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Zusammenfassung

Obwohl ökologische Gemeinschaften von Natur aus im physikalischen Raum exi-
stieren, vernachlässigten erste ökologische Modelle diese räumliche Natur. Einige
Resultate dieser Modelle legen nahe, dass Artengemeinschaften nur aus wenigen
Arten bestehen und Nahrungsnetze so simpel wie möglich sein sollten. Dies steht
im Widerspruch zum großen Artenreichtum und zu komplexen Nahrungsnetzen,
die in der Realität beobachtet werden können. Ökologische Modelle in einen räum-
lichen Kontext einzubetten, kann dabei helfen diesen Widerspruch aufzulösen. Das
heißt, dass die räumliche Ausbreitung von Artengemeinschaften zum Beispiel dazu
führen kann, dass mehr Arten koexistieren können, als in einem nicht-räumlichen
Modell. Dazu reicht es grundsätzlich aus, den Raum nur sehr indirekt in öko-
logische Modelle einzubeziehen und dabei die tatsächliche Struktur des Raumes
beziehungsweise die Anordnung von Teilhabitaten komplett zu vernachlässigen.
Diese räumliche Struktur kann Modellresultate jedoch signifikant beeinflussen und
im Extremfall sogar über das Überleben oder Aussterben einer Art entscheiden.
Gerade im Kontext der fortschreitenden, menschenverursachten Zerstörung und
Fragmentierung von Lebensräumen, gewinnt die explizite räumliche Struktur der
verbleibenden Lebensräume an Bedeutung.

Von einem rein akademischen Standpunkt aus betrachtet, kann die Einbeziehung
der räumlichen Struktur nicht nur dazu verwendet werden ihren Einfluss auf Mo-
dellergebnisse zu untersuchen, sondern diese Ergebnisse können auch räumlich auf-
gelöst werden. Letzteres heißt, dass räumliche Muster ökologischer Größen, wie
etwa der Länge von Nahrungsketten oder der Anwesenheit einzelner Arten, be-
schrieben werden können. In dieser Arbeit geht es genau um diese doppelte Rolle
der räumlichen Struktur in ökologischen Modellen. Dazu kombinieren wir ein
bestehendes Modell zur Beschreibung von Meta-Nahrungsnetzen mit expliziten,
räumlichen Habitaten, untersuchen räumliche Muster von Nahrungskettenlängen
und der Präsenz einzelner Arten, und erklären die beobachteten Muster mithilfe
der räumlichen Habitatstruktur.

Das verwendete Meta-Nahrungsnetzmodell basiert auf dem Zusammenspiel von
Kolonisierungen und dem lokalen Aussterben der Arten. Lokal müssen die Arten
zudem Einschränkungen durch ihre trophischen Beziehungen genügen. Im Detail
bedeutet dies, dass ein Räuber zum Überleben die Anwesenheit einer passenden
Beuteart benötigt, und dass nur ein Räuber pro Beuteart überleben kann (Kon-
kurrenzausschlussprinzip zwischen verschiedenen Räubern für eine gemeinsame
Beute). Die Dynamik des Modells kann sowohl durch (näherungsweise) Diffe-
rentialgleichungen sowie durch stochastische Simulationen beschrieben und gelöst
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werden. Wir gelangen in dieser Arbeit zu den folgenden drei Hauptresultaten:

1. Wenn das Gesamthabitat eine regelmäßige, gitterähnliche Struktur aufweist,
und das zugrundeliegende Nahrungsnetz eine einfache Nahrungskette ist, ist
die erwartete Nahrungskettenlänge im Zentrum des Habitats maximal und
nimmt zum Rand hin ab, obwohl das Modell keine anderen, räumlich variie-
renden Umweltfaktoren miteinbezieht. Das Resultat kann als Erweiterung
des sogenannten mid-domain effects für den Artenreichtum zu einem mid-
domain effect für die Nahrungskettenlänge betrachtet werden.

2. Wir verallgemeinern das obige Resultat auf Habitate, die durch unregelmä-
ßige Zufallsnetzwerke beschrieben werden und beobachten, dass die Nah-
rungskettenlänge mit der Zentralität der Habitatfragmente zunimmt. Das
Konzept der Zentralität dient grundsätzlich dazu die ‘Wichtigkeit’ oder ‘Ver-
bundenheit’ eines Netzwerkknotens (in unserem Kontext eines Habitatfrag-
ments) zu charakterisieren, und zu diesem Zweck existiert eine Vielzahl an
sogenannten Zentralitätsmaßen. Wir führen ein weiteres Zentralitätsmaß
ein, das in unseren Studien eine stärkere Korrelation zur Nahrungsketten-
länge aufweist als alle anderen ebenfalls betrachteten Zentralitätsmaße.

3. Die Konkurrenz zwischen einem spezialisierten Räuber und mehreren om-
nivoren Räubern für teilweise gemeinsame Beutearten führt zu einer Auf-
teilung des Habitats in räumliche Nischen. In einem regelmäßigen, gitter-
ähnlichen Habitat ist der spezialisierte Räuber im Zentrum des Habitats
besonders präsent, während die omnivoren Räuber sukzessive zu den Rän-
dern gedrängt werden. Wir zeigen, dass die Entstehung dieser räumlichen
Nischen auch für Arten in einer reinen Konkurrenzgemeinschaft stattfindet.

All diese Resultate haben gemeinsam, dass sie allein durch das Zusammenspiel
der räumlichen Dynamik, in einem beschränkten Habitat mit expliziter räumli-
cher Struktur, und der Interaktion der Arten untereinander entstehen. Dies steht
im Kontrast zu vielen anderen ökologischen Studien, die ökologische Größen (und
deren räumliche Muster) wie etwa Populationsgrößen, Artenreichtum und Nah-
rungskettenlänge durch andere Umweltfaktoren (und deren räumliche Variation)
wie etwa Temperatur, Lichteinfall und Ressourcenangebot erklären. Unsere Resul-
tate verdeutlichen, dass, unabhängig von solchen (variierenden) Umwelteinflüssen,
allein die räumliche Position innerhalb eines größeren Habitats ein bestimmender
Faktor für solche ökologischen Größen sein kann.
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Abstract

Species communities are naturally embedded into space, yet early ecological mod-
els describing species dynamics neglect this spatial context. Results of these models
indicate that species communities and food webs should be small and simple. This
is in contrast to the observation that real communities and food webs are often
large and complex. Incorporating space into ecological models can help resolve
this contradiction. For example, in a spatial model species can regionally coexist
even if they competitively exclude each other locally, which would prevent their
coexistence in a non-spatial model. Early models of spatial ecology incorporated
space in an implicit way, meaning that habitats had no explicit spatial structure.
This spatial structure can, however, influence model results, in the extreme case
deciding over the persistence of a species, and is particularly interesting in the
context of ongoing human-caused habitat destruction and fragmentation.
More theoretically, when including the explicit spatial structure in an ecological
model one can not only investigate how the spatial structure influences model re-
sults, but one can also spatially resolve these results and thus investigate emergent
spatial patterns of ecological quantities like food chain length or the presence of
individual species. It is exactly this twofold role of the spatial structure that we
are concerned with in this thesis. More specifically, we here combine an estab-
lished meta-food-web model with spatially explicit habitat networks, investigate
spatial patterns of food chain length as well as of individual species, and explain
the observed patterns by the spatial structure of the habitat.
The used meta-food-web model is based on colonization-extinction dynamics, and
the species are locally restricted by their trophic relations. Precisely, on a given
habitat patch a predator needs a prey to persist and only one predator can per-
sist on one prey. The latter amounts to the local application of the competitive
exclusion principle between different predators for a common prey. The model dy-
namics can be described and solved either via (approximate) differential equations
or stochastic simulations. Our three main results are as follows:

1. On regular, lattice-like habitats, and when the underlying food web is a
simple chain, the expected food chain length is maximal in the center of
the habitat and decreases towards the boundaries even in the absence of
environmental gradients. This amounts to the extension of the mid-domain
effect for species richness to a mid-domain effect for food chain length.

2. We generalize this result to non-regular, random habitat networks and find
that food chain length increases with the centrality of a patch. The concept
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of centrality is generally used to describe in some sense the ‘importance’ or
‘connectedness’ of a patch within a network, and there exist many different
so-called centrality measures. We introduce a new centrality measure and
find that in our study this new measure is more strongly correlated to food
chain length than all other considered centrality measures.

3. We find that the competition for common prey between a specialist predator
and several omnivores leads to a spatial niche partitioning between these
species. The specialist predator dominates the mid-domain of a regular,
lattice-like habitat while more omnivorous species are driven successively
towards the boundary. We show that this spatial niche partitioning can also
be found for species in a purely competitive community.

All these results have in common that they are solely caused by the interplay
between the spatial dynamics on structured, constrained habitats and the species
interactions. This is in contrast to many other ecological studies that consider
environmental factors like temperature, light, and resource availability (and their
spatial variations) as determinants of (spatial patterns of) ecological quantities
like species abundances, species richness, or food chain length. Our results demon-
strate that even in the absence of spatially varying environmental conditions the
mere position of a patch within a larger habitat might be an important determi-
nant of such ecological quantities on the given patch.
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About this thesis

The main part of this thesis (Part II) consists of three research chapters that
are written in the form of scientific articles. The first research chapter (Chapter
5: Mid-domain effect for food chain length) was co-authored by my supervisor
Prof. Dr. Bernd Blasius, and, at the time of submitting this thesis, has been
submitted to a scientific journal. Concerning the contributions to Chapter 5:
Bernd Blasius conceived the study, I implemented the model and performed the
study, and both of us prepared the manuscript. For the other research chapters
and the rest of the thesis no co-authors were involved. The reason for using we
instead of I in these parts of the thesis as well is to include the reader.
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1 Background, scope, and outline

One of the prime goals of ecology is to understand the assembly and persis-
tence of complex ecosystems. In contrast to the high biodiversity of many
real systems, early ecological principles seem to suggest rather limited di-
versity. The competitive exclusion principle, for example, states that two
directly competing species cannot coexist (Grinnell, 1904; Volterra, 1931;
Lotka, 1932; Gause, 1932, 1934; Hardin, 1960). Competitive exclusion can
be avoided if species have, for example, different limiting resources, feeding
habits, or abiotic preferences, that is, if they occupy different ecological niches
(Grinnell, 1917; Elton, 1927; Hutchinson, 1957; MacArthur and Levins, 1967;
Leibold, 1995; Pocheville, 2015). Alternatively, neutral theory can explain the
assembly of diverse communities by dispersal even if species are competitively
equivalent (Hubbell, 2001; Bell, 2001). Similarly, colonization-extinction dy-
namics of a metacommunity can lead to the regional coexistence of an in
principle arbitrary number of competitors, if weaker competitors are bet-
ter colonizers (Tilman, 1994). Thus, spatial dynamics are likely to play a
crucial role in the assembly and persistence of diverse communities. For
this, a habitat does not need to be spatially heterogeneous, favoring different
species at different locations, but the mere embedding of the system in a
spatial context, combined with simple spatial dynamics, is sufficient.
A similar story can be told about trophically interacting communities. Again,
early theory predicts that small food webs with few and weak interactions
should be the most stable ones (Gardner and Ashby, 1970; May, 1972, 1973),
while in reality large and complex food webs are observed (Warren, 1989;
Martinez, 1991; Polis, 1991; Havens, 1992; Goldwasser and Roughgarden,
1993). One part of the solution to this apparent contradiction is again to
incorporate space into food web models. Spatial dynamics can, for example,
have stabilizing effects on predator-prey interactions (Hassell et al., 1991;
de Roos et al., 1998; Holt, 2002; McCann et al., 2005), lead to the emergence
of complex food webs on a regional scale even if locally only food chains are
allowed (Pillai et al., 2010, 2011), and promote the persistence of complex
food webs (Gravel et al., 2011a; Mougi and Kondoh, 2015).
Many spatial models, in particular the metacommunity and meta-food-web
models by Tilman (1994) and Pillai et al. (2010), do not require an explicit
spatial structure. In these models it is sufficient that space is incorporated via
a habitat that is divided into many patches all of which are connected to each
other. In reality, however, habitats always have an explicit spatial structure,
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and there are good reasons to take this structure into account. For exam-
ple, when working on biodiversity conservation strategies one is faced not
only with habitat destruction but also with ongoing habitat fragmentation
caused by deforestation, agricultural use, urbanization, road constructions,
and other anthropogenic influences (Skole and Tucker, 1993; Vitousek et al.,
1997; Broadbent et al., 2008). For finding proper conservation strategies it
is thus necessary to investigate the effects of this fragmentation (Saunders
et al., 1991; Komonen et al., 2000; Hiebeler, 2000; Fahrig, 2003; Liao et al.,
2017b).
From a more theoretical point of view, incorporating the explicit spatial
structure into ecological models can be important for two reasons. First, the
spatial structure can affect the results of model dynamics, for example food
chain length results in a meta-food-web model, and second, the structure al-
lows to spatially resolve these results and thus make spatial patterns visible.
In combination, these two aspects mean that by using spatially explicit mod-
els one can investigate the effects of the spatial structure on resulting spatial
patterns of interesting ecological quantities. This is exactly the scope of this
thesis. More precisely, in this thesis we model the dynamics of spatially
explicit meta-food-webs in the food web framework by Pillai et al. (2010),
look for spatial patterns of food chain length and distributions of individual
species, and link these patterns to the spatial structure of the habitat.
The rest of the thesis is structured as follows: Since both food webs and
spatially explicit habitats can be represented as networks, we begin with an
introduction to network theory in Chapter 2. In Chapter 3 we sketch the
development from the metapopulation concept by Levins (1969) to the meta-
food-web model by Pillai et al. (2010) and show how to implement spatial
networks into these models. In Chapter 4, at the end of the introductory
Part I, we briefly foreshadow the research chapters and explain how they are
related to each other. Part II is the main body of this thesis and consists of
the three research chapters: Mid-domain effect for food chain length (Chapter
5), Food chain length and the SIS centrality (Chapter 6), and Spatial niche
partitioning in food webs (Chapter 7). In Part III we conclude the thesis
with a final discussion bringing together the results of all research chapters.
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2 Networks

In this thesis we consider the spatial dynamics of species forming a food web.
Both space (habitats) and food webs can be represented as networks, thus
sharing the same theoretical framework. As a consequence, understanding
the basics of network theory is helpful for understanding this thesis. But
also beyond this thesis, networks are ubiquitous in science and in the real
world. Examples of networks, or where networks can be applied, are the
internet, social networks, protein interaction networks, electrical power grids,
transportation networks, disease spreading, and brain modelling, to name
only a few. Studying networks is thus interesting from a more general point
of view and being able to work with networks can open access to many
applications.

2.1 Introduction to network theory

Here we introduce some basic concepts and terminology of network theory
that are used throughout the thesis. Since the food webs that we consider
in this thesis are rather small, the theory is mainly required for the spatial
(habitat) networks. Additional concepts are introduced when needed. Rec-
ommendable books for further reading into the theory of networks and its
applications are Networks: An Introduction by Newman (2010) and Network
Science by Barabási (2016). Large parts of this introduction are based on
the first book.
Note that we sometimes also refer to networks as graphs. While the two
terms are often used interchangeably, the term ‘graph’ actually refers to the
mathematical concept while the term ‘network’ is typically used when graphs
are applied to real world systems.

2.1.1 Definition and basics

A network consists of nodes (or vertices) representing certain units and links
(or edges) indicating possible interaction between pairs of nodes. In a food
web, for example, the nodes represent species and the links encode the feed-
ing relations between them, thus telling us who eats whom. In a food web
links are typically directed since one species is the predator and the other
one is the prey. If both species can prey on each other, two oppositely di-
rected links can be placed between them. If the interaction between the
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nodes is symmetric, an undirected link is used. In principle it is also pos-
sible to have multiple undirected links between two nodes, either indicating
different types of interaction, or for a more convenient mathematical treat-
ment of certain network models. If a network has only (un)directed links
we call the whole network (un)directed. In an undirected network we also
refer to two connected nodes as neighbours. So-called self links indicate the
possibility of a node affecting itself. In our example of a food web a self
link represents cannibalism. Finally, one distinguishes between weighted and
unweighted networks. In an unweighted network all links have the same
strength (which may not be specified at all or simply be set to unity) while
in weighted networks different links may have different strengths. In this
thesis we consider only unweighted networks without self links or
multiple links. Food webs are directed while spatial networks are
undirected. In the following we typically denote the number of nodes of a
network by N .

2.1.2 Representations of networks

Fig. 2.1 (left) shows a graphical visualization of a simple undirected, un-
weighted network. While such a graphical visualization may be the most
natural representation of a network, it is not very helpful from a mathe-
matical point of view or when we want to use the network in a computer
program. One way to formally describe a network is to write down its ad-
jacency matrix. The adjacency matrix is an N × N square matrix whose
elements encode the links between the nodes. If there is no link from node i
to node j then Aij = 0. In an unweighted network the presence of a link is
indicated by Aij = 1. Other values of Aij may be used to indicate weights or
multiple links from i to j. The adjacency matrix of an undirected network is
symmetric, that is, Aij = Aji. For a network without self links all diagonal
elements satisfy Aii = 0. The adjacency matrix of the network from Fig. 2.1
reads

A =


0 1 1 0 1
1 0 0 0 1
1 0 0 0 1
0 0 0 0 1
1 1 1 1 0

 . (2.1)

Adjacency matrices are easy to implement in a computer program and,
amongst others, tasks like checking if two nodes are connected as well as
adding or removing a link can be performed quickly on adjacency matrices.
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Figure 2.1: Left: visualization of a simple undirected, unweighted network con-
sisting of N = 5 nodes. Right: corresponding degree distribution showing the
frequencies, or empirical probabilities, P (m), of all occurring degrees, m, in the
network.

Some other tasks, however, can be performed faster using other representa-
tions of the network. For example, finding all neighbours of a node requires
checking all matrix elements in one row or column. In addition, if a network
is sparse, that is, if it has a rather small number of realized links compared
to all possible links, the adjacency matrix consists mainly of zeros, meaning
that it occupies unnecessarily much memory on a computer. As a solution
to this latter problem many programming languages offer sparse matrix rep-
resentations that require much less memory.
An alternative representation of a network is the adjacency list. For each
node i the adjacency list contains all neighbours j of i. For a directed network
one can define two lists by using either all outgoing links from node i or all
ingoing links into node i. For the network from Fig. 2.1 the adjacency list
reads,

node 1 2 3 4 5
neighbours 2, 3, 5 1, 5 1, 5 5 1, 2, 3, 4 .

We also write it more compactly as E = {[2, 3, 5] , [1, 5] , [1, 5] , [5] , [1, 2, 3, 4]},
where the ith element of the outer list {·} is the list of all neighbours of node
i. Tasks like finding all neighbours of a node can be achieved much faster
when using an adjacency list compared to an adjacency matrix, since with
an adjacency list one simply has to read the part of the list corresponding
to the node of interest. Other tasks, like checking if two nodes share a link,
require more time. For sparse networks the adjacency list requires much less
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memory than the adjacency matrix. The choice between adjacency matrix
and adjacency list should thus be made depending on the size and ‘sparseness’
of the network as well as on the tasks that one wants to perform on the
network.

2.1.3 Degree distribution and other network properties

The number of neighbours of a node is called its degree, m. The degree can
be considered a simple measure for the ‘connectedness’ of the node within
the network. For directed networks one can define both an in-degree and an
out-degree. In a food web in-degree and out-degree of a species correspond
to the number of its prey and predator species, respectively.
In particular when dealing with large networks, nodes are often grouped
according to their degree and the whole network is then described by its
degree distribution. Formally, the degree distribution is the distribution of
frequencies, or empirical probabilities, P (m), of all degrees in the network.
As an example, the histogram in the right plot of Fig. 2.1 shows the degree
distribution of the simple network from the left plot in the same figure. One
of five nodes has degree m = 1, meaning that degree 1 occurs with frequency
P (1) = 0.2. The same is true for degrees m = 3 and m = 4. Degree m = 2
appears twice, resulting in the frequency P (2) = 0.4. For some types of
(large) random networks, the networks happen to have mathematically well
known degree distributions, for example a Poisson distribution.
One advantage of describing a large network by its degree distribution is that
this description is much more compact (and thus less memory intensive) than
using a description of the full network, for example via its adjacency matrix.
The degree distribution also makes some structure of the network visible that
one may not be able to see when looking at a graphical visualization of the
network or at its adjacency matrix. Even though the degree distribution does
not uniquely identify a network, networks with the same, or similar, degree
distribution are often also similar with respect to other properties. This is,
however, not always the case, as we see in Section 2.2 (comparison between
RGGs and ER graphs). Since the degree distribution does not tell us which
node connects to which other nodes a lot of the structure of the network may
be lost. Properties that are not captured by the degree distribution are for
example degree correlations, network diameter, and component structure.

Degree correlations describe the property that nodes with large (small)
degree tend to have neighbours that have themselves large (small) de-
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gree. This can happen when the links are not distributed entirely at
random between the nodes.

Network diameter: A path between two nodes X and Y is a connected
sequence of links with the first link starting at node X and the last
link ending at node Y . The number of links lying on the path is the
corresponding path length. There may be many paths with different
path lengths between two nodes. One can define the distance between
two nodes as the length of the shortest path between the nodes. The
network diameter, D, is then the largest distance, that is, the longest
shortest path in the network. The diameter of the network from Fig. 2.1
is D = 2, which is the shortest path length between nodes 1, 2, or 3
and node 4 as well as between nodes 2 and 3. The network diameter
typically increases with the network size, N . Many network models
and many real networks show a scaling behaviour like D ∼ logN ,
meaning that even in very large networks distances between any two
nodes are extremely small. This property is characteristic for so-called
small-world networks. For example, social networks typically show the
small-world property, indicating that everyone knows everyone via a
small number of acquaintances.

A component of a network is a maximal set of connected nodes. This
means that there exists a path between any two nodes of the compo-
nent and that there exists no path between any node from within the
component to any node not belonging to the component. A node with
degree m = 0 cannot belong to any larger component and is thus a
component for itself. While the existence of these single-node com-
ponents can be identified by looking at the degree distribution, the
degree distribution contains no information on the structure of larger
components. Two nodes of degree m = 1, for example, could form a
small two-node component but they could also be part of a larger com-
ponent. In general, many networks consist of several components, but
in the research chapters of this thesis we only consider networks that
consist of a single component. For food webs this makes sense since
species that are not connected to the main web would most likely not
be considered as being part of that web at all. For our spatial networks
this means that they describe a single (potentially very large) habitat
without isolated areas.
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2.2 Spatial networks

In the literature the term ‘spatial network’ is often used to refer to networks
that are embedded in (often two-dimensional) Euclidean space. This means
that patches have coordinates and that links are (much) more likely to occur
between patches that are closer together in terms of their Euclidean distance
(Barthélemy, 2011; Antonioni and Tomassini, 2012; Barter and Gross, 2017).
Here, we explicitly refer to such networks as spatially embedded and more
generally use the term ‘spatial network’ to refer to any network that we
interpret to represent a habitat consisting of patches (the nodes) between
which species can disperse (along the links between nodes).
Spatially embedded networks are, amongst others, characterized by long
paths between patches, which means that they are not small-world but rather
large-world networks. We consider spatially embedded networks as more real-
istic to describe habitats with (natural) species dispersal. Networks without
spatial embedding are mainly interesting from a theoretical point of view
and for the purpose of generality. When necessary, we will always specify
whether or not a spatial network is spatially embedded.
Note that we stated before that the spatial networks we consider here are
unweighted, undirected and without self links or multiple links. These prop-
erties are not necessarily true for all networks describing a habitat. The
undirectedness, for example, implies symmetric dispersal between patches,
which may be unsuitable for networks representing, for example, riverine
landscapes. Similarly, it may be more realistic to use weighted networks
since, assuming a spatial embedding, the rate of dispersal between patches
might depend on their distance.
Overall, we consider four different types of spatial networks in this thesis,
two with, and two without spatial embedding. The four types are introduced
below and an example of each network type is shown in Fig. 2.2.

2.2.1 Lattices

A d-dimensional lattice is a network of regularly arranged patches placed in
d-dimensional space, for example on the integer coordinates of a d-dimensional
coordinate system. In that case adjacent patches along one of the coordi-
nate axes have distance 1 and only patches within that distance share a link.
Lattices are thus spatially embedded. In the research chapters we also con-
sider lattices with long-range interactions, that means, that we connect all
patches within some Euclidean distance r ≥ 1. Even though the classical
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Figure 2.2: Visual representations of different networks and corresponding degree
distributions. The red lines plotted over the degree distributions of the RGG, ER
graph, and SF graph show the analytical forms of the degree distributions for large
network sizes (see main text). The highlighted nodes in the visual representation
of the SF graph are the hubs, where we here define a hub as a node with degree
three times larger than the mean degree.
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lattice structure (of the links) is then lost, the regular arrangement of patches
is still intact, and since we use the Euclidean distance to connect patches, a
long-range lattice is still spatially embedded. Lattices have large diameter,
scaling as D ∼ N

1
d . Thus, as expected for spatially embedded networks,

lattices do not show the small-world property. If one wants to avoid bound-
ary effects on a finite-size lattice, opposite boundaries of the lattice can be
connected. In this case one also speaks of periodic boundary conditions. The
top row of Fig. 2.2 shows a small, classical two-dimensional lattice with hard
boundaries.

2.2.2 Random geometric graphs (RGGs)

Here we consider two-dimensional RGGs that are generated by first randomly
distributing N patches in a square of area A, and then connecting all pairs
of patches that fall within some Euclidean distance, r, to each other. As
lattices, RGGs are thus spatially embedded. RGGs have a binomial degree

distribution, P (m) = pm (1− p)N−m−1
(
N − 1
m

)
, where p = πr2

A
is the prob-

ability that two patches are connected. This can be seen as follows: Two
patches are connected if one falls within the circle of radius r around the
other one. This circle has area πr2 and covers a fraction of πr2

A
of the full

space in which the RGG is embedded. Since the coordinates of all patches are
drawn independently of each other, πr2

A
is thus the probability that any pair

of patches is connected. Note that this argument assumes periodic boundary
conditions, since otherwise the circles around some nodes might be cut off.
The probability that a patch is connected to m other patches, each with
probability p, and not connected to the remaining N −m− 1 patches, each
with probability 1 − p, is then given by the binomial expression provided
above. In fact, any random graph for which all pairs of patches are con-
nected with the same probability, p, has binomial degree distribution. For
large networks, N →∞, with fixed mean degree, 〈m〉 = const, the binomial
degree distribution becomes a Poisson distribution, P (m) = λme−λ

m! , with
Poisson parameter λ = 〈m〉 (Dall and Christensen, 2002; Newman, 2010).
Since the circles defining the neighbourhoods of adjacent patches overlap,
RGGs have strong degree correlations (Antonioni and Tomassini, 2012). For
fixed mean degree the diameter of (two-dimensional) RGGs scales as D ∼√
N (Friedrich et al., 2013). As expected for spatially embedded networks,

RGGs do thus not show the small-world property, but are characterized by
long paths between patches.
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2.2.3 Erdős-Rényi random graphs (ER graphs)

ER graphs, named after the Hungarian mathematicians Paul Erdős and Al-
fréd Rényi (Erdős and Rényi, 1959, 1960, 1961), are ‘ordinary’ random graphs
defined by the number of patches, N , and the link-probability, p, between
any pair of patches. Instead of the probability p one can alternatively spec-
ify the number of links and then distribute all links randomly between the
patches. Completely analogous to RGGs, ER graphs have binomial degree

distribution, P (m) = pm (1− p)N−m−1
(
N − 1
m

)
, which for N → ∞ and

〈m〉 = const becomes a Poisson distribution, P (m) = λme−λ

m! , with Poisson
parameter λ = 〈m〉. For a given mean degree, RGGs and ER graphs thus
have the same degree distribution. In contrast to RGGs, however, ER graphs
are not spatially embedded and they show no degree correlations. This is the
case since the patches of an ER graph have no natural coordinates and since
links are entirely random. Instead, ER graphs are small-world networks with
diameter scaling as D ∼ logN (Newman, 2010). ER graphs and RGGs thus
serve as a great example demonstrating that the degree distribution does
not always sufficiently describe a network, and that in fact many network
properties are not captured by the degree distribution.

2.2.4 Scale free graphs (SF graphs)

SF graphs are characterized by their degree distribution that follows a power
law, P (m) ∼ m−γ, typically with γ > 2. This degree distribution implies
that the vast majority of nodes has very small degree but that there are also
a few patches with extraordinarily large degree. These large-degree nodes
are also called hubs and they lead to a strong connectedness of the network
implying very short path lengths. SF graphs with 2 < γ < 3 can even be
considered as ‘ultra small-world networks’, since they have a diameter scaling
as D ∼ log logN . For γ > 3 one finds the usual small-world behaviour,
D ∼ logN and for γ = 3 the scaling lies in between, D ∼ logN

log logN (Bollobás
and Riordan, 2004; Barabási, 2016). The degree distributions of many real
world networks, like the internet or social networks, can be well approximated
by power laws (Barabási, 2016).
One specific family of SF graphs can be generated by the so-called Barabási-
Albert (BA) model (Albert and Barabási, 2002) that is based on two main
ideas: growth and preferential attachment (the latter is also known as the
‘rich get richer principle’). Starting with a small, initial network of only a few
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Figure 2.3: Left: abstract scheme of a simple food chain of S = 4 species. Right:
graphical illustration of a more complex food web (credit: U.S. Geological Survey,
illustration by Tim Auer).

patches, the algorithm adds at each iteration one additional node (growth)
and connects this node to a fixed number of already existing nodes. The
targets of the links are chosen according to their current degrees, assigning
higher selection-probabilities to nodes with already large degrees (preferential
attachment). To be precise, a node i is selected as the target for a new link
with probability Prob (i) = mi∑

j
mj

, where j goes over all existing patches in
the network. This mechanism eventually leads to the emergence of hubs and
to a power law degree distribution with γ = 3. The described SF graphs are
not spatially embedded since their nodes have no natural coordinates and
since the assignment of links is not based on Euclidean distances.

2.3 Food webs

Food webs are directed networks with species as nodes and trophic interac-
tions (feeding relations) as links. We follow the convention that links point
from prey to predator, thus in the direction of energy flow. It is in principle
possible to weight links according to the frequencies of the feeding relations
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or the amount of flowing energy. However, as stated at the end of Section
2.1.1, in this thesis we consider only unweighted food webs. In the context
of food webs we refer to the network size, that is, the number of species by
S. This allows a clear and simple distinction from the size of the spatial
network for which we use our standard network size label, N .
The arguably simplest food web structure, and a structure of exceptional
importance for this thesis, is the food chain (see Fig. 2.3, left). The basal
species of the chain is assumed to persist on some resource that is not ex-
plicitly modelled. Each additional species is a specialist consumer that preys
exclusively on the species directly below. The food chain length can be de-
fined either as the number of species in the chain, S, or as the number of
feeding links, S − 1.
Species in a food web are often characterized by their trophic levels. In a
simple food chain the trophic level takes only integer values and increases
along the chain, starting with trophic level 1 for the basal species. In more
complex food webs species can also have non-integer trophic levels (Levine,
1980; Williams and Martinez, 2004) which happens if a predator feeds on
species from different trophic levels. We refer to such species as omnivores
and more generally to any species that feeds on more than one prey as
generalists. For an example of a real and more complex food web see Fig. 2.3
(right).
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3 From metapopulations to meta-food-webs

In all research chapters of this thesis we use essentially the same spatially
explicit meta-food-web model. In this chapter we introduce the meta-food-
web approach step by step, starting with a metapopulation model of a sin-
gle species, continuing with a metacommunity model of several competing
species, and finally coming to a meta-food-web model of trophically interact-
ing species. The presented models are spatially implicit, which means that
the underlying habitat is not a spatial network (in the sense of Section 2.2)
but that the habitat can instead be understood as consisting of many patches
that are fully connected to each other (also referred to as ‘fully mixed space’
or just ‘mixed space’). In an additional step we show how to make the mod-
els spatially explicit, i. e., how to place them on spatial networks. Note that
modelling communities of interacting species on spatial networks falls under
the concept of multilayer networks, a field that has recently attracted more
and more attention (De Domenico et al., 2013; Lee et al., 2015; Pilosof et al.,
2017). Finally, we point out the equivalence of the presented metapopula-
tion model and a model from the field of epidemics, describing the spread of
an infection through a population of, for example, human individuals. The
latter is well understood even in the case of an explicit network structure
between the individuals.

3.1 Levins’ metapopulation approach

Levins (1969) modelled the dynamics of a pest that regionally attacks a crop,
with the aim to find an optimal strategy to control the pest and thus protect
the crop. The model can equivalently be used to describe the spatial dynam-
ics of any single species. In Levins’ model a large habitat consists of many
patches each of which can sustain a local population of the species. The term
‘metapopulation’ refers to the collection of all these local populations. On
a given patch, the species is either present or absent while local population
sizes (or abundances) are not part of the model (see left plot of Fig. 3.1).
The quantity of interest in the model is the fraction of patches, p, that are
occupied by the species. This fraction can change by two processes, colo-
nizations and extinctions, which is why we also refer to the model dynamics
as colonization-extinction dynamics.

• In a colonization event an occupied source patch sends colonizers to an
empty target patch. After the colonization both patches are occupied,
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that is, the population does not abandon the source patch. The rate
of colonizations increases both with the fraction of occupied patches,
p, from which colonizers are sent, as well as with the fraction of empty
patches, 1 − p, that can be colonized. With an additional coloniza-
tion parameter, c′, the rate of change of p due to colonizations is thus
c′p (1− p). Note that we here denote the colonization rate by c′ since
we reserve the letter c for the slightly differently defined colonization
rate in the spatially explicit case.

• In an extinction event a local population dies out, leaving a formerly
occupied patch empty. The rate of extinctions increases with the frac-
tion of occupied patches, p, and the local extinction rate, e, leading to
the contribution −ep to the rate of change of p.

In our notation, the full differential equation at the heart of Levins’ metapop-
ulation model thus reads,

dp
dt = c′p (1− p)− ep. (3.1)

A steady state of the system, p∗ such that dp
dt |p=p∗ = 0, is characterized by

an equilibrium between colonizations and extinctions. While for p∗ = 0 the
species is regionally extinct, the more interesting solution is,

p∗ = 1− e

c′
. (3.2)

One can make two important observations concerning this solution:

1. For e > c′ one finds p∗ < 0 which in reality translates to p∗ = 0.
The system thus has a persistence threshold, c′t = e, such that the
population can persist only if c′ > c′t.

2. Even when the species persists, the fraction of occupied patches always
satisfies p∗ < 1, except for the degenerate cases e = 0 or c′ → ∞. A
‘mortal’ species is thus never able to occupy the full habitat.

Both of these observations play an important role for the regional coexistence
of several competitors, treated in the next section.
Note 1: The lack of local population dynamics implies the assumption that
the local dynamics happen on a much faster time scale than the regional
dynamics between the patches.
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Figure 3.1: Left: Snapshot of a metapopulation according to Levins (1969). The
habitat consists of many patches (drawn as circles) which are either occupied
by the species (orange) or empty (white). No links between patches are drawn to
illustrate the lack of spatial structure. The pattern of occupied patches has thus no
meaning. Right: Illustration of the equilibrium of a metacommunity according
to Tilman (1994) with regional coexistence of four competitors (represented by
the different colors). A large fraction of patches is occupied by the strongest
competitor. Inferior competitors can persist on the patches left empty by superior
competitors. As in the left plot, the habitat is spatially implicit and the pattern
of the patches has no meaning.

Note 2: Since colonizations are possible between all patches (→ fully mixed
space), there is no explicit spatial structure (→ the model is spatially im-
plicit).

3.2 Tilman’s competing metacommunities

Tilman (1994) applied Levins’ metapopulation approach to a community of
competing species. Assuming competitive exclusion on individual patches
and a strict competition hierarchy of the species, Tilman showed that in
principle an arbitrary number of species can regionally coexist. This coex-
istence requires a competition-colonization trade-off, meaning that weaker
competitors have to be stronger colonizers. If we define the competition hi-
erarchy such that species with lower label k are stronger local competitors,
then the necessary, opposed colonization hierarchy is c′1 < c′2 < ... < c′k.
Mathematically, the differential equation for the fraction of patches occupied
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by species k reads,

dp(k)

dt = c′kp
(k)

1−
k∑
j=1

p(j)

− ep(k) − p(k)
k−1∑
j=1

c′jp
(j). (3.3)

Since the strongest local competitor is unperturbed by any other species,
Eq. 3.3 reduces for k = 1 to Levins’ metapopulation equation (Eq. 3.1).
All additional species are, however, negatively affected by any superior local
competitor in two ways:

1. The effective rate of colonizations for species k is reduced since not
only patches that are already occupied by species k itself are unsuit-
able colonization targets, but patches that are occupied by any locally
superior competitor, j < k, cannot be colonized either (first term on
the right hand side of Eq. 3.3).

2. The effective rate of extinctions is increased due to competitive dis-
placement by a locally superior competitor (third term on the right
hand side of Eq. 3.3).

Essentially, a weaker competitor must be able to persist on the patches left
empty by the superior competitors and to endure the additional thread of
extinction due to competitive displacement (note that we assumed the same
‘intrinsic extinction rate’, e, for all species; see second term on the right hand
side of Eq. 3.3). This is only possible if the colonization rate, c′k, of the weaker
competitor is large enough. Tilman (1994) provided analytical expressions
for the persistence thresholds of all species, in terms of the colonization rates
c′k, and found, as expected from the previous arguments, that the threshold
increases with k. This leads to a more precise formulation of the competition-
colonization trade-off mentioned above, and implies the necessary but not
sufficient condition c′1 < c′2 < ... < c′k. Tilman also provided expressions
for the equilibrium fractions of occupied patches of all species. The right
plot of Fig. 3.1 illustrates the regional coexistence of four species in Tilman’s
metacommunity model.

3.3 The meta-food-web model by Pillai et al

3.3.1 General model

Pillai et al. (2010, 2011) introduced a generalization of the metacommunity
approach to trophically interacting communities and showed how space can
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lead to the emergence of complex food webs. The model is based on three
main assumptions:

1. A predator can persist only on patches on which at least one of its prey
species is present.

2. On individual patches the competitive exclusion principle holds. For
a food web this means that locally only one predator can persist on
one prey species. As a consequence, all local food webs are simple food
chains. More complex food webs can only emerge on the regional scale
when there are different realized food chains on different patches.

3. For a common prey species, a specialist predator is a stronger local
competitor than a generalist or an omnivore.

Application of the competitive exclusion principle means that space is the
only factor that promotes the (regional) persistence of complex food webs.
If one furthermore chooses the same colonization and extinction rates for
all species, there can be no classical competition-colonization trade-off as in
the Tilman model (see Section 3.2). Coexistence of several predators for the
same prey species is even in this case possible if, for example, one of the
predators is a specialist while the other one is an omnivore that can feed on
an additional species (Pillai et al., 2011; Böhme and Gross, 2012; Barter and
Gross, 2017). The interactions of an omnivore and the competing specialist
species are illustrated in Fig. 3.2. For the same omnivore web, Fig. 3.3
illustrates the model on a simple spatial network.
In the following subsections we present and explain the differential equations
for species in a food chain and for the omnivore from Fig. 3.2. The equations
for arbitrary food webs are complicated and therefore discussed in Appendix
A. Note that we assume the above mentioned case that all species have
the same colonization rate, c′, and extinction rate, e. These rates do also
not depend on the prey on which a generalist predator feeds. Likewise, we
assume that a predator does not affect the extinction rate of its prey, that
is, we neglect all top-down effects. Pillai et al. (2010) considered the fully
general case.

3.3.2 Food chains

For species in a food chain the metapopulation equation by Levins (Eq. 3.1)
has to be modified to incorporate the fact that a predator needs its prey to
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Figure 3.2: We consider a regional omnivore web (see also Pillai et al., 2011;
Böhme and Gross, 2012; Barter and Gross, 2017) which is a food chain of three
species extended by an omnivore that can feed on the basal species 1 and on the
intermediate specialist species 2. If species 2 invades a patch on which the omnivore
feeds on species 1, species 2 outcompetes the omnivore at feeding on species 1 but
the omnivore can still persist by switching prey on species 2. Conversely, if on a
patch with species 1, 2, and the omnivore the intermediate species 2 goes extinct,
the omnivore can switch back feeding on species 1 and can thus still persist. If,
however, the omnivore feeds on species 2 and then the top specialist predator
species 3 invades, the omnivore is also outcompeted at feeding on species 2 and is
thus competitively excluded from the patch.

persist. Since we assume no top-down effects, the equations for species in a
food chain are also valid for species 1, 2 and 3 from Fig. 3.2. The differential
equations for the fractions of patches occupied by these species read,

dp(k)

dt = c′p(k)
(
p(k−1) − p(k)

)
− kep(k), (3.4)

where p(0) = 1, meaning that all patches are habitable. For the basal species,
k = 1, Eq. 3.4 reduces to Levins’ metapopulation equation (Eq. 3.1). For
species at higher trophic levels, k ≥ 2, there are two modifications: (1) Not
all patches on which species k is absent can be colonized but only those on
which its prey species k − 1 is present. Since the set of patches occupied
by species k is a subset of patches occupied by species k − 1, the fraction of
patches that are suitable colonization targets for species k is

(
p(k−1) − p(k)

)
.

(2) The extinction rate is increased due to bottom-up extinctions, that is,
species k cannot only go extinct by its own intrinsic extinction but also if
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it loses its prey. This happens if any species further down the chain goes
extinct. Since all species have the same extinction rate, e, and since species
k can only be affected by a bottom-up extinction on patches on which it is
present itself, its extinction rate is effectively multiplied by a factor of k.

3.3.3 Omnivory

The situation becomes more complex for species that are not part of a simple
food chain, for example, the omnivore from Fig. 3.2. Pillai et al. (2010) argue
that it is necessary to track the fractions of patches occupied by the feeding
links, which we write as (1, O) and (2, O), instead of the species itself (for
species in a food chain this makes no difference as they have only a single
feeding link). In addition to the bottom-up effects experienced by the species
in a food chain, the omnivore can also be competitively displaced and it can
switch prey between species 1 and 2, as described in Fig. 3.2. This leads to
additional terms in the differential equations (see also supplemental material
of Pillai et al., 2011),

dp(1,O)

dt = c′p(O)
(
p(1) − p(2) − p(1,O)

)
+ ep(2,O) (3.5)

− 2ep(1,O) − c′p(2)p(1,O),

dp(2,O)

dt = c′p(O)
(
p(2) − p(3) − p(2,O)

)
+ c′p(2)p(1,O) (3.6)

− 3ep(2,O) − c′p(3)p(2,O),

where p(O) = p(1,O) + p(2,O) is the fraction of all patches occupied by the
omnivore. We briefly discuss the terms on the right hand side of Eq. 3.5 (in
the given order): (1) The occupancy of the feeding link (1, O) can increase
when the omnivore colonizes a patch on which species 1 is present but species
2 and the omnivore itself are absent. The absence of species 2 implies that
the omnivore, if it was present, would feed on species 1. The fraction of
patches suitable for colonization is thus

(
p(1) − p(2) − p(1,O)

)
. Colonizers can

be sent from any patch on which the omnivore is present, regardless of its
prey. (2) The occupancy of (1, O) can also increase due to prey-switching
of the omnivore if species 2 goes extinct on patches on which the omnivore
currently feeds on species 2. The occupancy of (1, O) decreases if (3) the
omnivore or species 1 goes extinct, or (4) when species 2 invades a (1, O)
patch which leads to prey-switching of the omnivore from species 1 to species
2. Eq. 3.6 can be understood by similar arguments.
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3.4 Making the models spatially explicit

3.4.1 Generalizing the differential equations

Note: For equations analogous to our Eqs. 3.7 and 3.8 in the context of
‘epidemics on networks’ with further calculations, approximations, and dis-
cussion see also Newman (2010).
In the spatially explicit models we are not primarily interested in the fraction
of occupied patches but in the occupancies of individual patches. Considering
only a single species and labelling patches i = 1, ..., N we can define the
indicator variable Xi ∈ {0, 1} that tells us if patch i is occupied (Xi = 1)
or empty (Xi = 0). We are typically interested in the occupation probability,
〈Xi〉, of each patch i. The spatially explicit version of Levins’ metapopulation
equation (Eq. 3.1) then reads,

d 〈Xi〉
dt = c

N∑
j=1

Aij
〈
X iXj

〉
− e 〈Xi〉 . (3.7)

The first term on the right hand side of Eq. 3.7 is as usual the colonization
term. Patch i can be colonized from any neighbouring patch (∑N

j=1 Aij · · · )
where A is the adjacency matrix of the spatial network with Aij = 1 if patches
i and j are connected (see Section 2.1.2 for the introduction of the adjacency
matrix). The colonization from neighbour j to patch i is only possible if
patch i is currently empty (indicated by X i = 1 − Xi) and if patch j is
currently occupied (Xj). The joint probability of these two events is

〈
X iXj

〉
.

X i and Xj are in general correlated since the species disperses through the
network step by step. A patch is thus more likely to be occupied if its
neighbours are occupied as well. We refer to these correlations as neighbour
correlations. The stronger the network is connected the easier is the dispersal
and the weaker are the neighbour correlations (for fully mixed space there
will be no correlations left). Due to the neighbour correlations, that is, the
appearance of the pairwise term

〈
X iXj

〉
, Eq. 3.7 cannot be solved. One can

in principle write down an equation for
〈
X iXj

〉
as well, but this equation

would involve tri-partite terms and so on (Newman, 2010) . At some point the
equations have to be ‘closed’ which requires an approximation. The simplest
approximation neglects all neighbour correlations,

〈
X iXj

〉
=
〈
X i

〉
〈Xj〉, and

thus regards the occupancies of neighbouring patches i and j as independent.
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In this case we can write Eq. 3.7 as,

dui
dt = c (1− ui)

N∑
j=1

Aijuj − eui, (3.8)

where we used the notation 〈Xi〉 = ui for the occupation probability and
similarly

〈
X i

〉
= 1−ui. Eq. 3.8 now strongly resembles the spatially implicit

metapopulation Eq. 3.1 with the following three differences:

1. Eq. 3.8 is a differential equation for the occupation probability of a
single patch while Eq. 3.1 is an equation for the fraction of occupied
patches. As one consequence the spatially explicit system is described
by N coupled equations, instead of one single equation. The fraction of
occupied patches can be calculated by averaging the occupation prob-
abilities of all patches.

2. The colonization term is expanded by the sum over all neighbours,∑N
j=1 Aijuj, incorporating the structure of the spatial network.

3. Instead of the global colonization rate c′, we now use the per-neighbour
colonization rate c. For fully mixed space we would find c′ = (N − 1) c,
since in this case any patch is neighbours with all other N − 1 patches.

Note that aside from point (1), which applies to the equation as a whole,
there are no changes to the extinction term. The extinction rate, e, is the
same as before as well. All changes can straightforwardly be applied to
all other metacommunity and meta-food-web equations. For example, the
equations for the species in a food chain (Eq. 3.4) become,

du(k)
i

dt = c
(
u

(k−1)
i − u(k)

i

) N∑
j=1

Aiju
(k)
j − keu

(k)
i . (3.9)

3.4.2 Solving the differential equations

The differential equations can in principle be solved by numerical integra-
tion. Since we are not interested in the full time evolution of the occupation
probabilities but only in the equilibrium solution, we instead use a faster, it-
erative method to calculate the equilibrium. In the following, we describe this
method applied to the system of equations for species in a food chain given
by Eq. 3.9. The generalization to more complex food webs is straightforward
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and is briefly addressed below. To demand equilibrium we set the derivative
on the left hand side of Eq. 3.9 to zero. Next, we rearrange the equation
such that the occupation probability governed by the specific equation, u(k)

i ,
is isolated on the left hand side,

u
(k)
i =

u
(k−1)
i

∑N
j=1 Aiju

(k)
j

k e
c

+∑N
j=1 Aiju

(k)
j

. (3.10)

Eq. 3.10 is an expression for the equilibrium occupation probability of species
k on patch i. This equilibrium occupation probability depends on the equi-
librium occupation probabilities of the same species on other patches, u(k)

j ,
and of the prey species on the same patch, u(k−1)

i . Since the equations for
species k = 1 depend on no other species (u(0)

i = 1) one can start by solving
the equations for k = 1, then for k = 2, and so on. For given k the equations
have to be solved simultaneously for all patches. This is done by starting
with an initial guess for u(k)

i for all i and using Eq. 3.10 as an iteration
rule. This means that the initial guess is inserted into the right hand side of
Eq. 3.10 which is then evaluated to obtain a refined guess for the u(k)

i (output
on the left hand side). The new u

(k)
i values are inserted into the right hand

side again and again until the values converge.
For more complex food webs, like the omnivore web from Fig. 3.2, it is neces-
sary to solve the equations for the occupation probabilities of all trophic links
belonging to one species simultaneously. We can already see in the spatially
implicit version of the omnivore equations (Eqs. 3.5 and 3.6) that the two
equations are indeed coupled. In principle one can also solve all equations,
that is, the equations for all species/links and all patches simultaneously.
This would in particular be necessary if we allowed top-down effects which
would destroy the hierarchical structure of the equations already for species
in a food chain.
Note that since Aii = 0, u(k)

i does not appear on the right hand side of
Eq. 3.10. The iterative method would, however, also work if u(k)

i could not
be perfectly isolated on the left hand side.

3.4.3 Stochastic approach via Gillespie algorithm

Instead of numerically solving the differential equations from Section 3.4.1
we can alternatively run the dynamics of any of the models (metapopulation,
-community, or -food-web; spatially implicit or explicit) via stochastic sim-
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Figure 3.3: Illustration of the omnivore web from Fig. 3.2 put on a spatial net-
work. Each patch shows one of the possible local food chain configurations that
are allowed when following the rules by Pillai et al. (2010, 2011). Colonizations
(associated rate c) are only possible if the involved patches share a link and if
the persistence requirements of the colonizing species are met on the target patch
(e.g. presence of prey). Extinctions (associated rate e) are purely local events and
occur entirely at random. Predators have no effects on a prey’s extinction rate (no
top-down effects) but the extinction of the prey induces the bottom-up extinction
of all species above, unless a predator can switch feeding on another still persisting
prey.

ulations. To this end we use the Gillespie algorithm (Gillespie, 1977) which
simulates the model dynamics step by step, one colonization or extinction
event after another. Given the current state of the system (occupation status
of all species on all patches; see also Fig. 3.3) the algorithm requires us to list
all possible processes and to associate a rate with each of them. In practice,
we associate one rate w(k)

i with each patch-species pair as follows:

Extinction event If species k is present on patch i, we use the extinction
rate, w(k)

i = e.

Colonization event If species k is absent from patch i, we check whether
or not all other colonization requirements are met (presence of a prey
and absence of all locally superior competitors):

• If the requirements are not met, the rate is w(k)
i = 0 since the

colonization is not allowed.
• If all requirements are satisfied, the rate is w(k)

i = n
(k)
i · c where

n
(k)
i is the number of neighbours of patch i occupied by species k.
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The rate n(k)
i · c can be understood as the incoming colonization

rate of species k towards patch i.

Next, all rates are normalized by their sum, λ = ∑
i,k w

(k)
i , to obtain a proba-

bility distribution that is used to randomly draw one process that is then ex-
ecuted. Possible competitive displacements, bottom-up extinctions or other
triggered food web rearrangements are executed at the same time as the pri-
mary process. The time that passes until a chosen process is executed, is
drawn from an exponential distribution with rate parameter λ. The Gillespie
algorithm thus creates a trajectory of the system’s state in continuous time.
This also allows us to calculate the fraction of time any patch i is occupied
by any species k, which is the equivalent of the occupation probability u(k)

i

introduced in Section 3.4.1.
The Gillespie algorithm can be sped up by not recalculating all rates w(k)

i

after each step. Only the rates for the patch on which the last process
was executed, and for neighbouring patches, have to be recalculated. To
go through all neighbours of a patch it is faster to use the adjacency list
representation of the spatial network rather than the adjacency matrix (see
Section 2.1.2).
The main advantage of the stochastic approach via the Gillespie algorithm,
compared to the differential equation approach, is that it automatically in-
corporates all neighbour correlations (see Section 3.4.1). If we are not certain
that neighbour correlations can be neglected, and if we want the result (i.e.,
the occupation probabilities) to be as precise as possible, it is better to use
the stochastic simulations and run the algorithm for a very large number of
steps, potentially repeating the simulations several times.
Note that while the model and the corresponding differential equations de-
veloped by Pillai et al. (2010) are spatially implicit, Pillai et al. (2011) also
conducted spatially explicit stochastic simulations of their model.

3.5 Equivalence to an epidemic model

Epidemic models describe, for example, the spread of an infection through a
host population. In one specific, simple epidemic model individuals can be
either susceptible or infected. The latter individuals can spread the infection
to susceptible ones, but can also recover from the infection and become sus-
ceptible again (no immunity or death). Each individual thus runs through a
‘susceptible → infected → susceptible → ...’ cycle, which is why the model
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is also called SIS model. The SIS model is equivalent to Levins’ metapopu-
lation approach from Section 3.1. The infection is the analog of the species
and the host population is the analog of space. Spreading the infection and
recovering are the equivalents of colonizations and extinctions, respectively.
The SIS model (as well as other epidemic models) can also be either im-
plicit or explicit with respect to the structure of the host population. In the
implicit case the population is fully mixed, meaning that any individual is
equally likely to have contact with any other individual. In the explicit case
a network encodes which individuals can come in contact with each other.
One central goal when modelling the spread of epidemics is to find the epi-
demic threshold (e.g. in terms of infection and recovery rate) below which
the infection cannot spread and persist. For an epidemic on a network this
threshold can be calculated from the adjacency matrix as well as from the
degree distribution of the network (Newman, 2010). On stronger connected
networks the spread of the infection is typically easier, implying that these
networks have smaller epidemic thresholds. For typical scale-free graphs
the epidemic threshold is even zero, which can be important, for example,
for computer viruses spreading through the internet (Pastor-Satorras and
Vespignani, 2001a,b).
Like the metapopulation approach can be generalized to metacommunities
or meta-food-webs, epidemic models can be generalized to several interact-
ing infections (Newman, 2005; Ahn and Jeong, 2006; Newman and Ferrario,
2013; Zhao et al., 2014; Azimi-Tafreshi, 2016). Possible interactions are cross-
immunities or that one infection (like HIV) makes an individual more sus-
ceptible to other infections.
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4 Objectives of research chapters

In Chapter 1 we stated that “in this thesis we model the dynamics of spatially
explicit meta-food-webs in the food web framework by Pillai et al. (2010),
look for spatial patterns of food chain length and distributions of individual
species, and link these patterns to the spatial structure of the habitat.” The
objectives and the model setups of the individual research chapters, presented
in Part II, are briefly outlined below. The relation between the research
chapters is also illustrated in Fig. 4.1.

Chapter 5: Mid-domain effect for food chain length The objective of
this research chapter is to investigate how the boundaries of a habitat affect
the spatial pattern of food chain length in the habitat. We are in particular
interested in how the food chain length changes from the center of the habitat
towards the boundaries. To this end we model the dynamics of simple food
chains placed on lattice-like spatial networks with hard boundaries.

Chapter 6: Food chain length and the SIS centrality In this research
chapter we change the model setup from the previous research chapter by
considering habitats represented by random networks. To describe spatial
patterns on such networks, the concept of boundary and center has to be
replaced by the concept of so-called centrality measures, that in some sense
quantify the ‘importance’ or ‘connectedness’ of patches within the habitat
network. The objective is to relate the food chain length on patches to
the centrality values of the patches. To this end we also introduce a new
centrality measure.

Chapter 7: Spatial niche partitioning in food webs In this research
chapter we change the model setup from the first research chapter by adding
omnivores to the food chain. The first objective is to investigate how the
spatial pattern of food chain length found in the first research chapter changes
due to the presence of omnivores. The second objective is to investigate
the individual spatial patterns of a specialist predator and of increasingly
omnivorous species. We compare these latter results with spatial patterns
found for species in a purely competitive community.
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Figure 4.1: Relation between the research chapters: In the first chapter a simple
food chain is placed on a lattice-like spatial network. In the second and third
research chapters we consider generalizations of this setup into different directions.
In the second research chapter we still consider simple food chains but the spatial
network is random instead of lattice-like, while in the third research chapter we
consider more complex food webs, in particular including omnivores, but keep the
simple lattice-like networks.
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5 Mid-domain effect for food chain length

Mid-domain effect for food chain length in a
colonization-extinction model
Kai von Prillwitz1, Bernd Blasius1,2

1Institute for Chemistry and Biology of the Marine Environment,
University of Oldenburg, Germany

2Helmholtz Institute for Functional Marine Biodiversity at the University
of Oldenburg, Germany
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Abstract The mid-domain effect states that in a spatially bounded domain
species richness tends to decrease from the center towards the boundary, thus
producing a peak or plateau of species richness in the middle of the domain even
in the absence of any environmental gradient. This effect has been frequently used
to describe geographic richness gradients of trophically similar species, but how
it scales across different trophic levels is poorly understood. Here, we study the
role of geometric constraints for the formation of spatial gradients in trophically
structured metacommunities. We model colonization-extinction dynamics of a
simple food chain on a network of habitat patches embedded in a one- or two-
dimensional domain. In a spatially homogeneous or mixed system we find that
the food chain length increases with the square root of the ratio of colonization and
extinction rates. In a spatially bounded domain we find that the patch occupancy
decreases towards the edge of the domain for all species of the food web, but this
spatial gradient varies with the trophic level. As a consequence, the average food
chain length peaks in the center and declines towards the boundaries of the domain,
thereby extending the notion of a mid-domain effect from species richness to food
chain length. This effect already arises in a one-dimensional domain, but it is most
pronounced at the headlands in a two-dimensional domain. As the mid-domain
effect for food chain length is caused solely by spatial boundaries and requires
no other environmental heterogeneity it can be considered a null expectation for
geographic patterns in spatially extended food webs.
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5.1 Introduction

The mechanisms underlying biogeographic pat-
terns of species diversity and community struc-
ture are among the most studied and debated
questions in ecology (Lomolino et al., 2017).
One prominent example is the area effect, where
an increasing habitat size leads to an increas-
ing number of coexisting species (MacArthur
and Wilson, 1967; Holt, 1993). Spatial diver-
sity patterns are also related to geographic con-
straints. According to the so-called mid-domain
effect (MDE) in a spatial domain restricted
by ‘hard boundaries’, species richness tends to
peak at the center of the domain and declines to-
wards the boundaries (Colwell and Hurtt, 1994).
‘Hard boundaries’ could be realized, for exam-
ple, by continental edges or mountaintops for
terrestrial species, shorelines for aquatic species,
or any other large-scale dispersal barriers. The
MDE occurs even in the absence of other en-
vironmental gradients and is thus solely caused
by spatial constraints.
The MDE is expected to occur by simple theo-
retic reasoning: Assuming a random distribu-
tion of species ranges within a bounded do-
main, in general more ranges should overlap
near the middle of the domain than at the edges,
producing a peak or plateau of species rich-
ness towards the center. In a large number of
empirical and theoretical investigations the ef-
fect has been firmly validated and established
as a null model for gradients in species rich-
ness (Willig and Lyons, 1998; Colwell and Lees,
2000; Bokma et al., 2001; Jetz and Rahbek,
2001; Grytnes, 2003; Connolly, 2005). While
the MDE was traditionally formulated for one-
dimensional habitats, like latitudinal (Colwell
and Hurtt, 1994), elevational (Kessler, 2001;

Grytnes and Vetaas, 2002) and bathymetric
(Pineda and Caswell, 1998) gradients or river
courses (Dunn et al., 2006), two-dimensional
extensions have been developed as well (Jetz
and Rahbek, 2001; Bokma et al., 2001). De-
spite its seminal role of describing species rich-
ness gradients, not much is known about how
the MDE scales across trophic layers - rising
the question for theoretical approaches to study
spatially structured trophic communities.

One prominent classic approach to theoretically
capture the dynamics and patterns of spatial
communities is provided by the metapopulation
framework (Levins, 1969; Hanski and Gilpin,
1991). The underlying principle is that an en-
semble of local populations can be described
by the dynamic balance between colonization of
empty patches from occupied ones and local ex-
tinction of occupied patches, allowing a species
to persist regionally despite the possibility of lo-
cal extinctions. By augmenting this approach to
metacommunities, Tilman (1994) showed that a
potentially infinite number of competitors can
regionally coexist, even if locally one superior
competitor drives all other species to extinc-
tion. The precise spatial structure can affect
species diversity in a metacommunity, as was
shown in microcosm experiments on river-like
spatial networks and lattice structures (Carrara
et al., 2012, 2013). Thereby, the network struc-
ture affects patterns of population densities (Al-
termatt and Fronhofer, 2018).

In a pioneering series of studies Holt (1993,
1996, 2002) demonstrated that space can have
similar effects in trophically interacting com-
munities. In particular he could show that in
meta-food-webs species richness and food chain
length should increase with increasing habi-
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tat size. Subsequently, metapopulation models
based on colonization-extinction dynamics were
developed to study the consequences of habi-
tat destruction at different trophic levels (Bas-
compte and Solé, 1998; Melián and Bascompte,
2002). In another series of studies Liao et al.
(2017a,b,c) showed that habitat loss and frag-
mentation can have different effects on meta-
food-webs and that, in particular, an inter-
mediate level of fragmentation, compared to a
strongly connected remaining habitat, can pro-
mote food web persistence. While these models
treated only simple few-species food web mo-
tifs, recently, this approach was extended to in-
clude a larger number of species (Pillai et al.,
2010, 2011; Calcagno et al., 2011; Gravel et al.,
2011a,b). These studies showed that complex
food webs can emerge at the regional scale even
if locally only simple food chains are allowed.
Based on these models Barter and Gross (2016,
2017) highlighted the importance of the specific
spatial structure of the habitat, for example by
explicitly embedding meta-food-webs in space
in the form of random geometric graphs.
Many of these metacommunity studies that in-
corporate both trophic interactions and spatial
structures are interested only in regional results,
such as overall persistence or constraints on food
web structure (Amarasekare, 2008; Calcagno
et al., 2011). In contrast, explicit spatial pat-
terns of food web properties, such as spatial pro-
files of food chain length, and the contribution
of spatial effects to their emergence, have rarely
been considered or even quantified. This is as-
tonishing, as food chain length is a central char-
acter of ecological communities and quantifies
the number of feeding links between resources
and top predators (Post, 2002). Food chain
length has classically been related to either dy-

namic constraints, where longer food chains be-
come unstable and are particularly more vul-
nerable to perturbation, or to energetic con-
straints, where due to imperfect transfer of en-
ergy and resources a diminishing amount of en-
ergy is available to support higher trophic lev-
els. Beside these two factors, the role of spa-
tial constraints is increasingly recognized as a
major determinant of food chain length (Post,
2002). The main reasoning is that a larger area
or ecosystem size should be available to sup-
port higher trophic levels and top predators.
Nevertheless, model studies that predict spatial
patterns of food chain length are still missing.
In particular, to our knowledge, the MDE has
never been formulated for food chain length.
In this paper we study the role of geometric
constraints for the formation of spatial gradi-
ents in trophically structured metacommunities.
To this end, we develop a stochastic patch oc-
cupancy model including both trophic and ex-
plicit spatial structures. The model describes
the colonization-extinction dynamics of a sim-
ple food chain on a network of habitat patches
embedded in a one- or two-dimensional domain.
By resolving results to individual patches, this
setup allows us to investigate spatial patterns
of food chain length, and to assess the role of
the spatial constraints for the formation of these
patterns. We intentionally choose a very simple
model to ensure that we do not confound spa-
tial effects with effects caused by more compli-
cated food web dynamics. By combination of
direct stochastic simulations and analytic treat-
ment in an ODE model we calculate patch occu-
pancies, persistence thresholds, and food chain
length. Thereby we consider different spatial
scenarios: First, we study a spatially homoge-
neous or mixed system and are able to show that
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food chain length increases with the square root
of the ratio of colonization and extinction rates.
Next, we study the influence of hard boundaries
in one- and two-dimensional domains. We find
that the patch occupancy decreases towards the
edge of the domain for all species of the food
web, even though this spatial decrease varies
with the trophic level. As a consequence, we
find that the average food chain length peaks
in the center and declines towards the bound-
aries of a spatial domain - demonstrating a clear
mid-domain effect of food chain length. This ef-
fect already arises in a one-dimensional domain,
but it is most pronounced at the headlands in
a two-dimensional domain. Our findings exem-
plify the role of geometric constraints for the for-
mation of spatial gradients in trophically struc-
tured communities.

5.2 Methods

Model setup

We develop a stochastic patch occupancy model
to describe the colonization-extinction dynam-
ics of a trophically structured community on
an explicit spatial network of habitat patches
(Fig. 5.1). Thereby we follow Pillai et al.
(2010, 2011), Gravel et al. (2011a), and Barter
and Gross (2016, 2017) but restrict the trophic
structure to a simple food chain. We assume
that the network is embedded in a one- or
two-dimensional domain. For any given patch,
i = 1, ..., N , all patches within spatial distance
up to the colonization range r are considered
its neighbours, allowing colonizations between
the patches. In the one-dimensional case, a
patch that is not too close to any boundary
has r neighbours to the left and r neighbours

to the right. In the two-dimensional case r is
the radius of a circle. The colonization range
influences the spatial structure as experienced
by the species. The species in the food chain
are labelled according to their trophic level by
k = 1, ..., S and we refer to the species at trophic
level k simply by ‘species k’. In each patch we
track the presence and absence of all species.
We call patches where species k is present k-
occupied, and where it is absent k-empty. A k-
empty patch can be colonized by species k with
colonization rate c per k-occupied neighbour,
but only if its prey species k−1 is present on the
target patch. If a patch is k-occupied species k
can go extinct with extinction rate e. In this
case, all species higher up the chain go extinct
as well at the same time instance. The basal
species 1 suffers no such bottom-up extinction
and has access to the full network. Furthermore,
we neglect top-down extinction effects. Ecolog-
ically this means that we assume that a preda-
tor does not over-exploit its prey and thereby
increases its extinction risk.

For simplicity, we assume that the colonization
rate c, the extinction rate e, and the coloniza-
tion range r are the same for all species (i.e.,
being independent of the trophic level). This
is not only a convenient simplification but also
prevents confounding effects caused by differ-
ences between the species that go beyond their
trophic positions. In all cases we set the ex-
tinction rate to e = 1. This implies no loss
of generality but simply fixes the time scale.
Note that for a single species (S = 1) the
model is equivalent to a susceptible-infected-
susceptible (SIS) model from epidemics on net-
works (Pastor-Satorras and Vespignani, 2001a;
Newman, 2010).
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Figure 5.1: Conceptual diagram of the colonization-
extinction model of a food chain on a network of
habitat patches. Species (shown as orange circles)
are aligned vertically according to their trophic level
k = 1, ..., S. Habitat patches (shown as rectangles)
at spatial positions i = 1, ..., N are aligned horizon-
tally. All species that are present in a patch at this
time point are indicated vertically above the cor-
responding rectangle. These species must form a
contiguous chain starting at the lowest trophic level
k = 1 (trophic interactions indicated as black verti-
cal lines connecting the circles). Species can colonize
neighbouring patches within a colonization range r
(black horizontal arrows). The green arrow indicates
an exemplary colonization event of species 4 from
patch 4 to patch 2. The dark red cross indicates
a possible extinction event of species 3 in patch 5
and the subsequent bottom-up extinctions of species
4 and 5 (light orange shading). Parameter values:
S = 5 and r = 2.

Stochastic approach

We use two different approaches to analyze the
model. First, applying a stochastic approach
we run the model based on direct stochastic
simulations. Thereby we use the Gillespie al-
gorithm (Gillespie, 1977) which simulates the
dynamics step by step, one colonization or ex-
tinction event at a time. Bottom-up extinc-
tions are executed simultaneously with the pri-

mary extinction. The algorithm also provides
the time that passes between any two processes
and thus produces a proper trajectory of the
whole system. Quantities like food chain length
or occupation probability of any species on any
patch are calculated as time averages. When
we are interested in these quantities resolved
to single patches we let the algorithm run for
100 000 · S ·N steps and calculate the time av-
erage over the last 90% of steps. When we are
interested in spatial averages, which converge
much faster, we let the system run for 100 000·S
steps and, in addition to the spatial average,
calculate the time average over the last 10% of
steps. As initial conditions we usually start with
each patch having a probability of 0.5 to be oc-
cupied by the whole food chain. Using inten-
sive numerical simulations we have verified that
our results on the equilibrium state are indepen-
dent to variations of initial conditions, simula-
tion and transient times, and averaging proce-
dures.

Differential equation (ODE) approach

Second, we employ a differential equation
(ODE) approach to solve our model. Thereby,
we model the occupation probability, u(k)

i , of
species k on patch i in form of the following set
of ordinary differential equations

du(k)
i

dt = c
(
u

(k−1)
i − u(k)

i

)∑
j

Aiju
(k)
j − keu

(k)
i .

(5.1)

Here, A is the adjacency matrix of the spatial
network with Aij = 1 if patches i and j are con-
nected and Aij = 0 otherwise. The second sum-
mand on the right hand side of Eq. 5.1 describes
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the extinction of occupied patches (the factor k
is necessary to include bottom-up extinctions).
The first summand describes the colonization
of empty patches and is given as the product
of two terms. The first term (u(k−1)

i − u(k)
i ) is

the probability that species k is currently not
present on patch i, but its required prey species
k − 1 is present. In the equation for the basal
species (k = 1) we set u(0)

i = 1 meaning that
the basal species has access to any patch of the
network. The second term

∑
j Aiju

(k)
j is the

expected number of k-occupied neighbours of
patch i, taking into account that colonizers can
only come from these patches. Eq. 5.1 uses the
approximation that these two quantities are in-
dependent. In reality, the probability that one
patch is currently empty and that a given neigh-
bour of this patch is currently occupied can be
correlated (Newman, 2010). Thus, we should
expect the ODE model (Eq. 5.1) to give only
an approximation of the full dynamics and we
therefore always compare the solution to Eq. 5.1
with direct simulations of the stochastic model
to verify the accuracy of this approximation.

Calculation of food chain length

Given our model, the food chain length Li on
patch i can be obtained by simply counting
the number of trophic levels. In the stochas-
tic implementation of the model we calculate
this quantity directly for every patch and time
instance, which then needs to be sufficiently av-
eraged over time. In terms of the ODE model
(Eq. 5.1) and occupation probabilities u(k)

i we
calculate food chain length as the weighted sum
of all possible food chain lengths (Holt, 1993,

1996)

Li =
S∑
k=1

k
(
u

(k)
i − u

(k+1)
i

)

=
S∑
k=1

u
(k)
i . (5.2)

On the right hand side of the first line in Eq. 5.2
u

(k)
i − u

(k+1)
i is the probability to find exactly

the first k species, which follows from the hi-
erarchical structure of the species. The food
chain length is thus simply the sum of the oc-
cupation probabilities of all species in the food
chain (Holt, 1993, 1996).

5.3 Results

Patch occupancy and food chain length in
a spatially homogeneous system

As a benchmark for the subsequent sections,
we start by investigating a one-dimensional sys-
tem with periodic boundary conditions. In this
case, all patches of the lattice have the same
number of neighbours, so that, after an initial
transient, all patches will be equivalent for all
times and the system becomes spatially homo-
geneous. In this case the index i in Eq. 5.1 can
be dropped and

∑
j Aij simply becomes a factor

corresponding to the number of neighbours per
patch, n (r). For the one-dimensional lattice we
have n (r) = 2r. With these changes, Eq. 5.1
becomes,

du(k)

dt = C
(
u(k−1) − u(k)

)
u(k) − keu(k), (5.3)

where we have defined the total colonization
rate C = n (r) c. The probability u(k) is now not
only the probability that any given patch is k-
occupied, but simultaneously it is the expected
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Figure 5.2: Patch occupancy and food chain length in a one-dimensional lattice with periodic boundaries.
a, b) Equilibrium occupancies u(k)∗ of a three-species food chain as a function of the total colonization rate
C = 2rc for r = 1 (a) and r = 100 (b). Solid lines: analytical results obtained by Eq. 5.4; discrete marker:
stochastic simulation results, averaged over 50 repetitions for each value of r and C. c) Stationary solution
to the ODE model Eq. 5.3 for larger food chains. Black line: equilibrium occupancy u∗ as function of the
trophic level k for C = 20, following the quadratic decrease from Eq. 5.4. Blue line: persistence threshold
Ct as function of the trophic level k, following the quadratic increase from Eq. 5.5. d) Dependence of food
chain length on the total colonization rate C. Maximal possible trophic level kmax: exact result from Eq. 5.6
(black) and approximation kmax ≈

√
2C/e − 1 (yellow). Average food chain length L: exact result from

Eqs. 5.2 and 5.4 (blue) and approximation by Eq. 5.7 (red). The inset shows the dependency of L on C on
a double logarithmic plot. To guide the eye, the black dotted line shows a power law L ∼ C0.5. Parameter
values: e = 1 and N = 1000 patches.
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fraction of k-occupied patches. For the basal
species Eq. 5.3 is essentially the same as the
metapopulation equation introduced by Levins
(1969). Note, that due to neglecting spatial
correlations the equations for a closed lattice
are the same as those for mixed space (Pillai
et al., 2010; Calcagno et al., 2011; Gravel et al.,
2011a).
Setting the right hand side of Eq. 5.3 to zero we
find that the k-th species has an equilibrium oc-
cupation probability of u(k)∗ = u(k−1)∗−k(e/C)
(Pillai et al., 2011). This can be solved to

u(k)∗ = 1− e

2Ck(k + 1), (5.4)

where negative values can be considered as
equivalent to zero. As expected, species at lower
trophic levels have higher occupation probabil-
ities. This is shown in Fig. 5.2 (a, b) for a food
chain with S = 3 species, where we plot the
expected fraction of occupied patches, u(k)∗ , for
each species as function of the total colonization
rate C. Since for fixed C = 2rc, the occupation
probability u(k)∗ does not depend on r, we ob-
tain the same analytical results for r = 1 and
r = 100. This is in striking contrast to direct
simulations of the stochastic processes (marked
symbols in Fig. 5.2 a, b). While for r = 100
the analytical results from Eq. 5.4 coincide well
with the stochastic simulation, for r = 1 the
analytical results strongly overestimate the oc-
cupation probabilities. For a given species, this
discrepancy between analytical and stochastic
calculations decreases with increasing coloniza-
tion rate and both approaches practically coin-
cide for r ≥ 100.
For both colonization ranges, for the stochas-
tic as well as the ODE approach, and for all
species, we observe a transition from a regime

in which the species is extinct, u(k)∗ = 0, to a
regime in which u(k)∗ > 0. The critical value
C

(k)
t at which this transition occurs, the persis-

tence threshold of species k, increases with the
trophic level. As seen from the stochastic simu-
lation results in Fig. 5.2 (a, b), the persistence
thresholds are larger for r = 1 than for r = 100.
For example, C(1)

t,r=1 = 3.2, C(2)
t,r=1 = 8.1 and

C
(3)
t,r=1 = 14.9 compared to C

(1)
t,r=100 = 1.2,

C
(2)
t,r=100 = 3.2 and C

(3)
t,r=100 = 6.4. Again, for

sufficiently large colonization range the persis-
tence thresholds obtained by direct simulation
coincide with that from the ODE model.
By setting Eq. 5.4 to zero, we can calculate the
persistence thresholds in analytic form, show-
ing that the C(k)

t increase quadratically with the
trophic level

C
(k)
t = ek (k + 1)

2 . (5.5)

This is shown in Fig. 5.2 (c). For example, the
sixth species in the food chain would be able
to persist for a colonization rate of C/e > 21.
Thus, with further increase of C an arbitrarily
long food chain theoretically becomes possible.
As further shown in Fig. 5.2 (c), the quadratic
increase of the persistence threshold with k goes
together with a quadratic decrease of the equi-
librium occupancy. Thus, for C = 20 five
species would be able to persist, while the occu-
pation probability of the sixth species would be
negative and thus zero. For a given value of the
colonization rate only a finite number of species
can survive, even when potentially allowing an
infinite number of species.
Finally, in Fig. 5.2 (d) we investigate the de-
pendence of the food chain length on the colo-
nization rate C. By setting Eq. 5.4 to zero and
solving for k instead of C we obtain the maximal
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trophic level, kmax, found in the system as

kmax = floor

−1
2 +

√
1
4 + 2C

e

 , (5.6)

which increases as kmax ≈
√

2C/e − 1 for large
C. This maximal possible length of a food
chain in the system is larger than the average
food chain length, L, because locally species
continuously go extinct, yielding a reduction of
the average food chain (blue line in Fig. 5.2
d). Using Eq. 5.2 and summing up the terms
in Eq. 5.4 from k = 1 to the upper bound
kmax ≈

√
2C/e − 1, we can approximate the

average food chain length as

L ≈ 2
3

√
2C
e
− 1. (5.7)

Thus, the average food chain length roughly
scales with the square root of the ratio of col-
onization and extinction rates. This power-
law increase with C is superposed by slight ir-
regularities at the persistence thresholds (see
Fig. 5.2 d). Note, that this result, and the
quadratic decay of patch occupancy with C in
Eq. 5.4, is in contrast to a previous estimation
of the food chain length L ≤ C/e + 1 (Gravel
et al., 2011a). These authors, however, did not
consider bottom-up extinctions.

Mid-domain effect in a one-dimensional
domain

Next, we investigate the influence of hard
boundaries in a one-dimensional lattice. For
this, we simulate the dynamics of a food
chain (with an in principle arbitrary number
of species) on a one-dimensional lattice with
N = 1000 patches and hard boundaries. We

are interested in the spatial profile of occupation
probabilities of all surviving species, and the re-
sulting food chain length, resolved to individual
patches. As before, we parametrize our model
by the total colonization rate C = n(r)c, but for
a lattice with hard boundaries we define n (r)
as the number of neighbours of a non-boundary
patch. In the simulations, we pay specific at-
tention to the total colonization rate C = 20,
but repeated the simulations for a large range
of C values. Our simulation runs, shown exem-
plary in Fig. 5.3, confirm that for sufficiently
large colonization range (r = 100), we obtain
an excellent agreement between the ODE ap-
proach and stochastic simulations also in the
spatially explicit non-homogeneous system, sim-
ilar to the case of a spatially homogeneous sys-
tem (Fig. 5.2) where we used spatial averages.
In a homogeneous system we found that for a
total colonization rate of C = 20 a number of
S = 5 species are able to persist (Fig. 5.2 d).
As shown in Fig. 5.3, this result holds true also
in a one-dimensional lattice with hard bound-
aries (see also Appendix 5.A, Fig. 5.6, showing a
characteristic spatial profile from the stochastic
model). Additionally, we observe a clear MDE:
All species show a clear plateau in the inner
parts (mid-domain) of the lattice and decay in
occupation probability towards the boundary.
The transition from the plateau to the boundary
occurs roughly at patch r, though the transition
is less sharp for higher trophic levels. On the
other hand, the MDE is more pronounced for
species at higher trophic levels that have overall
smaller occupation probabilities. Since accord-
ing to Eq. 5.2 food chain length is the sum of the
occupation probabilities of all species, the food
chain length must inherit the MDE pattern from
the single species. Fig. 5.3 (b) confirms that this
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Figure 5.3: Mid-domain effect and spatial profile
of food chain characteristics in a one-dimensional
lattice with hard boundaries. a) Equilibrium oc-
cupancy u∗ as a function of patch number for dif-
ferent trophic levels, from k = 1 (blue) to k = 5
(green), obtained from numeric simulation of the
ODE model, Eq. 5.1. Since the solution is spa-
tially symmetric, only the left part (patches 1
to 400) is shown. b) Corresponding food chain
length L, obtained from the ODE model (blue line)
and from temporally averaged stochastic simulations
(red dots). The horizontal black solid line marks
the 95% value between Lmin and Lmax (see Eq. 5.9)
and the solid vertical line marks the corresponding
edge length E. The dashed vertical line marks the
colonization range r. Note that the figure shows
time averaged quantities; a snapshot of a corre-
sponding stochastic simulation is shown in Appendix
5.A, Fig. 5.6. Parameter values: number of patches
N = 1000, colonization range r = 100, total colo-
nization rate C = 20, extinction rate e = 1.

is indeed the case. Both ODE and stochastic
simulations reveal a clear MDE for food chain
length, meaning that food chain length also
reaches a plateau value in the middle of the do-
main and decreases towards the boundary.
To characterize the MDE, we first measure the
maximal average food chain length Lmax within
the plateau in the interior of the lattice and the
minimal average food chain length Lmin at the
boundary of the lattice. Based on these values
we define the relative strength of the MDE as
the ratio

RL = (Lmax − Lmin) /Lmax. (5.8)

In general, this index measures the relative mag-
nitude of the decay of the food chain length
towards the boundaries. It is bounded by
0 ≤ RL ≤ 1 and larger values indicate a
stronger spatial decay. For the example, shown
in Fig. 5.3, we obtain the values Lmin = 2.38
and Lmax = 3.25, yielding a MDE strength of
RL = 0.27. Note that Lmax does not give the
maximum number of species or trophic levels
that can persist in the middle of the lattice (that
would be S = 5 in this example), but instead
gives the maximal value of the expected food
chain length (see previous subsection).
While the index RL measures the ‘vertical’ as-
pect of the MDE in Fig. 5.3, we next define a
measure for the ‘horizontal’ aspect, that is, the
characteristic spatial scale of the MDE. For this
we define the edge length E as the distance to
the boundary at which the food chain length
reaches the level

LE = Lmin + 0.95(Lmax − Lmin)
= 0.05Lmin + 0.95Lmax, (5.9)

that is, the level at which the food chain length
has increased from its boundary value Lmin by
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95% of its range between Lmax and Lmin. For
the example shown in Fig. 5.3 we find E ≈ 150
which is in the same order as the used value
of the colonization range r = 100. Thus, the
colonization range defines a characteristic spa-
tial scale of the MDE and approximately sepa-
rates the plateau from the boundary regime over
which the food chain length declines.

Next, we explore the dependence of the MDE
indices on the total colonization rate C. This is
shown in Fig. 5.4 for maximal and minimal food
chain length, Lmax and Lmin, the relative MDE
strength RL, and the normalized edge length
E/r. As expected from Fig. 5.2, Lmax and Lmin
increase with increasing C (Fig. 5.4 a). Since
Lmax increases faster, the absolute strength of
the MDE, Lmax−Lmin, is an increasing function
of C as well. The relative strength, RL, on the
other hand, on average is a decaying function
of C (Fig. 5.4 b). The MDE is thus stronger
for longer food chains in absolute numbers, but
weaker on a relative scale.

As shown in Fig. 5.4 (b) the relative edge length
is largest at the persistence threshold of the first
species at which the food chain starts to ex-
ist. For increasing C the edge length has a de-
creasing tendency, though this tendency is su-
perposed by an oscillating pattern, where typ-
ically minima of E/r arise at the persistence
thresholds of additional species. The magni-
tude of these irregularities decreases with in-
creasing C since the effect of a newly persistent
species is weaker the more species are already
present in the community. The relative edge
length roughly converges to E/r ≈ 1.5 which
is also the value that we found in Fig. 5.3. In
Appendix 5.B, Fig. 5.7 we elaborate on the de-
pendence of the edge length E on the coloniza-
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Figure 5.4: Several MDE quantifiers as functions of
the total colonization rate C on a one-dimensional
lattice (N = 1000 patches, hard boundaries, colo-
nization range r = 100). Dashed vertical lines mark
the persistence thresholds C(k)

t of species 1 ≤ k ≤ 7,
see Eq. 5.5. For C < C

(k)
1 no food chain exists. Most

quantities show an irregular behaviour at the per-
sistence thresholds. a) Plateau chain length Lmax
(black) and boundary chain length Lmin (blue). b)
Relative MDE strength RL (black) and edge length
normalized by colonization range E/r (blue).

tion range r. We find that for increasing r,
food chain length Lmax and Lmin quickly con-
verge to the values already observed in Fig. 5.3
(Lmax → 3.25 and Lmin → 2.38) (Appendix 5.B,
Fig. 5.7 a). For sufficiently large r (? 30) the
edge length becomes a linear function of the col-
onization range, E ≈ 7.2 + 1.5r (Appendix 5.B,



50 5 MID-DOMAIN EFFECT FOR FOOD CHAIN LENGTH

Fig. 5.7 b). From a theoretical point of view,
these results imply that r (if not too small) pri-
mary serves as a spatial scale while relevant re-
sults (Lmax, Lmin and E/r) are independent of
r. This underlines the role of C being essen-
tially the only free parameter in the system and
justifies why we usually consider the ratio E/r.

Similar to the irregularities observed in Fig. 5.4,
also in Fig. 5.7 in Appendix 5.B we can observe
irregularities in the behaviour of Lmax, Lmin and
E, in the regime of small r. These irregularities
occur exactly at the ‘persistence thresholds’ of
the fourth and fifth species. The term ‘persis-
tence threshold’ is here not meant with respect
to the total colonization rate C but with re-
spect to the colonization range r. For r < 11
only four of the five species are able to persist.
For r < 3 the fourth species goes regionally ex-
tinct as well. Even though the total coloniza-
tion rate is constant, a large colonization range
has a stabilizing effect on the food chain. This
can be understood by acknowledging that for
larger r the effective distance between patches
becomes smaller and that there are more alter-
native paths from one patch to another. For
small r the dynamics are less robust and local
extinctions do more often lead to regional ex-
tinctions. Note, that we have already seen this
effect in Fig. 5.2 (a, b), where for r = 1 the per-
sistence of any species required a significantly
larger colonization rate than for r = 100.

We can calculate Lmax and Lmin analytically, by
directly solving the set of equations (5.1) with
an approximate ansatz. To this end we use a

continuous limit of Eq. 5.1

du(k) (x)
dt = c

(
u(k−1) (x)− u(k) (x)

)
·
∫ min{1,x+r′}

max{0,x−r′}
u(k) (y) dy

−keu(k) (x) . (5.10)

Here, the discrete patches are replaced by con-
tinuous space (i → x,j → y) and the sum over
i’s neighbours is now an integral over x’s col-
onization range, which is x ± r′ if we are not
too close to the boundary. The total habitat is
normalized to be of unity length. In order to
use the same range-to-habitat-size ratio as be-
fore (r = 100, N = 1000) we set the normalized
colonization range to r′ = 0.1. To find the equi-
librium occupation probabilities u(k)∗ (x) we set
the left hand side of Eq. 5.10 to zero. The result-
ing set of equations for different trophic levels
k has to be solved iteratively, since the equa-
tion for species k depends on the solution for
species k − 1. Only the basal species depends
on no other species. To solve the integral in
Eq. 5.10 we assume for each single u(k) (x) a lin-
ear growth from the boundary value u(k)

min to the
plateau value u(k)

max over an edge of length r′. In
Fig. 5.3 (b) we have seen that this approxima-
tion is not entirely correct. But incorporating
more details into the calculation (e.g. replacing
the range r by our previous definition of the
edge length E) does not improve the result. We
therefore prefer to employ the simpler approach
that only depends on qualitative observations
instead of quantitative results. Within our ap-
proximation, it is straightforward to solve the
integral in Eq. 5.10. By further using Eq. 5.2
we obtain for C = 20 the analytical food chain
length results Lana

min = 2.38 and Lana
max = 3.25
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Figure 5.5: Mid-domain effect in a two-dimensional domain. The figure shows the patterns of food chain
length on a two-dimensional square lattice (a, N = 32× 32 patches) and an analogous lattice placed on the
mainland of Australia (b, N = 2801 patches). In both cases we used hard boundaries, colonization range
r = 8 as depicted by the circles, and total colonization rate C = 20. On both networks food chain length
shows a clear MDE, with the largest value attained at the center. The respective minima are attained at
the corners (square lattice), and at the north-eastern land tongue marked by the arrow (Australia).

which coincide with the values extracted from
Fig. 5.3 (b).

Mid-domain effect in a two-dimensional
domain

Finally, we explore whether the results from the
previous sections hold also in a two-dimensional
domain. For this we repeated the ODE simula-
tions for the case C = 20 on a two-dimensional
square lattice (N = 32 × 32 = 1024 patches)
and on a two-dimensional lattice placed on the
mainland of Australia (N = 2801 patches). For
the colonization range, that is now a radius,
we used r = 8. This amounts to n(r) = 196
neighbours (roughly πr2 ≈ 201) for any central
patch that is not too close to any boundary. The
connectivity of the networks is thus comparable
to our choice in the one-dimensional case with
n (r) = 200 for a colonization range of r = 100.

We considered again hard boundaries and were
interested in the food chain length resolved to
individual patches.

Our numerical simulation (Fig. 5.5) demon-
strates that the MDE emerges also on spatial
networks embedded in two-dimensional space.
In fact, the effect in two dimensions is even
more pronounced than in the one-dimensional
case. For the relative strength of the MDE
we find RL = 0.45 for the square lattice and
RL = 0.64 for the lattice placed on the mainland
of Australia (for the one-dimensional lattice it
was RL = 0.27). We used a total colonization
rate of C = 20 in all cases so that the results
can be properly compared, and differences are
caused only by the different spatial structures.

Using the same total colonization rate implies
that we should find the same maximal chain
length in all cases. For the example shown in
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Fig. 5.5 we find that this is true at least ap-
proximately (Lmax = 3.22 for the square lat-
tice and Lmax = 3.24 for Australia compared
to Lmax = 3.25 for the one-dimensional lattice).
The reason for the small differences is related
to the total extension of the domains, used in
the simulation. In our finite two-dimensional
networks a larger fraction of patches belongs to
the boundary and a smaller fraction belongs to
the mid-domain. As a result, the lattice size is
too small to support a true mid-domain plateau.
We repeated the simulations for larger networks
with a larger mid-domain to boundary ratio
(i.e., having more patches but the same value
of r) and found that the maximal food chain
length indeed increased to Lmax = 3.25 for both
two-dimensional structures.
The differences in the relative strength RL,
observed in different network topologies, are
caused by differences in the minimal chain
length Lmin. For the square lattice we observe
Lmin = 1.77 at the outmost corners, and for
Australia we find Lmin = 1.17 at the north-
eastern land tongue marked by the arrow in
Fig. 5.5. Note, that in the one-dimensional case
we had Lmin = 2.38.

5.4 Discussion

In this study we calculated the colonization-
extinction dynamics of a food chain in spatial
networks of different topologies. We found that
the persistence and occupation probabilities of
all species in the chain, as well as the fit be-
tween the stochastic and the ODE approach,
strongly depend on the colonization range r.
A larger colonization range makes spread and
persistence easier for all species. This happens
even when the per-neighbour colonization rate

is simultaneously decreased in such a way that
the total colonization rate C remains constant.
This can be understood by the following two
arguments: (1) For all species a larger coloniza-
tion range (i.e., shorter path lengths between
patches) means that empty patches can typ-
ically be (re)colonized faster (see also Barter
and Gross, 2017). This increases robustness
against local extinctions. (2) For species at
higher trophic levels we can further interpret the
colonization range as the species’ ability to tra-
verse through unsuitable habitat patches, where
the required prey species is absent. For small
ranges the remaining suitable patches are more
likely to be disconnected, which strongly dimin-
ishes the species’ colonization ability.
The large deviation between the results of the
stochastic and the ODE approach for r = 1
can be understood as follows: For small ranges
the slow step-wise propagation of a species
through the habitat network implies that oc-
cupied patches tend to form clusters, i.e., lie
next to each other. This leads to strong cor-
relations between the occupation status of ad-
jacent patches (see also Newman, 2010). For
larger values of the colonization range these cor-
relations are much weaker, first since there ex-
ist much more alternative paths through the
network, and second because the average dis-
tance between patches is much shorter. For this
reason, the agreement between the ODE ap-
proach, that neglects these correlations, and the
stochastic approach, that contains these correla-
tions, improves with larger colonization ranges
(Fig. 5.2 a, b). Note that it is possible to aug-
ment the ODE approach to partially include the
correlations. This would require, however, addi-
tional and more complex equations, at the same
time still being only an approximation (New-
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man, 2010).

In the ODE approach used here, a lattice with
periodic boundaries is formally equivalent to
fully mixed space. To actually obtain fully
mixed space from our one-dimensional lattice
with periodic boundaries, we could use a col-
onization range r ≥ N/2. In Eq. 5.3 the col-
onization range does, however, enter only im-
plicitly via the number of neighbours per patch,
n (r), which is absorbed into the total coloniza-
tion rate C. Accordingly, Eq. 5.4 shows that
in equilibrium the fraction of occupied patches
depends only on C, and not explicitly on the
range r. The structure of the spatial network
does also not enter the equation in any other
way. This means that in our ODE approach we
obtain the same results for r = 1, an actual lat-
tice with only next-neighbour interactions, and
for r ≥ N/2, i.e., fully mixed space.

We found that the fraction of occupied patches
decreases with trophic level, see Eq. 5.4 and
Fig. 5.2 (a, b, c). This result is not surpris-
ing and has already been observed, e.g., by Pil-
lai et al. (2011). It is simply a consequence of
the fact that species at higher trophic levels can
make fewer colonizations, as they are restricted
to patches where their prey is present, and go
extinct more frequently due to bottom-up ex-
tinctions. Both effects inhibit the spread of the
species. The increase of the persistence thresh-
old with trophic level, see Eq. 5.5 and Fig. 5.2
(d), is then simply a consequence of the de-
crease of the occupation probabilities. As an-
other remarkable result we found that the aver-
age food chain length roughly increases with the
square root of the ratio of colonization and ex-
tinction rates. This result deviates from previ-
ous estimation of the food chain length (Gravel

et al., 2011a) which, however, did not consider
bottom-up extinctions.

The most notable finding of this study is the
MDE for food chain length. The effect can be
explained as a direct consequence of the under-
lying spatial structure. Habitat patches close to
the boundary have a smaller number of neigh-
bours and thus receive fewer incoming coloniza-
tions. Since outgoing colonizations do not take
away anything from the source patch, and since
extinctions are purely local events, having fewer
neighbours has no other counteracting positive
effects. A fewer number of neighbours thus leads
to smaller species occupation probabilities and
consequently to shorter food chains.

We want to stress that the MDE for food chain
length emerges in the absence of any environ-
mental gradients, except for the existence of the
boundaries; it is solely caused by spatial con-
straints and can thus be considered a null expec-
tation for spatial patterns of food chain length.
Thereby, the MDE is not supposed to fully ex-
plain an actually observed pattern, such as food
chain length or (traditionally) species richness.
The MDE should rather be part of a multivari-
ate explanation (Colwell and Lees, 2000; Jetz
and Rahbek, 2002; Colwell et al., 2004). Other
factors potentially contributing to observed spa-
tial patterns are heterogeneities in temperature,
productivity, habitat diversity, or even ‘histori-
cal gradients’ like time since the last glaciation,
see for example Colwell et al. (2004) and Jetz
and Rahbek (2002) and references therein. We
also want to point out that, while there is no en-
vironmental gradient (other than the boundary)
as input to our model, the model generates its
own gradients for species at higher trophic lev-
els (see Fig. 5.3 a). The mid-domain pattern of
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the occupation probability of the basal species is
solely caused by the spatial constraints. Due to
the dependence of higher trophic levels on lower
ones, the patch occupancy of a higher level is ad-
ditionally influenced by the occupation pattern
of the next lower one. In this way the MDE
cascades up the food chain, being stronger for
species at higher trophic levels and finally lead-
ing to a significant MDE for food chain length.
The mechanistic explanation of the MDE for
food chain length, as presented here, slightly de-
viates from the classic explanation of the MDE
for species richness. The MDE is classically ex-
plained by randomly placing species ranges into
a large habitat (Colwell and Hurtt, 1994; Col-
well and Lees, 2000; Jetz and Rahbek, 2001).
The mid-domain peak or plateau of species rich-
ness then emerges since the centers of these
ranges must not lie too close to the boundary in
order to not overlap with the inhabitable zone.
This theory, even though being very compelling,
is not sufficient to explain a MDE for food chain
length. In this framework it is not sufficient
that the richness at all trophic levels decline to-
wards the boundary. A MDE for food chain
length, i.e., a decline in the number of trophic
levels towards the boundary, can only arise if
the richness at higher trophic levels decline more
rapidly than that at lower trophic levels. To ob-
tain this, we would need to require that species
ranges increase with the trophic level, which
however seems not to be supported by empir-
ical evidence. While a scaling with body mass,
and thus with trophic level, has been well es-
tablished for the home range of a species, i.e.,
the area or territory in which an individual an-
imal lives and moves on a periodic basis (Jetz
et al., 2004), there is no evidence that the same
holds true for the species range, i.e., the full geo-

graphic area where all individuals of a particular
species can be observed (Gaston, 1996).

In addition, there are several noteworthy differ-
ences between the MDE for food chain length
and the classical MDE for species richness as
described by Colwell and Hurtt (1994): (i) Clas-
sically, species ranges span only over a fraction
of the totally available habitat. In our case,
species span over the full habitat. In the ab-
sence of any additional factors that shape oc-
cupation patterns, this result is only natural.
(ii) Classically, species ranges are cohesive (but
for exceptions see for example Grytnes and Ve-
taas, 2002; Dunn et al., 2006). In our case, at
a given point in time, species ranges are highly
fragmented (see Appendix 5.A, Fig. 5.6). Only
at the level of expected values, i.e. time aver-
ages, do species ranges appear to be continuous.
In real data the fragmentation might be caused
by undersampling but also by actual breaks in
species ranges (Dunn et al., 2006). (iii) Clas-
sically, species richness declines to zero at the
boundary (but for exceptions see for example
Jetz and Rahbek, 2001; Grytnes and Vetaas,
2002). In our case food chain length declines to
non-zero values at the boundary.

Even though the MDE for species richness has
been subject to criticism (Bokma et al., 2000;
Laurie and Silander, 2002; Colwell et al., 2004),
it has become clear that boundary constraints
affect spatial patterns of species richness. This
should also be true for patterns of food chain
length, i.e., we assume that the MDE for food
chain length will also be observed when chang-
ing details of the model, or when using an en-
tirely different one, as long as spatial constraints
are included. Spatial constraints should thus al-
ways be considered as one possible explanatory
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factor for spatial patterns of food chain length
(or any other ecologically interesting quantity).

We observed that the MDE characterized by
its relative strength RL is stronger for two-
dimensional habitats (e.g., R(2d,Australia)

L = 0.64
and R

(2d,square)
L = 0.45) than for the one-

dimensional lattice (e.g., R(1d)
L = 0.27). This

observation is in agreement with our general
explanation of the MDE for food chain length
in our model, i.e., that the MDE is caused
by the fewer number of neighbours of bound-
ary patches compared to central patches. The
larger this difference becomes, the stronger the
MDE should be. The ratios of the number of
neighbours of the outmost boundary patches
to central patches, nbound, were n(1d)

bound = 0.5,
n

(2d,square)
bound = 0.29 and n

(2d,Australia)
bound = 0.16.

As expected, the decreasing tendency of nbound
matches the increasing tendency of RL.

In this study we were mainly concerned with
a theoretic exploration of the MDE for food
chain length and we leave it as a challenge for
future work to test our theoretic predictions
in field data. One simple reason for this fo-
cus of our study is that empiric data on spa-
tial food web structure are hard to come by.
While topological aspects for food webs at sin-
gle patches have been characterized in depth
(Thompson et al., 2012), data on spatial food
web structure are scarce. Nevertheless there
are empirical observations that suggest an MDE
for food chain length. For example, it has
been well established in fisheries that large top-
predatory fish are dominantly observed in mid
ocean, but are rarely observed in coastal areas
(Worm et al., 2003). In another study, Komo-
nen et al. (2000) observed that a food chain con-
sisting of the bracket fungus Fomitopsis rosea,

the tineid moth Agnathosia mendicella and the
parasitic tachinid fly Elfia cingulata, reduced to
the first one or two trophic levels in isolated
forest fragments. For more complex spatial
structures it becomes more difficult to classify
patches into boundary and central, or isolated
and non-isolated patches. In fact, a continu-
ous ‘degree of connectedness’, in network theory
known as centrality measures (Newman, 2010),
is needed to properly characterize patches. For
our lattices we simply used the distance to the
boundary as such a measure, but for more com-
plex networks the choice of centrality measure is
less straight forward. Properly quantifying and
predicting spatial patterns of food chain length
on arbitrary habitat networks could thus prove
challenging.
In general, not only the spatial structure but
also the food web structure will be more com-
plex than studied here. In our spatial set-
ting, the mechanism causing the MDE, i.e.,
the smaller number of neighbours in boundary
patches, is rather generic and does not depend
on the food web structure or the nature of the
trophic interactions. More complex food webs
and top-down effects could, however, have addi-
tional effects that might alter the mid-domain
pattern. For example, the decrease of the oc-
cupation probability of one species towards the
boundary could open a niche for other species
better adapted to this range, but that are out-
competed in the mid-domain. Such community
effects might well lead to more complex spa-
tial profiles, possibly yielding even an inverted
mid-domain pattern. Additionally, an interest-
ing avenue for further explorations would be to
extend this analysis to the spatial patterns of
other food web properties, such as connectance
or food web branching (Martinez, 1991; Thomp-
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son et al., 2012), in particular when investigat-
ing more complex food webs.
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5.A Appendix 1: Snapshot of a stochastic simulation in a one-dimensional
habitat

species 1

50 100 150 200 250 300 350 400
0

1

species 2

50 100 150 200 250 300 350 400
0

1

species 3

50 100 150 200 250 300 350 400
0

1

o
cc

u
p

an
cy

 s
ta

tu
s

species 4

50 100 150 200 250 300 350 400
0

1

species 5

50 100 150 200 250 300 350 400
0

1

food chain length

50 100 150 200 250 300 350 400

patch

0
1
2
3
4
5

L

Figure 5.6: Snapshot of a stochastic simulation in a one-dimensional habitat with hard boundaries, depicting
the characteristic rough spatial profile in a colonization-extinction model. The top five rows plot the
occupancy status (1 if patch is occupied and 0 if patch is empty) of species 1 to 5 at one time instance
as a function of the patch number, respectively. The bottom panel shows the corresponding food chain
length. For comparison, the average food chain length is shown as red line. Due to random extinction
and colonization events the instantaneous spatial profile stochastically deviates from the smooth averaged
profile, yielding highly fragmented species ranges. Nevertheless, expected patch occupancies and food chain
length decrease towards the boundary of the habitat, revealing a mid domain effect of food chain length.
Parameters as in Fig. 5.3: number of patches N = 1000, colonization range r = 100, total colonization rate
C = 20, extinction rate e = 1, only the left part (patches 1 to 400) is shown.
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5.B Appendix 2: Food chain length and edge length vs colonization range
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Figure 5.7: Dependence of MDE properties on the colonization range. a) Plateau food chain length Lmax
(blue circles) and boundary food chain length Lmin (red crosses) as a function of the colonization range
r. b) The same as (a) but for the edge length E. The spatial network is a one-dimensional lattice with
N = 1000 patches and hard boundaries. Since we are also interested in small values of r, for which the ODE
approach might yield erroneous results (see Fig. 5.2), we use the stochastic approach. For each value of r
we run the stochastic simulations only once, but exemplary repetitions indicate that the results are robust.
In all runs each patch was initialized with a probability of 0.5 to be occupied by the whole food chain. We
fix the total colonization rate to C = 2rc = 20 and thus compensate an increase of r by a decrease of the
per-neighbour colonization rate c. The extinction rate is as always set to e = 1. For C = 20 in principle
S = 5 species should be able to persist. The dashed vertical lines indicate persistence thresholds (with
respect to r) of the fourth and fifth species.
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The SIS centrality: Predicting spatial patterns of food
chain length on random graphs
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Abstract In Chapter 5 we found a mid-domain effect for food chain length,
stating that food chain length is largest in the center of a habitat and decreases
towards the boundaries even in the absence of environmental gradients. Here
we aim to generalize this effect from habitats with a regular lattice structure to
habitats represented by random networks. For random networks the concept of
center and boundary is replaced by the concept of centrality, and a generalization of
the mid-domain effect means that food chain length should increase with centrality.
To quantify the centrality of patches we use several known centrality measures and
additionally introduce a new centrality measure based on susceptible-infected-
susceptible dynamics from epidemics on networks. We call our new centrality
measure the SIS centrality. Food chain length results are obtained by simulations
of spatially explicit colonization-extinction dynamics of a simple food chain. We
find for all considered centrality measures that food chain length tends to increase
with centrality. In our study the SIS centrality shows the strongest correlations
with food chain length and is thus particularly well suited for the generalization
of the mid-domain effect to random networks. Our results demonstrate how the
spatial structure alone can influence the spatial pattern of food chain length in
a patchy habitat. The (SIS) centrality of a patch can thus be considered as an
additional determinant of food chain length, similar to factors such as primary
productivity or ecosystem size.



60 6 FOOD CHAIN LENGTH AND THE SIS CENTRALITY

6.1 Introduction

The mid-domain effect for food chain length,
formulated in Chapter 5, states that even in the
absence of other environmental gradients food
chains should be shorter towards the bound-
aries of a habitat and longer towards the cen-
ter. Food chain length results were based on
a colonization-extinction model of species form-
ing a food chain (see also Pillai et al., 2010,
2011, and Section 3.3). Habitats were repre-
sented by regular networks (or graphs; here used
interchangeably), more precisely by one- and
two-dimensional lattices with long-distance in-
teractions and hard boundaries. In reality this
will often be an unsuitable assumption. In-
stead, habitats can often be considered as be-
ing non-regularly fragmented into patches, like
forests that suffer from deforestation and are
interrupted by roads or other human-caused as
well as natural borders (Skole and Tucker, 1993;
Vitousek et al., 1997; Fahrig, 2003; Broadbent
et al., 2008; Liao et al., 2017b). More exam-
ples of non-regular, patchy habitats are forma-
tions of islands in an ocean or lakes on a conti-
nent. A class of networks suited to model such
habitats are random geometric graphs, where
patches are embedded in two-dimensional space
and are connected if they lie within a given max-
imal distance to each other (Gilbert, 1961; Dall
and Christensen, 2002; Penrose, 2003). Other
typical classes of random networks without this
explicit spatial embedding are Erdős-Rényi ran-
dom graphs (Erdős and Rényi, 1959, 1960, 1961)
and scale free graphs (Albert and Barabási,
2002; Barabási, 2016). Generalizing the mid-
domain effect for food chain length to such net-
works broadens its applicability to a larger class
of habitats and to more realistic ones.

Translating the mid-domain effect to random
networks is not straightforward as it is difficult
to define boundary and center (mid-domain)
of such networks. Fortunately, however, so-
called centrality measures are a well known con-
cept in network theory (Borgatti, 2005; New-
man, 2010). A centrality measure tries to quan-
tify and order the ‘connectedness’ or ‘impor-
tance’ of nodes in a network. The arguably
simplest centrality measure is the degree, which
is simply the number of neighbours of a node.
Some more sophisticated and well known cen-
trality measures are the eigenvector central-
ity (Bonacich, 1972a,b, 1987), Katz centrality
(Katz, 1953), Google’s PageRank (Brin and
Page, 1998), Closeness (Bavelas, 1950), and Be-
tweenness (Freeman, 1977, 1979). If the mid-
domain effect translates to random networks, we
should find that food chain length increases with
increasing patch centrality. Since it is unlikely
that all centrality measures yield the same re-
sult, choosing the right measure is an important
task.
Some centrality measures have been specifically
designed with the intention to predict the out-
come of dynamical processes on networks, like
the spread of an epidemic. Epidemic models are
related to the food web model that we use here
in the sense that the colonization-extinction dy-
namics of each species in the food chain (in
particular the basal species) are equivalent to
the dynamics of a so-called susceptible-infected-
susceptible (SIS) model from epidemics (see Sec-
tion 3.5). Two measures that have been used in
the context of epidemics on networks are the
Expected Force (Lawyer, 2015) and the k-shell
index (Seidman, 1983; Bollobás, 1984; Kitsak
et al., 2010; Garas et al., 2012). These mea-
sures have been used to relate global quanti-
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ties, like the size of an epidemic outbreak, to
the centrality of the seed node of the infection
(Kitsak et al., 2010; Lawyer, 2015). Concern-
ing our goal to generalize the mid-domain effect
for food chain length to random networks there
are two main differences compared to the above
application: (1) we are not interested in global
quantities (like the size of an outbreak) but in
results resolved to individual patches, and (2)
we are not interested in results of the spread of
a single infection but in results for many species
forming a food web. Some work in this direction
has been done by Barter and Gross (2017) who
investigated how species occupancies (of several
species in a food web) depend on the degree of
patches and how this depends on the network
type. The difference of our study is that, for
the purpose of generalizing the mid-domain ef-
fect for food chain length to random networks,
we are interested not in the occupancies of indi-
vidual species but directly in the resulting food
chain length (which in turn implies the presence
of species at specific trophic levels). We further-
more relate the food chain length not only to
the degree of patches but to multiple central-
ity measures. Our overall objective can thus be
stated as follows: We want to predict the food
chain length on all individual patches of a ran-
dom network by the centrality of the patches.
It is not clear how well currently known cen-
trality measures perform at this task. Thus, we
(1) introduce and characterize a new centrality
measure specifically designed for this task and
(2) exemplary and systematically compare the
performance of our new measure at predicting
food chain length with other known measures.

6.2 Methods

Food web model

To simulate food web dynamics and calculate
food chain length we use a spatially explicit ver-
sion of the colonization-extinction model by Pil-
lai et al. (2010, 2011) (see also Section 3.3). As
in Chapter 5 we consider a simple food chain of
stacked specialists and neglect top-down effects.
The spatial network, however, can now be of any
form and is not restricted to regular lattices. On
a given patch a species can either be present or
absent. Population dynamics are neglected, as-
suming that they occur on a much faster time
scale than the colonization-extinction dynamics.
The food chain structure is enforced by the con-

c

trophic level

e

1

2

3

4

5

patch

bottom-up
extinction

Figure 6.1: Schematic representation of the
colonization-extinction model of a food chain on
a random network as described in the main text.
Species are represented by the orange circles and are
stacked vertically on top of each other according to
their trophic levels. The spatial network is repre-
sented by the grey patches and the edges between
them. An extinction process (crossed out species,
associated rate e) with induced bottom-up extinc-
tions, and a colonization process between neighbour-
ing patches (green arrow, associated rate c) are indi-
cated. The colonization requires the presence of the
colonizer’s prey on the target patch.
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dition that species k (k = 1, ..., S) can only be
present on patches on which its prey species k−1
is present. This means (1) that a species can
only colonize a neighbouring patch if its prey
is present on that patch and (2) that the ex-
tinction of a species causes all species at higher
trophic levels on the same patch to go extinct as
well (bottom-up extinction). Extinctions occur
randomly with rate e, and with any possible col-
onization we associate the rate c (per-neighbour
colonization rate). These rates as well as the
spatial network are assumed to be identical for
all species. The only difference between the
species is thus their position within the food
chain. Note that the basal species has access
to the full network and can suffer no bottom-up
extinction. Fig. 6.1 shows a schematic represen-
tation of the described model.

Simulating model dynamics and calculat-
ing food chain length

The model dynamics can in principle be de-
scribed by a set of S ·N (S: number of species,
N : number of patches) differential equations
for the occupation probabilities (or occupan-
cies) u(k)

i of each species k on each patch i,

du(k)
i

dt = c
(
u

(k−1)
i − u(k)

i

) N∑
j=1

Aiju
(k)
j − keu

(k)
i ,

(6.1)

(u(0)
i = 1) which can be solved numerically (see

Subsection 3.4.2). While these equations incor-
porate the explicit spatial network structure via
the adjacency matrix A, spatial correlations be-
tween adjacent patches are neglected (see Sub-
section 3.4.1). This means that Eq. 6.1 is only
an approximation to the true model dynamics,

and whereas for strongly connected networks
the spatial correlations are negligible, they can
make a significant difference for weakly con-
nected networks (see Chapter 5, Fig. 5.2). Since
we here consider networks with different connec-
tivities and want the food chain length results
to be as precise as possible, we refrain from the
approximate differential equation approach. In-
stead, we use long-term stochastic simulations
that automatically incorporate all spatial corre-
lations.

To run the stochastic simulations we use the
Gillespie algorithm (Gillespie, 1977) which sim-
ulates the model dynamics step by step, one col-
onization or extinction event after another (see
Subsection 3.4.3). At each step we know ex-
actly which species is present on which patches
and we also know how much time passes un-
til the next event is executed. This allows us
to calculate the fraction of time any patch i is
occupied by any species k, which is the equiva-
lent of the above mentioned occupation proba-
bility u(k)

i . The food chain length can then be
calculated via the formula Li =

∑S
k=1 u

(k)
i (see

Chapter 5, Eq. 5.2).

For given network size N and species number S
we run the Gillespie algorithm for 110 000 ·S ·N
steps and calculate the u(k)

i over the last 100 000·
S ·N steps. This large averaging time is needed
since patch-wise quantities converge only slowly.
To choose an appropriate value for S we have
to predict already before the simulations how
many species will survive. We do this by first
solving the corresponding differential equations
(Eq. 6.1) with some large species number S′ and
then choose S as the number of species that have
regional occupancy (spatially averaged occupa-
tion probability) larger than 1/N. This thresh-
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old value corresponds to one occupied patch in
the stochastic version of the model. A species
that is on average present on less than a single
patch should go extinct due to stochastic fluc-
tuations. Furthermore, for a chain of stacked
specialists occupation probabilities are typically
smaller in the stochastic approach than in the
differential equation approach (see Chapter 5,
Fig. 5.2). Thus, the value of S obtained in the
above way should be an upper bound for the
number of persisting species in the stochastic
model. If spatial correlations are not too large
(i.e. if Eq. 6.1 is a good approximation for the
system dynamics) the upper bound should be
tight. Note that we could artificially restrict
the food chain length by running the simula-
tions with a smaller number of species, which
might affect the results presented in this chap-
ter. We do, however, think that it is a reason-
able assumption that the system is populated
by all species that can possibly persist, or in
other words, that all ecological niches allowed
by the model are indeed occupied.
Without loss of generality we set the extinction
rate to e = 1 for all simulations. For better com-
parability of results among different graphs we
also fix the total colonization rate C = 〈m〉 · c
(typically to C = 20) where 〈m〉 is the mean
degree of the spatial network.

Spatial networks

To cover some of the most important classes
of random graphs we consider Erdős-Rényi
(ER) random graphs (Erdős and Rényi, 1959,
1960, 1961), random geometric graphs (RGGs)
with periodic boundary conditions (Gilbert,
1961; Dall and Christensen, 2002; Penrose,
2003), and scale free (SF) graphs generated

by the BA-algorithm (Albert and Barabási,
2002; Barabási, 2016). ER graphs are ordinary
random graphs where edges between patches
are placed completely at random. This gives
rise to the small-world property, meaning that
paths between patches tend to be short. RGGs
have their patches randomly placed in two-
dimensional space and only patches within a
certain Euclidean distance to each other are
connected. This explicit spatial embedding leads
to long path lengths and strong degree cor-
relations of neighbouring nodes. ER graphs
and RGGs have, nevertheless, the same (Pois-
son) degree distribution. SF graphs are (ultra)
small-world graphs characterized by a power law
degree distribution, leading to the emergence
of some highly connected patches (hubs). For
more details see Section 2 and Newman (2010).
All random graphs we consider here have N =
1000 patches since for larger graphs the stochas-
tic food web model simulations would become
extremely time consuming. We do, however,
vary the network connectivity measured by the
mean degree, 〈m〉 = 10, 15, ..., 50. For smaller
connectivities RGGs and ER graphs often fall
apart into different components, which we want
to avoid.

Centrality measures

Since we want to investigate the relation be-
tween the topological positions of patches in the
network and food chain length, we have to some-
how quantify the positions of patches. Note
that in contrast to the geographical position of a
patch in a network, the topological position of a
patch describes its connectivity to other patches
(in general including non-adjacent patches) via
edges of the network. Quantifying the topologi-
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cal positions of patches can be accomplished by
centrality measures. We consider the following
known centrality measures:

The degree of a patch is the number of its
direct neighbours.

The eigenvector centrality (Bonacich,
1972a,b, 1987) is the eigenvector correspond-
ing to the largest eigenvalue of the adjacency
matrix A, xi ∼

∑
j Aijxj . The eigenvector

centrality of a patch depends not only on the
number of its neighbours but also on their
centralities. We calculate the eigenvector cen-
trality, for all patches in parallel, by using the
above equation as an iteration rule starting
with some initial guess. After each iteration
the xi are normalized since they would other-
wise diverge to infinity. This method is also
known as the power method and the xi do in-
deed converge to the eigenvector belonging to
the largest eigenvalue of the adjacency matrix
(Golub and Van Loan, 1996).

The Katz centrality (Katz, 1953; see also
Newman, 2010) is a generalization of the
eigenvector centrality satisfying the equation,
xi = α

∑
j Aijxj + β. By β > 0 a small

amount of ‘free’ centrality is added to each
patch. Without loss of generality one can set
β = 1. The relative strength between the two
terms has to satisfy α < 1/κmax where κmax is
the largest eigenvalue of the adjacency matrix.
We use α = 0.6/κmax which yielded compar-
atively good results at predicting food chain
length on some exemplary graphs. We calcu-
late Katz centrality in the same iterative way
as the eigenvector centrality (but without the
normalization since the xi here converge nat-
urally).

PageRank (Brin and Page, 1998; see also
Newman, 2010) is another generalization of
the eigenvector centrality satisfying the equa-
tion, xi = α

∑
j
Aijxj
mj

+ β, where mj is the
degree of patch j. Compared to Katz central-
ity, patches profit less from the centrality of
neighbours with large degree. The offset can
again be set to β = 1. The parameter α has
to satisfy α < 1 (for undirected networks) and
we choose α = 0.9, again found by initial tests
at predicting food chain length on some exem-
plary graphs. We calculate PageRank in the
same iterative way as the eigenvector central-
ity (but without the normalization since the
xi here converge naturally).

The Expected Force (Lawyer, 2015) esti-
mates the potential spreading power that a
node should have in an epidemic model. To
this end, it is assumed that initially only the
patch of interest, i, is infected and that two
transmissions of the infection occur. The
three then infected and connected patches are
called a cluster. By that procedure many clus-
ters j = 1, ..., J around patch i can be gener-
ated (some of them multiple times). Next,
the cluster degree, dj , of each cluster j is cal-
culated as the number of links from patches
within cluster j to patches outside of clus-
ter j. The cluster degrees are then normal-
ized to form a probability distribution, dj =
dj∑
k
dk
. The Expected Force of patch i is fi-

nally calculated as the entropy of the dis-
tribution of the normalized cluster degrees,
ExFi = −

∑
j dj log dj .

The k-shell index (Seidman, 1983; Bollobás,
1984; Kitsak et al., 2010; Garas et al., 2012)
divides the network into different layers, from
the outmost periphery to the most central
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core. In detail, all nodes with degree m = 1
belong to the periphery shell, are assigned the
value ks = 1, and are then removed from the
network. This is repeated for the remaining
network until only patches with remaining de-
gree m ≥ 2 are left. Next, patches with re-
maining degree m = 2 are assigned the value
ks = 2 and the iterative removal-procedure
starts again until only patches with remain-
ing degree m ≥ 3 are left and so on.

6.3 The SIS centrality

Here we introduce and examine a new cen-
trality measure that we use in the next sec-
tion to predict food chain length. In the
introduction we mentioned the equivalence
between colonization-extinction dynamics and
susceptible-infected-susceptible (SIS) dynamics
where, for example, the spread of an infection
through a human population is modelled (see
also Section 3.5). While the outcomes of SIS
dynamics have been subject to being predicted
by centrality measures themselves (Kitsak et al.,
2010; Lawyer, 2015), we here want to use the
solution of the standard SIS equation (on net-
works) as a centrality measure. This measure
might in general be used to predict the outcomes
of even more complex dynamical processes on
networks. The standard SIS equation on net-
works reads,

dxi
dt = λ (1− xi)

∑
j

Aijxj − µxi, (6.2)

(Newman, 2010) where λ is the infection rate
(the analog of the colonization rate c), µ the re-
covery rate (the analog of the extinction rate e),

and xi the probability that node i is currently
infected (the analog of the occupation probabil-
ity u(1)

i of the basal species; compare to Eq. 6.1
with k = 1). By setting the left hand side of
Eq. 6.2 to zero and rearranging appropriately
we obtain,

xi = [Ax]i
g + [Ax]i

, (6.3)

where we further used the shorter notation
[Ax]i =

∑
j Aijxj and defined g = µ/λ. We de-

fine the SIS centrality as the solution of Eq. 6.3,
and g is a free parameter of the SIS centrality.
To calculate the SIS centrality we use Eq. 6.3
as an iteration rule starting with some initial
guess. As Katz centrality and PageRank the
SIS centrality is a modification of the eigenvec-
tor centrality obtained by adding the [Ax]i in
the denominator. In fact, for large g Eq. 6.3
can be approximated by the eigenvector (cen-
trality) equation xi ≈

[Ax]i
g . Note that when

this equation is used as an iteration rule the
xi may converge to zero, but this does not af-
fect the relation between them and can be pre-
vented by a renormalization after each iteration.
Furthermore, the SIS centrality reduces to the
eigenvector centrality already before taking the
limit g →∞. Since the xi are the solution of an
SIS epidemic process, and since (on most net-
works) the SIS model has an epidemic threshold
(Pastor-Satorras and Vespignani, 2001a,b, 2002;
Newman, 2010), all xi converge to zero as soon
as g is above this threshold. In this case the
approximation xi ≈

[Ax]i
g of Eq. 6.3 becomes

exact meaning that SIS centrality and eigenvec-
tor centrality coincide. In terms of g−1 = λ

µ the
epidemic threshold is g−1

crit = 1
κmax

, where κmax
is the largest eigenvalue of the network’s ad-
jacency matrix (Newman, 2010; Goltsev et al.,
2012), and the infection dies out for g−1 < 1

κmax
.
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Thus, for the parameter g the infection dies out
as soon as g > κmax. Confirming this line of
arguments, we find for an exemplary random
geometric graph that for g > κmax (but not
for g < κmax) SIS centrality and eigenvector
centrality are indeed perfectly correlated (see
Fig. 6.2). Similar results can be observed for
other graphs (not shown).

In the opposite case, for g → 0 the SIS central-
ity converges to xi ≈ 1. As long as we still have
g > 0 the xi do, however, not converge exactly
to 1 and the precise value of xi will still depend
on the patch i. The SIS centrality might there-
fore still be a useful centrality measure for small
g.

For the purpose of predicting food chain length
we are interested in neither of the extreme cases
but aim for an intermediate g. To find a promis-
ing value we use the following heuristic ap-
proach: (1) We note that the xi are bounded
between 0 and 1. This can be seen from Eq. 6.3
and also makes sense since in Eq. 6.2 we inter-
preted the xi as probabilities. (2) We want the
xi to cover a large range of values between 0 and
1 to give the SIS centrality a good ‘resolution’.
(3) We argue that (2) is satisfied when the xi
are centered around 0.5, that is, 〈xi〉 = 0.5. (4)
We assume that we can apply the expectation
to all terms on the right hand side of Eq. 6.3
separately. This means that we apply the ex-
pectation individually to numerator and denom-
inator as well as to adjacency matrix elements
and x values. Mathematically, the latter leads
to 〈[Ax]i〉 =

〈∑
j Aijxj

〉
≈
∑
j 〈Aij〉 〈xj〉 =

N · 〈m〉N · 1
2 = 〈m〉

2 , where we used that
∑
j in-

cludes all N patches, that each pair of patches is
connected with probability 〈Aij〉 = 〈m〉

N , where
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Figure 6.2: Correlation between eigenvector central-
ity and SIS centrality for varying SIS parameter g
measured by the R2 value of a linear fit between
them. The underlying network is a random geomet-
ric graph with N = 1000 patches and mean degree
〈m〉 = 50. After a sharp transition at g = κmax (the
largest eigenvalue of the network’s adjacency matrix)
the two centrality measures perfectly coincide.

〈m〉 is the mean degree of the network, and that
according to (3) we have 〈xj〉 = 0.5. By apply-
ing this expectation to both instances of [Ax]i
on the right hand side of Eq. 6.3, and also de-
manding 〈xi〉 = 0.5 on the left hand side, we
obtain 1

2 =
〈m〉

2
g+ 〈m〉2

from which we finally find

g = 〈m〉2 . (6.4)

For the graph underlying Fig. 6.2 the value
g = 〈m〉

2 = 25 lies roughly in the middle between
the extreme cases g = 0 and g = κmax ≈ 55.
In the following section, and in general when
not specifying the parameter, we implicitly use
g = 〈m〉

2 .

6.4 Predicting food chain length

In this section we investigate how well centrality
measures fit simulated food chain length results
and thus how well they are suited for the gener-
alization of the mid-domain effect for food chain
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Figure 6.3: a, b) Patterns of food chain length (a) and degree (b) on a small random geometric graph
(with hard boundaries). c, d) Distributions of food chain length (c) and degree (d) on a scale free graph
with N = 1000 patches.

length to random networks. For a first impres-
sion we start by comparing the patterns of food
chain length and the degree on a small random
geometric graph (Fig. 6.3 a, b). The patterns
are qualitatively similar but food chain length is
large not only on high-degree patches but also
on surrounding patches with smaller degree. In
other words, to some extent the food chain dy-
namics even out degree differences. The second
observation is that food chain length spans over
a much smaller range, also on a relative scale, of
values (2.3 < L < 3.9) compared to the degree

(4 < degree < 15). Both observations are even
more pronounced on the scale free graph under-
lying Fig. 6.3 (c, d). The distribution of food
chain length values is much less widely-spread
and more even than the scale free degree distri-
bution. Here, food chain length ranges only be-
tween 2.4 < L < 5.6 compared to the long tailed
degree distribution with 5 < degree < 137. We
conclude from this first impression that the de-
gree will not be the most accurate predictor of
food chain length.
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Relation between centrality measures and
food chain length on two exemplary
graphs

In order to quantitatively assess the agreement
between food chain length and degree (or any
other centrality measure) we calculate the R2

value of a linear fit between them. We use a
linear fit, first since R2 then amounts to the
square of the usual Pearson correlation coeffi-
cient between the two quantities, and second
since we want to avoid the search for the opti-
mal functional form or variable transformation
for each individual centrality measure. In the
worst case we might have to repeat this opti-
mization for each spatial network, or at least
for each network type. By always using lin-
ear fits we thus intentionally favor centrality
measures with the most simple relation to food
chain length. The goodness-of-fit statistic R2 is
bounded between 0 and 1, where 1 indicates per-
fect correlation and 0 corresponds to no correla-
tion at all. For an exemplary random geometric
graph with N = 1000 patches and mean degree
〈m〉 = 25 we find R2

deg ≈ 0.93 for the linear fit
between food chain length and degree (upper
left panel of Fig. 6.4 a). Given the simplicity of
the degree this fit is remarkably good, but we
observe both a small systematic deviation of the
data points from the line (systematic error) as
well as moderate scattering of the data points
(statistical error). Beyond that, the observation
that food chain length tends to increase with the
degree is exactly what we expect and require for
the generalization of the mid-domain effect for
food chain length to random networks.

For the same graph we also investigate the re-
lation between food chain length and the other
centrality measures introduced in the Methods

(eigenvector centrality, Katz centrality, PageR-
ank, Expected Force, and k-shell index) and the
SIS centrality from the previous section (next
six panels of Fig. 6.4 a). As for the degree,
we find for all centrality measures that food
chain length tends to increase with centrality.
The centrality measure with the best fit to food
chain length is the SIS centrality, resulting in an
almost perfect line (R2

SIS ≈ 1.00). At least for
the random geometric graph considered here,
the SIS centrality is thus perfectly suited for
the generalization of the mid-domain effect for
food chain length to random networks. The
SIS centrality is closely followed by the Ex-
pected Force (R2

ExF ≈ 0.99) and the third best
measure is already the degree (R2

deg ≈ 0.93).
The eigenvector centrality is the worst measure
(R2

eigen ≈ 0.19) mostly since a large fraction of
patches has eigenvector centrality close to zero.
The difference between statistical and system-
atic error can best be seen when comparing the
fits for Katz centrality and PageRank. Katz
centrality (R2

Katz ≈ 0.88) and food chain length
form a concave function with minimal scatter-
ing, corresponding to a systematic error. For
PageRank (R2

PRank ≈ 0.75), on the other hand,
there is no significant deviation from a line but
strong scattering, corresponding to a statisti-
cal error. This implies that the performance
of Katz centrality could be increased by fitting
a non-linear function, while the performance of
PageRank cannot be increased. For the k-shell
index (R2

k-shell ≈ 0.75) the error is mainly due to
scattering as well. It is also noteworthy that on
all the 1000 patches the k-shell index takes only
13 different values, compared to 36 different de-
gree values and almost a continuum of values
for all other centrality measures as well as the
food chain length.
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Figure 6.4: Simulated food chain length (for total colonization rate C = 20) vs centrality measures (a) on
a random geometric graph with N = 1000 patches and mean degree 〈m〉 = 25, and (b) on a scale free
graph with N = 1000 patches and mean degree 〈m〉 = 10. The R2 values belong to the corresponding linear
fits and characterize the goodness of fit between food chain length and the centrality measures. Centrality
measures from top left to bottom right are: degree, eigenvector centrality, Katz centrality, PageRank, SIS
centrality, Expected Force, k-shell index, and occupancy of the basal species.
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To test the importance of the choice g = 〈m〉
2

for the SIS parameter we finally consider the fit
between the occupancy u(1)

i of the basal species
and the food chain length. The basal species
follows the same dynamics that underlie the
SIS centrality but uses the actual colonization-
extinction parameters (here e = 1 and c =
C
〈m〉 = 20

25 = 0.8) of the food chain dynamics.
The occupancy of the basal species thus corre-
sponds to the SIS centrality with g = e

c = 1.25,
which is significantly smaller than 〈m〉2 = 12.5.
We find that the occupancy of the basal species
fits food chain length roughly as well as the de-
gree (R2

basal ≈ 0.92, lower right panel of Fig. 6.4
a) which implies that it is in particular inferior
to the SIS centrality with g = 〈m〉

2 . Since the
eigenvector centrality, which is only weakly cor-
related to food chain length, corresponds to the
SIS centrality with g � 〈m〉

2 , we conclude that
our choice of the intermediate value g = 〈m〉

2
plays an important role for the remarkable per-
formance of the SIS centrality.

We repeat the whole analysis for an exemplary
scale free graph with N = 1000 patches and
mean degree 〈m〉 = 10 (Fig. 6.4 b). The SIS
centrality (R2

SIS ≈ 1.00) is in this case by far the
best predictor of food chain length, also clearly
outperforming the Expected Force (R2

ExF ≈
0.88). Degree, eigenvector centrality, Katz cen-
trality, and PageRank show qualitatively similar
behaviour and lead to R2 ≈ 0.65 − 0.70. The
occupancy of the basal species (R2

basal ≈ 0.91) is
again significantly inferior to the SIS centrality
as well. The k-shell index leads to R2

k-shell = 0
which is discussed in the next subsection. Over-
all, by visual evaluation of Fig. 6.4 we find that
already R2 . 0.95 indicates a suboptimal fit be-
tween food chain length and centrality measure.

Note that for all results in this and the follow-
ing subsections food chain simulations were per-
formed with total colonization rate C = 20, but
for C = 10 and C = 30 results are qualitatively
similar (results not shown).

Large-scale results for different graph
types and connectivities

Systematic results (Fig. 6.5) for random geo-
metric graphs (RGGs), Erdős-Rényi (ER) ran-
dom graphs, and scale free (SF) graphs with
varying mean degree confirm the above exem-
plary results. The SIS centrality is the best
predictor of food chain length for all graphs
and mean degrees, typically followed by the Ex-
pected Force. The classical centrality measures
are clearly outperformed by these two measures.
If we define R2 = 0.95 as the threshold above
which we consider the performance of a mea-
sure as satisfying, the SIS centrality is the only
measure that leads to satisfying results in all
considered cases. A full analysis of which cen-
trality measures perform satisfyingly on which
graphs and for which mean degrees is shown in
Table 6.1. Based on this analysis we can sort
the centrality measures according to their per-
formances. Starting with the best measure we
find: 1. SIS centrality, 2. Expected Force, 3. oc-
cupancy of the basal species, 4. degree, 5. Katz
centrality, 6. PageRank, 7. eigenvector central-
ity, and 8. k-shell index.
For fixed graph type the performance of all cen-
trality measures, except for the k-shell index,
increases with increasing mean degree. On ER
and in particular on SF graphs this connectivity
dependence is much weaker for the SIS central-
ity than for the Expected Force, degree, Katz
centrality, PageRank, and eigenvector central-
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Figure 6.5: Correlation between centrality measures and simulated food chain length (for total colonization
rate C = 20) on random geometric graphs (RGGs, left column), Erdős-Rényi random graphs (ER graphs,
middle column), and scale free graphs (SF graphs, right column) with N = 1000 patches and varying
mean degree 〈m〉 = 10, 15, ..., 50. The correlation is measured as the R2 value of a linear fit between food
chain length and centrality measure. Plot markers show mean R2 values over 100 realizations of the same
network type and mean degree. Error bars indicate the 5th and 95th percentiles of the corresponding full
distributions of R2 values. When no error bars are shown the distribution is so narrow that the error bars
would collide with the plot marker. Top row: SIS centrality, Expected Force, and degree; middle row:
Katz centrality (roughly the same mean R2 values as the degree for all graphs), PageRank, and eigenvector
centrality; bottom row: SIS centrality (as benchmark), k-shell index, and occupancy of the basal species.
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SIS ExF degree eigenvec. Katz PageRank k-shell basal species
RGG always always 〈m〉 ≥ 35 never 〈m〉 ≥ 40 never never 〈m〉 ≥ 35

ER graph always always 〈m〉 ≥ 20 〈m〉 ≥ 25 〈m〉 ≥ 20 〈m〉 ≥ 20 never 〈m〉 ≥ 15
SF graph always 〈m〉 ≥ 20 never never never never never 〈m〉 = 50

Table 6.1: Summary under which conditions (mean degree 〈m〉 = 10, 15, ...50) which centrality measure
yields satisfying results on which graph type (RGG: random geometric graph; ER graph: Erdős-Rényi ran-
dom graph; SF graph: scale free graph). For a single graph the goodness of fit between centrality measure
and food chain length is quantified by the R2 value of a linear fit between them. For a specified graph type
and mean degree we define the performance of a centrality measure as satisfying if the mean R2 value is
larger than 0.95, where the mean is taken over all 100 realizations of that graph type and mean degree.

ity (see first two rows of Fig. 6.5). The advan-
tage of the SIS centrality is thus typically larger
on sparser graphs. We moreover find that all
centrality measures, except for the SIS central-
ity and the k-shell index, perform best on ER
graphs. The SIS centrality performs best on
SF graphs. The advantage of the SIS centrality
over the other centrality measures is smallest
on ER graphs and typically much more signifi-
cant on RGGs and SF graphs. Against the Ex-
pected Force, degree, and Katz centrality the
advantage of the SIS centrality is largest on SF
graphs while against the eigenvector centrality,
PageRank, and occupancy of the basal species
the advantage of the SIS centrality is largest on
RGGs.

The eigenvector centrality has by far its worst
performance on RGGs (R2

eigen < 0.5). A general
problem of the eigenvector centrality is that it is
often strongly localized on a few patches (Mar-
tin et al., 2014; Pastor-Satorras and Castel-
lano, 2016). The food chain length, on the
other hand, is more evenly distributed (see also
Fig. 6.3). This discrepancy is particularly pro-
nounced on the spatially embedded RGGs, lead-
ing to the observed weak fits between eigen-
vector centrality and food chain length. On

the non-spatially embedded ER and SF graphs
eigenvector centrality, its variants Katz central-
ity and PageRank, as well as the degree all lead
to similar fit performances.

The k-shell index shows a distinctly different be-
haviour than all other centrality measures. On
RGGs and ER graphs the performance of the k-
shell index decreases with increasing mean de-
gree, which is in contrast to all other central-
ity measures. At least on RGGs this seems to
be caused by a more pronounced k-shell struc-
ture (i.e. more different k-shell values) of graphs
with smaller mean degree. On SF graphs the
performance of the k-shell index is strictly zero
(R2

k-shell = 0), independently of the mean de-
gree. This happens because SF graphs gener-
ated by the BA-model (Albert and Barabási,
2002; Barabási, 2016) have no k-shell struc-
ture at all (i.e. all patches have the same k-
shell value). The BA-model neglects many
mechanisms that might play a role for the for-
mation of real-world SF graphs (Dorogovtsev
and Mendes, 2000; Albert and Barabási, 2000;
Barabási, 2016) so that the weak performance
of the k-shell index is most likely caused by our
choice of a too theoretical graph model. By tak-
ing all considered graph types into account we
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Figure 6.6: Same as Fig. 6.4 but here the underlying spatial network is a two-dimensional square lattice
with hard boundaries, N = 32 × 32 patches, and circular colonization range r = 8. The resulting mean
degree of the network is 〈m〉 ≈ 157. For exactly this graph we demonstrated the mid-domain effect for food
chain length in two dimensions in Chapter 5 (Fig. 5.5 a).

nevertheless conclude that the k-shell index is
not suited to predict food chain length resolved
to individual patches.

On a two-dimensional lattice

Our motivation for this research chapter was to
generalize the mid-domain effect for food chain
length from lattices to random graphs. In this
context, we expect from a good centrality mea-
sure that it also properly fits food chain length
on lattices. Here, we thus investigate how well
the centrality measures from the previous sub-
sections perform at fitting food chain length on
the square lattice for which we observed the
mid-domain effect in Chapter 5 (Fig. 5.5 a)
(Fig. 6.6). Both, the SIS centrality (R2

SIS ≈
1.00) and the Expected Force (R2

ExF ≈ 1.00)

perform almost perfectly on this lattice. Most
other measures perform better than on the pre-
viously considered random graphs. The degree,
Katz centrality, PageRank, and occupancy of
the basal species are all satisfying according to
our R2 > 0.95 criterion. Only the eigenvector
centrality (R2

eigen ≈ 0.85) and in particular the
k-shell index (R2

k-shell ≈ 0.51) are not satisfying.
Note that the good performance of most central-
ity measures might partially be due to the large
mean degree of the considered lattice, 〈m〉 ≈
157, which is the result of allowing long-range
colonizations. In Chapter 5 this strong connec-
tivity had the purpose of reducing spatial corre-
lations and thus allowing us to use the differen-
tial equation approach instead of the stochastic
approach used here. The random graphs from
the previous subsections, on the other hand, had
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mean degrees 〈m〉 = 10, 15, ..., 50, and we found
that most centrality measures fitted food chain
length better when 〈m〉 was larger.

6.5 Discussion

We have introduced a new centrality mea-
sure based on the solution of an epidemic
susceptible-infected-susceptible (SIS) model on
networks, and consequently called this measure
the SIS centrality. We investigated how well
the SIS centrality and several other centrality
measures fit simulated food chain length re-
sults (based on colonization-extinction dynam-
ics) and found that the SIS centrality shows
the largest (linear) correlation with food chain
length on all considered habitat networks. A
strong correlation between a centrality measure
and food chain length constitutes the desired
generalization of the mid-domain effect for food
chain length to random networks, and in our
study the SIS centrality is the most suitable cen-
trality measure for this task. Since the SIS dy-
namics underlying the SIS centrality are equiv-
alent to the colonization-extinction dynamics of
the basal species of the food chain, it might not
be surprising that the SIS centrality fits food
chain length so well. The occupancy of the basal
species, however, shows significantly weaker cor-
relations with food chain length, comparable to
the correlations between the degree and food
chain length. The key to the remarkable per-
formance of the SIS centrality thus additionally
lies in the choice of its free parameter g. This
parameter should not be based on the parame-
ters of the colonization-extinction dynamics but
rather on the spatial network. Our heuristi-
cally motivated, ‘optimal’ choice is g = 〈m〉

2 ,
where 〈m〉 is the mean degree of the network. In

this case the SIS centrality is centered around
0.5, and since the SIS centrality is naturally
bounded between 0 and 1, 0.5 is exactly the mid-
point of its range. This centeredness and bound-
edness have two consequences that might be
helpful for predicting food chain length. First,
the centeredness does arguably lead to an op-
timal ‘resolution’ of the SIS centrality, which
helps discriminating different patches. Second,
the centeredness and boundedness together im-
ply that even the most central patch of a net-
work can have SIS centrality maximally twice
as large as the average patch. Large degree dif-
ferences, like on scale free graphs where hubs
can have extraordinarily large degrees, are thus
evened out much stronger by the SIS centrality
than by many other centrality measures. Since
we observed a similar ‘flattening’ for the food
chain length (Fig. 6.3), this seems to be an im-
portant characteristic for a centrality measure
to properly predict food chain length. Since
degree differences, and thus also the flattening,
are particularly strong on scale free graphs, this
also explains why the advantage of the SIS cen-
trality (for fitting food chain length) over the
other considered centrality measures is larger on
scale free graphs than on Erdős-Rényi random
graphs.

Note that the centeredness and boundedness of
the SIS centrality, or more generally the graph-
dependent choice g = 〈m〉

2 , have the additional
consequence that the SIS centrality should not
be used to directly compare patches between
different graphs (in particular graphs with dif-
ferent mean degrees 〈m〉). The SIS centrality of
a patch is rather meant to describe the relative
importance of that patch within the particular
network.
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Similar to the observation that the advantage of
the SIS centrality (for fitting food chain length)
over the other considered centrality measures is
larger on scale free graphs than on Erdős-Rényi
(ER) random graphs, we found that this ad-
vantage of the SIS centrality is typically also
larger on random geometric graphs (RGGs)
than on ER graphs. Since in the context of
ecology and epidemics spatially embedded net-
works, like RGGs, are of high interest (Riley
et al., 2015; Estrada et al., 2016), this result
increases the usefulness of the SIS centrality.
More generally, we found for most centrality
measures that the fit between centrality mea-
sure and food chain length is better on ER
graphs than on RGGs. Going in a similar di-
rection, Barter and Gross (2017) showed that
species occupancies on patches with fixed de-
gree vary much stronger on RGGs than on ER
graphs. This implies that a fit between degree
and species occupancies would most likely have
been better on ER graphs than on RGGs. Since
in the model we used here food chain length is
the sum of the occupancies of all species, our
above stated result can be considered a con-
firmation and generalization of this result by
Barter and Gross (2017).
The SIS centrality is a non-linear generalization
of the eigenvector centrality and can be calcu-
lated with similar computational effort essen-
tially by using the power method (Golub and
Van Loan, 1996). In fact, since the SIS central-
ity does not have to be normalized after each
iteration of the power method, its calculation
is even faster than the calculation of the eigen-
vector centrality (see Appendix 6.A). This is in
stark contrast to the Expected Force, the second
best centrality measure at predicting food chain
length in our study, that required the most com-

putation time of all considered centrality mea-
sures (see Table 6.2 in Appendix 6.A). Lawyer
(2015) point out that one advantage of the Ex-
pected Force is that it can be calculated with
incomplete knowledge of the spatial network.
This is possible since the Expected Force is cal-
culated for each patch separately and only re-
quires knowledge of the neighbourhood of the
patch of interest up to network distance three.
If, however, one wants to calculate the Expected
Force for all patches of a network, it is ex-
actly this patch-wise calculation that slows it
down so significantly compared to the eigenvec-
tor centrality and its modifications. The Ex-
pected Force can also be generalized to take
a larger environment of the patch of interest
into account (Lawyer, 2015). This might on one
hand increase the performance of the Expected
Force further, but would, on the other hand,
slow down its calculation even more.
We stated several times that we would pre-
dict food chain length by centrality measures
but actually we only considered the case that
we already know the food chain length on all
patches and simply calculated the correlations
between food chain length and centrality mea-
sures (and fitted linear functions between the
quantities). Predicting food chain length makes
sense in the scenario where we have full knowl-
edge of the spatial network, so that we can cal-
culate the (SIS) centrality of all patches, but
that in contrast to our study here, we know
the food chain length only on a small number
of patches. In this case we can fit a (linear)
function to the available food chain length vs
(SIS) centrality data, and then predict the food
chain length on the remaining patches by eval-
uating the fitted function at the corresponding
centrality values. We assume that centrality



76 6 FOOD CHAIN LENGTH AND THE SIS CENTRALITY

measures that yielded larger correlations with
food chain length in our study will also be bet-
ter suited to predict food chain length in the
here explained sense. Note that in our study
the parameters of the function fitted between
food chain length and a specific centrality mea-
sure depend on the graph type and the mean
degree of the spatial network (see Appendix
6.B) as well as on the colonization-extinction
parameters (which affect food chain length re-
sults). This also means that in the scenario
where we want to predict food chain length from
incomplete data, there will not be some univer-
sal function that we might know beforehand.
Knowledge of the food chain length values on
at least a few patches is thus indeed necessary
to predict the food chain length on the remain-
ing patches.
In reality food chain length may depend on
many factors like primary productivity (Kaun-
zinger and Morin, 1998), ecosystem size (Post
et al., 2000), metacommunity dynamics (not in-
vestigating spatially explicit patterns of food
chain length) (Holt, 2002; Calcagno et al.,
2011), or the foraging behaviour of predators
(Kondoh and Ninomiya, 2009). It is likely that
several explanatory factors are at work simul-
taneously (Post, 2002). Our results suggest
that in a patchy environment the (topologi-
cal) position of a patch within the landscape
should influence its food chain length as well.
The idea that quantities like food chain length,
species richness or population densities depend
in some way on some notion of centrality or iso-
lation of a patch is supported by many stud-
ies including field or experimental data (Komo-
nen et al., 2000; Carrara et al., 2012; Gilar-
ranz et al., 2015; Buse et al., 2016; Altermatt
and Fronhofer, 2018). The simple colonization-

extinction model considered here could be gen-
eralized in various ways to implement some of
the above mentioned explanatory factors of food
chain length. Effects of productivity or system
size (here patch size) could be accounted for by
allowing patch- or species-dependent extinction
rates. Predator-induced effects could be imple-
mented by introducing top-down effects or by
allowing different patch connectivities or col-
onization rates for species at different trophic
levels.

Conclusion

The strong linear correlations found between
simulated food chain length and several cen-
trality measures amount to the sought general-
ization of the mid-domain effect for food chain
length to random spatial networks. The intro-
duced SIS centrality with our specific choice of
its free parameter is particularly well suited to
predict food chain length. In a multivariate con-
text the (SIS) centrality of a patch in a frag-
mented landscape may be an important deter-
minant of food chain length.
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6.A Appendix 1: Computational ef-
fort for calculating centrality
measures

Here we compare the computational effort for
calculating several centrality measures (SIS cen-
trality, eigenvector centrality, Katz centrality,
PageRank and Expected Force) and for running
the stochastic food web simulations. We mea-
sured the calculation and simulation times for
100 random geometric graphs with N = 1000
patches and mean degree 〈m〉 = 25. The precise
computation times depend on the used hard-
ware, software, and optimization of the used
algorithms. We wrote all algorithms ourselves
in MATLAB R2018b and even though we put
some effort into their optimization, the here
presented comparison between the computation
times should not be seen too rigorous but rather
as a general tendency.

In the Methods section we explained that we
calculate the eigenvector centrality, Katz cen-
trality, PageRank and SIS centrality with an it-
erative method using the defining equation as
an iteration rule. We assumed convergence of
this method if from one iteration to the next,
the centrality values xi changed less than a pre-
defined precision,

∣∣∣xi − x(old)
i

∣∣∣ < 10−4, on all
patches i. Some details about speeding up the
Gillespie algorithm for the stochastic simula-
tions of the food web model can be found in
Subsection 3.4.3.

We find that the SIS centrality needs the short-
est computation time of all considered quanti-
ties (on the used local machine roughly 0.033s
for all 100 considered graphs together). The
computation times for the other quantities, nor-
malized by the computation time for the SIS
centrality, are shown in Table 6.2. Maybe

surprisingly, calculating eigenvector centrality,
Katz centrality, or PageRank is slower than cal-
culating the SIS centrality. The main reason for
this is that the iterative algorithms correspond-
ing to the four measures need different numbers
of iterations until convergence. The eigenvec-
tor centrality is slowed down additionally, since
it needs to be normalized after each iteration
(to avoid divergence to infinity). Katz central-
ity needs fewer iterations until convergence than
the eigenvector centrality but since we have to
know the largest eigenvalue of the adjacency
matrix before calculating the Katz centrality,
the time that is required to calculate the eigen-
vector centrality (and thus the required eigen-
value) has to be added to the calculation time
of the Katz centrality. PageRank has the slow-
est convergence and the longest calculation time
among the considered eigenvector based central-
ity measures. Among all considered centrality
measures the Expected Force has the largest
computation time. One reason for this might
be that the Expected Force has to be calculated
for each patch separately. The stochastic food
web simulations need far more time than the
calculation of any centrality measure.

quantity computation effort
SIS centrality 1
eigenvector 10
Katz centrality 5(+10)
PageRank 20
Expected Force 450
stoch. food web model 2 · 107

Table 6.2: Relative computation times for several
centrality measures and the stochastic simulations
of the food web model, normalized by the computa-
tion time for the SIS centrality. Computation times
were determined for 100 random geometric graphs
with N = 1000 patches and mean degree 〈m〉 = 25.
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6.B Appendix 2: Dependence of fit
parameters on graph type and
connectivity

Here we investigate how the parameters of the
linear fit between SIS centrality and food chain
length depend on the graph type and the mean
degree (Fig. 6.7). We find that, both, slope and
offset depend quite significantly on the graph
type. For fixed graph type both parameters also
depend weakly on the mean degree. Similar re-
sults can be obtained for other centrality mea-
sures (not shown).
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Figure 6.7: Fit parameters (a: slope; b: offset) of
linear fits between SIS centrality and simulated food
chain length (for total colonization rate C = 20)
on random geometric graphs (RGGs), Erdős-Rényi
(ER) random graphs, and scale free (SF) graphs
with N = 1000 patches and varying mean degree
〈m〉 = 10, 15, ..., 50. Plot markers show mean val-
ues over 100 realizations of the same network type
and mean degree. Error bars indicate the 5th and
95th percentiles of the corresponding full distribu-
tions. When no error bars are shown the distribu-
tion is so narrow that the error bars would collide
with the plot marker. Qualitatively similar results
are observed for other colonization rates.
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Abstract In Chapter 5 we found a mid-domain effect for food chain length
stating that food chain length is maximal in the center of a habitat and decreases
towards the boundaries even in the absence of other environmental gradients. The
mid-domain effect is instead caused by the geometric constraints posed by the
boundaries of the habitat. The results from Chapter 5 were based on a spatially
explicit version of the meta-food-web model by Pillai et al. (2010), and the re-
gional food web was represented by a simple food chain. Here we generalize this
study by adding omnivores to the food web. We investigate how the presence of
omnivores changes the mid-domain pattern of food chain length, and characterize
the emerging spatial occupancy patterns of the individual species. We find that
for certain parametrizations of the model food chain length achieves its maximum
at an intermediate distance to the boundary. This effect is, however, rather weak,
implying that the spatial pattern of food chain length is still dominated by the mid-
domain effect. Individual species show diverse spatial occupancy patterns where
overall more omnivorous species are driven successively towards the boundary. We
observe this spatial niche partitioning on one- and two-dimensional habitats and
investigate the dependence of the spatial patterns on the habitat size. In addition
to the meta-food-web we consider a purely competitive metacommunity (without
trophic interactions) and find almost the same spatial niche partitioning between
the competing species. Our study shows how the interplay of geometric edge ef-
fects and species interactions can shape complex spatial patterns. The geometry of
a habitat, specifically the spatial position of a patch within a habitat, should thus
be considered as one explanatory factor for food chain length, species occupancies,
and similar quantities.
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7.1 Introduction

An intensely studied topic in spatial ecology
are so-called edge effects (Laurance, 2000; Ries
et al., 2004; Débarre and Lenormand, 2011), de-
scribing the change of species abundances or
species compositions near habitat edges (Mur-
cia, 1995; Olson and Andow, 2008; Peyras et al.,
2013) and how far these changes extend towards
the center of the habitat (Laurance, 2000; Ew-
ers and Didham, 2006, 2008). One frequently
studied type of habitats are for example single
forest patches which is motivated by an increas-
ing forest fragmentation and thus an increasing
impact of potential edge effects (Murcia, 1995;
Esseen and Renhorn, 1998; Laurance, 2000;
de Paula Ferreira et al., 2015). Many studies of
edge effects are concerned only with populations
of individual species or small competitive com-
munities, while trophic interactions, e.g. in the
form of predation pressure, are sometimes used
to explain observed edge effects (Ries and Sisk,
2004; Olson and Andow, 2008; Débarre and
Lenormand, 2011; Vasseur and Leberg, 2015).
Other recent studies explicitly investigate edge
effects on trophic communities (Wimp et al.,
2011; de Paula Ferreira et al., 2015; Peralta
et al., 2017; Wimp et al., 2019). One interesting
and frequently observed result is that generalist
predators and omnivores, in contrast to special-
ists, have an increased abundance near habitat
edges.
Empirical studies often try to explain observed
edge effects with changing environmental con-
ditions (for example light, wind, or resource
availability) at the habitat boundary (Murcia,
1995; Esseen and Renhorn, 1998; Ries and Sisk,
2004). Prevedello et al. (2013), however, inves-
tigated the pure effect of the geometric con-

straints posed by the boundary of the habi-
tat. The authors found that in the absence of
other environmental factors the abundance of
any species should decrease towards the habi-
tat boundary and labelled this result the geo-
metric edge effect. The geometric edge effect is
in strong analogy to the so-called mid-domain
effect which states that in a bounded habitat
species richness should peak in the center of
the habitat and decrease towards the bound-
ary, again in the absence of other environmen-
tal gradients Colwell and Hurtt (1994); Jetz and
Rahbek (2001); Connolly (2005). Despite its
name, the mid-domain effect is also caused by
the habitat boundary. The main difference be-
tween the geometric edge effect and the mid-
domain effect lies in their spatial scales. While
the mid-domain effect is supposed to act on
large, geographical scales, the geometric edge
effect should act in smaller habitats like single
forest fragments.
In Chapter 5, based on a colonization-extinction
model, we found that the mid-domain effect
also holds true for food chain length as well
as for the occupancy of each individual species
in a food chain. That is, all of these quan-
tities decrease monotonically from the center
of a habitat towards the boundaries, and this
decrease is caused by the boundaries them-
selves. One shortcoming of this study was,
however, that no food webs other than sim-
ple chains have been considered. Real food
webs are often much more complex (Polis, 1991;
Martinez, 1991, 1992; Goldwasser and Rough-
garden, 1993), where one ubiquitous feature is
the presence of omnivores, i.e., predators that
feed on more than one trophic level (Sprules
and Bowerman, 1988; Thompson et al., 2007,
2009; Sánchez-Hernández et al., 2015). Using a



7.2 Methods 81

spatially explicit version of the meta-food-web
framework by Pillai et al. (2010), Barter and
Gross (2017) exemplary showed that an omni-
vore and a specialist predator, that competes
with the omnivore for one of its prey species,
show to some extent complementary spatial pat-
terns, i.e., they tend to occupy different regions
of the habitat. Since Barter and Gross (2017)
modelled the habitat as a random network of
patches, a relation of the results to edge effects
is difficult.

Here, we go in a similar direction as Barter and
Gross (2017) and extend our study from Chap-
ter 5 by adding omnivores to the food chain. In
contrast to Barter and Gross (2017) we use sim-
ple, bounded, lattice-like spatial networks (lat-
tices with long-range interactions) which allows
us to observe and analyze edge effects. Our
goals are (1) to find out if and how the extended
trophic structure changes the mid-domain pat-
tern of food chain length from Chapter 5 and (2)
to characterize the spatial occupancy patterns
of individual species, in particular comparing
patterns of specialist predators and omnivores.
In the general context of edge effects our study
can be characterized as follows: We investigate
edge effects (a) on large spatial scales (compa-
rable to the scale of the mid-domain effect), (b)
caused primarily by the geometric constraints,
and (c) affecting whole food webs, precisely,
food chains extended by omnivores. Points (b)
and (c) are not independent since the edge ef-
fect on one species in the food web might affect
other species as well. In that sense we here in-
vestigate the interplay between spatial dynam-
ics, restricted by the habitat boundaries, and
trophic interactions.

7.2 Methods

The model

As Chapters 5 and 6, this study is based on
a spatially explicit version of the meta-food-
web model by Pillai et al. (2010) (see also Sec-
tion 3.3). The model describes colonization-
extinction dynamics of trophically interacting
species on a habitat represented by a network of
N patches. Population dynamics are neglected
(assuming that they occur on a much faster
time scale than the colonization-extinction dy-
namics) which means that each species is ei-
ther present or absent on a patch. Locally, the
trophic interactions follow three main princi-
ples: (1) A predator can only persist on patches
on which at least one of its prey species is
present. (2) When on the same patch sev-
eral predators want to feed on a common prey
species, only one predator can persist (compet-
itive exclusion principle). (3) Specialist preda-
tors are superior competitors compared general-
ists/omnivores. Point (2) implies that all local
food webs are simple chains, and the full food
web emerges only on the regional scale.

The habitat network can be described by an ad-
jacency matrix A where Aij = 1 (Aij = 0) indi-
cates that patches i and j are (not) connected.
From any patch i on which species k is currently
present it can colonize any other adjacent patch
j where it is currently absent with colonization
rate c. The colonization requires the presence
of a suitable prey species and absence of any
superior competitor for that prey on the target
patch. The only exception is the basal species
that needs no prey and has no competitors. Af-
ter the colonization, species k is present on both
the source and the target patch. If a superior
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Figure 7.1: Left: Schematic representation of the
omnivore web consisting of a basal species (1), an
intermediate predator (2), a specialist top-predator
(3), and an omnivore (O) that can feed on two
species. Arrows indicate the feeding relations and
point from prey to predator. Right: Schematic
representation of the colonization-extinction model
based on the omnivore web on a one-dimensional
habitat. Locally, only one predator can persist on
a common prey (competitive exclusion) so that all
local food webs are chains (see Pillai et al., 2010).
The full food web emerges only on the regional scale.
Species can go randomly extinct (crossed out species,
associated rate e), possibly inducing the bottom-up
extinction of higher species. A colonization process
(green arrow, associated rate c) requires the pres-
ence of a colonizer’s prey and the absence of a pos-
sible superior competitor on the target patch. Since
the specialists (species 2 and 3) are locally stronger
competitors than the omnivore, the indicated colo-
nization event of the top-predator leads to the local
extinction of the omnivore on the target patch. With
colonization range r > 1 colonizations between dis-
tant patches are possible.

competitor for some common prey colonizes a
patch, the currently present inferior competitor
will be displaced and go extinct, or, if possible,
it starts to prey on the newly invaded species.
Additionally, any species can go randomly ex-
tinct on any patch with extinction rate e. Upon
losing its prey any predator will immediately go
extinct as well. This bottom-up extinction can
be prevented if the predator can switch feeding
on another persisting prey. In contrast to the

general model by Pillai et al. (2010), we neglect
top-down effects. A predator can thus not drive
its prey to extinction.

As a specific example we consider a food web
consisting of a small food chain of three species
and an omnivore that can feed on the basal
species and the intermediate predator (Fig. 7.1
left). The omnivore can persist solely on the
basal species as long as the intermediate preda-
tor is not present. If the intermediate predator
colonizes such a patch the omnivore is outcom-
peted at feeding on the basal species but it can
switch feeding on the intermediate predator. If
the intermediate predator goes extinct again the
omnivore can switch back feeding on the basal
species (assuming that the basal species did not
go extinct as well since this would cause the
bottom-up extinction of all other species). If the
top-predator colonizes a patch where all other
three species are present, the omnivore will also
be outcompeted at feeding on the intermediate
predator and will thus go extinct. Since we ne-
glect top-down effects and since the omnivore
is the inferior competitor for both of its prey
species, the omnivore has no effect on any other
species. The dynamics of the other three species
are thus exactly the same as if we would con-
sider only the food chain.

As habitat networks we here consider one- and
two-dimensional lattices with hard boundaries
and long-range interactions. By ‘hard bound-
aries’ we mean that we do not use periodic
boundary conditions but that the lattices have
actual endpoints. By ‘long-range interactions’
we mean that species can not only colonize
spatially adjacent patches but all patches that
lie within the colonization range r around the
source patch. In the one-dimensional case a
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patch that is not too close to one of the bound-
aries has thus r network neighbours in each di-
rection, meaning that its degree is 2r. In the
two-dimensional case r is the radius of a circle
that is truncated if it hits a boundary. The cir-
cular colonization range leads to degree ≈ πr2

for the most central patches of the lattice (we
properly determine the degrees of all patches by
counting neighbours).
We use the same model parameters, i.e., colo-
nization range r, colonization rate c, as well as
extinction rate e for all species. The species thus
only differ via their positions in the food web.
Without loss of generality we set the extinction
rate to e = 1 which simply fixes the time scale.
As in Chapter 5, we define the total colonization
rate C as the product of the per-neighbour col-
onization rate c and the maximal degree of the
habitat network (note that in Chapter 6 we used
the mean degree instead of the maximal degree
in this definition). The total colonization rate
is thus C = 2rc in the one-dimensional case and
C ≈ πr2c in the two-dimensional case. In con-
trast to the per-neighbour colonization rate the
total colonization rate comes closer to the col-
onization rate of spatially implicit models and
is also better comparable with the extinction
rate (in a fully connected habitat a single species
could persist if C > e).

Model equations and food chain length

The stochastic dynamics of the Pillai model
can be simulated using the Gillespie algorithm
(Gillespie, 1977). The advantage of the stochas-
tic approach is that it automatically incorpo-
rates all spatial correlations between occupan-
cies of adjacent patches. For larger food webs
and spatial networks the Gillespie algorithm be-

comes, however, extremely time consuming. In
Chapter 5 (Fig. 5.2) we have seen that with
a colonization range of r = 100 (on the one-
dimensional lattice) spatial correlations become
negligible and the dynamics can be properly de-
scribed by differential equations. In Chapters 3
(Eq. 3.9), 5 (Eq. 5.1) and 6 (Eq. 6.1) we have
already presented the equation for the occupa-
tion probability u(k)

i of a species in a simple food
chain at trophic level k on patch i,

du(k)
i

dt = c
(
u

(k−1)
i − u(k)

i

) N∑
j=1

Aiju
(k)
j − keu

(k)
i .

(7.1)

The first term on the right hand side of Eq. 7.1 is
the colonization term, where u(k−1)

i −u(k)
i takes

account of the requirement that the predator
species k can colonize a patch only if its prey
species k − 1 is present, and

∑N
j=1Aiju

(k)
j in-

corporates the explicit structure of the spatial
network. Note that for k = 1 we set u(0)

i = 1
implying that the basal species has access to all
patches. The second term on the right hand
side of Eq. 7.1 describes extinction processes.
Bottom-up extinctions are included via the fac-
tor k which effectively increases the total ex-
tinction rates of species at higher trophic lev-
els. Since we neglect top-down effects, Eq. 7.1
remains valid for species that are part of a stan-
dard food chain even after the introduction of
additional omnivores. Eq. 7.1 is thus in particu-
lar valid for species 1, 2, and 3 from the regional
food web shown in Fig. 7.1.
For species that feed on more than one prey,
Pillai et al. (2010) argue that it is not possible
(or a bad approximation) to write down a single
differential equation for the occupation proba-
bility, or occupancy, of that species. Instead,
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one has to write down one equation for the oc-
cupancy of each trophic link. For the omnivore
from Fig. 7.1 we thus need one equation for the
link (1, O) and one equation for the link (2, O).
In Subsection 3.3.3 (see also supplemental ma-
terial of Pillai et al., 2011) we have already pre-
sented the corresponding equations for the spa-
tially implicit scenario (where all patches are
connected to each other; also called mixed space
scenario) and in Subsection 3.4.1 we have also
explained how to obtain the spatially explicit
versions of such equations. The final equations
for the occupancies of the two omnivore links on
an arbitrary patch network read,

du(1,O)
i

dt = c
(
u

(1)
i − u

(2)
i − u

(1,O)
i

) N∑
j=1

Aiju
(O)
j

+ eu
(2,O)
i − 2eu(1,O)

i

− cu(1,O)
i

N∑
j=1

Aiju
(2)
j , (7.2)

du(2,O)
i

dt = c
(
u

(2)
i − u

(3)
i − u

(2,O)
i

) N∑
j=1

Aiju
(O)
j

+ cu
(1,O)
i

N∑
j=1

Aiju
(2)
i − 3eu(2,O)

i

− cu(2,O)
i

N∑
j=1

Aiju
(3)
i , (7.3)

where u(O)
i = u

(1,O)
i + u

(2,O)
i is the total occu-

pancy of the omnivore on patch i. The equa-
tions contain all possible effects like bottom-
up extinctions, competitive displacement, and
prey-switching. A discussion of the spatially
implicit version of Eq. 7.2 can be found in Sub-
section 3.3.3.
For more complex food webs it becomes cum-
bersome to write down all individual equations.

Pillai et al. (2010) provide general equations for
the occupancies of all trophic links in arbitrary
food webs (in the mixed space scenario). Us-
ing these general equations we were, however,
not able to reobtain the specific equations for
some simple example food webs. In Appendix
A (at the end of the thesis) we thus derive the
equations for general food webs from the basic
principles of the model, and use these equations
for all food webs that are more complex than
the simple omnivore web from Fig. 7.1. We are
only interested in the equilibrium solutions of
the differential equations, and to obtain these
solutions we use an iterative method described
in Subsection 3.4.2.
In Chapter 5 (Eq. 5.2) we have shown for a
simple food chain that the expected food chain
length on patch i can be calculated as Li =∑S
k=1 u

(k)
i , where S is the number of species.

This formula holds true also for arbitrary food
webs in the Pillai framework. The reason is that
locally all food webs are still chains implying
that the presence of any species will increase
the local food chain length by one. Since u(k)

i

is the probability to find species k on patch i,
u

(k)
i is also the contribution of species k to the

expected food chain length Li.

7.3 Results

Occupancies for the omnivore web

We start by considering the omnivore web in-
troduced in Fig. 7.1 and first qualitatively ad-
dress the question if and under which conditions
the omnivore can persist and coexist with the
top-predator. To this end we consider the re-
gional, i.e. spatially averaged, occupancies of all
four species as function of the colonization rate
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Figure 7.2: Results for the simple omnivore web (shown on the left) on a one-dimensional lattice with
N = 1000 patches, colonization range r = 100, and hard boundaries. The legend is valid for panels (a)
and (b). a) Regional occupancies of all four species as functions of the total colonization rate, C. The
shaded area indicates the regime in which top-predator (3) and omnivore (O) coexist. b) Spatial occupancy
patterns of the top-predator and the omnivore for C = 8.1. The vertical lines indicate the patches with
distance to the boundary equal to the colonization range, r. Species 1 and 2 show qualitatively similar
patterns as the top-predator but at higher occupancy values. c) Strength of the intermediate distance effect
(IDE; see main text and panel d) as function of the total colonization rate, C. The shaded area is as in
panel (a). d) Spatial pattern of food chain length (for C = 8.1) showing large values in the center (Lmid),
a strong decrease towards the boundary (Lmin; mid-domain effect), but also a weak local maximum at an
intermediate distance to the boundary (Lmax). We calculate the strength of this intermediate distance effect
as IDE = (Lmax − Lmin) / (Lmid − Lmin).

(Fig. 7.2 a). The underlying habitat is a one-
dimensional lattice with N = 1000 patches, col-
onization range r = 100, and hard boundaries.
Each specialist species has a persistence thresh-
old below which it cannot persist and above
which the occupancy increases monotonically.
The persistence threshold is larger for species
at higher trophic levels and we roughly find
C

(1)
thresh ≈ 1, C(2)

thresh ≈ 3, and C
(3)
thresh ≈ 6 for

trophic levels 1, 2, and 3, respectively. Note
that we have seen this result already in Chap-
ter 5 (Fig. 5.2). The omnivore has the same
persistence threshold as the intermediate preda-
tor. This makes sense since the omnivore has
the same minimal requirement to persist on a
patch as the intermediate predator, namely the
presence of the basal species. Since the omni-
vore can switch its feeding between the basal
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species and the intermediate predator, the om-
nivore can effectively coexist (even locally) with
the intermediate predator. Without the top-
predator, the omnivore thus has the same re-
gional occupancy as the intermediate predator.
The regional occupancy of the omnivore starts
to decrease as soon as the top-predator is able
to persist, since the omnivore can then be com-
petitively displaced by the top-predator. Above
some additional threshold value, C(O)

extinct ≈ 11,
the omnivore cannot persist anymore. Below
that threshold and above the persistence thresh-
old of the top-predator, the omnivore and the
top-predator can coexist regionally (see also Pil-
lai et al., 2011; Böhme and Gross, 2012; Barter
and Gross, 2017).
Next we are interested in the spatial occupancy
patterns of the four species in the coexistence
regime of the omnivore and the top-predator.
We already know from Chapter 5 (Fig. 5.3 a)
that the spatial occupancy patterns of the spe-
cialist species show a mid-domain effect pattern,
i.e., a plateau in the habitat center and a mono-
tonic decrease towards the boundary. For the
omnivore, however, we find a qualitatively dif-
ferent pattern (Fig. 7.2 b). The spatial occu-
pancy of the omnivore has a valley in the habi-
tat center, a maximum at an intermediate dis-
tance to the boundary (roughly coinciding with
the colonization range), and then also a slight
decrease towards the boundary. The valley in
the center can be explained by the competitive
pressure caused by the top-predator which is
strongest in the center. The trophic interaction
thus drives the omnivore towards the boundary.
The following decrease even closer to the bound-
ary occurs since the geometric constraints posed
by the boundary negatively affect all species, in-
cluding the omnivore. The full pattern of the

omnivore can thus be explained by a combina-
tion of trophic interactions and geometric edge
effects. Note that Barter and Gross (2017) also
observed to some extent complementary spatial
patterns of the specialist top-predator and the
omnivore on random spatial networks. On ran-
dom networks, patterns are, however, more dif-
ficult to describe and cannot be easily related
to edge effects.

The intermediate distance effect

Here we investigate how the mid-domain ef-
fect pattern of food chain length (see Chap-
ter 5, Fig. 5.3 b) is affected by the omnivore.
Since food chain length in the model by Pillai
et al. (2010) is the sum of the occupancies of all
species, food chain length might inherit the oc-
cupancy pattern of the omnivore from Fig. 7.1
(b). For a qualitative change of the food chain
length pattern the increase of the omnivore’s
occupancy at the intermediate distance to the
boundary has to be large enough to compensate
the simultaneous decrease of the occupancies of
all other species. We find that food chain length
is indeed largest at an intermediate distance to
the boundary (Fig. 7.2 d) and call this observa-
tion the intermediate distance effect. Compared
to the decrease of food chain length towards the
boundary, i.e., the mid-domain effect, the dif-
ference between the mid-domain value and the
maximal value is, however, very small.
We quantify the magnitude of the intermediate
distance effect by IDE = (Lmax−Lmin)/(Lmid−Lmin),
which is the relative increase of the food chain
length from the mid-domain to the maximum,
on the scale of the observed range of food
chain length values (subtraction of the bound-
ary value Lmin). IDE = 1 means that there
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is no intermediate distance effect while values
IDE > 1 indicate that there is an effect. With
the model parametrization used for Fig. 7.1 (d)
we get IDE = 1.042. Without subtracting the
offset Lmin in the calculation of IDE the value
would be even smaller. Even when optimizing
over the colonization rate, the intermediate dis-
tance effect remains small (IDEmax = 1.052, see
Fig. 7.2 c). We also find that the intermediate
distance effect occurs exactly for those values
of the colonization rate for which the omnivore
and the top-predator coexist (compare Fig. 7.2
a and c). This makes sense since we explained
the intermediate distance effect of food chain
length by the spatial pattern of the omnivore
which emerges due to the competition between
the omnivore and the top-predator.
Next, we test if the intermediate distance ef-
fect gets stronger for larger, more complex food
webs. To this end we consider a generalized
omnivore web (shown in Fig. 7.3 on the left)
consisting of a longer food chain with a spe-
cialist top-predator and three omnivores that
can feed on two, three, and four trophic lev-
els, respectively. In this order, we also call the
omnivores the level-1, level-2, and level-3 om-
nivore. Concerning the competitive-exclusion
principle for a common prey, the local com-
petition strength decreases with the increasing
level of omnivory. For this food web, the maxi-
mal magnitude of the intermediate distance ef-
fect is IDEmax = 1.060, again found by opti-
mization over the colonization rate (Fig. 7.3 b).
The effect is thus only slightly stronger than
for the simple omnivore web and in general still
rather weak. We further find that IDEmax is
obtained when only the specialist top-predator
and the level-3 omnivore coexist and compete
(compare Fig. 7.3 a and b). Also a second, al-

ready much smaller peak (IDE = 1.023) is ob-
tained when only two of the omnivores coexist
(without the specialist top-predator). When all
four top species coexist the effect is even smaller
(IDE < 1.014). For some colonization rates the
intermediate distance effect does not occur at
all, despite the coexistence of at least two of
the top species. In our study, the interaction
(competition for prey) of more than two species
can thus not increase the intermediate distance
effect of food chain length.
Overall, we conclude that the addition of om-
nivorous species to a food chain can alter the
mid-domain effect pattern of food chain length
but that this alteration is rather weak and that
the mid-domain effect is still the dominant pat-
tern.

Space partitioning of four species

One-dimensional lattice with N = 1000
patches

Here we investigate the spatial occupancy pat-
terns of the specialist top-predator and the
three omnivores from the generalized omnivore
web introduced in Fig. 7.3. We find that all
species show qualitatively different patterns,
where more omnivorous species have their max-
ima gradually closer to the boundary (Fig. 7.3
c, d). In detail, the top-predator and the level-1
omnivore show qualitatively the same patterns
as the top-predator and the omnivore from the
simple omnivore web from Fig. 7.2. The level-2
omnivore shows a new and more complex pat-
tern: Its occupancy has a local maximum in the
mid-domain since the joint competitive pressure
by the specialist top-predator and the level-1
omnivore is weaker in the mid-domain than at
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Figure 7.3: Generalization of the results from Fig. 2 (same underlying habitat) to the generalized omnivore
web shown on the left. The web consists of a chain (species 1 to 4 and T as the top-predator) and three
omnivores that can feed on an increasing number of species in the lower food chain. a) Regional occupan-
cies of the top-predator and the omnivores as function of the total colonization rate, C. The light (dark)
shaded area indicates the regime in which at least two (all four) of these species coexist. The vertical lines
mark prominent points from panel (b). b) Strength of the intermediate distance effect (IDE; see Fig. 2
and main text) as function of the total colonization rate, C. The shaded areas are as in (a). The two
vertical lines mark the two larger maxima of IDE. c) Spatial occupancy patterns of the top-predator and
the omnivores for C = 18.64. The vertical lines indicate the patches with distance to the boundary equal to
the colonization range, r. d) Same as (c) but for better qualitative comparability of the different patterns
the occupancy of each species has been scaled individually to lie exactly between 0 and 1.

some intermediate distance to the boundary. At
this intermediate distance the level-2 omnivore
has its global minimum. Going from that min-
imum even closer towards the boundary, the
competitive pressure on the level-2 omnivore de-
creases again, resulting in the global maximum
of the level-2 omnivore. This maximum lies
closer to the boundary than the maximum of
the occupancy of the level-1 omnivore. Directly
at the boundary, the negative effect of the ge-

ometric constraints leads to a final decrease of
the occupancy of the level-2 omnivore. Among
all observed patterns, this pattern of the level-2
omnivore is, on one hand, the most complex one
but, on the other hand, the least significant one
in the sense that the occupancy of the level-2
omnivore spans over the smallest range of occu-
pancy values (Table 7.2). The occupancy of the
level-3 omnivore shows an inverted mid-domain
pattern, with the maximal occupancy exactly at
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the boundary and a monotonic decrease towards
the center of the habitat. This pattern is caused
by a plateau of the combined competitive pres-
sure on the level-3 omnivore in the mid-domain
that extends rather close towards the boundary.
Even closer to the boundary the positive effect
of the decreasing competitive pressure on the
level-3 omnivore overcompensates the negative
effect of the geometric constraints, resulting in
the observed maximum directly at the bound-
ary.
We also observe that each species has at least a
small range of patches on which it is dominant
(Fig. 7.3 c). While this observation is rather
specific for the chosen colonization rate, the
qualitative patterns of all four species (Fig. 7.3
d) are quite universal, as long as all four species
coexist at non-negligible occupancies.

Effects of lattice size

Here we investigate how the spatial occupancy
patterns of the specialist top-predator and the
omnivores from Fig. 7.3 (c, d) depend on the
habitat size. One might suspect that on larger
habitats the patterns become even more com-
plex, showing more oscillations. While we find
that this is not the case, the full emergence
of the patterns requires a certain habitat size
(Fig. 7.4). Once the patterns have emerged, in-
creasing the habitat size further leads only to
small, minor changes of the patterns. In de-
tail, the main difference between habitat sizes
N = 2000 and the original N = 1000 is that
for N = 2000 the maxima/minima in the mid-
domain are proper plateaus (Fig. 7.4 a). The
additional habitat patches thus primarily lead
to a larger spatial extent of the mid-domain
area. The behaviour at the boundary does

not change significantly and the boundary only
seems to be narrower since the rest of the habi-
tat is larger. One additional minor change is
that for N = 2000 the level-2 omnivore has its
global maximum now in the mid-domain while
the maximum at the intermediate distance to
the boundary has become a local one. For
N = 500, on the other hand, we find a qual-
itatively different pattern for the level-2 omni-
vore, without the (local) maximum in the mid-
domain. Instead, the global minimum, that for
larger habitats can be found at an intermedi-
ate distance to the boundary, now extends to-
wards the mid-domain. Overall, the pattern is
less complex with fewer local extrema. We con-
clude that for N = 500 the habitat is simply not
large enough to allow the emergence of the full,
complex pattern of the level-2 omnivore. In gen-
eral, it seems that for the full emergence of the
patterns the habitat has to be large enough to
allow the establishment of a proper mid-domain.

Considering for each individual species the oc-
cupancy values in the mid-domain, at the
boundary, and at the local extrema (if they ex-
ist), the value that changes most significantly
for varying habitat size is the mid-domain value
(Fig. 7.4 b). For large enough N all values, in-
cluding the mid-domain values, converge. This
supports our assumption that for the emergence
of the final patterns the habitat has to be large
enough to establish a proper mid-domain. To
formally characterize the convergence we say

species T O1 O2 O3
converged for N = 800 1100 1400 1600

Table 7.1: Habitat sizes required for the conver-
gence of the mid-domain values of the occupancies of
the specialist top-predator and the omnivores from
Fig. 7.4.
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Figure 7.4: Dependence of the spatial occupancy patterns (see Fig. 3 c, d) of the top-predator and the
omnivores from the generalized omnivore web (shown on the bottom-left) on the habitat size. The colo-
nization range, r = 100, and the colonization rate, C = 18.64, are kept constant. a) Scaled occupancy
patterns for the exemplary habitat sizes N = 500, N = 1000 (same as Fig. 3 d), and N = 2000. When
increasing N further the only change to the patterns is that the spatial extent of the mid-domain increases.
b) Dependence of some prominent occupancy values (mid-domain, boundary, and local extrema if they
exist) of the four top species on the habitat size.
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that an occupancy value has converged when
the corresponding values for three consecutive
habitat sizes (in steps of ∆N = 100) have ab-
solute difference smaller than 0.001 to the final
value obtained for N = 10 000. Using this crite-
rion we find that more omnivorous species need
larger habitats for the convergence of their mid-
domain occupancies (Table 7.1).

Aside from this convergence behaviour the
species with the strongest qualitative changes
of its occupancies is the level-2 omnivore. The
mid-domain value of the level-2 omnivore starts
as the global minimum for small N and in-
creases until it is the global maximum for large
N . This confirms our observations for the exem-
plary habitat sizes from Fig. 7.4 (a). Another
observation in Fig. 7.4 (b) is the emergence of
local extrema for the level-3 omnivore for some
particular habitat sizes. The values of these
extrema are, however, very close to the mid-
domain value. They do not significantly change
the inverted mid-domain pattern of the level-3
omnivore. Finally, we found only weak, insignif-
icant dependencies of the positions of the local
extrema (if they exist) of the occupancies of all
species on the habitat size (results not shown).

Another parameter that affects the spatial oc-
cupancy patterns of the species is the coloniza-
tion range r. For all example habitat sizes from
Fig. 7.3 (a) we find that the maximal occu-
pancy of the level-1 omnivore lies exactly at the
patches with distance to the boundary equal
to the colonization range. We confirmed this
observation for colonization ranges other than
the usual r = 100 (results not shown). More-
over, when varying r and N simultaneously by
the same factor the occupancy patterns do not
change (r and N should not become too small

and space has to be measured in units of the
colonization range; results not shown). We thus
conclude that only the ratio r/N is important
and that increasing (decreasing) r has the same
effect as decreasing (increasing) N . In other
words, the colonization range r, if not too small,
can simply be regarded as a spatial scale. Note
that when varying r the per-neighbour coloniza-
tion rate c has to be adjusted such that the total
colonization rate C = 2rc is kept constant.

Two-dimensional lattice

We conclude our study of the generalized omni-
vore web by investigating how the spatial occu-
pancy patterns generalize to a two-dimensional
habitat (a square lattice). We find that, as
expected, the top-predator dominates the mid-
domain while the omnivores are successively
driven towards the boundaries, in particular to-
wards the corners (Fig. 7.5). The level-2 omni-
vore also shows its complex pattern known from
the one-dimensional case with a local maximum
in the mid-domain. A difference between the
one- and the two-dimensional case is that in the
two-dimensional case the occupancy values of
each species span over a larger range than in
the one-dimensional case (see Table 7.2). Note
that the system has been parametrized slightly
differently in the two cases (for visual reasons)

species T O1 O2 O3
1d 0.17 0.09 0.02 0.06
2d 0.25 0.16 0.06 0.07

Table 7.2: Occupancy ranges umax−umin of the top-
predator and the omnivores in the one-dimensional
case (Fig. 7.3 c) and the two-dimensional case
(Fig. 7.5). The ranges of all species are larger in
the two-dimensional case.
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Figure 7.5: Spatial occupancy patterns of the top-predator and the omnivores from the generalized omni-
vore web (shown on the left) on a two-dimensional lattice (with N = 60 × 60 patches, radial colonization
range r = 8, and hard boundaries) for total colonization rate C = 20. The patterns are straightforward
generalizations of the one-dimensional patterns from Fig. 7.3 (c, d).

but we made the same qualitative observation
with other parametrizations. The intermediate
distance effect of food chain length, measured
by IDE = (Lmax−Lmin)/(Lmid−Lmin), is, however,
not stronger in the two-dimensional case. When
optimizing over the colonization rate we here
find IDE(2d)

max = 1.055 (results not shown) com-
pared to IDE(1d)

max = 1.060 in the one-dimensional
case.

Spatial occupancy patterns in a purely
competitive community

The spatial occupancy patterns of the omniv-
orous species found above occur as a result

of an interplay of geometric edge effects and
competitive pressure caused by superior preda-
tors. The competition between the specialist
top-predator and the omnivores was mediated
by trophic interactions (competition for com-
mon prey). Here we test if we can find simi-
lar spatial occupancy patterns for species that
form a purely competitive community. Tilman
(1994) showed that colonization-extinction dy-
namics of a purely competitive metacommunity
can lead to the coexistence of an in principle
arbitrary number of species. The coexistence
requires a competition-colonization trade-off be-
tween the species, meaning that superior com-
petitors have to be weaker colonizers (smaller
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Figure 7.6: Left: Schematic representation of a purely competitive species community. The species have
a clear competition hierarchy and less competitive species have larger colonization rates (competition-
colonization trade-off). Right: Spatial occupancy patterns of the four competitors on a one-dimensional
lattice with N = 1000 patches, colonization range r = 100, and hard boundaries (a: raw patterns, b: occu-
pancy of each species scaled to lie exactly between 0 and 1). In (a), the vertical lines indicate the patches
with distance to the boundary equal to the colonization range, r. The patterns are almost identical to the
patterns of the top-predator and the omnivores from the food web model (see Fig. 7.3 c, d).

colonization rate). Weaker competitors cannot
colonize patches that are occupied by a supe-
rior competitor, and weaker competitors are dis-
placed on a patch if a superior competitor in-
vades. The Tilman model uses mixed space
which means that no spatial patterns can be
observed in this version of the model. Here we
put the Tilman model on spatially explicit habi-
tat networks. The differential equation for the
occupancy u(k)

i of species k on patch i reads,

du(k)
i

dt = ck

(
1−

k∑
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u
(l)
i

)
N∑
j=1

Aiju
(k)
j − eu

(k)
i

− u(k)
i

k−1∑
l=1

cl

N∑
j=1

Aiju
(l)
j , (7.4)

where species with smaller index k are supe-
rior local competitors. The first term on the
right hand side of Eq. 7.4 is the usual coloniza-
tion term of species k, including colonization
restrictions posed by superior competitors. The
second term on the right hand side of Eq. 7.4

is the usual stochastic extinction term. The
third term describes the competitive displace-
ment of species k due to colonization of a su-
perior competitor. The colonization rate ck is
species-dependent and increases with k, pro-
viding the competition-colonization trade-off re-
quired for species coexistence. The extinction
rate (e = 1) and the spatial network, i.e. the
adjacency matrix A and thus the colonization
range, are still the same for all species. As be-
fore we also define the total colonization rates
Ck = 2rck on one-dimensional lattices. See
Hastings (1980), Tilman (1994), and Section 3.2
for the model equations in the mixed space sce-
nario. To obtain the equilibrium occupancies
we solve Eq. 7.4 with the iterative method de-
scribed in Subsection 3.4.2.

Considering a community of four competing
species on a one-dimensional habitat with the
same default parameters as before, we find that
the four species show almost the same spatial
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occupancy patterns as the top-predator and the
omnivores from the generalized omnivore food
web (compare Fig. 7.6 and Fig. 7.3 c, d). In
particular, the strongest competitor dominates
in the mid-domain while weaker competitors
are driven successively towards the boundary.
A minor difference are the small local maxima
of species 4 close to the mid-domain. For the
level-3 omnivore, the analogous species from the
generalized omnivore web, we found these lo-
cal extrema only for some particular, smaller
habitat sizes. For Fig. 7.6 we used colonization
rates C1 = 1.24, C2 = 2.12, C3 = 4.32, and
C4 = 11.80 which have been chosen to yield a
good visual impression. Qualitatively, the oc-
cupancy patterns are robust against parameter
changes as long as the overall occupancy of no
species becomes too small (results not shown).
In a spatially explicit habitat the competition-
colonization trade-off that allows the regional
coexistence of species, despite the locally ap-
plied competitive exclusion principle, thus also
shapes the spatial patterns of the species.

7.4 Discussion

We have shown that species in a food web can
have qualitatively different spatial occupancy
patterns depending on their role in the food
web. Specialist species in a food chain show
mid-domain patterns with maximal occupancy
in the center of the habitat and monotonically
decreasing occupancy towards the boundaries.
Omnivorous species, on the other hand, show
maximal occupancies at some intermediate dis-
tance to the boundary or possibly even directly
at the boundary. The observation that om-
nivores and generalists can respond positively
to habitat edges, resulting in larger richness or

increased abundances of such species near the
boundaries, has also been reported in empiri-
cal studies (Wimp et al., 2011; de Paula Fer-
reira et al., 2015; Peralta et al., 2017; Wimp
et al., 2019). In many such studies edge ef-
fects are explained by changing environmental
conditions (for example abiotic factors or re-
source availability) at the boundary compared
to the interior of the habitat. In contrast, in
our model-based study the observed spatial pat-
terns emerge in the absence of any environmen-
tal gradients. Instead, they are caused by the
geometric constraints posed by the boundaries
of the habitat and the interactions between the
species. In that sense our results are a general-
ization of the geometric edge effect (Prevedello
et al., 2013) and the mid-domain effect (Col-
well and Hurtt, 1994; Jetz and Rahbek, 2001;
Connolly, 2005; Chapter 5 – when considering
patterns of individual species) to trophically in-
teracting species beyond food chains.
We have further shown that the same spatial
occupancy patterns that we found for the spe-
cialist top-predator and the omnivores (Fig. 7.3)
can also be observed for species in a purely
competitive community (with a strict com-
petition hierarchy and locally applied com-
petitive exclusion principle). The strongest
competitor dominates the mid-domain while
weaker competitors are driven successively to-
wards the boundary. These patterns require
a competition-colonization trade-off (Tilman,
1994; Amarasekare, 2003; Cadotte et al., 2006;
Calcagno et al., 2006) between the competing
species, which is implemented by giving inferior
local competitors larger colonization rates. The
boundary poses bad geometric conditions for all
species, but weak colonizers are more strongly
affected by these bad conditions and thus pre-
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dominantly occupy patches in the center of the
habitat. Stronger colonizers are more successful
at colonizing the geometrically bad boundary
patches but are more frequently outcompeted
in the mid-domain by superior local competi-
tors. Stronger colonizers (weaker competitors)
can thus have an increased occupancy near the
boundary and a decreased occupancy in the cen-
ter of the habitat. The interaction of more than
two species can lead to rather complex patterns
of the occupancies of some species, but overall
the described mechanism explains how weaker
competitors (stronger colonizers) are driven suc-
cessively towards the boundary.
The observed spatial patterns and the described
mechanisms can also be considered as a form
of spatial niche partitioning. Many empirical
and model studies demonstrate how species can
partition space between them, or occupy differ-
ent spatial niches, to minimize local competi-
tion and allow regional coexistence (McKinney
and Jaklin, 2000; Gilbert et al., 2008; Lyson
and Longrich, 2011; Boeye et al., 2014). Again,
in such studies different spatial niches are of-
ten characterized by different biotic or abiotic
factors. Similarly, in metacommunity models,
species sorting describes how heterogeneous en-
vironmental conditions can shape metacommu-
nity patterns such that each species predomi-
nantly occupies patches with its preferred envi-
ronment (Leibold et al., 2004). Our study shows
that species sorting and spatial niche partition-
ing can be initiated simply by the existence of
habitat boundaries and be shaped further by
species interactions. The boundary constraints
naturally lead to the emergence of a ‘preferred’
spatial niche in the center of the habitat (in
principle preferred by any species in the model)
that will be occupied by a dominant species.

This dominant species then leaves open areas
closer to the boundary as spatial niches for other
species. These niches effectively become the
preferred habitat for the other species as they
are less likely to encounter superior competitors
closer to the boundary.
Since the spatial patterns in the food web
model and the competition model are so simi-
lar (Fig. 7.3 and 7.6), it seems likely that in the
food web model there is a mechanism similar
to the competition-colonization trade-off. How-
ever, since in the food web model we used the
same colonization rate for all species, the trade-
off has to enter the model in some other way.
One main assumption of the food web model
by Pillai et al. (2010) is that more omnivorous
species are weaker local competitors. In other
words, the model straightforwardly includes a
trade-off between competition strength and diet
breadth. One can then realize that a larger diet
breadth effectively leads to a colonization ad-
vantage. The specialist top-predator in Fig. 7.2,
for example, can only colonize patches on which
the intermediate predator is present. By con-
trast, the omnivore from the same web can ad-
ditionally colonize patches on which only the
basal species is present. In other words, as long
as the specialist top-predator is not present on
too many patches (making these patches uncol-
onizable for the omnivore), the omnivore has
access to a larger part of the network than the
top-predator. In this way, the trade-off be-
tween competition strength and diet breadth
effectively becomes a competition-colonization
trade-off. The observed spatial patterns, where
more omnivorous species are driven successively
towards the boundary, then emerge in a sim-
ilar way as described above for the patterns
in the competitive community. Overall, the
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main difference between the food web model
and the pure competition model is that in the
food web model the ‘colonization part’ of the
competition-colonization trade-off is mediated
by trophic interactions while in the pure com-
petition model it is implemented via a hier-
archy of colonization rates. Note that Pillai
et al. (2011) used a similar line of arguments
to explain the coexistence of an omnivore and a
specialist predator in the absence of a classical
competition-colonization trade-off, but did not
consider the emergence of spatial patterns.
One additional goal of this study was to inves-
tigate how the mid-domain effect for food chain
length (Chapter 5) changes when considering
food webs with omnivores instead of simple food
chains. We found that the presence of an om-
nivore can indeed alter the mid-domain pattern
of food chain length such that food chain length
is maximal at an intermediate distance to the
boundary. Consequently, we called this obser-
vation the intermediate distance effect. This ef-
fect is, however, rather weak and does not get
significantly stronger when adding more than
one omnivore to the food web. In fact, even
for the generalized omnivore web (Fig. 7.3) the
intermediate distance effect is strongest when
only two of the four competing species per-
sist (the specialist top-predator and one omni-
vore). We therefore suspect that the intermedi-
ate distance effect will also not get significantly
stronger when considering even more complex
food webs. Similarly, the intermediate distance
effect does not get stronger when going from a
one-dimensional to a two-dimensional habitat,
even though the spatial occupancy patterns of
the individual species are more pronounced in
the two-dimensional case. We conclude that
(within the Pillai model) the mid-domain effect

for food chain length is rather stable with re-
spect to the food web structure, both on one-
dimensional and two-dimensional habitats.
Finally, we want to point out that an obser-
vation similar to the intermediate distance ef-
fect has been made in a model of the standard
mid-domain effect for species richness. First,
note that in standard mid-domain effect mod-
els individual species do not extend over the
full habitat but have finite ‘range sizes’. Col-
well et al. (2009) showed that when all species
have small range sizes, compared to the habi-
tat size, then species richness peaks at an inter-
mediate distance to the boundary. In the two-
dimensional case the emerging ‘doughnut-like’
pattern looks similar to the spatial occupancy
pattern of the level-1 omnivore from our study
(Fig. 7.5; with an appropriate parametrization
food chain length shows a similar pattern). In
our study this pattern emerges due to an inter-
play of geometric edge effects and trophic in-
teractions while in the study by Colwell et al.
(2009) the pattern is essentially caused by ‘re-
flecting boundaries’. Even though the underly-
ing mechanisms are different, and even though
we consider food chain length while Colwell
et al. (2009) consider species richness, we think
that the emergence of these similar patterns is
an interesting observation.

Conclusion

Overall, we have shown how the interplay of ge-
ometric edge effects and species interactions can
shape complex spatial patterns of species occu-
pancies (and food chain length). The observed
patterns constitute a form of spatial niche parti-
tioning that emerges in the absence of heteroge-
neous environmental factors. Future studies in
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the field of spatial ecology concerned with edge
effects, or spatial patterns of species occupan-
cies, richness, abundances, and so on in general,
should not only consider spatially varying envi-
ronmental conditions as explanatory factors for
these patterns, but should also take into account

effects caused by the geometric constraints of
the habitat.
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8 Joint discussion of research chapters

8.1 Summary and common message of research chap-
ters

In the three research chapters (Chapters 5, 6, and 7) we combined the meta-
food-web model by Pillai et al. (2010) with spatially explicit habitats and
obtained the following main results:

1. We found a mid-domain effect for food chain length stating that food
chain length is largest in the center of a habitat and decreases towards
the boundaries even in the absence of other environmental gradients.
The underlying food web was a simple food chain and habitats had
lattice-like structure.

2. Based on the concept of centrality measures we generalized the mid-
domain effect for food chain length to habitats that are represented
by random networks of patches. Food chain length generally tends to
be larger on more central patches and smaller on less central patches.
We introduced a new centrality measure, the SIS centrality, based on
susceptible-infected-susceptible dynamics from epidemics on networks,
that is particularly well suited to obtain this result.

3. Based on the setup from the first research chapter we added omnivores
to the food chain and found that the mid-domain effect for food chain
length is rather stable to this modification. We observed only a small
deviation from the mid-domain pattern, namely that food chain length
can be slightly larger at an intermediate distance to the boundary
compared to the mid-domain. For the spatial patterns of the individual
species we found that a specialist top-predator dominates the mid-
domain while more omnivorous species are driven successively towards
the boundary. This observation amounts to a spatial niche partitioning
between the species.

All these results have in common that they emerge in the absence of spatially
heterogeneous environmental conditions. The results are instead caused by
geometric constraints posed by the habitat structure (for example by the
habitat boundaries in case of the first and third research chapter) and the in-
teractions between the species. Our results, and the underlying mechanisms,
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thus go in the same direction as (a) the mid-domain effect for species richness
(Colwell and Hurtt, 1994; Jetz and Rahbek, 2001; Connolly, 2005), stating
that species richness is maximal in the center of a habitat and decreases
towards the boundaries even in the absence of environmental gradients, (b)
the geometric edge effect (Prevedello et al., 2013) which is analogous to the
mid-domain effect but formulated for species abundances and supposed to
act on smaller spatial scales, and (c) results by Barter and Gross (2017)
who showed for random habitat networks that an omnivore and a competing
specialist predator have to some extent complementary spatial patterns even
when patches do not differ in their environmental conditions.
Many other studies concerned with spatial variations of species abundances,
richness, and similar quantities, consider other spatially changing environ-
mental conditions as the drivers of these variations. Edge effect studies, for
example, often focus on edge effects mediated by changes in light incidence,
wind intensity, or resource availability close to the boundary of the habitat
(Murcia, 1995; Esseen and Renhorn, 1998; Ries and Sisk, 2004; de Paula Fer-
reira et al., 2015). Other factors considered as determinants of food chain
length are primary productivity (Kaunzinger and Morin, 1998), ecosystem
size (Post et al., 2000), metacommunity dynamics (not investigating spa-
tially explicit patterns of food chain length) (Holt, 2002; Calcagno et al.,
2011), or the foraging behaviour of predators (Kondoh and Ninomiya, 2009).
Similarly, patterns of species richness are, in addition to the mid-domain
effect, explained by heterogeneities in temperature, productivity, and other
factors (Jetz and Rahbek, 2002; Colwell et al., 2004). In reality no single
explanatory factor will fully account for any spatial pattern of species abun-
dance, richness, or a similar quantity. Our studies emphasize that geometric
constraints posed by the habitat, or more precisely the positions of patches
within a habitat, should be considered as an additional explanatory factor
for such spatial patterns in future studies.

8.2 Simplifying model assumptions

The meta-food-web model by Pillai et al. (2010), underlying all three research
chapters, makes several simplifying assumptions. For example, by strictly
applying the competitive exclusion principle among predators for common
prey, the most complex local food webs are chains. Also, as usual for a
colonization-extinction model, population dynamics are neglected, implying
that they occur on a much faster time scale than the colonization-extinction
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dynamics. In our studies we additionally used the same colonization rate,
extinction rate, and spatial network (or colonization range) for all species
and neglected top-down effects. The model is kept as simple as possible
since for a more complex model the interpretation of the results would also
get more complicated. In the third research chapter (Chapter 7), for ex-
ample, we observed the regional coexistence of several omnivorous species
and a specialist top-predator, as well as a spatial niche partitioning between
these species. Without the locally applied competitive exclusion principle,
the coexistence of the species could simply be possible due to local coexis-
tence mechanisms. Likewise, by allowing larger colonization rates for more
omnivorous species (which are weaker local competitors), the regional coex-
istence as well as the spatial niche partitioning could also be established by
a traditional competition-colonization trade-off (see the analogous result for
a purely competitive metacommunity in Chapter 7). Due to the model sim-
plifications neither of these two mechanisms could be at work in our study.
We could therefore conclude that the coexistence of the omnivores and the
specialist predator, as well as their spatial niche partitioning, was enabled
by a trade-off between competition strength and diet breadth. Had we re-
laxed the assumption of competitive exclusion or species-independent colo-
nization rates, we would not have been able to identify this coexistence (and
pattern-forming) mechanism. Note that Pillai et al. (2011) provided similar
arguments for the coexistence of an omnivore and a specialist predator, but
did not investigate spatial patterns.
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9 Future work

9.1 The fourth research chapter

The basic idea of this thesis was to model the dynamics of food webs on spa-
tially explicit habitat networks and to characterize spatial patterns of food
chain length and species occupancies. In the first research chapter (Chap-
ter 5) we considered simple food chains and simple lattice-like networks. In
the second research chapter (Chapter 6) we kept the simple food chains but
considered more complex (random) spatial networks. In the third research
chapter (Chapter 7), we considered more complex food webs but kept the
simple lattice-like habitat networks. A missing piece and setup for a possible
fourth research chapter is to consider both, complex food webs and complex
spatial networks. Barter and Gross (2017) went in this direction by mod-
elling the dynamics of a simple omnivore web on random networks. The
main observation was that a specialist top-predator and the omnivore show
to some extent complementary spatial patterns. This goes in the same direc-
tion as the spatial niche partitioning that we observed in the third research
chapter on lattice-like networks, but on random networks the patterns are
more difficult to characterize. On bounded, lattice-like networks it is natural
to use the distance to the boundary to quantify the position of a patch and
thus to characterize spatial patterns. On random networks the role of the
distance to the boundary has to be replaced by centrality measures. In the
second research chapter we succeeded at describing patterns of food chain
length by centrality measures, in particular when using our newly introduced
SIS centrality, if the underlying food web is a simple food chain. In some
later tests we found, however, that none of the centrality measures consid-
ered in the second research chapter is suited to predict the spatial pattern
of the omnivore from the simple omnivore web on random habitat networks
(also when allowing non-linear functional relations; results not shown). It
is thus an open challenge to find a centrality measure that is suited for this
purpose. Ideally, the same centrality measure should also be able to describe
the spatial patterns of additional omnivores (see third research chapter),
species in other complex food webs, and food chain length. With such a
centrality measure the (weak) intermediate distance effect that we found in
the third research chapter (see Figs. 7.2 and 7.3), stating that on top of
the mid-domain pattern food chain length can be largest at an intermediate
distance to the boundary, could be generalized to an intermediate centrality
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effect, stating that food chain length is largest on patches with intermediate
centrality.
A second open challenge is to find other applications for the SIS centrality
from the second research chapter beyond the scope of this thesis. Since
the SIS centrality is based on susceptible-infected-susceptible dynamics from
epidemics on networks, it should be used to predict outcomes of even more
complex dynamical processes on networks or real-world observations where
the underlying process is not precisely known.

9.2 Focusing on purely competitive communities

In the third research chapter (Chapter 7) we found the same spatial niche
partitioning, that we observed for the specialist top-predator and a set of
omnivores from the generalized omnivore food web (Fig. 7.3), also for species
forming a purely competitive community (Fig. 7.6). To this end we used a
spatially explicit version of the metacommunity model by Tilman (1994), who
showed that in principle an arbitrary number of species can regionally coexist
if weaker local competitors are stronger colonizers (competition-colonization
trade-off). Our results show how this coexistence mechanism can additionally
shape the spatial patterns of the coexisting species in a bounded habitat.
While in this thesis we focused on the meta-food-web results, the spatial
niche partitioning in the purely competitive metacommunity might actually
be the more interesting result for ecologists. After all, the metacommunity
model by Tilman (1994) has a longer standing in ecology than the meta-food-
web model by Pillai et al. (2010). Furthermore, the generalized omnivore
food web with its three increasingly omnivorous species is quite artificial
and purposely designed to mimic the competition in a purely competitive
community, but where the competition is mediated by trophic interactions.
A possible future study could thus focus on the boundary-induced spatial
niche partitioning in purely competitive metacommunities.
From another perspective, the strong similarity between the results in the
metacommunity framework and the meta-food-web framework demonstrates
that the details of how the competition is modelled plays no significant role.
To some extent it might therefore be possible to draw conclusions for one
framework from results obtained in the other one. This link could be used
in future studies (drawing conclusions for a subset of species in a meta-food-
web by investigating an appropriate metacommunity of purely competitive
species) and might be worth to be investigated further.
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A Equations for general meta-food-webs

A.1 Introduction

Here we present the general differential equation for the fraction of patches
p(i,j) occupied by the feeding link (i, j) from any prey i to any predator j in
an arbitrary food web in the model by Pillai et al. (2010). An introduction to
the model, including its general rules and differential equations for specific,
simple food webs is given in Section 3.3. Pillai et al. (2010) split the general
equation for p(i,j) into eight contributions,

dp(i,j)

dt = A−B − C +D + E − F −G−H, (A.1)

each of which describes a distinct type of colonization, extinction, displace-
ment, or food web rearrangement event. Pillai et al. (2010) further provided
and explained analytical expressions for all eight terms. From these expres-
sions, we were, however, not able to derive the omnivore equations (Eqs. 3.5
and 3.6), as well as similar equations given in Pillai et al. (2010). We there-
fore re-derived the general equation for p(i,j), that is, all terms from A to
H, from the basic principles of the model. In the following, we present and
explain the expressions that we found, highlight relevant differences to the
Pillai version, and exemplary show how our equation can be used to success-
fully derive the omnivore equations. For simplicity, we directly adapt the
general equation to the special case of neglecting all top-down effects and
assuming the same colonization and extinction rates for all species (or feed-
ing links). Our expressions are therefore simpler than they would be in the
most general case, since in colonization terms we do not have to sum over
the different preys of the colonizing species (which can in the general case
affect the colonization rate), and since in extinction terms we do not have
to sum over the different predators of the species that goes extinct (which is
in the general case required to include top-down effects). All terms can be
augmented to the spatially explicit case as described in Section 3.4.1.
Note that while the basal species 1 has no modelled resource, we formally
have to define a resource ‘species 0’ since some of the expressions require
us to sum over the resources of species 1. ‘Species 0’ can also be regarded
as ‘available habitat’ (not empty patches but the mere presence of patches).
‘Species 0’ cannot go extinct, be displaced, or colonize. In contrast to the
actual species, its colonization and extinction rates are thus zero.
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A.2 Terminology

Here we provide an overview of all quantities used in the differential equation.
A similar overview is provided by Pillai et al. (2010).
• c′ is the species-independent colonization rate.

• e is the species-independent intrinsic extinction rate.

• p(i,j) is the fraction of patches occupied by the link from prey i to
predator j.

• p(j) = ∑
i p

(i,j) is the fraction of patches occupied by species j.

• ρ(i,j) = p(i,j)/p(j) is the fraction of j-occupied patches (in the following
simply j-patches) on which species j feeds on species i. If p(j) = 0 then
ρ(i,j) = 0.

• R (j) is the set of all preys (resources) of species j.

• C (i) is the set of all predators (consumers) of species i.

• χ is the directed adjacency matrix of the food web, that is, χ (i, j) = 1
if j can prey on i, and 0 otherwise. We also use χ (i, j) = 1 − χ (i, j).
Note that χ does not appear in the expressions by Pillai et al. (2010).

• κi (j, k) is a competition function of predators j and k for prey i. We
use κi (j, k) = 1 if j can displace k on i-patches and 0 otherwise. We
assume that this is possible if j can actually feed on i and if j < k.
Species labels have to be chosen such that this competition hierarchy
is equivalent to the assumption that a specialist predator is locally
superior to a generalist predator. Since a species cannot displace itself,
we have κi (j, j) = 0.

• Φi
j,k is the probability that (on a given patch) an extinction of j leads

to an extinction of k, given that i is present. This can only happen if
k ≥ j, thus Φi

j,k = 0 if j > k. For k = j we have Φi
j,j = 1. Species

k can avoid the bottom-up extinction if any species between j and k
(including k itself) can switch prey onto i. There are two relevant cases
concerning the relation between i and j. Either j preyed on i before
going extinct, or i is a superior competitor to j (for some common
prey) who just invaded and displaced j. The analytical expression for
Φi
j,k is given below, after the expressions for terms A to H.
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A.3 The equation

Term A

Term A describes the increase of p(i,j) due to colonization of j on an i-patch,

A = c′p(j)

p(i) −
∑

k∈C(i)
p(i,k) [1− κi (j, k)]

 . (A.2)

• Colonizers of species j can be sent from any patch on which species j
is present, c′p(j).

• Colonization of j on an i-patch requires presence of species i, p(i).

• The presence of a competitor k that cannot be displaced by j (including
j itself) prevents colonization of species j, −∑k∈C(i) p

(i,k) [1− κi (j, k)].

Term B

Term B describes the decrease of p(i,j) due to extinction of species j on an
(i, j) -patch,

B = ep(i,j). (A.3)

Term C

Term C describes the decrease of p(i,j) due to displacement of species j by a
superior competitor for species i,

C = p(i,j) ∑
k∈C(i)

κi (k, j) c′p(k). (A.4)

• Only possible on patches on which j currently feeds on i, p(i,j).

• Species j can be displaced by other consumers k of species i that are
stronger competitors, ∑k∈C(i) κi (k, j) · · · .

• Colonizers of species k can be sent from any patch on which species k
is present, c′p(k).
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Term D

Term D describes the increase of p(i,j) due to prey-switching of j onto i from
an alternate resource after extinction of i’s current predator l, and (bottom-
up) extinction of j’s current prey k,

D =
∑

k∈R(j)
k>i

p(k,j) ∑
l∈C(i)

ρ(i,l)eΦi
l,k. (A.5)

• Species j can only switch prey onto i on patches on which j is currently
present and feeds on one of its other resources, ∑k∈R(j)

k>i

p(k,j) · · · . Due

to the local food chain structure and competition hierarchy by species
label, the current prey k of j needs to satisfy k > i.

• The current consumer l of i has to go extinct (by its own intrinsic
extinction), ∑l∈C(i) ρ

(i,l)e · · · . ρ(i,l) makes sure that only patches on
which species l actually feeds on i are considered. This also ensures
the required presence of species i itself.

• The extinction of i’s consumer l has to lead to the extinction of j’s
resource k, Φi

l,k.

Important difference to Pillai version:

Term D in Pillai et al. (2010) contains an additional sum over all predators
m of species l. This is necessary since in the most general case species l can
also suffer a top-down extinction. Pillai et al. (2010) then used Φi

m,k instead
of Φi

l,k for the bottom-up extinction probability of species k. Since the first
species going extinct and causing any bottom-up extinction is l, Φi

l,k has to
be used.

Term E

Term E describes the increase of p(i,j) due to prey-switching of j onto i, from
an alternate resource, after invasion of i,

E = c′p(i) ∑
k∈R(j)
k 6=i

p(k,j)

κk (i, j) +
∑

q∈R(i)
q 6=k

∑
r∈C(q)
r 6=i,j

ρ(q,r)κq (i, r)χ (i, r) Φi
r,k

 .
(A.6)
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• Colonizers can be sent from any patch on which species i is present,
c′p(i).

• Species j has to be currently present and feed on one of its other
resources, ∑k∈R(j)

k 6=i

p(k,j) · · · .

• The first term in the brackets, κk (i, j), captures the case that the
invading species i outcompetes species j for prey k. Species j then
switches prey onto i. There is no extinction involved! We do not have
to check that j can actually feed on i since this is automatically implied
by the fact that we consider an equation for the link (i, j).

• In the second term in the brackets, invader i outcompetes another
species r for a common resource q. This is only possible on r-patches
on which r actually feeds on q, ρ(q,r), and if i is the stronger competitor,
κq (i, r). Species r must also not be able to switch prey onto i, χ (i, r),
since this would prevent r’s extinction. The extinction of r must then
lead to the bottom-up extinction of j’s prey k, Φi

r,k. Extinction of r and
k is necessary to allow species j to switch prey onto i. The exclusions in
the sums are optional since they would have no contribution (Φi

r,k = 0).
The case q = k, r = j is taken care of by the first term in the brackets.

Important differences to Pillai version:

• Pillai et al. (2010) missed the contribution of the first term in the
brackets, κk (i, j).

• Pillai et al. (2010) did not include the probability that r, if present on
a patch, actually feeds on q, ρ(q,r).

• Pillai et al. (2010) did not check whether r actually goes extinct after
being outcompeted by i, χ (i, r). Species r could switch prey onto i
and thus not go extinct. This possibility is not captured by Φi

r,k, since
Φi
r,k assumes that r already did go extinct.

Term F

Term F describes the decrease of p(i,j) due to extinction of species i (ei-
ther its own intrinsic extinction or bottom-up extinction caused by intrinsic
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extinction of a species s below it),

F = p(i,j)∑
s≤i

e
∑

r∈R(s)
ρ(r,s)Φr

s,i. (A.7)

• Only contributes on patches on which j currently feeds on i, p(i,j).

• Species i or a species further down has to suffer intrinsic extinction,∑
s≤i e · · · .

• The extinction of species s has to lead to the extinction of species i,
Φr
s,i. This depends on the current resource r of s, ∑r∈R(s) · · · , since

some species could switch prey onto r and thus prevent the bottom-up
extinction of i. With ρ(r,s) we take into account the probability that s
actually feeds on r.

Important differences to Pillai version:

• Pillai et al. (2010) used the restriction s < i instead of s ≤ i. In this
case i can only go extinct by bottom-up extinctions but not by its own
intrinsic extinction.

• Term F in Pillai et al. (2010) contains an additional sum over all preda-
tors t of species s. This is necessary since in the most general case
species s can also suffer a top-down extinction. Pillai et al. (2010)
then used Φr

t,i instead of Φr
s,i for the bottom-up extinction probabil-

ity of species i. Since the first species going extinct and causing any
bottom-up extinction is s, Φr

s,i has to be used.

• In Pillai et al. (2010), r is still used outside the brackets in which ∑r

exists, even though r is then not defined anymore.

Term G

Term G describes the decrease of p(i,j) due to competitive displacement of
species i, or of a species below i with following bottom-up extinction of i,

G = p(i,j)∑
t≤i

∑
s∈R(t)

ρ(s,t) ∑
m∈C(s)

κs (m, t)χ (m, t) Φm
t,ic
′p(m). (A.8)

• p(i,j): only contributes on patches on which j currently feeds on i.
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• ∑t≤i: t is the competitively displaced species.

• ∑s∈R(t): sum over all resource s that t can feed on. The resource s can
influence the ability of an invader to displace t.

• ρ(s,t): probability that t currently feeds on s.

• ∑m∈C(s): m is the invasive species that tries to displace t.

• κs (m, t): check if m is a stronger competitor for s than t.

• χ (m, t): make sure that t cannot switch prey onto m which would
prevent t’s extinction.

• Φm
t,i: probability that the extinction of t also leads to extinction of i.

Species m, after displacing t, is a potential target for prey-switching of
any species between t and i.

• c′p(m): colonizers of species m can be sent from any patch on which
species m is present.

Important differences to Pillai version:

Pillai et al. (2010) did not check whether t actually goes extinct after being
displaced by m, χ (m, t). Species t could switch prey onto m and thus not
go extinct. This possibility is not captured by Φm

t,i, since Φm
t,i assumes that t

already did go extinct.

Term H

We can drop term H from Pillai et al. (2010) since it only includes top-down
effects.

A.4 Bottom-up extinction probability Φi
j,k

As introduced above, Φi
j,k is the probability that (on a given patch) an ex-

tinction of j leads to an extinction of k, given that i is present. To calculate
this probability we have to know all directed feeding paths from j to k. Fol-
lowing Pillai et al. (2010) we denote such a path by Tj,k and the set of all
these paths by Sj,k. Each path is realized with probability ∏(l,n)∈ETj,k

ρ(l,n),
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where ETj,k is the set of links (l, n) contained in the path Tj,k. Due to the
local food chain structure the realizations of the paths are mutually exclu-
sive, so that the probabilities for different paths can be summed up. The
probability that (on a given patch) any of the feeding paths from j to k is
realized is thus,

f (Sj,k) =
∑

Tj,k∈Sj,k

 ∏
(l,n)∈ETj,k

ρ(l,n)

 . (A.9)

Species k will, however, only suffer bottom-up extinction for paths on which
no species between j and k (including k itself) can switch prey onto i. Note
that species i is either the former prey of species j, or a superior competi-
tor who displaced j. After j’s extinction, species i is the only intermediate
species that has no predator, and is thus the only possible target for prey-
switching. To calculate Φi

j,k we have to subtract from f (Sj,k) the probabili-
ties of the paths on which the rescuing prey-switching is possible,

Φi
j,k = f (Sj,k)− f

 ⋃
m∈C(i)
m 6=j

(Sj,m ∪ Sm,k)

 . (A.10)

In the second term on the right hand side of Eq. A.10, m is a predator of
i that can switch prey onto i. We have to exclude m = j since j just went
extinct and can thus not switch prey onto i anymore. Sj,m ∪ Sm,k is the set
of paths obtained by concatenating all pairs of paths in Sj,m and Sm,k.

⋃
m is

the typical set union. After this union, the set contains all paths from j to
k on which some species is able to switch prey onto i. The same path might
appear for different m but is only included once in the unified set.
Pillai et al. (2010) provided the same expressions (Eqs. A.9 and A.10) and
in the appendix demonstrated the calculation of Φi

j,k by example. While in
the main text they did not exclude the case m = j, they did do so in the
calculation in the appendix.

A.5 Example: deriving the omnivore equations

We use the above expressions A to H to derive Eqs. 3.5 and 3.6 for the
feeding links (1, O) and (2, O) related to the omnivore from the food web
shown in Figs. 3.2 and 3.3. Note that when using the hierarchical labelling
of species the omnivore O would get label 4 in this food web. Also note that
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the specialist species 1, 2, and 3 in the food web have only a single feeding
link, (k − 1, k). Thus, p(k−1,k) = p(k) which we use in the following to shorten
the notation.

For link (1, O):

• Term A: c′p(O)
(
p(1) − p(2) − p(1,O)

)
(colonization of the omnivore)

• Term B: (−) ep(1,O) (extinction of the omnivore)

• Term C: (−) p(1,O)c′p(2) (decrease due to colonization of species 2 on
(1, O) -patches; the omnivore gets outcompeted by 2 for preying on 1)

• Term D: ep(2,O) (increase due to extinction of species 2 on (2, O) -patches)

• Term E: 0 (prey-switching of the omnivore onto 1 from an alternate
resource after invasion of 1 is not possible. Had 1 not been present
from the beginning, the omnivore could not have persisted either.)

• Term F: (−) ep(1,O) (extinction of species 1)

• Term G: 0 (species 1 cannot be competitively displaced)

Putting all terms (with the correct signs) together, we arrive exactly at
Eq. 3.5. We were not able to obtain the contributions of terms D and F by
using the corresponding expressions from Pillai et al. (2010).

For link (2, O):

• Term A: c′p(O)
(
p(2) − p(3) − p(2,O)

)
(colonization of the omnivore)

• Term B: (−) ep(2,O) (extinction of the omnivore)

• Term C: (−) p(2,O)c′p(3) (decrease due to colonization of species 3 on
(2, O) -patches; the omnivore gets outcompeted by 3 for preying on 2)

• Term D: 0 (there is no species between 2 and the omnivore that could
go extinct and lead to prey-switching of the omnivore onto 2)

• Term E: c′p(2)p(1,O) (colonization of species 2 on (1, O) -patches)
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• Term F: (−) 2ep(2,O) (intrinsic extinction of species 2 and bottom-up
extinction caused by extinction of species 1)

• Term G: 0 (species 1 and 2 cannot be competitively displaced)

Putting all terms (with the correct signs) together, we arrive exactly at
Eq. 3.6. We were not able to obtain the contributions of terms E and F by
using the corresponding expressions from Pillai et al. (2010). In our case the
contribution to term E comes from the first term in the bracket of Eq. A.6.
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