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Interaural time difference (ITD), or the difference in timing of a sound wave arriving at
the two ears, is a fundamental cue for sound localization. A wide variety of animals have
specialized neural circuits dedicated to the computation of ITDs. In the avian auditory
brainstem, ITDs are encoded as the spike rates in the coincidence detector neurons of
the nucleus laminaris (NL). NL neurons compare the binaural phase-locked inputs from
the axons of ipsi- and contralateral nucleus magnocellularis (NM) neurons. Intracellular
recordings from the barn owl’s NL in vivo showed that tonal stimuli induce oscillations in
the membrane potential. Since this oscillatory potential resembled the stimulus sound
waveform, it was named the sound analog potential (Funabiki et al., 2011). Previous
modeling studies suggested that a convergence of phase-locked spikes from NM leads to
an oscillatory membrane potential in NL, but how presynaptic, synaptic, and postsynaptic
factors affect the formation of the sound analog potential remains to be investigated. In
the accompanying paper, we derive analytical relations between these parameters and the
signal and noise components of the oscillation. In this paper, we focus on the effects of
the number of presynaptic NM fibers, the mean firing rate of these fibers, their average
degree of phase-locking, and the synaptic time scale. Theoretical analyses and numerical
simulations show that, provided the total synaptic input is kept constant, changes in the
number and spike rate of NM fibers alter the ITD-independent noise whereas the degree
of phase-locking is linearly converted to the ITD-dependent signal component of the sound
analog potential. The synaptic time constant affects the signal more prominently than the
noise, making faster synaptic input more suitable for effective ITD computation.
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INTRODUCTION
The ability to tell the direction of the sound source, or sound
localization, is a fundamental auditory function in many ani-
mal species. Among various species examined (see Klump, 2000;
Heffner and Heffner, 2003; for reviews), the barn owl, which
can locate its prey in the total darkness purely on the basis of
acoustic cues (Payne, 1971; Konishi, 1973), shows great sound
localization acuity, with a minimum discriminable angle of a few
degrees (Knudsen et al., 1979; Bala et al., 2003). The auditory
system of the barn owl computes the interaural time difference
(ITD) to determine the azimuthal location of the sound source
(Konishi, 1993). In birds, the ITD, or the time difference of sound
arrival between two ears, is computed in a specialized neural
circuit: axons from the cochlear nucleus magnocellularis (NM)
form delay lines, and neurons of the nucleus laminaris (NL)
detects coincident inputs from ipsi- and contralateral NM axons
(Jeffress, 1948; Carr and Konishi, 1990). Physiological studies

Abbreviations: ITD, interaural time difference; NM, nucleus magnocellularis; NL,
nucleus laminaris; VS, vector strength; EPSG, excitatory post synaptic conductance;
KHVA, high voltage activated potassium; KLVA, low voltage activated potassium;
LLDa, anterior part of the dorsal lateral lemniscus; MSO, medial superior olive.

showed that barn owls’ NL neurons vary their discharge rates
with changes in ITDs of less than 10 μs (Carr and Konishi, 1990;
Peña et al., 1996). A wide variety of highly-specialized cellular,
synaptic, and network mechanisms underlie this temporal acu-
ity (see Grothe et al., 2010; Ashida and Carr, 2011, for recent
reviews).

In our previous reports, we investigated the cellular prop-
erties of owl NL neurons using in vivo intracellular recordings
(Funabiki et al., 2011) and modeling (Ashida et al., 2007; Funabiki
et al., 2011). When tonal stimuli were presented, the membrane
potential of the NL neuron oscillated at the same frequency
as the stimulus tone and was thus named the “sound analog
potential” (Funabiki et al., 2011). The amplitude of this sound-
induced oscillation changes periodically with ITD, showing an
almost linear relationship with the spike rate of the NL neu-
ron. Previous modeling results demonstrated that convergence
of phase-locked excitatory synaptic inputs from NM fibers gives
rise to oscillatory membrane potentials (Kempter et al., 1998; Slee
et al., 2010; see Figure 1A for an example) and that the sound
analog potential observed in NL can be quantitatively repro-
duced if biologically plausible parameters are chosen (Ashida
et al., 2007; Funabiki et al., 2011). How presynaptic, synaptic,
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FIGURE 1 | Example traces of the model membrane potential with

default parameters. The default parameters used for this example are
summarized in Table 1. (A) Simulated membrane potential oscillating at
4 kHz. (B) AC component of the simulated membrane potential.
Amplitude = 1.25 mV (see Materials and Methods for definition). Average
peak-to-peak height = 2.50 mV. (C) Noise component of the simulated
membrane potential. Amplitude (measured by the time-averaged standard
deviation) is 1.03 mV in this example.

and postsynaptic properties, however, affect the formation of the
sound analog potential remains to be elucidated.

In the accompanying paper, we focused on the theoretical
relationship between phase-locked inputs and membrane poten-
tial oscillations (Ashida et al., 2013). The key factors which can
affect the formation of the sound analog potentials include (1)
the frequency of the tonal stimulus, (2) the mean firing rate of
NM neurons, (3) the number of converging NM fibers per NL
neuron, (4) the average degree of phase-locking of these fibers,
(5) the time scale of unitary synaptic input, and (6) the mem-
brane properties of the NL neuron. Among these factors, the
membrane properties have been extensively studied. A number
of studies have shown that ITD coding in the avian NL and in
the mammalian medial superior olive (MSO) is dynamically con-
trolled by the low threshold potassium (KLVA) channels (Manis
and Marx, 1991; Reyes et al., 1994; Svirskis et al., 2002; Rothman
and Manis, 2003; Day et al., 2008; Gai et al., 2009; Jercog et al.,
2010; Mathews et al., 2010), hyperpolarization-activated cation
channels (Yamada et al., 2005; Khurana et al., 2011), and by opti-
mized fast sodium channels (Kuba et al., 2006; Ashida et al., 2007;
Scott et al., 2010). The accompanying paper (Ashida et al., 2013)
examines the first key factor, the effect of tonal frequency on the
formation of the sound analog potential. In the present paper, we
focus on the remaining four factors (2–5 above) and systemat-
ically examine how the sound analog potential and ITD coding
of the NL neuron depends on these presynaptic and synaptic
factors.

RESULTS
PHASE-LOCKED INPUTS AND OSCILLATORY POTENTIALS
Our model consists of NM fibers and a single-compartment NL
cell body. The phase-locked spiking activity of each NM fiber is
modeled as an inhomogeneous Poisson process with a periodic
intensity function oscillating at the stimulus sound frequency.

Spikes of converging NM fibers are summed and then modified
by the synaptic and membrane filters, producing an oscillation
in the membrane potential of the NL neuron, namely, the sound
analog potential (Figure 1A). The mean synaptic input is referred
to as the “DC” component, while the main oscillation compo-
nent at the stimulus frequency is called the “AC” or “signal”
component (Figure 1B) because the NL neuron changes its spike
rate almost linearly with the amplitude of the AC component
(Funabiki et al., 2011). All the other frequency components,
including higher harmonics, are regarded as “noise” (Figure 1C)
because they do not encode ITDs (Ashida et al., 2007; Slee et al.,
2010). Analytical expressions that relate model parameters to the
DC, AC, and noise components are summarized in Table 1. The
accompanying paper (Ashida et al., 2013) shows that with default
parameters (Table 1) the linear approximation gives good pre-
dictions for the DC, AC, and noise of simulated synaptic inputs
and oscillatory membrane potentials. In the following sections,
we examine how sound analog potentials are controlled by the
number of presynaptic NM fibers, the mean firing rate of these
fibers, their average degree of phase-locking measured by vec-
tor strength (VS), and the synaptic time scale measured by the
half peak width of the unitary synaptic input. Note that, in our
simulations, we assumed that ipsi- and contralateral NM inputs
arrived perfectly in-phase, resulting in the maximum oscillation
amplitude. The ITD-dependence of the sound analog poten-
tial will be examined in the section titled Implications for ITD
coding.

MEAN SPIKE RATE OF NM
The effect of the average NM spike rate λ0 is fairly simple.
As the linear approximation theory indicates (Equations 1–5 in
Table 1), traces of simulated membrane potentials become less
noisy as the mean spike rate of presynaptic NM fibers increases
(Figure 2A). This observation is confirmed by the power spec-
tral density curves (Figure 2B). Increases in the NM spike rate
reduce noise but retain AC and higher harmonics (Figures 2C,D),
provided that the average input level (DC) is kept constant. Note
that the power spectrum density is discontinuous at frequencies
f = nfs (fs: signal frequency; n = 0, ±1, ±2,. . .), corresponding
to the DC, AC, and higher harmonics (see Ashida et al., 2013,
for further analytical formulations). The noise amplitudes of the
synaptic input and the membrane potential decrease linearly with
the square root of the spike rate of NM fibers (Equations 3 and 5).
The typical spike rate of an NM neuron is over 400 spikes/s (Peña
et al., 1996), which is much greater than that of an auditory
nerve fiber (Köppl and Yates, 1999). The high spiking rate of NM
neurons thus contributes to noise reduction in NL neurons.

NUMBER OF CONVERGING NM FIBERS
The dependence of the AC and noise components on the number
M of presynaptic fibers is similar to the dependence on the mean
spike rate λ0 (Equations 2–5 in Table 1). Traces of simulated
membrane potential become less noisy as the number M of presy-
naptic NM fibers increases (Figure 3A). Power spectral density
curves support this observation (Figure 3B). The noise ampli-
tude decreases linearly with the square root of M (Figures 3C,D),
as predicted by the theoretical calculations (Equations 3 and 5).
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FIGURE 2 | Dependence of synaptic input in NL on the firing rate of

presynaptic NM fibers. (A) Simulated traces of the model membrane
potential. The number above each trace shows the output spike rate of
NM fibers. The traces become less noisy as the NM rate increases.
(B) Power spectral densities of the four traces shown in (A). Low
frequency noise components decrease with increasing NM rates, while
peaks at the input frequency and higher harmonics remain unchanged.

(C) Dependence of the DC, AC, and noise amplitudes of the simulated
synaptic input on the mean spike rate of NM fibers. (D) Dependence
of the AC and noise amplitudes of the simulated membrane potential
on the mean spike rate of NM fibers. Solid lines in (C) and (D) are
obtained from analytical calculations (Equations 1–5). Vertical broken gray
lines in (C) and (D) show the default parameter (500 Hz) used in our
simulations.

The convergence of large numbers of NM fibers results in sta-
ble sinusoidal inputs (Figure 3A, bottom). By contrast, when
the number of presynaptic fibers is small, the overall poten-
tial waveform is distinct from a pure sinusoid and each unitary
synaptic event becomes discernible (Figure 3A, top) even though
the calculated AC component itself is the same (Figures 3C,D).
An NL cell receives a few hundred NM afferents (Carr and
Boudreau, 1993), whereas an NM neuron receives 1–4 auditory
nerve inputs via large endbulb synapses (Carr and Boudreau,
1991). Thus, the membrane potential waveforms should be dif-
ferent between NM and NL, potentially reflecting the difference
in their computational roles in ITD coding.

DEGREE OF PHASE-LOCKING
The degree of phase-locking of the presynaptic NM fibers is quan-
tified by their VS (Goldberg and Brown, 1969; Fisher, 1993). The
VS of a spike sequence at frequency f is defined as follows:

VS = 1

N
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,

where N is the total number of spikes in the sequence, and tj is the
timing of the j-th spike. Note that the VS takes a value between
0 and 1. VS = 1 means that all the spikes occurred at a certain

phase of the reference frequency f (i.e., perfect phase-locking)
and a VS = 0 implies that the spike sequence has no phase
preference.

Increases in the VS of the NM inputs lead to a gain in
the AC component without altering the noise (Figures 4A,B).
Theoretical calculations (Equations 2 and 4) and simulations
(Figures 4C,D) indicate a linear relationship between AC and VS.
This can be explained as follows: VS can be calculated as the
absolute value of the Fourier component of the spike sequence
at the stimulus frequency, normalized by the total number of
spikes, regarding each spike as a delta function (Ashida et al.,
2010). Within the regime where the synaptic and the membrane
processes act as linear filters, the Fourier components of the
resulting synaptic conductance and the membrane potential at
the stimulus frequency are still linear with the VS. Consequently,
the AC component, which is linearly related to the Fourier com-
ponent, is linear to the VS. The prominent phase-locking property
of NM fibers up to 8 kHz (Sullivan and Konishi, 1984; Köppl,
1997) is thus a fundamental component of high frequency ITD
coding of the barn owl.

Higher harmonics, which are regarded as part of the noise,
also increase with VS (Figure 4B). Hence the noise amplitude
in the input conductance is no longer constant for VS > 0.7
(Figure 4C). The noise component in the membrane potential,
however, is almost independent of VS (Figure 4D), because the
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FIGURE 3 | Dependence of the synaptic input in NL on the number of

presynaptic NM fibers. (A) Simulated traces of the model membrane
potential. The number above each trace shows the numbers of NM fibers.
The traces become less noisy as the number of NM fibers increases. (B)

Power spectral densities of the four traces shown in (A). Low frequency
noise components decrease with increasing numbers of NM fibers, while
peaks at the input frequency and higher harmonics remain unchanged.
Although the trace with 3 NM fibers (A, top) looks considerably different

from the other three traces, its AC component (B, top) has the same
amplitude as the other three. (C) Dependence of the DC, AC, and noise
amplitudes of the simulated synaptic input on the number of NM fibers.
(D) Dependence of the AC and noise amplitudes of the simulated
membrane potential on the number of NM fibers. Solid lines in (C) and (D)

are obtained from analytical calculations (Equations 1–5). Vertical broken
gray lines in (C) and (D) show the default parameter (300 fibers) used in
our simulations.

low-pass properties of the membrane effectively filter out higher
harmonics of 8 kHz and above (see accompanying paper: Ashida
et al., 2013, for how higher harmonics change with VS). It should
be noted that even when all the input spikes are perfectly phase-
locked (i.e., VS = 1), noise does not disappear (Figures 4C,D).
This is due to the cycle-to-cycle variability. With our default
parameters (M = 300 fibers spiking at λ0 = 500 Hz locked to
fs = 4 kHz tonal stimulus), for example, the probability P that
each fiber spikes at a certain stimulus cycle can be calculated
as P = λ0/fs = 500/4000 = 0.125. Then the average number of
inputs counted in a single stimulus cycle is MP = 37.5, with a
standard deviation being

√
MP(1 − P) = 5.73. Therefore, even

with perfect phase-locking, cycle-to-cycle variability of spike
count would be on the order of 5.73/37.5 = 15%.

SYNAPTIC TIME CONSTANT
Changes in the synaptic time scale (measured by the half peak
width W of the unitary synaptic input) affect both the AC and
noise responses (Figures 5A,B). Changes in W shift the filtering
property of the synaptic input (Figure 6A). Slowing down the
synaptic process reduces high frequency components. To conserve

the 4 kHz signal component, the half peak width W should be
equal to or smaller than the order of 0.1 ms (Figures 5C,D, 6B; see
Funabiki et al., 2011, for related discussion). Decrease in W (i.e.,
speeding up the synaptic process) generally results in an increase
in the AC and noise components of the input conductance
(Figure 5C). As Equation 3 indicates, the noise component of
the synaptic conductance blows up to infinity with W approach-
ing to zero (Figure 5C). In the membrane potential (Figure 5D),
however, the increase in noise with decreasing W is much slower
because the increasing noise consists mostly of high frequency
components (Figure 6A), which are filtered out by the low-pass
effects of the membrane. As a result, the AC is more sensitive than
the noise to the change in the width W of the unitary synaptic
input (Figure 5D).

The half peak width W of the unitary synaptic input is linear to
the time constant τ of the alpha function (Table 1). The AC com-
ponent of the input conductance AG = (2rDG)/(1 + (2πfsτ)2)

(see accompanying paper, Ashida et al., 2013, for detailed deriva-
tions). It is therefore necessary that W < k/(2πfs) in order to
retain an effective amount of AC input (Figure 6C). This is
roughly equivalent to W < 0.4/fs, with fs being the stimulus
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FIGURE 4 | Dependence of the synaptic input in NL on the degree of

phase-locking of presynaptic NM fibers. (A) Simulated traces of the model
membrane potential. The number above each trace shows the vector
strength of NM fibers. The traces show larger oscillations (higher AC
amplitudes) as VS increases. (B) Power spectral densities of the four traces
shown in (A). Peaks at the input frequency (4 kHz) and higher harmonics
increase with increasing VS, while the other frequency components remain

unchanged. (C) Dependence of the DC, AC, and noise amplitudes of the
simulated synaptic input on VS. (D) Dependence of the AC and noise
amplitudes of the simulated membrane potential on VS. Solid lines in (C) and
(D) are obtained from analytical calculation without higher harmonics
included. The dotted black line in (C) is obtained from analytical calculations
with the second harmonic included. Vertical broken gray lines in (C) and (D)

show the default parameter (VS = 0.6) used in our simulations.

sound frequency. If W is larger than this criterion, the AC com-
ponent is effectively filtered out by the synaptic process (e.g.,
Figure 5A, W = 0.4 ms). To reproduce the sound analog poten-
tial observed in vivo (AC = 1–2 mV, Funabiki et al., 2011),
the synaptic time scale should be at least several times faster
than that observed in chick high frequency NL cells in vitro
(W = 0.2–0.3 ms, frequency range = 2.5–3.3 kHz, Kuba et al.,
2005).

IMPLICATIONS FOR ITD CODING
In the preceding sections, we investigated the dependence of
the sound analog membrane potential on the parameters of the
phase-locked synaptic inputs. In this section, we examine how
these parameters affect ITD coding. In the avian auditory brain-
stem, ITDs are compensated by the NM-axonal delay lines and
computed by the coincidence detector neurons in NL (Carr and
Konishi, 1990; Köppl and Carr, 2008). The phase difference δ

between the bilateral synaptic inputs from NM to NL reflects the
ITD (Figure 7A; see Funabiki et al., 2011, for more discussion).
The AC component (4 kHz) of the total synaptic input changes
periodically with the phase difference δ (Figures 7A,B), while the
noise component is independent of δ (Figure 7B). The second
harmonic (8 kHz), whose period is half of the main AC signal, is
less than 0.1 mV and shows different dependence on the phase δ

(Figure 7B).

In the previous sections, and in our accompanying paper
(Ashida et al., 2013), we used a single compartment NL model
without a spike generator to focus on the fundamental properties
of the sound analog membrane potential. In this section, how-
ever, we use a two-compartment NL model (Ashida et al., 2007;
Funabiki et al., 2011) in which the cell body (soma) receives
synaptic input and the axonal node generates spikes (Figure 8A),
to study how sound analog potentials are converted to the output
spike rate of the NL neuron. With the default input parame-
ters, the spike rate of the model neuron is modulated periodically
with the phase δ of the ipsi- and contralateral inputs, indicating
a linear conversion of the AC signals into spike rate (Figure 8B;
see Funabiki et al., 2011, for detailed discussion on the linear
conversion). Generally, the model neuron shows the highest spike
rate when the two inputs arrive perfectly in-phase (δ = 0 in
Figure 8B). We hereafter refer to this maximum spike rate as
the “in-phase rate.” When the inputs arrive in perfect anti-phase
(δ = ±π in Figure 8B), the spike rate becomes lowest, which we
call the “out-of-phase rate.” Note that the out-of-phase rate is the
spike rate driven primarily by noise, while the in-phase rate is
driven by both AC and noise components.

Varying the mean spike rate (λ0) of NM, the number (M) of
NM fibers, the degree (r) of phase-locking of these fibers, and the
synaptic time scale (W), we calculated the in-phase and out-of-
phase rates of the model neuron. The out-of-phase rate increases
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FIGURE 5 | Dependence of synaptic input in NL on the synaptic time

scale. (A) Simulated traces of the model membrane potential. The number
above each trace shows the half peak widths W of the unitary synaptic input
modeled by an alpha function (see Table 1). The traces show larger
oscillations (higher AC amplitudes) as W decreases. (B) Power spectral
densities of the four traces shown in (A). Higher frequency components

decrease with increasing W. (C) Dependence of the DC, AC, and noise
amplitudes of the simulated synaptic input on the synaptic time scale W. (D)

Dependence of the AC and noise amplitudes of the simulated membrane
potential on the synaptic time scale W. Solid lines in (C) and (D) are obtained
from analytical calculations (Equations 1–5). Vertical broken gray lines in (C)

and (D) show the default parameter (W = 0.1) used in our simulations.

FIGURE 6 | Frequency properties of the synaptic filter. (A) Fourier transform
|Fα(f )| of the synaptic filter α(t) (see Table 1). Normalized curves with
W = 0.05, 0.10, 0.20, and 0.40 are shown. The synaptic filter becomes more
likely to reduce high frequency components as the synaptic time scale W
becomes smaller. (B) Synaptic filter at 4 kHz showing non-linear dependence

on W. The vertical broken gray line in (B) shows the default parameter
(W = 0.1) used in our simulations. (C) Comparison of synaptic filters at
different sound stimulus frequencies fs (0.5, 1, 2, 4, and 8 kHz). Filter strength
exceeds 0.5 (broken gray line), if and only if the inequality W < k/(2πfs) is
satisfied. Note that this critical W -value is dependent on the frequency.

with both decreasing NM spike rate (Figure 8C) and decreasing
numbers of NM inputs (Figure 8D), because of the increasing
noise (Figures 2D, 3D). The in-phase-rate is higher than the out-
of-phase rate by a few hundred Hz (Figures 8C,D), provided that
the number of NM fibers exceeds 100 and their spike rates are over
a few hundred Hz. Changes in VS do not alter the out-of-phase
rate (Figure 8E) because the noise component without higher
harmonics is independent of VS (Figure 4D). The out-of-phase
curve is flat even near VS = 1 (Figure 8E), indicating a small

contribution of the second and higher harmonics in our 4 kHz NL
model (Figure 7B). The in-phase rate increases almost linearly
with VS (Figure 8E), in agreement with the linear conversion of
the AC component to spike rate found in NL neurons in vivo
(Funabiki et al., 2011). Since both the AC and noise components
increase with decreasing synaptic time scale W (Figure 5D), both
the in-phase and out-of-phase rates also increase with decreasing
W (Figure 8F). The increase in the in-phase-rate is, however,
more prominent, because W is more likely to affect the AC
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FIGURE 7 | Schematic representation of the binaural synaptic input to

the NL neuron. (A) Summation of the synaptic input from ipsi- and
contralateral NM fibers. The oscillation amplitude of the total synaptic input in
NL is maximal when the two inputs arrive perfectly in-phase, while it
becomes smaller when the two inputs are out of phase. For clarity, onset
effects, higher harmonics, and noise components are not included in this

schematic figure. (B) The oscillation amplitude of the total NM inputs. The
amplitude of the AC component changes periodically with the phase
difference δ of the two inputs according to the Equation:
Amp(δ) = |A cos(δ/2)|, with A being the maximum AC amplitude (Ashida
et al., 2007). The second harmonic also changes periodically with δ, but its
period is half of that of the main signal (AC).

FIGURE 8 | Reponses of the two-compartment NL model to 4 kHz

input. (A) Two-compartment NL neuron model, with a soma and a node
interconnected by an axonal conductance. The somatic compartment has
the same amount of leak and low-voltage-activated potassium (KLVA)
conductances as the single compartment model. In addition to the leak
and KLVA, the nodal compartment has Na and high-voltage-activated
potassium (KHVA) conductances to generate spikes. (B) Spike rate of the
model neuron plotted against the phase difference δ between ipsi- and

contralateral model NM inputs. We define the spike rate with δ = 0 as
the “in-phase rate,” and δ = ±π as the “out-of-phase rate.” In-phase and
out-of-phase rates are plotted against the mean spike rate of NM fibers
(C), the total number of NM fibers (D), the degree of phase-locking of
the NM fibers (E), and the half peak width W of the unitary synaptic
input conductance (F). Vertical broken gray lines in (C–F) show the
default parameters (λ0 = 500 Hz, M = 300 fibers, r = 0.6, W = 0.1 ms)
used in our simulations.

amplitude than the noise amplitude (Figure 5D). Therefore, the
modulation depth, which is the difference between the in-phase
and out-of-phase rates, becomes higher for smaller W (i.e., faster
synaptic inputs). In our simulation, W needed to be equal or

smaller than 0.1 milliseconds for the 4 kHz NL model neuron to
obtain modulation depths of a few hundred Hz, consistent with
measured spike rates in barn owl’s NL (Peña et al., 1996; Funabiki
et al., 2011).
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DISCUSSION
Phase-locking, or the generation of action potentials at a cer-
tain phase of the reference signal, contributes to fine temporal
information coding in the auditory system (Oertel, 1999; Ashida
et al., 2010; Brette, 2012). In the owl’s auditory brainstem, phase-
locked synaptic input sequences from the NM axons are filtered
by synaptic and membrane processes, leading to oscillatory mem-
brane potentials in NL (Gerstner et al., 1996; Kempter et al., 1998;
Ashida et al., 2007; Funabiki et al., 2011). The phase differences
between inputs from ipsi- and contralateral NM, which are the
consequence of ITD, lead to the periodic changes in the AC com-
ponent of the binaural input (Figure 7). The NL neuron acts as
a linear converter of AC signals into spike rate (Funabiki et al.,
2011), and thus changes spike rate periodically with ITD or with
the input phase difference (Figure 8B). Similar oscillatory mem-
brane potentials were found in auditory hair cells (Russell and
Sellick, 1978; Dallos, 1985). Unlike auditory hair cells, however,
NL neurons are located a few synapses away from the cochlea.
The sound analog potential in NL is therefore affected by various
presynaptic, synaptic, and postsynaptic factors.

MODEL ASSUMPTIONS
In this paper, we focused particularly on the sound analog mem-
brane potential induced by pure tones. Since the NL neuron is
narrowly tuned to frequency (Peña et al., 2001), the input to
each NL neuron is expected to be dominated by the AC compo-
nent at or near its characteristic frequency even if the stimulus
sound is broadband. Nevertheless, for more complex stimuli than
simple tones, multiple frequency components might affect ITD
coding in more complicated fashion. For example, different fre-
quency components show different dependence on the synaptic
time constant (Figure 6C). Thus, the optimal synaptic time scale
for pure tones could differ from that for broadband stimuli.
More modeling and physiological investigation will be necessary
to examine how complex stimuli is presented and processed in
owls’ NL.

In our series of numerical simulations, we fixed the aver-
age input level (DC) in order to focus on the effects of the
AC and noise components on the ITD coding performance of
the model NL neuron. This assumption is based on the follow-
ing observations: (1) the DC component is irrelevant to ITD
coding (Funabiki et al., 2011); (2) the NL neuron increases its
spike rate even with a small amount of external current injection
(Funabiki et al., 2011); and (3) the DC level should be care-
fully chosen so that the model neuron shows good sensitivity
to AC signals (Ashida et al., 2007). For these reasons, we pre-
sumed that the DC input of the NL neuron in vivo should be
optimized to efficiently compute ITD-dependent AC signals. In
our simulations we determined the DC level so that the differ-
ence between the in-phase and out-of-phase spike rates exceeded
180 spikes/s (Figure 8B), as was observed in vivo (Peña et al.,
1996). Large increases or decreases in the constant DC should
lead to over- or under-excitability of the neuron, resulting in
the degradation of the overall ITD coding performance (see
also Funabiki et al., 2011, for related discussion on the effects
of DC).

PRESYNAPTIC FACTORS
Changes in both the number (Figure 2) and spike rate (Figure 3)
of presynaptic NM fibers alter the noise component but not
the AC signal. In the ITD coding pathway of the barn owl, an
NM neuron receives 1–4 auditory nerve terminals (Carr and
Boudreau, 1991), while an NL neuron is estimated to receive a
few hundred NM afferents (Carr and Boudreau, 1993) and a neu-
ron in the anterior part of the dorsal lateral lemniscus (LLDa)
is estimated to receive 2–10 NL inputs (Fischer and Konishi,
2008). The primary role of the NM neuron is to convey pre-
cise temporal information from auditory nerves to NL (Sullivan
and Konishi, 1984; Köppl, 1997), whereas coincidence detector
neurons in NL compare bilateral NM inputs using the sound
analog potentials, whose amplitudes systematically change with
ITD (Funabiki et al., 2011). The LLDa provides finer ITD tun-
ing than NL by reducing noise (Fischer and Konishi, 2008). The
optimal convergence number of input fibers for 4 kHz ITD com-
putation in NL is predicted to be on the order of a few hundred
(Figure 8D), whereas the optimal number for NM and LLDa,
which have different computational roles, should be smaller
than NL.

In contrast to the owl’s NL neurons, neurons in the ger-
bil’s MSO, the mammalian counterpart of NL, have recently
been reported to receive less than 10 excitatory synaptic inputs
(Couchman et al., 2010). Thus, the membrane potential of the
MSO neuron may not show the clear sinusoidal waveforms that
characterize responses in the owl’s NL. Whereas the NL neu-
ron receives only slow GABAergic inhibition (Burger et al., 2011;
Coleman et al., 2011), the gerbil’s MSO neurons receive fast
glycinergic inhibition (Magnusson et al., 2005), which plays an
essential role in the ITD coding in the MSO (Brand et al., 2002;
Pecka et al., 2008). The difference in computational strategies in
MSO and NL may include differences in the number of inputs in
these neurons.

The degree of phase-locking, as measured by VS, has a lin-
ear relationship to the resulting AC signal (Figure 4), but does
not affect the noise, which originates from the cycle-to-cycle
variability of input spike counts. The in-phase rate, therefore,
monotonically increases with VS, while the out-of-phase rate
remains almost independent of VS (Figure 8E). Thus, the promi-
nent phase-locking ability observed in owl’s NM (Köppl, 1997)
leads directly to the high computational efficiency in NL. In the
accompanying paper (Ashida et al., 2013), we pointed out that
perfect phase-locking may not always be beneficial to ITD cod-
ing because of the detrimental effects of higher harmonics. In
our 4 kHz model neuron, however, the amplitude of the second
harmonic is less than 10% of the signal amplitude (Figure 7B)
because of the low-pass property of the membrane (compare
Figures 4C,D). Thus, the negative contribution higher harmonics
should be limited to NL neurons with best frequencies of 2 kHz or
below.

SYNAPTIC FACTORS
Short synaptic time constants are one of the most important
features of high-frequency coincidence detection. Auditory coin-
cidence detector neurons in the chicken NL (Kuba et al., 2005)
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and gerbil MSO (Couchman et al., 2010) receive extremely
fast synaptic inputs with time constants of far below a mil-
lisecond. The synaptic time scale, measured by the half peak
width of unitary synaptic input (W), affects both AC and
noise components. Although these components of the input
conductance increase with decreasing synaptic time constant
(Figure 5C), the effect of the increasing noise on the membrane
potential is smaller than that of the AC component (Figure 5D),
because the membrane filter cuts out high frequency noise that
appears with decreasing W (Figure 6A). In consequence, the
modulation between in-phase and out-of phase rates becomes
higher for smaller W (Figure 8F). In order to obtain a suffi-
cient AC signal, W needs to be smaller than 0.4/fs (ms), with fs
being the signal frequency (in kHz). This implies that the higher
the cell’s signal frequency, the faster the synaptic input process
should be (Slee et al., 2010). Previous studies of NL (Grau-
Serrat et al., 2003) and mammalian MSO (Mathews et al., 2010;
Khurana et al., 2011) identified various mechanisms underly-
ing the submillisecond accuracy of synaptic inputs. Jercog et al.
(2010) showed that synaptic inputs from the ipsilateral side are
faster than those from the contralateral side, contributing to
the fine ITD tuning of MSO neurons. Further investigation is
necessary to determine how fast the actual owl’s NL synapses
are in vivo.

POSTSYNAPTIC FACTORS
Membrane time constants of about 0.1 ms or less are essen-
tial for high frequency signal processing in NL (Gerstner et al.,
1996; Kempter et al., 1998). Impedance analyses (Gutfreund et al.,
1995; Ashida et al., 2007) showed that a neuron that handles
high frequency signals needs to be both leaky (i.e., having a
low input resistance) and electrotonically compact (i.e., having
a small capacitance). Short dendrites (Carr and Konishi, 1990;
Carr and Boudreau, 1993; Agmon-Snir et al., 1998; Kuokkanen
et al., 2010) and large KLVA conductances (Kuba et al., 2005)
are consistent with these requirements. It should be noted that
even with membrane properties that allow high frequency sig-
nals up to several kHz, the membrane still acts as a low-pass
filter (see accompanying paper: Ashida et al., 2013) and effi-
ciently eliminates higher harmonics (Figures 4C,D, 5C,D, 7B).
Recent simulation results suggest that the kinetic properties of
the KLVA, such as increased activation with depolarization, may
improve ITD computation in the gerbil’s MSO neuron (Svirskis
et al., 2002; Day et al., 2008; Gai et al., 2009; Jercog et al.,
2010; Mathews et al., 2010). Dynamic interplay between KLVA

and hyperpolarization-activated cation currents has been sug-
gested to stabilize synaptic inputs in the MSO (Khurana et al.,
2011). How these conductances dynamically affect the compu-
tation of high frequency AC signals in owl’s NL remains to be
elucidated.

OTHER FACTORS
In the owl’s NL, ITD tuning has been found up to about 7 kHz
(Carr and Konishi, 1990). In our preliminary simulations, how-
ever, it was hard to reproduce ITD tuning at 7 kHz (data not
shown), primarily due to the decrease in AC amplitude with
increasing frequency (see also Figure 4 of our accompanying

paper: Ashida et al., 2013). Therefore, additional mechanisms
and finer tuning should be incorporated in the actual ITD cod-
ing of the barn owl. Given that VS decreases with frequency
(Köppl, 1997), high-frequency NL neurons would require more
inputs to reduce noise (Figure 3D), as well as faster synap-
tic inputs (Figure 5D) and smaller membrane time constants
(Kempter et al., 1998) to preserve AC signals. In our model-
ing, we focused on the NM-NL circuit, where only excitatory
synaptic inputs were considered. In the avian brainstem, how-
ever, both NM and NL neurons receive GABAergic inhibitory
inputs from the superior olivary nucleus (Carr et al., 1989;
Burger et al., 2005; Coleman et al., 2011; see Burger et al., 2011,
for a recent review), which play an important role in refining
ITD tuning in NL (Fujita and Konishi, 1991; Funabiki et al.,
1998; Yang et al., 1999; Nishino et al., 2008). Inhibitory inputs
might contribute in stabilizing the formation of sound analog
potential.

In addition, neuronal activity in the Mauthner cell cap (Korn
and Faber, 1975), hippocampus (Radman et al., 2007), and in
the cortex (Anastassiou et al., 2011) can be affected by inho-
mogeneous distributions of the extracellular field potential. This
effect, called the ephaptic coupling, provides a strong basis of syn-
chronous spike activities in these brain areas. In the owl’s NL, the
neurophonic, or the extracellular field potential, is strongly cor-
related with tonal stimuli whose amplitudes are in the millivolt
range (see Kuokkanen et al., 2010; and references therein). If
ephaptic coupling occurs between the neurophonic and NL neu-
rons, it could be an additional mechanism of mediating the sound
analog potential.

MATERIALS AND METHODS
The detailed modeling procedure and its analytical considera-
tion are provided in our previous (Ashida et al., 2007; Funabiki
et al., 2011) and accompanying (Ashida et al., 2013) papers. Here
we summarize the fundamental equations of our model NM-NL
system.

MODELING PHASE-LOCKED SYNAPTIC INPUT TO NL
In order to model the phase-locked NM activity, we used an
inhomogeneous Poisson process with a time-dependent inten-
sity function λ(t) = 2πλ0 pκ(2πfst), where λ0 is the average
intensity, pκ is the von-Mises distribution function (parame-
terized by the concentration parameter κ) and fs is the stim-
ulus sound frequency. The model NL neuron receives inputs
from M fibers that are phase-locked to the stimulus tone with
a VS of r = I1(κ)/I0(κ), with In being the Modified Bessel
function of order n. In order to model the unitary synap-
tic conductance in NL, we used an alpha-function α(t) =
(Ht/τ) exp(1 − t/τ), with H being the peak height and τ

being the time constant. Note that the half peak width W of
the alpha function is linearly related to τ as W = 2.446τ All
the synaptic conductance input is linearly summed and deliv-
ered to the soma of the model NL neuron. The model equa-
tions and parameters used in this paper are summarized in
Table 1.

In the present paper, we changed the average spike rate of NM
fibers (λ0), the number of converging fibers to the model NL
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Table 1 | Equations and parameter values for the model synaptic input.

Variable/parameter Equation/value

Modified Bessel function of order n In(κ) = 1
2π

∫ π

−π

exp (κ cos(x)) cos(nx)dx

von-Mises distribution function with concentration parameter κ pκ(t) = 1
2πI0(κ)

exp (κ cos(t)) = 1
2π

+ 1
π

∞∑
n = 1

In(κ)

I0(κ)
cos(nt)

Periodic intensity function for the inhomogeneous Poisson NM inputs λ(t) = 2πλ0 pκ(2πfst)

Timing of the i-th spike of the m-th NM fiber tmi

Unitary synaptic input conductance (alpha function) with time constant τ α(t) = (Ht/τ) exp(1 − t/τ) (t ≥ 0)

Area between α(t) and the t-axis S = eHτ

Fourier transform of α(t)
∣∣Fα(f )

∣∣ =
∣∣∣∣
∫ ∞

0
α(t) exp(−2πift) dt

∣∣∣∣ = S
1 + (2πfτ)2

Total synaptic input conductance gsyn(t) =
M∑

m = 1

Im∑
i = 1

α
(
t − tmi

)

Linear membrane impedance
∣∣Z (f )

∣∣
DC component of the input conductance (Equation 1) DG = SMλ0

AC component of the input conductance (Equation 2) AG = 2rDG

1 + (
2πfsτ

)2

Noise component of the input conductance (Equation 3) NG =
√

Mλ0

∫ ∞

−∞
∣∣Fα(f )

∣∣2 df = DG

2
√

Mλ0τ

AC component of the membrane potential (Equation 4) AV = 2rDG

1 + (
2πfsτ

)2

∣∣Esyn − V0
∣∣ ∣∣Z (

fs
)∣∣

Noise component of the membrane potential (Equation 5) NV = DG
∣∣Esyn − V0

∣∣√
Mλ0

√√√√∫ ∞

−∞

∣∣Z (f )
∣∣2(

1 + (2πfτ)2
)2 df

Equation for average potential V0 gL(EL − V0) + gK d∞(V0)(EK − V0) + DG(Esyn − V0) = 0

Stimulus sound frequency fs (default: fs = 4000 Hz)

Mean spike rate of each NM fiber λ0 (default: λ0 = 500 Hz)

Number of NM fibers converging onto one NL cell M (default: M = 300 fibers)

Vector strength of phase-locked NM spikes r = I1(κ)/I0(κ) (default: r = 0.6, κ = 1.516)

Half-peak-width of unitary input W = 2.446τ (default: W = 0.1 ms; τ = 0.0409 ms)

Magnitude of unitary input H = α(τ) (default: H = 1.3 nS)

The model equations and parameters are the same as those used in our previous (Funabiki et al., 2011) and accompanying (Ashida et al., 2013) papers. The number

(M) and the mean spike rate (λ0) of the NM fiber are taken from previous anatomical (Carr and Boudreau, 1993) and physiological (Peña et al., 1996) studies.

Equations 1–5, obtained in the accompanying paper (Ashida et al., 2013), describe how each model parameter affects the formation of the sound analog synaptic

input and membrane potential.

neuron (M), the average degree of phase-locking (r) of the NM
fibers, and the synaptic time scale (W). In numerical simulations
where λ0, M, or W was changed, the peak height H of the unitary
synaptic input was re-scaled to conserve the total input conduc-
tance. For example, when the mean spike rate of NM fibers was set
at twice (M = 1000 Hz) the default rate (M = 500 Hz), the peak

height H was reduced to the half (0.65 nS) of the default value
(1.3 nS).

SINGLE COMPARTMENT NL NEURON MODEL
In order to examine the parameter dependence of the AC and
noise components of the synaptic input and the membrane
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potential of the model NL neuron, we used a conductance-based
single compartment model. The dynamics of the membrane
potential of the soma VS is described by a first-order differential
Equation:

CS
d

dt
VS(t) = IL

S + IKLVA
S + Iaxon

S + Isyn,

where CS is the membrane capacitance, IL
S = gL

S(EL − VS) is the
leak current, IKLVA

S = gKLVA
Sd(VS, t)(EK − VS) is the KLVA cur-

rent, Iaxon
S is the axonal current, and Isyn = gsyn(Esyn − VS) is

the model synaptic input. For the single compartment model,
the axonal current was fixed to zero. The activation variable
d(V, t) of the KLVA conductance obeys the first-order differential
Equation:

τd
d

dt
d(V, t) = −d(V, t) + d∞(V).

Membrane properties, including the maximum KLVA conduc-
tance gKLVA, were fixed in our simulations.

ITD DEPENDENCE AND TWO-COMPARTMENT NL NEURON MODEL
A two-compartment NL neuron model was used to examine the
parameter dependence of output spike rate (see Ashida et al.,
2007; for detailed explanations for the two-compartment model).
The model consists of the soma and the node connected by the
axonal resistance (Figure 8A). The model equations and parame-
ters are the same as in our previous study (Funabiki et al., 2011).
The somatic variables and parameters are the same as those used
for the single compartment model. Sodium and high-voltage-
activated potassium (KHVA) conductances were introduced in the
nodal compartment to generate spikes. The membrane potential
of the node VN is described as:

CN
d

dt
VN(t) = IL

N + IKLVA
N + IHLVA

N + INa
N + Iaxon

N ,

where IL
N = gL

N(EL − VN) is the leak current,
IKLVA

N = gKLVA
N d(VN , t)(EK − VN) and IKHVA

N = gKLVA
N

n(VN , t)(EK − VN) are, respectively, the KLVA and KHVA cur-
rents, INa

N = gNa
N m(VN , t)h(VN , t)(ENa − VN) is the fast

sodium current, and Iaxon
S = −Iaxon

N = gaxon(VN − VS) is the
axonal current. The KHVA conductance has only the activation
variable n(V, t), while the sodium conductance has both activa-
tion m(V, t) and inactivation h(V, t) variables. These variables
obey the equation τx

d
dt x(V, t) = −x(V, t) + x∞(V), where x

stands for n, m, or h. The model equations and parameters used
in this paper are summarized in Table 2.

In constructing synaptic inputs, half the NM fibers were
assumed to be from the ipsilateral side, and the remaining half
of the NM fibers from the contralateral side. NM fibers from
each side were assumed to be phase-locked to generate the oscil-
latory conductance, and the NM inputs from the two sides were
summed with a phase difference δ (see Figure 7A). The spike rate
of the model neuron with δ = 0 was called the “in-phase rate,”
while that with δ = π was referred to as the “out-of-phase rate”
(see Figure 8A).

Table 2 | Equations and parameters of the two-compartment NL

model.

Variable/parameter Equation/value

KLVA channel activation d(V , t) τd (V ) = Q(T−23)/10
10 /(αd (V ) + βd (V ))

d∞(V ) = αd (V )/(αd (V ) + βd (V ))

αd (V ) = 0.20 exp((V + 60)/21.8)

βd (V ) = 0.17 exp(−(V + 60)/14)

KHVA channel activation n(V , t) τn(V ) = Q(T−23)/10
10 /(αn(V ) + βn(V ))

n∞(V ) = αn(V )/(αn(V ) + βn(V ))

αn(V ) = 0.110 exp((V + 19)/9.1)

βn(V ) = 0.103 exp(−(V + 19)/20)

Na channel activation m(V , t) τm(V ) = Q(T−23)/10
10 /(αm(V ) + βm(V ))

m∞(V ) = αm(V )/(αm(V ) + βm(V ))

αm(V ) = 3.6 exp((V + 34)/7.5)

βm(V ) = 3.6 exp(−(V + 34)/10.0)

Na channel inactivation h(V , t) τh(V ) = Q(T−23)/10
10 /(αh(V ) + βh(V ))

h∞(V ) = αh(V )/(αhV + βh(V ))

αh(V ) = 0.6 exp(−(V + 57)/18.0)

βh(V ) = 0.6 exp((V + 57)/13.5)

Membrane capacitances CS = 24 pF, CN = 0.2 pF

Leak conductances gL
S = 48 nS, gL

N = 2 nS

KLVA conductances gKLVA
S = 192 nS, gKLVA

N = 8 nS

KHVA conductance of the node gKLVA
N = 450 nS

Na conductance of the node gNa
N = 1500 nS

Reversal potential of leak
current

EL = −60 mV

Reversal potential of potassium
current

EK = −75 mV

Reversal potential of Na current ENa = +35 mV

Reversal potential of synaptic
current

Esyn = 0 mV

Axonal conductance gaxon = 118 nS

The kinetics of KLVA and KHVA conductance are taken from the study of chick NM

(Rathouz and Trussell, 1998). The kinetics of the Na conductance are based on

the data of chick NM (Koyano et al., 1996). All the parameters and equations are

the same as we used in our previous study (Funabiki et al., 2011).

ANALYTICAL EXPRESSIONS
Analytical results obtained in the accompanying paper (Ashida
et al., 2013) are summarized in Table 1. Equations 1–5 describe
the parameter dependence of the average (DG), the signal part
(AG), and the noise part (NG) of the synaptic conductance input,
as well as the signal (AV ) and noise (NV ) components of the
membrane potential.
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