
fnhum-13-00069 February 26, 2019 Time: 15:6 # 1

ORIGINAL RESEARCH
published: 28 February 2019

doi: 10.3389/fnhum.2019.00069

Edited by:
Juan Helen Zhou,

Duke-NUS Medical School,
Singapore

Reviewed by:
Sebastian Walther,

Universitätsklinik für Psychiatrie und
Psychotherapie, Universität Bern,

Switzerland
Kang Sim,

Institute of Mental Health, Singapore

*Correspondence:
Joost Meekes

meekes.joost@gmail.com

Received: 18 October 2018
Accepted: 11 February 2019
Published: 28 February 2019

Citation:
Meekes J, Debener S, Zich C,

Bleichner MG and Kranczioch C
(2019) Does Fractional Anisotropy

Predict Motor Imagery
Neurofeedback Performance

in Healthy Older Adults?
Front. Hum. Neurosci. 13:69.

doi: 10.3389/fnhum.2019.00069

Does Fractional Anisotropy Predict
Motor Imagery Neurofeedback
Performance in Healthy Older
Adults?
Joost Meekes1* , Stefan Debener1,2,3, Catharina Zich1,4,5, Martin G. Bleichner1,2 and
Cornelia Kranczioch1,3

1 Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany, 2 Cluster of Excellence
Hearing4All, University of Oldenburg, Oldenburg, Germany, 3 Research Center Neurosensory Science, University
of Oldenburg, Oldenburg, Germany, 4 Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Center
for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom, 5 Nuffield Department of Clinical Neurosciences,
Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford,
United Kingdom

Motor imagery neurofeedback training has been proposed as a potential add-on therapy
for motor impairment after stroke, but not everyone benefits from it. Previous work has
used white matter integrity to predict motor imagery neurofeedback aptitude in healthy
young adults. We set out to test this approach with motor imagery neurofeedback that
is closer to that used for stroke rehabilitation and in a sample whose age is closer to
that of typical stroke patients. Using shrinkage linear discriminant analysis with fractional
anisotropy values in 48 white matter regions as predictors, we predicted whether each
participant in a sample of 21 healthy older adults (48–77 years old) was a good or
a bad performer with 84.8% accuracy. However, the regions used for prediction in
our sample differed from those identified previously, and previously suggested regions
did not yield significant prediction in our sample. Including demographic and cognitive
variables which may correlate with motor imagery neurofeedback performance and
white matter structure as candidate predictors revealed an association with age but also
led to loss of statistical significance and somewhat poorer prediction accuracy (69.6%).
Our results suggest cast doubt on the feasibility of predicting the benefit of motor
imagery neurofeedback from fractional anisotropy. At the very least, such predictions
should be based on data collected using the same paradigm and with subjects whose
characteristics match those of the target case as closely as possible.

Keywords: motor imagery, EEG, neurofeedback, white matter, fractional anisotropy, MRI, shrinkage linear
discriminant analysis

INTRODUCTION

Neurofeedback training based on motor-related brain activity has been proposed as a potential
add-on therapy to facilitate post-stroke motor recovery, especially in patients with little or no
residual movement (Sharma et al., 2006). In the vast majority of studies to date, the neurofeedback
is based on event-related changes in power of the sensorimotor rhythms in the alpha (8–12 Hz)
and beta (12–30 Hz) frequency bands of the electroencephalogram (EEG). These changes are

Frontiers in Human Neuroscience | www.frontiersin.org 1 February 2019 | Volume 13 | Article 69

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2019.00069
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2019.00069
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2019.00069&domain=pdf&date_stamp=2019-02-28
https://www.frontiersin.org/articles/10.3389/fnhum.2019.00069/full
http://loop.frontiersin.org/people/628498/overview
http://loop.frontiersin.org/people/16008/overview
http://loop.frontiersin.org/people/662081/overview
http://loop.frontiersin.org/people/95209/overview
http://loop.frontiersin.org/people/128567/overview
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00069 February 26, 2019 Time: 15:6 # 2

Meekes et al. White Matter and MI-NF Performance

termed event-related desynchronization when power decreases
and event-related synchronization when power increases
(Pfurtscheller and Neuper, 1997; Pfurtscheller and Lopes Da
Silva, 1999). A neurofeedback system based on the event-related
desynchronization induced by kinesthetic motor imagery
provides feedback to the patient regarding the activation
of sensorimotor areas without the need of overt movement
(Pfurtscheller et al., 1993; Zich et al., 2015a). By this, it can
assist the reorganization of neural circuits of the motor system
(Chaudhary et al., 2016). Although, stroke may affect motor
imagery ability as well as motor execution (de Vries et al.,
2011; Feenstra et al., 2016; Oostra et al., 2016), in most stroke
patients it is sufficiently conserved to use EEG-based motor
imagery neurofeedback (Braun et al., 2017). In fact, there is
now a series of studies documenting benefits of motor imagery
neurofeedback training in patients with upper limb impairments
following stroke (Buch et al., 2008; Broetz et al., 2010; Prasad
et al., 2010; Ang et al., 2011, 2015; Caria et al., 2011; Cincotti
et al., 2012; Mihara et al., 2013; Ramos-Murguialday et al., 2013;
Pichiorri et al., 2015; Zich et al., 2017b—see Cervera et al., 2018
for review).

However, not everyone can successfully use motor imagery
neurofeedback. Motor imagery neurofeedback is a type of
brain-computer interface. A considerable portion of healthy
adults does not achieve the 70% classification accuracy (Guger
et al., 2003; Hammer et al., 2012) that is commonly set
as the threshold for adequate control of a brain-computer
interface (Kübler et al., 2001; Kübler et al., 2004). This inability
to control a brain-computer interface has been described as
“brain-computer interface illiteracy” (Vidaurre and Blankertz,
2010) or, perhaps more appropriately, “brain-computer interface
inefficiency” (Kübler et al., 2011; Hammer et al., 2012). It would
be very useful to predict whether a particular individual will be
able to use motor imagery neurofeedback, to provide this therapy
to only those patients from which we can expect that they can
profit from it.

A range of functional, psychological, and neurophysiological
measures have been proposed as predictors of motor imagery
neurofeedback aptitude (Blankertz et al., 2010; Grosse-Wentrup
and Schölkopf, 2012; Hammer et al., 2012; Ahn et al., 2013b;
Witte et al., 2013; Bamdadian et al., 2014; Jeunet et al., 2015—see
Jeunet et al., 2016 for review), and even more have been shown
to be at least associated with motor imagery neurofeedback
performance (Nijboer et al., 2008, 2010; Halder et al., 2011;
Ahn et al., 2013a; Zich et al., 2015b). However, many of
these measures are subject to considerable temporal fluctuations
and/or require active engagement from the participant to assess.
Halder et al. (2013) proposed the use of anatomical and structural
differences to predict motor imagery neurofeedback aptitude1.
In their study, participants performed motor imagery of two
classes of movement which were individually selected out of
a total of three classes (left hand, right hand, preferred foot)
based on maximum discriminability. A median split on motor
imagery neurofeedback performance was used to categorize
the participants into high and low aptitude users. While

1Halder and colleagues used the term “sensorimotor rhythms brain-computer
interface aptitude.”

measures based on voxel-based morphometry estimates of white
and gray matter volumes had no predictive value, fractional
anisotropy of five white matter regions selected using shrinkage
linear discriminant analysis correlated significantly with motor
imagery neurofeedback performance, and, together with five
further regions with weaker correlations, classified high and low
aptitude participants with a cross-validation accuracy of 93.75%
(Halder et al., 2013). Such accurate prediction of motor imagery
neurofeedback aptitude from fractional anisotropy data would be
extremely valuable.

However, as with most of the functional measures, the
results of Halder et al. (2013) have not yet been replicated. In
addition, the motor imagery neurofeedback used by Halder and
colleagues differs in two important ways from neurofeedback
implementations typically applied in stroke rehabilitation
(Cervera et al., 2018). First, the selection of classes for training
would normally be based on therapeutic considerations, not on
maximum discriminability of the classes. Second, the participants
in the study by Halder and colleagues were also considerably
younger (mean age 24.5 years) than typical stroke patients.
Estimates show that in a country like the United States, almost 75
percent of stroke patients are 65 years or older (Hirtz et al., 2007).
Both the neural activation pattern induced by motor imagery
(Zich et al., 2015b, 2017b) and the structure and integrity of white
matter are known to change with normal aging (Guttmann et al.,
1998; Hong et al., 2015; Burzynska et al., 2017). In particular,
fractional anisotropy in association fibers declines in older adults
(Bender et al., 2016), which might affect their predictive value for
motor imagery neurofeedback aptitude. It is therefore currently
unclear whether the results obtained by Halder and colleagues
generalize to motor imagery neurofeedback in the context of
stroke rehabilitation. We aimed to test the approach proposed by
Halder and colleagues with motor imagery neurofeedback that is
closer to that used for stroke rehabilitation and in a sample whose
age is closer to that of typical stroke patients. Our hypothesis was
that motor imagery neurofeedback aptitude in older subjects can
be predicted from fractional anisotropy using shrinkage linear
discriminant analysis.

MATERIALS AND METHODS

Participants
Inclusion criteria for participation were general good health,
age ≥ 45 years and native command of German. Exclusion
criteria were the presence of any contraindications for magnetic
resonance imaging (MRI) as well as current or previous
neurological disease. Participants were screened for cognitive
impairment using the verbal fluency and trail-making subtests
of the German version of the CERAD battery (Consortium
to Establish a Registry for Alzheimer’s Disease) (Berres et al.,
2000). Twenty-one healthy older adults (mean age 61.4 [48–77]
years, 10 females, mean education 11.8 [9–18] years) participated
in the study. Three participants reported being left-handed
and two described themselves as ambidextrous, though they
both used their right hand for writing. This study was carried
out in accordance with the recommendations of the Helsinki
Declaration of 1975, as revised in 2013. The study protocol
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was approved by the Ethics Committee of the University of
Oldenburg. All participants were informed about the background
and procedures of the study as well as about the risks of MRI
verbally and in writing. After receiving this information all
participants gave written informed consent in accordance with
the Declaration of Helsinki.

Procedure
Diffusion-Weighted Imaging
Diffusion-weighted imaging data were acquired on a 3 Tesla
Siemens MAGNETOM Verio system (bore diameter 70cm,
Siemens AG, Erlangen, Germany). Diffusion-weighted images
(20 directions with three repetitions each, b = 1,000 s/mm2,
49 slices, voxel size = 1.8 × 1.8 × 2.0 mm3, TR = 7,100 ms,
TE = 95 ms) were obtained for all subjects.

EEG Acquisition
The EEG session took place on a separate day on average 7
days (range 2–17 days) after the MRI session. EEG was acquired
from 96 equidistant scalp sintered Ag/AgCl electrodes on an
infracerebral electrode cap (EasyCap, Herrsching, Germany)
with a nose-tip reference and central frontopolar ground. EEG
data were recorded using BrainAmp amplifiers (sampling rate
500 Hz, amplitude resolution 0.1 µV, analog filter 0.015–250 Hz,
BrainProducts GmbH, Gilching, Germany).

Motor Imagery and Neurofeedback
The motor imagery neurofeedback used in this study has been
used previously for at-home motor imagery neurofeedback
training in stroke patients (though with mobile amplifiers and
fewer electrodes) (Zich et al., 2017a), and in the lab with
concurrent functional near-infrared spectroscopy in healthy
younger and older participants (Zich et al., 2017b). Here we
briefly summarize the processing pipeline, which differs from
that of the stroke study only in acquisition hardware and
software (mobile vs. lab-based). Presentation of the experimental
paradigm, online data recording and processing were performed
using OpenVibe (version 0.17.1) (Renard et al., 2010), with the
exception of the common spatial pattern analysis which was
performed between blocks using EEGLAB (version 12.0.2.4b)
(Delorme and Makeig, 2004) running on Matlab, 2012a
(Mathworks Inc., Natick, MA, United States).

All participants completed two blocks of motor imagery with
concurrent EEG recording. Each block consisted of 20 trials for
each hand in quasi-random order, for a total of 40 trials per block.
Each trial started with a 5 s baseline (“rest”), followed by a 3 s
cue signaling the motor imagery was about to start, and a 5 s
motor imagery period. Trials were separated by a quasi-random
interval of 0–4 s. During the motor imagery period, participants
were instructed to perform kinesthetic motor imagery of repeated
hand closing and opening with either the right or the left
hand, as indicated by a visual cue (see Figure 1). Participants
received extensive, standardized instruction regarding the motor
imagery task and then practiced offline until the experimenter
was satisfied they understood the task.

The first block of motor imagery was completed without
neurofeedback. Subject specific neurofeedback parameters

were derived from these data. To this end, EEG signals
from the central 35 channels were filtered (8 Hz high-pass,
30 Hz low-pass, Hamming-windowed) and epoched to left,
respectively, right motor imagery (0.5–4.5 s after trial onset).
After joint probability rejection of artifactual epochs (6 standard
deviations for individual channels, 2 standard deviations
for global activity), the remaining data were submitted to
common spatial pattern analysis (Ramoser et al., 2000). By
maximizing the variance of the signal for one class (e.g., left
hand motor imagery) while simultaneously minimizing the
variance of the signal for a second class (e.g., right hand motor
imagery), common spatial pattern analysis is a computationally
efficient way to obtain spatial filters optimized for detection of
power differences between two classes. Since common spatial
pattern analysis is based on individual neurophysiological
data, it accounts for interindividual differences while also
enhancing the signal-to-noise ratio and it is therefore
commonly applied in motor imagery neurofeedback paradigms
(Blankertz et al., 2008).

Common spatial patterns were calculated for the contrast
of left vs. right motor imagery. For each side, the most
neurophysiologically plausible filter was selected from among
the three filters with the highest variance segregation for that
side (i.e., lowest variance) and the filter coefficients of the two
selected common spatial patterns were passed on to OpenVibe.
In OpenVibe data from the first block were spatially filtered using
the selected common spatial patterns and temporally filtered
using a 4th-order Butterworth band-pass filter (8–30 Hz, 0.5 dB
pass band ripple) and epoched to left-hand motor imagery
(0.5–4.5 s), right-hand motor imagery (0.5–4.5 s), and baseline
(-7–3 s) epochs. Each epoch was then subdivided into 49
overlapping 1-s bins each shifted by 62.5 ms. Three classifiers
were trained: left motor imagery vs. baseline (BaseL), right
motor imagery vs. baseline (BaseR), and left motor imagery vs.
right motor imagery (LR). To train each classifier, logarithmic
average band power for all epochs of the respective classes
was submitted to linear discriminant analyses with sevenfold
cross-validation and the mean classifier was used to provide
neurofeedback in the second motor imagery block. During the
second block individuals performed exactly the same task, but
now real-time EEG-based neurofeedback was provided by means
of a white ball moving on the screen (see Figure 1). To realize
this, incoming data were spatially filtered using the selected
common spatial patterns, band-pass filtered and the logarithmic
band power of 1-s bins (offset of 62.5 ms) classified. The vertical
movement of the ball was controlled by the baseL and baseR
classifiers for left and right motor imagery trials, respectively.
Horizontal movement was controlled by the LR classifier (see
Figure 1; Zich et al., 2017b). Participants were encouraged to
move the ball to the top left or right corner, depending on the
side of the trial.

Data Processing
Preprocessing of Diffusion-Weighted Images
Diffusion-weighted images were analyzed using ExploreDTI
(version 4.8.6) (Leemans et al., 2009). Raw images were
corrected for scanner drift, subject motion and eddy current
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FIGURE 1 | Trial structure and relationship between the 2-dimensional neurofeedback display and motor imagery-induced brain activity. The trial structure is
illustrated for a right-hand trial. Each trial was initiated with a fixation-cross and after a delay of 3 s a graphic comprising 3 different shades of blue was added. Onset
of the graphic indicated the beginning of the task period (duration 5 s). The location of the graphic indicated which hand to use. During the neurofeedback blocks a
white circle resembling a ball moved along the horizontal (green arrow) and vertical (orange arrow) axes according to the classifier output magnitudes. Trials were
followed by a fixation dot, resulting in an inter-trial interval of 5–9 s. The relationship between the position of the ball and the motor imagery-induced brain activity at
the time point of the dashed vertical line is illustrated on an example time course of the event-related desynchronization. The horizontal ball position is determined by
the classification of motor imagery contralateral (blue) vs. ipsilateral (red), as illustrated by the green arrow. The vertical ball position is determined by the classification
of contralateral baseline (“B”) vs. contralateral motor imagery, as illustrated by the orange arrow. Reproduced, with permission, from Zich et al. (2017a).

distortions. Fractional anisotropy maps were then exported.
To avoid interpolation of fractional anisotropy values, the ICBM
Mori template (Mori et al., 2008; Oishi et al., 2008) was
warped to each of the individual fractional anisotropy maps
by estimating normalization parameters from the fractional
anisotropy map to MNI space using SPM 12 (Friston et al.,
2007), inverting the parameters, and then applying these
inverted parameters to the ICBM Mori white matter template.
Mean fractional anisotropy for all voxels with an fractional
anisotropy > 0.25 was extracted for each of the 48 ICBM
Mori atlas regions.

Offline EEG Preprocessing
EEG data were offline processed using EEGLAB (version
14.1.1) (Delorme and Makeig, 2004) running on Matlab,
2016a (Mathworks Inc., Natick, MA, United States). High-pass
(1 Hz) and low-pass (40 Hz) Hamming-window filters were
applied to the continuous EEG data. Channels with a temporal
variance > 3 standard deviations above the mean temporal
variance, where both mean and standard deviation are
calculated across all 96 channels, were flagged as potential
bad channels and removed if visual inspection confirmed
them as bad channels (mean [range] number of channels

removed: 0.57 [0–4]). The continuous data was then split
into 1-s non-overlapping epochs (Stropahl et al., 2018).
Epochs containing major artifacts were rejected using first
thresholding ( ±500 µV) and then joint probability rejection
(6 standard deviations for individual channels, 2 standard
deviations for global activity). The remaining epochs were
submitted to independent component analysis (Bell and
Sejnowski, 1995). Components reflecting eye movements,
heart activity and reference artifacts were selected by visual
inspection of component maps and component time courses
and marked for later rejection. The independent component
decomposition and bad channel information were then copied
to the original (continuous and unfiltered) dataset. Bad
channels (same channels as removed before independent
component analysis) were eliminated and components
previously marked for rejection were removed. Removed
channels were then interpolated. The cleaned EEG data was then
entered into the same pipeline for neurofeedback processing
described above (section Motor Imagery and Neurofeedback).
The only differences between the online and the offline
analyses were therefore in the interpolation of bad channels
and the removal of artifactual independent components in
the offline analysis.
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Statistical Analysis
Motor Imagery Neurofeedback Performance
For each participant, three raw performance measures were
calculated as follows2:

BaseL = 100 ∗
CB + CMI Left

TB + TMI Left

BaseR = 100 ∗
CB + CMI Right

TB + TMI Right

LR = 100 ∗
CMI Left + CMI Right

TMI Left + TMI Right

where Cx represents the number of correctly classified segments
for condition x (e.g., CMILeft is the number of left motor imagery
segments classified as left motor imagery), and Tx represents
the total number of segments for condition x. In other words,
BaseL performance was defined as the number of baseline
segments classified as baseline plus the number of left motor
imagery segments classified as left motor imagery, expressed
as a percentage of the combined total number of baseline and
left motor imagery segments. BaseR performance was similarly
defined but substituting right motor imagery for left motor
imagery. LR performance was defined as the number of left
motor imagery segments classified as left motor imagery plus the
number of right motor imagery segments classified as right motor
imagery, again expressed as a percentage of the combined total
number of left motor imagery and right motor imagery segments.

Since the aim was to obtain an upper estimate of the
general ability of each participant to control their motor
imagery-related brain signals, further analyses only used the
maximum motor imagery neurofeedback performance, i.e., the
best performance per participant across the three classifiers.
For example, if a participant had BaseL performance = 85%,
BaseR performance = 82% and LR performance = 88%, their
maximum motor imagery neurofeedback performance was 88%.
Note that this is slightly different from the approach by Halder
and colleagues, who used a calibration block without feedback to
select the two classes with the best discriminability out of three
total classes and then determined performance in a test block that
consisted only of trials of these two classes. Finally, participants
were categorized as high and low performers based on a median
split on overall motor imagery neurofeedback performance. This
procedure, including the median split, was applied separately for
online and offline performance.

Performance Prediction
Statistical analyses were performed using R version 3.5.0
(R Core Team, 2018). Shrinkage linear discriminant analysis
(SLDA) was performed using the “sda” package (version 1.3.7)
(Ahdesmaki et al., 2015). Our primary analysis repeated the
procedure used by Halder et al. (2013), using shrinkage
linear discriminant analysis to predict online motor imagery

2These measures are commonly referred to as classification accuracies, but we
refrain from using the term “accuracy” here to avoid confusion with the prediction
accuracy discussed later.

neurofeedback performance by including mean fractional
anisotropy for each of the 48 white matter regions in the
ICBM Mori atlas (Mori et al., 2008; Oishi et al., 2008). Variable
selection for shrinkage linear discriminant analysis was based
on cross-validating correlation-adjusted t-scores (Zuber and
Strimmer, 2009) in the training sample. Variables (for our
primary analysis these were mean fractional anisotropy values
for each of the white matter regions; see also Table 1) with
an average correlation-adjusted t-score > 4 (corresponding
roughly to a p-value of 0.1) in cross-validation were included.
In a second step, we used the results of this analysis to
predict offline performance. For comparison we repeated the
shrinkage linear discriminant analysis using only the regions
that were reported as contributing to prediction of online
performance by Halder et al. (2013).

Prediction accuracy was derived from ten repeats of
fivefold cross-validation. Statistical significance was assessed by
permuting the dependent variable across all participants (10,000
Monte Carlo permutations per analysis), since the commonly
used binomial test has been shown to have an inflated rate of
type I errors in this type of analysis (Noirhomme et al., 2014).
If the proportion of simulations with a cross-validation accuracy
greater than or equal to the observed accuracy was smaller
than 0.05, the result was considered statistically significant
(i.e., α = 0.05).

RESULTS

Motor Imagery Neurofeedback
Performance
Online performance was best for the BaseL classifier in 12
participants, for the BaseR classifier in 8 participants, and for the
LR classifier in 1 participant. Offline performance was best for
the BaseL classifier in 6 participants, for the BaseR classifier in 10
participants, and for the LR classifier in 5 participants. Median
online overall motor imagery neurofeedback performance was
78.2% (range 50.6–94.0%). Median offline overall motor imagery
neurofeedback performance was 67.8% (range 52.8–83.4%).
Neither online performance (Pearson r = 0.10, p = 0.673) nor
offline performance (Pearson r = 0.01, p = 0.979) correlated
significantly with age.

Shrinkage Linear Discriminant Analysis
Analysis 1 Our primary analysis, i.e., shrinkage linear
discriminant based on all white matter regions (see Table 1,
analysis 1), significantly predicted group membership (low vs.
high performers) with an accuracy of 84.8% (permutation test:
p = 0.045, one-sided; note that the corresponding p-value was
considerably larger than the p-value that would be obtained
using a binomial test as used by Halder and colleagues: 17/21,
p = 0.004, one-sided). The regions selected for predicting online
accuracy were the column and body of the fornix (partial
correlation = 0.47, p = 0.037) and the left anterior corona radiata
(partial correlation = –0.54, p = 0.015) (regions 11 and 12 in
Figure 2; see also Figure 3). Neither of these regions was among
the ten regions selected for prediction by Halder et al. (2013).
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TABLE 1 | Overview of shrinkage linear discriminant analyses.

Analysis MI-NF
performance

White matter
regionsa included

Other variables
included

Variables
selected

Prediction
accuracy

p-value

1 Online 48 regionsb – Column and body
of fornix
Left anterior corona
radiata

84.8% 0.045

2c Offline Column and body
of fornix
Left anterior corona
radiata

– All 53.9% 0.532

3 Online 5 regionsd – All 29.9% 0.934

4 Online 10 regionse – All 32.7% 0.915

5 Online 48 regionsb Age
Education
Gender
Handedness
Age:Educationf

VF-A
VF-S
TMT-A
TMT-B

Middle cerebellar
peduncle
Left anterior corona
radiata
Age

69.6% 0.496

6g Offline Middle cerebellar
peduncle
Left anterior corona
radiata

Age All 55.6% 0.312

7 Online 5 regionsd Age All 39.4% 0.790

8 Online 10 regions e Age All 42.8% 0.687

aDefined by the ICBM Mori atlas (Mori et al., 2008; Oishi et al., 2008). b i.e., all the regions in the ICBM Mori atlas. cThis analysis uses the regions selected in analysis 1.
dThe five regions which showed significant correlations in the study by Halder et al. (2013), i.e., regions 1–5 in Figure 2. eThe ten regions most frequently selected in the
study by Halder et al. (2013), i.e., regions 1–10 in Figure 2. f i.e., the interaction effect of age by education. gThis analysis uses the variables selected in analysis 5. MI-NF,
Motor imagery neurofeedback; VF-A, Verbal Fluency-Animals; VF-S, Verbal Fluency-S Words; TMT-A, Trail-Making Test part A; TMT-B, Trail-Making Test part B.

Analysis 2 Using the two regions selected for the prediction of
online performance to predict offline performance (see Table 1,
analysis 2) – i.e., low vs. high performers split on the median of
offline accuracy—yielded a non-significant prediction accuracy
of 53.9% (permutation test: p = 0.352). Average fractional
anisotropy in neither the column and body of the fornix (partial
correlation = 0.15, p = 0.541) nor the left anterior corona radiata
(partial correlation = 0.16, p = 0.505) correlated significantly with
offline performance (see Figure 3).

Analysis 3 and 4 Using the regions that showed significant
correlations in the Halder et al. study (regions 1–5 in Figure 2;
see Table 1, analysis 3) predicted online group membership
with 29.9% accuracy (permutation test: p = 0.934). Extending
the predictor set to all of the most frequently selected features
in the Halder et al. study (regions 1–10 in Figure 2; see
Table 1, analysis 4) slightly increased the accuracy of online
group membership prediction to 32.7% but also did not reach
significance (permutation test: p = 0.915).

Analysis 5–8 Age-related changes in cognitive performance
are known to correlate with fractional anisotropy in many white
matter tracts—in particular the fornix (Burzynska et al., 2017;
Hayek et al., 2018), one of the two regions selected as predicting
online group membership in ur primary analysis. In fact, post hoc
analyses indicated that in our sample, age was significantly
correlated with fractional anisotropy in the fornix (Pearson
r = –0.49, p = 0.025) though not with fractional anisotropy in

the left anterior corona radiata (Pearson r = -0.35, p = 0.112),
the second selected region. To assess whether such correlations
with age in particular, or effects of other demographic variables
that are known to be associated with white matter structure
(gender, education, handedness) masked associations with the
regions identified by Halder and colleagues, we ran all shrinkage
linear discriminant analyses again but included these additional
(candidate) predictors as well as scores on the CERAD subtests
(see Table 1, analysis 5). The resulting model predicted group
membership with 69.6% accuracy but this was not significantly
better than chance according to permutation testing (p = 0.496;
note that a binomial test would have reached significance under
the most favorable interpretation: 15/21, p = 0.039, one-sided).
The predictors selected for prediction were mean fractional
anisotropy in the middle cerebellar peduncle (partial correlation
-0.30, p = 0.204) and the left anterior corona radiata (partial
correlation -0.36, p = 0.124) as well as age (partial correlation
0.13, p = 0.591). None of the other variables showed an
association with offline performance. Using the three variables
selected in this analysis to predict offline performance group
membership (see Table 1, analysis 6) decreased accuracy to 55.6%
(permutation test: p = 0.312). Finally, using the five regions
with significant correlations in the Halder et al. study plus age
(see Table 1, analysis 7) yielded a prediction accuracy of 39.4%
for online group membership (permutation test: p = 0.790).
Including the additional five regions reported by Halder et al.
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FIGURE 2 | White matter regions identified as predictive of motor imagery neurofeedback performance by Halder et al. (2013) and in the present study. Regions filled
in blue are from the study by Halder et al, where regions 1–5 showed significant correlations with motor imagery neurofeedback performance and regions 6–10
contributed to prediction in a high proportion of cross-validation folds but the correlation with performance was not statistically significant. Regions filled in green are
from the present study. Correlation of FA value in the fornix with performance was only significant if age was not included as additional predictor. Total white matter is
outlined in white.

as frequently selected for prediction (see Table 1, analysis 8)
increased prediction accuracy for online group membership only
slightly to 42.8% (p = 0.687).

DISCUSSION

Our primary analysis showed that for a group of older healthy
participants fractional anisotropy could be used to distinguish
good from poor performers in a motor imagery neurofeedback
paradigm. This appears to be in line with the idea that fractional
anisotropy can predict motor imagery neurofeedback aptitude
(Halder et al., 2013). However, the brain structures that were
predictive for the our sample differed from those in the
aforementioned study. Conversely, the structures identified in
that study did not yield predictions for our sample that were
significantly better than chance. Moreover, within our sample,
prediction for online performance did not generalize to offline

performance. Adding age to our primary analysis resulted in loss
of significance according to permutation testing, but adding age
to the other analyses did not substantially change the results.

What does this mean for the use of fractional anisotropy values
to predict motor imagery neurofeedback aptitude? Despite using
very similar parameters for EEG and MRI acquisition and closely
following their data processing pipeline—albeit using alternative
software implementations – we find a completely different set
of white matter regions to be predictive of motor imagery
neurofeedback performance than did Halder et al. (2013). Our
results are based on more subjects and more classifications per
subject to calculate performance than those by Halder et al.
(2013), and therefore clearly indicate that one cannot simply take
the predictors previously identified and apply them to any motor
imagery neurofeedback setting, without regarding the details of
the paradigm or the characteristics of the participants.

One reason for the lack of convergence between the present
results and those reported by Halder and colleagues could be that
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FIGURE 3 | Correlation between motor imagery neurofeedback performance and mean fractional anisotropy in the left anterior corona radiata (left panel) and mean
fractional anisotropy in the column and body of the fornix (right panel). Lines represent regression lines with motor imagery neurofeedback performance (yellow:
online; purple: offline) as criterion and mean fractional anisotropy value as predictor. Significant partial correlations between mean fractional anisotropy were found for
online performance but not for offline performance – see text for details.

the precise regions that can be used to predict motor imagery
neurofeedback performance vary with the motor imagery task or
other aspects of the paradigm. The regions identified by Halder
and colleagues may therefore not reflect a general aptitude for
motor imagery neurofeedback, but rather specific ability in the
tasks used in their study. Different tasks will usually activate
different cortical areas. Fractional anisotropy in particular white
matter tracts may be related to the activity of the cortical areas
they are connecting. Hebbian learning suggests that if two areas
show strong concurrent activity the connection between those
areas should be strengthened, i.e., through increased myelination
which should correspond to higher fractional anisotropy (Fields,
2015). It might also be speculated that cortical areas connected
to white matter tracts with high fractional anisotropy are easier
to activate voluntarily. Regardless of the underlying mechanism,
in this scenario different white matter tracts would be predictive
of motor imagery neurofeedback aptitude in the study by Halder
et al. (2013) than in the present study because the motor imagery
tasks differ between the two studies. If so, the regions identified
in the present study, i.e., fornix, left anterior corona radiata, and
middle cerebellar peduncle) should be functionally involved in
hand motor imagery. While the fornix may reflect a learning
component given its connections to the hippocampus, such an
association should be task-independent. In any case such an
interpretation seems tenuous given the limited number of trials.
Damage to the left anterior corona radiata has been associated
with poorer motor imagery ability in stroke patients (Oostra
et al., 2016) but without evidence for a role in hand motor
imagery specifically. The middle cerebellar peduncle, finally,
has been implicated in motor imagery (Sacheli et al., 2017)
and motor impairment (Liang et al., 2009) but only in the
context of gait, rather than hand movement. In other words,
based on the available evidence, none of the three regions

identified in the present study appears to be specific to hand
motor imagery. Task specificity is hence unlikely to be the
major explanation for the discrepancies between our results
and those of Halder and colleagues. Conversely, we did not
find associations with regions that one would have expected. In
particular, neither large associative tracts such as the superior
fronto-occipital fasciculus, nor tracts connecting to cortical areas
known to be involved in motor execution and imagery, such
as the posterior limb of the internal capsule and parts of the
corpus callosum (Imfeld et al., 2009; Vergani et al., 2014)
demonstrated predictive value. One possible explanation for the
lack of large associative tracts in the set identified here may
be that such tracts serve many functions, and so although the
particular fibers relevant for motor imagery might show some
correlation, this is relationship is masked by the “noise” of
the many other fibers that run in these tracts. The absence
of tracts connecting cortical areas involved in motor imagery
may in fact be explained by task specificity: if specific tracts
are predictive only for a particular task (e.g., right-handed
motor imagery) then their influence may be diluted if other
tasks (e.g., left-handed motor imagery) are included in the
same paradigm.

Rather than young adults as in the vast majority of motor
imagery neurofeedback studies, we specifically recruited healthy
older adults (mean age 61.4 years) in order to match the age of our
sample to the target population for motor imagery neurofeedback
rehabilitation. There is some evidence that both the age-related
decline in fractional anisotropy and its association with cognitive
function are particularly prominent for the fornix (Burzynska
et al., 2017; Hayek et al., 2018), one of the structures associated
with motor imagery neurofeedback performance in our primary
analysis. Although we did not observe any relationship between
age and motor imagery neurofeedback performance, we cannot
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rule out that such a relationship does exist and is mediated
by fornix integrity and perhaps general cognitive function. In
our sample of older adults, decline of white matter integrity
in the fornix may therefore be predictive of motor imagery
neurofeedback performance. Our cross-sectional study did not
allow us to assess decline of fractional anisotropy in the fornix
directly but the observed negative correlation between age and
fractional anisotropy in the fornix may provide some support
for this hypothesis. In fact, adding age as a predictor for online
performance led to the exclusion of fornix fractional anisotropy
and the inclusion of fractional anisotropy in the middle cerebellar
peduncle, the only region from the set identified by Halder and
colleagues that was selected in any of our analyses. However,
the observed correlation between fractional anisotropy in the
middle cerebellar peduncle and motor imagery neurofeedback
performance was negative in our study but positive in the study
by Halder and colleagues, so what seems like an overlap between
results is, in fact, another difference. Taken together, these
results give reason to speculate that differences between younger
and older adults in white matter structures might be relevant
for motor imagery neurofeedback performance. If this can be
confirmed in future studies it would emphasize the necessity of
basing prediction models for a particular patient on subjects of
similar age.

Finally, another possible explanation for the discrepancy
between our results and those from Halder and colleagues
is the choice of statistical tests. While the results of both
our primary analysis and the classification by Halder and
colleagues were highly significant when assessed by binomial
test, our permutation analysis suggests that the binomial test
overestimates the statistical significance, as has been reported
previously (Noirhomme et al., 2014). This suggestion, if
true, raises the possibility that the observed associations are
coincidental. Although it is generally to be expected that variables
selected to predict one outcome measure show somewhat poorer
prediction for another outcome measure, the difference in
prediction accuracy between online and offline performance in
our analyses is also rather large. In this particular case, the
difference in prediction accuracy may be further increased by
the fact that for individual participants the classifier with the
best accuracy may differ between online and offline performance.
Nevertheless, the difference is arguably still too large to be
explained by these two effects, even in combination. Since there
is no reason that offline and online performance should differ
in their link to white matter properties, the lack of significant
results from our offline analysis supports the interpretation that
the observed associations are coincidental.

Given common research practices it is inevitable that a large
proportion of studies yield results that cannot be reproduced
reliably, even when appropriate methodological and statistical
procedures are used (Ioannidis, 2005). This risk may be even
larger when machine learning methods are used (Stahl and
Pickles, 2018). The cross-validation methods that can be applied
in samples of this size are appropriate for model selection,
but the nested cross-validation or bootstrapping approaches
that are needed to perform model assessment within the same
study are not feasible without considerably larger sample sizes

(Harrell, 2015; Stahl and Pickles, 2018). To advance the field,
independent replication studies are necessary to establish which
of the proposed measures generalize to yield significant predictive
value in new, unrelated samples. Until this external validation
has occurred, any result should be considered tentative. This
process requires that properly executed studies using machine
learning methods to identify predictors of motor imagery
neurofeedback performance are published, regardless of whether
they report an initial finding, a non-replication, or a successful
replication (Stahl and Pickles, 2018). Once several predictors
have been identified which do generalize to new data, these can
then be combined to determine which measures independently
contribute to prediction.

In summary, we tested whether, as previously reported (Halder
et al., 2013), white matter integrity as measured by fractional
anisotropy can be used to predict motor imagery neurofeedback
performance. While from a conceptual perspective the attempt
was successful, the particular areas that contributed to prediction
differed markedly from those identified previously. Our results
suggest that if predictions are used to determine the potential
benefit of motor imagery neurofeedback, it is advisable to base
the predictions on data collected using the same paradigm and
with subjects whose characteristics match those of the target case
as closely as possible. Of course, this conclusion needs to be
confirmed in future studies systematically investigating the roles
of motor imagery neurofeedback implementation and of age on
anatomy-based prediction of motor imagery neurofeedback.
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