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Hyperactivity/restlessness is associated with
increased functional connectivity in adults
with ADHD: a dimensional analysis of
resting state fMRI
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Abstract

Background: Adult attention-deficit/hyperactivity disorder (ADHD) is a serious and frequent psychiatric disorder of
multifactorial pathogenesis. Several lines of evidence support the idea that ADHD is, in its core, a disorder of
dysfunctional brain connectivity within and between several neurofunctional networks. The primary aim of this
study was to investigate associations between the functional connectivity within resting state brain networks and
the individual severity of core ADHD symptoms (inattention, hyperactivity, and impulsivity).

Methods: Resting state functional magnetic resonance imaging (rs-fMRI) data of 38 methylphenidate-naïve adults
with childhood-onset ADHD (20 women, mean age 40.5 years) were analyzed using independent component
analysis (FSL’s MELODIC) and FSL’s dual regression technique. For motion correction, standard volume-realignment
followed by independent component analysis-based automatic removal of motion artifacts (FSL’s ICA-AROMA) were
employed. To identify well-established brain networks, the independent components found in the ADHD group
were correlated with brain networks previously found in healthy participants (Smith et al. PNAS 2009;106:13040–5).
To investigate associations between functional connectivity and individual symptom severity, sex, and age, linear
regressions were performed.

Results: Decomposition of resting state brain activity of adults with ADHD resulted in similar resting state networks
as previously described for healthy adults. No significant differences in functional connectivity were seen between
women and men. Advanced age was associated with decreased functional connectivity in parts of the bilateral
cingulate and paracingulate cortex within the executive control network. More severe hyperactivity was associated
with increased functional connectivity in the left putamen, right caudate nucleus, right central operculum and a
portion of the right postcentral gyrus within the auditory/sensorimotor network.

Conclusions: The present study supports and extends our knowledge on the involvement of the striatum in the
pathophysiology of ADHD, in particular, in the pathogenesis of hyperactivity. Our results emphasize the usefulness
of dimensional analyses in the study of ADHD, a highly heterogeneous disorder.

Trial registration: ISRCTN12722296 (https://doi.org/10.1186/ISRCTN12722296).
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Background
Attention-deficit/hyperactivity disorder (ADHD) is a com-
mon and impairing psychiatric disorder characterized by
varying degrees of inattention, hyperactivity, and impulsiv-
ity. ADHD is not limited to children and adolescents. In
40–60% of children with ADHD, the disorder persists into
adulthood [1]. In adults with ADHD, inattention may
present as a lack of concentration, forgetting appoint-
ments, and a failure to plan and organize tasks, while
hyperactivity may be experienced as restlessness and diffi-
culty in relaxing [1, 2]. ADHD symptoms frequently lead
to problems at school and at the workplace as well as to
difficulties with social interaction and relationships [2].
The pathogenesis of ADHD is incompletely under-

stood. Clinical, genetic and experimental evidence sug-
gests that ADHD is a multifactorial disorder, associated
with neurochemical [3], anatomical [4–6] and functional
[7, 8] changes of neuronal networks. The notion that
ADHD is, in its core, a disorder of dysfunctional brain
connectivity within and between several neurofunctional
networks has gained wide acceptance [8, 9].
One way to investigate the circuitry of the brain is to

perform resting state functional magnetic resonance im-
aging (rs-fMRI). In contrast to task-based fMRI, rs-fMRI
measurements record the spontaneous fluctuations of
brain activity during wakeful rest, i.e. in the absence of
an experimental task or stimulation. Using rs-fMRI, sev-
eral distinct resting state networks (RSNs) have been
identified in health and disease [10].
Both in children and adults with ADHD, a dysfunction

of the default mode network (DMN) has been postu-
lated. The DMN is a set of brain regions, including the
posterior cingulate cortex, precuneus, and medial pre-
frontal cortex, which are active during rest and become
deactivated with the initiation of a task [11, 12]. A pio-
neering rs-fMRI study on 20 ADHD adults (mean age:
34.9 years; 16 men) and 20 healthy participants (mean
age: 31.2 years; 14 men) found decreased functional con-
nectivity within the DMN and between posterior regions
of the DMN (i.e., the precuneus and posterior cingulate)
and the dorsal anterior cingulate [13].
Since then, a large number of studies on rs-fMRI in in-

dividuals with ADHD have been published [8]. Most of
these studies have investigated children and adolescents
and performed categorical analyses, comparing func-
tional connectivity between individuals with ADHD and
healthy controls. Several research groups have used the
freely available ADHD-200 sample, consisting of rs-fMRI
data of 285 children and adolescents with ADHD and
491 healthy age-matched controls [14]1 to address differ-
ences in functional connectivity in categorical and di-
mensional analyses [15–17].
Our primary interest lies in adults with ADHD [18, 19].

For this population, only a relatively small number of

studies on resting state functional connectivity is available.
These studies confirmed and extended our pathophysio-
logical knowledge of adult ADHD. However, most studies
investigated adults who have received methylphenidate (for
notable exceptions, see [20]). In addition, most studies on
adult ADHD performed categorical comparisons between
individuals with ADHD and controls. As ADHD is a dis-
order of remarkable clinical heterogeneity, we decided to
investigate functional connectivity within resting state net-
works in relation to ADHD symptom severity in a group of
methylphenidate-naïve adults with childhood-onset ADHD
following a dimensional approach to investigate psychiatric
disorders [21].
To study functional connectivity within neural net-

works, we performed a group independent component
analysis (ICA) with dual regression. The group ICA
identifies a set of independent component maps that are
common to our entire sample. Dual regression is a
mathematical approach that uses these independent
component maps as network templates to identify the
corresponding functional connectivity maps, indicating
the strength of functional connectivity in each subject
(for a detailed explanation, see [22]).

Aim and hypotheses
The aims of the present study are twofold. First, we will
characterize well-established resting state networks, pre-
viously described in healthy individuals, in our sample of
adults with ADHD. Second, we will investigate potential
associations between the functional connectivity in these
networks and the individual severity of core ADHD
symptoms (inattention, hyperactivity, and impulsivity).
We hypothesized that functional connectivity within the
default mode network will be smaller in individuals with
ADHD with increased symptom severity.

Methods
Participants
This study is part of a larger project on structural and
functional changes of the brain in adults with ADHD.
Structural MRIs from this project were analyzed using
surface-based morphometry [23]. Results of task-related
fMRI measurements were reported by Bachmann et al.
[24].
Resting state fMRI data sets from 59 adults with

ADHD were analyzed for this study. Data sets were
taken from a randomized controlled trial that compared
the efficacy of a mindfulness training program (mindful-
ness awareness practice) to an active control condition
(structured psychoeducation) in adult ADHD [25]. A
control group of healthy individuals was therefore not
studied. All datasets analyzed here were recorded at
baseline, i.e. before the mindfulness training program or
psychoeducation started.
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After head motion correction using FSL’s MCFLIRT
[26], 21 individuals were excluded because the max-
imum absolute displacement was > 1.5 mm (half of the
isotropic voxel size). The absolute displacement, as de-
termined by MCFLIRT, summarizes translation and ro-
tation across all three axes for every volume relative to
the middle volume of the rs-fMRI data set [27]. This cri-
terion was chosen according to the rs-fMRI study by
Mostert et al., investigating adults with ADHD using
FSL’s dual regression approach [28]. Thus, the data sets
of 38 individuals with ADHD (20 women) were included
in the final analysis. Demographics and clinical charac-
teristics of this sample are summarized in Table 1. The
distribution of participants’ age is illustrated in Fig. 1a.
The clinical trial is registered in the ISRCTN registry2

(ISRCTN12722296)3 and has been approved by the Eth-
ics Committee of the Faculty of Medicine, University of
Freiburg, Germany. All participants provided written in-
formed consent.
Recruitment of participants has been described previously

[23, 24]. In brief, participants were recruited at the Depart-
ment of Psychiatry and Psychotherapy, Medical Center -
University of Freiburg, Germany and through ADHD sup-
port groups. Inclusion and exclusion criteria have also been
described previously [23, 24]. In brief, we included individ-
uals between 18 and 65 years with childhood-onset ADHD,
who never used methylphenidate.

Diagnosis and clinical data
The diagnosis of ADHD was performed by experienced
psychiatrists following DSM-IV criteria as described pre-
viously [23–25]. ADHD symptom severity was measured
with the Conners Adult ADHD Rating Scales [29] in the
German long version with 66 items [30]. We present the
blind observer-rated CAARS scores (CAARS-O:L) on
the inattention/memory problems, hyperactivity/restless-
ness, and impulsivity/emotional lability subscales. The
distribution of the individual scores on the 3 subscales is
illustrated in Fig. 1b. Psychiatric comorbidities were
assessed using the German version of the Structured
Clinical Interview for DSM-IV (SKID) [31].

MRI data acquisition
Structural and functional images of the brain were acquired
on a 3 Tesla Siemens Magnetom Trio with a 12-channel
head coil at the Freiburg Brain Imaging Center as described
earlier [23, 24]. In brief, a T1-weighted image was acquired
using a three-dimensional MP-RAGE sequence with a
voxel size of 1 × 1 × 1mm3. For the resting state measure-
ment, T2*-weighted BOLD images were obtained with a
voxel size of 3 × 3 × 3mm3 and 36 axial slices with a slice
thickness of 3mm (TR = 2250ms, TE = 30ms, no in-plane
acceleration, 230 brain volumes, time of acquisition: 8:42
min). The field of view covered the entire cerebrum, but

only the most rostral parts of the cerebellum in most par-
ticipants. All participants were instructed to lie quietly and
keep the eyes closed without falling asleep. The resting state
measurement was preceded by the T1-weighted image and
2 runs of a 1-back working memory task (time of acquisi-
tion: 6:16min each) and 2 runs of a stop signal task (time
of acquisition: 6:09min each). These task-based fMRI mea-
surements were not included in the present study. The re-
sults of the 1-back working memory task have been
reported by Bachmann et al. [24].

Preprocessing of fMRI data
Preprocessing of resting state FMRI data was carried out
using FMRIB’s Software Library (FSL, version 5.09)4

Table 1 Demographics and clinical characteristics of all adults
with ADHD included in the final data analysis

Age

Mean ± standard deviation (range) 40.5 ± 10.4 years (21–61
years)

Gender

Women 20 (52.6%)

Men 18 (47.4%)

Education

Secondary school (until grade 9)1 6 (15.8%)

Secondary school (until grade 10)2 11 (28.9%)

High school diploma (until grade 12 or
13)3

15 (39.5%)

University degree 6 (15.8%)

CAARS (observer-rated)

Mean ± standard deviation (range)

Inattention/memory problems 19.8 ± 7.9 (2–31)

Hyperactivity/restlessness 16.4 ± 7.5 (2–27)

Impulsivity/emotional lability 15.6 ± 7.9 (2–32)

ADHD subtype

Combined 31 (81.6%)

Inattentive 7 (18.4%)

Co-morbidities: current axis I disorders

Minor depressive disorder 20 (52.6%)

Anxiety disorder 7 (18.4%)

Obsessive-compulsive disorder 2 (5.3%)

Co-morbidities: lifetime axis I disorders

Substance dependence 7 (18.4%)

Eating disorder 4 (10.5%)

Co-morbidities: lifetime axis II disorders

Avoidant personality disorder 5 (13.2%)

Obsessive-compulsive personality
disorder

2 (5.3%)

Dependent personality disorder 1 (2.6%)

German: 1Hauptschulabschluss, 2Realschulabschluss, 3Abitur
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[32–34]. Preprocessing included removal of the first 5 vol-
umes to allow for signal equilibration (225 volumes were
retained) and head motion correction by
volume-realignment to the middle volume using
MCFLIRT [26]. Brain extraction was performed using
BET [35]. Spatial smoothing with a Gaussian kernel of 6
mm full width at half maximum (FWHM) and
grand-mean intensity normalization of the entire dataset
by a single multiplicative factor were also done.
After performing standard data preprocessing, without

temporal filtering, independent component analysis-based
automatic removal of motion artifacts (FSL’s ICA-AROMA
version 0.3 beta)5 was used to identify and remove
motion-related ICA components from fMRI data. Here, the
‚non-aggressive‘ option was used, performing a partial com-
ponent regression. ICA-AROMA carries out probabilistic
ICA of individual subjects’ rs-fMRI data using multivariate
exploratory linear decomposition into independent compo-
nents (FSL’s MELODIC, version 3.14) [36], employs four
theoretically motivated temporal and spatial features to se-
lect motion-related components from MELODIC’s output
and finally removes these components from the initial data
set through an ordinary least squares regression using FSL’s
fsl_regfilt command [37]. ICA-AROMA is an effective strat-
egy for removing motion-related artifacts from rs-fMRI
data, preserving signal of interest and increasing the repro-
ducibility of resting state networks [38, 39]. ICA-AROMA
does not require study-specific training (i.e. manual

classification of artifact- and non-artifact-related independ-
ent components) and is thus a robust and generalizable
approach.
The de-noised data sets were then high-pass filtered

with a cutoff of 150 s (0.007 Hz). Registration of func-
tional to high resolution structural images was carried
out using boundary-based registration [40] in FLIRT
[26]. Registration from high resolution structural to
Montreal Neurological Institute (MNI152) standard
space was further refined using 12-parameter affine
transformation and non-linear registration with a warp
resolution of 10 mm in FNIRT.6

Identification of resting state networks
To identify RSNs common to adults with ADHD, all data
sets (n = 38, preprocessed and de-noised with
ICA-AROMA as described above) were concatenated in
temporal order to create a single data set. This
concatenated data set was then decomposed into 20
spatially independent components using group ICA with
MELODIC. A low-dimensional decomposition was
chosen to facilitate the comparison of RSNs in adult
ADHD with those identified in healthy adults [10, 41, 42].
These 20 components will be used as template maps for
dual regression (see next section).
To investigate the occurrence of previously described

RSNs in adult ADHD, a spatial cross-correlation be-
tween these 20 independent components in our sample

A B

Fig. 1 1a. The distribution of age in the analyzed sample of 38 adults with ADHD. 1b. The distribution of the scores on the CAARS inattention/
memory problems, hyperactivity/restlessness, and impulsivity/emotional lability subscales. The red diamond represents the mean, the error bars
the standard deviation in both parts of the figure
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and the 20 independent components identified previ-
ously [10] was calculated using FSL’s fslcc command. MR
image files of Smith et al.’s template networks [10] are
available for download.7 For further analysis and
visualization (Fig. 3), 10 canonical RSNs in our data were
chosen that showed a high spatial correspondence (>
0.4) with the well-established RSNs published by Smith
et al. [10].

Statistical analysis of resting state networks
To investigate the associations between RSNs and clinical
data (sex, age, and ADHD symptom severity), FSL’s dual_-
regression script (version 0.5) was used [22, 43]. In the first
stage of dual regression, the full set of 20 template maps
(the 20 independent components identified by group ICA)
was regressed against each participant’s 4-dimensional
rs-fMRI data set, resulting in 20 time series per partici-
pant, one for each template map. In the second stage of
dual regression, the component-specific time series were
variance-normalized and regressed against each partici-
pant’s rs-fMRI data set to identify participant-specific
spatial maps corresponding to the 20 template maps.
To identify differences between women and men

within the 10 canonical networks, a voxel-wise
two-sample unpaired t-test with age as regressor of no
interest was performed on the participant-specific spatial
maps for each network using a general linear model. To
identify associations between age and functional con-
nectivity within the 10 canonical networks, age was used
as regressor of interest with sex as regressor of no inter-
est in the general linear model. To identify associations
between ADHD symptom severity and functional con-
nectivity within the 10 canonical networks, the individ-
ual scores on the inattention/memory problems,
hyperactivity/restlessness, and impulsivity/emotional la-
bility CAARS subscales were used as separate regressors
of interest with sex and age as regressors of no interest.
For non-parametric permutation testing, FSL’s random-
ise (version 2.9) was used with 5000 permutations [44,
45]. Statistical thresholding was performed with FSL’s
threshold-free cluster enhancement (TFCE) [46] and a
family-wise error rate (FWE) of p smaller than 0.05. As
the existing literature does not support specific hypoth-
eses regarding the association between whole-brain net-
works and symptom severity in adult ADHD, this study
needs to be exploratory. We decided not to perform cor-
rection for multiple comparisons (e.g. Bonferroni correc-
tion). To reduce the risk of false positive activation, we
only accepted clusters larger than 100 voxels.

Results
Head motion
Figure 2 shows maximum head motion for every partici-
pant, expressed as absolute displacement (relative to the

middle volume of the data set) and estimated by FSL’s
MCFLIRT. Across all participants, mean maximum head
motion was 0.71 mm (SD: 0.32 mm). In the majority of
participants, maximum head motion was smaller than 1
mm.

Resting state networks in adult ADHD
After low-dimensional decomposition with MELODIC,
the following RSNs, described by Smith et al. [10], were
also found in our sample: the visual, default mode, sen-
sorimotor, auditory, executive control, and bilateral
fronto-parietal networks. The DMN, one RSN in the
study by Smith et al. [10], is decomposed into two net-
works in our analysis, a ventral and a dorsal DMN. The

Fig. 2 Maximum head motion (absolute displacement) for all 38
adults with ADHD. The figure shows the maximum value of absolute
displacement (mm), which summarizes translation and rotation
across all three axes for every volume relative to the middle volume
of the rs-fMRI data set
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cerebellar RSN, found by Smith et al., did not appear in
our study because of the incomplete coverage of the
cerebellum during rs-fMRI scanning. Figure 3 illustrates
the 10 RSNs identified in our sample of adults with
ADHD (components 1–8, 10, 13 of the original
20-component group ICA).
Additional file 1 Appendix 1 summarizes the 10 com-

ponents that were excluded from further analyses (com-
ponents 9, 11, 12, 14–20 of the original 20-component
group ICA). Of those, component 9 is truncated because
of incomplete coverage of the cerebellum. Component
11 shows strong activation of the anterior cingulate,
similar to the executive control network included in fur-
ther analysis (component 6 in Fig. 2). Component 12
shows strong activation in the bilateral inferior frontal

and temporal lobes, similar to the auditory and
fronto-parietal networks included in further analysis
(components 4, 9 and 10 in Fig. 2). The remaining com-
ponents display primarily artifactual signal changes (i.e.,
non-neuronal noise).

Differences in functional connectivity between women
and men with ADHD
An independent t-test with age as covariate of no inter-
est did not reveal significant differences in functional
connectivity between women and men in our sample.

Associations between functional connectivity and age
In ADHD participants with advanced age, a signifi-
cant decrease of functional connectivity was found in

Fig. 3 Ten resting state networks (RSNs) identified in a sample of 38 adults with ADHD, corresponding to the 10 RSNs found by Smith et al. [10].
Brain images are displayed in radiological convention (the right hemisphere appears on the left side of the image)
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the executive control network (IC 6), covering parts
of the bilateral anterior cingulate cortex and the bilat-
eral paracingulate cortex (Fig. 4).

Associations between functional connectivity and ADHD
symptom severity
In ADHD participants with higher scores on the CAARS
hyperactivity/restlessness subscale, increased functional
connectivity was found within the auditory/sensorimotor
RSN (IC 5). These areas cover parts of the left putamen,
right caudate nucleus, right central operculum and a
portion of the right postcentral gyrus (Fig. 5, Table 2).
Scores on the inattention/memory problems and impul-
sivity/emotional lability subscales were not associated
with changes in functional connectivity.

Discussion
This study on 38 methylphenidate-naïve adults with
ADHD has three main findings. First, on the group
level, decomposition of resting state brain activity of
adults with ADHD resulted in similar RSNs as previ-
ously described for healthy adults [10]. Second, ad-
vanced age was associated with decreased functional
connectivity in parts of the bilateral cingulate and
paracingulate cortex within the executive control net-
work. Third, higher scores on the CAARS hyperactiv-
ity/restlessness subscale were associated with
increased functional connectivity in cortical and sub-
cortical areas within the auditory/sensorimotor
network.

Resting state networks in adult ADHD
The RSNs found in our ADHD sample demonstrated
a close correspondence to previously published RSNs
in healthy adults [10]. The RSNs by Smith et al. [10]
were derived from a group of 36 healthy individuals
(15 women), similar in size to our sample. Moreover,

rs-fMRI measurements by Smith et al. [10] and for
our study were performed with identical scanner
hardware (a 3 T Siemens Magnetom Trio with a
12-channel head coil).

Decreased functional connectivity with advanced age in
adult ADHD
To the best of our knowledge, the association between
functional connectivity and age has not been investi-
gated in adults with ADHD before. Here, we found a de-
crease of functional connectivity in the bilateral
cingulate and paracingulate cortices within the executive
control network in older ADHD participants (Fig. 4). In
a previous study, we analyzed the structural MRIs ac-
quired for this trial (n = 64) to determine cortical thick-
ness and subcortical gray matter volumes using
surface-based morphometry and subcortical segmenta-
tion as implemented in FreeSurfer [23]. Interestingly, we
found wide-spread cortical thinning and subcortical vol-
ume reduction associated with aging in adults with
ADHD, but no significant decrease of cortical thickness
in the bilateral cingulate and paracingulate cortices.
These structural findings suggest that the age-related
decrease in functional connectivity is a genuine
phenomenon of brain function and not an epiphenom-
enon of gray matter loss.
Changes in functional connectivity as a function of age

have been described previously in healthy aging [47, 48].
Thus, the observed decrease of functional connectivity
in the bilateral cingulate and paracingulate cortex may
be specific to ADHD or may be caused by unspecific
aging processes. Of note, we did not find a decrease of
functional connectivity in the default mode network in
older individuals with ADHD. In healthy aging, a de-
crease of default mode connectivity is a widely replicated
finding [47, 48].

Fig. 4 Regions of decreased functional connectivity in older individuals with ADHD within the executive control network (IC 6 in Fig. 2). The
significant cluster covers parts of the bilateral anterior cingulate cortex and the bilateral paracingulate cortex (cluster size: 493 voxels). The
coordinates of the voxel with highest significance are: x = − 2 mm, y = 42 mm, z = − 2 mm (p = 0.004). Brain images are displayed in radiological
convention (the right hemisphere appears on the left side of the image).
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Increased functional connectivity with higher scores on
the hyperactivity/restlessness subscale in adult ADHD
We also found increased functional connectivity in parts
of the bilateral striatum (in particular, left putamen and
right caudate nucleus), right central operculum and right
postcentral gyrus in participants with higher scores on
the CAARS hyperactivity/restlessness subscale (Fig. 5).
The basal ganglia are a set of subcortical nuclei that sub-
serve motor control, various cognitive functions and
emotional processing, with the striatum being the pri-
mary input nucleus [49]. More recently, evidence has ac-
cumulated that the basal ganglia are also involved in
behavioral and neural inhibition in motor and
non-motor functions [50].
Dysfunction of the basal ganglia and fronto-striatal cir-

cuits has long been suggested to be one of the core
pathomechanisms of ADHD. This notion has been sup-
ported by the dopaminergic effects of methylphenidate,
the major pharmacological treatment for ADHD. The
reduction of subcortical gray matter in children with
ADHD [4–6] appears to normalize in adults [6] and is
probably not involved in basal ganglia dysfunction in
adults with ADHD. In a recent analysis of the structural
MRIs of more than 500 adults with ADHD (> 21 years)
and more than 400 healthy controls, no significant dif-
ference in volume was found for any of the subcortical

nuclei under investigation, including the caudate nu-
cleus, putamen and pallidum [6].
Functional MRI of inhibitory control in adult ADHD

led to inconsistent results [51]. Sebastian et al. [52] per-
formed fMRI in stimulant-naïve adults with ADHD during
three different experimental tasks probing interference in-
hibition, action withholding and action cancelation. This
study disclosed hypoactivation of the basal ganglia during
action withholding and action cancelation [52]. By con-
trast, a quantitative meta-analysis of fMRI studies on in-
hibitory control in 100 adults with ADHD in total
(including individuals receiving long-term stimulant medi-
cation) concluded that adults with ADHD have hypoacti-
vation of the right inferior frontal cortex and right
thalamus relative to controls, but no hypoactivation of the
basal ganglia [53].
A recent study by Mostert et al. [28] compared

rs-fMRI in 99 adults with ADHD with 113 healthy indi-
viduals and found stronger functional connectivity in the
anterior cingulate gyrus of the executive control RSN,
but no differences in connectivity in the basal ganglia or
the default mode network.
The aforementioned studies performed categorical

comparisons between individuals with ADHD and
healthy controls. ADHD, however, is characterized by a
remarkable phenotypic and genetic heterogeneity [54,
55] and comparisons on the group level may fail to un-
cover neural dysfunction in heterogeneous ADHD sam-
ples. For this reason, we performed dimensional analyses
with the individual levels of symptom severity as con-
tinuous regressors [56] which enabled us to detect asso-
ciations between a clinical parameter (hyperactivity/
restlessness) and resting state brain activity.
In a large sample of adolescents with ADHD, Oldehin-

kel et al. [57] performed both categorical and dimen-
sional analyses of functional connectivity in striatal
networks. Comparing 169 adolescents with ADHD and
122 healthy individuals did not reveal functional

Fig. 5 Regions of increased functional connectivity in adults with ADHD with higher scores on the CAARS hyperactivity/restlessness subscale
within the auditory / sensorimotor resting state network. Location, p-values and cluster sizes are summarized in Table 2. Brain images are
displayed in radiological convention (the right hemisphere appears on the left side of the image)

Table 2 Regions of increased functional connectivity in adults
with ADHD with higher scores on the hyperactivity/restlessness
subscale

Region No. of voxels x (mm) y (mm) z (mm) p-value

L putamen 461 −19.3 6.4 −4.3 0.009

R caudate 372 17.2 13.6 8.4 0.011

L postcentral gyrus 235 67.4 −4.3 31.2 0.019

R central operculum 224 61.7 −3.8 6.3 0.014

The x, y, and z coordinates represent the center of gravity of the entire cluster
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differences in striatal networks. A dimensional analysis,
by contrast, demonstrated an association between in-
creased hyperactivity/impulsivity scores and increased in-
attention scores with increased functional connectivity in
the networks of posterior putamen and ventral caudate
[57]. Similarly, in children with the hyperactive-impulsive
subtype of ADHD, increased connectivity in the
cortico-striatal network was found, whereas children with
the inattentive subtype showed increased connectivity in
the ventral attention network [58]. The results of the
present study corroborate the findings of Oldehinkel et al.
[57] and Sanefuji et al. [58]. In summary, a dimensional
approach may be better suited to identify changes in
basal ganglia connectivity [57, 58] than a categorical
approach [28].
Contrary to our initial hypothesis, no significant asso-

ciations between functional connectivity within the ven-
tral and dorsal DMNs and the symptom severity scores
were identified in the present study. This result is also in
contrast to previous studies in childhood, adolescent and
adult ADHD, describing weaker connectivity within the
DMN in individuals with ADHD vs. controls [8]. In
adult ADHD, decreased functional connectivity was
found between the anterior cingulate and the precu-
neus/posterior cingulate cortex regions in a seed-based
analysis [13] and between the precuneus and other areas
of the DMN using a network homogeneity analysis [59].
By contrast, the large study on resting state functional
connectivity by Mostert et al. consisting of 99 adults
with ADHD, using group ICA and dual regression very
similar to the present study, did not find differences in
DMN connectivity between adults with ADHD and con-
trols. Taken together, the involvement of the DMN in
adult ADHD is not well established. Future studies are
needed with larger sample sizes, comparing and integrat-
ing the results of different analysis strategies.

Strengths and limitations
Our study comprises a clinically-well characterized sample
of 38 methylphenidate-naïve adults with ADHD. Many
studies in the field include participants with long-term
stimulant medication as well (and discontinue medication
~ 24–48 h before fMRI, e.g. [28, 57]. Investigating a
stimulant-naïve sample is beneficial because of potential
effects of long-term stimulant medication on brain struc-
ture and function [60, 61]. Another strength of our study
is a stringent two-step head motion correction with a
standard motion correction with volume-realignment and
an additional ICA-based de-noising of the preprocessed
data sets.
Limitations of our study are the absence of a healthy

control group, which prevented us from performing cat-
egorical comparisons between adults with ADHD and
healthy individuals. Moreover, the fMRI scans used for

this study did not cover the entire cerebellum, a struc-
ture, which has been implicated in the pathogenesis of
ADHD [62].
Future studies of resting state brain activity in ADHD

should make use of advanced imaging techniques that
allow a considerable reduction of the TR (simultaneous
multislice imaging) [63].

Conclusions
This study corroborates and extends our knowledge on
the involvement of the striatum in the pathophysiology
of ADHD, in particular, in the pathogenesis of hyper-
activity. Moreover, we found, for the first time, a de-
crease of functional connectivity in the bilateral
cingulate and paracingulate cortices within the executive
control network in older individuals with ADHD. Sig-
nificant associations between functional connectivity in
the default mode network and symptom severity, sex or
age were not found. Our results emphasize the useful-
ness of dimensional analyses with individual symptom
severity and age as regressors in the study of ADHD, a
highly heterogeneous disorder.

Endnotes
1http://fcon_1000.projects.nitrc.org/indi/adhd200/
2https://www.isrctn.com
3https://doi.org/10.1186/ISRCTN12722296
4http://www.fmrib.ox.ac.uk/fsl
5https://github.com/rhr-pruim/ICA-AROMA
6https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT
7https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns
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