T 12 T 12 T n. a.
83264 rpl14-rpl16 indel 13 T 11 T 11 T 12 T 11 T n. a.
84702 rpl16 intron indel 14 T 14 T 15 T 14 T 14 T n. a.
115430 ndhF-rpl32 spacer indel 10 A 9 A 10 A 10 A 10 A n. a.
116569 rpl32-trnL-UAG spacer indel 13 T 11 T 13 T 12 T 12 T n. a.
116734 rpl32-trnL-UAG spacer indel 14 T 13 T 13 T 13 T 13 T n. a.
121696 ndhG-ndhI spacer indel 10 T 10 T 11 T 10 T 10 T n. a.
1662 trnK-UUU intron SNP C C C C A n. a.
2873 matK CDS SNP G G G T G non-synonymous S→Y
16456 rps2 CDS SNP G G G A G synonymous
18775 rpoC2 CDS SNP C A C C C non-synonymous L→F
31960 trnD-GUC-trnY-GUA spacer SNP T C C C C n. a.
41582 psaA CDS SNP T C T T T synonymous
43551 psaA-ycf3 spacer SNP C T C C C n. a.
50166 trnF-GAA-ndhJ spacer SNP G G G G T n. a.
54434 trnC-ACA intron SNP G A G G G n. a.
64527 petA CDS SNP T C T T T synonymous
69323 psaJ-rpl33 SNP A A A C A n. a.
78402 petB exon 2 SNP G G G A G synonymous
80834 rpoA CDS SNP T T T T G non-synonymous L→F
113101 trnN-GUU-ndhF spacer SNP A A T A A n. a.
116443 rpl32-trnL-UAG spacer SNP C C C A C n. a.
116625 rpl32-trnL-UAG spacer SNP G G G G T n. a.
118257 ccsA-ndhD spacer SNP T A T T T n. a.
127013 ycf1 CDS SNP C A C C C non-synonymous R→L

Notes.
Amino acid codes: F, phenylanaline; L, leucine; R, arginine; S, serine; Y, tyrosine; n. a., not applicable.
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Figure 2 Maximum Likelihood tree, based on whole chloroplast genome sequences, to illustrate the
phylogenetic position of A. pumilawithin Asparagales. Alstroemeria aurea (Liliales, Alstroemericeae)
served as outgroup. Numbers indicate node support (based on 1,000 bootstrap replicates). NCBI GenBank
accession numbers: A. aurea, KC968976; V. planifolia, KJ566306; D. nobile, KX377961; C. aloifolium, NC_
021429; A. pumila, MH752983; I. gatesii, NC_024936; A. maculata, KX377523; A. coddii, KX790363; A.
prattii, MG739457; A. cepa, NC_024813; E. latifolius, NC_025305; A. officinalis, KY364194; N. atopocarpa,
KX931462;M. bicolor, NC_035970; P. sibiricum, KT695605; P. verticillatum, KT722981; A. monspeliensis,
KX790360; H. parviflora, NC_032703; Y. brevifolia, NC_032711; M. biflora, KX822778; O. biflora, NC_
032709; B. japonica, KX822775; A. kirkii, NC_032697.

Full-size DOI: 10.7717/peerj.6244/fig-2

in Asparagales and Commelinales. In other Asparagales, e.g., Asparagus densiflorus and
Crinum asiaticum, the LSC-IRA junction lies downstream of the rps19 gene and the IRA

does not include a partial rpl22 gene. The structural dynamics of the LSC-IR junctions carry
a phylogenetic signal, since there is an IR expansion trend in monocots: basally branching
groups have generally shorter IRs than derived ones (Wang et al., 2008).

Eighteen indels of 1−2 bp length were observed among the five A. pumila accessions
compared, all of which were associated with A or T homopolymer stretches of 8 to 15 bp
length. It has been shown that the indel error rate of the Illumina sequencing platforms
increases after long homopolymer runs by up to two orders of magnitude (Ross et al.,
2013). Therefore, indel variation associated with homopolymer stretches should be treated
with caution, although the main sequencing errors of Illumina platforms are substitution
type miscalls (Kircher, Stenzel & Kelso, 2009) with the general indel error rate being about
an order of magnitude lower (Laehnemann, Borkhardt & McHardy, 2016).

Intraspecific chloroplast sequence variability was very low, although the geographical
sampling covered almost the entire distribution range and included an accession from
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the distant Falkland Islands. The five compared chloroplast genome sequences differed
only in 37 variable sites, of which 18 were indels associated with homopolymer stretches
and thus of unclear reliability (see preceding paragraph). The remaining variable sites
were all autapomorphies, without any phylogenetically informative content. This contrasts
with previous studies on intraspecific chloroplast sequence variability in Jacobaea vulgaris
(32 SNPs observed within 17 individuals, of which 11 were parsimony-informative sites;
(Doorduin et al., 2011) and Theobroma cacao (78 SNPs segregating within 10 individuals;
(Kane et al., 2012), in which genetic structuring could be observed.

Given the non-existence of genetic structuring in A. pumila, it may be speculated that
West and Fuegian Patagonia, and the Falkland Islands, have been colonized only recently,
probably after the last glacial. Clearly, the sampling in the present study is not adequate
to allow for firm conclusions on the Pleistocene history of A. pumila, but such a scenario
would fit to the classical biogeographic hypothesis brought forward by Villagrán (1988;
2001), based on palynological data: Magellanic moorland species migrated northwards
during the last glacial and survived in the lowlands of south-central Chile. From there, they
recolonized the large Patagonian Channel region after the disintegration of the Patagonian
Ice Sheet, which had reached the continental shelf south of c. 42◦S at the height of the last
glacial (Denton & Hughes, 1981; Porter, 1981;Moreno et al., 2015). In order to properly and
adequately quantify population genetic diversity and identify phylogeographic patterns
in A. pumila, >350 individuals from almost 40 populations were genotyped at seven
nuclear microsatellite loci. These data are currently being analysed and will, together with
palaeodistribution modelling, shed light on the open question where A. pumila survived
the glacials (Pfanzelt et al., 2019, unpublished data).

The phylogenetic reconstruction, based on whole chloroplast genome sequences,
recovered Orchidaceae as basally branching within Asparagales. Asteliaceae was then
retrieved as sister to the remaining clades of the order (Fig. 2). This topology is in accordance
with previous multi-gene-based phylogenetic analyses of Asparagales (Seberg et al., 2012).
The chloroplast genome of A. pumila is the first to be reported for a member of the
astelioid clade of basal Asparagales. This is a major improvement in terms of published
chloroplast genomes from that order, as especially orchids and subfamily Agavoideae
(Asparagaceae) are very well sampled (McKain et al., 2016). Furthermore, the generated
information—whole genomic DNA shotgun sequences of five A. pumila individuals and
RNA-Seq data of one of them—represents a valuable genomic resource, e.g., for the
identification of nuclear single copy genes. Such markers may prove useful to ascertain the
still unresolved infrageneric placement of sect. Micrastelia, which contains only A. pumila
as its single member.

CONCLUSIONS
The comparison of whole chloroplast genome sequences of five A. pumila accessions,
sampled from almost the entire distribution range of the species, revealed extremely low
levels of sequence variability. The genomic resources generated in the course of the present
study may prove useful for future work on Astelia, e.g., for the development of single-copy
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nuclear markers. These could be employed to ascertain the yet unresolved phylogenetic
placement of A. pumila within the genus.
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