
Preface

The standardised hardware description language VHDL has become a widely
used language in the electronic design community [24]. It is appropriate to
describe hardware at various levels of abstraction that occur in a design flow.
The language has proven to be appropriate from switch level modelling to
behavioural descriptions.

This thesis considers it useful to enlarge the range of abstraction provided
by the language and extends the language to raise its level of abstraction
towards system level. Increasing the level of abstraction is regarded as an
answer to the question how to improve modelling capabilities and efficiency
of the language for large scale designs. The extension adds object-oriented
features to VHDL. The extended language has a class-concept that is based
on an extension to the existing type concept of VHDL [87], and an inherit-
ance mechanism. Further it supports polymorphism. The extended language
becomes a full object-oriented language. The extension comes with a transla-
tion concept allowing to integrate object-oriented hardware models in a
standard design flow. An important feature of the translation concept is to
preserve properties of a hardware description that are intended for a VHDL-
based synthesis [125].

The presentation is based on the extension to VHDL, nevertheless, it pro-
vides an insight into object-oriented hardware modelling independently from
the language extension that is of more fundamental nature. A contribution is
to show close similarities between concurrent object-oriented programming,
programming of distributed systems, and object-oriented hardware model-
ling. An analysis of existing languages for system level specification exem-
plifies the similarities. Among the similarities we focus on the modelling of
communication and synchronisation between objects which we believe plays
the important role in the design of abstract and re-usable systems. In that
context we describe the conflicting between synchronisation constraints and
inheritance that is known in concurrent object-oriented programming as
inheritance anomaly [111]. A key contribution of this thesis is to provide a
solution to the anomaly. Although the solution is formulated for object-ori-
ented hardware modelling using the language extension to VHDL the princi-
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ple behind it is of a more general nature and can be transferred back to
concurrent object-oriented programming [156], where the anomaly originally
was detected. In contrast to other approaches to extend VHDL, we do not
only provide a re-use concept for data structure and behaviour but we also
consider the re-use of synchronisation code which is an essential in the mod-
elling of concurrent systems.

The structuring of the thesis intends a presentation that provides all the
relevant information that is necessary to understand the basic problems of
object-oriented hardware modelling and to follow the proposed solutions.
Especially, the reader is not expected to have any special previous knowledge
about concurrent object-oriented programming or object-oriented program-
ming of distributed systems. After briefly presenting the context of hardware
modelling we introduce object-oriented design principles. We provide the
material from concurrent object-oriented programming and object-oriented
programming of distributed systems that turns out to have similarities with
object-oriented hardware modelling. As there is no agreement on a common
terminology in the object-oriented design community, we give a short defini-
tion of the terms we introduce. A glossary of terms can be found in the
appendix. Significant parts of the motivation to propose an object-oriented
extension to VHDL can be found in an analysis of system level specification
methodologies and in the discussion of other approaches to extend VHDL. A
very short description of the basic features of VHDL may be skipped by
those already familiar with the language.

The language extension to VHDL is introduced with many examples that
should allow to understand its main ideas even without a detailed reading of
all the previously presented material. The material presented in a discussion
on the applicability of the language extension following the introduction of
the language and in a discussion about the results of a corresponding case
study may be viewed as a large example. The solution of the inheritance
anomaly can be considered as an answer to the modelling problems that
occurred in that example.
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Chapter 1

Introduction 1

Object-oriented specification and design denotes methodologies that are suc-
cessfully applied in software engineering to build complex software systems
[28,44,142,158]. The object-oriented structuring and encapsulation of pro-
grams prevents the scattering of related information all over the system. The
resulting software becomes robust, reliable, re-usable, and extendable. These
are essential qualities for developing large and complex software systems at
reasonable cost [128].

The electronic design community is looking for design automation that
provides the same characteristics. It needs techniques to improve productiv-
ity and to manage large designs. It is a major concern that the reliability of
the systems must not suffer from the increasing productivity and that large
designs still are controllable in terms of testability and manageability [43].

A promising approach is to use methodologies that promote re-use of
tested designs at all levels of abstraction. At system level this includes main-
tenance during the life-cycle of a product as well as re-use of systems as
tomorrow’s subsystems. A form of re-use that becomes more and more
important for modelling is to use design components that are purchased as
intellectual property. The requirements for designing systems-on-silicon are
methodologies that allow technology independent re-use at system level [56].

Like programming, hardware design is about abstraction and decomposi-
tion of the design problem. The development of hardware design techniques
has been concerned with the introduction of various levels of abstraction
[109,140]. Today, the conventional abstraction technique for designing at
system level is to use a procedural hardware description language [52]. In the
software domain the procedural approach turned out to be inadequate for
programming in the large. Enhanced encapsulation and abstraction mecha-
nisms as they are provided by the object-oriented concepts were identified to
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be necessary for successfully handle large software systems [29]. The object-
oriented paradigm as an approach to solve complexity and productivity prob-
lems in software engineering motivates the idea to apply it to hardware
design.

We believe that only a change of design paradigms for modelling at sys-
tem level can achieve the required improvements of design productivity. The
intended development is to transfer the enhanced encapsulation and abstrac-
tion concepts of object-oriented modelling and its benefits to hardware mod-
elling.

It is a goal of the thesis to illustrate how such a change of paradigms can
gain the necessary improvements. We show that adding object-oriented fea-
tures to the hardware description language VHDL performs the desired
change of paradigms. We propose a small extension that can be integrated in
existing VHDL-based design flows. Different to other proposals to extend
VHDL, the approach in the thesis combines the language extension to VHDL
with a new modelling methodology. The basic principle of the methodology
is to carefully take the interaction between object-oriented modelling and
parallel hardware designs into account. The new concept for modelling the
interaction is viewed as a keystone for successfully developing robust, re-
usable, and expandable hardware designs.

The next chapter covers in outline the main goals of modelling in hard-
ware design. It contains a discussion on the importance of hierarchy and
abstraction in the design of robust and re-usable hardware models. The chap-
ter brings out the deficiencies of procedural hardware description languages
for system level modelling. It explains the modelling challenges for such sys-
tems and the resulting necessity for a change of design paradigms.

Object-orientation is proposed as the new design paradigm for modelling
hardware at system level. The principles of object-orientation are provided in
Chapter 3. The chapter discusses the usefulness of various object-oriented
concepts for the re-use of models. Concepts for modelling parallel and dis-
tributed systems and their integration into object-oriented concepts are then
introduced. The integration is identified as a key issue in object-oriented
hardware modelling.

Chapter 4 analyses the potential of system level specification languages
for use in hardware design. Similarly Chapter 5 presents an analysis of hard-
ware description languages and their potential for system level specification.
Particularly, the chapter provides a rather complete overview about object-
oriented extensions to the hardware description language VHDL. The defi-
ciencies of the presented languages are discussed. In essence, the deficiencies
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concern the integration of concurrency concepts into object-oriented con-
cepts.

The following three chapters are the core of the thesis. Broadly speaking,
they provide a solution to the integration of concepts for concurrency, distri-
bution, and object-orientation in hardware design. The solution is based on
an object-oriented language extension to VHDL and a corresponding model-
ling methodology.

Chapter 6 introduces the language extension. The facilities for object-ori-
ented modelling of parallel hardware systems are presented. This covers a
translation concept from the language extension to standard VHDL that
allows to integrate the language extension in a VHDL-based design flow.
Chapter 7 rounds off the introduction of the language extension by an exam-
ple. The example illustrates the major themes of modelling concurrency and
of object-oriented modelling.

Chapter 8 provides a detailed discussion on these themes. Finally, the
chapter presents the solution to the integration of concepts for concurrency,
distribution, and object-orientation in hardware design.





Chapter 2

Modelling 2

In hardware design a model is a representation of a system or a part of it. It
allows a designer to form a picture of the system he or she has to deal with. A
model has to serve several purposes during the design process. The model-
ling methodologies have to reflect these purposes. The chapter presents the
main goals of modelling in hardware design. The focus is mainly put on the
modelling of digital hardware systems. We derive some basic requirements
which models must meet and we discuss the basic principles of modelling
which are used to achieve these goals.

2.1 Modelling Goals

A general goal of a model is to collect information about a system and to
structure the information in a way that it is accessible to people who are
interested in the system and its development. Typically there are several per-
sons involved in the design and development of a hardware system with dif-
ferent knowledge and skills. Their vocabularies often do not match and even
if they use the same word it might have different meanings. In such a case a
model can serve as a way to exchange information between the different per-
sons involved in the system design if the model is described by a well defined
formalism which is understood by all the involved persons [158].

A model can be used not only to exchange information about the system
at a certain point of time in the design process but also during the whole
design process and further on during the life-cycle of the system. The goal of
such a model is to serve as a reference during the design process and a docu-
mentation of the system during its life-cycle [79].

A model is a representation of a system which is used to describe very
different aspects of the system. A modelling technique to show a particular
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aspect of the system is calledview. Sometimes we also call the model which
shows the particular aspect view. Typical views which are used in hardware
design are timing models, behavioural models, delay models, structural mod-
els, value systems etc.

It is a quality of a model that it tries to avoid any inconsistencies in the
information about the system. To describe what is thought as consistent in a
special modelling context a consistency model is used. We could think of
such a consistency model as a kind of meta-model. The meta-model deals
with information in models and their relation to each other and thus should
guarantee the consistency of the different views of a system. Very often such
relations in a consistency model can be described as a set of conditions
which must be fulfilled.

2.1.1 Specification and implementation

Two kinds of information are normally distinguished in a model. The first
one is the information given by the customer of the hardware system. We call
this kind of information requirements. The other kind of information is the
one added by the designers which we call implementation knowledge or
implementation data. Depending on the kind of information a model contains
it can be either classified as requirement model or as implementation model.
Most of the modelling methodologies make this classification although they
may use different terms. A widely used term for the requirements model is
specification. Also the modelling of a requirement model is called specifica-
tion.

Typical requirements in the design of hardware systems concern the func-
tionality of the system, the performance, the area of the system on a chip, the
power consumption. Other requirements may contain components which are
to be used in the system or definitions of interfaces to other systems in the
form of protocols, etc. It is obvious that models of the components, proto-
cols, etc. are required to model these requirements.

The final goal of the modelling is to design a model which contains all
the implementation data that is required to produce the system and which is
consistent with the specification. A requirement model can be very often
replaced by an implementation model during the modelling process. This
leads to the notion of transformation. Designing is the transformation of a
requirement model into an implementation.

The overall transformation consists of a sequence of iteratively performed
transformations. We refer to such a transformation as a design step. In such a
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sequence an implementation model of a transformation may become a
requirement model of the next transformation. After each transformation the
resulting model must be consistent with the original one. Again, the consist-
ency can be modelled by a kind of meta-model. The conditions describing
the meta-model together with the original model form new requirements.

Other meta-models which are used in hardware design describe the
design steps that are required to develop an implementation from a specifica-
tion. Such meta-models are calledpatterns [67]. A hardware design flow can
be viewed as such a pattern.

2.1.2 Exploration of design space

In each design step a designer can build various models which differ in the
way the given requirements are met. The transformation techniques used in a
design step normally do not automatically guarantee that all requirements are
met. This has to be analysed in additional design steps. Due to the complex-
ity it is normally not possible to perform an analysis in all the details. To
select a model out of a set of alternative models with only limited informa-
tion is one of the most problematic issues in design. To analyse various mod-
els and to collect as much information as possible about them is called the
exploration of the design space.

It is a goal of the modelling to enable the exploration of the design space
by providing information in a model which is relevant for analysing the
requirements. If one model from the design space is chosen in a design step
this design decision should be documented as part of the model in a way the
decision is understandable. In other words, the design decision should be
treated as a special kind of implementation information.

During the design process an initial specification normally undergoes
some modifications. Very often it turns out during the modelling that there
are some missing requirements which have to become part of the specifica-
tion. To make the effort not worthless which has been spent so far in the
modelling of the system a modelling methodology should support the intro-
duction of the new requirements into the model without needing complex re-
design steps of already developed models. The modelling goal is to get a
robust model with respect to modifications.
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2.1.3 Re-use of models

Re-use of existing models and meta-models is the key idea to reduce the
design effort and improve design quality[69]. For example, many hardware
systems have requirements considering the same views, e.g., timing behav-
iour or power consumption. In such cases it makes sense to think about a
model of time or of power which can be re-used in many systems. To enable
such re-use the modelling methodology must allow to describe such models
independently from a concrete target system. We call such a modeltarget
independent. The example shows that a modelling methodology must allow
to generalize about the concrete target system to a whole class of target sys-
tems to enable re-use. Thegeneralization concept is relevant in many varia-
tions for re-use.

There is a great variety of technologies which are used to produce the
hardware systems and the technologies are rapidly evolving. Therefore
another important concept for re-use of models is to generalize about the
technology. A target independent model then represents theintellectual prop-
erty which can be kept when re-targeting the system to another technology.
In other words, a hardware modelling methodology should support the mod-
elling of technology independent models for re-use.

There is a wide variety of different specification and modelling tech-
niques in hardware design. Among these techniques hardware description
languages (HDLs) are successfully used for many modelling issues in a
design flow.

2.2 HDLs in a Design Flow

This section explains how hardware description languages are used in a
design flow to model hardware systems. It describes how HDLs are used to
meet the different modelling goals.

We denote a well defined language which was designed to document
hardware systems, in particular systems consisting of integrated circuits, as
hardware description language. Different to more general purpose modelling
languages, HDLs have some built in models and meta-models which can be
used in many hardware descriptions independently from a concrete system.

Such models are for example timing models, delay models, value models
and corresponding conflict solution models, transition models, and models
for functional primitives. The generalization about a class of models enables
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the re-use. The scope a language allows to generalize about with its built in
models is just its intended application domain.

It has been mentioned that consistency models are used in hardware
design to describe the consistency between various views of a system or
between models of different design steps. Basically, there are two concepts
supported by HDLs, a verification concept and a validation concept.

Following the verification concept means that the HDL has a formal
semantics which allows to reason about system models. The consistency
model is a kind of formula and the consistency check itself is a mathematical
proof. The problem with such a concept is the in many cases limited model
complexity it can handle compared with the validation concept.

Languages which support the validation concept have asimulation
semantics. Simulation semantics implies that there is a mapping from models
which are described by a HDL to an algorithm. Simulation means to execute
the algorithm on some stimuli data. Such HDLs are very similar to program-
ming languages except to the fact that they have the built in models for hard-
ware design. One of the most important built in concepts which are provided
by HDLs are timing models. They often include concurrency concepts to
express parallelism in hardware systems. The consistency models consist of a
set of rules describing how to map value models, delay models, and timing
models of the different simulation models.

Some HDLs have asynthesis semantics. That means that the language
contains a meta-model how to transform an existing model which is
described by the HDL into a new model by adding information to the model.
The consistency model is embedded in the meta-model describing the trans-
formation. Typically, it is just a consistency model which describes a set of
possible transformations for a given model. To select a concrete transforma-
tion out of many others is the exploration of the design space as mentioned in
the previous section.

An interesting aspect of simulatable models is the possibility to commu-
nicate about the model by simply looking at the simulation results without
studying the model in detail or even without knowing the HDL which was
used to describe the model. Such a model can be a good communication
interface to a customer [66].

Designers who directly access the models written in a HDL must be able
to analyse and understand information of a model even if it is extensive and
complex. A designer also must be able to easily add new information to the
model and modify the existing model without completely re-analysing or re-
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writing it. The language must provide corresponding concepts to structure
the information, modify it, and manage its complexity.

The next section presents the two main techniques to manage the design
complexity.

2.3 Introducing Hierarchy and Abstraction

into a Design

The information of a model is decomposed into manageable chunks to break
down the complexity of the model. If we first look at specifications this
means that a set of interrelated requirements is decomposed into single
requirements. The design steps then deals with each single requirement sepa-
rately. This may allow to design a model in a design step that is an optimal
solution with respect to the single requirement, however, in most cases it is
only a sub-optimal solution with respect to all requirements if it is a solution
at all. There is often no efficient technique which allows to decide how to
successfully decompose the model. The design decision how to decompose
the system is then based on heuristics or simply the designers experience.
Very often a costly search in the design space is required to find an appropri-
ate solution which meets all given requirements.

2.3.1 Hierarchy

If a decomposition technique is iteratively applied to a design then this estab-
lishes a hierarchy in the model. We can think of a model consisting of sub-
models which in turn consist of sub-models. This establishes ahas-parts-
relation between the (sub-)models [1]. We also call this relationhas-a rela-
tion. Examples are functional decomposition or decomposition of tasks into
parallel tasks. Top-down design flows establish the has-a-relation by apply-
ing the decomposition technique on the specifications. The same has-a-rela-
tion can be established by composition of models from existing (sub-)
models1 in a bottom-up design flow.

After the decomposition or composition the separate sub-models are
interrelated to each other. In many design techniques this is the weak point to
handle these relations properly. A typical problem is that a local modification
in a sub-model causes inconsistencies with other sub-models due to their

1. We subsequently use the term model for both, models and sub-models.
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interrelation. This requires a re-analysis and probably a re-design of other
sub-models. The decomposition is not stable under local modification of
models. An example is the decomposition of a system into a data path and a
controller. Introducing new elements to the data path may require a re-analy-
sis and re-design of the controller.

2.3.2 Abstraction

An approach to solve the problem is to provide the information about a
model which is required to understand the interrelations to other models and
to omit the information which is not relevant for that aspect. We could think
of the model with the reduced information as a special view. The view
abstracts from the details of a model. We call both the omission of informa-
tion in a model and the resulting viewabstraction. An abstraction hides the
details of a model from other models. Only abstractions are used to model
the relations between models.Encapsulation is the relation between an
abstraction and the corresponding model with the detailed information.

If an appropriate encapsulation is chosen a model can be re-used. Appro-
priate here means that the abstraction must contain all information which is
required to use the model in various contexts.

Another concept of abstraction is to omit information which is not
present at that stage in a design flow. More detailed information has to be
added in further design steps. In this sense every model can be seen as an
abstraction of the system it represents.

Abstraction along with hierarchy is the key to manage the design com-
plexity. We now discuss examples where hierarchy and abstraction are used
in a design flow and how they are supported by HDLs.

2.3.3 Levels of abstraction

Different levels of abstraction are distinguished according to the concepts
which are abstracted in the models. The levels correspond quite nicely to
design steps in a hardware design flow. A design flow which differentiates six
levels of abstraction is given in [140]. The levels are system level, algorith-
mic level, register transfer level, gate level, switch level, and electrical level.
The latter is often also called circuit level.
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2.3.4 Bottom-up design

If we look at the levels from a bottom-up perspective we can see that there
are concepts to aggregate the basic elements from the circuit and switch
level. Encapsulation concepts allow to use the abstractions of the aggregates
at the gate level. The concepts are successfully applied in cell libraries of
ASIC vendors. A cell in the library abstracts implementation information and
at the same time it abstracts behaviour. The models generalize about the tim-
ing model. As previously mentioned generalization allows a separation of
views which is in this case a timing view and a functional view. A very good
example how such a separation can be done at cell level is described in the
VITAL standard [88].

The abstractions with the timing view and functional view separated
allows their re-use independently from each other. This makes functional
decomposition possible which uses the functional view of the gates as sub-
models. Starting from a functionally decomposed model timing issues can be
considered. The timing model can be re-used in scheduling considerations
for more complex models which are built as aggregation of gate level models
because the timing abstraction is independent from the actual gates. The tim-
ing models for the gates only differ in the actual values. For the scheduling it
is not relevant which behaviour i.e. which operation is performed by a gate.
This abstraction concepts allows low modelling costs of functional and tim-
ing models at gate level and a very high re-use of the gate level models.

Attempts to apply these modelling and abstraction concepts to complex
parameterized macros in general purpose ASIC libraries failed. Today, only
memory cells and analog cells are modelled as macro cells. There are several
reasons for that. A macro may have some complex internal state. In that case
a simple functional abstraction does not work and it becomes difficult to gen-
eralize the timing behaviour so that it is independent from the functionality
and can be re-used. Today’s HDLs do not provide abstraction mechanisms
which allow a designer to understand the behaviour and timing model of a
complex macro cell from its abstraction. To re-use such a model either the
implementation of the model has to be analysed which increases the cost of
re-use or additional documentation about the model has to provide the miss-
ing information of the abstraction. The improper abstraction is also an obsta-
cle for the designer to efficiently find the desired model for re-use. Another
reason why the modelling of compex parameterized macros fails is the gen-
eralization mechanism provided by today’s HDLs. The mechanism is based
on generic parameters. It requires the designer of generic parameterizable
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models to think of all possible future application scenarios of the model and
to consider them in the model. Abstraction here may introduce quite an over-
head into the model and make it more complex and less optimal for a particu-
lar application. The modelling effort is very high due to the very large
number of possible combinations of actual parameters which have to be con-
sidered in a validation of the model. Large parameter lists are difficult to
manage by a user. As a result there is only a limited re-use of parameterized
macro cells while the modelling effort is high.

To summarize, we can say that there are limits in the useful modelling of
complex macro cells due to missing abstraction and generalization concepts
in the HDLs.

2.3.5 Top-down design

To overcome the limits of bottom-up approaches abstraction mechanisms are
applied in top-down design flows. In a top-down design step information can
be added to a model through synthesis. This approach is used for place and
route, technology mapping, and logic synthesis. It also can be used for higher
levels of abstraction with register-transfer-level synthesis or behavioural syn-
thesis.

In the top-down design flow the original model can be interpreted as an
abstraction of the more detailed model which is at a lower level of abstrac-
tion. This approach can be used if there is tool support for the automatic syn-
thesis of the abstract model. In that case it is possible to re-use the
consistency model which is defined between the abstraction and the synthesis
result. At the same time design knowledge is re-used. We can think of this
knowledge as a meta-model which is encoded in the synthesis mechanism.

To enable re-use of both, the meta-model and corresponding synthesiza-
ble models it is necessary to provide a generalization concept about target
technologies. This allows the modelling of technology independent models
which can be re-targeted to a new technology by providing generic technol-
ogy information to the synthesis tool in form of some technology libraries.

As described in the modelling goals, a synthesis mechanism should be
robust. That means that a local modification in the abstract model causes
only local modifications in the synthesis result at the lower level of abstrac-
tion.
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2.3.6 Register-transfer-level modelling

Today, technology independent design of synthesizable models is applied at
register-transfer-level. In many cases the synthesis concept works quite well
at that level[40]. The data model is some kind of re-usable bit-vector repre-
sentation which normally does not introduce any instability in the synthesis
mechanism. What causes problems are modifications of the abstraction
which affect the functionality or the timing behaviour of the system. The tim-
ing behaviour may change locally due to local modifications of the function-
ality. However, the modification may cause a global effect in the synthesis
mechanism. For example, introducing some components in a data path at reg-
ister-transfer-level may require the re-analysis and design of the correspond-
ing controller. We can identify two reasons for that. First, the state model is
built separately from the functionality although they are interdependent i.e.,
the encapsulation concept at register-transfer-level is weak. The second rea-
son is that modifications of the functionality may change the timing behav-
iour of the system. However, this modification of the timing behaviour is not
reflected in the abstraction of the functionality. In other words, if we interpret
the components in a register-transfer-model as limited resources we could
say that there is no appropriate abstraction of the scheduling.

2.3.7 Behavioural modelling

Behavioural modelling and synthesis which is used at algorithmic level pro-
vides an abstraction of scheduling. HDLs2 for modelling at that level have
some procedure-like concepts to abstract, encapsulate and decompose behav-
iour[110]. A procedure models an algorithm. It consists of an interface and
an implementation. The interface only allows to pass information to the
implementation via parameters and thus encapsulates the model in the proce-
dure implementation. The idea is to look only at the interface to know what
the procedure does and where it can be used. In other words, the interface
abstracts from the implementation. Basically, the implementation consists of
some kind of local variables and a sequence of statements. The variables can
be used to model resources which are hidden outside the procedure. Causal
relations which are implicitly given by the sequence of statements including
some control statements abstract from timing relations concerning the com-

2. Although the focus here is on HDLs we can apply the following considera-
tions to procedural languages in general.
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mon access to a resource. The sequence of statements abstracts the schedul-
ing.

Another important concept of modelling at algorithmic level is the possi-
bility to hierarchically decompose procedures. This allows to functionally
decompose an algorithm into manageable chunks. Each procedure which
models such a chunk can be synthesized separately and then assembled to the
complete algorithm.

The advantage of the procedural modelling is the possibility to keep mod-
ifications of behaviour in a model local. If an algorithm modelled by a proce-
dure requires a modification it can be performed locally and it becomes
effective globally at each place in the model where the abstraction of the
modified procedure is used.

An example of an application domain is digital signal processing (DSP).
A typical computation in DSP is a filter operation which operates on an input
sequence to produce an output sequence. On each sample in a sequence the
same sequence of operations is applied. Procedures are appropriate to encap-
sulate the sequence of operations. The procedure can be re-used for each
sample. If modifications of the model are required then the encapsulation
keeps modifications of the filter operation locally.

The sequence of operations in the procedure abstracts from the schedul-
ing of the linear operations in the filter. The timing relations between the
operations, i.e. unit delays, are modelled as causal relations.

The example shows the possibilities of procedural modelling and at the
same time its limitations. It is not possible to encapsulate the internal state of
the filter in a procedure because internal variables do not exist after the exe-
cution of the procedure. That means that state variables must be modelled as
global variables. The disadvantage of global variables and thus the proce-
dural modelling is that modifications of the data cannot be kept locally. The
reason why procedural modelling can be nevertheless successfully used in
DPS is that typical modifications of a model do not significantly concern the
data. All the data is modelled by some numeric types. Modifications only
concern some accuracy issues.

The example shows the modelling limitations namely the missing robust-
ness with respect to modifications of data. The example also illustrates that
procedural modelling is appropriate to encapsulate functionality and that it
allows to abstract simple timing relations like unit delays.
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2.3.8 Modelling parallelism

If a model contains more complex timing relations a model consisting only
of sequential statements often is not appropriate[66]. This requires a model-
ling methodology which is well-suited for modelling parallelism. A typical
approach is to use a modelling concept which is considered orthogonal to the
procedural modelling. Orthogonal means that a model which is decomposed
into parallel tasks may contain any hierarchy of procedures. Timing relations
between parallel tasks are described by synchronisation and communication
models. HDLs which are designed to model at that level of abstraction pro-
vide a set of built-in models for communication and synchronisation.

The models abstract mechanisms to synchronize activities in parallel
tasks and they abstract the exchange of information between tasks. There is a
large number of very different models. On the one hand there are very power-
ful models like for example a rendezvous-concept and on the other hand
there are mechanisms like low-level signals. The powerful models abstract
very complex mechanisms. They may require mechanisms like for example
routing strategies or queues which are costly to implement in hardware. In
many cases such a complex mechanism introduces quite an overhead in the
model where the synchronisation model is used. There is no direct mapping
of such abstract models to lower level models. This is an obstacle in intro-
ducing a synthesis semantics to a language which has such complex built-in
models.

For that reason today’s HDLs tend to support only low-level synchronisa-
tion models. They allow a direct mapping to a hardware implementation.
However, these low-level models do not meet the requirements for modelling
at system level. The solution is that the hardware designer has to build com-
plex communication and synchronisation models from low-level constructs.

The problem with procedural languages are the missing concepts to
encapsulate and abstract user defined3 synchronisation and communication
models. Apart from the data which is transferred in a communication a syn-
chronisation model contains quite complex control information but as men-
tioned above there is no possibility to encapsulate the control data.

There is also a more general problem of procedural modelling in the con-
text of parallelism. If a synchronisation model is used in a procedure the pro-
cedure interface does not contain any abstract information about the model.

3. User defined means the synchronisation and communication is modelled by
the hardware designer as opposed to built-in models.
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However, the synchronisation model causes an activity outside the procedure
namely the synchronisation with some other activities so that the model
breaks the encapsulation. In other words, the procedure interface is not any
longer an appropriate abstraction of a procedure. We have to conclude that
procedural modelling is not orthogonal to modelling parallelism.

2.3.9 Deficiencies of procedural HDLs

Another unsolved issue of today’s HDLs is a missing re-use concept for syn-
chronisation models. The idea is that an abstraction should support re-use by
allowing to generalize about the data which is used for the communication
and the activities which are performed during the synchronisation. The syn-
chronisation model becomes a meta-model.

As a result we can say that today’s procedural HDLs are not appropriate
to model complex synchronisation. We also can conclude that a modelling
methodology and a corresponding HDL should provide an abstraction and
encapsulation concept for data and a generalization concept which allows to
model re-usable meta-models.

The explanations and examples given in this chapter show that bottom-up
and top-down concepts for hardware modelling with today’s HDLs both have
limitations which restrict their use at system level. The limitations mainly
concern concepts for abstraction which allow to break down the complexity
of models and which allow the re-use and modification of models. What has
to be improved are concepts for generalization and abstraction at higher lev-
els of abstraction.

2.3.10 A new modelling methodology

The goal of the thesis is to develop a methodology for the modelling of
robust and re-usable specifications at system level. The methodology is based
on a HDL with simulation semantics to support validation of the specifica-
tions by simulation. It should be possible to add a synthesis semantics to the
HDL which allows to integrate the methodology in a high-level design flow.

The approach in the thesis is to investigate the concept of parallel object-
oriented modelling which is used in software engineering and to analyse its
suitability for the hardware design at system level. Part of this work is to
develop an object-oriented modelling methodology for hardware design and
a corresponding HDL.
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The approach is motivated by the idea that object-oriented techniques
provide concepts for generalization and abstraction which promise to solve
some major modelling problems including the ones discussed above. Advan-
tages as they are known from software domain include the design of robust,
maintainable, and re-usable models. The re-use concept of object-oriented
modelling allows the modification of re-used models. A proper encapsulation
concept allows to break down the complexity of models and to reduce its
maintenance costs.

While there are great benefits in using object-oriented methodologies,
nevertheless we have to be aware that there are still some unsolved modelling
problems. They have to be considered when adopting the methodology for
hardware design.

2.3.11 Modelling challenges

One of the problems that has turned out is that re-use of models is only possi-
ble under certain circumstances and only to a certain extent [105]. The idea
to re-use models at system level as pluggable components in more complex
models requires well defined interface concepts and a very complex commu-
nication structure4. An example for such an approach is CORBA (Common
Object Request Broker Architecture). The high costs of designing the com-
munication is an obstacle for generally using such a re-use concept for all
kind of application. In fact it is mainly used for standard applications.

Another unsolved issue is the question what is the best way to integrate
parallelism and object-oriented modelling. There have been a number of very
different approaches. However, there is no final answer to that question yet. It
is still a topic of research [115].

Although our modelling methodology aims at hardware design we try to
address some of these issues in such a general way that the solutions can be
used in the software domain too.

2.4 Overview

To introduce the terminology which is used in this book and to give a founda-
tion to understand our modelling methodology the next chapter presents

4. It is interesting to note, that recently an initiative has been started with the
Virtual Socket Interface Alliance to introduce such a concept of standardized
communication mechanisms between models to hardware design.
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object-based and object-oriented modelling concepts. It gives an introduction
how to model parallel systems and it discusses the problems when integrat-
ing parallelism and object-oriented modelling. Chapter 4 is a survey on spec-
ification languages which allow to specify systems at a high level of
abstraction. It analyses their potential for use in hardware specification.
Chapter 5 is an overview of HDLs. Particularly, it explains the most impor-
tant features of the hardware description language VHDL and covers the
basic concepts of the language from a system level designer’s point of view.
It explains its main limitations with respect to system level modelling. The
chapter also discusses existing language extensions to VHDL which try to
overcome the limitations. It explains why there are still some unsolved
issues. Chapter 6 presents our modelling methodology which is based on an
object-oriented language extension to VHDL. Chapter 7 illustrates the meth-
odology by an example. The example reveals some principle problems of
object-oriented hardware modelling that concern communication and syn-
chronisation modelling. Chapter 8 provides very detailed material on how to
solve these problems. The concluding chapter provides the results of the ear-
lier chapters in a very condensed form.





Chapter 3

Principles of Object-Orientation 3

In the previous chapter, we introduced the term object-oriented modelling
and announced it as a key issue which shall be investigated in the context of
hardware design in this thesis. However, we have so far not explained what
the term object-oriented means. It turns out that although many methodolo-
gies claim to be object-oriented there is no common understanding of what
object-oriented is. It is therefore impossible to give a precise and generally
applicable definition of object-oriented modelling. In this chapter we explain
what we think are the basic characteristics of object-oriented concepts. We
describe the terminology as it is used in the context of the modelling method-
ology we are going to present in this thesis.

It seems best to start with object-based modelling philosophy on which
object-oriented methodologies are based. We then dwell upon object-oriented
concepts. We discuss the modelling of parallel systems and try to give an
object-oriented view on process-based modelling and more general on
object-based parallelism.

3.1 Object-Based Modelling

Object-based modelling concepts evolved from the idea to improve the
abstraction of procedural modelling. A first improvement was achieved by
putting related procedures together in a module. A module provides the pro-
cedures as services to a client. It consists of an interface and an implementa-
tion which separates the declaration of a procedure from its implementation1.
The interface of a module contains the procedure declarations. It is an

1. In the context of procedures and modules we also call the implementation
body.
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abstraction of the services which a module provides. Only the abstraction is
visible to clients the implementation is hidden. The limited visibility from
the clients perspective is calledencapsulation boundary [173] orabstraction
boundary [172]. At the same time there is a boundary from the implementa-
tion’s point of view concerning the visibility of entities from within the mod-
ule implementation. It is the boundary of names, identifiers, references etc.,
that are visible when looking outward from within the module. This bound-
ary is calleddistribution boundary [173]. Typically it includes the interfaces
of those modules of which it is a client.

So far, the sketched module concept only provides services on transient
data. After the execution of a service the module does not remember the
effects of the execution. It has no memory.

3.1.1 Objects

To overcome this limitation some module concepts allow to declare variables
in a module body which are global with respect to the procedure implemen-
tations and thus accessible within the module body. We call such a variable
state variable. Their values are called state. The data structures which imple-
ment the state variables and which store the object’s state are referred to as
structure. State variables are hidden from a client. The variables are the
memory of the module and the only access to the memory is via the services
provided by the module. State variables remember the effects of the execu-
tion of the services. The services form what is described as behaviour.

We call such a module which encapsulates structure and behaviour
object. Structure and behaviour areproperties of the object. Subprograms
which implement the behaviour of an object are often calledmethod, opera-
tion, or primitive operation. We could think in this context of a more general
concept to implement the structure of an object. Such a more general concept
may allow for example a structure to be implemented by other objects. A
state variable turns into a container of an object. If we have this more general
notion of a container we call such a container which is part of a structure
attribute. If the object is inextricably linked to the container we call the
object itself attribute. The relation between an object which contains another
object to implement its structure and the included object is the has-a relation
or has-parts relation that was introduced in Section 2.3.1.
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3.1.2 Clientship

Modelling a system with objects means to describe objects and the relation-
ship between them. The basic relationship between objects is theclientship.
It describes how a client object uses the operations of a server object. An
example of such a relation is the has-a relation. In the relation the server is
encapsulated by its client. The server can be regarded as a private resource of
the client [17]. We call such a serversub-object or if we want to emphasize
the encapsulation we call it anexclusive sub-object of the client [57]. In
another clientship an object is a server which might be shared by several cli-
ents. We call the clientshipuse-relation.

The interface of an object can be regarded as a contract between the
object and its client [172]. The contract specifies both, the object’s and the
client’s responsibilities and probably some general promises about the object.
In a general sense, responsibilities of a client are calledpreconditions respon-
sibilities of the object in responding are calledpostconditions. General prom-
ises about the object in form of a condition which always holds are called
invariants. Preconditions, postconditions and invariants areassertions. A
design approach which uses such assertions to describe a client server con-
tract is calleddesign by contract [159]. Assertions typically refer to informa-
tion which is affected by the execution of an operation. This includes
especially a state of the server. To take effect the contract must be visible to a
client. As a consequence information about the structure of a server is made
visible to the client. In other words, an assertion referring to the internal
structure of a server circumvents in a way its encapsulation. It moves the
abstraction boundary to include information about internal structure of an
object2.

An important property of assertions is to introduce redundancy into a
model. Assertions promise or specify properties of objects which have to be
implemented by an object’s implementation. Assertions as part of the specifi-
cation describe what an operation does i.e., its behaviour. The implementa-
tion describes how to model the behaviour. To have a solid model it is
necessary to check the consistency between these two aspects of the same

2. If information about an object’s structure becomes visible outside the object
it does not necessarily mean that the structure is directly accessible. This must
not be confused. Later on, we shall point out this distinction where it is rele-
vant. In the design by contract approach described above, encapsulation is not
violated with respect to accessing the internal state of an object.
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behaviour. This can be done statically by analysing the model and dynami-
cally during the execution of the model.

The idea of statically analysing the consistency between assertions and
implementation is used as a concept for verification. The assertions become
verification conditions [20]3. Checking the consistency means to prove the
conditions. In other words, it means to check if the implementation fulfils the
specification. Instead of referring directly to the structure of an object the
verification conditions refer to information which describes the internal
structure and which is part of the interface. The information about the struc-
ture is duplicated in the interface and thus redundant information. Redun-
dancy is used to achieve reliability. Although it would be desirable, there is
no automatic proof mechanism. In most cases there is at the most tool sup-
port for the manual verification of the conditions. This is the reason why such
an in theory interesting approach to abstract the behaviour4 of an object in a
specification is not more often used in practice.

Taking the contract point of view on an interface means that a contract is
a special kind of abstraction on how to interact with a server. If a client wants
to use a service of the object it has to send amessage requesting the service
to the object. This requires a message passing mechanism which allows to
identify and address the server. A mechanism to identify objects is to give
them distinctive names. These names become part of the object’s interface,
i.e. its abstraction and can be used to address them. For example, to address
an exclusive sub-object it might be sufficient to simply use the object’s name
as an address.

A message has to be conform to the contract between client and server.
The rule that governs the communication between them is calledprotocol
and the contract is a part of it. The contract between the client and the server
models the clientship.

3. The approach presented in [20] is based on abstract data types (ADTs)
which define a set of objects with a set of operations that characterize the
behaviour of those objects. The verification conditions are modelled as proof
annotations which abstract the implementation of the operations.
4. We shall see later on, how this insight into concepts of abstractions which
use conditions can be applied to considerations about the abstraction of con-
current objects and their synchronisation.
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3.1.3 State-oriented view

If we regard an object with its internal state as a state machine then we talk
about causing an event when a client sends a message and an object may re-
act to an event when it receives a message. In this state-oriented view an exe-
cution of an operation which may change the value of the object’s attributes
performs a state transition. The event which causes the transition is called
trigger event. Modelling languages which support a state-oriented view may
provide dedicated language constructs to model states and state transitions.
In other words, they have a built-in meta-model of states. This separates two
kinds of states in the modelling: States modelled by the built-in meta-model
and states modelled by explicit attributes. State transitions are modelled by
the built-in meta-model and by the assignment of values to the attributes.
Such a modelling language splits up an operation by separating the built-in
state transition from the rest of the operation. We call such a rest of an opera-
tion action. From a modelling perspective the separation leads to the notion
that a message causes a state transition and the built-in state transition meta-
model then causes the execution of the corresponding action.

An action may contain assignments of values to attributes and thus may
change an object’s state. An important difference in the modelling possibili-
ties between built-in state transitions and actions is caused by different distri-
bution boundaries. The distribution boundary of a built-in state transition is
the object whereas an action may have a broader boundary. This allows to
model side-effects in an action by sending message to other objects.

Another concept of built-in state models is the so-calledactivity. Similar
to an action an activity can be viewed as a part of an operation. However, its
execution is not caused by a state transition but by entering a state which is
modelled by the built-in state model. We call an object which has one or
more activities anactive object. Objects which are not classified as active are
calledpassive objects.

The distinction between action and activity becomes relevant if we model
parallel systems. In a model of such a system state transitions of the built-in
model and corresponding actions are not interruptible by trigger events caus-
ing new transitions. Such trigger events are either queued or ignored during
the execution of an action. This is different to activities. If an object is in a
certain state a trigger event may cause a state transition even if an activity is
executed. Such an event is able to interrupt the activity.

In a parallel system a built-in meta-model of states can be used to model
just those states which contain the information which is needed only for syn-
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chronisation purposes. The resulting state machine is animplementation5 of
the protocol that describes the synchronisation. We shall look at the model-
ling of active objects and protocols in the Section 3.3 in more detail.

Given such a state-oriented view of an object it is possible to transform it
in an equivalent model without built-in state model which uses only explicit
attributes to model state transitions. Equivalent here means that both models
behave in the same way from a clients point of view. In a pure sequential
model this transformation is quite straight-forward. In a parallel system it can
be very difficult. It requires the explicit modelling of the built-in mechanism
which may include such complex mechanisms like queuing of events/mes-
sages or an interrupt mechanism for activities. An object which represents its
message queues is called meta-object and the modelling style reflective
[172].

To perform the transformation vice versa states have to be identified
which are modelled by some attributes values and by the protocol of the
object. Depending on the set of values which an attribute can contain the
resulting state machine may become very large.

So far, we have introduced the term object and we have characterized dif-
ferent views on objects. Corresponding modelling methodologies and lan-
guages are object-based if they support the modelling of objects. Such
languages allow the decomposition of a system into objects which resemble
concepts or objects from the real world. This makes object-based methodolo-
gies a good candidate for modelling at system level.

3.1.4 Prototype

In the modelling of a system we very often can identify several objects with
the same properties. The objects have the same structure and behaviour.
What differs are the actual values of their attributes and their relation to other
objects i.e., the concrete context in which they are used. The idea of re-using
a description of an object in another context suggests itself. Such an object
which can be re-used is called a prototype or exemplar.[104, 106]. A proto-
type serves as a model for the other objects.

5. It is important to note that the state machine here is not necessarily part of
the abstraction i.e., the interface of the object.
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3.1.5 Class

The next idea is to abstract from the concrete context an object is used. A key
concept is the classification of objects with the same properties. Instead of
describing a concrete object a class of objects is modelled by describing the
common properties of the objects. In this view a class is a set of objects with
the same structure and behaviour. The description of a class is a meta-model
which serves as a template for objects. Although this sometimes might be a
little bit confusing such a meta-model is also called class. A class has the
ability to generate objects or instances. An instantiation declares an object to
belong to a certain class and probably to have a name.

A class consists of an interface and may consist of an implementation.
They describe the interface and implementation of the respective object. A
class which does not have an implementation of its operations is called
abstract class as it only provides an abstraction of its behaviour. It is obvi-
ously not possible to directly generate an instance of an abstract class. As we
shall see later on an abstract class may be used to describe the common prop-
erties of a set of classes.

The class concept allows to abstract the relations between objects by
modelling relations between classes. Again, the basic relation between
classes is the clientship. The variants of the relations between classes are
analogue to the relations of objects.

A has-a relation between objects is abstracted by a has-a relation between
classes. Similar to objects the structure which implements the relation is
modelled by attributes. However, the attribute is not an object or a container
of an object but a template of it. A class not only abstracts the services its
objects provide it also has to describe the services they require. This leads to
the notion that certain classes of objects are characterized not merely by serv-
ices they provide but also by services they require at the same level of
abstraction from other objects [17].

A difficult problem in that context is the abstraction of the distribution
boundaries. If a class requires a service of an object which is not part of the
class’s structure to implement its behaviour an abstraction of that object is
necessary which can be replaced in various contexts by the required object.
There are various different solutions to that problem in different methodolo-
gies and languages. The common principle is to use a kind of interface as
abstraction of the required object and to link the interface in an instantiation
to a concrete object. The interface is part of the client object and abstracts a
server object outside the client and makes it visible from within the client.
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A more complex situation occurs if the modelling methodology or lan-
guage allows a link to change dynamically during the execution of the model.
The link is typically modelled by a reference mechanism, i.e. by pointers. In
such a case the message passing mechanism does not use a static object name
to address an object but the reference. A state variable which might store
such a reference is calledinstance variable.

An assignment of a new reference to an instance variable might be the
result of an operation’s execution. Then the operation dynamically changes
the distribution boundaries of an object. The unpleasant thing is that the
interface no longer abstracts the services an object requires although this
might characterize a class as mentioned above.

The advantage of modelling relations between objects by instance varia-
bles is the flexibility to modify the relations during the execution of the
model. It is even possible to allow the generation of new objects during the
execution and to identify them by references which are generated simultane-
ously to the object. The concept allows for example, to model a use-relation
by an instance variable in a client which references the server object. The
operations of the server are invoked by messages sent via the reference.
Although storing the reference in an instance variable might at first glance
look like a has-a relation it is a use-relation because any other clients may
contain references to the same server object. To design a class which contains
a reference to a server as an instance variable it might be useful to have an
abstraction of the server. It might be possible that at that point of time in the
design process the corresponding implementation of the server does not
exist. If the modelling methodology allows to model the implementation of a
class after its abstraction was used in other classes we call such a technique
deferred implementation of classes.

3.2 Object-Oriented Modelling

As mentioned above, relationships between objects dynamically may change
e.g. by instance variables which refer to different objects during the execu-
tion of a model, i.e. during run-time. The objects may belong to different
classes which use the same abstraction of an operation for different imple-
mentations. The particular implementation of the operation which will be
executed if a message via the instance variable requests the execution of the
operation depends dynamically on the class of the object. The request is
dynamically bound to a particular operation implementation. We call such a
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mechanismdynamic binding or late binding. The benefit of such a technique
is that a client is not required to care about possible variants in the implemen-
tation of operations of the server. The abstraction of the server ispolymor-
phic with respect to the client. The ability to distinguish different classes of a
server object at run-time and to execute the corresponding operation is called
dynamic polymorphism6.

The concept is different from genericity which also may provide a tech-
nique to model polymorphic objects. Genericity allows to model polymor-
phic objects by passing the corresponding class descriptions as generic
parameters to the model before the execution of the model. During the execu-
tion of the model the parameter i.e. the class of an object must not change it
is static. We say that genericity providesstatic polymorphism.

Also different from dynamic polymorphism is static operation overload-
ing. An important difference between operation overloading and dynamic
binding is that the implementation of an overloaded operation has to be stati-
cally determined before the execution of the model (i.e. at compile time).
Thus, overloading is not appropriate to model dynamically changing rela-
tionships between objects.

3.2.1 Polymorphism

Polymorphism which allows any server to be used in a use-relation of a client
allows very flexible modelling. However, there is no guarantee that a server
provides the operation which is requested by a message from a client. Such a
situation is a run-time error. It is not feasible to rule out such a situation dur-
ing the modelling. It is only possible to detect such an error during run-time
and to initiate some error recovery mechanisms, e.g., to signal an error and to
perform a nop operation.

If such a behaviour is not acceptable a modelling methodology or lan-
guage has to be used which puts some constraints on the use of polymor-
phism which can be checked at compile time. The constraints are required to
guarantee messages are only sent to servers which provide the requested
operation. The constraints are imposed by a strong typing.

6. We very often only refer to polymorphism, if we actually mean dynamic
polymorphism.
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3.2.2 Typing

A type is a set of entities that share the same features with respect to a certain
aspect in modelling. A predicate is used to describe the features. In some lan-
guages it is possible to split up a type a so called parent type into sub-sets
which are called subtypes. A stronger predicate which consists of the parent
type’s predicate and additional constraints describes the features of the sub-
type.

If an entity in a model is assigned a type the predicate can be used to
interpret the information which the entity contains. The interpretation can be
performed statically at compile time. This allows to detect modelling errors
in which misinterpretations of information may occur. In other words, it can
be avoided that an entity is expected to have a feature which it does not have.
The situation is slightly different if a subtype concept is used. The informa-
tion which the entity of a subtype contains, i.e. its value can be used in any
context where the information is expected which is interpreted as the parent
type. However, the other way around it is not possible to use any arbitrary
value of a parent type in the entity of a subtype. The value may not meet the
additional constraints. The problem is that there is no mechanism to gener-
ally detect such a situation at compile time. It only can be detected and han-
dled as run-time error.

The concept to make polymorphism more secure is to assign a type to
each object and its references, i.e. instance variables. There are several ideas
what might be useful features shared by the objects of the same type.

3.2.3 Behavioural compatibility

One idea is that the objects share their properties, i.e., they all have the same
behaviour from a client’s point of view. The objects may have different
implementations of their behaviour but that is not visible for a client in a cer-
tain modelling context. Objects of the same type are behaviourally compati-
ble [171]. Polymorphism is restricted to different implementations of the
same behaviour. It is possible to predict at compile time what behaviour can
be expected by sending a message to an object of a certain type, for example,
via a typed instance variable. While the idea is the most advantageous from a
security point of view, in most cases it is too difficult to prove the compatibil-
ity. Another problem is that behavioural compatibility places strong con-
straints on polymorphism which may run contrary to the goal of
polymorphism to support the modification and extension of objects and
classes without modification of their clients.
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3.2.4 Compatibility by conformance

Therefore another idea is to have a notion of compatibility which uses
weaker constraints. It follows the concept ofconformance [17]. A class con-
forms to another class if it can be used in all contexts where the other is
expected. It can accept and understand all the messages handled by the other,
in other words, it is able to use the same protocol. That means for the type
concept that objects of the same type share the same protocol.

It is possible to work out a set of conditions which interfaces of conform
classes must meet. An approach is to deduce conformance between classes
from special relations between assertions which are part of the interface [64].
A class B conforms to a class A if B subsumes the operations of A and if the
following conditions are met: The invariants of B imply the invariants of A.
For each operation of A the precondition of A implies the precondition of B
and the postcondition of B implies the postcondition of A. This definition
assumes that for each operation of A the corresponding operation of B has
the same interface, i.e, the same argument list.

It is possible to relax this assumption. To conform it is only required that
each argument of an operation of A conforms to the corresponding argument
of the operation of B. The rule is calledcontra-variant rule7. Each message
which calls an operation of A and passes a parameter to the operation can be
understood by B and the parameter can be used as an argument in B because
the parameter conforms to the argument, i.e., it can be used in the new con-
text of B.

The sketched type concept allows two objects of the same type to have
different implementations. The problem with that concept is that in parallel
system design parts of the protocol may be modelled by the implementation
(compare Section 3.1). Depending on the complexity and the view of the
object it can be quite difficult to answer the question if two implementations
obey the same protocol.

3.2.5 Signature compatibility

The third idea starts from the assumption that it is often sufficient to approxi-
mate the behaviour of an object or class by its signature and to demand the
compatibility of the signatures [171]. Bysignature we mean the syntactic
structure of an object’s or class’s interface8. Signatures are compatible if one

7. In a language context this rule is normally defined in terms of inheritance
(see below)
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signature subsumes the other. In other words, the number and profiles of the
operations in the interface of one class can be completely found in the inter-
face of the compatible class. Compared to the previous notion of compatibil-
ity this approach only takes a part of the protocol into account9.
Compatibility only depends on the interfaces. Two objects of the same type
may have completely different implementations. Signature compatibility
does not guarantee the same behaviour of compatible objects or classes nor
does it guarantee that they follow the same protocol. It only means that if a
message invokes a service in an object there is also a service in a compatible
object which can be invoked by the same message.

Each of the presented compatibility concepts establishes a subtype rela-
tion on classes. If class B conforms class A then we can think of B as a sub-
type of A10. If two objects conform to each other then they are of the same
type.

3.2.6 Inheritance

As mentioned above, polymorphism can be used to allow modifications and
extensions of server objects without affecting clients. The mechanism to con-
struct such modified and extended objects isinheritance. Polymorphism and
inheritance are the concepts which make object-based modelling methodolo-
gies and languages object-oriented.

Inheritance means mechanisms for sharing common information of
classes by allowing new classes to re-use parts of existing classes. We call
such a new classchild and the existing one from which parts are re-usedpar-
ent. We say the child inherits from its parents. If a child is allowed to inherit
properties from more than one class we talk about multiple inheritance.
Inheritance sets up anis-a relation between parent and child. The child itself
may become a parent of another child. The is-a relations between a parent
and its descendants form aninheritance hierarchy.

8. We also sometimes use the term signature to denote the syntactic structure
of an operation’s interface.
9. Considerations of a protocol which depends on an implementation are omit-
ted in [17]. Discussions about assertions as part of the interface are omitted as
well. Therefore conformance is mistakenly not distinguished from signature
compatibility.
10. We shall see later on that there might be also some kind of indirect subtype
relation between the classes instead of the direct relationclass B is a subtype
of class A.
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An inheritance mechanism defines how a new class can be modelled by
incremental modification of an existing one. The central question of such a
mechanism is what kind of information i.e. which parts of a model can be
inherited by a class. As we shall see, the answer is a weighing up of flexibil-
ity of modification and preserving the encapsulation of a parent class and
thus a matter of modelling philosophy.

3.2.7 Inheritance and compatibility

One philosophy is to use inheritance mechanisms which guarantee the com-
patibility between child and parent. In other words, the idea is to use a mech-
anism which automatically makes a child a subtype of a parent. Deriving a
child does not affect any client of a parent’s object. An object of a child can
be used in any context where an object of a parent can be used. Such a poly-
morphic object may contain any object of a class which is derived from the
parent including the parent itself. We call such an objectheterogeneous
object container.

In software programming such containers very often are modelled as ref-
erences to objects of a sub-tree in an inheritance hierarchy. It is then not the
class itself but rather the references which indirectly establish the subtype
relation.

A similar indirect11 approach is to introduce a new kind of classes to
model heterogeneous object containers. In a typed class concept we call such
a new classclass-wide type. For each class there is an associated class-wide
type and vice versa. The objects of the class-wide type are all objects of the
associated class and all classes derived from it. Thus, a class-wide type asso-
ciated with a parent allows the explicit modelling of a context where objects
of any child can be used if it is compatible to the parent. In such an approach
the subtype relation is established between the child and the parent’s class-
wide type.

As discussed in the previous section there are different notions of com-
patibility. Depending on these notions there are various approaches which
claim to preserve the compatibility.

11. Indirect with respect to the subtype relation between the child and its par-
ent.
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3.2.8 Delegation

A very restrictive approach which tries to preserve behavioural compatibility
is to use delegation as an inheritance mechanism.Delegation means that a
child inherits all the properties of a parent. An instantiation of a child con-
sists of instantiations of its parents and a part which models additional struc-
ture and behaviour. An interface of a child subsumes all operations of its
parents. If a message which invokes an inherited operation is sent to an
object of a child it forwards the message to the instantiation of the parent
which has the corresponding operation. The is-a relation becomes more a
has-a relation in which a parent is an exclusive sub-object. The difference
between delegation and a true has-a relation is that delegation breaks the
encapsulation of structure between parent and child. A child has access to the
parent’s structure to model its operations.

From a state-oriented view the extension of the structure results in a parti-
tioning of the existing states. Each possible value of a new attribute can be
represented by a partition in each of the parent’s state. Assignments to the
new attribute causes a state transition between the partitions which form the
new states of the child. If new operations only have a read access to the par-
ent’s structure then the new state machine only adds state transitions between
the different partitions of a parent’s state. New operations do not exit a state
of the parent’s state machine. If a write access is performed in a new opera-
tion then new state transitions between existing states are added to the state
machine. Obviously, such an extension requires knowledge about existing
states in the parent’s state machine and thus it requires information about the
implementation. It is important to note that in case of delegation the required
information is essentially limited to the parent’s structure.12 Any inherited
state transitions and actions are preserved in the child’s state machine. This
includes transitions between states which model the protocol.

From the considerations above we can conclude that if there is no misuse
of the information in the parent’s structure by introducing improper transi-
tions then delegation sets up a subtype relation in which a child is behav-
ioural compatible to its parents. Delegation is an incremental modification
which is limited to extensions. No replacement of existing information is
possible. Delegation achieves compatibility by banning polymorphism.

12. Modelling objects in parallel systems might require some additional infor-
mation which is not limited to the object’s structure as we shall see later on.
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3.2.9 Explicitly controlled delegation

An approach to add the missing polymorphism to delegation is to introduce a
mechanism to explicitly control delegation in polymorphic operations. Poly-
morphic operations are operations with different implementations in a parent
and a child and which are invoked by the same message. We say the opera-
tion of the child overrides the parent’s one. A delegation statement in an
operation of a child allows to model an access to the structure or behaviour of
the parent. If we have the notion of an exclusive sub-object we can think of
the delegation as a reference mechanism to the parent. Such an explicit con-
trol of delegation allows us to present a modelling methodology for inherit-
ance which achieves compatibility by conformance. The methodology
requires an operation of a child which overrides an operation of a parent to
conform with the following modelling rules:
• The operation of the child contains an invocation of the corresponding

polymorphic operation of the parent.
• There is no write access to the parent’s structure apart from the accesses

modelled by the delegation to the polymorphic operation of the parent.
The modelling rules guarantee that the methodology preserves the encapsula-
tion of the parent’s structure and behaviour when overriding an operation. To
override an operation no implementation information from the parent is
required. At the same time the rules support conformance between child and
parent. This becomes clear if we look at the classes from a state-oriented
view. An operation of a child which overrides an operation of a parent can be
reduced to three stages: The stage before the delegation, the delegation, and
the stage after the delegation. In the first stage the operation performs only
transitions between different partitions of a parent’s state. In the second stage
the operation performs the state transitions and actions of the parent’s opera-
tion. In the third stage like in the first one only transitions between partitions
of a parent’s state are performed. In other words, the child’s operation only
adds some state transitions to the parent’s operation which are normally not
relevant from the parent’s point of view.

There are some exceptions when the protocol depends on the time inter-
val between transition. Then the overridden operation is not any longer in
conformance with the parent’s operation. Another exception can occur if a
class is characterized not merely by services it provides but also by services
it requires at the same level of abstraction from other objects. If an overriding
operation adds a service request13 to an object which already serves a request
of the overridden operation then it might disturb conformance. To understand
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why this happens we can look at the distribution boundary as an attribute of
the parent. Requesting a service from an object within this boundary means
to break the encapsulation of the parent.

3.2.10 Inheritance of the class’s interface

Other inheritance concepts support weaker compatibility concepts. In such
concepts a child inherits at least the complete interface of the parent. The
child is allowed to extend the interface and possibly to modify it. A corre-
sponding implementation is bound to the interface either explicitly or implic-
itly. Operation overriding can be achieved by binding an operation
declaration as part of the interface to a new operation implementation. Such a
concept which is based on the inheritance of the interface may allow to sepa-
rately inherit implementations from different parents. Explicitly binding
implementations to the interface can resolve ambiguities which might occur
in multiple inheritance.

In case an operation is overridden some inheritance mechanisms allow to
modify the interface of the operation which in turn is part of the object’s
interface. To describe the modifications which are allowed the term signature
conformance is introduced. A signature S of an operation is said to conform
to a signature P of an operation if the following holds true:
• The number of classes in the argument sequence of both signatures match

exactly.
• Each type in S’s argument sequence is a subtype of the corresponding

type in P’s sequence.14

The subtype relation often is established by conformance between a child
and a parent. In other words, a parent in P’s argument sequence has a corre-
sponding child in S’s sequence.15 We illustrate this in Figure 1.

Supposing, the classes U and V appear in the argument sequence of S.
Assuming, they are children of the classes X and Y that appear in the
sequence of P and they conform to the parent classes16. The conformance
establishes a subtype relation between them. U and V are subtypes of X and
Y and thus S conforms to P.

Starting from this definition of conformance there are basically two phi-
losophies on how to allow the modifications of an operation’s interface:

13. This can be a direct request or an indirect request via other objects.
14. We consider a type to be its own subtype.
15. A parent is considered here to be its own child.
16. On conformance of classes see Section 3.2.4.
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The first approach allows to override a parent’s operation if the signature
of the child’s operation conforms to the parent’s one. In the child the types
(classes) of arguments in re-defined operations are subtypes (children) of
types in the parent’s operation. The incremental modification varies for class
and arguments in the same direction. The inheritance mechanism is called
co-variant. The co-variant approach is sketched in Figure 2.

Consider a class C which is a child of class B. The child class C overrides
the operation A of the parent class. Following the co-variant approach A’s
signature conforms to the signature of the overridden operation A.

The approach allows to incrementally modify related classes mutually. Its
disadvantage is that such a modification destroys compatibility between child
and parent. In a heterogeneous object container an object of C can be invoked
with an argument sequence of B’s operation which fails if an argument in C’s
sequence is a true subtype of the corresponding argument in B’s operation.
Consider an argument Z that is in class X but that is not in subclass U. A call
on operation A of class C with argument Z would fail.

To avoid the problem the second approach is based on a contra-variant
inheritance mechanism. That means, to override a parent’s operation, the sig-
nature of the parent’s operation has to conform to the signature of the child’s
operation. This is illustrated in Figure 3

Again, class C is a child of class B. The child class C overrides the opera-
tion A of the parent class. The signature of the overridden operation A con-
forms to the signature of the re-defined operation A of class C. This allows

Fig. 1 Conformance between signatures

Fig. 2 Co-variant approach

U X class U is a child of class X

V Y class V is a child of class Y

V ⇒ Y class V conforms to class Y

U ⇒ X class U conforms to class X

S(U, V )→ P(X, Y) signature S conforms to signature P

Class B : Operation A(X, Y )
↑

Class C: Operation A(U, V)
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the modelling of a class C that conforms to class B. The conformance can be
used to establish a subtype relation between classes which itself is based on a
subtype relation between classes in an argument list. Class C becomes a sub-
type of class B.

A more restrictive approach is to prevent any modifications of the signa-
ture of an overriding operation. Such a modification obeys both the co-vari-
ant and the contra-variant rule at the same time. The result of such an
inheritance mechanism is signature compatibility.

As already discussed in the considerations about compatibility we can
conclude that inheritance mechanisms which are based on the inheritance of
the complete interface as described above do not guarantee the same behav-
iour of parent and child nor do they guarantee that parent and child follow the
same protocol. It only means that if a message invokes a service in an object
of a parent there is also a service in an object of a child which can be invoked
by the same message. Message here particularly includes a typed sequence of
attributes.

3.2.11 Modification of assertions

Another modification of the parent’s interface which may be allowed by a
weaker compatibility concept is the refinement of the preconditions and post-
conditions. Preconditions may be replaced by weaker ones and postcondi-
tions by stronger ones. A weaker precondition is met if the original
precondition is met or if some new assertions are fulfilled. A stronger post-
condition is met if the original postcondition and some additional assertions
are fulfilled. Such modifications preserve the parts of the protocol which are
modelled by preconditions and postconditions. Assuming there are no further
incompatible modifications of the protocol the modified protocol of a child
can accept and understand all the messages handled by the protocol of a par-
ent. The precondition of the parent’s operation implies the precondition of
the child’s operation and the postcondition of the child’s operation implies
the postcondition of the parent’s operation. The modification preserves the
conformance between child and parent17.

Fig. 3 Contra-variant approach

Class B : Operation A(U, V )
↓

Class C: Operation A(X, Y)
⇑
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This can be illustrated from a state-oriented view. The modifications do
not remove anything from the inherited state machine. The extension of the
precondition only adds some trigger events to existing state transitions. The
new set of trigger events comprises the inherited one. The stronger postcon-
dition still guarantees the assertions of the original postcondition. Thus, the
new postcondition guarantees the potential resulting states of the transition
performed by an operation to be a subset of the original resulting states.

Such a compatibility concept and thus the inheritance mechanism works
well in a sequential model. In parallel system modelling parts of the protocol
which are modelled in the implementation may cause incompatibility.

3.2.12 Removing features from a class

Another philosophy is to use an inheritance mechanism which provides as
much flexibility as possible in extending and modifying inherited classes.
The restriction that a child inherits at least the complete interface of the par-
ent is given up. Such an inheritance mechanism allows to selectively inherit
features from a parent. The mechanism may for example allow to remove an
operation from the list of inherited features. The inheritance mechanism does
not guarantee any kind of compatibility between child and parent. In a sys-
tem which is modelled with such an inheritance mechanism the inheritance
hierarchy can be completely different from the subtype hierarchy. The origi-
nal idea of introducing a type concept to make polymorphism safe i.e., to
prevent run-time errors is given up if inheritance does not impose a subtype
relation.

3.2.13 Mixin inheritance

In many modelling methodologies the flexibility to inherit properties from
various classes would be useful but the methodologies do not support multi-
ple inheritance due to its complexity. Solutions to resolve potential ambigui-
ties in an inheritance chain e.g. linearization of the ancestor graph violate
encapsulation. A solution to that problem is to combine static polymorphism
with dynamic polymorphism. The modelling technique is calledmixin inher-
itance [31]. The idea is to pass the parent to a class model as a generic
parameter. An instantiation of the generic class model generates an actual

17. We do not consider the case here that a failure to meet the preconditions
and postconditions occurs and that such an exception is handled by an object.
There is obviously no conformance with respect to exception handling.
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class. An instance of the class inherits properties of the parent according to
the inheritance mechanism and it has the properties described in the generic
class description.

3.2.14 Breaking of encapsulation

All the mechanisms show a basic characteristic of inheritance. It breaks the
encapsulation of a parent [120]. An awkward break may require a complete
re-analysis of a parent to derive a child. This can result in a loss of the bene-
fits of object-oriented modelling.

If we analyse the breaking of encapsulation in the various inheritance
mechanisms we can see that inheritance breaks the encapsulation of the
structure. To perform an access to an attribute requires knowledge about its
function in the context of the object. If the inheritance mechanism allows to
remove an operation in a child this obviously breaks the encapsulation of the
parent’s behaviour. One has to pay for the flexibility of the mechanism with
the breaking of encapsulation.

In a parallel system the access to an attribute may require knowledge of
the access mechanisms used by other operations of the object. If the mecha-
nisms are part of the operations’ implementation then knowledge about the
implementation is required which breaks the encapsulation of the operation
i.e., the parent’s behaviour.

An approach to control the encapsulation is to provide an interface which
abstracts the information which can be re-used by a child. Such an interface
may be different from the one it provides to its clients, it may for example
contain an abstraction of the parent’s structure which is not visible to a client
but only to a child. In theory the approach solves the problem of breaking
encapsulation in inheritance. In practice the problem is to have an appropri-
ate abstraction mechanism especially in case of parallel systems. To be more
concrete, a mechanism is missing to abstract the synchronisation to perform
the accesses to the attributes.

3.2.15 Résumé

At this point we want to consolidate the material presented in this chapter so
far. Object-oriented modelling is about objects and their relations to each
other. An object encapsulates its properties, namely, structure and behaviour
and abstracts its behaviour in an interface. Objects may be classified into
classes which share the same properties. The distinction between object-
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based and object-oriented modelling is that the latter supports re-use by
inheritance and polymorphism.

There are various concepts to introduce inheritance and polymorphism
into object-oriented modelling which we have discussed in this chapter. They
are described by two main characteristics which are the modelling flexibility
and the compatibility between polymorphic operations of derived classes.
Both play a key role in re-use concepts. Modelling flexibility is a condition
for the modification of behaviour in derived classes. Compatibility, on the
other hand, guarantees a certain behaviour in a derived class without the
necessity to re-analyse and compare behaviour of inherited classes. Unfortu-
nately, modelling flexibility and compatibility appear to be contrary to each
other. The concepts for inheritance and polymorphism differ very much in
the degree they support compatibility and provide flexibility. Figure 4 lists
the main concepts which we have discussed in this chapter.

The classification is into concepts that use delegation, concepts that
abstract the interface of a class by assertions, concepts that abstract the inter-

Fig. 4 Inheritance and compatibility
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face of a class by a signature, and concepts that allow any kind of modifica-
tion during inheritance. It is interesting to note that in each category of the
classification there is a variant that allows a kind of controlled modification
in the modelling. There is a controlled delegation, a refinement concept for
assertions following the contra-variant rule, and a contra-variant and a co-
variant approach of modifying signatures in derived classes.

Choosing an appropriate concept for inheritance and polymorphism is a
weighing of flexibility and compatibility. Compatibility can be characterized
according to the different notions of compatibility which have been intro-
duced in this chapter, namely behavioural compatibility, compatibility by
conformance, and signature compatibility. Flexibility is defined by the way it
is possible to model polymorphic objects. A related aspect that can be seen in
Figure 4 is a potential support for a typed class concept in order to make
polymorphism more secure.

To give a résumé about inheritance mechanisms we can state that the
problem is to find a mechanism which supports polymorphism and at the
same time guarantees behavioural compatibility or compatibility by con-
formance. As it can be seen from Figure 4 there is no inheritance mechanism
that supports polymorphism and that automatically generates by itself com-
patible objects or –in more hardware-oriented terms– pluggable components
for re-use.

3.3 Parallelism

So far the chapter has described object-oriented concepts that are addressed
by sequential models in which activities are obeyed in a sequential order. We
now come to concepts that allow to express concurrency and distribution in
models. Concurrency and distribution are new aspects in object-oriented
design that have to be carefully analysed. At first sight classes and objects
seem appropriate constructions for being parallelized and distributed. Sur-
prisingly, the abstraction and encapsulation of classes that is required for a
proper inheritance concept is not as independent from concurrency and dis-
tribution as one might expect. The interdependence especially affects the
compatibility considerations that we have made in the previous section.
Abstraction and encapsulation that considers concurrency and distribution
may have an effect on the compatibility concepts that depend on abstraction
and encapsulation of polymorphic classes.
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In this section we describe various approaches to introduce concurrency
into object-oriented programming. Of special interest are abstraction and
encapsulation mechanisms and their effect on compatibility issue.

Complex systems very often are discerned as parallel applications from a
user’s or designer’s point of view. Activities18 of the system occur or at least
appear to occur in parallel. There is very often corresponding agreements
from different points of view which activities of a system occur in parallel.
However, there are various notions what parallel exactly means.

One idea of parallelism is that activities occur simultaneously. Time is an
ordering of events19 in a system which allows to define simultaneity.

A related idea is to have no strict ordering between activities in a system,
in other words, there is no sequential series of activities. The ordering reflects
the causal relations between the activities. Timing and causal relation
become indistinct.

A third idea is that parallelism means arbitrary interleaving of activities in
a system. There is no fix sequential series in which activities occur. If a
sequential series which was created by arbitrary interleaving is observable in
a system such a parallelism is more a kind of pseudo-parallelism in our view.

At an abstract specification level very often only causal and timing rela-
tions are important. Wheter an implementation is truly parallel or only
pseudo-parallel is not considered at that level of abstraction. Therefore the
termconcurrency is more appropriate here. Concurrent means that activities
may be performed truly parallel. With the term concurrent we denote those
modelling techniques which allow to model potential parallelism. Concur-
rency abstracts from an actual parallel or pseudo-parallel implementation20.
This notion of concurrency is very similar to the definition of concurrent pro-
gramming in [36].

In the following, we mainly focus on concurrency to model parallel sys-
tems. Only where it is necessary to look at the system from a more imple-
mentation oriented point of view we consider the various notions of
parallelism.

18. In this general view on parallel systems the term activity and the term
event are slightly different from the ones used in state-based views of systems.
19. Events are caused by activities, however, unlike activities we do not con-
sider events to consume any time.
20. Naturally, it also abstracts from hybrid forms of parallelism too.
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Concurrent modelling provides techniques to express causal and timing
relations between activities or events in a system. The relations are modelled
by interactions between activities.

There are very different concepts to support concurrency and interaction.
In the following considerations we look at the basic ideas behind the con-
cepts from an object-oriented point of view. According to the basic ideas we
classify concurrent modelling methodologies.

We have introduced activity as one of the central terms in the context of
concurrent modelling. However, we have not yet given a more detailed
notion of what an activity might be. If we want to model in an object-ori-
ented way in particular the question arises what can be identified as an activ-
ity in an object-oriented model. As we shall see there are several answers to
that question with very different implications on the abstraction and encapsu-
lation concepts of the modelling methodology.

After identifying activities the next step is to show the various possibili-
ties to model the interaction between activities. An important aspect is the
interrelation between interaction of activities and interaction of objects, i.e.
communication and synchronisation of client and server. If we are able to
understand these interrelation then the idea to reconcile both interaction con-
cepts suggests itself.

As we shall see the modelling of communication and synchronisation
between objects gives a useful application of various interaction concepts.
We discuss effects on abstraction and encapsulation of objects and how the
concepts may affect inheritance and the ideas on compatibility which have
been presented in the previous section.

3.3.1 Concurrency in object-oriented modelling

Activities may occur in a non strict ordering in a parallel system. Breaking
the ordering into sequential series of activities21 gives a useful decomposi-
tion. A reasonable modelling concept is to provide some encapsulation
mechanism with each series.

3.3.2 Threads

A mechanism which provides encapsulation with a sequential series of activ-
ities abstracts the indexing of the series and stores information about some

21. If the activities depend on some conditions a series is strictly speaking a
set of possible sequential series.
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results of the activities. We call such a mechanismthread of control or
shortly thread. An implementation of the mechanism especially in the soft-
ware is called thread control block. It contains alocus of control which points
to the actual activity to be performed. In a state-oriented view we would say
state of control instead of locus of control. The control block also contains
information about the state of execution in a thread. In many implementa-
tions the information may dynamically increase or decrease during the exe-
cution of a thread so that the information is stored in a stack. Threads may
compete with each other for some resources they require to execute e.g. a
processor to run. Ascheduler or dispatcher can be used as a synchronisation
agent to resolve the conflict. A scheduler may assign resources to a thread so
that it becomes active and it can withdraw the resources from a competing
thread which becomes suspended. Thus, a scheduler can break the arbitrary
interleaving of activities between different threads.

Depending on the modelling methodology a model may have one or more
schedulers to organize the access to resources. Also depending on the meth-
odology the scheduling concept may impose restrictions on number and
characteristics of threads in a model. According to these restrictions it is pos-
sible to classify the modelling methodologies [170]:

We call a methodology or languagesequential if it only allows a model to
have a single thread of control. The methodology or language isquasi-con-
current if it has multiple independent threads but only one active thread at
any moment. We call itconcurrent if it allows a model to have multiple
active threads.

Sequential methodologies obviously provide no support for modelling
parallel systems. Interleaving of activities which are from a system’s point of
view considered to be executed in parallel has to be explicitly modelled by
the designer. The interleaving must be fine grained enough and the activities
have to be small enough that they appear to occur in parallel. Quasi-concur-
rent methodologies just provide a built-in interleaving mechanism. What is
quasi-concurrent from a modelling point of view very much corresponds to
pseudo-parallel from an implementation point of view. In quasi-concurrent
modelling methodologies activities are very often regarded as atomic trans-
actions. That means, threads may not switch from the state active to the state
suspended and vice versa while the system performs an activity. The excep-
tion from this rule is an explicit activity to suspend, terminate, or activate a
thread. As a consequence encapsulation of resource access in an activity can
be used to neutralize resource conflicts. In many modelling scenarios the
restriction to have only one active thread is not justified from a modelling
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point of view but only from an implementation point of view. Then a proba-
bly better choice is to use concurrent methodologies which virtually have no
restrictions on parallelism and thus on interleaving of activities.

3.3.3 Introducing threads to objects

The way to introduce a thread concept to object-oriented modelling is to
make a thread a part of an object. If we make such modelling components
part of an object we have to analyse the properties it establishes in an object.
We have to think how an object’s interface may abstract the newly introduced
properties. It must be discussed which of the properties have consequences
on compatibility considerations especially with respect to inheritance. The
properties and their abstraction also has to be analysed from the point of view
of composition.

Such an object which contains a thread may or may not be different in its
modelling possibilities from other objects which do not contain threads. An
object may have one or more threads of control. In other words, it has a locus
of control and a stack or something similar to store information about the
thread’s state of execution as an attribute. As a thread is part of the object in
this view the stack stores at least partly information about the object’s state of
execution.

The important feature of the new attributes is from an object-oriented
point of view that there is no explicit or direct access by writing to or reading
from the attributes. There is only an implicit access during the execution of a
thread. If such an implicit access is performed by a scheduler which is out-
side the object that contains the thread the access may potentially break
encapsulation. For example, object A executes a thread. Object B requires a
resource to execute its thread which is occupied by A. Object B may be able
to signal the scheduler probably by a priority mechanism to withdraw the
resource from A, i.e to change its state.

Another problematic issue about incorporating threads into objects is that
activities of a thread which are part of an operation may be allowed to inter-
act with activities outside the object to which the operations belongs. Such a
situation occurs for example if it is allowed to receive a message to execute
an operation within a thread. That means such a situation occurs in any
reflective modelling style.

A problematic interaction between activities is the invocation of two
operations of an object which are executed in parallel i.e. in different threads
and which are able to interact with each other via a scheduler i.e via indi-
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rectly accessing attributes in form of the thread control block. In each case
where such an interaction between activities is allowed different values of the
thread control block may be indirectly visible outside the object. For exam-
ple, an operation reads attributes which are modified by another operation
executing in parallel. Depending on the locus of control of the other opera-
tion during the read access the results of the read operation may differ.

The values i.e. the different loci of control which can be distinguished are
modelled by interaction between threads. In other words, an operation is used
to model the state of the object. This removes the clear separation between
structure and behaviour in an object. We identify this phenomenon to be a
reason for modelling problems in object-oriented modelling of parallel sys-
tems. Many of the modelling problems which we shall present in the follow-
ing chapters can be put down to this phenomenon.

From what was discussed in the previous sections about inheritance and
compatibility it directly follows that inheritance which allows to modify the
structure without preserving the parent’s structure causes incompatibility
between parent and child. Removing the separation between structure and
behaviour i.e. modelling structure by an operation allows to modify structure
by overriding an operation. To achieve compatibility the overridden opera-
tion has to preserve the parent’s structure. Compatibility issues in parallel
object-oriented models as they are mentioned in the previous section turn out
to be a problem of preserving structure.

The considerations about distinguishing loci of control can be generalised
to the objects’s state of execution. In objects containing threads the accept-
ance of messages can be delayed or rejected depending on the object’s state
of execution. This may make some of the states observable from outside the
object. The same holds for a state of execution which can be used to control
the locus of control.

Under the aspect of composition the properties which can be described by
external visible states must possibly be understood by a client. The under-
standing can be either achieved by using standardised properties or by speci-
fying the properties in abstract terms as part of the object’s i.e., the server’s
interface. As we shall see later on, the abstractions can be interpreted as
some temporal or causal properties of the object’s behaviour.

3.3.4 Threads as part of an object

After these general considerations on objects which have one or more threads
we look at the different concepts to incorporate threads as part of an object in
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detail. The extent to which the object-based and object-oriented techniques
are supported in the various modelling concepts for objects differs very
much. In one modelling methodology an object may support all the object-
oriented concepts like abstraction, encapsulation, inheritance and polymor-
phism. Operations which have access to its state are abstracted in an inter-
face. Threads may be automatically invoked after the object’s creation. Such
threads allow an object to invoke operations in other objects by its own. In
such a modelling methodology a thread also may be used to control when a
message which requests the execution of an operation invokes the operation.
There is an implicit protection of object’s states. The sketched features
describe what we callautonomy. An object with such features is considered
to be autonomous[120].

In another modelling methodology objects may only support some basic
encapsulation concepts. The interface may be reduced to an abstraction of
the interaction between activities from outside the object with activities
inside the object. The interaction is used as a substitute for the operations to
access the object’s state variables. Inheritance and polymorphism is not sup-
ported for such kind of objects. The object has become aprocess22, the inter-
face is reduced to a set ofentry points or probably more generally to
interaction points23. It is not any longer an object in the strict sense.

There are many variants in between the two sketched modelling philoso-
phies. Based on these two fundamentally different concepts to make a thread
part of an object we distinguish two24 different approaches to incorporate
concurrency within a modelling language:

In the first concept a system only consists of autonomous objects which
may execute their threads concurrently.

In the second concept concurrent execution is considered to be independ-
ent from objects. Concurrent activities are modelled by creating and execut-

22. From what was discussed above it is perfectly possible that a modelling
concept may allow a process to have several threads.
23. Interaction point is used in this thesis as a term to denote abstractions of
interactions in both directions, i.e. it includes the abstraction of receiving mes-
sages as well as sending them. Entry points only abstract interaction in form
of receiving of messages.
24. There is also a classification which distinguishes three different
approaches [25] The third approach is described as a combination of both. We
argue these distinction is unnecessary because a combination can be viewed as
a special case of an orthogonal approach (see below) if we consider only the
(passive) objects as real objects.
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ing processes or similar objects whose only task it is to introduce
concurrency into the modelling methodology. Real world things, structures,
and phenomenons are modelled and abstracted as objects which behave pas-
sively with respect to concurrency and synchronisation. Such kind of objects
are so to speak first class objects in the concept. The superficial independ-
ence of first class objects from modelling concurrency leads to the notion of
orthogonality between (passive) objects and processes or threads. Orthogo-
nality is sometimes referred to as not pure object-based concurrency [26].

So far we recognized the modification of structure caused by interaction
between activities from different threads crucially influence object-oriented
modelling of parallel systems. A basic classification of the approaches to
introduce concurrency into the object-oriented world was given independ-
ently from a specific concept of interaction. Conclusions about interaction
between threads were drawn without considering the concrete shape of the
interaction.

3.3.5 Interaction between threads

We now look at the different concepts of interaction in more detail. We give
special emphasise to the important aspects simplicity and robustness of inter-
action.

The purpose for using interaction is to model timing and thus causal rela-
tions between activities. Different threads although normally executing inde-
pendently coordinate some of their activities. We refer to such a coordination
as synchronisation. It very often involves the exchange of data between the
threads i.e. synchronisation associates data communication. A very general
notion of an activity is that it is an access to some kind of resource. The
causal or timing relations enforce a certain order of access to the resources.
For example, a very common order is to postpone an access to a resource
during the access of an other thread till it is finished. The interaction excludes
an activity from a resource to avoid interference with activities25.

A modelling concept may either emphasize the aspect of causal relations
between activities or the aspect of scheduling the access to resources. This
leads to the distinction between two categories of modelling concepts:

25. This kind of interaction is normally called mutual exclusion synchronisa-
tion or exclusion synchronisation [36]
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3.3.6 Shared memory synchronisation

In the first category approaches offer an abstract model of a resource (tem-
plate) with a built-in order of access to it. The built-in order protects from
uncoordinated access to the shared resource. Thus, it is called protected
resource. More generally, each shared resource which requires a protected
access is calledcritical resource.

A sequence of activities that performs an access to a critical resource is
called critical section [164] or critical region [81]26. This leads to another
notion of activity. The critical section as a whole can be regarded as an activ-
ity. As such a shared resource is often implemented at lower levels by shared
memory we refer to it as shared memory approach. For example, all kind of
monitors with exclusion synchronisation are in that category. By providing a
built-in order the designer is released from modelling a mechanism to
enforce the required order. This makes the approach simple and robust from a
designer’s point of view. The designer simply creates an instance of the
model with some concrete information about the actual resource. Its disad-
vantage is that a resource might require an order of access which is not sup-
ported by an abstract model in the modelling methodology.

3.3.7 Message-based synchronisation

In the second category interaction techniques are subsumed which allow a
thread to make arbitrary arrangements with another thread about the order of
accessing resources. To model such arbitrary arrangements modelling meth-
odologies provide a set of synchronisation and communication primitives.
Basically, the primitives allow to send and receive messages27. Thus, we call
the approaches message based.

Message based approaches allow a direct synchronisation and communi-
cation between threads whereas shared memory approaches establish an indi-
rect synchronisation and communication between tasks via protected
resources. In many modelling situations activities especially those for syn-
chronisation and communication can only be safely performed if threads or
resources are in a defined state or some activities have been performed. The

26. Different to the original mechanism to model critical regions we do not
require the resource to be explicitly mentioned as a critical resource in a criti-
cal region.
27. Messages between threads do not necessarily correspond to messages
between objects
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condition to reach such states or the condition of a history to exist is a con-
straint on synchronisation. Thus, the synchronisation is calledcondition syn-
chronisation and the constraint is calledsynchronisation constraint. Both
approaches i.e., message based and shared memory approaches must allow
the specification of synchronisation constraints to model condition synchro-
nisation. Mutual exclusion synchronisation to protect a critical region can be
used in combination with condition synchronisation to test if the shared
resource is in a defined state appropriate to execute certain activities. The
critical region is entered only when the test is passed. Such a critical region is
called conditional critical region.

To discuss various synchronisation and communication mechanisms with
special respect to the modelling of conditional synchronisation we slightly
extend the meaning of message. We do not limit the term message to direct
synchronisation and communication between threads, we also denote
requests to access a protected or shared resource as message.

With this extended definition all interaction concepts between threads can
be turned down to message passing mechanisms. We now shall describe vari-
ous message passing concepts. Basically, all the message passing is modelled
by primitives for the sending and receiving of messages28. The concepts dif-
fer in the way they send and receive the messages.

3.3.8 Synchronous message passing

A thread sending a message expects one (or probably more) receivers to
receive and accept the message. If the sender does not perform any activity29

until the receiver accepts the message then the mechanism for sending mes-
sages issynchronous message passing. Waiting for the receiver to accept the
message and to perform activities requested by the message allows to pass
information about the sender’s state to the receiver if the message concept
supports data communication from the sender to the receiver. All messages
sent are stored by the receiver in a message-queue until the receiver is ready
to accept the message. Depending on the modelling methodology different
techniques are used for accepting a message.

The main philosophies are either to use explicit or implicit acceptance
mechanisms. An explicit mechanism is to provide primitives which can be

28. In shared memory approaches the receive primitive is part of the built-in
mechanism of the protected resource.
29. We also say the sender is blocked if it must not perform any activity.
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used as activities in a thread to accept messages. An implicit mechanism as it
for example often is used by protected resources associates potential mes-
sages with certain sequences of activities. Accepting the message means to
automatically execute the sequence of activities by a built-in mechanism.
Both, the implicit and the explicit mechanism may allow to specify addi-
tional synchronisation constraints to model conditional synchronisation.

Conditions govern the acceptance of messages. Such an approach to
model constraints is called conditional acceptance. The receiver queues a
message at least until an implicit or explicit accept can be performed and the
corresponding synchronisation constraints are met. Typically, the mecha-
nisms to specify synchronisation constraints allow to refer the constraints to
the receiver’s state or history.

In many modelling situations it is useful to refer also to information from
the sender. For example, a producer wants to send variable amounts of data
to a consumer which has only limited capacities for storing the data. In other
words, it should be possible to pass synchronisation specifications in mes-
sages on the basis of the message content [166].

One concept to model such a situation without breaking the encapsulation
of the sender is to send the information required by the condition as part of
the message and to allow the mechanism for specifying the synchronisation
condition to look into the message and read the required information from it
before accepting the message.

Another modelling concept is to accept the message and read the required
information from the message after accepting it. The information thus can
become a part of the receiver’s state or history. In a second step a new mes-
sage is put by the receiver into the message-queue which replaces the origi-
nal one. The synchronisation conditions for accepting the new message may
refer to the new state or history of the receiver which contains the required
information from the sender. In other words, synchronisation constraints are
partly modelled by activities which are invoked by accepting the correspond-
ing message. The replacement of the message is not visible for the sender.
From the sender’s point of view the receiver behaves as if the original mes-
sage were queued. The sender still does not perform any activity until the
new message is accepted. We call such a modelling conceptre-queuing.

If there are several messages in a queue an arbiter which is part of the
built-in mechanism of the receiver orders the messages. By allowing a mes-
sage only to be accepted while no other activity is performed in the receiver
an arbiter can model exclusion synchronisation.
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There are different strategies for ordering the messages. One strategy is to
try to be fair, i.e., not to starve any of the senders. A common model which is
considered to achieve this is a first-in-first-out order of the messages30.
Another strategy is to tag the messages with priorities and to order them
according to their priority. The maximum size of the queue is determined by
the number of potential senders as each sender can send at most one message
in synchronous message passing.

Messages may allow not only to send data from the sender to the receiver
but also to pass back data from the receiver to the sender as a reply. Blocking
of a sender in synchronous message passing until the requested activities are
performed in the receiver and a reply is passed back to the sender makes the
sending of a message a remote procedure call (RPC). RPCs abstract synchro-
nisation and communication by allowing a designer to model interaction in
the way normal procedure calls are modelled. Underlying mechanisms of the
RPCs are transparent for the designer. The limit on RPCs is the missing pos-
sibility to create additional concurrency.

3.3.9 Asynchronous message passing

A different concept which supports the modelling of additional concurrency
is asynchronous message passing. Asynchronous means that a sender sends a
message without blocking until the receiver accepts it. The sender can per-
form any other activities immediately after sending the message. The mes-
sages may be stored in a message-queue until the receiver wants to accept it.
Another concept ofreceiving a message is to allow a receiver simply to
ignore the message. It gets lost. In combination with queuing a message this
could mean that under certain synchronisation conditions a receiver is
allowed to remove a message from the queue without performing any corre-
sponding activities. For modelling condition synchronisation concepts simi-
lar to the ones from synchronous message passing can be used.

Sending without waiting for the receiver to accept the message estab-
lishes a one-way message passing from sender to receiver. If such a message
is allowed to send data to the receiver it only can pass information about the
sender’s state at the point of time when it sent the message. The receiver
must not assume when it accepts the message that it contains information
about the actual state of the sender it only contains informations from the
past31. If the sender expects a reply from the receiver the receiver has to

30. Re-queued messages take the position of the original message in the order.
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become a sender and perform a send activity as a consequence of the mes-
sage from the former sender. The former sender has to await this message
and accept it. We refer to this approach asreply scheduling. One-way mes-
sage passing gains its flexibility to control all issues of reply scheduling at
the expense of abstraction [120].

A difficult question of reply scheduling with one-way message passing is
how to make a sender aware of the potential reply messages without breaking
encapsulation concepts of the receiver. It seems there is no satisfactory
answer to that question yet.

3.3.10 Mixing synchronous and asynchronous concepts

Raising the abstraction in modelling asynchronous message passing can be
achieved by usingproxies. This is a kind of mixture between synchronous
and asynchronous modelling. The sender sends its message asynchronously
to the proxy instead to the receiver. The proxy performs the actual synchroni-
sation and communication with the receiver. It collects the replies from the
receiver to the sender. Whenever the sender requires the information of such
a reply it receives it from the proxy. If it is not available from the proxy at the
time it is required the sender is blocked until the proxy can pass the informa-
tion from the receiver to the sender.

There are some more concepts of mixing synchronous with asynchronous
message passing e.g., asynchronous transfer of control. Under some synchro-
nisation conditions the sender and receiver behave like in synchronous mes-
sage passing under some others they behave asynchronously. Such concepts
are mainly used to control unexpected behaviour in the interaction between
sender and receiver. For example, a time-out mechanism guarantees an origi-
nal synchronous sender not to be blocked more than a specified amount of
time even if the receiver does not accept the message.

Modelling methodologies may at the same time provide synchronous,
asynchronous and mixed message passing concepts.

3.3.11 Abstracting synchronisation

Threads as introduced in the previous sections from an object-oriented point
of view are parts of objects. In our considerations we carefully stated that
modelling behaviour with threads results in the implicit modelling of the

31. In an extreme case the actual state of the sender may be even terminated,
i.e. the sender does not exist any more.



Parallelism 55

objects’ structure. It was mentioned that the object’s internal state of execu-
tion becomes distinguishable from outside the object in form of temporal and
causal properties. We now conclude these considerations by investigating the
implication of this view in the modelling of abstractions, i.e. in modelling the
objects’ interfaces.

As stated above, interaction between threads is modelled by various mes-
sage passing mechanisms. If the interaction is performed between threads in
different objects messages are sent between different objects. Keeping the
objects’ encapsulation makes it necessary to bring together the message pass-
ing concepts of the inter-object communication and of the interaction
between threads. A message between objects contains messages between
threads and the interface abstracts this message consisting of one or more
messages. Often there is a one-to-one correspondence between message and
containing message so that it is possible to remove the distinction between
them. This induces various synchronous and asynchronous message passing
concepts in inter-object communication and synchronisation.

Moving the message passing to the inter-object level requires the model-
ling of abstractions of the messages as part of the object’s interface. Such an
abstraction typically consists of a message key. It denotes an operation, an
entry point, or more general a synchronisation activity which the sender of
the message i.e. the client may request from the object. If the modelling
methodology supports both synchronous and asynchronous message passing
it is useful to make them distinguishable in the abstraction i.e., an abstraction
of an object or of a single operation indicates a client if requesting an opera-
tion may block the client. The modelling of the corresponding synchronisa-
tion constraints which specify the conditions either to accept the message or
to block the client is very often understood as part of the interface modelling.
It is called interface control. The representation of a set of messages that can
be accepted by the object at a given moment is called theinterface control
space [119]. In various modelling methodologies different conceptions exist
on how to abstract the interface control space.

3.3.12 Interface control space

Some methodologies make the interface control space part of the abstraction.
As stated earlier the synchronisation conditions and thus the interface control
space typically depend on the object’s state and history. It is possible to inter-
pret the history as temporal or causal property of the object. Abstractions of
the state and history are used to specify the interface control space in the
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object’s interface. In other words, synchronisation constraints which depend
on the object’s state and thus on the object’s structure are made visible to a
client. Such a state information which is only needed for synchronisation
purposes is calledsynchronisation state [27].

We want to briefly illustrate these theoretic considerations by an example
of such a methodology that makes the interface control space part of the
abstraction. In [166] so called enabled-sets are introduced to model the inter-
face control space. Messages which request to perform certain operations are
only accepted when the object is in certain states. They are delayed until the
object enters such a state. The specification of the next state in a state transi-
tion of the object includes an enabled-set. It is a set of patterns which define
the messages that may be accepted for execution in the next state. Such a set
can be made visible to other objects. In other words, enabled-sets are sets of
message keys which can be associated directly with the state to which they
apply. Thus, enabled-sets model those states32 which contain information
needed for synchronisation purposes and make them visible to clients.

The example demonstrates some basic properties of the idea to describe
the interface control space part of the object’s abstraction. The concept
requires the extraction of the object’s synchronisation. Synchronisation con-
straints which refer to internal behaviour or structure of the object are
abstracted by synchronisation constraints which refer to abstractions of the
internal behaviour and structure i.e., they refer to the abstraction of the
extraction in form of synchronisation states. In the example, the constraints
do not refer to the actual non-reflective part of the object’s structure but to the
enabled-sets. That means redundancy is introduced into the object. It is
important to note that such a concept does not separate the synchronisation
from the implementation. It rather duplicates information which causes syn-
chronisation and thus introduces redundancy into the model.

In a previous section we discussed design by contract as a concept which
introduces redundant information into a model. Design by contract allows to
duplicate internal state information as part of an object’s interface. Assertions
in form of preconditions, postconditions and invariants may refer to this
information. If we transfer the idea of duplicating information in an interface
for synchronisation purposes we could think of synchronisation constraints

32. In fact enabled-sets are first-class objects which are used as attributes to
reflectively model the synchronisation. They may be referred to in messages
to other objects. Enabled-sets which are part of an object become visible out-
side the object.
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as a weaker kind of preconditions. A precondition specifies the conditions
under which a server accepts a client’s request to execute an operation. The
conditions rely on redundant information in the interface i.e., duplicated state
information or an abstraction thereof. Rather than causing a failure such a
client’s request is suspended in synchronous communication if the precondi-
tions are not met. The execution is delayed until the preconditions are ful-
filled.

Different to the originally introduced kind of preconditions the weaker
ones do not specify a client’s responsibility in a server client contract33. In a
sense we could generally interpret synchronisation constraints which model
conditional synchronisation by making redundant information part of the
interface as preconditions, postconditions and invariants. It is possible to
describe temporal or causal relations between the execution of operations by
such assertions. For example, the relation between precondition and postcon-
dition itself describes a causal or temporal relation. This view allows us to
apply the previously made considerations about modelling of preconditions
and postconditions accordingly to the modelling of synchronisation con-
straints. This includes the considerations about compatibility and inheritance.
Another issue of modelling with preconditions and postconditions is how to
avoid a consistency problem in the modelling of the objects.

While consistency between an operation’s interface which abstracts
behaviour and its implementation normally can be automatically checked in a
modelling methodology there is no standard solution how to check the con-
sistency between an object’s implementation and its abstraction which is
referred to by the abstraction of the synchronisation constraints. This
becomes obvious if we think about the difficulties of using assertions for ver-
ification with automatic tool support [20]. Such a verification is nothing else
but a consistency check between specification and implementation. If we
think of such a consistency check in derived objects the verification is even
more complex. As mentioned earlier, modifications of the implementation
caused by inheritance and polymorphism may change the synchronisation
constraints. Modelling the resulting modifications of the abstraction in a con-

33. Interpreting such a precondition as a client’s responsibility would require a
client to be able to read informations about the server’s state. The conse-
quences on encapsulation have been discussed previously. The problematic
issue here in the context of concurrency is to assure that the affected state
information does not change between its reading by the client and the poten-
tially following separate invocation of the operation.
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sistent way can become a non-trivial issue. We shall investigate this in more
detail in Chapter 8.

If states which govern the acceptance of messages are used to abstract an
object’s implementation with respect to synchronisation the question arises
how does the synchronisation during a state transition work. The typical
answer is that no messages are accepted during a transition. The object is not
in a state that corresponds to one of the abstract states. In other words, usu-
ally such objects perform operations in mutual exclusion and the states are
only used to model condition synchronisation.

There are some more techniques to model the synchronisation states sep-
arately and in a redundant way as part of the interface. For example, path
expressions are used as a kind of regular expression to model a state machine
which specifies the order of acceptance of messages. The alphabet of the lan-
gauge that forms the path expressions in principle consists of the object’s
message keys and the words of the language denoted by the expressions
specify the possible invocation histories.

Another interesting example is the use of operators from the so called
deontic logic [17] to specify the synchronisation. The approach is based on
the use of logic assertions over operation invocation histories. Special opera-
tors are used to define the assertions as conditions under which a given oper-
ation may be executed. The conditions can be specified in terms of sets of
message keys to increase the abstraction of the synchronisation specification
by generalisation. It is interesting to note that it is not possible to write the
conditions in terms of the object’s state variables as the assertions are part of
the interface and must not break encapsulation34. The assertions are rather
defined in terms of primitive history functions which are used to represent
the number of times the operations corresponding to a particular set of mes-
sage keys have been requested35, activated or completed since system start-
up. So the approach indeed introduces redundancy into a model as mentioned
earlier.

In all the presented approaches the mechanism of the scheduling of oper-
ations which is based on an originally internal state of the object is made vis-

34. There are in fact approaches toimprove the concept by allowing to refer-
ence the internal states in the assertions i.e., by breaking the encapsulation
[116].
35. The synchronisation state in this modelling approach may depend on the
content of a message queue. Receiving a message without accepting it already
causes a state transition. In other words, the receiver performs unconditional
acceptance with re-queuing.
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ible36 to the client. However, it is not the scheduling itself. These are two
different things which must not be confused. The interface abstracts proper-
ties which allow to reason about valid composition of objects. It is not
designed to run the scheduling by the clients. The scheduling of the server is
transparent to the client. In other words, the public information about the
interface control can not be used by a client to satisfy the conditions in an
assertion to force the execution of a certain operation. This is a direct conse-
quence of the fact that assertions like the precondition to control the condi-
tion synchronisation do not specify a client’s responsibility in a server client
contract as already mentioned earlier. The assertions depend on the synchro-
nisation state of the server and the client can only get the information from
the server by sending a message requesting the execution of another opera-
tion. How is it possible enforce the execution of this operation? A second
question is how to guarantee that the (synchronisation) state of the object will
not alter between the two messages.

An essential characteristic of the presented approaches is that the syn-
chronisation constraints are not only visible to clients but also to children.
The expected benefit of such a characteristic is that it is possible to avoid
contradictions in the modelling of the child’s modifications of the synchroni-
sation constraints without breaking the encapsulation of the parent i.e., to
preserve compatibility by only analysing the parent’s interface. The interface
control is centrally modelled in the parent’s interface and the modifications
are modelled in the children’s interfaces.

3.3.13 Encapsulation of the interface control space

Some other modelling methodologies use a different kind of concept to
abstract the interface control space. Modelling the interface control is not
part of the interface in such a concept. From what was stated above about
composition we can conclude that temporal or causal properties of objects in
such a concept should be modelled in a standard way. It allows a designer to
understand the properties required for object composition. Hiding informa-
tion about the interface control space from a client supports request schedul-
ing transparency. That means, the scheduling of the operations based on the
objects’s internal state and the nature of request to perform an operation is

36. Visible here means either that the information about the object’s structure
is duplicated in the interface or encapsulation of this information is circum-
vented. (Compare Section 3.1.2)
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transparent to the client. Conditional acceptance is modelled separately for
each operation.

A typical concept is to assign each operation aguard. A guard is a
boolean expression. If it is true then the corresponding operation which is
requested by a message or queued in the message-queue may be executed.
We call the operation aguarded operation. The difference to the example
with the deontic logic is that the guard is embedded in the body of the object.
The guard expression can depend on the state variables of the object. This
avoids redundancy in the modelling of the synchronisation constraints and
circumvents problems related to redundant modelling.

In some modelling methodologies guards are also allowed to depend on
some information external to the object. If a guard is allowed to depend on
the content of a message it is possible for a client to pass synchronisation
specifications in messages. As mentioned earlier (compare Section 3.3.8), a
re-queue mechanism is required to achieve the same effects if the guard is
not allowed to look into the message37. The modelling methodology must
then support the re-queue to another operation with a different guard.

Each guard separates the states of an object into two subsets with respect
to synchronisation: One set containing the states in which the corresponding
operation is delayed if its execution is requested and the other set of states in
which the requested operation may be executed. Iteratively dividing the sub-
sets by the guards of the operations finally results in a set of subsets of states.
The set of subsets represents the state space which is relevant for synchroni-
sation i.e. the interface control space. Each subset stands for a synchronisa-
tion state. As the modelling of the states directly is based on the object’s
states the state transitions are automatically performed as part of the behav-
iour in the operations by assigning new values to the object’s state variables.

Modelling the synchronisation constraints for operations independently
from each other allows their scattering over the object’s implementation. The
constraints in form of guards model a decentralised interface control. Such
concepts are criticised for not separating the synchronisation modelling from
the implementation.

The main problem is how can a child which requires incremental modifi-
cations of the synchronisation avoid inconsistencies with the parent’s con-
straints without re-analysing the parent’s implementation to understand the

37. The same is necessary if only limited information is passed from the client
to the server. A typical example of such an information is the priority of a
message.
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synchronisation and thus breaking the encapsulation. The problem can be
paraphrased by the question how can guards and related state transitions
safely be inherited by a child.

Before we sketch solutions we point out the similarity of the question to
the inheritance of pre- and postconditions. A guard corresponds to a precon-
dition. Like in the modelling of preconditions it has to be defined what is
considered to be compatible38 with respect to synchronisation constraints
modelled by guards. If we take the definition of compatibility by conform-
ance as it was given in Section 3.2.4 it requires a child to use the same proto-
col as the parent. It requires the child to distinguish the same synchronisation
states and to perform the same state transitions. As the distinction is mod-
elled by guards the child must inherit all the guards and must not modify it
for inherited or re-defined operations to preserve the distinction.

This concept is often considered to be too restrictive. To relax it we
present a weaker definition of compatibility by conformance. This definition
considers a child to be compatible with its parent if it supports the protocol of
the parent at least if it is in a certain mode. Mode here stands for a set of
states. Compatibility mode is a set of states of a child with each state having
a corresponding state in the parent. Each state of the parent can be mapped to
state of the compatibility mode and vice versa. The state transitions of the
child which are performed by inherited or re-defined operations correspond
to the state transitions of the parent’s operations on the parent’s state. The
mapping of the states is isomorphic with respect to inherited or polymorphic
operations. This allows a client to use a child in any context where its parent
is expected if it is in a compatibility mode. To model such a compatibility
mode a new guard of a child is used. The new guard depends on some new
attributes. The new guard is accumulated to the guards inherited from the
parent. A polymorphic operation in a child may be guarded by the new
guard. The actual guard of the re-defined operation is obtained by applying
the and operation to the new and the inherited guard. We can think of a
refinement of the guard with the new guard being orthogonal to the inherited
one. If the new guard is true the object is in compatibility mode provided that

38. The considerations are based on the assumption that pure synchronous
synchronisation concept are used for modelling. Extended concepts like asyn-
chronous transfer of control do not allow such general statements about com-
patibility. They would require each concept to be treated separately which is
beyond the scope of this thesis.
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the polymorphic operation performs the state transitions within the compati-
bility mode which correspond to the parent’s state transition.

The presented considerations about compatibility illustrate the problems
mentioned earlier which are related to not separating the synchronisation
from the implementation. It is not possible for a child to identify the interface
control which is required to preserve compatibility with its parent from the
parent’s interface. It fails because the child does not know which state transi-
tions in polymorphic operations preserve compatibility. Deduction of con-
formance between classes from special relations between assertions which
are part of the interface does not work in concurrent modelling. To circum-
vent the problem existing modelling methodologies either restrict inheritance
to delegation or relax the notion of compatibility.

As mentioned in Section 3.2.8 delegation preserves the state transitions
and thus serves the compatibility even in concurrent modelling [112]. Relax-
ing the notion of compatibility means that only guard refinement by accumu-
lating guards along the inheritance chain is required in the modelling
methodology [65]. This is of course not really a solution to the problem.

3.3.14 Preserving compatibility in concurrent modelling

As a result of this analysis we introduce requirements for a concept which
preserves compatibility in concurrent modelling. In such a concept new
guards of polymorphic operations must model a compatibility mode and the
concept has to integrate a delegation mechanism which guarantees the com-
patibility of state transitions into a real inheritance concept which fully sup-
ports polymorphism. The guards and the delegation mechanism separate the
modelling of synchronisation from the implementation of the functionality.
Additional levels between the implementation and interface of an object are
introduced to model the synchronisation separately from the implementation.
We may characterize the tasks of the additional levels to decide which opera-
tions may be executed and to change the concurrency constraints. According
to [119] we denote such tasks matching phase and state transition phase.
With this explicit distinction of the tasks we can assign guards only in the
matching phase. Therefore it is the delegation mechanism which implements
the state transition phase.

Our modelling methodology for parallel hardware systems which we
shall present later on is just designed in such a way that it separates the
matching phase and state transition phase from the implementation. It fol-
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lows the presented ideas to preserve the compatibility so that the methodol-
ogy obeys the presented requirements.

3.3.15 Re-queuing and compatibility

We stated that a re-queue mechanism is required to pass synchronisation
specifications from a client to a server if a guard is not allowed to look into
the messages. The question arises how to perform re-queuing of operations in
a child. We could think of two basic concepts:

In the first concept a re-queue activity in an operation statically delegates
the execution to another operation. That means, if a child inherits an opera-
tion which performs a re-queue activity to a polymorphic operation the inher-
ited operation does not re-queue to the new implementation of the child’s
operation it rather re-queues to the parent’s implementation of the polymor-
phic operation. The problem is that although the re-queued operation pre-
serves the compatibility it does not consider any new synchronisation
constraints which may be required by the child. The problem can be solved
by dynamically delegating the execution to other operations. In such a con-
cept an inherited operation re-queues to the new implementation of a poly-
morphic operation. This solves the issue of the new synchronisation
constraints, however, the compatibility problem arises. We have to consider
that a re-queue activity performs a state transition on synchronisation states.
Therefore the transition should be modelled in the state transition phase. We
have no solution how to model this by delegation. It is not clear how we can
guarantee compatibility in polymorphic operations which use such a kind of
state transition. It is not even clear how to separate such a synchronisation
modelling from the implementation of the functionality. To conclude our
considerations about re-queuing we can state that the use of re-queuing
together with inheritance would require a deeper analysis and understanding
of the related problems.

3.3.16 Internal concurrency in objects

We started our discussion about interaction with considerations about inter-
action between threads. Concurrency was introduced into object-oriented
modelling by making threads a part of objects. We turned down the commu-
nication and synchronisation to message passing between threads. It is inter-
esting to note that during our considerations message passing between
threads became indistinct from message passing between objects. This is
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mainly a consequence of our idea that if scheduling of threads in an object is
required then it is mainly a task of the object39. Three main concepts of
scheduling internal threads and coping with concurrency in objects can be
distinguished [170, 120]. The distinction follows the classification of the
modelling methodologies given above:
• Sequential objects or processes have a single thread of control. Only

explicit acceptance of message is used for synchronisation in such
objects. The interface uses entry points to abstract the synchronisation.
We can think of the object following a RPC protocol. The scheduler may
activate, suspend, or terminate the thread in such an object. A receive
primitive in the thread forces the scheduler to suspend a thread and to wait
on the receiving of a message. In terms of the RPC it is the specification
of a server stub procedure40. It is possible to specify some additional syn-
chronisation constraints in a receive statement. The scheduler only acti-
vates the thread if the object receives an appropriate message and if the
specified constraints are fulfilled. Please note, the specified constraints are
only considered by the scheduler if a receive primitive is executed and a
corresponding message is received.

• Quasi-concurrent objects or processes may have several threads with at
most one active thread. The scheduler interleaves the threads. A typical
scheduling strategy for the interleaving is the mutual exclusion synchroni-
sation of the threads. Additional constraints can be specified to model
condition synchronisation. Different to sequential processes the additional
constraints are re-evaluated and thus considered by the scheduler each
time a state transition takes place in the object which might affect the con-
straints. A monitor using this strategy is a typical example of such an
object. A quasi-concurrent process is a widely used kind of object with a
lot of variants in the possible scheduling strategies; for example, some
strategies allow a client to influence the scheduling by priorities.

• Concurrent objects or processes may have multiple active threads of con-
trol. Internal threads may execute in parallel. Additional concurrency can
be introduced by creating a new active thread in an object. The internal

39. Please remember, this is a consideration from a modelling point of view
i.e., how it is seen by a designer. It is so to say virtual. An actual implementa-
tion may use invisible for the designer another scheduling concept e.g., a glo-
bal one.
40. Likewise, a more general interaction point may be used to abstract syn-
chronisation which corresponds to a client stub procedure.
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creation allows the modelling of active objects. Such an object may re-act
to external events in form of incoming messages while it internally per-
forms activities in parallel. Modelling of attributes as objects with active
threads executing in parallel supports the hierarchical composition of
active objects. In principle there is no restriction on active threads. But
access to shared resources from internal threads may require a scheduling
which suspends one or more threads until the shared resource can safely
be accessed. Modelling of concurrent objects does not remove the prob-
lem of synchronisation. According to what we stated above it rather tries
to shift the responsibility for the synchronisation from the threads to the
object. It is not to consider during the modelling of the thread what is its
context with respect to the synchronisation. Synchronisation has to be
considered as part of the modelling of an object. The same holds for the
composition of active objects. Objects are required to synchronise cor-
rectly independently from their context e.g., as attributes in a composed
object. The objects should be pluggable with respect to synchronisation.

3.3.17 Interference between inheritance and composition

From what we stated about internal concurrency in objects we can say that
hierarchical modelling of active objects requires concurrent objects. Compo-
sition of such objects requires either standardised interfaces with respect to
synchronisation modelling or concepts to abstract temporal or causal proper-
ties of an object’s behaviour as part of an interface. The composite object for
its part has to either have a standardised interface or an interface which
abstracts temporal or causal properties. An attempt to achieve this in a design
methodology is to provide a set of rules for the composition of objects. The
problem with the standardised interface solution is to find such an interface
and a corresponding set of rules for any kind of active object.

An abstraction of the interface control space as part of the interface intro-
duces redundancy into a model and thus causes problems with the incremen-
tal modification of objects by inheritance. Inheritance interferes with
composition of active concurrent objects. The modelling decision is between
the hierarchical composition of concurrent objects or compatible incremental
modification of concurrent objects.

In the modelling methodology which is presented later on as part of this
thesis this conflict is solved by restricting inheritance to quasi-concurrent
objects.
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3.3.18 Distributed objects

In the presentation given so far the main focus was on how to model and
abstract objects and processes which execute concurrently. It was discussed
how communication and synchronisation can be modelled as part of the
object and abstracted by its interface. The message passing to establish com-
munication and synchronisation was implicitly assumed to be provided by
the modelling methodology. This is based on the idea that an object makes its
abstraction visible to other objects. The server’s interface is visible to a cli-
ent, i.e. the interface immediately is within the client’s distribution boundary.
From a modelling point of view use-relations are modelled by instance varia-
bles. As previously mentioned, such a modelling concept which allows to
dynamically change the distribution boundaries does not model the bounda-
ries as part of an object’s abstraction. Omitting the distribution boundaries in
an object’s abstraction and interface mechanism finally means breaking the
encapsulation of objects [17]. For example, an object may model sub-objects
by instance variables. It might be possible for such an object to export the
values of the instance variables to other objects. References to sub-objects
which are exported cause an object to lose control over its state which is
partly modelled by its sub-object.

The consequences for a re-use concept are that such an object is not able
to protect itself from unintended state transitions caused by a client if the
object exports references. This is again such an unwelcome modelling situa-
tion which requires the analysis of an object’s implementation to re-use it.

The second unwelcome consequence is that certain implementations41 of
such objects with instance variables would cause difficulties determined by
the principle structure of the system. This is the case for systems in which the
objects are distributed. Distributed means that the objects’ implementations
do not share the same memory or at least the same address space in a sys-
tem42. In such distributed systems a message passing concept which can han-
dle dynamically changing references to objects would cause an enormous
implementation overhead. An issue in this context is how to perform sched-

41. The term implementation is used here in the meaning of Chapter 2, i.e., in
the sense of realization of a system.
42. We do not classify distributed systems to be different from parallel sys-
tems. We rather consider them to be a special kind of parallel system. In such
a sense parallel hardware objects whose state variables are implemented in
different registers are also considered to be distributed.
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uling to solve resource conflicts if the resource is distributed and its encapsu-
lation is broken.

A common solution is not to support a reference mechanism i.e., instance
variables to model relations between distributed objects. In such a concept it
is not allowed to pass references as a parameter to operations in a distributed
object. Messages cannot be used to pass references between distributed parts
of a system.

Such a restriction could be achieved by generally avoiding instance varia-
bles and to only allow the modelling of exclusive sub-objects to hierarchi-
cally composed objects. To extend the restriction on all objects of a system
makes such a language concept simple and uniform. Avoiding instance varia-
bles guarantees a strong encapsulation of every object.

The dissimilarity between objects using instance variables and objects
with strong encapsulation can be illustrated by looking at how to model an
access to nested sub-objects. The difference is in how to call an operation in
an innermost sub-object. The reference mechanism only requires each nested
sub-object to have an operation which passes the reference of its immediately
nested sub-object. It is then no problem to pass the reference of the innermost
sub-object across the abstraction boundaries of all enclosing objects although
such an access to the innermost sub-object is not explicitly part of their inter-
face. After passing the abstraction boundaries it is no problem to execute the
actual operation at the innermost sub-object although an operation to perform
the actual operation on the innermost object is not part of the interface of the
enclosing objects. The strong encapsulation concept requires each sub-object
along the nesting chain to provide an operation which passes the request to
perform the specific operation of the innermost sub-object along the chain.
The operation of the innermost sub-object is explicitly part of the interfaces
of each enclosing object.

It is claimed that avoiding instance variables allows the specification of
objects independently from considerations about the object’s distribution
[46]. The distribution can be specified in further design steps. This is referred
to as late binding of parallelism. The orthogonality of object modelling to the
distribution of objects is meant to supports their re-usability.

The encapsulation per se in such a modelling approach is independent
from the concurrency and synchronisation. In other words, the orthogonality
of distributed objects to their distribution does not automatically induce
object autonomy. This qualifies the statement about support for re-use.

The reference free communication between all objects uses a copy model
of variables and parameters [46]. The limitation with that mechanism is that
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it does not easily support all kind of objects. It would be a quite complex task
to define the semantics for copying active objects. What would it mean to
pass an object as a parameter during its execution of an activity? Another
issue to be considered especially in an object-oriented language is how to
pass polymorphic objects as parameters. In such a situation the system has to
provide a way to pass the information about the actual operation implementa-
tions from the sender to the receiver. The most simple way to avoid this prob-
lem is to only support object-based mechanisms [46].

Another approach is to relax the restriction to generally avoid instance
variables in classes and objects and to support passing objects as well as ref-
erences as parameters to a message [17]. In such a concept the object’s struc-
ture i.e, whether it contains instance variables or not determines whether it
can be sent via messages from one object to another.

The third approach is to support a concept for data types and a separate
concept for classes which also may be typed. Such an approach allows to
pass data values of a certain type as well as references as parameters to mes-
sages. It is only possible to send messages with data values as parameters
between distributed objects. That means a distributed object in such a model-
ling methodology is a special kind of object that internally allows references
and the corresponding breaking of encapsulation but externally43 provides
strong encapsulation. It models the distribution boundary for its internal
objects.

3.3.19 Explicit message passing via channels

From the discussion on different approaches to use distributed objects we can
conclude that the way how to establish distribution boundaries and how to
pass information across these boundaries is one of the crucial aspects in
modelling distributed parts of a system. We can distinguish two basic
opposed concepts on how to use distribution boundaries in distributed
objects.

The first concept allows to have a distribution boundary outside the dis-
tributed object. Objects from outside and their interfaces can be made visible
inside a distributed object. This is an elegant concept from a modelling point
of view. Low level protocol layers which may be required for the communi-
cation between the distributed objects are abstracted. A designer is not
required to care too much about the distribution of the objects. In a strong

43. Externally with respect to other distributed objects.
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markedness of the concept a modelling methodology provides the same
mechanisms for communication with objects internal or external to the dis-
tributed object. Such a property is known as communication transparency
[17]. From an implementation point of view such a concept is hard to realize.
An implementation has to provide the interconnection between distributed
objects. However, making such an interconnection efficient is a difficult
problem. It requires a detailed knowledge about the communication between
distributed objects and it is very difficult to automatically extract such knowl-
edge from a model44.

A second concept is to restrict the distribution boundary to the distributed
object itself. No object outside the distributed object is directly visible from
within the distributed object. Only an interface to a protocol mechanism is
visible which runs the communication between the distributed objects. Mod-
elling methodologies may use interaction points to form such an interface.
Such an interaction point abstracts an operation and the communication
mechanism required to invoke the operation. Low level protocol operations
might be used to built operations of a higher protocol layer. Finally, the
higher level protocol operations are the operations of the distributed objects.
It is important to note that an interaction point does not abstract an object but
only an operation45. A clientship relation between distributed objects is not
modelled as part of the objects participating in the relation. It is rather mod-
elled by interconnecting the interaction points of the distributed objects. The
interconnection often is modelled as part of an enclosing object but there are
also modelling methodologies and languages which allow the interconnec-
tion to be modelled separately from the rest of the model. The flexibility of
the latter approach which allows a simple replacement of objects46 without
touching the rest of the model comes with the disadvantage of breaking the
encapsulation of hierarchical models. Basically there are two concepts to
interconnect interaction points. The first is to directly connect the points.

44. We can accordingly apply here the considerations discussed in Section
3.3.12 about the difficulties to check the consistency between abstraction of
synchronisation constraints and their implementation.
45. In fact, an interaction point may even only abstract some low level com-
munication primitives for sending some data between distributed objects
which then must be used to build higher level protocol operations.
46. Configuration management is part of the language. Especially in hardware
design this allows to use multiple versions of objects at different level of
abstraction in different design steps without modifying the actual model of the
entire system.
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Events caused on one interaction point are immediately visible on the others.
A second concept is to interconnect the points and thus the distributed
objects viachannels. An interaction point is connected to a channel. Events
on the interaction point occur on the channel or vice versa, events on the
channel are observable at the interaction points. A channel abstracts a com-
munication mechanism47. It can be seen as a special kind of predefined
object or a resource shared by distributed objects. Several communication
mechanisms are supported by various channel concepts. There are uni-direc-
tional and bi-directional concepts. While bi-directional concepts provide a
higher level of abstraction uni-directional channels are uncomplicated from
an implementation point of view. If the protocol is kept simple enough uni-
directional channels may allow very efficient implementations. However,
they require explicit reply scheduling which normally breaks encapsulation
as shown in a previous section.

Channels may be able to resolve access conflicts if more than one interac-
tion point is allowed to generate an event on a channel. Some channels may
provide message queues for buffering more than one event on the channel.
Generally, channels viewed as objects have a state which may change due to
events on the channel. This establishes causal and temporal relations between
events on connected interaction points so that we can conclude that channels
have or model timing behaviour.

An important aspect is how to abstract the behaviour of a channel and
how to abstract the behaviour of higher level protocol mechanism finally
relying on the channel’s behaviour. Suddenly, the channel not only abstracts
the communication mechanism but also a service of a higher level protocol.
This is a problematic issue. A low level communication mechanism does not
necessarily support object-oriented concepts and even if such concepts are
supported the difficulty of composing concurrent objects and abstracting the
behaviour of the composed object remains. Especially, all the difficult issues
about abstracting synchronisation which have been discussed in previous
sections have to be considered as modelling protocols is just about modelling
synchronisation.

Another aspect of channels abstracting services of higher level protocols
and thus finally abstracting operations of distributed objects is that the imple-
mentation of the service finally relies on the objects connected to the chan-
nel. In other words, a channel has no control over the services it offers. This

47. In this view an interaction point abstracts a channel.
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violates the idea of encapsulation in object-oriented modelling and results in
a loss of robustness of the model against modifications.

We can conclude from the observations made above that modelling of
distributed objects is a difficult issue. Providing communication transparency
causes implementation and efficiency problems. On the other hand, using
low level communication facilities not following object-oriented principles
jeopardizes the robustness of a model an makes re-use and maintenance of
distributed objects problematic.

3.3.20 Conclusion

We conclude this chapter by summarising that there is no modelling method-
ology that provides an object model which allows the composition of concur-
rent and possibly distributed objects with arbitrary complex synchronisation
concepts and which at the same time allows incremental modification of such
objects without breaking encapsulation. This statement repeats and extends
the résumé given about object-oriented modelling. Identifying the interface
modelling and the related introduction of redundancy as a basic issue allows
to think about modelling methodologies which are based on a compromise
between flexible inheritance and complex composition.

The modelling methodology for hardware systems which we shall present
as part of this thesis will consider this issue in detail. We are going develop a
deeper understanding of the theoretic considerations presented in this chapter
by discussing concrete modelling scenarios for composition and inheritance.





Chapter 4

Object-Oriented Methodologies for
System Level Specification 4

As mentioned in Chapter 2 making re-usable and with respect to modifica-
tions robust models seems to be an important precondition for successfully
designing complex systems. Deficiencies of today’s procedural HDLs were
sketched which disable the modelling of such robust and re-usable models at
a high level of abstraction. It was stated that concepts for behavioural model-
ling with low level synchronisation concepts for the modelling of parallel
systems are not appropriate for designing specifications at system level. It
was considered to replace the algorithmic modelling concept by an object-
oriented paradigm for modelling at system level.

In this chapter we survey several system level specification languages
with particular emphasis on their support for object-oriented principles as
they have been presented in the previous chapter. We consider the possibility
of each language for hardware specification [152]. All of the languages we
are going to present in this chapter originally were designed to model soft-
ware systems. From the great number of system level specification languages
a selection is made which covers a representative spectrum of specification
methodologies, techniques and formalisms. The spectrum includes state-ori-
ented concepts, declarative modelling concepts, functional approaches, for-
mal languages, and process-oriented concepts. We especially analyse those
languages from the software domain which have been proposed for hardware
modelling [35,48,59,75,76,108,123,127,129].

The chapter presents the main concepts of the languages StateCharts,
SDL, Estelle, ML, HML, Z, ObjectiveZ, LOTOS, CSP and OCCAM.
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4.1 State-Oriented Specification Languages

This section concerning state-oriented modelling concepts is about modelling
methodologies which support the modelling of states to describe a system as
built-in feature of the language. Such languages are based on well known
notations to describe automata.

4.1.1 StateCharts

StateCharts [77] is such a state-oriented specification language. It is based on
finite-state machine (FSM) modelling. An original FSM consists of a set of
states, a set of transitions between these states, a set of inputs, and an output
function. A FSM reads the inputs and performs state transitions depending
on the input and the actual state of the FSM. Input is modelled by events and
conditions. The output function depends on the actual state and possibly on
the input. The temporal and causal relations of events are just modelled by
the state transitions.

The output concept of FSMs is slightly modified in StateCharts. States
and state transitions can be associated with output events called actions. An
action is performed, i.e., the events are generated by executing the corre-
sponding transition, entering, exiting, or being in a associated state1. In the
terminology introduced in Chapter 3 we would call actions either actions or
activities. The input and output of a system are interpreted as external events.

State transitions which depend on a condition are called conditional con-
nectors. In our terminology we would call them guards. A special kind of
guard mechanism is used in StateCharts to extend the modelling of temporal
behaviour. Timing constraints can be specified which guard the execution of
activities [48].

The main extension of StateCharts is its support for hierarchy and concur-
rency. Hierarchy means that activities may be modelled as a state machine.
Performing such an activity means to run the state machine. The state
machine associated with the activity hierarchically contains sub-states and
transitions which model the state machine. Leaving a state which runs a state
machine forces the state machine to immediately terminate.

1. We refer to the original terminology of StateCharts here [77] which does
not distinguish between actions associated with state transitions and actions
caused by being in a state.
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Concurrency means that a state may be associated with more than one
activity. The activities and thus any corresponding state machines are exe-
cuted concurrently. Events generated by one state machine can be used as an
input in a concurrently executing machine. In other words, the state machines
can synchronise with each other by asynchronous message passing. State-
Charts also support a shared-memory based communication concept. The
sender stores the result of an action. One or more receivers interpret the
stored information as a condition. However, there is no mechanism to explic-
itly protect the access to such a shared resource2.

StateCharts as they are described above are predominantly tailored for
control. Aspects concerning information which is represented by data in a
system is separated from the control part of the system. The data is just the
information stored as a result of an action. To model such aspects data-flow
oriented languages are proposed which have to be integrated into the State-
Charts concept [48].

However, even if the separate modelling language provides concepts for
data abstraction and encapsulation it does not solve the data modelling defi-
ciencies of StateCharts. There is an integration problem. The separation
breaks any encapsulation of state machines in a state. Accessing information
from the data-flow model means to access data outside the encapsulation.
The separation also establishes a consistency problem between the state-ori-
ented and the data-oriented model. There is no automatic adaptation if one of
the models is modified. The modelling concept is not robust against modifi-
cations.

StateCharts not only lack an appropriate encapsulation concept there are
also problems with abstraction of state machines. A state with some associ-
ated transitions as source or target does not sufficiently abstract complete
state machines. It does not abstract the memory-based communication men-
tioned above nor does it abstract events and the corresponding causal and
temporal relations between these events.

Although StateCharts does not support object-oriented concepts like
encapsulation, abstraction, and inheritance, extensions of StateCharts are
used in object-oriented methodologies and notations. [144,141]. To explain
this contradiction we have to look at the task of such an adapted StateCharts
model. Its task is to model a view, the so called dynamic model of the sys-

2. In actual modelling scenarios such access conflicts are typically solved by a
quasi-concurrent implementation of the state machines which automatically
provide mutual exclusion.
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tem. In other words, the task is just to separate the control-oriented aspects
from the rest of the model. The dynamic model can be used to describe the
synchronisation states of objects so that it explains aspects of a system which
are not properly described by abstractions in other views of the system3. In
other words, the model is used to eliminate deficiencies in views which
strictly follow object-oriented principles4. The consistency issue is not solved
by such notations. The other unsolved problem is the missing robustness
against modifications.

4.1.2 Variations of StateCharts

We conclude the considerations about StateCharts by some remarks on varia-
tions. StateCharts use a graphical notation to describe the extended automata.
So do many of the variations which are subsumed under the term hierarchical
concurrent finite state machine (HCFSM). However, we do not limit our con-
sideration to such graphical representations. We also regard grammar based
specifications of such extended automata [121] as variants of StateCharts.
Accordingly, all the considerations presented above apply to them.

4.1.3 SDL

Another state-oriented language is SDL (Specification and Description Lan-
guage) [42,97]. It is probably the best known specification language from the
telecommunication area. SDL is an ITU Standard. It is intended for specifica-
tion at a very high level of abstraction[60]. The language is based on asyn-
chronously communicating processes. The processes or more precisely the
processes’ bodies are described as state machines which model behaviour.
Structure can be modelled by so called enclosed definitions. They can be
used to define variables which are enclosed. In the terminology of the thesis
they can be used to define state variables which are encapsulated in the proc-
ess.

3. Please note, the use of a StateCharts model as an abstraction that means as a
part of an object’s interface is problematic as the modelling of the guards
(conditional connections) would break encapsulation. The corresponding
problem was discussed in detail in Chapter 3.
4. The interpretation we present is different from the one in [66] which con-
siders object-oriented modelling as a collection of various modelling concepts
including StateCharts and their integration as different view in a model.
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The state machines and the processes communicate with each other via
signals5. Instances of the signals are sent between the instances of the proc-
esses. A receiver queues signals to allow asynchronous synchronisation. A
state machine consists of states with associated triggers and state-transitions.
A trigger describes signal sets. If a process receives a signal which is in a
trigger associated with a current state of a state machine it performs a corre-
sponding state-transition6. The state-transition is able to manipulate variables
or to output signals. SDL provides various techniques to describe state-tran-
sitions for example, it is possible to describe them by an algorithm.

The language uses a very elaborated type concept which includes the typ-
ing of processes. On the basis of this typing it is possible to dynamically cre-
ate new instances of process types during the execution of the model.

In the terminology of the thesis we would say that SDL provides quasi-
concurrent classes and objects or processes with asynchronous message pass-
ing. Messages correspond to signals causing events and state machines re-
acting to the events are used to model synchronisation states. Functional
behaviour can be modelled by actions, the so called state-transitions. The
language allows to resolve resource conflicts with its encapsulation of struc-
ture in combination with quasi-concurrency.

To abstract the behaviour of a process SDL provides so called gates.
Gates are the interface of a process. In our terminology we would call them
interaction points. That means, there is no abstraction of timing or causal
relations of events part of a process’s interface.

The language supports the modelling of hierarchy and the structuring of
processes by so called block type diagrams and instances. A block instance
contains processes or other block instances. The communication between the
components can be described in a block type diagram by communication
paths. Basically, communication paths transfer signals between gates. This
allows the use of gates as interfaces of block instances. The communication
paths are called channels in SDL. Channels in SDL are a second7 channel
concept. It provides techniques for the aggregation and refinement of chan-
nels. Opposite to signals channels also have a timing behaviour.

To address the needs of easy code re-use in the new version of the lan-
guage (SDL-92) [97] there exists an inheritance mechanism on types called

5. In our terminology we would call a signal a channel.
6. The term state-transition used in SDL is different from the term transition
we use in this thesis.
7. Second, if we think of signals as the other channel concept in SDL.
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specialization. There exists a set of constraints on how to specialize in order
to preserve compatibility. A default specialization mechanism is to use dele-
gation to achieve compatibility. It is possible to overcome this limitation by
explicitly re-defining some properties of a type. For example, in the context
of processes it is possible to re-define triggers and state-transitions but no
states. If a modelling guideline advises to restrict modifications to the state-
transitions the presented inheritance concept does not guarantee compatibil-
ity but at least it supports the modelling of compatibility by conformance
between two processes.

Given these basic language concepts we can observe from an object-
based view that there are two kind of classes and objects. Process types allow
the modelling of quasi-concurrent classes and objects and block type dia-
grams or instances model concurrent classes or objects. With the default spe-
cialization mechanism there is an attempt to support compatibility. The
problematic issue with that concept is that it breaks encapsulation especially
in modelling specialized processes where properties of a state machine are
re-defined. We can conclude from what we mentioned about composition in
concurrent objects in Chapter 3 that the lack of standardised interfaces or
concepts to abstract temporal and causal relations of blocks prevents effec-
tive re-use of models by composition. It also causes a problematic interfer-
ence between inheritance and composition. From that we can conclude that
although it is possible to specify a system in an object-oriented manner by
using SDL-92 at a high level of abstraction re-use is still an unsolved prob-
lem.

SDL is one of the specification languages which was investigated in sev-
eral research projects for its suitability to specify and implement hardware
and hardware/software systems [71,73,76, 101]. The cited research results
confirm the suitability of the language to model at system level. However,
apart from advantages there is still a set of unsolved modelling issues.

One of the general problems when using a language and tools from the
software domain is its missing integration into a hardware design flow. Par-
ticularly in SDL there is no link between a SDL description at that high level
of abstraction and further synthesis steps. For example, it is not possible to
simulate synthesized parts of the system within the SDL system description.
As synthesis tools do not accept a SDL description there has to be a change
in the description language and therefore a break in the design methodology
while going through the synthesis steps. This is the reason why simulation of
synthesized parts within the system description is not possible.
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There have been some attempts to solve this problem by building transla-
tion tools which translate SDL into a hardware description language accepted
by synthesis tools [71,73,75,76] or by simulators [107]. A similar approach is
to translate SDL via an intermediate format called SOLAR[101] or HDF
[129] to an HDL. But within these approaches there are problems still
unsolved. The tools do not support the oo-features of the new language defi-
nition. The translators which produce a HDL model for further synthesis
steps do not support the dynamic language constructs like creation and dele-
tion of a process. Even at simulation there are some restrictions concerning
the dynamic language features. The tool which translates into a HDL model
for simulation purposes [107] accepts the CREATE construct in SDL only if
a maximum number of parallel process instances is defined by the user.

Another problem is the modelling of simple communication and synchro-
nisation techniques in SDL. For example, the modelling of a global clock is
not provided in the language. The queuing of signals is not appropriate for
modelling a clock. In the system described in [101] the translation of the
high-level communication constructs of SDL into VHDL is the selection of
predefined protocols by the designer and the association of them to SDL sig-
nals. Similarly in another approach [73] libraries of protocols written by the
designer are used in RTL or algorithmic specifications to map communica-
tion constructs of SDL to VHDL. Generally, the lack of synchronous com-
munication features requires explicit modelling of such communication and
synchronisation objects.

As described in [76] in this approach SDL communication constructs are
only used for system level specifications. In lower specification levels the
SDL processes are hooked together by schematic entry tools which produce
HDL-netlists as outputs. Only the internal behaviour of hardware compo-
nents is modelled by a SDL processes. The method explained in [129]
presents a hardware-data-flow-model (HDF) to model hardware. The map-
ping of a HDF-description into SDL introduces a special technique for mod-
elling in SDL. In this technique each hardware component is modelled by a
SDL process. This process collects the inputs by running through a fix
sequence of states. The output is then calculated in the last state. In this
approach there is no longer any correlation between SDL specification and
real hardware, for example, the states of a SDL description of a non sequen-
tial circuit do not have any counterpart in the hardware.

We can conclude the considerations on SDL for object-oriented hardware
design by two synoptic statements. Although SDL provides powerful object-
oriented modelling features there are some unsolved language issues con-
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cerning encapsulation, composition, and its interference with inheritance.
The integration of the language in a hardware design flow with tool support
is only feasible for subset of SDL not containing the oo-features inheritance
and polymorphism and not containing low-level communication mecha-
nisms.

4.1.4 Estelle

There is another specification language well known in the area of telecom-
munication which is similar to SDL. This is Estelle [94]. Like SDL it is
based on extended finite state machines. A pascal-like notation is used to
describe the state machine and its extensions. The extensions concern con-
currency and actions. The actions are specified as part of so called transi-
tions8. A state machine is encapsulated in a module9. State machines
communicate with each other by asynchronous message passing which is
called interaction in Estelle. Interaction is abstracted by interaction points in
a module’s interface. An interaction point in Estelle corresponds quite well to
the term interaction point as it used in this thesis. A slight extension of the
concept of interaction points is that each interaction point is assigned a mes-
sage queue due to the asynchronous message passing concept. The module
concept in Estelle allows a module to be hierarchically decomposed into
sequential or concurrent sub-modules. Such a module is able to dynamically
modify the communication structure which determines the interactions of its
sub-modules. Thus, a module is a concurrent object with an abstraction
which does not contain any information about temporal or causal relations of
its events i.e., its interactions.

As Estelle is intended for protocol specification these relations are just
the crucial aspects of the model. A modelling approach in Estelle is to reflect
protocol levels in the module hierarchy. A service primitive of a protocol can
be abstracted by an interaction and decomposed into several interactions in
sub-modules and vice versa. At the top level of a protocol hierarchy such a
service primitive is calledfeature in intelligent network specification. A fea-
ture is modelled by the relations of interactions of the sub-modules. It is just
the relations that make up the modelling information about the feature. How-
ever, the information is not part of the abstraction. Generating or identifying

8. In the terminology used in this thesis an Estelle transition is a transition
together with its corresponding action.
9. In fact, the module is a process.
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a set of interactions as a representation of a feature requires an analysis of a
module implementation.

Adding features to an existing model means to incrementally modify
behaviour of a concurrent object with all the modelling difficulties including
the compatibility problems discussed in Chapter 3. Especially the unintended
interference of new features with existing features is a problematic compati-
bility issue. Splitting the representation of a feature into several interrelated
interactions complicates this compatibility issue. Due to a non-deterministic
nature of Estelle a situation may occur where an old transition and a new
transition which both model different features may be executed. A non-deter-
ministic choice among them is an unintended interference. The compatibility
problems of features caused by interference is a well known phenomenon in
intelligent network specification where it is calledservice interference or fea-
ture interaction10 [32].

While Estelle does not provide object-oriented concepts like inheritance
which supports incremental modification as part of the language there are
proposals of a specification style which supports the integration of additional
features into an existing model [32]. The basic concept is only to allow modi-
fication by adding new transitions and states to a model. Existing behaviour
may be changed by disabling old transitions and adding new ones. This is to
preserve compatibility as good as possible. Modifications are only allowed at
the transition level. It is not possible in the specification style to modify or re-
define parts of a transition which model an action. Limiting the replacements
to the transition level allows to develop a technique how to detect and resolve
feature interaction. Due to the abstraction concept of the language mentioned
above all modelling steps to add features require the analysis of the imple-
mentation of the existing model i.e., they break encapsulation.

So far, Estelle was discussed from a general system level modelling per-
spective, we now bring together a number of matters relating to hardware
design. One obstacle for using Estelle in hardware design is a missing link to
the synthesis steps following a system specification. First attempts to provide
such a link are made in the COSMOS system [100] however, it seems they
are based only on some first theoretical considerations. This approach does
not cover any oo-techniques or other approaches to support re-use by incre-
mental modification.

A problematic issue in designing hardware is how to translate dynamic
features of Estelle into another hardware description language. Another mod-

10. Feature interaction is not to be confused with interaction.
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elling issue is the non-determinism mentioned above. While in protocol spec-
ification a non-deterministic automaton is appropriate to model an unreliable
service provider [83] it is less suitable to specify a system to be implemented
in hardware. Because Estelle is not a simple finite state-machine but an
extended finite state machine it is not possible to apply one of the existing
algorithms [85] to translate the non-deterministic finite state machine into a
deterministic one which would be much more appropriate for hardware
implementation.

We can summarize the considerations about Estelle with two interesting
observations which make the deeper look into Estelle concepts worthwhile: It
is not only language features which solve basic modelling problems like
compatibility issues but also an appropriate specification style. The second
important observation is that to restrict modifications to transition level
reduces the complexity of compatibility considerations.

4.2 Functional Programming Languages

A different approach is to use an existing functional programming language
for system specifications. As a system often can be described in a functional
way it seems reasonable to use a functional programming language to specify
a system. Functional means that functions are first-class objects in the lan-
guage. As in the other languages mentioned above which are used in the soft-
ware domain the missing link between the system level description and the
synthesis tools causes difficulties in the design process.

4.2.1 ML

There has been done some work to use the functional language ML (Meta-
Language) [78,114] for system specification purposes and to integrate it into
a hardware design flow. In most cases system development is done interac-
tively in ML and the interaction between the ML-system and the designer is
based on the read-eval-print dialogue a concept known for example from
LISP.

Basically in ML a system is modelled by values containing information
about the system’s state and functions which are used to describe the values.
Values are identified in a system by so called value identifiers or variables
which are bound to the values. ML uses a type concept on values and value
identifiers to detect incorrect bindings during specification. Executing a func-
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tional model means to evaluate new values by applying functions on existing
values and bind them to new identifiers or re-bind them to existing ones. To
achieve a high level of abstraction in modelling such functions, ML knows so
called higher order functions. These are functions which may take functions
as parameters or results. This is the way how to relate properties of a system
modelled by functions to other functions i.e. other parts of a system. A con-
cept of higher order functions introduces complex expressions to designate
functions compared to typical non-functional languages. To make such a
complex mechanism safe a type concept on functions is used. In the termi-
nology of this thesis the predicate describing the features of such a function
type describes just the function’s profile. The type can be viewed as an
abstraction of a function which may be shared and thus re-used by many
functions.

ML has two concepts for structuring and encapsulation of value identifi-
ers and functions. The first concept is based on abstract types. An abstract
type is a data type with a set of functions defined on it. The functions are
called its interface. Describing values and binding them to value identifiers of
the abstract type is only possible by using functions of the interface. The
mechanism encapsulates the values and bindings but not the value identifiers.

The second concept which is considered to supersede the abstract types is
based on modules. There are two types of modules, structures and so called
functors [114].

A structure basically is a collection of types, values and other structures.
A what is called in ML signature can be used to abstract and encapsulate the
items in a structure. It provides type information about the items in a struc-
ture. It corresponds quite well to the term signature as it is used in this the-
sis11. Encapsulating a structure within another structure allows the modelling
of hierarchy.

A functor is a mapping from structures to structures. Such a mapping is a
technique to describe new structures as a mapping from existing ones. We
can think of a functor as a polymorphic or generic structure.

Such a concept of polymorphism supports re-use at module level. A sec-
ond concept for polymorphism supports re-use at function level. It is based
on so called polytypes. Polytypes allow to define value identifiers whose val-
ues may range over a collection of types. Thus, we can think of polytypes as
similar to a class-wide type mechanism. However, there is no hierarchy fol-

11. It corresponds quite well if we consider function types as an abstraction of
functions as mentioned above.
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lowing inheritance relations between classes or types. ML does not provide
an inheritance concept. Even very similar types have to be constructed com-
pletely new as different types.

For example, in a program it might be useful to bind an integer value to
an value identifier as well as a real number. In that case in ML one has to
construct a datatype number with constructors int and float. The meaning is
that a value identifier of type number can either be bound to int or to float. If
the original declaration of number has to be extended by adding a constructor
complex to number the datatype has to be re-defined, the constructor com-
plex has to be added, and the functions using the datatype number have to be
modified. Delegation of functionality as part of such a modification is sup-
ported by modelling the modified functions as higher order functions applied
to the original functions.

To conclude the considerations on abstraction and re-use in ML we can
state that ML only provides limited support to extend an existing model with-
out touching the original model.

After the discussion of general modelling and re-use concepts of the lan-
guages we now consider timing and concurrency aspects which are relevant
for hardware specification at system level. It turns out that these are the weak
points of the language. Constructs to model the timing of a system are miss-
ing in ML. Although the language provides some constructs for binding
identifiers simultaneously to values there is no real concept for concurrency.
There is no language support to express timing or causal relations in the con-
text of concurrency. This makes it questionable if ML is appropriate to model
hardware systems which typically consist of interacting concurrent system
components.

4.2.2 HML

We discussed the modelling concepts of ML in that detail because there
exists a proposal to use an extension of ML for hardware modelling. It is
called HML [123]. HML claims to provide important features for hardware
modelling that are lacking in conventional HDLs. Especially higher-order
functions and the polymorphism concept described above are considered to
support modelling for re-use at an high level of abstraction.

HML has an extended type system compared to ML which is designed to
flag design rule violations statically at compile time. Anyhow, it is a goal to
support the verification process of a system description. The idea is that hard-
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ware models written in HML are similar to structural descriptions in (interac-
tive) theorem provers which are based on ML.

However, the difficulty that still remains is the missing support for
expressing timing and concurrency in ML and thus in HML.

4.3 Formal Languages

Formal modelling methodologies and languages follow the idea that it is not
sufficient to validate a model by running an executable model but that it is
necessary to verify properties of a system by proving them. As stated above,
the functional language ML provides proof support with its strict semantics.

4.3.1 Z

The concept of a functional programming language is extended in the specifi-
cation language Z [33] by using relations instead of functions. Both, the syn-
tax and the semantics are defined in a formal way. The meta language to
specify the semantics is based on the Zermelo-Fraenkel axiomatization of set
theory. One of the main goals of the language is to allow a designer to prove
the correctness of a Z specification in a mathematical way by the means of its
formal semantics.

The Z notation is a calculus which describes a set, which is the state
space, by using relationships. In difference to set theory, a type concept is
added to Z. A state space is described by so called state schemas. A schema
consist of variable declarations which describe constraints on the variables
and it consists of properties described by predicates. Mapping of variables to
types which describes the variable declaration as part of a schema is called
signature12 in Z. Using schemas as types in variable declarations of other
schemas allows to hierarchically compose a state space. A second composi-
tion concept is schema inclusion. It means that variables and predicates of
schemas become parts of a new schema by merging declarations and conjoin
predicates. Another composition technique of two schemas is schema con-
junction. It merges the predicates and conjoins the predicates to form a new
schema.

Operations can be described to work on the state space. Such an operation
is a relationship between input variables output variables and a pair of states,

12. The term signature is used differently from the one introduced earlier in
this thesis.
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a state before and a state after the operation [160]. From a state-oriented view
such an operation describes state transitions. Like states, operations are
described by schemas.

We can state that the language Z provides powerful techniques for modi-
fying and combining schemas as described above. Abstraction and encapsu-
lation of schemas is a more problematic issue. If we look at signatures13 as
an abstraction of a schema it abstracts properties of variables but it is not pos-
sible to abstract variables themselves. This is a limitation in the abstraction of
states of the state space by a signature of a state schema. The same holds for
the abstraction of some internal state information in an operation.

In summary, a Z specification describes a relationship between initial
states and final states. It is possible to have a relationship between one initial
state and several final states. Even an infinite number of states is possible. In
other words, Z has non-deterministic operations. This allows one to specify
non computable functions for which finite algorithms to compute the final
states do not exist. Therefore simulators of a Z specification are not available.
Simulation is only possible if the relationship between initial and final state
is restricted to functions.

Successfully developed hardware starting from a Z specification was
designed by refinement of the specification [127]. This refinement was done
manually. After each refinement step it was verified that the refinement
matches the original specification. The mapping of the final Z specification to
the real hardware was done manually. The verification of the refinement steps
has to be done by mathematicians who are familiar with the calculus and
proof techniques. The success story is the motivation for discussing Z as a
language for hardware specification at system level. The conclusion is that if
certain aspects of a hardware system with limited complexity have to be ana-
lysed and corresponding properties to be proven it can be a very useful lan-
guage in the hands of experienced mathematicians. Due to complexity
limitations in the proofs the language is not appropriate to model a complete
system with all relevant aspects of hardware modelling. Looking at the
abstraction and encapsulation concepts of the language we also can conclude
that it does not support for specifying abstract re-usable models well.

13. To be more precise a name of a schema and its schema type i.e., its signa-
ture.
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4.3.2 Object-Z

Object-oriented modelling concepts claim to support the modelling of re-usa-
ble models at a high level of abstraction. Object-Z is an extension to the Z
language to facilitate specification in such an object-oriented style [49]. It
applies a class concept to the type concept of Z i.e., a class is used as a type.
A collective definition of a state schema with associated operations is the
definition of a class. The operations work on a state space defined by the state
schema.

As in Z operations declare modifications of state variables as part of their
signature i.e., as part of their abstraction. From an object-oriented point of
view this breaks encapsulation. In Object-Z it is possible to introduce addi-
tional state variables in a state schema whose modifications are implicitly
declared as part of signatures. It is possible to interpret such a mechanism as
a concept to preserve the encapsulation of state variables.

Inheritance is modelled as a kind of schema inclusion. Principally, it is
the same mechanism as described in the section about Z. Inherited definitions
and those declared in the derived class are merged and inherited state sche-
mas and those declared in the derived class are conjoined. Operation schemas
with the same name are conjoined. The interesting thing about this concept is
the way it preserves compatibility. Existing structure of a class i.e., its exist-
ing declarations may be restricted by adding properties to them. Operations
which override inherited operations may restrict existing relationships
between states i.e., they may add properties to the state transitions.

Looking at the definition of compatibility by conformance given in Chap-
ter 3 we can state that the derived class subsumes the operations of the inher-
ited class. The invariants of the derived class imply the invariants of the
inherited class. For each operation of the inherited class the postcondition of
the derived class implies the postcondition of the inherited class. The only
problem is that the preconditions of the inherited class do not imply the pre-
conditions of the derived class. To meet the conditions we could think of a
modelling style which does not allow to put any restrictions on inherited pre-
conditions. In combination with such a modelling style the inheritance mech-
anism would provide compatibility by conformance. The problem is that if
such a modelling style allows modifications of the preconditions analysis of
the inherited class is required to be sure not to restrict the inherited precondi-
tions and this breaks encapsulation.

If we try to compare this mechanism with the basic inheritance concepts
presented in Chapter 3 it appears to be a variation of delegation. Re-defined
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operations delegate parts of the operation to the inherited operation. The rea-
son why such a delegation mechanism works without any compatibility prob-
lems is that it does not imply any special timing or causal relations between
the inherited and the derived part of the operation. Conjunction as delegation
basically means that the operation has the old and new properties at the same
time14.

To express causal relations special operations are used to describe the
relation explicitly. For example, the sequential operator from Z can be used
to describe sequential composition of operations. As we mentioned earlier in
Chapter 3 in the context of synchronisation an object’s behaviour often
depends on its history. To express such properties Object-Z provides a predi-
cate over histories of objects expressed in temporal logic. We directly can
apply the considerations and conclusions about modelling of history infor-
mation in objects which we have presented in Chapter 3.

We conclude the considerations on Object-Z by remarking that the lan-
guage would require formal semantics of Z to be extended for Object-Z if the
language is used to formally describe hardware systems.

4.4 Process-Oriented Languages

In Chapter 3 we presented the basic ideas of object-based modelling. We
introduced a process to be a special kind of object with interactions replacing
operations and with interfaces which consist of a set of interaction points. We
now look at languages which use such processes as first-class objects.

4.4.1 LOTOS

We saw in previous sections that quite a few languages proposed for hard-
ware specification at system level originally were developed for specifying
protocols. In this section we are going to discuss another language used in
the telecommunication world for describing protocols. It is LOTOS (Lan-
guage of Temporal Ordering Specifications) [83,150]. The language is based
on process algebra and is therefore treated as process-oriented language in

14. Actually, there is a slight difference between conjunction and a parallel
operator which is a means of the language to express parallelism. The differ-
ence concerns inputs and outputs with the same basename. Conceptually, they
can be used to communicate with each other in a parallel operator. Inheritance
just omits such a communication.
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this survey. LOTOS also has well established theories for formal verification.
Therefore it also would have been possible to discuss it in the previous sec-
tion about formal languages.

A LOTOS model describes a system by the observable interaction with its
environment. An observable interaction consists of so called events and the
ordering of the events. The event concept of LOTOS corresponds quite well
to the notion of event used in this thesis. However, the states between the cor-
responding state transitions are not part of a LOTOS model. They are not
directly observable from outside a system. In other words, it is the history of
the events that implicitly models a system’s state. The system implementa-
tion is virtually a black box. The ordering of events is just the temporal or
causal relations between events. A restriction in the relations is that two
events never may occur simultaneously. With a concept to explicitly express
parallel behaviour we can classify LOTOS as a quasi-concurrent language.

Behaviour is modelled by processes which are used to describe sub-sys-
tems. A process specifies possible sequences of events that may be observa-
ble to other processes or to the system’s environment. The possible
sequences are described by so called behaviour expressions. With such an
expression it is basically possible to express sequential occurrence and alter-
native occurrence of events in a sequence. Specification of alternative occur-
rence of events may introduce non-deterministic behaviour if an actually
occurred sequence may follow more than one specified alternative.

The process has an interface which consists of so called gates. The inter-
face can be viewed as an abstraction of the process. The gates model what is
called in the terminology of this thesis interaction point. An event corre-
sponds to the activation of a gate. If we observe such a system we could
interpret the activation as synchronous sending or receiving of messages.

It is possible to specify behaviour as interleaving to model (quasi-)con-
currency. This allows to compose quasi-concurrent processes15. The proc-
esses can synchronize at gates i.e., they synchronize at events. We can think
of a kind of multi-way rendez-vous mechanism here where a process sends a
message which is received synchronously by other processes. It is possible to
either hide the synchronizing events between processes from the rest of the
system or to make them observable from their environment. Making them
observable allows a modelling style called constraint oriented specification
which designs a system as a collection of concurrent processes. Each process

15. LOTOS distinguishes between process definition and instantiation. To
simplify the explanations we use the term process for both.
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describes a certain ordering of events which is interpreted as a constraint of
the observable event which is used for synchronisation. Extending the system
is possible by adding processes which model additional constraints. The ren-
dez-vous mechanism via the observable event automatically includes the new
constraint in the model.

It is only such composition techniques used as part of a modelling style
which allows the re-use and the extension of existing models in LOTOS.
There are no object-oriented concepts like inheritance in LOTOS. Due to
introducing new sequences of events composition techniques may introduce
service interference16 which must be detected and solved [47]. Again, we can
observe that abstracting behaviour by interaction points is not sufficient for
the modelling of re-usable models without breaking encapsulation.

A proposal to use LOTOS for hardware specification [59] mentions the
ability of LOTOS to specify concurrent systems across many levels of
abstraction. However, its examples are restricted to gate-level circuits. Due to
the abstraction and encapsulation concept the presented composition tech-
niques of the proposal are not appropriate for modelling at system level.

Although there are still unsolved issues we can state that LOTOS with
modelling concepts like concept oriented specification and the ideas on spec-
ification and detection of service interference contributes interesting
approaches to the general discussion about design for re-use at system level.

4.4.2 CSP and Occam

A language which like the previously discussed LOTOS can be classified as
process oriented as well as formal is CSP (Communicating Sequential Proc-
esses) [82]. A language which is closely related to CPS is Occam [92] and its
successor Occam 2. It is based on the model of CSP for communication and
for parallel execution of processes. Both languages are synchronous concur-
rent languages.

Although the name CSP suggests that the language only allows the mod-
elling of sequential processes the CSP model for parallel execution of proc-
esses supports the modelling of concurrent processes. A process is
hierarchically composed of other processes. To compose a process out of
existing ones it is possible to specify the existing ones either to execute
sequentially, in parallel, or alternatively. The most elementary processes a

16. The principle reason for service interference and the related problems
were discussed in Section 4.1.4.
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model finally consists of are provided by the language as primitives. They
model assignment of values to variables within a process or across process
boundaries as input and output primitive.

A process can be abstracted by its interface which basically consists of
interaction points which abstract the communication of a process that is per-
formed by its input and output primitives. From a modelling point of view a
process appears like a sub-program which can be called in other sub-pro-
grams sequentially, concurrently or alternatively to other sub-programs in the
calling sub-program. In Occam the interface is not only an abstraction
boundary but also a distribution boundary. That means, from inside a process
an interaction point abstracts a channel which is used to communicate
between concurrently executing processes. The channels are used to model
the structure of the communication between the processes. It is not possible
for a client to directly address its server. The channels are only uni-direc-
tional which requires a client to explicitly model reply-scheduling and which
at the same time offers the possibility to explicitly model the concurrency
between client and server. However, if we look at this from an object-ori-
ented point of view the reply scheduling in one-way message passing breaks
encapsulation as discussed in Chapter 3.

The interaction concept between the processes is based on a rendez-vous
mechanism. An input or output command is blocked until the corresponding
output or input command is executed. It is possible to allow several inputs at
the same time by composing the input primitives alternatively. Alternatively
means that one of the processes is non-deterministically chosen. This intro-
duces a non-deterministic behaviour in a specification. To avoid this it is pos-
sible to attach each process in an alternative a guard. Such a guard consists of
an input primitive and an optional boolean expression. The remaining non-
determinism can be removed by assigning priorities to the alternatives.

Combining the modelling of guarded processes in an alternative with the
sub-program perspective of modelling results in an object-based modelling
concept. It is mentioned in [82] that the construction of subroutines as proc-
esses operating concurrently with its user process offers the possibility of
passing commands to the subroutine. This has the effect of multiple entry
points and therefore can be used like a Simula class instance. In the terms of
the thesis this means that guarded processes can be used to model operations
of an object. The alternative construct models mutual exclusion synchronisa-
tion. The input primitive of the guard specifies the message which can be
sent by a client to invoke the operation and the boolean expression of the
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guard may be used to model user defined synchronisation. In such a reflective
modelling style an operation modelled by a process is a kind of thread.

Further essential concepts of like inheritance and polymorphism which
would make the object-based modelling style object-oriented are not pro-
vided. There are no concepts to support re-use and modification of existing
models.

There are proposals to use Occam for hardware specification [35,108]
and to use Occam 2 for hardware software co-design [63]. The unbuffered
communication mechanism is explicitly mentioned by the inventor of the
CSP language in [82] as a mechanism which matches closely physical reali-
zations as wires cannot store messages. Missing timing concepts in the lan-
guage restricts the synthesis and simulation of hardware to delay-insensitive
control circuits in [35]. That means the correct operation of the circuit does
not depend on any assumptions about delays in the wires or operators of the
circuit. Any timing relations are to be explicitly modelled as causal relations.
Links to other synthesis tools which offer other synthesis techniques are not
provided. This is different in the co-design approach [63] where timing infor-
mation is added to a model by tags. To make the methodology more suitable
for hardware specification an event driven simulation strategy which runs on
a simulator developed for that purpose is used for simulation. Synthesis tools
translate the specification including the tags into assembler code and a HDL
description. We can state that this is a successful concept to adapt specifica-
tion techniques from the software domain and to modify it for hardware
specification. From the hardware point of view it puts a modified version of
modelling language from the software domain at top of an existing hardware
design flow. The approach provides a very flexible and at the same time sim-
ple technique to model concurrency and a very elegant concept to model
communication. With this primary focus of the modelling language the
approach does only provide limited support for re-use and extension of exist-
ing models.

4.5 Imperative Programming Languages

Imperative languages which describe a program as a sequence of statements
with each statement changing the system’s state are well suited to define an
algorithm. With procedures as a concept to abstract, encapsulate, and decom-
pose behaviour imperative languages are appropriate for behavioural model-
ling at algorithmic level in hardware design.
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We saw earlier in Chapter 2 how such procedural languages successfully
can be used at algorithmic level in specific application domains like digital
signal processing. Programs written in a sequential imperative programming
language are very often used to write an executable specification which
allows to evaluate signal processing algorithms. Modelling systems or parts
of a system outside these very specific domains at algorithmic level shows
deficiencies of procedural modelling. One of the main limitations mentioned
in Chapter 2 is a missing robustness with respect to modifications of data in a
model due to missing encapsulation concepts. Another deficiency stated in
Chapter 2 concerns the use of sequential statements to describe complex tim-
ing relations in a system. To overcome the limitations some procedural lan-
guages are extended by mechanisms to express parallelism i.e. to supersede
the strict sequential ordering of statements. Removing the strict ordering of
statements removes the strict ordering of activities in a model and thus intro-
duces concurrency. (Compare Chapter 3)

An example of such a language is the previously introduced language
Occam. If we consider processes as procedures which are used to model
statements then Occam can be classified as procedural and thus imperative
programming language. Occam extends the pure sequential ordering of state-
ments by allowing statements to occur alternatively or in parallel. With its
use of processes as first-class objects Occam also provides an appropriate
encapsulation concept for data.

In Chapter 2 missing concepts for re-use of synchronisation models were
mentioned as a third deficiency of procedural languages. This corresponds to
the conclusions drawn in Section 4.4.2 that there is only limited support for
re-use and extensions of models in Occam.

4.5.1 Ada

Another imperative programming language which provides concurrency as
part of the language is Ada [36,95]. Especially, it provides quite a number of
high level communication and synchronisation mechanisms. Concurrency is
modelled by processes which are called tasks in Ada. Their interface consists
of entry points. They abstract synchronisation mechanisms which require the
explicit modelling of activities to accept messages. The tasking mechanism
allows to classify the imperative language also as object-based. Different to
Occam, a concept separate from tasking is used to model procedures. In
other words, the procedural features are not extended to object-based fea-
tures. Ada is an object-based language independently from the fact that it is
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also a procedural and thus an imperative language. Ada is also an object-ori-
ented language. It extends the procedural features of the language by an
encapsulation concept for data and a related inheritance mechanism on the
data. The language does not introduce object-oriented concepts by extending
the object-based features of the language. Tasks are used to model objects
from an object-based point of view and variables of certain types are used to
model objects from an object-oriented point of view. While the object-based
objects correspond to our notion of active objects the object-oriented objects
have a more passive characteristic. It has been reported several times
[3,17,170] that an integration of such an active object with the object-ori-
ented concept, particularly inheritance, cannot be satisfactorily achieved.
Based on these considerations we shall investigate the basic reasons behind
the decision not to introduce object-oriented concepts as an extension of the
object-based features later on from a more general point of view. (Compare
Chapter 8)

We shall see that the analysis of the reasons plays an important role in our
effort to develop a methodology for system level modelling of hardware. It
motivates the investigation of object-based features in existing hardware
design methodologies and languages with special respect to the possibilities
of extending the methodologies and languages by inheritance.

Several proposals have been made to use Ada as a hardware description
language. Among the publications on that topic, [30] in particular confirms
the suitability of Ada for behavioural modelling. Modelling at system level is
evaluated in [55]. Different to most of the other publications the studies in
[30,55] explicitly refer to the latest standard of Ada [95] which includes the
object-oriented features mentioned above. Nevertheless, only object-based
features and related synchronisation concepts have been subject of investiga-
tion. Research how to apply the object-oriented features of the language in
hardware design to make the models robust and re-usable is still to come.

Although there is an approach [157] which translates sequential Ada
models to a hardware description at behavioural level it is an unsolved issue
how to synthesize concurrent Ada models with high level synchronisation
mechanisms to hardware. In other words, there exists no integration of Ada
models written at system level in a hardware design flow.

4.5.2 Summary

We conclude this section by stating that apart from some domain specific
applications sequential imperative languages cannot be considered as specifi-
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cation languages. Extending procedural languages to provide concurrency
and encapsulation of data removes some obstacles for modelling at system
level, however, extension and re-use of existing models remains still an
unsolved issue.





Chapter 5

Object-Oriented Hardware Design
Methodologies 5

In the previous chapter we introduced various methodologies and languages
which are used in the software domain for system level specification. It has
been carefully analysed how object-oriented principles are supported. An
important topic which has arisen is the integration of the methodologies in a
hardware design flow. In this chapter we take the complementary approach to
find an object-oriented specification methodology for modelling at system
level. Instead of using languages and methodologies from the software
domain and adapt them to hardware design we survey existing HDLs and
look at proposals to modify them for system level design.

This requires an analysis of the languages with special respect to their
support of object-based and object-oriented principles. Their application
domain in terms of abstraction levels has to be identified. Concrete deficien-
cies for modelling at system level already referred to in Chapter 2 have to be
recognized for each HDL.

Among the various HDLs we are particularly concerned in VHDL which
offers a number of interesting techniques to describe hardware at various lev-
els of abstraction. We shall present the basic modelling concepts of the lan-
guage before we discuss problems and limitations of VHDL for modelling at
system level. We then discuss a large number of proposals how to overcome
the limitations and how to solve the modelling problems. All proposals corre-
spond on the idea of extending VHDL by object-based or object-oriented
features. However, they differ very much in the language features of VHDL
which are taken as a basis for the object-oriented extension. With the consid-
erations of Chapter 3 about different concepts for object-orientation and con-
currency as a background we shall analyse each proposal in detail.
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5.1 Survey on HDLs

We start this chapter on object-oriented design methodologies with a survey
on existing HDLs. It is not the goal of this survey to give a complete over-
view on HDLs but rather to identify some general main aspects of the lan-
guages which allow us to argue why VHDL may be an appropriate candidate
for being extended to a system level language.

From the multitude of HDLs some have been chosen for this overview
which are designed for modelling at abstraction levels above register-transfer
level. However, high level languages for very specific applications domains
are not considered, for example from the DSP domain. With HardwareC
[103] and DACAPO III [140] two languages from the academic world are
part of the survey. HardwareC was chosen because of its wide-spread use in
various academic tools for hardware and hardware/software co-design.
DACAPO III is mentioned in this overview because it offers some very inter-
esting high level design concepts and the language is claimed to be appropri-
ate for system level design [140]. Verilog [124] and VHDL [87] as today’s
most important and successful1 HDLs are also considered in the survey.

It is interesting to note that all HDLs mentioned take some concepts or
notations from existing programming languages. DACAPO III follows Pas-
cal [99] and MODULA [96], VHDL’s syntax is very similar to Ada [95], and
Verilog is in several respects a bit C-like [102]. Differences in the ancestors
may already indicate differences in the modelling power of the HDLs. Hard-
wareC as the first language to be presented in this overview is not only C-like
but is almost an extension of C.

5.1.1 HardwareC

HardwareC [103] is a procedural language which is based on C. It is
extended by concepts which are useful to describe hardware namely concur-
rency and a concept to specify typical constraints of a hardware system like
timing constraints or resource constraints. The language also introduces a
possibility to model views which describe structural relationships and physi-
cal interconnections between the components of a system.

HardwareC allows to model an executable specification of a system. The
simulation of such a model can be used to validate the functionality of the

1. Successful means widely used and accepted by the designers. This does not
automatically mean superior to other HDLs from a technical point of view.
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specification. However, the developers of the language claim HardwareC not
to be a language primarily for simulation but for synthesis. It has specific
constructs for the design of synchronous circuits, i.e., circuits controlled by a
clock.

Basically, a system modelled in HardwareC is a collection of processes.
Such a collection explicitly models coarse grained concurrency. Inside a
process the language follows the imperative and procedural modelling style
of C. The imperative style with its sequential statements is enriched by two
concurrency concepts which allow to model a fine grained concurrency. One
is based on the so called parallel compound statement and the other on the
data-parallel compound statement.

The first one groups the operations of statements to be executed in paral-
lel. We could think of each component of such a statement as a thread. It is
the designer’s task to assure that there are no access conflicts to shared
resources from within a parallel compound statement. Although in many
cases hierarchical nesting of concurrency should be avoided in the modelling
of concurrent systems [80] the nesting of such parallel compound statements
together with sequential statements shows itself to be useful for the model-
ling of protocols across several protocol layers.

The other concept abstracts from specifying each timing relation between
statements explicitly either as sequential or parallel. A data-parallel com-
pound statement is modelled as a sequence of statements. The statements can
be executed in parallel subject to existing data dependencies. In other words,
causal relations implied by the sequence of statements are analysed and
transformed into temporal relations. The transformation is actually part of
the synthesis, that means, concurrency is introduced in a synthesis step. The
degree of parallelism is determined by the synthesis system which is used to
design the system, i.e., it is not language but implementation2 defined.

This raises the issue of portability and re-use. The concurrency concept
introduces a synthesis semantics to HardwareC. The exact semantics depends
on the specific synthesis tool and thus is implementation defined. The miss-
ing portability due to different semantics has to be considered when re-using
a model.

The parallel compound statements allow the modelling of concurrent
processes in HardwareC. They can be structured or hierarchically composed

2. Implementation defined in the sense that it depends on the implementation
of the synthesis step and in the sense that it depends on the synthesis result
which can be referred to as an implementation.
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by so called blocks. A block is a kind of module which can be used to encap-
sulate processes or other blocks. A block or process is abstracted by its inter-
face in a so called declaration. The interface is at the same time abstraction
boundary and distribution boundary. It abstracts the communication and syn-
chronisation of processes and blocks via shared variables or channels. A
channel is called in HardwareC channel variable. It is abstracted in the inter-
face by an interaction point which is called channel3. The communication
mechanism and the protocol which is abstracted by a channel and thus by an
interaction point is a rendez-vouz concept. The communication mechanism
which is based on shared variables is abstracted in the interface by a global
port. The global port represents the shared variable. The access protocol of
ports i.e., how to avoid or resolve access conflicts on the shared resource is
left to the designer. An abstraction of a block or process does not contain any
information on these protocols or on protocols using the channels.

This analysis of the process mechanism in the terminology of this thesis
allows us to conclude from what was mentioned about explicit message pass-
ing via channels in Chapter 3 that robustness and re-usability of blocks and
processes is a problematic issue in HardwareC.

We now briefly mention some other language features relating to abstrac-
tion. HardwareC allows to specify timing behaviour of a model. This can be
achieved by annotating statements of a model with timing constraints. How-
ever, there is no concept to abstract this information in an interface. Another
language concept which lacks almost completely abstraction is the type con-
cept. HardwareC has three major variable types which only allow modelling
at bit level. In other words, the language only supports a simple bit vector
based value model. This makes the use of the language questionable above
register transfer level and prohibits the use at gate level or below. The
restricted value model also does not appropriately support the modelling of
communication structures which are based on buses.

Re-use is supported in HardwareC by so called template models which
abstract certain properties of a model. The abstracted information is passed
as a generic parameter of type integer to a concrete instantiation of the
model. Such a re-use concept is applicable to macro cells as described in
Chapter 2, however, it is important to note that it does not provide the
required abstraction concepts for synchronisation described above and thus is
not appropriate for re-use of complex models at system level.

3. We have to carefully distinguish between the term channel used in this the-
sis and the term channel as it is used in HardwareC.
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We conclude the considerations about HardwareC for system level mod-
elling by some observations. Although it is important that there is no gap
between a specification at system level and further design steps, i.e., there
should be mechanisms which allow a specification to be synthesized to lower
levels of abstraction, it turns out to be a problematic concept from a portabil-
ity and re-use aspect to use a language whose semantics is an implementation
defined synthesis semantics.

Another observation is that even very elaborated concepts for modelling
concurrency at various granularities on top of a procedural language do not
improve the modelling capabilities at system level with respect to a model’s
robustness and re-usability. The key issue remains as in all the other model-
ling methodologies presented in the previous chapter how to model and
abstract the communication and synchronisation.

5.1.2 DACAPO III

According to its developer the HDL DACAPO III [140] is a language which
allows the modelling at various levels of abstraction and which provides spe-
cial support for modelling at system level. It is a procedural language
extended by a module concept which allows to encapsulate procedures. Mod-
ules are units which only exist at the top-level of a system description4. For
hierarchically structuring a system it is possible to nest procedures.

So called explicit variables and a special interface mechanism provide a
procedure with characteristics of a process. Explicit variables store values
even if the procedure does not execute any statements. The procedure inter-
face may contain so called implicit parameters. An implicit parameter has the
property that its actual parameter has always the same value as the formal
parameter. This allows to pass information across an abstraction boundary
during the execution of a procedure.

A procedure is sometimes referred to as procedure-object because it can
be viewed as an object with one operation which can be invoked by a proce-
dure call. A procedure call is a request to perform the operation. If the opera-
tion already is executing the request is cancelled. In case of multiple requests
one is non-deterministically chosen. Such a strategy models exclusion syn-
chronisation with respect to external operations calls. A procedure with more
than one operation which provides mutual synchronisation is a so called
export procedure. An export procedure has an interface which abstracts all its

4. Such a top level unit might model a library.
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operations. In fact, it is an abstract data type. What is missing in export pro-
cedures is a concept to model condition synchronisation. There is no concept
to synchronize callers by queuing or even re-queuing the requests. It is possi-
ble to model critical regions but there is no modelling support for conditional
critical regions.

The explanations about synchronisation in procedures imply that the lan-
guage supports the modelling of concurrency. Concurrency is introduced in a
model by a concurrent compound statement and a parallel compound state-
ment. A concurrent compound statement consists of a list of statements. The
statements may be executed in an arbitrary order. A parallel compound state-
ment consists of a list of assignment statements assigning values to some var-
iables or parameters. All the assignments are executed synchronously i.e. at
the same time.

Despite these synchronisation concepts, procedures may communicate
with each other via shared variables. The implicit parameters mentioned
above can be used to abstract the variables. For synchronisation explicit
statements can be used which suspend the execution of a sequence of state-
ments until the implicit parameters and thus the shared variables have certain
values or perform certain transitions i.e., changes of values. This implements
a synchronous communication.

Asynchronous communication can be implemented by an interrupt mech-
anism. Each procedure may contain an interrupt service routine. If an inter-
rupt is sent by a procedure each procedure containing a corresponding
interrupt service routine suspends its execution and executes the routine.
Afterwards it continues its originally performed activities. From an object-
based view we could think of an interrupt as an operation. Sending an inter-
rupt means to broadcast an operation request to all objects with a correspond-
ing operation. The operation is executed in mutual exclusion. It is possible to
model condition synchronisation by explicitly enabling or disabling the inter-
rupts in each procedure. However, there are two severe restrictions from an
object-based point of view. The operation cannot have any parameters or
return values and it is not abstracted in the object’s i.e., the procedure’s inter-
face.

Both communication concepts in combination with the concurrency
mechanisms support the modelling of protocols. The procedures with
implicit parameters can be used to model and encapsulate the services and
the service access points of a protocol. However, a procedure’s interface does
not contain any abstract protocol information. This has a negative effect on
robustness and re-usability of procedures. (Compare Chapter 3)
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The features of the language presented so far considered important
aspects for modelling at system level for which it does not matter if it is a
hardware or software system. We now present features which are hardware
specific and thus are different from the ones of the specification languages
presented in the previous chapter.

The language has a simulation time. It can be used to model the timing
behaviour of a system. It is possible to delay the execution of statements until
the simulation time has reached a certain value. It is also possible to delay the
assignment of values to variables. That means, the value to be assigned to a
variable is calculated during the execution of the statement. The actual
assignment is delayed until the simulation time has reached a certain value.
The presented timing model can be successfully used at register-transfer-
level and below to model transition delays of circuits. A generic parameter
concept allows to abstract such properties of a component in an interface.
However, there is no mechanism to abstract more complex timing relations
referring to some timing values in components modelled above register-
transfer level.

It is interesting to note that the presented timing model can be used to
model concurrency by scheduling assignments to occur at the same simula-
tion time. This may cause problems when used in combination with system
level modelling concepts for synchronisation. Consider for example an
export procedure which models an abstract data type to provide mutual
exclusion synchronisation for accessing a critical resource. The operations
which are intended to model the critical region are guaranteed not to execute
concurrently. However, the operations may contain delayed assignments to
critical resources which are modelled as part of the export procedure. These
assignments are not prohibited from becoming effective concurrently. We can
say a delayed assignment may violate a critical region.

Compared to many other HDLs DACAPO III has an advanced type con-
cept with records, arrays, and enumeration types to support data abstraction
at various levels of abstraction. Part of this type concept is a predefined value
model for modelling at RT-level and below which supports the representation
of unknown values or different signal strength.

If we resume the previously presented concepts of the language from a
system level modelling point of view with special respect to re-use capabili-
ties we can state that the language offers rudimentary features for system
level modelling which could be improved by more elaborated synchronisa-
tion mechanisms. Corresponding abstraction mechanisms would be required
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for re-use concepts. Another aspect related to re-use is the non-determinism
of the language which raises an unsolved portability issue.

Finally, an important result of the considerations on DACAPO III model-
ling features which can be generalized to other HDLs was to shown how a
timing model can implicitly introduce concurrency which may unintention-
ally conflict with system level synchronisation concepts.

5.1.3 Verilog

Verilog [124,165] is a HDL which is intended to be appropriate for the mod-
elling at a wide range of levels of abstraction. Like in HardwareC many lan-
guage aspects of Verilog appear to be similar to C concepts at least at first
glance. Different to HardwareC which is defined by a synthesis semantics the
dynamic aspects of Verilog are defined by the way a Verilog simulator works.
In other words, it is based on a simulation semantics.

Verilog describes a system as a set of modules. A module may consist of
hierarchically nested modules and so called behavioural modelling con-
structs. The constructs are used for imperative modelling of activities. Con-
currency is introduced in the modelling concept by so called processes. A
process could be thought of as a thread. Another way to introduce concur-
rency in a model is by using fork and join statements which create and
remove additional threads in a process. In the terminology of the thesis we
could say that a module that contains Verilog processes is a concurrent proc-
ess. The corresponding module interface of such a module forms an abstrac-
tion boundary and a distribution boundary.

Communication between modules and processes is performed by some
kind of shared variables which are called nets. The interface of a module can
be connected to such shared variables via so called module ports. That
means, from inside a module ports abstract nets. Assigning a value to such a
net makes the value visible in any module connected to that net. Access con-
flicts to nets are resolved by the built-in value model of Verilog. It is a bit
level model which models various signal strengths. There is no abstraction
level above that value model.

Synchronisation between the processes is achieved by so called event
control statements and wait statements. Executing such a statement in a
thread means to suspend the execution of the thread until an event in form of
a value transition on a net has occurred or in the case of the wait statement
some conditions are met.
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The simulation semantics provide a timing model based on simulation
time. The timing model allows to delay an assignment of a value to a net.
The changed value may appear at some time specified in the future. This is
achieved by suspending the thread which executes the assignment statement
for a specified amount of simulation time. Different to for example
DACAPO III this timing model does not implicitly introduce concurrency. It
is not possible from within one thread to specify two different events to occur
concurrently.

Concepts for abstraction and re-use are only at the module level. It is pos-
sible to pass some generic parameters to a module. The parameters are lim-
ited to timing values which are used to abstract delay values and to integer
values which are used to abstract some bit widths. From these limitations it is
obvious that re-use concepts in Verilog focus mainly on gate level modelling
with macro cells.

Generally, we can conclude that the rudimentary value and type concept
with its missing abstraction mechanisms is an important aspect which makes
Verilog unsuitable for system level modelling.

5.1.4 VHDL

As stated at the beginning of this chapter we are going to consider the fea-
tures and modelling techniques of VHDL [4,87] in more detail. In this sec-
tion we give an overview about the main concepts of the language. To
understand all aspects of the following chapters a detailed knowledge of the
language is required. Providing such a knowledge is beyond the scope of this
section. Nevertheless, it is an attempt to explain the main points of the lan-
guage in order to support a better comprehension of the ideas which we are
going to presented in the following chapters. The VHDL expert may forgive
some of the simplification used in the explanations.

VHDL’s semantics is based on a simulation semantics which is described
in the language reference manual (LRM) [87]. It describes how a system
description behaves in a simulator. To perform such a simulation it is neces-
sary make the model known to the simulator. This is achieved in two steps. In
a first step parts of the model which are called design units are analysed. If
no errors are detected in such a design unit it is put into a repository of the
simulator which is called library. It is possible for models to refer to other
models in such a library. Special configuration management features of the
language allow to describe a version of a model by forming a model with
design units from various libraries. In the second step which is called elabo-
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ration the model is put together by the simulator according to the information
from the configuration and it is prepared for simulation.

From a modelling perspective libraries can be regarded as modules at the
top level of a system. The design units introduce two other module concepts
below the top level modules into the language. The design units entity and
architecture provide one module concept and the design units package and
package body the other. In both concepts one design unit is the interface of
the module and the other is the module implementation or body. We first
have a look at the entity and architecture.

According to the LRM the design entity is the primary hardware abstrac-
tion. Regarding entities and architectures as modules means that an entity is
an interface which abstracts corresponding implementations in architectures.
Each entity may have one or more corresponding architectures. For an archi-
tecture the entity is an abstraction boundary as well as a distribution bound-
ary5. The module concept of entities and architectures allows to
hierarchically nest them. This is not possible by directly modelling an entity
and architecture as part of another architecture but only by referencing them
in a design unit from within an architecture or by referencing them by the
configuration mechanism as part of another architecture. Thus, an entity and
architecture in a library is a kind of template which can be instantiated in
other architectures.

Beside instantiations of other entities and architectures an architecture
may contain so called signals and processes. A process consists of a
sequence of statements which are sequentially executed during simulation.
The processes in an architecture are executed concurrently. A process may
have some local variables to store its state. The abstraction of a VHDL proc-
ess is a label which gives the process a name. This is at the same time the
abstraction boundary of the process. Nothing inside the process is visible
outside nor is there any interface which could abstract objects from inside the
process. In fact, a VHDL process strictly speaking is not a process in the ter-
minology of this thesis. It is rather a thread with some internal variables and
a strong encapsulation. Its distribution boundary is the distribution boundary
of its surrounding architecture.

As stated at the beginning of this section VHDL has a simulation seman-
tics. It requires a process to execute its sequential statements in so called sim-
ulation cycles. Each process contains synchronisation points in form of so

5. As we shall see later on there are some reference mechanisms which allow
to expand the distribution boundary with respect to packages.
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called wait statements to synchronize its activities with other processes.
Statements of a process between two synchronisation points are all executed
within one simulation cycle. After executing the statements and reaching a
synchronisation point the execution of a process is suspended at least until
the next simulation cycle starts. Only if each process in a system model has
reached a synchronisation point the next simulation cycle starts in which
again some of the processes execute their statements between two synchroni-
sation points.

The signals in an architecture are used for communication between the
processes. They can be viewed as a kind of shared resource which stores a
value of a certain type. An assignment statement in a process sends a request
to the signal to store a value. Such an assignment statement is always a
request to schedule the assignment to become effective in a future simulation
cycle. Conceptually, the shared resource queues the request for execution at
some time in the future6. Before the scheduled simulation cycle starts it exe-
cution the request is processed. The signal which processes a request is said
to be active. The value of the request becomes a so called driving value. If an
access conflict occurs because there is more than one driving value for a sig-
nal a strategy can be defined how to resolve the conflict. A function can be
defined which calculates the effective value to be stored in a signal from the
driving values. The effective becomes the current value of the signal. If the
value is different from the old one then an event7 is said to have occurred on
the signal.

This mechanism implies some limitations on the conflict resolution strat-
egy. It is not possible to delay requests and it is not possible to refer to a pre-
vious stored value. In other words, any conflict solution based on the idea to
give the simultaneous requests a timing relation does not work. A process
can receive information from a signal by reading its current value. Different
to a write access to a signal there is no delay in reading a signal value. The
effective value is immediately accessible within the same simulation cycle.
From the explanations above we can conclude that it is not possible to com-
municate between processes via signals within one simulation cycle.

6. In VHDL terms this means a set of drivers which are defined by a signal
assignment statement queue transactions. The queue is the projected output
waveform. It represents a driver.
7. The meaning of the term event in the VHDL context is slightly different
from the one previously used in this thesis. Processing a request, i.e., to have
an active signal corresponds better to the previously introduced term event.
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A way to pass information between processes within one simulation cycle
is to use shared variables. A value written to a shared variable can immedi-
ately be read by other processes. However, the language does not guarantee
the synchronisation of such an access to a shared variable by multiple proc-
esses within one simulation cycle. The behaviour is non-deterministic and a
model using such a concept is non portable8.

To synchronize communication it is possible to interleave communication
with process synchronisation. It is possible to specify conditions at a syn-
chronisation point which must be true for a process to resume its execution in
the next simulation cycle. The conditions can refer to current values of sig-
nals or some events on certain signals. That means a process can signal
another process to continue its execution in a future simulation cycle by
assigning some values to signals so that its conditions at the synchronisation
points i.e., at the wait statements are fulfilled.

At that point we shortly discuss the modelling problems arising from
such a synchronisation concept before we continue to present other language
features of VHDL. The inter process communication based on signals could
be classified as asynchronous. A sender is not blocked until a receiver reads
the signal. It is not even guaranteed that the receiver reads the value sent by
the sender. There is no automatic reply mechanism associated with reading a
value from a signal. That means, modelling communication with signals
requires explicit reply scheduling. As we know from the general considera-
tions on reply scheduling Section 3.3.9 this causes problems with a proper
encapsulation concept.

If we take a look at the synchronisation mechanism from a state-oriented
view we can state that each synchronisation point corresponds to one or more
synchronisation states depending on the conditions which are part of the wait
statement. However, there is no abstraction of the states in a process’s inter-
face as there is no interface at all. In other words, to perform communication
via signals it is necessary to break the encapsulation of a process and analyse
its implementation. This makes processes with a non-standard synchronisa-
tion concept very hard to re-use. We can conclude from this short discussion
on synchronisation in VHDL that it is very problematic to use VHDL proc-
esses as part of an object based modelling.

As stated at the beginning of this section an entity provides an interface
which abstracts the implementation in an architecture. It is possible to define

8. The shared variable concept as it is described here is subject to future
changes in the standardisation process of the language [91,176].
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signals as part of the interface which can be used in an architecture as an
abstraction of signals in other design units. This is useful when hierarchically
nesting them as described above. In other words, it is possible to aggregate
hardware models by encapsulating them in an architecture and by intercon-
necting them with signals. The ports of an entity serving as an interface are
mapped to the signals. However, the interface mechanism lacks a concept to
abstract the synchronisation aspects of the implementation. There is also no
abstraction of the processes which an architecture contains. From what was
discussed about the missing abstraction concepts for processes and the miss-
ing abstraction concepts for communication and synchronisation we can con-
clude that re-use at entity level is also a problematic issue.

So far, we have looked at the module concept based on entities and archi-
tectures. We now discuss the second module concept in VHDL which is
based on packages. Packages are modules which only exist in a top level
module, i.e., in a library. It is not possible to nest packages within other pack-
ages or design units but it is possible to reference packages in other design
units. This makes the elements in a package accessible to other design units.

Basically, a package may contain some type declarations, constants, and
subprograms9. A subprogram is abstracted by its interface in a package. The
subprogram body is described in the package body which provides a strong
encapsulation and abstraction. Furthermore, a package may contain signals
and shared variables which can be used for process intercommunication.
Extending a distribution boundary by referencing a package and then use a
signal in the package for communication and synchronisation is a problem-
atic issue from a modelling point of view. It annuls the abstraction concept
behind an entity.

Simulation in simulation cycles as defined by the simulation semantics
introduces a concept of concurrency and a corresponding timing model into
the language. This timing model which consists of a sequence of simulation
cycles executed after one another is extended by a quantitative simulation
time. Each simulation cycle is assigned a value of the simulation time in
ascending order10. The simulation time allows to exactly specify the simula-
tion cycle in which a signal assignment is scheduled to become effective. In

9. In the context of VHDL we use the term subprogram rather than procedure
because a procedure denotes a special kind of subprogram in VHDL.
10. It is possible for several simulation cycles to have the same simulation
time. Within a sequence of cycles with the same simulation time the cycles are
distinguished as the first delta cycle, the second delta cycle, and so on.
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VHDL like in DACAPO III it is possible within one process to schedule sev-
eral signal assignments to become effective at the same time and thus to
introduce an additional concept of modelling concurrency.

As mentioned before, VHDL in many aspects is similar to Ada. One of
the common features is an elaborated type concept and a strong typing. The
type concept of VHDL supports data abstraction with enumeration types,
arrays, and records. VHDL also allows the modelling of subtypes. As stated
in Section 3.2.2 a subtype has a predicate which consists of the parent’s pred-
icate and additional constraints to describe the features of the subtype. An
explicitly modelled resolution strategy to solve the access conflicts to signals
is one of the features which can be added to a subtype in VHDL. This allows
the modelling of user-defined value models as they are for example used for
modelling at RT-level and below. Compared to other HDLs with predefined
value models as part of the language, like for example DACAPO III and Ver-
ilog which are limited to gate level and switch level, the user-defined models
of VHDL allow the modelling of different models each optimized for a cer-
tain level of abstraction.

VHDL with its subprograms is a procedural language. Subprograms are
used to model behaviour. They can be invoked from within processes or from
within other subprograms. We now consider two issues concerning abstrac-
tion aspects of subprograms. The first issue is overloading. Subprograms are
said to be overloaded if they have the same subprogram designator, i.e., the
same name. VHDL requires any ambiguities due to the same name to be
resolved at analysis time. For this resolution VHDL uses information from
the subprogram’s interface like e.g., the type, the name, and the order of its
parameters. It is possible to abstract similar behaviour by the same name but
not by the same interface.

The second issue concerning subprograms is the abstraction of timing
behaviour. Like in many procedural languages it is possible to pass constants
and variables as parameters to a procedure11 during invocation. As the proce-
dures are invoked from within processes which execute their statements
sequentially and which do not pass any information about variables across
the process’ boundaries it is sufficient to pass the results back to some varia-
bles after the procedure has executed all its statements. This is different for
signals which can be within the distribution boundary of various processes. If
a procedure contains a synchronisation point either directly or by calling
another procedure containing a synchronisation point we can think of the

11. A procedure is a special kind of subprogram in VHDL.
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procedure consuming simulation time. It consumes at least one delta cycle. It
means that a signal may change its value during the execution of the proce-
dure. The interface of subprograms takes this fact into account by using a dif-
ferent mechanism to pass signals as parameters to subprograms. The
parameter itself is regarded as a signal which is associated to the actual signal
in a subprogram call. Any access to the parameter abstracts an access to the
actual signal. For example, an read access reads the current value of the
actual signal. It does not read the probably outdated value of the signal from
the time when the subprogram was invoked. Similarly an assignment to the
parameter is scheduled as an request to store a value in the actual signal at a
certain specified time which can be the next delta cycle at the earliest. The
specified time is not necessarily the simulation cycle when the subprogram
finishes its execution.

A consequence is that a procedure may cause effects in a model at a point
of time when it does not exist any more. An abstraction of such a timing
behaviour is not part of the procedure interface. The only indication that such
strange effects may occur when calling a procedure is an interface that con-
tains signals as parameters. To understand them it is necessary to break
encapsulation of procedures and to analyse their implementation.

After the considerations on the abstraction of behaviour in VHDL we
briefly mention a mechanism to abstract structure. VHDL provides generic
parameters which can be used to pass static information across entity and
architecture boundaries. It is possible to abstract in an architecture from
structural information which can be represented by some values like for
example array ranges. The application domain is especially at gate level and
register transfer level. The mechanism allows to abstract information in cells
or macro cells like bit widths or delay values. The entity and architecture is
used as a template to which the actual values are passed as parameters in a
concrete instantiation. It is a major concept to support re-use at these levels
of abstraction. The general ideas behind these concepts already have been
discussed in detail in Chapter 2. The limited usefulness of these ideas for re-
use purposes at higher level of abstraction has been considered and reasons
were given why it is not sufficient for a general re-use concept to use generic-
ity.

To keep the mechanism simple and to make static analysis of a model
possible the genericity concept of VHDL has some restrictions. The pack-
ages do not have a genericity concept12. The genericity concept is restricted
to values. It is not possible to pass any type information or even behaviour in
form of subprograms via a generic parameter to an entity and architecture.
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One of the purposes of the language is to serve as a notation to document
hardware systems. This especially includes hardware with long life cycles as
it for example occurs in avionic or military systems. This makes it necessary
for VHDL to allow a description to abstract from concrete implementations
and implementation technologies and thus to support re-use of models across
tools and target technologies. This requirement is met by minimizing imple-
mentation dependent features in the language semantics. An annex to the ref-
erence manual lists potentially non-portable language constructs. They
concern interaction with the simulation environment like for example input
and output commands and they concern the few non-deterministic features of
the language like for example the use of shared variables for communication
between processes within one delta cycle. Using modelling guidelines and
coding styles which exclude the use of these features wherever possible
makes a VHDL description compared to other descriptions highly portable
and thus re-usable across multiple tools and environments.

The short introduction into the main features of VHDL concludes with
some considerations on the language support for object-based modelling
concepts. We discuss the limitations of the language with respect to object-
oriented modelling and identify some of the features which would be
required in the language in order to support system level modelling. Some
basic ideas on that topic can be found in [126].

The basic principles of object-based modelling have been presented in
Section 3.1. The central concept is the modelling of objects. An object is
regarded as a module which encapsulates structure and behaviour. The prop-
erties of an object are abstracted in its interface. As stated above, in VHDL
the design entity is the primary hardware abstraction. If we look at the entity
as an abstraction of a hardware object an architecture is the corresponding
object body. It contains signals and processes which are threads according to
the terminology of the thesis. The object’s interface in form of an entity does
not contain an abstraction of the behaviour. Ports do not abstract operations
which can be requested to be executed by messages. They rather abstract sig-
nals. The signals then can be referred to in synchronisation conditions of syn-
chronisation points. Thus, ports as part of an entity may be viewed with
reservations as an abstraction of synchronisation operations between proc-
esses. Considering the synchronisation operations as a special kind of inter-
actions would allow to interpret a port a restricted version of an interaction

12. This would be only of interest if it were allowed to instantiate packages in
other design units.
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point. An entity is reduced to an abstraction of the interaction between activi-
ties from outside the architecture from activities inside the architecture. From
that point of view an entity architecture pair is a concurrent process. Never-
theless, an entity encapsulates the object’s properties but it does not really
abstract them.

The structure of an object is modelled by signals inside the entity and by
variables inside the processes i.e. they are the attributes of the object. From a
modelling point of view the attributes of different objects and in the case of
the processes even the attributes in different processes do not share the same
memory or address space. This is in accordance with the fact mentioned
above that the entity is a static distribution boundary. We can regard entity
architecture pairs as distributed objects.

The problems of dynamically changing references in distributed systems
which has been discussed in Section 3.3.18 is solved in VHDL by not sup-
porting any reference mechanism between entities. In other words, there is
no language feature which would allow the modelling of instance variables.

A message passing concept which has been identified as an object-based
principle in Section 3.1 is not part of the language. Messages have to be mod-
elled from signals using the synchronisation operations in processes. We
could say message passing between entities in an object-based sense requires
a reflective modelling style.

In the considerations about object-based principles in VHDL we consid-
ered entities and architectures as objects. However, there are some more lan-
guage features worth to be considered from an object-based point of view. If
we look at the package mechanism we can state that it is mainly a module
concept to improve procedural modelling. It provides a strong concept to
abstract and encapsulate behaviour. Additionally, it allows to model structure
as part of a package. A package may contain type declarations to describe a
set of entities13 that share the same features, for example some subprograms
declared in the package. The weak point with the types in a package is the
missing encapsulation concept. The same is for global signals which can be
used to model a state of a package. There is no encapsulation mechanism
which prevents another design unit from directly accessing the state of the
package. Another problem occurs if we regard packages as classes or objects.
There is no possibility to declare or instantiate such objects in a design unit.

13. Entity is not to confuse here with a VHDL design entity. The VHDL lan-
guage reference manual denotes such entities as objects.
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From these considerations on object-based principles we can draw some
conclusions what language features and concepts could be useful to make
VHDL object-based and object-oriented and define some requirements on
how to extend the language for system level modelling [22,23]. The first idea
is to improve the object-based capabilities of what we identified as objects.
For entities this could mean to introduce the missing abstraction mechanism
for behaviour. This has to come with an improved message passing mecha-
nism. An approach could be to extend the port mechanism which only
abstracts structure. As entities are executed concurrently the additional mes-
sage passing has to be combined with some underlying synchronisation con-
cepts. Independently from whether the concept is synchronous or
asynchronous, mechanisms have to be defined to avoid access conflicts in
objects. Such mechanisms could be based on mutual exclusion synchronisa-
tion for example. What is also required is a concept to specify conditional
synchronisation in an object. The art is in integrating such concepts into the
existing synchronisation and communication concepts of VHDL. A goal of
such an extension could be to avoid the introduction of any non-deterministic
features into the language to be conform with the existing language philoso-
phy.

Identifying entities as distributed objects raises the question if a reference
mechanism should be provided which allows to pass references to objects as
parameters to operations. Such a mechanism would change the static distri-
bution boundaries into dynamic ones. The consequences and problems of
dynamic distribution boundaries for distributed objects have been discussed
in Section 3.3. As an alternative to a reference mechanism a copy model has
been mentioned. However, entities are active objects and it would be a com-
plex task to define semantics for copying them. Related issues, like for exam-
ple the problem how to pass polymorphic objects as parameters with such
semantics have been discussed in Section 3.3.18.

A major feature for object-oriented modelling that is missing in VHDL is
inheritance. Inheritance means to allow incremental modification of the
structure and behaviour of a class or an object. Therefore adding an inherit-
ance concept to entities depends on how such an extension to VHDL models
and abstracts behaviour. In any case it is a problematic issue to combine it
with the existing possibility to model behaviour as one or more processes in
an architecture. Any modification or interaction with that behaviour requires
a derived class to break the encapsulation of the parent’s processes due to the
missing abstraction of processes. The same is for structure which is modelled
within such processes. If there is an inheritance mechanism on entities the
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question arises how could it support polymorphism. VHDL provides a mech-
anism for a kind of static polymorphism with its configuration mechanism
which allows the selection of an architecture for an entity out of a set of
architectures. This configuration mechanism needs an integration in the
inheritance concepts which is problematical because the mechanism breaks
encapsulation by explicitly referring to internal structure of an architecture.
The second question is how to provide dynamic polymorphism. As men-
tioned above this issue is very much related to the question how to model dis-
tributed objects.

The considerations about extending the language so far are based on the
idea to identify an entity as an object. A language extension also could be
based on the idea that the package concept should be improved to support
object-oriented principles. As a main weakness of packages from an object-
based point of view the missing concept to encapsulate structure has been
mentioned. This could be overcome by a concept in which structure can be
implemented in a package body and the subprograms specified in the pack-
age have access to that structure. To support incremental modifications a
mechanism could be introduced which allows to extend existing packages by
new child packages. Child packages are packages which have access to the
parents’ implementation. What also would be required for such an extension
is a mechanism how to instantiate packages in other objects and how to refer-
ence them. Extending the selected name mechanism and introducing some
dynamic features to it could be an approach how to reference such packages.
Due to missing activities as part of such packages they could be considered
as passive objects according to Section 3.1.3 and thus support an orthogonal
approach for modelling concurrency.

An alternative approach may use the type declaration which can be part
of a package to describe a set of objects. Subprograms in the package could
be used to model the behaviour of such objects. The type describes a class
and the subprograms model the operations of that class. Message passing is
reduced to a simple operation call in a sequential context, i.e., in a process. In
such a sequential context a reference concept already provided by VHDL
with its access types could be applied to model dynamic distribution bounda-
ries of objects. The access types could be used as instance variables in a
class. At the same time a copy semantics in the sense mentioned in the con-
siderations about distributed objects would be possible. The semantics could
be extended from the semantics of assignment statements as they are already
part of VHDL. With signal assignments it would be possible to pass the
objects across process borders and thus to use them in a concurrent model.
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Also required for modelling concurrency are synchronisation concepts more
abstract than the resolution mechanism of VHDL. Concepts for modelling
mutual exclusion synchronisation and condition synchronisation appear to be
appropriate for this kind of synchronisation. Inheritance would be added to
such an extension which is based on modelling classes as types in packages
by defining an inheritance concept for types and some extension mechanisms
to packages. Such a mechanism could be combined with a child package
concept. Polymorphism in such an extension would mean that various imple-
mentations of the same subprogram exist for different derived classes.

There are some more features which could be added to the existing lan-
guage and which might be useful for modelling of re-useable systems at a
high level of abstraction. One of these features is genericity. The existing
concept which supports generic parameters as part of an entity is limited to
passing some constants to an entity. It could be extended to support the pass-
ing of more complex information like types or behaviour to all kind of design
units.

When extending VHDL to add object-oriented features the art is in select-
ing a small subset of the presented features which fits into the existing lan-
guage philosophy and which converses all the important aspects mentioned
like abstraction, encapsulation, inheritance, and synchronisation of concur-
rency.

5.2 Object-Oriented Extensions to VHDL

In the last section we carefully considered the basic possibilities to add
object-oriented features to VHDL from a theoretic point of view. Since the
beginning of VHDL quite a few more or less concrete proposals have been
made to extend VHDL in an object-oriented way. Finally, they all can be put
down to some of the theoretic considerations made above, however, they dif-
fer to the extent they support them. The proposals also differ very much in
their notation of the extensions which is adapted from various object-oriented
programming languages.

This section presents an overview about the proposals. Some other mean-
while rather incomplete surveys are given in [51,152]. Comparisons and clas-
sifications between alternative principles for extending VHDL are presented
in [5,12,53,117,118].
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5.2.1 VHDL++

The first proposal we are going to present is called VHDL++. As its name
suggests it is based on C++ constructs which are added to VHDL. The exten-
sion exists in various variants [70,72,74,76]. What we discuss here is a con-
glomerate of the various dialects.

The main extension of VHDL++ is the presentation of a class concept
which introduces a new encapsulation mechanism in the language. As in
C++ the class consists of a private section and a public section to determine
the visibility and accessibility of class-attributes. In other words, it is possi-
ble to circumvent encapsulation and to make attributes directly accessible
from outside the object. Similar to C++ the operations or in a C++-terminol-
ogy the methods are defined as procedures within the class. The procedures
implicitly have access to the attributes. Different to C++ instance variables
are not supported as attributes. VHDL++ does not support a reference mech-
anism which would allow to calculate references to objects as results of
method calls. It is not possible to dynamically change the distribution bound-
aries of objects. The selected name mechanism is only extended by a mecha-
nism to statically reference the methods of an object. Its notation corresponds
to the notation which is used to denote a subprogram in a package. The nota-
tional similarities are no accident because the basic idea behind the concept
is a variant of the approach to use type declaration which are part of a pack-
age to describe a set of objects. The subprograms in the package model the
methods of the objects.

A class of that package based approach is called general class in
VHDL++. It can be used to declare individual objects by an object instantia-
tion. From the basic concepts behind the extensions it follows that an instan-
tiation only can occur at places in a model where it also would be possible to
declare a signal. A model using such objects of general classes is claimed to
be principally appropriate for synthesis.

A short example is given to illustrate the modelling with VHDL++. It
models a bounded buffer with a get and a put method14. Put stores an item in
the buffer and get removes15 the oldest item from the buffer. A bounded

14. The example originally comes from concurrent object-oriented program-
ming where it is often used to show certain aspects of different object-oriented
programming languages. To simplify the comparison between them and the
proposals mentioned in this thesis we take the class and operation names of
the example from [111]
15. Remove means to read and remove items.
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buffer appears to be appropriate for the purpose because it models a typical
producer-consumer situation which often occurs in client server relationships
between objects. It requires the modelling of synchronisation constraints. A
bounded buffer cannot execute a get method if the buffer is empty. Likewise
it cannot execute a put method if the buffer is full. Another interesting aspect
of the model is that it also requires synchronisation between multiple clients
and the server for example in form of mutual exclusion synchronisation.

class  bbuffer is
private

buf : array  (1 to  buffersize) of  item_type;
buf_in, buf_out : integer;

public
procedure  put (item : item_type) is

constant  : max_number_in_buffer : positive := buf'last(1);
begin

...
buf ((buf_in mod max_number_in_buffer) + 1)) := item;
buf_in := (buf_in + 1) mod (2 * max_number_in_buffer);

end ;
procedure  get (item : item_type) is

constant : max_number_in_buffer : positive := buf'last(1);
begin
...

item := buf((buf_out mod max_number_in_buffer) + 1);
buf_out := (buf_out + 1) mod (2 * max_number_in_buffer);

end ;
end class ;

The bounded buffer is implemented by an array which is hidden to the clients
in the private part of the class definition. This private part also contains two
pointers referencing to the point in the array where to store and where to read
the next item16. The implementation does not explicitly model the synchroni-
sation information if the buffer is empty or full. This information is implicitly
encoded in the values of the pointers17.

The public procedures model the methods to access the bounded buffer.
There are two interesting aspects to mention about the procedures. The class

16. Actually, there is an offset of 1 between the array indices and the pointers
due to the modulo calculations.
17. This is the reason why the pointers to the array range between 0 and
(2 * max_number_in_buffer) - 1.
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definition does not provide an interface. As there is no interface there is no
abstraction of the protocol i.e., the synchronisation information. It is not only
an open issue how to abstract synchronisation information it is also not clear
how to implement synchronisation constraints. Therefore in the listing of the
implementation the corresponding parts are omitted and marked by some
dots. In other words, there is no language concept for modelling and abstract-
ing synchronisation between server and clients. The second aspect is that
there is no language support for modelling synchronisation between multiple
clients. For example, it is not defined how to specify methods which are
mutually exclusive as it would be required here.

We conclude the considerations about the implementation with remarks
on some language details. It is noticeable that the parameters of the methods
do not have a direction nor a VHLD class like constant, signal, or variable. It
is also remarkable that it is possible to implicitly define an array type18 in the
private part of the class.

A general class as it is described above can be used as a starting point for
an inheritance mechanism. Like in C++ it is possible in VHDL++ to inherit
attributes and methods and if necessary to override methods. For example, it
would be possible to define a class x_buf which inherits the methods put and
get. The specification of that buffer may require that it has an additional
method last which removes the last item which was put into the buffer. The
problem is that a method last in a derived class must not access the private
part of its parent. That means it would have been necessary in the definition
of bbuffer to define the array buf public19. Unfortunately this would break
encapsulation. Nevertheless, assuming the attribute is visible in a derived
class it would be possible to define x_buf.

class  x_buf : bbuffer is
public

procedure  last (item : item_type) is
...

end ;
end class ;

18. In the example, we changed the original squared brackets of the implicit
array type to round brackets to make it consistent with VHDL and to allow the
application of a translation mechanism from VHDL++ to VHDL which is part
of the VHDL++ approach.
19. A mode protected as it is available in C++ to make attributes visible only
to derived classes is not part of VHDL++.



120 Object-Oriented Hardware Design Methodologies

The class definition defines that x_buf inherits all public methods and
attributes of the class bbuffer.

VHDL++ not only has the package based class approach but also an
entity based one. The language allows to add port information to a class. The
ports become the interface between an object of that class and the rest of the
system. In that case it is necessary to define protocols20 to perform the meth-
ods of the class instead of procedures. A protocol in VHDL++ is a sequence
of stimuli at certain ports of a class. A class with protocols and ports is called
component class. Such a class may serve as a wrapper for a conventional
entity or architecture. For example, a component class could be used to
describe an implementation s_buf of the bounded buffer. It implements the
bounded buffer as a shift register. s_buf adds port information to the class
and inherits the public methods put and get of bbuffer but it does not inherit
the implementation of the methods. Instead, protocols are used to defined
how to perform the access to the ports.

class  s_buf : bbuffer is
port

clock : in  bit;
sreg_in : in  byte;
sreg_out : inout  byte;
shift : in  bit; -- shift on = '1' , shift off = '0'
nr_in_buffer : inout  : integer; -- number of items in buffer

protocol  put (item : item_type) is
begin

sreg_in <= to_byte(item);
shift <= '1';
nr_in_buffer <= nr_in_buffer + 1;
cycle (clock); -- wait one clock cycle

end ;
protocol  get (item : item_type) is

begin
-- shift first item to the end of the register:
shift <= '1';
for  i in  max_number_in_buffer downto  nr_in_buffer + 1 loop

cycle(clock) -- wait one clock cycle
end loop ;
-- remove item:
shift <= '0';
item := to_item (sreg_out);

20. The term protocol is used here as a language construct of VHDL++
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cycle(clock);
shift <= '1';
nr_in_buffer <= nr_in_buffer -1;
cycle(clock);
-- shift remaining items into original position:
for  i in  nr_in_buffer downto  1 loop

sreg_in <= sreg_out;
cycle(clock);

end loop ;
shift <= '0';

end ;
end class ;

In the component class there is not any longer a separation between public
and private part. The protocol models the interface mechanism and is pub-
licly visible. The actual implementation of the component which is
abstracted by the component class is encapsulated and only accessible from
the protocols via the ports. The example shows that for modelling the proto-
col it is necessary in VHDL++ to break the encapsulation. It is necessary for
the protocol operation to know the clock cycle when to read or write the item
via the port. It is noticeable that it is not possible for the protocol to have its
own state. Modelling of a state is only possible as a port of the component
class. Making the attribute nr_in_buffer and the instruction shift a port allows
the protocol to define the timing behaviour i.e., the protocol defines the put
operation to execute within one clock cycle and the get operation within
max_number_in_buffer + 1 clock cycles. In fact, the protocol is a transfor-
mation from the protocol used to communicate via the ports to the protocol
which consists of calling a method and waiting for a return value. Although
object-orientation originally would require the encapsulation of the shift
operations and the attribute nr_in_buffer such an encapsulation would
impose a different protocol via the ports with restrictions on possible proto-
col transformations in the VHDL++ protocols. What happens if a precondi-
tion of a method is violated is still an unsolved issue. The example illustrates
the difficulties of the idea to separate the protocol from the behaviour of a
class.

The VHDL++ approach comes with a translation mechanism of the
object-oriented constructs to VHDL. The main idea is the translation of the
general class definition into a record definition. The methods or member
functions are translated to functions or procedures with an additional argu-
ment of the record type. Access to the attributes are changed into access to
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the additional argument. Object instantiations are translated to data declara-
tions for example global signal declarations. As an example the translation of
the bounded buffer description is given. The class is translated into a record
type and the methods into normal procedures.

type  bbuffer_record is record
buf : implicit_array_of_item_type(1 to  buffersize);
buf_in, buf_out : integer;

end record ;
procedure  bbuffer_put ( signal  bbuffer_data : inout  bbuffer_record;

constant  item : in  item_type);
procedure  bbuffer_get ( signal  bbuffer_data : inout  bbuffer_record;

variable  item : out  item_type);

The example shows some differences to the original transformation propos-
als and examples in [74] in order to avoid illegal VHDL as a transformation
result. The main differences concern the required separation of subprogram
specification and body and the transformations of the subprograms’ parame-
ters into constants, variables, or signals. Especially, making the object a sig-
nal parameter requires the modification of all assignment statements in the
subprograms.

procedure  bbuffer_put ( signal  bbuffer_data : inout  bbuffer_record;
constant  item : in  item_type) is

constant  : max_number_in_buffer : positive := bbuffer_data.buf'last(1);
begin

...
bbuffer_data.buf ((buf_in mod max_number_in_buffer) + 1)) <= item;
bbuffer_data.buf_in <=

(bbuffer_data.buf_in + 1) mod (2 * max_number_in_buffer);
end ;

The transformation changes the semantics of the original method put
severely because of the signal assignments. An execution of the operation
does not change the object’s state it rather schedules some transactions to
occur not before the next delta cycle if at all.

Another problem related to the use of global signals in that approach is
that it only works properly if the objects are not used from more than one
process. The transformation or translation schema implies that the approach
allows static overloading of methods but it does not support polymorphism.

Different to the general class there is no detailed description how to trans-
late a component class. It is proposed to translate the class into a component
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instantiation. The ports of the component are the ports of the component
class. The protocols are converted into procedures. The procedures use a sig-
nal connected to the ports as an additional parameter. As the signals seman-
tics is already considered in the protocol the difficulties discussed in the
context of global class transformation do not occur.

VHDL++ restricts with its object-oriented language extensions the possi-
bility to model concurrency as described above. At the same time it intro-
duces new concepts to model concurrency into the language. A so called
concurrent block allows to model a concurrent data flow within a sequential
process or subprogram. Such a block specifies a set of statements which
occur concurrently. The proposal is similar to an idea in [122] to add an
explicit join and fork statement to VHDL which adds concurrency to a
sequence of statements. These ideas are very similar to the ideas presented in
the surveys about system level specification languages like CSP or LOTOS.
As it has been mentioned there, such mechanisms are especially appropriate
to model protocols. The static concurrency concept of VHDL would become
dynamic. However, in the context of the VHDL timing model and synchroni-
sation concept a bunch of unsolved questions arise. Access conflicts to varia-
bles may occur. Concurrent signal assignments from within one process
would require an additional resolution mechanism to solve access conflicts or
additional drivers. A mechanism to dynamically create and delete drivers
would be necessary including the question what would it mean to delete a
driver with a set of future transactions. The proposal to introduce the new
concurrency concept does not answer the questions and it does not describe
how to translate these VHDL++ features into VHDL.

The VHDL++ proposal illustrates principal problems of extending
VHDL in an object-oriented manner. It shows the difficulties in integrating
the extensions into the concurrency concept of the language. The difficulties
concern the new concurrency constructs as well as synchronisation mecha-
nisms. The lack of concepts to model mutual exclusion synchronisation and
condition synchronisation has been identified as one of the major deficiencies
of the language extension. Although the proposal tries to adapt some power-
ful concepts from other languages, all in all, the limitations on encapsulation,
abstraction, and polymorphism prevent the language extension to support
real object-oriented modelling.
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5.2.2 VHDL_OBJ

In the previous section we noted that a missing support for polymorphism is
a severe limitation for object-oriented modelling. In this section we survey an
extension to VHDL which overcomes the restriction not to have polymor-
phism. The name of the extension is VHDL_OBJ [177].

Like in the previous approach a class construct is added to VHDL. Each
class has a declaration which describes the interface of the class and its struc-
ture. The methods of the interface are marked as public procedures. The
implementation of the methods is described in the body of the class. In other
words, the concept separates the specification of a class from its implementa-
tion. In a declaration of a class it is possible to inherit features from an exist-
ing class. To inherit methods from a parent’s class it is necessary to explicitly
list them in the class declaration. It is not mandatory to inherit all methods
from a parent’s class. That means, a derived class does not necessarily sup-
port the parent’s protocol and an is-a relation does not imply a subtype rela-
tion (Compare Section 3.2.12). It is possible to override the implementation
of inherited methods. Such methods have to be explicitly marked in the par-
ent’s class as virtual. It is decided during the simulation of the model which
of several different methods will be executed depending on the class of an
object. The possible re-implementation of methods is a means of the lan-
guage extension to support polymorphism. Although not explicitly men-
tioned in the proposal for the language extension it can be concluded from a
translation mechanism that a class is a new design unit in VHDL_OBJ. Due
to the design unit’s similarity to packages we could classify the approach as
based on packages.

Objects only can be instantiated in a process or subprogram. The proposal
does not mention if it is possible to abstract an object in a parameter list of a
procedure. This makes it impossible to say something about the distribution
boundaries of objects. But it is possible to conclude from the abstraction
boundaries of processes that it is not possible to pass any objects between
processes. In principle, the object-oriented concepts are only applicable in
the sequential context of a process. Consequently, no synchronisation mecha-
nisms between objects are provided. We illustrate the considerations about
VHDL_OBJ with the example of the bounded buffer:

type  bounded_buffer_array is array  (positive range <>) of  item_type;
class  bbuffer is

variable  buf : bounded_buffer_array(1 to  buffersize);
variable  buf_in, buf_out : integer;
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virtual public procedure  get (variable  item : out  item_type);
virtual public procedure  put (item : in  item_type);

end  bbuffer;

The implementation of the bounded buffer contains the bodies of the meth-
ods:

class body  bbuffer is
begin

virtual public procedure  get (variable  item : out  item_type) is
constant : max_number_in_buffer : positive := buf'last(1);

begin
-- Check precondition of get:
if  buf_in = buf_out then

… -- Error: Buffer empty, violation of precondition
else

item := buf((buf_out mod max_number_in_buffer) + 1);
buf_out := (buf_out + 1) mod (2 * max_number_in_buffer);

end if ;
end ;
virtual public procedure  put (item : in  item_type) is

…
end  bbuffer;

The implementation of the method get does not contain any synchronisation
code it rather has a check if a caller violates its preconditions. If the check
fails an error has occurred. This follows from the fact that the methods of
bbuffer are only called from within a sequential environment. To avoid such
errors it would be useful for a caller to be able to check the state of the buffer.
This could be achieved by adding a method empty to a derived class x_buf2
of bbuffer which checks if the buffer is empty.

class  x_buf2 has
inherit  get , put from  bbuffer

is
virtual public procedure  empty (variable  return_val : out  boolean);
virtual public procedure  get2 (variable  item : out  two_items_type);

end  x_buf2;

The class x_buf2 inherits the structure of bbuffer. It also explicitly inherits
the methods put and get. If required it would be possible in the class body to
override the implementation of put and get. The class furthermore adds two
new methods empty and get2 to the class. The method get2 simply takes two
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items from the buffer. The interesting thing about get2 is that it introduces a
new precondition, the buffer must contain at least two items to invoke get2.
We shall refer to the example of x_buf2 later on.

An object declaration is used to instantiate an object. For example, it is
possible to instantiate an object which is a bounded buffer in a process and
call its methods from within the process statement part:

example : process
object  bbuffer_object : bbuffer;
variable  item : item_type := default_item;
…

begin
bbuffer_object~put (item);
…

end process example;

The declaration creates an object. The designator bbuffer_object is a refer-
ence to it. The designator of the class bbuffer may also reference to an object
of a derived class like x_buf2. This allows the modelling of polymorphic
objects. However, there is a bunch of open issues with that concept. For
example, as there is no subtype relation between derived classes protocol
errors may occur, but there is no concept to handle such errors. What is the
exact semantics of an assignment statement between objects, in particular,
what happens to spare objects, is there a garbage collection? What happens
with references to objects in dynamic scopes which may be removed while
the reference still exists.

The proposal not only provides concepts how to extend VHDL it also
sketches some ideas how to translate the extensions into VHDL. The transla-
tion is based on transforming the class definition into a record definition. The
methods become procedures with an additional argument of an access type.
That access type is a pointer to an object’s virtual table21. The table contains
a pointer to the actual object. A direct pointer to the object as additional argu-
ment of a procedure is not possible because of the strong type concept of
VHDL. Objects are implemented by variables which are created by alloca-
tors. This use of access types and allocators to implement objects imposes
the limitations of using objects only in processes or procedures without the
possibility to pass them across process boundaries. We illustrate the transla-

21. We only discuss the translation of polymorphic objects, the non-polymor-
phic objects use a similar, but, simplified translation mechanism.
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tion mechanism by excerpts from the example of the bounded buffer and its
derived class x_buf2:

package  bbuffer is
type  bounded_buffer_array is array  (positive range <>) of  item_type;
type  bbuffer_type is

record
buf : bounded_buffer_array(1 to  buffersize);
buf_in : integer;
buf_out : integer;

end record ;
type  pointer_bbuffer_type is access  bbuffer_type;
-- derived type
type  x_buf2_type is
record  -- inherits structure from bbuffer:

buf : bounded_buffer_array(1 to  buffersize);
buf_in : integer;
buf_out : integer;

end record ;
type  pointer_x_buf2_type is access  x_buf2_type;
-- virtual table which model access to actual object:
type  bbuffer_virtual_class_type is

(bbuffer_virtual_class, x_buf2_virtual_class);
type  p_virtual_table_bbuffer_type is
record

bbuffer_virtual_class : pointer_bbuffer_type;
x_buf2_virtual_class : pointer_x_buf2_type;
is_a : bbuffer_virtual_class_type;

end record ;
procedure  put_base

(variable  p_virtual_table: p_virtual_table_bbuffer_type;
constant  item : in  item_type);

procedure  put_bbuffer
(variable  oops_p_obj: pointer_bbuffer_type;
constant  item : in  item_type);

procedure  get_base
(variable  p_virtual_table: p_virtual_table_bbuffer_type;
variable  item : out  item_type);

procedure  get_bbuffer
(variable  oops_p_obj: pointer_bbuffer_type;
variable  item : out  item_type);

procedure  put_x_buf2
(variable  oops_p_obj: pointer_x_buf2_type;
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constant  item : in  item_type);
procedure  get_x_buf2

(variable  oops_p_obj: pointer_x_buf2_type;
variable  item : out  item_type);

procedure  empty_base
(variable  p_virtual_table: p_virtual_table_bbuffer_type;
variable  return_val : out  boolean);

procedure  empty_xbuf2
(variable  oops_p_obj: pointer_x_buf2_type;
variable  return_val : out  boolean);

procedure  get2_base
(variable  p_virtual_table: p_virtual_table_bbuffer_type;
variable  item : out  two_items_type);

procedure  get2_x_buf2
(variable  oops_p_obj: pointer_x_buf2_type;
variable  item : out  two_items_type);

end ;

The approach translates each virtual procedure into a procedure which runs
the dispatching according to the actual class of the object whose method is
invoked. The class information is stored in the table in the field is_a. Thus,
the package body implements the dispatching as follows:

package body  bbuffer is
-- procedure which runs the dispatching of the virtual method put:
procedure  put_base

(variable  p_virtual_table: p_virtual_table_bbuffer_type;
constant  item : in  item_type) is

begin
case  p_virtual_table.is_a is

when  bbuffer_virtual_class =>
put_bbuffer

(oops_p_obj => p_virtual_table.bbuffer_virtual_class,
 item => item);

when  x_buf2_virtual_class  =>
put_x_buf2

(oops_p_obj => p_virtual_table.x_buf2_virtual_class,
 item => item);

end case ;
end ;
…

end ;
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The translation into a package shows that although a two level pointer mech-
anism is used it is necessary to re-declare inherited virtual methods like put
or get in a derived class in order to make them manageable in a dispatching
mechanism. It is not possible to re-use the original inherited methods by a
delegation mechanism in the translation which would delegate a call of the
inherited method to its original implementation.

As a side effect the translation introduces an implicit dynamic binding of
operations if they are called from within another operation of the same class
and there is no way to suppress such a binding and to make it static. Together
with the feature of VHDL_OBJ which allows to remove methods from a pro-
tocol in a derived class this is a dangerous property of the language. For
example, x_buf2 could implement the get2 method by calling the method get
twice. If a new class of x_buf2 is derived which omits the get operation in its
protocol the get2 operation which could be still in the protocol would fail.
There is no way to detect such situations without re-analysing all implemen-
tations of the parents i.e, without breaking encapsulation of the parents.

As it can be seen from the example even if concurrency is omitted the
translation leads to an enormous complexity and the result can not be used as
a basis for further synthesis steps because of the dynamic constructs. Further-
more, the example illustrates some critical aspects of approaches which pro-
vide translation mechanisms from the language extension to VHDL.

5.2.3 OO-VHDL

Another approach of extending the language which also uses an translation
mechanism to translate the language extensions into VHDL is presented in
[45,162,167,168]. Unfortunately, only the language extension which is called
OO-VHDL is discussed in literature and not the translation mechanisms
behind it.

OO-VHDL bases on the idea to consider an entity as an abstraction of a
hardware object. Due to the missing capabilities of abstracting behaviour in
an entity an extension of an entity is introduced in the language extension.
The new language construct is called EntityObject and is the core of the lan-
guage extension. Like an entity an EntityObject may have ports and generics
and each EntityObject can be related to one or more architectures. Addition-
ally, operations which model the behaviour of an EntityObject can be
declared in an EntityObject to abstract its behaviour. In the specification they
are similar to procedures. The body of an operation is implemented in an
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architecture of the EntityObject. We can illustrate this by the example of the
bounded buffer.

type  bounded_buffer_array is array  ( positive range  <>) of  item_type;
EntityObject  bbuffer is

-- Entity part:
generic  ( buffersize : positive);
-- Object part:
operation  put (item: item_type);
operation  get (item: out  item_type);

end  bbuffer;
architecture  behaviour of  bbuffer is

instance variable  buf : bounded_buffer_array ( 1 to  buffersize);
instance variable  buf_in : integer;
instance variable  buf_out : integer;
operation  put (item : item_type) is

constant  : max_number_in_buffer : positive := buffersize;
begin

...
buf ((buf_in mod max_number_in_buffer) + 1)) := item;
buf_in := (buf_in + 1) mod (2 * max_number_in_buffer);

end ;
operation get (item : out  item_type) is

constant : max_number_in_buffer : positive := buffersize;
begin
...

item := buf((buf_out mod max_number_in_buffer) + 1);
buf_out := (buf_out + 1) mod (2 * max_number_in_buffer);

end ;
begin

-- null architecture body
end behaviour ;

The bounded buffer modelled as an EntityObject abstracts its operations and
its size. The size is abstracted by a generic parameter. The EntityObject
encapsulates its activity in a corresponding architecture body. It is possible
like in the example to have no activity modelled in the body. That means that
EntityObjects may be used to abstract both, active and passive objects.

As mentioned above, the size of the buffer is abstracted. The actual buff-
ersize is defined in an object instantiation which is similar to a component
instantiation in VHDL.
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architecture  environment of  environment_entity is
ObjectComponent  bbuffer

generic  (buffersize : positive)
end ObjectComponent ;
constant  actual_buffersize : positive := 42;

begin
object  bbuffer_object : bbuffer

generic map  (buffersize => actual_buffersize);
process

variable  object_reference : EO_Handle := bbuffer_object;
constant  actual_item : item_type := … ;

begin
send  object_reference put (actual_item);
…

end ;
…

end  environment;

In an object instantiation an object gets a name. This name can be used to
reference the object when sending messages to the object. Although the
objects per se are static it is possible to store references to them in variables
of the predefined type EO_Handle and to pass the references as parameters to
operations. This changes the static distribution boundaries between entities
into dynamic ones. It would be very interesting to see how the problem of
implementing dynamically changing references in distributed systems which
has been discussed in Section 3.3.18 is solved in OO-VHDL. Unfortunately,
there is no information available on that issue. The references can be used in
a send statement to request an object to execute an operation like in the
example which request the bbuffer_object to execute a put operation.

In case of concurrent requests the object provides a mutual exclusion syn-
chronisation between operations. However, the synchronisation between an
activity in an active object and an operation is not explicitly and clearly
defined. The synchronisation queues the request and blocks22 the sender until
the operation is executed. The problem with this synchronisation concept is
that there is no possibility to define condition synchronisation. This is the
reason why any synchronisation code is omitted in the example. If the buffer
is empty and a get operation is requested for execution there is no way to

22. There is a possibility to avoid the blocking in certain circumstances, how-
ever, we do not consider this feature here in more detail.
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queue the request until the buffer contains at least one item. What is also
omitted in the queuing mechanism of OO_VHDL is a re-queuing concept.

The example can be used to illustrate a general problem of extending
VHDL by any kind of language defined mutual exclusion synchronisation.
Say, for example, the implementation of the put operation contains a syn-
chronisation point in form of a wait statement, i.e., the execution of the oper-
ation consumes simulation time. As the sender of a message is blocked until
the operation is executed the send statement can be interpreted as a synchro-
nisation statement. From the perspective of the sender of the put message the
wait statement appears to be a synchronisation point within another synchro-
nisation point. Probably the semantics is that both synchronisation conditions
have to be met to allow the calling process to proceed its execution. The sim-
ulation time advances in the calling process according to the time consumed
in the called ObjectEntity. The more interesting question is what happens to
other callers whose requests are queued during the execution of the put oper-
ations? How are they synchronized? Does the synchronisation point in the
put operation force a synchronisation of callers of other operations even if
the other operations potentially do not contain a synchronisation point at all?
The synchronisation concept as a whole suddenly depends on the queuing
policy of the message queues of EntityObjects.

Another synchronisation mechanism of the language extension is based
on a a rendez-vous concept. The difficulties with such a concept in the con-
text of object-oriented modelling have been discussed in previous chapters
on other design methodologies and therefore are not considered here any
more.

In order to support re-use OO-VHDL provides inheritance mechanisms
for entities and EntityObjects. A new entity can be derived from an existing
one. It is possible to modify the new entity by adding new ports and generics
to it.

A derived entity inherits the architectures of its parents. The language
extensions also allow the extension and modification of existing architec-
tures. Such a modified architecture belongs to the same entity as the original
architecture. At the same time it belongs to all derived entities according to
the inheritance mechanism. It is not only possible to add new declarations
and statements to a derived architecture, OO-VHDL also allows to override
existing concurrent statements which model the behaviour of an entity. How-
ever, such modifications ignore basic object-oriented principles because there
is no abstraction of the behaviour and thus any modifications require an anal-
ysis of the implementation of the behaviour which breaks encapsulation.
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EntityObjects provide the same inheritance mechanisms like entities.
That means, it is possible to extend and modify activities of entities by break-
ing encapsulation principles. Additionally it is possible to extend and modify
behaviour modelled by operations. OO-VHDL allows to override operations
in an EntityObject. The example of the extension to the bounded buffer looks
as follows:

EntityObject  x_buf2 is new  bbuffer
operation  empty ( return_val : out  boolean);
operation  get2 ( item : out  two_items_type);

end EntityObject  x_buf2;

As the derived EntityObject modifies the interface the derived architecture
which provides the implementation must belong to the derived EntityObject.

architecture  extended_behaviour of  x_buf2 is new  behaviour
operation  empty ( return_val : out  boolean) is …
operation  get2 ( item : out  two_items_type is …

begin
end  extended_behaviour;

The inheritance mechanism combined with the un-typed reference mecha-
nism allows to model polymorphism. A variable of type EO_Handle can be
used to reference various polymorphic EntityObjects and to send them the
same message.

The OO-VHDL approach is primarily made for rapid prototyping using a
fixed message passing mechanism and therefore there is no close link to fur-
ther synthesis steps. The problem is similar to translation problems of the
SDL high level communication mechanisms.

OO-VHDL can be seen as a typical entity based approach to extend
VHDL. Exemplary, the extension and modification of activities in an archi-
tecture has been identified as a difficulty in such approaches. Introducing
mutual exclusion synchronisation concepts into the language has also to be
identified as a principle problem as far as simulation time is concerned.
Again, we can note that porting successful modelling concepts from other
languages arises difficulties due to the existing timing and synchronisation
mechanisms of VHDL.

5.2.4 Protected objects

Shared variables have been introduced into the language to support object-
oriented modelling in VHDL [24]. However, making shared variables part of
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VHDL causes conceptual problems. As already mentioned above, one of the
main problems is that the language does not guarantee the synchronisation of
such an access to a shared variable by multiple processes within one simula-
tion cycle. To solve the problem proposals23 have been made to introduce a
mutual exclusion synchronisation for accessing shared variables as part of a
revised language [91]. The proposal is based on a monitor concept. Such a
monitor is called protected object and its type protected type. A protected
type has an interface and an implementation. The interface provides opera-
tion declarations which can be used to access data which is encapsulated in
the implementation. Such an operation operates atomically on an associated
protected object and thus provides mutual exclusion synchronisation. It is
called protected subprogram. Different to for example OO-VHDL there is no
concurrent activity associated with such an object. In the terminology of the
thesis protected objects are passive objects. The example of the bounded
buffer could be modelled according to the latest24 published version of the
proposal as follows:

type  bbuffer is protected
procedure  put (item: item_type);
procedure  get (item: out  item_type);

end protected  bbuffer;

The corresponding implementation encapsulates the attributes of the object.

type  bbuffer is protected body
variable  buf : bounded_buffer_array ( 1 to  buffersize);
variable  buf_in : integer;
variable  buf_out : integer;
procedure put (item : item_type) is ...
procedure get (item : out  item_type) is ...

end protected body  buffer;

As it can be seen from the example there is no concept to model condition
synchronisation. An earlier proposal [90] mentions a guard mechanism as an
optional extension of the language which would allow to specify synchroni-
sation conditions. The resulting guarded operation is called entry. If a request
to execute an entry fails because the guard condition is not met the request is
queued in an entry queue25. The proposal also mentions a re-queue facility of

23. The proposals are the result of a DASC shared variables working group.
24. We are referring to version 5.7 here.
25. In the terminology of the thesis an entry queue is a message queue.
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the entry queue. As discussed in Section 3.3.8 such a mechanism provides
the concepts for condition synchronisation. In combination with the timing
model and synchronisation concept of VHDL some effects have to be consid-
ered. An entry call whose synchronisation condition is met may be executed
within one delta delay. From the perspective of the process the entry call
behaves basically like a normal subprogram call. If the condition is not met
the call may be delayed for a certain amount of simulation time until the con-
dition is met. Meanwhile signal values may update. The entry call suddenly
behaves like a potential synchronisation point. For a caller it is not predicta-
ble whether a call causes a synchronisation with respect to simulation time
and corresponding updates of signal values or not. Another problematic
effect related to timing is caused by using a wait statement in an entry or pro-
tected subprogram. The details have been discussed in the section about OO-
VHDL. To avoid these strange effects the latest version of the proposal omits
entry queues and requires protected subprograms not to contain wait state-
ments. This guarantees that all calls to protected subprograms are executed
within one delta delay with only synchronizing the access to the protected
objects. Signals are not affected from such a local synchronisation.

We can state that the proposal to design shared variables as protected
objects solves existing problems of shared variables. Protected objects of the
proposal support object-based concepts with restrictions in the modelling of
timing and deficiencies in the modelling of synchronisation conditions.

The proposal is limited to object-based modelling. Inheritance as a key
concept of object-oriented techniques is not supported by the proposal.

5.2.5 Minimally extending VHDL by monitors and inheritance

To overcome the limitations of the object-based approach a proposal has
been made to add an inheritance mechanism to the monitor concept for
shared variables [174]. The proposal is based on an early version of a moni-
tor concept for shared variables. In this concept subprograms of the monitor
are similar to the protected subprograms of the protected object approach.
The monitor performs an implicit lock on all in or inout actuals of these sub-
programs. Different to the previous proposal the synchronisation not only
concerns the access to the shared variable but any actual. The difference
especially becomes important if wait statements are allowed in monitor sub-
programs and signals are passed as parameters. What happens to a signal
which is passed as a parameter to a monitor subprogram and which has a
transaction scheduled during the execution of the subprogram and what hap-
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pens to signal assignments during the execution of the subprogram from
within other processes? The approach does not support the modelling of con-
dition synchronisation.

In the proposal shared variables with their subprograms are identified as
objects similar to the protected objects in the previous proposal. Motivated
by the idea not to model objects only by variables the extension of the moni-
tor concept to signals, constants, and files is suggested. Unfortunately, there
is no explanation how this exactly should work. Therefore we restrict our
considerations on the shared variables extensions.

A syntax construct is proposed for the shared variables which introduces
a class notation. We illustrate this by an example:

type  bbuffer is class
variable  buf : bounded_buffer_array ( 1 to  buffersize);
variable  buf_in : integer;
variable  buf_out : integer;
procedure  put (object : inout  bbuffer; item: item_type);
procedure  get (object : inout  bbuffer; item: out  item_type);

end class  bbuffer;

It can be noticed that different to later versions of the protected object
approach the variable declarations are part of the type specification and not
of the body. Another smaller difference is that the object has to be explicitly
passed as a parameter to a monitor subprogram.

Based on the class notion a concept for incremental modification is pro-
posed which supports multiple inheritance. We illustrate this by an example
of a class lock:

type  lock_class is class
variable  object_is_locked : boolean := false;
procedure  lock (object: inout  lock_class);
procedure  unlock (object: inout  lock_class);

end class  lock_class

The execution of the operation lock blocks the execution of any operation of
the object different from the unlock operation until an unlock operation is
executed. We can use this class to build a new buffer lb_buf which can be
locked and unlocked:

subtype  lb_buf is  bbuffer, lock_class class
end class  lb_buf;
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The new class lb_buf inherits all the variables and operations from both par-
ent classes. If required an inherited operation could be overridden. The sub-
type notation of a derived class suggests that there is a subtype relation
between a class and its derived classes. One of the interesting questions
related to that example is how could a lock and unlock operation be imple-
mented without a possibility to model condition synchronisation in the
approach and how could the synchronisation constraints be extended to the
inherited operations from the class bbuffer. The proposal does not answer the
question.

Although it is possible to override inherited operations it is somewhat
unclear how to model polymorphic objects in a concurrent context. A model-
ling concept for heterogeneous object containers in a concurrent context is
missing. There is neither a predefined assignment operation for such objects
nor is there a mechanism which would allow to allocate such an object or to
reference such an object. Generally, the copying of a monitor object is a
problematic issue. What would it mean to copy a monitor which executes an
operation and has some other operation requests queued? A reference mecha-
nism for objects on the other hand would require VHDL to allow passing
pointers across process boundaries.

If polymorphism is not supported for objects which are used in a concur-
rent context the difficulties mentioned in Section 3.3 about preserving the
subtype relation between derived classes with respect to their synchronisa-
tion properties is not relevant for this approach. The subtype notation in the
syntax of the extension makes sense.

The proposal is based on a language change with modification in the sim-
ulation concept of VHDL. The modifications are so fundamental that it is not
possible to implement a translation concept from the language extension to
VHDL.

5.2.6 Classification orientation

A classification oriented approach to extend VHDL is described in [37,38].
The term classification orientation is used in [38] to describe language con-
cepts which provide the possibility to classify objects with the same behav-
iour and structure.

In the approach a class is described by a class declaration which can be
seen as an abstract interface of the class. It abstracts the methods and generic
parameters of a class. A class declaration also may contain declarations
which can be used to model the attributes of a class. The declarations which
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are part of the class declaration also can be used to declare types and subpro-
grams. Although they are part of the class declaration the declarations are not
automatically accessible to clients of a class. The accessibility is controlled
explicitly in the declaration by declaring the declarations as either public, pri-
vate, or restricted. Public declarations are accessible to all clients, restricted
declarations to child objects and private declarations are encapsulated in the
class and protected from any external access. The bounded buffer example
can be used to illustrate this.

class  bbuffer is
generic  (buffersize : positive);
private type  bounded_buffer_array is

array  (positive range <>) of  item_type;
private buf : bounded_buffer_array ( 1 to  buffersize);
private buf_in : integer;
private  buf_out : integer;

begin
public method  put (item: item_type);
public method  get return  item_type;

end class  bbuffer;

The introduction of a genericity concept in combination with local type dec-
larations appears to be the most advanced abstraction concept for declaring
classes.

The actual implementation of a class can be described in a class body. If a
method is called the corresponding method is executed. The caller is not
blocked if the method does not have any return values. If the method passes
values back to the caller the caller is blocked until the method execution has
finished. The method starts its execution independently from other methods
already executing or concurrently called. The approach supports the model-
ling of concurrent objects. The internal synchronisation between concur-
rently executing objects has to be explicitly modelled in the methods. The
explicit modelling of synchronisation is supported by language constructs of
the extension which allow to refer to the state of execution of a method in
another method26. However, the new language constructs do not provide the
possibility to queue messages depending on the state which would be
required for modelling condition synchronisation.
The implementation of the example could look as follows:

26. In the terminology of the thesis we could say that it is possible to reference
implicit attributes of threads.
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public method  get return  item_type is
begin

-- Model mutual exclusion synchronisation:
if  (put'event or put'active) then

… -- get must not be executed to achieve mutual exclusion
-- Check precondition of get:
elsif  buf_in = buf_out then

… -- Error: Buffer empty, violation of precondition
else

buf_out <= (buf_out + 1) mod (2 * buffersize);
return  buf((buf_out mod buffersize) + 1);

end if ;
end ;

The extension uses the notation of a signal assignment to describe an assign-
ment to the attributes of a class. The underlying semantics is not clearly
described. From some considerations27 on a translation mechanism from the
extension to VHDL in [39] it can be concluded that this is an open issue in
the language extension.

As can be seen from the example the internal state of execution can be
referenced by attributes28. The attributes 'event and 'active are used to
observe the state of execution of the put method29. During the execution of a
put method the get method must not perform any access to the attributes of
the class. The problem is how to model the queuing of the method in such a
situation to achieve mutual exclusion synchronisation. A solution would be
to use a wait statement to delay the execution. The problems of using such a
synchronisation point in a method have been discussed. In the classification
orientation approach an additional issue arises in this context. It would be
necessary to recognize a method waiting at a wait statement as not being
active and it would be necessary to allow to make a wait statement sensitive
to the attributes which signal the state of execution of methods.

27. These considerations are not further discussed here as they only very gen-
eral and vague. They do not explain how to solve the problems of translation
concepts which have been presented in previous sections.
28. Attributes in the VHDL terminology like for example 'event are meant
here.
29. It is assumed here that only one method can be executed at a time. As the
attributes cannot distinguish different invocations of methods it is not clear
how to model mutual exclusion synchronisation between multiple invocations
of the same method.
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The synchronisation concept causes principle problems in modelling a
has-a relation between objects by hierarchically nesting objects30. Allowing
to nest objects would require to make the state information on the execution
of methods of a subobject visible to its enclosing object in order to support
the synchronisation of the enclosing object. This would break encapsulation
because there is no abstraction of the synchronisation modelling of objects.

The approach provides a multiple inheritance mechanism as a technique
for incremental modification. It is possible to override inherited methods.
The inheritance mechanism allows to inherit private, public, and restricted
properties separately from a parent. The consequences of such a mechanism
is that selectively inheriting properties does not preserve any kind of compat-
ibility between parent and child. Although the approach allows overriding of
methods it does not support polymorphic methods. If we selectively would
inherit public properties to extend the bounded buffer this would cause an
erroneous model:

class  x_buf2 use public  bbuffer is
begin

public method  get2 return  two_items_type;
end class  bbuffer;

Even if the derived class inherited the required private attributes the mutual
exclusion synchronisation as it is modelled in the get method would not work
any longer as expected. The get method could interfere with the get2 method.
To avoid this a re-implementation of the inherited methods would be neces-
sary.

From the consideration about the classification oriented approach we can
state that it provides an object-based language concept for modelling concur-
rent objects. The considerations emphasize the significance of synchronisa-
tion modelling. We can conclude that a mechanism to reference
synchronisation states is not sufficient for modelling internal synchronisation
of methods. The approach is a concrete example how complex inheritance of
synchronisation constraints can become.

5.2.7 The LaMI proposal

The LaMI proposal [21] is an entity based approach to extend VHDL. The
idea is that a design entity is an object belonging to a class. As stated earlier

30. It is not really clear from the proposal if it is possible to hierarchically nest
objects at all.
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VHDL entities lack a concept to abstract behaviour. Therefore a new type of
entities is introduced which models behaviour by operations. The operations
are then abstracted in the new entity which serves as interface of the object.
Such a new entity which abstracts operations must not contain any ports. The
operation body is implemented in corresponding architectures. An operation
in the LaMI proposal corresponds to a process. The difference to a process is
that an operation is started or re-started by calling the operation and that an
operation may pass parameters. Only signals are allowed as parameters of
operations. Such a restriction simplifies a translation concept from the exten-
sion to VHDL. A consequence of only using signals as parameters is that it is
not possible to return results of an operation to a caller immediately within a
delta cycle. As the abstraction of the operation does not contain any informa-
tion about the timing and synchronisation behaviour31 of the operation a
caller is not able to determine from the interface if signal parameters already
contain return values after the execution of an operation or if the return val-
ues are only scheduled for the future, for example the next delta cycle.

The general synchronisation between server and client is defined in a way
that a caller of an operation is blocked until the operation has finished its exe-
cution if it passes return values back to the caller. Otherwise an asynchronous
execution of the operation is performed. Operations in an object can be exe-
cuted concurrently, however, at most one invocation per specific operation.
Messages are queued which request the execution of an operation with the
same operation already executing in the object. Such messages are queued
until the operation executing at the moment has finished its execution. It is
not possible to explicitly control the queuing mechanism, in other words,
there is no language concept which supports the modelling of condition syn-
chronisation.

There are some limitations on the message passing concept. Messages to
objects only can be sent from an architecture body at the same design level.
This limitation avoids the problems of extending the distribution boundaries
of objects like for example the ones discussed in the section about OO-
VHDL. At the same time, the limitation makes it impossible to model a cli-
ent server relation between objects that are not in a has-a relation, in other
words, it is not possible to invoke an operation if the server is not a sub-
object of the client. Obviously this is a sever restriction if one tries to model-
ling a system as a set of communicating objects.

31. The general problem of using synchronisation points in operations have
been discussed earlier.
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The structure of an object is stored in an attribute which is called instance
variable32. Instance variables are encapsulated in the architecture and are
only accessible through the operations. Although the assignment statement to
assign values to an instance variable uses the notation of signal assignments
instance variables are similar to shared variables. Assignments to them
become immediately effective. If conflicting accesses to instance variables
occur by concurrently executing operations the protected object approach
presented in a previous section is proposed as a solution. Each instance varia-
ble is a protected object. The bounded buffer example illustrates the
approach:

Entity  bbuffer is
generic  ( buffersize : positive);
operation  put (signal  item: in  item_type);
operation  get (signal  item: out  item_type);

end  bbuffer;

The architecture is used to model the implementation:

architecture  behaviour of  bbuffer is
type  bounded_buffer_array is

array  (positive range <>) of  item_type;
type  po_bbuffer is protected

procedure  po_put (item: item_type);
procedure  po_get (item: out  item_type);

end protected  po_bbuffer;
type  po_bbuffer is protected body

variable  buf : bounded_buffer_array ( 1 to  buffersize);
variable  buf_in : integer;
variable  buf_out : integer;
procedure po_put (item : item_type) is ...
procedure po_get (signal  item : out  item_type) is ...

end protected body po_bbuffer;
instance variable  buf : po_bbuffer;

begin
operation  put (signal  item : in  item_type) do
begin

buf.po_put(item => item);
end operation put;

32. Please note, the meaning of the term instance variable in the LaMI pro-
posal that is introduced here is different from the one in the thesis.
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operation get (signal  item : out  item_type) do …
end behaviour ;

As the access to the attributes may conflict the protected object approach is
used as proposed in the LaMI approach. In the example, it would not work to
model each attribute separately as an instance variable. This would guarantee
an atomic access to each attribute but it would not guarantee the required
consistency between the attributes. The consistency issues force the model-
ling of the complete access in the operation as a call to a protected subpro-
gram. The object modelling in the LaMI approach becomes a kind of
wrapping a model of the buffer which is modelled as protected object.

The difference to directly using the protected object to model the bbuffer
is that it is possible to derive a new model by inheritance. All properties of an
entity are inherited in a derived entity. The proposal allows to override inher-
ited operations with a new implementation.

The proposal offers a broadcast mechanism in its message passing con-
cept. It is possible to send the same message to all objects that are in a spe-
cific class or in one of its child classes. By broadcasting the same message to
classes with various implementations of the same operation an exotic kind of
polymorphism can be modelled.

In the example of the bounded buffer it would be possible to derive a new
entity x_buf2 with the additional operations empty and get2. The problem
that occurs is how to implement the operations. To access the instance varia-
ble protected subprograms are necessary, but in the example, there is no pro-
tected subprogram which checks if the state of the buffer is empty. Even the
implementation of get2 could not be modelled by two successive calls of
op_get because this would not exclude any interference from other put or get
operations. A similar problem occurs if we introduce new instance variables.
The proposal does not provide a concept to preserve consistency between the
new and some old instance variables.

It can be concluded that it is not the entity or architecture which requires
an inheritance mechanism it is rather the protected object. Generally, it is the
object providing the actual encapsulation and synchronisation mechanism
which requires the inheritance mechanism. It is not possible to look at syn-
chronisation and inheritance independently from each other.

5.2.8 Objective VHDL

The discussion about the modelling of instance variables in the LaMI pro-
posal has shown that even in an entity based approach it would makes sense
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to provide object-oriented modelling concepts not only for the entities but
also for the variables. This is due to the fact that although entities may be
hierarchically instantiated in a has-a relation finally all attributes have to be
modelled by variables and to extend or modify properties of such variables
object-oriented modelling mechanisms are required.

A proposal of an entity based extension which provides such a mecha-
nism for attributes is Objective VHDL [130,133,134,135,136,137,138]. The
mechanism is based on an extension of the type system. It is extended by a so
called class type. Basically, such a class type is an abstract data type. It
encapsulates its structure and models its behaviour by associated subpro-
grams. A class type separates the specification from its implementation in
form of a declaration and a body similar to a protected object. The declara-
tion contains attribute declarations and subprogram declarations. Although
the attributes are part of the class type declaration they are only accessible
through the subprograms listed in the declaration. The body may contain
some more attributes and the subprogram implementations. Different to pro-
tected objects assignment is defined for class types.

An object of a class type is modelled by instantiating it either as a con-
stant, a signal, a variable of the class type or by a dynamically allocated
VHDL object of the class type. For each of them assignment is defined
accordingly. Attributes of a class type are either treated as constants, signals,
variables, or as objects of another class type according to their instantiation.
This has to be considered in the subprograms of class types which model the
access to the attributes. It is possible to specify the behaviour of an object
which is instantiated as a signal differently from the behaviour of an object
which is instantiated as a variable and differently from a constant. If the
behaviour is not explicitly specified either for signals, constants, or variables
then the behaviour is shared by all three. In such a case the object behaves
with respect to the so called common subprogram which models the shared
behaviour as if it were a constant33 independently whether it is a signal, con-
stant, or variable.

The bounded buffer example may provide behaviour for both, signals and
variables:

type  bbuffer is class
generic  (buffersize : positive);

33. This must not be confused with explicitly specifying behaviour for con-
stant objects only. The signal, constant, or variable objects are rather treated as
if they were passed as a constant parameter to the common subprogram.
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class attribute buf : bounded_buffer_array ( 1 to  buffersize);
class attribute buf_in : integer;
class attribute buf_out : integer;
for signal , variable

procedure  put (item: item_type);
end for ;
procedure get (item: out  item_type);

end class  bbuffer;

As it can be seen from the example it is possible to pass generic parameters
to a class type. Attributes are denoted as class attributes. In the example they
behave like signals or variables depending on the instantiation of the buffer.
In the class type body the procedures put and get require two implementa-
tions, one for signals and one for variables. Instantiating the buffer as con-
stant would normally make no sense.

type  bbuffer is class body
for signal

procedure  put (item: item_type) is
buf ((buf_in mod buffersize) + 1)) <= item;
buf_in <= (buf_in + 1) mod (2 * buffersize);

end ;
end for ;
for variable

procedure  put (item: item_type) is
buf ((buf_in mod buffersize) + 1)) := item;
buf_in := (buf_in + 1) mod (2 * buffersize);

end ;
end for ;
procedure get (item: out  item_type) is  …

end class body bbuffer;

In the implementation of put for variables the state change of the buffer
becomes immediately effective whereas in the implementation of the put for
signals a state change is only scheduled for the future, i.e., the next delta
delay. The only indication in the abstraction that put only may schedule a
state change and not actually perform a state transition is the fact that it is
specified as behaviour for a signal.

In Objective VHDL it is possible to derive new class types from existing
ones. A derived class type inherits the class attributes which are listed in the
parent’s class type declaration. It also inherits the subprograms and their
implementations in the class type body. Any attribute declarations in the
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class type body of a parent are not visible to a child. It is possible to add new
class attributes and subprograms to a derived class type and to override inher-
ited subprograms with another implementation.

type  x_buf2 is new class bbuffer with
function  empty return boolean;
procedure  get2 (item: out  two_items_type);

end  x_buf2;

In an implementation of class type it is possible to call a subprogram within
another subprogram. For example, it would be possible to implement get2 by
calling two times the procedure get, a proper synchronisation provided. Such
calls are bound statically, i.e., in derived class types get2 executes x_buf2’s
implementation of get even if get is overridden in a derived type. The pro-
posal also supports dynamical binding of such calls. A special prefix this is
provided for such a call. A call in get2 might look like this:

tmp_item := this.get;

The subprogram get2 invokes the potentially overridden implementation of
get in a derived class type. Such distinctions between dynamically and stati-
cally binding subprogram calls can become important for the modelling of
synchronisation concepts as we shall see later on (Compare Section 6.2.3).

Deriving a new class from an existing one establishes an is-a relation
between the class types but not a subtype relation. Objective VHDL provides
an extra mechanism to model a subtype relation on class types. The mecha-
nism allows the declaration of a class-wide type for each class type by using
the Objective VHDL attribute CLASS.

variable  classwide_bbuffer_object : bbuffer'CLASS;

As described in Section 3.2.7 a class-wide type includes all objects of the
corresponding class type and all objects of classes which are derived from
the class type. The class-wide type has the same interface as its correspond-
ing class type. Classwide_bbuffer_object has the procedure put for variables
and signals and the common function get in its interface. The common func-
tions empty and get2 are not part of its interface. As objects of derived
classes inherit all the properties of the parents a class-wide type may estab-
lish a subtype34 relation. Thus, all objects of a class-wide type and not only

34. Subtype relation is not used here in the strict VHDL terminology but in the
sense that derived classes are subsets of the class-wide type sharing common
properties especially behaviour.
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the objects of the corresponding class type provide the subprogram declara-
tions of the corresponding class type as part of their interface. Class-wide
objects of bbuffer'CLASS with the properties of the class type x_buf2 also
provide put and get as part of their interface.

From what was stated above it follows that an object of a class-wide type
is a heterogeneous object container. If an object is stored in such a container
it preserves in principle its type information and the related properties. The
object keeps its structure. Although the object also preserves its behaviour
the interface to communicate with the object is taken from the class-wide
type. In other words, an object that is stored in a heterogeneous object con-
tainer does not provide all its subprograms as services to clients but only
those that are part of the interface of the class-wide type. As mentioned
above, this is the same interface as the one of the class type corresponding to
the class-wide type. If a subprogram of such an object is executed it behaves
according to the properties of its actual type. Combined with the possibility
to override behaviour class-wide types can be used to model polymorphic
objects.

The extensions to the type concept require type check mechanisms for
class types and class-wide types to preserve the strong typing of VHDL. As it
is not possible to perform all the checks statically at elaboration time it is
necessary to perform some of them dynamically during simulation.

The approach presented so far is based on the same ideas and principles
as the proposal to extend VHDL which is part of this thesis and which will be
discussed later on. From a semantics point of view there are only a few subtle
distinctions between the proposals which we are going to discuss later on.
The main difference is that Objective VHDL uses another syntax compared
to the proposal of this thesis.

Objective VHDL not only provides the type extension concept but also an
inheritance mechanism on entities and architectures. The mechanism allows
to derive new entities and architectures from existing ones. If a new entity or
architecture is derived, basically, all the features from the parents are inher-
ited. It is possible to add some new features to the entry or architecture, for
example, new ports or new concurrent statements. It is also possible to over-
ride concurrent statements in derived entities or architectures. As the entities
and architectures do not provide an abstraction of their behaviour and as such
a concept is not added to Objective VHDL it is not possible to incrementally
modify behaviour without breaking encapsulation. Corresponding considera-
tions made in the discussion of the other entity based approaches can be
applied accordingly.
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As the designers of Objective VHDL are aware of the difficulties of
abstracting behaviour at an entity level and providing the corresponding syn-
chronisation mechanisms which have to be integrated into the timing model
and synchronisation concepts of VHDL, message passing and synchronisa-
tion at entity level is left to the designer. The designer still has to use VHDL
communication concepts but with the extended capabilities of the class types
for signals. Even with these extended capabilities reflective modelling espe-
cially of message passing concepts is a complex task. Therefore proposals
have been made to provide tool support for modelling message passing
[131,132]. Such an approach avoids the difficulties of the integrating differ-
ent synchronisation philosophies by separating the model for message pass-
ing from the VHDL synchronisation concepts.

In the example it would be possible to model the bounded buffer as an
entity/architecture pair.

entity  bbuffer_entity is
port  (in_channel: in  channel; out_channel: out  channel);
procedure  put (signal  object : inout  bbuffer; item: in  item_type);
procedure  get (signal  object : inout  bbuffer; item : out  item_type);

end  bbuffer_entity;

The operations of the class are modelled as procedures. As the state of an
entity class is stored in a signal of type class bbuffer the operations perform
their access to the entity’s state via the parameter object of type class bbuffer.
The corresponding architecture contains the subprogram bodies and a proc-
ess which dispatches the messages coming via the channel.

architecture  behaviour of  bbuffer_entity is
signal  buf : bbuffer;
procedure  put (signal  object : inout  bbuffer; item : in  item_type) is
begin

object.put(item);
end  put;
procedure  get (signal  object : inout  bbuffer; item : out  item_type) is
begin

object.get(item);
end  get;

begin
dispatcher : process
begin

wait on  in_channel'transaction;
if  in_channel.new_message then
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in_channel.dispatch(in_channel, buf, out_channel);
end if ;

end process ;
end  behaviour;

Channel is specified as a class type with a procedure dispatch as its subpro-
gram and a class attribute to model messages.

type  channel is class
…
class attribute  msg_attribute: base_message'CLASS:=

init_base_message;
function  new_message return  boolean;
for signal

procedure  dispatch (signal  in_channel: in  channel;
signal  object  : inout  bbuffer;
signal  reply_channel: out  channel);

…
end for ;

end class  channel;
The implementation of the subprogram dispatch receives a new
message and executes the polymorphic procedure exec depending on
the message received. The unusual situation that a parameter of class
type channel is required as parameter in the subprogram dispatch
which is just of class type channel is due to the fact that the object
which executes dispatch itself has to be passed as parameter to a
procedure call in the implementation of the procedure dispatch.

procedure  dispatch (signal  in_channel: in  channel;
signal  object  : inout  bbuffer;
signal  reply_channel: out  channel) is

variable  msg: base_message'CLASS;
variable  result_msg: base_message'CLASS;

begin
in_channel.receive (msg, reply_channel); --receive new message
msg.exec (object, result_msg); --execute the message
reply_channel.send (result_msg, in_channel); --reply results

end  dispatch;

Messages to the buffer and replies from the buffer are modelled as class types
which are derived from an abstract class type:

type  base_message is abstract class
end class  base_message;
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Abstract means that the class type does not require a body. The messages and
replies encode in a way the operations of the bounded buffer and the corre-
sponding results.

type  put_msg is new class base_message with
class attribute  item : item_type;
for variable

procedure  exec (signal  object : inout  bbuffer;
variable msg : out  base_message'CLASS);

…
end for ;

end class  put_msg;

The results of get are modelled by a class type get_result.

type  get_result is new class base_message with
class attribute  item : item_type;
…

end class  get_result;

The implementation of the procedure exec in the class type put_msg executes
the put operation of the bounded buffer which is modelled as a procedure put
in the entity bbuffer_entity. If the channel receives a put_msg it executes the
procedure put due to the dispatching mechanism. From a VHDL point of
view this requires an extension of the abstraction boundary of the procedure
put. This is solved in Objective VHDL by a special construct which makes
the subprograms of an entity visible to certain implementations of subpro-
grams in a class type body. The restriction with that mechanism is that the
implementations of the subprograms in the class type body are only used
within the corresponding entity. To be callable from somewhere else the sub-
program requires at least a second implementation in the class type body. In
the example of the put_msg the subprograms of the entity bbuffer_entity are
made visible to the procedure exec.

for entity work.bbuffer_entity -- make subprogram put visible
for variable

procedure  exec (signal  object : inout  bbuffer;
variable msg : out  base_message'CLASS) is

…
begin

put (object, item);
…

end ;
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end for ;
end for ;

The example sketches the various type classes which are necessary to add the
message passing mechanism to an entity class. It illustrates the difficulties of
high level communication and synchronisation modelling, namely, a proper
encapsulation and abstraction of low level protocol layers. The reasons can
be identified from the example as immanent in VHDL. Two channels are
used to model communication instead of encapsulate the whole communica-
tion in one class type because it is not possible to model bi-directional sig-
nals without using complex resolution mechanisms of VHDL even if no
access conflicts can ever occur. It is also problematic to abstract a channel
model from the server client relation in which it is used. In the example, the
channel uses the class type bbuffer. That means, there is no clear separation
between protocol layers. As a consequence the channel is not re-usable in
other server client relations.

An approach which avoids this unwelcome effect is to allow in certain
circumstances a procedure which is declared by a declarative item that is not
contained within a process statement to have a subprogram call with inout or
out mode signal parameters and the parameters not associated with formal
parameters of the given procedure35. The idea is to allow such an exception
for subprograms which are declared in an entity class and which use a homo-
graph of the name of the associated signal as a parameter. In the example the
procedure put would have a signal parameter buf instead of object. In the
procedure exec of the type class put_msg the procedure put is called with the
signal buf as a parameter. The parameter object of type class bbuffer is not
any longer required in the procedures of the other type classes. The problem-
atic issue of such an approach is that suddenly signal assignments located
somewhere in a model spread drivers of a signal anywhere in a model.

Another approach is to simply use a shared variable of type class bbuffer
to model the state of the entity class bbuffer_entity.

The example models one client server relationship. An extension to have
several clients is not straightforward. It would be possible to use a different
dispatching process which could model mutual exclusion synchronisation.
Another option would be to model several dispatching processes. The ques-
tion is then, how to resolve access conflicts to the object’s state. A com-

35. This would weaken the rules in the LRM how to update a projected output
waveform. The consequences would be that an analyser is not able to deter-
mine the drivers of a process at analysis time.
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pletely unsolved issue which is omitted in the example is how to integrate
condition synchronisation in such a concept of reflective modelling message
passing. It is not clear how entity classes could be useful to solve such prob-
lems.

This careful survey how to apply concepts of Objective VHDL discusses
modelling approaches and problems which are to be studies in the considera-
tions of the proposal of this thesis due to the similarities in the proposals
(Compare Chapter 6). They are used as a starting point for the considerations
about modelling concepts with the language extension proposed in this the-
sis. It shall turn out that there are not only similarities in modelling issues
between both proposals but also that there are some basic ideas on how to
translate the extension into VHDL which are applicable to Objective VHDL.

5.2.9 The Wright Laboratory report

The proposal presented in the previous section was based on the extension of
the type concept of VHDL by introducing class types. In this section we
present an alternative way to extend the type concept. The extension concept
was proposed in a technical report of the Wright Laboratories [113].

Its basic idea is to adapt concepts from the Ada9X draft36[18,93] to
VHDL. The proposal extends the VHDL type concept by derived types for
type extension. The syntactical notation for extending types is taken from
Ada. To derive a new type from an existing one the keyword new is used.

type  derived_type is new  parent_type;

The derived type is derived from the parent type and has the same properties
as the parent type. If the parent type is a record then the derived type is a
record with the same record elements. Different to a subtype declaration
which also could be used to declare a type37 with the same properties a
derived type declaration does not impose a subtype relation between the par-
ent type and the derived type. Each type may have a set of primitive opera-
tions associated with it. The primitive operations of a type include basic
operations, predefined operators, and for types declared in a package declara-
tion subprograms with a parameter or result of the type also declared in the
package declaration. Additionally a derived type inherits the primitive opera-
tions of its parent. For a derived type it is possible to override such primitive

36. The features are meanwhile part of Ada95 [19,95].
37. Strictly speaking in VHDL terms, a subtype is not a new type.
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operations which are inherited from a parent. As the derived type is a differ-
ent type to the parent the overridden operation overloads the parent’s one.

Like Ada, the proposal allows to extend a derived type. It is possible not
only to add new primitive operations but also to add additional elements to a
record. As a curio the proposal allows different to Ada to extend array types
although extendable arrays have been identified by the designers of Ada to
cause too much implementation cost.

Types which are allowed to be extended are marked by the keyword
tagged. Each object of such a type has an implicit element which indicates its
type. The element which stores the type information is called tag. It contains
the type information of the object during  run-time. The type itself and its
derived types are called tagged types. In the example of the bounded buffer
the buffer is modelled as a tagged type with the put and get operations as its
primitive operations.

package  bbuffer_package is
type  bbuffer is tagged private ;
procedure  get (object : inout  bbuffer; item : out  item_type);
procedure  put (object : inout  bbuffer; item : in  item_type);

private
type  bounded_buffer_array is array (positive range  <>) of  item_type;
type  bbuffer is tagged record

buffer : bounded_buffer_array (1 to  buffersize);
buf_in : integer;
buf_out : integer;

end record ;
end ;

The proposal assumes that the latest standardization of VHDL would include
an encapsulation mechanism in form of private types. Private types encapsu-
late the structure of a type. The part before the keyword private is the visible
part of a package. In the example, this part includes primitive operations of
the bounded buffer. The private part is hidden to the user of the package. It
contains a detailed description of the private type, i.e., its structure. In such a
way, the attributes of an object which are modelled by the elements of the
tagged types are only accessible through the primitive operations. The imple-
mentations of the operations are in the package body.

Modelling classes as tagged types allows the instantiation of objects as
signals or variables. In the example, only the instantiation as a variable would
make sense, because of the interface of the primitive operations. For objects
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instantiated as signals another set of primitive operations would be required
with a signal of type bbuffer as a parameter.

The proposal allows to extend the record by adding new elements to it.
The proposal allows, for example, to derive a new buffer type with an addi-
tional operation gget which reads an item from the buffer like the get opera-
tion. The difference between the get operation and gget operation is that a
gget operation only can be executed immediately after a get or a gget opera-
tion. This additional synchronisation constraint requires the tracing of the
operations’ invocation history. The result of that tracing could be stored in an
additional attribute. Thus, the derived type could be modelled as follows:

package  bbuffer_package_gb
type  gb_buf is new  bbuffer with private ;
procedure  gget (object : inout  gb_buf; item : out  item_type);

private
type  gb_buf is new  bbuffer with record

after_put : boolean;
end record ;

end ;

The type gb_buf is derived from bbuffer. It inherits the elements of the type
bbuffer. The new element after_put which stores the tracing of the invoca-
tions is added to the record. The derived type also inherits the primitive oper-
ations put and get. The declaration of the element to trace the invocation
history illustrates that there are no language concepts for modelling synchro-
nisation constraints. All kind of synchronisation including mutual exclusion
synchronisation has to be modelled explicitly in tagged types. In the exam-
ple, the interesting question about synchronisation modelling is how to add
the new synchronisation constraint without rewriting the inherited operations
put and get and without breaking their encapsulation. This is a problem
because the inherited operations do not record their invocation for tracing.
Such kind of problems are discussed in detail later on (Compare Section
8.1.4). The proposal does not provide solutions for that.

A subtype relation on tagged types is introduced by class-wide types.
Each tagged type implicitly has an associated class-wide type. Like in Ada it
is denoted by the attribute CLASS. The class-wide type is the union of the
corresponding type and all its derived types. A class-wide type is an indefi-
nite type which can be viewed as a kind of unconstrained subtype because its
size is unspecified. In VHDL the subtype indication must define a con-
strained subtype in an object declaration if the size of the base type is
unspecified. Constants of such a base type without a constrained subtype in
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the subtype indication define the constraints by their initial value. Likewise,
an object of a class-wide type must have a definite type. This is achieved by
initialization with a value of a tagged type. The class-wide object is con-
strained by the tag of the tagged type. Its tag must not change during the life-
time of the object.

Class-wide types are used to model polymorphic objects. A class-wide
object is treated as if it has the type which is indicated by its tag. If a primi-
tive operation is called with a formal parameter of a class-wide type the
primitive operation of the type indicated by the tag is executed. If such a call
occurs in a simulation the tag is determined during run-time and the corre-
sponding operation is selected. This dynamic selection is called dispatching
and is the key mechanism for modelling polymorphism in the language
extension.

As a tag of a class-wide object must not change during its lifetime only
dynamically created objects are appropriate for modelling polymorphism.
Essentially this means, that only parameters and objects designated by access
value can be used to model polymorphic objects. In the example, we could
model a heterogeneous object container for buffers with a designated subtype
which is a class-wide type.

type  classwide_bbuffer_designator is access  bbuffer'Class;
variable  polymorphic_pointer : classwide_bbuffer_designator;
…
variable  classwide_bbuffer_object : polymorphic_pointer := new  gb_buf;

Excluding signals from the modelling of polymorphic objects is somewhat
contradictory to the statement of the report that signals are the most likely
objects for object-oriented programming. The consequences of not being
able to model polymorphic objects with signals have been discussed in Sec-
tion 5.2.2. One main consequence is that there is no concept for modelling
communication and synchronisation between concurrently running objects.
Ideas to use object-oriented concepts to model the communication like in
Objective VHDL are not feasible because communication is based on signals
and signals cannot be used to model polymorphic objects.

Additionally to the concepts taken from Ada an inheritance mechanism
for entities and architectures is proposed. Similar to the tagged types concept
an entity can be marked as expandable by the keyword tagged. Different to
the tagged types multiple inheritance is supported for entities. In the inherit-
ance mechanism a derived entity inherits the ports, generics, declarations,
and statements of its parents. This is like in all the other entity based
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approaches. It is possible to modify inherited parts, i.e., to override them.
The same mechanism can be applied to architectures in which it is even
allowed to remove inherited parts. The inheritance mechanism on entities
and architectures is not discussed here any further as all the consequences
and effects on encapsulation concepts and compatibility issues have been dis-
cussed previously.

We conclude the section by remarking that the type extension mechanism
with its combination of strong typing and flexibility very well fits in the
existing language concept and philosophy of VHDL. As we shall see later
on, the proposal to extend VHDL which is part of this thesis is also a tagged
type approach, however, one which avoids the restrictions on modelling
class-wide signals.

5.2.10 SUAVE

In the SAVANT and University of Adelaide VHDL Extensions (SUAVE)
project proposals for extensions to VHDL for high-level modelling are devel-
oped [6,9]. The extensions are intended to remove deficiencies for system
level modelling in VHDL which are similar to those mentioned in Section
5.1.4.

The project identifies two main areas which require improvement [13].
Data modelling capabilities need to be improved and a better modelling sup-
port for abstraction of concurrency and communication is required. Com-
pared to the other proposals this is not really new. What is different to most
of the proposals is that the two areas are treated quite independently from
each other in SUAVE. There is a proposal for an object-oriented VHDL to
improve support for data modelling [7,10,11,14,16] and there is a proposal
for abstraction of concurrency and communication in VHDL [8,15].

The object-oriented extensions develop the tagged types approach of the
Wright Laboratories further. The extension provides the concepts of tagged
types, derived types, primitive operations, private types, and class-wide
types. If we modelled the example of the bounded buffer as a tagged type it
would look identical to the code from the Wright Laboratory.

The SUAVE extension removes the restriction of not supporting signals
as polymorphic objects. The restriction was caused by the fact that a class-
wide type was treated as indefinite or unconstrained type for which we only
can declare objects with explicit constraints or initial values. The tag of an
object was treated as part of the constraint and after the elaboration of an
object declaration it is not possible to change the constraints, i.e, to change
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the tag. Thus, a class-wide signal was not able to change its tag after elabora-
tion.

A proposal to remove these restrictions in order to support polymorphism
of class-wide signals originally was made in [151]38. A class-wide type is
treated as a constrained type with the tag not being a part of the constraint.
Object declarations of such a constraint type do not require any further con-
straints. Such objects are allowed to change their tags during simulation.

SUAVE takes a similar approach to achieve the same effect. It distin-
guishes if a class-wide object is modelled as constant, variable, or signal. For
signals it defines a class-wide type to be an unconstrained type for which we
can declare a signal without explicit constraint or initial value. The class-
wide object is not constrained by a tag. Its tag may change during the life-
time of the object.

If a class-wide object is modelled as a constant it must be initialized with
a value of a specific tagged type. Variables must be declared to have a spe-
cific type. Although objects designated by an access value are variables
which always have a specific type it is possible to model polymorphism by a
variable of an access type which has a class-wide type as its designated sub-
type.

Supposed we have primitive operations for signal parameters we would
have two possibilities to model a heterogeneous object container for a
bounded buffer. We could model it as variable of an access type:

type  classwide_bbuffer_designator is access  bbuffer'Class;
variable  polymorphic_pointer : classwide_bbuffer_designator;

Alternatively it could be modelled as signal of a class-wide type:

signal  polymorphic_buffer : bbuffer'Class;

The first modelling approach allows the modelling of class-wide instance
variables. The limitation with objects containing such class-wide instance
variables is that they must not be exported across process boundaries. Pass-
ing class-wide objects across the boundaries is possible with the latter model-
ling approach.

Applying the considerations on distributed objects in Section 3.3.18 we
can state that SUAVE supports a modelling style which is a compromise
between providing instance variables and forcing a reference free communi-

38. The proposal is a predecessor of the one made in this thesis
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cation between processes by a copy model. Thus, it combines a high degree
of modelling flexibility with implementation efficiency.

In the Wright Laboratory approach a derived type is a new type which is
different from its parent. This is the same in SUAVE, additionally, the two
types are considered as closely related types in SUAVE. As a consequence a
type conversion provides for explicit conversion between the types. There are
some limitations on the conversion. Basically, only a conversion from a
derived type to a parent is allowed. Such a conversion does not change any
attributes in an object including its tag it rather changes its view. Therefore
SUAVE refers to such a type conversion as a view conversion. Conversions in
the other direction require aggregates which can add record elements to
existing records.

A view conversion is a mechanism to control dispatching. It could be
used to model dynamic binding of internal calls to primitive operations from
within other primitive operations of the same type. It is possible to re-dis-
patch a call to a primitive operation to another operation. For example, an
implementation of the primitive operation get2 of a bounded buffer x_get2
could use two subsequent calls to the get operation39 which is a primitive
operation of x_buf2 inherited from the bounded buffer bbuf.

procedure  get2 ( signal  object : inout  x_buf2,
signal  items : out  two_items_type) is

type  x_buf2classwide is  x_buf2'Class;
begin

get(x_buf2classwide (object), items(1));
get(x_buf2classwide (object), items(2));

end ;

The view conversion of objects to a class-wide actual results in a dispatching
call of get. In a derived type if get is called it is not the implementation of
x_buf2 which is executed but the implementation of the derived type. In
other words, in a dispatching call of get2 re-dispatching of get occurs
because of the view conversion.

The extensions in SUAVE described so far support re-use by providing
polymorphism. Additionally to the extensions for dynamic polymorphism
there are also mechanisms in SUAVE which allow the modelling of statically

39. The example assumes here that there are no synchronisation problems
with that implementation. Different to the example in the previous section the
get operation must be modelled as a primitive operation of bbuffer with a
parameter of class signal.
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polymorphic objects. Genericity provides static polymorphism by abstracting
from actual parameters by formal generic parameters. The rudimentary con-
cepts of VHDL for genericity are generalized in SUAVE. It is not only possi-
ble to pass generic parameters to entities, architectures, and blocks, it is also
possible to pass them to packages and subprograms. The items to be passed
as generic parameters include constant parameters, formal types, formal sub-
programs, and packages. The theory of genericity, its flexibility, the concept
to preserve typing, and the mechanisms to make genericity safe are taken
from Ada.

The extended genericity concept includes the possibility to model a
derived type as a generic parameter of a package. Such an approach can be
used to model mixin inheritance. As described in Section 3.2.13 mixin inher-
itance is a technique which allows to inherit properties from various tagged
types but which avoids the complexity of multiple inheritance.

We can illustrate this with the example of the bounded buffer and its
derived buffer lb_buf. The properties of lb_buf are described in detail in the
section about the monitor extension with inheritance. The buffer has two
additional operations lock and unlock which it inherits from another class
and which can be used to blocks the execution of any operation of the object
different from the unlock operation until an unlock operation is executed.

The package which provides the lock uses the generic parameter to
abstract from the tagged type which uses the lock and unlock operations. To
preserve type compatibility both, the lock_type40 and the bounded buffer
require a common ancestor.

package  lock_package is
generic  ( type  generic_tp is new  common_parent with private );
type  lock_type is new  generic_tp with private ;
procedure  lock (object : inout  lock_type);
procedure  unlock (object : inout  lock_type);

private
type  object_locked_or_unlocked is  (unlocked, locked);
type  lock_type is new  generic_tp with record

lock_on_object: object_locked_or_unlocked;
end record ;

end ;

40. lock_type in the example corresponds to lock_class in the monitor exam-
ple from Section 5.2.5.
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The new buffer is derived from an instantiation of the lock_type which has
the bounded buffer as an actual parameter:

package  bounded_buffer_package_lb is
type  lb_buf is new  bbuffer with private ;

private
package  lock_buffer_package is new  lock_package(bbuffer);
type  lb_buf is new  lock_buffer_package.lock_type with null record ;

end ;

The derived type lb_buf inherits the lock and unlock operation from the
instantiation of lock_type. The issue how the synchronisation concepts of
lock and unlock are extended to the inherited put and get operations is still an
open question. We shall discuss this question when we present the language
extension of this thesis.

The example also illustrates another interesting language extension. The
limitation to use packages only as top level design units in a library is
removed. It is possible with some smaller restrictions to hierarchically nest
packages in other packages, in entities, architectures, and subprograms. This
feature improves thoroughly the encapsulation mechanisms of VHDL.

There are some more extensions on the type concept like abstract and
limited types which are taken from Ada. They also in combination with
tagged types improve the level of abstraction for modelling data.

Generally, all the language features taken from Ada integrate nicely with
existing language features of VHDL. This is not surprising because the origi-
nal definition of VHDL drew heavily on Ada.

The extension of this thesis is also related to Ada and would co-operate
with the presented proposals of SUAVE to improve data modelling. We shall
see this later on.

The proposal of SUAVE for abstraction of concurrency and communica-
tion is separate from the object-oriented extensions. It takes concepts from
system level description languages like SDL and Estelle. The main exten-
sions are abstract communication by channels, adding an abstraction mecha-
nism to processes, and supporting dynamic creation of processes.

The new channel concept is similar to the one from Estelle, i.e., SUAVE
provides an asynchronous message passing via its channels. A channel is a
new class41 of objects like constants, signals, and variables. Similar to these
classes channels are typed. The type definition looks similar to a file type
definition.

41. Class is used here in the LRM terminology of VHDL.
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type  channel_type_name is channel of  message;

Like signals are used as formal ports in interface lists channels are used as so
called formal channels. As channels are only uni-directional they may have
the mode in or out in an interface list. In the terminology of the thesis such
formal channels are interaction points which abstract synchronisation. The
synchronisation is implemented in the channels which have a message queue.
Sending to a channel means to put a message into its queue and receiving
means to read a message from the queue. To send and receive messages from
channels explicit send and receive statements which refer to the channel are
used. As the communication is asynchronous a sender continues its execution
after putting a message into the channel’s queue. If several messages are sent
simultaneously to the same channel the messages are put in a non-determin-
istic order into the queue. Likewise, a receiver reads a message from the
buffer and continues its execution. If there is no message in the queue the
receiver waits until a message has arrived. Multiple receivers which all read
the same channel all receive identical messages in the same order.

If multiple messages arrive on multiple channels SUAVE allows the
selection of alternative channels for receiving these messages. It is possible
to guard the selection of a message. Guarding the receive of message is a
way to model condition synchronisation.

We illustrate this with the bounded buffer example. The synchronisation
of the bounded buffer is modelled in a process with the messages as channel
variables. The bounded buffer itself is modelled as variable. The type of the
variable is x_buf. This type of buffer provides primitive operations to check
whether the buffer is in the synchronisation states empty or full. We can
interpret the operations as a controlled way to break encapsulation of the
buffer. Breaking encapsulation is required because synchronisation is per-
formed externally in the process.

process  buffer_synchronisation is
port  ( channel get_msg : in  get_msg_type;

channel get_rply : out  get_rply_type;
channel put_msg : in  put_msg_type);

variable  bounded_buffer : x_buf;
variable  item : item_type;

begin
select

when  not (empty (bounded_buffer)) =>
receive from  get_msg;
get (bounded_buffer, item);
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send  item to  get_rply;
or when  not (full (bounded_buffer)) =>

receive  item from  put_msg;
put (bounded_buffer, item);

end select ;
end process ;

If the process receives a message it selects a receive statement that has a
guard that evaluates to true and that has a message in its buffer. The receive
statements as new synchronisation points take the place of wait statements in
the example. The process performs exclusion synchronisation while the
select statement models condition synchronisation. The process is an addi-
tional level of abstraction to model the synchronisation separately from the
implementation. According to Section 3.3.14, the task of the additional level
is to implement the matching phase. A get message is only received if the
buffer is not empty and a put message is only received if the buffer is not full.
In case there are no messages in the corresponding channels, the process
blocks until a message arrives in a channel which is named in a receive state-
ment and whose guard evaluates to true. The receive statement and any fol-
lowing statements are executed as guarded operation. It is not possible to re-
queue from the operation to a channel in the select statement. As the receive
statements are executed after the evaluation of the guard it is not possible to
refer to the content of a message in a guard.

For example, we are not able to model the synchronisation conditions of a
buffer with an n_put operation which may put a variable amount of items
into the buffer. To check if it is possible to put the items into the buffer it
should be either possible to receive the message, read the number of items
and to eventually re-queue the operation or to refer to the number of items in
the guard before accepting the n_put operation.

The modelling approach in the example of the buffer x_buf is appropriate
for the synchronisation modelling of the bounded buffer. The problem is that
it does not support re-use. For example, if we think of the derived buffer
x_buf2 it becomes obvious that a different process with a new select state-
ment is required as the synchronisation conditions have been modified.

select
when not (empty (bounded_buffer)) =>

receive from  get_msg;
…

or when not (empty (bounded_buffer) ) and
not (one_item_in_buffer (bounded_buffer)) =>
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receive from  get2_msg;
…

or when not (full (bounded_buffer)) =>
receive  item from  put_msg;
…

end select ;

The get2 operation only can be executed if two or more items are stored in
the buffer. The check of this new synchronisation state has to be performed
as part of the select which means to re-implement the matching phase. An
additional operation one_item_in_buffer which makes the new state exter-
nally visible is also required.

The synchronisation modelling does not integrate with inheritance in
SUAVE. Also, the synchronisation mechanism interacts with the original
synchronisation and timing concept of VHDL similar to previously discussed
rendez-vous concepts. A receive statement introduces a synchronisation
point into the language. The consequences of such additional synchronisation
points have been discussed earlier.

From the example which models the synchronisation separately in a proc-
ess another extension of the language can be seen. The extension provides a
new kind of process which abstracts concurrency. The new kind of process
has a specification which models the abstraction boundary and a body which
models the implementation. The specification abstracts the communication
by ports and formal channels and other features by generic parameters. For
example, the specification of the example abstracts the channels:

process  buffer_synchronisation is
port  ( channel get_msg : in  get_msg_type;

channel get_rply : out  get_rply_type;
channel put_msg : in  put_msg_type);

end process ;

As it can be seen from the example the specification does not abstract the
synchronisation.

Such a new kind of process is a template which can be instantiated. An
instantiation is similar to a procedure call. It can occur as sequential or con-
current statement. The concurrent statement works as expected. It is equiva-
lent to a block statement containing a process whose declaration part and
statement part are taken from the process body. The execution of the sequen-
tial instantiation causes an elaboration of the process. After elaboration the
process starts its execution. The execution is performed concurrently with the
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instantiating process. It is not only possible to dynamically create processes
during simulation it is also possible to terminate them. As a consequence
drivers are dynamically created and removed in a simulation. Creation and
removing of drivers is treated as if drivers were connected and disconnected.
This integrates this new powerful feature seamless into the existing language
philosophy of VHDL.

The dynamic creation of processes allows the modelling of concurrent
objects. However, the signals which are used to implement the objects must
be guarded signals to allow the drivers to be connected and disconnected. A
guarded signal of tagged type or class-wide type would require the definition
of a resolution mechanism on the tagged type or class-wide type. That
means, the integration of the dynamic concurrency concept with the object-
oriented extensions is an open issue in SUAVE.

Generally, we can conclude that the SUAVE approach proposes very
powerful features from system specification languages for integration in
VHDL. Each of the features can be conceptually integrated with the existing
language. However, the integration of the proposed object-oriented features
with the proposed features to abstract concurrency which are especially
required to model condition synchronisation has been shown to be an
unsolved issue.

The proposal of this thesis to extend VHDL which is based on similar
principles takes care of the synchronisation modelling and its integration
problems. It offers modelling concepts to avoid them as we shall see later on.

5.2.11 Variant records

An idea to extend VHDL which is closely related to the tagged types
approaches is the proposal42 to introduce variant records into the language
[50]. A variant record is a record type which may exist in several variants. A
special record element indicates which variant is assumed by a record at a
given simulation time. The special element is called selector. Depending on
the variant, alternative record elements could be included in the record or not.

The terminology for variant records of Pascal [99] points to the relation
between the approaches. Pascal uses the term tag field to denote the special

42. Actually, there are some variants on variant records in the proposal which
are not further discussed here. For example, the proposal presents an Ada-like
approach in which the choice between alternatives is governed by a discrimi-
nant, like for example:
type bbuffer_classwide (discriminant: tag_field := bbuffer_tag) is …
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record element which indicates the actual variant of the record. The explicitly
modelled special record element in a variant record corresponds to the tag of
a tagged record. We can illustrate this by the example of the bounded buffer.

type  tag_field is  (bbuffer_tag, gb_buf_tag, lb_buf_tag);
type  bbuffer_classwide is record

buffer : bounded_buffer_array (1 to  buffersize);
buf_in : integer;
buf_out : integer;
with  tag_field select

when  bbuffer_tag =>
null;

when  gb_buf_tag =>
after_put : boolean;

when lb_buf_tag =>
lock_on_object: object_locked_or_unlocked;

end select ;
end record ;

An object of type bbuffer_classwide may exist in three variants of the
bounded buffer which are distinguished by the record element tag_field.
From the structure of the record it is possible to derive the principle idea how
to translate tagged records into VHDL in a pre-processor approach. The fol-
lowing discussion on variant records should also be considered when defin-
ing a language extension which can be translated into VHDL. It illustrates
main aspects of how to model objects as signals.

An object of a variant record may store values of different record variants
in a simulation. We could say it has a polymorphic structure. The interesting
question related to the polymorphic structure is what operations can be per-
formed to dynamically change the structure. If it is possible to change the
variant by assigning the selector another value then it would be an open issue
what happens to the values in the alternative record elements. Therefore the
variant record approach proposes to allow only assignments to selectors
together with at least assignments to the corresponding alternative record ele-
ments. In the most restrictive variant the approach only allows complete
record assignments to change the record variant. An aggregate value for a
variant record must contain locally static values for the selectors. This allows
a compiler to check at analysis time if the alternative record elements corre-
spond to the selector.

The consequences of these rules are quite obvious if they are applied to
variables. This is different if signals of variant records are used because
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assignments to signals affect the projected output waveforms of the corre-
sponding drivers. The rule does not define what happens to transactions
scheduled for alternative record elements after the selector changes its value
to select other record elements. Are they cancelled from the projected output
waveform? Do the drivers associated with the alternative record elements
even exist any longer after such a change in the selector? A related question
is what happens to wait statements which synchronize on an event in such an
obsolete alternative record element? As it was stated in Section 5.2.10 it
would be a complex task to define a language extension which allows the
dynamic creation and removal of drivers.

This situation is caused by the composite signal semantics of VHDL
which defines a composite signal to be a collection of signals. The effect is
that signals and drivers are dynamically created and removed in a simulation.
The variant record approach proposes to introduce atomic signals in VHDL
to solve the problem. Such an atomic signal is treated as a single signal even
if it is a record. A composite atomic signal is not a collection of signals.
Because there is only a single signal the elements of a composite signal only
can be used as a reference within an expression. They cannot be used as a
signal itself. For example, it is not allowed to use them in a sensitivity list.
Only the atomic signal as a whole can be used in a sensitivity list.

By introducing atomic signals it is possible to define variant record sig-
nals to be atomic by default [89]. According to what was stated above the
problem of dynamically creating and removing drivers does not exist in
atomic variant record signals. The introduction of atomic signals require
some more language changes which are not discussed here, for example
some modifications of the resolution mechanism would be required for
atomic signals.

The proposal considers variant records as predecessors of tagged and
class-wide types. The limitations of variant records compared to tagged types
are a missing support for re-use. Adding a new variant to a variant record
requires not only to add new alternatives to the record type definition but it
also requires a modification of each part of the model which distinguishes the
different variants in order to take the new variant into account.

The proposal in [50] considers the tagged types to just overcome these
limitations by making the selector implicit and by automatically introducing
the distinction by the dispatching mechanism.

So far, we have discussed the main proposals for typed based and entity-
based object-oriented extensions to VHDL. The following proposals do not
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provide something substantial new to the discussion on object-oriented
extensions. They are mentioned for completeness.

5.2.12 Data modelling extension to VHDL

A variant of the previously discussed proposal to minimally extend VHDL
by monitors is the approach to a data modelling extension to VHDL
[148,149]. In principle, it is the same idea which only uses another syntax. A
new type of record is introduced which is called abstract data type. The
example of the bounded buffer looks with the different syntax as follows:

type  bbuffer<buffersize : positive> is
record

protected :
buf : bounded_buffer_array ( 1 to  buffersize);
buf_in : integer;
buf_out : integer;

public :
procedure  put (item: item_type);
procedure  get (item: out  item_type);

end record ;

As it can be seen from the example, as slight modification to the monitor
approach is that the interface of the class distinguishes between protected and
public properties of a class. Although not in the example, private properties
are also allowed. The consequences of such a distinction especially on com-
patibility issues have been already discussed. The second modification is that
the object is not explicitly passed as a parameter to its operations. The third
modification which can be seen from the example is that it is possible to pass
generic parameters to an abstract data type, i.e., to a class.

Another modification of the proposal is that it allows to instantiate signals
of an abstract data type. In that case according to an example in [147] exclu-
sion synchronisation of the operations is not provided. Instead it is possible
to declare a process inside an abstract data type which can be used to model
synchronisation. The process has access to the attributes of the object and
thus may interact with the operations43. With such a process the signal
becomes an active object. For example, it would be possible to model the
synchronisation of a buffer of class lb_buf which was introduced in Section

43. It is not quite clear how this mechanism works with signals which are
ports.
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5.2.5 if the lock and unlock operations are called from different processes.
The buffer lb_buf has attributes which signal by toggling if a lock or unlock
operation has occurred. It also has an attribute to indicate if the buffer is
locked or unlocked:

type  lb_buf is public  bbuffer with
record

protected :
signal_lock : bit;
signal_unlock : bit;
object_is_locked : boolean;

public :
…

end ;

The process resolves the access conflict to the attribute object_is_locked
which is used to model condition synchronisation in the operations:

process_in_an_ADT : process  (signal_lock, signal_unlock)
begin

if  signal_lock'event then
object_is_locked <= true;

elsif  signal_unlock'event then
object_is_locked <= false;

end if ;
end process ;
…
procedure  put (item: item_type) is
begin

if  object_is_locked then wait until  not object_is_locked;
…
end procedure ;

Different to normal procedures operations which perform write access from
different processes do not cause the VHDL model to instantiate multiple
drivers for the object. It rather instantiates multiple drivers for the single
record elements of the object44. A resolved signal is not required. We could
say the resolution mechanism is modelled as part of the process and different

44. It is not clear what happens if the object is an inout port and the write
access is performed across distribution and abstraction boundaries of architec-
tures.
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to the existing resolution mechanism of VHDL the new one can refer to the
previous state of the object to perform the resolution.

While the example models parts of the condition synchronisation it does
not provide a concept for the exclusion synchronisation issue. At the same
time it introduces the previously discussed problem how to inherit a process
and its synchronisation concepts.

It is interesting to note, that it is not possible to distinguish from a proce-
dure’s interface if the procedure is applicable to signal objects, variable
objects of both.

The proposal takes some more concepts from previously discussed
approaches like for example, class-wide types, polymorphism, abstract
classes, or variant records. For these features we refer to the proposals where
they have been originally introduced.

5.2.13 Object-orienting VHDL for component modelling

The proposal in [139] is an entity-based approach which adds an inheritance
mechanism to entities. A class is an entity which can inherit its ports and
generics to derived entities. The derived entities may add new ports and
generics to the inherited ones. A detailed investigation of the mechanism is
omitted here as similar inheritance concepts have been discussed in previous
sections.

An architecture of the class may abstract from specific data structures in
an implementation. A binding to an actual type in an instantiation is per-
formed in a separate configuration. The abstraction of the data structure is
used in the architecture. This appears to be an extension of the existing
genericity concept of VHDL. The difference to the concepts discussed before
is that the abstraction is not required to be modelled as part of the entity. For
example, in an implementation of the bounded buffer gb_buf which was
introduced in Section 5.2.9 it would be possible to model the attribute
after_put to be of an abstract data structure. The configuration could define
that it is bound to an actual type that is able to trace the history. The subpro-
grams which trace and report the history and which use the attribute as a
parameter would be statically polymorphic. The actual implementation of the
subprograms in the implementation is selected depending on the binding of
the data structure in the configuration.

As the data structure is not abstracted in the entity, using the configura-
tion mechanism of VHDL breaks the encapsulation. (Compare the general
remarks on the VHDL configuration mechanism in Section 5.1.4)
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5.2.14 Structural VHDL and object-oriented principles

An entity-based approach which introduces an inheritance mechanism to
extend the configuration capabilities of VHDL is presented in [54]. A class is
modelled as an entity/architecture pair which can be modified and extended
by inheritance in the proposal.

A structural description45 of a system can be modelled in VHDL by com-
ponents connected to each other via signals. The configuration mechanism of
VHDL allows to bind entities and architectures to the components. Compo-
nent instantiations which are bound to an entity are interpreted as object con-
tainers in the proposal. Binding a new entity to the component instantiation
by modifying the configuration means to put a new object of a different class
in the container. In that view static polymorphism is modelled by configura-
tions. The proposal uses the term configuration based polymorphism. In the
proposal the configuration is viewed as a mechanism to model incremental
behaviour. The binding derives the behaviour of a component from the entity
it is bound to. The has-a relation originally modelled by a component instan-
tiation is re-interpreted as an is-a relation. The interconnection just models a
delegation mechanism which delegates incoming events to the instantiation.
To simplify the specification of such relations inheritance is introduced.
Inheritance means to directly instantiate the structural description of a parent
to a child without the additional abstraction boundaries of the components in
between. Thus, the inheritance mechanism extends the configuration mecha-
nism for modelling structural VHDL models.

The inheritance mechanism is not reduced to a strong delegation mecha-
nism. Its allowed to modify inherited parts of a structural description by
overwriting46 them. Overwriting is not restricted to behaviour, that means it
does not preserve the parent’s structure. The consequences on compatibility
issues have been discussed.

We conclude the section mentioning a curio in the syntax of the proposal.
The approach uses the keyword tagged which elsewise is used in type based
approaches, to mark entities, architectures, and components as potential par-
ents for inheritance.

45. Structural description is a description which lists elements of a system and
their interconnection. It must not be confused with the term structure used in
the context of objects and classes.
46. The exact meaning of overwriting is not quite clear here. Presumably it
means in difference to overloading that the overwritten part is not in the
derived class.
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5.2.15 Résumé

The analysis of the proposals on extensions to VHDL consolidates the con-
siderations on object-oriented hardware design methodologies. It extracts
some general issues which have to be carefully considered when extending
VHDL.

It is a major issue to integrate object-oriented extensions to the synchroni-
sation and concurrency model of VHDL. Especially, modelling of condition
synchronisation is an open question in the proposals. Adapting concepts
from existing system level specification languages emerged to be a difficult
problem. It turns out that compatibility considerations which are crucial for
re-use concepts and maintenance strategies are not appropriately considered
by most of the proposals. Additionally to language extensions corresponding
modelling methodologies are required which take advantage of the new lan-
guage capabilities.

The survey has shown two philosophies to extend the language. One phi-
losophy is to define the language extensions together with a translation
mechanism which translates the extensions to VHDL to achieve an easy inte-
gration of the new language into existing VHDL-based design flows. The
other philosophy is to design the extended language with no considerations
for such a translation. The latter approach allows more wide and powerful
extensions. In either case the goal is to preserve an upward compatibility of
VHDL to the language extension which allows the integration of existing
VHDL models into the new design approach.

From these conclusions it seems reasonable to add yet another proposal
for an object-oriented extension to VHDL. The proposal comes as part of a
modelling methodology. Issues of synchronisation and concurrency are stud-
ied in detail. Re-use aspects are considered by introducing modelling guide-
lines for compatibility which are based on the new language extension.

With respect to the integration of the extension into existing design flows
a translation concept is part of the proposal. It is a good compromise between
wide extensions and manageable complexity of the translation. More gener-
ally, the proposal is an approach to achieve powerful modelling improve-
ments with only minimal language extensions.





Chapter 6

Object-Oriented Extension to VHDL 6

We now come to the proposal of this thesis how to extend VHDL by object-
oriented features. The basic characteristics which make a language or meth-
odology object-oriented have been discussed in Section 3.2. Especially, they
include abstraction, encapsulation, inheritance, and polymorphism. Opposite
to some of the earlier mentioned language extensions these features are all
covered by the proposal we are going to present in this chapter.

We have introduced the need to integrate a system-specification language
for hardware systems into existing design flows. The integration is done in
the proposal through a translation concept which we present in this chapter.

The language extension is a typed based approach. It uses tagged types to
extend the existing type concept of VHDL. It can be viewed in this respects
as a predecessor of SUAVE. At the same time the approach of the thesis
appears to be a variant of the class types of Objective VHDL in many aspects
although it uses a different syntax.

To take advantage of the object-oriented paradigm an appropriate model-
ling methodology has to complement the object-oriented language. Thus, the
proposal for the language extension comes with a modelling style which
could be used as part of an object-oriented hardware design methodology. As
we shall see in the following chapters, the language extension and the model-
ling style are well suited to each other.

6.1 Overview

Before we present an elaborate description of the language extension we
want to give a short overview. It covers in a rough sketch the main concepts
and features of the extension. The overview is intended for the reader to get a
notion of models that are described in the language extension to VHDL.
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The basic feature that is added to the language is the concept of derived
types. A simple form of a derived type is a new type that is a kind of copy of
an existing type.

type  existing_type is tagged record  …
procedure  operation (parameter : existing_type);

type  derived_type is new  existing_type …
-- inherits the operations that characterize the existing type:
-- procedure operation (parameter : derived_type);

The features of the types including operations which characterize the types
are almost identical except the logical distinction that they belong to different
types. The derived type inherits the features of the existing type. Especially,
it inherits operations which characterize the existing type. The more general
form of deriving a type does not only copy a type but extends it in some way.
The type which is suited for such an extension is a record type where we can
consider extension as adding new record elements.

type  extended_type is new  existing_type with record
extension: a_type;

end record ;

The other kind of extension is the addition of new operations which charac-
terize the type or it is the modification of inherited operations.

procedure  new_operation (parameter: derived_type);
-- new operation which characterizes the derived type
procedure  operation (parameter: derived_type);
-- re-defined operation modifies an inherited operation

The inherited operations of a derived type behave almost identical to the
operation of the existing type. By re-defining the operations it is possible to
modify the behaviour.

Using derived types for modelling classes, we are able to model a class
hierarchy. To make the class concept object-oriented the language extension
introduces dynamic polymorphism to the type concept. Class-wide types
establish a means for modelling polymorphic objects.

variable  polymorphic_object : exisiting_type'Class;

The attribute 'Class of the language extension that decorates the type name
designates a class-wide type. The polymorphic object that has a class-wide
type allows late binding of operations.
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operation (parameter => polymorphic_object);

The implementation of the operation to be executed is determined during
run-time and depends on the actual type of the polymorphic object.

The language extension improves the encapsulation concept of VHDL
types. It is possible to model abstract data types that make their internal
structure only accessible via their operations.

type  adt is tagged type
private

private_element : a_type;
end record ;
procedure  operation_of_adt ( parameter : inout  adt);
-- private_element only accessible via operation_of_adt

The last feature of the language extension to VHDL we want to mention in
this brief overview is the extension of the linear elaboration model of VHDL.

During the modelling of derived types there may occur circular depend-
encies between packages containing different derived types which cannot be
elaborated by the standard VHDL elaboration model.

use  work.Q.derived_type;
package  P is  …

use  work.P.another_derived_type; -- illegal in VHDL
package  Q is  …

The extended model allows to postpone the elaboration of certain declara-
tions to break these dependencies.

use  work.Q.derived_type;
package  P is  …

postponed use  work.P.another_derived_type;
package  Q is  …

After this outline of the main language features we hope that the reader has a
first impression of the extensions which helps to understand the complete
language extension with all its details that are presented in the following sec-
tions.
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6.2 Type Extension

In the previous chapter we discussed two approaches (compare Section 5.2.9
and Section 5.2.10) which extend the type concept of VHDL by introducing
tagged types. We saw how it was possible to derive new types from an exist-
ing type. The structure and the primitive operations were inherited by a
derived type. It was possible to extend the properties of a derived type by
adding new elements to a tagged type, by adding new primitive operations,
and by overriding existing primitive operations.

We now present a similar approach which introduces tagged types as a
language extension to VHDL.

6.2.1 Tagged types

A tagged type is a special kind of record type which allows type extension. It
can be defined in a type declaration of a package declaration. Like any type
in VHDL a tagged type is characterized by a set of values and a set of opera-
tions namely the operations of explicitly declared subprograms that have a
parameter or result of the type, the predefined operators, and the basic opera-
tions. Additionally a tagged type is characterized by a set of primitive opera-
tions. That means, the primitive operations are the operations which belong
to a type. The primitive operations of a tagged type include its predefined
operations, its basic operations1 and procedures2 which have a parameter of
mode in or inout of the tagged type. Primitive operations are declared
together with the tagged type in the same package declaration. To distinguish
the procedures from the basic operations and the predefined operations we
refer to them as user-defined primitive subprograms. With this definition of
primitive operations we can state that the properties of a tagged type are
characterized by a set of values and primitive operations. This makes a
tagged type appropriate for modelling a class. The record elements model the
structure of the class and the primitive operations model its behaviour.

The separation of package declaration and body abstracts the behaviour
of a tagged type in the package declaration and encapsulates it in the body. It
is only allowed to have one tagged type declaration per package declaration

1. Compare Section 3 of the LRM.
2. Although it would be possible to extend the definition of user-defined prim-
itive subprograms to functions it is restricted to procedures here, mainly, to
keep the translation mechanism from the language extension to VHDL sim-
ple.
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in order to have a clearly laid out model structure and to keep the translation
from the extension to standard VHDL simple.

For example, we could use a tagged type to model the bounded buffer as
a class.

package bounded_buffer_package is
type  bounded_buffer_array is array (positive range  <>) of  item_type;
type  bbuffer is tagged record

buf : bounded_buffer_array (1 to  buffersize);
buf_in : integer;
buf_out : integer;

end record ;
procedure  get (object : inout  bbuffer; item : out  item_type);
procedure  put (object : inout  bbuffer; item : in  item_type);

end  bounded_buffer_package;

From the example we can see that a new reserved word tagged is introduced
into the language. It indicates that the record is a tagged type.

The record elements model the structure of the class. The subprograms
get and put are primitive operations of the tagged type because they have a
parameter of mode inout of the tagged type and they are declared in the pack-
age declaration. The basic operations of a record type like for example an
assignment to bbuffer or an aggregate of bbuffer are also primitive operations
of the tagged type. The primitive operations model the behaviour of the
bounded buffer, especially, the subprograms put and get. They perform the
access to an object of the tagged type. The objects which can be accessed via
a put or get operation are variables due to the interface list of the subpro-
grams. The other primitive operations of bbuffer, i.e., its basic operations,
may access all classes3 of objects, i.e., constants, variables, and signals.

6.2.2 Inheritance

The interesting thing about tagged types is that they introduce a possibility to
derive a new type from an existing one. To derive a new type we can write:

use work.bounded_buffer_package.all;
package bounded_buffer_package_derived is

type  derived_bbuffer is new  bbuffer with null record ;
end  bounded_buffer_package_derived

3. The term class is used here in the sense of the LRM.
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The type derived_bbuffer is said to be a derived type and bbuffer is the parent
type of derived_bbuffer. We also refer to the derived type as child. The
derived type is declared in a new package because the language extension
does not allow to derive from a type in the same package declaration as it is
declared4. Generally, two tagged types are required to be declared in differ-
ent package declarations.

The concept allows a derived type to become parent of another derived
type. The parent-child relations between the types establish a tree of types
with a root that is the ancestor of all the types in the tree.

A derived type is a new type which is distinct from its parent type5. The
derived type is similar in many respects to the parent type. It is also a tagged
type, i.e., a record and it has the same record elements with the same identifi-
ers and the same subtype indications. If we think of the type as a set of values
then the values of derived_bbuffer are a copy of the values of bbuffer.

Although we can view at the new values as copies they belong to a new
type. That means, values of the parent type cannot be assigned to objects of
the derived type and vice versa. Due to the similarities of the types a derived
type is considered a closely related type to its parent type and more generally
to any of its ancestors. A corresponding type conversion provides for explicit
conversion between the closely related types. In this conversion only the par-
ent type is allowed as a target type. More generally, only conversions towards
the root of a tree of tagged types are allowed. The operand of the conversion
is an expression of the derived type. The result is a value of the parent type.
To convert between objects of derived_bbuffer and bbuffer we could write:

variable  bbuffer_object : bbuffer;
variable  derived_bbuffer_object : derived_bbuffer;
…
bbuffer_object := bbuffer(derived_bbuffer_object);

However, we cannot write

derived_bbuffer_object := derived_bbuffer(bbuffer_object);

The derived type derived_bbuffer must not appear as a target type of a type
conversion with the parent type as operand. Please note, it is also not possible
to write

4. This rule is introduced into the language extension to limit the complexity
of the translation mechanism to VHDL. (See Section 6.5.1)
5. Please note, this is different to a subtype declaration which does not define a
new type.
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get (bbuffer(derived_bbuffer_object),item);

After applying the type conversion6 in the actual part the value of the actual
parameter belongs to the subtype bbuffer denoted by the subtype indication
of the formal as it is required for variable parameters of mode inout (Com-
pare LRM 2.1.1.1.). However, the value of the formal parameter object does
not belong to the subtype indication derived_bbuffer of the actual parameter
derived_bbuffer_object. A formal part in form of a type conversion for
explicit conversion from bbuffer to derived_bbuffer is not possible because
the derived type is not allowed as a target type in such an explicit conversion.
In case of signal parameters a type conversion is not allowed at all (Compare
LRM 2.1.1.2). Providentially, such an explicit conversion is not required to
make primitive operations which characterize the parent type available for
the derived type.

The derived type inherits primitive operations of its parent. That means,
that for each user-defined primitive subprogram there exists a corresponding
inherited primitive subprogram of the derived type. The inherited primitive
subprogram is also considered to be a user-defined subprogram. Thus, we
can extend the list of primitive operations of a tagged type which was men-
tioned above by the inherited primitive subprograms. It has the same name7

as the corresponding primitive subprogram of the parent. The formal parame-
ter list of the inherited primitive subprogram is obtained from the formal
parameter list of the parent’s subprogram after replacement of each8 subtype
indication of the parent type with a corresponding subtype indication of the
derived type. Corresponding subtype indication means that the type mark in
the subtype indication denotes the derived type. The resulting subprogram is
implicitly declared immediately after the declaration of the derived type
which inherits the subprogram. Default expressions for parameters of the
parent type are not allowed in the user-defined primitive operation. This

6. This is different from the view conversion approach of SUAVE discussed in
Section 5.2.10. In SUAVE such a call would pass the object
derived_buffer_object after a view conversion as an actual parameter to the
subprogram because the conversion appears as an actual parameter of mode
inout [6].
7. The technical term in the LRM is designator.
8. Please note, although the mode of a parameter is used to define user-defined
primitive operations the replacement is independent from the mode declared
in the subtype indication. A subtype indication of an interface element of the
parent type and mode out is also replaced in a derived formal parameter list.
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avoids a type mismatch after the replacement of the subtype indication for
the parameters of the parent type9.

If we apply the inheritance mechanism to the example of the user-defined
primitive operation get of bbuffer we obtain the inherited primitive subpro-
gram get of the derived_bbuffer.

procedure  get (object : inout  derived_bbuffer; item : out  item_type);

The subtype indication bbuffer of the interface variable declaration of the
parameter object is replaced by the corresponding subtype indication
derived_bbuffer. The primitive subprogram get of the tagged type
derived_bbuffer is implicitly defined after the declaration of derived_bbuffer
in the package bounded_buffer_package_derived. Now any explicit type con-
versions in the example are obsolete and we can directly call the primitive
operation get with an actual parameter derived_bbuffer_object.

get (derived_bbuffer_object,item);

We call the actual parameters in such a call to the primitive operation of a
tagged type whose corresponding formal parameters are of the tagged type
controlling operands10. In the example, derived_bbuffer_object is the con-
trolling operand with the corresponding formal parameter object of type
derived_bbuffer. To keep things simple, the language extension requires that
all controlling operands of a call are of the same type.

As the user-defined primitive operation of a parent type and the inherited
primitive operation of a derived type have the same subprogram designator
but different parameter type profiles–remember, a derived type is distinct
from the parent type it is not a subtype–both primitive operation overload
each other (Compare LRM 2.3).

A call on an inherited subprogram is executed as if it were a call to the
corresponding subprogram of the parent in combination with some type con-
versions during its execution to avoid type mismatches between parameters
of the derived type and objects of the parent type. Basically, each call on an

9. From a language philosophers’ point of view it would be possible to intro-
duce a special kind of implicit conversion from the parent type to the derived
type which is implicitly applied to the default expressions in an inherited
primitive subprogram. The type conversion would handle the type mismatch.
Such an approach was omitted in the language extension because it would not
be possible to implement it in the translation concept (See Section 6.5.1).
10. Please note that the definition of controlling operands is independent from
the mode of its corresponding formal.
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operation with operands of the derived type causes an implicit type conver-
sion from the derived type to the parent type except from calls with control-
ling operands which are only of the derived type11.

According to the principle that all controlling operands in a call must be
of the same type, each time during the execution of the subprogram when a
primitive operation is called to which controlling operands of both types, the
parent type and the derived type, are passed as operands, an implicit type
conversion from the derived type to the parent type is performed on the oper-
ands of the derived type. Likewise any call to a subprogram or basic opera-
tion with one or more formal parameters or operands of the parent type and
actuals of the derived type which are not controlling operands causes an
implicit type conversion during the execution of the inherited subprogram. In
such cases for each implicit type conversion an object of the parent type
which has no name is implicitly declared in the calling subprogram. Similar
to types without a name we call it an anonymous object. It is the target of the
implicit type conversion. The anonymous object is composed of record ele-
ments from the operand of the implicit type conversion. It has just those
named elements which are declared in the parent type. The anonymous
object is a signal, a constant, or a variable according to the operand of the
implicit type conversion. The anonymous object as result of the implicit type
conversion is passed as controlling operand to the primitive operation. Please
note that such an implicit type conversion from the derived type to the parent
type latently also contains the conversion vice versa. To better understand the
mechanism of the new case of implicit type conversion we could think of it
as a kind of slice for tagged types.

We want to illustrate this by an example. The bounded buffer bbuffer may
have a primitive operation to initialize its values. The procedure body of such
an operation may look as follows:

procedure  initialize (object : inout  bbuffer) is
begin

object := bbuffer'( buf => (others  => item_type'left),
buf_in => 0,
buf_out => 0);

end ;

11. We also could say that calls in an inherited subprogram are statically
bound except from calls with all controlling operands of the derived type.
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Assume, the type derived_bbuffer is derived from bbuffer and inherits its
primitive operation initialize. The inherited operation has a new formal
parameter list:

procedure  initialize (object : inout  derived_bbuffer);

The inherited operation overloads the parent’s operation. We can call the
inherited operation with an actual of type derived_bbuffer. The call is exe-
cuted as if the parent’s operation was called. That means that the assignment
statement is executed. The assignment statement is a primitive operation
according to the definition given above. It is called with an operand of type
bbuffer, which is the expression of the assignment, and an operand of type
derived_bbuffer which is the target of the assignment. As the assignment is
called with different types an implicit type conversion is performed on the
target. The resulting anonymous object which is actually used as the target
operand of the assignment has the type bbuffer. The object contains the
record elements buf, buf_in, and buf_out of the operand of the type conver-
sion which is the actual parameter object. The type conversion of the aggre-
gate of type bbuffer to the type derived_bbuffer in the assignment is inherent
in the implicit type conversion from the derived type to the parent type of the
target of the assignment.

To illustrate this, we give a pseudo code description of the anonymous
object that is used as a target in the assignment statement.

procedure  initialize (object : inout  bbuffer) is
alias  anomymous_object : bbuffer is  ( object.buf,

object.buf_in,
object.buf_out);

begin
anonymous_object := bbuffer'( buf => (others  => item_type'left),

buf_in => 0,
buf_out => 0);

end ;

So far we have looked at the possibility of tagged types to derive a new
type which has the same properties as the parent type. Very often it is useful
to introduce a new type which has additional or slightly modified properties.
We present some more advanced features of tagged types which allow to
extend an existing type by deriving a new one from it. This new form of deri-
vation makes it possible to add new elements and to add new primitive opera-
tions to a tagged type. It also allows to modify the behaviour of an existing
type by replacing inherited user-defined primitive operations.
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6.2.3 Modification of behaviour

We now introduce the concepts to extend and modify behaviour of derived
types. We will start with considering how we can add new primitive opera-
tions to a derived type and how they may interact with inherited subpro-
grams.

Consider an example where we want to derive a new bounded buffer
xbuf_2 from bbuffer. We have already introduced the buffer in previous
examples. It has two additional operations get2 which reads two items from
the buffer and empty which indicates if the buffer contains any items. The
language extension takes such a modelling situation into account by the pos-
sibility to add new primitive operations to a derived type. In the example we
perform the extension in two steps. In a first step we derive a type buf2 which
adds the new operation get2 to the type.

type  buf2 is new  bbuffer with null record ;
procedure  get2 (object : inout  buf2; items : out  two_items_type);

The procedure get2 is a primitive operation of buf2. If we do not consider
any synchronisation issues for a moment we could implement the operation
by calling the inherited get operation.

procedure  get2 (object : inout  buf2; items : out  two_items_type) is
begin

get(object, items(1));
get(object, items(2));

end ;

In a second step, we derive the new type x_buf2 from buf2. It adds the new
primitive operation empty to the derived type. It inherits the primitive opera-
tions from its parent, that means, it inherits the operation get2. It also inherits
the implicitly declared operations get and put of buf2.

type x_buf2 is new  buf2 with null record ;
procedure  empty (object : inout  x_buf2; return_val : out  boolean);

If we call get2 with an actual parameter of type x_buf2 the inherited opera-
tion get of type x_buf2 is called without any implicit type conversion in the
implementation of get212. The controlling operand of the call on get which is

12. We can note that this is different to the example in SUAVE where it is nec-
essary to perform an explicit type conversion to achieve dynamic binding by
re-dispatching.



184 Object-Oriented Extension to VHDL

the parameter object of type x_buf2 determines which of the overloaded
primitive operations is actually called. Therefore it is not the operation of
buf2 which is called in get2 of x_buf2. In other words, the call in an inherited
subprogram on another user-defined subprogram with controlling operands
as actual parameters is not statically bound it is rather dynamically bound to
the primitive operation of the derived type. Dynamically means, the subpro-
gram declaration and its corresponding body which is invoked by the call is
determined dependent on the controlling operands during the elaboration of
the call.

In the example it would make no difference which version of get is
invoked as both, the inherited operation of buf2 and the inherited operation of
x_buf2 finally perform a call on the get operation of bbuffer. This is different
if we replace an inherited get by a new version of get in a derived type. An
inherited user-defined operation can be replaced by overriding the operation.
Overriding means to declare a homograph of the inherited operation in the
package declaration where the derived type is declared and the subprogram
specification of the homograph conforms the implicit declaration of the
inherited subprogram. The explicitly declared homograph then hides the
implicitly declared inherited subprogram, that is, it overrides the inherited
subprogram. The explicitly declared subprogram is directly visible and the
implicitly declared one is hidden. Such a hidden subprogram will not become
visible neither by selection nor directly. To overcome this limitation a prede-
fined attribute 'Parent of the language extension provides a possibility to exe-
cute the behaviour implemented in the overridden subprogram if the
overridden subprogram is called from within another subprogram of the same
tagged type. The execution of the subprogram body of the parent is invoked
by a subprogram call which decorates the subprogram name with the
attribute 'Parent. The subprogram call executes as if it were a call to the cor-
responding subprogram of the parent. The subprogram dynamically modifies
the interface list during dynamic elaboration by replacing each subtype indi-
cation of the parent type by the subtype indication of the controlling oper-
ands. It adapts the original interface list of the parent to its use in a child.
Type conversions during the execution of the parent’s subprogram which
may become necessary as a consequence of the dynamic adaptation of the
interface list are performed like the other implicit type conversions in inher-
ited subprograms. Each call on an operation with actual parameters of a
derived type and formals of the parent type causes an implicit type conver-
sion from the derived type to the parent type except from calls with control-
ling operands which are only of the derived type.
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The call on the parent’s subprogram is statically bound. The correspond-
ing subprogram can be determined during the analysis of the model. It does
not change during the execution of the model. A derived type may inherit a
subprogram which contains a call decorated with the attribute 'Parent. The
call still executes the subprogram which was determined at analysis time.

We want to illustrate this by an example. If we look at the bounded buffer
x_buf2 we could override the inherited get operation.

use work.bounded_buffer_package_buf2.all;
package bounded_buffer_package_buf2_x_buf2 is

type x_buf2 is new  buf2 with null record ;
procedure  empty (object : inout  buf2; return_val : out  boolean);
procedure  get (object : inout  x_buf2; item : out  item_type);

end  bounded_buffer_package_buf2_x_buf2;

Type x_buf2 inherits the primitive operation get which is implicitly declared
immediately after the declaration of the derived type x_buf2. The explicit
declaration of the primitive operation get conforms to the implicit declaration
of get—remember, the formal parameter lists are adapted for inherited sub-
programs—and thus overrides the implicit declaration. The inherited version
of get is hidden. If we use the package in another design unit we can poten-
tially make the primitive operation get directly visible by a use clause. If we
call get the new version of get is executed. To execute the behaviour of the
overridden subprogram we have to use the attribute 'Parent.

use  bounded_buffer_package_buf2_x_buf2.all ;
…
variable  x_buf2_object : x_buf2;
…
get(x_buf2_object, item); -- call to new version of get
get'Parent(x_buf2_object, item);-- call to the parent's version

The decorated name get'Parent statically denotes the parent’s version of get.
which actually is the subprogram implementation of buf2.

In an inherited subprogram the default mechanism for calling another
inherited subprogram with all controlling operands of the same type dynami-
cally binds the call to the primitive subprogram. To statically bind the call the
language extension provides the predefined attribute 'Static. Any procedure
call of a user-defined primitive subprogram that is marked by the attribute is
referred to as a static call. Such a static call may occur in any user-defined
primitive subprogram of a tagged type. The static call is executed by per-
forming an implicit type conversion of the controlling operands to the tagged
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type whose primitive subprogram originally performed the static call.
According to the implicit type conversion the static call invokes the user-
defined subprogram of the tagged type. The consequences of the implicit
type conversion is that if a derived type inherits the user-defined subprogram
which contains the static call it executes the original subprogram body of the
parent even if the subprogram which is statically called is overridden in the
derived type. To illustrate this mechanism we look at the example of the
bounded buffer buf2. It would have been possible to implement the primitive
operation get2 by statically calling the primitive operation get.

procedure  get2 (object : inout  buf2; items : out  two_items_type) is
begin

get(object, items(1))'Static;
get(object, items(2))'Static;

end ;

To indicate the static call the attribute decorates the procedure calls of get.
The tagged type x_buf2 inherits the primitive operation get2 and overrides
the operation get. However, if we execute get2 of x_buf2 it is the operation
get of the parent which is called after an implicit type conversion to the type
buf2 of the controlling operand object. It is not the new version of get which
is executed.

Independent from any modifications of get by overriding in derived types
inherited versions of get2 will preserve their behaviour. In other words, a
static call is a means to make calls to primitive subprograms within other
subprograms safe against unintended modifications in derived types.

This is an important issue in compatibility considerations on derived
types because there is no abstraction of dynamically bound calls in a subpro-
gram specification of a primitive operation. As a consequence there is no
possibility to preserve compatibility in derived types without breaking the
encapsulation of inherited behaviour if behaviour is overridden and dynamic
calls are arbitrarily used in operation implementations. Generally we can
state that it is a good modelling practice to avoid dynamic bindings and to
use them only if it is possible to give good reasons for dynamic bindings.

An attribute 'Dynamic is in the language extension as a counterpart to
'Static to keep it symmetric. It can be associated to subprogram calls to prim-
itive operations from within other user-defined subprograms where the lan-
guage extension provides dynamic calls. The attribute then explicitly
indicates that it is a dynamic call. Basically, it uses the tagged type of the
subprogram which contains the dynamic call as controlling operands of the
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call. As described above, this is the default behaviour of calls to primitive
operations from within other operations if the controlling operands in an
inherited operation of the derived type are of the derived type. So, both calls
are equivalent:

procedure  get2 (object : inout  buf2; items : out  two_items_type) is
begin

get(object, items(1));
get(object, items(2))'Dynamic;

end ;

Please note, although the attributes 'Parent and 'Static have similar effects by
circumventing the execution of overridden operations they are different con-
cepts. Both perform a static binding of calls to primitive operations from
within other user-defined subprograms but while the attribute 'Static per-
forms an implicit type conversion of the controlling operands the attribute
'Parent does not. To combine the concepts of both attributes, it is perfectly
legal to combine them. In contrast to the attribute 'Static it is not possible to
combine the attribute 'Dynamic with the attribute 'Parent. The dynamic bind-
ing of 'Dynamic would contradict the static concept of 'Parent.

For example, we could statically call the parent’s operation in the proce-
dure get2 of buf2. A static call to the parent’s implementation of get would so
to say freeze the controlling operands to be of type buf2 in any derived type.
The call is executed as if it were a call to the corresponding subprogram of
bbuffer.

procedure  get2 (object : inout  buf2; items : out  two_items_type) is
begin

get'Parent(object, items(1))'Static;
get'Parent(object, items(2))'Static;

end ;

Any overriding of get in a derived type does not have any effect on the execu-
tion of inherited versions of get2 and thus makes it safe from a re-use point
of view.

We conclude this section by observing that modification of behaviour is
mainly an issue of appropriate type conversions between derived types and
binding mechanisms of calls to primitive operations. We can turn down the
concepts of the type extension we are going to discuss in the next sections to
very similar issues of conversion of types and binding of calls.

To complete the discussion about calling primitive operations from within
other primitive operations, about static and dynamic binding, and about type
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conversions of parameters we compare the concepts of this thesis with the
SUAVE approach. With the Ada-like concept the SUAVE approach performs
a static binding of calls by default. No distinction between different calling
situations are required. View conversions of the parameters are generally per-
formed during the dynamic elaboration of the call. Nevertheless, dynamic
binding can be achieved where required in an inherited subprogram by re-
dispatching the call. Calling a parent’s subprogram is simply achieved by an
explicit view conversion of the actual parameter. That means, the SUAVE
approach provides the same modelling capabilities as the approach of this
thesis. This raises the question why the presented concepts do not adapt such
a simpler and more elegant Ada-like modelling approach. The answer is that
the Ada-like concept would cause an enormous complexity in the translation
mechanism from the language extension to VHDL while the more complex
language concepts of this thesis keep the translation simple13.

6.2.4 Extension of structure

In the previous section we saw how it was possible to extend and modify the
behaviour of tagged types by adding new primitive operations to the tagged
type and by overriding existing operations. We now introduce a derivation
where it is possible to extend the structure of a tagged type by adding addi-
tional record elements to a derived type.

Consider for example the bounded buffer gb_buf which was introduced in
the previous chapter. It is a child of bbuffer which has an additional primitive
operation gget. The new operation removes an item from the buffer like the
get operation. The difference between the get operation and gget operation is
that a gget operation only can be executed immediately after a get or a gget
operation. This is a synchronisation constraint which requires the tracing of
the operations’ invocation history. To store the history the original structure
of the type bbuffer is extended by an additional record element. The keyword
with in the type declaration indicates that it is a derived tagged type which
may have some additional record elements following the with.

type  gb_buf is new  bbuffer with record
after_put : boolean;

end record ;
procedure  gget(object : inout  gb_buf; item : out  item_type);

13. Remember, SUAVE does not provide a translation mechanism to VHDL.
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The bounded buffer gb_buf has the record elements buf, buf_in, and buf_out
which are inherited from bbuffer and the newly added record element
after_put. The buffer inherits the primitive subprograms put and get and adds
the operation gget as a new primitive operation. The primitive operations
have access to any of the record elements14 so that the new subprogram gget
can read the new record element after_put to perform its condition synchro-
nisation and that gget can read and update the inherited record elements to
perform its actual behaviour.

It is possible to add new record elements to the derived type but it is not
allowed to remove or replace inherited record elements. As we know from
Section 3.2, removing or replacing elements would cause non-solvable prob-
lems in any kind of compatibility considerations between derived types. Sim-
ilarly, a name that denotes a record element of the parent must not be used as
a name of a record element that is added in a derived type.

Like for any type declaration the scope of a type declaration for a tagged
record type starts after the end of the declaration (Compare LRM 10.3). That
means, the name in the declaration that denotes the tagged type is not visible
in the declarative region that is associated with the record type. It must not be
used as a subtype indication in an element declaration of the tagged record.
In other words, it is not possible to model a tagged record that recursively
contains a record element that is of the tagged record. However, it is possible
that a derived type contains an element that is of its parent type. It is possible
to have a has a relation and an is-a relation between two types at the same
time.

For example, it would be possible for a derived type of bbuffer to contain
an element that is of bbuffer:

type  backup_buf is new  bbuffer with record
-- backup : backup_buf; -- illegal
backup: bbuffer;

end record ;

From the examples it can be seen that the previously introduced concept to
derive tagged types is only a special case of the more general mechanism.
The notation

14. Actually, any operation on an object of the derived type has access to any
record element as there is no special encapsulation mechanism provided with
a tagged type. We shall discuss possibilities to achieve such an encapsulation
later on (Compare Section 6.3.4).
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type  child is new  parent with null record ;

is simply a short form of

type  child is new  parent with record
null ;

end record ;

which indicates that an empty list of record elements is added to the derived
types. All the concepts that have been introduced in the previous sections can
be viewed as general concepts which are applied to the special case where
only an empty element list is added to a derived tagged type. A tree of tagged
types consists of types with each type containing all the record elements of
its ancestors and some additional own elements. With this view on a tree of
tagged types it becomes clear why type conversions are only allowed towards
the root. A type conversion towards the root simply ignores the additional
record elements of the derived types. If type conversions were allowed in the
other direction it would not be clear what are the values of the additional ele-
ments. In case of an implicit type conversion as part of the elaboration of a
subprogram call the additional elements of the derived types are effectively
ignored in the association of the actual with the corresponding formal.

At this point we want to consider the effects of the implicit type conver-
sion in more detail. We may have a look at an implicit type conversion in a
static call on the operation get of the buffer gb_buf. This call could be part of
the implementation of the gget operation.

procedure  gget(object : inout  gb_buf; item : out  item_type) is
begin

if  object.after_put = false then
get'Parent (object => object, item => item)'Static;
-- implicit type conversion of object

else
-- Synchronisation constraint not met
…

end if ;
end ;

Passing the parameter object of gget as an actual parameter in the static call
to the parent’s implementation of get causes an implicit type conversion from
the type gb_buf to the type bbuffer. The conversion ignores the record ele-
ment after_put of the derived type gb_buf in the association of the formal
parameter object with the actual parameter object. Thus, the call is equivalent



Type Extension 191

to an explicit call of get with the element after_put omitted in the association
list of the call:

procedure  gget(object : inout  gb_buf; item : out  item_type) is
begin

if  object.after_put = false then
work.bounded_buffer_package.get (

object.buf => object.buf,
object.buf_in => object.buf_in,
object.buf_out => object.buf_out,
item => item);

else
-- Synchronisation constraint not met
…

end if ;
end ;

From the equivalent explicit call it is obvious how the implicit type conver-
sion latently contains the conversion vice versa, i.e., from parent type to
derived type. The record elements of the derived type which are not part of
the parent are simply not modified by executing the statically bound subpro-
gram.

While the example is based on variables as parameters the principle of the
implicit type conversions works for signals too15. Each basic signal that is
not a sub-element of the parent is not affected by the execution of the static
call. Vice versa, any events on these sub-elements during the execution of the
call are not observable inside the called subprogram. Consider for example a
version of get and gget which uses signals as parameters. A wait statement
inside the get operation to model synchronisation which is sensitive to the
events on the parameter object would not resume a suspended process if an
event occurs on the sub-element after_put of the signal object in the proce-
dure gget.

6.2.5 The tag

So far, the presented concepts allow to determine the type of objects at analy-
sis or elaboration time. As was discussed in Section 3.2 polymorphism is a
means for flexibility and re-usability of models. The idea behind polymor-

15. There is only a slight difference to variables concerning the so called tags
which is explained below.
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phic objects is that they can change their properties during simulation. To
introduce a concept for polymorphism on the basis of tagged types it is use-
ful to be able to determine the type of an object at run-time. A tagged type
has an implicitly declared record element which stores this type information
during run-time. The record element is called the tag following Pascal which
uses the term tag field to denote the actual variant of a variant record [99].
The tag of a tagged type is an anonymous element which is hidden, that
means, it is not directly visible. The implicitly declared record element has
the predefined type tag which is an implementation defined type. It is
declared in a package object_oriented_extension.

-- library STD; use STD.STANDARD.all;
package  OBJECT_ORIENTED_EXTENSION is

-- predefined type tag:
type  TAG is implementation_defined;
-- The predefined operator for this type are as follows
-- function ''=''  (anonymous,anonymous: TAG) return boolean;
-- function ''/=''  (anonymous,anonymous: TAG) return boolean;

end  OBJECT_ORIENTED_EXTENSION;

The operators = and /= are given in comments. They are predefined operators
for the type tag in the language extension and thus implicitly declared in the
package. They are defined as one would expect. The equality operator returns
the value TRUE if the operands are equal and thus denote the same tagged
type. Otherwise it returns the value FALSE. The result of the inequality oper-
ator is obtained by applying the logical not operator on the result of the
equality operator.

In the object-oriented language extension to VHDL the package
OBJECT_ORIENTED_EXTENSION resides in the library STD beside the
packages STANDARD and TEXTIO. To automatically make the type TAG
visible in every design unit of a model and thus allow the use of tagged types
it is assumed in the language extension that every design unit except the
packages OBJECT_ORIENTED_EXTENSION and STANDARD implicitly
contain the following context item as part of its context clause:

use  STD.OBJECT_ORIENTED_EXTENSION.all ;

To keep things simple it is not allowed to overload the predefined type TAG.
With the package OBJECT_ORIENTED_EXTENSION it is possible to

declare constants, variables, or signals of type tag which can be used to
explicitly store the tag information of tagged types. To read the tag informa-
tion of a tagged type a predefined attribute 'Tag of the language extension can
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be used. It denotes the tag of a tagged type. The value of the attribute is of
type tag.

For example, it would be possible to test that bbuffer and gb_buf are dif-
ferent tagged types during simulation:

constant  tag_of_gb_buf : tag := gb_buf'Tag;
constant  tag_of_bbuffer : tag := bbuffer'Tag;
…
assert  tag_of_gb_buf /= tag_of_bbuffer;

With the attribute 'Tag it is also possible to test the tag of a polymorphic
object. This is especially interesting as polymorphic objects change their
properties during simulation, that means in the context of tagged types they
may change their tag. The detailed concept of polymorphic objects and the
application of the attribute is explained later on.

We now want to investigate some properties of the tags more closely. The
details allow to understand some of the more advanced features of the trans-
lation mechanism which is presented in a following section. The properties
of the tags are especially used in the modelling of condition synchronisation
using polymorphic objects. We touch on some language concepts which
require a deeper understanding of the parameter passing mechanism and type
conversion concept of VHDL. (Compare LRM 2.1.)

The tag of an object that is of a tagged type identifies the type. It is
implicitly assigned to the object with the object’s declaration. VHDL does
not allow objects to change their type after elaboration. The same rule
applies for objects of tagged types in the language extension. That means, a
tag of such an object does not change during simulation.

The tag of an object basically behaves like any other sub-element of the
object. However, in assignment statements the tag of the target is not modi-
fied due to the fact that an object that is of a tagged type does not change its
tag during simulation. In an operation call in which both, the actual and the
formal parameter have the same tagged type the value of the tag of the actual
is passed by copy or reference to the formal if the parameter is a variable or
constant. If the parameter is a signal the reference16 to the signal which mod-
els the tag is passed into the subprogram call. This works if the parameters
are associated in whole.

16. Alternatively, the reference to the driver of a signal or both references can
be passed into the subprogram call.
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Passing parameters that are of a tagged type and which are associated
individually functions different. For parameters of class constant or variable
an implicit object of type tag which is a constant or variable is created during
the dynamic elaboration which is involved in the subprogram call. The
implicit object is assigned a value at the start of the subprogram call which
indicates the tagged type of the parameter. The implicit object is associated
as an actual either in form of an expression or a variable to the tag of the for-
mal parameter. It is only available for use in the subprogram call. The scope
of the object is just the statement of the subprogram call. A look at the exam-
ple of the alternative implementation of a call to get in the implementation of
gget which has been presented in the previous section may illustrate the
mechanism:

procedure  gget(object : inout  gb_buf; item : out  item_type) is
begin

…
work.bounded_buffer_package.get (

object.buf => object.buf,
object.buf_in => object.buf_in,
object.buf_out => object.buf_out,
item => item);

…
end ;

The parameter object of the procedure get is associated individually in the
call. The hidden record element tag of the formal parameter is associated to
an implicitly created variable of type tag. The variable is initialized with a
value which indicates the tagged type bbuffer. Its scope is the procedure call
statement.

-- implicit variable:
-- variable anonymous : tag := bbuffer'Tag;
work.bounded_buffer_package.get (

-- object.tag => anonymous,
object.buf => object.buf,
object.buf_in => object.buf_in,
object.buf_out => object.buf_out,
item => item);

-- end of declarative region containing declaration for anonymous
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After the call the anonymous variable is not any longer required and not
available. The whole mechanism is very similar to the implicit declaration of
a loop parameter in a loop statement.

Another mechanism is used for passing parameters of class signal that are
of a tagged type and that are associated individually. Creating an implicit
object during the dynamic elaboration of the call like in the case of variable
and constant parameters and associating it with the tag of the formal parame-
ter would not fit in the language philosophy of VHDL which does not sup-
port dynamic creation and destruction of signals during simulation. An effect
of creating and initializing of signals would be that a signal changes its cur-
rent value within a delta cycle in the simulation.

The concept to associate signals of tagged types individually is to restrict
the association. For such signals a formal parameter that is associated indi-
vidually is only allowed if all the associated actuals are sub-elements of a
signal that has a tagged type which is closely related to the tagged type of the
formal parameter. Then the tag of the formal parameter is implicitly associ-
ated with the tag of the signal whose sub-elements are associated with the
formal.

If the parameters in the example above were signals it would be allowed
to associate them individually.

procedure  gget(signal object : inout  gb_buf; item : out  item_type) is
begin

…
work.bounded_buffer_package.get (

-- object.tag => object.tag,
object.buf => object.buf,
object.buf_in => object.buf_in,
object.buf_out => object.buf_out,
item => item);

…
end ;

Each actual parameter is a sub-element of the signal object. The type of the
signal gb_buf is closely related to the parent type bbuffer. The tags of the sig-
nals are associated implicitly.

It would not be allowed to associate the parameter individually if the
actual parameters are not sub-elements of the same signal.

signal  object1 : gb_buf;
signal  object2: gb_buf;
signal  object3 : integer;
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…
get ( object.buf => object1.buf,

object.buf_in => object2.buf_in;
-- Error : actual is not sub-element of object1
object.buf_out => object3,
-- Error : actual is not sub-element of a closely related type
item => item);

The statements on properties of tags which occur as operands in primitive
operations can be specially applied to assignment statements. If the target of
an assignment is a name that denotes an object that has a tagged type then the
right-hand side value of such an assignment has the same type as its target,
possibly after an implicit type conversion, otherwise the model is erroneous.
Therefore, in the assignment operation which assigns each sub-element of
the right-hand side value to the corresponding element of its target the right-
hand side value of the tag has the same value as the tag of the target.

If the target in a variable assignment statement is an aggregate of a tagged
type an implicitly created variable of type tag is used in the expression that is
associated with the tag of the aggregate. After the assignment the anonymous
variable is not any longer required and not available.

Consider a set of variables that is assigned the elements of a bounded
buffer.

variable  object : bbuffer := bbuffer'(…);
variable  buf : bounded_buffer_array(…);
variable  buf_in : integer;
variable  buf_out : integer;
…
-- implicit variable:
-- variable anonymous : tag := bbuffer'Tag;
(-- tag => anonymous,

buf => buf,
buf_in => buf_in,
buf_out => buf_out)  := object;

-- end of declarative region containing declaration for anonymous

The example illustrates how the elements of the object are assigned to the
elements of the aggregate including the implicitly defined element tag.

A target of a signal assignment that is an aggregate of a tagged type is
treated differently. All expressions in the element associations of the aggre-
gate must be names that denote elements of the same signal. The tag of the
aggregate is implicitly associated with the tag of the signal whose elements
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are denoted by the expressions in the element association. As the tag of a sig-
nal must not change the signal is required to have the same tag as the right-
hand side value in the assignment. Finally this means that an aggregate of a
tagged type is only allowed as a target in a signal assignment where it could
be replaced by a name denoting the signal whose elements are referenced in
the aggregate.
This becomes clearer in an example:

signal  target : bbuffer := bbuffer'(…);
signal  rh_side : bbuffer := bbuffer'(…);
…
(-- tag => target.tag,

buf => target.buf,
buf_in => target.buf_in,
buf_out => target.buf_out) <= rh_side;

The assignment containing the aggregate could be replaced by one contain-
ing a name as a target.

target <= rh_side;

The presented rules for using tags in association elements of aggregates and
element associations in operation calls can be extended to port maps. To
extend them the rules for passing signals as parameters that are of tagged
types are applied accordingly to the mechanism of port maps.

As we have seen in Section 6.2.2 it is not possible to apply explicit type
conversions between derived tagged types in an association list that associ-
ates a formal that has mode inout due to the missing conversion from the par-
ent to the derived type. However, what is possible in an association list of a
port map is a conversion function between types.

A conversion function may have a single parameter that is of the parent
type and a return value of a derived type. As the return value is of the derived
type the value which is copied into the tag of the associated parameter indi-
cates the derived type.

To give an example, we could add a conversion function to
derived_bbuffer from Section 6.2.2 so that a call of the parent’s implementa-
tion of the operation get with an object that is of type derived_bbuffer is
legal. The type derived_bbuffer was modelled as a derived type of bbuffer.

type  derived_bbuffer is new  bbuffer with null record ;

A conversion function from the parent type bbuffer to the derived type
derived_bbuffer can be modelled:
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function  to_derived_bbuffer (object : bbuffer ) return  derived_bbuffer is
constant  return_value : derived_bbuffer := (

-- tag => object.tag,
buf => object.buf,
buf_in => object.buf_in,
buf_out => object.buf_out);

begin
return  return_value;

end ;

An object of derived_bbuffer may call the parent’s implementation of the
primitive operation get by applying the conversion function on the formal
parameter to obtain a value which matches the actual parameter.

variable  item : item_type;
variable  derived_bbuffer_object : derived_bbuffer;
…
get(to_derived_bbuffer(object) => bbuffer(derived_bbuffer_object),

item => item);

The conversion function provides the required type conversion from parent to
child. It is important to note, that the call is different from the call of the
inherited subprogram get which does not modify the tag of the formal param-
eter:

get(derived_bbuffer_object, item);

It rather corresponds to the static call of the parent’s implementation of get:

get'Parent(derived_bbuffer_object,item)'Static;

The situation is a little bit different if a derived type is modelled which
extends the parent’s structure. Then a conversion function can be used to
extend the parent type by values for the additional record elements of the
derived type.

Consider the derived type gb_buf with its additional record element
after_put:

type  gb_buf is new  bbuffer with record
after_put : boolean;

end record ;

The conversion function may look like this:

function  to_gb_buf ( object : bbuffer) return  gb_buf is
constant  return_value : gb_buf := (



Type Extension 199

buf => object.buf,
buf_in => object.buf_in,
buf_out => object.buf_out,
-- extension part:
after_put => false);

begin
return  return_value;

end ;

Now, there is a difference between the calls:

variable  gb_buf_object : gb_buf;
…
get(to_gb_buf (object) => bbuffer(derived_bbuffer_object), item => item);
-- different from:
get'Parent(gb_buf_object,item)'Static;

Both calls implicitly adapt the value of the tag in the formal parameter. How-
ever, the conversion function additionally modifies the synchronisation infor-
mation in the record element after_put while the implicit conversion of the
static call does not modify it. For example, the call of put using the conver-
sion function to_gb_buf would model an incorrect synchronisation.

put(to_gb_buf (object) => bbuffer(derived_bbuffer_object), item => item);

The call erroneously assigns the record element which traces the invocation
history of put to false. The assignment might remove values from the record
element which are assigned in the operation put as part of its synchronisa-
tion17.

Conversion functions to convert tag information are restricted to associa-
tions of variable parameters in procedure calls and associations of signals in
port maps, according to the general restrictions on applying conversion func-
tions (Compare LRM 2.1.1.2, 4.3.2.2). Especially conversion functions are
no means to change a tag of a signal which is passed as a parameter to an
operation.

An interesting situation occurs if an object of a tagged type is passed as a
parameter to primitive operations in which some implicit type conversions
occur. Constant or variable parameters of tagged records may be passed by

17. A corresponding consideration can be made if signals in port maps use
conversion functions. The functions might falsify synchronisation information
by removing transactions which are relevant for synchronisation from the pro-
jected output waveform of the signal.
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copy or reference to the subprogram like any parameter whose type is a
record. In a call which includes an implicit type conversion of a tagged
record the tag of the formal parameter is assigned the value which indicates
the target type of the conversion at the start of each call. After completion of
the subprogram body the original value of the tag before the call is assigned
to actuals which have been involved in the implicit type conversion. In case
the parameter is passed by reference the temporary change of the tag in the
actual parameter does not have any effect in a simulation and thus is harm-
less. The rest of the model cannot observe the temporary change. It is as if
the object never had changed its tag.

The situation is different and more complex if we look at signal parame-
ters of tagged types which are involved in an implicit type conversion. Any
change of the tag at the beginning of a call or after the completion of a sub-
program similar to the parameter passing mechanism of constants and varia-
bles that are of tagged types would be observable across process boundaries
in a model18. Such a mechanism would introduce inconsistencies in the tim-
ing and synchronisation concept of the language. The corresponding prob-
lems of language extensions which allow to pass information across process
boundaries within one delta cycle have been discussed in Chapter 5.

The solution of the problem is not to change the tag in an implicit type
conversion of signals. However, during the execution of the subprogram
body the formal parameter behaves in the subprogram as if it has a tag indi-
cating the target type of the implicit type conversion.

The reason for introducing tags with all the complex behaviour in explicit
and implicit type conversion was to be able to determine the type of an object
at run-time. With this tag concept as a starting point we now discuss how this
information can be used to model polymorphic objects which may change
their properties during simulation.

6.3 Polymorphism

The type extension mechanism presented so far allows to derive a new type
from an existing one. The derived type inherits the properties of the parent.
Thus, it is possible to use tagged types for modelling classes which share
common properties and which are related to each other in an is-a relation.
The resulting type hierarchy from deriving tagged types is not a subtype hier-

18. As a side effect, such a mechanism cannot be translated into VHDL.
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archy the types are only closely related to each other. Such closely related but
distinct types do not support the modelling of heterogeneous object contain-
ers which may contain object of various classes. What we require is a con-
cept which provides the missing subtype relation in the type hierarchy.

A general approach to establish a missing subtype relation in a typed
class concept was discussed in Section 3.2.7 where the concept of class-wide
types was mentioned.

We now present how such a concept is introduced into the language
extension. It is explained how the concept provides polymorphism which can
be used to model heterogeneous object containers. The mechanism how to
invoke operations of such containers is analysed. The modelling of polymor-
phic objects with signals is investigated and some conclusions are drawn on
inheritance concepts for signals.

6.3.1 Class-wide types

In Section 3.2.7 we saw that a class-wide type is a type which is associated
with each type modelling a class. In the language extension such a class-wide
type is implicitly defined for each tagged type. It is associated to the tagged
type. The implicit type is defined by a predefined attribute 'Class of the lan-
guage extension. The attribute takes the name of a tagged type as a prefix and
denotes the associated class-wide type.

The class-wide type is characterized by a set of values like any other
VHDL type. The set is the union of all values of the associated type and the
values of all types derived from the associated type. The resulting subtype19

relation allows the modelling of a polymorphic object. We refer to such
objects as class-wide objects or more specific as class-wide variables or sig-
nals. Although class-wide objects may contain values with different structure
only the structure of the associated tagged type is visible by selection outside
the object. In other words, only the identifiers of record elements of the asso-
ciated tagged type can be used in a selected name which denotes an element
of a class-wide object.

For example, to denote the class-wide type associated with the bounded
buffer bbuffer we can write bbuffer'Class. An object of the class-wide type
can be used to model a heterogeneous object container which can contain

19. Subtype here is not meant in the strict meaning of VHDL but in the more
general sense of Section 3.2.2.
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values of the type bbuffer and its derived classes derived_bbuffer, gb_buf,
buf2, and x_buf2.

variable  container : bbuffer'Class := …;

The container is a class-wide variable which models a polymorphic buffer, i.e
the buffer may change the properties characterizing its type during the simu-
lation. Such a modelling of a polymorphic object is not restricted to the root
of a tree of derived types. There is also a class-wide type implicitly defined
for each of the derived types. The derived type comprises all values of the
sub-tree which has the derived type as a root.

For example, buf2'Class comprises values of the tagged type buf2 and the
derived type x_buf2. It does not comprise values of the type bbuffer or
gb_buf. The values of buf2'Class are a subset of the values of bbuffer'Class.

It is possible to assign values of the different tagged types to a class-wide
object during simulation. Such values of the tagged types are implicitly con-
verted to the class-wide type. The value keeps its structure and the values in
its elements. This especially includes the tag. It is just the tag of a class-wide
objects which indicates its present structure. The tag so to say provides the
interpretation of the information in a class-wide object.

In the example it would be possible to assign a value to the container that
is of type gb_buf:

container := gb_buf'( -- tag => gb_buf'tag,
buf => (others => item_type'left),
buf_in => 0,
buf_out => 0,
after_put => false);

The assignment performs an implicit type conversion to the type
bbuffer'class. The class-wide variable has the structure of the type gb_buf
after the assignment including the record element after_put which is not in
the structure of bbuffer. The elements buf, buf_in, and buf_out are visible
outside the container and can be accessed via a selected name.

container.buf_in := 0;

The value in after_put is assigned to the container but it is not visible outside
the container.

container.after_put := 0; -- illegal assignment

The tag of the container which identifies the present structure is implicitly
assigned the value which indicates the type gb_buf.



Polymorphism 203

As the type information in a tag of a polymorphic object may change dur-
ing simulation it may be interesting to read the tag information. This is possi-
ble by using the predefined attribute 'Tag of the language extension. If it
decorates a class-wide object it denotes the value of its tag. The value is of
type tag which is declared in the package
STD.OBJECT_ORIENTED_EXTENSION.

In the example it would be possible to test if the value of the tag denotes
the type gb_buf after the assignment.

assert  container'Tag = gb_buf'Tag;

The attribute 'Tag is a function which returns the value of the tag it cannot be
used to write values to the tag of a class-wide type or any other type20.

The implicit conversion of values that are of tagged type allows the
assignment of such values to class-wide objects. An implicit conversion in an
assignment vice versa is also possible. In that case, the tag of the class-wide
expression has to denote the tagged type of the target of the assignment. A
dynamic check during simulation tests the condition and if it fails the model
is erroneous.

In the example, we could assign the value which is stored in the container
to an object that is of type gb_buf.

variable  container : bbuffer'Class := …;
variable  bbuffer_object : bbuffer;
variable  gb_buf_object : gb_buf;
…
container := gb_buf'( …);
gb_buf_object := container; -- implicit conversion with dynamic check
-- bbuffer_object := container; -- erroneous: dynamic check would fail;

It would be erroneous to store it in an object that is of type bbuffer. To store it
in such an object an explicit type conversion is required as it is provided for
closely related types.
In the example this would be a conversion to the type bbuffer.

bbuffer_object := bbuffer(container);

20. Please note, it is not possible to decorate an object of a non class-wide
tagged type with the attribute 'Tag at all. The restriction becomes clear if we
look at the considerations on tags in a previous section. Among other things it
was explained that a signal parameter may behave as if it has different tags at
the same time.
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Such an explicit conversion of an expression of a class-wide type into a
tagged type is only allowed if the tag of the class-wide type denotes a tagged
type that is a descendant of the type of the target in the assignment.

It is as if the explicit conversion is applied on the result of an implicit
conversion from the class-wide type to the tagged type denoted by its tag.
The explicit conversion fails if it is not applied towards the root (Compare
Section 6.2.2). All the elements of the target in the assignment are assigned
the corresponding elements of the expression. Any additional elements of the
class-wide type are simply ignored.

In the example the object gb_buf_object has all the values stored in the
class-wide type including the value stored in the hidden record element
after_put. The object bbuffer_object only stores the values of the elements
buf, buf_in, and buf_out after the explicit conversion. It does not store the
value of the record element after_put.

The language extension also allows to assign an expression that has value
of a class-wide type to an object of another class-wide type. In such an
assignment the value of the tag of the expression has to denote a tagged type
that can be converted in an implicit conversion to the class-wide type of the
target. Such an assignment requires a dynamic check if an implicit conver-
sion is possible. If the check is successfully passed the values of all elements
of the expression including the value of the tag are assigned to the elements
of the target. If the check fails the model is erroneous.

Consider the example of the container which is extended by another con-
tainer:

variable  container : bbuffer'Class := bbuffer'(…);
variable  another_container : gb_buf'Class := gb_buf'(…);
…
-- another_container := container; -- erroneous
-- no implicit conversion from container'Tag = bbuffer'Tag to gb_buf'Class
container := another_container;

The class-wide object container is assigned a tag which indicates the type
gb_buf. Furthermore all the values of the elements of another_container
including the element after_put are assigned to the object container.

Apart from being used as operands in primitive operations class-wide sig-
nals may also occur in a sensitivity list of a wait statement21. Like for signals
of other composite types that are in a sensitivity set the effect on class-wide
signals is as if scalar sub-elements become members of the sensitivity set. In
case of a class-wide signal those sub-elements become virtually a member of
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the sensitivity list that are sub-elements of the tagged type indicated by the
effective value of the signals’s tag including the tag itself. Please note, the
sensitivity set may include sub-elements that are not visible outside the class-
wide signal. A consequence of the concept is that the sensitivity set dynami-
cally may change during simulation depending on the tag of a class-wide sig-
nal.

With this concept a synchronisation point in the language extension may
dynamically change its behaviour during simulation similar to primitive
operations which are called with class-wide operands. The difference is that
the behaviour may change during the execution of a synchronisation point
whereas its behaviour must not change after starting the execution of a par-
ticular primitive operation.

A class-wide type defines a collection of values which is not constrained
in the number and types of its values. Accordingly, a class-wide object repre-
sents a collection of objects which is not constrained in the number or type of
its objects. At any time in the modelling it is possible to derive new types
from the type associated with the class-wide type and thus extend the collec-
tion. Nevertheless, a class-wide type is treated as a constrained type in the
sense that it is not necessary to explicitly put any constraints on the size or
quality of its collection. It is automatically constrained at the end of the elab-
oration. At that point the information about all potential values of a class-
wide type are available and thus the collection can be constrained to these
potential values. The extension modifies the original elaboration concept of
VHDL. In VHDL declarations in a declarative part are basically elaborated
in the order in which they are given in the declarative part (Compare LRM
12.3). In the extension the elaboration of a class-wide type depends on the
elaboration of derived types that are derived from the tagged type associated
with the class-wide type. However, the language extension does not require
the derived types to be declared before the class-wide type. Such a restriction
would be against the idea of modelling by extension. The declarations are not
elaborated in the order they are given any longer.

A class-wide type is implicitly declared after the declaration of its associ-
ated tagged type. Its elaboration as part of the elaboration of a package decla-
ration is postponed after the elaboration of declarations in the package which

21. Referencing only sub-elements of the class-wide signal in a wait statement
is also possible. However, the use of sub-elements is restricted by the visibility
rules on the structure of class-wide types as they were stated at the beginning
of this section.



206 Object-Oriented Extension to VHDL

do not directly or indirectly reference the class-wide type. Indirectly means
that in a chain of references where a declaration is referenced in another dec-
laration the class-wide type does not occur. The elaboration of a class-wide
type involves first the elaboration of declarative items in packages containing
derived types. Only those declarative items are elaborated that do not directly
or indirectly reference the class-wide type. Elaborating the items means to
elaborate at least partly the package containing the items.

Similar to the original elaboration mechanism of VHDL, the elaboration
of those packages involves first elaborating each not-yet-elaborated package
containing declarations that are referenced by the packages. In such a partial
elaboration of a package only those declarative items are elaborated that do
not directly or indirectly reference the class-wide type. Likewise the partial
elaboration of any package which is caused by the elaboration of a class-
wide type works accordingly. Only those declarative items are elaborated that
do not directly or indirectly reference the class-wide type.

During elaboration the above elaboration rules are only applied to declar-
ative items that are not-yet-elaborated.

If dependencies are modelled that do not allow an elaboration according
to that rules the model is considered to be erroneous.
Consider the following declarations:

package parent_package is
type parent is tagged record …;
type ref_to_parentC is record

reference : parent'Class;
end record ;
type  contains_no_ref_to_parentC is  (enum);
…

end  parent_package;

package not_yet_elab_package is
type  another_contains_no_ref_to_parentC is  (enum);
type direct_ref_to_parentC is record

reference : work.parent_package.parent'Class;
end record ;
type  another_enum_type is  (enum);

end  not_yet_elab_package;

use  work.parent_package.all ;
package child_package is

type  elem_type is  (enum);
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type indirect_ref_to_parentC is record
reference : work.not_yet_elab_package.direct_ref_to_parentC;

end record ;
alias  another_contains_no_ref_to_parentC is
work.not_yet_elab_package.another_contains_no_ref_to_parentC;
type  child is new  parent with

element1 : elem_type;
element2 : contains_no_ref_to_parentC;
element3 : another_contains_no_ref_to_parentC;

end record ;
…

end  child_package;

The elaboration of the parent_package starts with the elaboration of the
tagged type parent. The elaboration of the class-wide type associated with
parent involves first the elaboration of the type declarations of
contains_no_ref_to_parentC, another_contains_no_ref_to_parentC, the elab-
oration of the declarations another_enum_type, elem_type, the elaboration of
the alias declaration of another_contains_no_ref_to_parentC, the implicit
alias declaration of enum22, the elaboration of the type declarations of child
and the class-wide type associated with child. The elaboration is executed in
the given order. Then the elaboration of the class-wide type associated with
parent is completed. All types of potential values of the class-wide type are
elaborated. The elaboration of the package now proceeds with the elabora-
tion of the type ref_to_parentC.

Obviously, changing the order of elaboration makes the elaboration of
class-wide types more complex than the elaboration of other composite type
definitions, because it is necessary to determine all the potential values in the
collection. The information about potential values depends on the tree of the
derived types of the tagged type which is associated with the class-wide type.

Such an elaboration only works if the collection of values represented by
the type is definite. In Section 6.2.4 we have discussed how to keep the col-
lection of elements in tagged types definite by prohibiting recursive struc-
tures.

A similar concept is necessary to prohibit recursive structures in class-
wide types. Such a recursive structure would occur if a tagged record had a
record element which is of a class-wide type that is associated with the
tagged record or that is associated with any of the tagged record’s parents.
Likewise a recursive structure would occur if any sub-element of the com-

22. Compare LRM 4.3.3.2
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posite type has such a class-wide type. In other words, in a collection of val-
ues that is defined by the tagged record type the occurrence of a class-wide
type that is associated with the tagged record or its parents causes an indefi-
nite recursive structure.

We illustrate such a recursive structure by a variant of the backup_buf
presented in Section 6.2.4.

type  encapsulate_bbuffer_classwide is record
subelement_of_backup_buf_variant : bbuffer'Class;

end record ;
-- Not in the language extension of VHDL:
type  backup_buf_variant is new  bbuffer with record

backup1 : backup_buf_variant'Class;
-- recursively contains backup_buf_variant
backup2 : bbuffer'Class;
-- recursively contains backup_buf_variant
backup3 : encapsulate_bbuffer_classwide;
-- subelement has type bbuffer'Class and
-- thus recursively contains backup_buf_variant

end record ;

To prohibit such recursive structures it is necessary define visibility rules for
tagged types that extend the exiting ones for normal record types. In a declar-
ative region that is associated with a tagged type any class-wide type that is
associated with the tagged type or with any of the tagged type’s parents is not
visible within that region. We say, the class-wide type is hidden in the declar-
ative region by its direct subtype relation to the tagged type. Any composite
type that has an element of a type that is hidden by a direct or indirect sub-
type relation to the tagged type is said to be hidden by its indirect subtype
relation to the tagged type. The identifier which denotes the composite type
is not visible in the declarative region associated with the tagged type. The
recursive definition ofhidden by a subtype relation prohibits the definition of
indefinite recursive structures in a tagged type.

The visibility rules are just defined in a way that enables the elaboration
of class-wide types according to the previously presented scheme.

In the example, the class-wide types associated with the types bbuffer and
backup_buf_variant are not visible in the tagged record type declaration due
to their direct subtype relation to the tagged type backup_buf_variant. The
record type encapsulate_bbuffer_classwide is hidden by its indirect subtype
relation to the tagged type backup_buf_variant.
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So far, we have described how a class-wide object may change its tag and
accordingly its structure during simulation. We now discuss how other prop-
erties in particular the behaviour also may change accordingly during simula-
tion.

6.3.2 Dispatching

The behaviour of a tagged type is modelled by a set of primitive opera-
tions which characterize the type. It suggests itself that a class-wide type
which comprises values from different tagged types is characterized by the
corresponding different primitive operations.

A class-wide type has no primitive operations itself which it passes to
derived classes. There is no inheritance mechanism defined on class-wide
types at all. The class-wide type is rather characterized by primitive opera-
tions of its associated tagged type as follows. It is possible to pass an actual
parameter of a class-wide type to the primitive operations of the associated
tagged type and to inherited or overloaded primitive operations of derived
types. We call such an actual parameter which is associated with a formal
parameter of a tagged type in the call of a primitive operation of the tagged
type controlling operand23.

As mentioned in Section 6.2.2 a call of a primitive operation requires that
all controlling operands are of the same type. The rule that all controlling
operands have to have the same type in a call does not exclude implicit type
conversions from a derived type to a parent type on actual parameters as it
was described in Section 6.2.2. However, the rule does not allow to mix con-
trolling operands of a class-wide type and a tagged type in a call of a primi-
tive operation.

In the container example it would be possible to call a primitive operation
of bbuffer:

variable  container : bbuffer'Class := gb_buf'(…);
variable  item: item_type;
…
get(object => container, item => item);

In such a case where class-wide objects are used as controlling operands in
an operation call the tags of those controlling operands that are of mode in or
inout are used to determine which operation is actually executed as a result of

23. This is just a more general definition of the term controlling operand com-
pared to the one given in Section 6.2.2.
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the call. During the dynamic elaboration of a subprogram call the tags are
checked to have the same value. If the check fails an error occurs. The sub-
program of the tagged type is chosen that is indicated by the tag. The control-
ling operands24 are implicitly converted to the tagged type indicated by the
tags. The conversion is performed like the other implicit type conversions in
calls with tagged types.

In the example, the container has a tag with a value that indicates the type
gb_buf during the elaboration of the call. Therefore the primitive operation
get of the type gb_buf is executed. The controlling operand container is
implicitly converted to the type gb_buf.

We call such a late binding of the operation dispatching. The polymor-
phic object container may change its associated behaviour during simulation.

After presenting the basic concepts of dispatching we now want to illus-
trate some of the properties of dispatching by examples.

One of the examples is the call of an assignment operation with a target
that has a class-wide type. Its implicit conversions of the right-hand side val-
ues to the class-wide type of the target makes an assignment statement a dis-
patching call of a basic operation. The results of such a dispatching call
correspond exactly to the effects of an assignment statement as they were
explained in Section 6.3.1.

Another example of a dispatching call on a basic operation is the call of
the predefined equality and inequality operations with values of a class-wide
type. Both operand types must have the same class-wide type. During the
execution of the operation the tags of the operands are checked to have the
same value indicating the same type. If the check fails the execution is erro-
neous otherwise the operation is executed like on any other record type.

After showing dispatching calls on basic operations we illustrate dis-
patching calls on primitive subprograms. As mentioned before, dispatching
works for primitive operations of tagged types that are associated with the
class-wide type of the controlling operands. If we look at the container exam-
ple from above, it is possible to call the operations put and get with an actual
parameter of type bbuffer'Class. However it would be an error to call the
operation gget with that parameter even if the value of the tag of the parame-
ter indicates the type gb_buf during the dynamic elaboration of the call.

variable  container : bbuffer'Class := gb_buf'(…);
…
gget(object => container, item => item); -- illegal

24. All controlling operands, including those of mode out are converted.
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Another erroneous situation occurs if we call an operation with controlling
operands of different types. Consider a type e_buf which is derived from
bbuffer and which has an additional primitive operation equal. The equal
operation returns a result parameter that is true if two objects contain the
same number and sequence of items25.

type  e_buf is new  bbuffer with null record ;
procedure  equal ( object1 : inout  e_buf;

object2 : inout  e_buf;
test_result: out  boolean);

From the type e_buf another tagged type ce_buf is derived which has an
additional copy operation which copies the content of one buffer into the
content of the other.

type  ce_buf is new  e_buf with null record ;
procedure  copy (source : in  ce_buf;

target : out  ce_buf);

Any calls with controlling operands that are of different types even after
applying implicit type conversions according to the rules presented above are
erroneous:

variable  e_container : e_buf'Class := e_buf (…);
variable  another_e_container : e_buf'Class := ce_buf (…);
variable  ce_container : ce_buf'Class := ce_buf (…);
variable  another_ce_container : ce_buf'Class := ce_buf (…);
variable  e_buf_object : e_buf;
variable  another_e_buf_object : e_buf;
variable  ce_buf_object : ce_buf;
variable  test_result : boolean;
…
List of illegal calls:
-- equal ( e_container, another_e_container, test_result);
-- illegal: tags of controlling operands of mode inout are not equal
-- run-time error
-- equal ( e_container, e_buf_object, test_result);
-- illegal:  types of controlling operands are different
-- equal ( ce_container, another_e_container, test_result);

25. Please note, the operation is different from the predefined equality opera-
tor which not only requires two buffers to contain the same sequence of items
but additionally requires to have the same values in their elements buf_in and
buf_out.
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-- illegal:  types of controlling operands are different
-- (although value of tags are equal)
-- equal ( e_buf_object, ce_buf_object , test_result);
-- illegal:  types of controlling operands are different
-- copy ( ce_container,ce_buf_object );
-- illegal:  types of controlling operands are different

The legal calls have always controlling operands of the same type and the
operands of mode in or inout have the same value of the tag:

--List of legal calls:
equal ( ce_container, another_ce_container, test_result);
equal ( e_buf_object, another_e_buf_object, test_result);
copy ( e_container, another_e_container );

In the last call it is interesting to note that it is a legal call although the con-
trolling operands have different values in their tag during the elaboration of
the call. It is legal because the formal parameter target of the operation copy
has the mode out and thus is not required to have the same tag as the formal
parameter source which has the mode in.

Modelling polymorphic objects by using class-wide objects and dispatch-
ing allows to generalize from concrete objects and their behaviour. In the
example of a call on the primitive subprogram equal with class-wide actual
parameters the call abstracts from the concrete objects and their behaviour.
The details of the properties and the concrete implementations are not rele-
vant or not even known when the call is modelled. From a language point of
view that means the call is not required to be in the scope of the tagged type
which has the properties which are observable in the call during simulation.
In other words it is only the class-wide type that is required to be visible and
not any tagged type.

6.3.3 Postponed use clause

In Section 6.3.1 we saw that the extension to the elaboration mechanism of
VHDL allows a flexible object-oriented modelling with class-wide types.
The flexibility was achieved by a postponement of the elaboration of the
class-wide type in the order of elaboration. It is finally elaborated after the
derived types it depends on.

We now introduce another extension to the elaboration concept which tol-
erates some changes in the order of elaboration from the order in which the
declarations are given. The goal is to provide a greater modelling flexibility
in cases where we do not want to use class-wide types to achieve this effect
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but only tagged types. We are looking for a possibility to describe a deferred
implementation of a class.

Such a flexibility in the order of elaboration is required when two tagged
types are made visible in each other’s package declaration to model a mutual
use-relation between the types.

A general description of such modelling situations where two module
specifications try to import each other in a language which uses a linear26

elaboration model is given in [169]. It describes the so-called with-ing prob-
lem which is just the difficulty to model module specifications importing
each other. It proposes some solutions for the programming language Ada27.

Making two types which are in different package declarations visible to
each other is not possible in VHDL. In VHDL the elaboration of a package
starts with the elaboration of not-yet elaborated packages containing declara-
tion referenced by the package. In case of the two packages containing the
two types one of the two packages would start such an elaboration of the not-
yet-elaborated other package. This in turn would re-start the elaboration of
the package which originally started the elaboration. A chicken-and-egg
dilemma. This limitation is not really a problem in VHDL. On the one hand
it avoids recursive record definitions in an elegant way. It is not possible to
model the following records:

type  A is record
element B;

end record ;
…
type  B is record

element : A;
end record ;

On the other hand, if the mutual visibility is required in other declarative
items of the packages, for example in interfaces of subprograms, then it is
possible to model the items in separate packages. This can be illustrated by
the following example:

-- use work.Q.B; -- Package Q is not-yet-elaborated
package  P is

type  A is  …

26. Linear means, the order of elaboration corresponds to the order in which
the declarations appear in the source code.
27. Interestingly enough, some of thesolutions describe alanguage extension
to Ada.
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-- procedure mutual (paramA : A; paramB : B); -- B is not visible here
end  P;

use  work.P.A;
package  Q is

type  B is  …
procedure  mutual2 (paramB : B; paramA : A);

end  Q;

use  work.P.A;
use  work.Q.B;
package  additional_separate_package_for_A is

procedure mutual (paramA : A; paramB : B);
end  additional_separate_package_for_A;

The modelling situation is different in the language extension where it is pos-
sible to model tagged types and corresponding primitive operations in a
package. Splitting the package and moving an operation into another package
to achieve a proper elaboration order would make a primitive operation a
non-primitive operation.

As a simple example suppose we want to model part of an ALU with a
buffer which stores instructions and data send to the ALU. One of the
instructions which we want to sent to the ALU is a store instruction to store
some data in the buffer. We could model the buffer and the instruction as a
tagged type in packages.

package  instr_and_data_buffer_package is
type  instr_and_data_buffer is tagged record  …
procedure  put ( object : inout  instr_and_data_buffer;

instr : in  store_instr);
procedure  get ( object : inout  instr_and_data_buffer;

instr : out  store_instr);
end  instr_and_data_buffer_package;

package  store_instr_package is
type  store_instr is tagged record  …
procedure  execute_instr ( object : in  store_instr;

\buffer\ : inout  instr_and_data_buffer);
end  store_instr_package;

Modelling the put and get operation as a primitive operation of the buffer and
modelling the procedure execute_instr as a primitive operation of the tagged
type store_instr causes the mutual use-relation between the types and thus the
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mutual dependency of the package declarations. Moving the subprogram
execute_instr into another package to break the mutual dependency is not
possible because the subprogram would then not be any longer a primitive
operation of the type store_instr.

As mentioned before, to solve the problem it is necessary to change the
order of elaboration. We saw in Section 6.3.1 how it is possible in the lan-
guage extension to alter the order of elaboration by using class-wide types.
The elaboration is completed only after the elaboration of dependant types.

In the example it is possible to postpone the elaboration of the type of one
of the parameters in the primitive operations by using a class-wide type. The
type associated with the class-wide type has to be a parent of one of the
tagged types in the package. Defining a tagged type instruction as a parent of
the tagged type store_instr we can use the class-wide type instruction'Class
as type of the parameters in the operations of the buffer.

package  instruction_package is
type  instruction is tagged record  …
…

end  instruction_package;

use  work.instruction_package.instruction;
package  instr_and_data_buffer_package is

type  instr_and_data_buffer is tagged record  …
procedure  put ( object : inout  instr_and_data_buffer;

instr : in  instruction'Class);
procedure  get ( object : inout  instr_and_data_buffer;

instr : out  instruction'Class);
end  instr_and_data_buffer_package;

The type store_instr is derived from the type instruction. As the package
store_instr_package does not depend on the package declaration of
instr_and_data_buffer_package any longer it is possible to make the type
instr_and_data_buffer visible in the package store_instr_package.

use  work.instruction_package.instruction;
use  work.instr_and_data_buffer_package. instr_and_data_buffer;
package  store_instr_package is

type  store_instr is new  instruction with  …
procedure  execute_instr ( object : in  store_instr;

\buffer\ : inout  instr_and_data_buffer);
end  store_instr_package;
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Calling the operations ofinstr_and_data_buffer requires a class-wide object
as actual which is assigned a value that is of the type store_instr before the
call. In the assignment the type of the value is implicitly converted as
explained in Section 6.3.1. In the procedure bodies the conversion has to be
performed from the class-wide type to the tagged type store_instr. The con-
version with the target type store_instr is workable because although it is not
possible to make declarations of the package store_instr_package visible in
the package declaration of instr_and_data_buffer_package it is possible to
make them visible in the package body according to the elaboration rules of
VHDL.

-- library work;
use  work.store_instr_package.store_instr;
-- make store_instr directly visible
package  body instr_and_data_buffer_package is

procedure  put ( object : inout  instr_and_data_buffer;
instr : in  instruction'Class) is

-- store_instr is visible here and can be used for a type conversion
…
end  instr_and_data_buffer_package;

Using class-wide types to break the mutual dependencies does not mean to
circumvent the strong typing of VHDL. As explained in Section 6.3.1 the
class-wide type uses type checking mechanisms to guarantee correct typing.
However, the checks are not performed during analysis time but during simu-
lation. To provide the strong type checking at analysis time a new language
construct which indicates a different elaboration order for tagged types is
introduced into the language extension.

The new construct is called postponed use clause. It looks like a use
clause preceded by the keyword postponed. It might appear as a context
clause of a design unit that is a package declaration or it might appear as a
declarative item in a package declaration and has there the same scope as a
normal use clause. Each selected name in a postponed use clause identifies
tagged types which might be referenced in the scope of the postponed use
clause but which are not required to be elaborated at the time the declarations
in the package declaration are elaborated. Especially, the packages contain-
ing the referenced declaration are not required to be elaborated. Likewise,
tagged types identified by a postponed use clause are not required to be ana-
lysed, the referenced package is not even required to exist at analysis time of
the postponed use clause.
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The postponed use clause makes the name of an identified tagged type
visible by selection and if there is no homograph of the name visible in the
scope of the postponed use clause it also makes the name of the tagged type
directly visible. The elaboration of the tagged types is postponed until the
package declarations containing the referenced types is elaborated according
to the other elaboration rules.

The use of the names of the tagged types is restricted in the scope of the
postponed use clause. They are only allowed as a subtype indication in the
interface list of a primitive operation28.

The language extension allows to break mutual dependencies similar to
class-wide types. In the example of the tagged type instr_and_data_buffer the
type store_instr can be referenced by making it visible through a postponed
use clause.

postponed use  work.store_instr_package.store_instr;
package  instr_and_data_buffer_package is

type  instr_and_data_buffer is tagged record  …
procedure  put ( object : inout  instr_and_data_buffer;

instr : in  store_instr);
procedure  get ( object : inout  instr_and_data_buffer;

instr : out  store_instr);
end  instr_and_data_buffer_package;

use  work.instr_and_data_buffer_package.instr_and_data_buffer;
package  store_instr_package is

type  store_instr is tagged record  …
procedure  execute_instr ( object : in  store_instr;

\buffer\ : inout  instr_and_data_buffer);
end  store_instr_package;

Referencing the type store_instr in the package declaration
instr_and_data_buffer_package does not cause an elaboration of the package
store_instr_package. The elaboration is postponed.

Similar to the example of the class-wide type it is useful to make the
tagged type store_instr and its primitive operations directly visible in the
package body of instr_and_data_buffer_package for example by a normal
use clause.

28. Allowing the names to occur elsewhere would make the elaboration con-
cept of the language extension too complex. It would not be possible to find an
appropriate translation mechanism to VHDL which re-arranges the elabora-
tion order of the types and resolves mutual dependencies.
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use  work.store_instr_package.store_instr;
-- makes the primitive operations of store_instr directly visible
package body  instr_and_data_buffer_package is

 …
end  instr_and_data_buffer_package;

Like in the example using a class-wide type the approach provides a strong
typing, however, the type checking mechanism is performed during analysis
and elaboration.

6.3.4 Private type

We have almost completed the introduction of the language extension. We
saw how the language extension provides the object-oriented principles of
abstraction and modelling by extension.

The object-oriented concept of encapsulation was based on the package
mechanism of VHDL. Especially its separation of package declaration and
package body allows an effective encapsulation of behaviour of a tagged
type. Only the subprogram specifications modelling the primitive operations
of the tagged type are made visible outside the package declaration. This is
different with the encapsulation of structure of a tagged type. The complete
structure is modelled in the package declaration and thus can be made visible
outside the package. To overcome this weak point in the language an addi-
tional encapsulation mechanism for the structure of tagged types is intro-
duced into the language extension.

The new encapsulation mechanism is based on so called private types. A
private type is a tagged type which allows the declaration of record elements
only visible in the primitive operations of the record.

Additionally to the normal sequence of element declarations a private
tagged type has a private part which is an additional sequence of element
declarations. The element declarations in the private part have a limited
scope compared to the element declarations in the non private part. The
scope of the element declarations in the private part only extends to the prim-
itive operations of the private type and to the primitive operations of tagged
types derived from it. In other words, the primitive operations are the only
access mechanism to elements declared in a private part of a tagged type. The
private part is protected from any uncontrolled access by an user of the
tagged type.

Primitive operations which have access to the elements of the private part
especially include the assignment operation as a basic operation on a tagged
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type. The assignment operation assigns each right-hand side value to its cor-
responding sub-element of the target including all elements in the private part
of the target (Compare Section 6.2.5). The assignment in principle works like
any other assignment to a composite type, however, there is an important lim-
itation on the use of an assignment operation on private types which follows
from the rules above regarding visibility. The target of an assignment that has
a private type must not be an aggregation if the assignment is outside a corre-
sponding primitive operation, i.e. outside the scope of the elements in the pri-
vate part of the target. Even if the names of the hidden elements of the
aggregate do not explicitly occur in a positional element association of the
aggregate the assignment is not allowed. It is not only the names but the
entire structure that is hidden in a private part of a tagged type.

The private part of a tagged type that is not derived from another tagged
type is defined as the sequence of element declarations that follow the new
keyword private in the record definition.
The following example shows a private tagged record.

type  private_tagged_record is tagged record
non_private_element : integer;

private
private_element : boolean;
another_private_element : bit;

end record ;

The private part comprises the declarations of private_element and of
another_private_element.

The private part of a derived type is the union of the parents’ private parts
and the element declarations that follow the keyword private in the definition
of the private derived type.

In the example we can derive a private type from the type
private_tagged_record.

type  derived_tagged_record is new  private_tagged_record with
another_non_private_element : bit;

private
additional_private_element : integer;

end record ;

The private part of the derived type consists of the declarations of
private_element, another_private_element, and additional_private_element.

In Section 3.3.18 it was discussed how references stored in instance vari-
ables break the encapsulation of objects. The unwelcome consequences in
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distributed objects have been considered. A proposal to solve the problem
was to avoid the breaking of encapsulation. It was stated that this could be
achieved by avoiding any reference mechanism.

To preserve the encapsulation of objects that use the encapsulation mech-
anism provided by private types and to support the modelling of distributed
objects a new kind of composite type is introduced into the language which is
called reference-free composite type. A reference-free composite type is a
composite type which only contains elements that are of scalar or reference-
free composite type. That means, an object that has a reference-free compos-
ite type finally is a collection of objects of scalar types. None of the objects
in the collection is of an access type. The encapsulation of the private part of
a tagged type is preserved by a rule that requires that a private part only may
contain elements that are of scalar or reference-free composite type.

The rule avoids an access value to be hidden in a private part of a tagged
type declaration. Signals of a private type that are used to model distributed
objects are prevented from the problematic effects of breaking encapsulation
in the private part. Elements of reference-free composite types in the private
part inhibit the unintentional declaration of a signal that is of an access type
without requiring the analysis of the private part of a tagged type and thus
breaking the encapsulation. This coincides with VHDL in which it is an error
if a signal declaration declares a signal that is of an access type (Compare
LRM 4.3.1.2).

Signals are used to provide a reference-free communication between
processes which are a means to model distributed behaviour and structure in
VHDL. Objects modelled in different processes can be viewed as distributed
objects. Values which may represent the state of an object are passed from
one process to another via signals29. The communication between the proc-
esses and thus between the distributed objects is based on a copy model as it
was mentioned in Section 3.3.18.

Thus, the language extension provides a modelling concept which corre-
sponds to the approach presented in Section 3.3.18 with respect to distribu-
tion of objects. The extension does not generally forbid the use of instance
variables in classes and objects. It supports both, passing objects and refer-
ences to objects as messages between objects. As we have already stated in
Section 3.3.18, it is only the objects’s structure that determines whether an
objects or at least its state can be sent from one object to another. As a conse-

29. The signal itself may be considered here as an object which is used for
communication.
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quence modelling with private types that are at the same time reference-free
composite types provides to a large extent late binding of parallelism.

Like any other tagged type a private tagged type has an implicitly
declared class-wide type associated with it. It is characterized by a set of val-
ues which is the union of all values of the associated type and the values of
all types derived from the associated type. In Section 6.3.1 it was explained
that only the structure of the associated tagged type is visible by selection
outside the object. This must be stated more precisely in the context of pri-
vate types. In a class-wide type only the structure of the associated tagged
type that is declared in the non private part is visible outside the object. In
other words, only the identifiers of record elements of the associated tagged
type in the non private part can be used in a selected name which denotes an
element of a class-wide object. Any element declared in a private part of the
associated tagged type is hidden in a class-wide type. Access to the hidden
elements is only possible via a dispatching call that executes a primitive
operation which is in the extended scope of an element in the private part of
the corresponding tagged type. Only the interpretation of the private part as a
private part of the tagged type indicated by the tag of the controlling operand
makes the elements of the private part accessible. The interpretation is due to
the implicit conversion which is part of the elaboration of the dispatching
call.

Hiding elements of a private part in a class-wide object that is a signal
also means that their names cannot be used in a sensitivity list of a wait state-
ment outside a corresponding primitive operation. What can be used in such
a sensitivity list is the name that denotes the class-wide signal. In that case
each scalar sub-element of that signal including the elements of the private
part is in the sensitivity set of the wait statement, that means a process may
resume as a result of an event on that elements.

Consider an implementation of the bounded buffers bbuffer and gb_buf
which completely encapsulate their structure in a private part.

type  bbuffer is tagged record
private

buf : bounded_buffer_array (1 to  buffersize);
buf_in : integer;
buf_out : integer;

end record ;

type  gb_buf is new  bbuffer with record
private
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after_put : boolean;
end record ;

None of the record elements is visible outside the tagged record. Only the
primitive operations put, get, and gget have access to the elements in the pri-
vate parts of the objects. A dispatching call on the operations performs the
implicit conversion to the tagged types bbuffer or gb_buf and thus makes the
elements of the private parts accessible.

variable  container : bbuffer'Class := bbuffer (…);
variable  item, item_type;
…
get(object => container, item => item);
container := gb_buf (…);
get(object => container, item => item);

In the first call the elements buf, buf_in, buf_out are accessed in the imple-
mentation of the operation after the implicit conversion to the type bbuffer of
the controlling operand container. In the second call after_put is accessible
additionally to the inherited elements of the private part after the conversion
to the type gb_buf.

The rules for modelling private types may seem a bit restrictive but they
result from the considerations of modelling distributed objects. The concept
especially is designed for preserving encapsulation and thus for supporting
late binding of parallelism.

6.4 Extending the Extension

Having introduced the language extensions to VHDL it seems appropriate to
list some features which are not part of the extension but which nevertheless
might be useful for object-oriented modelling at system level.

They have been proposed in variants by various proposals to extend
VHDL (Compare Section 5.2). It is only an exemplary selection of the most
interesting proposals on non object oriented extensions for high-level model-
ling. They concern the following language features: genericity, channels, pri-
vate types, dynamic processes, and nesting of packages. We briefly discuss
each of the features in special regard to the presented language extension. It
is investigated how they would interact with the concepts and mechanisms of
the language extension.
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6.4.1 Genericity

Genericity as it is provided by VHDL is limited to entities, components,
block statements and to a certain degree to subprograms. The idea is to
remove the limitations and to introduce generic types and to introduce
generic clauses in package declarations and subprograms. A corresponding
proposal was made in SUAVE [16]. The considerations on genericity in this
section follow this proposal.

A generic type abstracts in a design unit, a block statement, or a subpro-
gram from concrete types in an instantiation. It can be declared in a generic
clause. It is possible to define some constraints of the generic type in the dec-
laration. The constraints must be kept by actuals which might be associated
with the generic type in an instantiation. The proposal in [16] mentions
among other constraints the requirement that a type must allow an assign-
ment, or the restriction that a type must be derived from a specific tagged
type. If we think about the language extension presented in this thesis a con-
straint that requires a type to be a reference-free type also might be useful.
Following the SUAVE proposal a declaration of a generic type in a generic
clause might look as follows:

generic  (type  generic_type is private );

A generic type generic_type is declared which has the constraint that the type
must have at least an assignment as a basic operation.

generic  (type  derived_generic_type is new  parent with private );

This generic clause contains a generic type declaration with the constraint
that the type must be derived from the tagged type parent. The design unit,
block, or subprogram could use the information provided by the constraint.
For example, it could call primitive operations inherited by the actual type
that is associated to the generic type. The operations are inherited from the
parent type according to the constraint. The actual in an association of an
instantiation has to be a type derived from parent.

type  actual_type is new  parent with  …;
…
generic map  (derived_generic_type => actual_type);

The information which is provided by the abstraction of a type in form of the
constraint is the decisive link between the genericity concept for types and
the object-oriented concept of the language extension.
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In VHDL it is possible to pass constants as parameters to subprograms. In
the proposal to provide a genericity concept generic subprograms that may
have generic parameters are added to the language extension. Such a generic
subprogram is a template which can be instantiated wherever it is allowed to
declare a subprogram. To properly interact with the tagged type concept of
the language extension it is important that a generic procedure is not consid-
ered as a primitive operation of a tagged type. However, an instantiation of a
generic subprogram certainly can be a primitive operation.

Introducing generic clauses in package declarations allows to abstract
from constants or types in generic packages. A generic package serves as a
template from which packages can be generated in a package instantiation.
For example, such a generic package could be used to generalize a lock and
unlock mechanism like the one presented in Section 5.2.5. A type lock_class
provides two operations lock and unlock which block respectively unblock
the execution of an operation of an object. A generic package may abstract
from a parent of the tagged type lock_class.

package  lock_package is
generic  (type  generic_type is new  root_type with private );
type  lock_class is new  generic_type with private

object_is_locked : boolean;
end record ;
procedure  lock (object : inout  lock_class);
procedure  unlock ( object : inout  lock_class);

end  lock_package;

An instantiation generates a package with a derived type providing the primi-
tive operations for the lock mechanism. Assume, the tagged type bbuffer is
derived from the root type, then it would be possible to instantiate a new
package lock_buffer_package with the type lock_class which inherits the
primitive operations of bbuffer and adds the lock and unlock operations as
new primitive subprograms.

package  lock_buffer_package is new  lock_package
(generic_type => bbuffer);

It is interesting to note here that the newly created type does not automati-
cally have the intended behaviour with respect to the lock and unlock mecha-
nism. Although the new type has the lock and unlock operations the inherited
implementations of the primitive operations get and put are not aware of
them. Even though the tagged type and the generic type may not interact as



Extending the Extension 225

intended in the example they successfully can be combined from a language
design point of view.

So far we presented a proposal as part of a genericity concept how to add
generic parameters to subprograms and package declarations. In a next step it
would be possible to allow subprograms and packages themselves to become
a generic parameter in other design units, blocks, or subprograms.

Like any other generic parameter a subprogram can be declared in a
generic clause. When the formal parameters are associated with the actuals
the subprogram is associated with an actual subprogram. In the SUAVE pro-
posal the subprograms are required to have the same parameter and result
type profile. If we introduced such a mechanism into the language extension
of the thesis the requirement would not guarantee an error-free elaboration of
all calls on the subprogram. It might occur that some parameter modes or
parameter classes of the formal parameters are different from the actual ones.
To make the proposal work with the language extension of the thesis it would
be additionally required that in an association of a formal subprogram with
an actual the corresponding parameters of the subprograms have the same
mode and class.

To give a short example we could think of a generic bounded buffer pack-
age which abstracts from the type of the items stored in the buffer. Further-
more, the buffer might provide a primitive operation equal that returns a
result parameter that is true if two objects contain the same number and
sequence of items. This in principal corresponds to the example e_buf in Sec-
tion 6.3.2. A subprogram that defines what equality means for the different
item types is declared as a generic parameter of the package. It can be used in
the operation equal of the buffer.

package  generic_e_buf_package is
generic

(constant  buffersize : positive;
type  item_type is private ;
function  equal (left,right : item_type) return  boolean);

type  bounded_buffer_array is array (positive range  <>) of  item_type;
type  e_buf is tagged record

buf : bounded_buffer_array (1 to  buffersize);
…

end record ;
procedure  equal ( object1 : inout  e_buf;

object2 : inout  e_buf;
test_result: out  boolean);

-- procedure equal can use function equal in its implementation
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…
end  generic_e_buf_package;

In an instantiation the subprogram is associated with the function which
checks the equality of objects that are of the actual parameter for item_type.

package  e_buf_package is
new  generic_e_buf_package
generic map  (buffersize => 4,

item_type => integer,
equal => ''='');

The instantiation mechanism interacts with the object-oriented language
extension by generating a package which contains a tagged type and its prim-
itive operations.

The last extension to the genericity concept we are looking at is the mod-
elling of packages as generic parameters. In principle, a generic parameter
that is a package is described in a generic clause as a generic package that is
so to speak derived from another generic package. Derived from another
package means that any actual package that is associated to the formal pack-
age in the generic clause must be an instantiation of the generic package
from which the formal is derived.

For example, it would be possible to pass instantiations of the generic
package generic_e_buf_package as parameters to another generic package.

package  another_generic_package is
generic  ( package  e_buf_package is new  generic_e_buf_package

generic map  (<>));
-- other declarative items
…

end  another_generic_package;

In the example the generic parameter e_buf_package is required to be an
instantiation of the generic package generic_e_buf_package. In an instantia-
tion of the generic package another_generic_package the type of the items
and the function which checks for equality are passed as actuals to the pack-
age. Like in the example before, a package is created which contains a tagged
type and its primitive operations, however this time it is created inside
another package. And again, the tagged type concept can be integrated in the
genericity mechanism.

As shown by the example, passing packages as parameters only makes
sense if the language allows the modelling of hierarchies of nested packages.
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This requires an extension to VHDL as VHDL only allows the declaration of
packages at library level.

6.4.2 Packages

In VHDL the design entity is the primary hardware abstraction. A package is
a secondary part in a hardware model. Basically it serves as a collection of
declarations which are shared by other design units. With the declaration of
tagged types in packages they become a means to encapsulate class declara-
tions in the language extension of the thesis.

There are ideas to make an even greater shift in the meaning of packages
from a secondary concept to a central concept of encapsulation [9]. This shift
is achieved by allowing package declarations to occur as declarative items in
declarative parts of entities, architectures, block statements, generate state-
ments, process statements, package declarations, and subprograms.

As it was briefly mentioned in the previous section the tagged type con-
cept in principle interacts with the extended encapsulation concept of pack-
ages. The situation is somewhat different if a package is declared in an entity,
block statement, generate statement, or process statement. The elaboration
concept of such packages has to be extended as their elaboration does not any
longer depend only on the elaboration of other packages. Assuming there is
such an extended elaboration concept the question is how it would interact
with the non-linear elaboration concept of class-wide types in the language
extension. Another problematic issue concerns a potential weakening of the
encapsulation caused by class-wide types.

Consider a tagged type that is declared in a package at library level
together with its associated class-wide type. A derived type might be
declared in a package that is a declarative item in an entity, architecture, etc.
A class-wide object could be used to export the structure and behaviour
declared locally in the entity, architecture, etc. This is against the fundamen-
tal encapsulation concepts for these language constructs.

The situation becomes even more complex if packages are allowed to
occur as declarative items in subprograms. The dynamic elaboration of sub-
programs does not interact with the elaboration concept of class-wide types.

Consider a derived type that is declared in a package inside a subprogram
and that is derived from a parent type declared outside the subprogram. A
value of the derived type is assigned an out parameter that has a class-wide
type associated with the parent’s type. After the execution of the subprogram
call the caller receives a value of a type whose corresponding type declara-
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tion does not any longer exist. Although the information stored in the value
would not be interpretable outside the subprogram the value nevertheless
could be used in a dispatching call outside the subprogram. The effects of
such a call would not be clear.

We can conclude that combining the tagged types approach with the pos-
sibility to declare non library-level packages would require additional con-
cepts that remove the problematic issues raised above.

6.4.3 Extension to private types

Another extension to the encapsulation concept of packages proposed in [9]
is the introduction of a visible part and a private part in a package declara-
tion. The extension is proposed for the modelling of abstract data types. In
the extension, the private part of a package allows to hide implementation
details of types that are declared in the visible part of the package. The
details may include the structure of the type and the operations characterizing
the type. The declarations in the private part of a package are only visible in
the corresponding package body. Such a concept would be a more general
variant of the private type concept introduced in this thesis.

To illustrate the extension, the example of the bounded buffer bbuffer
from Section 6.3.4 could be transformed to the extended version.

package bounded_buffer_package is
type  bbuffer is tagged private ;
procedure  get (object : inout  bbuffer; item : out  item_type);
procedure  put (object : inout  bbuffer; item : in  item_type);

private
type  bounded_buffer_array is array (positive range  <>) of  item_type;
type  bbuffer is tagged record

buf : bounded_buffer_array (1 to  buffersize);
buf_in : integer;
buf_out : integer;

end record ;
end  bounded_buffer_package;

In the example, the declaration of the structure of the tagged type is com-
pletely moved to the private part of the package. Only the bodies of the prim-
itive operations get and put that are implemented in the package body have
access to the declarations in the private part, i.e. the structure of the tagged
type.
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The private type bbuffer is marked as tagged and thus could be derived in
another package.

use work.bounded_buffer_package.all ;
package bounded_buffer_package_gb_buf is

type  gb_buf is new  bbuffer with private ;
…

private
…

end  bounded_buffer_package_gb_buf;

From the example the problem with such a modelling approach becomes
clear. Although a use clause makes visible declarations of the package
bounded_buffer_package directly visible in the package containing the
derived type the structure of the parent type bbuffer is not visible to the
derived type gb_buf.

As we have stated in Section 3.2.14 breaking the encapsulation of struc-
ture is a basic characteristic of any inheritance concepts that is different from
pure delegation. However, the extended private type mechanism just prevents
the derived type from breaking the encapsulation. What would be required
for the private type mechanism to interact with the tagged type concept is a
controlled and safe way for a derived type to break encapsulation of the
structure of its parent type.

At that point it is interesting to note that the non object oriented language
extensions described so far could be used in combination with the tagged
type concept to model mixin inheritance which may serve as a surrogate for
the missing multiple inheritance. The modelling principles of mixin inherit-
ance were introduced in Section 3.2.13. We just sketch an example of how
the concepts may interact to achieve mixin inheritance.

Consider the example of the lock_buffer_package that was introduced in
Section 6.4.1. The example associated a tagged type as an actual parameter
to a generic package and thus created a derived type in the new instantiation
of the package. The problem was that inherited operations required a modifi-
cation to correctly interact with new primitive operations but the instantiation
mechanism for the package does not provide a mechanism for modifying
them. The solution to the problem is mixin inheritance which encapsulates
the instantiated package in a private part of another package and thus allows
the overloading of inherited operations.

package  lock_package is
generic  (type  generic_type is new  root_type with private );
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type  lock_class is new  generic_type with private ;
procedure  lock (object : inout  lock_class);
procedure  unlock ( object : inout  lock_class);

private
…

end  lock_package;
…
package  bounded_buffer_package_lb is

type  lb_buf is new  bbuffer with private ;
procedure  get(object : inout  lb_buf; item : out  item_type);
procedure  put(object : inout  lb_buf; item : in  item_type);

private
package  lock_buffer_package is new  lock_package(bbuffer);
type  lb_buf is new  lock_buffer_package.lock_class

with null record ;
end  bounded_buffer_package_lb;

The derived type lb_buf inherits its properties from the types bbuffer and
generic_type. The latter one is an instantiation of the declaration in the
generic package lock_package.

The example illustrates how object oriented principles could be combined
with other high-level modelling concepts to noticeably improve the model-
ling capabilities of VHDL.

6.4.4 Extended processes

A third proposal to improve the encapsulation concept of VHDL is to pro-
vide an abstraction boundary for processes [13]. Such an idea to add an inter-
face to a process which abstracts the communication with other operations
turns out to be basically a shorthand notation for a block containing a proc-
ess.

A more problematic idea is to allow a dynamic elaboration of processes
which might be elaborated as consequence of a sequential statement. The
general difficulties of approaches that add concurrency to a sequence of state-
ments in VHDL have been discussed in Section 5.2. The difficulties are not
removed by combining the approaches with the tagged type concept. On the
contrary, it would add all the unsolved issues on thread synchronisation and
encapsulation to the approach that have been discussed in Section 3.3.2.
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6.4.5 Communication

A similar problematic category of proposals concerns extensions that add
new synchronisation and communication mechanisms to the language. As
stated in Section 3.3, communication and synchronisation concepts in vari-
ous forms of message passing mechanisms play a central role in object ori-
ented modelling of concurrent systems. However, VHDL only provides a
very low-level communication concept. In [98] the communication concept
of VHDL is even classified as poor for system level description purposes.
This is confirmed in Section 5.2 by the investigation of the proposals for
communication that are part of object-oriented language extensions to
VHDL. Apart from the protected object proposal none of the extensions
could provide an abstract communication mechanism with a seamless inte-
gration into the existing synchronisation concept.

We now want to investigate proposals to extend VHDL by system level
communication mechanisms with special respect to their potentiality for
combination with tagged types. The analysis comprises among the protected
objects approach, two more proposals for modelling communication at speci-
fication level.

The protected object proposal discussed in Section 5.2.4 provides a
shared memory synchronisation which is based on a monitor approach. It can
be used to establish indirect synchronisation and communication between
processes. The proposal is described in detail in [91].

A protected object is modelled as a shared variable that has a protected
type. A protected type is modelled by a protected type declaration and a so
called protected type definition which is the corresponding body to the decla-
ration. The protected type declaration consists of a set of subprogram decla-
rations which declare the so called protected type subprograms. The
protected type subprograms entirely characterize the protected type. They
serve as an interface of a shared variable that has the protected type. The
monitor mechanism of the protected type provides a mutual exclusion syn-
chronisation between the protected type subprograms of the shared variable.

The subprogram bodies are defined in the protected type body which is
associated with each declaration. Additionally to the subprogram bodies the
protected type body may contain variable declarations. They are used to rep-
resent the shared data of a protected type, in other words, they model the
structure of the type. The variables are encapsulated by restricting their scope
to the body of the protected type in which they are declared. That means,
only protected type subprograms are allowed to access the variables. The
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mutual exclusion synchronisation of the subprograms prevents the unwanted
concurrent access to the shared data.

If the tagged type approach were integrated with the protected object pro-
posal it would be possible to declare variables that have a tagged type in a
protected object. The protected type subprograms which provide the mutual
exclusion synchronisation would access the variables via the primitive opera-
tions. The protected type would be a wrapper that brings mutual exclusion
synchronisation to the object of tagged type. This mechanism to provide
mutual exclusion synchronisation would not only work for objects of tagged
type but also for class-wide objects.

An example for such a modelling style would be a wrapper for an object
of bounded buffer bbuffer.

type  wrapper_of_bbuffer is protected
procedure  put (item : item_type);
procedure  get (item : out item_type);

end  protected wrapper_of_bbuffer;
…
use  work.bounded_buffer_package.all ;
type  wrapper_of_bbuffer is protected body

variable  encapsulated_bbuffer : bbuffer;
procedure  put (item : item_type) is
begin

put (encapsulated_bbuffer,item);
end ;
procedure  get (item : out  item_type) is
begin

get (encapsulated_bbuffer,item);
end ;

end protected body  wrapper_of_bbuffer;

Calling the protected type subprograms put and get of a shared variable guar-
antees mutual exclusive access to the buffer.30

shared variable  shared_bbuffer : wrapper_of_bbuffer;
…
-- access from within one process:

shared_bbuffer.put(item);
…

30. Some details on initialization are omitted in the example for simplifica-
tion.
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-- another concurrent access from within another process:
shared_bbuffer.get(another_item);

The example illustrates how a protected type could be used to add mutual
exclusion synchronisation to objects of tagged type. At the same time it
shows the limitations of such a modelling style. If the tagged type is derived
a new wrapper has to be modelled. It is not possible to derive the protected
type. Another limitation is that the usage of a wrapper prohibits any refer-
ence semantics in the modelling of objects as any access-typed variables are
completely encapsulated in a protected object. The modelling of polymor-
phic objects is restricted by the fact that dispatching calls are only possible
indirectly via protected type subprograms.

The most severe limitation in that modelling style concerns the modelling
of condition synchronisation. In the example, synchronisation prevents a
concurrent access to the shared resource but it does not prevent a caller to
call a get operation on an empty buffer or to block a caller until the buffer
contains items. There is no guard mechanism and no re-queue mechanism
which would allow an appropriate condition synchronisation for such a mod-
elling problem31. The protected object proposal does not care about specifi-
cation or modelling of pre-conditions on operations. Even if it cared about
conditions synchronisation the modelling approach would not support re-use
of the synchronisation code as it would not be part of the tagged type.

Adding synchronisation to a tagged type the other way round by dragging
the protected object into a tagged type unfortunately does not work because
protected types may not be used in composite types according to the pro-
tected object proposal.

Another idea of integrating the tagged type approach and the protected
object proposal would be to have a new protected tagged type which com-
bines features of both types the protected type and the tagged type. Such an
idea apart from some notational details would very much correspond to the
proposal on minimally extending VHDL by monitors and inheritance which
has been discussed in Section 5.2.5. The limitations already have been
sketched. Due to the missing assignment operation on protected types and
due to the restriction that access type definitions must not depend on pro-
tected objects it would not be possible to model any kind of polymorphic
objects. Another severe limitation of the new type would be the missing
modelling concept for condition synchronisation. In conclusion, the introduc-

31. Such language concepts are considered to be too complex by the protected
object proposal for inclusion in a first extension to VHDL
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tion of a new type for the integration of tagged types approach and protected
object proposal would not have a real advantage over the wrapper approach.

Both integration approaches would be possible, however none of them
would be a general approach for modelling communication between proc-
esses or objects. The extended meaning of message as it was introduced in
Section 3.3.7 also denotes requests to access an object that is wrapped in a
protected object but the message passing approach lacks mutual exclusion
synchronisation to be general.

In addition to protected objects we also could think of other shared
resources that could be used for modelling communication. In Section 3.3.19
we stated that channels can be interpreted as a special kind of predefined
shared object.

A message passing mechanism that is based on channels is proposed in
[15]. It is a uni-directional channel concept for asynchronous message pass-
ing. The pros and cons of such a concept were discussed in Section 3.3.19.
Messages are asynchronously sent to a channel and received by an explicit
acceptance mechanism from the channel. Messages may contain data infor-
mation which is sent uni-directionally from the sender to the receiver. The
type of such an information is called message type. If the message does not
contain any data information the information of the message is the event of
sending the message. To avoid that an information sent to a channel gets lost
if the receiver is not ready to receive a message the channel concept provides
message queues for buffering messages. The message buffer is also used to
solve access conflicts to channels. All messages that are sent concurrently to
a channel are stored in an arbitrary order in the message queue.

Channels as abstraction of communication omit quantitative timing speci-
fication on messages and instead introduce a relative order of events corre-
sponding to the order of messages in the buffer. On the receiver side the
potential processing order of the events defines the interface control space.
To support the modelling of the interface control space the channel concept
has a guard mechanism. The guard mechanism allows to specify synchroni-
sation conditions as part of the explicit acceptance mechanism for messages.

With its support for condition synchronisation the channel concept can be
used for the synchronisation modelling of distributed objects. They can be
modelled as sequential objects each having a thread that automatically could
be invoked after the object’s elaboration and that models the condition syn-
chronisation. The automatically started thread receives the messages sent to
the object and explicitly calls its corresponding operations while using the
guard mechanism to model the synchronisation. If the object is modelled
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using tagged types it combines nicely with the channel concept for modelling
condition synchronisation.

We illustrate this consideration by the example of the bounded buffer
bbuffer. As described above the distributed version is modelled as an object
that communicates via channels. One channel is used for each operation and
for each result of an operation.

type  get_instr is null channel ;
type  put_instr is channel  of item_type;
type  item_as_a_result is channel of  item_type;

A message that has type put_instr contains data information that has type
item_type. Likewise item_type is the message type of the channel type
item_as_a_result that is used to model the reply scheduling of the get opera-
tion of the bounded buffer.

The channel approach requires a message type that is a composite type
not to have an element that is an access type. This requirement can be met by
using a private type from the tagged types approach. If the non-private part is
empty the type is guaranteed not to contain any access type.

The tagged type itself is extended by a primitive operation which models
the synchronisation code and which has to be invoked after the elaboration of
the bounded buffer.

procedure  thread ( object : inout  bbuffer;
channel  get_channel : in  get_instr;
channel  get_channel_reply: out  item_as_a_result;
channel  put_channel : in  put_instr);

It can be called in a process which contains the buffer as a variable. In the
process the thread is invoked after the elaboration of the object before any
other object from outside the process may try to communication with the
buffer. By modelling the call of the thread as the only sequential statement in
the process the object becomes an active object.

process
variable  bbuffer_object : bbuffer;

begin
thread ( object => bbuffer_object,

get_channel => actual_get_channel,
get_channel_reply => actual_get_channel_reply,
put_channel => actual_put_channel);

end process ;
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It is interesting to see that no wait statement is required in the process. A
receive statement inside the thread which accepts messages from the channel
replaces wait statements as a synchronisation point. Among the receive state-
ment the body of the primitive operation thread contains the complete syn-
chronisation modelling of bbuffer.

procedure  thread ( object : inout  bbuffer;
channel  get_channel : in  get_instr;
channel  get_channel_reply: out  item_as_a_result;
channel  put_channel : in  put_instr) is

variable  item : item_type;
begin

condition_synchronisation : select
when object.buf_in /= object.buf_out => -- buffer is not empty

receive from  get_channel;
get (object, item);
send  item to  get_channel_reply;

when  (object.buf_in - object.buf_out )
mod ( 2 * buffersize ) /= buffersize =>-- buffer is not full

receive  item from  put_channel;
put (object, item);

end select  condition_synchronisation;
end ;

In the body of the thread operation the messages are received by a select
statement. The select statement is a language construct of the channel
approach. It selects one of the messages from a channel referenced in the
select statement. The statement only selects a message from a channel that
has a corresponding guard expression that evaluates to true. In the example
the guards test if the buffer is not full or if the buffer is not empty; accord-
ingly put or a get message can be received by the select statement. After
selecting a message the statements in the selected branch of the select state-
ment are executed. If a message is received from the get channel the primi-
tive operation get of bbuffer is invoked. The result is sent to the channel
get_channel_reply.32 Likewise the put operation is invoked if a put message
is selected.

The example shows how it is possible to use the channel concept to
model the synchronisation of distributed objects that have a tagged type. The

32. To keep the example simple, the buffer does not consider the client iden-
tity in the reply scheduling of the get operation. We may assume, only one cli-
ent consumes items from the buffer in the example.
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severe limitation of the presented modelling style is the impossibility to
derive a new type without re-analysing the existing synchronisation code in
the body of the primitive operation thread and completely re-write it. Re-ana-
lysing especially means to break the encapsulation of the parent’s behaviour.
We can conclude that the modelling style which combines the channel
approach and the tagged type concept works but only provides a very limited
support for re-use33.

Another channel concept is proposed in [86] and explained in [58]. It
describes a language extension which is called VHDL+. The extension is
especially developed to support interface based design at system level. The
channel concept behind the interface mechanism of the language is a bi-
directional message passing concept that uses proxies to abstract its asyn-
chronous message passing.

While the channel may be bi-directional a single message is always uni-
directional. Each channel specifies which kind of messages are allowed to be
sent in which direction across the channel. That means, different to the previ-
ous proposal it is possible to send more than one kind of message via a chan-
nel. Each kind of message may transport values that have particular types.
Like in the previously presented channel concept a channel is viewed as a
shared resource. Each kind of message which can be sent via the channel is
viewed as a shared resource that is mutually exclusively accessed by a
sender. If a message is sent to a channel while another message of the same
kind is still processed by the channel the new message is queued until it can
be processed.

A channel is described by a so called interface primary unit34. An inter-
face lists the messages which can be sent via the channel. It distinguishes dif-
ferent kinds of connections to interaction points. In the terminology of
VHDL+ these kinds of connections are called ends and the interaction points
are called interface ports. The messages of a channel must not be sent arbi-
trarily between different interaction points but only between interaction
points that have a connection of certain kinds. In other word, messages

33. Please note, this is not a particular problem of the channel concept but a
general problem of active objects that model their synchronisation as part of
their user-defined activity. We shall investigate this phenomenon later on in
Section 8.1.1 in more detail.
34. Actually, the term channel is not used in the language description at all.
Instead interface primary unit or interface is used which in the terminology of
the thesis represent a channel.
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between interface ports are only possible if the interface ports are connected
to certain ends.
An example of an interface to a bounded buffer may illustrate this.

interface  bbuffer_interface is
between  client, bbuffer_server;
protocol is

put_message;
get_message;
get_reply_message;

end ;
message  put_message (item : item_type) is

from  client to  bbuffer_server;
end message  put_message;
message  get_message is

from  client to  bbuffer_server;
end message  get_message;
message  get_reply_message (item : item_type) is

from  bbuffer_server to  client;
end message  get_ reply_message;

end interface  bbuffer_interface;

The ends of the interface are client and bbuffer_server. The protocol lists the
messages which can be sent between these ends. The message declarations
declare that the messages put_message and get_message only can be sent
from client to bbuffer_server and that the message get_reply_message only
can be sent from bbuffer_server to client. Further it declares that
put_message and get_reply_message are used to send a value of type
item_type35.

With this interface it is possible to encapsulate an instantiation of a
bounded buffer in an entity. The entity has interface ports as new interaction
points which are connected to the bbuffer_server end of the interface.

use  interface work.bbuffer_interface;
entity  bbuffer_entity is

interface port  (object_interface: bbuffer_server of  bbuffer_interface);
end  entity bbuffer_entity;

35. Like in the previous example, reply scheduling of the message
get_message through get_reply_message does not consider the identity of a
client.
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The architecture which contains the instantiation of the bounded buffer can
receive the messages get_message and put_message from object_interface
and it can send the message get_reply_message to object_interface.

If we want to combine the VHDL+ approach with the tagged types con-
cept and implement the bbuffer as an object that has a tagged type bbuffer the
problem is that it is not allowed in VHDL+ to send and receive messages
from within subprograms. In other words, it is not possible to write a primi-
tive subprogram thread like in the previous example to model the synchroni-
sation via the channel.

Instead, it is necessary to model the synchronisation in a process. As a
consequence, the actual synchronisation states of the bbuffer must be acces-
sible from within the process. This is achieved by declaring an enumeration
type which lists the synchronisation states of bbuffer and by declaring a
primitive operation which returns the actual synchronisation state.

type  bbuffer is  …
…
type  synch_states_of_bbuffer is  (empty, partial, full);
procedure  actual_synch_state (object : inout  bbuffer;

state : out  synch_states_of_bbuffer);

As a process must not immediately contain the constructs of the language
extension that are employed to model the synchronisation it is necessary to
encapsulate them in a special construct of VHDL+ that is called activity36.
The activity is called in a process like a subprogram.

architecture  behaviour of  bbuffer_entity is
activity  encapsulate_synchr (object : inout  bbuffer) is

variable  synch_state_of_object : synch_states_of_bbuffer;
variable  item : item_type;

serial
actual_synch_state (object,synch_state_of_object);
case  synch_state_of_object is

when  empty =>
receive  object_interface.put_message(item);
put (object, item);

when  partial =>
action

36. We do not consider the general properties of activities like concurrency
concepts etc. in the example. We only use activities for encapsulation without
any further function.
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when receive  object_interface.put_message(item) =>
put (object, item);

when receive  object_interface.get_message =>
get (object, item);
send  get_reply_message(item);

end action ;
when  full =>

receive  object_interface.get_message;
get (object, item);
send  object_interface.get_reply_message(item);

end case ;
end activity  encapsulate_synchr;
process

variable  bbuffer_object : bbuffer;
begin

encapsulate_synchr (bbuffer_object);
end process ;

end ;

In the example, the synchronisation is modelled in the activity
encapsulate_synchr. This activity consists of a sequence of sequential state-
ments. The first sequential statement calls the primitive operation
actual_synch_state of the tagged type bbuffer and reads the synchronisation
state of the object which models the buffer and which is passed as a parame-
ter of type bbuffer to the activity. The execution of the following synchroni-
sation code depends on the synchronisation state. If the buffer is empty the
activity waits until it receives a put_message on the object_interface. After
receiving the message it performs the actual put operation on the bounded
buffer by calling the primitive operation put of bbuffer. It is the receive state-
ment which is only allowed to occur in processes or activities and which
must not be used in primitive operations. The receive statement acts as a new
synchronisation point in the language extension. In case the buffer is full the
activity waits until a get_message arrives. It executes the get operation and
sends the result to the interface. The message is sent blocking the sender until
it exclusively can access the message get_reply_message of the interface
bbuffer_interface via its end bbuffer_server. The end is viewed as a shared
resource in the way mentioned above. The interface serves as a proxy in the
asynchronous message passing.

If the buffer is not full nor empty the buffer is in the state partial. In that
state both messages, put_message and get_message are accepted. Which
message is accepted depends on which one arrives first. Such a situation is
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modelled in VHDL+ by a statement which is called action37. It is similar to
the select statement of the SUAVE language extension. Depending on the
message it receives it performs a sequence of statements associated with the
receive statement, i.e., the put and get operations. The difference to the select
statement is that it is not possible to guard a receive statement.

The bounded buffer object itself is instantiated as a variable in a process
which runs the synchronisation by calling the activity which actually con-
tains the synchronisation code of bbuffer. The impurity of such a synchroni-
sation modelling is that a type of an object is not characterized by its
synchronisation code. The synchronisation rather has to be modelled for each
object separately in the architecture where the object is instantiated. In
VHDL+ activities are only declared in architectures. They cannot be declared
in packages. This drastically reduces the possibility to re-use synchronisation
code of objects in a model. These difficulties in declaring synchronisation as
a property of a tagged type are a major obstacle for modelling by extension.

The investigation of the VHDL+ modelling philosophy shows that it is
possible to combine tagged types with the communication mechanisms of
VHDL+ as far as language issues are considered but that an integration of the
concepts is problematic with respect to modelling styles which support re-
use and modelling by extension.

The syntax and semantics of VHDL+ is defined in a way that allows a
translation from VHLD+ models to standard VHDL models by a pre-proces-
sor. There already exists a tool for that pre-processing [58]. At the same time
there is a proposal how to pre-process tagged types and translate them into
standard VHDL constructs. (Compare Section 6.5.1). It would be interesting
to see if it is feasible to integrate both pre-processor approaches. However,
detailed information about the pre-processor mechanisms for VHDL+ which
is required for such an investigation is not yet published.

If we summarize the main points of this section we can state that the
tagged types approach can be combined with proposals for language exten-
sions that add new communication and synchronisation concepts to the lan-
guage. The combination would not introduce any syntactic or semantic
inconsistencies into the language. The missing point of contact between the
object-oriented concepts and the communication mechanisms results in the

37. There is also another receive statement in the language extension which is
able to receive a get or a put message and which could be directly used in a
process. However, it would not be possible to associate particular sequence of
statements which the different messages received.
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assumption of many language designers that object-oriented features in form
of for example tagged types are orthogonal to communication concepts38.
However, none of the presented extensions for high-level communication and
synchronisation is suitable for modelling the message passing between dis-
tributed objects that have tagged type. All concepts abstract the communica-
tion between objects. However, the abstractions are only well suited for use-
relation between objects but they are not appropriate for the modelling of is-a
relations between classes. In other words, the language extensions do not
provide any support for the modelling of re-usable and extendable synchroni-
sation code.

6.5 The Translation

The previous sections described the proposal of this thesis to extend VHDL.
The syntax and semantics of the language extension have been presented in
detail. It was mentioned that the language extension could be integrated in a
design flow by a pre-processing step which translates models using the
object-oriented features of the language extension into models using only
standard VHDL. The language features which have been presented in Sec-
tion 6.2 and Section 6.3 were identified as appropriate for such a translation
mechanism. We now introduce a synthesis semantics which describes the
transformation from an object-oriented level of abstraction to an algorithmic
level.

6.5.1 The pre-processor approach

We start by making some general remarks on pre-processor approaches to
translate a language extension of VHDL. In VHDL and likewise in an exten-
sion a model is structured into design units which can be analysed separately
into design libraries. The environment in which a design unit is analysed is
defined in terms of design libraries by library clauses. Thus, if we translate a
language construct of the extension which depends on its environment, i.e.,

38. These reflections on language extensions manifest in different study and
working groups of the Design Automation Standards Committee (DASC) of
the IEEE Computer Society which is in charge of the standardization effort for
VHDL. A working group elaborates a monitor concept, a study group dis-
cusses the communication proposals, and another study group studies with the
object-oriented language extension.
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on the content of some design libraries it is not possible to perform the pre-
processing by textual replacements on a per design unit basis. It is rather nec-
essary to process the content of the design units which are extended by the
capability to store the results of the analysis of the extensions. The result of
the processing then can be written to a set of new VHDL design units.

The new design units may contain some new identifiers automatically
generated by the translation process. The generation must take care that the
new identifiers do not conflict with existing ones. This could be achieved for
example by modifying existing identifiers in a way that allows to distinguish
them from the newly added ones.

The limitation of such a pre-processor approach is the missing possibility
to directly simulate a model written in the language extension. The introduc-
tion of new objects as a translation result and the renaming of exiting identifi-
ers makes it difficult to trace a simulation in the original model. Therefore it
is important to generate readable target code as a translation result.

6.5.2 Translation of tagged types

The most central construct in the object-oriented language extension of this
thesis is the tagged type. It is a composite type which may contain sub-ele-
ments of different types. In other words, it is a special kind of record type.
Thus it suggests itself to translate a tagged record as a normal record. The
normal record contains all the sub-elements of the tagged record. If the
tagged type does not contain any record element then a dummy element is
introduced into the record. The implicitly declared tag field of a tagged
record is omitted in the normal record. As an object that has a tagged type
must not change its type during simulation the value of the tag field can be
statically determined at analysis time and modelled as a constant in the trans-
lated code where it is required.
The example of the tagged type bbuffer was introduced in previous sections.

type  bbuffer is tagged record
private

buf : bounded_buffer_array (1 to  buffersize);
buf_in : integer;
buf_out : integer;

end record ;

It translates as follows39:
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type  bbuffer is record
buf : bounded_buffer_array (1 to  buffersize);
buf_in : integer;
buf_out : integer;

end record ;

In the target code it makes no difference if an element declaration of a record
declaration originally was in a private part or in the non private part of the
tagged record declaration.

At that point we want to give some general remarks on encapsulation
properties and the corresponding visibility rules of the new language features
with respect to translation. Considerations on encapsulation of objects in the
target code are not relevant from a code generation point of view. Checking
the visibility rules is part of the parsing and the semantic analysis but not of
the code generation. That means that if a model passes the parsing and the
semantic checks it can be translated without worrying about encapsulation.
The target code might contain declarations with an extended scope compared
to the scope of the corresponding declaration in the source code but it does
not matter as no references in the extended parts of the scope are introduced
by a translation.

To come back to the example that means that the record elements of
objects of bbuffer are not referenced outside its primitive operations. The
operations in the target code that correspond to the primitive operations in
the source code are either implicitly declared with the type declaration of the
record like its basic operations or they are translated by replacing the subtype
indications referencing tagged types by indications referencing the corre-
sponding translated types.

In the example of the bounded buffer the translation is simple as the
renaming of identifiers, i.e., the renaming of the type names is omitted.

procedure  get (object : inout  bbuffer; item : out  item_type);
procedure  put (object : inout  bbuffer; item : in  item_type);

With the record type having the same name as the original tagged type the
procedures can be taken without any modifications.

39. To make the translation results in the example as readable as possible the
examples omit the renaming of identifiers which was mentioned in the previ-
ous section.
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6.5.3 Translation of derived types

A derived type is a tagged type that inherits properties from its parents and
that might have some additional properties. The properties are expressed in
terms of structure and behaviour of a tagged type. We first look at the transla-
tion of the structure. A derived type is translated as a record type which con-
tains all the record elements of its parents and possibly some new elements.
All record elements means that a potential dummy element of a parent in
case of a tagged record containing no elements also appears in the element
list of the derived type. The new elements of the derived type possibly
require a renaming in the translation to avoid potential naming conflicts with
record elements from other derived types which have a common parent.
Without renaming such a conflict might occur in the translation of class-wide
types as we shall see later on.

With this translation concept the translation of the derived type example
gb_buf looks as follows:

type  gb_buf is new  bbuffer with record
private

after_put : boolean;
end record ;

The translation result from this declaration is:

type  gb_buf is record
buf : bounded_buffer_array (1 to  buffersize);
buf_in : integer;
buf_out : integer;
after_put : boolean;

end record ;

An alternative translation concept for the structure of derived types would be
to translate the inherited structure as a new record element that has the parent
type. A variant of such a concept was proposed in [175]. In the example the
translation result would look as follows:

type  gb_buf is record
parent_structure : bbuffer;
after_put : boolean;

end record ;
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For the modelling of objects that have derived types the alternative would not
make much difference. In the following we assume that the original transla-
tion proposal is the basis of the rest of the translation schema.

The derived type and its parent are closely related types with an explicit
type conversion between them. The explicit type conversion can be translated
as a call to a conversion function from the derived type to its parent type. The
implementation of the conversion function assigns the values element-wise
ignoring those elements which are only in the derived type.

In the example an explicit conversion bbuffer can be translated as a call to
the conversion function to_bbuffer which is implemented like this:

function  to_bbuffer (object : gb_buf) return  bbuffer is
variable  result : bbuffer := (buf => object.buf,

 buf_in => object.buf_in,
 buf_out => object.buf_out);

begin
return  result;

end ;

The function call can replace the conversion in expressions or associations
where it is legal to use a conversion. A typical example of such a legal use
would be a port map with an association list that contains type conversions.

Among its structure a derived type also inherits the behaviour of its par-
ents. The inherited subprograms are translated by a declaration of the subpro-
grams in which the formal parameter list is modified so that the derived type
is characterized by the subprogram. Each subtype indication of the tagged
type in the formal parameter list is replaced in the translation by a subtype
indication of the derived type.

In the example the put and get operations of bbuffer are inherited by
gb_buf. Accordingly the formal parameter list is modified in the subprogram
declarations of the translation:

procedure  get (object : inout  gb_buf; item : out  item_type);
procedure  put (object : inout  gb_buf; item : in  item_type);

During the execution of an inherited primitive operation it might be neces-
sary to perform implicit type conversions to avoid type mismatches.

An example might be an assignment to a local variable that has the par-
ent’s type.

procedure  put (object : inout  bbuffer; item : in  item_type) is
…
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variable  local_copy_of_object : bbuffer := object;
begin

…
end ;

After inheriting the operation put the derived type gb_buf determining the
initial value of the local variable in the procedure requires an implicit type
conversion from the derived type to the parent.

procedure  put (object : inout  gb_buf; item : in  item_type) is
…
variable  local_copy_of_object : bbuffer := to_bbuffer(object);

begin
…

end ;

In many cases an implicit conversion could be translated as a call to the con-
version function which was defined to translate explicit conversions. There
are a few situations which require a slightly different translation.

If an implicit conversion is required in an assignment where the type of
the right-hand side expression is the parent type and the target has a derived
type then the target has to be modelled as an aggregate. The aggregate just
contains the elements of the target which have corresponding elements in the
derived type. To avoid any ambiguities which may result from this translation
a type conversion is applied on the expression.
An example taken from the procedure put may look like this:

(object.buf,object.buf_in,object.buf_out):= bbuffer(local_copy_of_object);

Similar situations which might not allow the use of conversion functions to
translate implicit conversions are association lists of subprogram calls which
associate parameters of class signal, parameters of mode inout, or parameters
of mode out. In such situations the implicit conversion is translated as an
individual association of the elements of the formal with the corresponding
elements of the actual. Elements of the actual which do not have a corre-
sponding element in the formal are ignored in the association. It might be
necessary to resolve ambiguities in overloaded subprograms which could be
introduced by the translation by renaming of some subprograms.

An example might be a call to an operation equal which is similar to the
procedure equal introduced in a previous example.

procedure  put (object : inout  bbuffer; item : in  item_type) is
…
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procedure equal ( object1 : inout  bbuffer;
object2 : inout  bbuffer
test_result: out  boolean) is  …

variable  local_copy_of_object : bbuffer := object;
variable  objects_are_equal : boolean;

begin
…

equal (object, local_copy_of_object, objects_are_equal);
…

end ;

A call on the procedure in the inherited subprogram put of the type gb_buf
requires an implicit conversion of the object to the type bbuffer. As the
parameter mode is inout a conversion function is not appropriate as a transla-
tion of the association. Instead, an individual association performs the con-
version.

equal ( object1.buf => object.buf,
object1.buf_in => object.buf_in,
object1.buf_out => object.buf_out,
object2 => local_copy_of_object,
test_result => objects_are_equal);

Up to now we discussed in this section how to translate primitive subpro-
grams which are inherited by a derived type. The derived type also may mod-
ify behaviour by re-defining these inherited primitive operations. In such a
case the inherited subprogram is re-named in the translation. We could re-
name it by adding a suffix _parent to its name.

In the example we could re-define the primitive operations put and get of
the derived type gb_buf. Thus the operations are declared as follows:

procedure  get_parent (object : inout  gb_buf; item : out  item_type);
procedure  put_parent (object : inout  gb_buf; item : in  item_type);
procedure  get (object : inout  gb_buf; item : out  item_type);
procedure  put (object : inout  gb_buf; item : in  item_type);
procedure  gget (object : inout  gb_buf; item : out  item_type);

A call on the overridden subprogram by using the attribute 'Parent can be
translated as a call on the re-named operation.

In the example a call on the parent’s implementation of the put operation
is translated as a call on the re-named inherited subprogram put_parent.

Another predefined attribute of the language extension which can be used
to decorate a subprogram call is the attribute static. It forces a call to be stati-
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cally bound different from the normal dynamic binding mechanism. In a
translation of the attribute a simple name denoting the subprogram is
replaced by the corresponding selected name. Any implicit type conversions
which might be required in the association list of the call are translated
according to the mechanisms described above.

The combination of the attributes 'Parent and 'Static can be translated as a
call which uses the selected name denoting the overridden operation.

The attribute 'Dynamic as the counterpart of 'Static can be ignored in a
translation.

Consider a static call to the overridden version of the get operation in the
implementation of the get operation of the type gb_buf as an example.

procedure  get (object : inout  bbuffer; item : out  item_type) is
begin

get'parent(object,item)'static;
object.after_put := false;

end ;

The static call with its implicit type conversion is translated as

library_name.package_name.get_parent(
object.buf => object.buf,
object.buf_in => object.buf_in,
object.buf_out => object.buf_out,
object.after_put => object.after_put,
item => item);

If the procedure is inherited by a type which is derived from gb_buf the call
is statically bound due to the selected name which denotes the procedure
get_parent of gb_buf. The individual association automatically performs any
required implicit type conversion.

6.5.4 Translation of class-wide types

The translation of a class-wide type is different from the translation of a
tagged type. This mainly results from the fact that a class-wide type has a tag
which may change during simulation whereas the tag of a tagged type is a
constant value.

A class-wide type is implicitly defined for each tagged type. It is associ-
ated with that tagged type. The inheritance hierarchy defines a sub-tree for
such a tagged type with the tagged type as a root. The class-wide type associ-
ated with the tagged type is translated as a record type which contains all
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record elements of all the types that are in the sub-tree that has the tagged
type as a root. The record type also contains a tag field as a record element
that has a subtype of the predefined type tag.

Before we continue to describe a translation concept for class-wide types
we first have a look at the implementation of the predefined type tag. This
type is declared in the package OBJECT_ORIENTED_EXTENSION which
is part of the language extension. The type tag is declared to be implementa-
tion dependent. An implementation could implement it as an enumeration
type with each enumeration item corresponding to a tagged type. For each
inheritance hierarchy of a tagged type a sequence of enumeration items is
defined which is part of the enumeration type definition of tag. A sequence is
obtained by traversing the type tree of a tagged type in post order. With such
a sequence in post order all enumeration items that correspond to types
which have a common root can be described as a subtype of type tag. The
benefit of such an ordering is that a class-wide type which is associated with
that root can just contain the values of this subtype in its tag field. A transla-
tion may chose just such an implementation without any further modifica-
tions.

We may illustrate the concept by a possible implementation of type tag
for the examples in this thesis.

type  tag is (x_buf2_tag, buf2_tag, gb_buf_tag, backup_buf_tag,
 e_buf_tag, ce_buf_tag, bbuffer_tag);

Various subtypes of type tag contain possible values for the tag field of corre-
sponding class-wide types:

subtype  buf2_tag_subtype is  tag range  x_buf2_tag to  buf2_tag;
subtype  gb_buf_tag_subtype is  tag range  gb_buf_tag to  gb_buf_tag;
subtype  bbuffer_tag_subtype is  tag range  x_buf2_tag to  bbuffer_tag;

Actually it is not necessary to declare the subtypes explicitly. It is sufficient
to declare them by a constraint in the element declaration of the tag field.

The translation of the class-wide type gb_buf'Class may serve as an
example.

type  bbuffer_classwide is record
tag_field : tag range x_buf2_tag to  bbuffer_tag;
buf : bounded_buffer_array (1 to  buffersize);
buf_in : integer;
buf_out : integer;
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after_put : boolean;
end record ;

For each tagged type there are implicit conversions from the tagged type to
any class-wide type associated with the tagged type or associated with one of
its parents. The conversions can be translated as calls on conversion func-
tions. The translation approach is very similar to the previously described
ones for implicit conversions between tagged types. Corresponding conver-
sion functions have to be declared for each tagged type. The new thing in the
conversion functions is the value of the tag field. It is passed as a result of the
conversion to a class-wide object. The value of the tag field in the result just
indicates the type of the parameter of the conversion function. The values in
the other elements of the result are obtained by assigning the values of the
elements in the parameter to the corresponding elements in the result. Record
elements of the result which do not have a corresponding element in the
parameter are implicitly assigned some default values40.

To translate an implicit conversion in an assignment that has a right-hand
side value of class-wide type and a target of tagged type a conversion func-
tion with a class-wide object as a parameter and a tagged type as the type of
the target also has to be declared. In the implementation of this conversion
function a check has to test if the tag of the parameter indicates the type of
the target. If the check fails a run-time error has to be reported. If the check is
passed the values of the elements if the parameter which have a correspond-
ing element in the result can be assigned to the result.

A third kind of conversion in the context of class-wide types is an explicit
conversion of a class-wide type to a tagged type. Such a conversion corre-
sponds to an implicit conversion from the class-wide type to the tagged type
indicated by its tag field and a conversion between closely related tagged
types. Accordingly the conversion function which is used as a translation of
the conversion is implemented. The tag field is checked if it indicates the
type of the target or a type derived from the target type. If the check fails a

40. Assigning default values has an important effect in signal assignments that
have a class-wide target and that perform an implicit conversion. The driver of
such a class-wide signal may have scheduled events to occur on some of its
elements in the future. A signal assignment may change the tag of a target so
that some of the elements do not belong to a valid value of the target any
longer. The assignment of the default values remove any future events from
the invalid elements.
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run-time error occurs otherwise the elements are copied like in the other con-
version functions.

A fourth kind of conversions is the conversion between class-wide types.
Essentially, this is an implicit conversion to a tagged type followed by an
implicit conversion from the tagged type to the class-wide type. The transla-
tion idea is similar to the translation in the case of an explicit conversion. A
conversion function checks if the tag field indicates a tagged type that can be
implicitly converted to the class-wide type of the target. In case the check
fails a run-time error occurs otherwise the elements are copied like in all the
other conversion functions.

We now want to give examples of such conversion functions which are
used to translate conversions between class-wide types and tagged types. The
corresponding examples where to apply such conversions are taken from
Section 6.3.1.

variable  container : bbuffer'Class := bbuffer'(…);
variable  another_container : gb_buf'Class := gb_buf'(…);
variable  bbuffer_object : bbuffer;
variable  gb_buf_object : gb_buf;
…
container := gb_buf'( …);
gb_buf_object := container; -- implicit conversion with dynamic check
bbuffer_object := bbuffer(container); -- explicit conversion
another_container := container; --conversion between class-wide objects

The first example is a conversion function which is used to translate an
implicit conversion from bbuffer to bbuffer'class.

function  to_bbuffer_classwide(object:bbuffer)
return  bbuffer_classwide is

variable  result : bbuffer_classwide;
begin

result.tag_field := bbuffer_tag;
result.buf := object.buf;
result.buf_in := object.buf_in;
result.buf_out := object.buf_out;
-- result.after_put := "some initial value";
return  result;

end ;

The translation of the initial expression with its implicit conversion is as
follows:
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variable  container : bbuffer_classwide :=
to_bbuffer_classwide(bbuffer'(…));

The second example is the implicit conversion from the class-wide type
bbuffer'Class to the tagged type gb_buf which performs a dynamic check
during simulation if the tag of the class-wide object indicates the type of the
target. The corresponding conversion function for the translation can be
implemented like this:

function  to_gb_buf (object : bbuffer_classwide) return  gb_buf is
constant  result : gb_buf := (buf => object.buf,

 buf_in => object.buf_in,
 buf_out => object.buf_out,
 after_put => object.after_put);

begin
assert  (object.tag_field = gb_buf_tag)
report  ("Illegal implicit conversion to type gb_buf")
severity  error;
return  result;

end ;

The implicit conversion in the assignment of the example can be translated
by a call on the conversion function.

gb_buf_object := to_gb_buf (container);

The example of the explicit conversion is very similar to the previous transla-
tion of the implicit conversion. The difference is that a whole set of tags are
valid tags for the conversion.

function  explicit_conversion_to_bbuffer (object : bbuffer_classwide)
return  bbuffer is

variable  valid_tag : tag range x_buf2_tag to  bbuffer_tag;
variable  result : bbuffer := (buf => object.buf,

 buf_in => object.buf_in,
 buf_out => object.buf_out);

begin
-- check that tag_field contains a valid tag for the conversion:
valid_tag := object.tag_field;
return  result;

end ;

Correspondingly the translation is:

bbuffer_object := explicit_conversion_to_bbuffer(container);
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The conversion function detects any illegal conversion during run-time by a
violation of the range constraints in the assignment to the variable
valid_tag41.

The conversion function to translate the implicit conversions between
class-wide types uses the same implementation idea as the conversion func-
tion to translate the explicit conversion.

function  to_gb_buf_classwide (object : bbuffer_classwide)
return  gb_buf_classwide is

variable  result : gb_buf_classwide :=(
-- implicit check in assignment of tag_field
-- that it contains a valid tag for the conversion:

 tag_field => object.tag_field,
 buf => object.buf,
 buf_in => object.buf_in,
 buf_out => object.buf_out,
 after_put =>object.after_put);

begin
return  result;

end ;

The corresponding translation is:

another_container := to_gb_buf_classwide (container);

Illegal conversions are detected during run-time by the range-violation in the
conversion function.

6.5.5 Translation of a dispatching call

A call on a primitive subprogram with controlling operands of class-wide
type dispatches to the subprogram of the tagged type that is indicated by the
tag field of the controlling operands.

To translate such a call there is a subprogram for each primitive operation
which performs the dispatching. The subprogram declaration is taken from
the primitive operation. Each type indication of a parameter that could be
associated with a controlling operand is replaced by a subtype indication of
the translation of the class-wide type. The declaration is renamed to distin-
guish it from the corresponding primitive operations and to avoid unwanted

41. The checks can be omitted in cases where the inherent implicit conversion
between the closely related types is guaranteed to be towards the root of the
corresponding type tree.
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overloading. The implementation of the subprogram reads the values in the
tag fields of the parameters that have mode in or inout and that are associated
with the controlling operands. If there is more than one such parameter a
check is performed to ensure that all tag fields contain the same value. If the
check fails an error occurs in the simulation. If the check is passed without
error the value of the tag field selects the call on the corresponding subpro-
gram in a case statement. In this subprogram call the elements of the parame-
ters that are associated with the controlling operands are associated
individually to the formal parameters of the primitive operation. Only those
elements from the class-wide actuals that are in the tagged type of the formal
are associated. If we compare the mechanism to previously discussed con-
cepts we can see that it just corresponds to a translation of an implicit conver-
sion.

We chose the subprogram as an example which implements the dispatch-
ing of the subprogram get of bbuffer if the subprogram is called with a con-
trolling operand of class-wide type bbuffer'Class.

procedure  dispatching_get (object : inout  bbuffer_classwide;
 item : out  item_type) is

begin
case  object.tag_field is

when  bbuffer_tag => -- dispatch to primitive op get of bbuffer:
work.….get (object.buf => object.buf,

 object.buf_in => object.buf_in,
 object.buf_out => object.buf_out,
 item => item);

when  gb_buf_tag => -- dispatch to primitive op get of gb_buf:
work.….get (object.buf => object.buf,

 object.buf_in => object.buf_in,
 object.buf_out => object.buf_out,
 object.after_put => object.after_put,
 item => item);

when  …
end case ;

end ;

A dispatching call with a controlling operand that has a class-wide type is
translated as a call on the corresponding dispatching subprogram. Taking the
container from the previous example as a controlling operand in a call on the
get operation causes a dispatching call.

get (container, item);
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The translation of that call is:

dispatching_get (container, item);

As the parameter object is the only formal parameter that is associated with
the controlling operand container a check to ensure that all tag fields contain
the same value is omitted in the example.

6.5.6 Translation of the attribute 'Tag

The predefined attribute 'Tag of the language extension exists in two ver-
sions. In the first version it decorates identifiers denoting a tagged type. In
the second version it decorates class-wide objects. In both cases the attribute
denotes a function which returns a value of type tag that indicates the type of
the tagged type or the class-wide object.

The first version of the attribute is translated by the enumeration literal of
the type tag which represents the tagged type used as the prefix of the
attribute. For example, bbuffer'Class is translated as bbuffer_tag.

The second version is translated as a call on a function which uses the
prefix as an operand and which returns the value of the operand’s tag field42.

function  tick_tag (object : bbuffer_classwide) return  tag is
begin

return  object.tag_field;
end ;

An if statement might be used to prevent illegal implicit conversions in the
previous example:

if  container'Tag = gb_buf'Tag then
gb_buf_object := container;

end if ;

The translation is:

if  tick_tag (container) = gb_buf_tag then
gb_buf_object := to_gb_buf (container);

end if ;

42. If the language extension was used as an extension to VHDL'87 the trans-
lation would not properly work for wait statements with an empty sensitivity
clause which use the attribute in the condition of the wait statement. This is
due to the different rules how to create a sensitivity set in VHDL'87 and in
VHDL'93.
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The attribute must not have a prefix that denotes an object that has a tagged
type and thus there is no translation for such an attribute.

6.5.7 Translation dependencies

So far we looked at the distinct translation mechanisms separately. Each
translation step was described nearly independently from others. It was
explained which type declarations, subprogram declarations, and function
declarations are added to a model during translation. However, it was not
mentioned where to declare the new named entities. In this section we
describe how to split up a model into separate design units during the transla-
tion in order to find a place where to declare the new named entities.

The new named entities have to be declared in a place where they do not
produce dependencies which would not allow to find an order of analysis and
elaboration for the model. In particular, a class-wide type depends on the
type names referenced in the element declarations of the corresponding
tagged types. It depends on these type declarations which especially might
occur in all the packages containing the tagged type declarations. Such a
potential dependency prevents the declaration of the record type which trans-
lates a class-wide type to be declared in the package containing the transla-
tion of its associated tagged type.

Consider a declaration of the derived type gb_buf where the type of the
record element after_put is declared in the package containing the type decla-
ration of gb_buf as an example.

use work.bounded_buffer_package.all;
package bounded_buffer_package_gb_buf is

type  invocation_history is  …;
type  gb_buf is new  bbuffer with record

after_put : invocation_history;
end record ;
…

end  bounded_buffer_package_gb_buf;

The package bounded_buffer_package which contains the type bbuffer must
be analysed before the package containing the derived type gb_buf can be
analysed. The packages containing the translation of the tagged types must
have the same order of analysis. At the same time, the translation of class-
wide type bbuffer'Class requires the type invocation_history to be analysed
before it can be analysed. The translation of the class-wide type therefore
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cannot occur in the same package as the translation of the tagged type
bbuffer. Otherwise this would introduce a circle in the analysis dependencies.

Another situation which could cause circles in the dependencies occurs if
a class-wide type is referenced in the packages containing the corresponding
tagged types.

To break such circles in the dependencies, in Section 6.3.1 a complex set
of rules concerning the elaboration of class-wide types have been presented.
Following the ideas behind these rules it is possible to derive a concept how
to split a package containing a tagged type declaration into several packages
during the translation.

To translate a package containing a tagged type the primitive operations
are translated in a separate package. The remaining declarations including
the translation of the tagged type itself that do not directly or indirectly refer-
ence the translation of the class-wide type are moved into a package and
those which have a reference into another. The package containing the trans-
lation of the tagged type additionally contains the conversion functions
which are used as a translation of the conversion between the tagged type and
its parent types.

The translation of the class-wide type associated with the tagged type is
declared in a package which may use the packages containing no references
to the class-wide type. Additional to the class-wide type the package also
contains the conversion functions required by the class-wide type for the
translation of implicit and explicit conversion.

The subprograms of the translation of the class-wide type implementing
the dispatching can be declared in the package which contains the declara-
tions with the references to the class-wide type. The package always has to
use the package containing the translation of the class-wide types and it
might use the package containing the translation of the tagged type.

The packages containing the translation of the primitive operations may
use all the other package declarations.

The package bodies of the declarations described above essentially con-
tain the subprogram bodies and probably some additional declarations which
are used in the subprogram bodies. If subprograms using the same local dec-
larations are partitioned into different packages it is necessary to have multi-
ple copies of this local declarations in the different packages43. The same

43. The special case that a local declaration of a shared variable is referenced
is not considered here. Anyway, using such a construct produces highly non-
portable code.
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situation occurs if an inherited primitive operation uses local declarations in
its implementation. It requires local copies of the declarations in the body of
the package which contains the translation of the derived type which inherits
the primitive operation44. In such a case it might be necessary to rename
some of the local declarations and their references to avoid naming conflicts
with other declarations that are visible in the package body.
Figure 5 illustrates the dependencies between the split packages.

The analysis order for the package directly follows from the use-relation
between the packages. Finally, the corresponding package bodies may use all
the package declarations mentioned above. Therefore the analysis of the cor-
responding package bodies is deferred until all package declarations are ana-
lysed.

6.5.8 Translation of the postponed use-clause

Another construct of the language extension which influences the order of
elaboration is the postponed use-clause which was discussed in Section 6.3.3.
A postponed use-clause makes a name of a tagged type visible that is not
necessarily elaborated. It allows the type’s elaboration to be postponed. The
name referenced in such a postponed use-clause is only allowed as a subtype
indication in the interface list of a primitive operation. This allows a simple
translation of the use-clause as the translation result of the primitive subpro-
grams and tagged-types are split into separate packages anyway. The post-
poned use-clause is translated by a normal use-clause which references the
translation of the tagged type. The reference is possible because the analysis
of the packages containing the translations of the primitive subprograms can
be deferred until all the packages containing the translations of the tagged
types are analysed45. This was explained in the previous section in detail
(See also Figure 5).

The use clause also has to be added to the package which contains the
subprograms for the dispatching as the type referenced in the use clause also
occurs in the parameter lists of the subprograms. In rare cases where this use
clause causes circular dependencies due to other type declarations in the

44. As explained in Section 6.2.1 primitive operations are only declared in
package declarations. Thus, the concept of local copies does not interfere with
the dynamic binding of primitive operations in subprograms of derived types.
45. Remember, the only reason why such a deferment is not already modelled
in the source code is the requirement that primitive operations must be
declared together with the tagged type in the same package declaration.
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same package, the subprograms for the dispatching have to be modelled in a
separate package so that the circular dependency does not exist any longer.

The sections about the translation gave an idea which translation concepts
can be used to translate the language extension into standard VHDL. They
especially show the feasibility of the ideas. In the last section about transla-
tion we want to reflect some properties of the translation especially with
respect to synthesis.

Fig. 5: Dependencies between translated packages

package  parent_rfree is
reference-free declarations
translation of parent type
reference-free declarations

end  parent_rfree

use-relation

package  child_rfree is
reference-free declarations
translation of child type
reference-free declarations
conversion functions

end  child_rfree

package  parent_cw is
translation of class-wide type
conversion functions
function tick_tag

end  parent_cw

package  parent_ref_to_cw is
declarations
subprograms to dispatch

end  parent_ref_to_cw

package  child_ref_to_cw is
declarations
subprograms to dispatch

end  child_ref_to_cw

package  parent_primitive_op is
translation of primitive operations

end  parent_ primitive_op
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6.5.9 Synthesis

The presented translation mechanisms do not introduce any VHDL con-
structs that are considered to be non-synthesizable by today’s synthesis tools.
Opposite to statements that claim that polymorphic procedures in a hardware
model cannot be supported by synthesis [72] the presented translation mech-
anism for dispatching calls does not introduce any non-synthesizable con-
structs.

The decision to translate derived types and primitive operations without
introducing any pointer structures for delegation preserves the main charac-
teristics of distributed objects that are modelled as tagged types.

Class-wide types as part of the concept for modelling polymorphic
objects can be translated into a data representation which is supported by
synthesis. However, the resulting data representation comprises the union of
all potential values an object of class-wide type could store even in cases
where some values must not occur in the object simultaneously. We could
think of some optimized translation strategies which reduce the memory size
required by objects of class-wide types. Basically such translation mecha-
nisms could use a variant record implementation at bit-level for class-wide
types. All values to be stored in a class-wide object are encoded in a bit-vec-
tor representation.

An according mechanism together with a prototypical implementation is
described in [163]. A related concept based on the same basic ideas for mod-
elling memory-optimized class-wide types is described for the Objec-
tiveVHDL approach in [161]. It clearly shows the feasibility of the ideas.

With these considerations on translation of tagged-types, class-wide
types, primitive operations and inheritance and dispatching mechanisms we
conclude this chapter which introduced a proposal how to extend VHDL by
object-oriented features. In the next chapter we discuss the modelling capa-
bilities of the language extension in more detail. We have a closer look at the
presented type based inheritance mechanism and we investigate how the new
language features interact with the existing concurrency concept, the syn-
chronisation and communication mechanism of VHDL.





Chapter 7

A Modelling Example 7

The previous chapter introduced an object-oriented language extension to
VHDL and characterized its enhanced modelling features. A translation con-
cept was explained which allows to link the object-oriented modelling to a
VHDL-based design process.

We now illustrate possible links to an abstraction level above the model-
ling with an object-oriented HDL. Powerful modelling techniques at that
level of abstraction are object-oriented specification methodologies. Such a
methodology comprises a notation and a design methodology. The first part
of the material in this chapter presents a short survey on one such a notation
and design methodology. The second part describes how to modify the
design methodology so that it integrates the language extension as a target
language of an implementation step in the design methodology.

Starting from a sequential view on an example the modelling aspects of
concurrency are introduced step by step into the example. This finally leads
to an idea how to model a channel as a possible implementation of a commu-
nication mechanism.

The chapter concludes with the results of a case study to demonstrate the
feasibility of an object-oriented hardware design flow using the language
extension to VHDL.

7.1 Survey on the Object Modeling Technique

There are several object-oriented design methodology which could be
adapted for the hardware design process [28,44,142,158]. They differ mainly
in their notation and the design steps from a first specification model to an
implementation. A compact overview can be found in [84]. One of the well-
known methods is theObject Modeling Technique (OMT) from Rumbaugh
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[142]. In this chapter we chose this methodology to illustrate the design step
from the specification to the implementation in the language extension to
VHDL. This first section gives a brief overview of OMT.

OMT is an object-oriented specification technique which makes it possi-
ble to describe a system at a very abstract level. The design process in OMT
starts with an analysis. It characterizes the system and its problems. The
result of this step should be a first specification which describes what the
system does. It is not necessarily complete, and some of the details have to
be added later on. It is important that the main ideas of the system are not
hidden by too many details in that early stage of the development. While not
constricting the design space, no decision restricting a further implementa-
tion should be taken at that time. This means in the analysis phase that the
model should not contain implementation details. In further design steps,
additional information is added to the description in the form of refinement
steps [146]. Such a description consists of up to three different views, called
models. The basic view is calledobject model [143]. It characterizes the
static structure of the system in terms of objects and classes and their relation
to each other. Each object and class is described by its attributes and opera-
tions. As objects are instantiations of classes, the attributes of objects contain
concrete values. As an example, an object model for a simple processor [154]
is shown in Figure 6. Each class is drawn in the diagram as a rectangular box,
consisting of three parts. The name of the part is written in the top part, the
middle part contains the attributes and the bottom part contains the opera-
tions. In the processor, for example, the class processor system has the opera-
tion execute instruction. The structural relations between the classes are
drawn in the diagram as lines between the boxes. Mainly three different rela-
tions can be distinguished. Anassociation is a relationship that contains
information that is relevant for a certain time during the existence of the
described system. Arole belongs to each member of an association, which is
a class or an object. It describes how a member of an association is viewed
by the other members. Each role can be named by arolename. The role also
indicates how many instances of the class can be associated in a binary asso-
ciation with one instance of the other class. This can be denoted by a number
as in the example in the association between the processor system class and
the operand class. A special form of an association is anaggregation. As a
class can be a member of different associations, the role is not assigned
directly to a class but to the corresponding end of an association. It describes
a whole-part relationship. It is marked by a diamond. In the example, an
instantiation of the class memory is part of the whole processor system. A
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third relationship is calledgeneralisation. This is the most important rela-
tionship concerning the re-use of the system. It describes the relationship
betweensuperclasses and subclasses. The superclass and the subclass in
OMT is exactly what we referred to as parent class and a child class. Thus, a
subclass inherits all attributes, operations, and associations of a superclass.
The notation for this relationship is a triangle. In the simple processor, for
example, the classload is a subclass of the superclassinstruction. This means
it inherits the operationexecute instruction from the classinstruction as well
as the aggregation betweenprocessor system and instruction together with

Fig. 6 Object model

instruction register2value

Processor system

execute instruction

Memory

write(datum,address)
read(datum,address)

Address

value

Instruction

execute instruction(processor system)

Operand

value

increment

StoreLoad Addition Subtraction

Datum



266 A Modelling Example

the role instruction register. If a new class without additional relations is
derived from the classinstruction to extend the system specification, then no
changes appear in the rest of the object model. For a more detailed descrip-
tion of the classes, their attributes and associations, a data dictionary com-
pletes the diagrams of the object model. It contains information about the
entities of the object model as text. The dictionary of the processor, for
example, contains the entry:Accu: store for the operands and results of
instructions.

Another view is thedynamic model[144]. This model gives a state-ori-
ented view on the behaviour of objects. The basic concepts of state-oriented
views were introduced in Section 3.1.3. The behaviour of the objects is mod-
elled instate diagrams. The notation to describe state diagrams is a variant of
StateCharts which were discussed in Section 4.1.1. An example of a state
diagram can be seen in Figure 7. It describes the life of the object memory of
the simple processor example. The states of the object are the nodes, and the
transitions are the directed arcs. The object starts its life by entering the state
idle. If a read event is caused by another object in the model with the parame-
ter read address, thenmemory changes its state toread. The event is anno-
tated to the transition arc. When changing the state, an operationdecode
address is executed. In the new stateread anactivity datum := mem(address)
is started. An activity is an operation within a state which consumes time.
When the activity in the stateread has finished, the objectmemory changes
its state back toidle. In the latter transition, an event is sent to another object
in the model. The target is the sender of the read event, and the event isreturn
datum with the parameterdatum.

An event flow diagram is used to describe which objects are interacting
by sending each other events. Figure 8 shows an excerpt of such a diagram
which describes the interaction of the objectmemory. For example, the
objectstore can send an eventread with parameteraddress or an eventwrite
with parametersaddress anddatum to the objectmemory. Memory in turn
can send an eventreturn datum with parameterdatum to the objectstore. As
can be seen from the small example, this view is useful to describe the con-
trol flow in a system.

The operations which alter the entities of the system are described in a
third view called thefunctional model[145]. Different techniques are used to
describe the operations and their effects on objects in a system. One tech-
nique is to describe the operation as part of a client server contract. Such a
technique uses preconditions and postconditions to define the contract as it
was explained in Section 3.1.2. In the simple processor, the operationincre-
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ment of the classaddress, for example, is specified by a precondition which
defines the value of the attributeaddress value as  and a postcondition
which defines this value as  being  the address space of theproc-
essor system. The operation is not defined for  (see Figure 9). To
explain how an operation affects the objects and their attributes in a particu-
lar state of the system, anobject-oriented data flow diagram (OODFD) can
be used. An example is given in Figure 10. The example shows the data flow
for the execute instruction operation of the classprocessor system. It
describes the data flow between the objects and the transformation of the
attribute values in that flow by the operations regarded as functions. The
value of the attribute address value of the objectaddress register, which is an
instantiation of classaddress, is an input of the operationread memory of the
objectmain memory. The result of the operation is an input for the operation

Fig. 7 State diagram of memory
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execute instruction of the objectinstruction register. The further data flow
depends on the instruction performed by the system. The shown OODFD
describes astore operation. Theaddress value of the address register is
incremented. The result is a newaddress value. It is marked by a tick. The
new value replaces the old value of the attribute. Finally, the value of the
accu is written into thememory.

A second technique is the procedural description of the operations. This
means that the operations are described by invocations of other operations in
various objects of the system. To specify the sequence of invocations and the
corresponding messages between them, anobject interaction diagram (OID)

Fig. 8 Event flow diagram of memory
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as can be seen in Figure 11 is used. The diagram characterizes the same situ-
ation as the OODFD in Figure 10, but from a procedural point of view. It
shows that theprocessor system sends a message to the object of class
address to get anaddress value. This value is used to send a message to the
memory to read thememory. The numbers define the sequence and the hier-
archy of the operation invocations. The non-permanent associations which
are established by sending a message are drawn as dotted lines. The latter
technique provides models which are closer to an implementation than the

Fig. 10 Object-oriented data flow diagram for operation execute instruction of
object processor
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functional views. This means that a first analysis model probably contains
OODFD, which are supplemented during the further refinement steps by
OID. The specification of operations in a very abstract functional view is
transformed in further design steps to a procedural implementation, which is
a sort of algorithmic description and therefore close to an implementation in

Fig. 11 Object interaction diagram for operation execute instruction of object
processor
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a procedural language. The following section sketches how to perform this
implementation step for operations together with the modelling of the struc-
ture described by object models. The object-oriented language extension to
VHDL is used as the target language in the resulting implementation.

7.2 The Implementation

In this section we illustrate the mapping of an OMT specification to an
implementation in the language extension to VHDL. The translation of OMT
models is a refinement step in the object-oriented design flow in which
details about the desired behaviour and functionality is added to the system
description.

7.2.1 Mapping the OMT-models

Although the different OMT models cannot be translated independently, it is
quite useful to start with one model and then supplement the description
when translating the other models. It is practical to start with the object
model as it is the core of the OMT. This model can be translated to some
extent straightforwardly into a data structure. Each class becomes a tagged
record type with the attributes as record elements. An example of such a
mapping is translation of the class datum. The type datum is an empty tagged
record. As datum is an abstract class, that means, it is only used as a parent
class without a concrete behaviour it is modelled as an empty tagged record.

type  datum is tagged record
null ;

end record ;

In the OMT model the class address is a subclass of datum and contains the
attribute address_value. Such a relationship is modelled in the language
extension as a child which is derived from a parent type. Often the rolename
can be used as the element’s name. In the object model the rolename of the
address is value. Thus value is a part of the attribute’s name.

type  address is new  datum with
private

address_value : integer;
end record ;
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The example shows how generalisation in the object model is turned into a
corresponding inheritance hierarchy of tagged records.

The operations of a class can be mapped to primitive operations. An
example is the class instruction which has an operation execute_instruction.
The class instruction is a subclass of the class data. Thus, it can be modelled
as follows:

type  instruction is new  datum with record
null ;

end record ;
procedure  execute_instruction (object : in  instruction;

processor : inout  processorsystem);

Please note that we have to add some information to the interface of the pro-
cedure to make it complete. This information includes the parameter’s name
and its mode. Adding such information is a typical task in that implementa-
tion step.

A subclass may provide its own implementation of an inherited operation.
In such a case the inherited operation has to be re-defined by the child. An
example is the class load which is a subclass of instruction. The subclass
inherits the operation execute_instruction. It re-defines and thus overrides the
inherited behaviour.

type  load is new  instruction with record
null ;

end record ;
procedure  execute_instruction(object : in  load;

processor : inout  processorsystem);

A special association which is used to describe relations between objects in
OMT is the aggregation. In the implementation step they can be transformed
into record elements of the corresponding tagged record type. In OMT a sub-
class inherits all the associations of its parent’s class. In such situations it is
often useful to model such an aggregation with a parent’s class by record ele-
ments of a class-wide record. If multiplicity is involved this has to be mod-
elled by an appropriate number of instantiations.

An example of such an aggregation is theprocessor system. Theproces-
sor system with its four aggregation associations is described as a tagged
record with five record elements. The elements are all of class-wide type, so
that the association exists for derived classes, too.
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type  processorsystem is tagged record
main_memory : memory'CLASS;
instruction_register : instruction'CLASS;
address_register : address'CLASS;
accu : operand'CLASS;
accu2 : operand'CLASS;

end record ;

The class-wide type instruction‘CLASS of the record element
instruction_register realizes the association for the type instruction as well as
for the type load and any other derived type. The multiplicity two of the role
accu as part of the association between the classprocessor system andoper-
and is described by two record elements.

The processor example illustrates how to map an aggregation to an imple-
mentation. There are, however, some aggregations which are difficult to
translate. For example, if thememory is modelled as aggregation of memory
cells with a multiplicity of many without an exact range specification, the
translation causes problems. A possible solution would be to constrain the
multiplicity in the model by a fixed range and to describe the aggregation
with an array. However, this solution does not always work. If dynamic
behaviour was intended by such a description containing multiplicity of
many, the translation does not meet the original intention of the specification.

A similar problem with dynamic behaviour arises when recursive struc-
tures are used in a model. As we have seen in Section 6.2.4 it is not possible
to model a tagged record that recursively contains a record element that is of
the tagged record. A solution would be the use of incomplete type declara-
tion and access types. Its disadvantage for hardware systems is that access
types can not efficiently be synthesized. If possible, the recursive structures
have to be replaced by equivalent non-recursive specifications. Generally,
objects which are to be implemented as hardware components cannot be used
in the specification with a dynamic behaviour. Dynamic in this context means
the creation and destruction of an arbitrary number of objects, which is not
exactly defined at specification time, during run-time.

A structure of the object model which has no equivalent in the implemen-
tation language is the parallel generalization. It would require a mechanism
for multiple inheritance in the language. Such a mechanism would allow the
inheritance of record elements and procedures from two or more tagged
records at once. However, as explained in Section 6.3 and Section 6.4 multi-
ple inheritance is not supported by the language extension to VHDL.
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There is a variety of different translation possibilities for the implementa-
tion of the dynamic model. One possibility is to use modelling techniques
known from VHDL. The states are encoded by an enumeration type. A next
state function uses a case statement to distinguish between different current
states and inputs and determines the next state. The state variables which are
attributes of the classes are modelled by record elements and the next state
functions by methods. Another possibility would be to model each state in a
separate class, derived from a common parent’s class. Each class has its own
next state function as a polymorphic operation. Such a state can contain a
sub-state-machine as an attribute. This machine could be started when the
state-machine enters the composite state, consisting of a state machine. The
state machine is then implemented by an instantiation of an object of class-
wide type, which contains the actual state. Especially for state machines with
operation calls as events and activities, dynamic models can be implemented
by a procedural description of the activities. The different states belong to
different places in the procedural description.

As an example, we could look at a possible implementation of the
dynamic model of the memory which is described in Figure 7. The class
memory is modelled as a tagged type memory with primitive operations
read_memory and write_memory. In the corresponding package body the
operations are implemented.

package body  memory_package is
procedure  write_memory ( mem : inout  memory;

write_address : in  address'CLASS;
 write_datum : in  datum'CLASS) is

variable  tmpinteger : integer;
begin

address2integer(write_address,tmpinteger);
mem.memory_array(tmpinteger) := write_datum;

end ;
procedure  read_memory( mem : in  memory;

write_address : in  address'CLASS;
read_datum : out  datum'CLASS) is

variable  tmpinteger : integer;
begin

address2integer(write_address,tmpinteger);
read_datum := mem.memory_array(tmpinteger);

end ;
end  memory_package;
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A call of the operationwrite as an event causes a state transition. The gener-
ated event is implemented as a method call of the target object of class
address. The activity of the statewrite is modelled as an access to a record
element. In the example, several events are generated. The acknowledgement
that a write operation is performed is implicitly included in an implementa-
tion of a message as a sequential procedure call. The calling procedure is
blocked until thewrite operation is performed.

As can be seen from the example, the OMT model assumes that the tar-
gets of the events automatically can be made visible at the place where the
events are generated. There is no special order of analysis in which classes
from the OMT model become visible. It is no problem to define mutual
dependent classes. This situation is different in the implementation language.
The distribution boundaries and the abstraction boundaries of the language
extension characterize the visibility in the implementation and the order of
analysis and elaboration defines which type can be used by another. If such
mutual dependencies between classes occur in an OMT model they require a
special treatment in the translation process.

An example of such a dependency can be seen in Figure 6. The instruc-
tion is part of the processor system. At the same time instruction uses a
parameter of class processor system in its operation. In a translation the cor-
responding tagged types mutually depend on each other. A nearly identical
situation was described in Section 6.3.3. The solution was to use a postponed
use clause to break the circular dependencies between the types. The same
approach can be used in the example of the processor system and the instruc-
tion.

use  work.datum_package.all ;
postponed use  work.processorsystem_package.all ;
package  instruction_package is

type  instruction is new  datum with record
null ;

end record ;
procedure  execute_instruction (object : in  instruction;

processor : inout  processorsystem);
end  instruction_package;

use  work.instruction_package.all ;
package  processorsystem_package is

type  processorsystem is tagged record
private

instruction_register : instruction'CLASS;
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…
end record ;
…

end  processorsystem_package;

The tagged type processorsystem is made visible by a postponed use clause
in the package containing the tagged type instruction.

As the encapsulation concept of VHDL is very strict, it is often necessary
to make the target of the events visible within the scope of the triggering
object by passing the objects as parameters. This parameter passing can
become very cumbersome. To determine the required visibility of objects
within scopes, an event flow diagram can be quite useful. It shows the objects
and the events sent to each other. The example in Figure 8 shows that the
objectmain memory has to be visible in the operation execute_instruction of
classload. This is realized by passing a parameter of type processorsystem,
which contains the object main_memory as record element and which is
passed to the operation. The resulting declaration of type load was shown
before.

As in the object model, there are some constructs in the dynamic model
which cannot be easily mapped in an implementation. There exists no simple
equivalent in the implementation for the specification of a composite state
containing several parallel working state machines.

The implementation of the operations described in the functional model
consists of transforming the non-procedural high-level specification into a
procedural description. Transformations from the non-procedural view,
describing the state before and after an operation, to the procedural view can
already be applied in the functional model. The implementation in the lan-
guage extension to VHDL is the continuation of this action. As an OODFD
shows the effect of an operation across many operations, it is useful among
other things to determine the visibility between the objects. The techniques
to establish the required visibility in the implementation are the same as
described for event flow diagrams. If an object interaction diagram exists,
then the sequence of messages it describes can be transformed into the corre-
sponding sequence of procedure calls.

It has been outlined and illustrated by an example how an OMT model
can be transformed with some limitations into an implementation. The major
restrictions are the lack of unconstrained multiplicity, the missing constructs
for multiple inheritance, and the difficult implementation of composite states
with parallel working sub-state machines. The model consists of objects
implemented as tagged records and polymorphic procedures. All messages
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are realized as sequential procedure calls. Some effort has to be made to
make objects visible to each other. This is achieved by passing the concerned
objects as parameters into the operations. Re-use of the OMT model by
deriving new objects from existing ones is supported by the implementation.

7.2.2 Implementing concurrency

The modelling presented in the previous section is based on a sequential
description of the model in the implementation language. Parallelism has to
be introduced in further design steps, when the scheduling is done automati-
cally to improve the performance of the system. The idea is that the order of
execution of sequential statements between two wait statements is only deter-
mined by dependencies caused by variable assignments. The automatically
introduced concurrency is fine-grained on small parts of the system. To intro-
duce a coarse-grained concurrency at system level, it has to be explicitly
specified in the model. The OMT offers several constructs to express concur-
rency. For example, it would be possible in Figure 11 to specify a concurrent
sending of messages 1.4.2 and 1.4.3 by re-indexing both messages as 1.4.2.
The implementation language offers two notions of concurrency which are
strongly correlated. For simulation, both are based on a discrete simulation
time. One concurrency concept is based on parallel running processes which
are synchronized by wait statements. A second concept can be found in the
parallel update of signals. This allows to express concurrency within one
process. In other words, sequential signal assignments can be used to model a
quasi-concurrent process.

For example, if in Figure 11 the messages 1.4.2 and 1.4.3 are specified to
be sent in parallel, as mentioned above, then the implementation of the
address value and theoperand as signals together with a wait statement
allows a parallel updating of the values. As can be seen from the example,
this kind of implementation for concurrency is limited to particular cases. It
makes sense if the effect of the messages has to be a parallel update of
attributes of objects. For specification concurrency at system level, however,
the concept of parallel running processes is appropriate in many cases.

In the specification of synchronous hardware systems, control messages
are often based on a clocking schema. The processing time of the hardware
components executing the operations invoked by the control messages has to
be considered by the control units as senders of the messages. The problem is
that the information about the processing time of complex operations is not
known until the model is synthesized at gate-level. It is possible to annotate
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processing times as constraints in a specification, they become part of the
protocol, but there is not guarantee that they are met by an implementation.
As most operations are specified in a non-procedural view at system level, it
is not possible to guess realistic processing times. Even during further refine-
ment steps, it is difficult to predict processing times for operations which are
performed by sending messages to other objects, which themselves send
messages. If the sequence of control messages sent to other objects is based
on a fixed clocking schema, then the invocation of polymorphic operations is
only possible if they serve the same protocol. The constraints as part of the
protocol specification are inherited by derived classes even if the operations
are re-defined. However, it is not guaranteed that a re-defined implementation
preserves its compatibility to the protocol. These kinds of problems have
been discussed in detail in Section 3.2.

For example, if in Figure 6 the operationexecute instruction of theproc-
essor system is implemented based on a fixed clocking schema which
expects the operationexecute instruction of the objectinstruction register to
be performed within ten clock cycles, then all derived instructions have to
implement the operation with a processing time of ten clock cycles.

A quantitative specification that counts clock cycles to define the time
when a message has to be sent is in most cases not appropriate for re-usable
operations at that level of abstraction. The synchronisation should be speci-
fied in a more abstract way by describing the timing dependencies between
the operations relative to each other. Parallel running objects can be imple-
mented by the declaration of objects as variables in different VHDL proc-
esses. The processes may be declared in the same or different architectures of
different entities. The declaration of the classes as tagged record types in
packages can be used in several entities. As objects can be instantiated in dif-
ferent processes or entities, aggregated objects can be modelled by a connec-
tion between the processes or entities, instead of tagged records containing
other tagged records as record elements. Depending on the specification, a
mechanism has to be implemented for the synchronisation of the objects. A
similar concept can be applied in some cases to implement a specification
which allows parallel access to an object and its methods. It can be modelled
as an object consisting of an aggregation. The attributes are modelled as sep-
arate objects in different processes. These objects contain operations to solve
access conflicts.

The classmemory of the example can be used to illustrate the concepts
for objects in parallel running processes. If the instantiation ofmemory and
the rest of theprocessor system are modelled as two objects running in par-
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allel, then the implementation consists of two processes. In the implementa-
tion, a link in the form of signals has to be defined between the processes
which enables the processor system to invoke the operations of the memory
and enables the memory to send back the results of the operation. We illus-
trate the situation by listing the implementation of the operationexecute
instruction in the sequential model.

use  work.address_package.all ;
use  work.processorsystem_package.all ;
use  work.memory_package.all ;
use  work.datum_package.all ;
package body  load_package is

procedure  execute_instruction (
object : in  load;
processor : inout  processorsystem) is

variable  tmpdatum : datum'CLASS;
variable  tmpaddress : address'CLASS;

begin
increment (processor.address_register);
read_memory (processor.main_memory,

 processor.address_register,tmpdatum);
tmpaddress := tmpdatum;
read_memory(processor.main_memory,tmpaddress,tmpdatum);
processor.accu := tmpdatum;
increment(processor.address_register);

end ;
end  load_package;

In a parallel design, the objectmemory can be modelled together with a new
implementation of the operationread memory in a process running in paral-
lel to another process, which implements the rest of theprocessor system.
The procedure call read_memory in the operationexecute instruction then
has to be replaced by an invocation mechanism for a new implementation of
the operationread memory of the objectmemory, which is now implemented
in a different process. The procedure execute_instruction which invokes
read_memory has to be blocked until the new implementation of the opera-
tion which consumes time has finished and a result is returned. But there is
no advantage of such a mechanism based on blocking the caller of an opera-
tion over the sequential implementation of all objects in one process. To
enhance the model, an asynchronous message passing could be introduced.
The increment operation is invoked after sending the message to start the
read operation. The read operation is divided into two parts: one starting the
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read operation and one for the reply scheduling. The reply scheduling may
consist of receiving several results at different times.

In the example, the reply scheduling requires that the result has to be
received before it is written to the accu. As we have cited in Section 3.3.9
this comes at the expense of abstraction. It is just this abstraction that is miss-
ing when modelling a common interface for polymorphic objects. The syn-
chronisation with other objects as part of the reply scheduling may differ in
the various polymorphic objects. The synchronisation should be part of the
protocol, that means it should be part of the abstraction of an object, how-
ever, this level of abstraction is just missing due to the reply scheduling.
Essentially this is a problem how to preserve behavioural compatibility
between polymorphic objects without having an appropriate abstraction of
the objects’ behaviour.

A pragmatic solution would be to use a fixed protocol that divides each
operation into two parts, one to send parameters and one to receive all results
at once. For the invocation of the first part, the earliest possible time is cho-
sen and for the second part, the latest. The presented problem is independent
of the chosen implementation language. As a consequence, the best thing is
to choose a sequential implementation for those objects which are not explic-
itly specified to run in parallel and to perform the transformation into parallel
components automatically during resource allocation in a further design step.

From the discussion about various proposals how to extend VHDL for
modelling at system level in Section 5.2 we know that the modelling of mes-
sage passing across process scopes is a difficult issue. The strong encapsula-
tion and weak abstraction of behaviour in the language constructs that are
used for modelling concurrency were identified as reasons. Some ideas how
to solve these modelling problems in an implementation are given in the next
section.

7.3 A Channel-Based Communication Mechanism

The introduced implementation concept for operations is based on proce-
dures. An operation is implemented as primitive operation, and a message to
an object is performed by a call on a primitive operation with the target of the
message as parameter. Such an implementation is only feasible if the target
object is visible in the primitive operation sending the message. In a sequen-
tial model consisting of only one process, this can be achieved by parameter
passing of the affected objects. The situation is different in a concurrent
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model, when the sender and the receiver of the message are instantiated in
different processes. As VHDL does not provide communication transparency
for distributed objects a dedicated high-level synchronisation and communi-
cation concept is required to perform the communication between the
objects. As the language extension to VHDL in this thesis does not provide
such a mechanism as part of the language extension it has to be modelled
using VHDL signals. The signals are used as building blocks for a high-level
mechanism.

As we know from the discussions about communication and synchronisa-
tion mechanisms at various points in this thesis any attempt to integrate com-
munication transparency in language extensions to VHDL failed. On the
other hand, the channel concept integrates best in the abstraction and encap-
sulation concepts of VHDL. Therefore channels modelled by signals are cho-
sen as high-level communication constructs.

To make the channels as re-usable as possible the idea is to use object-
oriented concepts for the modelling. The object-oriented modelling starts
with the specification of an abstract classchannel which can perform opera-
tions needed for communication. The instantiations of the class are signals
performing the data exchange. Such a class could be specified, for example,
as shown in Figure 12. The classchannel has attributes for synchronisation

purposes between the sender and receiver. It also has an attribute of class
datum which models the message to be sent. This class is used as a super-

Fig. 12 Object model of channel
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class in a generalization consisting of all types of messages which can be
sent on the channel. This makes the channel re-usable for different kinds of
messages. Two operations can be invoked by other objects: asend operation
and anaccept operation. This is illustrated in Figure 13. For simplification,

datum is considered as an attribute of channel. Such a channel structure
could be used to model both synchronous and asynchronous communication.
In case of synchronous communication, thesender sends adatum into the
channel and waits until thereceiver invokes the operationaccept. Together
with a datum from the receiver as input, another operationaccept is per-
formed. The results of this operation are sent back to thesender and the
receiver. Then both objects continue their operations. An object invoking an
accept operation before asend operation is performed is blocked until the

Fig. 13 OODFD of channel operations
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send operation is invoked. In case of an asynchronous communication the
sender may continue its execution after a send operation. However, it must
not send another message until a receiver has received the message. If multi-
ple sends were allowed that immediately follow each other from the same
sender this would require a buffer as an attribute of channel. It would be a
buffer similar to those presented in various examples in this thesis. The dec-
laration of such a channel may look like this:

type  channel is tagged record
private

request : token;
acknowledge : token;
message : datum'Class;

end record ;
procedure  send (signal  channel_from_receiver: channel;

signal  channel_to_receiver : inout  channel;
message : datum'Class);

procedure  accept ( signal  channel_from_sender: channel;
signal  channel_to_sender : inout  channel;
message : out  datum'Class);

procedure  read ( signal  channel_from_sender: channel;
message : out  datum'Class);

The primitive operations have two controlling operands of type channel to
avoid resolved signals in the bi-directional communication between proc-
esses. Each channel is used for communication in one direction. The mode
inout of the channel parameters is chosen to allow the reading of the actual
states of both channels in the primitive operations.

Declaring the parameter message to have a class-wide type datum'Class
allows the re-use of the channels in various contexts where the messages are
derived from type datum. Another kind of re-use is possible by allowing a
new channel to be derived from an existing one.

We want to illustrate this with a derived type of channel. It could be used
to transport messages that contain instructions. The instructions are derived
from the tagged type datum. The new type inherits the primitive operations
of channel. Now it would be possible for example to add a new accept opera-
tion to the derived type which accepts a message on the channel and which
then executes the instruction sent by the message.

type  channel_for_instruction is new  channel with record
null ;
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end record ;
procedure  accept (

signal  channel_from_sender: channel_for_instruction;
signal  channel_to_sender : inout  channel_for_instruction;
target : inout  processor_system);

The inherited access operation is overloaded by the new accept operation.
The operation is not overridden due to the different signatures of the opera-
tions. Thus, it would be possible in an implementation to call the inherited
operation and then to execute the instruction which is received in a message.

procedure  accept (
signal  channel_from_sender : channel_for_instruction;
signal  channel_to_sender : inout   channel_for_instruction;
target : inout  processor_system) is

variable  message : datum'Class;
begin

-- asynchronously accept message:
accept ( channel_from_sender,

channel_to_sender,
message);

execute_instruction (
object => instruction'Class(message),
channel_in => channel_from_sender,
channel_out => channel_to_sender,
target => target);

end ;

The instruction is executed by a call on the primitive operation
execute_instruction with a controlling operand of the class-wide type instruc-
tion. The controlling operand becomes a class-wide type by applying a type
conversion in the association list of the call. The target type of the conversion
is the class-wide type instruction'Class. The call automatically dispatches to
the actual operation of the instruction which was received by the message.
The result of executing the instruction on a target could be sent back to the
sender by calling the send operation in the primitive operation
execute_instruction. The resulting mutual dependency between the type
channel_for_instruction and the types modelling the instructions has to be
resolved by using a postponed use clause.

The example describes the communication between server and client both
running in parallel and sending each other messages via two channels. It is a
difficult task to generalize a concept for the modelling of communication and
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synchronisation between an arbitrary number of distributed objects from the
concept of the example.

Basically such a concept requires two channels for each use-relation
between two distributed objects. The channels have to be implemented as
signals of an appropriate channel type. A class uses the channels as shared
resources for communication which are abstracted by interaction points as it
was described in Section 3.3.19. Due to the abstraction and distribution
boundaries of the language extension to VHDL the interaction points are
implemented as signal parameters in the parameter lists of the primitive oper-
ations. In cases where it is not necessary to concurrently send particular mes-
sages it is possible to multiplex them on one channel and thus to reduce the
number of required interaction points. A characteristic of the presented chan-
nel is that it already multiplexes different messages. If the messages are sent
to different target objects it is necessary to indicate their targets as part of an
extended message. In the terminology of protocol design [83] we could say
that the extended message is a protocol data unit which contains the target
indication as protocol information and the original message as a service data
unit. A channel to transport such a protocol data unit could be derived from
the tagged type channel.

type  d_channel is new  channel with record
private

target : object_identity_type;
end record ;

For such a target indication each object requires a unique identity which
allows to distinguish it from other targets. Unfortunately, VHDL does not
support the modelling of such an identity very well. A possible approach
would be to use the predefined attribute 'Instance_Name for such a purpose.
The new primitive operation accept could be specified for the derived type
which filters the messages for a particular target. The implementation may
look like this:

procedure  accept (
signal  channel_from_sender : d_channel;
signal  channel_to_sender : inout   d_channel ;
message : out  datum'Class;
target : in  object_identity_type) is

begin
wait until  channel_from_sender.target = target;
accept ( channel_from_sender,
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channel_to_sender,
message);

end ;

Several receivers are connected to the same channel which transports the
multiplexed messages for the receivers. The new accept operation can be
called by each receiver. The accept operation waits until it receives a message
for its target.

So far the extended concept describes how to multiplex messages from
one sender. It is an open question how to multiplex messages from different
senders, that means, how to multiplex the channels. A solution could be to
model such a multiplexing by a new primitive operation of a type derived
from channel. It requires the channels to be multiplexed as input parameters
and the multiplexed channel as output. The multiplex operation is the central
part of the extended channel concept. The entire synchronisation concept
depends on how we model the channel as a shared resource and how we
implement the mutual exclusion synchronisation for accessing the shared
resource. We have to consider in such an implementation all the details about
mutual exclusion synchronisation that have been discussed in the previous
chapters.

Although finally we have to use the low-level communication mecha-
nisms of VHDL to implement the synchronisation the advantage of using the
language extension very often is the possibility to model a new synchronisa-
tion concept by modifying an existing one. A typical situation is that the
communication mechanism has to be extended by new message or channel.
The new message or channel requires its particular synchronisation condi-
tion. At the same time the extended communication concept should be com-
patible to the original one with respect to its original channels and messages.
The language extension allows to derive a new type of channel which consid-
ers the new synchronisation conditions of the message or channel in its
implementation of the multiplex operation. If the new synchronisation condi-
tions are met it executes the new synchronisation otherwise it executes the
inherited version of the multiplex operation and thus preserves its compati-
bility to the original communication concept.
Consider a multiplex operation which is extended by a new channel.

procedure  multiplex (
signal  new_channel : in  derived_cannel;
signal  original_channel : in  derived_channel;
signal  another_original_channel : in  derived_channel;
signal  multiplexed_channel : inout  derived_channel) is
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begin
if synchronisation condition is met for new channel then

perform new multiplex operation
end if ;
multiplex ( original_channel,

another_original_channel,
multiplexed_channel);

end ;

The implementation checks the new synchronisation condition. If it is met it
performs the required synchronisation operation. Then it performs a call on
the inherited multiplex operation which also checks synchronisation condi-
tions and if required performs some synchronisation operations. This call on
the inherited operation can be viewed as a special kind of delegation to pre-
serve the compatibility. We shall investigate this technique to preserve com-
patibility in more detail in the next chapter.

This seems a good moment to remember the effects of replacing the orig-
inal synchronisation points by channel operations that have been discussed in
Chapter 5. If we are implementing synchronous or blocking send operations
and accept operations we have to make the corresponding considerations.

The presented discussion on designing a channel concept with the lan-
guage extension was a rather rough sketch how to model communication. As
we know from Section 3.3 there are many variants with many details on how
to model communication and synchronisation. An appropriate communica-
tion concept has to be selected and implemented for each concrete model
individually. The key consideration in the modelling with the language exten-
sion is not to replace the selection by providing one predefined communica-
tion mechanism but to support the implementation of an individually selected
communication model.

7.4 A Case Study

In the previous sections of the chapter we illustrated how to use the language
extension to VHDL for object-oriented hardware modelling by sketching
parts of a small example. Such a small example is not sufficient for an evalu-
ation of the new design concept. To analyse the feasibility of the proposed
object-oriented design technique based on the language extension to VHDL a
case study was made [153,175]. In this case study a simplified model of a
MC68000 microprocessor was developed. The design process started with an
OMT model of the processor. The target language for the implementation
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was a previous version of the language extension to VHDL. To analyse the
translation concepts parts of the model were manually translated into a model
using standard VHDL.

The results of the study showed a general feasibility of the concept. It was
possible to start the specification at a very abstract level without looking too
much into the insignificant details. After carrying out several refinement
steps on the different views an object-oriented model could be designed
which was well suited for an implementation in the object-oriented extension
to VHDL. It was illustrated in the case study how to apply the language fea-
tures for re-use and extension by adding new instruction and addressing
modes to the processor model. While the case study demonstrated a principal
practicability of the ideas it at the same time helped to uncover and remove
some weaknesses in the earlier version of the language extension to VHDL.

For example, it turned out that it might be useful to have a concept for
solving circular dependencies between tagged types. This was achieved by
adding the postponed use clause to the language. Another example concerns
the rules for implicit type conversions which were stated more precisely to
remove uncertainties.

Only restricted capabilities for the modelling of concurrency were
detected as a major limitation in the modelling of the processor example. The
behaviour of the processor executes almost sequential due to a synchronous
protocol that was used to perform the communication and synchronisation
between all objects in the processor. This led to a closer investigation of the
requirements for communication and synchronisation modelling. Especially,
the experience from the case study led to some detailed considerations on
how to model communication and synchronisation in the context of extenda-
ble objects without violating object-oriented modelling principles. We
present the results of these considerations in the next chapter.



Chapter 8

Inheritance Anomaly 8

We have now introduced the features of the language extension to VHDL and
we have illustrated by examples how to use them for object-oriented hard-
ware design. Two major topics which have arisen are modelling by extension
and modelling of concurrency. Modelling by extension was introduced by the
inheritance mechanism of tagged types which is part of the language exten-
sion. Modelling of concurrency was described by using processes which are
provided by standard VHDL for the modelling of parallel behaviour. The
object-oriented constructs are orthogonal to the concurrency constructs
(Compare Section 3.3.4). The integration of both concepts for modelling of
objects executing in parallel is not provided by the language but is rather a
modelling issue. The construction of a high-level communication mechanism
between distributed objects using an object-oriented modelling style is an
integration example that was presented in the previous chapter.

In this chapter we come to a more detailed discussion of modelling
approaches to integrate inheritance concepts and concurrency. We develop a
modelling style which provides the required interaction between inheritance
and processes, object-oriented programming and concurrency.

In the previous chapters we saw that compatibility between inherited
properties of objects which are modified and the original parents’ properties
are a key to re-use. The modelling style has to consider these compatibility
issues. We present such a style as a variant of a delegation mechanism.

As far as concurrency of objects is concerned the modelling style is simi-
lar to the constraint oriented specification which can be used in LOTOS
(Compare Section 4.4.1). We develop a variant of the constraint oriented
specification which models additional constraints by adding quasi-concurrent
processes to a model. The special issue how to avoid service interference or
service interaction (Compare Section 4.1.4) which may result from composi-
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tion techniques like the constraint oriented specification is discussed in
detail.

Missing concepts to model condition synchronisation have been identi-
fied in the survey of Section 5.2 as a weakness of most of the proposals to
extend VHDL. To avoid this weakness the modelling style emulates a guard
concept which is comparable to the one of Occam (compare Section 4.4.2).
Like in Occam the interface of a subprogram–in this case a primitive opera-
tion–is abstraction and distribution boundary at the same time. Accordingly,
abstraction concepts for communication similar to Occam are proposed for
the modelling style.

In earlier chapters we have seen that there are two forms of objects, active
and passive ones. Although we deal with both forms in this chapter we put
emphasis on the modelling of passive objects and show how they can be
modelled using tagged types [155].

8.1 Inheritance and Synchronisation

In an earlier chapter we explained how the synchronisation is modelled in
objects by the object’s interface control. The interface control implements the
synchronisation constraints of the object and thus generates the interface
control space of the object. The possible state transitions in the interface con-
trol space form the protocol of the object. The interface control is described
by synchronisation code. In other words, the synchronisation code imple-
ments the synchronisation constraints and thus the protocol which an object
must meet to perform communication.

In Section 4.1.4 we saw that incremental modification of protocol specifi-
cation by adding new transitions to a protocol may cause unintended feature
interaction or service interference. The phenomenon is not limited to proto-
cols specified in Estelle but occurs also in other languages like for example in
LOTOS (Compare Section 4.4.1). It is a general question how to extend and
modify synchronisation code so that it still conforms to the original inherited
protocol.

If an object inherits synchronisation code it is difficult to add new syn-
chronisation code to it without re-analysing or re-implementing the inherited
one. However, re-analysing or re-implementing means to break encapsula-
tion which goes directly against the object-oriented paradigm. This problem
is discussed in several publications for example in [3,17,34,111] and there is
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still ongoing research to find appropriate solutions, for example
[2,41,61,62,112,115]. The problem is known as theinheritance anomaly.

Before we propose a solution to the anomaly we want to illustrate some
aspects of the anomaly and classify different categories. As inheritance and
synchronisation constraints interfere with each other, the way the anomaly
appears depends on the approach that is chosen for modelling the synchroni-
sation constraints. We presented different approaches to model synchronisa-
tion constraints in the discussion about how to specify and abstract the
interface control space in Section 3.3.12. We now consider how they may
cause different categories of inheritance anomalies. For the categorization we
follow the categories proposed in [111].

8.1.1 Body anomaly

A straightforward way to model synchronisation code is to design a sequen-
tial object that uses explicit acceptance of messages as it was described in
Section 3.3.16. The synchronisation code is implemented in the object’s
body. In the language extension to VHDL we could use a channel concept
like the one described in the previous chapter where messages could be
received and sent at the synchronisation points.

We may illustrate this by the bounded buffer example which was intro-
duced in earlier chapters:

package bounded_buffer_package is
type  bounded_buffer_array is array (positive range  <>) of  item_type;
type  bbuffer is tagged record

buf : bounded_buffer_array (1 to  buffersize);
buf_in : integer;
buf_out : integer;

end record ;
procedure  get ( signal object : inout  bbuffer;

item : out  item_type)
procedure  put ( signal object : inout  bbuffer;

item : item_type);
end  bounded_buffer_package;

The example is slightly modified compared to the previous versions of
bbuffer so that the bounded buffer can be instantiated as signal and used in a
concurrent environment. The channel concept is added to perform the com-
munication between distributed objects.
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For the modelling of the synchronisation code we can identify three states
of the interface control space. The buffer might be empty, it might be full, or
it might contain a number of items in between these two states. Accordingly,
we may name the synchronisation states buffer_empty, buffer_full, and
buffer_partial. A get message is only accepted for execution if the buffer is in
the state buffer_full or buffer partial. A put operation is only accepted if the
buffer is in the state buffer_empty or buffer_partial.
In a sequential object the synchronisation code may look as follows:

read (from_client, message);
-- Note: read does not remove message from channel
if decode (message) = instruction_get'Tag

and number_of_items_in_buffer > 0 then
-- buffer_full and buffer_partial
accept (from_client, to_client, message);
get (object, item);
number_of_items_in_buffer := number_of_items_in_buffer - 1;
message := item;
send (from_client, to_client,message);

end if ;
if decode (message) = instruction_put'Tag

and number_of_items_in_buffer < buffersize then
-- buffer_empty and buffer_partial
accept (from_client, to_client, message);
instr := message; -- implicit type conversion to instruction'Class
item := operand (instr); -- Read operand of instruction
put (object, item);
number_of_items_in_buffer := number_of_items_in_buffer + 1;

end if ;

The example follows the model used in Section 6.4.
A counter number_of_items_in_buffer is used to discern the synchronisa-

tion state. The synchronisation code models a conditional acceptance where
the object explicitly accepts the messages if it is in an appropriate state.

If we use inheritance to derive a new type with additional or modified
properties the body1 of the original type has to be analysed and the synchro-
nisation code of the derived type has to be re-implemented. As we know
from Section 3.3.3, the conditional acceptance of messages makes the
object’s state of execution observable from outside the object. The observa-
ble states may become synchronisation states. Therefore an analysis of the

1. The expression “body of a type” is synonymous with “body of a class”.
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body is required to preserve compatibility by conformance. This breaks
encapsulation and thus causes the inheritance anomaly. We call this kind of
anomaly body anomaly as it occurs in objects that have a body to model the
synchronisation code.

The same anomaly occurs if synchronisation code is modelled as part of
an operation that contains conditional acceptance. Instead of analysing the
body an analysis of the operation is required to derive a new type.

Using path expressions to model synchronisation constraints is an
approach that shows an anomaly similar to the body anomaly. We could
interpret path expressions as a special kind of grammar based specification of
extended automata. Such extended automata were discussed in Section 4.1.2
where we already stated a missing robustness of such automata against modi-
fications. If we compare the approach to the modelling of synchronisation
code in an object’s body the extended automata specified by the expressions
correspond to the body and thus suffer from the same anomaly.

8.1.2 Partitioning of acceptable states

Enable sets were introduced as a means for describing the interface control
space (Compare Section 3.3.13). An enabled set is associated to each syn-
chronisation state. It represents the synchronisation state in the synchronisa-
tion code. The set contains the message keys that are accepted in the
associated state. The state transitions in the interface control space caused by
the execution of the operations are emulated by state transitions on the ena-
bled sets.

It was stated that enabled sets are objects which are used as attributes to
reflectively model the synchronisation. Enabled sets which are part of an
object become visible outside the object.

To illustrate the concept we sketch the bounded buffer example adapting
a simplified enabled set approach.

constant  empty : enabled_set_type := def_set (instruction_put'Tag);
constant  partial : enabled_set_type := def_set (instruction_put'Tag,

 instruction_get'Tag);
constant  full : enabled_set_type := def_set (instruction_get'Tag);
type  bbuffer is tagged record

enabled_set : enabled_set_type; -- has to be initially empty
private

buf : bounded_buffer_array (1 to  buffersize);
buf_in : integer;
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buf_out : integer;
end record ;

The primitive operations of the buffer are modelled for execution in a concur-
rent environment. They use signal parameters of type channel to communi-
cate with the object’s client. For example, the get operation could be
implemented as follows:

procedure  get ( signal object : inout  bbuffer;
signal from_client : in  channel;
signal to_client : inout  channel) is

begin
… -- accept get operation, perform get operation, send result to client
if  object.buf_in = object.buf_out then

-- buffer empty:
become (object.enabled_set, empty);

else
-- buffer not empty:
become (object.enabled_set, partial);

end if ;
end ;

The operation performs its intended behaviour and then emulates its state
transition on the enabled sets by calling an operation become which takes the
next state as a parameter.

The instructions which are used to define the message keys are modelled
as tagged types with an operation execute_instruction. The operation accepts
the message key and invokes its corresponding operation of the bounded
buffer.

procedure  execute_instruction (object : instruction_get;
signal channel_in : in  channel;
signal channel_out : inout  channel;
signal target : inout  bbuffer) is

begin
get (target, channel_in, channel_out);

end ;

The synchronisation code could then be modelled like this:

read (from_client, message);
instr := message; -- implicit conversion to instruction'Class
if  message_key_in_enable_set (instr, target.enabled_set) then

-- dispatching call to execute operation
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execute_instruction (instr, from_client, to_client, target);
end if ;

The synchronisation code checks if the object of type bbuffer (target) is in a
state that allows to accept the instruction requested by the message. Only if
the check does not fail the corresponding operation is executed.

The idea of the synchronisation code is that if we derive a new type from
an existing one it is not necessary to modify the code.

Consider the buffer x_buf which was described in Section 5.2.1 as an
example. It inherits the operation put and get of the bounded buffer. It addi-
tionally has an operation last which removes the last item which was put into
the buffer.

We easily can derive a new buffer x_buf from bbuffer. It is not necessary
to re-write the synchronisation code it is sufficient to re-define the enabled
sets:

constant  empty : enabled_set_type := def_set (instruction_put'Tag);
constant  partial : enabled_set_type := def_set (instruction_put'Tag,

 instruction_get'Tag,
 instruction_last'Tag);

constant  full : enabled_set_type := def_set (instruction_get'Tag,
 instruction_last'Tag);

type  x_buf is new  bbuffer with record
null ;

end record ;

The implementation of the new operation last is similar to the implementa-
tion of get.

procedure  last ( signal object : inout  bbuffer;
signal from_client : in  channel;
signal to_client : inout  channel) is

begin
… -- accept last operation, perform operation, send result to client
if  object.buf_in = object.buf_out then

-- buffer empty:
become (enabled_set, empty);

else
-- buffer not empty:
become (enabled_set, partial);

end if ;
end ;



296 Inheritance Anomaly

The difficulties with this concept to model condition synchronisation occur if
it is necessary to partition a synchronisation state due to some new synchro-
nisation constraints in a derived type. In such a case a new enabled set is
required which has to be considered in the emulation of the state transitions
in the operations. This means it is necessary to re-implement the operations.

We want to illustrate this by the example of the buffer x_get2. As
explained in earlier examples it is derived from bbuffer and has an additional
operation get2 which takes two items from the buffer. This new operation
introduces new synchronisation states into the model. The operation get2
only can be accepted if the buffer contains more than one item. The derived
type partitions the state partial into two states: partial_more_than_one and
partial_one. The new states have to be modelled by enabled sets.

constant  partial_ one : enabled_set_type := def_set (
instruction_put'Tag,
instruction_get'Tag);

constant  partial_more_than_one : enabled_set_type := def_set (
instruction_put'Tag,
instruction_get'Tag,
instruction_get2'Tag);

The problem is that the inherited operations do not consider the new enabled
sets in the emulation of the state transition. If we look at the get operation the
state transition must be re-defined and thus the complete operation:

procedure  get ( signal object : inout  x_buf2;
signal from_client : in  channel;
signal to_client : inout  channel) is

begin
… -- accept get operation, perform get operation, send result to client
if  object.buf_in = object.buf_out then

-- buffer empty:
become (enabled_set, empty);

elsif  object_buf_in = (object.buf_out + 1) mod (buffersize+1) then
-- buffer contains exactly one item:
become (enabled_set, partial_one);

else
buffer contains more than one item:
become (enabled_set, partial_more_than_one);

end if ;
end ;
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Requiring the re-implementation due to the partitioning of the synchronisa-
tion state is another form of inheritance anomaly.

A synchronisation technique which allows to partition acceptable states
without suffering from the inheritance anomaly is to use guards2. As
explained in Section 3.3.13, a guard is a boolean expression that is assigned
to an operation. If the guard is true then the corresponding operation which is
requested by a message or queued in the message queue may be executed.
Guards are appropriate to solve the anomaly because they are allowed to
refer to the object’s state3. Different to the enabled set approach the synchro-
nisation modelling with guards does not introduce any redundancy by emu-
lating states which must be modified in case of partitioning a synchronisation
state.

It is a special characteristic of VHDL due to the nature of its simulation
cycle that it is possible to model a guard of an operation with a simple if
statement that is supplemented by some wait statements. The guard is mod-
elled by the condition in the if statement. If the evaluation of a guard fails the
operation must not be executed. Then the wait statement notices events when
it might be useful to re-evaluate the guard.

With this approach to integrate guards into VHDL and thus into the lan-
guage extension it is possible to illustrate how guards avoids the anomaly
caused by the partitioning of states in the example of x_buf2.

To provide a clear structuring of the behaviour the synchronisation code
containing the guard is separated from the functionality. Synchronisation
code and functionality are modelled in different operations.

In the example the implementation of the guard operation of the opera-
tion get may look as follows:

procedure  guarded_get (signal object : inout  bbuffer;
signal from_client : in  channel;
signal to_client : inout  channel) is

begin
if  object.buf_in /= object.buf_out then  -- guard checks state empty

get ( object, from_client, to_client);
end if ;

end ;

2. This kind of guard is not to confused with the guards of VHDL which are
used to guard signals.
3. The details were discussed in Section 3.3.13.
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The guard operation only calls the operation get which contains the function-
ality of get if the guard is evaluated true i.e., if the buffer is not empty. The
wait statements required with the guard operations to model the re-evaluation
of the guard are sensitive to the signals object and from_client.

If the get operation and the guard operation are inherited by the derived
type x_buf2 the partitioning of the accepting states4 by the new operation
get2 does not affect the accepting state of get. The guard which distinguishes
for the operation get if the object is in an acceptable state or not is still the
same. No analysis or re-implementation of the guard operation is required.
The anomaly does not occur.

Unfortunately this is different in situations where acceptable states are
modified in an inherited type. Then the guards of inherited operations also
require a modification.

8.1.3 Modification of acceptable states

An example where a derived type modifies the acceptable states is the
bounded buffer lb_buf which was introduced in Section 5.2.5 and further dis-
cussed in Section 6.4.3. The buffer is derived from bbuffer. It has two addi-
tional operations lock and unlock. After the execution of the operation lock
no operation is accepted for execution until the operation unlock is executed.
The new operations modify the acceptable states of the inherited operations
by imposing additional synchronisation constraints on the operations.

For example, the operation get of bbuffer has the acceptable states partial
and full. These states are not any longer the acceptable state for the operation
get in the derived type. The acceptable states of the operation are modified.
The modified states require the number of lock operations that are executed
to be equal to the number of unlock operations that are executed. We may
denote the new acceptable states of the inherited operation get
partial_and_unlocked and full_and_unlocked. The inherited guard of opera-
tion get that checks that the object is either in state partial or full is not any
longer appropriate to distinguish the new acceptable states from the other
states. We have to re-implement the guard. The anomaly again has occurred.

To overcome the anomaly the extension to the guard mechanism could be
used that was described in Section 3.3.13 and that allowed to add new guards
to an inherited operation. The actual guard of an operation is determined by

4. The partitioning of synchronisation states by guards was described in Sec-
tion 3.3.13 in detail.
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accumulating all guards of an operation along the inheritance path in the type
or class tree. As described in Section 3.3.13, the actual guard is a refinement
of the inherited. That means, if we add a guard that describes the additional
synchronisation constraint the refined actual guard distinguishes just the new
modified acceptable states from the other states.

In the example of lb_buf we could add an attribute to the class that traces
the invocation history of the operations lock and unlock.

type  lb_buf is new  bbuffer with record
private

lock_on_object: object_locked_or_unlocked;
end record ;

The new guard which is added to the inherited operation get tests if the
object has a lock:

object.lock_on_object = unlocked

The accumulation of the guards results in the actual refined guard:
(object.buf_in /= object.buf_out) and (object.lock_on_object = unlocked)

The refined guard just distinguishes the new acceptable states
partial_and_unlocked and full_and_unlocked. If we can add the new guard to
the operation without re-implementing the existing implementation of the
operation then the anomaly caused by modified acceptable states is solved.

8.1.4 History-only sensitiveness of acceptable states

Another category of anomaly occurs if acceptable states of a derived type
depend on the invocation history of certain operations and if the acceptable
states of the parent’s operations do not depend on that history. In Section
6.2.4 we discussed the bounded buffer gb_buf which could serve as an exam-
ple of a class which has acceptable states that are history-only sensitive. The
buffer is a child of bbuffer. It has an additional primitive operation gget. The
new operation has the functionality of the get operation. The difference
between the get operation and gget operation is that a gget operation only can
be executed immediately after a get or a gget operation. The acceptable state
only depends on the invocation history of the operation put in relation to the
other operations. The original operations put and get do not consider the trac-
ing of this history. This tracing has to be added as new synchronisation code
to the inherited operations. It is quite obvious that the tracing cannot be
achieved by guards which only refer to an object’s state. Adding new code to
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an inherited operation typically means to re-implement the operation.
Requiring this re-implementation means to suffer from the anomaly.

8.2 How to Solve the Inheritance Anomaly

After this categorization of the inheritance anomaly we present a solution for
the language extension to VHDL. The proposals to solve the anomaly that
can be found in literature are based on special language constructs for syn-
chronisation that are added to the language to avoid the anomaly. This is
illustrated by the representatives of the main proposals that were referenced
as examples in the previous sections. We saw that none of the proposals was
able to avoid all kinds of anomaly.

Therefore a new approach was chosen for the language extension to
VHDL. It does not follow the proposals which add new synchronisation con-
structs to the language by inventing just another new construct. The approach
is rather similar to the ideas presented in Section 4.1.4 which use a modelling
style that preserves compatibility between protocols to avoid feature interac-
tion.

The solution to avoid all kinds of inheritance anomaly in the language
extension to VHDL is a modelling style that preserves compatibility. In Sec-
tion 3.3.14 we introduced the requirements for modelling a concept that pre-
serves compatibility. The concept uses guards to model the interface control
space. The concept allows that new guards are added to inherited operations.
The resulting actual guard is determined by accumulating all guards of an
operation along the inheritance path in the type tree. It is required for the
concept that such new guards of polymorphic operations must model a com-
patibility mode. The central requirement is that the concept integrates a dele-
gation mechanism into an inheritance mechanism which supports
polymorphism. By integrating the delegation mechanism the modelling style
overcomes the limitations of the guard mechanism which were discussed in
the previous section.

From these requirements we directly develop the modelling style which
avoids the inheritance anomaly.

We now come to a detailed description of the modelling style.

8.2.1 Modelling of guarded operations

The most apparent property of the modelling style is that it separates the pro-
tocol modelling from the implementation of the functionality of an operation.
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An operation is decomposed in a protocol part and a functional part. Both
parts are modelled as primitive operations.

procedure  protocol_part_operation(signal  object : inout  taggedtype;
signal  from_client : in  channel;
signal  to_client : inout  channel);

procedure  operation (signal  object : inout  taggedtype;
signal  from_client : in  channel;
signal  to_client : inout  channel);

The operations use signal parameters of a channel type to communicate with
other objects.

The body of the protocol operation implements the matching phase and
the transition phase of the operation.

procedure  protocol_part_operation(signal  object : inout  taggedtype;
signal  from_client : in  channel;
signal  to_client : inout  channel) is

variable  message : datum'Class;
begin

read (from_client , message);
if  decode(message) = op_code then -- matching phase

if guard_expression then -- guard in matching phase
operation (object, from_client, to_client); -- transition phase
additional protocol code; -- transition phase

end if ;
end if ;

end  protocol_part_operation;

The protocol part of the operation implements the matching phase by check-
ing if a message has arrived which requests the execution of the operation
and by checking if the object is in an acceptable state. Checking the state is
modelled by a guard which is implemented as an if statement. How to model
a guard with an if statement was described in Section 8.1.2. If the matching
phase decodes the operation and the object is in an acceptable state then the
subprogram is invoked which implements the functional part of the opera-
tion. The internal call of the subprogram is dynamically bound, that means,
for modifying the behaviour it is sufficient to derive a new tagged type which
re-implements the subprogram. The inherited protocol then automatically
calls the re-implemented subprogram.

It is important to note that the execution of the matching phase as it is
implemented in the protocol part does not consume any simulation time. In
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other words, there is no synchronisation point in form of a wait statement in
the matching phase As the time does not proceed in the matching phase nei-
ther the message to invoke the operation nor the guard expression can change
between the invocation of the operation implementing the protocol and the
invocation of the operation implementing the functional part of the operation.

If the matching phase does not decode the operation or the guard expres-
sion does not accept the operation then the execution of the operation imple-
menting the protocol part also does not consume any time.

The situation is different if the operation which implements the function-
ality is executed. This execution consumes time because the operation that
implements the functionality contains synchronisation points.

As an example the protocol part of the operation get of the bounded
buffer is modelled.

procedure  protocol_part_get (signal  object : inout  bbuffer;
signal  from_client : in  channel;
signal  to_client : inout  channel) is

variable  message : datum'Class;
begin

read (from_client , message);
if  decode (message) = instruction_get'Tag then

if  object.buf_in /= object.buf_out then  -- guard: buffer not empty
get (object, from_client, to_client);
-- no additional protocol code required for get;

end if ;
end if ;

end  protocol_part_get;

Both, protocol_part_get and get are primitive operations implementing the
operation of the bounded buffer.

The modelling style described so far explains how to model an operation
of a type by separating the operation’s protocol from its functionality. The
next step is to show how to introduce delegation as a means for preserving
compatibility. If we look at the protocol part the call on the operation imple-
menting the functionality delegates the execution of the functionality to
another primitive operation.

To add new synchronisation code in an additional layer between the
inherited protocol and the inherited functionality we could re-define the oper-
ation implementing the functionality. The re-defined operation contains the
new synchronisation code and a call on the overridden inherited operation.
Due to the dynamic binding of subprogram calls in primitive operations the
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call on the operation implementing the functionality is bound to the re-
defined operation. Thus the call in the protocol part is bound to the re-defined
operation which executes the additional synchronisation code and delegates
the execution of the actual functionality to the inherited overridden imple-
mentation of the operation.

The additional synchronisation code has to meet the requirements for
modelling a concept that preserves compatibility. One of the requirements is
that a new guard that is added to a polymorphic operation must model a com-
patibility mode. According to Section 3.3.13 this is achieved by only allow-
ing to add new guards to a polymorphic operation that are orthogonal to the
inherited guards. As explained in Section 3.3.14, orthogonal means that the
new guard is not allowed to reference inherited record elements of the
derived type as these record elements may already be referenced by the
inherited guards.

The re-defined operation may contain among new guards any other kinds
of additional synchronisation code. However, to preserve the compatibility
this new code must not remove or modify any existing state transitions in the
inherited code. To guarantee such a behaviour without the necessity to ana-
lyse the inherited code the new synchronisation code must not perform any
write access to inherited record elements.

Another requirement to be compatible is that the resulting actual guard is
determined by accumulating all guards of an operation along the inheritance
path in the type tree. To achieve an atomic evaluation of the actual guard the
guards must not be separated by any synchronisation points and the call that
delegates the execution to the overridden implementation of the operation
always must immediately follow a guard.

Following this modelling style an implementation of a re-defined opera-
tion that adds synchronisation code to an inherited operation looks like this:

procedure  operation (signal  object : inout  derived_type;
signal  from_client : in  channel;
signal  to_client : inout  channel) is

begin
if new_guard_expression then  -- new orthogonal guard

operation'Parent (object,from_client, to_client)'Static; --delegation
additional protocol code; -- no write access to

-- inherited record elements
end if ;

end  operation;
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Please note, like the original protocol operation the operation implementing
the additional synchronisation constraints does not consume any simulation
time if the guard fails, that means, if the operation is not accepted. We have
now introduced how to model the operations together with their associated
synchronisation code.

8.2.2 How to model a body of an object

In this section we describe the integration of the complete behaviour of an
object that has of a set of primitive operations which are called by synchro-
nous message passing. We integrate the behaviour in an object body. It is
implemented as a sequential procedure call which calls a primitive subpro-
gram object_body of the tagged type. The call is part of a process that con-
tains the call and a wait statement which is used to supplement the guard
modelling in the primitive operations. The wait statement is executed when
the object has reached a stable state.

process
variable  old_state : tagged_type;

begin
object_body ( object => actual_object,

from_client => actual_from_client,
to_client => actual_to_client);

if  old_state /= actual_object then
old_state := actual_object;

else
wait on  actual_object, actual_from_client;

end if ;
end process ;

The implementation of the procedure consists of sequential procedure calls
invoking all operations of the tagged type in a sequential order.

procedure object_body ( signal  object : inout  tagged_type;
signal  from_client : in  channel;
signal  to_client : inout  channel) is

begin
protocol_part_operation (object, from_client, to_client);
protocol_part_another_operation (object, from_client, to_client);

end ;

The procedure object_body is executed when the state of the object changes
or a message comes in. Then the protocol part of an operation is executed.
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The protocol decodes the message and should the situation arise that the cor-
responding message key of the operation was decoded it evaluates the guards
if necessary along an inheritance chain. If the guards are true the correspond-
ing operation performing the functionality is executed. After executing the
functionality additional protocol code may be executed. This completes the
call in the primitive operation object_body. The protocol part of the next
primitive operation is called.

If the decoding fails the corresponding functionality is not executed. The
next primitive operation in object_body is called. If the evaluation of a guard
fails the corresponding operation is not executed. The operation is re-sched-
uled for the time when the object’s state has changed or any incoming mes-
sage causes an event. Then it is checked if the message still decodes the
corresponding operation and the guard is re-evaluated. Please note, in case of
a re-evaluation a guard is evaluated along the complete inheritance chain if
necessary. This is illustrated in Fig. 14 which uses some pseudo code to dem-
onstrate the control flow.

As explained in Section 8.1.1, the conditional acceptance of messages as
part of a thread makes the state of execution visible outside the object. The
observable states are just the synchronisation states of the object. In a body
following the modelling style the only messages that are accepted cause an
execution of an operation. The observable state transition is just the expected
result of executing the operation. Thus, a body following the modelling style
does not suffer from the body anomaly.

To preserve compatibility and to avoid the body anomaly the only
allowed extensions that might be added to an implementation of a body are
calls on primitive operations. Following the idea to use delegation for pre-
serving compatibility an extended body may look as follows:

procedure object_body ( signal  object : inout  derived_type;
signal  from_client : in  channel;
signal  to_client : inout  channel) is

begin
protocol_part_new_operation (object, from_client, to_client);
object_body'Parent (object, from_client, to_client);

end ;

The call to the protocol part of a new operation is simply added to the
sequence of calls on the other operations.

In a similar way it is possible to add new channels to a body in order to
allow more than one client to send messages to an object.
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procedure object_body ( signal  object : inout  derived_type;
signal  from_client : in  channel;
signal  to_client : inout  channel;
signal  from_another_client : in  channel;
signal  to_another_client : inout  channel) is

begin
object_body ( object => object,

from_client => from_client,
to_client => to_client);

object_body ( object => object,

Fig. 14: Re-scheduling of an operation
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from_client => from_another_client,
to_client => to_another_client);

end ;

The new body which contains additional channels overloads the inherited
one. The implementation delegates the execution to the inherited operations
by calling the inherited operations in a sequential order. As the decoding in
the operations does not consume any simulation time we could say that it is
performed quasi-concurrent. The execution of the functionality is performed
in a sequential order and thus provides a mutual exclusion synchronisation.

In case of re-scheduling an operation the effective values of the signals
referenced by the guard are used for re-evaluation. This may include values
of the channels. In other words, it is possible to peek into incoming messages
to perform condition synchronisation. This allows to do synchronisation
without a re-queuing mechanism which would cause compatibility problems
in the modelling of the object body (Compare Section 3.3.15).

We now have presented the complete modelling style which allows to
overcome the inheritance anomaly. In the following sections we illustrate the
solution by examples. We discuss one example for each category of anomaly.

8.2.3 Partitioning of acceptable state in an example

As it was shown before, the anomaly caused by the partitioning of acceptable
states can be solved by the guard mechanism. The new operation which
causes the partitioning of the states just has a new guard expression which
partitions the state. We already mentioned the buffer x_buf2 as an example
where a guard mechanism would be able to avoid the anomaly. It is straight-
forward to model the new guard for the new operation get2 of the derived
type x_buf2.

procedure  protocol_part_get2 (signal  object : inout  x_buf2;
signal  from_client : in  channel;
signal  to_client : inout  channel) is

begin
read (from_client , message);
if  decode (message) = instruction_get2'Tag then

if  (object.buf_in /= object.buf_out) and
not ((object.buf_out + 1) mod (buffersize + 1) = object.buf_in)

then  -- guard: buffer contains more than one item:
get2 (object, from_client, to_client);
-- no additional protocol code required for get2;
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end if ;
end if ;

end  protocol_part_get2;

The guard which checks if there are at least two items in the buffer partitions
the state partial. Each of the new resulting states behaves the same as the old
state partial with respect to the inherited methods put and get. There is no
anomaly.

8.2.4 Modification of acceptable states in an example

The buffer lb_buf was described in Section 8.1.3 as an example of a derived
type that requires a modification of acceptable states to model condition syn-
chronisation. The solution that was proposed used a derived type lb_buf with
an new record element that traces the invocation history of the new opera-
tions lock and unlock.

type  lb_buf is new  bbuffer with record
lock_on_object: object_locked_or_unlocked;

end record ;

It was proposed to add new guards to the inherited operations that test if the
object is locked. The accumulation of the guards results in an actual refined
guard. This is modelled in the modelling style by a re-defined operation that
adds the guard to the inherited operations. Consider the operation get:

procedure  get ( signal object : inout  lb_buf;
signal from_client : in  channel;
signal to_client : inout  channel) is

begin
if  (object.lock_on_object = unlocked) then  -- new guard

get'Parent (object, from_client, to_client)'Static;
end if ;

end  protocol_part_get;

The new guard of the re-defined operation is orthogonal to the existing ones
as it is required by the modelling style. It only references the new record ele-
ment lock_on_object of the derived type. The derived type preserves compat-
ibility without analysing or re-implementing existing synchronisation code.
The anomaly does not occur.
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8.2.5 History-only sensitiveness of acceptable states in an example

As an example of a type that has a history-only sensitiveness of acceptable
states the buffer gb_buf was mentioned in Section 8.1.4. It is derived from
bbuffer and has an additional operation gget. The operation must not be
accepted immediately after a put operation was executed.

The modelling approach following the modelling style derives a type
gb_buf that has a new attribute to store the invocation history of the put oper-
ation. The guard of the new operation gget references this history. It is neces-
sary to add synchronisation code to the inherited operations that traces the
history.

type  gb_buf is new  bbuffer with
after_put: boolean; -- traces invocation of put

end record ;

procedure  protocol_part_gget (signal  object : inout  gb_buf;
signal  from_client : in  channel;
signal  to_client : inout  channel) is

begin
read (from_client , message);
if  decode (message) = instruction_gget'Tag then

if  not ( object.buf_in = object.buf_out)
and (object.after_put = false) then

 gget (object, from_client, to_client);
end if ;

end if ;
end ;

procedure  get ( signal  object : inout  gb_buf;
signal  from_client : in  channel;
signal  to_client : inout  channel) is

begin
-- always: guard = true
get'Parent (object, from_client, to_client)'Static;
object.after_put <= false;
wait  … -- add a synchronisation point to the operation so that the

-- assigned value becomes the current value of the signal
end ;

procedure  put ( signal  object : inout  gb_buf;
signal  from_client : in  channel;
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signal  to_client : inout  channel) is
begin

-- always: guard = true
put'Parent (object, from_client, to_client)'Static;
object.after_put <= true;
wait  … -- add a synchronisation point to the operation so that the

-- assigned value becomes the current value of the signal
end ;

The additional synchronisation code that is added to the inherited operations
executes an assignment to the new record element to trace the history. Fol-
lowing the coding style, it does not perform a write access to any of the
inherited record elements and thus preserves compatibility. A wait statement
has to follow the assignment that traces the history so that the assignment
becomes effective. According to the modelling style this is allowed as the
synchronisation point is reached after the call on the parent’s implementation
of the operation.

These examples how we solve the different categories of inheritance
anomaly conclude the presentation of the object-oriented language extension
to VHDL and the discussion about its application for the design of distrib-
uted objects.



Chapter 9

Conclusion 9

This thesis studies a methodical approach to the object-oriented specifica-
tion and design of hardware systems with a language extension to VHDL.

We describe the basic design principles for the modelling of hardware at
system level. The development of a methodology for the design of robust,
technology-independent, and re-usable models is recognized as a major chal-
lenge to reduce the design effort of hardware systems.

The results of a survey how to apply system level specification methodol-
ogies and languages for hardware design demonstrate that such methodolo-
gies and languages provide only limited support for an integration in a
hardware design flow. Hardware description languages integrate well in
existing design flows but tend to have deficiencies in the design of system
level models.

This thesis provides an approach to extend the hardware description lan-
guage VHDL by introducing object-oriented concepts into the language. It is
a typed-based extension that adds encapsulation, inheritance, and polymor-
phism to the type concept of VHDL. We develop an extension that avoids
any incompatibility with the existing language standard. The extension pre-
serves the original philosophy of the language with the strong typing and the
deterministic simulation semantics. This is an original contribution to this
thesis.

We identify compatibility issues between polymorphic objects as crucial
for re-use concepts and maintenance strategies at system level. An analysis
of other language extensions to VHDL shows that this aspect is not ade-
quately considered in the corresponding approaches.

In the considerations on compatibility issues we focus on the three key
problems of modelling concurrency, synchronisation, and distribution. We
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diagnose the interference of inheritance and synchronisation that is known as
inheritance anomaly to cause the problems.

A key contribution of this thesis is to formulate a modelling style that
facilitates the inheritance and modification of synchronisation code while
preserving the inherited synchronisation constraints. It is a design strategy
that does not only solve a limited category but all kinds of inheritance anom-
alies. The general ideas and principles behind the strategy are presented and
the application of the modelling style is illustrated.

We argue that integrating the language extension in existing design flows
plays an important role in the applicability of the design approach. To this
end, we develop a translation technique that provides a link to further design
steps using standard VHDL.

The idea to define object-oriented VHDL enhancements was taken up by
the IEEE VHDL standardization committee which established a study group
to discuss proposals for object-oriented extensions to VHDL. From the view-
point of this thesis many features proposed for a new standard in the study
group are compatible to the language extension in this thesis. It is hoped that
this thesis fruitfully contributes to the discussion about a future standardiza-
tion of language extensions to VHDL.



Appendix A: Syntax Summary

This Appendix describes the syntax of the language extension to VHDL. The
Appendix does not summarize the complete syntax of the new language it
rather lists those syntax rules that are affected by the new language con-
structs. The syntax rules are described applying the variant of Backus-Naur
Form that is already used in the language reference manual of VHDL.

composite_type_definition ::=
array_type_definition

| record_type_definition
| tagged_record_type_definition
| derived_type_definition

tagged_record_type_definition ::=
tagged record

record_element_part
end record

| null record

record_element_part ::=
private_element_list

| element_list

private_element_list ::=
[ element_list ]
private element_list

element_list ::=
element_declaration

{element_declaration}
| null;
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derived_type_definition ::=
new identifierwith  record_extension

record_extension ::=
record

record_element_part
end record

| null record

procedure_call ::=
procedure_name [( actual_parameter_part )]['attribute_designator]

use_clause ::=
[ postponed ] use selected_name { , selected_name } ;



Appendix B: List of Abbreviations

This Appendix explains abbreviations and acronyms that are used in the the-
sis.

ADT: Abstract Data Type

ASIC: Application Specific Integrated Circuit

CORBA: Common Object Request Broker Architecture

CSP: Communicating Sequential Processes

DASC: Design Automation Standards Committee

DSP: Digital Signal Processing

HCFSM: Hierarchical Concurrent Finite State Machine

HDL: Hardware Description Language

HDF: Hardware Data Flow

HML: Hardware ML

IEEE: Institute of Electrical and Electronics Engineers

IP: Intellectual Property

ITU: International Telecommunication Union

LISP: List-Processing Language

LOTOS: Language of Temporal Ordering Specifications

LRM: Language Reference Manual (of VHDL)

ML: Meta-Language

OMT: Object Modeling Technique

OODFD: Object-Oriented Data Flow Diagram

OID: Object Interaction Diagram

SDL: Specification and Description Language

RPC: Remote Procedure Call
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VHDL: Very High Speed Integrated Circuit Hardware Description Language



Appendix C: Glossary

This glossary contains descriptions of the terms used in this thesis. The ter-
minology that is listed in the glossary may be quite different to the one a
reader knows from other object-oriented methodologies and languages. It is a
consequence from the fact that in the object-oriented domain every language
uses its private terminology. This makes it sometimes difficult to use a com-
mon terminology when comparing different languages or language exten-
sions. In such a case we decided to refer to the terminology which is
described here and to adapt the terms from the original sources.

Compared to the introduction of the terminology in the text we provide a
more specific explanation of some terms in the glossary. Basically, we apply
the explanations to classes and objects. Some of the terms are used with dif-
ferent meanings in different contexts. In such a case we list the different
meanings as an illustration of overloading.

Abstract Class: A class that does not have an implementation of its opera-
tions is called abstract class. Its operations only appear in the interface
of the object.

Action: In a state-oriented view certain object states and transitions between
them may be explicitly modelled in a meta-model. It may be possible
to attach a particular behaviour to such a state transition. This behav-
iour is called action. The action together with the state transition in the
meta-model forms an operation.

Active Object: An object that has one or more activities is called active
object.

Activity: In a state-oriented view certain object states and transitions
between them may be explicitly modelled in a meta-model. Entering
such a state in the meta-model may cause a certain behaviour of the
object which is called activity. Activities may be interrupted in their
execution.

Activity:  An activity is an access to some kind of resource.



318

Abstract Data Type: An abstract data type is a data type that abstracts its
data structure. The data structure is only accessible via the operations
which characterize the data type. From an object-oriented view an
abstract data type defines a set of objects with a set of operations that
characterize the behaviour of those objects.

Abstraction: Abstraction means to omit information that is not relevant for
certain views of a system.

Abstraction Boundary: The abstraction boundary is the interface a class or
object presents to its clients. It abstracts the resources a client can
access. In other words, it hides and encapsulates the information that
is inside a class or object.

Aggregation: In OMT an aggregation is an association that expresses a
whole-part relationship.

Assertion: A precondition, a postcondition, or an invariant is an assertion in
the design by contract approach.

Association: In OMT an association is a relationship containing information
that is relevant for a certain time during the existence of the described
system.

Asynchronous Message Passing: Asynchronous means that a sender sends a
message without blocking until the receiver accepts it.

Attribute:  An attribute is a state variable. It establishes a has-a relation by
being a container of a sub-object. It stores the object’s state. The has-a
relation that is defined by the attribute may also be modelled as a ref-
erence to another object.

Autonomy: An active object is considered to be autonomous if its state is
automatically protected from non synchronized concurrent accesses of
its clients.

Behaviour: Behaviour is a property of an object or class. It is formed by the
operations of an object or class.

Behavioural Compatibility:  If two objects have the same behaviour from a
client’s point of view they are considered to be behavioural compati-
ble.

Channel: A channel is a (predefined) object that provides an implementation
of a communication mechanism between other objects. Its interface
abstracts the communication.
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Child:  A child is a class that is derived from a parent class.

Class: A class is a collection of objects with the same properties. They are all
defined by the same (class-) definition which describes the common
properties of the objects.

(Class-) Hierarchy: Class-hierarchy is a hierarchy which is based on the der-
ivation of classes.

Class-Wide Type:In a typed class concept a class-wide type is the union of
all objects of its associated type and its derived types.

Client:  The client object in a clientship is called client.

Clientship: The clientship is a relation between two objects or classes. The
relation describes how one object uses the operations of another
object. The client object uses the operations of the server object.

Compatibility by Conformance: A class conforms to another class if it can
be used in all contexts where the other class is expected. It is able to
use the same protocol as the other class. The class is compatible by
conformance to the other class.

Component Class: In VHDL++ a component class is a class that uses ports
and protocols to describe its interface.

Concurrency: Two objects or processes are concurrent if they have the
potential for executing in parallel.

Concurrent Language: In a concurrent language a model may have multiple
active threads.

Concurrent Object: An object that may have multiple active threads of con-
trol at the same time is called concurrent object.

Condition Synchronisation: To accept a message for execution a process or
an object may require that particular synchronisation conditions are
fulfilled. This form of synchronisation is called condition synchronisa-
tion.

Conditional Critical Region:  Mutual exclusion synchronisation can be used
in combination with condition synchronisation. The critical region is
entered only when the synchronisation condition is fulfilled. Such a
critical region is called conditional critical region.

Conformance: A class conforms to another class if it can be used in all con-
texts where the other class is expected. A more formal definition is: A
class B conforms to a class A if B subsumes the operations of A and if
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the following conditions are met: The invariants of B imply the invari-
ants of A. For each operation of A the precondition of A implies the
precondition of B and the postcondition of B implies the postcondition
of A.

Contra-Variant Rule:  The contra-variant rule requires that each argument
of an operation of a parent class conforms to the corresponding argu-
ment of the corresponding operation of a child class.

Co-Variant Rule: The co-variant rule requires that each argument of an
operation of a child class conforms to the corresponding argument of
the corresponding operation of its parent class.

Critical Region: A sequence of activities that performs an access to a critical
resource is called critical region.

Critical Resource: A shared resource which requires a protected access is
called critical resource.

Critical Section: Critical Region

Deferred Implementation of Classes: If a model references an abstraction
of a class before its implementation is modelled the implementation is
a deferred implementation.

Delegation: A child implements its inherited properties by instantiating a
parent object and by forwarding all messages concerning these prop-
erties to the parent.

Derivation:  Derivation is the construction of a new class by inheritance.

Design by Contract: Describing a clientship as a contract by using asser-
tions is called design by contract.

Dispatcher: In concurrent programming a dispatcher is a special process that
allocates resources to processes or threads. This must not be confused
with the term dispatching as it is used in the object-oriented domain.

Dispatching: A call on a primitive operation may have controlling operands
of a class-wide type. The tag fields of the controlling operands indi-
cate a particular tagged type. The operation that characterizes this
tagged type is executed. In the object-oriented domain such a late
binding of an operation is called dispatching.

Distribution Boundary:  The distribution boundary is the boundary of
names, identifiers, references etc., that are visible when looking out-
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ward from within an object or class. The distribution boundary
abstracts the environment in which an object may be used.

Dynamic Binding: Late Binding

Dynamic Model: In OMT the dynamic model is a state-oriented view on the
behaviour of objects.

Dynamic Polymorphism: Polymorphism

Encapsulation: Relation between a model and its abstraction.

Encapsulation Boundary: Encapsulation boundary is another term for
abstraction boundary.

Entry Point:  An entry point is an interaction point that abstracts the receiv-
ing of messages.

Event Flow Diagram: In OMT an event flow diagram describes objects and
the events they send to each other.

Exclusion Synchronisation: Mutual exclusion synchronisation.

Exclusive Sub-Object: Sub-object that can be regarded as a private resource
of the class or object containing or referencing the sub-object.

Exploration of Design Space: Collecting information about various alterna-
tive implementations.

Feature: At the top level of a protocol hierarchy a service primitive of a pro-
tocol is called feature in intelligent network specification.

Feature Interaction: Adding a new feature to a protocol may cause the new
feature to interfere with existing ones and thus causing compatibility
problems between the original protocol and the extended one. Such an
interference is called feature interaction in intelligent network specifi-
cation.

Functional Model: In OMT the functional model is a view that describes
operations and their effects on objects in a system.

Generalization: Generalization is to abstract from certain aspects in a model
to obtain a model that can be used in various contexts. In OMT it
denotes the relationship that implies generalization.

Guard:  A guard is a boolean expression that is used to specify synchronisa-
tion constraints for an operation that is requested by a message to be
executed . The operation is only executed if the boolean expression is
true.
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Guarded Operation: An operation that has a guard to specify its synchroni-
sation constraints is called guarded operation.

Has-a Relation: A relation where one class or object contains an object of
another class. The object is part of the other class or object.

Has-Parts-Relation: Has-a Relation

Heterogeneous Object Container: Classes derived from each other may
have different types in a static typed language. An object that may
contain objects of different classes and types all belonging to the same
class-hierarchy is called heterogeneous object container.

Implementation: An implementation of an object is the realization of its
properties.

Implementation: An implementation of an operation, module, procedure, or
package is its body.

Implementation: An implementation is the result of a translation or synthe-
sis step.

Implementation: The system which is ready for application is an implemen-
tation.

Inheritance: Relation between two classes in which one class (subclass)
takes all the properties from the other class. (One class is derived from
the other.) The properties of the subclass can be extended or modified
by additional attributes or operations.

Inheritance Anomaly: Inheritance and the modelling of synchronisation
constraints may conflict with each other in object-oriented concurrent
languages. The conflict typically makes it necessary to re-analyse and
re-implement inherited operations and thus negates a main advantages
of object-oriented modelling. The conflict is known as the inheritance
anomaly.

Inheritance Hierarchy:  Hierarchy that is formed by is-a relations between
classes.

Instance Variable: An instance variable is an attribute that stores a reference
to an object.

Instance Variable: In the LaMI proposal an instance variable is an attribute
of an object. The attribute contains values of a give type.

Intellectual Property:  Model that contains the essential ideas of a compo-
nent or system that makes its value.
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Interaction Point:  An interaction point is an abstraction of an interaction
between concurrent processes. In some modelling methodologies an
interaction point is denoted as port.

Interface Control Space: The representation of a set of messages that can be
accepted by an object at a given moment is called the interface control
space.

Invariant:  An invariant is a statement about properties of an object or class
that always must be satisfied.

Is-a Relation: Relation between classes that is established by inheritance.

Late Binding: An object may belong to different classes during run-time.
The implementation of an operation to execute may be determined
during run-time according to its present class. This is a late binding of
the operation.

Locus of Control: A locus of control is part of a thread control block and
points to the activity of a thread to be executed.

Message: Information that is sent from one object to another, typically to
request the execution of an operation is called message.

Method: A method is an operation of an object or class.

Mixin Inheritance:  Mixin inheritance is the combination of static and
dynamic polymorphism to achieve effects similar to multiple inherit-
ance.

Multiple Inheritance:  A child is allowed to inherited features from different
parents at the same time.

Mutual Exclusion Synchronisation: A synchronisation that allows at most
one thread to access a shared resource at a time is called mutual exclu-
sion synchronisation.

Object: An object is a module that has particular properties. It is a combina-
tion of a data-structure and the operations which can be applied to that
data structure.

Object Interaction Diagram:  In OMT an object interaction diagram is a
procedural description of the operations. Operations are described by
invocations of other operations in various objects in the system.

Object Model: In OMT an object model is the basic view which character-
izes the static structure of the system in terms of objects and classes
and their relation to each other.
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Object Modeling Technique: Object-oriented specification and design
methodology from J. Rumbaugh.

Object-Oriented Data Flow Diagram: In OMT an object-oriented data flow
diagram describes the data flow between objects and the transforma-
tion of the attribute values in that flow by operations of objects
regarded as functions.

Operation: Subprogram which implements the behaviour of an object or
class. Operations sometimes are called methods.

Overloaded Subprogram: An identifier may denote two or more subpro-
grams at the same time. In that case, the subprogram is called over-
loaded subprogram.

Overridden Operation: An overridden operation is an inherited operation
which is re-defined.

Passive Object: Objects that are not active objects are referred to as passive
objects. They do not have their own thread of control.

Pattern: Meta-model which describes particular aspects of a design flow.

Parent: A parent is a class that is used to derive another class from it by
inheritance.

Polymorphism: Dynamic polymorphism or simply polymorphism means
that an object can belong to different classes during run-time and the
classes contain different implementations of operations which have
the same name. If a message is sent to an object to invoke an operation
the class of the object can be determined only during run-time. After
identifying the class the corresponding operation can be executed. If a
generic class description is used to describe the class of an object it
can belong to different classes at elaboration time. This is called static
polymorphism.

Postcondition: Responsibilities of a server are called postconditions in a
contract between server and client that describes the clientship.

Precondition: Responsibilities of a client are called preconditions in a con-
tract between server and client that describes the clientship.

Primitive Operation: A primitive operation is an operation of an object or
class. In the context of the language extension to VHDL a primitive
operation is an operation which belongs to a tagged type. The primi-
tive operations of a tagged type include its predefined operations, its
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basic operations and they include procedures with a parameter of
mode in or inout of the type which are declared together with the
tagged type in the same package declaration

Process: A process is an object that consists of one or more threads. It does
not have operations it rather uses synchronisation points to synchro-
nize with other processes. The services of a process are abstracted by
interaction points.

Property:  The property of an object or class is determined by its structure
and its operations.

Protocol: A rule that governs the communication between objects is called
protocol. The contract between server and client is a part of the proto-
col.

Proxy: If synchronous and asynchronous message passing concepts are
mixed a sender may send its message asynchronously to an object that
serves as a proxy for the actual receiver. It performs the actual syn-
chronisation and communication with the receiver.

Quasi-Concurrent Language: In a quasi-concurrent language a model may
have multiple independent threads but only one active thread at any
moment.

Quasi-Concurrent Object: An object that may have several threads of con-
trol with at most one active thread.

Reflection: Reflection is the capability of a system to model and modify its
own behaviour. Reflective modelling means the ability to describe and
modify a meta-model that is part of the original modelling concept.

Reply Scheduling: In asynchronous message passing a sender has to become
a receiver to receive a reply from the original sender. The former
sender has to await this reply and accept it. The explicit receiving of
such a reply is called reply scheduling.

Re-queuing: A message from the message queue requesting the execution of
an operation is accepted for execution by a server. During the execu-
tion of the operation a new message is put by the server into the mes-
sage queue which replaces the original one. The synchronisation
conditions for accepting the new message may refer to the new state or
history of the server which is caused by the execution. The replace-
ment is called re-queuing.
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Role: In OMT a role describes how a member of an association is viewed by
the other members.

Rolename: In OMT a rolename is a name that can be used to denote a role.

Scheduler: A scheduler is a special process that allocates resources, espe-
cially processor time, to processes or threads.

Sequential Language: In a sequential language a model has only a single
thread of control.

Sequential Object: An object that has a single thread of control is a sequen-
tial object.

Server: The server object in a clientship is called server.

Service: A service is an operation that a server provides to its clients.

Service Interference: Feature interaction.

Signature: A signature is the syntactic structure of an object’s or class’s
interface

Signature Compatibility:  Signatures are compatible if one signature sub-
sumes the other.

Simulation Semantics: A language has a simulation semantics if there is a
mapping from a model written in that language to an algorithm that
can be executed on a (simulation) machine.

State Diagram: In OMT a state diagram is a diagram that describes the
behaviour of an object using a variant of the StateCharts’ notation.

State Variable: The variables of an object or class that contain the object’s
state are called state variables. They characterize the data structure of
an object or class.

Static Polymorphism: Polymorphism

Structure:  Structure is a property of an object or class. It denotes the data
structures that are used to store an object’s state. Typically, the struc-
ture of an object is characterized by its state variables.

Subclass: In OMT the term subclass is another word for child class.

Sub-Object: An object or class may have an object as an attribute. The
attribute is called sub-object. They may also have an attribute that ref-
erences an object. The object is also called sub-object, particularly, if
the class or object encapsulates the access to its sub-object.
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Superclass: In OMT the term subclass is another word for parent class.

Synchronisation: Interaction and coordination of activities in different
threads is called synchronisation.

Synchronisation Constraint: The acceptance of a message may be con-
strained by certain conditions that must be met before it is accepted.
Such a condition is called synchronisation constraint.

Synchronisation Point: A synchronisation point is an activity which syn-
chronizes the execution of its thread with some events typically
caused by other threads.

Synchronisation State: State information of an object that is needed for syn-
chronisation purposes is called synchronisation state.

Synchronous Message Passing: Synchronous message passing means that a
sender does not perform any activity until the receiver accepts and
executes the message.

Synthesis Semantics: A language has a synthesis semantics if there exists a
meta-model how to transform a model written in the language with the
synthesis semantics into a new model by adding information to the
model

Target Independent: A model is target independent if it generalizes about a
technology that is used to implement it.

Thread: A thread of control is a sequential series of activities.

Trigger Event: A trigger event is an event that causes a state transition in an
object.

Use-relation: A use-relation is a clientship in which a server is not an exclu-
sive sub-object of a client.

Verification Condition: Assertions can be used to describe proof annota-
tions. Theorems that are generated from the proof annotations are
called verification conditions.

View: A modelling technique to show only a particular aspect of a system is
called view. A model that shows a particular aspect of a system is also
called view.

Whole-Part Relationship: In OMT whole-part relationship is the term for a
has-parts-relationship.





References

[1] Agsteiner, K.; Monjau, D.; Schulze, S.: Object-Oriented High-Level
Modeling of System Components for the Generation of VHDL Code.
Proceedings of the EURO-DAC’95 with EURO-VHDL’95. IEEE
Computer Society Press, 1995

[2] Aksit, M.; Bosch, J.; van der Sterren, W.; Bergmans, L.: Real-Time
Specification Inheritance Anomalies and Real-Time Filters. in Tokoro,
M.; Pareschi, R. (eds): European Conference on Object-Oriented Pro-
gramming ECOOP ’94, Lecture Notes in Computer Science 821,
Springer 1994

[3] America, P.: Inheritance and Subtyping in a Parallel Object-Oriented
Language. in Bézivin, J.; Hullot, J-M.; Cointe, P; Lieberman, H.
(eds.): European Conference on Object-Oriented Programming
ECOOP ’87, Lecture Notes in Computer Science 276, Springer 1987

[4] Ashenden, P. J.: The Designer’s Guide to VHDL. Morgan Kaufmann
Publishers, Inc. USA, 1996

[5] Ashenden, P. J.: A Comparison of Alternative Extensions for Data
Modeling in VHDL. Technical Report TR-02/97 Department of Com-
puter Scinece, The University of Adelaide, Australia, 1997, Technical
Report TR-203/05/97/ECECS Department of Electrical and Computer
Engineering and Computer Science, University of Cincinnati, USA,
1997

[6] Ashenden, P. J.: Principles for Language Extension to VHDL to Sup-
port High-Level Modeling. Technical Report TR-03/97 Department of
Computer Scinece, The University of Adelaide, Australia, 1997, Tech-
nical Report TR-204/05/97/ECECS Department of Electrical and
Computer Engineering and Computer Science, University of Cincin-
nati, USA, 1997

[7] Ashenden, P. J.; Wilsey, P., A.: Considerations on Object-Oriented
Extensions to VHDL. in VHDL: The Next 10 Years. Proceedings of
the VIUF Spring 1997 Conference, 1997

[8] Ashenden, P. J.; Wilsey, P. A.: Abstraction of Concurrency and Com-
munication in VHDL. Second Workshop on System Level Design



330

Languages, Barga, Italy, July 1997
[9] Ashenden, P. J.; Wilsey, P. A.; Martin, D. E.: SUAVE: A Proposal for

Extensions to VHDL for High-Level Modeling. Joint Technical
Report, TR-97-07, Dept. Computer Science, University of Adelaide,
South Australia, and TR-207/08/97/ECECS, Department of Electrical
and Computer Engineering and Computer Science, University of
Cincinnati, 1997

[10] Ashenden, P. J.; Wilsey, P. A.; Martin, D. E.: Reuse Through Generic-
ity in SUAVE. Proceedings of VIUF Fall 97 Conference, Arlington,
VA, 1997

[11] Ashenden, P. J.; Wilsey, P. A.; Martin, D. E.: SUAVE: Painless Exten-
sion for an Object-Oriented VHDL. Proceedings of VIUF Fall 97
Conference, Arlington, VA, 1997

[12] Ashenden, P. J.;Wilsey, P. A.: A Comparison of Alternative Exten-
sions for Data Modeling in VHDL, Proceedings of Hawai'i Interna-
tional Conference On System Sciences, Kona, Hawaii, 1998

[13] Ashenden, P. J.;Wilsey, P. A.: Considerations on System-Level Behav-
ioural and Structural Modeling Extensions to VHDL. Proceedings of
VIUF Spring 98 Conference, Santa Clara, California, 1998

[14] Ashenden, P. J.; Wilsey, P. A.; Martin, D. E.: SUAVE: Extending
VHDL to Improve Modeling Support. IEEE Design and Test of Com-
puters, 1998

[15] Ashenden, P. J.;Wilsey, P. A.: Extensions to VHDL for Abstraction of
Concurrency and Communication. Proceedings of Sixth International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS '98), Montreal, Canada,
1998

[16] Ashenden, P. J.; Wilsey, P. A.; Martin, D. E.: SUAVE: Object-Oriented
and Genericity Extensions to VHDL for High-Level Modeling. Pro-
ceedings of Forum on Design Languages (FDL '98), Lausanne, Swit-
zerland, 1998

[17] Atkinson, C.: Object-Oriented Resuse, Concurrency and Distribution :
an Ada-Based Approach. ACM Press, 1991

[18] Barnes, J.: Introducing Ada 9X. Intermetrics Inc., 1993
[19] Barnes, J.: Programming in Ada 95. Addison-Wesley Publishing

Company, 1996
[20] Barnes, J.: High Integrity Ada: The Spark Approach. Addison-Wesley,

1997
[21] Benzakki, J.; Djafri, B.: Object Oriented Extensions to VHDL–The



331

LaMI proposal. CHDL’97, Toledo, Spain, 1997
[22] Beolet, P.; Bergé, J.; Tagant, A.; Le Maire, C.: Participation in the def-

inition of Needs&Requirements and Analysis of existing proposals in
the definition of Object Oriented Extensions to VHDL. Version 1.0

[23] Bergé, J.; Nebel, W.; Putzke, W.: Requirements and Design Objectives
for an Object-Oriented Extension of VHDL (OO-VHDL). Design
Objectives Document of the DASC Study Group on OO Extensions to
VHDL, August 1996

[24] Bergé, J.; Fonkoua, A.; Maginot, S.; Rouillard, J.: VHDL designer’s
reference. Kluwer Academic Publishers, 1992

[25] Bergmans, L.; Aksit, M.; Wakita, K.; Yonezawa, A.: An Object-Ori-
ented Model for Extensible Concurrent Systems: The Composition-
Filters Approach. Available on the WWW from URL http://
wwwtrese.cs.utwente.nl/Docs/Tresepapers/tresepapers.html

[26] Bergmans, L.: Composing Concurrent Objects –Applying Composi-
tion Filters for the Development and Reuse of Concurrent Object-Ori-
ented Programs. Ph.D. thesis, University of Twente, 1994

[27] Bloom, T.: Evaluating Synchronization Mechanisms. Seventh Interna-
tional ACM Symposium on Operating Systems Principles, ACM,
1979

[28] Booch, G.: Object oriented design: with applications. Redwood City,
Calif., Benjamin/Cummings, 1991

[29] Booch, G.: Object-Oriented Development. IEEE Transactions on Soft-
ware Engineering, Volume SE-12, Number 2, February 1986, pp. 211-
221, 1986

[30] Böttger, J; Ecker, W.: Comparing Ada’95 and VHDL for Behavioural
Hardware Description on Causal and Synchronous Level. Proceedings
of the SIG-VHDL Spring Working Conference: VHDL User’s Forum
in Europe, Publication Service of the University of Cantabria, 1997

[31] Bracha, G.; Cook, W.: Mixin-based Inheritance. in Meyrowitz, N.
(ed): OOPSLA ECOOP’90 Conference Proceedings. ACM Sigplan
Notices, Vol 25, No 10, 1990

[32] Bredereke, J.; Gotzheim, R.: Specification, Detection and Resolution
of IN Feature Interactions with Estelle. 7th International Conference
on Formal Description Techniques (FORTE’94), Bern, Switzerland,
1994

[33] Brien, S.; Nicholls, J.: Z Base Standard Version 1.0, 1992
[34] Briot, J-P.; Yonezawa, A.: Inheritance and Synchronization in Concur-

rent OOP. in Bézivin, J.; Hullot, J-M.; Cointe, P.; Lieberman, H.:



332

(eds): European Conference on Object-Oriented Programming
ECOOP ’87, Lecture Notes in Computer Science 276, Springer 1987

[35] Brunvand, E.: Translating Concurrent Programs into Delay-Insensitive
Circuits. in International Conference on Computer-Aided Design
(ICCAD), 1989

[36] Burns, A.; Wellings, A.: Concurrency in Ada. Cambridge University
Press, 1995

[37] Cabanis, D.: Proposed Object Oriented Extensions to VHDL. Version
1.0, September 1995, Bournemouth University,1995

[38] Cabanis, D.; Medhat, S.: Object-Oriented Extensions to VHDL: The
Classification Orientation. Proceedings of the VHDL User Forum
Europe 1996, Shaker Verlag 1996

[39] Cabanis, D.: Pre-Processor Considerations. Bournemouth Uni / IBM,
Presentation by Benzakki, J.,

[40] Carlson, S.: Modeling Stye Issues for Synthesis. in Harr, R. E.; Stan-
culescu, A. G. (eds): Applications of VHDL to Circuit Design. Klu-
wer Academic Publishers, 1991

[41] Caromel, D.: Concurrency and Reusability: From Sequential to Paral-
lel. Journal of Object Oriented Programming, September/October
1990

[42] CCITT Blue book Recommendation Z.100: Functional Specification
and Description Language SDL, 1989

[43] Claasen, T. A. C. M.: Design and Test Challenges Behind Systems-on-
Silicon. Keynote Addresses Summaries. Proceedings of the Design,
Automation and Test in Europe Conference 1998. IEEE Computer
Society Press, 1998

[44] Coad, P.; Yourdon, E.: Object-oriented analysis. Yourdon Press, 1991
[45] Covnot, B. M.; Hurst, D. W.; Swamy, S.: OO-VHDL An Object Ori-

ented VHDL. Proceedings of the VHDL International User’s Forum,
1994

[46] Crowl, L. A.: A Uniform Object Model for Parallel Programming.
ACM SIGPLAN Notices 24(4), April 1989

[47] Dahl, O. C.; Najm, E.: Specification and Detection of IN Service
Interference Using LOTOS. in Tenney, R. L.; Amer, P. D.; Uyar, M. Ü:
(eds): Formal Description Techniques, VI, IFIP, Elsevier Science,
1994

[48] Drusinsky, D.; Harel, D.: Using Statecharts for Hardware Description
and Synthesis. IEEE Transactions on Computer-Aided Design, Vol-
ume 8, Number 7, July 1989



333

[49] Duke, R.; Rose, G.; Smith, G.: Object-Z: a Specification Language
Advocated for the Description of Standards. Technical Report No. 94-
45 Software Verification Research Centre Department of Computer
Science, The University of Queensland, Australia, 1994

[50] Dunlop, D. D.: Structure Varying Signals and OO Extensions to the
VHDL Type System. Revision 1.2, Article for discussion in the Object
Oriented VHDL Study Group of the IEEE DASC, 1995

[51] Dunlop, D. D.: Object-Oriented Extensions to VHDL. Proceedings of
the VHDL International User‘s Forum, 1994

[52] Ecker, W.: Neue Verfahren für den Entwurf digitaler Systeme mit
Hardwarebeschreibungssprachen. PhD thesis (in german), Shaker Ver-
lag, 1996

[53] Ecker, W.; Böttger, J.; Mrva, M.: Klassifizierung von objektorienti-
erten VHDL-Erweiterungen. in Monjau, D. (Hrsg.): Hardware-
beschreibungssprachen und Modellierungsparadigmen: 3. ITG/GI/
GMM Workshop, Holzhau, 26.-28. Februar, 1997

[54] Ecker, W.: An Object-Oriented View of Structural VHDL Description.
Proceedings of the VIUF Spring 1996 Conference, Santa Clara, USA,
1996

[55] Ecker, W.; Böttger, J.: Evaluation of Ada’95 and VHDL for System
Level Modeling. Proceedings of the VIUF Spring 1997 Conference,
Santa Clara, USA, 1997

[56] EDA Industry Council: Roadmap Presentation Made at DAC 6/17/98.
Available on the WWW from URL http://www.si2.org/ic/roadmap/
index.html

[57] Eirund, H.: Objektorientierte Programmierung. Teubner, 1993
[58] Esperan; ICL: VHDL+ and SuperVISE Workshop. Forum on Design

Languages (FDL '98), Lausanne, Switzerland, 1998
[59] Faci, M.; Logrippo, L.: Specifying Hardware Systems in LOTOS.

Agnew, D.; Claesen, L.; Camposano, R.(eds) : Conference Proceed-
ings of the IFIP Conference on Hardware Description Languages and
their Application CHDL’93, Canada, 1993

[60] Færgemand, O.; Olsen, A.: Introduction to SDL-92. Computer Net-
works and ISDN Systems 26 p1143-1167, 1994

[61] Ferenczi, S.: Guarded Methods vs. Inheritance Anomaly Inheritance
Anomaly Solved by Nested Guarded Method Calls. ACM SIGPLAN
Notices, Volume 30, Number 2, Februar 1995

[62] Ferenczi, S.: Concurrent Objects with Inherited Synchronization. in
Furnari, M., M. (ed): Proceedings of the 2nd International Workshop



334

on Massive Parallelism: Hardware, Software and Applications. Italy.
World Scientific Publishing Co., 1994

[63] Fornaciari, W.; Scutio, D.; Salice, F.: A Two-Level Cosimulation
Environment. Computer, Volume 30, Number 6, IEEE, June 1997

[64] Frick, A.; Neumann, R.; Zimmermann, W.: Eine Methode zur Kon-
struktion robuster Klassenhierarchien. Informatik Forschung und Ent-
wicklung, Band 12, Heft4, Springer Verlag, 1997

[65] Frølund, S.: Inheritance of Synchronization Constraints in Concurrent
Object-Oriented Programming Languages. in Lehrmann Madsen, O.
(ed.): European Conference on Object-Oriented Programming
ECOOP ’92, Lecture Notes in Computer Science 615, Springer 1992

[66] Gajski, D. D.; Vahid, F.; Narayan, S.; Gong, J.: Specification and
Design of Embedded Systems. Prentice Hall, 1994

[67] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Pub-
lishing Company, 1994

[68] Gerlach, J.; Eikerling, H-J.; Hardt, W.; Rosenstiel, W.: Von C nach
Hardware: ein integratives Entwurfskonzept. in Allgemeine Methodik
von Entwurfprozessen: GI/ITG/GMM Workshop, Paderborn, März
1996

[69] Girczyc, E.; Carlson, S.: Increasing Design Quality and Engineering
Productivity through Design Re-use. 30th Design Automation Confer-
ence, Dallas, 1993

[70] Glunz, W.; Umbreit, G.: VHDL for High-Level Synthesis of Digital
Systems. Proceedings of the 1st European Conference on VHDL
Methods, 1990

[71] Glunz, W.; Venzl, G: Using SDL for Hardware Design. in SDL'91
Evolving Methods; Proceedings of the Fifth SDL Forum Glasgow,
North Holland, 1991

[72] Glunz, W.: Extensions from VHDL to VHDL++. Siemens AG, ZFE
BT SE 61 , 1991 , JESSI-AC8/S2-WP1-T2.4-Q3,1991

[73] Glunz, W.; Venzl, G.: Harware-Design using Case Tools. Proceedings
of IFIP VLSI’91, 1991

[74] Glunz, W.; Pyttel, A.;Venzl, G.: System-Level Synthesis. in Michel P.;
Lauther U.; Duzy P. (eds): The Synthesis Approach to Digital System
Design. Kluwer Academic Publishers, p. 221-260 , 1992

[75] Glunz, W.; Kruse, T.; Rössel, T.; Monjau, D.: Integrating SDL and
VHDL for System-Level Hardware Design. Agnew, D.; Claesen, L.;
Camposano, R.(eds) : Conference Proceedings of the IFIP Conference



335

on Hardware Description Languages and their Application CHDL’93,
Canada, 1993

[76] Glunz, W.: Hardware-Entwurf auf abstrakten Ebenen unter Verwend-
ung von Methoden aus dem Software-Entwurf. PhD thesis. (in ger-
man) Paderborn/München, 1994

[77] Harel, D.: Statecharts, A visual formalism for complex systems. Sci-
ence of Computer Programming 8, 1987

[78] Harper, R.: Introduction to Standard ML. School of Computer Science
Carnegie Mellon University Pittsburgh, 1990

[79] Hatley, D. J.; Pirbhai, I. A.: Strategies for Real-Time System Specifi-
cation. Dorset House Publishing, New York, 1987

[80] Herrtwich, R. G.; Hommel, G.: Nebenläufige Programme, Zweite
Auflage, Springer-Verlag, 1994

[81] Hoare, C.A.R.: Towards a Theory of Parallel Programming. in Hoare,
C.A.R.; Perrott, R.H. (eds) Operating Systems Techniques, A.P.I.C.
Studies in Data Processing No. 9, Academic Press, 1972

[82] Hoare, C. A. R.: Communication sequential processes. in Hoare, C. A.
R. Hoare; Jones, C. B. (eds): Essays in Computing Science. Prentice
Hall, 1989

[83] Hogrefe, D: Estelle, LOTOS und SDL. (in german) Springer-Verlag,
1989

[84] Holz, E.; Witaszek, D.; Wasowski, M.; Lau, S.; Fischer, J.; Roques, P.
; Cuypers, L.; Mariatos, V.; Kyrloglou, N.: INSYDE Integrated Meth-
ods for Evolving System Design ESPRIT Ref: P8641. Technology
Assessment. Report. Alcatel Bell Telephone, Dublin City University,
Humboldt Universität zu Berlin, Intracom S.A., Verilog S.A., Vrije
Universiteit Brussel, 1994

[85] Hopcroft, J. E.; Ullman, J. D.: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979

[86] ICL: VHDL+ Reference Guide, Version 4.0. ICL Design Automation
Centre Manchester, UK, 1998

[87] IEEE Standard VHDL Language Reference Manual Std 1076-1993,
Revision of IEEE Std 1076-1987, 1994

[88] IEEE Draft Standard VITAL ASIC Modeling Specification. IEEE
P1076.4, 1995

[89] IEEE DASC LCS-0046(4): Variant Records, 1992
[90] IEEE DASC PAR 1076A: Shared Variable Language Change Specifi-

cation, Version 4.0, 1995
[91] IEEE DASC PAR 1076A: Shared Variable Language Change Specifi-



336

cation, Version 5.7, 1996
[92] INMOS Ltd.: OCCAM Programming Manual, Prentice Hall Interna-

tional, 1984
[93] ISO/IEC JTC1/SC22 WG9 N 193: Programming Language Ada, Lan-

guage and Standard Libraries, Annotated Draft Version 4.0 IR-MA-
1364-3, 1993

[94] ISO/IEC 9074:1989 Estelle, 1989
[95] ISO/IEC 8652:1995(E) Ada Reference Manual, Language and Stand-

ard Libraries, Version 6.0, 1994
[96] ISO/IEC 10514-1:1996 Modula-2 (Base Language), 1996
[97] ITU: ITU-T Recommendation Z.100 CCITT Specification and

Description Language (SDL), 1993
[98] Jantsch, A.; Kumar, S.; Sander, I.; Svantesson, B.; Öberg, J.; Hemani,

A.; Ellervee, P.; O’Nils, M.: Comparison of Six Languages for System
Level Descriptions of Telecom Systems. Proceedings of Forum on
Design Languages (FDL '98), Lausanne, Switzerland, 1998

[99] Jensen K.; Wirth, N.: Pascal: User Manual and Report. Second Edi-
tion, Springer-Verlag, 1975

[100] Jerraya, A. A.; O'Brien, K.; Ben Ismail, T.: Linking system design
tools and hardware design tools. Agnew, D.; Claesen, L.; Camposano,
R.(eds) : Conference Proceedings of the IFIP Conference on Hard-
ware Description Languages and their Application CHDL’93, Canada,
1993

[101] Jerraya A.A.; O’Brian, K.: SOLAR: An Intermediate Format for Sys-
tem-Level Modeling and Synthesis. in Buchenbrieder, K.; Rozenblit,
J. W.: Codesign: Computer-Aided Software/Hardware Engineering,
IEEE Press, 1994

[102] Kernighan, B. W.; Ritchie, D. M.: The C Programming Language,
Second Edition (ANSI-C) Prentice Hall, 1988

[103] Ku, D. C.; De Micheli, G: HardwareC - A Language for Hardware
Design Version 2.0. Technical Report: CSL-TR-90-419 Stanford Uni-
versity, 1990

[104] LaLonde, W. R.; Thomas, D. A.; Pugh, J. R.: An Exemplar Based
Smalltalk. OOPSLA’86 Conference Proceedings. ACM Sigplan
Notices, Vol 21, No 11, 1986

[105] Leboch, S.; Ryba, M.; Baitinger, U. G.: Wiederverwendung – Kann
der Schaltungsentwurf von der Software-Entwicklung lernen, oder
umgekehrt? in Kunzmann, A.; Seepold, R.: 1. GI/ITG-Workshop
„Wiederverwendung im Schaltungsentwurf“, FZI-Bericht 4/97, Karl-



337

sruhe, September, 1997
[106] Lieberman, H.: Using Prototypical Objects to Implement Shared

Behavior in Object Oriented Systems. OOPSLA’86 Conference Pro-
ceedings. ACM Sigplan Notices, Vol 21, No 11, 1986

[107] Lutter, B.; Glunz, W.; Rammig, F. J.: Using VHDL for Simulation of
SDL Specifications. Proceedings of the European Design Automation
Conference'92 , 1992

[108] Marshall, R. M.: Automatic Generation of Controller Systems from
Control Software. in International Conference on Computer-Aided
Design (ICCAD), 1986

[109] Marvedel, P.: Synthese und Simulation von VLSI-Systemen : Algo-
rithmen für den rechnerunterstützten Entwurf hochintegrierter
Schaltungen, Hanser Verlag, 1993

[110] März, S.: High-Level Synthesis. in in Michel P.; Lauther U.; Duzy P.
(eds): The Synthesis Approach to Digital System Design. Kluwer
Academic Publishers, 1992

[111] Matsuoka, S.; Yonezawa, A.: Analysis of Inheritance Anomaly in
Object-Oriented Concurrent Programming Languages. in Agha, G.;
Wegner, P.; Yonezawa, A. (eds.): Research Directions in Concurrent
Object-Oriented Programming, MIT Press, 1993

[112] Meseguer, J.: Solving the Inheritance Anomaly in Concurrent Object-
Oriented Programming. in Nierstrasz, O. (ed): European Conference
on Object-Oriented Programming ECOOP ’93, Lecture Notes in
Computer Science 707, Springer 1993

[113] Mills, M. T., Lt. Col.: Proposed Object Oriented Programming (OOP)
Enhancements to the Very High Speed Integrated Circuits (VHSIC)
Hardware Description Language (VHDL). Final Report for 05/04/92-
08/04/93 Solid State Electronics Directorate Wright Laboratory Air
Force Materiel Command Wright-Patterson Air Force Base, Ohio
45433-7331

[114] Milner, R.; Tofte, M.; Harper, R.: The Definition of standard ML. The
MIT Press, 1990

[115] Mitchell, S., E.; Wellings, A. J.: Synchronisation, Concurrent Object-
Oriented Programming and the Inheritance Anomaly. Technical
Report 234. Department of Computer Science, University of York,
UK 1994

[116] Mitchell, S. E.; Burns, A.; Wellings, A. J.: Adaptive Scheduling using
Reflection. ECOOP’97 Workshop on Reflective Real-Time Object-
Oriented Programming and Systems, Jyväskylä, Finland, June 1997



338

[117] Nebel, W.; Schumacher, G.: Konzepte objektorientierter Hardware-
Modellierung. Invited talk: 2. GI/ITG/GME-Workshop "Hardwarebe-
schreibungssprachen und Modellierungsparadigmen", Darmstadt, Feb.
15-16,  1996

[118] Nebel, W.; Schumacher, G.: Object-oriented Hardware Modelling –
Where to Apply and what are the Objects? Proceedings of the EURO-
DAC ’96 with EURO-VHDL ’96. IEEE Computer Society Press,
1996

[119] Neusius, C.: Synchronizing Actions. in America, P. (ed): European
Conference on Object-Oriented Programming ECOOP ’91, Lecture
Notes in Computer Science 512, Springer 1991

[120] Nierstrasz, O.: Composing Active Objects. in Agha, G.; Wegner, P.;
Yonezawa, A. (eds.): Research Directions in Concurrent Object-Ori-
ented Programming, MIT Press, 1993

[121] Öberg, J.; Kumar, A.; Hemani, A.: Scheduling of Outputs in Gram-
mar-based Hardware Synthesis of Data Communication Protocols.
Proceedings of the Design, Automation and Test in Europe Confer-
ence 1998. IEEE Computer Society Press, 1998

[122] Oczko, A.: Hardware Design with VHDL at a Very High Level of
Abstraction. Proceedings of the 1st European Conference on VHDL
Methods, 1990

[123] O'Leary, J.; Linderman, M.; Leeser, M.; Aagaard, M.: HML: A Hard-
ware Description Language Based on Standard ML. Agnew, D.;
Claesen, L.; Camposano, R.(eds) : Conference Proceedings of the
IFIP Conference on Hardware Description Languages and their Appli-
cation CHDL’93, Canada, 1993

[124] Open Verilog International: Standard Delay Format Specification Ver-
sion 3.0. May, 1995

[125] Ott, D. E.; Wilderotter, T. J.: A Designer’s Guide to VHDL Synthesis.
Kluwer Academic Publishers, 1994

[126] Perry, D.: Applying Object Oriented Techniques to VHDL. Proceed-
ings of the VIUF Spring Conference, p. 217-224, 1992

[127] Potter, B.; Sinclair, J.; Till, D.: An Introduction to Formal Specifica-
tion an Z. Prentice Hall, 1991

[128] Poulin, J. S.: Measuring Software Reuse: Principles, Practices, and
Economic Models. Addison-Wesley Publishing Company, 1997

[129] Pulkkinen, O.; Kronlöf, K.: Integration of SDL and VHDL for High-
Level Digital Design. Proceedings of the European Design Automa-
tion Conference'92 , 1992



339

[130] Putzke-Röming, W.; Radetzki, M.; Nebel, W.: Objective VHDL:
Hardware Reuse by Means of Object-Orientation. 1st Workshop on
Reuse Techniques in VLSI Design, Karlsruhe, Sept. 1997

[131] Putzke-Röming, W.; Radetzki, M.; Nebel, W.: A Flexible Message
Passing Mechanism for Objective VHDL. Proc. DATE'98, Paris,
France, 1998

[132] Putzke-Röming, W.; Radetzki, M.; Nebel, W.: Modeling Communica-
tion with Objective VHDL. Proc. VIUF'98 (Spring Conference), Santa
Clara, USA, 1998

[133] Radetzki, M.; Putzke-Röming, W.; Nebel, W.: Language architecture
document on Objective VHDL. REQUEST Report D1.2C, ESPRIT
Project 20616, OFFIS, LEDA, France Télécom, Italtel, 1996

[134] Radetzki, M.; Putzke-Röming, W.; Nebel, W.; Maginot, S.; Bergé, J.;
Tagant, A.; VHDL-language extensions to support abstraction and re-
use. Proceedings of the 2nd Workshop on Libraries, Component Mod-
eling and Quality Assurance, Publication Service of the University of
Cantabria, 1997

[135] Radetzki, M.; Putzke-Röming, W.; Nebel, W.: Objective VHDL: The
Object-Oriented Approach to Hardware Reuse. In: Roger, J.-Y.; Stan-
ford-Smith, B.; Kidd, P.T. (eds.): Advances in Information Technolo-
gies: The Business Challenge. IOS Press, Amsterdam, 1998.
Presented at EMMSEC'97, Florence, Italy, 1997

[136] Radetzki, M.; Putzke-Röming, W.; Nebel, W.: OO-VHDL: What Is It,
and Why Do We Need It? Asia-Pacific Conference on Hardware
Description Languages, Hsin-Chu, Taiwan, 1997.

[137] Radetzki, M.; Putzke-Röming, W.; Nebel, W.: A Unified Approach to
Object-Oriented VHDL. Journal of Information Science and Engi-
neering 14 (1998), pp. 523-545

[138] Radetzki, M.; Putzke-Röming, W.; Nebel, W.: Objective VHDL: Tools
and Applications. Proc. FDL'98, Lausanne, Switzerland, 1998, pp.
191-200

[139] Ramesh, C. R.: Object Orienting VHDL for Component Modeling.
VIUF Fall 94 Conference, 1994

[140] Rammig, F. J.: Systematischer Entwurf digitaler Systeme. Teubner,
1989

[141] Rational Software Corporation: Unified Modeling Language: UML
Summary, Version 1.0, Santa Clara, 1997, Most recent updates are
available on the WWW from URL http://www.rational.com

[142] Rumbaugh, J.; Blaha, M.; Premerlani, W.; Frederick, E.; Lorensen,



340

W.: Object-oriented modeling and design. Prentices-Hall Interna-
tional, 1991

[143] Rumbaugh, J.: OMT: The object model. in Journal of Object Oriented
Programming, January ,1995

[144] Rumbaugh, J.: OMT: The dynamic model. in Journal of Object Ori-
ented Programming, February ,1995

[145] Rumbaugh, J.: OMT: The functional model. in Journal of Object Ori-
ented Programming, March-April, 1995

[146] Rumbaugh, J.: OMT: The development process. in Journal of Object
Oriented Programming, May, 1995

[147] Salamuni´ccar, G.: Case Study of the VHDL Object-Oriented Exten-
sion for Data Modeling. Technical Report, University of Zagreb/FER/
ZEMRIS/GSCTR1, Department of Electronics, Microelectronics,
Computer and Intelligent Systems, Faculty of Electrical Engineering
and Computing, University of Zagreb, Croatia, Revision 19971230,
1997

[148] Salamuni´ccar, G.: A Proposal for Data Modeling Extension to VHDL
Using an Object-Oriented Approach. Proceedings of WDTA'98,
Dubrovnik, Croatia, 1998

[149] Salamuni´ccar, G.: A Proposal for Data Modeling Extension to VHDL
Using an Object-Oriented Approach. Technical Report, University of
Zagreb/FER/ZEMRIS/GSCTR3, Department of Electronics, Microe-
lectronics, Computer and Intelligent Systems, Faculty of Electrical
Engineering and Computing, University of Zagreb, Croatia, Revision
19980707, 1998

[150] Salinas, M., H.; Johnson, B., W.; Aylor, J. H.: Implementation-Inde-
pendent Model of an Instruction Set Architecture in VHDL. Design &
Test of Computers, Volume 10, Number 3, IEEE, September 1993

[151] Schumacher, G.; Nebel, W.: Inheritance Concept for Signals in
Object-Oriented Extensions to VHDL. Proceedings of the EURO-
DAC ’95 with EURO-VHDL ’95. IEEE Computer Society Press,
1995

[152] Schumacher, G.; Nebel, W.: Survey on Languages for Object Oriented
Hardware Design Methodologies. Current Issues in Electronic Mode-
ling, Issue 3, Kluwer Academic Press , 1995

[153] Schumacher, G.; Nebel, W.; Putzke, W.; Wilmes, M.: Applying
Object-Oriented Techniques to Hardware Modelling – A Case Study.
Proceedings of the VHDL User Forum Europe 1996, Shaker Verlag
1996



341

[154] Schumacher, G.; Nebel, W.: Abstract Hardware Modelling using an
Object-Oriented Language Extension to VHDL. Current Issues in
Electronic Modeling, Issue 7, Kluwer Academic Press , 1996

[155] Schumacher, G.; Nebel, W.: Object-Oriented Modelling of Parallel
Hardware Systems. Proceedings of the Design, Automation and Test
in Europe Conference 1998. IEEE Computer Society Press, 1998

[156] Schumacher, G.; Nebel, W.: How to Avoid the Inheritance Anomaly in
Ada. in Asplund, L. (ed.): Reliable Software Technologies: Proceed-
ings Ada-Europe ’98. Lecture Notes in Computer Science 1411,
Springer 1998

[157] Sheraga, R. J.: ANSI C to Behavioral VHDL Translator, Ada to
Behavioral VHDL Translator. The RASSP Digest, Vol. 3, September
1996, Available on the WWW from URL http://rassp.scra.org/news-
letter/html/96sep/news_11.html

[158] Shlaer, S.; Mellor, J., S.: Object-Oriented System Analysis Modeling
the World in Data.Yourdon Press, 1988

[159] Snyder, A. A.; Vetter, B. N.: Eiffel: An Advanced Introduction. Avail-
able on the WWW from URL http://www.progsoc.uts.edu.au/~gel-
dridg/eiffel/advance-intro/

[160] Spivey, J. M.: The Z Notation A Reference Manual. Prentice Hall,
1989

[161] Stammermann, A.: Datentypanalyse objektorientierter Hardwarebe-
schreibungen. (in german) Dissertation for a diploma at Carl von Ossi-
etzky University Oldenburg. Oldenburg, 1998

[162] Swamy, S.; Molin, A.; Covnot B., M.: OO-VHDL Extensions to
VHDL. Computer, October 1995 pp. 18–26, IEEE, 1995

[163] Tangemann, B.: Synthese komplexer Datentypen einer object-orienti-
erten Hardwarebeschreibungssprache auf Registertransferebene (in
german) Dissertation for a diploma at Carl von Ossietzky University
Oldenburg. Oldenburg, 1997

[164] Tanenbaum, A. S.: Operating Systems: Design and Implementation.
Prentice-Hall, 1987

[165] Thomas, D. E; Moorby, P.: The Verilog Hardware Description Lan-
guage, Kluwer Academic Publishers, 1991

[166] Tomlinson, C.; Singh, V.: Inheritance and Synchronization with Ena-
bled-Sets. in Meyrowitz, N. (ed): Object-Oriented Programming: Sys-
tems, Languages and Applications. OOPSLA’89 Conference
Proceedings. ACM Press, 1989

[167] Vista Technologies, Inc.: OO-VHDL Language Reference. Version



342

0.3, RASSP Contract No. DAAL01-93-R-3616 Document ID: TR-
1.2.11.1.3-01

[168] Vista Technologies, Inc.: Object Oriented VHDL. Webpages http://
www.vistatech.com/oovhdl.html, September, 1995

[169] Volan, J.: John Volan’s Answers to Frequently Asked Questions about
Ada95’s ''With-ing'' Problem. Version 2.05. Webpages http://bluemar-
ble.net/~jvolan/WithingProblem/FAQ.html, June 1997

[170] Wegner, P.: Dimensions of Object-Based Language Design. Proceed-
ings OOPSLA '87, ACM SIGPLAN Notices, vol. 22, no. 12, 1987

[171] Wegner, P.; Zdonik, S. B.: Inheritance as an Incremental Modification
Mechanism or What Like Is and Isn’t Like. in Gjessing, S.; Nygaard,
K. (eds.): European Conference on Object-Oriented Programming
ECOOP ’88, Lecture Notes in Computer Science 322, Springer 1988

[172] Wegner, P.: Concepts and Paradigms of Object-Oriented Program-
ming. ACM OOPS Messenger, vol. 1, no. 1, 1990

[173] Wegner, P.: Dimensions of Object-Oriented Modeling. Computer,
October 1992 pp.12-20, IEEE, 1992

[174] Willis, J. C.; Bailey, S. A.; Newshutz, R.: A Proposal for Minimally
Extending VHDL to Achieve Data Encapsulation Late Binding and
Multiple Inheritance. Proceedings of the VHDL International User‘s
Forum, 1994

[175] Wilmes, M.: Hardware-Spezifikation mit objektorientierten Spracher-
weiterungen zu VHDL. ( in german) Dissertation for a diploma at Carl
von Ossietzky University Oldenburg. Oldenburg, 1995

[176] Wytrebowicz, J.: Modeling Shared Variables in VHDL – a Pragmatic
Approach. Proceedings of the VHDL-Forum Europe Spring ’95
Working Conference, pp. 15-24, 1995

[177] Zippelius, R.; Müller-Glaser, K. D.: An Object-oriented Extension of
VHDL. Proceedings of the VHDL-Forum Spring‘92 Meeting, 1992



Curriculum Vitae

1999 – to date Universität Oldenburg, Assistant Lecturer

1998 – 1999 OFFIS (Oldenburg Research and Development Institute for
Informatic Tools and Systems), Scientist

1993 – 1998 Universität Oldenburg, PhD Student

1984 – 1992 Universität Stuttgart, Diploma in Informatics

11. 12. 1963 Born in Ravensburg




