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Abstract

The interplay between hydrodynamic motion and nutrient availability influ-
ences the distribution of plankton that makes up the basis of the aquatic
food web. Vertical transport of nutrients controlls the primary production in
particular in and around upwelling areas. Horizontal stirring by mesoscale
structures like vortices and wakes redistributes nutrients and enhances pri-
mary production, and can also initiate plankton blooms and affect the com-
petition and coexistence of different plankton species. Vertical upwelling in
connection with and Ekman flow and strong mesoscale activity occurs in the
region the Canary Islands in the Atlantic ocean. The nutrient rich waters
from the upwelling interact with the wake of the Canary Islands, giving rise
to filaments and mesoscale structures of increased biological productivity and
complex dynamics. An increased primary production is also observed in the
area far away from the upwelling zone. The effects of mesoscale eddies on the
horizontal transport of nutrients, the primary production and the initiation
of plankton blooms are investigated in a time dependent two-dimensional
flow around an obstacle and with a upwelling region.

Both the hydrodynamic and the biological model used in this thesis are
simplified models. They seek to reproduce the main features of the system,
with the least possible degree of conceptual complexity. Although concepts
about the processes involved are kept as simple as possible they are intended
to give a rather realistic representation of the processes one wishes to model.
They can therefore be complex from a mathematical point of view. Nev-
ertheless the advantage of simple process models is that they allow direct
investigation of the role played by each generic process. Such processes may
be difficult to diagnose in simulations of a particular area. The advantage of
taking a broader view is that it may allow the recognition of features common
to several different systems. Despite the apparent simplicity of the models
they can provide a deeper understanding of the most relevant processes.

The horizontal transport across the wake is studied under different condi-
tions with a periodic, non-periodic and turbulent flow. Primary production
in the region is enhanced due to vorticity redistributing the upwelled nutri-
ents. Under certain conditions the interplay between wake structures and
the biological activity leads to plankton blooms inside the mesoscale vor-
tices. The residence time of the plankton species in the structures in the
wake is important. It is determined by the chaotic saddle, the vorticity and
other nonlinear effects in the flow. The long residence times in the vicinity
of the island and the hydrodynamic forcing and confinement of plankton in
the vortices initiate localized plankton blooms.






Zusammenfassung

Das Zusammenspiel von hydrodynamischer Strémung und die Verfiigbarkeit
von Néhrstoffen beeinflussen die Verteilung des Planktons, das die Grund-
lage der aquatischen Nahrungskette bildet. In der Ndhe von Aufquellgebie-
ten bestimmt der vertikale Transport von Nahrstoffen die Primérproduktion.
Horizontales Mischen durch meskoskalige Strukturen wie zum Beispiel Wir-
bel und Fronten verteilt die Néhrstoffe und steigert die Primérproduktion
und kann auch Algenbliiten verstirken oder die Konkurrenz oder die Ko-
existenz verschiedener Planktonspezies beeinflussen. Vertikales Aufquellen
in Verbindung mit einem Ekman-Strom und starke mesoskalige Aktivitét
findet in dem Gebiet bei den Kanarischen Inseln im Atlantischen Ozean
statt. Die ndhrstoffreichen Wassermassen aus dem Aufquellgebiet wechsel-
wirken mit der Wirbelstrafle bei den Kanarischen Inseln, wobei Filamen-
te und mesoskalige Strukturen mit hoher Primérproduktion und komplexer
Dynamik entstehen. Selbst weit von dem Aufquellgebiet entfernt, wird eine
erhohte Primarproduktion beobachtet. Die Effekte der meskoskaligen Wir-
beln auf den horizontalen Transport von Nahrstoffen, der Primérproduktion
und bei der Auslosung von Algenbliiten werden in einer zweidimensionalen
zeitabhéngigen Stromung um eine Insel mit einer Aufquellzone untersucht.

Sowohl das hydrodynamische als auch das biologische Modell, die in die-
ser Dissertation verwendet wurden, sind vereinfachte Modelle. Sie geben die
wesentlichen Eigenschaften des Systems wieder, wobei konzeptionelle Kom-
plexitdt moglichst vermieden wird. Die Konzepte iiber die zu Grunde lie-
genden Prozesse werden dabei so einfach wie moglich gehalten, obgleich in
der Absicht diese Prozesse moglichst realistisch wiederzugeben. Die Modelle
kénnen deswegen aus mathematischer Sicht sehr komplex sein. Der Vorteil
einfacher Modelle liegt darin, daf§ in ihnen die Rolle jedes einzelnen Pro-
zesses untersucht werden kann. Die Rolle einzelner Prozesse lédsst sich in
Simulationen fiir ein bestimmtes Gebiet schwieriger erkennen. Der Vorteil
einer allgemeineren, umfassenderen Betrachtungsweise liegt darin, dafl in ihr
allgemeingiiltige Eigenschaften erkennbar werden, die mehreren Systemen ge-
meinsam sind. Trotz der scheinbaren Einfachheit der Modelle, konnen sie zu
einem tieferen Verstindnis der relevantesten Prozesse beitragen.

Der horizontale Transport auf die andere Seite der Wirbelstraflie wird
in drei verscheidenen Stromungen mit periodischem, nicht-periodischem und
turbulenten Eigenschaften untersucht. Die Priméarproduktion in der Regi-
on wird unter dem Einfluss der Wirbel bei der Umverteilung der Néhrstoffe
erhoht. Unter bestimmten Bedingungen fiihrt das Interagieren der Strukturen
der Wirbelstrafie mit den vertikal transportierten Néhrstoffen zu Algenbliiten
innerhalb der mesoskaligen Wirbel. Die Aufenthaltszeiten der Phytoplank-



tonspezies in den verschiedenen Strukturen der Wirbelstrafle ist von Bedeu-
tung. Sie wird durch den chaotischen Sattel, der Wirbelstdrke und andere
nichtlineare Effekte in der Stromung bestimmt. Die langen Aufenthaltszeiten
der Néahrstoffe und des Planktons in der Nahe der Insel und das Eingeschlos-
sensein des Planktons innerhalb der Wirbel fithren zu lokalen Algenbliiten.
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Chapter 1

Introduction

The image of the Earth taken by the astronauts of the moon-landing mission
Apollo 11 as their spacecraft on its lunar orbit had just passed the dark side
of the moon is one of the most circulated images of the Earth. The fascinat-
ing view of the entire planet taken from an angle with the sun illuminating
the entire surface shows the Earth mostly in tones of blue and white. Ev-
ersince fluid water existed on the planet, the colors of the light reflected by
the atmosphere and oceans formed complex patterns of high artistic value,
making our planet so distinct from an extraterestrial perspective. This sym-
phony in blue and white is perhaps the most spectacular evidence of the two
systems where life has developed in: the oceans and the atmosphere. The
exact processes and circumstances that led to the appearance of the first life
forms is the subject of ongoing research, but it is generally accepted that
the medium where the evolution from the first simple organisms to complex
species took place was a fluid one. The worlds oceans were the cradle of life,
where the molecular compounds that formed the first species on the planet
reacted with each other. Reacting substances and self-organization under
the influence of external forcing are very hot research topics in physics and
the life-sciences.

Still today in nature and in engineering systems chemical or biological
active substances are often transported in flows. If the distribution of the
carried substances in the flow is not homogeneous, the biological or chemical
activity is affected by the dynamics of the underlying flow. In the past years,
scientific effort was directed towards a better understanding of the complex
processes taking place in the flow. The outcome of the reactions in these
systems can be slightly different from the same reaction taking place in a well
mixed environment (Tél et al., 2005). These interactions have been studied
in the context of geophysical phenomena such as the formation of the ozone
hole in the stratosphere (Edouard et al., 1996; Kiss et al., 2003; Paireau &
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10 Chapter 1. Introduction

Tabeling, 1997) and chemistry (Menzinger & Jankowski, 1986; Menzinger &
Dutt, 1990; Epstein, 1995; Metcalfe & Ottino, 1994; Ali & Menzinger, 1997).
The transport of reacting substances is relevant in various other fields, such
as plankton population dynamics (Scheuring et al., 2000; Konopka et al.,
2004; Scheuring et al., 2003) and geophysical sciences in general (Haynes,
1996; Tan et al., 1998; Schmalzl et al., 1996), microfluidics (Strook et al.,
2002; Bottausci et al., 2004; Benettin et al., 1986) and combustion (Williams,
1985; Kiss et al., 2003).

All these systems have in common that the interacting particles are trans-
ported by the motion of the fluid, and they change their properties due to
the chemical or biological interactions. It can be therefore said that these
particles are active, in the sense that they are not just passively advected by
the flow but they follow dynamical processes of their own. For example when
plankton ’particles’ (cells) reproduce and die, their number changes. Flows
that carry active substances are often referred to as active flows in literature.
An unusual feature of many of these systems is that reaction take place along
filamentary spatial structures in time dependent flows. The distribution of
the reactants corresponds to fractal patterns. Examples of active flows are
the atmospheric transport of pollutants and chemical agents, such as ozone
or fluor-chlorides, or the transport of plankton and nutrients in the ocean
currents.

Small organisms like plankton species living in the marine environment
are a descriptive example of biological species transported in a flow. Different
species may interact with each other in a food web while they are under
the influence of the flow. Satelite images of the concentration of microscopic
marine species floating on the ocean surface usually reveal the fractal patterns
in the distribution of phytoplankton. These patterns are more common in
areas with strong mesoscale activity where fronts and vortices are present
(see Fig. 1.1). The visible non-stationary structures on the surface are
formed by the coupling between the internal and external forcing on the
ocean and the biological activity. The spatial and temporal dynamics of
marine phytoplankton in a time dependent current is a classical example of
a biologically active flow.

Quantifying the influence of the hydrodynamic forcing on the growth,
production and distribution of plankton and marine microorganisms is a
complex task. The interest in quantifying these effects is motivated by the
fundamental role that microorganisms and plankton in particular play in the
marine food web. Plankton communities form the basis of marine food webs
throughout the worlds oceans. These freely-floating and weakly-swimming
microorganisms can be found in marine or freshwater-habitats. Plankton
species can be broadly divided into two groups, phytoplankton and zoo-
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plankton. Phytoplankton are unicellular microorganisms that perform pho-
tosynthesis. Zooplankton is a microorganism that grazes on phytoplankton,
a predator animal. Zooplankton itself is eaten up by larger organisms. There-
fore phytoplankton and zooplankton form the basis of the marine food web
supporting all other forms of life. Their distribution on the ocean surface
determines the abundance of fish. A subject currently under discussion is
whether phytoplankton also plays a role in the context of planetary climate
change. Phytoplankton performs photosynthesis on the basis of carbon that
diffuses from the atmosphere into the water. Plankton transforms C'O, into
monosaccharides and energy in several stages by means of chlorophyll. Nu-
trients and the products of this reaction form the basis for the production of
proteins in the cells. This complex process that leads to the augmentation
of the total mass of the organisms is referred to as primary production. As
the planets surface is covered by two thirds with oceans, plankton distribu-
tion affects the C'Os-balance in the atmosphere. The study of the factors
that control the abundance of phytoplankton is therefore a subject of great
scientific interest, not only for biologists but also for the climate research
community.

The growth of phytoplankton depends on the availability of light and
nutrients. The uppermost layer of the world’s oceans, the euphotic zone is
bathed in sunlight during the daytime. In this surface mixed layer, plankton
species are active. A balance between light and nutrient availability provides
favorable conditions for plankton. As light is rapidly absorbed in the water
column, life conditions are less favorable in deeper layers, although nurient
concentrations may be higher there. Nutrients can be supplied to the upper
ocean layers by various physical transport mechanisms. Coastal and open
ocean upwelling, episodic mixing up of deep water by winter convection,
continuous diapycnal diffusion and eddy induced vertical motions can all
contribute to fueling biological production in the surface ocean. Physical
processes also govern the depth of the turbulent surface mixed layer. In deep
winter mixed layers in midlatitude and high altitude regions are turbulent,
and phytoplankton may not remain in the euphotic zone long enough for the
growth to take place. Stabilization of the surface layer in spring can then
give rise to sudden blooms of algae.

Plankton species in the open ocean are thus immediately dependent on a
variety of physical processes. According to previous studies these processes
influence the growth rate, and the spatial and temporal variability of the
oceanic primary production, as shall be explained in the following.

Fronts are observed at the contact surface of water masses with different
physical properties, such as salinity or temperature. Stochastic perturbations
in the forcing of the water bodies can lead to instability in a front. Examples
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Figure 1.1: Filamental structures on an satellite image of the North-
ern Atlantic close to the coast of Norway (image by NASA SEAWIFS)
http://visibleearth.nasa.gov/cgi-bin/viewrecord 75278

of instabilities in the vertical are internal waves, and for instabilities in the
horizontal plane meandering jets. From an ecological point of view one of
the key process in an unstable frontal region is vertical transport. It leads to
an increased flux of nutrients, mainly nitrates to surface waters, increasing
primary production. Vertical fluxes can be associated with increased bio-
logical activity (Denman & Gargett, 1995). Some mechanisms that become
active in connection with vertical processes have been identified in previous
studies. They take into account the physical transport of both plankton and
nutrients to the surface and also consider light absorption.

A more refined analysis of the different species of phytoplankton reveals
that marine phytoplankton species have evolved to fill a variety of ecologi-
cal niches. Differences in physiology-related processes between species reflect
the diversity in adaptation to different conditions. For open ocean phyto-
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plankton, the most important difference are the varying abilities to cope with
low-light and low-nutrient conditions. In the ocean adsorbtion of light and
fluxes of nutrients are factors controlled by the physical environment that the
phytoplankton experiences (Martin et al., 2001a). They do affect the phyto-
plankton community structure. Vertical transport can influence the commu-
nity structure for example by inducing a local inhomogeneity in the nutrient
concentration. A common assumption in the oceanographic community is
that the equilibrium composition of a plankton population is homogeneous
horizontally, but varies with depth. The mixed layer is considered to be olig-
otrophic if the nitrate concentration levels are limiting phytoplankton growth
at the surface. The nutrient limitation in the mixed layer can be removed
in upwelling regions, if deep-water nitrate levels are high enough. When
deep waters are brought to the surface, the nutrient limitation is locally re-
moved. In this regions we speak of non-oligotrophic conditions. Upwelling
of nutrient rich waters is observed east of the Canary Islands in what would
otherwise be an oligotrophic region. If during upwelling a population is trans-
ported to the surface too fast for it to track the changing equilibrium, the
composition of upwelled phytoplankton populations will be atypical for this
surroundings (Martin et al., 2001a). This heterogeneity of transient nature
can be exacerbated by the populations response to the new surroundings.
Light intensity decreases with depth whereas nitrate concentration generally
increases. Therefore deep nutrient-loaded waters may experience a phyto-
plankton bloom as they rise to the surface and receive more light. Because of
the afore named differences in physiology-related processes, different species
will respond to the environmental changes at different rates. Thus one can
expect significant changes in the local community structure if vertical trans-
port is initiating local algae blooms (Martin et al., 2001a). Typical vertical
velocities for the stratified open ocean are very small, of the order of a few
centimeters per day as the gradients are small. In the strong geostrophic cir-
culations associated with the instabilities on a front, velocities of up to 10 m
per day were observed due to the large gradients of salinity or temperature.
The vertical flux of nutrient can have a substantial effect on local plankton
populations.

In the homogeneous environment in the mixed layer different plankton
species compete directly for the same resources. According to the principle
of the ’competitive exclusion’ one could assume that only the best adapted
species would survive, while the other species eventually die out. This ap-
parent contradiction is known as the paradox of phytoplankton (Hutchinson,
1961). Plankton species in the ocean live in a physically inhomogeneous
environment. Wind forcing on the oceans surface and thermohaline convec-
tion lead to the formation of mesoscale structures such as vortices, fronts
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and currents. Mesoscale structures can maintain barriers to transport in
the physical environment, that separate different areas in the flow, so called
shelters. These can separate competing species and indirectly promote the
coezistence of species (Martin et al., 2001b).

Spatial heterogeneity or patchiness of marine phytoplankton populations
is one of the oldest and most robust observations of open ocean oceanogra-
phy (Bainbridge, 1957). Structure is found in phytoplankton distributions
at scales ranging from meters to the scale of basins (Mann & Lazier, 1991).
Initially these non-random spatial distributions of plankton were viewed as
collections of isolated coherent patches whose distribution gave rise to the
heterogenous distributions observed by (Bainbridge, 1957). Early theories
about the origins of patchiness focused on understanding the dynamics of
isolated circular phytoplankton patches. One of the earliest models for phy-
toplankton patch formation was presented by (Kierstead & Slobodkin, 1953)
and (Skellam, 1951). It is known as the KiSS-model, and stipulates that the
dynamics and size of a circular plankton patch is controlled to two adverted
processes: biological growth that increases the population and dispersion by
currents that causes a loss of phytoplankton from every patch.

The filaments visible in Fig. 1.1 demonstrate that spatial heterogeneity in
phytoplankton populations is not in fact composed of simple circular struc-
tures. The filamental structures exist at a continuum of scales, continually
interacting and being modified by the flow. In the last years it was rec-
ognized that oceanic turbulence is in fact strongly anisotropic (McWilliams
et al., 1994). The surface of the oceans is populated with coherent structures
such as eddies and fronts that are capable of strong directional deformation
of phytoplankton patches. It is therefore natural to study the effects of these
hydrodynamic structures on the biological activity.

Spatial heterogeneity or patchiness in phytoplankton distributions is a
very common oceanographic observation. The strongly localized patches of
colored water associated with augmentend phytoplankton concentrations are
reported also in the area that is studied in this thesis, the Canary Islands
region. According to (Martin, 2003) there is generally still little consensus on
the causes and consequences of this ubiquitous phenomenon. Many theories
are present in the literature and specific cases have been investigated, but
there is still no general theory available for this complex phenomenon, the
patchiness of plankton. Previous studies confirm that spatial heterogeneity
can strongly influence ecosystem stability (Steele, 1974), diversity (Bracco
et al., 2000), dynamics (Brentnall et al., 2003) and regional productivity
(Martin et al., 2002). An understanding of patchiness is vital to understand-
ing of the marine ecosystem as a whole. Large scale fish population and
climate models are currently using different simplified techniques to resolve
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biological activity on subgrid scales. Patchiness is typically a subgrid phe-
nomenon and the high resolution of the models used in this thesis make it
possible to study it.

One can seek to learn more about the effects of the hydrodynamic motion
and the dynamics of plankton by directly studying the spatial distribution
of plankton in the ocean. Data about the distribution can be extracted from
aerial and satellite images of the chlorophyll concentration. Recently au-
tomated mobile laboratory stations in boxes mounted on the front of ships
are also used to collect information about the distribution of plankton. The
data analysis technique that has received the most interest is multifractal
analysis. This approach is increasingly used in geophysical applications in-
cluding the study of phytoplankton distributions. It allows the description
and extraction of information on the structure and spatial distribution. This
method for extracting information from plankton distributions provide evi-
dence that marine phytoplankton distribution exhibit multifractal structure
(Seuront et al., 1996, 1999; Hernédndez-Garcia et al., 2002).

In tracer release experiments it is possible to follow the trajectories of
pointlike tracers transported by the flow of over a certain time. Phytoplank-
ton can be considered to behave like a point-like tracer that is avected with
the same velocity as the flow. In time dependent flows the trajectories that
are initially adjacent separate at an exponential rate. This feature of the
horizontal motion in most time varying flows (Ottino, 1989; Waseda & Mit-
sudera, 2002). The multifractal distributions of tracers found can be linked
to the structures in the underlying flow (Toroczkai et al., 1998; Karolyi et al.,
1999; Neufeld et al., 2000). A classical example of a time variable flow is the
flow past an obstacle. At low Reynolds-numbers vortices detach periodically
behind the obstacle and travel with the flow for a distance until the energy
contained in them is dissipated. This general feature, the von Karman-
vortex-street has been observed in geophysical flows in the oceans and the
atmosphere. The biological activity in a flow past an island was studied
numerically with simple biological models in the works by (Toroczkai et al.,
1998; Karolyi et al., 1999; Neufeld et al., 2000).

The fractal distribution of active tracers in chaotic flows has been ad-
vanced as a solution to the paradox of plankton (Scheuring et al., 2000;
Kaérolyi et al., 2000; Bracco et al., 2000; Scheuring et al., 2003). Recent the-
oretical studies also showed that the underlying multifractal geometry of a
flow can induce multifractal distributions of both passive and active tracers
within it (Sommerer et al., 1996). These structures result in an increase of
the primary production of the system (Toroczkai et al., 1998; Kérolyi et al.,
1999; Neufeld et al., 2000, 2002), as nutrients and phytoplankton are effi-
ciently mixed by the flow. The results of these studies were a motivation
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to study these effects using more refined biological models for the biological
activity.

The time variability of the oceanic flows is a result of temporal variabil-
ity of the physical forcing that drives the currents. The time variability can
be observed in the structures present in the flow, such as jets and vortices.
Mesoscale structures have a size of about 1-300 km and are often observed
in the spatial distribution of phytoplankton. These structures are often as-
sociated with the aforementioned hydrodynamical structures such as fronts
and currents (Strass, 1992; Venrick, 1990; Falkowski et al., 1991). More re-
cently it has become apparent that fronts (Pollard & Regier, 1992) and eddies
(Martin & Richards, 2001) facilitate strong upwelling of nutrients in small
regions of 5-10 km diameter. Phytoplankton in the upper layers of the ocean
consumes nutrients leading to extremely low nutrient levels. Lower layers are
usually nutrient rich, as dead biological material sinks due to gravity. Strong
upwelling regions are therefore substantial sources of nutrients for the surface
waters. As a consequence phytoplankton production and biological activity
is strongly enhanced locally in the upwelling areas. At these mesoscales the
heterogenous physical forcing leads to patchiness of both the plankton and
primary production.

Global carbon cycle models, GCCM should be designed to take into ac-
count this local phenomenon. The poor resolution of these global models does
not always permit to resolve eddies and fronts. State of the art GCCM barely
'permit’ mesoscale eddies and fronts (Oschlies & Gargon, 1998; Mahadevan
& Archer, 2000). Due to low resolution, they are not able to reproduce ac-
curately the internal structure. There is evidence for an enhancement of the
biological activity at mesoscale and below, in form of the filamental struc-
tures observed on satelite images of the phytoplankton distribution. The
visible concentration gradients due to the filaments are reflected by the mul-
tifractal distribution of plankton, that is related to the structures in the flow.
It appears to be important to estimate the effect of this forcing on the pri-
mary production at scales that cannot be resolved by large scale models.
The aim is to find estimates for the errors occurring in GCCMs due to the
lack of resolution of these processes. Oceanographic models incorporated in
by GCCMs have a gridlength in the order of 5-10 km. For comparison, the
kinematic flow model used in this work resolves structures of 500 m, well
within the resolution required to observe mesoscale structures.

Several authors have studied primary production in attempts to quantify
the impact of mesoscale forcing of phytoplankton in specific cases. A large
number of studies were concerned with the effects of vertical transport in
unstable fronts. An increase in the primary production in a frontal region
due to a front becoming unstable was found by (Flierl & Davis, 1993; Spall
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& Richards, 2000; Martin et al., 2001a). These modeling studies showed
that primary production may increase locally by up to 100% by an unstable
front. (Oschlies & Gargon, 1998) studied the role of vertical transport in
many models of regions with strong mesoscale activity, such as meandering
jets. The biological model used is similar to the model used in this thesis. It
is coupled to a three dimensional hydrodynamic model in order to study the
primary productivity in a model of the North Atlantic Ocean. Other studies
of the effects of vertical transport on phytoplankton were performed with
more complex models. In (Martin et al., 2001a) a model with two classes for
phytoplankton is coupled to a three dimensional physical model. The two
classes of phytoplankton represented in this model are characteristic of large
and small species of both phytoplankton and zooplankton.

Sharp increase in phytoplankton concentrations observed in the cores
of the vortices were studied previously in models without seasonal forcing.
These localized blooms normally appear as the result of nutrient enrichment
with nutrients (Edwards & Brindley, 1996). A more specific mechanism
triggering plankton blooms appears in so called excitable systems. These
class of plankton models have a specific functional form. A certain triggering
perturbation in the plankton concentration can lead to a temporary bloom,
before the system returns to the normal state. The biological models used
in this thesis don’t exhibit excitable dynamics. The long-term behavior for
the parameterization used is a stationary point. The observed sharp increase
in concentration is therefore a transient phenomenon. Excitable dynamics
can lead to sustainable plankton blooms in open flows despite the transient
dynamics (Hernandez-Garcia & Lépez, 2004).

More recently the influence of horizontal forcing on primary production
was the subject of interest. Several studies have shown that ocean jets can
behave as barriers to transport across them, or can act as mixing enhances
depending on parameter regime (Bower et al., 1985). Eddies are often formed
in oceanic currents such as the Gulf Stream or the Canary Current. The wa-
ter body carried within the eddy may have biogeochemical properties that
are different from those of the surrounding waters, and it does not mix with
the outer water for long times. In this view, eddies are horizontal carriers, in-
dependent of their role in vertical nutrient transport. The horizontal velocity
field induced by the eddies has also been suggested to play an important role
in determining the spatial distribution of phyto- and zooplankton (Abraham,
1998; Mahadevan & Campbell, 2002).

Eddies have a dual nature when it comes to dispersion. In addition to
the strongly dispersive strain regions that form between eddies they have the
ability to shield the waters within their core from dispersion. As a result trac-
ers released in the core will be distributed homogeneously across the core but
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may take considerable time to be dispersed from the core itself (Martin et al.,
2001b) The presence of such oases free of strong mixing in an otherwise dis-
persive flow is one instance of heterogeneity or intermittent turbulence. In
the presence of eddies mixing can be imperfect, and strong concentration
gradients may appear. The horizontal transport and mixing contributes to
the formation of plankton patchiness and ultimately to the primary produc-
tion enhancement. The influence of horizontal transport, mixing and stirring
has been investigated in several numerical studies ((Abraham, 1998; Lépez
et al., 2001a; Herndndez-Garcia et al., 2002, 2003; Martin, 2003)). The study
of ocean jets and horizontal transport, is particularly relevant to ocean mod-
eling in general. (Bower, 1991; Samelson, 1992b; Meyers, 1994; Cencini et al.,
1999; Rogerson et al., 1999).

There is a strong mesoscale activity in the wake of the Canary Islands.
Winds parallel to the African coast drive the main current along the coast
and promote the upwelling of deep water close to the coast. This physical
forcing leads to current at the surface transversal to the main flow direction,
an Ekman flow. As a consequence nutrient rich waters are pumped to the
surface close to the coast. This upwelling zone close to the African coast is
one of the most active upwelling areas on the planet. There are strong up-
welling activities and mesoscale structures such as eddies and fronts present
throughout the year in this region (Aristegui et al., 1997; Barton et al., 1998,
2004; Pelegri et al., 2005). Wind stress in the lee of the islands plays also a
role in the generation of mesoscale eddies (Aristegui et al., 1997; Barton et al.,
1998). This strong mesoscale activity resulting from detaching vortices, the
vortex street in the wake of the islands seem to have significant importance
for the biological activity in the region. Significantly higher concentrations
of plankton are observed in the wake of the islands compared to other ar-
eas with the same latitude. Tropical oceans usually have considerably lower
primary production.

The intense mesoscale activity in the wake of the Canary Islands entrains
filaments of nutrient rich waters giving rise to filaments of great biological
production and complex dynamics. These filaments are clearly visible on
satellite images. In this thesis the mechanisms controlling the formation of
the filaments and the entrainment of nutrients from the upwelling zone are
investigated.

Both the hydrodynamic and the biological model used in this thesis are
simplified models. They seek to reproduce the main features of the system,
with the least possible degree of conceptional complexity. Although concepts
about the processes involved are kept as simple as possible they must give
a rather realistic representation of the processes one wishes to model. They
can therefore be complex from a mathematical point of view. Nevertheless
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the advantage of simple process models is that they allow direct investigation
of the role played by each generic processes. Such processes may be difficult
to diagnose in simulations for a specific area. This is a central guideline for
the work presented here. The advantage of taking a broader view is that it
may allow the recognition of features common to different specific systems.
Despite the apparent simplicity of the models used, they can provide a deeper
understanding of the most relevant processes.

A simplified two dimensional hydrodynamical model reproduces these
main characteristics of the flow in the Canary region is coupled to a three
component biological model for nutrients, phytoplankton and zooplankton.
The effects of mesoscale eddies on the horizontal transport of nutrients, the
primary production and the initiation of plankton blooms are investigated
in a time dependent two-dimensional flow around an island representing the
island of Gran Canaria. This generic ocean flow is time dependent and
opens the possibility for chaotic advection. The spatial resolution used for
the simulations is high in order to resolve filamental structures resulting from
the chaotic properties of the flow.

Primary production in the wake is enhanced due to the role of the vor-
ticity redistributing the upwelled nutrients and influencing phytoplankton
growth. Under certain conditions the interplay between wake structures and
the biological activity leads to plankton blooms inside the mesoscale vor-
tices. The timescales of these processes are important. The residence times
of the plankton species in different structures in the wake is determined by
the chaotic saddle and other nonlinear effects in the flow. The long resi-
dence times of nutrients and plankton in the vicinity of the island and the
confinement of plankton within vortices lead to localized plankton blooms.

This thesis is organized in two main parts: in the first part, chapter 2 basic
concepts in the theory of passive and active flows are presented. In section
2.1, the topological structures present in open chaotic flows, such as manifolds
and non-attracting saddles are reviewed. The interplay between these general
features of time dependent hydrodynamic flows and the biological species is
presented from a theoretical perspective. Some of the mechanisms presented
were found to be relevant also for the biological activity in our hydrodynamic
flow.

In section 2.2 some concepts of mathematical modeling of plankton dy-
namics are presented. Earlier plankton models that form the basis for the
particular model used in this thesis are presented. In this section we focus
on the history and development of the particular (N,P,Z) model used in this
thesis. The formation of the model equations and its dynamic behavior are
discussed.

In section 2.3 the numerical algorithm used to solve the advection-



20 Chapter 1. Introduction

reaction-diffusion equations that describe the time evolution of the coupled
model is discussed. The so called semi-lagrangian algorithm is a numerical
method to solve the equations on a Eulerian grid.

The following three chapters of the thesis contain the interpretation of
the results of the numerical simulations. Chapter 3 is derived from the first
published article, (Sandulescu et al., 2006). It is a numerical study of the
horizontal transport of nutrients across the wake of the Canary Islands. The
study was performed with passive tracers that are continuosly launched in
the vicinity of a von Karman vortex street. An analytically derived generic
flow model for the Canary island wake is introduced. This hydrodynamic
model described in section 3.3 is used with minor modifications in all the
studies in this thesis. The parameters of the model are derived from obser-
vational data, as described in section 3.4. The main mechanisms controlling
transport across the Canary Island wake are identified and transport is stud-
ied under different assumptions regarding the prevailing conditions in the
flow and the wake. The horizontal transport from the upwelling zone across
the wake is studied under different conditions, with a periodic, non-periodic
and turbulent flow model.

The studies presented in the following two chapters of this thesis, were
performeded on a coupled advection-reaction-diffusion system. The model
for flow in the Canary Island region is coupled to a model for biological ac-
tivity. That is a three component trophic-chain model consisting of nutrients,
phytoplankton and zooplankton.

Chapter 4 is derived from the article (Sandulescu et al., 2007a), that was
submitted to Journal of Theoretical Biology. We simulate the effects of the
afore mentioned horizontal transport mechanisms of fluid across the Canary
Island wake, on the spatial distribution of the nutrients and the primary
production of plankton on the in the wake of the Canary Islands. The sim-
ulations are performed under two sets of initial conditions for the biological
system, coresponding to nutrient-rich and nutrient-poor conditions in the
Canary current. The spatial and temporal evolution of the phytoplankton
distribution in the mesoscale structures is different under these initial con-
ditions. The localized increase of the primary production in the wake and
in the mesoscale structures is analyzed in subsection 4.4.1 and 4.4.2. A new
mechanism that promotes local plankton blooms in the wake is discussed
here.

Chapter 5 was derived from the article (Sandulescu et al., 2007b) submit-
ted to the journal Nonlinear processes in Geophysics. The numerical studies
were aimed to better understand the interplay between the timescales of the
biological system and the hydrodynamic system in the wake. The mecha-
nisms of the emergence of localized plankton blooms are studied in section
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5.4. In section 5.4.1 the timescales of the bloom is studied depending on the
initial conditions in the flow. The typical residence times in the mesoscale
structures and in the vicinity of the island are studied in subsection 5.4.2.
The existence of areas with relatively long residence time in the flow has
a positive effect on the primary production. The similar timescales of the
biological and hydrodynamic processes can promote local blooms as shown
in subsection 5.4.3. Transport and biological activity between the different
areas of the model are controlled by the underlying structures such as the
chaotic saddle and the vortices in the wake of the island. The emergence
of filamental structures in the wake and the contribution of the transport of
nutrients from the upwelling zone on the primary production in the area due
to these structure is discussed in subsections 5.4.4 and 5.4.5.
In chapter 6 the results of the thesis are reviewed in a summary.



Chapter 2

The models

2.1 Passive advection dynamics in open flows

Particles in seemingly simple flows may have chaotic advection dynamics,
characterized by an extreme sensitivity of the motion of these particles to
the initial conditions. This type of behavior, Lagrangian chaos is a very
general feature, found in most real flows (Aref, 1984; Crisanti et al., 1991,
1992; Jung et al., 1993; Ziemniak et al., 1994; Waseda & Mitsudera, 2002;
Rybka et al., 1992). Numerical experiments with reactive substances in open
chaotic flows are a relatively new but interesting subject of study due to the
large number of applications (Tél et al., 2005). But what exactly are open
chaotic flows?

Flows can be grouped into two main classes: closed and open ones. A
flow is said to be closed if its motion is confined to a bounded domain, that
does not allow any exchange of material with the exterior. The trajectories
of tracer particles in this flow remain inside the bounded domain forever. In
the asymptotic state reached as ¢ — oo, the distribution of the biological
active substances in this type of flow is homogeneous. When the substances
are distributed homogeneously in the flow, no enhancement of activity can
be observed, unless the system is disturbed out of this equilibrium.

Open flows are more common in nature, as large scale atmospheric ore
oceanic flows are not delimited. A flow is said to be open if it is not bounded
and there is a net current flowing through the region of observation. A typi-
cal example is the flow around an obstacle, if we consider only the region in
the vicinity of the obstacle. In Fig. 2.1 a flow around a circular obstacle is
sketched. The direction of the flow is from the left to the right in the obser-
vation region, the vicinity of the obstacles. This flow can be considered open
as it passes through the observation area. Most of the particles released in

22
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Figure 2.1: A time dependent flow around a cylindrical obstacle. Two vor-
tices travel with the open flow from the left to the right in the mixing region.

open flows will therefore leave the observation area after a finite time, as their
trajectories are unbounded, but some particles can stay in the observation
area for longer times. Even flows that are actually closed can in many cases
be considered as open, if the time it takes for the single tracer to leave the
observation area is much longer than the relevant time scale for observation.
For example the ocean is of course a closed fluid system, but if we are looking
at a relatively small region surrounding an island, the average return time
might be of the order of thousands of years. The flow of a current around
and in the vicinity of the island, as the one we study in this thesis, can be
considered open.

The question of the interplay between chaotic advection of particles in
a flow and activity was first addressed by (Metcalfe & Ottino, 1994) in the
context of closed flows. This paper was the first in a series. Studies in
open flows followed, eg the studies of (Toroczkai et al., 1998; Karolyi et al.,
1999; Tél et al., 2000). These studies were performed with active or passive
tracers launched in open flows. This approach based upon chaotic advection
of tracers has the advantage that it facilitates the study of the hydrodynamic
structures in the flow. The trajectories of the tracers can be tracked for a
long time and different methods from dynamics theory can be applied to
study the properties of the advection. If tracers interact with each other,
the effects of the advection upon the interaction between the tracers can be
studied. In this thesis we study the biological activity of plankton species
represented by concentration fields in open chaotic flows. The dynamical
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properties of the advection in chaotic flows are important in this context,
and we start by considering the advection of passive tracers. Simulating the
advection of concentration fields adds complexity to this study as mixing and
diffusion effects have to be considered too.

In the simplest approximation, the particles released in the flow are as-
sumed to be non-inertial and pointlike tracers. Inertial effects of the tracers
can be neglected and it can be assumed that at each timestep the velocity
of the advected particle is the same as that of the fluid at the same posi-
tion. This forcing by the flow is referred to as passive advection. A pointlike
particle moving in the flow with the velocity of the flowfield is referred to as
passive tracer. The equation of motion of a tracer is then

7(t) :% = u(r(t),t), (2.1)

where 7(t) is the position vector of the advected particle and w is the

velocity of the flow, that can be dependent on time. u may be the solution

of the Navier-Stokes equation with appropriate boundary conditions. Here

we are primarily interested in the dynamics of advected particles for a given
flowfield, and therefore simply assume that u(r,t) is known.

Oceans water masses are incompressible and stratified, since temperature
and salinity are normally homogeneous in the depth layers. The horizon-
tal motions that can be induced by temperature and salinity gradients are
normally much slower than horizontal motions that are induced by horizon-
tal forcing, such as winds. Ocean flows can therefore in many situations
be considered to be two-dimensional systems, if one chooses describe the
motion in one single depth layer. In the present thesis the hydrodynamic
model describes the motion of a current at the surface of the ocean. A two
dimensional incompressible flow is free of sources, eg divergence free: div
U= %L; + %—QZ’ = 0. In this case a specific analytical function, a stream func-
tion VU(z,y,t) can be defined that describes the velocity field. The derivatives
in x and y direction describe the velocity components:

oV(z,y,t) _ OV(z,y,t)
HELD ey = HELD oy

One observes that the equations above have the same structure as the Hamil-
tonian equations. The variable x then plays the role of the position, y plays
the role of the conjugate momentum, and the stream function W(zx,y,t) is the
Hamiltonian. Then the dynamics of a particle can be described as its position
in configuration space at a time that is a multiple of an interval 6t. In this
description the dynamics of a passively advected particle in a planar incom-
pressible flow is analogous with a one-degree-of-freedom Hamiltonian system.

uz(x,y,t) = —
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The phase space of this Hamiltonian system coincides with the physical plane
of which the flow occurs. The chaotic trajectories in the phase-space of this
dynamical system are directly visible, since the phase-space variables of the
associated Hamiltonian system correspond to the coordinates of the advected
particle in configuration space.

If the flow is stationary, the streamfunction (or Hamiltonian) ¥ does not
depend on time and the particle trajectories correspond to the level curves of
the stream-function W. These lines are called streamlines in fluid mechanics.
From a dynamical point of view it is the equivalent of a one-degree-of-freedom
time-independent Hamiltonian system, which is always integrable. In most
realistic situations, however, the flow is non-stationary, and depends on time
explicitly. In this case, one has a one-degree-of-freedom Hamiltonian system
with a time-dependent Hamiltonian. It is well-known that such driven sys-
tems typically exhibit non-integrable dynamics, or chaos. This means that
an advected particle moves unpredictably, and displays a great sensitivity to
initial conditions. A consequence of these features is that two tracer released
in the flow with an infinitesimal separation in space, may evolove alog very
different trajectories. Their trajectories are then chaotic and will separate at
an exponential rate. Lagrangian chaos in the advection dynamics was first
studied by (Aref, 1984). It is also sometimes referred to as Lagrangian tur-
bulence. This definition of turbulence is distinct from what is usually called
turbulence in fluid dynamics (Eulerian turbulence), which implies a very com-
plicated time and space dependence for W. Lagrangian turbulence may be
different from turbulence in the Eulerian sense and even though flows are
laminar in space, chaotic advection in these simple time-periodic flows is an
instance of Lagrangian turbulence, (Aref, 1984; Ottino, 1989; Crisanti et al.,
1991; Wiggins, 1992; Rothstein et al., 1999). Flows generating Lagrangian
chaos or turbulence will simply be referred to as chaotic flows in this thesis.

In this thesis the biologcal activity in time dependent open flows very
similar to the flow illustrated in Fig. 2.1 is studied. Such flows are charac-
terized by the existence of a net current. In other words, the fluid is moving
from an wupstream region towards a downstream region. In this flow as in
most other flows of interest in geophysics, the time-dependent part of the
dynamics is restricted to a finite region of space, called the mizing region.
Let us take the example presented here, the flow with an obstacle placed in
the middle in Fig. 2.1. In both the upstream and the downstream region,
the flow is asymptotically stationary. The time dependence, and hence the
chaotic part of the dynamics, is restricted to the mixing region in the wake
of the obstacle.

From the point of view of the theory of dynamical systems, advection
in open flows is a scattering process: there is an asymptotic region where
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the dynamics is simple, and a bounded region where the dynamics is non-
trivial. This latter is called the interaction region, which corresponds to
the mixing region for fluids. The advected particles typically come from
the asymptotically simple region, stay in the interaction region for a while,
and then escape again to the asymptotic region. In scattering systems, the
accessible phase-space is unbounded, whereas for a confined system (such
as a flow within a container) the accessible phase-space has finite volume.
When a scattering system displays chaos, chaotic scattering is said to occur
(Tél, 1990, 1996). Chaotic open flows are instances of chaotic scattering.

We assume that the two-dimensional flow is time-periodic, with some
period T: V(z,y,t +T) = V(x,y,t). The advection dynamics can then be
described by a stroboscopic map M, which connects the position (z,y) of the
advected particle at time nT" + t, to that at time (n + 1)T" + to:

(xn+17 yn+1) = Mto (xnv yn) (2'3>

The map M,, is area-preserving, since the flow is incompressible.

Chaotic scattering systems are characterized by the existence of a compli-
cated set of non-escaping orbits in the interaction region (that is, the mixing
region in case of open flows). These are orbits that never escape to the
asymptotic regions, either in the past (¢ — —oo) or in the future (¢ — o00).
The simplest of these orbits are the periodic ones with periods that are in-
tegers of the flows period, T. All the nonescaping orbits are highly unstable
and possess a strictly positive local Lyapunov exponent. These orbits make
up a set which has a fractal structure in phase-space, and appear as a fractal
cloud of points sprinkled on the 2D space of the fluid in a stroboscopic map.
This invariant set of non-escaping orbits is called the chaotic saddle, and it is
responsible for all the main features of chaotic scattering (Tél, 1990, 1996).

Typical tracer trajectories that lay close to the nonescaping orbits are
influenced by them. They follow some of the periodic orbits for a while
and later can turn to follow an other one. This wandering among periodic
or nonescaping orbits results in the chaotic motion of the passive tracers.
The union of all nonescaping orbits, the chaotic saddle has a unique fractal
dimension that is independent of the instant of time at which the snapshot
of the stroboscopic map was taken (Tél et al., 2000).

An important invariant set associated to the chaotic saddle is its stable
manifold. 1t is defined as the set of initial conditions (points) in phase space
such that their corresponding orbits approach the chaotic saddle asymp-
totically, as the discrete time n — +o0o. Particles moving along the stable
manifold enter the mixing region and never leave it: they are trapped’ there.
However, the stable manifold has in general zero area (more precisely, zero
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Lesbegue measure), which means that the probability that a randomly cho-
sen point in phase space belongs to the stable manifold is zero. Thus, almost
all orbits will leave the interaction region some finite time after entering it,
and only a set of measure zero corresponds to orbits which do not leave. In
spite of this, the stable manifold has a great influence on the global dynamics
of the system. Particles starting from points close to it will spend a long time
in the interaction region before escaping, and these long-lived trajectories are
responsible for the sensitivity of the dynamics to initial conditions.

Another invariant set related to the chaotic saddle is the unstable mani-
fold. This is the set of phase-space points whose orbits approach the chaotic
saddle asymptotically as n — —oo. The unstable manifold is the set of points
along which points lying infinitesimally close to the chaotic saddle will even-
tually escape in the course of time. It has a fractal dimension, and due to
the invariance under time-reversal of the Hamiltonian system 2.2, its fractal
dimension D, is the same as that of the stable manifold.

The unstable manifold can be directly observed in open flows (Sommerer
et al., 1996). By releasing a droplet of particles, corresponding to a set of
initial conditions which overlap the stable manifold, as time goes on, the
particles get advected to the mixing region. Those particles which last a
long time there without escaping fall very close to the chaotic saddle, and
when they finally leave, they trace out the unstable manifold. In short,
once the bulk of the particles has escaped, the remaining ones, with longer
lifetimes in the mixing region, are concentrated around a fractal set, namely
the unstable manifold. This fact is of fundamental importance for all the
results to be described in this work. Omne particular consequence of this
is that classical flow visualization techniques based on dye evaporation or
streaklines trace out curves which are different from streamlines or any other
Eulerian characteristic of the velocity field. They are in fact the unstable
manifolds of chaotic saddles.

The stroboscopic map defined in Eq. [2.3] depends on the parameter
tg, which is proportional to the phase of the oscillation at the instant the
map is taken. For each choice of tjy, the chaotic saddle, as well as its stable
and unstable manifolds, has a different shape. However, all the dynamical
invariants, such as the fractal dimension, Lyapunov coefficients, etc., are all
independent of ty. In the original time-continuous system 2.2, these manifolds
are fractal filaments with shapes changing in time, but recurring with a period
T.

Residence times of tracers in a flow around an obstacle were studied pre-
viously by (Jung et al., 1993). The complicated form of the trajectories
implies a long time spent in the mixing region. In other words tracers can
be temporarily trapped in the mixing region. Scattering systems are either
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hyperbolic or non-hyperbolic, depending to the stability of the orbits in their
chaotic saddles. In hyperbolic systems, all orbits in the chaotic saddle are
strictly unstable. One of the consequences of hyperbolicity is that the chaotic
saddle has zero measure: almost all initial conditions lead to orbits that even-
tually escape the interaction region. Another feature of hyperbolic systems is
that, if we initially have a large number of particles uniformly distributed on
an observation region intersecting the interaction region, the number N (¢) of
particles that have not escaped the region up to time ¢ decays exponentially,
N(t) = e "*. The coefficient x is the escape rate of the process. It satisfies
k < A, where X is the chaotic saddles Lyapunov exponent, calculated as an
average of the largest eigenvalues of all orbits in the saddle, weighted by
the natural measure of the saddle. Physically, the Lyapunov exponent gives
the exponential rate of separation of nearby advected particles in the mixing
region.

Another possibility is that the scattering dynamics is non-hyperbolic. In
this case, there are marginally stable orbits in the chaotic saddle. These
orbits are surrounded by stable regions, from which fluid does not escape. A
source for non-hyperbolic decay is the surface of the cylinder or obstacle in
the flow. It acts as a union of parabolic orbits, and hence as a smooth torus,
which is sticky. Close to the surface, in the boundary layer, this stickiness
leads to an immediate power law decay (Jung et al., 1993; Tél et al., 2000).
In this case the number N(t) of particles that have not escaped up to time
t follow a power law N(t) ~ ¢t~ 0 > 0, as opposed to the exponential law
satisfied by hyperbolic systems.

2.2 The three component phytoplankton
model

The mathematical formulation of the temporal evolution of the biological,
chemical and physical structures is a challenging task. Modeling the life
cycle of phytoplankton is perhaps the most complex part of it, because of
the multitude of processes that take place in living organisms. Detailed
knowledge of the biological processes or the metabolism is necessary in order
to extract the most relevant features that need to be represented in the
mathematical formulation. Knowledge about these processes is difficult to
extract under laboratory conditions or during in-situ experiments.

Some of these mathematical descriptions or models for plankton evolution
are based upon coupled nonlinear differential equations. Depending on the
number of differential equations, these models can be divided roughly into
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two classes. The first class of models consists of a relatively large number of
coupled differential equations. One of the purposes of designing such a model,
is that each differential equation models one component that corresponds to
a measurable quantity. Models in this class were created to reproduce the
results from measurement campaigns. The authors of these models call them
simple, which they probably are if one takes into account the multitude of
factors in an ecosystem. But even if from a biological point of view these
models might be simple, their mathematical properties are difficult to study
due to the large number of parameters. The degree of complexity of such
models renders them too complex from a dynamical systems point of view.
Generally they cannot be studied with analytical non-numerical methods.

The other class of models consists of systems of two or three ordinary
differential equations. Examples for this class are the models by (Steele &
Henderson, 1981; Truscott & Brindley, 1994; Edwards & Brindley, 1996).
They can more likely be solved with analytical methods. These authors
were more interested to capture the qualitative behavior of the species in the
model, rather than trying to fit model output to specific data. The results
from simple models can be used by modelers dealing with large models as an
indication about which aspects of the model formulation are the most crucial
in determining the output. Important contributions in this sense were the
works of (Steele & Henderson, 1992), (Evans & Parslow, 1985) and (Edwards
& Brindley, 1996), that are often considered when formulating larger models.

The model used in this theses is based on the nutrient-phytoplankton-
zooplankton (N, P, Z) model of (Steele & Henderson, 1981) and (Fasham,
1993). This model was further developed in the works by (Edwards & Brind-
ley, 1996) and (Oschlies & Gargon, 1999; Martin et al., 2002). In this work we
adopted the mathematical formulation of the equations given by (Pasquero
et al., 2005). The model consists of three differential equations, describing
the time evolution of the average concentration of nutrients N, phytoplank-
ton P and zooplankton Z. The specific terms of the equations valid in the
surface mixed layer are:
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The terms of the coupled differential equations are paraphrasing the following
processes in the phytoplankton population:

Cii—];f = nutrient upwelling - nutrient consumption +
+ recycling of biological material
C;—]; = nutrient uptake - predation by zooplankton -
- phytoplankton mortality
Ccli_f = uptake of phytoplankton - zooplankton mortality.

(2.7)

The terms on the right hand side of the nutrient equation represent the
vertical nutrient supply due to upwelling of nutrients from the deep of the
ocean, the conversion of nutrient into organic matter through the activity
of phytoplankton and the recycling of organic matter present in the mixed
layer respectively. The only significant reduction of nutrient in the system is
due to the consumption by phytoplankton. The effect of nutrient sinking is
not as significant as it typically occurs in nutrient depleted regions, and the
associated removal effect is relatively small.

The phytoplankton dynamics is primarily regulated by primary produc-
tion. Plankton is a grazer, it feed on organic macronutrients like nitrate,
phosphate and silicic acid and on micronutrients like iron. Its growth is lim-
ited by the availability of nutrients. In the model this process is described
by a Holling type II functional response. This type of functional response
describes the food consumption rate of a randomly searching organism seek-
ing nutrient. The Holling type II functional form implies that there exists
a maximum uptake rate of nutrients that is determined by the time the or-
ganism needs to ingest the consumed nutrients. The length of time required
to process each item sets an upper limit to the rate at which food can be
consumed.

The maximum uptake rate is independent of the abundance of the graz-
ers. This is a plausible assumption in the case of phytoplankton grazing on
nutrients. There is no competition for nutrients in the sense that the phy-
toplankton does not actively search for nutrients but incorporates befalling
nutrients. The grazers do not interfere with each other, so the primary pro-
duction is only limited by the depletion of nutrients. The first term on the
right hand side of Eq. [2.5],

N

PP =(3——
ﬁkN-i-N

P (2.8)
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is defined as the primary production PP. The parameter [ represents the
mazximum uptake rate of nutrient by phytoplankton and ky is the half satu-
ration concentration.

Phytoplankton dynamics is further regulated by grazing through zoo-
plankton through a Holling type III response. It describes the phytoplankton
mortality as a function a function of the so-called volume search rate of zoo-
plankton. Zooplankton feeds on phytoplankton and other bacteria and has a
wide range of feeding behavior that includes passive filter feeding and active
predation. An active search for prey requires energy. It is plausible that in
a period of food shortages a forager must change its search strategy in order
not to spend more energy than can replenished by food. One method of do-
ing this is either to move to a more favorable location or reduce the volume
search rate. A simple way to model this active feeding behavior is to assume
that the volume search rate is a function of the current food abundance. For
example by assuming that the grazing rate of zooplankton is proportional to
a power of the density of its prey. This functional response of the grazing
rate is referred to as a Holling type III functional response. The first term in
Eq. [2.6] is a Holling type III functional response that describes the growth
rate of the zooplankton concentration Z in the presence of a phytoplankton
concentration P. In this model it is proportional to the square of the phyto-
plankton concentration. For a detailed discussion of the Holling type II and
IIT functional forms see (Gurney & Nisbet, 1998).

In this model zooplankton has an assimilation efficiency v, a factor that
describes which fraction of the total grazed biomass that is converted to
zooplankton biomass. The remaining part of biomass is excreted and recycled
together with the biomass of dead phytoplankton and zooplankton. The
mortality term of phytoplankton, the last term in Eq. [2.5] is linear with
a mortality rate up. The mortality term of zooplankton, the last term in
Eq. [2.6] is quadratical in Z. A quadratic mortality term parameterizes the
effects of higher trophic levels. These are predators such as fish and krill. A
nonlinear zooplankton mortality term has the effect of reducing oscillations
introduced by the nonlinear grazing (Steele & Henderson, 1992; Edwards &
Brindley, 1996; Edwards & Yool, 2000)

The regeneration efficiency py is smaller than 1. A fraction of it is lost
due to detritus sinking to deeper water, described by the factor 1 — uy, as
not all biological substance is immediately available as nutrient. The nutri-
ent source in the model, @y, represents a vertical nutrient supply due to to
upwelling. In this simple model the nutrient N represents a general nutri-
ent concentration (as nitrate, phosphate or silicate) or micronutrient (e.g.,
iron) limiting phytoplankton growth. As no vertical structure is rendered,
this nutrient input into the mixed layer is parameterized. This is usually
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represented by a restoring flur (RF) term, that controls the relaxation of the
concentration of nutrients at the surface towards a value. The restoring flux
(RF) term depends on the constant and large nutrient content in the deep
reservoir, Ny:

Oy = S(7,t)(Ny — N) (2.9)

The relaxation time 1/S is a function of space and time in our model. The
parameter S measures the rate at which nutrient relaxes to the value N,. We
imagine a restoring nutrient flux from the eutrophic layer with the concen-
tration Ny to the surface layer, where phytoplankton consumes and reduces
nutrient concentrations N. This form of the nutrient flux can also be inter-
preted as the final difference approximation to a term that acts between two
layers with vertical advective term that acts between the mixed layer and the
deeper layers. This is the standard formulation used for chemostat models
when the reservoir of nutrients has infinite capacity (Kot, 2001).

Other types of nutrient input processes, such as wind-driven dust depo-
sition, are better represented by a nutrient flux that does not depend on the
nutrient content in the mixed layer,

Dy = By(7,1) (2.10)

This type of nutrient flux can also exhibit spatiotemporal variability. In
the model used for the area studied in this thesis, a region with a higher
value of the nutrient relaxation rate S is situated above the island. This
region represents an upwelling region, where water from the euphotic layer
is transported to the mixed layer through vertical currents. Therefore the
nutrient relaxation rate S is generally larger for an upwelling zone than for a
region with only horizontal transport, where vertical transport of nutrients
is mainly due to diffusion.

The values of the parameters of the biological model are shown in Table
2.1. Initially the ecosystem parameters were taken where possible from liter-
ature, mainly from (Fasham, 1995). According to (Oschlies & Gargon, 1999)
the values chosen were determined by an optimization performed by the au-
thors in a simulation for the North Atlantic. In the optimization loop, the
biological model was coupled to advection model of the North Atlantic which
resulted in too high values of chlorophyll during the spring bloom. Further
tuning of the biological parameters was done by running one dimensional bi-
ological model and comparing the results with time series from the stations
BATS and OW, and the station NABE close to the French Joint Global
Ocean Flux Study (JGOFS). The obtained values are typical of midlatitude
subeuphotic concentrations (Fasham, 1993; Oschlies & Gargon, 1999).
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Figure 2.2: The temporal evolution of the three components system for the
parameters in Table 2.1. N is the nutrient concentration, P is the phy-
toplankton concentration, Z is the zooplankton concentration and PP the
primary production

With the choice of parameter values in Table 2.1 in spatially homoge-
neous conditions and for a constant nutrient input, the N PZ model has only
one nontrivial stable fixed point Oschlies & Garcon (1999). In this thesis the
biological model was coupled to a flowfield that has the main temporal and
spatial scales adapted to the Canary Islands area. This velocity field is de-
fined using units of time 7T, = 30 days and length » = 25 km. The parameters
of the biological system that are not non-dimensional must be transformed
to these units of the flow field. The old and the new transformed parameter
values used in the simulations of the coupled system are given in Table 5.2
in chapter 5. The time evolution of the biological system in units of time 7.
and length r is plotted in Fig. 2.2. The values of the fix point solution are
N* = 0.185, P* = 0.355 and Z* = 0.444 mumol N m~3. There are no time
dependent asymptotic solutions, regardless of the specific functional form
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parameter symbol value
maximum uptake rate 3 0.66 day !

prey capture rate n 1.0 (mmol N m™3)~2 day~!
assimilation efficiency vy 0.75
a
S

maximum grazing rate 2.0 day~!

nutrient relaxation time 0.00648 day !
half-saturation food density ky 0.5 mmol N m~3
regeneration efficiency N 0.2

phytoplankton mortality p 0.03 day 1

zooplankton mortality fz 0.2 (mmol N m~3)~! day~!
nutrient concentration btml N 8.0 (mmol N m~3)~!

Table 2.1: List of parameters used in the biological model

chosen for the nutrient supply, i.e. Eq. [2.9] or [2.10]. However, different
choices of parameter values lead to different homogeneous solutions, and, in
some cases, to the appearance of limit cycles (Edwards & Brindley, 1996).

2.3 The numerical algorithm

Advection-reaction-diffusion equations for active tracers are rather difficult to
solve, numerically and analytically. The difficulties lie in the complex struc-
ture of the equations that describe the coupling between the hydrodynamic
and the biological system. An analytical solution of this class of system of
differential equations can only be derived for some specific one dimensional
systems.

The set of three coupled differential equations describes the time evolu-
tion of the three components of the biological model, the concentrations of
nutrients (), phytoplankton (P) and zooplankton (Z). The model equa-
tions contain the advection and reaction terms for each component of the
biological model. A diffusion process with a diffusion coefficient D acting
on the concentrations of the fields is also included in the equation. The
computations in this thesis were performed on an Eulerian grid whith the
velocity-field v(x,y,t) derived from an analytical function. The equations
of our model are min the Lagrangian form:

N
%—t+v-vzv = Fy+ DV?N,

aa—];+v-VP = Fp+ DV*P,
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aa—erv-VZ = F;+ DV°Z. (2.11)

Here Fy, Fp, and F represent the biological interactions in Eqgs. [2.4], [2.5]
and [2.6] discussed in section 2.2. The terms on the left hand side of the Egs.
[2.11] are the total derivatives of the three concentration fields advected by
the flow on the Eulerian grid. These are the advection terms that account
for the physical forcing. They consist of the sum of the partial derivatives
of each concentration field over time and the dot product of the velocity
vector v and the gradient vector of the concentration fields symbolized by
V. The right side hand of the equations contains the reaction and diffusion
terms. The first terms on the right hand side of the Eqs. [2.11] are the
source terms Fy, Fp, and F;. They describe the effect of the biological
activity in each gridpoint. Their specific form was discussed in section 2.2.
The second term on the right side of the equation describes the effect of
diffusion and diffusivity on the concentration fields. Diffusion is a physical
phenomenon that has to be included in a realistic model. In the ocean, small
scale turbulence induced by extrenal forcing mixes the water body enhancing
the diffusion due to concentration gradients. The combined effect of diffusion
and small scale turbulence on the concentration of a scalar field is referred
to as diffusivity. Dispersion is also a term used to describe these effects.
The diffusivity D describes how strong the concentrations of each species in
neighbouring parcels interact with each other. For several reasons this term
requires special attention. Determining the value for the effective diffusivity
D is a delicate task.

As no model is capable of representing the currents at all scales in the
ocean, a modeler has to find a way to parameterize the effects of small scale
turbulence that cannot be explicitly resolved by the model. Simulating hy-
drodynamic flows coupled to biological systems requiring vast computational
resources. Therefore many authors opt for a rather simple representation of
dispersion in their models. The simplest and crudest means to represent net
diffusive effects of turbulence is to use an effective diffusivity. In contrast
to molecular diffusion, in oceanographic models effective diffusivity is the
representation of the cumulative effect of dispersion by all the currents of a
flow as a Brownian motion. The scale of the forcing leading to the currents is
neglected, the quantity describes an average effect over all scales that are not
resolved by the model. As the total number of flow structures that produce
dispersion increases with the scale, the estimates of the effective diffusiv-
ity also increases with scale (Okubo, 1971). The values are estimated from
data obtained in a wide range of tracer release experiments at different sites.
When the effective diffusivity is plotted against the size of the tracer patch,
one finds a linear dependence. This empirical relationship allows modelers to
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calculate an effective diffusivity for scales that they do not want to simulate
explicitly by extrapolation. In this way effects in the change of turbulence
behavior at certain scales may be taken into account by choosing a specific
turbulence closure scheme, or the effect of turbulence can be treated as ef-
fective diffusivity at all scales. When coupled to a reactive tracer, such as
phytoplankton, effective diffusion can strongly influence spatial structures
(Martin, 2003). as the minimum resolution scale of our computation is 500
m, the value for the effective diffusivity D is taken to be D ~ 10 m?/s
following (Okubo, 1971) in the model used in this thesis.

A stringent requirement for the concentration fields described by Eq.
[2.11] is that they shall be and must stay positive definite. Also sharp con-
centration gradients have to be preserved by numerical integration. To fullfill
these requirements the temporal and spatial scales of the numerical integra-
tion algorithms must be adapted to each other. We shall return to this
subject later in this section.

In the past, comparisons between different numerical advection schemes
have shown that the nutrient supply in the euphotic layer is significantly
affected by the numerics used (Oschlies & Gargon, 1999; Lévy et al., 2001).
Primary production sensitivity to the advection schemes is comparable to
uncertainties in the estimation of biological parameters (Lévy et al., 2001),
and thus a major contributor to the errors in the results of biogeochem-
ical models. Numerical errors often appear as non-physical diffusion and
nonmonotonicity related to the appearance of under- and over-shoots in the
presence of sharp gradients.

One can think of several methods to solve the coupled differential equa-
tions in Eq. [2.11]. The Eulerian integration of the equations is problematic
due to the difficulty of finding correct spatial gradients in the concentration
fields. We adopted a semi-Lagrangian approach to solve the coupled differ-
ential equations in Eq. [2.11] by numerical integration. This method is an
extension of that introduced by (Abraham, 1998). Instead of trying to solve
the advection-reaction-diffusion in Eq. [2.11] on an Eulerian grid, one rather
computes the reactions in a large number of independent fluid parcels. The
parcels motion is described by Eq. 2.2 whose explicit form is given in sec-
tions 3.3 and 4.3.1. Each fluid parcel represents a water volume, usually of
the size of the grid spacing of the Eulerian grid on which the equations are
solved. The structures in the velocity field on sub-grid scale are assumed to
be correctly described by the diffusivity term. This assumption is of course
a crude approximation and constitutes a limitation of the method. To de-
scribe the effects of inhomogeneities at small scales, it is necessary to include
a sub-grid scale parameterization such as a turbulence closure scheme for the
turbulence and a specific representation of the reactive components of the
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system. The diffusion term on the right hand side of the equations Eq. [2.11]
serves this purpose.

It is mentioned above that the reactions or biological activity are consid-
ered to take place in each fluid parcel separately. Each point on the grid is
such a moving parcel that travels on a trajectory during each timestep of the
integration. We chose to calculate the concentration fields in each gridpoint
after each timestep. To obtain the starting concentration for the biological
system in each parcel before each timestep of advection, we first integrate
the trajectory of each water volume backward in time for a timestep. The
concentration at this starting point of each trajectory is obtained by a suit-
able interpolation algorithm. This can be bilinear interpolation as used in
this thesis, or for example bispline. The concentrations are interpolated from
the concentrations on the grid computed in the previous timestep. The bi-
ological system is integrated forward in time using this starting value. The
timestep of the integration of the advection and the biology are identical.
There is no exchange between neighboring parcels during integration except
for the effective diffusivity that is applied in a subsequent step. This allows
sharp gradients in the concentration field to appear in case the biological
system gives rise to such gradients. Alternately one can simply integrate the
trajectories of the water parcels starting from a grid forward for a timestep.
If the concentration of the species is required on a Eulerian grid, it can be
interpolated on a regular field. Diffusion can then be implemented after each
interpolation. To obtain good estimates, generally a large number of fluid
parcels is integrated forward in time.

As the the flow-field is derived from a streamfunction, the velocity field
used in this thesis is non-divergent. The flow-field is therefore area preserv-
ing, meaning that only the shape of the parcels with a concentration can
change during the advection. Stretching and folding of the parcels should
not have a significant effect, as the timesteps of advection are small and
should remain a sub-gridscale processes. Furthermore it is implied that the
biological components do not swim freely but are advected by the flow within
a parcel. This assumption is appropriate for plankton at mesoscale, since the
size of the advected parcels is of the size of a couple of hundred meters. On
these scales both phytoplankton and zooplankton are passively advected.

This numerical method can be implemented without diffusion in prin-
ciple. The interpolation step induces a numerical diffusion of the order
D,, oc dz?/dt. An explicit diffusion is implemented to allow mixing between
neighboring parcels in certain time intervals. As mentioned previously it is
important to make sure that the implemented diffusion, the effective diffusion
D, has a realistic value. An important aspect of the numerical implementa-
tion is that the numerical errors induced by the interpolation between the
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points on the Eulerian grid must be of a smaller magnitude than the effective
diffusion D. The numerical errors appear in form of a numerical diffusion
D,, also referred to as numerical viscosity. If not taken care of, the numerical
diffusion causes inaccuracy and propagates. In the worst case it eventually
leads to numerical instability. The stability condition for the Eulerian dif-
fusion step can be derived by the von Neuman stability analysis. When dt,
denotes the time step for the diffusion part, it reads D% <1

The physical interpretation of the stability condition is that the maximum
allowed time step of the integration is, up to a numerical factor D, the
diffusion time across the grid-width. D is the estimated diffusion coefficient
according to (Okubo, 1971). To satisfy the conditions D > D,, and Dé‘% <1,
the diffusion timestep dt; in our algorithm was set to be ten smaller than
the advection time dt. Using the time units of T = 30 days and L = 25
km for space, the dimensionless numerical values of the parameters used are
D =0.041472, dz = 0.01, dt = 0.01 and dt; = 0.001.

A detailed discussion of the semi-Lagrangian methods can be found in
(Strain, 1999, 2000). A comparison between the semi-Lagrangian method
and a purely Eulerian method for solving an advection-reaction-diffusion
equation is presented in (Pasquero et al., 2004). The authors conclude that
when solving the system by integration of the equations on an Eulerian grid,
diffusion cannot be set to zero, as the Eq. [2.11] contains the gradient of the
velocity. The numerical error induced by this method leads to a smoothing of
the concentration gradients that is more pronounced than in the case when
the semi-Lagrangian method is used. Comparing the power spectra of the
distribution of an advected field with the two methods reveals that the distri-
butions are similar at large scales, but that the spectrum in the Eulerian case
decays more rapidly at small scales. If one considers the higher efficiency of
the numerics, the semi-Lagrangian method is superior to the Eulerian inte-
gration. In the standard implementation of an Eulerian method, according to
(Oschlies & Gargon, 1999) most of the integration time is spent integrating
advected and diffusive fluxes. In the semi-Lagrangian scheme the heaviest
load is the interpolation step (Pasquero et al., 2004). The calculations pre-
sented here were performed using a bilinear interpolation scheme. Other
authors choose more advanced but also time-consuming schemes such as the
bispline. An analysis of the effects of the choice of a specific interpolation
scheme was beyond the scope of this work.



Chapter 3

Studies of transport across an
island wake

3.1 Abstract

Transport from nutrient-rich coastal upwellings is a key factor influencing bi-
ological activity in surrounding waters and even in the open ocean. The rich
upwelling in the North-Western African coast is known to interact strongly
with the wake of the Canary islands, giving rise to filaments and other
mesoscale structures of increased productivity. Motivated by this scenario,
we introduce a simplified two-dimensional kinematic flow describing the wake
of an island in a stream, and study the conditions under which there is a net
transport of substances across the wake. For small vorticity values in the
wake, it acts as a barrier, but there is a transition when increasing vortic-
ity so that for values appropriate to the Canary area, it entrains fluid and
enhances cross-wake transport.

!Chapter 3 has been published with modifications in (Sandulescu et al., 2006). The
main differences compared with the published version are: the data in Figs. 3.2, 3.3, 3.5,
3.9, 3.11, 3.12, 3.13 was replotted, two additional subplots were added in Fig. 3.13 and
the caption of this figure was modified accordingly. The text was not modified except for
the exchange of the symbol N¢ in the original text by the symbol R for the ratio of the
particles transported across the wake.

39
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3.2 Introduction

Chaotic transport in hydrodynamic flows (Aref, 2003; Ottino, 1989; Wig-
gins, 1992) is a subject generating a great amount of interest both in its
fundamental aspects and in its applications to industrial, laboratory, and en-
vironmental flows. A class of problems of particular relevance in the context
of ocean modeling is the one of transport across jets (Bower, 1991; Samelson,
1992a; Meyers, 1994; Rogerson et al., 1999; Cencini et al., 1999). One of
the outcomes of these studies is that ocean jets can behave, depending on
parameter regimes, both as barriers to the transport of the particles and as
mixing enhancers, increasing the interchange of water masses across them
(Bower et al., 1985). Typically there is an increased fluid transport when
enhancing the time dependence of the jet, associated to an increased chaotic
behavior of the fluid trajectories.

In this Paper we consider a related issue, namely that of fluid transport
across a wake. The motivation arises from situations occurring in front of
the Canary upwelling zone in the Northwest African coast (Aristegui et al.,
1997; Barton et al., 1998, 2004; Pelegri et al., 2005) (See Fig. 3.1). There is a
strong mesoscale activity in the wake of the Canary Islands, originated from
the current impinging on them from the North, and running southwards or
southwestwards more or less parallel to the African coast. Wind stress in
the lee region of the islands plays also a role in the generation of mesoscale
eddies (Aristegui et al., 1997; Barton et al., 1998). At the same time there
is intense upwelling of depth nutrient-rich waters at the African coast which
is produced by winds parallel to the coast via the Ekman mechanism. These
two systems interact giving rise to filaments of great biological productivity
and complex dynamics. Our aim in this Paper is to explore a very simple
kinematic mechanism for the formation of such filaments: entrainment by
the wake. We will also determine whether the wake will act as a barrier,
i.e. it will stop the flux of nutrient-rich water towards the ocean interior,
or rather cross-wake transport will be increased by the presence of eddies.
In the second case, which is the one realized in our model for parameter
values appropriate for the Canary zone, the mechanism may be important
to enhance biological productivity of ocean regions relatively far from the
coastal upwelling. In any case, we stress that in this work we focus on the
transport of particles into and across the wake and not on the long-range
transport that could drive them far apart from it.

In general, one can identify three possible mechanisms contributing to the
horizontal transport from a coastal upwelling across a wake: The first one
is the direct effect of Ekman pumping that transports the upwelled waters
in the direction opposite to the coast. In the second one, coastal water
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Figure 3.1: The Canary Islands region, with the Canary current running
southwestwards parallel to the African coast, where there is an intense up-
welling, and impinging on the islands.
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parcels become entrained by the wake, which stretches and deforms them
into filamental features until some parts reach the ocean interior. Third,
coastal waters may become captured inside eddies, which can travel long
distances.

All of the three mechanisms require the wake to be permeable to fluid
trajectories, and chaotic advection behind the island to be strong enough to
allow transverse transport across the main current. There have been studies
of chaotic transport in flows mmodelingisland wakes (Miller et al., 2002), but
the emphasis was not in transverse transport. Transport of coastal waters
inside eddies and filaments has been observed in the Canary area (Aristegui
et al., 1997; Barton et al., 1998, 2004; Pelegri et al., 2005). Nevertheless few
attention has been devoted to the relative importance and interplay between
the first two mechanisms. With numerical solutions of the Navier-Stokes
equations in two dimensions (Duan & Wiggins, 1997; Shariff et al., 1990), it
has been shown, for the wake behind a cylinder, that an important increase
of cross-wake transport occurs in the Reynolds number range 100 —200. The
phenomenon has been studied in detail (Duan & Wiggins, 1997), and has
been associated to topological changes in the structure of the wake, which
allows lobes of fluid to be stretched into filaments that cross the wake. The
similarity of this mechanism to what it is seen in the Canary area motivates
our study, in which we try to identify an analogous mechanism in a geophys-
ical setting. In particular, we will show a transition from a situation with
a barrier that does not allow particles to cross the wake, and another one
without barrier, where there is a net transport of matter across it. In the
real ocean, phenomena such as eddy detachment and additional filamenta-
tion produced by hyperbolic regions in the neighborhood, can collaborate
with the wake-crossing mechanism reported in this work to produce long-
range transport. But these effects are absent in our model, and as already
mentioned, we focus on the possibility of crossing the wake, i.e., in the fact
that the particles visit the side of the wake opposite to the place from which
they are released.

With this aim we use in this Paper a kinematic approach to analyze the
interplay between the mechanisms of Ekman transport and entraining by the
wake. We focus on horizontal transport on upper ocean layers by using a
two-dimensional flow, and set up a model streamfunction having the qualita-
tive features of the wake behind an island by modifying the streamfunction
introduced in (Jung et al., 1993; Ziemniak et al., 1994) to model the wake
behind a cylinder. Parameters are chosen in such a way that the relevant
geometric features (sizes, time scales, speeds, ...) are comparable with the
real situation in the Canary Islands zone. We do not expect this to be an
accurate model of the real ocean dynamics, but since the spatial and tem-
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poral scales are taken from observations, we expect it to capture the correct
kinematics of the transport and the relative importance of the mechanisms
involved.

In the following, we first discuss the properties of the velocity field used,
and then characterize the amount of transport in several parameter regimes.
To quantify it we define in the system an area outside the wake providing a
continuous source of particles, and count how many of them are able to cross
the wake for different parameter values. In our interpretation of the model
as a representation of the Canary zone, the particle source area is intended
to represent the upwelling water close to the African coast.

The Paper is organized as follows. In the next section we present the
kinematic flow differentiating the three situations that we want to study:
periodic flow, non-periodic flow and periodic flow with turbulent diffusion
of the particles. Then in Section 4 we briefly comment on the dynamics of
the particles. Section 5 contains the results of our work and in Section 6 we
write down our conclusions.

3.3 An analytical model for the flow in the
wake of an island

Full hydrodynamic simulations of flows in two or three spatial dimensions in-
volve solving Navier-Stokes equations or approximations to it. In geophysical
contexts, simplified turbulence closing schemes should be used to simulate the
small unresolved scales. A simple alternative from which considerable insight
has been gained in the past (Bower, 1991; Samelson, 1992a; Meyers, 1994;
Rogerson et al., 1999; Cencini et al., 1999) is to consider, in two-dimensional
incompressible situations, a model streamfunction V(z,y,t) giving a flow
qualitatively similar to the one under study. The velocity components in x-
and y-direction and the equations of motion of fluid elements are:

'i' = UI('r?y?t) = agy\:p(x7 y7t)7

. 0
Yy = ’Uy(ﬁ,y,t):—%\lf(I,y,t). (31)

We are interested in the transport perpendicular to the vortex street in
the wake of an island. To keep the geometry of the island as simple as
possible, we assume it to have a circular shape. Of course, this is a crude
approximation to the Canary islands archipelago. However, observations
report on the existence of vortex streets in the south of the islands which
qualitatively can be understood as emerging from a single large obstacle. As
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in (Aristegui et al., 1997), the island of Gran Canaria will be chosen here as
the representative obstacle of the whole archipelago. Our streamfunction is
based on the one introduced in (Jung et al., 1993) and (Ziemniak et al., 1994),
but we add to it the effect of Ekman pumping from the coast originated
by the effect of the northern winds on the African coast. In addition, we
will also eventually consider vortex trajectories more complex than in (Jung
et al., 1993) and (Ziemniak et al., 1994). The kinematic model by Jung et al.
was originally developed to describe the flow behind a cylinder of radius r
located in the middle of a channel of width W. Satisfactory comparison was
made with numerical solutions of the Navier-Stokes equation in the range
of Reynolds numbers such that the velocity field is periodic in time (von
Karman vortex street flow), i.e., for Re of order 100. It is remarkable that
numerical simulations in (Aristegui et al., 1997) show that already at Re~
100, many orders of magnitude smaller than the true Reynolds number in
the turbulent ocean, the flow around Gran Canaria given by a barotropic
quasigeostrophic model reproduces some of the observed large scale features.
This gives confidence to the hypothesis that the streamfunction in (Jung
et al., 1993) and (Ziemniak et al., 1994), developed for flows in that order of
Reynolds numbers, is a good starting point to model the large scale features
of the island wake.

There are, however, many unrealistic features in it. Among them, the
most noticeable is that the true geophysical flow is not time periodic. Another
one is that it lacks of any of the small scale structures characteristic to
real turbulent flows. To minimize these shortcomings, in this work we will
present results for the transport across the wake of an obstacle for three
different situations: In the first case we will use a streamfunction periodic in
time, which is the direct extension of the model in (Jung et al., 1993) but
including an Ekman term. In a second case the motion of the vortices, which
in the original model is rectilinear, will have a stochastic component, giving
rise to a non-periodic flow. In the third case we will add a random velocity
component to the particle motion in the periodic streamfunction, as a way to
investigate the impact on transport of small-scale turbulent diffusion. These
three situations are described in the next subsections.

3.3.1 Periodic flow

The spatial coordinates are chosen such that the mean flow runs along the
horizontal = direction, from left to right, put the center of the cylinder at the
origin of coordinates, and measure lengths in units of the cylinder radius, so
that = 1. Under these conditions the streamfunction, based in (Jung et al.,
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1993), will be written as

V(x,y,t) = f(z,y)9(z,y,t). (3.2)

The first factor f(z,y) ensures that the trajectories do not penetrate into
the cylinder,

flz,y)=1-— e_a< v x2+y2_1>2. (3.3)

There is a frictional boundary layer of width a~'/? on which the tan-

gential velocity component tends linearly to zero, while the radial velocity
component decreases quadratically. The cylinder surface can be considered
as the union of an infinite number of parabolic fixed points.

The second factor g(z,y,t) models the background flow, the vortices in
the wake, and the Ekman term:

g(l’,y,t) = _whl(t)gl(xvf%t) + U)hg(t)Qg(iL’,y,t)
+ ups(x,y)y +ug(x —1)0(z — 1). (3.4)

The first two terms describe the simultaneous presence of two vortices in the
wake. They are of opposite sign but their maximal vortex strengths are equal
and denoted by w. They are of Gaussian shape:

2
gy, 1) = el rotmn O] g (3.5)

Ko /2 is the characteristic linear size of the vortices (the radius), and « gives
the characteristic ratio between the elongation of the vortices in the x and y
direction. The vortex centers move along the x direction according to

r1(t)= 1+L (7% mod 1) . yi(t) =1
xo(t) x1(t —T./2) y2(t) = —yo , (3.6)

and their amplitudes are modulated by

() = |sin (W%)'
ho(t) = ha(t—T./2) (3.7)

Thus, vortices are created behind the cylinder with a dephasing of half a
period. Each of them moves a distance L along the x direction during a time
T,., then fades out, and the process restarts.

The third term in g(z,y,t) describes the background flow, a current of
speed wug in the positive horizontal direction. The factor s(x,y) introduces
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the shielding of this background flow behind the cylinder, allowing it to be
replaced by the vortex structures. Its precise form is

s(z,y) = 1 — e (mDYei, (3.8)

This shielded region is of size 1, i.e. of the size of the cylinder or island.

The last term in g(z, y, t) is absent in the original streamfunction of Jung
et al. (Jung et al., 1993; Ziemniak et al., 1994). It models an additional
velocity of constant strength ug in the y direction acting only when the x
coordinate of a particle is larger than 1, i.e. just behind the island (© is
the Heavyside or step function, ie. O(u) = 1 if w > 0 and ©(u) = 0 if
u < 0). This corresponds to a stream crossing the vortex street towards
the negative y direction just past the cylinder. This term was introduced
in order to take into account the existence of the Ekman-drift in the region
of the Canary Islands which points towards the ocean interior. Plots of the
streamlines of the flow without and with the Ekman-drift are shown in Figs.
3.2 and 3.3, respectively. The rectangle in the upper part is the area where
a large number N of particles, initially equidistant, is repeatedly introduced
at regular time intervals A. Their trajectories are followed by integrating
the equations of motion (3.1) and from them the cross-wake transport is
estimated (see below). This configuration aims at representing the transport
of water parcels, rich in nutrients, from an upwelling region in the African
coast towards the ocean interior.

3.3.2 Non-periodic flow

Real oceanic flows are never perfectly periodic. It is well known that
structures that are perfect barriers to transport (Kolmogorov-Arnold-Moser
(KAM) tori) in a periodic flow become leaky when the time-dependence is
not exactly periodic (Wiggins, 1992), so that there is the possibility that the
model defined in the previous subsection would underestimate transport.
In addition, in the above presented periodic flow case, the trajectories of
the vortices are rectilinear and regular which does not happen in the real
case of Canary vortices. As a way to relax both limitations, we add some
randomness to the vortex trajectories. Instead of moving along straight
horizontal lines, y1(t) = o, y2(t) = —yo, the vertical coordinates of the
vortices move according to y1(t) = yo +7€(t), and yo(t) = —yi1(t), where £(t)
is a normalized Gaussian white noise (< £(t) >= 0, < £(t)E(t) >=6(t — 1))
and v the noise strength. Using this approach the periodicity of the stream-
function is broken, and some of the characteristic features of periodic flows,
such as the existence of strict barriers to transport, will not be present in
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Figure 3.2: The streamlines of the flow without Ekman flow, ug = 0, at vor-
tex strength w = 200. Other parameters as described in Sect. 3.3. The box
where tracers are starting is drawn just above the cylinder with coordinates
0 <z<1,and 2.1 < y < 2.5. The snapshots are at t = 0 (top-left), t = T./4
(top-right), t = 27../4 (bottom-left), and ¢t = 37,./4 (bottom-right).

this case. Again, particle trajectories starting in the upper rectangle are
determined from equations (3.1).

3.3.3 Periodic flow with turbulent diffusion of the par-
ticles

For the preceding two cases, periodic and non-periodic flows, the trajecto-
ries of tracers are computed by integrating equations (3.1) with the given
streamfunction. This streamfunction contains only large scale features and
completely misses all the small scale turbulence that is characteristic to the
real ocean.

A convenient way to include unresolved small scales in Lagrangian compu-
tations is to add to the velocity field experienced by the Lagrangian particle
a fluctuating term representing small-scale turbulence (Griffa, 1996; Mariano
et al., 2002). In our case,

X(t) = v(x,t) + V2Kn(t). (3.9)
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Figure 3.3: Streamlines of the flow with Ekman flow up = 2 and other
parameters, and time sequence of the snapshots, as in Figure 3.2.

where x = (z,y) and v(x,t) is the velocity field given by Eq.(3.1) for the
periodic flow case. This gives additional diffusion to particle trajectories.
Usually the two-dimensional vector 7(t) is taken to be a Gaussian Markov
process with a memory time of the order of some days (Buffoni et al., 1997;
Falco et al., 2000). Here, to explore the impact of irregular unresolved mo-
tions in the opposite extreme to the deterministic situation considered in the
previous sections, we use for 7(t) a two-dimensional Gaussian white noise
of zero mean and correlations (n(t) - n(t')) = d(t — t'). For the strength K
we take K ~ 10 m?s~!, which is the effective eddy diffusivity estimated by
(Okubo, 1971) as acting at the spatial scales of about 10 km, which are of
the order of the spatial structures that begin to be missed from our stream-
function. In this case, some typical features of the periodic flow are lost, and
even smooth dynamical systems structures become fuzzier. In particular,
transport may occur even across perfect Lagrangian barriers.
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3.4 Parameter estimation for the Canary
zone

In this section we enumerate the relevant geophysical properties of the upper
ocean levels of the Canary zone in order to be represented in the model.
We extract the relevant information from references (Aristegui et al., 1997;
Barton et al., 1998, 2004; Pelegri et al., 2005). Although there are seasonal
variations in most of the parameters, representative constant values are used
here.

e A unique island is in the model. This mimics the Gran Canaria island,
which seems to have most influence on the zonal mesoscale activity
(Aristegui et al., 1997). Its linear size is of the order of 54 km, from
which we take the radius of the model cylinder to be r = 25 km. This
will be taken in the next Sections as the unit of length so that r =1
there.

e Typically in this area the mean velocity is 0.05 m/s and in some periods
of the year reaches 0.2 m/s. We take a background flow velocity of
uo = 0.18 m/s. In numerical experiments (with a large eddy viscosity)
(Aristegui et al., 1997) a von Karman vortex street appears when the
background flow is larger than 0.1 m/s.

e Different sizes are observed for the Canary eddies, ranging from 50
to 100 kilometers, and depending on the distance to the island that

generates them. In any case the mean radius of the eddies x, 12 s
/2 _

comparable to that of the island that generates it. Thus we take x !
T.

e Eddies are usually elliptic. Its eccentricity diminishes with the distance
to the island. In our model we take o = 1, that would represent
circular vortices. But due to the part of the streamfunction representing
shielding behind the cylinder, vortices are stretched and have some
ellipticity.

e The rotation period of a buoy in an eddy (Pelegri et al., 2005) ranges
from 3 to 6 days (although increasing with time). This gives a lin-
ear velocity at their periphery (distance r from the center) of about
0.6 m/s. By equating this speed with typical values of derivatives
of the streamfunction at the vortex periphery we estimate the vortex
strength w & 55 x 10% m?/s.
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The shedding of eddies, as already commented, is not perfectly periodic.
Nevertheless we take a typical interval between eddy shedding events
of 15 days. Thus T, = 30 days.

Some measurements of eddy velocities indicate that they move towards
the southwest at a velocity of 5 — 6 kilometers per day. The typical
displacement during a time 7. is thus L = 150 km = 6r.

Lifetime of the eddies is of several weeks, with some measurements
reporting lifetimes of several months. Typically they remain close to
the island for about one week. In the model the lifetime is the same as
the period T,, which is within the order of the magnitude of observed
permanence in the wake.

a~1/2, the width of the cylinder boundary layer, is difficult to estimate
since it is ill-defined at geophysical scales. Fortunately its value only
affects motion close to the cylinder and its effect is unimportant in most
of the velocity field. We take a=/? = r.

The Ekman flow is originated by the wind stress 7 = pg;-cqv?, where
Pair = 1.222 kg/m? is the air density, ¢g = 0.0013 is the drag coefficient
between water and air, and v is the wind velocity, typically in the range
[2.7,8.7] m/s. Thus the wind stress is in a range [0.012,0.12] N/m?. For
a particular intermediate value of v = 5 m/s we have 7 = 0.040 N/m?.

The value of the Ekman speed is given by:
T

~ pofh

being py & 1024 kg/m? the sea water density, f = 107* s~! the Coriolis
parameter at the Canary latitude, and h the depth of the Ekman layer.
It ranges between 15 m and 100 m. We take the intermediate value

(3.10)

Ug

h = 50 m, which can be justified from the expression h = % for

a vertical turbulent viscosity A, ~ 0.1 m?/s. With these parameter
values, and the values for the wind stress, the Ekman velocity ug is in
the range [0.0023,0.02] m/s.

In the following, in addition to measure lengths in units of r, we measure

time in units of T,. With this, the non-dimensional values of the parameters
to be used in the model read: r =T, =a=a=1,kg=1, L =6, ug = 18.66,
ug € [0.2,2], w = 200. In the non-periodic case we use v = 0.5 and yo = 0.5
(i.e. half the island radius) for the parameters of the vortex trajectories.
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3.5 Particle dynamics in the wake

The dynamics given by Equations (3.1) can be interpreted as the equation of
motion of a one-degree of freedom Hamiltonian system with time-dependent
Hamiltonian W(z,y,t). In our case we have an open system, meaning that
the particles start in an incoming asymptotic region, pass a region where the
dynamics is time dependent, and then leave the system through an outgoing
asymptotic region. While in the time-dependent region of the system, par-
ticles are trapped by the vortices and whirled around for a while. Since the
velocity field is time dependent, particles can be handed from one vortex to
the following one and can remain in the region close to the cylinder for a rel-
atively long time, even though the vortices leave this region quite rapidly. In
fact there are periodic and localized trajectories organizing these long scat-
tering orbits. They constitute the backbone of the so-called chaotic saddle,
the unstable set of trajectories never leaving the wake region (Jung et al.,
1993). This structure, and particularly its stable and unstable manifolds
(the lines along which particles ending at the saddle approach it, and parti-
cles close to the saddle leave it, respectively) organize important trajectory
characteristics in the wake. More in detail, the stable or contracting manifold
of the chaotic saddle is the set of spatial points x such that particles starting
from x approach the chaotic saddle as time advances. Similarly, the unstable
or stretching manifold is the set of points such that their backward-in-time
evolution approaches the chaotic saddle. Stable manifolds cannot intersect
with themselves and with other stable manifolds, and the same holds for the
unstable manifolds. Moreover, particle trajectories cannot cross these mani-
folds. However, stable and unstable manifolds can intersect each other. All
these properties make them important templates organizing the particle tra-
jectories in the system. Typically, vortex boundaries are areas of tangencies
between stable and unstable manifolds. In the particular case of open flows,
like the one studied in this work, the unstable manifold of the chaotic saddle
is the set of points along which particles leave it, and, therefore, it is the set
that is traced by a number of particles when they are launched in the system
and take an long time to abandon it.

In Fig. 3.4 we show the stable and unstable manifolds of the chaotic
saddle for two representative parameter sets. A clear change in the shape of
the unstable manifold is seen when increasing the vortex strength w. The
chaotic saddle itself, however, is only approached by particles starting on its
stable manifold. In our configuration, and for the parameter values we use,
these structures are closely packed very near the cylinder surface (see Fig.
3.4), in contrast with other situations studied in the literature (Jung et al.,
1993; Ziemniak et al., 1994). As a consequence, for the initial conditions to be
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Figure 3.4: Stable (in gray) and unstable (in black) manifolds of the chaotic
saddle in the wake of the cylinder, for the case of the periodic flow and
ugp = 2. Left: Snapshot taken at time 77, for vortex strength w = 10.
Right: Snapshot taken at time 7T, for vortex strength w = 200. In the inset
we show a zoom of the manifolds in the area close to the cylinder. Other
parameters as described in Sect. 3. The chaotic saddle itself is closely packed
immediately behind the cylinder surface. The unstable manifold has been
plotted by releasing a large number of particles left of the cylinder and very
close to it, letting the flow to transport them for a long time (77, as already
indicated) so that only the ones lasting at this time in the wake region are
still there and plotted. The stable manifold is plotted in the same way but
releasing the particles right of the cylinder and running the flow backwards
in time.

used in Sect. 3.6, tracked fluid particles will not intersect such manifold and
they will not follow strongly chaotic recirculating orbits, but rather they will
be advected downstream relatively fast. In addition they will leave the wake
region along paths that are not perfectly aligned with the ssaddlesunstable
manifold. Despite of this, we will see that the change of topology observed in
Fig. 3.4 has global consequences in particle dynamics and that for realistic
parameter values, corresponding to the right panel of Fig. 3.4, particles can
cross the wake, and experience some stretching and dispersion.
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3.6 Quantifying transport across the wake of
an island

In this Section we report the numerical results obtained for the three different
flows introduced in Section 2. Our objective is to quantify transport across a
vortex street in the presence of a continuous source of particles representing
the water parcels upwelling at the African coast. We model this source by
placing test particles in the rectangle 0 < x < 1 and 2.1 <y < 2.5, i.e., above
and at some distance of the cylinder (see Figs. 3.2 and 3.3). We place 200
new particles in the rectangle at regular intervals of time A = 0.01 (in units
of the flow period T,), i.e. 20,000 new particles per period, and integrate their
evolution under the flow. Particles are initially placed along four horizontal
lines inside the rectangle, but this has no influence on the results described
below.

Our open system is considered to be the region displayed in Figs. 3.2 and
3.3. Trajectories leaving this region are no longer integrated. The idea is that
it will be impossible (for the periodic flow case) or practically impossible (for
the non-periodic and turbulent cases) for the particles to return back to the
region after they leave it. We count at every interval of time A how many
particles have crossed the wake. There is some ambiguity in defining the
transverse extent of the wake. Fortunately, as will become clear from the
results presented later, the dynamics is such that particles either do not
approach the central region behind the cylinder while they remain inside
our region or rather they perform a rather large transverse excursion. Thus,
any reasonable definition of ‘crossing the wake’ will give essentially the same
results. In this Section we will count particles crossing the central line y = 0
as ‘having crossed the wake’, and at the end of the Section we will show that
the same results are obtained if counting them when crossing y = —1 (see
Fig. 3.13). Particles crossing the chosen line several times are counted only
once.

Because of the presence of the Ekman term ug, all trajectories will eventu-
ally reach arbitrarily negative y coordinates if observed sufficiently far down-
stream. Clearly, this can not be considered to be a wake crossing, and we
restrict our computation to the region shown in Figs. 3.2 and 3.3, where the
vortices remain localized and thus it is the only part of the flow in which
nontrivial dynamics occurs. Given the simple structure of the flow, even
when wake crossing occurs, the particles can not go very far and typically
they will not leave the proximity of the wake region. In a more realistic ocean
setting, additional mechanisms can occur after wake crossing that may bring
particles further towards the open ocean. But wake crossing is anyway the
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Figure 3.5: The ratio of particles crossing the wake, R, versus vortex strength
w in the periodic flow. The different curves correspond to different values of
the Ekman pumping, ug, as indicated in the legend.

first step needed for such long-range transport to occur.

We fix all but two of the parameters of the model indicated in the previous
section, namely the strength of the vortices, w, and the Ekman pumping ug,
which are varied in a realistic range. The measure of transport across the
wake is performed by counting the number of particles crossing the line y = 0
during each time interval A. A short transient after the launching of the first
particles in the rectangle this quantity becomes a periodic function of time in
the periodic flow case, and approximately periodic under the other two flows.
To focus on average transverse transport, a quantity called R is computed as
the ratio between the number of particles crossing y = 0 during 6 flow periods
(after discarding an initial transient of 3 periods) and the total number of
particles launched during that time (120,000 particles).

In Fig. 3.5 we plot R versus w for different values of the Ekman pumping
strength ug in the periodic flow case. The most relevant result is the absence
of transport for small values of w, identifying the existence of a barrier that
does not permit the entrance of particles in the wake. This barrier disappears
when w crosses a critical value w,. which depends on the Ekman pumping
strength ug, w, = w.(ug). At a fixed value of ug the proportion of crossing
particles increases with increasing w as expected, above the critical threshold
w.. In Fig. 3.6 we plot the critical value w, as a function of ug. The value
of w, diminishes from approximately w. = 50 for ugp = 0.2 to w. = 20
for ugp = 2. Similarly for increasing ug the ratio of particles crossing is
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Figure 3.6: The critical values of the vortex strength, w,, versus the velocity
of the Ekman pumping ug in the periodic flow.

significantly larger for a fixed w. Most importantly, for the typical realistic
value w = 200 (see Sect. 3) one obtains a rather large proportion of crossing
particles, R, independently of the value of ug, so that one can expect that
behind the Canary islands a net transport of particles from the coast to the
opposite side of the island wake occurs.

Now we illustrate the transport mechanism by looking at particle distri-
butions for the two different situations just identified. In Fig. 3.7 we show a
snapshot of the particle positions, all of them launched at the horizontal lines
in the marked rectangle at successive times. In the left panel we plot the case
w = 10 in which the launching site is on the exterior of the barrier impeding
transport across the wake. In the right panel (w = 200) we observe particles
spreading through the wake of the island. Obviously a barrier no longer ex-
ists between the launching site and the lower parts of the wake. Transport
occurs along a filament entrained into the wake that stretches the particle
lines and later disperses them. The similarity of the tracers distribution with
real features observed in the Canary area is remarkable (see for example Fig.
24 of (Barton et al., 1998), or Fig. 1 of (Aristegui et al., 2004)). This occurs
despite the fact that, as advanced before, the trajectory structure in Fig.
3.7 is rather different from the saddle manifolds in Fig. 3.4. The difference
arise because the launching site for the tracer particles is rather far from the
manifolds.

Thus we can conclude that the formation of vortices in the wake of the
Canary Islands together with Ekman pumping make up a possible mecha-
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Figure 3.7: Plot of the spatial distribution of the tracers in the wake of the
island for the case of the periodic flow and ug = 2. Left: Snapshot of the
distribution of the tracers at time 0.397, for vortex strength w = 10. Right:
Snapshot of the distribution of the tracers at time 0.397. for vortex strength
w = 200.

nism for the formation and entrainment of nutrient-rich filaments into the
Canary wake, and eventually for transport of nutrients from the African
coast to areas in the Atlantic beyond the islands. The effectiveness of this
enrichment mechanism will depend however on how fast are the upwelled nu-
trients consumed by the biological populations near the coast (Pelegri et al.,
2005). Note that since the size of the island (and so the width of the wake) is
50 km, the time the particles would need to cross the wake if driven only by
the Ekman flow (ug is in the range [0.0023,0.02] m/s) is between 28 — 250
days. Given that the mean flow uy = 0.18 m/s transports particles out of
the observation region shown in the figures (10 cylinder radii) in about 16
days, we see that no particles are able to cross the wake region behind the
cylinder under the sole effect of the Ekman flow.

We now discuss the results for the other two flows considered. In Fig. 3.9
we show R versus w for different ug in the non-periodic flow case, that is,
with the random y component for the trajectories of vortex centers. The
non-periodicity of the flow has been introduced to overcome strict barriers
to transport that are not realistic. The results show that the effect of non-
periodicity is not strong. We still observe a value w. below which transport
is extremely low, though it is non-zero now. Some particles can enter into
the wake at low vortex strength w < w, due to the non-periodic nature of the
flow, but their number is rather small. For higher vortex strength w > w,
we observe an increasing net transport with increasing w. For a fixed ug the
critical value w, is lower than the corresponding threshold in the periodic
case. Fig. 3.8 shows distributions of tracers, again for w = 10 and w = 200.
They share the qualitative features with the periodic case, Fig. 3.7, although
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Figure 3.8: Plot of the spatial distribution of the tracers in the wake of the
island for the case of the non-periodic flow and ug = 2. Left: Snapshot of
the distribution of the tracers at time 0.397, for vortex strength w = 10.
Right: Snapshot of the distribution of the tracers at time 0.397 for vortex
strength w = 200.
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Figure 3.9: Proportion of particles crossing the wake, R, versus vortex
strength w for the non-periodic flow. The different curves correspond to
different values of the Ekman pumping, ug, as indicated in the legend.

now there is much more particle dispersion after the filament enters the wake.

The same plots for the case of particles driven by the periodic flow with
turbulent diffusion are shown in Figs. 3.11 and 3.10. For small values of the
Ekman pumping ug there is again a critical vortex strength w,. such that for
w < w, only minimal transverse transport is observed. In the realistic value,
up = 2, a non-negligible net transport of particles is observed already for low
vortex strength w, in contrast to the previous cases where below the critical
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Figure 3.10: Plot of the spatial distribution of tracers in the wake of the
island for the case of the periodic flow with turbulent diffusion and ug = 2.
Left: Snapshot of the distribution of the tracers at time 0.397,. for vortex
strength w = 10. Right: Snapshot of the distribution of the tracers at time
0.397, for vortex strength w = 200.
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Figure 3.11: Proportion of particles crossing the wake, R, versus vortex
strength w for the periodic flow with turbulent diffusion of the particles.
The different curves correspond to different values of the Ekman pumping,
ug, as indicated in the legend.

value w,. transport was very low. Nevertheless there is still a sharp increase
in effective transport when increasing w. Thus a remnant of the critical value
w, is still visible. In Fig. 3.10 the distribution of tracers is plotted for w = 10
and w = 200, as in the previous cases. As expected from the introduction of
turbulent diffusion particles become randomly dispersed, but always around
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Figure 3.12: Comparison of transport across the wake for the three kinds of
flows. The values of ug and the type of flow that originated the data are
indicated in the plot.

average paths similar to the previous cases.

The comparison among the three cases (periodic, non-periodic and tur-
bulent) is shown in Fig. 3.12. Here we fix up = 0, ug = 1 and ug = 2, and
plot R vs w for the different types of flows in one graph.

The smallest transverse transport, and the largest critical w,, is always
attained in the periodic flow case (which is the only case for which below w,.
transverse transport is exactly zero). The smallest effective value of w, is
found for the case of particles with turbulent diffusion, and transport is also
higher in this case for the smallest values of w and all ug. At the other end
of the considered range of w, i.e. going towards realistic values w > 150, the
measured transport R is largest for the non-periodic flow case. The addition
of the turbulent particle diffusion slightly increases transport at large w with
respect to the purely periodic case, but the difference between these two cases
is not large. This indicates that turbulent diffusion, at least as modelled here,
has no strong influence on transverse transport in the realistic limit of large
w, while non-periodic vortex movement is more significant.

Finally we return to the question about the distance over which trans-
port across the wake occurs by comparing R for different positions of the
line which the tracers have to pass in order to be counted as particles that
have actually crossed the wake. In Fig. 3.13 we compare the proportions of
particles crossing the lines y = 0 and y = —1 for the periodic flow case and
up = 1. Similar results are obtained for other values of ur and for the other
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Figure 3.13: R versus w for ug = 1 for the three flows, and two situations:
the proportion of particles that cross the line y = 0, and the line y = —1.
No remarkable differences can be observed.

two flows. The ratio of particles crossing the line y = 0 is slightly higher, but
both remain very similar over the entire range of w, meaning that the mea-
sured transport does not depend significatively on the choice of the position
of the line the tracers must cross in the wake. This was in fact quite obvious
from the shape of the particle distributions (Figs. 3.7,3.8 and 3.10).

3.7 Conclusions

The biological activity around the Canary Islands and in the open ocean de-
pends crucially on the availability of nutrients. An important source of these
nutrients is provided by the upwelling near the African coast. In a simple
sc