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Abstract

Here we study linear programming applied to the random K-SAT problem, a fundamental

problem in computational complexity. The K-SAT problem is to decide whether a Boolean

formula with N variables and structured as a conjunction of M clauses, each being a disjunc-

tion of K variables or their negations is satisfiable or not. The ensemble of random K-SAT

attracted considerable interest from physicists because for a specific ratio αs = M/N it under-

goes in the limit of large N a sharp phase transition from a satisfiable to an unsatisfiable

phase. In this study we will concentrate on finding for linear programming algorithms “easy-

hard” transitions between phases of different typical hardness of the problems on either

side. Linear programming is widely applied to solve practical optimization problems, but has

been only rarely considered in the physics community. This is a deficit, because those typi-

cally studied types of algorithms work in the space of feasible {0, 1}N configurations while

linear programming operates outside the space of valid configurations hence gives a very

different perspective on the typical-case hardness of a problem. Here, we demonstrate that

the technique leads to one simple-to-understand transition for the well known 2-SAT prob-

lem. On the other hand we detect multiple transitions in 3-SAT and 4-SAT. We demonstrate

that, in contrast to the previous work on vertex cover and therefore somewhat surprisingly,

the hardness transitions are not driven by changes of any of various standard percolation or

solution space properties of the problem instances. Thus, here a more complex yet unde-

tected property must be related to the easy-hard transition.

Introduction

The Satisfiability problem (SAT) [1] is to decide whether some Boolean formula is satisfiable or

not, i.e., whether for a given Boolean formula, there is an assignment of the variables such that

the formula evaluates to “true”. All Boolean formulas can be expressed in conjunctive normal
form (CNF) which is a disjunction of clauses, each being a conjunction of variables or negated

variables. Therefore K-SAT, which is a Boolean formula in CNF with K distinct variables per

clause, is a commonly scrutinized version of the satisfiability problem.

PLOS ONE | https://doi.org/10.1371/journal.pone.0215309 April 19, 2019 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Schawe H, Bleim R, Hartmann AK (2019)

Phase transitions of the typical algorithmic

complexity of the random satisfiability problem

studied with linear programming. PLoS ONE 14(4):

e0215309. https://doi.org/10.1371/journal.

pone.0215309

Editor: Andrea Gambassi, Scuola Internazionale

Superiore di Studi Avanzati, ITALY

Received: November 20, 2018

Accepted: March 29, 2019

Published: April 19, 2019

Copyright: © 2019 Schawe et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: HS acknowledges support by grant HA

3169/8-1 of the German Research Foundation

(DFG, http://www.dfg.de/). The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-8197-1372
https://doi.org/10.1371/journal.pone.0215309
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215309&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215309&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215309&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215309&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215309&domain=pdf&date_stamp=2019-04-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0215309&domain=pdf&date_stamp=2019-04-19
https://doi.org/10.1371/journal.pone.0215309
https://doi.org/10.1371/journal.pone.0215309
http://creativecommons.org/licenses/by/4.0/
http://www.dfg.de/


NP-complete (nondeterministic-polynomial) problems [1, 2] are fundamental to computa-

tional complexity, since all problems in NP can be mapped in polynomial time to any NP-

complete problem. Despite much effort, no algorithm has been found so far which is able to

solve any NP-complete problem in the worst case in polynomial time, leading to the famous

P-NP problem. Thus, all NP-complete problems are considered being hard, so far. Since 3-SAT

is the prime example [3, 4] for an NP-complete problem, if one day someone found a fast algo-

rithm for 3-SAT, one could efficiently solve all problems in NP, especially also all NP-complete

problems. To advance fundamental science and help the cause to either prove or disprove that

actually a fast algorithm can exist, one wants to understand the reason for the apparent compu-

tational hardness. One somehow empirical approach is to analyze actual (relatively) hard

instances of problems. This has attracted interest beyond computer science and complexity

theory in statistical physics [5–7] and correspondingly random ensembles of suitably parame-

trized problem instances and their typical hardness have been investigated.

In the physics community, the most prominent random ensemble for K-SAT consists of a

set of N variables and M clauses. Each clause contains K distinct variables which are chosen

randomly, and each variable appears negated with probability 0.5. Especially interesting to sta-

tistical physicists is that this problem ensemble exhibits a phase transition at some critical value

αs of the density α = M/N [8]. For a large number of variables at α< αs almost all problems are

satisfiable (also denoted as SAT), above αs almost all realizations are unsatisfiable (UNSAT).

The occurrence of similar phase transitions has been observed frequently for other random

ensembles of NP-complete problems [5–8]. This incited strong interest in the K-SAT problem

[9–12] and many other NP-complete problems among physicists, resulting in a plethora of

articles applying methods from statistical mechanics to study these phase transitions in more

detail [13–18].

While this SAT-UNSAT transition is certainly the most scrutinized in the K-SAT problem,

there exist more transitions. For example 3-SAT, where SAT-UNSAT occurs at αs� 4.26 [9],

shows a transition to chaotic behavior at αχ� 3.28 [19], i.e., using a continuous time determin-

istic solver [20] the trajectory will find the solution if one exists, but it will show chaotic tran-

sient behavior above this threshold resulting in increasing escape rates from attractors. This

leads to a higher computational cost and can therefore be used as a measure of hardness. Fur-

thermore, there exists a clustering transition at αc� 3.86 [11, 21]. This means that here the

organization of the space of the exponentially many degenerate solutions changes from one

big cluster (α< αc) of solutions which are connected in assignment space to a solution space

(α> αc) which is fragmented into many non-connected smaller clusters, one says replica sym-
metry is broken above this threshold.

To examine optimization problems, usually algorithms like the branch and bound approach,

stochastic search or message passing are used in the statistical-mechanics literature. These algo-

rithms operate in the space of feasible assignments and approach the optimum solution from

above. Here “optimum” means that the number of unsatisfied clauses is minimized (in the

sense of MAX-SAT), i.e., eventually becomes zero if a satisfying assignment is found. Thus for

general minimization problems these algorithms yield upper bounds until the true minimum

solution is found. As empirically studying the computational hardness always tells something

about a problem in conjunction with a specific algorithm, it is desirable to investigate different

algorithms, in particular approaches which differ fundamentally. The operations-research lit-

erature often uses linear programming (LP) [2, 22], which operates for combinatorial problems

outside the space of feasible solutions, i.e., fundamentally different from the above mentioned

algorithms. Suitably enhanced LP techniques are often used for real-world applications since

they are versatile and efficient, which means they run typically in polynomial time. For combi-

natorial problems, e.g., NP-hard optimization problems, the application of pure LP yields
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solutions which are not necessarily feasible, which here means non-integer-valued assignments

to the variables, but which establish a lower bound on the objective. While this technique is

typically not used for SAT, for other NP-hard problems like the traveling salesperson problem

the best current methods are based fundamentally on LP [23]. Thus LP somehow approaches

for minimization problems the true feasible and optimum solution from below (In this sense

the analog solver of Ref. [19, 20] also operates outside the feasible region). Nevertheless, a key

observation is that whenever LP gives a feasible solution, it must be the true optimum solution

of the combinatorial problem.

Because of the complementary nature of LP and the approaches usually studied in the sta-

tistical mechanics literature, it seems to be a worthwhile endeavor to study LP in the context

of statistical mechanics questions. To our knowledge, such studies of the behavior of LP in

regards to phase transitions have only been conducted for the vertex cover (VC) [24] and the

traveling salesperson problem (TSP) [25]. For these problems there exist regions in parame-

ter space of the random ensemble, where feasible and optimal solutions can be found in poly-

nomial time. For VC on Erdős-Rényi random graphs, the LP approach yielded solutions up

to the percolation transition of the graph ensemble. Therefore, the problem is easy with

respect to LP up to the percolation transition, and hard beyond. For LP improved with cut-

ting planes, another easy-hard transitions occurs at the point of the onset of replica symme-

try breaking [16], which here corresponds to the clustering transition of SAT. Note that this

coincides with the percolation threshold for the leaf-removal core [26]. This is the point

where one would not reasonably expect easy instances anymore. For TSP the easy-hard tran-

sitions detected by the LP approach coincided with structural changes of the optimal tour

which can be intuitively understood as increases in hardness. Since for TSP many more cut-

ting planes exist, which are not yet tested, it is conceivable to use this technique to find more

and more easy-hard transitions this way and understand them, leading to deeper insight into

the problem.

Since K-SAT is the archetypal NP-complete problem, we wanted to extend those promis-

ing results of the mentioned previous studies. We are not aware of any application of LP

approaches to random K-SAT so far. Although K-SAT is by definition a decision problem

and not an optimization problem, as we will show below, we found also some “easy-hard”

transitions. Nevertheless, these transitions occur at clearly lower values of the parameter α
than the clustering transition, in contrast to VC on random graphs. This result could be

related to the fact that K-SAT shows a richer behavior [11], i.e., several different types of

transition, in contrast to VC on random graphs. With the present study, we can exclude at

least that these transitions are driven by a standard percolation (connectivity, pure-literal

core, q-core, leaf-removal, and biconnected component) transitions on the underlying graph

representation. However, since the graph representation should include all information, a

property of the graph should change at this point, thus we think this study will motivate fur-

ther studies which aim at the origin of the different behavior. On the other hand, this is a

hint that the hardness of VC on random graphs is much clearer cut than for SAT. The differ-

ence could be due to the fact that the ensembles of random graphs exhibit different proper-

ties than the (bipartite) factor graph representation of random K-SAT.

Note that this study does not aim to present faster methods to solve the SAT problem, but

rather tries to study it in a fundamental sense, aiming at the question “What makes a problem

hard?” We pursue this by applying an approach which operates outside the space of feasible

solutions and is widely-used for many practical combinatorial optimization problems, but

less-often studied when considering K-SAT. In fact, we will show that the easy-hard transitions

with respect to the used LP algorithms happen at rather low values of α. Thus, other more spe-

cialized algorithms are preferable for practical K-SAT solving.
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Models and methods

K-SAT

A realization of K-SAT consists of a Boolean formula over N variables xi (i = 1, . . ., N). The

formula is in conjunctive normal form, i.e., it is a conjunction of M clauses cj (j = 1, . . .,M),

where every clause is a disjunction of K literals lkj (k = 1, . . ., K). A literal is a variable xi or its

negation �xi. In each clause, each variable may appear only once. As an example for N = 4,

M = 2 and K = 3 take

ð�x1 _ x2 _ �x3Þ ^ ðx1 _ x3 _ �x4Þ: ð1Þ

This example is solvable with, e.g., x1 = “true” = 1 and x3 = “false” = 0, and arbitrary assign-

ments for the other variables. Note that each clause is satisfiable by 2K − 1 out of 2K possible

assignments to the variables. Thus, each clause restricts the space of satisfiable assignments a

bit. Clearly, with more clauses per variable, i.e., a higher amount of constraints, it is more prob-

able that a random formula is unsatisfiable. As mentioned before, for random 3-SAT with

N!1 there is a critical density αs = M/N� 4.26 [9] at which a phase transition from satisfi-

able to unsatisfiable (SAT-UNSAT) happens.

Linear programming

A linear program (LP) is an optimization problem, which can be expressed by a set of linear

constraints and a linear objective function, which should be optimized. There are fast (polyno-

mial-time) algorithms to solve a linear program, e.g., the ellipsoid method [27] or interior

point methods [28, 29]. However, in many sophisticated solvers the simplex algorithm is used,

which typically terminates quickly for real-world problems, despite its exponential worst-case

time complexity [2, 22]. Though, as soon as some variables need to be integer valued, this

problem gets computationally hard. In fact, integer linear programming is an NP-hard problem

[4].

A K-SAT realization can be expressed as an integer linear program. Therefore every positive

literal xi is expressed as an integer variable xi and every negative literal �xi as (1 − xi). Since one

or more literals of every clause c 2 C need to be true for a satisfying assignment, the corre-

sponding integer linear program contains for each clause the constraint that the sum of the

expressions for the included literals must be greater or equal 1. The example from Eq (1) gen-

erates following linear inequalities.

ð1 � x1Þ þ x2 þ ð1 � x3Þ � 1 ð2Þ

x1 þ x3 þ ð1 � x4Þ � 1 ð3Þ

Since an LP is an optimization problem but SAT is merely a decision problem, we can

choose an arbitrary objective function for which to optimize. The simplest objective function

is zero, i.e., no optimization.

min: 0 ð4Þ

s:t:
X

xi2cj

xi þ
X

�xi2cj

ð1 � xiÞ � 1; 81 � j � M
ð5Þ

xi 2 f0; 1g; 81 � i � N ð6Þ
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The last constraint fixes the variables to integer values. We will relax this constraint to xi 2
[0, 1]. This allows us to apply a fast LP algorithm to solve the relaxed problem and introduce a

measure of hardness for the problem realization. If the LP relaxation yields a solution consist-

ing of only integer variables, the solution is obtained by a polynomial time method and the

corresponding realization is obviously easy to solve.

A drawback is that additionally to the inherent degeneracy of the problem, i.e., there are

possibly many assignments that satisfy the formula, the relaxation leads to a much higher

degeneracy. For example, the assignment of all xi = 0.5 is always a solution of the relaxation.

After we performed some simulations for SAT in this way, it became evident that this degen-

eracy is a major problem for this decision problem, which is not present in the optimization

problems studied with this method [24, 25]. This degeneracy leads to different behavior for

slight changes in the algorithm. E.g., primal and dual simplex often lead to different behavior

such that for many instances one version will result in an integer solution while the other

does not. We observed a similar behavior when considering different pricing strategies or a

presolve stage to tighten the LP. This analysis would therefore only yield information about

these technical details and not about the fundamental problem of K-SAT. For example, the

presolver of both Gurobi and CPLEX can solve easy instances up to an critical αpre = 1.640

(1), which is the same threshold up to which the pure-literal rule (also called affirmative-neg-
ative rule) which is an integral part of the DPLL [30, 31] search algorithm, can solve K-SAT

realizations, while without presolve the easy-hard transition occurs at a lower value of α—

dependent on technical details of the method. Therefore, we do not present results of LP

with zero objective in is study.

Instead, we will introduce artificial objective functions to reduce the degeneracy drastically.

Further, the choice of the objective function has an influence on the prevalence of integer solu-

tions. Though note, only linear objective functions enable the efficient linear programming

techniques. Therefore, non-linear objectives like ∑i xi(1 − xi), which are minimal if all variables

xi are either 1 or 0, are not admissible and in fact generally NP-hard [32].

One simple way to replace the zero objective is maximizing the sum over all variables (MV)

max:
XN

i¼1

xi: ð7Þ

While it might lift fractional variables to 1 and therefore proliferate integer solutions, it will

also prefer variables to be fractional instead of 0 and thus suppress integer solutions. Since not

a single fractional variable is allowed in an integer solution, one would expect this objective to

only be able to solve some very simple instances and therefore not to be a good choice for an

artificial objective, if one is interested in integer solutions.

Note that this and other additional objective functions have no influence on whether a for-

mula is satisfiable or not, they are just meant as a tool to reduce the degeneracy of the problem

to make it less dependent on details of the algorithm and to facilitate finding integer solutions.

Both works out as we will see below. As a third objective we tried maximizing the number of

fulfilled literals per clause, which we will call Satisfaction Multiplicity Maximization (SMM).

This can be achieved with a slightly modified linear program by introducing one new variable

zj per clause counting the number of fulfilled literals of its clause and maximizing the sum over

all zj.

max:
XM

j¼1

zj ð8Þ
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s:t:
X

xi2cj

xi þ
X

�xi2cj

ð1 � xiÞ � zj; 81 � j � M
ð9Þ

xi 2 f0; 1g; 81 � i � N ð10Þ

zj � 1; 81 � j � M ð11Þ

The new kind of constraint ensures that zi� 1, i.e., that every clause contains at least one

fulfilled literal, such that the solution assignment satisfies the Boolean formula. This type of

additional optimization is similar to MAX-SAT, where one tries to maximize the number of

satisfied clauses. For MAX-SAT one would instead enforce 0� zj� 1 8j. We also tried this

MAX-SAT approach to solve the K-SAT decision problem. Since this formulation does not

mitigate the degeneracy problem, and because we did not observe any better performance

than by using the other approaches, we do not show results for this approach here.

The SMM objective is an example for a linear objective with a slight preference for integer

valued variables, since assignment of all variables of a clause to 1 or 0 according to their polar-

ity contributes more to the objective function than assignments of non-integer values. For

example a variable which appears more often unnegated will on average be assigned more

often to value 1. This strongly reduces the degeneracy of the solution of the optimization prob-

lem, i.e., many of the solutions where the majority of variables are non-integer, are not optimal

under this new objective function. Of course this may still yield non-integer values for some

variables, which occur in conflicting clauses.

Note that when using LP, finding integer solutions may be facilitated in principle by adding

cutting planes, which are further constraints which are added to the problem during run time

dependent on the state of the solution process. This allows, e.g, to add a selected small number

of constraints from a set of exponentially many ones, for which it would be infeasible to add

them all. This was previously observed also for ensembles of random instances for the vertex

cover [24] and the TSP [25]. Nevertheless, for the present study this yields no improvement,

i.e., no additional phase transitions could be observed (see below). Thus, we do not describe

the cutting-plane approach in this section in detail, but rather just list the the ones we tried

and did not lead to an improvement.

Mapping to vertex cover

All NP-complete problems, by definition, can be mapped onto each other in polynomial time.

Thus, it is reasonable to ask, whether transforming SAT instances to instances of another prob-

lem and applying algorithms specifically suited for the other problem changes the perfor-

mance, as measured by the location of the easy-hard transition. Here we used a classical

mapping [1] of SAT to VC. For each K-SAT instance an equivalent graph G = (V, E) is con-

structed in the following way: The set V of nodes contains one pair of nodes i;�i for each vari-

able xi (i = 1, . . ., N), which represents the variable and its negation. Furthermore, V contains

one node (kj) for each literal lkj (k = 1, ‥, K, j = 1, ‥,M) in each clause cj, respectively. Therefore

V contains 2N + KM nodes. For the set E of edges, for each clause cj a complete subgraph of

size K is formed by connecting all pairs of “literal nodes” (kj) pairwise which correspond to

this clause. Also, each “variable node” i is connected with its corresponding “negated variable

node” �i. Finally, for each literal lkj, if the literal represents a non-negated variable xi, an edge

connecting (kj) with i is included, while if the literal represents a negated variable �xi the corre-

sponding literal node (kj) is connected with �i. Thus, E contains MK(K − 1)/2 + N + MK edges.

Phase transitions of the complexity of the random satisfiability problem studied with linear programming
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Now a minimum vertex cover is obtained. This is a subset V0 � V of nodes such that for each

edge of E at least one of the two endpoints is in V0. By construction [1], G contains a vertex

cover of size N + (K − 1)M if and only if the corresponding formula is satisfiable. In Fig 1 the

graph corresponding to the formula from Eq (1) is shown.

Thus, one approach to SAT is to transform each formula into the equivalent graph and use

an existing algorithm for VC to solve it. We applied an LP formulation with cycle cutting

planes, see Ref. [24] for details. For the previous work, this algorithm was able to solve VC

instances in the parameter-space region, where the solutions were contained basically in one

cluster, corresponding to the replica-symmetric region [16].

Results

We sample random 3-SAT instances, where each clause may contain any variable at most

once. For up to 12 system sizes N 2 [64, 131072] we simulated n = 5000 realizations for 30 to

100 different values of the density α. For comparison, we also performed simulations for

2-SAT and 4-SAT, with a smaller range of sizes. All error estimates are obtained by bootstrap

resampling [33–35], except for errors of fit parameters shown in the plots, which are Gnuplot’s
asymptotic standard errors corrected according to Ref. [34]. To solve the LP realizations,

the implementation of the dual-simplex algorithms of the commercial optimization library

CPLEX [36] is used. During the research additionally the primal- and dual-simplex implemen-

tations of Gurobi [37] and lp_solve [38] with multiple pricing strategies were used to ensure

that the results are independent from the algorithm and the details of the implementation.

LP-Transitions with objective function

As mentioned before, we observed that non-trivial objective functions can be used to obtain a

result independent from the details of the LP-solver implementation. Though the objective

function itself will have an influence on the position of the transition point. An objective

which prefers variables to be integer will result in more integer solutions at the same value of

α, i.e., yield a transition at a larger value of α.

First, we will demonstrate that this method can be used to solve instances of K-SAT

efficiently for a range of values of α, and that there exists a phase transition to a hard (or

unsolvable) region. For the 2-SAT problem, which is not NP-complete, it is known that the

SAT-UNSAT transition happens at α2 = 1 [39]. For 2-SAT there are also exact polynomial

time algorithms. So when applying our linear programming approach, we would assume that

in the limit of large N for α< 1, all instances are easily solvable and for α> 1 not. This test

does indeed work out when using the SMM objective function. In Fig 2 the probability that a

realization is solvable by the LP+SMM approach, i.e., the solution is integer, is shown as a

function of the clause density α. Around α = 1 the behavior switches from solvable to not-

Fig 1. The graph for the vertex cover problem which is equivalent to the formula shown in Eq (1). Shown is a

vertex cover of sizeN + (K − 1)M = 4 + 2 × 2 = 8, which corresponds to a satisfying assignment x1 = 1, x2 = 1, x3 = 0,

x4 = 1.

https://doi.org/10.1371/journal.pone.0215309.g001
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solvable. The decrease in probability to solve is steeper for larger system sizes N, which is a

behavior typical for phase transitions. To estimate the position of the phase transition in the

thermodynamic limit of N!1, we extrapolate our results for finite system sizes to this limit.

Often, the solution-probability curves as a function of the control parameter taken for different

system sizes N intersect at some point, yielding an easy estimate of the transition point. This

is not the case here. Instead, the measurements for small values of alpha seem to be indepen-

dent of size N as visible in Fig 2. Thus, we assume that the asymptotic curve will coincide onto

the system-size independent part and drop rapidly to zero at the transition point, similar as

observed for the SAT-UNSAT transition in 2-XORSAT [40]. To estimate the transition point

we take of each system size the inflection point, i.e., the point where the curve is steepest, and

measure the intersection α×(N) of its tangent with the α-axis. In the asymptotic case, the inflec-

tion point should move downwards and the slope become steeper, such that extrapolating

α×(N) for large N should give an estimate for the transition point α2. As a simple guess for the

extrapolation function, we choose a typical finite-size scaling power-law ansatz αmax = aN−b +

α2, like in previous work [24, 25]. This ansatz does fit remarkably well as shown in the inset

of Fig 2. This yields a critical point of α2 = 1.00(3), which is in very good agreement with the

expectation, especially considering the small system sizes used for this extrapolation. Note

that without the objective function 2-SAT is also susceptible to the greater degeneracy and the

above mentioned problems become visible, leading to no clear result (not shown here). This

result for 2-SAT shows that the method per se is a valid approach to our question.

The same procedure is performed for 3-SAT with the SMM optimization in Fig 3 yielding

αSMM = 2.48(13). The transition depicted here is an algorithmic transition from easy, since

most realizations are solvable by LP techniques, i.e., in polynomial time, to some harder phase,

where the LP does not yield solutions.

Our results for 4-SAT look similar (not shown) and exhibit an easy-hard transition as well.

We performed a corresponding analysis. The resulting exponent b seems to be larger and a fit

through the positions of the intersections of the inflection-point tangents yields αSMM = 4.09

(11).

The other optimization function of this study, MV, i.e., maximizing the sum of all variables,

leads to a qualitatively similar behavior for 3-SAT as SMM but a transition at lower αMV = 1.5

(1) (not pictured due to qualitative similarity, simulations used smaller system sizes). The

Fig 2. Solution probability p that SMM yields an integer solution for 2-SAT. The tangents at the inflection points

are shown as dashed straight lines. Each tangent intersects the α-axis at some point α× = α×(N) (see text). Inset:

Extrapolation of the intersection points using the power law α× = aN−b + α2 This estimates α2 = 1.00(3) as the

transition point, shown as vertical line in the main plot.

https://doi.org/10.1371/journal.pone.0215309.g002
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lower transition point is plausible, since this maximization prefers variables to be larger than

zero instead of zero. For this reason, we have not analyzed this algorithm for 4-SAT. Our esti-

mates for the transition points are collected in Table 1.

Generally, one can even use a fractional LP relaxation to arrive at solutions. The most flexi-

ble and most important method for this are cutting planes (CP). These are further constraints

which are added to the problem to cut off non-integer solutions from the polytope defined by

the linear program. While there are exponentially many of these constraints, often only very

few have to be enforced to arrive at an integer solution. In similar studies on VC [24] and the

TSP [25], the introduction of cutting planes yielded substantially better results. For vertex

cover the introduction of (potentially exponentially many but actually few) CPs even lead to

an LP+CP transition at the point where in the analytic solution replica symmetry breaking,

i.e., clustering of solutions appeared [16]. As shortly mentioned above, we also implemented

cutting planes. Unfortunately, this efficiency of CP was not observable during our study for K-

SAT. It seems that the cutting planes we tried, namely resolution cuts [41] and clique cuts [42],

were too weak at the low values of α examined here. Another cutting plane for the SAT prob-

lem, the odd cycle inequalities [43] are not directly applicable for K-SAT with K� 3, since they

need clauses with 2 variables to be constructed. While they are useful as local cuts in a branch

and cut procedure, they are never violated in the beginning for K� 3 and thus not applicable

for this study.

Another strategy to use information of the LP relaxation to arrive at an integer solution is

the rounding of variables. Note that this strategy may lead to wrong assignments of variables,

such that a realization which is satisfiable might become unsatisfiable after a variable is fixed to

the wrong value. We found that the rounding of all fractional variables at once will not lead to

Fig 3. Probability p that SMM yields an integer solution. The smaller system sizes show visible deviations from the

common curves, which is visible in the main plot, whereN = 512 does not lie on the other curves at αSMM marked by

the vertical line. Inset: Extrapolation with the power law α× = aN−b + αSMM of the intersection of the tangents at the

inflection point with the α-axis (see text). This estimates αSMM = 2.48(13) as the transition point.

https://doi.org/10.1371/journal.pone.0215309.g003

Table 1. Values of critical points. αVC denotes the critical point when mapping SAT to VC and applying an LP + cut-

ting plane solver used for VC. αMV is the easy-hard transition for LP+MV. αSMM is the easy-hard transition for LP

+SMM. αc denotes the clustering transition and αs the SAT-UNSAT transition.

K αVC αMV αSMM αIR αc αs

2 – – 1.00(3) – – 1

3 0.90(3) 1.5(1) 2.48(13) 2.98(3) 3.86 4.26

4 – – 4.09(11) – 9.547 9.93

https://doi.org/10.1371/journal.pone.0215309.t001
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significantly different measurements than without rounding (not shown). Instead we use a

iterative rounding strategy (SMM+IR), which rounds in each iteration the variable closest to

an integer and solves the LP, in which this variable is fixed. This is iterated until all variables

are integer or the solution is infeasible, i.e., a contradiction is encountered. Fig 4 shows the

solution probability of this approach, which leads to a transition at αIR = 2.98(3). Interestingly,

this yields far better results when optimizing for the SMM objective than with the pure LP,

where we detected only very slight, and still on the solver dependent, improvement (not

shown). Note that this protocol is still polynomial time since at most N iterations can take

place, before all variables are fixed to integers.

Other general schemes to arrive from an LP relaxation at an integer solution rely on tech-

niques with exponential worst-case time complexity, e.g., the backtracking-based branch-and-

cut approach, where a search tree is build, where at each node a variable (in the case of SAT) is

fixed to either 0 or 1 and new globally or locally valid cutting planes may be introduced at each

node.

Structural transitions

Next, we investigate whether the observed easy-hard transitions correspond to changes of the

structure of the problem instances, as it was previously found for the vertex-cover problem

[16–18, 24]. While VC is defined on graphs anyway, for K-SAT we study the related graph

representation, the factor graph (FG) [6, 44]. This representation is especially useful for belief
or survey propagation approaches [45, 46] but also useful to study structural properties. In the

FG, which is a bipartite graph exhibiting a node for each variable and a node for each clause,

i.e., containing N + M nodes, each variable is connected to the clauses it occurs in with weights

representing whether they are negated or not. The corresponding graph of example Eq (1) is

shown in Fig 5. Note that this representation, when disregarding the weights, is equivalent to

a hypergraph representation, where every clause is represented by a hyperedge connecting K
variables.

We looked at some known points of the factor graph, where its properties change, which

could plausibly influence the hardness of the problem. Note that for the NP-complete VC, it

was possible to relate the percolation threshold and the threshold, beyond which the leaf

removal heuristic [26] does not yield solutions anymore (which coincides with the appearance

of replica-symmetry breaking and solution-space clustering), to the points where the problems

Fig 4. Probability p that SMM+IR yields an integer solution. Inset: Extrapolation with the power law α× = aN−b +

αSMM+IR of the intersection of the tangents at the inflection point with the α-axis (see text). This estimates αSMM+IR =

2.98(3) as the transition point.

https://doi.org/10.1371/journal.pone.0215309.g004
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turns harder also for special formulations of the linear programming approach [24]. We will

list the properties for 3-SAT we looked at. Most transitions are known from the literature, but

few are not, to our knowledge. For those we numerically investigated the transitions during

this study and present the result shortly here, which also contributes to the characterization of

the 3-SAT ensemble.

• The percolation threshold, i.e., the point below which there will be no connected component

of size OðNÞ is at α = 1/6 [6]. This means that below this threshold clauses do typically not

share variables and are therefore largely independent, i.e., it should be rather easy to solve

for almost any algorithm.

• The transition where the remaining pure literal core is of order OðNÞ, i.e., the value of α,

beyond which the pure literal rule, which is an integral ingredient for the classical DPLL

search, does not lead to solutions anymore is at αpl = 1.636‥ [47]. The pure literal rule is to

remove pure variables and their clauses from the problem. Variables are pure, if they are

appearing only in one polarity and can therefore be always set to fulfill all their clauses. Note

that for 2-SAT the pure literal rule works up to the SAT-UNSAT threshold α2 = 1 [47], coin-

ciding with the solvability transition of SMM.

• The unit clause rule shows its transition slightly above the SMM case but below the SMM+IR

case at αuc = 8/3� 2.66 [48].

• For a naive q-core analysis, where the core is the set of remaining nodes after all nodes with

degree lower than q are iteratively removed, we treated the clause nodes the same as the vari-

able nodes. It yielded a percolation transition, i.e., the existence of a q-core of order of graph

size at α2-core = 0.223(3) and α3-core = 1.554(1) from our measurements.

• The q-core transitions for a hypergraph approximation of K-SAT, where K nodes are con-

nected by single hyperedges, are known exactly. Note that the 2-core for this ensemble is

equivalent to the pure literal rule according to Ref. [47]. The appearance of a 3-core occurs at

α3-CORE = 4.2847‥ [47].

• The leaf removal rule, which is a valid heuristic for the related XORSAT problem and the

vertex cover problem, is known to have a transition at αlr = 0.81847‥ [49]. Interestingly,

although not obviously related, this is half of αpl of the pure literal rule.

• The transition where a biconnected component [22, 50] appears, i.e., a connected component,

in which every pair of nodes stays in the same connected component if any other node is

removed, happens at αbi = 0.190(20). Similarly, the bi-edge-connected component, from

which an arbitrary edge can be removed while staying connected, shows the transition at

αbi-edge = 0.211(7). This value is close to the appearance of our naive 2-core, which is plausi-

ble since a 2-core consists of biconnected components possibly connected by single edges.

Fig 5. Factor graph representation of the example Eq (1). Dashed lines represent negative weights, corresponding to

negated variables.

https://doi.org/10.1371/journal.pone.0215309.g005
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The process to determine the transition points for the cases, where we did not find literature

values, we use a similar process as for determining the transition for the LP variants before,

but instead of extrapolating the intersections of the inflection-point tangents with the α-axis,

we extrapolate the position of the maximum of the variance. This value can generally be deter-

mine more accurately and was already used in Ref. [24, 25], but seems underestimate the criti-

cal α for transitions of the form of Figs 2–4, where the left part is almost size-independent. An

example for the naive 3-core on the factor graph is shown in Fig 6. Again we extrapolated the

position of the peaks of the variance to large N using a power law with offset αmax = aN−b +

α3-core.

When comparing the values of these transitions to the easy-hard transitions points listed in

Table 1, one observes no coincidence. Therefore, we can exclude that any of the observed tran-

sitions is driven by standard percolation transitions. Thus, in contrast to the previously studied

VC, there exists no coincidence with a “simple” change of the problem structure, which might

serve as an explanation of the observed easy-hard transitions. It appears that the easy-hard

transitions are driven by a graph property, apparently by a non-standard one, which has yet to

be identified.

Finally, the existence of correspondences between easy-hard transitions and structural per-

colation transitions for the vertex-cover problem motivated us to perform the following test:

we also used for K = 3 the mapping of K-SAT to VC for formulas up to N = 10000. Using LP

and cycle cutting planes [24] the corresponding equivalent VC instances were solved for vari-

ous values of α. Again we measured the probability that an instance was solved by an integer

solution as a function of α, for different system sizes. Using an analysis (not shown) as for the

previous approaches, we were able to extrapolate an easy-hard transition for this point. We

obtained a critical value of αVC = 0.90(3), which is well below the easy-hard transitions

obtained using the LP-based approaches presented above. Therefore, apparently it does not

pay off using a mapping to another problem, at least for this pair of problems. A mapping to

TSP will lead to TSP instances which are quite large for decent SAT realizations, therefore we

did not perform simulations for this.

It is rather intriguing that SAT behaves so differently in comparison to vertex cover, despite

their very close relation—both are NP-complete and can therefore be mapped onto each other.

Nevertheless, the two random ensembles differ clearly from each other. While random graphs

are locally tree like, i.e., exhibit only large loops, the representation of a K-SAT formula as a

Fig 6. Relative size of the naive 3-core of the factor graph at different values of α. The inset shows the positions of

the maxima of the peaks of the variance and an extrapolation according to a power law with offset, resulting in the

above listed values.

https://doi.org/10.1371/journal.pone.0215309.g006
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VC problem exhibits many short loops. Nevertheless, we not only have identified several easy-

hard transitions in this study, but have also shed some light on this apparently fundamental

difference of the two ensembles. In the future, maybe other approaches can yield a better

understanding of this interesting fact.

Conclusions

We study the solvability of random K-SAT realizations at different values of the clause-to-vari-

able density α using linear programming. A realization is solved if the LP yields an integer

solution. Since one can use LP algorithms that run in polynomial time even in the worst case,

this means such a realization is “easy” in regard to this algorithm. Therefore it is sensible to

assume that the structure of the typical instances changes at such a transition point, and this

change is detected by the algorithm.

This study was mainly motivated by previous results for vertex cover [24], for which LP and

LP combined with a simple class of cutting planes was able to detect increases in hardness,

which coincided with easy to interpret transitions in the structure of the underlying graph. For

vertex cover, this structural change could be tracked down and was found to be a percolation

transition of the leaf-removal core. Furthermore, this transition coincides with the onset of

replica-symmetry breaking, i.e., a complex organization of the solution space structure.

For random K-SAT, we were able to identify several such LP-based easy-hard transitions,

to our knowledge for the first time. For K = 2 this transition is located right at the SAT-UNSAT

transition, beyond which no algorithm can find a solution anyway. Interestingly, for K> 2 K-

SAT does not behave as simple as VC, in that none of the transitions of different variations of

the LP formulation coincides with an obvious percolation transition of the underlying graph

structure. Also the transition to a clustered solution landscape, where replica symmetry is bro-

ken, can not be reached with any of the well known cutting plane classes for SAT. This com-

plex behavior in regard to the LP hardness under scrutiny in this article, might be related to

the more complex behavior of K-SAT anyway. This is true for example for the clustering

behavior of K-SAT, where above the clustering threshold, other changes in the clustering

behavior were detected, like the freezing transition at αf = 4.254(9) [51].

A secondary result of technical nature we noticed, was the strong influence of a carefully

crafted artificial objective function on the prevalence of integer solutions. We think it is worth

to investigate this phenomenon further, as this might be useful when treating decision prob-

lems with an LP approach, like branch and cut. In our case we demonstrated that a crafted

objective function can be more powerful than cutting planes, which are otherwise the main

tool to reach integral solutions in an LP approach.

Notably, we detected for 3-SAT that an LP relaxation with the SMM objective can solve

most realizations up to αSMM = 2.48(13). With a straight forward deterministic iterative round-

ing scheme, it is possible to solve most realizations up to αSMM = 2.98(3) in polynomial time.

We complement our data describing algorithmic easy-hard transitions by further results

concerning the structure of graph representations of K-SAT. Some of these results cover differ-

ent percolation transitions, which were not investigated beforehand. That none of the algorith-

mic transitions presented by us is coinciding with a simple structural property of the graph

representation, despite our expectations set by results on the closely related VC and TSP

problems, is in a way a negative result. However, since the hardness of a problem should be

encoded in its structure, we think that a study examining more complex properties of the

graph or any other representation, could yield insight into the reason for the failure of the LP

approaches beyond certain values of α.
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Inspired by our overall observation that the random K-SAT ensemble behaves differently

than VC on random graphs with respect to the number of observed easy-hard transitions,

future studies could examine whether the transitions which coincided for VC on Erdős-Rényi

graphs will split into distinct transitions on graph ensembles more similar to the instances gen-

erated by the mapping from K-SAT, e.g., exhibiting many small loops. In general the influence

of the ensemble on the type of observed phase-transition behavior is a wide-open problem,

because for each of the so-far studied problems only one or very few “natural” ensembles have

been investigated so far.
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